
Engineering Publish/Subscribe Systems

and Event-Driven Applications

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

vorgelegt von

Helge Parzyjegla, geb. am 15.03.1980 in Berlin

aus Mühlenbecker Land

Rostock, 10. Dezember 2012

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2014-0028-3

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

Gutachter: Prof. Dr.-Ing. Gero Mühl
Universität Rostock

Prof. Dr. Hans-Ulrich Heiß
Technische Universität Berlin

Prof. Christof Fetzer, PhD
Technische Universität Dresden

Tag der Einreichung: 10. Dezember 2012
Tag der Verteidigung: 15. März 2013

Abstract

Driven by advances in information and communication technology, computing
infrastructures continue to grow in size and complexity while people increasingly
depend on them. To better master their inherent scale and complexity, modern
computing systems are often designed to be self-managing. They are aware of
their state as well as of their environment so that they can dynamically react
on changes caused by internal or external events in order, for example, to adapt
and optimize their configuration or to better support and assist their users.

Publish/subscribe systems provide a versatile basis for building distributed event-
based infrastructures. Components communicate by publishing notifications
about occurred events and by subscribing to those notifications of interest. The
resulting characteristic loose coupling between participating components is both
a big strength and a severe weakness. On the one side, the indirect commu-
nication decouples components in space, time, and control flow and, thereby,
provides the flexibility and extensibility required by modern event-driven appli-
cations. On the other side, when systems grow in size, it becomes difficult or,
in practice, even impossible to keep track of all effects and side-effects that may
be caused by a published notification. In this thesis, we address the latter prob-
lem and develop structuring means to modularly design and engineer large-scale
event-based infrastructures. We consider modularity and related engineering
aspects at the level of the architecture, the middleware, and the application.

For publish/subscribe systems, we propose a broker architecture based on the
concept of features and their composition. This way, middleware developers can
easily modify, extend, or add individual broker features in order to tailor the
overall functionality to actual application requirements and environment condi-
tions. We show how features are implemented as pluggable broker components
and discuss interfaces and guidelines for their composition.

With scoping, we present a module concept to structure publish/subscribe net-
works and event-driven applications. Scopes bundle related components to new
application artifacts providing them an isolated environment for interaction.
Therefore, the visibility of a notification is restricted to components of the same
scope only, unless the scope interface allows its exchange with other components.
Scopes can flexibly be arranged in hierarchies that help decomposing applications

iii

iv ABSTRACT

and infrastructure according to multiple aspects such as functional requirements
or organizational responsibilities. Based on annotated and inherited attributes,
application components are then automatically assigned respective scopes.

For application components, we introduce event ports as a new publish/sub-
scribe interface for communicating relevant changes in the component’s state to
other interested parties. Components are then orchestrated either traditionally
by subscribing their event ports to the notifications they have to process or
alternatively by virtually connecting the event ports with compatible ports of
other components. Further accompanying programming abstractions support
developers and administrators to conveniently group components into scopes
and subscopes as well as to customize their configuration.

Besides the conceptual work, the thesis contains a practical part. The presented
composable publish/subscribe architecture forms the basis of our implementa-
tion of the Rebeca notification service. The architecture’s extensibility and
flexibility is demonstrated by enabling Rebeca brokers to be executed in a real
network deployment as well as in a simulation environment. The latter is lever-
aged to prove the effectiveness and thoroughly evaluate the behavior of scoping
in large-scale publish/subscribe networks under different application scenarios.

Kurzfassung

Der anhaltende Fortschritt auf dem Gebiet der Informations- und Kommunika-
tionstechnologie lässt die Größe und Komplexität eingesetzter Computerinfra-
strukturen beständig wachsen, während zunehmend mehr Menschen auf ihren
Dienst angewiesen sind. Um Größe und Komplexität besser zu handhaben, wer-
den moderne Computersysteme oft selbstmanagend entworfen: Sie sind sich über
ihren Zustand und den ihrer Umgebung bewusst, so dass sie dynamisch auf inter-
ne und externe Ereignisse reagieren können, um beispielsweise ihre Konfiguration
anzupassen oder Nutzer proaktiv zu unterstützen.

Publish/Subscribe-Systeme bieten eine flexible Grundlage zur Realisierung der-
artiger ereignisbasierter Infrastrukturen. Komponenten kommunizieren mitein-
ander durch die Veröffentlichung von Notifikationen über aufgetretende Ereig-
nisse und die Subskription der für sie relevanten Notifikationen. Die resultieren-
de lose Kopplung ist sowohl Stärke als auch Schwäche von Publish/Subscribe.
Einerseits entkoppelt die indirekte Kommunikation beteiligte Komponenten in
Raum, in Zeit und im Kontrollfluss, wodurch sich ereignisgetriebene Anwen-
dungen vielseitig einsetzen und erweitern lassen. Andererseits wird es schwierig
und in sehr großen Systemen praktisch unmöglich, den Überblick über sämtliche
Effekte, Seiteneffekte und Folgen einer veröffentlichten Notifikation zu behal-
ten. In dieser Arbeit werden daher strukturelle Abstraktionen für den modu-
laren Entwurf und Betrieb großer ereignisbasierter Infrastrukturen entwickelt.
Modularität wird hierbei auf Ebene der Architektur, der Middleware und der
Applikationen betrachtet.

Für verteilte Publish/Subscribe-Systeme wird eine Broker-Architektur vorge-
schlagen, die eine möglichst freie Komposition von Features erlaubt. Einzelne
Broker-Features lassen sich austauschen, modifizieren oder hinzufügen, um den
Funktionsumfang des Brokers präzise an die Anforderungen der Applikationen
und die Gegebenheiten der Netzwerkumgebung anzupassen. Die Implementie-
rung der Features erfolgt in Form von Plugins. Schnittstellen und Regeln für
deren Komposition werden diskutiert.

Mit Scoping wird ein Modulkonzept zur Strukturierung verteilter Publish/Sub-
scribe-Systeme vorgestellt. Scopes fassen Applikationskomponenten zu neuen
Artefakten zusammen und bieten diesen eine geschützte Interaktionsumgebung.

v

vi KURZFASSUNG

Die Sichtbarkeit von Notifikationen ist auf Komponenten des gleichen Scopes be-
schränkt, die Schnittstelle des Scopes regelt den Austausch von Notifikationen
mit anderen Scopes. Scopes lassen sich hierarchisch sowie überlappend anord-
nen und erlauben so eine flexible Dekomposition des Systems nach verschiede-
nen Kriterien wie funktionalen oder organisatorischen Aspekten. Basierend auf
vorhandenen, vererbten oder annotierten Attributen werden Komponenten au-
tomatisch ihren jeweiligen Scopes zugewiesen.

Für ereignisgetriebene Applikationskomponenten werden Event-Ports als Pub-
lish/Subscribe-Schnittstelle eingeführt, die den direkten Austausch relevanter
Zustandsänderungen zwischen Komponenten ermöglicht. Die Orchestrierung von
Komponenten und Notifikationsströmen erfolgt dann entweder traditionell durch
Subskription der Event-Ports auf zu verarbeitende Notifikationen oder alternativ
mittels logischer Verbindungen zwischen kompatiblen Event-Ports verschiede-
ner Komponenten. Weitere vorgestellte Programmierabstraktionen unterstützen
Entwickler und Administratoren bei der Gruppierung von Komponenten in Sco-
pes und Subscopes sowie bei der Anpassung ihrer Konfiguration.

Im praktischen Teil der Arbeit wird die Tragfähigkeit der vorgestellten Kon-
zepte untersucht. Die komponierbare Broker-Architektur bildet die Grundlage
für die Implementierung des Rebeca-Notifikationsdienstes. Die durch Kompo-
nierbarkeit gewonnene Flexibilität zeigt sich insbesondere durch die Möglichkeit
Rebeca-Broker sowohl in einem realen Netzwerk als auch in einer Simulations-
umgebung ausführen zu können. Letztere wird genutzt um die Effektivität von
Scoping in großen Publish/Subscribe-Infrastrukturen zu demonstrieren und das
Systemverhalten unter verschiedenen Applikationsszenarien zu evaluieren.

Preface

Acknowledgements

This work would not have been possible without the support of various people.
First of all, I thank my advisors Prof. Dr.-Ing. Gero Mühl and Prof. Dr. Hans-
Ulrich Heiß for their support, guidance, patience, and wisdom during the all the
time. I am very grateful to Prof. Christof Fetzer, PhD, for taking over the part
of the third referee.

I also thank my dear colleagues at Berlin and Rostock: Anselm Busse, Daniel
Graff, Dr.-Ing. Michael A. Jaeger, Nikolaus Jeremic, Dr.-Ing. Jan Richling, Jan
Schönherr, Dr.-Ing. Jörg Schneider, Arnd Schröter, Enrico Seib, and Gabriele
Wenzel – it was a pleasure to work with you!

And most of all, I thank my parents and my family for their love and support.

Publications

Parts of the thesis are based on papers already published during the work on
it. Chapter 3 is based on joint work with Daniel Graff, Arnd Schröter, Jan
Richling, and Gero Mühl [166] with accompanying publications [170, 171]. The
theoretical background to the chosen simulation approach for publish/subscribe
networks in Chap. 6 is based on work with Arnd Schröter, Gero Mühl, Samuel
Kounev, and Jan Richling [200] that continued previous work [148]. Several pub-
lications [101, 102, 103, 169, 199, 201] are only distantly related to the presented
work, while other papers [85, 86, 150, 167, 168, 198, 202, 203, 224, 225, 226] were
not incorporated at all.

vii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 5
1.3 Contributions . 8
1.4 Outline . 10

2 Distributed Event-based Systems 13
2.1 Introduction . 14
2.2 Publish/Subscribe . 14

2.2.1 Events and Notifications 15
2.2.2 Notification Service . 16
2.2.3 Subscriptions and Advertisements 17
2.2.4 Notification Selection . 18
2.2.5 Routing Algorithms . 20
2.2.6 Broker Topologies . 22
2.2.7 Loose Coupling . 26

2.3 Existing Notification Services . 27
2.3.1 Corba Event and Notification Service 27
2.3.2 Java Message Service . 29
2.3.3 Data Distribution Service 31
2.3.4 Siena . 33
2.3.5 Rebeca . 36
2.3.6 Hermes . 38
2.3.7 Padres . 41

2.4 Discussion . 42

3 Composable Publish/Subscribe Architecture 45
3.1 Introduction . 46
3.2 Feature Composition . 46

3.2.1 Features and Composition 47
3.2.2 Architecture and Composability 48
3.2.3 Challenges . 49

3.3 Architecture . 50
3.3.1 Broker . 51
3.3.2 Plugins . 53

ix

x CONTENTS

3.3.3 Clients . 55
3.3.4 Implementation . 56

3.4 Feature Plugins . 58
3.4.1 Mandatory Features . 59
3.4.2 Publish/Subscribe Features 60
3.4.3 Optional Features . 62
3.4.4 Discrete Event Simulation 63

3.5 Related Work . 65
3.5.1 Publish/Subscribe Architectures 66
3.5.2 Feature Composition . 67

3.6 Discussion . 68

4 Scoping 71
4.1 Introduction . 72
4.2 Scopes . 73

4.2.1 Specification . 73
4.2.2 Hierarchies . 74
4.2.3 Visibility . 76
4.2.4 Attributes . 77
4.2.5 Inheritance . 78
4.2.6 Mappings . 79

4.3 Routing . 80
4.3.1 Scope Overlays . 81
4.3.2 Forwarding . 83

4.4 Management . 85
4.4.1 Scope Components . 85
4.4.2 Scope Assignment . 86
4.4.3 Joining Scopes . 88
4.4.4 Leaving Scopes . 92

4.5 Implementation . 93
4.5.1 Scope Plugin . 93
4.5.2 Scoped Filters . 95
4.5.3 Scope Components . 99

4.6 Related Work . 100
4.6.1 Visibility . 101
4.6.2 Security . 104
4.6.3 Context . 105

4.7 Discussion . 107

5 Programming Abstractions 109
5.1 Introduction . 110
5.2 Publish/Subscribe . 110

5.2.1 Pitfalls and Remedies . 111
5.2.2 Components and Events 113

5.3 Event-driven Components . 115
5.3.1 Event Ports . 115

CONTENTS xi

5.3.2 Event Handlers . 118
5.3.3 Active Components . 121
5.3.4 Dynamic Subscriptions . 124

5.4 Scope Management . 127
5.4.1 Scope Specification . 128
5.4.2 Scope Membership . 130
5.4.3 Scope Instantiation . 132

5.5 Component Orchestration . 135
5.5.1 Customizing Components 136
5.5.2 Customizing Scopes . 138
5.5.3 Grouping and Connecting Components 139

5.6 Implementation . 142
5.6.1 Component Container . 143
5.6.2 Managed Component . 145

5.7 Related Work . 147
5.7.1 Publish/Subscribe . 148
5.7.2 Dataflow . 150

5.8 Discussion . 151

6 Evaluation 155
6.1 Introduction . 156
6.2 Simulation . 156

6.2.1 Environment . 157
6.2.2 Protocols and Features . 158

6.3 Scalability . 161
6.3.1 Brokers . 162
6.3.2 Clients . 168

6.4 Distributions . 171
6.4.1 Publisher/Subscriber Ratio 171
6.4.2 Hot Spots . 175

6.5 Overhead . 181
6.5.1 Competitiveness . 181

6.6 Discussion . 185

7 Conclusions 187
7.1 Summary . 187
7.2 Goals Reviewed . 190
7.3 Outlook . 193

Bibliography 197

List of Figures

1.1 Structure and organization of the thesis. 11

2.1 Distributed notification service. 16

2.2 Overlay network on top of a physical communication network. . . 24

2.3 Combining push-based and pull-based mode of operation. 28

2.4 Siena broker topologies. 35

3.1 A broker’s processing stages with plugged components. 52

3.2 Comparison of client and broker architecture. 54

3.3 Primary architectural elements broker, engine, and sink. 57

4.1 Bundling event-driven components in a scope. 74

4.2 Scope hierarchy of a world-wide operating company. 75

4.3 Set diagram identifying scope boundaries to cross. 77

4.4 Scope overlays in a publish/subscribe system. 81

4.5 Routing with scopes. 82

4.6 Scope assignment process. 87

4.7 Creating and joining scopes. 90

4.8 Overview about Rebeca’s scope plugin. 94

4.9 Customized filter framework supporting scopes. 96

4.10 Implementation of scope broker and scope component interface. . 99

5.1 Component with event port declarations. 117

5.2 Component with event handler annotations. 119

5.3 Active component with time-triggered handler. 122

5.4 Location-aware component managing a dynamic subscription. . . 126

5.5 Component with annotated scope declaration. 128

5.6 Component with annotated scope management handlers. 131

5.7 Annotated constructors to automatically create subscopes. 133

5.8 Customizing component attributes and event ports. 136

5.9 Customizing a scope specification. 138

5.10 Grouping and connecting components. 140

5.11 Overview of Rebeca’s component plugin and its extensions. . . 144

5.12 Managed component wrapping a business component. 146

xiii

xiv LIST OF FIGURES

6.1 Simulation setup in PeerSim. 158
6.2 Stack of simulation protocols used for evaluation. 159
6.3 Subscription forwarding overhead versus network size. 163
6.4 Advertisement forwarding overhead versus network size. 165
6.5 Average number of subscription entries versus network size. . . . 166
6.6 Average number of advertisement entries versus network size. . . 168
6.7 Subscription forwarding overhead versus number of clients. . . . 169
6.8 Average number of subscription entries versus number of clients. 171
6.9 Forwarding overhead for a varying publisher/subscriber ratio. . . 173
6.10 Subscription entries for a varying publisher/subscriber ratio. . . . 174
6.11 Zipf distribution and Lorenz curve. 176
6.12 Forwarding overhead in case of hot spots. 179
6.13 Subscription entries in case of hot spots. 180
6.14 Relative share of the overhead per message type. 183
6.15 Relative share of occupied routing entries per filter type. 184

Chapter 1

Introduction

With the invention of the integrated circuit in the late 1950s [108], an unprece-
dented technical development began, which is far from being over. Meanwhile,
the resulting advances in information and communication technology revolu-
tionize the daily lives of billions of people. The Internet [119], for example, has
changed the way how people communicate and interact with each other, how
they work and conduct business, how they learn, play, and search for informa-
tion, or how they produce, share and consume content and media. Thereby, the
millions of interconnected computers and computer networks of the Internet as
well as the services and applications running on them form a huge distributed
and complex system. With microchips, sensors, and actuators pervading our
environment and computing devices becoming smaller, faster, and cheaper as
well as being always connected, it is to be expected that future computing in-
frastructures and their applications will continue to grow in size and complexity
while people increasingly depend on them.

In order to master their inherent complexity and keep infrastructures manageable
for their users, researchers and engineers work hard to design and render future
systems intelligent and smart in the sense that they are able to autonomously
manage themselves. By making components and systems aware of their own
state and configuration as well as their environment, they can dynamically react
on changes caused by internal or external events in order to adapt themselves
accordingly or to better support and assist their users. In this thesis, we focus
on such event-based systems. In particular, we develop and present means to
modularly design and engineer large-scale event-based infrastructures. Thereby,
we take a holistic approach that ranges from architectural guidelines for compos-
able infrastructures over middleware concepts for bundling related components
to programming abstractions for event-driven applications that help developers
to conveniently leverage the provided concepts.

1

2 INTRODUCTION

1.1 Motivation

The term event1 may be generally characterized as a happening of interest [82].
Events usually occur asynchronously and may vary in size and complexity rang-
ing from simple hardware interrupts to sophisticated database updates. Please
note that the handling and processing of asynchronous events is a well-proven
and established method leveraged in many computing domains where it supple-
ments synchronous techniques or even represents the norm. In the following, we
give examples from different domains to show the various applications of events
as well as to illustrate inherent characteristics and resulting benefits.

Interrupts. Hardware interrupts [134, 192] are low level events by which, for
example, an input/output device electrically signals the processor that it needs
service. Usually, this is the case when the device has finished an operation
and either has fetched input data that is now ready for further processing or
it is awaiting new data to output next. The processor then acknowledges the
interrupt signal and switches to a corresponding service routine that takes the
necessary actions for handling the device. After successfully servicing the device,
the processor returns from the interrupt routine and resumes its original thread
of execution. Without interrupts, the processor would be stuck to periodically
poll the device in order to check whether any action is required. Usually, this
is very inefficient since in the majority of cases nothing has to be done and
checking the device just wastes valuable processor cycles. Modern operating
systems also leverage interrupts to implement context switches by which they
efficiently handle multiple tasks and processes running concurrently. In this
sense, interrupt events lead the way from former batch processing systems to
those interactive systems as we know computers today.

Graphical user interfaces. Graphical user interfaces (GUIs) [115, 124] are in-
herently event-driven. Input data is provided asynchronously in form of user
events such as key strokes, mouse clicks, or finger taps. Before being passed to
the application, these events are usually preprocessed by the GUI library. For
this purpose, GUI toolkits allow application developers to build versatile inter-
faces made up of prefabricated visual controls such as menu bars, input fields, or
buttons. The library first checks to which of the controls the user event has to
be applied, i.e., which menu item or input field was chosen or which button was
clicked, respectively. Thereafter, a corresponding event handler is called that
the application developer previously registered for this specific combination of
event and control element. The handler then processes provided input data and
executes the respective application function either by further delegating the call
or by implementing it itself. This way, GUIs leverage events and event handlers
to flexibly wire visual controls to application functions while both the GUI el-

1 A more precise definition of events is given in Sect. 2.2.1.

MOTIVATION 3

ements as well as the application logic may remain encapsulated in their own
components and, thereby, substantially improve their reusability.

Active databases. Active databases supplement regular database management
systems with the capability to specify reactive behavior [54]. For this purpose,
event-condition-action (ECA) rules are often used for specification [129, 172].
The event identifies the happening to which the rule responds while the condition
allows to evaluate the context of the event’s occurrence. If both match, the
specified action is finally executed. In case of relational databases, an event may
be, for example, the insertion or deletion of a tuple, the update of an attribute,
or a transaction being started, committed, or aborted. Conditions consist of
predicates over attributes and queries that put the tuples triggering the event
in relation to other information stored in the database. Actions are usually
not limited to database operations only and may also include the execution of
external processes and applications. This way, it is, for example, easily possible
to automatically reorder a particular item when the current stock level drops
below a given threshold. Furthermore, executed actions may also trigger new
events to be fired and corresponding rules to be processed. Hence, even complex
and sophisticated business workflows requiring several processing steps can be
appropriately mapped onto and implemented by active databases. Thereby,
they allow to efficiently monitor the stored data for events of interest, and in
case of their occurrence, to respond to them in a timely manner. Because of
this economic relevance, nowadays, nearly all industrial-strength databases also
feature active capabilities.

Publish/subscribe systems. Publish/subscribe [58] is a flexible group commu-
nication paradigm enabling distributed components to interact by publishing
notifications about occurred events and subscribing to those notifications of in-
terest. Since subscriptions usually specify the type or just the content of the
notifications in which a component is interested, the communication is indirect
requiring only a loose coupling between publishers and subscribers. In fact, pub-
lishers do not necessarily need to know their subscribers and vice versa making
it easy to extend systems by flexibly adding new components. For this to work,
it is usually the responsibility of a notification service to distribute a published
notification to all interested subscribers. In large-scale scenarios, the notification
service is often formed by a set of cooperating brokers that exchange published
notifications and issued subscriptions [144]. Notifications are routed stepwise
through the broker network, duplicated where necessary, and finally pushed to
their subscribers. This way, it is ensured that event notifications are actively
delivered in a timely manner while publishers are relieved from contacting each
subscriber individually and subscribers do not need to periodically poll for up-
dates. Hence, notification services and publish/subscribe systems are well suited
and, therefore, widely used for applications that require the efficient dissemina-
tion of information to possible large numbers of clients and components.

4 INTRODUCTION

As the given examples demonstrate, events are leveraged in a surprisingly broad
field of computing including hardware and software systems as well as local and
distributed applications. Requirements and objectives are manifold leading to
substantially different implementations. But throughout the various application
domains, the primary purpose of events is to efficiently notify system components
about happenings and situations of interest and, thereby, allow the system to
respond to these events in a timely fashion. With computing infrastructures
growing in size and complexity, both aspects are gaining particular importance.
On the one side, the growing number of data sources and computing nodes
requires an efficient distribution of data making a periodic polling for updates
no longer sustainable in large-scale scenarios. On the other side, infrastructures
have to become more and more capable to manage and organize themselves
as their increasing complexity often overwhelms users and administrators alike.
Therefore, it is usually essential that systems and applications are able to quickly
react on detected changes, for example, in order to adapt and optimize their
configuration or to actively support and assist their users. This being said, it
can, thus, be anticipated that event-based systems and applications will play a
central role in future computing infrastructures.

In particular, publish/subscribe systems are ideally suited to flexibly connect
event-driven application components and event-based subsystems within dis-
tributed infrastructures [161]. As all communication is performed indirectly by
solely publishing and subscribing notifications about occurred events, there is
only a loose coupling between interacting components as they only have to agree
on a notification’s content. On the one hand, it is, thus, always possible to
easily add new components without the need to modify already existing ones
and, thereby, naturally support computing infrastructures when they grow in
size. On the other hand, the loose coupling makes it hard to identify the actual
interactions between communicating components especially if use cases go far
beyond unidirectional data dissemination. In practice, it is, for example, nearly
impossible to determine all effects and side effects that a published notification
may cause as any component within the system could be a potentially affected
subscriber. Hence, without further structuring means, conventional publish/
subscribe systems are only of limited use to cope with the increasing complexity
resulting from interdependencies between system components.

In order to better manage component interdependencies, event-based infras-
tructures essentially require structural abstractions allowing publish/subscribe
systems and event-driven applications to be designed and developed in a modu-
lar fashion. Although software engineering research knows the importance and
benefits of structuring concepts such as modules [165], classes [21], and compo-
nents [217], nevertheless, comparable concepts are apparently missing for event-
based infrastructures. In this thesis, we exactly address the lack of engineering
means to organize event-based infrastructures. However, developing those struc-
turing concepts is challenging. In fact, they have to allow event-based systems
to be engineered in a modular fashion while, at the same time, preserve the
inherent benefits of a loose coupling between system components.

GOALS 5

1.2 Goals

The term event cloud refers to the complete set of event notifications gener-
ated by one or more event-based systems [125]. The term is quite figurative
illustrating the jumble of events independently produced by individual system
components and addresses the problem to distinguish relevant from irrelevant in-
formation since usually all kinds of event notifications including low-level as well
as high-level ones equally show up side by side within the publish/subscribe in-
frastructure. The sheer mass of event notifications then makes it hard to clearly
identify those events of importance among the whole data noise. Moreover, it
is even harder to determine their effects and side effects within the system be-
cause a published event notification can, intentionally or not, be received by any
system component affecting its state and behavior.

To remedy the problems described above, there are basically two different op-
tions. On the one side, one may improve the expressiveness of tools and filter
languages in order to more precisely specify and query for those event notifica-
tions and event patterns2 one is interested in. On the other side, one may better
structure and organize applications and publish/subscribe systems so that no-
tifications are only visible within their scope of relevance, i.e., within respective
subsystems and only to those application components they are intended for. In
this thesis, we follow and emphasize the second approach by providing structural
abstractions for event-based systems to ease their development and management
alike. We also believe that, at the same time, a structured and organized event
cloud significantly simplifies event queries and specifications.

More precisely, we aim for a systematic engineering approach that allows to mod-
ularly compose publish/subscribe systems and event-driven applications and to
effectively orchestrate and control the event flows between their components.
This way, we want to increase the reusability and extensibility of event-driven
components and publish/subscribe systems, while keeping applications and in-
frastructure comprehensible and manageable, respectively. In the following, we
address each of these aspects in more detail.

Modularity and composability. Modularity and composability are central ideas
of many engineering approaches [12]. They allow to subdivide a complex project
into simpler components and modules usually realizing a particular system func-
tion, design and implement this function in isolation, and finally compose and
connect the individual modules to assemble the whole system. For distributed
publish/subscribe applications, however, a modular development approach is
only possible to a limited extent. If a particular application function requires the
interaction of two or more components distributed in the system, any notifica-
tion published in the context of this interaction automatically becomes globally
visible in the whole infrastructure breaching any isolation boundaries. Thus,

2 Complex event processing (CEP) is primarily concerned with specifying and detecting
spatio-temporal patterns of events [125].

6 INTRODUCTION

great care needs to be taken when deploying similar components or multiple
instances of the same component in order to avoid their notifications to unpre-
dictably interfere with each other. Therefore, our primary goal is to provide
effective structuring means that, on the one hand, comply with the loose cou-
pling and the flexibility of event-based systems and, on the other hand, allow to
bundle related components to modules facilitating their systematic composition
to profit from the benefits of a modular development approach.

Please note that this goal is not limited to event-driven applications only. It also
includes the publish/subscribe infrastructure itself. Conventional publish/sub-
scribe systems are usually build for specific types of applications in well-defined
environments, for example, to disseminate business events within a company net-
work minimizing the latency or to gather measurement readings within a wireless
sensor network coping with very limited resources such as network bandwidth,
computing power, and energy. Although they all leverage the publish/subscribe
paradigm, their implementations often differ substantially and, thus, are incom-
patible to each other. However, with information and communication technology
pervading our environments, it seems to be only a matter of time until the need
arises to connect, join, and merge these different systems to a common infras-
tructure. A modular system architecture significantly eases this process allowing
to flexibly compose and integrate features and protocols in order to make these
heterogeneous publish/subscribe systems compatible.

Reusability and extensibility. Reusability and extensibility are key benefits of a
modular design [17]. As components or modules usually implement a particular
function in a self-contained fashion, they can often be reused without modifi-
cations. If a slightly different functionality is required, it is often sufficient to
simply adapt or extent an existing component or module as needed. This way, a
lot of programming effort is saved as the same or similar functions do not need
to be developed from scratch over and over again. Due to the lack of effective
module concepts for event-based infrastructures, publish/subscribe applications
are the less reusable the more intertwined their interaction patterns are. But
even single event-driven components are often not reusable or extensible at all.
In particular, such a component must know to which event notifications it has
to subscribe, which notification attributes are of specific interest, and how gen-
erated results need to be published. Therefore, event-driven components often
contain a mixture of business logic, application context, and system configura-
tion that drastically reduces their reusability and extensibility.

Likewise, publish/subscribe systems are usually designed to support a particu-
lar application type and, thus, equipped with a well-defined set of protocols and
features optimized for the intended usage. Often this leads to powerful and ef-
ficient, but monolithic implementations. Moreover, basic assumptions may only
be valid in specific application domains and computing environments making
those publish/subscribe systems hardly reusable and extensible. With the grow-
ing diversity, heterogeneity, and interconnectivity of event-based infrastructures,

GOALS 7

however, the latter becomes increasingly important. Therefore, we advocate for
a flexible and modular system architecture. This way, the integration of new and
the adaptation of present features and protocols simply boils down to adding and
modifying new and existing system modules, respectively. Hence, modularity is
a necessary precondition for both sustainable system and application designs.
But a functional decomposition in system modules and application components
is not always sufficient. Additionally, it is also necessary to clearly separate
application logic and system features from context information and system con-
figuration in order to make modules and components inherently reusable and
extensible and, thereby, profit the more from provided structuring means.

Comprehensibility and manageability. Especially the loose coupling of com-
ponents makes it difficult to predict and comprehend the overall behavior of
event-based systems. The behavior emerges from the interactions of all partic-
ipating components resulting from the event notifications exchanged between
them. Thereby, the flow of notifications is usually defined indirectly by the
content of published notifications and the filter expressions of issued subscrip-
tions. By matching every event notification against all active subscriptions,
the set of receivers is determined dynamically and may potentially include any
system component while changing from notification to notification. Hence, the
effects and side effects of a published notification, intended or not, are hardly
predictable without analyzing the complete publish/subscribe system and all
application components. Moreover, adding, modifying, or removing any compo-
nent, thus, requires a thorough reanalysis of the whole system. With the growing
number of components and sophisticated interaction patterns, a system analysis
becomes increasingly difficult making properties such as comprehensibility and
manageability of event-based infrastructures the more important.

Against this background, structural abstractions facilitating modularity are the
key to keep publish/subscribe systems and event-driven applications compre-
hensible and manageable. Modules help to control component interactions and,
thus, allow to examine and analyze individual components and subsystems in
isolation. But it is not sufficient to just provide the mere possibility to bundle
components to modules as an additional feature. Instead, the module concept
needs to be integrated into the programming language so that developers nat-
urally leverage it to organize their event-driven applications. Moreover, it has
to pay off by significantly easing the development process and helping program-
mers to better understand the application behavior. Likewise, the module con-
cept must also support administrators to structure publish/subscribe systems
by orchestrating application components and directing their notification flows.
Thereby, organizational responsibilities as well as security concerns need to be
addressed so that they can be mapped onto modules, too. In fact, structural ab-
stractions and module concepts have to consider both the development process of
event-driven applications at design time and the administration and operation of
publish/subscribe systems at runtime in order to facilitate comprehensible and
manageable event-based infrastructures.

8 INTRODUCTION

1.3 Contributions

In this thesis, we focus on engineering means to build publish/subscribe systems
and event-driven applications. Primarily, we propose a scoping concept that
provides necessary structural abstractions to design and implement event-based
infrastructures in a modular fashion. In particular, scopes bundle components
and limit the visibility of exchanged event notifications. This way, it is possible
to group components into modules and subsystems and precisely control their
interactions. Scopes support both application developers and system adminis-
trators to easily create and implement reusable software artifacts and to actively
organize and manage the publish/subscribe infrastructure, respectively. We an-
alyze and evaluate scoping in depth covering the scope model and its formal
definition, the integration of scopes into both the publish/subscribe middleware
and the applications, and the effects of scopes on the system’s performance. To
ease the integration of scopes, we provide a composable architecture for publish/
subscribe brokers as well as advanced programming abstractions for event-driven
applications. On the one side, the presented broker architecture is based on
functional modularity supporting middleware developers to adapt existing fea-
tures and easily add new functionality such as, for example, scopes for system
organization. On the other side, the derived programming abstractions help ap-
plication developers to leverage scopes for their purposes. In the following, we
discuss the contributions of the composable architecture, the scope concept, and
the programming abstractions in more detail.

Composable publish/subscribe architecture. A middleware architecture for
publish/subscribe brokers is developed that is based on the concept of features
and feature composition. A feature represents a particular functional aspect such
as a specific network protocol, a certain routing strategy, or an applied matching
algorithm. Features are encapsulated and implemented as plugins that can be
inserted into publish/subscribe brokers in order to add necessary functions. By
composing features, i.e., selecting the right plugins, this kind of functional mod-
ularity enables middleware developers and system administrators to easily tailor
the publish/subscribe infrastructure to actual requirements. To realize its func-
tionality, each plugin is allowed to intercept and intervene the internal handling
of event messages within a broker in order to modify, alter, or remove passing
messages or to insert new ones. We show that this is sufficient to even imple-
ment sophisticated features such as scoping. Furthermore, we give guidelines to
ease their composition. With the redesign and reimplementation of the Rebeca
publish/subscribe middleware based on the proposed architecture, we prove the
feasibility of our approach. Brokers are accompanied by diverse plugins that
realize mandatory as well as optional publish/subscribe features and, thereby,
demonstrate and test their composability. We exemplify the engineering benefits
that result from the architecture’s modularity and flexibility by extending and
replacing several feature plugins in order to execute a Rebeca broker within a
real network deployment as well as in a simulation environment.

CONTRIBUTIONS 9

Scoping. Scoping is introduced as an effective means to structure publish/
subscribe systems and event-driven applications alike while complying with the
loose coupling of components that is inherent to event-based infrastructures.
Basically, scopes bundle related components and restrict the visibility of event
notifications in order to provide a protected environment for interaction and to
avoid unintended side effects. Formally, we define the semantics of scopes based
on concepts of set theory enabling a hierarchical system decomposition in scopes
and subscopes according to different criteria and aspects. However, to ensure
flexible system designs, we allow components to be members of multiple scopes
at the same time if several criteria apply. To support the modular engineering
of scopes, we define scope interfaces that allow to precisely specify the event no-
tifications that are exchanged with other scopes and components. Furthermore,
we introduce scope attributes and their inheritance in order to annotate scopes
and contained components with configuration data and context information and,
thereby, ease their orchestration.

Scoping is embedded directly into the content-based routing layer forming scope
overlays within the publish/subscribe system. This way, all major routing algo-
rithms are supported while profiting from a close integration whose benefits are
twofold. First, the scope structure is exploited for routing optimizations that
stop the unnecessary dissemination of event notifications and subscriptions at
scope boundaries as early as possible. Second, scope management operations
such as creating or joining scopes are mapped to conventional publish/subscribe
functions so that existing program logic and data structures can be reused.

As part of a thorough evaluation, we analyze the savings as well as the costs
caused by scoping. For this purpose, we execute Rebeca brokers in a simu-
lation environment that allows to conveniently study large-scale networks with
arbitrary distributions of publishers, subscribers, and event notifications. For a
better qualitative and quantitative interpretation of the results, we compare the
measurements for scoping with those obtained for other routing strategies. We
show that scoping significantly reduces the size of the brokers’ routing tables as
well as the message overhead within the network improving the overall system
performance. In particular, scoping is especially beneficial for publish/subscribe
systems with unequal distributions of clients forming local network regions with
hot spots for certain notification types. Furthermore, we prove that our im-
plementation of scopes scales with both an increasing number of brokers and
clients independent of the ratio between publishers and subscribers. Finally,
we measure the overhead caused by the management of scopes and identify the
parameters it depends on as well as their influence on the overall costs.

Programming abstractions. Programming abstractions for content-based pub-
lish/subscribe are derived that support application developers and system ad-
ministrators in orchestrating event-driven applications, organizing their compo-
nents, and directing the notification flows between them. In particular, provided
abstractions help to keep business logic apart from context and configuration

10 INTRODUCTION

data and, thereby, significantly increase the reusability and extensibility of com-
ponents facilitating a modular development process. Most importantly, we in-
troduce event ports as a novel interface that makes a set of annotated component
fields visible and accessible to the outside in order to communicate significant
state changes as event notifications, i.e., to publish or to get notified about them,
respectively. To react upon those state changes, we also allow component meth-
ods to be conveniently annotated as event handlers and precisely specify the
time and order of their execution. Separated from the application’s business
logic, components are then orchestrated by subscribing their event ports to the
notifications they have to process. Following a data flow approach, we ease com-
ponent orchestration by enabling developers to simply connect the out-ports of
publishing components to the in-ports of subscribing components. Subscription
and filter management is done automatically.

Our programming abstractions also support scoping. Event-driven components
can be grouped into scopes and subscopes according to component attributes
while established event connections remain unaffected. Furthermore, we allow
developers to either configure and adapt provided default scopes as needed or
to annotate a component to manage its own custom scope. In the latter case,
scope-specific events such as members joining or leaving the scope are handled
similarly to regular business events and processed in the same way. Nevertheless,
to leverage all developed programming abstractions, publish/subscribe brokers
require additional functions and services that, for instance, inspect components
for annotations or call event handlers appropriately. Thus, based on Rebeca’s
composable publish/subscribe architecture, we implement an advanced compo-
nent container as a pluggable broker feature fulfilling these requirements and
providing the necessary functionality.

1.4 Outline

The structure and organization of this thesis is illustrated in Fig. 1.1. Chap-
ters 1 and 2 lay the foundation of the work and discuss its background. In
particular, we introduce event-based infrastructures, elaborate on the basic con-
cepts of publish/subscribe communication, and give an overview about existing
notification services that support distributed event-driven applications. Further-
more, we pinpoint shortcomings and derive work objectives that primarily aim
at improving the degree of modularity.

Chapters 3, 4, and 5 contain major contributions of the thesis addressing mod-
ularity on the level of the middleware design, the publish/subscribe infrastruc-
ture, and the event-driven applications, respectively. In Chap. 3, we propose a
composable architecture for publish/subscribe brokers that enables middleware
developers to easily modify, extend, or add individual broker features in order to
tailor the overall functionality to actual application requirements and environ-
ment conditions. We discuss broker features and their encapsulation in plugins

OUTLINE 11

Figure 1.1: Structure and organization of the thesis.

as well as architectural rules and guidelines to facilitate their free composition
within a broker. This is exemplified by our publish/subscribe middleware Re-
beca which builds upon the presented architecture.

Chapter 4 introduces scopes as a module concept for publish/subscribe systems.
To better control the system interactions, scopes bundle related components to
modules and limit the visibility of their event notifications. We formally define
the scope model including scope interfaces for notification exchange, scope hier-
archies that support a flexible system decomposition as well as scope attributes
and their inheritance in order to annotate context information and configura-
tion data. Furthermore, we integrate scoping into the content-based routing
layer based on scope overlays and address management issues as well as imple-
mentation details.

Chapter 5 derives programming abstractions for event-driven publish/subscribe
applications to ease the orchestration of their components and better leverage
the modularity gained by scoping. After discussing common pitfalls and their
remedies, we introduce event ports as component interface to easily communicate
relevant changes in the component’s state to other interested parties. We show
how to connect the event ports of different components using publish/subscribe,
how to react on and process received event notifications, and how to automati-
cally group components into scopes and subscopes according to different criteria.

A comprehensive evaluation of the presented module concepts is given in Chap. 6.
The primary focus is on the system performance and the effects of scoping while
created simulation setups leverage the composable broker architecture and pro-
vided programming abstractions. We demonstrate the scalability of scoping,
study the system behavior under different distributions of clients and notifica-
tions, and analyze the overhead introduced by scopes and their management.

12 INTRODUCTION

Finally, Chap. 7 concludes the thesis. We summarize the work done and review
our main results and their contributions for engineering publish/subscribe sys-
tems and event-driven applications. Furthermore, we pinpoint further questions
newly raised by the thesis while giving an outlook of future research and the
next steps to address these open issues.

Chapter 2

Distributed
Event-based Systems

Contents

2.1 Introduction . 14
2.2 Publish/Subscribe . 14

2.2.1 Events and Notifications . 15
2.2.2 Notification Service . 16
2.2.3 Subscriptions and Advertisements 17
2.2.4 Notification Selection . 18
2.2.5 Routing Algorithms . 20
2.2.6 Broker Topologies . 22
2.2.7 Loose Coupling . 26

2.3 Existing Notification Services . 27
2.3.1 Corba Event and Notification Service 27
2.3.2 Java Message Service . 29
2.3.3 Data Distribution Service . 31
2.3.4 Siena . 33
2.3.5 Rebeca . 36
2.3.6 Hermes . 38
2.3.7 Padres . 41

2.4 Discussion . 42

13

14 DISTRIBUTED EVENT-BASED SYSTEMS

2.1 Introduction

Middleware [16] is an additional software layer introduced to facilitate and ease
application-to-application programming. It is situated in the middle between the
operating system below and the application layer above. In distributed systems,
middleware usually supports developers by managing and handling the com-
munication between interacting application components that reside on different
computers within a network. Therefore, actual middleware implementations of-
fer more convenient communication abstractions, functions, and services that go
far beyond those provided by the network layer as part of the operating sys-
tem. Moreover, by hiding cumbersome implementation details, the middleware
relieves developers from tedious and time-consuming tasks helping them to bet-
ter focus on the application’s logic and purpose. With increasing complexity,
middleware, thus, becomes an enabling factor to successfully engineer software
systems [95]. This is especially true for the development of distributed event-
driven applications for which the employed middleware usually plays a central
role in managing and mastering the asynchronous and versatile interactions be-
tween their components.

In this chapter, we lay the foundation of this thesis and present its background.
First, we define essential terms and introduce basic concepts on which event-
based systems are built. Primarily, these are closely related to the publish/
subscribe communication pattern and the content-based routing of event noti-
fications in order to successfully decouple application components. Afterwards,
we give an overview about existing middleware standards and implementations
facilitating the development of event-driven applications. We identify the pub-
lish/subscribe concepts applied and analyze the strengths and weaknesses of
their actual implementations. Based on the analysis, we finally conclude the
chapter by discussing open challenges that developers still face when engineer-
ing publish/subscribe systems and programming event-driven applications.

2.2 Publish/Subscribe

Publish/subscribe is an appealingly simple, yet powerful group communication
paradigm facilitating event-driven applications and architectures [58]. Compo-
nents communicate by publishing notifications about occurred events and sub-
scribing to those event notifications in which they are interested. This makes the
communication asynchronous, indirect, and thus effectively reduces the coupling
between participating components. In fact, notification publishers usually do not
know their subscribers, while the receivers of a notification do not necessarily
need to know which component published it. Because of this loose coupling,
publish/subscribe is ideally suited for dynamic environments where components
may spontaneously join or leave the network. It allows them to simply com-
municate any relevant change in state or environmental conditions as an event

PUBLISH/SUBSCRIBE 15

on which other interested components can react without obligation. This way,
distributed and cooperative services can efficiently be realized.

2.2.1 Events and Notifications

In event-based systems, components cooperate and interact by exchanging noti-
fications about occurred events [30]. An event is any happening that is of interest
to a particular component [82]. It may vary in size and complexity and its cause
may lie inside or outside the component. For example, a simple hardware inter-
rupt, a new reading of an external sensor, or the completion of a sophisticated
service request are events that may be of interest to a system component. Al-
though these events are of different granularity, they all lead to a change in state.
In particular, it is the state change by which we technically define an event in
the following.

Definition 1 (event). An event e is an observable change in state caused by an
internal or external happening of interest.

To inform about the occurrence of an event, the component creates a notifica-
tion to describe the event in a way it can be automatically processed by other
components. Therefore, the notification contains the data to precisely charac-
terize the event itself and, where appropriate, the context and circumstances of
its occurrence (e.g., time or location). Data models that are commonly used for
notifications range from simple name/value pairs [31, 146] over semi-structured
data based on XML [2, 35] to objects and classes [62, 61].

Definition 2 (notification). A notification ne reifies the event e in a way that
it can be automatically processed. For this purpose, the notification ne contains
data describing the event e and, if appropriate, the context and circumstances of
its occurrence.

Often, the notification has to be sent through a communication network to reach
and inform remote components about the event. In this case, the notification is
serialized and transmitted in form of a message. Here, the message represents
the data container for the serialized notification while it is in transit.

To clarify the meaning and notion of the terms event, notification, and message,
Figure 2.1 visualizes their differences. The event e occurs at component C1 which
creates the notification ne to describe the event itself as well as the context of its
occurrence. In order to send the notification to the remote component C4, ne is
serialized and wrapped into the message me, which is subsequently transmitted
over the network. On the receiving side, the notification ne is deserialized from
the message’s content and, finally, delivered to component C4 for processing.
The notification’s serialization and deserialization as well as its transmission and
delivery is usually the responsibility of a notification service, which is described
in the next section.

16 DISTRIBUTED EVENT-BASED SYSTEMS

Figure 2.1: Distributed notification service.

2.2.2 Notification Service

Usually, a mediator is used to better decouple interacting, event-driven compo-
nents. For this purpose, a notification service is interposed between them [193].
The notification service is responsible to take and deliver a notification to all
receivers. Hence, it forwards the notification from its producer to all interested
consumers. From the perspective of the notification service, the producers of
notifications act as publishers and the consumers as corresponding subscribers.
Altogether, they, thus, form a publish/subscribe system. Please note, that the
role as publisher or subscriber is not static and immutable for a component’s life-
time. In contrast, components can change them dynamically or even play both.
For instance, the processing of a consumed notification may trigger an internal
event inside a subscribing component, which, in turn, describes and publishes its
change in state as a new notification on which yet other components can react.

There are different ways to implement a notification service. First approaches
consisted of a central mediating component. Although easy to implement, these
approaches are hardly scalable as a single instance is responsible for all event-
driven components and has to match and deliver all published notifications to
their subscribers. Today, the notification service is usually implemented in a
distributed fashion by a set of interconnected brokers from which each broker is
responsible for a number of clients [31]. This way, the load is efficiently shared
among them. On the downside, the brokers have to exchange published notifica-
tions as well as information about the interests of their clients which may cause
considerable overhead compared to the central solution in certain situations.
Section 2.2.5 introduces several forwarding and routing strategies for reducing
this overhead. Nevertheless, to deal with large-scale setups, a publish/subscribe
system based on a distributed notification service is required.

Definition 3 (distributed notification service). A distributed notification service
consists of a set of interconnected brokers and has the following properties:

PUBLISH/SUBSCRIBE 17

(i) Each broker services a set of exclusive clients and provides an interface to
publish and to subscribe to notifications about occurred events.

(ii) Each broker allows a connected client to be a publisher producing notifica-
tions, a subscriber consuming published notifications, or even both at the
same time.

(iii) The brokers cooperate and exchange notifications as well as information
about client interests in order to ensure that a published notification is
delivered to all interested subscribers independent to which broker a client
is connected.

Figure 2.1 visualizes a publish/subscribe system based on a distributed noti-
fication service [147]. The figure shows two of the interconnected brokers B1

and B2 each hosting three client components. Component C1 detects event e
and publishes the corresponding notification ne at broker B1. The brokers co-
operatively implementing the notification service are now responsible to ensure
that notification ne reaches all subscribed components as, for example, C4. Since
components C1 and C4 are connected to different brokers, the published notifica-
tion ne needs to be forwarded from B1 to B2. Thus, ne is serialized, transmitted
over the network, and deserialized again. Thereafter, broker B2 can finally notify
component C2 about the occurred event e by delivering its notification ne.

2.2.3 Subscriptions and Advertisements

In event-based systems, components cooperate by publishing notifications and
by subscribing to those notifications in which they are interested. Thereby,
the latter consequently leads to the question how a component can specify its
interest in certain notifications. Technically, this is done using a filter function.
A filter simply determines whether the subscribing component is interested in
a particular notification. By evaluating these filters on behalf of its clients, a
broker can thus filter out and separate relevant notifications from those in which
the clients are not interested at all.

Definition 4 (filter). A filter F is a Boolean function applicable to a notification
n to determine its relevance for a particular client. Only if F (n) = true, the
notification is relevant for the client and needs to be delivered, otherwise the
client is not interested in it.

To inform a broker about its notification interests, a client creates a subscrip-
tion out of a filter. The filter specifies which notifications are relevant for the
client and is an inherent part of the subscription. Besides the notification filter,
however, a subscription may also contain additional metadata. The metadata
may include, for example, visibility constrains to restrict a subscription’s valid-
ity range [74], time information to query for notifications about specific events

18 DISTRIBUTED EVENT-BASED SYSTEMS

in the past or the future [41], security credentials to prove the authorization for
receiving certain information [15], or maximum delivery rates in order to avoid
congestion and overload [149].

Definition 5 (subscription). A subscription is a standing request to receive
matching event notifications. It contains a filter specifying which notifications
to receive as well as metadata to provide additional information or constraints,
if appropriate or necessary.

To inform a broker about its intention to publish notifications, a client creates
an advertisement. Similar to a subscription, an advertisement contains a filter
that specifies the kind of notifications the client is going to produce. Likewise,
it can also contain metadata to provide additional hints or constraints. The
brokers can use advertisements to their advantage, for example, to optimize the
exchange of subscriptions within the broker network [146].

Definition 6 (advertisement). An advertisement is an announcement to po-
tentially publish notifications in future. It contains a filter specifying the kind of
notifications to be produced as well as metadata to provide additional information
or constraints, if appropriate or necessary.

Please note that advertisements are sometimes considered as an optional fea-
ture. If advertisements are not supported by the notification service, it is simply
assumed that every client may produce arbitrary notifications.

2.2.4 Notification Selection

Primarily, filters are used in subscriptions and advertisements to specify in which
notifications a client is interested or what kind of notifications a client may pub-
lish, respectively. On the one side, it is in the interest of a client to specify these
notifications as precisely as possible. Therefore, a comprehensive filter model
is needed that provides the necessary expressiveness. On the other side, it is
in the interest of a broker to determine as fast as possible whether a notifica-
tion matches a given filter. Therefore, simple filters that are easy to evaluate
are preferred in order to reduce a notification’s latency and increase the bro-
ker’s throughput. In fact, there is a trade-off between a filter’s expressiveness
and its matching complexity that needs to be considered in publish/subscribe
systems [27]. In [234], Zeidler distinguishes five filter models according to their
complexity. In the following, they are listed and discussed with increasing ex-
pressiveness.

Channel-based selection. When publishing a notification, it is sent into a
named channel. Components have the possibility to subscribe to one or more
channels and, thus, receive all notifications published therein. There is no fur-
ther filtering of event notifications since individual interests of clients are not

PUBLISH/SUBSCRIBE 19

considered. This makes channel-based subscriptions to a very simple, yet effi-
cient selection model that is easy to implement. The Corba event service [157]
is an example of this approach.

Topic-based selection. Each notification has an associated topic under which it
is published. Topics are usually split into subtopics which can also be repeatedly
subdivided into more specific categories. Thus, they form a hierarchy of topics
into which each published notification is sorted. Considering a weather report,
for example, the current temperatures in Berlin might be published under the
topic weather.temperature.berlin. Subscriptions always refer to a particular topic
and may also include further subtopics. However, topic hierarchies may be
ambiguous. For example, another correct view of the weather report might be
alternatively published under the topic berlin.weather.temperature. Please note
that topic-based selection is also known as subject-based filtering [58].

Type-based selection. Notifications are represented as objects and filtered
based on their type according to the corresponding class hierarchy [62]. Thus,
subscriptions also include notifications of subtypes by default. So far, type-based
filtering is quite similar to the topic-based approach, but allows for a closer and
type-safe integration into the programming language and the middleware [57].
With multiple inheritance and comparable mechanisms, the selection of event
notifications becomes even more flexible. To further increase its expressiveness,
type-based selection is often combined with content-based filtering by specifying
and evaluating additional constraints over object fields and attributes [179].

Content-based selection. Instead of filtering notifications based on meta-data
such as topics or type information only, content-based subscriptions allow the
selection of notifications based on arbitrary aspects of a notification’s content.
In fact, the whole notification becomes subject to the filter functions contained
in active subscriptions making content-based selection the most general and flex-
ible filter model [143]. This way, subscribers are completely independent of any
topic assigned or classification made by the notification’s publisher [60]. The ex-
pressiveness of this approach is only limited by the data model used to describe
the notification’s content and the predicates available to specify appropriate
subscription filters [27]. Several different content-based data and filter models
are proposed in literature, for example, templates and regular expressions [46],
XPath filters for XML-based notifications [2, 35], generic predicates on name/-
value pairs [143], constraints on object attributes and properties [60], or filter
functions contained in (mobile) program code [62] that may even be generated
and compiled dynamically [55].

Concept-based selection. Although referring to the same event, notifications
may vary to a great extent. In particular, in heterogeneous environments, events

20 DISTRIBUTED EVENT-BASED SYSTEMS

are often described differently. For example, synonyms may be used to refer to
event attributes, measures may be given in different units, or locations and time
data may be encoded as absolute or relative information. Because of these dif-
ferences and inconsistencies, a filter may not match a particular notification
although the subscriber is actually interested in the event the notification com-
municates. In this case, semantic translations on the notification’s content must
be performed first, in order to successfully match it afterwards. Concept-based
filtering [42], therefore, includes semantic translations based on well-defined on-
tologies to deal with these kind of heterogeneity [40]. The gained flexibility,
however, is traded off with a complex and costly processing of notifications often
limiting the system’s performance.

2.2.5 Routing Algorithms

In a distributed publish/subscribe system, brokers exchange active subscriptions
and published notifications in order to ensure that every client receives the noti-
fications in which it is interested regardless of the broker to which it is connected.
The way how subscriptions and notifications are exchanged is specified by the
routing algorithms that are applied in the broker network. In particular, ad-
vanced routing algorithms are able to exploit similarities between subscription
filters in order to reduce the number of subscription messages that are needed
to be exchanged. The exchanged subscriptions subsequently determine to which
clients and brokers which notifications have to be forwarded. Besides the trivial
flooding of notifications, Mühl et al. distinguish in [147] four more advanced
publish/subscribe routing algorithms that may additionally be combined with
event advertisements. In the following, we discuss these routing algorithms and
variants in the order of increasing complexity.

Flooding. Flooding is the simplest routing algorithm available. Each notifica-
tion is generally disseminated to all brokers within the complete network. Hence,
the network is flooded with notifications. On the one side, as brokers receive
every published notifications by default, it is not necessary to exchange subscrip-
tions at all. A broker just needs to filter those notifications out of the message
stream in which its clients are interested. On the other side, a broker also has to
process those notifications in which none of its clients is interested. Even worse,
as these are flooded into the network they are unnecessarily forwarded to other
brokers and, thus, waste valuable resources by causing processing costs and clog-
ging links. Hence, flooding is, in general, not scalable. However, it may be a
good choice if client interests are homogeneous and similar subscriptions are uni-
formly distributed in the network [162]. Additionally, flooding can be combined
with other routing algorithms to form hybrid network configurations [201]. Such
hybrid strategies use flooding only in those parts of the network, where its sim-
plicity is profitable and adaptively switch to more advanced routing algorithms
as soon as flooding becomes inefficient [199], for instance, if subscriptions are in-

PUBLISH/SUBSCRIBE 21

creasingly selective or substantially differ in distinct parts of the network. Please
note that flooding can be combined with all major algorithms listed below.

Simple routing. Simple routing [146, 142] floods subscriptions within the bro-
ker network. This way, every broker gains global knowledge about client inter-
ests. Thus, a broker needs to forward a notification only towards the directions
where an interested subscriber is located. For this purpose, brokers maintain a
routing table in which they store each subscription together with the neighboring
broker or local client from which the subscription was received. Subsequently,
notifications are matched against this routing table and are only forwarded to
those neighboring brokers and local clients that have a matching entry. Hence,
no notification is unnecessarily forwarded anymore. However, as each broker
stores a copy of every subscription that is currently active in the network, the
routing tables grow proportionally to the number of subscriptions in the system.
The consequences are twofold. First, large routing tables induce high processing
costs and make a broker’s matching and forwarding decisions more complex.
Second, when client interests change frequently, a significant fraction of the net-
work traffic is required to propagate new and revoked subscriptions to all brokers
in order to keep their routing tables up to date. Taken together, both reasons
considerably limit the system’s scalability.

Identity-based routing. Identity-based routing [146, 142] reduces the routing
table sizes by exploiting filter similarities between active subscriptions. In fact,
it aims at eliminating equivalent and duplicate routing entries. Therefore, the
forwarding of a subscription towards a neighbor is suppressed if an identical sub-
scription has already been sent to this broker. In this context, two subscriptions
are said to be identical if their filters match the same set of notifications. Hence,
forwarding just one of them is already sufficient. Please note that this does not
only save a single subscription message for and a single routing entry at the
neighbor broker, but also a message and an entry for each subsequent broker
behind this neighbor.

Covering-based routing. Compared to identity-based routing, covering-based
routing [29, 31] further reduces the routing table sizes. Here, the forwarding
of a subscription towards a neighboring broker is suppressed if a more general
subscription has already been transmitted. The general subscription is said to
cover the more specific one if the set of matched notifications of the former is
a superset of the notifications that are specified by the latter. In this case,
it is sufficient to forward the covering one. Only if the covering subscription is
revoked, the once covered filters and subscriptions have to be transmitted. There
are imperfect variants of covering-based routing, too. Subscription pruning [19,
18], for example, simplifies filter expressions by omitting those filter constraints
that are costly to evaluate but not very selective. In this context, the selectivity
of a constraint determines how well it is suited to distinguish between subscribed

22 DISTRIBUTED EVENT-BASED SYSTEMS

notifications and those notifications in which no client is interested. Brokers,
thus, forward a simplified and more general version of a received subscription
whose filter is easier and faster to evaluate. However, the gained speed up of
the matching process is traded off with a small number of notifications that are
forwarded unnecessarily and have to be subsequently filtered out, at last, before
notifications are delivered to a local client.

Merging-based routing. Merging-based routing [146, 142] enables brokers to
create new subscriptions by combining active subscription filters to new filters
that cover the original ones. Hence, filters are merged to new covering sub-
scriptions that are forwarded instead. This way, routing table sizes are further
decreased. Similar to covering-based routing, there are also imperfect variants
of merging-based routing [143]. Likewise, they trade off a simplified matching
process with false positives that must be filtered out before notifications are
finally delivered to local clients.

Advertisements. Advertisements [29] are used to limit the forwarding of sub-
scriptions. If publishers announce what types of notifications they are going
to produce, a subscription just needs to be forwarded towards those publishers
who have an overlapping advertisement, i.e., they are potentially able to publish
a matching notification. On the one side, advertisements effectively limit the
regions to which a subscription has to be propagated and, thus, reduce subscrip-
tion table sizes. On the other side, brokers now have to forward, store, and
maintain advertisements for which additional processing and new advertisement
tables are required. Thus, the usage of advertisements is especially advanta-
geous in systems, where the number of notification producers advertising their
publications is significantly lower than the number of notification consumers is-
suing a corresponding subscription [142]. Advertisements can be combined with
all routing algorithms above except flooding. Moreover, the very same rout-
ing algorithms can be applied to also forward advertisements while the choice
which algorithm is used for routing which type of message is independent of each
other. Hence, it is possible to use the same or two different routing algorithms
to forward advertisements and subscriptions, respectively.

2.2.6 Broker Topologies

To make publish/subscribe systems scalable, they are implemented in a dis-
tributed fashion. Besides filter model and applied content-based routing algo-
rithm, the network topology plays an important role as it determines how the
brokers are connected with each other. For distributed publish/subscribe sys-
tems, tree-like topologies are predominant as they are very efficient for data
dissemination. If network paths to different destinations share common links, it
is, thus, sufficient to just send a single message over the shared segments and
copy it only at those nodes where the paths split. This way, it is ensured that

PUBLISH/SUBSCRIBE 23

over each link just a single copy of the message is sent. Publish/subscribe sys-
tems apply different protocols and techniques to construct such data distribution
trees. In particular, multicast transmissions, generic overlay networks as well as
peer-to-peer routing substrates are often used for this purpose.

