Expression von Zytokinen und Lymphozytenrezeptoren im Pankreas bei chronischer Pankreatitis

Inauguraldissertation
zur Erlangung des akademischen Grades
Doktor der Medizin
der Medizinischen Fakultät
der Universität Rostock

vorgelegt von
Sentek Robert, 29.01.1975
aus Rostock
Rostock - 2009

urn:nbn:de:gbv:28-diss2011-0083-2
„Es ist sonderbar, dass nur außerordentliche Menschen die Entdeckungen machen, die hernach so leicht und simpel scheinen. Dies setzt voraus, dass, die simpelsten, aber wahren Verhältnisse zu bemerken, sehr tiefe Kenntnisse nötig sind.“

Georg Christoph Lichtenberg (1742-1799)

Dekan der Medizinischen Fakultät: Prof. Dr. med. Emil C. Reisinger

1. Gutachter: Prof. Dr. med. J. Emmrich, Universität Rostock
2. Gutachter: Prof. Dr. med. H. Nizze, Universität Rostock
3. Gutachter: Prof. Dr. med. H. U. Schulz, Universität Magdeburg

Tag der Verteidigung: 06.04.2011
Meinen Eltern Renate (†) und Lothar Sentek in Dankbarkeit gewidmet
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzungsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Einleitung</td>
<td>Seite</td>
</tr>
<tr>
<td>1.1. Aufgabenstellung</td>
<td>9</td>
</tr>
<tr>
<td>1.2. Chronische Pankreatitis</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1. Definition und Klassifikation</td>
<td>12</td>
</tr>
<tr>
<td>1.2.2. Epidemiologie</td>
<td>13</td>
</tr>
<tr>
<td>1.2.3. Ätiologie und Pathogenese</td>
<td>14</td>
</tr>
<tr>
<td>1.2.3.1. Alkoholtoxische chronische Pankreatitis</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3.2. Idiopathische Pankreatitis</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3.3. Hereditäre chronische Pankreatitis</td>
<td>20</td>
</tr>
<tr>
<td>1.2.3.4. Chronisch obstruktive Pankreatitis</td>
<td>21</td>
</tr>
<tr>
<td>1.2.3.5. Tropische chronische Pankreatitis</td>
<td>22</td>
</tr>
<tr>
<td>1.2.3.6. Autoimmune Pankreatitis</td>
<td>22</td>
</tr>
<tr>
<td>1.2.4. Leitsymptome</td>
<td>24</td>
</tr>
<tr>
<td>1.2.5. Diagnose und Differentialdiagnose</td>
<td>26</td>
</tr>
<tr>
<td>1.2.6. Komplikationen</td>
<td>26</td>
</tr>
<tr>
<td>1.2.7. Therapie</td>
<td>27</td>
</tr>
<tr>
<td>1.3. Immunantwort</td>
<td>29</td>
</tr>
<tr>
<td>1.4. Zytokine</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1. Interleukin-1</td>
<td>30</td>
</tr>
<tr>
<td>1.4.2. Interleukin-6</td>
<td>31</td>
</tr>
<tr>
<td>1.4.3. IFNγ</td>
<td>31</td>
</tr>
<tr>
<td>1.4.4. Interleukin-2</td>
<td>32</td>
</tr>
<tr>
<td>1.4.5. Interleukin-4</td>
<td>32</td>
</tr>
<tr>
<td>1.4.6. Interleukin-10</td>
<td>33</td>
</tr>
<tr>
<td>1.4.7. CD-3</td>
<td>34</td>
</tr>
<tr>
<td>1.4.8. CD-25</td>
<td>34</td>
</tr>
<tr>
<td>1.4.9. Zytokine und das Th1/Th2 System</td>
<td>35</td>
</tr>
</tbody>
</table>

<p>| 2. Material und Methoden | 37 |
| 2.1. Patienten | Seite |
| 2.1.1. Patientencharakterisierung | 39 |
| 2.1.1.1. Altersverteilung im gesamten Patientengut | 40 |
| 2.1.1.2. Geschlechterverteilung | 40 |
| 2.1.1.3. Krankheitsdauer | 41 |
| 2.1.1.4. Morphologische Krankheitsmerkmale | 42 |
| 2.1.1.5. Pankreasfunktion | 42 |
| 2.1.1.6. Kalzifizierende chronische Pankreatitis (K-CP) | 43 |
| 2.2. Material | Seite |
| 2.2.1. Allgemeines | 45 |
| 2.2.2. Chemikalien | 45 |
| 2.2.3. Geräte | 46 |
| 2.3. Methode | Seite |
| 2.3.1. RNA-Isolation | 47 |
| 2.3.1.1. Isolierung von RNA aus menschlichem Pankreasgewebe mittels Dichtegradientzentrifugation | 47 |
| 2.3.1.2. Bestimmung der RNA Konzentration | 48 |
| 2.3.1.3. RNA-Elektrophorese | 48 |
| 2.3.2. Polymerase Kettenreaktion | 49 |
| 2.3.2.1. Reverse Transkription der aus dem Pankreasgewebe isolierten RNA | 49 |
| 2.3.2.2. Kompetitive PCR | 52 |</p>
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-CP</td>
<td>alkoholtoxische chronische Pankreatitis</td>
</tr>
<tr>
<td>Ag</td>
<td>Antigen</td>
</tr>
<tr>
<td>Ak</td>
<td>Antikörper</td>
</tr>
<tr>
<td>AT</td>
<td>Annealingstemperatur</td>
</tr>
<tr>
<td>bFGF</td>
<td>basis Fibroblast Growth Factor</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>Ca-2</td>
<td>Carboanhydrase 2</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of Differentation</td>
</tr>
<tr>
<td>cDNA</td>
<td>CopyDesoxyribonukleinsäure</td>
</tr>
<tr>
<td>CFTR</td>
<td>cystic fibrosis transmembrane regulator</td>
</tr>
<tr>
<td>CP</td>
<td>chronische Pankreatitis</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>CTL</td>
<td>cytotoxische T-Lymphozyten</td>
</tr>
<tr>
<td>DBTC</td>
<td>Dibutyltindichloride</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>DE-PKR</td>
<td>Duodenumverhaltende Pankreaskopfresektion</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxy-Nucleosid-Triphosphat</td>
</tr>
<tr>
<td>DTT</td>
<td>Di-Thio-Threitol</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>ENA-78</td>
<td>Epithelial Neutrophil Activating Peptid</td>
</tr>
<tr>
<td>ERCP</td>
<td>Endoskopisch retrograde Cholangio-Pankreatikographie</td>
</tr>
<tr>
<td>ESWL</td>
<td>Extrakorporal Stoßwellenlithotripsie</td>
</tr>
<tr>
<td>GTC</td>
<td>Guanidin-thiocyanat</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IL-2R</td>
<td>Interleukin-2 Rezeptor</td>
</tr>
<tr>
<td>kD</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>KF</td>
<td>Kontrollfragment</td>
</tr>
<tr>
<td>LAK-Zellen</td>
<td>Lymphokin aktivierte Killerzellen</td>
</tr>
<tr>
<td>Lf</td>
<td>Laktoferrin</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysacharid</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte Chemoattractant Protein</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>M-MLV-RT</td>
<td>Moloney-Murine (Mouse) Leukemia Virus-Reverse Transkriptase</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger-ribonucleidacid</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>NF</td>
<td>nuclear factor</td>
</tr>
<tr>
<td>NGF</td>
<td>nerve growth factor</td>
</tr>
<tr>
<td>NK-Zellen</td>
<td>Natural Killerzellen</td>
</tr>
<tr>
<td>PBZ</td>
<td>Primär Biliäre Zirrhose</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Pankreatoduodenektomie</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-derived growth factor</td>
</tr>
<tr>
<td>PE-PD</td>
<td>Pyloruserhaltende partielle Pankreatoduodenektomie</td>
</tr>
<tr>
<td>PRSS1</td>
<td>Protease Serine 1</td>
</tr>
<tr>
<td>PSC</td>
<td>Primär Sclerosierenden Cholangitis</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
</tbody>
</table>
rRNA: ribosomale Ribonukleinsäure
RT: reverse Transkriptase
RT-Reaktion: Reverse Transcriptions Reaktion
SPINK1: Serine Protease Inhibitor Kazal type I
Tab.: Tabelle
TAE: Tris-Acetat-EDTA
Taq-Polymerase: DNA-Polymerase aus Thermus aquaticus
TGF: Transforming Growth Factor
Th-Zellen: T-Helfer Zellen
TNF alpha: Tumour necrosis factor
tRNA: total-RNA
Upm: Umdrehungen pro Minute
1. Einleitung

1.1. Aufgabenstellung

Zelldifferenzierung bzw. eine Zellproliferation durch Aktivierung einer spezifischen Genexpression bewirken und so Wachstum und Differenzierung der Zielzellen beeinflussen.

In der vorliegenden Arbeit wurde die Genexpression für Zytokine (IL-1, IL-6, IL-4, IL-10, IL-2, IFNγ) und Lymphozytenrezeptoren (CD-3, CD-25) in Gewebeproben verschiedener Patienten mit CP untersucht. Ziel war es dabei, Unterschiede in der Expression dieser Gene zwischen Patienten und Kontrollgruppe festzustellen sowie diese Ergebnisse mit klinischen und histopathologischen Daten in Verbindung zu bringen. Die Analytik der veränderten Genexpression sollte zu einem besseren Verständnis der pathophysiologischen Vorgänge bei der CP beitragen. Auch wenn immunologische Prozesse nicht für den Ausbruch der meisten Pankreatitiden verantwortlich sind, würde eine fehlregulierte Immunantwort einen Erklärungsansatz für das Fortschreiten der CP mit Gewebezerstörung, Gewebeumbau und Fibrosierung liefern, wenn bekannte auslösende Faktoren (Alkohol) im Krankheitsverlauf vermieden werden. Den Leukozyten würde als Ursprungsort von Zytokinen weitere Bedeutung zukommen und die existierenden Hinweise für die Beteiligung von Immunreaktionen am Prozess der CP könnten zusätzlich belegt werden.
1.2. Chronische Pankreatitis

1.2.1. Definition und Klassifikation

1.2.2. Epidemiologie

1.2.3. Ätiologie und Pathogenese

Im Wesentlichen unterscheidet man chronische Pankreatitiden mit toxisch-metabolischer Genese von idiopathischen Pankreatitiden (25%) bzw. von Pankreatitiden mit seltenen Ursachen (5%). Dabei stellt der Alkoholabusus mit etwa 70 % die häufigste Entität dar (Tabelle 1-1).

Tabelle 1-1:
Prozentuale Verteilung der Ursachen der einer CP

<table>
<thead>
<tr>
<th>toxisch-metabolisch (70%)</th>
<th>Idiopathisch (25%)</th>
<th>Seltene Ursachen (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Alkoholabusus (60-80%)</td>
<td>- juvenil (early onset)</td>
<td>- Hereditär</td>
</tr>
<tr>
<td>- Hyperkalzämie</td>
<td>- senil (late onset)</td>
<td>- Tropische Form</td>
</tr>
<tr>
<td>- Hyperlipidämie (selten)</td>
<td></td>
<td>- Autoimmunpankreatitis</td>
</tr>
<tr>
<td>- Medikamente (z.B. Phenacetin)</td>
<td></td>
<td>- Obstruktion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Narben nach akuter Pankreatitis oder Trauma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tumorinvasion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- anatomische Varianten wie Pankreas divisum oder Pankreas anulare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Entzündung des Sphinkter Oddi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Duodenaldivertikel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Immunologische Ursachen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Virusinfekte (Hepatitis B, Coxsackie)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- M.Crohn</td>
</tr>
</tbody>
</table>
1.2.3.1. Alkoholtoxische chronische Pankreatitis

1. Obstruktionstheorie - Zerstörung der Azini durch Druckerhöhung in den Pankreasgängen aufgrund einer Gangobstruktion

2. Metabolisch-toxische Theorie - Alkohol induzierte fettige Degeneration der Azinuszellen

3. Theorie des oxidativen Stress - Schädigung der Pankreasazini durch freie Radikale

4. Nekrose-Fibrose-Sequenz-Theorie - Fibrose als Folge rezidivierender Schübe einer nekrotisierenden Pankreatitis

fibrotischen Veränderungen der CP (Klöppel et al. 1992, 1990). In einer großen prospektiven Studie konnte gezeigt werden, dass die klinische Manifestation der CP (exokrine und endokrine Insuffizienz) häufiger bei Patienten nachgewiesen werden konnte die wiederholt Pankreatitisfälle in der Anamnese hatten (Mullhaupt et al. 2005).

Pankreatitis entwickeln (Bisceglie et al. 1984; Gumaste et al. 1995). Dies gibt Grund zur Annahme, dass zum Alkohol noch weitere, die Entstehung der Krankheit direkt begünstigende oder die Wirkung des Alkohols verstärkende Kofaktoren hinzukommen müssen, damit die chronische Pankreatitis manifest wird. Diese Faktoren können vielfältiger Herkunft sein. So könnten sowohl Ernährungsgewohnheiten, eine genetische Disposition aber auch eine immunologische Fehlregulation an der Pathogenese beteiligt sein.

