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1  Introduction 

During the first billion years of life on Earth the environment was anaerobic and ferrous iron 

(Fe2+) was abundantly available (Imlay, 2006). Because of its unique physicochemical properties, 

iron has been incorporated into numerous proteins serving as a catalyst or electron carrier 

(Andrews et al., 2003). This choice in the early steps of evolution rendered the biological systems 

strongly dependent on iron. Today iron is an indispensable micronutrient for virtually all bacterial 

species. It plays a paramount role in many biological processes, such as DNA biosynthesis, 

respiration, H2 production and consumption among others (Andrews et al., 2003). However, the 

transition from the anaerobic to the aerobic era about 2 billion years ago significantly altered the 

predominant chemistry of iron (Frausto da Silva and Williams, 2001; Andrews et al., 2003). The 

oxidation of ferrous (Fe2+) to ferric (Fe3+) iron has led to formation of highly insoluble Fe(OH)3 

complexes (Crichton, 2001). Thus, although plentiful in most ecological niches, this transition 

metal is not readily available for the biological systems (Fig. 1.1). On the other hand, excess of 

intracellular unincorporated iron could promote via the Haber-Weiss-Fenton reaction formation of 

reactive oxygen species (ROS) (Fig. 1.2), which might compromise key cellular structures (Imlay 

et al., 1988; 2003). In order to address these issues, aerobic and facultative bacteria have 

developed a number of strategies. 

 

Fig. 1.1  Dramatic reduction in the bioavailability of iron upon transition from the anaerobic to the aerobic era 

(adapted from Frausto da Silva and Williams, 2001). Concentration of selected metals [M] in the primitive sulphide sea 

(open symbols) and the aerobic sea (closed symbols), which reflects the relative availability of these elements for the 

biological systems. 
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Fig. 1.2  Mechanism of iron-induced toxicity in the biological systems (adapted from Crichton, 2001). Increased 

intracellular free iron levels could lead to formation via the Fenton reaction (1) of HO·, a highly reactive oxidant. Superoxide 

(O2
-) can reduce Fe3+ to Fe2+ and molecular O2 (2). The sum of reaction (2) and the Fenton reaction (1) is the so-called 

Haber-Weiss reaction (3). 

To capture limiting iron from the environment almost all aerobic microorganisms synthesize and 

export low-molecular-weight high-affinity chelators termed siderophores ("sideros phoros", iron 

carriers) (Neilands, 1995; Wandersman and Delepelaire, 2004; Miethke and Marahiel, 2007). The 

resultant Fe(III)-siderophore complexes are subsequently transported back into the cell via 

dedicated uptake systems, followed by release of iron into the intracellular milieu (Köster, 2001). 

Alternatively, Fe3+ is solubilised through reduction by cell-surface associated or extracellular 

assimilatory ferric iron reductases (Schröder et al., 2003). On the other hand, to combat the 

deleterious effect of ROS, bacteria employ sophisticated adaptive detoxification and repair 

systems, which include catalase (Kat), superoxide dismutase (SOD) and alkyl hydroperoxide 

reductase (AhpCF) (Imlay, 2003; 2008). But most importantly microorganisms had to establish 

molecular mechanisms for effective monitoring and dynamic control of the intracellular iron 

content so that it meets the metabolic requirements of the cell. 

The paradigm of the bacterial iron-dependent response is the ferric uptake regulator (Fur) protein 

as originally described more than 30 years ago in Escherichia coli (Hantke, 1981; Bagg and 

Neilands, 1987). Since then Fur orthologs have been identified and characterized in numerous 

Gram-negative as well as Gram-positive bacteria (Lee and Helmann, 2007). Many of these 

homologues were able to complement Fur deficiency in E. coli fur mutants, suggesting that the 

molecular mechanisms of Fur-dependent regulation are conserved among bacteria (Escolar et al., 

1999). Alternatively, in Corynebacterium spp. and Mycobacterium spp. responsible for 

maintenance of an adequate iron status are the functionally analogous DtxR and IdeR proteins 

(Brune et al., 2006; Ranjan et al., 2006; Rodriguez, 2006; Wennerhold and Bott, 2006). 

Fur is an iron-sensing homodimeric metalloprotein, which serves as a transcriptional repressor of 

genes implicated in iron acquisition and storage (Hantke, 2001; Andrews et al., 2003). The Fur 

monomer (17-19 kDa) is characterized by a bipartite structural organization composed of an N-

terminal DNA-binding domain (DBD), which adopts a canonical winged helix-turn-helix fold 

(wHTH), and C-terminal dimerization domain (DD) (Coy and Neilands, 1991; Stojiljkovic and 
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Hantke, 1995; Lee and Helmann, 2007). In addition to the regulatory Fe(II)-binding site, 

structural and biochemical studies have established Zn(II) as a structural element of several 

characterized Fur regulators (Jacquamet et al., 1998; Althaus et al., 1999; Dian et al., 2011; 

Butcher et al., 2012). Fig. 1.3 depicts the classical model of Fur-mediated regulation in response 

to changing levels of iron in the environment. Under iron-sufficient conditions, Fur interacts with 

a conserved motif, known as a Fur box, in the promoter region of genes involved in iron uptake, 

thereby preventing access of the RNA polymerase (Escolar et al., 1999; Andrews et al., 2003). 

Conversely, when iron is scarce the Fur protein is no longer associated with its co-repressor Fe2+, 

leading to derepression of the corresponding genes. 

 

Fig. 1.3  Classical model of iron-dependent Fur regulation in bacteria (adapted from Andrews et al., 2003). 

More recent discoveries have highlighted a functional diversity within the Fur family of proteins 

defining several subclasses (Fig. 1.4). Members of the Fur protein family have been demonstrated 

to exert control on zinc (Zur, zinc uptake regulator), manganese (Mur, manganese uptake 

regulator) and nickel (Nur, nickel uptake regulator) homeostasis in bacteria (Patzer and Hantke, 

1998; Gaballa and Helmann, 1998; Diaz-Mirelez et al., 2004; Ahn et al., 2006). Fur-like proteins 

sense also signals other than metal ions (Lee and Helmann, 2007). For instance, PerR (peroxide 

regulon repressor), originally discovered in Bacillus subtilis, is a metalloprotein, which controls a 

hydrogen peroxide-inducible repertoire of genes involved in oxidative stress defence (Chen et al., 

1995; Bsat et al., 1998; Lee and Helmann, 2006a). 
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Fig. 1.4  Role of the Fur family of regulators in maintenance of homeostasis of biologically significant metal ions 

and response to oxidative stress in bacteria (adapted from Frausto da Silva and Williams, 2001 and Giedroc and 

Arunkumar, 2007). Bulk biological metals are indicated in circles and important trace metals in squares. PerR binds Fe2+ or 

Mn2+ to a metalloregulatory site, senses intracellular H2O2 levels by metal-catalysed histidine oxidation and regulates 

accordingly the transcription of genes involved in oxidative stress defence (Lee and Helmann, 2006a). 

In addition to redox conditions, bioavailability of iron in the environments is also influenced by 

competitive pressure from other organisms, as well as by some common variables like pH, 

temperature and ionic strength (Crichton, 2001; Fabiano et al., 1994; Liu and Millero, 2002). For 

pathogenic microorganisms the access to this essential micronutrient is further affected by the 

host defence mechanisms, which employ iron-sequestration proteins such as albumin, transferrin 

and lactoferrin (Braun and Killmann, 1999). Thus, iron could be considered as a cue for 

adaptation to a particular microenvironment. Consistently, the role of the iron-responsive 

regulators is not solely confined to direct control of iron supply, but also involves a broad array of 

processes including redox- and acid-stress resistance, virulence, motility, quorum sensing, energy 

and carbon metabolism, among others (Boyd et al., 1990; Foster and Hall, 1992; Ratledge and 

Dover, 2000; Hantke, 2001; Bijlsma et al., 2002; McHugh et al., 2003; Oglesby et al., 2008; da 

Silva Neto et al., 2009). Therefore, Fur as well as the functionally equivalent DtxR and IdeR, are 

now appreciated as global, pleiotropic regulators. 

The role of the iron-responsive regulators has been extensively studied in aerobic and facultative 

microorganisms. However, the mechanisms for maintenance of iron homeostasis in strictly 

anaerobic bacteria have received less attention. This arises from the fact that in the anoxic 

environments, bioavailable form of iron is expected to be sufficiently accessible. Moreover the 

lack of oxygen in these habitats prevents formation of detrimental ROS. Therefore, the need 

for a sophisticated system coordinating an iron-dependent response in free-living strict 

anaerobes is not apparent. The Gram-positive, endospore-forming bacterium Clostridium 

acetobutylicum is a classical representative of this group. C. acetobutylicum is characterized by a 

biphasic fermentation pattern and complex cell cycle (Jones et al., 1982; Jones and Woods, 1986). 

It ferments sugars to the organic acids acetate and butyrate with concomitant release of H2 and 
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CO2 during the exponential growth phase (acidogenesis) and switches to formation of the solvents 

ethanol, acetone and butanol upon entry into the stationary phase (solventogenesis) (Fig. 1.5) 

(Jones and Woods, 1986). The latter has attracted much interest as an attractive biofuel (Dürre, 

2007; Lee et al., 2008; Ni and Sun, 2009). Therefore, C. acetobutylicum has been a subject of an 

 

Fig. 1.5  Significance of iron for the central metabolic pathways in C. acetobutylicum (adapted from Lütke-

Eversloh and Bahl, 2011). Experimentally determined and predicted iron-containing proteins are indicated in red (Jones and 

Woods, 1986; Meinecke et al., 1989; Fischer et al., 1993; Demuez et al., 2007). Ldh, lactate dehydrogenase; HydA, 

hydrogenase; PFOR, pyruvate:ferredoxin oxidoreductase; Fd, ferredoxin; Pta, phosphotransacetylase; Ack, acetate kinase; 

AdhE, aldehyde/alcohol dehydrogenase; CtfAB, acetoacetyl-CoA:acyl-CoA transferase; Adc, acetoacetate decarboxylase; 

Thl, thiolase; Hbd, 3-hydroxybutyryl-CoA dehydrogenase; Crt, crotonase; Bcd, butyryl-CoA dehydrogenase; Ptb, 

phosphotransbutyrylase; Buk, butyrate kinase; AAc, acetoacetate; AAc-CoA, acetoacetyl-CoA; Ac/Bu, acetate/butyrate; Ac-

CoA/Bu-CoA, acetyl-CoA/ butyryl-CoA; ox, oxidized; red, reduced. 

active investigation in the recent years, in order to better understand its complex multi-branched 

central metabolism with the ultimate goal to optimize productivity (Lehmann and Lütke-Eversloh, 

2011; Lehmann et al., 2012a, b; Cooksley et al., 2012). The primary metabolic pathways in this 

microorganism are strongly dependent on iron due to participation of key iron-containing 

proteins, including the H2-evolving hydrogenase (HydA), pyruvate:ferredoxin oxidoreductase 



Introduction  6 

(PFOR) and the electron carrier ferredoxin (Fig. 1.5). Previous studies have demonstrated a 

pronounced effect of iron availability on the physiology of C. acetobutylicum and suggested a 

more complex iron-dependent regulation (Bahl et al., 1986; Junelles et al., 1988; Peguin and 

Soucaille, 1995). Sequencing of the genome of C. acetobutylicum allows now the interpretation of 

these results in light of the coding sequence (Nölling et al., 2001). 

The genome of C. acetobutylicum has revealed a plethora of putative metalloregulatory proteins, 

including three Fur homologs (CAC0951, CAC1682 and CAC2634) (Nölling et al., 2001). 

Previous studies have established the role of CAC2634 as a PerR regulator, which controls an 

assortment of genes involved in oxidative stress defence (Hillmann et al., 2008; 2009b). In fact, 

C. acetobutylicum has been demonstrated to be far from defenceless and able to tolerate limited 

exposure to ambient air (O'Brien and Morris, 1971; Kawasaki et al., 2004). Based on these 

results, it could be implied that this microorganism might experience periodically aeration in its 

natural microenvironments. This necessitates a sophisticated system for iron-dependent regulation 

that would sense and respond to the special requirements of a strictly fermentative anaerobe 

(Vasileva et al., 2012). This work represents an initial study on the molecular mechanisms for 

maintenance of iron homeostasis in C. acetobutylicum. A comparative modelling and 

experimental analysis of CAC0951 and CAC1682 allowed the identification of a functional ferric 

uptake regulator (Fur) protein. The role of Fur in the lifestyle of C. acetobutylicum was 

investigated by employing a combined physiological, transcriptomic and proteiomic approach. 

Collectively, the results obtained in the presented study demonstrate that maintenance of a proper 

intracellular iron status is an important facet for this microorganism and emphasize the central 

role of Fur in this process. 
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2  Materials and Methods 

2.1  Bacterial strains and plasmids 

The bacterial strains, vectors and recombinant plasmids, employed in this study are listed in Table 

7.1, Table 7.2 and Table 7.3 (Appendix), respectively. 

2.2  Oligonucleotides 

All oligonucleotides used in this study are listed in Table 7.4 (Appendix). 

2.3  Media and growth conditions 

All media and thermostable supplements were autoclaved for 20 min at 121 °C. Thermolabile 

additives were sterilized by filtration (0.2 µm pore size, Sarstedt). 

2.3.1  Growth media for E. coli 

LB medium (Sambrook and Russell, 2001) 

Trypton           10    g 

Yeast extract            5    g 

NaCl            10    g 

dH2O up to       1000  ml 

* For preparation of agar plates the medium was supplemented with 1.5 % [w/v] agar. 

** In order to meet the performance specifications for the ß-galactosidase assay (see 2.15.5.1), liquid LB 

 medium was supplemented with 100 µM FeSO4, where indicated. 

 

MacConkey-lactose agar medium 

Enzymatic digest of gelatine        17    g 

Enzymatic digest of caseine          1.5   g 

Enzymatic digest of animal tissue         1.5   g 

Lactose           10    g 

Bile salts             5     g 

NaCl              5    g 

Agar            12    g 

Neutral red             0.05   g 

dH2O up to      1000  ml 

* The medium was supplemented with FeSO4 as indicated. 
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CAS agar medium (Schwyn and Neilands, 1987) 

PIPES           30.24   g 

10x MM9         100  ml 

NaOH             6    g 

Agar            15    g 

dH2O          750  ml 

Casamino acids (10% [w/v]) *        30  ml 

Glucose (20 % [w/v]) *         10  ml 

MgCl2 (1 M) *            1  ml 

CaCl2 (100 mM) *           1  ml 

Thiamine.HCl (0.2 % [w/v]) *          1  ml 

L-Tryptophan (1 % [w/v]) *          3  ml 

CAS-HDTMA solution *      100  ml 

* These components were added to the medium from sterile stock solutions after autoclavation and cooling 

 to 50 °C. 

10x MM9 

KH2PO4             3    g 

NaCl              5    g 

NH4Cl           10    g 

dH2O up to       1000  ml 

CAS solution 

CAS            60.5 mg 

dH2O            50   ml 

1 mM FeCl3 (dissolved in 10 mM HCl)      10   ml 

HDTMA solution 

HDTMA           72.9 mg 

dH2O            40   ml 

The CAS and HDTMA solutions were mixed slowly under stirring and the resulting solution was 

autoclaved. 

2.3.2  Growth media for B. subtilis 

TBAB agar medium 

Trypton           10    g 

Beef extract             3    g 

NaCl            15    g 

Agar            15    g 

dH2O up to       1000   ml 
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Minimal medium with low-phosphate content (Chen et al., 1993) 

MOPS (adjusted to pH 7.4 with 2 M KOH)   40   mM 

Potassium phosphate (pH 7.0)        2   mM 

Glucose *         20     g/l 

(NH4)2SO4           2     g/l 

MgSO4.7 H2O          0.2     g/l 

Na3-Citrate.2 H2O          1     g/l 

Potassium glutamate         1     g/l 

Tryptophan *          8  mg/l 

FeCl3 **           5   µM 

(NH4)6Mo7O24          3   nM 

H3BO4       400   nM 

CoCl2          30   nM 

CuSO4         10   nM 

ZnSO4         10   nM 

MnCl2         80   nM 

* These components were added from sterile stock solutions to the medium after autoclavation. 

** Iron-limiting conditions were achieved by omitting FeCl3 from the medium. 

2.3.3  Growth media for C. acetobutylicum 

Preparation of anaerobic media for C. acetobutylicum was performed as described by Breznak and 

Costilow (1994). Liquid media were boiled in a microwave oven in order to eliminate oxygen and 

subsequently cooled down to RT while gasing with N2. Anaerobic Ti-III-NTA solution (2.3.5) 

was used to reduce trace amounts of oxygen immediately prior to inoculation if necessary. 

RCA (Reinforced Clostridial Agar) (Oxoid GmbH, Wesel) 

Glucose           5     g 

Yeast extract          3     g 

Trypton         10     g 

NaCl            5     g 

Beef extract         10     g 

Sodium acetate          3     g 

L-cystein-HCl          0.5    g 

Starch           1     g 

Agar          15     g 

dH2O up to     1000   ml 

* To mimic iron-limiting conditions the iron chelator 2,2'-dipyridyl (Sigma Aldrich) was added in

 concentrations of 50, 100 and 150 µM to the RCA agar medium. 

 

CGM (clostridial growth medium) (Wiesenborn et al., 1988, mod.) 

Glucose (50 % [w/v]) *     100   ml 

Yeast extract          5     g 
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K2HPO4 x 3 H2O          0.75    g 

KH2PO4           0.75    g 

MgSO4 x 7 H2O          0.71    g 

MnSO4 x H2O        10  mg 

FeSO4 x 7 H2O        10  mg 

NaCl            1     g 

Asparagine           2     g 

(NH4)2SO4           2     g 

Resazurin (0.1 % [w/v])         1   ml 

dH2O up to     1000   ml 

* Glucose was added from a sterile anaerobic stock solution after autoclavation. 

MS-MES (medium synthetique) (Monot et al., 1982, mod.) 

Glucose         60     g 

K2HPO4           0.55    g 

KH2PO4           0.55    g 

MgSO4 x 7 H2O          0.22    g 

FeSO4 x 7 H2O        11  mg 

Acetic acid           2.3  ml 

PABA (8 mg/l) **       10   ml 

Biotin (0.08 mg/l) **         1   ml 

MES          21.23    g 

Resazurin (0.1 %, [w/v])        1   ml 

dH2O up to     1000   ml 

* The pH value of the medium was adjusted to 6.6 with NH4OH before addition of MES. 

** These components were added from sterile-filtered stock solutions after adjustment of the pH value. 

 

MS-CaCO3 agar medium 

Glucose         24     g 

K2HPO4           0.22    g 

KH2PO4           0.22    g 

MgSO4 x 7 H2O          0.088    g 

FeSO4 x 7 H2O          4.4 mg 

Acetic acid           0.92  ml 

PABA (8 mg/l) **         2   ml 

Biotin (0.08 mg/l) **         0.4  ml 

CaCO3           0.8    g 

Agarose           6     g 

dH2O up to       400   ml 

* The pH value of the medium was adjusted to 6.6 with NH4OH before the addition of CaCO3. 

** These components were added from sterile-filtered stock solutions after adjustment of the pH value. 
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2.3.4  Antibiotics and additives 

For the purpose of selection and screening, media contained antibiotics or additives listed in Table 

2.1. Stock solutions were prepared according to Sambrook and Russell (2001), sterilized by 

filtration (0.2 µm pore size, Sarstedt), aliquotted and stored at - 20 °C. 

Table 2.1 Antibiotics and additives 

Antibiotics 

or additives 

Stock solution/ 

Solvent 

Final concentration  

E. coli B. subtilis C. acetobutylicum 

Ampicillin (Amp) 
50 mg/ml/ 

sterile dH2O 
100 µg/ml - - 

Chloramphenicol (Cam) 
34 mg/ml/ 

96 % ethanol [v/v] 
25 µg/ml 5 µg/ml - 

Kanamycin (Kan) 
50 mg/ml/ 

sterile dH2O 
30 µg/ml - - 

Tetracycline (Tc) 
10 mg/ml/ 

50 % ethanol [v/v] 
5 µg/ml - - 

Erythromycin (Erm) 
50 mg/ml/ 

96 % ethanol [v/v] 
- - 30 µg/ml 

Thiamphenicol (Tm) 
15 mg/ml/ 

96 % ethanol [v/v] 
- - 15 µg/ml 

X-Gal 
20 mg/ml/ 

Dimethylformamide 
50 µg/ml - - 

2.3.5  Titan-(III)-NTA solution 

Titan-(III)-NTA solution was prepared as described previously (Mann, 2012). 

2.3.6  Growth conditions 

Strains of E. coli and B. subtilis have been propagated under aerobic conditions in Erlenmeyer 

flasks or on agar medium. Liquid cultures were grown on a rotary shaker (180 rpm) at 37 °C. 

Cultures of C. acetobutylicum have been grown under anaerobic conditions in Hungates or Müller 

& Krempel serum bottles or on solid medium as described in detail by Lehmann (2012). 

2.4  Storage of strains and control of purity 

Frequently used E. coli and B. subtilis strains were stored on agar plates for up to two months at 

4 °C. For long-term storage, glycerol stock cultures were prepared by adding 1 ml of an 

exponentially grown culture to 500 µl LB-glycerol solution (60 % [v/v] glycerol and 40 % [v/v] 

LB medium) in sterile flasks. The flasks were appropriately labeled and stored at - 70°C. Strains 
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of C. acetobutylicum were stored as spore suspension at - 20 °C in MS-MES medium (2.3.3). For 

control of purity, cells from the stock cultures have been routinely restreaked on agar medium 

supplemented with appropriate antibiotics for selection (Table 7.1 and Table 2.1) 

2.5  Analytical procedures 

2.5.1  Optical density 

Bacterial growth has been evaluated by measuring the optical density (OD) of cell suspensions at 

600 nm wavelength in 1 cm single-use plastic cuvettes using a spectrophotometer (Ultraspec® 

3000, Amersham, Braunschweig). Water or medium served as blank. 

2.5.2  Determination of growth rates 

Specific growth rates (µ) of batch cultures were determined using the following equation: 

        
         

               
 

Equation 1 Calculation of specific growth rates (µ). t1/t2, two distinct experimental time points; x2/x1, OD600, 
measured at two time points from the exponential growth. 

 

2.5.3  pH measurement 

Determination of pH values in cell-free supernatants from cultures of C. acetobutylicum was 

performed using a pH meter (pH Meter pH526, WTW GmbH). 

2.5.4  Light microscopy 

Cell morphology has been documented using a bright-field microscope (Olympus BX41TF-

microscope, Olympus Deutschland GmbH, Hamburg) at a magnification of 400X (Objective: 

A40LP). 

2.5.5  Glucose consumption 

Glucose concentration in cell-free supernatants from cultures of C. acetobutylicum was 

determined spectrophotometrically using an enzymatic assay as described by Wietzke (2013). 

 



Materials and Methods  13 

2.5.6  Lactate production 

Quantification of D- and L-lactic acid in cell-free culture supernatants from C. acetobutylicum 

was performed using the "D-lactic acid and L-lactic acid" commercial kit (Megazym, Wicklow, 

Ireland) essentially as described by the manufacturer. 

2.5.7  Gas chromatography 

Quantification of the accumulated fermentation products (acetate, butyrate, acetone, ethanol and 

butanol) in cell-free culture supernatants from C. acetobutylicum was performed using gas 

chromatography as described in detail by Lehmann (2012). 

2.5.8  Quantification of gaseous fermentation products 

Total gas volumes and H2:CO2 ratios were measured in the headspace of 50-ml MS-MES (2.3.3) 

cultures from C. acetobutylicum as described by Wietzke (2013). 

2.5.9  Riboflavin identification and quantification 

2.5.9.1 Visible and fluorescence spectra 

Cell-free culture supernatants from C. acetobutylicum were tested for presence of flavins 

spectrophotometrically and fluorimetrically. An aqueous solution of riboflavin ( ≥ 99 %, Sigma 

Aldrich) served as a flavin standard. Visible spectra were obtained at a range between 310 and 

550 nm wavelength using Spectramax ME2 Multi-Mode Microplate Reader (Molecular Devices). 

Fluorescence emission spectra were determined using the same device with an excitation beam of 

450 nm. Scanning was performed between 480 and 650 nm wavelength. 

2.5.9.2 Analytical TLC (Thin Layer Chromatography) 

For the purpose of analytical TLC, C. acetobutylicum strains of interest were grown in 200 ml 

MS-MES medium (2.3.3). Cell-free supernatants were then aliquotted, lyophilized (Vacuum 

Concentrator NVZ150, Zirbus Apparate- und Maschinenbau GmbH, Bad Grund) and stored in the 

dark at RT until further use. Standards of flavin mononucleotide (FMN) ( ≥ 70 %, Sigma 

Aldrich), flavin adenine dinucleotide (FAD) ( ≥ 95 %, Sigma Aldrich) and riboflavin ( ≥ 95 %, 

Sigma Aldrich), as well as the lyophilized supernatants, were dissolved in 96 % pure ethanol. Five 

µg of each were loaded on a silica gel plate (TLC Silica gel 60 F254, Merck). The plate was 
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afterwards developed in the dark with n-butanol: acetic acid: water at a ratio of 4: 1: 5 and the 

spots were visualized using 302 nm UV light. 

2.5.9.3 Quantification of riboflavin 

Riboflavin concentration in culture supernatants was quantified spectrophotometrically at 444 nm 

wavelength with use of a standard curve. 

                          
  

  
    

                                           

       
 

Equation 2 Quantification of riboflavin in cell-free supenatants from cultures of C. acetobutylicum. The 

equation is based on a standard curve, prepared with aqueous riboflavin solutions of known concentration. 

 

2.5.10 Detection and quantification of siderophores 

2.5.10.1 Arnow assay (Arnow, 1937) 

The colorimetric Arnow assay was performed to detect and quantify catechol siderophores in 

culture supernatants. The following reagents were added to 1 ml of cell-free culture supernatant in 

the exact order given, mixing well after each: 1 ml 0.5 M HCl; 1 ml nitrite-molybdate reagent 

(catechol siderophores produce a yellow colour) and 1 ml 1M NaOH (the colour changes to red). 

Absorbance was measured at 510 nm and values were normalized to the optical density (OD600) of 

the corresponding cultures. 

Nitrite-molybdate reagent 

NaNO2       10    g 

Na2MoO4       10    g 

dH2O up to     100  ml 

2.5.10.2 Ferric perchlorate assay (Atkin et al., 1970) 

The ferric perchlorate assay was employed for detection of hydroxamate siderophores in culture 

supernatants. This assay is specific for hydroxamates since iron is usually dissociated from 

catechols at low pH (Payne, 1994). To 0.5 ml of cell-free culture supernatant, 2.5 ml of ferric 

perchlorate reagent were added and mixed well. Hydroxamate siderophores, if present, produce 

orange to purple colored complexes (Payne, 1994). 

Ferric perchlorate reagent 

Fe(ClO4)3         5  mM 
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HClO4         0.1    M 

2.5.10.3 CAS liquid assay (Schwyn and Neilands, 1987) 

The Chrome Azurol-S (CAS) assay is a universal test used for detection of siderophores 

irrespective of their structure. It uses an iron-dye complex, which changes its colour from blue to 

yellow upon loss of iron withdrawn from compounds with higher affinity. The iron-dye complex 

could be used in a liquid assay or integrated into agar medium (2.3.1) for in vivo detection of 

siderophores. The strains of interest were grown overnight in low-phosphate medium (2.3). 500 µl 

of cell-free culture supernatant was mixed with 500 µl CAS assay solution and 10 µl shuttle 

solution. The mixture was incubated for a few minutes at RT and absorbance was recorded at 630 

nm wavelength. 

CAS assay solution 

CAS (2 mM)           7.5  ml 

1 mM FeCl3 (dissolved in 10 mM HCl)       1.5  ml 

HDTMA          50   ml 

Piperazine buffer         36.75  ml 

dH2O up to        100   ml 

HDTMA solution 

HDTMA            0.0219    g 

dH2O up to          50   ml 

Piperazine buffer (pH 5.6) 

Piperazine            4.307    g 

dH2O up to          30   ml 

HCl              6.75  ml 

Shuttle solution 

Sulfosalicylic acid          0.2  M 

2.5.11 Intracellular iron content 

Total iron content in cells of C. acetobutylicum was determined using the colorimetric ferrozine 

assay and a standard curve prepared with FeSO4 solutions of known concentration (Riemer et al., 

2004). Ferrozine forms a complex with ferrous iron, which has an absorption maximum at 550 nm 

wavelength (Riemer et al., 2004). Cells of C. acetobutylicum grown in 50 ml CGM medium 

(2.3.3) were harvested by centrifugation (10.000 x g, 15 min, 4 °C). In order to remove any 
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adventitiously associated metal ions, the pellets were washed twice with 10 ml EDTA-containing 

buffer (50 mM Tris-HCl (pH 8.0), 1 mM EDTA) and once with 10 ml dH2O. After cell disruption 

by sonication (2.15.1), crude cell extracts were appropriately diluted with ddH2O. Aliquots 

(300 µl) were placed in 2-ml tubes and mixed with 300 µl of 10 mM HCl and 300 µl of freshly 

prepared iron-releasing solution (150 µl 1.4 M HCl and 150 µl 4.5 % [w/v] KMnO4) followed by 

incubation for 2 h at 60 °C. Pre-treatment with the KMnO4 acidic solution has been reported to be 

sufficient for release of iron even from iron storage proteins like ferritin (May et al., 1978; Riemer 

et al., 2004). After the samples had cooled down to RT, iron-detection reagent was added to each 

vial, followed by incubation for 30 min. The absorbance at 550 nm was afterwards recorded and 

iron content was calculated according to Equation 3. The obtained quantities were normalized to 

the protein content in the samples. 

                    
    

  
    

                                          

     
 

Equation 3 Determination of intracellular iron content using the ferrozine assay. The equation is based on 

a standard curve, prepared with FeSO4 solutions of known concentration. 

Iron-detection reagent 

Ferrozine      6.5  mM 

Neocuproine     6.5  mM 

NH4 Acetate     2.5     M 

Ascorbic acid     1     M 

2.6  Extraction of nucleic acids 

2.6.1  Isolation of plasmid DNA from E. coli 

Analytical and preparative plasmid isolation from cells of E. coli was performed according to 

Birnboim and Doly (1979). Cells grown overnight in 5 ml LB medium (2.3.1) were pelleted by 

centrifugation (5.000 x g, 10 min, 4 °C) and further treated according to a standard laboratory 

protocol described by Lehmann (2012). 

2.6.2  Isolation of chromosomal DNA from C. acetobutylicum 

For isolation of chromosomal DNA from C. acetobutylicum, 50-ml CGM cultures were grown at 

37 °C to an OD600 of 1. Cells were then harvested by centrifugation (6.000 x g, 5 min, 4 °C) and 

stored at - 20 °C until further use. Extraction of chromosomal DNA was conducted according to a 
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standard laboratory procedure described by Lehmann (2012). The quality of the isolated DNA 

was monitored on a 1 % agarose gel (2.7.2.1) 

2.6.3  Isolation of total cellular RNA from C. acetobutylicum 

The method used for isolation of total RNA from cells of C. acetobutylicum is based on the 

procedure described by Oelmüller et al., 1990. Cells (30-40 ml) grown to mid-log phase 

(OD600, 1) were harvested by centrifugation (10.000 x g, 1 min, 4 °C). The pellets were 

resuspended in 1 ml sterile TE buffer, transferred to a 2-ml Eppendorf tube, spinned down (13.000 

x g, 1 min, 4 °C) and immediately frozen in liquid nitrogen. The samples were stored at - 70 °C 

until further use. Total cellular RNA was extracted using a standard laboratory SDS-hot phenol 

protocol, described by Janssen (2010). For the purpose of microarray analysis and sqRT-PCR, the 

extracted RNA was treated with RNase-free recombinant DNase I (10 U/µl) (Roche Applied 

Science) according to Janssen (2010). 

