Aus der Klinik für Kinder- und Jugendmedizin Helios Kliniken Schwerin
Direktoren: Dr. med O. Kannt und Prof. Dr. med. habil P. Clemens,
Lehrbeauftragter der Universitäts-Kinder und Jugendklinik Rostock

Entwicklung der kardiorespiratorischen Stabilität bei Frühgeborenen
mit zunehmendem postnatalem Alter

und

im Vergleich zu gesunden Reifgeborenen

Inauguraldissertation

zur

Erlangung des akademischen Grades

Doktor der Medizin

der Medizinischen Fakultät

der Universität Rostock

vorgelegt von

Elisabeth Arndt

aus Rostock

Rostock, 2012

urn:nbn:de:gbv:28-diss2013-0111-7
Dekan: Prof. Dr.med. Emil Christian Reisinger

1. Gutachter: Prof. Dr. med. habil Peter Chr. Clemens, Kinder- u. Jugendklinik Schwerin

2. Gutachter: Prof. Dr. med. habil Chr. Plath, Kinder- u. Jugendklinik Universitätsmedizin Rostock

Datum der Verteidigung: 17.07.2013
Inhaltsverzeichnis

Abbildungsverzeichnis .. 3
Tabellenverzeichnis .. 4
Abkürzungsverzeichnis .. 5

1 Einleitung ... 7
 1.1 Frühgeburt und Frühgeborenes .. 9
 1.1.1 Definitionen ... 9
 1.1.2 Ätiologie .. 9
 1.2 Respiratorisches System ... 10
 1.2.1 Morphologische und funktionelle prä- und postnatale Entwicklung der Atmungsorgane .. 10
 1.2.2 Atemregulation ... 12
 1.3 Neonatale Atemmuster und Apnoe ... 17
 1.3.1 Definitionen und epidemiologische Gesichtspunkte ... 18
 1.3.2 Reflexe und spezielle Rezeptorantworten, die mit dem Auftreten der Apnoe beim Neugeborenen und Säugling assoziiert sind ... 24

2 Zielsetzung und Fragestellung ... 27

3 Kollektiv und Methoden .. 28
 3.1 Kollektiv .. 28
 3.1.1 Erfasste Daten .. 28
 3.1.2 Gruppenbildung ... 29
 3.1.3 Ein- und Ausschlusskriterien ... 32
 3.1.4 Datenschutz ... 33
 3.2 Methoden .. 33
3.2.1 Geräte und Software .. 33
3.2.2 Ablauf der polysomnographischen Untersuchung ... 37
3.2.3 Messwerte .. 38
3.2.4 Aufzeichnung und Verarbeitung der erhobenen Daten 39

4 Ergebnisse .. 41
4.1 Vergleich der Gruppen eingeteilt nach dem Geburtsalter 41
4.1.1 Apnoeindex ... 42
4.1.2 Absolute Apnoedauer ... 44
4.1.3 Mittlere Apnoedauer ... 45
4.1.4 Maximale Apnoedauer .. 46
4.1.5 Signifikanz ... 46
4.2 Vergleich der Gruppen - eingeteilt nach dem Abstand der Untersuchungszeitpunkte voneinander ... 48
4.2.1 Gruppe 1 ... 49
4.2.2 Vergleich der Gruppen 1-4 .. 50
4.3 Vergleich der Daten mit einem Referenzkollektiv ... 56
4.3.1 Referenzgruppe ... 56
4.3.2 Vergleich unseres Untersuchungskollektives mit der Referenzgruppe 58

5 Diskussion ... 63
6 Schlussfolgerungen ... 85
7 Zusammenfassung und Ausblick ... 86
8 Literaturverzeichnis ... 88

Anhang ... 104
Thesen .. 10417
Eigenständigkeitserklärung .. 1178
Lebenslauf ... 119
Danksagung .. 120
Abbildungsverzeichnis

Abb. 1: Schematische Darstellung der Atemregulation ... 15
Abb. 2: Schematische Darstellung einer zentralen Apnoe .. 18
Abb. 3: Schematische Darstellung einer obstruktiven Apnoe .. 19
Abb. 4: Schematische Darstellung der Anbringung des EEG, EMG und EOG, modifiziert nach [60] .. 35
Abb. 5: Verteilung des Untersuchungskollektivs nach dem Gestationsalter bei Geburt .. 42
Abb. 6: Entwicklung des Apnoeindex abhängig von BGA und EGA 43
Abb. 7: Entwicklung der absoluten Apnoedauer abhängig von BGA und EGA 44
Abb. 8: Entwicklung der mittleren Apnoedauer abhängig von BGA und EGA 45
Abb. 9: Entwicklung der maximalen Apnoedauer abhängig von BGA und EGA 46
Abb. 10: Untersuchungskollektiv – Aufgliederung nach dem Untersuchungszeitpunkt ... 48
Abb. 11: Apnoeindex zu den verschiedenen Untersuchungszeitpunkten 51
Abb. 12: Absolute Apnoedauer zu den verschiedenen Untersuchungszeitpunkten 52
Abb. 13: Mittlere Apnoedauer zu den verschiedenen Untersuchungszeitpunkten 53
Abb. 14: Maximale Apnoedauer zu den verschiedenen Untersuchungszeitpunkten 54
Abb. 15: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich des Apnoeindex ... 58
Abb. 16: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich der absoluten Apnoedauer ... 59
Abb. 17: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich der mittleren Apnoedauer ... 60
Abb. 18: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich der maximalen Apnoedauer .. 61
Abb. 19: Berechnung der benötigten Zeit der Frühgeborenen in Gestationswochen bis zum Erreichen einer stabilen Respiration .. 69
Abb. 20: Ätiologische Faktoren der Apnoe bei Frühgeborenen nach [46] 74
Tabellenverzeichnis

Tab. 1: Ätiologische Faktoren der Frühgeburtlichkeit [21,16]................................. 9
Tab. 2: Unterschiede in der Apnoedefinition verschiedener Autoren nach [82].... 21
Tab. 3: Prozentualer Anteil weiterer Diagnosen des Gesamtkollektivs 29
Tab. 4: BGA - Signifikanzprüfung.. 47
Tab. 5: EGA - Signifikanzprüfung .. 47
Tab. 6: Gruppe 1 - Mittelwerte... 49
Tab. 7: Ergebnisse der Signifikanzprüfung zum Vergleich der Frühgeborenen mit
dem Referenzkollektiv.. 55
Tab. 8: Referenzgruppe .. 56
Tab. 9: Vergleich der Referenzgruppe (RG) mit Daten aus der Literatur (L) 57
Tab. 10: Ergebnisse der Signifikanzprüfung – Vergleich der Frühgeborenen mit dem
Referenzkollektiv.. 62
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Arteria</td>
</tr>
<tr>
<td>ALTE</td>
<td>apparent life threatening event</td>
</tr>
<tr>
<td>ANS</td>
<td>Atemnotsyndrom</td>
</tr>
<tr>
<td>AOI</td>
<td>Apnea of infancy</td>
</tr>
<tr>
<td>AOP</td>
<td>Apnea of prematurity</td>
</tr>
<tr>
<td>AS</td>
<td>active sleep</td>
</tr>
<tr>
<td>B</td>
<td>Bradykardie</td>
</tr>
<tr>
<td>BGA</td>
<td>Birth gestational age</td>
</tr>
<tr>
<td>BPD</td>
<td>Bronchopulmonale Dysplasie</td>
</tr>
<tr>
<td>bpm</td>
<td>beats per minute</td>
</tr>
<tr>
<td>BRAC</td>
<td>basic rest activity cycle</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CO₂</td>
<td>Kohlenstoffdioxid</td>
</tr>
<tr>
<td>CPAP</td>
<td>Continuous Positive Airway Pressure</td>
</tr>
<tr>
<td>D</td>
<td>Desaturation</td>
</tr>
<tr>
<td>DRG</td>
<td>dorsale respiratorische Gruppe</td>
</tr>
<tr>
<td>EEG</td>
<td>Elektroenzephalogramm</td>
</tr>
<tr>
<td>EGA</td>
<td>Examination gestational age</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>ELBW</td>
<td>Extremely Low Birth Weight</td>
</tr>
<tr>
<td>EMG</td>
<td>Elektromyogramm</td>
</tr>
<tr>
<td>EOG</td>
<td>Elektrookulogramm</td>
</tr>
<tr>
<td>FG</td>
<td>Frühgeborene</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-Aminobuttersäure</td>
</tr>
<tr>
<td>GERD</td>
<td>gastroesophageal reflux disease</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HCl</td>
<td>Chlorwasserstoff</td>
</tr>
<tr>
<td>HCO₃</td>
<td>Hydrogencarbonat</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LBW</td>
<td>Low Birth Weight</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter Quecksilbersäule</td>
</tr>
<tr>
<td>N.</td>
<td>Nervus</td>
</tr>
<tr>
<td>NREM</td>
<td>non-rapid eye movement</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanzwerte (probability value)</td>
</tr>
<tr>
<td>PaO₂</td>
<td>arterieller Sauerstoffpartialdruck</td>
</tr>
<tr>
<td>PRG</td>
<td>pontine respiratorische Gruppe</td>
</tr>
<tr>
<td>QS</td>
<td>quiet sleep</td>
</tr>
<tr>
<td>REM</td>
<td>rapid eye movement</td>
</tr>
<tr>
<td>RG</td>
<td>Reifgeborene</td>
</tr>
<tr>
<td>RSV</td>
<td>respiratory syncytial virus</td>
</tr>
<tr>
<td>s</td>
<td>Sekunden</td>
</tr>
<tr>
<td>SIDS</td>
<td>Sudden infant death syndrom</td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswochen</td>
</tr>
<tr>
<td>VLBW</td>
<td>Very Low Birth Weight</td>
</tr>
<tr>
<td>VRG</td>
<td>ventrale respiratorische Gruppe</td>
</tr>
<tr>
<td>ZNS</td>
<td>zentrales Nervensystem</td>
</tr>
</tbody>
</table>
1 Einleitung

„Die wichtigste Voraussetzung für das Überleben eines neugeborenen Kindes ist seine bereits vollständig an das extrauterine Leben angepasste Atemfunktion.“ [1]

In Anbetracht dieser Zusammenhänge möchten wir mit der vorliegenden Arbeit einen Beitrag zur weiteren Aufklärung der Entwicklung der kardiorespiratorischen Stabilität bei Frühgeborenen, insbesondere im Vergleich zu reifen Neugeborenen, leisten.
1.1 Frühgeburt und Frühgeborenes

1.1.1 Definitionen

Alle Kinder, die vor Vollendung der 37. Schwangerschaftswoche geboren werden, bezeichnet man als Frühgeborene. Diese Schwangerschaftsdauer entspricht einem Gestationsalter von weniger als 260 Tagen. Das Gestationsalter ist als zeitliche Länge der Schwangerschaft vom ersten Tag der letzten normalen Menstruation der Mutter bis zur Geburt definiert und beträgt normalerweise 281 Tage [14,21,22]. Nach dem Geburtsgewicht werden Frühgeborene eingeteilt in LBW (Low Birth Weight) mit einem Gewicht < 2500 g, VLBW (Very Low Birth Weight) < 1500 g und ELBW (Extremely Low Birth Weight) < 1000 g [23,24].