Multicast. Multicast is a group communication paradigm allowing a sender
to reach several destinations by transmitting a message only once. It is the
network ensuring that the message is automatically replicated where necessary
to get delivered to each receiver. There is a multicast extension to the Internet
Protocol (IP). IP multicast [212] uses specific multicast address blocks to indicate
that a message is intended for multiple receivers. Receivers are required to
join a multicast group associated with such an address. Once the receivers are
joined, a multicast distribution tree is constructed that is subsequently used to
disseminate messages that are sent to the group’s address.

Implementing a publish/subscribe system on top of a multicast-capable network
is not expensive. In particular, multicast networks are well suited for topic-based
publish/subscribe variants. For each topic, it is sufficient to create an own mul-
ticast group which brokers can join if their clients are interested in. However, if
the number of topics is large compared to a limited number of available multi-
cast groups, this straight forward approach leads to a channelization problem [1].
Individual multicast groups become responsible for multiple topics. Hence, no-
tifications are also sent to brokers that are not interested in them. It has been
proven that it is NP-hard to find an optimal assignment of topics to groups that
minimizes the number of notifications that are unnecessarily disseminated [1].

Regarding content-based publish/subscribe, it is the notification’s content that
determines to which brokers it is delivered. Thus, the number of receivers may
vary for each notification published. In fact, for each notification, there are 2n

possible sets of potential receivers assuming that the publish/subscribe system
consists of n brokers. Assigning multicast groups to all of them is not possible
and inevitably leads to the channelization problem. Besides the number of re-
quired multicast groups, it is primarily the overhead to manage them that limits
the applicability. Brokers may dynamically join and leave groups requiring mul-
ticast distribution trees to be updated and reconstructed. In order to decrease
the management overhead, Opyrchal et al. [162] propose heuristics to reduce
the number of necessary multicast groups. In particular, they suggest overbroad
multicast groups that introduce a tolerable degree of imprecision, multiple trans-
missions of the same notification to different multicast groups as well as sending
a notification over multiple hops with each hop using a multicast to forward the
notification to a set of neighbors. Please note that forwarding a notification over
multiple hops is usually applied in generic overlay networks, too. In this case,
however, forwarding is often based on unicast communication only.

Overlay networks. Since IP multicast is a network feature, it needs to be im-
plemented and supported by involved network elements such as routers and

24 DISTRIBUTED EVENT-BASED SYSTEMS

Figure 2.2: Overlay network on top of a physical communication network.

switches. In heterogeneous, interconnected networks, it thus has to be sup-
ported by all participating network providers. Alternatively, it is also possible
to implement multicast features at application level solely using common unicast
connections between end systems [39]. Nodes that are logically connected in this
way are said to form an overlay network.

Definition 7 (overlay network). An overlay network is a virtual network consist-
ing of nodes and logical links that is built on top of an already existing network.
Thereby, a logical overlay link is mapped to a path of nodes and physical links in
the underlay network.

Figure 2.2 illustrates the definition. It shows a logical publish/subscribe overlay
network based on a physical communication network. All nodes of the physical
network, except nodes N2 and N8, host a publish/subscribe broker and, thus,
are also present in the overlay network. The brokers are connected with each
other by logical overlay links. Although brokers may be directly connected in
the overlay network, this does not imply that there is physical link between
them in the underlay, too. Instead, notifications sent from one broker to a
neighboring broker in the overlay may be required to get forwarded along a path
of underlay nodes and physical links in order to reach their destination. For
example, notifications from broker B1 to broker B3 have to follow the underlay
path from node N1 over nodes N2 and N5 to node N3. As a consequence,
several overlay links may share common underlay paths or segments thereof.
Hence, when disseminating a message in the overlay network, it may happen
that the message is sent over the same physical link multiple times even in
opposite directions, for instance, when broker B3 forwards notifications received
from broker B1 to broker B5.

Because of message duplicates on physical links, an application layer multicast
is not as efficient as a multicast strategy implemented in the network layer.
Even worse, if the overlay’s network topology is designed inappropriately, the

PUBLISH/SUBSCRIBE 25

induced overhead in the underlay becomes significantly large and may exceed
the actually necessary dissemination costs multiple times. However, the over-
lay provides flexibility and freedom to implement customized multicast variants
that are fine-tuned to the application’s purpose. Publish/subscribe systems,
for example, can directly integrate a content-based routing algorithm into their
message dissemination strategy. Furthermore, arbitrary broker topologies can
be created and virtually connected independent of the underlying physical net-
work in a way that further supports and eases the system’s functions as well as
its maintenance. For publish/subscribe systems, hierarchical, acyclic, or generic
overlay topologies may be used as well as any combination of the three [29, 31].
Please note that if not stated otherwise we assume an acyclic broker overlay
network to form the basis for the publish/subscribe extensions developed and
discussed in this thesis. In fact, this is no severe limitation as publish/subscribe
systems based on more generic topologies usually construct tree-like structures
to efficiently disseminate notifications, too [28, 32].

Peer-to-peer. If not operating in a hierarchical setup, publish/subscribe bro-
kers exchange subscriptions and notifications as equal peers on behalf of their
clients. However, a number of publish/subscribe systems additionally use a peer-
to-peer routing substrate to organize their broker topology. In fact, these systems
realize a notification service on top of a peer-to-peer network which itself is usu-
ally implemented as an overlay based on an existing network infrastructure such
as the Internet. This way, even another layer is added to the implementation.

Basically, those peer-to-peer networks are organized as a large distributed hash
table. A distributed hash table (DHT) [52] is a decentralized data structure to
store and lookup key/value pairs. The hash function maps the key to a node
which is responsible to store the associated value. In this context, a good hash
function ensures that the load is uniformly distributed among the participating
nodes. Moreover, the overlay topology formed by the nodes is constructed in
such a way that a query for a particular key can be efficiently routed to the
node responsible for its value. Assuming that the overlay network consists of
N nodes, then several peer-to-peer systems (e.g., Chord [213], Pastry [194], and
Tapestry [236]) are able to resolve the responsible node in at most O(logN) steps
while each node has to maintain only O(logN) overlay links. In particular,
these properties make this type of peer-to-peer systems exceedingly scalable.
Furthermore, their overlays are also well suited to realize an application layer
multicast.

In fact, peer-to-peer routing substrates can conveniently be leveraged to imple-
ment a topic- or type-based publish/subscribe system. For this purpose, the
topic or type information is used as the key to forward notifications and sub-
scriptions in the peer-to-peer overlay network. Eventually, corresponding notifi-
cations and subscriptions meet each other at the rendezvous node [34] to which
their topic or type is mapped by the hash function. While being forwarded, sub-
scriptions establish routing entries at each node they pass. Each routing entry

26 DISTRIBUTED EVENT-BASED SYSTEMS

points to the previous node from which the subscription was received. Together,
all routing entries for a particular topic or type form a core-based tree (CBT) [13]
where the rendezvous node is the root and the subscribers are the leaves. After
arriving at the rendezvous node, this distribution tree is used to finally dissemi-
nate the notification to all interested subscribers. With advertisements, similar
network paths can be set up that lead from the rendezvous node to all poten-
tial publishers. Distributing and installing additional content-based filters along
these paths then allows to proactively reduce the number of notifications the
rendezvous node has to process [179, 178].

2.2.7 Loose Coupling

One of the major strengths of publish/subscribe infrastructures and event-driven
applications is the loose coupling between communication components. Reduc-
ing component dependencies, in general, allows systems to grow in size as well
as to become more dynamic. In fact, publish/subscribe has been successfully
proven to be well suited for large scale setups while supporting versatile interac-
tion and cooperation schemes [144]. Furthermore, decoupling components results
in increased flexibility. In particular, it allows applications, the infrastructure,
and parts thereof to evolve freely, i.e., to get gradually adapted and extended
whenever new requirements occur. Publish/subscribe is, thus, one of the key
patterns for enterprise integration [93]. The integration of new components into
existing infrastructures is facilitated as publish/subscribe systems fully decouple
them in three dimensions: space, time, and synchronization [58].

Space decoupling. Publish/subscribe is an indirect and anonymous form of
communication. Publishers as well as subscribers do not necessarily need to
know each other, i.e., they are not required to address each other in order to
exchange notifications. Instead, it is the notification service ensuring that a
published notification is delivered to all interested subscribers. Hence, the pub-
lishing component neither knows whether the notification is received by none,
one, or many receivers nor does it make any difference in sending. Likewise,
a subscriber may also receive notifications from one or from multiple sources
without any additional effort.

Time decoupling. Brokers are able to temporarily cache and store notifica-
tions [41]. This way, a notification is not lost if a subscriber is currently discon-
nected to the broker network at the time the notification is published. Instead,
the notification is delivered at a later date when the subscriber eventually recon-
nects. At that time, conversely, the publisher may not be connected anymore.
Hence, publish/subscribe does not necessarily require components to be present
and active at the same time in order to interact with each other.

EXISTING NOTIFICATION SERVICES 27

Synchronization decoupling. Publish/subscribe provides an inherently asyn-
chronous communication decoupling the control flow of publishers and sub-
scribers. In particular, a publisher is not blocked when sending a new even
notification. The notification is simply passed to the local broker handling its
forwarding and dissemination. Meanwhile, the publisher can continue its normal
operation. On the other side, subscribers are usually notified about the event
via a callback function that is started in an own runtime thread and takes the
notification as parameter. This way, the received notification may be processed
concurrently or queued to be handled by the component’s main thread at an ap-
propriate time. However, it is never required that the control flow of publishers
and subscribers is synchronized in any form in order to exchange notifications.

2.3 Existing Notification Services

The need for adequate frameworks, tools, and software products that ease the
development of distributed, event-driven applications has been addressed by ac-
ademia as well as industry. As result, several middleware implementations and
industry standards related to publish/subscribe communication and event-driven
applications emerged that differ in requirements, follow distinct approaches, em-
phasize on various technical aspects, and pursue divergent goals. In this section,
we give an overview about prominent representatives of each class. In particu-
lar, we first discuss industry standards for notification services analyzing their
goals as well as their range of functions. Thereafter, we examine research proto-
types of publish/subscribe systems and highlight the ideas and implementation
approaches taken to realize distinct aspects and features. For both middleware
standards and research prototypes we are especially interested in the question
which of the publish/subscribe concepts presented in the previous section have
been successfully applied in which way and to what extent.

2.3.1 Corba Event and Notification Service

The Common Object Request Broker Architecture (Corba) [160] provides an
architectural framework and a middleware specification that enables distributed
object implementations to transparently request and receive services from each
other. Corba is developed and standardized by the Object Management Group
(OMG) in an abstract platform- and language-independent fashion. Vendors are
encouraged to implement the specification for concrete platforms and program-
ming languages, while standardized concepts, mappings, and protocols ensure
the interoperability of different products. This way, Corba significantly eases
the development of distributed applications in heterogeneous computing envi-
ronments. The specification’s core deals with the interface, the functionality,
and the structure of the object request broker (ORB) that is responsible to exe-
cute and mediate invocations of object methods that form the service requests.

28 DISTRIBUTED EVENT-BASED SYSTEMS

Figure 2.3: Combining push-based and pull-based mode of operation.

For this purpose, the ORB has to resolve object references to local or remote lo-
cations, to marshal and unmarshal method parameters as well as return values,
and to send these over the network when invoking a remote method.

Corba is a mature middleware technology that probably has already passed
its zenith [89]. Nevertheless, it conquered several domains such as financial and
telecommunication services, where it is successfully deployed and still used today.
Beyond that, Corba concepts influenced and inspired many younger middleware
implementations that adopted, leveraged, and customized various of its ideas.
In particular, one of Corba’s strengths is its modularity and extensibility in
terms of object services. These usually address advanced aspects and additional
requirements that are common in distributed environments. Corba services, for
example, range from transactional support [156] over persistent storage [154] to
security functionality [155]. In the following, we discuss two of them, the Event
Service and the Notification Service, that enable applications and components
to interact with each other using publish/subscribe communication.

Corba Event Service. The Corba Event Service [157] implements a channel-
based approach to decouple event suppliers and consumers. Acting as mediator,
the event channel is placed between both parties. Hence, suppliers and con-
sumers do not need to directly address each other in order to communicate.
Instead, they only communicate with the event channel that receives events
from suppliers and forwards them to connected consumers. To interact with
the event channel, Corba’s synchronous method invocations are used while the
event channel itself supports different data models and communication modes.

Regarding the data model, the Event Service specification distinguishes between
a generic and a typed event communication. In generic event communication, it
is allowed to pass a single argument of an arbitrary type, while the typed model
requires event suppliers and consumers to previously agree on a particular inter-
face and its methods to exchange events. In the latter case, however, multiple
arguments of the specified types may be exchanged with a single invocation.

Regarding available communication modes, the Event Service supports both a
push-based and a pull-based mode of operation. In push-based mode, the event
supplier notifies its consumer about the event and pushes the event data to

EXISTING NOTIFICATION SERVICES 29

them. In pull-based mode, however, it is the event consumer that requests the
data from the supplier. The event channel interposed between suppliers and
consumers behaves as proxy providing appropriate communication interfaces for
each mode. This way, it is even possible to combine a push-based supplier and
pull-based consumer or vice versa as shown in Fig. 2.3.

Corba Notification Service. The Corba Notification Service [158] is seen as
the successor of the Event Service as it addresses several shortcomings of the
latter. Primarily, it extends ordinary event channels with comprehensive means
for filtering notifications. For this purpose, structured events are introduced as
a new lightweight form of typed events. These structured events consist of a
header providing mandatory information about the event’s domain, type, and
name and of a body containing the event’s opaque payload. Furthermore, both
the header and the body can optionally be extended by an arbitrary number of
filterable name/value pairs that carry additional meta-information, QoS hints,
or data fields associated with the event.

Event consumers are then allowed to construct a filter expression based on these
name/value pairs using the Default Filter Constraint Language in order to spec-
ify the events they are interested in. This way, it is possible to filter events by
their content as well as by QoS constraints. Besides the Default Filter Con-
straint Language, which is required by the Notification Service specification,
Corba implementations may also support arbitrary additional and domain-
specific constraint languages.

Furthermore, the Notification Service also defines an optional repository for the
event types used in the system. If provided by the Notification Service implemen-
tation, it stores meta-information about each event type that is characterized
by its name and domain as well as a set of properties which describe its name/
value pairs. This way, event consumers may use the repository to conveniently
learn about available event types and the structure of their content in order to
dynamically create appropriate and type-safe filter constraints.

2.3.2 Java Message Service

As part of the Java Enterprise Edition, the Java Message Service (JMS) [215]
specifies how application components can asynchronously send, receive, and pro-
cess messages. In particular, JMS defines the application programming inter-
face, while vendors are encouraged to provide their own service implementations
called JMS providers. In general, JMS supports two communication models:
point-to-point and publish/subscribe communication. Point-to-point commu-
nication enables senders and receivers to interact using message queues that
are administered and stored at the JMS server. To enforce the decoupling of
clients, any form of direct communication between sender and receiver without
an intermediary message queue is not supported. Publish/subscribe commu-
nication enables multiple senders and receivers to exchange messages based on

30 DISTRIBUTED EVENT-BASED SYSTEMS

topics that are managed on the server. Likewise, the JMS server decouples the
message producers and consumers from each other.

JMS messages consist of a header and a body. Besides predefined header fields
such as the message’s destination, its unique identifier, its priority level, or its
timestamp, the header can also contain any number of additional fields defined
and supplied by the user. Regarding the body, several formats and data types are
supported. Thus, the body may consist of a stream of bytes, characters, or Java
primitive types as well as name/value pairs or serialized Java objects. However,
this flexibility comes at a price. Filtering messages is only possible on header
fields, the body cannot be evaluated. To restrict the number of messages deliv-
ered by the JMS server, consumers create a message selector that specifies the
kind of messages they are interested in. The selector supports filter expressions
that are based on a subset of the SQL92 [230] conditional expression syntax. In
particular, these expressions may also include the evaluation of custom header
fields defined and set by the user. This way, nonetheless, JMS offers a limited
support for content-based filtering of messages besides selecting them by topic.

Furthermore, JMS provides several advanced features. In particular, persistent
messages, durable subscriptions, and transactional sessions are supported. Per-
sistent messages are logged to stable storage. This way, they are not lost even if
the JMS provider fails and, hence, are guaranteed to be delivered exactly once.
However, in comparison to regular messages that are volatile and might be lost
in case of failures, persistent messages cause a considerable overhead that usu-
ally cannot be neglected. Similar to regular subscriptions, durable subscriptions
allow consumers to specify the messages in which they are interested. Beyond
that, they also remain active even if the subscriber disconnects from the server.
Matching messages published in the meantime are kept on the server until the
subscriber reconnects or they expire. With transactional sessions, a client can
group the publication and consumption of a set of consecutive messages into a
logical unit of work that is either carried out completely or not at all. When a
transaction commits, all published messages are sent to the server, while con-
sumed messages are acknowledged. When a transaction aborts and is rolled
back, published messages are discarded while consumed ones are automatically
recovered in order to get redelivered.

JMS has received wide industry support. Within companies, JMS is often used
to integrate individual business components and services into reliable and event-
driven infrastructures. In fact, by defining a common programming interface for
messaging systems, JMS enabled Java applications to interact with a wide range
of enterprise messaging products of numerous vendors. However, this comes at
a price. In order to be easily and efficiently supported by various messaging
products, the JMS specification largely dispenses with technical details and im-
plementation aspects. Hence, these aspects are often implemented differently by
individual vendors rendering their products incompatible to each other.

To facilitate the integration of enterprise applications, messaging interoper-
ability is an essential precondition. The Advanced Message Queueing Proto-

EXISTING NOTIFICATION SERVICES 31

col (AMQP) [164] is an alternative messaging specification that offers similar
features and, moreover, describes the encoding, format, and semantics of the
messages used to exchange information in form of bits and bytes across the net-
work. This way, any two implementations that conform to the specified protocol
are guaranteed to be interoperable independent of vendor and platform. In par-
ticular, applications as well as message brokers are not solely bound to the Java
programming language anymore as it is the case with JMS.

2.3.3 Data Distribution Service

The Data Distribution Service for Real-Time Systems (DDS) [159] is an open
middleware standard developed by the Object Management Group (OMG) fo-
cusing on publish/subscribe communication in real-time and embedded systems.
It is designed to ensure the reliable dissemination of high volumes of data with
minimal latency. To achieve this, DDS restrains from using separate brokers
as intermediaries between publishers and subscribers that introduce additional
processing delays and may even turn into bottlenecks or single points of failure.
Instead, DDS applications entirely exchange their data in a peer-to-peer manner.
Therefore, DDS introduces the notion of a distributed global data space that is
shared between applications. To exchange information, application components
can simply read and write data objects within the space, while DDS takes care
to properly disseminate all data updates. When disseminating data, DDS pays
much attention to Quality of Service (QoS) aspects in order to ensure real-time
behavior. In particular, DDS allows an extensive control of QoS parameters
to give reliability and ordering guarantees, adjust deadlines and priorities, and
fine-tune bandwidth and other resource limits.

For applications, DDS offers two different layers of abstraction that each pro-
vide its own set of interfaces. The data-centric publish/subscribe (DCPS) layer
describes the fundamental concepts and ideas used to efficiently disseminate the
data, while the data local reconstruction layer (DLRL) aims to conveniently inte-
grate the service into the application. In the following, both layers are described
in more detail.

Data-Centric Publish/Subscribe (DCPS). The DCPS layer is responsible for
data distribution. Data is published and subscribed in form of topics which
are a triple made up of a unique name, an application-specific data type, and
a set of assigned QoS policies. Data types are specified in a platform indepen-
dent way using a subset of OMG’s interface definition language (IDL) [160]. A
custom data type may consist of an arbitrary number of fields that either are
primitive types, template types, or constructed types created by nesting type
definitions. One field or a combination of several fields is chosen as key whose
value unambiguously identifies a topic instance. This way, multiple instances of
the same data type can coexist in the global data space under the same topic at
the same time. The key determines to which instance data updates belong, i.e.,

32 DISTRIBUTED EVENT-BASED SYSTEMS

whether they are interpreted as successive values of the same instance or handled
as data values of different instances. If no key is defined, then there is just one
global topic instance comparable to the singleton pattern [81] in object-oriented
programming languages. To better structure the global data space, topics are
grouped into domains which can be subdivided into partitions. Applications
have to explicitly join them first in order to produce or consume any data.

In DDS, a publisher is a middleware entity that is responsible to distribute
produced data, while a subscriber is a middleware object for receiving the data
updates. In order to ensure type safety, applications have to use a typed data
writer and data reader generated from the topic’s type definition in order to
interact with a publisher or subscriber, respectively. Besides topics, publishers
and subscribers as well as data writers and readers may have own QoS policies
assigned. The QoS for disseminating produced data updates eventually results
from a combination of the QoS policies of the entities and participants involved.

Associating a reader with a subscriber is interpreted as a subscription for the
reader’s topic, i.e., it signals the interest to receive corresponding data. To re-
strict the number of data updates delivered, topics can be filtered based on their
content. Therefore, DDS provides filter expressions that are comparable to the
WHERE clause of an SQL query and may include arbitrary data fields of the
topic. For processing the data, DDS offers a notification-based and a wait-based
style of interaction. The notification-based interaction mode uses listeners for
registering callback functions. These callbacks are invoked by the middleware to
asynchronously inform the application when new data is available, the commu-
nication status changes, or a QoS violation occurs. In the wait-based interaction
mode, the application is blocked at a wait-set until an attached condition object
is triggered, i.e., its condition evaluates to true, or else a timeout expires. This
way, new data gets synchronously accessed and processed. Similar to the func-
tionality offered by the asynchronous notification-based mode, condition objects
can be created for status changes and QoS violations, too.

Data Local Reconstruction Layer (DLRL). The DLRL is an optional layer on
top of the DCPS layer. It aims at seamlessly integrating the publish/subscribe
service into the native language constructs of the application, i.e., to enable
application developers to conveniently access the exchanged data in an object-
oriented fashion. For this purpose, the DLRL allows developers to first define
classes of shared DLRL objects including methods, data fields, and relations and
to subsequently bind them to DCPS entities. Thus, when manipulating such a
bound object, for example, by updating and changing several field values, any
object modifications are automatically propagated via publish/subscribe to all
parties possessing a local copy of the shared object. To ensure consistency, the
DLRL introduces an object cache that is used to reconstruct the object’s state
from received updates.

In order to bind DLRL objects to the DCPS layer, DDS defines a structural
mapping, an operational mapping, and a functional mapping. In particular, the

EXISTING NOTIFICATION SERVICES 33

structural mapping determines the relation between DLRL objects and DCPS
data. It leverages concepts and ideas known from object/ relational mappings
that are used to bridge object-oriented programming to relational databases [107].
In fact, DCPS topics can be seen as database tables, topic fields correspond to
table columns, and data samples of topic instances constitute the table rows.
The structural mapping then specifies which information about DLRL objects
have to be considered and how they are stored in these kind of tables so that
the object’s state and its relations can successfully be reconstructed. The op-
erational mapping defines how DLRL objects are bound to DCPS entities such
as data writers and readers as well as publishers and subscribers. This also in-
cludes a fine-grained management of QoS policies, especially, if different object
fields have different QoS requirements. Finally, the functional mapping speci-
fies the translation of DLRL functions to DCPS functions. In particular, this
comprises the management of the object cache, the application of incoming data
updates on cached objects as well as the propagation of object modifications
done by the application. Moreover, it also describes how the DLRL can inform
the application about occurred modifications and vice versa.

2.3.4 Siena

The Scalable Internet Event Notification Architecture (Siena) [29, 31] is one of
the first prototype implementations of a distributed content-based publish/sub-
scribe system. As its name suggests, the research focus lies on architectures for
a distributed notification service targeting at an Internet-scale deployment. For
this purpose, an overlay network consisting of Siena broker servers is formed
that offers connected clients the possibility to publish own event notifications and
to subscribe to notifications published by others. Event notifications, subscrip-
tions, and advertisements are exchanged between brokers via overlay links in
order to ensure that a published notification is delivered to all interested clients
holding a matching subscription. Thereby, Siena allows subscriptions to eval-
uate the whole content of a notification. Furthermore, it uses a covering-based
routing algorithm while supporting several different server topologies.

Siena notifications consist of an arbitrary number of typed name/value pairs
describing the event attributes. Subscriptions and advertisements contain filter
expressions formed by a conjunction of attribute filters. Each attribute filter
usually comprises a simple predicate that constrains a particular name/value
pair, for instance, by a numerical comparison or a prefix/suffix test for an integer
or a string value, respectively. Composed filter expressions are allowed to contain
multiple attribute filters, i.e., predicates, for the same attribute. In this case,
however, matching slightly differs for subscriptions and advertisements. While
a notification matches a subscription only if all attribute filters are satisfied, an
advertisement is already matched if at least one attribute filter for each name/
value pair is satisfied. On the one side, this simplifies the description of event
notifications a producer is going to publish. On the other side, the distinction

34 DISTRIBUTED EVENT-BASED SYSTEMS

between subscriptions and advertisements makes matching and covering tests
significantly more complex.

Considering the forwarding of advertisements, subscriptions, and event notifi-
cations in the overlay network, Siena uses a covering-based routing strategy.
Therefore, Siena brokers store subscriptions and advertisements in a filter lat-
tice in order to keep track of the relations between them. The lattice comprises
each filter together with pointers to those filters that it covers. This way, the
lattice resembles the partially ordered set (poset) induced by the filters’ cover-
ing relation. On the one hand, maintaining the poset is costly because it needs
to be updated whenever a new advertisement or subscription is received and,
likewise, if an existing one is cancelled. On the other hand, the poset structure
can be leveraged to significantly speed up the matching of notifications. For this
purpose, the poset is traversed in depth first order starting at the root filters
that are not covered by any other filter. If a filter does not match the notifica-
tion, then no covered child filter can match either. Hence, it is not necessary
to traverse the poset any further to evaluate them. However, in [33], Carzaniga
and Wolf present an alternative, more efficient matching algorithm for Siena.
It is a predicate counting algorithm [231] that aims at evaluating simple at-
tribute filters only once. The algorithm, thus, saves significant processing costs
if complex filter expressions or different filters pose similar predicates on the
same attributes. Since covering filters often feature similarities, the predicate
counting algorithm is considered to be more efficient in the majority of cases.

To facilitate Internet-scale deployments, Siena supports a variety of server
topologies to form its overlay network. In particular, hierarchical topologies,
acyclic peer-to-peer topologies, generic peer-to-peer, and hybrid topologies are
considered. Figure 2.4 shows an exemplary setup for each topology type high-
lighting the differences. In hierarchical topologies as shown in (a), publish/sub-
scribe clients are connected to Siena brokers which themselves are connected to
master brokers forming a hierarchical tree with a dedicated root broker at the
top. To exchange subscriptions and event notifications, a hierarchical version of
covering-based routing is used. In its hierarchical variant, clients and brokers
use the same basic protocol to interact with their hosting broker or master bro-
ker, respectively. On the one side, a broker, thus, does not need to distinguish
whether it interacts with a client or another, subordinated broker simplifying
the routing logic. On the other side, both brokers cannot benefit from advanced
routing optimizations that are applicable otherwise. For example, as the basic
protocol does not propagate subscriptions to clients, they are only forwarded
upwards in the hierarchy. As consequence, only the root broker possesses the
complete set of active subscriptions and, thus, has to match every published
notification. Therefore, each notification is always forwarded to the root broker,
even if there is no interested subscriber in the whole network.

In contrast to the hierarchical topology, the peer-to-peer topologies as visualized
in Fig. 2.4 (b) and (c) are not affected from protocol limitations. Siena bro-
kers interact as equal peers that mutually exchange their subscriptions. Hence,

EXISTING NOTIFICATION SERVICES 35

(a) (b)

(c) (d)

Figure 2.4: Siena broker topologies: (a) hierarchical topology; (b) acyclic topol-
ogy; (c) generic topology; (d) hybrid topology.

notifications without any subscriber are filtered out as early as possible. Addi-
tionally, advertisements can also be applied to further reduce the traffic. In the
acyclic peer-to-peer topology, the network of Siena brokers is still restricted to
a tree structure, without a dedicated root though, while the generic peer-to-peer
topology allows arbitrary connected overlay networks. However, in the latter
case additional measures must be taken to avoid forwarding cycles on which
notifications may loop indefinitely. Finally, hybrid server topologies are usually
formed by merging other topologies to benefit from combined strengths and ad-
vantages. Figure 2.4 (d) shows two hierarchical clusters of Siena brokers whose
root brokers are members in a generic topology. This way, one can profit from
the simplified broker management within each cluster and leverage the routing
optimizations of the advanced protocols for inter-cluster communication.

36 DISTRIBUTED EVENT-BASED SYSTEMS

2.3.5 Rebeca

The Rebeca Event-Based Electronic Commerce Architecture (Rebeca) provides
a publish/subscribe notification service originally designed for and targeting at
distributed e-business applications such as, for instance, electronic markets and
auctions or information dissemination and brokerage [22]. In order to support
large-scale deployments, the notification service is implemented by a number of
cooperating event brokers each hosting a set of clients, i.e., local publishers and
subscribers. The brokers form an acyclic overlay network that is used to exchange
published notifications and issued subscriptions. In general, the architecture is
comparable to the Siena publish/subscribe system as discussed in the previous
section. However, there are important differences, too.

With ongoing development, the focus of the Rebeca project shifted from event-
based applications to middleware and integration aspects including the applied
publish/subscribe communication protocols. In particular, content-based for-
warding and routing strategies became a central subject of research [142]. As a
result, Rebeca features an extensible data and filter model as well as a flex-
ible routing framework, which, in contrast to Siena, are both based on for-
mal specifications [144]. In fact, offering excellent customizability while ensuring
a predictable system behavior makes Rebeca a very appealing development
and prototyping platform. Over the time, Rebeca, thus, successfully served as
publish/subscribe system to implement support for mobile clients and applica-
tions [235, 149] including data caches and histories [41], to study first visibility
and structuring concepts [69], programming abstractions [218], and model-driven
development approaches [167, 168], to evaluate reconfiguration mechanisms [169]
and adaptive routing algorithms [201, 199] that enable self-organizing and self-
stabilizing broker networks [103, 101], and to thoroughly validate the results of
analytical and stochastic publish/subscribe models [148, 200].

Rebeca’s notifications consist of an arbitrary number of event attributes that
hold the notification’s data characterizing the event and the circumstances of its
occurrence. Attributes are represented as name/value pairs with associated val-
ues being of simple or complex types. Rebeca’s subscriptions and the optional
advertisements contain a filter expression made of any Boolean combination of
predicates of which each predicate constrains a single event attribute. Both the
data and the filter model are customizable in the sense that new data types as
well as constraints and predicates can be added easily. It is the responsibility of
the developer to ensure that new filter predicates are comparable to each other
in order to leverage the optimizations of the more advanced routing algorithms
that exploit filter similarities.

Besides trivially flooding all notifications into the broker network, Rebeca also
supports simple routing, identity-based routing, covering-based routing, and
merging-based routing [145]. Moreover, the latter strategies can be applied in-
dependently from each other for forwarding subscriptions and advertisements,
respectively. This way, Rebeca allows various combinations of routing algo-

EXISTING NOTIFICATION SERVICES 37

rithms and configurations to be used within the same broker network. Sequen-
tial traces and linear temporal logic are used to specify the behavior of a correct
publish/subscribe system. It has been shown that Rebeca’s routing framework
in general as well as the individual routing algorithms itself comply to the given
specification [144, 147].

The idea of scopes [71, 74] has been introduced into Rebeca in order to structure
publish/subscribe systems and organize their event-driven applications. Primar-
ily, scopes allow developers to bundle related application components and to
limit and control the visibility of their notifications. Several ways to implement
scopes are presented in [68] that include, for example, collapsing scope graphs,
scope addresses and dedicated scope brokers as well as scope overlays within
the broker network. However, a reliable implementation of scopes allowing for a
comprehensive evaluation of the concept is still missing.

Instead, programming abstractions have been derived to better integrate the pub-
lication, subscription, and processing of event notifications into object-oriented
programming languages [218]. Therefore, existing language features such as over-
loaded operators and delegate functions are leveraged to enable developers to
conveniently create type-safe filter expressions and to easily specify and pass
event handlers, respectively. Moreover, it is also possible to pragmatically spec-
ify composite events and event patterns for correlation. Thereby, dynamic code
generation is effectively used to fill in boilerplate code at runtime, for instance, to
generate constructors and publication methods for event notifications based on
plain interface definitions. Although presented concepts are not limited to any
specific object-oriented programming language, their convenient usage strongly
depends on built-in language features.

A revised scope concept and corresponding programming abstractions as well
as their implementation and evaluation are major contributions of this thesis
that exceed previous work. Please refer to Sect. 4.6 and Sect. 5.7 for a detailed
discussion of improvements and differences.

Regarding mobility, Rebeca extensions provide support for mobile clients at the
infrastructure as well as the application level [234]. Mobile clients are usually
connected to the broker network via wireless links that often are fragile and
may break down from time to time. Thus, brokers keep active subscriptions on
behalf of disconnected clients and cache matching notifications until they can be
delivered again. Moreover, roaming clients may reconnect to different brokers
in the network. In this case, Rebeca transfers subscriptions as well as cached
notifications to the new hosting broker without violating the ordering guarantees
previously negotiated with the client [235]. Broker caches that temporarily store
event notifications are, in general, comparable to Rebeca’s event histories [41]
that provide access to notifications that were published in the past. When
receiving a new subscription, event histories republish stored notifications if they
match the particular subscription as well as a mandatory replay specification
restricting the time how long the notification’s publication may lie in the past.

38 DISTRIBUTED EVENT-BASED SYSTEMS

To support logical mobility, Rebeca offers location-dependent filters [70]. In par-
ticular, these allow clients to implement location-aware applications that sub-
scribe to notifications of events happening in the vicinity of the client’s current
position. If the client moves, these subscriptions are updated or renewed accord-
ingly. Movement graphs anticipating the client’s direction can be exploited to
optimize initial setup times, responsiveness, and notification delivery.

Recent work focuses on making Rebeca self-managing [100] which includes a
self-organizing broker network, adaptive routing strategies, and a fault-tolerant
implementation. For this purpose, reconfigurations of the broker network are
a necessary precondition [169]. Please note that it is possible to split arbitrary
complex network reconfigurations into a series of three basic operations that
comprehend adding a new broker, removing an existing broker, and replacing an
old overlay link with a new one. Algorithms are implemented that execute these
operations without violating any ordering or service guarantees. Thus, they are
well suited to provide the basis for a self-organizing broker topology that adapts
itself to changing network conditions and event patterns [103]. In fact, Rebeca
brokers aim at continually minimizing the lengths of the network paths between
publishers and subscribers while trying to avoid instable and costly overlay links.

Regarding the network’s routing configuration, hybrid routing algorithms [201,
199] have been introduced that allow to employ different forwarding strategies
within different parts of the broker network. This way, brokers are able to
dynamically change the routing configuration to the strategy best suited for
handling the current traffic pattern in the network region considered. Adapting
both the network topology and the routing strategy helps to significantly reduce
the general forwarding costs.

To increase the network’s fault-tolerance at the same time, two different ap-
proaches are taken. Rigorously applying the concept of soft-state requires clients
and brokers to periodically renew all subscriptions and advertisements [101]. This
way, it is guaranteed that corrupted routing entries caused by transient network
faults are purged within a determined time and cannot last forever. To tolerate
broker crashes without notification losses, broker caches and acknowledgements
are used. Basically, each broker temporarily stores the notifications it forwards
until these are acknowledged by its direct neighboring brokers and their neigh-
bors. Hence, each notification is always cached by two different brokers at the
same time which is why the crash of one of them can be masked.

2.3.6 Hermes

Hermes [179] is a research prototype implementation of an event-based middle-
ware platform. It is built on top of a distributed publish/subscribe system which
itself is based on a peer-to-peer routing substrate formed by Hermes brokers.
It is, thus, well suited for dynamic, large-scale, and data-rich deployments. Fur-
thermore, Hermes aims at a tight integration into programming languages and

EXISTING NOTIFICATION SERVICES 39

applications. Therefore, it supports typed event notifications and facilitates the
inheritance of event types while automatically type-checking publications and
subscriptions. Additionally, Hermes provides a number of services to help and
support application developers [178]. In particular, Hermes features composite
events and allows for event correlation while also addressing Quality of Service
(QoS) and security aspects.

The event model of Hermes is comparable to common data models of object-
oriented programming languages. In fact, its similarity is an intentional design
decision in order to minimize the semantic gap between both. Likewise, Hermes
requires its event notifications to be typed. Hence, each published notification
is seen as an instance of an event type that is described by a type schema. In
particular, the type schema defines the type name and a set of event attributes
formed by typed name/value pairs that contain the data associated with an
event instance. In order to customize events and create more specific ones, the
inheritance of event types is introduced. It allows developers to conveniently
extend an existing type schema by adding new event attributes, while those
defined by the parent type and its ancestors are inherited. This way, developers
are able to create fine-grained type hierarchies for notifications. Supporting these
familiar object-oriented concepts in the middleware’s event model significantly
eases the mapping onto programming language constructs. In this context, event
notifications and type schema obviously correspond to object instances and class
definitions in object-oriented languages, respectively.

Beyond that, Hermes requires advertisements and subscriptions to be typed,
too. In fact, the type specification is the primary constraint by which notifica-
tions are matched. Thereby, subtype relationships are appropriately considered.
Additionally, subscriptions may also contain a content-based filtering expression
consisting of an arbitrary number of predicates over the notification attributes
of the particular type. In order to avoid runtime type errors, Hermes au-
tomatically checks whether these predicates comply with the attributes’ type
information given in the event type’s schema.

For the dissemination of event notifications, Hermes leverages a peer-to-peer
routing substrate called Pan [180] that provides an extended implementation of
a distributed hashtable (DHT) [52] applying the Pastry routing algorithm [194].
This way, Hermes benefits from Pastry’s high scalability, its adaptivity to
dynamically changing network topologies, and its excellent fault-tolerance prop-
erties and robustness. Based on the peer-to-peer overlay network, publish/sub-
scribe dissemination trees for event notifications are build up. Therefore, the
name of the event type is used as unique key being hashed to determine the
Hermes broker responsible for its management. At this broker, the event type’s
schema definition is stored. Furthermore, advertisements as well as subscrip-
tions are routed within the peer-to-peer overlay towards this broker acting as
rendezvous node where they eventually meet each other. Along their way, they
establish the routing entries and network paths that are subsequently used for
the dissemination of notifications of the particular event type. Together, the

40 DISTRIBUTED EVENT-BASED SYSTEMS

network paths form a core-based tree [13] with the rendezvous node as root and
the publishers and subscribers as leaves. Moreover, such a tree is created for
each event type and is used for type-based routing in Hermes.

In order to also support the inheritance of event types, the dissemination trees
of related types get connected with each other. This is done by additionally
forwarding either subtype advertisements or supertype subscriptions from their
rendezvous node towards the rendezvous node of the supertype or the subtype,
respectively. Simply said, the subtype rendezvous node can be seen as another
publisher of matching notifications, while the rendezvous node of the supertype
acts as another subscriber that is interested in all publications of existing sub-
types. To support content-based filtering besides the type-based selection of
notifications, additional modifications of the routing strategy are necessary. In
particular, subscriptions with predicates over notification attributes need to be
further forwarded towards the publishers. Thus, they also follow the reverse net-
work paths created by corresponding advertisements from the rendezvous node
back down to the publishers. The intention behind this strategy is to place
the predicates close to publishers in order to filter out notifications that do not
match as early as possible. This way, Hermes features type- and attribute-based
routing of notifications, too.

As an event-based middleware platform, Hermes provides an interface for ser-
vice extensions. Specifically, extensions to avoid network congestion, to detect
composite events, and to secure information by encrypting event notifications
have been implemented. The congestion control mechanism [181] applies two dif-
ferent algorithms for avoiding congestion. The first algorithm is publisher-driven
and uses a feedback loop to throttle the publication rate in case of congestion.
The second algorithm is subscriber-driven and controls the number of retrans-
missions simultaneously requested after a failure allowing the system to recover
properly and continue its normal operation.

The composite event service [182] enables users to specify tempo-spatial pat-
terns of events and to get notified if such a pattern occurs. In particular, the
provided composite event language allows to specify concatenated, ordered, and
interleaved events, iterations and alternatives as well as timing constraints. The
specified patterns are subsequently compiled into extended finite state automata
that are used for detection. Furthermore, complex automata can be split into
simpler ones and be distributed in the overlay network. This way, event de-
tectors for subpatterns can be placed on brokers close to the respective event
sources in order to save network traffic.

The security service extension [15] implements a role-based access control scheme.
Based on their role membership, principals are granted individual privileges to
distinct event types. Confidentiality constraints are primarily enforced by en-
crypting event notifications. In particular, it is even possible to individually
encrypt event attributes using different encryption keys. As a consequence,
principals possessing the complete set of keys are able to decrypt the whole
content of a corresponding notification while others may only be able to read

EXISTING NOTIFICATION SERVICES 41

the supertype attributes. Further details of Hermes’ access control model and
implementation are discussed in Sect. 4.6.2.

2.3.7 Padres

The Padres publish/subscribe system [67, 98] is a research prototype designed
to support the management of business workflows and to facilitate the inte-
gration of enterprise applications. Therefore, Padres provides a distributed
content-based publish/subscribe middleware that allows for event correlations
in order to detect complex event patterns. Moreover, it features a uniform ac-
cess to historic and future data as well as effective algorithms for load balancing
and failure recovery. On this basis, an ecosystem of tools and services is pro-
vided enabling developers and administrators to model, implement, and compose
business workflows as well as to integrate, control, and monitor processes and
applications [122].

Padres notifications consist of typed name/value pairs of which one attribute
is mandatory and describes the notification’s class. Notifications have to be ad-
vertised by publishers in a way comparable to database schemas. In particular,
advertisements specify the type and may constrain the value ranges of each no-
tification attribute. Likewise, subscriptions may contain similar predicates over
notification attributes in order to specify in which events a client is interested.
Padres brokers form an acyclic overlay network that is used to exchange noti-
fications as well as subscriptions and advertisements. Usually, a covering-based
routing strategy is applied although merging-based routing is supported, too.

Remarkably, Padres uses the Java Expert System Shell (Jess) [80] for match-
ing notifications against subscriptions which is a full-fledged rule engine based
on the Rete algorithm [78]. Therefore, the advertisement as well as the subscrip-
tion table are maintained as Rete trees that store matching rules and matching
states, while notifications are mapped to facts that are presented to the JESS
engine. Leveraging the Rete algorithm, even composite subscriptions looking for
tempo-spatial event patterns can be matched successfully. Combined with the
deployment of data stores that keep recently published notifications, this also
allows for the correlation of current and historic event data [120].

As Padres aims at enterprise deployments, load balancing strategies as well as
fault tolerance mechanisms are considered, too. For both reasons, a routing ex-
tension is provided that drops the limitation to acyclic broker networks enabling
efficient and fault-tolerant forwarding strategies for general broker topologies
that, in particular, contain redundant paths and network cycles [121]. Basically,
the idea is to let each advertisement construct its own dissemination tree that is
marked by a unique identifier. Tagging subscriptions and notifications with tree
identifiers of matching advertisements allows to subsequently detect and break
existing forwarding cycles while profiting from redundant network paths used to
better distribute the notification traffic.

42 DISTRIBUTED EVENT-BASED SYSTEMS

Regarding the processing load caused by matching event notifications, Padres
brokers are able to offload local subscribers to neighboring brokers in order to
balance the number of clients for which a broker is responsible [38]. In particular,
dedicated algorithms are available to independently balance the input utilization
ratio, the matching delay, and the output utilization ratio or any combination
of the three performance metrics among participating brokers.

Considering fault-tolerance, Padres is able to cope with broker failures [98],
for instance, if the broker process or its server crashes or cannot be reached
by others anymore. In this case, the neighboring brokers try to reestablish the
overlay network by circumventing the faulty broker and connecting to each other
directly. Thus, in order to tolerate n brokers failing at the same time, each node
has to know all brokers in its neighborhood up to a distance of n + 1 hops.
After reestablishing the network, the brokers start the recovery procedure by
reconciling their routing tables. Additionally, the sequence numbers of sent and
received event notifications are compared to each other in order to detect lost
notifications which are then retransmitted automatically.

Leveraging its features and functionality, the Padres broker infrastructure pro-
vides a reliable and sound basis for service orchestration, workflow monitoring
and management as well as enterprise application integration [98]. Publish/sub-
scribe communication is used to implement an enterprise service bus (ESB)
enabling developers and administrators to orchestrate and mediate the interac-
tions between enterprise services and business applications. Primarily, the ESB
offers communication interfaces compliant to web and middleware standards as
well as adequate adapters that care for data transformation, service registration,
and service lookup. This way, the ESB makes it easy to split complex business
workflows into cooperating tasks and communication services as well as to dis-
tribute these across the infrastructure as needed. In [122], a methodology and
runtime engine is presented that shows how break up processes specified in the
business process execution language (BPEL) [163] into individual activities and
map these activities to dedicated agents controlling their execution. Compared
to central service orchestration engines, this allows for flexible and dynamic de-
ployments in which parallel processes can profit most from their distribution.

2.4 Discussion

In this chapter, we took a look at the background of publish/subscribe systems
and event-based infrastructures. First, we clarified basic terms and definitions
such as events, notifications, subscriptions, and advertisements before discussing
the different options and alternatives to build publish/subscribe broker topolo-
gies and to efficiently route, filter, and select notifications therein. Thereafter, we
reviewed existing industry standards for notification services as well as research
prototypes of publish/subscribe systems. While the former are often embedded
in middleware environments such as Corba or Jee, the latter primarily focus on

DISCUSSION 43

specific aspects of publish/subscribe systems such as dynamic broker topologies,
routing strategies, or matching algorithms.

From a software engineering point of view, both is disadvantageous. Within
established middleware environments, on the one side, there are best practices
and proven design guidelines for developing systems and applications in general.
However, as publish/subscribe is often seen as an additional middleware service
for asynchronous messaging only, these practices and guidelines usually do not
adequately address the loose coupling as well as the inherent characteristics
of event-based infrastructures and applications. But, on the other side, solely
concentrating on publish/subscribe techniques as done by many research projects
does not help either when, at the same time, the development of applications is
neglected completely.

As reviewed in this chapter, there are already approaches in industry and acade-
mia that aim to improve the engineering of publish/subscribe systems and event-
driven applications. For a seamless integration into applications, for example,
the Data Distribution Service (DDS) standard specifies how to map publish/
subscribe entities to constructs and concepts of object-oriented programming
languages. Unfortunately, the layer responsible for this mapping is only op-
tional and, thus, not necessarily implemented by every vendor. The Hermes
and Padres projects prove that publish/subscribe communication can itself
provide the basis for an own middleware platform on which advanced services
such as access and congestion control, the detection of complex events, or the
management of business workflows can be realized. For these and similar ser-
vices to work properly, however, additional functions and features must usually
be embedded into the middleware which is often costly in terms of labor and
time. Regarding a modular engineering approach, scoping has been shown to
be applicable to event-based infrastructures, too. Here, scopes restrict the visi-
bility of notifications to subsets of components and, thereby, provide necessary
structuring means that help organizing publish/subscribe networks and event-
driven applications alike. But because of a plethora of integration options and
contradicting alternatives that each have individual strengths and weaknesses,
there is no reliable and accepted implementation of scoping from which system
administrators or application developers could actually profit.

From these examples, it becomes evident that isolated approaches may introduce
new ideas and show the feasibility of concepts, but usually do not gather enough
momentum to sustainably improve the engineering of systems and applications.
Instead, a holistic approach is necessary which orchestrates actions and aligns
engineering concepts and methods with both the middleware and the application
layer. For this purpose, on the one hand, we present, revise, and evaluate a
scoping concept for event-based infrastructures and, on the other hand, provide
a modular broker architecture as well as programming abstractions to better
integrate scopes into the publish/subscribe middleware and the event-driven
applications, respectively. In the following chapters, we discuss each of our
contributions in detail.

Chapter 3

Composable Publish/
Subscribe Architecture

Contents

3.1 Introduction . 46
3.2 Feature Composition . 46

3.2.1 Features and Composition . 47
3.2.2 Architecture and Composability 48
3.2.3 Challenges . 49

3.3 Architecture . 50
3.3.1 Broker . 51
3.3.2 Plugins . 53
3.3.3 Clients . 55
3.3.4 Implementation . 56

3.4 Feature Plugins . 58
3.4.1 Mandatory Features . 59
3.4.2 Publish/Subscribe Features . 60
3.4.3 Optional Features . 62
3.4.4 Discrete Event Simulation . 63

3.5 Related Work . 65
3.5.1 Publish/Subscribe Architectures 66
3.5.2 Feature Composition . 67

3.6 Discussion . 68

45

46 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

3.1 Introduction

Publish/subscribe systems are becoming an integral part of modern communi-
cation infrastructures. In particular, they are well suited to provide the basis
for event-driven architectures and applications. They enable information about
relevant changes in state or environmental conditions to be distributed in a
timely manner in order to trigger dependent actions and processes without la-
tency. This agility is especially appreciated in a growing number of application
domains. Consequently, the requirements posed to the publish/subscribe in-
frastructure also increase in numbers and variety. Such requirements include
scalability, reliability, and security aspects as well as domain-specific extensions
and constraints that have to be taken into consideration. Sometimes, they are
even contradictory. This often leads to complex system designs and difficult im-
plementations forcing developers to consider trade-offs and make compromises.
From our publish/subscribe middleware Rebeca [166], we know that there is no
’one-size-fits-all’ implementation. Instead of maintaining several different pro-
gram versions, we aim for a modular middleware consisting of individual building
blocks that are ready to be freely composed. This way, it is possible to tailor
the system to the actual requirements and conditions by selecting and combin-
ing only those blocks that are relevant and needed. To facilitate this kind of
functional modularity, we present a composable architecture in this chapter that
enables developers to flexibly build, configure, and adapt customized publish/
subscribe systems.

First, we introduce the concept of features to address and represent functional
aspects in Sect. 3.2. We discuss their composition as well as implications and
challenges for an architecture to support functional composability. In Sect. 3.3,
we present a modular publish/subscribe architecture based on the concept of
feature composition. Thereby, each feature is implemented as individual plu-
gin that can be added to a broker. Thus, composing features basically boils
down to selecting and applying an adequate set of plugins. Section 3.4 gives
an overview about available feature plugins for our publish/subscribe middle-
ware Rebeca, which is based on this architecture. Presented plugins address
mandatory processing and publish/subscribe features as well as additional as-
pects such as manageability, security, adaptability, and fault tolerance. In Sect.
3.5, we highlight similarities and differences to related approaches that aim at
building modular publish/subscribe systems or provide composable architectures
for other domains. We conclude the chapter with a final discussion in Sect. 3.6
summarizing our main contributions and the advantages of a composable archi-
tecture in terms of flexibility gained by free composition of features.

3.2 Feature Composition

After successful software systems have been developed, shipped, and deployed,
they are usually maintained, updated, adapted, and extended as existing re-

FEATURE COMPOSITION 47

quirements change and new ones arise over time. This process is called software
evolution for which a set of common behaviors has been observed. These ob-
servations are also known as Lehman’s laws [117, 118]. The most important
observations are that actively maintained software systems are subject to con-
tinuing change as existing functions are improved and new ones are added. As
they evolve over time, their complexity steadily grows while, to the same degree,
they loose structure and organization. This happens until a point is reached
where deliberate actions such as refactoring or redesigning need to be taken to
thoroughly revise and streamline the software system reducing its complexity
again. Regarding publish/subscribe software, the Rebeca middleware is no ex-
ception to Lehman’s laws. It has grown over the years and, in order to stay
maintainable, a radical redesign was necessary.

As a research prototype, Rebeca does not need to support all features and
functions at the same time that have been developed so far. In fact, when inves-
tigating, testing, or evaluating a particular aspect of publish/subscribe commu-
nication, too many additional features may be distracting or even counterpro-
ductive. Often, just a specific combination of a limited set of functions is needed.
Thus, the primary design goal is to facilitate the flexible composition of features.
However, before presenting Rebeca’s new design, we first introduce the ideas
and principles it is based on. In the following, we first clarify terms and concepts
we have used intuitively so far and discuss the challenges for building a modular
publish/subscribe middleware supporting the free composition of features.

3.2.1 Features and Composition

In software engineering, a feature is usually a distinguishable characteristic or
property of a software artifact [3, 106]. For example, it may refer to characteris-
tics such as performance, portability, or functionality. In this chapter, however,
we focus on system functionality and define the term feature accordingly.

Definition 8 (feature). A feature is a well-defined aspect of a software artifact’s
functionality.

This definition has the advantage that it allows us to specify the whole function-
ality of a software system in terms of features. Thereby, each feature represents
a specific software function or functional aspect. Enumerating all features, thus,
yields in an overall functional specification. Moreover, by incrementally adding
and integrating features, we usually get more sophisticated systems with higher
functionality. Often, this process is called feature composition [183, 184].

Definition 9 (feature composition). Feature composition is the process of com-
bining features and associated software artifacts to a new artifact that unites
these features.

48 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

This definition emphasizes the process of combining artifacts and features, but
leaves open what exact features the resulting artifact exhibits. The reason lies
in a possible interference or interaction of features [23, 25] of which there are
three types: none, positive, and negative interference. If no feature interference
occurs, i.e., the features to compose are independent and orthogonal to each
other, the resulting artifact will also exhibit all the features that are brought
into the composition. This is the easiest and a very convenient case as it allows
to freely combine those features without any restrictions. With positive inter-
ference, the resulting artifact may also show additional features that originate
from the composition itself. In particular, this case is often desired since the
composition result will be more than the sum of its parts. However, the new
feature is no longer independent and its interdependencies need to be considered
in subsequent compositions. In contrast to the previous cases, negative interfer-
ence is usually undesired. Here, individual features and functions that perfectly
work in isolation hamper and countervail each other when combined. Thus, in
order to be composable, they need to be modified and adapted first.

Feature composition is an appealing concept. Starting with a core system with-
out significant functionality, the system can be incrementally extended by com-
posing new features. This way, it is possible to build highly customized systems
tailored to specific purposes, requirements, and needs. For example, a basic
publish/subscribe middleware can be equipped with just the filter and routing
algorithms that are subject to a thorough analysis omitting irrelevant and dis-
tracting features in this context. Because of its adaptability and flexibility, such
a feature-oriented design approach is advantageous especially for the develop-
ment of prototypes.

3.2.2 Architecture and Composability

So far, we have focused on functionality only and neglected structural aspects.
Obviously, each feature has an implementation, which is usually encapsulated in
a module or a component. Thus, composing features also includes a structural
composition, for example, by assembling modules or connecting components.
For this to work, however, it must be ensured that the individual structural
elements and pieces fit together.

Definition 10 (software architecture). The software architecture determines
the set of structures a software system is build of comprising software elements,
their relations, and their properties.

In literature, manifold definitions of the term software architecture are given.
In [43], Clements et al. gather and list several prominent examples. They
all are centered around structures, software elements, and the relations among
them. Often they are also supplemented with additional aspects relevant in the
particular context of the respective authors. In this respect, our definition is no

FEATURE COMPOSITION 49

exception as we focus on structures for building software systems. In fact, we
require the architecture to determine the elements and their relations within the
software system and, thus, the rules by which it is build and composed. Thereby,
the architecture can prescribe the design of system elements as well as their
interfaces and, hence, ensure that they fit together. We call such an architecture
composable. Accordingly, we also define composability as a property of a software
architecture and not as a property of a particular system or its components.

Definition 11 (composability). A software architecture is composable if it en-
ables its elements to be combinable and recombinable in a predefined manner to
form new and usually more complex architecture elements or system instances.

The definition covers the intuitive meaning of composability as a systematic con-
struction principle that is applicable to architecture elements as well as systems
thereof and which allows for flexible and variable system configurations. Most
importantly, it requires the architecture to determine the manner how system
elements are composed, i.e., the composition operation itself. In literature, sev-
eral stronger and more formal definitions also exist that consider composability
with respect to a particular system property, e.g., timeliness or testability [112,
111]. Here, the goal is to specify the composition operator in a way that the
particular property is guaranteed to stay invariant under composition or that it
is verifiably reached and established by composition. For our purposes, however,
such restrictive definitions are not necessary.

3.2.3 Challenges

After discussing the terminology in the previous sections in order to clarify the
meaning of a composable publish/subscribe architecture, we now focus on major
aspects and challenges of its design. Primarily, the architecture has to facilitate
and support the free combination of publish/subscribe features and functions.
Hence, it must provide design guidelines and mechanisms to plug chosen features
into a broker in order to flexibly extend its functionality. This is challenging
because of several reasons. First, features must be encapsulated in components
to make them pluggable. Second, interfaces must be designed and provided that
allow a free composition of those components as well as their integration into
the broker. And third, the plugged features need to work together respecting
functional dependencies while avoiding negative interference. Having a reasoned
and sustainable feature management is, therefore, a necessary precondition to
allow systems to further evolve in future. In the following, we discuss each
challenge in detail.

Features vs. components. Features just describe functional aspects. In order
to make them composable, they need to be encapsulated in pluggable com-
ponents. However, functional modularity in terms of features and structural

50 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

modularity in terms of pluggable components are two different and orthogonal
concepts. Both need to be combined in a sound and reasonable way so that com-
ponents have a common structure to be uniformly plugged into a broker while
they must still be able to fulfill the functions they are designed and intended for.

Composability. The broker architecture must be designed in a way that al-
lows the free composition and recombination of feature components. On the
one hand, the broker has to provide interfaces enabling the necessary access to
event messages and data structures for implementing a particular feature. On
the other hand, the broker architecture has to ensure that event messages are
processed in a controlled and organized manner. The latter is especially im-
portant in order to make features composable, i.e., allowing feature components
to be freely combined and recombined. Primarily, well-defined interfaces and
a precise processing scheme allow a feature component to be easily replaced by
other components with different properties.

Feature interaction. Features may interact and interfere with each other in
manifold ways. On the one hand, positive feature interaction is desired or some-
times even necessary if features depend on each other. Hence, the broker ar-
chitecture must allow plugged components to interact with each other. On the
other hand, certain feature combinations may also interfere with each other in a
way that they hamper or even countervail their actions. Unfortunately, prevent-
ing such negative interferences by design is impossible as, in general, it cannot
be distinguished from the positive case. However, the broker architecture can
enforce interaction patterns to make feature interactions visible and explicit in
order to simplify and ease the elimination of undesired side effects.

3.3 Architecture

Functional modularity is the key concept for enabling a fine-grained composition
of features. In particular, we consider every function of a publish/subscribe bro-
ker, even trivial and elementary ones, as being subject to a feature composition.
Consequently, this idea is also reflected by Rebeca’s new architecture [166].
The revised architecture comprises two different main types of elements only:
the broker and its plugins. Basically, the broker is just a simple plugin container
only able to manage inserted plugins, while the actual publish/subscribe func-
tionality, however, is provided by these plugins that each implement a specific
feature. In this context, feature composition, thus, boils down to inserting the
desired combination of plugins into the broker. This section elaborates on the
structures of brokers and the details of plugins that make this approach work.
Furthermore, we discuss the connection of publish/subscribe clients and appli-
cation components to brokers and give further implementation guidelines and
blueprints to support the development of custom feature plugins.