TE buffer 

Tris-HCl (pH 8.0) 10 mM  800 µl from a 1 M stock solution 

EDTA 1 mM    160 µl from a 0.5 M stock solution 

The pH value of the buffer was adjusted to 8.0 by addition of HCl. 

2.7  Standard molecular biology techniques 

2.7.1  Purification of DNA 

2.7.1.1 Extraction of DNA from agarose gels 

'PeqGOLD Gel Extraction Kit' (Peqlab Biotechnologie GmbH) has been routinely used for 

isolation of electrophoretically separated DNA fragments in the course of this work. After 

sufficient separation on an agarose gel of suitable concentration and staining with ethidium 

bromide (2.7.2.1), the fragments of interest were cut with a sharp sterile scalpel under UV light 

and placed in clean Eppendorf tubes. The DNA fragments were afterwards subjected to 

purification as recommended by the manufacturer. 
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2.7.2  Agarose gel electrophoresis 

2.7.2.1 Standard agarose gel electrophoresis (Sambrook and Russell, 2001) 

Analytical and preparative agarose gel elecrophoresis of DNA fragments was carried out in 

horizontal electrophoresis tanks (Power Pack P 25, Biometra, Göttingen) according to a standard 

laboratory procedure described by Wietzke (2013). 

2.7.2.2 Denaturing agarose gel electrophoresis (Sambrook and Russell, 2001) 

For the purpose of Northern hybridization analysis (2.11.3), total cellular RNA was separated on a 

denaturing agarose gel containing formaldehyde, which prevents formation of secondary 

structures. 0.5-30 µg of RNA were mixed with 0.2 Vol. loading buffer. The samples were 

denaturated for 10 min at 65 °C, shortly chilled on ice, spinned down and loaded on a 1.5 % [w/v] 

denaturing agarose gel. The electrophoresis was performed at 60 V in 1x formaldehyde containing 

running buffer. 

Denaturing agarose gel (1.5 % [w/v]) 

Agarose          0.45   g 

dH2O         26.6  ml 

Formaldehyde (37 % [w/v])       0.54   g 

10x Running buffer        3  ml 

The formaldehyde and the 10 x Running buffer were added after autoclavation and cooling of the 

agarose solution to 50 °C. 

Loading buffer 

Bromophenol Blue      20  mg 

1x Running buffer       25  ml 

Glycerine (86 % [v/v]      25  ml 

EDTA (0.5 M; pH 8.0)      10  µl 

Immediately before use 200 µl of the autoclaved loading buffer were mixed with 24 µl 

formaldehyde (37 % [v/v]) and 109 µl formamide. 

10x Running buffer 

MOPS          41.8    g 

Na2 Acetate x 3H2O          6.8    g 

EDTA            3.7    g 

dH2O up to      1000   ml 

The pH value of the buffer was adjusted to 7.0 with NaOH before autoclavation. 
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1x Running buffer 

10 x Running buffer      100   ml 

dH2O         880   ml 

Formaldehyde (37 % [v/v])         8.2  ml 

Formaldehyde was added after autoclavation of the buffer. 

2.8  Manipulation of nucleic acids 

2.8.1  PCR primer design 

Primer design for analytical and preparative PCR assays was performed using the Primer3Plus 

online-based platform (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/) and 

Tm values were calculated employing the OligoCalc software (http://www.basic.northwestern.edu/ 

biotools/oligocalc.html). 

2.8.2  PCR methods 

2.8.2.1 Standard PCR procedures 

PeqGOLD Pwo-Polymerase (Peqlab, Erlangen) has been routinely used for standard analytical 

and preparative PCR assays in the course of this study. PCR reactions contained the following 

components: 

Template DNA    10-200 ng 

Primer fw (10 µM)     0.4  µM 

Primer rev (10 µM)     0.4  µM 

dNTP mix (10 mM)     0.2  mM 

Pwo-Polymerase (1 U/µl)    1  µl 

10x Pwo complete buffer    5  µl 

MgSO4 (25 mM)      2  µl 

dH2O up to     50  µl 

Amplification was performed according to the following PCR program: 

Denaturation   94 °C      3  min      1x 

Denaturation   94 °C    30  s 

Annealing    Tm (Primer) - 3 °C 30  s    29x 

Elongation    72 °C      1  min/kb 

Final extension   72 °C    10  min      1x 

Storage      4 °C     ∞ 
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2.8.2.2 'High Fidelity' PCR 

PCR using 'High Fidelity Enzyme Mix' (Thermo Scientific, Braunschweig) has been performed 

for amplification of long DNA fragments ( > 2 kb). PCR reactions contained the following 

components: 

Template DNA       10-200 ng 

Primer fw (10 µM)        1  µM 

Primer rev (10 µM)        1  µM 

dNTP mix (10 mM)        0.2  mM 

High Fidelity Enzyme Mix (5 U/µl)      0.5  µl 

10x High Fidelity PCR Buffer + MgCl2 (15 mM)    5  µl 

MgCl2 (25 mM)         2  µl 

dH2O up to        50  µl 

Amplification was performed according to the following PCR program: 

Denaturation    94 °C      5  min     1x 

Denaturation    94 °C    30  s 

Annealing     Tm (Primer) - 3 °C 30  s   11x 

Elongation     68 °C      1  min/kb 

Denaturation    94 °C    30  s 

Annealing     Tm (Primer) - 3 °C 30  s   21x 

Elongation     68 °C      1  min/kb 

Final extension    68 °C    10  min     1x 

Storage       4 °C     ∞ 

2.8.2.3 'Splicing by overlap extension' (SOE) PCR (Ho et al., 1989) 

The Clostron® mutagenesis system (2.10) employs a group II intron mobile element for directed 

insertional disruption of genes in C. acetobutylicum. The target specificity of the intron is 

determined by base-pairing between the target DNA sequence and the intron RNA (Heap et al., 

2010). In order to introduce the necessary nucleotide changes within the group II intron 350-bp re-

targeting region for disruption of the gene of interest, SOE PCR was performed. The PCR was 

assembled using a primer mix containing IBS, EBS1d, EBS2 and EBS Universal and the intron-

encoding pMTL007 vector as template. For details see (2.10). 

IBS Primer (100 µM)     2 µl 

EBS1d Primer (100 µM)    2 µl 

EBS2 Primer (20 µM)     2 µl 

EBS Universal (20 µM)     2 µl 

dH2O up to     20 µl 
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2.8.3  Enzymatic modifications of DNA 

2.8.3.1 Digestion with restriction endonucleases 

All restriction endonucleases used in this study are listed in Table 2.2. 

Table 2.2 Restriction endonucleases 

Restriction 

endonuclease 
Target sequence 

Buffer system 

(Thermo Scientific) 

BamHI 
5'-G^G A T C  C-3' 

3'-C  C T A G^G-5' 
1x BamHI buffer, 2x Tango

TM
 

Cfr9I (XmaI) 
5'-C^C C G G  G-3' 

3'-G G G C C^C-5' 
2x Tango

TM
 

Bsp1407I (BsrGI) 
5'-T^G T A C  A-3' 

3'-A C A T G^T-5' 
1x Tango

TM
 

HindIII 
5'-A^A G C C  T-3' 

3'-T  T C G G^A-5' 
1x Tango

TM
 

Eco32I (EcoRV) 
5'-G A T^A T C-3' 

3'-C T A^T A G-5' 
1x Buffer R 

NcoI 
5'-C^C A T G  G-3' 

3'-G  G T A C^C-5' 
1x Tango

TM
 

Fnu4HI (SatI) 
5'-G C^N G C-3' 

3'-C  G N^C G-5' 
1x Buffer G 

^ Restriction site 

2.8.3.2 Dephosphorylation of plasmid DNA 

Recircularization of plasmid DNA was minimized by treatment with alkaline phosphatase 

(FastAP, Thermo Scientific). The closed circular plasmid DNA was digested with appropriate 

restriction enzymes (2.8.3.1). When the digestion was complete, the samples were incubated with 

2.5 U FastAP (1 U/µl) for 5-30 min at 37 °C in 1x FastAP reaction buffer, followed by heat 

inactivation for 5 min at 75 °C and purification with 'GeneJET Plasmid Miniprep Kit' (Thermo 

Scientific) according to the manufacturer's instructions. 

2.8.3.3 Ligation 

Ligation has been performed employing T4-DNA-Ligase (Thermo Scientific). A molar ratio of 

vector to insert of 3:1 was used. Ligation mixtures were prepared as follows: 

vector DNA       0.1-0.2 µg 

insert        0.3-1 µg 

10x T4-DNA ligase buffer    2  µl 

T4-DNA-ligase      2  µl 

H2O up to     20  µl 
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2.9  Construction of recombinant strains 

2.9.1  DNA transfer into E. coli 

2.9.1.1 Preparation of E. coli competent cells by CaCl2 treatment (Hanahan, 1983 

  mod.) 

Preparation of E. coli CaCl2 competent cells was performed according to a standard laboratory 

procedure descibed by Fiedler (2006). 

2.9.1.2 Transformation into CaCl2-competent E. coli cells 

Transformation of CaCl2-competent cells of E. coli was performed according to a standard 

laboratory protocol described by Lehmann (2012). 

2.9.1.3 Preparation of E. coli electrocompetent cells (Dower et al., 1988) 

For electroporation of E. coli strains (ER2275), cells were made electrocompetent following the 

procedure described below. Cells from a stock culture of the desired E. coli strain were streaked 

on LB agar medium, supplemented with the appropriate antibiotics (Table 7.1 and table 2.1), if 

necessary, and incubated at 37 °C overnight. A single colony was used to inoculate 5 ml of LB 

medium and the culture was grown at 37 °C and 180 rpm overnight. On the next day, the 5-ml 

preculture was used to inoculate 250 ml LB medium and cells were propagated at 37 °C and 180 

rpm until an OD600 of 0.5-1.0 was reached. The culture was then chilled on ice and pelleted by 

centrifugation (5.000 x g, 10 min, 4 °C). Cells were washed twice with ice-cold sterile distilled 

water and once with 30 ml glycerine solution (10 % [v/v]). Finally, the pellets were resuspended 

in 0.5-0.75 ml of the 10 % [v/v] glycerine solution, aliquotted (40 µl) in sterile1.5-ml tubes and 

stored at - 70 °C. 

2.9.1.4 Electroporation into E. coli cells 

Transformation of E. coli electrocompetent cells was performed according to a standard 

laboratory protocol described by Wietzke (2013). 
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2.9.2  DNA transfer into B. subtilis 

2.9.2.1 Preparation of B. subtilis competent cells (Cutting and Youngman, 1994) 

B. subtilis strains to be made competent were streaked on TBAB agar plates (2.3.2) containing the 

appropriate antibiotics for selection (Table 7.1 and Table 2.1) and incubated at 37 °C overnight. 

On the next day the cells were used to inoculate 20 ml of freshly prepared SpC medium (OD600 

0.5) and the culture was grown at 37 °C with periodic monitoring of the OD600 (2.5.1). When 

stationary phase had been reached, the 20-ml culture was used to inoculate 200 ml fresh pre-

warmed SpII medium. After 90 min of incubation at 37 °C, cells were pelleted by centrifugation 

(5.000 x g, 5 min, RT) and the supernatant was decanted in a sterile container. The cell pellet was 

gently resuspended in 17 ml of the saved supernatant and 2 ml 70 % [v/v] sterile glycerol solution 

was added. The competent cells were dispensed into aliquotes of 500 µl in 1.5-ml sterile tubes and 

stored at - 70 °C until further use. 

T-base 

(NH4)SO4           2    g 

K2HPO4         14    g 

KHPO4           6    g 

Na3-Citrate.2 H2O          1    g 

dH2O up to     1000  ml 

SpC medium 

T-base         20  ml 

Glucose (50 % [w/v])         0.2 ml 

MgSO4 x 7 H2O (1.2 % [w/v])        0.3 ml 

Yeast extract (10 % [w/v])        0.4 ml 

Casamino acids (1 % [w/v])        0.5 ml 

SpII medium 

T-base       200  ml 

Glucose (50 % [w/v])         2  ml 

MgSO4 x 7 H2O (1.2 % [w/v])      14  ml 

Yeast extract (10 % [w/v])        2  ml 

Casamino acids (1 % [w/v])        2  ml 

CaCl2 (0.1 M)          1  ml 
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2.9.2.2 Transformation into E. coli RR1 

E. coli RR1 has been used for plasmid amplification prior to transformation into B. subtilis 

(Raleigh et al., 1988). Plasmid DNA is mainly presented in oligomeric state in this strain, which 

facilitates the subsequent transfer into B. subtilis (2.9.2.3). 

2.9.2.3 Transformation into B. subtilis competent cells (Cutting and Youngman, 1994) 

For transformation of B. subtilis strains, competent cells were rapidly thawed at 37 °C and 

immediately mixed with 1 Vol. SpII medium + EGTA. Plasmid DNA (2.6.1) was added to the 

cell suspension, followed by incubation at 37 °C for 30-60 min without shaking. Finally, the 

transformed cells were plated onto selective TBAB agar medium (2.3.2). 

SpII medium + EGTA 

SpII medium without CaCl2    100  ml 

EGTA (0.1 M, pH 8.0)         4  ml 

2.9.3  Transformation into C. acetobutylicum by electroporation 

Transformation of C. acetobutylicum was performed according to Mermelstein et al. (1992). 

Electrocompetent cells were always prepared freshly. An overnight preculture was used to 

inoculate a 50-ml CGM culture (OD600 ~ 0.3). The cells were grown to an OD600 of 1 and further 

handled according to the following protocol: 

 

1. Incubation for 30 min on ice. 

2. Centrifugation: 5 min, 5.000 x g, 4 °C (3K30; Rotor 12150). 

3. Resuspension of the pellet in 10 ml electroporation buffer. 

4. Centrifugation: 5 min, 5.000 x g, °C (3K30; Rotor 12150). 

5. Resuspension of the pellet in 2 ml electroporation buffer. 

6. Addition of 400 µl cell suspension and 500 ng plasmid-DNA in a pre-cooled 

 electroporation cuvette (0.4 cm). 

7. Incubation for 5 min on ice. 

8. Electroporation: 50 µF, 600 Ω, 1.8 kV (time constant 14.8-29.4 ms). 

9. Incubation for 4-5 h in 1 ml CGM medium. 

10. 250 µl of the transformed cells were plated on RCA medium (2.3.3), supplemented with 

 the appropriate antibiotics for selection (Table 7.1 and Table 2.1). 

11. Incubation at 37 °C for 48 h. 
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Sodium phosphate buffer (pH 7.4) 

NaH2PO4 (200 mM)   22.6  ml 

Na2HPO4 (200 mM)   77.4  ml 

Electroporation buffer 

Sucrose (270 mM)     10  ml 

Sodium phosphate buffer  150  µl 

2.10  Insertional mutagenesis via the Clostron
®
 system   

  (Heap et al., 2007, 2010) 

2.10.1 Intron re-targeting and assembly of recombinant pMTL007C-E2  

  plasmids 

The Clostron® system is based on the mobile group II intron element from the ltrB gene of 

Lactococcus lactis (Ll.ltrB) (Heap et al., 2007). In order to re-target the group II intron for 

insertion into the coding sequence of the desired gene, a splicing by overlap extension (SOE) PCR 

(2.8.2.3) was performed using a set of primers (IBS, EBS1d, IBS2) designed via a computer 

algorithm (Perutka et al., 2004), the EBS universal primer and the pMTL007 plasmid as an intron 

template. The amplified 350-bp gene-specific intron fragment was digested with HindIII and 

Bsp1407I (an isoshizomer of BsrGI) and cloned into the intron-encoding pMTL007C-E2 vector 

(Fig. 7.1, Appendix). The resultant recombinant plasmid was then introduced into E. coli DH5α 

for in vivo amplification (2.9.1.1 and 2.9.1.2). Transformants were plated on LB medium 

supplemented with chloramphenicol (25 µg/ml). Positive clones were identified via blue-white 

screening, followed by test restriction. From these, two representative clones were selected, and 

the plasmids were subjected to sequencing using the corresponding IBS and EBS1d primers (LGC 

Genomics, Berlin), in order to exclude any point mutations in the re-targeting regions. 

2.10.2 Transformation in C. acetobutylicum 

Presence of the Cac824I restriction endonuclease in C. acetobutylicum prevents successful 

transformation of the recombinant pMTL007C-E2 plasmids into this strain, since it recognizes 

sequences frequently carried on shuttle vectors used in E. coli. To overcome this problem, the 

purified recombinant pMTL007C-E2 plasmids were first electroporated into E. coli ER2275 for in 

vivo methylation (2.9.1.3 and 2.9.1.4). ER2275 harbors a pAN-II plasmid encoding a 

methyltransferase (ɸ3tI) from the B. subtilis ϕ3tI phage, which protects the transformed DNA 

from degradation in C. acetobutylicum (Mermelstein and Papoutsakis, 1993). The pAN-II plasmid 
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confers resistance to Tc. After electroporation, positive E. coli ER2275 clones were selected on 

LB agar medium supplemented with Cam (25 µg/ml) and Tc (10 µg/ml). Next, the methylated 

plasmids were isolated, subjected to a test restriction with Fnu4HI, and electrotransformed into 

C. acetobutylicum (2.9.3). To select for transformants, cells were plated on RCA agar containing 

Tm (15 µg/ml) and incubated for two days at 37 °C. Single colonies were used to induce insertion 

of the re-targeted intron by growing them in 500 µl liquid CGM medium supplemented with 7.5 

µg/ml Tm. After 4 h, aliquots were plated on RCA agar plates containing 30 µg/ml erythromycin 

and cells were incubated for 48 h at 37 °C. 

2.10.3 Verification of Clostron
®
 insertional mutants 

The erythromycin resistant clones were initially screened for presence of the desired insertion by 

colony PCR (2.8.2.1) at the gene-intron junction using the intron-specific EBS Universal primer 

and either forward or reverse gene-specific primer, depending on whether the intron is integrated 

into the sense or the antisense DNA strand. Furthermore, whole gene PCR amplification (2.8.2.2) 

and Southern hybridization analysis (2.11.2) were performed to confirm the correct insertion of 

the intron sequence and to rule out multiple incorportations into the genome. 

2.11  DNA and RNA blotting techniques 

2.11.1 Probe labeling 

Digoxigenin (DIG)-labeled DNA hybridization probes have been generated using a 'DIG Labeling 

DNA Kit' (Roche Applied Science) as described by the manufacturer. 

2.11.2 Transfer of DNA onto a membrane (Southern blot) 

Transfer of DNA onto a nylon membrane (Roti®-Nylon plus, Carl Roth GmbH) was performed by 

capillary blotting. Genomic DNA from the C. acetobutylicum strains of interest was extracted 

(2.6.2), digested with the appropriate restriction enzymes (Table 2.6) and separated on a 0.8 % 

agarose gel (2.7.1). Prior to blotting, the gel was incubated with 0.25 M HCl for 10 min at RT. 

The acid treatment facilitates transfer onto the membrane, by partial depurination of the DNA 

fragments, which in turn leads to strand clevage. The gel was afterwards subjected to 

denaturation, followed by neutralization for 30 min at RT. During that time, a sheet of nylon 

membrane and five pieces of Whatman blotting paper (Schleicher und Schüll BioScience, Dassel) 

were cut to the dimensions of the gel. The membrane and the gel were then equilibrated for 5 min 

in 2x SSC buffer and the blot was assembled. To achieve the latter, 5 layers of Whatman paper, 
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presoked in 2x SSC buffer, were positioned on a 5-10 cm stack of paper towels. Next, the nylon 

membrane was laid down on the Whatman papers and the agarose gel was placed on top avoiding 

formation of bubbles between the layers. Finally, a glas plate was put on the gel and a weight of 

about 500 g was applied to the blotting sandwich. The 'semi dry' blot transfer was completed in 

16-24 h and the membrane was subjected to UV cross-linking (120 kJ, 245 nm) in a UV 

Illuminator (Techne). The membrane was afterwards stored at 4 °C or immediatelly hybridized to 

a DIG-labeled probe (2.11.2.1). 

20x SSC Buffer 

NaCl        75    g 

Na3-Citrate.2 H2O      88.2   g 

dH2O up to   1000  ml 

The pH value of the buffer was adjusted to 7.0 with HCl. 

Denaturation buffer 

NaCl        35.06   g 

NaOH       16    g 

dH2O up to   1000  ml 

Neutralisation buffer 

NaCl        87.76   g 

Tris        60.55   g 

dH2O up to   1000  ml 

The pH value of the buffer was adjusted before autoclavation to 7.5 with HCl. 

2.11.2.1 Southern hybridization 

The cross-linked nylon membrane was placed in a hybridization tube with 20 ml of pre-

hybridization buffer and incubated for 1 h at 42 °C in order to avoid non-specific binding. The 

DIG-labeled DNA probe (2.11.1) was then denaturated at 100 °C for 10 min and mixed 

immediately with 5 ml of hybridization solution. Incubation with the DNA probe was performed 

for 16-24 h at 42 °C in a hybridization oven under constant rotation (Biometra, Göttingen). The 

membrane was afterwards washed twice with 2x SSC, 0.1 % [w/v] SDS solution for 5 min at RT. 

The membrane was directly subjected to detection (2.11.2.2). 

Hybridization solution 

20 x SSC buffer        25  ml 

Formamide (deionized)       50  ml 

SDS (10 % [w/v])      200  µl 

L-Lauroylsarcosine(20 % [w/v])   200  µl 
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Blocking reagent          2   g 

dH2O up to       100  ml 

2.11.2.2 Immunological detection (Southern blot) 

Chromogenic detection of the DIG-labeled probes was performed employing an Anti-

Digoxigenin-AP conjugate (Roche Applied Science) and the AP substrates NBT (Nitro-Blue-

Tetrazolium chloride) and BCIP (5-Bromo-4-Chloro-3'-Indolyphosphate) (Roche Applied 

Science). After hybridization and stringency washes with 2x SSC, 0.1 % SDS solution (2.11.2.1), 

the cross-linked nylon membrane was rinsed shortly in Buffer 1 (washing buffer) and incubated 

for 1-2 h in Buffer 2 (blocking buffer). After a second 5-min washing step, the membrane was 

incubated for 30 min with Antibody solution and washed twice for 15 min. Finally, the membrane 

was equilibrated for 2 min with Buffer 3 (detection buffer) and developed with 3-4 ml Staining 

solution. After sufficient staining had developed, the reaction was stopped with distilled water. 

Buffer 1 

Tris-HCl (1 M; pH 8.0)       100    g 

NaCl              8.76   g 

dH2O up to       1000  ml 

The pH value of the buffer was adjusted to 7.5 with HCl. 

Buffer 2 

Blocking reagent (Roche Applied Science)        1    g 

Buffer 1         100  ml 

Buffer 3 

Tris-HCl (1 M; pH 8.0)       100    g 

NaCl              5.84   g 

MgCl2             4.76   g 

dH2O up to       1000  ml 

The pH of the buffer was adjusted to 9.5 with NaOH. 

Antibody solution (1:5000) 

Anti-Digoxigenin-AP (Roche Applied Science)     4  µl 

Buffer 1         20  ml 

Staining solution 

CDP-Star® (Roche Applied Science)     50  µl 

Buffer 3           5  ml 
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2.11.3 Transfer of RNA onto a membrane (Northern blot) 

Transfer of RNA onto a nylon membrane (Roti®-Nylon plus, Carl Roth GmbH) was performed by 

capillary blotting. Total RNA from cells of C. acetobutylicum was extracted (2.6.3) and separated 

on a 1 % denaturing agarose gel (2.7.2.2). Prior to blotting, the gel was incubated with 50 mM 

NaOH for 5 min at RT followed by neutralisation with 0.1 M Tris-HCl (pH 7.4) for 5 min. During 

that time, a sheet of nylon membrane and five pieces of Whatman blotting paper (Schleicher und 

Schüll BioScience, Dassel) were cut to the dimensions of the gel. The membrane and the gel were 

then equilibrated in 10x SSC buffer and the blot was assembled as described in (2.11.2). The 'semi 

dry' blot transfer was completed in 16-24 h and the membrane was subjected to UV cross-linking 

(120 kJ, 245 nm) in a UV Illuminator (Techne). The membrane was afterwards stored at 4 °C or 

immediatelly hybridized to a DIG labeled probe (2.11.3.1). 

2.11.3.1 Northern hybridization 

The cross-linked nylon membrane was placed in a hybridization tube with 20 ml of pre-

hybridization buffer and incubated for 1-2 h at 42 °C in order to avoid non-specific binding. The 

DIG-labeled DNA probe (2.11.1) was then denaturated at 100 °C for 10 min and mixed 

immediately with 5 ml of hybridization solution. Incubation with the DNA probe was performed 

for 16-24 h at 42 °C in a hybridization oven under constant rotation (Biometra, Göttingen). The 

membrane was afterwards washed twice with 2x SSC, 0.1 % SDS solution for 5 min at RT and 

twice with 0.1x SSC, 0.1 % [w/v] SDS solution for 15 min at 68 °C. The membrane was directly 

subjected to detection (2.11.3.2). 

Hybridization solution 

20x SSC buffer         12.5 ml 

Na-Phosphate buffer (0.5 M; pH 7.2)       5  ml 

Formamide (deionized)        25  ml 

SDS (10 % [w/v])           3.5   g 

L-Lauroylsarcosine (20 % [w/v])      50  µl 

Blocking reagent           1    g 

dH2O         100  ml 

2.11.3.2 Immunological detection (Northern blot) 

The detection of DIG-labeled probes was performed employing an Anti-Digoxigenin-AP 

conjugate (Roche Applied Science) and the chemiluminescent AP subtsrate CDP. 

Dephosphorylation of CDP by AP is accompanied by release of visible light at 466 nm 

wavelength. Light emission has been recorded using the imaging system STELLA 2000 (Raytest 
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Isotopenmessgeräte GmbH, Straubenhardt). After hybridization and stringency washing, the 

cross-linked nylon membrane was washed for 1 min with Washing buffer (Buffer 1 + 0.3 % 

Tween-20), followed by incubation for 30 min in 40 ml Buffer 2 (blocking buffer). Next, the 

membrane was incubated with 20 ml Antibody solution for 30 min, washed twice for 15 min and 

equilibrated for 2 min in Detection solution. Finally, the membrane was developed with 3-4 ml 

CDP-Star® solution (Roche Applied Science) for 5 min, packed in nylon foil and subjected to 

detection. Images have been processed and documented using the AIDA software (Raytest 

Isotopenmessgeräte GmbH, Straubenhardt). 

Buffer 1 

Maleic acid (1 M; pH 8.0)         11.6   g 

NaCl               8.76   g 

dH2O up to        1000  ml 

The pH value of the buffer was adjusted to 7.5 with HCl. 

Washing buffer 

Tween-20          300  µl 

Buffer 1          100  ml 

Buffer 2 

Blocking reagent (Roche Applied Science)         1    g 

Buffer 1          100  ml 

Buffer 3 

Tris-HCl (1 M; pH 8.0)        100    g 

NaCl               5.84   g 

MgCl2              4.76   g 

dH2O up to        1000  ml 

The pH of the buffer was adjusted to 9.5 with HCl. 

Antibody solution (1:5000) 

Anti-Digoxigenin-AP (Roche Applied Science)      4  µl 

Buffer 1          20  ml 

Staining solution 

NBT/BCIP (Roche Applied Science)     50  µl 

Buffer 3            5  ml 
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2.12  Microarray analysis 

Microarray experiments were performed in triplicate (n=3) on array slides that contain 3840 

oligonucleotides, which represent 99.8 % of all annotated protein-coding genes in 

C. acetobutylicum, as reported by Grimmler et al. (2011). To this end, RNA was extracted from 

the strains of interest and treated with RNase-free DNase I (Roche Applied Science) (2.6.3). 

Verification of quality of the isolated RNA by agarose gel electrophoresis and quantification of its 

concentration was performed as described by Janssen (2010). RNA was afterwards reverse-

transcribed into cDNA, labeled with Cy3 and Cy5 (GE Healthcare, Munich) and purified as 

previously described (Janssen, 2010). The protocol for microarray analysis is reported by 

Hillmann et al., 2009b. In order to rule out any dye-specific effects, dye-swap experiments were 

performed in this study. Thus, twelve transcriptional scores were attained for each gene. A gene 

was considered to be differentially transcribed when the average expression ratio (ratio of 

medians) from all twelve datasets was ≥ 3 or ≤ 0.33. 

2.13  sqRT-PCR 

The reliability of the microarray data (2.12) was confirmed by conventional sqRT-PCR analysis. 

Total cellular RNA was extracted from the C. acetobutylicum strains of interest, treated with 

RNase-free DNase I (Roche Applied Science) (2.6.3) and reverse transcribed into cDNA (see 

2.12). cDNA was then appropriately diluted and used as template for the PCR analysis (2.8.2.1). 

All primers used for the sqRT-PCR assays are listed in Table 7.4. The number of the applied 

amplification cycles is indicated where appropriate. The obtained DNA fragments were tested on 

1 % agarose gels (2.7.2.1). 

2.14  5' RACE 

Determination of TSS (transcriptional start sites) of the genes of interest was performed using the 

2nd Generation Roche 5'/3' RACE Kit as recommended by the manufacturer. Total RNA was 

extracted from cells of C. acetobutylicum and further treated with RNase-free DNase I (Roche 

Applied Science) (2.6.3). All primers used are listed in Table 7.4. The amplified 5' UTR were 

tested on 1 % agarose gels (2.7.2.1) and subjected to sequencing (LGC Genomics, Berlin). 
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2.15  Protein techniques 

2.15.1 Preparation of crude extracts 

Preparation of crude cell extracts for analytical SDS-PAGE analysis (2.15.3), recombinant protein 

purification (2.15.6) and 2D-PAGE (2.15.4) has been performed as previously described (Riebe, 

2009; Janssen, 2010). 

2.15.2 Determination of protein concentration (Bradford, 1976) 

Protein concentrations in cell crude extracts (2.15.1) and protein isolates (2.15.6) were quantified 

by the method of Bradford (Bradford, 1976). Appropriate dilutions (1:2 to 1:200) were prepared 

with dH2O and 50 µl from each dilution were mixed with 1 ml of Bradford reagent in a 1-ml 

plastic single-use cuvette. After 5 min of incubation at RT, the absorbance at 595 nm wavelength 

was measured (Ultrospec 3000, Amersham Biosciences, Freiburg) against a blank made up of 50 

µl dH2O and 1 ml Bradford reagent. The protein concentrations were estimated using a standard 

curve prepared with BSA (Albumin Fraction V, Carl Roth GmbH) in the 0 mg/ml to 0.15 mg/ml 

range. 

Bradford reagent 

Brilliant-Blue G-250        70  ml 

Ethanol (96 % [v/v])        50  ml 

H3PO4 (85 % [v/v])      100  ml 

dH2O up to      1000  ml 

The Bradford reagent was stored in the dark at RT. 

2.15.3 SDS-PAGE 

Electrophoretic separation of proteins (SDS-PAGE) and Coomassie staining of the resultant gels 

was performed according to Riebe (2009). 

