Vergleichende in vivo Untersuchung zum biologischen Verhalten unterschiedlicher bioresorbierbarer Osteosyntheseplatten – Eine tierexperimentelle Studie an Wistarratten

Inauguraldissertation
zur Erlangung des akademischen Grades
Doktor der Medizin
der Medizinischen Fakultät der
Universität Rostock

urn:nbn:de:gbv:28-diss2008-0106-1

vorgelegt von

Arzt und Zahnarzt Hamid-Reza Sarajian
geboren in Teheran

Rostock 2008
Dekan: Prof. Dr. Emil Christian Reisinger

1. Gutachter: Prof. Dr. Dr. Dr. h.c. Karsten Gundlach

2. Gutachter: Prof. Dr. Dr. Peter Sieg

3. Gutachter: Prof. Dr. Wofram Mittelmeier

Tag der Promotion: 07.10.2008
Meinen Eltern in Liebe gewidmet
Inhaltsverzeichnis:

1. Einleitung und Zielsetzung .. 1

2. Literaturübersicht .. 4
 2.1. Die Fraktur und die Frakturheilung ... 4
 2.2. Bioresorbierbare Materialien .. 7
 2.2.1. Zusammensetzung und Eigenschaften ... 7
 2.2.2. Biodegradation .. 12
 2.2.3. Tierexperimentelle Untersuchungen .. 16
 2.2.4. Klinische Anwendungen .. 20
 2.2.5. Anwendungsproblematik ... 25

3. Material und Methoden ... 28
 3.1. Versuchsmaterialien ... 28
 3.1.1. Implantatsysteme .. 28
 3.1.2. Schrauben ... 30
 3.2. Versuchstiere ... 31
 3.3. Versuchsgruppen ... 32
 3.4. Implantation ... 33
 3.5. Explantation ... 37
 3.6. Histologie / Immunhistologie .. 39

4. Ergebnisse .. 40
 4.1. Allgemein ... 40
 4.2. Makroskopisch ... 41
 4.2.1. Gruppe 1 (Nach 4 Wochen) ... 41
 4.2.2. Gruppe 2 (Nach 10 Wochen) ... 43
 4.2.3. Gruppe 3 (Nach 12 Monaten) .. 44
 4.2.4. Gruppe 4 (Nach 18 Monaten) .. 46
 4.2.5. Gruppe 5 (Nach 24 Monaten) .. 47
 4.2.6. Zusammenfassung .. 48
 4.3. Mikroskopisch .. 49
 4.3.1. Gruppe 1 (nach 4 Wochen) ... 49
 4.3.2. Gruppe 2 (nach 10 Wochen) ... 51
 4.3.3. Gruppe 3 (nach 12 Monaten) .. 54
 4.3.3.1. Untergruppe A3 (Delta System®) ... 54
 4.3.3.2. Untergruppe B3 (Inion CPS® 1.5 Baby) .. 55
 4.3.3.3. Untergruppe C3 (Lactosorb®) ... 57
 4.3.3.4. Untergruppe D3 (Resorb X®) ... 58
 4.3.3.5. Untergruppe E3 (RFS®) ... 59
 4.3.4. Gruppe 4 (nach 18 Monaten) .. 60
 4.3.4.1. Untergruppe A4 (Delta System®) ... 60
 4.3.4.2. Untergruppe B4 (Inion CPS® 1.5 Baby) .. 61
 4.3.4.3. Untergruppe C4 (Lactosorb®) ... 62
 4.3.4.4. Untergruppe D4 (Resorb X®) ... 63
 4.3.4.5. Untergruppe E4 (RFS®) ... 64
1. Einleitung und Zielsetzung

Aus diesen und anderen Gründen wie aktive und passive intrakranielle Translokation von Osteosyntheseplatten am wachsenden kindlichen Schädel, metallbedingte Artefakte bei der radiologischen Untersuchung, Lockerung der Schrauben und Platten, störende Implantate, vor allem nach Atrophie des Alveolarfortsatzes im Unterkiefer, wird gegenwärtig in vielen europäischen Ländern die Entfernung der Osteosynthesematerialien nach erfolgter Frakturheilung empfohlen.

Seit Anfang der 70er Jahre des 20. Jahrhunderts wird intensiv an der Entwicklung bioresorbierbarer Osteosynthesematerialien gearbeitet. Allerdings müssen unter anderem folgende Kriterien für diese Materialien gelten:

- praktikable Anwendung,
- ausreichende initiale Stabilität für eine ungestörte Knochenheilung,
- vollständige Resorption nach erfolgter Frakturheilung,
- keine Schädigung des umgebenden Gewebes und keine negativen Fernwirkungen im Organismus sowie
- Kosteneffektivität.

Aus diesen Gründen wurden die im Jahr 2002 auf dem deutschen Markt angebotenen 5 Systeme untersucht. Die Aktualität der Biomaterialien und die bereits erwähnten sehr interessanten Vorteile auf der einen Seite und die noch nicht ausreichenden Untersuchungen dazu auf der anderen Seite waren die treibenden Kräfte dieses Projektes.

Es sollten die Biokompatibilität und Abbaudauer der Osteosyntheseplatten, der Nachweis der ungestörten und unverzögerten Knochenbruchheilung sowie eventuell auftretende Infektionsraten in vivo am Rattenmodel überprüft werden. Es sollte eine
2. Literaturübersicht

2.1. Die Fraktur und die Frakturheilung

Primäre Frakturheilung:

Sekundäre Frakturheilung:

Die ausreichend lange Ruhigstellung bis zur knöchernen Durchbauung des Frakturspaltes nimmt in der Frakturheilung eine zentrale Rolle ein. Die Ruhigstellung kann durch konservative Methoden wie z. B. verschiedene Schienenverbände oder operativ durch Osteosynthesen erfolgen. Im Gegensatz zur operativen Therapie erfolgt die konservative Reposition und Schienung ohne Freilegung der Fragmente und wird seit Jahrhunderten praktiziert (Berenyi 1969). Da bei der offenen Reposition und Fixation eine zusätzliche Schmerzausschaltung notwendig und sie mit einem

2.2. Bioresorbierbare Materialien

2.2.1. Zusammensetzung und Eigenschaften

Die Ausgangsstoffe für Polyglykolid (PGA), Polylaktid (PLA), Polydioxanon (PDS) und Polytrimethylenkarbonat (TMC) sind Glykolsäure, Milchsäure, Paradioxanon und Trimethylenkarbonat. Diese können durch Hitze, Druck und katalytisch induzierte Kondensationsreaktionen in hochmolekulare Polymere umgewandelt werden. Als Katalysatoren haben sich Antimon, Zink, Blei und Zinkverbindungen bewährt.

Mit Glasübergangstemperatur (T_g) bezeichnet man die Temperatur unterhalb der die Polymere und Kopolymere steif und hart sind und oberhalb der sie weich und flexibel sind. Zusätzlich haben die Polymere einen Schmelzpunkt und Kopolymere einen Schmelzbereich.

Milchsäure ist ein sogenanntes chirales Molekül, denn es hat ein chirales Kohlenstoffatom als Stereozentrum und kommt daher in zwei optisch aktiven Formen vor: Sind vier verschiedene Atome bzw. Gruppen an ein C-Atom gebunden, gibt es zwei Konfigurationen, d. h. zwei unterschiedliche Möglichkeiten, diese Gruppen anzuordnen (wie die Rechts- und die Linkshändigkeit des Menschen. Chir-, griechisch:

Bei einem 1:1-Gemisch beider Enantiomere hebt sich die Drehung auf, ein solches Gemisch nennt man racemisches Gemisch oder Racemat.

Um die dreidimensionalen chiralen Moleküle abbilden zu können, müssen für die Projektion einige Konventionen festgelegt werden, damit aus dem zweidimensionalen Bild die Konfiguration abgelesen werden kann. Meist bedient man sich dabei der FISCHER-Projektion.

