Synthesis of Functionalized Arenes based on [3+3] Cyclizations of 1,3-

 Bis(silyloxy)-1,3-butadienes and related Transformations and Isolation of New Chemical Constituents of Symplocos racemosa> Inauguraldissertation
zur

Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)
an der Mathematisch-Naturwissenschaftlichen Fakultät
der

Universität Rostock
vorgelegt von
Muhammad Abid Rashid
geboren am 13-04-1976
in Sahiwal, Pakistan

Rostock 1-02-08

Dekan :

1. Gutachter :
2. Gutachter :

Tag der Promotion :

Affectionately Dedicated to

> Ammar, Umar, Usman, Umair and Ayesha $$
\text { "My beloved nephews and niece" }
$$

CONTENT

Acknowledgements

Abbreviations
Summary 1

Part A

Synthesis of Functionalized Arenes based on [3+3] Cyclizations of 1,3-Bis(silyloxy)-1,3butadienes and related Transformations
Introduction 4

1. Regioselective Synthesis of ω-Bromo-3-ketosulfones, ω-Bromo-3-ktonitriles and2-(ω-Bromoalkyl)benzofurans based on 'Ring-Closing / Ring-Opening' Strategy
1.1 Introduction 7
1.2 Results and Discussion 8
1.2.1. General mechanism for the cyclization of 1-bromo-2-chloroethane with 3-keto- sulfone dianion 8
1.2.1. Synthesis of ω-Bromo-3-ketosulfones 9
1.2.2. Synthesis of ω-Bromo-3-ketonitriles 11
1.2.3. Synthesis of 2-(ω-Bromoalkyl)benzofurans 13
1.3 Conclusion 17
2. Synthesis of Functionalized Diaryl Ethers and Sulfides based on Regioselective One-Pot Cyclizations of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes 18
2.1. Introduction 18
2.2 Results and Discussion 20
2.2.1. Synthesis of 5 - aryloxy and 5 -thioaryloxy salicylates 20
2.2.2. Synthesis of 3 - aryloxy and 3 -thioaryloxy salicylates 26
2.2.3. Regioselective Synthesis of Functionalized 2-Thiophenoxybenzoates by Domino '[3+3] Cyclization /Homo-Michael' Reactions 33
2.2.4. Synthesis of Thiophenoxy and Phenoxy substituted Benzophenones by Domino 'Michael-retro-Michael-aldol' Reactions 35
2.2.5. Synthesis of Fuctionalized Biaryl lactones by Domino Michael-Retro-Michael- lactonization Reactions 38
2.3. Conclusion 40
3. Regioselective Synthesis of Functionalized Biaryls based on Cyclizations of
4-Aryl-1,3-bis(trimethyl-silyloxy)-1,3-butadienes 41
3.1. Introduction 41
3.2. Results and Discussion 42
3.2.1. Synthesis of 3-Arylsalicylates 42
3.3. Conclusion 46
4. Synthesis of 1-Azaxanthones by Condensation of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes with 3-(Cyano)-benzopyrylium Triflates and Subsequent Domino 'Retro-
Michael / Nitrile-Addition / Heterocyclization' Reaction 47
4.1. Introduction 47
4.2. Results and Discussion 48
4.3. Conclusion 54
5. Experimental Section 55
5.1. General: Equipment, chemicals and work technique 55
5.2. Procedures and spectroscopic data 56
Manuscript in preparation 115
References 121
Data for X-Ray Crystal Structures 130
Part B
Isolation of New Chemical Constituents of Symplocos racemosa
Introduction
6. Taxonomy of the family Symplocaceae 145
1.1. The Genus Symplocos 145
1.1.1. Distribution 145
1.1.2. Morphology 146
1.2. The Species Symplocos racemosa 146
1.2.1. History 146
1.2.2. Distribution 147
1.2.3. Habitat 147
1.2.4. Medicinal importance 147
1.3. Phytochemicals: Their Role in the Modern Times 148
1.4. Diversity and Impotance of Phenolics in Plants 152
Literature Review
7. Chemical Constituents of the Genus Symplocos 153
Results and Discussion
8. Present Work 157
3.1. Structure Elucidation of the Chemical Constituents of Symplocos racemosa 157
3.1.1. New Chemical Constituents of Symplocos racemosa 157
3.1.1.1. Symplocuronic acid (21) 158
3.1.1.2. Sympocemoside (22) 161
3.1.1.3. Locoracemoside A (23) 164
3.1.1.4. Locoracemoside B (24) 167
3.1.1.5. Locoracemoside C (25) 170
3.1.2. New-source Chemical Constituents of Symplocos racemosa 173
3.1.2.1. Salirepin (26) 173
3.2. Bioactivity of the Chemical Constituents of Symplocos racemosa 174
3.2.1. Chymotrypsin Inhibition 174
3.2.2. Structure-activity Relationship 176
Experimentanl
9. General 177
4.1. Spray Reagents 177
4.2. Symplocos racemosa 178
4.2.1. Plant Material 178
4.2.2. Extraction and Purification 178
4.3. Characterization of Compounds 181
4.4. In vitro Enzyme Inhibition Assay 184
References 185
Abstract 187
Curriculum Vitae 188
Declaration 193

ACKNOWLEDGEMENTS

In the name of Allah, Who is Ubiquitous, Omniscient, Worthy of all praise and Creator of all of us, Who guides in darkness and helps in difficulties. I do obeisance in thanks and gratitude for all His blessings, due to which I was able to accomplish this strenuous task.

All respect for the Holy prophet Hazrat Muhammad (Peace be upon Him), for enlightening our conscious with the essence of faith in Almighty Allah and also for prophesying the code of life (The Holy Quran).

The work presented in this dissertation would never be consummated without the keen interest, proficient suggestions, guidance, and persistent encouragement of my research supervisor, Prof. Dr. Peter Langer. I am also pleased to acknowledge, my cosupervisor, Prof. Dr. Viqar Uddin Ahamd s.I. HEJ Research Institute of Chemistry, University of Karachi, for his thoughtful advices, support, patience and encouragement. Without all these favors from them, accomplishment of this work would have been extremely difficult.

My sincere appreciations are extended to my friends Nisar Rasool, Imran and Muhammad Adeel for providing me an enjoyable company during this period.

I am thankful to all my past and present lab fellows, Andreas, Jope, Ibrar, Yawer, Inam, imran, Sven, Satti, Sher, Gerson, Rasheed, Rüdiger, Steffi, for their support encouragement and help to pursue this work and all others whom I have missed here do deserve equal credit.

I would like to express my sincere respect to my senior HEJ fellows Dr. Muhammad Athar Abbasi, Dr. Muhammad Zubair and Dr. Zulfiqar Ali.

Thanks are also due to all members of technical sections (NMR, IR, MS and XRay etc) of Universities of Rostock and Karachi.

The most important is, to say that I have a great debt on my life due to the enormous sacrifices of my parents, brothers, and sisters for their divine love, prayers, constant care, encouragement and continuous support throughout my studies. Whatever, I am, that is because of the countless prayers of my parents, who instilled in me, a charm for education and the value of being organized.

Abbreviations

Ar
APT
ATCC
$n \mathrm{BuLi}$
DEPT
EI
ESI
EtOAc
HRMS
IR
LDA
MS
Ph
NEt_{3}
NMR
HMQC
HMBC
COSY
NOESY
$\mathrm{Me}_{3} \mathrm{SiOTf}$
$\mathrm{Me}_{3} \mathrm{SiCl}$
mp .
RCM
TBAI
TFA
$\mathrm{Tf}_{2} \mathrm{O}$
THF
TLC
TMS
UV

Aromatic
Attached Proton Test
American Type Culture Collection
n-Butylithium
Distortionless Enhancement by Polarisation Transfer
Electronic Ionization
Electrospray Ionization
Ethylacetate
High Resolution Mass Spectroscopy
Infrared spectroscopy
Lithium diisopropylamide
Mass Spectrometry
Phenyl
Triethylamine
Nuclear Magnetic Resolution
Heteronuclear Multiple Quantum Coherence
Heteronuclear Multiple Bond Correlation
Correlated Spectroscopy
Nuclear Overhause and Exchange Spectroscopy
Trimethylsilyl trifluoro methanesulfonate
Trimethylsilylchloride
Melting point
Ring Closing Metathesis
Tetrabutyl amonium iodie
Trifluoroacetic acid
Trifluoromethanesulfonic anhydride
Tetrahydrofurane
Thin Layer Chromatography
Trimethylsilane
Ultraviolet Spectroscopy

Summary

A significant part of this dissertation has recently been published (see list of publications at the end). The work embodied in this dissertation is concerned with the Synthesis of Functionalized Arenes based on [3+3] Cyclizations of 1,3-Bis(silyloxy)-1,3-butadienes and related Transformations and isolation of new chemical constituents of Symplocos racemosa.

This dissertation is split in two parts, A and B.

Part A

Synthesis of Functionalized Arenes based on [3+3] Cyclizations of 1,3-Bis(silyloxy)-1,3-butadienes and related Transformations

1. This chapter deals with the the cyclization of the dianions of 3-ketosulfones to synthesize the2-(sulfonylmethylidene)-tetrahydrofurans and 2-(sulfonylmethylidene)-5vinyltetrahydrofurans which afforded ω-bromo-3-ketosulfones (11\&13) after $\mathrm{BBr}_{3^{-}}$ mediated cleavage. In addition synthesis of ω-bromo-3-ketonitriles (16\&18) is also reported. Furthermore, this methodology was successfully applied to the synthesis of 2(ω-haloalkyl)benzofurans (22\&25)) based on the synthesis of 2-(sulfonylmethylidene) and 2-(cyanomethylidene)-tetrahydrofurans and their subsequent BBr_{3}-mediated cleavage.
2. Chapter two includes the synthesis of functionalized diarly sulfides and diaryl ethers based on formal TiCl_{4} mediated [3+3] cyclization of masked dianions, methodology developed by Chan and coworkers. ${ }^{64}$ Synthesis of 1,3-bis(sulfides) $(\mathbf{4 5 e} \& \mathbf{4 5 f})$ was also carried out successfully. Here, catalytic $[3+3]$ cyclizations (43) of 1,3-bis(silyl enol ethers) with 1,1,3,3-tetramethoxypropane are also reported. In addition, a convenient approach towards 2-thiophenoxybenzoates (49) containing a remote halide function by domino ' $[3+3]$ cyclization / homo-Michael' reaction has been reported. This chapter also deals with the synthesis of variety of benzophenones (51) by a domino 'Michael-retro-Michael-aldol' reaction of 1,3 bis-silyl enol ethers with 3-formyl benzopyrylium triflates. Furthermore, cyclization reactions of 1,3-bis (trimethylsilyloxy)-1,3-butadiene with chromone to afford biaryl lactones $\mathbf{5 4}$ is presented.
3. In this chapter, I have described the synthesis of functionalized 3-arylsalicylates by TMSOTf- (62) and $\mathrm{TiCl}_{4}{ }^{-}$(63) mediated [3+3] cyclizations of novel 4-aryl-1,3-bis(silyloxy)-1,3-dienes with 3-silyloxy-2-en-1-ones. The biaryl skeleton is present in several natural products e.g cynandione A-C and dichamanetin. The methodology described here provides an easy and direct route for the synthesis of biaryls.
4. In chapter 4 , I have reported the synthesis of 1-azaxanthones (68) by condensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-(cyano)-benzopyrylium triflates and subsequent base-mediated domino 'retro-Michael-lactonization-aldol' reactions. This synthesis is carried out under mild conditions and the reactions proceed in acceptable yields with very good regio- and chemoselectivity.
5. This chapter includes the experimental section, spectroscopic data and full characterization of all new products has been described.

Part B

Isolation of New chemical constituents of Symplocos racemosa

The phytochemical investigation of Symplocos racemosa Roxb. resulted in the isolation of five new chemical constituents, out of these, two are phenolic glycosides of salirepin series, while other three are three benzylated glycosides. The new compounds include symplocuronic acid (21) and sympocemoside (22), locoracemosides A (23), locoracemosides B (24) and locoracemosides C (25). Locoracemosides A, B and C, benzylated glycosides, display inhibitory potential against the α-chymotrypsin enzyme.

In addition to these new chemical constituents, one new-source chemical constituent, salirepin (26), is reported. These isolated compounds were characterized by using various sophisticated spectroscopic techniques.

Part A

Synthesis of Functionalized Arenes based on [3+3] Cyclizations of 1,3-Bis(silyloxy)-1,3-butadienes and related Transformations

Introduction

The synthesis of relevant organic compounds such as natural products and analogues, drugs, diagnostics, agrochemicals, and other kinds of material is a main topic in academic and industrial chemistry, and it is the connecting point of interdisciplinary research in chemistry, biology, and medicine. The view of synthesis has altered in recent years; there is clearly a change in paradigm. At the beginning, organic chemistry was considered a branch of natural sciences dealing with a specific type of compounds, mainly isolated from living organisms. Even today natural products continue to play an important role in discovery and development of new pharmaceuticals. ${ }^{1}$ Since the discovery of penicillin, a large number of antibiotics have been isolated from scores of micro-organisms. ${ }^{2}$ Natural products also provide a great help in chemotherapy of cancer. They are an integral part of anticancer drugs e.g. bleomycin, doxorubicin, mitomycin, and paclitaxel. ${ }^{3}$ All this pharmacologically and biologically important stuff designed by Mother Nature was not available in bulk quantities which man demanded. Thus the development of new, highly selective methods is still being a main task, to get it in bulk amounts while following the foot steps of nature, but even more important is the search for more efficiency. ${ }^{4}$ The relationship between structural complexity and the number of steps in a synthesis must be improved. In addition, synthetic methodology must be designed in a way that it allows access to diversified substance libraries in an automatized way. ${ }^{5}$ A general way to improve synthetic eficciency and in addition to give access to a multitude of diversified molecules in solution is the development of multicompound domino reactions, which allow the formation of complex compounds starting from simple substrates. Domino reactions are defined as processes of two or more bond-forming reactions in which a subsequent trans-formation takes place by virtue of the functionalities introduced in a former transformation. ${ }^{4 \mathrm{a}, 5 \mathrm{~d}, 6}$ The development of cyclization reaction with free 7 and masked dianions, ${ }^{8}$ for the development of biologically relevant ring systems, and natural substances, ${ }^{9}$ is research priority in the working group prof. Langer. ${ }^{10}$ Despite the simplicity of the idea that in the implementation dianions with 1-2 difunctional alkylhalides to cyclic systems, both dianions as many dielectrophiles represent highly reactive compounds, leading to adverse reactions, such as polymerization, reduction of dielectrophile, ${ }^{11}$ monoalkylation, ${ }^{12}$ eliminations ${ }^{13}$ or SET reactions (SET $=$ single-
electron-transfer). ${ }^{14}$ These problems can be achieved through : (a) optimization of proper tuning of reactivity of dianion and dielectrophile and (b) the use of electroneutral dianions equalivalents (masked dianion) in Lewis acid catalyzed reactions. Masked dianion represent important building blocks. The regioselectivity observed for reactions of true and masked dianions is the same in most cases.

Scheme 1.. i: 2.5 equiv. LDA, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl},-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$, then reflux, 14 h .

1,3-Bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{6}$ are available from the respective 1,3dicarbonyl compounds 4 in one or two steps. Following the procedures of Danishefsky, Chan and Molander, ester-derived bis-silyl enol ethers 6 can be prepared by treatment of the respective β-ketoester with $\mathrm{NEt}_{3}-\mathrm{Me}_{3} \mathrm{SiCl}$ to give the silyl enol ethers 5 Deprotonation of 2 with LDA and subsequent addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ afforded the dienes 6. ${ }^{15}$ Simchen et al. have reported that 1,3 -diketone derived bis-silyl enol ethers can be prepared in one step by treatment of an ether solution of the diketone with $\mathrm{NEt}_{3}-$ $\mathrm{Me}_{3} \operatorname{SiOTf}\left(2\right.$ equiv). ${ }^{16}$

4
6

Scheme 2.: $i: \mathrm{Me}_{3} \mathrm{SiCl}^{2} \mathrm{NEt}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$; $i i$: LDA, THF, $-78 \rightarrow 20^{\circ} \mathrm{C}, \mathrm{Me}_{3} \mathrm{SiCl}$; iii: : $\mathrm{Me}_{3} \mathrm{SiCl}$ (2.0 equiv), $\mathrm{NEt}_{3}, \mathrm{Et}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$

Bis-silyl enol ethers 6 can be stored in most cases at $-30^{\circ} \mathrm{C}$ for several months without decomposition.

My studies were focused on the synthesis of functionalized carbonyl compounds containing a halide group at a remote position and of pharmacologically relevant functionalized benzofurans followed by the synthesis of 2-alkyllidenetetrahydofurans by cyclization of free dianions. I was able to develop a new methodology for the synthesis of diarylsulfides and diaryl ethers. In addition, new applications of cyclization reactions of 1,3-bis-(trimethylsilyloxy)-1,3-butadienes with chromones and functionalized chromones are reported..

1. Regioselective Synthesis of ω-Bromo-3-ketosulfones, ω-Bromo-3ktonitriles, and 2-(ω-Bromoalkyl)benzofurans based on a 'RingClosing / Ring-Opening' Strategy

$1.1 \quad$ Introduction

Boron tribromide $\left(\mathrm{BBr}_{3}\right)$ represents a widely used reagent for the cleavage of methoxyarenes. ${ }^{17}$ Besides this well-known application of BBr_{3}, other reactions have only scarcely been reported in the literature. ω-Bromoalcohols ${ }^{18}$ and ω-halocarboxylic acids ${ }^{19}$ were prepared by BBr_{3} mediated ring opening of cyclic ethers and lactones, respectively. ${ }^{19}$ Recently, Langer et al. reported the synthesis of 6-bromo-3-oxoalkanoates by reaction of BBr_{3} with 2 -alkylidenetetrahydrofurans. ${ }^{20}$ The synthesis of benzofuran-3carboxylic esters containing a remote bromide groups - based on a BBr_{3} mediated ring transformation - has also been reported. ${ }^{21}$ In my thesis, I developed a facile synthesis of ω-bromo-3-ketosulfones, ω-bromo-3-ketonitriles and 2-(ω-haloalkyl)benzofurans based on the synthesis of 2-(sulfonylmethylidene) and 2-(cyanomethylidene)-tetrahydrofurans and their subsequent BBr_{3}-mediated cleavage. The products repoted herein are not readily by other methods. Notably, functionalized benzofurans are of considerable pharmacological relevance and represent versatile synthetic building blocks in organic and medicinal chemistry. ${ }^{22}$ For example, the benzofuran amiodarone 7 is used in the clinic as a potent antiarrythmic and antianginal drug. ${ }^{23}$ Various benzofurans occur in natural products. This includes, for example, longicaudatin $8,{ }^{24}$ the sessiliflorols A and B, cordigone 9 , flemistrictin E , tovophenone C , vismiaguianone C or piperaduncin B^{25}.

6
7

8

1.2 Results and Discussion

1.2.1. General mechanism for the cyclization of 1-bromo-2-chloroethane with 3ketosulfone dianions

The terminal carbon atom of the dianion attacks the bromide group at low temperature to give intermediate \mathbf{A}. Heating results in a regioselective attack of the enolate oxygen onto the chloride group of \mathbf{A} to give the cyclizsation product. ${ }^{26}$ The cyclization afforded the 2(sulfonylmethylidene)tetrahydrofurans with very good C / O regioselectivity and E diastereoselectivity which can be explained by (a) minimization of the dipole-dipole repulsion of the oxygen atoms in W -shaped intermediate \mathbf{A}^{27} and (b) by the higher thermodynamic stability of the E-diastereomer (Scheme 1.1).
2-(2-Oxoalkylidene)tetrahydrofurans are also available by cyclization ${ }^{28}$ of 1,3-dicarbonyl dianions or 1,3-bis(silyl enol ethers) ('masked dianions') with various electrophiles, such
 (Sulfonylmethylidene)tetrahydrofurans were prepared, for example, from β-iodovinyl sulfones, ${ }^{32} \omega$-halo and ω-hydroxy- β-ketosulfones, ${ }^{33}$ or ω-hydroxypropargylic sulfones. ${ }^{34}$

$68{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$
$-\mathrm{LiCl}$

A

Scheme 1.1 General mechanism for the cyclization of 1-bromo-2-chloroethane with 3ketosulfone dianions

Another approach relies on the cyclization of 3-ketosulfone dianions with cyclic sulfates. ${ }^{35}$ Some years ago, Langer et al. reported the synthesis of 7 -sulfonyl-2,3,3a, 4,5,6-
hexahydrobenzofurans, which can be regarded as bicyclic 2(sulfonylmethylidene)tetrahydrofurans, by cyclization of cyclic 3-ketosulfone dianions with 1,4-dibromobut-2-ene. ${ }^{30}$

1.2.2. Synthesis of $\boldsymbol{\omega}$-Bromo-3-ketosulfones

The cyclization of the dianions of 3-ketosulfones 9a-c, generated by LDA (2.5 equiv.), with 1-bromo-2-chloroethane afforded the 2-(sulfonylmethylidene)-tetrahydrofurans 10ac (Scheme 1.2, Table 1.1). The reaction of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 0 a - c}$ with BBr_{3} and subsequent addition of water afforded the ω-bromo- β-ketosulfones 11a-c. The formation of 11a-c can be explained as follows: The interaction of BBr_{3} with the sulfonyl group effects a dramatic increase of the electrophilicity of carbon atom C-5 of the tetrahydrofuran moiety. Nucleophilic attack of a BBr_{3}-derived bromide ion onto carbon C-5 results in ring-opening and formation of an open-chain boron enolate. The latter is subsequently protonated upon addition of water. During the optimization, the use of excess of BBr_{3} proved to be important. Notably, products $11 \mathrm{a}-\mathrm{c}$ are not directly available by reaction of 3-ketosulfone dianions with 1,2-dibromoethane, due to a competing SET process (oxidative dimerization of the dianion and reduction of 1,2-dibromoethane to ethylene). ${ }^{36}$

Table 1.1. Synthesis of 11a-c

$\mathbf{1 0 , 1 1}$	Ar	$\%(\mathbf{1 0})^{\mathrm{a}}$	$E / Z(\mathbf{1 0})^{\mathrm{b}}$	$\mathbf{\% (1 1) ^ { \mathrm { a } }}$
\mathbf{a}	Ph	45	$7: 3$	95
\mathbf{b}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	45	$7: 3$	92
\mathbf{c}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	40	$6: 4$	65

[^0]

9a-c

11a-c

A

Scheme 1.2. Synthesis of ω-bromo-3-ketosulfones 11a-c. i : 1) 2.5 equiv. LDA, THF, 0 $\left.{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl},-78 \rightarrow 20{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$, then reflux, 14 h ; ii: 1) 4.0 equiv. BBr_{3}, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 20^{\circ} \mathrm{C}, 8 \mathrm{~h} ; 2\right) \mathrm{H}_{2} \mathrm{O}$

2-(Sulfonylmethylidene)-5-vinyltetrahydrofurans 12a-c were prepared by cyclization of dilithiated 3-ketosulfones 9a-c with 1,4-dibromobut-2-ene (Scheme 1.3, Table 1.2). The reaction of $\mathbf{1 2 a - c}$ with BBr_{3} afforded the ω-bromo-3-ketosulfones 13a-c. The products were formed by cleavage of the 2-alkylidenetetrahydrofuran by a SN^{\prime} reaction. Notably, the products are not available by direct reaction of the dianions of 9a-c with 1,4-dibromobut-2-ene, due to rapid cyclization.

Table 1.2. Synthesis of 13a-c

$\mathbf{1 2 , 1 3}$	Ar	$\%(\mathbf{1 2})^{\mathrm{a}}$	$E / Z(\mathbf{1 2})^{\mathrm{b}}$	$\%(\mathbf{1 3})^{\mathrm{a}}$
\mathbf{a}	Ph	50	$6: 4$	75
\mathbf{b}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	38	$6: 4$	75
\mathbf{c}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	40	$>98: 2$	70

[^1]

Scheme 1.3. i : 1) 2.5 equiv. LDA, THF, $\left.0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) 1$, 4-dibromobut-2-ene, $-78 \rightarrow 20$ ${ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$; ii: 1) 5.0 equiv. $\left.\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 20^{\circ} \mathrm{C}, 8 \mathrm{~h} ; 2\right) \mathrm{H}_{2} \mathrm{O}$

1.2.3. Synthesis of $\boldsymbol{\omega}$-Bromo-3-ketonitriles

Afterwards, I decided to extend the preparative scope of the methodology by its application to β-ketonitriles (Schemes $1.4 \quad \& \quad 1.5$). The known $^{29 a}$ 2alkylidenetetrahydrofuran 15 was prepared by cyclization of the dianion of cyanoacetone, generated by treatment of 5-methyl-isoxazole with LDA, with 1-bromo-2-chloroethane. Treatment of 15 with BBr_{3} afforded 1-cyano-5-bromo-pentan-2-one (16) (Scheme 4). Despite its relatively low molecular weight, it was possible to independently confirm the structure of 16 by an X-ray crystal structure analysis (Figure 1.1). ${ }^{97}$

14

$41 \%(E)+40 \%(Z)$

16 (85\%)

Scheme 1.4. Synthesis of 1-cyano-5-bromopentan-2-one (16). i: 1) 2.5 equiv. LDA, THF, $\left.0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl},-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$, then reflux, 14 h ; ii: 1) 8.0 equiv. BBr_{3}, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 20^{\circ} \mathrm{C}, 8 \mathrm{~h} ; 2\right) \mathrm{H}_{2} \mathrm{O}$

01

Figure 1.1. Ortep plot of 16

The cyclization of the dianion of cyanoacetone, generated by treatment of 5-methylisoxazole with LDA, with 1,4-dibromobut-2-ene afforded the known ${ }^{29 a}$ 2alkylidenetetrahydrofuran 17. Treatment of 17 with BBr_{3} unexpectedtly afforded tribromide 18 (Scheme 1.5). Product $\mathbf{1 8}$ is presumably formed by BBr_{3} mediated ring opening and formation of intermediate A. Subsequently, the double bond is brominated (by the action of bromine formed under the reaction conditions from BBr_{3}).

14

$2 \mathrm{BBr}_{3} \longrightarrow \mathrm{~B}_{2} \mathrm{Br}_{4}+\mathrm{Br}_{2}$

17

$$
i i \downarrow 8 \mathrm{BBr}_{3}
$$

18 (70\%)

$$
40 \%(E)+36 \%(Z)
$$

A

Scheme 1.5. i : 1) 2.5 equiv. LDA, THF, $\left.0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) 1$, 4-dibromobut-2-ene, $-78 \rightarrow 20$ ${ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$; ;ii: 1) 8.0 equiv. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 20^{\circ} \mathrm{C}, 6 \mathrm{~h}$; 2) $\mathrm{H}_{2} \mathrm{O}$

1.2.4. Synthesis of 2-(ω-Bromoalkyl)benzofurans

The synthesis of benzofurans was studied next (Scheme 1.6 \& 1.7). 3-Ketosulfones 20a-d were prepared by acylation of aryl-[(2-methoxyphenyl)methyl]-sulfones 19a-c. The cyclization of the dianions of 20a-c with 1-bromo-2-chloroethane afforded the 2alkylidenetetrahydrofurans 21a-d. Treatment of 21a-d with BBr_{3} afforded the 2- $\gamma-$ bromoalkyl)-3-sulfonylbenzofurans 22a-d (Scheme 3, Table 3). The reaction of 21a-c with BCl_{3} gave 2-(γ-hydroxypropyl)-3-sulfonylbenzofuran 22e-g. The formation of benzofurans 22 can be explained by ring-opening of 21 and deprotection of the arylmethyl ether to give intermediate \mathbf{A}, hydrolysis upon aqueous work-up (intermediate B) and subsequent acid mediated cyclization by attack of the hydroxy onto the carbonyl group. In case of $\mathbf{2 2 e - g}$, the chloride group was hydrolyzed.

22a-g

B

21a-d

A

Scheme 1.6. Synthesis of benzofurans 22a-g, i : 1) 2.5 equiv. LDA, THF, $\left.0^{\circ} \mathrm{C}, 45 \mathrm{~min}, 2\right)$ acid chloride, $-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; ii: 2.5 equiv. LDA, THF, $\left.0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl},-78$ $\rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; then reflux, 14 h ; iii: 1) 5.0 equiv. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 20^{\circ} \mathrm{C}$, $12 \mathrm{~h} ; 2) \mathrm{H}_{2} \mathrm{O}$

Table 1.2. Synthesis of benzofurans 22a-g

$\mathbf{2 0 . 2 1}$	$\mathbf{2 2}$	Ar	R	X	$\%(\mathbf{2 0})$ \mathbf{a}	$\%(\mathbf{2 1})^{\mathrm{a}, \mathbf{c}}$	$\%(22)^{a}$
\mathbf{a}	\mathbf{a}	Ph	H	Br	56	$45(E)+22(Z)$	72
\mathbf{b}	\mathbf{b}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	Br	78	$55(E)$	61
\mathbf{c}	\mathbf{c}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	Br	61	$49(E)+19(Z)$	68
\mathbf{d}	\mathbf{d}	Ph	Me	Br	40	$46(E / Z=8: 1)$	63
\mathbf{a}	\mathbf{e}	Ph	H	OH^{b}	56	$45(E)+22(Z)$	40
\mathbf{b}	\mathbf{f}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	OH^{b}	28	$55(E)$	34
\mathbf{c}	\mathbf{g}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	OH^{b}	61	$49(E)+19(Z)$	47

${ }^{a}$ Yields of isolated products;
${ }^{b}$ the product was formed when BCl_{3} was used (by hydrolysis of the chloride group in the product);
${ }^{c}$ in brackets: configuration of the exocyclic double bond

The acylation of (2-methoxyphenyl) acetonitrile with acetyl chloride afforded β ketonitrile 23. The cyclization of the dianion of $\mathbf{2 3}$ with 1-bromo-2-chloroethane gave 2alkylidenetetrahydrofuran 24. Treatment of the latter with BBr_{3} and subsequently with $\mathrm{HBr}(62 \%)$ afforded the 2-(γ-bromoalkyl)-3-carboxybenzofuran 25 (Scheme 1.7). During the optimization of this reaction, the addition of conc. hydrobromic acid proved to be important in order to induce a complete rearrangement. This was necessarry, since nitrile 23 proved to be less reactive than sulfones 21 in the reaction with BBr_{3}. This can be explained by the lower electron-withdrawing effect of the nitrile compared to the sulfone. The nitrile was hydrolyzed to a carboxylic acid group upon addition of conc. hydrobromic acid.

23

25 (41\%)
$24(72 \%, Z / E=8: 1)$

Scheme 1.7. Synthesis of benzofuran 25, $i: 1$) 2.5 equiv. LDA, THF, $0^{\circ} \mathrm{C}, 45 \mathrm{~min}, 2$) acid chloride, $-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; ii: 2.5 equiv. LDA, THF, $\left.0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl},-78$ $\rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; then reflux, 14 h ; iii: 1) 7.0 equiv. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 20^{\circ} \mathrm{C}$, $72 \mathrm{~h} ; 2) \mathrm{HBr}(62 \%) 6.0$ equiv. $20^{\circ} \mathrm{C}, 20 \mathrm{~h}$; 3) $\mathrm{H}_{2} \mathrm{O}$

The cyclization of the dianion of $\mathbf{2 3}$ with 1,4-dibromobut-2-ene gave 2-alkylidene-5vinyltetrahydrofuran 26. Treatment of the latter with BBr_{3} and subsequently with HBr (62\%) afforded the 2-(ω-bromoalkyl)-3-carboxybenzofuran 27 (Scheme 1.8). The nitrile was again hydrolyzed to a carboxylic acid group upon addition of conc. hydrobromic acid.

23

i

$26(34 \%, Z / E=8: 1)$

Scheme 1.8. Synthesis of benzofuran 27, i : 1) 2.5 equiv. LDA, THF, $\left.0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) 1,4-$ dibromobut-2-ene, $-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$; ; ii: 1) 8.0 equiv. $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$, $\left.20^{\circ} \mathrm{C}, 72 \mathrm{~h} ; 2\right) \mathrm{HBr}\left(62 \%, 6.0\right.$ equiv.), $\left.20^{\circ} \mathrm{C}, 20 \mathrm{~h} ; 3\right) \mathrm{H}_{2} \mathrm{O}$

1.3. Conclusion

In conclusion, I developed an efficient approach to ω-bromo-3-ketosulfones, ω-bromo-3ketonitriles, and 2-(ω-bromoalkyl)benzofurans based on one-pot cyclizations of 3ketonitrile and 3-ketosulfone dianions and application of a 'ring-closing/ring-opening' strategy.

2. Synthesis of Functionalized Diaryl Ethers and Sulfides based on Regioselective One-Pot Cyclizations of 1,3-Bis(trimethylsilyloxy)-

1,3-butadienes

2.1 Introduction

Functionalized diaryl ethers are of pharmacological relevance and occur in a variety of natural products. ${ }^{37}$ This includes, for example, geodinhydrate methylester, methyl chloroasterrate, ${ }^{38 a, b} 1$-desgalloylsanguiin, ${ }^{39}$ dehydrotrigallic acid 28, ${ }^{40}$ epiphorellic acid 29, ${ }^{41}$ jolkianin, ${ }^{42}$ remurin $\mathrm{A},{ }^{43}$ and micareic acid 30. ${ }^{44}$ Diaryl sulfides (diaryl thioethers), the sulfur analogues of diaryl ethers, are also of considerable pharmacological importance and are present in various natural products. This includes, for example, cyclo(penta-1,4phenylene sulfide), various dibenzothiophenes, ${ }^{45}$ highly cytotoxic lissoclinotoxins (also known as varacins), ${ }^{46}$ lissoclibadins $\mathbf{3 1},{ }^{47}$ cyclotetra(p-phenylene sulfide), ${ }^{48}$ and natural products isolated from Streptomyces griseus 32. ${ }^{49}$ Non-natural diaryl sulfides are also of considerable pharmacological relevance. For example, fluorinated diaryl sulfides have been reported to act as serotonin transporter ligands. ${ }^{50}$ The most important approach to diaryl ethers relies on the Ullmann ${ }^{51}$ and Buchwald-Hartwig ${ }^{52}$ reaction and on related transformations. ${ }^{53}$

Although these methods are very important, the scope is limited by the availability of the starting materials, In fact, the synthesis of more complex aryl halides or triflates by regioselective functionalizations of arenes is often a difficult task. In addition, the transition metal catalyzed formation of diaryl ethers containing a sterically encumbered ether linkage is difficult. Most of the known synthetic approaches to diaryl sulfides are based on the formation of a carbon-sulphur bond. Classic syntheses ${ }^{54}$ are often limited by their harsh conditions, low regioselectivity, narrow preparative scope or by the formation of polysulfides. In recent years, transition metal-catalyzed reactions for the synthesis of diaryl sulfides were developed which proceed under mild conditions (Buchwald-Hartwig reaction and related transformations). ${ }^{55}$ Relatively mild metal-free reactions have also been reported. ${ }^{56}$ However, the synthesis of highly substituted and sterically encumbered products by these methods is often difficult or not possible at all.

In addition, the synthesis of the starting materials, substituted arenes and thiophenols, can be a difficult task. An alternative approach to diaryl sulfides relies on cyclization reactions of thioaryloxy-containing building blocks. In contrast to other methods, this approach relies on the assembly of the arene moiety by formation of two carbon-carbon bonds. Only a few examples of this type of reaction have been reported to date. For example, Hilt and coworkers reported an efficient synthesis of diaryl sulfides by cobalt(I)-catalyzed [4+2] cycloaddition of alkynyl sulfides with 1,3-butadienes. ${ }^{57}$ Chan et al. reported the synthesis of 2-(thiophenoxy)benzoates based on the cyclization of 1-methoxy-3-thiophenoxy-1-trimethylsilyloxy-1,3-butadiene with 3-siloxy-2-en-1-ones. ${ }^{58}$ Dies-Alder reactions of this compound have also been reported. ${ }^{59}$ Recently, Langer et al.
reported the synthesis of 5-aryloxysalicylates ${ }^{60}$ and 5-thioaryloxysalicylates ${ }^{61}$ based on reactions of 2-aryloxy- and 2-thioaryloxy-3-trimethylsilyloxy-2-en-1-ones, respectively (Scheme 2.2). In my thesis, I have studied full details of these cyclizations. In addition, I report the synthesis of diaryl ethers and diaryl sulfides based on [3+3] cyclizations of 4-aryloxy- and 4-thioaryloxy-1,3-bis(trimethylsilyloxy)-1,3-dienes (Scheme $2.4 \& 2.5$). These reactions provide a convenient and regioselective approach to sterically encumbered and functionalized diaryl sulfides and of diaryl ethers which are not readily available by other methods. Herein, full details of the methodology and a comprehensive study of its preparative scope are reported. In addition to the results reported in (Langer et al.) preliminary communication, I herein report the regioselective synthesis of functionalized 2-thiophenoxybenzoates by domino '[3+3] cyclization / homo-Michael' reactions of 1-trimethylsilyloxy-3-thiophenoxy-1,3-butadienes with 1,1diacylcyclopropanes (Scheme 2.8) and synthesis of diaryl sulfides, diaryl ethers by cyclization of novel 4-thioaryloxy-1 and 4-aryloxy-1,3-bis(trimethylsilyloxy)-1,3-dienes with 1,1-diacetylcyclopropane (Scheme 2.6), 3-formylchromone (Scheme 2.9) and chromone (Scheme 2.11).

2.2 Results and Discussion

2.2.1. Synthesis of 5-Aryloxy and 5-Thioaryloxy Salicylates

3-(Thiophenoxy)- and 3-(phenoxy)pentane-2,4-diones 35a-n were prepared, following a known procedure, ${ }^{62}$ by reaction of 3 -chloropentane-2,4-dione (34) with thiophenols and phenols respectively 33a-n (Scheme 2.1, Table 2.1). The silylation ${ }^{63}$ of 35a-n afforded the 2-thiophenoxy- and 2-phenoxy-3-silyloxy-2-en-1-ones 36a-n. 1,3-Diones $\mathbf{3 5}$ are completely enolized in solution and in the solid state. The solid state structures of 35b and $\mathbf{3 5}$ c were confirmed by X-ray crystal structure analyses (Figures 2.1 and 2.2). ${ }^{97}$

Scheme 2.1. Synthesis of 36a-n: Reagents and conditions: i : method A: pyridine, MeOH, $0 \rightarrow 20^{\circ} \mathrm{C}, 6 \mathrm{~h}$; method B: piperidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, 0 \rightarrow 20^{\circ} \mathrm{C}, 6 \mathrm{~h}$ (for $\mathrm{X}=\mathrm{S}$); $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, 2 h , reflux (for $\mathrm{X}=\mathrm{O}$); ii: $\mathrm{Me}_{3} \mathrm{SiCl}^{2}, \mathrm{NEt}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$

Figure 2.1. Ortep plot of 35b

Figure 2.2. Ortep plot of 35c
Table 2.1. Synthesis of 35a-n and 36a-n

$\mathbf{3 5 , 3 6}$	X	R^{1}	R^{2}	R^{3}	$\%(\mathbf{3 5})^{\mathrm{a}}$	$\%(\mathbf{3 6})^{\mathrm{a}}$
\mathbf{a}	S	H	H	H	$72(\mathrm{~A})$	81
\mathbf{b}	S	H	OMe	H	$33(\mathrm{~B})$	90
\mathbf{c}	S	H	Br	H	$28(\mathrm{~B})$	79
\mathbf{d}	S	H	Me	H	$81(\mathrm{~B})$	92
\mathbf{e}	S	OMe	H	H	$73(\mathrm{~B})$	81
\mathbf{f}	O	H	H	H	-c	91
\mathbf{g}	O	Me	H	Me	20	94
\mathbf{h}	O	H	Et	H	35	80
\mathbf{i}	O	H	Cl	H	$-{ }^{\mathrm{c}}$	96
\mathbf{j}	O	H	OMe	H	24	95
\mathbf{k}	O	OMe	OMe	H	40	97
\mathbf{l}	O	H	Br	H	25	84
\mathbf{m}	O	H	CN	H	25	82
\mathbf{n}	O	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	H	26	87

[^2]The TiCl_{4} mediated $[3+3]$ cyclization of 36a-n with 1,3-bis(trimethylsilyloxy)-1,3-dienes 37a-g - prepared from the corresponding 1,3-dicarbonyl compounds ${ }^{64}$ - afforded the novel diaryl sulfides and diaryl ethers 38a-ah (Scheme 2.2 Table 2.2). The structures of 38a and 38b were independently confirmed by X-ray crystal structure analyses (Figures 2.3 and 2.4). ${ }^{97}$

Scheme 2.2. Synthesis of 38a-ah: Reagents and conditions: i : $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20$ ${ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$

The formation of salicylates can be explained by the mechanism depicted in Scheme 2.2: the TiCl_{4}-catalyzed attack of the terminal carbon atom of $\mathbf{3 7}$ onto $\mathbf{3 6}$ gave intermediate \mathbf{A}. The subsequent cyclization afforded intermediate \mathbf{B}, Extrusion of water from \mathbf{B} afforded the final product.

Table 2.2. Synthesis of 38a-ah

$\mathbf{3 6}$	$\mathbf{3 7}$	$\mathbf{3 8}$	X	R^{1}	R^{2}	R^{3}	R^{4}	R^{5}	$\%(\mathbf{3 8})^{\mathrm{a}}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	S	H	H	H	H	OMe	48
\mathbf{a}	\mathbf{b}	\mathbf{b}	S	H	H	H	Me	OEt	40
\mathbf{a}	\mathbf{c}	\mathbf{c}	S	H	H	H	Et	OEt	40
\mathbf{b}	\mathbf{d}	\mathbf{d}	S	H	OMe	H	H	OEt	43
\mathbf{b}	\mathbf{b}	\mathbf{e}	S	H	OMe	H	Me	OEt	35
\mathbf{b}	\mathbf{c}	\mathbf{f}	S	H	OMe	H	Et	OEt	38
\mathbf{c}	\mathbf{a}	\mathbf{g}	S	H	Br	H	H	OMe	36
\mathbf{d}	\mathbf{b}	\mathbf{h}	S	H	Me	H	Me	OEt	33
\mathbf{e}	\mathbf{a}	\mathbf{i}	S	OMe	H	H	H	OMe	32
\mathbf{e}	\mathbf{b}	\mathbf{j}	S	OMe	H	H	Me	OEt	30
\mathbf{f}	\mathbf{d}	\mathbf{K}	O	H	H	H	H	OEt	35
\mathbf{f}	\mathbf{b}	\mathbf{l}	O	H	H	H	Me	OEt	30
\mathbf{f}	\mathbf{c}	\mathbf{m}	O	H	H	H	Et	OEt	32
\mathbf{g}	\mathbf{d}	\mathbf{n}	O	Me	H	Me	H	OEt	58
\mathbf{g}	\mathbf{b}	\mathbf{o}	O	Me	H	Me	Me	OEt	39
\mathbf{h}	\mathbf{d}	\mathbf{p}	O	H	Et	H	H	OEt	60
\mathbf{h}	\mathbf{b}	\mathbf{q}	O	H	Et	H	Me	OEt	36
\mathbf{i}	\mathbf{a}	\mathbf{r}	O	H	Cl	H	H	OMe	54

i	b	s	O	H	Cl	H	Me	OEt	49
i	c	t	O	H	Cl	H	Et	OEt	43
i	e	u	O	H	Cl	H	H	Me	35
j	b	v	O	H	OMe	H	H	OEt	30
k	d	w	O	OMe	OMe	H	H	OEt	58
k	b	\mathbf{x}	O	OMe	OMe	H	Me	OEt	35
1	d	y	O	H	Br	H	H	OEt	58
1	f	z	O	H	Br	H	H	$\mathrm{OCH}_{2} \mathrm{Ph}$	59
m	d	aa	O	H	CN	H	H	OEt	50
m	f	ab	O	H	CN	H	H	$\mathrm{OCH}_{2} \mathrm{Ph}$	54
n	d	ac	O	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	H	H	OEt	50
n	f	ad	O	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	H	H	$\mathrm{OCH}_{2} \mathrm{Ph}$	65
n	g	af	O	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	H	$n \mathrm{H}$ ex	OEt	54
n	e	ag	O	H	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	H	H	Me	55
j	b	ah	O	H	OMe	H	Me	OEt	30

${ }^{a}$ Yields of isolated products

Figure 2.3. Ortep plot of 38a

The best results were obtained when stoichiometric amounts of the starting materials and of TiCl_{4} were used. The latter was added to a dichloromethane solution of the starting materials at $-78^{\circ} \mathrm{C}$ with subsequent warming of the mixture to $20^{\circ} \mathrm{C}$.

Figure 2.4. Ortep plot of $\mathbf{3 8 b}$

The high concentration of the solution (only 2 mL of solvent per 1 mmol of starting material) proved to be a very important parameter. The quality of the starting materials, reagents and solvent also played an important role. The use of $\mathrm{Me}_{3} \mathrm{SiOTf}$ as the Lewis acid proved to be unsuccessful. All structures were established by spectroscopic methods. In most of the cyclization reactions, β-ketoester derived 1,3-bis(silyl enol ethers) were employed. However, the use of 1,3-bis(silyl enol ether) 37e, prepared from acetylacetone, also proved to be successful. In contrast, employment of 1,3-bis(trimethylsilyloxy)-1-phenyl-1,3-butadiene (derived from benzoylacetone) resulted in the formation of complex mixtures. This can be explained by its lower reactivity compared to β-ketoester derived 1,3-bis(silyl enol ethers).

2.2.2. Synthesis of 3- Aryloxy and 3-Thioaryloxy Salicylates

In addition, the synthesis of 4-thiophenoxy- and 4-phenoxy-1,3-bis(silyloxy)-1,3-dienes and their application to the synthesis of functionalized diaryl sulfides and diaryl ethers has been studied. The novel 4-thiophenoxy- and 4-phenoxy-1,3-bis(silyloxy)-1,3-dienes 42a-g were prepared from the esters 40a-g (Scheme 2.3, Table 2.3). The ethyl 4thiophenoxyacetoacetates $\mathbf{4 0 a , b}, \mathbf{f}, \mathbf{g}$ were prepared by reaction of ethyl 4-
chloroacetoacetate with thiophenols 33. Ethyl 4-phenoxyacetoacetate (35c) was prepared by base mediated reaction of ethyl 4-chloroacetoacetate and phenol (33f). The methyl 4phenoxyacetoacetates 40d,e were prepared by Claisen condensation of methyl acetate with acid chlorides $\mathbf{3 9 a}, \mathbf{b}$.

Scheme 2.3. Synthesis of 42a-g: Reagents and conditions: i: $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}, 0{ }^{\circ} \mathrm{C}$ (for $\mathrm{X}=\mathrm{S}$); $\mathrm{KOH}, \mathrm{DMSO}, 5 \mathrm{~h}, 20^{\circ} \mathrm{C}$ (for $\mathrm{X}=\mathrm{O}$); ii: LDA, THF, $-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; iii: $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NEt}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$; iv: LDA, THF, $-78 \rightarrow 20^{\circ} \mathrm{C}$

Table 2.3 Synthesis of 42a-g

$\mathbf{4 0 - 4 2}$	R^{1}	R^{2}	X	$\%(\mathbf{4 0})^{\mathrm{a}}$	$\%(\mathbf{4 1})^{\mathrm{a}}$	$\%(\mathbf{4 2})^{\mathrm{a}}$
\mathbf{a}	H	Et	S	80	84	89
\mathbf{b}	OMe	Et	S	81	78	85
\mathbf{c}	H	Et	O	60	91	82
\mathbf{d}	Cl	Me	O	30	74	82
\mathbf{e}	Me	Me	O	40	75	84
\mathbf{f}	Me	Et	S	77	85	80
\mathbf{g}	Cl	Et	S	84	90	87

${ }^{a}$ Yields of isolated products

The TiCl_{4}-mediated $[3+3]$ cyclization of 4-thiophenoxy-1,3-bis(silyloxy)-1,3-dienes 42a,b with 1,1,3,3-tetramethoxypropane afforded the 3-thiophenoxysalicylates 43a,b in $30-31 \%$ yield (Scheme 2.4, Table 2.4). But the catalytic $[3+3]$ cyclizations of $1,3-$ bis(silyl enol ethers) with 1,1,3,3-tetramethoxypropane gave a better yields (40$52 \%$).These reactions provide a convenient approach to a variety of functionalized salicylates under mild conditions. Notably, the products are not directly and readily available by other methods. The trimethylsilyl trifluoromethanesulfonate ($\mathrm{Me}_{3} \mathrm{SiOTf}$) catalyzed condensation of silyl enol ethers with acetals, introduced by Noyori et al., ${ }^{65}$ has found a number of applications in organic synthesis. The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed cyclization of 1,1,3,3-tetramethoxypropane with 4-phenoxy- and 4-thiophenoxy 1,3-bis(silyloxy)-1,3-dienes 42a-f gave the 3-phenoxysalicylates 43a-f. During the optimization the workup procedure $(10 \% \mathrm{HCl})$, the temperature $\left(-78-20^{\circ} \mathrm{C}, 6-12 \mathrm{~h}\right.$; then $\left.20^{\circ} \mathrm{C}, 2-6 \mathrm{~h}\right)$, and the concentration proved to be important parameters. The use of tetraethoxypropane proved to be unsuccessful. The use of trifluoroacetic acid (rather than Me3SiOTf) failed to give the desired product. The formation of salicylates by $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzationcan can be explained by the mechanism depicted in Scheme 2.4: the $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed attack of the terminal carbon atom of $\mathbf{4 2}$ onto tetramethoxypropane gave intermediate \mathbf{A}. The subsequent $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed cyclization afforded intermediate \mathbf{B}, which
underwent a shift of the double bond to give intermediate C. Extrusion of water and methanol from \mathbf{C} afforded the final product.

A

$-\mathrm{Me}_{3} \mathrm{SiOMe}$

B

Scheme 2.4. Synthesis of 43a-f: Reagents and conditions: i : $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20$ ${ }^{\circ} \mathrm{C}, 20 \mathrm{~h}(\operatorname{method} \mathrm{~A}) ; \mathrm{Me}_{3} \operatorname{SiOTf}\left(0.2\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}(\operatorname{method} \mathrm{~B})$

Notably, the formation of a 2-hydroxybenzoate was not observed, when 4-unsubstituted bis-silyl enol ether is used, which shows that water rather than methanol was selectively eliminated. This can be explained by the higher steric hindrance of the methoxy compared to the hydroxy group and the better leaving group ability of the latter. The
mechanism is supported by the isolation of a small amount of 3,5dimethoxycyclohexanone. The formation of this side product can be explained by cleavage of the ester group of intermediate \mathbf{B} and subsequent decarboxylation.

