Ermittlung des Ansprechens auf eine Docetaxel-Therapie
bei PC-3- und LNCaP-Prostatakarzinom-Xenograft-Mausmodellen
mit der \([^{11}C]Cholin\) Kleintier PET/CT

Inauguraldissertation
zur
Erlangung des akademischen Grades
Doktor der Medizin
der Medizinischen Fakultät
der Universität Rostock

vorgelegt von
David Gunnar Sachs, geb. am 5. Januar 1986 in Traunstein
aus München

Rostock, 29. November 2012

Gutachter

1. Gutachter: Prof. Dr. med. Bernd Joachim Krause
 Klinik und Poliklinik für Nuklearmedizin, Universität Rostock

2. Gutachter: Prof. Dr. med. Oliver Hakenberg
 Urologische Klinik und Poliklinik, Universität Rostock

3. Gutachter: Prof. Dr. med. Dr. phil. Reingard Senekowitsch-Schmidtke
 Nuklearmedizinische Klinik und Poliklinik, Technische Universität München

Inhaltsverzeichnis

INHALTSVERZEICHNIS .. - 3 -
ABKÜRZUNGSVERZEICHNIS ... - 5 -
EINLEITUNG .. - 9 -
GRUNDLAGEN ... - 11 -
DIE FRAGESTELLUNGEN DIESER ARBEIT .. - 23 -
MATERIAL UND METHODEN ... - 24 -
SYNTHSE VON $[^{11}C]CHOLIN .. - 24 -$
PROSTATAKARZINOM-XENOGRAFT-MODELLE ... - 24 -
KLEINTIER PET/CT BILDGEBUNG ... - 25 -
DATENANALYSE DER $[^{11}C]CHOLIN KLEINTIER-PET/CT .. - 27 -
STATISTISCHE AUSWERTUNG .. - 28 -
ERGEBNISSE ... - 30 -
PC-3-TUMOREN .. - 30 -
T/M_{mean}-Quotient .. - 30 -
Analyse der dynamischen Daten ... - 31 -
Tumordurchmesser ... - 34 -
LNCA-P-TUMOREN .. - 35 -
T/M_{mean}-Quotient .. - 35 -
Analyse der dynamischen Daten ... - 36 -
Tumorvolumen ... - 39 -
Tumordurchmesser ... - 40 -
DISKUSSION .. - 42 -
DIE $[^{11}C]CHOLIN PET/CT IST GEEIGNET FÜR DIE DARSTELLUNG DER PC-3- UND LNCA-P-XENOGRAFT-PROSTATAKARZINOM-MODELLE .. - 42 -
DIE $[^{11}C]CHOLIN-AUFNAHME IN TUMOREN DER LNCA-P-ZELLlinie LIEGT IM XENOGRAFT-MODEL ÜBER DER $[^{11}C]CHOLIN-AUFNAHME IN TUMOREN DER PC-3-ZELLlinie .. - 45 -
DAS WACHSTUM DER TUMOREN SOWOHL DER LNCA-P-ZELLlinie ALS AUCH DER PC-3-ZELLlinie WERDEN IM XENOGRAFT-MÄUSMODELL DURCH DOCETAXEL GEHEMMT ... - 46 -
IM ZUGE DER THERAPIE MIT DOCETAXEL VERÄNDERT SICH IM XENOGRAFT-MODELL DAS AUFNAHME VON $[^{11}C]CHOLIN IN DIE TUMOREN SOWOHL DER LNCA-P-ZELLlinie ALS AUCH DER PC-3-ZELLlinie .. - 47 -
DIE ÄNDERUNG DER AUFNAHME VON $[^{11}C]CHOLIN LASST SICH BEReITS FRÜHZEITIG IM VERLAUF DER THERAPIE, D. H. NACH EINER WOCHE, NACHWEISEN ... - 54 -
METHODISCHE LIMITATIONEN ... - 55 -
ZUSAMMENFASSUNG ... - 56 -
LITERATURVERZEICHNIS ... - 58 -
EIDESSTATTLICHE ERKLÄRUNG .. - 67 -
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-Triphosphat</td>
</tr>
<tr>
<td>bcl-2</td>
<td>B-cell lymphoma 2; Apoptose-Protein</td>
</tr>
<tr>
<td>Bq</td>
<td>Becquerel</td>
</tr>
<tr>
<td>cDNA</td>
<td>copy Desoxynukleinsäure</td>
</tr>
<tr>
<td>ChoK</td>
<td>Cholin-Kinase</td>
</tr>
<tr>
<td>CHT</td>
<td>High-affinity choline transporter</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomografie</td>
</tr>
<tr>
<td>CTL</td>
<td>Choline transporter-like</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxynukleinsäure</td>
</tr>
<tr>
<td>DRU</td>
<td>Digital-rektale Untersuchung</td>
</tr>
<tr>
<td>Dtx</td>
<td>Docetaxel</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii; und andere</td>
</tr>
<tr>
<td>f.</td>
<td>und folgende</td>
</tr>
<tr>
<td>ff.</td>
<td>und folgende</td>
</tr>
<tr>
<td>FDG</td>
<td>Fluorodesoxyglucose</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase-activating protein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosin-Diphosphat</td>
</tr>
<tr>
<td>GEE</td>
<td>General Estimation Equation</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine exchange factor</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosin-Triphosphat</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>HC-3</td>
<td>Hemicholinium-3</td>
</tr>
<tr>
<td>HCEKV</td>
<td>Human choline/ethanolamine kinase-related gene variant</td>
</tr>
<tr>
<td>HE-Färbung</td>
<td>Hämatoxylin-Eosin-Färbung</td>
</tr>
<tr>
<td>HRPC</td>
<td>Hormon-refraktäres Prostatakarzinom</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography, Hochleistungsflüssigkeitschromatographie</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>k</td>
<td>Dissoziationskonstante</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>Kᵢ</td>
<td>Inhibitionskonstante</td>
</tr>
<tr>
<td>Kₘ</td>
<td>Michaelis-Konstante</td>
</tr>
<tr>
<td>M</td>
<td>Mol/Liter</td>
</tr>
<tr>
<td>m²</td>
<td>Quadratmeter</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomografie</td>
</tr>
<tr>
<td>msec</td>
<td>Millisekunde</td>
</tr>
<tr>
<td>Na</td>
<td>Natrium</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natrium-Chlorid</td>
</tr>
<tr>
<td>NMRI</td>
<td>Naval Medical Research Institute</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline, phosphatgepufferte Salzlösung</td>
</tr>
<tr>
<td>PCho</td>
<td>Phosphocholin</td>
</tr>
<tr>
<td>PDGF</td>
<td>Plateled-derived growth factor</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissions-Tomografie</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositid 3-Kinase</td>
</tr>
<tr>
<td>PLA₂</td>
<td>Phospholipase A₂</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PLD</td>
<td>Phospholipase D</td>
</tr>
<tr>
<td>PLD₁</td>
<td>Phospholipase D₁</td>
</tr>
<tr>
<td>PSA</td>
<td>Prostata-spezifisches Antigen</td>
</tr>
<tr>
<td>PtdCho</td>
<td>Phosphatidylcholin</td>
</tr>
<tr>
<td>Raf-1</td>
<td>von Rat fibrosarcoma; Serin/Threonin-Proteinkinase</td>
</tr>
<tr>
<td>Ral</td>
<td>Ras-like protein</td>
</tr>
<tr>
<td>Ral-GDS</td>
<td>Ral GDP dissociation stimulator</td>
</tr>
<tr>
<td>ras</td>
<td>von rat sarcoma; G-Protein und Protoonkogen</td>
</tr>
<tr>
<td>Rho-GTPase</td>
<td>Ras-homologous GTPase</td>
</tr>
<tr>
<td>ROCK</td>
<td>Rho-associated coiled-coil-containing protein kinase</td>
</tr>
<tr>
<td>ROI</td>
<td>Region-of-Interest</td>
</tr>
<tr>
<td>ROIₘ</td>
<td>Region-of-Interest im Muskel</td>
</tr>
<tr>
<td>ROIₜ</td>
<td>Region-of-Interest im Tumor</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>S.</td>
<td>Seite</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe-combined-immunodeficiency</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunden</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation; Standardabweichung</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error; Standardfehler</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff/Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single-Photon-Emissionscomputertomografie</td>
</tr>
<tr>
<td>Tc</td>
<td>Technetium</td>
</tr>
<tr>
<td>T/M-Quotient</td>
<td>Tumor/Muskel Quotient</td>
</tr>
<tr>
<td>T/M<sub>dyn</sub>-Quotient</td>
<td>dynamischer Tumor/Muskel Quotient</td>
</tr>
<tr>
<td>T/M<sub>mean</sub>-Quotient</td>
<td>mittlerer Tumor/Muskel Quotient</td>
</tr>
<tr>
<td>TRAMP</td>
<td>Transgenic Adenocarcinoma of the Mouse Prostate</td>
</tr>
<tr>
<td>TRUS</td>
<td>Transrektaler Ultraschall</td>
</tr>
<tr>
<td>u. a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v. a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>v<sub>max</sub></td>
<td>maximale Umsatzgeschwindigkeit</td>
</tr>
<tr>
<td>Wo</td>
<td>Woche</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z. T.</td>
<td>zum Teil</td>
</tr>
</tbody>
</table>
Einleitung

Hybridbildgebungsverfahren wie die PET/CT kombinieren funktionelle und morphologische Daten in einer simultanen Ganzkörperbildgebung. Daraus resultieren verbesserte Möglichkeiten, die Läsionen zu lokalisieren und zu charakterisieren, auch im Hinblick auf die Bildgebung von Prostatakarzinomen.