1.2.3.2. Idiopathische Pankreatitis

reaktiven Zentrum von SPINK1 inhibiert. Zum andern werden Trypsin und weitere Pankrasproteasen durch Trypsin und trypsinähnliche Enzyme wie Mesotrypsin degradiert.

Das CFTR-Gen kodiert für einen Chloridkanal welcher im Respirations- und Verdauungstrakt für die Flüssigkeits- und Elektrolytaustausch verantwortlich ist. Im Pankreas kommt ihm eine große Bedeutung bei der Bicarbonatsekretion zu.
Möglicherweise begünstigen eine veränderte Viskosität des Pankreassaftes und/oder eine pH-Änderung infolge eines gestörten Ionentransportes bei heterozygoten CFTR-Trägern die Autoaktivierung von Trypsinogen und damit die Krankheitsentstehung. Cohn et al. zeigten in ihrer Studie 2005 das bei ihren Patienten mit idiopathischer CP CFTR-Mutationen sechsmal häufiger vorkamen als in der Kontrollgruppe. Das Erkennen weiterer genetischer Defekte, die im Zusammenhang mit der CP stehen, wäre hilfreich, um Patienten mit einem erhöhten Risiko für die CP frühzeitig zu erfassen.

1.2.3.4. Chronisch obstruktive Pankreatitis

1.2.3.5. Tropische chronische Pankreatitis

Die Pathogenese der tropischen CP ist ebenfalls ungeklärt. In einer Studie wurden die Ernährungsgewohnheiten, die Pankreasfunktion und der klinische Verlauf der CP in Südindien und in Frankreich miteinander verglichen (Balakrishnan et al. 1988). Eiweißmangelernährung allein, die zum Krankheitsbild Kwashiorkor führen kann, oder der Genuss von Cassava scheinen für die Entstehung der tropischen CP nicht

1.2.3.6. Autoimmune Pankreatitis (AIP)

Des Weiteren konnte in der Vergangenheit ein gemeinsames Auftreten mit anderen chronisch entzündlichen- bzw. Autoimmunerkrankungen wie den Erkrankungen des

In den letzten Jahren konnte die autoimmune Pankreatitis noch näher beschrieben und erforscht werden. Der Bergriff der autoimmunen Pankreatitis wurde von

1.2.4. Leitsymptome

Unter klinischen Aspekten ist das Krankheitsbild der CP durch klinische, morphologische und funktionelle Parameter charakterisiert. Klinisch dominieren hauptsächlich abdominelle Schmerzen (80-95%), Steatorrhö, Gewichtsverlust (80%), Diarrhö (50%), Übelkeit und Erbrechen sowie andere Merkmale einer schweren Maldigestion wie Folgeerkrankungen des Mangels an fettlöslichen Vitaminen (Vitamin E: Hautveränderungen, Vitamin A: Nachtblindheit, Vitamin D: Osteomalazie). Typische morphologische Veränderungen der Drüse (Verkalkungen, dilatierter und unregelmäßig begrenzter Ductus pankreaticus u.a.) und ein progredienter exokriner und endokriner Funktionsverlust (Maldigestion, Diabetes mellitus) stellen weitere Merkmale dar. In der Frühphase der Erkrankung stehen bei den meisten Patienten die abdominellen Beschwerden mit intermittierenden Schmerzen im Vordergrund, während sich die klinischen Zeichen einer exokrinen (Staetorrhö, Gewichtsverlust, Diarrhö) und zumeist auch später einer endokrinen
1.2.5. Diagnose und Differentialdiagnose

Für die Diagnostik der CP stehen neben bildgebenden Verfahren (Röntgen-Abdomen, Sonographie des Abdomens einschließlich Endosonographie, ERCP, kontrastmittelverstärkte CT, MRT) und laborchemischen Parametern (α-Amylase, Lipase, CRP, Glukose im Serum) auch Funktionsuntersuchungen zur Verfügung. Man unterscheidet dabei zwischen direkten (Sekretin-Pankreozymin-Test oder Lundh-Test) und indirekten (Chymotrypsin- oder Elastase-1-Bestimmung im Stuhl, quantitative Stuhlfettbestimmung) Untersuchungen. Dabei wird eine exokrine Insuffizienz mit Maldigestion und Steatorrhö erst bei einem Parenchymuntergang von mehr als 75% klinisch relevant, während ein Untergang des Inselzellapparates im Regelfall zu einem noch späteren Zeitpunkt auftritt. Der Sekretin-Cerulein Test gilt im Rahmen der Diagnostik nach wie vor als „Goldstandard“ für die Feststellung einer exokrinen Pankreasinsuffizienz (Chowdhury 2003). Da der Test zeitintensiv und relativ unkomfortabel für den Patienten ist beschränkt man sich in der Regel auf indirekte Pankreasfunktionsprüfungen wie die photometrische Chymotrypsinbestimmung, die Elastase-1-Messung im Stuhl oder auf den Pancreolauryl-Test (PLT).

1.2.6. Komplikationen

Wenn die Komplikationen (Tabelle 1-2) im Verlauf der CP konservativ nicht mehr beherrschbar sind, wird in der Regel eine chirurgische Intervention notwendig.
Tabelle 1-2

Komplikationen bei der CP

- Pseudozysten und Pankreasnekrosen
- Cholestase durch Stenosierung des Ductus choledochus
- Pankreasgangokklusion
- Colon-, Duodenalstenosen
- Verschlüsse abdominaler Gefäße mit konsekutiver portaler Hypertension
- pankreatogener Aszites
- Pankreaskarzinom

1.2.7. Therapie

Tabelle 1-3: Operative Therapie der CP

<table>
<thead>
<tr>
<th>Drainierende Verfahren</th>
<th>Resezierende Verfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ lateralolaterale Pankreatikojejunostomie (Puestow/Partington-Rochelle)</td>
<td>▪ Duodenumverhaltende Pankreaskopfresektion (DE-PKR nach Beger)</td>
</tr>
<tr>
<td>▪ Pseudozystojejunostomie</td>
<td>▪ Kephal Pankreatoduodenektomie (PD nach Kausch/Whipple)</td>
</tr>
<tr>
<td></td>
<td>▪ Pyloruserhaltende partielle Pankreatoduodenektomie (PE-PD nach Longmire-Traverso)</td>
</tr>
<tr>
<td></td>
<td>▪ Pankreaslinksresektion</td>
</tr>
</tbody>
</table>

Dabei wird die duodenumverhaltende Resektion nach Beger als Methode der Wahl angesehen. Die Vorteile der duodenumverhaltenden Pankreaskopfresektion im Vergleich zur Resektion nach Kausch-Whipple bezüglich des Glukosestoffwechsels und Parameter der Digestion und Resorption sind durch eine kontrollierte Studie belegt (Büchler et al. 1995). In Einzelfällen wird die pyloruserhaltende Duodenopankreatektomie erforderlich.
1.3. Immunantwort

1.4. Zytokine

1.4.1. Interleukin-1

1.4.2. Interleukin-6

1.4.3. IFNγ

1.4.4. IL–2

1.4.5. IL-4

IL-4 ist ein Zytokin mit breitem biologischem Wirkungsspektrum. Es wirkt als

1.4.6. Interleukin-10

Neben IL-4 ist IL-10 der stärkste IFNγ Antagonist, da es die Expression der Klasse-II Moleküle auf den meisten Zellen (z.B. Monozyten/Makrophagen) vermindert und so die antigenspezifische Proliferation der T-Zellen zu unterdrücken vermag (de Waal Malefyt et al. 1991b). Wie IL-4 induziert IL-10 die Differenzierung (Rousset et al. 1993).
1992) und die Antikörperproduktion von B-Zellen (Defrance et al. 1992). IL-10 gilt als starker Inhibitor der Sekretion proinflammatorischer Zytokine (IL-1, IL-6 TNFα) und ist somit ein bedeutender Regulator der Immunantwort (Petska et al. 2004). Zusammenfassend kann man sagen, dass IL-10 die humorale Immunantwort zu steigern und die zelluläre Immunantwort zu unterdrücken vermag.

1.4.7. CD-3

1.4.8. CD-25 (IL-2-Rα)

Der IL-2 Rezeptor (IL-2R) besteht aus drei membranassoziierten Untereinheiten (α-, β- und γ-Kette) und bilden so den hochaffinen Rezeptorkomplex (Lowenthal et al. 1987; Ringheim et al. 1991). Während die β-Kette schon auf ruhenden Lymphozyten exprimiert wird, ist die α-Kette (CD-25) erst nach Lymphozytenaktivierung zu finden (Leonard et al. 1982; Miyawaki et al. 1982; Robb et al. 1983) und kann daher als Indikator für die Zellaktivierung dienen. Nach Aktivierung wird die IL-2Rα Untereinheit auf der Oberfläche der T-Zellen exprimiert. Zellen die aus den drei Rezeptorunteinheiten den IL-2Rαβγ-Rezeptorkomplex bilden, können IL-2 mit bedeutend stärkerer Affinität binden. Die Wachstumsstimulation dieser Zellen erfordert nun eine viel geringere IL-2 Konzentration. Nach T-Zell Aktivierung wird IL-2Rα äußerst schnell exprimiert,
weswegen schon bei geringerer IL-2 Konzentration eine Wachstumstimulation möglich wird. Antigenstimulierte T-Zellen werden somit sensibler für IL-2 als ruhende T-Zellen (Sugamura et al. 1996).

Nach ihrer Induktion verbleiben IL-2-Rezeptoren ungefähr eine Woche auf der Zelloberfläche, wenn die Expression nicht durch T-Zellaktivierung zusätzlich stimuliert wird. Bei geeigneter Stimulation sezernieren T-Zellen IL-2, das mit IL-2 Rezeptoren interagiert und die Zelldifferenzierung aufrechterhält. Das kann sowohl auf autokrine als auch auf parakrine Weise geschehen. Die Produktion von IL-2 ist limitiert. Die Synthese stoppt nach 2-3 Tagen, wenn keine weitere Stimulation erfolgt.

1.4.9. Zytokine und das Th1/Th2 System

2. Material und Methoden

2.1. Patienten

schriftlich zugestimmt. Ein entsprechender Antrag bei der Ethikkommission war genehmigt worden.

2.1.1. Patientencharakterisierung

Tabelle 2-1
Klinische Daten der Patienten mit chronischer Pankreatitis. (J=ja - vorhanden, N=nein - nicht vorhanden, A-CP=ähnlichtoxische chronische Pankreatitis, I-CP=ideopathische chronische Pankreatitis, O-CP=obstruktive chronische Pankreatitis, PEPD=pyloruserhaltende partielle Pankreaticoduodenektomie, PKR=Pankreaskopfresektion, PD=Pankreatoduodenektomie nach Whipple/Kausch, PSR=Pankreasschwanzresektion, m=männlich, w=weiblich, Alter=in Jahren, Krankheitsdauer=in Monaten

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m</td>
<td>42</td>
<td>4</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>43</td>
<td>11</td>
<td>A-CP</td>
<td>J</td>
<td>PKR</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>m</td>
<td>47</td>
<td>12</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>4</td>
<td>w</td>
<td>36</td>
<td>8</td>
<td>I-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>43</td>
<td>11</td>
<td>A-CP</td>
<td>J</td>
<td>PD</td>
<td>J</td>
<td>J</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>m</td>
<td>41</td>
<td>6</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>J</td>
<td>N</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>7</td>
<td>m</td>
<td>53</td>
<td>24</td>
<td>A-CP</td>
<td>N</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>44</td>
<td>36</td>
<td>A-CP</td>
<td>J</td>
<td>PKR</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>N</td>
</tr>
<tr>
<td>9</td>
<td>w</td>
<td>37</td>
<td>26</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>N</td>
</tr>
<tr>
<td>10</td>
<td>m</td>
<td>59</td>
<td>3</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>11</td>
<td>w</td>
<td>37</td>
<td>84</td>
<td>A-CP</td>
<td>J</td>
<td>PD</td>
<td>J</td>
<td>N</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>12</td>
<td>m</td>
<td>35</td>
<td>34</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>13</td>
<td>m</td>
<td>49</td>
<td>36</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>J</td>
<td>J</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>m</td>
<td>44</td>
<td>24</td>
<td>A-CP</td>
<td>N</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>15</td>
<td>m</td>
<td>46</td>
<td>24</td>
<td>I-CP</td>
<td>J</td>
<td>PKR</td>
<td>J</td>
<td>N</td>
<td>J</td>
<td>N</td>
</tr>
<tr>
<td>16</td>
<td>m</td>
<td>40</td>
<td>60</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>17</td>
<td>m</td>
<td>43</td>
<td>30</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>18</td>
<td>m</td>
<td>33</td>
<td>108</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>J</td>
<td>N</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>19</td>
<td>m</td>
<td>68</td>
<td>9</td>
<td>A-CP</td>
<td>N</td>
<td>PKR</td>
<td>J</td>
<td>J</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>47</td>
<td>72</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>N</td>
</tr>
<tr>
<td>21</td>
<td>m</td>
<td>62</td>
<td>10</td>
<td>I-CP</td>
<td>N</td>
<td>PKR</td>
<td>J</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>22</td>
<td>m</td>
<td>35</td>
<td>36</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>J</td>
<td>N</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>23</td>
<td>m</td>
<td>58</td>
<td>72</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>J</td>
<td>J</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>24</td>
<td>m</td>
<td>50</td>
<td>24</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>J</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>25</td>
<td>w</td>
<td>47</td>
<td>6</td>
<td>A-CP</td>
<td>N</td>
<td>PSR</td>
<td>J</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>26</td>
<td>m</td>
<td>33</td>
<td>36</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>N</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>27</td>
<td>w</td>
<td>49</td>
<td>84</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>J</td>
<td>J</td>
<td>N</td>
<td>J</td>
</tr>
<tr>
<td>28</td>
<td>m</td>
<td>44</td>
<td>144</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>J</td>
<td>J</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>29</td>
<td>m</td>
<td>46</td>
<td>24</td>
<td>A-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>J</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>30</td>
<td>m</td>
<td>77</td>
<td>2</td>
<td>O-CP</td>
<td>J</td>
<td>PEPD</td>
<td>N</td>
<td>J</td>
<td>N</td>
<td>J</td>
</tr>
</tbody>
</table>
2.1.1.1. Altersverteilung im gesamten Patientengut