Table2.4. Synthesis of 43a-f

$\mathbf{4 3}$	R^{1}	R^{2}	X	$\%(\mathbf{4 3})^{\mathrm{a}}$	$\%(\mathbf{4 3})^{\mathrm{b}}$
\mathbf{a}	H	Et	S	31	52
\mathbf{b}	OMe	Et	S	30	42
\mathbf{c}	H	Et	O	$\mathrm{-c}^{\mathrm{c}}$	45
\mathbf{d}	Cl	Me	O	$\mathbf{-}^{\mathrm{c}}$	46
\mathbf{e}	Me	Me	O	c^{c}	48
\mathbf{f}	Me	Et	S	c^{c}	40

\bar{a} Isolated yields, method A: $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{b}$ Isolated yields, method B: $\mathrm{Me}_{3} \mathrm{SiOTf}$ (0.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{c}$ experiment was not carried out

36a,44a-e
Scheme 2.5. Synthesis of 45a-o: Reagents and conditions: i : $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$, 20 h

The TiCl_{4}-mediated $[3+3]$ cyclization of 4-thiophenoxy-1,3-bis(silyloxy)-1,3-dienes 44a,b and 44f,g with 3-(silyloxy)-2-en-1-ones 36a and 44a-d afforded the 3thiophenoxysalicylates 45a-f and 45n,o (Scheme 2.5, Table 2.5). Products 45e and 45f represent novel 1,3-bis(sulfides). The cyclization of 4-phenoxy-1,3-bis(silyloxy)-1,3dienes 44c-e with 3-(silyloxy)-2-en-1-ones 36a, 44a and 44c-e afforded the 3-
phenoxysalicylates 45g-m. During the optimization, it proved to be important to carry out the reactions in a highly concentrated solution. In addition, the stoichiometry and the temperature are important parameters. The structure of $\mathbf{7 g}$ was independently confirmed by X-ray crystal structure analysis (Figure 2.5). ${ }^{97}$

Table 2.5. Synthesis of 45a-o

$\mathbf{3 6 a}, \mathbf{4 4}$	$\mathbf{4 2}$	$\mathbf{4 5}$	X	R^{1}	R^{2}	R^{3}	R^{4}	$\%(\mathbf{4 5})^{\mathrm{a}}$
$\mathbf{4 4 a}$	\mathbf{a}	\mathbf{a}	S	H	Et	Me	H	48
$\mathbf{4 4 b}$	\mathbf{b}	\mathbf{b}	S	OMe	Et	Et	H	35
$\mathbf{4 4 c}$	\mathbf{a}	\mathbf{c}	S	H	Et	Me	Cl	37
$\mathbf{4 4 d}$	\mathbf{a}	\mathbf{d}	S	H	Et	Me	Me	33
$\mathbf{3 6 a}$	\mathbf{b}	\mathbf{e}	S	OMe	Et	Me	PhS	34
$\mathbf{3 6 a}$	\mathbf{a}	\mathbf{f}	S	H	Et	Me	PhS	34
$\mathbf{3 6 a}$	\mathbf{c}	\mathbf{g}	O	H	Et	Me	PhS	30
$\mathbf{4 4 a}$	\mathbf{c}	\mathbf{h}	O	H	Et	Me	H	37
$\mathbf{4 4 c}$	\mathbf{c}	\mathbf{i}	O	H	Et	Me	Cl	38
$\mathbf{4 4 d}$	\mathbf{c}	\mathbf{j}	O	H	Et	Me	Me	43
$\mathbf{4 4 e}$	\mathbf{c}	\mathbf{k}	O	H	Et	Me	ArO	30
$\mathbf{4 4 c}$	\mathbf{d}	\mathbf{l}	O	Me	Me	Me	Cl	40
$\mathbf{4 4 d}$	\mathbf{e}	\mathbf{m}	O	Cl	Me	Me	Me	40
$\mathbf{4 4 c}$	\mathbf{f}	\mathbf{n}	S	Me	Et	Me	Cl	30
$\mathbf{4 4 c}$	\mathbf{g}	$\mathbf{0}$	S	Cl	Et	Me	Cl	34

[^3]

Figure 2.5. Ortep plot of $\mathbf{4 5 m}$

Scheme 2.6. Synthesis of 47a-c: Reagents and conditions: $i: \mathrm{TiY}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20$ ${ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$

Table 2.6. Synthesis of 47a-c

$\mathbf{4 7}$	X	Y	$\mathbf{\% (4 7)}^{\mathrm{a}}$
\mathbf{a}	O	Cl	40
\mathbf{b}	O	Br	33
\mathbf{c}	S	Br	45

${ }^{a}$ Isolated yields, method A: $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
The TiCl_{4} - and TiBr_{4}-mediated reaction of 4-thiophenoxy- and 4-phenoxy-1,3-bis(silyloxy)-1,3-dienes 42a and 42c with 1,1-diacetylcyclopropane (46) afforded the 3-thiophenoxy- and 3-phenoxysalicylates $47 \mathrm{a}-\mathrm{c}$ containing a remote halide function (Scheme 2.6, Table 2.6). The formation of the products can be explained by means of a domino cyclization-homo-Michael reaction. ${ }^{66}$

2.2.3. Regioselective Synthesis of Functionalized 2-Thiophenoxybenzoates by Domino '[3+3] Cyclization/Homo-Michael' Reactions

Afterwards, I decided to study the application of current methodology to 1-trimethylsilyloxy-3-thiophenoxy-1,3-butadienes. I developed what is, to the best of my knowledge, the first domino '[3+3] cyclization / homo-Michael' reactions of 1-trimethylsilyloxy-3-thiophenoxy-1,3-butadienes with 1,1-diacylcyclopropanes. These reactions provide a convenient and regioselective approach to sterically encumbered and functionalized 2-thiophenoxysalicylates which are not readily available by other methods. In contrast to the coupling reactions outlined before, this method relies on the assembly of one of the two arene moieties.

Scheme 2.7. Possible mechanism of the formation of 49a

The TiCl_{4}-mediated cyclization of 1-methoxy-1-trimethylsilyloxy-3-thiophenoxy-1,3butadiene 48, readily available in two steps from methyl acetoacetate, ${ }^{58}$ with 1,1 diacetylcyclopropane 46a afforded the 2-thiophenoxybenzoate 49a (Scheme 2.7). The
formation of 49a can be explained by TiCl_{4}-mediated attack of the terminal carbon atom of 48 onto 46 a to give intermediate \mathbf{A}, cyclization via the central carbon atom (intermediate B), and subsequent Lewis acid-assisted cleavage of the spirocyclopropane moiety and aromatization by attack of a chloride ion onto the cyclopropane. ${ }^{67}$ The process can be regarded as a domino '[3+3] cyclization / homo-Michael' reaction.

Scheme 2.8. Synthesis of 49a-c: Reagents and conditions: i : $\mathrm{TiY}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20$ ${ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$

The TiCl_{4}-mediated cyclization of 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 with 1,1-diacylcyclopropanes 46a-d afforded the 5-chloroethyl-2-thioaryloxybenzoates 49a-d.

Table 2.7. Synthesis of 49a-g

$\mathbf{4 8}$	$\mathbf{4 6}$	$\mathbf{4 9}$	R^{1}	R^{2}	X	$\%^{\mathrm{a}}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	Me	Me	Cl	48
\mathbf{a}	\mathbf{b}	\mathbf{b}	Me	Ph	Cl	47
\mathbf{a}	\mathbf{c}	\mathbf{c}	Me	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Cl	43
\mathbf{a}	\mathbf{d}	\mathbf{d}	Me	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	Cl	40
\mathbf{a}	\mathbf{e}	\mathbf{e}	Et	Et	Br	28
\mathbf{a}	\mathbf{a}	\mathbf{f}	Me	Me	Br	58
\mathbf{a}	\mathbf{b}	\mathbf{g}	Me	Ph	Br	40

The cyclization of 48 with $\mathbf{4 6 a}, \mathbf{b}$ and $46 e$ in the presence of TiBr_{4} afforded the 2thioaryloxybenzoates 49e-f containing a remote bromide function (Scheme 2.8, Table 2.7). Products 49 were formed with very good regioselectivity by attack of the terminal carbon atom of the diene onto the acetyl group.

2.2.4. Synthesis of Thiophenoxy and Phenoxy substituted Benzophenones by Domino 'Michael-retro-Michael-aldol' Reactions

Functionalized benzophenones are of considerable interest as pharmacologically relevant natural products and natural product analogues and represent versatile synthetic building blocks. ${ }^{68,69}$ Classical synthesis of benzophenone derivatives mainly rely on the FriedelCrafts acylation. ${ }^{70}$ However, unsatisfactory results are frequently obtained when this method is applied to the synthesis of functionalized or substituted derivatives. Major drawbacks result from the drastic reaction conditions and from the low chemo- and regioselectivity. Therefore there is a need for the development of alternative methods which allow the convenient and selective synthesis of a wide range of functionalized benzophenones under mild conditions. ${ }^{71,72}$ My starting point was the development of a new method for the synthesis of the interesting thiophenoxy and phenoxy substituted benzophenone 51.

Table 2.8. Synthesis of 51a-f

$\mathbf{4 2}$	$\mathbf{5 0}$	$\mathbf{5 1}$	X	R^{1}	R^{2}	$\%(\mathbf{5 1})^{\mathrm{a}}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	S	H	Cl	47
\mathbf{b}	\mathbf{b}	\mathbf{b}	S	OMe	Et	38
\mathbf{c}	\mathbf{c}	\mathbf{c}	O	H	Me	35
\mathbf{f}	\mathbf{d}	\mathbf{d}	S	Me	Br	45
\mathbf{g}	\mathbf{c}	\mathbf{e}	S	Cl	Me	40
\mathbf{g}	\mathbf{e}	\mathbf{f}	S	Cl	H	50

[^4]

$\mathrm{Me}_{3} \mathrm{SiOTf}$

A

Scheme 2.9. Synthesis of 51a-f: Reagents and conditions: $i: \mathrm{Me}_{3} \operatorname{SiOTf}$ (0.3 equiv) 20 ${ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$; ii: 1) 42 (1.3 equiv), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 2\right) \mathrm{HCl}(10 \%)$.

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed reaction of 4-phenoxy- and 4-thiophenoxy-1,3-bis(silyloxy)-1,3-dienes 42c and 42a,b,f,g with 3-formylchromones 50a-e, following a procedure recently reported, ${ }^{73}$ afforded the highly functionalized diaryl ethers and diaryl sulfides

51a-f (Scheme 2.9). The products are formed by a domino Michael-retro-Michael-Mukaiyama-Aldol reaction.The structure of $\mathbf{1 6 b}$ was independently confirmed by X-ray crystal structure analysis (Figure 2.6). ${ }^{97}$
The formation of $\mathbf{5 1}$ can be explained by a domino 'Michael-retro-Michael-aldol' reaction (Scheme 1). The reaction of 3-formylchromone with TMSOTf afforded the benzopyrylium triflate \mathbf{A}. The reaction of \mathbf{A} with the terminal carbon atom of $\mathbf{4 2}$ gave intermediate \mathbf{B} which underwent a retro-Michael reaction to give the polyketide \mathbf{C}. An intramolecular aldol reaction afforded intermediate \mathbf{D} which was transformed into the product 3a by elimination of siloxane.
The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed reaction of 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 with 3 -formylchromones 50a, afforded the highly functionalized diaryl sulfide 52, in low yield (Scheme 2.10). The reaction of 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes with other 3-formylchromones did not work or afforded very low yield, particularly with 6-alkylated formylchromone. The effort to optimize the reaction conditions is in progress.

Figure 2.6. Ortep plot of 51b

50a

52 22\%

Scheme 2.10. Synthesis of 52: Reagents and conditions: i : $\mathrm{Me}_{3} \operatorname{SiOTf}$ (0.3 equiv) $20^{\circ} \mathrm{C}$, 10 min ; i : 1) 11a,c (1.3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; 2) $\mathrm{HCl}(10 \%)$.

2.2.5. Synthesis of Fuctionalized Biaryl Lactones by Domino Michael-Retro-Michael-lactonization Reactions.

Functionalized 6 H -benzo $[c]$ chromen-6-ones (dibenzo-[b,d]pyran-6-ones) are biaryl lactones which are present in a variety of pharmacologically relevant natural products. Autumnariol has been isolated from onions of Eucomis autumnalis Greab. (Liliaceae), ${ }^{74}$ and a number of related natural products, such as autumnariniol ${ }^{75}$ alternariol, ${ }^{76}$ and altenuisoln ${ }^{77}$ are known. ${ }^{78} 6 \mathrm{H}$-benzo[c]chromen-6-ones represent specific inhibitors of endothelic cell ${ }^{79}$ and estrogen receptor ${ }^{80}$ growth. The classic approach to the synthesis of 6 H -benzo[c]chromen-6-ones relies on the cyclization of obromobenzoic acids with phenols; however, this method is limited to activated substrates and the yields are often low. ${ }^{81}$ In my thesis, I studied the synthesis of functionalized 6 H -benzo[c]chromen-6-ones by a new application of the condensation ${ }^{82}$ of 1,3-bis-silyl enol ethers with 4-silyloxybenzopyrylium triflates, generated in situ from chromones, to give 2,3-benzopyrans; the latter were transformed into 7-hydroxy- 6 H -benzo[c]chromen-6ones by domino retro-Michael-aldol-lactonization reactions. ${ }^{82}$

The $\mathrm{Me}_{3} \mathrm{SiOTf}$-catalyzed reaction of $\mathbf{4 2 a}, \mathbf{c}$ with chromone (53) afforded products $\mathbf{5 4 a , b}$ (2,3-benzopyrans) which were transformed (without purification) into diaryl ether 55a and diaryl sulfide 55b (Scheme 2.11). The transformation of 54a,b into 55a,b proceeds
by a domino Michael-retro-Michael-lactonization reaction. The structure of $\mathbf{5 5}$ was independently confirmed by X-ray crystal structure analysis (Figure 2.7). ${ }^{97}$

55a ($\mathrm{X}=\mathrm{O}$): 70\% (from 53)
55b (X = S): 68\% (from 53)

Scheme 2.11. Synthesis of 55a,b. i : 1) $\mathrm{Me}_{3} \operatorname{SiOTf}\left(1.3\right.$ equiv) $20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 2) 42a,c (1.3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; 3) $\mathrm{HCl}(10 \%)$; ii: NEt_{3} (2.0 equiv), $\mathrm{EtOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$

Figure 2.7. Ortep plot of 55a

2.3. Conclusion

In conclusion, a new concept for the synthesis of a variety of functionalized diaryl sulfides and diaryl ethers based on [3+3] cyclizations of novel 1,3-bis(trimethylsilyloxy)-1,3-dienes was developed. The synthesis of novel 1,3-bis(sulfides) reported herein carries additional advantages. In addition, I developed the first domino '[3+3] cyclization / homo-Michael' reaction of 1-trimethylsilyloxy-3-thiophenoxy-1,3-butadienes with 1,1diacylcyclopropanes. This reaction provides a convenient approach to 2thiophenoxybenzoates containing a remote halide function. The reactions provide a regioselective access to sterically encumbered, highly functionalized products which are not readily available by other methods. A variety of benzophenones by a domino 'Michael-retro-Michael-aldol' reaction of 1,3 bis-silyl enol ethers with 3-formyl benzopyrylium triflates is also reported. This method allows a convenient procedure for the synthesis of these pharmacologically relevant compounds. Traditional methodologies rely on the Friedel-Crafts acylation which have many drawbacks in terms of yield and selectivity. The condensation of 1,3 bis-silyl enol ethers with benzopyrylium triflates, generated in situ by the reaction of chromone with $\mathrm{Me}_{3} \mathrm{SiOTf}$, afforded functionalized 2,3-dihydrobenzopyrans; treatment of the latter with NEt_{3} resulted in a domino Michael-retro-Michael-lactonization reaction. This methodology allows for the convenient synthesis of 6 H -benzo[c]chromen-6-ones

3. Regioselective Synthesis of Functionalized Biaryls based on Cyclizations of 4-Aryl-1,3-bis(trimethyl-silyloxy)-1,3-butadienes

3.1. Introduction

Functionalized biaryls containing a 3 -arylsalicylate substructure occur in a variety of pharmacologically relevant natural products. The simple biaryls cynandione A-C $\mathbf{5 6}$ have been isolated from many plant sources and show a considerable in vitro activity against hepatocytes, human bladder carcinoma T-24 cells, epidermoid carcinoma KB cells, and human hepatoma PLC/PRF/5 cells. ${ }^{83}$ A number of natural products, such as knipholone, $6^{\prime}-O$-methylknipholone or (+)-asphodelin, contain an anthraquinone moiety. ${ }^{84}$ Other compounds, e. g. secalonic acid A or globulixanthone E, contain a bixanthenyl substructure. ${ }^{85}$ 3-Arylsalicylates are also present in many flavones (e. g. 2,3dihydroamentoflavone, ${ }^{4 a}$ bartramiaflavone, ${ }^{86 b}$ robustaflavone, ${ }^{4 c}$ dichamanetin). ${ }^{86 d, e}$ For some derivatives, inhibition of the human liver cathepsin B and K has been reported. ${ }^{86 f, g}$ The natural product anastatin A 57, which contains a hydroxylated dibenzofuran moiety, shows hepatoprotective activity. ${ }^{87}$

56

57

The most important synthetic approach to biaryls relies on palladium(0)-catalyzed crosscoupling reactions. ${ }^{88}$ Although these reactions are broadly applicable, the synthesis of sterically encumbered products can be difficult or not possible at all. In addition, the regioselective synthesis of the required aryl halides or triflates can be a very difficult task. Some years ago, Chan et al. developed ${ }^{58}$ a convenient approach to salicylates by formal $[3+3]$ cyclizations ${ }^{89}$ of 1,3-bis(trimethylsilyloxy)-1,3-dienes ${ }^{10 b}$ with 3-trimethylsilyloxy-2-en-1-ones. Recently, Langer et al. developed a catalytic variant of
this transformation. ${ }^{90}$ In my thesis I studied, for the first time, the synthesis of 4-aryl-1,3-bis(trimethylsilyloxy)-1,3-butadienes and their application to the synthesis of functionalized biaryls. The sterically encumbered and functionalized biaryls reported herein are not readily available by other methods.

3.2. Results and Discussion

3.2.1. Synthesis of 3-Arylsalicylates

My aim was to synthesize 3-arylsalicylates using formal [3+3] cyclizations. The starting materials, 4-arylacetoacetates 59a-e, were prepared by LDA-mediated reaction of methyl acetate with the α-arylacetyl chlorides 58a-e (Scheme 3.1, Table 3.1). The silylation of 59a-e afforded the 3-silyloxy-2-en-1-ones 60a-e. The novel 4-aryl-1,3-bis(silyloxy)-1,3dienes 61a-e were prepared by deprotonation (LDA) of $60 \mathrm{a}-\mathrm{e}$ at $-78^{\circ} \mathrm{C}$ and subsequent addition of trimethylchlorosilane. The Me_{3} SiOTf-catalyzed cyclization of 4-aryl-1,3-bis(silyloxy)-1,3-dienes 61a-e with 1,1,3,3-tetramethoxypropane, carried out following a recently reported procedure, ${ }^{90}$ afforded the 3-arylsalicylates 62a-e. The concentration and the stoichiometry proved to be important parameters during the optimization of this reaction. The structure of $\mathbf{6 2 c}$ was independently confirmed by X-ray crystal structure analysis (Figure 3.1). ${ }^{97}$

Table 3.1. Synthesis of biaryls 62a-e

$\mathbf{2 - 5}$	R^{1}	R^{2}	$\%(\mathbf{5 9})^{\mathrm{a}}$	$\% \mathbf{6 0})^{\mathrm{a}}$	$\%(\mathbf{6 1})^{\mathrm{a}}$	$\%(\mathbf{6 2})^{\mathrm{a}}$
\mathbf{a}	H	H	60	82	80	44
b	H	OMe	56	80	84	50
c	OMe	H	48	75	82	34
\mathbf{d}	H	Cl	34	77	85	43
\mathbf{e}	H	Me	45	81	86	36

[^5]

Scheme 3.1. Synthesis of 62a-e; i : LDA, THF, $-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; $i i: \mathrm{Me}_{3} \mathrm{SiCl}^{\circ} \mathrm{NEt}_{3}$, $\mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}, 72 \mathrm{~h}$; iii: LDA, THF, $-78 \rightarrow 20^{\circ} \mathrm{C}$; iv: $\mathrm{Me}_{3} \operatorname{SiOTf}$ (0.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ $\rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$

The TiCl_{4}-mediated $[3+3]$ cyclization of 1,3-bis(silyloxy)-1,3-dienes 61a-e with 3-silyloxy-2-en-1-ones 44a,c,d afforded the 3-aryloxysalicylates 63a-j (Scheme 3.2, Table 3.2). During the optimization, it proved to be important to carry out the reactions in a highly concentrated solution.

Figure 3.1. Ortep plot of 62c

Scheme 3.2. Synthesis of 63a-j; i : $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$

Table 3.2. Synthesis of biaryls 63a-j

$\mathbf{6 1}$	$\mathbf{4 4}$	$\mathbf{6 3}$	R^{1}	R^{2}	R^{3}	$\%(63)^{\mathrm{a}}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	H	H	H	41
\mathbf{a}	\mathbf{c}	\mathbf{b}	H	H	Cl	40
\mathbf{c}	\mathbf{a}	\mathbf{c}	OMe	H	H	26
\mathbf{c}	\mathbf{c}	\mathbf{d}	OMe	H	Cl	30
\mathbf{b}	\mathbf{c}	\mathbf{e}	H	OMe	Cl	38
\mathbf{b}	\mathbf{a}	\mathbf{f}	H	OMe	H	37
\mathbf{b}	\mathbf{d}	\mathbf{g}	H	OMe	Me	38
\mathbf{a}	\mathbf{d}	\mathbf{h}	H	H	Me	35
\mathbf{d}	\mathbf{c}	\mathbf{i}	H	Cl	Cl	40
\mathbf{e}	\mathbf{c}	\mathbf{j}	H	Me	Cl	30

${ }^{a}$ Isolated yields
The TiCl_{4}-mediated reaction of 1,3 -bis(silyloxy)-1,3-dienes 61a and 61d with $1,1-$ diacetylcyclopropane (46) gave the 3 -arylsalicylates 64a and 64b, respectively (Scheme 3.3). Products 64a,b are formed by a domino '[3+3]-cyclization-homo-Michael' reaction. ${ }^{66}$

Scheme 3.3. Synthesis of 64a,b; $i: \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$

3.3. Conclusion

In conclusion, a variety of functionalized, sterically encumbered biaryls were prepared by formal [3+3] cyclizations of novel 4-aryl-1,3-bis(trimethylsilyloxy)-1,3-dienes. The products are not readily available by other methods.

4. Synthesis of 1-Azaxanthones by Condensation of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes with 3-(Cyano)benzopyrylium Triflates and Subsequent Domino 'Retro-Michael / Nitrile-Addition / Heterocyclization' Reaction

4.1. Introduction

1-Azaxanthones (i. e. 5-oxo-5H-[1]-benzopyrano[2,3-b]pyridines) are of considerable pharmacological relevance. For example, they show antiinflammatory activity and represent inhibitors of the passive cutaneous anaphylaxis. ${ }^{91}$ 1-Azaxanthones are available, based on pioneering work of Ghosh and coworkers, ${ }^{92 a}$ by base-mediated reaction of 3-cyanochromones with active methylene compounds. ${ }^{92}$ Despite its preparative utility, the scope of this approach is limited to specific substrates and substitution patterns. 4-(Trimethylsilyloxy)benzopyrylium triflates can be readily generated by addition of trimethylsilyl-trifluoromethanesulfonate (TMSOTf) to chromones. Their reaction with nucleophiles allows the regioselective functionalization of carbon atom C-2 of the chromone moiety. The formal [4+2]-cycloaddition of 1,3butadienes with 4-(trimethylsilyloxy)benzopyrylium triflates was first reported by Akiba and coworkers. ${ }^{93}$ Later, the TMSOTf-mediated [4+2]-cycloaddition of 1,3-butadienes with 3-cyanochromone, via its 4-(trimethylsilyloxy)benzopyrylium triflate, has been reported. ${ }^{94}$ In the course of their interest in the development of new domino reactions ${ }^{4}$ of 4-(silyloxy)benzopyrylium triflates, ${ }^{95}$ Langer et al. reported ${ }^{96}$ the TMSOTf-mediated reaction of 3-cyanochromones with 1,3-bis(trimethylsilyloxy)-1,3-butadienes. ${ }^{10}$ These reactions allow a convenient synthesis of functionalized 1-azaxanthones which are not readily available by other methods. During my thesis, I studied, based on previous work by Appel and Langer, ${ }^{96}$ the scope of this methodology and a comprehensive study related to its preparative scope is reported.

4.2. Results and Discussion

The TMSOTf-mediated reaction of 65a with 1,3-bis(trimethylsilyloxy)-1,3-butadiene 66a, readily available in two steps from methyl acetoacetate, ${ }^{15}$ afforded the condensation product 67a by regioselective attack of the terminal carbon atom of 66 a onto carbon atom C-2 of $\mathbf{6 5 a}$ and subsequent hydrolysis. Treatment of an ethanol solution of crude $\mathbf{6 7 a}$ with triethylamine afforded 1-azaxanthone 68a (Scheme 4.1). The formation of 68a can be explained by a domino 'retro-Michael-lactonization-aldol' reaction. The base-mediated retro-Michael reaction of 67a gave open-chained intermediate B. The attack of the hydroxy group onto the nitrile gave intermediate \mathbf{C}. The attack of the imino nitrogen atom onto the carbonyl group (intermediate D) and subsequent aromatization by extrusion of water afforded 68a. The transformation of 67 a into 68 a can be regarded as a domino 'retro-Michael / nitrile-addition / heterocyclization' reaction.

The reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes 66a-c, prepared from methyl, ethyl and isopropyl acetoacetate, with parent 3-cyanochromone (65a) and with the alkyland halogen-substituted 3-cyanochromones $\mathbf{6 5 b} \mathbf{- g}$ afforded products $\mathbf{6 7 a} \mathbf{- j}$ which were transformed, by reaction with NEt_{3}, into the 1-azaxanthones 68a-j (Langer and Appel, ${ }^{96}$ Scheme 4.2, Table 4.1). The reaction of parent 3-cyanochromone $\mathbf{6 5 a}$ with 1,3-bis(trimethylsilyloxy)-1,3-butadiene 66d, prepared from methyl 3-oxopentanoate, afforded 67a. Treatment of 67a with triethylamine afforded dibenzo $[b, d]$ pyran-6-one 69a (Langer and Appel) ${ }^{96}$ rather than the expected methyl-substituted azaxanthone $\mathbf{6 8 k}$. The formation of 69a can be explained by a competing domino 'retro-Michael-aldollactonization' reaction (Scheme 4.3)..82 In contrast, the reaction of 66e (derived from ethyl 3-oxopentanoate) with chlorinated 3-cyanochromone 65 e afforded azaxanthone 681 (via 671). The reaction of parent cyanochromone 65a with 1,3-bis(silyl enol ether) 66f, prepared from ethyl 3-oxohexanoate, afforded $\mathbf{6 7 m}$. Treatment of the latter with base resulted in formation of a separable mixture of ethyl-substituted azaxanthone $\mathbf{6 8 m}$ and dibenzo $[b, d]$ pyran-6-one 69b.
In contrast, the exclusive formation of azaxanthones $\mathbf{6 8 n}, \mathbf{o}$ was observed when substituted cyanochromones 65 e and 65 h were employed. The propyl- and butylsubstituted dibenzo $[b, d]$ pyran-6-ones 69c and 69d were isolated from the reaction of parent cyanochromone $\mathbf{6 5 a}$ with 1,3-bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{6 6 g}$ and $\mathbf{6 6 h}$.

The reaction of $66 \mathbf{i}$ with $65 a$ and 65 e exclusively afforded the heptyl-substituted azaxanthones 68 r and $\mathbf{6 8 s}$, respectively. The allyl-substituted azaxanthones $\mathbf{6 8 t}$ and $\mathbf{6 8 u}$ were prepared from 66j. The reaction of 4-aryl-1,3-bis(trimethylsilyloxy)-1,3-butadienes 66k-m with 3-cyanochromones $65 \mathrm{a}, \mathrm{b}, \mathrm{e}$ gave the products $67 \mathrm{v}-\mathbf{y}$ which were transformed into the 3-aryl-1-azaxanthones $\mathbf{6 8 v} \mathbf{- y}$.

retro-Michael

D

B
\downarrow nitrile-addition

$\mathrm{HNEt}_{3}{ }^{+} \mathbf{C}$

Scheme 4.1. Mechanism of the formation of 68a

Scheme 4.2. Synthesis of 1-azaxanthones 68a-al a: i : 1) 65a-h, Me ${ }_{3}$ SiOTf, $^{\left.1 \mathrm{~h}, 20^{\circ} \mathrm{C}, 2\right)}$ 66a-y, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 3\right) \mathrm{HCl}(10 \%)$; ii: 1) $\left.\mathrm{NEt}_{3}, \mathrm{EtOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}, 2\right) \mathrm{HCl}(1$ M)

67k,m,p,q

$\mathrm{R}^{1}=$ see Table ${ }_{1}$
69a-d $\mathrm{R}^{2}=\mathrm{Me}$, Et
$\uparrow-\mathrm{R}^{2} \mathrm{OH}$

E

F

Scheme 4.3. Mechanism of the formation of 69a-d

3-Methoxy-1-azaxanthone $\mathbf{6 8 z}$ was prepared from 4-methoxy-1,3-bis(trimethylsilyloxy)-1,3-butadiene $\mathbf{6 6 n}$ which is available from methyl 4-methoxyacetoacetate. The reaction of 4-aryloxy-1,3-bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{6 6 0 - q}$ with $\mathbf{6 5 a}, \mathbf{f}, \mathrm{h}$ afforded the condensation products 67aa-ad which were transformed into the 3-aryloxy-1azaxanthones 68aa-ad. Starting with 4-thioaryloxy-1,3-bis(trimethylsilyloxy)-1,3butadienes 66r-u, the 3-thioaryloxy-1-azaxanthones 68ae-ah were prepared. 1Azaxanthones 68ai and 68aj were prepared from 65a and from 2-methyl- and 2-ethyl-1,3-bis(trimethylsilyloxy)-1,3-butadienes 66v and 66w, respectively.
The reaction of $\mathbf{6 5 a}$ with cyclohexanone-derived 1,3-bis(trimethylsilyloxy)-1,3butadienes 66x and 66y gave 67ak and 67al which were transformed into the tetracyclic azaxanthones 68ak and 68al, respectively. The employment of 7- and 12-membered cyclic 1,3-bis(trimethylsilyloxy)-1,3-butadienes $\mathbf{6 6 z}$ and 66aa proved to be unsuccessful. The reaction of 3-cyanochromones with 1,3-diketone-derived 1,3-bis(silyl enol ethers), such as 1-phenyl-1,3-bis(trimethylsilyloxy)-1,3-butadiene (66ab) or 2,4-bis(trimethylsilyloxy)-1,3-pentadiene (66ac), resulted in the formation of complex mixtures.

The structures of all products were proved by spectroscopic methods. The structure of 68t was independently confirmed by X-ray crystal structure analysis (Figure 4.1). ${ }^{97}$

Figure 4.1. Ortep plot of $\mathbf{6 8 t}$ (50% probability level)

Table 4.1. Products and yields

65	66	68	69	R ${ }^{1}$	R^{2}	R^{3}	R^{4}	R^{5}	R^{6}	$\begin{gathered} \% \\ (68,69)^{a} \end{gathered}$
a	a	a		H	H	OMe	H	H	H	41
a	b	b		H	H	OEt	H	H	H	46
a	c	c		H	H	OiPr	H	H	H	42
b	a	d		H	H	OEt	Me	H	H	40
c	c	e		H	H	OiPr	Et	H	H	31
d	a	f		H	H	OEt	iPr	H	H	41
e	a	g		H	H	OEt	Cl	H	H	37
f	a	h		H	H	OEt	Cl	H	Cl	48
g	a	i		H	H	OEt	Br	H	H	34
g	c	j		H	H	OiPr	Br	H	H	32
a	d	k	a	Me	H	OMe	H	H	H	0
										$(34)^{b}$
e	e	1		Me	H	OEt	Cl	H	H	41
a	f	m	b	Et	H	OEt	H	H	H	17
e	f	n		Et	H	OEt	Cl	H	H	46
h	f	0		Et	H	OEt	Me	Me	H	38
a	g	p	c	$n \mathrm{Pr}$	H	OMe	H	H	H	0
										$(37)^{b}$
a	h	q	d	nBu	H	OMe	H	H	H	0
										$(42)^{b}$
a	i	r		nHept	H	OEt	H	H	H	25
e	i	s		nHept	H	OEt	Cl	H	H	38
a	j	t		Allyl	H	OMe	H	H	H	38
e	j	u		Allyl	H	OMe	Cl	H	H	30
a	k	v		Ph	H	OMe	H	H	H	62
a	1	w		4-Cl($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$	H	OMe	H	H	H	50
e	m	\mathbf{x}		2-MeO($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$	H	OMe	Cl	H	H	40
b	m	y		2-MeO($\mathrm{C}_{6} \mathrm{H}_{4}$)	H	OMe	Me	H	H	32

a	n	z	MeO	H	OMe	H	H	H	31
a	0	aa	PhO	H	OEt	H	H	H	66
f	0	ab	PhO	H	OEt	Cl	H	Cl	44
h	p	ac	4-Cl($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{O}$	H	OMe	Me	Me	H	33
f	q	ad	4-Me($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{O}$	H	OMe	Cl	H	Cl	42
a	r	ae	PhS	H	OEt	H	H	H	51
h	s	af	4-Cl($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{S}$	H	OEt	Me	Me	H	56
b	t	ag	4-Me($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{S}$	H	OEt	Me	H	H	63
f	u	ah	4-MeO($\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{S}$	H	OEt	Cl	H	Cl	45
a	v	ai	H	Me	OEt	H	H	H	44
a	w	aj	H	Et	OEt	H	H	H	42
a	\mathbf{x}	ak	$-\left(\mathrm{CH}_{2}\right)_{3}-$		OEt	H	H	H	36
a	y	al	$-\mathrm{CH}_{2} \mathrm{CHMeCH}_{2}-$		OMe	H	H	H	$32^{\text {c }}$
a	z	a	$-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$		OMe	H	H	H	0
		m							
a	aa	an	-($\left.\mathrm{CH}_{2}\right)_{9}-$		OMe	H	H	H	0
a	ab	ao	H	H	Ph	H	H	H	0
a	ab	ap	H	H	Ph	H	H	H	0

${ }^{\bar{a}}$ Yields of isolated products $\mathbf{6 8}$ over two steps (based on 65). ${ }^{b}$ Yields in brackets refer to 69a-d (structures see Scheme 3). ${ }^{c} \mathrm{dr}=2: 3$

The overall yields of 1 -azaxanthones $\mathbf{6 8 a}$-al are, in most cases, only moderate. However, it has to be taken into account that the yields refer to two steps. In fact, a 50% overall yield is obtained when each individual step proceeds in ca. 70% yield. The moderate yields can be explained by the fact that, for the first step, the conversion is often not complete. However, the yields could not be increased by employment of an excess of the 1,3-bis(trimethylsilyloxy)-1,3-butadiene or by longer reaction times.

The yields depend on the type of 1,3-bis(trimethylsilyloxy)-1,3-butadiene and 3cyanaochromone employed. The synthesis of 3-alkyl-1-azachromones from parent 3cyanochromone is problematic, due to the competing formation of dibenzo $[b, d]$ pyran-6ones which might be related to the steric influence of the alkyl group. In contrast, the synthesis of 3-alkyl-1-azachromones derived from substituted 3-cyanochromones proved
to be possible. Relatively good yields are observed for 1-azaxanthones $\mathbf{6 8 w} \mathbf{w}$ prepared from the phenyl- and 4-chlorophenyl-substituted dienes $\mathbf{6 6 k}$,l. The yields dropped for products $\mathbf{6 8 x} \mathbf{x}, \mathbf{y}$ which were prepared from diene $\mathbf{6 6 m}$ (containing the sterically more demanding 2-methoxyphenyl group). The yields of 1-azaxanthones 68aa-ah, containing an aryloxy- or thioaryloxy-substituent, are again relatively good. These results can be explained by the assumption that, despite their steric effect, all these substituents exert an advantageous electronic effect in the first step (the addition of the diene onto the pyrylium salt) or in the second step (formation of intermediate B in Scheme 4.1). The yields of tetracyclic products 68ak and 68al are rather low and the synthesis of analogues containing larger annulated rings was not possible at all. This might be explained by steric effects. The failure of the synthesis of 67ao and 67ap (and, thus, of the corresponding 1 -azaxanthones) can be explained by the generally lower reactivity of 1,3-diketone- compared to β-ketoester-derived 1,3-bis(trimethylsilyloxy)-1,3-butadienes.

4.3. Conclusion

In conclusion, a variety of 1 -azaxanthones were prepared by TMSOTf-mediated condensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-cyanochromones and subsequent base-mediated domino 'retro-Michael-lactonization-aldol' reaction. Noteworthy, the synthesis can be carried out under mild conditions and the reactions proceed in acceptable yields with very good regio- and chemoselectivity. The products are not readily available by other methods.

5. Experimental Section:

5.1. General: Equipment, chemicals and work technique

${ }^{1}$ H NMR Spectroscopy:
Bruker: AM 250, Avance 250, AC 250 (250 MHz); ARX 300, Avance 300 (300 MHz); Varian VXR 500 S , Avance $500(500 \mathrm{MHz}) ; \delta=0.00 \mathrm{ppm}$ for Tetramethylsilane; $\delta=$ 2.04 ppm for Acetone $\mathrm{d}-6 ; \delta=7.26 \mathrm{ppm}$ for Deuterochloroform (CDCl 3); Characterization of the signal fragmentations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double of doublet, ddd $=$ doublet of a double doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet; sext $=$ Sextet, sept $=$ Septet, $m=$ multiplet, $b r=$ broadly. Spectra were evaluated according to first order rule. All coupling constants are indicated as (J).

${ }^{13}$ C NMR Spectroscopy:

Bruker: AM 250, Avance 250, AC 250 (62.9 MHz); ARX 300, Avance 300 (75 MHz); Varian VXR 500 S , Avance $500(125 \mathrm{MHz}) ; \delta=128.00 \mathrm{ppm}$ for Acetone d-6; $\delta=77.00$ ppm for CDCl 3 . The multiplicity of the carbon atoms was determined by the DEPT 135 and APT technique $(\mathrm{APT}=$ Attached Proton Test) and quoted as $\mathrm{CH} 3, \mathrm{CH} 2, \mathrm{CH}$ and C for primary, secondary, tertiary and quaternary carbon atoms. Characterization of the signal fragmentations: quart $=$ quartet the multiplicity of the signals was determined by the DEPT recording technology and/or the APT recording technology.

Mass Spectroscopy:

AMD MS40, AMD 402 (AMD Intectra), Varian MAT CH 7, MAT 731.

High Resolution mass spectroscopy: Finnigan MAT 95 or Varian MAT 311; Bruker FT CIR, AMD 402 (AMD Intectra).

Infrared spectroscopy (IR): Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit (ATR); KBr ,KAP, Nujol, and ATR; Abbreviations for signal allocations: $\mathrm{w}=\mathrm{weak}, \mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad.

Elementary analysis: LECO CHNS-932, Thermoquest Flash EA 1112.

X-ray crystal structure analysis: Bruker X8Apex Diffractometer with CCD-Kamera (Mo-K K_{a} und Graphit Monochromator, $\lambda=0.71073 \AA$).

Melting points: Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); Melting points are uncorrected.

Column chromatography: Chromatography was performed over Merck silica gel 60 ($0,063-0,200 \mathrm{~mm}, 70-230 \mathrm{mesh}$) as normal and/or over mesh silica gel $60(0,040-$ $0,063 \mathrm{~mm}, 200-400 \mathrm{mesh})$ as Flash Chromatography. All solvent were distilled before use.

TLC: Merck DC finished foils silica gel 60 F254 on aluminum foil and Macherey finished foils Alugram® Sil G/UV254. Detection under UV light with 254 nm and/or 366 nm without dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid).

Chemicals and work technique:All solvents for using were distilled by standard methods. All reactions were carried out under an inert atmosphere, oxygen and humidity exclusion. All of the chemicals are standard, commercially available from Merck ${ }^{\circledR}$, Aldrich ${ }^{\circledR}$, Arcos ${ }^{\circledR}$ and others. The order of the characterized connections effected numerically, but does not correspond to the order in the main part of dissertation.

5.2 Procedures and Spectroscopic Data

General Procedure for the Cyclization of 1-Bromo-2-chloroethane with Dianions:

To a THF solution of LDA (prepared by addition of 5.0 mmol of $n-\mathrm{BuLi}, 2.5 \mathrm{M}$ in hexane, to a solution of diisopropylamine ($0.57 \mathrm{ml}, 5.0 \mathrm{mmol}$) in 12 ml of THF, stirred for 30 min), was added 1-phenylsulfonyl-2-propanone ($397 \mathrm{mg}, 2.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min . To this solution was added 1-bromo-2chloroethane $(0.17 \mathrm{ml}, 2.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The temperature was allowed to rise to $20^{\circ} \mathrm{C}$ during 14 h , and the solution was subsequently refluxed for 14 h . To the solution was added hydrochloric acid $(1 \mathrm{M})$ and the mixture was subsequently extracted with EtOAc $(3 \times 200 \mathrm{ml})$. The organic layers were dried and filtered, the solvent of the filtrate was removed in vacuo, and the residue was purified by chromatography (silica gel, EtOAc / n-heptane).

2 -[(Phenylsulfonyl)methylidene]tetrahydrofuran (10a):

Starting with 1-phenylsulfonyl-2-propanone 9a (3.90 g, 19.76 mmol), and 1-bromo-2-chloroethane ($1.8 \mathrm{ml}, 21.74 \mathrm{mmol}$), 10a was isolated as a highly viscos colourless oil $(1.99 \mathrm{~g}, 45 \%, E / Z$ $=7: 3) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.92-2.09(\mathrm{~m}, 2 \times 2 \mathrm{H}$, CH_{2}, both isomers), $2.60\left(\mathrm{dt}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, J=1.2 \mathrm{~Hz} \mathrm{CH}_{2}\right), 3.05(\mathrm{dt}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, J$ $\left.=1.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.15\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.31\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.39(\mathrm{t}, 1 \mathrm{H}$, $J=1.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}, Z$-isomer), 5.67 (t, $1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}, E$ - isomer), 7.41-7.48 (m, $2 \times 3 \mathrm{H}, \mathrm{ArH}$, both isomers), 7.76-7.91 (m, $2 \times 2 \mathrm{H}, \mathrm{ArH}$, both isomers); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.0,24.1,29.8,32.2,72.9,75.4\left(\mathrm{CH}_{2}\right), 98.8,100.1(\mathrm{CH}), 126.7$ (2 C , $\mathrm{CH}), 127.3(2 \mathrm{C}, \mathrm{CH}), 128.6,129.0(\mathrm{CH}), 129.4(2 \mathrm{C}, \mathrm{CH}), 132.8(2 \mathrm{C}, \mathrm{CH}), 143.9,144.2$, 170.1, 174.3(C); IR (neat): $\widetilde{v}=3086$ (w), 3535 (w), 3061 (w), 2936 (m), 1720 (s), 1447 (s), 1402 (m), 1309 (s), 1153 (s), 688 (s), 528 (s) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): $224.1\left(\mathrm{M}^{+}, 100\right), 160(15), 147$ (18), 131 (24), 118(31), 89 (23), 77 (66), 51 (34); HRMS (ESI): calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}([\mathrm{M}+1]) 224.05017$, found 224.05017 .

2[((4-Chhorophenyl)sulfonyl)methylidene]tetrahydrofuran (10c):

Starting with 1-(4-chlorophenyl)sulfonyl-2-propanone 9c $(1.50 \mathrm{~g}, 6.44 \mathrm{mmol})$, and 1-bromo-2-chloroethane (0.64 ml , 7.73 mmol), 10c was isolated as a highly viscos colourless oil ($668 \mathrm{mg}, 40 \%, E / Z=6: 4$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.21-2.34\left(\mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, both isomers), $2.88(\mathrm{dt}, 2 \mathrm{H}, \mathrm{dt}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, J=1.2$ $\mathrm{Hz} \mathrm{CH}_{2}$), 3.31 (dt, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, \mathrm{CH}_{2}$), $4.42\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 4.58 $\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.65(\mathrm{t}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} H, Z$-isomer), $5.91(\mathrm{t}, 1 \mathrm{H}, J=1.7$ $\mathrm{Hz}, \mathrm{C}=\mathrm{CH}, E$ - isomer), $7.64,7.73(2 \times \mathrm{d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}$, both isomers $)$, $7.98,8.05\left(2 \times \mathrm{d}, 4 \mathrm{H}, J=8.7 \mathrm{~Hz}, J=9.1\right.$, ArH, both isomers); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=23.5,24.1,29.9,32.2,73.0,75.5\left(\mathrm{CH}_{2}\right), 98.7,99.8(\mathrm{CH}), 128.3(2 \mathrm{C}, \mathrm{CH})$, $129.3(2 \mathrm{C}, \mathrm{CH}), 129.6(2 \mathrm{C}, \mathrm{CH}), 130.1(2 \mathrm{C}, \mathrm{CH}), 139.2,139.4,140.8,142.2,170.5$, 174.7 (C); IR (neat): $\widetilde{v}=3090(\mathrm{w}), 2958(\mathrm{~m}), 2933(\mathrm{~m}), 1720(\mathrm{~m}), 1627(\mathrm{~m}), 1582(\mathrm{~m})$,

1394 (m), 1320 (s), 1155 (s), 1089 (s), 831 (m), 571 (m) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): $258\left(\mathrm{M}^{+}, 100\right), 241$ (5), 194 (25), 192 (19), 175 (11), 152 (31), 147 (29), 131 (35), 111 (56), 89 (36), 75(44), 55 (37); HRMS (ESI): calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{3} \mathrm{~S}$ ([M+1]) 258.01082, found 258.01119 .

General Procedure for the Reaction of 2-(Alkylidene)-tetrahydrofurans with Borontribromide or Borontrichloride: To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (10 mL per 1 mmol of substrate) of 2-(alkylidene)tetrahydrofuran (1.0 equiv.) was added BBr_{3} (4.0-8.0 equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ during 12 h and was stirred for 12 h at $20^{\circ} \mathrm{C}$. Water (15 mL per 1 mmol of substrate) was slowly added to the reaction mixture and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-heptane/EtOAc).

5-Bromo-1-(phenylsulfonyl)-2-pentanone (11a):

Starting with 10a ($400 \mathrm{mg}, 1.78 \mathrm{mmol}$) and $\mathrm{BBr}_{3}(0.67 \mathrm{ml}, 7.12$ mmol), 11a was isolated as a colourless solid ($516 \mathrm{mg}, 95 \%$), mp. $77{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.30$ (quint, $2 \mathrm{H}, J=6.6$ $\mathrm{Hz}, \mathrm{CH}_{2}$), $3.09\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.58(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}$, CH_{2}), $4.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.4,32.9$, $42.8,67.4\left(\mathrm{CH}_{2}\right), 127.4(2 \mathrm{C}, \mathrm{CH}), 128.6(2 \mathrm{C}$, CH), $134.8(\mathrm{CH}), 139.0,197.4(\mathrm{C}) ;$ IR (KBr): $\widetilde{v}=2973(\mathrm{~m}), 2925(\mathrm{~m}), 1716(\mathrm{~s}), 1445$ (m), 1321 (s , 1297 (s$), 1153$ (s), 1009 (w), 688 (m), 525 (m) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 306\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 0.30\right), 304\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 0.33\right), 242$ (2), 240 (2), 198 (42), 151 (35), 149 (36), 141 (59), 77 (100), 51 (28), 41 (22); HRMS (ESI): calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{3} \mathrm{~S}$ $\left([\mathrm{M}+1],{ }^{81} \mathrm{Br}\right) 303.97709$, found 303.97763 .

5-Bromo-1-[(4-chlorophenyl)sulfonyl]-2-pentanone (11c):

Starting with 10c ($274 \mathrm{mg}, 1.05 \mathrm{mmol}$) and $\mathrm{BBr}_{3}(0.39 \mathrm{ml}$, 4.2 mmol), 11c was isolated as a colourless solid (234 mg , 65%), mp. $68{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.07$ (quint, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.87\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $3.35\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.77(\mathrm{~d}$, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.3,32.7,42.9,67.2\left(\mathrm{CH}_{2}\right)$, $130.1(2 \mathrm{C}, \mathrm{CH}), 130.2(2 \mathrm{C}, \mathrm{CH}), 137.3,141.7,197.3(\mathrm{C}) ; \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=3090(\mathrm{w}), 2921$ (w), 1717 (s), 1582 (m), 1322 (s), 1147 (s), 1088 (s), 827 (m), 530 (s), 460 (m) cm^{-1}; GCMS (CI): $m / z(\%): 341\left([\mathrm{M}+1]^{+},{ }^{81} \mathrm{Br}, 90\right), 339$ ($\left.[\mathrm{M}+1]^{+},{ }^{79} \mathrm{Br}, 86\right), 261$ (40), 259 (100), 223 (5), 191 (13), 159 (5), 69 (8) (19); HRMS (CI): calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrClO}_{3} \mathrm{~S}$ $\left([\mathrm{M}+1],{ }^{81} \mathrm{Br}\right) 338.94510$, found 338.94518 .

General Procedure for the Cyclization of 1,4-Dibromo-2-butene with Dianions: A THF solution of LDA (2.5 equiv.) was prepared by addition of $n-\mathrm{BuLi}(1 \mathrm{ml}, 2.5 \mathrm{mmol}$, 2.5 M solution in hexanes) to a THF solution (7 ml) of diisopropylamine ($0.36 \mathrm{ml}, 2.5$ mmol) at $0^{\circ} \mathrm{C}$. After the solution was stirred for $30 \mathrm{~min}, 1$-phenylsulfonyl-2-propanone $(198 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring for $45-60 \mathrm{~min}$, to the solution was added a THF solution (4 ml) of 1,4-dibromo-2-butene ($256 \mathrm{mg}, 1.2 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The temperature was allowed to rise to $20^{\circ} \mathrm{C}$ during $12-14 \mathrm{~h}$, and the solution was stirred at $20^{\circ} \mathrm{C}$ for $8-14 \mathrm{~h}$. To the solution was added a diluted aqueous solution of HCl and the mixture was subsequently extracted with $\operatorname{EtOAc}(3 \times 200 \mathrm{ml})$. The combined organic layers were dried and filtered, the solvent of filtrate was removed in vacuo, and the residue was purified by chromatography (silica gel, EtOAc / n-heptane).

2-[(Phenyl)sulfonyl)methylidene]-5-vinyltetrahydrofuran (12a):

Starting with 1-(4-methylphenyl)sulfonyl-2-propanone 9a ($2.00 \mathrm{~g}, 10.0 \mathrm{mmol}$), and 1,4-dibromo-2-butene $(2.60 \mathrm{~g}, 12.1 \mathrm{mmol}), \mathbf{1 2 a}$ was isolated as a highly viscos colourless oil ($1.26 \mathrm{~g}, 50 \%, E / Z=6: 4$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.85-2.05\left(\mathrm{~m}, 2 \times 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right.$, both isomers), $2.39-2.45(\mathrm{~m}, 2 \times 1 \mathrm{H}$,
$\mathrm{CH}-\mathrm{CH}_{2}$, both isomers), 2.83 (dt, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}$), 3.43-3.46 (m, 1 $\mathrm{H}, \mathrm{CH}-\mathrm{C}$), 3.43-3.54, 3.71-3.77 ($2 \times \mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}, E-Z$), 4.95-5.02, 5.24-5.32 ($2 \times \mathrm{m}, 2$ $\left.\mathrm{H}, \mathrm{C} H-\mathrm{CH}_{2}\right), 5.38-5.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$, both isomers $), 5.66(\mathrm{t}, J=1.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}, Z$ isomer), 5.93 ($\mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}, E$ isomer), $5.94-6.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right.$, both isomers), $7.64,7.84(\mathrm{~m}, 2 \times 3 \mathrm{H}, \mathrm{ArH}$, both isomers), 8.01-8.17 (m, $2 \times 2 \mathrm{H}, \mathrm{ArH}$, both isomers); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.1,29.3,29.8,30.0\left(\mathrm{CH}_{2}\right), 85.1,87.1,99.5$, $100.4(\mathrm{CH}), 116.5,118.6\left(\mathrm{CH}_{2}\right), 126.8(2 \mathrm{C}, \mathrm{CH}), 127.7(\mathrm{CH}), 129.4(2 \mathrm{C}, \mathrm{CH}), 129.5(2 \mathrm{C}$, CH), 132.8, 135.3, 135.5 (CH), 143.8, 144.3, 169.1, 173.4 (C); IR (neat): $\widetilde{v}=3485(\mathrm{w})$, 2985 (w), 2940 (w), 2210 (w), 1750 (m), 1627 (s), 1447 (m), 1308 (s), 1151 (s), 1083 (m), 589 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): $250\left(\mathrm{M}^{+}, 24\right.$), 183 (36), 141 (27), 125 (7), 109 (65), 91 (39), 77 (100), 67 (23), 51 (26); HRMS (ESI): calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ $([\mathrm{M}+1 \mathrm{l}]) 250.06607$, found 250.06582 .

2-(E)-[((4-Chlorophenyl)sulfonyl)methylidene]-5-vinyltetrahydro-furan (12c):

Starting with 1-(4-chlorophenyl)sulfonyl-2propanone $9 \mathrm{c}(1.00 \mathrm{~g}, 4.29 \mathrm{mmol})$, and 1,4-dibromo-2-butene ($1.10 \mathrm{~g}, 5.15 \mathrm{mmol}$), 12c was isolated as a highly viscos colourless oil (488 mg , 40%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.73-1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 2.16-2.27(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}-\mathrm{CH}_{2}$), 2.89-2.95 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}\right), 3.17-3.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H_{2}-\mathrm{C}\right), 4.73-4.80(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}-\mathrm{CH}_{2}$), $5.16-5.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.67(\mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 5.70-5.79(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CH}$), $7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=29.9,30.0\left(\mathrm{CH}_{2}\right), 85.3,100.0(\mathrm{CH}), 118.7\left(\mathrm{CH}_{2}\right), 128.3(2 \mathrm{C}, \mathrm{CH})$, 129.7 (2C, CH), $135.4(\mathrm{CH}), 139.3,142.8,173.9(\mathrm{C})$; IR (neat): $\widetilde{v}=3088(\mathrm{w}), 3064(\mathrm{w})$, 2946 (w), 1625 (s), 1582 (s), 1428 (m), 1319 (s), 1084 (s), 618 (s), 478 (s) cm^{-1}; GC-MS (EI, 70 eV): m / z (\%): 284 (M, 38), 217 (45), 175 (51), 111 (88), 109 (100), 91 (59), 67 (34), 53(19), 39 (17); elemental analysis: calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S}$ (208.0): C 54.83, H 4.60; found: C 54.82, H 4.77.