Patienten mit fortgeschrittenem Prostatakarzinom werden häufig mit einzelnen Chemotherapeutika oder Kombinationen behandelt. Ein Ansprechen auf eine solche Therapie wird für gewöhnlich anhand des PSA-Werts und morphologischen Kriterien,
z. B. mittels der CT oder MRT kontrolliert. Morphologische Veränderungen sind aber oft erst Wochen bis Monate nach Therapiebeginn zu sehen. Es bedarf also weiterer Marker, um möglichst frühzeitig ein Therapieansprechen erkennen zu können.

Nur wenige Daten sind bisher zum Einsatz der 11C-Cholin PET/CT zur Beurteilung eines Therapieansprechens von Prostatakarzinomen vorhanden.

Wir benutzten in dieser Studie die 11C-Cholin Kleintier-PET/CT, um ein Ansprechen von PC-3- und LNCaP-Tumoren in Prostatakarzinom-Xenograft-Mausmodellen auf eine Docetaxel-Therapie zu ermitteln.
Grundlagen

Bei PSA-Werten über 4,0 ng/ml sowie bei auffälligem rektalem Tastbefund sollten Prostatastanzbiopsien zur histologischen Sicherung eines Karzinoms gewonnen werden [Krause B.J. et al. 2007 S.181]. Zur Beurteilung der lokalen Tumorausdehnung (T-Status) wird meist der TRUS herangezogen. Eine

Zur Beurteilung des Lymphknotenstatus (N-Status) erweisen sich weder CT noch MRT mit geringen Sensitivitäten von 28 bis 45% als geeignet. Allein die offen oder laparoskopisch durchgeführte pelvine Lymphadenektomie stellt eine verlässliche Methode dar, den Lymphknotenstatus zu erfassen [Paul R. et al. 2008 S.15f.].

Die meisten Prostatakarzinome sind in ihrem Wachstum von Androgenen abhängig. In diesen Fällen spielt eine therapeutische Androgen-Ablation eine entscheidende Rolle. Doch selbst damit ist die Prognose häufig ungünstig. Denn eine Vielzahl der Prostatakarzinome wird im Laufe der Erkrankung oder im Zuge des Androgenentzugs Androgen-unabhängig.

Unklar ist bisher, wie primär Androgen-abhängige Prostatakarzinome innerhalb von kurzer Zeit resistent gegenüber der Androgen-Ablation werden. Hierzu gibt es zwei Hypothesen:

unabhängigen Tumorzellen selektiert und überleben; es entwickelt sich ein Androgen-unabhängiger Phänotyp [Craft N. et al. 1999 S.5034f.].

Oder aber alle Zellen sind zu Beginn der Tumorentwicklung in ihrem Wachstum abhängig von Androgenen. Im Zuge der Tumorprogredienz und damit einhergehenden genetischen Alterationen jedoch verlieren die Zellen ihre Androgen-Abhängigkeit [Igawa T. et al. 2002 S.223].

Es scheint denkbar, dass zum einen die Synthese von Androgen-Rezeptoren in den malignen Zellen im Sinne eines negativen Feedback-Mechanismus gesteigert ist. Die Zellen kommen so auch mit sehr geringen Konzentrationen an Testosteron aus.

Ferner spielt der Phosphorylierungsstatus des Receptors möglicherweise eine Rolle: ist der Rezeptor nicht phosphoryliert, so ist er inaktiv. Ein verändertes Phosphorylierungsverhalten des Receptors kann seine konstitutive Aktivierung hervorrufen.

Und schließlich werden alternative Signalwege erwogen, wie z. B. die Hochregulierung von bcl-2, welche es den malignen Zellen erlaubt, der Apoptose auch in Abwesenheit von Androgenen zu entgehen.

Verlieren diese Tumoren ihre Abhängigkeit von Androgenen, so sind sie resistent gegenüber einer sekundären Hormontherapie, was die therapeutischen Möglichkeiten äußerst einschränkt. Um bei fortgeschritteneren Prostatakarzinomen, die weniger Androgen-abhängig sind, bessere Ergebnisse zu erzielen, werden die betroffenen Patienten vermehrt mit Kombinationen aus Chemotherapie und gezielten Therapien behandelt. Auf eine Chemotherapie sprechen aber nur ca. 20-50% der Patienten mit fortgeschrittenem Prostatakarzinom an [Anderson J. et al. 2008 S.1499]. Nichtsdestotrotz konnten in den letzten Jahren klinische Studien zeigen, dass eine Chemotherapie bei Prostatakarzinomen eine bedeutende Rolle in der

Um herauszufinden, welche Patienten möglicherweise von einer Einzel-, bzw. einer Kombinationstherapie profitieren können, zieht man für gewöhnlich Biomarker (PSA-Spiegel, PSA-Verdopplungszeit, PSA-Anstiegsgeschwindigkeit, PSA-Dichte) und morphologisch bildgebende Verfahren (CT, MRT) heran. Bevor hier aber ein Ansprechen auf die Therapie, d. h. eine Verkleinerung des Tumors, festgestellt werden kann, vergehen häufig Wochen und Monate. Die Suche nach weiteren Parametern, die zudem auch präziser sind für die Ermittlung des Therapieansprechens, ist Gegenstand aktueller Forschung. Solche Marker sollten
möglichst früh nach Beginn der Therapie zu ermitteln sein. Sie könnten dabei helfen, diejenigen Patienten zu selektieren, die keinen klinischen Nutzen von der Therapie haben und die aufgrund dessen alternativen Therapieansätzen zugeführt werden könnten; somit wäre es eventuell möglich, diesen Patienten eine individualisierte Therapie zukommen zu lassen.

Die erhöhten Mengen von Gesamt-Cholin und PCho werden im Allgemeinen auf drei verschiedene Stoffwechselschritte zurückgeführt:

i. gesteigter Cholin-Transport in die Zelle
ii. gesteigerte Aktivität der Cholin-Kinase
iii. gesteigerte Aktivität von Phospholipasen

(i) Bisher wurden drei Wege dokumentiert, die für den Transport von Cholin aus dem Blut über die Zellmembran sorgen:

Der erste Mechanismus besteht in der erleichterten Diffusion, die vom Cholinkonzentrationsgradienten über die Membran getrieben wird; dies ist z. B. bei Erythrozyten beschrieben. Die Michaelis-Konstante \((K_M) \) für diesen Weg liegt bei ca. 10 \(\mu \text{M} \) Cholin [Michel V. et al. 2006 S.493].

Des Weiteren ist das hoch-affine, Energieabhängige Transportsystem zu nennen. Die \(K_M \) für diesen Mechanismus beträgt 0,5-3 \(\mu \text{M} \) Cholin. Er wird durch niedrige Dosen von Hemicholinium-3 (HC-3), einem reversiblen und kompetitiven Inhibitor, gehemmt (\(K_I \) 1-3 \(\mu \text{M} \)) und ist zudem Na\(^+\)- und Cl\(^-\)-abhängig. Transporter, die für diesen Weg verantwortlich gemacht werden und inzwischen erfolgreich identifiziert wurden, werden unter der Familie der „high-affinity choline transporter“ (CHT) zusammengefasst. Sie finden sich vorzugweise in den präsynaptischen Membranen von Neuronen; hier stellen sie Cholin für die Synthese von Acetycholin in cholinergen Neuronen zur Verfügung [Lockman P.R. et al. 2002 S.753ff.; Okuda T. et al. 2003 S.483ff.; Michel V. et al. 2006 S.494f.].

Der dritte Mechanismus findet sich ubiquitär im Gewebe. Er hat eine niedrigere Affinität zu Cholin (\(K_M \approx 20-200 \mu \text{M} \)), ist wohl zumindest zum Teil Na\(^+\)-abhängig und wird weniger effektiv durch HC-3 gehemmt (\(K_I \approx 20-200 \mu \text{M} \)) als CHT. Es dient den Zellen für die Bereitstellung von Cholin für die Synthese der Phospholipidmembranen. Hier wurden Transportproteine gefunden und in die Gruppe der „choline transporter-like“ (CTL) eingeordnet [Lockman P.R. et al. 2002 S.751ff.; Hara T. et al. 2006 S. 508; Michel V. et al. 2006 S.497ff.; Müller S.A. et al. 2009 S.1440].

(ii) Die Cholin-Kinase katalysiert in Anwesenheit von \(\text{Mg}^{2+} \) die ATP-abhängige Phosphorylierung von Cholin zu Phosphocholin (PCho); dies stellt den ersten Schritt
im Kennedy-Pathway (s. Abb. 1) dar, der essentiell für den Phospholipidmetabolismus einer Zelle ist.

Abbildung 1 – Darstellung des Kennedy-Pathway

Die \[^{11}C\]Cholin-PET-Bildgebung macht sich diesen Weg zunutze: \[^{11}C\]Cholin wird über die gleichen Mechanismen in die Zellen aufgenommen und dort phosphoryliert. Das phosphorylierte \[^{11}C\]Cholin kann jedoch nicht mehr an den weiteren Stoffwechselwegen teilnehmen. Es akkumuliert in der Zelle und führt zu einem Signal in der PET.

Neben Cholin dient auch Ethanolamin als Substrat der Cholin-Kinase. Beim Menschen wurden bisher 5 Isoformen der Cholin-Kinase beschrieben: ChoK-α1, -α2, -β1, ChoK-β2 und HCEKV (human choline/ethanolamine kinase-

In letzter Zeit wird zunehmend diskutiert, inwiefern die Cholin-Kinase in ihrer Aktivität unter dem Einfluss des ras-Signalwegs (von rat sarcoma) steht (s. Abb. 2, S. 20).
Abbildung 2 – ras-Signalweg

führen zu einer Spaltung des gebundenen GTPs (Guanosin-Triphosphat) zu GDP (Guanosin-Diphosphat), wodurch das Ausmaß der Effekte begrenzt wird.