ARCHITECTURE 51

3.3.1 Broker

Rebeca’s new architecture is based on functional modularity in order to make
the composition of features as free as possible. Therefore, brokers do not possess
any built-in publish/subscribe functionality. Instead, all publish/subscribe logic
is encapsulated in pluggable components that can be inserted at runtime. The
broker itself only has limited functionality to manage plugged components and
organize the flow of event messages to be routed and processed. In particular,
it supports the concept of message channels and processing stages into which
the components are plugged. There, the plugged components are responsible to
realize and implement the desired publish/subscribe features.

In general, when a broker processes an event message, three different phases
can be distinguished. First, the message is received. Thereafter, it is handled
and routed appropriately. And finally, it is send to neighboring brokers and
clients. For each phase, we have reserved an own processing stage to execute
the individual processing steps required in the particular phase. The input stage
corresponds to the first message handling phase and starts with the receipt of the
event message from a neighboring broker. Typical processing steps in this stage
are, for example, message decryption and message deserialization. Thereafter,
the second phase and the main stage for message handling follow. Here, the
publish/subscribe routing decisions are made. The deserialized notification, for
example, is matched against the subscription filters stored in the routing table
to determine, to whom it has to be forwarded, while a received subscription
gets incorporated into the routing table and is also forwarded, if not already
covered otherwise. Finally, the output stage is passed in the third phase, where
notifications to be forwarded are prepared for transmission, for instance, by
serializing and encrypting them again.

The stages have different contexts in which event messages are handled and
processed. Input and output stage have a separate message channel for each
incoming and outgoing connection, respectively. Thus, message processing is
limited to the context of the respective connection here. The main stage, how-
ever, has just a single channel that is used to globally handle messages in the
context of the broker. This is required, for example, to globally administer the
routing tables as well as to make routing decisions. The complete message pro-
cessing scheme is illustrated in Fig. 3.1 visualizing processing stages, message
channels, and feature components plugged in. An event message is received from
an incoming connection and traverses the broker from left to right. Thereby, it is
forwarded from plugged-in component to plugged-in component that are chained
one after the other in the message channels.

As there is just a single message channel in the main stage, event messages must
be multiplexed and demultiplexed when being transferred from the input to the
main stage and from the main to output stage, respectively. Multiplexing is
realized by first storing all event messages in a queue that arrive at the end of
the input stage. Thereafter, they are individually dequeued and handled one by

52 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

Figure 3.1: A broker’s processing stages with plugged components.

one in the main stage. At the end of the main stage, the handled event mes-
sage is demultiplexed again. Depending on the destinations, the event message
needs to be forwarded to, it is copied to the respective output channels. In
particular, this includes cases in which the message is copied to multiple output
channels, transferred to just a single channel, or not forwarded at all. In any
case, however, it is ensured that each output channel works on its own message
copy independent of other channels.

Publish/subscribe functionality and other advanced broker features are realized
by manipulating event messages and message streams within the broker’s mes-
sage channels. In particular, a component plugged into a channel has the pos-
sibility to arbitrarily alter any passing event message, for instance, by marking
the message, by adding or changing message attributes, or even by transform-
ing the whole content. Beyond that, a passing message can also be deferred
or removed and new event messages can even be created and inserted into the
message stream. Depending on the channel and the position where the compo-
nent is plugged in, the stream of event messages can, thus, be globally processed
and altered within the main stage or directly modified after receiving or before
sending in the context of the incoming or outgoing connection, respectively.

Usually, this provides sufficient options for a component to implement a par-
ticular feature. When several of those feature components are plugged into the
broker, the message channels, the positions, and the sequence, in which they
are traversed by event messages, become important as all of them may intercept
and manipulate the message stream. Therefore, the broker configuration exactly
specifies in which channel which component is plugged and how they have to
be chained in order to work as desired. In fact, it is the broker configuration
that thereby defines the feature composition and, thus, determines the broker’s
overall behavior.

ARCHITECTURE 53

3.3.2 Plugins

Broker plugins encapsulate features to make them dynamically addable when
needed. Thereby, each plugin ideally implements a single feature. For advanced
features, however, more complex message handling strategies are needed that of-
ten require intercepting and manipulating event messages in a coordinated way
at different stages in a broker’s processing scheme. Hence, a single component
only plugged into one of the broker’s message channels is not sufficient. There-
fore, Rebeca plugins are allowed to comprise multiple components in order to
implement the message handling strategy needed to realize a particular feature.
To simplify plugin management, we even require a plugin to provide a compo-
nent for each processing stage and message channel by default. Accordingly,
the components depicted in Fig. 3.1 that have the same color also belong to the
same feature plugin.

Components plugged into the main stage have a distinguished position in the
message processing scheme. Within the global message channel, they have the
possibility to access and modify all event messages the broker receives. Thus,
they usually contain essential data structures as well as a major part of the logic
that drives the event processing to realize the particular feature. To emphasize
their importance, we refer to these components as broker engines. Accordingly,
they are also depicted larger in the figures than the components of the input or
output stage. Routing engines are a representative example as all routing deci-
sions are made in the broker’s main processing stage. Here, the routing engine
provides and administers the broker’s routing tables and also implements the
particular routing algorithm operating on these tables to determine whether a
received event message has to be forwarded and, if necessary, to which neigh-
boring broker. Preprocessing in the input stage or postprocessing in the output
stage is usually not required for event routing.

Certain features, however, are easier to be implemented in other stages. Serial-
ization and encryption, for example, are usually realized in a connection context.
Characteristically, those features also involve two inverse operations from which
one is applied in the input stage while the other is executed in the output stage.
Moreover, when composing those features their respective operations are applied
one after the other in one stage, while their inverse operations, however, must
also be carried out in inverse order in the other stage. If an event message, for
example, is first serialized and subsequently encrypted before being transmitted,
it must first be decrypted and then deserialized after receiving before it can be
processed further. As consequence, the input stage and the output stage of a
broker are usually symmetric to each other. Hence, combining input and output
stage and arranging both vertically as shown in Fig. 3.2 leads to a layered design.

Layered architectures are known from network protocol stacks and also used
by many middleware implementations [197] where they have been proven to be
functional and beneficial. In particular, higher layers allow to abstract from
the processing details of lower layers and, thus, help to organize the message

54 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

Figure 3.2: Comparison of client and broker architecture.

handling and to manage its complexity. Therefore, we combine each pluggable
component of the input stage with its corresponding component of the output
stage to form an event sink representing an own processing layer. Event sinks
are stackable and can be directly plugged into a broker connection in which con-
text they process and modify event messages that are received or send. Thereby,
received event messages are passed upwards during the input stage, while for-
warded messages travel downwards during the output stage. An event sink,
thus, allows to conveniently implement a feature that requires to intercept the
message stream at a specific point in both stages.

Rebeca plugins, to state more precisely than above, always comprise a broker
engine as well as an event sink whose instances are plugged into connections to
clients or other brokers. This way, it is ensured that the plugin can intercept
event messages of interest in all three processing stages. If this is not needed,
engine and sinks simply pass the event message along the processing stage with-
out modifying it. Ideally, a Rebeca plugin implements a single feature, works
transparently and autonomously, and is self-contained and independent of other
plugins. This way, arbitrary combinations of plugins can be added to brokers
enabling a free combination of features.

As features, however, may depend on each other, plugins may not always be au-
tonomous and self-contained. On the contrary, plugins implementing dependent
features often need a way to interact with each other. On the one hand, this
can be realized by modifying passing event messages or inserting new control
messages in the message stream by which these plugins communicate. Advan-
tageously, this solution requires no further architectural changes. On the other
hand, the Rebeca architecture does not prevent plugins from implementing
additional interfaces to coordinate their actions or share common data struc-
tures. For example, advertising the event notifications a publisher is going to
produce can help to significantly reduce the number of subscriptions that must
be exchanged between brokers. For this purpose, the advertisement plugin has
to determine all those subscriptions managed by the routing plugin that over-
lap with a particular advertisement. Instead of storing each subscription twice,

ARCHITECTURE 55

both plugins may share a single subscription table. As advertising publications
always require a filter-based routing algorithm to work, the advertisement plugin
can, thus, assume that a subscription table is already provided by the routing
plugin. Rebeca brokers allow plugins to query for other plugins’ engines, inter-
faces and versions. This way, a plugin can ensure that all its requirements and
preconditions for a successful feature composition are met.

3.3.3 Clients

For publish/subscribe applications and clients, Rebeca brokers provide a pro-
gramming interface to advertise and disseminate own event notifications as well
as to specify their interest in notifications of others. The interface is intention-
ally designed to be simple yet comprehensive having clear semantics that are
independent of the actual features such as filter algorithms or routing strategies
used within the broker network. On the one hand, this eases application devel-
opment and ensures application compatibility in the long term. On the other
hand, it makes middleware implementations more complex. The reason is that
brokers have to distinguish whether they interact with a client or communicate
with a neighboring broker. In case of a client, brokers have to support the simple
programming interface, while, in case of other brokers, they use more advanced
and efficient protocols for exchanging information. Supporting both by a single,
combined middleware implementation, however, makes the message processing
logic lengthy, more difficult to write, understand, and maintain, and thus often
error-prone. Moreover, resulting dependencies also hamper the free composition
of individual broker features.

In order to simplify broker implementations and clarify their processing logic,
we drop the necessity to distinguish between client and broker connections as
well as to support the traditional simple application interface. From a broker’s
point of view, there are only connections to other neighboring brokers that use
advanced protocols. As consequence, clients have to behave as regular brokers
now making their implementations more complex. To master the new client
complexity, we build on the same concepts that we already applied successfully
on the broker side: feature composition and high modularity. Likewise, we allow
clients and application components to be extended with pluggable client sinks.

Figure 3.2 schematically compares client and broker architecture highlighting
both chains of event sinks. On the client side, additional event sinks are trans-
parently plugged into the connection between application component and broker.
They form a chain of event sinks that is equally structured as the one on the bro-
ker side. For each sink on the broker side, there is also a corresponding sink at
the same level on the client side. Both sinks belong together and are responsible
to realize a particular feature. For this purpose, client sinks can also modify, in-
sert, remove, or delay event messages that are passed up- or downwards the sink
chain. Hence, clients have same preconditions and possibilities to implement the

56 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

advanced broker protocols for information exchange. While the application com-
ponent itself can still use the traditional simple publish/subscribe interface, the
client sinks plugged into the connection transparently ensure the compatibility
with the advanced broker protocols. Thus, changing or adapting the publish/
subscribe application, their components and interfaces is not necessary unless
the application wants to explicitly use and leverage plugged new features.

With pluggable client sinks, a part of the event processing logic is shifted from
the broker to the client. This is beneficial for several reasons. First, it cleanly
separates client logic from broker logic preventing client handling issues to get
intertwined with event processing implementations. Second, it simplifies the im-
plementation because each client sink just handles a single application compo-
nent while brokers would have to care for multiple client connections otherwise.
Third, it is usually sufficient for client sinks to implement a subset of the func-
tionality of advanced broker protocols in order to just make them compatible
while ignoring more sophisticated optimizations. This way, client sinks are of-
ten compatible to several broker plugins of the same type (e.g., routing plugins,
advertisement plugins) and can, thus, be reused without changes.

However, there are also drawbacks. Considering performance, the layered sink
architecture has penalties. In particular, if clients and broker are running on the
same host or even in the same process context, the serialization and transport
mechanisms of the sinks in lower layers become a burden and cause significant
and unnecessary overhead. In this case, nevertheless, the modular structure of
the architecture offers an elegant solution. It allows to simply omit plugging in
those sinks on the client as well as on the broker side that are not needed in a
particular setup. This way, it is possible to efficiently support local publish/sub-
scribe components, for which event delivery does not require any serialization,
as well as remote clients connected over network, which depend on appropriate
data representations and transport mechanisms.

3.3.4 Implementation

Rebeca’s broker architecture is designed to facilitate the fine-grained and flex-
ible composition of publish/subscribe features. This is also reflected by the
broker’s implementation. All publish/subscribe functionality is bundled and en-
capsulated in pluggable components while the broker itself is stripped down to
a simple plugin container managing the feature components plugged in. Each of
those plugins consists of a broker engine and respective connection sinks. While
the engine usually contains the major and global part of the functionality and
logic to realize a particular feature, the sinks allow additional message manip-
ulations in the context of a single broker connection just after a notification is
received or before it is send. On the client side, a corresponding client sink is
required to connect application components. Client sinks are quite similar to
broker sinks and are developed side by side with the respective broker plugin to
ensure their compatibility. The Rebeca framework already provides a number

ARCHITECTURE 57

Figure 3.3: Overview about the primary architectural elements broker, engine,
and sink as well as their relations.

of extendable base classes that significantly ease the development of custom bro-
ker plugins in order to implement new features. Figure 3.3 shows a UML class
diagram giving an overview about their interfaces, properties, and relations. In
particular, it highlights how broker, engines, and sinks are related to each other.

As all publish/subscribe functionality has been made modular and pluggable,
a broker just needs to implement an adequate plugin container to manage the
feature modules plugged in. The Broker interface ensures that the container
provides methods to plug and unplug new broker engines and sinks. A broker
engine is plugged or unplugged to add or remove a particular publish/subscribe
feature, respectively. A broker sink is usually plugged by an active transport
engine when a new connection to a client or neighboring broker has been estab-
lished. The broker is then responsible to build up a complete sink chain for this
connection and integrate it into the event processing scheme. The sink and its
chain is unplugged again when the particular connection is closed.

Furthermore, the broker allows to query and list plugged engines and sinks.
The getEngines method and the getSinks method return all engines and sinks,
respectively, that are associated with a given key. Usually, engines register the
additional interfaces they implement. This way, a dependent feature plugin can
easily query for required interfaces and, thus, determine whether all plugins are
present that are needed to provide its functionality. Broker sinks, however, are
usually registered with the connection they are plugged in. In particular, the
destination is often used as key for the topmost sink in a connection’s sink chain.
Hence, when queried for a destination, the first sink of the chain is conveniently
returned that starts forwarding the event message to this destination. If no
specific key is provided, the methods getEngines and getSinks simply list all
engines and sinks, respectively, that are currently plugged. The Broker interface
is implemented by the AbstractBroker class which, as abstract base class, is a

58 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

starting point providing basic functionality and default logic for all further or
custom implementations. This also includes Rebeca’s DefaultBroker class.

Each feature plugin contains a broker engine by which it is represented and
accessed. Although broker engines usually implement the major part of the
functionality to realize a particular feature, the general interface is plain and
simple. The most important operation prescribed by the Engine interface is the
process method for handling event messages. It allows engines to arbitrarily
manipulate and modify a passed event message before it is passed further along
the processing chain. The processing chain itself is set up using setNextEngine
method which specifies the subsequent broker engine to continue processing the
message. Furthermore, engines have a plug method, too. It is used to set up
the sink chain for every connection established to a client or neighboring broker.
After a connection is established, the method is called on every registered broker
engine allowing it to plug in own logic and extend the connection’s sink chain
by adding a sink instance of an appropriate type. Please note, that there is no
corresponding unplug method. If the connection is closed, the whole sink chain
is deactivated and their resources are freed. Beyond these general operations,
broker engines may also provide arbitrary additional methods that are required
to implement a particular feature. As these operations are feature-specific, how-
ever, they are not part of the default interface. The AbstractEngine class provides
a basic implementation of the interface and, thus, is well suited as extendable
base class for the development of own, custom broker engines.

The Sink interface specifies the operations a broker sink has to implement. Most
prominently, this are the in and out methods for message processing by which the
sink can modify, transform, or manipulate a passed event message. Therefore,
the in method is called for incoming incoming event messages just received,
while the out method is executed on outgoing messages ready to send. After
method completion, the event message is passed to next upper or lower sink in
the connection’s sink chain, respectively. The sink chain itself is set up using
the setUpperSink and setLowerSink methods that specify the next upper and
lower sink layer in the chain, respectively. The AbstractSink class provides a
default implementation of the interface. It supports the construction of sink
chains and its processing methods simply forward every passed event message
further along the chain in the respective direction. Thus, the AbstractSink class
is well suited as extendable base class for custom broker sink implementations.
Regarding client sinks, they also follow the presented interface. But in this case,
the AbstractComponentSink class, which itself is a subclass of an AbstractSink, is
used as starting point by convention.

3.4 Feature Plugins

The last sections introduced the idea of feature composition as well as an archi-
tecture for publish/subscribe brokers based on this concept. The major benefit

FEATURE PLUGINS 59

of such a composable architecture is its high degree of configuration freedom,
adaptability, and flexibility. To demonstrate and underpin this statement, we
give an overview about the various feature plugins in this section that are avail-
able in the Rebeca middleware, show their interactions, and highlight sensible
compositions to leverage synergies. The feature plugins are grouped into manda-
tory plugins required for brokers to work, plugins directly related to publish/sub-
scribe functions, and plugins implementing diverse and miscellaneous features.
In a case study, we also discuss a more complex scenario in which the Rebeca
middleware and its plugins are integrated into an environment for discrete event
simulations. In particular, this requires to correctly manage simulation time,
which is a non-functional property and, as cross cutting concern, equally affects
the whole middleware and all plugins. Although Rebeca’s architecture is pri-
marily designed for the composition of functional properties and features, its
modular structure proves to be advantageous in this case, too.

3.4.1 Mandatory Features

Feature composition is the primary and fundamental design concept in Rebeca.
Even elementary functionality, which is usually built in other publish/subscribe
brokers by default, is designed to be modularly pluggable in Rebeca. On the one
side, this allows to exchange the whole broker logic and to easily replace basic
features and functions with customized implementations individually tailored
to the respective purpose and area of application. On the other side, brokers
still depend on a number of mandatory plugins to be available in order to work
at all. In particular, this includes plugins responsible for configuration, event
processing, and message transport. We discuss them in the following.

Configuration. Configuration plugins belong to one of the few plugin types
that are not responsible to process received event messages. Instead, they con-
tain a broker’s configuration regarding which other plugins to load and how
to instantiate, initialize and interconnect them. In particular, the configura-
tion plugin assembles the processing chain of broker engines and instantiates
the corresponding chain of engine sinks to be plugged into newly established
connections to other brokers or clients. Please note that it is left open to the
plugin developer and existing application requirements how the configuration
data itself is stored. For example, it can be hardcoded into the implementation,
fetched from a file or a remote server, individually negotiated when connecting
to a present broker network, or any combination of the different options.

Processing. The processing plugin fulfills two major functions. First, it drives
a broker’s processing stage. Its engine is the first and the last engine in the pro-
cessing chain. Therefore, it is responsible to queue the event messages received
from different connections, initiate their processing one by one, and finally copy
the message to the appropriate sink chains that lead to the respective forwarding

60 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

destinations. Second, the plugin, thereby, links a broker’s different processing
stages by connecting its processing chain with its sink chains. For this purpose,
the plugin’s sink instances reside on the topmost layer of each sink chain and
can, thus, liaise directly with the plugin’s engine. Custom processing plugin’s are
often used to adapt a broker’s queueing strategy. This way, it is easily possible
to provide fair or weighted strategies, strategies based on priorities for messages,
or any combination thereof.

Transport. The transport plugin is responsible to receive event messages from
and deliver them to neighboring brokers, remote clients, or local application
components. Furthermore, it establishes new connections and manages the es-
tablished ones. Depending on the type of the connection, different transport
mechanisms are used. Connections to neighboring brokers or remote clients are
usually based on network protocols such as TCP or UDP [212], while for local
components more efficient inter-process communication can be used. Thereby,
each connection has exactly one transport sink, which implements the protocol
logic and marks the bottom end of the connection’s sink chain. The plugin’s
engine does not process event messages. Instead, the transport engine estab-
lishes new connections and manages the existing ones. For each new connection,
a transport sink instance is created that is subsequently extended with other
engine sinks to form the connection’s sink chain. Assembling the sink chain is
actually directed and controlled by the configuration plugin. An appropriate con-
figuration provided, it is also possible to have multiple transport plugins loaded,
for example, to support remote clients and brokers as well as local application
components at the same time.

3.4.2 Publish/Subscribe Features

According to the concept of feature composition, a broker’s publish/subscribe
logic has also been rendered to be dynamically combinable and pluggable. How-
ever, publish/subscribe plugins are not considered mandatory as they do not
contribute in making the broker operational itself. Instead, they add, adapt,
and fine-tune forwarding strategies for event messages, which, nevertheless, are
required for any advanced publish/subscribe functionality. In particular, the
publish/subscribe plugins address aspects of matching event notifications, rout-
ing subscriptions, advertising publications, and partitioning the system into in-
dividual event scopes.

Matching. Matching refers to the process of comparing client and application
subscriptions to received event notifications in order to determine who is actually
interested in which notification. Therefore, the broker engine of the matching
plugin manages a filter table in which subscriptions are stored together with
their issuers. A received event notification is then matched against stored sub-
scriptions to determine the set of interested receivers to which it needs to be

FEATURE PLUGINS 61

forwarded and delivered. Matching plugins can be differentiated by the kind of
algorithm applied, the algorithm’s efficiency, and the expressiveness of subscrip-
tions that is supported [64]. The Rebeca framework supports arbitrary Boolean
expressions based on constrained notification attributes.

Routing. Publish/subscribe routing usually refers to the strategies applied in
a broker network to exchange information about issued event subscriptions.
Thereby, routing strategies can be differentiated by the degree of which they
are able to exploit similarities between the filter expressions of issued subscrip-
tions in order to reduce the amount of exchanged information. The Rebeca
middleware provides plugins that support simple, identity-based, and covering-
based routing strategies [128] for disseminating event subscriptions. Thereby,
the routing plugins use the filter table implemented and shared by the matching
engine in order to avoid storing issued subscriptions twice.

Advertising. Advertisements provide additional means to further reduce the
message overhead induced by distributing issued subscriptions within the pub-
lish/subscribe network [146]. For this purpose, advertising requires all applica-
tion components, remote clients, and other information producers to announce
the kind of notifications they are going to publish. This way, a broker can re-
strict forwarding an issued subscription only towards those brokers that also host
a potential publisher. Therefore, the plugin’s engine manages another routing
table in which advertisements are stored together with the brokers they were
received from. Using this table, the plugin’s outgoing sink can easily suppress
the forwarding of a subscription if no overlapping advertisement is stored from
the particular destination and indicates a potential publisher. Advertising, thus,
effectively avoids forwarding a subscription into network regions where no pub-
lisher evidently exists that is going to produce a matching notification. Hence,
depending of the distribution of potential publishers, advertising can save a large
amount of subscription overhead [142]. For disseminating advertisements in the
broker network, the same routing strategies as for subscriptions are available.
The Rebeca framework provides advertisement plugins featuring a simple, an
identity-based, and a covering-based routing strategy.

Scoping. Scoping provides effective means to structure and organize publish/
subscribe networks as well as their event-driven applications. Primarily, this is
done by delimiting the visibility and, thus, the dissemination of event notifica-
tions in the network. This way, scoping enables system administrators as well
as application developers to create individual visibility domains and hierarchies
thereof. These are well suited, for example, to direct and control event and infor-
mation flows, to reflect organizational structures within the network, or to model
entire application domains and restrict their interactions. Scoping requires bro-
kers and clients to first join a particular scope in order to receive event notifi-
cations that were published therein. While the plugin’s engine manages scope

62 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

membership, the plugin’s sinks enforce visibility constraints by simply dropping
an event notification if it leaves the scope while being forwarded. Exceptions
can be made by specifying scope interfaces that corresponding notifications are
allowed to pass. Chapter 4 introduces the concept of scopes, describes its inte-
gration into publish/subscribe routing, and also elaborates on management and
implementation details. Please note that Rebeca’s scope plugin reuses existing
routing and advertisement logic and, thus, requires both other plugins to be
present and active.

3.4.3 Optional Features

Besides the essential message processing and forwarding logic, publish/subscribe
middleware implementations usually offer numerous additional features that, for
example, are only relevant in certain environments, improve the quality of service
(QoS) under certain conditions, or make using particular middleware functions
more convenient. For those optional features, the concept of feature compo-
sition is ideally suited. It allows to tailor the system to the actual application
requirements and environment conditions. Features are composed only when ac-
tually required and omitted otherwise ensuring comprehensive, yet light-weight
middleware implementations without too much overhead. The Rebeca frame-
work contains several plugins implementing additional functionality to complete
a broker’s set of features. In particular, available, optional plugins consider mon-
itoring and management issues, address security aspects, and improve the QoS
in dynamic network environments.

Management. Using publish/subscribe in production environments usually re-
quires advanced broker interfaces to remotely monitor, control, and manage a
broker in order to enable administrators to identify and diagnose problems in
real time and take immediate counter actions. This way, arising problems can
often be solved before they cause an interruption in the operation of the broker
network. Rebeca provides a management plugin based on the Java Manage-
ment Extensions (Jmx) technology [216]. It enables administrators to inspect a
broker’s configuration as well as to load and unload additional plugins at run-
time. For each loaded broker engine, an MBean instance is created reflecting
the engine’s interface and exporting its operations. This way, it is possible to
query statistics and gather monitoring information, read and change attributes
and properties as well as call and execute public methods and operations on the
engines. For this purpose, various connectors are available that provide access
to individual MBeans based on protocols such as SNMP [210], HTTP [77], or
Java RMI [228].

Security. Secure communication is ensured by encrypting exchanged event mes-
sages. Therefore, Rebeca’s encryption plugin uses the Java Secure Socket Ex-
tension (JSSE) [153] to provide a transport sink that encrypts the whole data

FEATURE PLUGINS 63

stream within a connection. For each connection, encryption can be individu-
ally configured and activated. This way, it is easily possible to encrypt the data
when communicating to brokers and clients over insecure networks and switch
encryption completely off otherwise. Please note that Rebeca’s composable
architecture also provides the preconditions to implement more fine-grained en-
cryption plugins that are based on alternative approaches which even allow the
encryption of selected event notifications or individual attributes only [15, 209].

Adaptivity. Dynamic environments are often characterized by changing net-
work conditions as well as varying distributions of publications and subscrip-
tions. Sometimes, these dynamics gain such a momentum that they easily over-
load individual brokers or links. However, by adapting the broker topology to
present network conditions and current notification interests, it is often possi-
ble to avoid those overload situations. Moreover, continuous adaptation and
self-optimization may help to ensure an adequate level of performance. The Re-
beca framework contains two plugins following different approaches to adapt
the broker network in order to reduce the message overhead and improve its
quality of service. The first plugin is based on a heuristic [103] that continually
reorganizes the broker topology to minimize the number of forwarding hops be-
tween publishers and subscribers. Thereby, it also tries to replace expensive or
instable overlay links with better suited connections. The second plugin does
not change the broker topology but adapts the routing algorithm used within
the network. It saves traffic by switching individual network links to the most
efficient routing strategy available under the current conditions [199, 201]. Fur-
thermore, both plugins can be used simultaneously in order to compose both
heuristics to adaptively optimize the publish/subscribe infrastructure [171].

Fault Tolerance. Rebeca’s publish/subscribe infrastructure is based on an
acyclic broker network. Hence, the failure of a single broker or overlay link may
cause the network to get partitioned. To improve the network’s robustness, Re-
beca features a recovery plugin. The implemented recovery algorithms ensure
that the network gets reconnected again while bypassing the failing link or bro-
ker [170]. Hence, they render the network self-stabilizing provided that no other
fault occurs during the time of recovery.

3.4.4 Discrete Event Simulation

Simulations provide adequate means to test and evaluate new broker features.
They are often used where deployments of real broker instances are not suited
or applicable. In particular, simulations offer fine-grained control of present
load, network, and environment conditions and, thus, make experiments and
their results easily reproducible. Furthermore, simulations also allow to study
a feature’s scalability in large network instances that may significantly exceed
the resources available for real deployments. Therefore, simulations have been

64 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

proven to be especially useful for the design, development, and analysis of dis-
tributed systems [214].

For publish/subscribe systems, discrete event simulations are often used to an-
alyze routing algorithms and evaluate their performance. In particular, discrete
event simulations model the system as chronological sequence of events, which
are stored in an event queue and processed one after the other. Thereby, each
simulation event occurs at a specific instant in time and represents a happening
relevant to the system’s state, for example, a published notification received by
a broker. The event is then processed according to the protocols and rules of the
simulated system which potentially cause new and future events to be scheduled
and triggered. In case of the received notification, the message is forwarded to
neighboring brokers and clients with matching subscriptions causing new sim-
ulation events to be scheduled for the notification’s propagation and delivery.
After the event has been processed completely, it is removed from the event
queue. Furthermore, the simulation time is advanced to the next chronological
simulation event which is then handled appropriately. This is repeated until the
event queue is empty or a predefined end time is reached.

The Rebeca framework supports discrete event simulations. In particular, Re-
beca brokers can either run as independent processes in a distributed deploy-
ment or alternatively be executed in the PeerSim simulation environment [139].
The latter, however, requires specific adaptations and changes that affect indi-
vidual plugins to a varying extent. These changes include functional as well as
non-functional aspects. Functional aspects primarily deal with communication.
Brokers need a way to exchange notifications and subscriptions within the sim-
ulated network environment. Therefore, we provide a new transport plugin that
connects a broker’s sink chain with the simulated network enabling brokers to
communicate with each other. Network characteristics such as transport and
network protocols or the latency of links and their bandwidth are determined
and controlled by the simulation environment.

The non-functional aspects mainly affect the simulation’s notion of time as well
as its style of execution. In fact, as the simulation is based on discrete events,
it has no continuous time model anymore. Discrete events are just instants in
time which itself have no duration. Hence, when modeling an action or process
that takes time, for example, a broker forwarding a notification, it is necessary
to schedule at least two discrete events: the first to represent the start of the
process and, after an appropriate delay, the second to mark its end. All events
are processed sequentially one after the other. For this purpose, a single thread
is, thus, entirely sufficient to drive the processing. On the contrary, concur-
rent threads are rather harmful as they may mix up the deterministic order of
event execution and, thus, limit the reproducibility of simulation runs. When
synchronizing threads to ensure reproducible runs, however, there is often no ad-
vantage left anymore compared to the single thread model of execution. Instead,
sophisticated thread synchronization is an additional source of complexity and
potential errors.

RELATED WORK 65

To support discrete event simulations, the non-functional aspects cause the ma-
jority of implementation changes for brokers and their plugins. Primarily, there
are two actions that must be taken. First, all timing aspects must explicitly
be scheduled as discrete events. Therefore, all long-running tasks and processes
need to be broken into individual events representing the achieved progress.
Delays, durations, and runtimes must be explicitly specified and corresponding
simulation events have to be scheduled appropriately. Second, all independent
threads need to be deactivated making the simulation the only thread that is
executed. Nevertheless, the tasks the deactivated threads originally fulfilled
must still be carried out and, thus, have to be explicitly scheduled and triggered
by simulation events just created for this purpose. Against this backdrop, re-
quired adaptations seem to be tremendous at first glance. In fact, changing the
time and execution model affects the whole implementation. However, necessary
changes usually follow the same pattern. The idea is to provide a wrapper for
each broker plugin that encapsulates the plugin’s engine and intercepts all calls
that would, otherwise, lead to the creation of independent threads. Replacing
these threads, the wrapper has now to ensure that, nonetheless, required tasks
and operations are still triggered by scheduling corresponding simulation events.
As a consequence, the wrapper is also responsible to handle them appropriately.
To actually carry out the triggered operation, however, the wrapper may simply
call the corresponding function of the original plugin.

For every broker plugin presented so far, the Rebeca framework contains a
corresponding plugin wrapper enabling its usage in the PeerSim simulation
environment. Often, a single wrapper implementation can be used for a whole
class of plugins. For example, there is just one wrapper for all routing plugins
and another one for all advertisement plugins. Furthermore, the plugin wrappers
allow to uniformly set and specify plugin parameters as well as simulation values
using a single configuration. In Chap. 6, we especially use PeerSim simulations
in order to study and evaluate the publish/subscribe algorithms and structuring
means that are presented in the following chapters.

3.5 Related Work

In literature, numerous publish/subscribe systems are described and presented
including commercial products as well as research prototypes [177]. Usually, they
are tailored to a specific application domain and, thus, exhibit a well defined and
fixed set of selected features. Only very few systems are designed to be reconfig-
urable and adaptable enabling features to be flexibly combined and composed.
In the following, we first discuss some of these publish/subscribe systems that
are open source and highlight their feature management. Thereafter, we present
approaches and architectures from other domains that were intentionally devel-
oped to be composable and facilitate a free combination of features.

66 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

3.5.1 Publish/Subscribe Architectures

The Reds [48] framework is a reconfigurable event dispatching system designed
for mobile ad-hoc networks (MANETs). In this context, reconfigurations pri-
marily refer to adaptations of the dispatching broker network when the MANET
topology changes dynamically. To facilitate the flexible application and evalua-
tion of new reconfiguration strategies, the Reds framework has a modular ar-
chitecture separated by concerns. Thus, it provides interfaces to plug in custom
message formats and filters, specify matching algorithms and routing engines,
change the underlying transport protocol, and provide specialized topology man-
agers and reconfiguration strategies. Allowing these features to be composed
freely, Reds is well suited to analyze the behavior of publish/subscribe infras-
tructures in dynamic environments under various conditions. In particular, the
large configuration space makes the framework versatilely usable in many ap-
plication domains. Regarding design concerns unrelated to reconfigurations,
however, the integration of novel features is not supported to the same extend.
In fact, the framework does not provide a way to define new interfaces and plug
in functionality different from those it was originally designed for. This is the
most important difference and a significant disadvantage compared to the more
general Rebeca architecture [166] presented in this chapter.

The Padres project [67] leverages publish/subscribe for enterprise application
integration. The project focuses on a distributed content-based publish/sub-
scribe routing substrate that is accompanied by a whole ecosystem of tools and
services dedicated to workflow management and monitoring [123]. In particular,
the latter control and monitor the execution of business processes that are com-
posed out of numerous individual business activities specified in the Business
Process Execution Language (BPEL) [163]. Thereby, each activity is controlled
and executed by a dedicated agent. In order to cooperatively implement the spec-
ified workflows, the agents communicate with each other using the content-based
publish/subscribe infrastructure. This way, no central instance is necessary that
triggers the execution of each activity making the architecture exceedingly scal-
able and extendable. In fact, workflows can easily be extended by adding new
activities and created by freely composing activities and existing processes.

Concerning the publish/subscribe routing substrate, Padres brokers have a
modular architecture, too. Similar to our approach, these brokers have input
and output queues as well as core components encapsulating particular aspects of
their functionality [98]. For example, Padres supports composite subscriptions
that allow for event correlations as well as historic queries which also include
events already published and delivered in the past. Although Padres compo-
nents often have very efficient implementations, they are, nevertheless, quite
coarse and heavy. For instance, the Java Expert System Shell (Jess) [80] is a
full-fledged rule engine based on the Rete algorithm [78]. Padres leverages this
engine to match and correlate events as well as make routing decisions. Hence,
regarding publish/subscribe functionality, a really fine-grained and flexible com-
position of features is not possible. In contrast, for example, Rebeca considers

RELATED WORK 67

the matching of events, the routing of subscriptions, and the forwarding of ad-
vertisements as individual features that are subject to composition.

3.5.2 Feature Composition

Besides publish/subscribe systems, other application domains profit from func-
tional modularity, too. In particular, several architectures consider composabil-
ity as fundamental principle and primary means. In the telecommunications
domain, Distributed Feature Composition (Dfc) [96, 232] is a virtual architec-
ture for composing telecommunication services. It allows a feature-oriented
specification and a modular implementation of services as so called feature
boxes [233]. When establishing a connection (e.g., telephone call, Voice-over-
Internet-Protocol (VoIP) call) from the caller to the callee, a component chain
out of applicable feature boxes is dynamically assembled determining the com-
posed and provided service. For this to work, each feature box must be trans-
parent, autonomous, and independent as well as implementing just a specific
functional aspect. The latter includes, for example, blocking calls from partic-
ular addresses or suppressing them at quiet times as well as forwarding calls to
different receivers or the voice mail when the line is busy. The overall service is
finally determined by the composed chain of feature boxes.

In Rebeca, a broker’s functionality is also defined by the feature plugins in-
serted into its processing stages forming a chain of broker engines and sinks,
respectively. These chains are once assembled when the plugins are inserted and
remain unchanged for all event messages processed afterwards. Dfc, however,
dynamically assembles an individual chain of feature boxes for every connection
that is established. It may also modify a particular chain, for example, by fork-
ing it and adding new boxes when caller or callee issue another simultaneous call
to a third person in order to start a telephone conference. A chain of feature
boxes is finally torn down when one of the participants hangs up. In particu-
lar, this dynamic composition, modification, addition and removal of features
make Dfc an exceedingly flexible architecture for implementing advanced and
versatile telecommunication services [20].

Feature composition and composability is not limited to functional aspects only.
It can also be applied to non-functional properties. Thereby, a composable
architecture usually ensures that a non-functional property such as timeliness
or testability once established on subsystem level stays invariant under com-
position. Thus, the composed overall system also exhibits this property. For
example, the Time-Triggered Architecture (Tta) [113] offers a versatile infras-
tructure for the development of fault-tolerant distributed real-time systems. In
particular, it comprises distributed algorithms for communication, clock syn-
chronization [114], and group membership [110] as well as their implementation
in hard- and software. Each node providing a real-time service can be devel-
oped independent of other nodes and integrated constructively into the system
without disturbing the operation and timeliness of other nodes and services.

68 COMPOSABLE PUBLISH/SUBSCRIBE ARCHITECTURE

In [186], Richling takes the concept of composability one step further and in-
vestigates properties that besides staying invariant or changing its value may
also emerge or vanish. The idea is to provide an architecture including elements
and composition rules that, when applied, lead to correct systems with desired
properties. For the domain of embedded real-time systems, this is demonstrated
by an architecture for Message Scheduled Systems (MSS) [185, 187]. As the ar-
chitecture is formally proven [188, 189], the timeliness of an actual system is
automatically guaranteed if it is build according to the architecture’s compo-
sition rules. For Rebeca’s architecture, however, we cannot give any similar
guarantee. Nevertheless, its modularity has also been proven to be very advan-
tageous when addressing non-functional properties, in particular, when dealing
with discrete time due to the integration into a simulation environment.

3.6 Discussion

Publish/subscribe systems increasingly often play a key role in modern commu-
nication infrastructures. In particular, they provide the basis on which flexible
event-driven applications and architectures are usually built. With the large
variety of application domains, many different requirements are posed to a pub-
lish/subscribe middleware from which some may even contradict each other.
Thus, it is hardly possible to consider all requirements in one implementation
to the same degree. Instead, we focused on functional modularity that allows
developers and administrators to tailor the publish/subscribe infrastructure to
actual requirements and environment conditions. Therefore, we introduced the
concept of features and feature composition. Based on this idea, we presented a
composable publish/subscribe architecture on which our middleware Rebeca is
built. Each feature representing a particular functional aspect is encapsulated
in an individual plugin that can be inserted into a Rebeca broker. This way,
brokers can be equipped with just those features that are actually required while
superfluous functions are simply omitted.

When inserted into a broker, we allow feature plugins to intervene the internal
stream of event messages at three different processing stages: after a message is
received, while it is processed, and before it is send. This way, a plugin can mod-
ify and alter passing messages as well as remove them or even insert new ones in
order to realize its functionality. Regarding its implementation, a plugin consists
of an engine and an event sink. While there is just one engine per plugin inserted
into the global processing stage of a broker, an individual sink instance is created
and plugged into each connection to a neighboring broker or client. Plugins and
their features are composed by simply chaining their engines and sinks within
the broker. To unify and ease the development, a corresponding sink chain is
also used on the client side. Based on this flexible architecture, we implemented
the Rebeca publish/subscribe middleware as prototype accompanied by a di-
versity of feature plugins to test and demonstrate their composability. Some
of these plugins are mandatory as they configure and drive a broker’s internal

DISCUSSION 69

processing stages, different plugins implement publish/subscribe features includ-
ing diverse matching, routing, and advertisement strategies, and other plugins
address management and security aspects or render the infrastructure adaptive
and fault-tolerant. Furthermore, it is even possible to execute a Rebeca broker
and its plugins within a simulation environment.

The presented architecture forms the basis for the work done in the following
chapters. Its functional modularity and composability significantly simplifies the
integration of scopes as described in Chap. 4 that limit the visibility of events
and, thereby, help structuring the publish/subscribe broker network as well as
the event-driven applications built on it. Likewise, the encapsulation of func-
tional aspects in separate plugins makes it exceedingly easy to revise and adapt
just a specific feature. For example, by extending Rebeca’s component plugin
that enables brokers to host local publish/subscribe components to a full-fledged
component container, we are able to adequately support the programming ab-
stractions for event-driven applications discussed in Chap. 5. Furthermore, we
exploit the possibility to run Rebeca brokers in a simulation environment in
Chap. 6 in order to thoroughly analyze and evaluate the presented algorithms
under various load and network conditions. We are convinced that a modular
architecture facilitating a combination of features is an invaluable help for the
design and implementation of future publish/subscribe systems.

Chapter 4

Scoping

Contents

4.1 Introduction . 72
4.2 Scopes . 73

4.2.1 Specification . 73
4.2.2 Hierarchies . 74
4.2.3 Visibility . 76
4.2.4 Attributes . 77
4.2.5 Inheritance . 78
4.2.6 Mappings . 79

4.3 Routing . 80
4.3.1 Scope Overlays . 81
4.3.2 Forwarding . 83

4.4 Management . 85
4.4.1 Scope Components . 85
4.4.2 Scope Assignment . 86
4.4.3 Joining Scopes . 88
4.4.4 Leaving Scopes . 92

4.5 Implementation . 93
4.5.1 Scope Plugin . 93
4.5.2 Scoped Filters . 95
4.5.3 Scope Components . 99

4.6 Related Work . 100
4.6.1 Visibility . 101
4.6.2 Security . 104
4.6.3 Context . 105

4.7 Discussion . 107

71

72 SCOPING

4.1 Introduction

A major strength of event-driven applications based on publish/subscribe is the
ease of integrating new components. By just adding them to the infrastruc-
ture, new components are already able to interact with existing ones by simply
publishing and subscribing to relevant notifications. Further adjustments and
modifications, especially on the side of already present applications, are usu-
ally not required. With increasing system size and complexity, however, this
strength turns into a severe weakness as the probability of unexpected side ef-
fects when adding new components is growing quickly. Moreover, the indirect
and loose coupling of components makes it eminently hard to identify all poten-
tial interactions and analyze their effects and side effects. Without structuring
means, any part of the system may be affected requiring that the system as a
whole needs to be reconsidered whenever a single component is added, modified,
or removed. For large-scale event-based infrastructures, this is practically not
feasible anymore.

Scopes precisely address this problem by limiting the visibility of notifications
and, hence, restrict interactions to a comprehensible subset of components.
Thereby, scopes support building modular event-driven applications and help
structuring publish/subscribe systems at the same time [69]. For the former, ap-
plication developers may leverage scopes to bundle related components, to hide
their internal communication from outside interference, and to, thus, design
reusable artifacts that can be shared and instantiated by different applications.
For the latter, system administrators may use scopes to subdivide the pub-
lish/subscribe infrastructure into parts and subsystems that are independently
administered, controlled, and supervised. Thus, even large publish/subscribe
systems become and also remain manageable.

In this chapter, we build on the work of Fiege [68] and introduce scoping as a
technique to structure publish/subscribe systems and to organize event-driven
applications. We first lay the foundations in Sect. 4.2 by defining terms and
notations, explaining the scope concept, and exemplifying its application to
build customized scope hierarchies. Furthermore, scope attributes and notifi-
cation mappings are discussed. Section 4.3 shows how to integrate scopes into
distributed publish/subscribe infrastructures. We leverage scope overlays and
specify the routing of notifications, subscriptions, and advertisements therein
while preserving the freedom to employ arbitrary routing algorithms and config-
urations. Section 4.4 discusses the management of scope overlays and explains
how components join or leave a scope while Sect. 4.5 provides further imple-
mentation details. We conclude this chapter with an overview of related work
and a final discussion in Sect. 4.6 and Sect. 4.7, respectively, in which we com-
pare the presented scope concept to other approaches, highlight similarities and
differences, and point out individual strengths and weaknesses.

SCOPES 73

4.2 Scopes

Scopes primarily constrain the visibility of event notifications to a well defined
set of application components and are, thus, well suited to manage and control
their interactions. In the following, we define scopes based on sets of components
and specify further scope features such as interfaces, attributes, and mappings.
We show how to utilize these features to compose valid scope hierarchies that
augment components with additional information, organize event-driven appli-
cations, and structure the publish/subscribe network. In general, we follow
the terminology introduced by Fiege [68] but provide much simpler definitions
based on set theory that lead to slightly different semantics and substantially
ease the subsequent integration of scopes into distributed publish/subscribe sys-
tems. Please refer to Sect. 4.6.1 for a more detailed discussion of similarities and
differences.

4.2.1 Specification

A scope simply bundles related components including publishers as well as sub-
scribers and provides a shielded environment to interact with each other without
interference from outside the scope.

Definition 12 (scope). A scope S is an isolated environment for interaction
given by the set S ⊆ C of event-driven components that communicate by publish-
ing and subscribing notifications.

A scope, thus, is primarily defined by the set of components that it encloses.
Therefore, it is important how the components are chosen that belong to a
particular scope. Basically, a Boolean component selector function can be used
to determine scope membership.

Definition 13 (component selector). The component selector of scope S is a
Boolean function selS : C → B on the set C of all components that evaluates to
true for any component C ∈ S and returns false otherwise.

By bundling the selected components to a scope and isolating them from the re-
maining system unexpected side effects are prevented effectively. This is done by
silently discarding all notifications that cross the scope boundary by either being
published by a component from inside the scope and delivered to outer scope
components or vice versa. Components inside the scope, however, are able to
receive all notifications from each other. Thus, their interaction is not restricted
in any way while any communication with components of the remaining system
is suppressed completely. In order to allow inner scope components to commu-
nicate with the outside system by publishing and subscribing notifications, we
need to define scope interfaces that selected notifications may pass unhindered.

74 SCOPING

Figure 4.1: Bundling event-driven components in a scope.

Definition 14 (scope interface). A scope interface IS of scope S declares a pair
of Boolean functions inS : N → B and outS : N → B on the set N of event
notifications that are applied as follows:

(i) A notification n ∈ N published outside S is delivered to an inner scope
component C1 ∈ S if inS(n) = true and discarded otherwise.

(ii) A notification m ∈ N published inside S is delivered to an outer scope
component C2 6∈ S if outS(m) = true and discarded otherwise.

By filtering notifications when entering or leaving a scope, the interaction of
inner scope components with the remaining system becomes manageable and
controllable. Unexpected side effects are not completely prevented anymore, but
thoroughly avoided as all incoming and outgoing notifications passing the scope
boundary need to be explicitly specified by the filter functions of the scope’s
interface. Figure 4.1 exemplifies the definition. Components C3, C4, and C5

are assembled within scope S while components C1 and C2 are not. Published
notifications are filtered using inS and outS when they cross the boundary of S.
Thereby, notifications n1 and n4 are filtered out by inS and outS , respectively,
while notifications n2 and n3 are allowed to pass. In fact, scope S allows only
components C2 and C3 to communicate across its boundary while components
inside S as well as those outside S may freely interact among each other.

Scopes in publish/subscribe systems are comparable to module and package
concepts known from many programming languages. Likewise, they encapsulate
related components and hide their internal communication from the outside
view. Furthermore, system interdependency is shifted from an uncertain set of
components onto a well defined interface that specifies valid notifications and,
hence, determines allowed component interactions.

4.2.2 Hierarchies

Scopes as defined above provide structuring means for publish/subscribe sys-
tems and event-driven applications. They allow developers to bundle related

SCOPES 75

Figure 4.2: Scope hierarchy of a world-wide operating company.

components to reusable modules and application artifacts while administrators
can split complex systems into simpler subsystems and units of a comprehensible
size. To facilitate such modularization, scopes can be aggregated in superscopes
as well as divided into subscopes.

Definition 15 (subscope/superscope). Let S and T be two scopes. S is called
subscope of T (S ⊆ T) and T is called superscope of S (T ⊇ S) iff for each
component C ∈ S ⇒ C ∈ T .

Using superscopes and subscopes event-driven applications and publish/sub-
scribe systems can be organized according to different aspects and criteria. This
way, a hierarchy of scopes is established. In order to ease the maintenance and
administration a scope hierarchy must meet several conditions to be valid.

Definition 16 (scope hierarchy). A set of scopes is called a valid scope hierarchy
if it meets the following requirements:

(i) There is one root scope that contains all components.

(ii) Every scope, except the root scope, has exactly one distinguished superscope
as direct parent scope.

(iii) Scopes whose parent scope is the root scope are called top level scopes.

(iv) Scopes that do not have further subscopes are called leaf scopes.

(v) A component can be a member of several scopes at the same time.

Requirements (i) and (ii) ensure that the scope hierarchy is a tree with a single
root scope. The root scope is, according to (iii), divided into top level scopes

76 SCOPING

that each reflect a different criterion to organize the system. Top level scopes
can successively be subdivided into subscopes to refine the criteria into aspects
of interest and concern. Leaf scopes are not divided any further as require-
ment (iv) states. To ease system decomposition, requirement (v) additionally
allows components to be assigned to several scopes if multiple aspects apply.
Thus, a component is usually a member in a set of scopes composed by assigned
leaf scopes along with all their superscopes. Those scope sets are called valid .

Definition 17 (valid scope set). A set of scopes S is called a valid scope set iff
for each scope S ∈ S (except the root scope) follows that also its parent scope PS
belongs to the set PS ∈ S.

To illustrate the definitions, Fig. 4.2 shows an example scope hierarchy of a
worldwide operating company that uses a publish/subscribe network to inter-
connect its event-driven applications. There are many ways to organize the
company and its publish/subscribe infrastructure that, for example, could be
structured according to the company’s different divisions such as finance, mar-
keting or production. Alternatively, the structure may correspond to world re-
gions including America, Asia, and Europe, where company offices are located,
or it may be divided into the different business areas such as the automotive,
chemical, or electrical market in which the company is active. The scope hi-
erarchy allows to flexibly combine these organization alternatives and to define
dedicated top level scopes for divisions, regions, and markets each. Thereafter,
each top level scope is independently subdivided and refined as described above.
Application components and instances are then assigned to the appropriate leaf
scopes. Here, application component C1 is just member of the Europe region
and its superscopes while components C2 and C3 are assigned to multiple scopes
on different branches of the scope hierarchy. The arrows in the figure are used
to determine the visibility of notifications to components as discussed in the
following section.

4.2.3 Visibility

Within the same scope, application components can communicate freely with
each other. In complex systems, however, there are usually components of differ-
ent scopes which need to interact, too. This is only possible if their notifications
are visible to each other.

Definition 18 (notification visibility). Let C1 and C2 be two components. A
notification n1 published by C1 is visible to C2 if the following conditions hold:

(i) For all scopes S with C1 ∈ S ∧ C2 6∈ S is outS(n1) = true.

(ii) For all scopes T with C1 6∈ T ∧ C2 ∈ T is inT (n1) = true.

SCOPES 77

Figure 4.3: Set diagram identifying scope boundaries to cross.

The definition is straightforward and simply states that the appropriate in and
out filters are applied when notifications cross scope boundaries. If, after all
filtering, a notification is eventually delivered to the final subscriber then it is,
thus, visible to the particular component. By using a set diagram as shown
in Fig. 4.3, it is easy to graphically determine which scope boundaries need
to be passed in which direction and, hence, which filters to apply. For this
purpose, the diagram contains the notification’s publishing component C1 and
its subscribing component C2 together with their surrounding scopes known
from the example scope hierarchy of the previous section. Drawing a straight
line from the publisher C1 to the subscriber C2 identifies which scope boundaries
the notification n1 has to cross. Whenever a scope is left, the scope’s out filter
is applied and, likewise, whenever a new scope is entered, the corresponding in
filter gets evaluated.

Alternatively, the scope hierarchy as shown in Fig. 4.2 can also be used to de-
termine the notification’s visibility. Publisher C1 and subscriber C2 have been
connected to assigned leaf scopes. Furthermore, all paths are marked by an
upwards arrow that lead from the publisher C1 to the root scope. Additionally,
all paths leading from the root scope to the subscriber C2 are shown with a
downwards arrow. Scopes that are part of an upwards and a downwards path
include both components while those that are only on one type of path contain
either C1 or C2. A notification to be delivered, thus, must leave scopes with just
the publisher C1, stay in scopes that include both components, and enter those
that only contain the subscriber C2. Hence, when leaving a scope the out filter
and when entering a scope the in filter gets applied, respectively.

4.2.4 Attributes

Notifications describe occurred events and their context as perceived by the pub-
lishing component. Additionally, many publish/subscribe systems allow process-
ing elements to attach further attributes to a notification that provide metadata
or complement information not known to the publisher. For example, additional
attributes may include timestamps, priorities, or system identifiers. Likewise,
scope attributes may also be used to associate further information with a scope.

78 SCOPING

Definition 19 (scope attribute). Let S ∈ S be a scope. A scope attribute S.a
characterizes a property of S by associating data under the name a with the
actual scope instance S.

Scope attributes may flexibly be used for different purposes. They help annotat-
ing scopes with arbitrary information, for example, to document a scope’s cre-
ation, configuration, usage, or maintenance. These information may be human-
readable or as well be intended to be automatically processed by the publish/
subscribe system. Moreover, scope attributes may also carry application-specific
data. As scopes bundle related applications and components, it is possible to fac-
tor out common properties and store their values as scope attributes only once.
Attaching scope attributes to published notifications may also help to better
specify the context in which the notification was produced. This is especially
useful if the notification leaves the scope it was published in.

Assume a company using a publish/subscribe system to interconnect its produc-
tion sites. Each production site has its own scope to ensure that application
instances from different sites do not interfere with each other. Selected no-
tifications, however, are allowed to leave the scopes in order to be centrally
monitored, aggregated, and evaluated. Therefore, it is essential to know a noti-
fication’s origin. This is easily accomplished by automatically attaching a scope
attribute to the notification that identifies the publishing production site. Us-
ing this technique, it becomes possible to extend notifications with arbitrary
information and especially with those information that were not available at the
application’s design time. Thereby, scope attributes provide an elegant way to
incorporate deployment, configuration, and administration data and, thus, ease
the engineering of event-based systems and applications.

4.2.5 Inheritance

Scope attributes characterize scopes as well as components and notifications
therein. Subscopes may further partition a scope’s components into more specific
groups and, thus, need to define additional attributes or refine existing ones.
Therefore, subscopes inherit the attributes of their parent scopes as well as
their values by default, but do also have the possibility to override them or add
new ones as needed.

Definition 20 (attribute inheritance). Let S be a scope and S.a = v an attribute
of S with assigned value v. Furthermore, let T ⊆ S be a subscope of S. Then
attributes of S are inherited as follows:

(i) Subscope T automatically possesses an inherited attribute T.a = v by de-
fault requiring no explicit declaration or assignment.

(ii) Subscope T may override the value of inherited attributes by explicitly set-
ting a new value T.a = w.

SCOPES 79

(iii) Subscope T may also declare additional attributes T.b = x with arbitrary
assigned values x.

Part (i) of the definition states that an attribute declared in a superscope remains
an attribute in all derived subscopes and gets the declared value assigned by
default. Statements (ii) and (iii), however, allow developers and administrators
to override the inherited attribute value or to extend the set of attributes to
better characterize the derived subscope.

For example, consider an international company whose offices and production
sites are grouped into world regions such as America, Asia, and Europe. The
company’s publish/subscribe infrastructure may be organized similarly with each
region scope declaring an attribute location that is set appropriately. When
subdividing a region scope into different country scopes to form smaller groups,
it makes sense to refine the location attribute. In case of Europe, the region scope
could be divided into Great Britain, Denmark, and Germany with locations set
to London, Copenhagen, and Berlin, respectively, assuming that the company’s
offices are situated in the countries’ capitals. Additional attributes may also be
declared such as currency which is set to pound (GBP), krone (DKK), and euro
(EUR), respectively, and may help interpreting price information.

Although very useful to better characterize and refine a subscope, overriding
inherited attributes may also lead to subtle ambiguities. This is due to the pos-
sibility that according to point (v) of definition 16, components may be mem-
bers of several scopes at the same time. So let us assume that the offices in
Copenhagen and Berlin from the example above use the same application to au-
tomatically process prices and, thus, the application’s components are members
of the Danish as well as the German scope. Hence, the question arises which
currency, kroner or euros, now applies to these components. The best answer
is both since the application has to deal with Danish as well as German prices.
Therefore, we support such ambiguities by enabling the assignment of multiple
values to attributes in order to characterize components.

Definition 21 (multi value attribute). Let Si, 1 ≤ i ≤ n, each be a leaf scope
with an attribute Si.a = vi and component C ∈ Si as member. The multi value
attribute C.a is derived from the scope attributes Si.a by combining their values
to the set {v1, . . . , vn}.

Component metadata can be augmented by deriving component attributes from
scopes. Thereby, sets of values may get assigned to single attributes. It is, how-
ever, left open to application developers and system administrators to interpret
these sets and to leverage and exploit them to their advantage.

4.2.6 Mappings

Complex event-based systems usually comprise numerous applications and com-
ponents of which many may feature inherently different event models, represen-

80 SCOPING

tations, or semantics. System integration has to deal with this heterogeneity and,
thus, is often a cumbersome and tedious task. Scoping supports system integra-
tion by enabling administrators to bundle those components that share common
models and semantics. While these may interact seamlessly, however, certain
interoperation with subsystems is usually required that use different event rep-
resentations. For this purpose, it is possible to transform notifications when
they enter or leave a scope.

Definition 22 (notification mapping). A notification mapping is a function
map : N → N on the set N of event notifications that transforms a notification
n ∈N into a possibly different notification m ∈N.

Please note that notification mappings subsume the filtering of notifications at
scope boundaries, too. This is the case when using the identity function for all
notifications that are allowed to pass and mapping the remaining ones to the
empty notification ε to be filtered out. Thus, Def. 14 specifying scope interfaces
can be generalized by replacing the two Boolean filter functions by notification
mappings to determine not only which notifications may enter or leave but also
how they are represented inside and outside the scope.

Notification mappings are an important design concept as they allow to centrally
specify how to convert a notification from one data model into another. Even
if data conversions are not necessary, notification mappings may, nevertheless,
help to adjust and fine-tune the (meta) information a notification is carrying by
replacing or removing some of its attributes. Within a subsystem, for example,
it may be of concern to identify the concrete component that published a given
notification, while in the remaining system, it may be just sufficient to know
the subsystem from which the notification originated. A notification mapping
can, thus, change the source attribute as required when the notification leaves
the subsystem scope. Depending on whether sophisticated model conversions
or simple attribute adjustments are conducted, the complexity to implement
notification mappings in publish/subscribe systems differs significantly. Thus,
different implementation approaches are possible that have individual strengths
and weaknesses.

4.3 Routing

There are several ways to integrate visibility and scope concepts in event-based
systems and applications [68]. Some of them simply add scoping as an additional
layer on top of a publish/subscribe infrastructure. Thereby, either publishing
components have to explicitly restrict the set of notification receivers or consum-
ing components are required to filter out non-visible notifications before these
are passed to applications. Alternatively, when embedding scoping directly into
publish/subscribe routing layer, more efficient solutions are feasible as described
in this section.

ROUTING 81

(a) (b)

Figure 4.4: Scope overlays in a publish/subscribe system: (a) given scope hier-
archy; (b) overlays formed within the broker network.

4.3.1 Scope Overlays

Considering scopes within the publish/subscribe routing layer leads to a differ-
entiation of the network. Distinct scopes may be active in different parts of the
network and, thus, form so called scope overlays.

Definition 23 (scope overlay). The scope overlay OS of scope S comprises the
minimal subset of brokers in the publish/subscribe network that is required to
interconnect all components belonging to S.

