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Chapter 1

Introduction

1.1 Interference in cellular systems

In the last few years, advances in electronics and digital signal processing have trigger-

ed the telecommunications industry to flood the market with high-technology smart

terminals such as smart phones, tablets and laptops. These smart terminals support

many different packet-based data application services such as interactive gaming, mo-

bile TV and high definition video services. The high density of users in cells with such

broadband services results in huge traffic demands which have to be satisfied. There-

fore, system operators have to utilize the limited available bandwidth effectively and

extensively to serve as many users as they can with a sufficiently high throughput. In

the following, an overview of some of the key solutions and challenges in the design of

future cellular systems are discussed.

The orthogonal frequency division multiplexing (OFDM) technique is employed to

the physical layer of modern cellular systems [CT65, Cha66, WE71, Bel76, PR80,

Cim85]. The OFDM technique splits the available frequency band into a large number

of tightly spaced orthogonal subcarriers [Cha66, WE71]. It is immune to intersymbol

interference as the cyclic prefix is selected longer than the channel impulse response

or the multipath delay [PR80, RCK92]. In modern wireless cellular systems, users are

served with two dimensional orthogonal time/frequency resource blocks. In a certain

time instant, the resource blocks contain different sets of OFDM subcarriers where the

split of the subcarriers among the resource blocks is unique [DPSB08]. The interference

within the same cell, i.e., intra-cell interference, is avoided by serving users belonging to

the same cell with different resource blocks. However, inter-cell interference is the major

performance limiting factor of current cellular systems [EAH09]. Inter-cell interference

occurs when at least two users, each of which belongs to a different cell, are served

simultaneously with the same resource block. The received interference power can be

severe and even comparable to the useful signal power especially for the cell-edge users.

A low signal to interference plus noise ratio (SINR) results and thus, low throughput

is achieved by the cell-edge users.

Future cellular systems will introduce small cells which cover some parts of the exist-

ing cells and aim at improving the achievable throughput of the cell-edge users. For
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instance, relays will be employed for extending the cell coverage and for enhancing the

achievable throughput [YHXM09, BNC+12]. The relays communicate with the base

stations (BSs) and the users through wireless links. As a relay receives a signal from

a BS/user and retransmits it to a user/BS, the relay needs to avoid self-interference

using some sort of separation between its receiver and its transmitter. This separation

is usually done in frequency domain or in time domain [HCM+12]. In other words,

relays can receive and retransmit either in different frequency bands or in different

time periods. Mainly two relaying protocols are proposed for future cellular systems

[YHXM09, HCM+12]. The first one is the amplify and forward relaying protocol in

which the relay simply amplifies the received signal including the received noise and

retransmits it. The second relaying protocol is the decode and forward relaying proto-

col where the relay decodes the received message, applies error correction techniques

to it and retransmits it after encoding the corrected message.

The coexistence of different types of cells sharing the same limited resource blocks with

different overlapping coverage areas and different maximum transmit powers compli-

cates the interference problem. Furthermore, adding relays to the system increases the

received power of the useful signal as a user is closer to the relay than to the BS but

it also causes an additional inter-cell interference as the relays are using the same set

of resource blocks as other BSs [LPGD+11]. Based on the above discussion, there are

vital demands for developing smart transmission schemes which aim at reducing the

inter-cell interferences and increasing the throughput of the individual users.

1.2 Degrees of freedom of interference channels and

the concept of interference alignment

Obviously, improving the user satisfaction with a variety of broadband application

services is the main goal when designing any communication system. For realtime

services such as interactive gaming, video conferencing and video streaming, minimizing

transmission delay and packet loss plays a critical role in the system performance. In

non-realtime services such as web-browsing, emailing and file transfer, it is required to

maximize the throughput for optimizing the packet transmission [She95].

From an information theory perspective, the channel capacity in a system consisting

of several node pairs and relays sharing the same medium is not known. A more fun-

damental problem is the capacity of an interference channel (IC) [Ahl74, Car78]. In an

IC, a number of source-destination node pairs communicate with each other through a
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shared medium. Any transmission of a source node will not just result in a useful signal

at its corresponding destination node but also in interference signals at all the other

destination nodes. Moreover, the capacity region of a channel can be defined as the

closure of the set of all achievable rate tuples. For the general IC, the capacity region

has been an open problem for more than 30 years even for a two node pair scenario.

It is known only for special cases such as strong interference [Car75, Sat81, Cos85].

The best known inner bound of the capacity region of a two node pair Gaussian IC is

based on rate splitting and joint decoding which is due to Han and Kobayashi (HK)

[HK81]. However, the HK bound is valid only for two node pairs and it involves com-

plicated calculations. As a result, a simpler technique to calculate the HK bound and

a simplified form of the HK bound are proposed in [Sas04] and in [Kra06, CMGG08],

respectively. Moreover, among the outer bounds of the capacity region of a two node

pair Gaussian IC proposed in [Sat77, Car83, Kra04, ETW08], the one proposed by

Etkin, Tse and Wang in [ETW08] is tight within 1 bit.

The sum capacity of ICs is not known in general as well. It is known that by treating

the received interference as noise, the sum capacity of a Gaussian IC is achieved only for

the weak interference case [MK09, SKC09, AV09]. In [WT08, MK09], the sum capacity

of a Gaussian IC for mixed interference is found. However, several upper bounds of the

sum capacity of a Gaussian IC are proposed in [ETW08, MK09, SKC09, AV09, Etk09].

In recent years, a distinguishable direction of research on information theory has been

initiated which concentrates on investigating the degrees of freedom (DoFs) of commu-

nication networks which is also known as the multiplexing gain or the pre-log factor

[TV05]. For a communication network, if γ is considered to be the received signal to

noise ratio (SNR) at a destination node, the DoFs are defined as

ddof = lim
γ→∞

{
C (γ)

ld (γ)

}

, (1.1)

where C (γ) is the sum capacity of the network as a function of the received SNR

[JS08, CJ08]. As the DoFs are defined at infinite SNR, they do not depend on neither

the power allocation, the absolute values of the channel coefficients nor the received

noise powers but rather they depend only on the network topology [Jaf11]. The DoFs

are a measure of the achievable interference free useful signal space dimensions in a

communication network [CJ08]. For instance, the capacity of a single source-destination

node pair, see Fig. 1.1a, can be written as

C = ld (1 + γ) (1.2)

[CT06]. By substituting (1.2) in (1.1), 1 DoF is achieved which implies that the whole

received signal space of the destination node can be exploited interference-freely. Fig.
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(a)

1 1

K K

(b)

1 1

K K

(c)

Fig. 1.1: Unidirectional communications through a shared medium between (a) a single
node pair, (b) K node pairs with no cross links, and (c) K node pairs with cross links.

1.1b shows simultaneous unidirectional transmissions in a shared medium of K source-

destination node pairs but there are no cross links among different node pairs. Assuming

equal received SNRs γ at the destination nodes, The sum capacity of this network is

calculated as

C = Kld (1 + γ) . (1.3)

Hence, the achieved DoFs are K which means that the received signal spaces at all

destination nodes can be used simultaneously with no interferences. If there are cross

links among the node pairs, i.e., the network topology represents an IC, as illustrated in

Fig. 1.1c, K/2 DoFs can be achieved at the best [CJ08]. This means that independently

of the number of node pairs, half of the received signal space of every destination node

can be exploited interference-freely for the useful signals.

The DoFs of ICs are achievable using a transmission scheme called interference align-

ment (IA) [CJ08]. The DoFs of ICs are achieved when the received interference signals

are aligned such that they cover just half of the signal space of each destination node

while the other half is exploited interference-freely by the useful signals. IA can be rea-

lized in time [CJ08, NGJV09], frequency [SHMV08], spatial dimensions [TGR09, PJ09]

or using multilevel structured codes [MOGMAK09, BPT10]. For instance, a toy exam-

ple of IA is shown in Fig. 1.2. A scenario consisting of three node pairs each of which is

equipped with two antennas is considered. Each source node wants to transmit a single

data symbol to its corresponding destination node through a time invariant channel.

As the source nodes and the destination nodes are equipped with two antennas each,

every source node and destination node has two dimensional transmit and receive signal

spaces, respectively. In this example, IA is achieved if the transmit filters at the source

nodes are designed in such a way that the interference signals received at each destina-

tion node span only a one dimensional subspace known as the interference subspace of
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source
1

source
2

source
3

dest.
1

dest.
2

dest.
3

Fig. 1.2: Illustration of aligning the received interference signals at the destination
nodes in spatial domain for a three node pair scenario.

the two dimensional received signal space. Furthermore, the useful signal received at a

destination node has to be linearly independent of the interference subspace as shown

in Fig. 1.2. Accordingly, every destination node can apply the zero forcing processing

technique [UK08] to get rid of the received interferences and hence, the useful signal is

decoded interference-freely.

In principle, the IA problem is an over-determined problem as the number of alignment

constraints related to the number of interference signals, increases quadratically with

the number of node pairs. Therefore, the number of variables, i.e., transmit filters, has

to increase while attaining the number of constraints by transmitting over many time

extensions [CJ08] or multiple antennas [TGR09].

1.3 State of the art and open problems

In this section, the problem tackled in the present dissertation is motivated pointing

out the related contributions and the open problems. A wireless system consisting of an

equal number of source nodes and destination nodes each of which being equipped with

a single antenna is considered. Each of the source nodes wants to transmit a data symbol

to its corresponding destination node. If the communication between the node pairs

takes place simultaneously through a shared medium, the system is interference limited.

A number of half duplex relays are added to the system for interference reduction rather

than for the conventional purpose of range extension, see Section 1.1. Without loss of
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generality, it is assumed that there are not enough antennas at the relays so that the

relays cannot decode the received signals. As a result, the amplify and forward relaying

protocol is considered. A transmission technique realized in two subsequent time slots

is considered. The source nodes transmit to both the relays and the destination nodes

in the first time slot. In the second time slot, both the source nodes and the relays

retransmit to the destination nodes. At the nodes, there are filters with two coefficients

each because the source nodes and the destination nodes transmit and receive twice,

respectively. The present work mainly focuses on how the filter and the relay coefficients

can be optimized such that the system performance is improved at all SNRs. Within

this context, several problems are of interest, namely IA, sum mean square error (MSE)

minimization, sum rate maximization, and energy allocation. In the following, each of

these problems is discussed highlighting the open issues which are addressed in the

present dissertation.

In general, relays cannot increase the DoFs of interference networks when the network

is fully connected [CJ09]. However, in some special cases such as the network being

partially connected [GG11], the relays being full duplex [GMGK09, LJ11] or the relays

being cognitive [CS12], relays can increase the DoFs of interference networks beyond the

DoFs bound shown in [CJ08]. Nevertheless, relays can help for achieving IA [GCJ11].

Employing relays for IA achievement in wireless systems is a more realistic proposal as

compared to other techniques such as employing many time extensions or employing

multiple antennas at the nodes for realizing IA. For a multiple node pair scenario with

no relays, IA can be realized by designing the temporal transmit filters at the source

nodes over many time extensions of a time variant channel [CJ08]. The main difficulty

of realizing IA over many time extensions is that the channel knowledge is required to be

available at the source nodes in advance. In scenarios with multiple antenna node pairs

with no relays, IA can be realized in spatial dimensions over a time invariant channel

[TGR09, PJ09, KX10, PD10, LD10, GCJ11]. However, the achieved DoFs are limited

by the number of node pairs as shown in [YGJK10, BCT11, RLL12]. The authors

normalize the Dofs over the number of the antennas at a destination node. Based on

this, the number of antennas at the nodes has to be increased when new node pairs

are added to these scenarios which increases the received signal space dimensionality

at the destination nodes and thus, decreases the normalized DoFs.

In multiple node pair scenarios with relays, zero forcing techniques are usually applied

at the relays using either joint signal processing methods if the relays can exchange

their data and the channel knowledge [UK08] or distributed signal processing methods

if the relays exchange only the channel knowledge [BNzOP06, MB07, RW07, BKW+09,

EW10]. In these zero forcing techniques, the direct links are not exploited. However,

the relay coefficients are adapted to the channel in such a way that no interference
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is received at the destination nodes. Hence, there is no interference subspace at the

received signal space of each destination node. If the direct links are considered and if

the number of relays is insufficient for nullifying the interference signals, the transmit

filters at the source nodes and the receive filters at the destination nodes should be

adapted to the channel as well to nullify the interferences at the output of the receive

filter of each destination node. As a result, at least half of the dimensions of the received

signal space at the destination nodes shall be occupied by the interference signals, i.e.,

the received interferences shall be aligned at the destination nodes in this case [CJ08].

The problem of adapting the transmit filters at the source nodes, the receive filters at

the destination nodes, and the relay coefficients to the channel aiming at getting rid of

the interferences is a tri-affine problem, i.e., it is linear either in the transmit filters, in

the receive filters or in the relay coefficients [AW11b, AGKW12a, AGKW12b].

During the last few years, several research groups have considered the relay aided IA

problem. For instance, a three node pair scenario with single relay is considered in

[GCJ11]. Each of the nodes and the relay is equipped with a single antenna. Gomadam

et. al. conjecture in [GCJ11] that by designing proper temporal transmit filters at both

the source nodes and the relay, IA is almost surely achievable with 3/2 DoFs without

a need for time extensions. This scenario is extended to consider K node pairs with

a multiple antenna relay in [NMK10, CC10]. In [NMK10], it is shown that K/2 DoFs

are achievable if the number of antennas at the relay is at least
√

(K − 1) (K − 2).

However, no IA algorithm is proposed. In [CC10], the authors propose an algorithm

which adapts the relay coefficients such that the interference links through the relay are

linearly dependent of the direct interference links. K/2 DoFs are achieved requiring at

least K−1 antennas at the relay. However, the direct links are not exploited during the

second time slot. Based on the above discussion, IA is achievable in multiple node pair

scenarios with relays but all of the above contributions consider special case scenarios,

i.e., a single relay with multiple antennas and specific designs of the filters. In this work,

a multiple node pair scenario with an arbitrary number of relays and relay antennas is

considered. First, the IA problem for the considered scenario is investigated. It is shown

that a single variable representing the direction of the vector of each filter can help

in solving the IA problem [AW11b]. Therefore, two cases of fixed filters and partially

adapted filters are studied. For each case, the IA feasibility is investigated and an IA

algorithm is proposed.

IA maximizes the DoFs of the interference channels and the DoFs are defined at in-

finite SNRs. Accordingly, the IA algorithms achieve significantly high sum rates on-

ly at high SNRs as compared to the sum rates achieved by algorithms which treat

the interference as noise. In practice, energies are limited and most of the wireless

systems operate at a range between low and moderate SNRs. In this range, noise
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reduction in addition to interference reduction should be taken into account. There-

fore, other transmission schemes which aim at minimizing the sum MSE or maximi-

zing the sum rate should be applied. By minimizing the sum MSE, both the noise

and the interference are mitigated keeping only the useful signals. Several previous

contributions consider minimizing the sum MSE problem in interference networks

[SSB+09, SLTW10, MXF+10, GAWK13, ALG+13a]. For multiple input multiple out-

put (MIMO) ICs, the sum MSE is a convex function either of the transmit filters with

fixed receive filters or of the receive filters with fixed transmit filters. This biconvexity

property of the sum MSE function is exploited by alternatingly minimizing the sum

MSE over the transmit filters and then over the receive filters. Moreover, iterative algo-

rithms which guarantee achieving a local minimum are proposed in [SSB+09, SLTW10].

The authors of [SSB+09] show that the minimum sum MSE is implicitly an IA solution

at the high SNR regime, i.e., a zero forcing solution. For multiple node pair scenarios

with relays, the sum MSE is a tri-convex function of either the transmit filters, the

receive filters or the relay coefficients and thus, an iterative alternate minimization

algorithm is proposed in [MXF+10, GAWK13]. Apart from the iterative algorithms

proposed in [SSB+09, SLTW10, MXF+10, GAWK13], closed form solutions for mini-

mizing the sum MSE for the considered scenario are also of interest. By fixing part of

the filter coefficients, the sum MSE becomes a convex function of the relay coefficients

and the unfixed part of the filter coefficients. With the constraint of some of the filter

coefficients being fixed, closed form solutions of the minimum sum MSE problem with

either an IA constraint or a total energy constraint are proposed [ALG+13a].

Apart from solving a tri-affine problem for maximizing the DoFs, i.e., achieving the

IA, or solving a tri-convex optimization problem for minimizing the sum MSE, ma-

ximizing the sum rate is the ultimate goal for improving the system performance. In

multiple node pair scenarios with relays, optimizing the transmit filters, the receive

filters and the relay coefficients aiming at maximizing the sum rate with a total energy

constraint is a non-convex problem. Even individually optimizing either the transmit

filters, the receive filters or the relay coefficients for sum rate maximization results in

non-convex optimization problems. In [CAdCC08, SRLH11, TH11], the authors opti-

mize the receive filters aiming at minimizing the MSE for fixed transmit filters and

relay coefficients. using the optimized receive filters and by adding a set of scaling fac-

tors, they wrote the sum rate as a tri-concave function of the transmit filters, the relay

coefficients and the added scaling factors. In the present work, the sum rate maximi-

zation problem for the considered scenario is addressed. The goal is to optimize both

the filters and the relay coefficients for maximizing the sum rate with a total energy

constraint. By adding two sets of scaling factors, a novel formulation of the sum rate

maximization problem as a multi-convex optimization problem is presented [ALG+13b].
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This new multi-convex problem formulation is quite general as it can be applied to any

communication system in which the estimated data symbols are multi-linear functions

of the system variables.

In multiple node pair scenarios with relays, optimizing the transmit energies of the

source nodes and the relays is studied. Due to the existence of the direct links among the

node pairs, an IA solution cannot be simply scaled for satisfying an energy constraint.

Furthermore, the joint problem of achieving IA and optimizing the energy allocation

is a non-convex problem. If the filter and the relay coefficients are determined using

an IA solution, one can see that the effective channel including the filters and the

relays as an interference free channel because the system is linear. Accordingly, the

task is on how to allocate energies among the source nodes and the relays such that

the sum rate is maximized. At high SNRs, sum rates being close to the optimum

can be achieved by transmitting the data symbols with equal energies, i.e., received

noise powers are very small as compared to the useful signal powers [APW09]. In

low and moderate SNRs, energy allocation plays a key role in enhancing the system

performance. Assuming a total energy constraint among the source nodes and the

relays, the waterfilling algorithm certainly achieves the maximum sum rate [Sha49].

In this work, energy allocation on the top of an IA solution is addressed. Moreover,

energy allocation in scenarios with multiple orthogonal resources is studied. For these

scenarios, a rate fairness constraint among the node pairs is added [AW10].

The objectives of minimizing the sum MSE and maximizing the sum rate find a com-

promise between interference reduction and noise reduction and they do not necessarily

align the interferences at the destination nodes especially at the noise dominant regime.

Accordingly, the unaligned interferences are treated as noise. For the resulting IC, sev-

eral energy allocation algorithms have been proposed. Some well known suboptimum

energy allocation algorithms which try to maximize the sum rate with individual energy

constraints are proposed in [YGC01, YGC02, CYM+06]. Considering fairness among

the node pairs, a common approach in energy allocation is the signal to interference

ratio (SIR) balancing [Aei73, AN82, NA83, Zan92a, Zan92b, GVGZ93, GZ94, GVG94].

For the SIR balancing, energies are allocated to the source nodes in such a way that

the SIRs at the destination nodes are equal. By applying this algorithm, destination

nodes achieve equal rates only at the interference dominant regime. An energy alloca-

tion algorithm which equalizes the received SINRs among the destination nodes and

thus, equalizes the achieved data rates is proposed in [Ibe04]. This algorithm is fair in

terms of the achieved rates at the destination nodes at all SNRs.

In ICs, the sum rate as a function of the allocated energies is not a concave func-

tion when the interference is treated as noise, i.e., the sum rate function has many
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local maxima and a global maximum. As a result, this energy allocation optimization

problem is non-convex [LZ08, HL09]. In the last decade, several research groups have

tackled this energy allocation optimization problem with total and individual energy

constraints. Firstly, a suboptimal iterative algorithm is proposed in [APW09]. In every

iteration, this algorithm calculates the interference from the energy allocation being

found in the previous iteration and solving the resulting energy allocation problem

in a similar way as the waterfilling algorithm. In [CTP+07], the sum rate function is

formulated as a convex geometric program which is guaranteed to converge to a glob-

al optimum only at the high SINR regime. Likewise at the high SINR regime, tools

from nonnegative matrix theory are applied to find the global optimum with a poly-

nomial complexity [TCS11]. Furthermore, the monotonicity of the sum rate function

is exploited in [QZH09]. From monotonic programming, an algorithm called polyblock

algorithm [Tuy00] is applied to find the global optimum at all SNRs. However, the

polyblock algorithm has a high computational complexity which limits the applicabi-

lity of the proposed method to only few node pair energy allocation problems. In the

present work, the energy allocation optimization problem aiming at maximizing the

sum rate with a total energy constraint is addressed. Unlike the previous contributions

which are either valid only for a certain range of the SNRs or encounter expensive

computational complexity, an algorithm which efficiently finds the global maximum

sum rate for all SNRs is of interest. Basically, the structure of the sum rate function

is exploited and formulated as a difference of two concave functions. Accordingly tools

from difference of two convex functions (DC) programming [HPTd91, HT99, HPT00]

are applied. Moreover, a branch and bound algorithm which converges to the global op-

timum is proposed. Moreover, energy allocation in scenarios with multiple orthogonal

resources are studied.

1.4 Outline of the dissertation

In this section, the structure of the present dissertation is presented. In the following,

the contents of the next chapters are outlined.

Chapter 2 starts by introducing the system model on which the analyses in the fol-

lowing chapters are based on. The system model is based on a cellular layout and it

considers several relays each of which is equipped with an arbitrary number of anten-

nas. In Section 2.1.2, a two time slot transmission technique is explained. To assess the

performances of the proposed algorithms, Section 2.2.1 proposes an interference limited

transmission scheme as a reference scheme. Basically, the reference scheme ignores the
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inter-cell interferences and optimizes the transmission for each cell individually. Finally,

a channel model and a channel normalization method are detailed in Section 2.2.2.

Chapter 3 concentrates on IA. Section 3.1 and Section 3.2 discuss the IA problem in

general and show its solvability within the scope of the considered system model. Then,

two IA algorithms are proposed and investigated. Firstly, an IA algorithm with fixed

transmit and receive filters is detailed in Section 3.3. For the IA algorithm with fixed

filters, the IA solution with the minimum retransmit energy of the relays is found in

a closed form. Secondly, an IA algorithm with partially adapted transmit and receive

filters is detailed in Section 3.4. An IA solution with the minimum sum MSE is selected

in a closed form for the IA algorithm with partially adapted filters. Section 3.5 discusses

the complexities and the performances of the proposed IA algorithms.

Energy allocation in the context of IA is investigated in Chapter 4. Basically, the IA

algorithms being proposed in Chapter 3 employ equal energy allocation. Therefore, the

energy allocation on the top of an IA solution is investigated in Section 4.2. Moreo-

ver, Section 4.3 extends the scenario and considers simultaneous transmissions through

several orthogonal resources. For the multi-resource systems, an algorithm which max-

imizes the sum rate and guarantees equal rates achieved at the destination nodes is

proposed. Section 4.4 discusses the complexities and the performances of the proposed

energy allocation algorithms.

Chapter 5 focuses on interference mitigation. In contrast to the IA algorithms which

aim at nullifying the interferences at the output of the receive filters, the interference

mitigation algorithms do not necessarily nullify the interferences. Section 5.2 proposes

an interference mitigation algorithm assuming fixed transmit and receive filters which

minimizes the total unaligned interference power. In Section 5.3.1, an algorithm which

minimizes the sum MSE with a total energy constraint is proposed. In Section 5.3.2, the

sum rate maximization problem is formulated as a multi-convex optimization problem

and a low complexity iterative algorithm which guarantees a local maximum is pro-

posed. Section 5.4 discusses the complexities and the performances of the proposed

interference mitigation algorithms.

The main focus in Chapter 6 is the energy allocation on the top of an interference

mitigation solution. Section 6.1 explains the non-convex energy allocation problem of

maximizing the sum rate with a total energy constraint. In Section 6.2, the problem

is reformulated as a DC problem and solved using the branch and bound algorithm.

Furthermore, the case of having several orthogonal resources is considered in Section

6.3. Section 6.4 discusses the complexity and the performance of the proposed energy

allocation algorithm. Chapter 7 summaries the contributions of the dissertation.
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Chapter 2

System model and reference scheme

2.1 System model and transmission technique

2.1.1 Cellular system model

In this section, a cellular system model on which the investigations in the later chapters

are based on is introduced. The downlink of a cellular scenario consisting of K hexag-

onal cells is considered. As discussed in Section 1.1, users belonging to the same cell

are served with different orthogonal resources. Therefore, it is reasonable to consider a

single user per cell for investigating the interference reduction schemes. An illustration

of a three cell scenario is shown in Fig. 2.1. Each cell contains a central BS termed

source node and a single user termed destination node. Each of the source nodes and

the destination nodes is equipped with a single antenna. The communication among

the node pairs is aided by R relays being distributed among the cells. Each relay is

equipped with M antennas which is less than the number K of node pairs. The amplify

and forward relaying protocol is used.

The communication among the source nodes and the destination nodes as well as

among the nodes and the relays is done using a single resource. Note that an extension

of the system model to consider multiple orthogonal resources is explained in Sections

4.1 and 6.1. For a transmission through a single resource, let h
(k,l)
DS denote the channel

coefficient between the l-th source node and the k-th destination node. Also, the M×1

channel vector between the l-th source node and the r-th relay is denoted as h
(r,l)
RS . The

#

#

#

#

cell 1

cell 2

cell 3

source
node

destination
node

relay

Fig. 2.1: Example of a three cell scenario.
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h
(K,K)
DS

h
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RS

h
(1,1)
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h
(1,R)
DR
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(K,1)
DR

h
(K,R)
DR

1

1

M

M

Fig. 2.2: a scenario with K source-destination node pairs and R relays.

1×M channel vector between the r-th relay and the k-th destination node is denoted

as h
(k,r)
DR . This means that the m-th element in h

(r,l)
RS or h

(k,r)
DR corresponds to the channel

coefficient between the m-th antenna at the r-th relay and the l-th source node or the

k-th destination node, respectively. It is assumed that the considered scenario is fully

connected, i.e., channels have nonzero coefficients. The considered scenario is shown in

Fig. 2.2. Concerning the channel knowledge availability, two cases are considered. In

the first case, full channel state information (CSI) is available only at the relays and

the filters of the nodes are fixed. In the second case, full CSI is available at the nodes

and at the relays and the filters of the nodes are adapted to the channel as well. The

structure of the filters at the nodes will be described in the next section. The downlink

transmission takes place in two subsequent time slots and τ = 1, 2 denotes the time

slot index. Moreover, it is assumed that the channel remains constant within the two

time slot transmission period.

Let n
(k,τ)
D be the received noise signal at the k-th destination node in the τ -th time slot.

The received noise signals at the antennas of the r-th relay are stacked in the M × 1

vector n
(r)
R . It is assumed that the noise signals received at different time slots or at

different antennas of a destination node or a relay are i.i.d. Gaussian noise with zero

mean and variance σ2. In practical wireless systems, individual energy constraints per

source node and relay are usually assumed because every source node and relay

• has its own limited energy and

• is equipped with a power amplifier which has a limited dynamic range.
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relay 1

relay R

source
1

source
K

dest.
1

dest.
K

1

1

M

M

(a)

relay 1

relay R

source
1

source
K

dest.
1

dest.
K

1

1

M

M

(b)

Fig. 2.3: Two time slot transmission technique: (a) the source nodes transmit to both
the relays and the destination nodes in the first time slot, (b) both the source nodes
and the relays retransmit to the destination nodes in the second time slot.

From the theoretical point of view, a total energy constraint is a more suitable measure

as it is related to the total interference caused by the system to other systems. There-

fore, a total energy constraint Etot is considered here. Throughout this work, the total

energy used in the τ -th time slot and the total energy used for transmitting the k-th

data symbol are denoted by E
(τ)
tot and E

(k)
totk, respectively. In Section 6.3, a per-resource

energy constraint E
(n)
totn is used where n denotes the resource index.

