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Abstract 

 

The present thesis is mainly dedicated to heterocyclic and organofluorine compounds as 

well as C-nucleosides. Within the study new synthetic approaches to above-mentioned substances 

have been developed. In addition, the reactivity of newly synthesized products was investigated. A 

wide range of novel 2-(β-D-ribofuranosyl)pyrimidines including perfluoroalkyl-containing 

derivatives was synthesized by 3+3 cyclocondensation between 1-(β-D-ribofuranosyl)formamidine 

and various dielectrophiles, such as 3-(di)alkoxy- and 3-chloro-1-(polyfluoroalkyl)propen-1-ones, 

3-nitro- and 3-(phenylethynyl)chromones and (het)aryl acetylenic ketones. Reaction of 6-

arylamino-1,3-dialkyluracils with perfluorinated carboxylic acid anhydrides or chloroanhydrides in 

the presence of pyridine and subsequent cyclization in concentrated sulphuric acid gave the 

corresponding 1,3-dialkyl-5-(polyfluoroalkyl)-5-deazaalloxazines. The reactivity of these 

compounds towards nucleophilic and reducing reagents, such as acetophenone, nitromethane, 

potassium cyanide, indole, p-thiocresol, sodium cyanoborohydride and Hantzsch dihydropyridine, 

was studied. The nucleophilic addition, which takes place at position 5 of the 5-deazaalloxazine 

system, is in most cases irreversible and leads to 5,10-dihydro derivatives in good to excellent 

yields. An unexpected recyclization in the series of spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'-trione derivatives, carried out via a three-component reaction of (thio)barbituric acids, isatins 

and electron-rich aromatic amines, was observed. 

 

 

Kurzzusammenfassung 

 

Die vorliegende Arbeit ist vor allem den heterocyclischen und fluororganischen 

Verbindungen sowie C-Nukleosiden gewidmet. Im Rahmen der Studie wurden neue synthetische 

Zugänge zu oben erwähnten Substanzen entwickelt. Zusätzlich wurde die Reaktivität der neu 

synthetisierten Produkte untersucht. Eine breite Palette von neuen 2-(β-D-

ribofuranosyl)pyrimidinen einschließlich perfluoralkylhaltigen Derivaten wurde durch [3+3]-

Cyclokondensation zwischen 1-(β-D-Ribofuranosyl)formamidin und verschiedenen 

Dielektrophilen, wie 3-(Di)alkoxy- und 3-Chlor-1-(polyfluoralkyl)propen-1-onen, 3-Nitro- und 3-

(Phenylethinyl)chromonen und acetylenischen (Het)arylketonen, synthetisiert. Die Reaktion von 6-

Arylamino-1,3-dialkyluracilen mit perfluorierten Carbonsäureanhydriden oder chlorhaltigen 

Anhydriden in Gegenwart von Pyridin und nachfolgende Cyclisierung in konzentrierter 

Schwefelsäure ergibt die entsprechenden 1,3-Dialkyl-5-polyfluoralkyl-5-deazaalloxazine. Die 

Reaktivität dieser Verbindungen gegen nucleophile und reduzierende Reagenzien, wie 

Acetophenon, Nitromethan, Kaliumcyanid, Indol, p-Thiokresol, Natriumcyanoborhydrid und das 
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Hantzsche Dihydropyridin, wurde untersucht. Die nukleophile Addition, die an der 5-Position des 

5-Deazaalloxazinsystems stattfindet und in den meisten Fällen irreversibel ist, führt zu 5,10-

Dihydro-Derivaten in guten bis sehr guten Ausbeuten. Eine unerwartete Recyclisierung konnte bei 

der Dreikomponentenreaktion zwischen (Thio)barbitursäuren, Isatinen und elektronenreichen 

aromatischen Aminen beobachtet werden, durch die die Reihe der Spiro[indol-3,5'-pyrimido[4,5-

b]chinolin]-2,2',4'-trion-Derivate gebildet wurde. 
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General Introduction 

 

Nowadays organic chemistry is probably one of the most rapidly developing fields of natural 

science. Advances in supramolecular chemistry, stereoselective organocatalysis, oxidative coupling 

and C-H activation, decarboxylative coupling, as well as achievements in artificial photosynthesis 

and water photolysis together with other fascinating discoveries become hot research topics over the 

last few decades. 

Science exerts influence on life, and life in turn has an impact on science. For instance, 

organic chemistry is closely related with biology; understanding of intracellular processes enables, 

on the on hand, a treatment of various diseases, and on the other hand, serves as a source of 

inspiration for new synthetic methods. 

Since in 1964 George H. Heilmeier achieved the switching of colors by electric-field-

induced realignment of dichroic dyes, organic liquid crystals have been successfully used in LCD 

(Liquid Crystals Displays). The last ones tend to be replaced by monitors based on OLED (Organic 

Light-Emitting Diode) technology. Synthetic chemistry relationship to other branches of industry 

and science can be continued. 

A great number of organic compounds being of importance to mankind belong to the 

heterocyclic class, which forms by far the largest division of classical organic chemistry. 

Approximately 20 million chemical compounds had been identified by the end of the second 

millennium; about one half of them contain heterocyclic systems. Heterocycles occur in many 

natural products, such as alkaloids, vitamins, hormones, antibiotics, as well as pharmaceuticals, 

herbicides, dyes, and other products of technical importance (advanced materials, corrosion 

inhibitors, sensitizers, stabilizing agents, etc.).1 The majority of pharmaceutical products that mimic 

biologically active natural products are heterocycles as well. More than 90% of new drugs contain a 

heterocyclic moiety, and the interface between chemistry and biology is crossed by heterocyclic 

compounds.2 

Other important aspect of our research work is organofluorine chemistry. Thus, more than 

two thirds of newly synthesized compounds described within the present thesis contain fluorine. 

The last one is the most electronegative element with very tight bound valence electrons, which in 

turn results in low atomic polarizability and small size (van der Waals radius = 1.47 Å). The C-F 

binding energy ranges as high as 130 kcal/mol.3 

Fluorine can be highly favourable in pharmaceutical and agrochemical compounds. One or 

just a few atoms in an organic molecule can dramatically change its chemical and biological nature, 

including its stability, lipophilicity, and bioactivity. 

Manfred Schlosser, professor of chemistry at the Swiss Federal Institute of Technology, 

Lausanne, says: "Smuggling fluorine into a lead structure enhances the probability of landing a hit 
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almost 10-fold". Fluorinated drugs have made up approximately 5-15% of the total number of 

launched drugs worldwide over the past 50 years with a noticeable increase in the past decade.4 The 

trifluoroethylamine moiety, CF3CH(R)NHR', is known to be an amide isostere, while substituent 

fluorine itself is an analog of hydrogen. On the other hand, according to Grimm's Hydride 

Displacement Law, fluorine can be considered as a bioisostere of OH, NH2 and CH3-group.5 

Despite organofluorine compounds are rare in nature, fluorinase enzymes have been discovered in 

living organisms.6 
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1 Design and Synthesis of Novel Pyrimidine C-Nucleosides 

from 1-(β-D-Ribofuranosyl)formamidine 

1.1 Introduction 

1.1.1 Natural and synthetic C-nucleosides. Biological role 

 

C-Nucleosides are generally considered as compounds containing a heterocyclic aglycone 

and a carbohydrate moiety linked together by a carbon-carbon bond. However, C-nucleosides 

considerably differ from the most common nucleosides, in which sugar and heterocyclic aglycone 

are connected by a C–N bond. First of all, the C–C bond is responsible for the resistance of C-

nucleosides to hydrolytic and enzymatic cleavage. 

C-Nucleosides are suitable candidates for extension of the genetic alphabet, and 

consequently, for usage as building blocks of DNA. In contrast to naturally occurring nucleosides, 

they are able to form artificial base-pairs based not only on hydrogen bonding, but also on 

hydrophobic interactions and metal bridges.7 

Natural C-nucleosides, having C1 of their sugar moieties linked to nitrogen-containing 

heterocycles through a carbon-carbon bond, have been known since 1957, when pseudouridine 1 

(Figure 1), the first member of this class of compounds, was isolated from yeast RNA. The 

elucidation of its structure was accomplished two years later. Since then other members of this 

important class of natural compounds have been isolated.8 

O

OH

OH OH

NHNH

O

O

Me

OO

OH

NMe2 O

OH

O

OMe

OMe

X N

O

OH

OH OH

NH2

O
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Pseudouridine

2
Ravidomycin

                3
a) X = S    Tiazofurin;
b) X = Se  Selenazofurin.  

Figure 1. Natural (1, 2) and synthetic (3a,b) C-nucleosides. 

C-Nucleosides (as well as standard N-nucleosides) can in principle target various enzymes 

involved in nucleic acid metabolism. The major advantage of C-nucleosides is the stability toward 

hydrolytic and enzymatic cleavage of the nucleosidic bond, due to the replacement of the 

nucleosidic C-N bond by the nonhydrolyzable C-C bond.7 

Aryl C-glycoside antibiotics constitute an emerging class of biologically active natural 

products. Ravidomycin, the congener of the gilvocarcin-class antitumor antibiotics possessing an 

amino sugar, shows an enhanced antitumor activity.9 

Tiazofurin 3a and selenazofurin 3b are two widely studied synthetic C-nucleosides. The 
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biological effects of these nucleosides appear to be due to inhibition of inosine monophosphate 

dehydrogenase (IMPDH), which induces the shutdown of guanine nucleotide synthesis. IMP 

dehydrogenase is associated with cell proliferation and is a possible target for cancer 

chemotherapy.10 Selenazofurin 3b the selenium analog of 3a, shows effective antitumor and 

antiviral activity, as well as efficacy as a maturation-inducing agent.11 

However, pyrimidine C-nucleosides bearing a carbohydrate moiety at the C-2 atom have not 

received much attention despite the fact that some of them are useful in treating a wide variety of 

diseases including infections, infestations, neoplasms, and autoimmune diseases.12 

 

1.1.2 Fluorinated pyrimidine nucleosides 

 

Some special position among all classes of pharmacologically active nucleosides has been 

occupied by fluoro-containing congeners with fluorine functionality at the heterocyclic part (Figure 

2). Fluorinated nucleosides and their analogues represent the class of organofluorine compounds, 

which in the last three decades have found an extensive application in biological chemistry, life-

science and medicine branches.13, 14 

OHOH

O
NMe
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F

NH

O

O
n-C5H11

OH

O
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F3C

O

OH
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5
Trifluridine
(antiviral)  

Figure 2. Fluorinated pyrimidine nucleosides clinically used as antimetabolites. 

 

1.1.3 Cytidine deaminase as a potential biological target 

 

We consider desired C-nucleosides first of all as potential cytidine deaminase inhibitors. 

Cytidine deaminase (CDA, EC 3.5.4.5) is a homotetrameric zinc-protein belonging to the 

pyrimidine salvage pathway, which catalyzes the deamination of cytidine and deoxycytidine. 

Furthermore, CDA deaminates also several cytosine nucleoside based drugs used as antineoplastic 

and antiviral agents causing the loss of their therapeutic efficiency.15 

Deamination by an apolipoprotein B mRNA editing enzyme (APOBEC) called activation-

induced cytidine deaminase (AID) is critical for generating high-affinity antibodies, and 
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deamination by APOBEC-3 proteins can inhibit retrotransposons and the replication of retroviruses 

such as human immunodeficiency virus and hepatitis B virus.16 The absolute dependence of 

antibodies somatic hypermutation on cytidine residues was also established.17 Hence 2-(β-D-

ribofuranosyl)pyrimidines may be potential immunosuppressive agents, which are very useful for 

transplantology and therapy of autoimmune diseases. 

Despite of the structural differences between the amino acid sequences (e.g. between the E. 

coli and human CDA there is only about 30% of identity), catalytic mechanism of all above 

mentioned cytidine deaminases must be similar. It is proved by numerous chemical,18, 19 structural15, 

16 and computational20, 21 studies. 

In recent years cytidine deaminases attract more and more attention of scientists. Articles 

devoted to CDA have been published in high-impact journals such as Nature16 and Science17. 
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Scheme 1. Catalytic pathway for the conversion of cytidine by CDA.18, 19 Only the minima are displayed. Compare with 

desired mimetics 8! 

 

1.1.4 Task setting and motivation 

 

Inspired by the relevance of C-nucleosides as well as fluorinated pyrimidine nucleosides, we 

have undertaken the current study to develop a new type of pyrimidine C-ribosides furnished with 

polyfluoralkyl-substituents at position 4 or 6. At the same time, taking into account our interest in 

CDA inhibition, design and synthesis of various non-fluorinated C-nucleosides was the second 

important task within the present work. 

 

1.2 Synthetical approach: 1,3-binucleophile + 1,3-bielectrophile 

 

There are different applicable approaches to the synthesis of a variety of C-nucleosides. 

They can be classified into four categories based on the strategies they use:7 

1) Construction of an aglycone unit upon a carbohydrate moiety; 

2) Construction of a carbohydrate moiety upon an aglycone unit; 
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3) Direct coupling of a carbohydrate moiety with a preformed aglycone unit; 

4) Modification of the existing C-nucleosides. 
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OH NHNH2
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OH N N
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++

 
Scheme 2. The key stage of the synthesis of pyrimidine C-nucleosides according to the chosen strategy. 

Our synthetic approach is based on the initial functionalization of β-D-ribofuranose, 

followed by formation of the aglycone via 3+3 cyclocondensation: the 1,3-binucleophile, namely 1-

(β-D-ribofuranosyl)formamidine, reacts with different 1,3-bielectrophiles to form the desired 

pyrimidine ring (Scheme 2). Afterwards, some of the obtained C-nucleosides were further modified. 

Thus, the first and fourth strategies were applied during this study. 

Taking into account that we have to deal with unprotected sugars, the synthetic manipulations 

should be conducted preferably in mild reaction conditions; otherwise the carbohydrate moiety can be 

damaged. 

 

1.3 Synthesis of 1-(β-D-ribofuranosyl)formamidine hydrochloride, the starting 

material 

 

The key synthetic building block 14 was synthesized in three steps from 1,2,3,5-tetra-O-

acetyl-β-D-ribofuranose 11 using known procedures (Scheme 3). 

The synthesis of 2,3,5-tri-O-acetyl-β-D-ribofuranosyl cyanide 12,23 the key step in the 1-(β-

D-ribofuranosyl)formamidine preparation, is referred to the Lewis acid-mediated electrophilic 

substitution. The first Lewis acid-catalyzed glycosylation for the synthesis of aryl C-glycosides was 

reported in 1945.28 The same principle can be applied for another type of C-nucleosides. Usually 

the reaction occurs with high α/β-selectivity. The general principle of glycosylation with Lewis 

acids is shown in Scheme 4. The selectivity of this reaction with different sugars, substrates and 

catalysts has been studied.29, 30 The best result in our hands showed the method using tin 

tetrachloride as a Lewis acid, developed by M. T. Reetz and coworkers, which hereby showed an 

extremely high stereospecificity (no α-anomer has been detected). 
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Me Si Cl

Me

Me

Me Si

Me

Me

N

OHOH

O

OH NH OMe

OHOH

O

OH NH2
+

NH2

OAcOAc

O

AcO
N

Cl

OAcOAc

O OAcAcO

i ii iii

iv

73% 71% 100%

48%

9 10

11
12

13 14  
Scheme 3. Synthesis of 1-(β-D-ribofuranosyl)formamidine hydrochloride. 

Reagents and conditions: i: KCN, KI, NMP, r.t., 48 h;22 ii: SnCl4, DCM, 24 h at r.t., then 6 h reflux;23, 24 iii: MeOH, 

NaOMe, 72 h;25, 26 iv: NH3 in MeOH, NH4Cl, 72 h.27 

O

O

O

O

R2

O

R1

O

O

O

R1

H H
O

O O

R1

Nu

H(RO)n (RO)n

+
Lewis acid

- R2COO

NuX

(RO)n

- X+

X = H, Si(Me)3
Nu = (Het)Ar, CN, Allyl, Propargyl, etc.   

Scheme 4. General mechanism of glycosylation under Lewis acid catalysis, which explains the high stereoselectivity of 

the reaction. 

Next, the obtained nitrile 12 was treated with a catalytic amount of sodium methoxide in 

methanol to give the deprotected β-D-ribofuranosyl-1-carboximidic acid methyl ester, which 

afforded 1-(β-D-ribofuranosyl)formamidine hydrochloride after treatment with a methanolic 

solution of ammonia and ammonium chloride. 

 

1.4 Syntheses of various 2-(β-D-ribofuranosyl)pyrimidines 

1.4.1 Syntheses of 2-(β-D-ribofuranosyl)-4-(perfluoroalkyl)pyrimidines 

 

Condensation with β-ethoxy-α,β-unsaturated perfluoroalkyl ketones affords corresponding 

4-(perfluoroalkyl)pyrimidine C-nucleosides. In fact, ethoxymethylene group constitutes a hidden 

aldehyde function. 

Previously reported condensation of 4-ethoxy-1,1,1-trifluorobut-3-en-2-one with amidines 

gave a mixture of the corresponding tetrahydropyrimidines and pyrimidines.31 After some 

optimization we found that treatment of amidine 14 with 4-ethoxy-1,1,1-trifluorobut-3-en-2-one 

15a in DMF at 80 °C in the presence of MeONa and DBU resulted in the formation of 2-(β-D-

ribofuranosyl)-4-(trifluoromethyl)pyrimidine 16a. Using potassium carbonate with molecular sieves 
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4Å at 60 °C, perfluoroethylated analogue 16b was prepared in even better yield. The current 

method constitutes a convenient approach to 5,6-unsubstituted pyrimidines. 

OHOH

O

OH N N

Rf

Rf

O

EtO14
15a,b

+

a: Rf = CF3, 33%;
b: Rf = C2F5, 59%. 16a,b  

Scheme 5. Syntheses of 2-(β-D-ribofuranosyl)-4-(perfluoroalkyl)pyrimidines. 

Reagents and conditions: a: NaOMe, DBU, DMF, 80 °C, 3 h; b: K2CO3, molecular sieves 4Å, DMF, 60 °C, 5 h, under 

argon.31, 32 

The steric configuration of the anomeric center is confirmed by X-ray analysis of the 

nucleoside 16a, which crystallizes from EtOAc/CHCl3 solution in monoclinic system (space group 

P21) with one equivalent of chloroform. Thus, we can conclude the same configuration for the 

whole C-nucleoside range synthesized from 1-(β-D-ribofuranosyl)formamidine 14. 

4-Ethoxy-1,1,1-trifluoro-3-buten-2-one and 1-ethoxy-4,4,5,5,5-pentafluoro-1-penten-3-one 

were synthesized by the known method33 from ethyl vinyl ether and corresponding trifluoroacetic or 

pentafluoropropionic acid anhydride respectively in the presence of 4-N,N-dimethylaminopyridine 

as a catalyst. 

 
Figure 3. Ortep plot of 2-(β-D-ribofuranosyl)-4-(trifluoromethyl)pyrimidine 16a (40% probability level). Crystal 

solvate with 1 eq of chloroform. 

 

1.4.2 Synthesis of C-nucleosides from 1,3-diketones 

 

Next, we decided to involve 1,3-diketones in this study to obtain the corresponding 4,6-

substituted 2-(β-D-ribofuranosyl)pyrimidines, and to our great disappointment, we were confronted 
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with significant difficulties. As opposed to benzamidine, used in the trial experiments, 

ribosylamidine 14 turned out to be insufficiently reactive under the same conditions and seems to 

decompose before the reaction starts (see Chapter 1.4). So after several unsuccessful attempts we 

decided to substitute the enolic OH-group for a more easily replaceable chlorine atom, which is a 

weaker π-electron-donating group, and therefore, less deactivates the conjugated double bond 

(Michael acceptor) towards nucleophiles in the initial addition reaction, which is the rate-limiting 

stage of the current cyclocondensation.34 Moreover, β-chloro-α,β-unsaturated ketones proved to be 

so reactive that the reaction with 2-(β-D-ribofuranosyl)formamidine shows a marked exothermic 

effect and should be conducted under cooling to suppress undesirable side processes (Scheme 6). 

Finally, in order to establish the generality of this cyclization, a variety of nucleosides 19 was 

successfully obtained (Table 1). These results clearly show that despite some limitations (see 

Chapter 1.4, Table 2, product 19m) the present reaction can be applicable to different β-chloro-α,β-

unsaturated ketones 18, providing a reliable route to the synthesis of a wide range of the 4,6-

disubstituted pyrimidine C-nucleosides 19. 

ii
Cl O

R1 R2

O O

R1 R2

OHOH

O

OH NN

R1 R2

i (A or B)

17a-k 18a-k

19a-k

14

Mixture of isomers
 

Scheme 6. Synthesis of C-nucleosides from 1,3-diketones. 

Reagents and conditions: i(A): SOCl2, CHCl3, boiling under reflux, 3 h;35 i(B): oxalyl chloride, DMF, DCM, –78 to 

r.t.;36 ii: K2CO3, molecular sieves 4Å, DMF, 0 °C, 2 h.37 

Table 1. Synthesis of C-nucleosides 19 from activated 1,3-diketones. 

Entry R1 R2 
Yield, %c

18 19 

a Ph CF3 92a 71 

b 
S *  

CF3 81a 73 

c Ph n-C3F7 93a 55 

d 
Et

*

 
CF3 99a 42 

e Me CF3 52b 57 

f Ph COOMe 97b 33 

g 
O *  

CF3 88b 67 

h i-Pr CF3 63b 55 
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Entry R1 R2 
Yield, %c

18 19 

i 2-Naphthyl CF3 57a 38 

j 
S

*  
COOMe 86b 42 

k 
*

F  
n-C3F7 74a 49 

a – α,β-unsaturated β-chloroketone was prepared according to the method A (with SOCl2); 
b – α,β-unsaturated β-chloroketone was prepared according to the method B (with (COCl)2); 
c – yields refer to pure isolated products. 

At the 1,3-diketone activation stage an application of thionyl chloride in boiled chloroform 

is possible only in case of perfluorosubstituted diketones and if they are not sensitive to acids (e.g. 

diketones containing furan ring cannot be used). In other cases, either no reaction or decomposition 

was observed. Next, the products were distilled in a high vacuum to afford a yellow or green liquid 

consisting of a mixture of structural and cis/trans isomers 18, which were not separated and used 

without additional purification. The synthesis of β-ethoxy-α,β-unsaturated ketones from the 

corresponding 1,3-diketones was particularly studied and considered by K. I. Pashkevich35 (method 

with thionyl chloride) and R. E. Mewshaw36 (method with oxalyl chloride). 

Diketones 17d, f, h and k were synthesized via classical Claisen condensation in the 

presence of sodium methylate, while others were purchased from chemical supply companies. 

 

1.4.3 Aminolysis and hydrazinolysis of methyl 2-(β-D-ribofuranosyl)-6-(2-

thienyl)pyrimidine-4-carboxylate 

 

OHOH

O

OH NN

S

NH2

O

OHOH

O

OH NN

S

N2H3

O

iii

20 21

19j
83%100%

 
Scheme 7. Aminolysis and hydrazinolysis of methyl 2-(β-D-ribofuranosyl)-6-(2-thienyl)pyrimidine-4-carboxylate. 

Reagents and conditions: i: 7N ammonia in MeOH, r.t., overnight; ii: N2H4, MeOH, r.t., overnight. 

One congener (19j), obtained from α,β-unsaturated β-chloroketone and bearing an ester 

group, was employed for the synthesis of other non-fluorinated nucleoside derivatives. When this 

compound was dissolved in methanolic ammonia and allowed to stir at room temperature overnight, 
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nucleoside 20 possessing a carboxamide function at the 2-position was obtained in quantitative 

yield. Treatment of 19j with hydrazine hydrate in methanol at room temperature afforded the 

corresponding hydrazide 21 in 83% yield (Scheme 7). 

As we see, these simple reactions proceed under mild conditions and in high yields. In 

addition, no labour-intensive work up of the reaction mixture is required. 

1.4.4 Synthesis of 2-(β-D-ribofuranosyl)-4-(2-hydroxyphenyl)-5-nitropyrimidines and 

catalytic reduction of nitro group 

We continued to search for applicable 1,3-dinucleophiles. It is known that 3-nitrochromone 

22a reacts with amidines to give the corresponding 5-nitropyrimidines.38 Thus, we decided to test 

the reaction on our 2-(β-D-ribofuranosyl)formamidine 14. As a result, 5-nitropyrimidine C-

nucleosides were successfully synthesized from the corresponding 3-nitrochromones (Scheme 8). 

The 2-position of the chromone is activated by the nitro group, and hence easily participates in the 

Michael addition, followed by a chromone ring-opening reaction and subsequent cyclocondensation 

to give the 5-nitropyrimidine. 

The cyclization took place in the presence of sodium methoxide, acetic acid and 

triethylamine in methanol yielding 5-nitropyrimidine 23a in 36% yield. A buffer solution is 

required to provide the optimal pH. On the one hand, the initial amidine 14 is inactive in its 

protonated form. On the other hand, basic media can destroy the product (especially at the air; an 

easily oxidized phenolate anion forms) as well as the 3-nitrochromone. So the optimal pH level was 

found to be neutral. A similar result was obtained with 2-methyl- and 2-butyl-3-nitrochromones in 

DMF instead of methanol, which gave compounds 23b and c in 35% and 48% yields, respectively. 

N N OH

NO2

R

OHOH

O

OH N N OH

NH2

R

OHOH

O

OH

O

O

NO2

R
a: 36%; 
b: 35%;
c: 48%.

14 +
i ii

100%

 a: R = H; b: R = Me; c: R = n-Bu.

22a-c

23a-c 24a-c

Scheme 8. Synthesis of 2-(β-D-ribofuranosyl)-4-(2-hydroxyphenyl)-5-nitropyrimidines and catalytic reduction of nitro 

group. 

Reagents and conditions: i(a): NaOMe, AcOH, NEt3, MeOH, 80 °C, 1,5 h; i(b,c): NaOMe, AcOH, NEt3, DMF, 50 °C, 

5 h, under argon;38 ii: H2, Pd (10 % on charcoal), MeOH, r.t., 2 days. 

The obtained 5-nitropyrimidine C-nucleosides 23a-c were catalytically reduced using 10 wt. 

% Pd/C as the catalyst under a hydrogen pressure of 1 atm to give the corresponding 5-amino 
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compounds 24a-c. The latter are especially interesting for us because of their ability to mimic the 

substrate or its transition state (see Introduction, Scheme 1). 5-Amino-substituted 2-(β-D-

ribofuranosyl)pyrimidines are remarkably similar to cytidine and are expected to be able to form 

stable chelate complexes with a zinc cation and hereby to inhibit cytidine deaminase (compare with 

6). 

It is worth to say a few words about the 3-nitrocromone synthesis, which has been 

significantly improved (Scheme 9). The nitration of 4-hydroxycoumarin 25 was carried out under 

mild conditions in the presence of a catalytic amount of sodium nitrite. In this case the reaction runs 

smoothly and without spontaneous overheating. The reaction conditions of the hydrolysis of 4-

hydroxy-3-nitrocoumarin 26 and of the subsequent neutralization were also optimized and led to 

increasing of the yield up to 90%. The reaction was carried out at 55 °C for 90 min. Then the 

reaction mixture was neutralised in an ice bath with 1.3 eq of acetic acid (calculated on taken alkali) 

and then carefully acidified with 0.5 eq of hydrochloric acid. Also a novel approach is to apply 

orthoesters in the presence of sulphuric acid (instead of previously used carboxylic acid 

anhydrides)39 in order to obtain 3-nitrocromones from 2-nitro-2'-hydroxyacetophenone 27. This 

advantage is especially essential in case of 2-unsubstituted product because the preparation and use 

of unstable acetic formic anhydride can be avoided.40 

O O

OH

O O

OH

NO2

O

OH

NO2

O

O

NO2

R

R C(OMe)3

i ii iii

%09%78

25 7262

a: R = H, 82%;
a: R = Me, 84%;
b: R = n-Bu, 67%. 22a-c  

Scheme 9. Synthesis of 3-nitrocromone. 

Reagents and conditions: i: HNO3, AcOH (glacial), NaNO2 (cat.) 40 °C, 2 h; ii: KOH in H2O, 55 °C, 1,5 h;41 iii: 

H2SO4(cat.), boiling 8 h.39 

 

1.4.5 Synthesis of C-nucleosides from conjugated ketoalkynes and β,β-dimethoxy-α,β-

unsaturated ketones 

 

In order to increase the variety of C-nucleosides, we tested different binucleophiles such as 

conjugated ketoalkynes and β,β–dimethoxyketoalkenes, which, as it has turned out, show a good 

reactivity towards ribosylamidine 14 (Scheme 10). In fact, β,β–dimethoxyketoalkenes have been 

relatively poorly investigated so far as convenient precursors of pyrimidines with alkoxy group at 

position 4 or 6 (depending on the opposite substituent). The application of α,β-ynones is essential 

for pyridyl-substituted pyrimidines because they cannot be obtained neither from 1,3-diketones nor 

β-ethoxy-α,β-unsaturated ketones (see Chapter 1.2.2 and 1.4). 
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OHOH

O

OH NN

RfMeO

N
N

*

Cl

Me

Ph

OHOH

O

OH NN

Ph R

Rf

OOMe

MeO
R

O

Ph

28a, 29a: R = 3-Py, 68%;

28b, 29b: R =                     , 52%.

14

28a,b

29a,b

30a,b

31a,b

ii

30a, 31a: Rf = CF3, 72%;
30b, 31b; Rf = CHF2, 75%.

i

 
Scheme 10. Synthesis of C-nucleosides from various precursors. 

Reagents and conditions: i: K2CO3, molecular sieves 4Å, DMF, 70 °C, 4 h, under argon;42 ii: K2CO3, molecular sieves 

4Å, DMF, 60 °C, 5½ h, under argon.43 

4,4-Dimethoxy-1,1,1-trifluoro-3-buten-2-one 30a and 4,4-dimethoxy-1,1-difluoro-3-buten-

2-one 30b were prepared by a reported procedure from 1,1-dimethoxyethylene and the 

corresponding anhydride in the presence of pyridine as a base.44 

N
N

O

Me

Ph

N
N

Cl

Me

Ph

CHO

N
N

Cl

Me

Ph

COOH

N
N

Cl

Me

Ph

COCl

i ii iii

32 33 34 35b

31% 92%91%

 
Scheme 11. Synthesis of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carboxylic acid chloroanhydride 35b. 

Reagents and conditions: i: DMF, POCl3, 70 °C, 2 h; ii: KMnO4, acetone, r.t., 12 h; iii: SOCl2, reflux, 3 h.45, 46 

Next, the acyl chlorides were coupled with phenylacetylene 36a by standard methods to give 

the desired α,β unsaturated ynones (Scheme 12). 

R Cl

O

N
N

*

Cl

Me

Ph

R

O

PhPhH

35a,b

35a, 28a: R = 3-Py*HCl, 68%;

35b, 28b: R =                     , 80%.
28a,b

+
36a

 
Scheme 12. Sonogashira coupling with acyl chlorides. 

Reagents and conditions: Pd(PPh3)2Cl2, CuI, NEt3, dioxane, r.t. (a) or 70 °C (b), 2 h, under argon.46, 47 

 

1.4.6 Synthesis of C-nucleosides from 3-(phenylethynyl)-4H-chromen-4-one 

 

Finally, 3-phenylacetylenylcromone appears to react with ribofuranosyl formamidine in the 

presence of K2CO3 and molecular sieves in DMF giving the desired product 38a in a high yield 

(Scheme 13). This unusual type of reaction was first described by Dewen Li, Shudong Duan and 

Youhong Hu as a convenient tool for combinatorial chemistry. The authors unambiguously 
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confirmed the Z-configuration of the obtained products by 1D-NOE difference experiments and X-

ray crystal structure analyses as well.48 The reaction runs smoothly. The product 38a does not need 

a complicated purification and can be isolated in pure state by simple recrystallization from 

methanol. 

OHOH

O

OH N N

O

Ph

O

O Ph

83%
14

37a

38a

+

 
Scheme 13. Synthesis of C-nucleoside from 3-(phenylethynyl)-4H-chromen-4-one. 

Reagents and conditions: K2CO3, molecular sieves 4Å, DMF, 60 °C, 6 h, under argon.48 

The initial 3-phenylacetylenylcromone was synthesized in three steps from 2'-

hydroxyacetophenone 39 using known procedures (Scheme 14). The condensation product with 

DMFDMA49 40 was treated with the iodine-pyridine complex in chloroform giving 3-

iodochromone 41.50-52 The latter underwent the Sonogashira coupling with phenylacetylene to 

afford the desired 3-(phenylethynyl)chromone 37a.53, 54 

O

O Ph

OH

Me

O

OH

O

NMe2

O

O

I

37

i

80%

39 40

ii iii

41

94% 81%

 
Scheme 14. Synthesis of 3-(phenylethynyl)-4H-chromen-4-one. 

Reagents and conditions: i: DMFDMA, 90 °C, reflux, 2 h;49 ii: I2, pyridine, CHCl3, 0 °C, 1 h;50-52 iii: phenylacetylene, 

Pd(PPh3)2Cl2, CuI, NEt3, DMF, r.t., 2 days, under argon.53, 54 

 

1.5 Spectral considerations 

 

The structures of all C-nucleosides were characterized by IR, 1H, 13C NMR spectral data as 

well as MS and HRMS analysis. 

All NMR signals of the β-D-ribofuranosyl moiety were easily assigned since they have been 

already described in the literature.55 In addition, HSQC correlation spectrum of compound 19k was 

measured and vicinity of corresponding C and H atoms was additionally confirmed. The coupling 

between neighbouring OH and CH protons is clearly observed in the spectra acquired in DMSO-d6, 

unlike chloroform-d. In case when RF = C2F5 or n-C3F7, the polyfluoroalkyl groups appear as 
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undecipherable multiplets. In addition, the presence of fluorinated alkyl groups was confirmed by 
19F NMR. 

 

1.6 Negative results 

 

To our great disappointment, we have not succeeded in synthesizing the majority of 

predesigned C-nucleosides. Many of them are unstable against nucleophiles because of the high 

number of electron withdrawing groups present in the pyrimidine ring (19l, 53 and 55) and have not 

been isolated in pure state, or the 1-(β-D-ribofuranosyl)formamidine decomposes during the 

reaction (48, 56a and b). The negative results and the corresponding reaction conditions with 

comments are briefly summarized in Table 2. 

Table 2. Negative results. 

Starting material Product Reaction condition Comments 

O O

Ph CF3
17a  

 

N N

CF3Ph

R
19a  

NaOAc, AcOH (cat.), 

dioxane, 115 °C, 12 h. 

Despite, for example, 

benzamidine ready react 

with 4,4,4-trifluoro-1-

phenylbutane-1,3-dione in 

dioxane at 115 °C in the 

presence of a catalytic 

amount of acetic acid, 1-

(β-D-ribofuranosyl)form-

amidinedoes 

notenterintothisreaction. 

Only the following 

product was isolated: 

CF3

O NH2

42  

The problem is based on 

the solubility of starting 

material. 

NaOAc, AcOH (cat.), 

methanol, 80 °C, 3 h. 

No reaction was observed. 
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Starting material Product Reaction condition Comments 

 

 

 

O O

Ph CF3
17a  

 

 

N N

CF3Ph

R
19a  

NaOAc, AcOH (cat.), 

methanol, 110 °C, 20 

h. 

Only the initial diketone 

and some products of 

decompositions were 

detected by TLC. 

DBU, DMF, heating. Desired product was not 

observed. 

TMSCl, NEt3, DBU, 

heating. 
–ʺ– 

O

O

CF3

OH OH

43

 

N N

CF3

O

OH

R
44  

 

 

 

NaOAc, DMF, hea-

ting 110 °C, 9 h. 

Products are difficult to 

separate. The main 

supposed by-product is 

shown below: 

N NH

O

OH O

F3C

R
45 31 

DBU, DMF, heating. 

 

O

N
+

OH

ONa

O O

46  

N N

N
+O O

R
47  

MeOH, 60 °C, 1 h. No desired product was 

isolated. Product decom-

poses on TLC. Only a 

mixture of by-products 

was isolated. 

MeOH, r.t., 3 h. No reaction was observed. 

O

O

NMe2

48  

N N

O

R
49  

MeONa, DBU, DMF, 

heating under argon. 

No reaction was observed. 

N

O Cl

CF3MeO
50  

N N

N
H

CF3O

R
51  

DMF, NEt3, heating. Unclear TLC. High 

polarity of the expected 

product and consequently 

high binding affinity to 

silica gel. 
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Starting material Product Reaction condition Comments 

O O

CF3

OCl

52

 

N N

OO

F3C

R
53  

K2CO3, DMF. 4-Chloro-3-(trifluoro-

acetyl)coumarin is un-

stable in basic media. The 

product also seems to be 

unstable because of elec-

tron withdrawing groups 

in the pyrimidine ring. 

TMSCl, NEt3, DMF. 

TMSCl, NEt3, DMF, 

pressure tube, 120 °C 

O

CF3

O

OEt

Ph

54  

N N

CF3

OPh

R
55  

NaOMe, DBU, DMF, 

r.t., 1 d. 

The reaction was observed 

on TLC but the product 

decomposes on silica gel. 

Purification is im-

possible.56 

DBU, DMF, r.t., 1 d. 

K2CO3, DMF, 80 °C, 

4 h. 

F

F

F

F

F

CHO

56a  

N N

F

F

F

F

R
57a  

K2CO3, molecular 

sieves 4Å, DMF, 110 

°C, 6 h. 

The aldehyde probably 

reacts, but cyclization does 

not occur at this tem-

perature. Low reactivity of 

o-fluorine and decom-

position of the sugar 

moiety at high temp-

erature. 

CHO

ClO2N
56b  

N N

NO2

R
57b  

K2CO3, KF, molecular 

sieves 4Å, DMF, 90 

°C, 3 h. –ʺ– 

F3C CF3

Cl O

18l  

N N

CF3F3C

R
19l  

NaOAc, molecular 

sieves 4Å, DMF, 0 

°C, 2 h. 

α,β-Unsaturated β-chloro-

ketone decomposes before 

the reaction started. 

K2CO3, molecular 

sieves 4Å, DMF, 0 

°C, 2 h. 

The product decomposes 

on silica gel because of 

electron withdrawing 

groups in the pyrimidine 

ring. 
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Starting material Product Reaction condition Comments 

N
H

O

Cl

O

* HCl

58  

N N

N
H

O

R
59  

K2CO3, molecular 

sieves 4Å, DMF, 60 

°C, 2 h. 

Unclear TLC. High 

polarity of the expected 

product and consequently 

high binding affinity to 

silica gel. 

C2F5

R

MeO

OOMe

n-Pr

30c  

N N

C2F5

R

MeO

R

n-Pr

31c  

K2CO3, molecular 

sieves 4Å, DMF, 60 

°C, 5 h, under argon. 

The problem lies in the 

starting material. Despite 

the 1H NMR spectrum 

seems to correspond to the 

desired α,β-unsaturated 

β,β-dimethoxyketone, the 

substance has an extre-

mely low boiling point and 

cannot be the right pro-

duct. 

F3C

O O

OEt
60  

NH N

O CF3

R
61  

K2CO3, molecular 

sieves 4Å, DMF, 60 

°C, 4 h, under argon. 

The β-ketoester decom-

poses in basic media. 1-(β-

D-Ribofuranosyl)formami-

dine trifluoroacetate was 

isolated. 

O

O Ph

CF3
37b

 
N N

O

Ph

F3C

R
38b  

–– 

The problem lies in the 

starting material. Reaction 

of 3-bromo-2-trifluoro-

methyl-chromen-4-one 

with phenylacetylene is 

not clean. A lot of side 

products are formed. 
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Starting material Product Reaction condition Comments 

n-C3F7

N

O

Cl

18m  
N

N

n-C3F7

N

R
19m  

 

 

–– 

The problem lies in the 

starting material. It cannot 

be synthesized at r.t. 

because it reacts with 

itself. See reaction below: 

N

n-C3F7

Cl O

N
+

n-C3F7

Cl O

n-C3F7O

N
polymerization

18m

OHOH

O

OH
*

R = 

 

As we have already mentioned in the report, cyclization of amidine 1 with 3-(2,2,2-trifluoro-

1,1-dihydroxy-ethyl)chromen-4-one failed. We suppose that four side-products (it follows from 19F 

NMR spectrum) are a mixture of tricyclic stereoisomers 45 (Table 2).31 

 

1.7 Conclusions 

 

A wide range of pyrimidine C-nucleosides have been synthesized starting from 1,2,3,5-tetra-

O-acetyl-β-D-ribofuranose. Among them are many fluoro-containing compounds. We developed 

useful methods for 3+3 cyclocondensations between 1-(β-D-ribofuranosyl)formamidine and a 

variety of 1,3-bielectrophiles as well as for further transformations, such as reduction of the nitro 

group, aminolysis and hydrazinolysis of the ester group. However, since the last stages involve 

unprotected carbohydrate derivatives, harsh reaction conditions should be avoided. Thus, 1,3-

diketones were replaced by more reactive β,β-dimetoxy-α,β-unsaturated ketones. While potassium 

carbonate was found to be an appropriate base (except reaction with 3-nitrochromones), DMF is the 

most suitable solvent for the 3+3 cyclocondensation. The applicable reaction temperature lies in the 

range 0 to 70 °C depending on the 1,3-bielectrophile. 

Examples 16a, 19a,b, 23a and 24a have been sent to be tested. The pharmacological 

evaluation is performed by Dr. M. Lalk (University of Greifswald). 
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2 Synthesis and Reactivity of Polyfluoroalkyl-5-deazaalloxazines 

2.1 Introduction 

2.1.1 Flavin, alloxazine and their derivatives. Structure of heterocyclic cores and 

definitions 

 

Flavin 62a (or benzo[g]pteridine-2,4(3H,10H)-dione) and alloxazine 62b (or 

benzo[g]pteridine-2,4(1H,3H)-dione) are closely related structures and constitute two different 

tautomers with the same skeleton (Figure 4). The 5,10-dihydro derivative 63 can be considered both 

as reduced form of 62a and 62b. The same is also valid for the corresponding 5-deaza compounds 

64a, b and 65. Substituents at position 1 and 10 are decisive to assign the compounds to flavins or 

alloxazines. 

N
H

N

N

NH

O

O

N

N

N
H

NH

O

O

N
H

N
H

N
H

NH

O

O

N
H

N

NH

O

O

N
H

N
H

NH

O

O

7

8

9

6

N
10

5

N
H1

2

NH
34

O

O

62a 62b 63

64a 64b 65

4a5a

9a 10a

 
Figure 4. Flavin 62a, alloxazine 62b and dihydro form 63. Below are shown their 5-deaza derivatives 64a, b and 65. 

According to IUPAC nomenclature, the parent 5-deazaalloxazin structure 64b is referred to 

as pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione. 

 

2.1.2 Natural flavins and 5-deazaflavins: biological role and pharmacological relevance 

 

Flavins are versatile and, in many aspects, essential redox-active natural compounds, which 

play important roles as enzyme cofactors in numerous biochemical processes.57 Thus, riboflavin 67, 

also known as vitamin B2, plays a key role in energy metabolism (Figure 5). Reduced flavin 

mononucleotide is a source of 5,6-dimethylbenzimidazole, the lower ligand of vitamin B12.58 

8-Hydroxy-5-deazariboflavin plays an impotent role in the repair of cyclobutane DNA 

lesions 66 caused by 200-400 nm light irradiation (Scheme 15).59 These intrastrand cis,syn-

thymidine dimmers, the predominant UV-induced DNA damage, are cancerogenic, mutagenic and 

lethal for cells in a variety of organisms.60 8-Hydroxy-5-deazariboflavin takes part in the absorption 

of light, which is one of the critical steps in the light-driven repair reaction.59 Afterwards, energy is 

transferred from the excited molecule to flavin adenine dinucleotide (FADH−). The following 
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cyclobutane DNA lesion cleavage is based on the radical mechanism promoted by electron transfer 

from excited FADH−. Unstable Pyr<>Pyr∙− species undergo spontaneous splitting followed by a 

back electron transfer to the FADH∙.60 Moreover, as was shown by experiments in vitro, 

photoexcited 8-hydroxy-5-deazariboflavin is able to repair the cyclobutane lesions directly.61, 62 

As we see, stability of flavin/5-deazariboflavin radicals is of crucial importance to the 

photosensitized cleavage of thymine dimer. In this context, it should be noted that perfluoroalkyl 

groups cannot be classified as radical stabilizing or destabilizing in an absolute sense. Instead, RF 

groups enhance the radical stabilizing ability of electron donor groups conjugated with a radical 

center (so called captodative effect), and decreases the radical stabilizing ability of electron 

withdrawing groups.63 

NH

N N

NH

O

O O

O
Me Me

NH

N

NH

N

O

O

O

Me Me

O

PP

hv, 8-hydroxy-5-deazariboflavin, FAD

66  
Scheme 15. Splitting cyclobutane DNA lesion with the participation of flavin adenine dinucleotide and light-harvesting 

8-hydroxy-5-deazariboflavin. 

The 5-deazaflavin moiety is a part of a unique coenzyme known as Factor 420 (F420) 68 

from anaerobic thermophilic methanogenic bacteria (Figure 5), Methanobacterium (strain 

M.o.H.).64 

Later deazaflavins were also found in streptomycetes65 and in halobacteria.66, 67 
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Figure 5. Natural compounds containing flavin (67) and deazaflavin moiety (68). 

CO2 + 4H2 → CH4 + 2H2O 

Scheme 16. Bacterial methanogenesis. 
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2.1.3 Pharmacological relevance and other applications 

 

5-Deazaflavins are of considerable pharmacological relevance and attract significant 

attention of scientists. Thus, the synthesis of cytochrome P450 3A4 inhibitor containing 5-

deazaflavin residue as well as the synthesis and photophysical properties of a deazaflavin-bridged 

porphyrinatoiron(III), which mimics the interaction of the above mentioned deazaflavin inhibitor 

with the Heme-Thiolate Cofactor of Cytochrome P450 3A4, has been reported.68 RNA molecules 

that specifically bind riboflavin have been isolated.69 In addition, 5-deazaflavins attract attention as 

perspective antitumor agents.70, 71 Thus, one can expect some interesting biological activities in the 

range of desired bioisosteric compounds within the current project. 

To our surprise, 5-deazaalloxazines have not received much attention despite the close 

similarity to above discussed 5-deazaflavins. Of particular interest is the development of fluorescent 

nucleosides based on 5-deazaalloxazine that maintain the hydrogen-bonding properties of natural 

nucleoside bases.72 

As mentioned in chapters 2.3 and 2.7, we dealt with 5-disubstituted 5,10-dihydro-5-

deazaalloxazines, which can be considered as a product of addition of a nucleophile to position 5 of 

the corresponding 5-deazaalloxazine or 10-substituted 5-deazaalloxazin-10-ium cation. In this sense 

these compounds are very similar to 9-alkoxyacridanes 69. The last ones have been depicted by W. 

Abraham and coworkers as the main part of photoswitchable rotaxanes and calixarene-based 

photoswitchable ionophores.73-77 The effect is based on reversible photo-driven dissociation of the 

9-methoxy group (Scheme 17). 

N

Ar OR1

R2

N
+

Ar

R2

R1O
-

hv

69a 69b  
Scheme 17. Photoheterolysis of 9-alkoxyacridane and the corresponding thermal back reaction.73-77 

 

2.1.4 Task setting and motivation 

 

Our interest to 5-polyfluoroalkyl-5-deazaalloxazines can be summed up in the following 

bullet points: 

 Close similarity to biologically relevant natural compounds; 

 Target structures contain fluorine with all the resulting consequences; 

 Redox properties; 
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 Fluorescent properties. 

The combination of these attributes presents intriguing possibilities for biological and 

pharmacological properties. Moreover, during the current study there were found other remarkable 

properties of 5-deazaalloxazines, such as distorted structures, due to intramolecular interaction, 

molecular shape and tendency to add various nucleophiles to position 5. At the same time, fluoro-

containing 5-deazaalloxazines have not received much attention despite their potential interest as 

highly reactive substrates in organic synthesis and biologically active compounds with useful 

physicochemical applications. Therefore, we have undertaken the current study in order to develop 

a convenient synthetic approach to 5-polyfluoroalkyl-5-deazaalloxazines and at least partially 

investigate their striking chemical properties. 

 

2.2 Syntheses of 5-polyfluoroalkyl-5-deazaalloxazines 

2.2.1 Existing methods 
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Scheme 18. Existing synthetic approaches to 5-deazaalloxazines overview.78-84 

5-Deazaalloxazines have previously been synthesized by cyclization of 6-(arylamino)uracils 

with one-carbon reagents (triethyl orthoformate, dimethylformamide dimethylacetal,78 carbon 

disulfide,79 N,N-dimethyldichloromethyleniminium chloride80 and the Vilsmeier reagent81). 

Similarly, treatment of 6-arylamino-1,3-dimethyluracils 70 with aromatic aldehydes provided 5-

aryl-1,3-imethylpyrimido[4,5-b]quinoline-2,4(1H,3H,5H,10H)-diones 71, followed by 

dehydrogenation with thionyl chloride to give 5-aryl-1,3-dimethylpyrimido[4,5-b]quinoline-

2,4(1H,3H)-diones.78 5-Deazaalloxazines can be obtained via cyclocondensation of urea with 2-

chloroquinoline-3-carboxamide82 or 2-chloroquinoline-3-carbonitrile 72.83 Friedländer reaction 
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between o-aminobenzaldehydes and barbituric acid has been successfully applied as well84 (Scheme 

18). 

 

2.2.2 Prehistory and first trials 

 

Before the work on 5-polyfluoroalkyl-5-deazaalloxazines was started, we had synthesized 

structurally similar compounds 77a and b (Scheme 19). Thus, each of them constitutes a doubly 

annelated pyridine bearing a trifluoromethyl group at the 4-position. 
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c: R = COCOOEt, X = Cl, 72%. 

74a
ii

75

77a

76

77b

ii

73a-c

73% 51%

 
Scheme 19. One-pot synthesis of 3-acyl-4-chlorocoumarines 74a-c and subsequent cyclocondensation with 

aminoheterocycles. 

Reagents and conditions: i: 1) TMSCl, pyridine, dioxane, r.t., 1 h;85 2) corresponding anhydride or chloroanhydride was 

added, 90 °C, 2 h (a, b) or ½ h (c); 3) POCl3, 60 °C, 2 h; ii: DMF, TMSCl, 80 °C, 4 h. 

 
Figure 6. Ortep plot of 3-trifluoroacetyl-4-chlorocoumarine 74a (35% probability level). 

This approach seemed to be most convenient for the synthesis of 5-deazaalloxazines. 

Initially we tried to synthesize 6-chloro-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-

2,4(1H,3H)-dione 80 from 1,3-dimethylbarbituric acid 79a in the same manner as 4-chloro-3-
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(trifluoroacetyl)-2H-chromen-2-one from 4-hydroxycoumarin.86 After these attempts have been 

failed, we tried to convert an amino group of 6-amino-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-

2,4(1H,3H)-dione 78 into chlorine through diazotation (Scheme 20). 
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Scheme 20. Unsuccessful attempts to synthesize 6-chloro-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione, 

which was expected to be a convenient precursor of 5-trifluoromethyl-5-deazaalloxazines. 

Reagents and conditions: i: pyridine, dioxane, TMSCl, r.t., 2 h; ii: TFAA, 90 °C; iii: POCl3, 60 °C; iv: HCl, NaNO2, 

water, 0 °C; v: CuCl, CuCl2, 60 °C. 

In both cases only the starting materials were isolated after the reactions; no diazotation was 

observed under employed reaction conditions. 

Even attempts to synthesize 1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4,6(1H,3H,5H)-

trione 81 experienced failure, despite the simple acetic anhydride reacted with 1,3-

dimethylbarbituric acid smoothly and in 95% yield (Scheme 21). 
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Scheme 21. Unsuccessful attempts to synthesize 1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4,6(1H,3H,5H)-trione 

which represents the possible precursor to 6-chloro-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione. 

Reagents and conditions: i: DMAP, dioxane, TFAA, reflux, 2 h. 

In this case also only the starting material was isolated. 
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2.2.3 Attempts to synthesize pyrimido[5,4-c]quinoline-2,4(1H,3H)-diones, the 

structural isomers of 5-deazaalloxaziness. Negative results. 

 

The pyrimido[5,4-c]quinoline-2,4(1H,3H)-dione core (84) is structurally isomeric to the 5-

deazaalloxazine core. It can be easily constructed from 4-aminoquinoline-3-carboxylic acid amide 

or ester.87 Nevertheless, convenient synthetic methods for 5-polyfluorsubstituted derivatives have 

not been developed so far. Taking on this task, we attached special importance to the combinatorial 

aspect. According to our plan, 1,3-dimethyl-6-piperidin-1-yl-5-(trifluoroacetyl)uracil 78b is 

activated by phosphorus pentachloride or triflic anhydride, followed by cyclocondensation with 

aniline (Scheme 22). In fact, we considered compound 82 as a building block similar to 80, but with 

inversed order of reacting centers. 
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Scheme 22. Unsuccessful attempts to synthesize 1,3-dimethyl-5-(trifluoromethyl)pyrimido[5,4-c]quinoline-2,4(1H,3H)-

dione. 

Reagents and conditions: i: PCl5 in CHCl3 or Tf2O in DCM, r.t., 1 d; ii: aniline, r.t., 1 d; iii: H2SO4, r.t., 1 d. 

To our great disappointment, this chosen strategy has not been successful in our hands. All 

the stages were carried out in one-pot protocols and always resulted to unidentifiable mixture. 

 

2.2.4 Three-step synthesis of 5-polyfluoroalkyl-5-deazaalloxazines from 6-

chlorouracils, anilines and polyfluoroacyl chlorides/anhydrides 

 

5-Polyfluoroalkyl-5-deazaalloxazines were synthesized from 6-chloro-1,3-dialkylyluracils in 

three steps using a 2+3+1 strategy (Scheme 23). 

6-Chloro-1,3-dipropyluracil, the starting material for 1,3-dipropyl-5-deazaalloxazines, was 

prepared from N,N'-dipropyl urea and malonic acid in 2 steps and 54% overall yield.88, 89 N,N'-

Dimetyl- and N,N'-dipropylbarbituric acids were converted into 85a and 85b, respectively, using the 

method with water and phosphorus oxychloride developed by W. Pfleiderer and K.-H. 

Schündehütte.89 

On the first stage, the chlorine atom is substituted by the aniline. Three different procedures 

have been used depending on the initial amine reactivity. Coupling of 6-chloro-1,3-dialkylyluracils 
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with anilines was carried out mostly at 180 °C under argon,78 where the excess of anilines plays a 

role as a base. When dibasic anilines were used, contrariwise, a 20% excess of 85a was employed in 

combination with 1 equivalent of quinoline (calculated on chlorouracil 85a). Only in case of 

inactive anilines, such as 5-amino-3-methyl-1-phenylpyrazole or α-naphthylamine, application of n-

butyllithium as a base was necessary. 

Then the 5-position of obtained 6-aminouracil is acylated by perfluorinated carboxylic acid 

anhydride or chloroanhydride, and afterwards 5-deazaalloxazines 88 form by cyclization under 

acidic conditions. 
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Scheme 23. Syntheses of 5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-2,4-diones. 

Reagents and conditions: i: aniline (2.2 eq), 180 °C, 3 h, under argon (Method A),78 or aniline (0.8 eq), quinoline, 180 

°C, 3 h, under argon (Method B), or aniline (2.2 eq), n-BuLi, THF, –78 to °C, under argon (Method C);90 ii: anhydride 

of polyfluorinated carbonic acid (or cloroanhydride), pyridine, dioxane, r.t., overnight;91 iii: H2SO4, (conc.), r.t., 3 h. 

Taking into account that compounds are slowly hydrolyzed, their contact with water during 

the isolation should be minimized and carried out at ~0 °C, but firstly the solvent should be 

evaporated and the residue needs to be dried in high vacuum on a boiling water bath. 

5-Polyfluoroalkyl-5-deazaalloxazines 88 are yellow colored compounds mostly good 

soluble in chloroform and less soluble in DMSO and methanol. They are also soluble in sulphuric 

and trifluoroacetic acid. Addition of TFA increases their solubility in chloroform. 

Table 3. Two-step synthesis of 1,3-dimethyl-5-poly-fluoroalkyl-pyrimido[4,5-b]quinoline-2,4-diones 88. 

Entry R1 R2 R3 
Yield, %a 

87 88 

a CH3 H CF3 93 89 

b CH3 H n-C3F7 96 73 

c CH3 7,9-diMe CF3 90 84 

d CH3 7,9-diMe C2F5 88 84 

e CH3 7,9-diMe n-C3F7 87 92 

f CH3 7-Et CF3 88 50 
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Entry R1 R2 R3 
Yield, %a 

87 88 

g CH3 7-Et CClF2 97 57 

h CH3 7-Et C2F5 94 81 

i CH3 9-MeO CF3 90 49 

j CH3 9-MeO CClF2 92 67 

k CH3 8-MeO CF3 12b 

l CH3 8-MeO CClF2 40b 

m CH3 8-MeO n-C3F7 94 32 

n CH3 8-CF3 CF3 99 51 

o CH3 7-NO2 CF3 79 82 

p CH3 7-Br CF3 94 84 

q CH3 7-EtO CF3 82 73 

r CH3 7-EtO CHF2 99 80 

s n-Pr 7-MeO CHF2 86b 

t n-Pr 7-MeO C2F5 86 81 
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a – yields refer to pure isolated products; b – yield after 2 stages (the product of acylation was introduced into 

the reaction without purification); c – after acylation the already cyclized product was isolated. 

As the target molecules bear a polyfluoroalkyl group at position 5, the C-F coupling of C-5, 

C-6 and the polyfluoroalkyl residue itself was observed by 13C NMR spectra. In case when RF = 

C2F5 or n-C3F7, the polyfluoroalkyl group appears as undecipherable multiplets merging with noise. 

In addition, the presence of fluorinated alkyl groups was confirmed by 19F NMR. Example 88f was 
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additionally measured by 2D COSY, HSQC and HMBC. These data were used to assign H and C 

signals of 88f as well as other examples by similarity of their chemical shift. 

 
Figure 7. Ortep plot of 7-ethoxy-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 88n 

(35% probability level). 

 
Figure 8. Ortep plot of 5-[chloro(difluoro)methyl]-9-methoxy-1,3-dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

88j (35% probability level). 

As seen from Figures 7, 8, 9 and 12, the pyrido-pyrimidine part of the molecules is slightly 

twisted (Table 4, entry 2 and 3). Despite the aromaticity, they are not planar due to repulsion 

between the polyfluoroalkyl group and the neighboring oxygen (Entry 1). The distance between the 

oxygen and the nearest fluorine atom lies in the range between 2.50 and 2.48 Å (Entry 5), which is 

significantly less than the sum of van der Waals radii according to Bondi (the expected value should 

be 2.99 Å).92 Moreover, short intramolecular contacts were observed between the nearest F and H 

atoms (Entry 9). Thus, the rotation angle of the polyfluoroalkyl group (Entry 4) is dictated mainly 

by Van der Waals repulsion from the neighboring H and O atoms. 

We also believe that the reason for the repulsion is not only due to close intramolecular 
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contacts, but also due to a strong electrostatic dipole-dipole interaction between CO and C-CF3. 

Thus, the longest O∙∙∙F distance (Entry 5) is observed in case of the less bulky (as compared with n-

C3F7 and CClF2), but more electronegative CF3-group in examples 88n and 92a. 

 
Figure 9. Ortep plot of 5-(heptafluoropropyl)-8-methoxy-1,3-dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 88m 

(25% probability level). Crystal solvate with 1 eq of chloroform. 

As we see in Figure 9, a short intramolecular F3∙∙∙H7 contact of 2.434 Å is also observed in 

structure 88m, which is a little bit beyond the normal van der Waals contact distance (~2.65 Å92). 

Table 4. Torsion angles φ and interatomic distances r (atom numeration according to Ortep plot). 

 Entry 88n 88j 88m 92a 

φABCD, ° 

1 
C10C3C5O2, 

−32.18 

C14C9C11O2, 

−27.28 

C15C9C11O3, 

−25.97 

C12C3C1O1, 

35.47 

2 
C3N1N2C5, 

−6.99 

C9N1N2C11, 

−5.94 

C9N2N1C11, 

−4.57 

C3N1N2C1, 

11.62 

3 
C10N1N2O2, 

−15.40 

C14N1N2O2, 

−13.24 

C15N2N1O3, 

−11.71 

C12N1N2O1, 

19.76 

4 
C2C3C10F2, 

−89.07 

C8C9C14Cl1, 

−87.89 

C8C9C15C16, 

−85.22 

C4C3C12F3, 

84.10 

rAB, Å 

5 F3O2, 2.548 F2O2, 2.510 F2O3, 2.500 F1O1, 2.548 

6 F2O2, 2.974 Cl1O2, 3.148 O3F4, 2.706 F3O1, 3.109 

7 C10O2, 2.902 C14O2, 2.878 C15O3, 2.887 C12O1, 2.965 

8 C3C5, 2.531 C9C11, 2.531 C9C11, 2.542 C3C1, 2.541 

 9 F1H11, 2.204 F1H7, 2.246 F1H7, 2.253 F2H5, 2.208 
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In cases of meta-substituted anilines, the formation of two regioisomers is possible. Isolation 

of the pure isomer required thorough recrystallization; therefore, yields are lower than for other 

anilines (Table 2). 

Table 5. The selectivity of the cyclization in the case of meta-substituted anilines. 

 8/6-Substituted isomers ratioa

R1 MeO MeO MeO CF3 

R2 CF3 n-C3F7 CClF2 CF3 

 87 / 13 50 / 50 92 / 8 86 / 14 
a – determined by 1H NMR. 

Electrophilic attack of the less sterically hindered position leads to predomination of the 8-

substituted isomer. On the other hand, hydrophobic interaction can take place between the 

substituent attached to the aniline ring and the polyfluoroalkyl group. This balance between 

attraction and repulsion is supposed to be decisive for the observed regioisomeric ratio. 

Isomers were assigned using 1H NMR data. Thus, the spectra of 8-substituted isomers 

contain a doublet with coupling constant 4J = 2.65-2.83 Hz or narrow multiple in case of 88o (due 

to through space interaction between H-6 and CF3 groups). 

 

2.3 Syntheses of 5-hydroxy-5,10-dihydro-5-deazaalloxazines and their conversion into 

5-deazaalloxazines 

 

Next, we were interested, what the product will be in case of N,N-disubstituted 6-

aminouracil. After acylation and cyclization in sulfuric acid, compounds 90, which contain a 

tertiary amino group, give the corresponding 5-hydroxy-5,10-dihydro-5-deazaalloxazines 91 

(Scheme 24, 25). As we estimated, under strong acidic conditions the compounds 90a-c form 5-

deazaalloxazine-10-ium cation 95. The latter undergoes reaction with an hydroxyl anion 

immediately after dilution with water. 
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Scheme 24. Syntheses of 5-hydroxy-1,3,10-trimethyl-5-trifluoromethyl-5,10-dihydro-5-deazaalloxazine. 

Reagents and conditions: i: N-methylaniline, 180 °C, 3 h;78 ii: trifluoroacetic anhydride, pyridine, dioxane, r.t., 

overnight;91 ii: H2SO4, (conc.), r.t.. 
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Treatment of 5-hydroxy-5,10-dihydro-5-deazaalloxazines 91 with thionyl chloride resulted 

in cleavage of the C-N bond. In this way we obtained 5-deazaalloxazines 92 bearing a ω-

chloroalkyl group at position 9. This result can be explained by the higher chloride anion 

nucleophilicity in contrast to hydrogensulfate. Other expected but not obtained products are 

represented in Figure 10. 
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Scheme 25. Syntheses of 5-hydroxy-5,10-dihydro-5-deazaalloxazines and their conversion into5-deazaalloxazines. 