7-Bromo-1-(phenylsulfonyl)-5-hepten-2-one (13a):

Starting with 12a ($200 \mathrm{mg}, 0.94 \mathrm{mmol}$) and $\mathrm{BBr}_{3}(0.44 \mathrm{ml}, 4.7 \mathrm{mmol}), 13 \mathrm{a}$ was isolated as a highly viscos colourless oil ($234 \mathrm{mg}, 75 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 3.83 (d, $\left.2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.63-5.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 7.49-7.55(\mathrm{~m}, 2$ H, ArH), 7.60-7.63 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.80 (dd, $2 \mathrm{H}, J=7.0,1.5 \mathrm{~Hz}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.0,25.8,43.6,67.3\left(\mathrm{CH}_{2}\right), 128.2(\mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 129.8(2 \mathrm{C}$, CH), 133.8, $134.8(\mathrm{CH}), 139.0,197.3$ (C); IR (neat): $\widetilde{v}=3064(\mathrm{~m}), 2991(\mathrm{~m}), 2928(\mathrm{~s})$, 1731 (s , 1447 (s), 1309 (m), 1085 (s$), 999$ (m), 688 (m), 437 (w) cm ${ }^{-1}$; GC-MS (CI): m/z (\%): 333 ($\left.[\mathrm{M}+\mathrm{H}]^{+},{ }^{81} \mathrm{Br}, 7\right), 331\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{79} \mathrm{Br}, 7\right), 253$ (13), 252 (15), 251 (100), 143 (4), 127 (3), 111 (13), 109 (7), 79, (10), 71 (16), 69 (20); HRMS (CI): calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{~S}\left([\mathrm{M}+1],{ }^{81} \mathrm{Br}\right) 330.99857$, found 330.99980 .

7-Bromo-1-[(4-chlorophenyl)sulfonyl]-5-hepten-2-one (13c):

Starting with 12c ($105 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{BBr}_{3}(0.17 \mathrm{ml}, 1.84 \mathrm{mmol}), \mathbf{1 3 c}$ was isolated as a highly viscos colourless oil ($95 \mathrm{mg}, 70 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.56-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.90-5.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$, $7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH})$), $8.01(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=25.8,33.0,43.7,67.1\left(\mathrm{CH}_{2}\right), 128.3(\mathrm{CH}), 130.1(2 \mathrm{C}, \mathrm{CH}), 130.2(2 \mathrm{C}, \mathrm{CH})$, 133.6, (CH), 137.3, 141.6, 197.3 (C); IR (neat): $\widetilde{v}=3090$ (w), 2927 (m), 2210 (w), 1721 (s), 1476 (s), 1154 (s$), 969$ (m), 815 (m), 763 (m), 469 (w) cm ${ }^{-1}$; GC-MS (CI): m/z (\%): $367\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{81} \mathrm{Br}, 13\right), 465\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{79} \mathrm{Br}, 10\right), 287$ (39), 286 (14), 285 (100), 179 (2), 109 (6), 91 (3); HRMS (CI): calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrClO}_{3} \mathrm{~S}\left([\mathrm{M}+1],{ }^{81} \mathrm{Br}\right.$) 364.96221, found 364.96083 .

2-(Cyanomethylidene)tetrahydrofuran (15):

CNOCN
The synthesis of $\mathbf{1 5}$ has been previously reported. ${ }^{11 a}$ Starting with 5methylisoxazole ($3 \mathrm{ml}, 36.82 \mathrm{mmol}$), 1-bromo-2-chloroethane (3.7 ml , $44.18 \mathrm{mmol}), 15$ (E-isomer) was isolated as a colourless oil ($1.61 \mathrm{~g}, 41 \%$) and $\mathbf{1 5}$ (Z isomer) was isolated as a colourless oil ($1.56 \mathrm{~g}, 40 \%$). E-Isomer: ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=2.08$ (quint, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.81\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.26(\mathrm{t}, 2$ $\mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), $4.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCN}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.1,30.6$ $\left(\mathrm{CH}_{2}\right), 67.6(\mathrm{CHCN}), 74.6\left(\mathrm{CH}_{2}\right), 118.8(\mathrm{CN}), 178.0(\mathrm{C}) ;$ IR (neat): $\widetilde{v}=3086(\mathrm{w}), 2913$ (s), 2211 (s), 1734 (w), 1429 (m), 1391 (s), 1186 (m), 1003 (s$), 930$ (m), 725 (m) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 109 ($\mathrm{M}^{+}, 82$), 80 (7), 68 (100), 52 (14), 42 (68), 38 (6); HRMS (ESI): calcd (\%) for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}([\mathrm{M}+1])$ 109.05188, found 109.05222. Z-Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.36$ (quint, $2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.90(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}$, CH_{2}), $4.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CN}), 4.59\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=24.3,31.2\left(\mathrm{CH}_{2}\right), 65.2(\mathrm{CHCN}), 74.4\left(\mathrm{CH}_{2}\right), 117.2(\mathrm{CN}), 177.6(\mathrm{C}) ;$ IR (neat): $\widetilde{v}=3086$ (w), 2954 (m), 2854 (w), 1652 (s), 1458 (m), 1391 (s), 1186 (m), 1003 (s), 930 (m), 725 (m) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): $109\left(\mathrm{M}^{+}, 75\right), 80(5), 68(100), 52(13), 42(71)$, 29 (3); HRMS (ESI): calcd (\%) for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}([\mathrm{M}+1 \mathrm{j})$ 109.05214, found 109.05222.

6-Bromo-1-cyano-3-oxopentane (16):

Starting with 15 ($363 \mathrm{mg}, 3.33 \mathrm{mmol}$) and $\mathrm{BBr}_{3}(2.51 \mathrm{ml}, 26.64 \mathrm{mmol}), 16$ was isolated as a colourless solid ($538 \mathrm{mg}, 85 \%$), mp. $71{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.40$ (quint, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.05(\mathrm{t}, 2 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.68\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=26.2,32.6,32.8,40.5\left(\mathrm{CH}_{2}\right), 113.9(\mathrm{CN}), 196.8(\mathrm{C}) ;$ IR $(\mathrm{KBr}): \widetilde{v}=2951$ (m), 2920 (m), 2258 (w), 1719 (s), 1642 (m), 1405 (s), 1392 (s), 1328 (s), 977 (m), 581 (m) cm^{-1}; GC-MS (CI): $m / z(\%): 192\left([M+\mathrm{H}]^{+},{ }^{81} \mathrm{Br}, 48\right), 190\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{79} \mathrm{Br}, 59\right), 151$ (9), 149 (9), 110 (100); elemental analysis: calcd (\%) for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BrNO}$ (190): C 37.92, H 4.24; found: C 38.14, H 4.18 .

2-(Cyanomethylidene)-5-vinyltetrahydrofuran (17):

The synthesis of $\mathbf{1 7}$ has been previously reported. ${ }^{11 a}$ Starting with 5-methylisoxazole ($3 \mathrm{ml}, 36.82 \mathrm{mmol}$), and 1,4-dibromo-2-butene $(9.45 \mathrm{~g}, 44.18 \mathrm{mmol}), \mathbf{1 7}$ (E-isomer) was isolated as a colourless oil ($1.96 \mathrm{~g}, 40 \%$) and $\mathbf{1 7}$ (Z-isomer) was isolated as a colourless oil ($1.77 \mathrm{~g}, 36 \%$). E-Isomer: ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=1.78-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 2.19-2.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 2.75-2.91(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 4.57(\mathrm{t}, 1 \mathrm{H}, J=1.5, \mathrm{CHCN}), 4.84-4.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 5.18-5.32(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 5.72-5.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.0,30.6$ $\left(\mathrm{CH}_{2}\right), 68.2,86.8(\mathrm{CH}), 118.5\left(\mathrm{CH}_{2}\right), 119.0(\mathrm{CN}), 135.4(\mathrm{CH}), 178.2(\mathrm{C}) ;$ IR (neat): $\widetilde{v}=$ 3073 (w), 2988 (w), 2211 (s), 1641 (s), 1430 (m), 1217 (s), 1179 (s), 989 (m), 877 (m), $763(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 135 ($\mathrm{M}^{+}, 90$), 134 (91), 120 (49), 106 (49), 92 (21), 79 (37), 67 (100), 53(50), 39 (53); HRMS (ESI): calcd (\%) for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$ ([M+1]) 135.06802, found 135.06787. Z-Isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.82-1.86$ (m , $1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}$), 2.10-2.22 (m, $1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}$), 2.58-2.64 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.19(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHCN}), 4.89-4.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 5.18-5.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.75-5.86(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.2,31.0\left(\mathrm{CH}_{2}\right), 65.8,86.4(\mathrm{CH}), 116.9$ $(\mathrm{CN}), 118.3\left(\mathrm{CH}_{2}\right), 135.4(\mathrm{CH}), 176.4(\mathrm{C}) ;$ IR (neat): $\widetilde{v}=3085(\mathrm{w}), 2942(\mathrm{w}), 2212(\mathrm{~s})$, 1652 (s), 1430 (m), 1364 (m), 1187 (m), 989 (m), 934 (m), 730 (w) cm ${ }^{-1}$; GC-MS (EI, 70 $\mathrm{eV}): m / z(\%): 135.1\left(\mathrm{M}^{+}, 83\right), 134.1$ (92), 120.1 (51), 116.1 (10), 106.2 (42), 92.2 (21), 80.2 (34), 79.2 (39), 67.2 (100), 65.2 (19), 53.2 (52), 39.2 (51); HRMS (ESI): calcd (\%) for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}([\mathrm{M}+1])$ 135.06767, found 135.06787.

6,7,8-Tribromo-1-cyano-3-oxoheptane (18):

Starting with $17(153 \mathrm{mg}, 1.13 \mathrm{mmol})$ and $\mathrm{BBr}_{3}(0.85$ $\mathrm{ml}, 9.04 \mathrm{mmol}$), $\mathbf{1 8}$ was isolated as a highly viscos colourless oil (296 mg, 70\%); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=2.10-2.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Br}-\mathrm{CH}-\mathrm{XH}_{2}\right), 2.43-2.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Br}-\mathrm{CH}-\mathrm{CH}_{2}\right)$, 2.81$2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.75-3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Br}-\mathrm{CH}_{2}\right)$, 3.99-4.05 (m, $\left.1 \mathrm{H}, \mathrm{Br}-\mathrm{CH}_{2}\right), 4.29-4.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Br}-\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.7,32.5$,
37.0, $40.1\left(\mathrm{CH}_{2}\right), 4.5,55.5(\mathrm{CH}), 113.7(\mathrm{CN}), 196.3(\mathrm{C}) ;$ IR (neat): $\widetilde{v}=2951(\mathrm{~m}), 2914$ (m), 2260 (w), 1731 (s), 1403 (m), 1307 (m), 1185 (w), 1082 (m), 617 (w), 557 (w) cm^{-1}; GC-MS (CI): m/z (\%): 378 ([M +H] ${ }^{+},{ }^{81} \mathrm{Br}, 42$), $376\left([\mathrm{M}+\mathrm{H}]^{+},{ }^{79} \mathrm{Br}, 43\right.$), 337 (9), 335 (9), 298 (95), 296 (72), 257 (20), 255 (11), 218 (85), 216 (100), 136 (86), 95 (10), 67 (15); HRMS (CI): calcd (\%) for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Br}_{3} \mathrm{NO}\left([\mathrm{M}+1],{ }^{81} \mathrm{Br}\right) 373.83837$, found 373.83853 .

2-(E)(3-Phenyldihydro)-2(3H)-furanylidene-2-(2-methoxyphenyl)-(4methylphenyl)sulfone (21b):

Starting with 1-(2-methoxyphenyl)-1-(4methylphenylsulfonyl)acetone $20 \mathrm{~b}(1.20 \mathrm{~g}, 3.77 \mathrm{mmol})$, and 1-bromo-2-chloroethane ($0.37 \mathrm{ml}, 4.52 \mathrm{mmol}$), $\mathbf{2 1 b}$ was isolated as a colourless solid ($710 \mathrm{mg}, 55 \%$), mp. $132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.82-1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30$ (t, $2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.01-4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.76-7.88(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.13-7.19 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.20-7.26 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.71-7.74 (m, $2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.9\left(\mathrm{CH}_{3}\right), 23.3,31.8\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{OCH}_{3}\right), 75.0\left(\mathrm{CH}_{2}\right)$, $108.0(\mathrm{C}), 111.3,120.9(\mathrm{CH}), 122.9(\mathrm{C}), 128 . .2(2 \mathrm{C}, \mathrm{CH}), 129.1(2 \mathrm{C}, \mathrm{CH}), 130.5,133.9$ (CH), 141.0, 1.43.0, 158.5, 167.4 (C); IR (KBr): $\widetilde{v}=2970$ (w), 2904 (w), 1634 (s), 1595 (m), 1491 (m), 1437 (s), 1306 (s$), 1297$ (s$), 1139$ (s$), 1083$ (m), 989 (m), 681 (m), 583 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 344 (M $\mathrm{M}^{+}, 52$), 208 (6), 189 (31), 91(26), 71 (100), 43 (24); HRMS (ESI): calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{SO}_{4}([\mathrm{M}+1]) 344.10768$, found 344.107526.

2-(3-Bromopropyl)-3-[(4-methylphenyl)sulfonyl]-benzofuran (22b):

Starting with 21b ($110 \mathrm{mg}, 0.31 \mathrm{mmol}$) and BBr_{3} ($0.15 \mathrm{ml}, 1.5 \mathrm{mmol}$), 22b was isolated as a highly viscous colourless oil ($77 \mathrm{mg}, 61 \%$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.26$ (quint, $2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.30\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 3.42 (t $2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{Br}$), 7.22-7.27 (m, $4 \mathrm{H}, \mathrm{ArH}$), 7.34-7.37 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.80-7.86 (m, $3 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.5\left(\mathrm{CH}_{3}\right), 25.1,29.9,31.2$
$\left(\mathrm{CH}_{2}\right), 110.3(\mathrm{CH}), 117.6(\mathrm{C}), 119.4(\mathrm{CH}), 123.1(\mathrm{C}), 123.4,124.4,125.7,128.9(\mathrm{CH})$, 138.4, 143.3, 152.3, 160 (C); IR (neat): $\widetilde{v}=3433(\mathrm{~m}), 2984(\mathrm{w}), 2954(\mathrm{~m}), 1595(\mathrm{~s})$, 1474 (s), 1326 (s), 1302 (s), $1255(\mathrm{~s}), 1090$ (m), 1050 (m), 815 (m), 749 (s), 719 (s), 673 (s), $643(\mathrm{~m}), 585(\mathrm{~m}), 535(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 394\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 100\right)$, $392\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 95\right), 286$ (35), 267 (9.07), 205 (14), 158 (19), 131 (41) 102 (28), 65 (16), 39 (7); HRMS (ESI): calcd (\%) for $\mathrm{C}_{!8} \mathrm{H}_{17} \mathrm{BrO}_{3} \mathrm{~S}$ ([M+1], ${ }^{81} \mathrm{Br}$) 392.0.00763, found 392.0.00788.

2-(3-Hydroxypropyl)-3-[(4-methylphenyl)sulfonyl]-benzofuran (22f):

Starting with 21b ($335 \mathrm{mg}, 0.97 \mathrm{mmol}$) and BCl_{3} ($0.77 \mathrm{ml}, 4.8 \mathrm{mmol}$), 22 f was isolated as a highly viscos colourless oil ($108 \mathrm{mg}, 34 \%$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.99$ (quint, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.24\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), 3.63 (t $2 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{OH}$), 7.21-7.27 (m, 5 H, ArH), 7.34-7.37 (m, $1 \mathrm{H}, \mathrm{ArH}$), $7.83(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.9\left(\mathrm{CH}_{3}\right), 23.9,31.2$, $61.2\left(\mathrm{CH}_{2}\right), 111.7(\mathrm{CH}), 119.1(\mathrm{C}), 120.8(\mathrm{CH}), 124.6(\mathrm{C}), 124.8(\mathrm{CH}), 125.8(2 \mathrm{C}, \mathrm{CH})$, 127.1 (2C, CH), 130.3 (CH), 139.7, 144.8, 153.7, 163.5 (C); IR (Nujol): $\widetilde{v}=3420$ (w), 1717 (m), 1597 (s), 1331 (s), 1154 (s), 1036 (s), 813 (m), 750 (s), 674 (s), 585 (s), 537 (s) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 330.1 ($\mathrm{M}^{+}, 20$), 281.1 (4), 207.1 (30), 175.1 (100), 131.1 (55), 115.1 (29), 91.1 (33) 65 (15), 39 (5); HRMS (ESI): calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ $([\mathrm{M}+1]) 330.09203$, found 330.09203 .

General procedure for the synthesis of 3-Thioaryloxy-2,4-pentanedione 35:

Method A: To a stirred solution of 3-chloro-2,4-pentanedione $34(1.0 \mathrm{mmol})$ in pyridine $(0.1 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was slowly added a solution of benzenethiol $33(1.0 \mathrm{mmol})$ in methanol $(0.1 \mathrm{ml})$. The mixture was stirred at room temperature for 6 h . Precipitated pyridine hydrochloride was removed by filtration and washed 3 times with 15 ml ether. The combined filtrate was washed with 25 ml water 5 times and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and crude product was purified by chromatography (silica gel, EtOAc / n-heptane).

Method B: To a solution of 3-chloro-2,4-pentanedione $34(1.0 \mathrm{mmol})$ and benzenethiol 33 (1.0 mmol) cooled to $0^{\circ} \mathrm{C}$ was added dropwise piperidine (1.0 mmol) in dichloromethane $(0.1 \mathrm{ml})$ for 10 min . After the exothermic reaction ceased, $\mathrm{MeOH}(0.4$ ml) was added to the mixture followed by further stirring for 6 h at room temperature. Successive treatment was identical with method A.

3-Thiophenoxy-4-hydroxy-3-penten-2one (35a):

Method A: Starting with 3-chloro-2,4-pentanedione (5.54ml, 48.91 mmol), thiophenol ($5 \mathrm{ml}, 48.91 \mathrm{mmol}$), pyridine ($3.95 \mathrm{ml}, 48.91 \mathrm{mmol}$) and methanol (4.9 ml), 35a was isolated as a colourless oil (7.3 g , 72%); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.01(\mathrm{dd}, 2 \mathrm{H}$, $J=1.2,8.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.07 (m, $1 \mathrm{H}, \mathrm{ArH}),(\mathrm{m} 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.7\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 102.0(\mathrm{C}), 125.0(2 \mathrm{C}, \mathrm{CH}), 125.6$ (CH), 129.6 (2C, CH), 138.1(C), 198.7 (2C); IR (neat): $\widetilde{v}=3072(\mathrm{~m}), 2925(\mathrm{~m}), 2853$ (w), 1725 (m), 1582 (s), 1478 (s), 1259 (s), 1069 (m), 739 (s), 690 (s) cm ${ }^{-1}$; GC-MS (EI, $70 \mathrm{eV}): m / z(\%): 208.1\left(\mathrm{M}^{+}, 100\right), 166.1$ (30), 147.1 (25), 123.1 (16), 103.1 (18), 88 (13), 43.1 (54); elemental analysis: calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}(208.0)$: C 63.43, H 5.81; found: C 62.9, H 6.40.

3-(4-methoxythiophenoxy)-4-hydroxy-3-penten-2one (35b):

Method B: Starting with 3-chloro-2,4-pentanedione (3.78 ml , 33.33 mmol), 4-methoxythiophenol ($4.1 \mathrm{ml}, 33.33 \mathrm{mmol}$), piperidine (3.3 ml , $33.33 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and methanol $(13.5 \mathrm{ml})$, $\mathbf{3 5 b}$ was isolated as a colourless solid ($2.8 \mathrm{~g}, 33 \%$), mp. $88{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.81(\mathrm{~d}, 2 \mathrm{H}, J=9.1$ $\mathrm{Hz}, \mathrm{ArH}$), 7.01 (d, $2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=24.3\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 102.9(\mathrm{C}), 114.8(2 \mathrm{C}, \mathrm{CH}), 126.8(2 \mathrm{C}$, CH), 128.3, 157.8 (C), 197.9 (2C); IR (KBr): $\widetilde{v}=2998$ (m), 2961 (m), 2836 (w), 1492 (s), 1294 (s), 1172 (s), 1330 (s), 910 (w), 819 (s), 516 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z
(\%): $238\left(\mathrm{M}^{+}, 57\right), 196(6), 151$ (7), 108.1 (100), 59.1 (4), 43.1 (39); elemental analysis: calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ (238.06): C 60.48, H 5.92; found: C 60.71, H 5.99.

3-(4-bromothiophenoxy)-4-hydroxy-3-penten-2one (35c):

Method B: Starting with 3-chloro-2,4-pentanedione ($1.5 \mathrm{ml}, 13.22$ mmol), 4-bromothiophenol ($2.5 \mathrm{~g}, 13.22 \mathrm{mmol}$), piperidine (1.3 ml , $13.22 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{ml})$ and methanol $(5 \mathrm{ml}), \mathbf{3 5 c}$ was isolated as a colourless solid ($1.0 \mathrm{~g}, 28 \%$), mp. $79{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=2.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.9$ $\mathrm{Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.7\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 101.5,119.2$ (C), 126.6 (2C, CH), 132.6 (2C, CH), 137.4(C), 198.7 (2C); IR (KBr): $\widetilde{v}=3433$ (w), 1557 (s), 1472 (s), 1386 (s), 1256 (w), 1020 (m), 909 (w), 809 (s), 479 (w), cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): $288\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 98\right.$), $286\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 96\right), 246$ (43), 244 (41), 192 (40), 164.1 (42), 117 (33), 88 (27), 43.1 (100); elemental analysis: calcd (\%) for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{~S}$ (285.96): C 46.01, H 3.86; found: C 45.98, H 3.94

3-(4-methylthiophenoxy)-4-hydroxy-3-penten-2one (35d):

Method B: Starting with 3-chloro-2,4-pentanedione ($9.1 \mathrm{ml}, 80.51$ mmol), 4-methylthiophenol ($10 \mathrm{~g}, 80.51 \mathrm{mmol}$), piperidine ($8 \mathrm{ml}, 80.51$ $\mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml})$ and methanol (30 ml), $\mathbf{3 5 d}$ was isolated as a colourless solid ($14.5 \mathrm{~g}, 81 \%$), mp. $56{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.96(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH})$, $7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.3(2 \mathrm{C}$, $\left.\mathrm{CH}_{3}\right), 55.6\left(\mathrm{CH}_{3}\right), 101.1(\mathrm{C}), 110.9(2 \mathrm{C}, \mathrm{CH}), 117.3,130.4(\mathrm{CH}), 139.6$, 160.7(C), 198.7 (2C); IR (KBr): $\widetilde{v}=3073$ (w), 2918 (w), 1576 (s), 1399 (s), 1259 (m), 1085 (w), 1016 (s), 909 (m), 806 (s), 506 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 222.1 $\left(\mathrm{M}^{+}, 100\right), 180.1$ (27), 146.1 (17), 117.1 (25), 88.1 (27), 43.1 (51); elemental analysis: calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ (222.07): C 64.83, H 6.35; found: C 64.94, H 6.31 .

3-(3-methoxythiophenoxy)-4-hydroxy-3-penten-2one (35e):

Method B: Starting with 3-chloro-2,4-pentanedione ($3.85 \mathrm{ml}, 34.09$ mmol), 3-methoxythiophenol ($4.23 \mathrm{ml}, 34.09 \mathrm{mmol}$), piperidine ($3.38 \mathrm{ml}, 34.09 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and methanol $(13 \mathrm{ml})$, $\mathbf{3 5 e}$ was isolated as a colourless oil ($5.9 \mathrm{~g}, 73 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 6.63 (br d, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}$), 6.66 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.16 (t, $1 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1\left(\mathrm{CH}_{3}\right), 24.8\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 102.4(\mathrm{C})$, $125.3(2 \mathrm{C}, \mathrm{CH}), 130.3(\mathrm{CH}), 134.5,135.5(\mathrm{C}), 198.6(2 \mathrm{C})$; IR (neat): $\widetilde{v}=3061(\mathrm{w}), 2958$ (m), 2835 (m), 1590 (s), 1425 (s), 1182 (m), 857 (m), 686 (s), 534 (w) cm ${ }^{-1}$; GC-MS (EI, $70 \mathrm{eV}): m / z(\%): 238.1\left(\mathrm{M}^{+}, 100\right), 196.1$ (50), 153.1 (32), 108.1 (24), 88.1 (18), 43.1 (9); elemental analysis: calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}(238.06)$: C 60.48, H 5.92; found: C 60.01, H 5.88.

Typical procedure for the synthesis of silyl enol ethers 36 : The reaction was carried out analogously to a known procedure. ${ }^{63}$ To a stirred benzene solution (2.5 ml) of $\mathbf{3 5}(1.0$ mmol) was added triethylamine (1.6 mmol). After stirring for 2 h trimethylchlorosilane $(1.8 \mathrm{mmol})$ was added. After stirring for 72 h , the solvent was removed in vacuo and to the residue was added Hexane (20 ml) to give a suspension. The latter was filtered under Argon atmosphere. The filtrate was distilled in vacuo. The compound was used directly after its preparation.

Synthesis of silyl enol ethers (36a) :

Starting with 35a ($8.0 \mathrm{~g}, 38.4 \mathrm{mmol}$), NEt3 ($8.6 \mathrm{ml}, 61.5 \mathrm{mmol}$), TMSCl ($8.8 \mathrm{ml}, 69.1 \mathrm{mmol}$) and benzene $(100 \mathrm{ml})$, 36a was isolated as a yellow oil ($8.7 \mathrm{~g}, 81 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}$), 2.26 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 7.02-7.21 (m, $5 \mathrm{H}, \mathrm{ArH}$).

Synthesis of silyl enol ethers (36b):

Starting with 35b ($2.36 \mathrm{~g}, 9.93 \mathrm{mmol}$), NEt3 ($2.2 \mathrm{ml}, 15.8 \mathrm{mmol}$), TMSCl ($2.3 \mathrm{ml}, 17.9 \mathrm{mmol}$) and benzene (25 ml), $\mathbf{3 6 b}$ was isolated as a yellow oil ($2.8 \mathrm{~g}, 90 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.08$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}$), $2.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.85(\mathrm{~d}, 2 \mathrm{H}$, $J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.05(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of silyl enol ethers (36c):

Starting with 35c ($986 \mathrm{mg}, 3.43 \mathrm{mmol}$), NEt3 ($0.77 \mathrm{ml}, 5.48$ $\mathrm{mmol}), \mathrm{TMSCl}(0.78 \mathrm{ml}, 6.18 \mathrm{mmol})$ and benzene $(10 \mathrm{ml}), \mathbf{3 6 c}$ was isolated as a yellow oil ($980 \mathrm{mg}, 79 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.95(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, ArH), $7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of silyl enol ethers (36d):

$\mathrm{Me}_{3} \mathrm{SiO} \quad \mathrm{O} \quad$ Starting with $\mathbf{3 5 d}(14 \mathrm{~g}, 62.97 \mathrm{mmol})$, NEt3 $(14 \mathrm{ml}, 100.7 \mathrm{mmol})$, TMSCl ($113.34 \mathrm{ml}, 14.3 \mathrm{mmol}$) and benzene (150 ml), $\mathbf{3 6 d}$ was isolated as a yellow oil ($16 \mathrm{~g}, 92 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 0.08 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$), $2.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.99(\mathrm{~d}, 2$ $\mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of silyl enol ethers (36e):

Starting with 35e ($6.3 \mathrm{~g}, 26.2 \mathrm{mmol}$), NEt3 ($5.9 \mathrm{ml}, 42.0 \mathrm{mmol}$), TMSCl ($47.2 \mathrm{ml}, 6.0 \mathrm{mmol}$) and benzene (65 ml), 36e was isolated as a yellow oil ($6.2 \mathrm{~g}, 81 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.04$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.51-6.55$ (m, 3 H, ArH), 6.81-6.87 (m, $1 \mathrm{H}, \mathrm{ArH}$).

General procedure for the synthesis of diaryl Sufides and diaryl ethers 38 and 45: To a dichloromethane solution ($2 \mathrm{~mL} / \mathrm{mmol}$) of $\mathbf{3 6}(1.0 \mathrm{mmol})$ and $37(1.0 \mathrm{mmol})$ was added $\mathrm{TiCl}_{4}(1.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to ambient temperature within 20 h . To the solution was added a saturated solution of NaHCO_{3} (15 $\mathrm{mL})$. The organic and the aqueous layer were separated and the latter was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, EtOAc $/ n$-heptane $=1: 4$).

Methyl 4,6-dimethyl-5-(thiophenoxy) salicylate (38a):

Starting with 3-(siloxy)alk-2-en-1-one 36a ($200 \mathrm{mg}, 0.71 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{3 7 a}(185 \mathrm{mg}, 0.71 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.08$ $\mathrm{ml}, 0.71 \mathrm{mmol}$), 38a was isolated as a colourless solid (99 mg , 48%), mp. $83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.40(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ $\mathrm{Hz}, \mathrm{ArH}), 6.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.05$ (brt, $1 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.18 (br t, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}$), $11.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.4,2.7,52.3,\left(\mathrm{CH}_{3}\right), 112.4(\mathrm{C}), 117.7(\mathrm{CH}), 122.7(\mathrm{C}), 124.6(\mathrm{CH})$, $125.2(2 \mathrm{C}, \mathrm{CH}), 128.9(2 \mathrm{C}, \mathrm{CH}), 138.2,147.1,151.4,162.5,171.8(\mathrm{C}) ; \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=$ 3061 (m), 2954 (m), 1663 (s), 1478 (s), 1360 (s), 1233 (s), 1187 (m), 1024 (m), 947 (w), $740(\mathrm{~s}), 690(\mathrm{~m}), 629(\mathrm{w}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 288.1\left(\mathrm{M}^{+}, 57\right), 256.1$ (100), 185.1 (7), 91 (6); elemental analysis: calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ (288.08): C 66.64, H 5.59; found: C 66.81, H 5.68.

Ethyl 3,4,6-trimethyl-5-(thiophenoxy) salicylate (38b):

Starting with 3-(siloxy)alk-2-en-1-one 36a ($200 \mathrm{mg}, 0.71 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{3 7 b}(204 \mathrm{mg}, 0.71 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.08$ $\mathrm{ml}, 0.71 \mathrm{mmol}$), 38b was isolated as a colourless solid (90 mg , 40%), mp. $122{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.42(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.74(\mathrm{~s}, 3 \mathrm{H}$,
CH_{3}), 4.44(q, $\left.2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{brt}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}$, ArH), $7.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 11.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7$, 14.1, 19.5, $21.6\left(\mathrm{CH}_{3}\right), 61.8\left(\mathrm{CH}_{2}\right), 112.0,122.5,123.9(\mathrm{C}), 124.5(\mathrm{CH}), 125.2(2 \mathrm{C}, \mathrm{CH})$, 128.9 (2C, CH), 138.7, 143.7, 149.1, 160.6, 171.9(C); IR (KBr): $\widetilde{v}=3069(\mathrm{~m}), 2980$ (m), 1644 (s), 1548 (m), 1395 (s), 1343 (s), 1146 (s), 1083 (m), 1025 (s), 868 (w), 735 (s), $688(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 316\left(\mathrm{M}^{+}, 38\right), 270(100), 242(20), 165$ (10), 77 (11); elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ (316.11): C 68.33, H 6.37; found: C 68.23, H 6.48

Ethyl 4,6-dimethyl-3-ethyl-5-(thiophenoxy) salicylate (38c):

Starting with 3-(siloxy)alk-2-en-1-one 36a ($200 \mathrm{mg}, 0.71 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{3 7 c}(214 \mathrm{mg}, 0.71 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.08$ $\mathrm{ml}, 0.71 \mathrm{mmol}$), 38c was isolated as a yellow highly viscous oil ($90 \mathrm{mg}, 40 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.04$ ($\mathrm{t}, 3 \mathrm{H}, J=$ $7.4 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.68\left(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.35(\mathrm{q}, 2 \mathrm{H}, J$ $\left.=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.82(\mathrm{dd}, 2 \mathrm{H}, J=1.5,8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.97(\mathrm{brt}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{ArH})$, 7.10 (br t, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}$), $11.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 12.1, 13.1, $17.6\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{2}\right), 111.1,121.6(\mathrm{C}), 123.4(\mathrm{CH})$, $124.1(2 \mathrm{C}, \mathrm{CH}), 127.8(2 \mathrm{C}, \mathrm{CH}), 129.0,137.7,142.9,147.4,159.4,170.9(\mathrm{C})$; IR (neat): $\widetilde{v}=3057$ (m), 2970 (s), 2873 (m), 1732 (w), 1653 (s), 1583 (s$), 1551$ (s$), 1439$ (s), 1230 (s), 1084 (m), $866(\mathrm{w}), 813(\mathrm{~m}), 689(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 330.2\left(\mathrm{M}^{+}\right.$, 63), 284.1 (100), 256.1 (24), 139 (9), 165.1 (7), 91.1 (8); HRMS (EI): calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 330.12828$, found 330.12842 .

Ethyl 4,6-dimethyl-5-(4-methoxythiophenoxy) salicylate (38d):

Starting with 3-(siloxy)alk-2-en-1-one 36b ($300 \mathrm{mg}, 0.96 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{3 7 d}(263 \mathrm{mg}, 0.96 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.1$ $\mathrm{ml}, 0.96 \mathrm{mmol}$), $\mathbf{3 8 d}$ was isolated as a colourless solid (138 mg , 43%), mp. $77{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.38(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{OCH}_{3}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.73(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}), 6.81(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}), 11.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=13.1,20.5,22.1,54.3\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{2}\right), 111.4113 .7(2 \mathrm{C}, \mathrm{CH}), 116.5(\mathrm{CH}), 123.0(\mathrm{C})$, 126.3 (2C, CH), 127.9, 145.8, 150.0, 156.5, 161.3, 170.3(C); IR (KBr): $\widetilde{v}=2991(\mathrm{~m})$, 2954 (m), 2833 (m), 1653 (s), 1558 (m), 1494 (s), 1450 (s), 1341 (s), 1286 (s), 1125 (w), $871(\mathrm{~m}), 623(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 332.1\left(\mathrm{M}^{+}, 84\right), 286(100), 243$ (10), 218 (11), 178 (8) 139 (7), 91 (6); elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$ (332.10): C 65.04, H 6.06; found: C 64.78, H 6.19.

Ethyl 3,4,6-trimethyl-5-(4-methoxythiophenoxy) salicylate (38e):

Starting with 3-(siloxy)alk-2-en-1-one 36b ($300 \mathrm{mg}, 0.96 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 37b ($277 \mathrm{mg}, 0.96 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.1$ $\mathrm{ml}, 0.96 \mathrm{mmol}$), 38e was isolated as a colourless oil (116 mg , 35%); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, CH_{3}), $2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.34\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.67(\mathrm{~d}, 2 \mathrm{H}$, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $6.78(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 11.39(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.7,13.1,18.6,20.7,54.2\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{2}\right)$, 110.9113 .6 ($2 \mathrm{C}, \mathrm{CH}$), 122.8, 122.9 (C), 126.2 (2C, CH), 128.4, 142.3, 147.9, 156.3, 159.1, 170.9(C); IR (KBr): $\widetilde{v}=2978$ (m), 2835 (m), 1645 (s$), 1572$ (s), 1491 (s), 1343 (s), 1287 (s), 1183 (s), 1099 (m), 868 (w), 800 (m), 621 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 346\left(\mathrm{M}^{+}, 83\right), 300$ (100), 278 (14), 246 (23), 196 (26), 108 (36), 77 (14); elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ (345.11): C 65.87, H 6.40; found: C 65.71, H 6.59.

Ethyl 4,6-dimethyl-3-ethyl-5-(4-methoxythiophenoxy) salicylate (38f):

Starting with 3-(siloxy)alk-2-en-1-one 36b ($400 \mathrm{mg}, 1.28 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{3 7 c}(387 \mathrm{mg}, 1.28 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.15$ $\mathrm{ml}, 1.28 \mathrm{mmol}$), $\mathbf{3 8 f}$ was isolated as a colourless highly viscous oil (175 mg, 38\%); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.09(\mathrm{t}, 3 \mathrm{H}, J=$
$\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73$ $\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.73$ $(\mathrm{d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \operatorname{ArH}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}), 11.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.2,14.1,18.7\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{2}\right), 21.7$, $55.2\left(\mathrm{CH}_{3}\right), 61.7\left(\mathrm{CH}_{2}\right)$, 112.1 (C), 114.6 (2C, CH), 124.0 (C), 127.1 (2C, CH), 129.3, 129.9, 143.5, 148.2, 157.3, 160.2, 171.9 (C); IR (neat): $\widetilde{v}=2968$ (m), 2834 (m), 1729 (w), 1652 (s), 1592 (s), 1437 (s), 1372 (s), 1260 (s), 1108 (s), 865 (w), 820 (s), 622 (m), 516 (w) cm ${ }^{-1}$; GC-MS (EI, 70 $\mathrm{eV}): m / z(\%): 360\left(\mathrm{M}^{+}, 83\right), 300(100), 286$ (33), 271 (10), 178 (9), 57 (6); elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$ (360.13): C 66.64, H 6.71; found: C 66.04, H 6.97.

Methyl 4,6-dimethyl-5-(4-bromothiophenoxy) salicylate (38g):

Starting with 3-(siloxy)alk-2-en-1-one 36c ($200 \mathrm{mg}, 0.55 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{3 7 a}(144 \mathrm{mg}, 0.55 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.06$ $\mathrm{ml}, 0.55 \mathrm{mmol}$), $\mathbf{3 8 g}$ was isolated as a colourless solid (73 mg , 36%), mp. $114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.32$ ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), $2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.68(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, \mathrm{ArH}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.20(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 11.10$ (s, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.3,21.9,51.3$ $\left(\mathrm{CH}_{3}\right), 11.5,116.8(\mathrm{C}), 117.1(\mathrm{CH}), 121.1(\mathrm{C}), 12.7(2 \mathrm{C}, \mathrm{CH}), 130.9(2 \mathrm{C}, \mathrm{CH}), 136.5$, 146.1, 150.2, 161.7, 170.6(C); IR (KBr): $\widetilde{v}=3068$ (w), 2953 (m), 1660 (s), 1594 (s), 1472 (s), 1355 (s), 1230 (s), 1188 (m), 1005 (s), 944 (w), 824 (w), 807 (s), 503 (w) cm^{-1}; GCMS (EI, 70 eV): $m / z(\%): 368\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 49\right), 366\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 48\right), 336$ (100), 334 (95), 184 (11), 127 (6), 91 (11); elemental analysis: calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{~S}$ (365.99): C 52.33, H 4.12; found: C 52.18, H 4.31 .

Ethyl 3,4,6-trimethyl-5-(4-methylthiophenoxy) salicylate (38h):

Starting with 3-(siloxy)alk-2-en-1-one 36d ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) 1,3bis(silyl enol ether) $\mathbf{3 7 b}(520 \mathrm{mg}, 1.8 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.2 \mathrm{ml}, 1.8$ mmol), $\mathbf{3 8 h}$ was isolated as a colourless solid ($188 \mathrm{mg}, 33 \%$), mp . $75^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{CH}_{3}\right.$), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 4.35\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{OCH}_{2}\right), 6.72(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ $\mathrm{Hz}, \mathrm{ArH}), 11.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9,14.3,19.7,20.9$, $21.7\left(\mathrm{CH}_{3}\right), 61.9\left(\mathrm{CH}_{2}\right), 112.4,123.3,124.0(\mathrm{C}), 125.4(2 \mathrm{C}, \mathrm{CH}), 129.8(2 \mathrm{C}, \mathrm{CH}), 134.4$, 135, 143.7, 149.2, 160.6, 172.1(C); IR (KBr): $\widetilde{v}=3015$ (w), 2936 (m), 1647 (s), 1551 (m), 1490 (s , 1392 (s$), 1288$ (s$), 1185(\mathrm{~s}), 1100$ (m), 1014 (m), 868 (w), 801 (s$), 482$ (m) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 330.1 ($\mathrm{M}^{+}, 70$), 284.1 (100), 256 (17), 241 (41), 165 (7), 91 (11); elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$ (330.12): C 69.06, H 6.71; found: C 68.89, H 6.98

Methyl-4,6-dimethyl-5-(3-methoxythiophenoxy) salicylate (38i):

Starting with 3-(siloxy)alk-2-en-1-one 36e ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{3 7 a}(455 \mathrm{mg}, 1.7 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.18$ $\mathrm{ml}, 1.7 \mathrm{mmol}$), $\mathbf{3 8 i}$ was isolated as a colourless solid ($174 \mathrm{mg}, 32 \%$), mp. $78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.32(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{ArH}), 6.37$ (m, $1 \mathrm{H}, \mathrm{ArH}), 6.48$ (br m, $1 \mathrm{H}, \mathrm{ArH}$), $6.74(\mathrm{~s}, 1 \mathrm{H}$, ArH), $6.97(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}) 11.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=21.4,23.1,52.4,55.2\left(\mathrm{CH}_{3}\right), 109.8,110.7(\mathrm{CH}), 112.2(\mathrm{C}), 117.4,117.5(\mathrm{CH}), 122.3$ (C), 129.5 (CH), 139.5, 147.0, 151.2, 159.9, 162.4, 171.6 (C); IR (KBr): $\widetilde{v}=3002$ (w), 2947 (m), 1663 (s), 1591 (s), 1474 (s), 1357 (s), 1229 (s), 1110 (m), 1046 (s), 877 (w), 847 (w), 768 (s), 686 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 318$ ($\mathrm{M}^{+}, 59$), 286(100), 256 (17), 225 (10), 179 (16), 91 (8) 57 (8); elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ (318.09): C 64.13, H 5.70; found: C 64.41, H 5.93.

Ethyl-3,4,6-trimethyl-5-(3-methoxythiophenoxy) salicylate (38j):

Starting with 3-(siloxy)alk-2-en-1-one 36e ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) 1,3bis(silyl enol ether) $\mathbf{3 7 b}(490 \mathrm{mg}, 1.7 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.18 \mathrm{ml}, 1.7$ mmol), $\mathbf{3 8 j}$ was isolated as a colourless oil($177 \mathrm{mg}, 30 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $2.15(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.35\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.42(\mathrm{~m}, 1 \mathrm{H}$,

ArH), 6.52 (br m, $1 \mathrm{H}, \mathrm{ArH}$), $7.02\left(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}\right.$, ArH) $11.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.7,13.1,18.5,20.5,54.1\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{2}\right), 108.8,109.9$ $(\mathrm{CH}), 110.9(\mathrm{C}), 116.5(\mathrm{CH}), 121.2,122.9(\mathrm{C}), 128.7(\mathrm{CH}), 139.2,142.8,148.1,159.0$, 159.6, 170.9 (C); IR (KBr): $\widetilde{v}=3058$ (w), 2933 (s), 1729 (w), 1652 (s), 1590 (s), 1475 (s), 1376 (s), 1283(s), 1242 (s), 1181 (s), 1045 (s), 860 (s), 686 (m), 566 (w), cm^{-1}; GCMS (EI, 70 eV): $m / z(\%): 346$ ($\mathrm{M}^{+}, 80$), 300(100), 256 (17), 257 (20), 164 (6), 69(13) 57 (5); elemental analysis: calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$ (346.12): C 65.87, H 6.40; found: C 65.47, H 6.64.

Ethyl-3,4,6-trimethyl-5-phenoxy salicylate (38i).

Starting with 1,3-bis(silyl enol ether) 37b ($400 \mathrm{mg}, 1.3 \mathrm{mmol}$), 3-(siloxy)alk-2-en-1-one $\mathbf{3 6 f}(367 \mathrm{mg}, 1.3 \mathrm{mmol})$ and $\mathrm{TiCl}_{4}(0.15$ $\mathrm{mL}, 1.3 \mathrm{mmol}$), $\mathbf{3 8 i}$ was isolated as a colourless solid (130 mg , 30%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.40(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, CH_{3}), $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.42\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.72-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 11.51(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.9,12.8,13.1,14.3$ $\left(\mathrm{CH}_{3}\right), 60.6\left(\mathrm{CH}_{2}\right), 109.4(\mathrm{C}), 113.5(2 \mathrm{C}), 120.3(\mathrm{CH}), 123.0(\mathrm{C}), 128.6(2 \mathrm{C}, \mathrm{CH}), 129.2$, 137.1, 142.4, 156.8, 157.2, 170.9 (C); IR (KBr): $\widetilde{v}=3438$ (w), 2937 (w), 1649 (s), 1396 (s), 1293 (s), 1222 (s), 1031 (m), 810 (m), 753 (m) cm ${ }^{-1}$; MS (EI, 70 eV): m/z (\%): 300.0 $\left(\mathrm{M}^{+}, 88\right), 254.0$ (100), 226.0 (72), 211.0 (17); HRMS (EI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 300.13563 ; found: 300.13561 .

1-(3-(4-Chlorophenoxy)-6-hydroxy-2,4-dimethylphenyl)ethanone (38u).

Starting with 1,3 -bis(silyl enol ether) $\mathbf{3 7 e}(500 \mathrm{mg}, 2.0 \mathrm{mmol}$), 3-(siloxy)alk-2-en-1-one 36i ($609 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{TiCl}_{4}(2.04 \mathrm{~mL}$, 2.0 mmol), $\mathbf{3 8 u}$ was isolated as a yellow solid ($205 \mathrm{mg}, 35 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 6.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.22(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{ArH}), 11.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.0,17.2,33.0\left(\mathrm{CH}_{3}\right), 115.7(2 \mathrm{C}), 118.4(\mathrm{CH})$, $120.9,126.5$ (C), 129.7 (2C, CH), 131.7, 140.2, 143.6, 156.4, 159.3, 205.3 (C); IR (KBr):
$\widetilde{v}=3341$ (w), 2925 (w), 1629 (m), 1485 (s), 1296 (m), 1227 (s), 1091 (m), 827 (m) cm ${ }^{-1}$; MS (EI, 70 eV): $m / z(\%): 290.0\left(\mathrm{M}^{+}, 95\right), 275.0$ (100), 165.0 (43); HRMS (EI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3}[\mathrm{M}]^{+}: 290.07042$; found: 290.07056.
General procedure for the synthesis of Ethyl-4-Thioaryloxyacetoacetate 40:A solution of 4-choloroacetoacetate (1.0 mmol), $\mathrm{Et}_{3} \mathrm{~N}(1.05 \mathrm{mmol})$ and thiophenol $33(1.03$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was diluted with EtOAc, washed with $1 \mathrm{~N} \mathrm{NaOH}, 1 \mathrm{~N} \mathrm{HCl}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and crude product was purified by chromatography (silica gel, EtOAc / n-heptane).

General procedure for the synthesis of alkyl-4-aryloxyacetoacetate 40c-e:Method A :To a mixture of potassium hydroxide $(2.0 \mathrm{mmol})$ in 2 ml of DMSO was added dropwise a solution of phenol $(1.0 \mathrm{mmol})$ in 0.2 ml of DMSO. The mixture was stirred at room temperature for 30 min and then ethyl-4-chloracetoacetate (1.0 mmol) was added. The mixture was stirred at room temperature overnight and then acidified with 4 M HCl and extracted with EtOAc, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and crude product was purified by chromatography (silica gel, EtOAc / n-heptane).
Method B: A THF solution of 2.3 equiv.LDA was prepared by addition of $n-\mathrm{BuLi}(0.93$ ml , $2.3 \mathrm{mmole}, 2.5 \mathrm{M}$ in hexane) to a THF solution (6 ml) of diisopropylamine (0.32 ml , $2.3 \mathrm{mmole})$ at $0^{\circ} \mathrm{C}$. After the solution was stirred for 30 min , methylacetate $(0.09 \mathrm{ml}, 1.1$ mmole) was added at $0^{\circ} \mathrm{C}$. After stirring for 45-60 min, to the solution was added a THF solution (4 ml)of acid chloride ($205 \mathrm{mg}, 1.0 \mathrm{mmole}$) at $-78{ }^{\circ} \mathrm{C}$. The temperature was allowed to rise to ambient during 5-6h, and the solution was stirred at $20^{\circ} \mathrm{C}$ for 8 h .To the solution was added diluted HCl and mixture was extracted with EtOAc $(3 \times 200 \mathrm{ml})$. The organic layers were dried and filtered, the solvent of filter was removed in vacuo, and the residue was purified by chromatography (silica gel, EtOAc / n-heptane).

Ethyl-4-Thiophenoxyacetoacetate (40a):

Starting with 4-choloroacetoacetate ($10 \mathrm{ml}, 73 \mathrm{mmol}$), thiophenol ($7.7 \mathrm{ml}, 75.5 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(10.7 \mathrm{ml}$,
$76.7 \mathrm{mmol})$ and dichloromethane $(146 \mathrm{ml}), 40 \mathrm{a}$ was isolated as a colourless oil $(13.8 \mathrm{~g}$, $80 \%) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $3.63(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.18\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.29-$ $7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.32-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.4\left(\mathrm{CH}_{3}\right)$, 44.3, 46.9, 61.9 (CH_{2}), $127.6(\mathrm{CH}), 129.6(2 \mathrm{C}, \mathrm{CH}), 130.2(2 \mathrm{C}, \mathrm{CH}) 134.4,167.4$, 198.3(C); IR (neat): $\widetilde{v}=3059$ (w), 2982 (m), 2937(w), 1743 (s), 1716 (s), 1583 (m), 1439 (m), 1320 (s), 1188 (s), 1026 (s), 741 (s$), 691$ (s$) ; m / z(\%): 238$ ($\left.\mathrm{M}^{+}, 40\right), 192$ (18), 166 (5), $150(53), 123$ (100) , 110 (29), 77(16), 65(10); elemental analysis: calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ (238): C 60.48, H 5.92; found: C 59.90, H 5.91.

Ethyl-4-(4-methoxythiophenoxy)acetoacetate (40b):

Starting with 4-choloroacetoacetate ($3.3 \mathrm{ml}, 24.2$ mmol), thiophenol ($3 \mathrm{ml}, 25 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(3.6$ $\mathrm{ml}, 25.5 \mathrm{mmol})$ and dichloromethane $(50 \mathrm{ml})$, 40 b was isolated as a colourless oil ($5.4 \mathrm{~g}, 81 \%$);
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.52$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.02\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.68(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.9 \mathrm{~Hz}, \mathrm{ArH}), 7.1(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4$ $\left(\mathrm{CH}_{3}\right), 46.2,46.9\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{3}\right), 61.8\left(\mathrm{CH}_{2}\right), 115.2(2 \mathrm{C}, \mathrm{CH}), 124.5(\mathrm{C}) 134.3(2 \mathrm{C}$, CH) 159.2(C) , 167.7(C) , 198.2(C); IR (neat): $\widetilde{v}=2981(\mathrm{~m}), 2939(\mathrm{w}), 2837(\mathrm{w}), 1743$ (s), 1714 (s), 1592 (s), 1495 (s), 1367 (m), 1284 (s), 1181 (s) 1029 (s), 828 (m), 638 (w), 525 (w): m/z (\%): $268\left(\mathrm{M}^{+}, 24\right), 222$ (16), 196 (26), 180(12), 153 (100), 139 (28), 109(39), 96(10), 69(20); elemental analysis: calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ (268): C 59.19, H 6.01; found: C 58.34, H 6.34 .

Ethyl-4-phenoxyacetoacetate (40 c):

Starting with 4-choloroacetoacetate $(14.4 \mathrm{ml}, 106.3$ mmol), phenol ($10 \mathrm{~g}, 106.3 \mathrm{mmol}$), $\mathrm{KOH}(11.8 \mathrm{~g}, 212.7$ mmol) and DMSO (212 ml), 40c was isolated as a
colourless oil (14.3 g, 60\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.85-6.96$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 7.02-7.07 (m, 1H, ArH), 7.25-7.34 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 46.5,62.0,72.8\left(\mathrm{CH}_{2}\right), 114.6(2 \mathrm{C}, \mathrm{CH}), 122.4(\mathrm{CH}), 129.9(2 \mathrm{C}$, CH) 157.4, 166.9, 200.7 (C); IR (neat): $\widetilde{v}=3043$ (w), 2983 (m), 2937 (w), 1724 (s), 1599 (s), 1496 (s), 1322 (s), 1244 (s), 1175 (s), 1032 (s), 813 (m), 755 (s), 692 (s), 508 (w); m/z (\%): $222\left(\mathrm{M}^{+}, 84\right), 176$ (67), 134 (66), 129(72), 107 (100), 94 (45), 77(97), 51(39); HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}]^{+}: 222.08881$, found 222.08866.

