Synthesis of Functionalized 4-Chlorophthalates, 2-Naphthoates, 2Fluorobiaryls, and Arylpyridines by Cyclocondensation Reactions of 1,3-Bis(silyloxy)-1,3-butadienes and Related Dienes and by Palladium(0)Catalyzed Cross-Coupling Reactions

DISSERTATION

zur
Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock
vorgelegt von
M.Phil Chemistry Obaid-ur-Rahman Abid geb. am 07.08.1977 in Rawalpindi

Aus Pakistan

Rostock, April 2010

Dekan : Prof. Dr. Hendrik Schubert

1. Gutachter : Prof. Dr. Peter Langer, Institue of Chemistry, University of Rostock.
2. Gutachter : Prof. Dr. Torsten Linker, Institute of Chemistry, University of Potsdam.

Tag der Promotion :
06-07-2010

CONTENTS

Acknowledgements vi
Abbreviations vii
Summary 1
Synthesis of Functionalized 4-Chlorophthalates, 2-Naphthoates, 2-Fluorobiaryls, and Arylpyridines by Cyclocondensation Reactions of 1,3- Bis(silyloxy)-1,3-butadienes and Related Dienes and by Palladium(0)- Catalyzed Cross-Coupling Reactions

1. Synthesis of highly functionalized biaryls by condensation of 2-fluoro-1,3-bis(silyloxy)-1,3-dienes with 3-cyanochromones and subsequent domino 'retro-Michael / aldol / fragmentation' reactions 2
1.1 Introduction 2
1.2 Results and discussion 2
1.3 Conclusion 7
2. Synthesis of 1,4-diaryl-2-naphthoates and 1,4-bis(alkynyl)-
2-naphthoates based on site-selective Suzuki-Miyaura and Sonogoshira reactions 9
2.1 General Introduction 9
2.2 Introduction 12
2.3 Results and discussion 13
2.4 Conclusion 22
3. Synthesis of 3,5-diaryl-4-chlorophthalates by [4+2] cycloaddition of 1-ethoxy -2-chloro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate and subsequent site-selective Suzuki-Miyaura reactions 23
3.1 Introduction 23
3.2 Results and discussion 23
3.3 Conclusion 27
4. Synthesis of functionalized arylpyridines and arylpyrimidines based on a Diels-Alder approach 29
4.1 Introduction 29
4.2 Results and discussion 30
4.3 Conclusion 35
5. Abstract 36
6. Experimental Section 38
6.1 General: Equipment, chemicals and work technique 38
6.2 Procedures and spectroscopic data 40
Referances 97
Data for X-Ray Crystal Structures 105

ACKNOWLEDGEMENTS

By the grace of Allah, the Almighty, the creator of universe, who granted Hidayah to the mankind and peace and blessings be upon his prophet, Hazrat Muhammad (Peace be upon Him), who exhorted his followers to seek knowledge from cradle to grave, I've been able to complete this academic enterprise.

It is my first and foremost obligation to express my sincere gratitude to Professor Dr. Peter Langer my supervisor. His proper supervision, experience, time devotion and keen interest enable me to accumulate this humble work. Some special words are due to my kind supervisor in Pakistan Professor Dr. Nasim Hasan Rama, Department of Chemistry, Quaid-iAzam University, Islamabad for his great help and encouragement during my stay at Quaid-iAzam University.

I would like to acknowldge to Dr. Muhammad Sher and my friend Mr Farooq Ebad for helpful discussions and friendship. I ought to submit my thanks to my dear friends, who remembered me in their prayers and heart. I wish to acknowledge support and encouragement provided by Olumide, Serge, Asad, Rasheed Khera, Sharif, Ihsan, Malik, Nawaz, Hung, Tariq, Sajid, Naeem, Mukhtar Bhai, Yasin Bhai, Kamran Bhai and Munawar Bhai.

I am thankful to all my past and present colleagues Zeeshan, Zeeshan Ahmad, Adeel, Majid, Rasheed, Shkoor, Dhafer, Ghazwan, Mahal and Omer for their support encouragement and help to pursue this work and all others whom I have missed here do deserve equal credit.

Thanks also go to Dr. Martin Hein, Dr Holger Feist, Frau Jacob, Frau Anne Hallman and Frau Claudia Vinke and all members of technical sections (NMR, IR, MS, EA and X-Ray etc) of Rostock University.

Finally I express my heartiest gratitude and respect to my mother, father, dearest brothers and sisters who encouraged me through-out my studies and supported me what and whenever they could. Special thanks to Naeem Bhai for his continuous support in all fields of life.

	Abbreviations
Ar	Aromatic
APT	Attached Proton Test
ATCC	American Type Culture Collection
$n \mathrm{BuLi}$	n-Butylithium
DEPT	Distortionless Enhancement by Polarisation Transfer
EI	Electronic Impact
ESI	Electrospray Ionization
EtOAc	Ethylacetate
HRMS	High Resolution Mass Spectroscopy
IR	Infrared Spectroscopy
LDA	Lithium Diisopropylamide
MS	Mass Spectrometry
Ph	Phenyl
NEt_{3}	Triethylamine
NMR	Nuclear Magnetic Resonance
HMQC	Heteronuclear Multiple Quantum Coherence
HMBC	Heteronuclear Multiple Bond Correlation
COSY	Correlated Spectroscopy
NOESY	Nuclear Overhauser and Exchange Spectroscopy
$\mathrm{Me}_{3} \mathrm{SiOTf}$	Trimethylsilyl-trifluoromethanesulfonate
$\mathrm{Me}_{3} \mathrm{SiCl}$	Trimethylsilylchloride
mp .	Melting Point
RCM	Ring Closing Metathesis
TBAI	Tetrabutyl Amonium Iodide
TBAF	Tetrabutyl Amonium Fluoride
TFA	Trifluoroacetic Acid
$\mathrm{Tf}_{2} \mathrm{O}$	Trifluoromethanesulfonic Anhydride
THF	Tetrahydrofurane
TLC	Thin Layer Chromatography
TMS	Trimethylsilane
UV	Ultraviolet Spectroscopy.

Summary

Some of the work mentioned here has been published earlier so some of the related part is taken from the publications. The thesis can be summarized as follows:

1. Synthesis of highly functionalized biaryls by condensation of 2-fluoro-1,3-bis(silyloxy)-1,3-dienes with 3-cyanochromone sand subsequent domino 'retro-Michael / aldol / fragmentation'reaction. This chapter includes the synthesis of highly functionalized biaryls 6a-p by condensation of 2-fluoro-1,3-bis(silyloxy)-1,3-dienes with 3cyanochromones.

2 Synthesis of 1,4-diaryl-2-naphthoates and 1,4-bis(alkynyl)-2-naphthoates based on site-selective Suzuki-Miyaura and Sonogoshira reactions. This chapter includes the synthesis of a number of examples of diaryl- and bis(alkynyl)-naphthoates by palladium-catalyzed Suzuki and Sonogoshira coupling reactions. Using this methodology, I successfully synthesized products with very good site-selectivity.
3. Synthesis of 3,5-diaryl-4-chlorophthalates by $[4+2]$ cycloaddition of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate and subsequent site-selective Suzuki-Miyaura reactions. In this chapter, I have described the synthesis of 3,5-diaryl-4-chlorophthalates having the same or different aryl groups. I reported a convenient approach to dimethyl 4-chloro-3,5-dihydroxyphthalate. Suzuki-Miyaura reactions of the bis(triflate) of this dihydroxyphthalate proceed with very good siteselectivity.

4 Synthesis of functionalized arylpyridines and arylpyrimidines based on a Diels-Alder approach. This chapter includes the synthesis of various functionalized arylpyridines and pyrimidines by application of novel Diels-Alder reactions. Fifteen products were synthesized using five different pyridyl/pyrimidyl acetylenes as dienophiles, thus finding a simple method for the synthesis of molecules which can be of considerable pharmacological relevance.
6. This chapter includes the experimental, spectroscopic data and full characterization of all new products.

1. Synthesis of highly functionalized biaryls by condensation of 2-fluoro-1,3-bis(silyloxy)-1,3-dienes with 3-cyanochromones and subsequent domino 'retro-Michael / aldol / fragmentation' reactions

1.1 Introduction:

Organic compounds bearing fluorine atom have a special importance because of their medicinal potential. ${ }^{1}$ This importance is attributed to the fact that the high electronegativity of fluorine with such a small size makes it beneficial for drug receptor interactions whereas the strength and stability of the carbon-fluorine bond helps to prevent its involvement in any side reactions. In addition to these remarkable characteristics, a special tribute goes to the lipophilicity of the fluorinated organic compounds which helps in the transport of the drug. In addition to their medicinal importance, fluorinated organic compounds also find their use as versatile building blocks in transition metal catalyzed coupling reactions (specially arenes and heteroarenes), as ligands, ${ }^{3}$ or as organocatalysts. ${ }^{4}$

In order to develop new synthetic ways for many different kinds of heterocycles, our group has been working with the use of 1,3-bis(silyloxy)-1,3-butadienes and has been successful in many achievements related to that. Recently, studies were carried out related to the reaction of 1,3-bis(silyloxy)-1,3-butadienes with chromone derivatives. ${ }^{5,6}$ As a result of these studies, Langer et al. were able to report an efficient synthesis of azaxanthones by condensation of 1,3-bis(silyloxy)-1,3-butadienes with 3-cyanochromones and subsequent base-mediated domino ${ }^{7}$ 'retro-Michael / nitrile-addition / heterocyclization' reaction. ${ }^{8}$ In addition, the Langer group also achieved the synthesis of biaryl lactones by condensation of 1,3-bis(silyloxy)-1,3-butadienes with chromones and subsequent base-mediated domino 'retro-Michael / aldol / lactonization' reaction. ${ }^{9}$ In my thesis, I have studied the reaction of 3cyanochromones with 2-fluoro-1,3-bis(silyloxy)-1,3-dienes which give rise to the unexpected formation of highly functionalized fluorinated biaryls. The products are formed by a hitherto unprecedented domino 'retro-Michael / aldol / fragmentation' reaction.

1.2 Results and discussion:

To carry out the proposed research on my project it was necessary to synthesize some 2 -fluoro-3-oxoesters. An efficient synthesis of β-ketoesters involves the reaction of 1,3dicarbonyl dianions with alkyl halides. ${ }^{10}$ The application of this methodology to the synthesis of fluorinated derivatives has, to the best of my knowledge, not been reported to date. 2-

Fluoro-3-oxoesters 1b-d were prepared, following a procedure developed by my colleagues M. Farooq and V. Wolf (dissertations, University of Rostock, in preparation), by reaction of the dianion of commercially available ethyl 2-fluoroacetoacetate (1a) with various alkyl iodides (Scheme 1, Table 1). The yields (59-62\%) are typical for dianion reactions and the experiments thus show that the fluorine substituent is compatible with the reaction conditions.

Scheme 1. Synthesis of 1b-d: i : 1) LDA (2.3 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) R-I, $-78 \rightarrow 20^{\circ} \mathrm{C}$, $14 \mathrm{~h} ; 3) \mathrm{HCl}(10 \%)$.

Table 1. Synthesis of $\mathbf{1 b - d}$

$\mathbf{1}$	R	$\%^{\mathrm{a}}$
\mathbf{b}	$n \mathrm{Pr}$	59
\mathbf{c}	n Oct	62
\mathbf{d}	$n \mathrm{Dec}$	61

${ }^{a}$ Yields of isolated products; products were prepared by M. Farooq and V. Wolf

Dienes 3a-d were prepared again following the protocol developed by V. Wolf and M. Farooq. The 2-fluoro-3-oxoesters 1a-d afforded silyl enol ethers 2a-d upon silylation. Then, the synthesis of the respective 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-dienes 3a-d involved deprotonation (LDA) at $-78^{\circ} \mathrm{C}$ and subsequent addition of trimethylchlorosilane (Scheme 2, Table 2). The synthesis of $\mathbf{3 a}$ has been previously reported. ${ }^{11}$ These dienes $\mathbf{3 a} \mathbf{a} \mathbf{d}$ can be stored at $-20^{\circ} \mathrm{C}$ under inert atmosphere for several weeks.

Scheme 2. Synthesis of 3a-d: i : $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{NEt}_{3}$, benzene, $20^{\circ} \mathrm{C}, 48 \mathrm{~h}$; ii: 1) LDA, THF, -78 $\left.{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 2\right) \mathrm{Me}_{3} \mathrm{SiCl},-78 \rightarrow 20^{\circ} \mathrm{C}, 14 \mathrm{~h}$; the geometry of the double bonds are not unambigiously assigned

Table 2. Synthesis of 3a-d

$\mathbf{2 , 3}$	R	$\%(\mathbf{2})^{\mathrm{a}}$	$\%(\mathbf{3})^{\mathrm{a}}$
\mathbf{a}	H	81	94
\mathbf{b}	$n \mathrm{Pr}$	82	90
\mathbf{c}	n Oct	84	94
\mathbf{d}	$n \mathrm{Dec}$	81	92

${ }^{a}$ Yields of isolated products; products were prepared by M. Farooq and V. Wolf

3-Cyano-2-(4-ethoxy-3-fluoro-2-4-dioxobutyl)chroman-4-one was obtained as a product when 3a was treated with with 3-cyanochromone (4a). This product, upon reaction in ethanol with triethylamine, yielded fluorinated azaxanthone 5a in 56% yield (Scheme 3). Its formation, which has been reported previously, ${ }^{11}$ can be explained by a domino 'retroMichael / nitrile-addition / heterocyclization' reaction (path A). The retro-Michael reaction gave intermediate \mathbf{A} which underwent a nitrile addition to give intermediate \mathbf{C}. Heterocyclization of the latter afforded 5a. However, when $\mathbf{4 a}$ was reacted with diene 3b then the result of this reaction was quite different and I obtained fluorinated biaryl $\mathbf{6 b}$ (71% yield) (Scheme 3). The usually expected product azaxanthone $\mathbf{5 b}$ was isolated in only 17% yield. The unusual formation of the new compound $\mathbf{6 b}$ can be explained by a domino 'retro-

Michael / aldol / 1,5-ester-shift' reaction (path B). A proton shift of intermediate A afforded B which underwent an intramolecular aldol reaction to give D. An intramolecular ester shift (intermediate \mathbf{E}) followed by aromatization gave compound $\mathbf{6 b}$. This process is similar to the formation of biaryl lactones by condensation of 1,3-bis(silyloxy)-1,3-butadienes with simple chromones and subsequent base-mediated domino 'retro-Michael / aldol / lactonization' reaction. ${ }^{8}$ The option of a direct aromatization during the intramolecular aldol reaction seems to be impossible here because a quaternary carbon atom is involved. However, the aromatization can take place because of the fragmentation.

Scheme 3. Possible mechanisms of the formation of $\mathbf{5 a}$ and $\mathbf{6 b}$

It was assumed that the chain length of the diene plays an important part in the distribution of the products. So I studied the reactions with different variations of both diene and of the chromone systematically (Scheme 4, Table 3). The products of the reaction of dienes 3b-d with the parent 3-cyanochromone (4a) gave a clear discrimination in the products and mainly afforded the biaryls $\mathbf{6 b} \mathbf{b}$. Azaxanthones $\mathbf{5 b}$-d were isolated as sideproducts. The reaction of unsubstituted diene $\mathbf{3 a}$ with 3 -cyanochromone $\mathbf{4 b}$, containing two electron-donating methyl groups, exclusively afforded azaxanthone 5e. In contrast, biaryl $\mathbf{6 f}$ was the main products in the reaction of $\mathbf{4 b}$ with substituted diene $\mathbf{3 b}$. In all the cases where the reaction was carried out with the unsbstituted diene 3a, the products were exclusively azaxanthones. In contrast, fluorinated biaryls $\mathbf{6 g - i}, \mathbf{6 k}-\mathbf{m}, \mathbf{6 0}$ and $\mathbf{6 p}$ were formed in the reaction of $\mathbf{4 c} \mathbf{c} \mathbf{- f}$ with substituted dienes $\mathbf{3 b} \mathbf{- d}$.

Scheme 4. Synthesis of 5a-p and 6a-p; i, 1) Me $\mathrm{Me}_{3} \mathrm{SiOTf}, 1 \mathrm{~h}, 20^{\circ} \mathrm{C}$; 2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; 3) $\left.\mathrm{HCl}(10 \%) ; i i, 1) \mathrm{NEt}_{3}, \mathrm{EtOH}, 2{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 2\right) \mathrm{HCl}(10 \%)$.

Table 3. Synthesis of 5a-p and 6a-p

$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5 , 6}$	R^{1}	R^{2}	R^{3}	R^{4}	$\%(\mathbf{5})^{a, b}$	$\%(\mathbf{6})^{a}$
\mathbf{a}	\mathbf{a}	\mathbf{a}	H	H	H	H	56^{b}	0
\mathbf{b}	\mathbf{a}	\mathbf{b}	$n \mathrm{Pr}$	H	H	H	17	71
\mathbf{c}	\mathbf{a}	\mathbf{c}	$n \mathrm{Oct}$	H	H	H	20	63
\mathbf{d}	\mathbf{a}	\mathbf{d}	$n \mathrm{Dec}$	H	H	H	13	76
\mathbf{a}	\mathbf{b}	\mathbf{e}	H	Me	Me	H	46^{b}	0
\mathbf{b}	\mathbf{b}	\mathbf{f}	$n \mathrm{Pr}$	Me	Me	H	14	71
\mathbf{d}	\mathbf{c}	\mathbf{g}	$n \mathrm{Dec}$	Me	H	Me	18	63
\mathbf{b}	\mathbf{d}	\mathbf{h}	$n \mathrm{Pr}$	Cl	H	H	13	73
\mathbf{c}	\mathbf{d}	\mathbf{i}	$n \mathrm{Oct}$	Cl	H	H	-	77
\mathbf{a}	\mathbf{e}	\mathbf{j}	H	Cl	H	Cl	35^{b}	0
\mathbf{b}	\mathbf{e}	\mathbf{k}	$n \mathrm{Pr}$	Cl	H	Cl	13	73
\mathbf{c}	\mathbf{e}	\mathbf{l}	$n \mathrm{Oct}$	Cl	H	Cl	21	63
\mathbf{d}	\mathbf{e}	\mathbf{m}	$n \mathrm{Dec}$	Cl	H	Cl	-	76
\mathbf{a}	\mathbf{f}	\mathbf{n}	H	F	H	H	33^{b}	0
\mathbf{b}	\mathbf{f}	$\mathbf{0}$	$n \mathrm{Pr}$	F	H	H	16	75
\mathbf{d}	\mathbf{f}	\mathbf{p}	$n \mathrm{Dec}$	F	H	H	-	77

${ }^{a}$ Yields of isolated products; ${ }^{b}$ experiment carried out by Dr. Muhammad Adeel

1.3 Conclusion:

In this chapter I reported the Me_{3} SiOTf-mediated condensation of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-dienes with 3-cyanochromones and the treatment of this intermediate with triethylamine to afford fluorinated azaxanthones or biaryls. In these reactions the use of unsubstituted diene 3a generally resulted in exclusive formation of fluorinated azaxanthones 5 by a domino 'retro-Michael / nitrile-addition / heterocyclization' reaction. However, when the reaction was carried out with the substituted dienes $\mathbf{3 b} \mathbf{- d}$ then the fluorinated biaryls were the main products. Their formation can be explained by an unprecedented domino 'retro-Michael / aldol / fragmentation' reaction. In some reactions, the corresponding azaxanthones were isolated as side-products. Thus, the product distribution is influenced by the chain length of the diene. The steric influence of the fluorine atom and of
the substituent R^{1} may result in a conformation which facilitates the intramolecular aldol reaction at the expense of the nitrile addition.

Figure 1: Ortep Plot of $\mathbf{6 h}$

2. Synthesis of 1,4-Diaryl-2-naphthoates and 1,4-Bis(alkynyl)-2naphthoates based on Site-Selective Suzuki-Miyaura and Sonogoshira Reactions

2.1 General Introduction:

Chemists have always been interested in devising new methods for the formation of carbon-carbon bonds. These reactions very much facilitate the construction of complex molecules from simple precursors. The Grignard, Diels-Alder, and Wittig reaction have been of great use in this regard in the last century. But for the last three decades transition metalcatalyzed reactions, particularly palladium(0)-catalyzed transformations, have gained remarkable importance for carbon-carbon bond formation and many new ideas have been tested and realized. ${ }^{12}$ Nowadays, these reactions are being used for the synthesis of a number of natural products, pharmaceuticals and advanced materials. ${ }^{13-15}$ The most commonly applied palladium-catalyzed carbon-carbon bond forming reactions in total synthesis are, namely, the Heck 16, Stille 17, Suzuki ${ }^{18}$, Sonogashira ${ }^{19}$, Tsuji- Trost 20, and the Negishi ${ }^{21}$ reaction. The mechanism of these reactions are similar. The first step is usually the oxidative addition of organic halides or triflates to the $\operatorname{Pd}(0)$ complex to form organopalladium halides. The following step is, in case of the Suzuki, Sonogashira and Stille reaction, often a transmetallation with nucleophilic compounds to give a diorganopalladium complex. This complex undergoes a reductive elimination to create carbon-carbon bond and regeneration of the catalyst.

Suzuki Reaction:

The Suzuki reaction is the reaction that gained much importance for its usefulness for the cross-coupling between halides and organoboronic acids. ${ }^{22}$ Advances made in this field include the development of new catalysts and modern methods have greatly increased the scope of this reaction and is now considered to be a quite general procedure for a wide range of selective carbon-carbon bond formations. ${ }^{23}$ The scope of the reaction partners is not restricted to arenes, but includes also alkyl, alkenyl and alkynyl compounds.

The mechanism of the Suzuki reaction involves the oxidative addition of organic halides or triflates to the $\operatorname{Pd}(0)$ complex to form a organopalladium halide $\left(\mathrm{R}^{1}-\mathrm{Pd}(\mathrm{II})-\mathrm{X}\right)$. This step is followed by transmetallation with a boronic acid derivative or a borane to give a diorganopalladium complex ($\mathrm{R}^{1}-\mathrm{Pd}-\mathrm{R}^{2}$). This complex undergoes a reductive elimination with carbon-carbon bond formation and regeneration of the catalyst. ${ }^{24-27}$ The reactivity order of aryl halides and aryl triflates, which act as electrophiles, is Ar-I > Ar-Br > Ar-OTf > ArCl . The use of base accelerates the transmetalation. This is due to the increase of the carbanion character of the organoborane moiety by formation of an organoborate containing a tetravalent boron atom. The selection of a proper catalyst plays an important role in the success of the desired reaction. The common palladium sources employed include, for example, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PdCl}_{2}, \mathrm{Ph}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, and $\mathrm{Pd}(\mathrm{dba})_{2}$. The use of bulky electron-rich ligands is often the key for a successful transformation. The ferrocenylphosphine ${ }^{28}, \mathrm{~N}$ heterocyclic carbenes, ${ }^{29} \mathrm{P}(t \mathrm{Bu})_{3}{ }^{30}, \mathrm{P}(\mathrm{Cy})_{3}$ often give a good yield.

Miyaura-Suzuki reactions ${ }^{31}$, in particular, are very attractive, due to the stability of the precursors, boronic acids, and facility of work up. In this reaction even an alkyl group (i.e. sp^{3}-hybridized C atom), as opposed to the more traditionally used vinyl or aryl groups, can be transferred from the organoborane component during the palladium-catalyzed coupling process with vinyl or aryl halides or triflates. Compared to Stille reactions ${ }^{32}$, Suzuki-Miyaura couplings have a much broader scope in that a potentially vast range of alkyl boranes (typically prepared through the regio- and chemoselective hydroboration of readily available alkene precursors) can be employed in the reaction. ${ }^{33}$ The interest of the chemist in this field is evident from the continuous developments in the use of new reaction conditions, catalysts and ligands. ${ }^{34-36}$

Sonogoshira reaction:

One of the most useful and effective methods for the synthesis of substituted alkynes is the Sonogashira reaction that has been developed in the last quarter of the $20^{\text {th }}$ century. ${ }^{37}$ Substituted alkynes have also been synthesized by use of many other metal acetylides (e.g. $\mathrm{Zn},{ }^{38} \mathrm{Mg},{ }^{39} \mathrm{~B},{ }^{40} \mathrm{Al},{ }^{41}$ and Sn^{42} derivatives) involving the palladium-catalyzed coupling. But owing to its extensive applicability and suitability, the Sonogashira protocol (employing cocatalytic Cu salts) is the most widely used method for alkynylation reactions. This method was reported for the first time in 1975 involving the use of Cu as cocatalyst. ${ }^{43}$ There has been
a lot of development in the protocol for Sonogashira reactions since then. Nowadays, the Sonogashira reaction can be carried out under mild conditions even at room temperature, with high turnover numbers. Modern variations enable it to carry out the reaction even in copperfree conditions. The reaction medium must be basic in order to neutralize the hydrogen halide produced as the byproduct of this coupling reaction. Thus, alkylamine compounds such as triethylamine and diethylamine are often used. Other bases such as potassium carbonate or cesium carbonate are occasionally used. As in the other Pd-catalyzed cross-coupling reactions, the general order of reactivity of organic electrophiles with respect to the leaving groups is vinyl iodide $>$ vinyl triflate $>$ vinyl bromide $>$ aryl iodide $>$ aryl triflate $>$ aryl bromide >> aryl chloride; the use of aryl or vinyl iodides often results in a smooth Sonogashira reaction. ${ }^{44}$

The different mechanism of different variants of the Sonogashira reaction leads to different invidual protocols. The in situ generation of copper alkylides under the reaction conditions often generates homocoupling products (so-called Glaser coupling). ${ }^{45}$ Many different protocols have been established for Sonogashira reactions. Typical reactions are performed using a palladium(0)-phosphane complex in the presence of a cocatalytic amount of a copper (I) salt and an amine (used as a solvent or in large excess) under homogeneous conditions. The catalysts that have been in use are triphenylphosphane-related complexes, such $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Pd}(\mathrm{dppe}) \mathrm{Cl}_{2}, \mathrm{Pd}(\mathrm{dppp}) \mathrm{Cl}_{2}$ or $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$. Usually in the reaction $5 \mathrm{~mol} \%$ of palladium are used. Larger amounts of the copper(I) salt are often employed. Other palladium sources employed are $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Pd}_{2}(\mathrm{PhCN})_{2}, \mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}{ }^{46}$ and $\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}{ }^{47}$, and ligands, such as, $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{3}, \mathrm{P}(\mathrm{Cy})_{3}$, electron-rich obiphenylphosphane (X-Phos), ${ }^{48}$ multidentate ferrocenyl phosphanes, and tetraphosphanes.

In general, Sonogoshira reactions have a great importance in organic synthesis and have a number of applications in a variety of fields like synthesis of natural products, ${ }^{49,50}$ of electronic and electrooptical ${ }^{51-53}$ and of molecules for nanostructures. ${ }^{54-56}$

2.2 Introduction:

Naphthalene and its derivatives are found to act as intermediates in the synthesis of organic dyes, medicines, and surfactants. In the polymer industry they also serve in the function of supporting agents. ${ }^{57}$ Naphthalene derivatives are found in a number of natural sources, ${ }^{58,59}$ (examples are 4-hydroxy-3,5-dimethoxy-2-naphthaldehyde and 4-hydroxy-5-methoxy-2-naphthaldehye). ${ }^{3}$ Naphthalene derivatives also exhibit marked pharmacological activities like antimicrobial activities ${ }^{60}$ and activity as antibody inhibitors. ${ }^{61}$ With respect to electronical properties, diethynyl naphthalene derivatives were previously synthesized which exhibit high ionization potentials for p -channel and n -channel organic field-effect transistors. ${ }^{62}$

In the case of palladium-catalyzed reactions of polyhalogenated substrates the topic of site-selectivity is of significant current interest. ${ }^{63}$ The electronic and steric parameters are the factors that mainly control the site-selectivity issue. ${ }^{64}$ Palladium-catalyzed reactions of aromatic bis(triflates) have been previously reported. However, the issue of site-selectivity was not addressed. ${ }^{65}$ With reference to the site-selectivity in Sonogoshira reactions, Hosokawa et al. reported reactions of a bis(triflate) which was prepared from a 1,3dihydroxybenzene derivative. ${ }^{66}$ We observed that Suzuki-Miyaura (S-M) reactions of the bis(triflate) of methyl 2,5-dihydroxybenzoate proceeded with very good site-selectivity in favour of position 5 which is presumably a result of steric effects. ${ }^{67}$ I thought that the siteselectivity in the case of naphthoates might be different from that of benzoates, due to electronic reasons. I chose phenyl 1,4-dihydroxy-2-naphthoate as a commercially available and inexpensive starting material as a very good substrate to achieve a better understanding of site-selectivity issue in the naphthalene series. The latter can be regarded as a benzoannulated analogue of methyl 2,5-dihydroxybenzoate. Transition metal-catalyzed cross coupling reactions of this or related naphthoate derivatives (including the corresponding dihalides) have, to the best of my knowledge, not been reported to date. My research results can be concluded in the way that there is a clear difference in the site-selectivity between benzoate and naphthoate systems.

2.3 Results and discussion:

Phenyl 1,4-dihydroxynaphthoate (7) was transformed into the novel bis(triflate) $\mathbf{8}$ in 83\% yield (Scheme 5).

Scheme 5: Synthesis of 8. Conditions: i: 1) 7 (1.0 equiv), pyridine (4.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$; 2) $\mathrm{Tf}_{2} \mathrm{O}$ (2.4 equiv), $-78 \rightarrow 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

The Suzuki-Miyaura (S-M) reaction of $\mathbf{8}$ with boronic acids $\mathbf{9 a - h}$ (2.4 equiv.) afforded the novel 1,4-diaryl-2-naphthoates 10a-h in 61-85\% yields (Scheme 6, Table 4). The conditions of the reaction were optimized to have the better results with respect to yields and the best combination found was $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$ as catalyst, 2.4 equiv. boronic acid and 1,4-dioxane (at $110{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$) and use of $\mathrm{K}_{3} \mathrm{PO}_{4}$ as the base. The results were not so good when $\mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of XPhos ${ }^{68}$ or SPhos ${ }^{68}$ was used for these reactions to achieve better yields. Later, it was found that the products $\mathbf{1 0 a}, \mathbf{b}, \mathbf{g}$ derived from arylboronic acids containing electron-withdrawing substituents gave better yields than 10d,e,h derived from electron-rich boronic acids.

Scheme 6: Synthesis of $\mathbf{1 0 a - h}$. Conditions: i, 8 (1.0 equiv), 9a-h (2.4 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 1,4$-dioxane, $110{ }^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 4. Synthesis of 10a-h

$\mathbf{9 , 1 0}$	Ar	$\%(\mathbf{1 0})^{\mathrm{a}}$
\mathbf{a}	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	85
\mathbf{b}	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	80
\mathbf{c}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	76
d	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	65
e	$2,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	56
f	$\mathrm{C}_{6} \mathrm{H}_{5}$	73
g	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	79
h	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	63

${ }^{\text {a }}$ Yields of isolated products

In order to get the mono-substituted products of the Suzuki reaction of $\mathbf{8}$ with boronic acids 9d,e,g,i-k (1.1 equiv.), I used $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%$) and found that the reaction proceeded with very good site-selectivity at carbon atom C-1 and afforded the 1-aryl-4-(trifluoromethylsulfonyloxy)-2-naphthoates 11a-f (Scheme 7, Table 5). The products were purified by chromatography. A small amount of the bis-coupled product could be detected by ${ }^{1}$ H NMR and GC-MS in the crude material before the purification. Results of these reactions were also very good in consideration of the yield for almost all the boronic acids, except for 11c which is derived from the sterically hindered 2,6-disubstituted arylboronic acid $\mathbf{9 i}$. The best yields for these reactions were obtained when the reaction was carried out at $95{ }^{\circ} \mathrm{C}$ instead of $110^{\circ} \mathrm{C}$ to avoid double coupling.

Scheme 7: Synthesis of $\mathbf{1 1 a - f}$. Conditions: i, $\mathbf{8}$ (1.0 equiv.), 9d,e,g,i-k (1.1 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3 mol-\%), 1,4-dioxane, $95^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 5: Synthesis of 11a-f

$\mathbf{1 1}$	$\mathbf{9}$	Ar	$\%(\mathbf{1 1})^{\mathrm{a}}$
\mathbf{a}	\mathbf{k}	$2-(\mathrm{EtO}) \mathrm{C}_{6} \mathrm{H}_{4}$	59
\mathbf{b}	\mathbf{e}	$2,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	66
c	\mathbf{i}	$2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	33
d	\mathbf{g}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	73
e	\mathbf{d}	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	69
f	\mathbf{j}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	62

${ }^{\text {a }}$ Yields of isolated products.

The one-pot reaction of $\mathbf{8}$ with two different arylboronic acids, which were sequentially added, afforded the unsymmetrical 1,4-diaryl-2-naphthoates 12a-f in 51-67\% yields (Scheme 8, Table 6). During the optimization, it proved to be important, for the first step of the one-pot protocol, to employ only a slight excess of the arylboronic acid (1.1 equiv.) and to carry out the reaction at $95^{\circ} \mathrm{C}$ instead of $110^{\circ} \mathrm{C}$.

Scheme 8: Synthesis of 12a-f. Conditions: 1) $\mathbf{8}$ (1.0 equiv.), 9b-e,l,m (1.1 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 1,4$-dioxane, $95{ }^{\circ} \mathrm{C}, 7 \mathrm{~h} .2$) $\mathbf{9 c}, \mathbf{h}, \mathbf{n}$ (1.3 equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}(1.5$ equiv.), $110^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 6: Synthesis of 12a-f

$\mathbf{1 2}$	$\mathbf{9}$	Ar^{1}	Ar^{2}	$\%(\mathbf{1 2})^{\mathrm{a}}$
\mathbf{a}	$\mathbf{b , h}$	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	51
\mathbf{b}	$\mathbf{d , h}$	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	46
\mathbf{c}	$\mathbf{e , c}$	$2,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	63
d	$\mathbf{c , n}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	65
e	$\mathbf{1 , n}$	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	61
f	$\mathbf{m , n}$	$4-\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	67

${ }^{a}$ Yields of isolated products

The structures of 11c and 12a were independently confirmed by X-ray crystal structure analyses (Figures 2 and 3). ${ }^{69}$

Figure 2: Ortep Plot of 11c

Figure 3: Ortep Plot of 12a

In a much similar way as adopted for the S-M reaction, the Sonogoshira reaction of $\mathbf{8}$ with acetylenes 13a-f (2.4 equiv.) afforded the novel 1,4-bis(alkynyl)-2-naphthoates 14a-f in $52-77 \%$ yields (Scheme 9, Table 7). The best yields were obtained when $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol}$ $\%)$ and $\mathrm{CuI}(20 \mathrm{~mol} \%)$ were used as the catalyst in the presence of tetrabutylammonium iodide ($300 \mathrm{~mol} \%$), when 2.4 equiv. of the acetylene was employed, and when the reaction was carried out in DMF ($80^{\circ} \mathrm{C}, 4 \mathrm{~h}$) using triethylamine as the base. The difference in yields of the Sonogoshira reaction products can not be generalized with respect to electronic factors. Steric factors may reduce the yield in the case of $\mathbf{1 4 f}$.

Scheme 9. Synthesis of 14a-f. Reagents and conditions: 8 (1.0 equiv), 13a-f (2.4 equiv), Dry $\mathrm{CuI}(20 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Bu} 4 \mathrm{NI}(300 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}$ (2.5 equiv), DMF, $80^{\circ} \mathrm{C}$, 4 h .

Table 7. Synthesis of 14a-f

$\mathbf{1 3 , 1 4}$	Ar	$\%(\mathbf{1 4})^{\mathrm{a}}$
\mathbf{a}	$4-\mathrm{t} \mathrm{BuC}_{6} \mathrm{H}_{4}$	72
b	$3-\mathrm{MeC}_{6} \mathrm{H}_{4}$	77
c	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	68
d	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	62
e	$4-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	63
f	$6-(\mathrm{MeO})-2-\mathrm{Naphthyl}^{2}$	52

${ }^{\text {a }}$ Yields of isolated products

The Sonogoshira reactions of $\mathbf{8}$ with acetylenes $\mathbf{1 3} \mathbf{g}$ and $\mathbf{1 3 h}$ (1.1 equiv.), in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol}-\%)$ and $\mathrm{CuI}(10 \mathrm{~mol} \%)$, proceeded with good site-selectivity at carbon atom C-1 and afforded the 1-arylethynyl-4-(trifluoromethylsulfonyloxy)-2naphthoates and 1-alkylethynyl-4-(trifluoromethylsulfonyloxy)-2-naphthoates 15a,b (Scheme 10, Table 8). This conclusion is based on the comparison of the ${ }^{19} \mathrm{~F}$ chemical shifts of the OTf group in the ${ }^{19} \mathrm{~F}$ NMR spectra of the products of the Suzuki and the Sonogoshira reactions. The difference of the chemical shifts of the triflate groups is, for all derivatives, approx. 1 ppm and has a systematic character. However, the trend of the shifts is not a strong evidence. Unfortunately, all attempts to unambigiously confirm the regioselectivity by 2D NMR experiments or crystal structure analsis proved to be unsuccessful so far. The products were isolated in pure form after chromatography in good yields $68-72 \%$. In some cases, a small amount of the product derived from double attack could not be completely separated (approx. 10%). The bis-coupled products could be detected by ${ }^{1} \mathrm{H}$ NMR and GC-MS in the crude material before purification by column chromatography. The products were achieved in good yields. It proved to be important to employ only a slight excess of the acetylene (1.1 equiv.) and to carry out the reaction at $60^{\circ} \mathrm{C}$ instead of $80^{\circ} \mathrm{C}$ to avoid double coupling.

Scheme 10: Synthesis of 15a,b. Reagents and conditions: 8 (1.0 equiv), 13g,h (1.1 equiv), dry $\mathrm{CuI}(10 \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{Bu} \mathrm{H}_{4} \mathrm{NI}(150 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}\left(1.25\right.$ equiv), DMF, $60^{\circ} \mathrm{C}$, $4 h$.