Androgen-Rezeptoren und sind in ihrem Wachstum von Androgenen abhängig. Außerdem sezernieren diese Zellen PSA.

Die Zellen der PC-3-Reihe stammen aus Knochenspermametastasen eines Prostatakarzinompatienten [Kaighn M.E. et al. 1979 S.16ff.]. Ihr Chromosomensatz ist stets aneuploid und verfügt über mindestens zehn verschiedene Markerchromosomen. Die Zellen exprimieren keine Androgen-Rezeptoren; zudem sind sie in ihrer Proliferation nur in geringem Maße abhängig von Wachstumsfaktoren und gelten damit als entdifferenziert als die Zellen der LNCaP-Reihe. Die Verdopplungszeit der PC-3-Zellen beträgt ca. 33 Stunden. Sie sezernieren kein PSA.

In dieser Arbeit wurde überprüft, inwiefern die \[^{11}C\]Cholin-Kleintier-PET/CT dazu geeignet ist, das Therapieansprechen von Prostatakarzinomen infolge einer Chemotherapie zu ermitteln. Dazu wurden PC-3- und LNCaP-Prostatakarzinomzellen subkutan in die Flanken von Xenograft-Mausmodellen injiziert. Die Tumoren wurden daraufhin 4 bis 6 Wochen wachsen gelassen. Um das Ansprechen der PC-3- und LNCaP-Prostatakarzinomtumoren auf eine Behandlung mit Docetaxel zu untersuchen, wurden von den Versuchstieren jeweils im Abstand von je einer Woche insgesamt vier \[^{11}C\]Cholin-PET/CT-Untersuchungen durchgeführt, eine Aufnahme vor und drei Aufnahmen nach der Pharmakointervention. Gleichermaßen wurde mit einer Gruppe von Kontrollmäusen verfahren, denen jedoch anstatt des Chemotherapeutikums Docetaxel lediglich phosphatgepufferte Salzlösung (PBS) verabreicht wurde. Wir ermittelten die Veränderungen im Wachstum der Tumoren; zusätzlich bezogen wir die Effekte einer Docetaxel-Therapie auf die Aufnahme von \[^{11}C\]Cholin in die Tumoren in unsere Ergebnisse mit ein.
Die Fragestellungen dieser Arbeit waren:

Ist die 11C-Cholin PET/CT für die Darstellung der LNCaP-, bzw. der PC-3-Xenograft-Prostatakarzinom-Modelle geeignet?

Gibt es Unterschiede in der 11C-Cholin-Aufnahme zwischen den Xenograft-Modellen mit der LNCaP-, bzw. der PC-3-Zelllinie?

Inhibiert eine Behandlung mit Docetaxel das Tumorwachstum in den LNCaP-, bzw. PC-3-Xenograft-Modellen?

Moduliert eine Therapie mit Docetaxel die Aufnahme von 11C-Cholin in die Tumoren der LNCaP-, bzw. PC-3-Zelllinie?

Lässt sich die Änderung der Aufnahme von 11C-Cholin frühzeitig im Verlauf der Therapie nachweisen?
Material und Methoden

Synthese von $[^{11}\text{C}]\text{Cholin}$

$[^{11}\text{C}]\text{Cholin}$ wurde mit kleinen Abwandlungen entsprechend der Methode von Pascali et al. 2000 synthetisiert. $[^{11}\text{C}]\text{CO}_2$ wurde zu $[^{11}\text{C}]\text{CH}_3\text{I}$ konvertiert durch die katalytische Gas-Phasen-Iodinisierungsreaktion über $[^{11}\text{C}]\text{CH}_4$ (GE Mel MicroLab). $[^{11}\text{C}]\text{CH}_3\text{I}$ wurde mit einem 50 ml/min Heliumfluss durch eine Light-CM Kartusche mit N,N-Dimethylethanolamin (25 µl) transferiert. Die Säule wurde zuerst mit 10 ml EtOH, dann mit 10 ml Wasser gewaschen. Das Produkt wurde zusammen mit isotoner Kochsalzlösung (2-5 ml 0,9% NaCl) durch einen Millipore-Filter (Millex GS, 0,22 µm) in einen sterilen Flakon gespült. Der pH-Wert der so gewonnenen Lösung betrug ca. 7. Qualitätskontrollen wurden mittels HPLC durchgeführt (LiChrosorb RP18, 250 x 4,6 mm; 1 mM Na-Salz der Naphthalinsulfonsäure, 50 mM H$_3$PO$_4$, 1,5 ml/min; k=3,7).

Prostatakarzinom-Xenograft-Modelle

Die Tierexperimente wurden gemäß eines von der Technischen Universität München genehmigten Protokolls durchgeführt.

Zur Generierung der PC-3-Tumor-Xenograft-Modelle wurden 16 6-8 Wochen alte, männliche athymische nu/nu Mäuse (NMRI nu/nu Naval Medical Research Institute, Charles River Laboratories) verwendet. Subkutan in die linken Flanken wurden ihnen je 1×10^7 PC-3-Zellen ohne Matrigel implantiert, gelöst in ca. 100µl NaCl (0,9%).

Ebenso wurde mit jeweils 1×10^7 LNCaP-Zellen verfahren, hier jedoch in die Flanken von 17 Severe-combined-immunodeficiency(SCID)-Mäusen (Charles River Laboratories). In die Nackenfalten dieser Mäuse wurden zusätzlich noch 12,5 mg
Testosteronplättchen (Innovative Research of America, Saraosta, Florida, USA) implantiert, die das Hormon kontinuierlich über einen Zeitraum von 60 Tagen freisetzen. Dies sichert eine kontinuierlich hohe Konzentration an Androgenen in den Mäusen und verhinderte den Untergang von Androgen-abhängigen Tumorzellen [Wang et al. 2005 S.150f.].

Per Ultraschall (13 MHz) wurde das Wachstum des Tumors über ca. vier bis sechs Wochen überprüft, bis sie ein Volumen von ca. 400 mm³ erreicht hatten.

Kleintier PET/CT Bildgebung

Etwa 4-6 Wochen nachdem der Tumor implantiert worden war, wurden von 13 Mäusen mit PC-3-Zellen, bzw. von 16 Mäusen mit LNCaP-Zellen im microPET FOCUS 120 Scanner (Siemens Preclinical Solutions, Knoxville, TN, USA; s. Abb. 3, S. 26) Aufnahmen in Bauchlage gemacht. [vergleiche Kim J.S. et al. 2007 S.1527ff. für die Aufnahmecharakteristiken des microPET FOCUS 120]. Die Auflösung des microPET Focus 120 beträgt zwischen 1,1 und 2,4 mm Halbwertsbreite in allen drei Dimensionen innerhalb eines 2 cm Sichtfelds um die zentrale Achse des Tomografen. Zur Bestimmung der Tumorgrenzen wurde teilweise zusätzlich ein Kleintier-CT mit dem INVEON CT (Siemens Preclinical Solutions; s. Abb. 3, S. 26) gemacht. Die Spannung der Röntgenröhre betrug 80 kV und die Stromstärke belief sich auf 300 µA. Während einer Rotation von 360° wurden je 270 Röntgenbilder gewonnen. Jede Aufnahme dauerte 400 msec. Die Rekonstruktion der CT-Bilder wurde mittels eines modifizierten Feldkamp-Algorithmus durchgeführt.

Nach der ersten $[^{11}C]$Cholin PET/CT-Aufnahme (Tag 0) wurden sieben der Mäuse aus der PC-3-Gruppe, bzw. acht der Mäuse aus der LNCaP-Gruppe mit Docetaxel behandelt; das Medikament wurde ihnen über einen Mikrokatheter in der Schwanzvene an den Tagen 1 und 5 in einer Dosierung von 3 mg/kg Körpergewicht verabreicht. Den restlichen Mäusen (neun PC-3, bzw. acht LNCaP) wurde als...
Kontrollgruppe 100µl PBS injiziert. An den Tagen 7, 14 und 21 nach dem initialen PET/CT-Scan wurden die $[^{11}\text{C}]$Cholin PET/CT-Aufnahmen gemäß dem bereits beschrieben Protokoll wiederholt.

Vor jedem PET/CT-Scan wurden mit einer Schieblehre die maximalen Durchmesser des Tumors in allen drei Dimensionen ausgemessen. Das Volumen ergab sich mit Hilfe der Formel:

\[V = \frac{1}{2} \times \text{maximale Durchmesser in den drei Dimensionen} \]
\[(\text{Breite} \times \text{Tiefe} \times \text{Höhe}) \]

Im Laufe der Studie verstarben in der LNCaP-Gruppe vor der ersten PET-Aufnahme bereits ein Kontrolltier, sowie je ein Kontroll- und ein Therapietier nach der ersten Aufnahme. In der PC-3-Gruppe starben nach der ersten PET/CT-Aufnahme je ein Therapie- und ein Kontrolltier. Zwei Wochen nach dieser Aufnahme musste ein Kontrolltier wegen zu hoher Tumorlast gemäß dem Tierexperimentprotokoll geopfert werden.

Demzufolge wurden die Ergebnisse von 13 PC-3- und 14 LNCaP-Mäusen berücksichtigt.

Drei Wochen nach der ersten PET/CT-Aufnahme wurden alle übrigen Mäuse gemäß des Protokolls geopfert.