Bei der FISCHER-Projektion wird die längste Kohlenstoffkette senkrecht angeordnet, wobei das höchstoxidierte C-Atom oben steht. Die Kette wird nun so gedreht, dass vom betrachteten chiralen C-Atom aus die Atome der Kette hinter die Zeichenebene weisen. Die seitlichen Substituenten zeigen nach vorn. Nun wird das Molekül "flachgedrückt".

Stehst der Substituent rechts, bezeichnet man die Konfiguration mit D, steht er links mit L (Abb. 1).
Abbildung 1: Enantiomere der Milchsäure

In der Natur treten beide Enantiomere der Milchsäure auf. Milchsäure (Lactat) wird im Körper insbesondere aus Brenztraubensäure (Pyruvat) gebildet, wenn der anaerobe Weg der Glykolyse beschritten wird. Pyruvat wird dabei von Oxidoreduktasen (also Enzymen, die Redox-Reaktionen katalysieren) zu Lactat reduziert, wobei NADH zu NAD⁺ oxidiert wird.

In den meisten Milchsäurebakterien (solche Bakterien sind beispielsweise an der Herstellung von Sauerkraut, sauren Gurken und Sauermilch-Produkten beteiligt) entsteht in der Regel die D(-)-Milchsäure.

Im Muskelgewebe der Säugetiere (also auch beim Menschen) wird bei mangelnder Sauerstoffzufuhr zur Energiegewinnung auch die Glykolyse genutzt, also anaerob. Hierbei sind andere Enzyme aktiv, es entsteht L(+)-Milchsäure. Diese kann, sobald ausreichend Sauerstoff zur Verfügung steht, wieder zu Pyruvat oxidiert und weiter aerob abgebaut werden.

Bestimmte Joghurt-Kulturen liefern ebenfalls L(+)-Milchsäure. Diese werden teilweise als bekömmlicher angesehen, eindeutige Beweise hierfür stehen aber noch aus. Im Organismus können beide Formen der Milchsäure resorbiert und weiter verarbeitet werden (Gasteiger et al. 2001).

Polyglykolid (PGA) ist ein kristallines Polymer. Der Schmelzpunkt beträgt 218 °C und die Glasübergangstemperatur 43 °C. PGA hat eine höhere Ausgangsfestigkeit als PLA, wird jedoch schneller abgebaut (Gerlach 2000).

Durch die verschiedenen Verarbeitungstechniken können die mechanischen Eigenschaften der Polymere wesentlich verbessert werden. Sie haben aber nicht zu einer Erhöhung der Elastiziätsmodule geführt, und daher erleiden sie unter Belastung 10 - 20 mal höhere Verformungen als vergleichbare Stahl- oder Titanimplantate (Gerlach 2000).

Vergleicht man die mechanischen Eigenschaften der Polymere mit gehärteten Implantatstählen, werden für die verschiedenen Polymere Zugfestigkeiten bis 36 %, Biegefestigkeiten bis zu 54 %, aber nur 3 % der Steifigkeit erreicht. Die selbst-
verstärkten Polymere (SR(self-reinforced)-implants) erreichen Zugfestigkeiten bis zu 50 %, nahezu gleiche Biegefestigkeiten sowie eine Steifigkeit von bis zu 15 % (Daniels et al. 1990).

2.2.2. Biodegradation

Kronenthal teilte den Abbau bioresorbierbarer Polymere in 4 Phasen (Tab. 1) ein (Kronenthal 1975).

<table>
<thead>
<tr>
<th>Phase</th>
<th>Vorgang</th>
<th>Ursache</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydratation</td>
<td>Auflösung der inter- und intramolekularen Kräfte</td>
</tr>
<tr>
<td>2</td>
<td>Verlust der Festigkeit</td>
<td>Initiale Spaltung von kovalenten Bindungen</td>
</tr>
<tr>
<td>3</td>
<td>Verlust der Form</td>
<td>Weitere Spaltung von kovalenten Bindungen</td>
</tr>
<tr>
<td>4</td>
<td>Verlust der Masse</td>
<td>Metabolisation und Phagozytose der Abbauprodukte</td>
</tr>
</tbody>
</table>

Tabelle 1: Polymerdegradation nach Kronenthal (1975)

Abbildung 2: Zeitliche Abnahme des Molekulargewichtes, der mechanischen Stabilität und des Massenverlustes (Imola et al. 2001)
2.2.3. Tierexperimentelle Untersuchungen

Dann wurden PLA-Folien zur Rekonstruktion des Orbitabodens nach Frakturen bei Rhesusaffen und Ziegen und PLA–Fäden zur Osteosynthese nach Unterkieferzysten und Frakturen bei Rhesusaffen eingesetzt (Cutright et al. 1971; Cutright und Hunsuck 1972).

Ewers und Förster verwendeten Schrauben und Platten aus PDS zur Osteosynthese osteotomierter Rippen bei Hunden (Ewers und Förster 1985).

Es folgten chronologisch weitere tierexperimentelle Arbeiten:

Tschakaloff und Mitarbeiter behandeln erfolgreich Nasenbeinfrakturen von 12 Kaninchen mit PDLLA-Platten und -Schrauben (Tschakaloff et al. 1993).

Becker und Mitarbeiter zeigten bei Kranioplastiken 6 Wochen alter Minipigs, dass die passive intrakranielle Transmission von bioresorbierbaren Platten und Schrauben (Lactosorb®) keine Kontraindikation für deren klinische Anwendung darstellt und die Resorption nicht beeinträchtigt (Becker et al. 1999).
2.2.4. Klinische Anwendungen

Obwegeser stabilisierte bei 30 Patienten nach Le-Fort-I-Osteotomie den Oberkiefer mit Poly-p-Dioxanon-Fäden (PDS II), ohne eine anschließende intermaxilläre Fixation vorzunehmen (Obwegeser 1994).

Illi und Mitarbeiter setzten bei 31 Kindern nach Eingriffen bei neurotraumatologischen Läsionen und kraniofazialen Malformationen ein Gewindestift-Mutter-System aus PLLA und gewobenen PDS-Bändern erfolgreich ein (Illi et al. 1994).

Bessho und Mitarbeiter versorgten erfolgreich Frakturen des Unterkiefers und Mittelgesichts bei 50 Patienten mit einem Platten und Schraubensystem aus PLLA (Bessho et al. 1997).

McManners und Mitarbeiter setzten PDS-Pins zur Stabilisierung nach Unterkieferosteotomien bei 10 Patienten ein (McManners et al. 1997).

In einer multizentrischen Studie wurden für die gleiche Indikation Schrauben aus einem Polymerblend (Isosorb®), d. h. einer Mischung zweier Polymere und zwar PLLA-PDLLA (90L:10DL) und PLLA-PDLLA (50:50), bei 60 Patienten verwendet (Pistner 1997).

anderes Kopolymer im kraniofazialen Bereich ein. Das Kopolymer bestand aus SR-PLLA-PGA (80:20), und die Resorptionszeit wurde mit unter einem Jahr angegeben (Sailer et al. 1999).

Stendel und Mitarbeiter berichteten über die erfolgreiche Fixation von Schädelknochen bei 8 Patienten in der Neurochirurgie mit SR-PLLA-PDLLA (70L:30DL), BioSorb FX® (Stendel et al. 2001).

Hoffmann und Mitarbeiter setzten bei 22 Patienten im Bereich des Mittelgesichts Resorb X® ein. Dabei sahen sie keine materialbedingten Komplikationen (Hoffmann et al. 2002).
Mazzonetto und Mitarbeiter verwendeten im Rahmen der orthognathen Chirurgie SR-PLLA-PDLLA (70L:30DL) bei 30 Patienten und beobachteten die komplikationslose Heilung bis 6 Monate postoperativ (Mazzonetto et al. 2004).

Eppley setzte bei 44 Patienten im Alter von 6 Monaten bis zu 1 Jahr mit Frakturen im kraniofazialen Bereich bioresorbierbare Platten und Schrauben ein (Lactosorb®). Er sah dies als eine effektive Behandlungsmethode in der 1. Dentition an (Eppley 2005).