Methyl-4-(4-chlorophenoxy)acetoacetate (40d):

Starting with 2-(4-chlorophenoxy) acetyl chloride $(5.0 \mathrm{~g}, 24.03 \mathrm{mmol})$, and methyl acetate (2.14 ml , 26.8 mmol l), 40d was isolated as a colorless solid (2.0 g, 30\%),mp. $57{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.74(\mathrm{~d}, 2 \mathrm{H}, J=$ $9.1 \mathrm{~Hz}, \mathrm{ArH}$), $7.16(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=45.7$ $\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{3}\right), 72.6\left(\mathrm{CH}_{2}\right), 115.8(2 \mathrm{C}, \mathrm{CH}), 126.6(\mathrm{C}), 129.4(2 \mathrm{C}, \mathrm{CH})$ 156.0, 167.1, 199.6 (C); IR (KBr): $\widetilde{v}=3008$ (w), 2958 (w), 2931 (w), 1737 (s), 1595 (m), 1493 (s), 1326 (s), 1233 (s), 1158 (s), 1024(s), 986 (m), 823 (s), 636 (m), 512 (m), 495 (w); m/z (\%): $242\left(\mathrm{M}^{+}, 39\right), 210(28), 168$ (13), 141(76), 128 (17), 115 (92), 101 (39), 85.9 (80),83.9 (100), 59 (23); HRMS (EI): calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{4}[\mathrm{M}]^{+}: 242.03335$, found 242.03404 .

Methyl-4-(4-methylphenoxy)acetoacetate (40e):

Starting with 2-(4-methylphenoxy) acetyl chloride $(10.0 \mathrm{~g}, 54.3 \mathrm{mmol})$, and methyl acetate $(4.8 \mathrm{ml}$, $59.7 \mathrm{mmol})$, 40e was isolated as a colorless oil (4.8 $\mathrm{g}, 40 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.21$ (s, 3
$\left.\mathrm{H}, \mathrm{CH}_{3}\right), 3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.70(\mathrm{~d}, 2 \mathrm{H}, J=8.6$ $\mathrm{Hz}, \mathrm{ArH}$), 7.01 (distorted d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
$20.3\left(\mathrm{CH}_{3}\right), 46.1\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{3}\right), 72.6\left(\mathrm{CH}_{2}\right), 114.4(2 \mathrm{C}, \mathrm{CH}), 130.1(2 \mathrm{C}, \mathrm{CH})$ 131.5,155.1, 167.3, 200.8 (C);); IR (neat): $\widetilde{v}=3030$ (w), 2954 (w), 2926 (w), 1731 (s), 1613 (m), 1511 (s), 1437 (m), 1236 (s), 1178 (s), 1066(s), 1039 (m), 817 (s), 510 (w); m/z (\%): $222\left(\mathrm{M}^{+}, 92\right), 206(7), 190(71), 148(34), 128(55), 121$ (100), 101 (41), 86 (82), 77 (49), 59 (28); HRMS (EI): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}[\mathrm{M}]^{+}: 222.08869$, found 222.08866.

Ethyl-4-(4-methylThiophenoxy)acetoacetate (40f):

Starting with 4-choloroacetoacetate $(5.3 \mathrm{ml}, 39$ mmol), thiophenol ($5 \mathrm{~g}, 40.2 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(5.7 \mathrm{ml}$, 41 mmol) and dichloromethane (78 ml), 40 f was isolated as a colourless oil ($7.8 \mathrm{~g}, 77 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.16\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.53(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.07\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}$, ArH) , 7.17 (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta=14.421 .4\left(\mathrm{CH}_{3}\right), 42.2$, 43.6, $61.8\left(\mathrm{CH}_{2}\right), 130.4(2 \mathrm{C}, \mathrm{CH}), 130.8(2 \mathrm{C}, \mathrm{CH}) 131.5,137.9,167.4,198.3(\mathrm{C})$; IR (neat): $\widetilde{v}=2981$ (m), 2924 (w), 1744 (s), 1715 (s), 1652 (w), 1494 (m), 1320 (s), 1186 (s), 1030 (s) 942 (w), 800 (s$), 733$ (w), 501 (m): m/z (\%): $252\left(\mathrm{M}^{+}, 30\right), 206$ (15), 164 (28), 137(100), 119(9), 91 (24), 77(7), 45(28); elemental analysis: calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ (252.0): C 61.88, H 6.39; found: C 61.40, H 6.34.

Ethyl-4-(4-chloroThiophenoxy)acetoacetate (40g):

Starting with 4-choloroacetoacetate $(13.8 \mathrm{ml}, 101.1$ mmol), 4-chlorothiophenol ($15 \mathrm{~g}, 104.0 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ ($14.7 \mathrm{ml}, 106.1 \mathrm{mmol}$) and dichloromethane (202 $\mathrm{ml}), 40 \mathrm{~g}$ was isolated as a colourless oil $(23.8 \mathrm{~g}$, 84%); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $3.58(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.11\left(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.23(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (62 MHz): $\delta=14.1\left(\mathrm{CH}_{3}\right), 44.0,46.5,61.5\left(\mathrm{CH}_{2}\right), 129.3(2 \mathrm{C}, \mathrm{CH}), 130.8(2 \mathrm{C}, \mathrm{CH})$ 132.7, 133.2, 172.2, 197.7 (C); IR (neat): $\widetilde{v}=2982$ (m), 2937 (w), 1743 (s), 1716 (s), 1653 (w), 1478 (s), 1321 (s), 1250 (m), 1188 (m) 1095 (s), 815 (m), 744 (w), 489 (w):
$m / z(\%): 274\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 1\right), 272\left(\mathrm{M}^{+35}{ }^{25} \mathrm{Cl}, 3\right), 200(5), 184$ (3), 157 (13), 88 (29), 86 (92), 84(100), 51 (74); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{ClS}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 272.02660$, found 272.02684 .

Typical procedure for the synthesis of silyl enol ethers 41 : The reaction was carried out analogously to a known procedure used for the synthesis of silyl enol ether $\mathbf{3 6}$.

Synthesis of silyl enol ethers (41a) :

Synthesis of silyl enol ethers (41b) :

Starting with 40b (10.3 g, 38.6 mmol), NEt3 (8.5 $\mathrm{ml}, 61.7 \mathrm{mmol}), \mathrm{TMSCl}(8.7 \mathrm{ml}, 69.4 \mathrm{mmol})$ and benzene (95 ml), 41b was isolated as a yellow oil ($10.3 \mathrm{~g}, 78 \%$) ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $0.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.95(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.62(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$, 7.02 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}$).

Synthesis of silyl enol ethers (41c) :

Starting with 40c ($6.2 \mathrm{~g}, 28.0 \mathrm{mmol}$), NEt3 ($6.3 \mathrm{ml}, 45.1$ $\mathrm{mmol}), \mathrm{TMSCl}(6.4 \mathrm{ml}, 50.7 \mathrm{mmol})$ and benzene (70 ml), 41c was isolated as a yellow oil ($7.6 \mathrm{~g}, 91 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.80(\mathrm{q}, 2 \mathrm{H}, J$
$\left.=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.97(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.62-6.78(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.01-$ 7.19 (m, 2H, ArH).

Synthesis of silyl enol ethers (41d) :

Starting with $\mathbf{4 0 d}(1.6 \mathrm{~g}, 6.3 \mathrm{mmol})$, NEt3 (1.4 ml , $10.2 \mathrm{mmol}), \mathrm{TMSCl}(1.4 \mathrm{ml}, 11.4 \mathrm{mmol})$ and benzene (16 ml), 41d was isolated as a yellow oil ($1.5 \mathrm{~g}, 74 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.02$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.01(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.72(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.05(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of silyl enol ethers (41e) :

Starting with 40e ($3.7 \mathrm{~g}, 16.9 \mathrm{mmol}$), NEt3 (3.7 ml , $27.0 \mathrm{mmol})$, $\mathrm{TMSCl}(3.8 \mathrm{ml}, 30.4 \mathrm{mmol})$ and benzene (45 ml), 41e was isolated as a yellow oil (3.7 g, 75\%); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}$), $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.93(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of silyl enol ethers (41f) :

Starting with $\mathbf{4 0 f}(5.5 \mathrm{~g}, 21.7 \mathrm{mmol})$, NEt3 (4.9 ml , $34.8 \mathrm{mmol})$, $\mathrm{TMSCl}(5.0 \mathrm{ml}, 39.2 \mathrm{mmol})$ and benzene $(60 \mathrm{ml}), 41 \mathrm{f}$ was isolated as a yellow oil $(6.0 \mathrm{~g}$, 85%); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08$ (s, 9 H , $\left.\mathrm{CH}_{3}\right), 1.12\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.91\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $4.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.18(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of silyl enol ethers (41g) :

Starting with $\mathbf{4 0 g}$ ($23.7 \mathrm{~g}, 87.0 \mathrm{mmol}$), NEt3 (19.3 $\mathrm{ml}, 139.3 \mathrm{mmol}), \mathrm{TMSCl}(19.7 \mathrm{ml}, 156.7 \mathrm{mmol})$ and benzene (217 ml), $\mathbf{4 1 g}$ was isolated as a yellow oil (27.0 g, 90\%); ${ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}): $\delta=0.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11(\mathrm{t}, 3 \mathrm{H}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 3.89\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.19(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.94$ (d, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.21 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}$).

Typical procedure for the synthesis of 1,3-bis-silyl enol ethers (42): The reaction was carried out analogously to a known procedure. ${ }^{63}$ To a stirred THF solution (2 ml) of LDA (1.5 equiv.) was added silyl enol ether (1.0 euiv.) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1 h , trimethylchlorosilane (1.8 equiv.) was added. The solution was allowed to warm to room temperature during 12 h with stirring. The solvent was removed in vacuo and to the residue was added Hexane (20 ml) togive a suspension. The latter was filtered under Argon atmosphere. The filtrate was distilledin vacuo. The compound was used directly after itspreparation. The spectroscopic data are identical with those reported.

Synthesis of 1,3-bis-silyl enol ether (42a):

Starting with 41a ($7.00 \mathrm{~g}, 22.5 \mathrm{mmol}$), LDA (33.7 mmol, 1.5 equiv.), $\mathrm{TMSCl}(5.2 \mathrm{ml}, 40.5 \mathrm{mmol})$ and THF (75 ml), 42a was isolated as a yellow oil $(7.60 \mathrm{~g}$, $89 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28(\mathrm{t}, 3$ $\left.\mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.79\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.92(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.62(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.12-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$.

Synthesis of 1,3-bis-silyl enol ether (42b):

oil ($12.80 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.23(\mathrm{~s}, 9 \mathrm{H}$, CH_{3}), $1.31\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.55(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 5.10(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.59(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.12(\mathrm{~d}, 2$ $\mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of 1,3-bis-silyl enol ether (42c):

Starting with 41c (3.00 g, 10.1 mmol$)$, LDA (15.1 mmol, 1.5 equiv.), $\mathrm{TMSCl}(2.3 \mathrm{ml}, 18.3 \mathrm{mmol})$ and THF (25 ml), 42c was isolated as a yellow oil $(3.0 \mathrm{~g}$, 82%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08$ ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.61\left(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $5.62(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.34(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.59-6.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.68-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 7.12-7.08 (m, 2H, ArH).

Synthesis of 1,3-bis-silyl enol ether (42d):

Starting with 41d ($1.5 \mathrm{~g}, 4.7 \mathrm{mmol}$), LDA (7.0 mmol , 1.5 equiv.), TMSCl ($1.0 \mathrm{ml}, 8.5 \mathrm{mmol}$) and THF (15 $\mathrm{ml}), \mathbf{4 2 d}$ was isolated as a yellow oil $(1.50 \mathrm{~g}, 82 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.25$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.21(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.23(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.87(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of 1,3-bis-silyl enol ether (42e):

$\mathrm{Me}_{3} \mathrm{SiO} \quad \mathrm{OSiMe}_{3}$ Starting with $41 \mathrm{e}(3.0 \mathrm{~g}, 10.4 \mathrm{mmol})$, LDA $(15.6 \mathrm{mmol}$, 1.5 equiv.), TMSCl ($2.3 \mathrm{ml}, 18.8 \mathrm{mmol}$) and THF (34 $\mathrm{ml})$, 42e was isolated as a yellow oil ($3.1 \mathrm{~g}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.89(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.92(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.65(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, ArH), 7.01 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}$).

Synthesis of 1,3-bis-silyl enol ether (42f):

Starting with $41 \mathrm{f}(2.0 \mathrm{~g}, 6.1 \mathrm{mmol})$, LDA (9.1 mmol , 1.5 equiv.), TMSCl ($1.4 \mathrm{ml}, 11.0 \mathrm{mmol}$) and THF (25 $\mathrm{ml}), \mathbf{4 2 f}$ was isolated as a yellow oil $(1.95 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23(\mathrm{t}, 3 \mathrm{H}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81\left(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.92(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.61$ ($\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$.

Synthesis of 1,3-bis-silyl enol ether (42g):

Starting with $\mathbf{4 1} \mathrm{g}(25.0 \mathrm{~g}, 72.0 \mathrm{mmol})$, LDA (108 mmol, 1.5 equiv.), $\operatorname{TMSCl}(16.3 \mathrm{ml}, 129.6 \mathrm{mmol})$ and THF (180 ml), $\mathbf{4 2} \mathrm{g}$ was isolated as a yellow oil (26.2 g, 87\%). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.04$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.78(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 4.86(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.61(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.78(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.04(\mathrm{~d}, 2$ $\mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$.

General procedure for the synthesis of diaryl ethers 43a-f: To a dichloromethane solution ($2 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{4 2}$) of $\mathbf{4 2}(1.0 \mathrm{mmol})$ and of tetramethoxypropane was added $\operatorname{TMSOTf}(0.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm to $20^{\circ} \mathrm{C}$ within 20 h . To the solution was added a saturated aqueous solution of HCL (15 mL). The organic and the aqueous layer were separated and the latter was extracted with dichloromethane (3 x $15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the filtrate was concentrated in vacuo and the residue was purified by chromatography.

Ethyl-3- thiophenoxy salicylate (43a):

Starting with tetramethoxy ($0.26 \mathrm{ml}, 1.57 \mathrm{mmol}$) 1,3bis(silyl enol ether) 42a ($600 \mathrm{mg}, 1.57 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.17 \mathrm{ml}, 1.57 \mathrm{mmol})$, 43a was isolated as a highly viscous oil ($133 \mathrm{mg}, 31 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.34\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.74(\mathrm{t}, 1 \mathrm{H}, J$
$=7.7 \mathrm{~Hz}, \mathrm{ArH}$), 7.17-7.27 (m, 5 H, ArH), 7.29-7.31 (m, $1 \mathrm{H}, \mathrm{ArH})$,), 7.69-7.73 (dd, 1 H , $J=1.5,8.0 \mathrm{~Hz}, \mathrm{ArH})$,), $11.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.1$, $\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{CH}_{2}\right), 111.8(\mathrm{C}), 118.3(\mathrm{CH}), 123.0(\mathrm{C}), 126.2,128.0(\mathrm{CH}), 128.2(2 \mathrm{C}, \mathrm{CH})$, $130.2(2 \mathrm{C}, \mathrm{CH}), 133.0(\mathrm{C}), 136.8(\mathrm{CH}), 158.8,169.1(\mathrm{C}) ;$ IR (neat): $\widetilde{v}=3074(\mathrm{w}), 2983$ (m), 2936 (w), 1669 (s), 1601 (m), 1428 (s), 1318 (s$), 1251$ (s$), 1188$ (s$), 1023$ (m), 752 (s), $690(\mathrm{~m}), \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 274\left(\mathrm{M}^{+}, 66\right), 228$ (100), 200 (14), 171(37), 139(5), 95(6), 51(4); elemental analysis: calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ (274.07): C 65.67, H 5.14; found: C 65.23, H 5.13.

Ethyl-3-(4-methoxythiophenoxy) salicylate (43b):

Starting with tetramethoxy ($0.26 \mathrm{ml}, 1.57 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{4 2 b}$ ($648 \mathrm{mg}, 1.57 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.17 \mathrm{ml}, 1.57 \mathrm{mmol}), \mathbf{4 3 b}$ was isolated as a highly viscous oil ($143 \mathrm{mg}, 30 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.23\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.23(\mathrm{q}, 2 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.55(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}), 6.82-$ $6.86(\mathrm{dd}, 1 \mathrm{H}, ~, J=2.1,7.6 \mathrm{~Hz}, \mathrm{ArH})$,), $7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH})$,), 7.47-7.50 (dd, $1 \mathrm{H}, J=1.7,8.0 \mathrm{~Hz}, \mathrm{ArH}$), $11.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.8$, $55.7\left(\mathrm{CH}_{3}\right), 62.3\left(\mathrm{CH}_{2}\right), 112.5(\mathrm{C}), 115.5(2 \mathrm{C}, \mathrm{CH}), 119.6(\mathrm{C}), 122.9,127.6(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 134.6(\mathrm{CH}), 136.2(2 \mathrm{C}, \mathrm{CH}), 158.5,160.4,170.6(\mathrm{C}) ;$ IR (KBr): $\widetilde{v}=3074(\mathrm{w})$, 2987 (m), 2942(w), 2835 (w), 1670 (s), 1569 (m), 1492 (s), 1372 (s), 1289 (s), 1180 (s), 1023 (s), 831 (s), 760 (s), 731 (m), 527 (m), cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 304.1 $\left(\mathrm{M}^{+}, 68\right), 258.1$ (100), 243.1 (6), 215.1(9), 187.1(16), 159.1(4), 115.1(7), 95.1(6) 63.1 (3); elemental analysis: calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ (304.08): C 63.14, H 5.30; found: C 63.14, H 5.37.

Ethyl-3-phenoxy salicylate (43c):

Starting with tetramethoxy ($0.3 \mathrm{ml}, 1.8 \mathrm{mmol}$) 1,3bis(silyl enol ether) 42c ($660 \mathrm{mg}, 1.8 \mathrm{mmol}$), and TMSOTf ($0.03 \mathrm{ml}, 0.18 \mathrm{mmol}$), 43c was isolated as highly viscous oil (210 mg, 45\%); ${ }^{1} \mathrm{H}$ NMR (250 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=1.35\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.35\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.77(\mathrm{t}, 1 \mathrm{H}$, $J=7.9 \mathrm{~Hz}, \mathrm{ArH}$), 6.91 (dd, 2H, $J=1.1,8.6 \mathrm{~Hz}, \mathrm{ArH}$), 6.99 (m, $1 \mathrm{H}, \mathrm{ArH}), 7.11$ (m, 1 H , ArH), $7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=1.5,8.0 \mathrm{~Hz}, \mathrm{ArH}), 10.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}),{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1\left(\mathrm{CH}_{3}\right), 61.7\left(\mathrm{CH}_{2}\right), 114.2(\mathrm{C}), 117.0(2 \mathrm{C}, \mathrm{CH}), 118.7$, 122.7, 125.7, 126.7 (CH), 129.6 (2C, CH), 144.2, 154.0, 157.6, 170.0 (C) ; IR (neat): $\widetilde{v}=$ 3072 (w), 2983 (w), 1674 (s), 1585 (s), 1460 (s), 1323 (s), 1253 (s), 1150 (s), 1025 (s), $854(\mathrm{~m}), 752(\mathrm{~s}), 690(\mathrm{~m}), 580(\mathrm{w}), 498(\mathrm{w}) ; m / z(\%): 258\left(\mathrm{M}^{+}, 65\right), 212(100), 184$ (46), 128 (13), 105 (31), 77 (15), 51 (12); elemental analysis: calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$ (258): C 69.76, H 5.46 found: C 69.68, H 5.63.

Methyl -3-(4-chlorophenoxy) salicylate (43d):

Starting with tetramethoxy ($0.25 \mathrm{ml}, 1.5 \mathrm{mmol}$) 1,3-bis(silyl enol ether) $\mathbf{4 2 d}$ ($582 \mathrm{mg}, 1.5 \mathrm{mmol}$), and TMSOTf ($0.027 \mathrm{ml}, 0.15 \mathrm{mmol}$), 43d was isolated as higgly viscous oil ($192 \mathrm{mg}, 46 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.81(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.61 (dd, $1 \mathrm{H}, J=1.5,8.0 \mathrm{~Hz}, \mathrm{ArH}), 10.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=52.5\left(\mathrm{CH}_{3}\right), 114.1(\mathrm{C}), 118.0(2 \mathrm{C}, \mathrm{CH}), 118.9,125.8,127.0(\mathrm{CH}), 127.6(\mathrm{C})$ 129.5 (2C, CH), 143.8, 153.9, 156.3, 170.3 (C) ; IR (neat): $\widetilde{v}=3099$ (w), 2954 (m), 2854 (w), 1680 (s), 1583 (s), 1485 (s), 1329 (s), 1254 (s), 1007 (s), 824 (s), 662 (m), 499 (m), 441 (w); m/z (\%):280($\left.\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 24\right), 278\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 71\right), 246$ (100), 218 (26), 211 (50), 155(9), 139 (34), 107 (20), 75 (9); HRMS (EI): calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 278.03435 , found 278.03404 .

Methyl -3-(4-methylphenoxy) salicylate (43e):

Starting with tetramethoxy ($0.25 \mathrm{ml}, 1.5 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 42e ($554 \mathrm{mg}, 1.5 \mathrm{mmol}$), and TMSOTf ($0.027 \mathrm{ml}, 0.15 \mathrm{mmol}$), 43e was isolated as higgly viscous oil ($186 \mathrm{mg}, 48 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.72-6.82(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.02-7.09 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.56 (dd, $1 \mathrm{H}, J=1.5,8.0 \mathrm{~Hz}, \mathrm{ArH}$), 10.87 (s, 1H, OH);
${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.5$, $52.5\left(\mathrm{CH}_{3}\right), 112.8(\mathrm{C}), 116.2(2 \mathrm{C}, \mathrm{CH}), 117.7$, 126.7, 127.5 (CH), 129.2 (2C, CH), 131.3, 143.9, 152.7, 154.1, 169.5 (C) ; IR (neat): $\widetilde{v}=$ 2955 (w), 2924 (m), 2855 (w), 1680 ((), 1505 (s), 1440 (s), 1329 (s), 1252 (s), 11150 (s), 1006 (m), 815 (m), 718 (w), 501 (w); m/z (\%): 258(M+, 75), 226 (100), 198 (37), 119 (34), 107(14), 91 (11), 65 (8), 51 (5); HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}]^{+}: 258.08868$, found 258.08866 .

Synthesis of ethyl-3-(4-methylthiophenoxy) salicylate (43f):

Starting with tetramethoxy ($0.42 \mathrm{ml}, 2.52 \mathrm{mmol}$) $1,3-$ bis(silyl enol ether) $\mathbf{4 2 f}(1 \mathrm{~g}, 2.52 \mathrm{mmol})$, and TMSOTf ($0.05 \mathrm{ml}, 0.257 \mathrm{mmol}$), $\mathbf{4 3 f}$ was isolated as a gummy compound ($291 \mathrm{mg}, 40 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.33\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.69(\mathrm{t}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}, \mathrm{ArH}), 7.06-7.09$ (dd, $2 \mathrm{H}, J=0.57,7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.10-7.13$ (m, $2 \mathrm{H}, \mathrm{ArH})$,), 7.24 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}$),), $7.63-7.67$ (dd, $1 \mathrm{H}, J=1.7,8.0 \mathrm{~Hz}, \mathrm{ArH}), 11.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1,20.1\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{CH}_{2}\right), 111.5(\mathrm{C}), 118.2(\mathrm{CH})$, 124.6 (C), 127.1 (CH), 127.5 (C), 129.1 ($2 \mathrm{C}, \mathrm{CH}$), 131.5 (2C, CH), 135.2 (CH), 136.8, 158.1, 169.1(C); IR (KBr): $\widetilde{v}=2983(\mathrm{~m}), 2916(\mathrm{w}), 1644(\mathrm{~s}), 1667(\mathrm{~s}), 1489(\mathrm{~m}), 1399$ (s), 1284 (s), 1245 (s), 1018 (s), 901 (w), 809 (s), 506 (m), $\mathrm{cm}^{-1} ;$ GC-MS (EI, 70 eV): $m / z(\%): 288\left(\mathrm{M}^{+}, 90\right), 242(100), 213(20), 185(18), 171(20), 152(6), 123(7), 63(4) ;$ elemental analysis: calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ (208.08): C 66.64, H 5.59; found: C 66.80, H 5.84 .

Ethyl-4,6-dimethyl-3-(thiophenoxy) salicylate (45a):

Starting with 3-(siloxy)alk-2-en-1-one 44a ($400 \mathrm{mg}, 2.32$ mmol) 1,3-bis(silyl enol ether) 42a ($887 \mathrm{mg}, 2.32$ mmol), and $\mathrm{TiCl}_{4}(0.25 \mathrm{ml}, 2.32 \mathrm{mmol})$, $\mathbf{4 5 a}$ was isolated as a colourless solid ($336 \mathrm{mg}, 48 \%$), mp. $79{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34$ ($\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.47 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), $4.35\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6 . .66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.94-6.97(\mathrm{dd}, 2 \mathrm{H}, J=1.5$, $8.2 \mathrm{~Hz}, \mathrm{ArH}$); $7.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.09-7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 11.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}),{ }^{13} \mathrm{C}$ NMR
($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,21.5,23.7\left(\mathrm{CH}_{3}\right), 61.6\left(\mathrm{CH}_{2}\right), 111.5,116.9(\mathrm{C}), 124.8,124.9$ $(\mathrm{CH}), 125.9(2 \mathrm{C}, \mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 137.2,142.4,150.2,163.4,172.4(\mathrm{C})$; IR (KBr): $\widetilde{v}=3054$ (w), 2959 (w), 2935 (m), 2935 (m), 2809 (w), 2742 (w), 1639 (s), 1605 (s), 1476 (s), 1447 (s), 1376 (s), 1296 (s), 1259 (s), 1211 (s), 1108(w), 1015 (m), 820(m), 741(s), 459 (w); m/z (\%): 302.1 (M ${ }^{+}, 61$), 256.1 (100), 241.1 (22), 184.1 (14), 165.1 (5), 128 (5), 91.1 (7); elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ (302.1): C 67.52, H 6.00 found: C 67.48, H 6.24.

Ethyl-4,6-diethyl-3-(4-methoxythiophenoxy) salicylate (45b):

Starting with 3-(siloxy)alk-2-en-1-one 44b (400
$\mathrm{mg}, 1.99 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 42b
($824 \mathrm{mg}, 1.99 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.22 \mathrm{ml}, 1.99$ mmol), 45b was isolated as a highly viscous oil ($251 \mathrm{mg}, 35 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=1.06-1.18\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.78-2.83(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 4.35\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.68(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz} \mathrm{ArH})$, $6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz} \mathrm{ArH}$), 7.11 (s, $1 \mathrm{H}, \mathrm{ArH}$), 11.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.4,15.5,16.3\left(\mathrm{CH}_{3}\right), 28.7,29.7\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right) 62.1\left(\mathrm{CH}_{2}\right)$, $112.0(\mathrm{C}), 124.8(\mathrm{CH}), 114.9(2 \mathrm{C}, \mathrm{CH}), 117.4(\mathrm{C}), 122.5(\mathrm{CH}), 128.3(\mathrm{C}), 129.1$ (2C, CH),148.4, 155.3, 158.3,162.5, 171.2 (C); IR (neat): $\widetilde{v}=3375$ (w), 2963 (s), 2930(s), 2872 (m), 1728 (s), 1653 (s), 1595 (s), 1493 (s), 1374 (s), 1247 (s), 1107 (s), 1070 (m), 947 (w), 820 (m), 525(w); m/z (\%): 360.2 (M+, 65), 314.1 (100), 281.2 (10), 207 (7), 163 (13), 135 (15), 77 (7); HRMS (EI): calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+}$: 360.13898, found 360.138235 .

Ethyl-4,6-dimethyl-3-(4-methoxythiophenoxy)-5-thiophenoxy salicylate (45e):

Starting with 3-(siloxy)alk-2-en-1-one 36a (400 $\mathrm{mg}, 1.41 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 42b (582 $\mathrm{mg}, 1.41 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.15 \mathrm{ml}, 1.41 \mathrm{mmol})$, 45e was isolated as a highly viscous oil (212 mg , 34%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33$ (t, 3
$\left.\mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.34(\mathrm{q}$, $\left.2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.68(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}), 6.73-6.81(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$), 7.32 (d, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}$), $11.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.5$, 21.9, 24.8, $55.7\left(\mathrm{CH}_{3}\right), 62.2\left(\mathrm{CH}_{2}\right), 112.9(\mathrm{C}), 115.1(2 \mathrm{C}, \mathrm{CH}), 118.0(\mathrm{CH}), 124.5(\mathrm{C})$, 127.7 ($2 \mathrm{C}, \mathrm{CH}$), 128.1, 128.8 (2C), $133.0(2 \mathrm{C}, \mathrm{CH}), 147.2,151.4,157.9,160.3,162.8$, 171.7 (C); IR (Nujol): $\tilde{v}=2954$ (s), 2925 (s), 2855(s), 2932 (s), 1653 (m), 1591 (s), 1492 (s), 1461 (s), 1372 (s), 1245 (m), 1106 (m), 1034 (s), 871 (s), 802 (w), 620 (w),522(m), 423 (w).

Ethyl-4,6-dimethyl-3-5-dithiophenoxy salicylate (45f):

Starting with 3-(siloxy)alk-2-en-1-one 36a (400 mg , 1.41 mmol) 1,3-bis(silyl enol ether) $\mathbf{4 2 a}$ ($539 \mathrm{mg}, 1.41$ $\mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.15 \mathrm{ml}, 1.41 \mathrm{mmol}), 45 \mathrm{f}$ was isolated as a highly viscous oil ($196 \mathrm{mg}, 34 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.27(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.51\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.30(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 6.76-6.80(\mathrm{dd}, 2 \mathrm{H}, J=1.2,8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.88-$ 6.92 (m, $2 \mathrm{H}, \mathrm{ArH}$), 6.94-7.09 (m, $6 \mathrm{H}, \mathrm{ArH}$), 9.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1,20.6,21.4\left(\mathrm{CH}_{3}\right), 62.0\left(\mathrm{CH}_{2}\right), 116.7,116.8,124.5(\mathrm{C}), 124.8(\mathrm{CH})$, $125.2(2 \mathrm{C}, \mathrm{CH}), 125.6(\mathrm{CH}), 126.2(2 \mathrm{C}, \mathrm{CH}), 128.9(2 \mathrm{C}, \mathrm{CH}), 129.0(2 \mathrm{C}, \mathrm{CH}), 135.1$, 137.7, 146.6, 154.2, 159.1, 169.2 (C); IR (KBr): $\widetilde{v}=3373$ (s), 3057 (s), 2981(s), 2932 (s), 2869 (m), 1728 (s$), 1653$ (s$), 1439$ (s$), 1121$ (s$), 998$ (m), 857 (m), 738 (s$), 689$ (s$)$, 582 (w), 471 (w), m/z (\%): 410 (${ }^{+}$, 69), 364 (100), 340 (44), 290 (18), 253 (12), 219 (12), 177 (74), 161 (48); 109 (35), 83 (56), 57 (93), 43 (54); HRMS (EI): calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}_{2}[\mathrm{M}]^{+}: 410.10049$, found 410.099732 .

Ethyl 4,6-dimethyl-3-phenoxy-5-thiophenoxysalicylate (45g):

Starting with 3-(siloxy)alk-2-en-1-one 36a (500 mg , 1.8 mmol), 1,3-bis(silyl enol ether) 42c ($647 \mathrm{mg}, 1.8 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.19 \mathrm{ml}, 1.8 \mathrm{mmol}), 45 \mathrm{~g}$ was isolated as a colourless solid ($210 \mathrm{mg}, 30 \%$), mp. $103{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.37\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.77$ (distorted d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}$), $6.86(\mathrm{dd}, 2 \mathrm{H}, J$ $=1.3,8.1 \mathrm{~Hz}, \mathrm{ArH}), 6.92-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.11-7.22(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 10.99(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,16.0,21.1\left(\mathrm{CH}_{3}\right), 62.2\left(\mathrm{CH}_{2}\right), 114.0(\mathrm{C})$, 114.6 (2C, CH), $121.9(\mathrm{CH}), 123.2$ (C), 124.6, 124.8 (CH), 125.3 (2C, CH), 129.0 (2C, $\mathrm{CH}), 129.1(2 \mathrm{C}, \mathrm{CH}), 137.9,139.5,143.2,144.2,155.6,157.5,170.9(\mathrm{C}) ; \operatorname{IR}(\mathrm{KBr}): \widetilde{v}=$ 3069 (w), 2978 (w), 2928 (m), 2851 (m), 1662 (s), 1599 (s), 1476 (s), 1374 (s), 1244 (s), 1159 (s), 1077 (m), 752 (m), 686 (m), 488 (w); MS (EI, 70 eV): m/z (\%): 394 ($\mathrm{M}^{+}, 93$), 349 (37), 348 (100), 247 (22), 333 (16), 290 (5), 270 (7), 211 (10), 177 (28), 161 (19), 105 (28), 57 (31); HRMS (EI): calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+}\right]: 394.12333$, found 394.12343.

Ethyl 4,6-dimethyl-3-(phenoxy)salicylate (45h):

Starting with 3-(silyloxy)alk-2-en-1-one 44a (600 mg , 3.48 mmol) 1,3-bis(silyl enol ether) 42c ($1.27 \mathrm{~g}, 3.48$ $\mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.38 \mathrm{ml}, 3.48 \mathrm{mmol}), 45 \mathrm{~h}$ was isolated as a colourless solid ($354 \mathrm{mg}, 37 \%$), mp. $69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.35\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.35(\mathrm{q}, 2 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $6.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.78(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}) ; 6.90(\mathrm{t}, 1 \mathrm{H}, J=7.4$ $\mathrm{Hz}, \mathrm{ArH}$), $7.18(\mathrm{t}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 11.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.1,16.3,23.7\left(\mathrm{CH}_{3}\right), 61.6\left(\mathrm{CH}_{2}\right), 111.4(\mathrm{C}), 114.6(2 \mathrm{C}, \mathrm{CH}), 121.6,124.3$ $(\mathrm{CH}), 129.4(2 \mathrm{C}, \mathrm{CH}), 137.1,138.1,138.9,155.9,157.8,171.2(\mathrm{C}) ; \mathrm{IR}(\mathrm{KBr}): \widetilde{v}=2988$ (m), 2930 (w), 1651 (s), 1590 (m), 1494 (s), 1377 (s), 1300 (s), 1213(s), 1164 (s), 1029 (m), 842 (w), 793 (s), 692 (s$), 577$ (w), 421 (w); MS (EI, 70 eV): m/z (\%): 286 ($\mathrm{M}^{+}, 42$), 240 (100), 211 (13), 197 (9), 135 (10), 105 (43), 77 (16); elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ (286.1): $\mathrm{C} 71.31, \mathrm{H} 6.43$ found: C 71.18 , H 6.66 .

Ethyl 4,6-dimethyl-5-chloro-3-phenoxysalicylate (45i):

Starting with 3-(siloxy)alk-2-en-1-one 44c (400 mg, 1.93 mmol), 1,3-bis(silyl enol ether) $\mathbf{4 2 c}$ ($707 \mathrm{mg}, 1.93$ $\mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.21 \mathrm{~mL}, 1.93 \mathrm{mmol}), 45 \mathbf{i}$ was
isolated as a colourless solid ($234 \mathrm{mg}, 38 \%$), mp. $47{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.34\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.38(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 6.91(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{ArH}), 7.18(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{ArH}), 10.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.3,14.0,18.6\left(\mathrm{CH}_{3}\right)$, $61.1\left(\mathrm{CH}_{2}\right), 112.4(\mathrm{C}), 113.0(2 \mathrm{C}, \mathrm{CH}), 120.9(\mathrm{CH}), 125.7(\mathrm{C}) 128.5(2 \mathrm{C}, \mathrm{CH}), 133.3$, 136.0, 138.3, 152.2, 156.5, 169.5 (C); IR (Nujol): $\widetilde{v}=3069$ (w), 1664 (s), 1591 (m), 1490 (s), 1401 (s), 1376 (s), 1347 (m), 1246 (s), 1184 (s), 1074 (m), 854 (w), 749 (s), 686 (m), 433 (w); MS (EI, 70 eV): $m / z(\%): 322\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 15\right), 320\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 43\right), 274$ (100), 245 (15), 211 (13), 169 (8), 139 (34), 105 (43), 77 (21); elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{4}$ (320.08): C 63.65, H 5.34; found: C 63.23, H 5.70.

Ethyl 4,5,6-trimethyl-3-phenoxysalicylate (45j):

Starting with 3-(siloxy)alk-2-en-1-one 44d ($600 \mathrm{mg}, 3.2$ mmol), 1,3-bis(silyl enol ether) 42c ($1.18 \mathrm{~g}, 3.2 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.35 \mathrm{~mL}, 3.2 \mathrm{mmol}), \mathbf{4 5 j}$ was isolated as a colourless solid ($414 \mathrm{mg}, 43 \%$), mp. $75{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.30\left(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.71(\mathrm{dd}, 2 \mathrm{H}, J=1.1,8.6 \mathrm{~Hz}$, $\mathrm{ArH}), 6.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.09-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 10.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (62 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,14.1,15.8,18.8\left(\mathrm{CH}_{3}\right), 61.7\left(\mathrm{CH}_{2}\right), 113.4(\mathrm{C}), 114.6(2 \mathrm{C}, \mathrm{CH})$, $121.6(\mathrm{CH}), 127.7(\mathrm{C}), 129.5(2 \mathrm{C}, \mathrm{CH}), 134.3,136.7,138.4,151.6,158.0,171.0(\mathrm{C})$; IR (KBr): $\widetilde{v}=2992$ (w), 2923 (w), 1663 (s), 1591 (s), 1414 (s), 1312 (s), 1251 (s), 1189 (s), 1018 (s), 801 (m), 753 (s), 693 (m), 507 (w), 418 (w); MS (EI, 70 eV): m/z (\%): 300 $\left(\mathrm{M}^{+}, 46\right), 254$ (100), 239 (27), 211 (15), 149 (15), 105 (57), 77 (22); elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$ (300.1): C 71.98, H 6.71 found: C 71.66, H 6.77 .

Ethyl 4,6-dimethyl-3-phenoxy 5-(3,4-dimethoxyphenox)salicylate (45k):

Starting with 3-(siloxy)alk-2-en-1-one 44e (600 mg , 1.83 mmol) 1,3-bis(silyl enol ether) 42c ($671 \mathrm{mg}, 1.83$ $\mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.2 \mathrm{ml}, 1.83 \mathrm{mmol}), 45 \mathrm{k}$ was isolated as a highly viscous oil ($207 \mathrm{mg}, 30 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.35\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.95 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.36(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$, OCH_{2}), $6.02(\mathrm{dd}, 1 \mathrm{H}, J=2.8,8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{ArH}), 6.64(\mathrm{~d}, 1 \mathrm{H}$, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $6.77-6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.88-6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.16-7.23$ (m, 2 H , ArH), 11.09 (s, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.9,14.1,15.1,55.9,56.3$ $\left(\mathrm{CH}_{3}\right), 62.0\left(\mathrm{CH}_{2}\right), 100.0,104.1,111.9(\mathrm{CH}), 112.0(\mathrm{C}), 114.5(2 \mathrm{C}, \mathrm{CH}), 121.8(\mathrm{CH})$, 129.5 (2C, CH), 130.4, 133.8, 139.4, 143.7, 143.9, 150.1, 152.4, 153.1, 157.7, 171.1 (C); IR (neat): $\widetilde{v}=2999$ (w), 2936 (w), 1601 (s), 1508 (s), 1452 (s), 1301 (s), 1261 (s), 1192 (s), 1027 (s), 833 (m), 753 (w), 653 (w), 475 (w); MS (EI, 70 eV): MS (EI, 70 eV): m/z (\%): 438.1 (${ }^{+}, 100$), 392.1 (87), 377.1 (49), 287.1 (3), 255 (3), 138 (13), 105 (59), 77 (16); HRMS (EI): calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right]: 438.16708$, found 438.16730.

Methyl 4,6-dimethyl-5-chloro-3-(4-methylphenoxy)salicylate (45I):

Starting with 3-(siloxy)alk-2-en-1-one 44c (400 mg , 1.9 mmol), 1,3-bis(silyl enol ether) 42d (711 mg, 1.9 mmol), and $\mathrm{TiCl}_{4}(0.21 \mathrm{~mL}, 1.93 \mathrm{mmol}), 451$ was isolated as a highly viscous oil ($248 \mathrm{mg}, 40 \%$);
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.20\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 6.65(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 10.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,18.6,19.5,51.5\left(\mathrm{CH}_{3}\right), 112.3(\mathrm{C}), 113.3$ (2C, CH), 125.7 (C), 129.0 (2C, CH), 130.3, 133.0, 136.1, 138.5, 152.1, 154.4, 169.9 (C); IR (neat): $\widetilde{v}=297(\mathrm{~m}), 2927(\mathrm{~m}), 2871(\mathrm{w}), 1661$ (s$), 1506$ (s), 1444 (s$), 1248$ (s), 1164 (s), $1040(\mathrm{~m}), 846(\mathrm{~m}), 707(\mathrm{w}), 612(\mathrm{w}), 503(\mathrm{w})$; MS (EI, 70 eV$): m / z(\%): 322\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}\right.$,
15), $320\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 46\right), 288$ (100), 273 (9), 259 (15), 169 (10), 119 (87), 91(22), 77 (18); HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{4}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 320.08106$, found 320.08099.

Methyl 4,5,6-trimethyl-3-(4-chlorophenoxy)salicylate (45m):

 Starting with 3-(silyloxy)alk-2-en-1-one 44d (400 $\mathrm{mg}, 2.1 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 42e(814 $\mathrm{mg}, 2.1 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.23 \mathrm{~mL}, 2.1 \mathrm{mmol})$, $\mathbf{4 5 m}$ was isolated as a colourless solid (272 mg , 40%), mp. $98{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$=2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.65(\mathrm{~d}, 2$ $\mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{ArH}$), $7.05(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 10.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (62 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,15.9,18.8,52.3\left(\mathrm{CH}_{3}\right), 113.1(\mathrm{C}), 116.0(2 \mathrm{C}, \mathrm{CH}), 126.4,127.8$ (C), 129.4 (2C, CH), 134.7, 136.7, 138.3, 151.6, 156.6, 171.6 (C); IR (KBr): $\widetilde{v}=$ 3005(w), 2952 (w), 2926 (w), 1667 (s), 1595 (m), 1485 (s), 1318 (s), 1248 (s), 1298 (s), 1064 (s), 994 (m), 823 (s), 626 (w), 457 (w); MS (EI, 70 eV): m/z (\%):322 ($\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 21$), $320\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 62\right), 288$ (70), 273 (13), 253 (71), 225 (11), 139 (100), 91 (13), 77 (18); elemental analysis: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{4}$ (320.08): C 63.65, H 5.34 found: C 63.59, H 5.39.

Ethyl 4,6-dimethyl-5-(2-bromoethyl)-3-thiophenoxysalicylate (47c):

Starting 1,1-diacyclopropane 46 ($500 \mathrm{mg}, 3.9 \mathrm{mmol}$) $1,3-$ bis(silyl enol ether) 42a ($2.2 \mathrm{~g}, 5.5 \mathrm{mmol}$), $\mathrm{TiBr}_{4}(1.4 \mathrm{~g}$, 3.9 mmol), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL}) 47 \mathrm{c}$ was isolated as a yellowish highly viscous compound ($715 \mathrm{mg}, 45 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.34\left(\mathrm{~S}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~S}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.36\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}), 8.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.2,17.8,18.5\left(\mathrm{CH}_{3}\right), 29.4$, 34.2, $61.7\left(\mathrm{CH}_{2}\right), 116.3,117.7(\mathrm{C}), 125.7(\mathrm{CH}), 126.2(2 \mathrm{C} \mathrm{CH}), 129.1(2 \mathrm{C} \mathrm{CH}), 129.2$ (C), 133.6, 138.5, 145.8, 156.4, 169.2 (C); IR (neat): $\widetilde{v}=3386$ (s), 2979 (s), 2934 (m), 1728 (s), 1655 (s), 1582 (s), 1478 (s), 1373 (s), 1228 (s), 1048 (m), 739 (m) 690 (s) cm^{-1};

GC-MS (EI, 70 eV): $m / z(\%): 410\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 59\right), 408\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 57\right), 364$ (100), 329 (18), 283 (85), 269 (24), 77 (12); HRMS (EI): calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{BrS}\left([\mathrm{M}+1]^{+}\right)$408.03893, found 408.03884.

General procedure for the synthesis of diaryl sulfides 49a-g: To a dichloromethane solution ($30 \mathrm{~mL} / \mathrm{mmol}$) of 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes $\mathbf{1}$ (1.0 mmol) and 1,1-diacyclopropane $2(1.5 \mathrm{mmol})$ was added $\mathrm{TiX}_{4}(1.5 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to ambient temperature within 14 h . To the solution was added a diluted aqueous solution of HCL (25 mL). The organic and the aqueous layer were separated and the latter was extracted with dichloromethane (3 x 20 mL). The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, EtOAc / n-heptane).

Methyl 4,6-dimethyl-5-(2-chloroethyl)-2-(thiophenoxy)benzoate (49a) :

Starting 1,1-diacyclopropane 46a ($378 \mathrm{mg}, 3.0 \mathrm{mmol}$) 1-
 trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 ($562 \mathrm{mg}, 2.0$ mmol), $\mathrm{TiCl}_{4}(0.33 \mathrm{ml}, 3.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ 49a was isolated as highly viscous oil ($322 \mathrm{mg}, 48 \%$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.09(\mathrm{t}, 2 \mathrm{H}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.43\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.11-7.21 (m, $5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.8,20.1\left(\mathrm{CH}_{3}\right), 33.0,41.6$ $\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{3}\right), 126.9 .0(\mathrm{CH}), 129.04(2 \mathrm{C}, \mathrm{CH}), 130.3(\mathrm{C}), 130.5(2 \mathrm{C}, \mathrm{CH}), 133.1$ (CH), 134.1, 135.1, 136.0, 136.6, 138.9 (C), 169.3 (C=O); IR (ATR): $\widetilde{v}=2948(\mathrm{w}), 2871$ (w), 1727 (s), 1579 (m), 1437 (m), 1268 (s), 1148 (s), 1039 (m), 1023 (m), 933 (w), 777 (w), 738 (s), 689 (s), 557 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 336\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 37\right), 334$ ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 100$), 301 (61), 285 (56), 267 (36) 253 (66), 210 (13), 115 (8), 77 (9); elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}_{2} \mathrm{~S}$ (334.86): C 64.56, H 5.72; found: C 64.59, H 5.84.

Methyl 4-methyl-5-(2-chloroethyl)-6-phenyl-2-(thiophenoxy)benzoate (49b) :

Starting 1,1-diacyclopropane 46b (564 mg, 3.0 mmol) 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 ($562 \mathrm{mg}, 2.0$
$\mathrm{mmol}), \mathrm{TiCl}_{4}(0.33 \mathrm{ml}, 3.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}) 49 \mathrm{~b}$ was isolated as highly viscous oil (278 mg, 47\%); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.83(\mathrm{t}, 2$ $\left.\mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.22\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03(\mathrm{~s}, 1 \mathrm{H}$, ArH), 7.11-7.18 (m, 5 H, ArH), 7.23-7.30 (m, $4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=22.6\left(\mathrm{CH}_{3}\right), 32.1,42.2\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 128.5,128.7(\mathrm{CH}), 128.9(2 \mathrm{C}, \mathrm{CH}), 129.0$ $(2 \mathrm{C}, \mathrm{CH}), 129.2(2 \mathrm{C}, \mathrm{CH}), 130.8(\mathrm{C}), 131.2(2 \mathrm{C}, \mathrm{CH}), 133.5(\mathrm{CH}), 133.9,135.2,136.3$,137.1, 138.5, 140.0 (C), 168.1 (C=O); IR (ATR): $\widetilde{v}=3022$ (w), 2947 (w), 1729 (s), 1573 (m), 1438 (s), 1270 (s), 1137 (s), 1023 (m), 739 (s), 699 (s), 595 (m), 557 (w) cm^{-1}; GCMS (EI, 70 eV): m/z (\%):398 ($\left.\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 28\right), 396\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 75\right), 365$ (7), 315 (100), 300 (10) 271 (23), 178 (8), 156 (6), 77 (2); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{ClS}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 396.09453, found 396.09453.

Methyl 4-methyl-5-(2-chloroethyl)-6-(4-chlorophenyl)-2-(thiophenoxy)benzoate(49c)

 :

Starting 1,1-diacyclopropane 46c ($333 \mathrm{mg}, 1.5 \mathrm{mmol}$) 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 (281 mg , $1.0 \mathrm{mmol}), \mathrm{TiCl}_{4}(0.16 \mathrm{ml}, 1.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(00 \mathrm{~mL})$ 49c was isolated as highly viscous oil ($185 \mathrm{mg}, 43 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.71(\mathrm{t}, 2$ $\left.\mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.14\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94(\mathrm{~s}, 1 \mathrm{H}$, ArH), $6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.08-7.22(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=20.1\left(\mathrm{CH}_{3}\right), 33.1,42.3\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 127.4(\mathrm{CH}), 128.3(2 \mathrm{C}, \mathrm{CH})$, $129.1(2 \mathrm{C}, \mathrm{CH}), 130.6(2 \mathrm{C}, \mathrm{CH}), 131.4(\mathrm{C}), 131.5(2 \mathrm{C}, \mathrm{CH}), 133.7(\mathrm{CH}), 133.9,134.0$, 134.9, 135.3, 136.4, 139.3, 139.5 (C), $168.0(\mathrm{C}=\mathrm{O})$; IR (ATR): $\widetilde{v}=2996(\mathrm{w}), 2947(\mathrm{w})$, 1729 (s), 1574 (m), 1438 (s), 1271 (s), 1191 (m), 1087 (s), 1001 (m), 836 (m), 739 (s), 598 (w) cm^{-1}; GC-MS (EI, 70 eV): $m / z(\%): 435$ ([M] ${ }^{+},\left[2 \times{ }^{37} \mathrm{Cl}\right], 3$), 433 ([M] $]^{+}$, $\left.{ }^{37} \mathrm{Cl}\right]$, $\left.\left[{ }^{35} \mathrm{Cl}\right], 15\right), 370\left([\mathrm{M}]^{+},\left[2 \times{ }^{35} \mathrm{Cl}\right], 23\right), 349$ (100), 314 (16), 285 (10), 271 (24), 156 (10), 77 (3); elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClO}_{2} \mathrm{~S}$ (431.37): C 64.04, H 4.67; found: C 63.79, H 4.86.

Methyl 4-methyl-5-(2-chloroethyl)-6-(4-fluorophenyl)-2-(thiophenoxy)benzoate(49d)

Starting 1,1-diacyclopropane $46 d(618 \mathrm{mg}, 3.0 \mathrm{mmol}) \quad 1-$ trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 (562 mg , $2.0 \mathrm{mmol}), \mathrm{TiCl}_{4}(0.33 \mathrm{ml}, 1.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ 49d was isolated as highly viscous oil ($331 \mathrm{mg}, 40 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.82(\mathrm{t}, 2$ $\left.\mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.23\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.01(\mathrm{~s}, 1 \mathrm{H}$, ArH), 7.10 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}$), 7.14-7.33 (m, $7 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=20.1\left(\mathrm{CH}_{3}\right), 33.3,42.0\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{3}\right), 115.0,115.3,127.4(\mathrm{CH}), 129.2$ (2C, CH), 130.9, $131.0(\mathrm{CH}), 131.3$ (C), $131.5(2 \mathrm{C}, \mathrm{CH}), 133.6(\mathrm{CH}), 133.6,134.3$, 135.0, 135.5, 139.3, 139.7 (C), 162.1 (d, $J=274.2 \mathrm{~Hz}, \mathrm{CF}$), 168.1 (C=O); IR (ATR): $\widetilde{v}=$ 2948 (w), 2923 (w), 1730 (s), 1590 (s), 1508 (s), 1438 (s), 1156 (s), 1023 (m), 785 (m), 690 (s), 605 (m), 558 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV GC-MS (EI, 70 eV): m/z (\%):416 ($\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 24$), 414 ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 74$), 383 (5), 333 (100), 318 (9) 289 (15), 197 (6), 163 (13), 57 (21); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{ClFS}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 414.08518$, found 141.08511.