2.1.2 One-way relaying transmission technique

In this section, the considered transmission technique is described. The transmission

takes place in two subsequent time slots as shown in Fig. 2.3. The source nodes transmit

to both the relays and the destination nodes in the first time slot. In the second time

slot, both the source nodes and the relays retransmit to the destination nodes. Let s(l,τ)

denote the transmitted signal of the l-th source node in the τ -th time slot. Note that

the transmitted signal s(l,τ) is a linear function of the transmitted data symbol d(l) as

will be described later in this section. The received signals at the antennas of the r-th

relay are stacked in a M × 1 vector e
(r)
R . In the first time slot, the received signals at

the r-th relays read

e
(r)
R =

K∑

l=1

h
(r,l)
RS s(l,1) + n

(r)
R (2.1)
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and the received signal at the k-th destination node reads

e(k,1) =
K∑

l=1

h
(k,l)
DS s(l,1) + n

(k,1)
D . (2.2)

Because the number M of antennas at a relay is less than the number K of the trans-

mitted signals, relays cannot separate the received signals of the source nodes using

the receive zero forcing technique [UK08]. For this reason, each relay calculates its

transmitted signal for the second time slot as a linear function of the received signal

in the first time slot. With the M × M processing matrix G(r) of the r-th relay, the

received signal at the k-th destination node in the second time slot reads

e(k,2) =

K∑

l=1

h
(k,l)
DS s(l,2) +

R∑

r=1

h
(k,r)
DR G(r)e

(r)
R + n

(k,2)
D . (2.3)

The received signals at the k-th destination node of both time slots of (2.2) and (2.3)

can be combined as

(
e(k,1)

e(k,2)

)

=

K∑

l=1

H(k,l)

(
s(l,1)

s(l,2)

)

+





n
(k,1)
D

R∑

r=1

h
(k,r)
DR G(r)n

(r)
R + n

(k,2)
D



 , (2.4)

where

H(k,l) =





h
(k,l)
DS 0

R∑

r=1

h
(k,r)
DR G(r)h

(r,l)
RS h

(k,l)
DS



 (2.5)

is the effective channel between the l-th source node and the k-th destination node

including the relays. The last term of (2.4) describes the effective noise received at the

k-th destination node which contains a linear combination of the retransmitted noise

signals by the relays. The effective channel described in (2.5) forms a virtual 2×2 MIMO

channel between the l-th source node and the k-th destination node with equal diagonal

elements h
(k,l)
DS and a single nonzero off-diagonal element

R∑

r=1

h
(k,r)
DR G(r)h

(r,l)
RS which results

from the indirect signal paths through the relays. Accordingly, the received signal space

at each destination node has two dimensions. To achieve IA, the interferences have to

be aligned at a one dimensional subspace of the received signal space of each destination

node leaving a one dimensional subspace of the received signal space of each destination

node for the useful signals. Therefore, a single data symbol d(l) is transmitted by each

source node l. It is assumed that the data symbols transmitted by different source

nodes are uncorrelated and have equal average energies

E

{∣
∣
∣d(l)

∣
∣
∣

2
}

= Ed, ∀l, (2.6)
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where E {.} denotes the expected value. Because of the two transmissions of each source

node l, there are two filter coefficients which form a temporal transmit filter

v(l) =
(
v(l,1), v(l,2)

)T
. (2.7)

Additionally, each destination node k has a temporal receive filter

u(k) =
(
u(k,1), u(k,2)

)T
(2.8)

as each destination node k receives twice. For the l-th source node, the transmit filter

v(l) maps the one dimensional data symbol d(l) into the two dimensional transmit signal

space
(

s(l,1)

s(l,2)

)

= v(l) d(l). (2.9)

Moreover, the receive filter u(k) at the k-th destination node projects the received

signal including the useful signal and the interferences into a one dimensional subspace.

Mathematically, the estimated data symbol at the k-th destination node reads

d̂
(k)

= u(k)∗T
(

e(k,1)

e(k,2)

)

, (2.10)

and hence using (2.4) and (2.9),

d̂
(k)

= u(k,1)∗e(k,1) + u(k,2)∗e(k,2)

=

K∑

l=1

(

u(k,1)∗h
(k,l)
DS v(l,1) + u(k,2)∗h

(k,l)
DS v(l,2) + u(k,2)∗v(l,1)

R∑

r=1

h
(k,r)
DR G(r)h

(r,l)
RS

)

d(l)

+ u(k,2)∗
R∑

r=1

h
(k,r)
DR G(r)n

(r)
R + u(k,1)∗n

(k,1)
D + u(k,2)∗n

(k,2)
D (2.11)

holds. Using the effective noise signal received at the k-th destination node described

in the last term of (2.4), the covariance matrix of the received noise signals at the k-th

destination node is calculated as

C(k)
nn = σ2





1 0

0 1 +
R∑

r=1

h
(k,r)
DR G(r)G(r)∗Th

(k,r)∗T
DR



 . (2.12)

Then, the received SINR at the k-th destination node is calculated as

γ(k) =
Ed

∣
∣
∣u(k)∗TH(k,k)v(k)

∣
∣
∣

2

u(k)∗TC
(k)
nn u(k) +

∑

l 6=k

Ed

∣
∣
∣u(k)∗TH(k,l)v(l)

∣
∣
∣

2 . (2.13)

The last term on the denominator of (2.13) describes the remaining interference powers

at the output of the receive filter u(k) of the k-th destination node. Assuming the
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antennas of the relays to be well separated so that the channel matrices between a

relay and the source nodes as well as between a relay and the destination nodes are

full rank, the covariance matrix of the received signals at the r-th relay reads

C(r)
rr = Ed

K∑

l=1

∣
∣v(l,1)

∣
∣
2
h
(r,l)
RS h

(r,l)∗T
RS + σ2IM , (2.14)

where IM is an identity matrix of size M × M . Note that C(r)
rr is a positive definite

matrix. Using the covariance matrix of (2.14), the total retransmitted energy of the

relays is calculated as

ERtot =

R∑

r=1

tr
(

G(r)C(r)
rr G

(r)∗T
)

, (2.15)

where tr (·) denotes the trace of a matrix.

2.2 Reference scheme and channel normalization

2.2.1 Single cell relaying algorithm

In this section, a reference scheme is proposed. Because our work focuses on developing

interference reduction algorithms, the reference scheme is considered to be interference

limited. In this reference scheme,

• the links among different cells are ignored and

• the total energy constraint is distributed equally among the cells

ECtot =
Etot

K
. (2.16)

Based on the above discussion, the problem of maximizing the sum rate with equal

energy constraints becomes a per-cell optimization problem. For each cell k, the tem-

poral filters at the nodes and the processing matrices at the relays belonging to the k-th

cell are optimized aiming at maximizing the received SNR at the k-th destination node

with the energy constraint of (2.16). Obviously, this reference scheme is suboptimal as

it ignores the inter-cell signals.
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Consider the k-th cell which has Rc relays with indices r = 1, . . . , Rc where Rc ≤ R.

By ignoring the interference term in (2.13), the received SNR at the k-th destination

node is calculated as

γ(k) =
Edu

(k)∗T
(

H(k,k)v(k)v(k)∗TH(k,k)∗T
)

u(k)

u(k)∗TC
(k)
nn u(k)

, (2.17)

where the structures of H(k,k) and C
(k)
nn defined in (2.5) and (2.12) are calculated with

the relay indices of r = 1, . . . , Rc. As the data symbol d(k) is transmitted twice to the

k-th destination node and the noise signals are i.i.d., the maximum ratio combining

(MRC) processing technique can be applied. As described in (2.17), the received SNR

at the k-th destination node when considered as a function of the receive filter u(k) is a

Rayleigh quotient [TB97]. For a certain transmit filter v(k) and certain relay processing

matrices G(r), r = 1, . . . , Rc, the optimum receive filter is found by

u
(k)
MRC = arg max

u(k)







Edu
(k)∗T

(

H(k,k)v(k)v(k)∗TH(k,k)∗T
)

u(k)

u(k)∗TC
(k)
nn u(k)






. (2.18)

The Rayleigh quotient maximization problem of (2.18) is equivalent to the eigenvalue

problem of the matrix
(

C
(k)
nn

)−1 (

H(k,k)v(k)v(k)∗TH(k,k)∗T
)

[TB97]. Basically, the opti-

mum receive filter vector u
(k)
MRC must direct in the same direction as the eigenvector cor-

responding to the largest eigenvalue of the matrix
(

C
(k)
nn

)−1 (

H(k,k)v(k)v(k)∗TH(k,k)∗T
)

.

Because the matrix
(

H(k,k)v(k)v(k)∗TH(k,k)∗T
)

is of rank one, i.e., the rank of v(k) is

one, a single nonzero eigenvalue exists and the optimum receive filter u
(k)
MRC is obtained

as

u
(k)
MRC =

(
C(k)

nn

)−1
H(k,k)v(k). (2.19)

This closed form solution of the Rayleigh quotient maximization problem is known as

the Wiener solution [MHM11]. By substituting (2.19) in (2.17), the SNR at the k-th

destination node is simply the summation of the individual SNRs received in each of

the time slots

γ(k) = γ(k,1) + γ(k,2), (2.20)

with

γ(k,1) =
Ed

σ2

∣
∣v(k,1)

∣
∣
2
∣
∣
∣h

(k,k)
DS

∣
∣
∣

2

(2.21)

being the received SNR in the first time slot and

γ(k,2) =
Ed

σ2

∣
∣
∣
∣
v(k,2)h

(k,k)
DS + v(k,1)

Rc∑

r=1

h
(k,r)
DR G(r)h

(r,k)
RS

∣
∣
∣
∣

2

1 +
Rc∑

r=1

h
(k,r)
DR G(r)G(r)∗Th

(k,r)∗T
DR

(2.22)
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being the received SNR in the second time slot.

The optimization problem aiming at maximizing the sum SNR received at the k-th

destination node with a total energy constraint can be stated as

(

v
(k,1)
opt , v

(k,2)
opt ,G

(1)
opt, . . . ,G

(Rc)
opt

)

= arg max
v(k,1),v(k,2),

G(1),...,G(Rc)

{
γ(k,1) + γ(k,2)

}
(2.23)

subject to

Ed

(∣
∣v(k,1)

∣
∣
2
+
∣
∣v(k,2)

∣
∣
2
)

+

Rc∑

r=1

tr
(

G(r)C(r)
rr G

(r)∗T
)

= ECtot, (2.24)

where the covariance matrix C(r)
rr is calculated from (2.14) with K = 1. The optimizati-

on problem of (2.23)–(2.24) is non-convex because γ(k,2) is not a concave function of the

variables G(1), ..., G(Rc), v(k,1) and v(k,2). In the first step, the transmit filter coefficient

v(k,1) is considered to be a priori known. Then, the SNR in the second time slot can

be maximized over the remaining variables G(1), ..., G(Rc) and v(k,2). The optimization

problem of (2.23)–(2.24) can be reformulated for optimizing the remaining variables

G(1), ..., G(Rc) and v(k,2) as

(

v
(k,2)
opt ,G

(1)
opt, . . . ,G

(Rc)
opt

)

= arg max
v(k,2),G(1),

...,G(Rc)

{
γ(k,2)

}
(2.25)

subject to

Ed

∣
∣v(k,2)

∣
∣
2
+

Rc∑

r=1

tr
(

G(r)C(r)
rr G

(r)∗T
)

= ECtot − Ed

∣
∣v(k,1)

∣
∣
2
, (2.26)

where v(k,1) is fixed.

The main idea of the following derivation is that the SNR γ(k,2) can be rewritten as a

Rayleigh quotient of the variables G(1), ..., G(Rc) and v(k,2). By making use of (A.10)

at the nominator and the denominator of (2.22), the SNR in the second time slot can

be rewritten as

γ(k,2) =
Ed

σ2

∣
∣
∣
∣
v(k,2)h

(k,k)
DS + v(k,1)

Rc∑

r=1

tr
(

G(r)h
(r,k)
RS h

(k,r)
DR

)
∣
∣
∣
∣

2

1 +
Rc∑

r=1

tr
(

G(r)G(r)∗Th
(k,r)∗T
DR h

(k,r)
DR

) . (2.27)

The vectorization property of (A.11) and the trace property of (A.14) are applied to

the nominator and at the denominator of (2.27), respectively. Hence, (2.27) can be
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rewritten as

γ(k,2) =
Ed

σ2

∣
∣
∣
∣
v(k,2)h

(k,k)
DS + v(k,1)

Rc∑

r=1

vec
(

G(r)∗T
)∗T

vec
(

h
(r,k)
RS h

(k,r)
DR

)
∣
∣
∣
∣

2

1 +
Rc∑

r=1

tr
(

G(r)∗Th
(k,r)∗T
DR h

(k,r)
DR G(r)

) , (2.28)

where vec (.) denotes the vectorization operator described in Appendix A.1. Applying

the vectorization property of (A.8) at the denominator of (2.28) yields

γ(k,2) =
Ed

σ2

∣
∣
∣
∣
v(k,2)h

(k,k)
DS + v(k,1)

Rc∑

r=1

vec
(

G(r)∗T
)∗T

vec
(

h
(r,k)
RS h

(k,r)
DR

)
∣
∣
∣
∣

2

1 +
Rc∑

r=1

vec
(

G(r)
)∗T (

IM ⊗ h
(k,r)∗T
DR h

(k,r)
DR

)

vec
(

G(r)
) , (2.29)

where ⊗ denotes the Kronecker product described in Appendix A.1. Rewriting the

denominator of (2.29) with vec
(

G(r)∗T
)

instead of vec
(

G(r)
)

yields

γ(k,2) =
Ed

∣
∣v(k,1)

∣
∣
2

σ2

∣
∣
∣
∣
v(k,2)

h
(k,k)
DS

v(k,1)
+

Rc∑

r=1

vec
(

G(r)∗T
)∗T

vec
(

h
(r,k)
RS h

(k,r)
DR

)
∣
∣
∣
∣

2

1 +
Rc∑

r=1

vec
(

G(r)∗T
)∗T (

h
(k,r)T
DR h

(k,r)∗
DR ⊗ IM

)

vec
(

G(r)∗T
) . (2.30)

Rayleigh quotient maximization is typically an unconstrained problem [TB97]. There-

fore, the energy constraint of (2.26) needs to be substituted in the new γ(k,2) formula-

tion. Using (A.8), the energy constraint of (2.26) can be written as

Ed

∣
∣v(k,2)

∣
∣
2
+

Rc∑

r=1

vec
(

G(r)∗T
)∗T (

IM ⊗C(r)
rr

)

vec
(

G(r)∗T
)

= ECtot − Ed

∣
∣v(k,1)

∣
∣
2
.

(2.31)

The matrix
(

IM ⊗C(r)
rr

)

can be decomposed as

IM ⊗C(r)
rr = L(k,r)L(k,r)∗T (2.32)

using Cholesky factorization [TB97], where L(k,r) is a lower triangular matrix. Because

the covariance matrix C(r)
rr is invertible and based on the Kronecker product property

of (A.5), L(k,r) is an invertible matrix. Define

c(k) =










√
Ed v(k,2)∗

L(k,1)∗Tvec
(

G(1)∗T
)

...

L(k,Rc)∗Tvec
(

G(Rc)∗T
)










(2.33)
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as the vector of the unknowns. Accordingly, the energy constraint of (2.31) can be

written with respect to the vector c(k) as

c(k)∗Tc(k) = ECtot − Ed

∣
∣v(k,1)

∣
∣
2
. (2.34)

To write (2.30) in a vector form, let

a(k) =











h
(k,k)
DS√

Ed v(k,1)
(

L(k,1)
)−1

vec
(

h
(1,k)
RS h

(k,1)
DR

)

...
(

L(k,Rc)
)−1

vec
(

h
(Rc,k)
RS h

(k,Rc)
DR

)











(2.35)

be the vector of the constants at the nominator of (2.30). Let B(k) be a block diagonal

matrix where the first diagonal element is zero and the next Rc diagonal blocks are
(

L(k,r)
)−1 (

h
(k,r)T
DR h

(k,r)∗
DR ⊗ IM

)(

L(k,r)∗T
)−1

with r = 1, ..., Rc. Then, the SNR in the

second time slot of (2.30) can be written as

γ(k,2) =
Ed

∣
∣v(k,1)

∣
∣
2

σ2

c(k)∗Ta(k)a(k)∗Tc(k)

1 + c(k)∗TB(k)c(k)
. (2.36)

By exploiting the energy constraint of (2.34), (2.36) can be rewritten as a Rayleigh

quotient as

γ(k,2) =
Ed

∣
∣v(k,1)

∣
∣
2

σ2

c(k)∗Ta(k)a(k)∗Tc(k)

c(k)∗T
(

1

ECtot−Ed|v(k,1)|2 IRcM2+1 +B(k)

)

c(k)
, (2.37)

which implicitly satisfies the energy constraint. Using the new formulation of the SNR

in the second time slot of (2.37), the optimization problem of (2.25)–(2.26) can be

reformulated as an unconstrained maximization problem as

c
(k)
opt = arg max

c(k)







c(k)∗Ta(k)a(k)∗Tc(k)

c(k)∗T
(

1

E
(k)
Ctot−Ed|v(k,1)|2 IRcM2+1 +B(k)

)

c(k)







, (2.38)

where Ed

∣
∣v(k,1)

∣
∣
2
/σ2 is omitted from the objective function as it is scalar and con-

stant. The Wiener solution of the Rayleigh quotient maximization problem of (2.38) is

calculated as

c
(k)
opt =

(

1

E
(k)
Ctot − Ed |v(k,1)|2

IRcM2+1 +B(k)

)−1

a(k). (2.39)

So far, the SNR at the k-th destination node is maximized for a fixed transmit filter

coefficient v(k,1) in the first time slot. Now, the optimum v(k,1) needs to be found.
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Actually, it is not required to optimize the argument of the transmit filter coefficient

at the first time slot as for an arbitrary fixed value of the argument of v(k,1), the

source node and the relays will accordingly adjust the amplitudes and the arguments

of their transmitted signals in the second time slot such that the sum SNR is maximized

using (2.39). For all transmit filter coefficient amplitudes
∣
∣v(k,1)

∣
∣, (2.39) can be used to

optimize the variables of the second time slot v(k,2), G(1), ... and G(Rc). Accordingly,

the sum SNR with the optimized variables in the second time slot v(k,2), G(1), ... and

G(Rc) can be considered as a function of the transmitted energy in the first time slot

Ed

∣
∣v(k,1)

∣
∣
2
. In the following proposition, the structure of the sum SNR function is

described.

Proposition 1. With the total energy constraint of (2.24), the sum SNR with the

optimized variables of v(k,2), G(1), ... and G(Rc) in the second time slot, if considered

as a function of the transmitted energy Ed

∣
∣v(k,1)

∣
∣
2
in the first time slot is a concave

function.

The proof is shown in Appendix B.1. Based on Proposition 1, conventional nume-

rical convex optimization tools such as the interior point method [BGN00, BHN99,

WMNO06] can be applied to find the optimum split of the total energy among the

two time slots. To find the optimum split of the total energy constraint among the two

time slots and to find the optimum transmit filter coefficients and the relay processing

matrices, an iterative algorithm is applied. In every iteration, the variables v(k,2), G(1),

... and G(Rc) in the second time slot are calculated using (2.39) for a given energy split

calculated by the numerical method in the previous iteration. Then, the optimized

variables are feedback to the numerical method to update the energy split.

The convergence of the proposed iterative algorithm depends on the convergence of the

applied numerical optimization method. In [BGN00], the convergence of the interior

point method is analyzed.

In summary, a reference scheme called single cell relaying is proposed. This scheme

is interference limited because it ignores the inter-cell signals. After distributing the

total energy equally among the cells, the single cell relaying algorithm optimizes the

transmission per cell. For each cell, the optimum filter coefficients at the nodes and the

optimum relay processing matrices are found using an iterative algorithm.

2.2.2 Channel model and normalization

This section describes the channel model which is applied for obtaining the simulation

results presented in the later chapters. In point to point transmission, it is reasonable
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to assume that a signal travels from a transmit antenna to a receive antenna through

a large number of statistically independent paths where there is no dominant path,

i.e., it is assumed that there is no line of sight between the transmit and the receive

antennas. Accordingly, the channel coefficient corresponding to any single path can be

modeled as a circularly symmetric complex random variable [TV05]. Due to the large

number of paths, the channel coefficient between a transmit antenna and a receive

antenna can be modeled as a circularly symmetric complex Gaussian random variable

with zero mean based on the central limit theorem [PP02]. Moreover, the distributions

of the amplitude and the gain of the channel follow the Rayleigh distribution and the

chi-square distribution with two degrees of freedom, respectively [TV05]. In this work,

the channels are assumed to be frequency flat. However, frequency selective channels

are considered for multiple orthogonal resource systems in Sections 4.3 and 6.3.

To assess the performances of the proposed algorithms, one can use a system simulator

which does sophisticated system-level simulations with realistic scenarios and models.

However, it is sufficient to consider here a simple channel model. This model is reaso-

nable as scenarios with few cells is considered. It is assumed that the distances among

the source nodes, the relays and the destination nodes are large enough so that a re-

ceive antenna is always located in the far field of a transmit antenna. A transmitted

signal from a source node or a relay experiences attenuation depending on the distance

q from the transmit antenna which is modeled using the path loss exponent model

[GLZ12]. Let ETx and ERx be the energy of the transmitted signal from an antenna

and the energy of the received signal at an antenna, respectively. With an attenuation

exponent of 2, the path loss is calculated as

ERx

ETx
=

(
υc

4πqfc

)2

, q ≥ qo, (2.40)

where υc, fc and qo are the speed of light, the carrier frequency and the minimum

distance between a transmit antenna and a receive antenna, respectively. With a carrier

frequency fc of 1.8 GHz [GLZ12], the path loss in decibels is calculated as

10log10

(
ERx

ETx

)

= −37.5472− 20log10 (q) , q ≥ qo. (2.41)

The cell radius is set to 500 m. Also, the minimum distance between a source node and

a relay or a destination node is set to 50 m such that the sum rate is not dominated

by a cell-center destination node achieved rate.

For the rest of this section, a channel normalization method applied in our simulations

is introduced. For a single cell scenario consisting of a single node pair with no relays

shown in Fig 2.4a, different channel realizations h
(k,k)
DS are normalized by

√

E

{∣
∣
∣h

(k,k)
DS

∣
∣
∣

2
}
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Fig. 2.4: Effective average channel gain between a node pair: (a) with no relays, (b)
with relays, where ξ is the effective channel gain including the relays.

so that the average channel gain is one. Accordingly, the average SNR equals to the

ratio of the transmitted signal energy and the noise power density. For scenarios with

multiple cells and no relays, it is reasonable to normalize the channels corresponding

to many different positions of the destination nodes such that the average gain of the

intra-cell channels is one. In this case, the average gain of the inter-cell channels is

less than one. For cellular scenarios with relays, channel normalization is not trivial

because the effective channel between a source node and a destination node consists of

both a direct link and several indirect links through the relays as shown in Fig. 2.4b.

To normalize the channels in these scenarios, the effective channel gain ξ including the

relays between a source node and its corresponding destination node should be derived.

Let the pseudo SNR (PSNR) be the ratio of the total transmitted energy and the noise

power density at a receive antenna. Mathematically, PSNR is calculated as

γPSNR =

Ed

K∑

l=1

tr
(
v(l) v(l)∗T)+ ERtot

σ2
. (2.42)

The goal is to normalize the channels h
(k,k)
DS , h

(r,k)
RS and h

(k,r)
DR , r = 1, . . . , R such that

the received SNRs are at the same order of magnitude as the PSNR. Unfortunately,

the relays contribute not only to the received SNRs at the destination node with their

retransmitted noise see (2.17) but also they contribute to the PSNR with the energies

of their retransmitted signals, see (2.42). Therefore, the asymptotic behavior of the

SNR received at a destination node when considered as a function of PSNR will be

studied. In the following, the received SNR of (2.17) will be rewritten as a function of

the PSNR of (2.42) considering only the k-th node pair and all the relays. The SNR of
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(2.17) can rewritten as a function of Ed/σ
2 as

γ(k) =
Ed

σ2
γ(k)
o , (2.43)

where

γ(k)
o =

∣
∣
∣u(k)∗TH(k,k)v(k)

∣
∣
∣

2

u(k)∗T





1 0

0 1 +
R∑

r=1

h
(k,r)
DR G(r)G(r)∗Th

(k,r)∗T
DR



u(k)

. (2.44)

Using (2.14) and (2.15) for K = 1, (2.42) can be solved for Ed/σ
2 as

Ed

σ2
=

γPSNR −
R∑

r=1

tr
(

G(r)G(r)∗T
)

tr (v(k)v(k)∗T) + |v(k,1)|2
R∑

r=1

tr
(

G(r)h
(r,k)
RS h

(r,k)∗T
RS G(r)∗T

) . (2.45)

By substituting (2.45) in (2.43), the SNR as a function of PSNR is written as

γ(k) =
γ
(k)
o

tr (v(k)v(k)∗T) + |v(k,1)|2
R∑

r=1

tr
(

G(r)h
(r,k)
RS h

(r,k)∗T
RS G(r)∗T

)γPSNR

−
γ
(k)
o

R∑

r=1

tr
(

G(r)G(r)∗T
)

tr (v(k)v(k)∗T) + |v(k,1)|2
R∑

r=1

tr
(

G(r)h
(r,k)
RS h

(r,k)∗T
RS G(r)∗T

) . (2.46)

It can be noted from (2.46) that the relation between γ(k) and γPSNR is linear. At high

PSNRs, the second term of (2.46) can be neglected and the ratio

ξ =
γ
(k)
o

tr (v(k)v(k)∗T) + |v(k,1)|2
R∑

r=1

tr
(

G(r)h
(r,k)
RS h

(r,k)∗T
RS G(r)∗T

) (2.47)

can be considered as the effective channel gain between the k-th source node and the

k-th destination node including the relays. Note that ξ is calculated for any channel

realization with the respective optimum filters and the optimum processing matrices

using the iterative algorithm proposed in the previous section. Considering the path

loss model described previously in this section, different values of ξ are averaged over

a large number of channel realizations corresponding to many different positions of the

destination node and the relays. Hence, the channel normalization factor for multiuser

relay networks is calculated as
√

E {ξ}.
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Chapter 3

Interference alignment

3.1 Interference alignment conditions

Based on the system model and the transmission technique introduced in Section 2.1,

this chapter investigates different IA algorithms. Basically, the effective channel bet-

ween the source nodes and the destination nodes including the relays is manipulated for

achieving IA. As the source nodes and the destination nodes transmit twice and receive

twice, respectively during the two time slots, each node has a two dimensional signal

space. Accordingly, the effective channel between the source nodes and the destination

nodes including the relays can be considered as a virtual MIMO interference channel

with two antennas at each of the source nodes and the destination nodes. In each

destination node, a single data symbol is received from the corresponding source node

and thus, the useful signal spans a one dimensional subspace of the two dimensional

received signal space. Therefore, the interferences received from the non-corresponding

source nodes have to be aligned in a one dimensional subspace, called the interference

subspace, of the received signal space.

In the proposed IA algorithms which will be discussed later in this chapter, the proces-

sing matrices at the relays and/or the temporal filters at the source nodes are adapted

aiming at aligning the interferences in a one dimensional subspace of the received signal

space at every destination node. Then by designing the receive filters at the destina-

tion nodes according to the zero forcing technique, the estimated data symbols at the

output of the receive filters do not include any interference component. In this case,

each destination node receives a single interference-free data symbol in two time slots

and thus, K/2 DoFs are achieved in total [AW11b, AGKW12a, AGKW12b].

Define u(k)∗TH(k,l)v(l) as the effective link between the l-th source node and the k-

th destination node including the transmit filter at the l-th source node, the receive

filter at the k-th destination node and the processing matrices at the relays. If l 6= k,

u(k)∗TH(k,l)v(l) describes the effective interference link between the l-th source node

and the k-th destination node. Otherwise, it describes an effective useful link between

the k-th node pair. There are two IA conditions:

1. Interference nullifying condition: This condition requires the interferences

at the output of the receive filter of each destination node to be zero

u(k)∗TH(k,l)v(l) = 0, l 6= k, ∀k. (3.1)
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For each destination node k, this condition implies that the interferences are

aligned in the interference subspace and they are nullified by the zero forcing

filter u(k).

2. Useful signals non-nullifying condition: This condition ensures that there

is a nonzero component of the useful signal at the output of the receive filter of

each destination node

u(k)∗TH(k,k)v(k) 6= 0, ∀k. (3.2)

Considering the receive signal space of each destination node, this condition im-

plies that the useful signal does not align with the interferences and thus, it has

always a component being orthogonal to the interference subspace.

These two conditions are sufficient and necessary for IA regardless of whether the

elements of the channel matrices are drawn randomly from a continuous distribution

or the channel matrices H(k,l) with k, l = 1, . . . , K have a special structure as in our

case, see (2.5) [Jaf11].

3.2 System of multivariate polynomial equations

In this section, the IA conditions introduced in the previous section will be investigated

and analyzed. In MIMO interference channels, the useful signals non-nullifying condi-

tion holds almost surely for any design of the transmit filters aiming at aligning the

interferences at the destination nodes because it is usually assumed that the channel

matrices have no special structure, i.e., their elements are drawn randomly and inde-

pendently from a continuous distribution [GCJ11]. Unfortunately, for our considered

system model and transmission technique, the effective channel between the source

nodes and the destination nodes including the relays has a special structure. As a re-

sult, the useful signals non-nullifying condition of (3.2) does not necessarily hold for

all interference nullifying solutions of (3.1). Therefore, the useful signals non-nullifying

condition of (3.2) is taken into account in the feasibility studies in Section 3.3.1 and

Section 3.4.1.