Senel und Mitarbeiter versorgten eine Unterkieferfraktur in der Symphysenregion bei einem 8 Monate alten Baby mit einem Kopolymer (Inion CPS® 1.5 Baby) bestehend aus PLLA-PGA-TMC unbekannter Verteilung (Senel et al. 2006).

Im Rahmen von mehreren klinischen Studien verglichen Landes und Mitarbeiter resorbierbare Materialien. Bei 12 Patienten mit Unterkieferfrakturen verglichen sie die 100 % amorphen Kopolymere PolyMax® und MacroSorb® (beide PLLA-PDLLA

Um das Bedienkomfort bei Resorb X® zu erhöhen und um Zeit zu sparen, wurde das Eindrehen der Schraube durch das Ultraschall-gestützte Einbringen eines Pins ersetzt. Dabei dringt der durch die Ultraschallwellen verflüssigte Pin in das Bohrloch und in die Spongiosaräume ein. Die Methode wurde bei Unterkieferkollumfrakturen an 12 Schafen und bei Kranioplastiken an 8 Patienten mit Kraniosynostosen angewandt und histologisch bzw. klinisch untersucht. Durch diese Methode (SonicWeld Rx®) wird auch die Stabilität des Osteosynthesematerials erhöht (Eckelt et al. 2007; Mai et al. 2007).

Aufgrund der Inhomogenität der Untersuchungen (unterschiedliche Materialien mit unterschiedlichen Zusammensetzungen, verschiedene Einsatzgebiete, verschiedene Spezies und teilweise geringe Patientenzahlen bzw. Versuchstiere) ist ein Vergleich dieser Untersuchungen untereinander schwer möglich.
2.2.5. Anwendungsproblematik

In Bezug auf Gewebsverträglichkeit wurde für die beschriebenen Polymere eine gute Biokompatibilität angegeben (Gourlay et al. 1978). Jedoch häuften sich Beobachtungen über späte Gewebsreaktionen nach der Insertion, die während der Degradation erst im späteren Verlauf auftraten (Gerlach 2000).

Von dem häufig angewendeten LactoSorb® sind bisher keine ähnlichen Reaktionen bekannt (Eppley et al. 2004; Eppley 2005).

In Tierversuchen konnten auch in den regionären Lymphknoten Polylaktidpartikel nach Implantation nachgewiesen werden (Verheyen et al. 1993; Margevicius et al. 1996).
3. Material und Methoden

3.1. Versuchsmaterialien

3.1.1. Implantatsysteme

Die verwendeten Implantatsysteme (Tab. 2) sind aktuelle, im Jahr 2002 auf dem Markt verfügbar gewesene Systeme, die eine Zulassung für die Implantation am Menschen hatten. Die genauen prozentuellen Zusammensetzungen der Implantate sind bei allen Systemen bekannt bis auf jene des Inion CPS® 1.5 Baby. Bei diesem System ist die genaue Zusammensetzung ein Firmengeheimnis und daher unbekannt.

Es wurden 4-Lochplatten verwendet. Dazu wurden teilweise längere Platten (z. B. 20-Lochplatten in fünf 4-Lochplatten) geteilt.

Das Material E (RFS®, jetzt PolyMax®) der Firma ehemals Mathys GmbH, Bochum, Deutschland, jetzt CLINICAL HOUSE GmbH, Bochum, Deutschland, besteht aus

<table>
<thead>
<tr>
<th>Implantatsystem</th>
<th>Hersteller bzw. Anbieter</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Delta System® Stryker/Leibinger GmbH & Co. KG, Freiburg, Deutschland</td>
<td>Poly-(L-Laktid/D-Laktid/Glykolid) 85:5:10</td>
</tr>
<tr>
<td>B</td>
<td>Inion CPS® 1.5 Baby INION Ltd., Tampere, Finnland</td>
<td>Poly-(L-Laktid/Glykolid/Trimethylenglykolcarbonat)</td>
</tr>
<tr>
<td>C</td>
<td>Lactosorb® Walter Lorenz Surgical Inc., Jacksonville, Florida, USA</td>
<td>Poly-(L-Laktid-Glykolid) 82:18</td>
</tr>
<tr>
<td>D</td>
<td>Resorb X® Gebrüder Martin GmbH, Tuttlingen, Deutschland</td>
<td>Poly-(D-Laktid/L-Laktid) 50:50</td>
</tr>
<tr>
<td>E</td>
<td>RFS®/PolyMax® CLINICAL HOUSE GmbH Bochum, Deutschland</td>
<td>Poly-(L-Laktid-DL-Laktid) 70:30</td>
</tr>
</tbody>
</table>

Tabelle 2: Verwendete Implantatsysteme
3.1.2. Schrauben

Es wurden Titanschrauben der Größe 1,7 x 3 mm für die Implantatsysteme A, B, C und E und der Größe 2 x 4 mm für das System D von der Firma Stryker/Leibinger GmbH & Co. KG, Freiburg, Deutschland, käuflich erworben und verwendet. Es wurden Metallschrauben verwendet, da sie einerseits aufgrund der Nichtresorbierbarkeit eine hilfreiche Markierung des Osteosynthesearbeitsbereichs auch nach der Resorption der Platte darstellen. Anderseits sind alle von den Herstellern angebotenen resorbierbaren Schrauben für den dünnen Rattenschädel überdimensioniert und nicht praktikabel.
3.2. Versuchstiere

Die Studie erfolgte mit der Genehmigung des Landesveterinär- und Lebensmitteluntersuchungsamtes Mecklenburg-Vorpommern (Aktenzeichen: LVL-MV 310-4/7221.3-1.1-28/02)

Die verwendeten Versuchstiere waren 100 Wistarratten der Charles River Laboratories, Sulzfeld, Deutschland, die bei Versuchsbeginn durchschnittlich 3 Monate alt waren und zwischen 250 – 350 g wogen.

Die Tiere befanden sich ca. 1 Woche vor Versuchsbeginn in Quarantäne und wurden unter den gleichen Umgebungsbedingungen wie während des Versuches gehalten.

- Haltung in klimatisierten Räumen
- Temperatur: 18 +/- 3 °C
- Luftfeuchtigkeit: 60 +/- 20 %
- 12 Stunden Hell-Dunkel-Rhythmus
- Fütterung ad libitum (Alleinfutter für Ratten und Mäuse, ssniff Spezialdiäten GmbH, Soest, Deutschland)
- Tränkung mit Leitungswasser ad libitum

Nach der Implantation wurde für die ersten 7 Tagen eine tägliche, für weitere 3 Wochen eine wöchentliche und danach bis Versuchsende eine monatliche Inspektion des Implantationsareals durchgeführt. Das Körpergewicht wurde mit einer Genauigkeit von 10 Gramm zu Versuchsbeginn, einmal monatlich und zu Versuchsende ermittelt. Während der Versuchsdauer wurden die Tiere täglich beobachtet um sicher zu stellen, dass eventuelle anormale Befunde, einschließlich lokaler, systemischer und verhaltensmäßiger Anomalien registriert werden können.
3.3. Versuchsgruppen

Es wurden pro Implantatsystem 5 Untergruppen gebildet. Das Versuchsende für die einzelnen Untergruppen lag jeweils nach 4 und 10 Wochen bzw. nach 12, 18 und 24 Monaten. In jeder Untergruppe befanden sich 4 Versuchstiere (Tab. 3).

