Untersuchungen zur Bedeutung des PI3K/Akt-Signalweges in der akuten lymphatischen Leukämie

Dissertation

zur

Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität Rostock

vorgelegt von
Catrin Schult, geb. am 16.03.1980 in Wismar
aus Schwaan

Schwaan, 02.02.2012

urn:nbn:de:gbv:28-diss2013-0033-4
Gutachter:

1. **Gutachter:** Prof. Dr. med. Christian Junghanß
 Zentrum für Innere Medizin Klinik III -
 Hämatologie, Onkologie, Palliativmedizin
 Universitätsmedizin Rostock

2. **Gutachter:** Prof. Dr. rer. nat. Reinhard Schröder
 Institut für Biowissenschaften
 Abteilung Genetik
 Universität Rostock

Tag der Einreichung: 03.02.2012

Datum der Verteidigung: 15.10.2012
Inhaltsverzeichnis

Abbildungsverzeichnis.. vi
Tabellenverzeichnis... viii
Abkürzungsverzeichnis.. ix

1. Einleitung.. 1

1.1 Akute lymphatische Leukämien.. 1

1.1.1 Subgruppen der ALL.. 1

1.1.2 Genetische Veränderungen bei der ALL... 2

1.1.3 Therapie und Prognose.. 4

1.2 Der Phosphatidylinositol-3-Kinase (PI3K)/Akt-Signalweg... 5

1.2.1 Aufbau und Funktion der PI3K.. 5

1.2.2 Die Proteinkinase Akt und ihre Substrate.. 7

1.2.3 Fehlregulationen des PI3K/Akt-Signalweges in Tumoren 11

1.3 Inhibitoren des PI3K/Akt-Signalweges.. 14

1.3.1 Ly294002.. 14

1.3.2 RAD001... 14

1.3.3 NVP-BEZ235.. 15

1.3.4 Sorafenib... 16

1.4 Zielstellung.. 17

2. Material und Methoden.. 18

2.1 Zellbiologische Methoden .. 18

2.1.1 Kultivierung humaner Zellden... 18

2.1.2 Einstellung der Zellzahl und Bestimmung der Vitalität...................................... 18

2.1.3 Kryokonservierung und Auftauen von Zellen.. 19

2.1.4 Isolierung von humanen mononukleären Zellen des Blutes............................... 19

2.1.5 Behandlung der ALL-Zellen mit Kinaseinhibitoren und Zytostatika.................... 19

2.1.6 Bestimmung der metabolischen Aktivität mittels WST-1...................................... 20

2.2 Durchflusszytometrie... 21

2.2.1 Analyse von Oberflächenantigenen zur Bestimmung des Blastenanteils............ 21

2.2.2 Nachweis von Apoptose und Nekrose... 21

2.2.3 Zellzyklusanalyse... 22

2.3 Molekularbiologische Methoden.. 23

2.3.1 DNA-Extraktion.. 23

2.3.2 RNA-Extraktion.. 24

2.3.3 Bestimmung der Nukleinsäurekonzentrationen... 24

2.3.4 Reverse Transkription.. 24

2.3.5 Qualitative Polymerasekettenreaktion... 25

2.3.6 Agarosegelelektrophorese... 27

2.3.7 Aufreinigung von PCR-Produkten... 27

2.3.8 DNA-Sequenzierung... 28

2.3.9 Genexpressionsanalyse... 28

2.3.10 Real-time PCR... 31
<table>
<thead>
<tr>
<th>Seite</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1</td>
<td>Herstellung von Proteinkonzentrationsbestimmung nach Bradford</td>
</tr>
<tr>
<td>2.4.2</td>
<td>VEGFA-Nachweis mittels ELISA</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Immunfluoreszenz</td>
</tr>
<tr>
<td>2.5</td>
<td>Statistik</td>
</tr>
<tr>
<td>3.1</td>
<td>Schlüsselproteine des PI3K/Akt-Signalweges in der ALL</td>
</tr>
<tr>
<td>3.2</td>
<td>Untersuchungen zur Wirksamkeit des PI3K-Inhibitors Ly294002</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Einfluss des RAD001 auf die Vitalität</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Einfluss des RAD001 auf Schlüsselproteine des PI3K/Akt-Signalweges</td>
</tr>
<tr>
<td>3.4</td>
<td>Untersuchungen zur Wirksamkeit des BEZ235 in ALL-Zellen</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Einfluss des BEZ235 auf die Vitalität</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Einfluss des BEZ235 auf Apoptose und Nekrose</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Einfluss des BEZ235 auf Schlüsselproteine des PI3K/Akt-Signalweges</td>
</tr>
<tr>
<td>3.5</td>
<td>BEZ235 in der Kombination mit konventionellen Zytostratika</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Kombination des BEZ235 mit AraC</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Kombination des BEZ235 mit Doxorubicin</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Kombination des BEZ235 mit Dexamethason</td>
</tr>
<tr>
<td>3.6</td>
<td>Untersuchungen zur Wirksamkeit des Sorafenib in ALL-Zelllinien</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Einfluss des Sorafenib auf die Vitalität</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Einfluss des Sorafenib auf den Zellzyklus</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Einfluss des Sorafenib auf Apoptose und Nekrose</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Einfluss des Sorafenib auf Schlüsselproteine des PI3K/Akt-Signalweges</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Einfluss des Sorafenib auf die Aktivität des Wnt-Signalweges</td>
</tr>
<tr>
<td>3.7</td>
<td>Sorafenib in der Kombination mit konventionellen Zytostratika</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Kombination des Sorafenib mit AraC</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Kombination des Sorafenib mit Doxorubicin</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Kombination des Sorafenib mit Dexamethason</td>
</tr>
<tr>
<td>3.8</td>
<td>Veränderung der Genexpression nach Sorafenibbehandlung</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Die Erstellung eines Genexpressionsprofils</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Einfluss des Sorafenib auf die VEGFA-mRNA-Expression</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Einfluss des Sorafenib auf die VEGFA-Proteinexpression</td>
</tr>
</tbody>
</table>
Diskussion

4.1 Aktivierung des PI3K/Akt-Signalweges bei der ALL

4.2 Die Bedeutung der PI3K- und mTOR-Inhibition in ALL-Zellen

4.3 Effekte des Multikinaseinhibitors Sorafenib auf ALL-Zellen

4.4 Differentielle Genexpression durch Sorafenib

4.5 Wirkung von Kinaseinhibitoren in der Kombination mit Chemotherapeutika

Zusammenfassung und Ausblick

Literaturverzeichnis

Anhang

7.1 Material

7.1.1 Chemikalien

7.1.2 Kits und Fertiglösungen

7.1.3 Nährmedien und Antibiotika

7.1.4 Enzyme

7.1.5 Antikörper

7.1.6 Geräte und Verbrauchsmaterialien

7.1.7 Puffer und Lösungen

7.1.8 Ergänzende Abbildungen

Selbstständigkeitserklärung

Danksagung
Abbildungsverzeichnis

Abbildung 1: Aufbau der PI3K-Isoformen der Klasse I ... 6
Abbildung 2: Übersicht zur Aktivierung des PI3K/Akt-Signalweges 8
Abbildung 3: Strukturformel des Inhibitors Ly294002 .. 14
Abbildung 4: Strukturformel des Inhibitors RAD001 ... 15
Abbildung 5: Strukturformel des Inhibitors BEZ235 ... 15
Abbildung 6: Strukturformel des Inhibitors Sorafenib ... 16
Abbildung 7: Analyse von apoptotischen und nekrotischen Zellen 22
Abbildung 8: Ermittlung der Zellzyklusphasen mittels Durchflusszytometrie 23
Abbildung 9: Analyse zur PI3K/Akt-Aktivierung in ALL-Zelllinien mittels Western Blot ... 39
Abbildung 10: PTEN-Expression in den ALL- und NHL-Zelllinien 40
Abbildung 11: PCR-Produkte der PTEN-Exone ... 41
Abbildung 12: Sequenzierungsausschnitt von Exon 7 des PTEN-Gens 42
Abbildung 13: Einfluss des Ly294002 auf die Zellproliferation und Apoptose 44
Abbildung 14: Einfluss des Ly294002 auf Schlüsselproteine des PI3K/Akt-Signalweges . 45
Abbildung 15: Proliferation und metabolische Aktivität nach RAD001-Behandlung 46
Abbildung 16: Zellzyklusanalyse nach Inkubation mit RAD001 47
Abbildung 17: Expression zellzyklusspezifischer Proteine nach RAD001-Behandlung ... 48
Abbildung 18: Viabilität der B-und T-ALL-Zelllinien nach RAD001-Behandlung 49
Abbildung 19: Untersuchungen zur mTOR-Inhibition nach RAD001-Behandlung 49
Abbildung 20: Untersuchungen zur PI3K/Akt-Inhibition nach RAD001-Behandlung 50
Abbildung 21: Proliferation und metabolische Aktivität nach BEZ235-Behandlung 51
Abbildung 22: Zellzyklusanalyse nach Inkubation mit BEZ235 52
Abbildung 23: Expression zellzyklusspezifischer Proteine nach BEZ235-Behandlung ... 53
Abbildung 24: Viabilität der B- und T-ALL-Zellen nach BEZ235-Behandlung 54
Abbildung 25: Untersuchungen zur Akt-Inhibition mittels BEZ235 54
Abbildung 26: Untersuchungen zur mTOR-Inhibition nach BEZ235-Behandlung 55
Abbildung 27: Kombinationswirkungsanalyse von BEZ235 und AraC 56
Abbildung 28: Kombinationswirkungsanalyse von BEZ235 und Doxorubicin 58
Abbildung 29: Kombinationswirkungsanalyse von BEZ235 und Dexamethason ... 59
Abbildung 30: Proliferation und metabolische Aktivität nach Sorafenib-Behandlung 60
Abbildung 31: Zellzyklusanalyse nach Inkubation mit Sorafenib 61
Abbildung 32: Expression zellzyklusspezifischer Proteine nach Sorafenib-Behandlung ... 62
Abbildung 33: Viabilität der B- und T-ALL-Zelllinien nach Sorafenib-Behandlung 63
Abbildung 34: Apoptosenachweis mittels Western Blot .. 64
Abbildung 35: Untersuchungen zur Akt-Inhibition nach Sorafenib-Behandlung 65
Abbildung 36: Untersuchungen zur mTOR-Inhibition nach Sorafenib-Behandlung 65
Tabellenverzeichnis
Tabelle 1: Immunologische Subtypen bei der ALL ... 2
Tabelle 2: Zytogenetische Aberrationen bei der adulten ALL ... 3
Tabelle 3: Kulturbedingungen der Zelllinien ... 18
Tabelle 4: Übersicht der verwendeten Substanzen ... 20
Tabelle 5: PTEN-Primerequenzen ... 25
Tabelle 6: Zusammensetzung des PCR-Ansatzes ... 26
Tabelle 7: PCR-Programm der Exone 1-3, 5-9 ... 26
Tabelle 8: PCR-Programm des Exons 4 ... 27
Tabelle 9: Zusammensetzung des qPCR-Ansatzes ... 32
Tabelle 10: Real-time PCR-Programm .. 32
Tabelle 11: Verwendete Primär-Antikörper .. 35
Tabelle 12: Verwendete Sekundär-Antikörper .. 36
Tabelle 13: Patientencharakteristika .. 43
Tabelle 14: Gene mit einer erhöhten Expression nach Sorafenib-Behandlung 74
Tabelle 15: Gene mit einer verminderten Expression nach Sorafenib-Behandlung 75
Tabelle 16: Angaben zu den verwendeten Zelllinien ... 133
Abkürzungsverzeichnis

4EBP-1 Eukaryotic translation initiation factor 4E-binding protein 1
AML Akute myeloische Leukämie
ALL Akute lymphatische Leukämie
AP-1 Activator protein 1
Apaf-1 Apoptotic protease activating factor-1
AraC Cytarabin
BAD BCL-2 antagonist of cell death
BAX BCL-2 associated X protein
BCL-2 B-cell lymphoma 2
BCL-XL B-cell lymphoma-extra large
BEZ NVP-BEZ235
bp Basenpaar
BSA Bovines Serumalbumin
CD Cluster of differentiation
CDK Cyclin-dependent kinase
cDNA Komplementäre DNA
C/EBP cAMP response element binding protein
CK2 Casein kinase 2
CLL Chronische lymphatische Leukämie
CML Chronische myeloische Leukämie
CREB CAAT enhancer binding protein
dATP Desoxy-Adenosintriphosphat
dCTP Desoxy-Cytidintriphosphat
dBB1 DNA damage-binding protein 1
Dexa Dexamethason
dGTP Desoxy-Guanosintriphosphat
DMSO Dimethylsulfoxid
dsRNA Doppelsträngige RNA
DNA Desoxribonukleinsäure
DNA-PK DNA-dependent protein kinase
Doxo Doxorubicin
dTTP Desoxy-Thymidintriphosphat
eIF4E Eukaryotic initiation factor 4E
ERK Extracellular-signal regulated Kinase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGFR</td>
<td>Fibroblast growth factor receptor</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FLT-3</td>
<td>Fms-like tyrosine kinase receptor-3</td>
</tr>
<tr>
<td>FSC</td>
<td>Forward Scatter</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GADD45</td>
<td>Growth arrest and DNA damage inducible gene 45</td>
</tr>
<tr>
<td>Gly</td>
<td>Glycin</td>
</tr>
<tr>
<td>GPCR</td>
<td>G protein-coupled receptors</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>GSK3</td>
<td>Glycogen synthase kinase 3</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunglobulin M</td>
</tr>
<tr>
<td>IRS-1</td>
<td>Insulinrezeptorsubstrat-1</td>
</tr>
<tr>
<td>HSA</td>
<td>Humanes Serumalbumin</td>
</tr>
<tr>
<td>LEF</td>
<td>Lymphoid enhancer-binding factor</td>
</tr>
<tr>
<td>MEK</td>
<td>Mitogen-activated protein kinase kinase</td>
</tr>
<tr>
<td>MLL</td>
<td>Mixed-lineage leukemia</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian target of rapamycin</td>
</tr>
<tr>
<td>NfκB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>nt</td>
<td>Nukleotide</td>
</tr>
<tr>
<td>Raf</td>
<td>Rapidly growing fibrosarcoma</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonukleasen</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>Ser</td>
<td>Serin</td>
</tr>
<tr>
<td>Sora</td>
<td>Sorafenib</td>
</tr>
<tr>
<td>SRC</td>
<td>Sarcoma thyrosine kinase</td>
</tr>
<tr>
<td>SSC</td>
<td>Side Scatter</td>
</tr>
<tr>
<td>ssRNA</td>
<td>Einsträngige RNA</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transduction and activator of transcription</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borate-EDTA-Puffer</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris buffered saline with Triton X</td>
</tr>
<tr>
<td>TCF</td>
<td>T-cell transcription factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethyldiamin</td>
</tr>
<tr>
<td>Thr</td>
<td>Threonin</td>
</tr>
<tr>
<td>Tris</td>
<td>Trishydroxymethylaminomethan</td>
</tr>
<tr>
<td>TSC1</td>
<td>Tuberous sclerosis protein 1</td>
</tr>
<tr>
<td>TSC2</td>
<td>Tuberous sclerosis protein 2</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosin</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PDGFR</td>
<td>Platelet-derived growth factor</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PI</td>
<td>Propidiumiodid</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol 3-kinase</td>
</tr>
<tr>
<td>PIP2</td>
<td>Phosphatidylinositol (4,5) biphosphat</td>
</tr>
<tr>
<td>PIP3</td>
<td>Phosphatidylinositol (3,4,5) triphosphat</td>
</tr>
<tr>
<td>PRAS40</td>
<td>Prolin-rich Akt substrate of 40 kDa</td>
</tr>
<tr>
<td>PTEN</td>
<td>Phosphatase und Tensin Homolog deleted on chromosome 10</td>
</tr>
<tr>
<td>RET</td>
<td>Rearranged during transfection</td>
</tr>
<tr>
<td>RTK</td>
<td>Rezeptortyrosinkinasen</td>
</tr>
<tr>
<td>VEGFA</td>
<td>Vascular endothelial growth factor A</td>
</tr>
<tr>
<td>VEGFR</td>
<td>Vascular endothelial growth factor receptor</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Akute lymphatische Leukämien

Leukämien sind Erkrankungen des blutbildenden Systems, die durch eine monoklonale Proliferation hämatopoetischer Zellen gekennzeichnet sind. Sie werden nach ihrem klinischen Verlauf in eine akute und eine chronische Form unterteilt. Zusätzlich unterscheidet man je nach beteiligtem Zelltyp zwischen myeloischen und lymphatischen Leukämien. Akute Formen der Leukämien stellen lebensbedrohliche Erkrankungen dar, die unbehandelt schon nach wenigen Wochen zum Tode führen. Sie treten in allen Altersstufen auf, wobei im Kindesalter die akute lymphatische Leukämie (ALL) die häufigste Form ist. Erwachsene erkranken hauptsächlich an akuten myeloischen Leukämien (AML) [1].

Die Erkrankung lässt eine zweigipfelige Alterskurve erkennen. Kinder unter 5 Jahren zeigen eine Inzidenz mit etwa 5,3 Fällen pro 100.000 Einwohner. Ältere Kinder und junge Erwachsene haben ein geringeres Risiko an einer ALL zu erkranken. Nach dem 35. Lebensjahr steigt die Inzidenz erneut an, sodass ein zweiter Häufigkeitsgipfel bei Patienten über 80 Jahre beobachtet werden kann. Hier liegt die Inzidenz bei 2,3 Fällen pro 100.000 Einwohnern, wobei Männer häufiger betroffen sind als Frauen. Die Gesamtinzidenz der ALL liegt bei 1,1 Fällen pro 100.000 Einwohner im Jahr [2].

1.1.1 Subgruppen der ALL

Der Reifungsgrad und die Art der lymphatischen Linie wird mit Hilfe der Immunphänotypisierung bestimmt. Hierbei werden charakteristische Oberflächen- und zytoplasmatische Antigene analysiert, die eine Einteilung der ALL in ihre Subtypen erlauben. Die Tabelle 1 gibt einen Überblick über die Einteilung sowie die Häufigkeit der ALL-Subtypen und zeigt die charakteristischen Marker, die bei der Immunphänotypisierung nachweisbar sind. Mit einer Inzidenz von ca. 74 % stellt die B-Linien ALL, die häufigste Form dieser Erkrankung dar. Je nach Differenzierungsgrad wird die B-ALL als pro-, common-, prä- und reifzellige B-ALL klassifiziert. Die T-ALL stellt mit 26 % eine seltenere Form der ALL dar und wird in eine frühe-, thymische- und reife-T-ALL unterteilt [2].
1. Einleitung

Tabelle 1: Immunologische Subtypen bei der ALL (modifiziert nach [2])

<table>
<thead>
<tr>
<th>Subtyp</th>
<th>Inzidenz</th>
<th>Charakteristische Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Vorläufer-ALL</td>
<td>70 %</td>
<td>HLA-DR⁺, TdT⁺, CD19⁺ u./o. CD79a⁺ u./o. CD22⁺</td>
</tr>
<tr>
<td>Pro-B-ALL</td>
<td>11 %</td>
<td>CD10⁻, keine zusätzlichen Marker</td>
</tr>
<tr>
<td>common-ALL (c-ALL)</td>
<td>50 %</td>
<td>CD10⁺</td>
</tr>
<tr>
<td>Prä-B-ALL</td>
<td>9 %</td>
<td>CD10⁺, cyIgM⁺</td>
</tr>
<tr>
<td>Reife-B-ALL</td>
<td>4 %</td>
<td>slgM⁺, CD10⁺</td>
</tr>
<tr>
<td>T-Linien-ALL</td>
<td>26 %</td>
<td>cy oder sCD3⁺, CD7⁺</td>
</tr>
<tr>
<td>Frühe-T-ALL</td>
<td>6 %</td>
<td>CD2⁻, sCD3⁻, CD1a⁻</td>
</tr>
<tr>
<td>Thymische-T-ALL</td>
<td>13 %</td>
<td>CD2⁺, CD5⁺, CD1a⁺, sCD3⁺⁻</td>
</tr>
<tr>
<td>Reife-T-ALL</td>
<td>7 %</td>
<td>CD2⁺, CD5⁺, sCD3⁺, CD1a⁻</td>
</tr>
</tbody>
</table>

s = surface; cy = intrazytoplasmatisch

1.1.2 Genetische Veränderungen bei der ALL

Die Häufigkeiten der genetischen Veränderungen sind bei Kindern und erwachsenen ALL-Patienten unterschiedlich. So werden bei Kleinkindern oft chromosomale Translokationen am MLL (mixed lineage leukemia)-Gen beobachtet. Mittlerweile sind über 50 Translokationen unter der Beteiligung des MLL-Gen beschrieben, die mit einer ALL assoziiert sind. Bei Kindern unter zwölf Monaten mit einer ALL-Erkrankung treten diese Aberrationen in 80 % der Fälle auf und haben eine ungünstige Prognose [6, 7].

Bei Erwachsenen tritt am häufigsten die Translokation t(9;22) (q34;q11) auf, die bei etwa 25-30 % der B-Vorläufer-ALL nachweisbar ist [8]. Durch die reziproke Translokation je eines langen Armes der Chromosomen 9 und 22 entsteht das Fusionsgen bcr-abl. Dieses wird in das Fusionsprotein
1. Einleitung

BCR-ABL translatiert, welches eine höhere Tyrosinkinaseaktivität aufweist als die ursprüngliche Abelson (ABL) Kinase. Das verkürzte Chromosom 22 wird auch als Philadelphia-Chromosom (Ph⁺) bezeichnet [9]. Durch die permanent erhöhte Tyrosinkinaseaktivität werden zahlreiche Signaltransduktionswege moduliert, die das Wachstum und die Differenzierung der hämatopoetischen Zellen beeinflussen. Zu diesen fehlregulierten Signalwegen gehört u.a. die Ras/Raf/MEK/ERK-Signalkaskade, die durch Aktivierung von mitogenen Signalen eine Proliferation der Zellen hervorruft. Ebenfalls werden die Phosphatidylinositol-3-Kinase (PI3K)-Kaskade und die Signal Transducers and Activators of Transcription (STAT)-Proteine durch Phosphorylierung aktiviert, so dass die Proliferation und das Überleben der Zelle gefördert wird [10]. ALL-Patienten mit einer Philadelphia-Translokation haben eine besonders ungünstige Prognose [3].

Neben der t(9;22) werden häufig auch die Translokationen t(4;11), t(8;14), t(10;14) sowie t(1;9) beobachtet [8]. Zytogenetische Aberrationen am Chromosom 8 werden oft im Bereich des MYC-Gens diagnostiziert und führen zur Fehlregulation des Transkriptionsfaktors c-Myc. Diese Translokationen werden bei Burkitt-Lymphom-Patienten nachgewiesen und sind mit einer ungünstigen Prognose assoziiert. Diese Erkrankung zählt zu den B-Zell-Non-Hodgkin-Lymphomen und wird bei leukämischer Ausschwemmung der reifzelligen B-ALL zugeordnet [11].