Table 8. Synthesis of 15a,b

$\mathbf{1 3}$	$\mathbf{1 5}$	R	$\%(\mathbf{1 5})^{\mathrm{a}}$
\mathbf{g}	\mathbf{a}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	72
\mathbf{h}	\mathbf{b}	Propyl	68

[^0]The one-pot reaction of $\mathbf{8}$ with two different acetylenes, which were sequentially added, afforded the unsymmetrical 1,4-diarylethynyl-2-naphthoates 16a,b in 54-58\% yields (Scheme 11, Table 9). During the optimization it proved to be important for the first step of the one-pot procedure to employ only a slight excess of the acetylene (1.1 equiv.) and to carry out the reaction at $60^{\circ} \mathrm{C}$ instead of $80^{\circ} \mathrm{C}$.

Scheme 11: Synthesis of 16a,b. Conditions: $i, 1$) $\mathbf{8}$ (1.0 equiv), 13c (1.1 equiv), dry CuI (20 $\mathrm{mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Bu}{ }_{4} \mathrm{NI}(300 \mathrm{~mol} \%), \mathrm{Et}_{3} \mathrm{~N}\left(1.25\right.$ equiv), DMF, $60^{\circ} \mathrm{C}, 3 \mathrm{~h} ; 2$) 13d,g (1.3 equiv.), $E t_{3} \mathrm{~N}$ (1.25 equiv), $80^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Table 9. Synthesis of 16a,b

$\mathbf{1 3}$	$\mathbf{1 6}$	Ar^{1}	Ar^{2}	$\%(\mathbf{1 6})^{\mathrm{a}}$
$\mathbf{c , d}$	\mathbf{a}	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	54
c,g	\mathbf{b}	$3-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	58

${ }^{a}$ Yields of isolated products

The results of the investigations for the regioselective reactions in the case of naphthoate $\mathbf{8}$ in comparison to the benzoate 17 gave some very interesting results. Previously, it was observed that in the case of benzoate $\mathbf{1 7}$ the S-M reaction occurs first at the sterically less hindered carbon atom C-5, whereas in case of naphthoate $\mathbf{8}$ the first attack occurs at the sterically more hindered position C-1. So the only possible explaination can be a justification by electronic factors (Scheme 12). The oxidative addition of the electron-rich palladium species usually occurs first at the most electron deficient carbon atom. ${ }^{63}$ In case of $\mathbf{1 7}$, the more electron deficient carbon atom is carbon C-2 rather than C-5, as it is located at the ortho
position to the ester group. Similarly in naphthoate $\mathbf{8}$, the more electron deficient carbon atom is C-1 rather than C-4, but this deficiency of the electrons in naphthoate is more pronounced than for benzoate 17. The non-substituted benzene moiety of naphthoate $\mathbf{8}$ represents a stable 6π aromatic system. In contrast, the aromaticity of the other benzene moiety of $\mathbf{8}$ is considerably disturbed, because of the presence of the ester and the triflate groups. Due to the annulation of the stable unsubstituted benzene moiety, the aromaticity of the substituted benzene moiety should be more disturbed than the aromaticity of the benzene moiety of $\mathbf{1 7}$. The substituted benzene moiety of $\mathbf{8}$ might thus be regarded as a cross-conjugated diene system (Scheme 13). Due to the π-acceptor effect of the ester group, the nucleophilic attack occurs at carbon atom $\mathrm{C}-1$ of the diene system (conjugate addition).

Scheme 12. Possible explanation for the site-selective reactions of $\mathbf{8}$

Scheme 13. Diene character of $\mathbf{8}$

2.4 Conclusion:

In conclusion, I have reported site-selective Suzuki-Miyaura and Sonogoshira reactions of the bis(triflate) of phenyl 1,4-dihydroxynaphthoate. The first attack occurred at the sterically more hindered position C-1.

3. Synthesis of 3,5-diaryl-4-chlorophthalates by [4+2] cycloaddition of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate and subsequent site-selective Suzuki-Miyaura reactions

3.1 Introduction:

Aromatic compounds bearing a chloro substituent are found in many natural products and they also exhibit significant pharmacological properties. ${ }^{70}$ It is much clear from the literature that the arenes and hetarenes containing a halogen group are pharmacologically much more active than their non-halogenated analogues. ${ }^{71}$ Besides this importance with regard to their activity, the chloro group can be effectively reacted in palladium(0)-catalyzed cross coupling reactions using modern catalyst systems. ${ }^{72}$ However, the synthesis of chloroarenes is a difficult task which is surrounded by many problems like low regioselectivity or multiple chlorination and other side reactions. An alternative strategy to overcome these problems is the use of proper chlorine-containing building blocks in condensation and cyclization reactions. For example, Manzanares and coworkers reported the synthesis of a 4-chlorophenol by [4+2] cycloaddition of a chlorinated thiophene with dimethyl acetylenedicarboxylate. ${ }^{73}$

1,3-Bis(trimethylsilyloxy)-1,3-butadienes (e. g., Chan's diene) ${ }^{6,74}$ are very useful building block for a number of syntheses of different products. ${ }^{75}$ Recently, the Langer group took advantage of these building blocks in the synthesis of different arenes and hetarenes in a facile way. ${ }^{76}$ Herein, I report, for the first time, the synthesis of dimethyl 4-chloro-3,5dihydroxyphthalate by [4+2] cycloaddition of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate (DMAD). The product was then converted to its bis(triflate) which was in turn subjected to Suzuki-Miyaura reactions. These reactions give very good site-selectivities ${ }^{77}$ and provide a convenient approach to novel 3,5-diaryl-4chlorophthalates.

3.2 Results and discussion:

The [4+2] cycloaddition of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-diene (3e), readily available from ethyl 2-chloroacetoacetate in two steps, with DMAD resulted in
the synthesis of dimethyl 4-chloro-3,5-dihydroxyphthalate (18) in 50% yield (Scheme 14). The latter was then treated with triflic anhydride to give its bis(triflate) 19 in high yield.

Scheme 14: Synthesis of 18 and 19. Reagents and conditions: i: 1) 3e (1.0 equiv.), DMAD (1.5 equiv.), $\left.\left.-78 \rightarrow 20^{\circ} \mathrm{C}, 20 \mathrm{~h} ; 2\right) \mathrm{HCl}(10 \%) ; i i, 1\right) \mathbf{1 8}$ (1.0 equiv), pyridine (4.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 10 \mathrm{~min}$; 2) $\mathrm{Tf}_{2} \mathrm{O}$ (2.4 equiv), $-78 \rightarrow 0{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$

Using compound 19 in the Suzuki reactions with boronic acids $\mathbf{4 b}, \mathbf{c}, \mathbf{f}, \mathbf{g}, \mathbf{0}-\mathbf{q}$ (2.4 equiv.), I got the novel 3,5-diaryl-4-chlorophthalates 20a-g in good yields (Scheme 15, Table 10). During the optimization of the reaction conditions it was found that the use of the catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$ and of 2.4 equiv. of the boronic acid give the best results (the reaction was carried out in 1,4-dioxane at $110^{\circ} \mathrm{C}$ for 6 h using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as the base).

Scheme 15: Synthesis of 20a-g. Reagents and conditions: i, 19 (1.0 equiv), 4b,c,f,g,0-q (2.4 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(3 \mathrm{~mol} \%\right.$), 1,4-dioxane, $110^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Table 10 Synthesis of 20a-g

$\mathbf{4 ,}$	$\mathbf{2 0}$	Ar	$\mathbf{\% (2 0})^{\mathrm{a}}$
\mathbf{b}	\mathbf{a}	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	77
\mathbf{f}	\mathbf{b}	$\mathrm{C}_{6} \mathrm{H}_{5}$	75
\mathbf{g}	\mathbf{c}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	63
$\mathbf{0}$	\mathbf{d}	$3-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	49
\mathbf{p}	\mathbf{e}	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	67
\mathbf{c}	\mathbf{f}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	72
\mathbf{q}	\mathbf{g}	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	66

[^1]In order to prepare monosubstituted products by Suzuki-Miyaura reactions, 19 was treated with arylboronic acids $\mathbf{4 b}, \mathbf{f}, \mathbf{j}, \mathbf{r}, \mathbf{i}$ (1.1 equiv.). As a result, the 5 -aryl-4-chloro-3(trifluoromethylsulfonyloxy)phthalates 21a-e were formed in good yields and with very good site-selectivity (Scheme 16, Table 11). This selectivity can be explained on the basis of steric factors which look to be very pronounced. I also studied the synthesis of 3,5-diaryl-4chlorophthalates 22a,b containing two different aryl groups Ar^{1} and Ar^{2} which was successfully achieved by direct reaction of bis(triflate) 19 using a one pot procedure (Scheme 17 , Table 12). At first, the Suzuki reaction of $\mathbf{1 9}$ with arylboronic acid $\mathbf{4 p}\left(1.1\right.$ equiv, $90^{\circ} \mathrm{C}$) was done. The subsequent addition of arylboronic acids $\mathbf{4 b}, \mathbf{a}\left(1.3\right.$ equiv, $110^{\circ} \mathrm{C}$) to the in situ formed mono-coupling product resulted in the synthesis of highly functionalized products $\mathbf{2 2 a}, \mathrm{b}$ in acceptable yields.

19

i

21a-e

Scheme 16: Synthesis of 21a-e. Reagents and conditions: i, 19 (1.0 equiv), 4b,f,i,j,j,r (1.1 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(3 \mathrm{~mol} \%\right.$), 1,4-dioxane, $90^{\circ} \mathrm{C}, 8 \mathrm{~h}$.

Table 11. Synthesis of 21a-e

$\mathbf{4}$	$\mathbf{2 1}$	Ar	$\%(\mathbf{2 1})^{\mathrm{a}}$
\mathbf{b}	\mathbf{a}	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	63
\mathbf{f}	\mathbf{b}	$\mathrm{C}_{6} \mathrm{H}_{5}$	65
\mathbf{j}	\mathbf{c}	$2-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4}$	47
r	\mathbf{d}	$3,5-(\mathrm{Me})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	61
\mathbf{i}	e	$2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	48

${ }^{\mathrm{a}}$ Yields of isolated products

Scheme 17: One-pot synthesis of 22a,b: Reagents and conditions: i, 19 (1.0 equiv), 4p (1.1 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol} \%$), 1,4-dioxane, $90^{\circ} \mathrm{C}, 8 \mathrm{~h}$; ii, 4a,b (1.3 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (1.5 equiv), $110^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

Table 12. Synthesis of 22a-b

$\mathbf{4}$	$\mathbf{2 2}$	Ar^{1}	Ar^{2}	$\%(\mathbf{2 2})^{\mathrm{a}}$
$\mathbf{p , b}$	\mathbf{a}	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	$4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}$	57
$\mathbf{p , a}$	\mathbf{b}	$4-\mathrm{EtC}_{6} \mathrm{H}_{4}$	$3-\mathrm{FC}_{6} \mathrm{H}_{4}$	53

${ }^{a}$ Yields of isolated products
The structure of product 21b was established by 2D NMR experiments (HMBC, NOESY) (Figure 4). The structure of 22a was independently confirmed by X-ray crystal structure analysis (Figure 5). ${ }^{78}$

Figure 4: Structure elucidation of 21b

The structure of this compound (21b) was confirmed by 2D NMR. The signals of the carbons found in the ${ }^{13} \mathrm{C}$ NMR spectrum were exactly assigned with the help of HMQC experiments to $\delta 131.9$ (C-2), 136.8 (C-3) and 131.6 (C-1'). In the HMBC spectrum, the aromatic proton attached to C-2 showed a coupling with the quaternary carbon of ring B. In addition, the aromatic protons located at the ortho position of ring B showed an interaction with carbon C-2. In the NOESY spectrum, an interaction was observed between the aromatic proton of ring A with the ortho protons of ring B.

3.3 Conclusion:

In conclusion, I reported a convenient approach to dimethyl 4-chloro-3,5dihydroxyphthalate by [4+2] cycloaddition of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-diene with dimethyl acetylenedicarboxylate (DMAD). Suzuki-Miyaura reactions of the bis(triflate) of the product proceed with very good site-selectivity and provide a convenient approach to 3,5-diaryl-4-chlorophthalates.

Figure 5: Ortep Plot of 22a

4. Synthesis of functionalized arylpyridines and arylpyrimidines based on a Diels-Alder approach

4.1 Introduction:

Pyridine containing biaryl structures are of considerable importance specifically with respect to their use in pharmaceutical industry and their utility as ligands in metal catalysis. ${ }^{79}$ These molecules have shown activity in a wide range of therapeutic classes like antifungal, anti-inflammatory, antirheumatic, antitumor, and antihypertensive agents. ${ }^{80}$ Heterocyclic biaryls are also very potent structures and have been shown to be useful as antibacterial agents by inhibiting Gram-positive and Gram-negative bacteria ${ }^{81}$ and as anti-inflammatory agents. 4-Phenylpyridines have also been reported as a novel class of selective glucagon antagonists. ${ }^{82}$ In particular, 4-aryl-1,4-dihydropyridine compounds are already in use for the treatment of a number of cardiovascular disorders, such as hypertension, cardiac arrhythmias or angina. ${ }^{83,84}$ (Pyrid-2-yl)arenes are present in natural 4-azafluorenones (e. g. kinabaline, darienine, and onychine) which exhibit a strong antimicrobial activity. ${ }^{85}$

Because of the significant importance of biaryls possessing N-heterocyclic moieties in the field of natural products, molecular recognition and asymmetric reactions, ${ }^{86}$ new strategies for their assembly are always required to overcome existing limitations. For the synthesis of biaryl linkages, a number of methods have been developed, particularly involving the use of palladium-mediated strategies, such as the Kharasch, Negishi, Stille, and Suzuki reactions. ${ }^{87}$ Homo-coupling reactions of heterocyclic aromatic bromides leading to symmetric molecules, using $\operatorname{Pd}(\mathrm{OAc})_{2}$ and indium species, have also been reported. ${ }^{88}$ The synthesis of arylpyridines has been achieved by direct cross-coupling of aryl halides and boronic acids. This strategy has been effectively applied to the use of both pyridyl halides as well as pyridine boronic acids as the coupling partners. ${ }^{89}$ Recently, Langer et al. reported formal [3+3] cyclizations of 1,3-bis(silyl enol ethers) with 3-pyridyl-3-silyloxy-2-en-1-ones which offer a convenient and regioselective approach to functionalized and sterically encumbered 6(pyridyl)salicylates. ${ }^{90}$

In the recent few years, Rich G. Carter and coworkers have developed very efficient Diels-Alder reactions for the synthesis of a variety of functionalized biaryls using ortho-
nitrophenyl-acetylenes. ${ }^{91}$ The nitro group plays a crucial role in these reactions (with regard to the excellent regioselectivity, mild reaction conditions and high rate of the reactions). We thought that it might be very useful to extend this strategy to the use of electron-deficient heterocyclic aromatic systems to explore the potential of this methodology. In my thesis, I studied the [4+2] cycloaddition of pyridyl- and pyrimidyl-substituted acetylenes with various electron-rich dienes to prepare functionalized arylpyridines and arylpyrimidines. These reactions represent, similar to the reactions of Carter, Diels-Alder reactions with normal electron demand.

4.2 Results and Discussion:

Similar to the work of Carter et al., the three dienes 23-25 were chosen for my study. Out of these three dienes, diene $\mathbf{2 3}$ and $\mathbf{2 4}$ were commercially available while diene $\mathbf{2 5}$ was synthesized by reaction of the corresponding cyclohexenone with LDA and TMSCl at -78 ${ }^{\circ} \mathrm{C} .{ }^{91 \mathrm{a}}$

23

24

25

The reactions of dienes $\mathbf{2 3 - 2 5}$ with the commercially available acetylenes $\mathbf{2 6}$ and $\mathbf{2 8}$ yielded the products 27a-c and 29a-c in moderate to good yields $42-63 \%$, respectively (Scheme 18, Table 13). The reactions were carried out at $140^{\circ} \mathrm{C}$. This temperature was found to be the most effective to achieve high yields. The higher yield in the case of 2-pyridyl acetylene compared to 3-pyridylacetylene can be attributed to the stronger electronicwithdrawing effect of the 2-pyridyl moiety. The structure of 27c was independently confirmed by X-ray crystal structure analysis (Figure 6).

26

27a-c
27a $X=H, Y=O M e$
27b $X=O H, Y=H$
27c $X=O H, Y=O E t$

29a-c
29a $X=H, Y=O M e$
29b $X=O H, Y=H$
29c $X=O H, Y=O E t$

Scheme 18: Diels-Alder reactions of acetylenes 26 and 28

Table 13: Synthesis of 27a-c and 29a-c

Diene	Acetylene	Conditions	Product	Yield (\%) ${ }^{\text {a }}$
$\mathbf{2 3}$	$\mathbf{2 6}$	$140^{\circ} \mathrm{C}, 4 \mathrm{hr}$	$\mathbf{2 7 a}$	63
$\mathbf{2 4}$	$\mathbf{2 6}$	$140^{\circ} \mathrm{C}, 4 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \min$	$\mathbf{2 7 b}$	57
$\mathbf{2 5}$	$\mathbf{2 6}$	$140{ }^{\circ} \mathrm{C}, 4 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \mathrm{~min}$	$\mathbf{2 7 c}$	55
$\mathbf{2 3}$	$\mathbf{2 8}$	$140^{\circ} \mathrm{C}, 16 \mathrm{hr}$	$\mathbf{2 9 a}$	52
$\mathbf{2 4}$	$\mathbf{2 8}$	$140^{\circ} \mathrm{C}, 6 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \min$	$\mathbf{2 9 b}$	44
$\mathbf{2 5}$	$\mathbf{2 8}$	$140{ }^{\circ} \mathrm{C}, 6 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \min$	$\mathbf{2 9 c}$	42

[^2]

Figure 6: Ortep Plot of 27c

In order to study the efficiency of the presence of 2-pyridyl acetylene and also to study the effect of the presence of substituents present in the 2-pyridyl ring, I thought it would be worthy to synthesize the acetylenes $\mathbf{3 1}$ and $\mathbf{3 4}$ from commercially available starting materials following literature procedures. ${ }^{91 \mathrm{l}}$ The synthesis of the acetylenes 31 and 34 involved the palladium catalyzed reaction of the respective pyridyl and pyrimidyl bromides with TMS-acetylene and subsequent removal of TMS using TBAF. The reactions of acetylenes $\mathbf{3 1}$ and $\mathbf{3 4}$ with dienes 23-25 afforded the products 32a-c and 35a-c in good yields (Scheme 19, Table 14). As supposed earlier, the strong electron-withdrawing effect of the neighbouring nitrogen atoms in acetylene $\mathbf{3 1}$ proved to be important to afford the product in very good yields ($62-69 \%$). However, it was noted that the presence of a weak electrondonating group in the pyridyl ring can considerably decreased the yield as was evident from the use of acetylene 34 having a methyl group (the yields dropped to 43-55\%).

Scheme 19: Diels-Alder reactions of acetylenes 31 and 34

Table 14: Synthesis of 32a-c and 35a-c

Diene	Acetylene	Conditions	Product	Yield (\%) ${ }^{\text {a }}$
$\mathbf{2 3}$	$\mathbf{3 1}$	$140{ }^{\circ} \mathrm{C}, 2 \mathrm{hr}$	32a	69
$\mathbf{2 4}$	$\mathbf{3 1}$	$140{ }^{\circ} \mathrm{C}, 3 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \min$	$\mathbf{3 2 b}$	62
$\mathbf{2 5}$	$\mathbf{3 1}$	$140{ }^{\circ} \mathrm{C}, 3 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \mathrm{~min}$	$\mathbf{3 2 c}$	62
$\mathbf{2 3}$	$\mathbf{3 4}$	$140^{\circ} \mathrm{C}, 4 \mathrm{hr}$	$\mathbf{3 5 a}$	55
$\mathbf{2 4}$	$\mathbf{3 4}$	$140{ }^{\circ} \mathrm{C}, 6 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \min$	$\mathbf{3 5 b}$	43
$\mathbf{2 5}$	$\mathbf{3 4}$	$140{ }^{\circ} \mathrm{C}, 6 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \min$	$\mathbf{3 5 c}$	48

${ }^{a}$ Yields of isolated products

To study the effect of introducing an electron-withdrawing effect on the free position of the alkyne and to broaden the scope of this strategy, I synthesized acetylene 36. This
synthesis involves the treatment of acetylene $\mathbf{2 8}$ with LDA followed by the addition of the acid chloride. ${ }^{91 b}$ The reaction of this acetylene $\mathbf{3 6}$ with the dienes $\mathbf{2 3 - 2 5}$ resulted in the synthesis of the highly functionalized products $\mathbf{3 7 a - c}$ in $55-61 \%$ yields (Scheme 20, Table 15). It should be noted that, by increasing the electron withdrawing effect on the second terminus of the acetylene 28, I was not only able to introduce an additional substituent but also to increase the yield of the products. In fact, the yields of products 37a-c were higher than those of 29a-c (all derived from 28).

Scheme 20: Diels-Alder reactions of acetylene 36

Table 15: Synthesis of 37a-c

Diene	Acetylene	Conditions	Product	Yield (\%) $^{\text {a }}$
$\mathbf{2 3}$	$\mathbf{3 6}$	$140{ }^{\circ} \mathrm{C}, 2 \mathrm{hr}$	$\mathbf{3 7 a}$	61
$\mathbf{2 4}$	$\mathbf{3 6}$	$140{ }^{\circ} \mathrm{C}, 3 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \min$	$\mathbf{3 7 b}$	51
$\mathbf{2 5}$	$\mathbf{3 6}$	$140{ }^{\circ} \mathrm{C}, 3 \mathrm{hr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 15 \mathrm{~min}$	$\mathbf{3 7 c}$	55

${ }^{a}$ Yields of isolated products

4.3 Conclusion:

In conclusion, I reported the Diels-Alder reaction of pyridyl-substituted acetylenes with electron-rich dienes. Especially 2-pyridyl-acetylene and 2-pyrimidyl-acetylene give very good yields for the synthesis of aryl-pyridines and -pyrimidines. The degree of substitution and complexitiy can be increased by the introduction of an electron withdrawing carbonyl group at the second terminus of the acetylene moiety.

Abstract

5. Abstract

Regioselective cyclocondensation reactions of 1,3-bis(silyl enol ethers) with different electrophiles provide a facile approach for the synthesis of various products from simple starting materials. Fluorinated biaryls and azaxanthones are prepared based on domino reactions of substituted 2-fluoro-1,3-bis(silyloxy)-1,3-butadienes with different cyanochromones. The mechanism and product distribution depends on the substitution pattern of the diene. The Diels-Alder reaction of 1-ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadiene with dimethylacetylene dicarboxylate (DMAD) yielded 4-chloro-3,5-dihydroxyphthalate which was converted to its bis(triflate). The Suzuki-Miyaura reaction of this substrate with various arylboronic acids proceeded with very good siteselectivity. The selectivity is controlled by steric parameters. Suzuki-Miyaura and Sonogoshira reactions of the bis(triflate) of phenyl 1,4-dihydroxy-2-naphthoate also proceeded with very good site-selectivity. The selectivity is controlled by electronic rather than steric parameters as the first attack occurs at the sterically more hindered position. The Diels-Alder reaction of pyridyl- and pyrimidyl-substituted acetylenes with electron-rich dienes was studied. These reactions provide a convenient approach to various functionalized arylpyridines and arylpyrimidines.

Die regioselektive Cyclokondensation von 1,3-Bis(silylenolethern) mit verschiedenen Elektrophilen ermöglicht einen einfachen Zugang fzu vielfältigen Produkten ausgehend von einfachen Startmaterialien. Fluorinierte Biaryle und Azaxanthone wurden durch Dominoreaktionen von substituierten 2-Fluoro-1,3-bis(silyloxy)-1,3-butadienen mit Cyanochromonen. Der Mechanismus und die Produktverteilung hängt vom Substitutionsmuster der Diene ab. Die Diels-Alder Reaktion von 1-Ethoxy-2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadienen mit Dimethylacetylendicarboxylat (DMAD) lieferte 4-Chloro-3,5-dihydroxyphthalate, die in die entsprechenden Bis(triflate) überführt wurden. Die Suzuki-Miyaura-Reaktionen dieses Substrates mit verschiedenen Arylboronsäuren verliefen mit sehr guter Regioselektivität, die durch sterische Parameter kontrolliert wird. SuzukiMiyaura und Sonogoshira Reaktionen des Bis(triflates) von Phenyl 1,4-dihydroxy-2naphthoat verliefen ebenfalls mit sehr guter Regioselektivität, die allerdings hier durch elektronische und nicht sterische Parameter kontrolliert wird. Der erste Angriff findet an dem sterisch stärker gehinderten Zentrum statt. Die Diels-Alder Reaktion von Pyridyl- und

Pyrimidyl-substituierten Alkinen mit elektronenreichen Dienen ermöglicht einen einfachen Zugang zu verschiedenen Arylpyridinen und Arylpyrimidinen.

Scheme 21: Content of the present thesis

6. Experimental Section:

6.1 General: Equipment, chemicals and work technique

${ }^{1} H$ NMR Spectroscopy:

Bruker: AM 250, Bruker ARX 300, Bruker ARX 500; $\delta=0.00 \mathrm{ppm}$ for Tetramethylsilane; δ $=2.04 \mathrm{ppm}$ for Acetone- $\mathrm{d}_{6} ; \delta=7.26 \mathrm{ppm}$ for $\left(\mathrm{CDCl}_{3}\right) ; 2.50 \mathrm{ppm}$ for DMSO- d_{6}; Characterization of the signal fragmentations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double of doublet, ddd $=$ doublet of a double doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet; sext $=$ Sextet, sept $=$ Septet, $m=$ multiplet, $\mathrm{br}=$ broadly. Spectra were evaluated according to first order rule. All coupling constants are indicated as (J).

${ }^{13}$ C NMR Spectroscopy:

Bruker: AM 250, (62.9 MHz); Bruker: ARX 300, (75 MHz), Bruker: ARX 500, (125 MHz) Ref: $29.84 \pm 0.01 \mathrm{ppm}$ and $206.26 \pm 0.13 \mathrm{ppm}$ for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} . \delta=128.00 \mathrm{ppm}$ for benzene- d_{6}; $\delta=77.00 \mathrm{ppm}$ for CDCl_{3}. The multiplicity of the carbon atoms was determined by the DEPT 135 and APT technique (APT = Attached Proton Test) and quoted as $\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}$ and C for primary, secondary, tertiary and quaternary carbon atoms. Characterization of the signal fragmentations: quart = quartet the multiplicity of the signals was determined by the DEPT recording technology and/or the APT recording technology.

Mass Spectroscopy:

AMD MS40, AMD 402 (AMD Intectra), Varian MAT CH 7, MAT 731.

High Resolution mass spectroscopy:

Finnigan MAT 95 or Varian MAT 311; Bruker FT
CIR, AMD 402 (AMD Intectra).

Infrared spectroscopy (IR):

Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit (ATR); KBr ,KAP, Nujol, and ATR; Abbreviations for signal allocations: $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{br}=$ broad.

Elementary analysis:

LECO CHNS-932, Thermoquest Flash EA 1112.

X-ray crystal structure analysis:

Bruker X8Apex Diffractometer with CCD-Kamera ($\mathrm{Mo}-\mathrm{K}_{\mathrm{a}}$ und Graphit Monochromator, $\lambda=0.71073 \AA$).

Melting points:

Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); Melting points are uncorrected.

Column chromatography:

Chromatography was performed over Merck silica gel 60 ($0,063-0,200 \mathrm{~mm}, 70-230$ mesh $)$ as normal and/or over mesh silica gel $60(0,040-0,063 \mathrm{~mm}, 200-400 \mathrm{mesh})$ as Flash Chromatography. All solvent were distilled before use.

TLC:

Merck DC finished foils silica gel $60 \mathrm{~F}_{254}$ on aluminum foil and Macherey finished foils Alugram® Sil G/UV254. Detection under UV light with 254 nm and/or 366 nm without dipping reagent, as well as with anisaldehyde sulfuric acid reagent (1 mL anisaldehyde consisting in 100 mL stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid).

Chemicals and work technique:

All solvents for using were distilled by standard methods. All reactions were carried out under an inert atmosphere, oxygen and humidity exclusion. All of the chemicals are standard, commercially available from Merck ${ }^{\circledR}$, Aldrich ${ }^{\circledR}$, $\operatorname{Arcos}^{\circledR}$ and others. The order of the characterized connections effected numerically, but does not correspond to the order in the main part of dissertation.

6.2 Procedures and Spectroscopic Data:

General procedure for the synthesis of azaxanthones 5 and biaryls 6:

To neat 3-cyanochromone 4 (1.0 equiv.) was added $\mathrm{Me}_{3} \operatorname{SiOTf}$ (1.3 equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) at $20^{\circ} \mathrm{C}$. After stirring for $1 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ and 1,3-bis(trimethylsilyloxy)-1,3butadiene 3 (1.3 equiv.) were added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ and subsequently poured into hydrochloric acid (10\%). The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was dissolved in ethanol (10 mL), NEt_{3} (2.0 equiv.) was added and the solution was stirred for 12 h at $20^{\circ} \mathrm{C}$. To the solution were subsequently added an aqueous solution of hydrochloric acid $(1 \mathrm{M})$ and ether $(50 \mathrm{~mL})$. The organic and the aqueous layer were separated and the latter was extracted with ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vасио. The residue was purified by column chromatography (silica gel, EtOAc/hexane).

Ethyl 2-fluoro-2-(5-oxo-3-propyl-5H-chromeno[2,3-b]pyridine-2-yl)acetate (5b):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{4}$ Exact Mass: 343.12

Starting with 3-cyanochromone $4 \mathbf{a}(171 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3b (435 mg , $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$, EtOH $(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 b}$ was isolated as a light yellow solid ($58 \mathrm{mg}, 17 \%$), m.p $88-90^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.97\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.23 ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.60-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70-2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.19-4.35(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 6.07\left(\mathrm{~d}, J_{F H}=47.7 \mathrm{~Hz}, \mathrm{CH}\right), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.72 (dt, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 8.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}), 8.53(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.2\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 62.3$ $\left(\mathrm{OCH}_{2}\right), 87.9\left(\mathrm{~d}, J_{\mathrm{FC}}=188 \mathrm{~Hz}, \mathrm{FC}\right), 117.0\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 118.5(\mathrm{CH}), 121.5(\mathrm{C}), 124.7$, $126.7(2 \mathrm{CH}), 135.1(\mathrm{C}), 135.8,138.9(2 \mathrm{CH}), 155.6\left(\mathrm{~d}, J_{\mathrm{FC}}=18.8 \mathrm{~Hz}, \mathrm{C}\right), 155.8(\mathrm{C}), 157.8$ (C), $167.0\left(\mathrm{~d}, J_{\mathrm{FC}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 177.3(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.15$ (CF); IR (ATR, cm^{-1}): $\widetilde{v}=3359$ (w), 3054 (w), 3071 (w), 2964 (w), 2920 (w), 2850 (w), 1762 (s), 1663 (s), 1601 (s), 1562 (w), 1469 (m), 1438 (m), 1423 (s), 1374 (m), 1312 (m), 1201 (m), 1099 (m), 1054 (s), 1014 (m), 754 (s), 665 (m), 595 (w); MS (GC, 70 eV): m/z
(\%): $345\left(\mathrm{M}^{+}+2,2\right), 344\left(\mathrm{M}^{+}+1,15\right), 343\left(\mathrm{M}^{+}, 75\right), 328(100), 315(15), 294(7), 270(17)$, 254 (39), 210 (7), 139 (3), 121 (3), 76 (4), 51 (1); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]$: 343.12144 , found 343.121662 .

6'-Cyano - 2'- fluoro - 3'- hydroxyl - 4'- propylbiphenyl - 2 - yl ethyl carbonate (6 b) :

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{4}$ Exact Mass: 343.12 Starting with 3-cyanochromone $\mathbf{4 a}(171 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \mathrm{SiOTf}$ ($288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3b (435 mg , $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 b}$ was isolated as a light yellow crystals ($244 \mathrm{mg}, 71 \%$), m.p $110-112^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.13\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.52-1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{dt}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, J_{\mathrm{FH}}=\right.$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $4.08\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.19$ (brs, $1 \mathrm{H}, \mathrm{OH}$), $7.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.27-7.35 (m, 3H, ArH), 7.41 (dt, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 65.0\left(\mathrm{OCH}_{2}\right), 104.2(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{C}\right), 117.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{CN}\right), 122.3(\mathrm{CH}), 124.0(\mathrm{C}), 126.0\left(\mathrm{~d}, J_{\mathrm{FC}}=18 \mathrm{~Hz}\right.$, C), $126.3(\mathrm{CH}), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0, \mathrm{CH}\right), 130.7(\mathrm{CH}), 131.4(\mathrm{CH}), 132.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.7 \mathrm{~Hz}, \mathrm{C}\right)$, $\left.146.1\left(\mathrm{~d}, J_{\mathrm{FC}}=15.8 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=260 \mathrm{~Hz}, \mathrm{C}\right), 148.6(\mathrm{C}), 152.7(\mathrm{C}=\mathrm{O}) ;\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.29$ (ArF); IR (ATR, cm^{-1}): $\widetilde{v}=3305$ (b), $2962(\mathrm{w}), 2932$ (w), 2872 (w), 2225 (w), 1762 (m), 1617 (m), 1480 (s), 1433 (m), 1369 (m), 1242 (s), 1203 (s), 1152 (m), 1094 (m), 996 (m), 900 (w), 767 (m), 665 (w), 579 (w); MS (GC, 70 eV): m/z (\%): $343\left(\mathrm{M}^{+}, 2\right), 326$ (1), 299 (5), 284 (35), 271 (35), 254 (7), 243 (26), 242 (100), 228 (7), 207 (6), 177 (3), 158 (3), 139 (3), 94 (1), 44 (7), 32 (32) ; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNO}_{4}$ $\left[\mathrm{M}^{+}\right]: 343.12144$, found 343.122296 .

Ethyl 2-fluoro-2-(3-octyl- 5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)acetate (5c):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}$ Exact Mass: 413.20

Starting with 3-cyanochromone $\mathbf{4 a}(171 \mathrm{mg}, 1.0 \mathrm{mmol})$, Me ${ }_{3}$ SiOTf ($288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3c (526 mg , $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 c}$ was isolated as a light yellow solid ($83 \mathrm{mg}, 20 \%$), m.p $65-67^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.80\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17-$ $1.39(\mathrm{~m}, 13 \mathrm{H}), 1.57-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.74-2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.19-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$,
$6.06\left(\mathrm{~d}, J_{F H}=47.7 \mathrm{~Hz}, \mathrm{CH}\right), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.70(\mathrm{dt}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.22(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 22.6,29.1,29.3,29.4,\left(4 \mathrm{CH}_{2}\right)$, $30.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.9,31.8,\left(2 \mathrm{CH}_{2}\right), 62.2\left(\mathrm{OCH}_{2}\right), 87.9\left(\mathrm{~d}, J_{\mathrm{FC}}=188 \mathrm{~Hz}, \mathrm{FC}\right)$, $117.0\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 118.5(\mathrm{CH}), 121.5(\mathrm{C}), 124.7(\mathrm{CH}), 126.7(\mathrm{CH}), 135.3(\mathrm{C}), 135.8$ $(\mathrm{CH}), 138.9(\mathrm{CH}), 155.5\left(\mathrm{~d}, J_{\mathrm{FC}}=18.6 \mathrm{~Hz}, \mathrm{C}\right), 155.8(\mathrm{C}), 157.7(\mathrm{C}), 167.0\left(\mathrm{~d}, J_{\mathrm{FC}}=25.6 \mathrm{~Hz}\right.$, $\mathrm{C}=\mathrm{O}$), $177.3(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.14$ (FC); IR (ATR, cm^{-1}): $\widetilde{v}=3359$ (w), 3052 (w), 2954 (w), 2920 (m), 2851 (w), 1762 (s), 1663 (s), 1602 (s), 1558 (w), 1469 (s), 1438 (m), 1425 (s), 1369 (m), 1316 (m), 1270 (m), 1228 (m), 1152 (m), 1063 (m), 1029 (m), $960(\mathrm{~m}), 850(\mathrm{w}), 760(\mathrm{~s}), 698(\mathrm{~m}), 582(\mathrm{w})$; MS (GC, 70 eV$): m / z(\%): 414$ $\left(\mathrm{M}^{+}+1,1\right), 413\left(\mathrm{M}^{+}, 3\right), 398$ (1), 384 (3), 340 (3), 328 (28), 309 (23), 308 (100), 254 (14), 242 (20), 210 (4), 29 (4); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]: 413.19969$, found 413.200185.