<table>
<thead>
<tr>
<th>Implantatsystem</th>
<th>Gruppe 1 Versuchsende nach 4 Wochen</th>
<th>Gruppe 2 Versuchsende nach 10 Wochen</th>
<th>Gruppe 3 Versuchsende nach 12 Monaten</th>
<th>Gruppe 4 Versuchsende nach 18 Monaten</th>
<th>Gruppe 5 Versuchsende nach 24 Monaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta System®</td>
<td>Untergruppe A1</td>
<td>Untergruppe A2</td>
<td>Untergruppe A3</td>
<td>Untergruppe A4</td>
<td>Untergruppe A5</td>
</tr>
<tr>
<td>Inion CPS® 1.5 Baby</td>
<td>Untergruppe B1</td>
<td>Untergruppe B2</td>
<td>Untergruppe B3</td>
<td>Untergruppe B4</td>
<td>Untergruppe B5</td>
</tr>
<tr>
<td>Lactosorb®</td>
<td>Untergruppe C1</td>
<td>Untergruppe C2</td>
<td>Untergruppe C3</td>
<td>Untergruppe C4</td>
<td>Untergruppe C5</td>
</tr>
<tr>
<td>Resorb X®</td>
<td>Untergruppe D1</td>
<td>Untergruppe D2</td>
<td>Untergruppe D3</td>
<td>Untergruppe D4</td>
<td>Untergruppe D5</td>
</tr>
<tr>
<td>RFS®</td>
<td>Untergruppe E1</td>
<td>Untergruppe E2</td>
<td>Untergruppe E3</td>
<td>Untergruppe E4</td>
<td>Untergruppe E5</td>
</tr>
</tbody>
</table>

Tabelle 3: Versuchsgruppen

Die Untergruppen 1 und 2 dienten dazu, die Reaktion der Gewebe auf das implantierte System zu untersuchen. Dabei wurde auch die Frakturheilung untersucht. Bei den Untergruppen 3, 4 und 5 wurden in erster Linie die Degradation des Implantatsystems und die dazugehörige Gewebsreaktion beurteilt.
3.4. Implantation

Alle Tiere wurden vom Autor dieser Schrift eigenhändig operiert: Sie wurden erst intraperitoneal durch die Injektion von 0,5 - 0,7 ml Ketamin 10 % (bela-pharm, Vechta, Deutschland) und 0,15 ml Xylazin 2 % (Rompun® 2 %, Bayer Vital GmbH, Leverkusen, Deutschland) anästhesiert. Nach ca. 10 min. wurden 0,1 ml Atropinsulfat (Atropinsulfat Braun® 0,5 mg, B. Braun Melsungen AG, Melsungen, Deutschland) subkutan sowie 0,1 ml Lidocain 2 % (Xylocitin®-loc, Jenapharm, Jena Deutschland) ohne Epinephrin lokal injiziert.

Die postoperative Analgesie erfolgte mit subkutaner Injektion von 150 mg Metamizol (Novaminsulfon-ratiopharm® 2,5, ratiopharm GmbH & Co, Ulm, Deutschland).

Der operative Eingriff wurde unter aseptischen Bedingungen so ausgeführt, dass das Trauma an der Implantationsstelle auf ein Minimum reduziert wurde.

Mit einem interorbitalen Schnitt der Kopfhaut auf dem Os frontale mit beidseitigen Entlastungen nach dorsal unter Schonung der Lider wurde ein nach dorsal gestielter Viereckslappen gebildet.

Nach Präparation und Abschieben des Periostes wurden 4 Bohrlöcher für die Osteosyntheseplatte mit einem Rosenbohrer markiert (Abb. 3). Anschließend wurde ein ca. 1 cm² messendes Viereck auf die Kalotte gezeichnet, das die beiden mittleren Bohrlochmarkierungen einschloss (Abb. 4). Danach wurde mit einem Rosenbohrer mit 1 mm Durchmesser unter Schonung der Dura der Knochendeckel umfahren und entnommen (Abb. 5 und 6). Nach Überprüfung der Vollständigkeit der Dura wurden die zwei Bohrlochmarkierungen im Knochendeckel mit einem Bohrer von 0,5 mm Durchmesser vervollständigt. Anschliessend wurden die zwei Bohrlochmarkierungen ventral und dorsal der Entnahmestelle ebenfalls mit einem Bohrer von 0,5 mm Durchmesser unter Schonung der Dura (mittels Raspatorium) vervollständigt. Nach sorgfältiger Blutstillung und Säuberung des Operationsgebietes wurde der Knochendeckel orthotop replantiert und mit einer 4-Loch-Osteosyntheseplatte und 4 Titanschrauben stabilisiert (Abb. 7 und 8).

Die Wunde wurde mehrschichtig mit resorbierbarem Nahtmaterial Vicryl 3-0 (Ethicon GmbH & Co KG, Norderstedt, Deutschland) verschlossen (Abb. 9 und 10). Zum
Schluss wurde die Wunde mit Betaisodona® desinfiziert und mit einem Sprühverband versehen. Bei stärkeren Blutungen, z. B. bei einer Duraverletzung, wurde zwischen Dura und Knochendeckel (Epiduralraum) ein 10 mm² großes Stück Tabotamp® (Ethicon GmbH & Co KG, Norderstedt, Deutschland) eingelegt.

Abbildung 3: Freilegung der Kalotte und Bohrlochmarkierungen

Abbildung 4: Präparation des Knochendeckels

Abbildung 5: Operationssitus nach Entnahme des Knochendeckels
Abbildung 6: Herausgenommener Knochendeckel

Abbildung 7: Reponierter mit Platte und 2 Schrauben armierter Knochendeckel

Abbildung 8: Stabilisierung mit insgesamt 4 Titanschrauben
Abbildung 9: Periostnaht

Abbildung 10: Hautnaht
3.5. Explantation

Abbildung 11: Vor Entnahme des Präparates
Abbildung 12: Entnommenes Präparat in toto
3.6. Histologie / Immunhistologie

Das in Formaldehyd (Formafix® 4%, Grimm med. Logistik GmbH, Torgelow, Deutschland) fixierte Präparat wurde nach zwei verschiedenen Methoden weiter bearbeitet:

- Unentkalkte Dünnschliffpräparate nach Kunststoffeinbettung mittels der Trenn-Dünnschliff-Technik (Donath und Breuner 1982) durch Mitarbeiter der Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichts chirurgie der Universität Rostock, Funktionsbereich Experimentelle Forschung.
- Mittels Entkalkung in gesättigter EDTA-Lösung (Äthylendiamintetraessigsäure, Zentralapotheke, Universität Rostock) und Paraffineinbettung durch Mitarbeiter des Institutes für Pathologie der Universität Rostock.

Es wurden folgende Präparatfärbungen durchgeführt:

- Giemsa-Toluidinblau (Fluka, Buchs, Schweiz und Zentralapotheke, Universität Rostock)
- Hämatoxylin-Eosin (Zentralapotheke, Universität Rostock)

Immunhistochemische Untersuchungen erfolgten mit folgendem Marker:

- Vimentin-Marker (monoklonaler Mausantikörper zur Markierung von Zellen mesenchymalen Ursprungs, Anti-Vimentin, Clone V9, DakoCytomation, Glostrup, Dänemark)
4. Ergebnisse

4.1. Allgemein

Die meisten Versuchstiere überstanden die Narkose und den Eingriff insgesamt gut. Bei den Kurzeitversuchen wurde in der Untergruppe D2 ein Versuchstier während der Operation verloren.

Bei den Langzeitversuchen wurde in den Untergruppen A5, C5, D4, E3 und E4 jeweils ein Versuchstier während der Operation bzw. in den ersten 3 postoperativen Tagen verloren.

Abbildung 13: Intrakranielle Nachblutung
4.2. Makroskopisch

4.2.1. Gruppe 1 (Nach 4 Wochen)

Abbildung 14: Wunddehiszenz (weißer Pfeil: Freiliegende Metallschraube)

Abbildung 16: Osteosyntheseplatte und -schrauben in situ vor Explantation bei der Untergruppe A1
4.2.2. Gruppe 2 (Nach 10 Wochen)

Die Wundheilung bei den Untergruppen A2, B2, C2, D2 und E2 war reizlos und zeitgerecht.

4.2.3. Gruppe 3 (Nach 12 Monaten)

Die Wundheilung bei den meisten Versuchstieren der Untergruppen A3, B3, C3, D3 und E3 war reizlos und zeitgerecht.

Es kam zur Verschorfung, und im Laufe der Zeit verheilte die Wunde vollständig.

Bei jeweils einem Versuchstier der Untergruppen A3 und C3 kam es zu einer lokalisierten Wunddehiszenz, die allerdings erst ab 3. postoperativen Monat zum Vorschein kamen. Trotz der Behandlung mit Braunovidon®-Salbe blieb sie bis zum Versuchsende persistent (Abb. 20).