Datenanalyse der $[^{11}\text{C}]$Cholin Kleintier-PET/CT

Aus allen einzelnen PET-Aufnahmen wurde ein Summenbild berechnet. Es erfolgte eine Koregistrierung mit den CT-Daten. Je drei Regions-of-Interest (ROI) wurden in drei axialen Schichten der CT-Aufnahmen in das Tumorgewebe (ROI$_T$) und die Muskulatur des gegenüberliegenden Oberschenkels (ROI$_M$) gelegt. Diese ROIs wurden auf die entsprechenden PET-Daten transferiert. Bei den PC-3-Tumoren verwendeten wir rechteckige ROIs mit ca. 10,5 mm³, bzw. 5x5x0,421 mm³. Für die LNCaP-Tumoren wurden würzelförmige ROIs verwendet. Das Volumen der ROIs betrug ca. 27 mm³, bzw. 3x3x3 mm³.
Um die Abhängigkeit von der injizierten Aktivität und des Körpergewichts zu eliminieren, wurde das Verhältnis aus den Werten für Tumor und Muskel berechnet:

\[\text{ROI}_	ext{T}/\text{ROI}_	ext{M} = \text{Tumor/Muscle-Quotient (T/M-Quotient)} \]

Bei jeder Maus wurden drei T/M-Quotienten ermittelt; aus diesen wurde der Mittelwert errechnet (T/M\text{mean}-Quotient)

Für die Evaluation der \[^{[11]}\text{C}\]Cholin-Dynamik wurden Zeit-Aktivitäts-Kurven sowohl für den Tumor als auch für den Muskel aus den 34 PET-Volumendatensätzen ermittelt. Dazu wurden die ROIs, die auf den CT-Bildern festgelegt wurden, auf jeden einzelnen PET-Datensatz transferiert. Aus dem Verhältnis der Aktivitätskurven von ROI\text{T} und ROI\text{M} über die Zeit ergaben sich die dynamischen T/M-Quotient (T/M\text{dyn}-Quotient)-Kurven. Sie bilden die relative Radiotracer-Clearance des Tumors ab.

Die \[^{[11]}\text{C}\]Cholin T/M\text{mean}-Quotienten und die T/M\text{dyn}-Quotienten der ersten Akquisitionen wurden mit den T/M\text{mean}-Quotienten und T/M\text{dyn}-Quotienten der Akquisitionen, die nach einer, zwei und drei Wochen gewonnen wurden, statistisch verglichen. Wegen möglicher Veränderungen der Tumorkonfiguration wurden nach einer, zwei und drei Wochen jeweils neue ROIs platziert.

Statistische Auswertung

Zur statistischen Auswertung benutzten wir SPSS Software (Version 15.0; SPSS; Inc. Chicago, IL, USA). Quantitative Werte wurden als Mittelwert ± Standardabweichung (SD), bzw. als Mittelwert ± Standardfehler (SE) angegeben. Alle statistischen Tests wurden zweiseitig durchgeführt und ein p-Wert kleiner als 0,05 wurde für statistisch signifikant erachtet.

T/M\text{mean}-Quotienten

Um die Daten deskriptiv darzustellen, wurden die mittleren T/M-Quotienten (T/M\text{mean}-Quotienten) für die einzelnen Messzeitpunkten innerhalb der Therapie- und Kontrollgruppen berechnet. Anstelle bloßer Mittelwerte wurden die T/M\text{mean}-Quotienten basierend auf der Fläche unter der Kurve (Area-under-the-Curve; AUC) berechnet, denn die Aufnahmedauer der einzelnen PET-Akquisition war
unterschiedlich lang. Für die Tumorgröße wurde der mittlere Tumordurchmesser ± Standardabweichung (SD) für die Therapie- und Kontrollgruppen berechnet; für das Tumorvolumen der LNCaP-Xenograft-Modelle wurde der Median mit 25. und 75. Perzentile für die Therapie- und Kontrollgruppen ermittelt.

Analyse der dynamischen Daten

Um die gemessenen Parameter der T/M_{dyn}-Quotienten und der Tumorgröße, bzw. des Tumorvolumens zu analysieren, wurde ein Verallgemeinertes Schätzgleichungssystem (*Generalized Estimation Equation; GEE*) verwendet. Dieses Modell berücksichtigt, dass bei demselben Tier mehrere Messungen durchgeführt wurden, die in die statistische Analyse eingehen.

Zur Darstellung der mittleren Gruppenunterschiede und der Zeiteffekte wurden Regressionskoeffizienten ± Standardfehler angegeben.

Weiterhin wurden zwei Interaktionsanalysen durchgeführt:
- **Woche x Therapie**: Diese Analyse diente dazu, zu testen, ob es hinsichtlich der T/M_{dyn}-Quotienten über drei Wochen eine statistisch signifikante Änderung im Verlauf der Therapie gab.
- **Woche x Dynamik**: Diese Interaktion wurde für jede Gruppe berechnet, um zu testen, ob es eine statistisch signifikante Änderung der Radiotracer-Clearance über drei Wochen ergab, d. h. ob sich die Anstiege der T/M_{dyn}-Quotienten im Verlauf der Beobachtungszeit von drei Wochen unterscheiden.

Das Wachstum der Tumoren der Therapie-, bzw. Kontrollgruppen wurde verglichen, indem die mittlere Änderung des Tumordurchmessers, bzw. des Tumorvolumens pro Zeiteinheit, d. h. pro Woche, ermittelt wurde. Dazu wurde der Anstieg der Regressionslinie des mittleren Tumordurchmessers, bzw. des mittleren Tumorvolumens der Therapiegruppe mit dem Anstieg der Regressionslinie der Kontrollgruppe verglichen.
Ergebnisse

Die PET-Aufnahmen einer Maus mit LNCaP-Zellen waren aus technischen Gründen nicht auswertbar.

PC-3-Tumoren

T/M_{mean}-Quotienten

Der T/M_{mean}-Quotient der PC-3-Tumoren betrug bei den Versuchstieren im Durchschnitt $1,8 \pm 0,4$, bzw. $1,6 \pm 0,5$ bei den Kontrolltieren. Eine Woche nach Gabe der Therapie fiel der T/M_{mean}-Quotient bei den Versuchstieren auf $0,9 \pm 0,3$. Nach zwei Wochen lag er bei $1,1 \pm 0,3$ und nach drei Wochen bei $0,8 \pm 0,2$. Die T/M_{mean}-Quotienten der Tumoren der Kontrolltiere betrugen nach einer Woche $1,7 \pm 0,4$, nach zwei Wochen $1,8 \pm 0,7$ und nach drei Wochen $1,7 \pm 0,4$ (s. Abb. 4, S. 31, und Tabelle 1, S. 41).
Abbildung 4 –
T/M_{mean}-Quotienten der PC-3-Tiere zu den verschiedenen Zeitpunkten

Analyse der dynamischen Daten

Abbildung 5 –
Dynamische T/M-Quotienten der PC-3-Therapietiere zu den verschiedenen Zeitpunkten

Der Verlauf der T/M_{dyn}-Quotienten der Kontrolltiere hingegen zeigte keine Änderungen im Vergleich zur Messung vor Gabe von PBS (s. Abb. 6, S. 33).
Das GEE-Modell wies bereits eine Woche nach Beginn der Gabe von Docetaxel einen signifikanten Abfall der T/M\textsubscript{dyn}-Quotienten in der Therapiegruppe nach: im Mittel betrugen die Werte nach einer Woche -0,93 ± 0,24 Einheiten (p<0,001), nach zwei Wochen -0,78 ± 0,21 Einheiten (p<0,001), nach drei Wochen -1,08 ± 0,26 Einheiten (p<0,001) unter den Werten der ersten Messung. Im Gegensatz dazu zeigten die T/M\textsubscript{dyn}-Quotienten in der Kontrollgruppe keinen signifikanten Abfall: im Mittel lagen die Werte nach einer Woche bei 0,085 ± 0,39 Einheiten (p=0,827), nach zwei Wochen bei 0,31 ± 0,48 Einheiten (p=0,517) und nach drei Wochen bei 0,11 ± 0,30 Einheiten (p=0,720) über den Werten der ersten Messung.

Innerhalb beider Gruppen gab es bei der ersten Messung einen signifikanten Abfall der T/M\textsubscript{dyn}-Quotienten über die gesamte Aufnahmedauer von 60 min: in der Therapiegruppe war ein Abfall von -0,007 ± 0,0012 Einheiten pro Minute (p<0,001) zu verzeichnen, in der Kontrollgruppe von -0,016 ± 0,0017 Einheiten pro Minute (p<0,001).
Die Analyse der Therapieeffekte über die Zeit (Woche x Therapie) konnte eine signifikante Zunahme der Gruppenunterschiede bezüglich der T/M$_{\text{dyn}}$-Quotienten nach einer, zwei und drei Wochen im Vergleich zur Aufnahme vor der Intervention zeigen: im Mittel lagen die T/M$_{\text{dyn}}$-Quotienten der Therapiegruppe -1,04 ± 0,46 Einheiten (p= 0,025) nach einer Woche, -1,10 ± 0,53 Einheiten (p=0,037) nach zwei Wochen und -1,22 ± 0,41 Einheiten (p=0,003) nach drei Wochen unter den T/M$_{\text{dyn}}$-Quotienten der Kontrollgruppe. Vor der Verabreichung von Docetaxel, bzw. PBS konnte indes kein signifikanter Unterschied im Werteniveau der T/M$_{\text{dyn}}$-Quotienten zwischen beiden Gruppen festgestellt werden: 0,14 ± 0,30 (p=0,646). Die Gruppenunterschiede wurden über die Wochen größer durch den deutlichen Abfall der T/M$_{\text{dyn}}$-Quotienten in der Therapiegruppe, wohingegen es keine statistisch signifikanten Veränderungen in der Kontrollgruppe gab.