![Diagramm 2-1: Altersverteilung bei der CP](image)

Anzahl der Patienten mit CP (n=30) in willkürlich festgelegten Altersgruppen

2.1.1.2. Geschlechterverteilung

Im Diagramm 2-2 ist die Anzahl der weiblichen und männlichen Patienten bezogen auf das Gesamterkrankungsgut dargestellt. Die insgesamt 30 Fälle setzten sich aus 25 männlichen (83%) und 5 weiblichen Patienten (17%) zusammen. Die Patientengruppe mit A-CP bestand aus 22 männlichen (85%) und 4 weiblichen (15%) Patienten. In der Patientengruppe mit NA-CP waren drei (75%) männliche...
Patienten und eine weibliche Patientin zu finden (25%). Das männliche Geschlecht war somit deutlich in der Überzahl. Es ließ sich bei der A-CP ein Verhältnis von 5,5:1 und bei der NA-CP von 3:1 ermitteln.

Diagramm 2-2:
Anzahl der weiblichen und männlichen Patienten (in Prozent) im Gesamtuntersuchungsgut (CP)

2.1.1.3. Krankheitsdauer

Die Krankheitsdauer wurde als Zeitraum in Monaten definiert, der zwischen klinischer Diagnosestellung und Operationsdatum lag. Sie betrug im Mittel bei Patienten mit CP 35,3 Monate. Bei 11 (37%) Patienten betrug die Krankheitsdauer 12 Monate oder weniger. Bei weiteren 12 Patienten (40%) betrug der Zeitraum zwischen Diagnosestellung und Operation 13 bis 36 Monate. Bei den restlichen 7 Patienten (23%) vergingen bis zur Operation 144 Monate (Diagramm 2-3). In der Gruppe der A-CP betrug die mittlere Laufzeit 39 Monate im Gegensatz zu 11 Monaten bei der NA-CP.
2.1.1.4. Morphologische Krankheitsmerkmale

Für die Charakterisierung morphologischer Veränderungen wurden die Befunde der bildgebenden Verfahren (CT, MRT, Sonographie, Endosonographie, ERCP) ausgewertet. Bei 19 der 30 Patienten mit CP (63,3%) war bereits eine Pankreasgangstenose (PS) zu finden. Dabei betrug der Anteil der Patienten mit PS in der A-CP Gruppe 69,2 % (18 Patienten) und 25% (1 Patient) in der NA-CP Gruppe (Diagramm 2-4). Bei Patienten mit I-CP (3 Patienten) wurde keine PS beschrieben. 18 der 30 Patienten mit CP (60%) hatten eine Gallengangstenose (GS). In der A-CP Gruppe waren es 16 von 26 Patienten (61,5%) und in der NA-CP Gruppe waren es 2 von 4 Patienten (50%). Bei 13 Patienten (43,3%) mit CP traten PS und GS parallel auf. Duodenalstenosen wurden bei 11 Patienten (36,7%) mit CP diagnostiziert, davon nur einer in der NA-CP Gruppe (25%) und 10 in der A-CP Gruppe (38,5%).

2.1.1.5. Pankreasfunktion

Es wurde geprüft, ob vor dem operativen Eingriff eine endokrine oder exokrine PI vorlag. Ausschlaggebend hierfür war die Notwendigkeit einer Insulin- bzw. einer Pankreasenzymsubstitution. 14 der 30 Patienten mit CP (46,7%) wiesen eine

Diagramm 2-3:
Anzahl der Patienten mit CP in willkürlich gewählten Zeitintervallen der Krankheitsdauer
exokrine PI und 9 Patienten (30\%) eine endokrine PI auf wobei bei 5 Patienten (16,7) eine komplette PI bestand, von denen 4 gleichzeitig auch eine PS hatten.

Diagramm 2-4:
Anzahl der Patienten mit Pankreasgangstenose (PS) bei der alkoholinduzierten (A-CP) und der nicht-alkoholinduzierten chronischen Pankreatitis (NA-CP)

2.1.1.6. Kalzifizierende chronische Pankreatitis (K-CP)

Diagramm 2-5:
Anzahl der Patienten mit Kalzifikation bei der alkoholinduzierten (A-CP) und der nicht alkoholinduzierten chronischen Pankreatitis (NA-CP)
2.2 Material

2.2.1. Allgemeines

2.2.2. Chemikalien

- **für die RNA-Isolation**
 - 4-M Guanidinthiocyanat (Fluka, Berlin, Deutschland) in 0.1-M Tris-HCl, pH 7,2
 - Mercaptoethanol (Sigma Chemical Co., St. Lois, MO)
 - 10% Sarkosyl (Sigma Chemical Co.)
 - 2-M Na-acetat, pH 4.0
 - Phenol (AquaPhenol™, Appligene, Illkirch, Frankreich)
 - Chloroform-Isoamylalkohol (24:1; ReadyRed, Appligene)
 - Isopropanol
 - 75% Ethanol
 - Diethylpyrocarbonat (Sigma Chemical)

- **für die RT-Reaktion**
 - 5× First Strand Puffer (Gibco, Life Technologies, Eggenstein, Deutschland)
 - M DTT (Gibco, Life Technologies, Eggenstein, Deutschland)
 - dNTP mix: 0,2 mM je dNTP
 - 0,5 mg/ml Oligo(dT)$_{12-18}$ Primer
 - 40 U/µl RNasin (PROMEGA)
- 200 U/µl M-MLV-RT (Gibco, Life Technologies, Eggenstein, Deutschland)
- Gesamt-RNA
- RNase freies Wasser (DEPC behandelt)
- für die PCR
 - 10× Puffer + 15 mM MgCl2 (Perkin Elmer)
 - 2.5 mM dNTP mix (Siehe oben)
 - 25 mM MgCl₂ 25 mM (Perkin Elmer)
 - 25 pg/µl Primer
 - 5 U/µl AmpliTaq (Perkin Elmer Cetus; Emeryville, Californien, USA)
 - KF 1 mit der Menge m = 6×10⁻¹⁹ mol bei einer Verdünnungsstufe von 10⁻⁵
 - KF 2 mit der Menge m = 1,5×10⁻¹⁸ mol bei einer Verdünnungsstufe von 10⁻⁵
- cDNA
- für die Gelelektrophorese
 - Ladepuffer mit Bromphenol-blau
 - Agarose
 - DNA Molekulargewichtsmarker (100 bp DNA Leiter: Gibco BRL)
 - TAE Puffer 1×
 - Ethidiumbromid

2.2.3. Geräte

- Für RNA-Isolation
 - Zentrifuge: Beckman-Avanti Centrifuge30
 - Spektralphotometer: Pharmacia-GeneQuant, RNA/DNA Calculator
- Für die RT-Reaktion
 - Thermocycler:
 - Zentrifuge: Beckman-Avanti Centrifuge30
- für die PCR
 - Spezialkammer: Bio Rad; (Molekular Analyst/PC Software)
 - Thermocycler (Perkin Elmer)
- für die Gelelektrophorese
 - Gelelektrophoresekammer
2.3. Methode

2.3.1. RNA-Isolation

2.3.1.1. Isolierung von RNA aus menschlichem Pankreasgewebe mittels Dichtegradientzentrifugation

Die RNA wurde aus dem Pankreasgewebe mittels einer durch Sparmann 1997 modifizierten von Chomczynski und Sacchi beschriebenen Methode isoliert (Chomczynski et al. 1987). 100 ± 20mg Gewebe wurden in einem in flüssigem Stickstoff plazierten Mörser unter Verwendung eines Stößels pulverisiert. Der gefrorene Pankreaspuder wurde in ein vorbereitetes gekühltes Zentrifugenröhrchen gegeben, welches 5mL 4-M GTC (pH 7,2) und 0,1 M 2-Mercaptoethanol (50µL) enthielt. GTC denaturiert Proteine und ist in der Lage die RNA während der Homogenisation zu schützen. Das ist notwendig, da das Pankreasgewebe RNasen enthält, die die RNA zerstören würden. Nacheinander wurden dann 0,05 vol (250µL) Sarkosyl 10%, 0,1 vol (500µL) 2 M Na-acetat (pH 4,0), 1 vol (5mL) Phenol und 0,2 vol (1mL) Chloroform-Isoamylalkohol hinzugefügt. Nach Zugabe einer jeden Substanz wurde für gute Durchmischung und Kühlung des Reaktionsansatzes gesorgt. Die Suspension wurde dann 15 min. im Eis stehen gelassen und anschließend 30 min. mit 10000 U/min bei 4 °C zentrifugiert. Nach der Zentrifugation war der Reaktionsansatz in zwei Phasen aufgeteilt, wobei die obere Phase die RNA enthielt und die untere Phase sich aus Phenol und Proteinen zusammensetzte. Da sich in der Interphase die DNA konzentrierte, wurden nur etwa 4/5tel der oberen wässrigen Phase entnommen und mit gleichem Volumen vorgekühltem Isopropanol zusammen in ein neues Zentrifugenröhrchen gegeben. Der untere Teil der wässrigen Phase wurde nicht verwendet, um Kontaminationen mit DNA zu vermeiden. Das Gemisch wurde dann bei –20° über Nacht stehen gelassen und dann 30 min. mit 10000 U/min bei 4 °C zentrifugiert. Der Überstand wurde dekantiert und das sich im Röhrchen befindliche RNA-pellet wurde zweimal mit 75% Ethanol gewaschen und in 50µL Ribonuclease-freiem Wasser gelöst.
2.3.1.2. Bestimmung der RNA-Konzentration

2.3.1.3. RNA-Elektrophorese

Die Integrität der isolierten RNA wurde mittels elektrophoretischer Trennung im Agarosegel überprüft. So konnte die Qualität der RNA mit Hilfe des Nachweises sowohl der 18S als auch der 28S RNA kontrolliert werden. Dazu wurden 3µg RNA in einem 1%igen Agarosegel (versetzt mit 0,5µg/mL Ethidiumbromid) elektrophoretisch getrennt. Für die weiteren Untersuchungen wurden nur solche Proben eingesetzt, bei denen in der RNA-Elektrophorese weder Hinweise auf eine Degradierung der RNA noch auf Kontamination mit DNA vorlagen (Bild 2-1).

![Bild 2-1: RNA-Elektrophorese. Zu sehen sind pro Bahn zwei Banden, die zum einen die 18S, zum anderen die 28S Untereinheit der isolierten menschlichen RNA repräsentieren (Bahn 1-4). Eine Kontamination mit genomischer DNA würde oberhalb der 28S Bande sichtbar.](image-url)
2.3.2. PCR

Um die folgenden Versuche besser erläutern zu können, sei an dieser Stelle kurz das Prinzip der Polymerasekettenreaktion mit Hilfe der aufgeführten Abbildung 2-1 dargestellt. Die PCR ermöglicht die enzymatische Amplifikation eines DNA-Bereiches, der von zwei bekannten Sequenzabschnitten (grünes Viereck auf Strang 1 und rotes Viereck auf Strang 2) flankiert wird, an die Oligonucleotid-Primer (grüne und rote Halbpfeile) binden können. Die beiden Primer sind so gewählt, daß sie jeweils spezifisch an einen der beiden DNA-Stränge im doppelsträngigen DNA-Molekül hybridisieren. Im ersten Reaktionsschritt wird die DNA (Stränge 1+2) durch Hitzebehandlung in Einzelstränge zerlegt (Denaturierung). Durch eine weitere Temperaturänderung, die primerspezifisch festgelegt wird, lagern sich die beiden Primer an die DNA-Stränge an, sie hybridisieren. In einer durch DNA-Polymerase katalysierten Reaktion werden in Gegenwart von Desoxy-Nucleosid-Triphosphaten (dNTP) die Einzelstränge an den Primern beginnend zum Doppelstrang aufgefüllt. Als Produkt erhält man zwei neue doppelsträngige DNA-Moleküle (Stränge 1+3 bzw. 2+4). Dann wird das Verfahren wiederholt, wobei die neu synthetisierten Fragmente ihrerseits als Muster dienen. Auf diese Weise erhält man nach 20-30 Reaktionszyklen, bedingt durch die exponentiell ansteigende Anzahl der zur Verfügung stehenden Reaktionspartner, eine millionenfache Anreicherung des zwischen den beiden Primern liegenden DNA-Bereiches (Ibelgaufts, 1992). Zum Nachweis von RNA mit Hilfe der PCR, wird in einem ersten Reaktionsschritt die RNA mit Hilfe des Enzyms Reverse Transkriptase in eine doppelsträngige cDNA-Kopie umgeschrieben und dann der PCR unterzogen.