6'-Cyano-2'-fluoro-3'-hydroxy-4'-octylbiphenyl-2-yl ethyl carbonate (6c):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}$ Exact Mass: 413.20

Starting with 3-cyanochromone 4 a (171 mg , $1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), \quad 3 \mathrm{c}(526 \mathrm{mg}, \quad 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.0 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 c}$ was isolated as a dark yellow viscous gel ($260 \mathrm{mg}, 63 \%$); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.1-$ $1.3(\mathrm{~m}, 13 \mathrm{H}), 1.5\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), 6.47 (brs, $1 \mathrm{H}, \mathrm{OH}$), $7.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.27-7.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{dt}, J=7.5$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.0\left(2 \mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{2}\right), 29.1$, $29.2\left(2 \mathrm{CH}_{2}\right), 29.4\left(3 \mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 65.0\left(\mathrm{OCH}_{2}\right), 104.1\left(\mathrm{~d}, J_{\mathrm{FC}}=4.6 \mathrm{~Hz}, \mathrm{C}\right), 117.4\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=3.7 \mathrm{~Hz}, \mathrm{C}), 122.3(\mathrm{CH}), 124.4(\mathrm{C}), 126.0\left(\mathrm{~d}, J_{\mathrm{FC}}=18.0 \mathrm{~Hz}, \mathrm{C}\right), 126.3(\mathrm{CH}), 130.1\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $3.0 \mathrm{~Hz}, \mathrm{CH}), 130.7,131.4(2 \mathrm{CH}), 132.5\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 146.1\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right)$, $147.7\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 148.6(\mathrm{C}), 152.7(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.1$ (ArF); IR (neat): $\widetilde{v}=3292$ (b), 2954 (w), 2922 (m), 2852 (m), 2224 (w), 1763 (s), 1617 (m), 1433 (s), 1393 (w), 1369 (m), 1243 (s), 1204 (s), 1150 (m), 1094 (m), 994 (m), 898 (w), 763 (m), 694 (m), 579 (w); MS (GC, 70 eV): m/z (\%): 413 ($\mathrm{M}^{+}, 3$), 396 (3), 369 (10), 354 (56), 341 (12), 312 (12), 298 (10), 284 (14), 271 (20), 268 (15), 243 (100), 242 (48), 224 (9), 193
(4), 135 (5), 109 (14), 97 (23), 69 (27), 44 (12), 43 (31); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FNO}_{4}$ $\left[\mathrm{M}^{+}\right]: 413.19969$, found 413.20650 and 413.412190.

Ethyl 2-(3-decyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (5d):

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FNO}_{4}$ Exact Mass: 441.23

Starting with 3-cyanochromone $4 \mathbf{a}(171 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \operatorname{SiOTf}$ ($288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3d (562 mg , $1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$, EtOH $(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 d}$ was isolated as a white solid ($57 \mathrm{mg}, 13 \%$), m.p $71-73^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79$ (t, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.08-$ $1.40(\mathrm{~m}, 17 \mathrm{H}), 1.55-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.71-2.87(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 4.19-4.35 (m, 2H, OCH 2), $6.06\left(\mathrm{~d}, J_{F H}=47.5 \mathrm{~Hz}, \mathrm{CH}\right), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{dt}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.21(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1\left(2 \mathrm{CH}_{3}\right), 21.6,28.2$, 28.3, 28.4, 28.5, $28.6\left(6 \mathrm{CH}_{2}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{CH} 2\right), 29.9,30.8,\left(2 \mathrm{CH}_{2}\right), 61.2\left(\mathrm{OCH}_{2}\right)$, $87.9\left(\mathrm{~d}, J_{\mathrm{FC}}=188.7 \mathrm{~Hz}, \mathrm{FC}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=1.9 \mathrm{~Hz}, \mathrm{C}\right), 117.5(\mathrm{CH}), 120.5(\mathrm{C}), 123.7(\mathrm{CH})$, $125.7(\mathrm{CH}), 134.4(\mathrm{C}), 134.8(\mathrm{CH}), 137.9(\mathrm{CH}), 154.5\left(\mathrm{~d}, J_{\mathrm{FC}}=19.2 \mathrm{~Hz}, \mathrm{C}\right), 154.8(\mathrm{C}), 156.7$ (C), $166.0\left(\mathrm{~d}, J_{\mathrm{FC}}=25.9 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 176.3(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-182.15$ (FC); IR (ATR, cm^{-1}): $\widetilde{v}=3052(\mathrm{w}), 2955$ (w), 2919 (m), 2850 (w), 1750 (w), 1733(s), 1663 (s), 1602 (s), 1557 (w), 1468 (s), 1436 (m), 1425 (s), 1369 (m), 1315 (m), 1276 (m), 1228 (m), 1152 (m), 1063 (m), 1025 (m), 959 (m), 862 (w), 760 (s), 730 (w), 636 (m) 596 (w); MS (GC, 70 eV): $m / z(\%): 442\left(\mathrm{M}^{+}+1,1\right), 441\left(\mathrm{M}^{+}, 4\right), 384$ (2), 368 (4), 337 (24), 336 (100), 328 (30), 315 (3), 294 (2), 254 (12), 242 (16), 210 (4), 55 (1), 43 (3), 29 (3); HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]: 441.23099$, found 441.231270 .

6'-Cyano-4'-decyl-2'-fluoro-3'-hydroxybiphenyl-2-yl ethyl carbonate (6d):

Starting with 3-cyanochromone 4 a (171 mg , $1.0 \mathrm{mmol}), \mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, 1.30 mmol), 3d ($562 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.0 \mathrm{~mL})$, EtOH $(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $6 \mathbf{d}$ was isolated as

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FNO}_{4}$ Exact Mass: 441.23 a yellow viscous liquid ($335 \mathrm{mg}, 76 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.74\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01-1.19(\mathrm{~m}, 17 \mathrm{H}), 1.42-1.52$
($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.51\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.01\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.39($ brs, 1 H , OH), $7.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.20-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{dt}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0$, $14.1\left(2 \mathrm{CH}_{3}\right)$, $22.7\left(\mathrm{CH}_{2}\right)$, 29.1, $29.3\left(2 \mathrm{CH}_{2}\right)$, 29.4 $\left(3 \mathrm{CH}_{2}\right), 29.5,29.6,31.9\left(3 \mathrm{CH}_{2}\right), 65.0\left(\mathrm{OCH}_{2}\right), 104.1\left(\mathrm{~d}, J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 117.5\left(\mathrm{~d}, J_{\mathrm{FC}}=3.9\right.$ $\mathrm{Hz}, \mathrm{C}), 122.3(\mathrm{CH}), 124.4(\mathrm{C}), 126.0\left(\mathrm{~d}, J_{\mathrm{FC}}=17.7 \mathrm{~Hz}, \mathrm{C}\right), 126.3(\mathrm{CH}), 130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3\right.$ $\mathrm{Hz}, \mathrm{CH}), 130.7,131.4(2 \mathrm{CH}), 132.6\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 146.2\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right)$, $147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 148.6(\mathrm{C}), 152.8(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.1$ (ArF); IR (neat): $\widetilde{v}=3292$ (b), 2922 (s), 2852 (m), 2225 (w), 1763 (s), 1614 (m), 1459 (m), 1433 (s , 1393 (w), 1369 (m), 1243 (s), 1204 (s), 1152 (m), 1094 (m), 995 (m), 898 (w), 766(m), $695(\mathrm{w}), 579(\mathrm{w}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 441\left(\mathrm{M}^{+}, 2\right), 397$ (11), 369 (16), 354(17), 340 (23), 312 (14), 298 (14), 284 (14), 284 (22), 271 (32), 268 (16), 243 (100), 242 (52), 224 (10), 193 (3), 135 (3), 109 (6), 97 (10), 69 (13), 44 (12), 43 (26); HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]: 441.23099$, found 441.231226 .

Ethyl 2-(7,8-dimethyl-5-oxo-3-propyl-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate

 (5f):

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}$ Exact Mass: 371.15

Starting with 6,7-dimethyl-3-cyanochromone $\mathbf{4 c}$ (199 mg , 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3b ($435 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10.0 mL), $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 f}$ was isolated as a yellow solid ($52 \mathrm{mg}, 14 \%$), mp. 127-129 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.97\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23$ (t, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.75-$ $2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.20-4.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.07\left(\mathrm{~d}, J_{F H}=47.6 \mathrm{~Hz}, \mathrm{CH}\right), 7.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,14.1,19.2$, $20.7\left(4 \mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 62.2\left(\mathrm{OCH}_{2}\right), 87.9\left(\mathrm{~d}, J_{\mathrm{FC}}=188.6 \mathrm{~Hz}\right.$, FC), $117.1\left(\mathrm{~d}, J_{\mathrm{FC}}=1.7 \mathrm{~Hz}, \mathrm{C}\right), 118.6(\mathrm{CH}), 119.3(\mathrm{C}), 126.3(\mathrm{CH}), 134.4(\mathrm{C}), 134.7(\mathrm{C})$, $138.9(\mathrm{CH}), 146.8(\mathrm{C}), 154.3(\mathrm{C}), 155.1\left(\mathrm{~d}, J_{\mathrm{FC}}=18.9 \mathrm{~Hz}, \mathrm{C}\right), 157.8(\mathrm{C}), 167.1\left(\mathrm{~d}, J_{\mathrm{FC}}=25.8\right.$ $\mathrm{Hz}, \mathrm{C}=\mathrm{O}$), $177.1(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-181.96$ (FC). IR (ATR, cm^{-1}): $\widetilde{v}=2955(\mathrm{~m}), 2924(\mathrm{~m}), 2343(\mathrm{w}), 2142(\mathrm{w}), 1759(\mathrm{~m}), 1731(\mathrm{~m}), 1664(\mathrm{~m}), 1622(\mathrm{~s}), 1603$ (s), 1541 (w), 1463 (s), 1422 (s), 14370 (m), 1256 (m), 1210 (s), 1201 (s), 1079 (s), 1014 (m), $874(\mathrm{~m}), 799(\mathrm{~m}), 676(\mathrm{w}), 580(\mathrm{w}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 372\left(\mathrm{M}^{+}+1,17\right), 371\left(\mathrm{M}^{+}, 72\right)$, 357 (23), 356 (100), 343 (6), 322 (6), 298 (17), 297 (6), 296 (7), 283 (7), 282 (35), 278 (17),

238 (7), 149 (2), 91 (4), 77 (3), 65 (2), 29 (9); HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]$: 371.15274 found 371.152296 .

6'-Cyano-2'-fluoro-3'-hydroxy-4,5-dimethyl-4'-propylbiphenyl-2-yl ethyl carbonate (6f):

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}$ Exact Mass: $371.15 \quad J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.51-1.64 (m, 2H, CH $), 2.20(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.57\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.07\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 6.20 (brs, $1 \mathrm{H}, \mathrm{OH}), 7.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,14.0,19.2,19.8\left(4 \mathrm{CH}_{3}\right), 22.3,\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $64.8\left(\mathrm{OCH}_{2}\right), 104.4\left(\mathrm{~d}, J_{\mathrm{FC}}=4.5 \mathrm{~Hz}, \mathrm{C}\right), 117.6,121.3(2 \mathrm{C}), 123.1(\mathrm{CH}), 126.3\left(\mathrm{~d}, J_{\mathrm{FC}}=17.9\right.$ $\mathrm{Hz}, \mathrm{C}), 130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 131.8\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 131.9(\mathrm{CH}), 134.8(\mathrm{C}), 139.7$ (C), $146.1\left(\mathrm{~d}, J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 146.4(\mathrm{C}), 153.0(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.6$ (ArF); IR (neat): $\widetilde{v}=3250$ (b), 2931 (w), 2873 (w), 2234 (m), 1759 (s), 1613 (w), 1461 (w), 1440 (m), 1388 (w), 1367 (m), 1239 (s), 1227 (s), 1184 (s), 1094 (m), 989 (m), 878 (m), 779 (m), 658 (w), 572 (w); MS (GC, 70 eV): m/z (\%): $372\left(\mathrm{M}^{+}+1,2\right), 371$ (6), 327 (112), 313(10), 312 (49), 300 (15), 299 (74), 270 (100), 256 (13), 207 (8), 190 (3), 152 (3), 109 (6), 44 (4), 32 (19), 29 (8); HRMS Pos (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{FNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 372.16056$, found 372.16057 and for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNaNO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 394.14251 , found 394.14284.

Ethyl 2-(3-decyl-7,9-dimethyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (5g):

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{FNO}_{4}$ Exact Mass: 469.26

Starting with 6,8-dimethyl-3-cyanochromone 4c (199 mg, 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, ~ 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3d ($562 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 g}$ was isolated as yellowish white solid ($84 \mathrm{mg}, 18 \%$), mp. $78-80^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.18-
$1.35\left(\mathrm{~m}, 17 \mathrm{H}, 7 \mathrm{CH}_{2}+1 \mathrm{CH}_{3}\right), 1.58-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.48(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.74-2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.23-4.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=47.7 \mathrm{~Hz}, \mathrm{CH}\right), 7.34$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}), 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.1$ $\left(2 \mathrm{CH}_{3}\right), 15.0\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right)$, $28.6\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 61.2\left(\mathrm{OCH}_{2}\right), 87.1\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $189 \mathrm{~Hz}, \mathrm{FCH}), 115.8$ (d, $\left.J_{\mathrm{FC}}=2.2 \mathrm{~Hz}, \mathrm{C}\right), 120.1(\mathrm{C}), 122.6(\mathrm{CH}), 126.7(\mathrm{C}), 132.9(\mathrm{C}), 134.1$ (C), $137.1(\mathrm{CH}), 137.8(\mathrm{CH}), 151.6(\mathrm{C}), 154.3\left(\mathrm{~d}, J_{\mathrm{FC}}=19.0 \mathrm{~Hz}, \mathrm{C}\right), 156.7(\mathrm{C}), 166.2\left(\mathrm{~d}, J_{\mathrm{FC}}\right.$ $=25.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), $176.7(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-181.96$ (FC); IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=2921(\mathrm{~m}), 2852(\mathrm{~m}), 1776(\mathrm{w}), 1759(\mathrm{~s}), 1671(\mathrm{~s}), 1607(\mathrm{~m}), 1599(\mathrm{~m}), 1564(\mathrm{w})$, 1475 (m), 1443 (m), 1426 (s), 1377 (w), 1370 (w), 1305 (m), 1273 (m), 1211 (s), 1196 (s), 1163 (w), 1117 (w), 1073 (m), 1016 (m), 941 (w), 900 (w), 873 (w), 848 (w), 796 (m), 776 (w), $764(\mathrm{w}), 723(\mathrm{w}), 681(\mathrm{w}), 581(\mathrm{w}): \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 470\left(\mathrm{M}^{+}+1,2\right), 469\left(\mathrm{M}^{+}\right.$, 8), 396 (4), 365 (27), 364 (100), 357 (7), 356 (32), 282 (12), 280 (6), 272 (19), 238 (5), 57 (1), 29 (2); HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]: 469.26229$ found 469.261562.

6'-Cyano-4'-decyl-2'-fluoro-3'-hydroxy-3,5-dimethylbiphenyl-2-yl ethyl carbonate (6g):

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{FNO}_{4}$ Exact Mass: 469.26

Starting with 6,8-dimethyl-3-cyanochromone 4c $(199 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}$, $0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3d ($562 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(10 \mathrm{~mL})$, EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 g}$ was isolated as yellowish white solid (295 mg , 63%), mp. $90-92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.83\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22-1.28(\mathrm{~m}, 14 \mathrm{H}$, $7 \mathrm{CH}_{2}$), $1.55\left(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.59(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $4.03\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.20($ brs, $1 \mathrm{H}, \mathrm{OH}), 6.95(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), $7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.9\left(\mathrm{CH}_{3}\right), 13.1\left(\mathrm{CH}_{3}\right), 15.1\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 28.3\left(3 \mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 63.8\left(\mathrm{OCH}_{2}\right), 103.5\left(\mathrm{~d}, J_{\mathrm{FC}}=4.5 \mathrm{~Hz}, \mathrm{C}\right)$, $116.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.9 \mathrm{~Hz}, \mathrm{C}\right), 123.7(\mathrm{C}), 125.4\left(\mathrm{~d}, J_{\mathrm{FC}}=18.1 \mathrm{~Hz}, \mathrm{C}\right), 128.2(\mathrm{CH}), 129.0\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $3.0 \mathrm{~Hz}, \mathrm{CH}$), 129.7 (C), $131.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 132.2(\mathrm{CH}), 135.0(\mathrm{C}), 144.0(\mathrm{C}), 144.9$ (d, $\left.J_{\mathrm{FC}}=15 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.8\left(\mathrm{~d}, J_{\mathrm{FC}}=239 \mathrm{~Hz}, \mathrm{C}\right), 151.4(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3}): $\delta=-138.16(\mathrm{ArF}) ;$ IR (ATR, cm^{-1}): $\widetilde{v}=3294(\mathrm{br}), 2954(\mathrm{w}), 2921(\mathrm{~m}), 2853(\mathrm{~m})$,

2231 (m), 1764 (s), 1615 (w), 1604 (w), 1576 (w), 1503 (w), 1481 (w), 1467 (m), 1446 (m), 1434 (m), 1369 (m), 1330 (w), 1306 (w), 1292 (w), 1250 (s), 1230 (s), 1198 (s), 1147 (m), 1103 (w), 1056 (m), 994 (m), 965 (w), 902 (w), 859 (m), 779 (m), 722 (w), 666 (w), 646 (w), 566 (w): MS (GC, 70 eV): m/z (\%): 469 ($\mathrm{M}^{+}, 2$), 411 (9), 410 (34), 397 (13), 396 (10), 382 (12), 381 (6), 380 (21), 368 (20), 354 (17), 340 (12), 326 (13), 312 (15), 299 (20), 298 (14), 296 (13), 285 (32), 284 (74), 271 (100), 270 (26), 268 (4), 252 (11), 250 (8), 43 (7), 29 (7); HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{FNO}_{4}\left[\mathrm{M}^{+}\right]$: 469.26229 found 469.261086.

Ethyl 2-(7-chloro-5-oxo-3-propyl-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate (5h):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{CIFNO}_{4}$ Exact Mass: 377.08 Starting with 6-chloro-3-cyanochromone 4d (205 mg , 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}), \mathbf{3 b}$ ($434 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 h}$ was isolated as white solid ($49 \mathrm{mg}, 13 \%$), mp. $124-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.97\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.23
($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.65-1.72 (m, 2H, CH $)_{2}$), $2.76-2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21-4.33(\mathrm{~m}, 2 \mathrm{H}$, OCH_{2}), $6.06\left(\mathrm{~d}, J_{F H}=47.7 \mathrm{~Hz}, \mathrm{CH}\right), 7.49(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 8.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7\left(\mathrm{CH}_{3}\right), 13.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 61.3\left(\mathrm{OCH}_{2}\right), 86.6\left(\mathrm{~d}, J_{\mathrm{FC}}=188.9 \mathrm{~Hz}\right.$, FCH), $115.6\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{C}\right), 119.2(\mathrm{CH}), 121.3(\mathrm{C}), 124.9(\mathrm{CH}), 129.5(\mathrm{C}), 134.4(\mathrm{C})$, $134.8(\mathrm{CH}), 138.0(\mathrm{CH}), 153.1(\mathrm{C}), 154.9\left(\mathrm{~d}, J_{\mathrm{FC}}=18.8 \mathrm{~Hz}, \mathrm{C}\right), 156.5(\mathrm{C}), 165.8\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ 23.6 Hz, $\mathrm{C}=\mathrm{O}$), $175.2(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.24$ (FC); IR (ATR, cm^{-1}): $\widetilde{v}=3084$ (w), 3052 (w), 3003 (w), 2960 (m), 2931 (w), 2872 (w), 1758 (w), 1730 (s), 1667 (s), 1601 (s), 1556 (w), 1469 (s), 1448 (s), 1425 (s), 1371 (m), 1328 (m), 1294 (m), 1274 (s), 1250 (s), 1215 (s), 1203 (m), 1071 (m), 1059 (m), 1027 (m), 957 (m), 865 (m), 839 (m), $791(\mathrm{~m}), 720(\mathrm{~s}), 637(\mathrm{~m}), 544(\mathrm{~m}): \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 380\left(\mathrm{M}^{+}+1,{ }^{37} \mathrm{Cl}, 6\right), 379$ $\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 25\right), 378\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 18\right), 377\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 71\right), 364$ (33), 363 (19), 362 (100), 349 (5), 304 (18), 290 (23), 288 (41), 284 (18), 283 (7), 282 (7), 278 (13), 277 (17), 276 (35), 275 (7), 274 (9), 272 (22), 270 (11), 269 (13), 256 (7), 244 (9), 29 (14); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FNO}_{4} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 377.08247$ found 377.082069.

5-Chloro-6'-cyano-2'-fluoro-3'-hydroxy-4'-propylbiphenyl-2-yl ethyl carbonate (6h):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{CIFNO}_{4}$ Exact Mass: 377.08

Starting with 6-chloro-3-cyanochromone 4d (205 mg , 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3b ($434 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 h}$ was isolated as transparent crystals ($275 \mathrm{mg}, 73 \%$), mp. $148-150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.14\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.59$ (sextet, $J=7.4$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{q}, J=7.0,2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.38($ brs, $1 \mathrm{H}, \mathrm{OH})$, 7.24-7.27 (m, 2H, ArH), $7.32(\mathrm{~d}, ~ J=1.8 \mathrm{~Hz}, \mathrm{CH}$), 7.39 (dd, $J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right), 64.2\left(\mathrm{OCH}_{2}\right), 102.7\left(\mathrm{~d}, J_{\mathrm{FC}}=4.2 \mathrm{~Hz}, \mathrm{C}\right), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 122.6(\mathrm{CH}), 123.6$ $\left(\mathrm{d}, J_{\mathrm{FC}}=17.4 \mathrm{~Hz}, \mathrm{C}\right), 124.9(\mathrm{C}), 129.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 129.5(\mathrm{CH}), 130.0(\mathrm{CH}), 130.5$ (C), $131.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 145.2\left(\mathrm{~d}, J_{\mathrm{FC}}=14.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 146.1(\mathrm{C}), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $240 \mathrm{~Hz}, \mathrm{C}), 151.4(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-138.0$ (ArF); IR (ATR, cm^{-1}): $\widetilde{v}=3282$ (br), 2965 (w), 2930 (w), 2866 (w), 2235 (w), 1759 (s), 1615 (w), 1604 (w), 1478 (m), 1461 (m), 1389 (w), 1372 (w), 1310 (w), 1261 (m), 1243 (s), 1200 (s), 1154 (s), 1115 (w), 1089 (s), 1050 (s), 995 (m), 978 (m), 885 (m), 833 (m), 720 (m), 662 (m), 637 (br), 582 (w): MS (GC, 70 eV): m/z (\%): 377 ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 2$), 333 (9), 320 (17), 318 (41), 307 (18), 305 (57), 278 (39), 277 (26), 276 (100), 258 (9), 227 (4), 184 (4), 164 (6), 139 (2), 43 (4), 29 (8); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FNO}_{4} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 377.08247$ found 377.083324.

5-Chloro-6'-cyano-2'-fluoro-3'-hydroxy-4'-octylbiphenyl-2-yl ethyl carbonate (6i):
Starting with 6-chloro-3-cyanochromone $\mathbf{4 d}(205 \mathrm{mg}$,

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CIFNO} 4$ Exact Mass: 447.16 $1.0 \mathrm{mmol})$, $\mathrm{Me}_{3} \operatorname{SiOTf} \quad(288 \mathrm{mg}, \quad 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), \quad 3 \mathrm{c}(526 \mathrm{mg}, \quad 1.30 \mathrm{mmol}), \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9.0 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine (202 mg , $0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 i}$ was isolated as a reddish solid ($344 \mathrm{mg}, 77 \%$), mp $121-123^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.82\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left(\mathrm{t}, J_{\mathrm{FC}}\right.$ $\left.=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18-1.26\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.49-$ $1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59\left(\mathrm{dt}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, J_{\mathrm{FH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09(\mathrm{q}, J=7.1,2 \mathrm{H}$, OCH_{2}), $6.38(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.31(\mathrm{~d}, J=2.5 \mathrm{~Hz}, \mathrm{CH}), 7.38(\mathrm{dd}, J=$
8.7, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0,14.1\left(2 \mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right)$, 29.1, $29.2\left(2 \mathrm{CH}_{2}\right), 29.3\left(2 \mathrm{CH}_{2}\right), 29.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 65.3\left(\mathrm{OCH}_{2}\right), 104.0$ (d, $\left.J_{\mathrm{FC}}=4.4 \mathrm{~Hz}, \mathrm{C}\right), 117.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 123.7(\mathrm{CH}), 124.7\left(\mathrm{~d}, J_{\mathrm{FC}}=17.5 \mathrm{~Hz}, \mathrm{C}\right)$, $126.0(\mathrm{C}), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 130.7,131.2(2 \mathrm{CH}), 131.6(\mathrm{C}), 133.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}\right.$, C), $146.2\left(\mathrm{~d}, J_{\mathrm{FC}}=14.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.2(\mathrm{C}), 147.9\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 152.5(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3}): $\delta=-138.2(\mathrm{ArF}) ;$): $\delta=-138.0$ (ArF); IR (neat): $\widetilde{\mathrm{V}}=3279$ (br), 2955 (m), 2924 (m), 2231 (m), 1722 (m), 1752 (m), 1614 (w), 1569 (w), 1484 (m), 1445 (m), 1369 (m), 1262 (s), 1240 (s), 1203 (s), 1154 (s), 1092 (m), 1057 (m), 994 (m), 902 (w), 887 (w), 774 (w), 660 (w), 634 (br), 557 (w); MS (EI, 70 eV): m/z (\%): 447 ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 2$), 403 (10), 390 (12), 388 (39), 375 (11), 360 (11), 358 (10), 318 (13), 305 (18), 304 (19), 291 (30), 279 (34), 277 (100), 276 (36), 258 (11), 193 (5), 164 (4), 57 (15), 43 (23), 41 (19); HRMS Neg (ESI), $\left[\mathrm{M}-\mathrm{H},{ }^{35} \mathrm{Cl}\right]^{-}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NClFO}_{4}$ is 446.15471 found 446.15480 .

Ethyl 2-(7,9-dichloro-5-oxo-3-propyl-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate

 (5k):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{FNO}_{4}$ Exact Mass: 411.04

Starting with 6,8-dichloro-3-cyanochromone $\mathbf{4 e}$ (240 mg , 1.0 mmol), $\mathrm{Me}_{3} \mathrm{SiOTf}^{288 \mathrm{mg},} 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3b ($435 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 k}$ was isolated as a white solid ($53 \mathrm{mg}, 13 \%$), mp. $120-121^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.24\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.69-2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.20-$ $4.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.10\left(\mathrm{~d}, J_{\mathrm{FH}}=47.4 \mathrm{~Hz}, \mathrm{CFH}\right), 7.74(\mathrm{~d}, J=2.64 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.07(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8\left(\mathrm{CH}_{3}\right), 14.0$ $\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{~d}, J_{\mathrm{FC}}=1.38 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 32.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 62.4\left(\mathrm{OCH}_{2}\right), 88.3\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $189.3 \mathrm{~Hz}, \mathrm{FC}$), 116.3 ($\mathrm{d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}$), 123.2 (C), 124.6 (CH), 124.7 (C), 130.2 (C), 135.6 $(\mathrm{CH}), 136.2(\mathrm{C}), 139(\mathrm{CH}), 150.3(\mathrm{C}), 156.5(\mathrm{~d}, J=19.6 \mathrm{~Hz}, \mathrm{C}), 157.2(\mathrm{C}), 166.8\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $25.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), $175.8(\mathrm{C}=\mathrm{O})$; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-182.48$ (FC); IR (ATR, cm^{-1}): $\widetilde{v}=3067$ (w), 2970 (w), 2935 (w), 1754 (s), 1665 (s), 1608 (m), 1594 (m), 1554 (w), 1463 (m), 1426 (m), 1372 (w), 1228 (m), 1216 (s), 1187 (m), 1093 (w), 1066 (s), 889 (w), $792(\mathrm{~m}), 675(\mathrm{~m}), 566(\mathrm{w})$; MS (GC, 70 eV$): m / z(\%): 415\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}_{2}, 10\right), 413\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}\right.$, 42), $412\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}_{2}, 18\right), 411\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}, 67\right), 400$ (13), 399 (13), 398 (52), 396 (100), 340 (11), 338 (19), 337 (13), 324 (37), 322 (28), 318 (24), 310 (43), 306 (25), 278 (8), 207 (5),

182 (5), 130 (4), 99(4), 29 (26); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{4} \mathrm{Cl}_{2}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}\right]: 411.04349$ found 411.043394 .

3,5-Dichloro-6'-cyano-2'-fluoro-3'-hydroxy-4'-propylbiphenyl-2-yl ethyl carbonate (6k):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{FNO}_{4}$ Exact Mass: 411.04

Starting with 6,8-dichloro-3-cyanochromone $\mathbf{4 e}(240 \mathrm{mg}$, 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3b ($435 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (9.0 mL), EtOH (10 mL), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 k}$ was isolated as a white solid ($300 \mathrm{mg}, 73 \%$), mp. $167-169^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), 1.13 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.53-1.63 (m, 2 H , $\left.\mathrm{CH}_{2}\right), 2.59\left(\mathrm{dt}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, J_{\mathrm{FH}}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{q}, J=7.2,2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.15(\mathrm{brs}$, $1 \mathrm{H}, \mathrm{OH}$), 7.23 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.27 (d, $J=1.5 \mathrm{~Hz}, \operatorname{ArH}$), 7.51 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,13.9\left(2 \mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 65.8\left(\mathrm{OCH}_{2}\right), 104.1\left(\mathrm{~d}, J_{\mathrm{FC}}=4.0 \mathrm{~Hz}, \mathrm{C}\right), 116\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 123.9\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $17.6 \mathrm{~Hz}, \mathrm{C}), 128.2(\mathrm{C}), 129.2(\mathrm{C}), 129.7(\mathrm{CH}), 130.4\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 131.3(\mathrm{CH})$, $132.3(\mathrm{C}), 133.3\left(\mathrm{~d}, J_{\mathrm{FC}}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 144.1(\mathrm{C}), 146.2\left(\mathrm{~d}, J_{\mathrm{FC}}=14.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.8(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 151.2(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-137.7$ (ArF); IR (neat): $\widetilde{v}=3263$ (br), 2964 (m), 2930 (m), 2230 (m), 1722 (s), 1765 (m), 1610 (w), 1564 (w), 1455 (s), 1388 (m), 1368 (m), 1252 (s), 1217 (s), 1153 (s), 1097 (m), 1053 (m), 991 (m), 899 (w), 883 (w), 859 (m), 781 (m), 650 (w), 561 (w), 535 (w); MS (GC, 70 eV): m/z (\%): 415 (M M^{+}, $\left.{ }^{37} \mathrm{Cl}_{2}, 1\right), 413\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 5\right), 412\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}_{2}, 2\right), 411\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}, 8\right), 382$ (5), 380 (5), 354 (16), 352 (26), 341 (55), 339 (80), 324 (14), 313 (16), 312 (55), 311 (28), 310 (100), 296 (10), 292 (10), 207 (29), 133 (3), 96 (3), 44 (17), 40 (9); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FNO}_{4} \mathrm{Cl}_{2}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}\right]: 411.04349$ found 411.044397.

Ethyl 2-(7,9-dichloro-3-octyl-5-oxo-5H-chromeno[2,3-b]pyridin-2-yl)-2-fluoroacetate

 (51):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{FNO}_{4}$ Exact Mass: 481.12

Starting with 6,8 -dichloro-3-cyanochromone $4 \mathbf{e}$ (240 mg , 1.0 mmol), $\mathrm{Me}_{3} \mathrm{SiOTf}^{(288 \mathrm{mg},} 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3c ($526 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (9.0 mL), $\mathrm{EtOH}(10 \mathrm{~mL}$), and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 l}$ was isolated as yellowish solid ($101 \mathrm{mg}, 21 \%$), mp. $67-68^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 1.10-1.35(\mathrm{~m}, 13 \mathrm{H}), 1.50-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70-2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.20-4.36(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.08\left(\mathrm{~d}, J_{\mathrm{FH}}=47.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 7.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.09(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(2 \mathrm{CH}_{3}\right), 22.6,29.1$, 29.3, 29.4, $\left(4 \mathrm{CH}_{2}\right), 30.5\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.8\left(\mathrm{~d}, J_{\mathrm{FC}}=1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 62.4$ $\left(\mathrm{OCH}_{2}\right), 88.3\left(\mathrm{~d}, J_{\mathrm{FC}}=188.9 \mathrm{~Hz}, \mathrm{FC}\right), 116.3\left(\mathrm{~d}, J_{\mathrm{FC}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 123.2(\mathrm{C}), 124.6(\mathrm{CH})$, 124.7 (C), 130.2 (C), 135.6 (CH), 136.5 (C), $138.9(\mathrm{CH}), 150.3$ (C), 156.5 (d, $J_{\mathrm{FC}}=19.4 \mathrm{~Hz}$, C), $157.2(\mathrm{C}), 166.8\left(\mathrm{~d}, J_{\mathrm{FC}}=25.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 175.8(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=-182.49(\mathrm{FC})$; IR (ATR, cm^{-1}): $\widetilde{v}=3067$ (w), $2970(\mathrm{w}), 2935(\mathrm{w}), 1754(\mathrm{~s}), 1665(\mathrm{~s}), 1608$ (m), 1594 (m), 1554 (w), 1463 (m), 1426 (m), 1372 (w), 1228 (m), 1216 ($), 1187$ (m), 1093 (w), 1066 (s), $889(\mathrm{w}), 792(\mathrm{~m}), 675(\mathrm{~m}), 566(\mathrm{w}) ; \operatorname{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 484\left(\mathrm{M}^{+}+1\right.$, $\left.{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 5\right), 483\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 2\right), 481\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}, 2\right), 452$ (2), 396 (27), 380 (13), 378 (67), 376 (100), 324 (11), 322 (16), 312 (12), 310 (19), 318 (24), 278 (4), 55(2), 29 (9); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{NCl}_{2} \mathrm{~F}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}\right]$: 481.12174 found 481.121747 .

3,5-Dichloro-6'-cyano-2'-fluoro-3'-hydroxy-4'-octylbiphenyl-2-yl ethyl carbonate (61):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{FNO}_{4}$ Exact Mass: 481.12

Starting with 6,8-dichloro-3-cyanochromone 4e ($240 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}$, $1.30 \mathrm{mmol}), \quad 3 \mathrm{c} \quad(526 \mathrm{mg}, \quad 1.30 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9.0 \mathrm{~mL}), \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $6 \mathbf{1}$ was isolated as yellowish solid ($303 \mathrm{mg}, 63 \%$), mp. $88-90^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.29\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 1.48-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.58\left(\mathrm{dt}, J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, J_{\mathrm{FH}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.64($ brs, 1 H , $\mathrm{OH}), 7.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.25(\mathrm{~d}, J=1.1 \mathrm{~Hz}, \mathrm{ArH}), 7.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.0\left(2 \mathrm{CH}_{3}\right), 22.6,29.2\left(2 \mathrm{CH}_{2}\right), 29.3\left(2 \mathrm{CH}_{2}\right), 29.4$ $\left(\mathrm{d}, J_{\mathrm{FC}}=2.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 65.8\left(\mathrm{OCH}_{2}\right), 103.8\left(\mathrm{~d}, J_{\mathrm{FC}}=4.0 \mathrm{~Hz}, \mathrm{C}\right), 116.7\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $3.7 \mathrm{~Hz}, \mathrm{C}), 123.8\left(\mathrm{~d}, J_{\mathrm{FC}}=17.6 \mathrm{~Hz}, \mathrm{C}\right), 128.3(\mathrm{C}), 129.1(\mathrm{C}), 129.7(\mathrm{CH}), 130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0\right.$ $\mathrm{Hz}, \mathrm{CH}), 131.2(\mathrm{CH}), 132.2(\mathrm{C}), 133.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.6 \mathrm{~Hz}, \mathrm{C}\right), 144.0(\mathrm{C}), 146.4\left(\mathrm{~d}, J_{\mathrm{FC}}=14.5\right.$ $\mathrm{Hz}, \mathrm{C}-\mathrm{OH}), 147.8\left(\mathrm{~d}, J_{\mathrm{FC}}=241 \mathrm{~Hz}, \mathrm{C}\right), 151.2(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$ 137.0 (ArF); IR (neat): $\widetilde{v}=3234$ (br), 2954 (w), 2922 (m), 2852 (w), 2235 (w), 1774 (s), 1611 (w), 1564 (w), 1461 (s), 1389 (m), 1366 (m), 1251 (s), 1212 (s), 1154 (s), 1100 (m),
$1052(\mathrm{~m}), 985(\mathrm{~m}), 897(\mathrm{w}), 869(\mathrm{~m}), 855(\mathrm{w}), 781(\mathrm{~m}), 658(\mathrm{w}), 582(\mathrm{w}), 538(\mathrm{w})$; MS (GC, $70 \mathrm{eV}): m / z(\%): 481\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}, 1\right), 439$ (2), 424 (23), 394 (17), 380 (11), 366 (11), 354 (10), 313 (65), 311 (100), 310 (27), 294 (10), 211 (4), 43 (15), 29 (17); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FNO}_{4} \mathrm{Cl}_{2}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}\right]$: 481.12174 found 481.121767 .