For the rest of this section, the interference nullifying condition is investigated. Using

(2.5), (2.7) and (2.8), the interference nullifying equations of (3.1) can be rewritten as

u(k,1)∗h
(k,l)
DS v(l,1) + u(k,2)∗h

(k,l)
DS v(l,2) + u(k,2)∗

R∑

r=1

h
(k,r)
DR G(r)h

(r,l)
RS v(l,1) = 0, l 6= k, ∀k. (3.3)
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From (3.3), one observes that the interference nullifying problem is a system of multi-

variate polynomial equations. In [YGJK10], it is claimed that a system of multivariate

polynomial equations is proper, i.e., likely to be solvable, if the number of equations

does not exceed the number of variables. Accordingly, the number of equations and the

number of variables of (3.3) are calculated.

Each of the interference nullifying equations of (3.3) corresponds to an effective inter-

ference link. Therefore, the number of equations equals the total number of the effective

interference links. Each destination node receives K − 1 interference signals from the

non-corresponding source nodes and there are K destination nodes. As a result, the

total number of equations is K (K − 1).

For calculating the number of variables, one should be careful not to count the unne-

cessary variables which do not help in nullifying the interferences. Dividing (3.3) by

v(l,1) and u(k,2)∗ yields

R∑

r=1

h
(k,r)
DR G(r)h

(r,l)
RS + h

(k,l)
DS

(
v(l,2)

v(l,1)
+

u(k,1)∗

u(k,2)∗

)

= 0, l 6= k, ∀k. (3.4)

Section 2.1.2 introduces the temporal filters at the source nodes v(k) and at the des-

tination nodes u(k) for k = 1, . . . , K. These filters are represented by two dimensional

vectors as described in (2.7) and (2.8). Accordingly, each filter vector has a certain

magnitude and a certain direction. By looking at the system of equations of (3.4), each

equation is linear in the processing matrix G(r) of each relay r = 1, . . . , R, the ratio of

the transmit filter coefficients v(l,2)/v(l,1), and the ratio of the receive filter coefficients

u(k,1)∗/u(k,2)∗. This means that the magnitudes or the norms of the transmit and the

receive filter vectors do not play a role in solving the interference nullifying problem. It

is worth to mention that the amount of energy being transmitted from a source node is

the square of the norm of the transmit filter vector. Because the ratio of the coefficients

of a two-dimensional vector is a function of the direction of the vector, the transmit-

ted directions and the received directions are the relevant variables to the interference

nullifying problem. Based on this discussion, each relay has a processing matrix with

M2 variables and there are R relays. Also, each of the K source nodes and each of the

K destination nodes has only a single variable, i.e., this variable describing either a

transmitted direction or a received direction. Therefore, the total number of variables

is M2R + 2K. The system of multivariate polynomial equations of (3.3) is proper if

K (K − 1) ≤ M2R + 2K. (3.5)

The inequality of (3.5) holds for nullifying the interferences at the output of a receive

filter at each destination node but still the useful signals may be also nullified as the

useful signals non-nullifying condition has not been considered in (3.5).
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Fig. 3.1: Illustration of the process of rotating a transmit filter vector to the interference
subspace using the shear matrix.

To understand how the transmitted directions, the received directions, and the relay

processing matrices can be adapted to the channel such that the interferences are

aligned at the received signal space of each destination node, consider the interference

nullifying equation for nullifying the effective interference link between the l-th source

node and the k-th destination node

u(k)∗TH(k,l)v(l) = 0, l 6= k. (3.6)

An illustration of the following description is shown in Fig. 3.1. As the vector norms

of the transmit filters and the receive filters do not play a role in IA, unit vectors
(
ṽ(l,1), ṽ(l,2)

)T
and

(
ũ(k,1), ũ(k,2)

)T
containing information of the transmitted directions

and the received directions, respectively, can be used. These unit vectors can replace

v(l) and u(k) in (3.6). Then by dividing the effective channel H(k,l) by the channel

coefficient h
(k,l)
DS of the direct link, (3.6) can be rewritten as

(
ũ(k,1)∗ ũ(k,2)∗ )






1 0
R
∑

r=1
h
(k,r)
DR G(r)h

(r,l)
RS

h
(k,l)
DS

1






(
ṽ(l,1)

ṽ(l,2)

)

= 0, (3.7)

and

(
ũ(k,1)∗ ũ(k,2)∗ )






ṽ(l,1)

ṽ(l,2) + ṽ(l,1)
R
∑

r=1
h
(k,r)
DR G(r)h

(r,l)
RS

h
(k,l)
DS




 = 0. (3.8)
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Because the receive filter u(k) is a zero forcing filter, the received direction determines

the interference subspace which is the orthogonal complement subspace of the receive

filter vector u(k). The matrix






1 0
R
∑

r=1
h
(k,r)
DR G(r)h

(r,l)
RS

h
(k,l)
DS

1




 (3.9)

is known as shear matrix [FvFH95]. The shear matrix of (3.9) shifts the transmit filter

vector
(
ṽ(l,1), ṽ(l,2)

)T
parallel to the vertical axis by ṽ(l,1)

R∑

r=1

h
(k,r)
DR G(r)h

(r,l)
RS /h

(k,l)
DS till it

lies on the interference subspace as shown in Fig. 3.1. Because of the special structure

of the shear matrix of (3.9), the filter coefficients ṽ(l,1) and ũ(k,2) with k, l = 1, . . . , K

cannot be zero otherwise the rotation will not work. The shift range is

−∞ < ṽ(l,1)

R∑

r=1

h
(k,r)
DR G(r)h

(r,l)
RS

h
(k,l)
DS

< ∞, (3.10)

and thus, the angle θ of rotation ranges between −π
2
and π

2
.

In the next two sections, IA is achieved by linearizing the system of equations of (3.3).

The linearization is accomplished by two approaches. Firstly, the filter coefficients at

the nodes are fixed and only the relays are adapted to the channel to achieve IA which

is described in Section 3.3. The second approach is described in Section 3.4 and it is

based on linearizing the system of equations by fixing part of the filter coefficients at

the nodes and adapting the relays and the unfixed filter coefficients to achieve IA.

3.3 Interference alignment with fixed transmit and

receive filters

3.3.1 Inhomogeneous system of linear equations

In this section, the system of multivariate polynomial equations of (3.3) is linearized

by fixing the coefficients of the temporal filters at all nodes. In this case, the relay

processing matrices can be adapted to manipulate the effective channel between the

source nodes and the destination nodes to achieve IA [AW11b, AGKW12b]. There are

some implications of fixing the transmit and the receive filters which can be summarized

as follows:
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• No CSI is required at the nodes. However, full CSI is required to be available

only at the relays.

• For each source node l, the transmitted directions are set in certain directions as

v(l,1) and v(l,2) are fixed. The transmitted energies at the source nodes are fixed

and calculated for each source node l as v(l)∗Tv(l).

• For each destination node k, fixing the receive filter coefficients u(k,1) and u(k,2)

follows choosing the interference subspace of the received signal space, i.e., the

orthogonal complement subspace of the receive filter vector u(k).

When designing the transmit and the receive filters, some aspects have to be taken into

account. If a transmit filter vector l is chosen to be orthogonal to a receive filter vector

k for any k, l = 1, . . . , K, then the signal received from the l-th source node at the k-th

destination node through the direct link is nullified. Based on this idea and without

using the relays, an invalid IA solution can be found by setting all the transmit filter

vectors orthogonal to the receive filter vectors. In this case, all the interferences will be

nullified at the output of the receive filters but also the useful signals will be nullified.

If the temporal filters at the nodes are fixed, the system of equations of (3.3) becomes

linear in G(r) with r = 1, . . . , R. Using (A.13), (3.3) can be rewritten as

v(l,1)u(k,2)∗
R∑

r=1

(

h
(r,l)T
RS ⊗ h

(k,r)
DR

)

vec
(

G(r)
)

= −h
(k,l)
DS

(
v(l,1)u(k,1)∗ + v(l,2)u(k,2)∗) , l 6= k, ∀k.

(3.11)

Define

x =








vec
(

G(1)
)

...

vec
(

G(R)
)








(3.12)

as the vector of the unknowns. Let

Hff =






















v(1,1)u(2,2)∗
(

h
(1,1)T
RS ⊗ h

(2,1)
DR

)

· · · v(1,1)u(2,2)∗
(

h
(R,1)T
RS ⊗ h

(2,R)
DR

)

...
...

v(1,1)u(K,2)∗
(

h
(1,1)T
RS ⊗ h

(K,1)
DR

)

· · · v(1,1)u(K,2)∗
(

h
(R,1)T
RS ⊗ h

(K,R)
DR

)

...
...

...
...

v(K,1)u(1,2)∗
(

h
(1,K)T
RS ⊗ h

(1,1)
DR

)

· · · v(K,1)u(1,2)∗
(

h
(R,K)T
RS ⊗ h

(1,R)
DR

)

...
...

v(K,1)u(K−1,2)∗
(

h
(1,K)T
RS ⊗ h

(K−1,1)
DR

)

· · · v(K,1)u(K−1,2)∗
(

h
(R,K)T
RS ⊗ h

(K−1,R)
DR

)






















(3.13)
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and

p =

(

h
(2,1)
DS

(
v(1,1)u(2,1)∗ + v(1,2)u(2,2)∗) , . . . , h

(K,1)
DS

(
v(1,2)u(K,1)∗ + v(1,2)u(K,2)∗) , . . . , . . . ,

h
(1,K)
DS

(
v(K,1)u(1,1)∗ + v(K,2)u(1,2)∗) , . . . , h

(K−1,K)
DS

(
v(K,1)u(K−1,1)∗ + v(K,2)u(K−1,2)∗)

)T

(3.14)

be a K (K − 1)×M2R matrix and a K (K − 1) dimensional vector, respectively. Each

row in Hff and each element in p corresponds to an effective interference link through

the relays and an effective direct interference link, respectively. Using (3.12), (3.13) and

(3.14), (3.11) can be written as an inhomogeneous system of linear equations

Hffx = −p. (3.15)

In general, the inhomogeneous system of linear equations of (3.15) has a unique solution

if the number K (K − 1) of equations equals the number M2R of variables. Moreover,

if the number of equations K (K − 1) is less than the number M2R of variables, there

are infinitely many solutions. However, there is no solution to the system of linear

equations of (3.15) when the number of equations K (K − 1) exceeds the number M2R

of variables.

3.3.2 Feasibility of interference alignment

In this section, the number of relays and relay antennas required for achieving IA

are presented. In [LAG+13], the authors investigate the feasibility of IA for a scenario

similar to our considered scenario but they consider single antenna relays. Based on the

assumption that the relay antennas are carefully spaced such that the channel between

the source nodes and a relay as well as the channel between a relay and the destination

nodes are full rank, the contributions of [LAG+13] can be adopted for our considered

scenario.

If the coefficients of the channels between the nodes and the relays are drawn randomly

and independently from a continuous distribution, then the matrix Hff is almost surely

a full rank matrix

rank (Hff) = min
{
K (K − 1) ,M2R

}
. (3.16)

Moreover, by picking randomly any solution of the inhomogeneous system of linear

equations of (3.15), the useful signals non-nullifying condition of (3.2) is almost surely

satisfied. Accordingly, the required number of relays and relay antennas for achieving

IA is calculated using

M2R ≥ K (K − 1) . (3.17)
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If the equality of (3.17) holds, then there is a unique solution for IA. Otherwise, there

are infinitely many IA solutions.

3.3.3 Closed form solution with minimum relays retransmit

energy

Out of the infinitely many solutions of (3.15) existing when the equality does not hold

in (3.17), the one which maximizes the sum rate can be chosen. Unfortunately, the

sum rate is not a concave function of the relay processing matrices, i.e., it has many

local maxima and a global maximum. Therefore, no closed form solution for the relay

processing matrices when aiming at maximizing the sum rate with an IA constraint

can be obtained.

Alternatively, minimizing the total transmitted energy can be chosen as an objective.

Because the transmitted energies of the source nodes become fixed by fixing the trans-

mit filters, minimizing the total retransmitted energy of the relays will be considered.

If there are enough relays for achieving IA, i.e., if the inequality of (3.17) holds, the

set of solutions of (3.15) forms a hyperplane parallel to the subspace Hffx = 0. In

the solution hyperplane, solutions for the relay processing matrices which satisfy an

arbitrary total energy constraint at the relays do not necessarily exist, i.e., solutions

cannot be simply scaled to satisfy any total energy constraint. Therefore, minimizing

the total retransmitted energy of the relays is a reasonable objective. Using (A.14), the

total relay retransmitted energy of (2.15) can be rewritten as

ERtot =
R∑

r=1

tr
(

G(r)∗TG(r)C(r)
rr

)

(3.18)

=

R∑

r=1

tr
(

G(r)∗TIMG(r)C(r)
rr

)

. (3.19)

Using (A.7) in (3.19) yields

ERtot =
R∑

r=1

vec
(

G(r)∗
)T

vec
(

IMG(r)C(r)
rr

)

. (3.20)

By exploiting the property of (A.6), (3.20) can be expressed as

ERtot =

R∑

r=1

vec
(

G(r)
)∗T (

C(r)T
rr ⊗ IM

)

vec
(

G(r)
)

. (3.21)
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Let Φ be a block diagonal matrix with R diagonal blocks. The r-th diagonal block(

C(r)T
rr ⊗ IM

)

of the matrix Φ is of size M2×M2. Accordingly, the total retransmitted

energy of the relays can be written in a quadratic form as

ERtot = x∗TΦ x. (3.22)

The optimum relay processing matrices which minimize the total retransmitted energy

at the relays are found using the optimization problem

xIA = arg min
x

{
x∗TΦ x

}
(3.23)

subject to

Hffx + p = 0. (3.24)

The objective function x∗TΦ x is a convex quadratic function, i.e., Φ is a positive

definite matrix because C(r)
rr is a positive definite matrix for any r = 1, . . . , R. Moreover,

the constraint of (3.24) is an affine set. Therefore, the optimization problem of (3.23)–

(3.24) is a convex problem. The Lagrange of the optimization problem (3.23)–(3.24) is

formulated as

L (x,λ) = x∗TΦ x + λ
T
(
p+Hff x

)
, (3.25)

where λ is the vector of Lagrangian multipliers each of which corresponds to a cons-

traint of (3.24). The first order optimality conditions are

∂L

∂x
!
= 0, (3.26)

and
∂L

∂λ

!
= 0. (3.27)

Hence, taking the general derivatives of (3.25) with respect to x and setting the result

to zero yields

Φ∗Tx+H∗T
ff λ

∗ = 0. (3.28)

Moreover, the general derivatives of (3.25) with respect to λ are taken and equalized

to zero as

p+Hff x = 0. (3.29)

Solving (3.28) for x yields

x = −
(
Φ∗T)−1

H∗T
ff λ

∗. (3.30)

By substituting (3.30) in (3.29), the optimum Lagrangian multipliers are calculated as

λ
∗ =

(

Hff

(
Φ∗T)−1

H∗T
ff

)−1

p. (3.31)

By substituting (3.31) in (3.30), the optimum relay coefficients are calculated in a

closed form using

xIA = −
(
Φ∗T)−1

H∗T
ff

(

Hff

(
Φ∗T)−1

H∗T
ff

)−1

p. (3.32)
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3.4 Interference alignment with partially adapted

transmit and receive filters

3.4.1 Homogeneous system of linear equations

Fixing the temporal filters at the nodes results in a linear problem for IA but unfor-

tunately a large number of relays and relay antennas is required to achieve IA, see

(3.17). If just part of the filter coefficients, namely v(l,1) and u(k,2), k, l = 1, . . . , K, are

fixed for all the nodes, then the system of equations of (3.3) is linear in the processing

matrix G(r) of each relay r and the remaining coefficients of the filters v(l,2) and u(k,1),

k, l = 1, . . . , K [AGKW12a]. Using (A.12), the system of equations of (3.3) can be

written as

q(k,l)∗Ty = 0, l 6= k, ∀k, (3.33)

where

y =

(

vec
(

G(1)∗T
)T

, . . . , vec
(

G(R)∗T
)T

, v(1,2)∗, . . . , v(K,2)∗, u(1,1), . . . , u(K,1)

)T

(3.34)

is the vector of the unknowns and

q(k,l) =

(

v(l,1)u(k,2)∗
(

h
(k,1)
DR ⊗ h

(1,l)T
RS

)

, . . . , v(l,1)u(k,2)∗
(

h
(l,R)
DR ⊗ h

(R,k)T
RS

)
∣
∣
∣
∣

0, . . . , 0
︸ ︷︷ ︸

l−1

, u(k,2)∗h
(k,l)
DS , 0, . . . , 0

︸ ︷︷ ︸

K−l

, 0, . . . , 0
︸ ︷︷ ︸

k−1

, v(l,1)h
(k,l)
DS , 0, . . . , 0

︸ ︷︷ ︸

K−k

)T

(3.35)

is the vector of constants. Let Hpaf be a K (K − 1)×(M2R + 2K) matrix with its rows

being q(k,l)∗T with l 6= k for k = 1, . . . , K. Then, the interference nullifying problem

can be formulated as the homogeneous system of linear equations

Hpaf y = 0. (3.36)

In general, the homogenous system of linear equations of (3.36) has infinitely many non-

trivial solutions if the number M2R + 2K of variables exceeds the number K (K − 1)

of equations.

3.4.2 Feasibility of interference alignment

In this section, the number of relays and relay antennas required for achieving IA is

presented. As mentioned in Section 3.3.2, the contributions of [LAG+13] can be adopted
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to our considered scenario. As it is assumed that the channel coefficients are drawn

randomly and independently from a continuous distribution, the rank of the matrix

Hpaf is

rank
(
Hpaf

)
= min

{
K2 −K,M2R + 2K − 1

}
. (3.37)

Furthermore, the solution space of the homogeneous system of linear equations of

(3.36) can contain invalid solutions in which at least a useful signal is nullified with the

interferences. As shown in [LAG+13] if the number of relays and relay antennas satisfy

M2R ≥ K2 − 3K + 2, (3.38)

any randomly picked solution is almost surely a valid one, i.e., it satisfies both IA

conditions.

3.4.3 Closed form solution with minimum sum mean square

error

As described in Section 3.4.1, the IA problem is linearized by partially adapting the

transmit filters and the receive filters. Fortunately, the sum MSE when considered as

a function of the unknown vector y is a quadratic convex function [ALG+13a] as will

be shown in this section. The MSE at the k-th destination node is calculated as

δ(k) = E

{∣
∣
∣d̂

(k) − d(k)
∣
∣
∣

2
}

. (3.39)

Using (A.12), the estimated data symbol at the k-th destination node described in

(2.11) can be rewritten as a function of the unknown vector y as

d̂
(k)

= y∗T

(
K∑

l=1

q(k,l)d(l) + z(k)

)

+ u(k,2)∗n
(k,2)
D , (3.40)

where

z(k) =
(
u(k,2)∗

(

h
(k,1)
DR ⊗ n

(1)T
R

)

, . . . , u(k,2)∗
(

h
(k,R)
DR ⊗ n

(R)T
R

)
∣
∣
∣
∣

0, . . . , 0
︸ ︷︷ ︸

K

, 0, . . . , 0
︸ ︷︷ ︸

k−1

, n
(k,1)
D , 0, . . . , 0

︸ ︷︷ ︸

K−k

)T
. (3.41)

Because the received noise signals at different antennas are uncorrelated, the covariance

matrix E
{
z(k)z(k)∗T

}
of the received noise signals excluding n

(k,2)
D at the k-th destina-

tion node is a block diagonal matrix. In E
{
z(k)z(k)∗T

}
, the first R diagonal blocks are

E
{∣
∣u(k,2)

∣
∣
2
(

h
(k,r)T
DR ⊗ n

(r)
R

)(

h
(k,r)∗
DR ⊗ n

(r)∗T
R

)}

with r = 1, . . . , R, the (M2R+K+k)-th
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diagonal element is σ2 and the remaining elements are zeros. Using (A.3) and (A.4),

the r-th diagonal block for r = 1, . . . , R can be simplified as

E
{∣
∣u(k,2)

∣
∣
2
(

h
(k,r)T
DR ⊗ n

(r)
R

)(

h
(k,r)∗
DR ⊗ n

(r)∗T
R

)}

= E
{∣
∣u(k,2)

∣
∣
2
(

h
(k,r)T
DR h

(k,r)∗
DR ⊗ n

(r)
R n

(r)∗T
R

)}

=
∣
∣u(k,2)

∣
∣
2
(

h
(k,r)T
DR h

(k,r)∗
DR ⊗ σ2IM

)

= σ2
∣
∣u(k,2)

∣
∣
2
(

h
(k,r)T
DR h

(k,r)∗
DR ⊗ IM

)

.

(3.42)

By substituting (3.40) in (3.39), the MSE at the k-th destination node is calculated as

δ(k) = Ed

(
K∑

l=1

y∗Tq(k,l)q(k,l)∗Ty − q(k,k)∗Ty − y∗Tq(k,k) + 1

)

+ y∗TE
{
z(k)z(k)∗T

}
y + σ2

∣
∣u(k,2)

∣
∣
2
. (3.43)

Moreover, the sum MSE is calculated as

δ =
K∑

k=1

δ(k) = y∗TA y − b∗Ty − y∗Tb+KEd + σ2
∣
∣u(k,2)

∣
∣
2
, (3.44)

where

A =

K∑

k=1

K∑

l=1

Edq
(k,l)q(k,l)∗T +

K∑

k=1

E
{
z(k)z(k)∗T

}
(3.45)

and

b =
K∑

k=1

Edq
(k,k). (3.46)

The sum MSE function of (3.44) is a quadratic convex function because A is a positive

semidefinite matrix.

To find an IA solution with a zero MSE at each destination node, K more equations

d̂
(k)

= d(k), ∀k (3.47)

should be added to the homogeneous system of linear equations (3.36). In this case,

an inhomogeneous system of linear equations results and the required number of relays

and relay antennas becomes

M2R ≥ K2 − 2K + 1. (3.48)

Instead of solving this new inhomogeneous system of linear equations of (3.36) and

(3.47), just the required number of the relays and relay antennas of (3.48) is considered

to ensure that the solution space of the homogeneous system of linear equations of
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(3.36) contains an IA solution with a sum MSE goes to zero and this solution can be

found using the optimization problem

y
IA

= arg min
y

{
y∗TA y − b∗Ty− y∗Tb

}
(3.49)

subject to

Hpaf y = 0. (3.50)

Note that the last two terms of (3.44) are omitted in (3.49) as they are constants. The

optimization problem of (3.49)–(3.50) is convex as the objective function is convex and

the constraints form an affine set. The Lagrange is written as

L
(
y,λ

)
= y∗TA y − b∗Ty − y∗Tb+ λ Hpaf y, (3.51)

where λ is a vector of Lagrangian multipliers each of which corresponds to a constraint

of (3.50). Taking the general derivatives of (3.51) with respect to y and λ and then

setting the results to zero yields

∂L

∂y
= ATy∗ − b∗ +HT

pafλ
T !
= 0 (3.52)

and
∂L

∂λ
= Hpaf y

!
= 0, (3.53)

respectively. Solving (3.52) for y and substituting the result in (3.53) yields

Hpaf

(
A∗T)−1 (

b−H∗T
pafλ

∗T) = 0. (3.54)

Solving (3.54) for λ yields

λ = b∗TA−1H∗T
paf

(
Hpaf A

−1H∗T
paf

)−1
. (3.55)

By substituting (3.55) in (3.52), the optimum y
IA

is obtained in a closed form as

y
IA

=
(
A∗T)−1

b−
(
A∗T)−1

H∗T
paf

(

Hpaf

(
A∗T)−1

H∗T
paf

)−1

Hpaf

(
A∗T)−1

b. (3.56)

3.5 Complexity and performance of interference

alignment algorithms

3.5.1 Preliminary remarks

In the previous two sections, two IA algorithms have been proposed. Firstly, the IA

algorithm with fixed filters and the minimum total relay retransmit energy has been



3.5 Complexity and performance of interference alignment algorithms 39

proposed. Secondly, the IA algorithm with partially adapted filters and the minimum

sum MSE has been proposed. Both of these IA algorithms lead to closed form solu-

tions of (3.32) and (3.56), respectively. In this section, complexity and performance

investigations for both IA algorithms are presented. For a fair assessment between the

two IA algorithms, equal number K of node pairs, equal number R of relays and equal

number M of relay antennas are considered in the following.

3.5.2 Complexity analysis

In this subsection, the complexity of computing the proposed IA solutions is inve-

stigated. In the complexity theory, the big-O notation O (.) is usually considered for

analyzing the complexity of an algorithm. For more information on the big-O notation,

see Appendix C.1. For an IA algorithm, the complexity is a function of the number

of system variables, i.e., K, R and M . The O (.) notation studies the behavior of an

algorithm at infinite dimensions, i.e., when one or all of the number of variables K, R

andM go to infinity. Accordingly, only operations like multiplications and divisions are

considered as they have a relatively high computational cost as compared to other ope-

rations like addition or subtraction. On the other hand, addition, subtraction, logical

operations and constant coefficients are ignored in the complexity calculations. Repea-

ted operations do not increase the complexity as the result can be stored and reused

when it is needed, i.e, enough memory is always available. In the following analysis,

the number of complex multiplications required for computing an IA solution is taken

into account. In appendix C, Table C.1 summarizes the number of multiplications and

complexities of some basic linear algebra operations which are used for calculating the

complexity of the proposed IA algorithms.

The IA solutions are calculated in closed form using (3.32) and (3.56) and to calculate

the complexity of the algorithms, the complexity of computing the matrices Hff , Hpaf ,

Φ and A are first calculated. Table 3.1 summarizes the complexity of computing the

matrices and vectors involved in (3.32) and (3.56). Using the Table 3.1, the complexity

of computing xIA and y
IA

can be calculated as

O
(
RM6 +R2M4K2 +RM2K4 +K6

)
, (3.57)

and

O
(
R3M6 +R2M4K2 +RM2K4 +K6

)
, (3.58)

respectively. Based on the IA feasibility conditions described in Section 3.3.2 and Sec-

tion 3.4.2, M2R > K2 at the asymptote and thus, the complexity of computing xIA

and y
IA

can be expressed as shown in Table 3.2.
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Expression Complexity

h
(r,l)
RS h

(r,l)∗T
RS O (M2)

C(r)
rr in (2.14) O (KM2)

C(r)
rr ⊗ IM O (KM2)

Φ O (RKM2)

h
(r,l)T
RS ⊗ h

(k,r)
DR O (M2)

Hff in (3.13) O (RK2M2)

q(k,l) in (3.35) O (RM2)

Hpaf O (K2RM2)

q(k,l)q(k,l)∗T O (R2M4 +RM2K +K2)

h
(k,r)T
DR h

(k,r)∗
DR ⊗ IM in (3.42) O (M2)

E
{
z(k)z(k)∗T

}
O (RM2)

A in (3.45) O (K2R2M4 +K3RM2 +K4)

b in (3.46) O (KRM2)

Table 3.1: Complexity of computing the matrices involved in (3.32) and (3.56).

From Table 3.2, the complexities of both algorithms are polynomial with an order of

six in terms of the number M of antennas at the relays. The complexity of computing

the expression of xIA grows quadratically with the number K of node pairs and the

number R of relays. However, the complexity of computing the expression of y
IA

is

quadratical and cubical with the number K of node pairs and the number R of relays,

respectively.

By comparing the computational complexities in Table 3.2, it is observed that all terms

except the first terms are the same. The cost of computing the closed form solution of

(3.56) with partially adapted filters is higher than the cost of computing the solution of

Expression Complexity

xIA in (3.32) O (RM6 +R2M4K2)

y
IA

in (3.56) O (R3M6 +R2M4K2)

Table 3.2: Complexity of computing the optimum IA solutions.
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(3.32) with fixed filters in terms of the number R of relays. The additional complexity

expenses for computing y
IA

as compared to computing xIA are not due to the addi-

tional variables, i.e., the adapted filter coefficients, but because of the complexity of

computing the inverse the full matrix A−1 which has a higher complexity as compared

to computing the inverse of the block diagonal matrix Φ−1, i.e., computing the inverse

of a block diagonal matrix requires just computing the inverse of each diagonal block.

By comparing the structure of the matrix Hff with the matrix Hpaf , one observes that

adapting some of the filter coefficients to the channel for achieving IA does not increase

the complexity significantly as some sparse vectors are added to the problem, i.e., the

last 2K elements of q(k,l) correspond to the adapted filter coefficients and they are

sparse.