2.3.2.1. Reverse Transkription der aus dem Pankreaskgewebe isolierten RNA

Reaktionsansatz (Gesamtvolumen: 40µl)

- 8 µl Puffer, Endkonzentration 5x
- 4 µl dNTP
- 4 µl DTT; Endkonzentration 0,1 µl/µl
- 0,5µl RNasin, Endkonzentration: 0,5 U/µl
- 1 µl M-MLV-RT, Endkonzentration: 5 U/µl
- 1µl Oligo(dT)_{12-18} Primer; Endkonzentration 12,5 µg /µl
- 1µg Gesamt-RNA

Zunächst wurden die Gesamt-RNA und die Oligonukleotide zusammen 5 min bei 70°C inkubiert und danach sofort ins Eis gestellt. Danach wurden fehlende Komponenten des Reaktionsansatzes hinzugegeben und der komplettierte Reaktionsansatz 45 min bei 41 °C (Synthese des komplementären Stranges) inkubiert und dann für 5 min auf 95 °C erhitzt (Denaturierung der RT). Die so gewonnenen cDNA-Proben wurden bei minus 20°C aufbewahrt.
Abbildung 2-1:
Prinzip der Polymerase-Kettenreaktion (Ibelgaufs, 1992)
2.3.2.2. Kompetitive PCR

2.3.2.2.1. PCR zur Einstellung der cDNA Proben

Zum Nachweis des Vorhandenseins von cDNA (als Erfolgskontrolle der Reversen Transkription) und zur Einstellung der cDNA Proben auf gleiche Mengen cDNA wurde eine PCR zur Amplifizierung des „housekeeping-gens“ β-Actin durchgeführt. Das Protein β-Actin zählt zu den intrazellulären Strukturproteinen und wird in den Zellen konstitutiv exprimiert - unterliegt also in seiner Produktion nur geringen Schwankungen. Das bedeutet, dass die cDNA nahezu unabhängig vom jeweiligen Entzündungsgrad der untersuchten Gewebeproben sein sollte. Bei jeder durchgeführten PCR wurde zur Kontrolle ein Leerwert mitgeführt, wobei der Reaktionsansatz hier bis auf die cDNA dieselben Bestandteile wie die anderen PCR-Ansätze enthielt. Um die Proben miteinander vergleichen zu können, mussten jeweils gleiche cDNA Mengen verwendet werden. Für die RT-Reaktion wurden konstante tRNA-Mengen eingesetzt, aber da die Effizienz der RT-Reaktion von Probe zu Probe unterschiedlich ist, war diese Prozedur notwendig.

Reaktionsansatz (Gesamtvolumen 25µl):

(alle Schritte auf Eis)

1µl der in der RT-Reaktion gewonnenen cDNA werden gemischt mit:

- 2.5µl 10× Puffer
- 2µl dNTP 200µM je dNTP
- 0.5µl MgCl₂ 2 mM
- 1+1µl Primerpaar (sense + antisense) β-Actin je 25µM
- 1µl KF (10⁻⁹)
- 0.1µl AmpliTaq 0,5U

Anstelle von 1µl cDNA enthielt eine Kontrollprobe 1µl Wasser. Die Probe wurde dann in einem Thermocycler den in Tabelle 2-2 aufgelisteten PCR-Bedingungen ausgesetzt. Die cDNA-Proben wurden nun soweit verdünnt, bis sie in der Elektrophorese die gleiche Fluoreszenzintensität aufwiesen wie die entsprechenden KF-Banden. Zu diesem Zweck wurde eine Verdünnungsreihe der cDNA hergestellt (1:2; 1:4, 1:8...usw.). Der β-Actin-Gehalt eines jeden Verdünnungsgrades wurde mit der verwendeten Kontrollfragmentkonzentration verglichen. Da die eingesetzte Menge KF in allen
Tabelle 2-2
PCR-Bedingungen bei der Einstellung der cDNA-Proben auf gleiche Mengen mittels β-Actin

<table>
<thead>
<tr>
<th>Zyklen</th>
<th>Zeit In min</th>
<th>Temperatur in °C</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.5</td>
<td>95</td>
<td>Denaturierung des Doppelstranges</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>64</td>
<td>Primerannealing (Temperatur ist abhängig von der Menge der A-T und C-G Verbindungen), hier für β-Actin</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

Proben identisch war, sollte bei gleicher Fluoreszenzintensität auch die Menge an cDNA in allen Proben identisch sein. Der Verdünnungsgrad, bei dem eine identische Fluoreszenzintensität vorlag, wurde für die weiteren Untersuchungen verwendet. Danach wurden die Proben bis zur weiteren Bearbeitung bei 4°C aufbewahrt. Die Grafik 2-1 zeigt das Prinzip zur Ermittlung der für die weiteren Untersuchungen benötigten DNA-Konzentration.

Auf diese Weise wurde für alle cDNA-Proben der Verdünnungsgrad ermittelt, bei dem nach der PCR und der anschließenden Gelelektrophorese die Bandenstärke mit der Bandenstärke des Kontrollfragments übereinstimmte. Bild 2-2 zeigt eine Übersichtselektrophorese von 7 verschiedenen cDNA-Proben, nachdem die für die weiteren Untersuchungen benötigte cDNA-Konzentration ermittelt wurde.
Elektrophorese der in der PCR coamplifizierten cDNA und KF-DNA mittels β-Actin spezifischer Primer. Es wurde die Konzentration der cDNA Proben ermittelt, die nach der PCR die gleiche Bandenstärke aufwiesen wie die KF-Bande. Die cDNA der Bahnen 1, 2, 3 und 7 mussten nochmals verdünnt werden. So konnte gleiche Mengen unterschiedlicher cDNA Proben miteinander angeglichen werden. Die in Bahn 1-7 gezeigten cDNA Proben stammen von 7 verschiedenen Patienten mit CP. Bahn 8 zeigt eine Kontroll-PCR mit KF ohne cDNA. M= 100 bp Marker

Bild 2-2

2.3.2.2.2. PCR zur Ermittlung der zur Einstellung der cDNA Konzentration notwendigen KF-Konzentration

Um eine geeignete Konzentration des KF zu finden, mit der die Einstellung der cDNA vorgenommen werden konnte, waren einige Voruntersuchungen notwendig. Dazu wurde das RT-Produkt unverdünnt mit unterschiedlichen Kontrollfragmentkonzentrationen in einer PCR untersucht. Es wurde in mehreren PCR-Tubes je 1µl des Kontrollfragmentes absteigender Konzentration gegeben. Die eingesetzten Konzentrationen erstreckten sich von 10^{-6} bis 10^{-13}. In die PCR-Tubes wurden nun je 1µl desselben RT-Produktes sowie die Reagenzien der PCR hinzugefügt. Die Grafik 2-2 zeigt das Prinzip.

Grafik 2-2:
Prinzip zur Ermittlung einer geeigneten KF-Konzentration, die zur Einstellung der unter-schiedlichen cDNA Proben auf gleiche β-Actin Expression notwendig war.
Dieser Versuch wurde mit mehreren RT-Produkten wiederholt und für die Einstellung der cDNA die Kontrollfragmentkonzentration von 10^{-9} gewählt, da alle untersuchten RT-Produkte mindestens die gleiche oder eine stärkere β-Actin Expression aufwiesen als das KF mit dieser Verdünnung.

2.3.2.2.3. PCR zur Ermittlung der für die Zytokin- und Lymphozytenrezeptorexpression notwendigen KF-Konzentration

Grafik 2-3
Prinzip zur Ermittlung einer geeigneten KF-Konzentration, die zur Bestimmung der Expression der verschiedenen Zytokin- und Lymphozytenrezeptoren notwendig war.

2.3.2.2.4. PCR zur Bestimmung der Zytokin- und Lymphozytenrezeptorexpressionen

Im Weiteren wurden mit Hilfe von spezifischen Primern die Zytokin- und Lymphozytenrezeptorexpressionen bestimmt. Dabei wurden 1µl der eingestellten cDNA und 1µl des entsprechenden Kontrollfragmentes (pHCQ1 oder pHCQ2) mit den PCR-Reagenzien gemischt. Anstelle von 1µl cDNA enthielt die Kontrollprobe 1µl Wasser. Konnte nach einmaliger Durchführung der PCR keine cDNA
nachgewiesen werden, so wurde der Versuch mindestens einmal wiederholt um zu prüfen, ob die Reaktion fehlerhaft oder tatsächlich keine primerspezifische cDNA vorhanden war.

2.3.2.3. Gelelektrophorese der PCR-Produkte

Bei der Agarosegelelektrophorese wurden die PCR-Produkte vollständig (25µl) in die Taschen eines 1.8% igen Agarosegels pipettiert. Bereits während der Herstellung wurde dem flüssigen Gel Ethidiumbromid zugesetzt. Des Weiteren wurde ein Größenstandard in eine Tasche gegeben. Er enthielt Basenpaarprodukte von 100 bis 1000 bp (Abstand: 100bp). Danach wurde in einer Gelelektrophoresekammer eine Spannung von 120 Volt für ca. 3h angelegt. Sowohl die PCR-Produkte als auch der Größenstandard wanderten entsprechend ihrer Basenpaaranzahl unterschiedlich weit, wobei große Produkte in derselben Zeit im Gel weniger weit wanderten als kleine. War die PCR erfolgreich, sah man max. zwei Banden. Dabei stand die Kleinere für die primerabhängig amplifizierte Kontrollfragment-DNA und die Größere für die cDNA, ebenfalls primerabhängig. Die Größen der PCR-Produkte ließen sich aufgrund des mitgeführten Größenstandards kontrollieren. Die Bilder 2-3 und 2-4 zeigen die Elektrophoresen der in der PCR mittels der Zytokin- und Lymphozytenrezeptorprimer coamplifizierten cDNA und KF-DNA.
Tabelle 2-3:
Die zur Amplifikation der menschlichen cDNA und der KF-DNA (pHCQ1 und 2) verwendeten Oligonukleotide, die Größe (bp) der resultierenden PCR-Produkte die eingesetzte Annealing-temperatur (AT) und KF-Konzentrationen (Platzer et al. 1994).

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sense</th>
<th>antisense</th>
<th>cDNA in bp</th>
<th>KF in bp</th>
<th>AT in°</th>
<th>KF Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Actin</td>
<td>CGGGAAAATCGGCTCGTACAT</td>
<td>GAACTTTGGGGATGCTCGC</td>
<td>712</td>
<td>557/438</td>
<td>64</td>
<td>10⁻⁹</td>
</tr>
<tr>
<td>IL-1b</td>
<td>TGCCCGGTCTTTCCTGGGAGGG</td>
<td>GGCTGGGGATTTGGGCTGAA</td>
<td>288</td>
<td>141</td>
<td>67</td>
<td>10⁻⁷</td>
</tr>
<tr>
<td>IL-2</td>
<td>CCTCAACTCCTGCCACAAATG</td>
<td>TTGCTGAATTGATTCCTGGG</td>
<td>340</td>
<td>232</td>
<td>65</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>IL-2R p55</td>
<td>CCTGCCGTCACAACAACAAAC</td>
<td>AAAACGCAGGCAAGCACAAC</td>
<td>312</td>
<td>182</td>
<td>65</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>IL-4</td>
<td>GCTTTCCCCCTCTGTCTTCC</td>
<td>TCTGGTTGGCTTCTTTTCACA</td>
<td>371</td>
<td>289</td>
<td>65</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>IL-6</td>
<td>TAGCCGCCCCACACAGCAGAGGC</td>
<td>ATTTGGTGTGGTGGG</td>
<td>408</td>
<td>358</td>
<td>67</td>
<td>10⁻⁶</td>
</tr>
<tr>
<td>IL-10</td>
<td>CTGAGAACCAAGACCAGACATCAAGGCAATAAGGTTTCTTTCAGGCGGCGGGGCTGG</td>
<td>351</td>
<td>196</td>
<td>68</td>
<td>10⁻¹²</td>
<td></td>
</tr>
<tr>
<td>IFNγ</td>
<td>TCGTGGTTGGTCTTGGC</td>
<td>GCAGGCCAACAGCAACATTAC</td>
<td>477</td>
<td>357</td>
<td>65</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>CD-3d</td>
<td>CTGGACCTGGGAAAACGCATCTGC</td>
<td>GACTGAGCCTCACATCGTAC</td>
<td>309</td>
<td>233</td>
<td>65</td>
<td>10⁻³</td>
</tr>
</tbody>
</table>
Bild 2-3:
Elektrophorese der in der PCR coamplifizierten cDNA und KF-DNA mittels IL-1, IL-6, IL-4 und IL-10 spezifischer Primer. Die in Bahn 1-7 gezeigten cDNA Proben stammen alle von Patienten mit CP. Die cDNA Expression wurde auf die KF Expression bezogen und in Prozent angegeben. Bahn 8 zeigt eine Kontroll-PCR mit KF ohne cDNA. M= 100 bp Marker
Bild 2-4:
Elektrophorese der in der PCR coamplifizierten cDNA und KF-DNA mittels IFN\(\gamma\), IL-2, CD-3 und CD-25 spezifischer Primer. Die in Bahn 1-7 gezeigten cDNA Proben stammen alle von Patienten mit CP. Die cDNA Expression wurde auf die KF Expression bezogen und in Prozent angegeben. Bahn 8 zeigt eine Kontroll-PCR mit KF ohne cDNA. M= 100 bp Marker.
2.3.3. Quantifizierung der molekularbiologischen Daten