Reagents and conditions: i: anhydride of polyfluorinated carbonic acid (or cloroanhydride), pyridine, r.t., overnight;91 ii: 

H2SO4, (conc.), r.t., 3 h; iii: SOCl2, CHCl3, boiling under reflux, 3 h. 
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Figure 10. Alternative products (not obtained). 

 
Figure 11. Ortep plot of 6-hydroxy-8,10-dimethyl-6-(trifluoromethyl)-1,2-dihydro-6H-pyrimido[4,5-b]pyrrolo[3,2,1-

ij]quinoline-7,9(8H,10H)-dione 91a (35% probability level). 

Besides other methods, the structure of 91a was confirmed by X-ray crystallographic 
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analysis. As we see in Figure 11, a strong intramolecular hydrogen bond of 1.765 Å length is 

present there. 

 
Figure 12. Ortep plot of 9-(2-Chloroethyl)-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione 92a (35% probability level). 

The structure of 92a was confirmed by X-ray analysis as well (see discussion in Chapter 

2.2.4) 

 

2.3.1 Mechanistic pathway consideration 
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Scheme 26. 7-Ethyl-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione doesn't undergo 

alkylation. 

Reagents and conditions: xylene, methyl iodide or dimethyl sulphate, heating up to 150 °C. 

5-Deazaalloxazines do not undergo alkylation, but existence of 5-deazaalloxazines 

containing a quaternized nitrogen 95 was proved by 1H and 13C NMR. For this purpose, 6-hydroxy-

8,10-dimethyl-6-(trifluoromethyl)-1,2-dihydro-6H-pyrimido[4,5-b]pyrrolo[3,2,1-ij]quinoline-

7,9(8H,10H)-dione 91a was dissolved in deuterochloroform, followed by addition of triflic 

anhydride (Scheme 27). 
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Scheme 27. Formation of 5-deazaalloxazine-10-ium cation 95a. 

The CH2-protons appears as two triplets. It indicates equivalence of protons within each 

methylene group and consequently the molecular symmetry (the methylene groups lie in the mirror 

plane). In the opposite case, the pattern of the signals would be more complicated, namely four 

doublets of doublets of doublets. In addition, the MS(GC) and HRMS spectra of 92a contain strong 

peaks corresponding to the above mentioned cation 95a, namely [M-Cl]+. The same is valid for 9-

(3-chloropropyl)-5-(heptafluoropropyl)-1,3-dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

92b. 

All this facts together with the successful synthesis of 5-hydroxy-1,3,10-trimethyl-5-

(trifluoromethyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 91c suggest Pathway A 

to be right; no C-N bond cleavage takes place (Scheme 28). 
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Scheme 28. Mechanistic pathways. 

 

2.4 Suzuki and Sonogashira coupling with 7-bromo-5-trifluoromethyl-5-

deazaalloxazine 

 

The 8-bromo derivative 88p undergoes Suzuki and Sonogashira reaction in high yields. 

Thereby, the conjugated π-electron system is extended that exerts a significant influence on the 

photophysical properties. 
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Scheme 29. Suzuki and Sonogashira coupling with 7-bromo-5-trifluoromethyl-pyrimido[4,5-b]quinoline-2,4-dione. 

Reagents and conditions: i: Pd(PPh3)4, K2CO3, dioxane, H2O, 100 °C, ½ h, under argon;93 ii: Pd(PPh3)2Cl2, CuI, DIPA, 

THF, r.t., 48 h, under argon.94 

 

2.5 Reduction of 5-deazaalloxazines 
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Scheme 30. Reduction of 5-deazaalloxazines. 

Reagents and conditions: i: diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (6 eq), xylene, TsOH, 155 °C, 5 

h, under argon; ii: NaBH3CN, THF, AcOH, 4 days.95 

 
Figure 13. Ortep plot of 1,3,7,9-Tetramethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione 98a (40% probability level). 

5-Deazaalloxazines are reduced by Hantzsch dihydropyridine or sodium cyanoborohydride 
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to the corresponding 5,10-dihydro-5-deazaalloxazines 98a and b. The reduction of compounds 88c 

and f with sodium cyanoborohydride95 was carried out in excellent yield and under milder 

conditions as compared to the primarily used 1,4-dihydropyridinedicarboxylate. 

Sodium cyanoborohydride is known as a selective and stable reducing agent which is used 

in slightly acidic media. Moreover, it is cheaper than diethyl 1,4-dihydropyridinedicarboxylate and 

easy to handle. 

The structure of product 98a was unambiguously confirmed by X-ray analysis. 

 

2.6 Alkylation of 1,3,7,9-tetramethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione 

 

Theoretically two main positions for alkylation were expected: N-10 and C-4a. As we 

estimated, alkylation took place at the carbon atom. From the 2D NOESY spectrum of 100 it is 

clearly seen that benzylic methylene group is located in the neighbourhood of H-5 (corresponding 

cross-peak at 3.12 and 4.00 ppm). In fact, this is in agreement with a result obtained by H. Fenner 

and W. Bauch. The authors reported about alkylation at position 4a of 1,3-dimethyl-5,10-dihydro-5-

deazaalloxazine, carried out with methyl iodide.96 
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Scheme 31. Benzylation of 5,10-dihydro-5-deazaalloxazine 98a. 

Reagents and conditions: i: K2CO3, DMF, r.t., overnight, under argon. 

 
Figure 14. Ortep plot of 1,3,7,9-tetramethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione 100 (35% probability level). 
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In our case, the reaction proceeded with high diastereoselectivity. Therefore, it raises the 

question concerning the relative configuration at C-4 and C-5. In order to accomplish the structure 

elucidation, a single crystal was grown. Thus, according to X-ray data (Figure 14), the obtained 

substance constitutes a diastereomeric mixture of 4aR,5R- and 4aS,5S-enantiomers. As expected, 

benzyl bromide attacks the substrate from the less sterically hindered side. 

 

2.7 Reaction of 5-deazaalloxazines with C- and N-nucleophiles 

 

Another remarkable feature of 5-polyfluoroalkyl-5-deazaalloxazines has been found during 

the study, namely the ability to react with some nucleophiles, such as acetophenone, nitromethane 

and hydrogen cyanide, under basic conditions in excellent yields (Scheme 32). A similar reaction 

has been previously reported for 10-substituted 5-deasaflavines, since H.-J. Duchstein, H. Fenner 

and W. Bauch published their results in the year 1989,97, 98 but not for 5-deazaalloxazines. 
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Scheme 32. Interaction of 5-trifluoromethyl-5-deazaalloxazines with C-nucleophiles. 

Reagents and conditions: i: acetophenone, NaH (60% in mineral oil), THF, r.t., overnight; ii: MeNO2, NaOMe, THF, 

MeOH, r.t., overnight; iii: KCN, DMSO, r.t., overnight. 

In case of 9-(2-chloroethyl)-5-deazaalloxazine 92a, a further cyclization takes place. Taking 

into account that 5-deazaalloxazines do not undergo alkylation, this reaction can be rationalized by 

a cascade mechanism (Scheme 33). 
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Scheme 33. Proposed mechanism. 

Especially interesting in this context is a reaction with indole, which rapidly couples 5-

deazaalloxazine 88f in the presence of a strong base (Scheme 34). The resulting σ-complex 

undergoes rearrangement at 80 °C in 5 hours to form a thermodynamically more stable C-isomer. 

N-Adduct 101d can be decomposed by heating and to form hereby the initial materials 88f and 103, 

especially in the presence of traces of bases. Addition of a small amount of acetic acid stabilizes the 

product. Both isomers were isolated. 

The direction of the nucleophilic addition was confirmed by 13C NMR spectroscopy. The 

quaternary carbon atom C-5 of 101a-e and 102a-c appears as a quadruplet (2J(C-F) = 25.7-33.0 Hz) 

in the aliphatic region at 46.2-50.2 and 65.3 ppm (the outstanding value refers to the 5-(indol-1-yl) 

derivative 101d). 
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Scheme 34. Indole as N- and C-nucleophile. Reaction with 5-deazaalloxazines. 

Reagents and conditions: i: NaH (60% in mineral oil), THF, r.t., 3 min; ii: NaH (60% in mineral oil), DMF, 80 °C, 5 h, 

under argon. 

In some cases, a simple substitution of chlorine for the nucleophile was observed instead of 

addition to the 5-position. In other cases, 5-deazaalloxazine 92a does not enter into the reaction at 
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all (Scheme 35). 
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Scheme 35. Reaction of 9-(2-cloroethyl)-1,3-dimethyl-5-trifluoromethyl-pyrimido[4,5-b]quinoline-2,4-dione 24a with 

N- and S-nucleophiles. 

Reagents and conditions: i: DMSO, r.t., overnight; ii: DMSO, NaOMe, r.t., overnight. 

5-Deazaalloxazine 88f reacts reversibly with p-thiocresol 105 to form 101f (Scheme 36). 

The reaction requires base catalysis. In this case, the equilibrium is shifted almost completely 

toward the product. While the starting materials disappeared, the product was observed on TLC, 

but, unfortunately, has never been isolated in a pure state, because most of it decomposes during the 

isolation. The additional evidence of the chemical transformation is bleaching of the mixture during 

the reaction. 5,10-Dihydro-5-deazaalloxazines, in contrast to yellow 5-deazaalloxazines, are 

colourless. 
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Scheme 36. Reversible reaction of 5-deazaalloxazine 88f with p-thiocresol 105. 

Reagents and conditions: NaOMe, DMF, r.t., overnight. 

A product of the reaction of 88f with morpholine 106 was not observed, even when sodium 

hydride was used as a base (Scheme 37). In contrast to the previous case with p-thiocresol, even 

bleaching of the mixture was not noticed. According to the poor literature data, addition of amines 

to fused pyridines may take place, but the equilibrium is strongly shifted towards the starting 

material.99, 100 

It should be mentioned here that nucleophilic addition is more characteristic for pyridinium 

salts (this reaction is closely associated with the name of Fritz Kröhnke101) rather than non-

quaternized pyridines.102 

The easiness with which 5-polyfluoroalkyl-5-deazaalloxazines react with nucleophiles 

requires some consideration. First of all, the pyridine core is fused with two other aromatic rings; 
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this circumstance substantially reduces aromaticity of the central cycles. Secondly, we should take 

into account the influence of substituents, especially at the reacting center. Thus, the perfluoroalkyl 

group causes a strong negative inductive effect. Moreover, according to the charge-alternation rules, 

the mesomeric effect distributed from pyrimidin-2,4-dione ring appears to be electron-withdrawing 

at the 5-position. Thirdly, the 5-polyfluoroalkyl-5-deazaalloxazine ring system is slightly twisted 

(see X-ray structures 88n, 88j, 88m and 92a) and consequently has decreased aromaticity compared 

to its planar state. 
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Scheme 37. No reaction between 5-deazaalloxazine 88f and morpholine 106. 

Reagents and conditions: NaH (60% in mineral oil), THF, r.t., overnight. 

 

2.8 Cyclization of 6-(Benzylamino)-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-

2,4(1H,3H)-dione under basic conditions 
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Scheme 38. Cyclization of 6-(Benzylamino)-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione under basic 

conditions. 

Reagents and conditions: i: TFAA, pyridine, dioxane, r.t., overnight;91 ii: NEt3, DMF, 125 °C, 10 h, under argon. 

Next, we tried to do the cyclization in case of N-benzyl-6-aminouracil where the methylene 
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group between the nitrogen atom and the phenyl group should prevent aromatization of the new 

ring. Unfortunately, it was not possible to isolate any clear product when sulfuric acid was applied. 

But another interesting reaction took place when the reaction was catalyzed by triethylamine. 

Thereby, a six-member ring is formed (Scheme 38). 

The obtained product 108, contrary to the expected structure 109, shows a quadruplet in the 
13C DEPT spectrum with a significant coupling constant 2J(C-F) = 31.9 Hz, which was surprising. 

Therefore, the product was confirmed by X-ray analysis (Figure 15). 

 
Figure 15. 6,8-Dimethyl-2-phenyl-4-(trifluoromethyl)-4,8-dihydro-2H-pyrimido[4,5-d][1,3]oxazine-5,7(1H,6H)-dione 

108 (40% probability level). 

 

2.8.1 Discussion of the mechanistic pathway 

 

According to literature data, this type of cyclization is rationalized by a 1,5-hydrogen shift, 

followed by an usual nucleophilic addition of the hydroxyl group to the imine (Scheme 39, 

Pathway A).103-106 The [1,5]-H migration was confirmed by an experiment with 

deuterotrifluoroacetic acid as a reaction medium; no deuterium was found in the product.107 

But our example somewhat differs from the already described reactions in the literature. To 

the best of our knowledge, no similar reactions with secondary amines have been reported hitherto. 
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Only reactions involving tertiary amines were reported. This phenomenon is strongly associated 

with the so-called tert-amino effect. Secondly, these reactions proceed mostly either under acidic 

catalysis (TFA,103, 107 silica gel,106 Sc(OTf)3
105) or at high temperature,104 and never in basic media. 

Taking into account the NH-acidic properties of 78c, other possible pathways have to be 

considered, too. 

We propose the following alternative mechanism of this reaction (Scheme 39, Pathway B): 
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Scheme 39. Proposed mechanisms. 

As the reaction runs in the presence of triethylamine, deprotonation is supposed to be the 

first step. The negative charge is delocalized over several atoms, particularly over the deprotonated 

nitrogen and oxygen of the trifluoroacetyl group. Then two synchronous transformations take place: 

a 1,2-hydrogen shift and a bond formation between carbon and oxygen atoms. Now the negative 

charge is delocalized over C-6 and the carbon atom adjacent to the CF3 group. Finally, protonation 

leads to the obtained product 108. 
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2.9 Photophysical properties of 5-polyfluoroalkyl-5-deazaalloxazines 

 

Molar absorption coefficients, absorption maxima, fluorescence band maxima and Stokes 

shifts for 6 compounds were determined within the study (Figure 16, 17; Table 6). As expected, the 

synthesized 5-deazaalloxazines have pronounced fluorescence properties. 

Table 6. Photophysical properties of 5-deazaalloxazines in chloroform: molar absorption coefficients ε at absorption 

maxima λa, fluorescence band maxima λf, and Stokes shift ΔνSt. 

Compd λa, nm ε, M-1·cm-1 λf, nm ΔνSt, cm-1

88w 405 9500 460 2950 

88x 353 12400 516 8950 

88f 397 5200 468 3820 

88u 410 17500 480 3560 

97a 417 9800 494 3740 

92b 395 5400 466 3860 

As seen from Table 6, compound 97a exhibits the most pronounced bathochromic shift 

among all other examples. The absorption coefficient values lie within 5200-17500 M-1·cm-1, which 

is too high to be explained by a n – π* electronic transition. Hereby one can assume that this 

maxima correspond to π – π* transition. The structure of 88x has an outstanding value of Stokes 

shift that can be rationalized by vibrational energy relaxation. The highest absorption coefficient is 

observed for 88u, the structure having the longest conjugated π-electron system. 
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Figure 16. Normalized absorption and uncorrected emission spectra of compounds 92b, 88x and 88u in chloroform. 
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Figure 17. Normalized absorption and uncorrected emission spectra of compounds 88w, 97a and 88f in chloroform. 
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2.10 Conclusions 

 

In conclusion, we have developed a convenient and inexpensive approach for the synthesis 

of 5-polyfluoroalkyl-5-deazaalloxazines. These compounds are not readily available by other 

methods. 

5-Acyl-6-aminouracils containing a tertiary amino group cyclize in sulfuric acid to the 

corresponding 5-hydroxy-5,10-dihydro-5-deazaalloxazines. The latter can be converted into 5-

deazaalloxazines via C-N bond cleavage promoted by thionyl chloride. 

In case of 5-acyl-N-benzyl-6-aminouracil an unusual cyclization leading to a six-membered 

ring was observed. 

Unlike Hantzsch dihydropyridine, sodium cyanoborohydride was found to be an excellent 

reductant for 5-polyfluoroalkyl-5-deazaalloxazines to convert them into the corresponding 5,10-

dihidro derivatives. The obtained product undergoes highly regio- and diastereoselective alkylation 

with benzyl bromide. The possibility to reduce the pyridine fragment of 5-polyfluoroalkyl-5-

deazaalloxazines is a crucial feature important for development of artificial FAD/FADH2 system 

analogues with tunable redox potential. 

Suzuki and Sonogashira couplings with 8-bromo-5-deazaalloxazine derivative were carried 

out successfully and in high yields. 

Another remarkable feature of 5-deazaalloxazines has been found during the study, namely 

the ability to react with a variety of nucleophiles at position 5. In case of 9-(2-chloroethyl)-5-

deazaalloxazines, a further cyclization leads to 7,9-dioxo-1,2,7,8,9,10-hexahydro-6H-pyrimido[4,5-

b]pyrrolo[3,2,1-ij]quinolines. 

As expected, the synthesized 5-deazaalloxazines have pronounced fluorescence properties. 

Examples 77a, 77b, 88b, 88h, 88j, 88n and 88q have been sent to be tested. The 

pharmacological evaluation is performed by Dr. M. Lalk (University of Greifswald). 
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3 Synthesis of Spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-one]-3,10-

dihydro-2,4-diones via Three-Component Reaction 

and Unexpected Recyclization 
3.1 Introduction 

3.1.1 Biological relevance of similar structures 

 

This chapter is devoted to spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-one]-3,10-

dihydro-2,4-diones. The target scaffold can be mentally divided into several biologically relevant 

moieties. First of all, it is the heterocyclic oxindole system containing one carbon atom common to 

two rings. Presence of the chiral spiro carbon leads to the sterically constrained spiro structure and 

is one of the important factors of the biological activities. Spirooxindole and spiroindoline ring 

systems are widely distributed among natural alkaloids, including anesthetics (horsfiline 112),108 

mammalian cell cycle inhibitors, antibiotics, antitumor agents (spirotryprostatin B),109 and in 

synthetic drugs (for instance, ibutamoren 111, the orally active growth hormone secretagogue).110 

On the other hand, the target scaffold includes so important motifs, such as 6-aminouracil 

and 1,4-dihydropyridine. The last moiety occurs in a large number of pharmaceutical products 

known as L-type calcium channel blockers (almodipine 114)111 and calcium agonists (CGP-

28392).112 AEAC, which refers to 6-aminouracils, is a thymidine phosphorylase inhibitor and 

exhibits antitumor activity.113 Thus, the combination of these moieties presents intriguing 

possibilities for pharmacological studies and drug design (Figure 18). 
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Figure 18. Representatives of closely related heterocycles and their biological activities.108-113 
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3.1.2 Multicomponent reactions as a powerful synthetic method 

 

Multicomponent reactions (MCRs) are very advantageous in many aspects. For instance, 

such reactions that provide maximum diversity are especially desirable in combinatorial chemistry 

and perfectly amenable to automation.114 On the other hand, MCRs usually lead to minimization of 

energy consumption and waste production due to their atom economy and facile execution. 

Because of their high productivity, the multicomponent reactions have attracted considerable 

attention as a source of a colossal number of substances to bioscreening and medicinal chemistry 

research, and are particularly useful for the preparation of spiroheterocyclic systems. 

 

3.2 Results and discussion 

3.2.1 Synthetic strategy based on Hantzsch- and Biginelli-type reactions 

 

The 3+2+1 strategy, where 1,3-binucleophiles, such as -CCN-, -CCO- and -NCN-, 1-C-

nucleophile-2-C-electrophile and 1,1-C-bielectrophile form a heterocyclic ring by one-pot 

cyclocondensation, is one of the most important approaches toward the synthesis of 1,4-

dihydropyridines (DHPs),115, 126 4H-pyranes114, 127 and Biginelli compounds.128 The following 

starting materials have been successfully used in the synthesis of DHP: 

 1,3-CCN-Binucleophiles 

5-Aminopyrazoles,115, 117, 119, 122, 123 6-aminouracils,124 β-naphthylamine,116, 118, 121 5-amino-

isooxazoles120 and 6-amino-2-(methylthio)pyrimidin-4(1H)-one.126 

 1-C-Nucleophile-2-C-electrophiles 

Barbituric115, 117-121, 123, 125 and thiobarbituric120 acids, simple ketones,126 1,3-diketones,116, 119, 

124, 126 cyanomethyl ketones,122 etc.119 

 1,1-C-Bielectrophiles 

Isatin,115-117, 119, 120, 122 aromatic aldehydes.118, 121, 123-126 

The first component (1,3-binucleophile) can be generated in situ, for example, from a ketone 

that contains an active methylene group in α-position and from an amine125 or ammonia itself as in 

the classical Hantzsch dihydropyridine synthesis. Another variation is the two-component 

condensation, where one of them plays a double role: namely as 1,3-binucleophile and 1-

nucleophile-2-electrophile (Scheme 40).129, 130 
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3.2.2 Synthesis of spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-one]-3,10-dihydro-

2,4-diones and unexpected recyclization 

 

In recent year (2012) a significant attention has been paid to multicomponent DHPs 

synthesis involving isatin as a carbonyl component and 1,1-C-bielectrophile.115, 117, 120 But in the 

light of our study, the possibility of the formation of the opposite isomer in such reactions with the 

similar spectral and analytical data has not received adequate attention. 

We developed an efficient one-pot three-component synthesis of compounds 118/119 a-w 

(Scheme 40). As the first component, derivatives of barbituric or thiobarbituric acid 79 were used. 

The second component is an electron-rich aniline, and the third one is isatin. 

This reaction occurs in normal atmosphere and usually gives moderate to high yields mostly 

depending on the initial aniline. Initially we tested briefly various solvents and catalysts and found 

conditions proposed by X.-S. Wang and coworkers (EtOH, I2, r.t.) to be the best. It is worth to 

mention here that the reaction runs successfully at r.t. even without iodine, but, however, in little bit 

lower yields. The progress of the reaction was monitored by TLC, and in most cases the synthesis 

was complete after 24 h. The results are summarized in Table 7. A completely unexpected result 

was observed, namely that the expected structure of some products proved to be wrong. As shown 

in Scheme 40, two products are possible: the normal one 118 and isomeric one 119. 
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Scheme 40. Synthesis of spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-one]-3,10-dihydro-2,4-diones. 

Reagents and conditions: i: EtOH, I2 (cat.), r.t., 24 h.118 
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Figure 19. Variety of anilines 

Table 7. Syntheses of spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-one]-3,10-dihydro-2,4-diones 118 and 119 via 

three-component condensation. 

Entry 
Barbituric acid Aniline 116 Isatin Product 

R1 X № R2 R3 R4 Isomerc Yield, %a

a Pr O a 3,5-diMeO- H H 119 79 

b Pr O b 3,4,5-triMeO- H H 119 26 

c Pr O c 2-anthracenamine H H 119 91 

d H O a 3,5-diMeO- H H 119 51 

e Me O a 3,5-diMeO- H H 119 57 

f Me O a 3,5-diMeO- Cl H 119 72 

g Me O a 3,5-diMeO- H Et 118 82 

h Me O b 3,4,5-triMeO- H Et 118 55 

i Me O a 3,5-diMeO- F H 119 75 

j Me O a 3,5-diMeO- H Me 118 86 

k Me O b 3,4,5-triMeO- H Me 118 52 

l Me O b 3,4,5-triMeO- NO2 H 118(85), 119(15) 67 / 23b

m Et S a 3,5-diMeO- H H 119 81 

n Et S b 3,4,5-triMeO- H H 119 53 

o Et S a 3,5-diMeO- H Et 118 72 

p Et S a 3,5-diMeO- Cl H 119 68 

q Et S b 3,4,5-triMeO- H Et 118 47 

r Et S a 3,5-diMeO- F H 119 59 

s Et S b 3,4,5-triMeO- F H 119 36 

t Et S a 3,5-diMeO- H Me 118 56 

u Et S a 3,4,5-triMeO- H Me 118 47 

v Et S a 3,5-diMeO- NO2 H 118(25), 119(75) 63 / 19 b 

w Et S c 2-anthracenamine H Et 118 73b

a – yields refer to pure isolated products; b – yield of isolated mixture / yield of the major isomer isolated in a 

pure state; c – in brackets are given isomers ratio. 

After first trials, four commercially available barbituric acid derivatives 79a-d, three 

aromatic amines 116, and six isatins 117 were chosen for the library extension and validation of the 
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observed results. Let us consider what the product distribution depends on. In case of N-substituted 

isatins exclusively the normal product 118 was isolated. For R4 = H only the opposite isomer 119 

forms. And only in case of 5-nitroisatin both isomers were detected. As we see, the product depends 

entirely on the type of isatin. 

The isomers were identified by X-ray analysis or NOESY. The decisive correlations are 

shown in Figure 20. The peak of the amine proton can be assigned by the first correlation. Another 

NH-signal belongs to the amide. The second and third cross-peaks indicate the position of each 

aromatic ring being in neighborhood to the corresponding acidic protons. In case of N-alkyl 

structures, the algorithm of explanation is the same except that the 1-ethyl or methyl protons are 

taken into consideration instead of the NH. 
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Figure 20. Determination of regioisomer by NOESY. Arrows show the decisive correlations. 

The structures of products 118 and 119 were characterized by IR, 1H, 13C NMR spectral data 

as well as MS and HRMS analysis. For examples 119f, 118g, 119c and 118u were measured COSY 

and HSQC correlations. In addition, HMBC spectra of 118g and 118u were obtained. The 

regiochemistry of 119b and 119e is confirmed by X-ray analysis. Isomeric structures of 119c, 119f, 

118g, 118l, 118u, 119v were determined using 2D NOESY-methods. In those cases, when N-

alkylisatins were employed in the reaction, isomers can be easily assigned by the signal of the NH-

proton, which are in the range of 9.14 (118g) to 9.40 ppm (118w) in DMSO. The dihydropyridine 

NH proton appears at 9.14 to 9.98 ppm, whereas the NH of the indolin-2-one fragment comes out at 

10.32 to 11.05 ppm. Therefore, we draw the conclusion that N-alkylisatins give the expected 

isomer. The isomeric structure of other substances was determined by comparing the most decisive 

carbon and proton chemical shifts related to the di- and trimethoxyaniline moieties with the 

examples confirmed for sure by X-ray or NOESY. The NMR data are summarized in Tables 8-11. 
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Table 8. The 1H and 13C NMR data for isomers 119 from 3,5-dimethoxyaniline. 

 1H NMR 13C NMR 

Compd MeO-4 MeO-6 H-5 H-7 MeO-4 MeO-6 CH-5 CH-7 

4e 3.50 3.76 6.04 6.12 –– –– –– –– 

4a 3.49 3.75 6.03 6.11 56.4 56.1 92.9 90.1 

4f 3.53 3.77 6.07 6.14 56.5 56.2 93.1 90.2 

4i 3.52 3.77 6.07 6.13 56.5 56.2 93.1 90.2 

4m 3.51 3.76 6.05 6.13 56.5 56.2 93.1 90.2 

4p 3.54 3.77 6.09 6.15 56.6 56.2 93.2 90.3 

4r 3.53 3.77 6.08 6.15 56.5 56.2 93.2 90.3 

4v 3.54 3.78 6.10 6.20 56.6 56.2 93.3 90.4 

 

Table 9. The 1H and 13C NMR data for isomers 118 from 3,5-dimethoxyaniline. 

 1H NMR 13C NMR 

Compd MeO-6' MeO-8' H-7' H-9' MeO-6' MeO-8' CH-7' CH-9' 

4g 3.32 3.77 6.13 6.67 56.2 56.1 95.5 95.0 

4j 3.36 3.77 6.12 6.67 56.8 56.1 95.5 95.0 

4o 3.34 3.79 6.16 6.80 –– –– –– –– 

4t 3.38 3.78 6.15 6.79 56.9 56.2 96.0 95.2 

 

Table 10. The 1H and 13C NMR data for isomers 119 from 3,5-3,4,5-trimethoxyaniline. 

 1H NMR 13C NMR 

Compd MeO MeO MeO H-7 MeO MeO MeO CH-7 

4b 3.29 3.59 3.83 6.36 56.8 60.8 61.3 92.0 

4n 3.28 3.59 3.83 6.38 56.9 60.8 61.4 92.1 

4s 3.33 3.61 3.84 6.40 56.9 60.9 61.4 92.2 

 

Table 11. The 1H and 13C NMR data for isomers 118 from 3,5-3,4,5-trimethoxyaniline. 

 1H NMR 13C NMR 

Compd MeO-6' MeO-7' MeO-8' H-9' MeO-6' MeO-7' MeO-8' CH-9' 

4h 3.03 3.60 3.83 6.92 60.1 61.1 56.6 97.2 

4k 3.12 3.60 3.83 6.93 60.4 61.2 56.6 97.2 

4l 3.27 3.62 3.85 6.96 60.4 61.2 56.7 97.3 

4q 3.04 3.61 3.80 7.05 60.2 61.1 56.7 97.5 
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Figure 21. Ortep plot of 5,7-dimethoxy-1',3'-dimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(1H,3'H,10'H)-trione 119e (30% probability level). Crystal solvate with 3 eq of trifluoroacetic acid. 

 
Figure 22. Ortep plot of 4,5,6-trimethoxy-1',3'-dipropyl-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(1H,3'H,10'H)-trione 119b (25% probability level). Crystal solvate with 1 eq of methanol. 

As seen from crystallographic data, configuration of the spiro carbon atom is near to 
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tetrahedral: The angle values appear within the range of 100° to 115° (in tetrahedron ~109.47°). 

Indolin-2-one and 5,10-dihydropyrimido[4,5-b]quinoline-2,4-dione moieties lie in orthogonal 

planes. Torsion angles C19C1N1C6 (119e) and C24C3N1C8 (119b) make up −90.00° and 94.05° 

respectively. 

All synthesized spiro compounds are novel, but nevertheless, similar to previously described 

derivatives. Remarkably, despite a substantial number of publications dedicated to three-component 

spiroindolinone synthesis via Hantzsch-like reaction,115-117, 119, 120, 122 the possible recyclization has 

not been considered yet. The isomers have similar analytical data and, therefore, without additional 

X-ray crystallographic investigation or NOESY experiment could be wrongly assigned. The only 

similar transformation was described by A. Bazgir and coworkers for a two-component reaction, 

where 6-aminouracil 120 plays double role (Scheme 41).129, 130 The authors concluded the structure 

of one congener (R1 = R2 = R3 = CH3, R4 = H) using X-ray analysis, but the regiochemistry of the 

other products 121, particularly the one obtained from N-methylisatin, was not confirmed. 
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Scheme 41. Two-component condensation accomplished by reamidation reported by A. Bazgir and coworkers.129, 130 

 

3.2.3 Reactions of other carbonyl compounds instead of isatins 

 

The study of the three-component condensation between barbituric acids, anilines and 

carbonyl compounds was continued (Scheme 42). The reaction was carried out successfully only 

with electron-rich anilines and relatively active carbonyl compounds. 

Next, we tried to replace isatins by other active carbonyl compounds, such as chloral hydrate 

and ethyl pyruvate. When chloral hydrate was introduced into analogous reaction, unexpected 

product 123 with hydrolyzed trichloromethyl group was obtained under the same conditions in 17% 

yield. Fused 1,4-dihydropyridine 125, prepared from ethyl pyruvate in 25% yield, is unstable and 

rearranges slowly at room temperature under the action of atmospheric moisture affording 

quantitatively indolinone 126 (Scheme 42). The structures of compounds 123 and 125 were 

characterized by IR, 1H, 13C NMR spectral data as well as MS, HRMS and elemental analysis. The 

structure of 126 was additionally confirmed by X-ray diffraction analysis (Figure 23). 
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Scheme 42. Three-component condensation leading to 5,10-dihydro-5-deazaalloxazines and its following 

rearrangement. 

Reagents and conditions: i: I2, EtOH, r.t., 5 days; ii: I2, EtOH, r.t., overnight; iii: slowly conversion during storage at r.t. 
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Scheme 43. Using of 3-benzylamino-5,5-dimethyl-cyclohex-2-enone leads to formation of quinoline derivative. 

Reagents and conditions: i: I2, EtOH, r.t., overnight. 

 
Figure 23. Ortep plot of 5-(4,6-Dimethoxy-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-1,3-dimethyl-pyrimidine-2,4,6-

trione 126 (35% probability level). 

If 3-benzylamino-5,5-dimethyl-cyclohex-2-enone 127 is used instead of polymethoxy-
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anilines 116a-c, 1,3-dimethylbarbituric acid 79a does not enter into the reaction (Scheme 43). As a 

result, the quinoline derivative 128 was obtained in 43% yield. Very recently, this reaction has been 

described by H. Kefayati and coworkers for the three-component condensation of isatin, dimedone 

and various amines.131 

 

3.2.4 Interpretation of the results 

 

The formation of the normal isomer can be rationalized by the mechanism analogous to the 

one proposed for the case of aromatic aldehydes instead of isatins (Scheme 44).121 We believe that 

intermediate 129a is unstable because no convincing examples of the synthesis and unambiguous 

characterization of Knoevenagel products synthesized from barbituric acids and isatins have been 

published so far.132 
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Scheme 44. Proposed reaction mechanism of formation of 118. 

The formation of isomeric products 119 needs individual consideration. We have not 

established the exact mechanism, however, a reasonable suggestion is offered in Scheme 45. In fact, 

the alkyl group on the nitrogen protects isatin from the ring opening reaction. This in turn suggests 

that the amide carbonyl of isatin is activated during the reaction by attachment of an electron 

withdrawing group to the nitrogen atom. Then reamidation takes place and subsequent 

cyclocondensation leads to the final product 119e. Normally, isatin and barbituric acid form the 

corresponding dibarbiturates 133,132 but we suppose the existence of an equilibrium between 

starting materials and intermediate 131. The latter, being activated by a conjugated CO group, 

reacts rapidly with aniline. Normally, the isatin ring opens not easily, but N-acylderivatives133-139 as 
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well as N-carbamides140 (activated by isocyanates) and N-substituted isatins,141 conjugated with a 

CO group via a double bond, react readily with amines and other nucleophiles with ring opening. It 

is interesting that the reamidation takes place also in the presence of other 1,3-dicarbonyl 

compounds131 and substances similar to barbituric acid (Scheme 41 and 43).129, 130 The first step 

definitely is deprotonation of the initial isatin. It is obvious that 5-nitroisatin forms an anion more 

easily than other isatins used in the current study. But on the other hand, delocalization of negative 

charge on the NO2 group leads to significantly decreased nucleophilicity of the anion. Thus, it 

partially prevents formation of isomeric product 119l or v. 
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Scheme 45. Proposed reaction mechanism of formation of 119 and possible intermediate 133. 

We also found that product 119e can be obtained from dibarbiturate 133 under the same 

conditions. But the question still remains, whether compound 133 loses one or two molecules of 

barbituric acid 79a, before deprotonation and subsequent alkylation of the amide nitrogen takes 

place. Of course, we cannot exclude the possibility that an adduct of one molecule of barbituric acid 

to isatin (Scheme 46) is the key intermediate. 
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Scheme 46. Product of Knoevenagel condensation between isatin and N,N-dimethylbarbituric acid (considered to be 

unstable132) as intermediate. 

In any case, the exact mechanism of this transformation is still open to question. 

 

3.3 Conclusions 

 

A novel and efficient synthesis of spiroindolinones via three-component reaction between 

(thio)barbituric acids, electron-rich anilines and isatins has been developed. The described reactions 

proceed in ethanolic media in the presence of iodine and constitute a simple, practical, and 

environmentally friendly method for obtaining heterocyclic compounds containing a spiroindole-

3,5'-pyrimido[4,5-b]quinoline system. During the study, an unexpected recyclization related to the 

isatin ring opening was observed. A possible mechanistic pathway has been proposed. 

In addition, the combinatorial aspect of the developed synthetical approach can be useful in 

biologically-orientated syntheses and drug-discovery. 

Examples 119a, 119b, 119c and 119e have been sent to be tested. The pharmacological 

evaluation is performed by Dr. M. Lalk (University of Greifswald). 
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Scheme 47. To Chapter 1. Pyrimidine C-nucleosides. 
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Scheme 49. To Chapter 3. Spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-one]-3,10-dihydro-2,4-diones. 
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4 Experimental Part 

4.1 General: analytical equipment, chemicals and work technique 

 

NMR Spectroscopy: 1H NMR spectra (250.13, 300.13 and 500.13 MHz) and 13C NMR 

spectra (62.90, 75.47 and 125.77 MHz) were recorded on Bruker instruments AVANCE 250, ARX 

300, and AVANCE 500 respectively using CDCl3, DMSO-d6 and CF3COOD as solvents. The 

spectra were calibrated according to the solvent signals (CDCl3: 
1H = 7.26, 13C = 77.36; DMSO-d6: 

1H = 2.54, 13C = 40.45; CF3COOD: 1H = 11.50, 13C = 116.60 (q, 1J(C-F) = 283.19 Hz) and 164.20 (q, 
2J(C-F) = 43.99 Hz)). 19F-NMR spectra were recorded at 235.33 or 282.38 MHz on AVANCE 250 

and ARX 300 respectively considering CFCl3-signal as a zero point of the scale. All chemical shifts 

are given in ppm. All coupling constants J are indicated in Hz. 

Multiplicities are given as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad signal. More complex coupling patterns are represented by combinations of 

the respective symbols. For example, td indicates a triplet of doublets with the larger coupling 

constant associated with the first symbol (here: triplet). 

The 1H and 13C NMR signals were assigned by DEPT and two-dimensional 1H-1H COSY, 
1H-1H NOESY and 1H-13C correlation spectra (HMBC and HSQC). 

 

Mass spectrometry (MS): 

a) Finnigan MAT 95 XP (Thermo Electron Corporation), EI, 70 eV; 

b) GC 6890/ MS D 5973 (Agilent Technologies), MS(GC), 70 eV. 

 

High resolution MS (HRMS): 

a) Finnigan MAT 95 XP (Thermo Electron Corporation), EI, 70 eV; 

b) 6210 Time-of-Flight LC/MS (Agilent Technologies), ESI. 

Only the measurements with an average deviation from the theoretical mass of ± 2 μDa were 

accounted as correct. 

 

Infrared spectroscopy (IR): Nicolet 380 FT-IR spectrometer with ATR sampling 

technique for solids as well as liquids. Signal characterization: (w) = weak, (m) = medium, (s) = 

strong. 

 

Elemental analysis (EA): Flash EA 1112 (Thermoquest). 

 

X-ray crystallography: Bruker Apex Kappa-II diffraktometer with CCD camera (Mo-Kα 

radiation and graphite monochromator, λ = 0.71073 Å). The space group is determined by the 
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XPREP program and the structures were solved via the SHELX-97 program package. Refinements 

were carried out according to the minimum square error method. 

 

UV/Vis spectroscopy: Lambda 2 (Perkin Elmer). Cuvette length l = 1 cm. 

 

Fluorescence spectroscopy: HITACHI F-4010. Cuvette length l = 1 cm, cuvette width w = 

= 1 cm. 

 

Thin layer chromatography (TLC): Merck HPTLC silica gel 60 F254 (aluminium sheets 

20x20 cm). Detection with UV light at 254 and 366 nm; afterwards development with vanillin-

sulfuric acid solution (1 g of vanillin, 14 mL of acetic acid and 1 mL of conc. sulfuric acid in 85 mL 

of methanol). 

 

Melting Points: All the measurements were carried out on the FP900 Thermosystem 

(Mettler) using a polarized light microscope Laborlux 12 POL S (Leitz). The melting points are 

uncorrected. 

 

Column chromatography: Separation on Acros or Merck silica gel 60 Å (0.060-0.200 mm, 

70-230 mesh). Eluents were distilled before use. 

 

All chemicals were purchased from the standard chemical suppliers, such as Sigma-

Aldrich®, Arcos®
, Merck® and others. 
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4.2 General procedures and product characterisations 

4.2.1 Synthesis of pyrimidine C-nucleosides 

 

2-(β-D-Ribofuranosyl)-4-(trifluoromethyl)pyrimidine (16a) 

 

Into a 25-mL flask were placed 0.3 g of 1-(β-D-ribofuranosyl)form-

amidine (1.41 mmol, 1 eq), 0.069 g of MeONa (1.27 mmol, 0.9 eq), 0.043 g of 

1,8-diazabicyclo[5.4.0]undec-7-ene (0.282 mmol, 0.2 eq) and DMF (3 mL). 

Then 0.474 g of 4-ethoxy-1,1,1-trifluoro-3-buten-2-one (2.82 mmol, 2 eq) was 

added and the reaction mixture was stirred at 80 °C for 3 hours under argon. After cooling to room 

temperature the inorganic precipitate was filtered off and the filtrate was evaporated under reduced 

pressure. The crude product was purified by column chromatography: silica gel (120 g) / EtOAc (Rf 

= 0.08–0.14). 

Yield 0.130 g (33%), white solid, mp 93-95 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.50-3.60 (m, 1H, H-5a'), 3.61-3.71 (m, 1H, H-5b'), 

3.93-4.01 (m, 1H, H-4'), 4.02-4.11 (m, 1H, H-3'), 4.22-4.30 (m, 1H, H-2'), 4.70 (dd, 1H, 3J1 = 6.61 

Hz, 3J2 = 4.72 Hz, OH-5'), 4.92 (d, 1H, 3J = 4.72 Hz, H-1'), 5.04 (d, 1H, 3J = 5.85 Hz, OH-3'), 5.28 

(d, 1H, 3J = 5.67 Hz, OH-2'), 8.02 (d, 1H, 3J = 5.10 Hz, H-5), 9.25 (d, 1H, 3J = 5.10 Hz, H-6). 
13C NMR (62.90 MHz, DMSO-d6): δ = 63.0 (CH2OH), 72.3 (CH-3'), 76.8 (CH-2'), 86.1 

(CH-4'), 86.5 (CH-1'), 117.3 (CH-5), 121.5 (q, 1J(C-F) = 275.2 Hz, CF3), 154.9 (q, 2J(C-F) = 35.6 Hz, 

C-4), 162.1 (CH-6), 170.3 (C-2). 
19F NMR (282.38 MHz, DMSO-d6): δ = –68.6 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 280 ([M]+, 0.36), 203 ([M–CF3]
+, 11), 191 (100), 189 (18), 178 

(17), 177 (33). 

HRMS (ESI): Calcd. for C10H12F3N2O4 [M+H]+: 281.07437, found: 281.07441. 

Anal. Calcd for C10H11F3N2O4: C, 42.86; H, 3.96; N, 10.00. Found: C, 41.00; H, 3.68; N, 

8.41. 

IR (ATR, cm–1): ṽ = 3390 (m), 3153 (m), 2979 (w), 2929 (w), 2817 (w), 1588 (w), 1576 

(m), 1462 (w), 1449 (w), 1418 (m), 1337 (s), 1320 (w), 1307 (m), 1295 (w), 1250 (w), 1225 (w), 

1202 (m), 1171 (s), 1150 (s), 1119 (s), 1100 (m), 1079 (s), 1042 (m), 1002 (w), 975 (w), 909 (m), 

887 (m), 851 (m), 800 (w), 761 (m), 719 (m), 703 (m), 677 (s), 649 (s), 586 (w), 542 (m), 528 (m). 

 

2-(β-D-Ribofuranosyl)-4-(pentafluoroethyl)pyrimidine (16b) 

 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 

eq), 0.26 g of K2CO3 (1.88 mmol, 2 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then  
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0.205 g of 1-etoxy-4,4,5,5,5-pentafluoro-1-penten-3-one (0.94 mmol, 1 

eq) was added at 0 °C and the reaction mixture was stirred at 60 °C for 4 hours 

under argon.  After cooling to room temperature the inorganic precipitate was 

filtered off and the filtrate was evaporated under reduced pressure. The crude 

product was purified by column chromatography: silica gel (75 g) / EtOAc (Rf = 0.09–0.21). 

Yield 0.185 g (59%), white solid, mp 72 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.48-3.59 (m, 1H, H-5a'), 3.60-3.69 (m, 1H, H-5b'), 

3.93-4.01 (m, 1H, H-4'), 4.03-4.10 (m, 1H, H-3'), 4.22-4.29 (m, 1H, H-2'), 4.67 (dd, 1H, 3J1 = 6.42 

Hz, 3J2 = 4.91 Hz, OH-5'), 4.91 (d, 1H, 3J = 4.53 Hz, H-1'), 5.04 (d, 1H, 3J = 5.86 Hz, OH-3'), 5.28 

(d, 1H, 3J = 5.66 Hz, OH-2'), 8.07 (d, 1H, 3J = 5.10 Hz, H-5), 9.26 (d, 1H, 3J = 5.10 Hz, H-6). 
13C NMR (62.90 MHz, DMSO-d6): δ = 63.1 (CH2OH), 72.5 (CH-3'), 76.8 (CH-2'), 86.1 

(CH-4'), 86.5 (CH-1'), 118.8 (CH-5), 154.9 (t, 2J(C-F) = 26.4 Hz), 161.9 (CH-6), 170.2 (C-2). 
19F NMR (282.38 MHz, DMSO-d6): δ = –118.0 (q, J = 2.1 Hz, CF2), –82.2 (t, J = 2.1 Hz, 

CF3). 

MS (GC, 70 eV): m/z (%) = 330 ([M]+, 0.73), 253 (12), 241 (100), 239 (17), 228 (15), 227 

(33). 

HRMS (EI): Calcd. for C11H11F5N2O4 [M]+: 330.06335, found: 330.06274. 

IR (ATR, cm–1): ṽ = 3419 (w), 3263 (m), 2945 (w), 2883 (w), 1574 (s), 1456 (m), 1435 (w), 

1429 (w), 1423 (w), 1404 (m), 1385 (w), 1362 (w), 1335 (m), 1302 (m), 1277 (w), 1205 (s), 1159 

(s), 1130 (s), 1107 (s), 1093 (s), 1051 (s), 1030 (s), 1014 (s), 999 (s), 984 (m), 947 (m), 933 (m), 

895 (m), 874 (m), 847 (m), 833 (m), 797 (m), 770 (m), 735 (s), 690 (m), 681 (m), 667 (s), 635 (m), 

615 (s), 534 (s). 

 

2-(β-D-Ribofuranosyl)-4-phenyl-6-(trifluoromethyl)pyrimidine (19a) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

To a solution of 4,4,4-trifluoro-1-phenylbutane-1,3-dione (2 g, 9.25 

mmol, 1 eq) in chloroform (6 mL) was added 2.258 g of SOCl2 (27.8 mmol, 3 

eq), followed by the addition of DMF (0.034 g, 0.46 mmol, 0.05 eq). The mixture was refluxed for 

3 hours. After that the solvent with an excess of SOCl2 was evaporated, and the residue was 

distilled in a high vacuum to afford a green liquid consisting of mixture of isomers (1.994 g, 92%). 

Into a 25-mL flask were placed 0.15 g of 1-(β-D-ribofuranosyl)formamidine (0.71 mmol, 1 

eq), 0.39 g of K2CO3 (2.82 mmol, 4 eq) and DMF (3 mL). Then 0.182 g of the previously prepared 

α,β-unsaturated β-chloroketone (0.78 mmol, 1.1 eq) was added at 0 °C and the reaction was stirred 

at this temperature for the next 1½ hours. After that the mixture was allowed to stand at r.t. 
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overnight. The next day the inorganic precipitate was filtered off and the filtrate was evaporated 

under reduced pressure. The crude product was purified by column chromatography: silica gel (40 

g) / EtOAc (Rf = 0.30–0.39). 

Yield 0.178 g (71%), light green solid, mp 77-78 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 4.73 (dd, 1H, 2J = 12.28 Hz, 3J = 1.32 Hz, H-5a'), 3.93 

(br s, 3H, OH), 4.04 (dd, 1H, 2J = 12.28 Hz, 3J = 2.46 Hz, H-5b'), 4.28 (s 1H, H-4'), 4.41-4.50 (m, 

2H, H-2', H-3'), 5.27 (d, 1H, 3J = 2.65 Hz, H-1'), 7.45-7.60 (m, 3H, CHPh), 7.84 (s 1H, H-5), 7.99-

8.08 (m 2H, CHPh). 
13C NMR (62.90 MHz, CDCl3): δ = 62.2 (CH2OH), 71.6 (CH-3'), 78.0 (CH-2'), 85.2 (CH-

4'), 85.9 (CH-1'), 111.9 (CH-5), 120.7 (q, 1J(C-F) = 275.6 Hz, CF3), 127.9 (CHAr), 129.6 (CHAr), 

132.7 (CHAr), 135.2, 156.5 (q, 2J(C-F) = 36.0 Hz, C-6), 167.8, 170.6. 
19F NMR (282.38 MHz, CDCl3): δ = –69.8 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 356 ([M]+, 1.8), 268 (15), 267 (100), 253 (32). 

HRMS (ESI): Calcd. for C16H16F3N2O4 [M+H]+: 357.10567, found: 357.10634. 

Anal. Calcd for C16H15F3N2O4: C, 53.94; H, 4.24; N, 7.86. Found: C, 54.70; H, 4.30; N, 

7.10. 

IR (ATR, cm–1): ṽ = 3354 (s), 3078 (w), 2925 (m), 2854 (w), 1595 (s), 1548 (s), 1501 (w), 

1479 (w), 1454 (w), 1427 (w), 1388 (s), 1333 (w), 1282 (w), 1261 (s), 1207 (m), 1179 (s), 1136 (s), 

1100 (s), 1078 (s), 1051 (s), 1025 (s), 1001 (m), 990 (m), 943 (m), 929 (m), 880 (m), 833 (m), 802 

(w), 770 (s), 750 (m), 711 (m), 687 (s), 666 (m), 633 (s), 596 (m), 573 (m), 548 (s). 

 

2-(β-D-Ribofuranosyl)-4-(2-thienyl)-6-(trifluoromethyl)pyrimidine (19b) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

To a solution of  4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dione (2 g, 9.00 

mmol, 1 eq) in chloroform (6 mL) was added 3.213 g of SOCl2 (27.0 mmol, 3 

eq), followed by the addition of DMF (0.033 g, 0.4 mmol, 0.05 eq). The mixture was refluxed for 3 

hours. After that the solvent with an excess of SOCl2 was evaporated, and the residue was distilled 

in a high vacuum to afford a yellow-green liquid consisting of mixture of isomers (1.772 g, 81%). 

The product partially crystallized at r.t.. 

Into a 25-mL flask were placed 0.15 g of 1-(β-D-ribofuranosyl)formamidine (0.71 mmol, 1 

eq), 0.39 g of K2CO3 (2.82 mmol, 4 eq) and DMF (3 mL). Then 0.187 g of the previously prepared 

α,β-unsaturated β-chloroketone (0.78 mmol, 1.1 eq) was added at 0 °C and the reaction was stirred 

at this temperature for the next 2 hours. After that the mixture was allowed to stand at r.t. overnight. 

The next day the inorganic precipitate was filtered off and the filtrate was evaporated under reduced 
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pressure. The crude product was purified by column chromatography: silica gel (65 g) / EtOAc (Rf 

= 0.31–0.36). 

Yield 0.187 g (73%), white solid, mp 165-167 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.57-3.67 (m, 1H, H-5a'), 3.67-3.77 (m, 1H, H-5b'), 

3.95-4.04 (m, 1H, H-4'), 4.09-4.18 (m, 1H, H-3'), 4.24-4.32 (m, 1H, H-2'), 4.66 (dd, 1H, 3J1 = 6.52 

Hz, 3J2 = 5.01 Hz, OH-5'), 4.89 (d, 1H, 3J = 3.96 Hz, H-1'), 5.03 (d, 1H, 3J = 6.04 Hz, OH-3'), 5.32 

(d, 1H, 3J = 5.47 Hz, OH-2'), 7.36 (dd, 1H, 3J1 = 4.91 Hz, 3J2 = 3.78 Hz, H-4''), 8.02 (dd, 1H, 3J = 

4.91 Hz, 4J = 1.13 Hz, H-3''), 8.41 (dd, 1H, 3J = 3.78 Hz, 4J = 1.13 Hz, H-5''), 8.47 (s, 1H, H-5). 
13C NMR (62.90 MHz, DMSO-d6): δ = 63.4 (CH2OH), 72.6 (CH-3'), 76.7 (CH-2'), 85.9 

(CH-4'), 86.7 (CH-1'), 111.2 (CH-5), 121.7 (q, 1J(C-F) = 275.4 Hz, CF3), 130.3 (CHAr), 132.4 (CHAr), 

134.4 (CHAr), 141.5, 155.6 (q, 2J(C-F) = 35.2 Hz, C-6), 162.6, 170.6. 
19F NMR (282.38 MHz, DMSO-d6): δ = –68.5 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 362 ([M]+, 0.51), 274 (15), 273 (100), 271 (12), 259 (29). 

HRMS (ESI): Calcd. for C14H14F3N2O4S [M+H]+: 363.06209, found: 363.06229. 

IR (ATR, cm–1): ṽ = 3511 (w), 3251 (s), 3114 (w), 2930 (w), 2878 (w), 1603 (s), 1575 (w), 

1547 (m), 1529 (m), 1504 (w), 1494 (w), 1463 (w), 1455 (w), 1418 (s), 1396 (m), 1382 (m), 1347 

(w), 1316 (w), 1290 (m), 1270 (s), 1229 (m), 1210 (m), 1168 (s), 1149 (s), 1137 (s), 1103 (s), 1092 

(s), 1074 (s), 1067 (s), 1049 (s), 1038 (s), 1020 (s), 994 (m), 984 (m), 941 (m), 930 (m), 879 (m), 

864 (m), 855 (m), 802 (m), 793 (m), 767 (m), 752 (s), 743 (m), 731 (s), 701 (s), 684 (s), 667 (m), 

631 (s), 592 (m), 568 (m), 544 (m). 

 

2-(β-D-Ribofuranosyl)-4-(heptafluoropropyl)-6-phenylpyrimidine (19c) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

To a solution of 4,4,5,5,6,6,6-heptafluoro-1-phenylhexane-1,3-dione 

(2 g, 6.33 mmol, 1 eq) in chloroform (6 mL) was added 2.258 g of SOCl2 

(19.0 mmol, 3 eq), followed by the addition of DMF (0.023 g, 0.32 mmol, 

0.05 eq). The mixture was refluxed for 3 hours. After that the solvent with an excess of SOCl2 was 

evaporated, and the residue was distilled in a high vacuum to afford a green liquid consisting of 

single isomer (1.973 g, 93%). 

Into a 25-mL flask were placed 0.15 g of 1-(β-D-ribofuranosyl)formamidine (0.71 mmol, 1 

eq), 0.39 g of K2CO3 (2.82 mmol, 4 eq) and DMF (3 mL). Then 0.260 g of the previously prepared 

α,β-unsaturated β-chloroketone (0.78 mmol, 1.1 eq) was added at 0 °C and the reaction was stirred 

at this temperature for the next 2 hours. After that the mixture was allowed to stand at r.t. overnight. 

The next day the inorganic precipitate was filtered off and the filtrate was evaporated under reduced 

O

OH OH

OH N N

F

F

F

F

F

F
F



Experimental	Part	

66 

pressure. The crude product was purified by column chromatography: silica gel (50 g) / EtOAc : 

CHCl3 = 1:2, then pure EtOAc (Rf = 0.38–0.48). 

Yield 0.176 g (55%), white solid, mp 124 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.39 (br s, 3H, OH), 3.74 (d, 1H, 2J = 12.27 Hz, H-5a'), 

4.04 (d, 1H, 2J = 12.27 Hz, H-5b'), 4.30 (s, 1H, H-4'), 4.42-4.52 (m, 2H, H-2', H-3'), 5.29 (d 1H, 3J 

= 2.83 Hz, H-1'), 7.48-7.62 (m, 3H, CHPh), 7.89 (s, 1H, H-5), 8.03-8.12 (m, 2H, CHPh). 
13C NMR (62.90 MHz, CDCl3): δ = 62.4 (CH2OH), 72.0 (CH-3'), 78.3 (CH-2'), 85.6 (CH-

4'), 85.9 (CH-1'), 113.9 (CH-5), 128.0 (CHAr), 129.7 (CHAr), 132.8 (CHAr), 135.3, 156.8 (t, 2J(C-F) = 

26.4 Hz, C-4), 167.6, 170.6. 
19F NMR (282.38 MHz, CDCl3): δ = –126.1 (m, CF2), –116.9 (m, CF2), –80.0 (t, J = 9.20 

Hz, CF3). 

MS (EI, 70 eV): m/z (%) = 456 ([M]+, 14), 425 (16), 407 (14), 383 (10), 379 (27), 368 (69), 

367 (100), 366 (16), 365 (46), 355 (11), 354 (45), 353 (79), 351 (16), 339 (14), 338 (31), 325 (15), 

206 (16), 128 (18), 103 (29). 

HRMS (ESI): Calcd. for C18H16F7N2O4 [M+H]+: 457.09928, found: 457.09909. 

IR (ATR, cm–1): ṽ = 3457 (s), 3409 (m), 3099 (w), 2942 (w), 1587 (s), 1542 (m), 1498 (w), 

1452 (w), 1411 (w), 1392 (w), 1376 (m), 1349 (m), 1338 (m), 1302 (w), 1278 (m), 1233 (s), 1204 

(s), 1181 (s), 1160 (m), 1127 (m), 1108 (s), 1084 (s), 1074 (s), 1055 (m), 1040 (m), 1027 (m), 1001 

(m), 983 (w), 974 (w), 961 (m), 929 (w), 917 (s), 890 (m), 874 (s), 797 (m), 776 (m), 767 (m), 744 

(s), 734 (s), 692 (s), 665 (m), 637 (s), 613 (m), 601 (m), 580 (m), 557 (m), 543 (s). 

 

2-(β-D-Ribofuranosyl)-4-(4-ethylphenyl)-6-(trifluoromethyl)pyrimidine (19d) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

To a solution of 1-(4-ethylphenyl)-4,4,4-trifluorobutane-1,3-dione 

(2 g, 8.19 mmol, 1 eq) in chloroform (6 mL) was added 2.923 g of SOCl2 

(24.6 mmol, 3 eq), followed by the addition of DMF (0.03 g, 0.4 mmol, 0.05 eq). The mixture was 

refluxed for 3 hours. After that the solvent with an excess of SOCl2 was evaporated, and the residue 

was distilled in a high vacuum to afford a green liquid consisting of mixture of isomers (2.120 g, 

99%). 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 

eq), 0.26 g of K2CO3 (3.76 mmol, 4 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then 0.272 

g of the previously prepared α,β-unsaturated β-chloroketone (1.03 mmol, 1.1 eq) was added at 0 °C 

and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 

allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 
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filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (50 g) / EtOAc : CHCl3 = 1:1 (Rf = 0.09–0.14). 

Yield 0.152 g (42%), white solid, mp 89 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.27 (t, 3H, 3J = 7.56 Hz, Et), 2.75 (q, 2H, 3J = 7.56 

Hz, Et), 3.61 (dd, 1H, 2J = 11.52 Hz, 3J = 4.53 Hz, H-5a'), 3.72 (dd, 1H, 2J = 11.52 Hz, 3J = 4.06 

Hz, H-5b'), 3.97-4.05 (m, 1H, H-4'), 4.12-4.21 (m, 1H, H-3'), 4.31-4.38 (m, 1H, H-2'), 4.71 (s, 1H, 

OH-5'), 4.97 (d, 1H, 3J = 4.34 Hz, H-1'), 5.04 (s, 1H, OH-3'), 5.31 (s, 1H, OH-2'), 7.48 (d, 2H, 3J = 

8.40 Hz, H-3'', H-5''), 8.32 (d, 2H, 3J = 8.40 Hz, H-2'', H-6''), 8.48 (s, 1H, H-5). 
13C NMR (62.90 MHz, DMSO-d6): δ = 16.2 (CH3), 29.0 (CH2), 63.1 (CH2OH), 72.5 (CH-

3'), 76.7 (CH-2'), 85.9 (CH-4'), 86.8 (CH-1'), 112.5 (CH-5), 121.7 (q, 1J(C-F) = 275.7 Hz, CF3), 128.8 

(CHAr), 129.6 (CHAr), 133.4, 149.7, 155.9 (q, 2J(C-F) = 35.1 Hz, C-6), 167.4, 170.5. 
19F NMR (282.38 MHz, DMSO-d6): δ = –68.3 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 349 (15), 348 (89), 347 (14), 332 (22), 331 (32), 329 (11), 320 

(21), 319 (100), 291 (32), 252 (27). 

HRMS (ESI): Calcd. for C18H20F3N2O4 [M+H]+: 385.1370, found: 385.1374. 

IR (ATR, cm–1): ṽ = 3313 (m), 2964 (w), 2931 (w), 2874 (w), 1595 (s), 1543 (m), 1514 (w), 

1495 (w), 1460 (w), 1435 (m), 1390 (s), 1286 (m), 1263 (s), 1209 (m), 1178 (s), 1147 (s), 1099 (s), 

1078 (s), 1049 (s), 1026 (s), 991 (s), 943 (m), 930 (m), 881 (m), 874 (m), 862 (m), 839 (s), 800 (m), 

777 (m), 762 (m), 741 (m), 706 (s), 683 (s), 658 (m), 636 (s), 581 (s), 550 (s). 

 

2-(β-D-Ribofuranosyl)-4-methyl-6-(trifluoromethyl)pyrimidine (19e) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

In 15 mL of DCM were dissolved 2 g of 1,1,1-trifluoropentane-2,4-dione 

(13.0 mmol, 1 eq) and 1.233 g of DMF (16.9 mmol, 1.3 eq). Then the solution 

was cooled to –78 °C and oxalyl chloride (1.977 g, 15.6 mmol, 1.2 eq) was added. After that the 

mixture was carefully heated to r.t. (gas evaluation!) and allowed to stand at this temperature for 2 

hours. Afterwards the reaction mixture was diluted with ice water. The organic layer was separated 

and water phase was extracted twice with DCM. Combined organic layers were dried over sodium 

sulfate and evaporated. The residue was distilled in vacuum to afford a colorless liquid consisting of 

mixture of isomers (1.155 g, 52%). 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 

eq), 0.26 g of K2CO3 (3.76 mmol, 4 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then 0.179 

g of the previously prepared α,β-unsaturated β-chloroketone (1.03 mmol, 1.1 eq) was added at 0 °C 

and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 
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allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (50 g) / EtOAc (Rf = 0.16–0.22). 

Yield 0.158 g (57%), white solid, mp 138-139 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 2.66 (s, 3H, CH3), 3.51-3.62 (m, 1H, H-5a'), 3.65-

3.74 (m, 1H, H-5b'), 3.94-4.02 (m, 1H, H-4'), 4.04-4.12 (m, 1H, H-3'), 4.19-4.26 (m, 1H, H-2'), 4.77 

(dd, 1H, 3J1 = 7.18 Hz, 3J2 = 4.16 Hz, OH-5'), 4.88 (d, 1H, 3J = 4.15 Hz, H-1'), 5.02 (d, 1H, 3J = 

5.85 Hz, OH-3'), 5.29 (d, 1H, 3J = 5.66 Hz, OH-2'), 7.94 (s, 1H, H-5). 
13C NMR (75.47 MHz, DMSO-d6): δ = 25.0 (CH3), 62.8 (CH2OH), 72.0 (CH-3'), 76.7 (CH-

2'), 85.8 (CH-4'), 86.5 (CH-1'), 116.8 (CH-5), 121.6 (q, 1J(C-F) = 275.1 Hz, CF3), 154.5 (q, 2J(C-F) = 

35.1 Hz, C-6), 170.0, 172.3. 
19F NMR (282.38 MHz, DMSO-d6): δ = –68.6 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 294 ([M]+, 0.46), 206 (11), 205 (100), 203 (17), 192 (11), 191 

(37). 