3.5.3 Performance analysis

In this section, the performances of the proposed IA algorithms described in Section

3.3.3 and Section 3.4.3 are investigated. The achieved sum rate per time slot

C =
1

2

K∑

k=1

ld
(
1 + γ(k)

)
(3.59)

is considered as the performance measure. In the following, a three K = 3 cells scenario

is considered. For K = 3 and M = 2, the required numbers of relays are R ≥ 2 for the

IA algorithm with fixed filters and R ≥ 1 for the IA algorithm with adapted filters,

respectively. Accordingly, R = 3 is chosen so that each cell contains a single relay with

two antennas. For the IA algorithm with partially adapted filters, the fixed transmit

filter coefficients are equal and they are adjusted such that equal energies are trans-

mitted by the source nodes in the first time slot. By increasing the transmitted energy,

the k-th fixed transmit filter coefficient v(k,1) is scaled up such that part of transmitted

energy is transmitted by the k-th source node in the first time slot. Furthermore, the

corresponding fixed receive filter coefficient is scaled down as

u(k,2) = 1/v(k,1) (3.60)

so that the transmitted energy is compensated and the sum MSE is reduced, i.e., this

scaling of filter coefficients is not optimized. For the IA algorithm with fixed filters, the

transmit filter coefficients are adjusted so that equal energies are transmitted by the

source nodes in both time slots. To have the same fixed filter design, the receive filters

as calculated as 


u(k,1)

u(k,2)



 =




1/v(k,2)

1/v(k,1)



 , ∀k. (3.61)
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Fig. 3.2: Achieved sum rate as a function of PSNR for a scenario with K = 3, R = 3
and M = 2.

Two benchmark schemes are considered. The first one is the single cell relaying algo-

rithm proposed in Section 2.2.1. Secondly, the time division multiple access (TDMA)

algorithm is considered as a benchmark. For the TDMA algorithm, the transmission

technique described in Section 2.1.2 is employed for the node pairs sequentially consi-

dering all the relays, i.e., six time slots are required to serve K = 3 node pairs using

the TDMA algorithm. Fig. 3.2 shows the average achieved sum rate C̄ over a large

number of channel realizations as a function of the PSNR. For low PSNRs, the inter-

ferences are low and thus the noise is dominant. Accordingly, the reference scheme,

i.e., the single cell relaying algorithm, outperforms the IA algorithms. As the PSNR

increases, the interference energies increase which limits the performances of the single

cell relaying algorithm as it does not take the inter-cell interferences into account as

described in Section 2.2.1. Therefore, the single cell relaying algorithm saturates at a

certain sum rate at the high PSNR regime where the signal to interference ratio at

every destination node does not change significantly as the PSNR increases. The IA

algorithms outperform the single cell relaying algorithm at the high PSNR regime.

At high PSNRs, the slopes of the curves shown in Fig. 3.2 are related to the achieved

DoFs. In a scenario with a single node pair with a single antenna and no relays, doubling

the transmitted energy by the source node leads to one additional bit achieved at the

destination node. For the performance of the IA algorithms at the high PSNR regime,
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3/2 bits are achieved by doubling the PSNRs. Whereas, 1/2 bit is achieved when

employing the TDMA algorithm and nothing is achieved using the single cell relaying

algorithm.

It is observed from Fig. 3.2 that the IA algorithm with partially adapted filters out-

performs the IA algorithm with fixed filters at all PSNRs because in the IA algorithm

with partially adapted filters,

• part of the filter coefficients are adapted to achieve IA so there are more variables

as compared to the IA algorithm with fixed filters and thus, the interference

nullifying solution space is larger than the one when the filters are fixed.

• the limited noise energy retransmitted by the relays is always smaller than the

one if the filters are fixed. Actually, the term limited noise retransmitted energy

comes from the fact that the relays receive noise signals at the first time slot,

preprocess them and retransmit them at the second time slot with a certain

limited energy.

• the sum MSE is minimized which mitigates the noise especially at low and mo-

derate PSNRs.
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Chapter 4

Energy allocation for interference
alignment systems

4.1 Preliminaries

In this chapter, the energy allocation in the framework of IA is investigated. As des-

cribed in Section 3.2, the processing matrices at the relays and the directions of the

transmit and receive filter vectors at the nodes are optimized to achieve IA. However,

the norms of the transmit and receive filter vectors do not play a role in solving the IA

problem. The norm
∥
∥v(l)

∥
∥ of the l-th transmit filter vector determines the transmitted

energy of the l-th source node. Because the IA problem is linearized and solved by

fixing some or all coefficients of the transmit filters, the transmitted energies at the

source nodes are a priori allocated either in the two time slots if the transmit filter

coefficients in the two time slots are fixed or just in the first time slot if the trans-

mit filter coefficients in the first time slot are fixed. Therefore, our goal is to optimize

the energy allocation in conjunction with IA. Unfortunately, the problem of IA and

energy allocation cannot be efficiently solved jointly, i.e., it is a non-convex problem.

Consequently, it can be tackled in two steps:

Step 1: For an equal energy allocation among the source nodes, align the interferences

using one of the IA algorithms proposed in Section 3.3 or in Section 3.4.

Step 2: For an IA solution, redistribute the total available energy among the source

nodes and the relays aiming at maximizing the sum rate.

The first step is covered in Chapter 3 whereas the second step is the main focus in this

chapter. It is assumed that the node pairs and the relays can employ N orthogonal

resources for the transmission. There is no interference among different resources and

thus, it can be seen as N parallel channels. Each source node aims at transmitting N

different uncorrelated data symbols through the N parallel channels. Accordingly, the

notations h
(k,l)
DS , h

(r,l)
RS and h

(k,r)
DR of the channel coefficients introduced in Section 2.1 can

be extended as h
(k,l,n)
DS , h

(r,l,n)
RS and h

(k,r,n)
DR to include the resource index n = 1, . . . , N .

After applying an IA solution, the transmit filter of the l-th source node in the n-th

resource, the receive filter of the k-th destination node in the n-th resource and the
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Fig. 4.1: Effective channel in the n-th resource between the source nodes and the
destination nodes after applying an IA solution: (a) including the relays, (b) including
the filters and the relays.

processing matrix of the r-th relay in the n-th resource are denoted as v
(l,n)
IA , u

(k,n)
IA

and G
(r,n)
IA , respectively. Furthermore, the resulting effective channel between the l-th

source node and the k-th destination node in the n-th resource including the relays is

calculated as

H
(k,l,n)
IA =






h
(k,l,n)
DS 0

R∑

r=1

h
(k,r,n)
DR G

(r,n)
IA h

(r,l,n)
RS h

(k,l,n)
DS




 . (4.1)

For the l-th source node in the n-th resource, the transmit filter vector can be described

as

v
(l,n)
IA =

∥
∥
∥v

(l,n)
IA

∥
∥
∥ ṽ

(l,n)
IA , (4.2)

where
∥
∥
∥v

(l,n)
IA

∥
∥
∥ and ṽ

(l,n)
IA are the norm and the unit vector of the l-th transmit filter

vector v
(l,n)
IA in the n-th resource, respectively. Fig. 4.1a shows the effective channel

in the n-th resource between the source nodes and the destination nodes including

the relays for an IA solution. It shows that the norms
∥
∥
∥v

(l,n)
IA

∥
∥
∥, l = 1, . . . , K of the
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transmit filter vectors can be freely adapted while the interferences are still aligned at

the destination nodes. The vector of the transmitted energies of the l-th source node

in all resources is defined as

E(l) =
(
E(l,1), . . . , E(l,N)

)T
, (4.3)

where

E(l,n) = Ed

∥
∥
∥v

(l,n)
IA

∥
∥
∥

2

. (4.4)

Hence, the transmitted energies E(l,n) with l = 1, . . . , K at the source nodes can be

optimized to enhance the performance without affecting the IA.

For a certain resource n, the effective channel between the l-th source node and the

k-th destination node including the temporal filters and the relays can be calculated

as

h
(k,l,n)
IAeff = u

(k,n)∗T
IA H

(k,l,n)
IA ṽ

(l,n)
IA . (4.5)

It can be noted that when IA is achieved, h
(k,l,n)
IAeff = 0 for l 6= k and h

(k,k,n)
IAeff 6= 0. For a

certain resource n, the effective received noise signal, see the last term of (2.4), at the

output of the receive filter u
(k,n)
IA of the k-th destination node is calculated as

n
(k,n)
IAeff = u

(k,n)∗T
IA






n
(k,1,n)
D

R∑

r=1

h
(k,r,n)
DR G

(r,n)
IA n

(r,n)
R + n

(k,2,n)
D




 . (4.6)

Thanks to the linearity of the system, the effective channel between the source nodes

and the destination nodes including the temporal filters and the relays for any resource

n can be seen as an interference free channel when an IA solution is applied as shown

in Fig. 4.1b. By substituting (4.5) and (4.6) in (2.13) and due to the fact that there are

no interference links in the effective channel, the received SNR at the k-th destination

node in the n-th resource is calculated as

γ
(k,n)
IA = E(k,n)

∣
∣
∣h

(k,k,n)
IAeff

∣
∣
∣

2

(

σ
(k,n)
IAeff

)2 (4.7)

with the effective noise power

(

σ
(k,n)
IAeff

)2

= E
{

n
(k,n)∗
IAeff n

(k,n)
IAeff

}

(4.8)

calculated at the output of the receive filter of the k-th destination node in the n-th

resource. Furthermore, the total energy retransmitted by the relays of (2.15) for a single
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resource can be adopted to consider the N resources and written as a function of the

transmitted energies E(l,n), l = 1, . . . , K of the source nodes as

ERtot =

N∑

n=1

R∑

r=1

tr
(

G
(r,n)
IA C(r,n)

rr G
(r,n)∗T
IA

)

=
N∑

n=1

R∑

r=1

tr

(

G
(r,n)
IA

(

Ed

K∑

l=1

∣
∣
∣v

(l,1,n)
IA

∣
∣
∣

2

h
(r,l,n)
RS h

(r,l,n)∗T
RS + σ2IM

)

G
(r,n)∗T
IA

)

=

N∑

n=1

R∑

r=1

tr

(

G
(r,n)
IA

(

Ed

K∑

l=1

∣
∣
∣v

(l,1,n)
IA

∣
∣
∣

2

h
(r,l,n)
RS h

(r,l,n)∗T
RS

)

G
(r,n)∗T
IA

)

+ σ2
R∑

r=1

tr
(

G
(r,n)
IA G

(r,n)∗T
IA

)

=
N∑

n=1

K∑

l=1

Ed

∣
∣
∣v

(l,1,n)
IA

∣
∣
∣

2
R∑

r=1

tr
(

G
(r,n)
IA h

(r,l,n)
RS h

(r,l,n)∗T
RS G

(r,n)∗T
IA

)

+ σ2

R∑

r=1

tr
(

G
(r,n)
IA G

(r,n)∗T
IA

)

=
N∑

n=1

(
K∑

l=1

β
(l,n)
IA E(l,n) +

(

σ
(n)
IAtx

)2
)

, (4.9)

where

β
(l,n)
IA =

∣
∣
∣ṽ

(l,1,n)
IA

∣
∣
∣

2
R∑

r=1

tr
(

G
(r,n)
IA h

(r,l,n)
RS h

(r,l,n)∗T
RS G

(r,n)∗T
IA

)

(4.10)

scales the l-th source node transmitted energy in the n-th resource to the useful re-

transmitted energy of the relays corresponding to the l-th source node and

(

σ
(n)
IAtx

)2

= σ2
R∑

r=1

tr
(

G
(r,n)
IA G

(r,n)∗T
IA

)

(4.11)

is the limited energy corresponds to the retransmitted noise of the relays in the n-th

resource, i.e., the relays receive noise signals at the first time slot, preprocess them and

retransmit them at the second time slot with a certain limited energy.

The energy allocation on the top of IA solutions for a single resourceN = 1 is considered

in the next section. In Section 4.3, the energy allocation on the top of IA solutions in

the case of N > 1 is studied.
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4.2 Energy allocation for a single resource in an

interference alignment system

In this section, the energy allocation on the top of an IA solution in a single resource is

investigated. Basically, the communication among the node pairs and the relays takes

place through a single shared resource N = 1. As there is only a single resource, the

resources indices are skipped in the analysis of this section. As described in the previous

section, the effective channel including the filters and the relays is an interference

free channel if an IA solution is applied. Using (4.7) and (4.9), the energy allocation

optimization problem aiming at maximizing the sum rate with a total energy constraint

can be stated as

(

E
(1)
opt, . . . , E

(K)
opt

)

= arg max
(E(1),...,E(K))







1

2

K∑

k=1

ld




1 + E(k)

∣
∣
∣h

(k,k)
IAeff

∣
∣
∣

2

(

σ
(k)
IAeff

)2












(4.12)

subject to
K∑

k=1

E(k) +
K∑

k=1

β
(k)
IA E(k) + σ2

IAtx = Etot, (4.13)

and

E(k) ≥ 0, ∀k. (4.14)

The first term and the second term of (4.13) describe the transmitted useful energy of

the source nodes and of the relays, respectively. Furthermore, the limited energy of the

noise retransmitted by the relays is represented by the third term of (4.13). It is to be

noted that the total energy Etot has to exceed the retransmitted noise energy σ2
IAtx of

the relays. Otherwise, there is not enough energy for transmitting the useful signals,

i.e., the relays will retransmit just the noise signals received at the first time slot to the

destination nodes as the relay processing matrices are already set for an IA solution.

The optimization problem of (4.12)–(4.14) is convex as the objective function is a

concave function and the constraints of (4.13)–(4.14) form a convex set. The Lagrange

of the optimization problem of (4.12)–(4.14) can be written as

L
(
E(1), . . . , E(K), λ

)
=

1

2

K∑

k=1

ld




1 + E(k)

∣
∣
∣h

(k,k)
IAeff

∣
∣
∣

2

(

σ
(k)
IAeff

)2






+ λ

(
K∑

k=1

(

1 + β
(k)
IA

)

E(k) + σ2
IAtx − Etot

)

, (4.15)
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Fig. 4.2: Energy allocation among three source nodes and the relays using the rate
maximization waterfilling algorithm.

where λ denotes the Lagrangian multiplier. The first order optimality conditions are

∂L

∂E(k)

!
= 0, (4.16)

and
∂L

∂λ
=

K∑

k=1

(

1 + β
(k)
IA

)

E(k) + σ2
IAtx − Etot

!
= 0. (4.17)

By taking the derivative of (4.15) with respect to E(k) and setting the result to zero,

one can solve for E(k) as

E(k) =
−1

2ln (2)λ
(

1 + β
(k)
IA

) −

(

σ
(k)
IAeff

)2

∣
∣
∣h

(k,k)
IAeff

∣
∣
∣

2 . (4.18)

Substituting (4.18) in (4.17) yields

−1

2ln (2) λ
=

1

K






K∑

k=1

(

1 + β
(k)
IA

)(

σ
(k)
IAeff

)2

∣
∣
∣h

(k,k)
IAeff

∣
∣
∣

2 − σ2
IAtx + Etot




 . (4.19)

By substituting (4.19) in (4.18), the optimum energy allocation at each source node

k is calculated using an algorithm called the rate maximization waterfilling algorithm

with

E
(k)
opt =

1
(

1 + β
(k)
IA

)Ewlr −

(

σ
(k)
IAeff

)2

∣
∣
∣h

(k,k)
IAeff

∣
∣
∣

2 , k ∈ ΩWFr, (4.20)
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where

Ewlr =
1

K ′






∑

k∈ΩWFr

(

1 + β
(k)
IA

)(

σ
(k)
IAeff

)2

∣
∣
∣h

(k,k)
IAeff

∣
∣
∣

2 − σ2
IAtx + Etot




 (4.21)

is the water level and ΩWFr is the set of the indices of the node pairs which contribute

non-negative energy values E
(k)
opt ≥ 0 when considered in (4.20) and (4.21). K ′ denotes

the size of the set ΩWFr. The second term of (4.20) represents the noise level of each

node pair. Waterfilling is a well known optimum energy allocation algorithm for maxi-

mizing the sum rate with a total energy constraint in interference free channels firstly

introduced by Claude Shannon in [Sha49].

The rate maximization waterfilling algorithm is illustrated graphically in Fig. 4.2. In the

rate maximization waterfilling algorithm, the total useful energy Etot −σ2
IAtx is poured

on the top of the noise levels
(

1 + β
(k)
IA

)(

σ
(k)
IAeff

)2

/
∣
∣
∣h

(k,k)
IAeff

∣
∣
∣

2

, k = 1, . . . , K, till the water

level Ewlr is reached. Accordingly, the less the noise level at a certain destination node

k, the more energy
(

1 + β
(k)
IA

)

E
(k)
opt is allocated for the k-th data symbol.

4.3 Energy allocation for multiple orthogonal re-

sources in an interference alignment system

4.3.1 Motivation and problem statement

In this section, the case when the source nodes transmit to the destination nodes

through N orthogonal resources is considered. In other words, each source node trans-

mits simultaneously N uncorrelated data symbols to its corresponding destination node

through N parallel channels. As discussed in Section 4.1, the effective channel in any

resource between the source nodes and the destination nodes including the filters and

the relays can be considered as an interference free channel after applying an IA so-

lution. This idea can be extended to multiple orthogonal resource scenarios assuming

the received noise signals of different resources being uncorrelated.

The achieved rate at the k-th destination node in the n-th resource is calculated as

c(k,n) =
1

2
ld
(

1 + γ
(k,n)
IA

)

. (4.22)

Also, the achieved sum rate at the k-th destination node in all the resources is calculated

as

C(k) =

N∑

n=1

c(k,n). (4.23)
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After applying an IA algorithm simultaneously in every resource, the overall effective

channel including the filters and the relays becomes an interference free channel so

that the rate maximization waterfilling algorithm, introduced in the previous section,

can be applied for maximizing the sum rate. To exploit the fact that the nodes and

the relays can access multiple orthogonal resources simultaneously, the energy alloca-

tion is optimized aiming at maximizing the overall sum rate while maintaining equal

individual rates achieved by each destination node. The energy allocation optimizati-

on problem aiming at maximizing the sum rate with a total energy constraint and a

fairness constraint can be stated as

(

E
(1)
opt, . . . ,E

(K)
opt

)

= arg max
(E(1),...,E(K))

{
K∑

k=1

C(k)

}

(4.24)

subject to
N∑

n=1

(
K∑

k=1

(

1 + β
(k,n)
IA

)

E(k,n) +
(

σ
(n)
IAtx

)2
)

= Etot, (4.25)

C(k) =
1

K

K∑

k=1

C(k), k = 1, . . . , K, (4.26)

and

E(k,n) ≥ 0, ∀k, n. (4.27)

The sum rate
K∑

k=1

C(k) when considered as a function of the allocated energies E(k,n)

with k = 1, . . . , K and n = 1, . . . , N is a concave function. Furthermore, the total

energy constraint of (4.25) is an affine set. But the fairness constraint of (4.26) is not a

convex set. The fairness constraint of (4.26) forms a difference of two convex functions

(DC) set [Tuy98]. Therefore, the optimization problem of (4.24)–(4.27) is non-convex.

Rather than applying a DC programming tool which is computationally expensive for

solving the optimization problem of (4.24)–(4.27), a problem decomposition among the

node pairs is applied [AW10] as will be shown in the next section.

4.3.2 Fairness constrained maximum sum rate energy alloca-
tion

In this section, the optimization problem of (4.24)–(4.27) is analyzed and solved. Ba-

sically, it can be decomposed into a master problem and K subproblems. Each sub-

problem corresponds to a node pair. Basically, the k-th subproblem finds the energy

allocation E
(k)
req for the k-th source node required to achieve a 1

K
portion of the target

sum rate Ctar, i.e., the total fairness constraint of (4.26) is implicitly satisfied by feeding
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the subproblems with 1
K
Ctar. To find E

(k)
req at the k-th source node, an energy allocation

optimization problem aiming at minimizing the total energy used for transmitting the

N data symbols correspond to the k-th source node with a sum rate constraint per

destination node is formulated as

E(k)
req = arg min

E(k)

{
N∑

n=1

(

1 + β
(k,n)
IA

)

E(k,n)

}

(4.28)

subject to

1
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ld
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IAeff
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2
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σ
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IAeff

)2




 =

1

K
Ctar, (4.29)

and

E(k,n) ≥ 0, ∀n. (4.30)

From (4.25),
(

σ
(n)
IAtx

)2

is not a function of the optimized variables E(k,n) for n =

1, . . . , N , k = 1, . . . , K and thus, it is omitted from the objective function of (4.28). It

can be observed that the optimization problem of (4.28)–(4.30) is the inverse problem of

the optimization problem of (4.12)–(4.14) in the sense that this problem minimizes the

total energy with a sum rate constraint whereas the one in (4.12)–(4.14) maximizes the

sum rate with a total energy constraint. The objective function
N∑

n=1

(

1 + β
(k,n)
IA

)

E(k,n)

is linear and the sum rate constraint of (4.29) is a convex set. It can be noted that

the optimum E
(k)
req can be always achieved for the constraint of (4.29) with equality

because the objective function is linear. The Lagrange of the optimization problem of

(4.28)–(4.30) is calculated as

L
(
E(k), λ

)
=

N∑

n=1

(

1 + β
(k,n)
IA

)

E(k,n) + λ





1

2

N∑

n=1

ld




1 + E(k,n)

∣
∣
∣h

(k,k,n)
IAeff

∣
∣
∣

2

(

σ
(k,n)
IAeff

)2




− 1

K
Ctar




 ,

(4.31)

where λ denotes the Lagrangian multiplier. The two first order optimality conditions

can be stated as

∂L

∂E(k,n)
=
(

1 + β
(k,n)
IA

)

+
λ

2ln (2)

1
(

σ
(k,n)
IAeff

)2

∣

∣

∣h
(k,k,n)
IAeff

∣

∣

∣

2 + E(k,n)

!
= 0 (4.32)

and

∂L

∂λ
=

1

2

N∑

n=1

ld




1 + E(k,n)

∣
∣
∣h

(k,k,n)
IAeff

∣
∣
∣

2

(

σ
(k,n)
IAeff

)2




− 1

K
Ctar

!
= 0. (4.33)
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Fig. 4.3: Energy allocation for the k-th source node in its three resources using the
energy minimization waterfilling algorithm.

Solving (4.32) for E(k,n) yields

E(k,n) =
−λ

2ln (2)
(

1 + β
(k,n)
IA

) −

(

σ
(k,n)
IAeff

)2

∣
∣
∣h

(k,k,n)
IAeff

∣
∣
∣

2 . (4.34)

Substituting (4.34) in (4.33) yields

−λ

2ln (2)
(

1 + β
(k,n)
IA

) = 2

2
NK

Ctar− 1
N

N
∑

n=1
ld





|h(k,k,n)
IAeff |2
(σ(k,n)

IAeff )
2





. (4.35)

By substituting (4.35) in (4.34), the optimum energy allocation E
(k,n)
req with n = 1, . . . , N

required to achieve 1
K
Ctar is calculated for each resource n using an algorithm called

the energy minimization waterfilling algorithm with

E(k,n)
req = E

(k)
wle −

(

σ
(k,n)
IAeff

)2

∣
∣
∣h

(k,k,n)
IAeff

∣
∣
∣

2 , n ∈ Ω
(k)
WFe, (4.36)

and the water level of the k-th node pair is calculated as

E
(k)
wle = 2

2
N′K

Ctar− 1
N′

∑

n∈Ω
(k)
WFe

ld





|h(k,k,n)
IAeff |2
(σ(k,n)

IAeff )
2





, (4.37)

where Ω
(k)
WFe is the set of the indices of the resources which contribute non-negative

energy values E
(k,n)
req ≥ 0 when considered in (4.36) and (4.37). Furthermore, N ′ denotes
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the size of the set Ω
(k)
WFe. The second term of (4.36) represents the noise level of each

resource n. The energy minimization waterfilling algorithm intended to solve the k-th

subproblem with three resources is illustrated in Fig. 4.3.

For the master problem, it basically aims at satisfying the total energy constraint of

(4.25) given the required energy allocations from the individual subproblems. It can

be noted that the rate maximization waterfilling algorithm and the energy minimi-

zation waterfilling algorithm are equivalent in the sense that for a certain optimum

energy allocation the sum rate and corresponding to the total energy are the same for

both algorithms. The structure of the maximum sum rate function is described by the

following proposition.

Proposition 2. For an interference-free channel, the maximum sum rate when con-

sidered as a function of the total energy constraint is a strictly monotonic increasing

concave function.

The proof is shown in Appendix B.2. Accordingly, the inverse function, the minimum

total energy when considered as a function of the target sum rate, is a strictly monotonic

increasing convex function [Bin83, Khu02]. With the optimum energy allocation, the

function

gcon (Ctar) =

N∑

n=1

(
K∑

k=1

(

1 + β
(k,n)
IA

)

E(k,n)
req +

(

σ
(n)
IAtx

)2
)

− Etot (4.38)

maps the target sum rate to the energy required or superfluous using the energy minimi-

zation waterfilling algorithm at each subproblem. Moreover, gcon is a strictly monotonic

increasing function and it is either convex if gcon ≥ 0 or concave if gcon < 0 as depicted

in Fig. 4.4.

As shown in Fig. 4.4, the optimum sum rate Copt is the root of the gcon (Ctar) function.

Furthermore, the optimum sum rate Copt is

• upper bounded by the sum rate CWFr achieved using the rate maximization water-

filling algorithm over all resources and all node pairs Copt ≤ CWFr, i.e., waterfilling

does not consider the fairness constraint so it reaches the maximum sum rate of

the channel, and

• lower bounded by zero as the sum rate is a non-negative real variable Copt ≥ 0.

A conventional numerical methods can be applied to find the root of the gcon (Ctar)

function. Numerical methods such as the bisection method or Newton-Raphson method
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Fig. 4.4: A simple sketch of the function gcon (Ctar).

[JIJ07], are iterative methods. Accordingly, an iterative algorithm called the max-fair

algorithm is proposed. In every iteration, a target sum rate is equally split among theK

subproblems. Each subproblem applies the energy minimization waterfilling algorithm

to find the optimum energy allocation required to achieve 1
K
Ctar and feeds the result

back to the master problem. Using the information feeded by the subproblems, the

master problem moves a step forward towards the root of the function gcon (Ctar).

Concerning the convergence of the proposed max-fair algorithm, it is shown previous-

ly in this section that the subproblems are convex optimization problems and the

gcon (Ctar) has a unique root. Therefore, a numerical method such as bisection or the

Newton-Raphson can converge close to the root of gcon (Ctar). The convergence of the

max-fair algorithm is based on the convergence of these numerical methods. The bi-

section method and the Newton-Raphson method guarantee convergence with a linear

rate and a quadratic rate, respectively [JIJ07].

4.4 Complexity and performance of the energy al-

location algorithms

4.4.1 Complexity analysis

In this section, the computational complexities of the energy allocation algorithms pro-

posed in the previous sections are investigated. It is assumed that an IA solution is a
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priori computed and the corresponding values of h
(k,k,n)
IAeff ,

(

σ
(k,n)
IAeff

)2

, β
(k,n)
IA and

(

σ
(n)
IAtx

)2

for k = 1, . . . , K and n = 1, . . . , N are given. Therefore, the complexity of compu-

ting the rate maximization waterfilling algorithm, the energy minimization waterfilling

algorithm and the max-fair algorithm are required to be studied.

In general, the complexity of a waterfilling algorithm is dominated by the process

of sorting the noise levels. For single resource systems, the complexity of the rate

maximization waterfilling algorithm of (4.20) is O (Klog10 (K)).

In the multiple orthogonal resources case N > 1, the complexity of applying the max-

fair algorithm strongly depends on the complexity of the numerical methods which

usually apply iterative methods. However, the complexity of each iteration is dominated

by the complexity of computing the energy minimization waterfilling algorithm. In each

iteration, the energy minimization waterfilling algorithm is applied individually for each

of the K subproblems and thus, the complexity of an iteration is O (KN log10 (N)).

4.4.2 Performance analysis

In this section, the performances of the proposed energy allocation algorithms are

analyzed and discussed. This section is separated into two parts. The performance of

the single resource systems is discussed first. Then, performances of the systems with

multiple resources are considered.

Firstly, the performance of applying the rate maximization waterfilling algorithm on

the top of IA solutions for N = 1 is investigated. To this end, the same simulation

setup used for analyzing the performance of the IA algorithms in Section 3.5.3 is

considered. To show the gain of optimizing the energy allocation in the context of IA,

Fig. 4.5 shows the average sum rates achieved by the IA algorithms with equal energy

allocation and with optimum energy allocation. At high PSNRs, the amount of the

available energy is relatively high as compared to the noise levels and thus, equal energy

allocation reaches the optimum sum rates. Comparing the sum rates achieved by the

IA algorithms with and without optimizing the energy allocations, it can be observed

that they are not exactly the same at high PSNRs but they are close to each other. This

happens because of the unconsidered energies of the useful signals retransmitted by the

relays when applying the equal energy allocation. At low and moderate PSNRs, the

noise levels are comparable to the allocated energies and thus, the rate maximization

waterfilling algorithm outperforms the equal energy allocation especially for the IA

with partially adapted filters. The main reason that the IA algorithm with fixed filters
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Fig. 4.5: Achieved sum rate as a function of PSNR for a scenario with K = 3, R = 3
and M = 2.

does not benefit from optimizing the transmitted energies is that it minimizes the total

energy retransmitted by the relays including the limited retransmitted noise energy.