Abbildung 18 und 19: Fluktuierende Schwellung bei der Untergruppe B3

Abbildung 20: Teilweise freiliegende Platte bei der Untergruppe C3

Abbildung 21: Präparat vor Entnahme bei der Untergruppe E3 (schwarze Pfeile: Metallschrauben)
4.2.4. Gruppe 4 (Nach 18 Monaten)

Abbildung 22: Präparat nach Entnahme bei der Untergruppe C4 (schwarzer Pfeil: Metallschraube)
4.2.5. Gruppe 5 (Nach 24 Monaten)

4.2.6. Zusammenfassung

4.3. Mikroskopisch

4.3.1. Gruppe 1 (nach 4 Wochen)

Das Plattenmaterial selbst war bei allen Untergruppen (A1, B1, C1, D1 und E1) vollständig erhalten, gut zu erkennen und von Fibrin umgeben. Das umgebende Gewebe wies eine geringe Entzündungsreaktion mit vereinzelten Entzündungszellen, überwiegend neutrophilen Granulozyten und einigen wenigen Lymphozyten, auf. Insgesamt war eine sehr geringe, vernachlässigbar kleine, geringgradig aktive, beginnend chronische Entzündungsreaktion festzustellen (Abb. 23 und 24).

Abbildung 23: Untergruppe D1 (4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
Abbildung 24: Untergruppe A1 (80-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.2. Gruppe 2 (nach 10 Wochen)

Eine geringe Entzündungsreaktion war vorhanden, aber es war keine Makrophagenreaktion sichtbar. Anstelle der neutrophilen Granulozyten waren vornehmlich Lymphozyten und Plasmazellen vorhanden; diese lagen jedoch nicht am Material.

Auffällig war eine Bindegewebsbildung im Sinne eines Fibroblastensaumes um das Implantat herum (Abb. 27). Es zeigte sich eine geringe, beginnende Einmauerung des Implantates durch umgebenden Knochen (Abb. 28).

Insgesamt war auch nach 3 Monaten das resorbierbare Implantat bei allen Systemen vollständig vorhanden und bindegewebig durch Fibroblasten ummantelt. Die anfänglich akute Entzündungsreaktion war regredient.

Abbildung 25: Untergruppe E2 (Pfeil: Metallschraube. Sterne: Das Implantat. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
Abbildung 26: Untergruppe B2 (Stern: Das Implantat. 20-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

4.3.3. Gruppe 3 (nach 12 Monaten)

4.3.3.1. Untergruppe A3 (Delta System®)

Abbildung 29: Untergruppe A3 (Sterne: Das Implantat mit Rissen. Pfeil: Umhüllender Knochen (4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

4.3.3.2. Untergruppe B3 (Inion CPS® 1.5 Baby)

Abbildung 31: Untergruppe B3 (Sterne: Implantationsareal. Pfeile: Umhüllender Knochen. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 32: Untergruppe B3 (Stern: Implantationsareal. 8-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
Abbildung 33: (Pfeil: Makrophage. 320-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.3.3. Untergruppe C3 (Lactosorb®)

Abbildung 34: Untergruppe C3 (Sterne: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 35: Untergruppe C3 (Pfeil: Gemästeter Makrophage. Stern: Reste des Implantates. 320-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.3.4. Untergruppe D3 (Resorb X®)

Abbildung 36: Untergruppe D3 (Sterne: Das Implantat. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 37: Untergruppe D3 (Pfeil: Umhüllender Knochen. 8-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.3.5. Untergruppe E3 (RFS®)

Das Implantat war vollständig erhalten (Abb. 38). Auffällig war eine randliche Auflockerung mit unregelmäßiger Oberfläche. Im Zentrum zeigte sich zusätzlich eine Blasenbildung. Im Randbereich des Implantats waren keine nennenswerte Entzündungsreaktion sondern nur vereinzelt Fibroblasten nachweisbar (Abb. 39).

Abbildung 38: Untergruppe E3 (Sterne: Das Implantat. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

4.3.4. Gruppe 4 (nach 18 Monaten)

4.3.4.1. Untergruppe A4 (Delta System®)
Das Implantat war in sich zusammengefallen, größtenteils durch lockeres Bindegewebe mit vereinzelten Fibroblasten ersetzt und von einer relativ breiten Bindegewebskapsel umgeben. Es waren nur wenige Makrophagen und vereinzelt Lymphozyten nachweisbar (Abb. 40 und 41).

Abbildung 40: Untergruppe A4 (Stern: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 41: Untergruppe A4 (Stern: Reste des Implantates. 80-fache Vergrößerung, Vimentin-Immunhistochemie)
4.3.4.2. Untergruppe B4 (Inion CPS® 1.5 Baby)
Das Implantat war vollständig phagozytiert. Es zeigten sich reichlich schaumzellige Makrophagen als Zeichen des noch stattfindenden Abbaus. Es waren keine neutrophilen Granulozyten und Lymphozyten sichtbar (Abb. 42 und 43).

Abbildung 42: Untergruppe B4 (Stern: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

4.3.4.3. Untergruppe C4 (Lactosorb®)
Es war keinerlei Restmaterial vom Implantat, sondern nur ein faserarmes Bindegewebe ohne Nachweis einer Entzündung feststellbar (Abb. 44 und 45).

Abbildung 44: Untergruppe C4 (Stern: Implantationsareal. Pfeil: Artefakt. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

4.3.4.4. Untergruppe D4 (Resorb X®)
Das Implantat war nicht mehr nachweisbar. Es war nur ein reichlich vaskularisiertes lockeres Bindegewebe mit Makrophagen zu finden (Abb. 46 und 47).

Abbildung 46: Untergruppe D4 (Stern: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 47: Untergruppe D4 (Stern: Implantationsareal mit starker Vaskularisation. 80-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.4.5. Untergruppe E4 (RFS®)

Das Implantat war sichtbar, jedoch die ehemalige Form war nicht mehr erhalten. Um das Implantat herum war eine schmale Bindegewebskapsel mit kleinen Fibroblastenproliferationen vorhanden, die an wenigen Stellen in das Implantat einzuwachsen schienen. Makrophagen waren nicht nachweisbar (Abb. 48 und 49).

Abbildung 48: Untergruppe E4 (Stern: Das Implantat. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

4.3.5. Gruppe 5 (nach 24 Monaten)

4.3.5.1. Untergruppe A5 (Delta System®)
Das Implantat war nicht mehr vorhanden und durch faserreiches Bindegewebe ersetzt. Am Randbereich waren reichlich Blutgefäße sichtbar, zusätzlich phagozytierende Makrophagen (Abb. 50 und 51).

Abbildung 50: Untergruppe A5 (Stern: Implantationsareal. Pfeil: Umhüllender Knochen. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 51: Untergruppe A5 (Stern: Implantationsareal. 80-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.5.2. Untergruppe B5 (Inion CPS® 1.5 Baby)
Das Implantat war nicht nachweisbar. Es zeigten sich keine Entzündungsreaktion und keine Makrophagen. Das Implantat war durch ein gefäßreiches Bindegewebe ersetzt (Abb. 52 und 53).

Abbildung 52: Untergruppe B5 (Stern: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 53: Untergruppe B5 (Stern: Implantationsareal mit gefäßreichem Bindegewebe. 80-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.5.3. Untergruppe C5 (Lactosorb®)
Im Vergleich zu Gruppe C4 (nach 18 Monaten) bestanden keinerlei Veränderungen. Das Implantat war durch entzündungsfreies Bindegewebe ersetzt worden (Abb. 54 und 55).

Abbildung 54: Untergruppe C5 (Stern: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 55: Untergruppe C5 (Stern: Implantationsareal. 80-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.5.4. Untergruppe D5 (Resorb X®)

Das Implantat war nicht nachweisbar. Im Vergleich zu Gruppe D4 (nach 18 Monaten) war das gefäßreiche Bindegewebe vollständig in ein kollagenreiches Bindegewebe umgebaut worden (Abb. 56 und 57).