Die Analyse der Änderungen in der Dynamik über den Beobachtungszeitraum von drei Wochen (Woche x Dynamik) zeigte, dass der Abfall der T/M$_{\text{dyn}}$-Quotienten bei den therapierten Tieren von Woche zu Woche signifikant geringer ausfiel im Vergleich zur ersten Aufnahme: im Mittel änderte sich der Abfall um 0,008 ± 0,004 Einheiten (p=0,032) nach einer Woche, um 0,007 ± 0,003 Einheiten (p=0,003) nach zwei Wochen und um 0,012 ± 0,004 Einheiten (p=0,002) nach drei Wochen im Vergleich zur ersten Aufnahme. In der Gruppe der Kontrolltiere hingegen zeigte der Abfall der T/M$_{\text{dyn}}$-Quotienten über den Beobachtungszeitraum keine signifikante Änderung: im Mittel änderte sich der Abfall um -0,002 ± 0,008 Einheiten (p=0,816) nach einer Woche, um 0,005 ± 0,007 Einheiten (p=0,496) nach zwei Wochen und um 0 ± 0,005 Einheiten (p=0,963) nach drei Wochen im Vergleich zur ersten Aufnahme.

Tumordurchmesser

Abbildung 7 auf Seite 35 zeigt das unterschiedliche Tumorwachstumsverhalten der Therapie-, bzw. der Kontrollgruppe. Der maximale Tumordurchmesser nahm in beiden Gruppen über die Zeit signifikant zu (Therapiegruppe p=0,010; Kontrollgruppe p<0,001). Der Vergleich des Tumorwachstums der beiden Gruppen über den gesamten Zeitraum von drei Wochen lässt einen signifikanten Unterschied erkennen: die Steigung der Regressionsgeraden in der Therapiegruppe ist signifikant geringer als in der
Kontrollgruppe (p=0,025). Dies bedeutet ein signifikant langsames Wachstum der Tumoren der Therapiegruppe.

Abbildung 7 –
PC-3-Maximaler Tumordurchmesser

LNCaP-Tumoren

T/M_\text{mean}-Quotient

Unter den LNCaP-Mäusen wiesen die Versuchstiere im Median einen T/M_\text{mean}-Quotienten von 2,0 ± 0,2, die Kontrolltiere einen T/M_\text{mean}-Quotienten von 1,9 ± 0,2 auf. Zu diesem Zeitpunkt konnte im Werteniveau der T/M_\text{mean}-Quotienten kein signifikanter Unterschied zwischen beiden Gruppen festgestellt werden (p=0,837).

Nach Beginn der Therapie lag der T/M_\text{mean}-Quotient bei den Versuchstieren nach einer Woche bei 1,5 ± 0,2, nach zwei Wochen bei 1,3 ± 0,2 und nach drei Wochen bei 1,4 ± 0,2. Die Kontrolltiere zeigten nach einer Woche einen T/M_\text{mean}-Quotienten von 1,9 ± 0,2, nach zwei Wochen von 2,0 ± 0,3 und nach drei Wochen von 1,6 ± 0,6 (s. Abb. 8, S. 36, und Tabelle 2, S. 41).
Abbildung 8 -
T/M\text{mean}-Quotienten der LNCaP-Tiere zu den verschiedenen Zeitpunkten

Analyse der dynamischen Daten

Den Verlauf der T/M\text{dyn}-Quotienten der Therapiegruppe zeigt Abb. 9 (S. 37), den der Kontrollgruppe Abb. 10 (S. 37). Bei den Therapietieren ließ sich bereits eine Woche nach Beginn der Docetaxelgabe ein Abfall des Signals nachweisen. Die Werte blieben auf diesem niedrigeren Niveau während des gesamten Beobachtungszeitraums bis drei Wochen nach Therapiebeginn.
Abbildung 9 –
Dynamische T/M-Quotienten der LNCaP-Therapietiere zu den verschiedenen Zeitpunkten

Im Gegensatz dazu blieb die Aufnahme der Tumoren der Kontrolltiere auf nahezu dem gleichen Niveau.

Abbildung 10 –
Dynamische T/M-Quotienten der LNCaP-Kontrolltiere zu den verschiedenen Zeitpunkten
Das GEE-Modell konnte für die Therapiegruppe bereits eine Woche nach Beginn der Behandlung mit Docetaxel einen signifikanten Abfall der T/M\textsubscript{dyn}-Quotienten erkennen lassen: im Mittel betrugen die Werte nach einer Woche -0,69 ± 0,22 Einheiten (p=0,002), nach zwei Wochen -0,55 ± 0,29 Einheiten (p=0,055), nach drei Wochen -0,75 ± 0,25 Einheiten (p=0,003) unter den Werten der ersten Messung. Bei der Messung zwei Wochen nach Beginn der Therapie konnte nur ein Trend ermittelt werden, der keine statistische Signifikanz im Vergleich zur Aufnahme vor Therapie (p=0,055) erreichte. Die Aufnahme drei Wochen nach Beginn der Therapie erbrachte wieder einen signifikanten Unterschied (p=0,003). Im Gegensatz dazu zeigten die T/M\textsubscript{dyn}-Quotienten in der Kontrollgruppe keinen statistisch signifikanten Abfall: im Mittel lagen die Werte nach einer Woche -0,20 ± 0,33 Einheiten (p=0,558), nach zwei Wochen -0,11 ± 0,47 Einheiten (p=0,811) und nach drei Wochen -0,13 ± 0,27 Einheiten (p=0,619) unter den Werten der ersten Messung.

Zum Zeitpunkt der ersten Messung konnte weder in der Kontroll- noch in der Therapiegruppe eine signifikante Änderung des minütlichen Trends festgestellt werden (p=0,294).

Bei der Analyse der Therapieeffekte über die Zeit (Woche x Therapie) mittels des GEE-Modells konnte keine signifikante Interaktion zwischen Therapie und Woche eruiert werden (p=0,921). Im gesamten Beobachtungsverlauf ohne Berücksichtigung der Werte vor Gabe von Docetaxel, bzw. PBS wies die Therapiegruppe jedoch im Mittel 0,638 ± 0,22 Einheiten geringere T/M\textsubscript{dyn}-Quotienten auf als die Kontrollgruppe (p=0,004).

Bei Betrachtung der Effekte auf die dynamischen Verläufe der T/M\textsubscript{dyn}-Quotienten über die Wochen (Woche x Dynamik) ergab sich keine Evidenz für eine Änderung der zeitlich bedingten T/M\textsubscript{dyn}-Quotienten über die Wochen, weder innerhalb der Therapiegruppe (p=0,985) noch innerhalb der Kontrollgruppe (p=0,180).
Tumorvolumen

Auch das Tumorwachstum wurde durch die Therapie signifikant verlangsamt. Das Tumorvolumen nahm in beiden Gruppen über die Zeit signifikant zu (Therapiegruppe \(p=0,001 \); Kontrollgruppe \(p<0,001 \)). Die Tumoren der Therapiegruppe nahmen jedoch über den gesamten Zeitraum von drei Wochen signifikant weniger an Volumen zu als die Kontrolltiere (\(p=0,013 \)) (s. Abb. 11).

Abbildung 11 –
LNCaP - Tumorvolumen
Tumordurchmesser

Auch der maximal gemessene Durchmesser der Tumoren nahm in beiden Gruppen über den Beobachtungszeitraum signifikant zu (Therapiegruppe p=0,002; Kontrollgruppe p<0,001). Die Steigung der Regressionsgeraden in der Therapiegruppe war jedoch signifikant geringer als in der Kontrollgruppe (p=0,043) (s. Abb. 12).

Abbildung 12 – LNCaP - Maximaler Tumordurchmesser
Tabelle 1 - T/M\textsubscript{mean}-Quotienten der PC-3-Tiere pro Woche und Behandlungsgruppe

<table>
<thead>
<tr>
<th></th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initialer T/M-Quotient (Mittelwert±SD)</td>
<td>2,1±1,0</td>
<td>2,2±1,2</td>
<td>-0,03±0,04</td>
<td>-0,14±0,04</td>
<td>90±26</td>
<td>100±21</td>
<td>1,6±0,5</td>
<td>1,8±0,4</td>
</tr>
<tr>
<td>nach 1 Woche</td>
<td>2,3±2,0</td>
<td>1,1±0,5</td>
<td>-0,16±0,04</td>
<td>-0,05±0,01</td>
<td>93±24</td>
<td>53±15</td>
<td>1,7±0,4</td>
<td>0,9±0,3</td>
</tr>
<tr>
<td>nach 2 Wochen</td>
<td>2,7±1,1</td>
<td>1,3±0,7</td>
<td>-0,18±0,04</td>
<td>-0,06±0,01</td>
<td>102±40</td>
<td>63±15</td>
<td>1,8±0,7</td>
<td>1,1±0,3</td>
</tr>
<tr>
<td>nach 3 Wochen</td>
<td>2,5±1,3</td>
<td>0,8±0,6</td>
<td>-0,14±0,03</td>
<td>-0,02±0,01</td>
<td>95±20</td>
<td>47±12</td>
<td>1,7±0,4</td>
<td>0,8±0,2</td>
</tr>
</tbody>
</table>

Tabelle 2 - T/M\textsubscript{mean}-Quotienten der LNCaP-Tiere pro Woche und Behandlungsgruppe