This limited noise energy retransmitted by the relays dominates the received noises

at the destination nodes. As Fig. 4.5 shows the average results over many channel

realizations and because the average channel gains between the relays and different

destination nodes are the same, the noise levels of different node pairs are comparable.

As a result, waterfilling uses almost equal energies for transmitting the different data

symbols.

Secondly, the performance of applying the max-fair algorithm on the top of the IA

solution for N > 1 is investigated. For finding an IA solution in each resource, the

homogeneous system of linear equations of (3.36) with partially adapted filters is con-

sidered. An IA solution is randomly picked. In the first step, the total energy constraint

is equally split among the resources. For each resource, the picked IA solution is scaled

to satisfy the energy constraint of the resource. In the second step, different energy

allocation algorithms are applied to the effective channel including the filters and the

relays.

Some conventional energy allocation algorithms are considered as benchmarks. Firstly,

the rate maximization waterfilling algorithm proposed in Section 4.2 which allocates

the energies over all resources at all nodes is considered. Secondly, the equal SNR
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Fig. 4.6: Achieved sum rate at the k-th destination node as a function of the number
of resources N for a scenario with K = 3, R = 3 and M = 2.

algorithm which equalizes the SNRs

γ(k,n) = E(k,n)

∣
∣
∣h

(k,k,n)
IAeff

∣
∣
∣

2

(

σ
(k,n)
IAeff

)2 = γeSNR (4.39)

achieved at every destination node k in every resource n is considered. The last bench-

mark is the equal energy allocation which uses equal energies for transmitting all the

KN data symbols
(

1 + β
(k,n)
IA

)

E(k,n) =
Etot − σ2

IAtx

KN
. (4.40)

It is to be noted from (4.40) that the equal energy allocation algorithm takes into ac-

count the part of useful energy β
(k,n)
IA E(k,n) for k = 1, . . . , K, n = 1, . . . , N retransmitted

by the relays.

For a frequency selective channel, a scenario with K = 3, R = 3 and M = 2 is conside-

red. Assuming the average PSNR per resource to be 10 dB, the average achieved sum

rate C̄(k) at the k-th destination node as a function of the number N of employed re-

sources is shown in Fig. 4.6. It shows that the rate maximization waterfilling algorithm

upper bounds the achieved rates for any number N of resources. The equal energy

allocation achieves an average sum rates closes to the one achieved by the waterfilling

if N = 1, i.e., equal energy allocation is the optimum at high PSNRs if IA is a priori
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Fig. 4.7: CCDF of a destination node achieved sum rate for a scenario with K = 3,
R = 3, M = 2 and N = 10.

applied. At N > 1, the equal energy allocation diverges from the maximum. The equal

SNR algorithm always results in low sum rates per destination node as it aims at equa-

lizing the rates among every resource of each destination node rather than equalizing

the sum rate achieved by the individual destination nodes. Finally, the max-fair algo-

rithm achieves the same rates as the equal SNR algorithm if N = 1 because it has no

freedom to maximize the sum rate. For N > 1, the max-fair algorithm has a freedom

to maximize the sum rate while maintaining equal sum rates per node pair. So, it out-

performs the equal energy allocation when N > 3. Furthermore, it can be observed by

comparing the achieved sum rates of the waterfilling and the max-fair algorithms in

Fig. 4.6 that the slope of sum rate curve of the max-fair algorithm is smaller than the

one of the waterfilling which can be translated as a price of fairness.

For the same setup with N = 10, the complementary cumulative distribution function

(CCDF) of the sum rate per destination node is evaluated as shown in Fig. 4.7. Let

Pout = Pr
(
C(k) < Cout

)
(4.41)

be the outage probability or the probability that the k-th destination node cannot

correctly decode the received data symbol. Based on the definition of the outage pro-

bability, the outage capacity Cout is defined as the minimum sum rate per destination

node achieved from the correctly received data symbols. Assuming an outage probabi-

lity of Pout = 0.1, i.e., the usual assumption for the current communications systems,
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the max-fair algorithm achieves the highest outage capacity of Cout = 0.96 bits and

outperforms the waterfilling algorithm by 77%. It can be noted that at Pout ≤ 0.05, the

waterfilling algorithm achieves zero outage capacity. This is because of the fact that

waterfilling does not serve node pairs with noise levels exceeding the water level.
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Chapter 5

Interference mitigation

5.1 Preliminaries

Chapter 3 focused on the IA algorithms which fully cancel the interferences at the

output of the receive filter of every destination node. In this chapter, algorithms which

mitigate the interferences rather than cancel them are developed and investigated.

As described in Section 1.2, IA is basically aiming at maximizing the DoFs of an

interference network where the DoFs are defined at infinite SNRs. As a result, the IA

algorithms achieve significantly high sum rates only at high SNRs as has been shown

in Fig. 3.2.

In practice, energy is limited and most of the wireless systems operate at low or mo-

derate SNR regimes. In these regimes, noise reduction is essential in addition to the

interference reduction. Because the relays perform amplify and forward relaying, the

noise signals, in addition to the useful signals, received at the relays are amplified

and retransmitted to the destination nodes. This retransmission of the noise signals

definitely affects the system performance especially at low and moderate SNR regi-

mes. From the information theory perspective, treating interference as noise achieves

the sum capacity of the Gaussian interference channels in the weak interference case

[MK09, SKC09, AV09]. Following this principle, it can be concluded that keeping so-

me weak unaligned interferences at the output of the receive filter of each destination

node considered as noise would not harm the performance of the system. In some ca-

ses, it even leads to higher sum rates than the ones achieved using the IA algorithms

especially at low SNRs.

This chapter concentrates on developing some interference mitigation (IM) algorithms

which:

• unlike the IA algorithms, aim at achieving high performance at all SNRs.

• are able to balance between the noise reduction and the interference reduction.

Accordingly, they can achieve a high sum rates at both low SNRs where the noise

is dominant and at high SNRs where the interference is dominant.
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• increase the powers of the received useful signals obtained at the output of the

receive filters of every destination node in such a way that the individual SINRs

at the destination nodes are increased.

• support any number of relays and relay antennas as IA is not required in these

algorithms.

• require a reasonably low computational complexity.

Similar to the structure of Chapter 3, the contributions in this chapter are elaborated

fundamentally in two sections. Section 5.2 proposes an IM algorithm assuming fixed

transmit and receive filters. Section 5.3 proposes two IM algorithms assuming partially

adapted transmit and receive filters.

5.2 Interference mitigation with fixed transmit and

receive filters

In this section, an IM algorithm which reduces the total interference in the system is

developed. Similar to Section 3.3, fixed transmit and receive filters are assumed and just

the processing matrices of the relays are adapted to the channel aiming at mitigating

the interferences. As discussed in Section 3.3.2, IA is feasible if the number of relays

and relay antennas satisfies M2R ≥ K (K − 1), see (3.17). For a certain number M

of antennas at the relays, it can be noted that the number R of required relays grows

quadratically with the number K of node pairs which limits the practicality of the

proposed IA algorithms in large networks. If the inequality of (3.17) does not hold

which means

M2R < K (K − 1) , (5.1)

the system of linear equations of (3.15) has no solution and thus, IA is not feasible

anymore. However, the few relays which are not enough to perform IA can be exploited

for reducing the interferences rather than nullifying them. As a result, the system treats

the remaining unaligned interferences as noise. The sum of the gains of all the effective

interference links can be written as

K∑

k=1

∑

l 6=k

∣
∣
∣u(k)∗TH(k,l)v(l)

∣
∣
∣

2

=
∥
∥Hffx + p

∥
∥
2
, (5.2)

whereHff , p and x are introduced in Section 3.3.1. Every element inHffx represents the

effective interference link between a source node and a non-corresponding destination
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node through the relays. Moreover, every element in p represents the effective direct

interference link between a source node and a non-corresponding destination node.

To nullify the effective interference link between the l-th source node and the k-th

destination node with l 6= k, the relay processing matrices are adapted such that at

the k-th destination node, the interference received from the l-th source node through

the relays is compensated by the one received directly from the l-th source node. If

there are enough relays, all the effective interference links can be nullified as described

in Section 3.3. If there are not enough relays, an approximate solution is found using

the unconstrained optimization problem

xIM = arg min
x

{∥
∥Hffx+ p

∥
∥
2
}

. (5.3)

Because H∗T
ff Hff is a symmetric positive semidefinite matrix, the objective function of

(5.2) is a convex quadratic function of x. Therefore, the optimization problem of (5.3)

is convex. If the inequality of (5.1) holds, an approximate solution to the system of

linear equations of (3.15) can be found by solving the optimization problem of (5.3)

using the least squares method [AGKW12b] which results in

xIM = −H+
ffp, (5.4)

where

H+
ff =

(
H∗T

ff Hff

)−1
H∗T

ff (5.5)

denotes the left pseudo inverse of the matrix Hff .

From the linear algebra perspective, the inhomogeneous system of linear equations of

(3.15) can be characterized as follows:

• If there are enough relays and relay antennas for achieving IA, i.e., M2R ≥
K (K − 1), p is in the column space of Hff and the solution xIA is in the row

space of Hff .

• If there are not enough relays and relay antennas for achieving IA, i.e., M2R <

K (K − 1), p is not in the column space of Hff and there is no solution xIA.

An approximate solution xIM is found using the least squares method which is

found by projecting p onto the column space ofHff . Accordingly, the approximate

solution xIM is in the row space of Hff . For a scenario with K = 2, R = 1 and

M = 1, Fig. 5.1 illustrates the projection of the vector −p onto the column space

of Hff .
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Fig. 5.1: Projecting the effective direct interference vector −p into the column space
of the Hff for a scenario with K = 2, R = 1 and M = 1.

5.3 Interference mitigation with partially adapted

transmit and receive filters

5.3.1 Energy constrained minimum sum mean square error

5.3.1.1 Problem statement

In this section, an IM algorithm aiming at minimizing the sum MSE with a total

energy constraint is developed. As described in Section 3.4.3, the estimated data d̂
(k)

at a destination node k is a linear function of the unknown vector y if the filters

are partially adapted, see (3.40). As a result, the sum MSE described in (3.44) when

considered as a function of y is a convex quadratic function [ALG+13a]. With a total

energy constraint, the sum MSE minimization problem can be stated as

y
MSE

= arg min
y

{
y∗TA y − b∗Ty − y∗Tb

}
(5.6)

subject to

y∗T








Φ′ 0M2R×K 0M2R×K

0K×M2R EdIK 0K×K

0K×M2R 0K×K 0K×K








y ≤ E
(2)
tot , (5.7)
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where A and b are defined in Section 3.4.3. Φ′ is a block diagonal matrix with R

diagonal blocks where the r-th diagonal block is calculated as IM ⊗ C(r)
rr . Because

the transmit filter coefficients v(l,1), l = 1, . . . , K in the first time slot are fixed, the

energy allocation in the first time slot is predetermined and hence, the total energy

E
(1)
tot transmitted in the first time slot is fixed. The remaining energy E

(2)
tot will be

allocated to the source nodes and to the relays in the second time slot by the constraint

of (5.7). Concerning the optimization problem of (5.6)–(5.7), the objective function

y∗TA y − b∗Ty − y∗Tb is a convex quadratic function and the constraint of (5.7) is a

convex quadratic set. As a result, the optimization problem of (5.6)–(5.7) is convex.

To solve the optimization problem of (5.6)–(5.7), the minimum of the sum MSE func-

tion without considering the constraint of (5.7) can be found first. Taking the general

derivative of y∗TA y − b∗Ty − y∗Tb over y and setting the result to zero yields

A∗T y− b
!
= 0. (5.8)

Then, the unknown vector which yields the minimum sum MSE with no constraints is

calculated as

y
uncon

=
(
A∗T)−1

b. (5.9)

Two cases have to be distinguished:

• If the total energy constraint of (5.7) is satisfied by plugging in y
uncon

, then

y
uncon

is the optimum unknown vector for the constrained optimization problem

of (5.6)–(5.7) as well.

• If the total energy constraint of (5.7) is not satisfied by plugging in y
uncon

, then the

optimization problem of (5.6)–(5.7) has to be solved considering the constraint

of (5.7) with equality.

5.3.1.2 Quadratically constrained quadratic minimization problem

In this section, the optimization problem of (5.6)–(5.7) is studied and solved. The total

energy constraint of (5.7) covers just the first M2R +K elements of y related to the

coefficients of the relay processing matrices and the coefficients of the transmit filters

v(l,2), k = 1, . . . , K in the second time slot. Accordingly, the unknown vector y can be

split up into two vectors as

y =




y
1

y
2





}

M2R+K

}

K

. (5.10)
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Similarly, b is split up as

b =




b1

b2





}

M2R+K

}

K

. (5.11)

Moreover, the matrix A is accordingly split up to four blocks A11, A12, A21 and A22

as
M2R+K
︷︸︸︷

K
︷︸︸︷

A =




A11 A12

A21 A22





}

M2R+K

}

K

. (5.12)

From (5.10), the constraint of (5.7) can be rewritten as

y∗T
1




Φ′ 0M2R×K

0K×M2R EdIK



y
1
= E

(2)
tot . (5.13)

The constraint of (5.13) forms a M2R +K dimensional ellipsoid. To simplify the op-

timization problem of (5.6)–(5.7), the constraint of (5.13) will be reformulated as a

M2R +K dimensional sphere by decomposing the covariance matrix



Φ′ 0M2R×K

0K×M2R EdIK



 (5.14)

using Cholesky factorization [TB97] into T T∗T, where T is a lower triangular matrix.

Because the covariance matrix of (5.14) is positive definite, T is unique and invertible,

i.e.,Φ′ is a positive definite matrix becauseC(r)
rr is a positive definite matrix as described

in (2.14). Then, the constraint of (5.13) can be written as an M2R + K dimensional

sphere as

j∗Tj = E
(2)
tot , (5.15)

where

j = T∗Ty
1
. (5.16)

By substituting j in the optimization problem of (5.6)–(5.7), the Lagrange can be

written as

L








j

y
2



 , λ



 =
(

j∗T y∗T
2

)




T−1A11

(
T∗T)−1

T−1A12

A21

(
T∗T)−1

A22








j

y
2





−
(

b∗T
1

(
T∗T)−1

b∗T
2

)




j

y
2



−
(

j∗T y∗T
2

)




T−1b1

b2





+ λ
(

j∗Tj− E
(2)
tot

)

, (5.17)
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where λ denotes the Lagrangian multiplier. Both the sum MSE of (3.44) and the total

energy constraint of (5.15) are real functions and hence, λ is a real variable [BV04]. The

first order optimality conditions are found by taking the general derivative of (5.17)

with respect to
(

jT,yT
2

)T

and λ as follows

∂L

∂




j

y
2





=




(T∗)−1AT

11

(
TT
)−1

(T∗)−1AT
21

AT
12

(
TT
)−1

AT
22








j∗

y∗
2





−




(T∗)−1 b∗

1

b∗
2



+ λ




j∗

0




!
= 0 (5.18)

and

j∗Tj− E
(2)
tot

!
= 0, (5.19)

respectively. Solving (5.18) for
(

jT,yT
2

)T

yields




j

y
2



 =




T−1A∗T

11

(
T∗T)−1

+ λ IM2R+K

(
T∗T)−1

A∗T
21

A∗T
12

(
T∗T)−1

A∗T
22





−1


T−1b1

b2



 ,

(5.20)

where the Lagrangian multiplier λ has to be adapted for satisfying the total energy

constraint of (5.19). In (5.18), two equalities are represented which can be explicitly

written as

T−1A∗T
11

(
T∗T)−1

j +T−1A∗T
21 y2

−T−1b1 + λ j = 0 (5.21)

and

A∗T
12

(
T∗T)−1

j+A∗T
22 y2

− b2 = 0. (5.22)

Solving (5.22) for y
2
and substituting the result in (5.21) yields

T−1A∗T
11

(
T∗T)−1

j−T−1A∗T
21

(
A∗T

22

)−1
A∗T

12

(
T∗T)−1

j

+T−1A∗T
21

(
A∗T

22

)−1
b2 −T−1b1 + λ j = 0. (5.23)

Note that (5.23) is an equation with only j as a vector of unknowns, i.e., y
2
satisfies

the first order optimality condition of (5.18). Let

A′ = T−1
(

A∗T
11 −A∗T

21

(
A∗T

22

)−1
A∗T

12

) (
T∗T)−1

(5.24)

and

b′ = T−1
(

b1 −A∗T
21

(
A∗T

22

)−1
b2

)

. (5.25)
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Then, (5.23) can be written in short as

(A′ + λ IM2R+K) j− b′ = 0. (5.26)

Using the Eigenvalue decomposition, the matrix A′ can be decomposed as

A′ = QΛQ−1, (5.27)

where Λ is a (M2R +K) × (M2R +K) diagonal matrix with the eigenvalues

ρ(1), . . . , ρ(M
2R+K) of A′ at the main diagonal. Moreover, Q is a (M2R +K) ×

(M2R +K) matrix where the i-th column is the eigenvector of A′ corresponding to

the i-th eigenvalue ρ(i). Using (5.27), it follows

(A′ + λ IM2R+K)
−1

=
(
QΛQ−1 + λ IM2R+K

)−1
. (5.28)

Using the Woodbury matrix inversion lemma of (A.15), (5.28) can be simplified as

(
QΛQ−1 + λ IM2R+K

)−1
=

1

λ
Q
(

IM2R+K −
(
λ Λ−1 + IM2R+K

)−1
)

Q−1. (5.29)

Substituting (5.29) in (5.26) yields

j =
1

λ
Q
(

IM2R+K −
(
λ Λ−1 + IM2R+K

)−1
)

Q−1b′. (5.30)

To find λ which satisfies the total energy constraint, (5.30) is substituted in (5.15) as

1

λ2
t∗T
(

IM2R+K −
(
λ Λ−1 + IM2R+K

)−1
)2

t = E
(2)
tot , (5.31)

where

t = Q−1b′ =
(

t(1), . . . , t(M
2R+K)

)T

. (5.32)

Equation (5.31) can be simplified as

M2R+K∑

i=1

∣
∣t(i)
∣
∣
2

(λ+ ρ(i))
2 − E

(2)
tot = 0. (5.33)

By solving (5.33) for λ, one observes that there are several Lagrangian multipliers λ’s

satisfying the total energy constraint of (5.33). To understand how several Lagrangian

multipliers can satisfy the first order optimality condition of (5.19), a toy example of

minimizing a quadratic function f (x, y) under a unit circle x2 + y2 = 1 constraint is

illustrated as a two dimensional contour plot shown in Fig. 5.2. Because the minimum

point of the objective function f lays outside the constraint set, the optimum is achieved

always with equality, i.e., at the circumference of the circle. Any point which satisfies

the first order optimality conditions is called a stationary point. In a stationary point,

the range of change of a function is zero. Therefore, it is not necessarily a minimum.
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x

y f (x, y)

(xopt, yopt)

x2 + y2 = 1

Fig. 5.2: Convex quadratic function minimization over a unit circle.

In a stationary point, the normal vectors of the objective function f and the constraint

are aligned. In the example shown in Fig. 5.2, there are four stationary points each

of which has a different Lagrangian multiplier λ. However, there is only one optimum

point (xopt, yopt) with an optimum Lagrangian multiplier in which the directions of the

normal vectors of the objective function f and the constraint are opposite to each other.

To find the optimum λ, the second order optimality condition should be satisfied. As

A is a positive semidefinite matrix, λ should be adapted in such a way that the Hessian

of the Lagrange is kept positive semidefinite

i∗T











∂2L

∂




j

y
2



 ∂
(

j∗T y∗T
2

)











i ≥ 0, (5.34)

for any non-zero column vector i. Moreover, j corresponds to the total energy constraint

and thus, corresponds to λ. Instead of taking the second derivative of (5.17), (5.26) is

a function of only j where y
2
satisfies the first order optimality condition of (5.22) and

hence, (5.26) is equivalent to (5.18). The second order optimality condition in this case

is obtained by taking the derivative of (5.26) with respect to j. Accordingly,

i∗T (A′ + λ IM2R+K) i ≥ 0 (5.35)



70 Chapter 5: Interference mitigation

should hold for any non-zero column vector i. This condition implies that an optimum

solution exists if the matrix (A′ + λ IM2R+K) is positive semidefinite. As a result, the

eigenvalues of the matrix (A′ + λ IM2R+K) are lower bounded by zero. Because A′ is a

positive semidefinite matrix, λ ≥ −ρmin holds where ρmin is the smallest eigenvalue of

A′. Moreover, if λ > −ρmin holds, the constraint of (5.33) is a monotonically decreasing

function of λ in the interval ]−ρmin,∞[ [Tuy98]. Accordingly, there is only one zero of

this function in the interval ]−ρmin,∞[ and hence, a unique optimum solution for λopt

exists. With an initial value λini = −ρmin + ǫ where ǫ is an arbitrary small positive

value, a numerical equation solver can be used to find the optimum λopt which can

be substituted in (5.20) to find the optimum solution of j and y
2
. Then, the optimum

y
MSE

can be calculated using (5.16).

5.3.2 Energy constrained maximum sum rate

5.3.2.1 Problem statement and the concept of multi-convex optimization

In this section, an IM algorithm aiming at maximizing the sum rate with a total energy

constraint is developed. Basically, the sum rate is a function of the individual SINRs

obtained at the output of the receive filter of each destination node k. By partially

adapting the filters, the received SINR at the k-th destination node of (2.13) can be

rewritten as a function of the unknown vector y as

γ(k)
(
y
)
=

Ed y∗Tq(k,k)∗Tq(k,k)y

y∗T

(

Ed

∑

l 6=k

q(k,l)∗Tq(k,l) + E {z(k)z(k)∗T}
)

y + σ2 |u(k,2)|2
, (5.36)

where the vectors q(k,l) and z(k) are introduced in Section 3.4.1 and Section 3.4.3,

respectively. The SINR of (5.36) is a ratio of two quadratic functions of y. With a total

energy constraint, the sum rate (SR) maximization problem can be stated as

y
SR

= arg max
y

{

1

2

K∑

k=1

ld
(
1 + γ(k)

(
y
))

}

(5.37)

subject to

y∗T








Φ′ 0M2R×K 0M2R×K

0K×M2R EdIK 0K×K

0K×M2R 0K×K 0K×K








y ≤ E
(2)
tot . (5.38)

The sum rate function is not a concave function of y because it is a sum of logarithmic

functions of the individual SINRs where a SINR is a ratio of two quadratic functions
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x

y f (x, y)

local maximum

global
maximum

0

0.5

1

Fig. 5.3: A biconcave function f (x, y) which is concave with respect to x for a certain
y and it is concave with respect to y for a certain x.

of y. The sum rate has several local maxima and a global maximum and hence, the

optimization problem of (5.37)–(5.38) is a non-convex problem.

Before tackling the optimization problem of (5.37)–(5.38), the terms of multi-convex

function and multi-convex optimization problem will be clarified.

Definition 1. A function of a set of variables is a multi-convex function if the variables

can be partitioned into different disjoint non-empty subsets such that the function is

convex for each of these subsets of variables.

From Definition 1, the definitions of multi-concave, multi-linear and multi-affine func-

tions are obtained by replacing the property of being convex by concave, linear and

affine, respectively. Fig. 5.3 shows a biconcave function f (x, y) which is neither a convex

nor a concave function of both x and y. However,

• for a fixed x = xfix, f (xfix, y) is a concave function of y and

• for a fixed y = yfix, f (x, yfix) is a concave function of x.

There are many optimization problems in many different application areas where the

objective functions can be reformulated as multi-convex or multi-concave functions. For
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instance, the sum MSE in multiuser relay networks is a multi-convex function in the

the transmit filters, the relay processing matrices and the receive filters. Furthermore,

the multi-convex optimization problem can be defined as

Definition 2. A non-convex problem for optimizing a set of variables is called a multi-

convex optimization problem if the variables can be partitioned into different disjoint

non-empty subsets such that the optimization problem is convex for each of these subsets

of variables.

As compared to a general non-convex optimization problem, the property of multi-

convexity can be utilized for implementing a relatively low complexity algorithms which

guarantee a local optimum achievement [GPK07]. Unfortunately, the sum rate maxi-

mization problem of (5.37)–(5.38) is not a multi-convex optimization problem. Nevert-

heless, the sum rate maximization problem of (5.37)–(5.38) will be reformulated as a

multi-convex optimization problem by adding two sets of scaling factors [ALG+13b] as

will be described in the following.

5.3.2.2 Signal to interference plus noise ratio

The main difficulty on reformulating the sum rate as a multi-concave function is that

both the nominator and the denominator of the SINR are functions of y, see (5.36).

To overcome this problem, a new term

η(k)
(
y, w(k)

)
=

E

{∣
∣
∣w(k) d(k)

∣
∣
∣

2
}

E

{∣
∣
∣d̂

(k) − w(k) d(k)
∣
∣
∣

2
} , (5.39)

which describes the received SINR at a destination node k, is introduced. w(k) is a

complex weighting factor. With the function

f
(k)
1

(
y, w(k)

)
= E

{∣
∣
∣d̂

(k) − w(k) d(k)
∣
∣
∣

2
}

= y∗T

(
∑

l

Ed q(k,l)q(k,l)∗T + E
{
z(k)z(k)∗T

}

)

y + σ2
∣
∣u(k,2)

∣
∣
2

− Ed w(k)q(k,k)∗Ty −Ed w(k)∗ y∗Tq(k,k) + Ed

∣
∣w(k)

∣
∣
2
, (5.40)

which is obtained using (3.40), η(k)
(
y, w(k)

)
can be rewritten as

η(k)
(
y, w(k)

)
=

Ed

∣
∣w(k)

∣
∣
2

f
(k)
1

(
y, w(k)

) . (5.41)
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If w(k) is fixed, f
(k)
1

(
y, w(k)

)
is a convex function of y as

K∑

l=1

Edq
(k,l)q(k,l)∗T +

E
{
z(k)z(k)∗T

}
is a positive semidefinite matrix, i.e., it has a similar structure as the

matrix A described in (3.45). By taking the generalized derivative of η(k)
(
y, w(k)

)
with

respect to w(k) and setting the result to zero, the first order optimality condition is

stated as
∂η(k)

∂w(k)

!
= 0. (5.42)

A single stationary point is found by solving (5.42) for w(k) and the optimum weighting

factor is calculated as

w
(k)
opt =

y∗T
(

K∑

l=1

Edq
(k,l)q(k,l)∗T + E

{
z(k)z(k)∗T

}
)

y + σ2
∣
∣u(k,2)

∣
∣
2

Edq(k,k)∗Ty
. (5.43)

By substituting (5.43) into (5.41), η
(k)
opt with the optimum weighting factor is calculated

as

η
(k)
opt

(
y
)
=

y∗T
(

K∑

l=1

Edq
(k,l)q(k,l)∗T + E

{
z(k)z(k)∗T

}
)

y + σ2
∣
∣u(k,2)

∣
∣
2

y∗T

(

∑

l 6=k

Edq(k,l)q(k,l)∗T + E {z(k)z(k)∗T}
)

y + σ2 |u(k,2)|2

= 1 + γ(k)
(
y
)
. (5.44)

Concerning the structure of the function η(k)
(
y, w(k)

)
with respect to w(k), this function

has a singular point at w(k) = 0 where the first order derivative

∂η(k)

∂w(k)

∣
∣
∣
w(k)=0

(5.45)

is not defined. Accordingly, within the domain

dom η(k)
(
y, w(k)

)
=







Re
{
w(k)

}
∈ R+ if Re

{
y∗Tq(k,k)

}
≥ 0,

Re
{
w(k)

}
∈ R− if Re

{
y∗Tq(k,k)

}
< 0,

Im
{
w(k)

}
∈ R+ if Im

{
y∗Tq(k,k)

}
≥ 0,

Im
{
w(k)

}
∈ R− if Im

{
y∗Tq(k,k)

}
< 0,

(5.46)

where R+ denotes the set of all the non-negative real numbers and R− denotes the set

of all the non-positive real numbers, η(k)
(
y, w(k)

)
is a concave function with respect to

w(k) because

• from (5.41), the extreme values of η(k)
(
y, w(k)

)
range from zero for w(k) = 0 and

one for w(k) = ∞ and
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• there is a single stationary point and it is greater than or equal to one, see (5.44)

and note that γ(k)
(
y
)
≥ 0.

The main property of η(k)
(
y, w(k)

)
is that just its the denominator is a function of y

whereas both the nominator and the denominator of γ(k)
(
y
)
are functions of y.