2.15.4 2D-PAGE (Schwarz et al., 2007; Janssen et al., 2010) 

2.15.4.1 Sample preparation 

For 2D-PAGE analysis of soluble proteins from C. acetobutylicum, crude cell extracts were 

prepared (2.15.1) and the protein concentrations quantified (2.15.2). The protein samples were 

treated according to the following protocol: 
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1. 300 µg protein aliquotes were lyophilized (Vacuum Concentrator NVZ150, Zirbus 

 Apparate- und Maschinenbau GmbH, Bad Grund). 

2. Samples were further used or stored at - 20 °C. 

3. The protein pellets were solubilized in 400 µl rehydration buffer. 

4. Samples were distributed evenly into separate slots of a Re-swelling tray (GE Healthcare, 

 Munich). The solution is delivered slowly and carefully in order to avoid introduction of 

 air bubbles. 

5. IPG-Strips pI 4-7 (Biorad Laboratories, Munich) were positioned with the gel facing  down 

 on the solution in each prepared slot and incubated for 12-18 h at RT. 

Rehydration buffer 

Urea       2.85      g    9     M 

Thiourea      0.76      g    2     M 

Pharmalyte (3-10) [v/v]  25     µl    0.5     % 

CHAPS [w/v]     0.2      g    4     % 

DTT     15.4   mg  20  mM 

Bromophenol Blue  trace amounts 

dH2O up to      5   ml 

2.15.4.2 Isoelectric focusing (IEF) 

Isoelectric focusing (IEF) of the IPG-Strips with the rehydrated protein samples was carried out in 

a Multiphor II electrophoresis device (GE Healthcare, Munich). The temperature of the cooling 

plate of the Multiphor II unit was set to 20 °C. About 10 ml of DryStrip Cover Fluid (GE 

Healthcare, Munich) were pipetted onto the cooling plate and the IPG chamber was positioned on 

top avoiding introduction of bubbles. The IPG chamber was covered with 10 ml of DryStrip 

Cover Fluid and the DryStrip Aligner (GE Healthcare, Munich) was placed without bubbles. 

Afterwards, the IPG-Strips were carefully removed from the slots of the Re-swelling tray, rinsed 

with distilled water and placed into the adjacent grooves of the DryStrip Aligner with the acidic 

end at the top of the tray near the anode and the gel side facing up. Two IEF electrode strips were 

cut to the length of 11 cm, moisturized with distilled water and placed across the cathode and 

anode ends of the aligned IPG-Strips. Both electrodes were aligned over the electrode strips and 

pressed down to make contact. Finally, the IPG-Strips were covered with 80 ml DryStrip Cover 

Fluid to prevent evaporation and electrophoresis was run according to the program given in Table 

2.3. The focused IPG-Strips could either be stored at - 20 °C in aluminium foil cover or directly 

following two equilibration steps further used for 2D SDS-PAGE analysis. 
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Table 2.3 Isoelectric focusing program 

Phase Voltage (V) Current (mA) Power (W) Vh 

1 500 1 5 500 

2 500 1 5 1000 

3 3500 1 5 10000 

4 3500 1 5 31500 

 

2.15.4.3 2D SDS-PAGE 

After completion of IEF (2.15.4.2), the focused IPG strips were subjected to SDS-PAGE 

electrophoresis. Polyacrylamide gels with dimensions 25 x 25 cm were prepared in a casting 

chamber (Millipore, Schwalbach). Upon full polymerization (after 1.5-2 h), the gels were placed 

in a horizontal electrophoresis tank (InvestigatorTM 2D Running System, France), filled with 10 l 

pre-cooled (15 °C) 1x Running buffer. Prior to SDS-polyacrylamide gel electrophoresis, the IPG 

strips were equilibrated for 15 min in DTT containing equilibration buffer A and then for 15 min 

in IAA containing equilibration buffer B. The equilibrated IPG strips, as well as filter papers (5 x 

5 mm) loaded with 20 µl molecular weight marker (PageRuler Unstained Protein Ladder, Thermo 

Scientific), were placed on the surface of the SDS-gels. In order to ensure an efficient 

electrophoretic transfer, the strips and the filter papers were overlaid with an agarose solution. 

After solidification of the agarose, the upper reservoir of the tank was filled with 1x Running 

buffer. The electrophoresis run was performed at a power of 16000 mW per gel for the first 15 

min and afterwards at a power of 1200-2000 mW pro gel overnight.  

Equilibration buffer A 

Urea       5.4      g  50 mM 

Glycerine [v/v]     4.5    ml  30 % 

SDS [w/v]      0.6      g    4 % 

DTT     52.5   mg    3.5 mg/ml 

Bromophenol blue  trace amounts 

Tris-HCl (pH 6.8)   15    ml  50 mM 

 

Equilibration buffer B 

Urea       5.4      g  50 mM 

Glycerol [v/v]     4.5    ml  30 %  

SDS [w/v]      0.6      g    4 % 

Iodacetamide     0.675     g  45 mg/ml 

Bromophenol Blue  trace amounts 

Tris-HCl (pH 6.8)   15    ml  50 mM 
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Agarose solution 

Agarose [w/v]     1  % 

SDS [w/v]      4  % 

DTT       7.7  mg/ml 

Tris-HCl (pH 6.8)   62.5  mM 

 

10x Running buffer 

Tris-HCl      0.25  M 

Glycerol      1.9  M 

SDS [w/v]      1  % 

2.15.4.3 Staining with colloidal Coomassie 

The two-dimensional protein gels (2.15.4.2) were visualized by staining with colloidal Coomassie 

brilliant blue G-250. To achieve that each gel was incubated for 12-24 h in 100 ml fixing solution 

followed by incubation in 250 ml staining solution for 24 h. The gels were destained in deionized 

water and documented using a Scanner (UMAX 2100, Biostep Jahnsdorf, Germany). 

Fixing solution 

Acetic acid [v/v]          10  % 

Ethanol (96 % [v/v], pure)        50  % 

Staining solution 

Coomassie Brilliant Blue G250         0.75   g 

(NH4)SO4           75    g 

o-Phosphoric acid (85 % [v/v])       15  ml 

Methanol         250  ml 

dH2O up to       1000  ml 

2.15.4.4 Documentation of 2D-PAGE gels 

Scanning, analysis and documentation of the 2D-PAGE gels was performed as described by 

Janssen (2010). 

2.15.4.5 Mass spectrometric detection of proteins 

MALDI-TOF mass spectrometric analysis of proteins was performed in the Proteomics laboratory 

of Prof. M. Hecker at the University of Greifswald as described by Janssen (2010). 
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2.15.5 Enzyme assays 

2.15.5.1 β-galactosidase assay (Miller, 1972 mod.) 

The method provides a simple quantitative estimate of lacZ expression by directly measuring β-

galactosidase activities. Ortho-nitrophenyl-β-D-galactopyranoside (o-NPG) is the artificial 

chromogenic substrate used for this assay. It is colourless, while the product, ortho-nitrophenol is 

yellow. The β-galactosidase [EC 3.2.1.23] activity was measured by the rate of appearance of 

yellow color spectrophotometrically at 420 nm wavelength. The test was carried out in 2-ml 

Eppendorf tubes. 990 µl of freshly prepared β-galactosidase buffer and 10 µl crude cell extract 

(2.15.1) were mixed. The samples were pre-incubated for 2 min at 37 °C and the reaction was 

started by addition of 200 µl 0.2 % o-NPG (Sigma Aldrich). When sufficient yellow color had 

developed, the reaction was stopped with 500 µl 1M Na2CO3 and the exposure time was recorded. 

Extinction of the samples was recorded at 420 nm wavelength. A sample, in which the reaction 

was stopped before or immediately after addition of o-NPG, was used as a blank. If E420 turned 

out to be above 1, less crude extract or shorter incubation period was applied. Based on the 

extinction coefficient of nitrophenol (ε420 21.300 ml. mmol-1.cm-1), the activity in the samples was 

calculated according to equation 4. 

       
                

                                        
    

Equation 4 Determination of β-galactosidase activities in crude cell extracts. 

Specific β-galactosidase activities (nmol.min-1.mg-1) were calculated taking into account the 

protein concentrations of the samples estimated by the method of Bradford (2.15.2). 

β-galactosidase buffer 

Na2HPO4 (pH 7.0)  60  mM 

NaH2PO4    40  mM 

KCl     10  mM 

MgSO4      1  mM 

β-Mercaptoethanol    5  mM 

2.15.6 Overproduction and purification of recombinant proteins 

2.15.6.1 Overproduction and purification of Strep-tag II fusion proteins 

Overproduction and purification of Strep-tag II fusion proteins from cells of E. coli was 

performed using Strep-Tactin-Sepharose (IBA, Göttingen) as described by Riebe (2009). The 
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concentration of the isolated proteins was evaluated using the Bradford assay (2.15.2) and purity 

was tested by SDS-PAGE analysis (2.15.3). 

2.15.6.2 Overproduction and purification of His-tag fusion proteins 

For preparation of crude cell extracts from His-tag fusion protein expressing E. coli BL21 

(DE3/pLys) strains, 250-ml cultures were grown from overnight pre-cultures of fresh 

transformants at 37 °C in LB medium supplemented with the appropriate antibiotics for selection 

(Table 7.1 and Table 2.1). At an OD600 of 0.9-1, IPTG was added to a final concentration of 1 

mM, and growth was continued for 3-4 h. Cells were then harvested by centrifugation (5.000 x g, 

10 min, 4 °C) and suspended in 4 ml Lysis buffer. After cell disruption by sonication (Sonicator 

Desintegrator Sonopuls HD60, MedLab) and centrifugation (13.000 x g, 30 min, 4 °C), the His -

tagged proteins were isolated from the soluble fraction using Ni-NTA agarose resin (Macherey-

Nagel). Four ml of crude cell extract were mixed with 1 ml of 50 % Ni-NTA slurry and the 

mixture was stirred for 1 h at 4 °C. The lysate-Ni-NTA mixture was afterwards loaded on a 

column (Poly-Prep Chromatography Columns, Biorad). The flow-through was collected and the 

column was washed twice with 4 ml Washing buffer. The elution of the recombinant protein was 

performed with 4 x 0.5 ml Elution buffer. The concentration of the isolated proteins was evaluated 

using the Bradford assay (2.15.2) and purity was tested by SDS-PAGE analysis (2.15.3). 

Lysis buffer 

NaH2PO4       7.8     g 

NaCl      17.54    g 

Imidazole       0.68    g 

The pH of the buffer was adjusted to 8.0 with NaOH. 

 

Washing buffer 

NaH2PO4       7.8     g 

NaCl      17.54    g 

Imidazole       1.34    g 

The pH of the buffer was adjusted to 8.0 with NaOH. 

Elution buffer 

NaH2PO4       7.8     g 

NaCl      17.54    g 

Imidazole     17.00    g 

The pH of the buffer was adjusted to 8.0 with NaOH. 
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2.15.7 Western blotting (transfer and detection of proteins on a   

  nitrocellulose membrane) 

For Western blot analysis cultures of the E. coli strains of interest were collected and crude cell 

extracts were prepared (2.15.1). Following an electrophoretic separation (2.15.3), the proteins 

were transferred onto a nitrocellulose membrane (0.2 µm Biometra) using a semi-dry blotting 

system (Biometra). To set up the western blot, six pieces of Whatman filter paper (Schleicher und 

Schüll BioScience, Dassel) and a nitrocellulose membrane (0.2 µm Biometra) were cut to the 

dimensions of the SDS-gel and soaked shortly in Transfer buffer. The blotting sandwich was built 

up on the anode plate in the following order: three Whatman papers (Schleicher und Schüll 

BioScience, Dassel), a nitrocellulose membrane (0.2 µm Biometra), the SDS-PAGE gel and three 

Whatman papers on top. Excess of Transfer buffer and air bubbles captured between layers were 

removed by careful rolling with a clean reaction tube over the top of the membrane. The blotting 

apparatus was closed putting on the cathode lid and a constant current charge (5 mA/cm2 of gel) 

was applied until the cell voltage dropped down to the half of its starting value. Successful 

transfer of proteins onto the nitrocellulose membrane was confirmed by Coomassie staining of the 

SDS-PAGE gel (2.15.3). 

Transfer buffer 

Tris         15.14    g  125 mM 

Glycine        14.40    g  192 mM 

Ethanol (96 % [v/v], pure)   200   ml    20 % [v/v] 

dH2O up to    1000   ml 

The buffer was stored at 4°C. 

2.15.7.1 Detection of Strep-tag II fusion proteins 

Chromogenic detection of Strep-tagged proteins on Western blots was performed using Strep-

Tactin® AP conjugate (IBA, Göttingen). Colour was developed by a NBT/BCIP (Roche Applied 

Science) mixture, chromogenic substances of alkaline phosphatase. The nitrocellulose membrane 

was incubated in a fat-free milk solution (Blocking buffer) overnight at 4 °C or alternatively for 1 

h at RT. The membrane was further treated according to the following protocol: 

1. Washed three times with 1x TGST buffer. 

2. Incubation in 50 ml 1x TGST + 5 µl Strep-Tactin® AP conjugate solution for 45 min. 

3. Washing in 1x TGST solution (3 x 10 min). 

4. Incubation in Staining solution. When sufficient staining had developed, the reaction was 

 stopped with dH2O. 
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Blocking buffer 

1x TGST buffer          50   ml 

BSA              0.5    g 

Fat-free milk powder           2.5    g 

* In order to avoid cross reactions between the Strep-Tactin and the Biotin Carboxyl Carrier Protein 

 (BCCP, 22.5 kDa) from the E. coli protein extracts, a small amount of avidin was added to the blocking 

 buffer. 

 

10x TGST buffer 

Tris            12.1    g 

NaCl            85.5    g 

Tween-20             5   ml 

dH2O up to       1000   ml 

After adjustment of the pH value to 8.0 by addition of HCl, the buffer is stored at 4°C. 

10x AP buffer 

Tris              1.21    g 

NaCl              5.7    g 

MgCl2             0.47    g 

dH2O up to         100   ml 

After adjustment of the pH value to 9.5 by addition of HCl, the buffer is stored at 4°C. 

AP-staining solution 

NBT/BCIP solution (Roche Applied Science)      20   µl 

1x AP buffer            2   ml 

2.15.8 Cross-linking experiments 

Cross-linking experiments with ethylene glycol-bis (succinimidylsuccinate) (Sigma Aldrich) were 

used in this study to evaluate the ability of proteins to form higher order structures in solution. 

Protein isolates were incubated with different concentrations of EGS in 20 µl reaction buffer for 

30 min at RT. The cross-linking reactions were afterwards quenched with Tris-Glycine solution 

(100 mM Tris, pH 7.5; 100 mM Glycine) and the samples were analysed by SDS-PAGE (2.15.3). 

Reaction buffer 

HEPES (pH 8.0)    25  mM 

NaCl    100  mM 

DTT        1  mM 

EDTA       0.2  mM 

Glycerol     10  % [v/v] 
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2.16  Stress experiments 

2.16.1 O2 and H2O2 stress experiments 

In order to evaluate the impact of O2 and H2O2 on strains of C. acetobutylicum, stress experiments 

were performed as previously described (Hillmann et al., 2008). 

2.17  List of chemicals and materials 

Table 2.4 Chemicals and materials used in this study 

Manufacturer Chemicals and Materials 

Applichem GmbH, Darmstadt 
EDTA, Formaldehyde, Formamide, Erythromycin, Tween-20, 

X-Gal, DTT, HEPES, 30% H2O2 solution 

Biometra GmbH, Göttingen 0.2 µm Nitrocellulose membrane 

Biorad Laboratories, Munich IPG Strips, Poly-Prep Chromatography Columns 

Carl Roth GmbH, Karlsruhe Roti
®
-Nylon plus, Albumin Fraction V 

Difco Laboratories, Hamburg Agar-Agar 

GE Healthcare, Munich Cy3, Cy5, DryStrip Cover Fluid 

IBA GmbH, Göttingen  
Strep-Tactin-Sepharose, Desthiobiotin, Strep-Tactin

®
 AP 

conjugate 

Megazyme International Ltd., Wicklow, 

Irland 
D-Lactic Acid (D-Lactate) and L-Lactic Acid (L-Lactate) Kit 

Merck, Darmstadt TLC Silica gel 60 F254 

Oxoid GmbH, Wesel RCA (Reinforced Clostridial Agar) 

Macherey-Nagel & Co. KG, Düren 50% Ni-NTA slurry 

Peqlab Biotechnologie GmbH, Erlangen  peqGold Pwo-Polymerase I, 'peqGOLD Gel Extraction Kit' 

Roche GmbH, Mannheim 

DIG-labeled DNA Molecular Weight Marker II, Blocking, 

Reagent, DIG DNA Labeling Kit, NBT/BCIP Stock solution, 

RNase-free recombinant DNase I, Anti-Digoxigenin-AP, 5'/3' 

RACE Kit, CDP-Star
®

 

Sigma-Aldrich Chemie, Taufkirchen  

Ampicillin, Thiamphenicol, Oligonucleotides, Chelex 100, 

EGS, o-NPG, Riboflavin, FMN, FAD, 2,2'-dipyridyl, 

Ferrozine, Neocuproine, HDTMA, CAS, PIPES, Potassium 

glutamate, Piperazine, Sulfosalicylic acid 

Thermo Scientific, Braunschweig 

Endonucleases (Table 2.6), T4-DNA-Ligase, FastAP, dNTPs, 

PageRuler Unstained Protein Ladder, PageRuler Prestained 

Protein Ladder, 'High Fidelity Enzyme Mix', 'GeneJET 

Plasmid Miniprep Kit', GeneRuler 1 kb DNA Ladder 
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3  Results 

3.1  Identification of CAC1682 from C. acetobutylicum as an  

  iron-sensing repressor 

The genome of C. acetobutylicum (Nölling et al., 2001) has revealed three genes (cac0951, 

cac1682 and cac2634) encoding proteins, annotated as 'Ferric uptake regulators' (Hillmann et al., 

2008). In previous studies CAC2634 has been defined as an H2O2-sensing regulator PerR 

(Hillmann et al., 2008; 2009b). In terms of phylogeny, CAC1682 and CAC0951 have been 

classified as iron- and zinc-responsive regulators, respectively (Hillmann et al., 2008). Functional 

assignment of proteins from the Fur family based on homology could be misleading (Wexler et 

al., 2003). Therefore, comparative analyses of CAC1682 and CAC0951 were performed in the 

present work. In silico studies and biochemical examination demonstrated that CAC1682 exhibits 

a set of properties characteristic of the Fur family of proteins. These results coupled with in vivo 

studies delineated the identity of this protein as an authentic ferric uptake regulator (Fur). 

3.1.1  Generation of homology models 

To closer investigate the CAC1682 and CAC0951 protein sequences from C. acetobutylicum, 3D 

homology models were generated using structural information from Helicobacter pylori Fur (pdb: 

2xig; Table 3.1) and Streptomyces coelicolor Zur (pdb: 2mwm; Table 3.2) as templates, and the 

Python-based software Modeller v.9.12 (script not shown) (Sali and Blundell, 1993; Dian et al., 

2011; Shin et al., 2011). The predicted 3D structures have been visualized (Fig. 3.1 and Fig. 3.2) 

by the graphical interface Chimera (Pettersen et al., 2004). For basic evaluation of the models, 

pseudo-energy calculated by the Modeller was plotted using Gnuplot (http://www.gnuplot.info/), 

a Python-based graphing utility (Fig. 7.2 and Fig. 7.3, Appendix) (script not shown). Chains A 

and B for both proteins were modelled separately and the dimeric structures (Fig.3.1 B and Fig. 

3.2 B) were fitted using the Matchmaker extension of Chimera (Meng et al., 2006). 

The overall fold organization of CAC1682 and CAC0951 as judged by the generated models (Fig. 

3.1 and Fig. 3.2) resembles the architecture characteristic for other members of the Fur family of 

proteins (Pohl et al., 2003; Lucarelli et al., 2007; Dian et al., 2011). CAC1682 consists of an N-

terminal DNA-binding domain (DBD) (residues 1-90; shaded in blue on Fig. 3.1), a C-terminal 

dimerization domain (DD) (residues 100-151; coloured in pink), both connected by a short hinge 
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region (residues 91-99; yellow). The DBD motif constitutes of α2-α4 helices and ß1- ß2 sheets, 

which collectively form a typical winged helix-turn-helix structure (wHTH) with α4 being 

considered as the DNA recognition determinant (Huffman and Brennan, 2002; Pohl et al., 2003). 

The C-terminal DD consists of three antiparallel ß sheets (ß3, ß4 and ß5) as well as two α helices 

(α5 and α6). Similarly to CAC1682, the CAC0951 model structure exhibited a bipartite 

organization, composed of a DBD (residues 1-79, coloured in green on Fig. 3.2) and a DD 

(residues 87-143, violet), bridged by a short loop (residues 80-86, yellow). 

 

Table 3.1  Comparative amino acid sequence analysis of CAC1682 

with HpFur* and other characterized Fur proteins. 

Protein 
Amino acid 

Identity/Similarity [%] 

CAC1682 (C. acetobutylicum) 100/100 

Fur (B. subtilis) 49/70 

Fur (E. coli) 36/56 

Fur (H. pylori) ** 28/54 

   *  HpFur, H. pylori Fur 

   **HpFur was used for construction of the predicted CAC1682 3D model. 

 

 

Table 3.2  Comparative amino acid sequence analysis of CAC0951  

with ScZur* and other characterized Zur proteins. 

Protein 
Amino acid 

Identity/Similarity [%] 

CAC0951 (C. acetobutylicum) 100/100 

Zur (B. subtilis) 28/50 

Zur (E. coli) 26/50 

Zur (S. coelicolor) ** 26/46 

   *  ScZur, S. coelicolor Zur 

   **ScZur was used for construction of the predicted CAC0951 3D model. 

Three distinct putative metal-binding sites (S1, S2 and S3) were identified within the CAC1682 

protein sequence (Fig. 3.3) based on comparative structural analysis with other Fur-like proteins 

(Pohl et al., 2003; Lucarelli et al., 2007; Dian et al., 2011; Butcher et al., 2012). Two binding 

sites (S1 and S3) are positioned within the DD and one (S2) at the junction between the DBD and 

DD. S1, a putative Zn(II)-binding structural site, composed of two Cys-X-X-Cys motifs (Cys104, 

Cys107, Cys144 and Cys147) is located in close proximity to the C-terminus (Fig. 3.3 A). S2 
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consists of His41, Glu89, His99 and His101 (Fig. 3.3 B) and S3 (Fig. 3.3 C), is tetrahedrally 

coordinated at the core of the DD by residues His97, His100, Asp119 and His136. Interestingly, 

only two conserved metal binding sites were identified in the protein structure model of CAC0951 

(Fig. 3.4). Those were designated S1 (Cys91, Cys94, Cys130, Cys133) and S3 (His85, His87, 

Asp105, His122) to match the corresponding putative metal binding sites in CAC1682. 

 

 

 

Fig. 3.1  Ribbon representation of the lowest-energy structure of CAC1682 monomer (A) and dimer (B) based 

on a homology model generated using HpFur (pdb: 2xig; Dian et al., 2011) as reference. The 3D model structure of 

CAC1682 was predicted by the Modeller program (Sali and Blundell, 1993). Dimer structure was fitted using the 

Matchmaker. The N-terminal DBD is coloured in blue, the C-terminal DD in pink and the connecting hinge between both in 

yellow. The second monomer is shaded in grey. 

 

 

 

A) 

B) 
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Fig. 3.2  Ribbon representation of CAC0951 monomer (A) and dimer (B) based on a homology model generated 

using ScFur (pdb: 2mwm; Shin et al., 2011) as reference. The N-terminal DBD is coloured in green, the C-terminal DD in 

violet and the connecting loop between both in yellow. The second monomer is shaded in grey. 

 

    

Fig. 3.3  Predicted metal binding sites in CAC1682 based on comparative structural analysis and homology 

model generated with the Modeller. (A) Site 1; (B) Site 2; (C) Site 3 (see text for details). The N-terminal DBD is coloured 

in blue, the C-terminal DD in pink and the connecting hinge between both in yellow analogically to Fig. 3.1. 

 

A) B) C) 

A) 

B) 
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Fig. 3.4  Predicted metal binding sites in CAC0951 based on comparative structural analysis and homology 

model generated with the Modeller. (A) Site 1; (B) Site 3 (see text for details). The N-terminal DBD is coloured in green, 

the C-terminal DD in violet and the connecting loop between both in yellow analogically to Fig. 3.2. 

3.1.2. Biochemical characterization 

In a first set of experiments, basic biochemical properties of CAC1682 and CAC0951 like 

oligomeric state and metal content were examined. For that purpose, recombinant proteins were 

overexpressed and purified to homogeneity from cells of E. coli. 

3.1.2.1 Heterologous expression of recombinant CAC1682 and CAC0951 proteins 

Overproduction of CAC1682 in E. coli was performed using the pET-30a Xa/LIC inducible 

system (Novagen), designed for high-level expression of proteins fused with an external His®-tag 

and an internal S®-tagTM sequence at the N-terminus. The entire cac1682 coding sequence was 

PCR amplified from C. acetobutylicum ATCC 824 genomic DNA (2.6.2) using the 

cac1682_pET30a_fw/ cac1682_pET30a_rev primer pair (Table 7.4), cloned into pET-30a and the 

resulting pET-30a::cac1682 construct was transformed into competent E. coli BL21 (DE3/pLys) 

cells (Novagen). The His-tagged CAC1682 was extracted from the soluble cellular protein 

fraction with Ni-NTA agarose resin (Macherey-Nagel) essentially as described in Materials and 

Methods (2.15.6.2). 

CAC0951 was overproduced in cells of E. coli BL21 using the pT system (Fig. 7.4 A, Appendix) 

(Girbal et al., 2005). The pT vector is a shuttle plasmid, designed for expression of C-terminal 

Strep-tag II fusion proteins under control of the ribosome binding site (RBS) and clostridial 

thiolase promoter (PthlA) (Girbal et al., 2005). The coding region of the cac0951 gene without its 

stop codon was PCR amplified using primers cac0951_BamHI_fw and cac0951_XmaI_rev (Table 

7.4) and genomic DNA as template (2.6.2). The resulting PCR product was digested with BamHI 

and Cfr9I (XmaI), ligated into the corresponding sites of a phosphatase treated pT vector (2.8.3.2 

A) 

 

 

 

B) 
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and 2.8.3.3) and transformed into E. coli BL21 competent cells (2.9.1.1 and 2.9.1.2). Recombinant 

CAC0951 was purified (2.15.6.2) from the soluble protein fraction by loading on a Strep-Tactin-

Sepharose affinity column (IBA GmbH, Göttingen). 

Purity of the recombinant CAC1682 and CAC0951 was assessed using SDS-PAGE and 

subsequent staining by Coomassie Blue (2.15.3) (Fig. 3.5 A and B). In addition, identity of the 

isolated proteins was confirmed by MALDI-TOF mass spectrometry analysis (2.15.4.6). 

CAC1682 migrated on SDS-PAGE gels as a doublet form with a predominant product, 

corresponding to the calculated molecular weight of the fusion protein monomer (~ 23 kDa). 

Similarly, SDS-PAGE analysis of CAC0951 revealed two isoforms with molecular weight 

corresponding to the theoretically estimated size of a Strep-tag II fusion protein (~ 18 kDa). 

          

Fig. 3.5  Purification of recombinant CAC1682 (A) and CAC0951 (B) proteins from E. coli. SDS-PAGE analysis 

(12 % [w/v] gel), followed by Coomassie staining. M, PageRuler Prestained Protein Ladder (Thermo Scientific); (A) Lane 1, 

crude extract from IPTG induced BL21 (DE3/pLys) cells; lane 2, flow-through; lane 3-5, washing fractions; lane 6 and 7, 

CAC1682 containing elution fractions. (B) Lane 1, crude extract; lane 2, flow-through; lane 3, washing fraction; lane 4, 

CAC0951 protein containing fraction. Protein doublet forms are indicated by two arrows. 

3.1.2.2 Determination of protein oligomeric state 

An important aspect of Fur regulation is the ability to form oligomers (Lee and Helmann, 2007). 

Gel filtration experiments (FPLC) using a Superdex 200 size-exclusion column proved inefficient 

for oligomerization studies of the CAC1682 protein, because of its low UV absorbance and 

precipitation into the gel matrix. Therefore, in vitro chemical cross-linking assays were conducted 

in this study in order to evaluate the ability of CAC1682 and CAC0951 to form higher-order 

structures in solution. Cross-linking agents capture multimeric forms that are in a dynamic 

A) B) 



Results  47 

equilibrium with the corresponding monomers and are therefore useful for determination of 

protein oligomerization status (Hernandez et al., 2002). Recombinant CAC1682 protein was 

incubated with or without the cross-linking agent ethylene glycol-bis (succinimidyl succinate) 

(EGS) for 30 min at RT and the reactions were afterwards quenched with Tris-Glycine solution 

(2.15.8). As illustrated on Fig. 3.6, SDS-PAGE analysis of the cross-linked samples revealed 

predominant monomeric (~ 23 kDa) and dimeric (~ 46 kDa) forms of the protein (Fig. 3.6 A). 

Increasing concentrations of the cross-linking agent caused a shift towards formation of a protein 

dimer, but no overall change in the oligomerization behaviour (Fig. 3.6 B). Similarly, analysis of 

the recombinant CAC0951 demonstrated that this protein forms dimeric structures (~ 36 kDa) in 

solution (Fig. 3.6 C). Collectively, these results indicate that CAC1682, as well as CAC0951, 

exist as dimers, which is in agreement with the oligomeric pattern proposed for members of the 

Fur family of proteins studied so far (Lee and Helmann, 2007). 

 

 

Fig. 3.6  Oligomeric state of CAC1682 (A, B) and CAC0951 (C) in solution determined by chemical cross-

linking. 700 ng of recombinant CAC1682 was incubated for 30 min with 2 mM (A) and 6-10 mM (B) of the cross-linking 

agent EGS. (C) 300 ng of Strep-tagged CAC0951 was incubated with 2 mM EGS. Cross-linked samples were afterwards 

analysed on 12 % [w/v] SDS-PAGE gels. M, PageRuler Prestained Protein Ladder (Thermo Scientific); Lane 1, untreated 

protein; lane 2, 2 mM EGS. Arrows indicate bands corresponding to monomeric and dimeric forms of the proteins. 

 

3.1.2.3 Metal content quantification 

As the oligomeric state of CAC1682 and CAC0951 in solution was elucidated, we sought to 

investigate the protein metal element content. In order to remove any adventitiously associated 

metal ions, the purified recombinant CAC1682 and CAC0951 were extensively dialysed against 1 

mM EDTA at 4 °C. Both proteins were afterwards diluted in concentrated HCl, incubated 

overnight and subjected to inductively coupled atomic-emission spectroscopy (ICP-AES) analysis 

A) B) C) 
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as previously described (Hillmann et al., 2008). Elution buffer (2.15.6.1 and 2.15.6.2) treated in 

the same manner as the protein samples served as a control. ICP data indicated that zinc, a 

structural element, and iron, the cognate cofactor of the ferric uptake regulators, co-purify with 

CAC1682 under the conditions of the assay (Table 3.3). The other two transition metals tested 

(cobalt and manganese) were not detected in the samples. Surprisingly, a considerable amount of 

nickel has been identified in the CAC1682 protein isolates, most probably as a result of 

contamination during the purification protocol with Ni-NTA. Among all tested transition metals, 

only zinc has been identified in the CAC0951 samples, consistent with the predicted role of this 

protein as a zinc-responsive regulator. 

Table. 3.3 Metal content of recombinant CAC1682 and CAC0951 proteins. 