Um PCR-Produkte quantifizieren zu können, benötigt man ein Signal, welches die Menge der gebildeten Produkte zu repräsentieren vermag. Die bestehende Proportionalität zwischen DNA-Menge und der Intensität des erhaltenen Signals macht zur absoluten Quantifizierung der PCR-Produkte eigentlich die Verwendung von Eichkurven oder Korrekturfaktoren erforderlich. Das war in dieser Untersuchung nicht notwendig, da die Ergebnisse der unterschiedlichen Proben untereinander verglichen wurden, d.h. es wurden nur relative Aussagen getroffen. In dieser Untersuchung wurden die PCR-Produkte in der Gelelektrophorese mit Ethidiumbromid gefärbt. Die Fluoreszenzsignale wurden mit Hilfe einer Videokamera UV-Gel-Kamera (Gel-Doc-1000, Firma BIO-RAD) in einem Bildauswertungssystem aufgenommen und von der angeschlossenen Software (Molecular Analyst Software Version 1.4 der Firma BIO-RAD) in Graustufen entsprechender Helligkeit umgewandelt. Es wurde die Fluoreszenzintensität der cDNA- und der KF-cDNA-Banden gemessen. Im Weiteren wurde der Quotient aus dem gemessenen Wert für die cDNA-Bande und dem gemessenen Wert für die KF-Bande gebildet. Das Ergebnis repräsentiert somit den prozentualen Anteil von cDNA bezogen auf die KF-DNA.
2.4. Konventionelle Histopathologie

Die histopathologische Charakterisierung der Pankreasresektate wurde von Herrn Prof. Dr. H. Nizze aus dem Institut für Pathologie der Universität Rostock vorgenommen. Dabei wurde das Gewebe auf verschiedene Eigenschaften untersucht und bewertet. Untersucht wurden die mit Hämatoxylin-Eosin (HE) gefärbten Präparate nach folgenden Kriterien:

<table>
<thead>
<tr>
<th>Liste 1</th>
<th>Liste 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fibrosegrad</td>
<td>• Fettnekrosen</td>
</tr>
<tr>
<td>• Infiltration mit Granulozyten</td>
<td>• Parenchymnekrosen</td>
</tr>
<tr>
<td>• Infiltration mit Lymphozyten</td>
<td>• Pseudozysten</td>
</tr>
<tr>
<td>• Ausbildung von tubulären Komplexen, die den vollständigen bindegewebigen Umbau des exokrinen Pankreasparenchymms repräsentieren</td>
<td></td>
</tr>
<tr>
<td>• Existenz von Narbenfeldern (Scars)</td>
<td></td>
</tr>
<tr>
<td>• Vorhandensein von Proteinplugs</td>
<td></td>
</tr>
<tr>
<td>• Grad der Gewebeverkalkung</td>
<td></td>
</tr>
<tr>
<td>• Stärke der Azinus Atrophie</td>
<td></td>
</tr>
</tbody>
</table>

Bei den in Liste 1 aufgeführten Kriterien erfolgte eine Beurteilung nach folgendem Bewertungssystem:

- –.......nicht vorhanden
- +......geringgradig
- ++....mittelgradig
- +++..hochgradig

Weiterhin wurde überprüft ob die in Liste 2 aufgeführten Kriterien zu finden waren. Es wurde nur eine JA-NEIN-Entscheidung gefällt.
Bild 2-5.: Gewebeschnittpräparat eines Patienten mit chronischer äthyltoxischer Pankreatitis (Pat. Nr. 28). Die ursprünglich geordnete Läppchenstruktur der Azini wird durch eine ausgeprägte Fibrose durchbrochen. In der Bildmitte erkennt man einen zugesetzten Ausführungsgang. (Hämatoxylin-Eosin Färbung)
2.5. Statistische Auswertung

2.5.1. Häufigkeitsanalysen

Bei metrischen Variablen wurden die Daten in Gruppen aufgeteilt und die Anzahl der Fälle pro Gruppe dargestellt.

2.5.2. Deskriptive Statistik

2.5.3. Mittelwertunterschiede

Im Weiteren wurde versucht, Unterschiede in der Merkmalsausprägung zwischen der Patientengruppe und der Kontrollgruppe bzw. zwischen verschiedenen Patientengruppen aufzudecken. Dazu wurde ein Vergleich der Mittelwerte der unterschiedlichen Merkmale durchgeführt. Beim Testen von Hypothesen über Mittelwertunterschiede quantitativer Merkmale (m-RNA Expression, Laufzeit) in den einzelnen Patientengruppen wurde der Mann-Whitney U-Test angewendet. Es handelt sich hierbei um einen parameterfreien Test, der bei kleinen Stichprobenumfängen oft seine Anwendung findet. Ist das beobachtete Signifikanzniveau < 0.05, wird die Hypothese, dass ein Merkmal in zwei Gruppen die gleiche Verteilung aufweist, abgelehnt. Bewegt sich das Signifikanzniveau zwischen 0.05 und 0.10, deuten sich Unterschiede zwischen den Gruppen an, die
vielleicht wegen der geringen Fallzahl nicht statistisch abgesichert werden können (Krentz 2002).

2.5.4. Chi-Quadrat-Test

Um Beziehungen zwischen den nicht-metrischen bzw. qualitativen Variablen deutlich zu machen, wurden Kreuztabellen angefertigt. In ihnen wurden die Anzahl der Fälle für jede Kombination der Werte zweier Variablen dargestellt. Für jede Kreuztabelle wurde Pearsons Chi-Quadrat-Test durchgeführt. Dieser Test prüft Zeilen- und Spaltenvariablen auf Unabhängigkeit. Wenn das Signifikanzniveau klein genug war (< 0.05) wurde die Hypothese der Unabhängigkeit beider Variablen abgelehnt (Krentz 2002).

2.5.5. Korrelationen

Bei allen statistischen Tests verwendete Signifikanzniveaus

<table>
<thead>
<tr>
<th>Irrtumswahrscheinlichkeit α</th>
<th>≥ 0.05</th>
<th><0.05*</th>
<th><0.01**</th>
<th><0.001***</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht signifikant</td>
<td>signifikant</td>
<td>sehr signifikant</td>
<td>hoch signifikant</td>
<td></td>
</tr>
</tbody>
</table>

Testresultate wurden als signifikant bezeichnet, wenn der p-Wert des statistischen Tests kleiner als 0.05 war.
3. Ergebnisse

3.1 Ergebnisse der histopathologischen Untersuchung

Im Rahmen der histopathologischen Begutachtung wurden die Gewebeproben hinsichtlich zellulärer Infiltration (Granulozyten, Lymphozyten), Nekrosen (Parenchym-, Fettgewebsnekrosen), Ablagerungen (Plugs/Proteinpräzipitate, Kalzifizierung), Fibrose (Fibrosegrad, Scars/Narbenfelder) und auf weitere histomorphologische Veränderungen (Azinus-Atrophie, Tubuläre Komplexe und Pseudozysten) untersucht. Die histopathologischen Daten sind der Tabelle 3-1 bzw. den Diagrammen 3-1a+b zu entnehmen. Herr Prof. Nizze führte diese Untersuchungen im Institut für Pathologie der Universität Rostock durch und stellte die erhobenen Daten der statistischen Aufarbeitung zur Verfügung.

Insgesamt zeigten alle Gewebeproben die für die CP typischen Veränderungen. Die Analyse der histopathologischen Einzelkriterien unterstrich die Heterogenität der untersuchten Pankreata. In fast allen Pankreata fanden sich Granulozyteninfiltrate (23 Patienten = 77%) wobei fünf Pankreata eine mittelgradige granulozytäre Infiltration aufwiesen und nur ein Pankreas eine hochgradige granulozytäre Infiltration zeigte. Andere Zeichen einer akuten Entzündungsreaktion konnten nicht gefunden werden mit Ausnahme von Fettgewebsnekrosen bei zwei Patienten (7%). Dabei wiesen 19 der 30 Patienten (63%) Pseudozysten auf, bei 10 Patienten (33%) waren Parenchymnekrosen und bei 2 Patienten (7%) Fettgewebsnekrosen zu beobachten. Alle Pankreata waren mehr oder minder stark fibrosiert. Dabei waren nur 5 Pankreata (17%) schwach fibrosiert, während in 12 Pankreata (40%) ein starker fibrotischer Umbau stattgefunden hatte.

Intensität auszumachen, wobei dieses der stärkste zu beobachtende Grad war. In 8 Pankreata (27%) waren keine tubulären Komplexe nachweisbar. Bei 27 Patienten (90%) wurden Scars beschrieben. Plugs waren bei 22 Patienten (73%) nachweisbar, wobei sich die Ausprägungsgrade ungefähr gleichmäßig verteilten. Die Kontrollgewebe entsprachen makroskopisch normalem Pankreas mit organtypischem Gewebeaufbau.
Tabelle 3-1: Histopathologische Daten der Patienten mit chronischer Pankreatitis

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Parenchymnekrosen</th>
<th>Fettnekrosen</th>
<th>Granulozyten</th>
<th>Lymphozyten</th>
<th>Plugs</th>
<th>Kalk</th>
<th>Azinusatrophie</th>
<th>Tubuläre Fibrose</th>
<th>Scars</th>
<th>Pseudozysten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>--</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>29</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Diagramm 3-1a:
Anzahl der Patienten in den unterschiedlichen Stadien der jeweiligen histopathologischen Merkmale (entsprechen Liste 1) bei der chronischen Pankreatitis

Diagramm 3-1b:
Anzahl der Patienten in den unterschiedlichen Stadien der jeweiligen histopathologischen Merkmale (entsprechend Liste 2) bei der chronischen Pankreatitis
3.2. Zusammenhänge zwischen den histopathologischen Daten

Diagramm 3-2:
Anzahl der Patienten mit geringgradiger und mittel- bis hochgradiger Lymphozyteninfiltration bei Patienten mit gering- bis mittelgradiger und hochgradiger Fibrose. Der p-Wert gibt das Signifikanzniveau von Pearson's Chi-Quadrat-Test an. p < 0.05 wurde als statistisch signifikant gewertet.

Auch zwischen Fibrosegrad und Azinus-Atrophie ließ sich ein statistisch-signifikanter Zusammenhang ermitteln. Dabei war unter den 18 Patienten mit gering- bzw. mittelgradiger Fibrose kein Patient mit einer Azinus-Atrophie zu finden, während bei den 12 Patienten mit hochgradiger Fibrose 8 Patienten eine Azinus-Atrophie aufwiesen. Dies entspricht einem p-Wert von < 0.001***.

Des Weiteren war ein statistischer Zusammenhang zwischen Fibrosegrad und dem Grad der Ausprägung tubulärer Komplexe nachweisbar. Alle 4 Gewebe mit dem am
stärksten zu beobachtenden Ausprägungsgrad an tubulären Komplexen wiesen auch gleichzeitig eine starke Fibrose auf, dagegen waren bei 5 von 9 Gewebeproben ohne tubuläre Komplexe auch nur eine geringgradige Fibrose zu beobachten (p=0.049*). Zwischen Scars und Fibrosegrad konnte ein p-Wert von 0.002* ermittelt werden. Unter allen 18 Geweben, die keine hochgradige Fibrose aufwiesen, waren auch Scars nur geringgradig ausgeprägt (n=15) oder gar nicht zu finden (n=3). Dagegen waren in 12 Geweben mit hochgradiger Fibrose in 6 Geweben auch gleichzeitig Scars mittlerer bis starker Ausprägung nachzuweisen.

Der Ausprägungsgrad der Scars zeigte einen statistischen Zusammenhang zum Grad der Azinus-Atrophie. Von 22 Patienten mit nicht vorhandener bis geringgradiger Azinus-Atrophie zeigte nur ein Patient Scars mit mittlerer bzw. starker Ausprägung während es in der Gruppe der Patienten mit mittel bis starker Azinus-Atrophie 5 Patienten waren (p=0.002*).