Figure 4.4(a) illustrates an example scope hierarchy comprising the top level
scopes R and S, the subscope T , and seven components C1, . . . , C7 assigned to
them. When the components are connected to the publish/subscribe brokers
B1, . . . , B5, as shown in Fig. 4.4(b), scope overlays are formed within the broker
network. Thereby, the shape and size of an overlay is determined by the position
of the brokers that host the components belonging to the corresponding scope.
Thus, the overlay of scope S contains the brokers B2, B4, and B5 that host
components of S or its subscope T as well as the broker B3 that is needed
to interconnect the others. Furthermore, an overlay of a superscope always
encloses the overlays of its subscopes as it is the case for OS and OT . However,
the overlays of subscope siblings or of scopes from different branches of the
hierarchy may intersect and overlie each other as, for example, OR and OS
do. Please note that since all components are members of the root scope by
definition, its overlay conforms to the complete publish/subscribe network and
is, thus, not emphasized in the figure. In fact, the root scope corresponds to a
conventional publish/subscribe infrastructure without scopes.

As brokers usually host components of several scopes (e.g., B2 hosts C1 from R
as well as C4 from T) they, thus, have to manage and keep track of visibility

82 SCOPING

(a) (b)

Figure 4.5: Routing with scopes: (a) extended routing table of broker B2;
(b) network environment of broker B2 with routing entries.

constraints. Therefore, they first need to know from which scopes a message
originates. Thus, all messages—notifications, subscriptions, and advertisements
if supported—are tagged with the appropriate set of scopes they belong to.
Furthermore, the brokers additionally need to know to which scopes a message
is allowed to be forwarded. Hence, it is also necessary to extend a broker’s
routing table to store additional scope information.

Definition 24 (extended routing entry). An extended routing entry is a 3-
tuple consisting of a filter F , a scope set S, and a destination which is either a
component C or a neighboring broker B.

In a subscription table, a filter expression describes the notification’s content in
which a subscriber is interested. In an advertisement table, a filter specifies the
notifications an event producer is going to publish. The scope set contains the
scopes the subscribing or publishing component is associated with and, thus,
the scope combination for which the filter is active. The destination determines
the component itself or the next hop in the broker network to which matching
notifications or overlapping subscriptions need to be forwarded.

Figure 4.5 gives an example. Subfigure (b) shows the network environment of
broker B2 from the previous illustration in more detail including its connections
to neighboring brokers and hosted components. Subfigure (a) depicts the bro-
ker’s extended routing table with additional scope information. The first entry,
for instance, represents an active subscription from component C1. As C1 be-
longs to scope R the subscription’s filter F1 is only active in the corresponding
overlay. The entry, thus, ensures that notifications that are visible in scope R
and match the filter F1 are forwarded towards component C1 which is indicated
by a corresponding arrow in (b). Please note that since the root scope is always
contained in a valid scope set, it is not explicitly denoted within an extended
routing entry in the table.

ROUTING 83

4.3.2 Forwarding

With scopes, it becomes more difficult for brokers to make routing decisions and
forward notifications. Particularly, this is the case if subscription and notification
are from different scopes. Considering scope interfaces, the notification may,
nevertheless, be visible in the subscription’s scope and, thus, has to be forwarded
if it matches the subscription’s filter stored in the routing table. The usage of
advertisements or the application of advanced routing schemes such as identity-
or covering-based routing algorithms further increase the complexity as filter
expressions from potentially different scopes need to be compared to determine
and exploit their similarities [146]. Matching notifications as well as comparing
filters works best when done in a set of common superscopes.

Definition 25 (greatest common superscope set). Let S and T be two valid scope
sets associated with a notification or a filter. The greatest common superscope
set (GCSS) of S and T is given as S ∩ T .

Considering two components within a scope hierarchy, the greatest common
superscope set (GCSS) represents the part of the hierarchy that is shared by
both components. This is observable when comparing the scope sets of the
routing entries for filters F1, F4, and F6 in Fig. 4.5(a) with the position of the
components C1, C4, and C6 in the scope hierarchy in Fig. 4.4(a), respectively,
which issued the corresponding subscriptions. Since C1 and C4 only share the
root scope, the GCSS of their subscriptions is {R} ∩ {S, T} = ∅, while the
GCSS for subscriptions of C4 and C6 is {S, T} ∩ {S} = {S} as S is superscope
of T . If issued notifications, subscriptions, and advertisements are visible and
active in these scope sets, forwarding decisions can be made there. But for this
purpose, notifications and filters must first be stepwise brought upwards the
scope hierarchy into the GCSS for what they need to pass scope interfaces and
may get transformed.

Definition 26 (upward transformation). Let S be a scope set and S ∈ S be a
scope having no further subscope in S. When raising a message from S to the
superscope set S \ {S} the following upward transformation is applied:

(i) A notification n stays unchanged if outS(n) = true, otherwise it is replaced
by the empty message ε.

(ii) The filter F of a subscription s is narrowed to F ′ = F ∧ inS. If F ′ = false
for all notifications, s is replaced by the empty message ε.

(iii) The filter G of an advertisement a is narrowed to G′ = G ∧ outS. If
G′ = false for all notifications, a is replaced by the empty message ε.

Notifications that are not visible in the common superscope set become the
empty notification and need not to be handled. Subscription and advertisement

84 SCOPING

filters are combined with the interface filters of the subscopes that are not con-
tained in the superscope set. Their filter expressions are combined to a new
conjunctive filter that narrows the set of matching notifications as both original
filter constraints and imposed interface constraints need to be met. For subscrip-
tions, the interface’s in constraints are used, while the out constraints are applied
on advertisements. If the resulting filter expression becomes unsatisfiable (i.e.,
the constraints are contradictory) it needs not to be handled anymore.

Figure 4.5 exemplifies the forwarding process. The notification n6 is received
by broker B2 and needs to be forwarded according to its routing table. Since
n6 was relayed from B3, only the first three routing entries for broker B1 and
components C1 and C4 need to be considered as eligible forwarding destina-
tions. Furthermore, assuming that n6 was originally published by component
C6, cf. Fig. 4.4, it carries the associated scope set {S}. As the scope sets of
notification and eligible routing entries differ, an upward transformation to the
respective GCSS needs to be carried out before the notification can be matched
against an entry’s filter. Considering the third entry for destination C4, the
gcss({S, T}, {S}) is {S} and, thus, only the entry’s filter F4 needs to be trans-
formed. As it is a subscription filter it is narrowed to F4 ∧ inT against which n6
is matched afterwards. Considering the first two routing entries for destinations
C1 and B1, however, the gcss({R}, {S}) is just the root scope. Therefore, both
the notification as well as the subscription filters need to be transformed. First,
the notification is tested against the out filter of scope S and only if outS(n6)
succeeds, n6 is matched against the narrowed subscription filters F1 ∧ inR and
F2 ∧ inR, respectively. Finally, if n6 matches a narrowed subscription filter it is
forwarded to the corresponding destination.

Please note that every broker first performs upward transformations to the GCSS
for notifications and filters of different scopes. Subsequently, arbitrary matching
and routing algorithms can be applied without modifications to test notifications
and compare filters. In particular, further changes to support scoping are not
necessary. Transformations of notifications and filters are usually temporary to
just make forwarding and routing decisions. Thereafter, the original messages
with their associated scope sets are forwarded to components and neighboring
brokers. However, if a message is definitively leaving the scope overlay of one of
the scopes it is associated with, i.e., it reaches network regions where a particu-
lar scope overlay is not existend anymore, upward transformations may become
permanent for notifications and especially for filters that got narrowed. Further-
more, the respective scope is removed from the scope set the message is carrying.
This is necessary as brokers outside the overlay of a particular scope may not
know the scope’s definition and interface and may, thus, not be able to perform
an upward transformation to the GCSS for forwarding and matching. In the ex-
ample of Fig. 4.5 and Fig. 4.4, this is the case if notification n6 is forwarded by
broker B2 to broker B1 or component C1 whereby the notification finally leaves
the overlay of scope S. As S gets removed from the set of associated scopes, the
remaining scope set will only consist of the root scope.

MANAGEMENT 85

4.4 Management

Besides considering scope boundaries when routing event notifications, the inte-
gration of scopes into event-based systems and applications also requires com-
prehensive means for their management. In particular, mechanisms must be
provided to create and open new scopes as well as to close unneeded ones, to
assign scopes to application components, and to allow components and brokers
join and leave a scope.

4.4.1 Scope Components

To facilitate a modular design each scope is managed by a dedicated compo-
nent. Scope components are connected to the publish/subscribe system similar
to publishers or subscribers. In fact, any event-driven component may create
new scopes and manage them if it complies to the following definition.

Definition 27 (scope component). The scope component CS managing the
scope S is a regular event-driven component C that additionally fulfills the fol-
lowing requirements:

(i) CS provides the specification of scope S including the scope’s name, its
component selector and interface as well as optional scope attributes and
mappings.

(ii) CS is a registered member of the parent scope of S and maintains a direc-
tory by itself for scope components of direct subscopes to register.

(iii) CS provides access control by determining which components and brokers
are allowed to join the scope.

To instantiate a new scope it is first necessary, as stated in (i), to provide the
scope’s specification. Furthermore, as scope components are regular components
they are scope members, too. Thus, a scope component must join the parent
scope, as (ii) requires, in order to get its scope established. At the same time,
the scope component itself must allow others to create and register further sub-
scopes. However, statement (iii) grants the scope component the possibility to
control which other components are allowed to join its scope. Thereby, the com-
ponent can manage the membership of its scope and, thus, enforce access control
restrictions.

Letting regular components manage their own scopes has several advantages.
First, it allows for reusing the functionality already present in publish/subscribe
systems without the need to provide completely new broker interfaces. Second,
it relieves brokers by partly shifting the efforts of scope management to the
components. In fact, brokers provide just the mechanisms for scoping while the
components implement actual policies, e.g., the brokers extend a scope’s overlay

86 SCOPING

so that it includes new members but only the managing components decide whom
access is granted. Third, this separation of policies from mechanisms provides
more flexibility and allows for a tighter integration of scope concepts in event-
driven applications. The following sections discuss the mechanisms how scope
managing components and brokers together implement the assignment of scopes
as well as management of scope overlays within publish/subscribe systems.

4.4.2 Scope Assignment

Grouping components into scopes helps organizing publish/subscribe systems
and event-based applications, whereby different requirements and criteria usu-
ally need to be considered. Application developers, for example, may want to
ensure at design time that all components of a distributed application are as-
sembled in a common scope while administrators may want to customize scope
assignments at deployment or runtime to reflect the company’s organization
structure and ensure information policies. Thus, a flexible and scalable scope
assignment approach is needed that meets the different requirements and is able
to cope with large numbers of scopes and components.

Definition 28 (scope assignment). Given an inactive event-driven component
that gets connected to a broker. The component is activated and scopes are
assigned to it as follows:

(i) Each broker has a set of default scopes B configured by its administrator.
These scopes are imposed on the component when connecting to the broker.

(ii) Each component has a set of default scopes C specified by its application
developer. Joining these scopes is explicitly requested by the component
when connecting to the broker.

(iii) The set M of mandatory scopes is given by the union of B and C together
with all direct and indirect superscopes of these.

(iv) The set O of optional scopes is determined by all direct and indirect sub-
scopes of B and C.

(v) A scope S from the scope sets defined above is assignable to the component
if the scope’s component selector selS evaluates to true.

(vi) All assignable scopes from the mandatory and optional scope sets M and
O, respectively, are applied on the component.

(vii) The component is activated if all mandatory scopes M have been success-
fully applied, otherwise the component stays inactive.

The scope assignment as described above is an adaptable and customizable pro-
cess as it allows to consider aspects of application design as well as system

MANAGEMENT 87

Figure 4.6: Scope assignment process.

administration. Both application developers and system administrators may
specify mandatory scopes ensuring that their design criteria and organizational
requirements are incorporated. However, instead of enumerating all required
scopes it is sufficient to only name mandatory top level scopes. Subscopes are
dynamically tested using their component selectors whether they are assignable
and, if so, all assignable subscopes get automatically applied on the component.
Thereby, the assignment process stays extendable and maintainable as it is later
possible to refine the scope hierarchy at any time, whereby all changes can be
conducted without the need to modify any application component.

Figure 4.6 shows an example scope hierarchy of an international company to
illustrate the assignment process and demonstrate its flexibility and advantages.
The hierarchy consists of scopes defined by the company’s administrators to
organize the publish/subscribe infrastructure as well as scopes specified by the
developers of the software vendor whose applications the company uses to mon-
itor and control its business workflows. Under the top level scope company, the
system administrators have created an own subscope for the divisions finance,
marketing, and production to reflect the company’s organizational structure.
Furthermore, the top level scope locale contains subscopes for the different re-
gional conventions and settings that are employed at the company’s international
offices. Thus, there are subscopes de, en, and fr for the German, English, and
French conventions and settings, respectively. According to step (i) in the as-
signment process, each broker of the company’s publish/subscribe system has a
set of configured default scopes B that are applied on all connected components.
In this example, the default scope set consists of the top level scope company
together with the locale’s subscope de when assuming that the particular broker
is situated in Germany. According to step (ii), connected application compo-
nents may also request a set C of default scopes. Therefore, the application’s

88 SCOPING

vendor provides the top level scope vendor and subscopes for each application
and software product it is selling. The company uses a content management
system (CMS), an application for customer relationship management (CRM),
and software for identity and access management (IAM) offered by the vendor.
However, independent of which product an application component belongs to,
the application developers configured it to just request the vendor top level scope
in this example.

Based on the assumptions and configurations above, the mandatory scopes M
and the optional scopes O can be determined according to step (iii) and (iv)
of the definition, respectively. In the figure, mandatory scopes are printed with
bold font and borders while optional scopes have regular borders. Broker default
scopes B and component default scopes C together with their superscopes are
mandatory so that, in this case, M consists of the scopes company, de and its
superscope locale, and vendor. All subscopes of the default scopes are optional
so that O contains the company divisions finance, marketing, and production,
as well as the vendor’s products CMS, CMR, and IAM. The locales en and fr,
however, are neither mandatory nor optional as they are just siblings to the
broker default scope de. Thus, they are printed with dashed borders in the
figure. Step (v) and (vi) test mandatory and optional scopes whether they are
assignable. The scope’s selector is used to evaluate a component’s attributes
and, if successful, the scope is applied. Thereby, it is ensured that a component
is only grouped into those scopes whose specifications it fulfills. In the example,
the scopes production, de, CMS, and their superscopes are, thus, assigned to
component C1 while component C2 is grouped into the scopes marketing, IAM,
and respective superscopes.

After all assignable scopes are applied, a component is only activated in step (vii)
if all mandatory scopes are covered. In the figure, this is the case for component
C1 while component C2, however, stays inactive and is crossed out because the
German locale de is missing. Although C2 may comply to the French locale fr,
as depicted by the dashed line, the component is not activated as the German
locale is explicitly configured as a mandatory default scope of the broker. In
fact, the system administrators, thereby, enforce that this particular broker may
only host components that comply to the German locale. Regarding company
divisions and vendor products administrators and developers, respectively, use
a different approach. Here, just the top level scopes are are configured to be
mandatory defaults so that grouping the components into subscopes is solely
based on the scopes’ selector functions and the components’ attributes. This
ensures the flexibility to adapt, refine, and change subscopes as needed at any
time without modifying components or adapt broker configurations.

4.4.3 Joining Scopes

Implementing the scope assignment procedure as described in the last subsection
is challenging in a distributed publish/subscribe system. Scope components may

MANAGEMENT 89

be scattered over the network and their scope specifications may, thus, not be di-
rectly available at the broker a new component is connected to. Moreover, scope
overlays may need to be expanded to cover new components and be shrunk if
the components are removed again. However, much of the functionality inherent
to publish/subscribe systems can be reused for this purpose. Advertisements,
for example, announce new publishers in the network and, likewise, they can
also inform brokers about available scopes. Such advertisements are called scope
advertisements.

Definition 29 (scope advertisement). The scope advertisement aS of scope S
announces the publication of scope control messages for S, contains the scope’s
specification as well as its component selector, and is visible within the superscope
of S.

Figure 4.7 exemplifies the process of creating and joining scopes. After con-
necting to broker B5 and joining scope R, component CS creates and opens a
new subscope S which it manages. Thus, only broker B5 and component CS
are members of the new scope in the beginning. This subscope is advertised in
Fig. 4.7(a) in order to let other brokers and components know about its exis-
tence. Therefore, component CS creates a scope advertisement aS containing
scope specification and component selector. Advertisement aS is subsequently
disseminated within its superscope R and, thus, also reaches brokers B1, B2, and
B3 as well as connected components. However, it is not forwarded towards broker
B4 as B4 is not a member of the parent scope R. Brokers store the scope adver-
tisement in their routing tables and create an advertisement entry AS pointing
into the direction of scope S’s managing component. Moreover, by applying S’s
component selector on the attributes of newly connected components, a broker
can, thus, determine whether a component fits in the scope. If so, the broker
must join the scope’s overlay OS and become a member unless it already is. Us-
ing subscriptions components and brokers usually express the interest in certain
notifications and, likewise, corresponding scope subscriptions may also serve as
a request to join the scope.

Definition 30 (scope subscription). The scope subscription sS requests the
membership of scope S, contains the identities of the requesting components and
brokers, and is visible in S and the superscope of S.

In Fig. 4.7(b) the component C1 wants to join the new subscope S and, there-
fore, issues a corresponding scope subscription sS . Similarly, a broker may also
issue a scope subscription for any hosted component. As scope subscriptions are
visible in their enclosing superscope, they can be compared to available scope
advertisements and routed appropriately. Thus, brokers B2, B3, and B5 forward
subscription sS along the reverse path of the corresponding scope advertisement
towards scope S’s managing component. Each broker stores the subscription’s
filter FS in its routing table and creates a routing entry pointing into the di-

90 SCOPING

(a) (b)

(c) (d)

Figure 4.7: Creating and joining scopes: (a) CS advertises its new subscope T ;
(b) C1 subscribes scope T to join; (c) CS approves the join request;
(d) CS denys the join request.

rection of the requesting component. Moreover, along its way, the identities of
passed brokers are added to the subscription that are not members of the scope
yet. When arriving at managing component CS , scope subscription sS , thus,
carries the extended request to also admit brokers B2 and B3 to the scope in
order to join component C1. Based on these information, managing compo-
nent CS then decides whether the request is approved and the scope’s overlay
OS is expanded. If so, an approval is published, otherwise a denial.

Please note that several advanced routing algorithms such as identity-based rout-
ing or covering-based routing do not require all subscriptions to be necessarily
forwarded to the advertising component if filter similarities can already be ex-
ploited and leveraged along the path. In this case, an identical or covered scope
subscription would not reach the managing component anymore which, thus,
cannot admit the requesting component or broker to the scope. Nevertheless,
there are two different solutions. The first and simpler one is to make scope sub-
scriptions unique so that they are not identical to or covering each other. Since
there are no similarities to exploit anymore, all scope subscriptions would reach
the managing component again. The price to pay, however, are larger routing
tables and a decreased efficiency as advanced routing algorithms degrade to the
basic simple routing strategy.

MANAGEMENT 91

The second, more efficient solution is to distribute the admission of new scope
members and let brokers assist in the process. Therefore, the scope managing
component defines and publishes requirements and policies for new members to
join the scope that may, for example, require new components to provide par-
ticular certificates or new brokers to be situated in certain network segments.
Based on these policies brokers that already are scope members may then admit
new members to the scope on behalf of the managing component. Although
advanced routing algorithms are able to exploit their optimizations and realize
their full potential, there are other drawbacks regarding this approach. Primar-
ily, brokers must be able as well as trusted to strictly follow specified policies for
joining new components and brokers while, furthermore, the responsible scope
component looses control and flexibility about the scope’s management. Nev-
ertheless which approach is employed, a scope subscription requesting to join a
scope is, in both cases, replied with a scope notification published by either the
managing scope component or a broker on behalf of the scope component that
approves or denies the request.

Definition 31 (scope notification). A scope notification nS contains a con-
trol message for members of scope S supporting the management of its overlay.
A scope notification may especially approve (denoted as n+S) or deny (denoted
as n−S) the scope membership of requesting components and brokers.

Published scope notifications follow the reverse path of matching scope sub-
scriptions back to the members of the scope overlay. In case of a membership
approval it is forwarded towards the requesting component or broker expanding
the overlay along its way. Furthermore, all subscriptions and advertisements that
now became visible to new scope members are also forwarded along the path.
Figure 4.7(c) shows the admission of requesting component C1 to scope S. The
managing component CS responsible for S publishes the scope notification n+S in
order to approve the join request of C1. The approval n+S is forwarded according
to the brokers’ routing entries FS established by the preceding scope subscrip-
tion. Thus, it follows the reverse path of the scope subscription over brokers
B5, B3 and B2 towards the component C1 and successively expands scope S’s
overlay along the way. As a consequence, advertisements and subscriptions be-
longing to scope S are now visible to the new members or, at least, they are
not narrowed by the scope’s interface filters anymore. Thus, they are also for-
warded to update the respective routing tables of the brokers along the path.
This is depicted by the scope notification n+S followed by dots indicating that
other control messages such as newly visible advertisements and subscriptions
are sent immediately afterwards.

In case of a denial of the scope membership, a scope notification is also routed
towards the requesting component or broker and is informing about the rejec-
tion. Additionally, the unsuccessful scope subscription needs to be removed from
the routing tables of the brokers along the path. This can be accomplished by
letting the requesting component or broker simply unsubscribe the scope after

92 SCOPING

it received the denial. Using this approach, only regular publish/subscribe func-
tionality is exploited, but another unsubscription message is necessary and needs
to be routed towards the scope managing component to cancel the superfluous
routing entries. Alternatively and more efficiently, the scope notification itself
may immediately remove the routing entries. This, however, requires to process
a negative scope notification differently to regular event notifications as a bro-
ker’s routing table is also affected and modified. Figure 4.7(d) illustrates the
second approach. Managing component CS responsible for scope S publishes
the scope notification n−S in order to reject the join request of component C1.
The denial n−S is routed towards the requesting component C1 and removes the
corresponding scope subscription filters FS from the routing tables of brokers
B5, B3, and B2 along the path.

4.4.4 Leaving Scopes

When application components are removed and disconnected from brokers they
automatically leave the scopes they are members of. This is done by simply
unsubscribing the scopes in hierarchical order starting with the most specific
subscopes. If no scope subscription for a particular scope is left in a brokers
routing table, i.e., there is no other application component or neighboring broker
requiring the scope anymore, then the broker can also leave the scope. As
consequence, it will no longer receive or forward notifications published in this
scope and, hence, it can remove their routing entries that may still exist in its
routing table. However, there is one exception. If notifications comply to the
scope’s interface, they are allowed to pass the scope’s boundary and are also
visible outside. Likewise, subscriptions and advertisements are combined with
the scope’s interface filters and may be relevant outside, too. Therefore, the
broker has to conduct an upward transformation (cf. Def. 26) of every extended
advertisement and subscription routing entry whose scope set contains the scope
to leave. Thereby, the entry’s filter gets narrowed by the scope’s in and out
interface, respectively. Only if the narrowed filter becomes unsatisfiable, the
entry is safely removed.

When scope components are removed and disconnected from brokers, their pro-
vided and managed scopes get closed. This is done by revoking the scope’s
advertisement. Brokers receiving a scope unadvertisement process it like any
other regular unadvertisement, remove the routing entry pointing to the scope
managing component, and delete corresponding scope subscriptions if no other
scope component has advertised to also manage the scope. Thereby, application
components are forced to leave the scope and its subscopes which is accomplished
as described in the paragraph above. Especially, an upward transformation is
conducted for every advertisement and subscription issued within the scope to
leave. Moreover, in case of a mandatory scope, the application component is
deactivated with all remaining advertisements and subscriptions being revoked.
Otherwise, the application component may continue, but has to renew its sub-
scriptions and advertisements as these are not restricted by filters of the scope

IMPLEMENTATION 93

interface anymore. However, it is not recommended to close and unadvertise a
scope if there are still application components active inside as this may lead to
race conditions. Notifications published inside the scope may still be in tran-
sit within the broker network while subscribed components are already forced
to leave the scope and, thus, do not receive them anymore. To avoid this, a
scope managing component may publish a scope notification in advance that is
delivered to all scope members in order to announce the closing of the scope.
Thereby, application components get the opportunity to prepare and execute
precautionary actions.

4.5 Implementation

Scoping has been implemented and integrated into our publish/subscribe mid-
dleware Rebeca. This section discusses important considerations and imple-
mentation aspects. Its purpose is twofold. First, we proof the feasibility of
efficiently embedding scoping inside the middleware layer. While previous sec-
tions lay the conceptual foundations of scopes and describe their integration and
management in general, here, we provide further insights into middleware inter-
dependencies, highlight several implementation details, and open the possibility
to a quantitative evaluation. Second, by implementing scoping as a pluggable
module, we demonstrate the advantages and benefits of Rebeca’s plugin ar-
chitecture. The emphasis on flexibility and modularity notably eases the whole
integration process. In the following, we give an overview about the scope plu-
gin’s structure, explain necessary extensions to Rebeca’s filter framework, and
elaborate on handling of application and scope components.

4.5.1 Scope Plugin

A Rebeca plugin is usually self-contained and primarily consists of two parts:
i) the plugin engine providing the main processing logic and ii) the plugin sinks
allowing to modify or transform event messages before they are sent or after
they are received. For each plugin, there is only one global engine in the broker’s
main processing stage, whereas a sink instance is created for every connection
the broker maintains to a component or another broker. Additionally, the scope
plugin also depends on employed routing algorithms and their respective plugins
as it needs access to advertisement and subscription tables in order to modify
stored entries and filters if the scope membership changes. Figure 4.8 shows a
UML class diagram visualizing the plugin structure and its dependencies.

ScopeEngine and ScopeSink inherit from their respective base classes all necessary
properties and operations to be seamlessly plugged into a broker’s processing
infrastructure. Each broker engine offers a general process method for handling
event notifications and keeps a reference to the next engine in a broker’s engine
chain to let the following plugin proceed the processing. Each broker sink may

94 SCOPING

Figure 4.8: Overview about Rebeca’s scope plugin.

be passed by event messages in two opposite directions: downwards after being
processed and to finally get transmitted to a neighbor broker or upwards after
being received from a neighbor to get finally processed. The sink, therefore,
provides the methods out and in, respectively, to transform or modify event
notifications on their way, if needed. References down and up point to the next
lower and upper sink in the sink chain, respectively, that the event message is
going to pass next.

Regarding scope functionality the ScopeEngine features dedicated private pro-
cessing methods for scope control messages (i.e., scope advertisements, scope
subscriptions, and scope notifications) introduced in Sects. 4.4.3 and 4.4.4 to
manage scope membership and scope overlays within the broker network. When
handling a ScopeAdvertisement, the scope specification contained in the adver-
tisement is extracted and stored in the scope table for later lookup and usage.
Forwarding the advertisement, however, is done by the advertisement engine as
part of one of the broker’s routing plugins. When processing ScopeSubscriptions,
the broker’s identity and credentials are added to the subscription for joining
the scope. Again, forwarding the subscription is actually carried out by the
responsible routing plugin. ScopeNotifications may contain approvals or denials
for a scope membership. In case of an approval, the connection sinks and their
scope sets are updated to reflect the now extended scope overlay. In case of
a denial, the corresponding scope subscription received by the join request is
removed from the subscription table. In both cases, the scope notification is,
thereafter, forwarded towards the requesting component.

IMPLEMENTATION 95

ScopeUnadvertisements and ScopeUnsubscriptions are also handled by dedicated
variants of the engine’s overloaded process method. Although message forward-
ing is conducted by the routing plugins as well as maintaining the advertisement
and subscription table in general, the ScopeEngine still needs to update the scope
and overlay membership and conduct an upward transformation of stored filter
entries if a scope is left. For the latter, the routing tables (i.e., the Subscrip-
tionTable and the AdvertisementTable) provide a select method allowing to query
for specific entries, for example, for advertisement or subscription filters issued
in a particular scope. By iterating through the returned set of routing entries,
the table can, thus, be updated by narrowing affected filters one by one.

Supporting scope management, the ScopeSinks maintain and administer the bro-
ker’s membership in the overlay networks for subscribed scopes within the pub-
lish/subscribe infrastructure. Therefore, each ScopeSink manages a set of scopes
containing only those scopes whose overlay network includes the connection the
sink belongs to. The union of the scope sets of all connections a broker maintains
determines the overall set of scopes in which the broker is a member and is able
to receive corresponding notifications. To expand or to diminish a scope over-
lay the ScopeSink provides the methods add and remove that extend or shrink,
respectively, the overlay of a particular scope along the edge within the broker
network that corresponds to sink’s connection. Additionally, the ScopeSink is
responsible to enforce visibility constrains. The overridden in and out methods of
the sink ensure that only those notifications and control messages are forwarded
along the sink’s connection that are visible in scope overlays the connection be-
longs to. Therefore, filters may be narrowed, notifications may be transformed,
or messages may even dropped if necessary.

4.5.2 Scoped Filters

In order to embed scoping directly into the publish/subscribe infrastructure,
we require, as described in Sect. 4.3.2, that both event notifications and filters
are brought to the GCSS before any forwarding or routing decision is made.
Therefore, we additionally demand that all messages are correctly tagged with
the scopes they belong to and that routing entries are extended to store scope
information along with filter expressions. As side effect of Rebeca’s functional
modularity, the forwarding and routing logic as well as the management code
for subscription and advertisement tables are scattered over several classes in
different plugins. Adapting these to support scoping is, hence, costly, tedious,
and time-consuming. However, Rebeca provides an extendable filter framework
that is easy to customize and, thus, more promising to integrate and implement
scoping.

Rebeca’s filter framework has been designed with extensibility and customiz-
ability in mind. It eases the task for developers to subsequently add new filter
classes for novel event notifications or to supplement existing filters with tailored
versions that, for example, allow to better specify certain event notifications or

96 SCOPING

Figure 4.9: Customized filter framework supporting scopes.

that feature more efficient implementations. Figure 4.9 shows a UML diagram of
Rebeca’s filter framework giving an overview of the framework’s most impor-
tant classes. In Rebeca, every filter class has to implement the Filter interface.
This interface specifies the method match to determine whether a given notifi-
cation fulfills the filter constraints, the methods identical and covers to test two
filter expressions for equivalence or whether one subsumes the other, respec-
tively, as well as the method overlaps to determine whether two filters may have
common notifications that both match. Furthermore, the operations and, or, and
not enable the Boolean composition of filter expressions. The class AbstractFil-
ter provides a starting point for new filter implementations. Even Rebeca’s
basic filter classes have been derived from it. Except for matching of event no-
tifications, AbstractFilter features safe default implementations of the methods
required by the Filter interface and contains a part of Rebeca’s advanced filter
dispatching logic which is discussed later. In order to implement a new filter,
a developer may, thus, simply extend the AbstractFilter class and override or
overload just those methods that are specific to the new filter type.

Rebeca’s filters can be grouped into two categories: simple filters and complex
compound filters. Simple filters usually match a single constraint on an event
notification. The AttributeFilter, for example, allows to specify a value range on
a single name/value pair of the notification, while the Boolean TrueFilter and
FalseFilter even always return true and false, respectively, independent of the
tested notification. Thus, the latter ones are primarily for internal usage. Com-
plex filters are compound filters usually resulting from Boolean compositions of

IMPLEMENTATION 97

simple or other complex filters. For example, the AndFilter, the OrFilter, and the
NotFilter are the results of the respective Boolean operations, if the resulting ex-
pression cannot be minimized to a simple filter again. For constructing complex
CompoundFilters, the filter framework follows the well known composite design
pattern [81]. Thereby, it is possible to dynamically assemble sophisticated and
arbitrary complex filter expressions.

When extending Rebeca’s filter framework, the existing filter classes are usu-
ally unable to handle added filters appropriately and, thus, return safe default
values that do not allow for any routing optimization or filter minimization.
Developers are, therefore, encouraged to also provide filter logic to determine
similarities between filter expressions of new and old classes as well as to sim-
plify compositions thereof. To integrate this logic into the existing framework
a double dispatch mechanism is needed that chooses the appropriate method
based on the runtime type of the two filters to be compared or composed, re-
spectively. Unfortunately, Java [84] in which the current version of Rebeca is
written does not provide multimethods and a multiple dispatch mechanism [151]
as a built-in language feature as programming languages like Common Lisp [211],
Clojure [90], or Groovy [109] do as default. Thus, we have to emulate it.

Rebeca’s filter dispatching logic is divided into the AbstractFilter and the Filter-
Dispatcher class. AbstractFilter introduces the new methods isIdentical, isCover-
ing, isCoveredBy, isOverlapping, doAnd, and doOr that actually contain the logic
to perform similarity tests or filter compositions, respectively, while the methods
identical, covers, and, and or declared by the general filter interface just start the
dispatching process by calling the correspondent methods of the FilterDispatcher
class. Based on the runtime types of the passed filters the FilterDispatcher uses
a function table to look up which filter class or super class provides the most
appropriate method to execute. Thereby, more specific methods, e.g., methods
with filter logic declared in filter subclasses for a restricted set of filter types, are
preferred over more general methods. At last, if no other suitable methods are
available, the basic implementations of AbstractFilter are chosen to guarantee a
safe default behavior. Hence, to integrate new filter logic, a developer just needs
to override or overload the isIdentical, isCovering, isCoveredBy, and isOverlap-
ping methods as well as the doAnd and doOr methods in the derived filter class.
Thereby, it is sufficient to only provide implementations for those methods that
handle new and anticipated combinations of filter types. The FilterDispatcher en-
sures that these new methods are executed only when appropriate or, otherwise,
safe default values are returned.

Please note that since the covering relation is not symmetric, the two methods
isCovering and isCoveredBy need to be dispatched for testing whether one filter
subsumes the other or vice versa. Contrarily, to determine a filter’s logical
complement no sophisticated dispatching is necessary as negation is an unary
function. Thus, there is no need to introduce an additional doNot function.
Likewise, the match function is not dispatched which determines whether a given
event notification fulfills the filter constraints. As filters are usually defined for

98 SCOPING

just a particular type of notifications, the dispatching mechanism causes too
much overhead in the majority of cases. Using reflection [66, 127], it is possible
to automatically build up the function table at system startup that is used
by the FilterDispatcher class. As several routing algorithms especially aim at
exploiting filter similarities or simplifications, an efficient dispatching process is
crucial. Therefore, it is notably beneficial to manually optimize the order in
which filter classes are stored and dispatched in the table or to even hard code
the main dispatching logic if performance is of outmost importance. As the
main dispatching logic is completely enclosed in the FilterDispatcher class, the
framework remains maintainable.

By leveraging compound filters as well as the dispatching mechanism of Re-
beca’s filter framework it is easy to embed scoping into publish/subscribe rout-
ing. The main idea is to store required scope information within the filter itself.
Therefore, we introduce the ScopedFilter as a new compound filter that encap-
sulates another, arbitrary filter and additionally holds its accompanying set of
scopes. By wrapping each filter in a broker’s routing table in a ScopedFilter, it
is, thus, possible to augment the routing entries with scope information without
the necessity to change or adapt the table’s management logic. Furthermore, the
ScopedFilter class overrides all inherited methods that are responsible to match
event notifications or test for filter similarities. Wrapped filters as well as event
notifications are first brought to the GCSS and transformed, if necessary, before
being evaluated or tested as usual. Although ScopedFilters may contain arbi-
trary complex filters, they are not subject to any filter composition itself. The
filter dispatching logic ensures that the new, overridden methods are applied
whenever ScopedFilters are involved. Thereby, it is guaranteed that scope con-
straints are considered automatically whenever event notifications are matched
or routing decisions are made.

Furthermore, in order to support the management of scopes the ScopeName-
Filter class is added to the filter framework. A ScopeNameFilter is a simple filter
directly derived from the AbstractFilter class. Its purposes is twofold. First, it
uniquely identifies a particular scope and, hence, is used in scope advertisements
and scope subscriptions to clearly specify which scope is offered or requested,
respectively. Second, it matches all control notifications published by the com-
ponent which is managing the particular scope. Thereby, it is ensured that mem-
bership approvals or denials as well as other management information reaches
requesting components and scope members.

To sum up, Rebeca’s filter framework eminently eases the integration of scop-
ing. Furthermore, it is flexible enough to even allow the gradual adoption of
scoping within the publish/subscribe infrastructure. Event-driven applications
with scopes and those without may run in parallel without interfering with each
other. Notifications and filters without scope information are implicitly assumed
to simply belong to the root scope.

IMPLEMENTATION 99

Figure 4.10: Implementation of scope broker and scope component interface.

4.5.3 Scope Components

Beyond just being passive scope members, in Rebeca, regular application com-
ponents may also actively define, create, and manage their own scopes. To
support components in administering their scopes Rebeca’s scope plugin pro-
vides a dedicated component sink with elementary management logic including
often needed, basic scope operations for the components to use. The ScopeCom-
ponentSink belongs to the middleware’s client library and is plugged into the
component’s connection to its hosting broker. Its purpose is twofold. First, it
transparently tags passing event notifications, subscriptions, and advertisements
with appropriate scope information. Thus, even legacy components and appli-
cations may be deployed and seamlessly integrated in publish/subscribe infras-
tructures with scopes. Second, it provides components that depend on scoping
the necessary interface to access management functions and scope operations.
Figure 4.10 shows a UML diagram giving an overview about the ScopeCompo-
nentSink, implemented interfaces and related classes as well as offered functions
and operations.

The ScopeComponentSink class extends the AbstractComponentSink class and
inherits properties and logic to be easily plugged into the connection between
component and hosting broker. Methods in and out allow to modify and trans-
form event notifications after being received from or before being send to the
broker, respectively. Similar to the broker-side, component sinks can be chained,
too. Thus, up and down point to the next upper and previous lower sink in the

100 SCOPING

sink chain, respectively. Custom components usually extend the AbstractCom-
ponent class and override inherited methods as needed. Methods init and exit
allow components to perform initializations after component creation and to free
resources before destruction, respectively, while methods activate and passivate
are called for starting and stopping component threads, respectively.

To facilitate scope management, however, components and their sinks need to
implement additional interfaces. The ScopeBroker interface declares methods
for scope creation and membership management and is implemented by the
ScopeComponentSink. Methods join and open allow components to explicitly
request the membership in an existing scope or to define and create an own
new scope with corresponding overlay network, respectively. Methods leave and
close are, contrarily, used to quit a scope membership and to revoke a previ-
ous scope declaration, respectively. Furthermore, the ScopeComponentSink is
responsible to implicitly assign available scopes based on configuration settings,
scope selector functions, and component properties as described in Sect. 4.4.2.
Thereby, the sink ensures that the component is not activated until it has joined
all mandatory as well as available optional scopes and subscopes.

To perform the scope assignment process, the sink must be able to access a com-
ponent’s attributes and properties. The ScopeComponent interface, therefore,
provides the methods put, get, and remove to add new or modify existing at-
tributes, to query their values, and to eventually delete them again, respectively.
Finally, the approve method allows a component managing its own scopes to de-
cide which other components are admitted as scope members. For each request
reaching the managing component, the approve method is called and the identity
as well as provided credentials of requesting components and brokers are passed.
A scope membership is granted if the method finishes normally. It is denied if
an exception is thrown. The exception’s cause is added to the scope notification
that is subsequently generated and send to the requesting component in order
to explain why the scope membership is denied.

The AbstractScopeComponent class bundles all necessary operations and inter-
faces to conveniently manage a component, its attributes, and scopes. While the
ScopeComponent interface is actually implemented, the class, however, does not
contain own logic to realize any ScopeBroker method. Instead, it acts as proxy
which forwards all calls to the respective ScopeComponentSink instance. Never-
theless, the AbstractScopeComponent class is intended to be a starting point for
custom components. Developers are encouraged to extend this class and add or
override methods as needed to efficiently implement advanced components that
leverage and exploit scoping to their advantage.

4.6 Related Work

Scoping is a concept familiar to every computer scientist. In high-level program-
ming languages that are commonly used today, a scope determines the context

RELATED WORK 101

in which a certain name, e.g., a variable, is associated with a particular entity,
e.g., a value. Thereby, the scope1 limits the visibility of the variable and ensures
that its value cannot be accessed throughout the whole program. For example,
a local variable can only be accessed within its defining function as outside the
function block it has no meaning. Scoping is, thus, an essential prerequisite for
structural programming [50] facilitating elementary concepts such as informa-
tion hiding [165] and encapsulation [21] that help us mastering the complexity
of modern software systems.

Although scoping has been introduced in programming languages more than
half a century ago [6] and is deeply ingrained today, it is all the more surprising
that the majority of publish/subscribe systems does still not provide adequate
abstractions and comprehensive means to easily manage and control the visibility
of components and their event notifications. Nevertheless, several approaches
exist in research literature, some of which directly deal with scoping, others of
which focus on different aspects casually affecting visibility. In this section, we
give an overview about related approaches and summarize their ideas.

4.6.1 Visibility

The need for an engineering methodology to build structured event-based sys-
tems and applications was first expressed by Fiege et al [71, 73]. Engineering
requirements are derived to facilitate the design of modular systems considering
visibility as central abstraction to achieve such modularity [72]. Consequently,
scopes are introduced as primary engineering means to bundle components and
limit and control the visibility of their event notifications. In [74, 75], a more
formal discussion of event-based systems with scopes is given accompanied by
trace-based specifications and implementation schemes that enable scoping on
top of a simple, flat notification service without structuring means. In [68],
Fiege further explores the design space for implementing scopes and engineer-
ing event-based systems and delivers a comprehensive as well as detailed insight
into the field. Advanced concepts like scope interfaces and attributes, trans-
mission policies, and notification mappings are elaborated while the benefits
and drawbacks of different implementation approaches are discussed. The latter
include collapsing scope hierarchies into extended filter expressions, mapping
scopes onto multicast groups or dedicated event brokers as well as scope overlay
networks formed by integrating visibility constraints into the publish/subscribe
routing layer. This work is summarized in [147] while important aspects are also
highlighted in [69].

In our work, we pick up many ideas from Fiege, most prominently, we also con-
sider visibility as the major abstraction to facilitate modularity and scopes as
adequate structuring means to control its extend. However, there are decisive
differences caused by dissenting intentions, too. From a software engineering

1 More precisely, the lexical scope of a statically bound variable whereas dynamic binding
leads to an indefinite scope. See Moreau [140] for a distinction of both.

102 SCOPING

point of view, scopes fulfill a twofold role. First, a scope is a unit for abstraction
that bundles a set of related components, offers higher-level functions that are
jointly implemented by its members, provides a common interface to access these
functions similar as components do, and may, thus, itself become subject to a
recursive composition process. Second, a scope is also a unit for encapsulation
that provides a shielded environment for components to interact by constraining
the visibility of event notifications that are published or subscribed by its mem-
bers. While Fiege primarily concentrates on the former role of scopes we, on the
contrary, focus on the latter. Scopes are well suited to bundle components for
orchestration, to filter, direct, and fine-tune the information flow between them,
and to provide environment as well as context information. Focusing on these
goals allows us to simplify many aspects in scope handling.

Furthermore, Fiege investigates and evaluates several different approaches and
architectures to integrate scoping whereas we just consider distributed publish/
subscribe infrastructures based on a network of cooperating brokers as target
platform. Reducing the number of architectural choices enables us to tightly
integrate scoping with publish/subscribe routing and to provide optimized and
more efficient implementations. In the following, we pinpoint the similarities
and differences in detail.

As scopes bundle components to new software artifacts that itself can recur-
sively be bundled in superscopes, Fiege, thus, represents a structred event-based
system by a directed graph that denotes the component/scope and scope/super-
scope relationship, respectively. Based on this scope graph, Fiege subsequently
introduces component interfaces along the graph’s edges, describes upward and
downward delivery paths for notifications, and finally defines the visibility of
components as well as event notifications. However, by introducing scopes as
simple sets of components as done in Sect. 4.2, we are usually able to give more
natural and straightforward definitions of these terms and concepts based on
set theory. Likewise, it is possible to decompose a system into component sets
and more specific subsets. In fact, the resulting set hierarchy, or scope hierarchy
as we call it in Sect. 4.2.2, resembles Fiege’s scope graph. Both describe and
represent the system’s structure and can often be mapped onto each other.

Usually, components are bundled in scopes that are somehow related and share
common properties, e.g., the kind of service they jointly provide, the subsystem
where they are deployed, or the organizational unit to which they belong. Thus,
it is possible to factor common properties out and attach them as attributes to
enclosing scopes as described in Sect. 4.2.4. This is especially useful if these
properties are not yet known at design time, for instance, if the organizational
unit responsible for a certain set of components is not assigned until deployment.
Scope attributes provide an effective and convenient way to flexibly add and
incorporate environment and context information as well as configuration data.
Furthermore, we allow scope attributes to be inherited, to get overridden, and
to transparently augment components and event notifications in order to better
characterize and classify subscopes and published events therein.

RELATED WORK 103

Consequently, we primarily use notification mappings as introduced in Sect. 4.2.6
to control the visibility of their attributes when crossing scope boundaries, for
instance, by removing certain attributes or adapting their values. Fiege also
introduces scope attributes as well as notification mappings [68]. However, both
concepts serve different purposes. Scope attributes are used to annotate the
scope graph to support system composition by labeling interfaces and services
that are either provided or required by a particular scope and its components.
Notification mappings address heterogeneity issues occurring at composition by
transforming event notifications at scope boundaries, e.g., from a data model
used by components inside the scope to a data representation only valid outside
and vice versa.

Regarding the implementation of scoping, Fiege investigates a variety of ap-
proaches and platforms while we primarily focus on distributed publish/sub-
scribe systems whose brokers correspond to the modular architecture presented
in Chap. 3. This has several advantages of which a tight integration into the pub-
lish/subscribe routing layer and a high reusability of existing publish/subscribe
functions are the most important. According to our modular broker architec-
ture, we provide scoping as a pluggable feature that is compatible with all major
routing algorithms. Furthermore, all operations required for scope management
are mapped onto standard publish/subscribe features so that components may
easily advertise own scopes, subscribe to others and are notified on updates.
This is in contrast to proposed solutions of Fiege that also foster the combina-
tion of routing and scoping but still require extensive changes to existing routing
algorithms and tables as well as the addition of new data structures and mes-
sage types. In particular, each broker needs to maintain a separate routing table
per hosted scope which may internally reference other tables according to scope
interfaces and mappings defined on the edges of the scope graph.

This does not only introduce a lot of management overhead but may also lead
to the duplication of notifications send to a single neighbor or component if mul-
tiple delivery paths over different tables exist. Thereby, duplication may occur
inside a single broker or on different brokers of the network and, unfortunately,
both cases are quite costly to counter. As we, however, store all advertisements
and all subscriptions together with their scope affiliation in a single routing ta-
ble each, we are able to efficiently avoid duplicates. Nevertheless, there is a
computational price to pay. Notifications and filter expressions may need to be
temporarily transformed or narrowed, respectively, before they can be matched
or compared in a common superscope. But, if possible, just the original no-
tification or filter is forwarded to a neighbor broker or component. It is only
duplicated or permanently transformed when absolutely necessary, e.g., if send
to two distinct destinations in different scopes. Hence, there is a trade-off be-
tween compact routing tables requiring computational overhead on the one hand
and expanded routing tables causing a high management overhead to counter
duplicates on the other hand.

104 SCOPING

4.6.2 Security

In general, information security includes all measures to protect the confiden-
tiality, the integrity, and the availability of data that is stored, processed, or
transmitted within a system [227]. Securing information assets in a publish/sub-
scribe system is especially challenging due to the loose coupling of components
and their indirect style of communication. For example, it is hard to guarantee
the confidentiality of a published notification if neither its receivers are known
a priori nor it is even desired to find out their identities. Further security con-
siderations for publish/subscribe systems are given by Wang et al. [222].

Nevertheless, information security in publish/subscribe systems is an active field
of research offering approaches and solutions that, similar to scoping, allow to
define, configure, and administer in detail what information, e.g., which notifica-
tion, subscription, or advertisement, is visible to whom, e.g., which component
or broker. For instance, Miklós [137] shows how to define detailed and fine-
grained access control and visibility restrictions that even consider individual
notification attributes as well as their values.

Role-based access control (RBAC) [195] schemes are well suited to enforce visi-
bility constrains in publish/subscribe systems. Roles specify particular system
or application functions and serve as intermediate between principals and priv-
ileges. On one side, roles are assigned all privileges that are required to fulfill
their function, for example, a service provider is granted the right to subscribe
to client requests and publish replies while clients are allowed to issue service
requests and receive the results. On the other side, roles are associated with
principals that fulfill the specified functions, for example, all components that
actually implement the particular service and those components that are allowed
to use it, respectively. By introducing roles it is, thus, possible to effectively man-
age and control access restrictions and visibility constrains while preserving the
inherent loose coupling of components in publish/subscribe systems.

To our knowledge Belokosztolszki et al. [15] were the first who integrate RBAC
into publish/subscribe systems. The prototype implementation is based on the
Hermes publish/subscribe middleware [178, 179, 180] and the Open Architec-
ture for Secure Internetworking Services (Oasis) [10, 11] contributing the access
control logic. In order to publish notifications and subscribe to events, applica-
tion components need to provide credentials to Hermes brokers that prove their
membership in a role which has the necessary privileges. Thereby, privileges may
be individually granted for distinct event types. Likewise, a broker must be au-
thorized by the owner of the event type to handle corresponding notifications,
subscriptions, and advertisements. To prove its authorization to neighbors and
clients, a broker needs a valid X.509 certificate [44] that is signed by the owner
of the event type or that is part of a certificate chain with the owner as root.

Bacon et al. [7, 8] and Pesonen et al. [173, 174, 175, 176] introduce a decentral-
ized administration of roles, refine applied encryption mechanisms, and employ

RELATED WORK 105

advanced key management techniques to extend the work to multi-domain en-
vironments and to efficiently manage those. By encrypting notifications and
filters confidentiality is even ensured if messages are routed over brokers that
are not fully trusted to handle the particular event type. Moreover, by individ-
ually encrypting event attributes it is, thus, possible to practically adjust and
fine-tune the level of information visibility and required trust at will. Singh
et al. [205, 206, 207, 208] present a comprehensive case study that employs
publish/subscribe with access control in collaborative healthcare environments,
e.g., homecare environments where a patient’s well-being is remotely monitored.
While health information is sensitive and must be protected for privacy reasons,
it must, at the same time, also be shared between involved care providers such as
doctors, care nurses, specialists, pharmacies, or technical support as appropriate
to afford a proper treatment.

Although access control as well as scoping limit the visibility of events and in-
formation in publish/subscribe systems, both have different intentions. Access
control mechanisms manage and monitor component privileges in order to en-
force the confidentiality, integrity, and availability of data in the system while
scoping bundles components to structure and organize the infrastructure and
its applications. Thus, for a component within a scope, there are no further
access restrictions preventing it to interact with any other component of the
same scope or to publish and subscribe to arbitrary event notifications. How-
ever, access control restrictions may be in place as described in Sect. 4.4.3 when
a component requests to join a scope. Furthermore, notifications are primar-
ily filtered or transformed at scope borders for engineering purposes enabling
brokers to exploit scope structures for optimizations. Contrarily, access control
restricts the visibility of notifications or notification attributes to ensure confi-
dentiality. Usually, this is accompanied with encryption on infrastructure level,
which poses a considerable overhead on brokers, in particular, if brokers do not
completely trust each other. In this case, scoping may help to organize domains
with different levels of trust.

4.6.3 Context

In general, context may be seen as any useful information to better character-
ize the situation of an entity such as a person or an object of interest [53]. In
particular, context may provide information about location and time as well as
ongoing activities and identities of persons and objects around. Many novel ap-
plications increasingly depend on context information to adapt and tailor their
functionality to the present situation and existing environment conditions. Such
context-aware applications often make use of publish/subscribe as communica-
tion paradigm as it enables publishers to easily add context attributes to event
notifications and, moreover, additionally allows subscribers to conveniently filter
on those. Thereby, it is possible to restrict the visibility of events to those no-
tifications that are relevant for a particular situation. Similar to scoping, other
notifications are hidden.

106 SCOPING

First publish/subscribe systems and algorithms explicitly designed to support
context-aware applications primarily focused on aspects of location and mobility.
Meier and Cahill [132, 133], for example, propose a proximity-based event model
for mobile ad hoc networks (MANETs). The dissemination of event notifications
is simply restricted to a limited geographical area around the publisher. Eugster
et al. [59] enable publishers as well as subscribers to define a geographical range
around their current position as publication or subscription space, respectively.
As a consequence, notifications and subscriptions are only matched against each
other if both the publisher and subscriber are located within each others’ space.
To support location-based services in pervasive environments, Chen et al. [37]
augment event notifications with location data and allow subscribers to filter on
these information using spatial predicates. Although the evaluation of predicates
is offloaded to clients, the approach follows a central architecture. Instead, Cu-
gola and de Cote [45] consider a distributed broker network dispatching events
and subscriptions associated with geographical scopes. Brokers gather and main-
tain location information of clients and other brokers to limit the forwarding of
notifications and subscriptions to those within relevant scopes. On the one side,
this saves forwarding traffic, but on the other side, it requires brokers to keep
the gathered location data up-to-date which may also be quite costly.

Symmetric subscription systems as introduced by Rjaibi et al. [191] are a general
extension of the regular publish/subscribe model that is not limited to location
data or context information. In symmetric publish/subscribe , both event notifi-
cations as well as subscriptions carry attributes and predicates at the same time.
Thus, they only match if the predicates of each side are fulfilled by the attributes
of the other. Although originally not intended by the authors, symmetric pub-
lish/subscribe systems are well suited to encode context information into system
messages and bind their visibility to arbitrary constraints. Cugola et al. [47]
take up the idea but draw a clear distinction between a message’s content and
its context and the predicates that refer to each part. This is a requirement in
order to implement the efficient forwarding and routing strategies proposed by
the authors for a distributed broker network. Beyond that, Frey and Roman [79]
present an enriched context-aware publish/subscribe model that, besides filtering
on a publisher’s or subscriber’s context, allows to define a context of relevance
for each publication as well as a context of interest for each subscription. Thus,
for a positive matching, the publisher’s and subscriber’s context as well as the
context of relevance and interest must overlap. Although the publish/subscribe
model itself is generic, the described implementation solely focuses on location-
awareness in a MANET environment.

In contrast to the related work above, scoping approaches the idea of context
and context-awareness from a different angle. A scope bundles components and
provides a protected environment for interaction limiting the visibility of event
notifications to those relevant in the scope’s context. Hence, publishers and sub-
scribers do not need to augment their notifications with context attributes and
provide additionally context constraints, respectively, in order to define which
events are relevant. Instead, it is the scope specification that determines the

DISCUSSION 107

components relevant in the particular situation. As described in Sect. 4.2.1 and
Sect. 4.4.2, the component selector of a scope evaluates component attributes to
identify those publishers and subscribers the scope is applicable to. Although
top level scopes must explicitly be requested by components or brokers for man-
agement reasons, their subscopes are assigned automatically on availability and
relevance. Moreover, it is even possible to characterize the interaction context
itself by defining scope attributes as introduced in Sect. 4.2.4 that are passed
on to all members. Exploiting this feature components can be made aware of
their environment, e.g., by providing scope attributes describing their current
location or ongoing activities. However, since creating and closing scopes as
well as joining and leaving them causes a considerable management overhead for
brokers and components, more light-weight approaches as presented above may
be preferred in environments that are highly dynamic. Nevertheless, scoping
provides a competitive alternative for domains of moderate dynamics.

4.7 Discussion

In this chapter, we introduced scoping as a module concept to structure publish/
subscribe systems and organize event-driven applications. Scopes bundle related
components and provide a protected environment for interaction. Therefore,
scopes restrict the visibility of events and limit the communication with compo-
nents outside the scope to those notifications specified in the scope’s interface.
Scopes can be nested enabling a hierarchical system decomposition according
to different criteria and aspects. However, to facilitate the design of versatile
and flexible infrastructures, components may be members of several scopes at
the same time if multiple criteria apply. Moreover, scope attributes help an-
notating scopes and the components therein with arbitrary information. They
allow system administrators and application developers to efficiently provide and
incorporate configuration data or context information and, thereby, ease compo-
nent orchestration and system organization. Formally, we defined the semantics
of scopes based on concepts of set theory and showed the applicability and use-
fulness of these definitions by illustrative examples. Likewise, we introduced
scope attributes and inheritance as well as basic notification mappings.

Regarding the integration of scoping into distributed publish/subscribe infras-
tructures, we presented a solution based on scope overlay networks that directly
embeds scopes into the content-based routing layer. Primarily, this allows to
exploit the scope structure for routing optimizations. Thus, it is possible to
really restrict the forwarding of event notifications, subscriptions, and advertise-
ments within the broker network according to defined scope boundaries instead
of just filtering out non-visible notifications before passing these to application
components. Although tightly integrated into the routing layer, our approach
is compatible with all major content-based routing algorithms. Moreover, we
were also able to map necessary scope management functions to conventional
publish/subscribe operations reusing existing data structures and middleware

108 SCOPING

logic. For example, the creation of a new scope is advertised within the net-
work so that brokers and components may subscribe for membership and get
notified on updates and changes. Finally, we discussed concrete implementation
details in order to realize scoping as a pluggable feature according to the broker
architecture presented in Chap. 3.

Scoping is an essential building block for engineering publish/subscribe systems
and event-driven applications. In particular, with increasing system size and
complexity scoping helps to keep applications comprehensible and infrastruc-
tures manageable. To further underpin this statement, we discuss, among other
things, the important role of scopes for component orchestration in Chap. 5. Fur-
thermore, Chap. 6 evaluates and proves the positive effects of scoping regarding
system scalability.

Chapter 5

Programming Abstractions

Contents

5.1 Introduction . 110
5.2 Publish/Subscribe . 110

5.2.1 Pitfalls and Remedies . 111
5.2.2 Components and Events . 113

5.3 Event-driven Components . 115
5.3.1 Event Ports . 115
5.3.2 Event Handlers . 118
5.3.3 Active Components . 121
5.3.4 Dynamic Subscriptions . 124

5.4 Scope Management . 127
5.4.1 Scope Specification . 128
5.4.2 Scope Membership . 130
5.4.3 Scope Instantiation . 132

5.5 Component Orchestration . 135
5.5.1 Customizing Components . 136
5.5.2 Customizing Scopes . 138
5.5.3 Grouping and Connecting Components 139

5.6 Implementation . 142
5.6.1 Component Container . 143
5.6.2 Managed Component . 145

5.7 Related Work . 147
5.7.1 Publish/Subscribe . 148
5.7.2 Dataflow . 150

5.8 Discussion . 151

109

110 PROGRAMMING ABSTRACTIONS

5.1 Introduction

In computing, programming abstractions are commonly used today. In fact, ev-
ery high-level programming language abstracts from details of the programmed
machine, offers effective control and data structures, uses syntax elements that
are often close to natural languages, and may also provide runtime support,
for example, by garbage collection. As consequence, writing programs and de-
veloping applications becomes easier and convenient as well as more efficient
and productive. Looking at publish/subscribe middleware implementations and
event-driven applications, however, little has changed over the years. Program-
ming support is often limited to a generic interface that simply allows to publish
and subscribe event notifications. While many research projects and approaches
focused on issues of event routing and filtering, a better integration of publish/
subscribe into programming languages has been neglected so far, aside from a
few exceptions [61, 218]. In this chapter, we develop and present programming
abstractions that ease the development of event-driven applications and, in par-
ticular, increase the reusability of their components.