1.1.2 Ätiologie

<table>
<thead>
<tr>
<th>Erkrankungen der Mutter</th>
<th>Harnwegsinfekte, systemische Infektion, Vaginitis, Chorionamnionitis, Stress, Gerinnungsstörungen, HELPP-Syndrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plazentastörungen</td>
<td>Plazenta previa, Präeklampsie, Abruptio placentae</td>
</tr>
<tr>
<td>Fetale Besonderheiten</td>
<td>Fehlbildungen, Chromosomenanomalien, alloimmunopathien, Mehrlingsschwangerschaften</td>
</tr>
<tr>
<td>Uteruspathologie</td>
<td>Fehlbildungen, Myome, Zervixinsuffizienz</td>
</tr>
</tbody>
</table>

Tab. 1: Ätiologische Faktoren der Frühgeburtlichkeit [21,16]
1.2 Respiratorisches System

1.2.1 Morphologische und funktionelle prä- und postnatale Entwicklung der Atmungsorgane

es zum Umschalten („resetting“) der zum Geburtszeitpunkt vollständig entwickelten peripheren Chemorezeptoren auf ein entsprechend höheres PaO₂-Niveau. Auch die Erregungsschwellen der CO₂-Rezeptoren passen sich allmählich an [35]. Die Umstellung der unregelmäßigen, nur auf bestimmte Schlafphasen beschränkten, fetalen Atmung auf eine kontinuierliche Atmung scheint nach neueren Untersuchungsergebnissen aber vor allem durch die Kombination des Absinkens der Körpertemperatur postnatal und das Ansteigen des PaCO₂ bedingt zu sein [24,29,30,31,34,37,38].

1.2.2 Atemregulation

1.2.2.1 Atemzentrum

Die an der Ruheatmung beteiligte Muskulatur wird bezüglich ihrer Funktion in zwei Gruppen eingeteilt. Zum einen die inspiratorisch wirksamen Musculi scaleni, intercostales externi, intercartilaginei und serrati posteriores superiores und inferiores

1.2.2.2 Atemrezeptoren

Bei den Rezeptoren, die in der Regulation des respiratorischen Systems von Bedeutung sind, unterscheidet man Chemo- und Mechanorezeptoren. Erstere werden wiederum in zentrale und periphere unterteilt.

Die zentralen Chemorezeptoren befinden sich an der ventralen Oberfläche der Medulla oblongata [49] und vermutlich auch direkt im respiratorischen Netzwerk [50,51]. Werden sie stimuliert, kommt es zu einem Anstieg der Atemfrequenz und
-amplitude. Diese Effekte werden durch die mit dem CO₂-Anstieg einhergehende Dilatation cerebraler Gefäße begünstigt. Die Exzitation der zentralen Chemo-
rezep toren erfolgt durch einen Anstieg der Wasserstoffionenkonzentration in der sie umgebenden Flüssigkeit, das heißt im Liquor cerebrospinalis oder in der Extrazellularflüssigkeit [22,37,49]. Zu einem solchen Anstieg kommt es durch vermehrte Diffusion von Kohlenstoffdioxid durch die Blut-Hirn-Schranke bei Hyperkapnie.

Abb. 1: Schematische Darstellung der Atemregulation

(VRG = ventrale respiratorische Gruppe, DRG = dorsale respiratorische Gruppe, PRG = pontine respiratorische Gruppe)
1.2.2.3 Besonderheiten der respiratorischen Regulation im Schlaf

1.3 Neonatale Atemmuster und Apnoe

1.3.1 Definitionen und epidemiologische Gesichtspunkte

1.3.1.1 Apnoe

Man unterscheidet bei den Apnoen klassischer Weise die folgenden 3 Formen bezüglich ihrer Ätiologie:

- **Zentrale Apnoe** bezeichnet das Stoppen des Atemstroms und der Atemanstrengung. Diese Apnoeform ist die dominierende Apnoeform bei größeren Frühgeborenen und Reifgeborenen \[29,61,65,70,71,72,73\]. Mit zunehmender Apnoedauer nimmt der Anteil zentraler Apnoen ab, kurze Apnoepisoden sind bevorzugt zentraler Genese \[46,74,75,76,77,78\].

 ![Abb. 2: Schematische Darstellung einer zentralen Apnoe](image-url)

- **Obstruktive Apnoe** bezeichnet das Stoppen des Atemstroms bei anhaltenden Atemanstrengungen. Normalerweise ist diese Apnoeform durch die Obstruktion der oberen Atemwege verursacht. Sie kommt beim Gesunden praktisch nur im ersten Lebenshalbjahr in niedriger Zahl und geringer Ausprägung vor. Bei

![Diagramm](image)

Abb. 3: Schematische Darstellung einer obstruktiven Apnoe

- Gemischte Apnoen bezeichnen zentrale Apnoen, welche von Atembewegungen ohne Atemstrom gefolgt werden. Sie sind der dominierende Typ bei den Apnoen über 15-20 s. Die Angaben zur Häufigkeit der gemischten Apnoen schwanken sehr stark. Sie machen, je nach Quelle, bis zu 50-75 % aller Apnoen der Frühgeborenen aus [46,65,76].
Seltenere Einteilungen der Apnoe richten sich nach dem Zeitpunkt der Erstdiagnose, der Dauer oder beziehen sich auf Atemmuster:

- Die pathologische Apnoe ist durch eine Atempause von mehr als 20 s gekennzeichnet oder tritt gemeinsam mit Zyanose, Bradykardie, deutlicher Blässe oder Hypotonie auf [71]. Andere Definitionen besagen, dass man bei Kindern alle Atempausen, die mehr als die Dauer von zwei Atemzyklen betragen, als pathologisch anzusehen hat [179]. Begründet wird dies durch die Abhängigkeit der funktionellen Residualkapazität (Sauerstoffreserve) von der Atemfrequenz, welche wiederum altersabhängig variiert [70].

- Die AOP (= Apnea of prematurity) ist gekennzeichnet durch das Gestationsalter zum Zeitpunkt der Erstdiagnose von periodischem Atmen mit pathologischer Apnoe bei Kindern vor der Vollendung der 37. Woche [71].

- AOI (= Apnea of infancy) bedeutet die beim Kleinkind auftretende Apnoe. Sie bezeichnet alle pathologischen Apnoen bei Kindern, welche auf Grund ihres höheren Gestationsalters bei der Erstdiagnose nicht mehr unter die Nomenklatur der AOP fallen [71].

1.3.1.2 Hypopnoe

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Kollektiv</th>
<th>Apnoelänge[s]</th>
<th>Bradykardie</th>
<th>Desaturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASM</td>
<td>2008</td>
<td>FG/RG</td>
<td>≥20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2 Atemzüge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albani</td>
<td>1985</td>
<td>FG/RG</td>
<td>>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrington</td>
<td>1991</td>
<td>FG</td>
<td>>15</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Barrington</td>
<td>1996</td>
<td>FG/RG</td>
<td>>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butcher</td>
<td>1987</td>
<td>FG</td>
<td>≥10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butcher-Puech</td>
<td>1985</td>
<td>FG</td>
<td>>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheung</td>
<td>1999</td>
<td>FG/RG</td>
<td>>12</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Cruzi</td>
<td>1983</td>
<td>FG/RG</td>
<td>≥2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curzi-Dascalova</td>
<td>1983</td>
<td>FG/RG</td>
<td>≥2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dransfield</td>
<td>1983</td>
<td>FG</td>
<td>>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finer</td>
<td>1992</td>
<td>FG</td>
<td>15</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Finer</td>
<td>2007</td>
<td>FG</td>
<td>>10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Fiore</td>
<td>2001</td>
<td>FG</td>
<td>≥20</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Flemming</td>
<td>1978</td>
<td>FG/RG</td>
<td>≥4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerhardt</td>
<td>1984</td>
<td>FG/RG</td>
<td>≥20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guilleminault</td>
<td>1979</td>
<td>FG/RG</td>
<td>>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henderson-Smart</td>
<td>1981</td>
<td>FG/RG</td>
<td>>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbst</td>
<td>1979</td>
<td>FG/RG</td>
<td>>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hodgman</td>
<td>1990</td>
<td>FG/RG</td>
<td>>15</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Hoppenbrouwers</td>
<td>1993</td>
<td>FG/RG</td>
<td>>3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Horne</td>
<td>2001</td>
<td>FG</td>
<td>>15</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Hunt</td>
<td>2004</td>
<td>FG/RG</td>
<td>>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FG/RG</td>
<td>5 bis 15</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>1982</td>
<td></td>
<td>≥10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Levitt</td>
<td>1988</td>
<td>FG</td>
<td>≥20</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Mary</td>
<td>1978</td>
<td>RG</td>
<td>≥5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>1992</td>
<td>FG/RG</td>
<td>>10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Naeye</td>
<td>1979</td>
<td>FG/RG</td>
<td>>20</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Parmelee</td>
<td>1972</td>
<td>FG/RG</td>
<td>≥6</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Patural</td>
<td>2004</td>
<td>FG/RG</td>
<td>≥15-20</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Poets</td>
<td>1993</td>
<td>FG</td>
<td>≥4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poets/Southall</td>
<td>1991</td>
<td>FG</td>
<td>≥4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schäfer</td>
<td>1989</td>
<td>RG</td>
<td>≥2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southall</td>
<td>1983</td>
<td>FG/RG</td>
<td>≥3,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upton</td>
<td>1991</td>
<td>FG</td>
<td>≥10</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Waggener</td>
<td>1989</td>
<td>FG</td>
<td>≥3</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Unterschiede in der Apnoedefinition verschiedener Autoren nach [82]

(FG = Frühgeborene, RG = Reifgeborene, B = Bradykardie, D = Desaturation)
1.3.1.3 Kardiorespiratorische Stabilität

1.3.1.4 Periodische Atmung

Sauerstoffvorrat in der Lunge. Dies kann zu Oszillationen in der Aktivität der peripheren Chemorezeptoren führen [29,46,70,81,89].

1.3.1.5 Paradoxe Atmung

Das Charakteristikum dieser Atemform ist eine inspiratorische Zwerchfellkontraktion bei gleichzeitiger Exspirationsbewegung der interkostalen Muskulatur [29]. Auch paradoxe Atmung tritt bei Infekten vermehrt auf. Besonders während der ersten 2 Lebensmonate lässt sich dieser Effekt beobachten [91]. Im REM-Schlaf kann paradoxe Atmung noch bis in das Alter von maximal 4 Jahren physiologisch vorhanden sein [70].

1.3.1.6 ALTE

Die Abkürzung ALTE kommt aus dem angloamerikanischen Sprachraum und steht für „apparent life threatening event“, also „anscheinend lebensbedrohliches Ereignis“. ALTE beschreibt eine Episode bei Neugeborenen, die Beobachter als lebensbedrohlich einstufen. Es handelt sich um eine Kombination von Apnoen mit einer Veränderung der Hautfarbe und/oder des Muskeltonus. Symptomatische Apnoen im Sinne eines ALTE treten bei 1,6 von 1000 Säuglingen auf. Der Inzidenzgipfel liegt in der vierten bis elften Lebenswoche. Seltene Fälle werden jedoch noch nach 12 Monaten beschrieben [81]. In Relation zu anderen Atemauffälligkeiten der Neonatalperiode treten ALTE-Episoden häufig auf. In ca. zwei Dritteln der Fälle kann ein medizinischer Grund gefunden werden. Allem voran steht hier der gastroösophageale Reflux [70,71].
1.3.2 Reflexe und spezielle Rezeptorantworten, die mit dem Auftreten der Apnoe beim Neugeborenen und Säugling assoziiert sind

Neben den oben beschriebenen Atemmustern, die mit Atemaussetzern einhergehen können, gibt es auch verschiedene Reflexe und Rezeptorantworten, welche Apnoen auslösen können.