Methyl 4,6-diethyl-5-(2-bromoethyl)-2-(thiophenoxy)benzoate (49e) :

Starting 1,1-diacyclopropane 46e ($462 \mathrm{mg}, 3.0 \mathrm{mmol}$) 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 ($562 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{TiBr}_{4}(1.10 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}) 49 \mathbf{e}$ was isolated as highly viscous oil ($228 \mathrm{mg}, 28 \%$); ${ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.06\left(\mathrm{t}, 3 \mathrm{H},, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.13(\mathrm{t}, 3 \mathrm{H}$, , $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 312\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 329\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.12-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=15.3,15.9\left(\mathrm{CH}_{3}\right), 24.4,25.9,30.1,32.5\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right), 126.8(\mathrm{CH}), 129.0(2 \mathrm{C}$, CH), 130.4 (2C, CH), 130.9 (C), 131.6 (CH), 134.6, 136.0, 136.1, 140.2, 145.0 (C), 169.3 (C=O); IR (ATR): $\widetilde{v}=2967$ (w), 2874 (w), 1728 (s), 1578 (m), 1438 (m), 1476 (m), 1271 (s), 1145 (s), 1023 (m), 983 (w), 739 (s), 688 (s), 579 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%):408 ($\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 70$), $406\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 69\right.$), 375 (100), 378 (88), 313 (19) 295 (37), 221 (8), 128 (13), 91 (5); elemental analysis: calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrO}_{2} \mathrm{~S}$ (407.06): C 58.97, H 5.69; found: C 59.55, H 6.04.

Methyl 4,6-dimethyl-5-(2-bromoethyl)-2-(thiophenoxy)benzoate (49f) :

Starting 1,1-diacyclopropane 46a ($378 \mathrm{mg}, 3.0 \mathrm{mmol}$) 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 ($562 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{TiBr}_{4}(1.101 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}) 49 \mathrm{f}$ was isolated as highly viscous oil ($439 \mathrm{mg}, 58 \%$); ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.10$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.07-7.19$ (m, $5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.8,20.0\left(\mathrm{CH}_{3}\right), 28.8,33.5\left(\mathrm{CH}_{2}\right), 52.2$ $\left(\mathrm{CH}_{3}\right), 126.9 .0(\mathrm{CH}), 129.04(2 \mathrm{C}, \mathrm{CH}), 130.4(\mathrm{C}), 130.5(2 \mathrm{C}, \mathrm{CH}), 133.1(\mathrm{CH}), 133.9$, 136.0, 136.1, 136.6, 138.7 (C), 169.3 (C=O); IR (ATR): $\widetilde{v}=2947$ (w), 2923 (w), 1727 (s), 1579 (m), 1436 (m), 1267 (s), 1147 (s$), 1129$ (m), 1045 (m), 812 (m), 738 (s), 688 (s$)$, $591(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m/z (\%):380 ($\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 100$), $378\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 98\right), 347$ (68), 345 (53), 299 (20) 285 (50), 253 (68), 115 (12), 77 (9); elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{~S}$ (379.31): C 57.00, H 5.05; found: C 57.24, H 5.13.

Methyl 4-methyl-5-(2-bromoethyl)-6-phenyl-2-(thiophenoxy)benzoate (49g) :

Starting 1,1-diacyclopropane 46b ($564 \mathrm{mg}, 3.0 \mathrm{mmol}$) 1-trimethylsilyloxy-3-thioaryloxy-1,3-butadienes 48 ($562 \mathrm{mg}, 2.0$ $\mathrm{mmol}), \mathrm{TiBr}_{4}(1.101 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}) 49 \mathrm{~g}$ was isolated as highly viscous oil ($353 \mathrm{mg}, 40 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.11-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 7.25-7.32 (m, $4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1\left(\mathrm{CH}_{3}\right), 29.5$, $33.7\left(\mathrm{CH}_{2}\right)$, $51.7\left(\mathrm{CH}_{3}\right), 127.3,127.8(\mathrm{C}), 128.1(\mathrm{CH}), 129.1(2 \mathrm{C}, \mathrm{CH}), 129.2(2 \mathrm{C}, \mathrm{CH}), 131.5(2 \mathrm{C}$, CH), 133.5 (C), 133.6 (2C, CH), 135.2, 135.3 (CH), 135.5, 137.9, 139.0, 140.7 (C), 168.2 (C=O); IR (ATR): $\widetilde{v}=3021$ (w), 2846 (w), 1730 (s), 1573 (m), 1438 (m), 1268 (s), 1136 (s), 1089 (m), 1023 (m), 929 (w), 702 (s), 688 (s), 579 (m) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%):442 ($\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 67$), $440\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 64\right), 329$ (15), 315 (100), 300 (10) 271 (24), 178 (11), 156 (10), 77 (3); elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{~S}$ (441.38): C 62.59, H 4.80; found: C 62.73, H 4.98 .

General procedure for the synthesis of benzophenones 51a-f: $\mathrm{Me}_{3} \operatorname{SiOTf}$ (0.3 equiv) was added to 3-formylchromone (1.0 equiv) at $20^{\circ} \mathrm{C}$. After stirring for $10 \mathrm{~min} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 ml) was added, the solution was cooled to $0^{\circ} \mathrm{C}$ and the 1,3 -bis-silyl enol ether (1.3 equiv) was addd. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h and was subsequently poured into an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic and aqueous layer was separated and lateral was extracted 3 times with 15 ml with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrate was washed with 25 ml and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and crude product was purified by chromatography (silica gel, EtOAc / n-heptane).

Ethyl-5-(2-hydroxy-5-chlorobenzoyl)-3-thiophenoxysalicylate(51a):

Starting with 3-formylchromone 50a(400 mg, 1.91 mmol) 1,3-bis(silyl enol ether) 42a ($806 \mathrm{mg}, 2.1$ $\mathrm{mmol})$, and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.1 \mathrm{ml}, 0.57 \mathrm{mmol})$, 51a was isolated as a solid ($385 \mathrm{mg}, 47 \%$), mp. $104{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33(\mathrm{t}, 3 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{CH}_{3}$), $4.38\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.86$ (dd, $J=0.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.16-7.34$ (m, $6 \mathrm{H}, \mathrm{ArH}), 7.41$ (dd, $J=1.7,8.2 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $8.02(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 11.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.9\left(\mathrm{CH}_{3}\right), 61.3\left(\mathrm{CH}_{2}\right), 111.2,118.3(\mathrm{C}), 118.9(\mathrm{CH}), 122.2$, 126.5, 127.2, 127.6 (C), $128.6(\mathrm{CH}), 128.7(2 \mathrm{C}, \mathrm{CH}), 130.0,130.5(\mathrm{CH}), 132.4$ (2C, CH), 133.8, $134.9(\mathrm{CH}), 160.2,160.5,168.4,196.4$ (C); IR (KBr): $\widetilde{v}=3073$ (w), 2958(w), 2854 (w), 1661 (s), 1576 (s), 1473 (s), 1314 (s), 1290 (s), 1195 (m), 1022 (m), $864(\mathrm{~m}), 787(\mathrm{~s}), 690(\mathrm{~s}), 418(\mathrm{w}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 430\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 40\right)$, $428\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 95\right), 382$ (100), 302 (5), 228 (18) 200(10), 171 (17), 155 (21), 99 (5); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClO}_{5} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 428.04744$, found 428.04797.

Ethyl-5-(2-hydroxy-5-ethylbenzoyl)-3-(4-methoxyhiophenoxy)salicylate(51b):

Starting with 6-ethyl-3-formylchromone 50b (500 $\mathrm{mg}, 2.47 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 42b (10.17 $\mathrm{g}, 2.47 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.15 \mathrm{ml}, 0.86$ mmol), 51b was isolated as a solid ($422 \mathrm{mg}, 38 \%$), mp. $124{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.06$ (t, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.29(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.40\left(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.34\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.82 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.13-7.25 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.38 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.96 (d, $J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 11.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=14.1,15.8\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 62.1\left(\mathrm{CH}_{2}\right), 111.6(\mathrm{C}), 115.4(2 \mathrm{C}, \mathrm{CH}), 118.2$ (CH), 118.5, 120.7 (C), 129.1 (CH), 129.1, 129.3 (C), 131.4, 133.5 (CH), 134.2 (C), 136.1 (CH), 136.5 (2C, CH), 160.5, 160.6, 161.0, 169.8, 198.6 (C); IR (ATR): $\widetilde{v}=2994$ (w), 2912(w), 2839 (w), 1677(s), 1588 (s), 1349 (s), 1241 (s), 1217 (s), 1166 (s), 1019 (m), $833(\mathrm{~m}), 810(\mathrm{~m}), 670(\mathrm{~m}), 567(\mathrm{w}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 452$ $\left(\mathrm{M}^{+}, 100\right), 406$ (97), 258 (31), 230 (6), 177 (10), 149 (49), 111 (24), 83 (36), 57 (62); elemental analysis: calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}$ (452.52): C 66.35, H 5.35; found: C 66.58, H 5.37.

Synthesis of ethyl-5-(2-hydroxy-5-methylbenzoyl)-3-phenoxysalicylate (51c):

Starting with 3-formylchromone 50c (411 mg, 2.2 mmol), 1,3-bis(silyl enol ether) 42c ($800 \mathrm{mg}, 2.2$ mmol), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.65 \mathrm{~mL}, 1.2 \mathrm{mmol}$), 51c was isolated as a highly viscous oil ($300 \mathrm{mg}, 35 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.35(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.39(\mathrm{q}, J=7.1$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.94-7.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.21-7.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, $7.44(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 11.49$ (s, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,20.4\left(\mathrm{CH}_{3}\right), 62.3\left(\mathrm{CH}_{2}\right), 113.8(\mathrm{C})$,
116.9 (C), 117.7 (2C, CH), 118.3 (CH), 118.5 (C), 123.6, 126.1, $127.0(\mathrm{CH}), 127.8,128.6$ (C), $129.8(2 \mathrm{C}, \mathrm{CH}), 132.5,137.3(\mathrm{CH}), 144.8,156.8,156.9,160.9,169.6,198.3$ (C); IR (neat): $\widetilde{v}=2982$ (w), 2926 (w), 2869 (w), 1678 (s), 1587 (s), 1401 (s), 1376 (s), 1212 (s), 1109 (m), 1028 (s), 827 (m), 788 (s), 691(m), 475 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): $392\left(\mathrm{M}^{+}, 100\right), 347$ (43), 258 (31), 212 (44), 184(13), 135(54), 105(24), 77 (27); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]$: 392.12554, found 392.12544.

Ethyl-5-(2-hydroxy-5-bromobenzoyl)-3-(4-methylthiophenoxy)salicylate(51d):

Starting with 6-bromo3-formylchromone 50d (380 $\mathrm{mg}, 1.5 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 42 f (594 $\mathrm{mg}, 1.5 \mathrm{mmol}$), and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.08 \mathrm{ml}, 0.45$ mmol), 51d was isolated as a solid ($329 \mathrm{mg}, 45 \%$), mp. $125{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33$ $\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.81(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.12 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.18 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.41-7.45(\mathrm{~m}, ~ J=10.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 11.47 (s, $1 \mathrm{H}, \mathrm{OH}$), $11.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.9,19.1$ $\left(\mathrm{CH}_{3}\right), 60.2\left(\mathrm{CH}_{2}\right), 108.0,110.0,117.9(\mathrm{C}), 118.3(\mathrm{CH}), 124.7,126.1,126.7(\mathrm{C}), 127.0$ $(\mathrm{CH}), 128.6(2 \mathrm{C}, \mathrm{CH}), 131.6(\mathrm{CH})$, 132.2 (2C, CH), 132.5, $136.5(\mathrm{CH}), 137.1,159.0$, 159.6,167.5, 195.4 (C); IR (ATR): $\widetilde{v}=3017$ (w), 2982(w), 2865 (w), 1627(s), 1568 (s), 1467 (s), 1398 (s), 1285 (s), 1163 (s), 1018 (s), 996 (m), 836 (m), 736 (s), 613 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): $m / z(\%): 488\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 100\right), 486\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 92\right), 442$ (87), 440 (78), 242 (25), 199 (20), 125 (12), 111 (20), 57 (45); elemental analysis: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrO}_{5} \mathrm{~S}$ (486.01): C 56.68, H 3.93; found: C 56.12, H 4.40.

Ethyl-5-(2-hydroxy-5-methylbenzoyl)-3-(4-chlorothiophenoxy)salicylate(51e):

Starting with 6-methyl3-formylchromone 50c (255 mg , 1.35 mmol) 1,3-bis(silyl enol ether) $\mathbf{4 2 g}$ ($566 \mathrm{mg}, 1.35$ $\mathrm{mmol})$, and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.07 \mathrm{ml}, 0.40 \mathrm{mmol})$, 51e was isolated as a solid ($240 \mathrm{mg}, 40 \%$), mp. $98{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR
$\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.38(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.85 (d, $\left.J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.10$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.167.29 (m, $5 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.09(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.47$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 11.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.0,21.4\left(\mathrm{CH}_{3}\right), 63.4$ $\left(\mathrm{CH}_{2}\right), 113.5(\mathrm{C}), 119.2(\mathrm{CH}), 119.3,126.3,128.7,130.2(\mathrm{C}), 130.6(2 \mathrm{C}, \mathrm{CH}), 131.7$ $(\mathrm{CH}), 132.2(\mathrm{C}), 133.2(\mathrm{CH}), 134.5(2 \mathrm{C}, \mathrm{CH}), 135.2(\mathrm{C}), 138.2,138.3(\mathrm{CH}), 161.9$, 163.1, 170.6, 199.2 (C); IR (ATR): $\widetilde{v}=2994$ (w), $2919(\mathrm{w}), 2855$ (w), 1628(s), 1581 (s), 1412 (s), 1377 (s), 1218 (s), 1190 (m), 1090 (m), 994 (m), 815 (m), 666(m), 536 (w) cm ${ }^{-}$ ${ }^{1}$; GC-MS (EI, 70 eV): $m / z(\%): 444\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 31\right), 442\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 86\right), 396$ (100), 308 (10), 262 (40) 205 (10), 171 (10), 135 (42), 69 (50); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClO}_{5} \mathrm{~S}$ [M^{+}, $\left.{ }^{35} \mathrm{Cl}\right]: 442.06469$, found 442.06362 .

Ethyl-5-(2-hydroxybenzoyl)-3-(4-chlorothiophenoxy)salicylate(51f):

Starting with 3-formylchromone 50e ($500 \mathrm{mg}, 2.87$ mmol) 1,3-bis(silyl enol ether) $\mathbf{4 2 g}(12.01 \mathrm{~g}, 2.87 \mathrm{mmol})$, and $\mathrm{Me}_{3} \operatorname{SiOTf}(0.15 \mathrm{ml}, 0.86 \mathrm{mmol})$, $\mathbf{5 1 f}$ was isolated as a highly viscous oil ($385 \mathrm{mg}, 47 \%$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.38(\mathrm{q}, J=$ $\left.7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{dd}, J=0.9$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.18-7.43(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.09 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 11.57 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 11.85 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.0\left(\mathrm{CH}_{3}\right), 63.4\left(\mathrm{CH}_{2}\right), 113.4(\mathrm{C}), 119.5,119.6$ (CH), 119.7, 126.4, 130.0 (C), 130.6 (2C, CH), 131.7 (CH), 132.2 (C), 133.5 (CH), 134.5 (2C, CH), 135.2 (C), 137.3, 138.3 (CH), 163.2, 163.9, 170.5, 199.2 (C); IR (ATR): $\widetilde{v}=2979$ (w), 2906(w), 2871 (w), 1670(s), 1623 (s), 1575 (s), 1338 (s), 1236 (s), 1184 (s), 1091 (m), 987 (m), 816 (m), $792(\mathrm{~m}), 561$ (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%):430($\left.\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 36\right), 428\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 81\right), 382$ (100), 262 (16), 205 (9) 205 (10), 171 (11), 121 (71), 65 (14); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClO}_{5} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 428.04840, found 428.04797.

Methyl 5-(2hydroxy-5-chlorobenzoyl)-2-(thiophenoxy)benzoate(52):

Starting with 3-formylchromone 50a (417 mg, 2.0 mmol) 1-trimethylsilyloxy-3-thioaryloxy-1,3butadienes 48 ($562 \mathrm{mg}, 2.0 \mathrm{mmol}$), and $\mathrm{Me}_{3} \mathrm{SiOTf}$ $(0.11 \mathrm{ml}, 0.65 \mathrm{mmol}), 52$ was isolated as a highly viscous oil ($174 \mathrm{mg}, 22 \%$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.35-7.47 (m, 6 H, ArH), 7.53-7.57 (m, $2 \mathrm{H}, \mathrm{ArH}$), 8.28 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $11.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.5\left(\mathrm{CH}_{3}\right), 119.5(\mathrm{C}), 120.2(\mathrm{CH})$, 123.5, 125.9 (C), 126.6, 129.9 (CH), 130.1 (2C, CH), 130.8 (C), 131.7. 132.2, 132.3 (CH), 132.7 (C), $136.0(2 \mathrm{C}, \mathrm{CH}), 136.2(\mathrm{CH}), 150.1,161.5,165.8,198.4$ (C); IR (ATR): $\widetilde{v}=2952$ (w), 2922(w), 1720 (s), 1629 (s), 1582 (s), 1463 (s), 1310 (m), 1263 (s), 1046 (s), $952(\mathrm{~m}), 722(\mathrm{~s}), 643(\mathrm{~m}), 536(\mathrm{w}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 400\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}\right.$, 40), 398 ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 100$), 365 (44), 337 (33), 244 (33) 184 (23), 155 (27), 99 (13); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClO}_{4} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 398.03687$, found 398.03741.

General procedure for the synthesis of 7-hydroxy-6H-benzo[c]chromen-6-one(55): $\mathrm{Me}_{3} \operatorname{SiOTf}$ (1.3 equiv) was added to chromone (1.0 equiv) at $20^{\circ} \mathrm{C}$. After stirring for 1 h $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ was added, the solution was cooled to $0^{\circ} \mathrm{C}$ and the 1,3 -bis-silyl enol ether (1.3 equiv) was addd. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h and was subsequently poured into an aqueous solution of $\mathrm{HCl}(10 \%)$. The organic and aqueous layer was separated and lateral was extracted 3 times with 15 ml with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give crude product $54 . \mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv) was added to the solution of $\mathbf{5 4} \mathrm{in} \mathrm{EtOH}(10 \mathrm{ml})$ and the mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$. After this $\mathrm{HCl}(1 \mathrm{M})$ solution was added and extracted with EtOAc and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and crude product was purified by chromatography (silica gel, EtOAc / n-heptane).

8-Phenoxy-7-hydroxy-6 H -benzo[c]chromen-6-one(55a):

Starting with chromone 53 ($500 \mathrm{mg}, 3.42 \mathrm{mmol}$) 1,3bis(silyl enol ether) 42c ($1.62 \mathrm{~g}, 4.44 \mathrm{mmol}) \mathrm{Me}_{3} \mathrm{SiOTf}$ $(0.8 \mathrm{ml}, 4.44 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.95 \mathrm{ml}, 6.84 \mathrm{mmol})$, 55a was isolated as a colourless solid (728 mg, 70%),mp. $151{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.93(\mathrm{dd}, 2 \mathrm{H},, J=1.1,8.6 \mathrm{~Hz}$, ArH), 7.03 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.20-7.28 (m, $4 \mathrm{H}, \mathrm{ArH}$), 7.32-7.36 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.43 (distorted d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.86(\mathrm{dd}, J=1.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 11.42(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=107.5(\mathrm{C}), 112.2(\mathrm{CH}), 117.4(2 \mathrm{C}, \mathrm{CH}), 117.6$ $(\mathrm{CH}), 118.1(\mathrm{C}), 122.9,123.3,125.3,128.5(\mathrm{CH}), 129.7$ (2C, CH), $130.2(\mathrm{CH}), 130.5$, 143.6, 150.1, 153.9, 157.1, 165.3 (C); IR (KBr): $\widetilde{v}=3138(\mathrm{w}), 3070(\mathrm{w}), 2923(\mathrm{w})$, 1684(s), 1586 (s), 1481 (s), 1318 (m), 1220 (s), 1128 (s), 1081 (m), 869 (m), 756 (s), 717 (m), 456 (w) cm ${ }^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 304 ($\mathrm{M}^{+}, 100$), 287 (15), 199 (22), 171 (7) 115 (9), 77 (7), 51(4); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{4}[\mathrm{M}]^{+}: 304.07316$, found 304.07301.

8-Thiophenoxy-7-hydroxy-6H-benzo[c]chromen-6-one (55b):

Starting with chromone 53 ($310 \mathrm{mg}, 2.1 \mathrm{mmol}$) 1,3bis(silyl enol ether) $\mathbf{4 2 a}(1.05 \mathrm{~g}, 2.7 \mathrm{mmol}) \mathrm{Me}_{3} \operatorname{SiOTf}$ ($0.48 \mathrm{ml}, 2.7 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(0.58 \mathrm{ml}, 4.2 \mathrm{mmol})$, 55b was isolated as a colourless solid (461 mg , 68%),mp. $178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}$), 7.35-7.42 (m, $5 \mathrm{H}, \mathrm{ArH}$), 7.86 (dd, $J=1.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $11.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=105.9$ (C), 112.5, 117.6 (CH), 118.1 (C), 123.1 (CH), 124.3 (C), 125.3, 127.9 (CH), 129.4 (2C, CH), $130.6(\mathrm{CH}), 132.2$ (2C, CH), 132.9, 133.6 (C), 138.2 (CH), 150.4, 159.7, 165.4 (C); IR (KBr): $\widetilde{v}=3068$ (w), 3046 (w), 1673 (w), 1606(s), 1555 (m), 1422 (s), 1320 (m), 1271 (s), 1150 (s), 1025 (w), 830 (m), 759 (s), 691 (m), 456 (w) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 320 (M ${ }^{+}$, 100), 302 (5), 288 (5), 258 (4) 215 (3), 143 (5), 77 (3); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 320.05025$, found 320.05017.

General procedure for the synthesis of methyl 3-arylacetoacetates 59a-e:

The synthesis was carried out according to the procedure given for the synthesis 40(method B).

Methyl 4-(2-methoxyphenyl)acetoacetate (59c):

Starting with 2-(4-methoxyphenyl)acetyl chloride ($5.00 \mathrm{~g}, 27.2$ mmol) and methyl acetate ($2.4 \mathrm{~mL}, 29.9 \mathrm{mmol}$), $\mathbf{5 9} \mathbf{c}$ was isolated as a colorless oil $(2.90 \mathrm{~g}, 48 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 3.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.21(\mathrm{dd}, 1 \mathrm{H}, J=1.7$, $7.4 \mathrm{~Hz}, \mathrm{ArH}$), $7.32-7.37(\mathrm{dt}, 1 \mathrm{H}, J=1.7,8.0 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 42.7, $45.8\left(\mathrm{CH}_{2}\right), 50.0,53.2\left(\mathrm{CH}_{3}\right), 118.4,119.0(\mathrm{CH}), 121.7(\mathrm{C}), 126.8,129.2(\mathrm{CH})$ 155.3, 165.6, 198.8 (C). IR (neat, cm^{-1}): $\widetilde{v}=3005$ (w), 2953 (m), 2839 (w), 1749 (s), 1720 (s), 1602 (m), 1464 (s), 1317 (s), 1177 (s), 1027 (s), 756 (s), 519 (w). MS (EI, 70 $\mathrm{eV}): m / z(\%): 222\left(\mathrm{M}^{+}, 38\right), 148$ (37), 121 (100), 101 (10), 91 (75), 78 (18), 65 (30), 51 (11). Anal.: calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$: C 64.85, H 6.35; found: C 64.87, H 6.47.

Synthesis of silyl enol ethers (60c) :

Starting with 59c ($2.90 \mathrm{~g}, 13.0 \mathrm{mmol}$), NEt3 ($2.9 \mathrm{ml}, 20.8$ $\mathrm{mmol}), \mathrm{TMSCl}(2.9 \mathrm{ml}, 23.4 \mathrm{mmol})$ and benzene (35 ml), 60c was isolated as a yellow oil ($2.90 \mathrm{~g}, 75 \%$); ${ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.95(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.92-7.21$

Synthesis of 1,3-bis-silyl enol ether (61c):

Starting with 60c ($2.85 \mathrm{~g}, 9.66 \mathrm{mmol}$), LDA ($14.49 \mathrm{mmol}, 1.5$ equiv.), TMSCl ($2.2 \mathrm{ml}, 17.3 \mathrm{mmol}$) and THF (25 ml), 61c was isolated as a yellow oil ($2.91 \mathrm{~g}, 82 \%$); ${ }^{1} \mathrm{H}$ NMR (250 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=0.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 5.01(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 5.65(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.97-7.19(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$.

General procedure for the synthesis of biaryls 62:

The synthesis was carried out according to the procedure given for the synthesis 43.

Methyl 3-(2-methoxyphenyl)salicylate (62c):

Starting with $1,1,3,3$-tetramethoxy ($0.3 \mathrm{~mL}, 1.8 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 61c ($665 \mathrm{mg}, 1.8 \mathrm{mmol}$), and TMSOTf ($0.03 \mathrm{~mL}, 0.18 \mathrm{mmol}$), 62c was isolated as colourless solid ($158 \mathrm{mg}, 34 \%$), mp. $123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.76-6.92(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $7.10-7.26$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.33 (dd, $1 \mathrm{H}, J=1.4,7.1 \mathrm{~Hz}, \mathrm{ArH}$), 7.73 (dd, $1 \mathrm{H}, J=1.7,8.0$ $\mathrm{Hz}, \mathrm{ArH}), 10.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.3,55.7\left(\mathrm{CH}_{3}\right), 111.2$ $(\mathrm{CH}), 112.2(\mathrm{C}), 118.5,120.4(\mathrm{CH}) 126.3,127.6(\mathrm{C}), 129.1,129.2,131.3,137.5(\mathrm{CH})$, 157.0, 159.3, 170.9 (C). IR (KBr, cm^{-1}): $\widetilde{v}=3049$ (w), 2933 (w), 2835 (w), 1666 (s), 1597 (s), 1463 (s), 1367 (m), 1249 (s), 1152 (s), 1024 (s), 795 (m), 594 (w). MS (EI, 70 $\mathrm{eV}): m / z(\%): 258\left(\mathrm{M}^{+}, 100\right), 226(44), 209(40), 195$ (36), 181 (27), 139 (16), 97 (17), 57 (26). Anal.: calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$ (258): C 69.76, H 5.46; found: C 69.85, H 5.42.

General procedure for the synthesis of biaryls 63:

The reaction was carried out analogously to a known procedure used for the synthesis of 45.

Methyl 4,6-dimethyl-3-(2-methoxyphenyl)salicylate (63c):

Starting with 3-(siloxy)alk-2-en-1-one 44a ($500 \mathrm{mg}, 2.9$ mmol), 1,3-bis(silyl enol ether) 61c ($1.07 \mathrm{~g}, 2.9 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.31 \mathrm{~mL}, 2.9 \mathrm{mmol}), \mathbf{6 3 c}$ was isolated as a colourless solid (216 mg, 26\%), mp. $122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{OCH}_{3}\right), 6.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.95-7.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.29-7.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 11.50(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.4,25.8,54.0,57.4\left(\mathrm{CH}_{3}\right), 111.6(\mathrm{C})$, 112.1, 122.4, 126.2 (CH), 127.3, 127.7 (C), 130.7, 133.2 (CH), 141.6, 146.0, 158.8, 162.2, 174.3 (C). IR (KBr, cm^{-1}): $\widetilde{v}=2997$ (w), 2966 (w), 2833 (w), 1655 (s), 1449 (s), 1304 (s), 1257 (m), 1202 (s), 1048 (s), 1026 (m), 858 (w), 762 (s), 575 (w). MS (EI, 70 $\mathrm{eV}): m / z(\%): 286\left(\mathrm{M}^{+}, 61\right), 254$ (34), 239 (100), 223 (72), 181 (8), 165 (11), 127 (12), 69 (18). Anal.: calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$: C 71.31, H 6.34; found: C 70.99, H 6.92.

Methyl 4,6-dimethyl-5-chloro-3-(2-methoxyphenyl)salicylate (63d):

Starting with 3-(siloxy)alk-2-en-1-one 44c (500 mg, 2.4 mmol), 1,3-bis(silyl enol ether) 61c ($888 \mathrm{mg}, 2.4 \mathrm{mmol}$), and $\mathrm{TiCl}_{4}(0.26 \mathrm{~mL}, 2.4 \mathrm{mmol}), 63 \mathrm{~d}$ was isolated as a colourless solid ($217 \mathrm{mg}, 30 \%$), mp. $126^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.25-7.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.58-7.65(\mathrm{~m}, 1 \mathrm{H}$, ArH), $10.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.6,20.4,52.6,55.6\left(\mathrm{CH}_{3}\right)$, 111.4 (CH), 112.6 (C), 120.9 (CH), 125.5, 126.4, 127.5 (C), 129.5, 131.6 (CH), 136.9, 142.6, 157.2, 157.5, 171.8 (C). IR (KBr, cm^{-1}): $\widetilde{v}=3008$ (w), 2936 (w), 2840 (w), 1653 (s), 11595 (s), 1443 (s), 1362 (s), 1215 (s), 2024 (s), 959 (m), 811 (w), 755 (s), 610 (w). MS (EI, 70 eV): $m / z(\%): 322\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 13\right), 320\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 44\right), 287(14), 273(100), 257$ (39) , 165 (12), 144 (8), 69 (20). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{4}\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]$: 320.08069 ; found 320.08099 .

Methyl 4,6-dimethyl-5-chloro-3-(4-methoxyphenyl)salicylate (63e):

Starting with 3-(siloxy)alk-2-en-1-one 44c (450 $\mathrm{mg}, 2.2 \mathrm{mmol}$), 1,3-bis(silyl enol ether) 61b (806 $\mathrm{mg}, 2.2 \mathrm{mmol}$), and TiCl_{4} ($0.241 \mathrm{~mL}, 2.2 \mathrm{mmol}$), 63e was isolated as a colourless solid (241 mg , 38%), mp. $94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89(\mathrm{~d}$,
$2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 10.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (62 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.0,19.4\left(\mathrm{CH}_{3}\right), 51.4,54.2\left(\mathrm{OCH}_{3}\right), 111.5(\mathrm{C}), 112.9(2 \mathrm{C}, \mathrm{CH})$, 126.8, 127.6, 128.3 (C), 129.9 (2C, CH), 135.3, 140.8, 156.1, 157.8(C), 170.5 (C=O). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\widetilde{v}=3430$ (m), 3050 (w), 3002 (w), 2959 (m), 2931 (m), 2837 (m), 1653 (s), 1607 (m), 1572 (w), 1514 (s), 1444 (s), 1373 (m), 1361 (s), 1297 (s), 1253(s), 1220(s), 1176 (m), 1092 (m), 1036 (m) 810(m) $686(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): m/z (\%): 322 $\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 16\right), 320\left(\mathrm{M}^{+}, 47\right), 288$ (100), 260 (11), 245 (27), 225 (29), 181(7), 152 (12). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Cl}\left[\mathrm{M},{ }^{35} \mathrm{Cl}\right]: 320.08099$; found 320.08088 .

Methyl 4,6-dimethyl-3-(4-methoxyphenyl)salicylate (63f):

Starting with 3-(siloxy)alk-2-en-1-one 44a (284 mg , 1.65 mmol), 1,3-bis(silyl enol ether) 61b (604 mg , $1.65 \mathrm{mmol})$, and $\mathrm{TiCl}_{4}(0.18 \mathrm{~mL}, 1.65 \mathrm{mmol}), 63 \mathrm{f}$ was isolated colourless solid ($173 \mathrm{mg}, 37 \%$), mp. 66 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.06(\mathrm{~d}, 2$ $\mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 11.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.7,22.9$ $\left(\mathrm{CH}_{3}\right), 51.0,54.1\left(\mathrm{OCH}_{3}\right), 108.7(\mathrm{C}), 112.7(2 \mathrm{C}, \mathrm{CH}), 123.5(\mathrm{CH}), 126.9(\mathrm{C}), 127.8(\mathrm{C})$, $129.9(2 \mathrm{C}, \mathrm{CH}), 138.5,142.6,157.5,159.5(\mathrm{C}), 171.5(\mathrm{C}=\mathrm{O})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3080$ (w), 3061 (w), 3023 (w), 2957 (m), 1725 (w), 1650 (s), 1613(m), 1558 (w), 1430 (m), 1392 (m), 1360 (m), 1295 (s , 1255(s), 1197 (s$), 1087$ (m), 1066 (m), 955 (m), 807(s), 767 (s), 700 (s), $570(\mathrm{~m}) \mathrm{cm}^{-1}$. GC-MS (EI, 70 eV): m/z (\%): 286 (M ${ }^{+}, 55$), 254 (100), 226 (11), 211 (55), 153 (8), 127 (11). HRMS (EI, 70 eV): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 286.11996; found: 286.11977 .

General procedure for the synthesis of azaxanthones 68a-al and dibenzo $[b, d]$ pyran-6-ones 69a-d: To neat 3-cyanochromone 65 (1.0 equiv.) was added $\mathrm{Me}_{3} \operatorname{SiOTf}$ (1.3 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $20{ }^{\circ} \mathrm{C}$. After stirring for $1 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1,3-bis(trimethylsilyloxy)-1,3-butadiene 2 (1.3 equiv.) were added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ and subsequently poured into hydrochloric acid (10\%). The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3
x 100 mL$)$. The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was filtered through a pad of silica gel $(\mathrm{EtOAc} /$ hexane $=5: 1)$ to give crude $\mathbf{6 7 a - a l}$. To an ethanol solution $(10 \mathrm{~mL})$ of $\mathbf{6 7 a - a l}$ was added NEt_{3} (2.0 equiv.) and the solution was stirred for 12 h at $20^{\circ} \mathrm{C}$. To the solution were subsequently added an aqueous solution of hydrochloric acid (1 M) and ether (50 mL). The organic and the aqueous layer were separated and the latter was extracted with ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexane).

Methyl 2-(3-allyl-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl)acetate (68t):

Starting with 3-cyanochromone (65a) (400 mg, 2.33 $\mathrm{mmol}), \mathbf{6 6 j}(917 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(0.54 \mathrm{~mL}$, $3.0 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(0.6 \mathrm{~mL}, 4.66 \mathrm{mmol})$, 68 t was isolated as a colourless solid ($275 \mathrm{mg}, 38 \%$), mp. $=$ $124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=3.48\left(\mathrm{~d},{ }^{3} J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3.68$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.98-5.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.86-5.96(\mathrm{~m}, 1 \mathrm{H}$, CHCH_{2}), $7.32-7.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.53\left(\mathrm{dd},{ }^{3} J=8.5 \mathrm{~Hz},{ }^{4} J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$), 7.67-7.74 (m, $1 \mathrm{H}, \mathrm{ArH}$), 8.23 (dd, ${ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.44 (s, 1 H , ArH). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.8,41.5\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{3}\right), 115.5(\mathrm{C}), 117.8$ $\left(\mathrm{CH}_{2}\right), 118.4(\mathrm{CH}), 121.5(\mathrm{C}), 124.5,126.6(\mathrm{CH}), 132.0(\mathrm{C}), 134.5,135.5,138.1(\mathrm{CH})$, 155.6, 158.3, 158.8 (C), 169.6, 177.4 (C=O). IR (KBr, cm ${ }^{-1}$): $\widetilde{v}=3065$ (w), 2995 (w), 2841 (w), 1738 (s), 1668 (s), 1609 (s), 1559 (m), 1429 (s), 1344 (s), 1269 (m), 1190 (s), 1165 (m), 997 (m), 916 (w), 766 (s), $670(\mathrm{w})$. GC-MS (EI, 70 eV$): m / z(\%)=309\left(\mathrm{M}^{+}\right.$, 85), 278 (11), 249 (100), 236 (35), 220 (16), 191 (5), 152 (5), 124 (6) 77 (8), 51 (3). Anal: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$: C 69.89, H 4.89, N 4.53; found: C 6980, H 4.97, N 4.30.

Methyl 2-(3-allyl-7-chloro-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl)acetate (68u):

Starting with 65e ($200 \mathrm{mg}, 0.97 \mathrm{mmol}$), 66j ($380 \mathrm{mg}, 1.26 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(0.22 \mathrm{~mL}, 1.26$ mmol), and $\mathrm{NEt}_{3}(0.27 \mathrm{~mL}, 1.94 \mathrm{mmol})$, 68 u
was isolated as a colourless solid ($100 \mathrm{mg}, 30 \%$), mp. $=177^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250\right.$ $\mathrm{MHz}): \delta=3.64\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 5.14-5.34 (m, $2 \mathrm{H}, \mathrm{CHCH}_{2}$), 5.98-6.12 (m, $1 \mathrm{H}, \mathrm{CHCH}_{2}$), $7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), $7.81\left(\mathrm{dd},{ }^{3} J=8.5 \mathrm{~Hz},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.36\left(\mathrm{~d},{ }^{4} J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.59$ (s, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=35.8,41.5\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{3}\right), 115.2(\mathrm{C})$, $117.9\left(\mathrm{CH}_{2}\right), 120.0(\mathrm{CH}), 122.5(\mathrm{C}), 126.0(\mathrm{CH}), 130.4,132.4(\mathrm{C}), 134.3,135.6,138.1$ (CH), 154.0, 158.2, 159.2 (C), 169.5, 176.4 (C=O). IR (KBr, cm^{-1}): $\widetilde{v}=3052(\mathrm{w}), 2999$ (w), 2950 (w), 1738 (s), 1667 (s), 1608 (s), 1475 (s), 1348 (s), 1311 (m), 1272 (s), 1169 (s), 1137 (m), 1000 (m), 639 (w). GC-MS (EI, 70 eV): $m / z(\%)=345\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 20\right), 343$ $\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 60\right), 285\left({ }^{37} \mathrm{Cl}, 43\right), 283\left({ }^{35} \mathrm{Cl}, 100\right), 270(29), 248$ (10), 219 (7), 178 (10) 149 (13), 97 (19), 69 (55), 57 (50). Anal: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNO}_{4}$: C 62.89, H 4.10, N 4.07; found: C 62.86, H 4.31, N 3.60.

Methyl 2-[7-chloro-3-(2-methoxyphenyl)-5-oxo-5H-chromeno[2,3-b]pyrid-2-

 yl]acetate (68x):

Starting with 65e (200 mg, 0.97 mmol), 66m (465 $\mathrm{mg}, 1.26 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(0.22 \mathrm{~mL}, 1.26 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(0.27 \mathrm{~mL}, 1.94 \mathrm{mmol}), 68 \mathrm{x}$ was isolated as a colourless solid ($144 \mathrm{mg}, 40 \%$), mp. $=172{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 6.91-7.02 (m, 2 H, ArH), 7.15 (dd, $\left.{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.33-7.39$ (m, $1 \mathrm{H}, \mathrm{ArH}$), $7.49\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.64\left(\mathrm{dd},{ }^{3} J=8.8 \mathrm{~Hz},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArH), $8.19\left(\mathrm{~d},{ }^{4} J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=42.2\left(\mathrm{CH}_{2}\right), 52.1,52.3\left(\mathrm{CH}_{3}\right), 110.8(\mathrm{CH}), 114.9(\mathrm{C}), 120.2,121.0(\mathrm{CH}), 122.5,125.5$ (C), 125.9, 130.4, 131.3 (CH), 132.8 (C), 135.5, $139.0(\mathrm{CH}), 154.0,156.2,158.7,159.6$ (C), 169.8, 176.4 (C=O). IR (KBr, cm^{-1}): $\widetilde{v}=3067$ (w), 2985 (w), 2939 (w), 1727 (s), 1662 (s), 1597 (s), 1471 (s), 1432 (s), 1309 (m), 1259 (s), 1025 (m), 828 (m), 631 (w), 538 (w). GC-MS (EI, 70 eV): $m / z(\%):$ GC-MS (EI, 70 eV$): m / z(\%)=411\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 8\right)$, $409\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 26\right), 338\left({ }^{37} \mathrm{Cl}, 27\right), 336\left({ }^{35} \mathrm{Cl}, 100\right), 306$ (9), 243 (2), 168 (3), 97 (10) 83 (13), 71 (11), 69 (20), 57 (21), 44 (25). HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ClNO}_{5}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$: 409.07189, found 409.07115.

Methyl 2-[7-methyl-3-(2-methoxyphenyl)-5-oxo-5H-chromeno[2,3-b]pyrid-2-

 yl]acetate (68y):

Starting with 65b ($200 \mathrm{mg}, 1.08 \mathrm{mmol}$), 66m (516 $\mathrm{mg}, 1.4 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(0.25 \mathrm{~mL}, 1.4 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(0.3 \mathrm{~mL}, 2.16 \mathrm{mmol}), \mathbf{6 8 y}$ was isolated as a colourless solid ($134 \mathrm{mg}, 32 \%$), mp. $=165^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.90-7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.15\left(\mathrm{dd},{ }^{3} J=7.4 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArH}$), 7.32-7.39 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.43-7.53 (m, $2 \mathrm{H}, \mathrm{ArH}$), 8.02 (s, $1 \mathrm{H}, \mathrm{ArH}$), 8.46 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=20.8\left(\mathrm{CH}_{3}\right), 42.0\left(\mathrm{CH}_{2}\right), 52.0,52.3\left(\mathrm{CH}_{3}\right)$, 110.7 (CH), 115.2 (C), 118.2, 120.9 (CH), 121.3, 125.8 (C), 126.0, 130.2, 131.4 (CH), 132.2, 134.4 (C), 136.7, $138.9(\mathrm{CH})$, 153.9, 156.2, 159.0 (C), 169.9, 177.6 (C=O). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\widetilde{v}=3058$ (w), 3046 (w), 2923 (w), 1742 (s), 1655 (s), 1488 (s), 1432 (s), 1253 (m), 1147 (s), 1020 (s), 834 (m), 794 (m), 630 (w), 542 (w). GC-MS (EI, 70 eV): $m / z(\%)=389\left(\mathrm{M}^{+}, 35\right), 357(9), 316(100), 286(11), 149(8), 111$ (18), 97 (32), 83 (41), 57 (65), 44 (90). HRMS (EI): calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{5}[\mathrm{M}]^{+}: 389.12597$, found 389.12577.

Ethyl 2-(5-oxo-3-phenoxy-5H-chromeno[2,3-b]pyrid-2-yl)acetate (68aa):

Starting with $\mathbf{6 5 a}(400 \mathrm{mg}, 2.62 \mathrm{mmol}), \mathbf{6 6 o}(1.25 \mathrm{~g}$, $3.41 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(0.62 \mathrm{~mL}, 3.41 \mathrm{mmol}), \mathrm{NEt}_{3}$ ($0.72 \mathrm{~mL}, 5.24 \mathrm{mmol}$), 68aa was isolated as a colourless solid ($595 \mathrm{mg}, 66 \%$), mp. $=144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=1.13\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.01\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09\left(\mathrm{q},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.98-7.00(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.08-7.15 (m, 1 H, ArH), 7.26-7.33 (m, 3 H, ArH), $7.49\left(\mathrm{dd},{ }^{3} J=8.5 \mathrm{~Hz},{ }^{4} J=0.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.63-7.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.15\left(\mathrm{dd},{ }^{3} J=8.0 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 39.5\left(\mathrm{CH}_{2}\right), 61.3$ $\left(\mathrm{OCH}_{2}\right), 116.1(\mathrm{C}), 118.3(\mathrm{CH}), 119.2(2 \mathrm{C}, \mathrm{CH}), 120.9(\mathrm{C}), 123.1,124.5,124.8,126.5$ $(\mathrm{CH}), 130.2(2 \mathrm{C}, \mathrm{CH}), 135.5(\mathrm{CH}), 150.6,152.5,154.9,155.5,155.7(\mathrm{C}), 169.0,177.1$
(C=O). IR (KBr, cm ${ }^{-1}$): $\widetilde{v}=3072$ (w), 2985 (w), 2937 (w), 1730 (s), 1664 (s), 1470 (s), 1309 (s , 1220 (s$), 1119$ (m), 1024 (m), 771 (s$), 757$ (m), 689 (m), 498 (w). GC-MS (EI, $70 \mathrm{eV}): m / z(\%)=375\left(\mathrm{M}^{+}, 100\right), 302(10), 282(12), 254(88), 177$ (44) 153 (13), 127 (54), 91(10), 51 (7). Anal: calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5}$: C 70.39, H 4.56, N 3.73; found: C 69.78, H 4.46, N 3.55.

Ethyl 2-(7,9-dichloro-5-oxo-3-phenoxy-5H-chromeno[2,3-b]pyrid-2-yl)acetate

 (68ab):

Starting with $\mathbf{6 5 f}$ ($125 \mathrm{mg}, 0.52 \mathrm{mmol}$), $\mathbf{6 6 0}$ ($247 \mathrm{mg}, 0.67 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(0.12 \mathrm{~mL}, 0.67$ $\mathrm{mmol})$, and $\mathrm{NEt}_{3}(0.14 \mathrm{~mL}, 1.04 \mathrm{mmol})$, 68ab was isolated as a colourless solid $(102 \mathrm{mg}$, $44 \%), \mathrm{mp} .=147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta=1.17\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.07$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.09\left(\mathrm{q},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.17(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.35 (m, 2 H, ArH), 7.74 (d, ${ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.05(\mathrm{~d}$, $\left.{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1\left(\mathrm{CH}_{3}\right), 38.6\left(\mathrm{CH}_{2}\right), 60.4$ $\left(\mathrm{OCH}_{2}\right), 114.5(\mathrm{C}), 118.6(2 \mathrm{C}, \mathrm{CH}), 121.1(\mathrm{CH}), 121.7(\mathrm{C}), 123.5(\mathrm{CH}), 123.6(\mathrm{C}), 124.2$ $(\mathrm{CH}), 129.0(\mathrm{C}), 129.4(2 \mathrm{C}, \mathrm{CH}), 134.4(\mathrm{CH}), 149.0,150.6,152.4,153.2,154.3(\mathrm{C})$, 167.9, 174.7 (C=O). IR (ATR, cm^{-1}): $\widetilde{v}=3073$ (w), 2983 (w), 2916 (w), 1720 (s), 1671 (s), 1423 (s , 1225 (s$), 1192$ (s$), 1120$ (m), 1024 (m), 991 (m), 802 (m), 785 (s$), 692(\mathrm{~m})$. GC-MS (EI, 70 eV): $m / z(\%)=447\left([\mathrm{M}]^{+},\left[2 \times{ }^{37} \mathrm{Cl}\right], 1\right), 445\left([\mathrm{M}]{ }^{+},\left[{ }^{37} \mathrm{Cl}\right],\left[{ }^{35} \mathrm{Cl}\right], 2\right), 443$ ([M] $\left.{ }^{+},\left[2 \times{ }^{35} \mathrm{Cl}\right], 4\right), 400$ (3), 398 (4), 352 (25), 350 (38), 324 (64), 322 (100), 294 (15), 266 (5), 174 (2), 94 (5), 65 (7). HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{5}$ ([M] ${ }^{+},\left[2 \times{ }^{35} \mathrm{Cl}\right]$): 443.03114 , found 343.03218 .

Methyl 2-[3-(4-chlorophenoxy)-7,8-dimethyl-5-oxo-5H-chromeno[2,3-b]pyrid-2yl]acetate (68ac):

Starting with 65h ($400 \mathrm{mg}, 2.0 \mathrm{mmol}$), 66p $(1.00 \mathrm{~g}, 2.61 \mathrm{mmol}), \mathrm{Me}_{3} \operatorname{SiOTf}(0.47 \mathrm{~mL}, 2.61$ mmol), and $\mathrm{NEt}_{3}(0.55 \mathrm{~mL}, 4.0 \mathrm{mmol})$, 68ac was isolated as a colourless solid $(280 \mathrm{mg}$,
$33 \%), \mathrm{mp} .=155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.91\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.26$ (d, ${ }^{3} J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.86 (s, $1 \mathrm{H}, \mathrm{ArH}$), 7.95 (s, $1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=19.1,20.6\left(\mathrm{CH}_{3}\right), 39.2\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{OCH}_{3}\right), 61.5\left(\mathrm{OCH}_{2}\right), 116.3,118.4(\mathrm{C})$, $118.7(\mathrm{CH}), 120.4(2 \mathrm{C}, \mathrm{CH}), 123.6,126.1(\mathrm{CH}), 129.9(\mathrm{C}), 130.0(2 \mathrm{C}, \mathrm{CH}), 133.9,146.6$, $149.9,151.8,153.9,154.0,154.5(\mathrm{C}), 169.5,176.7(\mathrm{C}=\mathrm{O}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=$ 3051(w), 2956 (w), 2847 (w), 1730 (s), 1607 (s), 1471 (s), 1410 (s), 1318 (s), 1209 (s), 1145 (s), 1087 (s), 994 (m), 873 (m), 672 (w). GC-MS (EI, 70 eV): m/z (\%) = $425\left(\mathrm{M}^{+}\right.$, $\left.{ }^{37} \mathrm{Cl}, 1\right), 423\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 3\right), 392$ (1), 364 (1), 296 (100), 266 (7), 238 (4), 127 (1), 99 (2). HRMS (EI): calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClNO}_{5}\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right): 423.08620$, found 423.08680 .

Methyl 2-[7,9-dichloro-3-(4-methylphenoxy)-5-oxo-5H-chromeno[2,3-b]pyrid-2-

 yl]acetate (68ad):

Starting with 65f ($400 \mathrm{mg}, 1.66 \mathrm{mmol}$), 66q (797 $\mathrm{mg}, 2.16 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(0.39 \mathrm{~mL}, 2.16$ mmol), and $\mathrm{NEt}_{3}(0.6 \mathrm{~mL}, 4.32 \mathrm{mmol})$, 68ad was isolated as a colourless solid ($294 \mathrm{mg}, 42 \%$), mp. $=194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=2.31$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $6.89\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.14\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.74\left(\mathrm{~d},{ }^{4} J=2.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.05\left(\mathrm{~d},,^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right) .{ }^{13} \mathrm{C}$ NMR (62 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=20.1\left(\mathrm{CH}_{3}\right), 39.3\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{OCH}_{3}\right), 115.5(\mathrm{C}), 119.6(2 \mathrm{C}, \mathrm{CH}), 121.5$ $(\mathrm{CH}), 122.6(\mathrm{C}), 124.5(\mathrm{CH}), 124.5,130.0(\mathrm{C}), 130.9(2 \mathrm{C}, \mathrm{CH}), 135.1(\mathrm{C}), 135.3(\mathrm{CH})$, $150.0,152.1,152.8,152.9,154.0(\mathrm{C}), 169.4,175.7(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \widetilde{v}=3068$ (w), 2964 (w), 2924 (w), 1728 (s), 1666 (s), 1508 (s), 1429 (s), 1396 (s), 1272 (m), 1172 (m), $1016(\mathrm{~m}), 787(\mathrm{~m}), 718(\mathrm{w}), 527(\mathrm{w})$. GC-MS (EI, 70 eV$): m / z(\%)=447\left([\mathrm{M}]^{+}\right.$, $\left.\left.\left[2 \times{ }^{37} \mathrm{Cl}\right], 7\right), 445\left([\mathrm{M}]^{+},\left[{ }^{37} \mathrm{Cl}\right],\left[{ }^{35} \mathrm{Cl}\right], 47\right), 443\left([\mathrm{M}]^{+},\left[2 \times{ }^{35} \mathrm{Cl}\right], 7\right), 77\right), 386$ (17), 384 (26), 311 (13), 266 (12), 239 (4), 149 (7), 105 (12), 97 (17), 84 (10), 71 (25), 44 (100). HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{5}$ ([M] $\left.]^{+},\left[2 \times{ }^{35} \mathrm{Cl}\right]\right)$: 443.03085 , found 343.03218.

Ethyl 2-[5-oxo-3-(phenylsulfanyl)-5H-chromeno[2,3-b]pyrid-2-yl]acetate (68ae):

Starting with 65a (400 mg, 2.33 mmol), 66r (1.18 g , 3.11 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(0.56 \mathrm{~mL}, 3.11 \mathrm{mmol})$, and NEt_{3} ($0.64 \mathrm{~mL}, 4.66 \mathrm{mmol}$), 68ae was isolated as a colourless solid ($465 \mathrm{mg}, 51 \%$), mp. $=88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right): \delta=1.30\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.27\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.04-7.13$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), $7.24-7.32$ (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.47 (dd, ${ }^{3} J=8.3 \mathrm{~Hz},{ }^{4} J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.62-7.69 (m, $1 \mathrm{H}, \mathrm{ArH}), 8.16\left(\mathrm{dd},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 9.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 40.0\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{OCH}_{2}\right), 114.6(\mathrm{C}), 118.6(\mathrm{CH})$, 121.6, 123.1 (C), 125.1, 126.7, $127.0(\mathrm{CH}), 128.8(2 \mathrm{C}, \mathrm{CH}), 131.0(2 \mathrm{C}, \mathrm{CH}), 134.4$, 134.9 (C), 135.9, $141.0(\mathrm{CH}), 155.5,164.6(\mathrm{C}), 165.4,176.9(\mathrm{C}=\mathrm{O}) . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \widetilde{v}$ = 3074 (w), 2982 (w), 2930 (w), 1725 (s), 1674 (s), 1600 (s), 1551 (m), 1310 (m), 1264 (s), 1159 (m), 765 (m), 689 (m), 528 (w), 508 (w). GC-MS (EI, 70 eV): m/z (\%) = 391 $\left(\mathrm{M}^{+}, 100\right), 58$ (10), 345 (40), 282 (13), 254 (94), 226 (17), 196 (12), 170 (4), 109 (13), 65 (8). HRMS (EI): calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 391.08738$, found 391.08728.