HRMS (ESI): Calcd. for C11H13F3N2NaO4 [M+Na]+: 317.07196, found: 317.07175. 

IR (ATR, cm–1): ṽ = 3321 (m), 3207 (m), 2912 (w), 1601 (m), 1564 (m), 1433 (m), 1398 (s), 

1377 (m), 1321 (m), 1308 (m), 1284 (m), 1242 (s), 1203 (m), 1171 (s), 1149 (s), 1130 (s), 1119 (s), 

1097 (s), 1084 (s), 1049 (s), 1028 (s), 1001 (m), 982 (m), 962 (m), 933 (m), 885 (s), 876 (s), 866 

(s), 804 (m), 777 (m), 750 (m), 717 (m), 696 (m), 683 (m), 644 (m), 554 (s). 

 

Methyl 2-(β-D-ribofuranosyl)-6-phenylpyrimidine-4-carboxylate (19f) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

In 15 mL of DCM were dissolved 1 g of methyl 2,4-dioxo-4-

phenylbutanoate (4.84 mmol, 1 eq) and 0.745 g of DMF (10.2 mmol, 2.1 eq). 

Then the solution was cooled to –78 °C and oxalyl chloride (0.739 g, 5.82 mmol, 1.2 eq) was 

added. After that the mixture was carefully heated to r.t. (gas evaluation!) and allowed to stand at 

this temperature for 2 hours. Afterwards the reaction mixture was diluted with ice water. The 

organic layer was separated and water phase was extracted twice with DCM. Combined organic 

layers were dried over sodium sulfate and evaporated. The residue was distilled in high vacuum to 

afford a yellow liquid consisting of mixture of isomers (1.056 g, 97%). 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 

eq), 0.520 g of K2CO3 (3.76 mmol, 4 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then 0.232 

g of the previously prepared α,β-unsaturated β-chloroketone (1.03 mmol, 1.1 eq) was added at 0 °C 

and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 
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allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (30 g) / EtOAc (Rf = 0.06–0.13). 

Yield 0.108 g (33%), white solid, mp 132-134 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.57-3.68 (m, 1H, H-5a'), 3.71-3.80 (m, 1H, H-5b'), 

4.00 (s, 3H, MeO), 4.00-4.06 (m, 1H, H-4'), 4.14-4.22 (m, 1H, H-3'), 4.30-4.37 (m, 1H, H-2'), 4.80 

(dd, 1H, 3J1 = 7.37 Hz, 3J2 = 4.35 Hz, OH-5'), 5.00 (d, 1H, 3J = 4.16 Hz, H-1'), 5.02 (d, 1H, 3J = 

6.04 Hz, OH-3'), 5.31 (d, 1H, 3J = 5.67 Hz, OH-2'), 7.59-7.70 (m, 3H, HPh), 8.28-8.35 (m, 2H, HPh), 

8.45 (s, 1H, H-5). 
13C NMR (75.47 MHz, DMSO-d6): δ = 54.0 (OMe), 63.0 (CH2OH), 72.2 (CH-3'), 76.9 (CH-

2'), 85.8 (CH-4'), 87.0 (CH-1'), 115.9 (CH-5), 128.4 (CHPh), 130.1 (CHPh), 132.8 (CHPh), 136.3, 

156.6, 165.2, 166.6, 170.3. 

MS (EI, 70 eV): m/z (%) = 245 (11), 234 (21), 233 (89), 231 (25), 220 (17), 219 (100), 217 

(14). 

HRMS (ESI): Calcd. for C17H19N2O6 [M+H]+: 347.12376, found: 347.12335. 

IR (ATR, cm–1): ṽ = 3257 (m), 2937 (w), 1732 (s), 1589 (s), 1539 (s), 1504 (w), 1497 (w), 

1452 (m), 1441 (m), 1416 (m), 1373 (s), 1336 (m), 1281 (m), 1255 (s), 1198 (s), 1149 (m), 1105 (s), 

1086 (s), 1074 (s), 1049 (s), 1028 (s), 1003 (s), 991 (m), 980 (m), 947 (s), 935 (m), 914 (m), 903 

(m), 895 (m), 868 (m), 849 (m), 802 (m), 777 (m), 768 (m), 754 (s), 721 (s), 687 (s), 633 (s), 548 

(s). 

 

2-(β-D-Ribofuranosyl)-4-(2-furyl)-6-(trifluoromethyl)pyrimidine (19g) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

In 15 mL of DCM were dissolved 1 g of 4,4,4-trifluoro-1-(2-

furyl)butane-1,3-dione (4.85 mmol, 1 eq) and 0.745 g of DMF (10.2 mmol, 2.1 

eq). Then the solution was cooled to –78 °C and oxalyl chloride (0.739 g, 5.82 mmol, 1.2 eq) was 

added. After that the mixture was carefully heated to r.t. (gas evaluation!) and allowed to stand at 

this temperature for 2 hours. Afterwards the reaction mixture was diluted with ice water. The 

organic layer was separated and water phase was extracted twice with DCM. Combined organic 

layers were dried over sodium sulfate and evaporated. The residue was distilled in vacuum to afford 

a brownish liquid consisting of mixture of isomers (0.962 g, 88%). The product partially 

crystallized at r.t.. 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 

eq), 0.26 g of K2CO3 (3.76 mmol, 4 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then 0.232 
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g of the previously prepared α,β-unsaturated β-chloroketone (1.03 mmol, 1.1 eq) was added at 0 °C 

and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 

allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (50 g) / EtOAc (Rf = 0.26–0.34). 

Yield 0.220 g (67%), white solid, mp 102-103 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.56-3.67 (m, 1H, H-5a'), 3.69-3.79 (m, 1H, H-5b'), 

3.98-4.06 (m, 1H, H-4'), 4.09-4.18 (m, 1H, H-3'), 4.24-4.32 (m, 1H, H-2'), 4.75 (dd, 1H, 3J1 = 7.18 

Hz, 3J2 = 4.35 Hz, OH-5'), 4.94 (d, 1H, 3J = 3.97 Hz, H-1'), 5.03 (d, 1H, 3J = 6.04 Hz, OH-3'), 5.36 

(d, 1H, 3J = 5.47 Hz, OH-2'), 6.87 (dd, 1H, 3J1 = 3.59 Hz, 3J2 = 1.70 Hz, H-4''), 7.72 (dd, 1H, 3J = 

3.50 Hz, 4J = 0.67 Hz, H-3''), 8.12-8.16 (m, 2H, H-5, H-5''). 
13C NMR (75.47 MHz, DMSO-d6): δ = 62.9 (CH2OH), 72.1 (CH-3'), 76.8 (CH-2'), 85.8 

(CH-4'), 86.7 (CH-1'), 110.6 (CHAr), 114.4 (CH-5), 116.9 (CHAr), 121.5 (q, 1J(C-F) = 275.3 Hz, CF3), 

148.8 (CHAr), 150.8, 155.7 (q, 2J(C-F) = 35.3 Hz, C-6), 158.2, 170.9. 
19F NMR (282.38 MHz, DMSO-d6): δ = –68.7 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 346 ([M]+, 1.14), 258 (18), 257 (100), 255 (16), 243 (50). 

HRMS (ESI): Calcd. for C14H14F3N2O5 [M+H]+: 347.08493, found: 347.08476. 

IR (ATR, cm–1): ṽ = 3356 (m), 3103 (w), 1606 (s), 1599 (s), 1543 (m), 1479 (s), 1435 (m), 

1423 (w), 1396 (m), 1371 (s), 1335 (w), 1317 (m), 1298 (m), 1267 (s), 1228 (m), 1215 (m), 1190 

(m), 1178 (s), 1153 (s), 1138 (s), 1107 (s), 1076 (s), 1057 (s), 1026 (s), 991 (s), 932 (m), 918 (w), 

891 (s), 885 (s), 874 (m), 851 (m), 808 (s), 795 (m), 768 (s), 760 (s), 743 (s), 704 (s), 687 (s), 648 

(s), 608 (s), 592 (s), 548 (s). 

 

2-(β-D-Ribofuranosyl)-4-isopropyl-6-(trifluoromethyl)pyrimidine (19h) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

In 15 mL of DCM were dissolved 2 g of 1,1,1-trifluoro-5-methylhexane-

2,4-dione (10.9 mmol, 1 eq) and 1.043 g of DMF (14.3 mmol, 1.3 eq). Then the 

solution was cooled to –78 °C and oxalyl chloride (1.673 g, 13.2 mmol, 1.2 eq) was added. After 

that the mixture was carefully heated to r.t. (gas evaluation!) and allowed to stand at this 

temperature for 2 hours. Afterwards the reaction mixture was diluted with ice water. The organic 

layer was separated and water phase was extracted twice with DCM. Combined organic layers were 

dried over sodium sulfate and evaporated. The residue was distilled in vacuum to afford a colorless 

liquid consisting of mixture of isomers (1.396 g, 63%). 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 
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eq), 0.26 g of K2CO3 (3.76 mmol, 4 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then 0.218 

g of the previously prepared α,β-unsaturated β-chloroketone (1.03 mmol, 1.1 eq) was added at 0 °C 

and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 

allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (50 g) / EtOAc (Rf = 0.31–0.39). 

Yield 0.167 g (55%), white solid, mp 65-67 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.30 (s, 3H, CH3), 1.33 (s, 3H, CH3), 3.21 (sept, 1H, 

i-Pr), 3.51-3.62 (m, 1H, H-5a'), 3.65-3.74 (m, 1H, H-5b'), 3.95-4.02 (m, 1H, H-4'), 4.07-4.15 (m, 

1H, H-3'), 4.21-4.28 (m, 1H, H-2'), 4.72 (dd, 1H, 3J1 = 7.09 Hz, 3J2 = 4.44 Hz, OH-5'), 4.90 (d, 1H, 
3J = 3.97 Hz, H-1'), 5.02 (d, 1H, 3J = 6.04 Hz, OH-3'), 5.29 (d, 1H, 3J = 5.67 Hz, OH-2'), 7.93 (s, 

1H, H-5). 
19F NMR (282.38 MHz, DMSO-d6): δ = –68.4 (s, CF3). 
13C NMR (62.90 MHz, DMSO-d6): δ = 22.2 (CH3), 22.2 (CH3), 36.5 (CHPr), 63.0 (CH2OH), 

72.3 (CH-3'), 76.9 (CH-2'), 85.8 (CH-4'), 86.8 (CH-1'), 114.8 (CH-5), 121.7 (q, 1J(C-F) = 275.3 Hz, 

CF3), 155.0 (q, 2J(C-F) = 35.1 Hz, C-6), 170.2, 180.3. 

MS (EI, 70 eV): m/z (%) = 322 ([M]+, 2.47), 245 (11), 234 (21), 233 (89), 231 (25), 220 

(18), 219 (100), 217 (14). 

HRMS (ESI): Calcd. for C13H18F3N2O4 [M+H]+: 323.12132, found: 323.12123. 

IR (ATR, cm–1): ṽ = 3317 (m), 2962 (w), 2918 (m), 2881 (w), 1601 (m), 1585 (m), 1558 (s), 

1470 (w), 1456 (w), 1431 (m), 1398 (m), 1379 (m), 1333 (s), 1302 (m), 1242 (s), 1223 (m), 1194 

(m), 1176 (s), 1138 (s), 1119 (s), 1097 (s), 1049 (s), 1028 (s), 987 (m), 953 (m), 935 (m), 903 (m), 

887 (s), 874 (s), 843 (m), 831 (m), 808 (m), 771 (s), 748 (m), 716 (s), 687 (s), 667 (s), 642 (s), 550 

(m). 

 

2-(β-D-Ribofuranosyl)-4-(2-naphthyl)-6-(trifluoromethyl)pyrimidine (19i) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

To a solution of 4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dione (1 g, 

3.76 mmol, 1 eq) in chloroform (3 mL) was added 1.341 g of SOCl2 (11.3 

mmol, 3 eq), followed by the addition of DMF (0.014 g, 0.18 mmol, 0.05 eq). The mixture was 

refluxed for 3 hours. After that the solvent with an excess of SOCl2 was evaporated, and the residue 

was distilled in a high vacuum to afford a yellow liquid consisting of mixture of isomers (0.611 g, 

57%). 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 
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eq), 0.52 g of K2CO3 (3.76 mmol, 4 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then 0.295 

g of the previously prepared α,β-unsaturated β-chloroketone (1.03 mmol, 1.1 eq) was added at 0 °C 

and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 

allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (50 g) / CHCl3, mixture EtOAc : CHCl3 = 1:1. Rf = 0.28–0.35 (in 

EtOAc). 

Yield 0.144 g (38%), white solid, mp 192-193 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.61-3.72 (m, 1H, H-5a'), 3.72-3.82 (m, 1H, H-5b'), 

4.02-4.09 (m, 1H, H-4'), 4.18-4.25 (m, 1H, H-3'), 4.37-4.45 (m, 1H, H-2'), 4.76 (dd, 1H, 3J1 = 6.52 

Hz, 3J2 = 4.52 Hz, OH-5'), 5.04 (d, 1H, 3J = 4.34 Hz, H-1'), 5.08 (d, 1H, 3J = 6.04 Hz, OH-3'), 5.36 

(d, 1H, 3J = 5.67 Hz, OH-2'), 7.63-7.74 (m, 2H, HNaph), 8.03-8.09 (s, 1H, HNaph), 8.12-8.19 (m, 2H, 

HNaph), 8.47 (dd, 2H, 3J = 8.78 Hz, 4J = 1.79 Hz, HNaph), 8.69 (s, 1H, H-5), 9.06 (d, 1H, 4J = 1.51 Hz, 

HNaph). 
13C NMR (125.77 MHz, DMSO-d6): δ = 63.1 (CH2OH), 72.5 (CH-3'), 76.7 (CH-2'), 86.0 

(CH-4'), 86.8 (CH-1'), 113.1 (CH-5), 121.8 (q, 1J(C-F) = 275.6 Hz, CF3), 124.8 (CHAr), 128.0 (CHAr), 

128.6 (CHAr), 129.2 (CHAr), 129.7 (CHAr), 129.7 (CHAr), 130.1 (CHAr), 133.2, 133.6, 135.6, 156.0 

(q, 2J(C-F) = 35.2 Hz, C-6), 167.3, 170.6. 
19F NMR (282.38 MHz, CDCl3): δ = –68.26 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 406 ([M]+, 1.71), 371 (10), 370 (44), 341 (41), 340 (17), 318 

(17), 317 (100), 313 (11), 303 (25), 274 (14), 153 (13), 152 (13). 

HRMS (ESI): Calcd. for C20H18F3N2O4 [M+H]+: 407.12132, found: 407.12157. 

IR (ATR, cm–1): ṽ = 3479 (w), 3207 (w), 2920 (w), 1595 (m), 1585 (m), 1552 (s), 1471 (w), 

1444 (w), 1429 (m), 1390 (s), 1346 (m), 1306 (m), 1279 (m), 1265 (s), 1234 (m), 1200 (m), 1174 

(s), 1153 (s), 1138 (s), 1124 (s), 1099 (s), 1051 (s), 1034 (s), 984 (m), 962 (m), 945 (m), 930 (m), 

885 (m), 870 (s), 827 (m), 804 (m), 791 (m), 760 (s), 752 (s), 723 (m), 710 (s), 683 (s), 621 (m), 

602 (m), 569 (m), 559 (m). 

 

Methyl 2-(β-D-ribofuranosyl)-6-(2-thienyl)pyrimidine-4-carboxylate (19j) 

 

Initial diketone was previously activated via conversion into 

corresponding α,β-unsaturated β-chloroketone: 

In 15 mL of DCM were dissolved 2 g of methyl 2,4-dioxo-4-(2-

thienyl)butanoate (9.42 mmol, 1 eq) and 1.447 g of DMF (19.8 mmol, 2.1 eq). 

Then the solution was cooled to –78 °C and oxalyl chloride (1.435 g, 11.3 mmol, 1.2 eq) was 

added. After that the mixture was carefully heated to r.t. (gas evaluation!) and allowed to stand at 

O

OH OH

OH N N

S O

O



Experimental	Part	

73 

this temperature for 2 hours. Afterwards the reaction mixture was diluted with ice water. The 

organic layer was separated and water phase was extracted twice with DCM. Combined organic 

layers were dried over sodium sulfate and evaporated. The crude residue was purified via short-path 

column chromatography: silica gel (14 g) / DCM (140 mL) to give a greyish-green solid consisting 

of mixture of isomers (1.876 g, 86%). 

Into a 50-mL flask were placed 0.7 g of 1-(β-D-ribofuranosyl)formamidine (3.29 mmol, 1 

eq), 0.835 g of K2CO3 (13.2 mmol, 4 eq), molecular sieves 4Å (1.05 g) and DMF (14 mL). Then 

0.835 g of the previously prepared α,β-unsaturated β-chloroketone (3.62 mmol, 1.1 eq) was added at 

0 °C and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 

allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (100 g) / EtOAc (Rf = 0.05–0.09). 

Yield 0.483 g (42%), white solid, mp 136-138 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.59-3.70 (m, 1H, H-5a'), 3.71-3.80 (m, 1H, H-5b'), 

3.97-4.05 (m, 1H, H-4'), 3.98 (s, 3H, MeO), 4.11-4.19 (m, 1H, H-3'), 4.23-4.31 (m, 1H, H-2'), 4.75 

(dd, 1H, 3J1 = 7.18 Hz, 3J2 = 4.54 Hz, OH-5'), 4.91 (d, 1H, 3J = 3.78 Hz, H-1'), 5.01 (d, 1H, 3J = 

6.04 Hz, OH-3'), 5.32 (d, 1H, 3J = 5.29 Hz, OH-2'), 7.32 (dd, 1H, 3J1 = 4.91 Hz, 3J2 = 3.78 Hz, H-

4''), 7.97 (dd, 1H, 3J = 4.91 Hz, 4J = 1.13 Hz, H-3''), 8.32 (dd, 1H, 3J = 3.78 Hz, 4J = 1.13 Hz, H-5''), 

8.38 (s, 1H, H-5). 
13C NMR (62.90 MHz, DMSO-d6): δ = 54.0 (MeO), 63.2 (CH2OH), 72.3 (CH-3'), 76.9 (CH-

2'), 85.8 (CH-4'), 86.9 (CH-1'), 114.3 (CH-5), 130.2 (CHAr), 131.5 (CHAr), 133.6 (CHAr), 141.8, 

156.2, 161.8, 165.2, 170.4. 

MS (EI, 70 eV): m/z (%) = 352 ([M]+, 0.29), 264 (11), 263 (100), 249 (19), 134 (36). 

HRMS (ESI): Calcd. for C15H17N2O6S [M+H]+: 353.08018, found: 353.08025. 

IR (ATR, cm–1): ṽ = 3225 (m), 3105 (m), 2941 (w), 1745 (w), 1716 (s), 1587 (s), 1537 (s), 

1444 (s), 1435 (s), 1410 (m), 1377 (s), 1344 (m), 1325 (m), 1300 (m), 1269 (s), 1236 (s), 1200 (s), 

1142 (m), 1101 (s), 1086 (s), 1051 (s), 1039 (s), 1022 (s), 997 (s), 989 (s), 978 (m), 932 (s), 903 

(m), 883 (m), 856 (s), 831 (m), 798 (w), 779 (m), 762 (s), 746 (s), 729 (s), 716 (s), 671 (m), 631 (s), 

611 (s), 544 (s). 

 

2-(β-D-Ribofuranosyl)-4-(4-fluorophenyl)-6-(heptafluoropropyl)pyrimidine (19k) 

 

Initial diketone was previously activated via conversion into corresponding α,β-unsaturated 

β-chloroketone: 
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To a solution of 4,4,5,5,6,6,6-heptafluoro-1-(4-

fluorophenyl)hexane-1,3-dione (1.17 g, 3.50 mmol, 1 eq) in chloroform 

(3.5 mL) was added 1.25 g of SOCl2 (10.5 mmol, 3 eq), followed by the 

addition of DMF (0.013 g, 0.18 mmol, 0.05 eq). The mixture was refluxed 

for 3 hours. After that the solvent with an excess of SOCl2 was evaporated, 

and the residue was distilled in a high vacuum to afford a yellow liquid consisting of mixture of 

isomers (0.911 g, 74%). 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 

eq), 0.52 g of K2CO3 (3.76 mmol, 4 eq) , molecular sieves 4Å (0.3 g)  and DMF (4 mL). Then 0.365 

g of the previously prepared α,β-unsaturated β-chloroketone (1.22 mmol, 1.1 eq) was added at 0 °C 

and the reaction was stirred at this temperature for the next 2 hours. After that the mixture was 

allowed to stand at r.t. overnight. The next day the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (50 g) / EtOAc : CHCl3 = 1:2, then pure EtOAc (Rf = 0.44–0.51). 

Yield 0.219 g (49%), white solid, mp 117-118 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.54-3.64 (m, 1H, H-5a'), 3.65-3.74 (m, 1H, H-5b'), 

3.97-4.05 (m, 1H, H-4'), 4.11-4.19 (m, 1H, H-3'), 4.29-4.37 (m, 1H, H-2'), 4.68 (dd, 1H, 3J1 = 6.42 

Hz, 3J2 = 5.10 Hz, OH-5'), 4.98 (d, 1H, 3J = 4,34 Hz, H-1'), 5.06 (d, 1H, 3J = 6.04 Hz, OH-3'), 5.32 

(d, 1H, 3J = 5.48 Hz, OH-2'), 7.43-7.53 (m, 2H, H-3'', H-5''), 8.46-8.54 (m, 2H, H-2'', H-6''), 8.57 (s, 

1H, H-5). 
13C NMR (62.90 MHz, DMSO-d6): δ = 63.2 (CH2OH), 72.7 (CH-3'), 76.7 (CH-2'), 86.0 

(CH-4'), 86.8 (CH-1'), 114.3 (CH-5), 117.2 (d, 2J(C-F) = 21.9 Hz, CH-3''), 131.5 (d, 3J(C-F) = 9.2 Hz, 

CH-2''), 132.3 (d, 4J(C-F) = 2.9 Hz, C-1''), 156.2 (t, 2J(C-F) = 26.5 Hz, C-6), 165.7 (d, 1J(C-F) = 251.0 

Hz, CH-4''), 166.2, 170.4. 
19F NMR (282.38 MHz, CDCl3): δ = –125.7 (s, CF2), –115.4 (m, CF2), –107.7 (s, CFAr) –

79.7 (t, J = 9.20 Hz, CF3). 

MS (EI, 70 eV): m/z (%) = 474 ([M]+, 2.1), 386 (13), 385 (100), 371 (34), 78 (31), 63 (36). 

HRMS (ESI): Calcd. for C18H15F8N2O4 [M+H]+: 475.08986, found: 475.08976. 

IR (ATR, cm–1): ṽ = 3491 (m), 3460 (m), 3406 (m), 2947 (w), 2904 (w), 1605 (m), 1587 (s), 

1545 (m), 1512 (m), 1417 (m), 1389 (m), 1377 (m), 1348 (m), 1336 (m), 1300 (m), 1279 (m), 1230 

(s), 1203 (s), 1182 (s), 1161 (s), 1126 (s), 1109 (s), 1095 (s), 1086 (s), 1072 (s), 1053 (s), 1038 (s), 

1009 (m), 997 (m), 962 (m), 918 (s), 891 (s), 878 (m), 868 (m), 849 (s), 825 (s), 806 (m), 779 (m), 

743 (s), 725 (m), 694 (m), 662 (m), 625 (m), 611 (m), 573 (s), 559 (s), 544 (m). 
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2-(β-D-Ribofuranosyl)-6-(2-thienyl)pyrimidine-4-carboxamide (20) 

 

Methyl 2-(β-D-ribofuranosyl)-6-(2-thienyl)pyrimidine-4-carboxylate 

(0.1 g, 0.28 mmol, 1 eq) was dissolved in 0.81 mL of 7M ammonia solution in 

methanol (5.7 mmol, 20 eq) and stirred at room temperature overnight. The 

next day the solvent was evaporated under reduced pressure and the residue 

was properly dried in high vacuum to give a pure product. 

Yield 0.096 g (100%), white amorphous solid foam. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.57-3.67 (m, 1H, H-5a'), 3.67-3.77 (m, 1H, H-5b'), 

3.94-4.01 (m, 1H, H-4'), 4.15-4.23 (m, 1H, H-3'), 4.32-4.39 (m, 1H, H-2'), 4.74 (dd, 1H, 3J1 = 6.23 

Hz, 3J2 = 5.29 Hz, OH-5'), 4.90 (d, 1H, 3J = 4,54 Hz, H-1'), 4.98 (d, 1H, 3J = 5.86 Hz, OH-3'), 5.24 

(d, 1H, 3J = 5.48 Hz, OH-2'), 7.31 (dd, 1H, 3J1 = 4.91 Hz, 3J2 = 3.78 Hz, H-4''), 7.94 (dd, 1H, 3J = 

4.91 Hz, 4J = 1.13 Hz, H-3''), 8.06 (br s, 1H, NH-a), 8.26 (br s, 1H, NH-b), 8.28 (dd, 1H, 3J = 3.78 

Hz, 4J = 1.13 Hz, H-5''), 8.33 (s, 1H, H-5). 
13C NMR (75.47 MHz, DMSO-d6): δ = 63.3 (CH2OH), 72.7 (CH-3'), 76.4 (CH-2'), 85.9 

(CH-4'), 86.7 (CH-1'), 111.7 (CH-5), 130.2 (CHAr), 131.0 (CHAr), 133.1 (CHAr), 142.2, 159.1, 

161.6, 165.7, 169.2. 

MS (EI, 70 eV): m/z (%) = 337 ([M]+, 078), 301 (16), 292 (10), 249 (12), 248 (100), 234 

(27), 161 (11), 134 (52), 108 (11). 

HRMS (ESI): Calcd. for C14H16N3O5S [M+H]+: 338.08052, found: 338.08071. 

IR (ATR, cm–1): ṽ = 3306 (s), 3093 (m), 2928 (m), 2874 (m), 1682 (s), 1574 (s), 1525 (s), 

1429 (s), 1394 (s), 1344 (s), 1317 (s), 1228 (m), 1200 (m), 1095 (s), 1078 (s), 1034 (s), 991 (s), 947 

(m), 889 (s), 858 (s), 812 (m), 779 (m), 714 (s), 665 (s), 617 (s), 534 (s). 

 

2-(β-D-Ribofuranosyl)-6-(2-thienyl)pyrimidine-4-carbohydrazide (21) 

 

Methyl 2-(β-D-ribofuranosyl)-6-(2-thienyl)pyrimidine-4-carboxylate 

(0.1 g, 0.28 mmol, 1 eq) was dissolved in 2 mL of methanol. Then hydrazine 

hydrate (0.178 g, 2.84 mmol, 10 eq) was added. After few minutes a white 

precipitate begins to appear. The next day it was filtered off, washed with 

methanol and dried in high vacuum to give a pure product. 

Yield 0.083 g (83%), white solid, mp 226-228 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.56-3.66 (m, 1H, H-5a'), 3.67-3.76 (m, 1H, H-5b'), 

3.93-4.00 (m, 1H, H-4'), 4.14-4.22 (m, 1H, H-3'), 4.34-4.42 (m, 1H, H-2'), 4.74 (dd, 1H, 3J1 = 6.24 

Hz, 3J2 = 5.28 Hz, OH-5'), 4.79 (br s, 2H, NH2), 4.88 (d, 1H, 3J = 4,72 Hz, H-1'), 4.97 (d, 1H, 3J = 

5.66 Hz, OH-3'), 5.23 (d, 1H, 3J = 5.67 Hz, OH-2'), 7.31 (dd, 1H, 3J1 = 4.91 Hz, 3J2 = 3.77 Hz, H-
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4''), 7.94 (dd, 1H, 3J = 4.91 Hz, 4J = 1.13 Hz, H-3''), 8.28 (dd, 1H, 3J = 3.77 Hz, 4J = 1.13 Hz, H-5''), 

8.28 (s, 1H, H-5), 10.14 (br s, 1H, NH). 
13C NMR (75.47 MHz, DMSO-d6): δ = 63.2 (CH2OH), 72.7 (CH-3'), 76.2 (CH-2'), 86.0 

(CH-4'), 86.6 (CH-1'), 111.5 (CH-5), 130.2 (CHAr), 131.0 (CHAr), 133.2 (CHAr), 142.2, 158.6, 

161.5, 161.9, 169.0. 

MS (EI, 70 eV): m/z (%) = 452 ([M]+, 1.81), 129 (34), 115 (15), 101 (15), 98 (18), 97 (14), 

87 (23), 85 (20), 84 (19), 83 (23), 81 (11), 74 (13), 73 (87), 71 (34), 70 (15), 69 (32), 67 (13), 61 

(15), 60 (100), 59 (10), 57 (46), 56 (20), 55 (53), 45 (53), 44 (38), 43 (92), 42 (19), 41 (56), 39 (17). 

HRMS (ESI): Calcd. for C14H17N4O5S [M+H]+: 353.09142, found: 353.09165. 

IR (ATR, cm–1): ṽ = 3340 (m), 3269 (m), 3103 (m), 2922 (m), 1713 (s), 1587 (s), 1525 (s), 

1516 (s), 1464 (m), 1435 (s), 1377 (s), 1346 (m), 1302 (m), 1267 (m), 1246 (w), 1213 (m), 1194 

(m), 1178 (m), 1126 (s), 1113 (s), 1099 (m), 1088 (s), 1051 (s), 1028 (s), 987 (s), 939 (s), 920 (m), 

899 (m), 870 (m), 851 (m), 802 (w), 779 (w), 764 (s), 750 (s), 723 (s), 640 (s), 619 (s), 582 (s), 532 

(s). 

 

2-(β-D-Ribofuranosyl)-4-(2-hydroxyphenyl)-5-nitropyrimidine (23a) 

 

A sealed ACE pressure tube was charged with 0.3 g of 1-(β-D-

ribofuranosyl)formamidine (1.41 mmol, 1 eq), 0.080 g of NaOMe (1.48 mmol, 

1.05 eq), 0.008 g of AcOH (0.14 mmol, 0.1 eq), 0.143 g of NEt3 (1.41 mmol, 1 

eq) and MeOH (4.5 mL). After 3-nitro-4H-chromen-4-one (0.493 g, 1.41 

mmol, 1 eq) was added, the reaction mixture was stirred at 80 °C for 1½ hours under argon. After 

cooling to room temperature the inorganic precipitate was filtered off and the filtrate was 

evaporated under reduced pressure. The crude product was purified by column chromatography: 

silica gel (110 g) / EtOAc (Rf = 0.11–0.19). 

Yield 0.176 g (36%), yellow amorphous solid foam. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.52-3.62 (m, 1H, H-5a'), 3.62-3.72 (m, 1H, H-5b'), 

3.95-4.04 (m, 1H, H-4'), 4.07-4.16 (m, 1H, H-3'), 4.28-4.37 (m, 1H, H-2'), 4.71 (dd, 1H, 3J1 = 6.42 

Hz, 3J2 = 4.91 Hz, OH-5'), 4.97 (d, 1H, 3J = 4.72 Hz, H-1'), 5.05 (d, 1H, 3J = 5.86 Hz, OH-3'), 5.34 

(d, 1H, 3J = 5.67 Hz, OH-2'), 6.94 (dd, 1H, 3J1 = 8.12 Hz, 4J = 0.95 Hz, H-3''), 7.07 (ddd, 1H, 3J1 = 

7.65 Hz, 3J2 = 7.37 Hz, 4J = 0.95 Hz, H-5''), 7.45 (ddd, 1H, 3J1 = 8.12 Hz, 3J2 = 7.37 Hz, 4J = 1.7 

Hz, H-4''), 7.71 (dd, 1H, 3J1 = 7.65 Hz, 4J = 1.7 Hz, H-6''), 9.37 (s, 1H, H-6), 10.52 (s, 1H, OH-2''). 
13C NMR (62.90 MHz, DMSO-d6): δ = 63.0 (CH2OH), 72.5 (CH-3'), 76.9 (CH-2'), 86.1 

(CH-4'), 86.5 (CH-1'), 116.4 (CHAr), 120.7 (CHAr), 122.7, 131.5 (CHAr), 133.8 (CHAr), 144.4, 154.2 

(CHAr), 156.4, 158.2, 171.7. 

MS (EI, 70 eV): m/z (%) = 349 ([M]+, 59), 313 (16), 303 (39), 267 (10), 260 (100), 258 (12), 
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249 (14), 246 (66), 230 (13), 217 (11), 216 (10), 214 (17), 213 (46), 201 (13), 200 (30), 199 (25), 

197 (13), 186 (26), 185 (14), 173 (12), 172 (19), 171 (42), 170 (31), 169 (20), 144 (13), 116 (11), 

115 (13), 102 (11), 91 (12), 89 (24), 63 (11), 43 (15). 

HRMS (EI): Calcd. for C15H15N3O7 [M]+: 349.09045, found: 349,09066. 

IR (ATR, cm–1): ṽ = 3242 (s), 2932 (w), 2879 (w), 1606 (w), 1581 (s), 1545 (s), 1524 (m), 

1504 (w), 1453 (m), 1427 (m), 1355 (s), 1303 (m), 1265 (m), 1210 (w), 1159 (w), 1070 (s), 1080 

(s), 1047 (s), 984 (w), 943 (w), 910 (w), 888 (w), 850 (s), 807 (w), 756 (s), 706 (m), 687 (m), 665 

(m), 624 (s), 579 (m), 542 (s). 

 

2-(β-D-Ribofuranosyl)-4-(2-hydroxyphenyl)-6-methyl-5-nitropyrimidine (23b) 

 

Into a 50-mL flask were placed 0.7 g of 1-(β-D-ribofuranosyl)form-

amidine (3.29 mmol, 1 eq), 0.187 g of NaOMe (3.46 mmol, 1.05 eq), 0.018 g 

of AcOH (0.33 mmol, 0.1 eq), 0.333 g of NEt3 (3.29 mmol, 1 eq), molecular 

sieves 4Å (1.05 g) and DMF (10.5 mL). After 2-methyl-3-nitro-4H-chromen-4-

one (0.675 g, 3.29 mmol, 1 eq) was added, the reaction mixture was stirred at 70 °C for 2 hours 

under argon. After cooling to room temperature the inorganic precipitate was filtered off and the 

filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (100 g) / EtOAc (Rf = 0.16–0.25). 

Yield 0.416 g (35%), yellow amorphous solid foam. 
1H NMR (300.13 MHz, DMSO-d6): δ = 2.68 (s, 3H, Me-6), 3.51-3.63 (m, 1H, H-5a'), 3.63-

3.74 (m, 1H, H-5b'), 3.96-4.04 (m, 1H, H-4'), 4.08-4.17 (m, 1H, H-3'), 4.26-4.34 (m, 1H, H-2'), 4.75 

(dd 1H, 3J1 = 4.34 Hz, 3J2 = 6.99 Hz, OH-5'), 4.92 (d 1H, 3J = 4.15 Hz, H-1'), 5.02 (d 1H, 3J = 5.86 

Hz, OH-3'), 5.34 (d 1H, 3J = 5.48 Hz, OH-2'), 6.89-6.96 (m, 1H, H-3''), 6.98-7.07 (m, 1H, H-5''), 

7.36-7.45 (m, 1H, H-4''), 7.51-7.58 (m, 1H, H-6''), 10.40 (s, 1H, OH-2''). 
13C NMR (62.90 MHz, DMSO-d6): δ = 22.7 (CH3), 62.9 (CH2OH), 72.2 (CH-3'), 76.9 (CH-

2'), 85.9 (CH-4'), 86.5 (CH-1'), 116.4 (CHAr), 120.5 (CHAr), 122.7, 131.6 (CHAr), 133.3 (CHAr), 

144.8, 156.3, 158.8, 161.4, 169.7. 

MS (EI, 70 eV): m/z (%) = 364 ([M+H]+, 14), 363 ([M]+, 78), 318 (15), 317 (83), 274 (100), 

272 (12), 260 (50), 244 (10), 228 (19), 227 (75), 215 (12), 214 (27), 213 (24), 211 (12), 200 (36), 

199 (18), 198 (11), 185 (14), 57 (10), 44 (16), 43 (11). 

HRMS (EI): Calcd. for C16H17N3O7 [M]+: 363.10610, found: 363.10664. 

IR (ATR, cm–1): ṽ = 3252 (s), 2930 (m), 1699 (w), 1606 (w), 1573 (s), 15 27 (s), 1455 (m), 

1435 (m), 1386 (w), 1354 (s), 1294 (m), 1265 (w), 1227 (w), 1153 (w), 1094 (s), 1046 (m), 972 (w), 

941 (w), 884 (m), 847 (s), 828 (w), 807 (w), 756 (s), 675 (m), 667 (m), 641 (m), 610 (m), 575 (m), 

576 (m). 
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2-(β-D-Ribofuranosyl)-4-(2-hydroxyphenyl)-6-butyl-5-nitropyrimidine (23c) 

 

Into a 50-mL flask were placed 0.65 g of 1-(β-D-ribofuranosyl)form-

amidine (3.06 mmol, 1 eq), 0.173 g of NaOMe (3.21 mmol, 1.05 eq), 0.018 

g of AcOH (0.31 mmol, 0.1 eq), 0.309 g of NEt3 (3.06 mmol, 1 eq), 

molecular sieves 4Å (0.975 g) and DMF (10 mL). After 2-butyl-3-nitro-4H-

chromen-4-one (0.756 g, 3.06 mmol, 1 eq) was added, the reaction mixture was stirred at 50 °C for 

5 hours under argon. After cooling to room temperature the inorganic precipitate was filtered off 

and the filtrate was evaporated under reduced pressure. The crude product was purified by column 

chromatography: silica gel (100 g) / EtOAc (Rf = 0.21–0.35). 

Yield 0.600 g (48%), light beige solid, mp 167-169 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 0.95 (t, 3H, 3J = 7.37 Hz, Me), 1.34-1.48 (m, 2H, 

CH2-c), 1.70-1.83 (m, 2H, CH2-b), 2.90 (t, 2H, 3J = 7.55 Hz, CH2-a), 3.51-3.62 (m, 1H, H-5a'), 

3.63-3.73 (m, 1H, H-5b'), 3.96-4.03 (m, 1H, H-4'), 4.09-4.16 (m, 1H, H-3'), 4.27-4.34 (m, 1H, H-

2'), 4.71 (dd 1H, 3J1 = 6.99 Hz, 3J2 = 4.54 Hz, OH-5'), 4.93 (d 1H, 3J = 4.16 Hz, H-1'), 5.02 (d 1H, 
3J = 6.05 Hz, OH-3'), 5.33 (d 1H, 3J = 5.47 Hz, OH-2'), 6.90-6.95 (m, 1H, H-3''), 6.98-7.05 (m, 1H, 

H-5''), 7.36-7.44 (m, 1H, H-4''), 7.49-7.54 (m, 1H, H-6''), 10.36 (s, 1H, OH-2''). 
13C NMR (62.90 MHz, DMSO-d6): δ = 14.6 (CH3), 22.8 (CH2-c), 30.7 (CH2-b), 34.1 (CH2-

a), 63.0 (CH2OH), 72.4 (CH-3'), 76.9 (CH-2'), 85.8 (CH-4'), 86.7 (CH-1'), 116.4 (CHAr), 120.5 

(CHAr), 122.6, 131.7 (CHAr), 133.2 (CHAr), 144.8, 156.2, 159.0, 164.1, 169.8. 

MS (EI, 70 eV): m/z (%) = 406 ([M+H]+, 11), 405 ([M]+, 51), 360 (15), 359 (79), 317 (16), 

316 (100), 302 (19), 269 (37), 228 (14), 214 (14). 

HRMS (EI): Calcd. for C19H23N3O7 [M]+: 405.15305, found: 405.15371. 

IR (ATR, cm–1): ṽ = 3512 (w), 3331 (m), 2956 (w), 2929 (w), 2874 (w), 2860 (w), 1614 (m), 

1595 (m), 1576 (s), 1525 (s), 1452 (s), 1417 (m), 1381 (m), 1360 (s), 1321 (m), 1294 (m), 1269 (m), 

1232 (m), 1211 (m), 1180 (w), 1155 (w), 1105 (s), 1095 (s), 1074 (s), 1047 (s), 1028 (m), 1012 (m), 

980 (m), 939 (m), 905 (w), 887 (m), 876 (m), 858 (m), 845 (s), 824 (m), 814 (m), 797 (w), 754 (s), 

737 (m), 704 (m), 692 (m), 636 (s), 602 (s), 586 (m), 555 (s), 544 (s). 

 

2-(β-D-Ribofuranosyl)-5-amino-4-(2-hydroxyphenyl)-pyrimidine (24a) 

 

Into a 25-mL flask were placed 0.118 g of 2-(β-D-ribofuranosyl)-4-(2-

hydroxyphenyl)-5-nitropyrimidine (0.34 mmol), 0.012 g of Pd/C (10 wt. %) 

and MeOH (3.5 mL). The system was washed three times with argon and 

afterwards three times with hydrogen. The reaction mixture was stirred for 2 

days at r.t. and under atmospheric pressure. As the reduction was complete (monitoring by TLC), 
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the mixture was filtered through a Celite pad (2-3 cm). The Celite was washed three times with 

MeOH. The filtrate was evaporated under reduced pressure and the residue was properly dried in 

high vacuum to give a pure product. 

Yield 0.108 g (100%), pale yellow amorphous solid foam. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.50 (dd, 1H, 2J = 11.71 Hz, 3J = 3.77 Hz, H-5a'), 

3.65 (dd, 1H, 2J = 11.71 Hz, 3J = 3.69 Hz, H-5b'), 3.88-3.97 (m, 1H, 4H'), 4.05-4.13 (m, 1H, H-3'), 

4.18-4.27 (m, 1H, H-2'), 4.76 (d, 1H, 3J = 4.54 Hz, H-1'), 4.78-5.86 (br m, 5H, OH, NH2), 6.94-7.06 

(m, 2H, CHAr), 7.31-7.79 (m, 1H, CHAr), 7.45 (dd, 1H, 3J = 7.74 Hz, 4J = 1.51 Hz, CHAr), 8.29 (s, 

1H, H-6), 10.44 (br s, 1H, OH-2''). 
13C NMR (62.90 MHz, DMSO-d6): δ = 62.9 (CH2OH), 72.2 (CH-3'), 76.6 (CH-2'), 85.4 

(CH-4'), 86.4 (CH-1'), 117.3 (CHAr), 120.3 (CHAr), 124.3, 131.4 (CHAr), 131.6 (CHAr), 140.1, 144.7 

(CHAr), 149.2, 156.0, 157.2. 

MS (EI, 70 eV): m/z (%) = 319 ([M]+, 54), 230 (100), 217 (12), 216 (83), 214 (14), 201 (10). 

HRMS (EI): Calcd. for C15H17N3O5 [M]+: 319.11627, found: 319.11684. 

IR (ATR, cm–1): ṽ = 3324 (s), 3207 (s), 2928 (m), 2873 (m), 1633 (w), 1608 (w), 1568 (m), 

1558 (m), 1549 (w), 1504 (w), 1495 (w), 1488 (w), 1447 (s), 1418 (m), 1398 (m), 1327 (m), 1295 

(m), 1249 (m), 1206 (m), 1158 (w), 1097 (s), 1082 (s), 1047 (s), 985 (m), 911 (m), 889 (m), 857 

(m), 831 (m), 799 (m), 756 (s), 700 (s), 667 (s), 633 (s), 596 (s), 534 (s). 

 

2-(β-D-Ribofuranosyl)-5-amino-6-methyl-4-(2-hydroxyphenyl)-pyrimidine (24b) 

 

Into a 50-mL flask were placed 0.25 g of 2-(β-D-ribofuranosyl)-4-(2-

hydroxyphenyl)-6-methyl-5-nitropyrimidine (0.69 mmol), 0.025 g of Pd/C (10 

wt. %) and MeOH (7.5 mL). The system was washed three times with argon 

and afterwards three times with hydrogen. The reaction mixture was stirred for 

2 days at r.t. and under atmospheric pressure. As the reduction was complete (monitoring by TLC), 

the mixture was filtered through a Celite pad (2-3 cm). The Celite was washed three times with 

MeOH. The filtrate was evaporated under reduced pressure and the residue was properly dried in 

high vacuum to give a pure product. 

Yield 0.229 g (100%), yellow amorphous solid foam. 
1H NMR (250.13 MHz, DMSO-d6): δ = 2.42 (s, 3H, CH3), 3.51 (dd, 1H, 2J = 11.62 Hz, 3J = 

3.08 Hz, H-5a'), 3.69 (dd, 1H, 2J = 11.62 Hz, 3J = 3.31 Hz, H-5b'), 3.89-3.98 (m, 1H, 4H'), 4.09-

4.16 (m, 1H, H-3'), 4.16-4.22 (m, 1H, H-2'), 4.74 (d, 1H, 3J = 3.62 Hz, H-1'), 4.40-5.80 (br m, 5H, 

OH, NH2), 6.92-7.00 (m, 1H, CHAr), 7.02 (d, 1H, 3J = 8.04 Hz, CHAr), 7.29-7.39 (m, 2H, CHAr), 

10.28 (br s, 1H, OH-2''). 
13C NMR (62.90 MHz, DMSO-d6): δ = 21.4 (CH3), 62.7 (CH2OH), 71.7 (CH-3'), 76.9 (CH-
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2'), 85.1 (CH-4'), 86.5 (CH-1'), 117.2 (CHAr), 120.2 (CHAr), 124.6, 131.2 (CHAr), 131.8 (CHAr), 

137.8, 148.3, 152.0, 155.8, 156.6. 

MS (EI, 70 eV): m/z (%) = 334 ([M+H]+, 10), 333 ([M]+, 52), 332 (17), 305 (14), 289 (21), 

265 (15), 245 (14), 244 (100), 243 (12), 242 (25), 231 (13), 230 (84), 228 (23), 225 (25), 215 (11), 

177 (11), 164 (15), 57 (57), 41 (16). 

HRMS (ESI): Calcd. for C16H20N3O5 [M+H]+: 334.13975, found: 334.13978. 

IR (ATR, cm–1): ṽ = 3334 (m), 3232 (m), 2962 (m), 2918 (m), 2872 (m), 1633 (m), 1622 

(m), 1608 (m), 1591 (m), 1564 (s), 1558 (s), 1539 (m), 1504 (m), 1495 (m), 1487 (m), 1470 (m), 

1446 (s), 1435 (s), 1429 (s), 1392 (s), 1385 (s), 1362 (s), 1344 (m), 1338 (m), 1294 (s), 1250 (m), 

1223 (s), 1194 (m), 1157 (m), 1097 (s), 1080 (s), 1047 (s), 1038 (s), 989 (m), 972 (s), 939 (s), 870 

(s), 841 (s), 816 (m), 800 (m), 756 (s), 716 (s), 673 (s), 665 (s), 621 (s), 598 (s), 540 (s). 

 

2-(β-D-Ribofuranosyl)-5-amino-6-butyl-4-(2-hydroxyphenyl)-pyrimidine (24c) 

 

Into a 50-mL flask were placed 0.2 g of 2-(β-D-ribofuranosyl)-4-(2-

hydroxyphenyl)-6-butyl-5-nitropyrimidine (0.49 mmol), 0.02 g of Pd/C (10 

wt. %) and MeOH (6 mL). The system was washed three times with argon 

and afterwards three times with hydrogen. The reaction mixture was stirred 

for 2 days at r.t. and under atmospheric pressure. As the reduction was complete (monitoring by 

TLC), the mixture was filtered through a Celite pad (2-3 cm). The Celite was washed three times 

with MeOH. The filtrate was evaporated under reduced pressure and the residue was properly dried 

in high vacuum to give a pure product. 

Yield 0.185 g (100%), pale green amorphous solid foam. 
1H NMR (250.13 MHz, DMSO-d6): δ = 0.97 (t, 3H, 3J = 7.37 Hz, Me), 1.37-1.51 (m, 2H, 

CH2-c), 1.64-1.77 (m, 2H, CH2-b), 2.75 (t, 2H, 3J = 7.46 Hz, CH2-a), 3.51 (dd, 1H, 2J = 11.43 Hz, 3J 

= 4.67 Hz, H-5a'), 3.68 (dd, 1H, 2J = 11.43 Hz, 3J = 2.93 Hz, H-5b'), 3.89-3.98 (m, 1H, 4H'), 4.09-

4.17 (m, 1H, H-3'), 4.17-4.25 (m, 1H, H-2'), 4.75 (d, 1H, 3J = 3.78 Hz, H-1'), 4.77-4.95 (br m, 3H, 

OH, NH2), 5.04-5.19 (br m, 2H, OH), 6.93-7.01 (m, 1H, CHAr), 7.03 (d, 1H, 3J = 7.55 Hz, CHAr), 

7.29-7.39 (m, 2H, CHAr), 10.27 (br s, 1H, OH-2''). 
13C NMR (75.47 MHz, DMSO-d6): δ = 14.8 (CH3), 23.0 (CH2-c), 29.3 (CH2-b), 33.0 (CH2-

a), 62.8 (CH2OH), 72.0 (CH-3'), 76.9 (CH-2'), 85.1 (CH-4'), 86.7 (CH-1'), 117.1 (CHAr), 120.3 

(CHAr), 124.7, 131.1 (CHAr), 131.8 (CHAr), 137.2, 148.7, 155.2, 155.5, 156.7. 

MS (EI, 70 eV): m/z (%) = 376 ([M+H]+, 11), 375 ([M]+, 50), 374 (13), 346 (20), 333 (100), 

287 (12), 286 (73), 284 (14), 273 (11), 272 (63), 256 (16), 243 (12), 242 (14). 

HRMS (EI): Calcd. for C19H25N3O5 [M]+: 375.17887, found: 375.17847. 

IR (ATR, cm–1): ṽ = 3342 (m), 3226 (m), 2953 (m), 2928 (m), 2866 (m), 1622 (m), 1608 
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(m), 1593 (w), 1558 (s), 1539 (m), 1504 (w), 1495 (w), 1487 (w), 1450 (s), 1429 (s), 1392 (m), 

1377 (m), 1344 (m), 1338 (m), 1294 (m), 1223 (m), 1155 (m), 1097 (s), 1080 (s), 1047 (s), 976 (m), 

937 (m), 866 (m), 845 (m), 820 (m), 806 (m), 797 (m), 756 (s), 696 (s), 673 (s), 665 (s), 621 (s), 

584 (s), 571 (s), 542 (s). 

 

2-(β-D-Ribofuranosyl)-4-phenyl-6-pyridin-3-ylpyrimidine (29a) 

 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)form-

amidine (0.94 mmol, 1 eq), 0.195 g of 1-(5-chloro-3-methyl-1-phenyl-1H-

pyrazol-4-yl)-3-phenylprop-2-yn-1-one (0.94 mmol, 1 eq), 0.26 g of K2CO3 

(1.88 mmol, 2 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then the 

reaction mixture was stirred at 70 °C for 4 hours under argon. After cooling to room temperature 

the inorganic precipitate was filtered off and the filtrate was evaporated under reduced pressure. 

The crude residue was purified via short-path column chromatography: silica gel (12 g) / CHCl3 (1 

L), than 1.5 L of EtOAc (Rf = 0.03–0.09). The fraction of EtOAc was evaporated to give the desired 

product. 

Yield 0.156 g (68%), yellow amorphous solid foam. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.60-3.71 (m, 1H, H-5a'), 3.72-3.81 (m, 1H, H-5b'), 

4.01-4.08 (m, 1H, H-4'), 4.21-4.29 (m, 1H, H-3'), 4.39-4.47 (m, 1H, H-2'), 4.86 (dd, 1H, 3J1 = 6.23 

Hz, 3J2 = 4.91 Hz, OH-5'), 5.02 (d, 1H, 3J = 4.15 Hz, H-1'), 5.03 (d, 1H, 3J = 5.85 Hz, OH-3'), 5.28 

(d, 1H, 3J = 5.47 Hz, OH-2'), 7.60-7.71 (m, 4H, CHPh), 8.37-8.45 (m, 2H, CHAr), 8.65 (s, 1H, H-5), 

8.69-8.75 (m, 1H, CHAr), 8.78-8.85 (m, 1H, CHAr), 9.55 (s, 1H, CHAr). 
13C NMR (62.90 MHz, DMSO-d6): δ = 63.2 (CH2OH), 72.7 (CH-3'), 76.8 (CH-2'), 85.7 

(CH-4'), 87.4 (CH-1'), 112.8 (CH-5), 124.9 (CHAr), 128.4 (CHAr), 129.9 (CHAr), 132.3 (CHAr), 

132.9, 135.8 (CHAr), 137.1, 149.6 (CHAr), 152.7 (CHAr), 163.3, 165.4, 169.9. 

IR (ATR, cm–1): ṽ = 3271 (m), 3063 (m), 2918 (m), 2872 (m), 1585 (s), 1574 (s), 1556 (m), 

1531 (s), 1504 (m), 1485 (m), 1471 (m), 1452 (m), 1427 (m), 1417 (m), 1410 (m), 1365 (s), 1331 

(m), 1294 (m), 1244 (m), 1192 (m), 1101 (s), 1078 (s), 1043 (s), 1026 (s), 1001 (s), 991 (s), 941 

(m), 876 (m), 827 (m), 818 (m), 768 (s), 743 (s), 690 (s), 665 (s), 633 (s), 540 (s). 

MS (EI, 70 eV): m/z (%) = 365 ([M]+, 9.1), 277 (29), 276 (100), 274 (14), 263 (20), 262 

(75), 248 (10), 247 (16), 234 (14), 233 (13), 105 (12), 104 (12). 

HRMS (ESI): Calcd. for C20H20N3O4 [M+H]+: 366.14483, found: 366.14506. 
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2-(β-D-Ribofuranosyl)-4-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-6-

phenylpyrimidine (29b) 

 

Into a 25-mL flask were placed 0.15 g of 1-(β-D-ribofuranosyl)-

formamidine (0.71 mmol, 1 eq), 0.226 g of 1-(5-chloro-3-methyl-1-

phenyl-1H-pyrazol-4-yl)-3-phenylprop-2-yn-1-one (0.71 mmol, 1 eq), 

0.215 g of K2CO3 (1.55 mmol, 2.2 eq), molecular sieves 4Å (0.225 g) 

and DMF (3 mL). Then the reaction mixture was stirred at 70 °C for 4 hours under argon. After 

cooling to room temperature the inorganic precipitate was filtered off and the filtrate was 

evaporated under reduced pressure. The crude product was purified by column chromatography: 

silica gel (50 g) / EtOAc (Rf = 0.20–0.31). 

Yield 0.175 g (52%), beige amorphous solid foam. 
1H NMR (300.13 MHz, DMSO-d6): δ = 2.59 (s, 3H, CH3), 3.55-3.66 (m, 1H, H-5a'), 3.67-

3.77 (m, 1H, H-5b'), 3.99-4.06 (m, 1H, H-4'), 4.16-4.24 (m, 1H, H-3'), 4.41-4.48 (m, 1H, H-2'), 4.83 

(dd, 1H, 3J1 = 6.71 Hz, 3J2 = 4.82 Hz, OH-5'), 4.98 (d, 1H, 3J = 4.72 Hz, H-1'), 5.02 (d, 1H, 3J = 

5.67 Hz, OH-3'), 5.24 (d, 1H, 3J = 5.66 Hz, OH-2'), 7.54-7.72 (m, 8H, CHPh), 8.20 (s, 1H, H-5), 

8.22-8.30 (m, 2H, CHp-Ph). 
13C NMR (75.47 MHz, DMSO-d6): δ = 15.1 (CH3), 63.3 (CH2OH), 72.8 (CH-3'), 76.7 (CH-

2'), 85.9 (CH-4'), 87.3 (CH-1'), 114.6 (CH-5), 116.8, 126.4 (CHAr), 127.9, 128.1 (CHAr), 129.9 

(CHAr), 130.1 (CHAr), 130.3 (CHAr), 132.2 (CHAr), 137.2, 138.3, 150.2, 160.0, 164.6, 169.6. 

MS (EI, 70 eV): m/z (%) = 478 ([M, 35Cl]+, 16), 442 (20), 413 (10), 391 (33), 390 (26), 389 

(100), 387 (16), 377 (24), 376 (24), 375 (63), 373 (17), 361 (10), 360 (15), 129 (14), 104 (10), 97 

(12), 85 (13), 84 (13), 83 (16), 77 (21), 73 (39), 71 (14), 70 (11), 69 (34), 67 (10), 60 (50), 57 (25), 

56 (14), 55 (31), 46 (12), 45 (23), 44 (72), 43 (56), 41 (29). 

HRMS (ESI): Calcd. for C25H24ClN4O4 [M+H, 35Cl]+: 479.1481, found: 479.1485; calcd. for 

C15H12ClF2N3O3 [M+H, 37Cl]+: 481.1463, found: 481.1469. 

IR (ATR, cm–1): ṽ = 3317 (m), 3130 (w), 3064 (w), 2924 (m), 1574 (s), 1547 (m), 1525 (s), 

1498 (s), 1479 (m), 1471 (m), 1462 (m), 1454 (m), 1404 (s), 1379 (m), 1346 (s), 1317 (m), 1292 

(m), 1248 (m), 1223 (m), 1190 (m), 1159 (w), 1097 (s), 1074 (s), 1047 (s), 1030 (s), 993 (m), 941 

(m), 922 (m), 876 (m), 837 (m), 822 (m), 804 (w), 762 (s), 717 (m), 690 (s), 673 (s), 654 (s), 635 

(s), 608 (m), 596 (m), 544 (m), 528 (m). 

 

2-(β-D-Ribofuranosyl)-4-methoxy-6-(trifluoromethyl)pyrimidine (31a) 

 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)formamidine (0.94 mmol, 1 

eq), 0.190 g of 4,4-dimethoxy-1,1,1-trifluoro-3-buten-2-one (1.03 mmol, 1.1 eq), 0.26 g of K2CO3 
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(1.88 mmol, 2 eq), molecular sieves 4Å (0.3 g) and DMF (4 mL). Then the 

reaction mixture was stirred at 60 °C for 5½ hours under argon. After cooling to 

room temperature the inorganic precipitate was filtered off and the filtrate was 

evaporated under reduced pressure. The crude residue was purified via short-path 

column chromatography: silica gel (10 g) / CHCl3 (400 mL), than EtOAc (Rf = 0.19–0.29). The 

fraction of EtOAc was evaporated to give the desired product. 

Yield 0.209 g (72%), white solid, mp 129 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.52-3.63 (m, 1H, H-5a'), 3.63-3.72 (m, 1H, H-5b'), 

3.92-4.00 (m, 1H, H-4'), 4.06 (s, 3H, MeO), 4.06-4.14 (m, 1H, H-3'), 4.20-4.27 (m, 1H, H-2'), 4.65 

(dd, 1H, 3J1 = 6.80 Hz, 3J2 = 4.72 Hz, OH-5'), 4.80 (d, 1H, 3J = 3.96 Hz, H-1'), 5.00 (d, 1H, 3J = 

6.04 Hz, OH-3'), 5.28 (d, 1H, 3J = 5.66 Hz, OH-2'), 7.45 (s, 1H, H-5). 
13C NMR (62.90 MHz, DMSO-d6): δ = 55.7 (MeO), 63.0 (CH2OH), 72.4 (CH-3'), 76.6 (CH-

2'), 85.7 (CH-4'), 86.6 (CH-1'), 105.3 (CH-5), 121.5 (q, 1J(C-F) = 274.6 Hz, CF3), 155.3 (q, 2J(C-F) = 

35.0 Hz), 171.0, 171.7. 
19F NMR (282.38 MHz, DMSO-d6): δ = –68.7 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 311 ([M+H]+, 1.74), 310 ([M]+, 1.25), 233 (12), 222 (16), 221 

(100), 219 (27), 208 (16), 207 (90), 205 (19), 68 (11). 

HRMS (ESI): Calcd. for C11H14F3N2O5 [M+H]+: 311.08493, found: 311.08440. 

IR (ATR, cm–1): ṽ = 3346 (m), 3159 (m), 3118 (w), 2966 (w), 2937 (w), 2908 (w), 2889 (w), 

1606 (m), 1585 (w), 1558 (m), 1504 (w), 1479 (s), 1456 (w), 1435 (m), 1383 (s), 1348 (m), 1331 

(m), 1304 (m), 1267 (m), 1225 (m), 1201 (s), 1186 (m), 1176 (m), 1151 (s), 1140 (s), 1099 (s), 1057 

(s), 1034 (s), 1026 (s), 986 (s), 957 (s), 899 (m), 879 (s), 870 (s), 839 (m), 800 (m), 768 (s), 756 (s), 

723 (m), 687 (s), 631 (s), 586 (m), 561 (m). 

 

2-(β-D-Ribofuranosyl)-4-(difluoromethyl)-6-methoxypyrimidine (31b) 

 

Into a 25-mL flask were placed 0.2 g of 1-(β-D-ribofuranosyl)form-

amidine (0.94 mmol, 1 eq), 0.188 g of 4,4-dimethoxy-1,1-difluoro-3-buten-2-one 

(1.13 mmol, 1.2 eq), 0.26 g of K2CO3 (1.88 mmol, 2 eq), molecular sieves 4Å 

(0.3 g) and DMF (4 mL). Then the reaction mixture was stirred at 60 °C for 5½ 

hours under argon. After cooling to room temperature the inorganic precipitate was filtered off and 

the filtrate was evaporated under reduced pressure. The crude residue was purified via short-path 

column chromatography: silica gel (30 g) / CHCl3 (1.2 L), than EtOAc (Rf = 0.14–0.17). The 

fraction of EtOAc was evaporated to give the desired product. 

Yield 0.205 g (75%), white solid, mp 114-115 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.52-3.63 (m, 1H, H-5a'), 3.64-3.73 (m, 1H, H-5b'), 
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3.92-3.99 (m, 1H, H-4'), 4.02 (s, 3H, MeO), 4.07-4.14 (m, 1H, H-3'), 4.20-4.27 (m, 1H, H-2'), 4.71 

(dd, 1H, 3J1 = 6.90 Hz, 3J2 = 4.63 Hz, OH-5'), 4.78 (d, 1H, 3J = 3.96 Hz, H-1'), 4.99 (d, 1H, 3J = 

6.04 Hz, OH-3'), 5.25 (d, 1H, 3J = 5.67 Hz, OH-2'), 6.95 (t, 1H, 2J(H-F) = 54.11 Hz, CHF2), 7.15 (s, 

1H, H-5). 
13C NMR (62.90 MHz, DMSO-d6): δ = 55.3 (MeO), 63.0 (CH2OH), 72.4 (CH-3'), 76.6 (CH-

2'), 85.7 (CH-4'), 86.7 (CH-1'), 104.6 (t, 3J(C-F) = 4.6 Hz, CH-5), 113.0 (t, 1J(C-F) = 239.7 Hz, CHF2), 

161.1 (t, 2J(C-F) = 24.7 Hz, C-4), 170.4, 171.4. 
19F NMR (282.38 MHz, DMSO-d6): δ = –120.2 (s, CHF2). 

IR (ATR, cm–1): ṽ = 3340 (m), 3271 (m), 2953 (w), 2910 (m), 1606 (s), 1564 (s), 1485 (m), 

1471 (s), 1435 (m), 1381 (s), 1360 (m), 1338 (m), 1321 (m), 1296 (m), 1282 (m), 1228 (w), 1200 

(m), 1184 (m), 1171 (m), 1122 (s), 1099 (s), 1088 (s), 1076 (s), 1045 (s), 1026 (s), 991 (s), 982 (s), 

964 (s), 943 (m), 933 (s), 903 (m), 879 (m), 864 (s), 824 (m), 808 (m), 791 (m), 768 (m), 752 (m), 

727 (m), 700 (s), 675 (m), 627 (m), 598 (m), 577 (s), 559 (s). 