Quantities presented as nmol metal per mg of recombinant protein (±SEM) were determined by inductively coupled 

plasma atomic-emission spectroscopy (ICP-AES) from three independent CAC1682 and CAC0951 batches. BDL, 

below detection limit of the method. 

3.1.3  Functional in vivo characterization of CAC1682  

In order to establish experimentally the role of CAC1682 as a genuine iron-sensing regulator in 

vivo, the ability of this protein to act as a repressor and to specifically respond to iron levels were 

explored within the cellular milieu of Fur deficient E. coli and B. subtilis hosts. In addition, the 

CAC0951 protein was used as a control in all complementation assays. 

3.1.3.1 Construction of pTCatP recombinant plasmids 

For the complementation studies in E. coli and B. subtilis, a modified pT vector system, 

designated in this work as pTCatP (Fig. 7.4 B, Appendix), was employed (Girbal et al., 2005, 

mod.). This system was selected since the pT vector has been well established for high-level 

expression of target proteins in E. coli (Riebe, 2009) as a Gram-negative host and stable growth-

phase-independent expression in C. acetobutylicum (Riebe, 2009; Schulz, 2013) as a Gram-

positive host. Moreover, the Strep-tag II provides a convenient means for monitoring. The coding 

regions of cac1682 and cac0951 without their stop codons were PCR amplified from 

C. acetobutylicum ATCC 824 genomic DNA (2.6.2) using cac1682_XmaI_fw/ 

    Element 
CAC1682 

nmol/mg protein 

CAC0951 

nmol/mg protein 

            27
Co BDL BDL 

            26
Fe 0.51 ± 0.24 BDL 

            25
Mn BDL BDL 

            28
Ni  4.60 ± 0.72 BDL 

            30
Zn 17.06 ± 1.84 41.98 ± 9.43 
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cac1682_BamHI_rev and cac0951_BamHI_fw/ cac0951_XmaI_rev primer pairs (Table 7.4), 

respectively. The resulting PCR products, after purification by gel extraction (2.7.1.1) were 

digested with BamHI and Cfr9I (XmaI) and ligated into the corresponding sites of a phosphatase 

treated pTCatP vector (2.8.3.2 and 2.8.3.3). The ligation mixtures were then transferred into 

CaCl2-competent E. coli DH5α cells (2.9.1.1 and 2.9.1.2) and transformants were selected on LB 

agar plates supplemented with either Cam (25 µg/ml) or Amp (100 µg/ml). Presence of the correct 

inserts was verified by test restriction (2.8.3.1), as well as sequencing with primers pT_seq_fw 

and pT_seq_rev (Table 7.4). 

3.1.3.2 Complementation of the fur defective E. coli H1780 strain 

E. coli H1780 is a fur-null strain that carries a chromosomal lacZ reporter transcriptional fusion 

with the promoter region of the Fur repressed gene fiu (fiuλ::placMu53), which codes for a 

siderophore receptor (Hantke, 1987; 1990). Moreover, lack of a functional iron-sensing repressor 

in this strain results in derepression of the ent gene cluster, responsible for biosynthesis of the 

catechol siderophore enterobactin (Hantke, 2001). Thus, H1780 is characterized by two easily 

detectable phenotypical traits, namely constitutive expression of the lacZ reporter gene and 

excretion of enterobactin. Those features create background for functional analysis of candidate 

iron-responsive Fur proteins from other bacterial species and were used in this study to determine 

the metal status of CAC1682 in the context of E. coli cellular environment. Introduction of an 

active Fur ortholog into H1780 in the presence of its co-effector Fe(II) would lead to significant 

inhibition of the β-galactosidase activity as well as reduction in enterobactin biosynthesis. 

The constructed recombinant plasmids pTCatP::cac1682 and pTCatP::cac0951 (3.1.3.1), as well 

as a control vector without insert (pTCatP), were transformed into CaCl2-competent E. coli H1780 

cells giving strains H1781 (pTCatP control vector), H1782 (pTCatP::cac1682) and H1783 

(pTCatP::cac0951). To confirm the expression of both proteins, E. coli H1780, H1781, H1782 

and H1783 were grown in 50 ml LB medium supplemented with the appropriate antibiotics for 

selection (Table 7.1 and Table 2.1) at 37 °C with rigorous aeration (180 rpm). When the cultures 

reached an OD600 of 2-2.5, samples were collected and prepared for Western blot analysis 

(2.15.7). Here Fig. 3.7 confirms the successful expression of CAC1682 and CAC0951 in E. coli 

H1782 and H1783, respectively, while no signal was detected in the negative control strains 

H1780 and H1781. Both proteins migrated on the SDS-PAGE gel as doublet forms, as has been 

previously reported for other members of the Fur family of proteins (Bsat et al., 1998; Lee and 

Helmann, 2006b). E. coli H1717, a strain that harbours a chromosomal lacZ reporter construct, 

under control of the Fur-regulated fhuF promoter, but is not mutated in fur, was used as a positive 

control in all complementation assays (Hantke, 1987; Stojiljkovic et al., 1994). This strain was 
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considered as a suitable reference since previous studies reported fiu::lacZ and fhuF::lacZ 

transcriptional fusions to be regulated in a similar fashion by E. coli Fur (Quatrini et al., 2005). 

 

Fig. 3.7  Expression of CAC1682 and CAC0951 in E. coli H1780 verified by Western blot analysis. M, PageRuler 

Prestained Protein Ladder (Thermo Scientific); 20 µg of total cellular protein were loaded in each slot of a 12 % [w/v] SDS-

PAGE gel, which was afterwards blotted on a nitrocellulose membrane. Lane 1, E.coli H1780; lane 2, H1781 (pTCatP 

control); lane 3, H1782 (pTCatP::cac1682) and lane 4, H1783 (pTCatP::cac0951). Protein doublets are indicated by two 

arrows. 

 

3.1.3.2.1 Quantification of β-galactosidase reporter activities 

Iron-replete conditions for the assay that ensured repression of the lacZ reporter by Fur were 

determined empirically using E. coli H1717. The strain was grown on MacConkey-lactose agar 

plates (2.3.1) supplemented with different concentrations of FeSO4. A ferrous iron concentration 

of 100 µM was found to be sufficient for repression of the transcriptional fusion as discerned by 

formation of white (Lac-) instead of red or pink (Lac+) colonies and has been therefore further 

used for quantification of β-galactosidase reporter activities. To achieve the latter, cultures of 

H1780, H1781, H1782 and H1783 strains, as well as the positive control H1717 strain, were 

propagated in 100 ml LB medium supplemented with the appropriate antibiotics for selection 

(Table 7.1 and Table 2.1) to mid-log phase. Cells were then lysed and specific β-galactosidase 

activities were assayed as described in Materials and Methods (2.15.5.1). The results from at least 

three independent experiments are illustrated on Fig. 3.8 A. As expected, in fur mutant 

background, H1780, as well as the control vector harbouring strain H1781, produced 

constitutively high levels of β-galactosidase. The CAC0951 expressing H1783 developed a 

similar profile. Introduction of CAC1682, however, led to a significant decrease in β-

galactosidase activity, providing a first line of in vivo evidence that this protein may function as 

an iron-sensing repressor in C. acetobutylicum. 
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3.1.3.2.2 Detection of enterobactin production 

To investigate the ability of CAC1682 to restore Fur repression activity in E. coli H1780 with 

respect to other iron-regulated cellular processes, assessment of siderophore production in the 

recombinant strains was performed. H1780 constitutively excretes the catechol siderophore 

enterobactin, which upon accumulation into the medium gives a dark purple colour (Payne, 1994). 

 

 

Fig. 3.8  CAC1682 from C. acetobutylicum restores Fur+ phenotype in the fur-null E. coli H1780 reporter strain. 

Specific ß-galactosidase activities of the Fur regulated fiu-lacZ and fhuH-lacZ (H1717) transcriptional fusions (A) and 

siderophore production (B, C) in H1780, H1781 (pTCatP), H1782 (pTCatP::cac1682), H1783 (pTCatP::cac0951) strains as 

well as H1717 (fur+). The presented data in (A) was obtained from at least three independent (n=3) experiments (P < 0.005). 

 

To evaluate the synthesis of enterobactin, H1780, H1781, H1782 and H1783, as well as the 

positive control H1717, were grown overnight in 100 ml LB medium supplemented with 100 µM 

A) 

B) C) 
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FeSO4. As illustrated on Fig. 3.8 B, only CAC1682 was able to restore Fur+ phenotype in E. coli 

H1782, in concert with the results obtained from the β-galactosidase activity experiments 

(3.1.3.2.1). Furthermore, the identity of the secreted compound as a siderophore was confirmed in 

vivo by a Chrome Azurol-S (CAS) plate assay (2.3.1 and 2.5.10.3) (Fig. 3.8 C). 

3.1.3.3 Complementation of the Fur
-
B. subtilis HB6543 

To test if CAC1682 responds to varying levels of iron in the medium, complementation 

experiments in the fur defective B. subtilis H6543 (Bsat et al., 1998) were carried out under iron-

replete and iron-deplete conditions. For the complementation studies, pTCatP::cac0951, 

pTCatP::cac1682 (3.1.3.1), and the pTCatP control vector without insert were introduced into 

E. coli RR1 for plasmid amplification (2.9.2.2) and afterwards transformed into HB6543 

competent cells (2.9.2.1 and 2.9.2.3) giving strains: HB6544 (pTCatP control), HB6545 

(pTCatP::cac1682) and HB6546 (pTCatP::cac0951). B. subtilis HB1000 (wild-type) served as a 

control in this assay (Chen et al., 1993). In HB6543 the Fur regulated dhb operon is derepressed 

leading to constitutive synthesis of precursors of the catechol siderophore bacilibactin (2,3-

dihydroxybenzoate (DHB) and 2,3-dihydroxybenzoylglycine (DHBG)) (Bsat et al., 1998, 

Baichoo et al., 2002). Those compounds are easily detectable in culture supernatants (Bsat et al, 

1998). Cells of B. subtilis HB1000, HB6543, HB6544, HB6545, HB6546 were grown overnight 

in 200 ml low-phosphate content minimal medium (2.3.2) with or without Fe(III). When iron is 

not available, a Fur protein (apo-Fur) is no longer active for repression of its target genes. 

DHB(G) quantification in culture supernatants was conducted using the Arnow assay as described 

in Materials and Methods (2.5.10.1) and values were normalized to the cultures' OD600 (Fig. 3.9). 

HB6543, HB6544 and HB6546 strains produced constitutively high levels of DHB(G) 

irrespective of the iron concentration in the medium, while CAC1682 was able to partially 

complement Fur deficiency. Moreover, similarly to the WT, under iron-deplete conditions 

HB6545 exhibited significant derepression (P < 0.005) of the DHB(G) biosynthesis pathway 

compared to the iron-replete medium. These results indicate that CAC1682, but not CAC0951, is 

selective for iron under the conditions of the assay. 
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Fig. 3.9  Iron-dependent repression of the Fur-regulated siderophore biosynthesis pathway in B. subtilis 

HB6543 by CAC1682. Siderophore yields, represented as OD510/OD600 (± SEM), were quantified for WT (wild-type, 

HB1000), HB6543 (fur mutant), HB6544 (HB6543 pTCatP control), HB6545 (HB6543 pTCatP::furCac) and HB6546 

(HB6543 pTCatP::cac0951) strains grown overnight in minimal medium without (black bars) or supplemented with 5 µM Fe 

(III) (grey bars). The presented data was obtained from at least three independent experiments (n=3). Asterisks indicated 

significant difference between iron-replete and iron-deplete conditions (P < 0.005). 

 

 

3.2  Generation and verification of a fur mutant in    

  C. acetobutylicum 

In silico and trans-complementation studies indicated the role of CAC1682 as a ferric uptake 

repressor. Therefore, the ORF CAC1682 has been further referred as fur. To evaluate the 

biological significance of the Fur protein in C. acetobutylicum, cac1682 was disrupted via 

directed insertional mutagenesis using the Clostron® system (Heap et al. 2007; 2010). In order to 

construct a fur-null strain, a modified pMTL007C-E2 vector was employed following an 

established procedure described in Materials and Methods (2.10). In order to introduce the 

nucleotide changes within the intron sequence, the 350 bp re-targeting region was assembled and 

amplified from pMTL007 by SOE PCR (2.8.2.3) using primers fur_IBS_271a, fur_EBS1d_271a, 

fur_EBS2_271a and EBS Universal (Table 7.4) (Fig. 3.10 A). The amplified re-targeting region 

was then ligated into the intron-encoding pMTL007C-E2 plasmid. Identification of positive 

clones was performed by blue-white screening on agar plates supplemented with X-Gal, followed 

by recombinant plasmid test restriction with HindIII and Bsp1407I (BsrGI) (Fig. 3.10 B). 

pMTL007C-E2 harbouring group II intron modified for insertion into the fur gene sequence was 

afterwards subjected to in vivo methylation and electroporated into C. acetobutylicum ATCC 824 

(2.10.2). Initial screening for presence of the desired insertion was performed through PCR at the 

gene-intron junction using the gene-specific fur_verif_rev primer and the intron-specific EBS 
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Universal primer (2.8.2.1) (Fig. 3.11 B). Integration of group II intron (~ 1.8 kb) into the fur 

coding sequence (456 bp) was demonstrated by whole gene PCR amplification (Fig. 3.11 C) with 

fur_verif_fw and fur_verif_rev primers (Table 7.4) using genomic DNA extracted from the wild-

type and two representative mutant clones (2.8.2.2). Southern hybridization analysis (2.11.2) 

employing a fur gene specific probe and an intron specific ErmRAM probe further corroborated 

the correct insertion and ruled out multiple incorporation of the intron sequence into the genome 

(Fig. 3.12 A and B). 

 

Fig. 3.10 Intron re-targeting and assembly of recombinant pMTL007C-E2, modified for disruption of the 

C. acetobutylicum fur gene. (A) Analytical gel electrophoresis (0.8 % gel) illustrating amplification of the 350 bp intron re-

targeting region (lane 1-2) through SOE PCR. M, Massruler DNA Ladder Mix (Thermo Scientific). (B) Successful cloning of 

the intron re-targeting region into pMTL007C-E2 (lane 1-5), confirmed by test restriction using HindIII and Bsp1407I 

(BsrGI). M, GeneRuler 1 kb DNA Ladder (Thermo Scientific). 

 

                                               Continued on next page 

A) B) 

A) 

B) C) 
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Fig. 3.11 Insertion of group II intron into the fur locus of C. acetobutylicum ATCC 824 verified by PCR. (A) 

Schematic representation of the PCR screening strategy employed for identification of positive integrant clones. (B) Colony 

PCR was performed with primers flanking the site of insertion (271 bp from the start codon) (lane 1-4). M, GeneRuler 1 kb 

Ladder (Thermo Scientific). (C) Whole fur gene PCR amplification with genomic DNA isolated from C. acetobutylicum WT 

and two representative fur insertional mutant clones (fur::int(271a)) using fur_fw_BamHI and fur_rev_XmaI primers. M, 

GeneRuler 1 kb Ladder (Thermo Scientific); lane 1, WT fur gene PCR product; lane 2-3, fur gene PCR product incorporating 

the group II intron sequence (~ 1.8 kb). 

 

 

                           

Fig. 3.12 Verification of C. acetobutylicum fur gene mutation by Southern blot hybridization. Genomic DNA was 

extracted from C. acetobutylicum WT and fur::int(271a) strains, digested with EcoRV and separated on a 1 % agarose gel. 

Next, the DNA was transferred to a nylon membrane, hybridized using DIG labeled fur gene specific (A) and ErmRAM 

cassette specific (B) probes. The signal was detected with NBT/BCIP. M, DIG labeled molecular weight marker II (Roche 

Applied Sciences); lane 1, WT; lane 2, fur::int(271a). 

 

3.3  Functional in trans complementation of the fur defective  

  strain 

In order to confirm that the phenotypical features of the mutant strain are due to Fur deficiency 

and to rule out potential polar effects or point mutations resulting from the Clostron® system, 

genetic complementation was performed. Two approaches for in trans complementation were 

implemented in this study. In the first approach, the wild-type copy of the fur gene along with its 

promoter region (positions - 500 to + 456 relative to the translational start site) were amplified 

from C. acetobutylicum ATCC 824 genomic DNA by PCR using fur_prom_XmaI_fw and 

fur_prom_NcoI_rev primers (Table 7.4). The amplicon was subsequently ligated into the XmaI 

and NcoI sites of the shuttle vector pMTL85141 (Heap et al., 2009) and the resulting construct 

was transformed into E. coli DH5α for in vivo amplification. Transformants were selected on LB 

medium supplemented with chloramphenicol (25 µg/ml), followed by test restriction and 

sequencing (LGC Genomics, Berlin) to verify the presence of the correct insert. pMTL85141 

A) B) 
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carrying the fur gene and its cognate promoter region was then subjected to in vivo methylation in 

E. coli ER2275 and introduced into the C. acetobutylicum fur mutant strain through 

electroporation (2.10.2). Transformants were selected with erythromycin (30 µg/ml) and 

thiamphenicol (15 µg/ml). In the second complementation approach the pTCatP::fur (cac1682) 

construct (see 3.1.3.1), carrying the C. acetobutylicum wild-type fur gene under control of 

clostridial thiolase promoter (Girbal et al., 2005) was electroporated in the fur mutant strain as 

described above. Transformants, selected with erythromycin (30 µg/ml) and thiamphenicol (15 

µg/ml), were confirmed by colony PCR using pT_seq_fw and pT_seq_rev primers (Table 7.4). 

Furthermore, to evaluate any possible effects caused solely by the vector systems, negative 

control strains were constructed by introduction of the pMTL85141 and pTCatP vectors without 

inserts into the C. acetobutylicum fur mutant strain. Since complementation experiments 

demonstrated that both strategies were comparable, the results achieved with C. acetobutylicum 

fur mutant pTCatP::fur and C. acetobutylicum fur mutant pTCatP strains (Table 7.1) are presented 

in this work. 

3.4  Physiological characterization of the C. acetobutylicum fur 

  mutant 

In addition to genes involved in iron supply, Fur regulators control directly and indirectly genes 

related to a great variety of cellular processes, including among others, energy metabolism and 

oxidative stress responses (Lee and Helmann, 2007; Carpenter et al., 2009). The degree of 

functional diversity of the Fur protein differs even in closely related bacteria, thus creating a 

species specific unique set of physiological processes under control of this pleiotropic regulator. 

The capacity of Fur in C. acetobutylicum has been evaluated in the present work by examination 

of the physiology of the generated fur mutant strain. 

3.4.1  Growth characteristics, morphology and product formation 

Absence of the ferric uptake regulator (Fur) affected significantly the growth pattern of 

C. acetobutylicum, suggesting a major physiological importance of this protein. When grown 

anaerobically for 48 h at 37 °C on complex RCA agar medium (2.3.3), the mutant formed smaller 

colonies than the parental strain (Fig. 3.13 A and B). A similar profile has been observed in the 

fur defective strain carrying the empty control pTCatP vector. Introduction of a functional copy of 

the fur gene restored the size of the colonies, indicating that the growth defect is due to loss of 

Fur. Similarly, the fur defective strain produced smaller colonies than the parental strain, when 

grown on minimal MS-CaCO3 agar medium (2.3.3) for 96 h (data not shown). Small colony 
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morphology could be a result of reduced cell size. Therefore, the length of fur mutant and wild-

type cells was examined using light microscopy (2.5.4). Since no distinguishable difference has 

been observed in either cell shape or length between both strains (Fig. 3.13 C), it could be 

concluded that the marked decrease in colony size of the mutant strain is a result of reduction in 

cell number. 

       

 

Fig. 3.13 Small colony morphology of C. acetobutylicum fur mutant. Cells of WT (1; black bar), fur mutant (2; 

white bar), control vector (3; dark grey bar) and complemented strains (4; light bar) were grown anaerobically for 48 h at 

37 °C on complex RCA agar plates. The results presented in (B) were obtained from at least ten independent measurements 

(P < 0.001). (C) Length of wild-type (black bar) and fur mutant (white bar) cells as determined by light microscopy. White 

bars in (A) represent 5 mm. 

 

To further investigate the behaviour of the fur mutant relative to the wild-type, growth of the four 

strains was evaluated in 200 ml liquid complex CGM medium (2.3.3) (Fig. 3.14). The fur mutant 

displayed longer lag phase, slower exponential growth rate (µ) and lower cell density at stationary 

phase in comparison to the wild-type. This phenotype was complemented by introduction of a 

functional copy of the fur gene.  
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Fig. 3.14 Comparative growth profiling of C. acetobutylicum fur mutant relative to the WT in liquid rich 

medium. Cultures of C. acetobutylicum WT (closed circles), fur mutant (open circles), control vector (open triangles) and 

complemented (closed circles) strains were propagated in 200 ml CGM medium supplemented with 5 % glucose. The 

following growth rates (µ) were calculated for each strain: WT (0.580 ± 0.08 h-1); fur mutant (0.239 ± 0.02 h-1); pTCatP 

vector control strain (0.222 ± 0.03 h-1); complemented strain (0.543 ± 0.07 h-1). The presented data was obtained from four 

independent experiments (n=4), P < 0.001. 

Upon cultivation in 200 ml minimal MS-MES medium (2.3.3), supplemented with 60 g/l glucose, 

the fur defective strain exhibited similar growth characteristics (Fig. 3.15 A). The slower growth 

of the mutant resulted in a delay of the metabolic switch reflected by a delay in the pH shift as 

illustrated on Fig. 3.15 B. The lower final yield corresponded to a significant decrease in glucose 

utilization (Fig 3.15 C). Another facet of special interest for the physiological characterization of 

C. acetobutylicum is quantification of the accumulated fermentation products. Previous studies 

reported prevalent lactate synthesis during the acidogenic growth phase (pH > 5) and a 

significantly increased butanol:acetone ratio during the solventogenic phase (pH < 4.4) in iron-

deficient cells of C. acetobutylicum (Bahl et al., 1986). In order to investigate a potential shift in 

the metabolic profile, solvents (butanol, acetone and ethanol) were measured in cell-free culture 

supernatants of the wild-type, fur mutant, negative control and complemented strain after 135 h of 

incubation in 200 ml MS-MES medium using gas chromatography (2.5.7). The obtained 

quantities were normalized to the maximal reached OD600 of the corresponding cultures (ODmax). 

As illustrated on Fig. 3.15 D, the fur mutant exhibited no statistically significant difference in 

product spectrum with respect to the wild-type. In addition, lactate production has been monitored 

(2.5.6) during the whole growth of all four strains (data not shown). Elevated lactate 

concentrations in the fur mutant strain relative to the wild-type have not been detected in this 

study. 
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Fig. 3.15 Growth and fermentation profile of C. acetobutylicum fur mutant strain in minimal medium. Cultures 

of C. acetobutylicum WT (closed circles; black bars), fur mutant (open circles; white bars), control vector (open triangles; 

dark grey bars) and complemented (closed circles; light grey bars) strains were grown in 200 ml MS-MES medium. (A) 

OD600 and (B) pH values were measured periodically during the whole growth (C) Glucose utilization after 135 h presented 

as percentage. 100 % corresponds to the initial concentration of 60 g/l. (D) Solvent concentrations, represented as g/l/ODmax 

measured after 135 h of incubation in cell-free culture supernatants. The presented data was obtained from three independent 

experiments (n=3), P < 0.001 (A) and (C). The following specific growth rates (µ) were calculated for each strain: WT (0.170 

± 0.04 h-1); fur mutant (0.100 ± 0.02 h-1); pTCatP vector control strain (0.110 ± 0.01 h-1); complemented strain (0.146 ± 0.03 

h-1). 
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Activity of the H2-evolving hydrogenase (HydA1), a major iron-rich enzyme in the metabolism of 

C. acetobutylicum, has been reported to be significantly reduced under iron-starvation conditions 

(Junelles et al., 1988). To test if inactivation of fur affects formation of H2, total gas volume, as 

well as the H2:CO2 ratio, were measured in headspace of 50-ml MS-MES cultures of the wild-type 

and the fur mutant (2.5.8) (data not shown). No significant differences have been detected in 

either total gas amount or H2:CO2 distribution between both strains in this study. 

3.4.2  Growth in the presence of an iron chelator 

To further investigate the biological effect of fur inactivation in C. acetobutylicum, cells of the 

wild-type, fur mutant, control vector and complemented strains were grown under iron-starvation 

conditions. In order to mimic iron-limiting conditions, RCA agar plates or CGM liquid medium 

were supplemented with increasing concentrations of 2,2'-dipyridyl (DP), a cell-wall permeable 

iron chelator. Fig. 3.16 represents the results from three independent experiments. Addition of 

50 µM DP to the RCA agar medium did not affect significantly the growth in comparison to the 

untreated cells of the wild-type and the mutant strain (see Fig. 3.11 B). A concentration of 

100 µM DP inhibited substantially the growth of both strains, however the reduction in colony 

size was significantly more pronounced in the fur mutant (~ 70 % (fur mutant) vs. ~ 40 % (wild-

type) relative to the untreated controls). Moreover, 150 µM DP prohibited completely the growth 

of the fur mutant, while the wild-type and complemented strains were still able to tolerate these 

quantities. Similar results were obtained upon incubation in 200 ml CGM medium supplemented 

with 100, 150 or 200 µM DP (Fig. 7.5, Appendix). 

 

Fig. 3.16 Growth of C. acetobutylicum fur mutant under iron-limiting conditions. Cells of the WT, fur mutant, 

pTCatP negative control and complemented strains were grown on RCA agar plates supplemented with (A) 50 µM (grey 

bars), 100 µM (black bars) and (B) 150 µM of the iron chelator 2,2'-dipyridyl (DP). Results presented in (A) were obtained 

from three independent experiments (n=3), P < 0.001. See text for details. 

A) B) 
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3.4.3  Quantification of intracellular iron content 

Under iron sufficient conditions Fur negatively regulates an assortment of genes involved in iron 

uptake (Andrews et al., 2003). Therefore, derepression of these transport pathways in fur mutant 

strains typically leads to accumulation of higher levels of intracellular unincorporated iron (Touati 

et al., 1995; Fuangthong et al., 2002). Results in (3.4.2), however, suggested that the fur mutant in 

C. acetobutylicum is iron-deficient since it showed significantly reduced growth under iron-

limiting conditions relative to the wild-type. In order to examine how absence of Fur affects the 

cellular iron status in this microorganism, a colorimetric ferrozine assay was employed (2.5.11). 

Total iron concentrations were determined in cells of the wild-type, fur mutant, negative control 

vector and complemented strains, grown to stationary phase in 50 ml CGM medium (Fig. 3.17). 

Data derived from three independent cultures showed that the fur mutant accumulated higher 

levels of chelatable iron. These results suggest a more complex regulation, rather than a 

mechanistic effect of the intracellular iron concentration in the fur mutant strain. 

 

Fig. 3.17 Effect of fur inactivation on C. acetobutylicum total intracellular iron level. Total iron concentration was 

measured in cells of the WT (black bar), fur mutant (white bar), negative pTCatP vector control (dark grey bar) and 

complemented strain (light grey bar) using the colorimetric ferrozine assay. Quantities, represented as nmol Fe/mg soluble 

protein (± SEM) were obtained from three independent experiments (P < 0.01) 

 

3.4.4  Sensitivity to oxidative stress 

Limited aerobic resistance has been well documented for C. acetobutylicum (O'Brien and Morris, 

1971; Kawasaki et al., 2004; Hillmann et al., 2008, 2009b). In the context of its natural habitats, 

this microorganism might periodically experience varying degrees of aeration. Lack of proper 

regulation of the intracellular iron levels (3.4.3) could lead to uncontrolled formation of 

deleterious ROS via the Fenton reaction under these conditions (Imlay, 1988). Therefore, the 

effect of fur inactivation on sensitivity of C. acetobutylicum to ambient air was tested in this study 

F
e

 [
n

m
o

l/
m

g
 p

ro
te

in
]

0

20

40

60

80

100

**



Results  62 

(2.16.1). Cells of the wild-type and the mutant strain, grown to mid-exponential phase (OD600 0.7-

0.8) under anaerobic conditions, were transferred to sterile flasks and incubated for 2 h with 

rigorous aeration on a rotary shaker (180 rpm). Samples were taken periodically, diluted 

appropriately, plated on RCA agar plates and grown in an anaerobic chamber for 48 h. The fur 

mutant exhibited significantly reduced viability in comparison to the wild-type during the whole 

course of the experiment (Fig. 3.18 A). Furthermore, the wild-type and the fur defective strain 

were tested for their sensitivity to the oxidative stress agent H2O2 (2.16.1). The results from three 

independent experiments demonstrated that absence of Fur in C. acetobutylicum renders the cells 

hypersensitive to H2O2 (Fig. 3.18 B). Quite unexpectedly, introduction of the pTCatP vector into 

C. acetobutylicum fur mutant led to a complete lack of growth upon exposure to oxidative stress. 

Therefore, results performed with the complemented strain are not shown in this work. 

 

 

Fig. 3.18 Effect of fur inactivation on C. acetobutylicum sensitivity to oxidative stress. (A) After incubation of cells 

from C. acetobutylicum WT (closed circles) and fur mutant (open circles) in 10 ml CGM medium until mid-exponential 

phase has been reached, both strains were exposed to ambient air on a rotary shaker (180 rpm) and survival was evaluated as 

cfu ml-1. (B) Cell aliquotes from both strains were incubated with increasing concentrations of the oxidative agent H2O2 for 

30 min at 37 °C. Results were obtained from three independent experiments (n=3). 

 

3.5  An intersection between response to fur mutation and iron

  limitation 

3.5.1  Assessment of potential siderophore production 

One of the most striking features of the bacterial Fur regulated iron-dependent response is the 

production of siderophores, small-molecule chelators that capture limiting iron from the 

environment (Wandersman and Delepelaire, 2004). According to the structure of their iron-
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coordinating moieties siderophores could be grouped into three major classes: (i) catecholates; (ii) 

hydroxamates and (iii) carboxylates (Miethke and Marahiel, 2007). The first member in the group 

of clostridia to be shown to synthesize at least one siderophore under iron-deficient conditions is 

Clostridium klyuveri (Seedorf et al., 2008). Therefore, a potential production of this class of 

compounds came under focus in C. acetobutylicum. In order to achieve iron-limiting conditions for 

the assay, minimal MS-MES medium was treated with the iron-chelating resin Chelex (Sigma 

Aldrich) to eliminate any trace amounts of iron. The medium was afterwards supplemented with 6 µM 

FeSO4, an amount chosen in concert with previous studies, which demonstrated concentrations of iron 

up to 10 µM to be limiting for the growth of clostridia (Schönheit et al., 1979; Bahl et al., 1986). Cells 

of the wild-type and the fur mutant strain were grown in 500 ml of iron-deplete and -replete MS-

MES medium, respectively. Culture supernatants were then assayed for presence of hydroxamate 

and catecholate-type siderophores using the ferric perchlorate (2.5.10.2) and the Arnow assays 

(2.5.10.1) (Fig. 3.19 A and B). In addition, the cell-free supernatants from both strains were tested 

for siderophore compounds, which do not belong to those two major classes using the CAS liquid 

assay (2.5.10.3) (Fig. 3.19 C). Results from the three assays showed that C. acetobutylicum does 

not produce detectable siderophores regardless of iron availability or fur mutation. 

 

 

Fig. 3.19 C. acetobutylicum does not secrete detectable siderophores into cultute supernatants. (A) Ferric 

perchlorate assay was performed for detection of hydroxamate-type siderophores in cell-free culture supernatants from the 

iron-deficient wild-type (1) and the fur mutant (2). When present hydroxamate siderophores produce bright orange to purple 

colour. (B) Arnow and (C) CAS assays for identification of catechol or other classes of siderophores. (1), positive control; 

cell-free supernatants from C. acetobutylicum iron-deficient WT (2) and fur mutant (3). 