3,5-Dichloro-6'-cyano-4'-decyl-2'-fluoro-3'-hydroxybiphenyl-2-yl ethyl carbonate (6m):

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{FNO}_{4}$ Exact Mass: 509.15

Starting with 6,8-dichloro-3-cyanochromone 4e ($240 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}$, $0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3d ($562 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(9.0 \mathrm{~mL}), \quad \mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 m}$ was isolated as yellowish solid ($387 \mathrm{mg}, 76 \%$), mp. $120-121^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=0.81\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18-1.30\left(\mathrm{~m}, 14 \mathrm{H}, 7 \mathrm{CH}_{2}\right)$, $1.49-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{dt}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, J_{\mathrm{FH}}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), 6.14 (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.23 (d, $\left.J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.26(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,14.1\left(2 \mathrm{CH}_{3}\right), 22.6$, $29.0\left(2 \mathrm{CH}_{2}\right), 29.3\left(2 \mathrm{CH}_{2}\right), 29.4\left(2 \mathrm{CH}_{2}\right), 29.5,29.6,31.9\left(3 \mathrm{CH}_{2}\right), 65.8\left(\mathrm{OCH}_{2}\right), 104.1\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $4.0 \mathrm{~Hz}, \mathrm{C}), 116.7\left(\mathrm{~d}, J_{\mathrm{FC}}=3.8 \mathrm{~Hz}, \mathrm{C}\right), 123.8\left(\mathrm{~d}, J_{\mathrm{FC}}=17.8 \mathrm{~Hz}, \mathrm{C}\right), 128.2,129.1(2 \mathrm{C}), 129.7$ $(\mathrm{CH}), 130.3\left(\mathrm{~d}, J_{\mathrm{FC}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 131.3(\mathrm{CH}), 132.2(\mathrm{C}), 133.6\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 144.0$ (C), $146.1\left(\mathrm{~d}, J_{\mathrm{FC}}=14.5 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.7\left(\mathrm{~d}, J_{\mathrm{FC}}=241 \mathrm{~Hz}, \mathrm{C}\right), 151.1(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-137.6$ (ArF); IR (neat): $\widetilde{\text { V }}=3322(\mathrm{br}), 2951(\mathrm{~m}), 2920(\mathrm{~s}), 2852(\mathrm{~m}), 2228$ (w), 1759 (m), 1681 (w), 1567 (w), 1464 (m), 1453 (m), 1369 (m), 1332 (w), 1251 (m), 1214 (s), 1154 (m), 1095 (w), 1053 (m), 990 (m), 864 (w), 849 (w), 781 (m), 687 (w), 576 (w), 565 (w); MS (GC, 70 eV): $m / z(\%): 511\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 4\right), 510\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}_{2}, 3\right), 509\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}\right.$, 6), 452 (15), 448 (10), 436 (13), 424 (14), 422 (51), 420 (63), 408 (17), 394 (15), 380 (13), 366 (19), 354 (18), 313 (60), 311 (100), 310 (37), 294 (10), 211 (3), 43 (27), 29 (49); HRMS Pos (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{FNO}_{4} \mathrm{Cl}_{2}\left[\mathrm{M}+\mathrm{H},{ }^{35} \mathrm{Cl}_{2}\right]^{+}$calcd is 510.16087 found 510.16156 and $[\mathrm{M}+\mathrm{Na}]^{+}$calcd is 532.14281 found 532.1436 and exact ion mass is 509.1536 .

Ethyl 2-fluoro-2-(7-fluoro-5-oxo-3-propyl-5H-chromeno[2,3-b]pyridin-2-yl)acetate (50):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4}$ Exact Mass: 361.11

Starting with 6-fluoro-3-cyanochromone 4f (189 mg , 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}), 3 \mathrm{~b}$ ($434 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{5 0}$ was isolated as a white solid ($60 \mathrm{mg}, 16 \%$), mp. 127-129 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.97\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.65-1.73 (m, 2H, CH $)_{2}$), 2.76-2.82 (m, 2H, CH $)$, 4.21-4.33 (m, 2H, $\left.\mathrm{OCH}_{2}\right), 6.06\left(\mathrm{~d}, J_{\mathrm{FH}}=47.4 \mathrm{~Hz}, \mathrm{CH}\right), 7.40-7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{dd}, J=9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.86(\mathrm{dd}, J=8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.75\left(\mathrm{CH}_{3}\right), 13.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{~d}, J_{\mathrm{FC}}=0.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.4\left(\mathrm{~d}, J_{\mathrm{FC}}=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 61.2$ $\left(\mathrm{OCH}_{2}\right), 86.6\left(\mathrm{~d}, J_{\mathrm{FC}}=188.7 \mathrm{~Hz}, \mathrm{FCH}\right), 110.5\left(\mathrm{~d}, J_{\mathrm{FC}}=24.2 \mathrm{~Hz}, \mathrm{CH}\right), 115.1(\mathrm{C}), 119.6(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=7.6 \mathrm{~Hz}, \mathrm{CH}\right), 121.4\left(\mathrm{~d}, J_{\mathrm{FC}}=7.3 \mathrm{~Hz}, \mathrm{C}\right), 122.8\left(\mathrm{~d}, J_{\mathrm{FC}}=25.1 \mathrm{~Hz}, \mathrm{CH}\right), 134.3(\mathrm{C}), 137.9$ $(\mathrm{CH}), 150.9\left(\mathrm{~d}, J_{\mathrm{FC}}=1.6 \mathrm{~Hz}, \mathrm{C}\right), 154.9\left(\mathrm{~d}, J_{\mathrm{FC}}=18.9 \mathrm{~Hz}, \mathrm{C}\right), 156.6(\mathrm{C}), 158.1\left(\mathrm{~d}, J_{\mathrm{FC}}=247\right.$ $\mathrm{Hz}, \operatorname{ArFC}), 165.8\left(\mathrm{~d}, J_{\mathrm{FC}}=25.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right), 175.6\left(\mathrm{~d}, J_{\mathrm{FC}}=2.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.7(\mathrm{ArF}),-182.3(\mathrm{FC})$; IR (ATR, cm^{-1}): $\widetilde{v}=3090(\mathrm{w}), 3053(\mathrm{w}), 3000$ (w), 2963 (m), 2932 (w), 2873 (w), 1732 (s), 1668 (s), 1623 (w), 1604 (m), 1562 (w), 1483 (s), 1455 (s$), 1424$ (s , 1370 (w), 1326 (m), 1275 (s$), 1253$ (s$), 1207$ (m), 1186 (m), 1144 (m), 1072 (m), 1057 (m), 1027 (m), 990 (w), 959 (m), 882 (m), 840 (m), 787 (m), 777 (s$), 740$ (s$)$, 701 (w), 636 (m), $560(\mathrm{~m}): \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 363\left(\mathrm{M}^{+}+2,2\right), 362\left(\mathrm{M}^{+}+1,16\right), 361$ $\left(\mathrm{M}^{+}, 81\right), 347$ (19), 343 (2), 341 (5), 318 (6), 288 (18), 286 (11), 273 (12), 272 (49), 268 (24), 261 (14), 260 (41), 259 (11), 256 (21), 254 (12), 253 (18), 228 (7), 29 (15); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4}\left[\mathrm{M}^{+}\right]$: 361.11202 found 361.110966 .

6'-Cyano-2',5-difluoro-3'-hydroxy-4'-propylbiphenyl-2-yl ethyl carbonate (60):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4}$ Exact Mass: 361.11

Starting with 6-fluoro-3-cyanochromone 4f (189 mg, 1.0 mmol), $\mathrm{Me}_{3} \operatorname{SiOTf}(288 \mathrm{mg}, 0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3b ($434 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, $\mathrm{EtOH}(10 \mathrm{~mL})$, and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 0}$ was isolated as transparent crystals ($272 \mathrm{mg}, 75 \%$), mp. $143-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.89\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.11\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56$ (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $2.56\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.44($ brs, $1 \mathrm{H}, \mathrm{OH})$,
7.02-7.12 (m, 2H, ArH), 7.18-7.27 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR (75.49 MHz, CDCl_{3}): $\delta=12.6$ $\left(\mathrm{CH}_{3}\right), 12.8\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1\left(\mathrm{OCH}_{2}\right), 102.6\left(\mathrm{~d}, J_{\mathrm{FC}}=4.1\right.$ $\mathrm{Hz}, \mathrm{C}), 116.0\left(\mathrm{~d}, J_{\mathrm{FC}}=3.7 \mathrm{~Hz}, \mathrm{C}\right), 116.2\left(\mathrm{~d}, J_{\mathrm{FC}}=23.8 \mathrm{~Hz}, \mathrm{CH}\right), 116.9\left(\mathrm{~d}, J_{\mathrm{FC}}=23.8 \mathrm{~Hz}\right.$, $\mathrm{CH}), 122.8\left(\mathrm{~d}, J_{\mathrm{FC}}=9.1 \mathrm{~Hz}, \mathrm{CH}\right), 123.7,\left(\mathrm{~d}, J_{\mathrm{FC}}=17 \mathrm{~Hz}, \mathrm{C}\right), 124.9\left(\mathrm{~d}, J_{\mathrm{FC}}=8 \mathrm{~Hz}, \mathrm{C}\right), 129.2$ $\left(\mathrm{d}, J_{\mathrm{FC}}=3.5 \mathrm{~Hz}, \mathrm{CH}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}, \mathrm{C}\right), 143.5\left(\mathrm{~d}, J_{\mathrm{FC}}=3 \mathrm{~Hz}, \mathrm{C}\right), 145.2\left(\mathrm{~d}, J_{\mathrm{FC}}=15\right.$ $\mathrm{Hz}, \mathrm{C}-\mathrm{OH}), 146.7\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right), 151.7(\mathrm{C}=\mathrm{O}), 158.7\left(\mathrm{~d}, J_{\mathrm{FC}}=246 \mathrm{~Hz}, \mathrm{C}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.40,-137.98$ (ArF); IR (ATR, cm^{-1}): $\widetilde{v}=3291$ (br), 2965 (w), 2932 (w), 2873 (w), 2234 (w), 1759 (s), 1612 (w), 1589 (w), 1574 (w), 1512 (w), 1483 (m), $1465(\mathrm{~m}), 1406$ (m), 1372 (m), 1308 (m), 1257 (m), 1239 (s$), 1223$ (s$), 1179$ (s$), 1137(\mathrm{~m})$, $1104(\mathrm{~m}), 1093$ (m), 1049 (m), $991(\mathrm{~m}), 975(\mathrm{~m}), 894(\mathrm{~m}), 875(\mathrm{~m}), 835(\mathrm{~m}), 790(\mathrm{~m}), 778$ (m), 635 (br), 589 (w): MS (GC, 70 eV): m/z (\%): $361\left(\mathrm{M}^{+}, 2\right), 331$ (15), 330 (64), 317 (19), 300 (26), 288 (11), 275 (33), 274 (100), 261 (49), 260 (88), 242 (14), 212 (4), 211 (14), 202 (5), 195 (3), 182 (5), 41 (5), 29 (13); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4}\left[\mathrm{M}^{+}\right]: 361.11202$ found 361.111304 .

6'-Cyano-4'-decyl-2',5-difluoro-3'-hydroxybiphenyl-2-yl ethyl carbonate (6p):

Starting with 6-flouro-3-cyanochromone $\mathbf{4 f}$ $(184 \mathrm{mg}, \quad 1.0 \mathrm{mmol}), \quad \mathrm{Me}_{3} \mathrm{SiOTf}(288 \mathrm{mg}$, $0.23 \mathrm{~mL}, 1.30 \mathrm{mmol}$), 3d ($562 \mathrm{mg}, 1.30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(9.0 \mathrm{~mL}), \quad \mathrm{EtOH}(10 \mathrm{~mL}), \quad$ and triethylamine ($202 \mathrm{mg}, 0.28 \mathrm{~mL}, 2 \mathrm{mmol}$), $\mathbf{6 p}$ was isolated as solid ($353 \mathrm{mg}, 77 \%$), mp. 134$135^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80(\mathrm{t}$, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.11\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17-1.30\left(\mathrm{~m}, 14 \mathrm{H}, 7 \mathrm{CH}_{2}\right), 1.48-1.58(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58\left(\mathrm{dt}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, J_{\mathrm{FH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.07\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 6.53 (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.01-7.13 (m, 2H, ArH), 7.23-7.27 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.9,14.1\left(2 \mathrm{CH}_{3}\right), 22.7,29.1,29.2,29.3\left(4 \mathrm{CH}_{2}\right), 29.4\left(2 \mathrm{CH}_{2}\right), 29.5,29.6,31.9$ $\left(3 \mathrm{CH}_{2}\right), 65.1\left(\mathrm{OCH}_{2}\right), 103.8\left(\mathrm{~d}, J_{\mathrm{FC}}=4.2 \mathrm{~Hz}, \mathrm{C}\right), 117.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 117.4\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $23.3 \mathrm{~Hz}, \mathrm{CH}), 118.1\left(\mathrm{~d}, J_{\mathrm{FC}}=24.5 \mathrm{~Hz}, \mathrm{CH}\right), 123.9\left(\mathrm{~d}, J_{\mathrm{FC}}=8.7 \mathrm{~Hz}, \mathrm{CH}\right), 124.8,\left(\mathrm{~d}, J_{\mathrm{FC}}=\right.$ $17.6 \mathrm{~Hz}, \mathrm{C}), 126.1\left(\mathrm{~d}, J_{\mathrm{FC}}=8.8 \mathrm{~Hz}, \mathrm{C}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{FC}}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 133.1\left(\mathrm{~d}, J_{\mathrm{FC}}=2.4 \mathrm{~Hz}\right.$, C), $144.7\left(\mathrm{~d}, J_{\mathrm{FC}}=3.1 \mathrm{~Hz}, \mathrm{C}\right), 146.3\left(\mathrm{~d}, J_{\mathrm{FC}}=14.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{OH}\right), 147.8\left(\mathrm{~d}, J_{\mathrm{FC}}=240 \mathrm{~Hz}, \mathrm{C}\right)$, $152.8(\mathrm{C}=\mathrm{O}), 159.8\left(\mathrm{~d}, J_{\mathrm{FC}}=246 \mathrm{~Hz}, \mathrm{C}\right) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.4,-138.0$ (ArF); IR (neat): $\widetilde{v}=3310$ (br), 2923 (m), 2853 (w), 2228 (w), 1764 (m), 1612 (w), 1593 (w),

1461 (m), 1405 (w), 1369 (m), 1239 (s), 1182 (s), 1137 (w), 995 (m), 874 (w), 835 (w), 776 (m), $688(\mathrm{w}), 591(\mathrm{w}), 562(\mathrm{w})$; MS (GC, 70 eV$): m / z(\%): 460\left(\mathrm{M}^{+}+1,3\right), 459\left(\mathrm{M}^{+}, 10\right), 400$ (28), 398 (12), 372 (18), 370 (60), 358 (20), 344 (18), 330 (15), 316 (16), 302 (28), 288 (19), 274 (83), 261 (100), 242 (13), 184 (5), 43 (17), 29 (35); HRMS Neg (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$calcd is 458.21484 found 458.21493 and $[2 \mathrm{M}-\mathrm{H}]^{-}$calcd is 917.43695 found 917.43757 and exact ion mass found as 459.22211.

Procedure for synthesis of Phenyl 1,4-bis(trifluoromethylsulfonyloxy)-2-naphthoate (8):

To a solution of 7 (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL per 1 mmol of 7), was added pyridine (4.0 equiv.) at $-78{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After stirring for $10 \mathrm{~min}, \mathrm{Tf}_{2} \mathrm{O}$ (2.4 equiv.) was added at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo. The product of the reaction mixture was isolated by rapid column chromatography (flash silica gel, heptanes/EtOAc).

Phenyl 1,4-bis(trifluoromethylsulfonyloxy)-2-naphthoate (8) :

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}$ Exact Mass: 543.97

Starting with 7 ($2800 \mathrm{mg}, 10 \mathrm{mmol}$), pyridine ($3.2 \mathrm{ml}, 40$ mmol), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 2$), $\mathrm{Tf}_{2} \mathrm{O}(4.0 \mathrm{ml}, 24 \mathrm{mmol})$, $-78^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, \mathbf{8}$ was isolated as white powder (4515 mg , 83%), mp. $100-101^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.20-7.27 (m, 3H, ArH), 7.36-7.41 (m, 2H, ArH), 7.75-7.85 (m, 2H, ArH), 8.08 (s, 1H, ArH), 8.12 (dd, $J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=118.5(\mathrm{CH}), 118.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $118.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.2(\mathrm{C}), 121.4(2 \mathrm{CH}), 121.5(\mathrm{CH}), 123.1(\mathrm{CH}), 126.6(\mathrm{CH})$, 127.9 (C), 129.6 (C), 129.7 (2CH), 129.9 (CH), 131.4 (CH), 144.0 (C), 144.2 (C), 150.2 (C), $161.9(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-72.27\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right),-72.96\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR (ATR, cm^{-1}): $\widetilde{v}=3068(\mathrm{w}), 1733(\mathrm{~m}), 1589(\mathrm{w}), 1482(\mathrm{w}), 1427$ (s), 1358 (m), 1347 (m), 1247 (m), 1203 (s), 1130 (s), 1045 (m), 1018 (m), 936 (m), 873 (s), 761 (s), 641 (s), 597 (s); MS (EI, 70 eV): $m / z(\%): 544\left(\mathrm{M}^{+}, 10\right), 453$ (16), 452 (22), 451 (100), 318 (64), 234 (3), 186 (19), 185 (97), 157 (47), 129 (16), 101 (18), 75 (5), 69 (8), 64 (9), 51 (3); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{O}_{8} \mathrm{~F}_{6} \mathrm{~S}_{2}\left[\mathrm{M}^{+}\right]: 543.97158$, found 543.970512 .

General Procedure for synthesis of 10a-h and 11a-f:

A 1,4-dioxane solution (4 mL per 0.5 mmol of $\mathbf{8}$) of $\mathbf{8}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and arylboronic acid 9 was stirred at 110 or $95^{\circ} \mathrm{C}$ for 8 h . After cooling to $20^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography.

Phenyl 1,4-bis(3-fluorophenyl)-2-naphthoate (10a):

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{O}_{2}$ Exact Mass: 436.13

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{a}(168 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), 10a was isolated as colorless crystals (185 $\mathrm{mg}, 85 \%$), mp. $143-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 6.75-6.79 (m, 2H, ArH), 7.05-7.28 (m, 9H, ArH), 7.39-7.49 (m, 4H, ArH), 7.58 (dd, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.87 (dd, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz, CDCl_{3}): $\delta=114.9$ (d, $J_{\mathrm{CF}}=21.0 \mathrm{~Hz}, \mathrm{CH}$), 115.0 $\left(\mathrm{d}, J_{\mathrm{CF}}=21.0 \mathrm{~Hz}, \mathrm{CH}\right), 117.3\left(\mathrm{~d}, J_{\mathrm{CF}}=21.8 \mathrm{~Hz}, \mathrm{CH}\right), 117.4\left(\mathrm{~d}, J_{\mathrm{CF}}=21.8 \mathrm{~Hz}, \mathrm{CH}\right), 121.5$ $(2 \mathrm{CH}), 125.9\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 126.0\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 126.1(\mathrm{CH}), 126.2(\mathrm{CH})$, $126.6(\mathrm{CH}), 127.2(\mathrm{CH}+\mathrm{C}), 128.2(\mathrm{CH}), 128.4(\mathrm{CH}), 129.6(2 \mathrm{CH}), 129.9\left(\mathrm{~d}, J_{\mathrm{CF}}=8.4 \mathrm{~Hz}\right.$, CH), 130.3 (d, $\left.J_{\mathrm{CF}}=8.4 \mathrm{~Hz}, \mathrm{CH}\right), 133.0(\mathrm{C}), 133.3$ (C), 139.6 (d, $\left.J_{\mathrm{CF}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 140.4$ (d, $\left.J_{\mathrm{CF}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 141.2\left(\mathrm{~d}, J_{\mathrm{CF}}=8.0 \mathrm{~Hz}, \mathrm{C}\right), 142.1\left(\mathrm{~d}, J_{\mathrm{CF}}=8.0 \mathrm{~Hz}, \mathrm{C}\right), 150.8(\mathrm{C}), 162.8(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=247 \mathrm{~Hz}, \mathrm{CF}\right), 162.9\left(\mathrm{~d}, J_{\mathrm{CF}}=247 \mathrm{~Hz}, \mathrm{CF}\right), 166.5(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR (282.40 MHz, CDCl_{3}): $\delta=-112.83(\mathrm{ArF}),-113.26(\mathrm{ArF}) ;$ IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3070(\mathrm{w}), 2924(\mathrm{w}), 2852$ (w), 1750 (m), 1579 (m), 1434 (m), 1341 (w), 1251 (m), 1190 (s), 1173 (s), 1142 (s), 1094 (s), 868 (s), 762 (s), 686 (s), $570(\mathrm{w}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 436$ (M+, 2), 344 (26), 343 (100), 312 (12), 294 (14), 220 (6), 156 (1), 39 (1); HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~F}_{2}\left[\mathrm{M}^{+}\right]$: 436.12694 found 436.12754 .

Phenyl 1,4-bis(4-(trifluoromethyl)phenyl)-2-naphthoate (10b):

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{O}_{2}$ Exact Mass: 536.12

Starting with $8(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{~b}(228 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), 10b was isolated as colorless crystals (214 $\mathrm{mg}, 80 \%$), mp. 178-180 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 6.68-6.72 (m, 2H, ArH), 7.03-7.73 (m, 14H, ArH), 7.80-7.83 (m, 1H, ArH), 7.99 (s, 1H, ArH); ${ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=121.3(2 \mathrm{CH}), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272 \mathrm{~Hz}, \mathrm{C}\right), 124.4$ $\left(\mathrm{q}, J_{\mathrm{CF}}=272 \mathrm{~Hz}, \mathrm{C}\right), 125.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}, 2 \mathrm{CH}\right), 125.7(\mathrm{q}$, $\left.J_{\mathrm{CF}}=3.7 \mathrm{~Hz}, 2 \mathrm{CH}\right), 126.1(\mathrm{CH}), 126.2(\mathrm{CH}), 126.8(\mathrm{CH})$, $127.1(\mathrm{C}), 127.4(\mathrm{CH}), 128.2(\mathrm{CH}), 128.7(\mathrm{CH}), 129.6(2 \mathrm{CH}), 130.2\left(\mathrm{q}, J_{\mathrm{CF}}=32.4 \mathrm{~Hz}, \mathrm{C}\right)$, $130.3\left(\mathrm{q}, J_{\mathrm{CF}}=32.4 \mathrm{~Hz}, \mathrm{C}\right), 130.4(2 \mathrm{CH}), 130.6(2 \mathrm{CH}), 133.0(\mathrm{C}), 133.3(\mathrm{C}), 139.7(\mathrm{C})$, 140.9 (C), 143.0 (C), 143.6 (C), 150.7 (C), 166.1 (C=O); ${ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.40\left(\mathrm{ArCF}_{3}\right),-62.41\left(\mathrm{ArCF}_{3}\right) ;$ IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=3078(\mathrm{w}), 2923(\mathrm{w}), 2853(\mathrm{w})$, 1715 (m), 1591 (w), 1403 (w), 1323 (s), 1241 (m), 1220 (m), 1157 (s), 1102 (s), 1065 (s), 928 (w), 832 (m), 765 (s), 688 (m), $600(\mathrm{~m})$; MS (GC, 70 eV): m/z (\%): 536 ($\mathrm{M}^{+}, 1$), 444 (29), 443 (100), 346 (13), 276 (7), 162 (1), 65 (3); HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~F}_{6}\left[\mathrm{M}^{+}\right]$: 536.12055 found 536.12140.

Phenyl 1,4-dip-tolyl-2-naphthoate (10c):

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{2}$ Exact Mass: 428.18
$126.3(2 \mathrm{CH}), 126.5(\mathrm{CH}), 127.5(\mathrm{C}), 127.6(\mathrm{CH}), 128.3(\mathrm{CH}), 128.9(2 \mathrm{CH}), 129.2(2 \mathrm{CH})$, 129.3 (2CH), 129.9 (2CH), 130.0 (2CH), 133.2 (C), 133.4 (C), 135.9 (C), 137.0 (C), 137.2 (C), 137.5 (C), 140.2 (C), 141.0 (C), 150.8 (C), 167.1 (C=O); IR $\widetilde{v}=I R\left(A T R, \mathrm{~cm}^{-1}\right)$:
$\widetilde{v}=3022$ (w), 2921 (w), 2865 (w), 1711(s), 1591 (w), 1511 (w), 1485 (m), 1378 (m), 1367 (m), 1241 (s), 1220 (s), 1192 (s), 1099 (m), 1020 (m), 926 (m), 814 (s), 746 (s$), 687$ (m), 595 (m); MS (EI, 70 eV): m/z (\%): 428 ($\mathrm{M}^{+}, 3$), 336 (27), 335 (100), 292 (7), 289 (6), 276 (6), 145 (3), 65 (2); HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 428.17708$ found 428.177832.

Phenyl 1,4-bis(3-methoxyphenyl)-2-naphthoate (10d):

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{4}$ Exact Mass: 460.17

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{~d}(182 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), 10d was isolated as colorless crystals (149 mg , 65%), mp. 118-120 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.73-6.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 6.92-7.23 (m, 9H, ArH), 7.32-7.47 (m, 4H, ArH), 7.68 (dd, $J=$ $8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.92 (s, 1H, ArH), 7.93 (dd, $J=8.3,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5$ $\left(\mathrm{OCH}_{3}\right), 55.6\left(\mathrm{OCH}_{3}\right), 113.5(\mathrm{CH}), 113.6(\mathrm{CH}), 115.7(\mathrm{CH}), 115.8(\mathrm{CH}), 121.6(2 \mathrm{CH}), 122.7$ $(2 \mathrm{CH}), 125.9(\mathrm{CH}), 126.3(\mathrm{CH}), 126.4(\mathrm{CH}), 126.8(\mathrm{CH}), 127.4(\mathrm{C}), 127.9(\mathrm{CH}), 128.3(\mathrm{CH})$, $129.3(\mathrm{CH}), 129.4(2 \mathrm{CH}), 129.6(\mathrm{CH}), 133.0(\mathrm{C}), 133.4(\mathrm{C}), 140.3(\mathrm{C}), 140.4(\mathrm{C}), 141.0(\mathrm{C})$, 141.4 (C), 150.9 (C), 159.6 (C), 159.8 (C), 167.1 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3064$ (w), 2934 (w), 2833 (w), 1731 (m), 1575 (m), 1485 (m), 1377 (m), 1252 (m), 1217 (s), 1186 (s), 1098 (s), 1040 (s), 925 (w), 850 (m), 762 (s), 686 (s), 558 (w); MS (EI, 70 eV): m/z (\%): 460 $\left(\mathrm{M}^{+}, 15\right), 369$ (13), 368 (81), 367 (100), 366 (57), 352 (14), 324 (18), 263 (11), 252 (11), 94 (14), 65 (7); HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 460.16691$ found 460.16645.

Phenyl 1,4-bis(2,4-dimethoxyphenyl)-2-naphthoate (10e):

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{6}$ Exact Mass: 520.19

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{e}(218 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), 10e was isolated as colorless crystals (146 mg , 56%), mp. $175-177{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.71-6.75 (m, 2H, ArH), 6.89-7.06 (m, 7H, ArH), 7.14-7.20 (m, 2H, ArH), 7.32-7.44 (m, 2H, ArH), 7.70 (dd, $J=$ 8.1, 1.3 Hz, 1H, ArH), 7.86 (s, 1H, ArH), 7.93 (dd, $J=8.0,1.3$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.1\left(4 \mathrm{OCH}_{3}\right), 111.1(\mathrm{CH}), 111.3(\mathrm{CH})$, $113.4(\mathrm{CH}), 113.6(\mathrm{CH}), 121.4(2 \mathrm{CH}), 122.5(2 \mathrm{CH}), 125.8(\mathrm{CH}), 126.1(\mathrm{CH}), 126.3(\mathrm{CH})$, 126.7 (CH), $127.7(\mathrm{CH}), 127.9$ (C), 128.2 (CH), 129.4 (2CH), 131.3 (C), 132.6 (C), 133.3 (C), 133.5 (C), 140.2 (C), 140.3 (C), 148.7 (C), 148.8 (2C), 148.9 (C), 150.8 (C), 167.3 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3011$ (w), 2958 (w), 2836 (w), 1747 (m), 1609 (m), 1505 (m), 1486 (w), 1376 (w), 1304 (m), 1208 (s), 1189 (s), 1157 (s), 1092 (m), 1030 (m), 926 (w), 828 (m), 767 (m), $687(\mathrm{~m}), 586(\mathrm{w}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%): 520\left(\mathrm{M}^{+}, 15\right), 428$ (55), 427 (100), 412 (10), 396 (10), 384 (5), 311 (2), 283 (1), 239 (1), 206 (3), 94 (3); HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]: 520.18804$ found 520.18795 .

Phenyl 1,4-diphenyl-2-naphthoate (10f):

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{2}$ Exact Mass: 400.15

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{f}(146 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), $\mathbf{1 0 f}$ was isolated as colorless crystals (146 mg , 73%), mp. $96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.64-$ 6.80 (m, 2H, ArH), 7.00-7.17 (m, 3H, ArH), 7.28-7.48 (m, 12H, ArH), 7.60 (dd, $J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.88(\mathrm{dd}, J=8.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=121.5(2 \mathrm{CH}), 125.8(\mathrm{CH}), 126.4(\mathrm{CH}), 126.5(\mathrm{CH})$, $126.8(\mathrm{CH}), 127.6(\mathrm{C}), 127.8(\mathrm{CH}), 127.9(2 \mathrm{CH}), 128.3(2 \mathrm{CH}), 128.4(\mathrm{CH}), 128.6(2 \mathrm{CH})$, $129.4(2 \mathrm{CH}), 130.1(2 \mathrm{CH}), 130.2(2 \mathrm{CH}), 133.2(\mathrm{C}), 133.4(\mathrm{C}), 139.1(\mathrm{C}), 140.0(\mathrm{C}), 140.5$ (C), 141.1 (C), 150.8 (C), 167.2 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3027$ (w), 2923 (w), 2850 (w), 1731 (m), 1590 (w), 1490 (w), 1379 (w), 1238 (m), 1210 (m), 1187 (s), 1096 (s), 1029 (w), 931 (w), $760(\mathrm{~m}), 698(\mathrm{~s}), 686(\mathrm{~s}) ; \operatorname{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 400\left(\mathrm{M}^{+}, 2\right), 308(25), 307$ (100), 278 (11), 277 (13), 276 (13), 202 (4), 138 (2), 65 (2); HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{2}$ $\left[\mathrm{M}^{+}\right]: 400.14578$ found 400.14612.

Phenyl 1,4-bis(4-chlorophenyl)-2-naphthoate (10g):

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{2}$ Exact Mass: 468.07

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{~g}(187 \mathrm{mg}, 1.2 \mathrm{mmol})$ and 1,4-dioxane (4 mL), $\mathbf{1 0 g}$ was isolated as colorless crystals (185 mg, 79\%), mp. $170-172{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=6.72-6.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.02-7.26(\mathrm{~m}, 5 \mathrm{H}$, ArH), 7.32-7.45 (m, 8H, ArH), 7.53 (dd, $J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.82 (dd, $J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.91 (s, 1H, ArH); ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=121.4$ (2CH), 126.0 (CH), 126.1 (CH), 126.6 (CH), 127.1 (CH), 127.2 (C), 128.2 $(\mathrm{CH}), 128.3$ (CH), 128.6 (2CH), 128.9 (2CH), $129.5(2 \mathrm{CH})$, 131.3 (2CH), 131.5 (2CH), 133.2 (C), 133.3 (C), 133.9 (C), 134.1 (C), 137.4 (C), 138.3 (C), 139.5 (C), 140.6 (C), 150.7 (C), 166.5 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3063$ (w), 2919 (w), 2850 (w), 1716 (m), 1590 (w), 1488 (m), 1376 (m), 1369 (m), 1244 (m), 1218 (s), 1192 (s), 1087 (s), 1013 (m), 907 (m), 823 (s), 764 (s), 740 (s), $690(\mathrm{~s}), 570(\mathrm{~m}) ;$ MS (GC, 70 eV): m/z (\%): $470\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}, 3\right), 468\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}, 3\right), 378$ (16), 377 (67), 376 (27), 375 (100), 342 (11), 340 (35), 312 (21), 277 (11), 276 (33), 138 (7), 65 (5); HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{18}$ $\mathrm{O}_{2} \mathrm{Cl}_{2}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}\right]: 468.06784$ found 468.06884 .

Phenyl 1,4-bis(3,4-dimethoxyphenyl)-2-naphthoate (10h):

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{6}$ Exact Mass: 520.19

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 h(218 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $1,4-$ dioxane (4 mL), 10h was isolated as colorless crystals (164 mg , 63%), mp. $140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.73$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.71-6.75 (m, 2H, ArH), 6.89-7.06 (m, 7H, ArH), 7.14-7.20 (m, 2H, ArH), 7.32-7.44 (m, 2H, ArH), 7.70 (dd, $J=$ $8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.86 (s, 1H, ArH), 7.93 (dd, $J=8.0,1.3$ $\mathrm{Hz}, \quad 1 \mathrm{H}, ~ \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.1$ $\left(4 \mathrm{OCH}_{3}\right), 111.1(\mathrm{CH}), 111.3(\mathrm{CH}), 113.4(\mathrm{CH}), 113.6(\mathrm{CH})$, $121.4(2 \mathrm{CH}), 122.5(2 \mathrm{CH}), 125.8(\mathrm{CH}), 126.1(\mathrm{CH}), 126.3(\mathrm{CH}), 126.7(\mathrm{CH}), 127.7(\mathrm{CH})$, 127.9 (C), 128.2 (CH), 129.4 (2CH), 131.3 (C), 132.6 (C), 133.3 (C), 133.5 (C), 140.2 (C), 140.3 (C), 148.7 (C), 148.8 (2C), 148.9 (C), 150.8 (C), 167.3 (C=O); IR (ATR, cm^{-1}):
$\widetilde{v}=3066$ (w), 2931 (w), 2834 (w), 1732 (m), 1589 (w), 1510 (s), 1461 (m), 1372 (m), 1238 (s), 1220 (s), 1187 (s), 1095 (s), 1023 (s), 923 (w), 761 (m), 687 (m), 597 (w); MS (GC, 70 $\mathrm{eV}): m / z(\%): 520\left(\mathrm{M}^{+}, 16\right), 428$ (27), 427 (63), 410 (11), 396 (54), 239 (7), 183 (100), 170 (21), 147 (29), 120 (89), 107 (27); HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{6}\left[\mathrm{M}^{+}\right]: 520.18804$ found 520.18900 .

Phenyl 1-(2-ethoxyphenyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (11a):

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}$ Exact Mass: 516.09

Starting with $8(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{k}(91 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11a was isolated as colorless crystals ($152 \mathrm{mg}, 59 \%$), mp. $87-89{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.98\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.00 (dt, $J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.06-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.46$ (dt, $J=8.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), $7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.66(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.04(\mathrm{~s}, 1 \mathrm{H}$, ArH), $8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.7\left(\mathrm{CH}_{3}\right), 64.1$ $\left(\mathrm{OCH}_{2}\right), 112.3(\mathrm{CH}), 118.3(\mathrm{CH}), 119.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.6(\mathrm{CH}), 121.0(\mathrm{CH})$, 121.4 (2CH), 126.0 (CH), 126.9 (C), 127.7 (C), 128.1 (CH), 128.3 (C), 128.7 (CH), 129.5 $(2 \mathrm{CH}), 129.7(\mathrm{CH}), 129.9(\mathrm{CH}), 131.3(\mathrm{CH}), 134.6(\mathrm{C}), 140.3(\mathrm{C}), 145.0(\mathrm{C}), 150.8(\mathrm{C})$, $156.6(\mathrm{C}), 165.2(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.16\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR (ATR, cm^{-1}): $\widetilde{v}=3063$ (w), 2926 (w), 2854 (w), 1744 (m), 1598 (w), 1491 (m), 1421 (m), 1332 (w), 1244 (m), 1201 (s), 1185 (s), 1127 (s), 1012 (s), 925 (m), 843 (m), 753 (s), 724 (s), 687 (m), 607 (s); MS (GC, 70 eV): m/z (\%): 516 ($\mathrm{M}^{+}, 7$), 424 (19), 423 (90), 396 (19), 395 (100), 263 (16), 262 (78), 261 (20), 234 (26), 233 (25), 205 (28), 176 (17), 65 (6); HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{~S},\left[\mathrm{M}^{+}\right]: 516.08490$ found 516.08473.
Phenyl 1-(2,4-dimethoxyphenyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (11b):

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{e}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11b was isolated as brownish semisolid ($176 \mathrm{mg}, 66 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.55(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.51-6.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 6.81-6.86 (m, 2H, ArH), 7.0 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.06-

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}$
Exact Mass: 532.08
$7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.45(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.61-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.6\left(\mathrm{OCH}_{3}\right), 55.8$ $\left(\mathrm{OCH}_{3}\right), 99.0(\mathrm{CH}), 104.6(\mathrm{CH}), 118.2(\mathrm{CH}), 118.9(\mathrm{C}), 119.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.0$ $(\mathrm{CH}), 121.5(2 \mathrm{CH}), 126.1(\mathrm{CH}), 127.9(\mathrm{C}), 128.2(\mathrm{CH}), 128.3(\mathrm{C}), 128.7(\mathrm{CH}), 129.5(2 \mathrm{CH})$, $129.7(\mathrm{CH}), 131.5(\mathrm{CH}), 135.0(\mathrm{C}), 140.1$ (C), 145.0 (C), 150.8 (C), 158.3 (C), 161.5 (C), $165.1(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.08\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$: $\widetilde{v}=3072$ (w), 2937 (w), 2837 (w), 1729 (m), 1591 (m), 1512 (m), 1417 (m), 1337 (m), 1203 (s), 1186 (s), 1132 (s), 1011 (s), 965 (m), 830 (s), 762 (s), 687 (m), 597 (s); MS (EI, 70 eV): m / z (\%): $532\left(\mathrm{M}^{+}, 17\right), 440$ (18), 439 (100), 307 (15), 306 (52), 275 (14), 263 (21), 220 (5) 176 (4), 94 (18), 69 (11), 45 (27), 44 (40), 43 (49); HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~F}_{3} \mathrm{~S}$, $\left[\mathrm{M}^{+}\right]: 532.07981$ found 532.07979 .