MS (GC, 70 eV): m/z (%) = 203 (100), 201 (15), 189 (51), 187 (12), 31 (13). 

HRMS (EI): Calcd. for C11H14N2O5F2 [M]+: 292.08653, found: 292.08698. 

 

2-(β-D-Ribofuranosyl)-(5Z)-5-benzylidene-5H-chromeno[4,3-d]pyrimidine (38a) 

 

Into a 25-mL flask were placed 0.15 g of 1-(β-D-ribofuranosyl)form-

amidine (0.71 mmol, 1 eq), 0.174 g of 3-(phenylethynyl)-4H-chromen-4-one 

(0.71 mmol, 1 eq), 0.293 g of K2CO3 (2.1 mmol, 3 eq), molecular sieves 4Å 

(0.225 g) and DMF (3 mL). Then the reaction mixture was stirred at 60 °C for 

6 hours under argon. After cooling to room temperature the inorganic 

precipitate was filtered off and the filtrate was evaporated under reduced 

pressure. The crude product was recrystallized from MeOH to afford a pure substance. 

Yield 0.237 g (83%), yellow solid, mp 204-206 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.56-3.69 (m, 1H, H-5a'), 3.70-3.81 (m, 1H, H-5b'), 

3.97-4.06 (m, 1H, H-4'), 4.12-4.22 (m, 1H, H-3'), 4.28-4.37 (m, 1H, H-2'), 4.84-4.95 (m, 2H, H-1', 

OH-5'), 5.03 (d, 1H, 3J = 6.05 Hz, OH-3'), 5.29 (d, 1H, 3J = 5.67 Hz, OH-2'), 6.77 (s, 1H, =CH–Ph), 

7.23-7.38 (m, 3H, CHAr), 7.41-7.51 (m, 2H, CHAr), 7.56-7.65 (m, 1H, CHAr), 7.89 (d 1H, 3J = 7.55 

Hz, CHAr), 8.20-8.27 (m, 1H, CHAr), 9.34 (s, 1H, H-6). 
13C NMR (62.90 MHz, DMSO-d6): δ = 63.1 (CH2OH), 72.4 (CH-3'), 76.8 (CH-2'), 85.7 

(CH-4'), 86.9 (CH-1'), 106.5 (CH), 117.5 (CH), 118.9, 120.3, 124.6 (CHAr), 125.2 (CHAr), 127.9 

(CHAr), 129.5 (CHAr), 129.8 (CHAr), 135.1 (CHAr), 135.4, 144.2, 152.4, 154.3 (CHAr), 155.5, 169.2. 

MS (EI, 70 eV): m/z (%) = 405 ([M+H]+, 64), 404 ([M]+, 100), 368 (20), 316 (56), 315 (99), 

314 (51), 313 (30), 302 (50), 301 (88), 300 (15), 299 (12), 286 (23), 285 (32), 273 (13), 272 (11), 
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271 (32), 256 (11), 247 (16)m 246 (78), 206 (15), 189 (12), 128 (12), 73 (11), 44 (16), 43 (14). 

HRMS (ESI): Calcd. for C23H21N2O5 [M+H]+: 405.14450, found: 405.14481. 

IR (ATR, cm–1): ṽ = 3273 (s), 3064 (m), 2916 (m), 2871 (w), 1658 (w), 1644 (w), 1607 (m), 

1595 (m), 1573 (m), 1543 (m), 1494 (w), 1461 (m), 1447 (m), 1424 (m), 1415 (m), 1392 (w), 1331 

(m), 1316 (m), 1281 (m), 1242 (m), 1210 (w), 1189 (w), 1161 (w), 1098 (s), 1052 (s), 1043 (s), 

1019 (m), 985 (m), 942 (w), 908 (m), 865 (m), 837 (w), 825 (w), 813 (w), 792 (w), 759 (s), 746 (s), 

731 (m), 716 (m), 687 (s), 675 (m), 665 (m), 639 (s), 627 (s), 606 (m), 551 (m). 

 

4.2.2 Synthesis of 3-acyl-4-chlorocoumarines 

 

4-Chloro-3-(trifluoroacetyl)coumarin (74a) 

 

Procedure for the synthesis of compound 4a. Synthesis was conducted in 

a pressure tube. To the suspension of 4-hydroxycoumarin (2.5 g, 15.4 mmol) in 

dry dioxane (20 mL) was added 2.56 g (32.4 mmol) of dry pyridine. After a 

brief stirring, when the mixture became completely homogeneous, were added 2.01 g (18.5 mmol) 

of trimethylsilyl chloride. The reaction mixture was stirred for 1 h at room temperature. Then was 

added 4.21 g (20.0 mmol) of trifluoroacetic anhydride and the mixture was stirred for another 2 h at 

80-90 °C. To the cooled reaction mass was added 2.36 g (15.4 mmol) of phosphorus oxychloride 

and the mixture was stirred for 2 h at 60 °C. Then the reaction mass was diluted with ice water and 

extracted with chloroform (50 ml), the chloroform layer was separated, and the water phase was 

extracted two times with chloroform (50 ml). The combined extract was dried under sodium 

sulphate, chloroform was removed and the residue was dried in a high vacuum on a boiling water 

bath. Yield 3.94 g (93%). To obtain product of extra high purity sublimation in vacuum was used. 

In this case, the yield is 3.29 g (77%). 

White solid, mp 115-117 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 7.43 (d, 1H, 3J = 8.31 Hz, H-8), 7.44-7.52 (m, 1H, H-

6), 7.72-7.80 (m, 1H, H-7), 7.98 (d, 1H, 3J = 8.12 Hz, H-5). 
13C NMR (75.47 MHz, CDCl3): δ = 115.2 (q, 1J(C-F) = 290.7, CF3), 117.2, 117.7 (CH-8), 

121.1, 126.1 (CH-6), 127.0 (CH-5), 135.9 (CH-7), 150.6, 153.2, 156.2, 181.2 (q, 2J(C-F) = 40.8, CO). 
19F NMR (282.38 MHz, CDCl3): δ = –75.8 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 276 ([M]+, 35Cl, 11), 209 (34), 208 (11), 207 (100), 135 (20), 

123 (16), 69 (15), 62 (11). 

HRMS (EI): Calcd. for C11H4
35ClF3O23 [M]+: 275.97956, found: 275.97919. 

IR (ATR, cm–1): ṽ = 3086 (w), 3051 (w), 1728 (s), 1605 (s), 1593 (m), 1566 (m), 1549 (s), 

1539 (s), 1479 (m), 1452 (s), 1333 (m), 1315 (s), 1275 (m), 1236 (m), 1196 (s), 1169 (s), 1155 (s), 
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1134 (s), 1072 (s), 1034 (m), 974 (s), 959 (s), 851 (s), 820 (s), 781 (m), 768 (s), 743 (s), 723 (s), 658 

(s), 625 (m), 606 (m), 600 (m), 582 (s), 573 (s). 

 

4-Chloro-3-[chloro(difluoro)acetyl]coumarin (74b) 

 

The title substance was prepared starting from 0.5 g of 4-

hydroxycoumarin, 0.512 g of pyridine, 0.402 g of TMSCl, 0.974 g of 

chlorodifluoroacetic anhydride, 0.473 g of POCl3 and 4 mL of dioxane, using 

the same procedure as in case of 74a. Yield of crude product and purified by sublimation is 0.781 g 

(86%) and 0.631 g (70%) respectively. White solid, mp 82-84 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 7.44 (d, 1H, 3J = 8.31 Hz, H-8), 7.44-7.51 (m, 1H, H-

6), 7.72-7.79 (m, 1H, H-7), 7.98 (d, 1H, 3J = 8.12 Hz, H-5). 
13C NMR (62.90 MHz, CDCl3): δ = 117.3, 117.7 (CH-8), 119.6 (t, 1J(C-F) = 305.2, CClF2), 

121.5, 126.1 (CH-6), 126.9 (CH-5), 135.7 (CH-7), 150.2, 153.1, 156.2, 181.7 (t, 2J(C-F) = 34.9, CO). 
19F NMR (282.38 MHz, CDCl3): δ = –64.3 (s, CF2Cl). 

MS (GC, 70 eV): m/z (%) = 292 ([M]+, 35Cl2, 2.1), 209 (33), 308 (11), 207 (100), 135 (19), 

123 (19), 99 (10), 87 (10), 85 (11), 62 (11). 

HRMS (EI): Calcd. for C11H4
35Cl2F2O23 [M]+: 291.95001, found: 291.94975. 

IR (ATR, cm–1): ṽ = 3080 (w), 1747 (s), 1714 (s), 1682 (m), 1599 (s), 1566 (s), 1556 (m), 

1539 (m), 1504 (m), 1481 (m), 1452 (s), 1317 (s), 1294 (m), 1246 (w), 1230 (w), 1198 (s), 1165 (s), 

1132 (s), 1084 (m), 1034 (m), 976 (s), 962 (s), 922 (s), 901 (s), 870 (m), 851 (s), 810 (m), 785 (s), 

771 (s), 758 (s), 714 (s), 648 (s), 633 (s), 611 (m), 581 (s), 571 (s), 544 (m). 

 

4-Chloro-3-(methoxalyl)coumarin (74c) 

 

To a suspension of 4-hydroxycoumarin (15 g, 93 mmol, 1 eq) in 120 

mL of dry dioxane was added dry pyridine (15.366 g, 194 mol, 2.1 eq). After 

a brief stirring, when the solution became completely homogeneous, 

trimethylsilyl chloride (12.06 g, 111 mmol, 1.2 eq) was added. The reaction mixture was stirred for 

1 h at room temperature, followed by addition of methyl oxalyl chloride (14.733 g, 120 mmol, 1.3 

eq). After stirring for ½ h at 80-90 °C the mixture was cooled to r.t. and 14.184 g of phosphorus 

oxychloride (93 mmol, 1 eq) was added. Then the mixture was stirred for 2 h at 60 °C. Afterwards 

the reaction mass was diluted with ice water and the product was extracted with chloroform. The 

combined extract was dried under sodium sulphate, chloroform was evaaporated and the residue 

was recrystallized from benzene to give 17.76 g of the pure product. 

Yield 17.76 g (72%), beige solid, mp 110-112 °C. 
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1H NMR (300.13 MHz, CDCl3): δ = 3.96 (s, 3H, MeO), 7.42 (d, 1H, 3J = 8.31 Hz, H-8), 

7.43-7.50 (m, 1H, H-6), 7.70-7.78 (m, 1H, H-7), 8.04 (d, 1H, 3J = 8.12 Hz, H-5). 
13C NMR (62.90 MHz, CDCl3): δ = 53.8 (MeO), 117.6 (CH-8), 118.1, 121.8, 126.0 (CH-6), 

127.4 (CH-5), 135.6 (CH-7), 151.7, 153.1, 157.9, 161.5, 181.9 (CO). 

MS (GC, 70 eV): m/z (%) = 266 ([M]+, 35Cl, 2.4), 209 (34), 208 (11), 207 (100), 135 (16), 

123 (19). 

HRMS (ESI): Calcd. for C12H8
35ClO5 [M+H]+: 267.00548, found: 267.00565. 

IR (ATR, cm–1): ṽ = 3091 (w), 1761 (s), 1713 (s), 1699 (s), 1668 (s), 1651 (m), 1633 (m), 

1603 (s), 1587 (s), 1549 (s), 1539 (s), 1520 (s), 1504 (s), 1481 (m), 1450 (s), 1435 (s), 1365 (m), 

1335 (m), 1313 (s), 1294 (s), 1259 (s), 1238 (s), 1205 (s), 1159 (m), 1136 (m), 1105 (m), 1088 (s), 

1036 (s), 1003 (s), 960 (s), 881 (m), 856 (s), 835 (m), 814 (m), 793 (m), 779 (s), 762 (s), 741 (s), 

733 (s), 683 (m), 662 (s), 650 (m), 611 (s), 604 (m), 584 (s), 557 (m). 

 

4.2.3 Synthesis of fused pyridines from 4-chloro-3-(trifluoroacetyl)coumarin 

 

9,11-Dimethyl-7-(trifluoromethyl)-6H-chromeno[3',4':5,6]pyrido[2,3-d]pyrimidine-

6,8,10(9H,11H)-trione (77a) 

 

A sealed ACE pressure tube was charged with 0.3 g of 4-chloro-3-

(trifluoroacetyl)coumarin 74a (1.09 mmol, 1 eq), 0.169 g of 6-amino-1,3-

dimethyluracil, 5 mL of dry DMF and 1 mL of trimethylsilyl chloride. The 

reaction mixture was stirred at 80 °C for 4 h, cooled to r.t. and diluted with 

methanol. The precipitate was filtered off, washed twice with methanol and dried in a high vacuum. 

Yield 0.3 g (73%), white solid, mp 267-269 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.41 (s, 3H, CH3-9), 3.70 (s, 3H, CH3-11), 7.30-7.38 

(m, 1H, H-2), 7.47 (d, 1H, 3J = 8.31 Hz, H-4), 7.70-7.78 (m, 1H, H-3), 8.32 (d, 1H, 3J = 8.12 Hz, H-

1). 
13C NMR (75.47 MHz, 12% TFA-d in CDCl3): δ = 30.3 (CH3), 31.6 (CH3), 105.8, 112.4, 

114.9, 117.8 (CHAr), 120.3 (q, 1J(C-F) = 276.8, CF3), 124.7 (CHAr), 131.3 (CHAr), 136.0 (CHAr), 

151.3, 152.0, 152.5, 153.5, 153.6 (q, 2J(C-F) = 37.9), 157.7, 160.8. 
19F NMR (282.38 MHz, CDCl3): δ = –64.3 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 377 ([M]+, 49), 376 (100). 

HRMS (ESI): Calcd. for C17H11F3N3O4 [M+H]+: 378.06962, found: 378.06916. 

Anal. Calcd for C17H10F3N3O4: C, 54.12; H, 2.67; N, 11.14. Found: C, 54.07; H, 2.59; N, 

10.89. 

IR (ATR, cm–1): ṽ = 2960 (w), 1757 (m), 1714 (s), 1660 (s), 1606 (m), 1589 (s), 1564 (s), 
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1552 (s), 1462 (s), 1412 (m), 1396 (m), 1365 (m), 1323 (w), 1308 (m), 1288 (m), 1244 (s), 1230 (s), 

1215 (s), 1194 (s), 1173 (s), 1155 (s), 1134 (s), 1082 (m), 1059 (m), 1047 (m), 1011 (s), 970 (m), 

935 (m), 891 (m), 872 (w), 833 (w), 824 (m), 775 (s), 760 (m), 748 (m), 733 (s), 692 (m), 685 (m), 

660 (m), 642 (m), 623 (m), 609 (w), 569 (w), 542 (w). 

 

8-methyl-10-phenyl-7-(trifluoromethyl)chromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(10H)-

one (77b) 

 

This product was prepared following the same procedure used for 74a, 

starting from 0.3 g of 4-chloro-3-(trifluoroacetyl)coumarin (1.09 mmol, 1 eq), 

0.188 g of 5-amino-3-methyl-1-phenyl-1H-pyrazol (1.09 mmol, 1 eq) and 1 mL 

of TMSCl in 5 mL of DMF. 

Yield 0.219 g (51%), yellow solid, mp 219 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 1H NMR (300.13 MHz, DMSO-d6): δ = 2.76 (s, 3H, 

6J(H-F) = 3.72 Hz, CH3-8), 7.33 (d, 1H, 3J = 8.31 Hz, H-4), 7.35-7.43 (m, 2H, H-2, CHp-Ph), 7.54-

7.63 (m, 3H, H-3, CHPh), 8.22-8.29 (m, 2H, CHPh), 8.52 (d, 1H, 3J = 8.03 Hz, H-1). 
13C NMR (75.47 MHz, CDCl3): δ = 17.2 (q, 6J(C-F) = 6.89, CH3), 109.9, 115.2, 117.2 (CHAr), 

118.8, 121.8 (CHAr), 122.3 (q, 1J(C-F) = 275.8, CF3), 125.1 (CHAr), 126.0 (CHAr), 127.2 (CHAr), 

129.5 (CHAr), 133.6 (CHAr), 137.0 (q, 2J(C-F) = 36.8), 138.5, 144.3, 152.2, 152.4, 152.9, 157.8. 
19F NMR (282.38 MHz, CDCl3): δ = –55.0 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 396 ([M+H]+, 23), 395 ([M]+, 100), 394 (12). 

HRMS (ESI): Calcd. for C21H13F3N3O2 [M+H]+: 396.09544, found: 396.09499. 

Anal. Calcd for C21H12F3N3O2: C, 63.80; H, 3.06; N, 10.63. Found: C, 63.44; H, 2.98; N, 

10.42. 

IR (ATR, cm–1): ṽ = 3072 (w), 1738 (s), 1614 (w), 1593 (m), 1568 (s), 1516 (w), 1498 (s), 

1466 (m), 1443 (m), 1419 (s), 1390 (m), 1365 (m), 1340 (m), 1323 (w), 1275 (m), 1261 (w), 1242 

(s), 1213 (s), 1174 (s), 1136 (s), 1117 (s), 1097 (m), 1074 (s), 1036 (m), 1020 (m), 1003 (w), 991 

(m), 955 (w), 906 (w), 887 (m), 858 (w), 835 (w), 814 (w), 797 (m), 768 (s), 752 (s), 731 (s), 714 

(m), 687 (s), 677 (m), 656 (s), 648 (m), 631 (m), 598 (w), 584 (m), 546 (w), 536 (m), 528 (w). 

 

4.2.4 Synthesis of 6-amino-1,3-dialkylpyrimidine-2,4(1H,3H)-diones 

 

General procedure for the synthesis of 6-amino-1,3-dialkylpyrimidine-2,4(1H,3H)-

diones 70. 

Method A (for simple anilines): 

In a Schlenk tube were placed 1 eq of 6-chloro-1,3-dialkyluracil and 2,2 eq of amine. Then 
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the reaction mass was heated under argon at 180 °C for 3 hours. After cooling to 100 °C the mixture 

was treated by hot water, cooled to r.t. and triturated with diethyl ether. The formed solid was 

filtered off by suction, washed twice with water and diethyl ether and dried in a high vacuum. 

Method B (for anilines with two amino groups): 

In a Schlenk tube were placed 1 eq of amine and 1.2 eq of 6-chloro-1,3-dimethyluracil 

(molar ratio = 1 : 2.4). Then 1 eq of quinoline was added and the reaction mass was heated under 

argon at 180 °C for 3 hours. After cooling to 70 °C the mixture was treated by hot ethanol and 

boiled few minutes under reflux. The precipitate was filtered off by suction, washed twice with 

ethanol and dried in a high vacuum. 

Method C (for inactive amines): 

In a Schlenk flask was prepared solution of amine (2.2 eq) in dry THF. Then 2.2 eq of n-

butyl lithium (2.5 M solution in hexane) was added at –78 °C under argon. To obtained lithium salt 

previously prepared solution of 6-chloro-1,3-dialkyluracil (1 eq) in THF was added dropwise and 

afterwards the reaction mixture was allowed to warm to r.t.. The next day the solution was acidified 

with acetic acid and the solvent was evaporated. The solid rest was triturated with water and diethyl 

ether, filtered off by suction, washed twice and dried in a high vacuum. 

 

6-[(4-Methoxyphenyl)amino]-1,3-dipropylpyrimidine-2,4(1H,3H)-dione (70a) 

 

The product was prepared according to the Method A, starting from 1.2 

g of 6-chloro-1,3-dipropyluracil and 1.409 g of p-anisidine. 

Yield 1.133 g (69%), pinkish solid, mp 109-111 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 0.86 (t, 3H, 3J = 6.99 Hz), 0.95 (t, 

3H, 3J = 7.09 Hz), 1.46-1.82 (m, 4H, CH2), 3.68-3.88 (m, 5H, CH2, MeO), 3.96 (t, 1H, 3J = 6.99 

Hz), 4.66 (s, 1H, H-5), 6.78 (br s, 1H, NH), 6.84 (d, 2H, 3J = 6.84 Hz, CHPh), 7.01 (d, 2H, 3J = 6.84 

Hz, CHPh). 
13C NMR (75.48 MHz, CDCl3): δ = 11.4 (CH3), 11.6 (CH3), 21.4 (CH2), 21.9 (CH2), 42.9 

(CH2), 44.2 (CH2), 55.8 (MeO), 78.1 (CH-5), 115.1 (CHAr), 128.0 (CHAr), 129.8, 151.9, 153.8, 

158.7, 163.3. 

MS (GC, 70 eV): m/z (%) = 318 ([M+H]+, 19), 317 ([M]+, 99), 275 (46), 274 (49), 260 (12), 

233 (20), 190 (31), 189 (20), 175 (17), 174 (20), 162 (22), 153 (10), 149 (18), 148 (25), 147 (27), 

146 (15), 134 (13), 133 (18), 132 (18), 123 (100), 121 (13), 108 (16), 77 (11), 68 (15), 43 (15), 41 

(19). 

HRMS (ESI): Calcd. for C17H24N3O3 [M+H]+: 318.18122, found: 318.18072. 

IR (ATR, cm–1): ṽ = 3273 (w), 2958 (m), 2875 (w), 2837 (w), 1687 (s), 1606 (s), 1587 (s), 

1531 (s), 1506 (s), 1479 (s), 1456 (s), 1437 (s), 1412 (s), 1392 (s), 1379 (s), 1360 (s), 1335 (m), 
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1319 (m), 1286 (s), 1267 (m), 1242 (s), 1205 (m), 1178 (s), 1165 (s), 1105 (m), 1049 (m), 1032 (s), 

1011 (m), 937 (m), 895 (m), 878 (m), 831 (m), 777 (s), 764 (s), 750 (s), 737 (s), 712 (m), 673 (m), 

644 (m), 629 (s), 552 (s). 

 

6-(2,3-Dihydro-1H-indol-1-yl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (70b) 

 

The product was prepared according to the Method A, starting from 0.7 g of 

6-chloro-1,3-dimethyluracil and 1.051 g of indoline. 

Yield 0.714 g (69%), white solid, mp 148-149 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.15 (t, 2H, 3J = 7.93 Hz, CH2-3'), 3.36 

(s, 3H, CH3), 3.40 (s, 3H, CH3), 3.77 (t, 2H, 3J = 7.93 Hz, CH2-2'), 5.56 (s, 1H, H-5), 6.67 (d, 1H, 3J 

= 7.93 Hz, H-7'), 6.89-6.98 (m, 1H, H-5'), 7.09-7.18 (m, 1H, H-6'), 7.23 (d, 1H, 3J = 7.37 Hz, H-4'). 
13C NMR (75.48 MHz, CDCl3): δ = 28.2 (CH3), 29.1 (CH2-3'), 33.6 (CH3), 54.3 (CH2-2'), 

89.7 (CH-5), 112.8 (CHAr), 122.6 (CHAr), 125.7 (CHAr), 127.8 (CHAr), 131.9, 145.6, 153.2, 154.5, 

163.6. 

MS (GC, 70 eV): m/z (%) = 258 ([M+H]+, 15), 257 ([M]+, 100), 256 (19), 119 (50), 118 

(31), 117 (10), 82 (47). 

HRMS (EI): Calcd. for C14H15N3O2 [M]+: 257.11588, found: 257.11583. 

IR (ATR, cm–1): ṽ = 3049 (w), 2949 (w), 2860 (w), 1695 (s), 1651 (s), 1635 (s), 1614 (s), 

1605 (s), 1591 (s), 1504 (w), 1485 (s), 1435 (s), 1381 (m), 1362 (m), 1354 (m), 1336 (m), 1302 (m), 

1292 (m), 1265 (s), 1230 (m), 1217 (m), 1169 (m), 1159 (w), 1149 (w), 1093 (w), 1065 (w), 1047 

(w), 1024 (w), 989 (m), 937 (w), 924 (w), 879 (w), 868 (w), 827 (w), 806 (w), 797 (s), 756 (s), 748 

(s), 725 (m), 716 (m), 694 (m), 683 (m), 671 (m), 604 (w), 554 (m), 538 (m). 

 

6-(3,4-Dihydroquinolin-1(2H)-yl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (70c) 

 

The product was prepared according to the Method C, using a solution of 1,2,3,4-

tetrahydroquinoline (1.846 g) in dry THF (22 mL), 5.5 mL of n-butyl lithium (2.5 M solution in 

hexane) and a solution of 6-chloro-1,3-dimethyluracil (1.1 g) in dry THF (22 mL). 

Yield 1.494 g (87%), brownish oil. 
1H NMR (300.13 MHz, CDCl3): δ = 2.00-2.13 (m, 2H, CH2-3'), 2.86 (t, 2H, 

3J = 6.71 Hz, CH2-4'), 3.25 (s, 3H, CH3), 3.37 (s, 3H, CH3), 3.46 (t, 2H, 3J = 5.86 

Hz, CH2-2'), 5.51 (s, 1H, H-5), 6.55 (d, 1H, 3J = 8.12 Hz, H-8'), 6.86-6.96 (m, 1H, 

H-6'), 7.01-7.09 (m, 1H, H-7'), 7.11 (d, 1H, 3J = 7.74 Hz, H-5'). 
13C NMR (62.90 MHz, DMSO-d6): δ = 22.5 (CH2), 26.8 (CH2), 28.3 (CH3), 32.5 (CH3), 

49.8 (CH2-2'), 95.3 (CH-5), 117.7 (CHAr), 122.3 (CHAr), 126.5, 127.3 (CHAr), 130.0 (CHAr), 141.3, 
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153.1, 156.3, 163.6. 

MS (GC, 70 eV): m/z (%) = 272 ([M+H]+, 16), 271 ([M]+, 100), 270 (69), 254 (34), 186 

(12), 185 (55), 133 (19), 132 (35), 130 (21), 117 (27), 82 (58), 77 (11). 

HRMS (ESI): Calcd. for C15H18N3O2 [M+H]+: 272.13935, found: 272.13934. 

IR (ATR, cm–1): ṽ = 2932 (m), 2859 (w), 1697 (m), 1644 (s), 1615 (s), 1598 (s), 1587 (s), 

1491 (s), 1425 (s), 1389 (m), 1368 (m), 1296 (m), 1253 (m), 1229 (m), 1192 (m), 1171 (m), 1114 

(w), 1072 (w), 1020 (w), 996 (m), 941 (w), 910 (w), 888 (w), 875 (w), 850 (w), 806 (m), 749 (s), 

716 (m), 700 (m), 690 (m), 654 (w), 645 (w), 596 (w), 547 (m). 

 

1,3-Dimethyl-6-[(3-methyl-1-phenyl-1H-pyrazol-5-yl)amino]pyrimidine-2,4(1H,3H)-

dione (70d) 

 

The product was prepared according to the Method C, using a solution of 

5-amino-3-methyl-1-phenylpyrazole (0.764 g) in dry THF (7 mL), 1.76 mL of n-

butyl lithium (2.5 M solution in hexane) and a solution of 6-chloro-1,3-

dimethyluracil (0.35 g) in dry THF (7 mL). 

Yield 0.51 g (82%), white solid, mp 125-126 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 2.32 (s, 3H, CH3-3'), 3.10 (s, 3H, CH3), 3.39 (s, 3H, 

CH3), 4.38 (s, 1H, H-5), 6.36 (s, 1H, H-4'), 7.34-7.42 (m, 1H, CHp-Ph), 7.46-7.60 (m, 4H, CHPh), 

8.83 (br s, 1H, NH). 
13C NMR (75.48 MHz, DMSO-d6): δ = 14.8 (CH3-3'), 28.2 (CH3), 30.9 (CH3), 78.0 (CH-5), 

105.9, 123.6 (CHPh), 128.1 (CHPh), 130.1 (CHPh), 136.5, 139.2, 149.4, 152.1, 153.8, 162.3. 

MS (GC, 70 eV): m/z (%) = 312 ([M+H]+, 19), 311 ([M]+, 100), 184 (18), 82 (13), 77 (23), 

55 (19). 

HRMS (ESI): Calcd. for C16H18N5O2 [M+H]+: 312.14550, found: 312.14612. 

IR (ATR, cm–1): ṽ = 3452 (w), 3331 (w), 3138 (w), 3030 (w), 2902 (w), 1701 (s), 1651 (s), 

1633 (s), 1605 (s), 1593 (s), 1549 (s), 1497 (s), 1471 (s), 1435 (s), 1417 (s), 1381 (s), 1362 (m), 

1313 (m), 1286 (m), 1230 (m), 1198 (m), 1173 (m), 1144 (m), 1076 (m), 1049 (w), 1022 (m), 1014 

(m), 995 (m), 908 (w), 854 (w), 837 (w), 798 (w), 783 (s), 752 (s), 743 (s), 712 (m), 692 (s), 667 

(m), 650 (m), 619 (s), 602 (s), 575 (s). 

 

1,3-Dimethyl-6-{[3-(trifluoromethyl)phenyl]amino}pyrimidine-2,4(1H,3H)-dione (70e) 

 

The product was prepared according to the Method A, starting from 1.1 g of 6-chloro-1,3-

dimethyluracil and 2.233 g of 3-(trifluoromethyl)aniline. 

Yield 1.587 g (84%), white solid, mp 198-200 °C. 
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1H NMR (300.13 MHz, CDCl3): δ = 3.25 (s, 3H, CH3), 3.53 (s, 3H, CH3), 

4.91 (s, 1H, H-5), 7.25 (br s, 1H, NH), 7.28-7.35 (m, 1H, CHAr), 7.36 (s, 1H, CHAr), 

7.39-7.47 (m, 2H, CHAr). 
13C NMR (62.90 MHz, CDCl3): δ = 28.3 (CH3), 30.1 (CH3), 79.7 (CH-5), 

121.6 (q, 3J(C-F) = 3.8 Hz, CH), 123.1 (q, 3J(C-F) = 3.8 Hz, CH), 123.8 (q, 1J(C-F) = 

272.7 Hz, CF3), 128.0 (CH), 130.5 (CH), 132.5 (q, 2J(C-F) = 32.9 Hz), 138.5, 152.2, 153.1, 163.6. 
19F NMR (282.38 MHz, CDCl3): δ = –62.9 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 300 ([M+H]+, 15), 299 ([M]+, 100), 280 (16), 241 (15), 214 

(18), 213 (67), 212 (11), 200 (33), 199 (33), 186 (20), 185 (35), 172 (20), 145 (69), 127 (46), 126 

(12), 95 (10), 82 (35), 55 (21), 54 (10), 42 (13). 

HRMS (ESI): Calcd. for C13H13F3N3O2 [M+H]+: 300.09544, found: 300.09553. 

IR (ATR, cm–1): ṽ = 3307 (w), 3066 (w), 1699 (m), 1633 (s), 1605 (s), 1591 (m), 1537 (s), 

1493 (s), 1471 (m), 1443 (m), 1421 (m), 1383 (m), 1362 (m), 1331 (s), 1315 (s), 1281 (m), 1265 

(m), 1213 (w), 1171 (s), 1124 (s), 1093 (s), 1066 (s), 1003 (m), 933 (m), 920 (m), 891 (m), 816 (m), 

777 (s), 750 (s), 743 (s), 702 (s), 673 (w), 662 (s), 648 (m), 638 (m), 582 (m). 

 

6,6'-[Methylenebis(4,1-phenyleneimino)]bis(1,3-dimethylpyrimidine-2,4(1H,3H)-dione) 

(70f) 

 

The product was prepared according to the Method B, 

starting from 0.442 g of 6-chloro-1,3-dimethyluracil, 0.209 g of 

4,4'-diaminodiphenylmethane and 0.392 g of quinoline. 

Yield 0.387 g (77%), brownish solid, mp 308-310 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.14 (s, 6H, CH3), 3.46 (s, 6H, CH3), 4.02 (s, 2H, 

CH2), 4.63 (s, 2H, H5, H5'), 7.22 (d, 4H, 3J = 8.50 Hz, CHAr), 7.33 (d, 4H, 3J = 8.50 Hz, CHAr), 

8.50 (s, 2H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.1 (CH3), 30.9 (CH3), 40.8 (CH2), 77.8 (CH-5, 

CH-5'), 126.2 (CH), 130.6 (CH), 137.2, 139.7, 152.5, 154.3, 162.5. 

MS (GC, 70 eV): m/z (%) = 475 ([M+H]+, 20), 474 ([M]+, 72), 473 (100), 334 (13), 229 

(10), 145 (12), 104 (16), 82 (12), 40 (11). 

HRMS (ESI): Calcd. for C25H27N6O4 [M+H]+: 475.20883, found: 475.20938. 

IR (ATR, cm–1): ṽ = 3209 (w), 2953 (w), 1695 (s), 1622 (s), 1589 (s), 1525 (s), 1510 (s), 

1462 (s), 1441 (s), 1431 (s), 1414 (s), 1381 (s), 1360 (s), 1282 (s), 1257 (s), 1192 (m), 1178 (m), 

1107 (m), 1020 (m), 999 (m), 912 (m), 860 (m), 812 (m), 777 (s), 752 (s), 723 (m), 667 (m), 648 

(s), 635 (s), 577 (m), 542 (s). 
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6,6'-[Biphenyl-4,4'-diyldi(imino)]bis(1,3-dimethylpyrimidine-2,4(1H,3H)-dione) (70g) 

 

The product was prepared according to the Method B, 

starting from 0.455 g of 6-chloro-1,3-dimethyluracil, 0.2 g of 

benzidine and 0.404 g of quinoline. 

Yield 0.452 g (91%), grey solid, mp ˃375 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.17 (s, 6H, CH3), 3.50 (s, 6H, CH3), 4.82 (s, 2H, 

H5, H5'), 7.38 (d, 4H, 3J = 8.59 Hz, CHAr), 7.80 (d, 4H, 3J = 8.59 Hz, CHAr), 8.63 (s, 2H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.2 (CH3), 31.1 (CH3), 78.6 (CH-5, CH-5'), 125.8 

(CH), 128.3 (CH), 137.2, 138.8, 152.5, 154.0, 162.5. 

MS (EI, 70 eV): m/z (%) = 461 ([M+H]+, 23), 460 ([M]+, 100), 374 (11). 

HRMS (EI): Calcd. for C24H24O4N6 [M]+: 460.18535, found: 460.185839. 

IR (ATR, cm–1): ṽ = 3219 (m), 3109 (w), 3043 (w), 2958 (w), 2895 (w), 1701 (s), 1624 (s), 

1597 (s), 1581 (s), 1525 (s), 1497 (s), 1466 (s), 1429 (s), 1383 (s), 1363 (s), 1321 (m), 1288 (s), 

1275 (s), 1254 (s), 1192 (m), 1051 (m), 1009 (m), 997 (m), 912 (m), 818 (s), 775 (s), 754 (s), 729 

(m), 698 (m), 669 (m), 654 (m), 642 (m), 602 (s), 538 (m). 

 

4.2.5 Synthesis of 5-(polyfluoroacyl)-6-amino-1,3-dialkyl-pyrimidine-2,4(1H,3H)-diones 

 

General procedure for the synthesis of 5-(polyfluoroacyl)-6-amino-1,3-dialkyl-

pyrimidine-2,4(1H,3H)-diones 87a-w and 90a-c. 

To a solution of 6-amino-1,3-dialkyl-pyrimidine-2,4(1H,3H)-dione 70 (0.4 g) in 4 mL of dry 

dioxane was added dry pyridine (1.2 eq) and corresponding anhydride (or chloroanhydride, if RF = 

n-C3F7) of polyfluorocarboxylic acid (2 eq). Then the solution was allowed to stand at r.t. overnight. 

The next day the solvent was evaporated and the residue was dried in high vacuum at 100 °C. Then 

the crude product was triturated with water, filtered off by suction and dried in a high vacuum. 

 

6-Anilino-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione (87a) 

 

The product was prepared according to the general procedure from 0.4 g 

of 6-anilino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 0.164 g of pyridine and 

0.727 g of trifluoroacetic anhydride in 4 mL of dry dioxane. 

Yield 0.524 g (93%), white solid, mp 143-145 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.09 (s, 3H, CH3), 3.23 (s, 3H, CH3), 7.22-7.40 (m, 

3H, CHPh), 7.40-7.51 (m, 2H, 3J = 7.27 Hz, CHm-Ph), 11.10 (br s, 1H, NH). 
19F NMR (282.38 MHz, DMSO-d6): δ = –71.4 (s, CF3). 
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13C NMR (75.47 MHz, DMSO-d6): δ = 28.6 (CH3), 36.1 (CH3), 93.3, 117.7 (q, 1J(C-F) = 

288.6 Hz, CF3), 124.2 (CH), 127.1 (CH), 130.5 (CH), 139.4, 151.6, 159.0, 160.7, 179.0 (q, 2J(C-F) = 

35.8 Hz, CO). 

MS (EI, 70 eV): m/z (%) = 328 ([M+H]+, 10), 327 ([M]+, 69), 309 (40), 259 (27), 258 (100), 

230 (11), 201 (64), 197 (53), 133 (11), 92 (12), 77 (20), 69 (11). 

HRMS (ESI): Calcd. for C14H13F3N3O3 [M+H]+: 328.09035, found: 328.09031. 

IR (ATR, cm–1): ṽ = 3057 (w), 2955 (w), 1726 (m), 1668 (s), 1651 (s), 1614 (s), 1585 (s), 

1514 (s), 1495 (s), 1446 (s), 1416 (m), 1387 (m), 1325 (m), 1308 (s), 1284 (m), 1240 (m), 1203 (s), 

1173 (s), 1155 (s), 1084 (s), 1053 (m), 1028 (m), 1014 (m), 995 (s), 926 (m), 872 (w), 860 (w), 845 

(w), 824 (m), 795 (s), 760 (s), 748 (s), 719 (m), 696 (s), 687 (s), 662 (s), 615 (m), 594 (m), 567 (m), 

530 (s). 

 

6-Anilino-5-(2,2,3,3,4,4,4-heptafluorobutanoyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione (87b) 

 

The product was prepared according to the general procedure from 

0.4 g of 6-anilino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 0.164 g of 

pyridine and 0.804 g of heptafluorobutyryl chloride in 4 mL of dry dioxane. 

Yield 0.712 g (96%), white solid, mp 127-128 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.08 (s, 3H, CH3), 3.23 (s, 3H, CH3), 7.27 (t, 1H, 3J 

= 7.27 Hz, CHp-Ph), 7.19 (d, 2H, 3J = 7.55 Hz, CHo-Ph), 7.40-7.49 (m, 2H, CHm-Ph), 10.84 (br s, 1H, 

NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.7 (CH3), 36.2 (CH3), 94.7 (С-5), 124.1 (CH), 

127.0 (CH), 130.5 (CH), 139.3, 151.7, 158.5, 160.7, 181.9 (t, 2J(C-F) = 26.6 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –121.2 (s, CF2), –111.0 (q, J = 10.22 Hz, CF2), –

79.9 (t, J = 9.70 Hz, CF3). 

MS (GC, 70 eV): m/z (%) = 427 ([M]+, 7.8), 259 (16), 258 (100), 201 (30), 92 (11), 77 (12). 

HRMS (EI): Calcd. for C16H12O3N3F7 [M]+: 427.07614, found: 427.076505. 

IR (ATR, cm–1): ṽ = 3014 (w), 2956 (w), 1720 (m), 1666 (s), 1624 (s), 1576 (s), 1495 (s), 

1444 (s), 1408 (m), 1379 (m), 1336 (s), 1311 (m), 1282 (s), 1213 (s), 1176 (s), 1147 (s), 1122 (s), 

1088 (m), 1078 (m), 1065 (m), 1028 (m), 1005 (m), 951 (m), 932 (m), 914 (m), 893 (s), 860 (m), 

808 (m), 789 (s), 777 (s), 754 (s), 721 (s), 694 (s), 685 (s), 654 (s), 615 (m), 594 (s), 567 (m), 528 

(s). 
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6-[(2,4-Dimethylphenyl)amino]-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-

dione (87c) 

 

The product was prepared according to the general procedure from 

0.39 g of 6-[(2,4-dimethylphenyl)amino]-1,3-dimethylpyrimidine-

2,4(1H,3H)-dione, 0.143 g of pyridine and 0.632 g of trifluoroacetic 

anhydride in 3.9 mL of dry dioxane. 

Yield 0.481 g (90%), white solid, mp 136-138 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 2.31 (s, 3H, Ar-CH3), 2.32 (s, 3H, Ar-CH3), 2.96 (s, 

3H, N-CH3), 3.22 (s, 3H, N-CH3), 7.10 (d, 1H, 3J = 8.12 Hz, CHAr), 7.17-7.23 (m, 2H, CHAr), 11.43 

(br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 17.5 (Ar-CH3), 20.4 (Ar-CH3), 27.7 (N-CH3), 35.2 

(N-CH3), 91.7 (С-5), 117.0 (q, 1J(C-F) = 287.8 Hz, CF3), 124.9 (CH), 127.4 (CH), 131.7 (CH), 132.0, 

134.0, 136.8, 150.5, 159.1, 159.4, 177.6 (q, 2J(C-F) = 35.8 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –71.1 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 355 ([M]+, 31), 287 (13), 286 (100), 229 (12), 128 (14), 120 (11), 

69 (13). 

HRMS (EI): Calcd. for C16H16O3N3F3 [M]+: 355.11383, found: 355.11345. 

IR (ATR, cm–1): ṽ = 2962 (w), 2359 (w), 1726 (m), 1668 (s), 1645 (m), 1614 (s), 1583 (s), 

1514 (s), 1504 (s), 1454 (s), 1441 (s), 1387 (m), 1379 (m), 1317 (s), 1281 (m), 1246 (m), 1228 (m), 

1213 (s), 1196 (s), 1173 (s), 1155 (s), 1080 (s), 1057 (m), 1036 (m), 995 (s), 947 (m), 893 (m), 883 

(w), 852 (m), 824 (m), 795 (s), 773 (m), 758 (s), 733 (s), 706 (m), 685 (m), 650 (m), 581 (m), 569 

(m), 557 (m), 532 (m). 

 

6-[(2,4-Dimethylphenyl)amino]-1,3-dimethyl-5-(2,2,3,3,3-pentafluoropropanoyl)pyri-

midine-2,4(1H,3H)-dione (87d) 

 

The product was prepared according to the general procedure from 

0.35 g of 6-[(2,4-dimethylphenyl)amino]-1,3-dimethylpyrimidine-

2,4(1H,3H)-dione, 0.128 g of pyridine and 0.837 g of pentafluoropropionic 

anhydride in 3.5 mL of dry dioxane. 

Yield 0.481 g (88%), yellowish solid, mp 193-195 °C. 
1H NMR (250.13 MHz, DMSO-d6): δ = 2.30 (s, 3H, Ar-CH3), 2.32 (s, 3H, Ar-CH3), 2.91 (s, 

3H, N-CH3), 3.23 (s, 3H, N-CH3), 7.10 (d, 1H, 3J = 8.04 Hz, CHAr), 7.18-7.25 (m, 2H, CHAr), 11.42 

(br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 18.5 (CH3), 21.4 (CH3), 28.8 (CH3), 36.4 (CH3), 
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94.1 (С-5), 126.0 (CH), 128.4 (CH), 132.6 (CH), 133.0, 134.8, 137.8, 151.5, 160.2, 160.3, 181.0 (t, 
2J(C-F) = 27.1 Hz, CO). 

19F NMR (235.33 MHz, DMSO-d6): δ = –115.2 (s, CF2), –78.5 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 405 ([M]+, 65), 387 (18), 287 (27), 286 (100), 275 (14), 258 (17), 

229 (24), 120 (11). 

HRMS (ESI): Calcd. for C17H17F5N3O3 [M+H]+: 406.11846, found: 406.11903. 

IR (ATR, cm–1): ṽ = 2962 (w), 2929 (w), 2351 (w), 1724 (s), 1668 (s), 1614 (s), 1583 (s), 

1516 (s), 1504 (s), 1454 (s), 1444 (s), 1385 (m), 1363 (s), 1315 (s), 1279 (m), 1225 (s), 1173 (s), 

1140 (s), 1111 (s), 1061 (m), 1030 (m), 960 (s), 939 (s), 889 (m), 852 (m), 816 (s), 804 (m), 787 (s), 

760 (s), 739 (s), 729 (s), 704 (m), 687 (s), 656 (m), 642 (s), 586 (m), 569 (m), 561 (m), 536 (m). 

 

6-[(2,4-Dimethylphenyl)amino]-5-(2,2,3,3,4,4,4-heptafluorobutanoyl)-1,3-dimethyl-

pyrimidine-2,4(1H,3H)-dione (87e) 

 

The product was prepared according to the general procedure from 

0.35 g of 6-[(2,4-dimethylphenyl)amino]-1,3-dimethylpyrimidine-

2,4(1H,3H)-dione, 0.128 g of pyridine and 0.627 g of heptafluorobutyryl 

chloride in 3.5 mL of dry dioxane. 

Yield 0.535 g (87%), white solid, mp 130 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 2.31 (s, 3H, Ar-CH3), 2.32 (s, 3H, Ar-CH3), 2.95 (s, 

3H, N-CH3), 3.22 (s, 3H, N-CH3), 7.10 (d, 1H, 3J = 8.12 Hz, CHAr), 7.18-7.23 (m, 2H, CHAr), 11.14 

(br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 18.5 (CH3), 21.4 (CH3), 28.7 (CH3), 36.2 (CH3), 

94.0 (С-5), 125.9 (CH), 128.4 (CH), 132.6 (CH), 133.0, 134.9, 137.7, 151.6, 159.7, 160.5, 181.6 (t, 
2J(C-F) = 26.3 Hz, CO). 

19F NMR (282.38 MHz, DMSO-d6): δ = –120.8 (s, CF2), –110.3 (q, J = 169.62 Hz, CF2), –

79.8 (t, J = 9.70 Hz, CF3). 

MS (GC, 70 eV): m/z (%) = 455 ([M]+, 22), 287 (18), 286 (100), 258 (11), 229 (13). 

HRMS (EI): Calcd. for C18H16O3N3F7 [M]+: 455.10744, found: 455.107556. 

IR (ATR, cm–1): ṽ = 2956 (w), 2928 (w), 2145 (w), 1724 (m), 1672 (s), 1606 (s), 1574 (s), 

1502 (s), 1443 (s), 1406 (m), 1387 (m), 1333 (m), 1315 (s), 1282 (m), 1267 (m), 1254 (m), 1221 (s), 

1207 (s), 1198 (s), 1165 (s), 1140 (s), 1120 (s), 1086 (m), 1066 (s), 1055 (s), 1039 (m), 1007 (m), 

959 (m), 951 (m), 933 (s), 924 (s), 893 (m), 856 (m), 816 (s), 802 (m), 787 (s), 758 (s), 743 (s), 725 

(s), 706 (m), 685 (s), 675 (s), 640 (s), 596 (m), 561 (m), 546 (m). 
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6-[(4-Ethylphenyl)amino]-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione 

(87f) 

 

The product was prepared according to the general procedure from 0.3 g of 6-[(4-

ethylphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 0.11 g of pyridine and 0.486 g of 

trifluoroacetic anhydride in 3 mL of dry dioxane. 

Yield 0.362 g (88%), grey solid, mp 141-143 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.21 (t, 3H, 3J = 7.55 Hz, 

Et), 2.64 (q, 2H, 3J = 7.55 Hz, Et), 3.06 (s, 3H, CH3), 3.23 (s, 3H, CH3), 7.26 

(d, 2H, 3J = 8.78 Hz, CHAr), 7.29 (d, 2H, 3J = 8.78 Hz, CHAr), 11.22 (br s, 1H, NH). 
19F NMR (282.38 MHz, DMSO-d6): δ = –71.3 (s, CF3). 
13C NMR (75.47 MHz, DMSO-d6): δ = 16.4 (CH3(Et)), 28.5 (CH2), 28.6 (CH3), 36.3 (CH3), 

93.1, 117.8 (q, 1J(C-F) = 288.5 Hz, CF3), 124.4 (CH), 129.8 (CH), 136.8, 143.0, 151.6, 159.2, 160.6, 

178.7 (q, 2J(C-F) = 35.8 Hz, CO). 

MS (EI, 70 eV): m/z (%) = 355 ([M]+, 41), 337 (52), 327 (22), 322 (12), 309 (16), 287 (13), 

286 (100), 272 (13), 259 (15), 258 (90), 229 (13), 225 (36), 201 (23), 197 (17), 128 (15), 91 (11), 

82 (19), 77 (12), 66 (27), 65 (15), 39 (15). 

HRMS (ESI): Calcd. for C16H17F3N3O3 [M+H]+: 356.12165, found: 356.12154. 

IR (ATR, cm–1): ṽ = 3045 (w), 2972 (w), 2879 (w), 1722 (s), 1666 (s), 1622 (s), 1589 (s), 

1558 (m), 1539 (m), 1514 (s), 1506 (s), 1456 (s), 1446 (s), 1435 (s), 1414 (m), 1389 (m), 1373 (m), 

1311 (s), 1282 (m), 1244 (m), 1236 (m), 1211 (s), 1182 (s), 1174 (s), 1155 (s), 1119 (m), 1086 (s), 

1061 (m), 1020 (m), 995 (s), 957 (m), 874 (m), 837 (m), 791 (s), 760 (s), 733 (s), 721 (m), 687 (s), 

654 (m), 633 (m), 584 (m), 554 (m), 542 (m), 532 (m). 

 

5-[Chloro(difluoro)acetyl]-6-[(4-ethylphenyl)amino]-1,3-dimethylpyrimidine-

2,4(1H,3H)-dione (87g) 

 

The product was prepared according to the general procedure from 

0.3 g of 6-[(4-ethylphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione, 0.11 g of pyridine and 0.562 g of chlorodifluoroacetic anhydride in 3 

mL of dry dioxane. 

Yield 0.417 g (97%), grey solid, mp 133-135 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.20 (t, 3H, 3J = 7.55 Hz, Et), 2.63 (q, 2H, 3J = 7.55 

Hz, Et), 3.10 (s, 3H, CH3), 3.22 (s, 3H, CH3), 7.22 (d, 2H, 3J = 8.50 Hz, CHAr), 7.28 (d, 2H, 3J = 

8.50 Hz, CHAr), 10.90 (br s, 1H, NH). 
13C NMR (125.77 MHz, DMSO-d6): δ = 16.4 (CH3), 28.5 (CH2), 28.7 (CH3), 35.9 (CH3), 
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92.3 (С-5), 121.3 (t, 1J(C-F) = 302.0 Hz, CClF2), 124.2 (CH), 129.8 (CH), 137.0, 142.8, 151.6, 158.9, 

160.3, 180.8 (t, 2J(C-F) = 29.9 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –59.9 (s, CClF2). 

MS (GC, 70 eV): m/z (%) = 371 ([M]+, 35Cl, 5.2), 320 (19), 319 (100), 305 (16), 304 (77), 

247 (10), 207 (38), 192 (10), 82 (13). 

HRMS (ESI): Calcd. for C16H17ClF2N3O3 [M+H, 35Cl]+: 372.09210, found: 372.09257. 

IR (ATR, cm–1): ṽ = 2962 (w), 2931 (w), 2874 (w), 1720 (m), 1660 (s), 1622 (s), 1574 (s), 

1504 (s), 1452 (s), 1441 (s), 1404 (s), 1367 (s), 1311 (m), 1279 (s), 1254 (m), 1174 (s), 1134 (s), 

1095 (m), 1070 (s), 1059 (m), 1005 (s), 953 (m), 930 (s), 914 (s), 870 (s), 841 (m), 825 (s), 804 (s), 

793 (s), 773 (s), 756 (s), 743 (s), 716 (m), 669 (s), 646 (s), 625 (s), 567 (m), 534 (s). 

 

6-[(4-Ethylphenyl)amino]-1,3-dimethyl-5-(2,2,3,3,3-pentafluoropropanoyl)pyrimidine-

2,4(1H,3H)-dione (87h) 

 

The product was prepared according to the general procedure from 

0.35 g of 6-[(4-ethylphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione, 0.128 g of pyridine and 0.837 g of pentafluoropropionic anhydride 

in 3.5 mL of dry dioxane. 

Yield 0.516 g (94%), greyish solid, mp 161-163 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.21 (t, 3H, 3J = 7.59 Hz, Et), 2.64 (q, 2H, 3J = 7.59 

Hz, Et), 3.02 (s, 3H, CH3), 3.23 (s, 3H, CH3), 7.29 (s, 4H, CHAr), 11.23 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 16.4 (CH3), 28.5 (CH2), 28.7 (CH3), 36.7 (CH3), 

94.6 (С-5), 124.5 (CH), 129.7 (CH), 136.6, 143.1, 151.7, 159.2, 160.4, 181.1 (t, 2J(C-F) = 27.0 Hz, 

CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –115.6 (s, CF2), –78.7 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 405 ([M]+, 41), 387 (16), 287 (30), 286 (100), 275 (13), 229 (25). 

HRMS (EI): Calcd. for C17H16O3N3F5 [M]+: 405.11063, found: 405.11084. 

IR (ATR, cm–1): ṽ = 2966 (w), 2935 (w), 2874 (w), 1728 (m), 1670 (s), 1591 (s), 1576 (s), 

1504 (s), 1454 (s), 1441 (s), 1408 (m), 1375 (s), 1315 (s), 1281 (s), 1254 (m), 1215 (s), 1176 (s), 

1147 (s), 1117 (s), 1065 (m), 1030 (m), 1020 (m), 959 (s), 933 (s), 874 (m), 839 (m), 820 (m), 810 

(s), 795 (s), 760 (s), 735 (s), 714 (m), 685 (s), 656 (m), 646 (s), 629 (s), 567 (m), 538 (m). 
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6-[(2-Methoxyphenyl)amino]-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-

dione (87i) 

 

The product was prepared according to the general procedure from 0.3 g 

of 6-[(2-methoxyphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 

0.109 g of pyridine and 0.482 g of trifluoroacetic anhydride in 3 mL of dry 

dioxane. 

Yield 0.369 g (90%), greyish solid, mp 174-176 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.97 (s, 3H, CH3), 3.23 (s, 3H, CH3), 3.90 (s, 3H, 

OMe), 7.00-7.10 (m, 1H, CHAr), 7.21 (d, 1H, 3J = 8.69 Hz, CHAr), 7.29-7.38 (m, 2H, CHAr), 11.51 

(br s, 1H, NH). 
19F NMR (282.38 MHz, DMSO-d6): δ = –71.0 (s, CF3). 
13C NMR (75.47 MHz, DMSO-d6): δ = 28.7 (CH3), 36.5 (CH3), 56.9 (OMe), 93.2, 113.2 

(CH), 118.0 (q, 1J(C-F) = 287.6 Hz, CF3), 121.7 (CH), 126.0 (CH), 126.8, 129.2 (CH), 151.5, 152.8, 

159.8, 160.3, 178.3 (q, 2J(C-F) = 35.9 Hz, CO). 

MS (EI, 70 eV): m/z (%) = 358 ([M+H]+, 13), 357 ([M]+, 100), 339 (21), 338 (11), 326 (15), 

289 (13), 288 (96), 274 (11), 273 (86), 128 (12). 

HRMS (ESI): Calcd. for C15H15F3N3O4 [M+H]+: 358.10092, found: 358.10099. 

IR (ATR, cm–1): ṽ = 2976 (w), 2841 (w), 1734 (m), 1714 (m), 1660 (s), 1622 (s), 1585 (s), 

1520 (s), 1498 (s), 1464 (s), 1441 (s), 1417 (m), 1385 (m), 1327 (m), 1296 (s), 1269 (m), 1242 (m), 

1232 (m), 1217 (s), 1207 (s), 1188 (s), 1174 (s), 1144 (s), 1115 (s), 1082 (s), 1049 (m), 1020 (s), 

995 (s), 949 (m), 872 (w), 858 (w), 824 (m), 793 (s), 756 (s), 733 (s), 712 (m), 692 (m), 675 (m), 

660 (s), 598 (m), 577 (m), 550 (m), 527 (s). 

 

5-[Chloro(difluoro)acetyl]-6-[(2-methoxyphenyl)amino]-1,3-dimethylpyrimidine-

2,4(1H,3H)-dione (87j) 

 

The product was prepared according to the general procedure from 0.3 g 

of 6-[(2-methoxyphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 

0.109 g of pyridine and 0.558 g of chlorodifluoroacetic anhydride in 3 mL of 

dry dioxane. 

Yield 0.395 g (92%), greyish solid, mp 163-165 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.00 (s, 3H, CH3), 3.23 (s, 3H, CH3), 3.89 (s, 3H, 

OMe), 7.04 (dd, 1H, 3J1 = 7.57 Hz, 3J2 = 7.55 Hz, CHAr), 7.19 (d, 1H, 3J = 8.67 Hz, CHAr), 7.29-

7.38 (m, 2H, CHAr), 11.26 (br s, 1H, NH). 
13C NMR (125.77 MHz, DMSO-d6): δ = 28.7 (CH3), 36.4 (CH3), 56.9 (CH3), 92.4 (С-5), 
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113.2 (CH), 121.4 (t, 1J(C-F) = 301.3 Hz, CClF2), 121.7 (CH), 125.9 (CH), 126.9, 129.0 (CH), 151.5, 

152.8, 159.6, 160.1, 180.5 (t, 2J(C-F) = 29.8 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –59.7 (s, CClF2). 

MS (GC, 70 eV): m/z (%) = 375 ([M]+, 37Cl, 5.5), 373 ([M]+, 35Cl, 18), 338 (10), 289 (16), 

288 (100), 274 (11), 273 (79), 244 (10), 81 (17). 

HRMS (EI): Calcd. for C15H14O4N3ClF2 [M, 37Cl]+: 373.06354, found: 373.063406. 

IR (ATR, cm–1): ṽ = 3005 (w), 2953 (w), 2845 (w), 1724 (s), 1660 (s), 1628 (s), 1599 (s), 

1576 (s), 1520 (s), 1497 (s), 1454 (s), 1443 (s), 1392 (s), 1362 (s), 1325 (m), 1290 (s), 1267 (s), 

1232 (s), 1194 (m), 1171 (s), 1136 (s), 1115 (s), 1072 (s), 1045 (s), 1030 (s), 1005 (s), 978 (m), 935 

(m), 920 (s), 866 (m), 851 (m), 800 (s), 775 (s), 748 (s), 717 (s), 685 (m), 665 (s), 656 (s), 619 (s), 

590 (m), 571 (m), 552 (m). 

 

5-(2,2,3,3,4,4,4-Heptafluorobutanoyl)-6-[(3-methoxyphenyl)amino]-1,3-dimethylpyri-

midine-2,4(1H,3H)-dione (87m) 

 

The product was prepared according to the general procedure from 

0.4 g of 6-[(3-methoxyphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione, 0.145 g of pyridine and 0.712 g of heptafluorobutyryl chloride in 4 

mL of dry dioxane. 

Yield 0.658 g (94%), grey solid, mp 136-138 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.11 (s, 3H, CH3), 3.23 (s, 3H, CH3), 3.78 (s, 3H, 

OMe), 6.84 (d, 1H, 3J = 8.31 Hz, CHAr), 6.89 (d, 1H, 3J = 7.93 Hz, CHAr), 6.98 (s, 1H, H-2'), 7.33 

(dd, 1H, 3J1 = 8.31 Hz, 3J2 = 7.93 Hz, H-5'), 10.78 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.7 (CH3), 36.0 (CH3), 56.2 (CH3), 94.8 (С-5), 

109.5 (CH), 112.9 (CH), 116.1 (CH), 131.2 (CH), 140.5, 151.7, 158.3, 160.7, 161.1, 182.0 (t, 2J(C-F) 

= 26.4 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –121.1 (s, CF2), –110.8 (q, J = 10.22 Hz, CF2), –

80.0 (t, J = 9.70 Hz, CF3). 

MS (GC, 70 eV): m/z (%) = 440 (11), 439 (55), 411 (11), 328 (15), 327 (100), 270 (14). 

HRMS (ESI): Calcd. for C17H15F7N3O4 [M+H]+: 458.0945, found: 458.0943. 

IR (ATR, cm–1): ṽ = 2949 (w), 2847 (w), 2046 (w), 1795 (w), 1716 (m), 1662 (s), 1628 (s), 

1605 (m), 1587 (s), 1564 (s), 1495 (s), 1441 (s), 1408 (m), 1377 (m), 1335 (s), 1317 (m), 1294 (s), 

1259 (m), 1211 (s), 1182 (s), 1144 (s), 1122 (s), 1088 (s), 1051 (s), 1012 (m), 960 (m), 920 (w), 897 

(m), 876 (s), 820 (m), 797 (m), 781 (s), 756 (s), 729 (s), 689 (s), 671 (s), 650 (s), 594 (s), 575 (m), 

548 (m). 
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1,3-Dimethyl-5-(trifluoroacetyl)-6-{[3-(trifluoromethyl)phenyl]amino}pyrimidine-

2,4(1H,3H)-dione (87n) 

 

The product was prepared according to the general procedure from 0.4 g 

of 70e, 0.127 g of pyridine and 0.561 g of trifluoroacetic anhydride in 4 mL of 

dry dioxane. 

Yield 0.523 g (99%), pinkish amorphous solid. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.24 (s, 3H, CH3), 3.27 (s, 3H, 

CH3), 7.50-7.58 (m, 2H, CHAr), 7.61-7.71 (m, 2H, CHAr), 10.40 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.6 (CH3), 34.7 (CH3), 93.3 (С-5), 117.0 (q, 1J(C-F) 

= 289.4 Hz, CF3), 119.7 (CH), 122.7 (CH), 124.7 (q, 1J(C-F) = 272.5 Hz, CF3), 127.5 (CH), 131.2 (q, 
2J(C-F) = 32.1 Hz), 131.7 (CH), 141.2, 151.6, 158.3, 161.0, 179.9 (q, 2J(C-F) = 36.1 Hz, CO). 

19F NMR (282.38 MHz, DMSO-d6): δ = –72.4 (s, CF3), –61.4 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 395 ([M]+, 27), 377 (26), 327 (27), 326 (100), 269 (39), 265 (57), 

201 (32), 145 (15), 128 (12), 82 (12), 69 (11). 

HRMS (EI): Calcd. for C15H11O3N3F6 [M]+: 395.06991, found: 395.07016. 

IR (ATR, cm–1): ṽ = 3078 (w), 2964 (w), 1790 (w), 1722 (m), 1668 (s), 1585 (s), 1514 (m), 

1504 (s), 1495 (s), 1441 (s), 1402 (m), 1371 (m), 1327 (s), 1240 (m), 1159 (s), 1124 (s), 1068 (s), 

995 (s), 976 (s), 924 (m), 906 (m), 887 (m), 858 (w), 822 (m), 795 (s), 756 (s), 733 (m), 725 (s), 698 

(s), 658 (s), 635 (m), 594 (m), 565 (m), 532 (m). 

 

1,3-Dimethyl-6-[(4-nitrophenyl)amino]-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione 

(87o) 

 

The product was prepared according to the general procedure from 

0.336 g of 1,3-dimethyl-6-[(4-nitrophenyl)amino]pyrimidine-2,4(1H,3H)-

dione, 0.115 g of pyridine and 0.511 g of trifluoroacetic anhydride in 3.4 mL 

of dry dioxane. 