Das Vorhandensein Tubulärer Komplexe ging mit verstärkter Lymphozyteninfiltration einher. Von 21 Patienten mit nachweisbaren Tubulären Komplexen hatten 16 auch eine mittel- bis hochgradige Lymphozyteninfiltration, während bei den 9 Patienten ohne Tubuläre Komplexe nur 3 Patienten eine mittel- bis hochgradige Lymphozyteninfiltration zeigten. Der p-Wert betrug 0.042*.
3.3 Beziehungen zwischen histopathologischen Daten und klinischen Daten bei der CP

Diagramm 3-4:
Anzahl der Patienten mit Proteinplugs bei Patienten mit und ohne exokrine Pankreasinsuffizienz. Der p-Wert gibt das Signifikanzniveau von Pearsons Chi-Quadrat-Test an. \(p < 0.05 \) wurde als statistisch signifikant gewertet.

3.4. Ergebnisse der molekularbiologischen Untersuchungen

Tabelle 3-3:
mRNA Expression bei der chronischen Pankreatitis (CP) und im Normalgewebe (N) in Prozent

durchgeführt. Dabei waren in der CP-Gruppe die mRNA-Expression von IL-6 signifikant, von IL-1, IFN\(\gamma\) und CD-25 sehr signifikant und von CD-3 hoch signifikant gesteigert. Die IL-1 Expression war in allen 38 untersuchten Geweben (100%) und eine IL-6 Expression bei 26 Patienten mit CP (86,7%) und bei 5 Kontrollen (62,5%) nachweisbar. CD-3 und CD-25 konnte in allen Pankreatitisgeweben nachgewiesen werden, während in 6 Normalgeweben CD-3 (75%) und in 5 Normalgeweben CD-25 (62,5%) nachweisbar war. Die IL-2 mRNA (positiv bei 13 Patienten, 43,3%) bei der CP zeigte im Vergleich zum Normalgewebe eine Tendenz zur signifikant gesteigerten Expression und war genauso wie die IFN\(\gamma\) mRNA (positiv bei 20 Patienten, 66,7%) im Normalgewebe nicht detektierbar. Eine IL-4 Expression konnte nur bei zwei Fällen der CP-Gruppe, nicht aber in der Kontrollgruppe nachgewiesen werden. Beim Vergleich der IL-10 mRNA Expression zwischen der Patientengruppe (bei 27 Patienten vorhanden, 90%) und der Kontrollgruppe (in vier Fällen nachweisbar, 50%), konnte kein signifikanter Unterschied festgestellt werden. Ein Teil dieser Ergebnisse sind in Form von Boxplots graphisch dargestellt. Zu sehen sind der Median, das erste und dritte Quartil und die Signifikanzniveaus (Diagramme 3-5 bis 3-10).
Diagramm 3-5
Darstellung der IL-1 mRNA-Expression in % bei der chronischen Pankreatitis (CP) und in der Kontrollgruppe (N). Der p-Wert wurde auf Basis des U-Tests von Mann/Whitney berechnet. Es ließ sich ein signifikanter Unterschied feststellen: $p \leq 0.01^{**}$

Diagramm 3-6
Darstellung der IL-6 mRNA-Expression in % bei der chronischen Pankreatitis (CP) und in der Kontrollgruppe (N). Der p-Wert wurde auf Basis des U-Tests von Mann/Whitney berechnet. Es ließ sich ein signifikanter Unterschied feststellen: $p \leq 0.05^{*}$
Diagramm 3-7
Darstellung der IL-2 mRNA-Expression in % bei der chronischen Pankreatitis (CP) und in der Kontrollgruppe (N). Der p-Wert wurde auf Basis des U-Tests von Mann/Whitney berechnet. Es ließ sich eine Tendenz zum signifikanten Unterschied feststellen: p=0.064

Diagramm 3-8
Darstellung der IFN-γ mRNA-Expression in % bei der chronischen Pankreatitis (CP) und in der Kontrollgruppe (N). Der p-Wert wurde auf Basis des U-Tests von Mann/Whitney berechnet. Es ließ sich ein signifikanter Unterschied feststellen: p≤0.01**
Diagramm 3-9
Darstellung der CD-25 mRNA-Expression in % bei der chronischen Pankreatitis (CP) und in der Kontrollgruppe (N). Der p-Wert wurde auf Basis des U-Tests von Mann/Whitney berechnet. Es ließ sich ein signifikanter Unterschied feststellen: \(p \leq 0.01^{**} \)

Diagramm 3-10
Darstellung der CD-3 mRNA-Expression in % bei der chronischen Pankreatitis (CP) und in der Kontrollgruppe (N). Der p-Wert wurde auf Basis des U-Tests von Mann/Whitney berechnet. Es ließ sich ein signifikanter Unterschied feststellen: \(p \leq 0.001^{***} \)
3.5. Zusammenhänge zwischen den Molekularbiologischen Daten

Im Weiteren wurde geprüft, ob die untersuchten mRNA-Expressionen untereinander korrelierten. Unter Verwendung des *Spearmanschen-Rangkorrelationskoeffizienten* konnte eine positive Korrelation zwischen der IL-2 und der IFNγ (p = 0.004**, r = 0.514) und zwischen der CD-25 und der CD-3 mRNA Expression (p≤0.001***, r = 0.658) festgestellt werden. Eine negative Korrelation war zwischen IL-10 und der CD-25/CD-3 Ratio zu beobachten. Eine Tendenz zur signifikanten positiven Korrelation bestand zwischen IL-2 und CD-3 (p = 0.053, r= 0.0356) und zwischen IL-10 und CD-3 (p = 0.054, r = 0.355). In der Kontrollgruppe waren keine signifikanten Korrelationen zu finden.

Der Zusammenhang zwischen der IL-2 und der IFNγ Expression wurde auch nach Durchführung des Chi-Quadrat-Tests deutlich. Unter 10 Patienten mit negativer IFNγ Expression war nur ein Patient, der eine positive IL-2 Expression zeigte während unter 20 Patienten mit positiver IFNγ Expression 12 Patienten auch gleichzeitig eine positive IL-2 Expression aufwiesen (p = 0.017*). Der Zusammenhang wird in Diagramm 3-11 dargestellt.

![Diagramm 3-11: Anzahl der Patienten mit positiver und negativer IL-2 Expression bei Patienten mit negativer und positiver IFNγ Expression. Der p-Wert gibt das Signifikanzniveau von Pearsons Chi-Quadrat-Test an. p<0.05 wurde als statistisch signifikant gewertet.](image)
Auch im U-Test zeigte sich, dass eine erhöhte IL-2 Expression mit einer erhöhten IFNγ Expression einher ging. In der IL-2 positiven Patientengruppe war neben der IFNγ Expression (p = 0.009**) auch die CD-3 Expression (p = 0.008**) signifikant gesteigert. Für CD-25 ließ sich hier eine Tendenz zur signifikanten Steigerung feststellen (p = 0.082). In der IFNγ positiven Patientengruppe war neben der IL-2 Expression (p = 0.006**) nur eine Tendenz zu einer signifikanten Steigerung der CD-25 Expression festzustellen (p = 0.058).

Die Patienten, die sowohl IL-2 als auch IFNγ mRNA exprimierten (n=12), zeigten eine signifikant gesteigerte CD-3 Expression (p = 0.009**) im Vergleich zu den restlichen 18 Patienten. Dieser Zusammenhang ist in Diagramm 3-12 dargestellt.

CD-25/CD-3 Ratio als Ausdruck für den Anteil aktivierter T-Zellen in der T-Zell-Population

Wie die Zytokine in vivo nicht nur als Einzelfaktoren wirken, sondern ein Netzwerk mit vielfältigen Wechselwirkungen bilden, unterliegt auch die Stärke der Rezeptorpräsen einer Reihe von Einflüssen. So wurden nicht nur die einzelnen Absolutwerte für die Expression der beiden Lymphozytenrezeptoren sondern auch
deren Verhältnisse bestimmt und mit klinischen-, molekularbiologischen- und histopathologischen Daten verglichen (entsprechend der Auswertung der Zytokin-mRNA Daten). Auf Grund der Unterschiede in der Menge cDNA nach der RT-Reaktion geben diese Verhältnisse nicht die wahren Verhältnisse der Expression in vivo wieder. Da aber die PCR jeweils unter gleichen Bedingungen durchgeführt wurde, ist dieser Fehler für diesen theoretischen Vergleich nicht von Bedeutung.

Wie oben bereits erwähnt, konnte zwischen der CD-25/CD-3 Ratio und der IL-10 Expression eine signifikante negative Korrelation nachgewiesen werden (p = 0.037*; r = -0.383). Auch im U-Test ließ sich ein Zusammenhang aufzeigen. Dabei war in der Patientengruppe mit CP und einer Ratio > 1 (n=10) die IL-10 Expression signifikant niedriger (p = 0.002**) im Vergleich zu Patienten mit CP und einer Ratio < 1 (n=20).

3.6. Beziehungen zwischen molekularbiologischen und sowohl histopathologischen als auch klinischen Daten und Beziehungen der klinischen Daten untereinander bei Patienten mit CP

Beim Vergleich der molekularbiologischen mit den histopathologischen Daten war ein Zusammenhang zwischen dem Grad der Azinus-Atrophie und der Expression der untersuchten Lymphozytenrezeptoren zu beobachten. Dabei war bei Patienten mit einer mittel- bis hochgradigen Azinus-Atrophie (n=8) auch die CD-25 Expression erhöht (p = 0.045*). Die CD-3 mRNA zeigte in dieser Patientengruppe eine Tendenz zu einer erhöhten Expression (p = 0.071).

Bei Patienten mit Kalzifikation zeigte sich im U-Test eine Erniedrigung der CD-25/CD-3 Ratio (p = 0.001**). Dabei waren unter den sieben Patienten ohne Kalzifikation sechs Patienten mit einer Ratio > 1, während bei den 23 Patienten mit Kalzifikation nur vier Patienten eine Ratio > 1 zeigten (p= 0.002**). Außerdem war in kalzifiziertem Gewebe die IL-10 Expression tendenziell erhöht (p=0.096).

Beim Vergleich der molekularbiologischen mit den klinischen Daten war ein Zusammenhang zwischen exokrinen Pankreasinsuffizienz und der IL-6 Expression zu beobachten. Bei Patienten mit exokriner Pankreasinsuffizienz war eine erhöhte IL-6 Expression zu beobachten. Mit einem p-Wert von 0.070 waren diese Unterschiede in der IL-6 Expression aber nicht statistisch signifikant.

Bei Patienten mit P-Gangstenose war die CD-3 Expression erhöht. Aber auch in
dieser Patientengruppe waren die Unterschiede in der CD-3 Expression nicht statistisch signifikant (p = 0.070).

Unter 23 Patienten mit einer Krankheitsdauer von 3 Jahren oder länger wiesen mit 12 Patienten knapp die Hälfte der Patienten eine Pankreasgangstenose auf. Dagegen war bei allen restlichen sieben Patienten mit längerer Krankheitsdauer eine Pankreasgangstenose zu beobachten. Dies entspricht einem p-Wert von 0.029* im Chi-Quadrat-Test und somit einem signifikanten Unterschied beider Gruppen hinsichtlich der Pankreasgangstenose.
4. Diskussion

4.1. Grundlagen

4.1.1. Ursache autoreaktiver Mechanismen und die Rolle von Zytokinen und Interferonen

Eine Ursache für die Persistenz chronischer Entzündungen ist in autoreaktiven Mechanismen zu sehen. Da Zytokine die Immunantwort regulieren, können sie auch die Ursache für Fehlsteuerungen sein, die zu chronischen Erkrankungen führen. Zum einen kann ein Defekt des Immunsystems mit der Folge der verstärkten Produktion bestimmter Zytokine, die z.B. für Apoptose oder Suppression notwendig sind, zur Bildung autoreaktiver Zellen führen. Zum anderen kann eine latente oder persistierende Entzündung zur längerfristigen Überproduktion eines Zytokins führen. Körpereigene Moleküle, die durch das Immunsystem nicht erkannt werden, können mit Immunzellen in Kontakt kommen oder sich verändern, also nicht mehr dem
ursprünglichen vom Körper als *Selbst* erkannten Protein entsprechen. Solche unsichtbaren Moleküle sind Zellkernantigene oder anderer Strukturen, gegenüber denen das Immunsystem keine Toleranz entwickelt hat. Es ist auch denkbar, dass tolerierte Antigene (meist Oberflächenmoleküle der Zellen) sich im Rahmen von Erkrankungen verändern. Auslöser für diese Prozesse sind oftmals Infektionen, UV-Licht, Chemikalien oder andere aggressive Umwelteinflüsse. In Folge von Anpassungsvorgängen der Erreger an ihre Umwelt (Molekular Mimicry) oder Homologien zwischen Proteinen von Krankheitserregern und Proteinen des menschlichen Körpers reagieren AK nicht nur gegen körperfremde, sondern auch gegen körpereigene (Kreuzreaktion) Moleküle (Kirchner, 1994).

Bei der Aktivierung von supprimierten, toleranten Zellen ändern sich die HLA-Antigene normalerweise nicht. Dieses ist aber auch möglich und eine weitere Ursache für autoreaktive Mechanismen. Dabei sind prinzipiell zwei Möglichkeiten denkbar. Zum einen ist eine Veränderung auf genetischer Ebene, z.B. eine Mutation des HLA-Gens, und zum anderen eine Veränderung der HLA-Moleküle auf der Zelloberfläche, also auf Proteinebene, möglich. Beide Veränderungen können u.a.
durch physikalische oder chemische Belastungen zustande kommen. Sind die Veränderungen sehr groß, werden die Zellen mit dem abweichenden HLA eliminiert. Bei geringen Veränderungen der HLA-Moleküle führt die weitgehende Übereinstimmung mit dem ursprünglichen Selbst zu Kreuzreaktionen mit diesem (Kirchner, 1994).