Abbildung 56: Untergruppe D5 (Stern: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 57: Untergruppe D5 (Stern: Implantationsareal. 80-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
4.3.5.5. Untergruppe E5 (RFS®)
Das Implantat war in sich zusammengefallen, nur in Fragmenten erhalten und von Bindewebe durchsetzt. Es waren Makrophagen und einzelne Lymphozyten nachweisbar (Abb. 58, 59, 60 und 61).

Abbildung 58: Untergruppe E5 (Stern: Implantationsareal. 4-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)

Abbildung 59: Untergruppe E5 (Stern: Reste des Implantates. 80-fache Vergrößerung, Giemsa-Toluidinblau-Färbung)
Abbildung 60: Untergruppe E5 (Sterne: Reste des Implantates. Pfeile: Bindegewebssepten. 8-fache Vergrößerung, Vimentin-Immunhistochemie)

Abbildung 61: Untergruppe E5 (Sterne: Reste des Implantates. 80-fache Vergrößerung, Vimentin-Immunhistochemie)
4.3.6. Zusammenfassung

Das Ausmaß und der Verlauf der Biodegradation der Implantate der einzelnen Untergruppen sind in der Tabelle 4 dargestellt.

<table>
<thead>
<tr>
<th>Implantat-System</th>
<th>Gruppe 1 Versuchsende nach 4 Wochen</th>
<th>Gruppe 2 Versuchsende nach 10 Wochen</th>
<th>Gruppe 3 Versuchsende nach 12 Monaten</th>
<th>Gruppe 4 Versuchsende nach 18 Monaten</th>
<th>Gruppe 5 Versuchsende nach 24 Monaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta System®</td>
<td>A1 ++++</td>
<td>A2 ++++</td>
<td>A3 ++++</td>
<td>A4 ++</td>
<td>A5 -</td>
</tr>
<tr>
<td>Inion CPS® 1.5 Baby</td>
<td>B1 ++++</td>
<td>B2 ++++</td>
<td>B3 +</td>
<td>B4 -</td>
<td>B5 -</td>
</tr>
<tr>
<td>Lactosorb®</td>
<td>C1 ++++</td>
<td>C2 ++++</td>
<td>C3 -</td>
<td>C4 -</td>
<td>C5 -</td>
</tr>
<tr>
<td>Resorb X®</td>
<td>D1 ++++</td>
<td>D2 ++++</td>
<td>D3 ++</td>
<td>D4 -</td>
<td>D5 -</td>
</tr>
<tr>
<td>RFS®</td>
<td>E1 ++++</td>
<td>E2 ++++</td>
<td>E3 ++++</td>
<td>E4 ++</td>
<td>E5 ++</td>
</tr>
</tbody>
</table>

5. Diskussion

Bei den hier untersuchten resorbierbaren Osteosyntheseplatten ist eigentlich zur Änderung der Form (Anpassen an die Kontur des Implantationsareals) eine Erwärmung der Platten notwendig, um die sog. Glasübergangstemperatur (T_g) zu erreichen. Jedoch stellten Bergsma und Mitarbeiter fest, dass dadurch eine Beschleunigung der Degradation vor der eigentlichen Implantation auftraten kann (Bergsma et al. 1995c). In der eigenen Studie war durch die relativ plane Oberfläche der Kalotte eine Formanpassung nicht notwendig, und somit konnte eine eventuelle Vordegradation ausgeschlossen werden.

Die initiale Entzündungsreaktion muss auf das chirurgische Gewebstrauma und eine initiale Fremdkörperreaktion zurückgeführt werden. (Cutright et al. 1971; Bos et al. 1991).

In dieser Phase der Wundheilung ist eine Fremdkörperreaktion eine allgemeine Reaktion des Gewebes auf ein Fremdmaterial und nicht speziell auf die eingesetzten Polymere zurückzuführen, da zu diesem Zeitpunkt noch kein nennenswerter Abbau der Platten stattgefunden hatte.

In der Gruppe 2, 10 Wochen nach der Implantation, war die Entzündungsreaktion in allen Untergruppen regredient, die neutrophilen Granulozyten waren nicht mehr vorhanden. Vereinzelt fanden sich noch Lymphozyten und Plasmazellen, jedoch nicht direkt am Material. Es hatte sich um die Implantate eine dünne, zellarme Bindegewebskapsel mit einem Fibroblastensaum gebildet. Auch makroskopisch waren noch keine Auffälligkeiten sichtbar.

Eppley und Reilly untersuchten Lactosorb® an der Kaninchenkalotte. Nach 2 Monaten sahen sie noch keine Makrophagen oder Riesenzenellen an der vollständig erhaltenen Platte (Eppley und Reilly 1997). In der eigenen Untersuchung entspricht das dem Material C.

Aufgrund der Größenverhältnisse (Dicke der Implantate und Dicke der Kalotte der Wistarratte) war im eigenen experimentellen Modell dieses Phänomen vernachlässigbar und nur im Ansatz zu sehen (begrenzte Einmauerung der Osteosyntheseplatte durch neu gebildeten Knochen). Außerdem ist die Knochen-appositionsrate in den verschiedenen Tiermodellen unterschiedlich und liegt bei juvenilen Tieren auch deutlich höher als beim adulten Tier.

Bei allen Gruppen waren die beiden quer zu der Osteosyntheseplatte verlaufenden und davon überdeckten Osteotomiespalten verknöchert und die replantierten Knochendeckel fest. Die beiden anderen, lateral und parallel zu der Osteosyntheseplatte verlaufenden und nicht davon überdeckten Osteotomiespalten waren nur unvollständig verknöchert und wiesen Defekte auf. Die Kraniotomie war mit einem Rosenbohrer mit einem Durchmesser von 1 mm durchgeführt worden. Der artifiziell erzeugte Osteotomiespalte war breiter, da die Dicke des Knochens weniger als 1 mm betrug.

Als Erklärung für die unterschiedliche Verknöcherung der Osteotomiespalten kann vermutet werden, dass die Osteosyntheseplatte als eine Art Membran fungiert und im Sinne der Guided Bone Regeneration das Hineinwachsen von schnellwachsendem Weichgewebe in den Defekt verhindert.

In den Gruppen 3, 4 und 5 variierten die histologischen Bilder zwischen den einzelnen Untergruppen. Makroskopisch waren die Implantationsstellen zwar identifizierbar, es war jedoch nicht möglich, zwischen dem Implantat und eventuell bereits das Implantat ersetzendem Weichgewebe zu unterscheiden.

In der Untergruppe A3 (Delta System®) war das Implantat nach 12 Monaten noch vollständig und mit seiner äußeren Kontur erhalten, jedoch waren Bruchlinien innerhalb des Materials sichtbar. Das Implantat war von einer zellarmen dünnen Schicht von Bindegewebe umgeben. Es waren keine Makrophagen oder Riesenzellen vorhanden.

Nach 18 Monaten (Untergruppe A4) war das Implantat in sich zusammengefallen, größtenteils resorbiert und durch lockeres Bindegewebe ersetzt. Es waren wenige Makrophagen und vereinzelt Lymphozyten nachweisbar.

In der Untergruppe B3 (Inion CPS® 1.5 Baby) waren nach 12 Monaten nur noch Reste vorhanden. Bindegewebsige Septen durchsetzten die Reststücke. Am Material selbst waren einzelne Makrophagen mit größeren Zellkernen sichtbar. Ein reifes
Bindegewebe mit Gefäßen und Fibroblasten hatte das Implantat ersetzt. Eine nennenswerte Entzündungsreaktion war nicht nachweisbar.

Nach **24 Monaten (Untergruppe B5)** waren weder das Implantat noch Entzündungszellen nachweisbar.