First, we analyze common pitfalls when using the publish/subscribe paradigm in
event-driven applications and discuss possible remedies in Sect 5.2. Often, appli-
cation components mix business logic with context information and configuration
data making them hard to adapt and maintain. With the provided programming
abstractions, we aim at improving the separation of concerns. In Sect. 5.3, we
introduce event ports as novel interface for event-based communication allowing
developers to primarily focus on the business logic of their components while
directing event streams is factored out and left for configuration. Section 5.4
discusses the role of scopes for applications and how to define and customize
them to the application’s context. Section 5.5 then covers all aspects of system
configuration. We provide effective means to orchestrate applications and com-
ponents by connecting their event ports and grouping them into scopes. The
integration of presented concepts into the architecture of a publish/subscribe
broker is discussed in Sect. 5.6 along with implementation details. The chapter
concludes with an overview of related work in Sect. 5.7 following comparable
approaches and a final discussion in Sect. 5.8 summarizing main contributions
and giving a short outlook of open problems.

5.2 Publish/Subscribe

Publish/subscribe is a successful interaction paradigm well suited for event-
driven applications. In graphical user interface (GUI) toolkits, for example,
it is a proven method to separate the underlying data model from its actual
presentation on one hand and to keep both consistent on the other. If the data
in the model changes, all dependent views are notified to update their presenta-
tion. In fact, this is a recommended design pattern also known as the observer

PUBLISH/SUBSCRIBE 111

pattern for building reusable software elements [81]. Its primary advantage is the
abstract and minimal coupling between participants as both sides do not need
to know their exact identities. Instead, it is sufficient to know that one side
provides an interface to subscribe for updates, while the other offers an interface
to get notified on changes.1

In distributed dynamic environments, only very few assumptions can usually
be made about available communication partners or infrastructure services. A
paradigm inherently featuring a loose coupling should, therefore, eminently pay
off making publish/subscribe a dominant communication technique in dynamic
domains such as pervasive or ubiquitous computing. However, this is not the
case, although a strong potential is seen by many researchers. In fact, there are
still many drawbacks and pitfalls that hamper the adoption of publish/subscribe
and, in particular, make it hard to write reusable event-driven components for
distributed environments. In the following, we first discuss these major pitfalls
in order to propose corresponding remedies afterwards.

5.2.1 Pitfalls and Remedies

Today’s software development is primarily object-oriented. However, the object-
oriented style of communication with which the majority of application develop-
ers is familiar differs considerably from the event-driven way publish/subscribe
communication is used in distributed systems. This is also known as the object/
event impedance mismatch [219, 220]. In object oriented languages, developers
are used to synchronously call a specific method on a particular object and may
simply get the result as return value. However, publish/subscribe middleware
implementations usually provide just a single generic method to asynchronously
publish arbitrary types of events that are delivered to potentially many anony-
mous subscribers or even to no one at all. Hence, there is also no designated
way to get a result back from a subscriber other than switching roles and hav-
ing the former subscriber publishing an event as reply. Developing components
for distributed dynamic environments often requires a mixture of both styles:
object-orientation within the component itself and publish/subscribe to com-
municate with other remote components in a loosely coupled fashion. This is
ambitious and challenging, but does not completely explain why so many pub-
lish/subscribe components are hardly reusable in a different application context.

Events vs. context. Events and event notifications are the primary communi-
cation objects when using publish/subscribe. Thereby, a notification reifies an
event and describes what happened as well as the circumstances of its occur-
rence. Especially the latter is important to distinguish similar events published
by components of the same type. Therefore, attributes characterizing publisher
(e.g., component, device, user) and context (e.g., location, time) often need to be

1 However, as the notified view in a GUI has to interpret the model data for presentation,
it does usually know more details about the subject it observes.

112 PROGRAMMING ABSTRACTIONS

added to a notification, although they may not be directly related to the com-
ponent’s actual purpose. Nevertheless, it is usually the developer writing the
component’s business logic who is also responsible to provide these additional
attributes before publishing the notification. As this is cumbersome and tedious,
it is often neglected or, worse, hard-coded in the component just for the current
application context. Hence, the component’s reusability is strongly limited.

A clear separation of concerns is the first step for mitigation in order to identify
which notification attributes really constitute the actual event, which properties
are simply inherited from the publishing component, and what further context
aspects need to be added. Second, the middleware can support developers by
annotating some of these attributes (e.g., component id, timestamp) automati-
cally. For the others, the middleware may provide interfaces to plug in custom
logic to intercept and augment event notifications after they have been published
by the component but before they are actually transmitted. Chapter 3 presents
a pluggable publish/subscribe architecture designed for feature composition that
enables developers to easily integrate such interfaces.

Development vs. deployment. Software engineering clearly distinguishes be-
tween component development and component deployment. While development
comprehends implementing, testing, and documenting the component and its
functions, deployment includes all activities such as packaging, installing, and
activating that are necessary to make the component available for use, for in-
stance, in a production environment. Unfortunately, it is the publish/subscribe
paradigm that interferes with the clear distinction between the two. As com-
ponents are required to subscribe to event notifications they are interested in,
it is usually the developer who also has to provide an appropriate filter expres-
sion or construct a corresponding filter object for event selection. Therefore,
the developer is forced to already make extensive assumptions about the deploy-
ment environment at design time. This often leads to a mixture of code and
configuration hampering the component’s reuse in different environments.

To improve component reusability, the role of an administrator responsible for
configuring event-driven components and organizing the publish/subscribe in-
frastructure needs to be firmly integrated into the development process. Conse-
quently, middleware implementations have to provide adequate tools and means
to support administrators in their work. In Chap. 4, we introduced scoping as
structuring means to bundle related components and organize the broker net-
work. Scoping allows administrators to externally restrict the visibility of event
notifications to those relevant in the deployment context and, thus, enables
developers to issue more reusable, generic subscriptions. Additionally, scopes
provide the possibility to centrally define attributes valid for all scope members.
This feature may also be exploited to provide configuration data and settings.
However, modern middleware implementations usually feature a component con-
tainer that provides a managed runtime environment offering common services
and functions for components. In particular, the component container is the pre-

PUBLISH/SUBSCRIBE 113

ferred source for configuration data and context settings and should, therefore,
enable administrators to configure and adapt component attributes, subscrip-
tions, and advertisements as needed. Unfortunately, only few, if any, provide
this level of control for publish/subscribe components.

Events vs. objects. Name/value pairs are a general and common data model
for notifications to represent occurred events and their attributes. However, pro-
cessing and manipulating them directly is tedious, cumbersome, and error-prone.
Thus, publish/subscribe middleware implementations aim at providing represen-
tations that are more handy and better integrated into programming languages
used by application developers. Accordingly, objects have been suggested to
represent events [62]. The benefits are appealing. Object fields correspond to
event attributes and are easy to access and manipulate. Moreover, checking
events and attributes for type safety is done by the programming language’s
compiler as natural byproduct. At the same time, however, the class hierarchy
of object oriented languages is also the biggest drawback limiting a component’s
reusability. Assume, for example, an on-line statistic analysis has to be done
for particular stock quotes in one application scenario and for certain tempera-
ture sensor readings in the other. As stock events and sensor events belong to
different application domains, it is usually sensible to model both by unrelated
event classes that feature different event attributes, e.g., price and temperature,
respectively. Consequently, two different components each dedicated to a single
event type are required to analyze stock prices and temperature data. However,
the component logic itself will be identical as the calculation is the same in both
application domains.

Many other publish/subscribe middleware implementations often use diverse
forms of dictionaries to represent events and store their attributes and associ-
ated values. Although several programming languages (e.g., C# [88], Lua [94],
Python [126]) provide array-like syntax constructs to make accessing attribute
values more convenient, dictionaries do not provide much abstraction. Before be-
ing able to publish new event notifications, for instance, they usually need to be
manually populated by the developer. This is tedious, cumbersome, and prone
to the pitfalls discussed above. However, regarding the statistic example from
above, by simply renaming the attributes within a dictionary, the same com-
ponent could have been (re)used to analyze stock prices as well as temperature
readings. But to our knowledge, there is no current publish/subscribe middle-
ware that both provides convenient programming abstractions for event-driven
applications and facilitates a flexible reusability of components.

5.2.2 Components and Events

When designing event-driven publish/subscribe applications, developers have to
consider two different aspects at the same time. On one side, there are the event-
driven components containing the actual business logic. On the other side, there

114 PROGRAMMING ABSTRACTIONS

are the event flows connecting the components. Hence, meaningful programming
abstractions for publish/subscribe applications have to adequately support both
aspects. But, as the discussion of pitfalls and remedies in the previous section
shows, no current approach or middleware succeeds equally well on both sides
leading to the mentioned problems of mixing business logic, configuration data,
and context information.

However, engineering domains such as digital signal processing or control theory
have developed practical and proven design methodologies to model, analyze,
and implement complex systems by decomposing them into individual compo-
nents and explicitly defining the dataflow between them. Thereby, each com-
ponent implements an operator or function block that consumes input data,
applies its operator function, and, thus, produces new output data. Dataflow
programming languages [104] are often used, in particular in visual variants [91],
to determine which exact components are assembled and how their outputs and
inputs are connected for passing the data from one component to the next. As
components are generally treated as black boxes, they are simply interchange-
able and, thus, easy to reuse provided that the data types at inputs and outputs
correspond to those they are connected with.

Looking at publish/subscribe systems from a dataflow perspective, many similar-
ities become evident. Likewise, event-driven components consume data in form
of event notifications, process them, and may produce new event notifications
that are send out to other components. However, emerging event flows are more
diverse and complex, but yet do they follow the publish/subscribe pattern. In
the remainder of this chapter, we derive and present programming abstractions
that aim at easing the design of publish/subscribe applications by modeling and
implementing them in terms of event-driven components and event flows between
them. Therefore, our immediate intention is twofold: to increase the reusability
of components and to simplify their orchestration. Moreover, from the pitfalls
discussed in the previous section, we draw the following conclusions as general
guidelines to improve the development process:

• Designing, implementing, and testing the business logic of involved com-
ponents is an application developer’s major objective when developing a
publish/subscribe application. Configuration and context data and de-
tailed event flows are secondary. Moreover, the more the business logic is
mixed with such data, the less reusable the component becomes.

• Orchestrating components and directing event flows as well as providing
context and configuration data is part of an application’s deployment done
by the system administrator. Thereby, components are adapted to the
local broker infrastructure, organizational conditions, and already existing
publish/subscribe applications.

• The publish/subscribe middleware has to support application developers
and system administrators alike by providing an adequate component con-

EVENT-DRIVEN COMPONENTS 115

tainer and runtime environment. For developers, the container offers fre-
quently used services accessible from within components easing the im-
plementation. For administrators, the container allows to configure and
adapt components as well as to provide necessary context data.

5.3 Event-driven Components

Distributed event-driven applications are made of components that produce,
consume, and react to event notifications. By publishing a notification, a com-
ponent informs about a significant change in state or conditions allowing sub-
scribed components receiving the notification to react appropriately, for instance,
by adapting their own behavior. Every component may be a publisher, a sub-
scriber, or both making event-driven applications flexible and agile. When de-
signing programming abstractions for event-driven components we, thus, have
to consider and support both roles alike. Essentially, we introduce the concept
of event ports as configurable novel interface through which components receive
subscribed events and publish their own in a uniform and standardized fashion.
Subsequently, we discuss how event ports relate to event handlers, component
threads, and filter expressions.

Abstractions and concepts presented in the following are not bound to any par-
ticular programming language although we exemplify them in Java [84]. In fact,
we do not use any language construct unusual for object-oriented programming
languages or even introduce novel ones. However, we often make use of Java
annotations to conveniently mark and label component fields and methods that
are of relevance for the component container providing the component’s run-
time environment. Alternatively, appropriate comments and a preprocessor or
a detailed configuration file could have been used instead.

5.3.1 Event Ports

In general, an event is an incident of interest that may occur inside or outside a
computer. When detected by a component, however, it causes a change in the
component’s state that is subsequently published to notify other components.
Thereby, the component fields constituting the new state are often included as
notification attributes to characterize the occurred event. Creating the notifica-
tion and publishing it may take place at arbitrary positions inside a component,
likewise, creating a corresponding filter expressions and subscribing to it. Direct-
ing and arranging the event flow between components, however, becomes much
harder if a component’s publish and subscribe operations are buried somewhere
inside the component’s code. Possibilities and options to externally configure
notifications and filters adjusting flows are limited. Furthermore, it is risky
since the component’s developer may not have taken such a customization into
account. For this purpose, we need a more uniform and standardized way how

116 PROGRAMMING ABSTRACTIONS

components produce and consume event notifications that is better accessible
for external configuration and adaptation. In fact, we aim at providing publish/
subscribe communication without the basic publish and subscribe operations.
Therefore, we introduce event ports as novel interface to replace both.

Definition 32 (event port). An event port exposes selected fields of a component
to become subject to publish/subscribe communication making them either to a
source or a sink for event notifications. There are two types of event ports:

(i) An out-port contains component fields whose values are published as new
event notification with corresponding attributes. An out-port, thus, defines
the source of an event flow.

(ii) An in-port contains component fields whose values are set to corresponding
attributes of a received event notification. An in-port, thus, defines the sink
of an event flow.

An event port simply consists of one or more component fields that together with
other fields determine a component’s state. Hence, an event port constitutes a
part of the component’s state. The idea behind an out-port is to bundle exactly
those fields that subsume the part of the component’s state that is published as
new notification to inform others about an occurred event. Likewise, an in-port
contains exactly those fields constituting the part of component’s state that is
affected by a received event notification. Instead of requiring the component
itself to create a new notification with appropriate attributes or inspecting a
received notification for data, this can now be done by the component’s runtime
environment, i.e., the component container. Hence, on every notifiable state
change the component container automatically creates a new event notification
deriving attributes and values from the component’s out-port fields. Similarly,
on every received event notification, the container automatically inspects the
event attributes and sets the values of corresponding in-port fields.

Figure 5.1 shows the source code of an event-driven component written in Java.
Event ports are defined via meta data using the Java annotation mechanism.
Thereby, the annotations @InPort (lines 2 and 3) and @OutPort (line 5) each
declare an event port of corresponding type. However, as Java does not allow
multiple annotations of the same type to be added to the component class, the
two in-port declarations must be enclosed in one @InPorts annotation (line 1).
We provide such simple wrapper annotations whenever necessary, for instance,
a similar @OutPorts annotation is needed to define components having two or
more out-ports. An event port declaration always contains two required ele-
ments. The event element names the event notifications produced or consumed
by this port for later reference. The attributes element enumerates the notifica-
tion’s attributes as a comma-separated list. Hence, considering the event port
declarations of the component altogether, the component has two in-ports and
one out-port. It consumes the event notification e with attributes a and b as

EVENT-DRIVEN COMPONENTS 117

1 @InPorts({ // wrapper with
2 @InPort(event = ”e”, attributes = ”a, b”) , // in−port declarations
3 @InPort(event = ”f”, attributes = ”x”)
4 })

5 @OutPort(event = ”g”, attributes = ”b, x”) // out−port declaration

6 public class EventDrivenComponent {
7 @Attribute int a; // event port fields

8 @Attribute int b;

9 @Attribute(”f .x, g.x”) // field aliases
10 Object c;

11 private int x; // private component field
12 . . .

Figure 5.1: Component with event port declarations.

well as the event notification f with attribute x. Furthermore, it publishes event
notification g with attributes b and c.

So far, the attributes are not bound to any component field yet. This is done us-
ing the @Attribute annotation which is simply added to appropriate fields (lines 7
and 8). It associates notification attributes with annotated component fields of
the same name, for instance, attributes a and b of event notification e are bound
to the component’s integer fields a and b. As internal and external names and
representations may differ the @Attribute annotation supports aliases provided
as a comma-separated list (line 9). For example, the component field c is bound
to attribute x of event notifications f and g. The private component field x,
however, is not considered or affected as it is not annotated. The association
between component fields and event attributes is not exclusive. A component
field may be bound to attributes of different event notifications and vice versa.
Furthermore, component fields are not limited to primitive data types only. Ar-
bitrary complex types may be used as demonstrated by field c. However, the
component container must be able to serialize and deserialize the field’s value.

Event ports are a key concept to facilitate the orchestration of event-driven com-
ponents and their event flows. Their benefit is twofold. First, event ports provide
a new uniform interface replacing present publish and subscribe calls scattered
throughout the component. They relief developers from manually creating and
inspecting event notifications before sending and after receiving them, respec-
tively. Moreover, they centrally bundle, specify, and document all component
fields that either constitute a new event notification or are affected by a received
one. Thereby, they specify a well defined start point or end point for event
flows making the component ready for orchestration. Second, the publication of
and subscription to event notifications is shifted from the component towards
the runtime environment provided by the component container. This opens the
possibility to incorporate configuration data more easily, augment event notifi-

118 PROGRAMMING ABSTRACTIONS

cations with context information, and adapt subscriptions as needed. Thereby,
system administrators are enabled to effectively organize and control event flows
between orchestrated components.

5.3.2 Event Handlers

Event-driven components react to event notifications received on in-ports, pro-
cess the data carried by notification attributes, and may also produce new event
notifications published on out-ports. Thereby, processing is done by event han-
dlers that usually contain the component’s business logic.

Definition 33 (event handler). An event handler is a method of an event-driven
component that is called in reaction to an event notification that is received or
send on an event port.

Basically, the definition above states that received event notifications are pro-
cessed by event handlers. The reasons why event handlers may also be called
when event notifications are published as well as resulting consequences are dis-
cussed later. Figure 5.2 continues the source listing of an example component
started in Fig. 5.1 and shows how component methods are annotated as event
handlers. Since event ports and associated component fields are used for data
exchange, event handlers must not have any parameters or return values. A com-
ponent method is simply turned into an event handler by adding the @OnEvent
annotation in front of its method declaration (line 13). Thereby, for example,
the validate method gets called on every event notification received. Often, it is
necessary to restrict event handlers to process notifications received on specific
ports only. Therefore, the events a handler is responsible for can be specified
by a comma-separated enumeration provided as argument to the @OnEvent an-
notation (lines 20 and 25). Hence, the methods compute and transform are only
called on event e and on events f and g, respectively.

For each received event notification, there can be multiple handlers available for
processing and they all are called one after the other. However, to guarantee
a controlled processing, developers need a way to define the sequence in which
event handlers are executed. For this purpose, priority values are assigned to
event handlers using the @Priority annotation (lines 14 and 26). Priorities are
integer values ranging from −232 to 232−1 with higher values coming first in the
execution order. For convenience, we have defined meaningful constants such as
HIGH, NORMAL, or LOW for different priority levels. For a fine-grained differen-
tiation within each level, developers may simply write HIGH-1 or NORMAL+1 for
example (line 26). Based on event ports, event handlers, and assigned priorities,
we can now define in detail how event notifications are processed by components
and their container.

Definition 34 (event handling). Event notifications received on a component’s
in-port are handled and processed as follows:

EVENT-DRIVEN COMPONENTS 119

12 · · ·
13 @OnEvent // event handler
14 @Priority(Priority .HIGH) // always called f i rst
15 void validate() {
16 // validate al l f ields
17 · · ·
18 i f (!valid) throw new AbortException(); // abort event handling
19 }
20 @OnEvent(”e”) // event handler
21 void compute() { // for in−port e
22 // compute field c
23 c = . . .
24 }
25 @OnEvent(”f , g”) // event handler
26 @Priority(Priority .NORMAL+ 1) // for in−port f
27 void transform() { // and out−port g
28 // recode field c
29 c = . . .
30 } }

Figure 5.2: Component with event handler annotations.

(i) On receiving an event notification on an in-port, corresponding component
fields are set to the values of associated notification attributes.

(ii) All event handlers are determined that are responsible to process the noti-
fication data on the particular event port.

(iii) The set of responsible event handlers is sorted according to priority begin-
ning with the highest value. The execution order of event handlers having
the same priority is undefined.

(iv) Event handlers are executed one after the other. The whole execution of
handlers stops if any event handler aborts the processing. In this case, all
event port fields are restored to their original values.

(v) The component’s out-port fields are inspected after the last event handler
finished execution. State changes, i.e., new field values, are published as
new event notifications. Publication order corresponds to the order of event
port declarations.

(vi) If an event notification is published on an out-port with registered event
handlers, event processing continues at step (ii) for the particular out-port.

The usage of event ports also affects the way event notifications are processed.
There are several important specifics. Obviously, event handlers do not have
any arguments or return values as notification data is conveniently exchanged

120 PROGRAMMING ABSTRACTIONS

on event port fields. However, this has disadvantages, too. Attribute values of
notifications are copied by the component container to the component’s in-port
fields without checking their validity. Hence, if event handlers fail invalid data
remains on in-port fields and contributes to the overall state of the component
rendering it potentially invalid, too. To avoid this problem, we use a transaction
scheme as described by step (iv) of the event handling process above. If an
event handler aborts its execution, subsequent handlers are prevented from run-
ning and the component’s event port fields are restored to their original values.
Therefore, the component container always keeps a copy of the last notifica-
tions successfully processed. However, private component fields that are not
associated with an event port cannot be restored. The listing shown in Fig. 5.2
exemplifies the application. The event handler validate (line 15) is assigned a
high priority to ensure that it runs first whenever a notification is received on
any in-port. It checks all event port fields and throws an AbortException when
unsuccessful. Thereby, it is ensured that subsequent event handlers such as
compute or transform (lines 21 and 27) always run on valid data.

After all event handlers finished execution, the component container inspects
the component’s out-port fields and compares them to previous values. State
changes are automatically published by the container as new event notifications
whose attribute values are taken from associated out-port fields. This is conve-
nient as well as sufficient in many cases. Nevertheless, there is at most one event
notification published per out-port. Thus, components cannot create multiple
notifications of the same type because of a single event anymore. This is a se-
rious drawback limiting the number of interaction and communication patterns
for which event ports are applicable. However, step (vi) of the event handling
process addresses the issue and alleviates its consequences. Event handlers can
also be registered on out-ports and are called after notifications have been suc-
cessfully derived and published from associated fields. Their execution follows
the same rules. In fact, a single event handler may be registered for events on
an in-port as well as an out-port at the same time. Thereby, the handler starts
processing a received notification on the in-port and produces results to be pub-
lished on the out-port. Thereafter, the handler is called again and can continue
the processing to produce results which are published next.

Figures 5.1 and 5.2 provide an example. The event handler transform (line 27)
is executed on in-port events f as well as out-port events g (lines 3 and 5).
Its function is to transform the computed or received event attribute x stored in
field c from one representation into several others depending on the component’s
configuration and settings. On receipt of event f the transformation starts and
produces the first new representation of x which is subsequently published as
attribute of event g by the component container. Afterwards, transform is called
again to recode x producing the next representation to publish. This cycle is
repeated until the handler finishes without recoding x. Hence, the out-port
field c is not modified and does not require the publication of any state change.
However, as event handlers for published notifications are rather unusual, we
require developers to explicitly annotate those handlers responsible for out-ports.

EVENT-DRIVEN COMPONENTS 121

Therefore, the validate handler (line 13) without any port declarations is only
called once for the received event f at the begin of the transformation cycle.

5.3.3 Active Components

The majority of event-driven components is reactive, i.e., they react to received
event notifications, process them, and may produce new notifications for other
components to react on. For this to work, however, there must be sources which
create initial event notifications. In general, we call these components active as
they autonomously produce new notifications. Thereby, we distinguish two types
of active components. Some components periodically produce new notifications,
e.g., the latest sensor readings published every minute. Other components, in
contrast, only sporadically publish new events, e.g., the latest user input just
entered. Both types require different programming abstractions.

Definition 35 (time-triggered component). A time-triggered component is a
component whose handler methods are executed periodically triggered by the
global progression of time.

Supporting time-triggered components is easy and inexpensive in terms of re-
quired changes to the regular event handling process as described in the previous
section. In fact, instead of calling event handlers on receipt of notifications, the
handler methods of a time-triggered component are simply executed on timer
alerts. If a timer expires, an internal notification is created that causes associ-
ated handlers to be executed. Please note that we do neither guarantee nor aim
at ensuring any real-time behavior. Hence, annotated priorities are considered
only to decide which handler to run first if two or more handlers are associated
with the same timer. The component container runs one handler after the other
and even considers event handlers that are triggered by published notifications
on out-ports before processing the next timer event in order of their expiration.

Figure 5.3 shows a component listing exemplifying the usage. The component
is responsible to monitor a sensor collecting environmental data. The method
sample (line 11) is annotated to be triggered every quarter of an hour (line 10).
It determines the current sensor reading and uses the setValue method (line 7)
to map the absolute reading into a relative value ranging from zero to one. This
value is assigned to the component’s single out-port field which is inspected by
the component container afterwards. Usually, the value would be published as
attribute of event e only on a change, i.e., if the current value is really different
to the one calculated from the previous sensor reading. On the one hand, this
corresponds to the definition that an event embodies a significant change in state.
Moreover, it saves many notifications to be send. On the other hand, there are
numerous applications that rely on a continuous stream of event notifications.
For example, the receipt of a new sensor reading also proves independent of
its current value that the particular sensor is still alive and working. In order

122 PROGRAMMING ABSTRACTIONS

1 @Active // active component
2 @OutPort(event = ”e”, attributes = ”value”, // with out−port and
3 policy = OutPort.PUBLISHALWAYS) // publishing policy
4 public class ActiveComponent extends Thread {
5 @Attribute float value; // out−port field

6 private int min, max;

7 synchronized void setValue(int reading) { // synchronized access
8 value = (float)(reading−min) / (float)(max−min);
9 }

10 @OnTimer(”900s”) // time−triggered
11 void sample() { // handler method
12 . . .
13 setValue(reading);
14 }
15 synchronized void calibrate(int low, int high) {
16 min = low; max = high;
17 sample(); // inform container
18 notify (); // about new value
19 }
20 @Override void run() { // own thread
21 while(true) { // of execution
22 . . .
23 calibrate(low, high);
24 } } }

Figure 5.3: Active component featuring a time-triggered handler method as well
as an own thread of execution.

to support such kind of applications, we thus enable components to specify
the precise publishing policy to follow for each out-port separately. Likewise,
event handlers that process received notifications may also be called for each
notification received or only if the received notification contains attributes with
different data values.

Definition 36 (port policies). The following port policies specify for each event
port separately when to derive and publish new event notifications and when to
call associated event handlers:

(i) The publish-on-change policy creates a new event notification from out-
port fields only on a state change, i.e., assigned values differ from those
published in a previous notification. This is the default policy.

(ii) The publish-always policy creates a new event notification from out-port
fields whenever all event handlers finished their execution independent of
any state change.

EVENT-DRIVEN COMPONENTS 123

(iii) The call-on-change policy triggers event handlers associated with an event
port only on a state change, i.e., attribute values contained in the event
notification differ from those previously assigned to the port fields.

(iv) The call-always policy triggers event handlers associated with an event port
independent of any state change. This is the default policy.

Port policies enable component developers to precisely specify for each event port
separately when to create new event notifications or to trigger associated event
handlers. Thereby, developers can customize the container’s event handling pro-
cess and adapt it to their specific needs. However, publish-always and call-always
policies have to be combined cautiously. Together with an event handler associ-
ated with an out port, processing loops may be created that do not terminate and
stop producing new notifications. In contrast, the default policies publish-on-
change and call-always do not cause this risk while being suited for the majority
of event-driven applications. In the listing shown in Fig. 5.3, PUBLISH ALWAYS
is specified as policy for the component’s out-port e (lines 2 and 3). This makes
sure that a new notification containing a fresh sensor reading is published by
the component container whenever the time-triggered sample method (line 11)
was executed. For other port policies, similar symbolic constants, namely PUB-
LISH ON CHANGE, CALL ON CHANGE, and CALL ALWAYS, have been defined
as bitmasks that can be combined where appropriate.

As demonstrated by the example above, time-triggered handlers and event port
policies are well suited to conveniently implement periodic tasks that regularly
produce new event notifications. However, certain components just sporadically
publish new events as they, for instance, depend on user interaction that is
hardly predictable. Usually, those components have own threads of execution
that produce or acquire the data to publish. Hence, they are really active in the
narrow sense of the word.

Definition 37 (active component). An active component is a component that
features own threads of execution.

Because of concurrent threads and processes, active components are more com-
plex to host than other event-driven components. Primarily, component threads
and component container have to inform each other about available data that is
ready to be published or to be processed as well as to synchronize their access to
corresponding event port fields. For both, we use the standard synchronization
and coordination mechanisms provided by Java. Besides featuring time-triggered
handlers to periodically publish sensor data, the component listed in Fig. 5.3 also
manages its own thread of execution. In fact, it directly extends the Java Thread
class (line 4) and, thus, is annotated as being @Active (line 1). This informs the
container to first acquire the component’s monitor lock before accessing any
event port fields. Likewise, the component has to use synchronized methods or
program blocks to read from or write to those fields, e.g., the method setValue

124 PROGRAMMING ABSTRACTIONS

(line 7) is synchronized2 because it converts a raw sensor reading and assigns
the result to the out-port field value in order to get published (line 8).

The component’s thread continually executes the main loop (lines 21–24) within
the run method which is, among other things, responsible to recalibrate the sen-
sor every once in a while. This may be necessary, for example, to adapt to
changing environment conditions or may simply be carried out when requested
by a user. The calibration process readjusts the lower and the upper bound
for valid sensor readings which are subsequently set by the calibrate method
(line 15). Furthermore, the calibrate method requests a fresh sensor sample
(lines 11 and 17) whose absolute reading is mapped to its relative value using
the new minimum and maximum bounds. Since the new sample is taken outside
the time-triggered regular schedule, the container needs additionally to be noti-
fied that there is a new sensor value to publish. For this purpose, Java’s notify
operation is used that wakes the container thread waiting at the component’s de-
fault monitor lock (line 18). The container thread inspects the out-port fields at
the next opportunity and asynchronously publishes a corresponding notification.
Meanwhile, the component thread continues execution as it does not wait for the
container to complete the value’s publication. Nevertheless, the container noti-
fies the component in the same way when the notification was successfully sent.
Thereby, it is possible to ensure that out-port fields were published before the
component thread assigns new values. In our case, however, this is not necessary
as we just want a fresh sensor reading to be published at all. Please note, for
the opposite direction, regular event handlers can be used to inform component
threads about available data to be processed on in-ports. The handler is called
by the component container on receipt of a new notification and can then signal
the responsible component thread in any appropriate way.

5.3.4 Dynamic Subscriptions

To facilitate component reusability, business logic needs to be separated from
configuration data. As the exact system configuration is usually not known until
deployment, it is, thus, primarily the responsibility of the system administrator
to organize event flows and subscribe components to those notifications they
are supposed to process. Yet as always, there are exceptions to this rule. If
components, for instance, are closely related to each other and jointly provide
a particular service they are usually bundled in a common scope. In this case,
it is rather the developer who organizes the communication within the scope,
while the system administrator configures and customizes the scope as a whole
and deploys the component bundle at once. In other cases, components even
autonomously manage their own subscriptions. Many context-aware components

2 Method calibrate is also synchronized, but for a different reason. It may, otherwise, modify
the minimum and maximum bounds for valid sensor readings just in the moment another
thread is converting a sample leading to undefined results.

EVENT-DRIVEN COMPONENTS 125

adapt or refine their subscriptions according to the current situation or present
environment conditions. A location-aware component, for example, may be
interested in events occurring in its proximity. Hence, its subscription depends
on its current position and needs to be updated whenever the component moves.
In this example, subscription management is actually an inherent part of the
component’s logic.

As these examples above demonstrate, there are, in fact, many reasons why
developers want to actively manage and organize the subscriptions of their com-
ponents. We thereby distinguish between static and dynamic subscriptions.

Definition 38 (static vs. dynamic subscriptions). A subscription is called dy-
namic if its filter expression determining matching event notifications is modified
and updated during the runtime of the subscribing component. Otherwise, the
subscription is static.

Many publish/subscribe systems allow or require components to specify the no-
tifications they are going to publish. Depending on the employed routing algo-
rithm this either increases system efficiency or is even a precondition for match-
ing published notifications against active subscriptions at all. However, compo-
nents may change the kind of notifications they publish during their lifetime.
Likewise, we can, thus, distinguish between static and dynamic advertisements.

Definition 39 (static vs. dynamic advertisements). An advertisement is called
dynamic if its filter expression specifying event notifications to be published is
modified and updated during the runtime of the producing component. Otherwise,
the advertisement is static.

Static subscriptions and advertisements are simpler to manage and to handle
than their dynamic counterparts. Basically, it is sufficient to add a filter expres-
sion to an event port that specifies the notifications being received or sent. If the
filter is added to an in-port, it is interpreted as a static subscription determining
the event notifications in which the component is interested in. If the filter is
associated to an out-port, it serves as static advertisement describing the no-
tifications the component produces on the particular port. For the component
container, however, there is not much difference whether the filter expression
is annotated by the developer during implementation or it is provided by the
system administrator at deployment. On component creation, the container in-
spects component annotations as well as configuration files for subscription and
advertisement filters. Thereby, annotated filters can be subsequently refined or
restricted by configuration settings.

The management and handling of dynamic subscriptions and advertisements is
more complex. In particular, components need a way to dynamically create and
modify the filter expressions that are used for subscriptions and advertisements.
For this purpose, we extend the event port concept that associates component

126 PROGRAMMING ABSTRACTIONS

1 @InPort(event = ”e”, attributes = ”position , info”) // event ports

2 @OutPort(event = ”f”, attributes = ”info , distance”, // with f i l ters
3 f i l te r = ”distance > 0 && distance < ” + MAXDISTANCE)

4 public class LocationAwareComponent {
5 public static final double MAXDISTANCE = 50.0d; // f i l te r constant

6 @Attribute Position position ; // event port fields
7 @Attribute String info ;
8 @Attribute double distance ;

9 @Filter(”e”) // dynamic in−
10 Filter proximity; // port f i l te r

11 @OnEvent(”e”) // event handler
12 void calcaluate() { // for in−port
13 // calculate distance
14 distance = . . .
15 }
16 @OnTimer(”60”) // time−triggered
17 void update() { // handler method
18 // update proximity f i l te r
19 proximity = . . .
20 } }

Figure 5.4: Location-aware component managing a dynamic subscription.

fields with event attributes. Likewise, we also store the filter expression speci-
fying the notifications to receive or to publish on an event port in an associated
component field. Thus, the filter can be conveniently accessed and modified by
the component. Moreover, this approach seamlessly fits into the regular event
handling process as described in Definition 34 in Sect. 5.3.2. After the last event
handler successfully finished its execution in step (iv) and before the first out-
port field is inspected for new values to publish in step (v), all component fields
with filter expressions are also checked for changes by the component container.
In the event of a change, the corresponding subscription or advertisement is
updated depending on whether the filter belongs to an in-port or an out-port,
respectively. However, just a few publish/subscribe systems support the direct
update of active subscriptions distributed throughout the broker network. For
the others, we map the filter update to a sequence of subscribe or advertise op-
erations, respectively. To update an in-port’s subscription, the new filter is first
subscribed before the subscription of the old one is revoked. Similarly, to update
an out-port’s advertisement, we first advertise the new filter before revoking the
old one. Thereby, the completeness of notifications received from or published
for other components remains guaranteed.

Figure 5.4 shows the listing of a location-aware component managing its own dy-
namic subscription. The component has two event ports. On its in-port (line 1)
it receives events that provide information (attribute info) about as well as the

SCOPE MANAGEMENT 127

exact location (attribute position) of occurred happenings and incidents within
the component’s proximity. The component calculates the distance (attribute
distance) between its current position and the incident’s location. The result
is then republished on the component’s out-port together with the incident’s
description (line 2). The surrounding area for which incidents are reported is
limited by a maximum distance (constant MAX DISTANCE) defined within the
component (line 5). Thus, we can exploit this fact to better specify the event
notifications going to be published by the component as we know that the values
of the distance attribute (line 8) must lie between zero and this constant. For
this purpose, event port annotations provide a filter element to add predicates
restricting and refining the range of valid attribute values (line 3). Please notice
the usage of the constant MAX DISTANCE in the component’s out-port annota-
tion in order to create the filter expression for distance values. On component
activation, the component container creates a static advertisement for this out-
port based on the annotated filter expression when supported or required by the
employed publish/subscribe routing algorithm. If out-ports are not annotated
with a filter, nonetheless, a static advertisement will be created. However, the
advertisement will just list the notification attributes without restricting their
values. Likewise, static subscriptions are created for in-ports.

To receive notifications about incidents, the component subscribes to all events
occurring within a given radius around its current position. Hence, the radius
must be greater or equal to the maximum distance for which incidents are re-
published. Furthermore, a static subscription is not sufficient anymore as the
filter must be updated whenever the component moves. Therefore, the @Filter
annotation allows to mark component fields that contain notification filters to
be used for dynamic subscriptions. In the component listing in Fig. 5.4, the
proximity field (lines 9 and 10) is thereby turned into a dynamic subscription for
events e to be received on the component’s in-port (line 1). For this to work,
the component field must either be a character string containing a valid filter
expression or implement the infrastructure’s Filter interface. In the latter case,
it is, thus, even possible to use customized and advanced filters provided that
they are supported by the underlying broker network. The component’s prox-
imity filter is updated by a time-triggered handler that is called every minute
(lines 16 and 17). The handler determines the current position and creates a new
location-based filter for the component’s proximity (line 19). After the handler
finished execution, the filter is inspected by the component container. If it is
different to the previous one, the component’s subscription is updated.

5.4 Scope Management

As we allow event-driven components to dynamically create and administer their
own scopes, we have to adequately support them in doing so. Brokers, or more
precisely their scope plugins, provide a uniform management interface that bun-
dles all necessary scope operations and management functions as described in

128 PROGRAMMING ABSTRACTIONS

1 @Scope(name = ”finance”, superscope = ”divisions”, // scope specification
2 selector = ”division == ’finance ’”, // with component
3 in = ”true”, out = ”false”, // selector , event
4 attributes = ”info ,context”) // fi lters , attributes

5 public class FinanceDivision {
6 @Attribute String info ; // attribute fields

7 @Attribute(”context”)
8 Table parameters;

9 @Filter(Scope.OUT) // dynamic f i l te r
10 Filter monitoring;
11 · · ·

Figure 5.5: Component with annotated scope declaration.

Sect. 4.5.3. However, the mere presence of a scope management interface does
not automatically lead to a good and reasonable application design and struc-
ture. Developers need to be encouraged to properly use scopes to organize their
event-driven applications when these grow in size and complexity. In the fol-
lowing, we, therefore, present programming abstractions that ease the definition
and handling of scopes as well as facilitate their intended application to benefit
most from them. Similar to the approach taken for regular event-driven com-
ponents, we enable developers to conveniently annotate and label those parts
of code that directly address scopes and their management. The provided pro-
gramming abstractions include means for specifying and defining new scopes,
for administering scope members as well as for instantiating further subscopes.

5.4.1 Scope Specification

For each scope there is a component responsible that is responsible to provide
the scope’s specification, to register the scope at a broker in order to open and
to close it as well as to manage scope membership and members. Thereby,
such a scope component may be responsible for several scopes. In fact, the
number of scopes a component may open and manage is not limited. With
regard to modularization, however, scope components are usually dedicated to
just a single scope. We foster this practice and enable developers to conveniently
specify a scope together with its managing component. Figure 5.5 gives an
example showing the source code of a scope component with corresponding scope
specification. In this example, the component defines and manages the scope
finance which encloses all event-driven components that belong to the finance
division of an international company. Thus, the scope may be part of the example
scope hierarchy introduced in Sect. 4.2.2 and depicted in Fig. 4.2.

The purpose of the @Scope annotation (line 1) is twofold: first, it declares and
specifies a new scope and, second, makes the annotated component responsible

SCOPE MANAGEMENT 129

for managing it. The @Scope annotation consists of several elements each ad-
dressing an individual aspect and part of the scope’s specification. The name
and superscope elements refer to the name of the scope and its parent scope,
respectively. Together, they uniquely identify the new scope in the hierarchy. In
this example, thus, the complete name is divisions.finance. Please note that the
superscope element is optional. In order to separate code from configuration it
can be set later or overridden at deployment. However, if it is not provided, the
root scope is assumed as default superscope.

The selector, in, and out elements allow the specification of a Boolean filter
expression. The selector element (line 2) defines the scope’s component selec-
tor which brokers apply on the attributes of hosted components to determine
whether the scope is assignable. Please refer to Definition 13 and 28 for details
about the component selector function and the scope assignment process, re-
spectively. In the provided example, the selector filter evaluates to true for all
components having the attribute division set to finance. Hence, all finance com-
ponents are automatically incorporated into the finance scope. Elements in and
out (line 3) refer to the corresponding filter functions of the scope’s notification
interface. Only matching event notifications are allowed to cross the scope bor-
der and enter or leave the scope, respectively. Please see Definition 14 for further
details. Here, all external notifications are allowed to enter the scope without
any restrictions while own notifications published by scope members must not
leave the scope. Elements selector, in, and out are optional and are assumed to
be false by default when not provided.

Scope attributes that further characterize scopes and their members need to
be declared in the scope specification. This is done by the optional attributes
element (line 4) which enumerates all associated attributes separated by comma.
In the given example, the defined scope has two attributes: info may provide a
short description of the scope while context may contain parameters and settings
applicable to all scope members. Please note that only attribute names are listed
within the @Scope annotation. Type information and attribute values are taken
from corresponding component fields. Similar to event ports, scope attributes
are bound to component fields using the @Attribute annotation. Thus, the scope’s
info attribute is bound to the component field of the same name (line 6) while the
context attribute is associated with the parameters field (lines 7 and 8). Moreover,
the component container handles scope attributes similar to out-port attributes.
Hence, associated fields are regularly inspected for changes, for example, when
components join or leave the scope or when notified by a component thread.
On a detected state change the new attribute values are published as scope
notification that is send to all scope members for update.

The update mechanism is not limited to scope attributes only. Similar to dy-
namic subscriptions and advertisements even the scope’s interface filters and
component selector can be updated dynamically. For this purpose, the filter
needs to be stored in a component field that can be inspected by the component
container. Furthermore, it has to be marked appropriately using the @Filter an-

130 PROGRAMMING ABSTRACTIONS

notation. In the example listing, the monitoring field is labeled this way (lines 9
and 10). The constant OUT indicates that the field contains the filter for the
scope’s outbound interface, for example, to allow certain components and their
notifications to be monitored externally. Likewise, constants IN and SELECTOR
refer to the scope’s inbound interface and component selector, respectively. Al-
ternatively, the fields itself may be simply named out, in, and selector provided
that there is no name clash with other attributes or event ports. Please note
that the outbound filter is defined twice in this example. First, it is given as
static filter expression within the @Scope annotation (line 3) and, second, it
is dynamically set from the monitoring field marked by the @Filter annotation.
However, the dynamic filter prevails over the static one unless the filter is not
valid (e.g., the field is not initialized or contains an inappropriate filter type).
In this case, the static filter is used as fallback and stops all notifications when
leaving the scope.

5.4.2 Scope Membership

Event-driven components that manage their own scopes are also responsible to
administrate scope membership and members. They approve or decline the ad-
mission of new scope members including components as well as brokers. This
way, it is possible to restrict the dissemination of event notifications to eligible
components and even implement sophisticated access control policies. We pro-
vide programming abstractions to support developers in managing their scopes
and, in particular, to conveniently handle and administer new and existing com-
ponents joining and leaving the scope, respectively. The central idea is to con-
sider requests to join the scope as well as notifications about leaving components
as events to be processed. For these, however, we can build on available con-
cepts such as event ports and event handlers that we introduced in Sect. 5.3.
Figure 5.6 exemplifies the approach and continues the listing from Fig. 5.5.

Although we build on event ports for passing parameters we do not have to ex-
plicitly declare one. This is implicitly done when making a component respon-
sible to manage a scope by adding a scope annotation. Thus, we can directly
annotate component fields to hold information about joining or leaving scope
members. For example, the component field member (line 13) contains identities
and, if provided, credentials of components and brokers that want to join or
leave the scope. Please note that a regular @Attribute annotation together with
the constant MEMBER INFO is used to mark the field appropriately (line 12).
This way, arbitrary other scope relevant as well as context information can be
injected into the component.

The injected data and information are required by event handlers to approve
or deny a component request to join the scope. In the example, the methods
check and add (lines 16 and 22) are annotated as event handlers responsible
to process join requests. For this purpose, regular OnEvent annotations are
used combined with the constant JOINING (lines 14 and 21) reserved for scope

SCOPE MANAGEMENT 131

11 · · ·
12 @Attribute(Scope.MEMBERINFO) // info about joining or
13 MemberInfo member; // leaving scope member

14 @OnEvent(Scope.JOINING) // high priority handler
15 @Priority(Priority .HIGH) // to check a new member’s
16 void check() { // authorization
17 // check component’s authorization
18 · · · // abort and deny access
19 i f (!authorized) throw new ScopeException(); // via exception
20 }
21 @OnEvent(Scope.JOINING) // handler for joining
22 void add() { // scope members
23 // add component to members
24 · · ·
25 }
26 @OnEvent(Scope.LEAVING) // handler for leaving
27 void remove() { // scope members
28 // remove component from members
29 · · ·
30 } }

Figure 5.6: Component with annotated scope management handlers.

management. By assigning the check method a higher priority (line 15) than
the add method3 the execution order of both handlers is determined unambigu-
ously. The check method is called first and verifies if the requesting component
as well as intermediate brokers along the network path are authorized to join
the scope. If the component or at least one broker is not authorized the event
processing is aborted by throwing a ScopeException (line 19). The component
container catches the exception and interprets it as a denial to join the scope
which is published as a negative scope notification and routed towards the re-
questing component. Hence, the subsequent add method is only executed if the
authorization check was successful. In order to keep track about scope members
the add method maintains a list of joined components to which the requesting
component is added. Please note that maintaining an own member list is not
required for managing a scope. It just demonstrates a possible application and
benefit of having multiple event handlers processing a join request. If all associ-
ated event handlers terminated successfully the component container publishes
the approval to join the scope as scope notification which is then routed towards
the requesting component.

The method remove (line 27) is responsible for components leaving the scope. It
is made an event handler using the OnEvent annotation together with the scope-
specific constant LEAVING (line 27). Contrary to the add handler discussed

3 The default priority of event handlers is NORMAL when not annotated otherwise. Please
refer to Sect. 5.3.2 for details.

132 PROGRAMMING ABSTRACTIONS

above, remove simply deletes the component leaving the scope from the list of
members. For this to work, the field member (line 13) contains the identities of
the component as well as intermediate brokers this time that together unsub-
scribed the scope membership. Please note that, contrary to a join request, it
is not possible to stop components or brokers in leaving the scope by raising an
exception. In fact, the particular component may not be present or available
anymore, e.g., if it has crashed and the scope unsubscription is issued by the
hosting broker on behalf of its component.

5.4.3 Scope Instantiation

Scopes provide flexible means to structure publish/subscribe systems and orga-
nize event-driven applications. They enable application developers and system
administrators to adequately model and represent architectural, functional, or
organizational structures within applications and the broker network to ease
their development and maintenance. For example, a distributed event-driven
application may be split into several functional modules each embedded into a
separate scope. Likewise, a company may be divided into different divisions with
each of them enclosed in an individual scope. Thereby, it is often the case that
many scopes do not substantially differ from each other. In fact, module scopes
may have the same basic structure and division scopes may share the same at-
tributes that just differ in assigned values. Nevertheless, each scope needs to
be defined individually so far which includes interface filters, scope attributes
as well as their values. This is tedious and cumbersome. Instead, it is benefi-
cial and much more convenient to have some kind of scope classes or templates
defining a scope’s structure that can be easily instantiated and configured on de-
mand. Moreover, this can even be done automatically. In fact, we have already
established necessary foundations and prerequisites by allowing scope specifica-
tions to be annotated to the Java classes of their managing components. Hence,
we just need to precisely define how annotated scopes can be instantiated and
configured appropriately.

Definition 40 (scope instantiation). Based on the scope annotations added to
scope components the component container is able to automatically create a new
scope instance when (i) a scope component is connected to its hosting broker,
(ii) another scope is created, or (iii) an application component is added. Re-
quirements, conditions, and details are as follows:

(i) A scope component is connected to its hosting broker and successfully joins
the parent scope as determined by provided annotations. Furthermore,
there is no other active scope of the same name advertised within the parent
scope. Then the component container creates and opens the corresponding
scope and activates the newly connected scope component.

(ii) A new scope is opened which has another scope previously configured to be
its subscope. Furthermore, the configuration identifies the subscope’s man-

SCOPE MANAGEMENT 133

1 @Scope(name = ”divisions”, // scope declaration with
2 selector = ”division == ’∗ ’”, // component selector and
3 attributes = ”info”) // one scope attribute

4 class Division {
5 @AutoConfigure // attribute automatically
6 @Attribute String info ; // configured by container

7 @Autoconfigure(”out−f i l te r”) // outbound f i l te r also auto−
8 @Filter(Scope.OUT) Filter monitoring; // matically configured

9 @AutoCreate // default constructor for
10 Division() { // automatic instantiation
11 // init ia l ize component
12 · · ·
13 }
14 @AutoCreate(”division”) // constructor for automatic
15 Division(String division) { // instantiation of subscopes
16 // init ia l ize component // for new divisions
17 · · ·
18 } }

Figure 5.7: Annotated constructors to automatically create subscopes.

aging component providing a marked constructor for instantiation. Then
the component container creates an instance of the subscope’s managing
component, sets the appropriate parent scope, and connects it to the hosting
broker. Subsequently, the particular subscope is derived according to (i).

(iii) An application component successfully joins a scope that is previously con-
figured to group all members into subscopes based on a particular compo-
nent attribute. The constructor to instantiate subscopes is provided and
there is no active scope that corresponds to the value of the components
attribute yet. Then the component container creates a new scope compo-
nent using the attribute value as scope name and connects it to the broker.
Subsequently, the particular subscope is derived according to (i).

In case (i) of the definition above the scope specification is simply extracted
from component annotations when the scope component is connected to the
broker. The scope component itself, however, needs to be previously instanti-
ated. Cases (ii) and (iii) go beyond that. Here, the component container creates
the new scope as well as its managing scope component provided that an appro-
priate configuration and constructor functions are given. The listing shown in
Fig. 5.7 revises the finance scope specification introduced in Sect. 5.4.1 to make
the scope component automatically instantiable on demand.

An international company may be divided into divisions, but may also be struc-
tured according to the regions and markets in which it is active. In fact, a
company’s organization is usually based on a mixture of these criteria. Thus,

134 PROGRAMMING ABSTRACTIONS

when creating a new company scope, it makes sense to create subscopes these
organizational aspects, too. The annotation @AutoCreate (lines 9 and 14) marks
constructors that can be safely used by the component container to create new
component instances on demand. In order to create a scope that contains all
company divisions the no-argument constructor (line 10) applies. It instantiates
a scope component specifying a scope named divisions (line 1) that is responsible
for all component members having a division attribute regardless of its value
(line 2). Whenever a new company scope is established, it makes also sense to
automatically create a scope responsible for the company’s divisions. In fact,
this scenario corresponds to case (ii) of the scope instantiation process.

The general scope covering all company divisions is usually further subdivided
so that each division has its own subscope. Moreover, such subscopes may be
instantiated automatically by the component container whenever a new divi-
sion is established within the company. For this purpose the second constructor
is used whose @AutoCreate annotation is constrained by the division attribute
(lines 14 and 15). If an application component has a division attribute for which
no corresponding subscope exists yet, a new scope component and subscope is
instantiated. Therefore, the attribute’s value is passed as argument to the con-
structor of the scope component. Furthermore, the newly instantiated subscope
is named after the attribute and the application component is grouped into it.
For example, if the application component has its division attribute set to fi-
nance for which no subscope already exists a new one named divisions.finance
is created with the application component as member. In fact, annotating con-
structors this way allows for automatically grouping application components into
own subscopes according to a particular attribute. This is enabled by case (iii)
of the scope instantiation process.

Automatically created subscopes have the same structure. For instance, all
division subscopes have an info attribute (line 6) as well as a dynamic filter for
monitoring (line 8). However, they may differ from each other by the actual
values and expressions assigned to attributes and filters, respectively. In fact,
the info text for the finance division may be different to the text of the marketing
division. When instantiating a new scope component, therefore, the name of the
scope to be created is also passed to the constructor so that scope attributes and
filters are initialized appropriately. However, this usually leads to a mixture of
code and configuration which we effectively want to avoid. Hence, an improved
approach is needed in which the component container additionally configures the
scopes and scope components it instantiates. The @AutoConfigure annotations
(lines 5 and 7) are intended for this purpose. They mark component fields and
values that are specific for each individual scope instance and are, thus, subject to
configuration. Here, the scope attribute info and the monitoring filter for outgoing
notifications are configured this way. After creating a new scope component the
component container looks up the marked fields in its configuration for this
component class and sets their values appropriately. Please note that for the
scope’s outbound filter the identifier out-filter (line 7) provided by the annotation
is used instead of the field’s name.

COMPONENT ORCHESTRATION 135

Definition 41 (field initialization). The component container assigns initial val-
ues to annotated fields of automatically created components that are looked up in
a name/value list within the container’s configuration. The lookup key is formed
by the complete name of the scope in the hierarchy extended by the annotated
identifier or the field’s name if the former is not given. The list may contain
multiple entries matching the key from which the most specific is taken.

It is rather unusual to have multiple entries matching a single key. But it al-
lows for flexible configurations in which one entry applies to multiple scopes and
components. Thereby, it is possible to provide a general default value that can
be overridden by a more specific entry. In particular, we may use the wildcard
symbol ? to denote an arbitrary name component, while * denotes an arbitrary
part of the scope hierarchy. Then, *.divisions.?.contact denotes a general contact
address for all division subscopes while *.divisions.finance.contact overrides the
address for the finance scope as the entry is more specific (i.e., more name com-
ponents are specified without wildcards). Please note that the usage of wildcards
is just one possible way of implementation. The definition does not prescribe any
specific implementation and explicitly leaves open how the lookup is realized in
detail. Naming and directory services as well as databases may be used for this
purpose. Alternatively, simpler internationalization and localization techniques
are also applicable that manage key/value pairs and provide adapted and trans-
lated resources (e.g., error messages, menu items) according to the language,
country, and region of the user. Please further note that the @AutoCreate and
@AutoConfigure annotations are not limited to scopes and scope components
only. They are also applicable to regular event-driven components in order to
let these automatically instantiated and configured by the component container.

5.5 Component Orchestration

In the previous sections, we have introduced programming abstractions that
ease the development of event-driven components as well as the management of
scopes to organize systems and applications. Based on these foundations, we are
now ready to put together the various building blocks to form and design com-
prehensive solutions. In particular, this comprehends creating and customizing
event-driven components, grouping them into scopes and subscopes, and orches-
trating their event flows. Collectively referred to as component orchestration,
this is an important and essential part of the system configuration.

System configurations are usually provided in external files or, sometimes, in
databases that are parsed or queried on start up, respectively. Thereby, internal
data structures are build up that hold and represent the configuration from then
on. Alternatively, it is also possible to offer an interface for manipulating these
data structures directly. This way, developers are able to program the system
configuration, too. In fact, this has several practical benefits, for instance, the
same tools and development environments used for implementation can also be

136 PROGRAMMING ABSTRACTIONS

1 @Configuration // configuration class
2 class AlertingConfiguration {
3 @Configuration // configuration method
4 void configureComponents() {
5 Component c = Component // proxy reference for
6 . of(Alerter . class) // alert component
7 .where(Value.of(”id”). is (”42”)); // specified by its id

8 c. set(
9 Value.of(”application”).to(”alerting”) , // adding/changing

10 Value.of(”type”).to(”alert”)); // component attributes

11 c. subscribe(// subscribing in−port
12 Port. in(”items”).with(”type = invoice”) // to invoice events
13 .mapping(”article , price”) // renaming attributes
14 . to(”item,value”)); // article and price

15 c. advertise(// advertising out−port
16 Port.out(”alert”).with(”type = alert”) // alert notifications
17 .mapping(”text”).to(”description”)); // renaming attribute text
18 }
19 · · ·

Figure 5.8: Customizing component attributes and event ports.

reused for configuration. Additionally, the compiler checks the syntax of the
configuration for free and provides meaningful error messages where necessary.
In this section, we follow the latter approach to present the configuration’s pri-
mary elements and concepts. Besides the benefits already mentioned above there
are two main reasons. First, it saves us from introducing an own configuration
format or configuration language. Second, the interface operations also allow us
to write complex configurations in a compact and concise style and form that is
still quite intuitive to read and understand.

5.5.1 Customizing Components

When connecting prefabricated components and gluing them together to mean-
ingful applications, it is often necessary to customize and adapt some components
first in order to make them fit. Primarily, this includes changing component at-
tributes and subscribing their event ports to the event notifications to process.
This is a major part of the system configuration for which we also provide pro-
gramming abstractions. Instead of introducing a new configuration language
or format, we provide a programming interface enabling developers to directly
manipulate the component container’s configuration. The listing in Fig. 5.8 ex-
emplifies how such a programmed configuration looks like. The idea is to realize
an alerting service that monitors a company’s accounting system and warns in
case of abnormal or suspicious expenses.

COMPONENT ORCHESTRATION 137

The whole system configuration can be split up into multiple class files. In
particular, we recommend to create one per application. The @Configuration
annotation (line 1) is used to mark those classes that contain configuration logic
which itself can be subdivided into several configuration methods. Likewise,
configuration methods need to be appropriately annotated, too (line 3). Similar
to event handlers (cf. Sect. 5.3.2), it is possible to additionally assign priorities
to enforce a particular execution order. However, this is not necessary if con-
figuration methods do not override each other’s settings. They are executed by
the configuration container when a corresponding configuration object instance
is provided together with a new application component.

Within a configuration method, it is first necessary to specify the component to
configure. This is done by obtaining a proxy reference using the static of method
of the Component class (lines 5 and 6). The returned proxy initially refers to all
instances of the specified Alerter class. Hence, all settings made when using it
are valid for all component instances of this class and its subclasses. However,
it is possible to narrow the proxy reference to individual instances. Therefore,
the where method allows to specify additional constraints (line 7). Here, the
reference for the Alerter class is narrowed to a single instance specified by the
given id attribute.

Having a proxy reference, it is then easy to change existing or add new compo-
nent attributes using the set method (line 8). The method takes one or more
name/value pairs as arguments that are added as component attributes replac-
ing already existing ones. Name/value pairs can be constructed using the Value
class. The attribute’s name is provided to the static of method while the at-
tribute’s value is given to the is or to method. Of course, there are alternative
and easier ways to create name/value pairs of which providing a simple construc-
tor taking both arguments is one of them. Introducing the Value class, however,
allows for more verbose and literate configurations that we want to make as
self-explaining as possible. Here, the component attributes application and type
are set to the values alerting and alert, respectively (lines 9 and 10).

Besides setting component attributes, the configuration also specifies event flows
between components. Basically, this means subscribing components to event no-
tifications they have to process while advertising those they produce. For this
purpose, corresponding subscribe and advertise methods (lines 11 and 15) are
provided that take as argument one or more in-port or out-port specifications,
respectively. In particular, it is, to be more precise, the event ports of the com-
ponent that are subscribed or advertised. An event port specification is created
using the Port class. The static in (line 12) and out (line 16) methods create a
named in-port or out-port specification, respectively, that refers to the compo-
nent’s port of the same name. The with method provides the notification filter
or the filter expression used for component subscription or advertisement. Here,
the component’s in-port item is subscribed to invoice notifications identified by
their type attribute (line 12). Notifications from the component’s out-port alerts
are advertised as having the type alert (line 16).

138 PROGRAMMING ABSTRACTIONS

19 · · ·
20 @Configuration // configuration method
21 void configureScopes() {
22 Scope s = Container.create(// create scope instance
23 Scope.of(DefaultScope. class)); // and obtain proxy

24 s . set(
25 Name.to(”alerting”) , // customize name,
26 SuperScope.to(”company. finance”) , // superscope,
27 Selector .to(”application = ’alerting ’”) , // component selector ,
28 InFilter .to(”true”) , // interface f i l ters
29 OutFilter .to(”type = ’ alert ’”) , // and add a new
30 Value.of(”loglevel”).to(”debug”)); // scope attribute
31 } }

Figure 5.9: Customizing a scope specification.