4.1.2. Methode

dass Zytokingene der Kontrolle einer Reihe von Transkriptionsfaktoren und anderen regulatorischen Elementen unterliegen. Zytokingene sind gewöhnlich inaktiv und ihre Expression wird von extrazellulären Signalen induziert. Beispielsweise induziert IL-1 die Expression der Gene die für IL-1, IL-2 und IL-6 kodieren (Muegge et al. 1990). Auch konnte gezeigt werden, dass Zellen mit nicht translatierter IL-1 mRNA auf kleine Stimuli reagieren (LPS oder IL-1) und sofort mit der Translation beginnen können und im Ergebnis mehr IL-1 synthetisieren als Zellen ohne erhöhte IL-1 mRNA Level (Schindler et al. 1990a;b). Diese Beispiele zeigen, dass schon der alleinige Nachweis von Zytokin mRNA bei der Klärung von pathogenetischen Prozessen bei der CP hilfreich sein kann.

4.1.3. Interpretation der Ergebnisse

natürlichen Bedingungen trifft eine Zelle äußerst selten auf nur ein Zytokin, sondern auf eine Mehrzahl von Zytokinen und ist anderen biologisch aktiven Stoffen ausgesetzt mit dem Ergebnis, dass die biologische Aktion die Summe aus allen synergistischen und antagonistischen Effekten der anwesenden Stoffe darstellt. Feinman et al. zeigten 1987 beispielsweise, dass nur TNFα und IFNγ zusammen eine zytotoxische Reaktion in HT 29 Kolonkarzinomzellen auslösen konnten.

Als Untersuchungsmaterial dienten 30 Gewebeproben von Patienten mit chronischer Pankreatitis wobei es sich bei der überwiegenden Mehrzahl der Patienten (26) um die äthyltoxische Form handelte. Aufgrund der geringen Fallzahl der Patienten mit nichtalkoholinduzierter Pankreatitis konnten beide Gruppen statistisch nicht miteinander verglichen werden. Zusammenhänge die für die CP im Vergleich zum Normalgewebe herausgearbeitet wurden, trafen auch für den Vergleich zwischen alkoholischer CP und Normalgewebe zu. Somit kann die CP in dieser Arbeit stellvertretend für die alkoholische Form diskutiert werden.

In dieser Arbeit wurde nicht wie bei anderen Untersuchungen die CP histopathologisch in Schweregrade unterteilt, sondern es wurden elf histologische Einzelkriterien festgelegt und deren Ausprägungsgrad unabhängig voneinander untersucht. Dieses Vorgehen wurde gewählt, da die Gewebe, die für die Untersuchung der histologischen Veränderungen verwendet wurden, verschieden von den für die Bestimmung der Genexpressionen verwendeten Gewebeproben waren. Die Histopathologie diente mehr der Charakterisierung der Gewebe und sollte weniger eine Grundlage für die Herausarbeitung direkter Beziehungen zwischen Genexpression und histologischer Veränderung darstellen. Dennoch sind ermittelte
Veränderungen der Genexpressionen in histopathologisch auffälligen Geweben als Hinweise auf mögliche Zusammenhänge zu werten.
4.2 Diskussion der eigenen Ergebnisse

4.2.1. IL-1 und IL-6

Neben IL-1 wurde auch der Serumspiegel von IL-6 bei der humanen CP untersucht (Bamba et al. 1994). Die in dieser Studie gemessenen Werte unterschieden sich nicht signifikant von denen der Kontrollgruppe. Es konnte keine Korrelation zwischen IL-6 Werten und Ätiologie bzw. Komplikationen aufgezeigt werden. Dagegen korrelierte IL-6 mit den CRP-Werten. Daher wurde dem IL-6 eine Beteiligung bei der Induktion dieses Akut-Phase-Proteins zugesprochen. Hierbei muss man berücksichtigen, dass bei Bamba et al. (1994) die Mehrheit der Patienten nicht in der akuten Phase der CP untersucht wurden und der Schweregrad der Erkrankung ausschließlich mild oder

4.2.2. Das Th1/Th2 Relation bei der CP

Der Nachweis von IL-2 und IFNγ mRNA (signifikant für IFNγ beim Vergleich Normalgewebe mit Pankreatitisgewebe) bei gleichzeitig fehlendem Unterschied für

Die IL-2 Sekretion stellt einen antigenabhängigen Prozess dar (Friemel et al. 1990). Der Nachweis von IL-2 mRNA bei einigen Patienten mit CP lässt die Existenz eines Antigens vermuten, welches den Ablauf der Entzündungsreaktion fördert.

Aktivierte zytotoxische Zellen sowohl der CD8+ als auch der CD56 Subpopulation sind in der Lage, den Krankheitsverlauf nicht nur durch zellvermittelte zytotoxische Aktivität, sondern auch durch ihre Zytokinproduktion wie z.B. der von IFN\(\gamma\) zu beeinflussen (Farrar et al. 1993). IFN\(\gamma\) unterstützt die Expansion von Th1-Zellen, was zu einem Überwiegen der zellulären Immunantwort führt (Romagnani et al. 1994). Des Weiteren ist IFN\(\gamma\) neben IL-2 auch an der Ausbildung der CTL beteiligt (Farrar et al. 1981). Hunger et al. postulierten 1997 eine Beteiligung von aktivierten zytotoxischen Zellen an der Organzerstörung bei der CP. Die in dieser Arbeit nachgewiesene erhöhte IFN\(\gamma\) Expression sowie das Fehlen von IFN\(\gamma\) und IL-2 mRNA im Normalgewebe sprechen für die Existenz einer autoreaktiven, zytotoxischen Entzündungsreaktion bei der CP.

4.2.3. CD-25 und CD-3

Die signifikant erhöhte CD-25 mRNA Expression im Gewebe der Patienten mit CP unterstreicht die Vermutung, dass aktivierte T-Lymphozyten am Prozeß der CP beteiligt sind. Eine Zytokinproduktion aktivierter T-Zellen wird im Allgemeinen bei chronisch fibrotischen Entzündungen beobachtet. So wurde u.a. eine Expressionssteigerung der mRNA für IL-2, IL-6, IL-10 und IFN\(\gamma\) bei der chronischen

Die Patienten, die sowohl IL-2 als auch IFN-γ mRNA exprimierten, zeigten eine signifikant gesteigerte CD-3 Expression. Da die Lymphozyten die einzigen Zellen sind, welche IL-2 und IFN-γ produzieren, war der mit dieser Methode nachgewiesene Zusammenhang zu erwarten und bestätigte die vorgestellten Ergebnisse.

4.2.4. IFN-γ und MHC

HLA-DR Expression von Epithelzellen wurde auch bei anderen Erkrankungen mit Immunregulationsstörungen nachgewiesen und dort als pathogenetischer Faktor diskutiert. Dazu zählen die PBZ (Ballardini et al. 1984), chronisch entzündliche Darmerkrankungen (Hirata et al. 1986) und Diabetes mellitus Typ1 (Foulis et al. 1987). Es ist denkbar, dass die Induktion von MHC Klasse II Molekülen auch bei der Pathogenese der CP eine Rolle spielt. Die in dieser Arbeit nachgewiesene signifikant erhöhte IFN\(\gamma\) mRNA-Expression bei der CP unterstützt diese Vermutung. Die IFN\(\gamma\) induzierte HLA-Expressionssteigerung spräche dann gegen einen genetischen Defekt des HLA-Systems als ätiologischen Faktor und wäre dann als Epiphänomen im Rahmen der CP zu werten. Eine angeborene genetische Prädisposition ist dennoch nicht auszuschließen. In beiden Fällen ist eine zellvermittelte zytotoxische Reaktion die Folge, möglicherweise ausgelöst durch die im Rahmen der Entzündungsreaktion entstandenen Antigenstrukturen. Aktivierte T-Zellen und deren Mediatoren [z.B. TGF\(\beta\) (van Laethem et al. 1996)] sind auch in diesem Zusammenhang für die Unterhaltung der Entzündungsreaktion verantwortlich.

4.2.5. IFN\(\gamma\) und Matrixmetallproteinasen

Dies kann sowohl durch die Aktivierung von spezifischen Inhibitoren die als TIMP’s (tissue inhibitors of metalloproteinases) bezeichnet werden als auch durch die direkte Hemmung der MMP’s erreicht werden. IFNγ könnte über den Weg der Hemmung der Synthese von Matrixmetallproteininasen für den bindegewebigen Umbau des Organs bei der CP mitverantwortlich sein.

4.2.6. IL-10 und IL-4

Bei der Rheumatoiden Arthritis konnte gezeigt werden, dass in der Synovialmembran unter IL-4 Einfluß die Produktion proinflammatorischer Zytokine reduziert war (Miossec et al. 1992). In der vorliegenden Arbeit war eine IL-4 mRNA-Produktion nachweisbar. Allerdings wäre (bei nur zwei von 30 Patienten mit CP) diese kaum nachweisbare IL-4 mRNA-Expression wahrscheinlich Folge der signifikant gesteigerten mRNA Expression von IL-1 und IL-6. Aufgrund der Fähigkeit von IL-4 und IL-10 die Produktion proinflammatorischer Zytokine und die Differenzierung von Th1-Zellen und deren Zytokinproduktion zu inhibieren, wären neue therapeutische Strategien durch den Einsatz dieser Zytokine bei der Behandlung von immunologischen Reaktionen bei der CP denkbar, wie dies schon tierexperimentell gezeigt wurde (Brock et al. 2006). Dies setzt allerdings eine genauere Charakterisierung dieser Zytokine insbesondere ihrer Wirkung in vivo voraus.
4.3. CP und weitere Zytokine

Detlefsen et al. untersuchten immunhistochemisch das Vorkommen von Myofibroblasten und deren Zytokine TGF-beta1 (Propeptid) und PDGF-B bei unterschiedlichen Stadien der alkoholtoxischen chronischen Pankreatitis. Es konnte eine starke Ausprägung am Beginn der Erkrankung nachgewiesen werden was für eine Beteiligung der untersuchten Zellen und deren Zytokine bei der Initiierung der Fibrose bei der CP spricht (Detlefsen et al. 2006). PDGF stimuliert unter anderem die Aktivierung von Stellate-Zellen im Pankreas (Jaster et al. 2003).

Auch über IL-18 wurden Ergebnisse publiziert, die diesem Zytokin eine Beteiligung beim bindegewebigem Umbau des Organs zusprechen. Die IL-18 Expression war sowohl im Serum als auch im Pankreagewebe von Patienten mit CP erhöht. Als Ursprungszenllen für die IL-18 Produktion wurden sowohl Azinuszellen als auch im Pankreas befindlichen Zellinfiltrate identifiziert (Schneider et al. 2006).

4.4. Immunologische Aspekte bei Pathogenese und Progredienz der CP

Die Beziehung zwischen akuter und chronischer Pankreatitis wird schon seit Jahrzehnten untersucht. Es ist allgemein anerkannt, dass die Manifestation einer CP in enger Beziehung zu vorangegangenen akuten, pankreatitischen Phasen steht. Allerdings ist bis heute nicht geklärt, welche Faktoren die Entwicklung bis hin zu einer irreversiblen Organveränderung, wie bei der CP beobachtet, bestimmen. Es ist nicht auszuschließen, dass veränderte Zytokingenexpressionen den Krankheitsprozeß nach akuten Pankreatitiden beeinflussen, nicht zuletzt, weil auch das Pankreasparenchym eine bedeutende Quelle dieser kompetenten Mediatoren darstellt (Saurer et al. 2000).

Nicht nur die Ergebnisse dieser Arbeitsgruppe zeigen die aktiven Interaktionen zwischen Pankreas-, Entzündungs- und Nervenzellen durch teilweise aktiv durch diese Zellen sezernierten Substanzen (z.B. NGF) und lassen eine Beteiligung der im Pankreas vorhandenen Nervenstrukturen am Entzündungsprozess vermuten (Friess et al. 1999).
4.4.1. Autoimmunpankreatitis

mit weiteren Autoimmunerkrankungen wie einer sklerosierenden Cholangitis und dem Sjögren-Syndrom erklären.

4.4.2. Immunreaktionen bei idiopathischer und äthyltoxischer chronischer Pankreatitis

Es ist also anzunehmen, dass die bei der chronischen Pankreatitis beschriebenen Zellinfiltrate u.a. durch die Sekretion von Zytokinen erheblichen Einfluss auf den Verlauf der Erkrankung nehmen. Mit einem besseren Verständnis um die Umstände, die für die Zytokininduktion verantwortlich sind, wäre es möglich, therapeutisch in den Krankheitsprozess einzugreifen und somit eine chirurgische Intervention zu verhindern. Hier wären die Hemmung der Freisetzung proinflammatorischer Zytokine und die Hemmung der Th1-Zell-Differenzierung z.B. durch IL-4 und IL-10 mögliche Ansatzpunkte. Brock et. al. beschrieben in einem Tiermodell einen Weg wie die IL-4 Expression im entzündeten Pankreasgewebe durch adenoviral vermitteltem Gentransfer induziert und so die Immunantwort modifiziert werden könnte (Brock et al. 2005; Brock et al. 2006).