Bei der T-ALL werden vielfach Aberrationen mit dem Genlocus des T-Zellrezeptors (TCR) 14q11 diagnostiziert. Häufige Translokationen, die insbesondere bei der adulten ALL vorkommen, sind in der Tabelle 2 zusammengefasst.

Tabelle 2: Zytogenetische Aberrationen bei der adulten ALL (modifiziert nach [8])

<table>
<thead>
<tr>
<th>ALL-Subtyp</th>
<th>Translokation</th>
<th>Fusionsgen</th>
<th>Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prä-B-ALL, c-ALL</td>
<td>t(9;22)(q34;q11)</td>
<td>BCR-ABL</td>
<td>25-30%</td>
</tr>
<tr>
<td>Pro-B-ALL</td>
<td>t(4;11)(q21;q23)</td>
<td>MLL-AF4</td>
<td>6%</td>
</tr>
<tr>
<td>Reife B-ALL</td>
<td>t(8;14)(q24;q32)</td>
<td>IgH-MYC</td>
<td>5%</td>
</tr>
<tr>
<td>Prä-B-ALL</td>
<td>t(1;19)(q23;p13)</td>
<td>E2A-PBX1</td>
<td>3%</td>
</tr>
<tr>
<td>T-Linien ALL</td>
<td>t(10;14)(q24,q11)</td>
<td>HOX11-TCR</td>
<td>3%</td>
</tr>
</tbody>
</table>

ALL-Patienten mit einem unauffälligen Karyotyp können ebenfalls ein verändertes Genexpressionsprofil aufweisen. So wurden sowohl bei T-ALL-Patienten als auch bei Patienten mit einer
1. Einleitung

B-Vorläufer-ALL hohe Brain and acute leukemia cytoplasmatic (BAALC)-Genexpressionswerte nachgewiesen. Diese Patienten sind häufig resistent gegenüber Chemotherapeutika und zeigen eine deutlich reduzierte Überlebenswahrscheinlichkeit im Vergleich zu Patienten mit niedrigeren BAALC-Genexpressionslevel [16, 17].

Mutationen oder Deletionen der IKAROS-Familie im Zinkfinger-1-Gen (IKZF1) können ebenfalls eine Ursache für die Blockierung der Lymphozytenentwicklung darstellen. Die Deletionen des IKZF1-Gens werden hauptsächlich bei Ph⁺-ALL-Patienten diagnostiziert und sind mit einer schlechten Prognose assoziiert.

1.1.3 Therapie und Prognose

Das Langzeitüberleben der ALL-Patienten ist noch unbefriedigend. Eine Einteilung der Patienten in Risikogruppen und eine Zuordnung in Studien mit spezifischen Behandlungsprotokollen ermöglicht es, die Therapie der ALL zu optimieren. In aktuellen Studien werden insbesondere auch neue Therapieformen untersucht, die eine zielgerichtete Behandlung mit einschließen.

So wurde ein wesentlicher Fortschritt in der Behandlung BCR-ABL positiver ALL-Patienten mit dem Tyrosinkinaseinhibitor Imatinib und seinen Derivaten Dasatinib und Nilotinib erzielt. Diese
Hemmstoffe blockieren die Aktivität der aberranten Tyrosinkinase BCR-ABL und verhindern dadurch die Übertragung eines Phosphatrestes auf nachgeschaltete Substrate [20].

Die Identifikation neuer Schlüsselmoleküle und die Entwicklung spezifischer Hemmstoffe sind wichtige Elemente, um die Therapie der ALL weiter zu optimieren. In verschiedenen Studien wurden bereits zahlreiche Mutationen von Onkogenen, Tumorsuppressorgen und Apoptoseregulatoren identifiziert, die verschiedene Signalwege in der Zelle verändern und die Leukämogenese beeinflussen [21-25]. Einige Studien konnten zeigen, dass der PI3K/Akt-Signalweg in akuten Leukämiern aberrant aktiviert ist und das Überleben der malignen Zellen fördert [26-29].

1.2 Der Phosphatidylinositol-3-Kinase (PI3K)/Akt-Signalweg

Tumorerkrankungen sind oft durch fehlregulierte Signaltransduktionswege gekennzeichnet, die das Wachstum von Tumorzellen begünstigen. Eine Schlüsselrolle in der Regulation verschiedener physiologischer Prozesse in der Zelle nimmt der PI3K/Akt-Signalweg ein. Die Aktivierung des Signalweges führt zur Proliferation, steigert das Überleben der Zelle und ist an der Differenzierung, Migration und Zelladhäsion maßgeblich beteiligt.

1.2.1 Aufbau und Funktion der PI3K

1. Einleitung

Abbildung 1: Aufbau der PI3K-Isoformen der Klasse I (modifiziert nach [31])

Die Aktivierung der PI3K IA erfolgt über Rezeptortyrosinkinasen, GPCR oder Onkogene. Nach Aktivierung einer Rezeptortyrosinkinase wird die PI3K an die Zellmembran rekrutiert. Dabei
1. Einleitung

folgt die Bindung der PI3K an die phosphorylierte zytoplasmatische Domäne des Rezeptors über die SH2-Domäne der p85-Untereinheit oder durch ein Adaptorprotein (z.B. Insulinrezeptor substrat-1, IRS-1). Die PI3K kann auch indirekt über die p110-Untereinheit durch das Onkogen Ras aktiviert werden [31].

Die Lipidkinasen der Klasse IA stellen die wichtigsten Enzyme dieser Familie dar und generieren Phosphatidylinositol-3,4,5-Triphosphat (PIP3) als sekundären Botenstoff. Dieser Botenstoff dient als Andockstelle für Proteine mit PH2 (Pleckstrin-Homologie)-Domänen und rekrutiert die Proteine Akt und PDK1 (Phosphatidylinositol dependent kinase 1) an die Zellmembran. Beide Proteine haben eine PH2-Domäne und werden durch die Generierung von PIP3 in räumliche Nähe zueinander gebracht [31].

1.2.2 Die Proteinkinase Akt und ihre Substrate

Die Serin-Threoninkinase Akt ist das humane Homolog zum viralen Onkogen v-akt und wird aufgrund der Ähnlichkeit zur Proteinkinase A (PKA) und der Proteinkinase C (PKC) auch als Proteinkinase B (PKB) bezeichnet [39]. In Säugetieren wurden drei Akt-Gene (Akt-1, Akt-2 und Akt-3) identifiziert, wobei die Expression der verschiedenen Proteine in Geweben variieren kann. Akt-1 und Akt-2 wurden in nahezu allen Geweben nachgewiesen. Die Expression von Akt-3 ist dagegen auf einige Gewebearten begrenzt. Akt-3 wird insbesondere im Hirn, in der Lunge, im Herz und in der Niere stark exprimiert [40].

Akt ist ein wichtiges Effektorprotein in dieser Signaltransduktion und wird an der Zellmembran abhängig von der Isoform durch die PDK1 an der Aminosäure Threonin 308 (Akt-1), 309 (Akt-2) bzw. 305 (Akt-3) phosphoryliert. Zur vollständigen Aktivierung ist zusätzlich die Phosphorylierung an der Aminosäure Serin 473 (Akt-1), 474 (Akt-2) bzw. 472 (Akt-3) notwendig. Diese erfolgt durch die PDK2, eine Gruppe von verschiedenen Kinasen, die Akt phosphorylieren können. Zu ihnen gehören die Integrin linked kinase (ILK), Mammalian target-of-rapamycin complex 2 (mTORC2), Proteinkinase Cβ2, DNA-dependent protein kinase (DNA-PK) und ataxia telangiectasia mutated (ATM). Die Phosphorylierung an der Position Serin kann auch über eine Autophosphorylierung von Akt erfolgen [41].

Abbildung 2: Übersicht zur Aktivierung des PI3K/Akt-Signalweges

Wachstumsfaktoren aktivieren Rezeptoren mit Tyrosinkinaseaktivität und führen zur Auto-phosphorylierung von Tyrosinresten. Die PI3K bindet über ihre SH2-Domänen der regulatorischen Untereinheit an phosphorylierte Tyrosinreste der Rezeptoren oder Apdapterproteine und katalysiert die Reaktion von PIP2 zu PIP3. Der generierte Botenstoff PIP3 dient als Andockstelle für die Kinasen PDK1 und Akt. Dadurch werden die beiden Proteine in räumliche Nähe zueinander gebracht, so dass Akt anschließend am Threonin 308 phosphoryliert werden kann. Zur vollständigen Aktivierung der Kinaseaktivität wird Akt zusätzlich am Serin 473 durch den mTORC2-Komplex (bestehend aus mTOR, Rictor, mLST8, PRAS40) phosphoryliert. Daraufhin überträgt die aktivierte Kinase Phosphatreste auf nachgeschaltete Effektorproteine, die in ihrer Wirkung entweder aktiviert oder gehemmt werden. Die Phosphatasen PTEN und SHIP stellen Negativregulatoren des Signalweges dar, indem sie PIP3 de-phosphorylieren und eine Aktivierung von Akt verhindern.
Einleitung

Forkhead-Transkriptionsfaktoren

Die Forkhead-Transkriptionsfaktoren gehören zur Familie der Forkhead-Proteine und sind durch ein spezifisches DNA-Bindemotiv gekennzeichnet, das als Forkhead-Box bezeichnet wird [43]. Proteine mit der Forkhead-Box werden in allen Eukaryoten ubiquitär exprimiert und bestehen aus mindestens 39 Mitgliedern, die in 19 Subgruppen unterteilt werden [44]. Forkhead-Transkriptionsfaktoren mit der Forkheadbox O (FoxO) sind direkte Substrate von Akt und weisen drei Phosphorylierungsstellen auf. Beim Menschen wurden bisher vier FoxO-Proteine (FoxO1, FoxO3A, FoxO4 und FoxO6) identifiziert. Während FoxO3A stark im Hirn, Herz, Milz und in der Niere exprimiert wird, scheint die Expression von FoxO1, FoxO4 und FoxO6 gewebespezifisch zu sein. So wurde eine hohe Expression von FoxO1 im Fettgewebe beobachtet, FoxO4 wird dagegen stark im Skelettmuskel exprimiert und FoxO6 ist hauptsächlich im adulten Hirn nachweisbar [45]. Eine Phosphorylierung von Akt führt zum Export der Transkriptionsfaktoren aus dem Zellkern ins Zytoplasma durch die Anbindung der FoxO-Proteine an das 14-3-3-Chaperon und Exportin α/CRM1 [46]. Im Zytoplasma sind die FoxO-Transkriptionsfaktoren nicht stabil und werden über den Ubiquitin-Proteasom-Weg abgebaut [47].

FoxO-Transkriptionsfaktoren regulieren die Expression zahlreicher Gene, die am Zellzyklus, an der Apoptose und bei DNA-Reparaturprozessen beteiligt sind. Zu ihren Zielgenen gehören die proapoptotischen Gene Bim, Noxo, Fas-Ligand, Trail und Bcl-6 [48]. Eine Überexpression der FoxO-Transkriptionsfaktoren führt zur Induktion des CDK-Inhibitors p27 und verhindert den Übergang von der G1- in die S-Phase des Zellzyklus [49]. Ebenso können FoxO-Proteine als Repressoren fungieren und die Expression von Zellzyklus-Aktivatoren regulieren. So konnte gezeigt werden, dass sie die Transkription von Cyclin D1 und Cyclin D2 reprimieren und dadurch einen G0/G1-Zellzyklusarrest auslösen [50]. Im Fall einer DNA-Schädigung fördern sie die Langlebigkeit der Zelle und induzieren die Transkription der DNA-Reparaturgene GADD45 (Growth arrest- and DNA damage-inducible protein 45) und DDB1 (DNA damage-binding protein 1). Des Weiteren schützen sie die Zelle vor reaktiven Sauerstoffspezies, indem sie die Transkription der Gene für die MnsOD (Mangansuperoxid-Dismutase) und der Katalase nach oxidativem Stress einleiten [48]. Außerdem wird ihnen eine Funktion bei der Aufrechterhaltung der Selbsterneuerung von hämatopoetischen Stammzellen zugeschrieben [51, 52].

Bei einigen Tumorerkrankungen wurde beobachtet, dass genetische Veränderungen oder posttranslationale Modifikationen zum Verlust der FoxO-Funktion führen. So konnten bei AML- und Rhabdomyosarkom-Patienten chromosomale Translokationen zwischen den FoxO1, FoxO3A und FoxO4 und der MLL-bzw. dem PAX3/7-Genen nachgewiesen werden, die einen Bruch in der DNA-Bindedomäne der FoxO-Transkriptionsfaktoren erzeugten [53-55].
Die Kinase mTOR (mammalian target of rapamycin) ist ebenfalls ein bedeutendes Substrat von Akt und spielt bei der Regulation des Zellwachstums und der Proliferation eine entscheidende Rolle. Die Aktivierung von Akt führt zunächst zur Phosphorylierung des tuberous sclerosis protein 1/2 (TSC1/TSC2)-Komplexes. Dadurch wird das GTPase-aktive Protein TSC2 in seiner Funktion gehemmt und die GTP-Hydrolyse des Proteins Rheb verhindert. Somit liegt Rheb in seiner GTP-gebundenen Form vor und kann an die Kinasedomäne von mTOR binden und diese aktivieren [56]. TSC2 kann ebenfalls durch die Kinase ERK1/2 (extracellular signal-regulated kinase) in Abhängigkeit von Wachstumsfaktoren phosphoryliert werden und mTOR aktivieren. Somit stellt der TSC1/TSC2-Komplex ein Schnittpunkt zum Ras/Raf/Mek/ERK Signalweg dar [27].

Die Proteinkinase mTOR liegt in zwei Komplexen (mTORC1 und mTORC2) vor. Beide Komplexe setzen sich neben mTOR aus den Proteinen PRAS40 (Prolin-rich Akt substrate of 40 kDa) und mLST8 zusammen. Im mTORC1-Komplex ist das Protein Raptor mit mTOR verbunden und ist gegenüber dem Inhibitor Rapamycin sensitiv. Der mTORC2-Komplex ist zusätzlich aus den Proteinen Rictor und Sim1 aufgebaut und wird nicht durch Rapamycin gehemmt [57].

Zwei gut charakterisierte Effektoren, die vom mTORC1-Komplex reguliert werden und eine entscheidende Rolle bei der Proteinsynthese spielen, sind die p70-S6-Kinase (p70-S6K) und das an den eukaryotischen Initiationsfaktor 4E-bindende-Protein-1 (4EBP-1). Die aktivierte p70-S6-Kinase phosphoryliert das ribosomale Protein S6 und induziert die Translation von mRNA-Molekülen, die für ribosomale Proteine kodieren. Phosphoryliertes 4EBP-1 dissoziiert vom eukaryotischen Initiationsfaktor 4E (eIF4E) ab und hebt somit die Hemmung auf den Translationsinitiationskomplex auf. Dieser Komplex fördert die Anbindung der Ribosomen an die mRNA und leitet die Proteinsynthese ein [58].

Der aktivierte mTORC2-Komplex phosphoryliert Akt an der Aminosäure Ser473 und unterstützt zusätzlich die Phosphorylierung an der Aminosäure Thr308. Dabei wird die Stabilität der Kinase aufrechterhalten und das Überleben der Zelle gefördert.

Die Glycogensynthetase Kinase 3

BAD
Ein weiteres nachgeschaltetes Substrat von Akt ist das pro-apoptotische Protein BAD (BCL-2 antagonist of cell death). Dies gehört zur BCL-2-Proteinfamilie und wird durch Phosphorylierung am Serin (Position 136) inhibiert [73]. Phosphoryliertes BAD führt zur Anbindung des 14-3-3-Proteins und begünstigt das Überleben der Zelle [74]. Im aktiven Zustand bildet BAD einen Proteinkomplex, bestehend aus den anti-apoptotischen Proteinen BCL-2 und BCL-XL. Dadurch liegt das pro-apoptotische Protein BAX (Bcl-2 associated X protein) ungebunden im Cytoplasma vor und bewirkt die Ausschüttung von Cytochrom c aus den Mitochondrien. Das Cytochrom c verbindet sich mit dem Apoptotic protease activating factor-1 (Apaf-1) und bildet das Apoptosom. Dieser Proteinkomplex leitet die autolytische Spaltung der Caspase 9 ein und aktiviert die Caspase-Kaskade [73].

1.2.3 Fehlregulationen des PI3K/Akt-Signalweges in Tumoren
Die Aktivität des PI3K/Akt-Signalweges kann durch verschiedene Faktoren reguliert werden. Hierbei spielen Phosphatasen eine entscheidende Rolle, die zu einer Dephosphorylierung von Proteinen führen und dadurch die Aktivität der Signalmoleküle beeinflussen.

Eine bedeutende Rolle in der PI3K/Akt-Signalkaskade spielt das Tumorsuppressorgen PTEN (Phosphatase und Tensin Homolog deleted on chromosome 10). Das Gen ist auf dem langen Arm des Chromosoms 10 im Bereich q23.31 lokalisiert [75]. PTEN ist ein Protein, das sowohl im Zytoplasma als auch im Zellkern verschiedene Funktionen ausüben kann. Membrangebundenes PTEN fungiert als Phosphatase. Das Enzym entfernt das 3-Phosphat am Phosphatidylinositoltriphosphat und bildet das Phosphatidylinositolbisphosphat [76]. Auf diese Weise wird die Aktivität von Akt kontrolliert und die Zellproliferation und Apoptose reguliert. Zusätzlich kann die Phosphatase weitere Signalmoleküle dephosphorylieren. Zu ihren Substraten gehören Proteine, die an Serin-, Threonin- oder Tyrosinresten phosphoryliert sind. Neben PIP3 wurde auch der eukaryotische Translationsinitiationsfaktor 2 sowie die regulatorische p85-Untereinheit der PI3K als ihr Substrat identifiziert [77, 78]. Im Zellkern erhöht das Tumorsuppressorgen die
Chromosomenstabilität und verhindert DNA-Doppelstrangbrüche. Zusätzlich ist PTEN an der Regulation verschiedener Transkriptionsfaktoren beteiligt [79].

Neben Keimzellmutationen können auch somatische Mutationen den Inaktivierungsmechanismus von PTEN begünstigen. Insbesondere spielt hierbei die Haploinsuffizienz von PTEN eine Rolle. Dabei führt der Verlust eines PTEN-Allels zur Unterdrückung des zweiten Allels und induziert den Funktionsverlust des Proteins [82].

Die Tumorsuppressorfunktion von PTEN wird hauptsächlich durch zwei Mutationen (C124S und G129E) in der Phosphatasedomäne unterdrückt. Diese genetischen Veränderungen führen zur Reduktion der Lipid- und Proteinphosphataseaktivität. Insgesamt wurden ca. 55 % der PTEN-Mutationen in der Phosphatasedomäne und ca. 40 % der PTEN-Mutationen in der C2-Domäne des Proteins nachgewiesen [82].

Tumore und Zelllinien mit einem funktionslosem PTEN sind durch eine aberrante Akt-aktivierung gekennzeichnet. In heterozygoten Mäusen mit nur einem funktionierenden PTEN-Allel sowie ein gewebespezifischer homozygoter Verlust von PTEN weisen häufig maligne Neoplasien auf. So konnte gezeigt werden, dass PTEN eine essentielle Rolle bei der Aufrechterhaltung des hämatopoetischen Stammzellpools spielt und die Entwicklung von Leukämien verhindert [83, 84].

Bei T-ALL Patienten ist eine PTEN-Inaktivierung eine häufiges Ereignis [29]. Dabei ist eine verminderte PTEN-Expression oft mit einer Phosphorylierung des Proteins verbunden [85]. Mutationen im Gen des Transmembranrezeptores Notch1 führen ebenfalls zur verminderten PTEN-Expression und sind in mindestens 50 % der T-ALL-Patienten nachweisbar [86, 87].

Ein weiterer Negativregulator des PI3K/Akt-Signalweges ist die Phosphatase SHIP (SH2 domain containing inositol 5-phosphatase). Dieses Enzym dephosphoryliert PIP3 am 5-Phosphat des Inositolaringes und bildet das Phosphatidylinositolsibphosphat. SHIP-defizierte Mäuse zeigen eine erhöhte Akt-aktivität und können myeloproliferative Syndrome entwickeln [88]. Obwohl PTEN und SHIP die PIP3-Level in der Zelle reduzieren, scheint das Tumorsuppressorgen PTEN eine übergeordnete Rolle in diesem Signalweg zu spielen.

Im Effektorprotein Akt wurde bisher nur von einer aktivierenden Mutation (E17K) berichtet. Sie wurde in der PH-Domäne des Proteins identifiziert und führt zu einer Wachstumsfaktor-unabhängigen Membrantranslokation [93]. Bislang wurde die Mutation nur in einigen Tumorentitäten nachgewiesen und scheint eine untergeordnete Bedeutung in der Tumorentstehung zu haben [94-96].
1. Einleitung

1.3 Inhibitoren des PI3K/Akt-Signalweges

Aufgrund seiner Dysregulation bei verschiedenen Tumoren scheint die Blockade des PI3K/Akt-Signalweges ein möglicher Therapieansatz zu sein. Mittlerweile befinden sich mehr als 100 Substanzen in der präklinischen Entwicklung, die den PI3K/Akt-Signalweg hemmen [80]. Eine zunehmende Anzahl dieser Inhibitoren wird inzwischen in klinischen Studien untersucht. Hierbei handelt es sich insbesondere um Substanzen, die gezielt die Kinasen PI3K, Akt und mTOR blockieren [97]. Die Wirkungsweisen dieser neuen Inhibitoren sind vielfältig. Einige dieser Hemmstoffe wurden so entwickelt, dass gleichzeitig auch mehrere Effektorkinasen blockiert werden. Im Folgenden werden die vier Inhibitoren vorgestellt, die in der vorliegenden Arbeit untersucht wurden.

1.3.1 Ly294002

Ly294002 ist ein Quercitin-Analog (Abbildung 3) und gehört zu den PI3K-Inhibitoren der ersten Generation. Die Substanz hemmt reversibel alle Isoformen der PI3K-Familie durch Blockierung der ATP-Bindungstasche [98-100]. Inzwischen zeigten einige Studien, dass Ly294002 auch weitere Kinasen inhibiert, darunter die DNA-dependent Proteine kinase (DNA-PK), casein kinase 2 (CK2), Pim-1 und mTOR [101-103]. Aufgrund seiner kurzen Halbwertszeit (2 h) und hohen Toxizität in präklinischen Studien wurde diese Substanz nicht zur Therapie zugelassen und findet hauptsächlich Anwendung in der experimentellen Forschung [104].