 

3.5.2  Riboflavin biosynthesis 

Although no siderophore synthesis has been detected, interestingly, the culture supernatants from 

the C. acetobutylicum fur mutant strain appeared bright yellow in colour (Fig. 3.20). This unique 

feature was caused specifically by fur inactivation since introduction of a functional copy of the 

fur gene restored the parental phenotype. Furthermore, the wild-type, grown under iron-limiting 

conditions, exhibited a similar profile (Fig. 3.20). Several studies in bacteria have indicated a 

relationship between iron regulation and flavin production (Worst et al., 1998; Ernst et al., 2005; 

A) B) C) 
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Crossley et al., 2007; Pich et al., 2012). Therefore, cell-free supernatant from the fur mutant was 

subjected to analysis (2.5.9.1) and it displayed visible and fluorescence emission spectra 

characteristic for those of flavins (Fig. 3.21 A and B). Since riboflavin, flavin mononucleotide 

(FMN) and flavin adenine dinucleotide (FAD) share identical spectra, thin-layer chromatography 

(TLC) was performed to determine the nature of the secreted compound (2.5.9.2). As depicted on 

Fig. 3.21 C, TLC revealed riboflavin as the sole constituent of the fur mutant supernatant. 

Considering the biotechnological potential of C. acetobutylicum, riboflavin concentrations were 

determined spectrophotometrically in cell-free supernatants of the wild-type, fur mutant, negative 

control and complemented strains as well as the iron-deficient wild-type (2.5.9.3). The obtained 

quantities were then normalized to the ODmax of the corresponding cultures (Fig. 3.22). 

 

 

Fig. 3.20 Flavin biosynthesis in response to fur mutation and iron deficiency in C. acetobutylicum. Cell-free 

supernatants from WT (1), fur mutant (2), pTCatP negative control (3), complemented strain (4) and iron-deficient WT (5) 

after 60 h of incubation in 200 ml MS-MES medium.  
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Fig. 3.21 Identification of riboflavin in culture supernatants from C. acetobutylicum fur mutant strain. 

Absorption (A) and fluorescence (B) emission spectra of a RF standard solution (solid line) and cell-free supernatant from the 

fur mutant (dashed line). (C) Flavin standards (FMN, FAD and RF) and lyophilized cell-free supernatants from the wild-type 

and the fur mutant (fur::int) were dissolved in 96 % ethanol and loaded on a TLC plate. The plate was afterwards developed 

with n-butanol: acetic acid: water (4: 1: 5) and visualized using a UV Illuminator. 

 

                                            

Fig. 3.22 Riboflavin yields in cultures of C. acetobutylicum fur mutant and iron-deficient WT. Riboflavin 

concentrations in supernatants of the WT (black bar), fur mutant (white bar), pTCatP negative control vector (dark grey bar), 

complemented strain (light grey bar) and the iron-deprived WT (striped bar) were determined spectrophotometrically after 

135 h of growth in MS-MES medium and the values were normalized to the ODmax of the cultures. 

 

The genes encoding the enzymes that compose the riboflavin biosynthesis pathway in 

C. acetobutylicum are organized in a single operon (ribDBAH) (Nölling et al., 2001; Cai and 

Bennett, 2011). In order to investigate the transcriptional pattern of the ribDBAH gene cluster, 

upon iron limitation and lack of Fur, Northern blot hybridization analysis (2.11.3) was performed 

(Fig. 3.23). Total RNA was harvested from cells of the wild-type, grown under iron-replete and -

deplete conditions, the fur mutant and the complemented strain (2.6.3). Both iron deficiency and 

fur gene inactivation resulted in a strong hybridization signal, which corresponded well with the 

R
ib

o
fl
a
v

in
 [

m
g

/l
]

0

5

10

15

20

25 ***

C) 



Results  66 

concentrations of riboflavin detected in the medium (Fig. 3.20), while introduction of a functional 

copy of the fur gene resulted in a partial complementation. 

            

Fig. 3.23 Inactivation of fur and iron limitation in C. acetobutylicum lead to induction of the ribDBAH operon, 

responsible for riboflavin biosynthesis. Northern hybridization analysis was conducted with 20 µg RNA extracted from 

mid-exponential cultures of C. acetobutylicum WT grown under iron-replete (lane 1) and iron-limiting (lane 2) conditions; 

fur mutant (lane 3) and complemented strain (lane 4). Hybridization with a probe specific for 16S rRNA was used as a 

control for equal loading. Transcript sizes are indicated on the right side. 

3.6  Global expression analyses and 2D-PAGE 

In order to gain further insight into the mechanisms for establishment of iron balance in 

C. acetobutylicum and the role of Fur in this process, the global transcriptional profile of the fur 

mutant and the iron-limitation stimulon of the parental strain were determined using microarray 

analysis (2.12). To define the iron-starvation stimulon, transcript levels from wild-type cells 

grown to mid-exponential phase under iron-deplete and iron-replete conditions were compared 

(WT(-Fe)/WT(+Fe)). Evaluation of differential gene expression resulting from Fur deficiency was 

performed by comparing transcript populations from cells of the mutant strain and the wild-type, 

propagated under iron-replete conditions (WT(+Fe)/fur mutant(+Fe)). To this end the extracted 

RNA (2.6.3) was treated with DNase I, reverse transcribed into cDNA, labeled with Cy3 and Cy5 

and purified as previously described (Hillmann et al., 2009b; Janssen et al., 2010). Microarray 

data was obtained from at least three independent experiments (n=3). To rule out potential dye-

specific effects each sample was labeled both with Cy3 and Cy5, resulting in at least 12 dataset 

scores for a single gene. In addition analytical 2D-PAGE electrophoresis (2.15.4) was conducted 

in order to compare the protein expression profiles of the fur mutant and the parental strain. 

Conditions of iron starvation affected significantly the transcription of 156 genes. Among these 79 

were upregulated and 77 downregulated. Inactivation of fur, on the other hand, resulted in a 

marked effect on the level of transcription of 157 genes with 73 being induced and 84 
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downregulated. In an attempt to visualize data structures that would reveal distinct patterns of 

regulation, the expression scores from both microarray datasets, represented as log values, were 

plotted using a two-dimensional graphical display (Fig. 3.24). Of special interest was a cluster of 

genes regulated in a similar manner both upon iron limitation and fur gene inactivation. This 

group defines the so-called iron-regulated Fur modulon (direct and indirect targets of Fur-Fe2+ ). 

Upon analysis of the generated two dimensional plot, an overlapping collection of 32 upregulated 

(shaded in red on Fig. 3.24) and 7 downregulated genes (coloured in green) was detected. In 

addition to this apparent mode of regulation, many other genes were differentially transcribed in 

response to iron limitation or fur gene inactivation. 

Previous studies have reported differential Fur-dependent regulation as a function of the growth 

phase (Merrell et al., 2003). These differences have been attributed to changes in Fur protein 

level, alternative sigma factors or co-regulation (Danielli et al., 2006; Baichoo et al., 2002; 

McHugh et al., 2003). In order to reveal potential growth-phase-dependent variability in the 

spectrum of Fur-mediated regulation in C. acetobutylicum, transcript levels were compared 

between the wild-type and the fur mutant strain using RNA extracted from stationary phase 

cultures. However, significant differences in comparison to the exponentially growing cells were 

not detected under the conditions employed in this study (data not shown). 

In addition to its classical role as an iron-sensing repressor, Fur has been reported to exhibit 

alternative modes of regulation (Lee and Helmann, 2007; Carpenter et al., 2009). These include 

direct and indirect activation, as well as regulation in the absence of its cofactor Fe(II), namely 

apo-Fur repression and apo-Fur activation (Delany et al., 2004; Yu and Genco, 2012). In order to 

investigate the possibility of apo-Fur mediated transcriptional control in C. acetobutylicum, RNA 

transcript levels were compared between wild-type and fur mutant cells, both grown under iron-

limiting conditions (WT(-Fe)/fur mutant (-Fe)), and between fur mutant cultures grown under 

iron-replete and -deplete conditions (fur mutant (+Fe)/fur mutant (-Fe)), respectively. Results 

from two independent experiments (data not shown) did not reveal obvious candidate gene targets 

of Fur regulation in the absence of iron as a co-effector. 
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Fig. 3.24 Visualization of the Fur modulon in C. acetobutylicum. The iron-limitation stimulon of C. acetobutylicum 

was plotted versus the response to fur inactivation using a two dimensional graphical display. Genes derepressed in the fur 

mutant and upregulated in response to low-iron conditions are denoted in red and those downregulated under both conditions 

in green. All genes which elicited change in expression more than 3 fold were considered as differentially regulated (dashed 

lines). 

3.6.1  Fur modulon 

All genes, comprising the Fur modulon in C. acetobutylicum as determined by the microarray 

analysis are listed in Table 3.4. Consistent with the predicted role of Fur in coordinating the 

intracellular iron status, among the most strongly induced in both microarray datasets was a 

repertoire of genes associated with transport of iron. Highly upregulated were two clusters, 

cac1029-1031 and cac0788-0791, encoding, respectively, a predicted Feo-type transport system, 

responsible for uptake of ferrous iron (Fe2+) and a putative ferrichrome system involved in 

transport of ferri-siderophore complexes. Most dramatically induced (above 200-fold) was a 

flavodoxin encoding gene (cac0587), which presumably forms a bicistronic operon with another 

notably upregulated gene (cac0588) coding for a hypothetical protein. Accordingly, analytical 

2D-PAGE analysis of the fur mutant using IPG-Strips (pI 4-7) revealed CAC0587 as a novel 

protein spot (Fig. 3.25). In agreement with the results presented in (3.5.2), the genes composing 

the ribDBAH cluster, were strongly upregulated. Moreover, RibH (6,7-dimethyl-8-ribityllumazine 

synthase) was significantly induced in the fur mutant relative to the WT upon 2D PAGE analysis 

(Fig. 3.25). The other proteins of the riboflavin biosynthesis pathway could not be identified in 

this study since their pI values are out of range. In concert with previous studies that reported 

lactate to be the predominant fermentation product during the acidogenic phase in iron-deficient 
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cells of C. acetobutylicum (Bahl et al., 1986), the expression of a gene encoding a putative L-

lactate dehydrogenase (cac0267) was significantly increased under these conditions. It is 

interesting to note that although no elevated concentration of lactate was detected in culture 

supernatants from the fur mutant strain, inactivation of fur led to approximately 18 fold increase 

in expression of cac0267. These results suggest that cac0267 is regulated by iron and this 

regulation requires Fur. Among other upregulated genes with no apparent role in iron metabolism 

were cac1602-cac1603, encoding a CheY-diverged domain-containing protein and a hypothetical 

protein, respectively; a putative methyltransferase-encoding gene (cac0567); a B12 biosynthesis 

gene cluster (cac0582-cac0585) and, surprisingly, a gene (cac1478) encoding a 30S ribosomal 

protein. 

Table 3.4 Iron-regulated Fur modulon in C. acetobutylicum. 

ORF#
*
 

Gene 

name 
Annotated function 

Expression ratio
*
 

 

-Fe/+Fe 
fur::int/

WT 

 

CAP0141  periplasmic hydrogenase small subunit 0.6 0.1  

CAP0142  periplasmic hydrogenase large subunit 0.5 0.1  

CAP0143  hydrogenase maturation protease delta subunit, HyaD-like 0.3 0.1  

CAP0144  steroid-binding protein 0.3 0.1  

CAP0145  hypothetical protein 0.3 0.1  

CAP0146  hypothetical protein 0.2 0.1  

CAC0267 ldh L-lactate dehydrogenase 18.5 18.5  

CAC0546  uncharacterized membrane protein 0.3 0.2  

CAC0567  putative methyltransferase 5.7 6.9  

CAC0570  PTS enzyme II, ABC system 0.3 0.3  

CAC0582  cobalamin biosynthesis protein 3.0 5.0  

CAC0583  CbiK protein (chain A, anaerobic cobalt chelatase) 2.8 5.5  

CAC0584  precorrin-6B methylase 1 CobL1/CbiE 2.5 3.9  

CAC0587  flavodoxin 275.7 366.7  

CAC0588  hypothetical protein 365.9 300.5  

CAC0590 ribD pirimidine deaminase and pirimidine reductase 65.4 61.5  

CAC0591 ribB riboflavin synthase subunit alpha 55.3 44.1  

CAC0592 ribA gtpcyclohydrolase/3,4-dihydroxy-2-butanone 4-phosphate synthase 44.2 47.3  

CAC0593 ribH 6,7-dimethyl-8-ribityllumazine synthase 41.0 41.3  

CAC0594  pyridoxal biosynthesis lyase PdxS  4.8 11.4  

CAC0595  glutamine amidotransferase subunit PdxT  7.0 12.5  

CAC0787  uncharacterized conserved protein 53.9 28.7  

CAC0788  ferrichrome transport permease 207.1 64.3  

CAC0789 fhuB permease 200 58.0  

CAC0790 fhuD ferrichrome-binding periplasmic proteinl, fhuD 86.7 81.2  
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CAC0791 fhuC ferrichrome ABC transporter ATP-binding protein 122.2 94.9  

CAC0843  ribonuclease precursor (barnase), secreted 4.2 3.3  

CAC0844  barstar-like protein ribonuclease (barnase) inhibitor 3.8 3.3  

CAC1029 feoA FeoA-like protein, involved in iron transport 100.5 151.0  

CAC1030 feoA FeoA-like protein, involved in iron transport 113.8 163.4  

CAC1031 feoB FeoB-like GTPase, responsible for iron uptake 246.7 318.5  

CAC1032  transcriptional regulator 218.1 130  

CAC1033  hypothetical protein, CF-31 family 3.3 6.0  

CAC1478  30S ribosomal protein S4  9.6 8.5  

CAC1602  diverged CheY-domain-containing protein 29.9 28.6  

CAC1603  hypothetical protein 32.0 28.8  

CAC2905  uncharacterized protein 0.3 0.1  

CAC3314  nitroreductase family protein 3.6 3.8  

CAC3622  benzoyl-CoA reductase/2-hydroxyglutaryl-CoA dehydratase 11.0 28.5  

CAC3623  2-hydroxyglutaryl-CoA dehydratase activator  ND 16.7  

CAC3624  6-pyruvoyl tetrahydrobiopterin synthase ND ND  

CAC3625  MoaA family Fe-S oxidoreductase 13.8 24.1  

CAC3626  GTP cyclohydrolase I  6.9 10.1  

CAC3627  PP-loop superfamily ATPase  4.8 7.3  

CAC3650  HD-GYP domain containing protein 6.7 6.9  

* Genes whose expression ratio is below the threshold for significance, but which belong to the same operon as  

   differentially expressed genes are indicated in bold. ND, No data available 

 

 

Fig. 3.25 2D-PAGE protein expression analysis of C. acetobutylicum fur mutant strain in comparison to the WT. 

1, Flavodoxin (CAC0587); 2, 6,7-dimethyl-8-ribityllumazine synthase (CAC0593; RibH). 
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3.6.1.1 Validation of the microarray data through sqRT-PCR 

Validation of the microarray data was carried out by conventional sqRT-PCR analysis (2.13) on 

genes selected according to their expression values. These included two genes upregulated in both 

microarray datasets (cac1029 and cac0791), a gene putatively involved in iron uptake (cac2877), 

but appeared to be unresponsive to iron levels and fur mutation according to the microarray 

analyses, and 16S rRNA as a control for equal amount of cDNA. sqRT-PCR performed on the 

cac0587 gene served as a positive control, since its expression has been confirmed by 2D-PAGE 

analysis (Fig. 3.25). All oligonucleotides, used for sqRT-PCR are listed in Table 7.4. As 

illustrated on Fig. 3.26, cac0587, cac1029 and cac0791 responded as predicted by the microarray 

experiments. Similarly to the global transcriptional analysis, cac2877 did not show an altered 

expression pattern under the conditions of the assay. Collectively, these results indicate that the 

microarray data represents an accurate reflection of the transcriptional response of 

C. acetobutylicum to iron limitation and fur gene inactivation. 

                                              

Fig. 3.26 Validation of both microarray datasets by semi-quantitative RT-PCR. Isolation of total RNA from cells 

of the WT, grown under iron-deplete (-Fe) and replete conditions (+Fe) as well as the fur mutant was performed as described 

in Materials and Methods. PCR from total cDNA was performed using gene specific primers for cac1029 (cac1029_fw-rt and 

cac1029_rev-rt) coding for a FeoA-like protein, involved in iron transport (20 cycles; 210 bp); cac0791 (cac0791_fw-rt and 

cac0791_rev-rt), coding for ferrichrome ABC transporter ATP-binding protein (30 cycles; 79 bp); cac0587 (cac0587_fw-rt 

and cac0587_rev-rt) coding for a flavodoxin (30 cycles; 429 bp) and cac2877 (cac2877_fw_rt and cac2877_rev_rt), coding 

for an ATPase component of a ABC-type iron (III) transport system, (30 cycles; 502 bp). To ensure that equal amounts of 

cDNA are used as a template, PCR was performed with primers specific for 16S rRNA (30 cycles; 1500 bp). 

3.6.1.2 Bioinformatic prediction of potential Fur binding sites 

Fur regulators classically recognize a 19-bp consensus sequence (5-GATAATGATnATCATT 

ATC-3) composed of two 9-bp inverted repeats, separated by one unmatched nucleotide in the 

promoter regions of their target genes (de Lorenzo et al., 1987). In an effort to identify a set of 
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potential direct regulatory targets of Fur, the promoter regions within 350 bp of their start codons 

and the coding regions of all genes listed in Table 3.4 were examined for presence of a putative 

Fur binding motif using the 'Virtual footprint' platform integrated into the Prodoric database 

(Münch et al., 2003). A positional weight matrix, derived from P. aeruginosa (Münch et al., 

2003) and a cut-off score of 7.5 were implemented in this study. High-score putative Fur-binding 

sites have been detected upstream of several genes and gene clusters (cac0587-88, cac1029-31, 

cac0788-91, cac1602-03, cac0267, cac0567, cac0582 and cac1478) significantly upregulared 

under iron-limiting conditions and in the fur mutant (see Table 3.4). In addition, a low-score (7.5) 

putative Fur binding sequence was identified in the promoter region of the cac0842-43 operon, 

which is moderately upregulated in both microarray datasets. Interestingly, a Fur binding 

sequence was not identified in the promoter region of the ribDBAH operon. Although a low-score 

predicted Fur box was detected in the coding sequence of the first gene of the operon, we suggest 

here an indirect regulation (3.6.1.4). Seven genes have been found to be downregulated under iron 

limitation and fur gene inactivation (Table 3.4). However, no Fur boxes were identified in their 

promoter regions, implying an indirect regulation. DNA sequence logo representing the most 

conserved bases within the Fur-binding site was generated using a multiple alignment of all 

candidate Fur-binding sites (Fig. 3.27). 

                                    

      

Fig. 3.27 Alignment of predicted Fur-binding motifs in C. acetobutylicum. (A) Putative Fur binding sequences were 

aligned using Clustal Omega (Goujon et al., 2010; Sievers et al., 2011) and the alignment was visualized with ESPript 2.2 

(http://espript.ibcp.fr/ESPript/ESPript/). Conserved positions are highlighted. (B) Sequence logo displaying the most highly 

conserved bases in the C. acetobutylicum predicted Fur box element. 
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3.6.1.3 Determination of transcriptional start sites by 5 RACE 

Transcriptional start sites of a set of putative direct targets of Fur were determined (2.14), in order 

to analyse the position of the predicted Fur-binding sites in the context of their promoter regions 

(Fig. 3.28). RNA was harvested from cells of the fur mutant strain, followed by DNase I 

treatment. The 5-end sequences were then obtained using a commercial 5/3RACE Kit (Roche 

Applied Science) and gene specific primers, listed in Table 7.4, according to the manufacturer's 

instructions. PCR amplification of the resultant 5-UTR regions yielded single bands (data not 

shown) for all tested genes, suggesting the presence of single transcriptional start sites. The 

putative Fur binding motifs, denoted on Fig. 3.28, are positioned overlapping or in close 

proximity of the RNA polymerase binding sites, implying repression of transcription by steric 

hindrance.   

Continued on next page 
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Fig. 3.28 Promoter regions of selected candidate Fur-regulated genes in C. acetobutylicum. The open reading 

frames of the putative targets of Fur regulation are indicated in striped arrows. Black arrows show the experimentally 

determined transcription start sites. Boxes shaded in grey highlight conserved - 35 and - 10 promoter elements. Annotated 

start codons are also indicated by boxes. A Rex (redox-sensing global regulator) binding sequence determined in a previous 

study (Wietzke and Bahl, 2012) is indicated in the promoter region of cac0267. 
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3.6.1.4 Relationship between flavodoxin (CAC0587) expression and riboflavin  

  biosynthesis in C. acetobutylicum 

In H. pylori the ribBA operon, involved in riboflavin biosynthesis, has been reported to be directly 

regulated by Fur in an iron-responsive manner (Ernst et al., 2005; Pich et al., 2012). The 

overflowing riboflavin production exhibited by the fur mutant and the iron-deficient wild-type 

suggested that transcription of the ribDBAH gene cluster is regulated in a similar manner in 

C. acetobutylicum. However, analysis of the promoter region revealed no conserved Fur-binding 

sequence. Although a putative Fur box was identified in the coding sequence of the first gene of 

the operon, we proposed that the ribDBAH gene cluster is not regulated directly by Fur. In Gram-

positive bacteria riboflavin synthesis is regulated at transcriptional or translational level by a 

FMN-sensing RFN element (riboswitch) (Mironov et al., 2002; Vitreschak et al., 2004). FMN is 

the cognate cofactor of CAC0587 (Demuez et al., 2007). Overproduction of flavodoxin 

(CAC0587) upon iron limitation and fur gene inactivation in C. acetobutylicum presumably leads 

to imbalance in the cellular pools of FMN and therefore to enhanced synthesis of riboflavin. In 

order to test this hyphotesis, the cac0587 gene was insertionally inactivated using the Clostron® 

system giving a strain C. acetobutylicum cac0587::int(150s) and the mutatation was verified as 

described in 3.2 (data not shown). The cac0587 mutant was grown in 200 ml iron-deplete MS-

MES medium (6 µM FeSO4) for 135 h. In consistence with the proposed hypothesis for indirect 

regulation, no riboflavin accumulated into the medium in contrast to the wild-type cultures 

(Fig. 3.29). 

 

Fig. 3.29 Overproduction of flavodoxin (CAC0587) under iron-limiting conditions leads to enhanced riboflavin 

biosynthesis in C. acetobutylicum. Cell-free supernatants from C. acetobutylicum cac0587 mutant (1) and wild-type (2) 

strains grown in 200 ml low-iron MS-MES medium for 135 h (see text for details). 

3.6.2  Additional transcriptional reshaping in response to iron limitation 

  and fur gene mutation 

A total of 117 genes listed in Table 7.5 (Appendix) displayed iron-responsive differential 

regulation, but their transcription was not significantly altered in the fur mutant strain. Among 
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these 45 genes showed an iron-repressed (upregulated in the iron-deficient wild-type) and 72 iron-

induced (downregulated in the iron-deficient wild-type) mode of regulation. This fraction was 

largely composed of ORF encoding hypothetical or uncharacterized proteins. The group of genes 

that could be assigned a function was predominantly represented by those associated with amino 

acid metabolism and transport. For instance, the category of iron-repressed genes included a 

cluster responsible for biosynthesis of arginine. Interestingly also a bicistronic operon encoding a 

second putative Feo-type iron-uptake system (cac0447-cac0448) was upregulated about 3-fold. 

On the other hand, the group of the iron-induced genes included a large operon encoding the 

components of a putative nitrogenase (cac0253-cac0262). 

Finally, 116 genes (38 upregulated and 78 downregulated) were differentially regulated in the fur 

mutant, but their expression was not affected in the wild-type grown under iron-limiting 

conditions (Table 7.6, Appendix). Interestingly, a number of genes involved in sporulation were 

affected in the fur mutant. However, its ability to form heat resistant spores relative to the wild-

type was not significantly altered (data not shown). Since conditions of iron limitation used in this 

study might not have been sufficient to alter the transcription level of these genes above the 

threshold for significance, their promoter regions were searched for the presence of Fur boxes in 

an attempt to identify putative direct targets of Fur-mediated repression and activation, 

respectively. However, low-score putative binding sites were identified upstream of just four 

downregulated genes (cac1363, cac2135, cac2354 and cac3081). 
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4  Discussion 

Transition metals are of major importance for the biological systems since they represent essential 

structural elements and catalytic determinants in proteins. On the other hand, when in excess, 

metal ions could be toxic for the cell. Therefore, the biological entities have developed a number 

of tools to effectively cope with the constantly changing landscape of metal availability in their 

natural habitats, thereby maintaining an intracellular metal balance (Giedroc and Akunkumar, 

2007). Bacteria have dedicated a great variety of metal-sensing regulatory systems responsible for 

managing the intracellular metal ion concentrations. According to their structure metal-responsive 

regulators could be classified into seven families: MerR, ArsR (SmtB), CsoR, CopY, DtxR, Fur 

and NikR (Giedroc and Arunkumar, 2007). The metal-dependent fine-tuned control by these 

regulators specifies the so-called metallome, a fundamental feature of the cell, which is defined as 

the cellular free and protein-bound metal content (Williams, 2001; Frausto da Silva and Williams, 

2001). Key transition metals, which constitute the metallome in bacteria are zinc, iron, cobalt, 

nickel and copper (Frausto da Silva and Williams, 2001; Pennella and Giedroc, 2005). Among 

these iron is unquestionably of critical value for the strictly anaerobic bacterium 

C. acetobutylicum, given the pivotal role of several iron-containing proteins for its main metabolic 

pathways (Fig. 1.5). Apart from the bulk biological metals (Mg, Ca and K), the metallome of 

C. acetobutylicum, as judged by ICP-AES analysis, is predominantly represented by iron 

(Hillmann et al., 2008). Study of the mechanisms for maintenance of iron homeostasis would thus 

be of interest for establishing fundamental characteristics of the molecular biology in 

C. acetobutylicum and potentially could be of value for the biotechnological application of this 

microorganism. Moreover, delineating of the mechanisms for maintenance of an adequate iron 

status in C. acetobutylicum could provide background for future studies in notorious medically 

important members of the group of clostridia including Clostridium difficile, Clostridium tetani 

and Clostridium botulinum. 

The milestone of the bacterial iron-dependent response is the ferric uptake repressor (Fur). 

Beyond its role in coordination of iron transport systems, Fur is implicated in regulation of a 

broad spectrum of cellular processes and the full potential of this pleiotropic regulator in 

microorganisms is yet to be elucidated (Andrews et al., 2003). The main focus of this study was to 

identify a functional Fur regulator in C. acetobutylicum and to determine its physiological 

significance and regulatory capacity. For the purposes of discussion, the order presented in the 

Results section is not followed. 



Discussion  78 

4.1  Identification and characterization of a functional Fur  

  regulator in C. acetobutylicum 

Apart from CAC2634, which has been characterized as an H2O2-responsive regulator (PerR), the 

genome of C. acetobutylicum encodes two more Fur homologues: CAC0951 (~ 16 kDa) and 

CAC1682 (~ 17 kDa) (Nölling et al., 2001; Hillmann et al., 2008; 2009b). Similarly, other 

members of the group of clostridia, as well as the closely related B. subtilis, possess multiple Fur 

homologues (Fuangthong and Helmann, 2003; Hillmann et al., 2009b). In B. subtilis the three Fur 

paralogs function as an iron-responsive Fur, a zinc-sensing Zur and an H2O2-sensing PerR 

regulator (Moore and Helmann, 2005). Interestingly, the genome of Clostridium difficile revealed 

only two Fur homologues. In Pasteurella multocida the iron-responsive Fur protein regulates a 

high-affinity znuACB zinc-uptake system (Garrido et al., 2003). Therefore, it could be speculated 

that iron- and zinc homeostasis are regulated by a single Fur-like protein in C. difficile. 

Based on homology and phylogenetic analysis Hillmann et al. (2008) suggested that CAC1682 

and CAC0951 function as Fur and Zur regulators, respectively. Because of the structural 

similarity and functional diversity within the Fur family of proteins, assignment of metal 

specificity based on homology might be incorrect. In Rhizobium leguminosarum initially 

considered as responsive to iron, the Fur homologue was demonstrated to exert instead control on 

manganese homeostasis (Mur) (de Luca et al., 1998; Wexler et al., 2003; Diaz-Mirelez et al., 

2004). Therefore, both CAC1682 and CAC0951 were subjected to a functional analysis in this 

study. 

4.1.1  Power of the trans-complementation studies for establishing the role 

  of CAC1682 as an iron-responsive regulator (Fur) 

In contrast to CAC0951, CAC1682 was able to restore Fur+ phenotype in the fur-null reporter 

E. coli H1780 strain, suggesting that CAC1682 is the iron-sensing regulator in C. acetobutylicum 

(3.1.3.2). Trans-complementation studies in the cellular milieu of suitable mutant host strains 

represent a common approach to examine the functionality of putative regulatory proteins. 

Reversion of the wild-type phenotype would be generally sufficient to establish the function of the 

candidate transcriptional regulators. However, when it comes to metalloregulatory proteins from 

the Fur family, the picture is more complex, because of the following reasons: (i) Fur-like proteins 

are structurally very similar, (ii) they recognize similar DNA-binding motifs and (iii) optimal 

response to metal levels in the cell is a function of three factors, namely affinity, allostery and 

access (Lee and Helmann, 2007; Waldron and Robinson, 2009; Ma et al., 2009; 2012). In terms of 
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affinity, metalloproteins generally tend to exhibit preference for binding of transition metals 

following the universal Irving-Williams series (often called the natural order of stability for 

divalent transition metals) with Mg2+ and Ca2+ exhibiting the weakest binding < Mn2+ < Fe2+ < 

Co2+ < Ni2+ < Cu2+ > Zn2+  (Irving and Williams, 1948; Frausto da Silva and Williams, 2001; 

Waldron and Robinson, 2009). Moreover, numerous in vitro studies have shown that binding of 

non-cognate transition metals, normally not recognized in vivo, trigger the necessary allosteric 

changes for DNA binding (Xiong et al., 2000; Ma et al., 2012). The most emblematic example is 

the common usage of Mn2+ as a surrogate of Fe2+ in Fur-DNA electromobility shift assays (de 

Lorenzo et al., 1988). Therefore, for metal sensors to acquire their cognate cofactor in vivo, 

competitive transition metals must be buffered at appropriate concentrations in the cell. This is 

achieved by a fine-tuned control on transport, storage and export (Waldron and Robinson, 2009). 

However, breakdown of these controls in fur mutant strains used for trans-complementation 

studies typically results in intracellular metal imbalance. Thus metals recognized by a candidate 

metal-sensing regulator can change when tested in these strains. For instance, the Mur 

(manganese uptake regulator) from R. leguminosarum was able to restore Fur deficiency in the 

E. coli 1780 reporter strain (Wexler et al., 2003). Therefore, it is essential to verify experimentally 

the metal cofactor of a candidate metal-sensing protein from the Fur family. In order to establish 

iron as a cue for CAC1682, trans-complementation studies in B. subtilis were performed under 

iron-replete and -deplete conditions (3.1.3.3). These experiments demonstrated that the CAC1682 

protein responds specifically to iron levels, while CAC0951 was unresponsive to iron under the 

conditions of the assay, supporting the tentative conclusion that cac1682 from C. acetobutylicum 

encodes a genuine iron-sensing regulator (CacFur). 