Ethyl 2-\{7,9-dichloro-3-[(4-methoxyphenyl)sulfanyl]-5-oxo-5H-chromeno[2,3-blpyrid-2-yl\}acetate (68ah):

Starting with $\mathbf{6 5 f}(400 \mathrm{mg}, 1.66 \mathrm{mmol}), \mathbf{6 6 u}$ ($891 \mathrm{mg}, 2.16 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(0.39 \mathrm{~mL}$, 2.16 mmol), and $\mathrm{NEt}_{3}(0.6 \mathrm{~mL}, 4.32 \mathrm{mmol})$, 68ah was isolated as a colourless solid (366 $\mathrm{mg}, 45 \%)$, mp. $=153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $250 \mathrm{MHz}): \delta=1.28\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.23\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.91\left(\mathrm{~d},{ }^{3} J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.41\left(\mathrm{~d},{ }^{3} J=8.9 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{ArH}), 7.77\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.06\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.20(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.1\left(\mathrm{CH}_{3}\right), 42.5\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 61.5$ $\left(\mathrm{OCH}_{2}\right), 115.3(\mathrm{C}), 115.6(2 \mathrm{C}, \mathrm{CH}), 121.5,123.2(\mathrm{C}), 124.5(\mathrm{CH}), 130.1,134.8,135.1$ (C), $135.4(\mathrm{CH}), 135.5(2 \mathrm{C}, \mathrm{CH}), 137.2(\mathrm{CH}), 149.9,157.3,159.0,160.6(\mathrm{C}), 168.7$, 175.2 (C=O). IR (KBr, cm^{-1}): $\widetilde{v}=3070$ (w), 2985 (w), 2836 (w), 1727 (s), 1668 (s$)$, 1591 (s), 1413 (s), 1387 (s), 1253 (s), 1176 (s), 1024 (s), 830 (m), 787 (m), 523 (w). GC-

MS (EI, 70 eV$): m / z(\%)=493\left([\mathrm{M}]^{+},\left[2 \times{ }^{37} \mathrm{Cl}\right], 7\right), 491\left([\mathrm{M}]^{+},\left[{ }^{37} \mathrm{Cl}\right],\left[{ }^{35} \mathrm{Cl}\right], 32\right), 489$ ([M] $\left.{ }^{+},\left[2 \times{ }^{35} \mathrm{Cl}\right], 46\right), 419$ (10), 417 (17), 384 (13), 311 (8), 266 (8), 207 (3), 97 (15), 85 (11), 84 (10), 57 (34), 44 (100). Anal: calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}$: C 56.34, H 3.49, N 2.86; found: C 56.33, H 3.46, N 2.87 .

Manuscript in preparation

The following experimental data represent unpublished results from different projects.

Synthesis of 3-[2-oxo-1- (4-methylphenylsulfonyl) propylidene] -2- benzofuran -1one (70):

Starting with phthaloyl dichloride ($0.18 \mathrm{ml}, 1.0 \mathrm{mmol}$), 2(siloxy) -1-propenyl sulfone 71 ($300 \mathrm{mg}, 1.0 \mathrm{mmol}$), TiCl_{4} ($0.11 \mathrm{ml}, 1.0 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml}), 70$ was isolated as a highly viscous oil ($90 \mathrm{mg}, 25 \%$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.25-$ 7.29(m, $2 \mathrm{H}, \mathrm{ArH}$), 7.66-7.72 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.81-7.94 (m, $3 \mathrm{H}, \mathrm{ArH}$), 8.83-8.87 (m, 1 H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.0,33.2\left(\mathrm{CH}_{3}\right), 126.3(\mathrm{C}), 126.6$ $(\mathrm{CH}), 126.9(\mathrm{C}) 128.2(2 \mathrm{C}, \mathrm{CH}), 129.0(\mathrm{CH}), 130.3(2 \mathrm{C}, \mathrm{CH}), 133.7(\mathrm{CH}), 134.7,136.1$, 138.4, 146.0, 152.0, 163.8, 195.0(C); IR (KBr): $\widetilde{v}=3128$ (w), 2923 (m), 2853 (w), 1794 (s), 1701 (s), 1627 (s), 1594 (m), 1572 (m), 1325 (s), 1306 (m), 1153 (s), 701 (m) cm ${ }^{-1}$; GC-MS (CI, 70 eV): $m / z(\%): 343$ ([M+H] ${ }^{+}$, 40), 301 (100), 278 (20), 236 (30), 155 (6); HRMS (ESI): calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+1]^{+}\right) 342.05565$, found 342.05513 .

Synthesis of (E) Ethyl 2-[4-hydroxy-3-phenoxy-5-oxo-2(5H)-furanylidene]acetate (72):

$\delta=14.1\left(\mathrm{CH}_{3}\right), 61.2\left(\mathrm{CH}_{2}\right), 96.3(\mathrm{CH}), 117.2(2 \mathrm{C}, \mathrm{CH}), 124.7(\mathrm{CH}), 128.3(\mathrm{C}), 129.7$ (2C, CH), 137.0, 151.6, 154.3, 163.7, 163.9 (C); IR (ATR): $\widetilde{v}=3281(\mathrm{~m}), 2980(\mathrm{w})$, 2869 (w), 1778 (s), 1663 (s), 1489 (m), 1312 (s), 1183 (s), 1021 (s), 836 (m), 748 (s), 633 (w), 555 (w) cm ${ }^{-1}$; GC-MS (CI): $m / z(\%): 277$ ([M + H] $\left.{ }^{+}, 100\right), 248$ (10), 230 (23), 203
(43) 174 (4), 147 (4), 105 (8); HRMS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$,: 277.07021, found 277.07066.

Synthesis of (E) Methyl 2-[4-hydroxy-3-(4-methylphenoxy)-5-oxo-2(5H)furanylidene]acetate (73):

O_OMe Starting with oxalyl chloride ($0.15 \mathrm{ml}, 1.75 \mathrm{mmol}$) 1,3-bis(silyl enol ether) 42e ($644 \mathrm{mg}, 1.75 \mathrm{mmol}$), TMSOTf ($0.11 \mathrm{ml}, 0.52 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35), 73 was isolated as a highly viscous oil ($348 \mathrm{mg}, 72 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.08$ (distorted d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 20.7, $52.0\left(\mathrm{CH}_{3}\right), 96.2(\mathrm{CH}), 117.3(2 \mathrm{C}, \mathrm{CH}), 127.2(\mathrm{C}), 130.1(2 \mathrm{C}$, CH), 134.6, 137.5, 151.4, 152.1, 163.7, 164.0 (C); IR (ATR): $\widetilde{v}=3343(\mathrm{~m}), 3029(\mathrm{w})$, 2872 (w), 1776 (m), 1688 (s), 1504 (m), 1317 (s), 1283 (m), 1201 (s), 1029 (s), 821 (m), 696 (w), $535(\mathrm{w}) \mathrm{cm}^{-1}$; GC-MS (CI): $m / z(\%): 277$ ([M + H $\left.]^{+}, 100\right), 249$ (28), 205 (12), 181 (6) 127 (29), 80 (27), 69 (38); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}[\mathrm{M}]^{+}: 276.06329$, found 276.06284 .

(E) Methyl 2-[4-hydroxy-3-(2-methoxyphenyl)-5-oxo-2(5H)-furanylidene]acetate

 (74): $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.36-7.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $51.8,55.6\left(\mathrm{CH}_{3}\right), 98.0,112.2(\mathrm{CH}), 116.3,121.4(\mathrm{C}), 121.7,130.9,131.4(\mathrm{CH}), 143.4$, 155.8, 156.3, 163.2, 164.2 (C); IR (ATR): $\widetilde{v}=3337$ (w), 3077 (w), 2839 (w), 1738 (m), 1492 (m), 1435 (s), 1239 (s$), 1134$ (s$), 1013$ (s$), 928(\mathrm{~m}), 754$ (s$), 685$ (w), 572 (w) cm^{-1}; GC-MS (EI, 70 eV): m/z (\%): 277 (M ${ }^{+}$, 20), 248 (34), 206 (100), 181 (6) 148 (57), 121 (72), 69 (68); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}[\mathrm{M}]^{+}: 276.06333$, found 276.06284.

Dimethyl 4,6-dihydroxy-3-phenoxyphthalate (75):

Starting with dimethyl acetylene dicarboxylate $(0.3 \mathrm{ml}, 2.44$ mmol) 1,3-bis(silyl enol ether) 42c ($893 \mathrm{mg}, 2.44 \mathrm{mmol}$), 75 was isolated as a highly viscous oil ($140 \mathrm{mg}, 18 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.78-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.94-7.00$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}$), 7.16-7.23 (m, $3 \mathrm{H}, \mathrm{ArH}$), $11.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.4,52.7\left(\mathrm{CH}_{3}\right), 102.1(\mathrm{C}), 105.4(\mathrm{CH}), 115.2(2 \mathrm{C}, \mathrm{CH}), 123.1(\mathrm{CH}), 129.7(2 \mathrm{C}$, CH), 130.1, 132.0, 155.3, 157.4, 161.2, 166.1, 168.7 (C); IR (ATR): $\widetilde{v}=3040$ (w), 2953 (w), 2849 (w), 1723 (m), 1667 (s), 1489 (s), 1437 (s), 1287 (s), 1195(s), 960(m), 749 (s), $688(\mathrm{~m}), 536(\mathrm{w}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m/z (\%): 318 ($\mathrm{M}^{+}, 100$), 286 (76), 255 (91), 228 (20) 170 (7), 105 (30), 69 (21); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{7}[\mathrm{M}]^{+}$: 318.07354, found 318.07340 .

Synthesis of (Z) Ethyl 2-chloro-2-dihydro-2(3H)-furanylideneacetate (76):

Starting with ethyl-2-chloro acetoacetate ($5.0 \mathrm{ml}, 36.1 \mathrm{mmol}$), 1-bromo-2-chloroethane ($3.6 \mathrm{ml}, 43.3 \mathrm{mmol}$), 76 was isolated as colourless solid (1.8 g, 26\%) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.31\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.35(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.52\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.3\left(\mathrm{CH}_{3}\right)$, 24.6, 32.0, 61.0, $73.0\left(\mathrm{CH}_{2}\right), 95.5,164.4,170.0(\mathrm{C}) ; \mathrm{IR}(\mathrm{ATR}): \widetilde{v}=2994(\mathrm{w}), 2935(\mathrm{w})$, 2875 (w), 1690 (s), 1611 (s), 1422 (m), 1393 (m), 1294 (s), 1190(s), 1069 (s), 1036 (m), $953(\mathrm{~m}), 872(\mathrm{w}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV$): m / z(\%): 192\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 15\right), 190\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$, 47), 162 (18), 144 (100), 120 (15) 103 (46), 69 (19), 53 (14); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClO}_{3}[\mathrm{M}]^{+}: 190.03920$, found 190.03912 .

Figure 6.1. Ortep plot of 76

Synthesis of (E) Ethyl 2-[3-bromodihydro-2(3H)-furanylidene]-2-chloroacetate (77):

Starting with 76 ($930 \mathrm{mg}, 4.8 \mathrm{mmol})$, NBS ($1.10 \mathrm{~g}, 6.2 \mathrm{mmol}$), 77 was isolated as colourless solid ($650 \mathrm{mg}, 50 \%$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.57\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.74-2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.46-4.55(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.79-4.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.01(\mathrm{~d}, J=5.1 \mathrm{~Hz}, \mathrm{CH}-\mathrm{Br}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=14.5\left(\mathrm{CH}_{3}\right), 37.3\left(\mathrm{CH}_{2}\right), 44.8(\mathrm{CH}), 62.2,71.3\left(\mathrm{CH}_{2}\right), 99.2,163.3,17.5(\mathrm{C}) ;$ IR (ATR): $\widetilde{v}=2980(\mathrm{w}), 2905(\mathrm{w}), 2849(\mathrm{w}), 1698(\mathrm{~s}), 1621(\mathrm{~s}), 1367(\mathrm{~m}), 1274$ (s), 1215 (s), 1179 (m), 1064 (s), 958 (s$), 814$ (m), $533(\mathrm{~m}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m/z (\%):270 $\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 29\right), 268\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 22\right), 225$ (13), 189 (50), 161 (100) 143 (30), 115 (22), 87 (15), 53 (19); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrClO}_{3}\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right]$ 267.94901, found 267.94964 .

Synthesis of Ethyl 6-bromo-2-chloro-3-oxohexanoate (78):

Starting with $76(326 \mathrm{mg}, 1.69 \mathrm{mmol})$ and $\mathrm{BBr}_{3}(0.60$
$\mathrm{ml}, 6.79 \mathrm{mmol}$) 78 was isolated as a highly viscous oil ($401 \mathrm{mg}, 87 \%$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.47\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.07(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.59\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.41\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.94(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}-\mathrm{Cl}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.5\left(\mathrm{CH}_{3}\right), 26.6,32.8,37.3\left(\mathrm{CH}_{2}\right), 61.2(\mathrm{CH})$, $63.7\left(\mathrm{CH}_{2}\right), 165.3,198.4$ (C); IR (ATR): $\tilde{v}=2966(\mathrm{w}), 2909(\mathrm{w}), 2873$ (w), 1724 (s), 1368 (m), 1299 (m), 1251 (s), 1176 (s), 1020 (s), 858 (m), 727 (w), 557 (w) cm ${ }^{-1}$; GCMS (EI, 70 eV): $m / z(\%): 272\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 1\right), 270\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 1\right), 190$ (3), 151 (100), 121 (25) 94 (7), 69 (14), 41 (43); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrClO}_{3}\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right]$ 269.96547, found 269.96529 .

Synthesis of 5-[bromo(phenylsulfonyl)methylidene]dihydrofuran(79):

Starting with $2-[($ Phenylsulfonyl)methylidene $]$ tetrahydrofuran 10a ($590 \mathrm{mg}, 2.63 \mathrm{mmol}$), NBS ($515 \mathrm{mg}, 2.89 \mathrm{mmol}$), 79 was isolated as highly viscous oil ($392 \mathrm{mg}, 49 \%$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=2.60$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.67(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{2}$), $4.70\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.83-7.98(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.24-8.29(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.9,31.5,73.3\left(\mathrm{CH}_{2}\right), 90.5(\mathrm{C}), 128.7(2 \mathrm{C}, \mathrm{CH})$, 129.2 (2C, CH), 133.1 (CH), 139.1, 168.5 (C); IR (KBr): $\widetilde{v}=3084$ (w), 2984 (w), 2929 (w), 1596 (s), 1551 (s), 1429 (s), 1304 (s), 1155 (s), 1101 (m), 1016 (m), 819 (m), 684 (s), $592(\mathrm{~s}) \mathrm{cm}^{-1}$; GC-MS (EI, 70 eV): m/z (\%):304 ($\left.\mathrm{M}^{+},{ }^{81} \mathrm{Br}, 100\right), 302\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}, 99\right)$, 238 (3), 193 (6), 168 (8) 131 (19), 77 (60), 51 (34); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{3} \mathrm{~S}$ $\left[\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right] 301.96130$, found 301.96068 .

Synthesis of 4-bromo-5-[bromo(phenylsulfonyl)methylidene]dihydrofuran(80):

Starting with $2-[($ Phenylsulfonyl)methylidene $]$ tetrahydrofuran 10a ($590 \mathrm{mg}, 2.63 \mathrm{mmol}$), NBS ($515 \mathrm{mg}, 2.89 \mathrm{mmol}$), $\mathbf{8 0}$ was isolated as colourless solid ($340 \mathrm{mg}, 35 \%$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.75-2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.89 .3 .02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 5.00-5.17 (m, 2 H, CH2), 5.38 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Br}), 7.86-$ 8.03 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), 8.31-8.35 (m, $2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($62 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.3$
$\left(\mathrm{CH}_{2}\right), 47.9(\mathrm{CH}), 75.0\left(\mathrm{CH}_{2}\right), 96.1(\mathrm{C}), 127.9(2 \mathrm{C}, \mathrm{CH}), 128.9(2 \mathrm{C}, \mathrm{CH}), 133.6(\mathrm{CH})$, 139.1, 168.5 (C); IR (KBr): $\widetilde{v}=3089$ (w), 2974 (w), 2867 (w), 1598 (s), 1573 (s), 1413 (s), 1312 (s), 1123 (s), 1098 (s), 1016 (m), 812 (m), 676 (m), 590 (m) cm ${ }^{-1}$; GC-MS (EI, $70 \mathrm{eV}): m / z(\%): 372\left(\mathrm{M}^{+},\left[2 \times{ }^{81} \mathrm{Br}\right], 11\right), 370\left(\mathrm{M}^{+},\left[{ }^{81} \mathrm{Br}^{79} \mathrm{Br}\right], 33\right), 368\left(\mathrm{M}^{+},\left[2 \times{ }^{79} \mathrm{Br}\right]\right.$, 12), 269 (11), 235 (65), 305 (100), 189 (19), 161 (25), 69 (20); Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{~S}$ (370.06): C 32.46, H 2.72; found: C 32.50, H 2.70 .

Figure 6.2. Ortep plot of $\mathbf{8 0}$

References

1. Soejarto, D. D.; Farnsworth, N. R. Perspect. Biol. Med. 1989, 32, 244.
2. Berdy, J. (ed.), Handbook of Antibiotics, Little, Brown, Boston 1988.
3. Loo, T. L.; Freireich, E. J. "Cancer chemo therapeutic drugs" in Principles of Pharmacology: Basic Concepts and Clinical Applications, Munson, P. L.; Mueller, R.A.; Breese, G. R. (Eds), 1995, 1475, Chapman and Hall, New York.
4. (a) Tietze, L. F.; Beifuss, U. Angew Chem 1993, 105, 137 Angew Chem Int Ed Engl 1993, 32,131. (b) Trost, B. M. Angew Chem 1995, 107,285. Angew Chem Int Ed Engl 1995, 34, 259. (c) Hudlicky, T. Chem Rev 1996,96, 3-30. (d) Tietze, L. F. Chem. Rev 1996, 96, 115.
5. (a) Balkenhohl, F.; Bussche, Hu.; Ennefeld, C.; Lansky, A.; Zechel, C. Angew Chem 1996, 108, 2436. Angew Chem Int Ed Engl 1996, 35, 2288. (b) Thompson, LA.; Ellman, J. A. Chem Rev 1996, 96, 555. (c) Fruchtel, J. S.; Jung. G. Angew Chem 1996, 108, 9. Angew Chem Int Ed Engl 1996, 35, 17. (d) Nefzi, A.; Ostresh, J. M.; Houghton, R. A. Chem Rev 1997, 97, 449. (e) Brown, R.C.D. J Chem Soc Perkin Trans 1 1998, 3293. (f) Brown, A. R.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Synlett 1998, 817
6. (a) Tietze, L. F. J Heterocycl Chem 1990, 27, 47. (b) Tietze, L. F. Chem Indust 1995, 453.(c) Tietze, L. F. Nachr Chem Tech Lab 1997, 45, 1181.
7. (a) Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702. (b) Kaiser, E. M.; Petty, J. D.; Knutson, P. L. A. Synthesis 1977, 509. (c) Thompson, C. M.; Green, D. Tetrahedron 1991, 47, 4223. (d) Maercker, A.; in Methoden Org. Chem. (Houben-Weyl) 4. Aufl., B. d.; E19d Carbanionen, 1993, 448. (e) Saalfrank, R. S.; in Methoden Org. Chem. (Houben-Weyl), 4. Aufl., B.d.; E19d Carbanionen, 1993, 567.
8. (a) Jørgensen, K. A. Angew. Chem. 2000, 112, 3702. Angew Chem. Int. Ed. 2000, 39, 3558. (b) Brownbridge, P. Synthesis 1983, 85.
9. (a) Harris, T. M.; Harris, C. M. Tetrahedron 1977, 33, 2159. (b) Williard, P. G.; Grab, L. A.; de Laszlo, S. E. J. Org. Chem. 1983, 48, 1123. (c) Lygo, B. Tetrahedron 1988, 44, 6889
10. (a). Langer, P. Chem. Eur. J. 2001, 7, 3858. (b) Langer, P. Synthesis 2002, 441. (c) Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4215.
11. (a) Iida, T.; Itaya, T. Tetrahedron 1993, 49, 10511. (b) Sibi, M. P.; Marvin, M.; Sharma, R. J. Org. Chem. 1995, 60, 5016.
12. Hampton, K. G.; Christie, J. J. J. Org. Chem. 1976, 41, 2772.
13. McClure, J. R.; Custer, J. H.; Schwarz, H. D.; Lill, D. A. Synlett 2000, 710.
14. Hampton, K. G.; Light, R. J.; Hauser, C. R. J. Org. Chem. 1965, 30, 1413.
15. (a) Chan, T.H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534. (b) Molander, G. A.; Cameron, K. O. J. Am.Chem. Soc. 1993, 115, 830. (c) Hagiwara, H.; Kimura, K.; Uda, H. J. Chem. Soc., Chem. Commun. 1986, 860. (d) Cameron, D. W.; Feutrill, G. I.; Perlmutter, P. Aust. J.Chem. 1982, 35, 1469.
16. (a) Krägeloh, K.; Simchen, G. Synthesis 1981, 30. (b) Emde, H.; Domsch, D.; Feger, H.; Frick, H.; Götz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Krägeloh, K.; Oesterle, T.;Steppan, W.; West, W.; Simchen, G. Synthesis 1982, 1.
17. (a) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249. (b) McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetrahedron 1968, 24, 2289
18. Kulkarni, S. U.; Patil, V. D. Heterocycles 1982, 18, 163.
19. Olah, G. A.; Karpeles, R.; Narang, S. C. Synthesis 1982, 963.
20. Bellur, E.; Langer, P. J. Org. Chem. 2005, 70, 3819.
21. Bellur, E.; Langer, P. J. Org. Chem. 2005, 70, 7686.
22. (a) Miyata, O.; Takeda N.; Morikami, Y.; Naito, T. Org. Biomol. Chem. 2003, 1, 254.
(b) Xie, X.; Chen, B.; Lu, J.; Han, J.; She, X.; Pan, X. Tetrahedron Lett. 2004, 45, 6235. (c) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2004, 43, 6144. (d) Hagiwara, H.; Sato, K.; Nishino, D.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc., Perkin Trans. 1, 2001, 2946. (e) Butin, A. V.; Gutnow, A. V.; Abaev, V. T.; Krapivin, G. D. Molecules 1999, 4, 52. (f) Fuerst, D. E.; Stoltz, B. M.; Wood, J. L. Org. Lett. 2000, 22, 3521. (g) Schneider, B. Phytochemistry 2003, 64, 459.
23. (a) Wendt, B.; Ha, H. R.; Hesse, M. Helv. Chim. Acta 2002, 85, 2990. (b) Carlsson, B.; Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y. L.; Mellin, C.; Malm, J. J. Med. Chem. 2002, 45, 623. (c) Kwiecien, H.; Baumann, E. J. Heterocycl. Chem. 1997, 1587. (d) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106, 4218. (e) Matyus, P.; Varga I.; Rettegi, T.; Simay, A.; Kallay, N.; Karolyhazy, L.; Kocsis, A.; Varro, A.; Penzes, I.; Papp, J. G. Curr. Med. Chem. 2004, 1, 61. (f) Wong, H.N.C.; Pei, Y.; Yick, C.Y. Pure Appl. Chem., 1999, 71, 1041
24. (a) Joshi, A. S.; Li, X.C.; Nimrod, A. C.; ElSohly, H. N.; Walker, L. A.; Clark, A. M. Planta Med. 2001, 67, 186. (b) Sigstad, E.; Catalan, C. A. N.; Diaz, J. G.; Herz, W. Phytochemistry 1993, 33, 165. (c) Drewes, S. E.; Hudson, N. A.; Bates, R. B. J. Chem. Soc., Perkin Trans. 1 1987, 2809.
25. (a) Chan, J. A.; Shultis, E. A.; Carr, S. A.; DeBrosse, C. W.; Eggleston, D. S. J. Org. Chem. 1989, 54, 2098. Sessiliflorol B: (b) Marston, A.; Zagorski, M. G.; Hostettmann, K. Helv. Chim. Acta 1988, 71, 1210. (c) Drewes, S. E.; Hudson, N. A.; Bates, R. B.; Linz, G. S. Tetrahedron Lett. 1984, 25, 105. Flemistrictin E: (d) Subrahmanyam, K.; Rao, J. M.; Vemuri, V. S. S.; Babu, S. S.; Roy, C. P.; Rao, K. V. J. Ind. J. Chem. Sect. B 1982, 21, 895;. Tovophenone C: (e) Seo, E.-K.; Wall, M. E.; Wani, M. C.; Navarro, H.; Mukherjee, R.; Farnsworth, N. R.; Kinghorn, A. D. Phytochemistry 1999, 52, 669. Vismiaguianone C: (f) Seo, E.-K.; Wani, M. C.; Wall, M. E.; Navarro, H.; Mukherjee, R.; Farnsworth, N. R.; Kinghorn, A. D. Phytochemistry 2000, 55, 35. Piperaduncin B: (g) Joshi, A. S.; Li, X. C.; Nimrod, A. C.; ElSohly, H. N.; Walker, L. A.; Clark, A. M. Planta Med. 2001, 67, 186. (h) Bohlmann, F.; Zdero, C. Chem. Ber. 1976, 109, 1436.
26. Lambert, P.H.; Vaultier, M.; Carrie, R. J. Org. Chem. 1985, 50, 5352.
27. (a) Rhoads, S. J. Tetrahedron 1969, 25, 5443. (b) Miller, B.; Margulies, H. Tetrahedron Lett. 1970, 3801. (c) Seebach,d. Angew.Chem 1988, 100, 1685; Anew. Chem. Int. Ed. Engl. 1988, 27, 1624.
28. Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125.
29. Langer, P.; Holtz, E.; Karimé, I.; Saleh, N. N. R. J. Org. Chem. 2001, 66, 6057. (b) Langer, P.; Bellur, E. J. Org. Chem. 2003, 68, 9742.
30. Langer, P.; Holtz, E.; Saleh, N. N. R. Chem. Eur. J. 2002, 8, 917.
31. Langer, P.; Armbrust, H.; Eckardt, T.; Magull, J. Chem. Eur. J. 2002, 8, 1443.
32. (a) Edwards, G. L.; Muldoon, C. A.; Sinclair, D. J. Tetrahedron 1996, 52, 7779. (b) Edwards, G. L.; Sinclair, D. J. Tetrahedron Lett. 1999, 40, 3933. (c) Short, K. M.; Ziegler, C. B. Tetrahedron Lett. 1995, 36, 355.
33. (a) Mussatto, M. C.; Savoia, D.; Trombini, C.; Umani-Ronchi, A. J. Chem. Soc., Perkin Trans. 1 1980, 260. (b) Alzerreca, A.; Martinez, J.; Velazquez, L.; Prieto, J. A.; Arias, L. J. Heterocycl. Chem. 1994, 31, 45.
34. Dai, W. M.; Lee, M. Y. H. Tetrahedron 1998, 54, 12497.
35. Pound, M. K.; Davies, D. L.; Pilkington, Melanie; Sousa, M. M.; Wallis, J. D. Tetrahedron Lett. 2002, 43, 1915
36. The reaction of dianions of 1,3-dicarbonyl compounds with 1,2-dibromoethane results in a SET process rather than condensation: Hampton, K. G.; Light, R. J.; Hauser, C. R. J. Org. Chem. 1965, 30, 1413.
37. Römpp Lexikon Naturstoffe (Steglich, W.; Fugmann, B.; Lang-Fugmann, S., eds.), Thieme, Stuttgart: 1997.
38. (a) Lee, H. J.; Lee, J. H.; Hwang, B. Y.; Kim, H. S.; Lee, J. J. J. Antibiot. 2002, 55, 552. (b) Hargreaves, J.; Park, J.O.; Ghisalberti, E. L.; Sivasithamparam, K.; Skelton, B. W.; White, A. H. J. Nat. Prod. 2002, 65, 7.
39. Hussein, S. A. M.; Ayoub, N. A.; Nawwar, M. A. M. Phytochemistry 2003, 63, 905.
40. Nawwar, M. A. M.; Hussein, S. A. M.; Buddrus, J.; Linscheid, M. Phytochemistry 1994, 35, 1349.
41. Fiedler, P.; Gambaro, V.; Garbarino, J. A.; Quilhot, W. Phytochemistry 1986, 25, 461.
42. Lee, S.H.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Chem. Pharm. Bull. 1991, 39, 630.
43. Yoshida, T.; Ahmed, A. F.; Okuda, T. Chem. Pharm. Bull. 1993, 41, 672.
44. Elix, J. A.; Jones, A. J.; Lajide, L.; Coppins, B. J.; James, P. W. Aust. J. Chem. 1984, 37, 2349.
45. Mori, Y.; Taneda, S.; Hayashi, H.; Sakushima, A.; Kamata, K.; Suzuki, A. K.; Yoshino, S.; Sakata, M.; Sagai, M.; Seki, K.I. Biol. Pharm. Bull. 2002, 25, 145.
46. (a) Davidson, B. S.; Molinski, T. F.; Barrows, L. R.; Ireland, C. M. J. Am. Chem. Soc. 1991, 113, 4709. (b) Behar, V.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 7017. (c) Toste, F. D.; Still, I. W. J. J. Am. Chem. Soc. 1995, 117, 7261.
47. (a) Davis, R. A.; Sandoval, I. T.; Concepcion, G. P.; Moreira da Rocha, R.; Ireland, C. M. Tetrahedron 2003, 59, 2855. (b) Liu, H.; Fujiwara, T.; Nishikawa, T.; Mishima, Y.; Nagai, H.; Shida, T.; Tachibana, K.; Kobayashi, H.; Mangindaan, R. E. P.; Namikoshi, M. Tetrahedron 2005, 61, 8611.
48. Kaplan, M. L.; Reents, W. D. Tetrahedron Lett. 1982, 23, 373.
49. Hosoya, Y.; Adachi, H.; Nakamura, H.; Nishimura, Y.; Naganawa, H. Tetrahedron Lett. 1996, 37, 9227.
50. Huang, Y.; Bae, S. A.; Zhu, Z.; Guo, N.; Roth, B. L.; Laruelle, M. J Med. Chem. 2005, 48, 2559.
51. (a) Moroz, A. A.; Shvartsberg, M. S. Russ. Chem. Rev. 1974, 43, 679. (b) Sinisi, R.; Sani, M.; Candiani, G.; Parente, R.; Pecker, F.; Bellosta, S.; Zanda, M. Tetrahedron Lett. 2005, 46, 6515.
52. Muci, A. R.; Buchwald, S. R. Topics Curr. Chem. 2002, 219, 131.
53. (a) Harkal, S.; Kumar, K.; Michalik, D.; Zapf, A.; Jackstell, R.; Rataboul, F.; Riermeier, T.; Monsees, A.; Beller, M. Tetrahedron Lett. 2005, 46, 3237. (b) Harkal, S.; Rataboul, F.; Zapf, A.; Fuhrmann, C.; Riermeier, T. H.; Monsees, A.; Beller, M. Adv. Synth. Catal. 2004, 346, 1742.
54. For the thermal reaction of arenes with sulfur, see for example: (a) Dougherty, G.; Hammond, P. D. J. Am. Chem. Soc. 1935, 57, 117. (b) Glass, H. B.; Reid, E. E. J. Am. Chem. Soc. 1929, 51, 3428. For the trifluoromethanesulfonic acid-catalyzed sulfurization of cycloalkanes, see: (c) Olah, G. A.; Wang, Q.; Prakash, G. K. S. J. Am. Chem. Soc. 1990, 112, 3697. For condensations of organometallic compounds with chlorophenyl sulfide, see for example: (d) Chua, M.; Hoyer, H. Z. Naturforsch. B 1965, 20, 416. For base-mediated reactions of chloroarenes with thiophenols, see: (e) Campbell, J. R. J. Org. Chem. 1964, 29, 1830. (f) Baxter, I.; Ben-Haida, A.; Colquhoun, H. M.; Hodge, P.; Kohnke, F. H.; Williams, D. J. Chem. Eur. J. 2000, 6, 4285.
55. (a) Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc., 2006, 128, 2180. (b) Murata, M.; Buchwald, S. L. Tetrahedron, 2004, 60, 7397. (c) Taniguchi, N. J. Org. Chem. 2007, 72, 1241.
56. (a) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett., 2002, 4, 2803. (b) Rábai, J. Synthesis 1989, 523. (c) Gendre, F.; Yang, M.; Diaz, P. Org. Lett. 2005, 7, 2719.
57. (a) Hilt, G.; Lüers, S. Synthesis 2003, 1784. (b) Hilt, G.; Lüers, S.; Harms, K. J. Org. Chem. 2004, 69, 624.
58. Chan, T. H.; Prasad, C. V. C. J. Org. Chem. 1986, 51, 3012
59. a) Furukawa, S.; Igarashi, J.E. Chem. Pharm. Bull. 1990, 38, 5. (b) Hormi, O. E. O.; Hirvelae, L. Tetrahedron Lett. 1993, 34, 6463. (c) Chou, S. S. P.; Chao, M. H.

Tetrahedron Lett. 1995, 36, 8825. (d) Yoshimatsu, M.; Hibino, M.; Ishida, M.; Tanabe, G.; Muraoka, O. Chem. Pharm. Bull. 2002, 50, 1520.
60. Sher, M.; Ahmed, Z.; Rashid, M. A.; Fischer, C.; Spannenberg, A.; Langer, P. Tetrahedron 2007, 63, 4929
61. Rashid, M. A.; Reinke, H.; Langer, P. Tetrahedron Lett. 2007, 48, 2321
62. (a)Yoshida, Z.; Ogoshi, H.; Tokumitsu, T. Tetrahedron 1970, 26, 2987. (b) Beer, R. J. S.; Davenport, H. F.; Robertson, A. J. Chem. Soc. 1953, 1262.
63. Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830
64. (a) Chan, T. H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534. (b) Brownbridge, P.; Chan, T. H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688. (c) Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830.
65. Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 3248.
66. Bose, G.; Nguyen, V. T. H.; Ullah, E.; Lahiri, S.; Görls, H.; Langer, P. J. Org. Chem. 2004, 69, 9128
67. Reactions of acceptor-substituted cyclopropanes have been classified by Danishefsky in terms of 'strictly nucleophilic ring openings', 'electrophilically assisted ring openings' and 'spiro-activations': Danishefsky, S. J. Acc. Chem. Res. 1979, 66. In the domino '[3+3]-cyclization-homo-Michael' reaction reported herein two effects are operating: (a) a 'dynamic spiro-activation' and (b) activation by an electrophile. For a dynamic spiro activation, see: Zefirov, N. S.; Kozhushkov, S. I.; Kuznetsova, T. S. Tetrahedron 1982, 38, 1693
68. For salicylic esters and salicylic glycosides (e.g. salicortin), see for example: Ro"mpp Lexikon Naturstoffe; Steglich, W.; Fugmann, B.; Lang-Fugmann, S., Eds.:Thieme, Stuttgart: 1997.
69. For anthracyclines, pyoluteorin, pyrrolomycines, anthranoids and their analogues, see: (a) Ezaki, N.; Shomura, T.; Koyama, M.; Niwa, T.; Kojima, M.; Inouye, S.; Niida, T. J. Antibiot. 1981, 34, 1363. (b) Kaneda, M.; Nakamura, S.; Ezaki, N.; Iitaka, Y. J. Antibiot. 1981, 34,1366. (c) Ezaki, N.; Koyama, M.; Shomura, T.; Tsuruoka, T.; Inouye, S. J. Antibiot. 1983, 36, 1263. (d) Carter, G. T.; Nietsche, J. A.; Goodman, J. J.; Torrey, M. J.; Dunne, T. S.; Siegel, M. M.; Borders, D. B. J. Chem. Soc., Chem. Commun. 1989, 1271. (e) Müller, K.; Leukel, P.; Ziereis, K.; Gawlik, I. J. Med.

Chem. 1994, 37, 1660. (f) Barton, D. H. R.; Challis, J. A.; Magnus, P. D.; Marshall, J. P. J. Chem. Soc. (C) 1971, 2241.
70. Buchta, E.; Egger, H. Chem. Ber. 1957, 90, 2760.
71. For the SmI_{2} mediated reaction of benzaldehydes with benzylhalides and subsequent oxidation, see: Shiue, J. S.; Lin, M. H.; Fang, J. M. J. Org. Chem. 1997, 62, 4643.
72. For the synthesis of salicylic esters from silyl enol ethers, see: (a) Chan, T. H. Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534; from 1,3-dicarbonyl dianions: (b) Harris, T. M.; Wittek, P. J. J. Am. Chem. Soc. 1975, 97, 3270; from alkynals and alkynones, see: (c) Covarrubias-Zu' niga, A.; Rı'os-Barrios, E. J. Org. Chem. 1997, 62, 5688.
73. Appel, B.; Rotzoll, S.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 3638.
74. Sidwell, W. T. L.; Fritz, H.; Tamm, C. Helv. Chim. Acta 1971, 54, 207.
75. Tamm, C. Arzneim.Forsch. 1972, 22, 1776.
76. Raistrick, H.; Stilkings, C. E.; Thomas, R. Biochemistry 1953, 55, 421.
77. Pero, R. W.; Harvan, D.; Blois, M. C. Tetrahedron Lett. 1973, 14, 945.
78. Rçmpp Lexikon Naturstoffe (Eds.: W. Steglich, B. Fugmann, S. Lang-Fugmann), Thieme, Stuttgart, 1997.
79. Schmidt, J. M.; Tremblay, G.B.; Page, M.; Mercure, J.; Feher, M.; Dunn-Dufault, R. G.; Peter, M.; Redden, P. R. J. Med. Chem. 2003, 46, 1289.
80. Pandey, J.; Jha, A. K.; Hajela, K. Bioorg. Med. Chem. 2004, 12, 2239.
81. Hurtley, W. R. H. J. Chem. Soc. 1929, 1870
82. Appel, B.; Saleh, N. N. R.; Langer, P. Chem. Eur. J. 2006, 12, 1221.
83. Cynandiones A-C: (a) Lin, Y.-L.; Wu, Y.-M.; Kuo, Y. H. Phytochemistry 1997, 45, 1057. (b) Huang, P. L.; Won, S. J.; Day, S. H.; Lin, C. N. Helv. Chim. Acta 1999, 82, 1716. (c) Lin, Y. L.; Lin, T. C.; Kuo, Y. H. J. Nat. Prod. 1997, 60, 368. (d) Buchanan, M. S.; Gill, M.; Yu, J. J. Chem. Soc., Perkin Trans. 1 1997, 919.
84. (a) van Staden, L. F.; Drewes, S. E. Phytochemistry 1994, 35, 685. 6'-OMethylknipholone: (b) Bezabih, M.; Motlhagodi, S.; Abegaz, B. M. Phytochemistry 1997, 46, 1063. (c) Adinolfi, M.; Lanzetta, R.; Marciano, C. E.; Parrilli, M.; De Giulio, A. Tetrahedron 1991, 47, 4435.
85. (a) Pettit, G. R.; Meng, Y.; Herald, D. L.; Graham, K. A. N.; Pettit, R. K.; Doubek, D. L. J. Nat. Prod. 2003, 66, 1065. (b) Nkengfack, A. E.; Mkounga, P.; Meyer, M.; Fomum, Z. T.; Bodo, B. Phytochemistry 2002, 61, 181.
86. 2,3-Dihydroamentoflavone: (a) Das, B.; Mahender, G.; Rao, Y. K.; Prabhakar, A.; Jagadeesh, B. Chem. Pharm. Bull. 2005, 53, 135. Bartramiaflavone: (b) Basile, A.; Sorbo, S.; Lopez Saez, J. A.; Cobianchi, R. C. Phytochemistry 2003, 62, 1145. Robustaflavone: (c) Chen, J. J.; Duh, C. Y.; Chen, J. F. Planta Med. 2005, 71, 659. Dichamanetin: (d) Anam, E. M.; Ekpa, O. D.; Gariboldi, P. V.; Morah, F. N. I.; Dosunmu, M. I. Indian J. Chem. Sect. B 1993, 32, 1051. (e) Dasgupta, B.; Burke, B. A.; Stuart, K. L. Phytochemistry 1981, 20, 153. (f) Zeng, G. Z.; Tan, N.-H.; Hao, X. J.; Mu, Q. Z.; Li, R. T. Bioorg. Med. Chem. Lett. 2006, 16, 6178. (g) Zeng, G. Z.; Pan, X. L.; Tan, N. H.; Xiong, J.; Zhang, Y. M. Eur. J. Med. Chem. Chim. Ther. 2006, 41, 1247.
87. Anastatin, A.; Yoshikawa, M.; Xu, F.; Morikawa, T.; Ninomiya, K.; Matsuda, H. Bioorg. Med. Chem. Lett. 2003, 13, 1045.
88. Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim 2004.
89. Review of [3+3] cyclizations: Feist, H.; Langer, P. Synthesis 2007, 327.
90. Sher, M.; Ahmed, Z.; Rashid, M. A.; Fischer, C.; Langer, P. J. Org. Chem. 2007, 72, 6284.
91. (a) Akira, N.; Toshihira, I.; Kiyoshi, U. J. Med. Chem. 1985, 28, 559. (b) Löwe, W.; Jeske, P., Liebigs Ann. Chem. 1987, 549.
92. (a) Ghosh, C. K.; Sinha, R. D. K.; Mukhopadhyay, K. K., J. Chem. Soc., Perkin Trans. 1 1979, 1964. (b) Kubo, K.; Ukawa, K.; Kuzuna, S.; Nohara, A., Chem. Pharm. Bull. 1986, 34, 1108. (c) Zheng, H.; Lin, G.; Weng, L. L., Indian J. Chem. 1998, 37B, 933.
93. (a) Iwasaki, H.; Kume, T.; Yamamoto, Y.; Akiba, K. Y., Tetrahedron Lett. 1987, 6355. (b) Lee, Y. G.; Ishimaru, K.; Iwasaki, H.; Ohkata, K.; Akiba, K. J. Org. Chem. 1991, 56, 2058. For the generation of thiobenzopyrylium triflates, see: (c) Beifuss, U.; Tietze, M.; Gehm, H., Synlett 1996, 182.
94. Hsung, R. P.; Zificsak, C. A.; Wei, L. L.; Zehnder, L. R.; Park, F.; Kim, M.; Tran, T. T. T., J. Org. Chem. 1999, 64, 8736.
95. For a review of domino reactions of 4-(silyloxy)benzopyrylium triflates with 1,3-bis(trimethylsilyloxy)-1,3-butadienes, see: Langer, P. Synlett 2007, 1016.
96. Langer, P.; Appel, B. Tetrahedron Lett. 2003, 5133.
97. CCDC-xxx (16), CCDC-xxx (35b), CCDC-xxx (35c), CCDC-xxx (38a), CCDC-xxx (38b), CCDC-xxx (45m), CCDC-xxx (51b), CCDC-xxx (55a), CCDC-665870 (62c) and CCDC-669708 ($\mathbf{6 8} \mathbf{t}$) contain all crystallographic details of this publication and are available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; Fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.

X-Ray Crystals Data

Data of compound 16 (chapter 1):

Table 1. Crystal data and structure refinement for mar125a.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=29.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
mar125a
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BrNO}$
190.04

173(2) K
$0.71073 \AA$
Orthorhombic
P2 ${ }_{1} 2_{1} 2_{1}$
P 2ac 2ab
$a=4.76520(10) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=8.1844(2) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=18.9671(5) \AA \quad \gamma=90^{\circ}$.
739.72(3) \AA^{3}

4
$1.706 \mathrm{Mg} / \mathrm{m}^{3}$
$5.476 \mathrm{~mm}^{-1}$
376
$0.98 \times 0.09 \times 0.08 \mathrm{~mm}^{3}$
3.29 to 29.00°.
$-6 \leq h \leq 6,-11 \leq k \leq 11,-25 \leq 1 \leq 25$
11333
$1959[\mathrm{R}(\mathrm{int})=0.0323]$
99.6 \%

Semi-empirical from equivalents
0.6563 and 0.0751

Full-matrix least-squares on F^{2}
1959 / 0 / 82
1.065
$\mathrm{R} 1=0.0200, \mathrm{wR} 2=0.0458$
$R 1=0.0216, w R 2=0.0463$
0.013(10)
0.288 and -0.539 e. \AA^{-3}

Data of compound 35 b (chapter 2):

Table 1. Crystal data and structure refinement for mar40.

Identification code	mar40
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	238.29
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group (H.-M.)	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
Space group (Hall)	P 2ac 2ab
Unit cell dimensions	$a=5.8084(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=7.3149(2) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=27.5137(8) \AA \quad \gamma=90^{\circ}$.
Volume	1169.00(6) \AA^{3}
Z	4
Density (calculated)	$1.354 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.266 \mathrm{~mm}^{-1}$
F(000)	504
Crystal size	$0.90 \times 0.86 \times 0.60 \mathrm{~mm}^{3}$
Θ range for data collection	2.96 to 38.49°.
Index ranges	$-9 \leq \mathrm{h} \leq 9,-10 \leq \mathrm{k} \leq 12,-46 \leq 1 \leq 47$
Reflections collected	23003
Independent reflections	$6072[\mathrm{R}(\mathrm{int})=0.0204]$
Completeness to $\Theta=38.49^{\circ}$	94.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8569 and 0.7960
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6072 / 0 / 152
Goodness-of-fit on F^{2}	1.075
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0290, \mathrm{wR} 2=0.0792$
R indices (all data)	$\mathrm{R} 1=0.0309, \mathrm{wR} 2=0.0807$
Absolute structure parameter	0.00(4)
Largest diff. peak and hole	0.303 and -0.226 e. \AA^{-3}

Data of compound 35c (chapter 2):

Table 1. Crystal data and structure refinement for mar41.

Identification code	mar41
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Br} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	287.17
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group (H.-M.)	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
Space group (Hall)	P 2 ac 2 ab
Unit cell dimensions	$a=5.6731(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=7.4057(2) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=27.7704(8) \AA \quad \gamma=90^{\circ}$.
Volume	1166.73(6) \AA^{3}
Z	4
Density (calculated)	$1.635 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.679 \mathrm{~mm}^{-1}$
F(000)	576
Crystal size	$0.68 \times 0.54 \times 0.20 \mathrm{~mm}^{3}$
Θ range for data collection	5.88 to 27.50°.
Index ranges	$-7 \leq h \leq 7,-9 \leq k \leq 9,-17 \leq 1 \leq 36$
Reflections collected	7929
Independent reflections	$2629[\mathrm{R}(\mathrm{int})=0.0594]$
Completeness to $\Theta=27.50^{\circ}$	97.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5266 and 0.1887
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2629 / 0 / 142
Goodness-of-fit on F^{2}	1.055
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0392, \mathrm{wR} 2=0.0977$
R indices (all data)	$\mathrm{R} 1=0.0410, \mathrm{wR} 2=0.0986$
Absolute structure parameter	0.039(12)
Largest diff. peak and hole	0.826 and -1.025 e..$^{\AA}{ }^{-3}$

Data of compound 38a (chapter 2):

Table 1. Crystal data and structure refinement for mar29.

Data of compound 38 b (chapter 2):

Table 1. Crystal data and structure refinement for mar34.

Identification code	mar34
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	316.40
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group (H.-M.)	$\mathrm{P} \overline{1}$
Space group (Hall)	-P 1
Unit cell dimensions	$a=6.4052(2) \AA \quad \alpha=75.9010(10)^{\circ}$.
	$b=11.1586(3) \AA \quad \beta=79.3640(10)^{\circ}$.
	$\mathrm{c}=11.7113(4) \AA \quad \gamma=79.0220(10)^{\circ}$.
Volume	788.53(4) \AA^{3}
Z	2
Density (calculated)	$1.333 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.215 \mathrm{~mm}^{-1}$
F(000)	336
Crystal size	$0.32 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$
Θ range for data collection	1.90 to 27.50°.
Index ranges	$-8 \leq \mathrm{h} \leq 7,-14 \leq \mathrm{k} \leq 14,-15 \leq 1 \leq 15$
Reflections collected	12657
Independent reflections	$3514[\mathrm{R}(\mathrm{int})=0.0250]$
Completeness to $\Theta=27.50^{\circ}$	97.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9788 and 0.9343
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3514 / 0 / 204
Goodness-of-fit on F^{2}	1.032
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0350, \mathrm{wR} 2=0.0941$
R indices (all data)	$\mathrm{R} 1=0.0402, \mathrm{wR} 2=0.0982$
Largest diff. peak and hole	0.316 and -0.288 e. $\AA^{\text {® }}$ -

Data of compound 45 m (chapter 2):

```
data_ks717m
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
    ?
;
_chemical_name_common ?
__chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
''C17 H17 Cl O4'
_chemical_formula_weight 320.76
loop_
    _atōm_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' 'C'' -0.00\overline{3}3 0.0016
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'Cl' 'Cl' 0.1484 0.1585
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting monoclinic
_symmetry_space_group_name_H-M P2(1)/c
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x, y+1/2, -z+1/2'
    '-x, -y, -z'
    'x, -y-1/2, z-1/2'
_cell_length_a 14.384(3)
__cell_length_b 14.157(3)
_cell_-length_c 15.968(3)
_cell_angle_älpha 90.00
__cell_-angle_beta 108.64(3)
_cell_angle_gamma 90.00
_cell_volume 3081.1(11)
_cell_formula_units_Z 8
__cell_measure\overline{ment_tēmperature 200(2)}
_cell_measurement_reflns_used all
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?
_exptl_crystal_description prism
_exptl_crystal_colour colourless
_exptl_crystal_size_max 0.30
_exptl_crystal_size_mid 0.25
```

```
_exptl_crystal_size_min 0.22
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.383
-exptl-crystal-density method 'not measured'
_exptl_crystal_F 000 - 1344
_exptl_absorpt_coefficient_mu 0.263
_exptl_absorpt_correction_type none
_exptl_absorpt_correction_T_min ?
_exptl_absorpt_correction_T_max ?
_exptl_absorpt_process_detaīls ?
_exptl_special_details
;
    ?
;
_diffrn_ambient_temperature 200(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
__diffrn_measuremeñt_device_type 'STOE IPDS II'
_diffrn_measurement_method ?
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number ?
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% - ?
_diffrn_reflns_number 43171
_diffrn_reflns_av_R_equivalents 0.0737
__diffrn_reflns_av_-sigmaI/netI 0.0795
_diffrn_reflns_limit_h_min -17
__diffrn_reflns_limit_h_max 17
_diffrn_reflns_limit_k_min -17
_diffrn_reflns_limit_k_max 17
__diffrn_reflns_limit_l_min -19
__diffrn_reflns_limit_l_max 19
__diffrn_reflns_theta_min 1.97
__diffrn_reflns_theta_max 26.00
_reflns_number_total- 6055
_reflns_number_gt 2808
_reflns_threshōld_expression >2sigma(I)
_computing_data_collection STOE-X-AREA
_computing_cell_refinement ?
_computing_data_reduction ?
__computing_stru\overline{cture_solution 'SHELXS-97 (Sheldrick, 1990)'}
__computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
__computing_molecular_graphics XP
_computing_publication_material ?
_refine_special_details
;
    Refinement of F^^2^ against ALL reflections. The weighted R-factor wR
and
    goodness of fit S are based on F^2^, conventional R-factors R are
based
```

```
    on F, with F set to zero for negative F^2^. The threshold expression
of
    F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc.
and is
    not relevant to the choice of reflections for refinement. R-factors
based
    on F^2^ are statistically about twice as large as those based on F,
and R-
    factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
-'calc \overline{w}=1/}[\\\mp@subsup{s}{}{\wedge}\mp@subsup{2}{}{\wedge}(\mp@subsup{F}{0}{}\mp@subsup{\}{}{\wedge}\mp@subsup{2}{}{\wedge})+(0.0410P)^\mp@subsup{2}{}{\wedge}+0.0000P] wher
P}=(\mp@subsup{\textrm{FO}}{}{\wedge}\mp@subsup{2}{}{\wedge}+2\mp@subsup{\textrm{FC}}{}{\wedge}\mp@subsup{2}{}{\wedge})/\mp@subsup{3}{}{\prime
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refiñe_ls_\overline{hydrogen_treatment mixed}
_refine_ls_extinctiōn_method none
_refine_ls_extinction_coef ?
_refine_ls__number_reflns 6055
__refine_ls_number_parameters 405
_refine_ls_number_restraints 0
_refine_ls_R_factōr_all 0.1002
_refine_ls_R_factor_gt 0.0363
_refine_ls_w\overline{R_factor_ref 0.0847}
_refine_ls_wR_factor_gt 0.0741
refine ls goodness of fit ref 0.744
__refine_ls_restrainēd_\overline{S_al\overline{l}}0.744
__refine_ls_shift/su_max
__refine_ls_shift/su_mean 0.000
```


Data of compound 51 b (chapter 2):

Table 1. Crystal data and structure refinement for 5-(3-Ethyl-2-hydroxy-benzoyl)-2-hydroxy-3-(4-methoxy-phenylsulfanyl)-benzoic acid ethyl ester (=mar212)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=30.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
mar212
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}$
452.50

173(2) K
0.71073 Å

Monoclinic
P2 ${ }_{1} / \mathrm{c}$
-P 2ybc
$a=14.8010(4) \AA \quad \alpha=90^{\circ}$.
$b=7.3353(2) \AA \quad \beta=109.574(2)^{\circ}$.
$\mathrm{c}=21.5310(6) \AA \quad \gamma=90^{\circ}$.
2202.52(10) \AA^{3}

4
$1.365 \mathrm{Mg} / \mathrm{m}^{3}$
$0.187 \mathrm{~mm}^{-1}$
952
$0.68 \times 0.45 \times 0.26 \mathrm{~mm}^{3}$
2.85 to 30.00°.
$-20 \leq h \leq 20,-10 \leq k \leq 9,-30 \leq 1 \leq 30$
30762
$6399[\mathrm{R}(\mathrm{int})=0.0200]$
99.5 \%

Semi-empirical from equivalents
0.9530 and 0.8834

Full-matrix least-squares on F^{2}
6399 / 0 / 301
1.054
$\mathrm{R} 1=0.0342, \mathrm{wR} 2=0.0915$
$R 1=0.0420, w R 2=0.1018$
0.0025(8)
0.377 and $-0.227 \mathrm{e} . \AA^{-3}$

Data of compound 55a (chapter 2):

Table 1. Crystal data and structure refinement for mar158.