Der sogenannte laryngeale Chemoreflex ist ein vor allem bei Neugeborenen sehr aktiver Reflex, dessen Reagibilität durch Hypoxie forciert wird. Auslöser sind die chemische Reizung des Larynx durch Regurgitation oder Erbrechen von saurem Mageninhalt sowie die Passage anderer Flüssigkeiten und die mechanische Stimulation im Versorgungsbereich des N. laryngeus superior durch Intubation oder Absaugvorgänge. Neben einer Atemhemmung bis hin zu Apnoen kann es in Folge der Reflexantwort auch zu Bradykardie und einer Erhöhung des pulmonalen Gefäßwiderstandes kommen [29,39,55,92].

Apnoen treten auch als Reaktion auf Änderungen der Blutgashomöostase auf. Hypoxie wird als potenzieller Inhibitor des ZNS angesehen [94]. Bei Feten und Neugeborenen, vor allem aber bei Frühgeborenen, kommt es zu einer diametral unterschiedlichen Hypoxieantwort im Vergleich zu älteren Säuglingen und Erwachsenen. Die fetale Atmung hat die einzigartige Charakteristik, dass sie durch
Hypoxie eher gehemmt als stimuliert wird [9,26,30,37,46,95,96]. Ein Abfall des Sauerstoffpartialdrucks unter 60-70 mmHg führt zwar auch bei Frühgeborenen und kleinen Reifgeborenen zu einem über periphere Chemorezeptoren vermittelten Atemfrequenzanstieg, wird aber nach wenigen Minuten von einer zentralen Atemhemmung bis hin zu Apnoen abgelöst. Es kommt also zu einer Steigerung der Minutenventilation, welche nur kurz anhält und dann schnell zurück zur Grundlinie oder sogar darunter fällt. Dieser biphasische Verlauf verändert sich mit zunehmendem Alter und wird dann weniger dramatisch. In Ausnahmefällen kann er aber bis ins Erwachsenenalter persistieren [97,98].

Auch eine Veränderung der Liquorhomöostase kann zu Atempausen führen. Wie in Abschnitt 1.2.2.2 beschrieben, führt ein Abfall des pH-Wertes im Liquor cerebrospinalis zunächst zu einem Anstieg der Atemfrequenz und -amplitude. Besteht dieser Zustand jedoch über 2-3 Tage, kommt es zu einem kompensatorischen Anstieg des HCO₃⁻ und so zur Normalisierung des pH-Wertes. Trotz deutlicher Hyperkapnie wird der Atemantrieb also nicht verstärkt [29].
2 Zielsetzung und Fragestellung

Die vorliegende Arbeit soll einen Beitrag zu der Aufklärung der Entwicklung der kardiorespiratorischen Stabilität bei Frühgeborenen - insbesondere im Vergleich zu reifen Kindern - leisten.

Unsere Fragestellungen, konkret formuliert, waren:

- Wie verhält sich die kardiorespiratorische Stabilität, gemessen an der Häufigkeit und Dauer der Apnoen, mit einer Zunahme des Geburtsalters?
- Wann in der Entwicklung der früh- und reifgeborenen Kinder treten die meisten bzw. schwersten Apnoen auf?
- Welchen Einfluss hat das postnatale Alter auf die Entwicklung der kardiorespiratorischen Stabilität?
- Wie kardiorespiratorisch stabil sind Frühgeborene zum physiologischen Geburtszeitpunkt?
- Gibt es einen Zeitpunkt zu welchem Früh- und Reifgeborene ähnlich kardiorespiratorisch stabil sind?
3 Kollektiv und Methoden

3.1 Kollektiv

3.1.1 Erfasste Daten

Diagnose %

ALTE 2,4

ANS 15,7

Hirnblutung 1,3

SIDS-Geschwisterkind 1,4

Infektion, Pneumonie, Sepsis 2,5

Drogenkonsum der Mutter 0,8

Zwillings-Neugeborenes 14,1

Tab. 3: Prozenteraler Anteil weiterer Diagnosen des Gesamtkollektivs

(Abkürzungen: ALTE = acute life threatening event, ANS = Atemnotsyndrom, SIDS = sudden infant death syndrome)

3.1.2 Gruppenbildung

Da es sich bei den erhobenen Daten teilweise um die Untersuchungsergebnisse derselben Frühgeborenen zu unterschiedlichen Zeitpunkten nach der Geburt handelt, haben wir die Daten wie folgt kategorisiert. Die Gruppen 1 bis 8 bilden dabei die Grundlage für alle von uns durchgeführten statistischen Analysen. In Klammern sind die jeweiligen relativen und prozentualen Anteile der Gruppen am Gesamtkollektiv angegeben.

1. erste Untersuchung (27,5 %, n = 430)
2. Kontrolluntersuchung, 1-5 Wochen nach der ersten Untersuchung (10,4 %, n = 162)
3. Kontrolluntersuchung, 6-10 Wochen nach der ersten Untersuchung (11,1 %, n = 173)
4. Kontrolluntersuchung, 11-15 Wochen nach der ersten Untersuchung (5,5 %, n = 86)
5. Kontrolluntersuchung, > 15 Wochen nach der ersten Untersuchung (0,8 %, n = 12)
6. einzelne Untersuchung, ohne Kontrolle (17,5 %, n = 273)
7. sofortige Kontrolluntersuchung der 1. oder 2. Untersuchung bei fraglichen Artefakten (3,1 %, n = 49)
8. dritte oder weitere Kontrolluntersuchungen (23,1 %, n = 361)

Für die Bearbeitung unserer Hypothesen gingen wir in den von 3.1.2.1 bis 3.1.2.3 beschriebenen folgenden 3 Schritten vor.

3.1.2.1 Einteilung nach dem Gestationsalter

Für den ersten Teil der deskriptiven Analyse fassten wir die Daten der Säuglinge, bei welchen nur eine einzelne Untersuchung durchgeführt wurde (Gruppe 6), mit denjenigen der Erstuntersuchung bei Mehrfachpolysomnographierten (Gruppe 1) zusammen. Nur durch diese Art der Datenselektion konnten wir sicherstellen, dass jedes Frühgeborene wirklich einmalig in unsere Analyse einging. Der Stichprobenumfang dieser Daten entsprach, nach Anwendung der Ausschlusskriterien (siehe Absatz 3.1.3), 589 Kindern des gesamten Kollektivs. Innerhalb dieser neu entstandenen Gruppe analysierten wir den Einfluss des Gestationsalters, bezeichnet als BGA (birth gestational age), auf die respiratorische Reife. Zur besseren Beschreibung unserer Beobachtungen mithilfe deskriptiver statistischer Verfahren war es nötig, eine gleichmäßige Einteilung in ungefähr gleich stark besetzte Gruppen vorzunehmen. Da wir hier vor allem auf die Entwicklung der kardiorespiratorischen Stabilität der Kinder an sich und weniger auf den Vergleich Frühgeborene versus Reifgeborene eingehen wollten, haben wir für diesen Teil in Kauf genommen, dass unsere Gruppenteilungen nicht der klassischen Trennungslinie zwischen Frühgeburt
und Reifgeburt entsprechen. Wir gruppierten die untersuchten Kinder nach ihrem BGA wie folgt:

1. bis zur 26. SSW
2. 27.-29. SSW
3. 30.-32. SSW
4. 33.-35. SSW
5. ab 36. SSW

1. 30.-36. SSW
2. 37.-43. SSW
3. 44.-50. SSW
4. ab der 51. SSW

3.1.2.2 Einteilung nach dem Untersuchungszeitpunkt

Anschließend analysierten wir die respiratorische Stabilität der Kinder zum Zeitpunkt der ersten Untersuchung (Gruppe 1) und verglichen sie mit den Ergebnissen der Kontrolluntersuchungen zu den jeweiligen späteren Zeitpunkten in den Gruppen 2-4.
3.1.2.3 Vergleich mit einer Referenzgruppe

3.1.3 Ein- und Ausschlusskriterien

3.1.3.1 Gruppen der Frühgeborenen

3.1.3.2 Referenzgruppe

3.1.4 Datenschutz

Alle Patientendaten wurden anonymisiert ausgewertet und nicht an Dritte weitergegeben.

3.2 Methoden

Die Erhebung der Daten unserer Untersuchungsreihe erfolgte im Rahmen einer polysomnographischen Untersuchung. Um optimale Messbedingungen zu gewährleisten, orientierten wir uns bezüglich der Messanordnungen, der Platzierung der Elektroden und der Digitalisierungsparameter sowie den Rahmenbedingungen der Ableitungen streng an den Vorgaben der DGSM [102].

3.2.1 Geräte und Software

Für die Aufzeichnung des Polysomnographieberichtes arbeiteten wir mit den Geräten „Alice 4“ und „Alice 5“. Die Auswertung am PC erfolgte mit der Software Alice Sleepware Version 2.8.78. Aufgezeichnet wurden, orientiert an den Vorgaben von

3.2.1.1 Das EEG

3.2.1.2 Das EOG

Basis des Elektrookulogramm (EOG) ist die stetige Potentialdifferenz, welche zwischen Hornhaut und Netzhaut des Auges besteht. Wir platzierten für die Messung des linken Auges die Elektrode 1 cm über und gering lateral des seitlichen Augenwinkels. Als Referenz diente die Elektrode am ipsilateralen Mastoid (A₁, 2). Die Ableitung für das rechte Auge wurde in analoger Weise auf der kontralateralen Seite fixiert.
3.2.1.3 Das EMG

Das Elektromyogramm (EMG) ermöglicht in der Polysomnographie unter anderem die Differenzierung der Schlaftiefe [104]. Für dessen Ableitung wurde in unserer Untersuchungsreihe jeweils eine Elektrode über den ventralen Bäuchen der Mm. digastrici angebracht, welche bipolar abgeleitet werden.

Abb. 4: Schematische Darstellung der Anbringung des EEG, EMG und EOG, modifiziert nach [60]

(A1,2 = Ableitung des EEGs am Mastoid, C3,4 = Ableitung des EEGs in der Zentralregion, EOG = Elektroenzephalogramm, EMG = Elektromyogramm, I = Referenzelektrode)

3.2.1.4 Das EKG

3.2.1.5 Nasaler Flow

Um den nasalen Luftstrom messen zu können, wurde auf dem Nasenrücken der Säuglinge ein Thermistor befestigt. Vor jedem Naris lag hierbei ein Messfühler. Ein Thermistor ist ein variabler elektrischer Widerstand, dessen Wert sich durch Temperaturänderung reproduzierbar ändert [11,102].

3.2.1.6 Thorakale und abdominale Atemexkursion

3.2.1.7 Sauerstoffsättigung

reduziertem und oxygeniertem Hämoglobin genutzt. Durch die verschiedenartige Färbung dieser beiden Hämoglobinarten entsteht für das durchstrahlende Rotlicht eine unterschiedliche Absorption, welche ein Fotosensor auf der anderen Seite der Hand misst [106].

3.2.1.8 Das Aktimeter

3.2.2 Ablauf der polysomnographischen Untersuchung

3.2.3 Messwerte

Für jeden registrierten Fall gingen die folgenden Befunde aus dem polysomnographischen Bericht in unsere Datensammlung ein. In den eckigen Klammern sind die jeweiligen Messeinheiten angegeben.