Phenyl 1-(2,6-dimethoxyphenyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (11c):

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}$ Exact Mass: 532.08

Starting with $8(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{i}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11c was isolated as colorless crystals ($88 \mathrm{mg}, 33 \%$), mp. $162-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.53\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar}), 6.79-6.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06-7.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.20-$ $7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.33(\mathrm{t}, J=8.26,1 \mathrm{H}, \mathrm{ArH}), 7.41-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.64 (dt, $J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.07 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.08 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.9\left(2 \mathrm{OCH}_{3}\right), 104.1(2 \mathrm{CH}), 114.8(\mathrm{C}), 118.3$ $(\mathrm{CH}), 118.8\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.9(\mathrm{CH}), 121.3(2 \mathrm{CH}), 125.7(\mathrm{CH}), 127.7(\mathrm{C}), 127.9$ $(\mathrm{CH}), 128.0(\mathrm{CH}), 128.2(\mathrm{C}), 129.3(2 \mathrm{CH}), 129.5(\mathrm{CH}), 129.9(\mathrm{CH}), 130.1(\mathrm{CH}), 134.3(\mathrm{C})$, 137.0 (C), 144.9 (C), 150.7 (C), 157.8 (2C), 164.7 (C=O); ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz} . \mathrm{CDCl}_{3}$): δ $=-73.24\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \operatorname{IR} \widetilde{v}=\mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=3014(\mathrm{w}), 2937(\mathrm{w}), 2839(\mathrm{w}), 1723(\mathrm{~m})$, 1589 (w), 1510 (w), 1470 (m), 1413 (m), 1336 (m), 1247 (m), 1192 (s), 1109 (s), 1011 (m), $956(\mathrm{~m}), 828(\mathrm{~m}), 747(\mathrm{~m}), 687(\mathrm{~m}), 599(\mathrm{~m})$; MS (EI, 70 eV$): m / z(\%): 532\left(\mathrm{M}^{+}, 4\right), 441(7)$, 440 (21), 439 (100), 306 (17), 275 (25), 263 (20), 248 (4), 220 (6) 176 (2), 94 (3), 69 (4), 43 (5); HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~F}_{3} \mathrm{~S},\left[\mathrm{M}^{+}\right]: 532.07981$ found 532.080106 .

Phenyl 1-(4-chlorophenyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (11d):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{CIF}_{3} \mathrm{O}_{5} \mathrm{~S}$ Exact Mass: 506.02

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{~g}(86 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11d was isolated as colorless crystals ($185 \mathrm{mg}, 73 \%$), mp. $82-84{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=6.78-6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.08-7.53(\mathrm{~m}, 9 \mathrm{H}$, ArH), 7.68 (dt, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $8.03(\mathrm{~s}, 1 \mathrm{H}$, ArH), $8.11(\mathrm{~d}, \quad J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=118.1(\mathrm{CH}), 118.9\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.2(\mathrm{CH}), 121.3$ (2CH), $126.3(\mathrm{CH}), 127.1(\mathrm{C}), 128.3(\mathrm{C}), 128.5(\mathrm{CH}), 128.7(\mathrm{CH}), 128.8(2 \mathrm{CH}), 129.7$ (2CH), 130.1 (CH), 131.1 (2CH), 134.5 (2C), 136.1 (C), 142.0 (C), 145.3 (C), 150.5 (C), $164.8(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.04\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$: $\widetilde{v}=3074(\mathrm{w}), 1731$ (m), 1591 (w), 1490 (m), 1420 (m), 1336 (m), 1240 (m), 1186 (s), 1135 (s), 1087 (m), 1011 (s), 964 (m), 825 (s), 762 (s), 686 (m), 597 (s). MS (GC, 70 eV$): m / z(\%)$: $506\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 2\right), 415$ (40), 414 (22), 413 (100), 245 (49), 217 (28), 189 (20), 65 (4), 39 (2). HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{ClF}_{3} \mathrm{~S},\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 506.01971$ found 506.02008.

Phenyl 1-(3-methoxyphenyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (11e):

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}$ Exact Mass: 502.07

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{~d}(84 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11e was isolated as colorless semisolid ($173 \mathrm{mg}, 69 \%$); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.71$ (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.74-6.77 (m, 2H, ArH), 6.84-6.96 (m, 3H, ArH), 7.06-7.25 (m, 3H, ArH), 7.33 ($\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.48 (dt, $J=8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.36-7.70 (m, 2H, ArH), $7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}),{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $55.5\left(\mathrm{OCH}_{3}\right), 114.0(\mathrm{CH}), 115.5(\mathrm{CH}), 118.0(\mathrm{CH}), 119.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.0$ $(\mathrm{CH}), 121.4(2 \mathrm{CH}), 122.4(\mathrm{CH}), 126.2(\mathrm{CH}), 127.4(\mathrm{C}), 128.2(\mathrm{C}), 128.5(\mathrm{CH}), 128.8(\mathrm{CH})$, 129.5 (3CH), 129.9 (CH), 134.5 (C), 139.0 (C), 142.7 (C), 145.1 (C), 150.6 (C), 159.7 (C), $165.3(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.08\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; $\mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$: $\widetilde{v}=3072$ (w), 2939 (w), 2836 (w), 1729 (m), 1589 (m), 1509 (w), 1487 (m), 1419 (s), 1336 (m), 1243 (m), 1186 (s), 1134 (s), 1014 (s), 859 (m), 813 (s), 762 (s), 686 (s), 598 (s$) ; \mathrm{MS}$ (EI, 70 eV): $m / z(\%): 502\left(\mathrm{M}^{+}, 3\right), 410(19), 409$ (100), 408 (38), 276 (92), 275 (22), 205
(10), 176 (8), 119 (3), 94 (6), 69 (10), 43 (33); HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{~S}$, $\left[\mathrm{M}^{+}\right]$: 502.06925 found 502.06944 .

Phenyl 1-(2-methoxyphenyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (11f):

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(160 \mathrm{mg}, 0.75$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{j}(84 \mathrm{mg}, 0.55 \mathrm{mmol})$ and 1,4-dioxane (4 mL), 11f was isolated as colorless crystals ($156 \mathrm{mg}, 62 \%$), mp. $85-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.73-6.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.90-7.21$
Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.35(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.44(\mathrm{~d}, J$
Exact Mass: 502.07 $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.57-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.07(\mathrm{~d}, J$
$=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.7\left(\mathrm{OCH}_{3}\right), 111.1(\mathrm{CH}), 118.3$ $(\mathrm{CH}), 118.9\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 120.7(\mathrm{CH}), 121.1(\mathrm{CH}), 121.4(2 \mathrm{CH}), 126.0(\mathrm{CH})$, 126.6 (C), 127.6 (C), 128.2 (CH), 128.3 (C), 128.6 (CH), 129.5 (2CH), 129.8 (CH), 130.7 $(\mathrm{CH}), 131.0(\mathrm{CH}), 134.6$ (C), 140.2 (C), 145.1 (C), 150.7 (C), 157.3 (C), 165.5 (C=O); ${ }^{19}$ F NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.16\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; $\mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right) \widetilde{v}=3072(\mathrm{w}), 2917$ (w), 2848 (w), 1728(m), 1600 (w), 1492 (m), 1419 (m), 1337 (m), 1247 (m), 1186 (s), 1135 (s), 1121 (s), 1012 (s), 964 (m), 834 (s), 751 (s), 597 (s); MS (EI, 70 eV): m/z (\%): 502 (M^{+}, 4), 410 (20), 409 (100), 345 (5), 276 (22), 261 (14), 233 (25), 205 (8), 189 (4), 176 (5), 94 (3), 65 (3); HRMS Pos (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 503.0771 found 503.0774 and exact ion mass is 502.0698 .

General Procedure for synthesis of 12a-f:

The reaction was carried out in a pressure tube. To a dioxane suspension (4 mL) of 2 (272 $\mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(159 \mathrm{mg}, 0.75 \mathrm{mmol})$ was added $\mathrm{Ar}^{1} \mathrm{~B}(\mathrm{OH})_{2}$ $(0.55 \mathrm{mmol})$ and the solution was degassed by bubbling argon through the solution for 10 min . The reaction mixture was heated at $95^{\circ} \mathrm{C}$ under argon atmosphere for 7 h . The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and $\mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}(0.65 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(159 \mathrm{mg}, 0.75 \mathrm{mmol})$ were added. The reaction mixture was heated under Argon atmosphere for 8 h at $110^{\circ} \mathrm{C}$. They were diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc / heptanes).

Phenyl 4-(3,4-dimethoxyphenyl)-1-(4-(trifluoromethyl)phenyl)-2-naphthoate (12a):

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{4}$ Exact Mass: 528.15 Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 b(104 \mathrm{mg}, 0.55 \mathrm{mmol}), 1,4-$ dioxane (4 mL), and 9h ($118 \mathrm{mg}, 0.65 \mathrm{mmol}$), 12a was isolated as colourless crystals ($134 \mathrm{mg}, 51 \%$), mp. 163$165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.70-6.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.01-7.11 (m, 3H, ArH), 7.17-7.24 (m, 2H, ArH), 7.40 (dd, $J=7.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.44-7.50 (m, 4H, ArH), 7.68-7.71 (m, 2H, ArH), 7.95-7.99 (m, 1H, ArH), 8.0 (s, 1H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.0$ $\left(\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{OCH}_{3}\right), 111.3(\mathrm{CH}), 113.3(\mathrm{CH}), 121.2(2 \mathrm{CH}), 122.4(\mathrm{CH}), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272\right.$ $\mathrm{Hz}, \mathrm{CF}), 125.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}, 2 \mathrm{CH}\right), 125.9(\mathrm{CH}), 126.4(\mathrm{CH}), 126.5(\mathrm{CH}), 126.8(\mathrm{C}), 126.9$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 128.1(\mathrm{CH}), 129.4(2 \mathrm{CH}), 129.9\left(\mathrm{q}, J_{\mathrm{CF}}=32.5 \mathrm{~Hz}, \mathrm{C}\right), 130.3(2 \mathrm{CH}), 132.3$ (C), 132.8 (C), 133.7 (C), 139.7 (C), 140.9 (C), 143.1 (C), 148.9 (C), 149.0 (C), 150.5 (C), $166.2(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-62.38\left(3 \mathrm{~F}, \mathrm{ArCF}_{3}\right) . \mathrm{IR} \widetilde{v}=\mathrm{IR}(\mathrm{ATR}$, cm^{-1}): $\widetilde{v}=3065$ (w), 2966 (w), 2838 (w), 1712 (m), 1597 (w), 1515 (m), 1406 (w), 1320 (m), 1239 (m), 1212 (m), 1159 (s$), 1101$ (s$), 1023(\mathrm{~m}), 923(\mathrm{w}), 775(\mathrm{~m}), 744(\mathrm{~m}), 685(\mathrm{~m})$, $623(\mathrm{~m}), 549(\mathrm{w})$; MS (EI, 70 eV$): m / z(\%): 528\left(\mathrm{M}^{+}, 18\right), 436(27), 435(100), 376(4), 333$ (4), 252 (3), 207 (3), 153 (3), 94 (18), 69 (13), 60 (25), 43 (29); HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{23}$ $\mathrm{O}_{4} \mathrm{~F}_{3}\left[\mathrm{M}^{+}\right]: 528.15430$ found 528.154433 .

Phenyl 4-(3,4-dimethoxyphenyl)-1-(3-methoxyphenyl)-2-naphthoate (12b):

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{5}$ Exact Mass: 490.18

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{~d}(84 \mathrm{mg}, 0.55 \mathrm{mmol}), 1,4-$ dioxane (4 mL), and $\mathbf{9 h}(118 \mathrm{mg}, 0.65 \mathrm{mmol}), \mathbf{1 2 b}$ was isolated as colourless crystals ($113 \mathrm{mg}, 46 \%$), mp. 143-145 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.70-6.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.92-7.08$ (m, 7H, ArH), 7.16-7.22 (m, 2H, ArH), 7.31-7.39 (m, 2H, ArH), $7.44(\mathrm{dt}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $7.90(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$. ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5\left(\mathrm{OCH}_{3}\right), 56.2\left(2 \mathrm{OCH}_{3}\right), 111.4(\mathrm{CH}), 113.5(2 \mathrm{CH})$,
$115.8(\mathrm{CH}), 121.5(2 \mathrm{CH}), 122.6(\mathrm{CH}), 122.7(\mathrm{CH}), 125.9(\mathrm{CH}), 126.3(\mathrm{CH}), 126.4(\mathrm{CH})$, $126.8(\mathrm{CH}), 127.5(\mathrm{C}), 127.9(\mathrm{CH}), 128.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.4(2 \mathrm{CH}), 132.7(\mathrm{C}), 133.1$ (C), 133.6 (C), 140.4 (2C), 140.6 (C), 148.9 (C), 149.0 (C), 150.9 (C), 159.6 (C), 167.2 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3060$ (w), 2948 (w), 2831 (w), 1737 (s), 1586 (m), 1514 (m), 1407 (w), 1316 (w), 1241 (m), 1220 (s), 1187 (s), 1135 (s), 1100 (s), 1022 (s), 935 (w), 812 (m), 766 (m), $686(\mathrm{~m}), 595(\mathrm{w})$; MS (EI, 70 eV$): m / z(\%): 490\left(\mathrm{M}^{+}, 14\right), 398$ (28), 397 (100), 339 (3), 239 (3), 149 (3), 123 (5), 111 (4), 97 (7), 57 (13), 44 (19), 43 (27); HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]: 490.17748$ found 490.17793 .

Phenyl 1-(2,4-dimethoxyphenyl)-4-p-tolyl-2-naphthoate (12c):

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{4}$ Exact Mass: 474.18

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{e}(100 \mathrm{mg}, 0.55 \mathrm{mmol}), 1,4-$ dioxane (4 mL), and $\mathbf{9 c}(88 \mathrm{mg}, 0.65 \mathrm{mmol})$, 12c was isolated as brown semisolid ($149 \mathrm{mg}, 63 \%$); ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.53-6.56 (m, 2H, ArH), 6.79-6.82 (m, 2H, ArH), 7.02-7.08 (m, 2H, ArH), 7.17-7.40 (m, 7H, ArH), 7.62 (dd, $J=$ 7.7, 1.3 Hz, 1H, ArH), 7.89 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.94 (s, $1 \mathrm{H}, \mathrm{ArH}), 8.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $21.4\left(\mathrm{CH}_{3}\right), 55.6\left(\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{OCH}_{3}\right), 99.1(\mathrm{CH}), 104.5(\mathrm{CH}), 120.5(\mathrm{C}), 121.7(2 \mathrm{CH})$, $125.7(\mathrm{CH}), 126.4(\mathrm{CH}), 126.5(\mathrm{CH}), 126.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.9(\mathrm{C}), 128.3(\mathrm{CH}), 129.3$ (2CH), 129.4 (2CH), 130.2 (2CH), 131.7 (CH), 133.6 (C), 133.7 (C), 137.3 (C), 137.5 (C), 138.0 (C), 140.1 (C), 151.1 (C), 158.5 (C), 161.0 (C), 166.9 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3065$ (w), 2933 (w), 2834 (w), 1731 (m), 1591 (w), 1508 (m), 1414 (w), 1302 (m), 1234 (m), 1205 (s), 1186 (s), 1156 (s), 1091 (s), 1030 (s), 981 (m), 823 (m), 763 (s), 686 (m), 596 (m); MS (EI, 70 eV): m/z (\%): 474 ($\mathrm{M}^{+}, ~ 9$), 382 (25), 381 (100), 323 (7), 183 (2), 149 (3), 97 (4), 69 (7), 57 (7), 44 (16), 43 (23); HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 474.18256$ found 474.18229 .

Phenyl 4-(4-methoxyphenyl)-1-p-tolyl-2-naphthoate (12d):

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{3}$ Exact Mass: 444.17

Starting with $8(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{c}(75 \mathrm{mg}, 0.55 \mathrm{mmol}), 1,4-$ dioxane (4 mL), and $\mathbf{9 n}(99 \mathrm{mg}, 0.65 \mathrm{mmol}), \mathbf{1 2 d}$ was isolated as colourless crystals ($145 \mathrm{mg}, 65 \%$), mp. 112-114 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.69-6.72 (m, 2H, ArH), 6.92-7.05 (m, 3H, ArH), 7.14-7.40 (m, $10 \mathrm{H}, \mathrm{ArH}$), 7.63 (dd, $J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.87(\mathrm{~s}, 1 \mathrm{H}$, ArH), $7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 114.1(2 \mathrm{CH}), 121.6$ (2CH), 125.8 (CH), 126.3 (CH), $126.4(\mathrm{CH}), 126.6(\mathrm{CH}), 127.7$ (C), $127.8(\mathrm{CH}), 128.4(\mathrm{CH}), 129.0(2 \mathrm{CH}), 129.4(2 \mathrm{CH}), 130.0(2 \mathrm{CH}), 131.4(2 \mathrm{CH}), 132.4$ (C), 133.4 (C), 133.6 (C), 136.0 (C), 137.3 (C), 140.0 (C), 141.0 (C), 150.9 (C), 159.5 (C), 167.2 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3039$ (w), 2929 (w), 2835 (w), 1741 (m), 1593 (w), 1510 (m), 1414 (w), 1302 (w), 1245 (m), 1198 (s), 1181 (s), 1161 (s), 1097 (s), 1032 (m), 982 (m), 832 (m), 749 (s), 686 (m), 594 (m); MS (EI, 70 eV): m/z (\%): 444 (M ${ }^{+}, 14$), 352 (39), 351 (100), 308 (8), 263 (6), 215 (4), 144 (4), 111 (4), 97 (6), 69 (9), 57 (10), 44 (10), 43 (18); HRMS (EI) calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 444.17200 found 444.17190 .

Phenyl 1-(3-chlorophenyl)-4-(4-methoxyphenyl)-2-naphthoate (12e):

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{ClO}_{3}$ Exact Mass: 464.12

Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol}-\%$), 91 ($86 \mathrm{mg}, 0.55 \mathrm{mmol}$), $1,4-$ dioxane (4 mL), and $9 \mathbf{n}(99 \mathrm{mg}, 0.65 \mathrm{mmol})$, 12e was isolated as colourless semisolid ($142 \mathrm{mg}, 61 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.75-6.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.95$ (td, $J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.02-7.43(\mathrm{~m}, 11 \mathrm{H}, \mathrm{ArH}), 7.53$ (dd, $J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.92$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.93 (brs, $2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.6$ $\left(\mathrm{OCH}_{3}\right), 114.1(2 \mathrm{CH}), 121.5(2 \mathrm{CH}), 126.0(\mathrm{CH}), 126.5(\mathrm{CH})$, $126.6(\mathrm{CH}), 127.0(\mathrm{CH}), 127.2(\mathrm{C}), 127.9(\mathrm{CH}), 128.0(\mathrm{CH}), 128.1(\mathrm{CH}), 128.4(\mathrm{CH}), 129.5$ (2CH), $129.6(\mathrm{CH}), 130.1(\mathrm{CH}), 131.3(2 \mathrm{CH}), 132.2(\mathrm{C}), 133.0(\mathrm{C}), 133.7(\mathrm{C}), 134.3(\mathrm{C})$, 139.5 (C), 140.7 (C), 141.1 (C), 150.8 (C), 159.6 (C), 166.6 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3040$ (w), 2929 (w), 2835 (w), 1731 (m), 1591 (w), 1504 (m), 1417 (w), 1377 (m), 1242
(s), 1210 (m), 1186 (s), 1160 (s), 1102 (s$), 1031$ (m), 992 (m), 833 (m), 764 (s), 686 (m), 582 (w); MS (GC, 70 eV): $m / z(\%): 464\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 7\right.$), 372 (26), 371 (100), 336 (32), 308 (15), 276 (4), 263 (18), 237 (3), 132 (9), 65 (4); HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 464.11737 found 464.11658 .

Phenyl 4-(4-methoxyphenyl)-1-(4-vinylphenyl)-2-naphthoate (12f):

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3}$ Exact Mass: 456.17 Starting with 8 ($272 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(318 \mathrm{mg}, 1.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%), 9 \mathrm{~m}(81 \mathrm{mg}, 0.55 \mathrm{mmol}), 1,4-$ dioxane (4 mL), and $\mathbf{9 n}(99 \mathrm{mg}, 0.65 \mathrm{mmol})$, $\mathbf{1 2 f}$ was isolated as colourless crystals ($153 \mathrm{mg}, 67 \%$), mp. 103-105 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.20(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}$, vinyl), 5.72 (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl), 6.66-6.75 (m, $3 \mathrm{H}, 2 \mathrm{ArH}+1$ vinyl H), 6.93-7.04 (m, 3H, ArH), 7.13-7.45 (m, $10 \mathrm{H}, \mathrm{ArH}$), 7.61 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.90 (s, 1H, ArH), 7.91 (dd, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5\left(\mathrm{OCH}_{3}\right), 114.1(2 \mathrm{CH}), 114.3\left(\mathrm{CH}_{2}\right), 121.6(2 \mathrm{CH})$, $125.9(\mathrm{CH}), 126.2(2 \mathrm{CH}), 126.4(\mathrm{CH}), 126.5(\mathrm{CH}), 126.7(\mathrm{CH}), 127.5(\mathrm{C}), 127.9(\mathrm{CH}), 128.3$ (CH), 129.4 (2CH), $130.4(2 \mathrm{CH}), 131.3$ (2CH), 132.3 (C), 133.2 (C), 133.7 (C), 136.7 (CH), 137.1 (C), 138.7 (C), 140.2 (C), 140.7 (C), 150.9 (C), 159.5 (C), 167.1 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3065$ (w), 2930 (w), 2834 (w), 1732 (m), 1606 (m), 1591 (w), 1509 (m), 1416 (w), 1303 (w), 1241 (s), 1186 (s), 1160 (s), 1095 (s), 1030 (m), 982 (m), 831 (s), 764 (s), 686 (m), 595 (m); MS (GC, 70 eV): m/z (\%): 456 ($\mathrm{M}^{+}, 7$), 364 (28), 363 (100), 321 (7), 289 (8), 263 (7), 207 (27), 181 (3), 94 (5), 32 (20); HRMS (EI) calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 456.17200$ found 456.17161.

General Procedure for synthesis of $14 a-\mathrm{f}$ and $15 a, \mathrm{~b}$:

The reaction was carried out in a pressure tube under argon atmosphere. To a DMF suspension of $\mathbf{8}(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Bu} u_{4} \mathrm{NI}$, after stirring for 10 min was added dry CuI. Again after 10 min stirring triethylamine, was added followed by slow drop wise addition of alkyne. The reaction mixture was stirred at temperature of 80 or $60^{\circ} \mathrm{C}$ for 4 h for products $\mathbf{1 4}$ or $\mathbf{1 5}$ respectively under argon atmosphere. After cooling to $20^{\circ} \mathrm{C}$, then distilled water was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purifed by chromatography (silica gel, heptanes / EtOAc).

Phenyl 1,4-bis((4-tert-butylphenyl)ethynyl)-2-naphthoate (14a):

Chemical Formula: $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{O}_{2}$ Exact Mass: 560.27

Starting with 8 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry $\mathrm{CuI}(20 \mathrm{~mol} \%)$, triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}$ ($553 \mathrm{mg}, 1.5 \mathrm{mmol}$), 13a ($190 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), $\mathbf{1 4 a}$ was isolated after chromatography (silica gel, n-heptane/EtOAc) as light green crystals ($202 \mathrm{mg}, 72 \%$), mp. 212-213 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.27\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 7.24-7.41$ (m, 9H, ArH), 7.49-7.56 (m, 4H, ArH), 7.65-7.70 (m, 2H, ArH), 8.38 (s, 1H, ArH), 8.45 (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r H), ~ 8.68$ (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $31.3\left(3 \mathrm{CH}_{3}\right), 31.4\left(3 \mathrm{CH}_{3}\right), 35.1(2 \mathrm{C}), 85.8(\mathrm{C}), 86.5(\mathrm{C}), 97.0$ (C), 103.7 (C), 120.1 (C), 120.3 (C), 121.7 (C), 122.0 (2CH), 123.6 (C), 125.7 (2 CH), 125.8 (2 CH), 126.1 (CH), 126.9 (CH), $128.2(\mathrm{CH}), 128.4(\mathrm{CH}), 129.2(\mathrm{C}), 129.3(\mathrm{CH}), 129.8(2 \mathrm{CH}), 130.6(\mathrm{CH}), 131.7(2 \mathrm{CH})$, 131.9 (2CH), 133.7 (C), 134.6 (C), 151.3 (C), 152.4 (C), 152.6 (C), 165.0 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=2959(\mathrm{w}), 2864(\mathrm{w}), 2208(\mathrm{w}), 1746(\mathrm{~m}), 1591(\mathrm{w}), 1493(\mathrm{~m}), 1390(\mathrm{w}), 1215$ (m), 1196 (s$), 1189$ (s$), 1129$ (s$), 1044$ (m), 903 (m), 831 (s), 769 (m), 746 (m), 685 (m), 559 (s); MS (EI, 70 eV): m/z (\%): $560\left(\mathrm{M}^{+}, 14\right.$), 468 (35), 467 (100), 352 (2), 226 (9), 207 (4), 123 (2), 94 (12), 66 (17), 44 (48), 43 (16); HRMS (EI) calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 560.27098$ found 560.27228 .

Phenyl 1,4-bis(m-tolylethynyl)-2-naphthoate (14b):

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{2}$ Exact Mass: 476.18

Starting with 8 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry $\mathrm{CuI}(20 \mathrm{~mol} \%)$, triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}$ ($553 \mathrm{mg}, 1.5 \mathrm{mmol}$), 13b ($140 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), $\mathbf{1 4 b}$ was isolated after chromatography (silica gel, n-heptane/EtOAc) as yellow crystals ($183 \mathrm{mg}, 77 \%$), mp. $159-160{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.09-7.27(\mathrm{~m}$, 7H, ArH), 7.35-7.40 (m, 6H, ArH), 7.62-7.68 (m, 2H, ArH), 8.36 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 8.42 (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.64 (dd, $J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $21.4\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 86.0(\mathrm{C}), 86.7(\mathrm{C}), 97.0(\mathrm{C}), 103.7(\mathrm{C})$, 121.6 (C), 122.0 (2CH), 122.9 (C), 123.0 (C), 123.6 (C), 126.2 (CH), 126.8 (CH), 128.2 $(\mathrm{CH}), 128.4(\mathrm{CH}), 128.5(\mathrm{CH}), 128.6(\mathrm{CH}), 129.1(\mathrm{CH}), 129.2(\mathrm{C}), 129.3(\mathrm{CH}), 129.4(\mathrm{CH})$, $129.8(2 \mathrm{CH}), 129.9(\mathrm{CH}), 130.1(\mathrm{CH}), 130.6(\mathrm{CH}), 132.5(\mathrm{CH}), 132.7(\mathrm{CH}), 133.6(\mathrm{C}), 134.6$ (C), 138.3 (C), 138.4 (C), 151.2 (C), 164.8 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3062(\mathrm{w}), 2952(\mathrm{w})$, 2856 (w), 2199 (w), 1738 (m), 1591 (w), 1484 (m), 1371 (w), 1214 (m), 1187 (s), 1163 (m), 1125 (s), 1047 (m), 898 (m), 837 (w), 773 (s), 757 (s), 687 (s), 553 (m); MS (EI, 70 eV): m/z (\%): $476\left(\mathrm{M}^{+}, 13\right.$), 384 (30), 383 (100), 355 (14), 340 (12), 339 (16), 337 (11), 263 (2), 169 (5), 119 (2), 94 (7), 44 (6), 40 (7); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 476.17708$ found 476.17798 .

Phenyl 1,4-bis((3-methoxyphenyl)ethynyl)-2-naphthoate (14c):

Chemical Formula: $\mathrm{C}_{3} \mathrm{H}_{24} \mathrm{O}_{4}$ Exact Mass: 508.17

Starting with 8 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry $\mathrm{CuI}(20 \mathrm{~mol} \%)$, triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}$ ($553 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathbf{1 3 c}$ ($158 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), $\mathbf{1 4 c}$ was isolated after chromatography (silica gel, n-heptane/EtOAc) as greenish yellow solid ($173 \mathrm{mg}, 68 \%$), mp. $129-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right)$, 6.77-6.83 (m, 2H, ArH), $6.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.06-7.24 (m, 8H, ArH), 7.30-7.35 (m, 2H, ArH), 7.57-7.62 (m, $2 \mathrm{H}, \mathrm{ArH}$), $8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.35(\mathrm{dd}, J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$,

ArH), $8.58(\mathrm{dd}, J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.4\left(\mathrm{OCH}_{3}\right)$, $55.5\left(\mathrm{OCH}_{3}\right), 86.1(\mathrm{C}), 86.8(\mathrm{C}), 96.7(\mathrm{C}), 103.4(\mathrm{C}), 115.6(\mathrm{CH}), 116.0(\mathrm{CH}), 116.5(\mathrm{CH})$, $116.7(\mathrm{CH}), 121.5(\mathrm{C}), 122.0(2 \mathrm{CH}), 123.4(\mathrm{C}), 124.0(\mathrm{C}), 124.1(\mathrm{C}), 124.5(\mathrm{CH}), 124.7$ $(\mathrm{CH}), 126.1(\mathrm{CH}), 126.7(\mathrm{CH}), 128.2(\mathrm{CH}), 128.3(\mathrm{CH}), 129.1(\mathrm{C}), 129.4(\mathrm{CH}), 129.6(\mathrm{CH})$, 129.7 (3CH), $130.7(\mathrm{CH}), 133.5$ (C), 134.4 (C), 151.2 (C), 159.5 (C), 159.6 (C), 164.7 (C=O); IR (ATR, cm ${ }^{-1}$): $\widetilde{v}=3061$ (w), 2921 (w), 2851 (w), 2201 (w), 1736 (s), 1593 (m), 1486 (m), 1368 (w), 1282 (w), 1227 (s), 1192 (s), 1155 (s), 1125 (s), 1044 (s), 930 (w), 841 (m), 758 (s), 738 (s), 679 (s), $619(\mathrm{~m}), 549(\mathrm{w}) ;$ MS (EI, 70 eV$): m / z(\%): 508\left(\mathrm{M}^{+}, 19\right), 417$ (10), 416 (32), 415 (100), 387 (8), 313 (6), 300 (7), 208 (2), 150 (4), 94 (3), 44 (6); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 508.16691$ found 508.16567.

Phenyl 1,4-bis((3-fluorophenyl)ethynyl)-2-naphthoate (14d):

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{O}_{2}$ Exact Mass: 484.13

Starting with 8 (272 mg, 0.50 mmol$), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}(553 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathbf{1 3 d}(144 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), $\mathbf{1 4 d}$ was isolated after chromatography (silica gel, n-heptane/EtOAc) as yellow solid (150 mg, 62\%), mp. $\quad 167-168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=6.96-7.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.20-7.42(\mathrm{~m}, 11 \mathrm{H}$, ArH), 7.66-7.70 (m, 2H, ArH), 8.39 (s, 1H, ArH), 8.40 (dd, J $=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.61(\mathrm{dd}, J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=86.9$ (C), 87.8 (C), 95.5 $\left(\mathrm{d}, J_{\mathrm{CF}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 102.1\left(\mathrm{~d}, J_{\mathrm{CF}}=3.3 \mathrm{~Hz}, \mathrm{C}\right), 116.5\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=21.3 \mathrm{~Hz}, \mathrm{CH}), 116.6\left(\mathrm{~d}, J_{\mathrm{CF}}=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 118.7\left(\mathrm{~d}, J_{\mathrm{CF}}=22.8 \mathrm{~Hz}, \mathrm{CH}\right), 118.8\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $22.8 \mathrm{~Hz}, \mathrm{CH}), 121.5(\mathrm{C}), 121.9(2 \mathrm{CH}), 123.5(\mathrm{C}), 124.8\left(\mathrm{~d}, J_{\mathrm{CF}}=9.6 \mathrm{~Hz}, \mathrm{C}\right), 125.0\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $9.6 \mathrm{~Hz}, \mathrm{C}), 126.3(\mathrm{CH}), 126.7(\mathrm{CH}), 127.9\left(\mathrm{~d}, J_{\mathrm{CF}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{CF}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right)$, $128.3(\mathrm{CH}), 128.5(\mathrm{CH}), 129.4(\mathrm{C}), 129.7(\mathrm{CH}), 129.8(2 \mathrm{CH}), 130.3\left(\mathrm{~d}, J_{\mathrm{CF}}=8.6 \mathrm{~Hz}, \mathrm{CH}\right)$, $130.4\left(\mathrm{~d}, J_{\mathrm{CF}}=8.6 \mathrm{~Hz}, \mathrm{CH}\right), 130.9(\mathrm{CH}), 133.6(\mathrm{C}), 134.5(\mathrm{C}), 151.2(\mathrm{C}), 162.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=247\right.$ $\mathrm{Hz}, \mathrm{CF}), 162.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=247 \mathrm{~Hz}, \mathrm{CF}\right), 164.6(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.40 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-$ 112.47 (ArF), -112.59 (ArF); IR (ATR, cm^{-1}): $\widetilde{v}=3067(\mathrm{w}), 2188(\mathrm{w}), 1715(\mathrm{~s}), 1602(\mathrm{~m})$, 1571 (m), 1484 (m), 1370 (w), 1280 (w), 1231 (m), 1195 (m), 1186 (s), 1120 (m), 1038 (w), 927 (w), 874 (m), 761 (s), 736 (s), 682 (s), 619 (w), 527 (w); MS (EI, 70 eV): m/z (\%): 484 $\left(\mathrm{M}^{+}, 11\right.$), 393 (23), 392 (31), 391 (100), 364 (15), 363 (33), 362 (52), 360 (22), 342 (14), 181
(14), 98 (6), 94 (34), 83 (10), 69 (23), 43 (25); HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~F}_{2}\left[\mathrm{M}^{+}\right]$: 484.12694 found 484.12766 .

Phenyl 1,4-bis((4-methoxyphenyl)ethynyl)-2-naphthoate (14e):

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{4}$ Exact Mass: 508.17

Starting with 8 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}$ ($553 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathbf{1 3 e}(158 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), $\mathbf{1 4 e}$ was isolated after chromatography (silica gel, n-heptane/EtOAc) as greenish yellow solid ($160 \mathrm{mg}, 63 \%$), mp. $158-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.79(\mathrm{td}, J=8.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{td}, J=8.8,2.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.21-7.26 (m, 3H, ArH), 7.35-7.40 (m, 2H, ArH), 7.46-7.53 (m, 4H, ArH), 7.61-7.65 (m, 2H, ArH), 8.33 (s, $1 \mathrm{H}, \mathrm{ArH}), 8.40$ (dd, $J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.63 (dd, $J=7.2$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5$ $\left(2 \mathrm{OCH}_{3}\right), 85.4(\mathrm{C}), 86.0(\mathrm{C}), 96.8(\mathrm{C}), 103.8(\mathrm{C}), 114.3(2 \mathrm{CH})$, 114.4 (2CH), 115.2 (C), 115.4 (C), 121.5 (C), 122.0 (2CH), 123.7 (C), 126.1 (CH), 126.8 $(\mathrm{CH}), 128.1(\mathrm{CH}), 128.4(\mathrm{CH}), 128.8(\mathrm{C}), 129.2(\mathrm{CH}), 129.7(2 \mathrm{CH}), 130.4(\mathrm{CH}), 133.5$ (2CH), 133.6(C), 133.7 (2CH), 134.5 (C), 151.3 (C), 160.2 (C), 160.5 (C), 164.9 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3060(\mathrm{w}), 2932(\mathrm{w}), 2838$ (w), 2196 (w), 1744 (w), 1722 (w), 1602 (m), 1508 (s), 1450 (m), 1369 (w), 1288 (m), 1249 (s), 1190 (s), 1169 (s), 1128 (s), 1022 (s), 901 (m), 831 (s), 751 (s), 732 (m), $689(\mathrm{~m}), 619(\mathrm{~m}), 534(\mathrm{~m})$; MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%): 508\left(\mathrm{M}^{+}\right.$, 17), 417 (10), 416 (27), 415 (100), 387 (22), 301 (10), 300 (20), 194 (5), 172 (7), 150 (23), 137 (8), 94 (23), 66 (6), 55 (7), 43 (3); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 508.16691$ found 508.16707.

Phenyl 1,4-bis((6-methoxynaphthalen-2-yl)ethynyl)-2-naphthoate (14f):

Chemical Formula: $\mathrm{C}_{43} \mathrm{H}_{28} \mathrm{O}_{4}$ Exact Mass: 608.20

Starting with 8 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}$ ($553 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathbf{1 3 f}(218 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), $\mathbf{1 4 f}$ was isolated after chromatography (silica gel, n-heptane/EtOAc) as yellow solid ($158 \mathrm{mg}, 52 \%$), mp. 207-208 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.26-6.37(\mathrm{~m}, 4 \mathrm{H}$, ArH), 6.47-6.57 (m, 3H, ArH), 6.63-6.68 (m, 2H, ArH), 6.796.97 (m, 8H, ArH), 7.21 (brs, 1H, ArH), 7.27 (brs, 1H, ArH), 7.64 (s, 1H, ArH), 7.73 (dd, $J=6.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.96 (dd, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5\left(2 \mathrm{OCH}_{3}\right), 86.3(\mathrm{C}), 86.9(\mathrm{C}), 97.5(\mathrm{C}), 104.4(\mathrm{C}), 106.1$ (2CH), 117.9 (C), 118.1 (C), 119.6 (CH), 119.7 (CH), 121.6 (C), $122.0(2 \mathrm{CH}), 123.7(\mathrm{C}), 126.2(\mathrm{CH}), 126.9(\mathrm{CH}), 127.1$ (CH), 127.2 (CH), 128.2 (CH), 128.4 (CH), 128.6 (C), 128.7 (C), $129.0(\mathrm{C}), 129.1(\mathrm{CH}), 129.2(\mathrm{CH}), 129.3(\mathrm{CH}), 129.6(\mathrm{CH}), 129.7(\mathrm{CH}), 129.8(2 \mathrm{CH})$, 130.6 (CH), 131.8 (CH), 132.2 (CH), 133.6 (C), 134.5 (C), 134.6 (C), 134.8 (C), 151.3 (C), 158.7 (C), 158.8 (C), 164.8 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3057$ (w), 2932 (w), 2842 (w), 2199 (w), 1744 (m), 1622 (w), 1593 (m), 1484 (m), 1393 (m), 1328 (w), 1248 (m), 1198 (s), 1160 (s), 1127 (s$), 1024$ (s$), 934$ (m), 892 (s$), 853$ (s$), 753$ (s$), 685$ (m), 617 (w$), 534$ (m); MS (EI, $70 \mathrm{eV}): m / z(\%): 608\left(\mathrm{M}^{+}, 6\right), 516$ (9), 515 (24), 400 (6), 207 (11), 169 (9), 130 (40), 119 (4), 94 (20), 60 (11), 57 (12), 55 (12), 45 (15), 44 (100), 43 (27); HRMS (EI) calcd for $\mathrm{C}_{43} \mathrm{H}_{28} \mathrm{O}_{4}$ [M ${ }^{+}$]: 608.19821 found 608.19894 .