Yield 0.359 g (79%), brownish solid, mp 256-258 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.25 (s, 3H, CH3), 3.27 (s, 3H, CH3), 7.39 (d, 2H, 3J 

= 9.26 Hz, CH-2', CH-6'), 8.25 (d, 2H, 3J = 9.26 Hz, CH-3', CH-5'), 10.40 (br s, 1H, NH). 
13C NMR (75.48 MHz, DMSO-d6): δ = 28.7 (CH3), 34.6 (CH3), 96.5 (С-5), 116.9 (q, 1J(C-F) 

= 290.1 Hz, CF3), 121.4 (CHAr), 126.3 (CHAr), 143.8, 147.4, 151.6, 157.1, 160.9, 180.3 (q, 2J(C-F) = 

36.3 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –72.3 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 277 (14), 276 (100), 275 (45), 218 (17), 191 (10), 190 (42), 174 
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(30), 163 (16), 162 (23), 149 (12), 147 (26), 145 (11), 144 (18), 131 (12), 127 (62), 116 (10), 90 

(41), 89 (16), 82 (49), 76 (20), 75 (12), 63 (21), 55 (38), 56 (16), 50 (14), 42 (15). 

HRMS (ESI): Calcd. for C14H10F3N4O5 [M+H]+: 371.06123, found: 371.06123. 

IR (ATR, cm–1): ṽ = 3247 (m), 3078 (w), 2913 (w), 1711 (w), 1691 (w), 1660 (w), 1640 (w), 

1633 (m), 1616 (m), 1602 (m), 1578 (m), 1539 (s), 1528 (s), 1520 (s), 1479 (m), 1471 (s), 1434 (m), 

1383 (w), 1371 (w), 1341 (s), 1292 (s), 1265 (m), 1194 (s), 1176 (m), 1143 (m), 1107 (m), 1183 

(w), 1064 (w), 1008 (w), 992 (w), 916 (w), 883 (w), 859 (m), 838 (m), 821 (m), 791 (s), 759 (s), 

736 (s), 716 (s), 645 (s), 667 (m), 632 (s), 578 (m), 537 (s). 

 

6-[(4-Bromophenyl)amino]-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-

dione (87p) 

 

The product was prepared according to the general procedure from 1.2 

g of 6-[(4-bromophenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, 

0.367 g of pyridine and 1.625 g of trifluoroacetic anhydride in 12 mL of dry 

dioxane. 

Yield 94%, violet solid, mp 186 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.15 (s, 3H, CH3), 3.23 (s, 3H, CH3), 7.27 (d, 2H, 3J 

= 8.88 Hz, CH-2', CH-6'), 7.62 (d, 2H, 3J = 8.88 Hz, CH-3', CH-5'), 10.75 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.6 (CH3), 35.7 (CH3), 93.5 (С-5), 117.4 (q, 1J(C-F) 

= 289.0 Hz, CF3), 119.1, 125.9 (CHAr), 133.3 (CHAr), 139.1, 151.6, 158.6, 160.7, 179.2 (q, 2J(C-F) = 

35.9 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –71.7 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 407 ([M]+, 81Br, 40), 405 ([M]+, 79Br, 40), 389 (33), 387 (40), 

339 (15), 338 (97), 337 (16), 336 (100), 321 (18), 319 (20), 291 (12), 281 (34), 279 (27), 277 (43), 

275 (42), 257 (19), 229 (16), 224 (11), 223 (10), 211 (10), 209 (21), 208 (15), 207 (43), 178 (15), 

172 (23), 171 (13), 170 (16), 157 (12), 155 (13), 145 (15), 128 (32), 127 (13), 91 (12), 82 (25), 81 

(15), 80 (11), 76 (14), 75 (15), 69 (23), 63 (13), 60 (12), 44 (13), 32 (35). 

HRMS (ESI): Calcd. for C14H12BrF3N3O3 [M+H, 79Br]+: 406.00087, found: 406.00136. 

IR (ATR, cm–1): ṽ = 3293 (w), 3191 (w), 3099 (w), 2962 (w), 1766 (w), 1722 (m), 1672 (s), 

1639 (s), 1568 (s), 1503 (s), 1490 (s), 1454 (s), 1443 (s), 1384 (m), 1319 (m), 1301 (m), 1278 (m), 

1244 (m), 1217 (s), 1193 (s), 1176 (s), 1151 (s), 1088 (m), 1071 (s), 1054 (m), 1015 (m), 998 (s), 

960 (m), 941 (m), 871 (m), 825 (s), 814 (s), 796 (s), 783 (s), 755 (s), 733 (s), 718 (s), 681 (s), 671 

(s), 628 (m), 608 (m), 575 (s), 529 (m). 
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6-[(4-Ethoxyphenyl)amino]-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-

dione (87q) 

 

The product was prepared according to the general procedure from 

0.37 g of 6-[(4-ethoxyphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione, 0.127 g of pyridine and 0.565 g of trifluoroacetic anhydride in 3.7 

mL of dry dioxane. 

Yield 0.416 g (82%), brownish solid, mp 119-121 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.36 (t, 3H, 3J = 6.99 Hz, EtO), 3.03 (s, 3H, CH3), 

3.22 (s, 3H, CH3), 4.07 (q, 2H, 3J = 6.99 Hz, EtO), 7.00 (d, 2H, 3J = 8.88 Hz, CHAr), 7.29 (d, 2H, 3J 

= 8.88 Hz, CHAr), 11.34 (br s, 1H, NH). 
13C NMR (125.77 MHz, DMSO-d6): δ = 15.4 (CH3(EtO)), 28.6 (CH3), 36.3 (CH3), 64.3 

(CH2(EtO)), 92.7 (С-5), 116.1 (CH), 117.9 (q, 1J(C-F) = 287.9 Hz, CF3), 126.3 (CH), 131.5, 151.7, 

157.9, 159.4, 160.6, 178.4 (q, 2J(C-F) = 35.7 Hz, CO). 

MS (GC, 70 eV): m/z (%) = 371 ([M]+, 11), 353 (10), 276 (21), 275 (100), 274 (19), 247 

(10), 246 (73), 189 (16), 162 (10), 161 (14), 148 (20), 147 (22), 134 (15), 133 (15), 132 (17), 82 

(24). 

HRMS (EI): Calcd. for C16H16O4N3F3 [M]+: 371.10874, found: 371.10840. 

IR (ATR, cm–1): ṽ = 2982 (w), 1722 (m), 1668 (s), 1614 (s), 1576 (s), 1504 (s), 1485 (s), 

1454 (s), 1441 (s), 1408 (m), 1389 (m), 1315 (s), 1304 (m), 1281 (m), 1257 (s), 1242 (s), 1211 (s), 

1188 (s), 1169 (s), 1151 (s), 1113 (s), 1080 (s), 1045 (s), 995 (s), 957 (m), 932 (m), 922 (m), 874 

(m), 833 (s), 824 (m), 795 (s), 758 (s), 737 (s), 721 (m), 689 (s), 656 (s), 633 (m), 586 (m), 567 (s), 

534 (m). 

 

5-(Difluoroacetyl)-6-[(4-ethoxyphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione (87r) 

 

The product was prepared according to the general procedure from 

0.04 g of 6-[(4-ethoxyphenyl)amino]-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione, 0.14 g of pyridine and 0.506 g of difluoroacetic anhydride in 4 mL 

of dry dioxane. 

Yield 0.508 g (99%), brownish solid, mp 144-146 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.37 (t, 3H, 3J = 6.90 Hz, EtO), 2.91 (s, 3H, CH3), 

3.24 (s, 3H, CH3), 4.08 (q, 2H, 3J = 6.90 Hz, EtO), 7.03 (d, 2H, 3J = 8.88 Hz, CHAr), 7.17 (t, 1H, 
2J(H-F) = 54.01 Hz, CHF2), 7.35 (d, 2H, 3J = 8.88 Hz, CHAr), 12.54 (br s, 1H, NH). 

13C NMR (75.48 MHz, DMSO-d6): δ = 15.5 (CH3(EtO)), 28.7 (CH3), 37.1 (CH3), 64.3 
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(CH2(EtO)), 94.0 (С-5), 109.2 (t, 1J(C-F) = 242.3 Hz, CHF2), 116.1 (CHAr), 126.6 (CHAr), 131.0, 151.6, 

158.1, 159.8, 162.0, 185.5 (t, 2J(C-F) = 23.8 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –125.7 (s, CHF2). 

MS (EI, 70 eV): m/z (%) = 354 ([M+H]+, 21), 353 ([M]+, 92), 333 (21), 304 (56), 303 (23), 

302 (100), 275 (21), 274 (86), 245 (20), 217 (19), 182 (29), 160 (15), 108 (12), 82 (19), 81 (10). 

HRMS (EI): Calcd. for C16H17F2N3O4 [M]+: 353.11816, found: 353.11822. 

IR (ATR, cm–1): ṽ = 3334 (w), 3080 (w), 2977 (w), 1724 (w), 1651 (m), 1592 (s), 1582 (s), 

1549 (w), 1510 (s), 1445 (s), 1396 (w), 1319 (w), 1319 (w), 1305 (m), 1291 (w), 1240 (s), 1189 

(w), 1176 (w), 1142 (m), 1116 (m), 1080 (m), 1043 (s), 1004 (s), 943 (w), 918 (w), 899 (m), 867 

(m), 844 (m), 818 (m), 807 (s), 777 (s), 769 (s), 760 (s), 751 (s), 712 (w), 694 (m), 666 (m), 628 

(w), 579 (m), 556 (m), 534 (m). 

 

6-[(4-Methoxyphenyl)amino]-5-(2,2,3,3,3-pentafluoropropanoyl)-1,3-

dipropylpyrimidine-2,4(1H,3H)-dione (87t) 

 

The product was prepared according to the general procedure from 

0.35 g of 70a, 0.105 g of pyridine and 0.684 g of pentafluoropropionic 

anhydride in 3.5 mL of dry dioxane. 

Yield 0.439 g (86%), pinkish solid, mp 85-87 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 0.72 (t, 3H, 3J = 7.37 Hz, CH3), 0.91 (t, 3H, 3J = 

7.46 Hz, CH3), 1.42-1.72 (m, 4H, CH2), 3.70-3.89 (m, 7H, CH2, MeO), 7.00 (d, 2H, 3J = 8.87 Hz, 

CHAr), 7.29 (d, 2H, 3J = 8.87 Hz, CHAr), 10.61 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 11.5 (CH3), 12.0 (CH3), 21.3 (CH2), 21.4 (CH2), 

43.3 (CH2), 47.2 (CH2), 56.3 (MeO), 93.3 (С-5), 115.7 (CHAr), 126.4 (CHAr), 131.8, 151.2, 158.0, 

158.8, 160.2, 181.6 (t, 2J(C-F) = 26.8 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –116.0 (s, CF2), –78.7 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 464 ([M+H]+, 15), 463 ([M]+, 85), 445 (15), 403 (18), 345 (20), 

344 (100), 302 (24), 260 (56), 243 (14), 214 (12), 123 (18), 43 (16), 41 (11). 

HRMS (ESI): Calcd. for C20H23F5N3O4 [M+H]+: 464.16032, found: 464.16109. 

IR (ATR, cm–1): ṽ = 2964 (w), 2877 (w), 1716 (m), 1670 (s), 1593 (s), 1504 (s), 1443 (s), 

1416 (s), 1385 (s), 1360 (m), 1329 (m), 1300 (s), 1279 (s), 1246 (s), 1213 (s), 1184 (s), 1171 (s), 

1144 (s), 1109 (s), 1086 (m), 1061 (m), 1032 (s), 962 (s), 953 (s), 932 (s), 910 (m), 870 (m), 845 

(m), 831 (s), 808 (m), 797 (s), 775 (s), 750 (s), 729 (s), 687 (s), 654 (m), 638 (s), 629 (s), 548 (m). 
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6,6'-[Biphenyl-4,4'-diyldi(imino)]bis[1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-

2,4(1H,3H)-dione] (87u) 

 

The product was prepared from 0.25 g of 70g, 0.103 g 

of pyridine and 0.456 g of trifluoroacetic anhydride in 5 mL of 

dry dioxane according to the general procedure, except that the 

synthesis was carried out in a pressure tube at 80 °C for 3 h. 

Yield 0.329 g (93%), beige solid, mp 246 °C (dec.). 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.15 (s, 6H, CH3), 3.24 (s, 6H, CH3), 7.42 (d, 4H, 3J 

= 8.60 Hz, CHAr), 7.79 (d, 4H, 3J = 8.60 Hz, CHAr), 11.07 (br s, 2H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.7 (CH3), 36.2 (CH3), 93.6 (С-5, С-5'), 117.6 (q, 

1J(C-F) = 286.2 Hz, CF3), 124.4 (CH), 128.5 (CH), 137.4, 138.9, 151.7, 158.8, 160.7, 179.0 (q, 2J(C-F) 

= 35.8 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –71.4 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 652 ([M]+, 3.6), 634 (15), 617 (31), 616 (100), 565 (15), 504 

(26), 496 (12). 

HRMS (EI): Calcd. for C28H22O6N6F6 [M]+: 652.14995, found: 652.14898. 

IR (ATR, cm–1): ṽ = 2958 (w), 2359 (w), 1730 (m), 1674 (s), 1605 (s), 1587 (s), 1514 (s), 

1498 (s), 1441 (s), 1404 (m), 1387 (m), 1335 (m), 1298 (m), 1286 (m), 1267 (m), 1238 (m), 1209 

(s), 1194 (s), 1163 (s), 1082 (s), 995 (s), 872 (m), 825 (s), 797 (s), 756 (s), 727 (m), 708 (m), 694 

(m), 667 (m), 640 (m), 594 (m), 571 (m), 534 (m). 

 

6,6'-[Methylenebis(4,1-phenyleneimino)]bis[1,3-dimethyl-5-(trifluoroacetyl)pyrimi-

dine-2,4(1H,3H)-dione] (87v) 

 

The product was prepared according to the general 

procedure from 0.333 g of 70f, 0.133 g of pyridine and 0.59 g 

of trifluoroacetic anhydride in 6.6 mL of dry dioxane. 

Yield 0.458 g (98%), beige solid, mp 129-131 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.07 (s, 6H, CH3), 3.22 (s, 6H, CH3), 3.98 (s, 2H, 

CH2), 7.26 (d, 4H, 3J = 8.69 Hz, CHAr), 7.29 (d, 4H, 3J = 8.69 Hz, CHAr), 11.05 (br s, 2H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.6 (CH3), 36.0 (CH3), 40.7 (CH2), 93.0 (С-5, С-

5'), 120.3 (q, 1J(C-F) = 288.5 Hz, CF3), 124.4 (CH), 130.8 (CH), 137.4, 140.1, 151.6, 159.0, 160.7, 

178.9 (q, 2J(C-F) = 35.5 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –71.4 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 631 (38), 630 (100), 553 (11), 552 (35), 518 (13), 498 (18), 203 
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(12). 

HRMS (ESI): Calcd. for C29H25F6N6O6 [M+H]+: 667.17343, found: 667.17425. 

IR (ATR, cm–1): ṽ = 2962 (w), 1724 (m), 1668 (s), 1593 (s), 1512 (s), 1506 (s), 1454 (s), 

1443 (s), 1435 (s), 1387 (m), 1309 (m), 1284 (s), 1242 (m), 1209 (s), 1186 (s), 1149 (s), 1082 (s), 

1020 (m), 995 (s), 926 (m), 879 (m), 824 (m), 816 (m), 795 (s), 756 (s), 725 (m), 710 (m), 694 (m), 

662 (m), 631 (m), 579 (m), 561 (m), 534 (m). 

 

1,3-Dimethyl-6-(1-naphthylamino)-5-(2,2,3,3,3-pentafluoropropanoyl)pyrimidine-

2,4(1H,3H)-dione (87w) 

 

The product was prepared according to the general procedure from 

0.341 g of 1,3-dimethyl-6-(1-naphthylamino)pyrimidine-2,4(1H,3H)-dione, 

0.105 g of pyridine and 0.413 g of pentafluoropropionic anhydride in 3.4 mL 

of dry dioxane. 

Yield 0.443 g (86%), yellowish solid, mp 156 °C (dec.). 
1H NMR (250.13 MHz, DMSO-d6): δ = 2.90 (s, 3H, CH3), 3.26 (s, 3H, CH3), 7.53-7.63 (m, 

2H, CHAr), 7.64-7.78 (m, 2H, CHAr), 7.93-8.03 (m, 1H, CHAr), 8.08 (d, 1H, 3J = 6.94 Hz, CHAr), 

8.15 (d, 1H, 3J = 8.19 Hz, CHAr), 11.80 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.8 (CH3), 36.2 (CH3), 94.8 (С-5), 123.0 (CH), 

123.4 (CH), 126.6 (CH), 128.0 (CH), 128.4 (CH), 128.5 (CH), 128.5, 129.4 (CH), 134.5, 134.8, 

151.5, 160.3, 160.7, 181.5 (t, 2J(C-F) = 27.1 Hz, CO). 
19F NMR (235.33 MHz, DMSO-d6): δ = –115.2 (s, CF2), –78.5 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 428 ([M+H]+, 13), 427 ([M]+, 77), 409 (49), 309 (18), 308 (100), 

297 (25), 280 (40), 251 (18), 195 (15), 127 (11), 115 (13). 

HRMS (ESI): Calcd. for C19H15F5N3O3 [M+H]+: 428.10281, found: 428.10233. 

IR (ATR, cm–1): ṽ = 3018 (w), 2962 (w), 1728 (m), 1674 (s), 1588 (s), 1574 (s), 1558 (m), 

1538 (m), 1515 (s), 1506 (s), 1455 (s), 1435 (s), 1399 (m), 1385 (m), 1368 (m), 1331 (m), 1305 (m), 

1283 (m), 1232 (s), 1174 (s), 1139 (s), 1112 (s), 1063 (m), 1032 (m), 1013 (w), 984 (w), 959 (s), 

938 (m), 907 (w), 883 (w), 861 (w), 824 (w), 804 (m), 783 (s), 770 (s), 758 (s), 740 (m), 731 (s), 

712 (s), 685 (m), 647 (s), 593 (m), 559 (m), 531 (m). 

 

6-(2,3-Dihydro-1H-indol-1-yl)-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-

dione (90a) 

 

The product was prepared according to the general procedure from 4.085 g of 89a, 1.507 g 

of pyridine and 6.669 g of trifluoroacetic anhydride in 41 mL of dry dioxane. 
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Yield 5.428 g (97%), yellow solid, mp 199 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.07-3.33 (m, 2H, CH2-3'), 3.26 

(s, 3H, CH3), 3.35 (s, 3H, CH3), 3.72-3.84 (m, 1H, CH2-2'a), 3.91-4.04 (m, 1H, 

CH2-2'b), 6.80 (d, 1H, 3J = 7.75 Hz, H-7'), 6.88-6.97 (m, 1H, CHAr), 7.05-7.15 

(m, 1H, CHAr), 7.30 (d, 1H, 3J = 6.99 Hz, H-4'). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.6 (CH3), 29.9 (CH2-3'), 35.0 (CH3), 54.8 (CH2-

2'), 99.3 (С-5), 112.6 (CHAr), 116.2 (q, 1J(C-F) = 290.8 Hz, CF3), 123.4 (CHAr), 126.4 (CHAr), 128.4 

(CHAr), 133.6, 146.0, 152.2, 159.1, 161.6, 181.9 (q, 2J(C-F) = 36.7 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –73.3 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 353 ([M]+, 24), 285 (18), 284 (100), 178 (18), 167 (14), 128 

(31), 118 (31), 110 (11). 

HRMS (ESI): Calcd. for C16H15F3N3O3 [M+H]+: 354.10600, found: 354.10633. 

IR (ATR, cm–1): ṽ = 3057 (w), 2963 (w), 1722 (w), 1696 (m), 1645 (s), 1549 (m), 1483 (s), 

1434 (s), 1401 (s), 1363 (m), 1331 (w), 1303 (w), 1265 (w), 1236 (w), 1229 (w), 1191 (s), 1156 

(m), 1141 (s), 1096 (w), 1082 (w), 1045 (w), 1033 (w), 1017 (w), 986 (m), 968 (s), 940 (w), 873 

(w), 861 (w), 833 (w), 819 (w), 797 (w), 785 (w), 753 (s), 713 (m), 704 (m), 686 (m), 608 (w), 581 

(w), 561 (m), 549 (w), 534 (w). 

 

6-(3,4-Dihydroquinolin-1(2H)-yl)-5-(2,2,3,3,4,4,4-heptafluorobutanoyl)-1,3-

dimethylpyrimidine-2,4(1H,3H)-dione (90b) 

 

The product was prepared according to the general procedure from 

1.444 g of 89b, 0.505 g of pyridine and 1.485 g of heptafluorobutyryl 

chloride in 14 mL of dry dioxane. 

Yield 82%, yellow solid, mp 131-133 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.90-2.19 (m, 2H, CH2-3'), 2.84 (t, 2H, 3J = 6.42 

Hz, CH2-4'), 3.21 (s, 3H, CH3), 3.26 (s, 3H, CH3), 3.36-3.54 (m, 2H, CH2-2'), 6.83 (d, 1H, 3J = 8.12 

Hz, H-8'), 6.84-6.92 (m, 1H, CHAr), 6.99-7.08 (m, 1H, CHAr), 7.30 (d, 1H, 3J = 7.36 Hz, H-5'). 
13C NMR (75.48 MHz, DMSO-d6): δ = 21.8 (CH2), 26.8 (CH2), 28.6 (CH3), 34.1 (CH3), 

50.7 (CH2-2'), 104.2 (С-5), 117.1 (CHAr), 122.3 (CHAr), 125.5, 127.8 (CHAr), 130.7 (CHAr), 140.8, 

152.3, 159.3, 161.6, 185.3 (t, 2J(C-F) = 28.5 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –122.2 (s, CF2), –112.5 (m, CF2), –80.4 (t, J = 9.20 

Hz, CF3). 

MS (GC, 70 eV): m/z (%) = 467 ([M]+, 38), 299 (18), 298 (99), 278 (13), 271 (17), 270 

(100), 185 (40), 169 (11), 132 (22), 130 (18), 128 (11), 117 (12), 86 (14), 82 (11), 81 (15), 69 (14). 

HRMS (ESI): Calcd. for C16H15F3N3O3 [M+H]+: 468.11527, found: 468.11572. 
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IR (ATR, cm–1): ṽ = 2953 (w), 2867 (w), 1738 (w), 1705 (m), 1657 (s), 1651 (s), 1602 (w), 

1591 (w), 1574 (m), 1557 (w), 1538 (w), 1494 (m), 1472 (m), 1428 (s), 1396 (m), 1370 (w), 1344 

(m), 1320 (w), 1295 (w), 1275 (w), 1217 (s), 1195 (s), 1179 (s), 1150 (s), 1116 (s), 1079 (m), 1026 

(w), 994 (m), 966 (w), 920 (w), 881 (m), 871 (w), 817 (w), 804 (m), 773 (m), 758 (s), 749 (m), 721 

(m), 687 (m), 652 (m), 624 (w), 596 (w), 555 (m), 540 (w). 

 

1,3-Dimethyl-6-[methyl(phenyl)amino]-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione 

(90c) 

 

The product was prepared according to the general procedure from 0.35 

g of ,3-dimethyl-6-[methyl(phenyl)amino]pyrimidine-2,4(1H,3H)-dione, 0.135 

g of pyridine and 0.599 g of trifluoroacetic anhydride in 3.5 mL of dry dioxane. 

Yield 0.484 g (99%), yellow solid, mp 137-139 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.16 (s, 3H, CH3), 3.26 (s, 6H, CH3), 6.95-7.08 (m, 

3H, CHPh), 7.26-7.34 (m, 2H, CHPh). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.6 (CH3), 33.6 (CH3), 39.5 (CH3), 103.9 (С-5), 

115.9 (q, 1J(C-F) = 290.9 Hz, CF3), 117.5 (CH), 122.8 (CH), 130.2 (CH), 145.6, 152.3, 161.4, 161.7, 

182.2 (q, 2J(C-F) = 37.2 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –73.9 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 341 ([M]+, 35), 273 (16), 272 (100), 257 (11), 244 (49), 178 

(12), 159 (53), 132 (13), 128 (27), 106 (20), 77 (28), 69 (15), 60 (10). 

HRMS (ESI): Calcd. for C15H15F3N3O3 [M+H]+: 342.10600, found: 342.10622. 

IR (ATR, cm–1): ṽ = 3051 (w), 3022 (w), 1703 (s), 1651 (s), 1645 (s), 1603 (m), 1587 (m), 

1566 (s), 1487 (s), 1441 (s), 1417 (s), 1394 (s), 1331 (m), 1300 (m), 1240 (m), 1230 (m), 1221 (m), 

1188 (s), 1159 (s), 1142 (s), 1117 (s), 1105 (s), 1080 (s), 1049 (m), 1026 (m), 974 (s), 932 (m), 903 

(m), 825 (s), 812 (m), 787 (m), 754 (s), 710 (s), 698 (s), 650 (s), 617 (m), 582 (m), 548 (s). 

 

1,3-Dimethyl-6-piperidin-1-yl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione (78b) 

 

To a solution of 1,3-dimethyl-6-piperidin-1-ylpyrimidine-2,4(1H,3H)-

dione (2.39 g, 10.7 mmol, 1 eq) in 7.2 mL of dry dioxane was added 

trifluoroacetic anhydride (4.497 g, 21.4 mmol, 2 eq). Next day the starting 

material was still observed on TLC. The solvent was evaporated and the residue 

was dried in a high vacuum at 100 °C. Then a new portion of dry dioxane (3.6 mL) and 

trifluoroacetic anhydride (2.248 g, 10.7 mmol, 1 eq) was added and the mixture was allowed to stay 

at r.t. for 3 days. After evaporation and proper drying at 100 °C in a high vacuum the pure title 
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product was obtained. 

Yield 3.401 g (100%), beige solid, mp 253-255 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.60-1.75 (m, 6H, CH2-3', CH2-4', CH2-5'), 2.83-

2.92 (m, 4H, CH2-2', CH2-6'), 3.19 (s, 3H, CH3), 3.40 (s, 3H, CH3). 
13C NMR (62.90 MHz, DMSO-d6): δ = 24.2 (CH2), 25.7 (CH2), 28.3 (CH3), 35.8 (CH3), 

53.1 (CH2-2', CH2-6'), 97.3 (С-5), 116.6 (q, 1J(C-F) = 290.4 Hz, CF3), 152.4, 161.7, 163.3, 182.5 (q, 
2J(C-F) = 36.4 Hz, CO). 

19F NMR (282.38 MHz, DMSO-d6): δ = –73.1 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 319 ([M]+, 0.31), 251 (14), 250 ([M–CF3]
+, 100), 222 (20), 128 

(12), 110 (15), 84 (26), 82 (22), 69 (16). 

HRMS (EI): Calcd. for C13H16F3N3O3 [M]+: 353.11383, found: 319.11437. 

IR (ATR, cm–1): ṽ = 3006 (w), 2947 (m), 2856 (w), 1780 (w), 1716 (w), 1684 (m), 1650 (s), 

1552 (m), 1487 (s), 1436 (s), 1401 (m), 1371 (s), 1336 (w), 1300 (w), 1284 (w), 1259 (w), 1245 

(w), 1235 (w), 1217 (m), 1193 (s), 1158 (m), 1139 (s), 1114 (m), 1079 (m), 1067 (w), 1050 (w), 

1020 (m), 980 (s), 956 (m), 912 (w), 858 (m), 826 (m), 811 (w), 793 (s), 758 (s), 715 (m), 706 (m), 

698 (m), 643 (m), 585 (w), 565 (m). 

 

6-(Benzylamino)-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione (78c) 

 

To a solution of 6-(benzylamino)-1,3-dimethylpyrimidine-2,4(1H,3H)-

dione (1.825 g, 7.44 mmol, 1 eq) in 9.1 mL of dry dioxane was added 

trifluoroacetic anhydride (3.125 g, 14.9 mmol, 2 eq). Next day the starting 

material was still observed on TLC. The solvent was evaporated and the residue 

was dried in a high vacuum at 100 °C. Then a new portion of dry dioxane (4.5 

mL) and trifluoroacetic anhydride (3.125 g, 14.9 mmol, 2 eq) was added and the mixture was 

allowed to stay at r.t. for one day. After that the formed precipitate was filtered off, washed with 

diethyl ether and dried in a high vacuum. 

Yield 2.441 (96%), white solid, mp 177 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.19 (s, 3H, CH3), 3.53 (s, 3H, CH3), 4.68 (d, 2H, J 

= 5.10 Hz, CH2), 7.34-7.48 (m, 5H, CHPh), 10.30 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.6 (CH3), 36.2 (CH3), 51.3 (CH2), 91.6 (С-5), 

118.1 (q, 1J(C-F) = 288.0 Hz, CF3), 128.7 (CHPh), 129.0 (CHPh), 129.7 (CHPh), 137.4, 151.6, 160.4, 

161.5, 177.4 (q, 2J(C-F) = 35.4 Hz, CO). 
19F NMR (282.38 MHz, DMSO-d6): δ = –70.8 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 341 ([M]+, 6.0), 273 (16), 272 ([M–CF3]
+, 100), 243 (16), 242 

(49), 226 (25), 157 (13), 122 (31), 105 (11), 91 (73), 82 (27). 
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HRMS (ESI): Calcd. for C15H15F3N3O3 [M+H]+: 342.10600, found: 342.10562. 

IR (ATR, cm–1): ṽ = 3036 (w), 2142 (w), 2012 (w), 1965 (w), 1720 (w), 1668 (m), 1597 (s), 

1582 (s), 1525 (m), 1496 (w), 1485 (w), 1461 (m), 1447 (m), 1439 (m), 1413 (w), 1383 (w), 1357 

(m), 1328 (w), 1304 (m), 1268 (w), 1239 (w), 1222 (w), 1208 (s), 1164 (s), 1150 (s), 1099 (m), 

1082 (m), 1061 (w), 1033 (w), 1025 (w), 995 (s), 972 (w), 963 (m), 930 (w), 907 (w), 853 (w), 829 

(m), 820 (s), 787 (w), 775 (w), 758 (m), 742 (s), 731 (m), 713 (m), 695 (s), 657 (s), 620 (w), 596 

(w), 584 (m), 538 (w). 

 

4.2.6 Synthesis of 5-polyfluoroalkyl-5-deazaalloxazines 

 

General procedure for the synthesis of 5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-2,4-

diones 88a-x. 

Initial 5-(polyfluoroacyl)-6-amino-1,3-dialkylpyrimidine-2,4(1H,3H)-dione 87 (0.3 g) was 

dissolved in concentrated H2SO4 (1.5 mL) and allowed to stand at r.t. for 3 hours. Then the solution 

was poured into ice water and formed precipitate was filtered off by suction and recrystallized from 

methanol giving the pure product. 

 

1,3-Dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (88a) 

 

The product was prepared according to the general procedure, starting 

from 0.474 g of 87a and 2.4 mL of H2SO4. 

Yield 0.269 g (89%), yellow solid, mp 195 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.52 (s, 3H, CH3-3), 3.83 (s, 3H, CH3-1), 7.55-7.62 (m, 

1H, H-7), 7.81-7.89 (m, 1H, H-8), 8.01-8.06 (m, 1H, H-9), 8.30-8.36 (m, 1H, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 29.4 (CH3-3), 30.6 (CH3-1), 110.4 (C-4a), 121.7, 123.3 

(q, 1J(C-F) = 278.7 Hz, CF3), 126.1 (q, 4J(C-F) = 6.1 Hz, CH-6), 127.2, 129.1 (CHAr), 133.4 (CHAr), 

138.7 (q, 2J(C-F) = 33.4 Hz, C-5), 148.2, 150.2, 151.1 (CO-2), 159.3 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –52.5 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 310 ([M+H]+, 13), 309 ([M]+, 77), 197 (100). 

HRMS (ESI): Calcd. for C14H11F3N3O2 [M+H]+: 310.07979, found: 310.07967. 

IR (ATR, cm–1): ṽ = 2956 (w), 1713 (s), 1669 (s), 1614 (w), 1583 (s), 1565 (m), 1494 (m), 

1464 (s), 1419 (m), 1378 (s), 1332 (m), 1286 (m), 1216 (m), 1194 (m), 1156 (s), 1142 (s), 1124 (s), 

1100 (s), 1069 (m), 1030 (m), 989 (s), 929 (w), 877 (w), 856 (w), 812 (m), 775 (s), 756 (s), 745 (s), 

712 (w), 624 (s), 592 (m), 550 (m), 532 (w). 
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5-(Heptafluoropropyl)-1,3-dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (88b) 

 

The product was prepared according to the general procedure, starting 

from 0.662 g of 87b and 3.3 mL of H2SO4. 

Yield 0.461 g (73%), yellow solid, mp 183 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.51 (s, 3H, CH3-3), 3.84 (s, 3H, 

CH3-1), 7.54-7.64 (m, 1H, H-7), 7.81-7.90 (m, 1H, H-8), 8.06 (d, 1H, 3J = 8.50 Hz, H-9), 8.32 (m, 

1H, 3J = 8.88 Hz, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 29.7 (CH3-3), 30.8 (CH3-1), 111.7 (C-4a), 122.7, 127.0 

(CH-6), 127.4 (CHAr), 129.4 (CHAr), 133.3 (CHAr), 140.0 (t, 2J(C-F) = 24.3 Hz, C-5), 148.4, 150.3, 

151.1 (CO-2), 159.1 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –116.6 (s, CF2), –92.0 (br s, CF2), –80.0 (t, J = 9.20 

Hz, CF3). 

MS (GC, 70 eV): m/z (%) = 410 ([M+H]+, 11), 409 ([M]+, 60), 298 (13), 297 (100). 

HRMS (ESI): Calcd. for C16H11F7N3O2 [M+H]+: 410.07340, found: 410.07322. 

IR (ATR, cm–1): ṽ = 3154 (w), 1720 (m), 1615 (s), 1614 (w), 1502 (w), 1463 (m), 1424 (m), 

1392 (m), 1376 (m), 1347 (w), 1329 (m), 1293 (w), 1271 (w), 1251 (w), 1225 (s), 1202 (s), 1190 

(s), 1146 (m), 1128 (m), 1111 (s), 1029 (w), 978 (w), 969 (w), 941 (s), 899 (s), 899 (s), 877 (w), 

825 (m), 769 (s), 748 (s), 726 (s), 691 (m), 621 (m), 599 (w), 539 (m). 

 

1,3,7,9-Tetramethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88c) 

 

The product was prepared according to the general procedure, starting 

from 0.429 g of 87c and 2.1 mL of H2SO4. 

Yield 0.343 g (84%), yellow solid, mp 192 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.52 (s, 3H, CH3), 2.72 (s, 3H, 

CH3), 3.51 (s, 3H, CH3-3), 3.82 (s, 3H, CH3-1), 7.56s1H (s, 1H, H-8), 7.91s1H (s, 1H, H-8). 
13C NMR (62.90 MHz, CDCl3): δ = 18.5 (CH3), 22.4 (CH3), 29.3 (CH3-3), 30.4 (CH3-1), 

109.6 (C-4a), 121.9, 122.4 (q, 4J(C-F) = 5.8 Hz, CH-6), 123.4 (q, 1J(C-F) = 278.2 Hz, CF3), 135.8 (CH-

8), 136.4, 137.2 (q, 2J(C-F) = 33.1 Hz, C-5), 138.4, 146.6, 148.0, 151.2 (CO-2), 159.5 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –52.4 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 338 ([M+H]+, 19), 337 ([M]+, 100), 309 (10), 268 (14), 226 

(10), 225 (83). 

HRMS (EI): Calcd. for C16H14F3N3O2 [M]+: 337.10326, found: 337.10302. 

IR (ATR, cm–1): ṽ = 2962 (w), 1713 (m), 1669 (s), 1625 (w), 1570 (s), 1500 (w), 1468 (s), 
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1435 (m), 1408 (m), 1374 (s), 1348 (m), 1317 (m), 1282 (s), 1239 (s), 1198 (m), 1176 (m), 1150 (s), 

1136 (s), 1112 (m), 1101 (s), 1057 (w), 1041 (m), 996 (m), 974 (m), 962 (m), 921 (w), 860 (m), 847 

(w), 827 (w), 811 (s), 776 (w), 764 (w), 750 (s), 729 (w), 705 (m), 690 (m), 674 (w), 660 (m), 585 

(m), 567 (w), 543 (w). 

 

1,3,7,9-Tetramethyl-5-(pentafluoroethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88d) 

 

The product was prepared according to the general procedure, starting 

from 0.431 g of 87d and 2.2 mL of H2SO4. 

Yield 0.345 g (84%), yellow solid, mp 225 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.52 (s, 3H, CH3), 2.72 (s, 3H, 

CH3), 3.51 (s, 3H, CH3-3), 3.82 (s, 3H, CH3-1), 7.56 (s, 1H, H-8), 7.84 (s, 1H, H-8). 
13C NMR (62.90 MHz, CDCl3): δ = 18.7 (CH3), 22.6 (CH3), 29.5 (CH3-3), 30.6 (CH3-1), 

110.6 (C-4a), 122.81 (CH-6), 122.85, 135.8 (CH-8), 136.7, 137.0, 139.4 (t, 2J(C-F) = 24.1 Hz, C-5), 

146.8, 148.0, 151.2 (CO-2), 159.7 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –91.0 (s, CF2), –74.8 (t, J = 2.0 Hz, CF3). 

MS (GC, 70 eV): m/z (%) = 388 ([M+H]+, 18), 387 ([M]+, 92), 359 (11), 330 (11), 276 (15), 

275 (100), 268 (12). 

HRMS (EI): Calcd. for C17H14F5N3O2 [M]+: 387.10007, found: 387.09992. 

IR (ATR, cm–1): ṽ = 3369 (w), 2919 (w), 1713 (m), 1668 (s), 1625 (w), 1566 (s), 1504 (w), 

1470 (m), 1444 (m), 1435 (m), 1378 (m), 1348 (w), 1292 (m), 1232 (w), 1209 (s), 1192 (s), 1182 

(m), 1162 (s), 1133 (s), 1107 (s), 1062 (s), 1037 (m), 1020 (s), 985 (s), 958 (m), 906 (w), 859 (m), 

816 (m), 763 (w), 737 (w), 762 (w), 742 (s), 727 (s), 691 (m), 658 (m), 599 (w), 586 (m), 567 (m), 

552 (w), 531 (m). 

 

5-(Heptafluoropropyl)-1,3,7,9-tetramethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88e) 

 

The product was prepared according to the general procedure, starting 

from 0.485 g of 87e and 2.4 mL of H2SO4. 

Yield 0.429 g (92%), yellow solid, mp 198-200 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.53 (s, 3H, CH3), 2.73 (s, 3H, 

CH3), 3.51 (s, 3H, CH3-3), 3.84 (s, 3H, CH3-1), 7.58 (s, 1H, H-8), 7.93 (s, 1H, 

H-8). 
13C NMR (62.90 MHz, CDCl3): δ = 18.7 (CH3), 22.6 (CH3), 29.6 (CH3-3), 30.7 (CH3-1), 
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111.0 (C-4a), 123.0, 123.3 (CH-6), 135.8 (CH-8), 136.7, 137.0, 139.0 (t, 2J(C-F) = 23.8 Hz, C-5), 

146.9, 148.1, 151.3 (CO-2), 159.4 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –116.5 (s, CF2), –90.2 (br s, CF2), –80.0 (t, J = 8.7 Hz, 

CF3). 

MS (GC, 70 eV): m/z (%) = 438 ([M+H]+, 20), 437 ([M]+, 100), 409 (10), 380 (11), 326 

(16), 325 (100), 268 (10), 220 (14), 206 (12). 

HRMS (EI): Calcd. for C18H14F3N3O2 [M]+: 437.09688, found: 437.09679. 

IR (ATR, cm–1): ṽ = 2929 (w), 1722 (m), 1678 (s), 1626 (w), 1568 (s), 1494 (w), 1469 (m), 

1444 (m), 1376 (s), 1346 (m), 1313 (w), 1289 (w), 1266 (w), 1255 (w), 1228 (s), 1219 (s), 1198 (s), 

1176 (s), 1130 (m), 1114 (s), 1055 (w), 1035 (w), 1001 (w), 977 (w), 913 (s), 861 (w), 815 (m), 785 

(w), 758 (w), 746 (m), 732 (s), 693 (w), 658 (w), 623 (m), 599 (w), 584 (w), 564 (w), 535 (m). 

 

7-Ethyl-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88f) 

 

The product was prepared according to the general procedure, 

starting from 0.363 g of 87f and 1.8 mL of H2SO4. 

Yield 0.173 g (50%), yellow solid, mp 164 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 1.30 (t, 3H, 3J = 7.55 Hz, Et), 2.79 (q, 2H, 3J = 7.55 Hz, 

Et), 3.41 (s, 3H, CH3-3), 3.69 (s, 3H, CH3-1), 7.61 (dd, 1H, 3J = 8.69 Hz, 4J = 1,80 Hz, H-8), 7.80 

(d, 1H, 3J = 8.69 Hz, H-9), 7.96 (s, 1H, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 15.4 (CH3(Et)), 29.4 (CH3-3), 29.6 (CH2(Et)), 30.5 (CH3-

1), 110.2 (C-4a), 121.9 (C-5a), 123.4 (q, 1J(C-F) = 278.7 Hz, CF3), 123.5 (q, 4J(C-F) = 5.9 Hz, CH-6), 

128.9 (CH, C-9), 134.8 (CH, C-8), 137.8 (q, 2J(C-F) = 33.3 Hz, C-5), 143.5 (C-9a), 147.7 (C-10a), 

149.2 (C-7), 151.2 (CO-2), 159.5 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –52.5 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 338 ([M+H]+, 19), 337 ([M]+, 100), 322 (27), 309 (10), 268 

(16), 265 (16), 226 (11), 225 (77), 224 (11), 210 (12). 

HRMS (ESI): Calcd. for C16H15F3N3O2 [M+H]+: 338.11109, found: 338.11193. 

IR (ATR, cm–1): ṽ = 3380 (w), 2970 (w), 1716 (m), 1674 (s), 1620 (w), 1576 (s), 1498 (w), 

1457 (s), 1413 (m), 1376 (s), 1356 (m), 1352 (m), 1286 (m), 1251 (w), 1221 (m), 1196 (m), 1147 

(s), 1130 (s), 1109 (s), 1071 (m), 1056 (m), 989 (m), 944 (w), 883 (w), 860 (w), 843 (s), 823 (w), 

809 (m), 776 (w), 748 (s), 700 (m), 674 (m), 636 (m), 602 (w), 568 (m), 535 (w). 
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5-[Chloro(difluoro)methyl]-7-ethyl-1,3-dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione (88g) 

 

The product was prepared according to the general procedure, 

starting from 0.369 g of 87g and 1.8 mL of H2SO4. 

Yield 0.199 g (57%), yellow solid, mp 188 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 1.36 (t, 3H, 3J = 7.56 Hz, Et), 

2.87 (q, 2H, 3J = 7.56 Hz, Et), 3.51 (s, 3H, CH3-3), 3.81 (s, 3H, CH3-1), 7.71 (d, 1H, 3J = 8.68 Hz, 

H-8), 7.94 (d, 1H, 3J = 8.68 Hz, H-9), 8.08 (s, 1H, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 15.4 (CH3(Et)), 29.4 (CH3-3), 29.6 (CH2(Et)), 30.6 (CH3-

1), 108.3 (C-4a), 120.7 (C-5a), 123.7 (t, 4J(C-F) = 7.8 Hz, CH-6), 123.9 (t, 1J(C-F) = 290.6 Hz, CClF2), 

128.8 (CH, C-9), 134.6 (CH, C-8), 143.1 (C-9a), 143.3 (t, 2J(C-F) = 27.4 Hz, C-5), 147.6 (C-10a), 

149.1 (C-7), 151.2 (CO-2), 159.6 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –40.7 (br s, CClF2). 

MS (GC, 70 eV): m/z (%) = 355 ([M+H]+, 37Cl, 35), 354 ([M+H]+, 35Cl, 20), 353 ([M]+, 
35Cl, 100), 338 (22), 319 (17), 318 (83), 303 (13), 268 (18), 243 (20), 241 (59). 

HRMS (ESI): Calcd. for C16H15ClF2N3O2 [M+H, 35Cl]+: 354.08154, found: 354.08121. 

IR (ATR, cm–1): ṽ = 3370 (w), 2966 (w), 1715 (m), 1667 (s), 1622 (w), 1573 (s), 1503 (w), 

1470 (m), 1454 (s), 1414 (m), 1378 (s), 1358 (m), 1322 (m), 1291 (m), 1274 (m), 1253 (w), 1204 

(w), 1192m 1152 (m), 1140 (m), 1115 (s), 1095 (m), 1069 (m), 1005 (s), 994 (m), 552 (s), 927 (s), 

881 (w), 845 (s), 832 (w), 817 (m), 796 (s), 770 (w), 793 (s), 689 (w), 675 (w), 661 (m), 632 (w), 

621 (w), 580 (w), 560 (m). 

 

7-Ethyl-1,3-dimethyl-5-(pentafluoroethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88h) 

 

The product was prepared according to the general procedure, 

starting from 0.466 g of 87h and 2.3 mL of H2SO4. 

Yield 0.359 g (81%), yellow solid, mp 235 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 1.35 (t, 3H, 3J = 7.55 Hz, Et), 

2.86 (q, 2H, 3J = 7.55 Hz, Et), 3.51 (s, 3H, CH3-3), 3.82 (s, 3H, CH3-1), 7.72 (d, 1H, 3J = 8.88 Hz, 

H-8), 7.97 (d, 1H, 3J = 8.88 Hz, H-9), 8.01 (s, 1H, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 15.3 (CH3(Et)), 29.6 (CH3-3), 29.6 (CH2(Et)), 30.7 (CH3-

1), 111.1 (C-4a), 122.7 (C-5a), 123.9 (CH-6), 129.1 (CH, C-9), 134.9 (CH, C-8), 139.4 (t, 2J(C-F) = 

24.0 Hz, C-5), 143.4 (C-9a), 147.9 (C-10a), 149.1 (C-7), 151.2 (CO-2), 159.5 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –91.4 (s, CF2), –75.0 (t, J = 2.0 Hz, CF3). 
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MS (GC, 70 eV): m/z (%) = 388 ([M+H]+, 18), 387 ([M]+, 91), 372 (24), 359 (11), 315 (19), 

276 (14), 275 (100), 268 (12), 260 (12). 

HRMS (EI): Calcd. for C17H14F5N3O2 [M]+: 387.10007, found: 387.09992. 

IR (ATR, cm–1): ṽ = 3381 (w), 2973 (w), 1719 (m), 1675 (s), 1621 (w), 1568 (s), 1504 (w), 

1494 (w), 1454 (s), 1410 (m), 1376 (m), 1339 (w), 1313 (w), 1294 (s), 1229 (m), 1176 (s), 1146 (s), 

1128 (s), 1107 (s), 1069 (m), 1036 (s), 1006 (w), 969 (s), 939 (m), 895 (w), 846 (s), 822 (w), 805 

(m), 758 (w), 746 (s), 736 (m), 725 (s), 683 (m), 672 (m), 635 (w), 598 (w), 578 (w), 557 (m). 

 

9-Methoxy-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88i) 

 

The product was prepared according to the general procedure, starting 

from 0.319 g of 87i and 1.6 mL of H2SO4. 

Yield 0.147 g (49%), yellow solid, mp 220 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.52 (s, 3H, CH3-3), 3.87 (s, 3H, 

CH3-1), 4.08 (s, 3H, MeO), 7.19 (d, 1H, 3J = 7.74 Hz, H-8), 7.49 (dd, 1H, 3J1 = 9.06 Hz, 3J2 = 7.74 

Hz, H-7), 7.84-7.92 (m, 1H, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 29.4 (CH3-3), 30.7 (CH3-1), 56.7 (MeO), 110.6 (C-4a), 

111.3 (CHAr), 117.6 (q, 4J(C-F) = 6.1 Hz, CH-6), 122.9, 123.2 (q, 1J(C-F) = 278.7 Hz, CF3), 127.3 

(CHAr), 138.5 (q, 2J(C-F) = 33.5 Hz, C-5), 142.5, 147.4, 151.2 (CO-2), 154.8 (C-9), 159.4 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –52.6 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 340 ([M+H]+, 17), 339 ([M]+, 100), 310 (37), 309 (12), 281 

(20), 267 (13), 253 (26), 252 (12), 227 (24). 

HRMS (EI): Calcd. for C15H12F3N3O3 [M+H]+: 339.08253, found: 339.08253. 

IR (ATR, cm–1): ṽ = 2953 (w), 2848 (w), 1714 (m), 1667 (s), 1611 (w), 1566 (m), 1504 (w), 

1485 (m), 1465 (m), 1444 (w), 1421 (m), 1393 (w), 1376 (m), 1353 (w), 1318 (w), 1287 (s), 1256 

(w), 1233 (s), 1207 (m), 1197 (m), 1161 (s), 1147 (s), 1122 (s), 1099 (m), 1059 (m), 1004 (s), 976 

(m), 877 (w), 862 (w), 838 (w), 822 (w), 788 (s), 778 (m), 757 (m), 747 (s), 714 (m), 700 (s), 688 

(m), 674 (w), 615 (m), 595 (w), 586 (w), 538 (w). 

 

5-[Chloro(difluoro)methyl]-9-methoxy-1,3-dimethylpyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (88j) 

 

The product was prepared according to the general procedure, starting 

from 0.344 g of 87j and 1.7 mL of H2SO4. 

Yield 0.218 g (67%), yellow solid, mp 210 °C. 
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1H NMR (300.13 MHz, CDCl3): δ = 3.52 (s, 3H, CH3-3), 3.87 (s, 3H, CH3-1), 4.08 (s, 3H, 

MeO), 7.18 (d, 1H, 3J = 7.74 Hz, H-8), 7.50 (dd, 1H, 3J1 = 9.07 Hz, 3J2 = 7.74 Hz, H-7), 7.86-7.93 

(m, 1H, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 29.5 (CH3-3), 30.7 (CH3-1), 56.7 (MeO), 108.7 (C-4a), 

111.2 (CHAr), 117.9 (t, 4J(C-F) = 7.9 Hz, CH-6), 121.8, 123.9 (t, 1J(C-F) = 291.2 Hz, CF3), 127.0 

(CHAr), 142.4, 144.0 (t, 2J(C-F) = 27.5 Hz, C-5), 147.3, 151.2 (CO-2), 154.8 (C-9), 159.5 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –40.1 (br s, CClF2). 

MS (GC, 70 eV): m/z (%) = 357 ([M]+, 37Cl, 34), 356 ([M+H]+, 35Cl, 28), 355 ([M]+, 35Cl, 

100), 354 (37), 328 (12), 327 (10), 326 (33), 325 (11), 320 (33), 297 (12), 269 (15), 263 (15), 243 

(21). 

HRMS (EI): Calcd. for C15H12ClF2N3O3 [M, 35Cl]+: 355.05298, found: 355.05262; calcd. for 

C15H12ClF2N3O3 [M, 37Cl]+: 357.05003, found: 357.05014. 

Anal. Calcd for C15H12ClF2N3O3: C, 50.65; H, 3.40; N, 11.81. Found: C, 50.87; H, 3.30; N, 

11.96. 

IR (ATR, cm–1): ṽ = 3377 (w), 2963 (w), 1717 (s), 1667 (s), 1611 (w), 1578 (s), 1564 (s), 

1504 (m), 1485 (m), 1463 (m), 1454 (m), 1421 (s), 1392 (m), 1371 (m), 1350 (m), 1317 (w), 1277 

(s), 1249 (m), 1214 (s), 1186 (m), 1126 (s), 1101 (m), 1092 (s), 1059 (m), 1013 (s), 980 (m), 952 

(s), 926 (s), 880 (m), 862 (w), 825 (w), 782 (s), 773 (s), 756 (m), 746 (s), 706 (w), 680 (m), 662 

(m), 629 (w), 610 (m), 587 (w), 563 (w), 534 (w). 

 

8-Methoxy-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88k) 

 

The product was prepared according to the general procedures for the 

synthesis of 87 and 88, starting from 0.4 g of 6-[(3-methoxyphenyl)amino]-

1,3-dimethylpyrimidine-2,4(1H,3H)-dione 70f, 0.145 g of pyridine and 

0.643 g of trifluoroacetic anhydride in 4 mL of dioxane; than to isolated 

crude product were added 2.5 mL of H2SO4. 

Yield 0.062 g (12% after two steps; calculated on 70f), yellow solid, mp 232-235 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.49 (s, 3H, CH3-3), 3.80 (s, 3H, CH3-1), 4.01 (s, 3H, 

MeO), 7.20 (dd, 1H, 3J = 9.63 Hz, 4J = 2.65 Hz, H-7), 7.28 (d, 1H, 4J = 2.65 Hz, H-9), 8.20 (dq, 1H, 
3J = 9.63 Hz, 5J(H-F) = 2.08 Hz, H-6). 

13C NMR (62.90 MHz, CDCl3): δ = 29.4 (CH3-3), 30.6 (CH3-1), 56.2 (MeO), 106.7 (CHAr), 

107.6 (C-4a), 117.3, 121.3 (CHAr), 123.4 (q, 1J(C-F) = 278.5 Hz, CF3), 127.5 (q, 4J(C-F) = 6.3 Hz, CH-

6), 138.3 (q, 2J(C-F) = 33.8 Hz, C-5), 149.0, 151.3 (CO-2), 153.0, 159.5 (CO-4), 163.8 (CH-8). 
19F NMR (282.38 MHz, CDCl3): δ = –52.4 (s, CF3). 
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MS (GC, 70 eV): m/z (%) = 340 ([M+H]+, 11), 339 ([M]+, 66), 311 (12), 270 (21), 228 (13), 

227 (100). 

HRMS (EI): Calcd. for C15H12F3N3O3 [M+H]+: 339.08253, found: 339.08256. 

IR (ATR, cm–1): ṽ = 3373 (w), 2953 (w), 1716 (m), 1669 (s), 1620 (m), 1569 (m), 1504 (w), 

1480 (m), 1471 (m), 1451 (m), 1412 (m), 1381 (m), 1352 (m), 1329 (w), 1289 (m), 1273 (w), 1233 

(s), 1215 (s), 1157 (s), 1132 (s), 1019 (m), 992 (m), 976 (m), 959 (w), 895 (w), 853 (s), 832 (m), 

803 (s), 749 (s), 733 (w), 698 (m), 673 (w), 639 (s), 571 (w), 544 (w). 

 

5-[Chloro(difluoro)methyl]-8-methoxy-1,3-dimethylpyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (88l) 

 

The product was prepared according to the general procedures for the 

synthesis of 87 and 88, starting from 0.4 g of 6-[(3-methoxyphenyl)amino]-

1,3-dimethylpyrimidine-2,4(1H,3H)-dione 70f, 0.145 g of pyridine and 

0.744 g of chlorodifluoroacetic anhydride in 4 mL of dioxane; than to 

isolated crude product were added 2.7 mL of H2SO4. 

Yield 0.218 g (40% after two steps; calculated on 70f), yellow solid, mp 272-274 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.51 (s, 3H, CH3-3), 3.81 (s, 3H, CH3-1), 4.01 (s, 3H, 

MeO), 7.22 (dd, 1H, 3J = 9.63 Hz, 4J = 2.83 Hz, H-7), 7.29 (d, 1H, 4J = 2.83 Hz, H-9), 8.22 (dt, 1H, 
3J = 9.63 Hz, 5J(H-F) = 2.90 Hz, H-6). 

13C NMR (75.47 MHz, 12% TFA-d in CDCl3): δ = 30.2 (CH3), 31.7 (CH3), 56.9 (OMe), 

103.3 (CH), 105.8 (C-4a), 116.3, 122.6 (CH), 123.0 (t, 1J(C-F) = 292.1 Hz, CClF2), 129.0 (t, 4J(C-F) = 

8.2 Hz, CH-6), 147.9, 148.1, 148.2 (t, 2J(C-F) = 28.6 Hz), 150.7 (CO-2), 158.7 (CO-4), 166.7. 
19F NMR (282.38 MHz, CDCl3): δ = –40.4 (br s, CClF2). 

MS (GC, 70 eV): m/z (%) = 357 ([M]+, 37Cl, 29), 356 ([M+H]+, 35Cl, 14), 355 ([M]+, 35Cl, 

83), 327 (11), 321 (16), 320 (41), 270 (36), 245 (33), 244 (14), 243 (100), 209 (10). 

HRMS (EI): Calcd. for C15H12ClF2N3O3 [M, 35Cl]+: 355.05298, found: 355.05401. 

IR (ATR, cm–1): ṽ = 3366 (w), 2952 (w), 1713 (s), 1668 (s), 1619 (m), 1566 (s), 1503 (m), 

1482 (s), 1470 (m), 1449 (s), 1411 (m), 1380 (s), 1348 (m), 1326 (w), 1288 (m), 1269 (w), 1232 (s), 

1190 (m), 1136 (s), 1114 (s), 1020 (m), 1003 (s), 975 (w), 959 (m), 946 (s), 851 (s), 826 (m), 804 

(m), 791 (s), 767 (m), 749 (s), 742 (m), 729 (w), 702 (w), 679 (w), 664 (m), 634 (s), 606 (w), 557 

(m), 528 (m). 
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5-(Heptafluoropropyl)-8-methoxy-1,3-dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione (88m) 

 

The product was prepared according to the general procedure, 

starting from 0.658 g of 87m and 3.3 mL of H2SO4. 

Yield 0.204 g (32%), yellow solid, mp 214-216 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.50 (s, 3H, CH3-3), 3.82 (s, 3H, 

CH3-1), 4.02 (s, 3H, MeO), 7.21 (dd, 1H, 3J = 9.82 Hz, 4J = 2.79 Hz), H-7, 7.31 (d, 1H, 4J = 2.79 

Hz, H-9), 8.20 (d, 1H, 3J = 9.82 Hz, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 29.6 (CH3-3), 30.7 (CH3-1), 56.2 (MeO), 106.8 (CHAr), 

108.9 (C-4a), 118.3, 121.3 (CHAr), 128.4 (CH-6), 139.4 (t, 2J(C-F) = 23.5 Hz, C-5), 149.2, 151.3 

(CO-2), 153.0, 159.2 (CO-4), 163.7 (CH-8). 
19F NMR (282.38 MHz, CDCl3): δ = –116.8 (s, CF2), –90.4 (br s, CF2), –80.0 (t, J = 8.7 Hz, 

CF3). 

MS (GC, 70 eV): m/z (%) = 440 ([M+H]+, 12), 439 ([M]+, 64), 411 (12), 328 (14), 327 

(100), 270 (11). 

HRMS (ESI): Calcd. for C17H13F7N3O3 [M+H]+: 440.08397, found: 440.08478. 

Anal. Calcd for C17H12F7N3O3: C, 46.48; H, 2.75; N, 9.57. Found: C, 46.65; H, 2.55; N, 

10.06. 

IR (ATR, cm–1): ṽ = 3151 (w), 2953 (w), 2848 (w), 1715 (m), 1682 (s), 1620 (m), 1565 (s), 

1504 (m), 1485 (s), 1446 (m), 1410 (m), 1380 (s), 1348 (m), 1288 (m), 1271 (w), 1233 (s), 1200 (s), 

1185 (s), 1172 (s), 1141 (s), 1132 (s), 1112 (s), 1069 (w), 1041 (w), 1017 (m), 1002 (m), 975 (w), 

961 (w), 931 (s), 854 (s), 824 (m), 804 (m), 790 (m), 770 (w), 752 (s), 734 (m), 723 (m), 703 (w), 

692 (w), 654 (w), 641 (m), 620 (m), 597 (w), 558 (m), 537 (w). 

 

1,3-Dimethyl-5,8-bis(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (88n) 

 

The product was prepared according to the general procedure, 

starting from 0.475 g of 87n and 2.4 mL of H2SO4. 

Yield 0.233 g (51%), yellow solid, mp 199-201 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.53 (s, 3H, CH3-3), 3.84 (s, 3H, 

CH3-1), 7.75 (dd, 1H, 3J = 9.16 Hz, 4J = 1.98 Hz, H-7), 8.33-8.36 (m, 1H, H-9), 8.42-8.50 (dm, 1H, 
3J = 9.16 Hz, H-6). 

13C NMR (62.90 MHz, CDCl3): δ = 29.6 (CH3-3), 30.9 (CH3-1), 112.2 (C-4a), 122.7 (CHAr), 

122.9 (q, 1J(C-F) = 278.4 Hz, CF3), 123.0, 123.5 (q, 1J(C-F) = 273.0 Hz, CF3), 126.8 (q, 4J(C-F) = 4.4 

Hz, CHAr), 127.8 (q, 4J(C-F) = 6.2 Hz, CHAr), 134.7 (q, 2J(C-F) = 33.4 Hz), 139.1 (q, 2J(C-F) = 33.9 Hz), 
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149.3, 149.4, 150.9 (CO-2), 158.9 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –63.7 (s, CF3-8), –52.7 (s, CF3-5). 

MS (GC, 70 eV): m/z (%) = 377 ([M]+, 52), 265 (100). 

HRMS (EI): Calcd. for C15H9F6N3O2 [M]+: 377.05935, found: 377.05920. 

IR (ATR, cm–1): ṽ = 3388 (w), 3107 (w), 2966 (w), 1722 (m), 1668 (s), 1585 (m), 1565 (m), 

1511 (w), 1464 (m), 1422 (m), 1393 (w), 1378 (m), 1361 (m), 1336 (m), 1300 (m), 1272 (m), 1222 

(w), 1172 (s), 1122 (s), 1104 (s), 1072 (s), 966 (m), 945 (m), 910 (s), 885 (m), 831 (m), 804 (s), 780 

(w), 760 (w), 745 (s), 710 (m), 700 (s), 679 (m), 673 (m), 657 (w), 630 (m), 581 (w), 553 (w). 

 

1,3-Dimethyl-7-nitro-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88o) 

 

The product was prepared according to the general procedure, 

starting from 0.309 g of 87o and 1.5 mL of H2SO4. 

Yield 0.242 g (82%), yellow solid, mp 232-234 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.53 (s, 3H, CH3-3), 3.85 (s, 3H, 

CH3-1), 8.17 (d, 1H, 3J = 9.54 Hz, H-9), 8.61 (d, 1H, 3J = 9.54 Hz, H-8), 9.32 (s, 1H, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 29.8 (CH3-3), 31.1 (CH3-1), 112.5 (C-4a), 120.2, 122.7 

(q, 1J(C-F) = 278.6 Hz, CF3), 123.6 (q, 4J(C-F) = 6.7 Hz, CH-6), 126.7 (CHAr), 130.8 (CHAr), 141.0 (q, 
2J(C-F) = 34.1 Hz, C-5), 145.8, 150.7, 150.8, 152.0 (CO-2), 158.5 (CO-4). 

19F NMR (282.38 MHz, CDCl3): δ = –52.6 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 354 ([M]+, 49), 243 (12), 242 (100), 196 (13). 

HRMS (EI): Calcd. for C14H9F3N4O4 [M]+: 354.05704, found: 354.05725. 

IR (ATR, cm–1): ṽ = 3392 (w), 3133 (w), 2965 (w), 1725 (m), 1680 (s), 1623 (w), 1586 (m), 

1574 (s), 1532 (m), 1496 (m), 1471 (s), 1417 (w), 1373 (m), 1363 (w), 1340 (w), 1294 (m), 1280 

(s), 1230 (w), 1203 (m), 1180 (m), 1155 (s), 1136 (s), 1110 (s), 1070 (w), 993 (m), 986 (m), 972 

(w), 948 (w), 907 (m), 868 (m), 844 (s), 810 (w), 793 (w), 723 (w), 760 (w), 748 (s), 740 (s), 713 

(w), 703 (m), 675 (w), 647 (m), 633 (m), 565 (m), 539 (w), 527 (w). 

 

7-Bromo-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88p) 

 

The product was prepared according to the general procedure, starting 

from 1.401 g of 87p and 7 mL of H2SO4. 