Abbildung 3: Strukturformel des Inhibitors Ly294002

1.3.2 RAD001

Der Inhibitor RAD001 (Everolimus, Afinitor®) gehört zu den Rapamycin-Derivaten und wurde von Novartis entwickelt. Die Strukturformel der Substanz ist in der Abbildung 4 dargestellt. RAD001 bindet mit hoher Affinität an das FKS06-Binding Protein-12 (FKB-12) und interagiert zusammen als Komplex mit der FRB-Domäne des mTOR-Proteins. Dadurch wird Raptor von mTOR abgelöst und die Aktivität des mTORC1-Komplexes unterdrückt [105]. Die Hemmung der mTOR-Kinase führt zu
1. Einleitung

1.3.3 NVP-BEZ235

NVP-BEZ235 (BEZ235) gehört zur dritten Generation der PI3K-Inhibitoren und wurde ebenfalls von Novartis entwickelt. BEZ235 ist ein Imidazoquinolin-Derivat (Abbildung 5) und hemmt die Aktivität der katalytischen PI3K-Untereinheiten (p110α, β, γ und δ) und mTOR durch Blockierung der ATP-Bindungstasche [110]. In präklinischen Untersuchungen zeigte die Substanz antiproliferative Effekte und reduzierte die Tumorgröße in Xenograft-Mäusen [111-114]. Inzwischen wird BEZ235 in einigen klinischen Studien (Phase I/II) bei Patienten mit soliden Tumoren untersucht.

Abbildung 4: Strukturformel des Inhibitors RAD001

Abbildung 5: Strukturformel des Inhibitors BEZ235
1.3.4 Sorafenib

![Abbildung 6: Strukturformel des Inhibitors Sorafenib](image-url)
1.4 Zielstellung

Durch anschließende funktionelle Untersuchungen mit Hilfe verschiedener Kinaseinhibitoren (Ly294002, RAD001, BEZ235 und Sorafenib) sollte die biologische Bedeutung des PI3K/Akt-Signalweges bei der ALL analysiert werden. Ziel war es, die Aktivität der Schlüsselmoleküle PI3K, Akt und mTOR zu blockieren und deren Einfluss auf das Wachstumsverhalten der malignen Zellen zu untersuchen. Außerdem sollte nach der Behandlung mit dem Multikinaseinhibitor Sorafenib ein Genexpressionsprofil erstellt werden, um Gene zu identifizieren, die durch die Kinaseinhibition in ihrer Transkription beeinflusst werden. Diese Gene könnten dann mögliche Angriffspunkte für gezielte Therapien darstellen.

2. Material und Methoden

2.1 Zellbiologische Methoden

2.1.1 Kultivierung humaner Zelllinien

Tabelle 3: Kulturbedingungen der Zelllinien

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Typ</th>
<th>Zellkulturmedium</th>
<th>Verdopplungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM</td>
<td>Vorläufer-B-ALL</td>
<td>90 % IMDM + 10 % FKS</td>
<td>30 h</td>
</tr>
<tr>
<td>REH</td>
<td>Vorläufer-B-ALL</td>
<td>90 % RPMI + 10 % FKS</td>
<td>50-70 h</td>
</tr>
<tr>
<td>RS4;11</td>
<td>Vorläufer-B-ALL</td>
<td>90% MEMα + 10 % FKS</td>
<td>50 h</td>
</tr>
<tr>
<td>Jurkat</td>
<td>T-ALL</td>
<td>90 % RPMI + 10 % FKS</td>
<td>25-30 h</td>
</tr>
<tr>
<td>MOLT4</td>
<td>T-ALL</td>
<td>80 % RPMI + 20 % FKS</td>
<td>40 h</td>
</tr>
<tr>
<td>DOGKIT</td>
<td>Burkitt-Lymphom</td>
<td>90 % RPMI + 10 % FKS</td>
<td>40-50 h</td>
</tr>
<tr>
<td>DOGUM</td>
<td>B-Zell-NHL</td>
<td>80 % RPMI + 20 % FKS</td>
<td>50-100 h</td>
</tr>
<tr>
<td>GUMBUS</td>
<td>Burkitt-Lymphom</td>
<td>90 % RPMI + 10 % FKS</td>
<td>48 h</td>
</tr>
</tbody>
</table>

2.1.2 Einstellung der Zellzahl und Bestimmung der Vitalität

Mittels Neubauerzählkammer und Trypanblau wurde die Anzahl und die Vitalität der Zellen im Lichtmikroskop bestimmt. Trypanblau ist ein anionischer Diazofarbstoff der nur von toten Zellen aufgenommen wird. Das Zytoplasma und der Zellkern toter Zellen sind blau gefärbt, während lebende Zellen im Lichtmikroskop leuchtend hell erscheinen. Für die Vitalitätsbestimmung wurden die Zellen entsprechend mit Trypanblau (0,04 % in PBS) verdünnt und 10 µl Zellsuspension in die Neubauerzählkammer pipettiert. Anschließend wurden die Zellen am Lichtmikroskop gezählt und die Zellzahl unter Berücksichtigung des Verdünnungsfaktors berechnet.
2. Material und Methoden

2.1.3 Kryokonservierung und Auftauen von Zellen

Von jeder Zelllinie wurden Kryokonserven im flüssigen Stickstoff angelegt. Dazu wurden Aliquots à 1 ml mit jeweils 1 x 10^6 Zellen in einem PBS und 18 % (v/v) DMSO/HSA-Gemisch angesetzt und anschließend im Kryoröhrchen bei -80 °C in einer mit Isopropanol befüllten Einfrierbox schonend 1 °C/min langsam eingefroren. Nach etwa 24 h erfolgte eine Umlagerung der Zellen in den Stickstofftank.

Zum Auftauen wurden die eingefrorenen Zellen im Kryroröhrchen im Wasserbad bei 37 °C langsam erwärmt. Um das zelltoxische Einfriermedium DMSO vollständig zu entfernen, wurde die Zellsuspension zweimal mit 10-20 ml angewärmtem Medium bei 180 g für 5 min bei 20 °C gewaschen. Im Anschluss erfolgte die Beurteilung der Vitalität durch die Zellzahlbestimmung mit Trypanblau. Die Zellen wurden im entsprechendem Medium aufgenommen und eine Zellkultur in 25 cm²-Zellkulturflaschen angesetzt.

2.1.4 Isolierung von humanen mononukleären Zellen des Blutes

Die Verwendung von de novo-Material erfolgte nach schriftlichen Einverständnis der Patienten bzw. aus Überschussmaterial von Routineuntersuchungen. Zur Gewinnung mononukleärer Zellen aus peripherem Blut oder Knochenmark von Patienten mit akuter Leukämie wurde eine Dichtegradientenzentrifugation durchgeführt. Dazu wurde das Blut bzw. das Knochenmark mit einem Volumen kaltem PBS gemischt und vorsichtig auf ein Volumen Biocoll überschichtet. Der Blut-Biocoll Ansatz wurde anschließend bei 1.200 g für 12 min bei 4 °C ungebremst zentrifugiert. Mit einer Pasteurpipette wurden die mononukleären Zellen vorsichtig abpipettiert und zweimal in PBS bei 180 g für 10 min bei 4 °C gewaschen. Um vorhandene Erythrozyten zu entfernen, wurde eine Erythrozytenlyse durchgeführt. Dazu wurde das Zellpellet mit 0,25 M NH₄Cl gelöst und für 10 min im Wasserbad bei 37 °C inkubiert. Die Lösung wurde anschließend bei 200 g für 12 min bei 4 °C zentrifugiert und zusätzlich zweimal in 10-20 ml PBS gewaschen. Im Anschluss wurden aus etwa 5 x 10⁵ Zellen der Anteil der Blastenpopulation mittels Durchflusszytometrie (siehe Abschnitt 2.2.1) bestimmt. Mindestens 5 x 10⁶ Zellen wurden in 50-100 µl RIPA -Puffer lysiert. Das Lysat wurde bis zur Proteinbestimmung (siehe Abschnitt 2.4.2) bei -20 °C gelagert.

2.1.5 Behandlung der ALL-Zellen mit Kinaseinhibitoren und Zytostatika

Für die Versuche wurden die B-ALL-Zelllinien (SEM und RS4;11) und T-ALL-Zelllinien (Jurkat und MOLT4) in ihrem Komplettmedium mit einer Zellzahl von 5 x 10^3 Zellen und einem Volumen von 1,5 ml pro Ansatz in eine 24-Loch-Zellkulturplatte eingesät. Dabei wurden die Inhibitoren bzw. Zytostatika in verschiedenen Konzentration zu den Zellen ins Medium hinzugefügt. Die Tabelle 4...
Material und Methoden
gibt einen Überblick über die verwendeten Substanzen sowie die angewendeten Konzentrationen.

Tabelle 4: Übersicht der verwendeten Substanzen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Wirkstoffklasse/-mechanismus</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AraC</td>
<td>Zytostatikum/Antimetabolit</td>
<td>0,05-2,5 µM</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>Zytostatikum/Interkalation</td>
<td>25 nM</td>
</tr>
<tr>
<td>Dexamethason</td>
<td>Glucocorticoid</td>
<td>0,1-10 µM</td>
</tr>
<tr>
<td>Ly294002</td>
<td>PI3K-Inhibitor</td>
<td>5-25 µM</td>
</tr>
<tr>
<td>RAD001</td>
<td>mTOR-Inhibitor</td>
<td>1-100 nM</td>
</tr>
<tr>
<td>BEZ235</td>
<td>PI3K- und mTOR-Inhibitor</td>
<td>1-100 nM</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>Multikinaseinhibitor (u.a. VEGFR, FLT3, c-Raf, c-Kit)</td>
<td>0,73-7,3 µM</td>
</tr>
</tbody>
</table>

2.1.6 Bestimmung der metabolischen Aktivität mittels WST-1

2.2 Durchflusszytometrie

2.2.1 Analyse von Oberflächenantigenen zur Bestimmung des Blastenanteils

2.2.2 Nachweis von Apoptose und Nekrose

Für die Analyse wurden die Zellen einmal in 2 ml PBS gewaschen und im Anschluss in 100 µl Bindungspuffer (1x) aufgenommen. Dieser Puffer enthält eine ausreichende Konzentration von Kalziumionen, so dass die Bindung von Annexin-V an Phosphatidylserine stabilisiert wird. Pro Ansatz wurde die Zellsuspension mit 5 µl Annexin-V-FITC für 15 min im Dunkeln bei Raumtemperatur inkubiert. Anschließend wurden 400 µl Bindungspuffer (1x) zur Zellsuspension pipettiert. Unmittelbar vor der Messung wurden die Zellen mit 0,6 µg/ml PI gefärbt. Die Analyse der Zellen erfolgte anhand eines Dot-Plots und ist in der Abbildung 7 dargestellt.

![Dot-Plot](image)

Abbildung 7: Analyse von apoptotischen und nekrotischen Zellen

2.2.3 Zellzyklusanalyse

Zur Zellzyklusanalyse wurden mindestens 1 x 10⁶ Zellen abzentrifugiert und zweimal in PBS gewaschen. Das Pellet wurde vorsichtig in eiskaltem 70 %-igem Ethanol gelöst und bei -20 °C eingefroren. Die ethanolfixierten Zellen wurden frühstens nach 24 h in kaltem PBS gewaschen und
mit 500 µl RNase (1 mg/ml) für 30 min bei 37 °C inkubiert. Anschließend wurden die Zellen zweimal in je 2 ml PBS gewaschen und das Zellpellet in 500 µl PI (50 µg/ml) gelöst. Danach wurde die PI-Fluoreszenzintensität am Durchflusszytometer gemessen.

2.3 Molekularbiologische Methoden

2.3.1 DNA-Extraktion

RNA-Extraktion

Bestimmung der Nukleinsäurekonzentrationen

Reverse Transkription

Für die cDNA-Synthese wurde das Reverse Transcription System® Kit der Firma Invitrogen verwendet. Mit Hilfe der reversen Transkriptase wird das RNA-Template in komplementäre DNA (cDNA) transkribiert und ein RNA-DNA-Hybridmolekül gebildet. Durch die zusätzliche RNase H-Aktivität des Enzyms wird die RNA abgebaut und die verbleibende cDNA wird in doppelsträngige cDNA synthetisiert. Je Probe wurden 1 µg RNA, 1 µl Oligo-dT-Primer (3 µg) und nukleasefreies Wasser auf ein Gesamtvolumen von 27 µl auf Eis zusammenpipettiert und für 10 min bei 70 °C auf dem Thermoblock denaturiert. Die Synthese der cDNA erfolgte durch die Zugabe der folgenden Komponenten: 5x Puffer (Endkonzentration 1x), 0,1 mM DTT, 0,2 mM dNTP und 200 Units Superscript II Enzym mit anschließender Inkubation bei 42 °C für 60 min auf dem Heizblock. Zur Inaktivierung des Enzyms wurden die Proben für 10 min auf 95 °C erhitzt. Die cDNA wurde bis zur weiteren Verwendung bei -20 °C aufbewahrt.
2. Material und Methoden

2.3.5 Qualitative Polymerasekettenreaktion

Die Polymerasekettenreaktion (PCR) ist eine Methode, um Nukleinsäurefragmente in vitro gezielt zu amplifizieren. Dazu werden Oligonukleotide (Primer) verwendet, die jeweils zu einem Strang am 3'-Ende der DNA-Zielsequenz komplementär sind. Zusätzlich werden vier Desoxyribonukleosidtriphosphate (dNTPs) dATP, dCTP, dGTP und dTTP, eine thermostabile DNA-Polymerase sowie ein Puffer benötigt [119]. Durch mehrere Zyklen von Denaturierung des Produktes, Primer-Hybridisierung und Elongation kann die Synthese des DNA-Abschnittes erfolgen.

Die qualitative PCR wurde zur Amplifikation der PTEN-Exone 1-9 durchgeführt. In der Tabelle 5 sind die Primersequenzen und Größen der PCR-Produkte zusammengefasst.

Tabelle 5: PTEN-Primerssequenzen

<table>
<thead>
<tr>
<th>PTEN-Primer</th>
<th>Sequenz</th>
<th>Produktlänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1 F</td>
<td>5<code>-CCA TTT CCA TCC TGC AGA AG -3</code></td>
<td>229 bp</td>
</tr>
<tr>
<td>Exon 1 R</td>
<td>5<code>-GTC TAC TCC CAC GTT CTA AG -3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 2 F</td>
<td>5<code>-TGA CCA CCT TTT ATT ACT CC- 3</code></td>
<td>313 bp</td>
</tr>
<tr>
<td>Exon 2 R</td>
<td>5<code>-AGT ATC TTT TTC TGT GGC TTA- 3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 3 F</td>
<td>5<code>-ATA GAA GGG GTA TTG TGT GGA -3</code></td>
<td>293 bp</td>
</tr>
<tr>
<td>Exon 3 R</td>
<td>5<code>-ACC TCA CTC TAA CAA GCA GAT A -3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 4 F</td>
<td>5<code>-TTC AGG CAA TGT TTG TTA -3</code></td>
<td>225 bp</td>
</tr>
<tr>
<td>Exon 4 R</td>
<td>5<code>-CTC GAT AAT CTG GAT GAC TCA -3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 5 F</td>
<td>5<code>-GCA ACA TTT CTA AAG TTA CCT A -3</code></td>
<td>386 bp</td>
</tr>
<tr>
<td>Exon 5 R</td>
<td>5<code>-TCT GTT TTC CAA TAA ATT CTC -3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 6 F</td>
<td>5<code>-TAC GAC CCA GTT ACC ATA G -3</code></td>
<td>412 bp</td>
</tr>
<tr>
<td>Exon 6 R</td>
<td>5<code>-CTT CTT TAG CCC AAT GAG -3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 7 F</td>
<td>5<code>-CAG ATA CAG AAT CCA TAT TTC G -3</code></td>
<td>427 bp</td>
</tr>
<tr>
<td>Exon 7 R</td>
<td>5<code>-CTC ACC AAT GCC AGA GTA AG -3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 8 F</td>
<td>5<code>-CTC AGA TTG CCT TAT AAT AGT C -3</code></td>
<td>558 bp</td>
</tr>
<tr>
<td>Exon 8 R</td>
<td>5<code>-TCA TGT TAC TGC TAT GTA AAC -3</code></td>
<td></td>
</tr>
<tr>
<td>Exon 9 F</td>
<td>5<code>-GTT CAT CTG CAA AAT GGA -3</code></td>
<td>396 bp</td>
</tr>
<tr>
<td>Exon 9 R</td>
<td>5<code>-TGG TAA TCT GAC ACA ATG TCC TA -3</code></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 6: Zusammensetzung des PCR-Ansatzes

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x Puffer</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>100 mM dNTPs</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>5-50 pM Primer F</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>5-50 pM Primer R</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>0-2 µl</td>
</tr>
<tr>
<td>2,5 Unit Taq-Polymerase</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>50-100 ng DNA</td>
<td>1-2 µl</td>
</tr>
<tr>
<td>Wasser</td>
<td>ad 25 µl</td>
</tr>
</tbody>
</table>

Tabelle 7: PCR-Programm der Exone 1-3, 5-9

<table>
<thead>
<tr>
<th>Exon</th>
<th>Start</th>
<th>Zyklus</th>
<th>Zyklenanzahl</th>
<th>Ende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Denaturierung</td>
<td>Annealing</td>
<td>Extension</td>
</tr>
<tr>
<td>1</td>
<td>95°C (40 s)</td>
<td>94°C (60 s)</td>
<td>62°C (60 s)</td>
<td>72°C (60 s)</td>
</tr>
<tr>
<td>2</td>
<td>95°C (40 s)</td>
<td>94°C (60 s)</td>
<td>52°C (60 s)</td>
<td>72°C (60 s)</td>
</tr>
<tr>
<td>3</td>
<td>95°C (180 s)</td>
<td>94°C (30 s)</td>
<td>54°C (30s)</td>
<td>72°C (60 s)</td>
</tr>
<tr>
<td>5</td>
<td>95°C (180 s)</td>
<td>94°C (60 s)</td>
<td>48°C (60 s)</td>
<td>72°C (60 s)</td>
</tr>
<tr>
<td>6</td>
<td>95°C (40 s)</td>
<td>94°C (60 s)</td>
<td>52°C (60 s)</td>
<td>72°C (60 s)</td>
</tr>
<tr>
<td>7</td>
<td>95°C (60 s)</td>
<td>94°C (40 s)</td>
<td>52°C (40 s)</td>
<td>72°C (60 s)</td>
</tr>
<tr>
<td>8</td>
<td>95°C (40 s)</td>
<td>94°C (30 s)</td>
<td>56°C (30 s)</td>
<td>72°C (30 s)</td>
</tr>
<tr>
<td>9</td>
<td>98°C (120 s)</td>
<td>94°C (20 s)</td>
<td>61°C (20 s)</td>
<td>68°C (30 s)</td>
</tr>
</tbody>
</table>
Material und Methoden

Tabelle 8: PCR-Programm des Exons 4

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
<th>Zyklenanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 °C</td>
<td>300 s</td>
<td>1</td>
</tr>
<tr>
<td>95 °C</td>
<td>30 s</td>
<td>12 x</td>
</tr>
<tr>
<td>Touchdown von 60 °C - 50 °C</td>
<td>60 s</td>
<td></td>
</tr>
<tr>
<td>72 °C</td>
<td>60 s</td>
<td></td>
</tr>
<tr>
<td>95 °C</td>
<td>45 s</td>
<td>25 x</td>
</tr>
<tr>
<td>50 °C</td>
<td>45 s</td>
<td></td>
</tr>
<tr>
<td>75 °C</td>
<td>60 s</td>
<td></td>
</tr>
<tr>
<td>72 °C</td>
<td>360 s</td>
<td>1</td>
</tr>
<tr>
<td>4 °C</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

2.3.6 Agarosegelelektrophorese

Zur Herstellung eines Gels wurde die Agarose im 0,5 x TBE-Puffer durch Aufkochen in der Mikrowelle gelöst. Nach dem Abkühlen der Lösung auf etwa 50 °C wurden 0,2 µg/ml Ethidiumbromid dazu pipettiert. Ethidiumbromid ist ein interkalierender Farbstoff, der die DNA-Fragmente unter UV-Licht sichtbar macht. Die Agaroselösung wurde leicht geschwenkt und in eine Gelpiegelung vorrichtung mit entsprechenden Kämmen gegossen.

Nach dem Auspolymerisieren wurden die Geltaschen jeweils mit 10 µl PCR-Produkt und 5 µl Probenpuffer beladen. Als Längenstandard diente die Basenpaarleiter Low Range von Fermentas.

Die Elektrophorese wurde bei ca. 100 V (5-10 V/cm²) in 0,5 x TBE-Puffer durchgeführt. Die Visualisierung und Dokumentation der PCR-Produkte erfolgte mit dem E.A.S.Y.win32 System, bestehend aus einem UV-Transilluminator und einer CCD-Kamera von Herolab.

2.3.7 Aufreinigung von PCR-Produkten

Für die Aufreinigung der PCR-Fragmente wurde das MinElute® PCR Purification Kit von Qiagen verwendet. Das Reinigen der Fragmente erfolgte in zwei Schritten. Zunächst wurde 1 Volumen PCR-Produkt mit 5 Volumen PB-Puffer gemischt und auf eine Silicasäule pipettiert. Während die DNA-Fragmente an die Membran binden, wurden überschüssige Komponenten der PCR mit dem
PE-Waschpuffer abzentrifugiert. Anschließend wurde das gereinigte PCR-Produkt mit 10 µl nukleasefreiem Wassser eluiert und bis zur weiteren Verwendung im Kühlschrank gelagert.

2.3.8 DNA-Sequenzierung

2.3.9 Genexpressionsanalyse

Für die Genexpressionsanalyse wurden die Human Genome U133 Plus 2.0 GeneChips® von Affymetrix verwendet. Auf diesem DNA-Hybridisierungsarray sind über 47.400 Transkripte vorhanden, die parallel in einem Versuchsansatz analysiert werden können.

Das als mismatch bezeichnete Oligonukleotid dient als interne Kontrolle und ermöglicht es, unspezifische Interaktionen (Kreuzhybridisierungen) und Hintergrundsignale zu eliminieren. Bevor die Hybridisierung einer Probe erfolgte, wurde die RNA in mehreren Schritten amplifiziert und mit einem Fluoreszenzfarbstoff markiert.

Die Analyse der Genexpression unterteilte sich in drei Abschnitte:

I) Praparation der RNA

Aus 5 µg RNA und unter Verwendung eines T7-(dT)24 Primer sowie der Superscript II Reversen Transkriptase wurde zunächst ein komplementärer DNA-Einzelstrang (Erst-Strang-Synthese) gebildet. Danach erfolgte ein enzymatischer Abbau des RNA-Strangs durch die RNase H. Anschließend wurde der DNA-Doppelstrang (Zweit-Strang-Synthese) mit Hilfe der E. coli DNA Polymerase I synthetisiert. Um eine markierte RNA zu erhalten, wurde aus der vorliegenden cDNA eine in vitro Transkription mittels Biotin-gekoppelter Nukleotide (Biotin-16-UTP) durchgeführt. Anschließend wurde die neu-synthetisierte komplementäre RNA (cRNA) durch eine Nukleinsäurefällung mit 80 %-igem Ethanol von überschüssigen Nukleotiden aus der Reaktion befreit und danach für die Hybridisierung fragmentiert.