Phenyl 1-(p-tolylethynyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (15a):

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}$ Exact Mass: 510.07

Starting with $8(272 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, dry CuI ($10 \mathrm{~mol} \%$), triethylamine ($63 \mathrm{mg}, 0.62 \mathrm{mmol}$), Bu4NI ($276 \mathrm{mg}, 0.75 \mathrm{mmol}$), 13g ($64 \mathrm{mg}, 0.55 \mathrm{mmol}$) was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), 15a was isolated after chromatography (silica gel, n-heptane/EtOAc) as yellow solid ($184 \mathrm{mg}, 72 \%$), mp. $105-107{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.09-7.46(\mathrm{~m}$, 9H, ArH), 7.73-7.76 (m, 2H, ArH), 8.08 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$,

ArH), $8.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.71(\mathrm{dd}, J=7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.8\left(\mathrm{CH}_{3}\right), 84.6(\mathrm{C}), 104.4(\mathrm{C}), 118.7(\mathrm{CH}), 118.9\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 119.7(\mathrm{C})$, $121.4(\mathrm{CH}), 121.9(2 \mathrm{CH}), 124.9(\mathrm{C}), 126.4(\mathrm{CH}), 128.2(\mathrm{C}), 128.7(\mathrm{CH}), 128.9(\mathrm{C}), 129.2$ $(\mathrm{CH}), 129.5(2 \mathrm{CH}), 129.8(2 \mathrm{CH}), 130.6(\mathrm{CH}), 132.2(2 \mathrm{CH}), 135.2(\mathrm{C}), 140.0(\mathrm{C}), 144.7(\mathrm{C})$, $151.0(\mathrm{C}), 163.8(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-73.03\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3065(\mathrm{w}), 2961(\mathrm{w}), 2866(\mathrm{w}), 2204$ (w), 1745 (m), 1592 (w), 1419 (m), 1336 (m), 1243 (m), 1188 (s), 1131 (s), 1070 (w), 1011 (s), 930 (w), 860 (s), 814 (s), 758 (s), 685 (s), 596 (s); MS (EI, 70 eV): m/z (\%): 510 ($\mathrm{M}^{+}, 25$), 419 (13), 418 (40), 417 (100), 369 (36), 284 (67), 256 (43), 226 (25), 213 (10), 112 (7), 97 (8), 94 (10), 83 (11), 71 (13), 57 (19), 43 (18); HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S},\left[\mathrm{M}^{+}\right]: 510.07433$ found 510.07408.

Phenyl 1-(pent-1-ynyl)-4-(trifluoromethylsulfonyloxy)-2-naphthoate (15b):

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}$ Exact Mass: 462.07

Starting with $8(272 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, dry CuI ($10 \mathrm{~mol} \%$), triethylamine ($63 \mathrm{mg}, 0.62 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}(276 \mathrm{mg}, 0.75 \mathrm{mmol}), \mathbf{1 3 h}(38 \mathrm{mg}, 0.55 \mathrm{mmol})$ was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), $\mathbf{1 5 b}$ was isolated after chromatography (silica gel, n-heptane/EtOAc) as light yellow solid ($157 \mathrm{mg}, 68 \%$), mp. $78-79{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.01\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65$ (sextet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.55 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 7.20-7.25 (m, 3H, ArH), 7.37$7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.67-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.06(\mathrm{dd}, J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 8.61(\mathrm{dd}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0\left(\mathrm{CH}_{3}\right)$, $22.3\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 76.4(\mathrm{C}), 106.4(\mathrm{C}), 118.5(\mathrm{CH}), 119.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.3$ $(\mathrm{CH}), 121.8(2 \mathrm{CH}), 125.5(\mathrm{C}), 126.3(\mathrm{CH}), 128.2(\mathrm{C}), 128.8(\mathrm{CH}), 129.0(\mathrm{CH}), 129.1(\mathrm{C})$, $129.8(2 \mathrm{CH}), 130.4(\mathrm{CH}), 135.6(\mathrm{C}), 144.3(\mathrm{C}), 151.0(\mathrm{C}), 164.0(\mathrm{C}=\mathrm{O}) ;{ }^{19} \mathrm{~F}$ NMR (282.4 $\mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-73.08$ ($3 \mathrm{~F}, \mathrm{CF}_{3}$); IR (ATR, cm^{-1}): $\widetilde{v}=3073$ (w), 2960 (w), 2871 (w), 2219 (w), 1746 (m), 1621 (w), 1591 (w), 1485 (w), 1420 (m), 1327 (m), 1245 (m), 1187 (s), 1136 (s), 1084 (m), 1011 (s), 920 (m), 827 (s), 760 (s), 688 (m), 596 (s). MS (EI, 70 eV): m/z (\%): $462\left(\mathrm{M}^{+}, 10\right), 371$ (20), 370 (64), 369 (100), 287 (26), 236 (72), 208 (82), 179 (17), 165 (33), 151 (14), 94 (16), 69 (11); HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~F}_{3} \mathrm{~S},\left[\mathrm{M}^{+}\right]: 462.07433$ found 462.07401 .

General Procedure for synthesis of $16 a, b:$

The reaction was carried out in a pressure tube under argon atmosphere. To a DMF suspension of $\mathbf{8}(272 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Bu}{ }_{4} \mathrm{NI}(300 \mathrm{~mol} \%)$, after stirring for 10 min was added dry $\mathrm{CuI}(20 \mathrm{~mol} \%)$. Again after 10 min stirring triethylamine (1.25 eq.) was added followed by slow dropwise addition of Ar^{1}-alkyne $(0.55 \mathrm{mmol})$. The reaction mixture was stirred at temperature of $60^{\circ} \mathrm{C}$ for 3 h under argon atmosphere. The reaction mixture was cooled to $20^{\circ} \mathrm{C}$ and triethylamine (1.25 eq.) was added again followed by slow dropwise addition of Ar^{2} alkyne (0.65 mmol). The reaction mixture was heated under Argon atmosphere for 4 h at $80^{\circ} \mathrm{C}$. After cooling to $20^{\circ} \mathrm{C}$, then distilled water was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purifed by chromatography (silica gel, heptanes / EtOAc).

Phenyl 4-((3-fluorophenyl)ethynyl)-1-((3-methoxyphenyl)ethynyl)-2-naphthoate (16a):

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{FO}_{3}$ Exact Mass: 496.15

Starting with 8 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}(553 \mathrm{mg}, 1.5 \mathrm{mmol}), \mathbf{1 3 c}(73 \mathrm{mg}, 0.55 \mathrm{mmol})$ was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), and $\mathbf{1 3 d}(78 \mathrm{mg}, 0.65 \mathrm{mmol}$), 16a was isolated after chromatography (silica gel, n heptane/EtOAc) as greenish yellow solid ($134 \mathrm{mg}, 54 \%$), mp. $152-153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.65(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.83-7.40 (m, 13H, ArH), 7.64-7.67 (m, 2H, ArH), $8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.38(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.64$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=55.5\left(\mathrm{OCH}_{3}\right), 86.0(\mathrm{C}), 87.8(\mathrm{C}), 95.3\left(\mathrm{~d}, J_{\mathrm{CF}}=3.4\right.$ $\mathrm{Hz}, \mathrm{C}), 103.6(\mathrm{C}), 116.2(\mathrm{CH}), 116.4\left(\mathrm{~d}, J_{\mathrm{CF}}=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 116.6(\mathrm{CH}), 118.7\left(\mathrm{~d}, J_{\mathrm{CF}}=22.8\right.$ $\mathrm{Hz}, \mathrm{CH}), 121.1(\mathrm{C}), 122.0(2 \mathrm{CH}), 123.9(\mathrm{C}), 124.1(\mathrm{C}), 124.8(\mathrm{CH}), 124.9\left(\mathrm{~d}, J_{\mathrm{CF}}=9.5 \mathrm{~Hz}\right.$, C), $126.2(\mathrm{CH}), 126.7(\mathrm{CH}), 127.8\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 128.3(\mathrm{CH}), 128.4(\mathrm{CH}), 129.3(\mathrm{C})$, $129.6(\mathrm{CH}), 129.7(\mathrm{CH}), 129.8(2 \mathrm{CH}), 130.3\left(\mathrm{~d}, J_{\mathrm{CF}}=8.6 \mathrm{~Hz}, \mathrm{CH}\right), 131.0(\mathrm{CH}), 133.6(\mathrm{C})$, 134.5 (C), 151.2 (C), 159.6 (C), 162.6 (d, $\left.{ }^{1} J_{\mathrm{CF}}=247 \mathrm{~Hz}, \mathrm{CF}\right), 165.5$ (C=O); ${ }^{19}$ F NMR (282.40 MHz, CDCl_{3}): $\delta=-112.48(\mathrm{ArF}) ;$ IR (ATR, cm^{-1}): $\widetilde{v}=3058(\mathrm{w}), 2940(\mathrm{w}), 2834$ (w), 2197 (w), 1715 (s), 1593 (w), 1573 (m), 1485 (m), 1369 (w), 1282 (m), 1218 (m), 1192
(s), 1156 (m), 1031 (m), 924 (w), 856 (m), 784 (m), 761 (s), 683 (s), 618 (w); MS (EI, 70 $\mathrm{eV}): m / z(\%): 496\left(\mathrm{M}^{+}, 10\right), 404$ (27), 403 (100), 375 (11), 332 (13), 331 (34), 285 (4), 166 (6), 147 (2), 94 (19), 69 (3), 65 (5), 43 (2); HRMS (EI) calcd for $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~F}\left[\mathrm{M}^{+}\right]:$ 496.14692 found 496.14697 .

Phenyl 1-((3-methoxyphenyl)ethynyl)-4-(p-tolylethynyl)-2-naphthoate (16b):

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{3}$ Exact Mass: 492.17

Starting with 8 ($272 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), dry CuI ($20 \mathrm{~mol} \%$), triethylamine ($126 \mathrm{mg}, 1.25 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NI}$ ($553 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathbf{1 3 c}$ ($73 \mathrm{mg}, 0.55 \mathrm{mmol}$) was added in DMF (5 mL per 1 mmol of $\mathbf{8}$), and $\mathbf{1 3 g}$ ($75 \mathrm{mg}, 0.65 \mathrm{mmol}$), 16b was isolated after chromatography (silica gel, n heptane/EtOAc) as green crystals ($143 \mathrm{mg}, 58 \%$), mp. 148$149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.79-7.26(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.46 (td, $J=8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.60-7.64 (m, 2H, ArH), 8.33 (s, 1H, ArH), 8.39 (dd, $J=7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.61 (dd, $J=7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=21.8\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 86.1(\mathrm{C}), 86.4(\mathrm{C}), 97.1$ (C), 103.2 (C), 116.1 (CH), 116.5 (CH), 120.0 (C), 121.9 (C), $122.0(2 \mathrm{CH}), 123.2$ (C), 124.2 (C), $124.7(\mathrm{CH}), 126.1(\mathrm{CH}), 126.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.3(\mathrm{CH}), 129.3(\mathrm{C}), 129.4(\mathrm{CH})$, $129.5(2 \mathrm{CH}), 129.7(\mathrm{CH}), 129.8(2 \mathrm{CH}), 130.5(\mathrm{CH}), 131.9(2 \mathrm{CH}), 133.6(\mathrm{C}), 134.5(\mathrm{C})$, 139.3 (C), 151.2 (C), 159.6 (C), 164.9 (C=O); IR (ATR, cm^{-1}): $\widetilde{v}=3055$ (w), 2962 (w), 2832 (w), 2200 (w), 1740 (m), 1592 (m), 1488 (m), 1389 (w), 1332 (w), 1259 (m), 1198 (s), 1160 (s), 1132 (s), 1032 (s), 933 (m), 896 (m), 807 (m), 786 (s), 752 (s), 687 (s), 549 (w); MS (EI, 70 eV): m / z (\%): 492 ($\mathrm{M}^{+}, 5$), 399 (33), 378 (10), 4286 (37), 285 (100), 257 (16), 226 (15), 214 (22), 213 (46), 107 (7), 94 (14), 71 (5), 57 (8), 44 (11), 43 (14); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 492.17200$ found 492.17119 .

Procedure for synthesis of Dimethyl 4-chloro-3,5-dihydroxyphthalate (18):

Diene 3e ($463 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to DMAD (319 mg ,

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{6}$ Exact Mass: 260.01 $0.27 \mathrm{~mL}, 2.25 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The mixture (neat) was allowed to warm to $20{ }^{\circ} \mathrm{C}$ during 20 h with stirring. To the mixture was added hydrochloric acid (10\%) and dichloromethane (30 mL each). The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography to give $\mathbf{1 8}$ as a crystalline colourless solid ($195 \mathrm{mg}, 50 \%$), mp. $=127-129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.82(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 11.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR $\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.8\left(\mathrm{OCH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 103.5(\mathrm{C}), 107.5(\mathrm{CH})$, 109.3, $135.0(\mathrm{C}), 156.6,158.7(\mathrm{C}-\mathrm{OH}), 168.6,169.0(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): v ?=2984(\mathrm{w})$, 2954 (w), 2905 (w), 2847 (w), 1792 (w), 1722 (s), 1668 (m), 1435 (m), 1328 (m), 1243 (s), 1067 (s), $844(\mathrm{~m})$. MS (EI, 70 eV): $m / z(\%): 262\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 9\right), 260\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 15\right), 228$ (53), 198 (23), 170 (100), 153 (23), 89 (25). Anal.: calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClO}_{6}$: C 46.08, H 3.48; found: C 46.21, H 3.31.

Procedure for synthesis of Dimethyl 4-chloro-3,5-bis(trifluoromethylsulfonyloxy)phthalate (19):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{CIF}_{6} \mathrm{O}_{10} \mathrm{~S}_{2}$ Exact Mass: 523.91

To a solution of $\mathbf{1 8}$ (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} / \mathrm{mmol}$) was added pyridine (4.0 equiv) at $-78^{\circ} \mathrm{C}$ under an argon atmosphere. After $10 \mathrm{~min}, \mathrm{Tf}_{2} \mathrm{O}$ (2.4 equiv) was added at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction mixture was filtered and the filtrate was concentrated in vacuo. The products of the reaction mixture were isolated by rapid column chromatography (flash silica gel, heptanes/EtOAc). Starting with $18(2.080 \mathrm{~g}, 8.0 \mathrm{mmol})$, pyridine ($2.6 \mathrm{~mL}, 32.0 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{Tf}_{2} \mathrm{O}(3.2 \mathrm{~mL}, 19.2 \mathrm{mmol})$, 19 was isolated as viscous colourless oil (3.65 g , 87%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.92(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR $\left(62.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.6\left(\mathrm{OCH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 117.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ $321 \mathrm{~Hz}, \mathrm{CF}_{3}$), $117.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), $123.0(\mathrm{CH}), 126.5,128.7,130.0,142.4 .145 .8$ (C), $167.7(2 \mathrm{C}, \mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz} . \mathrm{CDCl}_{3}$): $\delta=-71.99\left(\mathrm{CF}_{3}\right),-73.20\left(\mathrm{CF}_{3}\right) . \mathrm{IR}$
(ATR, cm^{-1}): v ? $=3103(\mathrm{w}), 2960(\mathrm{w}), 2850(\mathrm{w}), 2054(\mathrm{w}), 1980(\mathrm{w}), 1739(\mathrm{~s}), 1599(\mathrm{w})$, 1567 (w), 1429 (s), 1395 (m), 1305 (m), 1277 (m), 1206 (s), 1129 (s), 1113 (s), 1005 (s), 961 (s), 919 (w), 859 (w), 820 (m), 787 (s), 751 (s), 732 (s), 698 (m), 651 (m), 593 (s), 574 (m). MS (EI, 70 eV): m / z (\%): $524\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 30\right.$), 493 (100), 460 (13), 429 (39), 391 (4), 365 (36), 299 (42), 271 (6), 238 (11), 199 (12), 171 (9), 143 (3), 84 (8), 69 (38), 59 (13). HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{O}_{10} \mathrm{ClF}_{6} \mathrm{~S}_{2}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 523.90679 , found 523.907255 .

General procedure for synthesis of 20a-g and 21a-e:

A 1,4-dioxane solution (4 mL per 0.3 mmol of 19) of $\mathbf{1 9}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and arylboronic acid 4 was stirred at $110{ }^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ for 6 or 8 h for products $\mathbf{2 0}$ or $\mathbf{2 1}$ respectively. After cooling to $20^{\circ} \mathrm{C}$, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The organic and the aqueous layer were separated and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography.

Dimethyl 4-chloro-3,5-di(4-trifluorophenyl)phthalate (20a):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClF}_{6} \mathrm{O}_{4}$ Exact Mass: 516.06

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (191 mg, $0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol}-\%$), boronic acid 4b (137 $\mathrm{mg}, 0.72 \mathrm{mmol}$) and 1,4 -dioxane (4 mL), 20a was isolated as a colourless crystals ($119 \mathrm{mg}, 77 \%$), mp. $190-191{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.50(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.38(\mathrm{bd}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.51 (bd, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.62-7.69 (m, $4 \mathrm{H}, \mathrm{ArH}$), 7.98 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=52.7\left(\mathrm{OCH}_{3}\right), 53.1\left(\mathrm{OCH}_{3}\right), 124.2\left(\mathrm{q}, J_{\mathrm{CF}}=272 \mathrm{~Hz}, 2 \mathrm{ArCF}_{3}\right), 125.3\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $3.8 \mathrm{~Hz}, 2 \mathrm{CH}), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}, 2 \mathrm{CH}\right), 126.2(\mathrm{C}), 130.0(2 \mathrm{CH}), 130.3(2 \mathrm{CH}), 130.8$ $\left(\mathrm{q}, J_{\mathrm{CF}}=32.6 \mathrm{~Hz}, \mathrm{C}\right), 130.9\left(\mathrm{q}, J_{\mathrm{CF}}=32.6 \mathrm{~Hz}, \mathrm{C}\right) 132.3(\mathrm{CH}) 136.9(2 \mathrm{C}), 139.0(\mathrm{C})$, 139.8 (C), 141.3 (C), 141.8 (C), 165.0 (CO), 167.5 (CO); ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.68\left(2 \mathrm{ArCF}_{3}\right):$ IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3059(\mathrm{w}), 2962(\mathrm{w}), 2845(\mathrm{w}), 1737(\mathrm{~m}), 1722$ (s), 1617 (w), 1587 (w), 1551 (w), 1437 (w), 1321 (s), 1262 (s), 1237 (m), 1119 (s), 1105 (s), 1059 (s), 1016 (m), 964 (s$), 842$ (s$), 792$ (m), 685 (m), 612 (m); MS (EI, 70 eV): m/z (\%): $518\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 23\right), 517\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 16\right), 516\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 70\right), 487(74), 486(55), 485$
(100), 453 (11), 451 (10), 398 (8), 351 (6), 343 (4), 294 (9), 248 (6), 147 (4), 84 (15), 49 (5); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{ClF}_{6}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 516.05576$, found 516.05576 .

Dimethyl 4-chloro-3,5-di(phenyl)phthalate (20b):

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClO}_{4}$ Exact Mass: 380.08

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 f}(88 \mathrm{mg}, 0.72$ $\mathrm{mmol})$ and 1,4 -dioxane $(4 \mathrm{~mL}), \mathbf{2 0 b}$ was isolated as a white solid ($85 \mathrm{mg}, 75 \%$), mp. $86-88^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 7.21-7.25 (m, 2H, ArH), 7.32-7.40 (m, 8H, ArH), $7.94(\mathrm{~s}, ~ 1 \mathrm{H}, ~ \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.5\left(\mathrm{OCH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 125.7(\mathrm{C}), 128.2(2 \mathrm{CH}), 128.5(4 \mathrm{CH}), 129.5(2 \mathrm{CH}), 129.8$ $(2 \mathrm{CH}), 132.0(\mathrm{CH}), 136.4$ (C), 136.5 (C), 137.5 (C), 138.7 (C), 140.2 (C), 142.5 (C), 165.5 (CO), 168.1 (CO); IR (ATR, cm^{-1}): $\widetilde{v}=3055(\mathrm{w}), 2944(\mathrm{w}), 2925(\mathrm{w}), 2851(\mathrm{w})$, 1722 (s), 1579 (w), 1554 (w), 1495 (w), 1434 (m), 1373 (w), 1339 (m), 1266 (s), 1238 (s), 1205 (m), 1146 (m), 1102 (m), 1071 (m), 967 (m), 909 (w), 890 (w), 795 (m), 765 (m), 697 (s), 637 (w), $580(\mathrm{~m}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%): 382\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 21\right), 381\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}\right.$, 14), 380 ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 58$), 351 (35), 350 (23), 349 (100), 317 (16), 290 (4), 262 (5), 226 (26), 213 (4), 113 (13), 100 (3), 59 (1); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 380.08099 , found 380.08116 .

Dimethyl 4-chloro-3,5-di(4-chlorophenyl)phthalate (20c):

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{4}$ Exact Mass: 448.00

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (191 mg , $0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 g}$ (112 $\mathrm{mg}, 0.72 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 20c was isolated as a white solid ($85 \mathrm{mg}, 63 \%$), mp. $158-160{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.16$ (td, $J=8.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.29-7.38 (m, 6H, ArH), 7.92 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.7\left(\mathrm{OCH}_{3}\right)$, $53.0\left(\mathrm{OCH}_{3}\right)$, $126.0(\mathrm{C}), 128.6(2 \mathrm{CH}), 128.8(2 \mathrm{CH}), 130.9(2 \mathrm{CH}), 131.2(2 \mathrm{CH}), 132.1(\mathrm{CH}), 134.7(\mathrm{C})$, 134.8 (2C), 136.7 (C), 136.8 (C), 137.3 (C), 139.1 (C), 141.4 (C), 165.2 (CO), 167.8 (CO); IR (ATR, cm ${ }^{-1}$): $\widetilde{v}=3068(\mathrm{w}), 2950(\mathrm{w}), 2923$ (w), 2851 (w), 1733 (s$), 1720$ (s$)$,

1596 (w), 1583 (w), 1547 (w), 1489 (m), 1434 (m), 1345 (m), 1275 (s), 1262 (s), 1243 (s), 1178 (s), 1149 (m), 1085 (s$), 1067$ (m), 1014 (m), 962 (m), 919 (w), $890(\mathrm{~m}), 825$ (s$)$, 785 (s), 719 (m), 692 (w), 598 (m); MS (EI, 70 eV): m/z (\%): 452 (M $\mathrm{M}^{+},{ }^{37} \mathrm{Cl}_{2}{ }^{35} \mathrm{Cl}, 23$), 450 $\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}^{35} \mathrm{Cl}_{2}, 66\right), 448\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{3}, 66\right), 419$ (99.9), 417 (100), 385 (10), 296 (8), 260 (14), 226 (7), 224 (13), 175 (3), 147 (3), 130 (7), 112 (8), 99 (3), 59 (2); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{Cl}_{3}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}_{1}\right]$: 450.00009 found 450.00000 .

Dimethyl 4-chloro-3,5-di(3-trifluorophenyl)phthalate (20d):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClF}_{6} \mathrm{O}_{4}$
Exact Mass: 516.06

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (191 mg , $0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (3 mol-\%), boronic acid 40 (137 $\mathrm{mg}, 0.72 \mathrm{mmol}$) and 1,4 -dioxane (4 mL), 20d was isolated as a colourless crystals ($76 \mathrm{mg}, 49 \%$), mp. 110$112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.50(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.43-7.64(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH})$, 7.98 (s, $1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta=52.6\left(\mathrm{OCH}_{3}\right), 53.1\left(\mathrm{OCH}_{3}\right), 124.1\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right.$, $\left.2 \mathrm{ArCF}_{3}\right), 125.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}, \mathrm{CH}\right), 125.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}, \mathrm{CH}\right), 126.3(2 \mathrm{C}), 126.4(\mathrm{q}$, $\left.J_{\mathrm{CF}}=3.8 \mathrm{~Hz}, \mathrm{CH}\right), 126.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}, \mathrm{CH}\right), 128.9(\mathrm{CH}), 129.1(\mathrm{CH}), 130.8\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $32.5 \mathrm{~Hz}, \mathrm{C}), 131.5\left(\mathrm{q}, J_{\mathrm{CF}}=32.5 \mathrm{~Hz}, \mathrm{C}\right), 132.4(\mathrm{CH}), 132.9(\mathrm{CH}), 133.4(\mathrm{CH}), 136.9(\mathrm{C})$, 137.1 (C), 138.9 (C), 139.0 (C), 141.2(C), 165.0 (CO), 167.5 (CO); ${ }^{19}$ F NMR (282.4 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.62,-62.68\left(2 \mathrm{ArCF}_{3}\right)$; IR (ATR $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3070(\mathrm{w}), 2954(\mathrm{w})$, 2850 (w), 1738 (s), 1726 (m), 1588 (w), 1556 (w), 1439 (w), 1324 (s), 1262 (s), 1237 (m), 1118 (s), 1074 (s), 1066 (s), 964 (m), 840 (w), 790 (m), 704 (s), 665 (m), 565 (m); MS (EI, 70 eV): $m / z(\%): 518\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 20\right), 517\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 14\right), 516\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 65\right), 487$ (71), 486 (51), 485 (100), 398 (8), 379 (5), 351 (6), 294 (7), 248 (5), 145 (3), 97 (6), 86 (8), 84 (14), 57 (13), 43 (10). HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{ClF}_{6}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 516.05576$, found 516.05613 .

Dimethyl 4-chloro-3,5-di(4-ethylphenyl)phthalate (20e):

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClO}_{4}$ Exact Mass: 436.14

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 p}$ (108 mg , 0.72 mmol) and 1,4 -dioxane (4 mL), $\mathbf{2 0 e}$ was isolated as a white solid ($88 \mathrm{mg}, 67 \%$), mp. $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.20\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21(\mathrm{t}, J$ $\left.=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.64$ (q, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 7.12-7.23 (m, 6H, ArH), $7.30(\mathrm{td}, J=8.2,2.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.4\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right)$, $28.8\left(2 \mathrm{CH}_{2}\right), 52.4\left(\mathrm{OCH}_{3}\right), 52.8\left(\mathrm{OCH}_{3}\right), 125.5(\mathrm{C}), 127.6(2 \mathrm{CH}), 127.9(2 \mathrm{CH}), 129.5$ (2CH), 129.7 (2CH), 131.9 (CH), 133.8 (C), 136.1 (C), 136.3 (C), 137.6 (C), 140.2 (C), 142.4 (C), 144.4 (C), 144.6 (C), 165.6 (CO), 168.3 (CO); IR (ATR, cm^{-1}): $\widetilde{v}=3025$ (w), 2962 (w), 2930 (w), 2872 (w), 1727 (s), 1611 (w), 1584 (w), 1552 (w), 1512 (m), 1434 (m), 1373 (w), 1340 (m), 1259 (s), 1236 (s), 1197 (m), 1145 (s), 1103 (m), 1069 (s), 1020 (m), $968(\mathrm{~m}), 910(\mathrm{w}), 889(\mathrm{~m}), 831(\mathrm{~m}), 790(\mathrm{~m}), 730(\mathrm{~m}), 628(\mathrm{~m}), 564(\mathrm{~m})$; MS (GC, $70 \mathrm{eV}): m / z(\%): 439\left(\mathrm{M}^{+}+1,{ }^{37} \mathrm{Cl}, 10\right), 438\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 37\right), 437\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 30\right), 436\left(\mathrm{M}^{+}\right.$, ${ }^{35} \mathrm{Cl}, 100$), 421 (19), 407 (27), 405 (51), 373 (15), 345 (7), 303 (4), 275 (2), 254 (5), 252 (8), 239 (9), 203 (5), 126 (6), 120 (4), 29 (2); HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Cl}\left[\mathrm{M}^{+}\right.$, $\left.{ }^{35} \mathrm{Cl}\right]: 436.14359$, found 436.14368 .

Dimethyl 4-chloro-3,5-di(p-tolyl)phthalate (20f):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClO}_{4}$ Exact Mass: 408.11

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(191 \mathrm{mg}, 0.9$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid 4 c ($98 \mathrm{mg}, 0.72$ mmol) and 1,4-dioxane (4 mL), 20f was isolated as a colourless solid ($88 \mathrm{mg}, 72 \%$), mp. 139-141 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.10-7.18$ (m, 4H, ArH), 7.21-7.29 (m, 4H, ArH), 7.91 (s, 1H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.3\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{OCH}_{3}\right), 52.6\left(\mathrm{OCH}_{3}\right)$, $125.3(\mathrm{C}), 128.7(2 \mathrm{CH}), 128.9(2 \mathrm{CH}), 129.2(2 \mathrm{CH}), 129.4(2 \mathrm{CH}), 131.7(\mathrm{CH}), 133.4(\mathrm{C})$, 135.7 (C), 136.1 (C), 137.4 (C), 138.0 (C), 138.1 (C), 140.0 (C), 142.2 (C), 165.3 (CO), 168.0 (CO); IR (ATR, cm^{-1}): $\widetilde{v}=3026$ (w), 2949 (w), 2922 (w), 2859 (w), 2253 (w),

1906 (w), 1727 (s), 1613 (w), 1584 (w), 1552 (w), 1514 (m), 1434 (m), 1373 (w), 1340 (m), 1259 (s$), 1237$ (s$), 1213$ (m), 1145 (m), 1104 (m), 1069 (m), 1021 (m), 969 (m), 909 (m), 890 (m), $814(\mathrm{~m}), 783(\mathrm{~m}), 730(\mathrm{~m}), 720(\mathrm{~m}), 634(\mathrm{~m}), 554(\mathrm{~m})$; MS (EI, 70 eV$): m / z$ (\%): $411\left(\mathrm{M}^{+}+1,{ }^{37} \mathrm{Cl}, 9\right), 410\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 36\right), 409\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 26\right), 408\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 97\right)$, 380 (8), 379 (35), 378 (25), 377 (100), 347 (8), 345 (23), 318 (3), 290 (4), 289 (5), 255 (8), 239 (15), 226 (4), 204 (7), 178 (3), 126(9), 91 (2), 59 (1); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 408.11229$, found 408.112793 .

Dimethyl 4-chloro-3,5-di(4-fluorophenyl)phthalate (20g):

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClF}_{2} \mathrm{O}_{4}$ Exact Mass: 416.06

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}$ (191 mg , $0.9 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 q}(101$ $\mathrm{mg}, 0.72 \mathrm{mmol}$) and 1,4-dioxane (4 mL), $\mathbf{2 0 g}$ was isolated as a yellowish solid ($82 \mathrm{mg}, 66 \%$), mp. 134$136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.52(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.843\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.01-7.11(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, 7.17-7.23 (m, 2H, ArH), 7.32-7.38 (m, 2H, ArH), 7.93 (s, $1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.6$ $\left(\mathrm{OCH}_{3}\right), 53.0\left(\mathrm{OCH}_{3}\right), 115.4\left(\mathrm{~d}, J_{\mathrm{CF}}=21.7 \mathrm{~Hz}, 2 \mathrm{CH}\right), 115.6\left(\mathrm{~d}, J_{\mathrm{CF}}=21.7 \mathrm{~Hz}, 2 \mathrm{CH}\right)$, $125.8(\mathrm{C}), 131.3\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}, 2 \mathrm{CH}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}, 2 \mathrm{CH}\right), 132.1(\mathrm{CH}), 132.2$ $\left(\mathrm{d}, J_{\mathrm{CF}}=3.4 \mathrm{~Hz}, \mathrm{C}\right), 134.5\left(\mathrm{~d}, J_{\mathrm{CF}}=3.4 \mathrm{~Hz}, \mathrm{C}\right), 136.7(\mathrm{C}), 137.7(\mathrm{C}), 139.3(\mathrm{C}), 141.5(\mathrm{C})$, $162.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=248 \mathrm{~Hz}, \mathrm{CF}\right), 162.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=248 \mathrm{~Hz}, \mathrm{CF}\right), 165.3(\mathrm{CO}), 167.9(\mathrm{CO}) ;{ }^{19} \mathrm{~F}$ NMR (282.4 MHz, CDCl_{3}): $\delta=-112.99,-113.16(2 \mathrm{ArF}) ;$ IR (ATR, cm^{-1}): $\widetilde{v}=3036(\mathrm{w})$, 2952 (w), 2851 (w), 1724 (s), 1603 (m), 1550 (w), 1507 (s), 1436 (m), 1337 (m), 1276 (s), 1261 (s), 1219 (s), 1149 (s), 1103 (s), 1094 (s), 965 (m), 838 (s), 787 (s), 629 (w), 552 (); MS (EI, 70 eV): m/z (\%): $418\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 21\right), 417\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 14\right), 416\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 60\right)$, 387 (35), 386 (23), 385 (100), 325 (2), 298 (7), 262 (21), 251 (7), 176 (2), 131 (7), 121 (2), 59 (2); HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{ClF}_{2}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 416.06214$, found 416.06241 .

Dimethyl 4-chloro-3-(4-trifluoromethylphenyl)-5-(trifluoromethylsulfonyl-oxy)phth-

 alate (21a):

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClF}_{6} \mathrm{O}_{7} \mathrm{~S}$ Exact Mass: 519.98

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(95.4 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 b}$ (63 $\mathrm{mg}, 0.33 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 21a was isolated as a colourless semisolid ($98 \mathrm{mg}, 63 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.69(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=53.5$ $\left(\mathrm{OCH}_{3}\right), 53.7\left(\mathrm{OCH}_{3}\right), 118.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}, \mathrm{ArCF}_{3}\right)$, $125.9\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}, 2 \mathrm{CH}\right), 128.9(\mathrm{C}), 129.9(2 \mathrm{CH}), 130.2(\mathrm{C}), 130.7(\mathrm{C}), 131.5\left(\mathrm{q}, J_{\mathrm{CF}}\right.$ $=32.5 \mathrm{~Hz}, \mathrm{C}), 131.7(\mathrm{CH}), 140.3(\mathrm{C}), 142.9(\mathrm{C}), 143.3(\mathrm{C}), 163.9(\mathrm{CO}), 164.2(\mathrm{CO}) .{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.81\left(\mathrm{ArCF}_{3}\right),-71.77\left(\mathrm{CF}_{3}\right)$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=2957$ (w), 2925 (w), 2853 (w), 1735 (s), 1601 (w), 1547 (w), 1428 (m), 1321 (m), 1270 (s), 1215 (s), 1167 (s), 1125 (s), 1065 (s), 1008 (m), 969 (w), 834 (w), 798 (m), 686 (w), 598 (m); MS (EI, 70 eV): m / z (\%): $522\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 23\right), 520\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 63\right), 491$ (34), 489 (100), 427 (14), 425 (43), 387 (21), 359 (37), 356 (23), 300 (10), 298 (25), 241 (10), 207 (8), 97 (7), 69 (15), 57 (12); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{O}_{7} \mathrm{ClF}_{6} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 519.98127$, found 519.98153.

Dimethyl 4-chloro-3-(phenyl)-5-(trifluoromethylsulfonyl-oxy)phthalate (21b):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{CIF}_{3} \mathrm{O}_{7} \mathrm{~S}$ Exact Mass: 451.99

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(95.4 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($3 \mathrm{~mol}-\%$), boronic acid $\mathbf{4 f}$ (40 $\mathrm{mg}, 0.33 \mathrm{mmol}$) and 1,4 -dioxane (4 mL), 21b was isolated as a colourless semisolid ($88 \mathrm{mg}, 65 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.32-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=53.4\left(\mathrm{OCH}_{3}\right), 53.6\left(\mathrm{OCH}_{3}\right), 118.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 128.7(\mathrm{C}), 128.8$ $(2 \mathrm{CH}), 129.3(\mathrm{CH}), 129.4(2 \mathrm{CH}), 129.9(\mathrm{C}), 131.6(\mathrm{C}), 131.9(\mathrm{CH}), 136.8(\mathrm{C}), 142.8(\mathrm{C})$, $144.8(\mathrm{C}), 164.1(\mathrm{CO}), 164.5(\mathrm{CO}) ;{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.86\left(\mathrm{CF}_{3}\right)$; IR (ATR, cm^{-1}): $\widetilde{v}=2955$ (w), 2924 (w), 2851 (w), 1731 (s), 1598 (w), 1545 (w), 1424 (s), 1319 (m), 1268 (s), 1207 (s), 1167 (m), 1123 (s), 1098 (m), 1002 (m), 968(w), 832 (m), 790 (s), 698 (m), 641 (w), 597 (m), 579 (w); MS (GC, 70 eV): m/z (\%): $454\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}\right.$,
39), 452 ($\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 100$), 421 (60), 357 (30), 319 (29), 291 (31), 263 (15), 260 (18), 230 (29), 229 (19), 173 (15), 139 (16), 138 (11), 69 (13), 59 (5); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{7} \mathrm{ClF}_{3} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 451.99389$, found 451.99357 .