- Gestationsalter des Säuglings zum Zeitpunkt der Geburt (BGA = birth gestational age), gemessen ab dem ersten Tag der letzten regulären Menstruation der Mutter [SSW]
- Patientenalter (EGA = examination gestational age), d. h. das korrigierte Alter zum Untersuchungszeitpunkt [SSW]
- zeitliche Differenz zwischen diesen beiden Zeitpunkten [Wochen]
- Geburtstag
- Geschlecht
- Geburtsgewicht [g]
- mittlere Herzfrequenz [bpm]
- Apnoeparameter:
 - Dauer der längsten Apnoe [s]
 - mittlere Dauer der Apnoe [s]
 - Apnoeindex = Anzahl der Apnoen pro Stunde [#/h]
 - „Absolute Apnoedauer“ (t_{total}), welche sich aus dem Produkt des Apnoeindex (AI) und der mittleren Apnoedauer (t_{Apnoemean}) ergibt:
 \[t_{total} [s/h] = AI [##/h] \times t_{Apnoemean} [s] \]
- Therapie: Koffein, Theophylin, CPAP
- Einsatz von Monitorgeräten
- sonstige Befunde: ALTE, ANS, Infekt/Sepsis/Pneumonie, Zwilling, Hirnblutung, Auftreten von SIDS in der Familie, Drogenkonsum der Mutter, Fehlbildungen
3.2.4 Aufzeichnung und Verarbeitung der erhobenen Daten

Die Daten wurden durch die verwendete Software automatisch doppelt gesichert und nach Bearbeitung durch den Untersucher als Polysomnographiebericht zusammengefasst. Die Polysomnographieberichte dienten als Grundlage unserer statistischen Auswertung.

3.2.4.1 Erstellung des Polysomnographieberichtes

Die Auswertung der Daten erfolgte nach Abschluss der Untersuchung mit der Alice-Software. Diese ermittelte halbautomatisch unter Berücksichtigung der voreingestellten Ableitungsart sowie der benutzten Filter die geforderten Parameter. Diese Filter waren bei unserer Untersuchungsreihe wie folgt eingestellt:

- Apnoe > 3 Sekunden,
- Hypopnoe > 10 Sekunden,
- Bradykardie: Herzfrequenzabfall im Kontext um ≥ 25 % für > 10 Sekunden,
- Tachykardie: Herzfrequenzanstieg im Kontext um ≥ 25 % für > 10 Sekunden.

3.2.4.2 Statistische Auswertung

4 Ergebnisse

4.1 Vergleich der Gruppen eingeteilt nach dem Geburtsalter

Viertel (72,3 %) dieser Säuglinge wurden vor Vollendung der 37. Schwangerschaftswoche geboren und zählen folglich per definitionem als Frühgeborene.

\[\text{Abb. 5: Verteilung des Untersuchungskollektivs nach dem Gestationsalter bei Geburt}\]

4.1.1 Apnoeindex

Bei der Analyse unserer Untersuchungsreihe zeigte sich, dass der Apnoeindex bei Frühgeborenen mit dem zunehmenden zeitlichen Abstand der Kontrolluntersuchung vom Geburtszeitpunkt (EGA) innerhalb einer jeden BGA-Gruppe signifikant sank. Dies gilt mit Ausnahme der Kinder, die ab der 36. SSW geboren wurden, für alle anderen Gruppen (p-Werte: 0,003 bis 0,0001). Hingegen konnte eine signifikante Reduktion des Apnoeindex abhängig vom Untersuchungszeitpunkt nur für die erste Gruppe (EGA: 30.-36. SSW, p = 0,018), welche am zeitnahsten zum Geburtszeitpunkt untersucht wurde, nachgewiesen werden. In der Gruppe der in der 37. bis 43. Woche untersuchten Kinder war sogar ein signifikanter Anstieg des Apnoeindex von 22 Apnoen/h für die BGA-Gruppe < 26. SSW auf bis zu 25 Apnoen/h in der BGA-Gruppe > 36. SSW zu finden (p = 0,001). Die mit Abstand meisten Apnoen pro Stunde traten hierbei mit einem Wert von 64 Apnoen/h bei den kleinsten

Abb. 6: Entwicklung des Apnoeindex abhängig von BGA und EGA
4.1.2 Absolute Apnoedauer

Abb. 7: Entwicklung der absoluten Apnoedauer abhängig von BGA und EGA
4.1.3 Mittlere Apnoedauer

Abb. 8: Entwicklung der mittleren Apnoedauer abhängig von BGA und EGA
4.1.4 Maximale Apnoedauer

Noch deutlicher als beim Verlauf der mittleren Apnoedauer wurde dieser Zusammenhang am Beispiel der maximalen Apnoedauer. Abb. 9 zeigt die Mittelwerte dieser Kategorie für die bekannten Gruppen. Wie bei den anderen Parametern auch, ergab sich, dass die geburtsnäheren Kontrolluntersuchungen höhere Werte (Maximum = 11,5 s) aufwiesen, als die Kontrollen zu späteren Zeitpunkten (Minimum = 4,8 s). Der Abfall der maximalen Apnoedauer innerhalb einer jeden BGA-Gruppe erwies sich mit wenigen Ausnahmen als signifikant (siehe Absatz 3.1.5).

![Diagramm zur Entwicklung der maximalen Apnoedauer abhängig von BGA und EGA](image)

Abb. 9: Entwicklung der maximalen Apnoedauer abhängig von BGA und EGA

4.1.5 Signifikanz

Um im beschreibenden, nicht im analytischen Sinn die Signifikanz unserer Beobachtungen zu prüfen, verwendeten wir die in Abschnitt 3.2.4.2 beschriebenen statistischen Tests. Wir unterschieden bei unseren Untersuchungen die Entwicklung
der beschriebenen Parameter im zeitlichen Verlauf innerhalb der BGA- (Tab. 4) und EGA-Gruppen (Tab. 5). Weitere Ergebnisse von Signifikanztests für die jeweiligen Parameter innerhalb der einzelnen Gruppen sind dem Anhang zu entnehmen. Aus den dort enthaltenen Werten geht hervor, dass die Signifikanz der Verläufe der BGA-Gruppen die der EGA-Gruppen deutlich übersteigt. Bei der Prüfung der zweitge- nannten waren in der statistischen Analyse der Gruppen fast keine Signifikanz festzustellen.

<table>
<thead>
<tr>
<th>BGA-Gruppe</th>
<th>Apnoeindex</th>
<th>mittlere Apnoedauer</th>
<th>maximale Apnoedauer</th>
<th>absolute Apnoedauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 26. SSW</td>
<td>0,002**</td>
<td>0,196</td>
<td>0,045*</td>
<td>0,002**</td>
</tr>
<tr>
<td>27. – 29. SSW</td>
<td>0,003**</td>
<td>0,061</td>
<td>0,143</td>
<td>0,003**</td>
</tr>
<tr>
<td>30. – 32. SSW</td>
<td>0,0001***</td>
<td>0,001**</td>
<td>0,0001***</td>
<td>0,0001***</td>
</tr>
<tr>
<td>33. – 35. SSW</td>
<td>0,0001***</td>
<td>0,0001***</td>
<td>0,0001***</td>
<td>0,0001***</td>
</tr>
<tr>
<td>ab 36. SSW</td>
<td>0,064</td>
<td>0,444</td>
<td>0,115</td>
<td>0,101</td>
</tr>
</tbody>
</table>

Tab. 4: BGA - Signifikanzprüfung
(*signifikant (p<0,05), **sehr signifikant (p<0,01), ***hoch signifikant (p<0,001))

<table>
<thead>
<tr>
<th>EGA-Gruppe</th>
<th>Apnoeindex</th>
<th>mittlere Apnoedauer</th>
<th>maximale Apnoedauer</th>
<th>absolute Apnoedauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. – 36. SSW</td>
<td>0,018*</td>
<td>0,489</td>
<td>0,721</td>
<td>0,025*</td>
</tr>
<tr>
<td>37.– 43. SSW</td>
<td>0,001**</td>
<td>0,005**</td>
<td>0,035*</td>
<td>0,003**</td>
</tr>
<tr>
<td>44. – 50. SSW</td>
<td>0,200</td>
<td>0,002**</td>
<td>0,005**</td>
<td>0,107</td>
</tr>
<tr>
<td>ab 51. SSW</td>
<td>0,102</td>
<td>0,132</td>
<td>0,083</td>
<td>0,054</td>
</tr>
</tbody>
</table>

Tab. 5: EGA - Signifikanzprüfung
(*signifikant (p<0,05), **sehr signifikant (p<0,01), ***hoch signifikant (p<0,001))
4.2 Vergleich der Gruppen - eingeteilt nach dem Abstand der Untersuchungszeitpunkte voneinander

Abb. 10: Untersuchungskollektiv – Aufgliederung nach dem Untersuchungszeitpunkt
4.2.1 Gruppe 1

<table>
<thead>
<tr>
<th>Gestationsalter [SSW]</th>
<th>32,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientenalter [SSW]</td>
<td>38,3</td>
</tr>
<tr>
<td>Differenz BGA und EGA [Wochen]</td>
<td>5,6</td>
</tr>
<tr>
<td>Absolute Apnoedauer</td>
<td>180,6</td>
</tr>
<tr>
<td>Apnoeindex [#/h]</td>
<td>35,7</td>
</tr>
<tr>
<td>Mittlere Apnoedauer [s]</td>
<td>4,8</td>
</tr>
<tr>
<td>Maximale Apnoedauer [s]</td>
<td>10,5</td>
</tr>
</tbody>
</table>

Tab. 6: Gruppe 1 – Mittelwerte
4.2.2 Vergleich der Gruppen 1-4

Der Vergleich der Gruppen 1 bis 4 baut auf den oben genannten Daten auf. Der beschriebenen ersten Untersuchungsgruppe folgen die Kontrolluntersuchungen dabei in fünf Wochen-Abständen – Gruppe 2 zeigt die Kinder 1-5 Wochen nach der ersten Untersuchung, Gruppe 3 zeigt diejenigen, die 6-10 Wochen nach der Ersten untersucht wurden, und Gruppe 4 gibt die Ergebnisse der in der 11.-15. Woche Untersuchten wieder. Wir verglichen die Entwicklung der respiratorischen Stabilität der Frühgeborenen zu den verschiedenen Untersuchungszeitpunkten nach der Geburt. Es zeigte sich, wie in Abb. 7-10 dargestellt, dass der Apnoeindex sowie die absolute, mittlere und maximale Apnoedauer mit einem zunehmenden Abstand der Kontrolluntersuchung vom Geburtszeitpunkt signifikant abnahmen.
4.2.2.1 Apnoeindex

Der Apnoeindex fiel vom Maximum (35,7 Apnoen/h) bei der ersten Untersuchung hoch signifikant (p < 0,001) auf ein Minimum (14,7 Apnoen/h) in der Gruppe 4. Hierbei war im Vergleich von Gruppe 3 zu Gruppe 4 keine signifikante Reduktion des Apnoeindex nachzuweisen.

Abb. 11: Apnoeindex zu den verschiedenen Untersuchungszeitpunkten
4.2.2.2 Absolute Apnoedauer

Während bei der ersten Untersuchung noch ein Wert von 180,6 s/h zu verzeichnen war, sah man eine hoch signifikante (p < 0,001) Reduktion der Werte bis zum Untersuchungszeitpunkt 11-15 Wochen danach. Hier wurde nur noch ein Wert von 67,9 s/h erreicht. Wie die Graphik zeigt, kam es nach der 10. Woche zu keiner weiteren Reduktion der absoluten Apnoedauer.

Abb. 12: Absolute Apnoedauer zu den verschiedenen Untersuchungszeitpunkten
4.2.2.3 Mittlere Apnoedauer

Bei der mittleren Apnoedauer war ein sehr signifikanter Abfall (p = 0,002) der Werte von Gruppe 1 (4,84 s) zur Gruppe 4 (4,54 s) nachweisbar. Auffällig war, dass es auch hier bei den Kontrolluntersuchungen nach der 10. Woche zu keiner weiteren signifikanten Reduktion der Apnoedauer im Vergleich zur Vorgruppe kam.