II) Hybridisierung und Anfärbung der RNA

III) Datenanalyse
Die Auswertung der Daten erfolgte in Zusammenarbeit mit Frau Dipl.-Math. Änne Glass (Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universität Rostock) und Frau
Dipl. Bioinf. Sonja Boldt (Institut für Systembiologie und Bioinformatik, Universität Rostock). Die Genexpressions- (signals) und Detektionssignale (calls) aller 47.400 Transkripte wurden mit der Affymetrix Microarray Software (MAS 5.0) ermittelt. Dabei werden die Detektionssignale entsprechend ihrer durchschnittlichen Fluoreszenzintensität als eindeutig nachweisbar (present), nicht eindeutig nachweisbar (marginal) und nicht nachweisbar (absent) eingeordnet.

a) Qualitätskontrolle der Daten
Anschließend erfolgte eine Qualitätskontrolle der Daten. Zur Absicherung der Reproduzierbarkeit der Ergebnisse wurden jeweils die Expressions- und Detektionssignale aus den drei Replikaten der Kontrolle (D1, D2, D3) mit den drei Replikaten der behandelten Zellen (S1, S2, S3) in neun Kreuzvergleichen (S1-D1, S1-D2, S1-D3, S2-D1, S2-D2, S2-D3, S3-D1, S3-D2 und S3-D3) untersucht. Hierbei sollten die Expressionsänderungen in mindestens sechs von neun Kreuzvergleichen konform sein. Transkripte mit einem absent-Signal in allen drei Replikaten oder Transkripte ohne Gensymbol-annotation (nach HG-U133Plus2.na27 Affymetrix annotation file) wurden aus der weiteren Analyse ausgeschlossen. Zu allen Genen wurden die Spezifität und Sensitivität der dazugehörigen Transkriptsonden aus der Datenbank GeneAnnot des Weizmann Institutes (http://www.genecards.weizmann.ac.il/geneannot/index.shtml) abgefragt, um die Eindeutigkeit der Zuordnung zwischen Sonde und repräsentiertem Gen bewerten zu können. Zusätzlich wurde die Qualität der Replikate mittels Bestimmtheitsmaßes (R^2) bewertet. Das Bestimmtheitsmaß ist ein Maß für die Variabilität der Einzelsignalwerte im Vergleich zweier Arrays und kann paarweise für ein Replikatarray ermittelt werden. Die Übereinstimmung zweier Replikate wurde mit einem Bestimmtheitsmaß von mindestens 0,98 angenommen und entspricht einer Übereinstimmung der Signalwerte zweier Replikate zu 98 %.

b) Differentielle Expressionsanalyse
Zur Identifikation differentiell exprimierter Gene wurde der t-Test (Bonferroni-adjustiert auf dem Signifikanzniveau $\alpha = 5\%$ für die Anzahl der berücksichtigten Transkripte) für drei Replikate der behandelten Zellen gegen drei Replikate der unbehandelten Zellen pro Transkript durchgeführt. Dabei wurden p-Werte $< \alpha_{\text{adjustiert}}$ als signifikant angenommen und nur Gene mit einer Spezifität und Sensitivität von 1 nach der Bewertung mit GeneAnnot berücksichtigt. Die anschließende Genannotation zur biologischen Funktion signifikant-regulierter Gene erfolgte mit Hilfe der Datenbank DAVID (http://www.david.abcc.ncifcrf.gov/conversion.jsp).

c) Erstellung von Heatmaps zur Darstellung signifikant differentieller Gene

2.3.10 Real-time PCR

Tabelle 9: Zusammensetzung des qPCR-Ansatzes

<table>
<thead>
<tr>
<th>Zielsequenz</th>
<th>Komponenten</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGFA</td>
<td>2 x Mastermix</td>
<td>10 µl</td>
</tr>
<tr>
<td></td>
<td>20 x Taqman Genexpressionsmastermix</td>
<td>1 µl</td>
</tr>
<tr>
<td></td>
<td>Wasser</td>
<td>5 µl</td>
</tr>
<tr>
<td></td>
<td>Gesamtvolumen</td>
<td>16 µl</td>
</tr>
<tr>
<td>Glucuronidase</td>
<td>2 x Mastermix</td>
<td>10 µl</td>
</tr>
<tr>
<td></td>
<td>Sonde Gluc</td>
<td>1 µl</td>
</tr>
<tr>
<td></td>
<td>Primer F</td>
<td>1 µl</td>
</tr>
<tr>
<td></td>
<td>Primer R</td>
<td>1 µl</td>
</tr>
<tr>
<td></td>
<td>Wasser</td>
<td>3 µl</td>
</tr>
<tr>
<td></td>
<td>Gesamtvolumen</td>
<td>16 µl</td>
</tr>
</tbody>
</table>

Die Reaktion wurde an einem ABI PRISM SDS 7000 Gerät der Firma Applied Biosystems durchgeführt. Das verwendete PCR-Programm ist in der Tabelle 10 zusammengefasst.

Tabelle 10: Real-time PCR-Programm

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Zeit</th>
<th>Zyklenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 °C</td>
<td>10 min</td>
<td>1</td>
</tr>
<tr>
<td>95 °C</td>
<td>15 s</td>
<td>40</td>
</tr>
<tr>
<td>60 °C</td>
<td>1 min</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Proteinbiochemische Methoden

2.4.1 Herstellung von Proteinextrakten

Zur Herstellung von Proteinlysaten wurden die Zellen zweimal mit kaltem PBS gewaschen und das Pellet je nach Größe in 50-100 µl RIPA-Puffer gelöst. Um einen Abbau der Proteine bzw. eine Dephosphorylierung zu verhindern, wurden dem Lysepuffer Protease- und Phosphatase-inhibitoren zugefügt. Die Lysate wurden anschließend für 20 min auf Eis inkubiert und bis zur Weiterverarbeitung bei -20 °C eingefroren.

2.4.2 Proteinkonzentrationsbestimmung nach Bradford

Um einen vollständigen Aufschluss der Zellen zu erreichen, wurde eine zusätzliche Behandlung mit Ultraschall (zweimal mit jeweils 8 Pulsen) durchgeführt. Das Abtrennen der Proteine vom Zelldebris erfolgte durch eine Zentrifugation bei 12.000 g und 4 °C für 10 min. Der Proteinerüberstand wurde in ein neues 1,5 ml Reaktionsgefäss pipettiert, wobei 8 µl für die Bestimmung des Proteingehalts nach dem Protokoll von Bradford verwendet wurden [121]. Das Prinzip dieser Methode beruht auf dem Farbumschlag der Substanz Coomassie-Blue G-250 von rotbraun nach blau als Folge der Proteinbindung. Der negativ-geladene Farbstoff bindet positiv-geladene Argininvyl- und Lysinvylreste, dadurch verschließt sich das Absorptionsmaximum von 465 nm nach 595 nm. Die Zunahme der Absorption bei 595 nm ist somit ein Maß für die Proteinkonzentration der Lösung. Mit Hilfe von Proteinstandards, hergestellt aus einer BSA-Stammlösung mit bekannter Konzentration (1 µg/ml-25 µg/ml), wurde eine Eichkurve erstellt und somit die Protein-Konzentration des Lysats ermittelt.

Zum Schluss wurde das Proteinlysat mit dem gleichen Volumen von 2 x Probenpuffer und 5 % β-Mercaptoethanol gemischt und für 10 min bei 95 °C denaturiert. Die Proteine wurden bis zur weiteren Verwendung bei -20 °C eingefroren.

2.4.3 SDS-Polyacrylamid-Gelelektrophorese und Western Blot

Der Western Blot ist eine Methode zur Identifizierung und Quantifizierung von Proteinen. Hierbei werden Proteine zunächst gelektrophoretisch aufgetrennt und anschließend auf eine Polyvinylidenfluorid (PVDF)-Membran transferiert. Durch spezifische Antikörper werden die

Die Proteinübertragung erfolgte bei 1 mA/cm² Gel und 10 W für 1 h. Anschließend wurde die Membran mit Ponceau S-Lösung gefärbt. Ponceau S ist ein roter Azofarbstoff, der reversibel an positiv-geladene Aminogruppen bindet und genutzt wird, um den kompletten Transfer der Proteine und einen gleichmäßigen Proteinauftrag nachzuweisen. Das angefärbte Proteinbandenmuster wurde zusätzlich genutzt, um die Membran an definierten Bereichen zu schneiden, so dass gleichzeitig verschiedene Proteine mit unterschiedlichen Molekulargewicht detektiert werden können. Die Membran wurde für etwa 5 min in Ponceau S gefärbt und danach mit Aqua dest. gespült. Die Entfärbung der Membran erfolgte durch dreimaliges Waschen in Anode II-Puffer.

Vor der Immunreaktion wurden unspezifische Proteinbindestellen für 1 h mit 5 %-iger (w/v) Magernmilch bzw. 5 % iger (w/v) BSA-TBST-Lösung abgeblockt. Anschließend wurde die Membran mit dem verdünnten Primär-Antikörper in 1 %-iger (w/v) Magernmilch- bzw. 1 %-iger (w/v) BSA-TBST-Lösung im Kühlschrank über Nacht oder für 1 h bei Raumtemperatur durch Schwenken auf dem Schüttler inkubiert. In der Tabelle 11 sind die verwendeten Primär-Antikörper dargestellt. Die Angaben zum Hersteller und Klon sind im Anhang (Abschnitt 7.1.5) tabellarisch zusammengefasst.
2. Material und Methoden

Tabelle 11: Verwendete Primär-Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Größe</th>
<th>Wirt</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Akt (Thr308)</td>
<td>60 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>p-Akt (Ser473)</td>
<td>60 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>Akt</td>
<td>60 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>p-FoxO3a</td>
<td>90 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % BSA-Lösung</td>
</tr>
<tr>
<td>FoxO3a</td>
<td>90 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % BSA-Lösung</td>
</tr>
<tr>
<td>p-p70 S6K (Thr389)</td>
<td>70 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % BSA-Lösung</td>
</tr>
<tr>
<td>p70 S6K</td>
<td>70 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % BSA-Lösung</td>
</tr>
<tr>
<td>p-4EBP1 (Ser65)</td>
<td>15-20 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>p-4EBP1 (Th70)</td>
<td>15-20 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>4EBP1</td>
<td>15-20 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>PTEN</td>
<td>54 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>p-GSK3β (Ser9)</td>
<td>46 kDa</td>
<td>Maus</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>GSK3β</td>
<td>46 Da</td>
<td>Maus</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>Cleaved Caspase-3 (Asp175)</td>
<td>17, 19 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>17, 19,35 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>Cleaved Caspase-7 (Asp198)</td>
<td>20 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>Caspase-7 (Asp198)</td>
<td>20, 35 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>Cleaved PARP (Asp214)</td>
<td>20 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>PARP</td>
<td>116, 89,116 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>Cyclin D3</td>
<td>31 kDa</td>
<td>Maus</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>p27 Kip1</td>
<td>27 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>p15 INK4B</td>
<td>15 kDa</td>
<td>Kaninchen</td>
<td>1:1000 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>CDK4</td>
<td>30 kDa</td>
<td>Maus</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>VEGFA</td>
<td>15-43 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
<tr>
<td>β-Catenin</td>
<td>92 kDa</td>
<td>Kaninchen</td>
<td>1:500 in 1 % MM-Lösung</td>
</tr>
</tbody>
</table>

Abkürzungen: MM: Magermilch, BSA: bovines Serumalbumin

Nach der Inkubation des primären Antikörpers wurde die Membran dreimal für jeweils 5 min in 1 x TBST-Puffer gewaschen. Dann folgte die Inkubation des sekundären Antikörpers. Dieser wurde ebenfalls in 1 %-iger Magermilch- bzw. 1 %-iger BSA-TBST-Lösung (w/v) verdünnt und für 1 h bei Raumtemperatur auf dem Schüttler geschwenkt. Die verwendeten Sekundär-Antikörper sind in der Tabelle 12 dargestellt.
2. Material und Methoden

Tabelle 12: Verwendete Sekundär-Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Wirt</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Kaninchen</td>
<td>Ziege</td>
<td>1:5000</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Anti-Maus</td>
<td>Ziege</td>
<td>1:5000</td>
<td>Cell Signaling</td>
</tr>
</tbody>
</table>

Anschließend wurde die Membran dreimal im TBST-Puffer und einmal mit PBS gewaschen. Die Detektion erfolgte über die Meerrettich-Peroxidase. Dieses Enzym ist an den sekundären Antikörper gekoppelt und wird durch Zugabe des Substrates Wasserstoffperoxid in das Phthalazin-Derivat Luminol oxidiert, was zu einer Chemilumineszenz führt. Für diese Reaktion wurde die Membran für 5 min mit der Substratlösung inkubiert. Anschließend wurden die Blots mit der Kodak-Imager-Station 440 detektiert.

2.4.4 VEGFA-Nachweis mittels ELISA

2. Material und Methoden

2.4.5 Immunfluoreszenz

2. Material und Methoden

2.5 Statistik

Als Grundlage für die Berechnung wurden die Zellzahlen der Einzelsubstanzen ins Verhältnis zu der Zellzahl der unbehandelten Probe gesetzt. Der Erwartungswert (EW) des Kombinationseffektes wurde aus dem Produkt der Einzelsubstanzeffekte von der Summe der Einzelsubstanzeffekte subtrahiert [EW = (a + b) - (a · b)] und anschließend mit dem beobachteten Kombinationseffekt verglichen.
3. Ergebnisse

3.1 Schlüsselproteine des PI3K/Akt-Signalweges in der ALL

3.1.1 Expression von Schlüsselproteinen des PI3K/Akt-Signalweges in ALL-Zelllinien

Eine Aktivierung des PI3K/Akt-Signalweges wurde in allen untersuchten ALL-Zelllinien nachgewiesen. Dabei war die Expression der Proteine und die Phosphorylierung unterschiedlich stark. In der Abbildung 9 ist ein repräsentativer Western Blot dargestellt.

Abbildung 9: Analyse zur PI3K/Akt-Aktivierung in ALL-Zelllinien mittels Western Blot
Dargestellt ist die Proteinexpression von pAkt (Thr308 und Ser473), Gesamt-Akt, pFoxO3A (Thr32) und Gesamt-FoxO3A in den ALL- und NHL-Zelllinien mittels Western Blot. Als Ladungskontrolle wurde GAPDH mitgeführt.

Die Zelllinien SEM (B-ALL), MOLT4 und Jurkat (beide T-ALL) sowie DOGUM (NHL) zeigten eine starke Akt-Aktivierung, die über die zwei Phosphorylierungsstellen (Thr 308 und Ser 473)

In der vorliegenden Arbeit wurden für die Untersuchungen zur Rolle des PI3K/Akt-Signalweges in der Pathogenese der ALL, Zelllinien mit einer starken bis mittleren Aktivierung von Akt ausgewählt. Folglich wurden für die in vitro-Versuche mit verschiedenen Substanzen die Zellen SEM, RS4;11, Jurkat und MOLT4 verwendet.

3.1.2 Mutationsanalyse des PTEN-Gens in ALL-Zelllinien

Abbildung 10: PTEN-Expression in den ALL- und NHL-Zelllinien
Dargestellt ist die Proteinexpression von PTEN in den ALL- und NHL-Zelllinien mittels Western Blot. Als Ladungskontrolle wurde GAPDH mitgeführt.

Abbildung 11: PCR-Produkte der PTEN-Exone.
Dargestellt sind die Amplifikate der PTEN Exone 1-9 der ALL- und NHL-Zelllinien mittels Agarosegelelektrophorese.

Anhand der Sequenzanalyse wurde eine Mutation in der Zelllinie MOLT4 identifiziert. Bei dieser Sequenzveränderung lag ein Verlust eines Adenins im Exon 7 an der Position g99.580 der genomischen DNA vor. In der Abbildung 12 ist ein Ausschnitt des Exon 7 im Bereich der genetischen Veränderung der Zelllinie MOLT4 dargestellt. Im Vergleich wurde dazu die Zelllinie SEM gegenübergestellt. Weitere Mutationen wurden nicht identifiziert.
Abbildung 12: Sequenzierungsausschnitt von Exon 7 des PTEN-Gens

3.1.3 Expression von Schlüsselproteinen des PI3K/Akt-Signalweges in de novo ALL-Zellen

Die Aktivierung des PI3K/Akt-Signalweges wurde zusätzlich in den mononukleären Zellen von ALL- und NHL-Patienten mittels Western Blot untersucht. Die Patientendaten und Ergebnisse bezüglich der Phosphorylierung von Akt (Thr308 und Ser473) sowie zum PTEN-Status sind in der Tabelle 13 zusammengefasst. In der vorliegenden Arbeit wurden Proteinlysate von 14 Patienten analysiert. Insgesamt wurde bei neun Patienten (6/9 B-ALL, 1/3 T-ALL, 1/1 Burkitt Lymphom und 1/1 Sézary-Syndrom) mindestens eine phosphorylierte Form von Akt (pAkt Thr308 und/oder pAkt Ser473) mittels Western Blot detektiert. Dies entspricht 64,3 % der untersuchten Proben. Bei fünf dieser Patientenproben waren beide Phosphorylierungen von Akt nachweisbar. In vier weiteren Proteinlysaten wurde nur eine Phosphorylierung detektiert. Zusätzlich wurde die Expression des Tumorsuppressors PTEN untersucht. In elf Patienten konnte das PTEN-Protein mittels Western Blot als starkes Signal detektiert werden. In der Patientenprobe P173 war das Protein nur schwach nachweisbar.

Tabelle 13: Patientencharakteristika

<table>
<thead>
<tr>
<th>Pat.Nr.</th>
<th>Alter</th>
<th>Geschlecht</th>
<th>Diagnose</th>
<th>Blasten</th>
<th>pAkt(Thr/Ser)</th>
<th>PTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>P129</td>
<td>37</td>
<td>w</td>
<td>c-ALL</td>
<td>66 %</td>
<td>+/+</td>
<td>+</td>
</tr>
<tr>
<td>P142</td>
<td>40</td>
<td>w</td>
<td>c-ALL</td>
<td>94 %</td>
<td>-/-</td>
<td>+</td>
</tr>
<tr>
<td>P152</td>
<td>70</td>
<td>w</td>
<td>pro-B-ALL</td>
<td>81 %</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>P163</td>
<td>20</td>
<td>w</td>
<td>c-ALL</td>
<td>62 %</td>
<td>+/-</td>
<td>n.b.</td>
</tr>
<tr>
<td>P164</td>
<td>1</td>
<td>m</td>
<td>c-ALL</td>
<td>88 %</td>
<td>+/-</td>
<td>n.b.</td>
</tr>
<tr>
<td>P169</td>
<td>63</td>
<td>m</td>
<td>pro-B-ALL</td>
<td>44 %</td>
<td>-/-</td>
<td>+</td>
</tr>
<tr>
<td>P171</td>
<td>31</td>
<td>m</td>
<td>c-ALL</td>
<td>63 %</td>
<td>-/-</td>
<td>+</td>
</tr>
<tr>
<td>P168</td>
<td>73</td>
<td>m</td>
<td>c-ALL</td>
<td>80 %</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>P34</td>
<td>51</td>
<td>m</td>
<td>Burkitt-Lymphom</td>
<td>n.b.</td>
<td>-/+</td>
<td>+</td>
</tr>
<tr>
<td>P97</td>
<td>26</td>
<td>m</td>
<td>T-ALL</td>
<td>71 %</td>
<td>-/-</td>
<td>+</td>
</tr>
<tr>
<td>P167</td>
<td>43</td>
<td>m</td>
<td>T-ALL</td>
<td>75 %</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>P149</td>
<td>74</td>
<td>w</td>
<td>Sézary-Syndrom</td>
<td>81 %</td>
<td>-/+</td>
<td>+</td>
</tr>
<tr>
<td>P173</td>
<td>9</td>
<td>w</td>
<td>T-ALL</td>
<td>95 %</td>
<td>-/-</td>
<td>(+)</td>
</tr>
<tr>
<td>P178</td>
<td>63</td>
<td>m</td>
<td>c-ALL</td>
<td>99 %</td>
<td>-/+</td>
<td>+</td>
</tr>
</tbody>
</table>

w: weiblich; m: männlich; +: Expression, (+): schwache Expression; -: keine Expression; n.b.: nicht bestimmt
3.2 Untersuchungen zur Wirksamkeit des PI3K-Inhibitors Ly294002

3. Ergebnisse

3.3 Untersuchungen zur Wirksamkeit des RAD001 in ALL-Zellen

Der Wirkmechanismus des mTOR-Inhibitors RAD001 wurde an den B-ALL-Zelllinien SEM und RS4;11 sowie an den T-ALL-Zelllinien Jurkat und MOLT4 untersucht. Die Zellen wurden mit Konzentrationen zwischen 1 nM und 100 nM RAD001 behandelt und in einem Zeitintervall bis 72 h untersucht.

3.3.1 Einfluss des RAD001 auf die Vitalität

In der Zelllinie SEM wurde das Wachstum der Zellen mit 10 nM und 100 nM RAD001 im Vergleich zur Kontrolle signifikant reduziert. Am stärksten wurde die Proliferation mit 100 nM RAD001 gehemmt. Eine Inkubation mit 100 nM verminderte nach 72 h die Zellzahl im Vergleich zur Kontrolle im Durchschnitt um 65 % und reduzierte die metabolische Aktivität im Durchschnitt um 29 %. Das Wachstum der Zellen und die metabolische Aktivität wurde mit 1 nM RAD001 nicht signifikant beeinflusst. Bei den RS4;11-Zellen reduzierte sich die Zellzahl in den behandelten Zellen im Vergleich zur Kontrolle zwischen 22 % - 30 %. Eine Behandlung mit 10 nM und 100 nM RAD001 verminderte die metabolische Aktivität im Vergleich zur Kontrolle durchschnittlich um
3. Ergebnisse

49 %. Die beobachteten Unterschiede zwischen den behandelten und unbehandelten RS4;11-Zellen waren nicht signifikant.

Bei den T-ALL-Zelllinien Jurkat und MOLT4 wurde die metabolische Aktivität mit 10 nM und 100 nM RAD001 signifikant gesenkt, wobei kein Unterschied zwischen den beiden Konzentrationen nachweisbar war. Bei den Jurkat-Zellen wurde ebenfalls eine Reduktion der Zellproliferation und der metabolischen Aktivität mit 1 nM RAD001 beobachtet. Im Gegensatz zu den MOLT4-Zellen, verringerte sich bei Jurkat mit 1 nM RAD001 die Zellzahl im Durchschnitt um bis zu 44 % und die metabolische Aktivität im Durchschnitt um bis zu 39 %.

3.3.2 Einfluss des RAD001 auf den Zellzyklus

3. Ergebnisse

3.3.3 Einfluss des RAD001 auf Apoptose und Nekrose

Zusätzlich wurde die Wirksamkeit des mTOR-Inhibitors auf die Induktion von Apoptose und Nekrose untersucht. Hierzu wurden die Zellen nach der Inkubation mit RAD001 zu verschiedenen Zeitpunkten mittels Durchflusszytometrie analysiert. In der Abbildung 18 sind die Ergebnisse nach 72-stündiger Inkubation mit RAD001 dargestellt. Bei den Zelllinien SEM, RS4;11 und Jurkat wurden keine Unterschiede in den Apoptose- und Nekroseraten zwischen behandelten und unbehandelten Zellen beobachtet. Dagegen hatte sich die Viabilität der MOLT4-Zellen, die mit 10 nM und 100 nM RAD001 inkubiert wurden, reduziert. Hier lag der Anteil der apoptotischen und nekrotischen Zellen nach 72 h in der Kontrolle im Durchschnitt bei 14,9 % (Apoptoserate: 7,1 % und Nekroserate: 7,8 %) und bei den mit 100 nM behandelten Zellen im Durchschnitt bei 33,7 % (Apoptoserate: 14,3 % und Nekroserate: 19,4 %). Der Anstieg der Nekroserate bei 100 nM RAD001 war im Vergleich zu den unbehandelten MOLT4-Zellen signifikant.