In terms of molecular biology, C. acetobutylicum stays far beyond the model organisms B. subtilis 

and E. coli. After almost 30 years since the discovery of the Fur protein in E. coli (Hantke, 1981), 

some aspects of Fur-dependent regulation are still unclear. A few perspectives discussed in the 

following section could contribute equally to the general understanding of the Fur-like proteins 

and possibly should be approached in future studies. 

4.1.2  Comparative in silico and biochemical analysis 

In order to provide an insight into the basic features of CacFur, a comparative in silico and 

biochemical analysis was performed (3.1.1 and 3.1.2). Although not the main focus of this work, 

CAC0951 has been examined in parallel. In general, CAC0951 served as a control, but the amino 

acid sequence of this protein revealed some unexpected characteristics that might be of interest for 

future studies. To date, crystal structure is available for four full-length iron-responsive Fur 
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proteins (H. pylori Fur (HpFur), Campylobacter jejuni (CjFur), Vibrio cholerae Fur (VcFur) and 

P. aeruginosa Fur (PaFur)); PerR from B. subtilis (BsuPerR); Zur from Mycobacterium 

tuberculosis (MtZur) and S. coelicolor (ScZur); and Nur from S. coelicolor (ScNur) (Pohl et al., 

2003; Traore et al., 2006; Lucarelli et al., 2007; Sheikh and Taylor, 2009; An et al., 2009; Dian et 

al., 2011; Shin et al., 2011; Butcher et. al., 2012). Homology modelling using H. pylori Fur 

(HpFur) (pdb: 2xig; Dian et al., 2011) and S. coelicolor Zur (ScZur) (pdb: 2mwm; Shin et al., 

2011) as references demonstrated extensive structural conservation of both CacFur and CAC0951 

(Fig. 4.1). It should be noted that the unstructured N-terminal extension in CAC0951 stems from 

imperfection of the model. The generated 3D models suggested that CacFur and CAC0951 adopt 

a basic fold, which exhibits a bipartite structural organization consisting of a DBD (90 residues in 

CacFur and 79 residues in CAC0951) and DD (51 residues/56 residues), bridged by a short loop 

(8 residues/6 residues) (see Fig. 3.1 A and Fig. 3.2 A). 

 

Fig. 4.1  C. acetobutylicum Fur and CAC0951 proteins exhibit extensive structural conservation. Superposition of 

(A) CacFur (orange) and (B) CAC0951 (green) monomer models with the ribbon structures of HpFur (pdb:2xig; blue) and 

ScZur (pdb:2mwm; violet), respectively. The 3D model structures of CacFur and CAC0951 have been generated by the 

Modeller (Sali and Blundell, 1993) and visualized by the graphical display Chimera (Pettersen et al., 2004). 

Comparative analysis of the CacFur homology model with other characterized Fur and Fur-like 

proteins, revealed three conserved putative metal binding sites (Fig. 4.2). Site S1 is composed of 

two C-XX-C motifs at the C-terminus (shaded in blue on Fig. 4.2) and presumably creates a 

tetrahedral environment for a structural zinc ion. In B. subtilis all four Cys residues have been 

reported to be essential for the functionality and stability of the BsuFur protein (Bsat et al., 1999). 

Later studies demonstrated that the presence of a structural Zn(II) S1 site in HpFur, CjFur, 

BsuPerR and ScZur (Traore et al., 2006; Dian et al., 2011; Shin et al., 2011; Butcher et al., 2012) 

is associated with an α helix at the C-terminus, while, PaFur and VcFur, which do not possess a 

A) B) 
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Fig. 4.2  Comparative analysis of the putative metal-binding sites from C. acetobutylicum Fur and CAC0951. 

Homology models of CacFur (A) and CAC0951 (B) indicating the position of the predicted metal-binding sites. (C) Multiple 

sequence alignment of the deduced protein sequences of CacFur and CAC0951 with other Fur and Fur-like proteins with 

resolved structure and the Fur homologues from the closely related B. subtilis. Secondary-structure elements of CacFur and 

CAC0951 as determined by the Modeller are indicated above and beneath the alignment, respectively. Residues composing 

S1 are shaded in blue, S2 residues are coloured in green and S3 residues are highlighted in orange. The multiple sequence 

alignment was performed using Clustal Omega (Goujon et al., 2010; Sievers et al., 2011). The second putative metal-binding 

site in CAC0951 is indicated as S3 to match the corresponding site in CacFur. 

A) B) 

C) 
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S1 site have not shown an additional helical structural element (Pohl et al., 2003; Sheikh and 

Taylor, 2009). In concert with these data, the model of CacFur showed a C-terminal α6 helix (Fig. 

4.1 and Fig. 4.2). Site S2 is located in the region between the DBD and the DD with three 

histidines and one glutamate as ligands (shaded in green on Fig. 4.2). S2 appears to be conserved 

in all Fur and Fur-like proteins characterized so far with some variability in the co-ordination 

environment, which mainly depends on the metal that is bound (Dian et al., 2011). For instance, a 

cysteine residue in the S2 coordination sphere of MtZur and ScZur confers the specificity for zinc 

ion binding and the four histidine residues in ScNur are considered to determine the preference for 

nickel (Lucarelli et al., 2007; An et al., 2009; Dian et al., 2011; Shin et al., 2011). These findings 

coupled with functional analysis of mutant variants of several Fur and Fur-like proteins led to a 

model in which S2 acts as a regulatory site (Lee and Helmann, 2007). A common feature for all 

Fur S2 sites is the presence of a conserved histidine ligand in the loop between helices α2 and α3 

(Dian et al., 2011). Similarly, this residue is present in the amino-acid sequence of CacFur and 

presumably takes part in the coordination of the regulatory Fe2+ (Fig. 4.2). Several Fur and Fur-

like proteins showed also a third, considered as a structural Zn(II)-binding site S3, positioned 

within the DD (shaded in orange on Fig. 4.2) (Pohl et al., 2003; Dian et al., 2011). In CacFur the 

putative S3 site is composed of three histidine and one aspartate residue. Collectively, the in silico 

analysis of the CacFur amino acid sequence showed features characteristic for other Fur proteins 

with resolved structure. 

Although extensively analysed in the presented above model microorganisms, the role of the 

individual metal binding sites is still not completely understood and the obtained data is partially 

controversial. Therefore, in silico coupled with controlled biochemical, mutational and functional 

analyses in other bacterial species could provide valuable information and refinement of the 

existing model. In this context, quite interestingly, the protein sequence of CAC0951 revealed 

only two conserved metal-binding sites corresponding respectively to S1 and S3 (Fig. 4.2). 

Putative coordination ligands for the considered as regulatory S2 site could not be identified by in 

silico analysis. Nevertheless, the protein was functional and able to bind specifically to the 

promoter region of an operon involved in zinc uptake (cac2877-cac2878) as judged by 

electromobility shift assays (Vasileva, unpublished data). Future studies with CAC0951, as well 

as CacFur, would be therefore of interest for the general understanding of the functionality of Fur-

like proteins. 

Two critical functional aspects of the Fur family of proteins are the ability to assemble into dimers 

and to acquire the correct metallation state. In order to examine those two properties, recombinant 

CacFur and CAC0951 were overproduced and purified from cells of E. coli (3.2.1). Both proteins 

displayed routinely two isomers with different mobility when analysed on SDS-PAGE gels (Fig. 
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3.5). A similar profile has been reported for the PerR transcriptional regulator from 

C. acetobutylicum, PerR and Fur from B. subtilis, Fur from Bacillus cereus and Streptomyces 

reticuli FurS (Bsat et al., 1998; Ortiz de Orue Lucana and Schrempf, 2000; Harvie and Ellar, 

2005; Hillmann et al., 2009b; Lee and Helmann, 2006b). In B. subtilis, the appearance of a PerR 

doublet form during SDS-PAGE analysis has been demonstrated to arise as a result of two 

oxidation states of the protein, which reflect the presence or absence of a bound structural S1 

Zn(II) (Lee and Helmann, 2006b). These results are in agreement with the SDS-PAGE migration 

pattern (Fig. 3.5) and the presence of predicted C-terminal structural S1 Zn(II)-binding sites in the 

deduced amino acid sequences of CacFur and CAC0951 (Fig. 4.2). 

The ability of CacFur and CAC0951 to form oligomers was evaluated using the cross-linking 

agent EGS (Fig. 3.6). Both CacFur and CAC0951 exhibited an oligomerization pattern 

characteristic of the Fur family of proteins (Fig. 3.6 A, B and Fig. 3.6 C). Although the most 

striking features of Fig. 3.6 A and B are the predominant monomeric and dimeric forms of 

CacFur, SDS-PAGE analysis revealed also bands of higher molecular mass corresponding to 

higher-order oligomeric structures. Multimerization has been previously reported for other Fur 

proteins (Hernandez et al., 2002; Delany et al., 2002; Carpenter et al., 2010; Gilbreath et al., 

2013). A tendency of Fur to form structured helical multimers on its DNA binding sites has also 

been observed by electron microscopy (Le Cam et al., 1994). HpFur protein mutant variants 

deficient in DNA binding have shown reduced ability to form higher-order structures (Carpenter 

et al., 2010). However, the significance of Fur oligomerization in vivo has not been elucidated so 

far. 

Next, the metal status of the recombinant CacFur was investigated in comparison to CAC0951. 

After extensive dialysis against EDTA both proteins were subjected to ICP analysis (3.1.2.3). 

Consistent with the predicted metal-binding sites, the His-tagged CacFur co-purified with zinc                     

(~ 0.5 equivalents per monomer) and iron (~ 0.03 equivalents per monomer), while upon 

purification the recombinant CAC0951 protein retained only zinc (~ 0.8 equivalents per 

monomer). Similarly to CacFur, Fur from E. coli (EcFur) contained less than 0.05 Fe/mol protein 

(Althaus et al., 1999). Furthermore, an EDTA treated EcFur, which harbours a C-terminal 

structural Zn(II)-binding site, co-purified with ~ 0.9 Zn per monomer (Althaus et al., 1999). The 

lower amount of zinc detected in CacFur could be attributed to a few factors. Treatment of the 

CacFur protein with EDTA could have led to further loss of the tightly associated structural zinc 

as reported for the EDTA-treated Zur protein from B. subtilis (0.5 Zn per monomer) (Ma et al., 

2011). Moreover, the Bradford assay, used in this study, has been reported to overestimate Fur 

protein concentrations by a factor of 1.2-1.5, when BSA has been used for preparation of the 

standard curve (Friedman and O'Brien, 2004; Mills and Marletta, 2005). Collectively, these 
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results suggest that CacFur contains a tightly bound structural zinc ion, which most probably 

corresponds to S1 as predicted by the in silico analysis. CAC0951 also retained one structural zinc 

ion per monomer as reported for Zur from B. subtilis (Ma et al., 2011). 

4.2  Physiological importance of Fur in C. acetobutylicum 

The physiological significance of the Fur transcriptional regulator and its functional analogues 

(DtxR and IdeR) has been extensively studied in aerobic and facultative anaerobic 

microorganisms. In P. aeruginosa and Anabaena sp. PCC 7120, Fur has been demonstrated to be 

an essential protein (Pohl et al., 2003; Hernandez et al., 2006). Upon loss of their iron-responsive 

regulators, other microorganisms exhibit a wide spectrum of physiological phenotypes, related to 

growth, energy metabolism and sensitivity to oxidative stress, among others (Bsat et al., 1998; 

Touati et al., 2000; Yang et al., 2008; da Silva Neto et al., 2009). In contrast, the role of the iron-

sensing regulator proteins has been investigated in few strictly anaerobic bacteria. Knock-out of 

fur in the obligate anaerobes Dichelobacter nodosus and Desulfovibrio vulgaris, as well as 

inactivation of dtxR in Pyrococcus furiosus, have shown no overall impact on the fitness of these 

microorganisms (Bender et al., 2007; Parker et al., 2005; Zhu et al., 2013). Moreover, a Fur-like 

protein has been reported to be cryptic in the strictly anaerobic archaeon Thermococcus 

kodakarensis (Louvel et al., 2009). D. nodosus, P. furiosus and T. kodakarensis also exhibited 

less stringent iron- and/or Fur (DtxR) dependent transcriptional regulation (Louvel et al., 2009; 

Parker et al., 2005; Zhu et al., 2013). Taken together these data suggest a rather limited role of the 

iron-responsive regulators in the lifestyle of strict anaerobes and indicate clearly the expanding 

significance of Fur over the course of evolution. Previous studies, however, indicated a strong 

physiological response of C. acetobutylicum and C. pasteurianum to iron-limiting conditions 

(Schönheit et al., 1979; Bahl et al., 1986; Junelles et al., 1988; Dabrock et al., 1992; Peguin and 

Soucaille, 1995). To address a potential role of Fur in this iron-dependent response, the fur gene 

in C. acetobutylicum was insertionally inactivated using the Clostron® system (Heap et al., 2007; 

2010) and the mutation was confirmed by PCR screening and Southern hybridization (3.2). 

Furthermore, the phenotypical changes could be reversed by functional in trans complementation, 

thus excluding any secondary effects originating from the mutagenesis system (3.3). 

4.2.1  Growth profiling and product formation 

The C. acetobutylicum fur mutant displayed a small-colony phenotype, when grown on complex 

and minimal agar medium (3.4.1). Formation of small colonies could be a consequence of a 

modified cell shape or size. Microscopy analysis of cells from the fur defective strain revealed no 
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appreciable differences with respect to the wild-type, indicating that the reduced colony size is 

due to slower growth. Similarly, when propagated in liquid complex and minimal medium, the 

mutant exhibited diminished growth rate and lower final yield (3.4.1). Derepression of iron 

transport systems in fur mutants typically causes elevated levels of free intracellular iron (Touati 

et al., 1995; Fuangthong et al., 2002). In agreement with these reports, the fur mutant in 

C. acetobutylicum showed an increased total intracellular iron concentration as judged by the 

colorimetric ferrozine assay (Fig. 3.17). Loss of cellular metal balance could theoretically lead to 

incorrect metallation of some important proteins considering the Irving-Williams series (Irving 

and Williams, 1948; Frausto da Silva and Williams, 2001). However, incubation of the fur mutant 

under iron-limiting conditions did not alleviate, but further exacerbated the slow-growth 

phenotype in comparison to the wild-type (3.4.2), suggesting that overload with iron is not the 

reason for the observed growth defect. 

The central metabolism of C. acetobutylicum is strongly dependent on iron (Fig. 1.5). 

Consistently, iron-limiting conditions have been reported to pose a bottleneck for the carbon and 

electron flow in this microorganism (Bahl et al., 1986; Junelles et al., 1988). Iron-deficient 

cultures of C. acetobutylicum are characterized by predominant formation of lactate during the 

acidogenic growth phase, significantly increased butanol:acetone ratio during the solventogenic 

growth phase and decreased overall hydrogenase activity (Bahl et al., 1986; Junelles et al., 1988; 

Peguin and Soucaille, 1995). Although test of the composition of cell-free culture supernatants 

from the fur defective strain has shown no elevated lactate production, a gene encoding a L-lactate 

dehydrogenase was significantly upregulated in the mutant (Table 4.1). This aspect is further 

discussed in the following sections. In order to determine whether solvent formation is influenced 

by Fur, the product profile of the fur mutant was determined in comparison to the wild-type strain 

(3.4.1). As illustrated on Fig. 3.15 D, the fur mutant exhibited no dramatic change in fermentation 

pattern, suggesting that the observed effects under conditions of iron starvation are not mediated 

directly by Fur. Of great interest for the "Clostridium Society" is also the regulatory nature of the 

H2-evolving hydrogenase. Quantification of the total gas volume and composition (H2 and CO2) in 

cultures of the fur mutant did not show any appreciable differences with respect to the wild-type 

(3.4.1), clearly demonstrating that the hydrogenase remains intact upon loss of Fur. Collectively, 

these results indicate that the decrease in hydrogenase activity under iron-limiting conditions 

occurs at enzymatic level and that the shift in solvent formation under these conditions is due to 

redirection of the electron flow, which arises as a result of the inhibition of the hydrogenase. 

Although there exist no theoretical reason why the hydrogenase would be an essential protein in 

C. acetobutylicum, numerous attempts to construct a hydrogenase defective strain using the 

Clostron® system failed (Cooksley et al., 2012; Lehmann, personal communication). Therefore, 
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optimization of the selection procedure could be the key for successful generation of a mutant 

strain and application of iron-limiting conditions in this process might be considered. 

Interestingly, the fur mutant strain accumulated approximately 78 mg/l riboflavin in MS-MES 

medium culture supernatants (3.5.2). Plasmid-based overexpression of the ribDBAH operon in 

C. acetobutylicum has resulted in comparable amounts of riboflavin released into the medium (70 

mg/l) (Cai and Bennett, 2011). The study of Cai and Bennett reported that riboflavin 

overproduction at such levels does not affect the solvent production in C. acetobutylicum, which 

is in agreement with the results in this study. Furthermore, the same report showed that the 

overflowing synthesis of riboflavin did not influence the growth profile of C. acetobutylicum. 

Therefore, it could also be assumed that the slow-growing phenotype of the fur mutant strain is 

not a result of derepression of the riboflavin biosynthesis pathway. 

4.2.2  Relationship between the intracellular iron levels and sensitivity to 

  oxidative stress 

As a consequence of the increased intracellular iron levels, fur mutants in bacteria typically 

exhibit increased susceptibility to oxidative stress, due to formation of deleterious ROS via the 

Fenton reaction (Touati et al., 1995; Bsat et al., 1998; da Silva Neto et al., 2009). In the anoxic 

environments strict anaerobes seem to have escaped this iron toxicity effect. However, although 

an obligate anaerobe, previous studies have demonstrated that C. acetobutylicum is far from 

defenceless and can tolerate low doses of ambient air by recruiting a repertoire of inducible 

detoxification, protection and repair systems (O'Brien and Morris, 1971; May et al., 2004; 

Kawasaki et al., 2004; Riebe et al., 2007; 2009; Hillmann et al., 2008; 2009a, b). Therefore, it 

could be speculated that in its natural habitats this microorganism might be occasionally 

challenged with varying degrees of aeration upon migration from one niche to another. The study 

of Hillmann et al. (2008) has demonstrated that decrease in the viability of cells from 

C. acetobutylicum upon exposure to oxygen arises mainly as a result of the Fenton chemistry. On 

the other hand, iron is the cofactor for the oxidative stress enzymes, including the superoxide-

reducing desulfoferrodoxin (Dfx), the oxygen-scavenging flavo-diiron proteins (FprA1 and 

FprA2), the peroxide-scavenging reverse rubrerythrin (revRbr) and the electron mediator 

rubredoxin (Rd) (May et al., 2004; Riebe et al., 2007; 2009; Hillmann et al., 2009a, b). Therefore, 

exposure to aeration necessitates a dynamic, fine-tuned control on the intracellular iron levels, in 

order to satisfy the high demands for iron and at the same time to prevent formation of detrimental 

ROS in C. acetobutylicum. The paramount role of CacFur in this process was demonstrated in this 
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study by a significant reduction in the viability of cells of the fur mutant strain upon exposure to 

ambient air and treatment with the oxidative stress agent H2O2 (3.4.4). 

4.3  Overview of the transcriptional response to iron limitation 

  and fur inactivation 

The unique phenotype of the C. acetobutylicum fur mutant strain motivated a global microarray 

analysis in order to identify genes whose expression is affected by conditions of iron limitation, 

fur gene inactivation or both (3.6). A conventional sqRT-PCR performed on several genes 

demonstrated the accuracy of the microarray data (3.6.1.1). Furthermore, 2D-PAGE analytical 

analysis was conducted to determine the protein expression profile of the fur mutant strain (3.6). 

Both iron deficiency and fur mutation resulted in an extensive transcriptional reshaping. In order 

to gain an initial functional overview, all genes with significant changes in level of expression 

under both conditions were categorized according to their predicted biological roles using the 

COG (cluster of orthologous groups) classification method (Fig. 4.3) (Tatusov et al., 2000). As 

common for microarray studies, a large fraction of the differentially regulated genes (up- and 

downregulated) code for hypothetical proteins or proteins with uncharacterized function (Groups 

 

Fig 4.3  Overview of the transcriptional response of C. acetobutylicum WT, challenged with conditions of iron 

starvation and the fur mutant strain. The protein products of all differentially expressed genes (> 3 fold) were functionally 

categorized using the COG classification method (Tatusov et al., 2000). Grey bars, upregulated genes and white bars, 

downregulated genes. C, energy; D, cell cycle control, cell division; E, amino acid metabolism and transport; F, nucleotide 

metabolism and transport; G, carbohydrate metabolism and transport; H, coenzyme metabolism and transport; I, lipid 

metabolism; J, translation; K, transcription and regulation; L, replication, recombination, and repair; M, cell wall and 

membrane proteins; N, cell motility; O, protein fate and chaperones; P, inorganic ion metabolism and transport; Q, secondary 

metabolites; T, signal transduction; U, secretion and intracellular trafficking; V, defence; X, poorly characterized or no 

cluster. 
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R, X, S). Among the genes that could be assigned a function, in both microarray datasets, 

predominantly present were those belonging to the following clusters: C (energy production and 

conversion); E (amino acid transport and metabolism); G (carbohydrate transport and 

metabolism); H (coenzyme transport and metabolism); K (transcription) and P (inorganic ion 

transport and metabolism), thus outlining the core aspects of adaptation to iron deficiency in 

C. acetobutylicum. 

4.3.1  Regulatory potential of CacFur  

Classically, Fur functions as an iron-bound (Fur-Fe2+) repressor, obstructing the transcription of 

target genes, whenever the concentration of iron in the medium exceeds the cellular requirements 

(Fig. 4.4 A) (Bagg and Neilands, 1987; de Lorenzo et al., 1987; 1988). A more recently 

appreciated feature of Fur is the ability to act as an iron-bound activator (Fig. 4.4 B) (Carpenter et 

al., 2009). Direct iron-dependent Fur activation of transcription (Fig. 4.4, 1) has been well 

characterized in Neisseria meningitidis and Neisseria gonorrhoeae (Grifantini et al., 2003; Delany 

et al., 2004; Yu and Genco, 2012). However, recent evidence suggests that this pattern of 

regulation is not confined to the group of Neisseria (da Silva Neto et al., 2009; Butcher et al., 

2012). In order to determine putative direct targets of Fur-Fe2+ repression and activation, the so-

called Fur-Fe2+ regulon in C. acetobutylicum, the promoter regions of all genes, which elicit 

changes in transcription both upon iron deficiency and fur inactivation (Fig. 3.24), were searched 

for conserved Fur-binding sequences (3.6.1.2). Although the interpretation of the Fur-binding 

DNA sequence has evolved over the past decade, the presence of a 19-bp inverted repeat 

(GATAATGATwATCATTATC; w = A or T) in the promoter regions has been associated with 

Fur-Fe2+ repressible, as well as Fur-Fe2+ activated gene targets, in many bacteria (Escolar et al., 

1999; Baichoo et al., 2002; Grifantini et al., 2003; Delany et al., 2004; Yu and Genco, 2012). 

CacFur was able to complement fur-null E. coli and B. subtilis strains (3.1.3) providing evidence 

that DNA-binding specificity is conserved in C. acetobutylicum. Therefore, a positional weight 

matrix derived from P. aeruginosa was implemented in this study (Münch et al., 2003). All genes, 

composing the predicted Fur regulon (4.3.2) showed an expression pattern compatible with Fur-

Fe2+ repression mode of regulation, while no compelling evidence for direct Fur-Fe2+ activation 

was found in this study. 

It is now generally appreciated that positive Fur regulation occurs more often indirectly, mediated 

by Fur-Fe2+-dependent repression of an antisense regulatory sRNA (Fir. 4.4 B, 2) (Lee and 

Helmann, 2007; Masse et al., 2007). This sRNA controls expression of its target genes at post-

translational level by repressing translation and/or affecting mRNA stability (Masse and 
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Gottesman, 2002). The iron-regulated sRNAs are mainly involved in control of iron usage by 

blocking of non-essential iron utilization pathways under iron starvation conditions (Masse and 

Arguin, 2005). A Fur-regulated sRNA has been also characterized in B. subtilis (Gaballa et al., 

2008; Smaldone et al., 2012a, b). Genome-wide computational prediction of putative sRNAs has 

been performed for several members of the group of clostridia including C. acetobutylicum (Chen 

et al., 2011). Scanning of the genome of C. acetobutylicum revealed a high-score putative Fur-

binding sequence upstream of a predicted sRNA, designated by Chen et al. (2011) as sCAC646 

(data not shown). Further discussion here would be overspeculative. Nevertheless, this aspect, as 

well as the role of sRNAs in the genus of Clostridium in general, deserves attention. 

 

 

Fig 4.4  Modes of Fur regulation in bacteria (adapted from Lee and Helmann, 2007). (A) Classical Fur-Fe2+ 

mediated repression. Microarray and bioinformatic analysis have established the function of CacFur as an iron-bound 

repressor, while other patterns of regulation were not identified in this study. (B) Fur-Fe2+ dependent direct and sRNA 

mediated activation. (C) and (D) represent apo-Fur repression and activation, respectively. 

Direct Fur mediated transcriptional activation and repression in the absence of Fe2+ (apo-Fur) 

have been characterized in H. pylori and C. jejuni (Fig. 4.4 C and D) (Delany et al., 2001; Ernst et 

al., 2005; Butcher et al., 2012). In order to test if C. acetobutylicum exhibits similar regulation 

patterns, transcript levels were compared between the wild-type and the fur mutant, grown under 

iron-limiting conditions and between fur mutant cultures grown under iron-replete and -deplete 

conditions (3.6). However, no evidence for alternative modes of Fur regulation in the absence of 

iron as a coeffector has been identified in this study. 

 

A) B) C) D) 

1) 2) 
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4.3.2  Fur-Fe
2+

 regulon 

The microarray data coupled with bioinformatic analysis enabled the identification of the putative 

Fur regulon in C. acetobutylicum, which includes at least 9 operons (21 genes) (Table 4.1). When 

Fur functions as a repressor, the Fur-binding sequence overlaps the promoter region, while when 

acting as an activator, the Fur box is located upstream of the promoter (Delany et al., 2004; Lee 

and Helmann, 2007). Consistently, all identified Fur boxes were positions in close proximity to 

the transcriptional start site (TSS) or overlapping the - 10 and - 35 promoter elements of the 

corresponding genes (Table 4.1). Table 4.1 shows the Fur boxes with the highest scores, however, 

the promoter regions of several genes harboured more than one putative Fur-binding site (cac0267 

(2); cac0567 (2); cac0791 (3); cac1029 (3); cac1478 (4); cac1602 (2)). Presence of repetitive 

sometimes overlapping Fur-binding sequences with different scores within the promoter regions 

of target genes, together with the ability of the Fur protein to assemble into multimers, have been 

proposed as features that would allow for a gradual fine-tuned transcriptional regulation (Escolar 

et al., 1999). 

Table 4.1 Predicted Fur-Fe
2+

 regulon in C. acetobutylicum 

Gene or 

gene cluster 
Function 

Predicted Fur-binding box 

ATG
a
 TSS

b
 Sequence

c
 Score

d
 

cac0267 L-lactate dehydrogenase -118 -39 GATAATCTTTATCAATATT 8.05 

cac0567 Putative methyltransferase -62 +3 TTTAATGATAATCATTATC 8.84 

cac0582-84 Cobalamin biosynthesis  -208 ND GATAATAATTATCATTATC 9.31 

cac0587-88 
Flavodoxin/ Hypothetical 

protein 
-34 +2 GATAATGAAAATCAATATC 9.24 

cac0788-91 Ferrichrome transport -32 +9 GATAAACATTATCAGTTAC 8.33 

cac0843-44 
Ribonuclease precursor 

(barnase)/inhibitor 
-94 ND TTTAATACATTTCATTCTT 7.5 

cac1029-32 Fe
2+

 uptake -56 +3 GATAATCATTATCATTTCA 8.26 

cac1478 30S Ribosomal protein S4 -94 -37 GAGAATATTTTTCATTTGC 8.46 

cac1602-03 Hypothetical proteins -23 +6 GATATTGATAATCATAATC 8.54 

a   
Distance to the annotated ATG. 

b   
Distance to the TSS (transcriptional start site). TSS were identified using 5' RACE (3.6.1.3). 

c, d 
Fur box sequences and scores as determined by the 'Virtual footprint' software (Münch et al., 2003) 

The iron-responsive transcriptional regulators Fur and DtxR govern the control of a broad array of 

genes in bacteria. For instance, in E. coli, the best studied to date model of iron homeostasis, Fur 
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controls the expression of over 190 genes; 59 genes are Fur regulated in H. pylori; 34 operons in 

Yersinia pestis and 20 operons in B. subtilis (Hantke, 2001; Baichoo et al., 2002; Andrews et al., 

2003; Danielli et al., 2006; Gao et al., 2008). In comparison to these microorganisms, the Fur 

regulon in C. acetobutylicum encompasses a rather small set of targets (Fig. 4.1). Nevertheless, 

relative to other studied strict anaerobes, C. acetobutylicum exhibits a more dynamic Fur-

dependent transcriptional response to iron deprivation suggesting that maintenance of proper 

cellular iron balance is an important aspect of the lifestyle of this bacterium and Fur plays an 

important role in this process. The data obtained in this study clearly demonstrates that CacFur 

exerts control not only on iron transport (4.3.2.1), but also on some basic aspects of the energy 

metabolism (4.3.2.2) leading to a preliminary model of Fur-dependent regulation in 

C. acetobutylicum (Fig. 4.4). 

 

Fig 4.4  The Fur regulator in C. acetobutylicum mediates an iron-dependent control of iron-uptake systems as 

well as some basic aspects of the energy metabolism. Protein products of selected genes, predicted to be members of the 

Fur regulon in C. acetobutylicum are presented. These include two putative iron-uptake systems (coloured in red); Ldh, 

lactate dehydrogenase and flavodoxin (highlighed in green), which presumably compensate the function of some iron-rich 

enzymes (shown in dashed ellipses) from the central metabolism in the context of iron limitation. Fur-regulated is also a gene 

encoding a putative 30S S4 ribosomal protein (RpsD) (indicated in yellow). 

Interestingly, the Fur regulon includes also several genes with no obvious role in adapatation to 

iron levels. The cac1478 gene encodes a predicted 30S ribosomal protein RpsD. Screening of the 

genomes of other clostridial species for putative Fur-binding sites using the 'Virtual footprint 

software' (Münch et al., 2003) suggested that Fur-dependent regulation of rpsD genes is 

conserved in this group of bacteria (data not shown). Studies in E. coli and B. subtilis have shown 

that RpsD functions as a regulatory protein blocking the translation of other ribosomal protein by 

binding to a specific sequence in the mRNA leader region (Jinks-Robertson and Nomura, 1982; 
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Grundy and Henkin, 1991). Therefore, it could be speculated that the putative RpsD in 

C. acetobutylicum might exhibit control at the level of translation on the expression of ribosomal 

proteins in response to iron limitation. Furthermore, preliminary experiments with the protein 

products of the Fur-regulated cac1602-cac1603 operon and hydrophobicity plot suggested that 

CAC1602 is a membrane-associated protein, while CAC1603 is a soluble protein (data not shown). 

Further studies are necessary to determine the biological significance of the individual members of the 

Fur regulon in C. acetobutylicum. 