Abb. 13: Mittlere Apnoedauer zu den verschiedenen Untersuchungszeitpunkten
4.2.2.4 Maximale Apnoedauer

Die größte Apnoedauer hatten die Säuglinge wiederum geburtsnah, d. h. zum Zeitpunkt der ersten Untersuchung (10,5 s). Von da an war bis zur Gruppe 4 eine hoch signifikante Reduktion der Apnoedauer zu registrieren (p < 0,001). Hier war bei den Kontrolluntersuchungen nach der 10. Woche ebenfalls keine signifikante Abnahme der Apnoedauer zu erkennen.

Abb. 14: Maximale Apnoedauer zu den verschiedenen Untersuchungszeitpunkten
4.2.2.5 Signifikanz

Neben den bereits erwähnten Signifikanzprüfungen verglichen wir auch die einzelnen Untersuchungszeitpunkte. Die Ergebnisse sind in Tabelle 7 dargestellt:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Asymptotische Signifikanz [p-Wert]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mittlere Apnoedauer</td>
</tr>
<tr>
<td>1 → 2a</td>
<td>0,037*</td>
</tr>
<tr>
<td>1 → 3a</td>
<td>0,0001***</td>
</tr>
<tr>
<td>1 → 4a</td>
<td>0,0001***</td>
</tr>
<tr>
<td>2 → 3a</td>
<td>0,118</td>
</tr>
<tr>
<td>3 → 4a</td>
<td>0,869</td>
</tr>
<tr>
<td>1 → 4b</td>
<td>0,002**</td>
</tr>
</tbody>
</table>

Tab. 7: Ergebnisse der Signifikanzprüfung - Gruppe 1 bis 4

(*signifikant (p < 0,05), **sehr signifikant (p <0,01), ***hoch signifikant (p<0,001),
a = Wilcoxon-Test, b = Friedman-Test)
4.3 Vergleich der Daten mit einem Referenzkollektiv

Im dritten Teil resultierte der folgende Vergleich der Apnoehäufigkeit und -schwere unseres Frühgeborenenkollektivs mit Daten gesunder, reifgeborener Kinder.

4.3.1 Referenzgruppe

Die verwendete Referenzgruppe wurde, wie in Abschnitt 3.1.2.3 beschrieben, ermittelt. Um die Repräsentativität unseres Kollektivs zu überprüfen, verglichen wir unsere Apnoeparameter mit denen aus der Literatur [106]. Hier verwendeten wir die Daten von Kindern, welche 1,5 bis 3 Monate nach der Geburt untersucht worden sind. Dieser Zeitraum deckte sich mit dem unseres Kollektivs, welches im Mittel 10 Wochen nach der Geburt polysomnographiert wurde. Dabei ergab sich, wie in Tabelle 9 dargestellt, eine annähernde Übereinstimmung im Bereich der unteren und mittleren Perzentilen. Jedoch im Bereich der Perzentilen 90 und 95 zeigten sich für die Säuglinge unserer Untersuchungsreihe deutlich höhere Werte.

<table>
<thead>
<tr>
<th>Gestationsalter [SSW]</th>
<th>38,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patientenalter [SSW]</td>
<td>48,9</td>
</tr>
<tr>
<td>Differenz zwischen BGA und EGA [Wochen]</td>
<td>10,0</td>
</tr>
<tr>
<td>Absolute Apnoedauer</td>
<td>112,4</td>
</tr>
<tr>
<td>Apnoeindex [#/h]</td>
<td>21,8</td>
</tr>
<tr>
<td>Mittlere Apnoedauer [s]</td>
<td>4,9</td>
</tr>
<tr>
<td>Maximale Apnoedauer [s]</td>
<td>10,8</td>
</tr>
</tbody>
</table>

Tab. 8: Referenzgruppe
Von den 156 Kindern des Referenzkollektives waren 47,5 % weiblich und 52,5 % männlich. Das mittlere BGA lag am Ende der 38. SSW, der Untersuchungszeitpunkt in der 48. SSW. Der mittlere Apnoeindex betrug 21,8 Apnoen/h. Die Mittelwerte für die maximale und mittlere Apnoedauer waren 10,05 s und 4,9 s. Es ergab sich ein Wert für die absolute Apnoedauer von 112,4 s/h.

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>max. Apnoedauer [s]</th>
<th>mittl. Apnoedauer [s]</th>
<th>abs. Apnoedauer [s/h x #]</th>
<th>Apoindex [#/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RG</td>
<td>L</td>
<td>RG</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>6,43</td>
<td>5,2 (6,4)</td>
<td>4,0</td>
<td>3,54 (3,76)</td>
</tr>
<tr>
<td>10</td>
<td>7,0</td>
<td>6,0 (7,0)</td>
<td>4,27</td>
<td>3,63 (3,79)</td>
</tr>
<tr>
<td>25</td>
<td>8,5</td>
<td>7,8 (8,0)</td>
<td>4,5</td>
<td>3,92 (3,97)</td>
</tr>
<tr>
<td>50</td>
<td>10,0</td>
<td>9,0 (9,0)</td>
<td>4,85</td>
<td>4,18 (4,36)</td>
</tr>
<tr>
<td>75</td>
<td>11,5</td>
<td>11,0 (11,0)</td>
<td>5,2</td>
<td>4,56 (4,71)</td>
</tr>
<tr>
<td>90</td>
<td>13,0</td>
<td>12,0 (12,0)</td>
<td>5,7</td>
<td>4,98 (5,03)</td>
</tr>
<tr>
<td>95</td>
<td>15,0</td>
<td>12,0 (13,0)</td>
<td>6,02</td>
<td>5,16 (5,37)</td>
</tr>
</tbody>
</table>

Tab. 9: Vergleich der Referenzgruppe (RG) mit Daten aus der Literatur (L) [106]

(Die Literaturwerte entsprechen einem Untersuchungszeitpunkt von 1,5-3 Monaten nach der Geburt, in Klammern sind die Werte aus der Literatur für die Untersuchung von 0-1,5 Monaten angegeben.)
4.3.2 Vergleich unseres Untersuchungskollektives mit der Referenzgruppe

In diesem Abschnitt zeigte sich, dass die Frühgeborenen mit Erreichen des errechneten Geburstermins eine dem Referenzkollektiv gegenüber dezent verminderte Stabilität der respiratorischen Parameter aufwiesen. Es zeigte sich zudem, dass sich eine rasche Angleichung der Werte vollzog.

4.3.2.1 Apnoeindex

Betrachtete man im Vergleich der Gruppen den Zeitpunkt der ersten Untersuchung, stellte man fest, dass bei den Frühgeborenen mit 35,7 Apnoen/h noch signifikant mehr Apnoen/h auftraten als bei dem Referenzkollektiv, bei welchem wir einen Index von 31,7 Apnoen/h ermittelten (p = 0,036). Zu den späteren Untersuchungszeitpunkten glich sich das Verhältnis jedoch an und kehrte sich ab 6 Wochen nach der ersten Untersuchung sogar um. Diese Entwicklung war aber nicht signifikant.

![Diagramm](https://via.placeholder.com/150)

Abb. 15: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich des Apnoeindex

(Gruppe 1 = erste Untersuchung, graphisch eine Nuance dunkler, um hervorzuheben, dass sich alle weiteren Gruppen auf diese beziehen; Gruppe 2 = Kontrolluntersuchung nach 0-5 Wochen; Gruppe 3 = Kontrolluntersuchung nach 6-10 Wochen; Gruppe 4 = Kontrolluntersuchung nach 11-15 Wochen)
4.3.2.2 Absolute Apnoedauer

Im direkten Vergleich der Frühgeborenen mit unserer Referenzgruppe zeigte sich, dass bezüglich der absoluten Apnoedauer keine signifikanten Unterschiede bestanden. Zum Untersuchungszeitpunkt 1 überstieg die Apnoedauer der Frühgeborenen noch die der gesunden Reifgeborenen. Ab dem 2. Untersuchungszeitpunkt nahm diese Entwicklung bei den Frühgeborenen jedoch langsamer ab als bei dem Referenzkollektiv, so dass deren Werte in der Folge die der Frühgeborenen übertrafen. Diese Ergebnisse waren nicht signifikant (siehe Absatz 4.3.2.5.).

Abb. 16: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich der absoluten Apnoedauer

(Gruppe 1 = erste Untersuchung, graphisch eine Nuance dunkler, um hervorzuheben, dass sich alle weiteren Gruppen auf diese beziehen; Gruppe 2 = Kontrolluntersuchung nach 0-5 Wochen; Gruppe 3 = Kontrolluntersuchung nach 6-10 Wochen; Gruppe 4 = Kontrolluntersuchung nach 11-15 Wochen)
4.3.2.3 Mittlere Apnoedauer

Bereits zum Zeitpunkt der ersten Untersuchung zeigten die Frühgeborenen keine höheren Werte bei Betrachtung dieses Parameters. Es ergaben sich sogar signifikant kürzere mittlere Apnoedauern in Gruppe 1 (p = 0,031) und Gruppe 4 (p = 0,047). Während die Reifgeborenen in diesen Gruppen 5,02 s bzw. 4,91 s lange Apnoen hatten, erreichten die frühgeborenen Kinder zum gleichen Zeitpunkt nur Apnoedauern von 4,84 s bzw. 4,54 s.

Abb. 17: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich der mittleren Apnoedauer

(Gruppe 1 = erste Untersuchung, graphisch eine Nuance dunkler, um hervorzuheben, dass sich alle weiteren Gruppen auf diese beziehen; Gruppe 2 = Kontrolluntersuchung nach 0-5 Wochen; Gruppe 3 = Kontrolluntersuchung nach 6-10 Wochen; Gruppe 4 = Kontrolluntersuchung nach 11-15 Wochen)
4.3.2.4 Maximale Apnoedauer

Ein ähnliches Bild wie bei der mittleren Apnoedauer zeigte sich bei dem Vergleich der maximalen Apnoedauer beider Kollektive. Dabei lagen auch hier die Mittelwerte der Frühgeborenen in den einzelnen Gruppen unter denen der Reifgeborenen. Eine Signifikanz für diese Beobachtung konnte nur in Gruppe 3 nachgewiesen werden. Hier ergab sich für die Frühgeborenen eine maximale Apnoedauer von 8,5 s, während das Referenzkollektiv einen Wert von 9,2 s erreichte.

![Diagramm](image)

Abb. 18: Vergleich der Frühgeborenen mit dem Referenzkollektiv bezüglich der maximalen Apnoedauer

(Gruppe 1 = erste Untersuchung, graphisch eine Nuance dunkler, um hervorzuheben, dass sich alle weiteren Gruppen auf diese beziehen; Gruppe 2 = Kontrolluntersuchung nach 0-5 Wochen; Gruppe 3 = Kontrolluntersuchung nach 6-10 Wochen; Gruppe 4 = Kontrolluntersuchung nach 11-15 Wochen)
4.3.2.5 Signifikanz

Beim Vergleich unseres Referenzkollektives mit den Frühgeborenen unserer Untersuchungsreihe ergaben sich nur in wenigen Fällen signifikante Unterschiede. Die in den vorherigen Absätzen erwähnten Ergebnisse und die Werte der übrigen Signifikanzprüfungen zeigt die folgende Tabelle:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Maximale Apnoedauer</th>
<th>mittlere Apnoedauer</th>
<th>absolute Apnoedauer</th>
<th>Apnoeindex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1</td>
<td>0,331</td>
<td>0,031*</td>
<td>0,078</td>
<td>0,036*</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td>0,490</td>
<td>0,466</td>
<td>0,726</td>
<td>0,744</td>
</tr>
<tr>
<td>Gruppe 3</td>
<td>0,037*</td>
<td>0,333</td>
<td>0,073</td>
<td>0,096</td>
</tr>
<tr>
<td>Gruppe 4</td>
<td>0,073</td>
<td>0,047*</td>
<td>0,300</td>
<td>0,404</td>
</tr>
</tbody>
</table>

Tab. 10: Ergebnisse der Signifikanzprüfung - Vergleich der Frühgeborenen mit dem Referenzkollektiv

(* = signifikant (p < 0,05))
5 Diskussion

In der vorliegenden Promotionsarbeit sollte die kardiorespiratorische Stabilität von Frühgeborenen untersucht werden. Neben dem Ausgangsstatus beurteilten wir die sukzessive Entwicklung der Atmung und verglichen die erhobenen Daten darüber hinaus mit den Werten des Referenzkollektivs gesunder, reifgeborener Kinder.