However, when building applications from various components, we cannot expect
that a consistent naming scheme is used by all of them. This is especially
true as components may come from different vendors whose developers do not
know the application context in which their components are deployed later.
Thus, event port attributes do often not correspond to the attribute names of
the notifications they have to process and, therefore, need to be mapped and
renamed appropriately. Attribute mappings are specified using the mapping
method combined with the to method. Attributes listed as argument to the
mapping method are mapped, in the same order, to the names given to the to
method. Thus, in the example of Fig. 5.8, the notification attributes article
and price are mapped to the in-port attributes item and value (lines 13 and 14)
while the attribute of published alert notification on the component’s out-port
is renamed from text to description (line 17).

5.5.2 Customizing Scopes

Similar to application components, it is often necessary to customize and adapt
scopes, too. This usually includes defining their name and position within the
scope hierarchy, adding or changing scope attributes as well as specifying and
fine-tuning component selectors and interface filters. In fact, the whole scope
specification is configurable. The listing in Fig. 5.9 gives an example continuing
the application configuration started in Fig. 5.8. All settings regarding scopes
are bundled within a specific configureScopes method (line 21).

First and foremost, we have to specify the scope we want to configure. Similar
to application components, this is done by using the static of method of the
Scope class to obtain a proxy reference to the appropriate scope (line 23). More
precisely, it is a reference to the class of the scope’s managing component that
contains the annotated scope specification and still needs to be narrowed to ad-

COMPONENT ORCHESTRATION 139

dress a single scope instance only. Therefore, we may add further constraints
using the where method/clause to uniquely identify the scope component of in-
terest. In fact, we have already taken this approach to successfully configure the
application’s Alerter component in the previous section. Nevertheless, we still
had to create the component instance manually. Alternatively, the component
container can do this automatically. For this purpose, the Container class offers
the static create method (line 22) taking a component class as argument and re-
turning a proxy reference for the created instance for further customization. In
the example, we thus configure the component container to create a new instance
of the DefaultScope, which contains no application components yet and does not
allow any notification to pass its boundary. Please note that automatic instan-
tiation is only possible if component and scope constructors are appropriately
marked with @AutoCreate annotations (see Sect. 5.4.3 for details).

Having the proxy reference, we are able to adapt the DefaultScope specification
as needed. Thereby, the set method (line 24) allows us to address and over-
ride each part of the scope’s specification separately. However, the set method
takes one or more name/value pairs as arguments and adds these as compo-
nent attributes as described in the previous section. To address parts of the
scope specification, we, therefore, need specific name/value pairs for which we
provide own classes and constructor functions. In particular, the ScopeName,
SuperScope, Selector, InFilter, OutFilter classes (lines 25 to 29) refer to the name
of scope, its superscope, its component selector function, and the interface fil-
ters for incoming and outgoing notifications, respectively. All of them provide
a static to method to create an appropriate name/value pair with the value set
to the given argument. To add or change an ordinary scope attribute, the Value
class and its methods (line 30) are used as before.

In the example listing, the created default scope instance is extensively cus-
tomized and adapted. First, it is named alerting (line 25) and grouped under
the top level scope finance (line 26). Furthermore, it is configured to encompass
all components that belong to the alerting application. Therefore, its component
selector checks whether the component has an application attribute that is set
appropriately (line 27). The scope’s interface is configured to make all external,
incoming event notifications visible to scope members (line 28) while only alert
notifications published by members are visible outside the scope (line 29). Fi-
nally, the scope attribute loglevel is added and set to debug (line 30) to make all
scope members to also log debug information besides warnings and errors.

5.5.3 Grouping and Connecting Components

The programming abstractions introduced to customize components and scopes
are sufficient to create and compose arbitrary system configurations. However,
the more complex applications and infrastructure, the more extensive and com-
prehensive the system configuration becomes. In particular, it turns out to be

140 PROGRAMMING ABSTRACTIONS

1 @Configuration // configuration class
2 class DivisionConfiguration {
3 @Configuration // configuration method
4 void configure() {
5 Scope division = Container.create(// create divisions
6 Scope.of(DefaultScope. class)); // scope with subscopes
7 division . set(Name.to(”divisions”)); // for each division
8 division .groupBy(”division”);

9 Component monitor = Container.create(// create monitor
10 Component.of(StockMonitor. class)); // component and set
11 monitor. set(// division attribute
12 Value.of(”division”).to(”sales”)); // to be assigned to
13 Container. insert(monitor). into(division); // the sales subscope

14 Component manager = Container.create(// create manager
15 Component.of(ProductionManager. class)); // component and set
16 manager. set(// division attribute
17 Value.of(”division”).to(”production”)); // to be assigned to the
18 Container. insert(manager). into(division); // production subscope

19 Container
20 .connect(Port.out(”warnings”).of(monitor)) // connect event ports
21 .with(Port. in(”demand”).of(manager)) // of both components
22 .mapping(”item,quantity ,date”) // and rename several
23 . to(”article , units ,deadline”); // attributes
24 } }

Figure 5.10: Grouping components into scopes and connecting their event ports.

tedious and error-prone to manually define and manage filters and filter ex-
pressions to determine scope membership as well as the visibility of event no-
tifications. To ease component orchestration, we, therefore, provide additional
configuration methods that abstract from filter details and allow to directly spec-
ify how components are grouped and connected. The listing in Fig. 5.10 gives
an example by automatically grouping two business components in their appro-
priate scopes and directing the flow of exchanged event notifications by simply
connecting their event ports. The presented application implements an agile and
event-driven production planning service that decides what article to produce
on which production line based on current sales and the stock level in storage.

First, a top level scope is configured to be automatically created by the con-
tainer from the default scope class (lines 5 and 6). It is used to structure the
publish/subscribe system according to the company’s divisions. In particular,
the groupBy method is applied for this purpose (line 8). It groups application
components according to their division attribute into corresponding subscopes.
If a matching subscope does not exist yet, it is automatically created. This
is possible if the scope component provides an appropriate constructor marked
with the @AutoCreate annotation as described in Sect. 5.4.3. Thereafter, the

COMPONENT ORCHESTRATION 141

container is configured to instantiate two application components. One compo-
nent is created from the StockMonitor class (lines 9 and 10). It is responsible
to watch the stock level in storage and publish an appropriate warning before
a particular article is running out of stock. The monitor component belongs
to the sales division. Hence, its division attribute is set accordingly (lines 11
and 12). The other component is created from the ProductionManager class
(lines 14 and 15). It is responsible to manage the company’s production lines.
In fact, it plans and controls when which article is manufactured where and in
what quantities. Therefore, the component belongs to the production division
and has its attributes set accordingly (lines 16 and 17). After instantiation,
both components are simply placed into the divisions scope using the configu-
ration methods insert and into provided by the component container (lines 13
and 18). Moreover, as the scope is configured to group members according to
their division attribute, the two components get automatically assigned to their
corresponding subscopes. If necessary, a new sales or production subscope is
created on demand.

Finally, communication between the stock monitor component and the produc-
tion management component needs to be established. In particular, it has to be
ensured that published warnings about low stock levels are delivered to the pro-
duction manager in order to adept the production schedule and restock affected
articles. Therefore, the configuration allows developers to directly connect the
out-port of one component to the in-port of another component. In fact, such
component connections are usually a central abstraction in dataflow approaches
that ease application development and increase component reusability. For this
purpose, we offer the configuration methods connect and with that take appro-
priate out-port and in-port specifications as arguments, respectively (lines 20
and 21). Port specifications are created using methods of the Port class. Meth-
ods out and in specify the port’s type and name while method of determines the
component instance or class. However, as event port attributes may not cor-
respond to each other on both sides of the connection, an additional attribute
mapping is often needed. This is defined per connection using the methods
mapping and to (lines 22 and 23). Attributes listed as arguments to the mapping
method are renamed to the identifiers given to the to method in order of appear-
ance. In the example, the out-port warnings of the stock monitor is connected
to the in-port demand of the production manager. Thereby, the attributes item,
quantity, and date are mapped to article, units, and deadline, respectively.

Grouping scopes and components as well as connecting their event ports signif-
icantly eases their orchestration. In fact, the presented configuration methods
above abstract from filters and filter management and, thus, enable developers to
directly focus on the data flows between components. Behind the scenes, how-
ever, data flows are completely directed by subscriptions, advertisements and
their filters. Moreover, all configuration methods eventually implement their
functionality by using or adapting filter expressions. For example, the config-
uration methods insert and into that are used to directly assign components to
a given scope in reality just manipulate the scope’s component selector and ex-

142 PROGRAMMING ABSTRACTIONS

pand its filter expression. In more detail, the implementation comprises two
different parts. First, when obtaining a proxy reference for configuration, it is
ensured that the referenced components are uniquely identifiable. Either the
constraints provided by the where clause are used or a hidden id attribute is
added if the component is automatically created by the container. Second, the
provided constraints or the added id are incorporated into the filter expression
of the scope’s component selector. The same is done for the selectors of any
parent scope. Hence, the component is grouped into the particular scope by the
regular scope assignment process as described in Sect. 4.4.2.

A similar approach is used for connecting components and establishing event
flows. First, we make event ports and their notifications identifiable by associat-
ing an additional id attribute to each port. This id is added to every notification
published by the port. Thus, each event flow within the system can be subscribed
using the id of the port it originates from. Second, we exploit this feature for im-
plementing the configuration methods connect and to by subscribing the in-port
of the receiving component to the notifications of the out-port of the publishing
component using the id of the latter. Furthermore, scope interface filters need to
be considered if both components are situated in different scopes. In particular,
for each scope of the publishing component in which the receiving component
is not a member the filter expression for outgoing events is adapted to allow
notifications of the flow to leave the scope. Likewise, for each scope of the re-
ceiving component to which the publisher does not belong the filter expression
for incoming events is adapted to allow the notifications to enter the scope. In
both cases, the added port id specifies the relevant notifications.

Please note that connecting components this way also has side effects. When
allowing notifications to pass scope boundaries, they also become subject to sub-
scriptions of other scopes. Thus, besides the component to which the notification
flow is connected, there may be other components that receive all or some of the
notifications, too. Contrarily, it is also possible that notifications do not reach
the receiving event port although publishing and subscribing component are con-
nected to each other. This is the case if publisher or subscriber may dynamically
be assigned to other scopes whose interface filters have not been adapted yet.
In fact, only those scopes are considered that are addressed within the system
configuration and from which is known that at least one of the components is a
member, for instance, by explicitly assigning the scope using the configuration
methods insert and into. Thus, great care has to be taken when mixing dynamic
filters annotated to scopes and components with static configurations.

5.6 Implementation

The programming abstractions presented in the previous sections aim at easing
and simplifying the development and orchestration of event-driven components
and applications. Primarily, they relieve developers from cumbersome and boil-
erplate code often required to interact with the publish/subscribe middleware.

IMPLEMENTATION 143

Introduced event ports, for instance, save developers from the necessity to man-
ually inspect received notifications and extract the relevant data to process.
Moreover, processing results get automatically and conveniently published by
this approach, too. In fact, a large proportion of middleware-specific code is
thereby factored out from application components. Thus, developers can better
focus on the component’s business and application logic. However, the func-
tionality factored out from components does not vanish. It is shifted into the
middleware where the presented programming abstractions need to be imple-
mented. In this section, we give an overview about the general implementation,
show its integration into the middleware architecture, and highlight relevant de-
tails how particular abstractions are realized. The implementation, thereby, is
split into two different parts: a component container and a component wrapper.
While the former provides general services and convenient functions, the latter
ensures that application components can leverage the offered functionality. Both
are discussed in the following.

5.6.1 Component Container

Rebeca brokers are able to locally host event-driven components. This feature
is implemented as plugin which can be added to brokers when required. Unlike
other plugins, hosting components does not change the way how notifications
need to be forwarded by the broker. Thus, the component plugin does not in-
tervene or participate in the broker’s message processing chain as other plugins
such as the routing plugin or the scope plugin do. Nevertheless, the component
plugin follows the general design pattern common for all Rebeca plugins to be
compatible with the broker’s architecture. In order to support the programming
abstractions presented, we revised the component plugin and extended its func-
tionality. Following the idea of a tailored feature composition [166] brokers are
free to use the regular component plugin or the revised version for supporting
normal event-driven components or the full set of programming abstractions,
respectively. The UML diagram in Fig. 5.11 gives an overview about the com-
ponent plugin and its extensions.

The central part of the component plugin is the ComponentEngine. From its
abstract parent class, it inherits all necessary properties and operations to be
seamlessly plugged into a broker’s processing infrastructure. As the Component-
Engine, however, does not need to modify any notifications, we simply stick to
the inherited default logic. In fact, the default implementation of the process
method immediately passes any message to the next engine in the broker’s pro-
cessing chain. Regarding the hosting of components, the ComponentEngine offers
methods to plug and unplug local components. After plugging a component to
the broker the broker’s output is locally connected to the component’s input and
vice versa. Using this connection, component and broker can exchange subscrip-
tions and matching event notifications. Unplugging the component disconnects
broker and component again.

144 PROGRAMMING ABSTRACTIONS

Figure 5.11: Overview of Rebeca’s component plugin and its extensions.

For each connection, broker and component possess an own sink chain that event
notifications have to pass immediately after being receipt from or before being
sent to the opposite side. Plugins may insert own logic into the sink chain
on either side of the connection to modify or transform passing notifications.
This way, for example, the serialization plugin converts event notifications into
an appropriate format for network transport or the scope plugin enforces its
visibility constraints. For plugin developers, the Rebeca framework provides
the abstract base classes AbstractSink and AbstractComponentSink as starting
point. They simply pass incoming notifications (method in) upwards and out-
going events (method out) downwards to the next sink in the chain. Plugin
developers are encouraged to extend these classes and overwrite their meth-
ods as needed. The component plugin itself ships with two new event sinks:
the SinkConnector on broker side and the ComponentConnector on component
side. The SinkConnector is responsible to directly connect the broker sink to
the component sink. In particular, as components are hosted locally, it thus
allows to bypass the serialization/deserialization of event notifications as well as
their network transport, which both are usually quite expensive and costly. The
ComponentConnector finally connects the component sink with the component
itself. It eventually delivers incoming event notifications to the component and,
in return, offers a basic broker interface with which the component can publish
own events or subscribe and unsubscribe the notifications of other publishers.

For regular event-driven components, the publish/subscribe interface offered by
the ComponentConnector is usually sufficient. To support all programming ab-
stractions presented in this chapter, however, the component plugin yet lacks

IMPLEMENTATION 145

essential features and services. To add the required functionality we extended
the plugin’s engine to a full-fledged component container that manages its com-
ponents and provides common services and functions. The ComponentContainer
class first overloads its inherited plug and unplug methods to also accept those
components that do not fulfill the conventional component interface, but use
the introduced annotations to declare event ports and event handlers. More-
over, executable configurations that orchestrate these components are plugged
this way, too. Additionally, the ComponentContainer also provides the opera-
tions create and configure to instantiate new components and configure these
subsequently. Thereby, the new component is inspected and existing class anno-
tations are evaluated in order to determine the part of the container configuration
that is relevant for the respective component. This part gets attached to the
component itself making costly reinspections unnecessary. Besides the lifecycle
of components, the container also manages their repeating and periodic tasks.
Therefore, the container method schedule enables components to register own
time-triggered handlers and methods to be executed periodically while unsched-
ule stops the respective timers again. Bundling timer management within the
component container especially allows for more efficient implementations than
having each component individually scheduling its own tasks.

Event-driven components using services and functions provided by the container
are said to be managed. Although they also implement the common Component
interface to publish and receive event notifications they depend on the component
container for supporting all programming abstractions. In the next section, the
ManagedComponent class is discussed in more detail.

5.6.2 Managed Component

Leveraging the presented programming abstractions, application developers can
better focus on the component’s business logic. In particular, it is usually suffi-
cient to annotate methods and fields contributing to the applications function-
ality in order to just describe when and for which purpose they have to be used.
Event ports, for example, relieve developers from writing boilerplate code to
manually create notifications for the events to publish as well as to tediously
inspect received notifications for relevant data. Instead, a notification’s con-
tent and data are automatically taken from and provided by event port fields,
which are directly accessible from within the component and, thus, significantly
ease the development. However, those business components are not able to use
a publish/subscribe middleware on their own. Instead, they have to be man-
aged and wrapped in order to be compatible to the middleware’s architecture
and functionality. In Rebeca, the ManagedComponent class is used for this
purpose. Figure 5.12 shows the corresponding UML class diagram giving an
overview about its structure and relations to other classes.

The ManagedComponent class extends the AbstractComponent class and, thereby,
inherits properties and logic to interact with the ComponentConnector in order

146 PROGRAMMING ABSTRACTIONS

Figure 5.12: Managed component wrapping a business component.

to publish own events and receive subscribed ones. It also maintains a refer-
ence to the ComponentContainer whose services and functions are required to
support some of the more advanced programming abstractions. Each Managed-
Component wraps an application component, which contains the actual business
logic. Thereby, the application component can be of arbitrary type provided
that fields and methods are annotated appropriately. Thus, the class diagram
just shows the Object class as it is the root of the whole Java class hierarchy. Fur-
thermore, each ManagedComponent also includes a ComponentConfiguration for
the enclosed application component that contains prepared information about
available event ports and existing event handlers. The ComponentConfiguration
is generated from provided annotations once by the ComponentContainer when
the application component is plugged. Hence, application component and its
annotations need not to be extensively reinspected again, for example, whenever
a received event notification has to be delivered to the responsible event port.

The ManagedComponent class overrides many inherited methods. The lifecycle
operations init and activate are adapted to create necessary data structures and
start the component’s event processing. Among other things, this includes cre-
ating subscriptions and advertisements for event ports and scopes, issuing these
and schedule time-triggered component tasks as well as finally start component
threads. Contrarily, the methods passivate and exit stop component threads and
timers, revoke subscriptions and advertisements, and free allocated resources.
The operation onTimer is a callback method required by the container to inform
that a time-triggered task is ready to be executed. Calling onTimer instead of
immediately executing the task itself is necessary for synchronization reasons.
This way, the ManagedComponent class ensures that no time-triggered task may
interfere with an event handler concurrently processing a received notification.
Please note that we primarily aim at hiding concurrency issues to ease applica-

RELATED WORK 147

tion development rather than guaranteeing any realtime behavior. Finally, the
notify method delivers received event notifications to appropriate event ports of
the enclosed application component and manages its processing by calling the
responsible event handlers.

In order to deliver notifications to event ports and subsequently call their event
handlers for processing, the ManagedComponent depends on the prepared and
compiled information provided by the ComponentConfiguration class. Therefore,
the ComponentConfiguration offers operations to conveniently access and query
details about event ports and event handlers as well as scope specifications in
case that the application component defines and manages its own scope. In
particular, getEventPorts returns all in-ports and out-ports as well as associated
filters that are declared by the application component or defined in the system
configuration, respectively. For each event port, getEventHandlers provides the
list of associated business methods sorted by priority that need to be called for
processing the data. Similarly, getTimerTasks returns a list of all time-triggered
business methods, while isActive tells whether application component possesses
own threads of execution. In this case, additionally concurrency and synchro-
nization issues have to be considered as described in Sect. 5.3.3 making the event
processing significantly more complex.

Regarding the management of scopes, the ComponentConfiguration also contains
the detailed scope specification if the enclosed application component defines
its own. Whether the application component manages an own scope can be
determined by the isScopeManager method, while the specification itself is ac-
cessed using getScopeSpecification method. Furthermore, getScopeHandlers then
returns a list of scope management methods declared by the application compo-
nent that need to be called whenever a component member joins or leaves the
defined scope, respectively. The list of scope management handlers is filtered
by type of operation, i.e., whether the component joins or leaves the scope, and
is sorted by priority starting with the handler of the highest priority which is
executed first. Besides components that dynamically join and leave, a scope may
also be configured to always contain a set of default members. Classes and con-
structors are returned by the getDefaultComponents method, so that component
instances can be created by the ComponentContainer on demand. Finally, the
isGrouped method tells whether component members get automatically grouped
by their attribute values into corresponding subscopes. This is just a convenience
method as all grouping details are a part of the whole scope specification.

5.7 Related Work

Event ports are the central element of the programming abstractions presented
in this chapter. They provide a high-level interface for publish/subscribe com-
ponents that separates reusable business logic from configuration and context
information. This way, developers are enabled to easily create event-based appli-
cations by orchestrating prefabricated components, connecting their event-ports,

148 PROGRAMMING ABSTRACTIONS

and directing the event streams between them. As there are many similarities
to dataflow architectures, we split the discussion of related work into two parts.
In the following, we first discuss existing publish/subscribe abstractions before
giving an overview about programming approaches based on dataflow concepts.

5.7.1 Publish/Subscribe

In recent years, event-driven programming has gained major importance and
popularity. For Graphical User Interfaces (GUIs), for example, it even is the
norm. Accordingly, programming abstractions that support and ease event-
driven techniques are welcomed and appreciated. In [136], Meyer discusses gen-
eral design aspects and considerations for asynchronous, event-driven interac-
tion. For this purpose, he presents an event library written in Eiffel [135] and
compares implemented concepts to those of other programming languages and
frameworks. Although the event library is based on advanced language features
such as multiple inheritance, constrained generics, and agents it still impresses
by its simplicity.

The event library primarily consists of a single class and publishing of as well
as subscribing to events actually boils down to a simple method call each. In
particular, arbitrary methods to be executed can be subscribed to events by
using Eiffel agent expressions which simply wrap a routine ready to be called
into an object that can subsequently be passed as argument to other methods.
This scheme, thereby, allows to make any method and component event-driven
including those components that were originally not designed this way. Espe-
cially developers benefit from the high degree of reusability as it enables them to
start from existing programs and systems without the need to write complex and
lengthy glue code to connect the pieces. Moreover, agents may have open and
closed arguments. While open arguments must be provided for each call anew
as part of the communicated event, closed arguments are fixed and given once
when the agent is defined itself. Thus, the latter are well suited to incorporate
configuration data and settings when subscribing a component (i.e., defining an
agent) to process a particular type of events. In fact, enabling components to
get externally configured and subscribed to events is also a key concept of our
approach. In [4], Arslan et al. provide further insights into the event library, its
details, and its application.

While the event library is just designed for local interaction, Eugster [56] provides
a set of programming abstractions for publish/subscribe in distributed environ-
ments. The overall goal is to neatly integrate content-based publish/subscribe
into an object-oriented programming language such as Java while ensuring type
safety. Therefore, Eugster et al. [62] advocate for using regular objects to rep-
resent the events to communicate. This is especially emphasized by coining the
term obvents as abbreviation for such event objects. For exchanging events Dis-
tributed Asynchronous Collections (DACs) are introduced as an object-oriented
abstraction that allows to subsume different publish/subscribe interaction styles

RELATED WORK 149

as well as to express various Quality of Service (QoS) aspects [63]. Thereby,
DACs adopt the basic idea of a tuple space as known from the coordination
language Linda [83, 26]. In that sense, a DAC is a container to which obvents
are added by one process and from which contained obvents are read by other
processes. In contrast to the original tuple space, however, a DAC is inherently
distributed and asynchronous allowing processes to be notified when new obvents
are added on a host somewhere else in the network. To ensure type-safe opera-
tions, each DAC only handles obvents of the type it is created for. Additionally,
it is possible to specify QoS aspects such as delivery and ordering guarantees for
each DAC individually.

In [60], Eugster and Guerraoui extend DACs by filter objects to inspect the con-
tent of newly added obvents in order to determine which application components
to notify. In addition to selecting obvents by type, this enables components to
also specify constraints on an obvent’s data and, thus, to engage real content-
based publish/subscribe communication. Thereby, filtering obvents is based on
structural reflection. For this purpose, the application developer specifies meth-
ods to be invoked on obvents together with expected return values to be matched.
This way, arbitrary constraints can be formulated without the need to introduce
a dedicated event language while preserving object encapsulation at the same
time. However, invoking methods via reflection is not statically type-safe. With
JavaPS [62], Eugster et al. present a different approach that extends Java by
embedding the two communication primitives publish and subscribe directly into
the programming language. In particular, the subscribe primitive combines the
subscription to an obvent type with two closure declarations that contain the
content-based filter expression and, for the case of a match, the event handler
to be executed, respectively. A dedicated precompiler is used to subsequently
transform all publish/subscribe communication primitives into middleware calls
and interactions. In [56] and [57], both approaches for type-based publish/sub-
scribe are elaborated and compared to each other discussing their individual
strengths and weaknesses.

Ulbrich et al. [218] present programming abstractions for content-based pub-
lish/subscribe as part of the .Net version of Rebeca aiming to make writing
event-driven applications as convenient as possible. Although abstractions and
concepts themselves are not limited to any particular programming language or
environment, their convenient application, however, strongly depends on inher-
ent features of C# [88] and the .Net runtime [138]. On the subscriber side,
operator overloading is elegantly used to enable the construction of subscription
filters in a statically type-safe as well as easily readable fashion. In addition,
the delegate mechanism is leveraged to specify corresponding event handlers.
On the publisher side, the creation of event notifications going to be published
is significantly simplified. It is sufficient to just provide an interface with a re-
spective publishing method taking relevant event attributes as arguments. The
actual implementation is generated and compiled on demand at runtime. Be-
sides publishing methods, it is also possible to specify template methods that
allow the developer to set certain event attributes once for all subsequent pub-

150 PROGRAMMING ABSTRACTIONS

lications. In fact, this is a first step in order to separate code and business data
from configuration data incorporated during system initialization. A major part
of the work also deals with the pragmatic specification of event patterns and
composite events, which, however, lies out of our focus here.

5.7.2 Dataflow

Research into dataflow was originally driven by the motivation to efficiently
exploit massive parallelism. Conventional processors based on von Neumann
architectures were criticized to not be suited for parallel computing because of
their global program counter and global memory updates becoming a bottle-
neck. To avoid these bottlenecks, the dataflow architecture [51] was proposed
which operates on local memory only and executes instructions as soon as their
operands become available. Thus, a dataflow computation can be represented as
a directed graph with the data to be processed flowing along the arcs towards the
nodes containing the processing instructions. Several hardware designs were pro-
posed, implemented, and studied. To program those machines more efficiently,
dedicated dataflow programming languages such as Lucid [5] and Sisal [65]
were developed. Although researchers were confident and optimistic, dataflow
architectures never superseeded von Neumann machines as the fine-grained in-
struction level parallelism posed an unmanageable challenge to the hardware
available then. However, dataflow and stream processing concepts have found
their way into the design of modern processor architectures. In fact, with the
current shift from single-core to multi- and many-core systems, the question how
to efficiently exploit the offered degree of parallelism is all the more pressing and
relevant today. Johnston et al. [104] provide a more detailed overview about the
history of dataflow programming than the brief summary above.

Beyond parallel computing, dataflow programming languages and, in particu-
lar, their visual descendants have gained considerable importance in software
engineering [91]. As domain-specific languages, they are quite successful in sev-
eral application domains such as signal processing and image processing which
themselves are inherently well suited for dataflow approaches. In fact, for tasks
essentially dealing with data manipulation, they provide specialized and ade-
quate solutions. Moreover, visualizing the dataflow graph lowers entry barriers
for novice programmers as the visualization helps to better understand which
data is when processed in which way. Based on these concepts, several successful
commercial products have been developed that are widely used today.

LabVIEW4 [196], for example, enables the design and construction of virtual
instruments used to analyze and process laboratory data obtained from moni-
tored experiments. Similar to conventional analog experiments, where sensors
are wired to amplifiers and measuring instruments, LabVIEW programs con-
nect data sources to the inputs of virtual instruments by arcs along which the

4 LabVIEW is an acronym for Laboratory Virtual Instrumentation Engineering Work-
bench.

DISCUSSION 151

data is propagated. Each virtual instrument represents a function block that is
applied on its input data and may produce output data, which can be further
connected to other virtual instruments. Thereby, a virtual instrument starts
processing as soon as all required input data is available. Another successful
product example is Simulink [49], which also uses connected graphical function
blocks for modeling and simulating technical, physical, and financial mathemat-
ical systems. From a software engineering point of view, such function blocks
are characterized by a high degree of flexibility and reusability making dataflow
approaches attractive and interesting for many other application domains, too.

Morrison [141] proposes a component-based dataflow approach for the devel-
opment of business applications that is called flow-based programming (FBP)
in order to better distinguish it from existing work dealing with dataflow pro-
gramming languages and dataflow hardware architectures as discussed above. In
FBP, an application consists of several component instances each driven by an
own asynchronous thread of execution. Components have data ports on which
they either receive input or produce output. To exchange data between com-
ponents out-ports are connected to in-ports by bounded buffers, thus, forming
a component network comparable to a pipes and filter architecture [204] or a
Kahn process network [105]. Furthermore, FBP facilitates the hierarchical com-
position of component networks. Therefore, it is possible to bundle exchanged
data to complex information packets as well as to reuse and instantiate existing
component networks as subnets in bigger applications. Compared to the pro-
gramming abstractions provided in this chapter for event-driven applications,
many similarities become evident.

In fact, with FBP, we share many ideas, concepts, and intentions regarding
component-orientation, reusability, and component orchestration. Likewise, we
define event ports to exchange data between application components. As these
ports are subject to publish/subscribe communication, however, a large variety
of interaction patterns can be flexibly implemented. With scopes, we also provide
a composition mechanism that bundles a set of related components to higher-
level building blocks facilitating their reuse. Beyond that, scopes additionally
provide a clear interface by filtering event notifications, may have own attributes
containing configuration data, and are dynamic structures that allow member
components to join and leave while enforcing access control restrictions.

5.8 Discussion

In this chapter, we presented programming abstractions for content-based pub-
lish/subscribe. Therefore, we first analyzed common pitfalls when building ap-
plications based on the publish/subscribe paradigm. In particular, many mid-
dleware implementations provide just a low level interface for publishing own
event notifications and subscribing to those of other components. A further
integration into the programming language that exploits advanced language fea-
tures is often missing. It seems that middleware designers rather concentrate on

152 PROGRAMMING ABSTRACTIONS

efficiency issues regarding notification filtering and routing than on middleware
usability. Hence, many aspects have to be explicitly considered by the applica-
tion developer who, thus, has to usually write a significant amount of glue code
to connect the business logic to the middleware. Moreover, if not done with
care, this frequently entraps application developers to mix up business logic and
application data with context information and configuration data making the
application component hard to maintain, adapt, and reuse. Besides making the
development of application components more convenient and productive, we ex-
actly addressed this problem with the developed programming abstractions that
aim at keeping business logic apart from context and configuration.

With event ports, we introduced a novel interface by which event-driven compo-
nents can publish and receive notifications. Event ports consist of a well defined
set of component fields, which are made visible and accessible to the outside in
order to communicate significant state changes as event notifications to inter-
ested components. To react upon those state changes, we allowed methods to be
annotated as event handlers so that they are called appropriately. Additionally,
we also added support for time-driven handlers as well as active components
featuring own threads of execution. Orchestrating components, i.e., subscribing
their event ports to the notifications to process, is part of the configuration of an
application, which was separated from the components’ business logic. To fur-
ther ease component orchestration, we also defined configuration methods that
abstract from filter management and content-based filter expressions. Follow-
ing a dataflow approach, we enabled developers to simply connect a publishing
component’s out-port to the in-port of a subscribing component. Likewise, com-
ponents can be easily inserted into scopes and grouped into subscopes according
to component attributes while established event connections remain unchanged.
The filter expressions of affected subscriptions, scope interfaces, and compo-
nent selectors are adapted appropriately and updated automatically. Regarding
scopes, we provided means to either configure and adapt a basic scope as needed
or to write a component managing its own custom scope. For the latter, it is
sufficient to just annotate the scope definition as well as to specify component
methods to handle scope-specific events such as members joining or leaving the
scope. To support all presented programming abstractions, we revised the lim-
ited functionality of Rebeca’s component plugin that enables brokers to host
local components. We extended the plugin to a full-fledged component container,
discussed implementation details, and showed its integration as pluggable feature
into the broker architecture described in Chap. 3.

The presented programming abstractions ease the development of event-driven
applications. In particular, they separate business logic from context and config-
uration data and, thus, significantly increase the reusability of components. This
is a further step towards enabling developers to build new applications by sim-
ply composing and connecting prefabricated components and artifacts. For this
purpose, event ports play an important role since they provide comprehensive
and convenient means to establish, direct, and process the event flows between
these components. Moreover, as event ports only consist of a set of component

DISCUSSION 153

fields, it is not difficult to also generate respective setter and getter methods to
access them via a conventional request/reply scheme. Combining request/reply
interaction and event-driven communication in a uniform way that both styles
mutually support each other, however, is left for future work.

Chapter 6

Evaluation

Contents

6.1 Introduction . 156
6.2 Simulation . 156

6.2.1 Environment . 157
6.2.2 Protocols and Features . 158

6.3 Scalability . 161
6.3.1 Brokers . 162
6.3.2 Clients . 168

6.4 Distributions . 171
6.4.1 Publisher/Subscriber Ratio . 171
6.4.2 Hot Spots . 175

6.5 Overhead . 181
6.5.1 Competitiveness . 181

6.6 Discussion . 185

155

156 EVALUATION

6.1 Introduction

There are several ways to evaluate a software system. Probably, the most real-
istic results are obtained by instrumenting a real deployment of the system and
measuring its performance. At the same time, however, this is usually the most
costly variant even if a working prototype already exists. In case of distributed
systems, there are a couple of additional drawbacks, too. In order to evaluate the
system’s scalability, a real deployment has substantial resource requirements in
terms of computing nodes and network bandwidth. Thus, the available comput-
ing and network infrastructure usually limits the system size to be evaluated to
small- or medium-sized installations. Furthermore, system parameters may have
to be set to values that are compatible with or even tailored to the infrastructure
the system is deployed on. While on the one hand, this precisely ensures valid
and reliable results, on the other hand, it also restricts the configuration space
that is covered by the evaluation. Regarding parameter coverage, simulations
provide an alternative and better way for system evaluation. In particular, they
offer a fine-grained control to arbitrarily vary any system parameter. Given a
limited amount of computing resources, it is often possible to trade off system
size against simulation detail. Hence, with deductions in accuracy, simulations
are capable and well suited to analyze large-scale systems. In case of Internet-
scale algorithms and systems, they often are the only feasible approach.

In this chapter, we apply simulations to thoroughly evaluate the concepts and
ideas developed in this thesis. In particular, we focus on scoping as central con-
cept to modularly build and extent large-scale event-based systems. Qualitative
and quantitative results substantiate the claims about the usefulness of scopes
that we previously made in Chap. 4. Scoping is analyzed as part of our pub-
lish/subscribe middleware Rebeca in which it is integrated as pluggable feature
according to the composable architecture presented in Chap. 3. As compromise
between accuracy and parameter coverage including large-scale networks, we ex-
ecute Rebeca’s original routing logic within a simulated network environment.
In the following, we first provide an overview about the simulation environment
discussing features, protocols, and experiment setups in Sect. 6.2. Thereafter, we
proof the scalability of scoping by increasing the number of brokers and clients
in Sect. 6.3, whereas we analyze the positive effects of different client distribu-
tions in Sect. 6.4. The costs of scoping measured in terms of generated overhead
are evaluated in Sect. 6.5, before we conclude the chapter with a summarizing
discussion in Sect. 6.6.

6.2 Simulation

To evaluate the publish/subscribe extensions presented in the previous chapters,
discrete event simulations [116] are adequate and sufficient. The operation of the
broker network including its clients and applications is modeled as a sequence of

SIMULATION 157

simulation events. In this context, for example, the receipt of a new subscription
or the forwarding of a notification are considered as events to be simulated. A
simulation event occurs at an instant in time and is instantly handled according
to the simulated protocols and algorithms. Thereby, the simulation event may
cause a change in state that affects the system’s subsequent behavior. The re-
ceipt of the subscription, thus, leads to the creation of a new routing entry that,
together with other already existing entries, determines the forwarding of subse-
quent notifications. Furthermore, handling a simulation event may also schedule
causally related simulation events to be triggered in future. Hence, forwarding a
matching notification over a network link inevitably causes a simulated receipt
event to be triggered when arriving on the other side. Please note, that simu-
lation events have no duration. Therefore, system processes that take time to
finish have to be modeled by a series of simulation events that mark the start
and the end of the process and, if necessary, its progress in between.

In the following, we give an overview about the simulation environment and its
architecture. In particular, we discuss the underlying network model, the broker
overlay as well as the protocols considered and abstractions made. Furthermore,
we describe the default setup of the experiments conducted. This includes chosen
parameters, their role in the simulation as well as their envisaged effects.

6.2.1 Environment

Several simulation environments are available that allow a realistic modeling
and evaluation of network environments. There are, for example, ns-3 [190],
OMNeT++ [221], and Opnet [36] just to name a few. Using elaborate con-
figurations and setups, achieved simulation results are quite accurate and often
comparable with measurements gained from real deployments. For this accu-
racy, however, there is a price to pay. To reach a high degree of precision, the
whole network protocol stack as well as physical propagation models need to be
considered and simulated. This is complex and costly. As a consequence, the
applicability of those realistic simulations is limited to networks of moderate size
only. Simulating a dynamic overlay network on top of a large physical network
is out of scope. Therefore, we have chosen a different simulation environment
that is particularly designed for the evaluation of overlay networks.

PeerSim [139] is a discrete event simulator designed to analyze the routing
in large-scale peer-to-peer overlay networks. To be that scalable, on the one
side, PeerSim abstracts from details of the lower network layers in the physical
network. Furthermore, it also provides an additional coarse-grained simulation
mode in which time passes in global rounds instead of individual events. To fa-
cilitate meaningful evaluations, on the other side, PeerSim is very customizable
allowing developers to conveniently integrate new protocols and refine existing
ones in order to include all aspects of interest. In fact, it is this side of which we
make heavy use to evaluate the publish/subscribe features implemented in the
Rebeca middleware.

158 EVALUATION

Figure 6.1: Simulation setup in PeerSim.

In PeerSim, a network consists of a set of nodes of which each node itself is
a simple container for protocol instances. First, it is the task of the developer
to provide protocol implementations that may leverage the PeerSim framework
to schedule protocol events to be processed in future. The simulator framework
then ensures that the particular protocol instance is called at the addressed node
at the appropriate time and additional context information are provided in order
to handle the current event. Second, the developer has to create a configuration
file that describes the simulation’s setup. Besides general information such as
random seeds, network size, and simulation end time, the configuration includes
the list of protocols to instantiate as well as further protocol parameters and
settings. PeerSim uses the prototype pattern [81] to populate the network.
Thus, one prototype node is created according to the configuration that includes
instances of all listed protocols. Thereafter, the prototype node is cloned as often
as needed. Special control protocols that are implemented as singletons may be
used to differentiate network nodes as well as to monitor the simulation. While
initializing protocols are called only once after setup, normal control protocols
are called regularly and, thus, suited for periodic tasks.

Figure 6.1 visualizes PeerSim’s simulation setup. Based on a configuration file,
a prototype node is created that contains instances of the protocols listed therein.
Afterwards, the prototype node is cloned with each generated copy becoming a
new network node. In this process, the protocols are also cloned so that all
instances of the same protocol now form an individual layer in the network
stack. However, it is left to the protocol implementations how data is exchanged
between different nodes. Even the network topology, i.e., which pair of nodes
is connected with each other, must be set up as part of a PeerSim protocol.
Usually this is done on the lowest network layer. In the following section, we
exemplify the usage of PeerSim protocols by describing the protocol stack and
the publish/subscribe features considered in the simulations.

6.2.2 Protocols and Features

PeerSim simulations are based on tailored protocol implementations. These
resemble the protocol logic and emulate its execution by scheduling appro-

SIMULATION 159

Figure 6.2: Stack of simulation protocols used for evaluation.

priate simulation events. In order to evaluate the Rebeca middleware and
its extensions—in particular, we are interested in the effects of scoping—we,
thus, have to provide corresponding simulation protocols that implement the
required publish/subscribe logic and associated features. Advantageously, Re-
beca’s modular architecture eases the protocol implementation. Since Rebeca
encapsulates each publish/subscribe feature in a separate plugin, this basically
boils down to reusing and adapting the plugin’s logic and wrapping it appro-
priately to make it fit in the PeerSim environment. The approach in general
as well as individual actions to be taken are discussed in Chap. 3.4.4 as part
of Rebeca’s modular and composable architecture. Besides the middleware,
however, we have to consider the network layer and the application layer in the
simulations, too. For a thorough evaluation, these layers and their protocols
are essential as they determine the context in which simulation results have to
be interpreted. Figure 6.2 gives an overview about the whole protocol stack
evaluated. Layers and protocols are explained in the following.

Network. The bottom three protocols in the simulation stack are directly re-
lated to network functions. They determine the topology of the underlay net-
work, are responsible for the routing of messages therein, and take care for the
establishment of logical connections between broker nodes by which the overlay
network is created. In particular, the underlay protocol provides the network
topology including latency and bandwidth information. The Brite topology
generator [130] is used to create Internet-like network topologies that consider
both the interconnectivity between Autonomous Systems as well as the links

160 EVALUATION

at router level within a single domain. Brite offers several models for topol-
ogy generation while allowing to flexibly combine different aspects. We use a
heavy-tailed distribution of nodes [131] combined with the Generalized Linear
Preference (GLP) connection model [24] to reflect characteristic path lengths,
clustering coefficients as well as power-law properties of node degrees.

The message routing protocol takes care of forwarding messages within the un-
derlay network. Routers as well as links are modeled as M/M/1 queueing sys-
tems according to the system model published in [200] that, besides simulations,
also allows a thorough analytical analysis. When a message is send between
two nodes in the underlay network, it is routed along the shortest network path
between them. In order to speed up simulations, this path is precomputed only
once at the beginning of the simulation and stored for subsequent use. The un-
derlay nodes hosting publish/subscribe brokers are chosen randomly and logical
overlay connections are established between them that are based on the shortest
paths computed. The publish/subscribe overlay network is then formed by a
minimum spanning tree of overlay links that connects all brokers. The message
transport protocol is responsible for setting up and managing overlay links as
well as to control the transmission of data over them. It is used by the brokers
in order to exchange their event messages in the context of the simulations.

Middleware. To resemble a broker’s publish/subscribe functionality, a couple
of PeerSim simulation protocols are required. In this context, the brokering
protocol plays a central role as it manages and coordinates all remaining broker
protocols that each resemble the functionality of a single broker plugin. This way,
Rebeca’s composable architecture is reflected and leveraged in simulations, too.
Primarily, there are four middleware responsibilities to care for in simulations:
the strategy for processing and handling received event messages, providing the
publish/subscribe functionality in the strict sense, supporting client components,
and gathering statistics for evaluation.

Similar to routers in the underlay network, brokers are modeled as M/M/1
queueing systems. The event processing protocol ensures that received event
messages such as notifications, subscriptions, and advertisements are first queued
and subsequently handled one after the other. For the latter, the event match-
ing, the event routing, the event advertising, and the event scoping protocol are
used according to the message type to be handled, respectively. Matching re-
ceived event notifications against stored subscriptions is one of the brokers core
functions on which all other publish/subscribe extensions build on. In order to
evaluate the effects of scoping, the usage of an advanced content-based routing
algorithm combined with advertisements is required, too. In particular, the rout-
ing logic is needed to forward scope subscriptions as well as scope advertisements
when clients subscribe to existing scopes or advertise their own, respectively.

The component hosting protocol enables simulated brokers to support and host
local client components that produce and consume event notifications and, thus,
create the event flows for evaluating the system. In this context, the monitoring

SCALABILITY 161

protocol is responsible to detect and observe the event flows as well as to gather
meaningful statistics as simulation results to be analyzed afterwards. Therefore,
the monitoring protocol is implemented as singleton within the middleware layer.
The singleton pattern allows to have a global view on the state of all simulated
brokers and, thus, simplifies collecting statistical data. Furthermore, the central
position within the protocol stack allows to easily trace notifications and created
copies when they are received, processed, forwarded, or delivered.

Application. The application protocols create and shape the event flows neces-
sary for system evaluation. They generate a synthetic application load used to
measure the middleware’s performance in the simulations. In this context, the
scope managing protocol constrains the visibility of events by defining separate
scopes for individual notification types. It controls the creation and placement
of scope managing components of which each managing component opens an
individual scope and administers its members, i.e., it processes join and leave
requests of event publishers and subscribers. Publishers and subscribers are
simulated and managed by the event producing and the event consuming pro-
tocol, respectively. On the one side, the producing protocol determines which
publisher is responsible to generate what kind of notifications. Therefore, pub-
lishers are modeled as Poisson processes that each continually produce new event
notifications of a fixed type randomly chosen beforehand. On the other side, the
consuming protocol defines which client subscribes to which notification type.

All application protocols, i.e., the scope managing, the event producing, and
the event consuming protocol, allow for sophisticated simulation setups. In fact,
it is easily possible to simulate unbalanced, dynamic, and changing workloads.
For this purpose, each protocol allows the definition of several component pro-
files that determine how exactly a single component behaves, for example, what
scopes a component joins or administers, which notifications it publishes and
subscribes, or how this pattern may change over time. Furthermore, each pro-
tocol sets a birthrate by which new components are created, connected to the
system, and assigned one of the defined behavioral profiles. A probability dis-
tribution specifies how likely it is that a new component is assigned a certain
profile and connected to a particular broker. By limiting a component’s lifetime,
it is ensured that old application components are eventually replaced by new
ones. Thus, changing the probability distribution over time allows to simulate
any arbitrary global behavior of the clients, too. In particular, we use these
configuration features to simulate dynamic workloads and unbalanced client dis-
tributions leading to so-called component hotspots.

6.3 Scalability

A working prototype marks a major milestone when developing a hardware or
software system. However, it does not automatically imply and guarantee that

162 EVALUATION

the final system also functions properly. Regarding distributed systems, proto-
types are usually of a very limited size containing just a few devices that are
easy to manage, while final deployments may comprise up to thousands of com-
puting nodes or even more. Hence, implemented algorithms, strategies, and
concepts must be efficiently applicable to large installations, too. Scalability is
the ability of a system to adequately cope with increasing system size and load.
For event scopes as presented in this thesis, scalability is of particular impor-
tance. Since they allow a modular development of publish/subscribe systems and
event-driven applications, administrators and developers precisely benefit most
when engineering large-scale systems. In the following series of experiments, we
primarily evaluate the scalability of the scope implementation. Therefore, we
increase the system size and load in terms of brokers and clients while measuring
the system performance.

6.3.1 Brokers

Scopes restrict and control the visibility of event notifications as well as sub-
scriptions and advertisements. In large publish/subscribe networks, they prevent
subscriptions and advertisements from being forwarded needlessly into network
regions that do not contain any other scope member such as a corresponding
publisher or subscriber. This way, scopes help to reduce the overall network
traffic. Regarding event notifications, however, this does not apply to the same
extent. Since the regular routing algorithm usually filters out superfluous no-
tifications as early as possible, it is already ensured that notifications are only
forwarded if there is at least one interested subscriber.

In order to prove the scalability of the scope implementation and evaluate its
performance, we increase the system size in a first experiment by successively
adding new brokers to the publish/subscribe network. Although publishers and
subscribers dynamically connect and disconnect to random brokers, the overall
system load remains nearly constant over the series of measurements. The sys-
tem performance is evaluated by measuring the overall number of subscriptions
and advertisements forwarded in the publish/subscribe network as well as the
average size of the brokers’ routing tables. Parameters and experiment details
are given in the following description.

Experiment 1 (increasing system size). System scalability is evaluated by in-
creasing the system size determined by the number of publish/subscribe brokers
NB = 10, . . . , 250 within the network. The birth rate for new publishers and sub-
scribers is set to λP = λS = 5 each having an expected lifetime of τP = τS = 200s
which leads to an average number of NP = NS = 5000 publishers and subscribers
in steady state. There are MT = MS = 250 event types and corresponding scopes
organized in a hierarchy with l = 3 levels and a branching order of b = 5. Each
publisher and subscriber randomly chooses a dedicated event type, connects to
a random broker, and joins the scope responsible for its type. The publication

SCALABILITY 163

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50 100 150 200 250

N
u

m
b

er
o

f
S

u
b

sc
ri

p
ti

o
n

M
es

sa
g

es

Number of Brokers NB

Scoping (Subs)
Advertising
Filtering

Figure 6.3: Subscription forwarding overhead versus network size.

rate of notifications is set to λn = 5. The system performance is determined by
measuring the overall number of forwarded subscriptions and advertisements as
well as the average size of the brokers’ subscription and advertisement tables.

To better interpret the effect of scopes on the system’s performance, we repeat
the experiment with different combinations of routing extensions. Thus, we
can compare the results and pinpoint characteristic properties and differences.
In particular, we use a pure identity-based routing strategy (filtering) as base
version, add advertisements (advertising) and scopes (scoping subscriptions),
respectively, and finally apply both extensions (scoping advertisements) at the
same time. Please note that we restrict ourselves to identity-based routing in
order to prevent cross-scope optimizations to bias some of the measurements
making it difficult to compare the results. Otherwise, more advanced routing
strategies such as covering-based routing or merging-based routing may exploit
similarities between filters in some setups although their subscriptions belong to
different scopes in the other cases. Measured results are plotted in the diagrams
of Figs. 6.3, 6.4, 6.5, and 6.6.

Figure 6.3 shows the overall number of forwarded subscriptions as a function
of the network size. Brokers exchange active subscriptions with each other in
order to ensure that a matching notification is delivered to all its subscribers
independent of where it is published. Thus, the more brokers there are in the

164 EVALUATION

publish/subscribe network, the more subscription copies need to be exchanged
making all curves grow with increasing network size. However, the extent of
growth differs depending on the ability of the particular routing variant to limit
the forwarding of subscriptions to relevant network regions. With pure filter-
ing, the identity-based routing algorithm only suppresses the transmission of a
subscription, if an identical one has already been forwarded on the particular
link. Therefore, its graph does not grow exactly linearly. Nevertheless, for large
networks comprising 200 and more brokers, it clearly causes the most overhead.
This overhead is reduced significantly by using advertisements. In this case,
the forwarding of subscriptions is strictly limited towards brokers that definitely
host corresponding publishers. In large networks, therefore, advertising marks
a lower bound for the subscription forwarding overhead. Finally, the overhead
caused by scoping lies in between advertising and filtering. Although scope bor-
ders restrict the forwarding of subscriptions, scope overlays usually contain more
brokers including those that, compared to advertising, do not lie on the direct
path between publisher and subscriber. For instance, scope overlays also com-
prise brokers that only host subscope components. Additionally, subscriptions
are also forwarded towards other subscribers since, without advertisements, all
components within a scope have to be handled as potential publishers.

Considering small broker networks with less than 20 brokers, the results are dif-
ferent. Surprisingly, pure filtering performs better than advertising and scoping.
This is due to publishers and scope members dynamically joining and leaving
the network. With pure filtering, a subscription is only disseminated once in
the broker network and then stored in the brokers’ routing tables throughout
the subscriber’s lifetime. Contrarily, with advertising and scoping, it requires
an advertisement or an acknowledged scope request, respectively, to trigger the
forwarding of the subscription. The subscription is stored in the routing tables
of the brokers on its way as long as the respective publisher or scope member is
present, too. If there is no publisher or scope member in the particular network
region anymore, the subscription is removed from the routing tables. However,
it is resend when the next publisher or scope member arrives. Thus, during
the lifetime of the subscriber, its subscription may be send multiple times over
the same links causing the overhead compared to filtering. While the dynamic
overhead caused by advertising is negligibly small, it is significant for scoping.
In the experiment, it is not countervailed by savings from scope overlays until a
network size of 120 brokers.

Please note that, for the sake of clarity, the results of combining advertisements
and scopes are not explicitly plotted in the diagram. In fact, this is not nec-
essary because, for the dissemination of subscriptions, advertisements are more
restrictive than scopes and, thus, dominate their routing behavior. Hence, mea-
sured results do not observably differ from the advertising curve that is already
shown. For the same reason, when evaluating subscription overhead in subse-
quent experiments, we will also plot just one curve for the routing variants with
advertisements regardless if scopes are also used or not.

SCALABILITY 165

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50 100 150 200 250

N
u

m
b

er
o

f
A

d
ve

rt
is

em
en

t
M

es
sa

g
es

Number of Brokers NB

Scoping (Ads)
Advertising

Figure 6.4: Advertisement forwarding overhead versus network size.

Leveraging advertisements significantly reduces the overhead caused by forward-
ing subscriptions. However, there is a price to pay: brokers must first exchange
advertisements among each other, which is quite costly, too. Figure 6.4 shows
the overall number of forwarded advertisements as a function of the network
size for pure advertising as well as scoping combined with advertisements. As
can be seen from the graphs, the resulting overhead is comparable to the cost
of forwarding subscriptions as depicted previously in Fig 6.3. In fact, this is
not surprising at all. Due to the symmetric experiment setup, there are as
many publishers as subscribers expected to be in the system. On the one hand,
with pure advertising, the forwarding of an advertisement is not restricted and,
thus, causes the same overhead as disseminating a subscription in the whole
broker network. Hence, pure filtering and pure advertising induce similar costs
for routing subscriptions and advertisements, respectively. On the other hand,
scope borders limit the visibility of subscriptions and advertisements alike and
restrict their forwarding to the corresponding scope overlay. Therefore, with
scoping, the plots for subscriptions and advertisements are similar, too.

Considering the combined forwarding cost of subscriptions and advertisements,
at first glance, the usage of advertisements is not beneficial. Although adver-
tisements significantly reduce the number of forwarded subscriptions, the cost of
disseminating advertisements clearly outweighs the obtained savings. At second
glance, however, the usage of advertisements makes sense for two reasons. First,

166 EVALUATION

0

50

100

150

200

250

300

350

400

50 100 150 200 250

A
ve

ra
g

e
N

u
m

b
er

o
f

S
u

b
sc

ri
p

ti
o

n
E

n
tr

ie
s

Number of Brokers NB

Scoping (Subs)
Advertising

Filtering

Figure 6.5: Average number of subscription entries versus network size.

in setups with more subscribers than publishers, the routing cost for advertise-
ments are lower. In Sect. 6.4, we evaluate such asymmetric and non-uniform
setups in more detail. Second, besides reducing the number of forwarded sub-
scriptions, advertisements also limit the number of subscription entries in the
brokers’ routing tables and, thus, speed up the matching of notifications. As the
number of notifications is usually assumed to be much higher than the number
of subscriptions and advertisements together, many publish/subscribe systems
are willing to trade off this forwarding overhead for matching speed in order to
increase the overall system performance.

Figure 6.5 plots the average number of subscription entries of the brokers’ rout-
ing tables as a function of the network size for pure filtering, scoping (sub-
scriptions), and advertising. With growing system size, the average number of
routing entries decreases asymptotically in all routing variants differing in how
fast they approach their lower bounds. Unsurprisingly, pure filtering requires
the most subscription entries as every subscription is disseminated in the whole
publish/subscribe network. Identity-based routing suppresses the transmission
of a subscription, if an identical one has already been forwarded. Thus, for each
notification type subscribed, there is at least one corresponding entry in every
broker’s routing table. Hence, the average number of routing entries is always
greater or equal to the number of subscribed notification types. Consequently,
the latter is the lower bound the pure filtering plot is approaching. With ad-

SCALABILITY 167

vertising and scoping, the transmission of a subscription is also suppressed if it
leaves the path towards a corresponding publisher or the corresponding scope
overlay, respectively. Thus, the subscription itself is only disseminated in a small
and limited region of the broker network. In the case of advertising, this region
comprises all brokers hosting corresponding publishers or subscribers as well as
the brokers lying on the network paths between them. In case of scoping, this
region contains all brokers hosting a component of the corresponding scope or
one of its subscopes and, likewise, all brokers in between. Compared to the whole
network, the region is small in both cases. The number of brokers between any
pair of nodes in the network is limited by the network’s diameter. Assuming
that the overlay tree is not degenerated and the number of clients remains un-
changed, the region with corresponding routing entries only grows in the order of
O(logNB) when increasing the network size NB . Therefore, the average number
of routing entries eventually approaches 0 for very large networks.

Determining the limiting value of the curves, however, is only of minor impor-
tance as comparable results are only achieved in setups with more brokers than
clients which are quite unrealistic. Instead, the course of the curves up to a
network size of 100 brokers is more meaningful. Up to this point, the adver-
tising and the scoping plot decrease strongly although there are still 10 times
more clients expected to be in the system than brokers. As advertising is more
restrictive than scoping regarding the forwarding of subscriptions, it leads to the
lowest number of subscription entries in the system. Nevertheless, scoping is still
competitive and clearly reduces the number of filters stored in the subscription
tables compared to pure filtering.

Although the usage of advertisements remains the most effective way to restrict
and optimize the dissemination of subscriptions in the broker network, it is not
necessarily the most efficient at the same time. In fact, advertising requires the
management of additional routing tables that store the publishers’ announce-
ments which types of notifications they are potentially going to publish. As
scopes restrict the forwarding of subscriptions and advertisements alike, scop-
ing can also be used to reduce the sizes of the brokers’ advertisement tables.
Figure 6.6 shows this effect by comparing the average number of stored adver-
tisement entries when increasing the network size. Due to the symmetric exper-
iment setup regarding publishers and subscribers, measured results are similar
to the subscription table sizes as presented in Fig. 6.5. Without scopes, pure
advertising leads to the same number of advertisement entries as pure filtering
causes subscription entries because, in both cases, advertisements and subscrip-
tions are disseminated in the whole broker network. Likewise, when combined
with scopes that limit the forwarding of both advertisements and subscriptions,
the routing table sizes are considerably reduced by the same ratio, too. Please
note that, for the sake of brevity, we omit plotting the advertisement overhead
and the advertisement table sizes in subsequent experiments that use similar dis-
tributions and symmetric setups for publishers and subscribers. With Figs. 6.3
and 6.4 as well as Figs. 6.5 and 6.6 as examples, it becomes clear how measured
results for subscriptions can be transferred and applied for advertisements, too.

168 EVALUATION

0

50

100

150

200

250

300

350

400

50 100 150 200 250

A
ve

ra
g

e
N

u
m

b
er

o
f

A
d

ve
rt

is
em

en
t

E
n

tr
ie

s

Number of Brokers NB

Scoping (Ads)
Advertising

Figure 6.6: Average number of advertisement entries versus network size.

6.3.2 Clients

To thoroughly evaluate the scalability of a system, it is also necessary to ana-
lyze its behavior under heavy load. In the following experiment, we, therefore,
successively add new clients to the publish/subscribe network while keeping the
number of brokers constant. In fact, this is implemented by increasing the birth
rate for publishers and subscribers in every run of the experiment. Thereby, each
new client randomly chooses a dedicated event type of which it subsequently pro-
duces or consumes corresponding notifications throughout its lifetime. This way,
it is ensured that the system load increases proportionally with the number of
clients connected to the system. To analyze the performance, we measure the
subscription forwarding overhead as well as the average number of subscriptions
in the brokers’ routing tables. The advertisement overhead and correspond-
ing table sizes are omitted for symmetry reasons. Experiment parameters and
further details are given by the following description.

Experiment 2 (increasing system load). To evaluate the scalability, the system
load is increased by successively incrementing the expected number of publish-
ers and subscribers NP = NS = 10, . . . , 2500 that are randomly connected to the
NB = 100 brokers of the network. To achieve this, the birth rate for new publish-
ers and subscribers is varied λP = λS = 0, . . . , 10 accordingly while keeping their

SCALABILITY 169

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1000 2000 3000 4000 5000

N
u

m
b

er
o

f
S

u
b

sc
ri

p
ti

o
n

M
es

sa
g

es

Number of Clients NC

Scoping (Subs)
Advertising

Filtering

Figure 6.7: Subscription forwarding overhead versus number of clients.

expected lifetime of τP = τS = 250s constant. There are MT = MS = 250 event
types and corresponding scopes in the system that are organized in a hierarchy
with l = 3 levels and a branching order of b = 2. Each publisher and subscriber
randomly chooses an event type and joins the scope responsible for its type. The
publication rate of notifications is set to λn = 5. The system performance is
determined by measuring the overall number of forwarded subscriptions and the
average size of the corresponding routing tables.