Yield 1.121 g (84%), yellow solid, mp 200 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.49 (s, 3H, CH3-3), 3.78 (s, 3H, 
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CH3-1), 7.86 (s, 2H, H-8, H-9), 8.41 (s, 1H, H-6). 
13C NMR (75.48 MHz, CDCl3): δ = 29.5 (CH3-3), 30.7 (CH3-1), 111.1 (C-4a), 121.5, 122.5, 

123.0 (q, 1J(C-F) = 278.3 Hz, CF3), 128.2 (q, 4J(C-F) = 6.6 Hz, CH-6), 130.6 (CHAr), 136.8 (CHAr), 

137.8 (q, 2J(C-F) = 33.8 Hz, C-5), 148.5, 148.8, 151.0 (CO-2), 159.0 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –52.7 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 390 ([M+H]+, 81Br, 13), 389 ([M]+, 81Br, 81), 388 ([M+H]+, 
79Br, 15), 387 ([M]+, 79Br, 84), 291 (15), 289 (16), 278 (11), 277 (97), 276 (15), 275 (100), 263 

(11), 261 (11), 182 (11), 176 (11). 

HRMS (EI): Calcd. for C14H9BrF3N3O2 [M, 79Br]+: 386.98248, found: 386.9826; calcd. for 

C14H11F3N3O2 [M, 81Br]+: 388.98043, found: 388.98055. 

IR (ATR, cm–1): ṽ = 3380 (w), 3116 (w), 2962 (w), 2849 (w), 1719 (m), 1668 (s), 1581 (s), 

1564 (s), 1556 (m), 1463 (s), 1447 (s), 1410 (m), 1384 (m), 1372 (s), 1358 (m), 1320 (m), 1295 (m), 

1281 (s), 1228 (w), 1205 (m), 1162 (s), 1129 (s), 1103 (s), 1075 (s), 986 (s), 969 (m), 936 (m), 875 

(w), 858 (w), 831 (s), 808 (m), 797 (w), 772 (w), 757 (w), 748 (s), 713 (w), 702 (s), 672 (m), 639 

(s), 630 (m), 559 (m), 552 (m), 532 (m). 

 

7-Ethoxy-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88q) 

 

The product was prepared according to the general procedure, 

starting from 0.397 g of 87q and 2 mL of H2SO4. 

Yield 0.276 g (73%), yellow solid, mp 210-212 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 1.44 (t, 3H, 3J = 7.55 Hz, 

EtO), 3.44 (s, 3H, CH3-3), 3.74 (s, 3H, CH3-1), 4.11 (q, 2H, 3J = 7.55 Hz, EtO), 7.41-7.48 (m, 2H, 

H-6, H-8), 7.85 (d, 1H, 3J = 10,01 Hz, H-9). 
13C NMR (62.90 MHz, CDCl3): δ = 14.9 (CH3(EtO)), 29.5 (CH3-3), 30.6 (CH3-1), 64.4 

(CH2(EtO)), 103.9 (q, 4J(C-F) = 6.3 Hz, CH-6), 110.3 (C-4a), 123.1, 123.6 (q, 1J(C-F) = 277.29 Hz, 

CF3), 127.5 (CHAr), 130.5 (CHAr), 136.2 (q, 2J(C-F) = 33.1 Hz, C-5), 146.8, 146.9, 151.2 (CO-2), 

157.6 (C-7), 159.6 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –53.1 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 354 ([M+H]+, 17), 353 ([M]+, 100), 325 (20), 268 (14), 267 

(15), 241 (11), 213 (41). 

HRMS (EI): Calcd. for C16H14F3N3O3 [M]+: 353.09818, found: 353.09811. 

IR (ATR, cm–1): ṽ = 2991 (w), 1742 (s), 1675 (s), 1623 (m), 1583 (s), 1504 (w), 1471 (m), 

1455 (m), 1425 (m), 1414 (s), 1386 (s), 1372 (s), 1324 (w), 1288 (s), 1232 (s), 1209 (s), 1171 (s), 

1159 (s), 1123 (s), 1066 (w), 1040 (s), 988 (m), 953 (w), 916 (w), 861 (w), 845 (s), 830 (m), 806 
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(m), 773 (w), 764 (w), 748 (s), 709 (w), 698 (s), 679 (m), 667 (w), 653 (w), 578 (s), 559 (w), 537 

(w). 

 

5-(Difluoromethyl)-7-ethoxy-1,3-dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88r) 

 

The product was prepared according to the general procedure, 

starting from 0.469 g of 87r and 2.3 mL of H2SO4. 

Yield 0.354 g (80%), yellow solid, mp 238 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 1.50 (t, 3H, 3J = 6.99 Hz, EtO), 3.51 (s, 3H, CH3-3), 

3.81 (s, 3H, CH3-1), 4.19 (q, 2H, 3J = 6.99 Hz, EtO), 7.50 (dd, 1H, 3J = 9.26 Hz, 4J = 2.64 Hz, H-8), 

7.76 (d, 1H, 4J = 2.64 Hz, H-6), 7.89 (d, 1H, 3J = 9.26 Hz, H-9), 8.86 (t, 1H, 2J(H-F) = 53.92 Hz, 

CH2F). 
13C NMR (62.90 MHz, CDCl3): δ = 14.9 (CH3(EtO)), 29.3 (CH3-3), 30.6 (CH3-1), 64.3 

(CH2(EtO)), 105.2 (t, 4J(C-F) = 6.0 Hz, CH-6), 108.6 (C-4a), 112.1 (t, 1J(C-F) = 239.6 Hz, CHF2), 123.0, 

127.6 (CHAr), 130.3 (CHAr), 141.9 (t, 2J(C-F) = 23.7 Hz, C-5), 146.5, 146.5, 151.0 (CO-2), 157.2, 

161.9. 
19F NMR (282.38 MHz, CDCl3): δ = –112.5 (s, CHF2). 

MS (GC, 70 eV): m/z (%) = 336 ([M+H]+, 18), 335 ([M]+, 100), 307 (46), 306 (13), 279 

(14), 256 (13), 195 (43). 

HRMS (EI): Calcd. for C16H15F2N3O3 [M]+: 335.10760, found: 335.10773. 

IR (ATR, cm–1): ṽ = 3353 (w), 3139 (w), 3078 (w), 2989 (w), 2942 (w), 2918 (w), 2849 (w), 

1705 (s), 1659 (s), 1621 (m), 1583 (m), 1538 (w), 1499 (w), 1477 (m), 1462 (m), 1450 (m), 1422 

(m), 1412 (m), 1384 (m), 1321 (w), 1290 (m), 1271 (w), 1251 (w), 1223 (m), 1185 (m), 1148 (m), 

1116 (m), 1095 (m), 1029 (s), 992 (m), 978 (m), 955 (w), 936 (m), 900 (w), 843 (s), 827 (m), 806 

(s), 767 (w), 759 (w), 747 (s), 719 (m), 682 (m), 581 (s), 555 (m). 

 

5-(Difluoromethyl)-7-methoxy-1,3-dipropylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(88s) 

 

The product was prepared according to the general procedures for 

the synthesis of 87 and 88, starting from 0.3 g of 6-[(4-

methoxyphenyl)amino]-1,3-dipropylpyrimidine-2,4(1H,3H)-dione 70a, 

0.09 g of pyridine and 0.329 g of difluoroacetic anhydride in 3 mL of 

dioxane; than to isolated crude product were added 2 mL of H2SO4. 

Yield 0.307 g (86% after two steps; calculated on 70a), yellow solid, mp 167-168 °C. 
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1H NMR (300.13 MHz, CDCl3): δ = 0.94-1.11 (m, 6H, CH3(Pr-1), CH3(Pr-3)), 1.66-1.89 (m, 

4H, CH2(Pr-1), CH2(Pr-3)), 3.95 (s, 3H, MeO), 4.06 (t, 2H, 3J = 7.55 Hz, NCH2-3), 4.41 (t, 2H, 3J = 

7.46 Hz, NCH2-1), 7.48 (d, 1H, H-8), 7.77 (s, 1H, H-6), 7.88 (d, 1H, 3J = 9.15 Hz, H-9), 8.86 (t, 1H, 
2J(H-F) = 54.01 Hz, CH2F). 

13C NMR (75.48 MHz, CDCl3): δ = 11.6 (CH3(Pr)), 11.7 (CH3(Pr)), 21.3 (CH2(Pr)), 21.4 

(CH2(Pr)), 44.3 (CH2(Pr)), 45.0 (CH2(Pr)), 55.9 (MeO), 104.5 (t, 4J(C-F) = 6.0 Hz, CH-6), 108.8 (C-4a), 

112.2 (t, 1J(C-F) = 239.11 Hz, CHF2), 122.9, 127.2 (CHAr), 130.4 (CHAr), 142.0 (t, 2J(C-F) = 23.7 Hz, 

C-5), 146.3, 146.7, 150.5 (CO-2), 157.7, 161.6. 
19F NMR (282.38 MHz, CDCl3): δ = –112.4 (s, CHF2). 

MS (GC, 70 eV): m/z (%) = 378 ([M+H]+, 17), 377 ([M]+, 76), 336 (18), 335 (100), 307 

(17), 294 (21), 293 (100), 277 (26), 265 (15), 263 (23), 250 (14), 249 (18), 236 (12), 208 (14), 188 

(16). 

HRMS (EI): Calcd. for C19H21F3N3O3 [M]+: 377.15455, found: 377.15478. 

IR (ATR, cm–1): ṽ = 3356 (w), 3093 (w), 3004 (w), 2963 (w), 2936 (w), 2876 (w), 2834 (w), 

1703 (m), 1655 (s), 1622 (m), 1589 (s), 1572 (s), 1505 (w), 1457 (m), 1442 (s), 1423 (w), 1411 (s), 

1396 (s), 1370 (m), 1348 (w), 1322 (m), 1302 (w), 1282 (w), 1271 (m), 1253 (w), 1226 (s), 1187 

(w), 1175 (w), 1142 (m), 1112 (m), 1049 (m), 1031 (w), 1015 (s), 966 (w), 920 (w), 903 (w), 872 

(w), 837 (s), 807 (m), 772 (w), 759 (w), 749 (m), 729 (w), 707 (m), 696 (w), 674 (m), 622 (w), 570 

(m), 560 (m), 530 (m). 

 

7-Methoxy-5-(pentafluoroethyl)-1,3-dipropylpyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione (88t) 

 

The product was prepared according to the general procedure, 

starting from 0.342 g of 87t and 1.7 mL of H2SO4. 

Yield 0.265 (81%), yellow solid, mp 115 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 0.98 (t, 3H, 3J = 7.55 Hz, 

CH3(Pr)), 1.03 (t, 3H, 3J = 7.36 Hz, CH3(Pr)), 1.66-1.89 (m, 4H, CH2(Pr-1), CH2(Pr-3)), 3.93 (s, 3H, 

MeO), 4.05 (t, 2H, 3J = 7.55 Hz, NCH2-3), 4.40 (t, 2H, 3J = 7.55 Hz, NCH2-1), 7.44-7.53 (m, 2H, 

H-6, H-8), 7.91 (d, 1H, 3J = 9.07 Hz, H-9). 
13C NMR (62.90 MHz, CDCl3): δ = 11.58 (CH3(Pr)), 11.64 (CH3(Pr)), 21.37 (CH2(Pr)), 21.43 

(CH2(Pr)), 44.4 (CH2(Pr)), 45.0 (CH2(Pr)), 55.8 (MeO), 103.6 (CH-6), 111.5 (C-4a), 123.7, 127.0 

(CHAr), 130.7 (CHAr), 137.7 (t, 2J(C-F) = 23.8 Hz, C-5), 146.7, 146.9, 150.7 (CO-2), 158.0 (C-7), 

159.4 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –92.6 (s, CF2), –74.9 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 446 ([M–F]+, 18), 445 (80), 404 (20), 403 (100), 375 (12), 361 
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(18), 346 (11), 345 (28), 334 (38), 333 (26), 331 (38), 319 (18), 318 (64), 317 (33), 304 (16), 277 

(12), 274 (10), 206 (10), 41 (14). 

HRMS (EI): Calcd. for C20H20F5N3O3 [M]+: 455.14193, found: 455.14179. 

IR (ATR, cm–1): ṽ = 3371 (w), 2969 (w), 2940 (w), 2882 (w), 2833 (w), 1712 (m), 1668 (s), 

1622 (m), 1565 (m), 1504 (m), 1449 (s), 1442 (s), 1407 (m), 1390 (s), 1368 (m), 1325 (m), 1301 

(m), 1272 (w), 1255 (w), 1226 (s), 1181 (s), 1157 (s), 1140 (s), 1120 (s), 1047 (s), 1030 (m), 1011 

(s), 975 (m), 959 (m), 902 (w), 895 (w), 872 (w), 845 (s), 828 (m), 802 (m), 755 (m), 742 (m), 724 

(s), 691 (m), 685 (m), 676 (m), 642 (w), 635 (w), 600 (m), 564 (s), 529 (m). 

 

1,1',3,3'-Tetramethyl-5,5'-bis(trifluoromethyl)-7,7'-bipyrimido[4,5-b]quinoline-

2,2',4,4'(1H,1'H,3H,3'H)-tetrone (88u) 

 

The product was prepared according to the general 

procedure, starting from 0.329 g of 87u and 1.6 mL of H2SO4. 

Yield 0.143 (46%), yellow solid, mp ˃ 375 °C. 
1H NMR (300.13 MHz, 12% TFA-d in CDCl3): δ = 3.60 

(s, 6H, CH3-3, CH3-3'), 3.96 (s, 6H, CH3-1, CH3-1'), 8,30 (s, 4H, H-8, H-9, H-8', H-9'), 8.66 (s, 2H, 

H-6, H-6'). 
13C NMR (75.47 MHz, TFA-d): δ = 31.5 (CH3), 33.0 (CH3), 114.3 (C-4a, C-4a'), 124.0, 

124.1 (q, 1J(C-F) = 278.9 Hz, CF3), 127.1 (CH), 127.8 (q, 4J(C-F) = 5.7 Hz, CH-6, CH-6'), 138.1 (CH), 

142.0, 145.5, 147.1 (q, 2J(C-F) = 35.4 Hz), 150.0, 152.6 (CO-2, CO-2'), 160.9 (CO-4, CO-4'). 
19F NMR (282.38 MHz, 12% TFA-d in CDCl3): δ = –52.7 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 617 ([M+H]+, 26), 616 ([M]+, 100), 504 (39), 406 (10), 196 (22), 

69 (11). 

HRMS (EI): Calcd. for C28H18F6N6O4 [M]+: 616.12882, found: 616.12925. 

IR (ATR, cm–1): ṽ = 3070 (w), 2960 (w), 1716 (s), 1680 (s), 1619 (w), 1567 (s), 1499 (w), 

1468 (m), 1434 (s), 1399 (m), 1384 (m), 1370 (m), 1357 (m), 1331 (s), 1288 (m), 1271 (m), 1205 

(m), 1168 (s), 1145 (s), 1106 (s), 1062 (m), 1044 (w), 986 (m), 926 (w), 868 (w), 835 (s), 808 (m), 

788 (w), 771 (w), 760 (w), 747 (s), 727 (w), 712 (w), 699 (m), 677 (w), 643 (m), 602 (m), 555 (m), 

535 (w). 

 

7,7'-Methylenebis[1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione] (88v) 

 

The product was prepared according to the general procedure, starting from 0.46 g of 87v 

and 2.3 mL of H2SO4. 
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Yield 0.224 (51%), yellow solid, mp 368-370 °C. 
1H NMR (300.13 MHz, 12% TFA-d in CDCl3): δ = 3.60 

(s, 6H, CH3-3, CH3-3'), 3.96 (s, 6H, CH3-1, CH3-1'), 4.46 (s, 

2H, CH2), 7.80 (d, 2H, 3J = 8.87 Hz, H-8, H-8'), 8.14 (d, 2H, 3J 

= 8.87 Hz, H-9, H-9'), 8.24 (s, 2H, H-6, H-6'). 
13C NMR (62.90 MHz, 12% TFA-d in CDCl3): δ = 30.1 (CH3), 31.3 (CH3), 42.8 (CH2), 

110.2, 122.4, 123.0 (q, 1J(C-F) = 278.4 Hz, CF3), 125.6 (q, 4J(C-F) = 5.9 Hz, CH-6, CH-6'), 129.4 

(CH), 136.0 (CH), 139.5 (q, 2J(C-F) = 35.7 Hz), 139.8, 147.7, 149.2, 152.2 (CO-2, CO-2'), 160.2 

(CO-4, CO-4'). 
19F NMR (282.38 MHz, 12% TFA-d in CDCl3): δ = –52.8 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 631 ([M+H]+, 30), 630 ([M]+, 100), 561 (13), 518 (19), 498 (32), 

429 (16), 203 (30), 69 (29), 44 (16), 40 (21). 

HRMS (EI): Calcd. for C29H20F6N6O4 [M]+: 630.14447, found: 630.14403. 

IR (ATR, cm–1): ṽ = 3372 (w), 3078 (w), 2952 (w), 1719 (m), 1667 (s), 1621 (w), 1580 (s), 

1564 (m), 1495 (w), 1470 (s), 1462 (s), 1456 (s), 1414 (m), 1292 (m), 1272 (m), 1215 (m), 1192 

(m), 1163 (s), 1127 (s), 1108 (s), 1064 (m), 987 (m), 920 (w), 897 (w), 860 (w), 847 (w), 837 (m), 

820 (w), 811 (m), 770 (w), 747 (s), 721 (w), 708 (m), 696 (m), 677 (w), 667 (w), 638 (m), 574 (m), 

564 (w), 542 (w). 

 

9,11-Dimethyl-7-(pentafluoroethyl)benzo[h]pyrimido[4,5-b]quinoline-8,10(9H,11H)-

dione (88w) 

 

The product was prepared according to the general procedure, starting 

from 0.393 g of 87w and 2 mL of H2SO4. 

Yield 0.307 (54%), yellow solid, mp 313-315 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.55 (s, 3H, CH3-9), 3.98 (s, 3H, 

CH3-11), 7.73-7.86 (m, 3H, CHAr), 7.91 (d, 1H, 3J = 7.55 Hz, CHAr), 8.02-8.11 (m, 1H, CHAr), 9.20 

(d, 1H, 3J = 7.74 Hz, CHAr). 
13C NMR (62.90 MHz, 12% TFA-d in CDCl3): δ = 30.1 (CH3), 31.2 (CH3), 109.4 (C-7a), 

122.0 (CH-6), 122.2, 126.5 (CH), 128.2 (CH), 128.5 (CH), 129.7 (CH), 130.1, 131.7 (CH), 134.7, 

139.4 (t, 2J(C-F) = 24.2 Hz), 147.6, 150.6, 152.5, 160.3 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –90.9 (s, CF2), –74.9 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 410 ([M+H]+, 23), 409 ([M]+, 100), 352 (11), 311 (12), 298 

(12), 297 (72). 

HRMS (EI): Calcd. for C19H12F5N3O2 [M]+: 409.08442, found: 409.08417. 

IR (ATR, cm–1): ṽ = 3377 (w), 3056 (w), 2959 (w), 1719 (m), 1673 (s), 1620 (w), 1573 (m), 
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1562 (s), 1513 (w), 1503 (m), 1470 (m), 1450 (m), 1435 (w), 1422 (m), 1387 (w), 1367 (s), 1336 

(m), 1295 (m), 1239 (w), 1226 (m), 1189 (s), 1159 (m), 1138 (s), 1113 (m), 1101 (m), 1074 (w), 

1047 (m), 1028 (m), 997 (m), 969 (s), 934 (w), 885 (w), 878 (w), 834 (w), 810 (m), 796 (w), 787 

(m), 761 (m), 747 (m), 735 (s), 726 (m), 708 (m), 682 (m), 663 (w), 628 (w), 594 (w), 566 (w), 558 

(w), 543 (w). 

 

3,6,8-Trimethyl-1-phenyl-4-(trifluoromethyl)-1H-pyrazolo[4',3':5,6]pyrido[2,3-

d]pyrimidine-5,7(6H,8H)-dione (88x) 

 

The product was prepared according to the general procedure for the 

synthesis of compounds 87 (!) from 0.477 g of 70d, 0.136 g of pyridine and 

0.603 g of trifluoroacetic anhydride in 4.5 mL of dry dioxane. 

Yield 0.42 g (75%, calculated on 1,3-dimethyl-6-[(3-methyl-1-phenyl-

1H-pyrazol-5-yl)amino]pyrimidine-2,4(1H,3H)-dione 70d, which cyclizes immediately while 

acylated by TFAA; non-cyclized intermediate product hasn’t been obtained), yellow solid, mp 254 

°C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.73 (q, 3H, 6J(H-F) = 3.07 Hz, CH3-3) 3.51 (s, 3H, CH3-

6), 3.78 (s, 3H, CH3-8), 7.36 (t, 1H, 3J = 7.46 Hz, CHPh), 7.50-7.59 (m, 2H, CHPh), 8.12-8.20 (m, 

2H, CHPh). 
13C NMR (62.90 MHz, CDCl3): δ = 17.5 (q, 5J(C-F) = 7.4 Hz, CH3-3), 29.3 (CH3-6), 31.1 

(CH3-8), 104.5, 111.8, 121.3 (CHPh), 122.3 (q, 1J(C-F) = 278.8 Hz, CF3), 127.0 (CHPh), 129.4 (CHPh), 

136.7 (q, 2J(C-F) = 37.3 Hz, C-4), 138.4, 144.5, 151.00, 151.04, 151.06, 159.1 (CO-5). 
19F NMR (282.38 MHz, CDCl3): δ = –54.6 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 390 ([M+H]+, 20), 389 ([M]+, 100), 277 (33), 276 (17), 77 (21). 

HRMS (EI): Calcd. for C18H14F3N5O2 [M]+: 389.10941, found: 389.10929. 

IR (ATR, cm–1): ṽ = 3114 (w), 2996 (w), 2956 (w), 1715 (s), 1669 (s), 1593 (m), 1575 (s), 

1532 (m), 1504 (m), 1489 (s), 1470 (m), 1462 (m), 1456 (m), 1421 (s), 1411 (s), 1385 (m), 1367 (s), 

1336 (s), 1272 (m), 1227 (s), 1210 (m), 1179 (m), 1152 (s), 1135 (s), 1117 (s), 1062 (m), 1043 (m), 

1025 (m), 1000 (w), 987 (m), 970 (w), 911 (w), 864 (m), 845 (w), 805 (m), 774 (w), 763 (s), 754 

(m), 746 (s), 700 (m), 691 (s), 661 (m), 645 (w), 632 (w), 601 (m), 539 (w). 
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4.2.7 Synthesis of 5-hydroxy-1,3-dimethyl-5-perfluoroalkyl-5,10-dihydro-5-deazaallox-

azines 

 

General procedure for the synthesis of 5-hydroxy-1,3-dimethyl-5-perfluoroalkyl-5,10-

dihydro-1H-pyrimido[4,5-b]quinoline-2,4-diones 91a-c. 

Initial 5-(perfluoroacyl)-6-amino-1,3-dimethylrimidine-2,4(1H,3H)-dione 90 (1 g) was 

dissolved in concentrated H2SO4 (5 mL) and allowed to stand at r.t. for 2 hours. Then the solution 

was poured into ice water and extracted with chloroform, extracts were died over Na2SO4 and 

evaporated by rotovap. The crude product was purified via short-part column chromatography 

(silica gel / CHCl3), followed by recrystallization from methanol to give pure product. 

 

5-Hydroxy-1,3,10-trimethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (91c) 

 

The product was prepared following the general procedure, starting from 

0.25 g of 90c and 1.3 mL of H2SO4. 

Yield 0.18 g (72%), white solid, mp 216-218 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.26 (s, 3H, CH3), 3.48 (s, 3H, CH3), 3.51 (s, 3H, 

CH3), 7.32 (dd, 1H, 3J1 = 7.74 Hz, 3J2 = 7.17 Hz, H-7), 7.46 (d, 1H, 3J = 8.31 Hz, H-9), 7.55 (dd, 

1H, 3J1 = 8.31 Hz, 3J2 = 7.17 Hz, H-8), 7.67 (d, 1H, 3J = 7.74 Hz, H-6), 8.45 (br s, 1H, OH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.5 (CH3), 37.3 (CH3), 41.8 (CH3), 71.8 (q, 2J(C-F) = 

30.5 Hz), 88.1 (C-4a), 119.3 (CH), 125.2 (CH), 126.2 (q, 1J(C-F) = 290.5 Hz, CF3), 126.7 (CH), 

130.8 (CH), 141.7, 152.4, 153.3, 165.0. 
19F NMR (282.38 MHz, DMSO-d6): δ = –83.1 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 273 (41), 272 (100), 257 (10). 

HRMS (ESI): Calcd. for C15H15F3N3O3 [M+H]+: 342.10600, found: 342.10635. 

IR (ATR, cm–1): ṽ = 3271 (w), 3190 (w), 2980 (w), 1703 (s), 1687 (m), 1622 (s), 1608 (s), 

1574 (m), 1504 (s), 1487 (s), 1470 (s), 1464 (s), 1456 (s), 1423 (s), 1396 (m), 1381 (m), 1323 (m), 

1254 (s), 1207 (m), 1161 (s), 1119 (s), 1090 (m), 1070 (s), 1049 (s), 972 (m), 955 (w), 937 (m), 922 

(s), 866 (w), 833 (m), 779 (s), 768 (s), 760 (s), 746 (s), 710 (s), 662 (s), 642 (s), 602 (m), 565 (m), 

550 (m), 538 (m). 
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6-Hydroxy-8,10-dimethyl-6-(trifluoromethyl)-1,2-dihydro-6H-pyrimido[4,5-

b]pyrrolo[3,2,1-ij]quinoline-7,9(8H,10H)-dione (91a) 

 

The product was prepared following the general procedure, starting from 

0.336 g of 90a and 1.7 mL of H2SO4. 

Yield 0.299 g (89%), white solid, mp 253-255 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.25 (s, 3H, CH3), 3.26-3.49 (m, 2H, CH2-2), 3.67 

(s, 3H, CH3), 4.22-4.35 (m, 1H, CH2-1a), 4.80-4.92 (m, 1H, CH2-1b), 7.25 (dd, 1H, 3J1 = 7.74 Hz, 
3J2 = 7.36 Hz, H-4), 7.39 (d, 1H, 3J = 7.36 Hz, CHAr), 7.45 (d, 1H, 3J = 7.74 Hz, CHAr), 8.69 (s, 1H, 

OH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.5 (CH3), 29.1 (CH2), 37.7 (CH3), 54.1 (CH2), 

72.7 (q, 2J(C-F) = 30.7 Hz, C-6), 80.6 (C-6a), 116.7 125.0 (CHAr), 125.9 (CHAr), 126.3 (CHAr), 126.7 

(q, 1J(C-F) = 291.2 Hz, CF3), 130.3, 140.8, 152.0, 152.7, 164.7. 
19F NMR (282.38 MHz, DMSO-d6): δ = –82.5 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 285 ([M+H–CF3]
+, 17), 284 ([M–CF3]

+, 100), . 

HRMS (ESI): Calcd. for C16H14F3N3NaO3 [M+Na]+: 376.08795, found: 376.08866. 

Anal. Calcd for C16H14F3N3O3: C, 54.39; H, 3.99; N, 11.89. Found: C, 54.30; H, 4.05; N, 

11.52. 

IR (ATR, cm–1): ṽ = 3029 (m), 2967 (m), 1695 (s), 1639 (w), 1606 (m), 1544 (m), 1494 (s), 

1462 (s), 1455 (s), 1443 (s), 1430 (s), 1401 (m), 1379 (m), 1360 (m), 1344 (m), 1301 (w), 1259 (m), 

1242 (s), 1233 (s), 1220 (m), 1184 (w), 1156 (s), 1129 (s), 1157 (s), 1035 (m), 1005 (w), 991 (m), 

964 (s), 936 (m), 866 (m), 832 (w), 783 (s), 773 (m), 764 (m), 753 (s), 745 (m), 716 (m), 704 (s), 

679 (m), 616 (w), 574 (w), 534 (w). 

 

7-(Heptafluoropropyl)-7-hydroxy-9,11-dimethyl-2,3-dihydro-1H,7H-pyrido[3,2,1-

ij]pyrimido[4,5-b]quinoline-8,10(9H,11H)-dione (91b) 

 

The product was prepared following the general procedure, starting from 

0.2 g of 90b and 1 mL of H2SO4. 

Yield 0.188 g (94%), white solid, mp 177 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.09-2.23 (m, 1H, CH2-2a), 2.24-

2.43 (m, 1H, CH2-2b), 2.94-3.05 (m, 2H, CH2-3), 3.25-3.35 (m, 1H, CH2-1a), 3.35 (s, 3H, CH3), 

3.50 (s, 3H, CH3),3.92-4.02 (m, 1H, CH2-1b), 7.12-7.21 (m, 2H, CHAr), 7.60-7.67 (m, 1H, CHAr), 

8.41 (s, 1H, OH). 
13C NMR (75.48 MHz, CDCl3): δ = 22.8 (CH2), 25.4 (CH2), 28.3 (CH3), 37.5 (CH3), 47.3 

(CH2-1), 74.4 (t, 2J(C-F) = 25.2 Hz, C-7), 88.9 (C-7a), 123.1, 124.6 (CHAr), 125.3 (CHAr), 126.7, 
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129.7, 136.5 (CHAr), 150.5, 152.8, 165.1. 
19F NMR (282.38 MHz, CDCl3): δ = –125.3 (dd, 2J = 289.17 Hz, 3J = 9.19 Hz, CF2-1a), –

123.6 (dd, 2J = 289.17 Hz, 3J = 7,16 Hz, CF2-1b), 121.6 (m, CF2-2), –80.8 (t, J = 12.27 Hz, CF3). 

IR (ATR, cm–1): ṽ = 3216 (m), 2956 (w), 2849 (w), 1693 (m), 1622 (m), 1601 (m), 1575 

(m), 1504 (m), 1462 (s), 1455 (s), 1428 (s), 1407 (m), 1389 (w), 1371 (m), 1345 (m), 1286 (w), 

1250 (w), 1206 (s), 1184 (s), 1116 (s), 1091 (m), 1061 (m), 1045 (m), 1032 (m), 1003 (w), 984 (w), 

942 (w), 907 (w), 878 (w), 856 (m), 827 (w), 807 (w), 782 (m), 769 (m), 746 (s), 733 (w), 701 (m), 

676 (w), 667 (m), 646 (s), 589 (w), 575 (w), 568 (w), 550 (w), 530 (w). 

 

4.2.8 Synthesis of 9-(ω-chloroalkyl)-1,3-dimethyl-5-trifluoromethyl-5-deazaalloxazines 

 

Synthesis of 9-(2-Chloroethyl)-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione 92a and 9-(3-Chloropropyl)-5-(heptafluoropropyl)-1,3-

dimethylpyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 92b. General procedure. 

A starting material (6-hydroxy-8,10-dimethyl-6-(trifluoromethyl)-1,2-dihydro-6H-pyrimido-

[4,5-b]pyrrolo[3,2,1-ij]quinoline-7,9(8H,10H)-dione 91a or 7-(heptafluoropropyl)-7-hydroxy-9,11-

dimethyl-2,3-dihydro-1H,7H-pyrido[3,2,1-ij]pyrimido[4,5-b]quinoline-8,10(9H,11H)-dione 91b) 

was dissolved in chloroform and then refluxed with thionyl chloride (2 eq) for 3 hours till the solid 

phase disappeared. Afterwards the solvent was evaporated and the crude product was purified via 

short-part column chromatography (silica gel / CHCl3), followed by recrystallization from 

methanol. 

 

9-(2-Chloroethyl)-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (92a) 

 

The product was prepared following the general procedure, starting from 

0.4 g of 91a, 0.269 g of thionyl chloride and 8 mL of chloroform. 

Yield 100%, yellow solid, mp 151-153 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.52 (s, 3H, CH3-3), 3.67 (t, 2H, 3J 

= 7.55 Hz, Ar-CH2-), 3.83 (s, 3H, CH3-1), 3.94 (t, 2H, 3J = 7.55 Hz, CH2Cl), 7.55 (dd, 1H, 3J1 = 

8.97 Hz, 3J2 = 6.99 Hz, H-7), 7.78 (d, 1H, 3J = 6.99 Hz, H-8), 8.23-8.30 (dm, 1H, 3J = 8.97 Hz, H-

6). 
13C NMR (75.48 MHz, CDCl3): δ = 29.5 (CH3-3), 30.7 (CH3-1), 36.1 (Ar-CH2-), 44.2 

(CH2Cl), 110.4 (C-4a), 122.1, 123.2 (q, 1J(C-F) = 278.3 Hz, CF3), 125.4 (q, 4J(C-F) = 6.0 Hz, CH-6), 

126.9 (CHAr), 134.4 (CHAr), 136.1, 139.3 (q, 2J(C-F) = 33.5 Hz, C-5), 147.6, 148.6, 151.2 (CO-2), 

159.3 (CO-4). 
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19F NMR (282.38 MHz, CDCl3): δ = –52.4 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 371 ([M]+, 35Cl, 7.9), 337 ([M+H–Cl]+, 20), 336 ([M–Cl]+, 

100), 279 (29). 

HRMS (ESI): Calcd. for C16H13F3N3O2 [M-Cl]+: 336.09544, found: 336.09572. 

Anal. Calcd for C16H13ClF3N3O2: C, 51.69; H, 3.52; N, 11.30. Found: C, 47.85; H, 3.52; N, 

10.05. 

IR (ATR, cm–1): ṽ = 2953 (w), 1718 (m), 1669 (s), 1607 (w), 1574 (s), 1494 (w), 1479 (m), 

1464 (m), 1467 (m), 1445 (m), 1421 (m), 1391 (m), 1375 (m), 1352 (m), 1327 (m), 1290 (m), 1277 

(m), 1224 (s), 1195 (m), 1158 (s), 1134 (s), 1116 (s), 1079 (m), 1032 (m), 977 (m), 928 (w), 875 

(m), 845 (w), 828 (w), 794 (m), 780 (m), 770 (s), 746 (s), 723 (m), 711 (m), 700 (s), 682 (m), 605 

(w), 579 (m), 564 (m), 551 (m), 541 (m). 

 

9-(3-Chloropropyl)-5-(heptafluoropropyl)-1,3-dimethylpyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (92b) 

 

The product was prepared following the general procedure, starting 

from 1.2 g of 91a, 0.611 g of thionyl chloride and 24 mL of chloroform. 

Yield 1.121 g (90%), yellow solid, mp 113-114 °C. 
1H NMR (250.13 MHz, CDCl3): δ = 2.19-2.34 (m, 2H, CH2), 3.40 (t, 

2H, 3J = 7.41 Hz, Ar-CH2-), 3.51 (s, 3H, CH3-3), 3.60 (t, 2H, 3J = 6.31 Hz, 

CH2Cl), 3.85 (s, 3H, CH3-1), 7.52 (dd, 1H, 3J1 = 8.99 Hz, 3J2 = 6.94 Hz, H-7), 7.76 (d, 1H, 3J = 6.94 

Hz, H-8), 8.22 (d, 1H, 3J = 8.99 Hz, H-5). 
13C NMR (62.90 MHz, CDCl3): δ = 29.7 (CH3-3), 30.0 (CH2), 30.9 (CH3-1), 33.1 (CH2), 

45.0 (CH2), 111.5 (C-4a), 123.1 (C-5a), 125.5 (m, CH-6), 127.1 (CH), 133.4 (CH), 139.4, 140.4 (t, 
2J(C-F) = 24.0 Hz, C-5), 147.7, 148.7, 151.1 (CO-2), 159.1 (CO-4). 

19F NMR (235.33 MHz, CDCl3): δ = –116.5 (s, CF2), –90.4 (br s, CF2), –80.0 (t, J = 9.54 

Hz, CF3). 

MS (GC, 70 eV): m/z (%) = 485 ([M]+, 35Cl, 15), 451 (21), 450 (100), 436 (36), 423 (28), 

393 (16), 311 (10). 

HRMS (ESI): Calcd. for C19H16ClF7N3O2 [M+H, 35Cl]+: 486.08138, found: 486.08130. 

IR (ATR, cm–1): ṽ = 2958 (w), 2929 (w), 1722 (s), 1678 (s), 1612 (w), 1568 (s), 1504 (m), 

1479 (m), 1462 (m), 1423 (s), 1392 (m), 1371 (m), 1344 (m), 1319 (m), 1311 (m), 1288 (m), 1269 

(m), 1255 (m), 1227 (s), 1211 (s), 1188 (s), 1171 (s), 1132 (s), 1113 (s), 1078 (s), 1047 (m), 1020 

(m), 980 (m), 949 (m), 910 (s), 878 (m), 825 (m), 798 (m), 785 (s), 777 (s), 760 (s), 743 (s), 731 (s), 

721 (s), 700 (s), 692 (s), 623 (s), 617 (s), 590 (m), 565 (m), 550 (s), 536 (m). 
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4.2.9 Suzuki–Miyaura cross-coupling with 7-bromo-1,3-dimethyl-5-(trifluoromethyl)-5-

deazaalloxazine 

 

1,3-Dimethyl-7-phenyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 

(96) 

 

A sealed ACE pressure tube was charged with 0.05 g of 7-bromo-

1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione 88p (0.13 mmol, 1 eq), 0.019 g of phenylboronic acid (0.15 mmol, 

1.2 eq), 0.053 g of K2CO3 (0.039 mmol, 3 eq), 0.003 g of Pd(PPh3)4 

(0.0026 mmol, 0.02 eq), 2.5 mL of dioxane and 0.5 mL of water. The reaction mixture was stirred 

under argon at 100 °C for half an hour. After cooling to r.t. formed precipitate was filtered off by 

suction, washed twice with methanol and dried in high vacuum to give the pure product. 

Yield 0.047 g (95%), green solid, mp 230 °C. 
1H NMR (300.13 MHz, 12% TFA-d in CDCl3): δ = 3.58 (s, 3H, CH3-3), 3.94 (s, 3H, CH3-

1), 7.44-7.59 (m, 3H, CHPh), 7.68-7.74 (m, 2H, CHPh), 8.23 (s, 2H, H-8, H-9), 8.53 (s, 1H, H-6). 
13C NMR (62.90 MHz, 12% TFA-d in CDCl3): δ = 30.1 (CH3-3), 31.3 (CH3-1), 110.3 (C-

4a), 122.6, 122.7 (q, 1J(C-F) = 278.4 Hz, CF3), 123.8 (q, 4J(C-F) = 6.0 Hz, CH-6), 128.1 (CHAr), 129.0 

(CHAr), 129.1 (CHAr), 129.7 (CHAr), 134.9 (CHAr), 139.5, 140.1 (q, 2J(C-F) = 33.8 Hz, C-5), 141.4, 

147.4, 149.2, 152.2 (CO-2), 160.3 (CO-4). 
19F NMR (282.38 MHz, 12% TFA-d in CDCl3): δ = –52.8 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 386 ([M+H]+, 23), 385 ([M]+, 100), 316 (10), 287 (16), 274 

(14), 273 (78), 259 (13). 

HRMS (EI): Calcd. for C20H14F3N3O2 [M]+: 385.10326, found: 385.10314. 

IR (ATR, cm–1): ṽ = 3379 (w), 3054 (w), 2958 (w), 1720 (m), 1668 (s), 1651 (m), 1621 (w), 

1574 (s), 1516 (w), 1469 (s), 1433 (s), 1328 (m), 1293 (m), 1281 (m), 1212 (m), 1165 (s), 1152 (s), 

1131 (s), 1074 (m), 1027 (w), 994 (m), 942 (w), 918 (w), 894 (w), 883 (w), 860 (w), 843 (m), 807 

(m), 765 (m), 756 (s), 744 (s), 706 (m), 694 (s), 674 (m), 639 (m), 617 (w), 607 (w), 594 (w), 557 

(m), 540 (w). 
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4.2.10 Sonogashira cross-coupling with 7-bromo-1,3-dimethyl-5-(trifluoromethyl)-5-

deazaalloxazine 

 

Sonogashira coupling with 7-bromo-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione 88p. General procedure. 

 

Into a flask were placed 7-bromo-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione 88p (1 eq), terminal acetylene (1.2 eq), Pd(PPh3)2Cl2 (0.02 eq), CuI (0.01 eq), 

diisopropylamine (10 eq) and THF (1 mL per 0.05 g of starting aryl bromide). The mixture was 

stirred for 3 hours and then allowed to stay at r.t. for two days. After that the reaction mixture was 

diluted with water, the formed precipitate was filtered off by suction, washed with methanol and 

heptane and dried in high vacuum. 

 

1,3-Dimethyl-7-(phenylethynyl)-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (97a) 

 

The product was prepared following the general procedure, 

starting from 0.05 g of 8-bromo derivative 88p, 0.016 g of 

phenylacetylene, 0.9 mg of Pd(PPh3)2Cl2, 0.12 mg of CuI, 0.13 g of 

diisopropylamine and 1 mL of THF. 

Yield 0.047 g (89%), yellow solid, mp 269 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.51 (s, 3H, CH3-3), 3.82 (s, 3H, CH3-1), 7.35-7.44 (m, 

3H, CHPh), 7.55-7.62 (m, 2H, CHPh), 7.90 (d, 1H, 3J = 8.88 Hz, H-8), 7.99 (d, 1H, 3J = 8.88 Hz, H-

9), 8.46 (s, 1H, H-6). 
13C NMR (75.48 MHz, CDCl3): δ = 29.6 (CH3-3), 30.8 (CH3-1), 88.8 (C-sp), 92.4 (C-sp), 

111.0 (C-4a), 121.6, 122.7, 122.8, 123.2 (q, 1J(C-F) = 278.4 Hz, CF3), 128.8 (CHAr), 129.19 (q, 4J(C-F) 

= 6.1 Hz, CH-6), 129.26 (CHPh), 129.29 (CHPh), 132.1 (CHPh), 136.0 (CHAr), 138.2 (q, 2J(C-F) = 33.6 

Hz, C-5), 148.7, 149.7, 151.1 (CO-2), 159.2 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –52.6 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 410 ([M+H]+, 25), 409 ([M]+, 100), 311 (15), 298 (11), 297 

(54), 283 (16). 

HRMS (ESI): Calcd. for C22H15F3N3O2 [M+H]+: 410.11109, found: 410.11143. 

Anal. Calcd for C22H14F3N3O2: C, 50.22; H, 3.58; N, 11.71. Found: C, 49.43; H, 3.21; N, 

10.13. 

IR (ATR, cm–1): ṽ = 3375 (w), 3061 (w), 2952 (w), 2213 (w), 1714 (s), 1674 (s), 1652 (m), 

1616 (w), 1574 (s), 1558 (m), 1512 (w), 1505 (w), 1490 (w), 1470 (m), 1440 (s), 1418 (m), 1405 
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(m), 1386 (m), 1373 (s), 1324 (m), 1303 (m), 1290 (m), 1275 (m), 1207 (m), 1162 (s), 1143 (s), 

1128 (s), 1070 (m), 1027 (w), 996 (m), 985 (m), 919 (w), 884 (w), 864 (w), 835 (s), 807 (w), 783 

(w), 755 (m), 744 (s), 704 (m), 689 (s), 674 (w), 662 (m), 641 (w), 578 (m), 538 (w), 529 (m). 

 

7-Hex-1-yn-1-yl-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-

dione (97b) 

 

The product was prepared following the general procedure, 

starting from 0.25 g of 8-bromo derivative 88p, 0.063 g of 

phenylacetylene, 4.52 mg of Pd(PPh3)2Cl2, 0.61 mg of CuI, 0.652 g 

of diisopropylamine and 5 mL of THF. 

Yield 0.234 (89%), yellow solid, mp 180 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 0.97 (t, 3H, 3J = 7.27 Hz, Bu), 1.43-1.70 (m, 4H, Bu), 

2.47 (t, 2H, Bu, 3J = 7.08 Hz), 3.49 (s, 3H, CH3-3), 3.78 (s, 3H, CH3-1), 7.74 (d, 1H, 3J = 8.87 Hz, 

H-8), 7.87 (d, 1H, 3J = 8.87 Hz, H-9), 8.28 (s, 1H, H-6). 
13C NMR (75.48 MHz, CDCl3): δ = 13.9 (CH3(Bu)), 19.5 (CH2(Bu)), 22.4 (CH2(Bu)), 29.5 

(CH3-3), 30.7 (CH3-1), 30.9 (CH2(Bu)), 80.1 (C-sp), 94.0 (C-sp), 110.8 (C-4a), 121.5, 123.1 (q, 1J(C-F) 

= 278.5 Hz, CF3), 123.4, 128.7 (q, 4J(C-F) = 6.1 Hz, CH-6), 128.9 (CHAr), 136.3 (CHAr), 137.8 (q, 
2J(C-F) = 33.5 Hz, C-5), 148.3, 149.2, 151.0 (CO-2), 159.2 (CO-4). 

19F NMR (282.38 MHz, CDCl3): δ = –52.7 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 390 ([M+H]+, 21), 389 ([M]+, 100), 388 (12), 360 (23), 346 

(30), 317 (14), 289 (21), 277 (27), 261 (10), 234 (23), 220 (15). 

HRMS (ESI): Calcd. for C20H19F3N3O2 [M+H]+: 390.14239, found: 390.14253. 

IR (ATR, cm–1): ṽ = 3379 (w), 3089 (w), 2960 (w), 2934 (w), 2862 (w), 2228 (w), 1726 (m), 

1671 (s), 1614 (w), 1581 (s), 1468 (s), 1451 (s), 1411 (m), 1386 (m), 1370 (s), 1322 (w), 1287 (m), 

1240 (w), 1205 (m), 1173 (s), 1159 (s), 1145 (s), 1132 (s), 1108 (s), 1071 (m), 1019 (w), 989 (m), 

956 (w), 933 (w), 887 (m), 858 (w), 854 (s), 807 (m), 775 (w), 761 (w), 748 (s), 728 (w), 704 (s), 

689 (w), 672 (m), 659 (w), 641 (m), 589 (w), 575 (m), 538 (w). 

 

4.2.11 Reduction of 5-(trifluoromethyl)-5-deazaalloxazines 

 

Reduction of 5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-2,4-diones 88. General 

procedure. 

Method A 

Into a 50-mL flask were placed 5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-2,4-dione 88 

(1.48 mmol, 1 eq), sodium cyanoborohydride (5.93 mmol, 4 eq) and THF (10 mL). Then the 
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mixture was cooled to 0 °C and acetic acid (11.9 mmol, 8 eq) was added. Afterwards the reaction 

mixture was allowed to warm to r.t.. Three days later the reaction was monitored by TLC and 

stirred 8 hours at 45 °C, if the starting material still was detected. After that mixture was diluted 

with water. Precipitate was filtered off to give a pure product. 

Method B 

A sealed ACE pressure tube was charged with 0.1 g of 1,3,7,9-tetramethyl-5-

(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 88c (0.30 mmol, 1 eq), 0.451 g of 

diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (1.78 mmol, 6 eq), 0.0056 g of TsOH 

(0.03 mmol, 0.1 eq) and 3 mL of xylene. The reaction mixture was stirred under argon at 155 °C for 

5 hours. Then the solution was cooled to r.t. and formed precipitate was filtered off, washed twice 

with xylene and dried in high vacuum to give the desired product. 

 

1,3,7,9-Tetramethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (98a) 

 

Yield 99% (Method A; starting from 0.5 g of 88c, 0.373 g of sodium 

cyanoborohydride, 0.712 g of acetic acid and 10 mL of THF) and 41% 

(Method B), white solid, mp 263-265 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.32 (s, 6H, CH3-7, CH3-9), 3.40 

(s, 3H, CH3), 3.60 (s, 3H, CH3), 4.88 (q, 1H, 3J(H-F) = 8.22 Hz, CH-5), 6.40 (br s, 1H, NH), 7.01 (s, 

1H, CHAr), 7.04 (s, 1H, CHAr). 
13C NMR (75.47 MHz, DMSO-d6): δ = 17.9 (Ar-CH3), 21.1 (Ar-CH3), 28.7 (N-CH3), 30.4 

(N-CH3), 40.2 (q, 2J(C-F) = 29.2 Hz, CH-5), 79.6, 117.5, 126.4, 129.0 (CH), 127.4 (q, 1J(C-F) = 284.3 

Hz, CF3), 132.3 (CH), 133.6, 134.1, 148.7, 151.8, 161.7. 
19F NMR (282.38 MHz, CDCl3): δ = –73.7 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 339 ([M]+, 5.0), 271 (17), 270 ([M–CF3]
+, 100), 213 (11). 

HRMS (ESI): Calcd. for C16H17F3N3O2 [M+H]+: 340.12674, found: 340.12665. 

Anal. Calcd for C16H16F3N3O2: C, 56.64; H, 4.75; N, 12.38. Found: C, 56.72; H, 4.73; N, 

12.10. 

IR (ATR, cm–1): ṽ = 3457 (m), 3322 (w), 2914 (w), 1693 (m), 1633 (s), 1611 (m), 1520 (s), 

1489 (m), 1475 (s), 1445 (m), 1418 (w), 1382 (w), 1354 (w), 1336 (m), 1326 (m), 1275 (w), 1240 

(s), 1218 (m), 1180 (w), 1146 (s), 1107 (s), 1057 (w), 1042 (w), 991 (w), 968 (w), 951 (w), 936 (w), 

900 (w), 870 (w), 844 (m), 820 (w), 777 (w), 768 (m), 751 (s), 710 (w), 696 (w), 681 (w), 667 (m), 

580 (w), 568 (w). 
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7-Ethyl-1,3-dimethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-b]quinoline-

2,4(1H,3H)-dione (98b) 

 

The product was prepared according to the Method A, starting from 

0.15 g of 88f, 0.112 g of sodium cyanoborohydride, 0.214 g of acetic acid 

and 3 mL of THF. 

Yield 0.144 g (95%), white solid, mp 241 °C. 
1H NMR (250.13 MHz, DMSO-d6): δ = 1.20 (t, 3H, 3J = 7.57 Hz, Et), 2.61 (q, 2H, 3J = 7.57 

Hz, Et), 3.24 (s, 3H, CH3), 3.51 (s, 3H, CH3), 4.91 (q, 1H, 3J(H-F) = 8.51 Hz, CH-5), 7.23 (dd, 1H, 3J 

= 8.20 Hz, 4J = 1.82 Hz, H-8), 7.28 (s, 1H, H-6), 7.35 (d, 1H, 3J = 8.20 Hz, H-9), 9.57 (br s, 1H, 

NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 16.5 (CH3), 28.4 (CH2), 28.7 (CH3), 30.9 (CH3), 

40.0 (q, 2J(C-F) = 28.9 Hz, CH-5), 77.3 (C-4a), 115.6, 117.6 (CHAr), 127.4 (q, 1J(C-F) = 284.3 Hz, 

CF3), 129.3 (CHAr), 130.0 (CHAr), 136.4, 140.0, 148.5, 151.6, 161.6. 
19F NMR (282.38 MHz, DMSO-d6): δ = –72.7 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 339 ([M]+, 3.7), 271 (18), 270 ([M–CF3]
+, 100), 213 (13). 

HRMS (EI): Calcd. for C16H16F3N3O2 [M]+: 339.11891, found: 339.11894. 

IR (ATR, cm–1): ṽ = 3275 (m), 3206 (w), 3139 (w), 2973 (w), 2893 (w), 1701 (s), 1633 (m), 

1607 (s), 1557 (s), 1497 (s), 1476 (s), 1460 (m), 1429 (m), 1394 (w), 1368 (w), 1328 (m), 1312 (m), 

1292 (w), 1282 (w), 1258 (m), 1237 (s), 1217 (m), 1189 (m), 1157 (s), 1148 (m), 1141 (m), 1121 

(m), 1113 (s), 1049 (w), 981 (m), 952 (w), 929 (w), 895 (w), 846 (m), 833 (m), 813 (w), 803n (w), 

773 (m), 750 (m), 727 (w), 713 (m), 676 (m), 667 (m), 642 (m), 577 (w), 555 (w), 545 (w). 

 

4.2.12 Alkylation of 1,3,7,9-tetramethyl-5-(trifluoromethyl)-5,10-dihydro-5-

deazaalloxazine 

 

(4aR,5R)- and (4aS,5S)-4a-Benzyl-1,3,7,9-tetramethyl-5-(trifluoromethyl)-4a,5-

dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (100), racemic mixture of enantiomers. 

 

A mixture of 1,3,7,9-tetramethyl-5-(trifluoromethyl)-5,10-

dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 98a (0.1 g, 0.29 mmol, 1 

eq), benzyl bromide (0.055 g, 0.32 mmol, 1.1 eq), K2CO3 (0.081 g, 0.59 

mmol, 2 eq) and DMF (2 mL) was stirred overnight under argon. The next 

day the reaction mixture was diluted with water and heptane. The formed precipitate was filtered off 

by suction, washed twice with water and heptanes and dried in high vacuum to give the pure 

product. 
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Yield 104 g (82%), white solid, mp 159-161 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.39 (s, 3H, Ar-CH3), 2.51 (s, 3H, Ar-CH3), 3.00 (d, 

1H, 2J = 12.56 Hz, CH2-a), 3.09 (d, 1H, 2J = 12.56 Hz, CH2-b), 3.15 (s, 3H, N-CH3), 3.28 (s, 3H, N-

CH3), 4.00 (q, 1H, 3J(H-F) = 8.25 Hz, H-5), 6.82-6.91 (m, 2H, CHo-Ph), 6.99 (s, 1H, H-6), 7.17 (s, 1H, 

H-8), 7.20-7.32 (m, 3H, CHPh). 
13C NMR (62.90 MHz, CDCl3): δ = 17.9 (CH3), 21.4 (CH3), 28.4 (CH3), 29.8 (CH3), 42.9 

(CH2), 47.8 (C-4a), 48.8 (q, 2J(C-F) = 26.8 Hz, CH), 118.7, 125.4 (q, 1J(C-F) = 283.4 Hz, CF3), 128.7 

(CH), 128.7 (CH), 128.7 (CH), 129.4 (CH), 133.0 (CH), 133.5, 134.4, 136.0, 139.2, 150.2, 151.6, 

168.8. 
19F NMR (282.38 MHz, DMSO-d6): δ = –65.5 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 430 ([M+H]+, 14), 429 ([M]+, 51), 91 (100). 

HRMS (EI): Calcd. for C23H22O2N3F3 [M]+: 429.16586, found: 429.16570. 

IR (ATR, cm–1): ṽ = 2933 (w), 2920 (w), 1726 (m), 1682 (s), 1622 (s), 1597 (s), 1471 (m), 

1443 (s), 1427 (s), 1381 (s), 1344 (m), 1325 (s), 1315 (s), 1294 (s), 1273 (s), 1255 (s), 1238 (s), 

1215 (m), 1196 (m), 1151 (s), 1119 (s), 1068 (m), 1051 (m), 1032 (m), 995 (m), 982 (m), 959 (m), 

939 (m), 916 (m), 893 (m), 870 (w), 858 (m), 851 (m), 831 (m), 804 (m), 791 (m), 770 (m), 764 

(m), 743 (s), 702 (s), 671 (m), 648 (m), 582 (m), 571 (m), 548 (m). 

 

4.2.13 Nucleophilic additions to position 5 of 5-polyfluoroalkyl-5-deazaalloxazines 

4.2.13.1 Addition of acetophenone 

 

Addition of acetophenone to 1,3-dialkyl-5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-

2,4-diones. General procedure. 

Into a flask were placed 1,3-dialkyl-5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-2,4-dione 

(1 eq), acetophenone (1.5 eq), dry THF (20 mL per 1 g of starting material) and sodium hydride 

(60% in mineral oil, 2 eq). The reaction mixture was stirred for half an hour at r.t. and then allowed 

to stay overnight. Afterwards 2.5 eq of acetic acid was added and the mixture was diluted with 

water. The formed precipitate was filtered off by suction, washed with heptane and recrystallized 

from methanol/water giving the pure product. 

 

7-Ethyl-1,3-dimethyl-5-(2-oxo-2-phenylethyl)-5-(trifluoromethyl)-5,10-

dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-dione (101a) 

 

The product was prepared according to the general method, starting from 0.2 g of 88f, 0.107 

g of acetophenone, 0.047 g of sodium hydride (60% in mineral oil) and 4 mL of THF. 
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Yield 0.219 g (81%), white solid, mp 233 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.09 (t, 3H, 3J = 7.55 Hz, 

Et), 2.53 (q, 2H, 3J = 7.55 Hz, Et), 3.09 (s, 3H, CH3), 3.59 (s, 3H, CH3), 4.33 

(d, 1H, 2J = 18.70 Hz, CH2CO-a), 5.50 (d, 1H, 2J = 18.70 Hz, CH2CO-b), 

7.18 (d, 1H, 3J = 8.12 Hz, H-8), 7.36 (d, 1H, 3J = 8.12 Hz, H-9), 7.41 (s, 1H, 

H-6), 7.50-7.60 (m, 2H, CHm-Ph), 7.62-7.70 (m, 1H, CHp-Ph), 7.95-8.04 (m, 2H, CHo-Ph) 9.38 (br s, 

1H, NH). 
13C NMR (75.48 MHz, DMSO-d6): δ = 16.6 (CH3), 28.5 (CH2), 28.6 (CH3), 31.2 (CH3), 

38.5 (CH2CO), 47.5 (q, 2J(C-F) = 25.7 Hz, C-5), 79.9 (C-4a), 117.6 (CHAr), 119.9, 127.0 (CHAr), 

128.6 (q, 1J(C-F) = 287.3 Hz, CF3), 128.7 (CHAr), 128.9 (CHAr), 129.5 (CHAr), 133.9 (CHAr), 135.0, 

137.6, 139.6, 148.1, 151.1, 161.6, 195.8. 
19F NMR (282.38 MHz, DMSO-d6): δ = –75.8 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 457 ([M]+, 1.7), 338 ([M–CF3]
+, 42), 337 (28), 225 (35), 105 

(100), 77 (33). 

HRMS (ESI): Calcd. for C24H23F3N3O3 [M+H]+: 458.16860, found: 458.16921. 

IR (ATR, cm–1): ṽ = 3375 (w), 3340 (m), 2959 (w), 2873 (w), 1707 (w), 1694 (m), 1681 (s), 

1634 (s), 1615 (m), 1598 (s), 1531 (s), 1504 (s), 1477 (m), 1447 (m), 1404 (m), 1387 (m), 1367 (m), 

1319 (w), 1261 (m), 1234 (s), 1218 (s), 1184 (m), 1157 (s), 1144 (s), 1094 (w), 1056 (w), 1043 (w), 

1030 (w), 1003 (m), 963 (w), 948 (w), 928 (w), 896 (w), 879 (w), 828 (m), 795 (w), 772 (m), 752 

(s), 730 (w), 706 (w), 687 (m), 675 (m), 643 (w), 628 (w), 599 (w), 576 (m), 551 (m), 534 (m). 

 

8,10-Dimethyl-6-(2-oxo-2-phenylethyl)-6-(trifluoromethyl)-1,2-dihydro-6H-

pyrimido[4,5-b]pyrrolo[3,2,1-ij]quinoline-7,9(8H,10H)-dione (102a) 

 

The product was prepared according to the general method, starting from 

0.15 g of 92b, 0.073 g of acetophenone, 0.032 g of sodium hydride (60% in 

mineral oil) and 3 mL of THF. 

Yield 0.171 g (93%), white solid, mp 304-305 °C. 
1H NMR (250.13 MHz, CDCl3): δ = 3.18 (s, 3H, CH3), 3.20-3.44 (m, 

2H, CH2-2), 3.64 (s, 3H, CH3), 3.85 (d, 1H, 2J = 18.36 Hz, CH2CO-a), 4.00-4.14 (m, 1H, CH2-1a), 

4.54-4.65 (m, 1H, CH2-1b), 5.63 (d, 1H, 2J = 18.36 Hz, CH2CO-b), 7.00 (dd, 1H, 3J1 = 7.18 Hz, 3J2 

= 8.12 Hz, H-4), 7.11-7.19 (m, 2H, CHAr), 7.39-7.49 (m, 2H, CHAr), 7.54 (t, 1H, 3J = 7.25 Hz, CHp-

Ph), 7.91-7.98 (m, 2H, CHAr). 
13C NMR (62.90 MHz, CDCl3): δ = 28.5 (CH3), 28.9 (CH2), 38.4 (CH2), 38.6 (CH3), 47.8 

(q, 2J(C-F) = 26.7 Hz), 53.4 (CH2), 84.7 (C-6a), 117.6, 124.4 (CH), 124.8 (CH), 125.0 (CH), 127.5 

(q, 1J(C-F) = 286.6 Hz, CF3), 128.2 (CH), 128.8, 128.9 (CH), 133.3, 137.2, 141.8, 152.9, 152.9, 
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162.0, 195.7. 
19F NMR (235.33 MHz, CDCl3): δ = –76.8 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 455 ([M]+, 5.8), 387 (26), 386 (100), 336 (15), 105 (38), 77 

(14). 

HRMS (ESI): Calcd. for C24H21F3N3O3 [M+H]+: 456.15295, found: 456.15399. 

IR (ATR, cm–1): ṽ = 3043 (w), 3016 (w), 2929 (w), 1691 (s), 1633 (s), 1626 (s), 1539 (s), 

1498 (s), 1464 (s), 1446 (s), 1435 (s), 1408 (s), 1375 (s), 1360 (s), 1342 (m), 1302 (m), 1242 (s), 

1227 (s), 1201 (m), 1186 (m), 1176 (m), 1155 (s), 1120 (s), 1078 (m), 1057 (m), 1041 (m), 1028 

(m), 1001 (m), 976 (m), 964 (m), 939 (m), 912 (m), 897 (w), 860 (w), 847 (w), 779 (s), 770 (m), 

756 (s), 748 (s), 737 (s), 714 (m), 694 (s), 658 (m), 617 (s), 581 (m), 569 (m), 528 (m). 

 

4.2.13.2 Addition of nitromethane 

 

Addition of nitromethane to 1,3-dialkyl-5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-

2,4-diones. General procedure. 

Into a flask were placed 1,3-dialkyl-5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-2,4-dione 

(1 eq), nitromethane (10 eq), dry THF (20 mL per 1 g of starting material), dry methanol (20 mL 

per 1 g of starting material) and sodium methylate (2 eq). The reaction mixture was allowed to stay 

at r.t. overnight. Afterwards 2.5 eq of acetic acid was added and the mixture was diluted with water. 

The formed precipitate was filtered off by suction and recrystallized from methanol/water giving 

the pure product. 

 

7-Ethyl-1,3-dimethyl-5-(nitromethyl)-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione (101b) 

 

The product was prepared according to the general method, starting 

from 0.45 g of 88f, 0.814 g of nitromethane, 0.144 g of sodium methylate, 9 

mL of methanol and 9 mL of THF. 

Yield 0.457 g (86%), white solid, mp 351-353 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.19 (t, 3H, 3J = 7.55 Hz, Et), 2.62 (q, 2H, 3J = 7.55 

Hz, Et), 3.22 (s, 3H, CH3), 3.57 (s, 3H, CH3), 5.93 (d, 1H, 2J = 14.78 Hz, CH2NO2-a), 6.90 (d, 1H, 
2J = 14.78 Hz, CH2NO2-b), 7.27 (d, 1H, 3J = 8.31 Hz, H-8), 7.41 (d, 1H, 3J = 8.31 Hz, H-9), 7.62 (s, 

1H, H-6), 9.54 (br s, 1H, NH). 
13C NMR (75.48 MHz, DMSO-d6): δ = 16.5 (CH3), 28.6 (CH2), 28.7 (CH3), 31.4 (CH3), 

49.8 (q, 2J(C-F) = 26.6 Hz, C-5), 72.8 (CH2NO2), 77.4 (C-4a), 116.3, 118.2 (CHAr), 127.0 (q, 1J(C-F) = 

288.9 Hz, CF3), 127.3 (CHAr), 130.1 (CHAr), 134.9, 140.1, 148.6, 151.0, 162.0. 
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19F NMR (282.38 MHz, DMSO-d6): δ = –73.8 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 398 ([M]+, 8.6), 338 (22), 337 ([M–CH3NO2]
+, 77), 329 (60), 

322 (18), 284 (30), 283 (100), 282 (37), 268 (15), 265 (12), 225 (77), 224 (11), 210 (11). 