<table>
<thead>
<tr>
<th></th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
<th>Kontrollgruppe</th>
<th>Docetaxelgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNCaP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initialer T/M-Quotient (Mittelwert±SE)</td>
<td>1,9±0,2</td>
<td>1,9±0,2</td>
<td>+0,01±0,01</td>
<td>+0,06±0,02</td>
<td>113±9</td>
<td>112±10</td>
<td>1,9±0,2</td>
<td>2,0±0,2</td>
</tr>
<tr>
<td>nach 1 Woche</td>
<td>2,0±02</td>
<td>1,3±0,2</td>
<td>+0,03±0,01</td>
<td>+0,08±0,01</td>
<td>110±14</td>
<td>84±9</td>
<td>1,9±0,2</td>
<td>1,5±0,2</td>
</tr>
<tr>
<td>nach 2 Wochen</td>
<td>1,9±0,3</td>
<td>1,3±0,2</td>
<td>+0,03±0,01</td>
<td>+0,01±0,01</td>
<td>112±18</td>
<td>42±17</td>
<td>2,0±0,3</td>
<td>1,3±0,2</td>
</tr>
<tr>
<td>nach 3 Wochen</td>
<td>1,9±0,3</td>
<td>1,3±0,2</td>
<td>+0,05±0,01</td>
<td>+0,10±0,01</td>
<td>92±34</td>
<td>79±12</td>
<td>1,6±0,6</td>
<td>1,4±0,2</td>
</tr>
</tbody>
</table>
Diskussion

Die $[^{11}\text{C}]\text{Cholin PET/CT}$ ist geeignet für die Darstellung der PC-3- und LNCaP-Xenograft-Prostatakarzinom-Modelle

In unserer Studie konnten die Tumoren beider Xenograft-Modelle (LNCaP- und PC-3-Zelllinien) mit der $[^{11}\text{C}]\text{Cholin Kleintier PET/CT}$ visualisiert werden (s. Abb. 13, S. 43). Insgesamt ergab sich allerdings ein eher niedriger Kontrast, d. h. ein niedriges Tumor/Muskel-Verhältnis mit Werten von 1,6 bis 1,8 im PC-3-Xenograft und 1,9 bis 2,0 im LNCaP-Xenograft.
Abbildung 13 –
CT, PET und Fusionsbild eines PC-3-Tumors (A, B, C), bzw. eines LNCaP-Tumors (D, E, F)

$[^{18}\text{F}]$Fluorocholin, ein Cholin-Derivat, das mit dem Isotop ^{18}F, das eine längere Halbwertszeit als ^{11}C hat, markiert ist, zeigte in einer Studie mit PC-3-Xenograft-Prostatakarzinom-Modellen eine statistisch signifikant niedrigere Aufnahme in die Tumoren als $[^{18}\text{F}]$FDG. Die Aufnahme von $[^{18}\text{F}]$FDG in das Tumorgewebe betrug $0,106 \pm 0,015 \%$ dose kg KG/m² Gewebegewicht, bzw. in die Skelettmuskulatur $0,064 \pm 0,011 \%$ dose kg KG/m² Gewebegewicht. Für $[^{18}\text{F}]$Fluorocholin ergaben sich Aufnahme-Werte von $0,062 \pm 0,009 \%$ dose kg KG/m² Gewebegewicht in den Tumoren, bzw. $0,047 \pm 0,016 \%$ dose kg KG/m² Gewebegewicht in die Skelettmuskulatur [Price D.T. et al. 2002 S.276]. Dies lässt sich darauf zurückführen, dass sich eine FDG-Anreicherung vor allem nur in entdifferenzierten aggressiven und metastasierten Prostatakarzinomen zeigt [Oyama N. et al. 1999 S.626; Oyama N. et al. 2002b S.102]; eine höhere Anreicherung von Cholin findet sich hingegen in höher differenzierten Tumoren.

Belloli S. et al. untersuchten 2009 die $[^{11}\text{C}]$Cholin- und die $[^{18}\text{F}]$FDG-Aufnahme in subkutane TRAMP-C1-Tumoren von C57BL/6-Mäusen. Die TRAMP-C1-Zellen werden aus TRAMP-Mäusen gewonnen, deren genetischer Defekt dazu führt, dass sie spontan hormon-abhängige und hormon-unabhängige Prostatakarzinome entwickeln. Subkutan injizierte TRAMP-C1-Zellen entwickeln sich im Xenograft-Modell zu niedrig differenzierten, gut vaskularisierten Tumoren. Die Tumoren in den Flanken der Mäuse konnten in der PET-Bildgebung mit $[^{18}\text{F}]$FDG besser visualisiert werden als mit $[^{11}\text{C}]$Cholin; auch hier lag die $[^{11}\text{C}]$Cholin-Aufnahme unter der von $[^{18}\text{F}]$FDG. Der T/M-Quotient für $[^{18}\text{F}]$FDG betrug $15,99 \pm 1,24$, wohingegen sich für $[^{11}\text{C}]$Cholin ein T/M-Quotient von $2,71 \pm 0,53$ ergab [Belloli S. et al. 2009 S.1249].
Die $[^{11}\text{C}]$Cholin-Aufnahme in Tumoren der LNCaP-Zelllinie liegt im Xenograft-Modell über der $[^{11}\text{C}]$Cholin-Aufnahme in Tumoren der PC-3-Zelllinie

In unserem Versuch wiesen die LNCaP-Tumoren im Durchschnitt einen T/M$_{\text{mean}}$-Quotienten von 2,0 (SE=0,2) in der Therapiegruppe, bzw. von 1,9 (SE=0,2) in der Kontrollgruppe auf, das Verhältnis bei den PC-3-Tumoren lag bei 1,8 (SD=0,4) in der Therapiegruppe, bzw. bei 1,6 (SD=0,5) in der Kontrollgruppe. Damit liegen unsere Ergebnisse in derselben Größenordnung wie die Werte von Zheng Q.-H. et al. [2004], wenn auch etwas darunter.

Das Wachstum der Tumoren sowohl der LNCaP-Zelllinie als auch der PC-3-Zelllinie werden im Xenograft-Mausmodell durch Docetaxel gehemmt

Das Wachstum der Tumoren sowohl der LNCaP-Zelllinie als auch der PC-3-Zelllinie wurde in unserer Studie durch eine Behandlung mit Docetaxel statistisch signifikant gehemmt. Das steht in Einklang mit weiteren Studien.

Tang Y. et al. [2006] untersuchten den Einfluss von Docetaxel und Kastration auf LNCaP-Prostatakarzinom-Xenograft-Mausmodelle. Sie zeigten, dass eine einwöchige Behandlung mit Docetaxel zu ca. 29% Apoptose, eine Behandlung mit Docetaxel für zwei Wochen zu ca. 36% Apoptose führte. Es konnte weiterhin anschaulich gemacht werden, dass die Therapie mit Docetaxel in einem höheren Anteil von apoptotischen Zellen resultiert als die Kastration. Auch waren die Tumoren, die mit Docetaxel behandelt wurden, alle um mindestens 50% kleiner als die Tumoren in den Mäusen, die nur kastriert wurden. Am wirkungsvollsten erwies sich die Gabe von Docetaxel über zwei Wochen und anschließender Kastration [Tang Y. et al. 2006 S.171].

Das Wachstum der Tumoren unserer beiden Zellreihen wurde durch Docetaxel signifikant inhibiert (s. Abb. 14, S. 48). Dies deckt sich mit den Ergebnissen der oben zitierten Studien.

Im Zuge der Therapie mit Docetaxel verändert sich im Xenograft-Modell die Aufnahme von \([{}^{11}\text{C}]\text{Cholin}\) in die Tumoren sowohl der LNCaP-Zelllinie als auch der PC-3-Zelllinie

Innerhalb der Therapiegruppen konnte sowohl bei den PC-3-Tumoren als auch bei den LNCaP-Tumoren eine Verringerung der Aufnahme von \([{}^{11}\text{C}]\text{Cholin}\) infolge einer Docetaxel-Therapie nachgewiesen werden (s. Abb. 14, S. 48). Die Abnahme des Signals ließ sich bereits nach einer Woche registrieren. Die Verläufe der PC-3-Xenograft-Modelle unterschieden sich in der Therapiegruppe statistisch signifikant von denen der Kontrollgruppe. Im LNCaP-Xenograft-Modell erreichte der Abfall keine statistische Signifikanz; es ließ sich nur ein Trend ablesen, der auf einen
Abfall der T/M\textsubscript{dy}n-Quotienten infolge einer Docetaxel-Therapie hindeutet. Der Verlauf der T/M\textsubscript{dy}n-Quotienten der Therapiegruppe unterschied sich jedoch nicht statistisch signifikant von der Kontrollgruppe (p=0,921). Wir führen dies auf die zum Teil hohen Varianzen zurück, die sich in den T/M\textsubscript{dy}n-Quotienten der LNCaP-Tumoren im Beobachtungszeitraum ergaben. Bei der ersten Aufnahme, d. h. nachdem die Tumoren für ca. vier bis sechs Wochen gewachsen waren und bevor die Mäuse behandelt wurden, scheint die Varianz der [11C]Cholin-Aufnahme besonders hoch zu sein. Betrachtet man die T/M\textsubscript{dy}n-Quotienten nach Gabe von Docetaxel, bzw. PBS, d. h. ohne Berücksichtigung der Werte der ersten Aufnahme, waren die T/M\textsubscript{dy}n-Quotienten der Therapiegruppe signifikant niedriger als die der Kontrollgruppe (p=0,004).

Abbildung 14 – [11C]Cholin-Aufnahme und Tumorwachstum über den Beobachtungszeitraum von 3 Wochen (PC-3-Prostatakarzinomzellenlinie; nach Krause B.J. et al. 2010 S. 1865)

In der Kontrollgruppe zeigen die Tumoren (grüne Pfeile) in den PET-Scans ein kontinuierliches Wachstum, ausgehend von der Aufnahme vor der Gabe von phosphatgepufferter Salzlösung (PBS) über die drei Wochen (Wo) des Beobachtungszeitraums. Die Tumoren (blaue Pfeile) der mit Docetaxel (Dtx) behandelten Gruppe zeigen nur eine geringe Größenzunahme; zudem nimmt die Intensität der [11C]Cholin-Aufnahme ab.