Abb. 17: Expression zellzykluspezifischer Proteine nach RAD001-Behandlung.
Dargestellt ist ein repräsentativer Western Blot nach der Inkubation mit RAD001 der Zelllinien SEM und Jurkat. Untersucht wurde die Proteinexpression von Cyclin D3, CDK4, p27Kip1 und p15INK4B. Als Ladungskontrolle wurde GAPDH mitgeführt.
3. Ergebnisse

3.3.4 Einfluss des RAD001 auf Schlüsselproteine des PI3K/Akt-Signalweges

Die Inhibition von mTOR wurde mittels Western Blot untersucht. Hierzu wurden Schlüsselproteine des PI3K/Akt-Signalweges hinsichtlich ihrer Phosphorylierungsformen in den Zellen SEM und Jurkat nach 4- und 24-stündiger Inkubation mit RAD001 analysiert. In den Abbildungen 19 und 20 ist jeweils ein repräsentativer Western Blot aus drei unabhängigen Versuchen der beiden Zelllinien dargestellt.

Abbildung 18: Viabilität der B- und T-ALL-Zelllinien nach RAD001-Behandlung

Die ALL-Zelllinien wurden für 72 h mit den angegebenen RAD001-Konzentrationen behandelt. Dargestellt sind die Mittelwerte apoptotischer Zellen sowie nekrotischer Zellen mit Standardabweichung aus drei unabhängigen Experimenten. Die Signifikanz (p < 0.05) ist mit * gekennzeichnet.

Abbildung 19: Untersuchungen zur mTOR-Inhibition nach RAD001-Behandlung

Dargestellt ist ein repräsentativer Western Blot nach der Behandlung mit RAD001 in den Zelllinien SEM und Jurkat. Untersucht wurde die Proteinexpression von p-4EBP-1 (Ser65, Thr70), Gesamt 4-EBP-1 sowie p-p70 S6K (Thr389) und Gesamt-p70S6K. Als Ladungskontrolle wurde GAPDH mitgeführt.
Eine Hemmung von mTOR wurde in beiden Zelllinien durch die Abnahme der Phosphorylierung der Proteine p-4EPB-1 (Ser65, Thr70) und p-p70-S6K (Thr389) nachgewiesen. Mit steigender Konzentration von RAD001 wurde in den SEM und Jurkat-Zellen die Expression von p-4EPB-1 an beiden Phosphorylierungsstellen deutlich reduziert. Die Phosphorylierung der p70-S6K war in beiden Zelllinien nach der Behandlung mit RAD001 nicht mehr nachweisbar.

Abbildung 20: Untersuchungen zur PI3K/Akt-Inhibition nach RAD001-Behandlung

Dargestellt ist ein repräsentativer Western Blot nach der Behandlung mit RAD001 in den Zelllinien SEM und Jurkat. Untersucht wurde die Proteinexpression von pAkt (Thr308 und Ser473), Gesamt-Akt, pGSK3β (Ser9) und Gesamt-GSK3β. Als Ladungskontrolle wurde GAPDH mitgeführt.
3.4 Untersuchungen zur Wirksamkeit des BEZ235 in ALL-Zellen

Die bisherigen Ergebnisse zeigten, dass eine Inhibition von PI3K oder mTOR die Proliferation der ALL-Zellen beeinflusst. Im Folgenden wurde untersucht, ob eine duale Inhibition der Kinasen zu verstärkten antiproliferativen Effekten führt. Für die Analysen wurde der duale Inhibitor BEZ235 in einem Konzentrationsbereich von 1 nM - 100 nM über einen Zeitraum von 72 h untersucht.

3.4.1 Einfluss des BEZ235 auf die Vitalität

Das Zellwachstum und die metabolische Aktivität wurden 72 h nach der Behandlung mit 10 nM und 100 nM BEZ235 in den Zelllinien SEM, RS4;11 und Jurkat signifikant reduziert. Die Ergebnisse sind in der Abbildung 21 dargestellt. Die metabolische Aktivität der Zellen wurde mit 10 nM BEZ235 im Vergleich zur Kontrolle im Mittel um bis zu 39 % in SEM, 45 % in RS4;11 und 51 % in Jurkat gesenkt. Die MOLT4-Zellen waren gegenüber 10 nM BEZ235 weniger sensitiv. Hier lag der Anteil der metabolisch aktiven Zellen im Mittel bei 79 %. Eine Erhöhung der BEZ235-Konzentration auf 100 nM führte zur Reduktion der metabolischen Aktivität um 77 %.

![Abbildung 21: Proliferation und metabolische Aktivität nach BEZ235-Behandlung](image)

Die ALL-Zelllinien SEM, RS4;11, Jurkat und MOLT4 wurden für 72 h mit den angegebenen BEZ235-Konzentrationen behandelt. Dargestellt sind die Mittelwerte mit Standardabweichung aus drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.

3.4.2 Einfluss des BEZ235 auf den Zellzyklus

3. Ergebnisse

BEZ235 erreicht. Im Durchschnitt verblieben nach der BEZ235-Behandlung 90 % (vs. 63 % DMSO) der SEM-Zellen, 84 % (vs. 65 % DMSO) der RS4;11-Zellen und 78 % (vs. 57 % DMSO) der Jurkat-Zellen in der G0/G1-Phase.

Abbildung 22: Zellzyklusanalyse nach Inkubation mit BEZ235
(B) Dargestellt ist der prozentuale Anteil der Zellen in der G0/G1-Phase aus drei unabhängigen Versuchen 72 h nach der Behandlung mit BEZ235. Die Signifikanz ($p < 0.05$) ist mit * gekennzeichnet.
3. Ergebnisse

Mittels Western Blot wurde der G0/G1-Zellzyklusarrest durch die Analyse der Expression von verschiedenen Zellzyklusregulatorproteinen bestätigt. Die Proteinlevel von CDK4 und Cyclin D3 waren in SEM-Zellen die mit 10 nM und 100 nM, sowie in Jurkat-Zellen, die mit 100 nM BEZ235 inkubiert wurden, im Vergleich zur Kontrolle reduziert. Gleichzeitig wurde eine erhöhte Proteinexpression des CDK2-Inhibitors p27Kip1 in Jurkat-Zellen detektiert. Im Gegensatz dazu wurde in beiden Zelllinien eine Abnahme des CDK4-Inhibitorproteins p15INK4B nachgewiesen.

3.4.3 Einfluss des BEZ235 auf Apoptose und Nekrose

Abbildung 23: Expression zellzyklusspezifischer Proteine nach BEZ235-Behandlung

Dargestellt ist ein repräsentativer Western Blot nach der Behandlung mit BEZ235 in den Zelllinien SEM und Jurkat. Untersucht wurde die Proteinexpression von Cyclin D3, CDK4, p27Kip1 und p15INK4B. Als Ladungskontrolle wurde GAPDH mitgeführt.
3. Ergebnisse

3.4.4 Einfluss des BEZ235 auf Schlüsselproteine des PI3K/Akt-Signalweges

Abbildung 24: Viabilität der B- und T-ALL-Zellen nach BEZ235-Behandlung

Die ALL-Zelllinien SEM, RS4;11, Jurkat und MOLT4 wurden für 72 h mit 1 nM, 10 nM bzw. 100 nM BEZ235 inkubiert. Dargestellt sind die Mittelwerte apoptotischer und nekrotischer Zellen mit Standardabweichung aus drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.

Abbildung 25: Untersuchungen zur Akt-Inhibition mittels BEZ235

Dargestellt ist ein repräsentativer Western Blot nach der Behandlung mit BEZ235 in den Zelllinien SEM und Jurkat. Untersucht wurde die Proteinexpression von pAkt (Thr308 und Ser473), Gesamt-Akt sowie pFoxO3A (Thr32) und Gesamt-FoxO3A. Als Ladungskontrolle wurde GAPDH mitgeführt.
Nach 24 h wurde mit steigender BEZ235-Konzentration eine Abnahme der Akt-Phosphorylierung (Thr308 und Ser473) in der Zelllinie SEM detektiert. Ebenso wurde eine geringe Abnahme von pFoxO3A (Thr32) nachgewiesen. Die Hemmung von Akt blieb nicht konstant, nach 48 h wurde eine Zunahme der phosphorylierten Formen von Akt in den Zellen, die mit 10 nM und 100 nM BEZ235 behandelt wurden, beobachtet. Gleichzeitig wurden erhöhte Level von pFoxO3A (Thr32) in den Zellysaten detektiert.

Im Gegensatz zur PI3K-Inhibition war die Hemmung von mTOR im untersuchten Zeitraum konstant (Abbildung 26). Mit steigender BEZ235-Konzentration wurden sowohl reduzierte Level von p-p70 S6K (Ser65) als auch von p-4EBP-1 (Ser65, Thr70) in SEM und Jurkat-Zellen nachgewiesen.

Abbildung 26: Untersuchungen zur mTOR-Inhibition nach BEZ235-Behandlung

Dargestellt ist ein repräsentativer Western Blot nach der Behandlung mit BEZ235 in den Zelllinien SEM und Jurkat. Untersucht wurde die Proteinexpression von p-p70 S6K (Thr389), Gesamt p70 S6K, p-4EBP-1 (Ser65, Thr70) sowie Gesamt-4EBP1. Als Ladungskontrolle wurde GAPDH mitgeführt.
3. Ergebnisse

3.5 BEZ235 in der Kombination mit konventionellen Zytostatika

3.5.1 Kombination des BEZ235 mit AraC

![Abbildung 27: Kombinationswirkungsanalyse von BEZ235 und AraC](image)

Die ALL-Zelllinien wurden für 72 h mit 2,5 µM AraC (RS4;11), 0,125 µM AraC (SEM), 0,05 µM AraC (Jurkat und MOLT4) sowie mit 10 nM BEZ235 allein oder in Kombination behandelt. Dabei wurde das BEZ235 entweder gleichzeitig, 24 h vor der Inkubation mit AraC (BEZ + AraC-24 h) oder 24 h nach der Inkubation mit AraC (AraC + BEZ-24 h) den Zellen zugeführt. Dargestellt sind die beobachteten Proliferationseffekte aus drei unabhängigen Kombinationsversuchen im Vergleich zum Erwartungswert (EW). Die beobachteten Proliferationseffekte der Kombinationen wurden ins Verhältnis zur Zellzahl der unbehandelten Probe (= 100 %) gesetzt.
Bei den Zelllinien RS4;11 und MOLT4 wurden keine Unterschiede zwischen den verschiedenen Kombinationsansätzen beobachtet.

3.5.2 Kombination des BEZ235 mit Doxorubicin

Eine gesteigerte Proliferationshemmung wurde durch die Kombination von BEZ235 mit Doxorubicin im Vergleich zu den Einzeleffekten beider Substanzen in allen Zellen beobachtet. Hierbei wurde die Zellproliferation um bis zu 60 % vermindert. In der Abbildung 28 sind die beobachteten Effekte der verschiedenen Kombinationsansätze mit den Erwartungswerten des Kombinationseffektes dargestellt. In allen Zelllinien wurde eine Wirkungsverstärkung durch die Kombination gegenüber der Einzelsubstanzen nachgewiesen. Die experimentell ermittelten Effekte der Kombinationen sind um bis zu 50 % größer als die der berechneten Kombinationseffekte.
3. Ergebnisse

Insbesondere bei den Zelllinien SEM, RS4;11 und Jurkat wurde bei der zeitgleichen Inkubation beider Substanzen sowie bei der verzögerten Gabe des Doxorubicins die Zellproliferation am stärksten gehemmt. So nahm die Proliferation bei den Kombinationsansätzen der Jurkat-Zellen durchschnittlich um bis zu 60 % (BEZ235+Doxo: 60 %, BEZ235+Doxo 24h: 60 % und Doxo+BEZ235 24h: 47 %) ab. Die beobachteten Unterschiede waren bei keiner Zelllinie zwischen den Kombinationsansätzen und den Einzelbehandlungen mit BEZ235 und Doxorubicin signifikant.

Abbildung 28: Kombinationswirkungsanalyse von BEZ235 und Doxorubicin

Die ALL-Zelllinien wurden für 72 h mit 25 nM Doxo sowie mit 10 nM BEZ235 allein oder in Kombination behandelt. Dabei wurde das BEZ235 entweder gleichzeitig, 24 h vor der Inkubation mit Doxo (BEZ + Doxo-24 h) oder 24 h nach der Inkubation mit Doxo (Doxo + BEZ-24 h) den Zellen zugeführt. Dargestellt sind die beobachteten Proliferationseffekte aus drei unabhängigen Kombinationsversuchen in den ALL-Zelllinien im Vergleich zum Erwartungswert (EW). Die beobachteten Proliferationseffekte wurden ins Verhältnis zur Zellzahl der unbehandelten Probe (= 100 %) gesetzt.

Doxo: Doxorubicin
3. Ergebnisse

3.5.3 **Kombination des BEZ235 mit Dexamethason**

Der Einfluss von Dexamethason auf die Proliferation war bei den B- und T-ALL-Zelllinien unterschiedlich, so dass verschiedene Konzentrationen für die Kombinationsversuche verwendet wurden. Die SEM-Zellen wurden mit 1 μM und die RS4;11-Zellen wurden mit 0,1 μM Dexamethason inkubiert. Die Dexamethason-resistenten Zelllinien Jurkat und MOLT4 wurden mit 10 μM Dexamethason behandelt. Die Gabe von BEZ235 und Dexamethason führte bei allen Zelllinien zu einer Wirkungsverstärkung im Vergleich zur einzelnen Gabe einer Substanz. In der Abbildung 29 sind die beobachteten Effekte der Kombinationsexperimente mit den Erwartungswerten des Kombinationseffektes dargestellt. Mit Hilfe der Bliss-Analyse konnte gezeigt werden, dass die experimentell ermittelte Proliferationshemmung um bis zu 68 % stärker gegenüber der erwarteten Proliferationshemmung war.

Abb. 29: Kombinationswirkungsanalyse von BEZ235 und Dexamethason

Die ALL-Zelllinien wurden für 72 h mit 0,1 μM Dexa (RS4;11), 1 μM Dexa (SEM), 10 μM Dexa (Jurkat und MOLT4) sowie mit 10 nM BEZ235 alleine oder in Kombination behandelt. Dabei wurde das BEZ235 entweder gleichzeitig, 24 h vor der Inkubation mit Dexa (BEZ + Dexa-24 h) oder 24 h nach der Inkubation mit Dexa (Dexa + BEZ-24 h) den Zellen zugeführt. Dargestellt sind die beobachteten Proliferationseffekte aus drei unabhängigen Kombinationsversuchen in den ALL-Zelllinien im Vergleich zum Erwartungswert (EW). Die beobachteten Proliferationsseffekte wurden ins Verhältnis zur Zellzahl der unbehandelten Probe (= 100 %) gesetzt.

Dexa: Dexamethason

Die stärkste Proliferationshemmung wurde in den Jurkat-Zellen beobachtet, wenn beide Substanzen simultan appliziert wurden. Hierbei war die simultane Gabe beider Substanzen mit einer signifikant stärkeren Proliferationshemmung verbunden, im Vergleich zu einer 24-stündigen
3. Ergebnisse

Vorinkubation mit Dexamethason. Die gleiche Tendenz wurde auch in den Zellen SEM und MOLT4 beobachtet, jedoch waren hier die beobachteten Effekte nicht signifikant. Bei RS4;11 scheint die Vorbehandlung mit Dexamethason die Proliferation der Zellen stärker zu hemmen, als eine Vorinkubation mit BEZ235 bzw. eine zeitgleiche Inkubation mit BEZ235.

3.6 Untersuchungen zur Wirksamkeit des Sorafenib in ALL-Zelllinien

Im Folgenden wurde untersucht, inwiefern sich das Wachstumsverhalten der ALL-Zelllinien SEM, RS4;11, Jurkat und MOLT4 sowie die Expression von Signaltransduktionsmolekülen durch die Behandlung mit dem Multikinaseinhibitor Sorafenib beeinflussen lässt. Hierzu wurden die Zellzahl, die metabolische Aktivität sowie die Apoptose- und Nekroseraten in den Zellen bestimmt. Zusätzlich wurde ein Genexpressionsprofil erstellt. Für die Analysen wurde Sorafenib in einem Konzentrationsbereich zwischen 0,73 µM und 7,3 µM über einen Zeitraum von 72 h untersucht.

3.6.1 Einfluss des Sorafenibs auf die Vitalität

Abbildung 30: Proliferation und metabolische Aktivität nach Sorafenib-Behandlung

Die ALL-Zelllinien SEM, RS4;11, Jurkat und MOLT4 wurden für 72 h mit den angegebenen Sorafenib-Konzentrationen behandelt. Dargestellt sind die Mittelwerte mit Standardabweichung aus drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.
3. Ergebnisse

3.6.2 Einfluss des Sorafenibs auf den Zellzyklus

Die Reduktion der Zellproliferation ist auf einen Zellzyklusarrest in der G0/G1-Phase zurückzuführen und wurde durch Bestimmung des DNA-Gehalts mittels PI an den Zellen SEM und Jurkat nachgewiesen (Abbildung 31).

Bei beiden Zelllinien wurde mit steigender Sorafenib-Konzentration eine Zunahme der Zellen in der G0/G1-Phase beobachtet, während sich gleichzeitig der Anteil der Zellen in der M- und S-Phase reduzierte. In den SEM-Zellen wurde der stärkste G0/G1-Zellzyklusarrest nach 72-stündiger Behandlung mit 0,73 µM Sorafenib erreicht. Zu diesem Zeitpunkt befanden sich 95 % der Zellen in der G0/G1-Phase. Dagegen wurden in der Kontrolle 84 % der Zellen in der G0/G1-Phase detektiert.

Abbildung 31: Zellzyklusanalyse nach Inkubation mit Sorafenib
3. Ergebnisse

Mittels Western Blot wurde der G0/G1-Zellzyklusarrest anhand der veränderten Expression verschiedener Zellzyklusregulatorproteinen 24 h nach der Behandlung mit Sorafenib bestätigt. Die Ergebnisse der Western Blot-Experimente sind in der Abbildung 32 dargestellt.

Abbildung 32: Expression zellzyklusspezifischer Proteine nach Sorafenib-Behandlung
Dargestellt ist ein repräsentativer Western Blot 24 h nach der Behandlung mit Sorafenib in den Zelllinien SEM und Jurkat. Untersucht wurde die Expression von Cyclin D3, CDK4, p27kip1 und p15INK4B. Als Ladungskontrolle wurde GAPDH mitgeführt.

Hierbei zeigte sich, dass eine Behandlung mit 0,73 µM und 7,3 µM bei SEM sowie mit 7,3 µM Sorafenib bei Jurkat zur Reduktion der Proteinlevel von CDK4 und Cyclin D3 führte. Zusätzlich wurde bei den SEM-Zellen eine verminderte Proteinmenge des CDK-Inhibitorproteins p15INK4B beobachtet. Bei der Zelllinie Jurkat wurde durch die Behandlung mit Sorafenib eine Abnahme des CDK2-Inhibitorproteins p27kip1 nachgewiesen.

3.6.3 Einfluss des Sorafenibs auf Apoptose und Nekrose

Mit steigender Sorafenibkonzentration wurde eine Zunahme der Apoptose- und Nekroseraten beobachtet. Signifikante Unterschiede wurden im Vergleich zur Kontrolle bei allen Zelllinien nach 72-stündiger Inkubation mit 7,3 µM Sorafenib ermittelt. Die Ergebnisse der Apoptose- und Nekroseraten sind in der Abbildung 33 zusammengefasst. Zu diesem Zeitpunkt waren im Durchschnitt 30,8 % der SEM, 26,8 % der RS4;11, 28,8 % der Jurkat und 11,3 % der MOLT4-Zellen apoptotisch, die mit 7,3 µM Sorafenib behandelt wurden. Spätapoptotische und nekrotische Eigenschaften zeigten durchschnittlich 56,6 % der SEM, 64,1 % der RS4;11, 60,5 % der Jurkat und 75,6 % der MOLT4-Zellen.

Abbildung 33: Viabilität der B- und T-ALL-Zelllinien nach Sorafenib-Behandlung
Die ALL-Zelllinien SEM, RS4;11, Jurkat und MOLT4 wurden für 72 h mit den angegebenen Sorafenib-Konzentrationen behandelt. Dargestellt sind die Mittelwerte apoptotischer und nekrotischer Zellen mit Standardabweichung aus drei unabhängigen Experimenten. Die Signifikanz ist mit * p < 0,05 gekennzeichnet.
3. Ergebnisse

3.6.4 Einfluss des Sorafenibs auf Schlüsselproteine des PI3K/Akt-Signalweges

Abbildung 34: Apoptosenachweis mittels Western Blot

Dargestellt ist ein Western Blot der Zelllinien SEM und Jurkat nach der Behandlung mit Sorafenib. Untersucht wurde die Expression von den Spaltprodukten der apoptosespezifischen Proteine Caspase 3, 7 und PARP. Als Ladungskontrolle wurde GAPDH mitgeführt.
3. Ergebnisse

Zusätzlich wurde die Aktivität von mTOR nach der Behandlung mit Sorafenib untersucht. Dazu wurde die Phosphorylierung des nachgeschalteten und von mTOR-regulierten Substrates 4EBP-1 mittels Western Blot analysiert. Die Ergebnisse sind in der Abbildung 36 dargestellt. Durch die Behandlung mit 0,73 µM und 7,3 µM Sorafenib reduzierte sich die Expression von p-4EBP-1 an beiden Phosphorylierungsstellen (Ser65 und Thr70) in SEM-Zellen. In den Jurkat-Zellen wurde die Phosphorylierung nur an der Aminosäure Ser 65 reduziert, keine Veränderung erfolgte in der Expression von p-4EBP-1 an der Aminosäure Thr70.

Abbildung 35: Untersuchungen zur Akt-Inhibition nach Sorafenib-Behandlung
Dargestellt ist ein repräsentativer Western Blot der Zelllinien SEM, RS4;11 und Jurkat nach der Behandlung mit Sorafenib. Untersucht wurde die Proteinexpression von pAkt (Thr308, Ser473), Gesamt-Akt, pFoxO3A (Thr32), Gesamt-FoxO3A. Als Ladungskontrolle wurde GAPDH mitgeführt.