HRMS (ESI): Calcd. for C17H18F3N4O4 [M+H]+: 399.12747, found: 399.12780. 

IR (ATR, cm–1): ṽ = 3362 (m), 3034 (w), 2967 (w), 2879 (w), 1688 (m), 1614 (s), 1552 (s), 

1530 (s), 1511 (s), 1479 (s), 1435 (s), 1438 (m), 1392 (m), 1375 (s), 1338 (w), 1318 (m), 1302 (w), 

1289 (w), 1264 (m), 1229 (s), 1208 (m), 1183 (s), 1170 (s), 1163 (s), 1147 (s), 1103 (m), 1062 (w), 

1017 (m), 986 (w), 969 (m), 949 (w), 900 (w), 831 (s), 787 (w), 773 (m), 752 (m), 738 (w), 692 

(w), 668 (s), 592 (m), 568 (m), 538 (w). 

 

8,10-Dimethyl-6-(nitromethyl)-6-(trifluoromethyl)-1,2-dihydro-6H-pyrimido[4,5-

b]pyrrolo[3,2,1-ij]quinoline-7,9(8H,10H)-dione (102b) 

 

The product was prepared according to the general method, starting from 

0.05 g of 92a, 0.082 g of nitromethane, 0.015 g of sodium methylate, 1 mL of 

methanol and 1 mL of THF. 

Yield 0.049 g (92%), white solid, mp 285-286 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.19-3.45 (m, 2H, CH2-2), 3.32 (s, 3H, CH3), 3.64 (s, 

3H, CH3), 3.95-4.70 (m, 1H, CH2-1a), 4.55-4.65 (m, 1H, CH2-1b), 5.22 (d, 1H, 2J = 14.17 Hz, 

CH2NO2-a), 7.11 (dd, 1H, 3J1 = 7.36 Hz, 3J2 = 8.12 Hz, H-4), 7.16 (d, 1H, 2J = 14.17 Hz, CH2NO2-

b), 7.22 (d, 1H, 3J = 7.36 Hz, H-3), 7.29 (d, 1H, 3J = 8.12 Hz, H-5). 
13C NMR (125.77 MHz, CDCl3): δ = 28.7 (CH3), 28.8 (CH2), 38.6 (CH3), 50.2 (q, 2J(C-F) = 

27.8 Hz), 53.6 (CH2), 72.1 (CH2), 82.5 (C-6a), 113.6, 124.8 (CH), 125.5 (CH), 125.9 (q, 1J(C-F) = 

288.0 Hz, CF3), 126.0 (CH), 129.5, 141.7, 152.6, 153.0, 162.3. 
19F NMR (282.38 MHz, CDCl3): δ = –74.4 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 396 ([M]+, 8.2), 327 (33), 282 (18), 281 (100),  

HRMS (ESI): Calcd. for C17H16F3N4O4 [M+H]+: 397.11182, found: 397.11096. 

IR (ATR, cm–1): ṽ = 3034 (w), 2974 (w), 1697 (s), 1626 (s), 1545 (s), 1497 (s), 1471 (s), 

1446 (s), 1417 (s), 1404 (s), 1381 (s), 1371 (s), 1304 (m), 1267 (m), 1255 (s), 1227 (s), 1184 (s), 

1159 (s), 1134 (s), 1124 (s), 1078 (m), 1065 (m), 1047 (m), 1030 (m), 1011 (s), 968 (s), 943 (m), 

933 (m), 864 (m), 849 (m), 779 (s), 768 (s), 748 (s), 731 (s), 714 (m), 677 (s), 654 (m), 606 (m), 

581 (m), 571 (m), 546 (m), 532 (m). 
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4.2.13.3 Addition of hydrogen cyanide 

 

Addition of hydrogen cyanide to 1,3-dialkyl-5-polyfluoroalkyl-pyrimido[4,5-

b]quinoline-2,4-diones. General procedure. 

Initial 1,3-dialkyl-5-polyfluoroalkyl-pyrimido[4,5-b]quinoline-2,4-dione (1 eq) was 

suspended in DMSO. Then KCN (2 eq) was added. Reaction mixture was stirred overnight and 

afterwards acetic acid (2 eq) was carefully added under fume hood. Then mixture was diluted with 

water. The formed precipitate was filtered off by suction and recrystallized from methanol/water 

giving the pure product. 

 

7-Ethyl-1,3-dimethyl-2,4-dioxo-5-(trifluoromethyl)-1,2,3,4,5,10-

hexahydropyrimido[4,5-b]quinoline-5-carbonitrile (101c) 

 

The product was prepared according to the general method, starting 

from 0.2 g of 88f, 0.077 g of KCN and 4 mL of DMSO. 

Yield 0.203 g (94%), white solid, mp 179 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.22 (t, 3H, 3J = 7.56 Hz, Et), 2.70 (q, 2H, 3J = 7.56 

Hz, Et), 3.26 (s, 3H, CH3), 3.54 (s, 3H, CH3), 7.43 (dd, 1H, 3J = 8.39 Hz, 4J = 1.79 Hz, H-8), 7.51 

(d, 1H, 3J = 8.39 Hz, H-9), 7.53 (s, 1H, H-6), 9.96 (br s, 1H, NH). 
13C NMR (75.48 MHz, DMSO-d6): δ = 16.4 (CH3), 28.3 (CH2), 28.8 (CH3), 31.4 (CH3), 

46.3 (q, 2J(C-F) = 31.9 Hz, C-5), 74.5 (C-4a), 112.6, 115.9, 118.7 (CHAr), 124.8 (q, 1J(C-F) = 289.3 

Hz, CF3), 128.4 (CHAr), 131.7 (CHAr), 134.6, 141.0, 148.3, 151.0, 160.4. 
19F NMR (282.38 MHz, DMSO-d6): δ = –75.1 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 364 ([M]+, 1.03), 338 (17), 337 ([M–HCN]+, 97), 322 (27), 309 

(11), 296 (10), 295 (53), 280 (11), 268 (19), 265 (23), 239 (10), 238 (16), 237 (11), 226 (12), 225 

(100), 224 (13), 210 (17), 196 (11). 

HRMS (ESI): Calcd. for C17H16F3N4O2 [M+H]+: 365.12199, found: 365.12186. 

IR (ATR, cm–1): ṽ = 3526 (w), 3326 (m), 2977 (w), 1688 (m), 1633 (m), 1613 (s), 1601 (m), 

1531 (s), 1502 (s), 1472 (s), 1435 (s), 1414 (m), 1392 (w), 1368 (w), 1338 (w), 1300 (w), 1260 (w), 

1232 (w), 1218 (m), 1180 (s), 1159 (m), 1145 (m), 1101 (w), 1068 (w), 1035 (m), 1002 (w), 965 

(m), 940 (w), 894 (w), 866 (w), 835 (s), 771 (m), 759 (m), 733 (w), 706 (w), 692 (w), 661 (w), 577 

(m), 565 (m), 545 (m), 531 (w). 
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8,10-Dimethyl-7,9-dioxo-6-(trifluoromethyl)-1,2,7,8,9,10-hexahydro-6H-pyrimido[4,5-

b]pyrrolo[3,2,1-ij]quinoline-6-carbonitrile (102c) 

 

The product was prepared according to the general method, starting from 

0.2 g of 92a, 0.105 g of KCN and 4 mL of DMSO. 

Yield 0.136 g (70%), white solid, mp 242 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 3.26-3.54 (m, 2H, CH2-2), 3.34 (s, 

1H, CH3), 3.68 (s, 1H, CH3), 4.03-4.16 (m, 1H, CH2-1a), 4.65-4.77 (m, 1H, (m, 1H, CH2-1b), 7.23 

(dd, 1H, 3J1 = 7.74 Hz, 3J2 = 7.37 Hz, CH-4), 7.32 (d, 1H, 3J = 7.37 Hz, CHAr), 7.62 (d, 1H, 3J = 

7.74 Hz, CHAr). 
13C NMR (75.48 MHz, CDCl3): δ = 28.7 (CH3), 29.0 (CH2), 38.0 (CH3), 46.2 (q, 2J(C-F) = 

33.0 Hz, C-6), 53.8 (CH2), 79.5 (C-6a), 110.8, 115.0, 124.0 (q, 1J(C-F) = 288.7 Hz, CF3), 126.3 

(CHAr), 126.8 (CHAr), 127.3 (CHAr), 129.5, 140.9, 152.2, 152.2, 160.3. 
19F NMR (282.38 MHz, CDCl3): δ = –75.8 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 362 ([M]+, 2.0), 294 (18), 293 ([M–CF3]
+, 100), 236 (23). 

HRMS (EI): Calcd. for C17H13F3N4O2 [M]+: 362.09851, found: 362,09826. 

IR (ATR, cm–1): ṽ = 3071 (w), 2951 (w), 2858 (w), 1716 (m), 1640 (m), 1633 (m), 1545 

(m), 1498 (m), 1449 (s), 1435 (s), 1403 (m), 1363 (m), 1342 (w), 1300 (w), 1285 (w), 1266 (w), 

1224 (w), 1208 (m), 1185 (s), 1174 (s), 1161 (s), 1107 (m), 1054 (w), 1025 (w), 1001 (w), 987 (m), 

964 (m), 939 (m), 867 (w), 826 (w), 796 (s), 768 (s), 746 (s), 712 (m), 679 (w), 666 (w), 611 (w), 

571 (w), 539 (w). 

 

4.2.13.4 Addition of indole 

 

7-Ethyl-5-(1H-indol-1-yl)-1,3-dimethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione (101d) 

 

Initial 7-ethyl-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione 88f (0.25 g, 0.74 mmol, 1 eq) was added to a 

mixture of indole (0.13 g, 1.11 mmol, 1,5 eq) and sodium hydride (60% in 

mineral oil, 0.044g, 1.11 mmol, 1.5 eq) in dry THF (2.5 mL). The reaction 

mixture was stirred for 5 min at r.t., followed by addition of acetic acid (0.1 

g, 1.67 mmol, 2.25 eq) and dilution with water. The formed precipitate was filtered off by suction, 

washed with water, recrystallized from DMSO containing one drop of acetic acid (just to stabilize 

the product) and dried in high vacuum at 60 °C (avoid overheating!). 

Yield 0.194 g (58%), white solid, mp 212 °C (dec.). 
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1H NMR (300.13 MHz, DMSO-d6): δ = 0.89 (t, 3H, 3J = 7.56 Hz, Et), 2.33 (q, 2H, 3J = 7.56 

Hz, Et), 2.97 (s, 3H, CH3), 3.65 (s, 3H, CH3), 6.42 (s, 1H, CHAr), 6.61 (d, 1H, 3J = 3.21 Hz, CHAr), 

6.69 (d, 1H, 3J = 8.31 Hz, CHAr), 6.74-6.82 (m, 1H, CHAr), 6.89-6.98 (m, 1H, CHAr), 7.28 (d, 1H, 3J 

= 7.93 Hz, H-8), 7.55 (m, 2H, CHAr), 7.71 (s, 1H, H-5), 9.92 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 16.2 (CH3), 28.2 (CH2), 28.3 (CH3), 31.5 (CH3), 

65.3 (q, 2J(C-F) = 29.7 Hz), 78.7 (C-4a), 101.9 (CH), 112.9 (CH), 117.7, 117.8 (CH), 120.1 (CH), 

121.4 (CH), 121.7 (CH), 126.4 (q, 1J(C-F) = 290.5 Hz, CF3), 127.2 (CH), 129.6, 130.2 (CH), 130.7 

(CH), 134.1, 135.7, 139.8, 147.9, 151.2, 159.4. 
19F NMR (282.38 MHz, DMSO-d6): δ = –72.2 (s, CF3). 

MS (EI, 70 eV): m/z (%) = 338 (25), 337 (100), 322 (40), 309 (11), 280 (11), 268 (17), 265 

(23), 239 (10), 226 (14), 225 (95), 224 (13), 210 (15), 117 (92), 90 (30), 89 (18). 

HRMS (ESI): Calcd. for C24H22F3N4O2 [M+H]+: 455.16894, found: 455.16903. 

IR (ATR, cm–1): ṽ = 3273 (w), 3207 (w), 1713 (s), 1626 (s), 1614 (s), 1599 (m), 1527 (s), 

1504 (s), 1479 (s), 1456 (s), 1444 (m), 1390 (m), 1369 (w), 1315 (w), 1298 (m), 1259 (m), 1238 (s), 

1211 (m), 1203 (m), 1173 (s), 1161 (s), 1153 (s), 1140 (m), 1126 (w), 1059 (m), 1016 (w), 984 (m), 

939 (w), 916 (w), 891 (s), 879 (w), 847 (w), 827 (m), 770 (m), 739 (s), 708 (s), 692 (m), 679 (m), 

658 (m), 625 (w), 596 (w), 582 (m), 563 (m), 542 (w). 

 

7-Ethyl-5-(1H-indol-3-yl)-1,3-dimethyl-5-(trifluoromethyl)-5,10-dihydropyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione (101e) 

 

Initial 7-ethyl-1,3-dimethyl-5-(trifluoromethyl)pyrimido[4,5-b]qui-

noline-2,4(1H,3H)-dione 88f (0.15 g, 0.44 mmol, 1 eq) was added to a 

mixture of indole (0.078 g, 0.67 mmol, 1,5 eq) and sodium hydride (60% in 

mineral oil, 0.036 g, 0.89 mmol, 2 eq) in dry DMF (3 mL). The reaction 

mixture was stirred for 5 hours at 60 °C under argon. After cooling to r.t. 

0.134 g of acetic acid (2.22 mmol, 3.75 eq) and water were added. The formed precipitate was 

filtered off by suction and recrystallized from methanol giving the pure product. 

Yield 0.115 g (57%), pinkish solid, mp 295-297 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 0.92 (t, 3H, 3J = 7.55 Hz, Et), 2.31 (q, 2H, 3J = 7.55 

Hz, Et), 2.96 (s, 3H, CH3), 3.63 (s, 3H, CH3), 6.64-6.72 (m, 2H, CHAr, NH-1'), 6.91-7.01 (m, 2H, 

CHAr), 7.13 (dd, 1H, 3J = 8.22 Hz, 4J = 2.00 Hz, CHAr), 7.33-7.42 (m, 3H, CHAr), 9.47 (s, 1H, H-2'), 

11.00 (s, 1H, NH-10). 
13C NMR (62.90 MHz, DMSO-d6): δ = 16.4 (CH3), 28.3 (CH2), 28.3 (CH3), 31.2 (CH3), 

49.1 (q, 2J(C-F) = 27.0 Hz), 81.1 (C-4a), 112.3 (CH), 114.4, 117.2 (CH), 118.9 (CH), 120.1 (CH), 

120.4, 121.4 (CH), 121.7 (q, 1J(C-F) = 288.4 Hz, CF3), 123.9 (CH), 126.8, 129.1 (CH), 130.1 (CH), 
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134.7, 137.0, 138.7, 148.0, 151.4, 159.7. 

MS (EI, 70 eV): m/z (%) = 454 ([M]+, 3.0), 385 (16), 338 (28), 337 (100), 322 (42.92), 309 

(12), 280 (13), 268 (20), 265 (26), 239 (11), 237 (10), 226 (16), 225 (96), 224 (14), 210 (15), 196 

(10), 117 (34), 90 (11), 60 (10). 

HRMS (EI): Calcd. for C24H21F3N4O2 [M]+: 454.16111, found: 454.16137. 

IR (ATR, cm–1): ṽ = 3271 (w), 3207 (w), 2914 (w), 1713 (s), 1626 (s), 1614 (s), 1599 (s), 

1525 (s), 1504 (s), 1479 (s), 1454 (s), 1444 (s), 1390 (m), 1369 (m), 1315 (m), 1298 (m), 1288 (m), 

1259 (m), 1238 (s), 1211 (m), 1173 (s), 1153 (s), 1126 (m), 1099 (m), 1057 (s), 1016 (m), 982 (m), 

941 (w), 916 (w), 891 (s), 879 (m), 847 (m), 827 (m), 770 (s), 739 (s), 708 (s), 692 (m), 679 (m), 

658 (m), 625 (m), 596 (m), 582 (m), 563 (m), 542 (m). 

 

4.2.14 Synthesis of 1,3-dimethyl-9-{2-[(4-methylphenyl)thio]ethyl}-5-(trifluoromethyl)-

5-deazaalloxazine 

 

1,3-Dimethyl-9-{2-[(4-methylphenyl)thio]ethyl}-5-(trifluoromethyl)pyrimido[4,5-

b]quinoline-2,4(1H,3H)-dione (104) 

 

Into a 10-mL flask were placed 0.5 g of 9-(2-chloroethyl)-1,3-dimethyl-

5-(trifluoromethyl)pyrimido[4,5-b]quinoline-2,4(1H,3H)-dione 92a (0.13 

mmol, 1 eq), 0.33 g of 4-methylthiophenol (0.27 mmol, 2 eq), 0.013 g of 

sodium methylate (0.24 mmol, 1.8 eq) and 1 mL of DMF. The reaction mixture 

was stirred for 4 hours and then diluted with water. The formed precipitate was 

filtered off by suction, washed with water and recrystallized from methanol giving the pure product. 

Yield 0.059 g (95%), yellow solid, mp 142-143 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 2.31 (s, 3H, CH3), 3.28 (t, 2H, CH2-Ar), 3.45-3.55 (m, 

5H, CH3, CH2-S), 3.66 (s, 1H, CH3), 7.06 (d, 2H, 3J = 7.93 Hz, H-2', H-6'), 7.25 (d, 2H, 3J = 7.93 

Hz, H-3', H-5'), 7.50 (dd, 1H, 3J1 = 7.11 Hz, 3J2 = 8.62 Hz, H-7), 7.70 (d, 1H, 3J = 7.11 Hz, H-8), 

8.19 (d, 1H, 3J = 8.62 Hz, H-6). 
13C NMR (62.90 MHz, CDCl3): δ = 21.3 (Ar-CH3), 29.5 (CH3-3), 30.5 (CH3-1), 33.1 (CH2), 

35.4 (CH2), 110.1 (C-4a), 122.0, 123.6 (q, 1J(C-F) = 278.3 Hz, CF3), 124.9 (q, 4J(C-F) = 5.9 Hz, CH-

6), 127.0 (CH), 129.9 (CH), 131.3 (CH), 132.5, 133.8 (CH), 137.0, 138.4, 139.1 (q, 2J(C-F) = 33.2 

Hz, C-5), 147.4, 148.6, 151.2 (CO-2), 159.3 (CO-4). 
19F NMR (282.38 MHz, CDCl3): δ = –52.4 (s, CF3). 

MS (GC, 70 eV): m/z (%) = 459 ([M]+, 35), 337 (19), 336 (100), 279 (29), 137 (68). 

HRMS (EI): Calcd. for C23H20O2N3F3S [M+H]+: 459.12228, found: 459.122964. 

IR (ATR, cm–1): ṽ = 2955 (w), 2929 (w), 1728 (s), 1666 (s), 1608 (w), 1585 (s), 1574 (s), 
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1485 (s), 1470 (s), 1421 (s), 1394 (m), 1379 (s), 1356 (s), 1333 (m), 1286 (s), 1261 (m), 1227 (s), 

1198 (m), 1169 (s), 1134 (s), 1115 (s), 1082 (m), 1039 (m), 1014 (m), 982 (m), 930 (m), 883 (w), 

856 (w), 820 (m), 804 (s), 789 (s), 779 (s), 762 (s), 748 (s), 739 (m), 702 (s), 685 (m), 675 (m), 667 

(m), 590 (w), 555 (m), 542 (w). 

 

4.2.15 Cyclisation of 6-(benzylamino)-1,3-dimethyl-5-(trifluoroacetyl)pyrimidine-

2,4(1H,3H)-dione 

 

6,8-Dimethyl-2-phenyl-4-(trifluoromethyl)-4,8-dihydro-2H-pyrimido[4,5-

d][1,3]oxazine-5,7(1H,6H)-dione (108) 

 

A sealed ACE pressure tube was charged 

with 1 g of 6-(benzylamino)-1,3-dimethyl-5-

(trifluoroacetyl)pyrimidine-2,4(1H,3H)-dione 78c 

(2.93 mmol, 1 eq), 1.186 g of dry triethylamine 

(11.7 mmol, 4 eq) and 10 mL of dry DMF. The 

reaction mixture was stirred for 10 hours at 125 °C 

under argon. Then the solvent was evaporated and the crude product was purified via short-part 

column chromatography (silica gel / EtOAc), following by washing with ether. 

Yield 0.798 g (80%), white solid, mp 220-222 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.31 (s, 3H, CH3-6-a), 3.32 (s, 0.15H, CH3-6-b), 

3.32 (s, 0.15H, CH3-8-b), 3.36 (s, 3H, CH3-8-a), 5.27 (q, 1H, 4J(H-F) = 7.18 Hz, H-4-a), 5.49.(q, 

0.15H, 4J(H-F) = 5.29 Hz, H-4-b), 5.55 (d, 0.15H, J = 3.11 Hz, H-2-b), 5.91 (br s, 1H, H-2-a), 7.48-

7.64 (m, 5.75H, CHPh-a, CHPh-b), 8.11 (d, 0.15H, J = 3.11 Hz, NH-b), 8.15 (br s, 1H, NH-a). 
13C NMR (62.90 MHz, CDCl3): δ = 28.2 (CH3-6-a,b), 30.1 (CH3-8-b), 30.4 (CH3-8-a), 69.6 

(q, 2J(C-F) = 31.6 Hz, CH-4-a), 70.5 (q, 2J(C-F) = 31.9 Hz, CH-4-b), 77.2 (4a-a), 81.9 (CH-2-a), 82.2 

(4a-b), 83.0 (CH-2-b), 125.7 (q, 1J(C-F) = 287.6 Hz, CF3-a), 128.5 (CHo-Ph-b), 128.6 (CHo-Ph-a), 

129.3 (CHm-Ph-b), 129.4 (CHm-Ph-a), 130.4 (CHp-Ph-b), 130.8 (CHp-Ph-a), 137.0 (CPh-b), 137.6 (CPh-

a), 150.5 (C-8-a), 151.5 (CO-7-b), 151.6 (CO-7-a), 154.0 (C-8-b), 160.2 (CO-5-a), 160.4 (CO-5-b). 
19F NMR (282.38 MHz, DMSO-d6): δ = –75.5 (s, CF3-b), –71.3 (s, CF3-a). 

MS (EI, 70 eV): m/z (%) = 341 ([M]+, 16), 273 (32), 272 (100), 258 (17), 110 (11), 105 (15), 

82 (12), 77 (12). 

HRMS (ESI): Calcd. for C15H15F3N3O3 [M+H]+: 342.10600, found: 340.10654. 

Anal. Calcd for C15H14F3N3O3: C, 52.79; H, 4.13; N, 12.31. Found: C, 52.95; H, 3.87; N, 

11.79. 

IR (ATR, cm–1): ṽ = 3243 (s), 3097 (w), 3040 (w), 2952 (w), 1707 (s), 1616 (s), 1556 (s), 

N
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             Mixure
Ratio of diastereomers
                7:1

Major isomers: 2R,4S and 2S4R;
minor isomers: 2R,4R and 2S4S.
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1482 (s), 1459 (m), 1439 (m), 1395 (w), 1383 (m), 1360 (m), 1335 (w), 1321 (m), 1307 (w), 1290 

(w), 1258 (s), 1248 (s), 1234 (m), 1167 (s), 1123 (s), 1076 (m), 1053 (m), 1028 (w), 1005 (m), 998 

(m), 982 (w), 967 (m), 670 (s), 650 (w), 634 (s), 617 (w), 582 (m), 531 (m). 

 

4.2.16 Detection of 5-deazaalloxazine-10-ium cation 

 

8,10-Dimethyl-7,9-dioxo-6-(trifluoromethyl)-1,2,7,8,9,10-hexahydropyrimido[4,5-

b]pyrrolo[3,2,1-ij]quinolin-11-ium trifluoromethanesulfonate (95a) 

 

The solution of title salt was prepared inside a NMR tube by 

addition of triflic anhydride to 6-hydroxy-8,10-dimethyl-6-(tri-

fluoromethyl)-1,2-dihydro-6H-pyrimido[4,5-b]pyrrolo[3,2,1-ij]quino-

line-7,9(8H,10H)-dione 91a dissolved in pure CDCl3 or 

CDCl3/CD2Cl2 mixture. 
1H NMR (300.13 MHz, CDCl3): δ = 3.42 (s, 3H, CH3-3), 3.80 (t, 2H, 3J = 7.27 Hz, Ar-CH2-

), 3.96 (s, 3H, CH3-1), 5.48 (t, 2H, 3J = 7.27 Hz, -CH2-NAr
+), 7.89 (dd, 1H, 3J1 = 8.59 Hz, 3J2 = 7,27 

Hz, H-4), 8.03 (d, 1H, 3J = 7.27 Hz, H-3), 8.24-8.32 (dm, 1H, 3J = 8.59 Hz, H-5), 13.99 (s, 1.67H, 

TfOH). 
13C NMR (75.47 MHz, CD2Cl2/CDCl3): δ = 27.8 (CH2-2), 30.0 (CH3-8), 36.6 (CH3-10), 

60.0 (CH2-1), 115.6 (C-6a), 118.8 (q, 1J(C-F) = 317.6 Hz, TfOH/TfO–), 120.5, 121.6 (q, 1J(C-F) = 

279.6 Hz, CF3), 124.6 (q, 4J(C-F) = 5.9 Hz, CH-5), 131.9 (CHAr), 133.1 (CHAr), 134.5, 143.3, 145.2 

(q, 2J(C-F) = 35.9 Hz, C-6), 149.2, 149.3, 155.9. 

 

4.2.17 Synthesis of spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-one]-3,10-dihydro-

2,4-diones 

 

General procedure for the synthesis of spiro[pyrimido[4,5-b]quinoline-3',5-indoline-2'-

one]-3,10-dihydro-2,4-diones 118/119 a-w. 

Into a 25-mL flask were placed barbituric acid (1.92 mmol, 1 eq), isatin (1.92 mmol, 1 eq), 

aromatic amine (1.92 mmol, 1 eq) and 6 ml of ethanol. After that 0.096 mmol (0.05 eq) of iodine 

was added and the mixture was stirred at r.t. overnight. The next day formed precipitate was filtered 

off, washed with ethanol and recrystallized from appropriate solvent (DMF or TFA/EtOH), if 

necessary. 
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4,6-Dimethoxy-1',3'-dipropyl-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(1H,3'H,10'H)-trione (119a) 

 

The product was prepared according to the general procedure, 

starting from 0.245 g of 1,3-dipropylbarbituric acid, 0.177 g of 3,5-

dimethoxyaniline, 0.170 g of isatin, 0.015 g of iodine and 4.9 mL of 

ethanol. 

Yield 0.436 (79%), white solid, mp 303-305 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 0.78 (t, 3H, 3J = 7.46 Hz, NCH2CH2CH3-3'), 0.97 (t, 

3H, 3J = 7.37 Hz, NCH2CH2CH3-1'), 1.36-1.52 (m, 2H, NCH2CH2CH3-3'), 1.64-1.78 (m, 2H, 

NCH2CH2CH3-1'), 3.49 (s, 3H, MeO-4), 3.66 (t, 2H, 3J = 7.37 Hz, NCH2CH2CH3-3'), 3.75 (s, 3H, 

MeO-6), 4.06-4.30 (m, 2H, NCH2CH2CH3-1'), 6.03 (d, 1H, 4J = 2.08 Hz, H-5), 6.11 (d, 1H, 4J = 

2.08 Hz, H-7), 6.71 (d, 1H, 3J = 7.94 Hz, H-9'), 6.85-6.93 (m, 1H, H-7'), 7.13-7.21 (m, 1H, H-8'), 

7.31 (d, 1H, 3J = 8.12 Hz, H-6'), 9,14 (br s, 1H, NH-10'), 10.32 (br s, 1H, NH-1). 
13C NMR (62.90 MHz, DMSO-d6): δ = 11.5 (CH3), 11.9 (CH3), 21.6 (CH2), 22.0 (CH2), 

42.6 (N-CH2), 43.8 (N-CH2), 51.0 (C-5',3), 56.1 (MeO-6), 56.4 (MeO-4), 85.1 (C-4a'), 90.1 (CH-7), 

92.9 (CH-5), 117.2 (CHAr), 118.0, 122.9, 124.2 (CHAr), 126.7 (CHAr), 128.5 (CHAr), 136.7, 143.8, 

146.2, 151.2, 156.7, 160.2, 161.5, 181.9 (CO-2). 

MS (EI, 70 eV): m/z (%) = 477 ([M+H]+, 10), 476 ([M]+, 27), 448 (34), 325 (20), 324 (100), 

282 (33), 240 (42), 217 (18), 169 (13), 43 (17), 41 (13). 

HRMS (ESI): Calcd. for C26H29N4O5 [M]+: 477.21325, found: 477.21398. 

IR (ATR, cm–1): ṽ = 3182 (m), 2955 (m), 2833 (w), 1707 (s), 1691 (s), 1626 (s), 1606 (s), 

1593 (s), 1531 (s), 1489 (s), 1460 (s), 1443 (s), 1394 (m), 1338 (m), 1325 (s), 1306 (m), 1277 (m), 

1254 (s), 1238 (m), 1215 (s), 1194 (s), 1144 (s), 1124 (s), 1113 (s), 1092 (s), 1041 (m), 1016 (m), 

991 (m), 947 (m), 935 (m), 914 (w), 887 (w), 862 (m), 816 (m), 789 (m), 775 (s), 744 (s), 725 (m), 

710 (s), 673 (s), 631 (m), 617 (s), 604 (m), 561 (m), 548 (m), 530 (m). 

 

4,5,6-Trimethoxy-1',3'-dipropyl-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(1H,3'H,10'H)-trione (119b) 

 

The product was prepared according to the general procedure, 

starting from 0.245 g of 1,3-dipropylbarbituric acid, 0.211 g of 3,4,5-

trimethoxyaniline, 0.170 g of isatin, 0.015 g of iodine and 4.9 mL of 

ethanol. 

Yield 0.153 g (26%), white solid, mp 300 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 0.78 (t, 3H, 3J = 7.46 Hz, NCH2CH2CH3-3'), 0.99 (t, 
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3H, 3J = 7.37 Hz, NCH2CH2CH3-1'), 1.33-1.54 (m, 2H, NCH2CH2CH3-3'), 1.63-1.78 (m, 2H, 

NCH2CH2CH3-1'), 3.29 (s, 1H, MeO), 3.59 (s, 1H, MeO), 3.61-3.73 (m, 2H, NCH2CH2CH3-3'), 

3.83 (s, 1H, MeO), 4.10-4.23 (m, 2H, NCH2CH2CH3-1'), 6.36 (s, 1H, H-7), 6.71 (d, 1H, 3J = 7.93 

Hz, H-9'), 6.88-6.96 (m, 1H, H-7'), 7.16-7.24 (m, 1H, H-8'), 7.36 (d, 1H, 3J = 8.12 Hz, H-6'), 9,19 

(br s, 1H, NH-10'), 10.31 (br s, 1H, NH-1). 
13C NMR (62.90 MHz, DMSO-d6): δ = 11.6 (CH3), 11.9 (CH3), 21.6 (CH2), 22.2 (CH2), 

42.6 (N-CH2), 44.0 (N-CH2), 51.7 (C-5',3), 56.8 (MeO), 60.8 (MeO), 61.3 (MeO), 85.5 (C-4a'), 

92.0 (CH-7), 117.5 (CHAr), 123.0, 123.5, 124.4 (CHAr), 126.8 (CHAr), 128.7 (CHAr), 136.4, 137.2, 

138.2, 146.1, 150.2, 151.1, 154.4, 160.3, 181.7 (CO-2). 

MS (EI, 70 eV): m/z (%) = 507 ([M+H]+, 11), 506 ([M]+, 55), 463 (10), 325 (22), 324 (100), 

282 (21), 240 (33), 169 (10), 43 (13). 

HRMS (EI): Calcd. for C27H30N4O6 [M]+: 506.21599, found: 506.216186. 

Anal. Calcd for C27H30N4O6: C, 64.02; H, 5.97; N, 11.06. Found: C, 62.77; H, 5.98; N, 

10.77. 

IR (ATR, cm–1): ṽ = 3271 (w), 2962 (m), 2933 (m), 2874 (w), 1689 (s), 1610 (s), 1591 (s), 

1533 (s), 1487 (s), 1471 (s), 1435 (s), 1421 (s), 1392 (s), 1325 (s), 1286 (m), 1254 (s), 1232 (s), 

1194 (m), 1138 (s), 1117 (s), 1095 (s), 1049 (s), 1011 (m), 995 (m), 974 (m), 943 (m), 922 (m), 895 

(m), 860 (m), 814 (m), 798 (m), 775 (m), 760 (s), 744 (s), 700 (s), 690 (s), 608 (s), 561 (s). 

 

1',3'-Dipropyl-1'H-spiro[naphtho[2,3-e]indole-1,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(3H,3'H,10'H)-trione (119c) 

 

The product was prepared according to the general procedure, 

starting from 0.23 g of 1,3-dipropylbarbituric acid, 0.209 g of 2-

anthracenamine, 0.159 g of isatin, 0.014 g of iodine and 4.6 mL of 

ethanol. 

Yield 0.512 g (91%), dark goldish solid, mp 300-302 °C. 
1H NMR (500.13 MHz, DMSO-d6): δ = 0.66 (t, 3H, 3J = 7.46 Hz, NCH2CH2CH3-3'), 1.07 (t, 

3H, 3J = 7.56 Hz, NCH2CH2CH3-1'), 1.26-1.40 (m, 2H, NCH2CH2CH3-3'), 1.85-1.97 (m, 2H, 

NCH2CH2CH3-1'), 3.56 (t, 2H, 3J = 7.37 Hz, NCH2CH2CH3-3'), 4.25-4.43 (m, 2H, NCH2CH2CH3-

1'), 6.73 (d, 1H, 3J = 7.84 Hz, H-6'), 6.82 (m, 1H, H-7'), 7.18 (m, 1H, H-8'), 7.35-7.40 (m, 1H, H-8), 

7.41 (d, 1H, H-4), 7.41-7.45 (m, 1H, H-9), 7.50 (d, 1H, 3J = 8.03 Hz, H-9'), 7.66 (d, 1H, 3J = 8.31 

Hz, H-10), 7.90 (s, 1H, H-11), 7.98 (d, 1H, 3J = 8.31 Hz, H-7), 8.09 (d, 1H, 3J = 8.69 Hz, H-5), 8.57 

(s, 1H, H-6), 9.59 (br s, 1H, NH-10'), 10.68 (br s, 1H, NH-3). 
13C NMR (125.77 MHz, DMSO-d6): δ = 11.7 (NCH2CH2CH3-1'), 11.8 (NCH2CH2CH3-3'), 

21.5 (NCH2CH2CH3-3'), 22.2 (NCH2CH2CH3-1'), 42.7 (NCH2CH2CH3-3'), 44.1 (NCH2CH2CH3-1'), 
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53.2 (C-5',1), 86.2 (C-4a'), 114.3 (CH-4), 117.9 (CH-9'), 118.5 (CH-11), 122.4, 124.8 (CH-7'), 

125.3 (CH-8), 127.0 (CH-6'), 127.0 (CH-9), 127.6, 128.1 (CH-10), 128.4, 129.1 (CH-8'), 129.2 

(CH-7), 129.3 (CH-6), 130.0, 130.0, 130.6 (CH-5), 132.4, 136.4, 139.6, 146.4, 151.2, 160.3, 182.9 

(CO-2), 19.5 and 57.0 – traces of EtOH. 

MS (EI, 70 eV): m/z (%) = 517 ([M+H]+, 36). 516 ([M]+, 100), 515 (10), 514 (16), 489 (14), 

488 (48), 487 (80), 474 (14), 388 (14), 360 (13), 346 (14), 324 (41), 318 (30), 316 (13). 

HRMS (ESI): Calcd. for C32H29N4O3 [M+H]+: 517.22342, found: 517.22319. 

IR (ATR, cm–1): ṽ = 3167 (m), 2960 (m), 2872 (m), 1689 (s), 1606 (s), 1583 (s), 1566 (s), 

1525 (s), 1504 (s), 1485 (s), 1429 (s), 1406 (s), 1369 (s), 1336 (s), 1319 (s), 1234 (s), 1205 (m), 

1182 (m), 1157 (m), 1130 (m), 1097 (m), 1065 (m), 1001 (m), 957 (m), 943 (m), 935 (m), 895 (m), 

879 (m), 864 (s), 827 (m), 802 (m), 775 (s), 744 (s), 716 (s), 689 (s), 673 (s), 644 (s), 617 (s), 600 

(s), 573 (s), 554 (s). 

 

4,6-Dimethoxy-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-2,2',4'(1H,3'H,10'H)-

trione (119d) 

 

The product was prepared according to the general procedure, starting 

from 0.3 g of barbituric acid, 0.359 g of 3,5-dimethoxyaniline, 0.345 g of 

isatin, 0.03 g of iodine and 6 mL of ethanol. 

Yield 0.469 g (51%), white solid, mp 357-359 °C. 
1H NMR (300.13 MHz, TFA-d): δ = 3.56 (s, 1H, MeO), 3.92 (s, 1H, MeO), 6.83 (d, 1H, 3J = 

2.08 Hz, H-9'), 6.95-7.03 (m, 1H, H-7'), 7.02 (d, 1H, 3J = 2.08 Hz, H-6'), 7.20-7.29 (m, 1H, H-8'). 

MS (EI, 70 eV): m/z (%) = 393 ([M+H]+, 13), 392 ([M]+, 52), 390 (16), 365 (13), 364 (60), 

363 (58), 348 (11), 347 (10), 333 (14), 240 (21), 169 (10), 153 (21), 78 (32), 45 (11), 44 (100), 43 

(19). 

HRMS (ESI): Calcd. for C20H17N4O5 [M+H]+: 393.11935, found: 393.11992. 

Anal. Calcd for C20H16N4O5: C, 61.22; H, 4.11; N, 14.28. Found: C, 62.03; H, 3.99; N, 

14.25. 

IR (ATR, cm–1): ṽ = 3267 (w), 3072 (w), 1722 (s), 1699 (s), 1626 (s), 1608 (s), 1549 (s), 

1504 (s), 1493 (s), 1475 (s), 1462 (s), 1446 (s), 1385 (s), 1342 (s), 1319 (s), 1261 (m), 1219 (s), 

1201 (m), 1167 (m), 1149 (s), 1109 (s), 1049 (m), 1036 (m), 993 (m), 959 (m), 951 (m), 933 (m), 

916 (m), 862 (m), 827 (s), 793 (s), 777 (s), 744 (s), 727 (s), 714 (m), 673 (s), 638 (s), 625 (s), 604 

(s), 588 (s), 555 (s), 532 (s). 
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4,6-Dimethoxy-1',3'-dimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(1H,3'H,10'H)-trione (119e) 

 

The product was prepared according to the general procedure, starting 

from 0.3 g of 1,3-dimethylbarbituric acid, 0.294 g of 3,5-dimethoxyaniline, 

0.283 g of isatin, 0.024 g of iodine and 6 mL of ethanol. 

Recrystallized from DMF. Yield 0.457 g (57%), white solid, mp 335 

°C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.08 (s, 3H, NCH3-3'), 3.50 (s, 3H, MeO-4), 3.57 (s, 

3H, NCH3-1'), 3.76 (s, 3H, MeO-6), 6.04 (d, 1H, 4J = 2.08 Hz, H-5), 6.12 (d, 1H, 4J = 2.08 Hz, H-

7), 6.69 (d, 1H, 3J = 7.93 Hz, H-9'), 6.85-6.93 (m, 1H, H-7'), 7.13-7.21 (m, 1H, H-8'), 7.29 (d, 1H, 
3J = 8.22 Hz, H-6'), 9,27 (br s, 1H, NH-10'), 10.34 (br s, 1H, NH-1). 

MS (GC, 70 eV): m/z (%) = 420 ([M]+, 3.6), 419 ([M–H]+, 22), 418 (85), 387 (33), 377 (10), 

376 (43), 281 (12), 254 (42), 209 (16), 208 (17), 207 (100), 191 (14). 

HRMS (ESI): Calcd. for C22H21N4O5 [M+H]+: 421.15065, found: 421.15040. 

Anal. Calcd for C22H20N4O5: C, 62.85; H, 4.79; N, 13.33. Found: C, 62.25; H, 4.86; N, 

13.30. 

IR (ATR, cm–1): ṽ = 3450 (w), 3184 (m), 2839 (w), 1707 (m), 1693 (s), 1674 (s), 1643 (s), 

1606 (s), 1593 (s), 1533 (s), 1512 (s), 1489 (s), 1464 (s), 1450 (s), 1425 (s), 1394 (m), 1373 (m), 

1342 (m), 1317 (s), 1257 (s), 1219 (s), 1201 (s), 1149 (s), 1126 (s), 1117 (s), 1086 (m), 1065 (m), 

1047 (m), 1001 (m), 989 (m), 939 (m), 932 (m), 916 (m), 868 (m), 818 (m), 797 (m), 777 (s), 750 

(s), 739 (s), 702 (s), 671 (s), 638 (s), 623 (s), 582 (s), 528 (s). 

 

7'-Chloro-4,6-dimethoxy-1',3'-dimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-

b]quinoline]-2,2',4'(1H,3'H,10'H)-trione (119f) 

 

The product was prepared according to the general procedure, starting 

from 0.3 g of 1,3-dimethylbarbituric acid, 0.294 g of 3,5-dimethoxyaniline, 

0.349 g of 5-chloroisatin, 0.024 g of iodine and 6 mL of ethanol. 

Yield 0.63 (72%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.08 (s, 3H, NCH3-3'), 3.53 (s, 3H, MeO-4), 3.56 (s, 

3H, NCH3-1'), 3.77 (s, 3H, MeO-6), 6.07 (d, 1H, 4J = 2.08 Hz, H-5), 6.14 (d, 1H, 4J = 2.08 Hz, H-

7), 6.59 (d, 1H, 4J = 2.45 Hz, H-6'), 7.26 (dd, 1H, 3J = 8.69 Hz, 4J = 2.45 Hz, H-8'), 7.34 (d, 1H, 3J 

= 8.69 Hz, H-9'), 9,45 (br s, 1H, NH-10'), 10.45 (br s, 1H, NH-1). 
13C NMR (75.48 MHz, DMSO-d6): δ = 28.3 (NCH3-3'), 31.0 (NCH3-1'), 51.0 (C-5',3), 56.2 

(MeO-6), 56.5 (MeO-4), 84.6 (C-4a'), 90.2 (CH-7), 93.1 (CH-5), 117.3, 119.4 (CH-9'), 125.0 (C-
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5a'), 125.9 (C H-6'), 127.5, 128.7 (C H-8'), 135.9 (C-9a'), 143.7, 146.7, 151.3, 156.8, 160.3, 161.8, 

181.3 (CO-2). 

MS (GC, 70 eV): m/z (%) = 454 ([M]+, 35Cl, 35), 453 (27), 452 (100), 423 (14), 421 (39), 

412 (21), 411 (15), 410 (57), 290 (19), 289 (10), 288 (51). 

HRMS (ESI): Calcd. for C22H20
35ClN4O5 [M+H]+: 455.11167, found: 455.11218. 

IR (ATR, cm–1): ṽ = 3232 (m), 3001 (w), 1709 (s), 1687 (s), 1633 (s), 1622 (s), 1606 (s), 

1589 (s), 1525 (s), 1506 (s), 1479 (s), 1464 (s), 1456 (s), 1435 (s), 1402 (m), 1371 (m), 1333 (m), 

1321 (m), 1306 (m), 1292 (m), 1277 (m), 1254 (s), 1215 (s), 1196 (s), 1144 (s), 1128 (m), 1113 (s), 

1084 (s), 1066 (m), 1039 (m), 997 (m), 989 (m), 945 (m), 866 (m), 827 (s), 818 (s), 806 (m), 785 

(w), 771 (s), 754 (s), 698 (m), 675 (s), 665 (s), 625 (s), 588 (m), 557 (s), 552 (s), 542 (s). 

 

1-Ethyl-6',8'-dimethoxy-1',3'-dimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-

b]quinoline]-2,2',4'(1H,3'H,10'H)-trione (118g) 

 

The product was prepared according to the general procedure, starting 

from 0.3 g of 1,3-dimethylbarbituric acid, 0.294 g of 3,5-dimethoxyaniline, 

0.337 g of 1-ethylisatin, 0.024 g of iodine and 6 mL of ethanol. 

Yield 0.704 g (82%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.29 (t, 3H, 3J = 7.18 Hz, Et), 3.00 (s, 3H, NCH3-

3'), 3.32 (s, 3H, MeO-6'), 3.55 (s, 3H, NCH3-1'), 3.66-3.75 (m, 1H, CH2-a), 3.75-3.84 (m, 1H, CH2-

b), 3.77 (s, 3H, MeO-8'), 6.13 (d, 1H, 4J = 2.55 Hz, H-7'), 6.67 (d, 1H, 4J = 2.55 Hz, H-9'), 6.77-

6.84 (m, 1H, H-5), 6.85 (d, 1H, 3J = 7.27 Hz, H-4), 6.90 (d, 1H, 3J = 7.55 Hz, H-7), 7.11-7.19 (m, 

1H, H-6), 9,16 (br s, 1H, NH). 
13C NMR (125.77 MHz, TFA-d): δ = 13.1 (CH3(Et)), 30.5 (NCH3-3'), 31.8 (NCH3-1'), 38.8 

(CH2(Et)), 53.4 (C-5',3), 56.9 (MeO-6'), 57.4 (MeO-8'), 89.4 (C-4a'), 97.4 (CH-9'), 97.8 (CH-7'), 

104.5 (C-9a'), 111.4 (CH-7), 125.7 (CH-4), 127.2 (CH-5), 130.9, 137.9 (CH-6), 138.1, 143.9, 149.8, 

154.0, 161.1, 162.7, 165.0, 185.0 (CO-2). 

MS (EI, 70 eV): m/z (%) = 449 ([M+H]+, 28), 448 ([M]+, 100), 421 (13), 420 (48), 419 (29), 

405 (35), 390 (24), 389 (46), 362 (15), 328 (16), 327 (24), 312 (15), 310 (11), 303 (12), 302 (45), 

73 (11), 69 (11), 60 (16), 44 (28), 43 (14). 

HRMS (ESI): Calcd. for C24H25N4O5 [M+H]+: 449.18195, found: 449.18176. 

IR (ATR, cm–1): ṽ = 2972 (w), 1703 (s), 1682 (s), 1645 (s), 1601 (s), 1537 (s), 1487 (s), 

1462 (s), 1454 (s), 1441 (s), 1412 (m), 1392 (m), 1371 (s), 1352 (m), 1296 (m), 1279 (m), 1232 (s), 

1219 (s), 1174 (m), 1153 (s), 1132 (s), 1092 (m), 1078 (m), 1059 (m), 1045 (m), 1020 (m), 1007 

(m), 984 (m), 957 (m), 945 (m), 933 (m), 912 (m), 856 (w), 841 (w), 822 (s), 806 (s), 795 (m), 771 

(s), 752 (s), 725 (m), 712 (m), 694 (m), 683 (m), 669 (m), 654 (s), 621 (m), 602 (m), 582 (m), 563 
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(m), 534 (m). 

 

1-Ethyl-6',7',8'-trimethoxy-1',3'-dimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-

b]quinoline]-2,2',4'(1H,3'H,10'H)-trione (118h) 

 

The product was prepared according to the general procedure, starting 

from 0.3 g of 1,3-dimethylbarbituric acid, 0.352 g of 3,4,5-trimethoxyaniline, 

0.337 g of 1-ethylisatin, 0.024 g of iodine and 6 mL of ethanol. 

Yield 0.503 g (55%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.30 (t, 3H, 3J = 7.18 Hz, Et), 3.01 (s, 3H, NCH3-

3'), 3.03 (s, 1H, MeO-6'), 3.55 (s, 3H, NCH3-1'), 3.60 (s, 3H, MeO-7'), 3.78 (q, 2H, 3J = 7.18 Hz, 

Et), 3.83 (s, 3H, MeO-8'), 6.82-6.89 (m, 1H, H-5), 6.92 (d, 1H, 3J = 6.80 Hz, CHAr), 6.92 (s, 1H, H-

9'), 6.97 (d, 1H, 3J = 7.74 Hz, CHAr), 7.15-7.22 (m, 1H, H-6), 9,17 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 13.0 (CH3(Et)), 28.3 (NCH3-3'), 31.1 (NCH3-1'), 35.3 

(CH2(Et)), 50.1 (C-5',3), 56.6 (MeO-8'), 60.1 (MeO-6'), 61.1 (MeO-7'), 86.6 (C-4a'), 97.2 (CH-9'), 

107.9 (CHAr), 109.7, 122.1 (CHAr), 124.2 (CHAr), 128.4 (CHAr), 132.8, 137.5, 138.3, 144.7, 146.1, 

151.2, 152.0, 153.8, 160.1, 179.0 (CO-2). 

MS (EI, 70 eV): m/z (%) = 479 ([M+H]+, 26), 478 ([M]+, 100), 463 (11), 450 (16), 449 (16), 

435 (17), 420 (16), 419 (40), 358 (22), 332 (17), 147 (34), 82 (11), 79 (14), 78 (88), 77 (15), 75 

(70), 73 (32), 71 (11), 69 (26), 66 (60), 65 (31), 63 (98), 62 (13), 61 (21), 60 (40), 57 (18), 55 (19), 

48 (10), 47 (26), 46 (15), 45 (34), 44 (81), 43 (39), 41(20), 40 (29), 39 (25), 36 (11). 

HRMS (ESI): Calcd. for C25H27N4O6 [M+H]+: 479.19251, found: 479.19276. 

IR (ATR, cm–1): ṽ = 2972 (m), 2947 (w), 1703 (s), 1678 (s), 1639 (s), 1606 (s), 1539 (s), 

1489 (s), 1468 (s), 1450 (s), 1435 (s), 1383 (s), 1371 (s), 1354 (m), 1284 (m), 1271 (m), 1234 (s), 

1213 (m), 1180 (m), 1161 (m), 1136 (s), 1115 (m), 1092 (s), 1059 (s), 1026 (m), 1001 (m), 980 (m), 

959 (m), 941 (m), 920 (m), 874 (m), 852 (w), 827 (s), 793 (m), 777 (m), 752 (s), 741 (s), 714 (m), 

702 (m), 681 (s), 656 (m), 642 (m), 594 (m), 557 (m), 540 (m), 528 (m). 

 

7'-Fluoro-4,6-dimethoxy-1',3'-dimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-

b]quinoline]-2,2',4'(1H,3'H,10'H)-trione (119i) 

 

The product was prepared according to the general procedure, starting 

from 0.3 g of 1,3-dimethylbarbituric acid, 0.294 g of 3,5-dimethoxyaniline, 

0.317 g of 5-fluoroisatin, 0.024 g of iodine and 6 mL of ethanol. 

Yield 0.628 (75%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.08 (s, 3H, NCH3-3'), 3.52 (s, 
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3H, MeO-4), 3.56 (s, 3H, NCH3-1'), 3.77 (s, 3H, MeO-6), 6.07 (d, 1H, 4J = 2.08 Hz, H-5), 6.13 (d, 

1H, 4J = 2.08 Hz, H-7), 6.37 (dd, 1H, 3J(H-F) = 9.45 Hz, 4J = 2.83 Hz, H-6'), 7.03-7.12 (m, 1H, H-8'), 

7.35 (dd, 1H, 3J = 9.06 Hz, 4J(H-F) = 5.29 Hz, H-9'), 9,36 (br s, 1H, NH-10'), 10.42 (br s, 1H, NH-1). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.3 (NCH3-3'), 31.0 (NCH3-1'), 51.3 (C-5',3), 56.2 

(MeO-6), 56.5 (MeO-4), 84.0 (C-4a'), 90.2 (CH-7), 93.1 (CH-5), 112.5 (d, 2J(C-F) = 23.3 Hz, CHAr), 

115.9 (d, 2J(C-F) = 22.7 Hz, CHAr), 117.2, 119.2 (d, 3J(C-F) = 8.1 Hz, CH-9'), 124.7 (d, 3J(C-F) = 6.9 

Hz, C-5a'), 133.4 (d, 4J(C-F) = 2.0 Hz, C-9a'), 143.8, 146.9, 151.4, 156.8, 159.0 (d, 1J(C-F) = 239.0 Hz, 

C-7'), 160.4, 161.8, 181.3 (CO-2). 
19F NMR (282.38 MHz, CDCl3): δ = –120.2 (s, F-7'). 

MS (EI, 70 eV): m/z (%) = 439 ([M+H]+, 6.4), 438 ([M]+, 27), 437 (25), 436 (100), 410 (30), 

409 (20), 405 (29), 395 (15), 394 (67), 286 (48), 272 (58), 201 (15). 

HRMS (ESI): Calcd. for C22H20FN4O5 [M+H]+: 439.14122, found: 439.14209. 

IR (ATR, cm–1): ṽ = 3207 (m), 2841 (w), 1709 (s), 1687 (s), 1643 (s), 1622 (s), 1606 (s), 

1539 (s), 1495 (s), 1464 (s), 1441 (s), 1410 (s), 1392 (m), 1373 (m), 1335 (m), 1323 (m), 1296 (m), 

1277 (m), 1255 (s), 1217 (s), 1200 (s), 1146 (s), 1117 (s), 1090 (m), 1065 (m), 1041 (m), 999 (m), 

987 (m), 945 (m), 922 (w), 878 (m), 860 (s), 822 (s), 804 (m), 771 (s), 752 (s), 700 (m), 681 (s), 627 

(s), 592 (m), 557 (s). 

 

6',8'-Dimethoxy-1,1',3'-trimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(1H,3'H,10'H)-trione (118j) 

 

The product was prepared according to the general procedure, starting 

from 0.18 g of 1,3-dimethylbarbituric acid, 0.177 g of 3,5-dimethoxyaniline, 

0.186 g of 1-methylisatin, 0.015 g of iodine and 3.6 mL of ethanol. 

Yield 0.501 g (86%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.01 (s, 3H, NCH3-3'), 3.20 (s, 3H, NCH3-1), 3.36 

(s, 3H, MeO-6'), 3.55 (s, 3H, NCH3-1'), 3.77 (s, 3H, MeO-8'), 6.12 (d, 1H, 4J = 2.55 Hz, H-7'), 6.67 

(d, 1H, 4J = 2.55 Hz, H-9'), 6.77-6.85 (m, 1H, H-5), 6.85 (d, 1H, 3J = 7.18 Hz, H-4), 6.88 (d, 1H, 3J 

= 7.74 Hz, H-7), 7.13-7.20 (m, 1H, H-6), 9,17 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 27.1 (NCH3-1), 28.3 (NCH3-3'), 31.1 (NCH3-1'), 

49.6 (C-5',3), 56.1 (MeO-8'), 56.8 (MeO-6'), 87.2 (C-4a'), 95.0 (CH-9'), 95.5 (CH-7'), 105.2, 107.4 

(CHAr), 122.2 (CHAr), 123.7 (CHAr), 128.2 (CHAr), 136.8, 138.1, 145.6, 146.2, 151.2, 159.1, 160.1, 

160.6, 179.8 (CO-2). 

MS (EI, 70 eV): m/z (%) = 435 ([M+H]+, 14), 434 ([M]+, 59), 406 (18), 376 (34), 375 (100), 

318 (11), 44 (16). 

HRMS (EI): Calcd. for C23H22N4O5 [M]+: 434.15847, found: 434.15903. 
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IR (ATR, cm–1): ṽ = 2964 (w), 1695 (s), 1682 (s), 1633 (s), 1608 (s), 1537 (s), 1489 (s), 

1471 (s), 1441 (s), 1410 (s), 1379 (s), 1362 (s), 1298 (m), 1259 (m), 1238 (s), 1219 (s), 1201 (m), 

1192 (m), 1178 (m), 1153 (s), 1130 (s), 1092 (s), 1053 (s), 1041 (s), 1022 (m), 1005 (s), 980 (m), 

962 (m), 949 (m), 933 (m), 924 (m), 912 (m), 854 (m), 841 (m), 820 (s), 797 (m), 771 (s), 750 (s), 

741 (s), 727 (s), 696 (s), 687 (s), 656 (s), 640 (s), 602 (m), 582 (m), 569 (s), 544 (s), 536 (s). 

 

6',7',8'-Trimethoxy-1,1',3'-trimethyl-1'H-spiro[indole-3,5'-pyrimido[4,5-b]quinoline]-

2,2',4'(1H,3'H,10'H)-trione (118k) 

 

The product was prepared according to the general procedure, starting 

from 0.18 g of 1,3-dimethylbarbituric acid, 0.211 g of 3,4,5-

trimethoxyaniline, 0.186 g of 1-methylisatin, 0.015 g of iodine and 3.6 mL of 

ethanol. 

Yield 0.275 g (52%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 3.01 (s, 3H, NCH3-3'), 3.12 (s, 3H, MeO-6'), 3.22 

(s, 3H, NCH3-1), 3.55 (s, 3H, NCH3-1'), 3.60 (s, 3H, MeO-7'), 3.83 (s, 3H, MeO-8'), 6.82-6.89 (m, 

1H, H-5), 6.90 (d, 1H, 3J = 7.37 Hz, H-4), 6.93 (s, 1H, H-9'), 6.94 (d, 1H, 3J = 7.75 Hz, H-7), 7.16-

7.23 (m, 1H, H-6), 9,19 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 27.2 (NCH3-1), 28.3 (NCH3-3'), 31.1 (NCH3-1'), 

50.0 (C-5',3), 56.6 (MeO-8'), 60.4 (MeO-6'), 61.2 (MeO-7'), 86.6 (C-4a'), 97.2 (CH-9'), 107.9 (CH-

7), 109.7, 122.3 (CH-5), 124.0 (CH-4), 128.4 (CH-6), 132.8, 137.3, 138.3, 145.4, 146.1, 151.2, 

151.9, 153.8, 160.1, 179.7 (CO-2). 

MS (GC, 70 eV): m/z (%) = 465 ([M+H]+, 32), 464 ([M]+, 100), 449 (17), 433 (12), 406 

(31), 405 (89), 390 (18), 376 (12), 375 (30), 358 (25), 204 (16). 

HRMS (EI): Calcd. for C24H24N4O6 [M]+: 464.16904, found: 464.16820. 

IR (ATR, cm–1): ṽ = 2945 (m), 1703 (s), 1678 (s), 1645 (s), 1633 (s), 1606 (s), 1537 (s), 

1487 (s), 1470 (s), 1450 (s), 1435 (s), 1402 (s), 1379 (s), 1358 (s), 1304 (m), 1284 (m), 1269 (s), 

1230 (s), 1200 (m), 1153 (m), 1126 (s), 1090 (s), 1061 (s), 1032 (m), 1020 (m), 997 (s), 976 (s), 933 

(m), 920 (m), 872 (m), 851 (m), 827 (s), 791 (m), 777 (m), 764 (m), 750 (s), 704 (s), 681 (s), 662 

(s), 638 (m), 592 (m), 563 (m), 542 (s), 528 (s). 

 

6',7',8'-Trimethoxy-1',3'-dimethyl-5-nitro-1'H-spiro[indole-3,5'-pyrimido[4,5-

b]quinoline]-2,2',4'(1H,3'H,10'H)-trione (118l) 

 

The product was prepared according to the general procedure, starting from 0.3 g of 1,3-

dimethylbarbituric acid, 0.352 g of 3,4,5-dimethoxyaniline, 0.369 g of 5-nitroisatin, 0.024 g of 
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iodine and 6 mL of ethanol. 

Yield of the mixture of the both isomers: 0.636 g (67%). Yield of the 

pure major isomer obtained after recrystallization from TFA: 0.215 g (23%), 

yellowish solid, mp ˃320 °C. 
1H NMR (500.13 MHz, DMSO-d6): δ = 3.03 (s, 3H, NCH3-3'), 3.27 (s, 3H, MeO-6'), 3.56 

(s, 3H, NCH3-1'), 3.62 (s, 3H, MeO-7'), 3.85 (s, 3H, MeO-8'), 6.96 (s, 1H, H-9'), 6.99 (d, 1H, 3J = 

8.72 Hz, H-7), 7.73 (d, 1H, 4J = 2.42 Hz, H-4), 8.12 (dd, 1H, 3J = 8.72 Hz, 4J = 2.42 Hz, H-6), 9.29 

(br s, 1H, NH), ), 11.05 (br s, 1H, NH-1). 
13C NMR (62.90 MHz, DMSO-d6): δ = 28.4 (NCH3-3'), 31.2 (NCH3-1'), 50.6 (C-5',3), 56.7 

(MeO-8'), 60.4 (MeO-6'), 61.2 (MeO-7'), 85.7 (C-4a'), 97.3 (CH-9'), 108.5, 109.0 (CHAr), 119.6 

(CHAr), 126.1 (CHAr), 133.0, 138.2, 139.1, 142.5, 146.6, 151.1, 151.2, 151.9, 154.3, 160.5, 182.0 

(CO-2). 

MS (EI, 70 eV): m/z (%) = 495 ([M]+, 4.9), 494 (22), 493 (100), 467 (39), 450 (10), 434 

(17), 421 (24), 420 (28), 406 (21), 360 (13), 44 (12). 

HRMS (ESI): Calcd. for C23H22N5O8 [M+H]+: 496.14629, found: 496.14622. 

IR (ATR, cm–1): ṽ = 3294 (w), 2945 (w), 1786 (m), 1705 (m), 1693 (s), 1622 (s), 1591 (s), 

1539 (s), 1516 (s), 1481 (s), 1454 (s), 1435 (s), 1406 (s), 1392 (s), 1367 (m), 1335 (s), 1296 (m), 

1275 (m), 1228 (s), 1207 (s), 1157 (s), 1119 (s), 1092 (s), 1068 (s), 1034 (m), 997 (s), 982 (s), 939 

(m), 918 (m), 839 (s), 818 (s), 791 (m), 775 (m), 766 (s), 756 (s), 739 (m), 687 (s), 656 (m), 625 (s), 

555 (s), 530 (s). 

 

1',3'-Diethyl-4,6-dimethoxy-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-pyrimido[4,5-

b]quinoline]-2,4'(1H,10'H)-dione (119m) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.153 g of 3,5-

dimethoxyaniline, 0.147 g of isatin, 0.016 g of iodine and 4 mL of ethanol. 

Yield 0.376 g (81%), beige solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.10 (t, 3H, 3J = 6.80 Hz, 

CH3(Et)), 1.36 (t, 3H, 3J = 6.90 Hz, CH3(Et)), 3.51 (s, 3H, MeO-4), 3.76 (s, 3H, MeO-6), 4.25-4.43 

(m, 2H, NCH2-3'), 4.50-5.40 (br m, 2H, NCH2-1'), 6.05 (d, 1H, 4J = 1.89 Hz, H-5), 6.13 (d, 1H, 4J = 

1.89 Hz, H-7), 6.72 (d, 1H, 3J = 7.85 Hz, H-9'), 6.89-6.97 (m, 1H, H-7'), 7.16-7.24 (m, 1H, H-8'), 

7.40 (d, 1H, 3J = 8.22 Hz, H-6'), 9,38 (br s, 1H, NH-10'), 10.44 (br s, 1H, NH-1). 
13C NMR (62.90 MHz, DMSO-d6): δ = 12.5 (CH3(Et)-3'), 13.3 (CH3(Et)-1'), 43.6 (NCH2-3'), 

45.0 (NCH2-1'), 51.0 (C-5',3), 56.2 (MeO-6), 56.5 (MeO-4), 89.8 (C-4a'), 90.2 (CH-7), 93.1 (CH-5), 

117.5, 117.7 (CHAr), 122.7, 124.7 (CHAr), 126.6 (CHAr), 128.7 (CHAr), 136.4, 143.8, 146.3, 156.7, 
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157.6, 161.7, 175.7 (CS), 181.3 (CO-2). 