Bezüglich des zeitlichen Verlaufes der Entwicklung der kardiorespiratorischen Stabilität von Frühgeborenen konnten wir in unserer Untersuchungsreihe zeigen, dass ausgeprägte Parallelen zu der Entwicklung Reifgeborener zu erkennen sind. Wie zu vermuten war, zeigten die Frühgeborenen mit dem kleinsten BGA die mit Abstand höchsten Werte der beobachteten Parameter und damit die größte

In vielen Studien wird aber noch immer das Gestationsalter zum Zeitpunkt der Geburt (BGA) als ausschlaggebender Faktor für die Frequenz und Dauer der Apnoen
Frühgeborene bei Erreichen des eigentlichen Geburtstermins noch respiratorisch instabiler als reifere zu dem vergleichbaren Zeitpunkt sind.

Mit dieser Aussage können wir nach Auswertung unserer Ergebnisse nicht hundertprozentig konform gehen. Wir konnten in unserer Untersuchungsreihe zeigen, dass der errechnete Geburtstermin in der Entwicklung der kardiorespiratorischen Stabilität nur eine untergeordnete Rolle spielt. Zu diesem Zeitpunkt waren

Abb. 19: Berechnung der benötigten Zeit der Frühgeborenen in Gestationswochen bis zum Erreichen einer stabilen Respiration

\[32,7 \text{ GW} + 5,7 \text{ GW}_{\text{pn}} + 6 \text{ GW}_{\text{a}} = 44,4 \]

\(GW = \text{Gestationswochen}, \ GW_{\text{pn}} = \text{Wochen postnatalen Alters}, \ GW_{\text{a}} = \text{Wochen zur vermuteten Adaptation}, \ GW_{\text{ges}} = \text{Summe der Gestationswochen bis zum Erreichen einer stabil erscheinenden Respiration} \)

Hinsichtlich der ätiologischen Faktoren kam es zwischen 1972 und 1982 zu einem regelrechten „Forschungsboom“. Ursache hierfür war ein vermuteter Zusammenhang zwischen Apnoen bei Neugeborenen und Säuglingen und dem plötzlichen Kindstod (sudden infant death syndrom = SIDS) [57]. Neben ätiologischen erforschte man aber auch Faktoren, welche eine Aggravation der Apnoen begünstigen.

Auch eine Reihe verschiedener Lungenerkrankungen könnten Apnoeepisoden begünstigen. Hier wären zum einen strukturelle Veränderungen wie die

Neuere Forschungsergebnisse betonen die Bedeutung der sogenannten Seufzerapnoe. Es wird vermutet, dass die den Atempausen vorangehenden Seufzer nicht nur dem Offenhalten kleinerer Atemwegsanteile dienen, sondern dass sie auch einen direkten Einfluss auf die Atemregulation haben. Demnach würden sie einen variablen Atemrhythmus begünstigen und damit der Steigerung der respiratorischen Stabilität dienen [80,81].

Des Weiteren erkannte man eine Förderung der Instabilität des Atemrhythmus bei Neugeborenen und Säuglingen und eine damit einhergehende Inzidenzsteigerung von Atempausen bei leichtem Hitzestress [21,69,109,136]. Gaultier konnte nachweisen, dass schon ein Anstieg der Körpertemperatur um 0,8 °C das Auftreten unregelmäßiger Atmung begünstigt [56]. Wohingegen mäßige Hypothermie zu einer Steigerung der Atemfrequenz und Stabilisierung der Atmung führen soll [37].
Auch Blutzuckerveränderungen können Atemaussetzer begünstigen [5,21,37,48,56]. In einer großen Studie konnte Boddy bereits 1975 zeigen, dass Hypoglykämien bei Neugeborenen einen atemhindernden Einfluss haben [30].

Zuletzt können auch eine Reihe von Medikamenten und Drogen durch ihre zentrale atemdepressive Wirkung die Auslösung von Apnoen begünstigen. Als Beispiele sind hier Barbiturate oder Diazepam zu nennen [5,21,37,46,137].

Die folgende Abbildung soll die erläuterten ätiologischen Faktoren noch einmal zusammenfassend visualisieren:

Abb. 20: Ätiologische Faktoren der Apnoe bei Frühgeborenen nach [46]

Clewolw und Lee. Sie sagen, dass die enorme Häufung der zentralen Apnoen in der Neugeborenenperiode, gerade bei Frühgeborenen, ein Hinweis dafür sei, dass die peripheren Rezeptoren in der Atmungsregulation eine nur untergeordnete Rolle spielen [95,110].

signifikante Abnahme der Apnoen mit über 10 Sekunden Dauer mehr verzeichnen. Seiner Ansicht nach läge das an einer abgeschlossenen Rezeptorreifung zu dieser Zeit und daran, dass Mechanismen, welche zum Beenden von Apnoen notwendig seien, mit einem Monat genauso reif seien wie nach einem Jahr [150]. Bei all dem Wissen über die verschiedenen Rezeptorantworten, ihren Einfluss und deren Reifung sind es die zentrale Verschaltung und die Mechanismen hinter der Verknüpfung, die noch nicht bis ins Letzte verstanden sind [55].

Sauerstoffangebot abnehmen. Seinen Vermutungen zu Folge „weiß“ das neugeborene Frühgeborene aber nicht, dass es kein Fetus mehr ist, und reagiert insofern bis zu einem Reifealter von etwa 38 Wochen bereits auf milde Hypoxie mit einer Reduktion der Atmung. Klinisch bewies Poets dieses Phänomen damit, dass Frühgeborene, die mit Sauerstoff beatmet wurden, vermehrt Hypopnoen und Apnoen zeigten, sobald die FiO₂ um 1-2 % reduziert wurde [101].

Noch viel kritischer ist allerdings die mangelnde Festlegung auf Ausschlusskriterien zu betrachten. So werden zum Teil schon mit Theophyllin oder CPAP therapierte...
Neugeborene und Säuglinge mit in die Untersuchungen einbezogen [82]. All dies erschwert eine einheitliche Bewertung der Ergebnisse enorm.

In aktuellere Studien ergab sich eine weitere Problematik: Man konnte nachweisen, dass scheinbar exaktere invasive Messungen des intrathorakalen Druckes fälschlicherweise eine veränderte respiratorische Stabilität vortäuschten, da die Reizung des Pharynx durch die eingeführten Katheter eine reflektorische Hemmung der Atmung auslöste. Steinschneider beschreibt diesen Effekt auch bei Laryngoskopien von Neugeborenen [124].

Ein weiteres Problem ist die mit den verschiedenen angewandten Messverfahren einhergehende Variabilität in der Sensitivität [105].

Neben dem Moment der Betrachtung im zeitlichen Verlauf ist auch der Moment während des Schlafs, in dem die Untersuchung stattfindet, bedeutend. Dieser wurde gerade in älteren Studienmodellen oft nicht registriert oder berücksichtigt. 1987 postulierte Lee noch, dass die Schlafphasen die Inzidenz der Apnoen nicht verändern würden [110], obwohl Phillipson schon auf die enge anatomische Beziehung der respiratorischen Neurone im Hirnstamm zu den Schlaf-Wach-Strukturen in der Formatio retikularis hingewiesen hatte [42]. Heute weiß man, dass die Schlafphase sowohl bei Frühgeborenen als auch bei Reifgeborenen einen enormen Einfluss auf die Inzidenz von Apnoen hat. Schlafforscher sagen, dass Atemstörungen oft erstmals

6 Schlussfolgerungen

Als besonders kritisch ist dabei die Zeit bis zur 44. SSW zu betrachten, im Speziellen bei Früh- und Reifgeborenen die ersten 4-6 Wochen post partum. Hier empfiehlt sich die etablierte Überwachung an Monitoren bzw. in spezialisierten neonatologischen Schlaflaboren.

Des Weiteren sollten Eltern sowie Ärzte und das medizinische Pflegepersonal für die Problematik sensibilisiert werden, um die erörterten Risikofaktoren minimieren zu können und mögliche Folgeschäden von den Kindern abzuwenden.

Um genauere Empfehlungen dafür aussprechen zu können, fehlen jedoch weitere Studien. Hier muss zunächst eine Einigung über genaue definitorische, technische und organisatorische Rahmenbedingungen erzielt werden, um eine bessere Vergleichbarkeit der Daten zu ermöglichen.
7 Zusammenfassung und Ausblick

Anhand unserer Ergebnisse zeigte sich eine überraschend klare Tendenz in der Entwicklung einer kardiorespiratorischen Stabilität bei den untersuchten Kindern. Hierbei konnten wir die folgenden Punkte aufzeigen:

2. Die höchsten Werte der gemessenen Parameter ergeben sich für die kleinsten Frühgeborenen.
3. Als ausschlaggebender Parameter für eine Abnahme der Apnoehäufigkeit und -schwere kristallisiert sich das zunehmende postnatale Alter heraus.
4. Das postnatale Alter hat sogar einen größeren Einfluss als das eigentliche Geburtsalter.
5. Frühgeborene und Reifgeborene zeigen einen ähnlichen chronologischen und qualitativen Verlauf in der Entwicklung einer stabilen Atemfunktion.
6. Ab einem Untersuchungszeitpunkt (EGA) > 44. Woche gibt es kaum noch Unterschiede in der kardiorespiratorischen Stabilität von kleinen und größeren Frühgeborenen sowie Reifgeborenen.
7. Ab dem Untersuchungszeitpunkt der 52. Woche finden sich zwischen allen untersuchten Gruppen keinerlei signifikante Unterschiede mehr.
8. Zum errechneten physiologischen Geburtstermin sind die Frühgeborenen noch kardiorespiratorisch instabiler als die Reifgeborenen unseres Referenzkollektivs.