In many bacterial species expression of Fur is subjected to auto- or cross-regulation by other 

metalloregulators or metabolic state sensors (de Lorenzo et al., 1988; Sebastian et al., 2002; 

Delany et al., 2005; Wang et al., 2008). For instance, PerR in B. subtilis, NikR (nickel-sensing 

regulator) in H. pylori and CAP (catabolic activator protein) in E. coli regulate the transcription of 

their Fur-encoding genes (de Lorenzo et al., 1988; Fuangthong et al., 2002; Delany et al., 2005). 

The promoter of the fur gene in C. acetobutylicum did not reveal a conserved Fur-binding 

sequence, suggesting that its expression is not autoregulated. Similarly, PerR-dependent 

regulation has not been identified in previous studies (Hillmann et al., 2009b). Therefore, 

regulation at transcriptional level of the fur gene in C. acetobutylicum, if any, is yet to be 

determined. 

4.3.2.1 Genes involved in iron acquisition 

Consistent with the predominant ferrous form of iron (Fe2+) in the anaerobic environments, the 

Fur regulon in C. acetobutylicum includes a gene cluster (cac1029-cac1032) that codes for a 

putative Feo-type system associated with Fe2+ uptake. Feo has been originally characterized as an 

anaerobically induced and iron-repressible Fe2+ transport system in E. coli (Hantke, 1987; 

Kammler and Hantke, 1993; Andrews et al., 2003). Within the Feo-system, FeoB, a 

transmembrane protein with GTPase activity, is well established as the main transporter for 

ferrous iron (Cartron et al., 2006; Lau et al., 2013). In contrast, the role of the FeoA proteins is 

much less understood. The deduced amino acid sequence of CAC1031 showed 55 % similarity to 

the FeoB protein from E. coli. Furthermore, homology modelling using structural information 

from the cytoplasmic domain of the E. coli FeoB protein as template (pdb: 3i8s; Petermann et al., 

2009) demonstrated extensive structural conservation in CAC1031 (Fig. 7.6, Appendix). Gene 

clusters encoding Feo-type systems in bacteria may occasionally include a feoC gene (Carton et 

al., 2006). It has been suggested that FeoC functions as a transcriptional regulator (Carton et al., 

2006). Although CAC1032 did not exhibit similarity in amino acid sequence to FeoC proteins, it 

is annotated as a putative transcriptional regulator. Thus, it could be speculated that CAC1032 is 

involved in a second layer of regulation of the feo gene cluster. Numerous attempts in this study to 
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generate Clostron®-based mutations within the Feo-system encoding operon (cac1029, cac1030 

and cac1031) were unsuccessful, suggesting that CAC1029-CAC1032 is the major iron importer 

in C. acetobutylicum. However, limitations conferred by the mutagenesis system could not be 

completely ruled out and further experimentation is needed to confirm this hypothesis. 

CacFur also mediates the iron-dependent regulation of an operon (cac0788-cac0791) putatively 

involved in ferri-hydroxamate (ferrichrome) siderophore uptake. However, test of the composition 

of supernatants from the fur mutant and the iron-deprived wild-type demonstrated that 

C. acetobutylicum does not produce detectable siderophores (3.5.1). Moreover, analysis of the 

genome did not reveal genes involved in production of known siderophores, except for the entB 

gene (cap0030) encoding a putative isochorisamate lyase (Nölling et al., 2001). Synthesis of 

precursors and assembly of functional siderophores is an energetically expensive process 

(Andrews et al., 2003). Moreover, in soil, the natural habitat of C. acetobutylicum, fungi and 

streptomycetes produce plethora of hydroxamate siderophores, among which ferrichromes 

constitute a major class (Winkelmann, 2007). Thus, most likely C. acetobutylicum scavenges 

ferri-siderophore complexes, produced and secreted by other species (xenosiderophores), a 

strategy employed by many bacteria (D'Onofrio et al., 2010). 

Furthermore, CacFur mediates the control of an operon (cac0582-cac0584) involved in 

biosynthesis of cobalmin (vitamin B12). Within this gene cluster, cac0583 codes for a putative 

cobalt chelatase (CbiK). Similarly, the Fur regulon in another strict anaerobe D. nodosus included 

a CbiK encoding gene (Parker et al., 2005). In Salmonella enterica CbiK has been shown to 

function as a ferrochelatase by binding Fe2+ (Raux et al., 1997). Therefore, the CbiK ortholog in 

C. acetobutylicum might also facilitate acquisition of iron. 

4.3.2.2 Genes involved in energy metabolism 

The central hub of the metabolism of C. acetobutylicum is composed of two iron-containing 

proteins: pyruvate:ferredoxin oxidoreductase (PFOR) and [FeFe]-hydrogenase (HydA1) (Jones 

and Woods, 1986; Meinecke et al., 1989; Demuez et al., 2007). PFOR creates a bridge between 

the glycolysis and the multi-branched fermentation metabolism of C. acetobutylicum by 

catalysing the conversion of pyruvate to acetyl-CoA (Fig. 1.5 and Fig. 4.4). The hydrogenase is 

the major redox balancing device that provides a pathway for regeneration of NAD+ from NADH 

during the acidogenic growth phase with concomitant production of molecular H2 (Jones and 

Woods, 1986). Bahl et al. (1986) suggested that PFOR creates a bottleneck for the carbon flow 

upon iron deficiency in C. acetobutylicum. There are no studies on the activity of this enzyme in 

the context of iron limitation in this microorganism. However, functionality of the PFOR in the 
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closely related C. pasteurianum has been reported not to be significantly affected under iron 

deprivation (Schönheit et al., 1979). On the other hand, the activity of the [FeFe]-hydrogenase in 

C. acetobutylicum has been shown to be greatly reduced in low-iron medium (Junelles et al., 

1988). As discussed in (4.2.1) activity of the hydrogenase was not affected in the fur mutant 

strain. Furthermore, the expression of the HydA1-encoding gene cac0028 was not affected either 

in the iron-deficient wild-type or in the mutant strain, corroborating the fact that inhibition of the 

hydrogenase occurs at enzymatic level. Under these conditions, lactate dehydrogense would 

provide an alternative pathway for oxidation of NADH, in order to allow the glycolysis to 

proceed. Indeed, previous studies have demonstrated that the NADH-dependent L-lactate 

dehydrogense activity is increased in cells of C. acetobutylicum under iron-limiting conditions 

(Freier and Gottschalk, 1987). Moreover, under conditions of iron starvation lactate rather that 

butyrate and acetate is the predominant metabolic product during the acidogenic growth phase in 

C. acetobutylicum and C. pasteurianum (Bahl et al., 1986; Dabrock et al., 1992). In concert with 

these results, a gene encoding a L-lactate dehydrogense (cac0267) was significantly upregulated 

in the iron-deficient wild-type. Moreover, the cac0267 was derepressed in the C. acetobutylicum 

fur mutant strain and is associated with a high-score Fur binding sequence (Table 4.1), indicating 

that the regulation of this gene is mediated by Fur according to the cellular iron status. 

Elevated lactate production has been also reported, when the activity of the hydrogenase was 

inhibited by CO or by addition of the artificial electron carrier methyl viologen (Meyer et al., 

1986; Peguin et al., 1994; Peguin und Soucaille, 1995; Peguin and Soucaille, 1996). Inactivation 

of this major NADH recycling enzyme during the acidogenic growth phase presumably leads to 

redox imbalance in the cell reflected by an increased NADH/NAD+ ratio (Jones and Woods, 

1986). A recent study in our laboratory characterized CAC2713 as a redox-sensing transcriptional 

regulator (Rex) in C. acetobutylicum (Wietzke and Bahl, 2012). The same study demonstrated 

Rex-dependent derepression of the lactate-encoding cac0267 gene in response to an elevated 

NADH/NAD+ ratio. Fig. 3.28 indicates the corresponding Rex-binding sequence positioned 

overlapping the transcriptional start site in the promoter region of cac0267. Collectively, these 

data indicate that the lactate production pathway in C. acetobutylicum is subjected to multi-layer 

regulation that ensures maintenance of the glycolysis whenever the activity of the hydrogenase is 

diminished during the acidogenic growth phase. 

C. acetobutylicum fur mutant did not exhibit increased lactate production in MS-MES batch 

cultures relative to the wild-type strain (3.5.1). Activity of the L-lactate dehydrogenase from 

C. acetobutylicum was shown to be pH dependent with an optimum of 5.8 (Freier and Gottschalk, 

1987). Consistently, lactate production has been detected in cultures of C. acetobutylicum only 

above a pH value of 5 (Bahl and Gottschalk, 1984; Bahl et al., 1986). Because of the experimental 
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set up in this study, the pH value in MS-MES batch cultures was below 5 almost during the whole 

course of the growth (Fig. 3.15 B). That could explain the lack of lactate formation in the fur 

defective strain. However, when grown under conditions of continuous fermentation at pH of 5.4 

(acidogenic phase), similarly the mutant did not produce lactate (data not shown). From an 

energetic point of view conversion of pyruvate to lactate is a much less efficient process than the 

synthesis of acetate and butyrate (Jones and Woods, 1986). It is thus unlikely that the fermentative 

metabolism is rerouted towards lactate production, when the hydrogenase is still intact, as is the 

case in the fur mutant strain. 

Physiological electron donor of the hydrogenase is the iron-sulfur containing ferredoxin (Jones 

and Woods, 1986). Ferredoxin receives electrons mainly as a result of the oxidative 

decarboxylation reaction catalyzed by PFOR (Jones and Woods, 1986; Demuez et al., 2007). 

During the acidogenic phase reduced ferredoxin is also generated via the NADH:ferredoxin 

oxidoreductase (Vasconcelos et al., 1994; Girbal et al., 1995; Demuez et al., 2007). Previous 

studies in clostridia, cyanobacteria and algae have demonstrated that under iron-limiting 

conditions the intracellular levels of ferredoxin were significantly reduced, while flavodoxin has 

been detected in significant amounts (Knight and Hardy, 1966; Mayhew and Massey, 1969; 

Ragsdale and Ljungdahl, 1984; Sandmann and Malkin, 1983; Sandmann et al., 1990). In iron-

deficient cells of Clostridium formicoaceticum flavodoxin accounted for at least 2 % of the total 

soluble protein (Ragsdale and Ljungdahl, 1984). These results have led to a model in which 

flavodoxin acts as a counterpart of ferredoxin in many oxidation-reduction reactions under these 

conditions (Knight and Hardy, 1966). Consistently, in vitro enzyme assays have demonstrated that 

flavodoxins could successfully replace ferredoxins as electron mediators for PFOR (Mayhew, 

1971; Petitdemange et al., 1979; Fitzgerald et al., 1980), NADH oxidoreductase (Petitdemange et 

al., 1979) and hydrogenase (Chen and Blanchard, 1979; Fitzgerald et al., 1980; Demuez et al., 

2007). The genome of C. acetobutylicum has revealed four genes (cac0203, cac0587, cac2452 

and cac3417) annotated as coding for putative flavodoxins (Nölling et al., 2001). Previous studies 

have shown that cac2452 is regulated in a PerR-dependent manner in response to oxidative stress 

(Kawasaki et al., 2005; Hillmann et al. 2008; Hillmann et al., 2009b), while the other three genes 

have not yet been assigned a function. In their study, Demuez et al. (2007) proposed that 

CAC0587 is the most likely physiological partner of the hydrogenase under iron-limiting 

conditions based on comparative in silico analysis and in vitro enzyme assays. In support of this 

hypothesis, among the most strongly upregulated in C. acetobutylicum upon iron limitation and 

fur gene inactivation was an operon coding for a flavodoxin (cac0587) and a hypothetical protein 

(cac0588) (Table 4.1). Moreover, CAC0587 was detected as a novel spot on the analytical 2D-
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PAGE gels from the fur mutant (Fig. 3.25). The cac0587-cac0588 gene cluster is also associated 

with a high-score Fur box, which corresponds to the level of derepression (Table 4.1). 

The genome of C. acetobutylicum harbours five genes encoding putative ferredoxins (cac0075, 

cac0105, cac0303, cac3527, cac3621) (Nölling et al., 2001). Demuez et al. (2007) reported that 

CAC0303 is the major ferredoxin in solventogenic cells of C. acetobutylicum. Apart from that 

study, the role of the individual ferredoxins in this microorganism is currently not known. 

Interestingly, the transcriptomic data from the iron-deficient wild-type and the fur mutant did not 

show differential expression of any of the ferredoxin-encoding genes. These results suggest that 

negative regulation of ferredoxin synthesis in iron-deficient cells of C. acetobutylicum is 

performed on a post-transcriptional level. Transcriptional analysis of ferredoxin encoding genes in 

several cyanobacterial species, grown under iron-starvation conditions, demonstrated similar 

results (Laudenbach et al., 1988; Leonhardt et al., 1992; Razquin et al., 1994). Of interest for 

future studies would be the regulatory nature of the ferredoxins under iron limitation in C. 

acetobutylicum and a potential role of Fur in this process. 

4.3.3  Role of the riboflavin biosynthesis 

The riboflavin biosynthesis pathway in C. acetobutylicum was upregulated in response to iron 

limitation, as well as in the fur mutant (3.5.2). Previous studies have indicated an interrelationship 

between the availability of iron and the flavin status in bacteria, yeast, higher plants and mammals 

(Susin et al., 1993; Powers, 1995; Fedorovich et al., 1999; Crossley et al., 2007). Studies in 

C. jejuni, H. pylori and Shewanella onediensis have led to a model in which excretion of 

riboflavin promotes acquisition of iron by mediating the reduction of Fe3+ to Fe2+ (Worst et al., 

1998; Crossley et al., 2007; Marsili et al., 2008). Similarly, under low-iron conditions the roots of 

sunflower and sugar beet excrete riboflavin-5' and riboflavin-3' sulfate, which facilitate iron 

uptake by reduction of Fe3+ (Vorwieger et al., 2007). In Pichia gulliermondii inactivation of the 

riboflavin biosynthesis pathway resulted in substantially reduced growth under iron-limiting 

conditions (Boretsky et al., 2007). Furthermore, the isoalloxazine ring of riboflavin has been 

shown to exhibit properties of a chelator with high specificity for iron (Albert, 1950; 1953). 

Transcriptional analysis in H. pylori has suggested that the riboflavin synthesis is regulated in a 

Fur-dependent manner (Ernst et al., 2005). Moreover, recent studies have reported a direct 

interaction of the Fur protein with the promoter region of the ribBA gene cluster in this bacterium 

(Pich et al., 2012). Although a putative Fur-binding sequence was identified within the first of 

gene of the ribDBAH operon in C. acetobutylicum, it was suggested in this study that riboflavin 

biosynthesis in this microorganism is not directly controlled by Fur and occurs as a consequence 
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of the increased flavodoxin production. This arises from the fact that a FMN-sensing riboswitch is 

responsible for the control of expression of rib operons in Gram-positive bacteria (Mironov et al., 

2002; Vitreschak et al., 2004). In support of this hypothesis knock-out of the flavodoxin encoding 

gene (cac0587) using the Clostron® system gave a riboflavin-negative phenotype under conditions 

of iron deficiency (3.6.1.4). Nevertheless, riboflavin might also contribute to acquisition of iron in 

the natural environments as an accessory effect. 

4.3.4  Additional transcriptional changes in response to iron-limitation and 

  fur gene inactivation 

Apart from the Fur mediated iron-dependent regulation, a number of genes exhibited differential 

expression in response fur gene inactivation, but were not affected in the iron-deficient wild-type 

(Table 7.6, Appendix). It is beyond the scope of this study to discuss all transcriptional aspects. 

Nevertheless, a conceivable explanation could be advanced at least for some changes in 

expression. Secondary effects resulting from the increased iron influx, slower growth rate and 

elevated riboflavin synthesis are likely to account for a fraction of the transcriptional response in 

the fur mutant. GTP is the direct precursor for biosynthesis of riboflavin (Foor and Brown, 1975). 

Moreover, FeoB-dependent iron transport is coupled with GTP hydrolisis (Andrews et al., 2003). 

Thus, the overflowing production of riboflavin and the enhanced FeoB-dependent iron transport 

in the fur mutant strain could lead to imbalance in the cellular pools of GTP. CodY is a stationary 

phase transcriptional regulator that senses intracellular levels of GTP and controls expression of 

genes involved in sporulation, amino acid catabolism and transport, among others (Ratnayake-

Lecamwasam et al., 2001; Dineen et al., 2010). Therefore, some of the transcriptional changes in 

the fur mutant might be due to derepression of members of the CodY regulon. A recent global 

transcriptional analysis of a codY (cac1786) mutant in C. acetobutylicum did not confirm this 

rationalization (Vasileva, unpublished data). However, significantly upregulated in the fur mutant 

was the purECFMNHD operon (cac1390-cac1396), which encodes the enzymes involved in the 

de novo synthesis of IMP, a precursor of ATP and GTP. In B. subtilis expression of the pur gene 

cluster is controlled by PurR, a transcriptional regulator that responds to reduced cellular purine 

pools (Ebbole and Zalkin, 1989; Weng et al., 1995). Presumably, a similar regulation pattern 

mediated by the putative PurR (CAC3224) regulator functions in the C. acetobutylicum fur mutant 

to compensate for the increased consumption of GTP. In E. coli, transcription of the gene 

encoding the PurR regulator is directly regulated by Fur-Fe2+ (Stojiljkovic et al., 1994). However, 

no putative Fur-binding sequence was identified in the promotor region of cac3224. 
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A broad array of genes was regulated by iron through Fur-independent pathways (Table 7.5, 

Appendix). Among the most dramatically up-regulated was a cluster of genes involved in arginine 

synthesis. Similarly, iron deficiency has resulted in induction of genes involved in arginine 

production in Listeria monocytogenes (Ledala et al., 2010). In B. subtilis AhrC is a regulator that 

senses high intracellular levels of arginine and represses expression of genes involved in its 

biosynthesis (Czaplewski et al., 1992). The genome C. acetobutylicum encodes an AhrC ortholog 

(CAC2074), which presumably exhibits control on arginine synthesis in a similar manner. The 

reason for the derepression of the arginine biosynthesis pathway under low-iron conditions is 

currently unclear, but could represent an element of a more general stress response. Slightly 

upregulated in the iron-deficient wild-type was also a bicistronic operon encoding a second 

putative Feo-type system (cac1447-cac1448). In the anaerobic bacterium Porphyromonas 

gingivalis a Feo-type system has been reported to mediate manganese rather than iron uptake 

(Dashper et al., 2005). A phylogenic tree of FeoB proteins suggested that the second FeoB from 

C. acetobutylicum might also be involved in manganese acquisition (Carton et al., 2006). 

Manganese could substitute for iron in several cases, which could explain the induction of the 

second Feo-system under conditions of iron-deficiency (Martin and Imlay, 2011). On the other 

hand, most dramatically down-regulated was an operon putatively associated with synthesis and 

maturation of a nitrogenase (cac0253-cac0261). Since nitrogenase is an iron-containing protein, 

downregulation of its synthesis could be a part of an iron-sparing response. 

Taken together, these results provide compelling evidence that both iron-limitation and fur gene 

inactivation have pleiotropic effects in C. acetobutylicum. Therefore, cross-talk between 

regulatory networks could likely account for a significant fraction of the observed transcriptional 

changes under both conditions. 

4.4  Other genes with predicted role in iron transport and  

  metabolism in C. acetobutylicum 

In addition to cac1029-cac1032 and cac0788-cac0791, only three gene clusters in the genome of 

C. acetobutylicum were annotated as encoding putative iron transport systems (cac2441-cac2444; 

cac1988-cac1990 and cac2877-cac2878) (Nölling et al., 2001). Recent studies in our laboratory 

have indicated that cac2877-cac2878 codes for a zinc-uptake system and is directly controlled by 

CAC0951 (Vasileva, unpublished data). The other two predicted iron acquisition systems did not 

exhibit significant changes in expression either under iron limitation or in the fur mutant. While 

the promoter region of cac2441-cac2444 revealed a low-score putative Fur-binding sequence, no 

Fur box was identified upstream of the cac1988-cac1990 gene cluster. Therefore, despite their 
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homology to iron acquisition systems, these transporters most probably play a different role. 

Collectively, these data emphasize the function of Fur as the main regulator of iron transport in 

C. acetobutylicum. 

Fe-S cluster containing proteins are central for the metabolism of C. acetobutylicum. In response 

to oxidative stress and iron-limitation conditions in bacteria, Suf and Nif machineries are recruited 

for Fe-S cluster assembly (Outten et al., 2004; Zheng et al., 1998). It has been demonstrated that 

the suf operon in E. coli is controlled by the oxidative stress sensor OxyR and by Fur (McHugh et 

al., 2003; Zheng et al., 2001). Although not directly controlled by PerR, Hillmann et al. (2009b) 

showed that the gene clusters encoding putative Suf (cac3288-cac3292) and Nif systems are 

significantly upregulated in response to oxidative stress in C. acetobutylicum. Interestingly, 

change in the level of transcription of these operons has not been observed either under iron 

limitation or in the fur mutant strain in this study. Therefore, the mechanisms for repairment of 

Fe-S clusters under iron limitation, if any, in this microorganism remain unclear. 

Another important aspect of the bacterial iron homeostasis is the control on the synthesis of iron 

storage proteins (Andrews, 1998; Carrondo, 2003). When the extracellular supplies of iron are 

scarce, intracellular reserves are recruited in order to meet the metabolic requirements (Andrews 

et al., 2003). On the other hand, by sequestering excess of iron, these proteins prevent formation 

of ROS in the cell (Cornelis et al., 2011). Three types of iron storage proteins are known in 

bacteria: (i) non-haem ferritins, (ii) haem-containing bacterioferritins and (iii) small Dps proteins 

involved specifically in protection of DNA (Andrews, 1998; Andrews et al., 2003). The ferritins 

and bacterioferritins exhibit similar structural organization composed of 24 subunits, which form 

a spherical protein with a central cavity that could accommodate up to 4500 iron atoms (Andrews, 

1998; Nandal et al., 2010). The genome of C. acetobutylicum has revealed a putative ferritin 

encoding gene (cac0845) (Nölling et al., 2001). CAC0845 showed 49 % similarity in amino acid 

sequence to FtnA (Izuhara et al., 1991), the major iron storage protein in E. coli. Fig. 7.7 

(Appendix) represents a homology model of a 24meric CAC0845 protein based on the structure of 

E. coli FtnA (pdb: 1eum; Stillman et al., 2001). Transcription of iron storage proteins in bacteria 

is typically regulated directly or indirectly by the iron-responsive regulators (Wilderman et al., 

2004; Ernst et al., 2005; Rodriguez, 2006; Fiorini et al., 2008; Nandal et al., 2010). Although a 

putative Fur-binding sequence was identified upstream of the cac0845 gene, its expression was 

not affected either in the iron-deficient wild-type or in the fur mutant. Therefore, methods with 

higher sensitivity than the microarray analysis like RT-PCR might be considered for further 

investigation of the cac0845 transcriptional pattern. Of interest for future studies would be also 

the biological role of CAC0845 for maitenance of iron homeostasis and resistance to oxidative 

stress in C. acetobutylicum. 
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5  Summary 

1. The Fur homologous proteins CAC0951 and CAC1682 from C. acetobutylicum were 

subjected to comparative in silico and biochemical characterization. The results from these 

experiments coupled with trans-complementation studies in fur-null E. coli and B. subtilis hosts 

emphasized the role of CAC1682 as an iron-responsive transcriptional regulator (CacFur). 

2. In order to determine the role of Fur in C. acetobutylicum, the fur gene was disrupted by 

insertional mutagenesis using the Clostron® system. The resultant fur defective strain exhibited a 

slow-growing phenotype, increased intracellular iron content and enhanced sensitivity to 

oxidative stress, but essentially no appreciable differences in fermentation pattern relative to the 

wild-type. The phenotypical changes were reversed by introduction of a functional copy of the fur 

gene in trans. Collectively, the data from the physiological analysis of the mutant strain 

demonstrated the important role Fur in the lifestyle of C. acetobutylicum. 

3. Cell-free supernatants from the fur mutant and the wild-type, grown under conditions of 

iron limitation, did not reveal detectable siderophore production in C. acetobutylicum. However, a 

unique feature of the physiology of the fur mutant was the excessive synthesis of riboflavin. The 

iron-deficient wild-type revealed a similar profile. Induction of the riboflavin biosynthesis 

pathway in the fur mutant and the iron-deprived wild-type was demonstrated also at 

transcriptional level using Northern blot hybridization analysis. 

4. In order to get further insights into the mechanisms for maintenance of iron homeostasis in 

C. acetobutylicum, the transcriptional modifications in response to iron limitation and 

inactivation of fur were determined and compared. Both iron deficiency and loss of Fur resulted 

in extensive transcriptional reshaping. Bioinformatic analysis of the promotor sequences of the 

genes, which elicited changes in transcription under both conditions allowed the indentification of 

the putative direct targets of CacFur (CacFur regulon). As expected, the predicted Fur regulon in 

C. acetobutylicum includes two putative iron uptake systems. In addition, the transcription of 

several genes involved in energy metabolism was affected. Among these most highly upregulated 

were two genes encoding a L-lactate dehydrogenase and a flavodoxin. 

5. Taken together the results is this study indicate that C. acetobutylicum responds to iron 

using a sophisticated system and Fur plays a paramount role in this process. 
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7  Appendix 

Table 7.1 Bacterial strains 

Strain Relevant characteristics Reference or source 

E. coli DH5α 
supE44, ∆lacU169, hsdR17, (φ80lacZ∆M15), 

recA1, endA1, gyrA96, thi-1, relA1 

Hanahan, 1983/ 

Strain collection Nr. 272 

E. coli ER2275 pAN-II 

trp-31, his-1, tonA2, rpsL104, supE44, xyl-

7, mtl-2, metB1, el4
-
, ∆(lac)U169, endA1, 

recA1, R(zbgZ10::Tn10)Tc
s
, ∆(mcr-hsd-

mrr)114::1510, [F´, proAB, laqI
q 
Z∆M15 

zzd::mini Tn10(Kan
r
)] 

NEB, New England Biolabs/ 

Strain collection Nr. 271 

E. coli RR1 
K12 RR1, ∆M15:leu, pro, thi, strA, hsd, r- ,m-,  

lacZ\∆M15, F`, lac I Q Z\∆M15, pro+ 

Raleigh et al., 1988/ 

Strain collection Nr. 806 

E. coli BL21 
F

-
, ompT hsdSB (rB

-
, mB

-
), gal dcm,  

rne131 
Novagen 

E. coli BL21-DE3 (pLys) F-ompT hsdSB (rB
-
, mB

-
) gal dcm (DE3) Novagen 

E. coli BL21 

pT::cac0951 
pT::cac0951 (Ampr, Ermr) 

This study/ 

Strain collection Nr. 432 

E. coli BL21-DE3 (pLys) 

pET-30a::cac1682 (fur) 
pET-30a::cac1682 (fur) (Kanr, Camr) 

This study/ 

Strain collection Nr. 433 

E. coli H1780 
araD139, ΔaargF-lacU169, rpsL150,  

relA1, flbB5301, deoC1, ptsF25, rbsR, fiu::λ 

placMu, fur::kan, Smr, Kanr 

Hantke,1987/ 

Strain collection Nr. 434 

E. coli H1780  

pTCatP 
pTCatP vector without an insert (Ampr, Camr) 

This study/ 

Strain collection Nr. 435 

E. coli H1780 

pTCatP::cac1682 (fur) 
pTCatP::cac1682 (Ampr, Camr) 

This study/ 

Strain collection Nr. 436 

E.coli H1780 

pTCatP::cac0951 
pTCatP::cac0951 (Ampr, Camr) 

This study/ 

Strain collection Nr. 437 

E. coli H1717 
araD139, ΔaargF-lacU169, rpsL150,  

relA1, flbB5301, deoC1, ptsF25, rbsR, fhuF::λ 

placMu, Smr, Kanr 

Hantke, 1987; 

Stojiljkovic et al., 1994/ 

Strain collection Nr. 438 

B. subtilis HB1000 ZB307A attSPb 
Chen et al., 1993/ 

Strain collection Nr. 92 
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B. subtilis HB6543 HB1000 fur::kan 
Bsat et al., 1998/ 

Strain collection Nr. 94 

B. subtilis HB6543  

pTCatP 
pTCatP vector without an insert (Ampr, Camr) 

This study/ 

Strain collection Nr. 439 

B. subtilis HB6543 

pTCatP::cac1682 (fur) 
pTCatP::cac1682 (fur) (Ampr, Camr) 

This study/ 

Strain collection Nr. 440 

B. subtilis HB6543 

pTCatP::cac0951 
pTCatP::cac0951 (Ampr, Camr) 

This study/ 

Strain collection Nr. 441 

C. acetobutylicum  

ATCC 824 
Wild-type Strain collection 

C. acetobutylicum  

fur::int (271a)  

Derivative of the wild-type, fur insertional 

mutant (Erm
r
)

 
This study/ 

Strain collection Nr. 442 

C. acetobutylicum  

fur::int (271a) pTCatP 
fur mutant, pTCatP (Erm

r
, Tm

r
)  

This study/ 

Strain collection Nr. 443 

C. acetobutylicum 

fur::int (271a) pTCatP::fur 
fur mutant, pTCatP::fur (Erm

r
, Tm

r
) 

This study/ 

Strain collection Nr. 444 

C. acetobutylicum  

fur::int (271a) pMTL85141 
fur mutant, pMTL85141 (Erm

r
, Tm

r
) 

This study/ 

Strain collection Nr. 445 

C. acetobutylicum  

fur::int (271a ) 

pMTL85141::fur 

fur mutant, pMTL85141::fur (Erm
r
, Tm

r
) 

This study/ 

Strain collection Nr. 446 

C. acetobutylicum  

cac0587::int (150s) 

Derivative of the wild-type, cac0587 

insertional mutant (Erm
r
) 

This study/ 

Strain collection Nr. 447 

 

Table 7.2 Vectors 

Plasmid vector Relevant characteristics Reference or source 

pMTL007 
Group II intron retargeting region-encoding 

plasmid, Cam
r
 

Heap et al., 2007/ 

Strain collection Nr. 19 

pMTL007C-E2 ltrA, Ll.ltrB-Intron, ColE1 ori, Cam
r
 

Heap et al. 2010/ 

Strain collection Nr. 20 

pAN-II Tc
r
, Φ3tI; p15A oriR 

Heap et al. 2007/ 

Strain collection Nr. 271 

pT::hydA 
PthlA, hydA, Strep-Tag II, Amp

r
, Erm

r
, repL, 

ColE1 ori 

Girbal et al., 2005/ 

Strain collection Nr. 22 
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pTCatP::hydA Derivative of pT, (Amp
r
, Cam

r
) 

Girbal et al., 2005, mod./ 

Strain collection Nr. 397 

pTCatP 
Derivative of pT, without insert 

(Amp
r
, Cam

r
) 

Girbal et al., 2005, mod. 

pET-30a Xa/LIC 

T7 promoter, T7 terminator, N-terminal 

His•Tag and S•Tag, an optional C-terminal 

S•Tag, pBR322 ori, f1 ori, lacI, Kan
r
, 

ligation-independent cloning 

Novagen 

pMTL85141 pIM13, catP, ColE1, MCS 
Heap et al., 2009/ 

Strain collection Nr. 150 

 

Table 7.3 Recombinant plasmids 

Plasmid Relevant characteristics Insert size Source 

pMTL007C-E2::fur 

pMTL007C-E2 retargeted for 

fur gene disruption, HindIII/ 

Bsp1407I (BsrGI) 

350 bp 
This study/ 

Strain collection Nr. 448 

pMTL007C-E2::cac0587 
pMTL007C-E2 retargeted for 

cac0587 gene disruption, 

HindIII/ Bsp1407I (BsrGI) 