Abbildung 36: Untersuchungen zur mTOR-Inhibition nach Sorafenib-Behandlung
Dargestellt ist ein repräsentativer Western Blot der Zelllinien SEM und Jurkat nach der Behandlung mit Sorafenib. Untersucht wurde die Expression von p-4-EBP-1 (Ser65, Thr70) Gesamt-4EBP-1. Als Ladungskontrolle wurde GAPDH mitgeführt.
3.6.5 Einfluss des Sorafenibs auf die Aktivität des Wnt-Signalweges

Im Folgenden wurde untersucht, inwiefern Sorafenib die Aktivität des Wnt-Signalweges in ALL-Zellen beeinflusst. Hierzu wurde die Aktivität des Schlüsselproteins GSK3β sowie die Expression von β-Catenin mittels Western Blot untersucht (Abbildung 37).

<table>
<thead>
<tr>
<th></th>
<th>SEM</th>
<th>Jurkat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 h</td>
<td>24 h</td>
</tr>
<tr>
<td>p-GSK3β β</td>
<td>DMSO</td>
<td>0,73</td>
</tr>
<tr>
<td>Ser9</td>
<td>7,30</td>
<td>DMSO</td>
</tr>
<tr>
<td>GSK3β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Catenin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 37: Untersuchungen zur Aktivität des Wnt-Signalweges
Zusätzlich wurde die Lokalisation von β-Catenin in der Zelle mittels Immunfluoreszenz analysiert (Abbildung 38).

Vor der Behandlung war das β-Catenin an der Zellmembran, im Cytoplasma und im Zellkern nachweisbar. Durch die Inkubation mit 7,3 µM Sorafenib reduzierte sich die β-Catenin Proteinmenge in den SEM-Zellen sowohl im Zellkern als auch im Cytoplasma. Somit wurden die Ergebnisse des Western Blots bestätigt.

Abbildung 38: Immunhistologischer Nachweis von β-Catenin nach Sorafenib-Behandlung

Dargestellt ist β-Catenin 24 h nach der Behandlung mit Sorafenib (0,73 µM und 7,3 µM) in SEM-Zellen. DMSO-behandelte Zellen dienten als Kontrolle. Der Nachweis von β-Catenin erfolgte über die indirekte Immunfluoreszenz mit einem sekundären FITC-markierten Antikörper (grün). Die Zellkerne wurden mit DAPI angefärbt (blau).
3. Ergebnisse

3.7 Sorafenib in der Kombination mit konventionellen Zytostatika

3.7.1 Kombination des Sorafenibs mit AraC

In der Abbildung 39 sind die experimentell ermittelten Proliferationseffekte der Kombinationsansätze mit den Erwartungswerten der Kombinationen dargestellt. In allen Zelllinien wurde eine Wirkungsverstärkung durch die Kombination gegenüber den Einzelsubstanzen nachgewiesen, da die beobachtete Proliferationshemmung im Vergleich zu den berechneten Erwartungswerten größer war.

Abbildung 39: Kombinationswirkungsanalyse von Sorafenib und AraC

Die ALL-Zelllinien wurden für 72 h mit 2,5 µM AraC (RS4;11), 0,125 µM AraC (SEM), 0,05 µM AraC (Jurkat und MOLT4) sowie mit 3,65 µM Sorafenib (Sora) allein oder in Kombination behandelt. Dabei wurde das Sorafenib entweder gleichzeitig, 24 h vor der Inkubation mit AraC (Sora + AraC-24h) oder 24 h nach der Inkubation mit AraC (AraC + Sora-24h) den Zellen zugeführt. Dargestellt sind die beobachteten Proliferationseffekte aus drei unabhängigen Kombinationsversuchen in den ALL-Zelllinien im Vergleich zum Erwartungswert. Die beobachteten Proliferationseffekte wurden ins Verhältnis zur Zellzahl der unbehandelten Probe (= 100 %) gesetzt.

EW: Erwartungswert; Sora: Sorafenib

Bei den Zelllinien RS4;11 und MOLT4 waren die Unterschiede zwischen den verschiedenen Kombinationsansätzen sehr gering. So reduzierte sich bei der Zelllinie MOLT4 im Vergleich zur Kontrolle die Zellproliferation durchschnittlich um bis zu 66 % bei der zeitgleichen Gabe, um bis zu jeweils 62 % wenn AraC 24 h nach der Gabe von Sorafenib den Zellen zugefügt wurde bzw. wenn die Zellen 24 h nach der Gabe von AraC mit dem Sorafenib inkubiert wurden. Signifikante Unterschiede bezüglich des Wachstums zwischen den verschiedenen Kombinationsansätzen wurden bei keiner Zelllinie ermittelt.

3.7.2 Kombination des Sorafenibs mit Doxorubicin

In allen untersuchten Zelllinien wurde durch die Kombination eine Wirkungsverstärkung nachgewiesen, da die Proliferationshemmung im Vergleich zu den berechneten Erwartungswerten größer war. In der Abbildung 40 sind die experimentell ermittelten Proliferationseffekte der Kombinationsansätze mit den Erwartungswerten der Kombinationen dargestellt.
3. Ergebnisse

Bei der Kombination zwischen Sorafenib und Doxorubicin wurde die Proliferation in der Zelllinie MOLT4 am stärksten reduziert, wenn Doxorubicin 24 h vor der Inkubation mit dem Sorafenib behandelt wurde. Eine späte Gabe des Sorafenib verminderte die Zellzahl im Vergleich zur Kontrolle durchschnittlich um 67 %. Die Inkubation mit Sorafenib allein ergab eine Verminderung der Zellzahl um durchschnittlich 54 % und die alleinige Gabe von Doxorubicin führte zu einer Reduzierung der Zellzahl um durchschnittlich 51 %. Somit wurde durch die Gabe beider Substanzen eine Steigerung der Proliferationshemmung um bis zu 13 Prozentpunkte bezogen auf den Einzeleffekt von Sorafenib bzw. um 16 Prozentpunkte auf den Einzeleffekt von Doxorubicin erreicht. Wurden die Zellen simultan mit Doxorubicin und Sorafenib behandelt, reduzierte sich die Zellzahl im Durchschnitt um 65 %. Eine geringere Proliferationshemmung wurde bei der simultanen Gabe von Sorafenib und Doxorubicin beobachtet. Hier reduzierte sich die Zellzahl gegenüber den unbehandelten Zellen durchschnittlich um 56 %. Die Unterschiede zwischen den verschiedenen Kombinationsansätzen waren nicht signifikant.

Im Gegensatz zu den MOLT4-Zellen führte die spätere Gabe des Doxorubicins zur stärksten Proliferationshemmung bei den SEM-Zellen. Die Zellzahl reduzierte sich im Vergleich zur Kontrolle

Abbildung 40: Kombinationswirkungsanalyse von Sorafenib und Doxorubicin

Die ALL-Zelllinien wurden für 72 h mit 25 nM Doxo sowie mit 10 nM Sora allein oder in Kombination behandelt. Dabei wurde das Sora entweder gleichzeitig, 24 h vor der Inkubation mit Doxo (Sora + Doxo-24 h) oder 24 h nach der Inkubation mit Doxo (Doxo + Sora-24 h) den Zellen zugeführt. Dargestellt sind die beobachteten Proliferationseffekte aus drei unabhängigen Kombinationsversuchen in den ALL-Zelllinien im Vergleich zum Erwartungswert. Die beobachteten Proliferationsseffekte wurden ins Verhältnis zur Zellzahl der unbehandelten Probe (= 100 %) gesetzt. Doxo: Doxorubicin; EW: Erwartungswert; Sora: Sorafenib
3. Ergebnisse

Im Durchschnitt um 67 %, während sich bei der Gabe von Sorafenib 24 h nach Inkubation mit Doxorubicin die Zellzahl nur um durchschnittlich 50 % verminderte.

Bei den Zelllinien RS4;11 und Jurkat wurden keine Unterschiede zwischen den verschiedenen Kombinationsansätzen beobachtet. Bei der Zelllinie Jurkat reduzierte sich die Zellproliferation im Durchschnitt um bis zu 61 % bei der zeitgleichen Gabe, um bis zu 60 % wenn Doxorubicin 24 h nach der Gabe von Sorafenib den Zellen zugefügt wurde bzw. um 59 % wenn die Zellen 24 h nach der Gabe von Doxorubicin mit dem Sorafenib inkubiert wurden.

3.7.3 Kombination des Sorafenibs mit Dexamethason

In der Abbildung 41 sind die beobachteten Effekte der Kombinationsansätze mit den Erwartungswerten des Kombinationseffektes dargestellt. Da die Hemmung der Proliferation im Vergleich zu den berechneten Erwartungswerten größer ist, liegt eine synergistische Wirkung vor. Die Wirkungsverstärkung der Kombination gegenüber den Einzelsubstanzen wurde in allen Zelllinien nachgewiesen.

Abbildung 41: Kombinationsanalyse von Sorafenib und Dexamethason

Die ALL-Zelllinien wurden für 72 h mit 0,1 µM Dexa (RS4;11), 1 µM Dexa (SEM), 10 µM Dexa (Jurkat und MOLT4) sowie mit 3,65 µM Sora allein oder in Kombination behandelt. Dabei wurde das Sora entweder gleichzeitig, 24 h vor der Inkubation mit Dexa (Sora + Dexa-24h) oder 24 h nach der Inkubation mit Dexa (Dexa + Sora-24h) den Zellen zugeführt. Dargestellt sind die beobachteten Proliferationseffekte aus drei unabhängigen Kombinationsversuchen in den ALL-Zelllinien im Vergleich zum Erwartungswert. Die beobachteten Proliferationsseffekte wurden ins Verhältnis zur Zellzahl der unbehandelten Probe (= 100 %) gesetzt.

Dexa: Dexamethason; EW: Erwartungswert; Sora: Sorafenib
Die simultane Gabe beider Substanzen führte bei den Zelllinien SEM, RS4;11 und Jurkat zur stärksten Proliferationshemmung. So reduzierte sich die Zellzahl bei SEM im Durchschnitt um 72 %, wenn Sorafenib und Dexamethason gleichzeitig appliziert wurden, während sich bei der Gabe von Sorafenib 24 h nach Inkubation mit Dexamethason die Zellzahl nur um bis zu 63 % verringerte. Die Inkubation mit Sorafenib allein ergab eine Verminderung der Zellzahl im Durchschnitt um 63 % und die alleinige Gabe von Dexamethason führte zu einer Reduzierung der Zellzahl um 18 %. Somit wurde durch die Gabe beider Substanzen eine Steigerung der Proliferationshemmung um bis zu 9 Prozentpunkte bezogen auf den Einzeleffekt von Sorafenib bzw. eine Erhöhung um 54 Prozentpunkte auf den Einzeleffekt von Dexamethason erreicht. Bei der zeitversetzten Gabe von Sorafenib bzw. Dexamethason reduzierte sich die Zellzahl um jeweils 63 %. Signifikante Unterschiede zwischen den Kombinationsansätzen wurden nicht beobachtet.

3.8 Veränderung der Genexpression nach Sorafenibbehandlung

3.8.1 Die Erstellung eines Genexpressionsprofils

3. Ergebnisse

Dargestellt sind die Expressionssignale von unbehandelten (DMSO) und mit Sorafenib (7,3 µM) behandelten ALL-Zelllinien SEM, RS4;11 und Jurkat mittels Rot-Grün-Heatmaps. Die Clusteranalyse wurde zwischen behandelter und unbehandelter Proben pro Zelllinie durchgeführt. Niedrige Expressionssignale sind grün (< 5.000) und hohe Expressionssignale sind rot (> 10.000) gekennzeichnet.

Abbildung 42: Genclusteranalyse nach Sorafenib-Behandlung in ALL-Zellen

<table>
<thead>
<tr>
<th>#</th>
<th>Gensymbol</th>
<th>Sondenset ID</th>
<th>Genname</th>
<th>Ratio</th>
<th>SEM</th>
<th>Jurkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HIST1H1D</td>
<td>214537_at</td>
<td>histone cluster 1, H1d</td>
<td>4,2</td>
<td>15,1</td>
<td>1,7</td>
</tr>
<tr>
<td>2</td>
<td>HIST1H3F</td>
<td>208506_at</td>
<td>histone cluster 1, H3f</td>
<td>4,2</td>
<td>11,6</td>
<td>1,6</td>
</tr>
<tr>
<td>3</td>
<td>TNFRSF10B</td>
<td>209295_at</td>
<td>tumor necrosis factor receptor superfamily, member 10b</td>
<td>2,0</td>
<td>9,9</td>
<td>3,5</td>
</tr>
<tr>
<td>4</td>
<td>DDIT3</td>
<td>209383_at</td>
<td>DNA-damage-inducible transcript 3</td>
<td>10,6</td>
<td>9,5</td>
<td>6,7</td>
</tr>
<tr>
<td>5</td>
<td>HIST1H3B</td>
<td>208576_s_at</td>
<td>histone cluster 1, H3b</td>
<td>8,4</td>
<td>20,9</td>
<td>4,0</td>
</tr>
<tr>
<td>6</td>
<td>TRIB3</td>
<td>1555788_s_at</td>
<td>tribbles homolog 3 (Drosophila)</td>
<td>8,4</td>
<td>8,1</td>
<td>16,9</td>
</tr>
<tr>
<td>7</td>
<td>PAG1</td>
<td>227354_at</td>
<td>phosphoprotein associated with glycosphingolipid microdomains 1</td>
<td>7,6</td>
<td>2,9</td>
<td>3,7</td>
</tr>
<tr>
<td>8</td>
<td>ATF5</td>
<td>204999_s_at</td>
<td>activating transcription factor 5</td>
<td>4,7</td>
<td>5,4</td>
<td>6,7</td>
</tr>
<tr>
<td>9</td>
<td>SLC7A11</td>
<td>217678_at</td>
<td>solute carrier family 7, (cationic amino acid transporter, y+ system) member 11</td>
<td>6,3</td>
<td>5,5</td>
<td>4,1</td>
</tr>
<tr>
<td>10</td>
<td>SPNS3</td>
<td>235900_at</td>
<td>spinster homolog 3 (Drosophila)</td>
<td>9,7</td>
<td>10,1</td>
<td>6,0</td>
</tr>
<tr>
<td>11</td>
<td>SYTL1</td>
<td>227134_at</td>
<td>synaptotagmin-like 1</td>
<td>5,7</td>
<td>5,9</td>
<td>3,6</td>
</tr>
<tr>
<td>12</td>
<td>VEGFA</td>
<td>210512_s_at</td>
<td>vascular endothelial growth factor A</td>
<td>7,2</td>
<td>5,1</td>
<td>5,3</td>
</tr>
<tr>
<td>13</td>
<td>GALNT3</td>
<td>203397_s_at</td>
<td>UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-T3)</td>
<td>2,8</td>
<td>4,6</td>
<td>5,0</td>
</tr>
<tr>
<td>14</td>
<td>TSC22D3</td>
<td>208763_s_at</td>
<td>TSC22 domain family, member 3</td>
<td>2,7</td>
<td>2,5</td>
<td>4,9</td>
</tr>
<tr>
<td>15</td>
<td>CEBPB</td>
<td>212501_at</td>
<td>CCAAT/enhancer binding protein (CEBP), beta</td>
<td>4,1</td>
<td>4,7</td>
<td>4,4</td>
</tr>
<tr>
<td>16</td>
<td>SIPA1L2</td>
<td>225056_at</td>
<td>signal-induced proliferation-associated 1 like 2</td>
<td>4,7</td>
<td>13,2</td>
<td>1,5</td>
</tr>
<tr>
<td>17</td>
<td>WARS</td>
<td>200629_at</td>
<td>tryptophanyl-tRNA synthetase</td>
<td>4,2</td>
<td>4,7</td>
<td>1,7</td>
</tr>
<tr>
<td>18</td>
<td>ATF3</td>
<td>202672_s_at</td>
<td>activating transcription factor 3</td>
<td>4,0</td>
<td>4,7</td>
<td>3,2</td>
</tr>
<tr>
<td>19</td>
<td>HIST1H2BF</td>
<td>208490_x_at</td>
<td>histone cluster 1, H2bf</td>
<td>2,7</td>
<td>3,9</td>
<td>1,6</td>
</tr>
<tr>
<td>20</td>
<td>ASNS</td>
<td>205047_s_at</td>
<td>asparagine synthetase</td>
<td>3,8</td>
<td>-1,3</td>
<td>4,1</td>
</tr>
<tr>
<td>21</td>
<td>HERPUD1</td>
<td>217168_s_at</td>
<td>homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1</td>
<td>3,7</td>
<td>2,8</td>
<td>2,5</td>
</tr>
<tr>
<td>22</td>
<td>KCTD15</td>
<td>222664_at</td>
<td>potassium channel tetramerisation domain containing 15</td>
<td>1,5</td>
<td>3,4</td>
<td>1,6</td>
</tr>
<tr>
<td>23</td>
<td>AARS</td>
<td>201000_at</td>
<td>alanyl-tRNA synthetase</td>
<td>3,1</td>
<td>3,0</td>
<td>2,9</td>
</tr>
<tr>
<td>24</td>
<td>CEBPG</td>
<td>225527_at</td>
<td>CCAAT/enhancer binding protein (CEBP), gamma</td>
<td>2,2</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>25</td>
<td>SCARNA17</td>
<td>240830_at</td>
<td>small Cajal body-specific RNA 17</td>
<td>3,0</td>
<td>2,9</td>
<td>3,1</td>
</tr>
</tbody>
</table>
3. Ergebnisse

Tabelle 15: Gene mit einer verminderten Expression nach Sorafenib-Behandlung

<table>
<thead>
<tr>
<th>#</th>
<th>Gensymbol</th>
<th>Probeset ID</th>
<th>Gename</th>
<th>Ratio</th>
<th>SEM</th>
<th>Jurkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EGR1</td>
<td>201694_s_at</td>
<td>early growth response 1</td>
<td>-30,5</td>
<td>-9,1</td>
<td>0,1</td>
</tr>
<tr>
<td>2</td>
<td>LDLR</td>
<td>202068_s_at</td>
<td>low density lipoprotein receptor</td>
<td>-8,9</td>
<td>-8,9</td>
<td>-7,9</td>
</tr>
<tr>
<td>3</td>
<td>MYC</td>
<td>202431_s_at</td>
<td>v-myc myelocytomatosis viral oncogene homolog (avian)</td>
<td>0,6</td>
<td>-1,4</td>
<td>-7,7</td>
</tr>
<tr>
<td>4</td>
<td>DUSP1</td>
<td>201041_s_at</td>
<td>dual specificity phosphatase 1</td>
<td>-1,6</td>
<td>-4,5</td>
<td>-1,4</td>
</tr>
<tr>
<td>5</td>
<td>HSPA1A</td>
<td>200799_at</td>
<td>heat shock 70kDa protein 1A // heat shock 70kDa protein 1B</td>
<td>-4,1</td>
<td>-1,4</td>
<td>2,2</td>
</tr>
<tr>
<td>6</td>
<td>UHRF1</td>
<td>225655_at</td>
<td>ubiquitin-like with PHD and ring finger domains 1</td>
<td>-1,5</td>
<td>-4,0</td>
<td>-2,5</td>
</tr>
<tr>
<td>7</td>
<td>INSIG1</td>
<td>201627_s_at</td>
<td>insulin induced gene 1</td>
<td>-2,6</td>
<td>-3,7</td>
<td>-3,9</td>
</tr>
<tr>
<td>8</td>
<td>HSPA8</td>
<td>208687_x_at</td>
<td>heat shock 70kDa protein 8</td>
<td>-3,0</td>
<td>-1,3</td>
<td>-1,8</td>
</tr>
<tr>
<td>9</td>
<td>CBFA2T3</td>
<td>208056_s_at</td>
<td>core-binding factor, runt domain, alpha subunit 2; translocated to, 3</td>
<td>0,1</td>
<td>-1,1</td>
<td>-3,0</td>
</tr>
<tr>
<td>10</td>
<td>FADS1</td>
<td>208962_s_at</td>
<td>fatty acid desaturase 1 // fatty acid desaturase 3</td>
<td>-2,8</td>
<td>-1,8</td>
<td>-2,2</td>
</tr>
<tr>
<td>11</td>
<td>HSPE1</td>
<td>205133_s_at</td>
<td>heat shock 10kDa protein 1 (chaperonin 10)</td>
<td>-2,7</td>
<td>-1,8</td>
<td>-2,2</td>
</tr>
<tr>
<td>12</td>
<td>CALR</td>
<td>212953_x_at</td>
<td>calreticulin</td>
<td>-2,7</td>
<td>-2,5</td>
<td>-2,1</td>
</tr>
<tr>
<td>13</td>
<td>PTPN6</td>
<td>206687_s_at</td>
<td>protein tyrosine phosphatase, non-receptor type 6</td>
<td>-2,5</td>
<td>-1,5</td>
<td>-1,2</td>
</tr>
<tr>
<td>14</td>
<td>PLAC8</td>
<td>219014_at</td>
<td>placenta-specific 8</td>
<td>1,8</td>
<td>-2,4</td>
<td>0,8</td>
</tr>
<tr>
<td>15</td>
<td>SYNRIP</td>
<td>209025_s_at</td>
<td>synaptotagmin binding, cytoplasmic RNA interacting protein</td>
<td>-2,8</td>
<td>-2,3</td>
<td>-2,5</td>
</tr>
<tr>
<td>16</td>
<td>ZFP36L2</td>
<td>201368_at</td>
<td>zinc finger protein 36, C3H type-like 2</td>
<td>1,3</td>
<td>0,4</td>
<td>-2,3</td>
</tr>
<tr>
<td>17</td>
<td>GNL3</td>
<td>217850_at</td>
<td>guanine nucleotide binding protein-like 3 (nucleolar)</td>
<td>-1,5</td>
<td>-1,4</td>
<td>-2,2</td>
</tr>
<tr>
<td>18</td>
<td>GLDC</td>
<td>204836_at</td>
<td>glycine dehydrogenase (decarboxylating)</td>
<td>-2,7</td>
<td>-2,2</td>
<td>-2,0</td>
</tr>
<tr>
<td>19</td>
<td>ACOT7</td>
<td>208002_s_at</td>
<td>acyl-CoA thioesterase 7</td>
<td>-2,2</td>
<td>-1,7</td>
<td>-1,9</td>
</tr>
<tr>
<td>20</td>
<td>CD72</td>
<td>215925_s_at</td>
<td>CD72 molecule</td>
<td>-1,5</td>
<td>-2,1</td>
<td>0,9</td>
</tr>
<tr>
<td>21</td>
<td>TAX1BP3</td>
<td>209154_at</td>
<td>Tax1 (human T-cell leukemia virus type I) binding protein 3</td>
<td>-1,2</td>
<td>-2,1</td>
<td>-1,6</td>
</tr>
<tr>
<td>22</td>
<td>FDFT1</td>
<td>210950_s_at</td>
<td>farnesyl-diphosphate farnesyltransferase 1</td>
<td>-1,7</td>
<td>-2,1</td>
<td>-2,2</td>
</tr>
<tr>
<td>23</td>
<td>SFRS2</td>
<td>200753_x_at</td>
<td>splicing factor, arginine/serine-rich 2</td>
<td>-2,1</td>
<td>-2,1</td>
<td>-2,3</td>
</tr>
<tr>
<td>24</td>
<td>ACAT2</td>
<td>209608_s_at</td>
<td>acetyl-Coenzyme A acetyltransferase 2</td>
<td>-2,1</td>
<td>-1,5</td>
<td>-1,4</td>
</tr>
<tr>
<td>25</td>
<td>HMGCR</td>
<td>202539_s_at</td>
<td>3-hydroxy-3-methylglutaryl-Coenzyme A reductase</td>
<td>-2,4</td>
<td>-2,1</td>
<td>-1,6</td>
</tr>
</tbody>
</table>

Ebenso wurden einige Gene aktiviert, die an Transportprozessen in der Zelle beteiligt sind. Dazu zählten die Transkripte Spn53, Sytl1, Slc7a11 und Kctd15. In dieser Gruppe wurde für das Transkript Slc7a11 eine 6,3-fache signifikante Erhöhung in den behandelten SEM-Zellen, eine 5,5-fache Erhöhung in den behandelten RS4;11-Zellen, sowie eine 6,3-fache signifikante Erhöhung in den behandelten Jurkat-Zellen detektiert.