5.3.2.3 Sum rate maximization based on multi-convex optimization

From the result of (5.44), the vector of the unknowns y as well as the weighting vector

w =
(
w(1), . . . , w(K)

)T
(5.47)

can be jointly optimized for maximizing the sum rate. Based on this idea, using

f2
(
y,w

)
=

1

2

K∑

k=1

ld
(
η(k)

(
y,w

))
, (5.48)

the optimization problem of (5.37)–(5.38) can be reformulated as
(

y
SR
,wopt

)

= arg max
y,w

{
f2
(
y,w

)}
(5.49)

subject to

y∗T








Φ′ 0M2R×K 0M2R×K

0K×M2R EdIK 0K×K

0K×M2R 0K×K 0K×K








y ≤ E
(2)
tot . (5.50)

Clearly, the objective function f2
(
y,w

)
is concave with respect to w as η(k)

(
y, w(k)

)
is

a concave function of w(k) and the logarithm is a concave monotonic increasing function

[BV04]. From (5.41), the objective function f2
(
y,w

)
can be rewritten as

f2
(
y,w

)
=

1

2

K∑

k=1

ld
(

Ed

∣
∣w(k)

∣
∣
2
)

− 1

2

K∑

k=1

ld
(

f
(k)
1

(
y, w(k)

))

. (5.51)

In (5.51), only the second term depends on y. Although f
(k)
1

(
y, w(k)

)
with fixed w(k) is

a convex function of y, the function ld
(

f
(k)
1

(
y, w(k)

))

with fixed w(k) is not necessarily

a convex function of y [Con78]. Therefore, a new objective function which has the

function f
(k)
1

(
y, w(k)

)
not inside the logarithm is needed. K additional scaling factors

are introduced and the optimization problem of (5.49)–(5.50) is reformulated as a

multi-convex optimization problem. Consider the function

f3
(
y,w, o

)
=

1

2

K∑

k=1

(

ld
(
o(k)
)
+ ld

(

Ed

∣
∣w(k)

∣
∣
2
)

− o(k)

ln (2)
f
(k)
1

(
y, w(k)

)
)

, (5.52)
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where

o =
(
o(1), . . . , o(K)

)T
(5.53)

is a vector of positive real variables

o(k) > 0, ∀k. (5.54)

To show the equivalence between f2
(
y,w

)
and f3

(
y,w, o

)
, the first order optimality

condition
∂f3
∂o(k)

!
= 0 (5.55)

with respect to o(k) is investigated. A single stationary point

o
(k)
opt =

1

f
(k)
1

(
y, w(k)

) (5.56)

is found by solving (5.55) for o(k). By substituting (5.56) into (5.52), one obtains

f3
(
y,w, oopt

)
= f2

(
y,w

)
− K

2ln (2)
. (5.57)

Accordingly, the optimization problem of (5.49)–(5.50) is equivalently stated as
(

y
SR
,wopt, oopt

)

= arg max
y,w,o

{
f3
(
y,w, o

)}
(5.58)

subject to

y∗T








Φ′ 0M2R×K 0M2R×K

0K×M2R EdIK 0K×K

0K×M2R 0K×K 0K×K








y ≤ E
(2)
tot . (5.59)

The optimization problem of (5.58)–(5.59) is a non-convex problem in the vectors

y, w and o when they are jointly optimized. However, if w and y are fixed, the

objective function f3
(
y,w, o

)
is concave in o, i.e., the logarithm is a concave monotonic

increasing function. Based on the discussion of the concavity of η(k)
(
y, w(k)

)
with

respect to w(k) on the previous section, the objective function f3
(
y,w, o

)
is concave

in w if y is fixed and the optimized oopt is used. Furthermore, if both w and o are

fixed, just the last term of (5.52) is required to be considered as an objective function.

Accordingly, the optimization problem of (5.58)–(5.59) can be reformulated as

y
SR

= arg min
y

{

y∗TĀ y − b̄
∗T
y − y∗Tb̄

}

(5.60)

subject to

y∗T








Φ′ 0M2R×K 0M2R×K

0K×M2R EdIK 0K×K

0K×M2R 0K×K 0K×K








y ≤ E
(2)
tot , (5.61)
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where

Ā =
K∑

k=1

o(k)

(

Ed

∑

l

q(k,l)q(k,l)∗T + E
{
z(k)z(k)∗T

}

)

(5.62)

is a positive semidefinite matrix because the scaling factors o(k), ∀k are positive, see

(5.54), and

b̄ = Ed

K∑

k=1

o(k)w(k)∗q(k,k). (5.63)

As compared to (3.45) and (3.46), Ā and b̄ are the weighted sum version of A and b,

respectively. This means that when all the scaling factors are set to one o(k) = w(k) = 1

for k = 1, . . . , K, Ā = A and b̄ = b follow. The optimization problem of (5.60)–(5.61)

is convex as the objective function y∗TĀ y−b̄
∗T
y−y∗Tb̄ is a convex quadratic function

and the constraint of (5.61) is a convex quadratic set. The structure of the problem of

(5.60)–(5.61) is similar to the one of the sum MSE minimization problem (5.6)–(5.7)

and it can be solved as described in Section 5.3.1.

Based on the above discussion, the optimization problem of (5.58)–(5.59) is a convex

problem of either y or o individually and for the optimum oopt, it is a convex problem of

w. In the other words, it is a multi-convex optimization problem and it is equivalent to

the sum rate maximization problem of (5.37)–(5.38) in the sense that both of them have

the same extreme points, i.e., the same global maximum and the same local maxima

for optimum weights wopt and oopt.

Finally. an iterative algorithm which alternately maximizes the objective function

f3
(
y,w, o

)
over y, w and o is described. Let ǫ be an arbitrary small tolerance va-

lue. The sum rate maximization algorithm is summarized as follows:

1: set initial values for w(0) and o(0)

2: in every iteration i

3: calculate y(i) given w(i−1) and o(i−1)

⊲ see Section 5.3.1.2 for solving (5.60)–(5.61)

4: calculate w(i) given y(i) ⊲ using (5.43)

5: calculate o(i) given y(i) and w(i) ⊲ using (5.56)

6: stop if
∣
∣f3
(
y(i),w(i), o(i)

)
− f3

(
y(i−1),w(i−1), o(i−1)

)∣
∣ ≤ ǫ

The initial values for the scaling vectors w and o can be set to ones such that the

initial point is the sum MSE solution. From the multi-convex optimization literature,

this alternate optimization algorithm always converges to a local optimum [GPK07].
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5.3.2.4 Some comments on the sum rate maximization algorithm

In this section, the idea of formulating the sum rate maximization problem as a multi-

convex optimization problem is shown that it is quite general and it can be applied

to many different systems. By tracing back the analysis in the previous section, one

can observe that f3
(
y,w, o

)
becomes a concave function of the unknown vector y for

fixed w and o because for all k, f
(k)
1

(
y, w(k)

)
is a convex function of y for a fixed w(k).

Furthermore, f
(k)
1

(
y, w(k)

)
becomes a convex function of y for a fixed w(k) because

the estimated data symbol d̂
(k)

is a linear function of the unknown vector y. As a

conclusion, the key system requirement for formulating the sum rate maximization

problem as a multi-convex optimization problem is to have the estimated data symbols

being multi-linear functions of the system variables.

For the considered scenario with fully adapted filters, one can write the k-th estimated

data symbol d̂
(k)

as multi-linear function of the transmit filters, the receive filters and

the relay coefficients. In this case, a multi-concave objective function f3 of the transmit

filters, the receive filters, the relay coefficients, the scaling vector w and the scaling

vector o can be formulated.

5.4 Complexity and performance of the interfer-

ence mitigation algorithms

5.4.1 Complexity analysis

In this section, the complexity of applying the proposed IM algorithms is investigated.

Appendix C introduces the main assumptions used for the complexity analysis. Also,

the complexities of some basic linear algebra operations which are used for calculating

the complexity of the proposed IM solutions are summarized in Table C.1.

The IM algorithm with fixed filters proposed in Section 5.2 basically requires calculating

the left pseudo inverse of Hff . By taking the complexity of calculating Hff into account,

see Table 3.1, the complexity of calculating xIM is O (R2M4K2) , i.e., keep in mind

that M2R < K (K − 1).

For the proposed IM algorithms with partially adapted filters, the complexity of com-

puting A and b listed in Table 3.1 are taken into account. Note that Ā and b̄ have the
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same complexity asA and b, respectively. The complexities of computing the minimum

sum MSE solution and the maximum sum rate solution are dominated by the comple-

xity of computing the matrices listed in Table 5.1. The lower triangular matrix T is

computed by applying the Cholesky decomposition to the covariance matrix of (5.14).

Because (5.14) is a block diagonal matrix with two blocks where the second diagonal

block is a diagonal matrix, the complexity of computing the matrix T is dominated by

the complexity of applying the Cholesky decomposition to the first diagonal block Φ′,

i.e., Φ′ is a block diagonal matrix as well and the decomposition can be done separately

for each diagonal block. Furthermore, the complexity of computing j and y
2
in (5.20)

is dominated by the complexity of computing the matrix T−1A∗T
11

(
T∗T)−1

.

For the sum rate maximization algorithm proposed in Section 5.3.2, the complexi-

ties of computing w
(k)
opt in (5.43) and o

(k)
opt in (5.56) are dominated by the complexity

of computing y∗T
(

K∑

l=1

Ed q(k,l)q(k,l)∗T + E
{
z(k)z(k)∗T

}
)

y which is listed in Table 5.1.

Furthermore, the complexities of computing the vectors w(i), o(i) and y(i) at the i-th

iteration are listed in Table 5.2. For a fair complexity comparison between the sum

MSE minimization algorithm and the sum rate maximization algorithm and because

the optimum Lagrangian multiplier λopt is found using a numerical solver as described

in Section 5.3.1.2, the complexities of computing y
MSE

and y(i)
SR

are calculated for a

certain λ.

For a certain Lagrangian multiplier λ, the complexity of the sum MSE minimization

algorithm and the complexity of a single iteration of the sum rate maximization algo-

rithm are shown in Table 5.3. It can be noted that the complexity of both algorithms

grows cubically with respect to the number R of relays, polynomially with an order of

six with respect to the number M of antennas at the relays and polynomially with an

Expression Complexity

Φ′ O (RM2K)

T O (RM2K +RM6)

T−1 O (RM2K +RM6)

T−1A∗T
11

(
T∗T)−1 O (R2M4K2 +RM2K3 +R3M6 +K4)

y∗T
(

K∑

l=1

Ed q(k,l)q(k,l)∗T + E
{
z(k)z(k)∗T

}
)

y O (R2M4K +RM2K2 +R3M6 +K3)

Table 5.1: Complexity of computing the matrices involved in calculating the minimum
sum MSE solution and the maximum sum rate solution.
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Expression Complexity

w(i) in (5.43) and (5.47) O (R2M4K2 +RM2K3 +R3M6K +K4)

o(i) in (5.56) and (5.53) O (R2M4K2 +RM2K3 +R3M6K +K4)

y(i) in (5.60)–(5.61)
O (R2M4K2 +RM2K3 +R3M6 +K4)

with a certain λ

Table 5.2: Complexity of computing the vectors involved in a single iteration i of the
maximum sum rate algorithm.

order of four with respect to the number K of node pairs.

By comparing the complexities of the two algorithms shown in Table 5.3, it can

be observed that all the terms are the same except the last ones. This means

that the sum rate maximization algorithm encounters a higher complexity than the

one caused by the sum MSE minimization algorithm. The additional complexity

grows linearly with the number K of node pairs and it is caused by computing

y∗T
(

K∑

l=1

Ed q(k,l)q(k,l)∗T + E
{
z(k)z(k)∗T

}
)

y for each element k of the vectors w(i) and

o(i).

So far, the computational complexity of the sum rate maximization algorithm is studied

for a single iteration. To have an impression on the number of iterations required for

the convergence, Fig. 5.4 shows a histogram of the number I of iterations needed by

the sum rate maximization algorithm with ǫ = 10−6 for a scenario with K = 3, R = 3

and M = 2. From the figure, one can observe that there are a high density of trails

with I < 100 iterations.

Expression Complexity Remarks

j and y
2
in (5.20) O (R2M4K2 +RM2K3 +K4 +R3M6)

for a certain λw(i), o(i) and y(i)

O (R2M4K2 +RM2K3 +K4 +R3M6K)
for a single iteration i

Table 5.3: Complexity of computing the minimum sum MSE and the maximum sum
rate.
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Fig. 5.4: A histogram of the number I of iterations needed by the sum rate maximization
algorithm for a scenario with K = 3, R = 3 and M = 2.

5.4.2 Performance analysis

In this section, the performances of the proposed IM algorithms are investigated. The

performance analyses of the IM algorithms are elaborated in two main categories:

• Under the assumption of fixed filters at the nodes, the performance of the IM

algorithm proposed in Section 5.2 is investigated in conjunction with the IA

algorithm previously proposed in Section 3.3.

• Under the assumption of partially adapted filters at the nodes, the performances

of both the sum MSE minimization algorithm and the sum rate maximization

algorithm proposed in Section 5.3 are investigated in conjunction with the IA

algorithm proposed in Section 3.4.

Additionally, the single cell relaying algorithm proposed in Section 2.2.1 is considered

as a reference scheme.

The first considered scenario consists of three node pairs K = 3 and multiple relays

with a single antenna each M = 1. The transmit and the receive filters are adjusted

as described in Section 3.5.3. Based on this scenario and from (3.17), IA is feasible
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Fig. 5.5: Achieved sum rate as a function of PSNR for scenarios with K = 3, M = 1
and different number R of relays.

if R ≥ 6. Fig. 5.5 shows the sum rate C̄ per time slot averaged over many different

channel realizations and depicted as a function of the PSNR. It shows the sum rates

achieved considering different numbers R of relays. If R = 6, IA is achievable and the

inhomogeneous system of linear equations has a unique solution for the relay processing

matrices. The IA algorithm with 6 relays achieves higher sum rates than the single cell

relaying algorithm just at high PSNRs. In the low and moderate PSNR regimes, the

IA algorithms perform worse than the single cell algorithm, i.e., the noise is dominant

in these regimes. By adding one relay, the IA algorithm with 7 relays adjusts the relay

processing matrices such that the retransmitted energies of the relays are minimized as

described in Section 3.3.3. Minimizing the relay retransmitted energy means minimizing

the total system energy and thus, higher sum rates are achieved as compared to the

IA with 6 relays. Comparing the sum rates achieved using the IA algorithm with 7

relays to the one with 6 relays, one can notice that the required PSNRs are reduced

by 5 dB and the sum rate is increased by around 3 bits. As described in Section 3.5.3,

the slopes of the curves in the high PSNR regime are related to the achieved DoFs.

Accordingly, the IA algorithm achieves 1.5 DoFs.

By reducing the number R of relays to five, IA is not feasible anymore but an appro-

ximate solution for the relay processing matrices can be found using the least squares
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solution of (5.4). Accordingly, the interferences are not fully aligned at the interference

subspace of every destination node and hence, the unaligned interferences are treated

as noise. From Fig. 5.5, it can be observed that the IM algorithm with 5 relays achieves

the same sum rates as the IA with 7 relays at the low and moderate PSNRs. This

supports the previous statement in Section 5.1 that leaving some weak unaligned inter-

ferences at the destination nodes and treating them as noise can enhance the achieved

sum rates at low and moderate PSNRs. At high PSNRs, the unaligned interference

powers obtained at the output of the receive filters are significantly high which limits

the achieved sum rates to a certain bound. By reducing the number R of relays further,

the following can be observed:

• At low PSNRs, the achieved sum rates are increasing due to the fact that reducing

the number of relays will reduce the energy required for the retransmission.

• At high PSNRs, the achieved sum rates saturate at smaller limiting values, i.e.,

more unaligned interference powers are obtained at the output of the received

filters of every destination node when less relays are employed and thus, the SIR

gets smaller. At these limiting values, the SIR remains constant even when the

PSNR is increasing.

Finally, because the single cell relaying algorithm is supported by 7 relays, it outper-

forms the IM algorithm with 1 relay at all PSNRs.

To investigate the performances of the IM algorithms with partially adapted filters

proposed in Section 5.3, a scenario with K = 3, R = 3 and M = 2 is considered. The

fixed filter coefficients u(k,2) and v(k,1) with k = 1, . . . , K are adjusted as described in

Section 3.5.3. For the two energy constrained IM algorithms proposed in Section 5.3,

the total energy constraint is split up equally over the time slots as

E
(1)
tot = E

(2)
tot = Etot/2. (5.64)

The average sum rates C̄ as a function of the PSNRs for the sum rate maximization

algorithm, the sum MSE minimization algorithm, the IA algorithm proposed in Section

3.4.3 and the single cell relaying algorithm are shown in Fig. 5.6. From the figure, the

following can be observed:

• The single cell relaying algorithm does not take the interference into account and

thus, it performs poorly at the high PSNR regime. However, it outperforms the

IA algorithm at the low SNRs, i.e., where noise is dominant. Also, zero DoF is

achieved using this algorithm.
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Fig. 5.6: Achieved sum rate as a function of the PSNR for a scenario with K = 3,
R = 3 and M = 2.

• In contrast to the single cell relaying algorithm, the IA algorithm performs poorly

at low PSNRs as it does not consider noise reduction when optimizing the filters

and the relay processing matrices. However, it achieves K/2 = 1.5 DoFs.

• The sum MSE minimization algorithm outperforms the IA algorithm at the low

and moderate PSNRs because it minimizes both noise power and interference

power obtained at the output of the receive filter of every destination node. At

high PSNRs, one can notice that it performs worse than the IA algorithm and

it achieves only 1.3 DoFs. This happens because there are filter coefficients u(k,2)

and v(k,1) with k = 1, . . . , K being fixed a priori and thus, the feasible region

of the total energy constraint does not necessarily include the zero sum MSE.

In other words, achieving the zero sum MSE for some channel realizations may

require infinite energy.

• The sum rate maximization algorithm outperforms all the other algorithms at

all PSNRs. However, it achieves 1.4 DoFs because it is a suboptimal algorithm

which guarantees only a local maximum of the sum rate rather than the global

one.
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Fig. 5.7: The ratio of the average sum MSE and the average symbol energy as a function
of the PSNR for a scenario with K = 3, R = 3 and M = 2.

For the same scenario and the same simulation setup, the ratio of the average sum MSE

δ̄ and the average data symbol energy Ed is depicted as a function of the PSNR in Fig.

5.7. At low PSNRs, the received powers of the useful signals obtained at the output of

the receive filters are weak as compared to the noise power and thus, low sum MSEs are

achieved by all algorithms. As the PSNR increases, the unaligned interference power

increases when applying the single cell relaying algorithm and thus, the achieved sum

MSE is increased. However, the sum MSEs achieved by the other algorithms decrease

as the PSNR increases and at high PSNRs,

• the IA algorithm asymptotically achieves a zero sum MSE because

– it aims at minimizing the sum MSE.

– the zero sum MSE is within the feasible region as described in Section 3.4.3.

• the sum MSE minimization algorithm saturates at δ̄/Ed = 10−2 because of fixing

some of the filter coefficients and thus for some channel realizations, infinite

energies would be needed to achieve the zero sum MSE.

• the sum rate maximization algorithm saturates at δ̄/Ed = 10−1.5 as it does not

aim at minimizing the sum MSE.
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Comparing Fig. 5.6 and Fig. 5.7, one can conclude that minimizing the sum MSE does

not necessarily lead to high sum rates and maximizing the sum rate does not necessarily

lead to low sum MSEs.
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Chapter 6

Energy allocation for interference
mitigation systems

6.1 Preliminaries

In this chapter, the energy allocation in the framework of interference mitigation (IM)

is investigated. As discussed in Section 3.2, IA is realized by adapting the relay pro-

cessing matrices and the directions of the transmit and the receive filter vectors to the

channel aiming at obtaining no interferences at the output of the receive filter of each

destination node. Moreover, it has been shown that the norms of the transmit filter

vectors have no influence on the IA solution. Therefore, the norms of the transmit filter

vectors or the energy allocation among the source nodes can be optimized for further

enhancement of the performance of the IA system as discussed in Chapter 4. Optimiz-

ing the energy allocation on the top of an IA solution is equivalent to optimizing the

energy allocation on an interference free channel with no relays where the waterfilling

algorithm can be used for finding the optimum energy allocation. Unfortunately, the

rate maximization waterfilling algorithm as shown in Fig. 4.5 does not improve the

achieved sum rates significantly as compared to the one when using the equal energy

allocation especially at high SNRs.

The previous chapter introduced different IM algorithms which implicitly reduce the

interferences but not necessarily nullifying them. By applying an IM algorithm in a

multi-cell scenario, some unaligned interferences remain at the output of the receive

filter of each destination node. These unaligned interferences are considered as noise.

Unlike the energy allocation optimization on the top of an IA solution, optimizing the

energy allocation on the top of an IM solution is equivalent to optimizing the energy

allocation in interference channels with no relays. For interference channels, energy

allocation plays a key role in maximizing the performance where in general the equal

energy allocation performs poorly.

As considered in Chapter 4, scenarios with either a single resource N = 1 or multiple

orthogonal resources N > 1 are also considered. For scenarios with multiple orthogonal

resources N > 1, there is no interference among different resources and thus, the effec-

tive channel between the source nodes and the destination nodes including the relays

and the filters considering all the N resources can be seen as N parallel channels. It is
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Fig. 6.1: Effective channel in the n-th resource between the source nodes and the
destination nodes after applying an IM solution: (a) including the relays, (b) including
the filters and the relays.

assumed that the nodes and the relays can always access the N resources simultaneous-

ly. Each source node wants to transmit N different uncorrelated data symbols through

the N parallel channels to its corresponding destination node. Also, it is assumed that

the received noise signals at different resources, different relays, different relay antennas

and different destination nodes are uncorrelated.

After applying an IM solution, the transmit filter of the l-th source node in the n-th

resource, the receive filter of the k-th destination node in the n-th resource and the

processing matrix of the r-th relay in the n-th resource are denoted as v
(l,n)
IM , u

(k,n)
IM and

G
(r,n)
IM , respectively. Then, the resulting effective channel between the l-th source node

and the k-th destination node in the n-th resource including the relays is calculated as

H
(k,l,n)
IM =






h
(k,l,n)
DS 0

R∑

r=1

h
(k,r,n)
DR G

(r,n)
IM h

(r,l,n)
RS h

(k,l,n)
DS




 . (6.1)
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Furthermore, the transmit filter of the l-th source node in the n-th resource can be

described as

v
(l,n)
IM =

∥
∥
∥v

(l,n)
IM

∥
∥
∥ ṽ

(l,n)
IM , (6.2)

where
∥
∥
∥v

(l,n)
IM

∥
∥
∥ and ṽ

(l,n)
IM are the norm and the unit vector of the l-th transmit vector

v
(l,n)
IM in the n-th resource, respectively. The effective channel in the n-th resource

between the source nodes and the destination nodes including the relays for an IM

solution is shown in Fig. 6.1a. The vector of the allocated energies at the source nodes

in the n-th resource is calculated as

E(n) =
(
E(1,n), . . . , E(K,n)

)T
(6.3)

where

E(l,n) = Ed

∥
∥
∥v

(l,n)
IM

∥
∥
∥

2

. (6.4)

is the transmitted energy of the l-th source node in the n-th resource.

For a certain resource n, the effective channel between the l-th source node and the

k-th destination node including the filters and the relays can be calculated as

h
(k,l,n)
IMeff = u

(k,n)∗T
IM H

(k,l,n)
IM ṽ

(l,n)
IM . (6.5)

Moreover, the effective received noise signal, see (2.4), at the output of the receive filter

u
(k,n)
IM of the k-th destination node is calculated as

n
(k,n)
IMeff = u

(k,n)∗T
IM






n
(k,1,n)
D

R∑

r=1

h
(k,r,n)
DR G

(r,n)
IM n

(r,n)
R + n

(k,2,n)
D




 . (6.6)

Thanks to the linearity of the system, the effective channel between the source nodes

and the destination nodes including the temporal filters and the relays for any resource

n can be seen as an interference channel as shown in Fig. 6.1b. By substituting (6.5)

and (6.6) in (2.13), the received SINR at the output of the receive filter of the k-th

destination node in the n-th resource is calculated as

γ
(k,n)
IM =

E(k,n)
∣
∣
∣h

(k,k,n)
IMeff

∣
∣
∣

2

∑

l 6=k

E(l,n)

∣
∣
∣h

(k,l,n)
IMeff

∣
∣
∣

2

+
(

σ
(k,n)
IMeff

)2 , (6.7)

with the noise power at the output of the receive filter of the k-th destination node in

the n-th resource being calculated as

(

σ
(k,n)
IMeff

)2

= E
{

n
(k,n)∗
IMeff n

(k,n)
IMeff

}

. (6.8)
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Note that the first term in the denominator of (6.7) describes the unaligned interference

power remaining at the output of the receive filter of the k-th destination node in the

n-th resource. Similar to the derivation of (4.9), the total energy retransmitted by the

relays can be written as a function of the transmitted energies E(l,n), l = 1, . . . , K of

the source nodes as

ERtot =
N∑

n=1

(
K∑

l=1

β
(l,n)
IM E(l,n) +

(

σ
(n)
IMtx

)2
)

, (6.9)

where

β
(l,n)
IM =

∣
∣
∣ṽ

(l,1,n)
IM

∣
∣
∣

2
R∑

r=1

tr
(

G
(r,n)
IM h

(r,l,n)
RS h

(r,l,n)∗T
RS G

(r,n)∗T
IM

)

(6.10)

scales the l-th source node transmitted energy in the n-th resource to the useful re-

transmitted energy of the relays corresponding to the l-th data symbol and

(

σ
(n)
IMtx

)2

= σ2
R∑

r=1

tr
(

G
(r,n)
IM G

(r,n)∗T
IM

)

(6.11)

is the limited noise energy retransmitted by the relays in the n-th resource. Based on

(6.3) and (6.10), the vector of the energies used by the source nodes and the relays for

transmitting the K data symbols in the n-th resource is calculated as

ε
(n) =








ε(1,n)

...

ε(K,n)








= E(n) +








β
(1,n)
IM 0

. . .

0 β
(K,n)
IM








E(n), (6.12)

where the first term and the second term of (6.12) describe the energies used for

transmitting the K data symbols by the source nodes and the relays, respectively.

The rest of this chapter is organized as follows. The next section investigates the energy

allocation on the top of an IM solution considering only a single resource N = 1. The

energy allocation on the top of IM solutions using multiple resources N > 1 is studied

in Section 6.3. Finally, the complexity and the performance analyses of the proposed

algorithms are discussed in Section 6.4.

6.2 Energy allocation for a single resource in an

interference mitigation system

6.2.1 Problem statement and reformulation

In this section, the energy allocation on the top of an IM solution in a single resource

is investigated. Because the communication among the node pairs and the relays takes
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place through a single shared resource N = 1, the resource index n is skipped in the

following analysis. As described in the previous section, the effective channel including

the filters and the relays is an interference channel as shown in Fig. 6.1b. Using (6.7)

and (6.9), the energy allocation optimization problem aiming at maximizing the sum

rate with a total energy constraint can be stated as

Eopt = arg max
E
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subject to
K∑

k=1

E(k) +

K∑

k=1

β
(k)
IME(k) + σ2

IMtx = Etot, (6.14)

and

E(k) ≥ 0, ∀k. (6.15)

The first term and the second term of (6.14) describe the energies of the useful signals

transmitted from the source nodes and the relays, respectively. Because amplify and

forward relaying are considered, part of the retransmitted signals of the relays is a

retransmitted noise with a certain limited energy which is represented by the third

term of (6.14). Moreover, the constraints of (6.14)–(6.15) form a convex set while the

objective function 1
2

K∑

k=1

ld
(

1 + γ
(k)
IM

)

is not a concave function of E(k), k = 1, . . . , K,

i.e., it has many local maxima and a global maximum. Therefore, the optimization

problem of (6.13)–(6.15) is a non-convex problem. Generally speaking, the sum rate

maximization problem in interference networks is a non-convex problem and it is still

an open problem [LZ08, HL09].

The trick to solve the optimization problem of (6.13)–(6.15) is based on reformulating

the objective function of the sum rate as a difference of two concave functions [AW12].

Define
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1
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as a function of the received useful powers, received interference powers and the received

noise powers. Also, let

g2 (E) =
1
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(6.17)

be a function of the received interference powers and received noise powers. Because

the logarithm is a concave monotonically increasing function, both g1 (E) and g2 (E)
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Fig. 6.2: Geometric representation of the DC problem of (6.18)–(6.20) for a two node
pair scenario.

are concave functions of the allocated energies E. Then, using the quotient property of

the logarithms, the optimization problem of (6.13)–(6.15) can be reformulated as

Eopt = arg max
E

{g1 (E)− g2 (E)} (6.18)

subject to
K∑

k=1

(

1 + β
(k)
IM

)

E(k) + σ2
IMtx = Etot, (6.19)

and

E(k) ≥ 0, ∀k. (6.20)

The new formulation of (6.18)–(6.20) fits in a class of the global optimization me-

thods known as difference of two convex functions (DC) programming [HPTd91, HT99,

HPT00]. The range of the functions g1 (E) and g2 (E) are in R which can be represented

as an additional dimension t as shown in Fig. 6.2. The DC problem of (6.18)–(6.20)

can be illustrated considering a two node pair scenario shown in Fig. 6.2. For the two

node pair scenario, the constraints of (6.19) and (6.20) form the line segment between

(Etot − σ2
IMtx, 0, t) and (0, Etot − σ2

IMtx, t) for any t ∈ R where any point in this line

represents a valid energy allocation. Within this feasible energy allocations region, the

energy allocation which leads to the largest difference between g1 (E) and g2 (E) is the

optimum one as illustrated in Fig. 6.2.