8 Literaturverzeichnis

51. Nattie E: Central chemosensitivity, sleep, and wakefulness. Respir Physiol 2001; 129: 257-268

54. Paintal AS: Vagal sensory receptors and their reflex effects. Physiol Rev 1973; 53: 159-227

70. Ghelfi D: Schlafapnoen bei Kindern. Therapeutische Umschau 2000; 57: 463-466
80. Schlüter B, Buschatz D, Trowitzsch E: Polysomnographic reference curves for the first and second year of life. Somnol 2001; 5: 3-16
82. Schlüter B: Das Apnoe-Bradykardie-Syndrom der Frühgeborenen. In: Haen E, Lund R, Roenneberg T, Zulley J (Hrsg.): Schlafpolygraphie bei Kindern -

100. Rigatto H, Brady JP, de la Torre Verduzco R: Chemoreceptor reflexes in preterm infants: The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics 1975; 55: 604-613

111. Hunt CE: Ontogeny of Autonomic Regulation in Late Preterm Infants Born at 34-37 Weeks Postmenstrual Age. Semin Perinatol 2006; 30: 73-76

153. Abu-Shaweesh JM, Dreshaj IA, Haxhiu MA, Martin RJ: Central GABAergic mechanisms are involved in apnea induced by superior laryngeal nerve stimulation in piglets. J Appl Physiol 2001; 90: 1570-1576
163. Scher MA, Guthrie RD, Krieger D, Sun M, Sclabassi R: Maturation aspects of sleep from birth through early childhood. In: Brouillette RT, Hunt CE,
Berckerman RC (Hrsg.): Respiratory Control Disorders in Infants and Children. Williams & Wilkins: Baltimore, 1992; 89-111

174. Schulze F, Moisa R: Polysomnographie. unter: http://www.med.uni-marburg.de/mta-schule/f032000/polysom.pdf (abgerufen am 06.05.2011)
175. Marlot D: Recherches sur le controle nerveux de la respiration chez le chaton. University of Pierre and Marie Curie, Paris, 1976; 128
Anhang

Signifikanzprüfung

BGA bis 26. SSW

EGA 30.-36./ ab 51. SSW

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>Index</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>8,066</td>
<td>4,684</td>
<td>15,399</td>
<td>15,399</td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.045</td>
<td>.196</td>
<td>.002</td>
<td>.002</td>
</tr>
</tbody>
</table>

EGA 30.-36./ 37.-43. SSW

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>Index</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>15,000</td>
<td>28,000</td>
<td>6,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>81,000</td>
<td>94,000</td>
<td>72,000</td>
<td>72,000</td>
</tr>
<tr>
<td>Z</td>
<td>-2,138</td>
<td>-.958</td>
<td>-2,943</td>
<td>-2,943</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.032</td>
<td>.338</td>
<td>.003</td>
<td>.003</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>.035a</td>
<td>.375a</td>
<td>.002a</td>
<td>.002a</td>
</tr>
</tbody>
</table>

EGA 37.-43./ 44.-50. SSW

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>Index</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>15,000</td>
<td>9,000</td>
<td>12,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>21,000</td>
<td>15,000</td>
<td>18,000</td>
<td>18,000</td>
</tr>
<tr>
<td>Z</td>
<td>-.236</td>
<td>-1,179</td>
<td>-.701</td>
<td>-.701</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.814</td>
<td>.238</td>
<td>.484</td>
<td>.484</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>.885a</td>
<td>.291a</td>
<td>.555a</td>
<td>.555a</td>
</tr>
</tbody>
</table>
EGA 44.-50./ ab 51. SSW

<table>
<thead>
<tr>
<th>Statistik für Test(^b)</th>
<th>MaxA</th>
<th>MedA</th>
<th>Index</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>3,500</td>
<td>4,500</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>9,500</td>
<td>10,500</td>
<td>6,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Z</td>
<td>-.443</td>
<td>.000</td>
<td>-1,964</td>
<td>-1,964</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.658</td>
<td>1,000</td>
<td>.050</td>
<td>.050</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seitig Sig.)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.700(^a)</td>
<td>1,000(^a)</td>
<td>.100(^a)</td>
<td>.100(^a)</td>
</tr>
</tbody>
</table>

BGA 27.-29. SSW

EGA 30.-36./ ab 51. SSW

<table>
<thead>
<tr>
<th>Statistik für Test(^{a,b})</th>
<th>MaxA</th>
<th>MedA</th>
<th>Alindex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>5,427</td>
<td>7,367</td>
<td>13,696</td>
<td>13,659</td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.143</td>
<td>.061</td>
<td>.003</td>
<td>.003</td>
</tr>
</tbody>
</table>

EGA 30.-36./ 37.-43. SSW

<table>
<thead>
<tr>
<th>Statistik für Test(^b)</th>
<th>MaxA</th>
<th>MedA</th>
<th>Alindex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>367,500</td>
<td>368,000</td>
<td>383,500</td>
<td>389,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>643,500</td>
<td>1071,000</td>
<td>659,500</td>
<td>665,000</td>
</tr>
<tr>
<td>Z</td>
<td>-.884</td>
<td>-.877</td>
<td>-.639</td>
<td>-.555</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.377</td>
<td>.380</td>
<td>.523</td>
<td>.579</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EGA 37.-43./ 44.-50. SSW

Statistik für Test

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>26,000</td>
<td>10,000</td>
<td>30,000</td>
<td>22,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>36,000</td>
<td>20,000</td>
<td>40,000</td>
<td>32,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,370</td>
<td>-2,474</td>
<td>-1,092</td>
<td>-1,638</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,171</td>
<td>,013</td>
<td>,275</td>
<td>,101</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>,191<sup>a</sup></td>
<td>,011<sup>a</sup></td>
<td>,303<sup>a</sup></td>
<td>,111<sup>a</sup></td>
</tr>
</tbody>
</table>

EGA 44.-50./ ab 51. SSW

Statistik für Test

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>8,500</td>
<td>4,000</td>
<td>6,000</td>
<td>8,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>18,500</td>
<td>14,000</td>
<td>34,000</td>
<td>36,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,051</td>
<td>-1,898</td>
<td>-1,512</td>
<td>-1,134</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,293</td>
<td>,058</td>
<td>,131</td>
<td>,257</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>,315<sup>a</sup></td>
<td>,073<sup>a</sup></td>
<td>,164<sup>a</sup></td>
<td>,315<sup>a</sup></td>
</tr>
</tbody>
</table>

BGA 30.-32. SSW

Statistik für Test

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>23,180</td>
<td>17,714</td>
<td>29,126</td>
<td>30,703</td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>,000</td>
<td>,001</td>
<td>,000</td>
<td>,000</td>
</tr>
</tbody>
</table>
EGA 30.-36./37.-43. SSW

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>719,500</td>
<td>707,500</td>
<td>722,000</td>
<td>683,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>1215,500</td>
<td>1203,500</td>
<td>1218,000</td>
<td>1179,000</td>
</tr>
<tr>
<td>Z</td>
<td>-3,228</td>
<td>-3,309</td>
<td>-3,202</td>
<td>-3,467</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
<td>.001</td>
</tr>
</tbody>
</table>

EGA 37.-43./44.-50. SSW

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>53,000</td>
<td>80,500</td>
<td>49,000</td>
<td>53,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>81,000</td>
<td>108,500</td>
<td>77,000</td>
<td>81,000</td>
</tr>
<tr>
<td>Z</td>
<td>-2,100</td>
<td>-1,058</td>
<td>-2,241</td>
<td>-2,090</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.036</td>
<td>.290</td>
<td>.025</td>
<td>.037</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>.036<sup>a</sup></td>
<td>.299<sup>a</sup></td>
<td>.024<sup>a</sup></td>
<td>.036<sup>a</sup></td>
</tr>
</tbody>
</table>

EGA 44.-50./ab 51. SSW

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>11,500</td>
<td>9,000</td>
<td>17,000</td>
<td>17,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>39,500</td>
<td>37,000</td>
<td>45,000</td>
<td>45,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,367</td>
<td>-1,729</td>
<td>-.571</td>
<td>-.571</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.172</td>
<td>.084</td>
<td>.568</td>
<td>.568</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>.181<sup>a</sup></td>
<td>.101<sup>a</sup></td>
<td>.628<sup>a</sup></td>
<td>.628<sup>a</sup></td>
</tr>
</tbody>
</table>
EGA 33.-35. SSW

EGA 30.-36./ ab 51. SSW

<table>
<thead>
<tr>
<th>Statistik für Test<sup>ab</sup></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>27,394</td>
<td>19,258</td>
<td>39,161</td>
<td>39,616</td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistik für Test<sup>a</sup></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>2507,500</td>
<td>2325,500</td>
<td>2085,500</td>
<td>2081,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>4277,500</td>
<td>4095,500</td>
<td>3855,500</td>
<td>3851,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,200</td>
<td>-1,872</td>
<td>-2,751</td>
<td>-2,768</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.230</td>
<td>.061</td>
<td>.006</td>
<td>.006</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EGA 37.-43./ 44.-50. SSW

<table>
<thead>
<tr>
<th>Statistik für Test<sup>a</sup></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>154,500</td>
<td>258,500</td>
<td>126,000</td>
<td>125,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>307,500</td>
<td>411,500</td>
<td>279,000</td>
<td>278,500</td>
</tr>
<tr>
<td>Z</td>
<td>-4,337</td>
<td>-3,037</td>
<td>-4,681</td>
<td>-4,687</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.000</td>
<td>.002</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EGA 44.-50./ ab 51.SSW

<table>
<thead>
<tr>
<th>Statistik für Test<sup>b</sup></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>9,000</td>
<td>16,000</td>
<td>24,000</td>
<td>23,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>162,000</td>
<td>169,000</td>
<td>177,000</td>
<td>176,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,755</td>
<td>-1,009</td>
<td>-1,159</td>
<td>-1,265</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.079</td>
<td>.313</td>
<td>.874</td>
<td>.791</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1- seitig Sig.)]</td>
<td>.093<sup>a</sup></td>
<td>.358<sup>a</sup></td>
<td>.921<sup>a</sup></td>
<td>.842<sup>a</sup></td>
</tr>
</tbody>
</table>
EGA ab 36. SSW

EGA 37.-43./ ab 51. SSW

<table>
<thead>
<tr>
<th>Statistik für Testab</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>4,325</td>
<td>1,624</td>
<td>5,503</td>
<td>4,585</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.115</td>
<td>.444</td>
<td>.064</td>
<td>.101</td>
</tr>
</tbody>
</table>

EGA 37.-43./44.-50. SSW

<table>
<thead>
<tr>
<th>Statistik für Testb</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>1760,000</td>
<td>1959,000</td>
<td>2134,000</td>
<td>2101,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>2888,000</td>
<td>3087,000</td>
<td>3262,000</td>
<td>3229,500</td>
</tr>
<tr>
<td>Z</td>
<td>-2,138</td>
<td>-1,279</td>
<td>-.524</td>
<td>-.664</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.033</td>
<td>.201</td>
<td>.600</td>
<td>.507</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EGA 44.-50./ ab 51.SSW

<table>
<thead>
<tr>
<th>Statistik für Testb</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>858,000</td>
<td>881,000</td>
<td>752,000</td>
<td>788,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>1986,000</td>
<td>2099,000</td>
<td>1655,000</td>
<td>1691,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,064</td>
<td>-.873</td>
<td>-1,931</td>
<td>-1,635</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.287</td>
<td>.383</td>
<td>.053</td>
<td>.102</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EGA 30.-36. SSW

BGA bis 26./27.-29. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>101,000</td>
<td>124,000</td>
<td>50,000</td>
<td>54,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>804,000</td>
<td>827,000</td>
<td>753,000</td>
<td>757,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,920</td>
<td>-1,177</td>
<td>-2,551</td>
<td>-2,423</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.358</td>
<td>.859</td>
<td>.011</td>
<td>.015</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>.377<sup>a</sup></td>
<td>.875<sup>a</sup></td>
<td>.009<sup>a</sup></td>
<td>.014<sup>a</sup></td>
</tr>
</tbody>
</table>

BGA 27.-29./30.-32. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>1324,500</td>
<td>1246,500</td>
<td>1179,500</td>
<td>1180,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>2027,500</td>
<td>1949,500</td>
<td>1882,500</td>
<td>1883,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,607</td>
<td>-1,080</td>
<td>-1,483</td>
<td>-1,480</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.544</td>
<td>.280</td>
<td>.138</td>
<td>.139</td>
</tr>
</tbody>
</table>