Identification code	mar158
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{4}$
Formula weight	304.29
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	$\mathrm{P} 2_{1} / \mathrm{c}$
Space group (Hall)	-P 2ybc
Unit cell dimensions	$a=10.0265(3) \AA \quad \alpha=90^{\circ}$.
	$b=9.7519(3) \AA \quad \beta=99.2720(10)^{\circ}$.
	$\mathrm{c}=14.5748(3) \AA \quad \gamma=90^{\circ}$.
Volume	1406.47(7) \AA^{3}
Z	4
Density (calculated)	$1.437 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.101 \mathrm{~mm}^{-1}$
F(000)	632
Crystal size	$0.72 \times 0.33 \times 0.32 \mathrm{~mm}^{3}$
Θ range for data collection	2.52 to 30.00°.
Index ranges	$-14 \leq \mathrm{h} \leq 13,-13 \leq \mathrm{k} \leq 13,-20 \leq 1 \leq 18$
Reflections collected	16110
Independent reflections	$4070[\mathrm{R}(\mathrm{int})=0.0238]$
Completeness to $\Theta=30.00^{\circ}$	99.2 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9683 and 0.9307
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4070 / 0 / 212
Goodness-of-fit on F^{2}	1.051
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0408, \mathrm{wR} 2=0.1070$
R indices (all data)	$\mathrm{R} 1=0.0512, \mathrm{wR} 2=0.1175$
Largest diff. peak and hole	0.341 and -0.187 e. \AA^{-3}

Data of compound 62c (chapter 3):

Table 1. Crystal data and structure refinement for mar 194.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=30.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
mar194
$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$
258.26

173(2) K
$0.71073 \AA$
Monoclinic
P2 ${ }_{1} / \mathrm{c}$
-P 2ybc
$a=11.8116(2) \AA \quad \alpha=90^{\circ}$.
$b=7.36280(10) \AA$
$\beta=90.0980(10)^{\circ}$.
$\mathrm{c}=14.5840(3) \AA$
$\gamma=90^{\circ}$.
$1268.32(4) \AA^{3}$
4
$1.353 \mathrm{Mg} / \mathrm{m}^{3}$
$0.098 \mathrm{~mm}^{-1}$
544
$0.85 \times 0.85 \times 0.18 \mathrm{~mm}^{3}$
2.79 to 30.00°.
$-16 \leq h \leq 16,-10 \leq k \leq 10,-20 \leq 1 \leq 11$
9585
$3669[\mathrm{R}(\mathrm{int})=0.0159]$
98.9 \%

Semi-empirical from equivalents
0.9825 and 0.9212

Full-matrix least-squares on F^{2}
3669 / 0 / 179
1.048
$\mathrm{R} 1=0.0387, \mathrm{wR} 2=0.1079$
$R 1=0.0463, w R 2=0.1166$
0.000(2)
0.400 and $-0.196 \mathrm{e} . \AA^{-3}$

Data of compound 68 t (chapter 4):

Table 1. Crystal data and structure refinement for mar197.

Identification code	mar197
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$
Formula weight	309.31
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group (H.-M.)	$\mathrm{P} \overline{1}$
Space group (Hall)	-P 1
Unit cell dimensions	$a=5.1443(2) \AA \quad \alpha=71.129(2)^{\circ}$.
	$b=12.0108(4) \AA \quad \beta=86.379(2)^{\circ}$.
	$\mathrm{c}=13.0738(4) \AA \quad \gamma=78.594(2)^{\circ}$.
Volume	749.28(4) \AA^{3}
Z	2
Density (calculated)	$1.371 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.098 \mathrm{~mm}^{-1}$
F(000)	324
Crystal size	$1.00 \times 0.13 \times 0.10 \mathrm{~mm}^{3}$
Θ range for data collection	2.82 to 30.00°.
Index ranges	$-7 \leq h \leq 7,-16 \leq k \leq 16,-18 \leq 1 \leq 18$
Reflections collected	15822
Independent reflections	$4310[\mathrm{R}(\mathrm{int})=0.0280]$
Completeness to $\Theta=30.00^{\circ}$	98.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9903 and 0.9086
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4310 / 0 / 208
Goodness-of-fit on F^{2}	0.995
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0488, \mathrm{wR} 2=0.1189$
R indices (all data)	$\mathrm{R} 1=0.0670, \mathrm{wR} 2=0.1334$
Largest diff. peak and hole	0.427 and -0.282 e. \AA^{-3}

Data of compound 76 (Manuscript in preparation):

Table 1. Crystal data and structure refinement for mar 141.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\Theta=29.99^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole

$$
\begin{aligned}
& \text { mar141 } \\
& \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClO}_{3} \\
& 190.62 \\
& \text { 173(2) K } \\
& 0.71073 \AA \\
& \text { Monoclinic } \\
& \text { C2/m } \\
& \text {-C 2y } \\
& \begin{array}{ll}
\mathrm{a}=17.0205(5) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=6.7961(2) \AA & \beta=119.9270(10)^{\circ} . \\
\mathrm{c}=8.7742(2) \AA & \gamma=90^{\circ} .
\end{array} \\
& \text { 879.61(4) } \AA^{3} \\
& 4 \\
& 1.439 \mathrm{Mg} / \mathrm{m}^{3} \\
& 0.398 \mathrm{~mm}^{-1} \\
& 400 \\
& 0.61 \times 0.29 \times 0.24 \mathrm{~mm}^{3} \\
& 2.68 \text { to } 29.99^{\circ} \text {. } \\
& -23 \leq \mathrm{h} \leq 22,-9 \leq \mathrm{k} \leq 9,-12 \leq 1 \leq 12 \\
& 7276 \\
& 1380[\mathrm{R}(\mathrm{int})=0.0211] \\
& 99.5 \text { \% } \\
& \text { Semi-empirical from equivalents } \\
& 0.9106 \text { and } 0.7935 \\
& \text { Full-matrix least-squares on } \mathrm{F}^{2} \\
& 1380 \text { / } 0 \text { / } 85 \\
& 1.099 \\
& \mathrm{R} 1=0.0277, \mathrm{wR} 2=0.0755 \\
& \mathrm{R} 1=0.0301, \mathrm{wR} 2=0.0785 \\
& 0.432 \text { and }-0.229 \text { e. } \AA^{-3}
\end{aligned}
$$

Data of compound 80 (Manuscript in preparation):

Table 1. Crystal data and structure refinement for mar85c.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group (H.-M.)
Space group (Hall)
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to Θ theta $=28.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
mar85c
$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{~S}$
382.07

173(2) K
$0.71073 \AA$
Orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
P 2ac 2ab
$a=6.7875(2) \AA \quad \alpha=90^{\circ}$.
$b=11.7052(3) \AA \quad \beta=90^{\circ}$.
$c=16.1088(4) \AA \quad \gamma=90^{\circ}$.
$1279.83(6) \AA^{3}$
4
$1.983 \mathrm{Mg} / \mathrm{m}^{3}$
$6.489 \mathrm{~mm}^{-1}$
744
$0.56 \times 0.37 \times 0.18 \mathrm{~mm}^{3}$
2.53 to 28.00°.
$-8 \leq \mathrm{h} \leq 8,-15 \leq \mathrm{k} \leq 15,-14 \leq \mathrm{l} \leq 21$
11457
$2888[\mathrm{R}(\mathrm{int})=0.0271]$
99.6 \%

Semi-empirical from equivalents
0.3880 and 0.1219

Full-matrix least-squares on F^{2}
2888 / 0/154
1.024
$\mathrm{R} 1=0.0206, \mathrm{wR} 2=0.0449$
$\mathrm{R} 1=0.0229, \mathrm{wR} 2=0.0454$
0.027(7)
0.313 and -1.024 e. \AA^{-3}

Part B

Isolation of New Chemical Constituents of Symplocos racemosa

Intorduction

1. Taxonomy of the Family Symplocaceae

The family Symplocaceae was first recognized by D. Don. (Symplocineae, Prodr. Fl. Nepal. 144.1825, excluding Schopfia) but most authors including De Candolle (Prodr. 8: 244.1844), Bentham and Hooker (Gen. Pl. 2: 668.1876), Stewart and Brandis (For. Fl.299.1874) and C. B. Clarke in Hook. f. (Fl. Brit. Ind. 3: 572.1882) included it in family Styracaceae.

However, Miquel in Martius (Fl. Brass. 7: 22. 1842), Engler and Prantl (Pflanzenfam 4 (1): 168. 1890) following D. Don, treated it as a separate family. Lawrence (Taxon. Vasc. Pl. 665. 1951) and C. G. G. Van Steenis (Fl. Males. 4: 49. 1954) advocate its separate identity from Styracaceae on the basis of its inferior or semi-inferior, completely 2-5 loculed ovary, drupe crowned by persistent calyx lobes, 1-4 seriate or fasciculate (adelphous) stamens with ovoid-subglobose anthers and absence of stellate hairs or scales. Hutchison (Gen. Fl. Pl 2: 39.1968; Fam. Fl. Pl. 1: 171.1960) also treats it as a separate unigeneric family. The remarks of Shaw (in Willis Dict. Fl. Pl. and Ferns ed. 8.1093.1972) that Symplocaceae has not much in common with Styracaceae but is closely related to Theaceae are justified since it differs from Theaceae only in racemose inflorescence and inferior ovary, the characters found in some Theaceous genera (e.g., Anneslea, Symplocarpon). ${ }^{1}$

1.1 The Genus Symplocos Jacq. and Linn.

Being the only genus of family Symplocaceae, it has the same morphological characters and geographical distribution as the family.

1.1.1 Distribution

It is a large genus of trees and shrubs, widely distributed in the tropics and subtropics of Asia, Australia, and America. It consists of almost 290 species, about 68 species are found in India, of which only a few are of economic importance. In Pakistan only two species are found, namely Symplocos chinensis and Symplocos racemosa. ${ }^{2,3}$

1.1.2 Morphology

Trees or shrubs, usually glabrous. Leaves often turning yellow when dry, alternate, coriaceous or membranous, toothed or entire. Flowers usually white, in axillary spikes or racemes, sometimes reduced to few-flowered fascicles or to a single flower; bracteate, caduceous; bracteoles are 1-3 beneath the flower. Calyx-tube adnate, short when in flower, often enlarged in fruit; lobes 5, imbricate. Petals 5 in 1 series, or 6-10 in 2 series, free almost or entirely to the base, or obscurely connate (rarely connate into a tube), imbricate. Stamens are usually numerous, many seriate, adnate to the corolla-tube or to the petals, the outer ones longer; filaments filiform or flattened at the base; anthers short dehiscing longitudinally. Ovary inferior (in Indian species), 3- (rarely 2- or 4-) celled; ovules 2 , pendulous from the inner angle of each cell; style usually filiform; stigma capitate or small, scarcely lobed. Drupe is ellipsoid or subglobose; stone usually woody, often ribbed, 1-3-seeded. Seeds oblong; embryo terete, straight or curved, in the centre of fleshy albumen; cotyledons much shorter than the radicle. ${ }^{3}$

1.2 The Species Symplocos racemosa Roxb.

1.2.1 History

This tree, in Sanskrit, was called Lodhra, Rodhra or Srimata meaning "propitious", and "Tilaka" because it was used in making the Tilaka mark on the forehead. The decoction of the bark was used for gargling when the gums were spongy and bleeding (Susruta). Roxburgh remarks that the bark was popular among the dyes of red in Calcutta and seemed to be used as a mordant only. In Europe it was formerly looked upon as a cinchona bark and had been known at various times as "Ecorce de lautour", "China nova", "China calafornica", "China brasilarsis", and "China paraquatan". It was also known as "Lotus bark". ${ }^{4}$

1.2.2. Distribution

It grows abundantly in the plains and lower hills throughout North and East India, ascending in the Himalayas up to an elevation of $1,400 \mathrm{~m}$; southwards it extends up to Chota Nagpur. In Pakistan, it is found in the areas of Azad Kashmir and Abbottabad. ${ }^{2}$

1.2.3. Habitat

S. racemosa Roxb. is a small evergreen tree, stem up to 6 m high and 15 cm diameter. Bark dark grey, rough. Blaze $7.5-13 \mathrm{~mm}$, shortly fibrous, pale yellow finely mottled with pale orange brown. Leaves $9-18$ by 3.2-5 cm, elliptic-oblong or elliptic-lanceolate, apex acute, obtusely-acuminate or obtuse, serrulate obscurely crenate or rarely entire, base acute cuneate, coriaceous, glabrous above, pubscent beneath when young but ultimately glabrous or with scattered spreading hairs mainly on the midrib, glossy on both surfaces, dark green above; lateral nerves indistinct (distinct when dry) 5-9 pairs. Petiole 7.5-18 mm long. Flowers 1-1.3 cm diam., white fading yellow, in simple axillary pubescent racemes 1.3-9 cm long. Drupe 1-1.3 cm long, oblong, glabrous, purplish black, crowned with the persistent calyx, smooth and 1-3 seeded. ${ }^{3}$

1.2.4 Medicinal Impotance

Symplocos racemosa Roxb. (Lodh) is a medicinal plant widely used by the traditional practitioners against various diseases as single or in compound drug. It has a wide range of usage in Ayurveda and Unani medicines. Its bark is described as an emmenagogue tonic for the persons of plethoric constitution and is useful in bowel complaints and ulcers. Its decoction is used as a gargle for giving firmness to bleeding and spongy gums. It cures watery eyes, opthalmia and is good for all diseases of the eye. It also cures "Kapha" biliousness, diseases of the blood, dysentery, inflammations, vaginal discharges, leprosy, elephantiasis, filaria, and is useful in abortions, miscarriages and ulcers in the vagina. The bark in 20 -grain doses mixed with sugar is given in menorrhagia due to relaxation of the uterine tissue; it should be given two or three times a day, for three or four days. It is also used for leucorrhoea. The bark is also prescribed in the treatment snake-bite and scorpion-sting. In snake-bite it is given internally in powder form or in the form of decoction. ${ }^{3,5}$

1.3 Phytochemicals: Their Role in the Modern Times

The word "phytochemical" means the chemicals derived from phyto or plant. Its study involves understanding the chemical composition of plants used in medicine. Phytochemicals produced in plants are secondary compounds responsible for metabolic activities and defense purpose. Phytochemicals are produced by specific biochemical pathways, which occur inside the plant cells. The phytochemicals can range from medicinally useful agents to deadly poisons. A number of phytochemicals isolated from plant material are used in the pharmaceutical drug industry today.

With the history of plant-based medicine in mind, one can conclude that in the early days, physicians were not aware of the chemical constituents in the plants. However, they did have knowledge of the active principles responsible for therapeutic activity. In CharakaSamhita, the classical treatise on Ayurvedic medicine, the word, virya, is similar to word, potency. Drugs have been classified according to the pharmacological activities, but a comprehensive account of the mechanism of action was missing.

Ayurveda, the ancient healing system of India, flourished in the Vedic era in India. According to historical facts, the classical texts of Ayurveda, Charaka Samhita and Sushruta Samhita were written around 1000 B.C. The Ayurvedic Materia Medica includes 600 medicinal plants alongwith therapeutics. Herbs like turmeric, fenugreek, ginger, garlic and holy basil are an integral part of Ayurvedic formulations. These formulations either incorporate a single herb or more than one herb (i.e., polyherbal formulations).Before the availability of synthetic drugs; humans were completely dependent on medicinal herbs for prevention and treatment of diseases. The use of the medicinal herbs for curing disease has been documented in the history of all civilizations. The drugs were used in crude forms like expressed juice, powder, decoction or infusion. Although formulations mentioned in ancient texts are difficult to understand in terms of scientific parameters, some of them are still reputed for their curative values.

Ancient healers who developed formulations based on medicinal herbs were probably not aware of the chemical composition of these herbs. Nevertheless, the advancement they made despite the non-availability of scientific procedures is astonishing. The work on Terminalia chebula (myrobalan) mentioned in Charaka Samhita is quiet authentic and
modern studies have revealed that the purgative activity mentioned in Ayurveda is justified by the isolation of chebulic acid, the active constituent of myrobalan.

Medicinal plants are a significant source of synthetic and herbal drugs in India and China and have been on the forefront when we talk about history of herbal drugs. The traditional systems of medicines: Ayurveda, Siddha, Unani, Western Herbal Medicine, Traditional Chinese Medicine and Homeopathy have roots in medicinal herbs. The field of herbal medicine has produced a number of distinguished researchers and due to its accessibility to traditions; it is still practiced even by lay practitioners.

Sterner, who first isolated morphine from Papaver somniferum (opium poppy) showed to the medical profession that certain phytochemicals produced in plant cells are responsible for pharmacological activity. Later on, other alkaloids isolated from opium poppy were investigated for their pharmacological activities. Codeine showed anti-tussive activity and papaverine anti-spasmodic activity. The opium based extracts have been utilized for various pharmacological activities, and a number of alkaloids distributed in the plant have different pharmacological activities.

Scientific validation of herbal drugs always has been questioned, but with recent advances and publications of clinical trials, the researchers and the public are viewing herbal products with more respect. In the commercial market, medicinal herbs are used as raw drugs, extracts or tinctures. Isolated active constituents are used for applied research. There has been a dramatic rise in the sale of herbal products like Allium sativum, Hypericum perforatum, Spirulina, Echinacea angustifolia, Ginkgo biloba and Silybum marianum.

Before any herbal medicine is screened for testing, phytochemical investigations are essential because sometimes a critical constituent is missing from the herb due to reasons like storage, geographical distribution or processing. Today standardized extracts are used in herbal drug industry and their standard is based on the presence of marker compounds. The marker compounds may or may not have pharmacological activity.

A brief account of type of the phytochemicals distributed in plant flora is presented below:

1. Phenolic compounds are widely distributed in plant flora. A variety known as polyphenols is found in fruits of some plants. They occur as natural colour pigments and are responsible for the colour of the fruits.
2. Bitter principles are basically glycosides and are found commonly in plants of Genitiaceae. The bitters act on gustatory nerves, which results in increased flow of saliva and gastric juices and acts as appetizers.
3. Alkaloids are basically nitrogen containing bases and the most important class of phytochemicals. The amino acids act as building blocks for the biosynthesis of alkaloids.
4. Diarylheptanoids are rare compounds found in the family Zingiberaceae. Recent animal studies have shown diarylheptanoids to be potent anti-inflammatory agents.
5. Flavonoids are important group of polyphenols, widely distributed in plant flora. 4,000 flavonoids are known to exist and some of them are pigments in higher plants. Quercetin, kaempferol and quercitrin are common. Soya flavones have recently gained importance due to variety of pharmacological activities.
6. Furanocoumarins are photosensitizing agents used in the treatment of pigment disorders. Ayurveda, the ancient science of India, has described the use of bawachi (Psoralia corylifolia) for the treatment of leucoderma.
7. Furochromones are group of coumarins, derived from benzopyrone. They are related to furanocoumarins.
8. Hydroxycoumarins represents another group of coumarins.
9. Glycosides are water-soluble constituents, found in the cell sap. They are colourless, crystalline substances containing carbon, hydrogen and oxygen. Some glycosides are peculiar in having nitrogen and sulphur.
10. Napthodianthrones are derivatives of anthracene.
11. Neutral principles are bodies of unidentified character.
12. Acylphloroglucinols are group of phenolic compounds having significant antidepressant activity.
13. Resins are brittle, non-volatile, solid substances. Oleoresins are natural products of resin mixed with volatile oils. Gum- resins are plant exudates and are mixtures of gum
and resin and often volatile oils. Balsams are combinations of resins or oleoresins with aromatic acids.
14. Saponins are glycosides of triterpenes and steroids found in number of plants. Some are poisonous.
15. Sesquiterpene lactones constitute significant group of phytochemicals. They are formed by condensation of three isoprene molecules followed by oxidation.
16. Sterols are derivatives of steroids. Modern clinical studies have supported their role as anti-inflammatory and analgesic agents.
17. Tannins are widely distributed in plant flora. They are phenolic compounds of high molecular weight.

According to recent estimation, only 20 percent of the flora of Pakistan has been screened for drugs. Keeping in view the vast treasure of medicinal herbs, one can expect phytochemicals to play a significant role as modern science has limited options for diseases like diabetes mellitus, rheumatoid arthritis, Alzheimer's disease and Parkinson's disease. Work on the identification and isolation of phyochemicals is an ongoing process and herbal medicine is expected to play critical role in the future healthcare system. ${ }^{6}$

1.4 Diversity and Impotance of Phenolics in Plants

Phenolic constituents occurring in plants have a great diversity in their structures ranging from complex phenolic glycosides to simple salicylic acid. Several thousands phenolic compounds have been isolated from plant kingdom which make a considerable contribution to the nutritional quality of fruits and fruit products and play an important role in the daily diet. Phenols exhibit anti-inflammatory, antiseptic effects and antiviral properties. Protection against infection and feeding are the leading theories on why plants produce these compounds. They also play a key role in antioxidative defense mechanisms in biological systems and may have inhibitory effects on mutagenesis and carcinogenesis. Attention has turned to plant phenols because the use of synthetic antioxidants has been falling off due to their suspected action as cancer promoters.

Polyphenols or multiphenolic complexes have an even wider range of biological activities. The red, blue and purple pigments found in fruits, vegetables, tea and herbs are due to their polyphenol contents. Specific examples include apples, blueberries, cranberries, egg plants, red currants, grapes, grape juice, purple bell peppers, raspberries, red wine, and green and black tea. They are considered to have antihistaminic, antiinflammatory, antioxidant, anti-clotting, anti-tumor and vascular effects.

Natural phenolic acids belong to two different classes, hydroxybenzoic acids (HBA) and hydroxycinnamic acids (HCA). They are derived from two non-phenolic molecules, benzoic and cinnamic acids, respectively. Phenolic acids are widely represented in fruits, although their distribution may vary considerably according to species, cultivar, and physiological stage. Phenolic acids are also of great interest to man because they also contribute to the sensory and nutritional qualities. ${ }^{7}$

Literature Review

2. Chemical Constitutents of Genus Symplocos

According to the cited literature, the phytochemical investigation of the various species of the genus Symplocos Jacq. has resulted in the isolation of dihydrochalcone glucosides: [phloridzin (1), confusoside (2), trilobatin (3)] ${ }^{8}$ flavanol glucosides: [symplocoside (4), symposide (5), leucopelargonidin 3-glucoside (6), ellagic acid (7)], flavonol glycoside: rhamnetin 3 -digalactoside (8), ${ }^{10}$ alkaloids: [isoboldine (9), caaverine (10)], ${ }^{11}$ iridoid glucoside: verbenalin (11), ${ }^{8}$ triterpenoids: [19 α-hydroxyarjunolic acid-3,28-O-bis- β glucopyranosides(12); ${ }^{12} 19 \alpha$-hydroxyasiatic acid-3,28-O-bis- β-glucopyranosides), ${ }^{12} 28$-hydroxy-20 α-urs-12, 18(19)-dien-3 β-yl acetate (14), 24-hydroxyolean-12-en-3one (15), 3-oxo-urs-20 α-urs-12, 18(19)-dien-28-oic acid (16), betulin (17); oleanolic $\operatorname{acid}(\mathbf{1 8})]^{9 \mathrm{c}}, \beta$-sitosterol (19) and α-amyrin (20). ${ }^{9 \mathrm{~b}}$ An overview of all these compounds is given here in.

Source:
S. lancifolia S. spicata
 (1)

M. F. $=\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{9}$
M. W. $=420$

Source:
S. racemosa

Symposide (5)

M. F. $=\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{8}$
M. W. $=302$
Source:
S. spicata

M. F. $=\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{17} \quad$ M. W. $=640$

Source:
S. celastrinea

Isoboldine (9)
M. F. $=\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$
M. W. $=327$

Source:
S. glauca

Verbenalin (11)

M. F. $=\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{10}$
M. W. $=388$

Source:
S. celastrinea

Caaverine (10)
M. F. $=\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$
M. W. $=267$

M. F. $=\mathrm{C}_{42} \mathrm{H}_{68} \mathrm{O}_{16} \quad$ M. W. $=828$

24-Hydroxyolean-12-en-3-one (15)

3-Oxo-urs-20 α-urs-12,18(19)-dien-28-oic acid (16)

Results and Discussion

3. Present Work

The present work includes the phytochemical investigation and then re-investigation of the chemical constituents of the various fractions of Symplocos racemosa, the structure elucidation of the isolated constituents, and the screening of these constituents for various biological activities. For the convenience, the present work is divided into two categories; namely:
3.1. Structure elucidation of the chemical constituents of Symplocos racemosa
3.2. Bioactivity of the chemical constituents of Symplocos racemosa Both these categories are discussed in detail, one after another.

3.1 Structure Elucidation of the Chemical Constitutents of Symplocos racemosa

This category of the present work highlights the characterization and identification of the chemical constituents, isolated from various fractions of Symplocos racemosa. The isolated constituents are divided into three sub-categories; namely:
3.1.1. New chemical constituents of Symplocos racemosa
3.1.2 New-source chemical constituents of Symplocos racemosa

A comprehensive account on these sub-categories is given below.

3.1.1. New Chemical Constitutents of Symplocos racemosa

The phytochemical investigation of the n-butanol soluble fraction of the bark of stem of Symplocos racemosa Roxb. yielded two new phenolic glycosides of salirepin series, symplocuronic acid (21) and sympocemoside (22) . Further investigation of the nbutanol solubles resulted in the isolation of three new benzyl derivatives, locoracemosides A, B and C (23-25). All the (five) new compounds are discussed, one by one, in detail.

3.1.1.1. Symplocuronic acid (21)

Symplocuronic acid (21) was isolated as an amorphous solid from the n-butanol fraction of the methanolic extract of the bark of Symplocos racemosa Roxb.

Fig. 3.1: Symplocuronic acid (21)

Its molecular formula $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{15}$ was established through the HRFAB MS (+) showing a quasi-molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$peak at $m / z 583.5089$ which indicated 12 degrees of unsaturation. Its UV absorption band at $\lambda_{\max } 284 \mathrm{~nm}$ was characteristic of phenolic compounds and its IR spectrum showed specific absorptions at $3364-3025(\mathrm{br}) \mathrm{cm}^{-1}$ and $1733 \mathrm{~cm}^{-1}$, which could be ascribed to a carboxyl group. The intense IR absorption band at $1720 \mathrm{~cm}^{-1}$ revealed the presence of ester functionality while the broad C-O stretching band in the region of $1071 \mathrm{~cm}^{-1}$ suggested its glycosidic nature. The complete acid hydrolysis of 21 yielded various products and in the hydrolysate separated from the aglycone parts, the two sugars identified by the TLC comparison were found to be glucuronic acid and glucose and these were also supported by the loss of fragments in the FAB MS from the $[\mathrm{M}]^{+}$peak at $m / z 582$ to fragment ion peaks at $m / z 406$ [M glucuronic acid] ${ }^{+}$and $m / z 244[\mathrm{M} \text { - glucuronic acid - glucose }]^{+}$. Its EI-MS spectrum also exhibited an ion at $m / z 244$ [M - glucuronic acid - glucose] ${ }^{+}$and the other characteristic fragments were observed at $m / z 140\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+}, 123\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2}\right]^{+}, 122$ $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right]^{+}, 105\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right]^{+}$and $77\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$which indicated that the aglycone was exactly similar to that of reported salireposide ${ }^{13-15}$ and this assignment was thoroughly supported by its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data (Table 3.1). However, the remaining signals presumably belonged to two sugar moieties with two anomeric doublets at $\delta 4.72\left(\mathrm{H}-1^{\prime \prime}\right)$ and $\delta 4.75$
$\left(\mathrm{H}-1^{\prime \prime \prime}\right)$ and the evidence for the β-configuration of these sugars was drawn from the coupling constants of $J=7.3$ and $J=7.4 \mathrm{~Hz}$ for $\mathrm{H}-1^{\prime \prime}$ and $\mathrm{H}-1^{\prime \prime \prime}$ respectively. The ${ }^{13} \mathrm{C}$ NMR spectrum corroborated the characteristic signals of a benzoyl residue, a substituted gentisyl alcohol unit and a glucose similar to that of known salireposide ${ }^{13-15}$ but the additional signals were specific for a glucuronic acid moiety with the carboxy resonance at δ 173.7. ${ }^{16,17}$ Its position in the molecule was deduced through the downfield shift of C$6^{\prime \prime}$ to $\delta 65.4$ as compared to the respective signal of salireposide ${ }^{13-15}$ and HMBC correlations of $\mathrm{H}-1^{\prime \prime \prime}$ with $\mathrm{C}-6^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$ with $\mathrm{C}-1^{\prime \prime \prime}$. The important HMBC correlations are shown in figure 3.2.

Fig. 3.2. Significant HMBC correlations of Symplocuronic acid (21)

Since only D-glucose and D-glucuronic acid are known in nature, ${ }^{17}$ therefore, based upon the above cumulative evidences, 21 was identified as 2-[(benzoyloxy)methyl]-4hydroxyphenyl O- β-D-glucuronopyranosyl $(1 \rightarrow 6)$ - β-D glucopy-ranoside.

Table:3.1 ${ }^{13} \mathrm{C}-(125 \mathrm{MHz})$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz) spectral data of Symplocuronic acid (21) correlated from 1D and 2D-NMR experiments in $\mathrm{CD}_{3} \mathrm{OD}$.

C. No.	Multiplicity (DEPT)	${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\delta)$	${ }^{1} \mathrm{H} \text {-NMR }$ (δ	$\begin{aligned} & { }^{1} J_{\mathrm{HH}} \\ & (\mathrm{~Hz}) \end{aligned}$
1	C	149.8	-	-
2	C	133.2	-	-
3	CH	117.0	6.79	(d, $J=2.9)$
4	C	154.2	-	-
5	CH	116.2	6.49	(dd, $J=2.9,8.8)$
6	CH	120.0	7.02	(d, $J=8.8$)
7	CH_{2}	64.3	5.19	$(\mathrm{d}, J=12.5)$
			5.33	(d, $J=12.5$)
1^{\prime}	C	131.3	-	-
$2^{\prime}, 6^{\prime}$	CH	130.6	8.00	(d, $J=7.4)$
$3^{\prime}, 5^{\prime}$	CH	129.6	7.49	($\mathrm{t}, J=7.6$)
4^{\prime}	CH	134.3	7.62	($\mathrm{t}, J=7.5$)
7^{\prime}	C	167.9	-	-
$1^{\prime \prime}$	CH	104.2	4.72	(d, $J=7.3$)
$2^{\prime \prime}$	CH	74.4	3.45	(br t, $J=7.8$)
$3^{\prime \prime}$	CH	78.3	3.49	m
$4{ }^{\prime \prime}$	CH	72.0	3.41	m
$5^{\prime \prime}$	CH	75.5	3.86	$\begin{aligned} & (\mathrm{ddd}, J=1.9, \\ & 8.9,11.3) \end{aligned}$
$6^{\prime \prime}$	CH_{2}	65.4	$\begin{aligned} & 4.40 \\ & 4.49 \end{aligned}$	$\begin{aligned} & (\mathrm{dd}, J=7.7,11.6) \\ & (\mathrm{dd}, J=1.9,11.6) \end{aligned}$
$1^{\prime \prime \prime}$	CH	104.0	4.75	(d, $J=7.4$)
$2^{\prime \prime \prime}$	CH	74.4	3.47	(br t, $J=7.7$)
$3^{\prime \prime \prime}$	CH	78.1	3.52	m
$4^{\prime \prime \prime}$	CH	72.4	3.43	m
$5^{\prime \prime \prime}$	CH	75.0	4.02	$(\mathrm{d}, J=9.3)$
$6^{\prime \prime \prime}$	C	173.7	-	-

3.1.1.2. Sympocemoside (22)

Sympocemoside (22) was obtained also as an amorphous solid from the n-butanol fraction of the methanolic extract of the bark of Symplocos racemosa Roxb.

Fig. 3.3. Sympocemoside (22)

It was assigned a molecular formula $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{13}$ on the basis of HRFAB MS $(+)(\mathrm{m} / \mathrm{z}$ $465.4197[\mathrm{M}+\mathrm{H}]^{+}$, showing 6 degrees of unsaturation. It exhibited UV absorption band ($\lambda_{\max } 282 \mathrm{~nm}$) typical of phenolic compounds. The IR absorption bands revealed the presence of hydroxyl groups ($3357 \mathrm{br} \mathrm{cm}^{-1}$), methines ($2932 \mathrm{~cm}^{-1}$), aromatic ring (1595$1416 \mathrm{~cm}^{-1}$), ether linkage ($1266,1215 \mathrm{~cm}^{-1}$) and the broad (C-O) stretching bands in the regions of 1115-1040 cm^{-1} accounted its glycosidic nature. The EI MS spectrum of $\mathbf{2 2}$ exhibited the following characteristic fragments; $m / z 140\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+}, 123$ $\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2}\right]^{+}, 122\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, which indicated the presence of a gentisyl alcohol moiety in the molecule. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the usual ABX spin system of the gentisyl alcohol group was readily identified by signals observed at $\delta 7.06$ ($1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-6), 6.77(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H}-3)$, and $6.65(1 \mathrm{H}, \mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}$, $\mathrm{H}-5)$ and the two anomeric doublets at $\delta 4.73\left(J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $4.70(J=7.8 \mathrm{~Hz}$, H$1^{\prime \prime}$) clearly ascertained the presence of two β-glucose moieties in the molecule. In addition to the similar signals of reported salirepin, ${ }^{18}$ its ${ }^{13} \mathrm{C}$-NMR spectrum also revealed the signals for an additional glucose unit and its position in the molecule was determined through the downfield shift of C-2' ($\delta 77.9$) and upfield shifts of $\mathrm{C}-1^{\prime}(\delta 102.6)$ and $\mathrm{C}-3^{\prime}$
($\delta 76.0$) as compared to the respective signal of known salirepin (Table 3.2). In the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 22, a broad triplet signal at $\delta 3.44$ was assigned to $\mathrm{H}-2^{\prime}$ on the basis of a cross-peak with the anomeric proton $\mathrm{H}^{\prime} 1^{\prime}(\delta 4.73)$ and there after the HMBC correlations of $\mathrm{H}-2^{\prime}$ with $\mathrm{C}-1^{\prime \prime}$ and $\mathrm{H}-1^{\prime \prime}$ with $\mathrm{C}-2^{\prime}$ confirmed that the additional glucose (II) was linked glycosidically to $\mathrm{C}-2^{\prime}$ of first glucose (I). The important HMBC correlations are shown in figure 3.4.

Fig. 3.4. Significant HMBC correlations of Sympocemoside (22)

Since only D-glucose is known in nature, therefore the structure of $\mathbf{2}$ was deduced as 2-(oxymethyl)-4-hydroxyphenyl O- β-D-glucopyranosyl ($1 \rightarrow 2$)- β-D-glucopyranoside.

Table:3.2 ${ }^{13} \mathrm{C}-(125 \mathrm{MHz})$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectral data of Sympocemoside (22) correlated from 1D and 2D-NMR experiments in $\mathrm{CD}_{3} \mathrm{OD}$.

C. No.	Multiplicity (DEPT)	${ }^{13} \text { C-NMR }$ (δ)	${ }^{1} \mathrm{H}$-NMR (δ)	${ }^{1} J_{\mathrm{HH}}$ (Hz)
1	C	150.3	-	-
2	C	133.9	-	-
3	CH	116.4	6.77	(d, $J=3.0)$
4	C	154.2	-	-
5	CH	115.8	6.65	(dd, $J=3.0,8.7)$
6	CH	119.5	7.06	(d, $J=8.7$)
7	CH_{2}	61.1	$\begin{aligned} & 4.68 \\ & 4.50 \end{aligned}$	$\begin{aligned} & (\mathrm{d}, J=13.0) \\ & (\mathrm{d}, J=13.0) \end{aligned}$
1^{\prime}	C	102.6	4.73	$(\mathrm{d}, J=7.6)$
2^{\prime}	CH	77.9	3.44	(br t, $J=7.7$)
3^{\prime}	CH	76.0	3.49	m
4^{\prime}	CH	72.5	3.42	m
5^{\prime}	C	77.7	3.85	m
6^{\prime}	CH	62.6	$\begin{aligned} & 4.38 \\ & 4.46 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$
$1^{\prime \prime}$	CH	105.3	4.70	$(\mathrm{d}, J=7.8)$
$2^{\prime \prime}$	CH	75.2	3.46	(br t, $J=7.7$)
$3{ }^{\prime \prime}$	CH	78.2	3.51	m
$4 \prime$	CH	72.3	3.41	m
$5^{\prime \prime}$	CH	75.9	3.85	m
$6^{\prime \prime}$	CH_{2}	62.4	$\begin{aligned} & 4.38 \\ & 4.46 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$

3.1.1.3. Locoracemoside A (23)

Locoracemoside A (23) was isolated as an amorphous solid. Its molecular formula $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{12}$ was assigned on the basis of HRFABMS which showed a quasimolecular ion $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 523.5049$. An intense band at $1719 \mathrm{~cm}^{-1}$ in its IR spectrum indicated an ester group.

Fig. 3.5. Locoracemoside A (23)
The fragments at $\mathrm{m} / \mathrm{z} 121\left[\mathrm{OHC}_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{+}$and $\mathrm{m} / \mathrm{z} 93\left[\mathrm{HOC}_{6} \mathrm{H}_{4}\right]^{+}$in the EIMS were accounted for the presence of a hydroxybenzoyl group while the fragments at $\mathrm{m} / \mathrm{z} 91$ $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right]^{+}$and m/z $77\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$could be ascribed for a benzyl moiety in the molecule. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 3.3) displayed a pair of anomeric resonances due to two sugar units $\left[\delta 4.50\left(\mathrm{~d}, \mathrm{~J}=8.0, \mathrm{H}-1^{\prime}\right)\right.$ and $\left.4.39\left(\mathrm{~d}, \mathrm{~J}=7.4, \mathrm{H}-1^{\prime \prime \prime}\right)\right]$, a pair of $\mathrm{A}_{2} \mathrm{~B}_{2}$ doublets due to p-hydroxyphenyl [$87.88\left(2 \mathrm{H}, \mathrm{J}=8.7, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right)$ and $6.85\left(2 \mathrm{H}, \mathrm{J}=8.7, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-\right.$ $\left.5^{\prime \prime}\right)$]. Additionally, a set of resonances characteristic for a mono-substituted phenyl [δ 7.41 (2H, distorted d, J = 7.3, H-2, H-6), 7.32 (2H, distorted $\mathrm{t}, \mathrm{J}=7.3, \mathrm{H}-3, \mathrm{H}-5$), 7.25 $(1 \mathrm{H}$, distorted $\mathrm{t}, \mathrm{J}=7.3, \mathrm{H}-4)]^{19}$ and two geminally coupled resonances for an isolated methylene [$\delta 4.87,4.62\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{J}=11.8, \mathrm{CH}_{2}-7\right)$]. Out of 25 resonances appeared in its ${ }^{13} \mathrm{C}$ NMR spectrum (Table 3.3), 11 were attributed to a glucopyranosyl and an arabinopyranosyl that are in agreement with the corresponding signals of benzyl α-L-arabinopyranosyl- $(1 \rightarrow 6)$ - β-D-glucopyranoside ${ }^{20}$ and confirmed by the downfield shift of C-6' ($\delta 67.6$) and HMBC correlations of $\mathrm{H}-1$ "" with $\mathrm{C}-6$ ' and $\mathrm{CH}_{2}-6$ with $\mathrm{C}-1$ '" (Fig. 3.5). The HMBC correlations of H-2"/H-6" ($\delta 7.88$) with C-4" ($\delta 163.5$) and C-7" ($\delta 168.1$) and of H-3"/H-5" ($\delta 6.85$) with C-1" ($\delta 122.4$) and C-4" ($\delta 163.5$) supported the presence
of a para-hydroxybenzoyl group. Its position in the molecule was deduced through the downfield shift of C-3' ($\delta 79.8$) and upfield shifts of C-2' $(\delta 73.5)$ and $\mathrm{C}-4^{\prime}(\delta 70.5)$ as compared to the respective signals of reported benzyl $\alpha-L$-arabinopyranosyl-($1 \rightarrow 6$)- β-Dglucopyranoside and symponoside ${ }^{20,21}$ and confirmed by HMBC correlation of H-3' ($\delta 5.32$) with $\mathrm{C}-7{ }^{\prime \prime}(\delta 168.1)$. The ${ }^{1} \mathrm{H}{ }^{1} \mathrm{H}$ COSY correlations $\left[\mathrm{CH}_{2}-2, \mathrm{H}-6(\delta 7.41) / \mathrm{H}-3, \mathrm{H}-\right.$ $5(\delta 7.32) / \mathrm{H}-4(\delta 7.25)]$ and HMBC correlations $[2 \mathrm{H}-7(\delta 4.87,4.62) / \mathrm{C}-2, \mathrm{C}-6(\delta 128.7)$ and H-2, H-6 ($\delta 7.41$)/C-7 ($\delta 71.9$)] advocated a benzyl group. The position of benzyl unit at C-1' was confirmed by the HMBC correlations of $\mathrm{CH}_{2}-7(\delta 4.87,4.62)$ with $\mathrm{C}-1$ ' ($\delta 103.4$) and $\mathrm{H}-1$ ' ($\delta 4.50$) with $\mathrm{C}-7(\delta 71.9)$.

Fig. 3.6. Significant HMBC correlations of Locoracemoside A (23)

The sugars obtained after acid hydrolysis were identified as glucopyranose and arabinopyranose by comparing their Rf to those of the standard sugar samples on coTLC. The absolute configurations of glucose and arabinose were determined as D and L respectively, by GC MS analysis of their acetylated thiazolidine derivatives. ${ }^{22}$ Finally, 23 was established as benzyl O-(3'-O-p-salicyloyl-6'-O- $\alpha-L-a r a b i n o p y r a n o s y l)-\beta-D-$ glucopyranoside.

Table:3.3 ${ }^{13} \mathrm{C}-(125 \mathrm{MHz})$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectral data of Locoracemoside A (23) correlated from 1D and 2D-NMR experiments in $\mathrm{CD}_{3} \mathrm{OD}$.

C. No.	Multiplicity (DEPT)	${ }^{13} \mathrm{C}-\mathrm{NMR}$ (δ)	${ }^{1} \mathrm{H} \text {-NMR }$ ($\delta)$	${ }^{1} J_{\mathrm{HH}}$ (Hz)
1	C	138.9	-	-
2,6	CH	128.7	7.41	$\begin{aligned} & \text { (distorted d, J = } \\ & 7.3 \text {) } \end{aligned}$
3,5	CH	129.2	7.32	$\begin{aligned} & \text { (distorted } \mathrm{t}, \mathrm{~J}= \\ & 7.3 \text {) } \end{aligned}$
4	CH	129.1	7.25	$\begin{aligned} & \text { (distorted } \mathrm{t}, \mathrm{~J}= \\ & 7.3 \text {) } \end{aligned}$
7	CH_{2}	71.9	$\begin{aligned} & 4.62 \\ & 4.87 \end{aligned}$	$\begin{aligned} & (d, J=11.8) \\ & (d, J=11.8) \end{aligned}$
1^{\prime}	CH	103.4	4.50	($\mathrm{d}, \mathrm{J}=8.0$)
2^{\prime}	CH	73.5	3.39	(br t, J=8.2)
$3 '$	CH	79.8	5.32	(br t, J=9.3)
4^{\prime}	CH	70.5	3.72	($\mathrm{br} \mathrm{t}, \mathrm{J}=8.6$)
$5 \prime$	CH	75.3	3.61	m
6^{\prime}	CH_{2}	67.6	$\begin{aligned} & 3.85 \\ & 4.15 \end{aligned}$	$\begin{aligned} & (\mathrm{dd}, \mathrm{~J}=5.6,11.7) \\ & (\mathrm{dd}, \mathrm{~J}=1.6,11.7) \end{aligned}$
$1^{\prime \prime}$	C	122.4	-	(d, J $1.6,11.7$)
$2^{\prime \prime}$	CH	132.9	7.88	($\mathrm{d}, \mathrm{J}=8.7$)
$3^{\prime \prime}$	CH	116.4	6.85	($\mathrm{d}, \mathrm{J}=8.7$)
$4^{\prime \prime}$	C	163.5	-	-
5"	CH	116.4	6.85	($\mathrm{d}, \mathrm{J}=8.7$)
$6^{\prime \prime}$	CH	132.9	7.88	($\mathrm{d}, \mathrm{J}=8.7$)
7'	C	168.1	-	-
$1^{\prime \prime \prime}$	CH	105.6	4.39	(d, $\mathrm{J}=7.4$)
$2^{\prime \prime \prime}$	CH	71.6	3.54	($\mathrm{t}, \mathrm{J}=8.5$)
$3^{\prime \prime \prime}$	CH	73.4	3.68	(dd , $\mathrm{J}=9.0,3.2$)
$4^{\prime \prime \prime}$	CH	69.2	3.93	m
5'"	CH_{2}	66.9	$\begin{aligned} & 3.64 \\ & 3.89 \\ & \hline \end{aligned}$	$\begin{aligned} & (\mathrm{br} \mathrm{~d}, \mathrm{~J}=11.9) \\ & (\mathrm{dd}, \mathrm{~J}=11.9,2.4) \end{aligned}$

3.1.1.4. Locoracemoside B (24)

Locoracemoside B (24) was obtained as an amorphous solid, had a molecular formula, $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{14}$ deduced from HRFABMS $\left([\mathrm{M}+\mathrm{H}]^{+}\right.$at m / z 581.5398). Its IR spectrum possessed two intense absorption bands at $1731 \mathrm{~cm}^{-1}$ and $1720 \mathrm{~cm}^{-1}$ for a carboxylic acid and ester groups, respectively.

Fig. 3.7. Locoracemoside B (24)

The fragments in the EIMS at m/z $121\left[\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right]^{+}$and $107\left[\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right]^{+}$ suggested an anisyl moiety while the fragments at $\mathrm{m} / \mathrm{z} 105\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right]$ and $77\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$ clearly showed a benzoyl group in the molecule. When its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table 3.4) were compared to those of $\mathbf{2 3}$, the resonances for an α-arabinose were missing showing instead for a β-glucuronic acid [$\delta 104.1$ (C-1"'), 74.5 (C-2"'), 78.2 (C-3"'), 72.3 (C-4'"), 75.1 (C-5'"'), 173.6 (C-6"' $\left.\left.{ }^{\prime \prime}\right)\right] .{ }^{23,24}$ Additionally, the resonances for a methoxyl were also observed $\left[\delta 55.0\left(4-\mathrm{OCH}_{3}\right)\right.$ and $\delta 3.61\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right)$]. The HMBC correlations of $\mathrm{H}-1$ '" with $\mathrm{C}-6$ ' and $\mathrm{CH}_{2}-6$ ' with $\mathrm{C}-1$ " established the terminal position of the β-glucuronic acid which was also supported by a fragment ion at $\mathrm{m} / \mathrm{z} 405[\mathrm{M}+\mathrm{H}-$ glucuronic acid] ${ }^{+}$in the FABMS spectra. Similar to $\mathbf{2 3}$, the NMR data of $\mathbf{2 4}$ corresponded to a mono-substituted and para-substituted phenyls. But the HMBC correlations of C-7" ($\delta 167.8$) with $\mathrm{H}-2^{\prime \prime} / \mathrm{H}-6^{\prime \prime}(8.10, \mathrm{dd}, \mathrm{J}=1.4,7.1)$ and $\mathrm{H}-3^{\prime}(5.31$, br $\mathrm{t}, \mathrm{J}=9.3)$ and that of $\mathrm{C}-7$ ($\delta 70.4$) with $\mathrm{H}-2 / \mathrm{H}-6(7.45, \mathrm{~d}, \mathrm{~J}=8.5)$ and $\mathrm{H}-1$ ($4.89, \mathrm{~d}, \mathrm{~J}=7.5$) revealed the position of benzoate at C-3' and of p -anisyl at $\mathrm{C}-1$ '.

Fig. 3.8. Significant HMBC correlations of Locoracemoside B (24)

The D-glucopyranose was identified in a similar manner to that of $\mathbf{2 3}$, whereas, the acetylated thiazolidine derivative of glucuronic acid was not detected in GC MS analysis. Ultimately, 24 was identified as 4-methoxybenzyl O-(3'-O-benzoyl-6'-O- β -glucuronopyranosyl)- β-D-glucopyranoside.

Table:3.4 ${ }^{13} \mathrm{C}-(125 \mathrm{MHz})$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectral data of Locoracemoside B (24) correlated from 1D and 2D-NMR experiments in $\mathrm{CD}_{3} \mathrm{OD}$.

C. No.	Multiplicity (DEPT)	${ }^{13} \text { C-NMR }$ (δ)	${ }^{1} \mathrm{H}-\mathrm{NMR}$ (δ	${ }^{1} J_{\mathrm{HH}}$ (Hz)
1	C	130.6	-	-
2	CH	129.9	7.45	($\mathrm{d}, \mathrm{J}=8.5$)
3	CH	114.0	6.93	($\mathrm{d}, \mathrm{J}=8.5$)
4	C	159.5	-	-
5	CH	114.0	6.93	(d, $\mathrm{J}=8.5$)
6	CH	129.9	7.45	($\mathrm{d}, \mathrm{J}=8.5$)
7	CH_{2}	70.4	$\begin{aligned} & 4.79 \\ & 5.08 \end{aligned}$	$\begin{aligned} & (\mathrm{d}, \mathrm{~J}=11.6) \\ & (\mathrm{d}, \mathrm{~J}=11.6) \end{aligned}$
1^{\prime}	CH	103.5	4.89	(d, $\mathrm{J}=7.5$)
2^{\prime}	CH	73.4	3.41	(br t, J = 8.1)
3^{\prime}	CH	79.7	5.31	(br t, J = 9.3)
4^{\prime}	CH	70.5	3.73	(br t, J = 8.4)
5^{\prime}	CH	75.4	3.70	m
6^{\prime}	CH_{2}	67.3	$\begin{aligned} & 3.97 \\ & 4.46 \end{aligned}$	$\begin{aligned} & (\mathrm{dd}, \mathrm{~J}=7.3,11.6) \\ & (\mathrm{dd}, \mathrm{~J}=1.8,11.6) \end{aligned}$
$1^{\prime \prime}$	C	131.5	-	-
$2^{\prime \prime}, 6^{\prime \prime}$	CH	130.7	8.10	($\mathrm{dd}, \mathrm{J}=1.4,7.1$)
$3^{\prime \prime}, 5^{\prime \prime}$	CH	129.6	7.51	($\mathrm{br} \mathrm{t}, \mathrm{J}=7.7$)
$4 \prime$	CH	134.4	7.63	(br t, J = 7.6)
7'	C	167.8	-	-
$1^{\prime \prime \prime}$	CH	104.1	4.74	(d, $\mathrm{J}=7.4$)
$2^{\prime \prime \prime}$	CH	74.5	3.45	($\mathrm{br} \mathrm{t}, \mathrm{J}=7.7$)
$3^{\prime \prime \prime}$	CH	78.2	3.51	($\mathrm{br} \mathrm{t}, \mathrm{J}=7.6$)
$4^{\prime \prime \prime}$	CH	72.3	3.43	($\mathrm{br} \mathrm{t}, \mathrm{J}=7.8$)
$5^{\prime \prime \prime}$	CH	75.1	4.01	($\mathrm{d}, \mathrm{J}=9.2$)
$6^{\prime \prime \prime}$	C	173.6	-	-
$4-\mathrm{OCH}_{3}$	CH_{3}	55.0	3.61	S

3.1.1.5. Locoracemoside C (25)

Locoracemoside C (25) was purified as an amorphous solid. Its molecular formula $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{18}$ was identified by a quasimolecular ion at $\mathrm{m} / \mathrm{z} 675.6099$ in HRFABMS.