In the following, the new DC formulation of (6.18)–(6.20) is exploited aiming at finding
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the global maximum sum rate efficiently instead of extensively searching over infinitely

many possible energy allocations.

6.2.2 Branch and bound algorithm – basic idea

To solve the DC problem of (6.18)–(6.20), a branch and bound algorithm is proposed.

Because the sum rate function over the feasible region has many maxima, the algorithm

searches in different parts of the feasible region seeking for the global maximum sum

rate rather than a local one. As the algorithm name indicates,

• the algorithm splits the closed region of the feasible energy allocations recursively

into subregions. This process is called branching.

• Then for each subregion, the algorithm bounds the maximum sum rate from

above and below. This process is called bounding.

Based on the recursive behavior of the algorithm, it can be implemented efficiently

using a tree search mechanism. Basically, a breadth-first search over a full binary tree

illustrated in Fig. 6.3 is done.

• The root of the tree corresponds to the whole feasible region.

• Each node i in the tree has two children with indices 2i and 2i+ 1.

• The subregion of the feasible energy allocation corresponding to the i-th tree

node is split into two subregions corresponding to the children tree nodes 2i and

2i+ 1.

• Based on the bounding process which will be explained later in Section 6.2.4, a

tree node i is considered as a leaf, i.e., it has no children, if one of the following

two cases is satisfied.

– It is guaranteed that the global maximum sum rate is not achievable using

any of the energy allocations in the corresponding feasible subregion.

– A local maximum sum rate which is close enough to the upper bound is

found using an energy allocation in the corresponding feasible subregion.

This means that the branch and bound algorithm does not search the complete

tree.
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1

2 3

4 5 6 7

Fig. 6.3: A full binary tree where the root corresponds to the whole feasible region
while any other tree node corresponds to part of the feasible region.

For every inspected tree node i, an upper bound u
(i)
b and a lower bound l

(i)
b of the

maximum sum rate achieved within the respective feasible region are calculated. The

computations of the bounds are described in Section 6.2.4.

Since the maximum sum rate is the objective, a lower bound is an achievable sum rate

and the corresponding energy allocation is feasible. Additionally, the highest known

lower bound, i.e., the lower bound which is closest to the global maximum sum rate,

is an interesting one and needs to be updated throughout the search over the tree as

l
(i)
best = max

{

l
(i−1)
best , l

(i)
b

}

, (6.21)

with

l
(0)
best = 0, (6.22)

where i is the index of the currently inspected tree node. The energy allocation corre-

sponding to the highest lower bound l
(i)
best is denoted by E

(i)
best. By inspecting the i-th

tree node, three cases need to be distinguished:

1. If u
(i)
b − l

(i)
best < 0, the global maximum sum rate is not within this subregion of

the i-th tree node as there exists an achievable sum rate l
(i)
best which exceeds the

upper bound of this subregion. Hence, there is no need to inspect the children of

the i-th tree node which is considered as a leaf.
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2. If u
(i)
b − l

(i)
best > ǫ with an arbitrary small tolerance value ǫ > 0, the feasible

subregion of the i-th tree node may contain an energy allocation corresponding

to the global maximum but a lower bound which is close to the upper bound u
(i)
b

still has to be found. So, the two children tree nodes 2i and 2i + 1 need to be

inspected.

3. If 0 ≤ u
(i)
b − l

(i)
best ≤ ǫ, the lower bound l

(i)
best is a local maximum of the sum rate

within the feasible subregion of the i-th tree node with some acceptable precision

if E
(i)
best is within the i-th tree node subregion and it can be a global maximum if

no other tree nodes with higher lower bounds than l
(i)
best are found later on during

the search.

Finally, the algorithm terminates when no more tree nodes have to be inspected with

a global optimum energy allocation E
(I)
best corresponding to l

(I)
best where I denotes the

index of the last inspected tree node.

In the next two sections, the branching and the bounding processes are described in

detail.

6.2.3 Branching the feasible region

In this section, the process of splitting up the feasible region into subregions is descri-

bed. At first, geometric shapes, namely a simplex and a face of a simplex are defined.

Definition 3. A K-simplex

Ψ =
[
ν
(0), . . . ,ν(K)

]
(6.23)

has K + 1 vertices ν
(k), k = 0, . . . , K, in RK where ν

(0) is the vertex at the origin as

shown in Fig. 6.4. Now, let ω(k) with k = 0, . . . , K be scalars satisfying
K∑

k=0

ω(k) = 1

and 0 ≤ ω(k) ≤ 1. Then, any point i within the simplex Ψ can be represented uniquely

as a weighted sum of the vertices as

i =
K∑

k=0

ω(k)
ν
(k). (6.24)

Note that column vectors are used to describe the coordinates of the point i and

the vertices ν
(k) for all k. Examples of a 1-simplex, a 2-simplex and a 3-simplex are

illustrated in Fig. 6.4.



6.2 Energy allocation for a single resource in an IM system 95

ν
(0) ν

(1)

x

(a) 1-Simplex

ν
(0) ν

(1)

ν
(2)

x

y

(b) 2-Simplex

ν
(0)ν

(1)
ν
(2)

ν
(3)

x y

z

a face

(c) 3-Simplex

Fig. 6.4: Simplices with (a) two vertices, (b) three vertices and (c) four vertices.

Definition 4. Let Ψ and Υ be two simplices. If the set of the vertices of Υ is a subset

of the set of vertices of Ψ, then Υ is called a face of the simplex Ψ.

For instance, Fig. 6.4c shows a 2-dimensional face of the 3-simplex with the three

vertices ν(1), ν(2) and ν
(3).

Basically, the region of the feasible energy allocations at the source nodes and the relays

described by the constraint set of (6.19) and (6.20) forms a convex set with flat faces,

i.e., it forms a (K− 1)-dimensional polytope. Therefore, it can exactly be covered by a

(K − 1)-dimensional face Υ(1,K) where Υ(i,K) denotes a face corresponding to the i-th

tree node, constructed from a K-simplex and having all the K-simplex vertices except

the one at the origin as shown in the example of Fig. 6.5a. The K vertices of the initial

face Υ(1,K) are found by greedily using the total available useful energy Etot−σ2
IMtx for

transmitting only one of the K data symbols. Accordingly, the initial face is described

as

Υ(1,K) =
[
ν
(1),ν(2), · · · ,ν(K)

]
, (6.25)

where the initial vertices are represented by the vectors

ν
(1) =

(
Etot − σ2

IMtx, 0, . . . , 0
)T

, (6.26)

ν
(2) =

(
0, Etot − σ2

IMtx, 0, . . . , 0
)T

, (6.27)

and

ν
(K) =

(
0, . . . , 0, Etot − σ2

IMtx

)T
. (6.28)

In the branching process, a face which covers the whole or part of the feasible region is

split into two smaller faces. In other words, the i-th face Υ(i,K) is split over its longest
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Fig. 6.5: An example of splitting a 2-dimensional face.

edge into the two faces Υ(2i,K) and Υ(2i+1,K). For instance, a total energy constraint of

a three node pair K = 3 scenario forms 2-dimensional faces. This example is illustrated

in Fig. 6.5. The i-th face can be described as

Υ(i,3) =
[
ν
(1),ν(2),ν(3)

]
. (6.29)

The i-th face is split over its longest edge, i.e., the edge between the vertices ν(1) and

ν
(2), into two faces described as

Υ(2i,3) =
[
ν
(1),ν(3),ν(4)

]
, (6.30)

and

Υ(2i+1,3) =
[
ν
(2),ν(3),ν(4)

]
. (6.31)

The new vertex which is shared by the two new faces Υ(2i,3) and Υ(2i+1,3) is calculated

as

ν
(4) =

1

2

(
ν
(1) + ν

(2)
)
. (6.32)

6.2.4 Bounding the maximum sum rate

For the i-th tree node with a subregion of feasible energy allocations defined by the

(K − 1)-dimensional face Υ(i,K), an upper bound u(i) and a lower bound l(i) of the

maximum sum rate are found in this section. For the discussion within this section,
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• a single tree node i in the tree is considered for describing the bounding process.

Therefore, the tree node index i is skipped.

• the energy ε(k) employed for transmitting the k-th data symbol is optimized

instead of optimizing the transmitted energy E(k) by the k-th source node. There

is a linear one to one mapping between these two energies

ε(k) =
(

1 + β
(k)
IM

)

E(k). (6.33)

By adding a new variable t to the DC problem of (6.18)–(6.20), it can be reformulated

as a convex maximization problem stated as

(
ε
T
opt, topt

)
= arg max

(εT,t)
{t− g2 (ε)} (6.34)

subject to

t− g1 (ε) ≤ 0, (6.35)

K∑

k=1

ε(k) + σ2
IMtx = Etot, (6.36)

and

ε(k) ≥ 0, ∀k. (6.37)

The objective function of t− g2 (ε) and the constraint of (6.35) are a convex function

and a convex set, respectively. Unfortunately, a convex maximization problem is a non-

convex problem as well [HPT00]. The new feasible region described by the constraints

of (6.35)–(6.37) is illustrated by the shaded area shown in Fig. 6.2. To find an upper

bound of the maximum sum rate within the face Υ(i,K), a linear relaxation of the convex

maximization problem of (6.34)–(6.37) will be formulated. The main motivation of

relaxing the convex maximization problem of (6.34)–(6.37) to a linear problem is that

• it is needed for finding a good upper bound of the maximum sum rate rather

than the maximum sum rate itself.

• there are many efficient methods to solve a linear program with a reasonable

complexity such as the simplex method and the active-set method [GMSW84,

BJS09].

First, the nonlinear constraint of (6.35) is piece-wisely linearized. Accordingly, the

function g1 (ε) is linearly outer approximated using the tangents

(ε− εj)
T ∂g1 (εj) + g1 (εj) , ∀εj ∈ Ω (6.38)
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Fig. 6.6: The feasible region of the convex maximization problem of (6.34)–(6.37) for-
ming a K-dimensional polytope when the function g1 (ε) is linearly approximated.

of the function g1 (ε) at different feasible energy allocations εj where Ω denotes a set of

feasible energy allocations. Throughout the search over the tree, the energy allocation

of the tree node vertices and added to the feasible energy allocation set Ω. The function

g′1 (ε) = min
εj∈Ω

{

(ε− εj)
T ∂g1 (εj) + g1 (εj)

}

(6.39)

• is piecewise linear and concave.

• is an outer approximation of g1 (ε), i.e., g
′
1 (ε) ≥ g1 (ε) with equality at all εj ∈ Ω.

• gets tighter to g1 (ε) as the number of the different feasible energy allocations in

the set Ω increases.

From g′1 (ε) ≥ g1 (ε), it follows that

g′1 (ε)− g2 (ε) ≥ g1 (ε)− g2 (ε) . (6.40)

Therefore, replacing g1 (ε) by g′1 (ε) in the optimization problem of (6.34)–(6.37) always

yields an upper bound of the maximum sum rate. The shaded area in Fig. 6.6 represents

the new feasible region defined by (6.35)–(6.37) considering a two node pair scenario.

From Fig. 6.6, one can note that the feasible region is enlarged when considering g′1 (ε)

instead of g1 (ε) and it has linear boundaries.
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After linearizing the constraint of (6.35), the objective function of t − g2 (ε) will be

linearized as well. The function g2 (ε) can be written as a function of the vertices by

exploiting the simplex property of (6.24) as

g2 (ε) = g2

(
K∑

k=1

ω(k)
ν
(k)

)

. (6.41)

Based on the fact that g2 (ε) is a concave function of ε and using the Jensen inequality,

g2

(
K∑

k=1

ω(k)
ν
(k)

)

≥
K∑

k=1

ω(k)g2
(
ν
(k)
)

(6.42)

follows with equality at the vertices, i.e., ω(k) = 1 while for l 6= k ω(l) = 0, k = 1, . . . , K.

It follows that the objective function is lower bounded as

t− g2 (ε) ≥ t−
K∑

k=1

ω(k)g2
(
ν
(k)
)
. (6.43)

Using the simplex property of (6.24), the weighting factors ω(k) for k = 1, . . . , K can

be considered as the optimizing variables instead of the allocated energies ε. Fig. 6.7

illustrates how g′1 (ε) outer approximates g1 (ε) and how ω(1)g2
(
ν
(1)
)
+ ω(2)g2

(
ν
(2)
)

lower bounds g2 (ε). Using the linear approximated constraint of (6.39) and the linear

approximated objective function of (6.43), the convex maximization problem of (6.34)–

(6.37) is relaxed to a linear program stated as

(

tub, ω
(1)
ub , . . . , ω

(K)
ub

)

= arg max
(t,ω(1),...,ω(K))

{

t−
K∑

k=1

ω(k)g2
(
ν
(k)
)

}

(6.44)

subject to

t− g′1

(
K∑

k=1

ω(k)
ν
(k)

)

≤ 0, (6.45)

1K×1

(
K∑

k=1

ω(k)
ν
(k)

)

+ σ2
IMtx = Etot, (6.46)

0 ≤ ω(k) ≤ 1, ∀k, (6.47)

and
K∑

k=1

ω(k) = 1, (6.48)

where 1K×1 is a K-dimensional vector of ones. The linear program of (6.44)–(6.48) can

be solved for finding an upper bound of the sum rate in this face Υ(i,K) as illustrated

in Fig. 6.7. Using the active-set method where any of the vertices
(
ν
(k), g2

(
ν
(k)
))

can
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always upper bounds the largest distance between g1 (ε) and g2 (ε).

be considered as an initial point [GMSW84], the linear program of (6.44)–(6.48) can

be solved. Accordingly, the upper bound is calculated as

u
(i)
b = tub −

K∑

k=1

ω
(k)
ub g2

(
ν
(k)
)
, (6.49)

and the corner point at g′1 (ε) corresponding to the upper bound is denoted as (εub, tub)

where

εub =
K∑

k=1

ω
(k)
ub ν

(k) (6.50)

is a valid energy allocation which can be applied as a lower bound candidate.

Regarding to the lower bound l
(i)
b of the maximum sum rate at the i-th tree node,

any feasible energy allocation yields an achievable sum rate which represents a valid

lower bound. Among all the possible lower bounds, the highest one is of interest as it

is the closest to the maximum sum rate. To avoid using complex searching heuristics

aiming at finding a good lower bound, the energy allocations at the vertices of the face

Υ(i,K) as well as the energy allocation found in (6.50) when calculating the i-th upper

bound are considered for finding a lower bound l
(i)
b . Based on this, the lower bound is

calculated as

l
(i)
b = max {g1 (ε)− g2 (ε)} , (6.51)
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and the corresponding energy allocation is calculated as

εlb = arg max
ε

{g1 (ε)− g2 (ε)} , (6.52)

where

ε ∈
{
εub,ν

(1), . . . ,ν(K)
}
. (6.53)

Finally, the proposed branch and bound algorithm can be summarized as follows:

1: set l
(0)
best = 0

2: for every inspected tree node i

3: find u
(i)
b ⊲ using the linear program of (6.44)–(6.48)

4: find l
(i)
b , ε

(i)
lb ⊲ using (6.51), (6.52)

5: update l
(i)
best = max

{

l
(i−1)
best , l

(i)
b

}

6: update the corresponding E
(i)
best

7: if u
(i)
b − l

(i)
best > ǫ then

8: split Υ(i,K) into Υ(2i,K) and Υ(2i+1,K)

9: the children tree nodes with indices 2i and 2i+ 1 should be inspected

10: end if

11: stop if no more tree nodes to be inspected

12: Copt = l
(I)
best, Eopt = E

(I)
best

where I is the index of the last inspected node. Concerning the convergence of the

proposed branch and bound algorithm, see the discussion in [HPTd91].

6.3 Energy allocation for multiple orthogonal re-

sources in an interference mitigation system

In this section, the energy allocation for multiple resource scenarios where IM solu-

tions are applied at each resource is investigated. If N > 1, a source node transmits

simultaneously N uncorrelated data symbols through the N orthogonal resources to

its corresponding destination node. Due to the orthogonality of the resources, the ef-

fective channel including the relays and the filters can be seen as a parallel interference

channel as shown in Fig. 6.8. Let

C(n) =
1

2

K∑

k=1

ld
(

1 + γ
(k,n)
IM

)

(6.54)
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Fig. 6.8: Considering N orthogonal resources, the effective channel including the relays
and the filters is a parallel interference channel.

be the sum rate achieved in the n-th resource. After applying an IM solution to each

of the N parallel interference channels, the energy allocation optimization problem

aiming at maximizing the sum rate with a total energy constraint can be written as

(

E
(1)
opt, . . . ,E

(N)
opt

)

= arg max
(E(1),...,E(N))

{
N∑

n=1

C(n)

}

(6.55)

subject to
N∑

n=1

(
K∑

k=1

(

1 + β
(k,n)
IM

)

E(k,n) +
(

σ
(n)
IMtx

)2
)

= Etot, (6.56)

and

E(k,n) ≥ 0, ∀k, n. (6.57)

The optimization problem of (6.55)–(6.57) is a non-convex problem, i.e., the sum rate

function has many local maxima and a global maximum. However, the branch and

bound algorithm proposed in the previous section can be applied to find the global

maximum sum rate. In this case, the complexity of the branch and bound algorithm
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grows exponentially with the number N of resources because the dimensions of the

feasible region increase linearly with N , i.e., the dimension of the face which describes

the feasible region is NK − 1.

The objective function – the sum rate – is an additive function of the sum rates C(n)

achieved in different resources. Because there are no interferences among different re-

sources, the objective function can be decoupled into sub-objectives each of which is

aiming at maximizing the sum rate in a certain resource. However, the constraint of

(6.56) can not be decomposed among the resources as there is a total energy cons-

traint Etot rather than a per-resource energy constraint E
(n)
totn. If the optimum split of

the total energy constraint among the resources is found, the optimization problem of

(6.55)–(6.57) can be decomposed into N subproblems each subproblem corresponding

to a single resource n which can be stated as

E
(n)
opt = arg max

E(n)

{
C(n)

}
(6.58)

subject to
K∑

k=1

(

1 + β
(k,n)
IM

)

E(k,n) +
(

σ
(n)
IMtx

)2

= E
(n)
totn, (6.59)

and

E(k,n) ≥ 0, ∀k. (6.60)

Accordingly, the branch and bound algorithm can be applied to each resource indi-

vidually. In this case, the complexity of finding the global maximum sum rate grows

linearly with the number N of resources. Unfortunately, the optimum split of the total

energy among the resources is not known.

To find the optimum split of the total energy among the resources, the behavior of the

optimum sum rate as a function of the total energy per resource has to be understood.

Considering a single resource n, the Lagrange of the optimization problem of (6.58)–

(6.60) can be written as

L
(
E(n), λ

)
= C(n) − λ

(
K∑

k=1

(

1 + β
(k,n)
IM

)

E(k,n) +
(

σ
(n)
IMtx

)2

−E
(n)
totn

)

, (6.61)

where λ denotes the Lagrangian multiplier. The dual function can be calculated as

d (λ) = max
E(n)

{
L
(
E(n), λ

)}
, (6.62)

and the optimum Lagrangian multiplier is given by

λopt = arg min
λ

{d (λ)} . (6.63)
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Fig. 6.9: (a) the possible total energy splits among a two resource scenario and (b) the
resulting rate region after applying the branch and bound algorithm at each resource.

Now, let

fdual

(

E
(n)
totn

)

= C
(n)
opt − λopt

(
K∑

k=1

(

1 + β
(k,n)
IM

)

E
(k,n)
opt +

(

σ
(n)
IMtx

)2

− E
(n)
totn

)

(6.64)

be the optimum sum rate in the n-th resource as a function of the total energy cons-

traint. The function fdual

(

E
(n)
totn

)

is a strictly monotonic increasing concave function,

see the proof in Appendix B.2. In other words, the global maximum sum rate increases

as the total energy increases. For a two resource scenario, Fig. 6.9a shows all the pos-

sible total energy splits among the two resources. Because the total energy constraint

is considered only with equality, the energy splits form a line segment between the

extreme points of allocating the total energy to one of the resources. For each energy

split, the branch and bound algorithm can be applied to find the global maximum sum

rate in every resource. Accordingly, the resulting rate region forms a convex envelope

as shown in Fig. 6.9b.

In addition to the N subproblems of (6.58)–(6.60), the master problem which finds the

optimum split of the total energy is stated as

(

E
(1)
totn,opt, . . . , E

(N)
totn,opt

)

= arg max
(

E
(1)
totn,...,E

(N)
totn

)

{
N∑

n=1

fdual

(

E
(n)
totn

)
}

(6.65)
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Fig. 6.10: A histogram of the number of inspected tree nodes I needed for a convergence
to the global maximum sum rate for 1000 random snapshots.

subject to
N∑

n=1

E
(n)
totn = Etot, (6.66)

and

E
(n)
totn ≥ 0, ∀n. (6.67)

The optimization problem of (6.65)–(6.67) is convex because the objective function of
N∑

n=1

fdual

(

E
(n)
totn

)

is concave, i.e., see the proof in Appendix B.2 and the constraints of

(6.66)–(6.67) form a convex set [AW11a]. Therefore, it can be solved using a conven-

tional convex optimization tool.

6.4 Complexity and performance of the energy al-

location algorithms

6.4.1 Complexity analysis

In this section, the complexity of the proposed branch and bound algorithm is investi-

gated. The complexity of inspecting a tree node is dominated by calculating the upper
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bound which requires solving a linear program. The complexity of solving a linear pro-

gram using some of the conventional algorithms is discussed in [Meg89]. It is worth

to mention that the complexity of solving the linear program increases as the number

of inspected tree nodes increases. As the number of inspected tree nodes increases,

the size of the set Ω of feasible energy allocations increases and thus, the number of

tangents which approximate g1 (ε) increases. As a result, the number of constraints of

(6.45) increases which increases the complexity of the linear program.

Actually, it is difficult to analytically study how the required number I of inspected

nodes increases with the numberK of node pairs. However, a simulation result depicting

a histogram of the total number of inspected nodes I for a three node pairs K = 3

scenario with N = 1, R = 3, M = 1, γPSNR = 30 dB, ǫ = 10−6 and 1000 channel

snapshots is shown in Fig. 6.10. As shown in the figure, the number I of inspected tree

nodes varies between few tree nodes and around 1300 tree nodes. However, there is a

high density of trials with I < 100 inspected tree nodes which shows that the proposed

algorithm can be applied in realistic systems.

As discussed in Section 6.3, the optimization problem of (6.55)–(6.57) is decomposed

among the resources into subproblems which can be solved simultaneously by applying

the branch and bound algorithm to each subproblem. Accordingly, the complexity of

the algorithm increases linearly with the number N of resources.

6.4.2 Performance analysis

In this section, the performance of the proposed branch and bound algorithm is inve-

stigated. A scenario with K = 3, N = 1, R = 3 and M = 1 is considered. Among the

different IM algorithms proposed in Chapter 5, the one with fixed filters proposed in

Section 5.2 is applied because the design of the relay coefficients depends only on the

channel coefficients rather than the amount of the transmitted energies. In this case,

the effective channel including the relays and the filters is independent of the PSNRs.

Moreover, the coefficients of the transmit and receive filters are adjusted as described

in Section 3.5.3. According to this setup, the effective channel including the relays and

the filters is an interference channel as shown in Fig. 6.1b.

To assess the performance of the proposed branch and bound algorithm, well known

energy allocation algorithms are considered as benchmarks. Firstly, the equal energy

allocation algorithm which serves the data symbols transmitted by the source nodes
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and the relays with equal energies

ε(k) =
Etot − σ2

retx

K
, ∀k. (6.68)

The second benchmark is the SIR balancing which aims at maximizing the minimum

SIR. This results in equal SIRs

E(k)
∣
∣
∣h

(k,k)
IMeff

∣
∣
∣

2

∑

l 6=k

E(l)

∣
∣
∣h

(k,l)
IMeff

∣
∣
∣

2 = γSIRb (6.69)

at all the destination nodes k = 1, . . . , K. Thirdly, the greedy energy allocation algo-

rithm which uses all the available useful energy for transmitting a single data symbol

k corresponding to the node pair with the highest ratio of the effective useful channel

gain and the effective noise power

ε(k) =







Etot − σ2
retx k = kbest

0 otherwise,
∀k. (6.70)

where

kbest = arg max
k







∣
∣
∣h

(k,k)
IMeff

∣
∣
∣

2

(

σ
(k)
IMeff

)2







, ∀k. (6.71)

The final reference energy allocation algorithm is the waterfilling algorithm described

in Section 4.2 which ignores the interferences and maximizes the sum rate by allocating

more energies to node pairs with low noise levels as illustrated in Fig. 4.2. Because the

waterfilling algorithm does not consider the interferences, it is a suboptimum algorithm.

In the following simulation results, the sum rates achieved using the proposed branch

and bound algorithm with ǫ = 10−6 as well as the benchmarks are calculated for

many different channel snapshots with many different positions of the relays and the

destination nodes after applying the IM algorithm described in Section 5.2. Fig. 6.11

depicts the achieved average sum rates as a function of the PSNRs. At low PSNRs, the

energy is scarce and thus, the noise is dominant. As a consequence, using the whole

available energy for the best node pair, e.g., applying the greedy allocation, is beneficial

as compared to serving all the node pairs and generating more noise, i.e., using equal

energy allocation and SIR balancing.

As the PSNR increases, the interference energy increases and becomes dominant. At the

moderate PSNR regime, serving only the best node pair is not the optimum anymore,
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Fig. 6.11: Achieved sum rate as a function of PSNR for a scenario with K = 3, N = 1,
R = 3 and M = 1 using different energy allocation algorithms.

i.e., greedy allocation is suboptimum. Also, serving all node pairs aiming at equalizing

the SIR is the worst algorithm because it serves bad node pairs as well which generates

more interference and hence, degrades the sum rate. Moreover, serving the node pairs

with equal energies achieves a sum rate close to the maximum but as the interference

increases, it diverges from the maximum. One can also note that at the moderate and

high PSNR regimes, the sum rate achieved by the greedy allocation increases as the

PSNRs increases but for other algorithms like equal energy allocation and SIR ba-

lancing which serve all nodes, it saturates at certain levels. Furthermore, waterfilling

diverges from the maximum and uses almost the same amount of energies for trans-

mitting all the data symbols because the noise levels are very small as compared to the

transmitted energies. Therefore, waterfilling achieves the same sum rates as the equal

energy allocation algorithm. Finally, at high PSNRs, a high interference is generated

upon transmitting more than one data symbol. Therefore, greedy allocation achieves

sum rate close to the global optimum. Furthermore, the branch and bound algorithm

converges to the global maximum sum rate at the whole range of the PSNRs and it

outperforms all the other algorithms.

For the same scenario and simulation setup, a CCDF of the sum rates achieved at

γPSNR = 35 dB is depicted in Fig. 6.12. As shown in the figure, the branch and bound

algorithm achieves always the highest sum rate for all channel snapshots. Furthermore,
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Fig. 6.12: CCDF of the achieved sum rates at a PSNR of 35 dB in a scenario with
K = 3, N = 1, R = 3 and M = 1 for different energy allocation algorithms.

an outage capacity of Cout = 4.4 bits is achieved by the branch and bound algorithm

for an outage probability of 10%. In terms of outage capacity, the branch and bound

algorithm outperforms the conventional energy allocation algorithms, namely

• the equal energy allocation algorithm which is usually considered in downlink

transmission and

• the SIR balancing algorithm which is usually considered in uplink transmission

by 36.4% and 56.8%, respectively.
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Chapter 7

Summaries

7.1 Summary in English language

In future multiuser wireless systems, the limited system resources have to be extensi-

vely reused for serving several users. This results in received interferences at the users

which limit the performance of the system. To demonstrate the interference problem in

multiuser systems, a scenario with several source-destination node pairs communicating

unidirectionally through a shared medium is considered. The communication among

the nodes is assisted by some relays and takes place in two time slots. The source nodes

transmit twice and the destination nodes receive twice during the two time slots and

thus, they have two dimensional temporal transmit and receive filters, respectively. The

present dissertation focuses on investigating how the relay and the filter coefficients can

be smartly adjusted such that the system performance is enhanced.

For the considered scenario, interference alignment (IA) achievement is the first inve-

stigated problem. Basically, aligning the interferences at the destination nodes requires

solving a multivariate system of polynomial equations. This system of equations is

linearized by fixing the filter coefficients and hence, just the relay coefficients are opti-

mized for achieving IA. The feasibility study of this IA algorithm shows that it requires

a number of relays which increases quadratically with the number of node pairs. Mo-

reover, the case of not having enough relays for achieving IA is studied. In this case,

an interference mitigation (IM) algorithm which optimizes the relay coefficients aiming

at minimizing the total interferences is proposed. Using this IM algorithm, the receive

filters will not fully nullify the interferences and therefore, the remaining interferences

are treated as noise. From the numerical results, one can conclude that the performan-

ce of the IA algorithm is good only at high signal to noise ratios (SNRs) while at low

and moderate SNRs it preforms poorly as compared to other conventional algorithms.