BGA 30.-32./33.-35.SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>3636,500</td>
<td>3523,000</td>
<td>3340,000</td>
<td>3335,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>6639,500</td>
<td>6526,000</td>
<td>6343,000</td>
<td>6338,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,182</td>
<td>-1,530</td>
<td>-1,087</td>
<td>-1,103</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.855</td>
<td>.596</td>
<td>.277</td>
<td>.270</td>
</tr>
</tbody>
</table>
BGA bis 26./33.-35. SSW

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>1,333</td>
<td>2,423</td>
<td>10,028</td>
<td>9,334</td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>,721</td>
<td>,489</td>
<td>,018</td>
<td>,025</td>
</tr>
</tbody>
</table>

EGA 37.-43. SSW

BGA bis 26./27.-29. SSW

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>98,500</td>
<td>80,500</td>
<td>107,500</td>
<td>107,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>164,500</td>
<td>146,500</td>
<td>173,500</td>
<td>173,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,035</td>
<td>-1,704</td>
<td>-.699</td>
<td>-.718</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,301</td>
<td>,088</td>
<td>,484</td>
<td>,473</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>,308a</td>
<td>,091a</td>
<td>,490a</td>
<td>,490a</td>
</tr>
</tbody>
</table>

BGA 27.-29./30.-32. SSW

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>292,000</td>
<td>208,000</td>
<td>322,500</td>
<td>298,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>788,000</td>
<td>704,000</td>
<td>818,500</td>
<td>794,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,132</td>
<td>-2,604</td>
<td>-.595</td>
<td>-1,023</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,258</td>
<td>,009</td>
<td>,552</td>
<td>,306</td>
</tr>
</tbody>
</table>
Statistik für Test

BGA 30.-32./33.-34. SSW

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>Alindex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>597,000</td>
<td>618,500</td>
<td>657,000</td>
<td>626,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>1093,000</td>
<td>1114,500</td>
<td>1153,000</td>
<td>1122,000</td>
</tr>
<tr>
<td>Z</td>
<td>-2.704</td>
<td>-2.520</td>
<td>-2.187</td>
<td>-2.450</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,007</td>
<td>,012</td>
<td>,029</td>
<td>,014</td>
</tr>
</tbody>
</table>

BGA 33.-35./ab 36. SSW

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>Alindex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>2729,500</td>
<td>2469,000</td>
<td>1764,500</td>
<td>1841,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>7385,500</td>
<td>4239,000</td>
<td>6420,500</td>
<td>6497,500</td>
</tr>
<tr>
<td>Z</td>
<td>-0.379</td>
<td>-1.340</td>
<td>-3.934</td>
<td>-3.650</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,705</td>
<td>,180</td>
<td>,000</td>
<td>,000</td>
</tr>
</tbody>
</table>

BGA bis 26./ab 51. SSW

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>Alindex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>10,370</td>
<td>15,084</td>
<td>17,814</td>
<td>15,747</td>
</tr>
<tr>
<td>df</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>,035</td>
<td>,005</td>
<td>,001</td>
<td>,003</td>
</tr>
</tbody>
</table>
EGA 44.-50. SSW

BGA bis 26./27.-29. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AlIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>5,500</td>
<td>4,000</td>
<td>6,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>15,500</td>
<td>14,000</td>
<td>16,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,78</td>
<td>-734</td>
<td>0,00</td>
<td>-354</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0,858</td>
<td>0,463</td>
<td>1,000</td>
<td>0,724</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>0,857<sup>a</sup></td>
<td>0,629<sup>a</sup></td>
<td>1,000<sup>a</sup></td>
<td>0,857<sup>a</sup></td>
</tr>
</tbody>
</table>

BGA 27.-29./30.-32. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AlIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>9,500</td>
<td>13,500</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>37,500</td>
<td>23,500</td>
<td>38,000</td>
<td>38,000</td>
</tr>
<tr>
<td>Z</td>
<td>-0,852</td>
<td>-0,95</td>
<td>-756</td>
<td>-756</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0,394</td>
<td>0,924</td>
<td>0,450</td>
<td>0,450</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>0,412<sup>a</sup></td>
<td>0,927<sup>a</sup></td>
<td>0,527<sup>a</sup></td>
<td>0,527<sup>a</sup></td>
</tr>
</tbody>
</table>

BGA 30.-32./33.-35. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AlIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>44,500</td>
<td>50,500</td>
<td>52,000</td>
<td>53,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>72,500</td>
<td>78,500</td>
<td>80,000</td>
<td>81,000</td>
</tr>
<tr>
<td>Z</td>
<td>-0,957</td>
<td>-0,574</td>
<td>-476</td>
<td>-413</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0,339</td>
<td>0,566</td>
<td>0,634</td>
<td>0,680</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>0,349<sup>a</sup></td>
<td>0,576<sup>a</sup></td>
<td>0,664<sup>a</sup></td>
<td>0,710<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Exakte Signifikanz [2*(1-seitig Sig.)]
BGA 33.-35./ ab 36. SSW

Statistik für Test

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>200,500</td>
<td>209,000</td>
<td>263,000</td>
<td>241,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>353,500</td>
<td>362,000</td>
<td>416,000</td>
<td>394,000</td>
</tr>
<tr>
<td>Z</td>
<td>-3,042</td>
<td>-2,902</td>
<td>-2,075</td>
<td>-2,409</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.002</td>
<td>.004</td>
<td>.038</td>
<td>.016</td>
</tr>
</tbody>
</table>

(B-2-seitig)

BGA bis 26./ ab 36. SSW

Statistik für Test

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>14,702</td>
<td>17,565</td>
<td>5,990</td>
<td>7,604</td>
</tr>
<tr>
<td>df</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.005</td>
<td>.002</td>
<td>.200</td>
<td>.107</td>
</tr>
</tbody>
</table>

EGA ab 51

BGA bis 26./ 27.-29. SSW

Statistik für Test

<table>
<thead>
<tr>
<th>Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>5,500</td>
<td>5,000</td>
<td>6,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>15,500</td>
<td>15,000</td>
<td>16,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,644</td>
<td>-1,705</td>
<td>-1,512</td>
<td>-1,701</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.100</td>
<td>.088</td>
<td>.131</td>
<td>.089</td>
</tr>
<tr>
<td>(2-seitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exakte Signifikanz</td>
<td>.109^a</td>
<td>.109^a</td>
<td>.164^a</td>
<td>.109^a</td>
</tr>
</tbody>
</table>

^a 1-seitig Sig.
BGA 27.-29./30.-32. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AlIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>16,000</td>
<td>18,500</td>
<td>19,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>37,000</td>
<td>39,500</td>
<td>47,000</td>
<td>48,000</td>
</tr>
<tr>
<td>Z</td>
<td>-0.722</td>
<td>-0.361</td>
<td>-0.286</td>
<td>-0.143</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0.470</td>
<td>0.718</td>
<td>0.775</td>
<td>0.886</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>0.534a</td>
<td>0.731a</td>
<td>0.836a</td>
<td>0.945a</td>
</tr>
</tbody>
</table>

BGA 30.-32./33.-35. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AlIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>6,500</td>
<td>7,500</td>
<td>7,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>27,500</td>
<td>13,500</td>
<td>28,000</td>
<td>28,000</td>
</tr>
<tr>
<td>Z</td>
<td>-0.674</td>
<td>-0.392</td>
<td>-0.516</td>
<td>-0.516</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0.500</td>
<td>0.695</td>
<td>0.606</td>
<td>0.606</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>0.548a</td>
<td>0.714a</td>
<td>0.714a</td>
<td>0.714a</td>
</tr>
</tbody>
</table>

BGA 33.-35./ab 36. SSW

<table>
<thead>
<tr>
<th>Statistik für Test</th>
<th>MaxA</th>
<th>MedA</th>
<th>AlIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>57,500</td>
<td>43,000</td>
<td>59,500</td>
<td>52,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>63,500</td>
<td>49,000</td>
<td>65,500</td>
<td>58,000</td>
</tr>
<tr>
<td>Z</td>
<td>-0.251</td>
<td>-0.912</td>
<td>-1.159</td>
<td>-0.501</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0.802</td>
<td>0.362</td>
<td>0.873</td>
<td>0.617</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitig Sig.)]</td>
<td>0.814a</td>
<td>0.393a</td>
<td>0.881a</td>
<td>0.651a</td>
</tr>
</tbody>
</table>
BGA bis 26./ab 36. SSW

<table>
<thead>
<tr>
<th>Statistik für Test (^{a,b})</th>
<th>MaxA</th>
<th>MedA</th>
<th>AIndex</th>
<th>AbsA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>8,235</td>
<td>7,075</td>
<td>7,731</td>
<td>9,288</td>
</tr>
<tr>
<td>df</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.083</td>
<td>.132</td>
<td>.102</td>
<td>.054</td>
</tr>
</tbody>
</table>
Thesen

2. Die höchsten Werte der gemessenen Parameter ergeben sich für die kleinsten Frühgeborenen.
3. Als ausschlaggebender Parameter für eine Abnahme der Apnoehäufigkeit und -schwere kristallisiert sich das zunehmende postnatale Alter heraus.
4. Das postnatale Alter hat sogar einen größeren Einfluss als das eigentliche Geburtsalter.
5. Frühgeborene und Reifgeborene zeigen einen ähnlichen chronologischen und qualitativen Verlauf in der Entwicklung einer stabilen Atemfunktion.
6. Ab einem Untersuchungszeitpunkt (EGA) > 44. Woche gibt es kaum noch Unterschiede in der kardiorespiratorischen Stabilität von kleinen und größeren Frühgeborenen sowie Reifgeborenen.
7. Ab dem Untersuchungszeitpunkt der 52. Woche finden sich zwischen allen untersuchten Gruppen keinerlei signifikante Unterschiede mehr.
8. Zum errechneten physiologischen Geburtstermin sind die Frühgeborenen noch kardiorespiratorisch instabiler als die Reifgeborenen unseres Referenzkollektivs.
Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe verfasst und andere als die von mir angegebenen Quellen und Hilfsmittel nicht verwendet habe.

Die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen habe ich als solche kenntlich gemacht.

Rostock, den 08.03.2012

Elisabeth Arndt
Lebenslauf

Angaben zur Person

Name: Elisabeth Arndt
Geburtsdatum: 21.07.1986
Geburtsort: Rostock
Familienstand: ledig
Wohnort: Fritz-Reuter-Straße 14
18057 Rostock
Nationalität: deutsch

Schulbildung

08/1992 – 06/1996 Grundschule Mirow
08/1996 – 06/2000 Schlossgymnasium Mirow
08/2000 – 06/2004 Gymnasium Carolinum Neustrelitz

Beruflicher Werdegang

10/2004 – 10/2010 Studium der Humanmedizin an der Universität Rostock
10/2006 1. Abschnitt der Ärztlichen Prüfung
10/2010 2. Abschnitt der Ärztlichen Prüfung
seit 01/2011 Vortragstätigkeit bei „MedPrevio“ Rostock, Ernährungsmedizin
seit 01/2012 Assistenzärztin in Weiterbildung zum Facharzt für Allgemeinmedizin in der Abteilung Innere Medizin des Klinikum Südstadt Rostock
Danksagung

Herrn Prof. Dr. med. habil. P. Clemens und Herrn Dr. med. O. Kannt, Chefärzte der Klinik für Kinder- und Jugendmedizin der HELIOS Kliniken Schwerin, gilt mein Dank die freundliche Überlassung des Themas und für die Betreuung.

Ebenso möchte ich Frau Dipl.-Math. Helga Krentz für die kritische Prüfung des statistischen Teils der Arbeit herzlich danken.

Ich danke allen Kindern und ihren Eltern, die an dieser Untersuchungsreihe teilgenommen haben.

Nicht zuletzt danke ich meiner Familie und meinen Freunden für die Unterstützung und den Beistand.