The results of the experiment are plotted in Figs. 6.7 and 6.8 for different routing
configurations and extensions. Basically, we use identity-based routing (filtering)
that we combine with advertisements (advertising) or scopes (scoping), respec-
tively. Figure 6.7 shows the subscription forwarding overhead for these routing
variants as a function of the expected number of clients in the system. In case of
filtering, the shape of the plotted graph is particularly striking. First, the sub-
scription overhead sharply increases up to a peak of over 41000 messages being
caused by about 500 to 750 clients in the system. Subsequently, it starts declin-
ing although further subscribers are added to the system and even drops down
to about 15000 messages. Finally, it remains almost constant at that low level
which is considerably less overhead than the 24000 and 27000 subscription mes-
sages caused by advertising and scoping in the same load situation, respectively.
In fact, this is all the more remarkable since advertisements and scopes have ac-

170 EVALUATION

tually been introduced to make the system more efficient. Obviously, however,
it does not pay off in this case. As pure filtering does not restrict the dissemina-
tion of subscriptions within the broker network, a growing number of subscribers
quickly saturates the brokers’ routing tables. If all neighboring brokers already
possess a routing entry for a particular notification type, an identical subscrip-
tion for the same type does not need to be forwarded to them anymore and
is, therefore, suppressed by the identity-based routing algorithm. Consequently,
the subscription forwarding overhead decreases although or rather because the
number of subscribers grows further and, thus, makes a corresponding routing
entry more likely to be already present in the brokers’ tables.

Advertising as well as scoping also profit from saturated routing tables although
the effect is less pronounced. Resulting savings are not strong enough to actually
reduce the subscription overhead as it is in case of filtering. Nevertheless, the
increase is clearly slowed down when there are about 1500 or more clients in
the system. Regarding the forwarding of subscriptions, scopes are usually less
restrictive than advertisements. While scoping allows the free distribution of sub-
scriptions within their corresponding scope overlays, advertising only forwards
subscriptions towards respective publishers. Thus, the subscription overhead
of scoping initially grows faster compared to advertising because subscription
messages have to be sent to more brokers in the system. With a growing num-
ber of subscribers, however, it is later much more likely when applying scopes
that a broker’s routing table already contains a corresponding entry making it
unnecessary to forward a subscription any further. Thus, the growth of the sub-
scription overhead declines stronger than in case of advertisements making both
curves asymptotically approach each other. Nevertheless, regarding subscription
overhead, both are clearly worse than a pure filtering approach.

When focusing on subscription overhead, at first glance, filtering seems to be very
efficient in situations where a large number of publishers and subscribers induce
a high system load. On a closer look, however, this is not the case. Figure 6.8
plots the average size of a broker’s routing table while adding more clients to
the broker network in order to increase the system load. The more filters are
stored in a broker’s subscription table, the longer it takes to match and forward a
notification at each broker reducing the system’s performance. As can be clearly
seen, pure filtering causes by far the most routing entries. Moreover, the initial
growth of the subscription table size is the strongest for filtering followed by
scoping and advertising. Basically, this is not surprising as the average number
of routing entries depends on the capability of the routing strategy to restrict
the distribution of an issued subscription to the minimal number of necessary
brokers. Although not as good as advertising, which marks the lower bound,
scoping still reduces the routing table sizes significantly when compared to pure
filtering. Due to the table’s saturation effect the growth declines later in all
three cases. However, a slow linear increase remains as for each new subscriber
at least one additional entry has to be added to the routing table of the hosting
broker even if subscription forwarding can be suppressed completely.

DISTRIBUTIONS 171

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

A
ve

ra
g

e
N

u
m

b
er

o
f

S
u

b
sc

ri
p

ti
o

n
E

n
tr

ie
s

Number of Clients NC

Scoping (Subs)
Advertising

Filtering

Figure 6.8: Average number of subscription entries versus number of clients.

6.4 Distributions

Although symmetric simulation setups are sufficient to demonstrate the general
scalability of scoping as done in Sect. 6.3, many real applications and scenar-
ios differ substantially in one or more aspects. Often, for example, just a few
notification types predominate the event traffic produced and consumed, while
publishers outnumber subscribers or vice versa. In fact, realistic setups usually
exhibit a certain level of asymmetry and inequality. In order to show that scop-
ing is applicable in such scenarios as well and can even benefit from inherent
inequalities, we evaluate various distributions of clients and notification types in
the following experiments. In particular, we vary the ratio between publishers
and subscribers and also examine local concentrations of clients and notification
types in hot spot regions.

6.4.1 Publisher/Subscriber Ratio

Many application scenarios are inherently unbalanced in the sense that pub-
lishers outnumber subscribers or vice versa. In data gathering applications, for
example, there are usually many sensors periodically publishing their readings
while only a few clients correlate and analyze the gathered data. Contrarily,

172 EVALUATION

in information dissemination applications such as stock quote tickers, there are
usually just a few components that publish new information, while the major-
ity of clients is interested in receiving data updates. Several publish/subscribe
routing strategies and extensions are able to take advantage of these unbalances
and asymmetries to a certain degree. Advertisements, for example, are known to
work best if there are just a few notification sources in the system [142]. In this
case, it is quite cheap to invest in a small number of additional advertisement
messages and profit from huge savings achieved by forwarding subscriptions to-
wards these publishers only. Regarding scopes, however, we do not expect much
savings. As the dissemination of subscriptions and advertisements is restricted
by scope borders, the forwarding cost essentially depend on the size of the cor-
responding scope overlay while the ratio between publishers and subscribers is
of minor importance.

Evaluating scenarios with a varying number of publishers and subscribers is,
nevertheless, very interesting. Primarily, it provides insight in which specific
configurations scoping is beneficial compared to filtering and advertising which
are more sensitive to the publisher/subscriber ratio. In the following experiment,
we, thus, change the average number of publishers and subscribers in the system
by varying their birth rates λP and λS , respectively. Therefore, we set

λP = (1− ϕ) · λC and

λS = ϕ · λC ,

where λC denotes the overall birth rate of clients. This way, we are able to
easily specify arbitrary publisher/subscriber ratios by varying ϕ = 0.0, . . . , 1.0.
Further details are given in the experiment description below.

Experiment 3 (publisher/subscriber ratio). The ratio between publishers and
subscribers in the system is adapted by varying their respective birth rates λP =
(1−ϕ) · λC and λS = ϕ · λC with ϕ = 0.0, . . . , 1.0, λC = 8, and τP = τS = 250s
while keeping the expected overall number of clients NC +NP +NS = 2000 con-
stant. There are NB = 100 brokers, MT = 250 event types, and MS = 250
corresponding scopes in the system of which the latter are organized in a hier-
archy with l = 3 levels and a branching order of b = 2. Each publisher and
subscriber randomly connects to a broker, chooses an event type, and joins the
responsible scope. The publication rate of notifications is set to λn = 5. The
system performance is determined by measuring the overall number of forwarded
subscriptions and advertisements as well as the average number of stored sub-
scriptions in the brokers’ routing tables.

The experiment is repeated using different routing strategies and extensions.
In particular, pure identity-based routing is used as default strategy (filter-
ing), which is subsequently extended by advertisements (advertising) and scopes
(scoping subscriptions) as well as their combination (scoping advertisements).
The results are graphed in Figs. 6.9 and 6.10.

DISTRIBUTIONS 173

0

10000

20000

30000

40000

50000

60000

0.0 0.2 0.4 0.6 0.8 1.0

O
ve

rh
ea

d
in

M
es

sa
g

es

Fraction of Subscribers ϕ

Scoping (Subs)
Scoping (Ads)
Advertising
Filtering

Figure 6.9: Advertisement and subscription forwarding overhead for a varying
publisher/subscriber ratio.

Figure 6.9 shows the combined forwarding overhead for subscriptions and ad-
vertisements as a function of the fraction ϕ of subscribers in the system. With
increasing ϕ, the number of subscribers in the system grows while the number of
publishers declines to the same extent. When adding the first subscribers to the
system, the overhead for forwarding subscriptions also rises inevitably. For pure
filtering, it quickly reaches a flat peak of over 40000 messages at 0.15 ≤ ϕ ≤ 0.20.
Thereafter, it starts to decline as a result of saturated routing tables that make
forwarding new subscriptions more and more superfluous. This saturation ef-
fect has already been studied in more detail in Sect. 6.3.2 when discussing the
results of experimennt 2. Because of its positive influence on the forwarding over-
head, pure filtering even becomes the most efficient routing strategy in terms
of forwarded messages for 0.50 ≤ ϕ ≤ 0.95. By combining scopes with filtering
(scoping subscriptions) in order to restrict the dissemination of subscriptions,
the observed initial increase in the forwarding overhead can also be dampened.
It is even bound at a level of about 25000 messages on which it remains nearly
constant because, with scopes, the influence of the saturation effect is also lim-
ited. Nevertheless, scoping subscriptions is the most efficient routing strategy
for 0.00 ≤ ϕ ≤ 0.50.

Considering the overall forwarding overhead, the results confirm that the usage
of advertisements alone (advertising) or combined with scopes (scoping adver-

174 EVALUATION

0

50

100

150

200

250

300

350

0.0 0.2 0.4 0.6 0.8 1.0

A
ve

ra
g

e
N

u
m

b
er

o
f

S
u

b
sc

ri
p

ti
o

n
E

n
tr

ie
s

Fraction of Subscribers ϕ

Scoping (Subs)
Advertising
Filtering

Figure 6.10: Average number of subscription entries for a varying publisher/
subscriber ratio.

tisement) really pays off when there are just a few publishers in the system,
i.e., for 0.95 ≤ ϕ ≤ 1.00. Surprisingly, pure advertising also performs better
than pure filtering for 0.05 ≤ ϕ ≤ 0.30 when the broad majority of clients are
publishers. Here, advertising primarily benefits from saturated advertisement
tables while the subscription forwarding overhead for filtering reaches its peak.
In fact, both curves are quite similar when mirrored. Following the advertis-
ing curve from right to left, the number of publishers grows and increases the
advertisement forwarding overhead until the saturation effect reduces the costs
again. As the overall costs also include the subscription forwarding overhead,
the curve is usually higher than the one for pure filtering except for the cases
described above. When advertising is combined with scopes (scoping advertise-
ments), both the maximum cost as well as the savings based on the saturation
effect are reduced. Thus, the overhead remains nearly constant over a wide range
of the experiment. The costs only decrease at the edges of the curve as there
are either just a few publishers or only some subscribers in the system.

Regarding the average number of subscriptions stored in the brokers’ routing
tables, Fig. 6.10 shows a more familiar situation that we have already seen in
previous experiments. For advertising, the advertisement forwarding overhead
pays off leading to the lowest number of subscription entries followed by scop-
ing and filtering. With a growing fraction of subscribers in the system, the

DISTRIBUTIONS 175

number of subscriptions and, hence, subscription entries in the routing tables
increases for all routing strategies. Depending on how good the forwarding of
subscriptions can be restricted, this increase of stored routing entries turns out
to be correspondingly slower. Moreover, for advertising, the number of subscrip-
tion entries starts to decline when publishers outnumber subscribers. If there
are no publishers left in the system, it even drops to zero because without any
advertising publisher no subscription is forwarded and stored at all.

6.4.2 Hot Spots

In previous experiments, we usually assumed a uniform distribution of clients
and notification types in the broker network. In many publish/subscribe sys-
tems, however, this is often not the case. Instead, many phenomena studied and
measured in physical and social sciences vary over huge ranges that, sometimes,
span many orders of magnitude. In [152], Newman lists a few well known ex-
amples such as the distribution of city populations, the frequency of words used
in human languages, the annual incomes of households, the number of scientific
papers and paper citations grouped by author and paper, respectively, as well
as the sizes of computer files and the number of page hits generated by web
sites. All these phenomena follow power laws and are, thus, characterized by
large inequalities and disparities.

A discrete random variable X is said to follow a power law if the probability pk
of obtaining the value k = 1, 2, . . . obeys

pk = Ck−α,

for some positive constant C and α. C is determined by the normalization
condition requiring that all probabilities pk sum up to 1. Thus, we get

1 =

∞∑
k=1

pk = C

∞∑
k=1

k−α = Cζ(α) and C =
1

ζ(α)
,

where ζ(α) is the Riemann ζ-function. Therefore, the resulting probability dis-
tribution

pk =
k−α

ζ(α)

is also called zeta distribution. Often, however, we just have a finite population
of n elements whose probabilities of occurrence follow a power law. In this case,
we find after normalization that

pk,n =
k−α∑n
i=1 i

−α ,

which is called Zipf distribution named after George K. Zipf who coined the
empirical law in linguistics that the frequency or probability of a word is inversely

176 EVALUATION

10-4

10-3

10-2

10-1

10 0

1 10

k

p
k

α=1
α=2
α=3
α=4

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

F

L
(F

)

α=1
α=2
α=3
α=4

(b)

Figure 6.11: Zipf distribution and Lorenz curve: (a) Zipf distributions for dif-
ferent shape constants α and (b) corresponding Lorenz curves.

proportional to its rank k. Obviously, for infinite n, the Zipf distribution is
equivalent to the zeta distribution which is why, in literature, both terms are
often used interchangeably.

Given a Zipfian probability distribution, the constant α determines its shape.
When plotting the distribution in a diagram with logarithmic horizontal and
vertical axes as done in Fig. 6.11 (a), the power law makes it follow a straight
line with α determining the slope. The larger α, the steeper the curve and, thus,
the bigger the disparities grow resulting from the distribution. To visualize them,
the corresponding Lorenz curves are shown in Fig. 6.11 (b). The Lorenz curve is a
cumulative distribution function defined in the unity square of the first quadrant
depicting relative concentrations. Therefore, the graph shows the cumulative
proportion of ordered elements mapped onto the cumulative proportion of their
size or probability, respectively. If all elements have the same size or probability,
the Lorenz curve is the diagonal of the unity square, which marks the line of
perfect equality. If there is any inequality in the distribution, the Lorenz curve
drops below the diagonal equidistribution line while the deviation depicts the
resulting disparity. Its extent is measured by the Gini coefficient, which is defined
as the ratio of the area lying between the equidistribution line and the Lorenz
curve over the total triangular area under the equidistribution line. Thus, the
Gini coefficient ranges from 0 indicating a perfectly equal distribution to 1 in
case of absolute inequality. However, it is mathematically equivalent, but often
more convenient, to alternatively calculate the Gini coefficient as the difference
between 1 and twice the area under the Lorenz curve.

For a discrete Zipf distribution as defined above, the Lorenz curve is given by the
piecewise linear function L(F) that connects the points (Fi, Li) for i = 0, . . . , n,
where

DISTRIBUTIONS 177

Fi =
i

n
and Li =

i−1∑
k=0

pn−k,n =

∑i−1
k=0(n− k)−α∑n

k=0 k
−α .

Please note that the elements are considered from last to first to cumulate their
probabilities in increasing order. The area under the Lorenz curve is then calcu-
lated by easily summing up the trapezoids under the line segments of the curve.
Thus, for the Gini coefficient G, we get

G = 1− 2

n

n∑
i=1

Li−1 + Li
2

= 1− 2

n

(
L0

2
+

n−1∑
i=1

Li +
Ln
2

)

and immediately find with L0 = 0 and Ln = 1 that

G = 1− 2

n

(
n∑
i=1

Li −
1

2

)
=
n+ 1

n
− 2

n

n∑
i=1

Li.

By substituting Li, we further get

G =
n+ 1

n
− 2

n

n∑
i=1

i−1∑
k=0

pn−k,n =
n+ 1

n
− 2

n

n∑
k=1

k · pk,n,

which we finally simplify to

G =
n+ 1

n
−

2
∑n
k=1 k

1−α

n
∑n
k=1 k

−α .

Based on the derived formula, we are able to calculate the Gini coefficient for a
given Zipfian distribution in order to measure its disparity. But conversely, the
equation also allows us to find a corresponding Zipf distribution that exhibits a
predetermined degree of inequality. Although there is no compact closed-form
expression, we may still solve the equation numerically for α and, thus, determine
the distribution’s shape for a given population and a specified Gini coefficient.

Leveraging Zipf distributions in the publish/subscribe simulations, we are able to
evaluate more realistic network setups and notification workloads where clients
are preferentially hosted by particular brokers and prefer to publish or subscribe
certain notification types. By calculating the distribution’s shape based on a
preset Gini coefficient, we can, moreover, fine-tune how strong clients focus on
preferred brokers and notification types and, thereby, create hot spot regions
within the network. This way, it is possible to gradually increase the distribu-
tion’s disparity and, thus, to turn a perfectly equal distribution of clients and
notification types slowly into a completely unequal distribution consisting of a
single hot spot where one broker hosts all clients that only produce or consume
the same notifications. Further experiment details and parameters are given in
the following description.

178 EVALUATION

Experiment 4 (hot spots). To evaluate the effect of local concentrations of
clients and notification types within the publish/subscribe network, a Zipf distri-
bution is used to assign clients to brokers and notification types to clients. The
distribution’s degree of disparity is gradually increased by varying the expected
Gini coefficient G = 0.0, . . . , 1.0 in order to form hot spot regions. The pub-
lish/subscribe network consists of NB = 100 brokers that host an overall number
of NP = NS = 1000 publishers and subscribers on average. The birth rate of
new publishers and subscribers is set to λP = λS = 4, while their expected life-
time is set to τP = τS = 250s. There are MT = MS = 250 event types and
corresponding scopes that are organized in a hierarchy with l = 3 levels and a
branching order of b = 2. Based on the Zipf distribution above, each client is as-
signed a hosting broker and a dedicated notification type to subsequently produce
or consume, respectively. The publication rate of notifications is set to λn = 5.
The system performance is evaluated by measuring the overall number of for-
warded subscriptions and, if any, advertisements as well as the average size of
the corresponding routing tables.

The experiment is conducted for different routing strategies and their exten-
sions. In particular, identity-based routing is used as default routing algorithm
(filtering), which is extended by advertisements (advertising) and scopes (scoping
subscriptions) as well as their combination (scoping advertisements). Measured
results regarding the subscription and advertisement overhead as well as the
routing table sizes are presented in Figs. 6.12 and 6.13, respectively.

Figure 6.12 shows the cumulated overall overhead for forwarding subscriptions
and, if applied, advertisements. It is graphed as function of the expected Gini
coefficient that characterizes the distribution’s degree of inequality when assign-
ing clients to brokers and notification types to publishers and subscribers. For
small Gini values 0.0 ≤ G < 0.2, we still have a roughly uniform and equal
distribution where minor concentrations of clients and notification types do not
have considerable impact or effect. Because there are an equal number of pub-
lishers and subscribers in the system, the usage of advertisements does not pay
off making both strategies applying them clearly more expensive. Likewise, the
usage of scopes does not have any advantages in this situation. The overhead is
nearly the same independent of whether filtering or advertising is complemented
with scopes or applied in their pure variants, respectively.

With an increasing Gini coefficient 0.2 ≤ G < 0.6, however, diverging trends
occur. With the formation of first hot spots within the network, the overhead
caused by pure filtering and advertising is growing. This is because the satura-
tion effect for the less frequent notification types is lost. Hence, new subscrip-
tions and advertisements for these types are forwarded to every broker in the
network again as there are no identical, already existing routing entries left that
would, otherwise, make their transmission unnecessary. With scoping, however,
the dissemination of subscriptions and advertisements is effectively restricted to
those brokers that host corresponding components responsible for the respec-
tive notification types. Thereby, scoping particularly profits from an unequal

DISTRIBUTIONS 179

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.0 0.2 0.4 0.6 0.8 1.0

O
ve

rh
ea

d
in

M
es

sa
g

es

Gini Coefficient G

Scoping (Subs)
Scoping (Ads)
Advertising
Filtering

Figure 6.12: Advertisement and subscription forwarding overhead for an increas-
ingly unequal Zipf distribution of clients and notification types.

client distribution and local client concentrations where the majority of publish-
ers and subscribers just focus on a few hot spot brokers. As consequence, the
subscription and advertisement overhead decreases notably.

For a Gini coefficient 0.6 ≤ G < 1.0, the overhead caused by pure filtering and
pure advertising, respectively, reaches a flat peak and starts decreasing after-
wards. For a growing number of notification types, it is becoming extremely
unlikely to get published or subscribed at all. Hence, for these types, there are
no advertisements and subscriptions to be forwarded which reduces the costs
independent of the applied routing strategy. In fact, in case of all four rout-
ing variants, the overhead eventually drops to zero when G = 1.0. Please note
that this theoretical limit of the distribution’s disparity is, in practice, imple-
mented by assigning all clients to a single broker and making them all publish
and subscribe the same notification type. Thus, after the routing entries for this
type have once been established within the broker network, they suppress the
forwarding of all subsequently issued subscriptions and advertisements. More-
over, as there are always enough clients in the system producing and consuming
corresponding notifications, these routing entries do not need to be updated
or revoked anymore. As a consequence, no advertisement or subscription mes-
sage is counted as overhead during the measurements although publishers and
subscribers are actively using the system meanwhile.

180 EVALUATION

0

50

100

150

200

250

300

0.0 0.2 0.4 0.6 0.8 1.0

A
ve

ra
g

e
N

u
m

b
er

o
f

S
u

b
sc

ri
p

ti
o

n
E

n
tr

ie
s

Gini Coefficient G

Scoping (Subs)
Advertising

Filtering

Figure 6.13: Average number of subscription entries for an increasingly unequal
Zipf distribution of clients and notification types.

Besides the forwarding overhead, the effects of an unequal distribution of clients
and notification types are also reflected by the broker’s routing tables. Fig-
ure 6.13 plots the average number of stored subscriptions against the Gini coef-
ficient measuring the distribution’s disparity. There are no considerable changes
in the routing tables for small Gini values 0.0 ≤ G < 0.2. Hence, minor in-
equalities do not have any concrete impacts yet. Instead, we obtain quite fa-
miliar results. Since scopes and advertisements effectively limit the forwarding
of subscriptions, their application leads to significantly fewer routing entries as
compared to pure filtering. Since advertisements, furthermore, only allow the
forwarding of subscriptions towards corresponding publishers, the number of
entries is again halved as compared to pure scoping.

For Gini values 0.2 ≤ G < 1, the first hot spots emerge and grow until a single
broker and notification type dominate the system. Regarding stored routing
entries, an increasing disparity has a positive effect that reduces their number
independent of the routing strategy applied. As scopes and advertisements pre-
vent subscriptions to be unnecessarily disseminated to uninvolved brokers, the
average number of routing entries decreases linearly with clients being hosted
by a few brokers only. For pure filtering, however, the number of routing entries
starts to decrease considerably stronger when a growing fraction of notification
types is not subscribed anymore. Please note that even for a Gini coefficient

OVERHEAD 181

G = 1.0, the average number of routing entries does not drop to zero. In-
dependent of the routing algorithm, each subscriber causes at least one local
subscription entry within the routing tables of its hosting broker.

6.5 Overhead

As previous experiments and simulations show, the usage of scopes improves the
system’s performance in many situations. This is primarily achieved by limiting
the dissemination of subscriptions and advertisements at scope boundaries and,
thereby, preventing them to be unnecessarily forwarded into network regions
without matching publishers or subscribers. However, scoping comes at a cost.
The price to pay is additional overhead caused by the distribution of scope infor-
mation and the management of scope memberships within the broker network.
Components need to join corresponding scopes first in order to communicate with
each other afterwards. In particular, this causes additional system messages to
be send to apply for a particular scope, requires extra routing entries pointing
towards applicants and members of that scope, and introduces an initial delay
until the membership is confirmed or denied. To better understand the costs of
scoping, we further evaluate the system’s overhead in the following experiments.
Therefore, we determine the percentage of the system overhead that is directly
related to scoping as well as the parameters it depends on. Subsequently, we
further analyze the costs of scoping by varying these parameters.

6.5.1 Competitiveness

Scoping causes overhead. Information about each scope needs to be advertised
within the publish/subscribe network in order to let brokers and clients know
about its existence. Thereafter, clients need to subscribe every scope they want
to join while, in return, they are notified about approved or denied scope mem-
berships. Hence, there are many system messages exchanged even before the
first event notification is published or received by any client component. In fact,
these messages constitute a major part of the system’s overhead. In previous
experiments and simulations, however, we ignored this part in order to better
analyze the effects of scoping on regular subscriptions and advertisements issued
by clients. On the one side, this allowed us to easily compare obtained results
qualitatively as well as quantitatively to alternative routing strategies and their
variants. On the other side, we have not yet answered the question whether
scoping is competitive at all.

In order to fulfill advanced tasks and purposes, distributed event-driven appli-
cations often have to react to multiple different notification types and sources
while producing a variety of events themselves. Hence, their components usu-
ally maintain several subscriptions and advertisements for the event notifications
they consume or produce, respectively. One part of the system’s overhead results

182 EVALUATION

from distributing these subscriptions and advertisements within the broker net-
work. The more subscriptions and advertisements are issued by the components,
the higher the overhead grows. With scoping, the other part of the overhead
originates from the system messages required to manage the scope memberships
of the components. The more scopes a component joins, the higher this part
of the overhead grows. Thus, the purpose of the following experiment is to de-
termine the proportion of the overall costs for each part and to find out when
which part outweighs the other. Experiment details and parameter settings are
given in the description below.

Experiment 5 (scope overhead). The share of scoping of the overall cost is
measured while increasing the regular forwarding overhead. Therefore, the ad-
vertisement and subscription volume V = 0, . . . , 20 of the components is varied,
i.e., the number of non-identical advertisements and subscriptions issued by a
publisher or subscriber for a particular notification type, respectively. The exper-
iment is conducted in a network of NB = 100 brokers hosting an overall number
of NP = NS = 1000 publishers and clients on average. The birth rate of new
publishers and subscribers is set to λP = λS = 4 while their expected lifetime
is τP = τS = 250s. There are MT = MS = 250 event types and corresponding
scopes in the system that are organized in a hierarchy with l = 3 levels and a
branching order of b = 2. Each client randomly chooses a dedicated notification
type and hosting broker. The publication rate of notifications is set to λn = 5.
The system overhead is evaluated by measuring the number of forwarded adver-
tisement, subscriptions, and scope messages as well as the average number of
corresponding routing entries.

In the experiment, identity-based routing combined with scopes is applied as
default routing strategy. The experiment is repeated with and without adver-
tisements being exchanged between brokers. Without forwarding the advertise-
ments issued by publishers, client subscriptions are disseminated in the whole
broker network unless they are stopped at a scope border. With advertisements,
subscriptions are only forwarded towards corresponding publishers saving mes-
sages. Instead, advertisements are distributed in the whole broker network unless
stopped by a scope border. The generated system overhead is shown in Figs. 6.14
and 6.15 broken down by message types and routing entries, respectively.

Figure 6.14 plots the relative forwarding costs of scoping against the regular ad-
vertisement and subscription volume per client component. Obviously, if clients
do not publish or subscribe any notification, the overhead is solely made up
by scope messages since the components still join their scopes. With an in-
creasing number of advertisements and subscriptions issued by the clients, the
regular filter forwarding overhead grows linearly while the costs of scoping re-
main constant. Hence, the relative share of scoping is first dropping rapidly
to asymptotically slow down later. Nevertheless, the costs are significant and
cannot be neglected when dimensioning a publish/subscribe system. In fact, if
each publisher and subscriber just issues a single advertisement or subscription,

OVERHEAD 183

0

20

40

60

80

100

0 5 10 15 20

P
er
ce
n
ta
g
e
o
f
O
ve
rh
ea
d

Ads/Subs per Component

Scopes

Subscriptions

(a)

0

20

40

60

80

100

0 5 10 15 20
P
er
ce
n
ta
g
e
o
f
O
ve
rh
ea
d

Ads/Subs per Component

Scopes

Subscriptions

Advertisements

(b)

Figure 6.14: Relative share of the overhead per message type for an increasing
advertisement/subscription volume: (a) scoping; (b) scoping with
advertisements.

respectively, the relative costs of scoping amount to nearly 50% of the total
message overhead as graphed in Fig. 6.14 (b). If advertisements are omitted,
the relative costs of scoping are even more than 60% as shown in Fig. 6.14 (a).
When compared to other routing strategies, scoping thus has to save the same
amount of conventional forwarding overhead first in order to be competitive.

At first glance, scoping looks to be rather expensive. But actually, it is more
efficient than it appears because of two reasons. First, the cost ratio of scoping
improves notably when clients issue more subscriptions and advertisements. For
V = 10, for example, it drops to 13% and 8% of the overall overhead as de-
picted in Figs. 6.14 (a) and 6.14 (b), respectively. Second, there are fewer scope
messages forwarded than expected. Joining a single scope may require up to
three messages: a scope advertisement announcing the existence of the scope, a
scope subscription requesting the membership, and a scope approval or denial
as reply. Especially since the majority of components in the experiment have to
become members of one or two parent scopes first before they can join the right
subscope for their event type, scope messages should clearly predominate the
system’s overhead. But obviously, this is not the case. Because we allow brokers
to also admit clients to scopes that they have already joined, brokers can simply
inherit their scope memberships to hosted components without the need to for-

184 EVALUATION

0

20

40

60

80

100

0 5 10 15 20

P
er
ce
n
ta
g
e
o
f
O
ve
rh
ea
d

Ads/Subs per Component

Scope Subscriptions

Scope Advertisements

Regular Subscriptions

(a)

0

20

40

60

80

100

0 5 10 15 20
P
er
ce
n
ta
g
e
o
f
O
ve
rh
ea
d

Ads/Subs per Component

Scope Subscriptions

Scope Advertisements

Regular Subscriptions

Regular Advertisements

(b)

Figure 6.15: Relative share of occupied routing entries per filter type for an in-
creasing advertisement/subscription volume: (a) scoping; (b) scop-
ing with advertisements.

ward any scope message. In fact, this saves a lot of overhead depending on the
probability of which the hosting broker already possesses the scope membership
that the client requests.

Besides the message forwarding overhead, scoping also occupies routing entries
to store scope advertisements and scope subscriptions in the brokers’ routing
tables. Their relative share is plotted in Fig. 6.15 while the volume of regular ad-
vertisements and subscriptions issued by clients is increased. Thus, the absolute
number of routing entries required by regular advertisements and subscriptions
is growing linearly while the number of scope entries remains constant. Con-
sequently, their relative share drops asymptotically towards zero. Nevertheless,
their number cannot be neglected especially in case of small regular advertise-
ment and subscription volumes. For example, for V = 1 as usually set in previous
simulations, scope advertisements and subscriptions together occupy 70% of the
brokers’ routing tables as depicted in Fig. 6.15 (a). With regular advertisements,
only 60% of the routing entries are occupied as shown in Fig. 6.15 (b). Please
note that scoping always requires scope advertisements to be forwarded and
processed in both cases.

Although scope subscriptions may represent a major part of the routing entries
and are also stored in the same routing table as regular subscriptions, it does

DISCUSSION 185

not necessarily mean that they slow down the matching of notifications to same
extent. Usually, the applied matching algorithm has a much bigger influence on
the system’s performance. For example, if matching is based on decision trees,
a single additional test can early exclude all scope subscriptions. If a predicate
counting algorithm is used, the integration of scope subscriptions boils down to
the evaluation of one additional attribute for identifying each scope. In fact,
many more advanced matching algorithms scale efficiently with an increasing
number of scope subscriptions.

6.6 Discussion

Scoping allows to limit and control the visibility of event notifications within
publish/subscribe networks and, thereby, provides effective means to modularly
build and extend event-based systems. In fact, scoping particularly pays off
when systems and applications grow in size and complexity. Hence, the concrete
implementation of scopes used within the publish/subscribe system has to be
scalable as well. In this chapter, we evaluated scoping as implemented in our pub-
lish/subscribe middleware Rebeca. Rebeca’s original processing, matching,
and routing logic was executed in a simulated network environment. This allowed
us to flexibly set up large-scale broker networks with arbitrary client distributions
while obtaining accurate measurements regarding the number of subscriptions,
advertisements, and scope messages forwarded and stored in the brokers’ routing
tables. As part of the evaluation, we compared the results for scoping with those
obtained for other routing strategies and extensions.

Regarding the size of the brokers’ routing tables, scoping significantly reduces
the number of stored subscriptions compared to a pure filtering strategy that,
in general, does not limit the forwarding of subscriptions. A lower number
of routing entries usually speeds up the matching of notifications which has a
major impact on the system’s overall performance. However, if advertisements
are used, even better results are achieved at the expense of additional overhead
for disseminating and storing them. This is independent of whether they are
combined with scoping. Regarding the message overhead, scoping is also able to
reduce the number of both forwarded subscriptions and advertisements except
in case of saturated routing tables. Since scoping reduces the number of routing
entries, it cannot profit from suppressed messages at the same time that are only
saved when routing tables are well-filled.

Simulation results prove that our implementation of scopes does scale with both
an increasing network size and a growing number of clients. In contrast to the
usage of advertisements, scoping is quite insensitive to a varying ratio between
publishers and subscribers within the system and is, thus, well suited for deploy-
ments where this ratio is not known at design time or may dynamically change
at runtime. If publishers and subscribers of corresponding notification types
are grouped together and concentrate at hot spots within the broker network,

186 EVALUATION

scoping becomes highly effective as it prevents subscriptions and advertisements
to be unnecessarily forwarded to remote network regions. As real publish/sub-
scribe systems are often characterized by unequal distributions of clients and
notification types, hot spots are likely to occur especially in case of applications
that exhibit a certain degree of locality between publishers and subscribers.

Nevertheless, scoping also causes a significant amount of overhead that is primar-
ily made of scope advertisements as well as scope subscriptions which have to be
forwarded and stored in the brokers’ routing tables, too. Thereby, the overhead
primarily depends on the number of scopes a component joins and not on the
number of regular notification types advertised or subscribed. Hence, the more
regular advertisements or subscriptions are issued by the components, the more
competitive scoping becomes as its share on the overall costs decreases. The
organization of the scope hierarchy only indirectly affects the costs by changing
the probability with which the hosting broker is already a scope member. In
this case, it is possible to simple inherit the membership to its clients without
transmitting any additional message. However, when weighing up costs and
benefits of scoping, the advantages clearly predominate. Please remember that
the main goal and purpose of scoping is to structure and organize publish/sub-
scribe systems and event-driven applications, so that these can be engineered in
a modular fashion. Hence, we cannot expect scoping to come for free. Instead,
if we are also able to reduce the overhead and save costs in certain situations, it
is an extra bonus on top.

Chapter 7

Conclusions

Modularity is the key concept for engineering publish/subscribe systems and
event-driven applications. To improve modularity, we designed a composable
publish/subscribe architecture, leveraged scopes as structuring means, derived
supporting programming abstractions, and finally evaluated the scope concept.
In the following, we first summarize our work highlighting the main contributions
and results. We critically review these with regard to our engineering goals and
their applicability to event-based infrastructures. Finally, we discuss further
question raised in this thesis and give an outlook on future research and the
immediate next steps to address these open issues.

7.1 Summary

In this thesis, we have set out to engineer publish/subscribe systems and event-
driven applications. Starting from an introduction of event-based infrastructures
and a discussion of basic concepts and principles of publish/subscribe communi-
cation, we analyzed existing notification services and middleware standards with
regard to applied communication mechanisms and provided engineering means.
On the one side, these systems offered a wide range of technical functions and
features substantially differing in terms of supported network topologies and pro-
tocols, applied matching algorithms, routing strategies, and their optimizations
as well as the kind of notification selection and its expressiveness. On the other
side, however, the systems provided no or only very limited support for sys-
tem engineering, organization, and management. In fact, industry and research
primarily concentrated on technical aspects such as communication efficiency,
system performance, or scalability issues and, in the majority of cases, neglected
engineering challenges to ease the development and master the increasing com-
plexity of event-based infrastructures. This was particularly reflected by the lack
of adequate module concepts and sufficient structural abstractions. In order to

187

188 CONCLUSIONS

facilitate the engineering of event-based systems, we therefore addressed modu-
larity as the key concept and tackled it on the level of the middleware design,
the publish/subscribe infrastructure, and the event-driven applications.

Regarding the middleware design, we proposed a composable architecture for
publish/subscribe brokers based on functional modularity and centered around
features and their composition. A feature represents a particular functional as-
pect such as a specific network protocol, a certain routing strategy, or an applied
matching algorithm, while the overall broker functionality is composed by select-
ing and combining these features. This way, publish/subscribe infrastructures
can be flexibly tailored to actual requirements and environment conditions. To
enable the free composition of features, we designed brokers as containers for
pluggable components each of which encapsulates and implements a specific fea-
ture that can dynamically be added and removed at runtime. Hence, a broker
only manages the components plugged in as well as the message streams be-
tween them while the real publish/subscribe logic is provided by the plugins.
We defined interfaces by which the plugins intervene the broker’s message han-
dling and intercept those event messages that are relevant for their features.
Plugins are, thus, able to modify and alter passing event messages as well as
to remove old and create new ones in order to realize their functionality. On
the client side, we also applied the idea of features and feature composition.
Likewise, pluggable components are transparently inserted into the broker con-
nection and, thereby, allow to flexibly add new functions as well as to leverage
plugged broker features. The presented architecture formed the basis of the
redesign and reimplementation of our publish/subscribe middleware Rebeca.
With Rebeca, we demonstrated that mandatory functions, essential publish/
subscribe logic, and advanced extensions such as advertising or scoping can eas-
ily be implemented as pluggable broker components and that these can flexibly
be combined with optional feature plugins which address system management
and security or render the network adaptive and fault-tolerant.

On the level of the publish/subscribe infrastructure, we proposed scoping as a
modular structuring concept to better organize publish/subscribe systems and
event-driven applications. For this purpose, scopes bundle related components
and limit the visibility of event notifications, subscriptions, and advertisements.
This way, scopes create a private environment for interaction that avoids un-
intended side-effects. Based on concepts of set theory, we formally defined the
semantics of scopes and allowed systems to be hierarchically decomposed in
subsystems and subscopes. For a flexible system decomposition, different crite-
ria and aspects may be applied while components can be members of multiple
scopes, too. To facilitate the engineering of event-based systems with scopes, we
also defined scope interfaces, scope attributes, and scope mappings. Scope inter-
faces help to control component interactions between different subsystems since
they precisely specify those event notifications that are allowed to cross scope
boundaries. Scope attributes annotate scopes and contained components with
configuration and context data in order to ease their orchestration. Attributes
are also inherited to subscopes, components, and published notifications by de-

SUMMARY 189

fault, but to customize, refine, or transform annotated information, they can be
overridden and mapped as needed, respectively. We preferred a close integra-
tion of scoping into the publish/subscribe routing layer based on scope overlays
because of two reasons. First, we exploited the scope structure to optimize the
routing of event notifications, subscriptions, and advertisements by preventing
their unnecessary forwarding at scope borders. Second, we mapped management
functions for joining and leaving or for creating and destroying scopes to regular
publish/subscribe operations allowing us to reuse and profit from existing pro-
gram logic and data structures. Leveraging Rebeca’s composable architecture,
we implemented scoping as pluggable broker feature that is compatible with all
major routing algorithms and extensions.

For event-driven applications, we derived programming abstractions that ease
content-based publish/subscribe communication and support the orchestration
of components and their notification flows. Based on an analysis of pitfalls for
publish/subscribe applications and possible remedies, we strongly advocated for
a strict separation of the business logic from context and configuration data in
order to increase the reusability and extensibility of application components.
For this purpose, we introduced event ports as a novel interface that exposes a
set of previously annotated component fields directly to publish/subscribe com-
munication. In particular, any data update on an out-port field caused by a
component’s change in state is automatically published as a new event noti-
fication, while data updates received from subscribed notifications are applied
on corresponding in-port fields. Components are, thus, orchestrated by sub-
scribing their in-ports to the notifications they have to process. Taking a data
flow approach, we further eased this process by enabling application develop-
ers to merely connect a component’s out-port to one or more in-ports and vice
versa. This way, the application logic encapsulated within component methods
does not need to contain any publish/subscribe primitives as well as any other
middleware-specific code anymore. To process incoming data updates on event
ports, we allowed component methods to be conveniently annotated as event
handlers. The developed execution model determines which handlers are called
in which order and how obtained results are published while active components
that possess own threads of execution or dynamically modify issued subscriptions
are also supported. To better organize event-driven applications, their compo-
nents can flexibly be grouped into scopes and subscopes that are flexibly created
on demand while established notification flows based on connections between
event ports remain in place. In particular, we offered developers the choice as
well as the means to either annotate components with own scope definitions and
manage their members individually or to adapt and customize provided default
scopes and components as needed. To support our programming abstractions
within a publish/subscribe middleware, we extended Rebeca’s component plu-
gin to an advanced component container implementing additional functions and
services that are required, for example, to inspect component annotations, to
call responsible event handlers and publish their results, or to dynamically set
up scope and component instances on demand.

190 CONCLUSIONS

Finally, we presented a detailed evaluation of the proposed module concepts
primarily focusing on system performance and the effects of scoping. For this
purpose, we leveraged Rebeca’s composable architecture by adapting and ex-
tending a number of feature plugins in order to allow brokers to be executed
in a real network deployment as well as in a simulation environment. In par-
ticular, the PeerSim simulator enabled us to conveniently set up large-scale
networks, measure performance parameters such as routing table sizes and mes-
sage overhead, and study the effects of different distributions of publishers, sub-
scribers, and event notifications. To better interpret the obtained results, we
qualitatively and quantitatively compared the measurements with simulations
of related routing strategies and extensions. This way, we showed that scoping
scales with network size in terms of brokers and clients while significantly re-
ducing the number of stored routing entries and the message overhead. On the
one hand, the savings are particularly strong in cases of unequal distributions of
clients when these form network regions with hot spots for certain notification
types. On the other hand, the performance of scoping is, in contrast to other
routing extensions such as advertising, largely independent of the ratio between
publishers and subscribers in the system. Furthermore, we measured the over-
head for managing scopes and its proportion on the overall system costs while
thoroughly analyzing relevant parameters and their influence. In general, it is
not guaranteed that the scope overhead is always outweighed by the number
of advertisements, subscriptions, and event messages that are prevented from
being unnecessarily forwarded at scope borders. But nevertheless, we showed
that there are many scenarios, setups, and situations in which scoping can be
leveraged to both effectively organize event-based infrastructures and to reduce
the overall costs at the same time.

7.2 Goals Reviewed

The central focus of the thesis lied on engineering publish/subscribe systems
and event-driven applications. Within our work, we primarily aimed at im-
proving and simplifying the development process for this kind of systems while
taking the inherent properties and characteristics of event-based infrastructures
into account. In particular, the loose coupling between components as well as
the flexibility of the publish/subscribe communication hampered the application
of conventional software engineering concepts. Moreover, the lack of sufficient
structural abstractions made it difficult to design event-based systems in a mod-
ular fashion, ensure the reusability and extensibility of their components, and
to keep their interactions comprehensible and manageable. In the following, we
take the time to reflect how the major contributions of the thesis support and
help in achieving the engineering goals we initially defined.

Modularity and composability. We considered modularity and composability
as key concepts of a methodical engineering approach that enables developers to

GOALS REVIEWED 191

build and implement complex systems and applications out of subsystems and
prefabricated components which themselves may recursively be made up of even
simpler building blocks. On the level of the middleware design, we proposed
a composable architecture for publish/subscribe brokers primarily focusing on
functional modularity. We split a broker’s processing and management logic
into a fine-grained set of features each responsible only for a specific functional
aspect and, subsequently, allowed middleware developers to freely compose and
combine them as needed. Thus, from a functional point of view, brokers are
highly adaptable and customizable making them versatilely deployable in a wide
range of application scenarios. From a structural point of view, the proposed
architecture leverages well-known object-oriented concepts to implement each
feature as a pluggable component. Therefore, we specified class and component
interfaces and gave development guidelines in order to ensure that feature plugins
seamlessly fit when added to a broker.

Contrarily, on the application level, we first created the structural abstractions
to facilitate a modular development of distributed event-driven applications.
With scopes for publish/subscribe systems, we enabled application developers
to bundle related components to modules and artifacts while providing them a
protected environment for interaction. This way, for example, multiple instances
of the same application can be embedded in private scopes and, subsequently,
executed on the same publish/subscribe network without interfering with each
other. Scopes, thus, implement the modularity that enables further compositions
of application artifacts.

Reusability and extensibility. Modularity is an essential, albeit not sufficient,
precondition for implementing reusable and extensible components. Hence, a
modular and composable architecture for publish/subscribe networks does not
automatically imply and guarantee extensible brokers with reusable plugins. In
the course of this thesis, nevertheless, Rebeca brokers showed to be easily mod-
ifiable and adaptable. In particular, we added support for scoping, extended the
component plugin to a feature-rich component container, and reused existing
middleware logic in our simulations evaluating the system performance. With
these kind of test cases, we then substantiated the previous claims about the
middleware’s reusability and extensibility.

On the application level, we analyzed common pitfalls when developing pub-
lish/subscribe components and found out that often business logic is mixed up
with configuration and context data which significantly limits the component’s
reusability and extensibility. Event ports addressed this problem by providing a
clear interface separating the business logic which processes the data received on
the event port from the configuration that determines to which notifications the
event port is subscribed. While the business logic is encapsulated in the com-
ponent’s methods and event handlers, the configuration is either annotated to
the component, contained in separated configuration classes, or stored in exter-
nal files. Likewise, when using scopes to bundle components to new application

192 CONCLUSIONS

artifacts, we also considered the needs and requirements of both application de-
velopers and system administrators. On the one side, we derived programming
abstractions for developers to group components and connect their event ports in
order to organize applications, direct the event flows between components, and
ensure application’s functionality. On the other side, we also provided means
for administrators to subsequently adapt and fine-tune components and scopes
at deployment, for instance, by defining and setting new component or scope
attributes that carry additional context information or configuration data. In
general, by keeping functional aspects apart from configuration issues, we im-
proved the conditions for writing reusable and extensible software artifacts.

Comprehensibility and manageability. Publish/subscribe systems and event-
driven applications are primarily characterized by the indirect form of commu-
nication and the resulting loose coupling of components. As a consequence, it
is usually difficult to predict all effects and side-effects of a published event no-
tification. It even becomes much worse when systems and applications grow
in size and complexity. With scopes, we therefore provided structuring means
to limit and control the visibility of event notifications. This way, we enabled
developers to create a protected environment where application components can
interact in isolation. Hence, unintended side-effects are mainly avoided making
the application and system behavior significantly easier to predict and compre-
hend. Furthermore, with event ports, we introduced a novel publish/subscribe
interface that not only separates the component’s business logic from configura-
tion data, but also clearly identifies the component fields and attributes that are
going to be communicated as event notifications. Moreover, by virtually con-
necting out-ports and in-ports of different components, we allowed developers to
conveniently specify event flows in a more direct form which eases component
orchestration. As all event connections are eventually mapped onto publish/sub-
scribe primitives, no additional dependencies are introduced that may constrain
the application’s extensibility and further development.

Regarding system management, scoping also plays a central role. With scope
interfaces, system administrators got a way to determine and constrain which
event notifications are allowed to enter or leave a particular scope and, thus,
are disseminated in which part of the network to which components. By al-
lowing scopes to be recursively divided into subscopes with own interfaces, we
also took fine-grained security concerns into account. Likewise, it is possible to
map organizational structures and responsibilities onto the scope hierarchy. In
particular, we made sure that components can be members of different scopes
at the same time supporting a flexible system organization according to mul-
tiple criteria that goes far beyond a simple functional decomposition. At the
same time, the automatic assignment and grouping of application components
to scopes and subscopes based on predefined properties and tagged attributes
notably simplified the administration. This way, scopes not only support a
modular development of event-driven applications, they are also well suited as
an effective management tool for publish/subscribe infrastructures.

OUTLOOK 193

7.3 Outlook

Increasingly often, modern computing systems have to respond to a variety of
events and situations in a timely fashion, for instance, to autonomously adapt
their configuration to changing environment conditions or to actively assist and
support their users. We, therefore, expect that such event-driven systems and
applications will take over a central role in future infrastructures. In this thesis,
we focused on engineering means to master and shape their development even
when systems continue to grow in size and complexity. In the course of our
work, we touched several open issues that raise new questions whose detailed
discussion, however, was beyond the scope of the thesis. Nevertheless, they pro-
vide directions for future work and offer interesting new research opportunities.
In the following, we give an overview about these open issues while discussing
challenges and sketching first solution ideas.

Formal analysis of interacting features. We proposed a middleware architec-
ture for publish/subscribe brokers that is based on the concept of features and
their composition. We leveraged the idea of feature composition to tailor bro-
kers to actual requirements and conditions by selecting and composing necessary
features and omitting superfluous ones. This works perfectly if features are or-
thogonal and independent to each other, it is manageable if a feature depends
on the functions of other features and these dependencies can be resolved, but it
usually becomes intricate and complex if features directly or indirectly interact
with each other. Please note that the latter may cause positive as well as neg-
ative effects. In the positive case, new properties and additional features may
arise from the interaction making the composition result more than the sum of
its parts. In the negative case, however, the individual features and functions
may hamper and countervail each other when combined. For instance, we expe-
rienced oscillations when composing two features that autonomously optimized
the network topology and the routing configuration, respectively, but were part
of the same control loop [171]. Since such feature interactions are usually not ob-
vious, developers can profit from a formal approach for composition. Based on a
concise specification of the system and the individual features, a formal analysis
may proof a certain set of features to be freely composable while the interactions
of a different feature set are shown to have unintended side effects. In partic-
ular, the more we depend on certain features of our computing infrastructure,
the more confidence we need to have in their correct behavior.

Optimized architectures. When designing our middleware architecture, we pri-
marily focused on the concept of feature composition. Facilitating the free com-
position of features, we avoided to make further assumptions about the network
environment and the application scenario of the middleware. On the one side,
we thus gained a generic architecture to flexibly build customized publish/sub-
scribe brokers suited for a broad range of application areas. However, if we

194 CONCLUSIONS

restrict the middleware to a specific application domain, we can further adapt
and optimize the architecture based on stronger assumptions and more knowl-
edge about its purpose while taking additional requirements into account. In
resource-constrained wireless sensor networks (WSNs), for example, the limited
power, computation, and communication capabilities of the sensor nodes need
to be considered. Here, it is probably beneficial to trade off the high degree
of granularity with which independent features can be composed against more
cross-feature and cross-layer optimizations that are centered around a common
set of shared data structures, e.g., the routing tables. In [224] and [198], we pre-
sented a stack of composed self-organizing and self-stabilizing algorithms that
may serve as a starting point for an optimized publish/subscribe architecture
for WSNs. In contrast to WSNs where resources are scarce, the abundance of
computing power and connectivity also presents many challenges. In the face
of the ongoing trend towards multi- and many-core processor architectures, for
instance, it is still an open question how to efficiently leverage the high degree
of parallelism for publish/subscribe communication. Resulting architectural im-
plications are, thus, difficult to assess today.

Security. Scoping is a key element for engineering publish/subscribe systems
and event-driven applications in a modular fashion. Scopes bundle related com-
ponents to new application artifacts and, thereby, restrict the dissemination of
published notifications by default to members of the same scope only. We limited
the visibility of events as part of the encapsulation process in order to hide inter-
nal communication details from the outside and vice versa. This way, we avoided
to have internal events causing unintended side-effects elsewhere in the system.
From a security point of view, however, limiting the visibility of events clearly
restricts the access to data and, thus, may be used to protect the confidentiality
of information. Hence, in literature [76], scoping has already been proposed for
security purposes. In fact, scopes are well suited as security domains specifying
and enforcing requirements and policies for a set of related components. In or-
der to leverage scopes for protecting applications and data, several open issues
need to be tackled. First, because of the inherent loose coupling of components,
an analysis of the security requirements and needs is significantly more com-
plex in event-based systems. Components, notifications, and even notification
attributes need to be considered. Hence, scope interfaces must also support
the specification of security policies at the same level of granularity. Second,
the right security mechanisms such as encryption and authentication need to be
chosen and applied in a way that complies to the event-based communication
style. This also includes many general and conceptual questions, for instance, to
which degree it is possible to perform content-based routing within a publish/
subscribe network that contains trustworthy as well as untrustworthy brokers.
Third, implementation details and management issues need to be discussed. In
particular, the secure dissemination of scope information within the broker net-
work as well as the management of encryption keys within a loosely coupled
publish/subscribe infrastructure are challenging subjects of research.

OUTLOOK 195

Quality of Service. Quality of Service (QoS) is a broad, interesting, and active
research topic in event-based systems [14]. Similar to the security constraints
as discussed above, scopes are well suited as a place to specify and annotate
QoS requirements and policies for a set of related components and their event
notifications. In particular, QoS aspects include, but are not limited to, latency
and bandwidth, message priorities, notification delivery and ordering guaran-
tees, or even support for transactions. There is no general approach that covers
all of these at once, instead each aspect poses specific challenges on the con-
ceptual and the implementation level of a publish/subscribe middleware. In
this context, self-organizing and self-optimizing systems based on an adaptive
and reconfigurable broker network take a special position. By reorganizing their
publish/subscribe infrastructure, they continually seek to ensure a constant QoS
level for applications or even try to improve it while decreasing system costs at
the same time. In [103] and [199], for example, we proposed self-optimizing
algorithms that adapt the broker topology as well as the routing configuration
and, thereby, decrease the average notification latency and the system’s overall
bandwidth requirements, respectively.

Event correlation and composition. In this thesis, we assumed event-based
infrastructures to primarily deal with the mere transport of event notifications.
With Complex Event Processing (CEP), there is, beyond the efficient dissemi-
nation of event notifications, another active application domain of publish/sub-
scribe systems that is concerned with the correlation of events and the detection
of spatio-temporal patterns therein. If such an event pattern is detected, a new
higher-level composite event is generated that informs about the pattern’s oc-
currence, may contain aggregated data from constituent event notifications, and
itself becomes subject to further correlation and composition. The detection
of event patterns is often performed by a central correlation engine, although
distributed approaches promise to better exploit the locality of events and, thus,
can safe a considerable amount of routing and matching overhead. Against this
background, the engineering means, tools, and concepts presented in this the-
sis may ease a direct integration into the publish/subscribe middleware. For
instance, the composable architecture enables the implementation of the corre-
lation logic as a pluggable broker feature while scopes help to narrow down the
set of potential candidate events for correlation and event ports may be used to
conveniently annotate the event patterns and composite events an application
component has to process. In [202] and [203], we have already sketched first ideas
of such an adaptive and integrated approach to distributed event composition.

Performance modeling and analysis. With publish/subscribe networks and
event-driven applications becoming an integral part of future computing infras-
tructures, it gets the more important not only to guarantee their correctness,
but also to ensure their performance. For the latter, it is particularly essential
to make reliable performance predictions for the system already at design time.

196 CONCLUSIONS

This way, potential bottlenecks can be identified as early as possible while the
broker network is correctly sized for the expected load and traffic. In [200], we
presented a stochastic performance model that is well suited for the capacity
planning of publish/subscribe systems. The model takes many details such as
the applied routing algorithm, the overlay network structure, and the physical
links in the underlay network into account. Nevertheless, it still has to be ex-
tended to also consider the effects of scoping or different matching algorithms
that leverage the increasing parallelism of modern processor architectures. In
order to allow accurate quantitative estimations, the model also needs further
calibration and fine-tuning by comparing results with extensive simulations as
well as measurements of real publish/subscribe network deployments. Based on
precise predictions, the performance of event-based infrastructures can be reli-
ably evaluated before the real system is actually build. This provides a significant
added value and represents another step towards a comprehensive engineering
and development methodology for event-based systems.

Bibliography

[1] M. Adler, Z. Ge, J. Kurose, D. Towsley, and S. Zabele. “Channelization
Problem In Large Scale Data Dissemination”. In: Proceedings of the 9th
International Conference on Network Protocols (ICNP ’01). Riverside,
CA, USA, Nov. 2001, pp. 100–109.

[2] M. Altinel and M. J. Franklin. “Efficient Filtering of XML Documents
for Selective Dissemination of Information”. In: Proceedings of the 26th
International Conference on Very Large Data Bases. Ed. by A. El Abbadi,
M. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-
Y. Whang. Kairo, Ägypten: Morgan Kaufmann, Sept. 2000, pp. 53–64.

[3] S. Apel and C. Kästner. “An Overview of Feature-Oriented Software De-
velopment”. In: Journal of Object Technology 8.5 (July 2009), pp. 49–
84.

[4] V. Arslan, P. Nienaltowski, and K. Arnout. “Event Library: An Object-
Oriented Library for Event-Driven Design”. In: Proceedings of the Joint
Modular Languages Conference (JMLC ’03). Ed. by L. Böszörményi and
P. Schojer. Vol. 2789. Lecture Notes in Computer Science. Klagenfurt,
Austria: Springer, Aug. 2003, pp. 174–183.

[5] E. A. Ashcroft and W. W. Wadge. “Lucid, a Nonprocedural Language
with Iteration”. In: Communications of the ACM 20.7 (July 1977),
pp. 519–526.

[6] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijn-
gaarden, and M. Woodger. “Revised Report on the Algorithmic Language
ALGOL 60”. In: Communications of the ACM 6 (1 Jan. 1963). Ed. by
P. Naur, pp. 1–17.

[7] J. Bacon, D. M. Eyers, K. Moody, and L. I. W. Pesonen. “Securing Pub-
lish/Subscribe for Multi-domain Systems”. In: Middleware. Ed. by G.
Alonso. Vol. 3790. Lecture Notes in Computer Science. Grenoble, France:
Springer, Nov. 2005, pp. 1–20.

197

198 BIBLIOGRAPHY

[8] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch. “Access Control in
Publish/Subscribe Systems”. In: Proceedings of the Second International
Conference on Distributed Event-Based Systems (DEBS ’08). Ed. by R.
Baldoni. Rome, Italy: ACM Press, July 2008, pp. 23–34.

[9] J. Bacon, L. Fiege, R. Guerraoui, H.-A. Jacobsen, and G. Mühl, eds.
Proceedings of the First International Workshop on Distributed Event-
Based Systems (DEBS 2002). Part of the Proceedings of the 22nd In-
ternational Conference on Distributed Computing Systems Workshops
(ICDCSW 2002). Vienna, Austria: IEEE Computer Society, July 2002.

[10] J. Bacon, K. Moody, and W. Yao. “Access Control and Trust in the
Use of Widely Distributed Services”. In: Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware
2001). Ed. by R. Guerraoui. Vol. 2218. Lecture Notes in Computer Sci-
ence. Heidelberg, Germany: Springer, Oct. 2001, pp. 295–310.

[11] J. Bacon, K. Moody, and W. Yao. “A Model of OASIS Role-Based Access
Control and Its Support for Active Security”. In: ACM Transactions on
Information and System Security 5.4 (4 Nov. 2002), pp. 492–540.

[12] C. Y. Baldwin and K. B. Clark. Design Rules: The Power of Modularity.
Vol. 1. Cambridge, MA, USA: MIT Press, 1999.

[13] T. Ballardie, P. Francis, and J. Crowcroft. “Core Based Trees (CBT)”.
In: Proceedings of the ACM SIGCOMM ’93 Conference on Communi-
cations Architectures, Protocols and Applications (SIGCOMM ’93). San
Francisco, CA, USA: ACM Press, Sept. 1993, pp. 85–95.