Fig. 3.9. Locoracemoside C (25)

The fragments in the EIMS at m/z $181\left[\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}\right]^{+}$and $153\left[(\mathrm{OH})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CO}\right]^{+}$ suggested the presence of a trimethoxybenzyl and a galloyl units in the molecule. Its ${ }^{1} \mathrm{H}$ NMR spectrum (Table 3.5) exhibited the specific signals for a 3,4,5-trimethoxybenzyl moiety [$\delta 6.76(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2, \mathrm{H}-6), 4.85,4.65$ (1 H each, both d, $\mathrm{J}=13.1$ each, $\mathrm{CH}_{2}-7$), 3.84 $\left.\left(6 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{OCH}_{3}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right)\right],{ }^{25}$ a galloyl group $\delta 7.14(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2 \text { ", H-6" })^{26}$ and two β-glucose units [$\left.\delta 4.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6, \mathrm{H}-11^{\prime}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8, \mathrm{H}-1^{\prime \prime \prime}\right)\right]$. The positions of the 3,4,5-trimethoxybenzyl, galloyl and terminal glucose were further confirmed by its long range HMBC correlations (Fig. 3.10). Similar to $\mathbf{1}$ and 2, the absolute configuration of glucose was determined to be D. Accordingly, $\mathbf{3}$ was deduced as $\quad 3,4,5$-trimethoxybenzyl $\quad \mathrm{O}$-(3'-O-galloyl-6'-O- β-D-glucopyranosyl)- β - Dglucopyranoside.

Fig. 3.10. Significant HMBC correlations of Locoracemoside C (25)

Table:3.5 ${ }^{13} \mathrm{C}-(125 \mathrm{MHz})$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ spectral data of Locoracemoside C (25) correlated from 1D and 2D-NMR experiments in $\mathrm{CD}_{3} \mathrm{OD}$.

C. No.	Multiplicity (DEPT)	${ }^{13} \text { C-NMR }$ (δ)	${ }^{1} \mathrm{H} \text {-NMR }$ ($\delta)$	$\begin{gathered} { }^{1} J_{\mathrm{HH}} \\ (\mathrm{~Hz}) \end{gathered}$
1	C	134.9	-	-
2	CH	106.2	6.76	s
3	CH	154.2	-	-
4	C	138.1	-	-
5	C	154.2	-	-
6	C	106.2	6.76	s
7	CH_{2}	71.3	4.65	(d, J = 13.1)
			4.85	(d, J = 13.1)
1^{\prime}	CH	103.2	4.45	(d, J = 7.6)
2^{\prime}	CH	73.5	3.42	(br t, J=8.2)
3^{\prime}	CH	79.7	5.33	(br t, J = 9.4)
4^{\prime}	CH	70.4	3.73	(br t, J = 8.5)
5^{\prime}	CH	75.5	3.69	m
6^{\prime}	CH_{2}	67.5	$\begin{aligned} & 3.96 \\ & 4.23 \end{aligned}$	(dd, $\mathrm{J}=7.1,11.5$) (dd, $\mathrm{J}=1.7,11.5$)
$1^{\prime \prime}$	C	121.4	-	-
$2^{\prime \prime}$	CH	110.0	7.14	7.14 s
$3^{\prime \prime}$	C	146.8	-	-
$4 \prime$	C	140.1	-	-
$5^{\prime \prime}$	C	146.8	-	-
$6^{\prime \prime}$	CH	110.0	7.14	s
7'	C	168.3	-	-
$1^{\prime \prime \prime}$	CH	104.3	4.68	$(\mathrm{d}, \mathrm{~J}=7.8)$
$2^{\prime \prime \prime}$	CH	74.9	3.44	(br t, J=7.7)
$3^{\prime \prime \prime}$	CH	78.1	3.50	(br t, J=7.9)
$4^{\prime \prime \prime}$	CH	72.1	3.40	(br t, J = 7.8)
$5^{\prime \prime \prime}$	CH	77.8	3.69	m
$6^{\prime \prime \prime}$	CH_{2}	62.6	$\begin{aligned} & 3.93 \\ & 4.47 \end{aligned}$	$(\mathrm{dd}, \mathrm{~J}=6.9,11.7)$ $(\mathrm{dd}, \mathrm{~J}=1.8,11.7)$
$3-\mathrm{OCH}_{3}$	CH_{3}	56.5	3.84	s
$4-\mathrm{OCH}_{3}$	CH_{3}	58.0	3.75	s
$5-\mathrm{OCH}_{3}$	CH_{3}	56.5	3.84	S

3.1.2. New Source Chemical Constitutent of Symplocos racemosa

3.1.2.1 Salirepin (26)

Salirepin (26) was isolated, for the first time from this species, as a white powder from the n-butanol soluble part of the methanolic extract of Symplocos racemosa Roxb

Fig. 3.11. Salirepin (26)

The FAB-MS of salirepin (26) showed a [M] ${ }^{+}$ion peak at $m / z 302$, corresponding with the molecular formula $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{8}$, which indicated 5 degrees of unsaturation. It exhibited a UV absorption band ($\lambda_{\max } 285.8 \mathrm{~nm}$) typical of phenolic compounds. The IR absorption bands observed at $3408(\mathrm{OH}), 2921(\mathrm{C}-\mathrm{H}), 1665-1443$, (C=C, Ar), 1268, 1215 (C-O-C), revealed the presence of hydroxyl groups, methines, aromatic double bonds and ether linkage while the broad (C-O) stretching bands in the region of $1084-1040 \mathrm{~cm}^{-1}$ suggested its glycosidic nature. The EI-MS spectrum of 26 exhibited the following characteristic fragments; $\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+}(\mathrm{m} / \mathrm{z} 140,77.6 \%),\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2}\right]^{+}(\mathrm{m} / \mathrm{z} 123,36.5 \%)$, [gentisyl alcohol $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}(\mathrm{m} / \mathrm{z} 122,100 \%)$, which indicated the presence of a gentisyl alcohol moiety in the molecule. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the usual ABX spin system of the gentisyl alcohol group was readily identified by signals observed at $\delta 7.07(1 \mathrm{H}, \mathrm{d}, J=$ $8.7 \mathrm{~Hz}, \mathrm{H}-6), 6.78(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{H}-3)$, and $6.65(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, \mathrm{H}-5)$. The other signals observed were assignable to a β-D-glucose moiety. The ${ }^{13} \mathrm{C}$-NMR spectrum and 2D-NMR experiments, confirmed the structure of 26 to be 2-[oxymethyl]-4-hydroxyphenyl- β-D-glucopyranoside. ${ }^{27}$

3.2. Bioactivity of the Chemical Constituents of Symplocos racemosa

Enzyme inhibition is an important area of pharmaceutical research since studies in this field have already led to the discovery of wide variety of drugs useful in a number of diseases. Specific inhibitors interact with enzymes and block their activity towards their corresponding natural substrates. The importance of enzyme inhibitors as drugs is enormous since these molecules have been used for treating a number of physiological conditions. ${ }^{28}$ Owing to the manifold traditional activities of the plant Symplocos racemosa, we screened its constituents for α-chymotrypsin inhibition.

3.2.1. Chymotrypsin Inhibition

In all metazoan species, proteases play a prominent role in a wide array of physiological processes such as food digestion, blood clotting, embryogenesis, tissue reorganization (e.g. wound healing, regeneration, molting, metamorphosis etc.), defense mechanisms and immune responses. Many of these processes are proteolytic cascades, which, once set in action, lead very rapidly and irreversibly to a specific cellular response. Activation and inactivation of protease cascades have to be closely controlled at different regulatory levels being protease gene transcription, Mrna translation, zymogen activation, substrate specificity, enzyme kinetics and by means of enzyme-inhibitors. Most animal species synthesize a variety of protease inhibitors with different specificities, whose function is to prevent unwanted proteolysis. It follows that, -and evidence for this is accumulating-, proteases are involved in various disease states. For instance, the destruction of the extracellular matrix of articular cartilage and bone in arthritic joints is thought to be mediated by excessive proteolitic activity. ${ }^{29}$ In emphysema, gingivitis, tumour invasion and inflammatory infections, it is suggested that tissue destruction is caused by proteases. ${ }^{29}$ Among the enzymes involved in extracellular matrix degradation, a few serine proteases (elastase, collagenase, cathepsin G, chymotrypsin) are able to solubilize fibrous proteins such as elastin and collagen. ${ }^{30,31}$ Given the specific recognition by proteases of defined amino acid sequences, it may be possible to inhibit these enzymes when they are involved in pathological processes. Potent inhibitors have the potential to be developed as new therapeutic agents. In vertebrates, serine protease inhibitors have
been studied for many years and they are known to be involved in phagocytosis, coagulation, complement activation, fibrinolysis, blood pressure regulation, etc. In the last decade, it became obvious that in invertebrates, serine proteases and their inhibitors are also involved in parallel physiological processes (e.g. blood clotting cascade in Limulus ${ }^{32}$ and the innate immune response. ${ }^{33}$ Moreover, some of the protease inhibitors isolated from invertebrate sources are quite specific towards individual mammalian serine proteases. This also offers huge opportunities for medicine. Thus, the development of non-toxic protease inhibitors extracted from natural sources for in vivo application may be quite important. ${ }^{29}$ In the future, it is likely that numerous specific protease inhibitors will be tested clinically for the treatment of human disease such like emphysema, inflammation, dermitis and cancer. Since the current serine protease (like α chymotrypsin) inhibitors are still far from perfection, the interests and efforts in the discovery of novel serine protease inhibitors are expected to continue in future. Locoracemosides A, B and C, three benzylated glycosides, isolated from the bark of the stem of Symplocos racemosa, displayed in vitro inhibitory potential against α chymotrypsin enzyme. Their $I C_{50}$ values are shown in table 3.6.

Table 3.6: In vitro inhibition of chymotrypsin by 23-25

S.No.	Name of substance	IC50 \pm SEM $^{\text {a }}(\mu \mathrm{M})$
1	Locoracemoside A (23)	437.81 ± 2.11
2	Locoracemoside B (24)	11.95 ± 1.85
3	Locoracemoside C (25)	6.04 ± 0.31
4	Chymostatin (Standard)	7.21 ± 2.31

[^6]
3.2.2. Structure Activity Relationship

In continuation of our ongoing work on the chymotrypsin inhibition by natural products, we now describe the in vitro inhibitory activities of these three new benzylated glycosides (23-25) against this enzyme To the best of our knowledge such benzylated glycosides have rarely been reported as chymotrypsin inhibitors in the literature. As far as structure-activity relationship is concerned, the variations in the sugar core and benzoyl residues do not seem to be so much effectual but the good inhibitory potential of $\mathbf{2 4}$ as compared to 23 relative to chymostain (standard) can be attributed to the presence of a methoxy group on the benzyl moiety and in a similar way the substitution of three methoxy groups on the benzyl moiety in $\mathbf{2 5}$ further enhanced its inhibitory potential against this enzyme

Experimental

4. General

All chemical and instrumental analyses were performed at, H. E .J. Research Institute of Chemistry, University of Karachi, Pakistan. The commercially available solvents were distillated and used for thin layer and column chromatographic techniques. For column chromatography (CC), silica gel (70-230 mesh) and for flash chromatography (FC), silica gel (230-400 mesh) was used. TLC was performed on pre-coated silica gel G-25-UV 254 plates. Detection was carried out at 254 nm , and by ceric sulphate or aniline phthalate reagent. For recycling HPLC (LC 908 W), a semi preparative (ODS-M80) was used. Purity of compounds was checked by TLC with different solvent systems using methanol, acetone, chloroform and hexane giving single spot. The optical rotations were measured on a Jasco-DIP-360 digital polarimeter. The UV and IR spectra were recorded on Hitachi-UV-3200 and Jasco-320-A spectrophotometer, respectively. GC was performed on Shimadzu 9-A, column 25 \% Carbowax 20M on Chromosorb W 80/100 mesh, $145{ }^{0}$, FI detector. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{COSY}$, HMQC and HMBC Spectra were run on Bruker spectrometers. The chemical shifts are given in δ in ppm and coupling constants in Hz. EI-MS and FAB-MS spectra were recorded on a JMS-HX-110 spectrometer, with a data system.

4.1. Spray Reagents

Ceric sulphate reagent was used for the detection of compounds and aniline phthalate reagent for sugar's detection.

4.1.1 Ceric Sulphate

Ceric sulphate $(0.1 \mathrm{~g})$ and trichloroacetic acid (1 g) were dissolved in 4 ml distilled water. The solution was boiled and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added drop-wise until the disappearance of turbidity.

4.1.2 Aniline Phthalate

Aniline (0.93 g) and o-phthalic acid (1.66 g) were dissolved in $100 \mathrm{ml} n$-butanol saturated with $\mathrm{H}_{2} \mathrm{O}$.

4.2 Symplocos racemosa Roxb.

4.2.1 Plant Material

The plant Symplocos racemosa (Symplocaceae) was collected from Abbottabad, Pakistan, and identified by Dr. Manzoor Ahmed (Taxonomist) at the Department of Botany, Post-Graduate College, Abbottabad, Pakistan, a voucher specimen (no. 6453) has been deposited.

4.2.2. Extraction and Purification.

The shade-dried ground bark (30 kg) was exhaustively extracted with methanol at room temperature. The extract was evaporated to yield a residue (818 g), which was dissolved in water and partitioned with hexane, chloroform, ethyl acetate and n-butanol successively. The n-butanol extract (23 g) was subjected to column chromatography over silica gel using CHCl_{3} with gradient of methanol up to 100%. Eleven fractions (Fr. 1-11) were collected. The fraction 5 was submitted to repeated FC (230-400 mesh) and eluted with $\mathrm{MeOH}: \mathrm{CHCl}_{3}(18: 82)$ to get purified $26(42.5 \mathrm{mg})$. The fraction 6 was loaded on flash silica gel and eluted with $\mathrm{MeOH}: \mathrm{CHCl}_{3}(19: 81)$ to get two sub-fractions $\left(\mathrm{Fr}_{\text {sb. }} 6.1\right.$ and $\mathrm{Fr}_{\mathrm{sb} .6} 6$). The fraction ${ }_{\text {sb }} 6.2$ was then submitted to Sephadex LH-20 and eluted with pure water and the resulting impure 21 was finally purified on recycling HPLC [ODSM80 semi preparative column, $\mathrm{MeOH} \mathrm{H}_{2} \mathrm{O}$ (1:1), flow rate ($4 \mathrm{ml} / \mathrm{min}$), detection (UV and RI detectors), Rf $46 \mathrm{~min}(\mathbf{2 1}, 12.9 \mathrm{mg})$]. Similarly, the fraction 10 was subjected to FC and eluted with $\mathrm{MeOH}: \mathrm{CHCl}_{3}(24: 76)$ to get two sub-fractions $\left(\mathrm{Fr}_{\text {sb. }} 10.1\right.$ and $\mathrm{Fr}_{\text {sb. }} 10.2$). The fraction sb. 10.2 was then passed through Sephadex LH-20 and eluted with pure water and the resulting impure 22 was finally purified on recycling HPLC using a reverse phase semi preparative (M-80), eluting at a flow rate of $4 \mathrm{ml} / \mathrm{min}$. under isocratic conditions with $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(1: 1)$ and the peak obtained at a retention time of 20 min . yielded the purified 22 (14.1 mg).

(Scheme 4.1): Extraction and isolation scheme of Symplocos racemosa

$\mathrm{M}=$ Methanol	Fr. $=$ Fraction	$\mathrm{FC}=$ Flash chromatography
$\mathrm{C}=$ Chloroform	$\mathrm{Fr}_{\mathrm{sb} .}=$ Sub-fraction	

To get some minor constituents, the bark of the plant was collected again and in bulk quantity and the shade-dried ground bark of stem (40 kg) was exhaustively extracted with methanol ($4 \times 501 \times 48 \mathrm{~h}$) at room temperature. The extract was evaporated to yield a residue (1.4 kg), which was dissolved in water (2.5 l) and partitioned with n -hexane, chloroform, ethyl acetate and n-butanol (each 31×4). The n-butanol solubles (150 g) was subjected to VLC over silica gel using $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ gradient up to 100% methanol to obtain fifteen fractions (1-15). Fr. 12 was subjected to silica gel CC using MeOH CHCl_{3} (21:79 and 24:76) followed by CC over Sephadex LH-20 with pure water to get
semi pure 23-25 which were finally purified on recycling HPLC [ODS-M80 semi preparative column, $\mathrm{MeOH} \mathrm{H}_{2} \mathrm{O}(1: 1)$, flow rate ($4 \mathrm{ml} / \mathrm{min}$), detection (UV and RI detectors), $\operatorname{Rf} 18 \mathrm{~min}(\mathbf{2 5}, 11.1 \mathrm{mg}), 26 \mathrm{~min}(\mathbf{2 4}, 10.2 \mathrm{mg})$ and $32 \mathrm{~min}(\mathbf{2 3}, 11.5 \mathrm{mg})]$.

MeOH extract of Symplocos racemosa

(Scheme 4.2): Extraction and isolation (re-investigation)of Symplocos racemosa

4.3. Characterization of Compounds

4.3.1. Characterization of Symplocuronic acid (21) (=2-[(Benzoyloxy)methyl]-4hydroxyphenyl O- β-D-glucuronopyranosyl ($1 \rightarrow 6$)- β-D-glucopyranoside; 21). Amorphous powder (12.9 mg): $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{15} ;[\alpha]^{23}{ }_{\mathrm{D}}+16.66(c=0.028$, MeOH$) ; \mathrm{UV} \lambda_{\max } \mathrm{nm}(\log \varepsilon)$ $(\mathrm{MeOH}): 389.4$ (2.81), 366 (2. 45), 343.2 (2.73), 339 (2.52), 284 (3.44), 256.6 (3.04), 227.4 (3.98), 212 (3.72), 199.8 (4.39) nm; IR $v_{\max }(\mathrm{KBr}): 3364-3025 \mathrm{br}$. (OH), 2928 (CH), 1733 (C=O, acid), 1720 (C=O, ester), 1501-1453 (C=C, Ar), 1280 (C-O-C), 1071 (C-O), 894, 807, 715, $659 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Table 3.1; HRFAB-MS (+): m/z $583.5089[\mathrm{M}+\mathrm{H}]^{+}$(calcd.for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{15}, ~ 583.5073$) FAB MS (Positive mode) $m / z 583$ $[\mathrm{M}+\mathrm{H}]^{+}, m / z 407\left[\mathrm{M}\right.$ - glucuronic acid] ${ }^{+}, m / z 245\left[\mathrm{M}\right.$ - glucuronic acid - glucose] ${ }^{+}$.; FAB MS (Negative mode) $m / z 581[\mathrm{M}-\mathrm{H}]^{-}, m / z 405$ [M - glucuronic acid], $m / z 243$ [M glucuronic acid - glucose] ; EIMS: m / z (rel. int.): 244 [M - glucuronic acid - glucose] ${ }^{+}$ (46.1), $140\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+}(32.3), 123\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2}\right]^{+}$(41.7), $122\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$ (70.8), $105\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right]^{+}$(100), $77\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}(61.3)$.
4.3.2. Characterization of Sympocemoside (22) (= 2-(Oxymethyl)-4-hydroxyphenylO - β-D-glucopyranosyl ($1 \rightarrow 2$)- β-D-glucopyranoside; 22). Amorphous powder (14.1 mg): $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{13} ;[\alpha]^{23}{ }_{\mathrm{D}}-57.89(c=0.038, \mathrm{MeOH}) ; \mathrm{UV} \lambda_{\max } \mathrm{nm}(\log \varepsilon)(\mathrm{MeOH}): 282$ (3.51), 260 (3.25) nm; IR $v_{\max }(\mathrm{KBr}): 3357 \mathrm{br}$. (OH), $2932(\mathrm{C}-\mathrm{H}), 1595-1416(\mathrm{C}=\mathrm{C}, \mathrm{Ar}), 1266$, 1215 (C-O-C), 1115-1040 (C-O), 862, $663 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Table 3.2; HRFAB MS (+): m/z $465.4197[M+H]^{+}$(calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{13}$) 465.4185; FAB MS (Positive mode): $m / z 465[\mathrm{M}+\mathrm{H}]^{+}, m / z 303\left[\mathrm{M}-\right.$ glucose $^{+}, m / z 141[\mathrm{M}-\text { glucose - glucose }]^{+}$; FAB MS (Negative ion mode): $m / z 463$ [M-H] ${ }^{-}, m / z 301$ [M - glucose] ${ }^{-}, m / z 139$ [M glucose - glucose] ; EIMS: m/z (rel. int.): $140\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+}$(88.1), 123 $\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2}\right]^{+}(65.9), 122\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(100).

Acid hydrolysis of 21-22

A solution of (21-22 separately) (8 mg) in $\mathrm{MeOH}(5 \mathrm{ml})$ containing $2 \mathrm{~N} \mathrm{HCl}(4 \mathrm{ml})$ was refluxed for 4 h , concentrated under reduced pressure, and diluted with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$. It was extracted with EtOAc and the residue recovered from the organic phase was found to be an inseparable mixture of products. The aqueous phase was neutralized with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$,
filtered and evaporated in vacuo. The residue obtained showed the presence of glucose and glucuronic acid in 21 while only glucose in 22, when compared with the authentic samples of these sugars on TLC (EtOAc: MeOH: AcOH: $\mathrm{H}_{2} \mathrm{O}:: 11: 2: 2: 2$) via visualizing the spots with aniline phthalate reagent.
4.3.3. Characterization of Locoracemoside A (23) [benzyl- α-L-arabinopyranosyl$(1 \rightarrow 6)$ - β-D-glucopyranoside 3-(4-hydroxybenzoate)]; 23. Amorphous solid (11.5 mg); $[\alpha]^{23}{ }_{\mathrm{D}}=+21.1(\mathrm{MeOH}, c=0.01) ;$ UV 280.3 (2.87), 253.6 (3.12), 232.1 (3.59), 224.9 (2.92); IR 3640-3139 (OH), 2965-2874 (CH), 1719 (C=O, ester), 1645, 1571, 1503 (C=C, Ar), 1283-1267 (C-O-C), 1102, 1056 (C-O); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Table 3.3; HRFABMS (+) m/z 523.5049 (calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{12} ; 523.4982$); FAB-MS (+) m/z 523 $[\mathrm{M}+\mathrm{H}]^{+}, 391$ [M-arabinose] ${ }^{+}$; FAB-MS (-) $521[\mathrm{M}-\mathrm{H}]^{-}, 389$ [M-arabinose] ${ }^{-}$; EI-MS m/z $138\left[\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}\right]^{+}(33.5), 121\left[\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{+}(100), 93\left[\mathrm{HOC}_{6} \mathrm{H}_{4}\right]^{+}(45.1), 91$ $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right]^{+}$(65.9), $77\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$(54.8).
4.3.4. Characterization of Locoracemoside B (24) [p-anisyl- β-D-glucuronopyranosyl$(1 \rightarrow 6)$ - β-D-glucopyranoside 3-benzoate]; 24]. Amorphous solid (10.2 mg); $[\alpha]^{23}{ }_{\mathrm{D}}=+$ $17.6(\mathrm{MeOH}, c=0.01) ;$ UV 282.1 (2.94), 255.3 (3.23), 232.8 (3.28), 222.6 (2.78); IR 3636-3132 (OH), 2969-2870 (CH), 1731 ($\mathrm{C}=\mathrm{O}$, acid), 1720 ($\mathrm{C}=\mathrm{O}$, ester), 1648, 1575, 1509 ($\mathrm{C}=\mathrm{C}, \operatorname{Ar}$), 1285-1263 (C-O-C), 1111, $1066(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Table 3.4; HR-FABMS (+) m/z 581.5398 (calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{14} ; 581.5351$); FAB-MS (+) m/z 581 $[\mathrm{M}+\mathrm{H}]^{+}, 405$ [M-glucuronic acid $]^{+}$; FAB-MS (-) m/z 579 [M-H] ${ }^{-}, 403$ [M-glucuronic acid $]^{-}$; EI-MS m/z $122 \quad\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]^{+}$(41.6), $121 \quad\left[\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right]^{+}$(70.5), 107 $\left[\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right]^{+}(78.9), 105\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right]^{+}$(100), $77\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$(64.1).
4.3.5. Characterization of Locoracemoside C (25) [3,4,5-trimethoxybenzyl- β-D-glucopyranosyl-($1^{\prime \prime \prime} \rightarrow 6^{\prime}$)- β-D-glucopyr-anoside 3-galloate; 25]; $[\alpha]^{23}{ }_{\mathrm{D}}=+19.4(\mathrm{MeOH}$, $c=0.01$); UV 275.4 (3.11), 251.8 (3.21), 230 (2.99), 227.5 (3.98), 215.3 (3.01); IR 3638-3052 (OH), 2970-2875 (CH), $1725(\mathrm{C}=\mathrm{O}$, ester), 1650, 1576, $1506(\mathrm{C}=\mathrm{C}, \mathrm{Ar})$, 1288-1265 (C-O-C), 1108, $1070(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Table 3.5; HR-FABMS (+)
$m / z 675.6099$ (calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{18} ; 675.6013$); FAB-MS (+) $m / z 675[\mathrm{M}+\mathrm{H}]^{+}, 513[\mathrm{M}-$ glucose] ${ }^{+}$; FAB-MS (-) m/z 673 [M-H], 511 [M-glucose] ${ }^{-} ;$EI-MS m/z 181 $\left[\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}\right]^{+}(69.9), 170\left[(\mathrm{OH})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COOH}\right]^{+}(45.2), 167\left[\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right]^{+}$(80.7), $153\left[(\mathrm{OH})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CO}\right]^{+}(100), 125\left[(\mathrm{OH})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right]^{+}$(78.1).

Identification of sugars. (23-25)

The sugars obtained on usual acid hydrolysis of $\mathbf{2 3 - 2 5}$ (3 mg each) were identified as arabinose and glucose in 23, glucose and glucuronic acid in $\mathbf{2 4}$ and glucose in $\mathbf{2 5}$ on silica gel co-TLC with the standards (Sigma-Aldrich) [EtOAc MeOH AcOH H2O (11:2:2:2), detection (aniline phthalate reagent)]. The acetylated thiazolidine derivatives, formed with L-cysteine methyl ester hydrochloride $(0.06 \mathrm{~mol} / \mathrm{L})$, of the hydrolyzed sugars were prepared ${ }^{22}$ as described by Ye and Zao (2002) and subjected to GC MS analysis [Conditions: Column ($\mathrm{OV}-17$ column, $2 \mathrm{~m} \times 3.1 \mathrm{~mm}$), carrier gas ($\mathrm{He}, 50 \mathrm{ml} / \mathrm{min}$), injection temperature $\left(270{ }^{\circ} \mathrm{C}\right)$, detection temperature $\left(280^{\circ} \mathrm{C}\right)$, column temperature $\left(170{ }^{\circ} \mathrm{C}\right.$ to $210^{\circ} \mathrm{C}$ at a rate $\left.10^{\circ} \mathrm{C} / \mathrm{min}\right)$. The configurations were determined by comparing their retention times ($\mathrm{t}_{\mathrm{R}} \mathrm{L}$-arabinose $6.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}} \mathrm{D}$-glucose 9.4 min) with acetylated thiazolidine derivatives prepared in a similar way from standard sugars (Sigma-Aldrich). The acetylated thiazolidine derivative of glucuronic acid was not detected in GC MS analysis.
4.3.6. Characterization of Salirepin (26) (= 2-(Oxymethyl)-4-hydroxyphenyl- β-Dglucopyranoside; 26). White powder (42.5 mg): $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{8} ;[\alpha]^{23}{ }_{\mathrm{D}}-45.1(c=0.0368$, $\mathrm{MeOH}) ; \mathrm{UV} \lambda_{\max } \mathrm{nm}(\log \varepsilon)(\mathrm{MeOH}): 285.8$ (2.92), 251.2 (2.30), 225.6 (3.36) nm; IR $\nu_{\max }(\mathrm{KBr}): 3408(\mathrm{OH}), 2921(\mathrm{C}-\mathrm{H}), 1665-1443,(\mathrm{C}=\mathrm{C}, \mathrm{Ar}), 1268,1215(\mathrm{C}-\mathrm{O}-\mathrm{C}), 1084$, $1040(\mathrm{C}-\mathrm{O}) 992,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)(400 \mathrm{MHz})(\delta \mathrm{ppm}): 7.07(1 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}, \mathrm{H}-6), 6.78(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{H}-3), 6.65(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, \mathrm{H}-5), 4.69(1 \mathrm{H}, \mathrm{d}, J$ $\left.=13.0 \mathrm{~Hz}, \mathrm{H}_{\beta}-7\right), 4.67(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}-1 '), 4.51\left(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}, \mathrm{H}_{\alpha}-7\right), 3.88$ $\left(1 \mathrm{H}, \mathrm{dd}, J=11.8,2.8 \mathrm{~Hz}, \mathrm{H}_{\beta}-6^{\prime}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J=11.8,7.2 \mathrm{~Hz}, \mathrm{H}_{\alpha}-6^{\prime}\right), 3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $\left.5^{\prime}\right), 3.43\left(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.40(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}, \mathrm{H}-3 '), 3.35(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)(100 \mathrm{MHz})(\delta \mathrm{ppm}): 154.0(\mathrm{C}-4), 150.2(\mathrm{C}-1), 133.8(\mathrm{C}-2)$, 119.5 (C-6), 116.4 (C-3), 115.8 (C-5), 104.7 ($\mathrm{C}-1^{\prime}$), 78.1 (C-3'), 78.0 (C-5'), 75.1 (C-2'), 71.4 (C-4'), 62.6 (C-6'), 61.0 (C-7); FAB MS (Positive mode): $m / z 303[\mathrm{M}+\mathrm{H}]^{+}$; FAB

MS (Negative mode): $m / z 301[\mathrm{M}-\mathrm{H}]^{-}$; EIMS: m / z (rel. int.): $140\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}\right]^{+}$ (77.6), $123\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2}\right]^{+}(36.5), 122\left[\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2} \mathrm{CH}_{2} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(100).

4.4. In vitro chymotrypsin assay.

The chymotrypsin inhibitory activity of the compounds was performed by the method of Cannell et al. ${ }^{34}$ Chymotrypsin (9 units/ ml of 50 mM Tris-HCl buffer pH 7.6 ; Sigma Chemical Co. USA) was preincubated with the compounds for 20 min at $25^{\circ} \mathrm{C} .100 \mu \mathrm{~L}$ of substrate solution (N-succinyl-phenylalanine-p-nitroanilide $1 \mathrm{mg} / \mathrm{ml}$ of 50 mM TrisHCl buffer pH 7.6) were added to start the enzyme reaction. The absorbance of released p-nitroaniline was continuously monitored at 410 nm until a significant color change had achieved. The final DMSO concentration in the reaction mixture was 7%. The percentage (\%) inhibition was calculated as follows ($\mathrm{E}-\mathrm{S}$)/Ex100, where E is the activity of the enzyme without test compound and S is the activity of enzyme with test compound. The concentrations of test compounds that inhibited the hydrolysis of substrate up to $50 \%\left(\mathrm{IC}_{50}\right)$ were determined by monitoring the effect of various concentrations of these compounds in the assays on the inhibition values. The IC_{50} value was then calculated using the EZ-Fit Enzyme Kinetics program (Perrella Scientific Inc., Amherst, USA).

References:

1. Nasir, E.; and Ali, S. I. "Flora of West Pakistan", 1974, No. 63, p. 1.
2. Chadha, Y.R. "The Wealth of India", A Dictionary of Indian Raw Materials and Industrial Products, Raw Materials, Publications and Information Directorate, New Delhi 1976, Vol. X, p. 90.
3. Mhaskar, K. S.; Blatter. E.; Caius, J. F. "Indian Medicinal Plants"; Their usage in Ayurveda and Unani Medicines: Third Revised and Enlarged Edition; Sri Satguru Publications: Delhi 2000, 7, p. 2087.
4. Watt, G. "A Dictionary of the Economic Products of India", Periodical Expert Book Agency, Delhi 1972, p. 399.
5. Joshi, S.G. "Medicinal Plants", Oxford and IGH Publishing Co. Pvt. Ltd. New Delhi 2000, p. 389.
6. Singh, A.P. The Science Advisory Board 2004, Perspectives.
7. HO, C.T. Phenolic compounds in food. An overview In: ACS Symposium series 507: Phenolic Compounds in Food and Their Effects on Health II. Antioxidants and Cancer Prevention. Ho, C.T.; Lee, D.Y.; Huang, M.T. Eds., ACS, Washington, DC. 1992, p. 2.
8. Tanaka, T.;. Kawamura. K.; Kohda. H.; Yamasaki. K.; Tanaka, O. Chem. Pharm. Bull. 1982, 30, 2421.
9. (a) Tschesche, R.; Braun, T.M.;. Sassen, W.V. Phytochemistry 1980, 19, 1825. (b) Dhaon, R.; Jain. G. K.; Sarin. J. P. S.; Khanna, N.M. Indian J. Chem. 1989, 28B, 982; (c) Krishnan, V.; Rangaswami, S.Tetrahedron Lett. 1967, 26, 2441; (d) Ali, M.; Bhutani. K.K.; Srivastava, T. N. Phytochemistry 1990, 29, 3601.
10. Ram. D.T.; Tripathi, H.L. Phytochemistry 1976, 15, 833.
11. Tschesche. R.; Welzel. P.; Moll. R.; Legler, G. Tetrahedron 1964, 20, 1435.
12. Higuchi, R.; Kawasaki, T.; Biswas, M.; Pandey, V.B.; Dasgupta, B. Phytochemistry 1982, 21.
13. Ahmad, V. U.; Abbasi, M. A.; Hussain, H.; Akhtar, M. N.; Farooq, U.; Fatima, N.; Choudhary, M. I.. Phytochemistry, 2003, 63, 217-220.
14. Ahmad, V. U.; Abbasi, M. A.; Zubair, M.; Fatima, N.; Farooq, U.; Choudhary, M. I.; Helv. Chim. Acta., 2004, 87, 57-66.
15. Abbasi, M. A.; Ahmad, V. U.; Zubair, M.; Fatima, N.; Farooq, U.; Hussain, S.; Lodhi, M. A.; Choudhary, M. I. Planta Med., 2004, 70, 1189-1194.
16. M. Billeter, B. Meier, O. Sticher. Phytochemistry, 30, 987-990 (1991).
17. Cui, C. B.; Tezuka, Y.; Kikuchi, T.; Nakano, H.; Tamaoki, T. H.; Park, J. Chem. Pharm. Bull., 1990, 38, 3218-3225..
18. Ekabo, O. A.;. Farnsworth, N. R.; Santisuk, T. Phytochemistry 1993, 32, 747-754.
19. Christensen, J.; Jaroszewski, W.J. Org. Lett. 2001, 14, 2193-2195.
20. Rosa, S.D.; Giulio, A.D.; Tommonoaro, G. Phytochemistry 1996, 42, 1031-1034.
21. Abbasi, M.A.; Ahmad, V.U.; Zubair, M.; Fatima, N.; Farooq, U.; Hussain, S.; Lodhi, M.A.; Choudhary, M.I. Planta Med. 2004, 70, 1189-1194.
22. Ye, Q.; Zhao, W. Planta Med. 2002, 68, 723-729.
23. Billeter, M.; Meier, B.; Sticher, O. Phytochemistry 1991, 30, 987-990.
24. Cui, C.B.; Tezuka, Y.; Kikuchi, T.; Nakano, H.; Tamaoki, T.; Park, J.H. Chem. Pharm. Bull. 1990, 38, 3218-3225.
25. Morikawa, T.; Tao, J.; Ueda, K.; Mastuda, H.; Yoshikawa, M. Chem. Pharm. Bull. 2003, 51, 62-67.
26. Ahmad, V.U.; Zubair, M.; Abbasi, M.A.; Rashid, M.A.; Rasool, N.; Khan, S.N.; Choudhary, M.I. Magn. Reson. Chem. 2005, 43, 486-488.
27. Ekabo, O. A.; Farnsworth, N. R.; Santisuk, T.; Phytochemistry 1993, 32, 747.
28. Amtul, Z.; Atta-ur-Rahman, Siddiqui, R. A.; Choudhary, M. I. Curr. Med. Chem. 2002, 9, 1323.
29. Royston, D. Int. J. Cardiol. 1996, 53, suppl, S11-S37.
30. Sloane, B. F.; Rozhin, J.; Johnson, K.; Taylor, H.; Crissman, J. D.; Honn, K. V. Proc. Natl. Acad. Sci. USA, 1986, 83, 2483-2487.
31. Berquin, I. M.; Sloane, B. F. Adv. Exp. Med. Biol. 1996, 389, 281-94.
32. Imler, J. L.; Hoffmann, J. A. Curr. Opin. Microbiol. 2000, 3, 16-22.
33. Iwanaga, S. Curr. Opin. Imunnol. 1993, 5, 74-82.
34. Cannell, R. J. P.; Kellam, S. J.; Owsianka, A.M.; Walker, J.M. Planta Med. 1988, 54, 10-14.

Abstract

Teil A: Die Cyclisierung der Dianionen von 3-Ketosulfonen und von Cyanoaceton mit 1-Brom-2-chlorethan liefert 2-Alkylidentetrahydrofurane, die durch Umsetzung mit BBr_{3} in funktionalisierte Ketosulfone und Ketonitrile überführt wurden. Diarylsulfide, Diarylether und Biaryle wurden basierend auf [3+3] Cyclisierungen von 1,3Bis(silylenolethern) effizient hergestellt. Das präparative Potential einer neuen Methode zur Synthese von 1-Azaxanthonen wurde ausgebaut und eine Vielzahl neuer Verbindungen wurde auf effiziente Weise hergestellt. Weiterhin wurde eine neue Cyclisierungsreaktion von 3-Thiophenoxy-1,3-dienen mit 1,1-Diacylcyclopropanen entwickelt, die einen einfachen Zugang zu Diarylsulfiden ermöglicht. Teil B: Eine Reihe neuer Naturstoffe wurden aus Symplocos racemosa Roxb. und spektroskopisch charakterisiert.

Part A: The cyclization of the dianions of 3-ketosulfones and cynotacetone with 1-bromo-2-chloroethane gives 2-alkylidenetetrahydrofuran which afforded functionalized ketosulfones and ketonitrile after BBr_{3}-mediated cleavage. Diarlysulfides, diaryl ethers and biaryls were synthesized based on [3+3] cyclizations of 1,3-bis(silyl enol ethers) in an efficient way. The preparative scope of the new method for the synthesis of of 1azaxanthones was expanded and a variety of new compounds were prepared in an efficient way. Furthermore, a new cyclization reaction of 3-thiophenoxy-1,3-diene with 1,1-diacylcyclopropanes was developed which provides a convenient approach to diarylsulfides containing a remote halide function. Part B: A number of new natural products were isolated from Symplocos racemosa Roxb and characterized by using various sophisticated spectroscopic techniques.

MUHAMMAD ABID RASHID

Institut für Chemie
Abteilung Organische Chemie
Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
Phone: +49-381-4986416
E-Mail: abidhej@hotmail.com
abidhej@yahoo.co.uk
Home Address: Albert-Einstein St.29, Zi.: 2-02-09-4, 18059 Rostock, Germany Phone: +49-176-64021796

Date/Place of Birth: April 13, 1976 / Sahiwal (Pakistan)

Research Interests:

- Synthetic Organic Chemistry
- Homogeneous Catalysis
- Isolation and structure elucidation of the biological active compounds

Academics:

- University of Rostock, Germany

Ph.D Organic Chemistry, 2006 to date
Title: Synthesis of Functionalized Arenes based on [3+3] Cyclizations of 1,3-Bis(silyloxy)-1,3-butadienes and related Transformations and New Chemical Constituents of Symplocos racemosa

- HEJ Research Institute of Chemistry, University of Karachi, Pakistan

Research Fellow, Natural product Chemistry, 2002-2006

- Bahauddin Zakariya University Multan, Pakistan

Master of Science, Chemistry, 2000

- Bahauddin Zakariya University Multan, Pakistan

Bachelor of Science, Chemistry, Zoology, Botany, 1998

Scholarships \& Awards:

- HEJ research Institute of Chemistry University of Karachi, Fellowship (2002-2006)
- Ph D Scholarship, Higher education commission of Pakistan scholarship under international research Support initiative program (2006)
- Promotionstipendium, finanziert aus Industriemitteln (2007-2008)

Specific Courses Attented:

1- Four full fledge courses on Advanced Organic Chemistry (including course on physical separation methods and organic synthesis) attended at H.E.J Research institute of Chemistry, May2002-Nov. 2002.
2- Courses on "Scientific Integrity" held during from $2^{\text {nd }}$ Sep. to $16^{\text {th }}$ Sep. 2002 at H.E.J Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan.

3- Course on "An Introduction to Bioinorganic \&Medicinal Chemistry of Metals" held during from $17^{\text {th }}$ May. to $31^{\text {st }}$ May. 2003 at H.E.J Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan.
4- Course on "X-Ray Crystallography" held during May-June 2005 at International Centre For Chemical Sciences , H.E.J University of Karachi , Karachi-75270 Pakistan.

Abstracts in Conferences:

1- Muhammad Abid Rashid, M. A. Abbasi, N. Rasool, M. Zubair and V. U. Ahmad, "New Salirepin Derivatives from Symplocos racemosa', $10^{\text {th }}$ International Symposium on Natural Product Chemistry 2006, Poster presentation (PO-158), Abstracts, page 266.
2- V. U. Ahmad, N. Rassol, M. A. Abbasi, Muhammad Abid.Rashid, F. Kousar, M. Zubair, A. Ejaz, M. I. Choudhary and R. B. Tareen, "Antioxidant Flavonoids from Pulicaria undulate" ., $10^{\text {th }}$ International Symposium on Natural Product Chemistry 2006, Poster presentation (PO-161), Abstracts, page 269.
3- N. Shahzad, M. A. Abbasi, Muhammad Abid.Rashid, M. Zubair, N. Rassol, Z. Hassan, Aman Ullah, A.Zahoor, H. siddiqui, M. I. Choudhary and V. U. Ahmad, "Antioxidant and α Chymotrypsin Inhibiting Flavonoids from Clematis orientalis" $10^{\text {th }}$ International Symposium on Natural Product Chemistry 2006, Poster presentation (PO-179), Abstracts, page 286.
4- Z. Fatima, A.Zahoor, M. A. Lodhi, Muhammad Abid.Rashid, M. Zubair, M. Qaisar, V. U. Ahmad and, M. I. Choudhary "Ethnobotanical, Biochemical and Chemical studies of Enicostema hyssopifolium (Willd) Verdoon of Gentianaceae from Tharparkar" $10^{\text {th }}$ International Symposium on Natural Product Chemistry 2006, Poster presentation (PO-055), Abstracts, page 161.

Research Publications:

1- Muhammad A. Rashid, Nasir Rasool, Muhammad Adeel, Christine Fischer, Helmut Reinke, Peter Langer* Tetrahedron 2008, 64, 529-535."Regioselective Synthesis of Diaryl Ethers based on One-Pot Cyclizations of 4-Aryloxy-1,3-bis(trimethylsilyloxy)-1,3-dienes"

2- Nasir Rasool, Muhammad A. Rashid, Helmut Reinke, Christine Fischer, Peter Langer*. Tetrahedron 2008, in press ."Synthesis and Reactions of Functionalized Spirocyclo-propanes by Cyclization of Dilithiated β-Ketosulfones and α Cyanoacetone with 1,1-Diacetylcyclopropane".

3- Nasir Rasool, Muhammad A. Rashid, Helmut Reinke, Christine Fischer, Peter Langer*, Tetrahedron 2007, (63) 11626-11635. "Regioselective Synthesis of ω -Bromo-3-ketosulfones, ω-Bromo-3-ketonitriles, and 2-(ω-Bromoalkyl)benzofurans based on a 'Ring-Closing / Ring-Opening' Strategy".
4- Nasir Rasool, Viqar U. Ahmad*, Naseem Shahzad, Muhammad A. Rashid, Aman Ullah, Zahid Hassan ${ }^{\text {a }}$, Muhammad Zubair ${ }^{\text {a }}$ and Rasool B. Tareen Natural product communications 2008, in press "New ent-kaurane type diterpene glycoside pulicaorside-B"

5- Muhammad A. Rashid, Helmut Reinke, and Peter Langer* Tetrahedron letter 2007, (48) 2321-2323. "Regioselective Synthesis of Diaryl Sulfides by [3+3] Cyclizations of 1,3-Bis(Silyl Enol Ethers)"

6- Muhammad Sher, Zafar Ahmed, Muhammad A. Rashid, Christine Fischer, Anke Spannenberg and Peter Langer* Tetrahedron 2007, (63) 4929-4936 "Synthesis of Diaryl Ethers based on One-Pot [3 + 3] Cyclizations of 1,3-Bis(Silyl Enol Ethers)"

7- Muhammad Sher, T.H.Tam Dang, Zafar Ahmed, Muhammad A. Rashid, Christine Fischer, Peter Langer* J. Org. Chem. 2007, (72) 6284- 6286 "First Catalytic [3+3] Cyclizations of 1,3-Bis(Silyl Enol Ethers)".
8- V. U. Ahmad*, Muhammad Abid Rashid, M. A. Abbasi, N. Rasool, M. Zubair; J. Asian Nat. Prod. Res. 2007, 9 (3), 209-215. "New Salirepin Derivatives from Symplocos racemosa"

9- V.U. Ahmad*, Muhammad Zubair, M. A. Abbasi, F Kousar, Muhammad Abid Rashid, N Rasool and R. B. Tareen; Nat. Prod. Res. 2006, 20(1), 69-74. "New Ceramides from Platytaenia multicaule"
10- V. U. Ahmad*, N. Rassol, M. A. Abbasi, Muhammad Abid.Rashid, F. Kousar, M. Zubair, A. Ejaz, M. I. Choudhary and R. B. Tareen, Polish J. Chem. . 2006, 745751 "Antioxidant Flavonoids from Pulicaria undulata".

11- V.U. Ahmad*, Muhammad. Zubair, M.A. Abbasi, F. Kousar, Muhammad.Abid Rashid, N. Rasool S.A. Nawaz, and M.I. Choudhary. polish, J. Chem. 2006, 80, 403-407. "Butyrylcholinesterase inhibitory C-Glycoside from Symplocos racemosa".,

12- V. U. Ahmad*, M. Zubair, M. A. Abbasi, Muhammad Abid Rashid, N. Rasool, S. N. Khan and M.I. Choudhary. Magn. Reson. Chem. 2005, 43, 486-488. "Structure determination of Bio-active Galloyl derivatives By NMR spectroscopy"
13- M. A. Abbasi, V. U. Ahmad*, M. Zubair, Muhammad Abid Rashid, U. Farooq, S. A. Nawaz, M. A. Lodhi, T. Makhmoor, M. I. Choudhary and Atta-ur-Rahman. Proc. Pakistan Acad. Sci., 2005, 42, 121-124. "Benzoylsalireposide an Antioxidant, Lipoxygenase and Chymotrypsin Inhibitor."
14- M. A. Abbasi, V. U. Ahmad*, M. Zubair, Muhammad Abid Rashid, S. N. Khan, U. Farooq, M. I. Choudhary and K. P. Zeller. Heterocycles 2005, 65, 1837-1842.
"A New α-Glucosidase Inhibiting Dithiadiazetidin Derivative from Symplocos racemosa."

15- Muhammad A. Rashid, Viqar U. Ahmad, Muhammad A. Abbasi, Zulfiqar Ali, Nasir Rasool, Muhammad Zubair, Muhammad A. Lodhi, Muhammad I. Choudhary, Ikhlas A. Khan. Phytochemistry lett. 2008 (submitted). " α-Chymotrypsin inhibiting benzylated glycosides from Symplocos racemosa"
16- Muhammad A. Rashid, Nasir Rasool, Muhammad Adeel, Helmut Reinke, Christine Fischer, and Peter Langer* Tetrahedron 2008, submitted "Synthesis of Functionalized Diarylsulfides based on Regioselective One-Pot Cyclizations of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes

17- Muhammad A. Rashid, Nasir Rasool, Bettina Appel, Muhammad Adeel, Vahuni

Karapetyan, Satenik Mkrtchyan, Helmut Reinke, Christine Fischer, and Peter Langer* Tetrahedron 2008, submitted "Synthesis of 1-Azaxanthones by Condensation of 1,3- Bis (trimethy 1silyloxy) -1,3-butadieneswith-(Cyano)benzopyryliumTriflates and Subsequent Domino 'Retro-Michael/Nitrile-Addition Heterocyclization"

18- Muhammad Adeel, Muhammad A. Rashid, Nasir Rasool, Rasheed Ahmad, Helmut Reinke, Christine Fischer, and Peter Langer* Eur. J.O.C. 2008, submitted "Regioselective Synthesis of Functionalized Biaryls based on Cyclizations of 4-Aryl-1,3-bis(trimethyl-silyloxy)-1,3-butadienes."

19- Nasir Rasool, Muhammad A. Rashid, Muhammad Adeel, and Peter Langer* 2008, Tetrahedron Lett. submitted "Synthesis and Reactions of Hydroxyspiro[5.2]cyclooctenones based on the Cyclization of the Dianions of Acetone and Diethyl 2Oxopropylphosphonate with 1,1-Diacylcyclopropanes"
20- Nasir Rasool, Muhammad A. Rashid, Inam Iqbal, Muhammad Imran and Peter Langer* Tetrahedron 2008, submitted "Regioselective Synthesis of Functionalized 2-Thio-phenoxy-benzoates and Thioxanthones by Formal [3+3] Cyclizations of 1-Trimethylsilyloxy-3-thiophenoxy-1,3-butadienes with 3-Silyloxy-2-en-1-ones"

21- Muhammad A. Rashid, Nasir Rasool, Inam Iqbal, Muhammad Imran and Peter Langer* Manuscript in preparation. "Regioselective Synthesis of Functionalized 2-Thio-phenoxybenzoates by Domino '[3+3] Cyclization / Homo-Michael' Reactions of 1-Trimethylsilyloxy-3-thiophenoxy-1,3-butadienes with 1,1Diacylcyclopropanes"

Declaration/Erklärung

Here by I declare that this work has so for neither submitted to the Faculty of Mathematics and Natural Sciences at the University of Rostock nor to any other scientific Institution for the purpose of doctorate. Further more, I declare that I have written this work by myself and that I have not used any other sources, other than mentioned earlier in this work.
Hiermit erkläre ich, daß diese Arbeit bisher von mir weder an der MathematischNaturwissenschaftlichen Fakultät der Universität Rostock noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion
Eingereicht wurde.
Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel benutzt habe

I hereby apply irrevocably to take oral examination if the form of a private viva voce and a public presentation.

Muhammad Abid Rashid

[^0]: ${ }^{a}$ Yields of isolated products; ${ }^{b}$ by ${ }^{1} \mathrm{H}$ NMR

[^1]: \bar{a} Yields of isolated products; ${ }^{b}$ by ${ }^{1} \mathrm{H}$ NMR

[^2]: ${ }^{a}$ Yields of isolated products; ${ }^{b}$ in brackets: method for the synthesis of $\mathbf{3 5}$ (see experimental section); ${ }^{c}$ commercially available

[^3]: ${ }^{a}$ Yields of isolated products; $\mathrm{Ar}^{\mathrm{b}}=3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

[^4]: ${ }^{a}$ Yields of isolated products

[^5]: ${ }^{a}$ Isolated yields

[^6]: ${ }^{2}$ Standard mean error of 3-5 assays