Dimethyl 4-chloro-3-(2-methoxyphenyl)-5-(trifluoromethylsulfonyl-oxy)phthalate

 (21c):

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{O}_{8} \mathrm{~S}$ Exact Mass: 482.01

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(95.4 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 j}$ (50 $\mathrm{mg}, 0.33 \mathrm{mmol}$) and 1,4 -dioxane (4 mL), 21c was isolated as a colourless solid ($68 \mathrm{mg}, 47 \%$), mp. 103$105{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.92$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{dt}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.37 (dt, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=52.0\left(\mathrm{OCH}_{3}\right), 52.3\left(\mathrm{OCH}_{3}\right), 54.9\left(\mathrm{OCH}_{3}\right), 110.0(\mathrm{CH}), 117.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 119.5 (CH), 124.7 (C), 127.0 (C), 128.5, (C), 129.3 (CH), 129.8 (CH), 131.2 (CH), 131.9 (C), 141.2 (C), 141.3 (C), 155.4 (C), 163.1 (CO), 163.4 (CO); ${ }^{19}$ F NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.99\left(\mathrm{CF}_{3}\right) ;$ IR (ATR, cm^{-1}): $\widetilde{v}=2955(\mathrm{w}), 2923(\mathrm{w}), 2849$ (w), 1738 (s), 1730 (m), 1607 (w), 1582 (w), 1501 (w), 1468 (w), 1429 (w), 1325 (w), 1270 (s), 1242 (m), 1210 (m), 1164 (w), 1135 (m), 1112 (w), 1009 (w), 926 (w), 806 (m), 755 (m), 672 (w), 639 (w), $598(\mathrm{~m}), 572$ (w), 547 (w), 573 (w); MS (EI, 70 eV): m/z (\%): $484\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 40\right), 482\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 100\right), 451$ (25), 415 (2), 387 (4), 317 (27), 289 (20), 250 (16), 229 (5), 195 (6), 168 (6), 139 (6), 69 (9), 59 (5); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{8} \mathrm{ClF}_{3} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 482.00445$, found 482.005219 .

Dimethyl 4-chloro-3-(3,5-dimethylphenyl)-5-(trifluoromethylsulfonyl-oxy)phthalate

 (21d):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{O}_{7} \mathrm{~S}$ Exact Mass: 480.03

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(95.4 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 d}$ (50 $\mathrm{mg}, 0.33 \mathrm{mmol}$) and 1,4 -dioxane (4 mL), 21d was isolated as a white solid ($88 \mathrm{mg}, 61 \%$), mp. $79-81^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94$ (brs, 2 H ,

ArH), 7.02 (brs, $1 \mathrm{H}, \mathrm{ArH}$), 7.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.5$ $\left(2 \mathrm{CH}_{3}\right), 53.3\left(\mathrm{OCH}_{3}\right), 53.6\left(\mathrm{OCH}_{3}\right), 118.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 127.0(2 \mathrm{CH}), 128.5$ (C), 129.6 (C), $130.9(\mathrm{CH}), 131.6$ (C), $131.9(\mathrm{CH}), 136.7(\mathrm{C}), 138.4(2 \mathrm{C}), 142.8(\mathrm{C})$, 145.2 (C), 164.2 (CO), 164.5 (CO); ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-71.88\left(\mathrm{CF}_{3}\right)$; IR (ATR, cm^{-1}): $\widetilde{v}=2954(\mathrm{w}), 2923(\mathrm{w}), 2856(\mathrm{w}), 1732$ (s$), 1600(\mathrm{w}), 1545$ (w), 1426 (s), 1332 (m), 1271 (s), 1208 (s), 1166 (m), 1131 (s), 1099 (m), 1004 (m), 970 (w), 813 (s), $790(\mathrm{~m}), 670(\mathrm{w}), 596(\mathrm{~m})$; MS (GC, 70 eV$): m / z(\%): 482\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 40\right), 480\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$, 100), 449 (32), 319 (21), 315 (16), 291 (14), 288 (15), 258 (19), 230 (8), 201 (9), 165 (15), 152 (7), 139 (4), 77 (2), 69 (11); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{ClF}_{3} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 480.02519 , found 480.02524 .

Dimethyl 4-chloro-3-(2,6-dimethoxyphenyl)-5-(trifluoromethylsulfonyl-oxy)

 phthalate (21e):

Starting with 19 ($157 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(95.4 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid 5 (60 $\mathrm{mg}, 0.33 \mathrm{mmol}$) and 1,4-dioxane (4 mL), 21e was isolated as a colourless semisolid ($74 \mathrm{mg}, 48 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.65\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$,
Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{O}_{9} \mathrm{~S}$ Exact Mass: 512.02
$3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.57(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.30(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.2\left(\mathrm{OCH}_{3}\right), 53.5\left(\mathrm{OCH}_{3}\right), 56.0\left(2 \mathrm{OCH}_{3}\right), 104.1(2 \mathrm{CH}), 114.3$ (C), $118.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 128.1,(\mathrm{C}), 129.4(\mathrm{C}), 131.1(\mathrm{CH}), 133.7(\mathrm{CH}), 134.0$ (C), 139.1 (C), 142.6 (C), 157.6 (2C), 164.6 (CO), 164.8 (CO); ${ }^{19}$ F NMR (282.4 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-72.09\left(\mathrm{CF}_{3}\right)$; IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \widetilde{v}=3005(\mathrm{w}), 2953(\mathrm{w}), 2841(\mathrm{w}), 1731(\mathrm{~s})$, 1602 (w), 1589 (m), 1426 (s), 1314 (m), 1268 (m), 1208 (s), 1166 (m), 1134 (m), 1107 (s), $1003(\mathrm{~m}), 969(\mathrm{w}), 792(\mathrm{~s}), 676(\mathrm{w}), 597(\mathrm{~m})$; MS (EI, 70 eV$): m / z(\%): 514\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}\right.$, 34), $512\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 100\right), 481$ (14), 426 (17), 395 (21), 348 (20), 347 (54), 291 (15), 283 (13), 240 (7), 226 (10), 197 (8), 127 (7), 69 (44), 59 (26), 45 (20), 44 (8); HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{ClF}_{3} \mathrm{~S}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 512.01502$, found 512.01506.

General procedure for the synthesis of 22a,b:

The reaction was carried out in a pressure tube. To a dioxane suspension $(4 \mathrm{~mL})$ of $\mathbf{1 9}$ $(236 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol} \%)$ and $\mathrm{Ar}^{1} \mathrm{~B}(\mathrm{OH})_{2}(0.5 \mathrm{mmol})$ was added $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($143 \mathrm{mg}, 0.67 \mathrm{mmol}$), and the resultant solution was degassed by bubbling argon through the solution for 10 min . The mixture was heated at $90^{\circ} \mathrm{C}$ under Argon atmosphere for 8 h . The mixture was cooled to $20^{\circ} \mathrm{C} . \mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}(0.6 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(143 \mathrm{mg}, 0.67 \mathrm{mmol})$ were added. The reaction mixtures were heated under an Argon atmosphere for 6 h at $110^{\circ} \mathrm{C}$. They were diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 25 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (silica gel, EtOAc/heptanes).

Dimethyl 4-chloro-3-(4-ethylphenyl)-5-(4-trifluorophenyl)phthalate (22a):

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{O}_{4}$ Exact Mass: 476.10

Starting with 19 ($236 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(286 \mathrm{mg}$, $1.35 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 p}(75 \mathrm{mg}$, 0.5 mmol), 1,4-dioxane (4 mL), and boronic acid 4b (114 $\mathrm{mg}, 0.6 \mathrm{mmol}$), 22a was isolated as colourless crystals (122 $\mathrm{mg}, 57 \%$), mp. $138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.22\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $7.21-7.32$ (m, 4H, ArH), 7.35-7.38 (m, 2H, ArH), 7.60-7.63 (m, 2H, $\mathrm{ArH}), 7.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.3\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{CH}_{2}\right), 52.4$ $\left(\mathrm{OCH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 124.0\left(\mathrm{q}, J_{\mathrm{CF}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.0\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}, 2 \mathrm{CH}\right), 125.7$ (C), $127.8(2 \mathrm{CH}), 129.2(2 \mathrm{CH}), 130.2(2 \mathrm{CH}), 130.6\left(\mathrm{q}, J_{\mathrm{CF}}=32.5 \mathrm{~Hz}, \mathrm{C}\right), 132.4(\mathrm{CH})$, 135.4 (C), 135.8 (C), 136.8 (C), 138.5 (C), 140.0 (q, $\left.J_{\mathrm{CF}}=1.4 \mathrm{~Hz}, \mathrm{C}\right), 142.5$ (C), 144.6 (C), $165.1(\mathrm{CO}), 167.6(\mathrm{CO}) ;{ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.7\left(\mathrm{CF}_{3}\right)$; IR (ATR, cm^{-1}): $\widetilde{\boldsymbol{v}}=3026$ (w), 2949 (w), 2922 (w), 2859 (w), 2253 (w), 1906 (w), 1727 (s), 1613 (w), 1584 (w), 1552 (w), 1514 (m), 1434 (m), 1373 (w), 1340 (m), 1259 (s), 1237 (s), 1213 (m), 1145 (m), 1104 (m), 1069 (m), 1021 (m), 969 (m), 909 (m), $890(\mathrm{~m}), 814(\mathrm{~m})$, 783 (m), $730(\mathrm{~m}), 720(\mathrm{~m}), 634(\mathrm{~m}), 554(\mathrm{~m})$; MS (EI, 70 eV$): m / z(\%): 479\left(\mathrm{M}^{+}+1,{ }^{37} \mathrm{Cl}\right.$, 9), $478\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 36\right), 477\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 29\right), 476\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 99\right), 461(30), 447(41), 445$ (100), 415 (5), 387 (4), 343 (5), 309 (7), 239 (6), 215 (8), 199 (4), 163 (1), 151 (3), 119 (4), 59 (2), 29 (1); HRMS (ESI, pos) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{Cl}\left[\mathrm{M}+\mathrm{H},{ }^{35} \mathrm{Cl}\right]^{+}: 477.10683$ found 477.10677, and $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{Cl}\left[\mathrm{M}+\mathrm{Na},{ }^{35} \mathrm{Cl}\right]^{+}$: 499.08932 .

Dimethyl 4-chloro-3-(4-ethylphenyl)-5-(3-fluorophenyl)phthalate (22b):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{CIFO}_{4}$ Exact Mass: 426.10

Starting with 19 ($236 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(286 \mathrm{mg}$, $1.35 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3 \mathrm{~mol}-\%)$, boronic acid $\mathbf{4 p}$ (75 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 1,4 -dioxane (4 mL), and boronic acid 4 a ($84 \mathrm{mg}, 0.6 \mathrm{mmol}$), 22b was isolated as colourless crystals ($102 \mathrm{mg}, 53 \%$), mp. $80-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65(\mathrm{q}$, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 6.99-7.03 (m, 2H, ArH), $7.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.22(\mathrm{td}, J=8.4,2.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 7.28-7.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}){ }^{13}{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $15.6\left(\mathrm{CH}_{3}\right), 28.8\left(\mathrm{CH}_{2}\right), 52.6\left(\mathrm{OCH}_{3}\right), 52.9\left(\mathrm{OCH}_{3}\right), 115.6\left(\mathrm{~d}, J_{\mathrm{CF}}=21.0 \mathrm{~Hz}, \mathrm{CH}\right), 117.2$ (d, $\left.J_{\mathrm{CF}}=22.0 \mathrm{~Hz}, \mathrm{CH}\right), 125.7\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 125.8(\mathrm{C}), 128.0(2 \mathrm{CH}), 129.5$ (2CH), $129.8\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}, \mathrm{CH}\right), 132.4(\mathrm{CH}), 135.8(\mathrm{C}), 136.1(\mathrm{C}), 137.2(\mathrm{C}), 138.5$ (d, $\left.J_{\mathrm{CF}}=8.4 \mathrm{~Hz}, \mathrm{C}\right), 138.8\left(\mathrm{~d}, J_{\mathrm{CF}}=1.9 \mathrm{~Hz}, \mathrm{C}\right), 142.7(\mathrm{C}), 144.8(\mathrm{C}), 162.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=248 \mathrm{~Hz}\right.$, CF), 165.4 (CO), 167.9 (CO); ${ }^{19} \mathrm{~F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.03$ (ArF); IR (ATR, cm^{-1}): $\widetilde{v}=3026$ (w), 2950 (w), 2873 (w), 1723 (s), 1612 (w), 1583 (w), 1553 (w), 1513 (w), 1434 (m), 1374 (w), 1341 (m), 1260 (s), 1243 (s), 1192 (m), 1165 (s), 1135 (s), 1063 (m), 1019 (w), 969 (m), 834 (m), 792 (m), 698 (s), 623 (w), 586 (w); MS (GC, 70 $\mathrm{eV}): m / z(\%): 428\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 32\right), 427\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 23\right), 426\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 82\right), 411(23), 397$ (42), 396 (25), 395 (100), 363 (5), 293 (6), 257 (16), 190 (9), 128 (10), 122 (3), 118 (2), 59 (2); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{ClF}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 426.10287, found 426.10279 .

Procedure for synthesis of (5-ethoxycyclohexa-1,5-dienyloxy)trimethylsilane (Diene 25) ${ }^{91 a}$

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si}$
Exact Mass: 212.12

To a flask containing LDA (1.2 equiv., 1.0 M) was added a solution of enol ether (1 equiv) in THF (0.5 mL per mmol enol ether) at $-78^{\circ} \mathrm{C}$. After 10 min , TMSCl (1.2 equiv.) was added. After 1 h , the reaction was warmed to rt , poured into a cold solution of NaHCO_{3} (10 mL per $\mathrm{mmol}, 5 \% \mathrm{aq}$.) extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}$ per mmol$)$, and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL}$ per mmol) and sat. aq. NaCl $(20 \mathrm{~mL}$ per mmol$)$. The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was concentrated in vacuo to give known ${ }^{11 \mathrm{a}}$ silyl enol ether as pale yellow oil.

General procedure for the synthesis of Acetylenes 31 and $34^{91 e}$:

To a pressure tube containing bromide (pyridyl or pyrimidyl) (10 mmol) was added bis triphenyl phosphine palladium dichloride ($5 \mathrm{~mol} \%$), copper iodide ($10 \mathrm{~mol} \%$), diisopropyl amine (10 ml) and trimethylsilylacetylene (12 mmol). The reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 2 h then TBAF ($10 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added at $0^{\circ} \mathrm{C}$. After 30 min the solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, extracted with dichloromethane (2 X 50 mL). The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was purified by chromatography eluting with EtOAc / Heptane to give the known compounds $\mathbf{3 1}{ }^{92}$ (as colorless crystals) and $\mathbf{3 4}{ }^{93}$ (as brown liquid) .

Procedure for the synthesis of 1-(2-chlorophenyl)-3-(pyridin-3-yl)prop-2-yn-1-one

 $(36)^{91 \mathrm{~b}}$:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{CINO}$ Exact Mass: 241.03 To a stirred solution of $\mathbf{2 8}(206 \mathrm{mg}, 2.0 \mathrm{mmol})$ and THF (10 mL) was added diisopropyl amine (1.1 equiv., 0.31 mL), then at $0^{\circ} \mathrm{C}$ was added $\mathrm{n}-\mathrm{BuLi}$ (1.08 equiv., 2.5 M in hexanes, 0.86 mL). Then after 20 min freshly distilled 2-chloro benzoyl chloride ($1.27 \mathrm{~mL}, 10 \mathrm{mmol}$) was added slowly at $-78^{\circ} \mathrm{C}$. After 1 h , the solution was allowed to warm to rt . After an additional 1 h , the mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, diluted with EtOAc (15 mL), and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and sat. aq. $\mathrm{NaCl}(15 \mathrm{~mL})$. The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was concentrated in vacuo and purified by chromatography over silica gel, eluting with EtOAc / Hexanes to give 36 ($357 \mathrm{mg}, 74 \%$) as a dark red viscous liquid. ${ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}): $\delta=7.25-7.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.84(\mathrm{td}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.96-$ 7.99 (m, 1H, ArH), 8.59 (dd, $J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.77 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (62.89 MHz, CDCl_{3}): $\delta=89.9(\mathrm{C}), 90.8(\mathrm{C}), 117.6(\mathrm{CH}), 123.5(\mathrm{CH}), 127.1(\mathrm{CH})$, 131.8 (CH), 132.8 (CH), 133.8 (C), 133.9 (CH), 135.5 (C), 140.1 (CH), 151.0 (CH), 153.4 (CH), 176.4 (CO); IR (ATR, cm^{-1}): $\widetilde{v}=3061$ (w), 2928 (w), $2854(\mathrm{w}), 2198(\mathrm{~s}), 1646(\mathrm{~m})$, 1584 (s), 1473 (m), 1407 (m), 1297 (s), 1208 (s$), 1188$ (m), 1071 (m), 1021 (m), 998 (m), 819 (w), 738 (s), $700(\mathrm{~s}), 629(\mathrm{~s}) ; \operatorname{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 243\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 15\right), 241\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$, 50), 215 (36), 213 (100), 178 (14), 151 (10), 130 (80), 111 (12), 102 (12), 75 (20), 50 (5); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{NOCl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]: 241.02889$, found 241.02891 .

General procedure for the synthesis of Biaryls ${ }^{91 \mathrm{e}}(\mathbf{2 7 , 2 9}, \mathbf{3 2}, 35,37) \mathrm{a}-\mathrm{c}$:

To a pressure tube containing acetylene (1 equiv) was added diene (1.5 or 3 equiv). The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 2-16 h . In the case of diene 23 the the reaction mixture was directly then subjected to purification by chromatography over silica gel eluting with EtOAc / Heptane to give the product but in the case of diene 24 and 25, $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{mmol})$ was added at r.t. After Stirring for 15 min the solution was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and then extracted with dichloromethane (2 X 50 mL). The dried extract $\left(\mathrm{MgSO}_{4}\right)$ was purified by chromatography over silica gel eluting with EtOAc / Heptane to give the product.

2-(2-Methoxyphenyl)pyridine (27a):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$ Exact Mass: 185.08

Starting with 2-ethynyl pyridine $26(0.13 \mathrm{~mL}, 2.0 \mathrm{mmol})$ and diene 23 ($0.35 \mathrm{~mL}, 3.0 \mathrm{mmol}$), 27a was isolated as colorless viscous liquid ($233 \mathrm{mg}, 63 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{dt}$, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.12$ (dd, $J=7.4,4.9, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.27-7.33 (m, 1H, ArH), 7.61 (dt, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.70(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{td}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.63(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5\left(\mathrm{OCH}_{3}\right), 111.3(\mathrm{CH}), 120.9(\mathrm{CH}), 121.5$ (CH), $125.0(\mathrm{CH}), 129.0(\mathrm{C}), 129.8(\mathrm{CH}), 131.0(\mathrm{CH}), 135.5(\mathrm{CH}), 149.3(\mathrm{CH}), 156.0(\mathrm{C})$, 156.8 (C); IR (ATR, cm ${ }^{-1}$): $\widetilde{v}=3049$ (w), 2834 (w), 1599 (m), 1580 (s), 1563 (m), 1492 (s), 1459 (s), 1422 (s), 1300 (m), 1237 (s), 1160 (m), 1021 (s), 987 (m), 852 (w), 791 (m), 745 (s), 611 (m); MS (GC, 70 eV): m/z (\%): 186 ($\mathrm{M}^{+}+1,9$), $185\left(\mathrm{M}^{+}, 76\right), 184$ (81), 156 (41), 155 (53), 154 (100), 141 (14), 128 (12), 127 (13), 115 (11), 89 (8), 80 (24), 78 (12), 51 (9); HRMS Pos (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 186.0913 found 186.0916 and exact ion mass is 185.0841 .

4-(Pyridin-2-yl)phenol (27b):

Starting with 2-ethynyl pyridine $26(103 \mathrm{mg}, 1.0 \mathrm{mmol})$, diene $24(505 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5$ mmol), 27b was isolated as colorless crystals ($97 \mathrm{mg}, 57 \%$), m.p $151-153^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=6.87(\mathrm{td}, J$ $=8.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.77-7.83(\mathrm{~m}$,
$2 \mathrm{H}, \mathrm{ArH}), 7.93(\mathrm{td}, J=8.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.58\left(\mathrm{~d}_{(\mathrm{br})}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 9.73\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}\right.$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz, DMSO- d_{6}): $\delta=115.4(2 \mathrm{CH}), 119.0(\mathrm{CH}), 121.4(\mathrm{CH}), 127.9$ $(2 \mathrm{CH}), 129.6(\mathrm{C}), 136.9(\mathrm{CH}), 149.2(\mathrm{CH}), 156.1(\mathrm{C}), 158.5(\mathrm{C}) ;$ IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3180-$ 2481 (b), 1592 (s), 1561 (m), 1523 (m), 1467 (s), 1422 (s), 1268 (s), 1246(s), 1181 (s), 1098 (m), 998 (s), 837 (s), 776 (s$), 743$ (s$), 576$ (m); MS (GC, 70 eV$): m / z(\%): 172\left(\mathrm{M}^{+}+1,11\right)$, $171\left(\mathrm{M}^{+}, 100\right), 170(30), 154$ (9), 142 (11), 117 (8), 115 (9), 63 (3), 39 (2); HRMS Pos (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 172.0757 found 172.0756 and exact ion mass is 171.0684.

3-Ethoxy-4-(pyridin-2-yl)phenol (27c):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$ Exact Mass: 215.09

Starting with 2-ethynyl pyridine 26 ($103 \mathrm{mg}, 1.0 \mathrm{mmol}$), diene 25 ($636 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}$, 5 mmol), 27c was isolated as colorless crystals (118 mg , 55%), m.p $142-143^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21$ ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.66\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 6.22-6.24 (m, 1H, ArH) , 6.26 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.11 (dt, $J=6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.37 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.63 (dt, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.51-8.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, $10.91\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}, \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.6\left(\mathrm{CH}_{3}\right), 63.5\left(\mathrm{OCH}_{2}\right), 100.3$ $(\mathrm{CH}), 108.2(\mathrm{CH}), 118.9(\mathrm{C}), 121.2(\mathrm{CH}), 125.5(\mathrm{CH}), 131.8(\mathrm{CH}), 136.5(\mathrm{CH}), 147.9(\mathrm{CH})$, 156.4 (C), $157.4(\mathrm{CH}), 160.0$ (C); IR (ATR, cm^{-1}): IR (ATR, cm^{-1}): $\widetilde{v}=3220-2550(\mathrm{~b}), 1613$ (w), 1575 (s$), 1454$ (s$), 1295$ (m), 1180 (s), 1128 (s$), 1035$ (m), 991 (m), 774 (s$), 632$ (m), 563 (m); MS (GC, 70 eV): m/z (\%): $216\left(\mathrm{M}^{+}+1,9\right), 215\left(\mathrm{M}^{+}, 63\right), 214$ (55), 201 (13), 200 (92), 187 (12), 186 (55), 172 (23), 171 (100), 170 (23), 130 (31), 117 (12), 80 (11), 63 (7), 51 (5), 29 (4); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]: 215.09408$, found 215.09396.

3-(2-Methoxyphenyl)pyridine (29a):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$ Exact Mass: 185.08

Starting with 3-ethynyl pyridine 28 ($206 \mathrm{mg}, 2.0 \mathrm{mmol}$) and diene 23 ($0.35 \mathrm{~mL}, 3.0 \mathrm{mmol}$), 29a was isolated as colorless viscous liquid ($192 \mathrm{mg}, 52 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{dt}, J$ $=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.21-7.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.77(\mathrm{td}, J=$ 8.0, 2.0 Hz, 1H, ArH), 8.47 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.70 (s (br), $1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.4\left(\mathrm{OCH}_{3}\right), 111.2(\mathrm{CH}), 120.9(\mathrm{CH})$,
$122.8(\mathrm{CH}), 126.9(\mathrm{C}), 129.4(\mathrm{CH}), 130.5(\mathrm{CH}), 134.1(\mathrm{C}), 136.6(\mathrm{CH}), 147.8(\mathrm{CH}), 150.2$ (CH), 156.5 (C); IR (ATR, cm^{-1}): IR (ATR, cm^{-1}): $\widetilde{v}=3025$ (w), 2936 (w), 2833 (w), 1598 (w), 1496 (s), 1462 (s), 1405 (s), 1333 (w), 1264 (s), 1235 (s), 1179 (m), 1121 (m), 1024 (s), 997 (s), $800(\mathrm{~m}), 710(\mathrm{~s}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 186\left(\mathrm{M}^{+}+1,13\right), 185\left(\mathrm{M}^{+}, 100\right), 184$ (10), 170 (49), 141 (5), 115 (23), 89 (5), 63 (4); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}\left[\mathrm{M}^{+}\right]: 185.08352$, found 185.08289.

4-(Pyridin-3-yl)phenol (29b):

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}$ Exact Mass: 171.07

Starting with 3-ethynyl pyridine 28 ($103 \mathrm{mg}, 1.0 \mathrm{mmol}$), diene 24 ($505 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5$ mmol), 29b was isolated as colorless crystals ($75 \mathrm{mg}, 44 \%$), m.p 198-199 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=6.90\left(\mathrm{~d}_{(\mathrm{br})}\right.$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.39 (dd, $J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.54 $\left(\mathrm{d}_{(\mathrm{br})}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.94\left(\mathrm{~d}_{(\mathrm{br})}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $8.48(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 9.71(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR (75.46 MHz, DMSO- d_{6}): $\delta=116.0(2 \mathrm{CH}), 123.7$ (CH), 127.7 (C), 128.0 (2CH), $133.2(\mathrm{CH}), 135.6(\mathrm{C}), 147.0(\mathrm{CH}), 147.4(\mathrm{CH}), 157.7(\mathrm{C}) ;$ IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3170-2480$ (b), 1698 (w), 1591 (m), 1580 (m), 1454 (m), 1385 (w), 1271 (m), 1232(m), 1176 (m), 1062 (m), 1022 (m), 840 (s), 809 (s$), 697$ (s$), 549(\mathrm{~s}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 172\left(\mathrm{M}^{+}+1,14\right)$, $171\left(\mathrm{M}^{+}, 100\right), 170(19), 142(10), 117(12), 115(11), 89$ (5), 32 (4); HRMS Pos (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 172.0757 found 172.0756 and exact ion mass is 171.0684 .

3-Ethoxy-4-(pyridin-3-yl)phenol (29c):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$ Exact Mass: 215.09

Starting with 3-ethynyl pyridine 28 ($103 \mathrm{mg}, 1.0 \mathrm{mmol}$), diene 25 ($636 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5$ mmol), 29c was isolated as colorless crystals ($90 \mathrm{mg}, 42 \%$), m.p $168-170^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=1.27(\mathrm{t}, J$ $\left.=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.01\left(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.49(\mathrm{dd}$, $J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.18(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.40(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.87$ (d $\left.\mathrm{d}_{(\mathrm{br})}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.45(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 9.69\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}\right.$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (62.89 MHz, DMSO- d_{6}): $\delta=14.6\left(\mathrm{CH}_{3}\right), 63.5\left(\mathrm{OCH}_{2}\right), 100.4(\mathrm{CH}), 108.0$ $(\mathrm{CH}), 117.1(\mathrm{C}), 123.3(\mathrm{CH}), 131.1(\mathrm{CH}), 134.3(\mathrm{C}), 136.5(\mathrm{CH}), 146.7(\mathrm{CH}), 149.3(\mathrm{CH})$, 156.7 (C), 159.1 (C); IR (ATR, cm^{-1}); IR (ATR, cm^{-1}): $\widetilde{v}=3110-2390$ (b), 1598 (m), 1513
(w), 1453 (s), 1385 (m), 1301 (m), 1257 (m), 1198 (s), 1120 (m), 1042 (m), 997 (m), 899 (w), 808 (s), 707 (s), 636 (s); MS (GC, 70 eV): m/z (\%): $216\left(\mathrm{M}^{+}+1,14\right), 215\left(\mathrm{M}^{+}, 100\right), 187(83)$, 186 (60), 160 (16), 158 (9), 131 (8), 130 (11), 77 (7), 51 (3); HRMS Pos (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 216.1019 found 216.1018 and exact ion mass is 215.0946 .

2-(2-Methoxyphenyl)pyrimidine (32a):

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 186.08

Starting with 2-ethynyl pyrimidine 31 ($208 \mathrm{mg}, 2.0 \mathrm{mmol}$) and diene $\mathbf{2 3}(0.35 \mathrm{~mL}, 3.0 \mathrm{mmol})$ 32a was isolated as yellowish viscous liquid ($257 \mathrm{mg}, 69 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.99(\mathrm{dt}$, $J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.32-$ 7.38 (m, 1H, ArH), 7.64 (dd, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.77 (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.0\left(\mathrm{OCH}_{3}\right), 111.9(\mathrm{CH})$, $118.6(\mathrm{CH}), 120.7(\mathrm{CH}), 128.3(\mathrm{C}), 131.0(\mathrm{CH}), 131.7(\mathrm{CH}), 157.0(2 \mathrm{CH}), 157.6(\mathrm{C}), 165.9$ (C); IR (ATR, cm^{-1}): $\widetilde{v}=3033$ (w), 2937 (w), 2834 (w), 1714 (w), 1600 (m), 1566 (s), 1552 (s), 1494 (m), 1460 (m), 1412 (s), 1275 (m), 1238 (s), 1179 (m), 1127 (m), 1057 (m), 1021 (s), $803(\mathrm{~m}), 750(\mathrm{~s}), 633(\mathrm{~s}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%):(\%): 187\left(\mathrm{M}^{+}+1,12\right), 186\left(\mathrm{M}^{+}, 100\right)$, 185 (50), 169 (34), 158 (12), 157 (39), 156 (29), 155 (13), 130 (29), 104 (13), 103 (44), 90 (15); HRMS Pos (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 187.0866 found 187.0866 and exact ion mass is 186.0793.

4-(Pyrimidin-2-yl)phenol (32b):

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 172.06

Starting with 2-ethynyl pyrimidine 31 ($104 \mathrm{mg}, 1.0 \mathrm{mmol}$), diene 24 ($505 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5$ mmol), 32b was isolated as colorless crystals ($107 \mathrm{mg}, 62 \%$), m.p $183-185^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=6.89$ (td, $J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.31(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.26$ ($\mathrm{td}, J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.81 (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $9.97\left(\mathrm{~s}_{(\mathrm{br})}, \quad 1 \mathrm{H}, \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta=115.6(2 \mathrm{CH}), 118.8(\mathrm{CH}), 128.3(\mathrm{C}), 129.6(2 \mathrm{CH}), 157.6(2 \mathrm{CH}), 160.2(\mathrm{C}), 163.6(\mathrm{C}) ;$ IR (ATR, cm^{-1}): $\widetilde{v}=3129-2354(\mathrm{~b}), 1704$ (w), 1609 (m), 1550 (s), 1519 (m), 1407 (s), 1317 (m), 1283 (s), 1204 (s$), 1166$ (s$), 1100$ (m), 993 (m), 783 (s$), 646$ (s$), 630$ (s$)$; MS (GC, 70 $\mathrm{eV}): m / z(\%): 173\left(\mathrm{M}^{+}+1,12\right), 172\left(\mathrm{M}^{+}, 100\right), 171$ (12), 144 (2), 119 (55), 91 (4), 64 (5), 39 (2); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+}\right]$: 172.06311, found 172.06280.

3-Ethoxy-4-(pyrimidin-2-yl)phenol (32c):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ Exact Mass: 216.09

Starting with 2-ethynyl pyrimidine 31 ($104 \mathrm{mg}, 1.0 \mathrm{mmol}$), diene 25 ($636 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{MeOH}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}$, 5 mmol), 32c was isolated as colorless crystals (134 mg , 62%), m.p $185-186^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=$ $1.25\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.00(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 6.47(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, \mathrm{ArH}), 6.51(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, ArH), 7.31 (t, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.49 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $8.81(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.81\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}, \mathrm{OH}\right),{ }^{13} \mathrm{C}$ NMR (62.89 MHz , DMSO$\left.d_{6}\right): \delta=14.7\left(\mathrm{CH}_{3}\right), 64.0\left(\mathrm{OCH}_{2}\right), 101.1(\mathrm{CH}), 107.5(\mathrm{CH}), 118.5(\mathrm{CH}), 120.2(\mathrm{C}), 132.6$ $(\mathrm{CH}), 157.0(2 \mathrm{CH}), 158.4(\mathrm{C}), 160.1(\mathrm{C}), 165.4(\mathrm{C}) ;$ IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3134-2606(\mathrm{~b})$, 1599 (m), 1571 (s), 1552 (s), 1468 (w), 1407 (s), 1321 (m), 1277 (s), 1235 (s), 1085 (m), 992 (m), $820(\mathrm{~m}), 771(\mathrm{~m}), 638(\mathrm{~s}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 217\left(\mathrm{M}^{+}+1,11\right), 216\left(\mathrm{M}^{+}, 100\right)$, 215 (26), 201 (42), 199 (13), 188 (15), 173 (18), 172 (74), 171 (11), 135 (18), 131 (25), 119 (29), 79 (6), 52 (6); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 216.08933$, found 216.08890.

2-(2-Methoxyphenyl)-5-methylpyridine (35a):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}$ Exact Mass: 199.10 Starting with 2-ethynyl-5-methylpyridine $\mathbf{3 4}$ (234 mg , 2.0 mmol) and diene $\mathbf{2 3}$ ($0.35 \mathrm{~mL}, 3.0 \mathrm{mmol}$), 35a was isolated as colorless greenish viscous liquid ($219 \mathrm{mg}, 55 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.24-7.30 (m, 1H, ArH)), 7.42 (dd, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.63 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.68 (dd, $J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.46 ($\mathrm{s}(\mathrm{br}), 1 \mathrm{H}$, ArH); ${ }^{13} \mathrm{C}$ NMR ($75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.0\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 111.2(\mathrm{CH}), 120.8(\mathrm{CH})$, 124.3 (CH), 129.0 (C), $129.4(\mathrm{CH}), 130.8(\mathrm{CH}), 130.9(\mathrm{C}), 136.0(\mathrm{CH}), 149.6(\mathrm{CH}), 153.2$ (C), 156.7 (C); IR (ATR, cm^{-1}): IR (ATR, cm^{-1}): $\widetilde{v}=2997$ (w), 2920 (w), 2834 (w), 1599 (m), 1581(m), 1495 (s$), 1462$ (s), 1434 (s), 1357 (m), 1240 (s$), 1178$ (m), 1121 (m), 1056 (m), 1022 (s), 832 (m), $750(\mathrm{~s}) ; \mathrm{MS}(\mathrm{GC}, 70 \mathrm{eV}): m / z(\%): 200\left(\mathrm{M}^{+}+1,13\right), 199\left(\mathrm{M}^{+}, 100\right)$, 198 (99), 170 (46), 169 (63), 168 (60), 167 (14), 154 (22), 142 (10), 141 (29), 128 (15), 115 (12), 94 (34), 84 (11). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}\left[\mathrm{M}^{+}\right]: 199.09973$, found 199.09890.

4-(5-Methylpyridin-2-yl)phenol (35b):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$
Exact Mass: 185.08

Starting with 2-ethynyl-5-methylpyridine $\mathbf{3 4}$ (117 mg , 1.0 mmol), diene 24 ($505 \mathrm{mg}, 3.0 \mathrm{mmol}$), MeOH (5 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5 \mathrm{mmol}), \mathbf{3 5 b}$ was isolated as colorless crystals ($80 \mathrm{mg}, 43 \%$), m.p $173-175^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta=2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.85(\mathrm{td}, J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.61(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.90 (td, $J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.42\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $9.67\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}, \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.89 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=17.7\left(\mathrm{CH}_{3}\right), 115.5(2 \mathrm{CH}), 118.6$ (CH), 127.7 (2 CH), 129.8 (C), 130.5 (C), $137.4(\mathrm{CH}), 149.6(\mathrm{CH}), 153.7(\mathrm{C}), 158.3$ (C); IR (ATR, cm^{-1}): $\widetilde{v}=3080-2470(\mathrm{~b}), 1704(\mathrm{w}), 1672(\mathrm{w}), 1601$ (s), 1593 (s), 1522(w), 1472 (s), 1374 (m), 1266 (s), 1234 (s), 1176 (m), 1111 (m), 1043 (m), 819 (s), 759 (m), 651(m); MS (GC, 70 eV): m/z (\%): $186\left(\mathrm{M}^{+}+1,14\right), 185\left(\mathrm{M}^{+}, 100\right), 184$ (30), 157 (11), 141 (3), 131 (5), 128 (5), 63 (3), 39 (2); HRMS Pos (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 186.0913 found 186.0913 and exact ion mass is 185.0841 .

3-Ethoxy-4-(5-methylpyridin-2-yl)phenol (35c):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ Exact Mass: 229.11

Starting with 2-ethynyl-5-methylpyridine $\mathbf{3 4}$ (117 mg , 1.0 mmol), diene 25 ($636 \mathrm{mg}, 3.0 \mathrm{mmol}$), MeOH (5 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5 \mathrm{mmol}), \mathbf{3 5} \mathrm{c}$ was isolated as colorless crystals (110 mg, 48\%), m.p $189-191^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta=1.34\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.04$ (q, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.45-6.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{dd}$, $J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.66 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.78 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 9.66\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}\right.$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (62.89 MHz, DMSO- d_{6}): $\delta=14.7\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 63.6\left(\mathrm{OCH}_{2}\right), 100.1$ $(\mathrm{CH}), 107.8(\mathrm{CH}), 119.5(\mathrm{C}), 123.5(\mathrm{CH}), 130.0(\mathrm{C}), 131.5(\mathrm{CH}), 136.2(\mathrm{CH}), 149.3(\mathrm{CH})$, 152.7 (C), 157.3 (C), 159.2 (C); IR (ATR, cm^{-1}): $\widetilde{v}=3120-2528$ (b), 1613 (w), 1579 (m), 1455 (s), 1362 (w), 1300 (s), 1182 (s), 1124 (m), 1040 (s), 899 (w), 818 (s), 724 (w), 589 (m); MS (GC, 70 eV): $m / z(\%): 230\left(\mathrm{M}^{+}+1,6\right), 229\left(\mathrm{M}^{+}, 47\right), 228$ (36), 214 (82), 200 (26), 186 (26), 185 (100), 184 (28), 144 (21), 115 (9), 94 (12), 65 (5), 32 (4); HRMS Pos (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd is 230.1176 found 230.1178 and exact ion mass is 229.1103.