[14] S. Behnel, L. Fiege, and G. Mühl. “On Quality-of-Service and Publish/
Subscribe”. In: Workshop Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems (ICDCSW 2006). Lisbon,
Portugal: IEEE Computer Society, July 2006, p. 20.

[15] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and K. Moody.
“Role-Based Access Control for Publish/Subscribe Middleware Architec-
tures”. In: Proceedings of the Second International Workshop on Dis-
tributed Event-Based Systems (DEBS 2003). Ed. by H.-A. Jacobsen. San
Diego, CA, USA: ACM Press, June 2003, pp. 1–8.

[16] P. A. Bernstein. “Middleware: A Model for Distributed System Services”.
In: Communications of the ACM 39.2 (1996), pp. 86–98.

[17] T. Biggerstaff and C. Richter. “Reusability Framework, Assessment, and
Directions”. In: IEEE Software 4.2 (Mar. 1987), pp. 41–49.

[18] S. Bittner and A. Hinze. “Dimension-Based Subscription Pruning for
Publish/Subscribe Systems”. In: Workshop Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems (ICDCSW
2006). Lisbon, Portugal: IEEE Computer Society, July 2006.

BIBLIOGRAPHY 199

[19] S. Bittner and A. Hinze. “Pruning Subscriptions in Distributed Publish/
Subscribe Systems”. In: Proceedings of the 29th Australasian Computer
Science Conference (ACSC 2006). Ed. by V. Estivill-Castro and G. Dob-
bie. Hobart, Tasmania, Australia: Australian Computer Society, 2006,
pp. 197–206.

[20] G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. “An
Open Architecture for Next-Generation Telecommunication Services”. In:
ACM Transactions on Internet Technology 4.1 (Feb. 2004), pp. 83–123.

[21] G. Booch. Object-Oriented Analysis and Design with Applications. 2nd.
Redwood City, CA, USA: Benjamin Cummings Publishing, 1994.

[22] C. Bornhövd, M. Cilia, C. Liebig, and A. Buchmann. “An Infrastructure
for Meta-Auctions”. In: Proceedings of the 2nd International Workshop
on Advanced Issues of E-Commerce and Web-Based Information Systems.
Ed. by P. S. Yu. Milpitas, CA, USA: IEEE Computer Society, June 2000,
pp. 21–30.

[23] T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J. Lin.
“The Feature Interaction Problem in Telecommunications Systems”. In:
Proceedings of the 7th International Conference on Software Engineering
for Telecommunication Switching Systems (SETSS ’89). Bournemouth,
UK: IEEE, July 1989, pp. 59–62.

[24] T. Bu and D. Towsley. “On Distinguishing between Internet Power Law
Topology Generators”. In: Proceedings of the 21st Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFOCOM
’02). Vol. 2. New York, NY, USA: IEEE, June 2002, pp. 638–647.

[25] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. “Feature
Interaction: A Critical Review and Considered Forecast”. In: Computer
Networks 41.1 (Jan. 2003), pp. 115–141.

[26] N. Carriero and D. Gelernter. “Linda in Context”. In: Communications
of the ACM 32.4 (Apr. 1989), pp. 444–458.

[27] A. Carzaniga, D. R. Rosenblum, and A. L. Wolf. “Challenges for Dis-
tributed Event Services: Scalability vs. Expressiveness”. In: Proceedings of
the ICSE 99 Workshop on Engineering Distributed Objects (EDO 1999).
Ed. by W. Emmerich and V. Gruhn. Los Angeles, CA, USA: University
College London, May 1999, pp. 72–77.

[28] A. Carzaniga and A. L. Wolf. “Forwarding in a Content-Based Network”.
In: Proceedings of the ACM SIGCOMM 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication.
Ed. by A. Feldmann, M. Zitterbart, J. Crowcroft, and D. Wetherall. Karl-
sruhe, Germany: ACM Press, Aug. 2003, pp. 163–174.

[29] A. Carzaniga. “Architectures for an Event Notification Service Scalable
to Wide-area Networks”. PhD Thesis. Milan, Italy: Politecnico di Milano,
1998.

200 BIBLIOGRAPHY

[30] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. “Issues in
Supporting Event-based Architectural Styles”. In: Proceedings of the 3rd
International Workshop on Software Architecture (ISAW ’98). Orlando,
FL, United States: ACM, 1998, pp. 17–20.

[31] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. “Design and Evaluation
of a Wide-Area Event Notification Service”. In: ACM Transactions on
Computer Systems 19.3 (Aug. 2001), pp. 332–383.

[32] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. “A Routing Scheme for
Content-Based Networking”. In: Proceedings of the 23rd IEEE Interna-
tional Conference on Computer Communication (INFOCOM ’04). Vol. 2.
Hong Kong, China: IEEE, Mar. 2004, pp. 918–928.

[33] A. Carzaniga and A. L. Wolf. “Forwarding in a Content-Based Network”.
In: Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM
’03). Karlsruhe, Germany: ACM, 2003, pp. 163–174.

[34] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. “SCRIBE: A
large-scale and decentralised application-level multicast infrastructure”.
In: IEEE Journal on Selected Areas in Communication 20.8 (2002),
pp. 100–110.

[35] C.-Y. Chan, P. A. Felber, M. Garofalakis, and R. Rastogi. “Efficient filter-
ing of XML documents with XPath expressions”. In: The VLDB Journal
11.4 (Nov. 2002), 354–379.

[36] X. Chang. “Network Simulations with OPNET”. In: Proceedings of the
1999 Winter Simulation Conference (WSC ’99). Phoenix, AZ, USA, Dec.
1999, pp. 307–314.

[37] X. Chen, Y. Chen, and F. Rao. “An Efficient Spatial Publish/Sub-
scribe System for Intelligent Location-Based Services”. In: Proceedings
of the Second International Workshop on Distributed Event-Based Sys-
tems (DEBS 2003). Ed. by H.-A. Jacobsen. San Diego, CA, USA: ACM
Press, June 2003, pp. 1–6.

[38] A. Cheung and H.-A. Jacobsen. “Dynamic Load Balancing in Distributed
Content-Based Publish/Subscribe”. In: Middleware 2006. Ed. by M. van
Steen and M. Henning. Vol. 4290. Lecture Notes in Computer Science.
Springer, 2006, pp. 141–161.

[39] Y.-H. Chu, S. Rao, and H. Zhang. “A Case for End System Multicast”. In:
Proceedings of the ACM 2000 International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’00). Santa Clara,
CA, USA: ACM Press, June 2000, pp. 1–12.

[40] M. Cilia, M. Antollini, C. Bornhövd, and A. Buchmann. “Dealing
with Heterogeneous Data in Pub/Sub Systems: The Concept-Based Ap-
proach”. In: Proceedings of the Third International Workshop on Dis-
tributed Event-Based Systems (DEBS 2004). Ed. by A. Carzaniga and P.
Fenkam. Edinburgh, Scotland, UK: IET, May 2004, pp. 26–31.

BIBLIOGRAPHY 201

[41] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann. “Look-
ing into the Past: Enhancing Mobile Publish/Subscribe Middleware”. In:
Proceedings of the Second International Workshop on Distributed Event-
Based Systems (DEBS 2003). Ed. by H.-A. Jacobsen. San Diego, CA,
USA: ACM Press, June 2003, pp. 1–8.

[42] M. Cilia. “An Active Functionality Service for Open Distributed Hetero-
geneous Environments”. Ph.D. Thesis. Darmstadt, Germany: Technische
Universität Darmstadt, Aug. 2002.

[43] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, and J. Stafford. Documenting Software Architectures: Views and
Beyond. Boston, MA, USA: Addison-Wesley, 2002.

[44] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet X.509 Public Key Infrastructure Certificate and Certificate Re-
vocation List (CRL) Profile. RFC 5280. Network Working Group, May
2008.

[45] G. Cugola and J. E. M. de Cote. “On Introducing Location Awareness
in Publish-Subscribe Middleware”. In: Proceedings of the 4th Interna-
tional Workshop on Distributed Event-Based Systems (DEBS 2005). Ed.
by J. Dingel and R. Storm. Part of the Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems Workshops
(ICDCSW 2005). Columbus, OH, USA: IEEE Computer Society, June
2005, pp. 377–382.

[46] G. Cugola, E. Di Nitto, and A. Fuggetta. “The JEDI event-based infras-
tructure and its application to the development of the OPSS WFMS”. In:
IEEE Transactions on Software Engineering 27.9 (Sept. 2001), pp. 827–
850.

[47] G. Cugola, A. Margara, and M. Migliavacca. “Context-Aware Publish-
Subscribe: Model, Implementation, and Evaluation”. In: Proceedings of
the IEEE Symposium on Computers and Communications (ISCC 2009).
Sousse, Tunisia: IEEE, July 2009, pp. 875–881.

[48] G. Cugola and G. P. Picco. “REDS: A Reconfigurable Dispatching Sys-
tem”. In: Proceedings of the 6th International Workshop on Software
Engineering and Middleware (SEM ’06). Ed. by E. Wohlstadter and C.
Zhang. Portland, OR, USA: ACM Press, Nov. 2006, pp. 9–16.

[49] J. B. Dabney and T. L. Harman. Mastering SIMULINK. Prentice Hall,
Nov. 2003.

[50] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
London, UK: Academic Press Ltd., 1972.

[51] J. B. Dennis and D. Misunas. “A Preliminary Architecture for a Basic
Data Flow Processor”. In: Proceedings of the 2nd Annual Symposium
on Computer Architecture (ISCA 1975). Ed. by W. K. King and O. N.
Garcia. Housten, TX, USA: ACM Press, Jan. 1975, pp. 126–132.

202 BIBLIOGRAPHY

[52] R. Devine. “Design and Implementation of DDH: A Distributed Dynamic
Hashing Algorithm”. In: Proceedings of the 4th International Conference
on Foundations of Data Organization and Algorithms (FODO ’93). Ed.
by D. B. Lomet. Vol. 730. Lecture Notes in Computer Science. Chicago,
IL, USA: Springer, Oct. 1993, pp. 101–114.

[53] A. K. Dey. “Understanding and Using Context”. In: Personal and Ubiq-
uitous Computing 5 (1 Feb. 2001), pp. 4–7.

[54] K. R. Dittrich, S. Gatziu, and A. Geppert. “The Active Database Man-
agement System Manifesto: A Rulebase of ADBMS Features”. In: Pro-
ceedings of the 2nd International Workshop on Rules in Database Systems
(RIDS ’95). Ed. by T. Sellis. Vol. 985. Lecture Notes in Computer Sci-
ence. Glyfada, Athens, Greece: Springer, Sept. 1995, pp. 3–20.

[55] G. Eisenhauer, K. Schwan, and F. E. Bustamante. “Publish–Subscribe
for High-Performance Computing”. In: IEEE Internet Computing 10.1
(2006), pp. 40–47.

[56] P. T. Eugster. “Type-based Publish/Subscribe”. Ph.D. Thesis. Lausanne,
Switzerland: École Polytechnique Fédérale de Lausanne, Dec. 2001.

[57] P. T. Eugster. “Type-Based Publish/Subscribe: Concepts and Experi-
ences”. In: ACM Transactions on Programming Languages and Systems
29.1 (Jan. 2007).

[58] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. “The
Many Faces of Publish/Subscribe”. In: ACM Computing Surveys 35.2
(June 2003), pp. 114–131.

[59] P. T. Eugster, B. Garbinato, and A. Holzer. “Location-based Publish/
Subscribe”. In: Proceedings of the Fourth IEEE International Symposium
on Network Computing and Applications (NCA 2005). Cambridge, MA,
USA: IEEE Computer Society, July 2005, pp. 279–282.

[60] P. T. Eugster and R. Guerraoui. “Content-Based Publish/Subscribe with
Structural Reflection”. In: Proceedings of the 6th USENIX Conference
on Object-Oriented Technologies and Systems (COOTS 2001). USENIX
Association. San Antonio, TX, USA, Jan. 2001, pp. 131–146.

[61] P. T. Eugster and R. Guerraoui. “Distributed Programming with Typed
Events”. In: IEEE Software 21.2 (Mar. 2004), pp. 56–64.

[62] P. T. Eugster, R. Guerraoui, and C. H. Damm. “On Objects and Events”.
In: Proceedings of the 16th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA
’01). Tampa Bay, FL, USA: ACM, 2001, pp. 254–269.

[63] P. T. Eugster, R. Guerraoui, and J. Sventek. “Distributed Asynchronous
Collections: Abstractions for Publish/Subscribe Interaction”. In: Proceed-
ings of the 14th European Conference on Object-Oriented Programming
(ECOOP 2000). Ed. by E. Bertino. Vol. 1850. Sophia Antipolis and
Cannes, France: Springer, June 2000, pp. 252–276.

BIBLIOGRAPHY 203

[64] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D.
Shasha. “Filtering Algorithms and Implementation for Very Fast Pub-
lish/Subscribe Systems”. In: Proceedings of the 2001 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD ’01). Santa
Barbara, CA, USA: ACM, 2001, pp. 115–126.

[65] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. “A Report on the Sisal
Language Project”. In: Journal of Parallel and Distributed Computing
10.4 (1990), pp. 349–366.

[66] J. Ferber. “Computational Reflection in Class-based Object-Oriented
Languages”. In: Proceedings of the 4th International Conference on
Object-Oriented Programming Systems, Languages and Applications. New
Orleans, LA, USA: ACM, 1989, pp. 317–326.

[67] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. “The PADRES Dis-
tributed Publish/Subscribe System”. In: Proceedings of the 8th Inter-
national Conference on Feature Interactions in Telecommunications and
Software Systems (ICFI ’05). Ed. by S. Reiff-Marganiec and M. Ryan.
Leicester, UK: IOS Press, June 2005, pp. 12–30.

[68] L. Fiege. “Visibility in Event-Based Systems”. Ph.D. Thesis. Darmstadt,
Germany: Technische Universität Darmstadt, Apr. 2005.

[69] L. Fiege, M. Cilia, G. Mühl, and A. Buchmann. “Publish/Subscribe
Grows Up: Support for Management, Visibility Control, and Heterogene-
ity”. In: IEEE Internet Computing 10.1 (Jan. 2006), pp. 48–55.

[70] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. “Supporting Mobility
in Content-Based Publish/Subscribe Middleware”. In: Proceedings of the
2003 ACM/IFIP/USENIX International Middleware Conference (Mid-
dleware ’03). Ed. by M. Endler and D. C. Schmidt. Vol. 2672. Lecture
Notes in Computer Science. Rio de Janeiro, Brazil: Springer, June 2003,
pp. 103–122.

[71] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. “Engineering Event-
based Systems with Scopes”. In: Proceedings of the 16th European Confer-
ence on Object-Oriented Programming (ECOOP 2002). Ed. by B. Mag-
nusson. Vol. 2374. Lecture Notes in Computer Science. Málaga, Spain:
Springer, June 2002, pp. 309–333.

[72] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. “Visibility as Cen-
tral Abstraction in Event-based Systems”. In: Concrete Communication
Abstractions of the Next 701 Distributed Object Systems (ECOOP 2002
Workshop). Ed. by A. Beugnard, S. Sadou, L. Duchien, and E. Jul.
Vol. 2548. Lecture Notes in Computer Science. Málaga, Spain: Springer,
June 2002.

[73] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. “Komponenten in
ereignisbasierten Systemen”. In: Thema Forschung 4.1 (2003). In Ger-
man., pp. 108–114.

204 BIBLIOGRAPHY

[74] L. Fiege, G. Mühl, and F. C. Gärtner. “A Modular Approach to Build
Structured Event-based Systems”. In: Proceedings of the 2002 ACM Sym-
posium on Applied Computing (SAC ’02). Madrid, Spain: ACM Press,
Mar. 2002, pp. 385–392.

[75] L. Fiege, G. Mühl, and F. C. Gärtner. “Modular event-based systems”.
In: The Knowledge Engineering Review 17.4 (Dec. 2002), pp. 359–388.

[76] L. Fiege, A. Zeidler, A. P. Buchmann, R. Kilian-Kehr, and G. Mühl.
“Security Aspects in Publish/Subscribe Systems”. In: Proceedings of the
3rd International Workshop on Distributed Event-Based Systems (DEBS
’04). Edinburgh, Scotland, UK: IEE The Institution of Electrical Engi-
neers, May 2004, pp. 44–49.

[77] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P.
J. Leach, and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616. Network Working Group, June 1999.

[78] C. L. Forgy. “Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”. In: Artificial Intelligence 19.1 (1982), pp. 17–
37.

[79] D. Frey and G.-C. Roman. “Context-Aware Publish Subscribe in Mobile
Ad Hoc Networks”. In: Proceedings of the 9th International Conference
on Coordination Models and Languages. Ed. by A. L. Murphy and J.
Vitek. Vol. 4467. Lecture Notes in Computer Science. Paphos, Cyprus:
Springer, June 2007, pp. 37–55.

[80] E. Friedman-Hill. Jess in Action: Rule-Based Systems in Java. Greenwich,
CT, USA: Manning Publications, June 2003.

[81] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Boston, MA, USA: Addison-
Wesley, 1995.

[82] N. H. Gehani, H. V. Jagadish, and O. Shmueli. “Composite Event Spec-
ification in Active Databases: Model & Implementation”. In: Proceedings
of the 18th International Conference on Very Large Data Bases (VLDB
’92). Ed. by L.-Y. Yuan. Vancouver, Canada: Morgan Kaufmann, Aug.
1992, pp. 327–338.

[83] D. Gelernter. “Generative Communication in Linda”. In: ACM Transac-
tions on Programming Languages and Systems 7.1 (Jan. 1985), pp. 80–
112.

[84] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Speci-
fication. 2nd ed. Addison-Wesley, June 2000.

[85] D. Graff, H. Parzyjegla, J. Richling, and M. Werner. “Verteilte aktive
Objekte für verteilte mobile Systeme”. In: Tagungsband zum 7. GI/ITG
KuVS-Fachgespräch Ortsbezogene Anwendungen und Dienste. Ed. by A.
Küpper and J. Roth. Berlin, Germany: Logos Verlag, Sept. 2010, pp. 55–
62.

BIBLIOGRAPHY 205

[86] D. Graff, M. Werner, H. Parzyjegla, J. Richling, and G. Mühl. “An
Object-Oriented and Context-Aware Approach for Distributed Mobile
Applications”. In: Workshop Proceedings of the 23rd International Con-
ference on Architecture of Computing Systems (ARCS 2010 Workshops).
Ed. by M. Beigl and F. J. Cazorla-Almeida. Hannover, Germany: VDE
Verlag, Feb. 2010, pp. 191–200.

[87] R. Guerraoui, ed. Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001). Vol. 2218. Lecture
Notes in Computer Science. Heidelberg, Germany: Springer, Oct. 2001.

[88] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Specification.
2003.

[89] M. Henning. “The Rise and Fall of CORBA”. In: Queue 4.5 (June 2006),
pp. 28–34.

[90] R. Hickey. “The Clojure Programming Language”. In: Proceedings of the
2008 Symposium on Dynamic Languages (DLS ’08). Paphos, Cyprus:
ACM, 2008, p. 1.

[91] D. D. Hils. “Visual Languages and Computing Survey: Data Flow Visual
Programming Languages”. In: Journal of Visual Languages and Comput-
ing 3.1 (1992), pp. 69–101.

[92] A. Hinze and A. P. Buchmann, eds. Principles and Applications of Dis-
tributed Event-Based Systems. IGI Global, June 2010.

[93] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley, 2003.

[94] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. “The Evolution of
Lua”. In: Proceedings of the 3rd ACM SIGPLAN Conference on History
of Programming Languages. San Diego, California: ACM, 2007, pp. 1–26.

[95] V. Issarny, M. Caporuscio, and N. Georgantas. “A Perspective on the
Future of Middleware-based Software Engineering”. In: Future of Soft-
ware Engineering (FOSE ’07). Minneapolis, MN, USA: IEEE Computer
Society, 2007, pp. 244–258.

[96] M. Jackson and P. Zave. “Distributed Feature Composition: A Virtual
Architecture for Telecommunications Services”. In: IEEE Transactions
on Software Engineering 24.10 (Oct. 1998), pp. 831–847.

[97] H.-A. Jacobsen, ed. Proceedings of the Second International Workshop
on Distributed Event-Based Systems (DEBS 2003). San Diego, CA, USA:
ACM Press, June 2003.

[98] H.-A. Jacobsen, A. Cheung, G. Li, B. Maniymaran, V. Muthusamy, and
R. S. Kazemzadeh. “The PADRES Publish/Subscribe System”. In: Prin-
ciples and Applications of Distributed Event-Based Systems. Ed. by A.
Hinze and A. P. Buchmann. IGI Global, June 2010. Chap. 8, pp. 164–
205.

206 BIBLIOGRAPHY

[99] H.-A. Jacobsen, G. Mühl, and M. A. Jaeger, eds. Proceedings of the In-
augural International Conference on Distributed Event-Based Systems.
Toronto, ON, Canada: ACM Press, June 2007.

[100] M. A. Jaeger. “Self-Managing Publish/Subscribe Systems”. Ph.D. Thesis.
Berlin, Germany: Technische Universität Berlin, Dec. 2007.

[101] M. A. Jaeger, G. Mühl, M. Werner, and H. Parzyjegla. “Reconfiguring
Self-Stabilizing Publish/Subscribe Systems”. In: Proceedings of the 17th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM 2006). Ed. by R. State, S. van der Meer, D.
O’Sullivan, and T. Pfeifer. Vol. 4269. Lecture Notes in Computer Science.
Dublin, Ireland: Springer, Oct. 2006, pp. 233–238.

[102] M. A. Jaeger, G. Mühl, M. Werner, H. Parzyjegla, and H.-U. Heiss. “Algo-
rithms for Reconfiguring Self-Stabilizing Publish/Subscribe Systems”. In:
Proceedings of the 8th International Workshop held at Shanghai Jiao Tong
University: Autonomous Systems – Self-Organization, Management, and
Control. Ed. by B. Mahr and S. Huanye. Shanghai, China: Springer, Oct.
2008, pp. 135–147.

[103] M. A. Jaeger, H. Parzyjegla, G. Mühl, and K. Herrmann. “Self-Organizing
Broker Topologies for Publish/Subscribe Systems”. In: Proceedings of the
2007 ACM Symposium on Applied Computing (SAC 2007). Ed. by Y.
Cho, R. L. Wainwright, H. Haddad, S. Y. Shin, and Y. W. Koo. Seoul,
Korea: ACM Press, Mar. 2007, pp. 543–550.

[104] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. “Advances in Data-
flow Programming Languages”. In: ACM Computing Surveys 36.1 (Mar.
2004), pp. 1–34.

[105] G. Kahn. “The Semantics of a Simple Language for Parallel Program-
ming”. In: Information Processing ’74: Proceedings of the IFIP Congress.
Ed. by J. L. Rosenfeld. Stockholm, Sweden: North-Holland, Aug. 1974,
pp. 471–475.

[106] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA): Feasibility Study. Tech. rep.
CMU/SEI-90-TR-21. Pittsburgh, PA, USA: Software Engineering Insti-
tute, Carnegie Mellon University, Nov. 1990.

[107] A. M. Keller, R. Jensen, and S. Agarwal. “Persistence Software: Bridg-
ing Object-Oriented Programming and Relational Databases”. In: Pro-
ceedings of the 1993 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’93). Washington, DC, USA: ACM, 1993,
pp. 523–528.

[108] J. S. Kilby. “Invention of the Integrated Circuit”. In: IEEE Transactions
on Electron Devices 23.7 (July 1976), pp. 648–654.

[109] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet. Groovy in Action.
Greenwich, CT, USA: Manning Publications, Jan. 2007.

BIBLIOGRAPHY 207

[110] H. Kopetz, G. Grünsteidl, and J Reisinger. “Fault-Tolerant Membership
Service in a Synchronous Distributed Real-Time System”. In: Proceedings
of the IFIP Working Conference on Dependable Computing for Critical
Applications. Vol. 4. Dependable Computing and Fault-Tolerant Systems.
Santa Barbara, CA, USA, Aug. 1989, pp. 411–429.

[111] H. Kopetz and R. Obermaisser. “Temporal Composability”. In: Comput-
ing Control Engineering Journal 13.4 (Aug. 2002), pp. 156–162.

[112] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. Dordrecht, The Netherlands: Kluwer Academic Publish-
ers, 1997.

[113] H. Kopetz and G. Bauer. “The Time-Triggered Architecture”. In: Pro-
ceedings of the IEEE 91.1 (Jan. 2003), pp. 112–126.

[114] H. Kopetz and W. Ochsenreiter. “Clock Synchronization in Distributed
Real-Time Systems”. In: IEEE Transactions on Computers C-36.8 (Aug.
1987), pp. 933–940.

[115] G. E. Krasner and S. T. Pope. “A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80”. In: Journal of Object
Oriented Programming 1.3 (Aug. 1988), pp. 26–49.

[116] A. M. Law. Simulation Modeling and Analysis. 4th ed. Mcgraw Hill
Higher Education, 2006.

[117] M. Lehman. “Programs, Life Cycles, and Laws of Software Evolution”.
In: Proceedings of the IEEE 68.9 (Sept. 1980), pp. 1060–1076.

[118] M. Lehman. “Laws of Software Evolution Revisited”. In: Proceedings of
the 5th European Workshop on Software Process Technology (EWSPT
’96). Ed. by C. Montangero. Vol. 1149. Lecture Notes in Computer Sci-
ence. Nancy, France: Springer, Oct. 1996, pp. 108–124.

[119] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C.
Lynch, J. Postel, L. G. Roberts, and S. Wolff. “A Brief History of the
Internet”. In: ACM SIGCOMM Computer Communication Review 39.5
(Oct. 2009), pp. 22–31.

[120] G. Li, A. Cheung, S. Hou, S. Hu, V. Muthusamy, R. Sherafat, A. Wun,
H.-A. Jacobsen, and S. Manovski. “Historic Data Access in Publish/Sub-
scribe”. In: Proceedings of the 2007 Inaugural International Conference on
Distributed Event-Based Systems (DEBS ’07). Toronto, Ontario, Canada:
ACM, 2007, pp. 80–84.

[121] G. Li, V. Muthusamy, and H.-A. Jacobsen. “Adaptive content-based rout-
ing in general overlay topologies”. In: Middleware ’08: Proceedings of the
9th ACM/IFIP/USENIX International Conference on Middleware. Leu-
ven, Belgium: Springer-Verlag New York, Inc., 2008, pp. 1–21.

[122] G. Li, V. Muthusamy, and H.-A. Jacobsen. “A Distributed Service-
Oriented Architecture for Business Process Execution”. In: ACM Trans-
actions on the Web 4.1 (Jan. 2010), 2:1–2:33.

208 BIBLIOGRAPHY

[123] G. Li, V. Muthusamy, and H.-A. Jacobsen. “A Distributed Service-
Oriented Architecture for Business Process Execution”. In: ACM Trans-
actions on the Web 4.1 (Jan. 2010), pp. 1–33.

[124] M. A. Linton, J. M. Vlissides, and P. R. Calder. Composing User Inter-
faces with InterViews. Tech. rep. CSL-TR-88-369. Stanford, CA, USA:
Stanford University, Nov. 1988.

[125] D. C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley, May 2002.

[126] M. Lutz. Programming Python. 4th ed. Sebastopol, CA, USA: O’Reilly,
Jan. 2011.

[127] P. Maes. “Concepts and Experiments in Computational Reflection”. In:
Proceedings of the 2nd International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications. Orlando, FL, USA:
ACM, 1987, pp. 147–155.

[128] J. L. Martins and S. Duarte. “Routing Algorithms for Content-Based
Publish/Subscribe Systems”. In: IEEE Communications Surveys and Tu-
torials 12.1 (2010), pp. 39–58.

[129] D. McCarthy and U. Dayal. “The Architecture of an Active Database
Management System”. In: ed. by J. Clifford, B. Lindsay, and D. Maier.
Portland, OR, USA: ACM Press, 1989, pp. 215–224.

[130] A. Medina, A. Lakhina, I. Matta, and J. Byers. “BRITE: An Approach
to Universal Topology Generation”. In: Proceedings of the 9th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS ’01). Cincinnati, OH, USA,
Aug. 2001, pp. 346–353.

[131] A. Medina, I. Matta, and J. Byers. “On the Origin of Power Laws in
Internet Topologies”. In: ACM SIGCOMM Computer Communication
Review 30.2 (Apr. 2000), pp. 18–28.

[132] R. Meier and V. Cahill. “STEAM: Event-Based Middleware for Wireless
Ad Hoc Networks”. In: Proceedings of the First International Workshop
on Distributed Event-Based Systems (DEBS 2002). Ed. by J. Bacon, L.
Fiege, R. Guerraoui, H.-A. Jacobsen, and G. Mühl. Part of the Pro-
ceedings of the 22nd International Conference on Distributed Computing
Systems Workshops (ICDCSW 2002). Vienna, Austria: IEEE Computer
Society, July 2002, pp. 639–644.

[133] R. Meier and V. Cahill. “Exploiting Proximity in Event-Based Middle-
ware for Collaborative Mobile Applications”. In: Proceedings of the 4th
IFIP International Conference on Distributed Applications and Interop-
erable Systems (DAIS 2003). Ed. by J.-B. Stefani, I. Demeure, and D.
Hagimont. Vol. 2893. Lecture Notes in Computer Science. Paris, France:
Springer, Nov. 2003, pp. 285–296.

BIBLIOGRAPHY 209

[134] J. Mersel. “Program Interrupt on the Univac Scientific Computer”. In:
Proceedings of the Western Joint Computer Conference (WJCC ’56). San
Francisco, CA, USA: ACM, Feb. 1956, pp. 52–53.

[135] B. Meyer. Eiffel: The Language. Prentice Hall, Oct. 1991.

[136] B. Meyer. “The Power of Abstraction, Reuse, and Simplicity: An Object-
Oriented Library for Event-Driven Design”. In: From Object-Orientation
to Formal Methods: Essays in Memory of Ole-Johan Dahl. Ed. by O.
Owe, S. Krogdahl, and T. Lyche. Vol. 2635. Springer, 2004, pp. 236–271.

[137] Z. Miklós. “Towards an Access Control Mechanism for Wide-area Pub-
lish/Subscribe Systems”. In: Proceedings of the First International Work-
shop on Distributed Event-Based Systems (DEBS 2002). Ed. by J. Bacon,
L. Fiege, R. Guerraoui, H.-A. Jacobsen, and G. Mühl. Part of the Pro-
ceedings of the 22nd International Conference on Distributed Computing
Systems Workshops (ICDCSW 2002). Vienna, Austria: IEEE Computer
Society, July 2002, pp. 516–521.

[138] J. S. Miller and S. Ragsdale. The Common Language Infrastructure An-
notated Standard. Vol. 1. Boston, MA, USA: Addison-Wesley, Nov. 2012.

[139] A. Montresor and M. Jelasity. “PeerSim: A Scalable P2P Simulator”. In:
Proceedings of the 9th IEEE International Conference on Peer-to-Peer
Computing (P2P ’09). Seattle, WA, USA: IEEE, Sept. 2009, pp. 99–100.

[140] L. Moreau. “A Syntactic Theory of Dynamic Binding”. In: Higher-Order
and Symbolic Computation 11.3 (3 Sept. 1998), pp. 233–279.

[141] J. P. Morrison. Flow-Based Programming: A New Approach to Applica-
tion Development. 2nd ed. CreateSpace, May 2010.

[142] G. Mühl, L. Fiege, F. C. Gärtner, and A. P. Buchmann. “Evaluating Ad-
vanced Routing Algorithms for Content-Based Publish/Subscribe Sys-
tems”. In: Proceedings of the 10th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tions Systems (MASCOTS ’02). Ed. by A. Boukerche, S. Das, and S.
Majumdar. Fort Worth, TX, USA: IEEE Computer Society, Oct. 2002,
pp. 167–176.

[143] G. Mühl. “Generic Constraints for Content-Based Publish/Subscribe Sys-
tems”. In: Proceedings of the 6th International Conference on Cooperative
Information Systems (CoopIS 2001). Ed. by C. Batini, F. Giunchiglia, P.
Giorgini, and M. Mecella. Vol. 2172. Lecture Notes in Computer Science.
Trento, Italy: Springer, Sept. 2001, pp. 211–225.

[144] G. Mühl. “Large-Scale Content-Based Publish/Subscribe Systems”.
Ph.D. Thesis. Darmstadt, Germany: Technische Universität Darmstadt,
Sept. 2002.

[145] G. Mühl and L. Fiege. “Supporting Covering and Merging in Content-
Based Publish/Subscribe Systems: Beyond Name/Value Pairs”. In: IEEE
Distributed Systems Online (DSOnline) 2.7 (2001).

210 BIBLIOGRAPHY

[146] G. Mühl, L. Fiege, and A. P. Buchmann. “Filter Similarities in Content-
Based Publish/Subscribe Systems”. In: Proceedings of the 15th Interna-
tional Conference on Architecture of Computing Systems (ARCS 2002).
Ed. by H. Schmeck, T. Ungerer, and L. C. Wolf. Vol. 2299. Lecture Notes
in Computer Science. Karlsruhe, Germany: Springer, Apr. 2002, pp. 224–
238.

[147] G. Mühl, L. Fiege, and P. R. Pietzuch. Distributed Event-Based Systems.
Berlin/Heidelberg, Germany: Springer, Aug. 2006.

[148] G. Mühl, A. Schröter, H. Parzyjegla, S. Kounev, and J. Richling.
“Stochastic Analysis of Hierarchical Publish/Subscribe Systems”. In: Pro-
ceedings of the 15th European Conference on Parallel Processing (Euro-
Par 2009). Ed. by H. Sips, D. Epema, and H.-X. Lin. Vol. 5704. Lecture
Notes in Computer Science. Delft, The Netherlands: Springer, Aug. 2009,
pp. 97–109.

[149] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis. “Disseminating Infor-
mation to Mobile Clients Using Publish-Subscribe”. In: IEEE Internet
Computing 8.3 (May 2004), pp. 46–53.

[150] G. Mühl, M. Werner, M. A. Jaeger, K. Herrmann, and H. Parzyjegla. “On
the Definitions of Self-Managing and Self-Organizing Systems”. In: Work-
shop Proceedings of the 15th GI/ITG Conference on Communication in
Distributed Systems (KiVS 2007 Workshops). Ed. by T. Braun, G. Carle,
and B. Stiller. Bern, Switzerland: VDE Verlag, Mar. 2007, pp. 291–301.

[151] R. Muschevici, A. Potanin, E. Tempero, and J. Noble. “Multiple Dis-
patch in Practice”. In: Proceedings of the 23rd ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages, and Applica-
tions. Nashville, TN, USA: ACM, 2008, pp. 563–582.

[152] M. Newman. “Power laws, Pareto distributions and Zipf’s law”. In: Con-
temporary Physics 46.5 (Sept. 2005), pp. 323–351.

[153] S. Oaks. Java Security. 2nd ed. O’Reilly, May 2001.

[154] Object Management Group, Inc. (OMG). Persistent State Service Speci-
fication, Version 2.0. Needham, MA, USA, Sept. 2002.

[155] Object Management Group, Inc. (OMG). Security Service Specification,
Version 1.8. Needham, MA, USA, Mar. 2002.

[156] Object Management Group, Inc. (OMG). Transaction Service Specifica-
tion, Version 1.4. Needham, MA, USA, Sept. 2003.

[157] Object Management Group, Inc. (OMG). Event Service Specification,
Version 1.2. Needham, MA, USA, Oct. 2004.

[158] Object Management Group, Inc. (OMG). Notification Service Specifica-
tion, Version 1.1. Needham, MA, USA, Oct. 2004.

[159] Object Management Group, Inc. (OMG). Data Distribution Service for
Real-time Systems (DDS), Version 1.2. Needham, MA, USA, Jan. 2007.

BIBLIOGRAPHY 211

[160] Object Management Group, Inc. (OMG). Common Object Request Broker
Architecture (CORBA) Specification, Version 3.2. Needham, MA, USA,
Nov. 2011.

[161] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. “The Information Bus: An
Architecture for Extensible Distributed Systems”. In: Proceedings of the
14th ACM Symposium on Operating Systems Principles (SOSP ’93). Ed.
by A. P. Black and B. Liskov. Asheville, NC, USA: ACM Press, Dec.
1993, pp. 58–68.

[162] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D.
Sturman. “Exploiting IP Multicast in Content-Based Publish-Subscribe
Systems”. In: Proceedings of the Middleware 2000 IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware 2000). Ed. by J. S. Sventek and G. Coulson.
Vol. 1795. Lecture Notes in Computer Science. New York, NY, USA:
Springer, Apr. 2000, pp. 185–207.

[163] Organization for the Advancement of Structured Information Standards
(OASIS). Web Services Business Process Execution Language, Version
2.0. Billerica, MA, USA, Apr. 2007.

[164] Organization for the Advancement of Structured Information Standards
(OASIS). Advanced Message Queuing Protocol (AMQP), Version 1.0. Bil-
lerica, MA, USA, Oct. 2012.

[165] D. L. Parnas. “On the Criteria To Be Used in Decomposing Systems into
Modules”. In: Communications of the ACM 15 (12 Dec. 1972), pp. 1053–
1058.

[166] H. Parzyjegla, D. Graff, A. Schröter, J. Richling, and G. Mühl. “De-
sign and Implementation of the Rebeca Publish/Subscribe Middleware”.
In: From Active Data Management to Event-Based Systems and More.
Ed. by K. Sachs, I. Petrov, and P. Guerrero. Vol. 6462. Lecture Notes
in Computer Science. Berlin/Heidelberg, Germany: Springer, Nov. 2010,
pp. 124–140.

[167] H. Parzyjegla, M. A. Jaeger, G. Mühl, and T. Weis. “A Model-driven
Approach to the Development of Autonomous Control Applications”. In:
Proceedings of the 1st Workshop on Model-driven Software Adaptation
(M-ADAPT 2007) at ECOOP 2007. Ed. by G. Blair, N. Bencomo, R.
France, and M. Cebulla. Vol. 2007-10. Berlin, Germany: Technische Uni-
versität Berlin, July 2007, pp. 25–27.

[168] H. Parzyjegla, M. A. Jaeger, G. Mühl, and T. Weis. “Model-driven Devel-
opment and Adaptation of Autonomous Control Applications”. In: IEEE
Distributed Systems Online 9.11 (Nov. 2008), pp. 1–9.

[169] H. Parzyjegla, G. Mühl, and M. A. Jaeger. “Reconfiguring Publish/Sub-
scribe Overlay Topologies”. In: Workshop Proceedings of the 26th IEEE
International Conference on Distributed Computing Systems (ICDCSW
2006). Lisbon, Portugal: IEEE Computer Society, July 2006, p. 29.

212 BIBLIOGRAPHY

[170] H. Parzyjegla, A. Schröter, A. Busse, D. Graff, A. Schepeljanski, J. Rich-
ling, M. Werner, and G. Mühl. “REBECA – Eine autonome Publish/Sub-
scribe Middleware”. In: Praxis der Informationsverarbeitung und Kom-
munikation (PIK) 34.3 (Aug. 2011), pp. 135–137.

[171] H. Parzyjegla, A. Schröter, D. Graff, A. Busse, A. Schepeljanski, J. Rich-
ling, M. Werner, and G. Mühl. “Autonomy Features and Feature Compo-
sition in REBECA”. In: Proceedings of the 8th International Conference
on Autonomic Computing (ICAC 2011). Karlsruhe, Germany, June 2011.

[172] N. W. Paton and O. Dı́az. “Active Database Systems”. In: ACM Com-
puting Surveys 31.1 (Mar. 1999), pp. 63–103.

[173] L. I. W. Pesonen and J. Bacon. “Secure Event Types in Content-Based,
Multi-Domain Publish/Subscribe Systems”. In: Proceedings of the 5th
International Workshop on Software Engineering and Middleware (SEM
’05). Lisbon, Portugal: ACM, 2005, pp. 98–105.

[174] L. I. W. Pesonen, D. M. Eyers, and J. Bacon. “A Capability-Based Access
Control Architecture for Multi-Domain Publish/Subscribe Systems”. In:
Proceedings of the 2006 International Symposium on Applications and the
Internet (SAINT ’06). Phoenix, AZ, USA, Jan. 2006, pp. 222–228.

[175] L. I. W. Pesonen, D. M. Eyers, and J. Bacon. “Access Control in Decen-
tralised Publish/Subscribe Systems”. In: Journal of Networks 2.2 (Apr.
2007), pp. 57–67.

[176] L. I. W. Pesonen, D. M. Eyers, and J. Bacon. “Encryption-Enforced Ac-
cess Control in Dynamic Multi-Domain Publish/Subscribe Networks”. In:
Proceedings of the Inaugural Conference on Distributed Event-Based Sys-
tems. Ed. by H.-A. Jacobsen, G. Mühl, and M. A. Jaeger. Toronto, ON,
Canada: ACM Press, June 2007, pp. 104–115.

[177] P. Pietzuch, D. Eyers, S. Kounev, and B. Shand. “Towards a Common
API for Publish/Subscribe”. In: Proceedings of the Inaugural Conference
on Distributed Event-Based Systems. Ed. by H.-A. Jacobsen, G. Mühl,
and M. A. Jaeger. Toronto, ON, Canada: ACM, June 2007, pp. 152–157.

[178] P. R. Pietzuch. “Hermes: A Scalable Event-Based Middleware”. Ph.D.
Thesis. Cambridge, UK: Queens’ College, University of Cambridge, Feb.
2004.

[179] P. R. Pietzuch and J. Bacon. “Hermes: A Distributed Event-Based Mid-
dleware Architecture”. In: Proceedings of the First International Work-
shop on Distributed Event-Based Systems (DEBS 2002). Ed. by J. Bacon,
L. Fiege, R. Guerraoui, H.-A. Jacobsen, and G. Mühl. Part of the Pro-
ceedings of the 22nd International Conference on Distributed Computing
Systems Workshops (ICDCSW 2002). Vienna, Austria: IEEE Computer
Society, July 2002, pp. 611–618.

BIBLIOGRAPHY 213

[180] P. R. Pietzuch and J. Bacon. “Peer-to-Peer Overlay Broker Networks in
an Event-Based Middleware”. In: Proceedings of the Second International
Workshop on Distributed Event-Based Systems (DEBS 2003). Ed. by H.-
A. Jacobsen. San Diego, CA, USA: ACM, June 2003, pp. 1–8.

[181] P. Pietzuch and S. Bhola. “Congestion Control in a Reliable Scal-
able Message-Oriented Middleware”. In: Proceedings of the 4th ACM/I-
FIP/USENIX International Middleware Conference (Middleware ’03).
Vol. 2672. Lecture Notes in Computer Science. Rio de Janeiro, Brasilien:
Springer, June 2003, pp. 202–221.

[182] P. Pietzuch, B. Shand, and J. Bacon. “Composite Event Detection as a
Generic Middleware Extension”. In: IEEE Network Magazine 18.1 (Jan.
2004), pp. 44–55.

[183] C. Prehofer. “Feature-Oriented Programming: A Fresh Look at Objects”.
In: Proceedings of the 11th European Conference on Object-Oriented Pro-
gramming (ECOOP 1997). Ed. by M. Aksit and S. Matsuoka. Vol. 1241.
Lecture Notes in Computer Science. Jyväskylä, Finland: Springer, June
1997, pp. 419–443.

[184] C. Prehofer. “Feature-oriented programming: A new way of object com-
position”. In: Concurrency and Computation: Practice and Experience
13.6 (May 2001), pp. 465–501.

[185] J. Richling. “Message Scheduled System – A Composable Architecture
for Embedded Real-Time Systems”. In: Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA 2000). Ed. by H. R. Arabnia. Las Vegas, NV, USA:
CSREA Press, June 2000.

[186] J. Richling. Komponierbarkeit eingebetteter Echtzeitsysteme. Cuvillier
Verlag, 2006.

[187] J. Richling and M. Malek. “Message Scheduled System (MSS): A Com-
posable Architecture for Distributed Real-Time Systems”. In: Workshop
Proceedings of the 13th GI/ITG Conference on Measuring, Modelling and
Evaluation of Computer and Communication Systems (MMB Workshop
Proceedings 2006). Ed. by W. Dulz and W. Schröder-Preikschat. Nürn-
berg, Germany: VDE Verlag, Mar. 2006.

[188] J. Richling, L. Popova-Zeugmann, and M. Werner. “Verification of Non-
functional Properties of a Composable Architecture with Petrinets”. In:
Fundamenta Informaticae 51.1-2 (2002), pp. 185–200.

[189] J. Richling, M. Werner, and L. Popova-Zeugmann. “A Formally-Proven
Composable Architecture for Real-Time Systems”. In: Proceedings of
the Workshop about Architectures for Cooperative Embedded Real-Time
Systems (WACERTS) at the 25th IEEE Real-Time Systems Symposium
(RTSS ’04). Lisbon, Portugal, Dec. 2004, pp. 31–34.

214 BIBLIOGRAPHY

[190] G. F. Riley and T. R. Henderson. “The ns-3 Network Simulator”. In:
Modeling and Tools for Network Simulation. Ed. by K. Wehrle, M. Günes,
and J. Gross. Berlin/Heidelberg, Germany: Springer, 2010, pp. 15–34.

[191] W. Rjaibi, K. R. Dittrich, and D. Jaepel. “Event Matching in Symmet-
ric Subscription Systems”. In: Proceedings of the 2002 Conference of the
Centre for Advanced Studies on Collaborative Research. Ed. by D. A. S.
Stewart and J. H. Johnson. Toronto, Ontario, Canada: Pub-IBM, 2002,
p. 9.

[192] S. Rosen. “Electronic Computers: A Historical Survey”. In: ACM Com-
puting Surveys 1.1 (Mar. 1969), pp. 7–36.

[193] D. S. Rosenblum and A. L. Wolf. “A Design Framework for Internet-Scale
Event Observation and Notification”. In: Proceedings of the 6th Euro-
pean Software Engineering Conference (ESEC ’97). Zurich, Switzerland:
Springer, 1997, pp. 344–360.

[194] A. I. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Ob-
ject Location, and Routing for Large-Scale Peer-to-Peer Systems”. In:
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001). Ed. by R. Guerraoui. Vol. 2218.
Lecture Notes in Computer Science. Heidelberg, Germany: Springer, Oct.
2001, pp. 329–350.

[195] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. “Role-
Based Access Control Models”. In: Computer 29.2 (Feb. 1996), pp. 38–
47.

[196] M. Santori. “An instrument that isn’t really (Laboratory Virtual Instru-
ment Engineering Workbench)”. In: IEEE Spectrum 27.8 (Aug. 1990),
pp. 36–39.

[197] D. C. Schmidt. “Middleware for Real-time and Embedded Systems”. In:
Communications of the ACM 45.6 (June 2002), pp. 43–48.

[198] J. H. Schönherr, H. Parzyjegla, and G. Mühl. “Clustered Publish/Sub-
scribe in Wireless Actuator and Sensor Networks”. In: Proceedings of
the 6th International Workshop on Middleware for Pervasive and Ad-
hoc Computing (MPAC 2008). Ed. by S. Terzis. Leuven, Belgium: ACM
Press, Dec. 2008, pp. 60–65.

[199] A. Schröter, D. Graff, G. Mühl, J. Richling, and H. Parzyjegla. “Self-
optimizing Hybrid Routing in Publish/Subscribe Systems”. In: Proceed-
ings of the 20th IFIP/IEEE International Workshop on Distributed Sys-
tems: Operations and Management (DSOM 2009). Ed. by C. Bartolini
and L. P. Gaspary. Vol. 5841. Lecture Notes in Computer Science. Venice,
Italy: Springer, Oct. 2009, pp. 111–122.

BIBLIOGRAPHY 215

[200] A. Schröter, G. Mühl, S. Kounev, H. Parzyjegla, and J. Richling.
“Stochastic Performance Analysis and Capacity Planning of Publish/Sub-
scribe Systems”. In: Proceedings of the 4th ACM International Conference
on Distributed Event-Based Systems (DEBS ’10). Cambridge, UK: ACM
Press, July 2010, pp. 258–269.

[201] A. Schröter, G. Mühl, J. Richling, and H. Parzyjegla. “Adaptive Rout-
ing in Publish/Subscribe Systems using Hybrid Routing Algorithms”. In:
Proceedings of the 7th Workshop on Adaptive and Reflective Middleware
(ARM 2008). Ed. by F. Täıani and R. Cerqueira. Leuven, Belgium: ACM
Press, Dec. 2008, pp. 51–52.

[202] E. Seib, H. Parzyjegla, and G. Mühl. “Distributed Composite Event De-
tection in Publish/Subscribe Networks – A Case for Self-Organization”.
In: Workshop Proceedings of the 17th GI/ITG Conference on Communi-
cation in Distributed Systems (KiVS 2011 Workshops). Ed. by H. Hell-
bruck, N. Luttenberger, and V. Turau. Vol. 37. Kiel, Germany: European
Association of Software Science and Technology (EASST), Mar. 2011,
pp. 1–12.

[203] E. Seib, H. Parzyjegla, and G. Mühl. “Adaptive Distributed Composite
Event Detection”. In: Proceedings of the 11th International Workshop on
Adaptive and Reflective Middleware (ARM 2012). Ed. by P. Ferreira, L.
Veiga, and F. Araújo. Montreal, QC, Canada: ACM Press, Dec. 2012,
2:1–2:6.

[204] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Apr. 1996.

[205] J. Singh. “Controlling the Dissemination and Disclosure of Healthcare
Events”. Ph.D. Thesis. Cambridge, UK: Queens’ College, University of
Cambridge.

[206] J. Singh and J. Bacon. “Event-Based Data Control in Healthcare”.
In: Proceedings of the ACM/IFIP/USENIX Middleware ’08 Conference
Companion. Leuven, Belgium: ACM, Dec. 2008, pp. 84–86.

[207] J. Singh and J. Bacon. “Event-Based Data Dissemination Control in
Healthcare”. In: Proceedings of the First International Conference on
Electronic Healthcare (eHealth 2008). Ed. by D. Weerasinghe. London,
UK: Springer, Sept. 2008, pp. 167–174.

[208] J. Singh, D. M. Eyers, and J. Bacon. “Credential Management in Event-
Driven Healthcare Systems”. In: Proceedings of the ACM/IFIP/USENIX
Middleware ’08 Conference Companion. Leuven, Belgium: ACM, Dec.
2008, pp. 48–53.

[209] M. Srivatsa and L. Liu. “Secure Event Dissemination in Publish-Subscribe
Networks”. In: Proceedings of the 27th International Conference on Dis-
tributed Computing Systems (ICDCS ’07). June 2007, p. 22.

[210] W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. 3rd ed.
Boston, MA, USA: Addison-Wesley, 1999.

216 BIBLIOGRAPHY

[211] G. L. Steele. Common LISP: The Language. 2nd ed. Bedford, MA, USA:
Digital Press.

[212] W. R. Stevens. TCP/IP Illustrated: The Protocols. Vol. 1. Boston, MA,
USA: Addison-Wesley, 1993.

[213] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions”. In: Proceedings of the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications (SIG-
COMM ’01). San Diego, California, United States: ACM, 2001, pp. 149–
160.

[214] A. Sulistio, C. S. Yeo, and R. Buyya. “A taxonomy of computer-based
simulations and its mapping to parallel and distributed systems simula-
tion tools”. In: Software: Practice and Experience 34.7 (2004), pp. 653–
673.

[215] Sun Microsystems, Inc. Java Message Service, Version 1.1. Santa Clara,
CA, USA, Apr. 2002.

[216] Sun Microsystems, Inc. Java Management Extensions (JMX) Specifica-
tion, Version 1.4. Santa Clara, CA, USA, Nov. 2006.

[217] C. A. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Boston, MA, USA: Addison-Wesley, 1998.

[218] A. Ulbrich, G. Mühl, T. Weis, and K. Geihs. “Programming Abstractions
for Content-Based Publish/Subscribe in Object-Oriented Languages”. In:
Proceedings of the 2004 OTM Confederated International Conferences
CoopIS, DOA, and ODBASE (OTM 2004). Ed. by R. Meersman, Z. Tari,
W. van der Aalst, C. Bussler, A. Gal, V. Cahill, S. Vinoski, W. Vogels, T.
Catarci, and K. Sycara. Vol. 3291. Lecture Notes in Computer Science.
Agia Napa, Cyprus: Springer, Oct. 2004, pp. 1538–1557.

[219] T. Van Cutsem. “Ambient References: Object Designation in Mobile Ad
Hoc Networks”. Ph.D. Thesis. Brussels, Belgium: Vrije Universiteit Brus-
sel, Faculty of Sciences, Programming Technology Lab, May 2008.

[220] T. Van Cutsem and W. De Meuter. “Event-Driven Mobile Computing
with Objects”. In: Principles and Applications of Distributed Event-Based
Systems. Ed. by A. Hinze and A. P. Buchmann. IGI Global, June 2010.
Chap. 14, pp. 324–345.

[221] A. Varga. “OMNeT++”. In: Modeling and Tools for Network Simulation.
Ed. by K. Wehrle, M. Günes, and J. Gross. Berlin/Heidelberg, Germany:
Springer, 2010, pp. 35–59.

[222] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. “Security Issues and
Requirements for Internet-Scale Publish-Subscribe Systems”. In: Proceed-
ings of the 35th Annual Hawaii International Conference on System Sci-
ence. Big Island, HI, USA: IEEE Computer Society, Jan. 2002, pp. 3940–
3947.

BIBLIOGRAPHY 217

[223] K. Wehrle, M. Günes, and J. Gross, eds. Modeling and Tools for Network
Simulation. Berlin/Heidelberg, Germany: Springer, 2010.

[224] T. Weis, H. Parzyjegla, M. A. Jaeger, and G. Mühl. “Self-organizing
and Self-stabilizing Role Assignment in Sensor/Actuator Networks”. In:
Proceedings of the 2006 OTM Confederated International Conferences
CoopIS, DOA, GADA, and ODBASE (OTM 2006), Part II. Ed. by R.
Meersman and Z. Tari. Vol. 4276. Lecture Notes in Computer Science.
Montpellier, France: Springer, Oct. 2006, pp. 1807–1824.

[225] M. Werner, M. A. Jaeger, and H. Parzyjegla. “An Application of the
(max,+) Algebra to Information Flow Security”. In: Proceedings of the
7th International Conference on Networking (ICN 2008). Ed. by J. Bi,
T. Gyires, and I. Pozniak-Koszalka. Cancun, Mexico: IEEE Computer
Society, Apr. 2008, pp. 262–266.

[226] M. Werner, G. Mühl, H. Parzyjegla, and H.-U. Heiss. “Betriebssystem-
unterstützung für verteilte Anwendungen in realer Raumzeit”. In:
Tagungsband zum 2. GI/ITG KuVS-Fachgespräch Systemsoftware und
Energiebewusste Systeme. Ed. by F. Bellosa. Vol. 2007-20. Interner
Bericht, Fakultät für Informatik. Karlsruhe, Germany: Universität Karl-
sruhe, Oct. 2007, pp. 33–37.

[227] M. E. Whitman and H. J. Mattord. Principles of Information Security.
4th ed. Boston, MA, USA: Course Technology, Jan. 2011.

[228] A. Wollrath, R. Riggs, and J. Waldo. “A Distributed Object Model for the
Java System”. In: Proceedings of the 2nd Conference on USENIX Con-
ference on Object-Oriented Technologies (COOTS ’96). Toronto, Ontario,
Canada: USENIX Association, 1996, p. 17.

[229] Workshop Proceedings of the 26th IEEE International Conference on Dis-
tributed Computing Systems (ICDCSW 2006). Lisbon, Portugal: IEEE
Computer Society, July 2006.

[230] X/Open Company Ltd. Data Management: Structured Query Language
(SQL), Version 2, X/Open CAE Specification, Document C449. Reading,
England, UK, Mar. 1996.

[231] T. W. Yan and H. Garćıa-Molina. “Index Structures for Selective Dissem-
ination of Information under the Boolean Model”. In: ACM Transactions
on Database Systems 19.2 (June 1994), pp. 332–364.

[232] P. Zave and M. Jackson. “A Component-Based Approach to Telecommu-
nication Software”. In: IEEE Software 15.5 (Sept. 1998), pp. 70–78.

[233] P. Zave. “Modularity in Distributed Feature Composition”. In: Software
Requirements and Design: The Work of Michael Jackson. Ed. by B. Nu-
seibeh and P. Zave. Chatham, NJ, USA: Good Friends Publishing Com-
pany, 2010, pp. 267–292.

[234] A. Zeidler. “A Distributed Publish/Subscribe Notification Service for Per-
vasive Environments”. Ph.D. Thesis. Darmstadt, Germany: Technische
Universität Darmstadt, Nov. 2004.

218 BIBLIOGRAPHY

[235] A. Zeidler and L. Fiege. “Mobility Support with REBECA”. In: Pro-
ceedings of the 23rd International Conference on Distributed Computing
Systems Workshops (ICDCSW ’03). Providence, RI, USA: IEEE Com-
puter Society, May 2003, pp. 354–361.

[236] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An In-
frastructure for Fault-tolerant Wide-area Location and Routing. Tech.
rep. UCB/CSD-01-1141. Berkeley, CA, USA: Computer Science Division
(EECS), University of California at Berkeley, Apr. 2001.

Erklärung

Hiermit erkläre ich, dass ich die eingereichte Dissertation mit dem Titel
”
Engi-

neering Publish/Subscribe Systems and Event-Driven Applications“ selbständig
und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und
Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe. Ich habe bisher noch
keinen Promotionsversuch unternommen.

Rostock, 10. Dezember 2012 Helge Parzyjegla

219

	Title Page
	Abstract
	Kurzfassung
	Preface
	Contents
	List of Figures
	Introduction
	Motivation
	Goals
	Contributions
	Outline

	Distributed Event-based Systems
	Introduction
	Publish/Subscribe
	Events and Notifications
	Notification Service
	Subscriptions and Advertisements
	Notification Selection
	Routing Algorithms
	Broker Topologies
	Loose Coupling

	Existing Notification Services
	Corba Event and Notification Service
	Java Message Service
	Data Distribution Service
	Siena
	Rebeca
	Hermes
	Padres

	Discussion

	Composable Publish/Subscribe Architecture
	Introduction
	Feature Composition
	Features and Composition
	Architecture and Composability
	Challenges

	Architecture
	Broker
	Plugins
	Clients
	Implementation

	Feature Plugins
	Mandatory Features
	Publish/Subscribe Features
	Optional Features
	Discrete Event Simulation

	Related Work
	Publish/Subscribe Architectures
	Feature Composition

	Discussion

	Scoping
	Introduction
	Scopes
	Specification
	Hierarchies
	Visibility
	Attributes
	Inheritance
	Mappings

	Routing
	Scope Overlays
	Forwarding

	Management
	Scope Components
	Scope Assignment
	Joining Scopes
	Leaving Scopes

	Implementation
	Scope Plugin
	Scoped Filters
	Scope Components

	Related Work
	Visibility
	Security
	Context

	Discussion

	Programming Abstractions
	Introduction
	Publish/Subscribe
	Pitfalls and Remedies
	Components and Events

	Event-driven Components
	Event Ports
	Event Handlers
	Active Components
	Dynamic Subscriptions

	Scope Management
	Scope Specification
	Scope Membership
	Scope Instantiation

	Component Orchestration
	Customizing Components
	Customizing Scopes
	Grouping and Connecting Components

	Implementation
	Component Container
	Managed Component

	Related Work
	Publish/Subscribe
	Dataflow

	Discussion

	Evaluation
	Introduction
	Simulation
	Environment
	Protocols and Features

	Scalability
	Brokers
	Clients

	Distributions
	Publisher/Subscriber Ratio
	Hot Spots

	Overhead
	Competitiveness

	Discussion

	Conclusions
	Summary
	Goals Reviewed
	Outlook

	Bibliography
	Erklärung