Zu den signifikant veränderten Transkripten mit einer verminderten Expression wurden Gene identifiziert, die für Proteine kodieren, die an Transkriptionsprozessen beteiligt sind. Zu diesen Genen zählen Egr1, Myc, Uhrf1, CbfA2T3, Calr und Zfp36L2. Es stellte sich heraus, dass eine Behandlung mit Sorafenib die Expression der Egr1-mRNA in SEM um bis Faktor 30,5 und in RS4;11 um bis zu Faktor 9,1 reduzierte. Dagegen hat sich die Expression von Egr1 in den Jurkat-Zellen nicht verändert. Andererseits wurde die Expression der Gene Myc, CbfA2T3 und Zfp36L2 nur in den Jurkat-Zellen signifikant reduziert. So wurde in Jurkat eine Verminderung um bis zu Faktor 7,7 des Myc Gens beobachtet. In SEM und RS4;11-Zellen war die Expression um weniger als den Faktor 2 verändert. Eine Reduktion in der Genexpression um den Faktor 2 wurde in allen behandelten Zellen für das Transkript Calr ermittelt.

3. Ergebnisse

Als negativ-regulierte Gene wurden auch Transkripte mit RNA-Prozessierungseigenschaften identifiziert, dazu zählen SYNCRIP und SFRS2.

Die Transkripte PTPN6 und TAX1BP3 sind in den Zelllinien SEM bzw. RS4;11 signifikant um bis zu einem Faktor von 2,5 reduziert. Ihre Proteinprodukte werden mit Signaltransduktionsprozessen in der Zelle assoziiert. Für die Transkripte PLAC8 und ACOT7 ist keine Zuordnung in eine Gruppe erfolgt, da in der Datenbank DAVID keine Annotation für diese Transkripte hinterlegt wurde.

3.8.2 Einfluss des Sorafenibs auf die VEGFA-mRNA-Expression

Abbildung 43: VEGFA-mRNA-Expression nach Sorafenib-Behandlung

Dargestellt ist die relative VEGFA-mRNA-Expression nach Sorafenib-Behandlung in ALL-Zelllinien im Vergleich zur DMSO-Kontrolle aus drei unabhängigen Versuchen. Eine höhere VEGFA-Expression liegt in den Proben vor, wenn der ermittelte Wert über 1 liegt. Eine niedrige VEGFA-Expression liegt in den Proben vor, wenn der ermittelte Wert unter 1 liegt. Die Signifikanz ist mit * p < 0,05 gekennzeichnet.
3. Ergebnisse

In den Jurkat-Zellen wurden nach der Behandlung mit Sorafenib bis zu doppelt so hohe VEGFA-Expressionswerte erreicht, jedoch waren die beobachteten Unterschiede im Vergleich zur Kontrolle nicht signifikant verändert. Unterschiede in der VEGFA-Expression zwischen beiden Sorafenib-Konzentrationen wurden nicht ermittelt.

3.8.3 Einfluss des Sorafenibs auf die VEGFA-Proteinexpression

Abbildung 44: VEGFA-Proteinexpression nach Sorafenib-Behandlung

(A) Dargestellt ist ein repräsentativer Western Blot der Zelllinien SEM, RS4;11 und Jurkat nach der Behandlung mit Sorafenib. Untersucht wurde die Proteinexpression von VEGFA (37 kDa, 15 kDa). Als Ladungskontrolle wurde GAPDH mitgeführt. (B) Dargestellt ist die VEGFA-Proteinkonzentration aus den Zellkulturüberständen nach Sorafenib-Behandlung in ALL-Zelllinien. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.
4. Diskussion

Der Signalweg über die PI3K/Akt-Kaskade nimmt eine Schlüsselrolle in der Regulation lebensnotwendiger Vorgänge in der Zelle ein. Er ist neben dem JAK/STAT-, dem Wnt/β-Catenin- und dem Notch-Signalweg auch für die Hämatopoese bedeutsam. Fehlregulationen dieser Netzwerke verändern die Entwicklung und Differenzierung der Blutzellen und können die Entstehung von Leukämien begünstigen. Einige Studien belegen, dass der PI3K/Akt-Signalweg in Leukämien konstitutiv aktiviert ist und das Überleben der Zellen fördert. Auch Resistenz gegen Chemotherapeutika werden durch PI3K/Akt-Dysregulationen hervorgerufen.

Die vorliegende Arbeit beschäftigt sich mit der Rolle des PI3K/Akt-Signalwegs in der ALL. Hierbei wurden Schlüsselproteine dieser Signalkaskade sowohl an etablierten ALL-Zelllinien als auch an *de novo* ALL-Zellen analysiert. Ferner wurde in verschiedenen Experimenten die Wirksamkeit neuer Inhibitoren geprüft, indem das Wachstumsverhalten sowie Veränderungen in der Gen- und Proteinexpression der ALL-Zellen untersucht wurden. In den folgenden Abschnitten werden die wesentlichen Ergebnisse dieser Arbeit diskutiert und mit dem aktuellen Stand der Literatur verglichen.

4.1 Aktivierung des PI3K/Akt-Signalweges bei der ALL

In der vorliegenden Dissertation wurden verschiedene B- und T-ALL-Zelllinien, NHL-Zelllinien sowie *de novo* ALL-Zellen im Hinblick auf die PI3K/Akt-Aktivierung mittels Western Blot untersucht. Hierbei zeigte sich, dass insbesondere in den T-ALL-Zelllinien Jurkat und MOLT4 sowie in der B-ALL-Zelllinie SEM eine starke Aktivierung von Akt vorlag, da hier beide Phosphorylierungsstellen von Akt (Thr308 und Ser473) nachweisbar waren. In der Zelllinie DOGUM wurde nur ein starkes Akt-Phosphorylierungssignal für Serin 473 detektiert, dagegen war die Akt-Phosphorylierung von Threonin 308 sehr gering.

Parallel zu den Untersuchungen der Akt-Kinaseaktivität, erfolgte ein Phosphorylierungsnachweis eines Akt-Substrates. Hierzu wurde der Phosphorylierungsstatus des Transkriptionsfaktors FoxO3A analysiert. Die Expression war in den Lysaten der Zelllinien unterschiedlich stark und korrelierte nicht mit der Phosphorylierung von Akt. So wurde bei den RS4;11- und DOGKIT-Zellen eine stärkere FoxO3A-Phosphorylierungssignale für Serin 473 detektiert, dagegen war die Akt-Phosphorylierung von Threonin 308 sehr gering.

Neben den Zelllinien wurde die *pAkt*-Proteinexpression auch in *de novo* ALL-Zellen untersucht. In mehr als der Hälfte der Patientenproben konnte eine Aktivierung von Akt nachgewiesen werden.
Die Ergebnisse deuten darauf hin, dass der PI3K/Akt-Signalweg an der Pathogenese der ALL beteiligt sein könnte. Inwiefern eine aberrante Akt-Aktivierung den Reifungsgrad der ALL beeinflusst, konnte aufgrund der niedrigen Patientenanzahl nicht analysiert werden.

Diskussion

Die vorliegenden Ergebnisse und die zitierten Studien deuten darauf hin, dass der PI3K/Akt-Signalweg in der ALL häufig aktiviert ist und eine Rolle in der Leukämogenese spielt. Mutationen und chromosomale Aberrationen sind häufige Prozesse in der ALL und mit einer veränderten Genexpression verbunden, die zur Dysregulationen in der Signalkaskade führen kann. Während in der T-ALL der Verlust von PTEN die häufigste Ursache für die aberrante Aktivierung des PI3K/Akt-Signalweges darstellt, sind die Ursachen für PI3K/Akt Dysregulationen in der B-ALL noch unklar.

4.2 Die Bedeutung der PI3K- und mTOR-Inhibition in ALL-Zellen

Darüber hinaus wurde in einem weiteren Teilbereich der Arbeit untersucht, inwiefern Schlüsselmoleküle des PI3K/Akt-Signalweges therapeutische Zielgene in der ALL darstellen. Es wurden vier verschiedene Inhibitoren analysiert, die teilweise noch in präklinischen Studien untersucht werden. Die Substanzen unterscheiden sich in ihrer chemischen Struktur und weisen unterschiedliche Inhibitionskonzepte auf.

mTOR, CDK2, Pim 1 und GSK3α und GSK3β in ihrer Aktivität gehemmt werden [101, 102, 99]. Dadurch ist eine Beurteilung der Ergebnisse schwierig. Dennoch konnte mit Ly294002 gezeigt werden, dass die PI3K/Akt-Aktivität in ALL-Zellen beeinflusst werden kann.

Der mTOR-Inhibitor RAD001 zeigte ebenfalls antiproliferative Effekte bei den B- und T-ALL-Zellen, wobei eine stärkere Wirkung des Hemmstoffes bei den T-ALL-Zellen beobachtet wurde. Im Gegensatz zu den B-ALL-Zellen wurde bei den T-ALL-Zellen Jurkat und MOLT4 ein Zellzyklusarrest in der G0/G1-Phase sowie eine verminderte Cyclin D3- und CDK4-Expression nachgewiesen. Eine Induktion der Apoptose ist durch die Behandlung von RAD001 nicht eingetreten.

Die vorliegenden Ergebnisse stehen im Einklang mit anderen Studien, die ebenfalls nach einer mTOR-Hemmung einen Zellzyklusarrest in der G0/G1-Phase beobachten und wenig apoptotische Zellen nachweisen konnten [162-164].

In jüngster Zeit wurden Hemmstoffe entwickelt, die gleichzeitig zwei oder mehrere Kinasen blockieren. Dadurch könnte die Wirksamkeit der Inhibitoren erhöht werden und mögliche Rückkopplungsreaktionen durch Reaktivierung gehemmter Kinasen vermieden werden, die insbesondere nach einer Inhibition von mTOR zu beobachten sind. In der vorliegenden Arbeit konnte gezeigt werden, dass eine mTOR-Hemmung durch RAD001 die Aktivität von Akt erhöht. Eine zusätzliche PI3K-Inhibition könnte diesen Effekt reduzieren oder sogar verhindern.

In der vorliegenden Arbeit wurden BEZ235-Konzentrationen zwischen 1 nM und 100 nM verwendet. Es konnte gezeigt werden, dass die mTOR-Substrate p70-S6K und 4EBP-1 bei den SEM und Jurkat-Zellen in ihrer Phosphorylierung vollständig reduziert wurden. Dagegen war die Inhibition von Akt nicht stabil. So wurde nach einer Hemmung von Akt eine Zunahme der Akt-Phosphorylierung in Abhängigkeit von der Zeit und Konzentration beobachtet. Obwohl in der Studie von Maira et al. mittels Enzymaktivitätsassays dokumentiert wurde, dass die PI3K-Kinaseaktivität bei einer kleineren BEZ235-Konzentration (IC50: 4 nM) blockiert wird als die mTOR-Kinaseaktivität (IC50: 20 nM), wurde in der vorliegenden Arbeit eine stabile mTOR-Hemmung, jedoch keine dauerhafte Akt-Inhibition nachgewiesen [110]. Die Untersuchungen zur Kinaseaktivität wurden mit einem rekombinanten Substrat, dem Enzym und dem Inhibitor durchgeführt und können sich demzufolge von den Beobachtungen in viablen Zellen unterscheiden. Die Aktivität der Akt-Kinase kann einerseits durch den mTORC2-Komplex und andererseits durch die p-p70-S6K beeinflusst werden. Während der mTORC2-Komplex Akt direkt phosphorylieren kann, besteht über die phosphorylierte Form der p70-S6K einen Rückkopplungsmechanismus bei dem IRS-1 und die Aktivität der PI3K blockiert werden [173].
4. Diskussion

4.3 Effekte des Multikinaseinhibitors Sorafenib auf ALL-Zellen

4. Diskussion

4.4 Differentielle Genexpression durch Sorafenib

Neben der verstärkten ATF5-Expression konnte ebenfalls gezeigt werden, dass Sorafenib die Expression von DDIT3, CEBPB und ASNS erhöhte. Diese Gene sind Zielgene der Transkriptionsfaktoren ATF4 und ATF5, die während der UPR induziert werden [209, 206]. TRIB3 ist ebenfalls ein ER-Stress induzierbares Gen und interagiert mit ATF4 und DDIT3 (CHOP) [210]. So wurde beobachtet, dass eine Überexpression von CHOP die Expression der TRIB3-mRNA erhöhte [211]. TRIB3 wird auch als Pseudokinaseinhibitor von Akt bezeichnet, da es direkt an Akt bindet und die Kinaseaktivität von Akt blockiert [212]. Ebenso konnten Bromati et al. nachweisen, dass die Expression von TRIB3 mit einer verminderten Akt-Phosphorylierung korreliert [213].

In einer aktuellen Arbeit von Ghosh et al. konnte gezeigt werden, dass ER-Stress in Prostata- und Leberzellkarzinom-Zellen mit einer Aktivierung der VEGFA-Expression verbunden war. In ihren
Untersuchungen stellten sie fest, dass die VEGFA-Transkription unabhängig von dem Transkriptionsfaktor HIF1α erfolgte, aber durch die ER-Stress-Regulatoren IRE1α, PERK, und ATF6 eingeleitet wurde [216]. In der vorliegenden Arbeit wurde ebenfalls ein Anstieg der VEGFA-mRNA-Expression nachgewiesen, jedoch war diese hier nicht mit einer erhöhten VEGFA-Proteinexpression verbunden, wie sie in der Arbeit von Ghosh et al. beschrieben wurde [216].

Häufig ist ER-Stress mit oxidativen Stress und der Generation von reaktiven Sauerstoffspezies (ROS) verbunden. FoxO-Transkriptionsfaktoren werden durch oxidativen Stress aktiviert und induzieren die Expression von Genen, die an DNA-Reparaturmechanismen (GADD45), an der Entgiftung von ROS (FeSOD, MnSOD und Katalase) und am Zellzyklusarrest beteiligt sind. In der vorliegenden Arbeit konnte gezeigt werden, dass sich die Phosphorylierung von FoxO3A durch eine Behandlung mit Sorafenib reduzierte und somit die Aktivität des Transkriptionsfaktors induziert wurde.

Zu den erhöhten mRNA-Transkripten nach einer 24-stündigen Inkubation mit Sorafenib gehörten auch die Histonclustergene HIST1H1D, HIST1H3F, HIST1H2B und HIST1H2F. Dabei kodieren die Gene HIST1H1D für das Histon H1.3, HIST1H3F und HIST1H2B für das Histon H3.1 sowie HIST1H2F für das Histon H2B. Histone sind DNA-bindende Proteine, die am Aufbau des Chromatins beteiligt sind und für eine kondensierte Struktur der DNA im Zellkern sorgen. Insgesamt sind fünf verschiedene Histontypen bekannt. Dabei bilden jeweils zwei Moleküle von H2A, H2B, H3 und H4 einen Nukleosomenkern, um den sich die DNA in ca. zwei großen Windungen legt. Das Histon H1 wird auch als Linkerhiston bezeichnet und befindet sich außerhalb des Nukleosomenkerns. Es überdeckt die Ein- und Austrittsstelle der DNA und stabilisiert das Nukleosom [226]. Die Einbindung der DNA in Nukleosome führt zur Repression der Transkription, da Transkriptions- und Initiationsfaktoren nicht an ihre DNA-Erkennungsmotive binden können. Die Konzentration der Histon-mRNA verändert sich während des Zellzyklus und kann zwischen dem Faktor 30-50 variieren [227]. Dabei ist die Histonsynthese fest an die DNA-Replikation gebunden [228]. Während des Zellzyklus wird die Expression der Histon-mRNA über transkriptionale und posttranskriptionale Prozesse reguliert. So wird beim Übergang von der G1- in die S-Phase die Transkriptionsrate der Histone um den Faktor 3-5 erhöht [229]. In der vorliegenden Arbeit konnte gezeigt werden, dass eine Behandlung mit Sorafenib mit einem G0/G1-Zellzyklusarrest assoziiert war. Unklar ist, warum die Expression einiger Histontranskripte in den behandelten Zellen gegenüber den unbehandelten Zellen erhöht war. Bei einer Proliferationshemmung treten Modifikationen zwischen Protein-Protein- bzw. zwischen Protein-DNA-Interaktionen an den regulatorischen Elementen der Histonpromotoren auf, die zu einer verminderten Histonsynthese führen [230]. Möglicherweise könnte die Behandlung mit Sorafenib diese Interaktionen verändern und eine gesteigerte Transkriptionsaktivität der Histongene einleiten. Da die Histonmenge neben der gesteigerten Transkription auch durch die Stabilität ihrer mRNA bestimmt wird, könnte ebenso eine verlängerte Halbwertszeit der Histon-mRNA für die erhöhten Histontranskripte ursächlich sein. Die Histon prä-mRNA-Moleküle besitzen an ihrem 3`Ende keinen Poly-A-Schwanz, sondern sind durch eine Haarnadelstruktur gekennzeichnet [229]. Diese wird während der S-Phase durch eine Endonuklease abgespalten. Dadurch wird der Abbau der mRNA verhindert und die Halbwertszeit der Histon-mRNA erhöht [227]. Einen essentiellen Regulator, der an der prä-mRNA-Histon-Prozessierung beteiligt ist, stellt das SLBP-Protein (Stemloop binding protein) dar [231]. Das Protein wird in der S-Phase etwa 15 mal höher exprimiert als in der G1-Phase und bindet an die Haarnadelstruktur der Histon-prä-mRNA. Am Ende der S-Phase wird das Protein

Eine Behandlung mit Sorafenib führte ebenfalls zur verminderten Expression von einigen Genen. Wie bereits diskutiert, sind zelluläre Stressbedingungen mit einer reduzierten RNA-Prozessierung und einer verminderten Proteinsynthese verbunden. Demzufolge wurden Gene identifiziert deren Proteine, am Metabolismus (LDLR, INSIG1, FADS1, GLDC, FDFT1, ACAT2 und HMGCR), an der Transkription (EGR1, MYC, UHRF1, CBFA2T3, CALR und ZFP36L2), an der mRNA-Prozessierung (SYNCRIP und SFR2), an der Signaltransduktion (PTPN6 und TAX1BP3) sowie am zellulären Stress (DUSP1, HSPA1A, HSPA8 und HSP70) beteiligt sind.

Im Folgenden werden die Transkripte EGR1, MYC, CBFA2T3 und ZFP36L2 diskutiert, diese zeigten entweder in SEM und RS4;11 oder nur in den Jurkat-Zellen ein verändertes Genexpressionsprofil nach der Inkubation mit Sorafenib.

Aktivierung von ERK, demzufolge wurde durch Sorafenib die EGR1-Expression in Jurkat-Zellen nicht verändert.

In den behandelten Jurkat-Zellen wurde die Synthese eines weiteren Transkriptes reduziert. CBFA2T3 ist ein transkriptionelles regulatorisches Protein und gehört neben CBFA2T1 und CBFA2T2 zur ETO-Familie. Diese Proteine unterdrücken die Expression von Genen, in dem sie nicht direkt an die DNA, sondern an Transkriptionsfaktoren wie z.B. BCL6, PLZF, Gfi-1 und ZNF652 binden [276]. Interessanterweise sind alle identifizierten Bindungspartner von CBFA2T3 mit der Tumorgenese assoziiert. So führt die Interaktion zwischen CBFA2T3 und ZNF652 zur Blockierung von Genen, die eine Rolle bei der Onkogenese von Brustkrebs spielen [277]. Das BCL6 (B-cell lymphoma 6 protein)-Protein ist häufig bei diffusen großzelligen Lymphomen mutiert [278]. Ebenso führt die Translokation t(11;17), bei der der Genlocus von PLZF beteiligt ist, zu einer Promyelozytenleukämie [279]. Das Zinkfingerprotein Gfi-1 (Growth factor independence 1) ist neben der Entwicklung von neuroendokrinen Zellen, sensorischen Neuronen, auch an der Differenzierung von B- und T-Zellen beteiligt [280]. Zudem belegen einige Studien, dass CBFA2T3 die Zellproliferation und Differenzierung während der Erythropoese koordiniert [281, 282]. Inwiefern eine Verbindung von CBFA2T3 und Gfi-1 die Lymphopoese beeinflusst, ist gegenwärtig noch unklar.

Des Weiteren wurde eine 2,3-fache Reduktion des ZFP36L2-Transkriptes nach der Behandlung mit Sorafenib in den Jurkat-Zellen detektiert. Das Gen kodiert für das Zinkfingerprotein TIS11D und gehört zur TIS11-Proteinfamilie, bestehend aus TIS11, TIS11B und TIS11D. Die Mitglieder dieser Familie binden an Adenin- und Uridin-reichen Sequenzen (ARE) der mRNA und verhindern die Expression ihrer Zielproteine, indem sie die Translation hemmen oder den Abbau der mRNA
4. Diskussion

4. Diskussion

4.5 Wirkung von Kinaseinhibitoren in der Kombination mit Chemotherapeutika

In der Behandlung von Tumorerkrankungen werden Substanzen oft nicht als Einzeltherapie eingesetzt, sondern häufig in der Kombination [295, 296]. Hierbei soll durch die Gabe zweier Medikamente eine Wirkungsverstärkung im Vergleich zu den Einzelwirkungen der Medikamente erzeugt werden. Dabei ist das Ziel, die Dosis der Zytostatika möglichst gering zu halten, um einerseits Nebenwirkungen während der Therapie zu reduzieren und andererseits verschiedene zytostatische Ansätze zu nutzen. Hierbei ist die Sequenz der Gaben vom Wirkmechanismus der Zytostatika abhängig. Für BEZ235 sind diesbezüglich noch keine Daten verfügbar, die die bestmögliche Positionierung in der Sequenz festlegen.

inkubierte die T-ALL-Zelllinien Jurkat, MOLT4 und RPMI-8402 mit verschiedenen BEZ235- und AraC-Konzentrationen zwischen 12,5 und 800 nM für 24 h. In ihren Untersuchungen konnten sie ebenfalls zeigen, dass die Zellen eine synergistische Wirkung aufwiesen [177]. In der Studie von Baumann et al. wurden Multiple Myelom-Zellen mit BEZ235 und Doxorubicin behandelt und additive Effekte nachgewiesen. Dabei applizierten sie die Substanzen nicht simultan, sondern inkubierten die Zellen mit BEZ235 bereits 1 h vor der Doxorubicin Gabe [111]. Jedoch führten sie keinen Vergleich zwischen der simultanen und sequentiellen Gabe beider Substanzen durch.