(2-Chlorophenyl)(3-methoxy-2-(pyridin-3-yl)phenyl)methanone (37a) :

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClNO}_{2}$ Exact Mass: 323.07

Starting with 1-(2-chlorophenyl)-3-(pyridin-3-yl)prop-2-yn-1-one 36 ($121 \mathrm{mg}, 0.5 \mathrm{mmol}$) and diene $23(0.18 \mathrm{~mL}$, 1.5 mmol), $\mathbf{3 7 a}$ was isolated as brown viscous liquid (98 mg , 61%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.04-7.10 (m, 2H, ArH), 7.19-7.21 (m, 2H, ArH), 7.36 (d $\left.\mathrm{d}_{(\mathrm{br})}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.42(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.52(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $8.36\left(\mathrm{~d}_{(\mathrm{br})}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75.46 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=56.0$ $\left(\mathrm{OCH}_{3}\right), 111.0(\mathrm{CH}), 122.5(\mathrm{CH}), 122.7(\mathrm{CH}), 126.4(\mathrm{CH}), 129.6(\mathrm{C}), 130.9(\mathrm{CH}), 131.1$ (CH), 131.6 (CH), 132.5 (CH), 132.9 (C), 135.4 (C), 136.3 (CH), 137.3 (C), 138.1 (C), 148.5 $(\mathrm{CH}), 149.3(\mathrm{CH}), 157.5(\mathrm{C}), 194.6(\mathrm{CO})$; IR (ATR, cm^{-1}): $\widetilde{v}=3049(\mathrm{w}), 2937(\mathrm{w}), 2834$ (w), 1600 (m), 1580 (s), 1492 (s), 1459 (s), 1422 (s$), 1300$ (m), 1256 (s), 1237 (s), 1179 (m), 1122 (m), 1021 (s), 987 (m), 745 (s), 729 (s), 611 (m); MS (GC, 70 eV): m/z (\%): 325 (M^{+}, $\left.{ }^{37} \mathrm{Cl}, 17\right), 323\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}, 40\right), 322$ (11), 294 (22), 289 (20), 288 (90), 272 (13), 260 (22), 213 (20), 212 (100), 207 (26), 183 (13), 169 (19), 141 (19), 139 (33), 111 (22), 75 (12); HRMS Pos (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}_{2}\left[\mathrm{M}+\mathrm{H},{ }^{35} \mathrm{Cl}\right]^{+}$calcd is 324.0786 found 324.0786 and exact ion mass is 323.0713 .

(2-Chlorophenyl)(5-hydroxy-2-(pyridin-3-yl)phenyl)methanone (37b):

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{CINO}_{2}$ Exact Mass: 309.06

Starting with 1-(2-chlorophenyl)-3-(pyridin-3-yl)prop-2-yn1 -one 36 ($121 \mathrm{mg}, 0.5 \mathrm{mmol}$), diene 24 ($252 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathrm{MeOH}(2.5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.34 \mathrm{~g}, 2.5 \mathrm{mmol}), 37 \mathrm{~b}$ was isolated as colorless crystals ($79 \mathrm{mg}, 51 \%$), m.p $98-100^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=6.79$ (d, $J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$) , 6.93 (dd, $J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.28-7.41$ (m, 5H, ArH), $7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.65\left(\operatorname{td}_{(\mathrm{br})}, J=\right.$ 8.0, 1.9 Hz, 1H, ArH), 8.42-8.44 (m, 2H, ArH), $10.67\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}, \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz, DMSO- d_{6}): $\delta=114.8(\mathrm{CH}), 118.3(\mathrm{CH}), 122.9(\mathrm{CH}), 127.0(\mathrm{CH}), 128.1(\mathrm{C}), 129.9(\mathrm{CH})$, $130.1(\mathrm{CH}), 130.3(\mathrm{C}), 131.8(\mathrm{CH}), 134.1(\mathrm{CH}), 135.7(\mathrm{CH}), 136.3(\mathrm{C}), 138.8(\mathrm{C}), 141.5(\mathrm{C})$, $148.0(\mathrm{CH}), 148.5(\mathrm{CH}), 161.1$ (C), 193.9 (CO); IR (ATR, cm ${ }^{-1}$): $\widetilde{v}=3143-2425$ (b), 1651 (w), 1587 (m), 1462 (w), 1291 (s), 1218 (s), 1124 (m), 1053 (w), 929 (m), 758 (s), 710 (s), 605 (s); MS (GC, 70 eV): m/z (\%): $311\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 9\right), 310\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 13\right), 309\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right.$,
29), 308 (26), 280 (23), 274 (52), 246 (15), 207 (18), 199 (66), 198 (100), 139 (18), 115 (14), 111 (13), 44 (6); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{Cl}\left[\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right]$: 309.05511, found 309.05438.

(2-Chlorophenyl)(3-ethoxy-5-hydroxy-2-(pyridin-3-yl)phenyl)methanone (37c):

Starting with 1-(2-chlorophenyl)-3-(pyridin-3-yl)prop-2-yn-1-one 36 ($121 \mathrm{mg}, \quad 0.5 \mathrm{mmol}$), diene 25 (318 mg , $1.5 \mathrm{mmol}), \mathrm{MeOH}(2.5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.34 \mathrm{~g}, 2.5 \mathrm{mmol}), 37 \mathrm{c}$ was isolated as colorless crystals ($97 \mathrm{mg}, 55 \%$), m.p $=$ ($154-56^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=0.82(\mathrm{t}, J$ Chemical Formula: $\left.\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClNO}_{3}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.82\left(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.40$ Exact Mass: 353.08 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.32-7.50 (m, 5H, ArH), $7.66\left(\operatorname{td}_{(\mathrm{br})}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 8.47 (dd, $J=4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 10.37\left(\mathrm{~s}_{(\mathrm{br})}, 1 \mathrm{H}, \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR (62.89 MHz, DMSO- d_{6}): $\delta=13.9\left(\mathrm{CH}_{3}\right), 63.9\left(\mathrm{OCH}_{2}\right), 99.7(\mathrm{CH}), 110.4(\mathrm{CH}), 120.0(\mathrm{C}), 123.2(\mathrm{CH}), 127.2(\mathrm{CH})$, 130.3 (CH), 130.4 (CH), 131.1 (C), 132.2 (CH), 135.9 (CH), 136.4 (C), $140.0(\mathrm{C}), 140.7(\mathrm{C})$, $148.2(\mathrm{CH}), 148.7(\mathrm{CH}), 159.5(\mathrm{C}), 160.9(\mathrm{C}), 193.6(\mathrm{CO}) ;$ IR (ATR, $\left.\mathrm{cm}^{-1}\right): \widetilde{v}=3151-2580$ (b), 1667 (m), 1558 (m), 1435 (m), 1291 (m), 1178 ($), 1137$ (m), 1035 (s), 928 (m), 762 (s$)$, 742 (s), 623 (s); MS (GC, 70 eV): $m / z(\%): 355\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}, 5\right), 354\left(\mathrm{M}^{+}+1,{ }^{35} \mathrm{Cl}, 10\right), 353\left(\mathrm{M}^{+}\right.$, ${ }^{35} \mathrm{Cl}, 24$), 308 (42), 242 (18), 214 (100), 199 (32), 198 (43), 139 (3), 115 (94), 111 (7), 44 (21); HRMS Pos (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClNO}_{3}\left[\mathrm{M}+\mathrm{H},{ }^{35} \mathrm{Cl}\right]^{+}$calcd is 354.0894 found 354.0891 and exact ion mass is 353.0819 .

References:

1. a) Fluorine in Bioorganic Chemistry, Filler, R.; Kobayasi, Y.; Yagupolskii, L. M., eds., Elsevier: Amsterdam, 1993. b) Filler, R. Fluorine Containing Drugs in Organofluorine Chemicals and their Industrial Application; Pergamon: New York, 1979, chapter 6. c) Hudlicky, M. Chemistry of Organic Compounds; Ellis Horwood: Chichester, 1992. d) Kirsch, P. Modern Fluoroorganic Chemistry, VCH, Weinheim, 2004. e) Chambers, R. D. Fluorine in Organic Chemistry, Blackwell Publishing CRC Press, 2004. See also: f) Ryckmanns, T.; Balancon, L.; Berton, O.; Genicot, C.; Lamberty, Y.; Lallemand, B.; Passau, P.; Pirlot, N.; Quéré, L.; Talaga, P. Bioorg. Med. Chem. Lett. 2002, 12, 261. g) Malamas, M. S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; McDevitt, R.; Adebayo, F. O.; Sawicki, D. R.; Seestaller, L.; Sullivan, D.; Taylor, J. R. J. Med. Chem. 2000, 43, 1293. h) Ciha, A. J.; Ruminski, P. G. J. Agric. Food Chem. 1991, 39, 2072. i) Albrecht, H. A.; Beskid, G.; Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.; Pruess, D. L.; Rossman, P. L.; Wei, C. C.; Christenson, J. G. J. Med. Chem. 1991, 34, 2857. j) Albrecht, H. A.; Beskid, G.; Christenson, J. G.; Deitcher, K. H.; Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.; Pruess, D. L.; Wie, C. C. J. Med. Chem. 1994, 37, 400. k) Song, C. W.; Lee, K. Y.; Kim, C. D.; Chang, T-M.; Chey, W. Y. J. Pharmacol. Exp. Ther. 1997, 281, 1312. 1) De Voss, J. J.; Sui, Z.; DeCamp, D. L.; Salto, R.; Babe, L. M.; Craik, C. S.; Ortiz de Montellano, P. R. J. Med. Chem. 1994, 37, 665. m) Anjaiah, S.; Chandrasekhar, S.; Gree, R. Adv. Synth. Catal. 2004, 346, 1329. n) Iorio, M. A.; Paszkowska, R. T.; Frigeni, V. J. Med. Chem. 1987, 30, 1906. o) Popp, J. L.; Musza, L. L.; Barrow, C. J.; Rudewicz, P. J.; Houck, D. R. J. Antibiot. 1994, 47, 411. p) Chen, T. S.; Petuch, B.; MacConnell, J.; White, R.; Dezeny, G. J. Antibiot. 1994, 47, 1290. q) Lam, K. S.; Schroeder, D. R.; Veitch, J. M. J. M.; Colson, K. L.; Matson, J. A.; Rose, W. C.; Doyle, T. W.; Forenza, S. J. Antibiot. 2001, 54, 1.
2. Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley-VCH, Weinheim 2004.
3. a) Schmidbaur, H.; Kumberger, O. Chem. Ber. 1993, 126, 3. b) Dinger, M. B.; Henderson, W. J. Organomet. Chem. 1998, 560, 233. c) Liedtke, J.; Loss, S.; Widauer, C.; Grützmacher, H. Tetrahedron 2000, 56, 143. d) Schneider, S.; Tzschucke, C. C.; Bannwarth, W. Multiphase Homogeneous Catalysis (Cornils, B.; Herrmann, W. A.; Horvath, I. T.; Leitner, W.; Mecking, S.; Olivier-Booubigou, H.;

Vogt, D., ed.), Wiley VCH, 2005, Chapter 4, p. 346. e) Clarke, D.; Ali, M. A.; Clifford, A. A.; Parratt, A.; Rose, P.; Schwinn, D.; Bannwarth, W.; Rayner, C. M. Curr. Top. Med. Chem. 2004, 7, 729.
4. Reviews: a) Wittkopp, A.; Schreiner, P. R. The chemistry of diens and polyenes, Vol. 2; John Wiley \& Sons Ltd, 2000. b) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. See also: c) Wittkopp, A.; Schreiner, P. R. Chem. Eur. J. 2003, 9, 407. d) Kleiner, C. M.; Schreiner, P. R. Chem. Commun. 2006, 4315.e) Kotke, M.; Schreiner, P. R. Synthesis 2007, 5, 779. Review: Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
5. For a review of reactions of chromones with 1,3-bis(silyloxy)-1,3-butadienes, see: Langer, P. Synlett 2007, 1016.
6. For a review of 1,3-bis(silyloxy)-1,3-butadienes in general, see: Langer, P. Synthesis 2002, 441.
7. For reviews of domino reactions, see: a) Tietze, L. F.; Beifuss, U., Angew. Chem. 1993, 105, 137; Angew. Chem., Int. Ed. Engl. 1993, 32, 131. b) Tietze, L. F. Chem. Rev. 1996, 96, 115.
8. a) Langer, P.; Appel, B. Tetrahedron Lett. 2003, 5133. b) Rashid, M. A.; Rasool, N.; Appel, B.; Adeel, M.; Karapetyan, V.; Mkrtchyan, S.; Reinke, H.; Fischer, C.; Langer, P. Tetrahedron 2008, 64, 5416.
9. Appel, B.; Saleh, N. N. R.; Langer, P. Chem. Eur. J. 2006, 12, 1221.
10. Weiler, L. J. Am. Chem. Soc. 1970, 92, 6702.
11. Adeel, M.; Reim, S.; Wolf, V.; Yawer, M. A.; Hussain, I.; Villinger, A.; Langer, P. Synlett 2008, 2629.
12. a) Hegedus, L. S.; Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed., University Science Books, Sausalito, 1999. b) Handbook of Organopalladium Chemistry for Organic Synthesis (Ed.: E. Negishi), Wiley Interscience, NewYork, 2002. c) Cornils, B.; Herrmann, W. A.; Ed.; Applied Homogeneous Catalysis with Organometallic Compounds; Wiley-VCH: Weiheim, 1996. d) Miyaura, N.; Cross-Coupling Reactions; Ed.; Springer: Berlin, 2000. e) Diederich, F.; de Meijere, A.; Metal-Catalyzed Cross-Coupling Reactions, $2^{\text {nd }}$ ed.; Eds.; Wiley-VCH: Weiheim, 2004.
13. a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D.; Angew. Chem. Int. Ed. 2005, 44, 4442. b) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S.; Angew. Chem. Int. Ed. 2000, 39, 44. c) Nicolaou, K. C. Tetrahedron 2003, 59, 6683.
14. Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem.,2006, 4, 2337.
15. Goldfinger, M. B.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, 7895.
16. Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
17. Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.
18. Suzuki, A. Acc. Chem. Res. 1982, 15, 178.
19. Sonogashira, K. J. Organomet. Chem. 2002, 653, 46.
20. a) Trost, B. M. Acc. Chem. Res. 1980, 13, 385. b) Tsuji, J. Tetrahedron 1986, 42, 4361.
21. a) Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821.
b) Negishi, E. Acc. Chem. Res. 1982, 15, 340.
c) Negishi, E.; Takahashi, T.; Babu, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393.
22. Miyaura, N.; Yanagi, T.; Suzuki A. Synth. Commun. 1981, 11, 513.
23. A part of this work was previously reviewed: a) Suzuki, A. Pure Appl. Chem. 1985, 57, 1749. b) Miyaura, N.; Suzuki, A. J. Synth. Org. Chem. Jpn. 1988, 46, 848. c) Miyaura, N.; Suzuki, A. J. Synth. Org. Chem. Jpn. 1993, 51, 1043. d) Suzuki, A. Pure Appl. Chem. 1991, 63, 419. e) Suzuki, A. Pure Appl. Chem. 1994, 66, 213.
24. Meijere, A.; Diederich, F.. Metal- Catalyzed Cross-Coupling Reactions, 2nd Ed. 2004, Willey-VCH. b) Beletskaya I. Pure Appl. Chem., 2002, 74, 1327.
25. Stanforth, S. P. Tetrahedron 1998, 54, 263.
26. Corbet, J.; Mignani, G. Chem. Rev. 2006, 106, 2651.
27. Beller, M.; Bohm, C. Transition Metals in Organic Synthesis. 2nd Ed. 2005.
28. a) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem., 2002, 67, 5553. b) Liu, X.; Hartwig, J. F. Org. Lett., 2003, 5, 1915. c) Hama, T.; Liu, X.; Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc., 2003, 125, 1117. d) Vo, G. D.; Hartwig, J. F. Angew. Chem. Int. Ed., 2008, 47, 2127.
29. a) Lipshutz, B. H.; Petersen, T. B.; Abela, A. R. Org. Lett., 2008, 10, 1333. b) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D. Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc., 2006, 128, 4101.
30. Netherton, M. R.; Fu, G. C. Org. Lett., 2001, 3, 4295.
31. Miyaura, N.; Suzuki, A. Chem. Rev., 1995, 95, 2457.
32. Ortar, G. Tetrahedron Lett. 2003, 44, 4311.
33. "Coupling Reactions Between $s p^{3}$ and $s p^{2}$ Carbon Centers": Tamao, K. in comprehensive Organic Synthesis, Vol. 3 (Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, p. 435.
34. Hoshi, T.; Nakazawa, T.; Saitoh, I.; Mori, Y.; Suzuki, T.; Sakai, J.-i.; Hagiwara, H.; Akai, S. Org. Lett., 2008, 10, 2063.
35. Lipshutz, B. H.; Petersen, T. B.; Abela, A. R. Org. Lett., 2008, 10, 1333.
36. Kingston, J. V.; Verkade, J. G. J. Org. Chem., 2007, 72, 2816.
37. For a review of palladium-catalyzed alkynylation reactions, see: Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
38. King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc. Chem. Commun. 1977, 683.
39. Dang, H. P.; Linstrumelle, G. Tetrahedron Lett. 1978, 19, 191.
40. Soderquist, J. A.; Matos, K.; Rane, A.; Ramos, J. Tetrahedron Lett. 1995, 36, 2401.
41. Takai, K.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1980, 21, 2531.
42. Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138.
43. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
44. a) Transition Metals for Organic Synthesis; Building Block and Fine Chemicals, $2^{\text {nd }}$ ed.; Beller, N.; Bolm, C. Eds.; Wiley-VCH: Weinheim, 2004. b) Tsuji, J. Palladium Reagents and Catalysts, Innovations in Organic Synthesis; Wiley: New York, 1995.
45. Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
46. a) Bohm, V. P. H.; Hermann, W. A. Eur. J. Org. Chem. 2000, 3679. b) Soheili, A.; Albazene, W. J.; Murry, J. A.; Dormer, P. G.; Hughes, D. L. Org. Lett. 2003, 5, 4191.
47. Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. Org. Lett.2000, 2, 1729.
48. Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313.
(a) Sumi, S.; Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 1891.
(b) Sumi, S.; Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Tetrahedron 2003, 59, 8571.
50. Sicre, C.; Cid, M. M. Org. Lett. 2005, 7, 5737.
51. a) Tour, J. M. Acc. Chem. Res. 2000, 33, 791. b) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350. c) Tour, J. M. Chem. ReV. 1996, 96, 537. d) Bunz, U. H. F. Chem. Rev. 2000, 100, 1605. e) Breitenkamp, R. B.; Arnt, L.; Tew, G. N. Polym. Adv. Technol. 2005, 16, 189. f) Weder, C. Chem. Commun. 2005, 5378.
a) Jones, T. V.; Blatchly, R. A.; Tew, G. N. Org. Lett. 2003, 5, 3297. b) Wilson, J. N.; Josowicz, M.; Wang, Y.; Bunz, U. H. F. Chem. Commun. 2003, 2982. c) Halper, S.
R.; Cohen, S. M. Chem.s Eur. J. 2003, 9, 4661. d) Dirk, S. M.; Tour, J. M. Tetrahedron 2003, 59, 287.
53. Ricks, H. L.; Shimizu, L. S.; Smith, M. D.; Bunz, U. H. F.; Shimizu, K. D. Tetrahedron Lett. 2004, 45, 3229.
54. a) Li, Y.; Zhang, J.; Wang, W.; Miao, Q.; She, X.; Pan, X. J. Org. Chem. 2005, 70, 3285. (b) Zhang, W.; Brombosz, S. M.; Mendoza, J. L.; Moore, J. S. J. Org. Chem. 2005, 70, 101.
55. Fischer, M.; Lieser, G.; Rapp, A.; Schnell, I.; Mamdouh, W.; De Feyter, S.; De Schryver, F.; Hoger, S. J. Am. Chem. Soc. 2004, 126, 214.
56. a) Harada, T.; Matsui, S.; Tuyet, T. M. T.; Hatsuda, M.; Ueda, S.; Oku, A.; Shiro, M. Tetrahedron: Asymmetry 2003, 14, 3879. b) Harada, T.; Hiraoka, Y.; Kasukawa, T.; Marutani, Y.; Matsui, S.; Nakatsugawa, M.; Kanda, K. Org. Lett. 2003, 5, 5059.
57. Donaldson, N. The Chemistry and Technology of Naphthalene Compounds, London: Edward Arnold, 1958.
58. Strobel, G. A.; Kluck, K.; Hess, W. M.; Sears, J.; Ezra D.; Vargas, P. N. Microbiology, 2007, 153, 2613.
59. Ganapaty, S.; Thomas, P. S.; Karagianis, G.; Waterman, P. G.; Brun, R. Phytochemistry, 2006, 67 (17), 1950.
60. Rokade, Y.B.; Sayyed, R.Z.; Rasyan J.Chem 2009, 2, 972.
61. Hasegawa, M.; Takenouchi, K.; Takahashi, K.; Takeuchi, T.; Komoriya, K.; Uejima, Y.; Kamimura T. J. Med. Chem., 1997, 40 (4), 395.
62. Yasuda, T.; Kashiwagi, K.; Morizawa, Y.; Tsutsui, T. J. Phys. D: Appl. Phys. 2007, 40, 4471.
63. For reviews of cross-coupling reactions of polyhalogenated heterocycles, see: a) Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245. b) Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem. 2006, 3283.
64. For palladium-catalyzed reactions from our group, see for example: a) Dang, T. T.; Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P. Tetrahedron Lett. 2008, 49, 1698. b) Dang, T. T.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2008, 350, 2109. c) Hussain, M.; Nguyen, T. H.; Langer, P. Tetrahedron Lett. 2009, 50, 3929. d) Dang, T. T.; Dang, T. T.; Rasool, N.; Villinger, A.; Langer, P. Adv. Synth. Catal. 2009, 351, 1595.
a) Takeuchi, M.; Tuihiji, T.; Nishimura, J. J. Org. Chem. 1993, 58, 7388. b) Sugiura, H.; Nigorikawa, Y.; Saiki, Y.; Nakamura, K.; Yamaguchi, M. J. Am. Chem. Soc. 2004, 126, 14858. c) Akimoto, K.; Suzuki, H.; Kondo, Y.; Endo, K.; Akiba, U.; Aoyama, Y.; Hamada, F. Tetrahedron 2007, 63, 6887. d) Akimoto, K.; Kondo, Y.; Endo, K.; Yamada, M.; Aoyama, Y.; Hamada, F. Tetrahedron Lett. 2008, 49, 7361.
66. Hosokawa, S.; Fumiyama, H.; Fukuda, H.; Fukuda, T.; Seki, M.; Tatsuta, K. Tetrahedron Lett. 2007, 48, 7305.
67. Nawaz, M.; Farooq Ibad, M.; Abid, O-U-R.; Khera, R. A.; Villinger, A.; Langer, P. Synlett 2009, in print.
68. Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358, and references cited therein.
69. CCDC 760147 and 760148 contain the supplementary crystallographic data of these crystals. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
70. For pharmacologically active chlorinated natural products and drugs: Griseofulvin: a) Osborne, C. S.; Leitner, I.; Hofbauer, B.; Fielding, C. A.; Favre, B.; Ryder, N. S. Antimicrob. Agents Chemother 2006, 50, 2234. b) Takano, R.; Sugano, K.; Higashida, A.; Hayashi, Y.; Machida, M.; Aso, Y.; Yamashita, S. Pharm. Res. 2006, 23, 1144. c) Xue, C.; Li, T.; Deng, Z.; Fu, H.; Lin, W. Pharmazie 2006, 61, 1041. d) Phelps, J. B.; Hoffman, W. P.; Lee, C.; Murphy, G. P.; Garriott, M. L. Mutat. Res. 2004, 561, 153. e) Rosefort, C.; Fauth, E.; Zankl, H. Mutagenesis 2004, 19, 277. f) Kinobe, R. T.; Dercho, R. A.; Vlahakis, J. Z.; Brien, J. F.; Szarek, W. A.; Nakatsu, K. J. Pharmacol. Exp. Ther. 2006, 319, 277. g) Albaugh, D.; Albert, G.; Bradford, P.; Cotter, V.; Froyd, J. J. Antibiot. 1998, 51, 317. Dihydronidulin: Finlay-Jones, P. F.; Sala, T.; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1981, 874.
71. a) Albrecht, U.; Lalk, M.; Langer, P. Bioorg. Med. Chem. 2005, 13, 1531. b) Nguyen, V. D.; Wolf, C.; Mäder, U.; Lalk, M.; Langer, P.; Lindequist, U.; Hecker, M.; Antelmann, H. Proteomics 2007, 7, 1391.
72. Metal-Catalyzed Cross-Coupling Reactions (eds: de Meijere, A.; Diederich, F.), Wiley- VCH, Weinheim 2004.
73. Corral, C.; Lissavetzky, J.; Manzanares, I. Synthesis 1997, 29.
74. a) Chan, T.-H.; Brownbridge, P. J. Chem. Soc., Chem. Commun. 1979, 578. b) Krägeloh, K.; Simchen, G. Synthesis 1981, 30.
75. For a review of [3+3] cyclizations, see: Feist, H.; Langer, P. Synthesis 2007, 327.
76. For the synthesis and reactions of a 4-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadiene, see: a) Reim, S.; Langer, P. Tetrahedron Lett. 2008, 49, 2329. For an isolated example of a 2-chloro-1,3-bis(trimethylsilyloxy)-1,3-butadiene, see: b) Savard, J.; Brassard, P. Tetrahedron Lett. 1979, 20, 4911. For [3+3] cyclizations of 1,3-bis(silyloxy)-1,3dienes with 2-chloro-3-silyloxy-2-en-1-ones, see: c) Yawer, M. A.; Hussain, I.; Reim, S.; Ahmed, Z.; Ullah, E.; Iqbal, I.; Fischer, C.; Reinke, H.; Görls, H.; Langer, P. Tetrahedron 2007, 63, 12562. For synthetic applications of 2-chloro-1,3-bis(silyloxy)-1,3-butadienes, see: d) Reim, S.; Hussain, I.; Adeel, M.; Yawer, M. A.; Villinger, A.; Langer, P. Tetrahedron Lett. 2008, 49, 4901.
77. For a review of site-selective palladium(0)-catalyzed cross-coupling reactions of polyhalogenated substrates, see: Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245.
78. CCDC 754591 contain the supplementary crystallographic data for this crystal. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
79. McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809.
80. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103 (3), 893.
81. Jefferson, E. A.; Seth, P. P.; Robinson, D. E.; Winter, D. K.; Miyaji, A.; Risen, L. M.; Osgood, S. A.; Bertrand, M.; Swayze, E. E. Bioorg. Med. Chem. Lett. 2004, 14, 5257.
82. Ladouceur, G. H.; Cook, J. H.; Doherty, E. M.; Schoen, W. R.; MacDougall, M. L.; Livingston, J. N. Bioorg. Med. Chem. Lett. 2002, 12, 461.
83. Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
84. Godfraind, T.; Miller, R.; Wibo, M. Pharmacol. Rev. 1986, 38, 321.
85. Kinabaline: a) Tadic, D.; Cassels, B. K.; Leboeuf, M.; Cave, A. Phytochemistry 1987, 26, 537. 6-Hydroxy-7-methoxy-onychine: b) Chen, C.-Y.; Chang, F.-R.; Shih, Y.-C.; Hsieh, T.-J.; Chia, Y.-C.; Tseng, H.-Y.; Chen, H.-C.; Chen, S.-J.; Hsu, M.-C.; Wu, Y.-C. J. Nat. Prod. 2000, 63, 1475. 1-Methyl-4-azafluorenone: c) Bracher, F. Arch.Pharm. (Weinheim Ger.) 1992, 325, 645. d) Chaves, M. H.; de Santos, L. A.; Lago, J. H. G.; Roque, N. F. J. Nat. Prod. 2001, 64, 240. e) Koyama, J.; Morita, I.; Kobayashi, N.; Osakai, T.; Usuki, Y.; Taniguchi, M. Bioorg. Med. Chem. Lett. 2005, 15, 1079. Darienine: f) Arango, G. J.; Cortes, D.; Cassels, B. K.; Cave, A.; Merienne,
C. Phytochemistry 1987, 26, 2093. 5,6-Dimethoxyonychine: g) Koyama, J.; Ogura, T.; Tagahara, K.; Miyashita, M.; Irie, H. Chem. Pharm. Bull. 1993, 41, 1297.
86. For reviews on biaryls, see: a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359; b) Shimizu, H.; Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405; c) Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
87. Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. 2005, 117, 5518. Angew. Chem. Int. Ed. 2005, 44, 5384.
88. Lee, K.; Lee, P. Ho. Tetrahedron Letters 2008, 49, 4302.
89. a) Kudo, N.; Perseghini, M.; Fu, G. C. Angew. Chem. Int. Ed. 2006, 45, 1282. b) Billingsley, K. L.; Anderson, K. W.; Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 3484. c) Guram, A. S.; King, A. O.; Allen, J. G.; Wang, X.; Schenkel, L. B.; Chan, J.; Bunel, E. E.; Faul, M. M.; Larsen, R. D.; Martinelli, M. J.; Reider, P. J. Org. Lett. 2006, 8, 1787. d) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358. e) Yamamoto, Y.; Takizawa, M.; Yu, X. Q.; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928.
90. Yawer, M.A.; Riahi, A.; Adeel, M.; Hussain, I.; Fischer, C.; Langer, P. Synthesis, 2008, 8, 1276.
91. a) Perkins, J. R.; Carter, R. G. J. Am. Chem. Soc., 2008, 130 (11), 3290. b) Ashburn, B. O.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc., 2007, 129 (29), 9109. c) Ashburn, B. O.; Carter, R. G.; Zakharo, L. N. J. Org. Chem., 2008, 73 (18), 7305. d) Ashburn, B. O.; Carter, R. G. Angew. Chem. Int. Ed. 2006, 45, 6737. e) Ashburn, B. O.; Carter, R. G. Org. Biomol. Chem., 2008, 6, 255.. f) Naffziger, M. R.; Ashburn, B. O.; Perkins, J. R.; Carter, R.G. J. Org. Chem., 2007, 72 (26), 9857.
92. Lottermoser, U.; Rademacher, P.; Mazik, M.; Kowski, K. Eur. J. Org. Chem. 2005, 522.
93. Sakamoto, T.; Nagata, H.; Kondo, Y.; Sato, K.; Yamanaka, H. Chemical \& Pharmaceutical Bulletin, 1984, 32(12), 4866.

X-Ray Crystals Data

Data for compound 6h Chapter 1:

Identification code	6h
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClFNO}_{4}$
Formula weight	377.79
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group (H.-M.)	P21/n
Space group (Hall)	-P 2yn
Unit cell dimensions	$a=10.0412(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.9336$ (2) $\AA \quad \beta=102.052(1)^{\circ}$.
	$\mathrm{c}=21.0207(5) \AA \quad \gamma=90^{\circ}$.
Volume	1844.08 (8) \AA^{3}
Z	4
Density (calculated)	$1.361 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.240 \mathrm{~mm}^{-1}$
F(000)	784
Crystal size	$0.36 \times 0.35 \times 0.32 \mathrm{~mm}^{3}$
Θ range for data collection	4.956 to 64.927°
Index ranges	$-14 \leq h \leq 12,-8 \leq k \leq 12,-29 \leq 1 \leq 29$
Reflections collected	21688
Independent reflections	5365 [$\mathrm{R}(\mathrm{int})=0.0194]$
Completeness to $\Theta=30.00^{\circ}$	99.8\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9270 and 0.9185
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4494 / 0 / 241
Goodness-of-fit on F^{2}	1.083
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0343, \mathrm{wR} 2=0.0951$
R indices (all data)	$\mathrm{R} 1=0.0432, \mathrm{wR} 2=0.1000$
Largest diff. peak and hole	0.383 and -0.311 e. \AA^{-3}

Data for compound 11c Chapter 2:

Identification code	11c
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}$
Formula weight	532.47
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=10.480$ (8) $\AA \quad \alpha=70.109(15)^{\circ}$.
	$\mathrm{b}=14.421(10) \AA \quad \beta=80.04$ (2) ${ }^{\circ}$.
	$\mathrm{c}=17.478(12) \AA \quad \gamma=73.38(3){ }^{\circ}$.
Volume	2372 (3) \AA^{3}
Z	4
Density (calculated)	$1.491 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.207 \mathrm{~mm}^{-1}$
F(000)	1096
Crystal size	$0.99 \times 0.28 \times 0.26 \mathrm{~mm}^{3}$
Θ range for data collection	1.24 to 30.00°.
Index ranges	$-14 \leq h \leq 14,-20 \leq k \leq 20,-24 \leq 1 \leq 23$
Reflections collected	41364
Independent reflections	$13680[\mathrm{R}(\mathrm{int})=0.0439]$
Completeness to $\Theta=28.49^{\circ}$	98.2\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9483 and 0.8216
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9788 / 2 / 775
Goodness-of-fit on F^{2}	1.059
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0483, \mathrm{wR} 2=0.1300$
R indices (all data)	$\mathrm{R} 1=0.0751, \mathrm{wR} 2=0.1439$
Largest diff. peak and hole	0.273 and -0.223 e. \AA^{-3}

Data for compound 12a Chapter 2:

Identification code	12a
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{4}$
Formula weight	528.50
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=9.3439(19) \AA \quad \alpha=78.10$ (3) ${ }^{\circ}$.
	$\mathrm{b}=10.390$ (2) $\AA \quad \beta=83.88$ (3) ${ }^{\circ}$.
	$\mathrm{c}=13.867(3) \AA \quad \gamma=75.39(3)^{\circ}$.
Volume	1272.6 (4) \AA^{3}
Z	2
Density (calculated)	$1.379 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.105 \mathrm{~mm}^{-1}$
F(000)	548
Crystal size	$0.65 \times 0.20 \times 0.09 \mathrm{~mm} 3$
Θ range for data collection	2.64 to 28.49°.
Index ranges	$-12 \leq h \leq 12,-13 \leq k \leq 13,-18 \leq 1 \leq 18$
Reflections collected	17379
Independent reflections	$6338[\mathrm{R}(\mathrm{int})=0.0423]$
Completeness to $\Theta=28.49^{\circ}$	98.2\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9906 and 0.9350
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8374 / 0 / 396
Goodness-of-fit on F^{2}	1.047
Final R indices [$1>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0561, \mathrm{wR} 2=0.1435$
R indices (all data)	$\mathrm{R} 1=0.1027, \mathrm{wR} 2=0.1586$
Largest diff. peak and hole	0.273 and -0.223 e. \AA^{-3}

Data for compound 22a Chapter 3:

Identification code	22a
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{O}_{4}$
Formula weight	476.86
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	triclinic
Space group (H.-M.)	P-1
Space group (Hall)	-P 1
Unit cell dimensions	$\mathrm{a}=10.880(6) \AA \quad \alpha=97.036(12)^{\circ}$.
	$\mathrm{b}=14.622$ (7) $\AA \quad \beta=103.015$ (11) ${ }^{\circ}$.
	$\mathrm{c}=15.538(6) \AA \quad \gamma=109.287(12)^{\circ}$.
Volume	2220.5 (19) \AA^{3}
Z	4
Density (calculated)	$1.426 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.23 \mathrm{~mm}^{-1}$
F(000)	984
Crystal size	$0.32 \times 0.28 \times 0.09 \mathrm{~mm}^{3}$
Θ range for data collection	1.38 to 27.50°.
Index ranges	$-14 \leq h \leq 14,-18 \leq k \leq 16,-19 \leq 1 \leq 20$
Reflections collected	39515
Independent reflections	$10118[\mathrm{R}(\mathrm{int})=0.0389]$
Completeness to $\Theta=27.50^{\circ}$	99.3\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9798 and 0.9308
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7499 / 0 / 625
Goodness-of-fit on F^{2}	1.090
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0492, \mathrm{wR} 2=0.1358$
R indices (all data)	$\mathrm{R} 1=0.0719, \mathrm{wR} 2=0.1461$
Largest diff. peak and hole	0.487 and -0.439 e. \AA^{-3}

Data for compound 27c Chapter 4:

Identification code	27c
Empirical formula	C13H13NO2
Formula weight	215.24
Temperature	173(2) K
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group (H.-M.)	P21/n
Space group (Hall)	-P 2yn
Unit cell dimensions	$\mathrm{a}=17.0143$ (6) $\AA \quad \alpha=90^{\circ}$.
	$b=7.9005(3) \AA$ 成 $\quad \beta=110.692$ (2) ${ }^{\circ}$.
	$\mathrm{c}=17.9951(7) \AA \quad \gamma=90^{\circ}$.
Volume	2262.89 (15) \AA^{3}
Z	8
Density (calculated)	$1.264 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.086 \mathrm{~mm}^{-1}$
F(000)	912
Crystal size	$0.68 \times 0.20 \times 0.14 \mathrm{~mm}^{3}$
Θ range for data collection	2.42 to 29.99°.
Index ranges	$-23 \leq h \leq 23,-9 \leq k \leq 11,-25 \leq 1 \leq 22$
Reflections collected	24034
Independent reflections	$6570[\mathrm{R}(\mathrm{int})=0.0364]$
Completeness to $\Theta=29.99^{\circ}$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.988 and 0.944
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4516 / 0 / 299
Goodness-of-fit on F^{2}	1.041
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0441, \mathrm{wR} 2=0.1054$
R indices (all data)	$\mathrm{R} 1=0.0753, \mathrm{wR} 2=0.1148$
Largest diff. peak and hole	0.276 and -0.276 e. \AA^{-3}

Declaration/Erklärung

Here by I declare that this work has so far neither submitted to the Faculty of Mathematics and Natural Sciences at the University of Rostock nor to any other scientific Institution for the purpose of doctorate. Further more, I declare that I have written this work by myself and that I have not used any other sources, other than mentioned earlier in this work.

Hiermit erkläre ich, daß diese Arbeit bisher von mir weder an der MathematischNaturwissenschaftlichen Fakultät der Universität Rostock noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion eingereicht wurde.

Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel benutzt habe

I hereby apply irrevocably to take oral examination in the form of a private viva voce and a public presentation.

Obaid-ur-Rahman Abid

[^0]: ${ }^{3}$ Yields of isolated products

[^1]: ${ }^{\text {a }}$ Yields of isolated products

[^2]: ${ }^{\text {a }}$ Yields of isolated products