Auch über Inion CPS® 1.5 Baby gibt es leider in der Literatur keine systematischen Untersuchungen. Wood berichtete über die Insertion von 100 Platten von Inion CPS® 1.5, 2.0 und 2.5 Systemen in verschiedene Regionen wie Unterkiefer, Oberkiefer, Jochbein, Nase und Schildknorpel mit unterschiedlichem Erfolg (Wood 2006). In einer anderen Studie wurden 50 Unterkieferfrakturen prospektiv mit Inion CPS® 2.5 versorgt. Dabei wurde eine Infektionsrate von 6 % angegeben. Der große Nachteil jener Arbeit ist jedoch die kurze Nachbeobachtungszeit von nur 8 Wochen bei einer Resorptionszeit laut Hersteller von 2 bis 4 Jahren (Laughlin et al. 2007). Diese drei Systeme Inion CPS® 1.5, 2.0 und 2.5 haben jeweils eine andere Materialzusammensetzung und sind daher mit dem Inion CPS® 1.5 Baby nicht vergleichbar (Produktflyer: Inion CPS®, INION Ltd., Tampere, Finnland)

In der Untergruppe D3 (Resorb X®) war das Implantat nach 12 Monaten zentral noch erhalten. Am Rand war das Implantat aber bereits resorbiert und bindegewebig umgebaut. Einzelne Makrophagen waren zu sehen.

Nach 18 Monaten (Untergruppe D4) war das Implantat nicht mehr vorhanden. An dessen Stelle war ein reichlich vaskularisiertes lockeres Bindegewebe mit einzelnen Makrophagen getreten.

temporäre Zunahme der Plattendicke von bis zu 300 % im Verlauf der Resorption wird bei diesem Implantatmaterial durch Wasseraufnahme verursacht und ist nicht auf eine entzündliche Schwellung der Gewebe zurückzuführen (Heidemann und Gerlach 2002).

In der Untergruppe E3 (RFS®) war das Implantat nach 12 Monaten noch vollständig erhalten. Es war am Rand aufgelockert, wies Blasen auf und die Oberfläche war unregelmäßig. Es waren kaum Entzündungszellen sichtbar.

Nach 18 Monaten (Untergruppe E4) war das Implantat zwar noch zu erkennen, aber die ursprüngliche äußere Kontur war nicht mehr gegeben. Um das Implantat herum war eine schmale Bindegewebskapsel mit kleinen Fibroblastenproliferationen, aber ohne Makrophagen vorhanden.

Nach 24 Monaten (Untergruppe E5) war das Implantat in sich zusammengefallen, aber teilweise noch vorhanden. Bindegewebsige Septen durchsetzten das Material, und es waren Makrophagen und Lymphozyten sichtbar.

Der Abbau der resorbierbaren Osteosyntheseplatten vollzieht sich in 4 Phasen. In der ersten kommt es durch Hydratisierung zur Auflösung inter- und intramolekularer Kräfte wie z. B. der Van-der-Waals-Kräfte. In der zweiten Phase beginnt die

In Ratten-Versuchsmodell waren die Implantate B (Inion CPS® 1.5 Baby) und C (Lactosorb®) nach 12 Monaten größtenteils bzw. vollständig resorbiert, und nach 18 Monaten war das Implantationsareal komplett bindegewebig durchgebaut. Hier befand

Für die Implantate A, B, C und D konnte der vollständige Abbau beobachtet und nachgewiesen werden. Vermutlich brauchte das Implantat E noch ca. 6 weitere Monate, um vollständig abgebaut zu werden (also insgesamt 30 Monate). Jedoch konnte dies nicht belegt werden.

Versuch durch unsere Arbeitsgruppe noch untersucht werden und auf die am Ende dieses Kapitels kurz eingegangen werden wird.

Diese Form der schwerwiegenden Fremdkörperreaktionen wurden bei den 5 hier getesteten Plattensystemen nicht beobachtet.

Abgesehen von den 6 Versuchstieren, die postoperativ innerhalb der ersten 3 Tage verstorben waren, waren keine schwerwiegenden Komplikationen in dem eigenen Versuchsmodell aufgetreten. Es wurden nur folgende Wundheilungsstörungen beobachtet:

In der Gruppe 1 kam es zu einer bleibenden Wunddehiszenz in der 2. postoperativen Woche. Das Versuchstier (Untergruppe D1) zeigte zusätzlich unmittelbar postoperativ Bewegungs- und Orientierungsstörungen als Hinweis auf einen neurologischen Schaden. Die aufgetretene Wundheilungsstörung kann die Folge einer Wundinfektion sein, wobei eine Selbstmanipulation an der Wunde durch das Versuchstier aber nicht ausgeschlossen erscheint. Die Wundheilungsstörungsrate in dieser Gruppe betrug 5 %.

In der Gruppe 2 kam es zu keiner Wundheilungsstörung.

In den Gruppen 4 und 5 gab es je eine Wundinfektion mit Staphylococcus aureus in den Untergruppen B4 und A5. Hier lagen die Wundheilungsstörungsraten bei jeweils 5 %.

Insgesamt betrug die Wundheilungsstörungsrate in allen Gruppen im Mittel bei 6 %. Nach Produkten sortiert gab es beim Implantat A (Delta System®) 10 %, beim Implantat B (Inion CPS® 1.5 Baby) 10 %, beim Implantat C (Lactosorb®) 5 %, beim Implantat D (Resorb X®) 5 % und Implantat E (RFS®) 0 % Wundheilungsstörungen.

In einer prospektiven Multicenter Studie in 10 Kliniken für Neurochirurgie wurde nach Kraniotomien bei 2994 Patienten eine Wundinfektionsrate von 1,5 % - 10.2 % gefunden. Der zumeist nachgewiesene Keim war auch dort der Staphylococcus aureus (Korinek 1997).

Das operative Vorgehen im eigenen Tierversuch war semisteril. Die resultierende Infektionshäufigkeit entspricht der in der Literatur angegebenen Rate. Es wurde auf eine prophylaktische Antibiotikagabe verzichtet, um die Gewebsreaktion nicht zu beeinträchtigen. Jedoch würden der Einsatz von Antibiotika und ein sterileres Vorgehen vermutlich eine Reduktion der Wundheilungsstörungsquote ermöglichen.

In einer Metaanalyse wurde gezeigt, dass der prophylaktische Einsatz von Antibiotika die postoperative Wundinfektionsrate reduziert. Dabei wurden bei 1014 Kraniotomien mit Antibiotikaprophylaxe 19 Infektionen und bei 1061 Kraniotomien ohne Antibiotikaprophylaxe 93 Infektionen beobachtet (Barker 1994).

Andere Nachteile der resorbierbaren Osteosynthesesysteme wie Schraubenbrüche (bis zu 8 % bei der Einbringung) und der höhere Zeitaufwand (Landes et al. 2003) konnten vermieden werden, da Metallschrauben verwendet worden waren – wenn auch aus anderem Grund.

Die Immunhistochemie mit Antikörpern gegen Vimentin wurde durchgeführt, um nichtepitheliale (mesenchymale) Zellen zu kontrastieren und ihre Zytomorphologie

Die höheren Kosten der resorbierbaren Implantate sind ein großer Nachteil. Wenn man jedoch die von den Krankenkassen zu zahlenden Kosten für die Metallentfernung und alle damit verbundenen möglichen Komplikationen und Risiken des Zweiteingriffs sowie soziale, wirtschaftliche und gesundheitspolitische Aspekte eines solchen Zweiteingriffs berücksichtigt, sind resorbierbare Osteosynthesesysteme eine echte Alternative zu metallischen Implantaten.