In verschiedenen klinischen Studien konnte bereits gezeigt werden, dass Sorafenib mit Zytostatika erfolgreich als Kombinationstherapie angewendet wurde. Zu den Studiengruppen zählten Patienten, die am Myelom, nichtkleinzelligem Lungenkarziom, Leberzellan Karzinom und Magenkarzinom erkrankt waren [300-304]. Ebenso wurde Sorafenib in einer Phase I/II Studie in der Kombination mit Idarubicin und AraC an 61 AML-Patienten untersucht, die entweder ein Rezidiv entwickelten oder unempfänglich auf die initiale Induktionschemotherapie reagierten [305]. In der Phase I-Studie erhielten die Patienten zunächst intravenöse Gaben des AraCs (1,5 g/m² kontinuierlich über 4 Tage) und des Idarubicins (12 mg/m² einmal täglich für 1 h über 3 Tage), bevor die Therapie mit Sorafenib begonnen wurde. Patienten, die eine komplette Remission erreichten, bekamen im Anschluss im Abstand von 4-6 Wochen fünf Therapiezyklen mit AraC (0,75 g/m² kontinuierlich über 3 Tage), Idarubicin (8 mg/m² einmal täglich für 1 h über 2 Tage) und Sorafenib (zweimal täglich 400 mg) für 28 Tage. Die Ergebnisse dieser Studie belegen, dass etwa 75 % der Patienten eine komplette Remission erreichten. Dabei zeigten Patienten mit FLT3-Mutationen ein besseres Therapieansprechen als Patienten ohne genetische Veränderungen im FLT3-Gen. Insgesamt lag die Überlebenswahrscheinlichkeit der behandelten Patienten nach einem Jahr bei 74 % [305]. Größere Studien an AML-Patienten werden gegenwärtig durchgeführt, in denen Sorafenib als Monotherapie und in der Kombination mit verschiedenen Zytostatika untersucht wird.

Zellen nach einer Behandlung mit Inhibitoren im Ruhezustand befinden [307]. Im Gegensatz dazu zeigten Janus et al., dass die apoptotische Wirkung in Rapamycin vorbehandelten AML-Zellen erhöht wird, wenn AraC 24 h später appliziert wurde [308]. Untersuchungen in T-Zell Lymphomen ergaben, dass eine simultane Behandlung mit RAD001 und Doxorubicin sowie eine Vorbehandlung mit Doxorubicin, synergistische Wirkungen aufwiesen. Dagegen stellte sich in der gleichen Arbeit eine verzögerte Gabe von Doxorubicin nach RAD001 als antagonistisch heraus [309].

4. Diskussion

5. Zusammenfassung und Ausblick

Der PI3K/Akt-Signalweg nimmt eine Schlüsselrolle in der Regulation Lebensnotwendiger Vorgänge in der Zelle ein und ist auch für die Hämatopoese bedeutsam. Eine Fehlregulation dieser Signalkaskade verändert die Entwicklung und Differenzierung der Blutzellen und kann die Entstehung von Leukämien begünstigen.

Die vorliegende Arbeit beschäftigte sich mit der Rolle des PI3K/Akt-Signalweges in der ALL. Hierbei wurden Schlüsselproteine dieser Signalkaskade sowohl an etablierten ALL-Zelllinien als auch an \textit{de novo} ALL-Zellen analysiert. Ferner wurde in verschiedenen Experimenten die Wirksamkeit der Inhibitoren Ly294002, RAD001, BEZ235 und Sorafenib, welche verschiedene Schlüsselproteine des Signalweges hemmen, geprüft. Dazu wurden das Wachstumsverhalten sowie Veränderungen in der Gen- und Proteinexpression der ALL-Zellen untersucht. Hierbei konnte demonstriert werden, dass der PI3K/Akt-Signalweg in den ALL-Zelllinien unterschiedlich aktiviert ist. Mindestens eine phosphorylierte Form von Akt wurde in 64,3 % der \textit{de novo} ALL-Proben detektiert.

Die Ergebnisse der vorliegenden Arbeit haben gezeigt, dass eine Inhibition des PI3K/Akt-Signalweges einen sinnvollen und effektiven Ansatz für die Behandlung der ALL-Zellen darstellt.
6. Literaturverzeichnis

6. Literaturverzeichnis

6. Literaturverzeichnis

Clinical trials: PI3K, Akt and mTOR inhibitors (http://www.clinicaltrials.gov, abgerufen am 02.08.2011)

6. Literaturverzeichnis

6. Literaturverzeichnis

6. Literaturverzeichnis

Whitfield ML, Zheng LX, Baldwin A, Ohta T, Hurt MM, Marzluff WF. Stem-loop binding protein, the protein that binds the 3' end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. *Mol Cell Biol.* 2000; 20:4188-98.

6. Literaturverzeichnis

Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. *Blood*. 2004; 104:1145-50.

7. Anhang

7.1 Material

7.1.1 Chemikalien

- 6-Aminohexansäure: Roth
- 2-Propanol: JT Baker
- Acrylamidlösung 30 %: Roth
- Agarose: Biozym
- Ammoniumchlorid: Merck
- Ammoniumpersulfat: Sigma
- BEZ235: Novartis
- Bromphenolblau: Roth
- BSA: Serva
- Borsäure: Roth
- β-Mercaptoethanol: Merck
- Complete-Mini EDTA free: Roche
- Cytarabin (AraC): Cell pharm
- Dexamethason: Mibe GmbH
- Doxorubicin: Cell pharm
- DMSO: Sigma Aldrich
- dNTP: Pharmacia Biotech
- EDTA: Merck
- Ethanol: Zentralapotheke Universität Rostock
- Ethidiumbromid: Stratagene
- Glycerin: Merck
- Ly294002: Cell Signaling
- Methanol: Labscan Analytical Sciences
- Milchpulver: Roth
- Natriumchlorid: Merck
- Natriumhydroxid: Merck
- NVP-BEZ235: Novartis
- PBS, Pulver: Biochrom
- PhosSTOP: Roche
- Propidiumiodid: Sigma Aldrich
- RAD001: Novartis
<table>
<thead>
<tr>
<th>7. Anhang</th>
</tr>
</thead>
</table>

Salzsäure	Zentralapotheke
SDS	Serva
Sorafenib	Bayer Healthcare
TEMED	Sigma
Tris Base	Roth
Triton X-100	Sigma
Trypanblau	Sigma

7.1.2 Kits und Fertiglösungen

2 x qPCR Master Mix Plus dNTP	Eurogentec
Annexin-V-PE-Apoptosekit	BD Pharmingen
Biocoll	Biochrom
DNA-Längenstandard, Low Range	Fermentas
Genomic DNA Isolation NucleoBond CB 100	Macherey-Nagel
MinElute PCR Purification	Qiagen
Ponceau S	Serva
Proteinstandard, Kaleidoskope	Biorad
Random-Primer	Invitrogen
RNeasy Mini Kit	Qiagen
Rotiphorese NF- Acrylamid/ Bis -Lösung	Roth
Stripping Buffer	Thermo Scientific
Taqman Genexpressionassay für VEGFA	Applied Biosystems
VEGFA-ELISA	Abnova
WST-1-Reagenz	Roche

7.1.3 Nährmedien und Antibiotika

alpha-MEM	Biochrom
HSA	Octapharma
Iscove`s MDM mit L-Glutamin	PAA Laboratories
FKS, hitzeinaktiviert	Gibco
Penicillin-Streptomycin (10000 U/ml)	Gibco
RPMI-Medium-1640	Biochrom
7.1.4 Enzyme

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq-Polymerase</td>
<td>Pharmacia Biotech</td>
</tr>
<tr>
<td>RNA-free DNase Set</td>
<td>Qiagen</td>
</tr>
<tr>
<td>Superscript II Reverse Transkriptase Kit</td>
<td>Invitrogen Life Technologies</td>
</tr>
<tr>
<td>Superscript Choice System</td>
<td>Invitrogen Life Technologies</td>
</tr>
</tbody>
</table>

7.1.5 Antikörper

Western Blot

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Klon</th>
<th>Wirt</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Akt (Thr308)</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p-Akt (Ser473)</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Akt</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>P-FoxO3a (Thr32)</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Upstate</td>
</tr>
<tr>
<td>FoxO3a</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Upstate</td>
</tr>
<tr>
<td>p-p70 S6K(Thr389)</td>
<td>monoklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p70 S6K</td>
<td>monoklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p-4EBP1 (Ser65)</td>
<td>monoklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p-4EBP1 (Th70)</td>
<td>monoklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>4EBP1</td>
<td>monoklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>PTEN</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p-GSK3β (Ser9)</td>
<td>monoklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>GSK3β</td>
<td>monoklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Cleaved Caspase-3 (Asp175)</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Cleaved Caspase-7 (Asp198)</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Caspase-7 (Asp198)</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Cleaved PARP (Asp214)</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>PARP</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Cyclin D3</td>
<td>polyklonal</td>
<td>Maus</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p27 Kip1</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>p15 INK4B</td>
<td>polyklonal</td>
<td>Kaninchen</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>CDK4</td>
<td>polyklonal</td>
<td>Maus</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>GAPDH</td>
<td>monoklonal</td>
<td>Maus</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>anti-Maus</td>
<td>polyklonal</td>
<td>Ziege</td>
<td>Zymed</td>
</tr>
<tr>
<td>anti-Kaninchen</td>
<td>polyklonal</td>
<td>Ziege</td>
<td>Cell Signaling</td>
</tr>
</tbody>
</table>
Durchflusszytometrie

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Fluorochrom</th>
<th>Klon</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG1</td>
<td>FITC</td>
<td>X40</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>IgG1</td>
<td>PE</td>
<td>X40</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD2</td>
<td>PE</td>
<td>S5.2</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD3</td>
<td>PE</td>
<td>SK7</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD5</td>
<td>PE</td>
<td>L17F12</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD7</td>
<td>PE</td>
<td>M-T701</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD19</td>
<td>FITC</td>
<td>4G7</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD34</td>
<td>FITC</td>
<td>8G12</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>CD45</td>
<td>FITC</td>
<td>2D1</td>
<td>BD Biosciences</td>
</tr>
</tbody>
</table>

7.1.6 Geräte und Verbrauchsmaterialien

Geräte

- ABI Prism 7000 SDS: Applied Biosystems
- Agarosegelkammer: Biorad
- BD FACSCalibur: Becton & Dickinson
- Brutschrank, BB6220 Cu: Heraeus Instruments
- C 1000 Thermal Cycler: Biorad
- Elektro-Blotter, Fastblot B34: Biometra
- Elektrophoresekammer Mini-Protean Tetra Cell: Biorad
- ELISA Reader, Anthos htIII: Anthos Mikrosysteme
- Geldokumentationssystem: Herolab
- Heizblock, 2099-DA: Liebisch
- Image Station 440: Kodak
- Kühlshrank: Liebherr
- Kühltruhe, -20 °C: Electrolux
- Mikroskop, Eclipse E 600: Nikon
- Mikroskop, Eclipse TE 200: Nikon
- Multipette: Eppendorf
- Nanodrop, ND 100: peQlab
- Neubauerzählkammer: Blau Brand
- PCR Cycler, PTC 200, Peltier Thermal Cycler: MJ Research
- pH-Meter: Mettler Toledo
- Schüttler: Heidolph Instruments
- Sonoplus Homogenisator: Bandelin
7. Anhang

Sterile Werkbank, Herasafe
Heraeus Instruments

Stromversorgungsgerät, Powerpac 300
Biorad

Stromversorgungsgerät, Powerpac 3000
Biorad

Vortexer
Uni EQUIP

Wasserbad
GFL

Zentrifuge, Beckman Avanti 30
Beckman

Zentrifuge, Hettich, Rotina 35 R
Hettich

Zentrifuge, Eppendorf 5418
Eppendorf

Materialien

6- und 24-Lochplatten
Nunc

96-Mikrotiterplatten, steril (für Zellkultur)
Greiner Bio-one

96-Mikrotiterplatten, unsteril (für Proteinbestimmung)
Greiner Bio-one

96-Mikrotiterplatten (für PCR)
Applied Biosystems

Chromatographiepapier, 3MM CW
Whatman

Combitips für Multipette
Eppendorf

Einfrierbox
Nalgene

Einweg-Pipetten (2, 5, 10, 25 ml)
Greiner Bio-one

Eppendorf-Reaktionsgefäße (0,5, 1,5 und 2 ml)
Eppendorf

FACS-Röhrchen
BD Falcon

Kryoröhrchen
Nunc

Pipettenspitzen (10 µl, 100 µl 1000 µl)
Eppendorf

Pipettenspitzen (10 µl, 100 µl 1000 µl)
Greiner bio-one

Pipettenspitzen mit Filter (10 µl, 100 µl 1000 µl)
Biozym

PVDF-Membran
Amersham

Zentrifugenröhrchen (15 ml und 50 ml)
Greiner bio-one

Zellkulturlaschen (25 cm², 75 cm² und 175 cm²)
Nunc
7.1.7 Puffer und Lösungen

<table>
<thead>
<tr>
<th>Puffer</th>
<th>Zusammensetzung</th>
</tr>
</thead>
</table>
| 0,5 x TBE | 0,04 M Tris Base
 0,04 M Borsäure
 0,5 M EDTA (pH 8) |
| 1 x TBST (pH 8,0) | 0,15 M Natriumchlorid
 0,01 M Tris Base
 0,05 vol % Triton X 100 |
| 2 x Probenpuffer | 0,01 M SDS
 22 vol % Glycerin
 0,005 M EDTA (pH 8)
 25 vol % Sammelgelpuffer
 1 Spatelspitze Bromphenolblau |
| Anode I-Puffer | 0,03 M Tris Base
 20 vol % Methanol |
| Anode II-Puffer | 0,3 M Tris Base
 20 vol % Methanol |
| Elektrophoresepuffer | 0,075 M Tris Base
 0,5 M Glycin
 0,01 M SDS |
| Kathodenpuffer | 0,25 M Tris Base
 0,04 M 6-Aminohexansäure
 20 vol % Methanol |
| RIPA-Puffer | 0,05 M Tris Hcl (pH 7,4)
 0,15 M NaCl
 0,1 vol % vol SDS
 1 vol % NP40 |
| Sammelgelpuffer (pH 6,8) | 0,5 M Tris Base
 0,01 M SDS |
| Trenngelpuffer (pH 8,8) | 1,5 M Tris Base
 0,01 SDS |
SDS Polyacrylamidgеле

Sammelgel

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua dest.</td>
<td>5,1 ml</td>
</tr>
<tr>
<td>Sammelgelpuffer</td>
<td>2,1 ml</td>
</tr>
<tr>
<td>Acrylamidlösung 30%</td>
<td>1,0 ml</td>
</tr>
<tr>
<td>10 % APS</td>
<td>30 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

Trenngel

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>8 %</th>
<th>15 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua dest.</td>
<td>4,7 ml</td>
<td>2,4 ml</td>
</tr>
<tr>
<td>Trenngelpuffer</td>
<td>2,6 ml</td>
<td>2,6 ml</td>
</tr>
<tr>
<td>Acrylamidlösung 30%</td>
<td>2,7 ml</td>
<td>5,0 ml</td>
</tr>
<tr>
<td>10 % APS</td>
<td>50 µl</td>
<td>50 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>10 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>Zelllinie</td>
<td>Typ</td>
<td>Herkunft</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>SEM</td>
<td>Vorläufer-B-ALL</td>
<td>PBMC eines 5-jährigen Mädchens im Rezidiv</td>
</tr>
<tr>
<td>REH</td>
<td>Vorläufer-B-ALL</td>
<td>PBMC eines 15-jährigen Mädchens</td>
</tr>
<tr>
<td>RS4;11</td>
<td>Vorläufer-B-ALL</td>
<td>KM einer 32-jährigen Frau im Rezidiv</td>
</tr>
<tr>
<td>Jurkat</td>
<td>T-ALL</td>
<td>PBMC eines 14-jährigen Mädchens</td>
</tr>
<tr>
<td>MOLT4</td>
<td>T-ALL</td>
<td>PBMC eines 19-jährigen Mannes</td>
</tr>
<tr>
<td>DOGKIT</td>
<td>Burkitt-Lymphom</td>
<td>PBMC eines 57-jährigen Mannes im 2. Rezidiv</td>
</tr>
<tr>
<td>DOGUM</td>
<td>B-Zell-NHL (Follikular zentroblastisch)</td>
<td>Pleuraflüssigkeit einer 49-jährigen Frau</td>
</tr>
<tr>
<td>GUMBUS</td>
<td>Burkitt-Lymphom</td>
<td>Liquor eines 28-jährigen Mannes im 2. Rezidiv</td>
</tr>
</tbody>
</table>
7.1.8 Ergänzende Abbildungen

Abbildung 45: Untersuchung zur ERK-Expression nach der Behandlung mit BEZ235
Dargestellt ist ein repräsentativer Western Blot nach der Inkubation mit DMSO (D) 1, 10 und 100 nM BEZ235 zu verschiedenen Zeitpunkten der Zelllinien SEM und Jurkat. Untersucht wurde die Expression von pERK und Gesamt-ERK. Als Ladungskontrolle wurde GAPDH mitgeführt.

Abbildung 46: BEZ235 in der Kombination mit AraC
Die ALL-Zelllinien wurden für 72 h mit 2,5 μM AraC (RS4;11), 0,125 μM Arac (SEM), 0,05 μM AraC (Jurkat und MOLT4) sowie mit 10 nM BEZ235 allein oder in Kombination behandelt. Dabei wurde das BEZ235 entweder gleichzeitig, 24 h vor der Inkubation mit AraC (BEZ + AraC-24 h) oder 24 h nach der Inkubation mit AraC (AraC + BEZ-24 h) den Zellen zugeführt. Dargestellt sind die Mittelwerte mit Standardabweichung von drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.
Abbildung 47: BEZ235 in der Kombination mit Doxorubicin.

Die ALL-Zelllinien wurden für 72 h mit 25 nM Doxo sowie mit 10 nM BEZ235 allein oder in Kombination behandelt. Dabei wurde das BEZ235 entweder gleichzeitig, 24 h vor (BEZ + Doxo-24 h) der Inkubation oder 24 h nach der Inkubation mit Doxo (Doxo + BEZ-24 h) den Zellen zugeführt. Dargestellt sind die Mittelwerte mit Standardabweichung von drei unabhängigen Experimenten. Die Signifikanz ($p < 0,05$) ist mit * gekennzeichnet.

Doxo: Doxorubicin
Abbildung 48: BEZ235 in der Kombination mit Dexamethason

Die ALL-Zelllinien wurden für 72 h mit 0,1 µM Dexa (RS4;11), 1 µM Dexa (SEM), 10 µM Dexa (Jurkat und MOLT4) sowie mit 10 nM BEZ235 alleine oder in Kombination behandelt. Dabei wurde das BEZ235 entweder gleichzeitig, 24 h vor der Inkubation mit Dexa (BEZ + Dexa-24 h) oder 24 h nach der Inkubation mit Dexa (Dexa + BEZ-24 h) den Zellen zugeführt. Dargestellt sind die Mittelwerte mit Standardabweichung von drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.

Dexa: Dexamethason
Abbildung 50: Sorafenib in der Kombination mit AraC
Die ALL-Zelllinien wurden für 72 h mit 2,5 µM AraC (RS4;11), 0,125 µM Arac (SEM), 0,05 µM AraC (Jurkat und MOLT4) sowie mit 3,65 µM Sora allein oder in Kombination behandelt. Dabei wurde das Sorafenib entweder gleichzeitig, 24 h vor der Inkubation mit AraC (Sora + AraC-24 h) oder 24 h nach der Inkubation mit AraC (AraC + Sora-24 h) den Zellen zugeführt. Dargestellt sind die Mittelwerte mit Standardabweichung von drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.

Sora: Sorafenib
Abbildung 51: Sorafenib in der Kombination mit Doxorubicin

Die ALL-Zelllinien wurden für 72 h mit 25 nM Doxo sowie mit 3,65 µM Sora alleine oder in Kombination behandelt. Dabei wurde das Sora entweder gleichzeitig, 24 h vor (Sora + Doxo 24-h) der Inkubation oder 24 h nach der Inkubation mit Doxo (Doxo + Sora 24-h) den Zellen zugeführt. Dargestellt sind die Mittelwerte mit Standardabweichung von drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.

Sora: Sorafenib; Doxo: Doxorubicin
Abbildung 52: Sorafenib in der Kombination mit Dexamethason

Die ALL-Zelllinien wurden für 72 h mit 0,1 µM Dexa (RS4;11), 1 µM Dexa (SEM), 10 µM Dexa (Jurkat und MOLT4) sowie mit 3,65 µM Sora allein oder in Kombination behandelt. Dabei wurde das Sora entweder gleichzeitig, 24 h vor der Inkubation mit Dexa (Sora + Dexa-24 h) oder 24 h nach der Inkubation mit Dexa (Dexa + Sora-24 h) den Zellen zugeführt. Dargestellt sind die Mittelwerte mit Standardabweichung von drei unabhängigen Experimenten. Die Signifikanz (p < 0,05) ist mit * gekennzeichnet.

Dexa: Dexamethason
8. Selbstständigkeitserklärung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen als solche kenntlich gemacht habe.

Schwaan, den 02.02.2012

Catrin Schult
9. Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. med. Christian Junghanß für die Bereitstellung des interessanten Themas, für seine hilfreichen Ratschläge und Anregungen sowie für die freundliche Zusammenarbeit, sein Vertrauen und natürlich seinen Optimismus.

Ebenso danke ich Prof. Luca Neri und seinem Team für die gemeinsame Kooperation im Rahmen des Vigoni-Projektes. In diesem Zusammenhang möchte ich mich insbesondere bei Il Presidente, Rucki und TomTom für die schönen Momente und wohl unvergesslichen Erlebnisse während unserer Italien-Safaris bedanken.

Ganz herzlich möchte ich mich bei der gesamten Arbeitsgruppe "Leukämie und experimentelle Stammzelltransplantation" für das tolle Arbeitsklima und für die schöne gemeinsame Zeit bedanken. Insbesondere danke ich Anett Sekora, Anne Knüppel, Doreen Killian, Gudrun Knübel und Sandra Lange die mir nicht nur in technischen und methodischen Fragen mit Rat und Tat zur Seite standen. Ganz herzlich möchte ich mich auch bei Saskia Krohn für die Einführung in die Zytogenetik sowie für ihre tatkräftige Unterstützung bei der Immunfluoreszenz bedanken.

Ein großes Dankeschön geht auch an meine ehemaligen Kolleginnen Meike Dahlhaus und Kristin Fischer für die interessanten Diskussionen und Kommentare sowie für die hilfreichen Ratschläge und Anregungen nicht nur innerhalb sondern auch außerhalb des Labors.

Ebenfalls danke ich Dr. Koczan für die Beratung und Hilfe bei der Durchführung der Microarray-Analysen.

Änne Glass und Sonja Bold danke ich sehr für die hervorragende Hilfe und Unterstützung bei der statistischen Auswertung der Microarray-Experimente.