Es stellt sich die Frage, auf welchen Wegen Docetaxel zu einer Verminderung der Cholinaufnahme führt. Der genaue Wirkmechanismus von Docetaxel ist nicht in allen Details bekannt. Man weiß aber, dass es an mehreren Mechanismen ansetzt.

Abbildung 15 – Wirkmechanismus von Docetaxel (nach Li Y. et al. 2004 S.164)

Zum anderen wird die Expression einiger Gene beeinflusst: so wird z. B. die Expression von α- und β-Tubulinen herunterreguliert, während stabilisierende Proteine vermehrt exprimiert werden.
Mögliche Erklärungsmodelle für den frühen Rückgang der $[^{11}\text{C}]$Cholin-Aufnahme in der PET/CT nach einer Therapie mit Docetaxel werden im Folgenden diskutiert:

Im Zuge einer Therapie mit Docetaxel kommt es zu einem erhöhten Zelluntergang. Der Anteil vitaler Zellen nimmt ab und damit einher geht die verminderte Aufnahme von $[^{11}\text{C}]$Cholin in die Tumoren. Wir untersuchten in unserer Arbeit längerfristige Effekte einer Docetaxel-Therapie auf die Cholin-Aufnahme in die Tumoren: wir beobachteten das Verhalten der Tumoren in $[^{11}\text{C}]$Cholin-PET/CT-Aufnahmen über drei Wochen, wobei erst eine Woche nach Behandlung mit Docetaxel die erste Verlaufsaufnahme gewonnen wurde. Alle bisherigen Studien haben lediglich die kurzfristigen Änderungen in der Aufnahme von Cholin in Folge einer Chemotherapie untersucht.

apoptotischen Kernen. Im Gegensatz dazu führte die Behandlung mit 2-
Methoxyestradiol zu keinen signifikanten Unterschieden in der Aufnahme von
\[^{3}\text{H}]\text{Cholin}\) im Vergleich zu unbehandelten Zellen [Davoodpour P. et al. 2004 S.870].
Hier ist aber zu bedenken, dass die Zellen lediglich 24 Stunden mit 2-
Methoxyestradiol inkubiert wurden, während das Wachstum der PC-3-Zellen über
 einen Zeitraum von zwölf Tagen verfolgt wurde.

Weiterhin ermittelten Bjurberg M. et al. [2009] die frühen Veränderungen in der
Aufnahme von \[^{18}\text{F}]\text{FDG}\) in Plattenepithelkarzinom-Xenograft-Mausmodelle in Folge
einer Chemotherapie mit Cisplatin. Einen Tag nach Verabreichung von Cisplatin stieg
das \[^{18}\text{F}]\text{FDG}\)-Signal an. Die Autoren erklären dies mit einem möglicherweise
erhöhten Metabolismus in Folge des zellulären Stresses oder mit einem möglichen
Einströmen von \[^{18}\text{F}]\text{FDG}\) durch zerstörte Zellmembranen – Prozesse, die dem
eigentlichen Tumorzelltod vorangehen. Denn nach dem initialen Anstieg fiel die
[^{18}\text{F}]\text{FDG}\)-Aufnahme bereits am folgenden Tag unter die der Kontrollen und sank
über weitere sieben Tag noch weiter ab [Bjurberg M. et al. 2009 S.329]. Parallel dazu
nahm der Anteil vitaler Tumorzellen über den Beobachtungszeitraum rapide ab; es
muss also zu einem Zelluntergang gekommen sein.

Die Erfassung kurzfristiger Veränderungen in der \[^{11}\text{C}]\text{Cholin}\)-Aufnahme war
nicht Bestandteil unserer Studie. Unsere Daten legen nahe, dass die längerfristigen
Effekte einer Behandlung mit Docetaxel über Wochen zu einem verstärkten
Zelluntergang führen. Sowohl die unbehandelten als auch die behandelten Tumoren
wachsen weiterhin, doch ist die Wachstumsgeschwindigkeit der behandelten
Tumoren signifikant geringer als die der unbehandelten. Docetaxel führt demnach
zudem zu einer signifikanten Wachstumsverzögerung der behandelten Tumoren.

Die Tumoren unserer Versuchstiere wurden nach Ablauf des Protokolls mittels
HE-Färbung histologisch aufgearbeitet (s. Abb. 16, S. 52). Docetaxel führt durch die
Hemmung der mitotischen Teilung zu einem erhöhten Zellverlust. Histologisch finden
sich neben einem hohen Anteil an nekrotischen Zellen aber auch weiterhin vitale
Zellen (persönliche Kommunikation mit Frau Dr. Frauke Neff, Helmholtz Zentrum
München). Unter Umständen sind die Tumorzellen nur in einer bestimmten Phase
des Zellzyklus empfindlich für Docetaxel; eine zweimalige Behandlung könnte
demnach weniger effektiv sein als eine mehrmalige Gabe des
Chemotherapeutikums, wodurch sich die Wahrscheinlichkeit erhöht, die malignen
Zellen in der sensiblen Phase des Zellzyklus zu treffen. Interessant wäre es in
weiteren Studien zu untersuchen, ob eine repetitive Verabreichung von Docetaxel zu einem erhöhten Anteil an zugrunde gegangen Zellen führt und ob sich dies auch in einem Abfall der $[^{11}\text{C}]$Cholin-Aufnahme in der PET-Bildgebung widerspiegelt.

Abbildung 16 – Schnittbild LNCaP-Tumor nach Docetaxel-Therapie mit ca. 70% diffuser Nekrose (HE-Färbung)

Es wäre auch möglich, dass Docetaxel zu einem veränderten Cholinmetabolismus in den Zellen führt, z. B. indem es den Cholintransport oder die Aktivität der Cholinkinase moduliert. Ein Hinweis dafür könnte sein, dass sich in Folge der Intervention mit Docetaxel in unserer Studie die Dynamik der $[^{11}\text{C}]$Cholin-Aufnahme in die PC-3-Tumoren veränderte. Die PC-3-Tumoren sowohl der Therapie- als auch der Kontrollgruppe zeigten vor der Behandlung mit dem Chemotherapeutikum einen signifikanten Abfall der T/M-Quotienten. Die Dynamik änderte sich bei den Kontrolltieren über die Wochen nicht signifikant. Die dynamischen Kurven der T/M-Quotienten der Therapietiere hingegen flachten sich im Verlauf des Beobachtungszeitraums ab. Hier konnte ein positiver Interaktionseffekt nachgewiesen werden, d. h. der Einfluss der Zeit auf den Verlauf der T/M-Quotienten wurde über die Wochen signifikant schwächer.
Die dynamischen Verläufe der T/M-Quotienten der LNCaP-Tumoren zeigten ein anderes Bild: vor der Gabe von Docetaxel, bzw. PBS gab es weder in der Therapie-, noch in der Kontrollgruppe signifikante Trends im Verlauf über 60 Minuten. Auch im Verlauf des Beobachtungszeitraums änderte sich die Dynamik der T/M-Quotienten nicht signifikant.

Weiterhin ist zu diskutieren, dass die Zellen, die die Behandlung mit dem Chemotherapeutikum überleben, infolgedessen auch einen veränderten Cholinmetabolismus aufweisen könnten, was sich in einer verminderten Aufnahme von \(^{11}\text{C}\)Cholin widerspiegeln würde. Möglicherweise führt die Beeinträchtigung des Spindelapparats direkt oder indirekt über Signalwege zu entsprechenden Veränderungen im Cholinstoffwechsel wie einer veränderten Kinetik der Cholin-Transporter, bzw. der Cholin-Kinase.

Am plausibelsten erscheint uns jedoch die Erklärung, dass das Chemotherapeutikum Docetaxel Apoptose induziert und es dadurch zu einem erhöhten Zelluntergang kommt. Dies geht einher mit einem Abfall der Aufnahme von \(^{11}\text{C}\)Cholin [Krause B.J. et al. 2010 S.1866 f.]
Die Änderung der Aufnahme von 11C-Cholin lässt sich bereits frühzeitig im Verlauf der Therapie, d. h. nach einer Woche, nachweisen.

Methodische Limitationen

Limitationen könnten sich bei unserer Analyse der ROI-Werte der mit dem microPET FOCUS 120 gemessenen Daten insbesondere durch Partialvolumeneffekte ergeben haben. Zum einen waren die Tumore bei der ersten Messung kleiner und nahe am Auflösungsvermögen des Scanners. Außerdem war im Verlauf der Studie eine unterschiedlich stark ausgeprägte Nekrose aller Tumoren mit zum Teil nur randständig erhaltenem, vitalem und damit \(^{11}\text{C}\)Cholin-aufnehmendem Tumorgewebe zu verzeichnen (s. Abb. 17). Entscheidend hierbei war die Abgrenzung der nekrotischen Areale vom vitalen Tumorgewebe, um geeignete Regionen für die Analyse der \(^{11}\text{C}\)Cholin-Aufnahmen zu finden. Dies kann dazu beigetragen haben, dass sich hier hohe Varianzen bei der Berechnung der T/M-Quotienten ergeben haben.