Die Arbeit zeigt, dass sowohl die Rolle der nachgewiesenen Zytokine als auch die Mechanismen die zu ihrer Aktivierung führen vielversprechende Ansatzpunkte in der Pankreasforschung sind. Weiteren Ergebnissen aus molekular- und zellbiologischen Untersuchungen bleibt es vorbehalten, die auslösenden Faktoren für die Induktion der
Zytokingene zu ermitteln sowie Zusammenhänge zwischen den ätiologischen Faktoren und den morphologischen bzw. pathophysiologischen Aspekten der chronischen Pankreatitis aufzudecken.

5. Zusammenfassung

Es konnte gezeigt werden, dass in Gewebeproben von Patienten mit CP im Vergleich zum Kontrollgewebe die Zytokin-mRNA Expression von IL-1, IL-6 und IFN-\(\gamma\) signifikant gesteigert war. Für die Lymphozytenoberflächenantigene CD-3 und CD-25 konnte ebenfalls eine signifikant erhöhte Expression nachgewiesen werden. Es konnte in der CP-Gruppe für die Transkriptlevel von IL-2 und IFN-\(\gamma\) eine positive Korrelation nachgewiesen werden, wobei die RNA beider Zytokine im Normalgewebe nicht detektierbar war. Auch korrelierte die CD-25 mRNA-Expression positiv mit dem Nachweis von CD-3. Dabei weisen erhöhte Werte für IL-1 und IL-6 auf eine unspezifische entzündliche Aktivität hin. Bei fehlendem Unterschied zwischen Patienten- (CP) und Kontrollgruppe bezüglich der IL-4 und der IL-10 mRNA-Expression kann aufgrund erhöhter Expressionen von IL-2 und IFN-\(\gamma\) von einer Verschiebung des Gleichgewichtes zwischen Th1 und Th2 Zytokinen zu Gunsten der Th1 Zytokine bei der CP ausgegangen und die Beteiligung von spezifisch sensibilisierten Th1-Lymphozyten am Entzündungsprozess der CP angenommen werden. Diese Vermutung wird auch von der ermittelten signifikant negativen Korrelation zwischen der CD-25/CD-3 Ratio (als Ausdruck für den Anteil aktivierter T-Zellen in der T-Zell-Population) und der IL-10 Expression gestützt.

Beim Vergleich der histopathologischen- mit den klinischen Daten zeigte sich bei einer längeren Krankheitsdauer eine sowohl vermehrte Lymphozyteninfiltration als auch eine stärker ausgeprägte Azinusatrophie.

6. Literaturverzeichnis

Abbas, Abul K. Cytokines in Cellular and Molecular Immunology. Elsevier 2005; 243-273

Canalis E. Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology 1986; 118:74-81.

Del Prete G, De Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 1993;150:353-360.

Holsti MA, Raulet DH. IL-6 and IL-1 synergize to stimulate IL-2 production and proliferation of peripheral T cells. J Immunol 1989;143:2514-2519.

Ibelgaufts H. Lexikon Zytokine; Muenchen: Medikon-Verl., 1992; S.67

Krentz H. Statistische Analysen und Datenverwaltung mit SPSS in der Medizin. Aachen: Shaker-Verlag, 2002

Kulling D, Tresch S, Renner E. Triad of sclerosing cholangitis, chronic pancreatitis, and Sjogren`s syndrome: Case report and review. 2003;57:118-120

Okazaki K. Autoimmune pancreatitis is increasing in Japan. Gastroenterology. 2003;125:1557-1558

Roberts AB, Joyce ME, Bolander ME, Sporn MB. Transforming growth factor-beta (TGF-β): a multifunctional effector in both soft and hard tissue regeneration. Growth Factors in Health and Disease 1990;4:89.

Schindler R, Gelfand JA, Dinarello CA. Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself. Blood. 1990b;76:1631-1638.

Teich N, Rosendahl J, Toth M, Mössner J, Sahin-Toth M. Mutations of human cationic Trypsinogen (PRSS1) and chronic pancreatitis. Hum Mutat 2006;27:721-730

Uchida K, Okazaki K, Nishi T. Experimental immune-mediated pancreatitis in neonatally thymectomized mice immunized with carbonic anhydrase2 and lactoferrin. Lab Invest 82:411-424

Varadarajulu S, Cotton PB. Autoimmune pancreatitis: is it relevant in the west?. Gastroenterology. 2003;125:1557

Danksagung

Das Verfassen einer Promotion ist eine langwierige und vor allem einsame Tätigkeit und doch braucht es in aller Regel mehr als den Doktoranden, damit es zur Vollendung der Arbeit kommt. Hier zumindest ist es so gewesen. Es ist mir ein persönliches Anliegen einige Personen auf dieser Seite namentlich zu erwähnen.

Zuerst gebührt mein Dank Herrn Prof. Dr. J. Emmrich der mir das Thema überließ und mich während des gesamten Entstehungsprozesses mit Rat und Tat begleitet und so manches Hindernis aus dem Weg geräumt hat, so dass ich unter denkbar günstigen Bedingungen arbeiten konnte. Neben der kontinuierlichen Förderung und der kompetenten Betreuung wurden auch die Anregungen bei der Fertigstellung der vorliegenden Arbeit dankend angenommen.

Herrn Prof. Dr. A. Schulze (zum damaligen Zeitpunkt Leiter des Experimentellen Forschungszentrums der Universität Rostock) danke ich für die Bereitstellung des Arbeitsplatzes mit freiem Zutritt zu den Laborräumen.

Mein Dank gilt dem Institutsdirektor der Pathologie der Universität Rostock Herrn Prof. Dr. H. Nizze (Direktor des Institutes für Pathologie) sowie seinen Mitarbeitern Dr. Hans-Jürgen Kreutzer und Dr. Wolfgang Schmidt für die histopathologische Beurteilung der Gewebeproben.

Für die freundliche Beratung bei den statistischen Auswertungen der Untersuchungsergebnisse bin ich Herrn Prof. Dr. Ing. habil. G. Kundt (Direktor des Instituts für Medizinische Informatik und Biometrie) zu großem Dank verpflichtet.

Frau Ingrid Groß (Bibliothekarin an der Universitätsbibliothek Rostock) war mir bei der Beschaffung vieler Originalarbeiten eine unschätzbare Hilfe.

Frau Dr. Gisela Sparmann, wissenschaftliche Mitarbeiterin im gastroenterologischen Forschungsteam von Prof. Emmrich, trägt erheblichen Anteil am Gelingen der experimentellen Datenerhebung.
Weiterhin danke ich Dr. Andreas Möller, Dr. Oliver Wittig und Horant Holzgräbe dafür, dass sie meiner Bitte um eine kritische Durchsicht des Manuskriptes in sehr kollegialer und freundschaftlicher Weise entsprochen haben.

Nicht zuletzt möchte ich meiner Familie und gegenüber all denjenigen meinen besonderen Dank zum Ausdruck bringen, die mir sowohl während der Fertigung der vorliegenden Arbeit als auch während des gesamten Studiums hindurch zur Seite standen, mich stets mit Ratschlägen, Erfahrungen, Kritik und uneingeschränktem Vertrauen motivierten, mich in jedweder Hinsicht unterstützt und dadurch nicht unerheblich an der Fertigstellung dieser Doktorarbeit beigetragen haben.
Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe.

Die Dissertation ist bisher keiner anderen Fakultät vorgelegt worden.

Ich erkläre, dass ich bisher kein Promotionsverfahren erfolglos beendet habe und dass eine Aberkennung eines bereits erworbenen Doktorgrades nicht vorliegt.

Robert Sentek
Thesen

Die chronische Pankreatitis (CP) ist eine progrediente Erkrankung, bei der das funktionstüchtige Pankreasgewebe kontinuierlich oder schubweise geschädigt wird. Es resultiert eine Fibrose, die zunehmend das Parenchym ersetzt.

Während bei der akuten Pankreatitis zahlreiche Arbeiten die Rolle von Zytokinen diskutieren, liegen nur wenige Studien vor, welche die Expression dieser Immunmodulatoren im Gewebe der humanen chronischen Pankreatitis beschreiben. Eine fehlgeleitete Immunantwort könnte einen Erklärungsansatz für das Fortschreiten der CP mit Gewebezzerstörung, Gewebeumbau und Fibrosierung liefern.

In der vorliegenden Arbeit wurde die Genexpression von Zytokinen (IL-1, IL-6, IL-4, IL-10, IL-2, IFNγ) und Lymphozytenoberflächenantigenrezeptoren (CD-3, CD-25) in Pankreasgewebeproben von Patienten mit CP nachgewiesen. Die Zytokin-mRNA-Expression wurde in dieser Arbeit mit Hilfe der semiquantitativen, kompetitiven RT-PCR bestimmt.

Die histopathologische Charakterisierung der Pankreasresectate wurde von Herrn Prof. Nizze aus dem Institut für Pathologie vorgenommen. Dabei wurde das Gewebe auf verschiedene Eigenschaften (Lymphozyteninfiltration, Fibrosegrad usw.) untersucht und bewertet.

Um Unterschiede in der mRNA-Expression der untersuchten Zytokine und Lymphozytenrezeptoren zwischen der Gruppe der Patienten mit CP und der Kontrollgruppe nachweisen zu können, wurde ein Vergleich der Messwerte (Mittelwerte) mittels des U-Testes nach Mann/Whitney durchgeführt. Dabei waren
in der Gruppe der Patienten mit CP die mRNA-Expression von IL-6 signifikant, von IL-1, IFNγ und CD-25 sehr signifikant und von CD-3 hoch signifikant gesteigert.

Die IL-1 Expression war in allen 38 untersuchten Geweben (100%) und eine IL-6 Expression bei 26 Patienten mit CP (86,7%) und bei 5 Kontrollen (62,5%) nachweisbar. Die Erhöhung von IL-1 und IL-6 mRNA bei den durchgeführten Untersuchungen ist im Rahmen von unspezifischen Entzündungsreaktionen bei der CP zu werten.

Die signifikant erhöhten IL-1 mRNA Werte könnten ein weiterer Hinweis für die Beteiligung von IL-1 an der Pankreasfibrose sein.

CD-3 und CD-25 mRNA konnte in allen Pankreatitisgeweben nachgewiesen werden, während in 6 Normalgeweben CD-3 (75%) und in 5 Normalgeweben CD-25 (62,5%) nachweisbar war.

Die IL-2 mRNA zeigte bei der CP im Vergleich zum Normalgewebe eine Tendenz zur signifikant gesteigerten Expression und war genauso wie die IFNγ mRNA (positiv bei 20 Patienten, 66,7%) im Normalgewebe nicht detektierbar.

Eine IL-4 Expression konnte nur bei zwei Fällen der CP-Gruppe, nicht aber in der Kontrollgruppe nachgewiesen werden.

Beim Vergleich der IL-10 mRNA Expression zwischen der Patientengruppe konnte kein signifikanter Unterschied festgestellt werden.

Der Nachweis von IL-2 und IFNγ mRNA bei gleichzeitig fehlendem Unterschied für IL-4 und IL-10 weisen auf eine Aktivierung von Th1-Zellen im Gewebe von Patienten mit CP und lassen die Beteiligung spezifischer zellulärer Immunreaktionen am pathogenetischen Prozess der CP vermuten.

Die signifikant erhöhte CD-25 mRNA Expression im Gewebe der Patienten mit CP unterstreicht die Vermutung, dass aktivierte T-Lymphozyten am Prozess der CP beteiligt sind.
Die Patienten, die sowohl IL-2 als auch IFNγ mRNA exprimierten, zeigten eine signifikant gesteigerte CD-3 Expression. Da die Lymphozyten die einzigen Zellen sind, welche IL-2 und IFN-γ produzieren, war der auch mit dieser Methode nachgewiesene Zusammenhang zu erwarten.

IL-10 scheint bei der CP eine untergeordnete Rolle zu spielen, wenn nicht gerade durch das Auftreten akuter Entzündungsschübe seine antiinflammatorische Funktion induziert wird.

Eine IL-4 mRNA Expression war in dieser Arbeit kaum nachweisbar und ist wahrscheinlich Folge der signifikant gesteigerten mRNA Expression von IL-1 und IL-6 bei den Patienten mit CP.

Beim Vergleich der histopathologischen- mit den klinischen Daten zeigte sich bei einer längeren Krankheitsdauer eine sowohl vermehrte Lymphozyteninfiltration als auch eine stärker ausgeprägte Azinusatrophie.

Zusammenfassend lassen sich immunologische Mechanismen bei der CP vermuten. Mit einem besseren Verständnis der Faktoren, die für die Zytokininduktion verantwortlich sind, wäre es möglich, therapeutisch in den Krankheitsprozess einzugreifen. Hier wären die Hemmung der Freisetzung proinflammatorischer Zytokine und die Hemmung der Th1-Zell-Differenzierung z.B. durch IL-4 und IL-10 mögliche Ansatzpunkte.