MS (GC, 70 eV): m/z (%) = 464 ([M]+, 7.6), 463 (22), 462 (81), 461 (27), 435 (10), 434 

(32), 433 (100), 429 (21), 403 (29), 402 (13), 401 (13), 375 (12), 374 (10), 364 (15), 346 (10), 343 

(15), 333 (11), 332 (38), 60 (15), 46 (14). 

HRMS (ESI): Calcd. for C24H25N4O4S [M+H]+: 465.15910, found: 465.15934. 

IR (ATR, cm–1): ṽ = 3296 (m), 2970 (w), 2929 (w), 1699 (s), 1614 (s), 1589 (s), 1531 (s), 

1504 (s), 1487 (s), 1456 (s), 1416 (s), 1394 (s), 1377 (s), 1360 (s), 1336 (s), 1308 (m), 1265 (s), 

1254 (s), 1228 (s), 1209 (s), 1198 (s), 1144 (s), 1126 (s), 1111 (s), 1039 (s), 1009 (m), 993 (m), 949 

(m), 935 (m), 914 (m), 864 (m), 816 (s), 795 (m), 773 (s), 743 (s), 712 (s), 694 (m), 683 (m), 667 

(s), 642 (s), 621 (s), 536 (s). 

 

1',3'-Diethyl-4,5,6-trimethoxy-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (119n) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.183 g of 3,4,5-

dimethoxyaniline, 0.147 g of isatin, 0.016 g of iodine and 4 mL of ethanol. 

Yield 0.262 g (53%) , white solid, mp 318-319 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.10 (t, 3H, 3J = 6.80 Hz, 

CH3(Et)), 1.38 (t, 3H, 3J = 6.89 Hz, CH3(Et)), 3.28 (s, 3H, MeO), 3.59 (s, 3H, MeO), 3.83 (s, 3H, 

MeO), 4.27-4.44 (m, 2H, NCH2-3'), 4.50-5.50 (br m, 2H, NCH2-1'), 6.38 (s, 1H, H-7), 6.74 (d, 1H, 
3J = 7.84 Hz, H-9'), 6.92-6.99 (m, 1H, H-7'), 7.19-7.27 (m, 1H, H-8'), 7.45 (d, 1H, 3J = 8.22 Hz, H-

6'), 9,42 (br s, 1H, NH-10'), 10.43 (br s, 1H, NH-1). 
13C NMR (62.90 MHz, DMSO-d6): δ = 12.5 (CH3(Et)-3'), 13.3 (CH3(Et)-1'), 43.6 (NCH2-3'), 

45.2 (NCH2-1'), 51.6 (C-5',3), 56.9 (MeO), 60.8 (MeO), 61.4 (MeO), 90.2 (C-4a'), 92.1 (CH-7), 

118.0 (CHAr), 122.7, 123.0, 124.9 (CHAr), 126.7 (CHAr), 129.0 (CHAr), 136.1, 137.3, 138.2, 146.2, 

150.2, 154.6, 157.7, 175.7 (CS), 181.1 (CO-2). 

MS (GC, 70 eV): m/z (%) = 494 ([M]+, 10), 493 (29), 492 (100), 491 (24), 464 (29), 463 

(92), 459 (21), 450 (13), 433 (29), 432 (12), 373 (17), 362 (31), 60 (14), 29 (17). 

HRMS (ESI): Calcd. for C25H27N4O5S [M+H]+: 495.16967, found: 495.16962. 

IR (ATR, cm–1): ṽ = 3311 (m), 2931 (m), 1699 (s), 1622 (s), 1589 (s), 1533 (s), 1495 (s), 

1479 (s), 1462 (s), 1416 (s), 1392 (s), 1360 (m), 1350 (s), 1325 (s), 1306 (m), 1288 (m), 1261 (s), 

1255 (s), 1236 (s), 1194 (s), 1176 (m), 1138 (s), 1105 (s), 1068 (s), 1047 (s), 1039 (s), 995 (s), 972 

(s), 957 (m), 924 (m), 856 (m), 810 (m), 793 (m), 781 (m), 766 (s), 744 (s), 710 (s), 694 (s), 671 (s), 

644 (s), 611 (s), 534 (m). 
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1,1',3'-Triethyl-6',8'-dimethoxy-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (118o) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.153 g of 3,5-

dimethoxyaniline, 0.175 g of 1-ethylisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield 0.354 (72%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.03 (t, 3H, 3J = 6.89 Hz, CH3(Et)), 1.30 (t, 3H, 3J = 

7.18 Hz, CH3(Et)-1), 1.38 (t, 3H, 3J = 6.99 Hz, CH3(Et)), 3.34 (s, 3H, MeO-6'), 3.64-3.88 (m, 2H, 

NCH2-1), 3.79 (s, 3H, MeO-8'), 4.17-4.34 (m, 2H, NCH2-3'), 4.40-5.40 (br m, 2H, NCH2-1'), 6.16 

(d, 1H, 4J = 2.46 Hz, H-7'), 6.80 (d, 1H, 4J = 2.46 Hz, H-9'), 6.83 (d, 1H, 3J = 7.37 Hz, H-4), 6.89-

6.95 (m, 1H, H-5, H-7), 7.14-7.21 (m, 1H, H-6), 9,20 (br s, 1H, NH). 

MS (EI, 70 eV): m/z (%) = 493 ([M+H]+, 17), 492 ([M]+, 65), 464 (17), 459 (13), 433 (16), 

362 (11), 346 (11), 129 (19), 101 (13), 87 (13), 85 (13), 84 (12), 78 (13), 73 (77), 71 (15), 69 (21), 

63 (15), 61 (12), 60 (100), 57 (21), 55 (28), 45 (14), 44 (35), 43 (32), 41 (33). 

HRMS (ESI): Calcd. for C26H29N4O4S [M+H]+: 493.19040, found: 493.19056. 

IR (ATR, cm–1): ṽ = 2980 (m), 1784 (m), 1684 (s), 1639 (m), 1614 (s), 1603 (s), 1585 (s), 

1539 (s), 1487 (s), 1464 (s), 1452 (s), 1431 (s), 1406 (s), 1373 (s), 1360 (s), 1319 (m), 1298 (m), 

1282 (m), 1267 (s), 1254 (s), 1232 (s), 1200 (s), 1176 (m), 1157 (s), 1130 (s), 1109 (s), 1097 (s), 

1057 (s), 1003 (m), 922 (m), 910 (m), 822 (s), 795 (m), 773 (s), 750 (s), 723 (m), 690 (s), 677 (s), 

669 (m), 656 (m), 646 (m), 636 (m), 581 (m), 559 (m), 538 (s). 

 

7'-Chloro-1',3'-diethyl-4,6-dimethoxy-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (119p) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.153 g of 3,5-

dimethoxyaniline, 0.181 g of 5-chloroisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield 0.337 (68%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.10 (t, 3H, 3J = 6.89 Hz, CH3(Et)), 1.36 (t, 3H, 3J = 

6.89 Hz, CH3(Et)), 3.54 (s, 3H, MeO-4), 3.77 (s, 3H, MeO-6), 4.24-4.43 (m, 2H, NCH2-3'), 4.50-5.50 

(br m, 2H, NCH2-1'), 6.09 (d, 1H, 4J = 1.89 Hz, H-5), 6.15 (d, 1H, 4J = 1.89 Hz, H-7), 6.63 (d, 1H, 
4J = 2.39 Hz, H-6'), 7.26 (dd, 1H, 3J = 8.82 Hz, 4J = 2.39 Hz, H-8'), 7.34 (d, 1H, 3J = 8.82 Hz, H-9'), 

9,53 (br s, 1H, NH-10'), 10.52 (br s, 1H, NH-1). 
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13C NMR (62.90 MHz, DMSO-d6): δ = 12.5 (CH3(Et)-3'), 13.2 (CH3(Et)-1'), 43.7 (NCH2-3'), 

45.1 (NCH2-1'), 50.9 (C-5',3), 56.2 (MeO-6), 56.6 (MeO-4), 89.5 (C-4a'), 90.3 (CH-7), 93.2 (CH-5), 

116.9, 119.7 (CHAr), 124.6, 125.7 (CHAr), 128.0, 128.9 (CHAr), 135.6, 143.6, 146.2, 156.8, 157.6, 

162.0, 175.7 (CS), 180.9 (CO-2). 

MS (GC, 70 eV): m/z (%) = 501 ([M+H]+, 37Cl, 7.8), 500 ([M]+, 37Cl, 36), 499 ([M+H]+, 
35Cl, 24), 498 ([M]+, 35Cl, 95), 472 (20), 471 (29), 480 (49), 469 (47), 443 (16), 442 (13), 441 (32), 

439 (13), 437 (14), 426 (11), 411 (18), 382 (13), 349 (10), 348 (41), 347 (19), 346 (100), 320 (24), 

319 (15), 318 (66), 292 (11), 290 (34), 274 (11), 219 (19), 204 (11), 203 (11), 175 (11), 162 (12), 

140 (10), 125 (18), 122 (11), 86 (20), 69 (14), 60 (14), 29 (22). 

HRMS (ESI): Calcd. for C24H24
35ClN4O4S [M+H]+: 499.12013, found: 499.12035. 

IR (ATR, cm–1): ṽ = 3190 (w), 2966 (w), 1705 (s), 1645 (m), 1622 (s), 1587 (s), 1527 (s), 

1506 (s), 1481 (s), 1456 (s), 1444 (s), 1427 (s), 1387 (s), 1360 (m), 1338 (m), 1317 (m), 1290 (m), 

1259 (s), 1252 (s), 1217 (s), 1198 (s), 1178 (m), 1147 (s), 1109 (s), 1066 (m), 1041 (m), 1009 (m), 

991 (m), 964 (m), 945 (m), 872 (m), 827 (m), 812 (s), 771 (m), 744 (m), 690 (m), 669 (m), 638 (m), 

625 (m), 552 (m). 

 

1,1',3'-Triethyl-6',7',8'-trimethoxy-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (118q) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.183 g of 3,4,5-

dimethoxyaniline, 0.175 g of 1-ethylisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield 0.245 g (47%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.04 (t, 3H, 3J = 6.89 Hz, CH3(Et)), 1.30 (t, 3H, 3J = 

7.18 Hz, CH3(Et)-1), 1.38 (t, 3H, 3J = 6.90 Hz, CH3(Et)), 3.04 (s, 3H, MeO-6'), 3.61 (s, 3H, MeO-7'), 

3.80 (q, 2H, 3J = 7.18 Hz, NCH2-1), 3.85 (s, 3H, MeO-8'), 4.17-4.35 (m, 2H, NCH2-3'), 4.40-5.40 

(br m, 2H, NCH2-1'), 6.83-6.91 (m, 1H, H-5), 6.96-7.02 (m, 2H, H-4, H-7), 7.05 (s, 1H, H-9'), 7.17-

7.25 (m, 1H, H-6), 9,19 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 12.5 (CH3(Et)-3'), 13.0 (CH3(Et)-1), 13.3 (CH3(Et)-1'), 

35.3 (NCH2-1), 43.6 (NCH2-3'), 45.4 (NCH2-1'), 50.2 (C-5',3), 56.7 (MeO-8'), 60.2 (MeO-6'), 61.1 

(MeO-7'), 91.3 (C-4a'), 97.5 (CH-9'), 108.0 (CH-7), 109.4, 122.2 (CH-5), 124.3 (CH-4), 128.6 (CH-

6), 132.5, 136.9, 138.6, 144.7, 145.5, 151.9, 153.9, 157.3 (CO-4'), 175.6 (CS), 178.5 (CO-2). 

MS (EI, 70 eV): m/z (%) = 523 ([M+H]+, 31), 522 ([M]+, 100), 494 (21), 493 (17), 489 (26), 

479 (14), 465 (11), 464 (12), 463 (35), 450 (11), 402 (12), 392 (17), 391 (11), 376 (14), 364 (15). 

HRMS (ESI): Calcd. for C27H31N4O5S [M+H]+: 523.20097, found: 523.20090. 
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IR (ATR, cm–1): ṽ = 2972 (m), 2933 (m), 1678 (s), 1660 (s), 1622 (s), 1614 (s), 1593 (s), 

1537 (s), 1489 (s), 1464 (s), 1423 (s), 1387 (s), 1371 (s), 1358 (s), 1317 (m), 1269 (s), 1244 (s), 

1200 (s), 1176 (m), 1136 (s), 1109 (s), 1097 (s), 1065 (s), 1030 (m), 1001 (s), 964 (m), 928 (s), 874 

(w), 827 (s), 795 (m), 775 (m), 754 (s), 744 (s), 702 (m), 689 (m), 679 (m), 662 (m), 648 (m), 621 

(m), 598 (m), 559 (m), 536 (m). 

 

1',3'-Diethyl-7'-fluoro-4,6-dimethoxy-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (119r) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.153 g of 3,5-

dimethoxyaniline, 0.165 g of 5-fluoroisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield 0.286 g (59%), white solid, mp ˃320 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.10 (t, 3H, 3J = 6.90 Hz, CH3(Et)), 1.36 (t, 3H, 3J = 

6.89 Hz, CH3(Et)), 3.53 (s, 3H, MeO-4), 3.77 (s, 3H, MeO-6), 4.24-4.43 (m, 2H, NCH2-3'), 4.50-5.50 

(br m, 2H, NCH2-1'), 6.08 (d, 1H, 4J = 1.99 Hz, H-5), 6.15 (d, 1H, 4J = 1.99 Hz, H-7), 6.42 (dd, 1H, 
3J(H-F) = 9.35 Hz, 4J = 2.93 Hz, H-6'), 7.06-7.15 (m, 1H, H-8'), 7.46 (dd, 1H, 3J = 9.07 Hz, 4J(H-F) = 

5.10 Hz, H-9'), 9,45 (br s, 1H, NH-10'), 10.49 (br s, 1H, NH-1). 
13C NMR (125.77 MHz, DMSO-d6): δ = 12.5 (CH3(Et)-3'), 13.2 (CH3(Et)-1'), 43.6 (NCH2-3'), 

45.0 (NCH2-1'), 51.2 (C-5',3), 56.2 (MeO-6), 56.5 (MeO-4), 88.9 (C-4a'), 90.3 (CH-7), 93.2 (CH-5), 

112.3 (d, 2J(C-F) = 23.2 Hz, CHAr), 116.1 (d, 2J(C-F) = 22.8 Hz, CHAr), 116.8, 119.5 (d, 3J(C-F) = 7.9 

Hz, CH-9'), 124.4 (d, 3J(C-F) = 7.1 Hz, C-5a'), 133.1 (d, 4J(C-F) = 1.6 Hz, C-9a'), 143.6, 146.3, 156.8, 

157.6, 159.3 (d, 1J(C-F) = 239.5 Hz, CH-7'), 161.9 (CS), 175.7 (CS), 180.8 (CO-2). 
19F NMR (282.38 MHz, CDCl3): δ = –119.6 (s, F-7'). 

MS (GC, 70 eV): m/z (%) = 483 ([M+H]+, 19), 482 ([M]+, 76), 454 (38), 453 (24), 426 (12), 

425 (26), 421 (11), 366 (10), 331 (18), 330 (100), 303 (12), 302 (65), 274 (34), 203 (18), 187 (14), 

86 (11), 29 (19). 

HRMS (ESI): Calcd. for C24H24FN4O4S [M+H]+: 483.14968, found: 483.14980. 

IR (ATR, cm–1): ṽ = 3294 (m), 2972 (w), 2929 (w), 2839 (w), 1703 (s), 1622 (s), 1597 (s), 

1537 (s), 1497 (s), 1487 (s), 1464 (s), 1441 (s), 1425 (s), 1408 (m), 1392 (s), 1379 (s), 1362 (s), 

1336 (m), 1323 (s), 1288 (m), 1265 (s), 1254 (s), 1238 (s), 1209 (s), 1196 (s), 1180 (m), 1144 (s), 

1111 (s), 1041 (m), 1012 (m), 984 (m), 945 (s), 918 (m), 862 (s), 833 (m), 814 (s), 797 (m), 787 

(m), 771 (s), 743 (s), 716 (m), 698 (m), 683 (m), 667 (s), 644 (s), 627 (s), 586 (m), 569 (m), 555 

(m). 
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1',3'-Diethyl-7'-fluoro-4,5,6-trimethoxy-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (119s) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.183 g of 3,5-

trimethoxyaniline, 0.165 g of 5-fluoroisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield 0.182 g (36%), white solid, mp 310-312 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.09 (t, 3H, 3J = 6.99 Hz, CH3(Et)), 1.38 (t, 3H, 3J = 

6.90 Hz, CH3(Et)), 3.33 (s, 3H, MeO), 3.61 (s, 3H, MeO), 3.84 (s, 3H, MeO), 4.26-4.43 (m, 2H, 

NCH2-3'), 4.50-5.50 (br m, 2H, NCH2-1'), 6.40 (s, 1H, H-7), 6.44 (dd, 1H, 3J(H-F) = 9.45 Hz, 4J = 

2.84 Hz, H-6'), 7.10-7.18 (m, 1H, H-8'), 7.46 (dd, 1H, 3J = 8.98 Hz, 4J(H-F) = 5.20 Hz, H-9'), 9,49 (br 

s, 1H, NH-10'), 10.48 (br s, 1H, NH-1). 
13C NMR (125.77 MHz, DMSO-d6): δ = 12.5 (CH3(Et)-3'), 13.3 (CH3(Et)-1'), 43.6 (NCH2-3'), 

45.2 (NCH2-1'), 51.9 (C-5',3), 56.9 (MeO), 60.9 (MeO), 61.4 (MeO), 89.2 (C-4a'), 92.2 (CH-7), 

112.4 (d, 2J(C-F) = 23.42 Hz, CHAr), 116.3 (d, 2J(C-F) = 22.7 Hz, CHAr), 119.9 (d, 3J(C-F) = 8.0 Hz, CH-

9'), 122.2, 124.4 (d, 3J(C-F) = 7.1 Hz, C-5a'), 132.8 (d, 4J(C-F) = 1.5 Hz, C-9a'), 137.3, 138.0, 146.2, 

150.2, 154.9, 157.7, 159.3 (d, 1J(C-F) = 240.1 Hz, C-7'), 175.8 (CS), 180.6 (CO-2). 
19F NMR (282.38 MHz, CDCl3): δ = –119.2 (s, F-7'). 

MS (GC, 70 eV): m/z (%) = 513 ([M+H]+, 17), 512 ([M]+, 71), 331 (21), 330 (100), 303 

(12), 302 (43), 301 (13), 274 (25), 273 (10), 203 (14), 182 (23), 168 (11), 29 (13). 

HRMS (ESI): Calcd. for C25H26FN4O5S [M+H]+: 513.16025, found: 513.16026. 

IR (ATR, cm–1): ṽ = 3313 (m), 2978 (m), 2933 (m), 1699 (s), 1643 (s), 1622 (s), 1597 (s), 

1539 (s), 1497 (s), 1475 (s), 1444 (s), 1435 (s), 1394 (s), 1362 (s), 1327 (s), 1288 (s), 1267 (s), 1254 

(s), 1232 (s), 1211 (s), 1196 (s), 1178 (s), 1165 (s), 1130 (s), 1109 (s), 1095 (s), 1066 (s), 1041 (s), 

1012 (m), 993 (s), 974 (s), 920 (s), 885 (m), 868 (s), 824 (s), 814 (s), 791 (s), 773 (m), 754 (m), 735 

(m), 712 (s), 694 (s), 671 (s), 656 (s), 638 (s), 588 (s), 569 (s). 

 

1',3'-Diethyl-6',8'-dimethoxy-1-methyl-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (118t) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.153 g of 3,5-

dimethoxyaniline, 0.161 g of 1-methylisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield 0.269 g (56%), white solid, mp ˃320 °C. 
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1H NMR (300.13 MHz, DMSO-d6): δ = 1.04 (t, 3H, 3J = 6.89 Hz, CH3(Et)), 1.38 (t, 3H, 3J = 

6.90 Hz, CH3(Et)), 3.22 (s, 3H, NCH3-1), 3.38 (s, 3H, MeO-6'), 3.78 (s, 3H, MeO-8'), 4.18-4.34 (m, 

2H, NCH2-3'), 4.50-5.40 (br m, 2H, NCH2-1'), 6.15 (d, 1H, 4J = 2.46 Hz, H-7'), 6.79 (d, 1H, 4J = 

2.46 Hz, H-9'), 6.80-6.88 (m, 1H, H-5), 6.88-6.94 (m, 2H, H-4, H-7), 7.15-7.22 (m, 1H, H-6), 9,22 

(br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 12.5 (CH3(Et)-3'), 13.4 (CH3(Et)-1'), 27.2 (NCH3-1), 

43.7 (NCH2-3'), 45.4 (NCH2-1'), 49.6 (C-5',3), 56.2 (MeO-8'), 56.9 (MeO-6'), 92.0 (C-4a'), 95.2 

(CH-9'), 96.0 (CH-7'), 105.0, 107.5 (CH-7), 122.3 (CH-5), 123.9 (CH-4), 128.5 (CH-6), 136.1, 

137.8, 145.5, 145.8, 157.4, 159.0, 160.7, 175.6 (CS), 179.3 (CO-2). 

MS (EI, 70 eV): m/z (%) = 479 ([M+H]+, 26), 478 ([M]+, 97), 450 (11), 445 (21), 420 (22), 

419 (75), 391 (15), 378 (16), 348 (21), 332 (115), 320 (18), 292 (24), 291 (15), 78 (20), 73 (14), 69 

(16), 63 (22), 60 (18), 45 (17), 44 (100), 43 (19), 42 (10). 

HRMS (ESI): Calcd. for C27H31N4O5S [M+H]+: 479.17475, found: 479.17422. 

IR (ATR, cm–1): ṽ = 3267 (w), 2983 (w), 2679 (w), 1782 (m), 1687 (s), 1641 (m), 1614 (s), 

1605 (s), 1585 (s), 1537 (s), 1489 (s), 1454 (s), 1433 (s), 1408 (s), 1390 (s), 1373 (s), 1358 (s), 1321 

(m), 1300 (m), 1267 (m), 1252 (s), 1236 (m), 1201 (s), 1153 (s), 1132 (s), 1109 (s), 1084 (s), 1057 

(s), 1005 (s), 922 (s), 910 (m), 822 (s), 812 (s), 793 (m), 773 (s), 756 (s), 725 (m), 690 (s), 681 (s), 

667 (s), 656 (s), 646 (s), 636 (s), 579 (s), 538 (s). 

 

1',3'-Diethyl-6',7',8'-trimethoxy-1-methyl-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (118u) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.183 g of 3,4,5-

trimethoxyaniline, 0.161 g of 1-methylisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield 0.232 g (47%), white solid, mp ˃320 °C. 
1H NMR (500.13 MHz, DMSO-d6): δ = 1.04 (t, 3H, 3J = 6.94 Hz, CH3(Et)-3'), 1.38 (t, 3H, 3J 

= 6.94 Hz, CH3(Et)-1'), 3.14 (s, 3H, MeO-6'), 3.24 (s, 3H, NCH3-1), 3.61 (s, 3H, MeO-7'), 3.85 (s, 

3H, MeO-8'), 4.19-4.33 (m, 2H, NCH2-3'), 4.50-5.40 (br m, 2H, NCH2-1'), 6.85-6.90 (m, 1H, H-5), 

6.95 (d, 1H, H-4), 6.97 (d, 1H, H-7), 7.05 (s, 1H, H-9'), 7.19-7.24 (m, 1H, H-6), 9,22 (br s, 1H, 

NH). 
13C NMR (125.77 MHz, DMSO-d6): δ = 12.4 (CH3(Et)-3'), 13.3 (CH3(Et)-1'), 27.3 (NCH3-1), 

43.6 (NCH2-3'), 45.4 (NCH2-1'), 50.0 (C-5',3), 56.7 (MeO-8'), 60.4 (MeO-6'), 61.2 (MeO-7'), 91.3 

(C-4a'), 97.5 (CH-9'), 108.0 (CH-7), 109.4 (C-5a'), 122.4 (CH-5), 124.1 (CH-4), 128.7 (CH-6), 

132.4 (C-9a'), 136.6 (C-3a), 138.6 (C-7'), 145.4, 145.6, 151.7 (C-6'), 153.9 (C-8'), 157.3 (CO-4'), 
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175.6 (CS), 179.2 (CO-2). 

MS (EI, 70 eV): m/z (%) = 509 ([M+H]+, 25), 508 ([M]+, 100), 480 (11), 475 (22), 450 (13), 

449 (43), 378 (15), 350 (15), 322 (15). 

HRMS (ESI): Calcd. for C26H29N4O5S [M+H]+: 509.18532, found: 509.18526. 

IR (ATR, cm–1): ṽ = 3248 (w), 3196 (w), 2933 (w), 1680 (s), 1651 (s), 1626 (s), 1606 (s), 

1593 (s), 1537 (s), 1493 (s), 1471 (s), 1456 (s), 1423 (s), 1387 (s), 1358 (s), 1338 (s), 1315 (m), 

1269 (s), 1240 (s), 1203 (s), 1186 (m), 1174 (m), 1132 (s), 1105 (s), 1088 (s), 1066 (s), 1028 (s), 

997 (s), 957 (m), 926 (s), 912 (m), 878 (m), 852 (m), 825 (s), 791 (m), 777 (m), 768 (m), 756 (s), 

744 (s), 702 (m), 679 (s), 665 (m), 640 (s), 621 (m), 596 (m), 575 (m), 557 (m), 534 (m). 

 

1',3'-Diethyl-4,6-dimethoxy-7'-nitro-2'-thioxo-2',3'-dihydro-1'H-spiro[indole-3,5'-

pyrimido[4,5-b]quinoline]-2,4'(1H,10'H)-dione (119v) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.153 g of 3,5-

dimethoxyaniline, 0.192 g of 5-nitroisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Yield of the mixture of the both isomers: 0.32 g (63%). Yield of the 

pure major isomer obtained after recrystallization from TFA/EtOH: 0.098 g (19%), yellow solid, 

mp ˃320 °C. 
1H NMR (500.13 MHz, DMSO-d6): δ = 1.12 (t, 3H, 3J = 6.94 Hz, CH3(Et)), 1.38 (t, 3H, 3J = 

7.09 Hz, CH3(Et)), 3.54 (s, 3H, MeO-4), 3.78 (s, 3H, MeO-6), 4.27-4.43 (m, 2H, NCH2-3'), 4.50-5.50 

(br m, 2H, NCH2-1'), 6.10 (d, 1H, 4J = 1.89 Hz, H-5), 6.20 (d, 1H, 4J = 1.89 Hz, H-7), 7.53 (d, 1H, 
4J = 2.63 Hz, H-6'), 7.67 (d, 1H, 3J = 8.93 Hz, H-9'), 8.14 (dd, 1H, 3J = 8.93 Hz, 4J = 2.63 Hz, H-8'), 

9,98 (br s, 1H, NH-10'), 10.67 (br s, 1H, NH-1). 
13C NMR (62.90 MHz, DMSO-d6): δ = 12.4 (CH3(Et)-3'), 13.4 (CH3(Et)-1'), 43.8 (NCH2-3'), 

45.4 (NCH2-1'), 50.7 (C-5',3), 56.2 (MeO-6), 56.6 (MeO-4), 90.4 (CH-7), 90.5 (C-4a'), 93.3 (CH-5), 

117.2, 118.6 (CHAr), 122.2 (CHAr), 123.5, 124.9 (CHAr), 142.4, 143.4, 143.7, 145.9, 156.9, 157.6, 

162.2, 175.8 (CS), 180.6 (CO-2). 

MS (EI, 70 eV): m/z (%) = 509 ([M]+, 18), 508 (30), 507 (100), 506 (31), 491 (11), 481 (11), 

480 (16), 479 (28), 478 (73), 474 (23), 449 (12), 448 (33), 447 (19), 409 (13), 377 (21). 

HRMS (ESI): Calcd. for C24H24N5O6S [M+H]+: 510.14418, found: 510.14363. 

IR (ATR, cm–1): ṽ = 3400 (w), 3203 (w), 2972 (w), 2935 (w), 1716 (m), 1703 (m), 1651 (s), 

1633 (s), 1622 (s), 1591 (m), 1547 (s), 1506 (s), 1485 (s), 1446 (s), 1429 (s), 1392 (s), 1363 (m), 

1329 (s), 1257 (s), 1217 (s), 1198 (s), 1171 (m), 1151 (s), 1107 (s), 1066 (m), 1041 (m), 1012 (m), 

974 (m), 941 (m), 922 (m), 897 (m), 879 (m), 839 (m), 831 (m), 814 (s), 800 (m), 771 (m), 743 (s), 
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687 (m), 669 (s), 638 (s), 623 (m), 606 (m), 563 (m), 538 (s). 

 

1,2',4'-Triethyl-3'-thioxo-3',4'-dihydro-2'H-spiro[indole-3,14'-naphtho[2,3-

f]pyrimido[4,5-b]quinoline]-1',2(1H,5'H)-dione (118w) 

 

The product was prepared according to the general procedure, 

starting from 0.2 g of 1,3-diethylthiobarbituric acid, 0.193 g of 2-

anthracenamine, 0.175 g of 1-ethylisatin, 0.016 g of iodine and 4 mL of 

ethanol. 

Recrystallized from TFA. Yield 0.388 g (73%), yellow solid, mp 

˃320 °C. 
1H NMR (300.13 MHz, CDCl3): δ = 0.93 (t, 3H, 3J = 6.89 Hz, CH3(Et)), 1.33 (t, 3H, 3J = 6.90 

Hz, CH3(Et)), 1.63 (t, 3H, 3J = 7.27 Hz, CH3(Et)), 2.55-3.00 (br m, 1H, NCH2-4'a), 3.10-3.5 (br m, 

1H, NCH2-4'b), 3.99-4.14 (m, 1H, NCH2), 4.25-4.60 (m, 3H, NCH2), 6.90-6.97 (m, 1H, CHAr), 7.06 

(d, 1H, 3J = 7.46 Hz, CHAr), 7.21 (d, 1H, 3J = 7.74 Hz, CHAr), 7.25-7.50 (m, 5H, CHAr), 7.01 (s, 1H, 

CHAr), 7.92 (d, 1H, 3J = 7.27 Hz, CHAr), 8.23 (s, 1H, CHAr), 9.17 (NH-5'). 
13C NMR (62.90 MHz, CDCl3): δ = 11.8 (CH3), 12.3 (CH3), 13.0 (CH3), 36.3 (NCH2-1), 

43.5 (NCH2-4'), 44.2 (NCH2-2'), 54.0 (C-14',3), 92.3 (C-14a'), 108.4 (CH-7), 109.2, 118.2 (CHAr), 

121.4 (CHAr), 124.3 (CHAr), 125.0 (CHAr), 125.8 (CHAr), 126.5 (CHAr), 128.1 (CHAr), 128.4 (CHAr), 

129.2 (CHAr), 129.2 (CHAr), 129.2, 129.6, 130.3, 130.9 (CHAr), 132.7, 134.6, 135.9, 144.0, 144.3, 

158.3, 174.9 (CS), 180.4 (CO-2). 

MS (EI, 70 eV): m/z (%) = 533 ([M+H]+, 33), 532 ([M]+, 100), 530 (22), 516 (10), 504 (21), 

503 (13), 499 (15), 489 (26), 475 (10), 473 (12), 472 (13), 461 (11), 402 (17), 386 (19), 374 (20), 

346 (10), 345 (12), 344 (12), 326 (10), 318 (16), 316 (11), 315 (10). 

HRMS (ESI): Calcd. for C32H27N4O2S [M−H]−: 531.18602, found: 531.18696. 

IR (ATR, cm–1): ṽ = 3252 (w), 2968 (m), 1790 (m), 1682 (s), 1659 (s), 1651 (s), 1608 (s), 

1593 (s), 1574 (s), 1552 (m), 1520 (s), 1479 (s), 1464 (s), 1431 (s), 1417 (s), 1396 (s), 1371 (s), 

1362 (s), 1350 (s), 1306 (m), 1269 (s), 1250 (s), 1232 (s), 1207 (s), 1169 (s), 1155 (s), 1132 (s), 

1111 (s), 1092 (s), 1053 (m), 1007 (m), 959 (m), 941 (m), 924 (m), 883 (s), 858 (s), 797 (m), 777 

(m), 754 (s), 737 (s), 692 (s), 681 (s), 667 (m), 652 (m), 633 (m), 621 (m), 592 (s), 538 (m). 
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4.2.18 Synthesis of 5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-diones via 

Hantzsch-like reaction 

 

10-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl)-6,8-dimethoxy-1,3-

dimethyl-2,4-dioxo-1,2,3,4,5,10-hexahydropyrimido[4,5-b]quinoline-5-carboxylic acid (123) 

 

Into a 25-mL flask were placed 1,3-dimethylbarbituric acid (0.6 g, 

3.84 mmol, 2 eq), chloral hydrate (0.35 g, 2.11 mmol, 1.1 eq), 3,5-

dimethylaniline (0.353 g, 2.31 mmol, 1.2 eq) and 6 ml of ethanol. After that 

0.024 g of iodine (0.096 mmol, 0.05 eq) was added and the mixture was 

stirred at r.t. overnight. After 5 days the formed precipitate was filtered off, 

washed with ethanol and dried in a high vacuum to give 0.155 g of pinkish solid. 

Yield 17%, white solid, mp 302-304 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 2.88 (s, 3H, NCH3), 3.22 (s, 3H, N-CH3), 3.29 (s, 

3H, N-CH3), 3.31 (s, 3H, N-CH3), 3.66 (s, 3H, MeO), 3.79 (s, 3H, MeO), 4.99 (s, 1H, H-5'), 5.60 (s, 

1H, H-5), 6.34 (d, 1H, 4J = 1.89 Hz, H-7), 6.94 (d, 1H, 4J = 1.89 Hz, H-9), 13.00 (br s, 1H, COOH). 

MS (EI, 70 eV): m/z (%) = 486 ([M+H]+, 11), 485 ([M]+, 47), 397 (24), 331 (39), 330 (100), 

156 (10), 78 (11), 63 (12), 42 (10). 

HRMS (ESI): Calcd. for C22H24N5O8 [M+H]+: 486.16194, found: 486.16123. 

Anal. Calcd for C22H23N5O8: C, 54.43; H, 4.78; N, 14.43. Found: C, 52.76; H, 4.88; N, 

13.68. 

IR (ATR, cm–1): ṽ = 3186 (w), 2962 (w), 2843 (w), 1699 (s), 1672 (s), 1622 (s), 1614 (s), 

1545 (s), 1504 (s), 1444 (s), 1417 (s), 1379 (s), 1363 (s), 1336 (s), 1286 (s), 1267 (s), 1230 (m), 

1207 (s), 1169 (m), 1140 (s), 1122 (s), 1095 (s), 1047 (s), 1024 (s), 964 (m), 943 (m), 852 (m), 839 

(m), 812 (s), 795 (s), 783 (s), 756 (s), 727 (s), 704 (m), 694 (m), 671 (m), 662 (s), 644 (m), 600 (m), 

552 (m). 

 

Ethyl 6,8-dimethoxy-1,3,5-trimethyl-2,4-dioxo-1,2,3,4,5,10-hexahydropyrimido[4,5-

b]quinoline-5-carboxylate (125) 

 

Into a 25-mL flask were placed barbituric acid (0.3 g, 1.92 mmol, 1 

eq), ethyl pyruvate (0.669 g, 5.76 mmol, 3 eq), aromatic amine (0.294 g, 

1.92 mmol, 1 eq) and 6 ml of ethanol. After that 0.024 g of iodine (0.096 

mmol, 0.05 eq) was added and the mixture was stirred at r.t. overnight. The 

next day formed precipitate was filtered off, washed with ethanol and dried in a high vacuum. The 

product should be stored in hermetic package at low temperature preferably in presence of drying 
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agent (CaCl2, etc.). 

Yield 0.187 g (25%), white solid, mp 248-249 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.18 (t, 3H, 3J = 7.18 Hz, Et), 1.47 (s, 3H, CH3-5), 

3.15 (s, 3H, NCH3-3), 3.50 (s, 3H, NCH3-1), 3.70 (s, 3H, MeO), 3.78 (s, 3H, MeO), 4.05 (q, 2H, 3J 

= 7.18 Hz, Et), 6.25 (d, 1H, 4J = 2.37 Hz, H-7), 6.55 (d, 1H, 4J = 2.37 Hz, H-9), 8.99 (br s, 1H, 

NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 15.0 (CH3(Et)), 25.8 (CH3-5), 28.4 (N-CH3), 30.9 (N-

CH3), 44.4, 56.1 (MeO), 56.3 (MeO), 60.5 (CH2(Et)), 90.1 (C-4a), 94.7 (CHAr), 95.1 (CHAr), 108.2, 

137.2, 145.3, 151.3, 158.8, 160.2, 160.9, 175.1. 

MS (EI, 70 eV): m/z (%) = 389 ([M]+, 23), 374 (13), 328 (20), 318 (60), 317 (100), 316 (80), 

315 (72), 302 (15), 301 (56), 300 (67), 287 (23), 286 (26), 260 (21), 259 (89), 258 (12), 216 (11), 

215 (14), 206 (61), 205 (13), 203 (40), 202 (50), 201 (25), 189 (29), 188 (10), 187 (25), 186 (15), 

174 (12), 173 (20), 172 (17), 171 (11), 158 (35), 156 (10), 146 (15), 130 (10), 122 (15), 42 (15). 

HRMS (ESI): Calcd. for C19H24N3O6 [M+H]+: 390.16596, found: 390.16679. 

Anal. Calcd for C19H23N3O6: C, 58.60; H, 5.95; N, 10.79. Found: C, 56.37; H, 5.58; N, 

11.15. 

IR (ATR, cm–1): ṽ = 3190 (w), 2945 (w), 1745 (w), 1699 (s), 1660 (s), 1633 (s), 1539 (s), 

1495 (s), 1470 (s), 1441 (s), 1423 (s), 1373 (s), 1342 (s), 1304 (m), 1290 (s), 1271 (s), 1257 (s), 

1234 (m), 1221 (s), 1196 (m), 1186 (m), 1176 (m), 1146 (s), 1122 (s), 1099 (s), 1022 (m), 986 (s), 

947 (m), 912 (m), 870 (m), 814 (s), 787 (m), 771 (s), 760 (s), 750 (s), 727 (m), 694 (m), 646 (m), 

635 (m), 571 (m), 554 (m), 538 (m). 

 

4.2.19 Formation of 5-(4,6-dimethoxy-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-1,3-

dimethylpyrimidine-2,4,6(1H,3H,5H)-trione 

 

5-(4,6-Dimethoxy-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)-1,3-dimethylpyrimidine-

2,4,6(1H,3H,5H)-trione (126) 

 

This substance was formed from compound 125, during the storage 

at r.t. in untight package for 6 month. 

Yield 100%, white solid, mp 243-244 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.33 (s, 3H, CH3), 2.76 (s, 

3H, N-CH3), 3.22 (s, 3H, N-CH3), 3.66 (s, 3H, MeO), 3.76 (s, 3H, MeO), 3.80 (s, 1H, H-5), 6.05 (d, 

1H, 4J = 2.08 Hz, H-5'), 6.14 (d, 1H, 4J = 2.08 Hz, H-7'), 10.53 (br s, 1H, NH). 
13C NMR (62.90 MHz, DMSO-d6): δ = 21.1 (CH3), 28.5 (N-CH3), 29.0 (N-CH3), 51.5, 54.4 

(CH-5), 56.3 (MeO), 56.7 (MeO), 90.3 (CHAr), 92.3 (CHAr), 108.9, 144.6, 152.6, 157.3, 162.4, 
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167.2, 167.7, 180.3. 

MS (EI, 70 eV): m/z (%) = 361 ([M]+, 15), 316 (13), 207 (36), 206 (100), 205 (38), 176 (17), 

156 (21), 42 (14). 

HRMS (EI): Calcd. for C17H18N3O6 [M−H]−: 360.11956, found: 360.12922. 

IR (ATR, cm–1): ṽ = 3192 (w), 2943 (w), 1745 (w), 1699 (s), 1682 (s), 1660 (s), 1633 (s), 

1608 (s), 1539 (m), 1510 (s), 1495 (m), 1470 (s), 1454 (s), 1435 (s), 1423 (s), 1373 (s), 1342 (s), 

1325 (m), 1304 (m), 1290 (s), 1269 (s), 1221 (s), 1196 (m), 1186 (s), 1176 (m), 1146 (s), 1120 (s), 

1097 (s), 1028 (s), 986 (s), 947 (m), 912 (m), 870 (m), 816 (s), 787 (m), 771 (m), 760 (s), 750 (s), 

727 (s), 692 (s), 671 (m), 646 (s), 635 (s), 615 (m), 600 (m), 571 (m). 

 

4.2.20 Synthesis of 2-benzyl-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-

one 

 

2-Benzyl-4,4-dimethyl-4,5-dihydropyrrolo[2,3,4-kl]acridin-1(2H)-one (128) 

 

Into a 25-mL flask were placed 0.188 g of isatin (0.128 mmol, 1 eq), 

0.293 g of 3-(benzylamino)-5,5-dimethylcyclohex-2-en-1-one and 6 ml of 

ethanol. After that 0.016 g of iodine (0.064 mmol, 0.05 eq) was added and 

the mixture was stirred at r.t. overnight. The next day the solvent was evaporated and the residue 

purified with short path column chromatography using chloroform as eluent. 

Yield 0.187 g (43%), brownish solid, mp 136-138 °C. 
1H NMR (300.13 MHz, DMSO-d6): δ = 1.26 (s, 3H, CH3), 3.13 (s, 2H, H-5), 5.01 (s, 2H, 

CH2(Bn)), 5.43 (s, 1H, H-3), 7.23-7.36 (m, 5H, Ph), 7.60-7.67 (m, 1H, CHAr), 7.69-7.76 (m, 1H, 

CHAr), 8.14 (d, 1H, 3J = 8.41 Hz, CHAr), 7.80 (d, 1H, 3J = 8.12 Hz, CHAr). 
13C NMR (62.90 MHz, DMSO-d6): δ = 31.2 (CH3), 37.4, 44.1 (CH2), 44.5 (CH2), 118.0 

(CH-3), 122.9, 124.5 (CHAr), 125.8, 126.9, 127.7 (CHAr), 127.9 (CHAr), 127.9 (CHAr), 129.0 

(CHAr), 129.7 (CHAr), 129.7 (CHAr), 133.2, 137.1, 150.0, 154.7, 167.9. 

MS (EI, 70 eV): m/z (%) = 340 ([M]+, 17), 326 (26), 325 (100), 247 (14), 91 (65). 

HRMS (EI): Calcd. for C23H20N2O [M]+: 340.15701, found: 340.15714. 

IR (ATR, cm–1): ṽ = 2953 (m), 2924 (w), 2862 (w), 1697 (s), 1660 (s), 1585 (w), 1524 (m), 

1495 (m), 1464 (m), 1456 (m), 1441 (m), 1417 (m), 1406 (m), 1379 (m), 1358 (m), 1338 (s), 1296 

(m), 1261 (m), 1252 (m), 1221 (w), 1205 (m), 1192 (m), 1144 (m), 1124 (m), 1101 (m), 1076 (m), 

1049 (w), 1030 (m), 1016 (m), 968 (m), 959 (m), 949 (m), 914 (m), 899 (m), 885 (w), 876 (w), 827 

(s), 820 (m), 798 (m), 770 (s), 746 (s), 729 (m), 696 (s), 631 (s), 586 (m), 575 (s), 550 (m). 
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4.3 Crystal data and structure refinement 

 

Crystal data and structure refinement for 16a 

 

Identification code sd217 

Empirical formula C10H11F3N2O4∙CHCl3 

Formula weight 399.58 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21 

Space group (Hall) P 2yb 

Unit cell dimensions a = 10.5112(5) Å α = 90° 

 b = 6.1932(3) Å β = 101.793(2)° 

 c = 12.5665(6) Å γ = 90° 

Volume 800.79(7) Å3 

Z 2 

Calculated density 1.657 Mg/m3 

Absorption coefficient 0.622 mm-1 

F(000) 404 

Crystal size 0.33 × 0.07 × 0.05 mm 

Θ range for data collection 2.83 to 30.00° 

Index ranges −14 ≤ h ≤ 11, −8 ≤ k ≤ 8, −16 ≤ l ≤ 17 

Reflections collected 9501 

Independent reflections 4419 [R(int) = 0.0327] 

Completeness to Θ = 30.00° 99.8 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9696 and 0.8210 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3051 / 1 / 220 

Goodness-of-fit on F2 1.018 

Final R indices [I>2sigma(I)] R1 = 0.0494, wR2 = 0.0821 

R indices (all data) R1 = 0.0883, wR2 = 0.0914 

Largest diff. peak and hole 0.314 and −0.357 e.Å-3 
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Crystal data and structure refinement for 74a 

 

Identification code sd084 

Empirical formula C11H4ClF3O3 

Formula weight 276.59 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21/c 

Space group (Hall) -P 2ybc 

Unit cell dimensions a = 11.1587(6) Å α = 90° 

 b = 5.2079(2) Å β = 102.836(2)° 

 c = 18.8468(9) Å γ = 90° 

Volume 1067.88(9) Å3 

Z 4 

Calculated density 1.720 Mg/m3 

Absorption coefficient 0.397mm-1 

F(000) 522 

Crystal size 0.54 × 0.15 × 0.07 mm 

Θ range for data collection 2.56 to 32.50° 

Index ranges −16 ≤ h ≤ 16, −7 ≤ k ≤ 7, −27 ≤ l ≤ 28 

Reflections collected 14509 

Independent reflections 3774 [R(int) = 0.0239] 

Completeness to Θ = 32.50° 97.8 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9728 and 0.8143 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2930 / 0 / 163 

Goodness-of-fit on F2 1.073 

Final R indices [I>2sigma(I)] R1 = 0.0365, wR2 = 0.0943 

R indices (all data) R1 = 0.0514, wR2 = 0.1013 

Largest diff. peak and hole 0.389 and −0.310 e.Å-3 
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Crystal data and structure refinement for 88n 

 

Identification code sd184 

Empirical formula C16H14F3N3O3 

Formula weight 353.30 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)  

Space group (Hall) -P 1 

Unit cell dimensions a = 7.6951(3) Å α = 65.724(2)° 

 b = 10.1134(5) Å β = 82.426(2)° 

 c = 10.1134(5) Å γ = 71.772(2)° 

Volume 734.82(6) Å3 

Z 2 

Calculated density 1.597 Mg/m3 

Absorption coefficient 0.137 mm-1 

F(000) 364 

Crystal size 0.48 × 0.35 × 0.10 mm 

Θ range for data collection 2.31 to 29.99° 

Index ranges −10 ≤ h ≤ 10, −13 ≤ k ≤ 13, −14 ≤ l ≤ 14 

Reflections collected 15164 

Independent reflections 3881 [R(int) = 0.0317] 

Completeness to Θ = 29.99° 99.2 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9864 and 0.9371 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3116 / 0 / 229 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0380, wR2 = 0.1056 

R indices (all data) R1 = 0.0503, wR2 = 0.1129 

Largest diff. peak and hole 0.363 and −0.265 e.Å-3 

1P
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Crystal data and structure refinement for 88j 

 

Identification code sd194 

Empirical formula C15H12ClF2N3O3 

Formula weight 355.73 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)  

Space group (Hall) -P 1 

Unit cell dimensions a = 8.6849(7) Å α = 115.546(2)° 

 b = 9.3993(4) Å β = 101.079(2)° 

 c = 10.0441(4) Å γ = 98.711(3)° 

Volume 700.09(7) Å3 

Z 2 

Calculated density 1.687 Mg/m3 

Absorption coefficient 0.319 mm-1 

F(000) 364 

Crystal size 0.41 × 0.22 × 0.21 mm 

Θ range for data collection 2.35 to 30.99° 

Index ranges −12 ≤ h ≤ 12, −13 ≤ k ≤ 13, −14 ≤ l ≤ 14 

Reflections collected 15923 

Independent reflections 4451 [R(int) = 0.0355] 

Completeness to Θ = 30.99° 99.8 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9360 and 0.8803 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3595 / 0 / 220 

Goodness-of-fit on F2 1.052 

Final R indices [I>2sigma(I)] R1 = 0.0363, wR2 = 0.0995 

R indices (all data) R1 = 0.0487, wR2 = 0.1062 

Largest diff. peak and hole 0.397 and −0.325 e.Å-3 

1P
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Crystal data and structure refinement for 88m 

 

Identification code sd206 

Empirical formula C17H12F7N3O3∙CHCl3 

Formula weight 558.66 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21/m 

Space group (Hall) -P 2yb 

Unit cell dimensions a = 12.2256(8) Å α = 90° 

 b = 6.8967(4) Å β = 95.776(3)° 

 c = 12.7724(8) Å γ = 90° 

Volume 1071.45(12) Å3 

Z 2 

Calculated density 1.732 Mg/m3 

Absorption coefficient 0.516 mm-1 

F(000) 560 

Crystal size 0.85 × 0.33 × 0.08 mm 

Θ range for data collection 3.21 to 28.00° 

Index ranges −16 ≤ h ≤ 16, −9 ≤ k ≤ 9, −16 ≤ l ≤ 16 

Reflections collected 10034 

Independent reflections 2781 [R(int) = 0.0223] 

Completeness to Θ = 28.00° 99.7 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9599 and 0.6680 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2118 / 0 / 260 

Goodness-of-fit on F2 1.060 

Final R indices [I>2sigma(I)] R1 = 0.0478, wR2 = 0.1365 

R indices (all data) R1 = 0.0658, wR2 = 0.1491 

Largest diff. peak and hole 0.532 and −0.311 e.Å-3 
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Crystal data and structure refinement for 91a 

 

Identification code sd283 

Empirical formula C16H14F3N3O3 

Formula weight 353.30 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)  

Space group (Hall) -P 1 

Unit cell dimensions a = 7.4835(3) Å α = 92.445(2)° 

 b = 8.5920(3) Å β = 104.160(2)° 

 c = 11.4002(4) Å γ = 93.761(2)° 

Volume 707.90(5) Å3 

Z 2 

Calculated density 1.657 Mg/m3 

Absorption coefficient 0.142 mm-1 

F(000) 364 

Crystal size 0.48 × 0.17 × 0.10 mm 

Θ range for data collection 2.92 to 30.00° 

Index ranges −10 ≤ h ≤ 10, −12 ≤ k ≤ 12, −16 ≤ l ≤ 15 

Reflections collected 15295 

Independent reflections 4101 [R(int) = 0.0186] 

Completeness to Θ = 30.00° 99.5 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9859 and 0.9349 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3515 / 0 / 232 

Goodness-of-fit on F2 1.026 

Final R indices [I>2sigma(I)] R1 = 0.0390, wR2 = 0.1002 

R indices (all data) R1 = 0.0472, wR2 = 0.1053 

Largest diff. peak and hole 0.419 and −0.278 e.Å-3 

1P
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Crystal data and structure refinement for 92a 

 

Identification code sd284 

Empirical formula C16H13ClF3N3O2 

Formula weight 371.74 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21/c 

Space group (Hall) -P 2ybc 

Unit cell dimensions a = 19.9679(8) Å α = 90° 

 b = 20.1167(8) Å β = 111.103(2)° 

 c = 16.4722(7) Å γ = 90° 

Volume 6172.9(4) Å3 

Z 16 

Calculated density 1.600 Mg/m3 

Absorption coefficient 0.298 mm-1 

F(000) 3040 

Crystal size 0.72 × 0.31 × 0.09 mm 

Θ range for data collection 1.49 to 26.99° 

Index ranges −19 ≤ h ≤ 25, −25 ≤ k ≤ 25, −20 ≤ l ≤ 16 

Reflections collected 55556 

Independent reflections 13379 [R(int) = 0.0341] 

Completeness to Θ = 26.99° 99.5 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9737 and 0.8142 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10025 / 0 / 909 

Goodness-of-fit on F2 1.035 

Final R indices [I>2sigma(I)] R1 = 0.0418, wR2 = 0.1005 

R indices (all data) R1 = 0.0643, wR2 = 0.1095 

Largest diff. peak and hole 0.346 and −0.396 e.Å-3 
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Crystal data and structure refinement for 98a 

 

Identification code sd228 

Empirical formula C16H16F3N3O2 

Formula weight 339.32 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21/c 

Space group (Hall) -P 2ybc 

Unit cell dimensions a = 8.5186(3) Å α = 90° 

 b = 9.1302(3) Å β = 96.8670(10)° 

 c = 19.1613(6) Å γ = 90° 

Volume 1479.61(9) Å3 

Z 4 

Calculated density 1.523 Mg/m3 

Absorption coefficient 0.128 mm-1 

F(000) 704 

Crystal size 0.50 × 0.39 × 0.30 mm 

Θ range for data collection 2.47 to 31.03° 

Index ranges −6 ≤ h ≤ 12, −12 ≤ k ≤ 13, −27 ≤ l ≤ 27 

Reflections collected 16967 

Independent reflections 4698 [R(int) = 0.0164] 

Completeness to Θ = 30.50° 99.2 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9627 and 0.9389 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4099 / 0 / 225 

Goodness-of-fit on F2 1.064 

Final R indices [I>2sigma(I)] R1 = 0.0368, wR2 = 0.1077 

R indices (all data) R1 = 0.0428, wR2 = 0.1119 

Largest diff. peak and hole 0.461 and −0.256 e.Å-3 
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Crystal data and structure refinement for 100 

 

Identification code sd402 

Empirical formula C23H22F3N3O2 

Formula weight 429.44 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)  

Space group (Hall) -P 1 

Unit cell dimensions a = 8.6107(7) Å α = 102.613(5)° 

 b = 11.0873(10) Å β = 91.556(6)° 

 c = 11.3982(10) Å γ = 106.607(5)° 

Volume 1012.95(15) Å3 

Z 2 

Calculated density 1.408 Mg/m3 

Absorption coefficient 0.110 mm-1 

F(000) 448 

Crystal size 0.33 × 0.13 × 0.10 mm 

Θ range for data collection 2.94 to 32.50° 

Index ranges −13 ≤ h ≤ 13, −16 ≤ k ≤ 16, −17 ≤ l ≤ 16 

Reflections collected 28093 

Independent reflections 7309 [R(int) = 0.0327] 

Completeness to Θ = 32.50° 99.9 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9891 and 0.9646 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4879 / 0 / 284 

Goodness-of-fit on F2 1.012 

Final R indices [I>2sigma(I)] R1 = 0.0495, wR2 = 0.1179 

R indices (all data) R1 = 0.0856, wR2 = 0.1380 

Largest diff. peak and hole 0.377 and −0.258 e.Å-3 

1P
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Crystal data and structure refinement for 108 

 

Identification code sd341 

Empirical formula C15H14F3N3O3 

Formula weight 341.29 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21/c 

Space group (Hall) -P 2ybc 

Unit cell dimensions a = 17.9524(3) (6) Å α = 90° 

 b = 6.20460(10) Å β = 109.1480(10)° 

 c = 14.3442(2) Å γ = 90° 

Volume 1509.37(4) Å3 

Z 4 

Calculated density 1.502 Mg/m3 

Absorption coefficient 0.130 mm-1 

F(000) 704 

Crystal size 0.30 × 0.17 × 0.16 mm 

Θ range for data collection 2.85 to 29.99° 

Index ranges −25 ≤ h ≤ 25, −7 ≤ k ≤ 8, −20 ≤ l ≤ 19 

Reflections collected 17011 

Independent reflections 4381 [R(int) = 0.0229] 

Completeness to Θ = 29.99° 99.7 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9794 and 0.9619 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3462 / 0 / 223 

Goodness-of-fit on F2 1.036 

Final R indices [I>2sigma(I)] R1 = 0.0510, wR2 = 0.1278 

R indices (all data) R1 = 0.0663, wR2 = 0.1387 

Largest diff. peak and hole 0.890 and –0.364 e.Å-3 
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Crystal data and structure refinement for 119e 

 

Identification code sd209 

Empirical formula C22H20N4O5∙3C2HF3O2 

Formula weight 762.50 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group (H.-M.)  

Space group (Hall) -P 1 

Unit cell dimensions a = 9.6401(6) Å α = 78.929(3)° 

 b = 12.6637(8) Å β = 71.301(3)° 

 c = 14.1111(9) Å γ = 83.218(3)° 

Volume 1598.41(17) Å3 

Z 2 

Calculated density 1.584 Mg/m3 

Absorption coefficient 0.155 mm-1 

F(000) 776 

Crystal size 0.63 × 0.48 × 0.35 mm 

Θ range for data collection 2.23 to 28.00° 

Index ranges −12 ≤ h ≤ 12, −16 ≤ k ≤ 16, −18 ≤ l ≤ 18 

Reflections collected 30889 

Independent reflections 7716 [R(int) = 0.0283] 

Completeness to Θ = 28.00° 99.9 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9479 and 0.9089 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6188 / 19 / 577 

Goodness-of-fit on F2 1.085 

Final R indices [I>2sigma(I)] R1 = 0.0493, wR2 = 0.1368 

R indices (all data) R1 = 0.0623, wR2 = 0.1448 

Largest diff. peak and hole 0.609 and −0.397 e.Å-3 

1P
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Crystal data and structure refinement for 119b 

 

Identification code sd222 

Empirical formula C27H30N4O6∙CH4O 

Formula weight 538.59 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21/n 

Space group (Hall) -P 2yn 

Unit cell dimensions a = 13.2916(3) Å α = 90° 

 b = 13.4393(3) Å β = 109.5340(10)° 

 c = 16.4546(4) Å γ = 90° 

Volume 2770.11(11) Å3 

Z 4 

Calculated density 1.291 Mg/m3 

Absorption coefficient 0.094 mm-1 

F(000) 1144 

Crystal size 0.36 × 0.33 × 0.30 mm 

Θ range for data collection 1.71 to 30.50° 

Index ranges −18 ≤ h ≤ 17, −18 ≤ k ≤ 19, −21 ≤ l ≤ 23 

Reflections collected 33513 

Independent reflections 8447 [R(int) = 0.0386] 

Completeness to Θ = 30.50° 100.0 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9724 and 0.9670 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5909 / 2 / 423 

Goodness-of-fit on F2 1.091 

Final R indices [I>2sigma(I)] R1 = 0.0465, wR2 = 0.1274 

R indices (all data) R1 = 0.0723, wR2 = 0.1391 

Largest diff. peak and hole 0.289 and −0.258 e.Å-3 
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Crystal data and structure refinement for 126 

 

Identification code sd303 

Empirical formula C17H19N3O6 

Formula weight 361.35 

Temperature 173(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group (H.-M.) P21/c 

Space group (Hall) -P 2ybc 

Unit cell dimensions a = 8.4358(8) Å α = 90° 

 b = 8.6118(9) Å β = 97.003(3)° 

 c = 23.023(2) Å γ = 90° 

Volume 1660.1(3) Å3 

Z 4 

Calculated density 1.446 Mg/m3 

Absorption coefficient 0.111 mm-1 

F(000) 760 

Crystal size 0.89 × 0.39 × 0.03 mm 

Θ range for data collection 1.78 to 29.99° 

Index ranges −11 ≤ h ≤ 11, −12 ≤ k ≤ 11, −32 ≤ l ≤ 32 

Reflections collected 17062 

Independent reflections 4819 [R(int) = 0.0381] 

Completeness to Θ = 29.99° 99.8 % 

Absorption correction Multi-scan 

Max. and min. transmission 0.9967 and 0.9076 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2996 / 0 / 244 

Goodness-of-fit on F2 1.021 

Final R indices [I>2sigma(I)] R1 = 0.0469, wR2 = 0.1020 

R indices (all data) R1 = 0.0963, wR2 = 0.1145 

Largest diff. peak and hole 0.271 and −0.277 e.Å-3 
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List of Symbols and Abbreviations 

 

 –ʺ– symbol indicating the repetition 

 (m) medium 

 (s) strong 

 (w) weak 

 Ac Acetyl group 

 AID Activation-induced cytidine deaminase 

 APOBEC Apolipoprotein B mRNA editing enzyme 

 Ar Aryl group 

 ART Attenuated total reflection 

 br broad signal 

 cat. catalyst 

 CDA Cytidine deaminase 

 Compd Compound 

 conc. concentrated 

 COSY Correlation spectroscopy 

 d doublet 

 DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene 

 DCM Dichloromethane 

 DEPT Distortionless enhancement by polarization transfer 

 DHP 1,4-Dihydropyridine 

 dioxane 1,4-dioxane 

 DIPA Diisopropylamine 

 DMAP 4-Dimethylaminopyridine 

 DMF N,N-Dimethylformamide 

 DMFDMA N,N-Dimethylformamide dimethyl acetal 

 DMSO Dimethyl sulfoxide 

 DNA Deoxyribonucleic acid 

 EA Elemental analysis 

 EI Electron ionization 

 eq chemical equivalent 

 ESI Electrospray ionization 

 Et Ethyl group 

 EWG Electron-withdrawing group 

 FAD Flavin adenine dinucleotide 
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 GC Gas chromatography 

 h hour 

 Het Hetaryl group 

 HMBC Heteronuclear multiple-bond correlation 

 HMQC Heteronuclear multiple-quantum correlation 

 HPTLC High-performance TLC 

 HRMS High-resolution mass spectrometry 

 HSQC Heteronuclear single quantum coherence 

 IMP Inosine-5'-monophosphate 

 IMPDH IMP dehydrogenase 

 IR Infrared (spectroscopy) 

 IUPAC International Union of Pure and Applied Chemistry 

 J Coupling constant, Hz 

 l cuvette length 

 LC Liquid chromatography 

 LCD Liquid crystals displays 

 m multiplet 

 Me Methyl group 

 Me Methyl group 

 MRC Multicomponent reaction 

 mRNA Messenger RNA 

 MS Mass spectrometry 

 N Normality (concentration) 

 n-BuLi n-Butyllithium 

 NMP N-Methyl-2-pyrrolidone 

 NMR Nuclear magnetic resonance 

 NOE Nuclear Overhauser effect 

 NOESY NOE spectroscopy 

 Nu Nucleophile 

 OLED Organic light-emitting diode 

 Ph Phenyl group 

 Py Pyridil group 

 q quartet 

 Rf Chromatographic retention factor 

 Rf or RF Polyfluoroalkyl group 

 RNA Ribonucleic acid 
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 s singlet 

 t triplet 

 Tf Triflic group 

 TFA Trifluoroacetic acid 

 TFAA Trifluoroacetic anhydride 

 THF Tetrahydrofuran 

 TLC Thin layer chromatography 

 TMS Trimethylsilyl group 

 TsOH p-Toluenesulfonic acid 

 UV Ultraviolet 

 ṽ wavenumber, cm−1 

 Vis Visible 

 w cuvette width 

 wt. % weight percent 

 Z number of formula units in unit cell 

 δ chemical shift, ppm 

 ΔνSt Stokes shift, cm-1 

 ε molar absorption coefficient, M-1∙cm-1 

 λ wavelength, Å 

 λa absorption maximum, nm 

 λf fluorescence band maxima, nm 
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