Abbildung 17 – PET-Aufnahme von zentral nekrotischem Tumor mit vitalem Randsaum

Zusammenfassung

Zudem wurde die Bedeutung der Dynamik der [11C]Cholin-Aufnahme in die Tumor-Xenograftmodelle über 60 Minuten genauer analysiert. Der Verlauf der T/M-Quotienten der PC-3-Tumoren fiel über die Dauer der PET-Untersuchung signifikant ab; dieser Abfall über die Zeit ging in der behandelten Gruppe über den Verlauf der
Beobachtung von vier Wochen verloren. Die LNCaP-Tumoren zeigten keine signifikanten Veränderungen im Verlauf der $[^{11}\text{C}]$Cholin-Aufnahme über 60 Minuten, weder in der therapierten Gruppe noch in der Kontrollgruppe.

Der Rückgang der Aufnahme von $[^{11}\text{C}]$Cholin in die Tumoren in Folge der Docetaxel-Therapie ist vor den Auswirkungen auf das Tumorwachstum zu detektieren. Ein erhöhter Zelluntergang, ausgelöst durch das Chemotherapeutikum, der zu einer Wachstumsverzögerung führt, scheint hierfür pathophysiologisch am ehesten entscheidend zu sein. Die veränderte Dynamik der PC-3-Tumoren ist alternativ möglicherweise auch auf Veränderungen in der Kinetik der Cholin-Transporter, bzw. der Cholin-Kinase als Folge einer Behandlung mit Docetaxel zurückzuführen.

Wir haben mit unserer Studie gezeigt, dass die $[^{11}\text{C}]$Cholin PET/CT im Tiermodell dabei helfen kann, die Effekte einer Chemotherapie frühzeitig zu ermitteln. Weitere Tiermodellstudien müssen folgen, um zusätzliche Erkenntnisse zum Nutzen der $[^{11}\text{C}]$Cholin PET/CT für die Ermittlung des Therapieansprechens zu gewinnen. Diese Erfahrungen können dann gegebenenfalls an Patienten verifiziert werden, sodass eventuell in Zukunft die Möglichkeit besteht, das Therapiemanagement von Patienten mit Prostatakarzinomen zu verbessern.
Literaturverzeichnis

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die der Fakultät für Medizin der Universität Rostock zur Promotionsprüfung vorgelegte Arbeit mit dem Titel:
Ermittlung des Ansprechens auf eine Docetaxel-Therapie bei PC-3- und LNCaP-Prostatakarzinom-Xenograft-Mausmodellen mit der 11C-Cholin Kleintier PET/CT

in der
Klinik und Poliklinik für Nuklearmedizin
der Universität Rostock
Direktor: Prof. Dr. med. Bernd Joachim Krause

unter der Anleitung und Betreuung durch
Prof. Dr. med. Bernd Joachim Krause

ohne sonstige Hilfe erstellt und bei der Abfassung bei der Anfertigung der Dissertation keine anderen als die in der Arbeit genannten Hilfsmittel benutzt habe.

(X) Ich habe die Dissertation in dieser oder ähnlicher Form in keinem anderen Prüfungsverfahren als Prüfungsleistung vorgelegt.

() Die vollständige Dissertation wurde in ..
... veröffentlicht. Die Fakultät für
... hat der Vorveröffentlichung zugestimmt.

(X) Ich habe den angestrebten Doktorgrad noch nicht erworben und bin nicht in einem früheren Promotionsverfahren für den angestrebten Doktorgrad endgültig gescheitert.
Die Promotionsordnung der Universität Rostock ist mir bekannt.

Heilbronn, den 29. November 2012

David Gunnar Sachs
Danksagung

Am Ende dieser meiner Dissertation ist es mir wichtig, noch einmal einigen Menschen zu danken, die maßgeblich zum Zustandekommen der Arbeit beigetragen haben und die mich auf dem Weg dabei und durch das Medizinstudium insgesamt begleitet haben.

Mein ganz herzlicher Dank gilt zuvörderst meinem Doktorvater Herrn Prof. Dr. med. Bernd Joachim Krause, der mir das Thema vorgeschlagen hat und mir mit viel Geduld, Engagement, fachlichem Rat und immer einem offenen Ohr zur Seite stand. Die Arbeit mit ihm hat mein Studium sehr bereichert; auch jenseits der Doktorarbeit wurde er mir ein hochgeschätzter Ansprechpartner.

Weiterhin danke ich Frau Annette Frank und dem ganzen Assistententeam der Arbeitsgruppe unter Prof. Krause für die freundliche und hilfsbereite Zusammenarbeit.

Meine Freunde in Studium und Freizeit waren mir eine ständige Stütze und Bereicherung. Ich danke ihnen, dass sie mich auf diesem meinem Weg begleitet haben und es manches Mal verstanden haben, mich abzulenken.
Die wichtigsten Befunde dieser Dissertation waren:

Die Tumoren sowohl der PC-3- als auch der LNCaP-Zelllinie konnten sowohl in der CT- als auch in der PET-Bildgebung dargestellt werden. Insgesamt ergab sich jedoch ein eher niedriger Kontrast.

Die \[^{11}\text{C}]\text{Cholin}-Aufnahme in Tumoren der LNCaP-Zelllinie lag im Xenograft-Modell über der \[^{11}\text{C}]\text{Cholin}-Aufnahme in Tumoren der PC-3-Zelllinie. Im Durchschnitt ergab sich bei den LNCaP-Tumoren ein T/M\text{mean}-Quotient von 2,0 (SE=0,2) in der Therapiegruppe, bzw. von 1,9 (SE=0,2) in der Kontrollgruppe. Das Verhältnis bei den PC-3-Tumoren lag bei 1,8 (SD=0,4) in der Therapiegruppe, bzw. bei 1,6 (SD=0,5) in der Kontrollgruppe.

Das Wachstum der Tumoren sowohl der LNCaP-Zelllinie als auch der PC-3-Zelllinie wurde im Xenograft-Mausmodell durch Docetaxel gehemmt.

Der maximale Tumordurchmesser der PC-3-Tumoren nahm in beiden Gruppen über die Zeit signifikant zu (Therapiegruppe p=0,010; Kontrollgruppe p<0,001). In der Therapiegruppe zeigte sich jedoch ein signifikant langsameres Wachstum der Tumoren (p=0,025).

Das Volumen der LNCaP-Tumoren nahm in beiden Gruppen über die Zeit signifikant zu (Therapiegruppe p=0,001; Kontrollgruppe p<0,001). Die Tumoren der Therapiegruppe nahmen jedoch über den gesamten Zeitraum von drei Wochen signifikant weniger an Volumen zu als die Kontrolltiere (p=0,013).

Auch der maximal gemessene Durchmesser der LNCaP-Tumoren nahm in beiden Gruppen über den Beobachtungszeitraum signifikant zu (Therapiegruppe p=0,002; Kontrollgruppe p<0,001). Das Wachstum in der Therapiegruppe war jedoch signifikant geringer als in der Kontrollgruppe (p=0,043).
Bei den PC-3-Tumoren konnte innerhalb der Therapiegruppe bei den PC-3-Tumoren bereits nach einer Woche eine statistische signifikante Verringerung der Aufnahme von $[^{11}\text{C}]$Cholin infolge einer Docetaxeltherapie nachgewiesen werden (jeweils $p<0,001$), im Gegensatz zu den Werten in der Kontrollgruppe ($p=0,827$, bzw. $p=0,517$, bzw. $p=0,720$).

Innerhalb sowohl der Therapie- als auch der Kontrollgruppe gab es bei der ersten Messung einen signifikanten Abfall der T/M_{dyn}-Quotienten über die gesamte Aufnahmezeit (jeweils $p<0,001$). Dieser Abfall der T/M_{dyn}-Quotienten fiel bei den therapierten Tieren von Woche zu Woche signifikant geringer aus im Vergleich zur ersten Aufnahme. In der Gruppe der Kontrolltiere hingegen zeigte der Abfall der T/M_{dyn}-Quotienten über den Beobachtungszeitraum keine signifikante Änderung.

Bei den LNCaP-Tumoren ließ sich für die Therapiegruppe bereits eine Woche nach Beginn der Behandlung mit Docetaxel ein signifikanter Abfall der T/M_{dyn}-Quotienten erkennen ($p=0,002$). Bei der Messung zwei Wochen nach Beginn der Therapie konnte nur ein Trend ermittelt werden, der keine statistische Signifikanz im Vergleich zur Aufnahme vor Therapie ($p=0,055$) erreichte. Die Aufnahme drei Wochen nach Beginn der Therapie erbrachte wieder einen signifikanten Unterschied ($p=0,003$). Im Gegensatz dazu zeigten die T/M_{dyn}-Quotienten in der Kontrollgruppe keinen statistisch signifikanten Abfall ($p=0,558$, bzw. $p=0,811$, bzw. $p=0,619$).

Zum Zeitpunkt der ersten Messung der LNCaP-Tumoren konnte weder in der Kontroll- noch in der Therapiegruppe eine signifikante Änderung des minütlichen Trends festgestellt werden ($p=0,294$). Es ergab sich keine Evidenz für eine Änderung der zeitlich bedingten T/M_{dyn}-Quotienten über die Wochen, weder innerhalb der Therapiegruppe ($p=0,985$) noch innerhalb der Kontrollgruppe ($p=0,180$).

Wir haben mit unserer Studie gezeigt, dass die $[^{11}\text{C}]$Cholin PET/CT im Tiermodell dabei helfen kann, die Effekte einer Chemotherapie frühzeitig zu ermitteln. Weitere Tiermodellstudien müssen folgen, um zusätzliche Erkenntnisse zum Nutzen der $[^{11}\text{C}]$Cholin PET/CT für die Ermittlung des Therapieansprechens zu gewinnen. Diese Erfahrungen können dann gegebenenfalls an Patienten verifiziert werden, sodass eventuell in Zukunft die Möglichkeit besteht, das Therapiemanagement von Patienten mit Prostatakarzinomen zu verbessern.