350 bp 
This study/ 

Strain collection Nr. 449 

pT::cac0951 
pT, cac0951 gene, BamHI/ 

Cfr9I (XmaI) 
432 bp 

This study/ 

Strain collection Nr. 450 

pTCatP::cac0951 
pTCatP, cac0951 gene, BamHI/ 

Cfr9I (XmaI) 
432 bp 

This study/ 

Strain collection Nr. 451 

pTCatP::cac1682 (fur) 
pTCatP, fur gene, BamHI/ Cfr9I 

(XmaI) 
456 bp 

This study/ 

Strain collection Nr. 452 

pET-30a::cac1682 (fur) 
pET-30a, fur gene, ligation-

independent cloning 
456 bp 

This study/ 

Strain collection Nr. 453 

pMTL85141::fur 

pMTL85141, fur gene and 

promoter region (- 500 to + 456 

relative to the translational start 

site), Cfr9I (XmaI)/NcoI 

956 bp 
This study/ 

Strain collection Nr. 454 

 

Table 7.4 Oligonucleotides 

Primer name 5 → 3Sequence * 
Restriction 

site 
Used for 

EBS Universal CGAAATTAGAAACTTGCGTTCAGTAAAC - 
Intron specific 

primer Clostron 

IBS_fur_271a 
AAAAAAGCTTATAATTATCCTTACATTTCCGTG

CAGTGCGCCCAGATAGGGTG 
HindIII 

fur-specific 

primer Clostron 

EBS1d_fur_271a 
CAGATTGTACAAATGTGGTGATAACAGATAAG

TCCGTGCACCTAACTTACCTTTCTTTGT 

Bsp1407I 

(BsrGI) 

fur-specific 

primer Clostron 
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EBS2_fur_271a 
TGAACGCAAGTTTCTAATTTCGGTTAAATGTCG

ATAGAGGAAAGTGTCT 
- 

fur-specific 

primer Clostron 

IBS_cac0587_150s 
AAAAAAGCTTATAATTATCCTTAAAAAACGCG

GATGTGCGCCCAGATAGGGTG 
HindIII 

cac0587-specific 

primer Clostron 

EBS1d_cac0587_150

s 
CAGATTGTACAAATGTGGTGATAACAGATAAG

TCGCGGATGTTAACTTACCTTTCTTTGT 

Bsp1407I 

(BsrGI) 

cac0587-specific 

primer Clostron 

EBS2_cac0587_150s 
TGAACGCAAGTTTCTAATTTCGGTTTTTTTCCG

ATAGAGGAAAGTGTCT 
- 

cac0587-specific 

primer Clostron 

fur_verif_fw ATGGCAAAATTATCTCCTTTAG - 
Verification of fur 

mutation 

fur_verif_rev TTATAGTTTTTTTCTACATTCACTGC - 
Verification of fur 

mutation 

ErmRAM_fw 
ACGCGTTATATTGATAAAAATAATAATAGTGG

G 
- Southern blot 

ErmRAM_rev ACGCGTGCGACTCATAGAATTATTTCCTCCCG - Southern blot 

fur_prom_XmaI_fw 
TTTTTCCCGGGACATAAATGTACCCATAAAGAT

GTGGG 

Cfr9I 

(XmaI) 
Complementation 

fur_prom_NcoI_rev 
TTTTTCCATGGTTATAGTTTTTTTCTACATTCAC

TGCATATTCC 
NcoI Complementation 

cac1682_pET30a_fw 
GGTATTGAGGGTCGCATGGCAAAATTATCTCCT

TTAGAAATAG 
- Overexpression 

cac1682_pET30a_re

v 
AGAGGAGAGTTAGAGCCTAGTTTTTTTCTACAT

TCACTGCATATTC 
- Overexpression 

cac0951_BamHI_fw TTTTTGGATCCATGGATTTGAAAACGTACG BamHI 
Overexpression/ 

Complementation 

cac0951_XmaI_rev TTTTTCCCGGGAGAATTCTTTTCATTGTTTA 
Cfr9I 

(XmaI) 

Overexpression/ 

Complementation 

fur_BamHI_fw TTTTTGGATCCATGGCAAAATTATCTCCTTTAG BamHI Complementation 

fur_XmaI_rev TTTTTCCCGGGTAGTTTTTTTCTACATTCACTGC 
Cfr9I 

(XmaI) 
Complementation 

pT_seq_fw GGGATAAACTATGGAACTTATGAAA - Sequencing 

pT_seq_rev TGCAAGAATGTGAGAGCTAGAAA - Sequencing 

cac0590_fw_NB AATTGCAGAAAAGGGGAGTG - Northern blot 

cac0590_rev_NB TCCCCTATTTAGGTATCCTGACA - Northern blot 

cac0587_fw_rt ATGGTGAAAATAAACATAATTTATTGCTCAG - sqRT-PCR 

cac0587_rev_rt CTAGCTATTTATAAGAGCCTTACCAAACTC - sqRT-PCR 

cac1029_fw_rt CAAAAGGTATAGGTCTTAATGAAGTTG - sqRT-PCR 

cac1029_rev_rt CCTTAGCTTCACTTTTTCTTAAACTCA - sqRT-PCR 

cac0791_fw_rt ATGACTAGGTTATATACTGACATGCTTAA - sqRT-PCR 

cac0791_rev_rt TTACTTCATCTCCTTGATTAAGTTGTATG - sqRT-PCR 

cac2877_fw_rt GGAACAGGAAAAAGCACCTT - sqRT-PCR 

cac2877_rev_rt GCAAAGAGCCACTTTCTCCA - sqRT-PCR 
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Eub1 (fw) GAGTTTGATCCTGGCTCAG - 

16S rRNA  

Northern 

blot/sqRT-PCR 

control 

Eub2 (rev) AGAAAGGAGGTGATCCAGCC - 

16S rRNA  

Northern 

blot/sqRT-PCR 

control 

cac0267_SP1 AGACTTTGGAAAACCTGAAAGTTTATG - 5' RACE 

cac0267_SP2 CTTGTCTCACCTGGTTTCTG - 5' RACE 

cac0267_SP3 CTACTATAACTATCTCAGATGCAA - 5' RACE 

cac0567_SP1 CTCACTTGCCCATCTAACACAATC - 5' RACE 

cac0567_SP2 ATTTTATCTAGTCCCCAACCTG - 5' RACE 

cac0567_SP3 CTACAACTTTCCCTTGATCTC - 5' RACE 

cac0587_SP1 CTAGCTATTTATAAGAGCCTTACCAAA - 5' RACE 

cac0587_SP2 CCGTATGAACCAAATAGAGCTACTTT - 5' RACE 

cac0587_SP3 CTTCTAATACCTCATCACCCATTG - 5' RACE 

cac0791_SP1 TCGGCTACAGTTATTCCATCTG - 5' RACE 

cac0791_SP2 CCAGTTTTAGTTGGAATTATACGA - 5' RACE 

cac0791_SP3 CAATCAAATTATTGTCATAAGCGAC - 5' RACE 

cac1029_SP1 CTAAGTGCTATTGGATCACCCATA - 5' RACE 

cac1029_SP2 CAATTCCAATAACTTTAACCTTTGA - 5' RACE 

cac1478_SP1 CTAGATTGTCCAACCTTCTTTCAAGAC - 5' RACE 

cac1478_SP2 CTTTTCCAACAGCTGTTCACCATAC - 5' RACE 

cac1478_SP3 ATTAACCCCCAAATGTCTTGCTAATTT - 5' RACE 

cac1602_SP1 CCTTGGAGCTGATCCTCCATA - 5' RACE 

cac1602_SP2 CCAATACTAGAACTAAATCTAAATTT - 5' RACE 

cac1602_SP3 CCTAATTTATCTCCACCTATAAGCA - 5' RACE 

* Red letters indicate the corresponding restriction sites. 
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Fig. 7.1  pMTL007C-E2 vector map (Heap et al., 2010). pMTL007C-E2 is a second generation Clostron® modular 

plasmid vector, which carries a derivative of the Ll.LtrB intron from Lacotococcus lactis, designed for disruption of target 

genes in C. acetobutylicum. The plasmid harbours an origin for replication for Gram-positive bacteria (repH from pIM13) 

and an origin for replication in E. coli (ColE1). A 350-bp intron re-targeting region is modified appropriately via a SOE PCR 

(2.8.2.3) and cloned into the HindIII and BsrGI sites of the vector. The presence of lacZα ORF facilitates the identification of 

positive clones through blue-white screening on medium supplemented with X-Gal. Expression of the intron in 

C. acetobutylicum is directed by a constitutive promoter from the fdx gene of Clostridium sporogenes. The FRT (flippase 

recognition target) sites allow for removal of the ermB selective marker, if necessary. 
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Fig. 7.2  DOPE score profiles for the predicted CAC1682 3D structure (A) and the HpFur template (B) (pdb: 

2xig; Dian et al., 2011). (A) and (B) represent pseudo-energy plots, which confirm that the CAC1682 homology model is 

reasonable. The model was generated using the Modeller program (Sali and Blundell, 1993) and the plot was visualized using 

the Phyton-based Gnuplot graphing utility (http://www.gnuplot.info/). 

 

 

 

 

A) 

B) 
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Fig. 7.3  DOPE score profiles for the CAC0951 predicted 3D structure (A) and the ScoZur template (B) (pdb: 

2mwm; Shin et al., 2011). (A) and (B) represent pseudo-energy plots, which confirm that the CAC0951 homology model is 

reasonable. The model was generated using the Modeller program (Sali and Blundell, 1993) and the plot was visualized using 

the Phyton-based Gnuplot graphing utility (http://www.gnuplot.info/). 

 

 

 

A) 

B) 
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Fig. 7.4  Schematic representation of the pT vector system (Girbal et al., 2005 mod.). (A) The pT vector is a 

plasmid designed for expression of C-terminal Strep-tag II fusion proteins under control of the RBS (ribosome binding site) 

and promoter (PthlA) of the thiolase-encoding gene from C. acetobutylicum. The plasmid carries an origin of replication for 

Gram-positive bacteria (repL from pIM13) and an origin of replication for E. coli (ColE1).The pT plasmid employed in this 

study harbours the clostridial hydA gene, which has been replaced by the genes of interest. (B) Schematic representation of 

the modified pT vector system, designated in this work as pTCatP. The erythromycin resistance determinant was replaced by 

a chloramphenicol/thiamphenicol resistance gene, which makes the system suitable for complementation studies in the 

erythromycin resistant Clostron® insertional mutants. (C) pTCatP vector without insert used as a negative control. 

 

 

A) B) 

C) 
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Fig. 7.5  Effect of absence of Fur on the growth profile of C. acetobutylicum under iron-limiting conditions. 

C. acetobutylicum wild-type and fur mutant were grown in 200 ml CGM medium supplemented with the cell-wall permeable 

iron chelator 2,2'-dipyridyl (Sigma Aldrich) at concentrations of 100 µM (A), 150 µM (B) and 200 µM (C). The results were 

obtained from three independent experiments (n=3). 
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Table 7.5 List of genes, exclusively regulated in C. acetobutylicum wild-type strain grown under iron 

  limitation. 

ID# Expressionratio SD* COG Protein function 

CAP0155 0.31 0.05 X hypothetical protein 

CAP0160 0.19 0.06 N cell-adhesion domain-containing protein 

CAP0162 7.00 3.26 C aldehyde/alcohol dehydrogenase 

CAP0163 6.51 4.82 I 
butyrate-acetoacetate CoA-transferase  

subunit A 

CAP0164 5.71 2.99 I 
butyrate-acetoacetate CoA-transferase  

subunit B 

CAP0168 0.18 0.04 G Alpha-amylase 

CAC0056 0.23 0.07 X hypothetical protein 

CAC0057 0.20 0.08 X hypothetical protein 

CAC0058 0.24 0.09 X hypothetical protein 

CAC0059 0.23 0.02 X hypothetical protein 

CAC0060 0.28 0.07 X predicted membrane protein 

CAC0061 0.30 0.05 X Phage-related protein, gp16 

CAC0062 0.28 0.07 S Phage-related protein 

CAC0063 0.29 0.07 S Phage-related protein 

CAC0106 4.54 2.24 P 
sulfate ABC transporter periplasmic-binding 

protein  

CAC0107 6.84 3.31 P 
ABC-type sulfate transporter, ATPase 

component  

CAC0108 7.21 1.78 P sulfate ABC transporter permease 

CAC0110 6.21 5.30 P 
GTPase, sulfate adenylate transferase  

subunit 1 

CAC0149 0.12 0.05 X 
Xre family DNA-binding domain-/ 

TPR repeat-containing protein 

CAC0175 0.20 0.12 R N-acetylmuramic acid-6-phosphate etherase 

CAC0176 0.17 0.07 E 
oligopeptide-binding protein, periplasmic 

component 

CAC0177 0.18 0.04 E,P oligopeptide transport permease  

CAC0231 0.08 0.05 K,G transcripcional regulator of sugar metabolism 

CAC0232 0.18 0.23 G 
1-phosphofructokinase (fructoso 1-phosphate 

kinase)  

CAC0233 0.13 0.17 G,T PTS system, IIA component  

CAC0234 0.10 0.02 G 
PTS system, fructoso-specific IIBC  

component 

CAC0252 0.17 0.09 P molybdate-binding protein  

CAC0253 0.03 0.01 P 
nitrogenase iron protein (nitrogenase 

component II) gene nifH  

CAC0254 0.02 0.01 E 
nitrogen regulatory protein PII (nitrogen 

fixation NifHD)  

CAC0255 0.02 0.01 E 
nitrogen regulatory protein PII (nitrogen 

fixation NifHD)  
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CAC0256 0.02 0.00 C 

nitrogenase molybdenum-iron protein,  

alpha chain (nitrogenase component I) gene 

nifD  

CAC0257 0.17 0.04 C 
nitrogenase molibdenum-iron protein, beta 

chain, gene nifK  

CAC0258 0.05 0.01 C 
nitrogenase molybdenum-cofactor biosynthesis 

protein NifE  

CAC0259 0.03 0.01 C fusion nifN/K+nifB  

CAC0260 0.06 0.02 E 
homocitrate syntase, omega subunit nifV 

(nivO)  

CAC0261 0.18 0.00 E homocitrate synthase,alpha subunit nifV(nioA)  

CAC0281 0.25 0.08 P molybdate-binding periplasmic protein 

CAC0282 0.33 0.09 F,R cytosine/guanine deaminase related protein  

CAC0316 34.30 17.91 E ornithine carbomoyltransferase 

CAC0380 15.95 4.63 E,T periplasmic amino acid-binding protein  

CAC0385 0.06 0.05 G Beta-glucosidase  

CAC0386 0.14 0.07 G PTS cellobiose-specific component IIC 

CAC0447 3.23 1.00 P feoA FeoA protein, involved in Fe
2+

 transport 

CAC0448 3.76 1.02 P ferrous iron transport protein B (feoB2)  

CAC0489 0.28 0.11 I 4'-phosphopantetheinyl transferase  

CAC0490 0.24 0.13 G 
sugar kinase, N-terminal region - 

uncharacterized protei 

CAC0554 0.27 0.05 M 1,4-beta-N-acetylmuramidase  

CAC0625 0.13 0.06 O periplasmic aspartyl protease  

CAC0751 3.70 1.29 E permease 

CAC0896 0.26 0.09 E chorismate synthase 

CAC0898 0.23 0.02 E shikimate kinase 

CAC0929 4.14 2.52 H SAM-dependent methyltransferase 

CAC0930 5.47 2.94 E cystathionine gamma-synthase 

CAC0973 29.86 11.74 E argininosuccinate synthase  

CAC0974 31.98 8.41 E argininosuccinate lyase 

CAC0975 12.21 5.47 X 
Predicted P-loop kinase or ATPase distantly 

related to phosphoenolpyruvate carboxykinase 

CAC0979 3.42 1.53 T CBS domain-containing protein 

CAC1041 4.08 1.32 J arginyl-tRNA synthetase  

CAC1470 11.57 8.02 X 
2-Hydroxy-6-Oxo-6-Phenylhexa-2,4-Dienoate 

hydrolase 

CAC1471 10.01 4.45 H ketopantoate reductase  

CAC1589 7.04 4.33 C malate dehydrogenase  

CAC1590 18.29 13.73 P 2-oxoglutarate/malate translocator  

CAC2021 0.16 0.00 H molybdopterin biosynthesis protein MoaA 

CAC2022 0.19 0.05 H molybdopterin biosynthesis protein MoaB 

CAC2023 0.14 0.03 X 

Membrane protein, related to copy number 

protein COP from Clostridium perfringens 

plasmid pIP404 

CAC2024 0.21 0.10 I 
phosphatidylglycerophosphate synthase related 

protein (fragment)  
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CAC2025 0.21 0.03 X hypothetical protein 

CAC2113 0.27 0.15 F 
bifunctional pyrimidine regulatory protein 

PyrR uracil phosphoribosyltransferase 

CAC2226 0.27 0.10 N,U,O branched-chain amino acid aminotransferase 

CAC2227 0.30 0.11 E phosphoserine phosphatase family protein  

CAC2235 3.70 0.71 E 
cysteine synthase/cystathionine beta-synthase, 

CysK  

CAC2241 27.73 8.70 P cation transport P-type ATPase 

CAC2242 16.89 16.42 K ArsR family transcriptional regulator 

CAC2293 3.21 2.47 X hypothetical sectreted protein 

CAC2328 0.26 0.02 G,M 
polysaccharide ABC transporter ATP-binding 

protein  

CAC2388 28.32 9.24 E acetylornithine aminotransferase 

CAC2389 23.44 12.12 E acetylglutamate kinase 

CAC2390 26.99 3.22 E 
N-acetyl-gamma-glutamyl-phosphate 

reductase 

CAC2391 27.03 8.45 E 
bifunctional ornithine acetyltransferase/N-

acetylglutamate synthase protein 

CAC2514 0.29 0.07 G Beta galactosidase 

CAC2556 3.32 1.70 G endoglucanase family protein  

CAC2610 0.14 0.07 G L-fucose isomerase related protein 

CAC2644 16.10 10.30 E,F carbamoyl phosphate synthase large subunit  

CAC2645 16.81 11.12 E,F carbamoyl phosphate synthase small subunit  

CAC2658 0.15 0.04 R glutamine synthetase type III  

CAC2771 0.29 0.07 E amino acid transporter  

CAC2809 0.04 0.02 H HD superfamily hydrolase  

CAC2810 0.11 0.10 G glucoamylase family protein 

CAC2828 0.30 0.11 F 
MutT/NUDIX family hydrolase 

/pyrophosphatase  

CAC2905 0.31 0.17 X 
uncharacterized protein, YABG B. subtilis 

ortholog 

CAC2913 6.92 3.51 X hypothetical protein 

CAC2914 7.63 4.37 H 
3-methyl-2-oxobutanoate 

hydroxymethyltransferase 

CAC2915 8.46 4.98 H pantoate-beta-alanine ligase 

CAC2916 11.20 5.39 H aspartate alpha-decarboxylase  

CAC3019 5.82 1.35 V sensory transduction protein  

CAC3020 7.85 3.68 E 
bifunctional ornithine acetyltransferase/ 

N-acetylglutamate synthase protein  

CAC3098 0.30 0.08 J 50S ribosomal protein L13 

CAC3130 0.32 0.09 J 50S ribosomal protein L2  

CAC3132 0.30 0.05 J 50S ribosomal protein L4  

CAC3285 0.26 0.06 E amino acid transporter 

CAC3325 9.90 5.38 E,T periplasmic amino acid binding protein  

CAC3326 8.88 0.12 E amino acid ABC transporter permease  

CAC3327 10.25 1.31 E amino acid ABC transporter ATPase 
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CAC3422 0.22 0.13 G sugar:proton symporter (xylulose)  

CAC3618 10.03 1.84 E 
ABC-type polar amino acid transport system, 

ATPase component  

CAC3619 12.58 4.11 E amino acid ABC transporter permease  

CAC3620 9.87 0.87 E,T 
amino acid ABC transporter periplasmic-

binding protein  

CAC3633 0.12 0.04 X hypothetical protein 

CAC3634 0.18 0.03 E 
oligopeptide ABC transporter, periplasmic  

substrate-binding component  

CAC3635 0.12 0.03 E 
oligopeptide ABC transporter, ATPase 

component 

CAC3636 0.12 0.02 E,P 
oligopeptide ABC transporter, ATPase 

component  

CAC3637 0.12 0.02 E,P 
oligopeptide ABC transporter, permease 

component  

CAC3638 0.12 0.04 E,P 
oligopeptide ABC transporter, permease 

component  

CAC3639 0.07 0.01 X 
oligopeptide ABC transporter, permease 

component 

*   SD, Standard deviation 

Table 7.6 List of genes, exclusively regulated in the C. acetobutylicum fur mutant strain. 

ID# Expression ratio SD* COG Protein function 

CAP0055 0.29 0.10 X 
similar to CAAX-like membrane 

endopeptidase 

CAP0064 0.20 0.14 G fructose-1,6-bisphosphate aldolase 

CAP0100 4.20 1.81 K TetR/AcrR family transcriptional regulator 

CAP0101 3.84 1.20 X hypothetical protein 

CAP0149 5.04 3.32 K 
Xre family DNA-binding domain-/TPR repeat-

containing protein 

CAP0177 4.19 2.00 D SpoOJ regulator 

CAC0079 11.75 10.22 X hypothetical protein 

CAC0082 5.77 4.56 V predicted membrane protein 

CAC0168 0.18 0.05 S t-RNA-processing ribonuclease BN 

CAC0187 3.01 0.50 G glucosamine-6-phosphate deaminase  

CAC0189 3.09 0.90 K GntR family transcription regulator  

CAC0327 6.86 5.20 O 
bacterioferritin comigratory protein 

(AHPC/TSA family) 

CAC0469 0.13 0.10 R spore maturation protein A (gene spmA) 

CAC0470 0.22 0.14 S spore maturation protein B (gene spmB) 

CAC0546 0.17 0.13 X 
uncharacterized membrane protein, 

homolog of Methanobacterium (2621593) 

CAC0557 0.30 0.06 O Zn-dependent protease with chaperone function 

CAC0570 0.20 0.03 G PTS enzyme II, ABC component  
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CAC0579 0.14 0.07 T 
serine protein kinase (prkA protein), P-loop 

containing  

CAC0580 0.14 0.11 S similar to yhbH B.subtilis 

CAC0581 0.20 0.12 S stage V sporulation protein R 

CAC0614 0.30 0.07 M spore coat protein F  

CAC0623 0.21 0.11 X hypothetical protein 

CAC0658 3.23 0.86 R Fe-S oxidoreductase  

CAC0659 3.07 1.01 R Zn-dependent peptidase  

CAC0682 0.28 0.17 P ammonium transporter  

CAC0747 0.30 0.08 S 
secreted protein containing uncharacterized  

conserved protein of ErfK family 

CAC0792 3.48 1.26 E, H D-amino acid aminotransferase  

CAC0808 0.23 0.05 O hydrogenase expression factor (hybG)  

CAC0809 0.24 0.22 O hydrogenase formation factor (hypE) 

CAC0810 0.14 0.08 O hydrogenase maturation factor (hypF)  

CAC0811 0.29 0.15 O 
hydrogenase expression-formation factor 

(hypD) 

CAC0857 0.10 0.06 G glucan phosphorylase 

CAC0863 4.14 1.18 T sensory transduction histidine kinase 

CAC0935 6.80 2.64 E 
ATP phosphoribosyltransferase regulatory 

subunit 

CAC0936 5.17 2.22 E 
ATP phosphoribosyltransferase catalytic 

subunit  

CAC0937 3.18 1.60 E histidinol dehydrogenase 

CAC0938 3.91 1.14 E imidazoleglycerol-phosphate dehydratase 

CAC0939 3.04 0.86 E 
imidazole glycerol phosphate synthase subunit 

HisH 

CAC0940 3.06 1.38 E 

Phosphoribosylformimino-5-aminoimidazole 

carboxamide ribonucleotide (ProFAR) 

isomerase 

CAC0957 3.67 1.52 K 
Xre family DNA-binding domain-/TPR repeat-

containing protein  

CAC0998 5.80 2.74 E homoserine dehydrogenase  

CAC0999 4.75 1.53 E threonine synthase 

CAC1000 3.09 0.72 S 
Uncharacterized protein, homolog of yhfF B. 

subtilis 

CAC1049 3.22 0.77 S 
Uncharacterized conserved protein,ortholog of 

YaaR B. subtilis 

CAC1093 0.21 0.16 X hypothetical secreted protein 

CAC1101 0.23 0.15 X hypothetical protein, CF-34 family(identical) 

CAC1230 0.28 0.08 X hypothetical protein 

CAC1231 0.28 0.07 R 
predicted dehydrogenase, YulF B. subtilis 

ortholog 

CAC1236 0.31 0.13 X hypothetical protein 

CAC1252 0.19 0.10 M membrane metalloendopeptidase  
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CAC1253 0.16 0.12 R 
sporulation protein IVFB related protein, 

metallopeptidase 

CAC1281 3.73 1.16 O heat shock protein GrpE  

CAC1282 3.58 1.30 O molecular chaperone DnaK 

CAC1298 0.23 0.11 R 
uncharacterized protein, related to B. subtilis  

spore coat protein COTS 

CAC1347 0.15 0.14 G putative transaldolase 

CAC1348 0.15 0.13 G transketolase 

CAC1349 0.13 0.10 G aldose-1-epimerase 

CAC1356 0.26 0.05 H,R thiamine biosynthesis protein ThiH  

CAC1363 0.18 0.09 P Cu/Zn family superoxide dismutase  

CAC1390 6.66 0.51 F 
purE phosphoribosylaminoimidazole 

carboxylase 

CAC1391 6.66 0.50 F 
purC phosphoribosylaminoimidazole- 

succinocarboxamide synthase 

CAC1392 5.55 0.13 F purF amidophosphoribosyltransferase 

CAC1393 5.55 0.19 F 
purM phosphoribosylaminoimidazole 

synthetase 

CAC1394 4.55 0.31 F 
PurN phosphoribosylglycinamide 

formyltransferase 

CAC1402 0.13 0.09 G 

unchracterized conserved protein, similar to 

IcaC of Staphylococcus; YHJR B. subtilis 

family 

CAC1469 3.23 1.02 K Iron-dependent transcription repressor  

CAC1475 0.27 0.15 E 
proline/glycine betaine ABC transport system, 

ATPase component  

CAC1713 0.32 0.10 X 
coat morphogenesis sporulation protein 

spoIVA 

CAC1843 4.26 1.72 K transcriptional regulator  

CAC1974 0.31 0.08 X hypothetical secreted protein 

CAC1978 0.26 0.05 N,U predicted membrane protein 

CAC2050 0.32 0.01 X predicted membrane protein 

CAC2086 0.19 0.09 X stage III sporulation protein AH, SpoIIIAH 

CAC2087 0.19 0.11 X stage III sporulation protein AG, SpoIIIAG 

CAC2088 0.19 0.14 X stage III sporulation protein AF, SpoIIIAF 

CAC2089 0.13 0.10 X stage III sporulation protein AE, SpoIIIAE 

CAC2090 0.21 0.18 X stage III sporulation protein AD, SpoIIIAD 

CAC2091 0.16 0.13 X stage III sporulation protein AC, SpoIIIAC 

CAC2092 0.17 0.11 X stage III sporulation protein AB, SpoIIIAB 

CAC2093 0.18 0.12 S stage III sporulation protein AA, SpoIIIAA 

CAC2135 0.15 0.09 O ATP-dependent serine protease  

CAC2137 0.16 0.08 P cation transport P-type ATPase 

CAC2239 0.33 0.24 G glycogen synthase 

CAC2342 0.16 0.04 X predicted membrane protein 
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CAC2352 0.15 0.01 X hypothetical protein 

CAC2353 0.13 0.01 X hypothetical protein 

CAC2354 0.19 0.05 E Nifs family aminotransferase  

CAC2383 0.15 0.07 G xylanase/chitin deacetylase  

CAC2418 0.27 0.05 X uncharacterized conserved membrane protein 

CAC2518 3.34 0.95 E extracellular neutral metalloprotease NPRE 

CAC2635 0.33 0.07 X hypothetical protein 

CAC2650 3.77 1.87 F dihydroorotate dehydrogenase 1B 

CAC2651 4.81 2.58 H, C 
dihydroorotate dehydrogenase electron transfer 

subunit 

CAC2654 4.15 1.26 F 
aspartate carbamoyltransferase catalytic 

subunit (pyrB) 

CAC2692 0.31 0.09 R 
O-Acetyltransferase, from isoleucine patch 

superfamily 

CAC2728 0.11 0.08 X hypothetical protein, CF-30 family 

CAC2791 0.18 0.10 R MoaA/NirJ family Fe-S oxidoreductase 

CAC2794 0.16 0.05 K Lpr family transcriptional regulator 

CAC2795 0.15 0.09 R MoaA/NirJ family Fe-S oxidoreductase 

CAC2843 0.11 0.09 R 
protein containing aminopeptidase domain (iap 

family) 

CAC2857 0.21 0.12 X 
spore protease GPR related protein, YYAC B. 

subtilis ortholog 

CAC2903 0.16 0.06 X LysM domain containing membrane protein 

CAC2905 0.12 0.07 X 
uncharacterized protein, YABG B.subtilis 

ortholog 

CAC2906 0.10 0.04 R spore coat protein cotS related 

CAC2984 0.26 0.07 X hypothetical protein 

CAC3075 3.40 0.82 C butyrate kinase  

CAC3081 0.18 0.14 M spore-cortex-lytic enzyme, SLEB 

CAC3223 5.40 3.33 M regulatory protein SpoVG  

CAC3241 0.25 0.20 S 
uncharacterized conserved membrane protein, 

YYAD B. subtilis ortholog 

CAC3242 0.24 0.13 R 
uncharacterized Fe-S protein, PflX (pyruvate 

formate lyase activating protein) homolog 

CAC3244 0.17 0.13 M spore cortex-lytic protein  

CAC3245 0.22 0.04 O subtilisin like protease  

CAC3278 0.15 0.11 N ChW repeat-containing protein 

CAC3295 0.21 0.09 V 
cation efflux pump (multidrug resistance 

protein)  

CAC3314 3.81 0.85 R nitroreductase family protein  

CAC3315 3.39 1.35 O heat shock protein 90  

CAC3402 0.21 0.11 E 
dipeptidyl aminopeptidase/ 

acylaminoacyl-peptidase related protein 

CAC3403 0.23 0.06 V predicted membrane protein 
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CAC3526 5.35 1.38 X FMN-binding protein 

CAC3558 0.27 0.06 X probable S-layer protein 

CAC3668 3.54 1.11 G MDR-type permease 

CAC3703 3.08 1.10 X hypothetical protein 

*   SD, Standard deviation 
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Fig 7.6  Homology model of the putative FeoB protein (CAC1031) from C. acetobutylicum. Superposition of the 

E. coli FeoB cytoplasmic domain ribbon structure (blue; Petterman et al., 2009) and the homology model of the CAC1031 

cytoplasmic domain (orange). The model was generated using E. coli FeoB (pdb: 3i8s) as reference and the Modeller 

program (Sali and Blundell, 1993). Visualization was perfomed using the graphical interface Chimera (Pettersen et al., 2004). 

Scripts are not shown. 

 

Fig 7.7  3D homology model of a 24meric CAC0845 (putative ferritin) protein from C. acetobutylicum. The 

model was generated using structural information from E. coli FtnA (pdb: 1eum; Stillman et al., 2001) and the Phyton-based 

program Modeller (Sali and Blundell, 1993). The multimer structure was created employing the Matchmaker extension of 

Chimera (Meng et al., 2006). Scripts are not shown. 
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