Die von verschiedenen Autoren geforderten Voraussetzungen für die Wahl eines Osteosynthesesystems (Tabelle 5) müssen auch für resorbierbare Osteosynthesesysteme gelten (Edwards und David 1996; Landes et al. 2003).

| - einfache Handhabung |
| - Kosteneffektivität |
| - ausreichende Stabilität um die Knochenheilung zu gewährleisten |
| - Biokompatibilität, ohne lokale und/oder systemische Irritation |
| - flaches Design, nicht palpabel |
| - Nichtbeeinflussung diagnostischer und therapeutischer Röntgenstrahlen |
| - breite Einsatzmöglichkeiten |
| - wenige spezielle Werkzeuge erforderlich |
| - vollständige Resorption nach erfolgter Knochenheilung (gilt nur für resorbierbare Implantate) |

Tabelle 5: Voraussetzungen für die Wahl eines Osteosynthesesystems

Mit den in dieser Arbeit vorgelegten Ergebnissen allein können keine Aussagen gemacht werden über die mechanische Stabilität der getesteten biodegradierbaren Osteosynthesematerialien, und auch durch das an der Ratte ermittelte Resorptionszeitfenster kann nicht zwingend auf das mögliche Einsatzgebiet geschlossen werden. Dazu sind mechanische Belastungstests notwendig. In zwei Fremdstudien wurden 7 resorbierbare und 2 metallische (Titan)

Daher kann jedoch vermutet werden, dass beim jungen Menschen an mechanisch wenig belasteten Knochen die Systeme Lactosorb® und Inion CPS® 1.5 Baby und beim älteren Patienten sowie an mechanisch belasteten Knochen das System RFS® geeignet sind. Die anderen 2 Systeme Resorb X® und Delta System® liegen vermutlich nicht nur mit ihrer Resorptionsgeschwindigkeit, sondern auch mit ihrer mechanischen Stabilität in der Mitte dazwischen.

6. Zusammenfassung

Seit Einführung der biodegradierbaren Osteosynthesesysteme wurden zahlreiche Berichte über deren experimentelle und klinische Anwendung veröffentlicht. Jedoch sind die meisten Publikationen miteinander nicht vergleichbar. Einerseits haben die untersuchten Systeme unterschiedliche Materialzusammensetzungen, und das ist entscheidend für die Biokompatibilität und Resorption. Andererseits wurden sie an verschiedenen Spezies und in verschiedenen Körperregionen getestet, die ebenfalls die Resorption und eventuell auch die Biokompatibilität beeinflussen.

Die Aktualität der Biomaterialien und ihre eindeutigen Vorteile auf der einen Seite und die noch nicht ausreichenden Untersuchungen auf der anderen Seite waren die treibenden Kräfte dieses Projektes. Es wurden fünf bioresorbierbare Osteosynthesesysteme mit einander verglichen, die zum gegebenen Zeitpunkt in Deutschland angeboten wurden.

Hierzu wurden Kurzzeit- (4 und 10 Wochen) und Langzeit-Prüfungen (12 bis 24 Monate) durchgeführt.

Für alle fünf untersuchten Systeme (Delta System®, Inion CPS® 1.5 Baby, Lactosorb®, Resorb X® und RFS®) konnte eine zumeist ungestörte Wundheilung nachgewiesen werden. Die von anderen Autoren zum Teil bei hochmolekularen und hochkristallinen Polylaktiden und Polyglykoliden aufgetretenen und klinisch manifesten späten Gewebsreaktionen waren bei den hier untersuchten Systemen nicht beobachtet worden.

Noch werden nicht alle an ein optimales biodegradierbares Osteosynthesesystem zu stellenden Ansprüche von den getesteten Systemen erfüllt. Sie sollten neben einer ausreichenden Anfangsstabilität für 6 - 8 Wochen, eine relativ schnelle, jedoch die Resorptionsmechanismen der Gewebe nicht überlastende, Biodegradation aufweisen. Es sollten keine entzündlichen Gewebsreaktionen ausgelöst werden, zusätzlich sind die Handhabung und der Preis weitere zu berücksichtigenden Faktoren.
7. Literaturverzeichnis

Danksagung

Herrn Prof. Dr. Dr. Dr. h.c. K. Gundlach bin ich für die Stellung des Themas und die intensive Betreuung bei Planung und Durchführung der Arbeit zu großem Dank verpflichtet.

Gedankt sei an dieser Stelle auch Herrn Professor Dr. Dr. Dr. h.c. J. Härtel für seine Hilfe bei den Korrekturen und Hinweise bei der Überarbeitung der vorliegenden Arbeit.

Bei der Planung der Studie und Auswertung der histologischen Präparate erhielt ich Unterstützung von Herrn Dr. E. Gafumbegete und Herrn PD Dr. C. Boltze, ehemalige Mitarbeiter des Instituts für Pathologie der Universität Rostock.

Mein besonderer Dank gilt Frau K. Sievert und den anderen Mitarbeitern des Tierhauses des Experimentellen Forschungszentrums der Medizinischen Fakultät der Universität Rostock für die Hilfe bei Narkotisierung, Nachsorge und Haltung der Tiere.

Für die histologische Aufarbeitung des umfangreichen Probenmaterials danke ich Frau D. Gütschow und Frau I. Wilmbusse sehr herzlich.

Ferner möchte ich mich bei der medizinischen Fakultät der Universität Rostock bedanken, die im Rahmen des Forschungsförderprogramms FORUN das Projekt finanziell unterstützt und somit ermöglicht hat (Projektnummer: 989002).
Erklärung

Ich erkläre, dass ich ein Verfahren zur Erlangung des akademischen Grades Dr. med. bisher an keiner wissenschaftlichen Einrichtung beantragt habe,

die vorgelegte Dissertation bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt wurde,

ich die eingereichte Dissertation selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche gekennzeichnet habe.
Lebenslauf

Persönliche Daten:

Geburtsdatum: 21.03.1973
Geburtsort: Teheran
Familienstand: ledig
Eltern: Mutter: Laya Ahani, Vater: Ismail Sarajian
Geschwister: 2 Schwestern und 2 Brüder
Staatsangehörigkeit: deutsch, iranisch

Schulausbildung:

1980-1984 Grundschule in Teheran
1985-1987 Orientierungsschule in Teheran
1987/88-1990/91 Hauptschule auf dem Markt in Bochum
10.06.1994 Abitur in Bochum

Studium:

WS 1994 - SS 1999 Studium der Zahnmedizin
an der Universität Rostock
(mit „sehr gut“ abgeschlossen, Jahrespreis für herausragende Leistungen für Studierende der Universität Rostock)

WS 1999 - SS 2005 Studium der Humanmedizin
an der Universität Rostock und an der Brown University, USA
(mit 1,99 abgeschlossen)
Berufliche Tätigkeit:

11/1999 Zahnärztliche Approbation

(Direktor: Prof. Dr. Dr. Dr. h.c. Gundlach, MSD)

06/2005 Ärztliche Approbation

Seit 01.07.2005 Wiss. Mitarbeiter der Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie der Universität Rostock
(Direktor: Prof. Dr. Dr. Dr. h.c. Gundlach, MSD)

07.05.2008 Facharzt für Mund-, Kiefer- und Gesichtschirurgie
Vergleichende in vivo Untersuchung zum biologischen Verhalten
unterschiedlicher bioresorbierbarer Osteosyntheseplatten –
Eine tierexperimentelle Studie an Wistarratten

Thesen

der
Inauguraldissertation
zur Erlangung des akademischen Grades
Doktor der Medizin
der Medizinischen Fakultät der
Universität Rostock

vorgelegt von
Arzt und Zahnarzt Hamid-Reza Sarajian
geboren in Teheran
Rostock 2008
1) Die 5 untersuchten bioresorbierbaren Implantate (Delta System®, Inion CPS® 1.5 Baby, Lactosorb®, Resorb X® und RFS®) sind biokompatibel und führen nicht zu einer klinisch manifesten Entzündungsreaktion.

2) Die Stabilität der untersuchten Implantate ist ausreichend für eine ungestörte Knochenheilung nach Kraniotomie bei der Ratte.

3) Die bioresorbierbaren Implantate sind eine echte Alternative zu den zurzeit hauptsächlich angewendeten metallischen Implantaten bei nicht stark belasteten Knochen.

4) Nach der Implantation kommt es zu einer milden Gewebsreaktion, die als unspezifische Reaktion auf das Operationstrauma zurückzuführen ist.

7) Es gibt für jedes Implantat ein Zeitfenster, bei dem die Degradation histologisch beobachtet werden kann. Für die untersuchten Implantate gibt es unterschiedliche Zeitfenster.

9) Trotz höherer Kosten der resorbierbaren Osteosynthesesysteme sind sie für das Gesundheitssystem insgesamt kostengünstiger, da die Folgeoperationen zur Metallentfernung entfallen.