Compared to the IA algorithm, a significant sum rate improvement in the low and mo-

derate SNR regime is achieved when allowing some weak interferences being treated as

noise using the IM algorithm.

The number of relays required for achieving IA can be reduced by adapting part of the

filter coefficients to the channel in additional to the relay coefficients. By partially ad-

apting the filters, the IA problem remains linear because the direct links are exploited.
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The IA solutions form a multi-dimensional solution space of a homogenous system of li-

near equations. A closed form solution which selects the IA solution with the minimum

sum mean square error (MSE) is derived. Apart from achieving IA, other alternative

objectives which additionally reduce the noise powers and improve the useful signal

powers are studied. Firstly, the sum MSE minimization problem with a total energy

constraint is studied. By partially adapting the filters, the sum MSE becomes a convex

function of both the relay coefficients and the unfixed filter coefficients and hence, a

quadratically constrained quadratic minimization problem is solved to find the mini-

mum sum MSE for a given total energy constraint. Secondly, the non-convex sum rate

maximization problem is investigated. Basically, it is reformulated as a multi-convex

optimization problem just by adding two sets of scaling factors. In the numerical re-

sults, both the sum MSE minimization and sum rate maximization algorithms show

an out-performance over the IA algorithms at all SNRs.

Thanks to the linearity of the system, the effective channel between the source nodes

and the destination nodes including the relays and the filters can be considered as

an interference free channel after applying an IA solution. Based on this idea, the

optimum energy allocation among the source nodes and the relays can be found using

the waterfilling algorithm. From the numerical results, one can conclude that optimizing

the energy allocation is essential only at low and moderate SNRs because at high SNRs

equal energy allocation achieves sum rates close to the optimum ones. After applying

an IM solution, the effective channel between the source nodes and the destination

nodes including the relays and the filters can be considered as an interference channel.

In interference channels, optimizing the energy allocation plays a key role in improving

the performance. By treating the interference as noise, the sum rate function is not a

concave function of the allocated energies, i.e., the function has many local maxima

and a global maximum. Basically, the sum rate function is written as a difference of

two concave functions and the global maximum is found using the proposed branch

and bound algorithm.

The investigations on the energy allocation are extended to consider systems suppor-

ting multiple orthogonal resources. If an IA algorithm is applied on every resource, an

energy allocation algorithm which maximizes the sum rate while maintaining equal ra-

tes achieved by the individual destination nodes is proposed. The effective channel can

be seen as a parallel interference channel when an IM algorithm is applied in every re-

source. For parallel interference channels, the fact that there are no interferences among

the resources is exploited by decomposing the energy allocation optimization problem

among the resources. The energy allocation problem decomposition significantly redu-

ces the complexity of the energy allocation algorithm so that the complexity increases

only linearly with the number of resources.
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7.2 Kurzfassung in deutscher Sprache

In zukünftigen Mehrbenutzerfunksystemen müssen die begrenzten Systemressourcen

intensiv wiederverwendet werden. Dadurch empfangen die Benutzer Interferenzsignale,

sodass die Performanz des Funksystems begrenzt wird. Um die Interferenzproblema-

tik in Mehrbenutzerfunksystemen zu modellieren, wird ein Szenario bestehend aus

mehreren Paaren von Quell- und Zielknoten betrachtet. Die Knotenpaare kommuni-

zieren unidirektional miteinander. Die Kommunikation zwischen den Knoten wird von

einigen Relays unterstützt und findet in zwei Zeitschlitzen statt. Die Quell- und Emp-

fangsknoten senden beziehungsweise empfangen einmal pro Zeitschlitz und haben somit

zweidimensionale Sende- und zweidimensionale Empfangsfilter. Diese Dissertation kon-

zentriert sich auf die Untersuchung, wie die Relay- und die Filterkoeffizienten intelligent

angepasst werden können, sodass die Performanz des Funksystems erhöht wird.

Interference-Alignment (IA) ist das erste untersuchte Verfahren. Zum Ausrichten der

Interferenzen an den Zielknoten benötigt man die Lösung eines multivariaten Polyno-

mialgleichungssystems. Dieses Gleichungssystem kann durch Fixieren der Filterkoeffi-

zienten linearisiert werden und dann werden nur die Relaykoeffizienten zum Erzielen

von IA optimiert. Die Machbarkeitsstudie des vorgeschlagenen IA-Algorithmus zeigt,

dass die Anzahl der benötigten Relays quadratisch mit der Anzahl der Knotenpaare

steigt. Wenn nicht genug Relays zur Verfügung stehen, wird ein Interference-Mitigation

(IM)-Algorithmus zum Reduzieren der Gesamtinterferenz vorgeschlagen. Die verblei-

bende Interferenz wird als Rauschen behandelt. Die numerischen Ergebnisse zeigen,

dass der IA-Algorithmus nur für ein hohes SNR eine gute Performanz erzielt. Für ein

geringes und mittleres SNR zeigt der IA-Algorithmus eine schlechte Performanz im

Vergleich zu konventionellen Algorithmen. Im Vergleich zum IA-Algorithmus erreicht

der IM-Algorithmus eine Performanzverbesserung bei geringen und mittleren SNRs.

Die Anzahl der benötigten Relays für IA kann reduziert werden, indem zusätzlich zu

den Relaykoeffizienten ein Teil der Filterkoeffizienten optimiert wird. In diesem Fall

bleibt das IA Problem linear, da die Direktverbindung zwichen den Knotenpaaren aus-

genutzt wird. Die IA-Lösungen bilden so einen mehrdimensionalen Lösungsraum eines

homogenen, linearen Gleichungssystems. Weiterhin wird eine geschlossene Lösung zum

Finden der IA-Lösung dem minimalen Summen-MSE abgeleitet. Abgesehen vom IA

werden auch Methoden zum Reduzieren der Rauschleistung und zum Vergrößern der

Nutzsignalleisung untersucht. Zuerst wird das Problem der Minimierung des Summen-

MSE bei beschränkter Summenenergie untersucht. Mit teilweise fixierten Filtern ist

der Summen-MSE eine konvexe Funktion der Relaykoeffizienten und der unfixier-

ten Filterkoeffizienten. Somit ist ein quadratisch-beschränktes quadratisches Minimie-
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rungsproblem zu lösen. Zweitens wird das nicht-konvexe Problem der Summenraten-

Maximierung bei beschränkter Summenenergie untersucht. Durch das Hinzufügen

zweier Mengen von Skalierungsfaktoren als multi-konvexes Optimierungsproblem for-

muliert werden. Die numerischen Ergebnisse zeigen, dass sowohl die Summen-MSE-

Minimierung als auch die Summenraten-Maximierung für alle SNR eine bessere Per-

formanz als der IA-Algorithmus erreichen.

Aufgrund der Linearität des Systems kann, nachdem eine IA-Lösung angewendet wur-

de, der effektive Kanal zwischen Quell- und Zielknoten inklusive der Relays und der

Filter als ein interferenzloser Kanal betrachtet werden. Aus diesem Grund wird die op-

timale Energieallokation mit der Waterfilling-Algorithmus gefunden. Die numerischen

Ergebnisse zeigen, dass eine Optimierung der Energieallokation nur bei geringem und

mittlerem SNR notwendig ist. Bei einem hohen SNR erreicht eine Gleichverteilung der

Energie fast die gleiche Summenrate wie eine optimale Energieallokation. Wenn eine

IM-Lösung angewendet wird, kann der effektive Kanal zwischen Quell- und Zielkno-

ten inklusive der Relays und der Filter als ein Interferenzkanal betrachtet werden. In

Interferenzkanälen spielt die Optimierung der Energieallokation eine Schlüsselrolle für

die Performanzverbesserung des Funksystems. Wird die Interferenz als Rauschen be-

trachtet, dann ist die Summenraten-Funktion nicht mehr konkav, d.h. die Funktion hat

viele lokale Maxima und ein globales Maximum. Die Summenraten-Funktion kann als

Differenz zweier konkaver Funktionen formuliert werden. Das globale Maximum wird

dann durch den vorgeschlagenen Branch-and-Bound-Algorithmus gefunden.

Die Untersuchung der optimalen Energieallokation wird auch für Systeme mit mehreren

orthogonalen Ressourcen durchgeführt. Es wird ein Algorithmus zur Energieallokation

vorgeschlagen, der die Summenrate bei gleichen Raten an den Zielknoten maximiert.

Hierbei wird davon ausgegangen, dass IA für jede Ressource angewendet wird. Der

effektive Kanal kann als ein paralleler Interferenzkanal gesehen werden, wenn ein IM-

Algorithmus auf alle Ressourcen angewendet wird. In parallelen Interferenzkanälen wird

die Tatsache genutzt, dass die orthogonalen Ressourcen keine Interferenz untereinander

haben. Das Problem der Energieallokation kann dann in Teilprobleme für die einzelnen

Ressourcen zerlegt werden. Es wird gezeigt, dass durch die Problemzerlegung die Be-

rechnungskomplexität signifikant verkleinert wird. Dabei erhöht sich die Komplexität

nur linear mit der Anzahl der Ressourcen.
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Appendix A

Linear algebra

A.1 The Kronecker product and the vectorization

operator

The Kronecker product is frequently used in this work. Given the two matrices X =
[
x(i,j)

]
∈ CI×J and Z =

[
z(m,n)

]
∈ CM×N , the Kronecker product of X and Z denoted

as X⊗ Z is given by

X⊗ Z =








x(1,1)Z · · · x(1,J)Z
...

...

x(I,1)Z · · · x(I,J)Z








∈ C
IM×JN . (A.1)

The resulting matrix has IJ blocks of size MN each.

Furthermore, the vectorization operator vec (.) is often used in conjunction with the

Kronecker product. The vectorization of the matrix X is given by

vec (X) =
(
x(1,1), . . . , x(I,1), x(1,2), . . . , x(I,2), . . . , . . . , x(1,J), . . . , x(I,J)

)T
. (A.2)

vec (X) is IJ dimensional column vector.

A.2 Some properties of the Kronecker product and

the vectorization operator

In this section, some properties of the Kronecker product and the vectorization operator

used in this work are listed. For more information, see [MN99, Tur05]. Define the

matrices Y =
[
y(j,m)

]
∈ CJ×M and W =

[
w(n,t)

]
∈ CN×T . Then, there are some

properties of the Kronecker product and the vectorization operator including

(X⊗ Z) (Y ⊗W) = X Y ⊗ Z W, (A.3)

αX⊗Y = X⊗ αY = α (X⊗Y) , (A.4)

(X⊗ Z)−1 = X−1 ⊗ Z−1, (A.5)
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with I = J , M = N and both X and Z being invertible. Furthermore,

vec (X Y Z) =
(
ZT ⊗X

)
vec (Y), (A.6)

tr (X Y) = vec
(
XT
)T

vec (Y), (A.7)

and

tr (X Y Z) = vec
(
XT
)T

(I⊗Y) vec (Z). (A.8)

Let x and y be M dimensional and N dimensional column vectors, respectively. Then,

the equalities

vec
(
x yT

)
= y⊗ x (A.9)

and

x∗TZ y = tr
(
Zyx∗T) (A.10)

= vec
(
ZT
)T

vec
(
y x∗T) (A.11)

= vec
(
ZT
)T (

x∗ ⊗ y
)

(A.12)

=
(
yT ⊗ x∗T) vec (Z) (A.13)

hold. Finally, the trace property

tr (X Y Z) = tr (Y Z X) = tr (Z X Y) (A.14)

is applied in this work.

A.3 Woodbury matrix inversion lemma

Let W and Y be square and invertible matrices. The Woodbury matrix inversion

lemma [TS86] can be stated as

(W +X Y Z)−1 = W−1 −W−1X
(
Y−1 + Z W−1X

)−1
Z W−1. (A.15)
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Appendix B

Proofs of propositions

B.1 Proof of Proposition 1

Proof. The Rayleigh quotient maximization problem of (2.38) can be equivalently for-

mulated as a general eigenvalue problem [TB97]

Ed

∣
∣v(k,1)

∣
∣
2

σ2
a(k)a(k)∗T w = ρ

(

1

ECtot −Ed |v(k,1)|2
IRcM2+1 +B(k)

)

w, (B.1)

where the eigenvalue and the eigenvector are denoted by ρ and w, respectively. For a

fixed transmit energy Ed

∣
∣v(k,1)

∣
∣
2
in the first time slot, the maximum SNR in the second

time slot is

max
{
γ(k,2)

}
= ρmax, (B.2)

where ρmax is the largest eigenvalue of the problem of (B.1).

For the eigenvalue problem of (B.1), there is only a single nonzero eigenvalue and a

single eigenvector because the rank of the vector a(k) is one. Accordingly,

rank





(

1

ECtot − Ed |v(k,1)|2
IRcM2+1 +B(k)

)−1

a(k)a(k)∗T



 =

min






rank





(

1

E
(k)
tot −Ed |v(k,1)|2

IRcM2+1 +B(k)

)−1


, rank
(
a(k)
)
, rank

(
a(k)∗T)






= 1.

(B.3)

Therefore, there is a single eigenvalue calculated as

ρ = ρmax =
Ed

∣
∣v(k,1)

∣
∣
2

σ2
tr





(

1

ECtot − Ed |v(k,1)|2
IRcM2+1 +B(k)

)−1

a(k)a(k)∗T



. (B.4)

Using (A.10), (B.4) can be rewritten as

ρ =
Ed

∣
∣v(k,1)

∣
∣
2

σ2
a(k)∗T

(

1

ECtot − Ed |v(k,1)|2
IRcM2+1 +B(k)

)−1

a(k). (B.5)
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Without loss of generality, the rest of the derivation considers single antenna M = 1

relays. By substituting the values of a(k) and B(k) for M = 1, (B.5) can be rewritten

as

ρ =

∣
∣
∣h

(k,k)
DS

∣
∣
∣

2

σ2

(

ECtot − Ed

∣
∣v(k,1)

∣
∣
2
)

+

Rc∑

r=1

1

σ2

Ed

∣
∣v(k,1)

∣
∣
2
∣
∣
∣h

(r,k)
RS

∣
∣
∣

2 (

ECtot − Ed

∣
∣v(k,1)

∣
∣
2
) ∣
∣
∣h

(k,r)
DR

∣
∣
∣

2

σ2 + Ed |v(k,1)|2
∣
∣
∣h

(r,k)
RS

∣
∣
∣

2

+
(

ECtot − Ed |v(k,1)|2
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Let E(1) and E(2) be the transmitted energy in the first and the second time slots,

respectively. Also, let x =

∣

∣

∣
h
(k,k)
DS

∣

∣

∣

2

σ2 , y(r) =

∣

∣

∣
h
(r,k)
RS

∣

∣

∣

2

σ2 and z(r) =

∣

∣

∣
h
(k,r)
DR

∣

∣

∣

2

σ2 . Then, the sum

SNR as a function of the transmitted energy in the first time slot with a total energy

constraint can be written as

γ(k)
(
E(1)

)
= γ(k,1) + ρ (B.7)

= xE(1) + xE(2) +
Rc∑

r=1

y(r)E(1)z(r)E(2)

1 + y(r)E(1) + z(r)E(2)
. (B.8)

Because there is a total energy constraint, one can rewrite the transmitted energy in

the first time slot as

E(1) = κECtot, (B.9)

and in the second time slot as

E(2) = (1− κ)ECtot, (B.10)

where 0 ≤ κ ≤ 1. By substituting (B.9) and (B.10) in (B.8), the sum SNR as a function

of κ is written as

γ(k) (κ) = ECtot

(

x+

Rc∑

r=1

y(r) κ z(r) (1− κ)
1

ECtot
+ y(r)κ+ z(r) (1− κ)

)

. (B.11)

To show the concavity of γ(k) (κ) in the domain of 0 ≤ κ ≤ 1, it is sufficient to proof

the concavity of the function

f(r) (κ) =
y(r) κ z(r) (1− κ)

1
ECtot

+ y(r)κ+ z(r) (1− κ)
(B.12)

for all r = 1, ..., Rc [BV04]. As the sufficient condition

∂2f(r)

∂κ2
≤ 0 (B.13)

holds in the domain of 0 ≤ κ ≤ 1 for any r, the function f(r) (κ) is concave and thus

γ(k) (κ) is a concave function. This completes the proof.
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B.2 Proof of Proposition 2

Proof. First, the concavity of the sum rate when considered as a function of the total

energy constraint will be proved [AW11a, YL06]. Consider the optimization problem
(

E
(1)
opt, . . . ,E

(K)
opt

)

= arg max
(E(1),...,E(K))

{C} (B.14)

subject to
N∑

n=1

(
K∑

k=1

(

1 + β
(k,n)
IA

)

E(k,n) +
(

σ
(n)
IAtx

)2
)

= Etot. (B.15)

The Lagrange of the optimization problem of (B.14)–(B.15) can be written as

L
(
E(1), . . . ,E(K), λ

)
= C − λ

(
N∑

n=1

(
K∑

k=1

(

1 + β
(k,n)
IA

)

E(k,n) +
(

σ
(n)
IAtx

)2
)

− Etot

)

,

(B.16)

where λ denotes the Lagrangian multiplier. The dual function can be calculated as

d (λ) = max
(E(1),...,E(K))

{
L
(
E(1), . . . ,E(K), λ

)}
(B.17)

and the optimum Lagrangian multiplier is given by

λopt = arg min
λ

{d (λ)} . (B.18)

Let

f (Etot) = Copt − λopt

(
N∑

n=1

(
K∑

k=1

(

1 + β
(k,n)
IA

)

E
(k,n)
opt +

(

σ
(n)
IAtx

)2
)

− Etot

)

(B.19)

be the optimum sum rate as a function of the total energy constraint. For 0 ≤ ν(n) ≤ 1

with n = 1, . . . , N and
N∑

n=1

ν(n) = 1. (B.19) can be rewritten as

f

(
N∑

n=1

ν(n)E
(n)
totn

)

= Copt−λopt

(
N∑

n=1

(
K∑

k=1

(

1 + β
(k,n)
IA

)

E
(k,n)
opt +

(

σ
(n)
IAtx

)2
)

−
N∑

n=1

ν(n)E
(n)
totn

)

,

(B.20)

where E
(n)
totn is the total energy at the n-th resource. Using the property of addition

C =
N∑

n=1

C(n) of the rates where C(n) denotes the sum rate of the n-th resource, (B.20)

becomes

f

(
N∑

n=1

ν(n)E
(n)
totn

)

=
N∑

n=1

(

C
(n)
opt − λopt

(
K∑

k=1

(

1 + β
(k,n)
IA

)

E
(k,n)
opt +

(

σ
(n)
IAtx

)2
)

+ λoptν
(n)E

(n)
totn

)

,

(B.21)
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which fulfills the following inequality

f

(
N∑

n=1

ν(n)E
(n)
totn

)

≥
N∑

n=1

νnf
(

E
(n)
totn

)

. (B.22)

The equality holds when ν(n) = 1 and ν(m) = 0 for any other m 6= n. This proves the

concavity of the function f (Etot).

Secondly, the optimum sum rate is a strictly monotonic increasing function of the total

energy constraint because of two reasons:

• The optimum sum rate is a logarithmic function where the logarithm is a mono-

tonically increasing function.

• The optimum sum rate is a function of the optimum individual SNRs which is

a strictly monotonic increasing function. This can be shown by the following

argument. Considering the optimum energy allocation using the waterfilling al-

gorithm, if the total energy constraint is increased, the water level is increased

and thus, the individual SNRs are increased.

This completes the proof.
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Appendix C

Computational complexity

C.1 Complexity measure

When analyzing a complexity of an algorithm in terms of time, one needs to use an

abstract measure independent of the central processing unit (CPU) type, the program-

ming language and the programming style. Therefore, basic operations employed in an

algorithm such as addition, subtraction, multiplication and division are usually consi-

dered in the complexity analysis. The complexity of an algorithm is a function of the

number of input variables. Some operations like multiplication and division encounter

a faster complexity growth with the dimensions of the input variables as compared to

other operations like addition and subtraction.

The big-O notation O (.), which describes the asymptotic behavior of an operation, a

function or an algorithm is used as a complexity measure. Let f (n) and g (n) be real

functions that map the size of an algorithm input variables n to its time complexity.

Then,

g (n) ∈ O (f (n)) (C.1)

if

g (n) ≤ c f (n) , (C.2)

where c is a positive real constant [NN11].

For instance, a polynomial which includes several terms, just the term with the highest

order is considered in the complexity calculation because it has the fastest growth as

compared to other terms. Furthermore, constant coefficients are ignored in the comple-

xity analysis which is a reasonable assumption as we are interested in the asymptotic

behavior.

C.2 Complexity of some mathematical operations

and functions

In this section, the complexity of some basic mathematical operations used for calcu-

lating the computational complexity of the proposed algorithms is listed. Define the
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matrices X =
[
x(i,j)

]
∈ CI×J , Y =

[
y(j,m)

]
∈ CJ×M and Z =

[
z(m,n)

]
∈ CM×N . The

matrix X is assumed to be full rank. Let x and y be column vectors of dimensions

I and J , respectively. Let L be a square lower triangular matrix of size J × J . The

complexities of some basic linear algebra operations are listed in Table C.1. For each

operation, the number of complex multiplications is calculated and the corresponding

complexity is shown. Part of the operations shown in Table C.1 are obtained from

[Mac08, GV96].

Given the matrix X with J = I, the matrix IJ ⊗X can be computed efficiently using

a single finite loop with J iterations. Two nested finite loops each of which having J

iterations are required for calculating the matrix X⊗ IJ .

For a full rank tall matrix X, the complexity of the left pseudo inverse matrix

X+ =
(
X∗TX

)−1
X∗T (C.3)

is calculated from Table C.1 as

O
(
IJ2 + J3

)
. (C.4)

Because J < I, (C.4) becomes

O
(
IJ2
)
. (C.5)
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Operation/function Expression
Number of

Complexity
multiplications

Product x y 1 O (1)

Division x/y 1 O (1)

Vector scaling x y J O (J)

Inner product x∗T y with J = I J O (J)

Self outer product y∗T y J O (J)

Outer product x y∗T IJ O (IJ)

Tensor product x⊗ y IJ O (IJ)

Matrix scaling x Y JM O (JM)

Matrix-vector product X y IJ O (IJ)

Matrix-matrix product X Y IJM O (IJM)

Gram matrix generation
X X∗T I2J+IJ

2
O (I2J)

X∗T X IJ2+IJ
2

O (IJ2)

Matrix inversion X−1 with J = I J3+3J
2

O (J3)

Cholesky decomposition,
X = L L∗T with J = I 1

6
J3 O (J3)

see [KM11]

Triangular matrix inversion L−1 J3

6
+ J2

2
+ J

3
O (J3)

Left pseudo inverse
X+ =

(
X∗TX

)−1
X∗T

O (IJ2)
with J < I

Kronecker product

X⊗ Z IJMN O (IJMN)

IJ ⊗X with J = I O (J)

X⊗ IJ with J = I O (J2)

Table C.1: Complexity of some mathematical operations and functions.
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Appendix D

Acronyms and symbols

Acronyms

BS Base Station

CCDF Complementary Cumulative Distribution Function

CPU Central Processing Unit

CSI Channel State Information

DC Difference of two Convex functions

DoF Degree of Freedom

HK Han and Kobayashi

IA Interference Alignment

IC Interference Channel

i.i.d. independent identically distributed

IM Interference Mitigation

MIMO Multiple Input Multiple Output

MRC Maximum Ratio Combining

MSE Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

PSNR Pseudo Signal to Noise Ratio

SINR Signal to Interference plus Noise Ratio

SIR Signal to Interference Ratio

SNR Signal to Noise Ratio

SR Sum Rate
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TDMA Time Division Multiple Access

TV Television

Frequently used symbols

c(k,n) achieved rate at the k-th destination node in the n-th resource

C sum rate

C(k) sum rate achieved at the k-th destination node

C(n) sum rate achieved in the n-th resource

Cout outage capacity

C
(k)
nn covariance matrix of the received noise signals at the k-th destination node

C(r)
rr covariance matrix of the received signals at the r-th relay

d(l) transmitted data symbol of the l-th source node

d(l,n) transmitted data symbol of the l-th source node in the n-th resource

d̂
(k)

estimated data symbol at the k-th destination node

d̂
(k,n)

estimated data symbol at the k-th destination node in the n-th resource

ddof degrees of freedom

e(k,τ) received signal at the k-th source node in the τ -th time slot

e
(r)
R received vector at the r-th relay

E(k,n) allocated energy at the k-th source node in the n-th resource

E(k) vector of allocated energies at the k-th source node in all resources

E(n) vector of allocated energies at the source nodes in the n-th resource

Ed average energy of the transmitted data symbols

ECtot total energy per cell

ERtot total energy transmitted by the relays
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ERx received energy in an antenna

Etot total energy constraint

E
(τ)
tot total energy used in the τ -th time slot

E
(k)
totk total energy used for transmitting the k-th data symbol

ETx transmitted energy of an antenna

fc carrier frequency

G(r) processing matrix of the r-th relay

h
(k,r)
DR channel vector between the r-th relay and the k-th destination node

h
(k,r,n)
DR channel vector between the r-th relay and the k-th destination node in the n-th

resource

h
(k,l)
DS channel coefficient between the l-th source node and the k-th destination node

h
(k,l,n)
DS channel coefficient between the l-th source node and the k-th destination node

in the n-th resource

h
(r,l)
RS channel vector between the l-th source node and the r-th relay

h
(r,l,n)
RS channel vector between the l-th source node and the r-th relay in the n-th

resource

H(k,l) effective channel between the l-th source node and the k-th destination node

I number of iterations

I identity matrix

K number of node pairs

L Lagrange function

M number of relay antennas

n
(k,τ)
D received noise signal at the k-th destination node in the τ -th time slot

n
(r)
R received noise vector at the r-th relay

N number of resources

Pout outage probability
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q distance from a transmit antenna

qo minimum distance between a source node and a relay or a destination node

R number of relays

Rc number of relays in a considered cell

s(l,τ) transmitted signal of the l-th source node in the τ -th time slot

u(k,τ) receive filter coefficient of the k-th destination node in the τ -th time slot

u(k) receive filter of the k-th destination node

v(l,τ) transmit filter coefficient of the l-th source node in the τ -th time slot

v(l) transmit filter of the l-th source node

x vector of the relay coefficients

y vector of the relay coefficients and the unfixed filter coefficients

γ(k) SINR at the k-th destination node

γ(k,τ) SNR at the k-th destination node in the τ -th time slot

γPSNR PSNR pseudo SNR

δ sum MSE

δ(k) MSE at the k-th destination node

ǫ arbitrary small positive value

ε(k,n) energy used for transmitting the k-th data symbol in the n-th resource

ε
(n) vector of used energies for transmitting the data symbols in the n-th resource

λ lagrangian multiplier

λ vector of lagrangian multipliers

ξ effective channel gain between a node pair including the relays

ρ(i) the i-th eigenvalue

σ2 noise variance at a receive antenna

υc speed of light
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Thesen

• The performance of current multiuser wireless systems is limited by the interfer-

ence.

• A multiuser wireless system is not interference limited anymore if interference

alignment (IA) is applied.

• Relays can be employed in multiuser wireless systems for interference reduction

rather than for the conventional task of range extensions.

• Realizing IA using relays is a more realistic approach than other approaches like

using many time extensions or using many antennas at the communicating nodes.

• In multiuser relay networks, exploiting the direct links among the node pairs

expands the dimensions of the transmit and the receive signal spaces.

• For a multiuser relay network, IA is a tri-affine problem of the transmit filter, the

receive filter and the relay coefficients. By either fixing all the filter coefficients or

fixing part of the filter coefficients, this tri-affine IA problem is linearized. Fixing

part of the filter coefficients does not affect the dimensionality of the IA solution

space.

• At low and moderate SNRs, leaving some weak interferences and treating them

as noise leads to higher rates as compared to the ones achieved by fully canceling

the interferences, i.e., by doing IA.

• IA nullifies the interferences in the system but it does not consider reducing the

received noise powers. However, other approaches such as minimizing the sum

MSE is promising as it keeps a compromise between the noise reduction and the

interference reduction.

• In multiuser relay networks, the sum MSE is a tri-convex function of the transmit

filter, the receive filter and the relay coefficients. Fixing part of the filter coeffi-

cients leads the sum MSE to be a convex function of the relay coefficients and

the unfixed filter coefficients.

• Maximizing the sum rate is the ultimate goal in improving the system performan-

ce. The sum rate maximization problem is a non-convex problem but by adding

two sets of scaling factors, it can be reformulated as a multi-convex optimization

problem.
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• For any multiuser communications system, the sum rate maximization problem

can be equivalently formulated as a multi-convex optimization problem if the

estimated data symbols can be written as multi-linear functions of the system

variables.

• For a multiuser relay network, optimizing the energy allocation among the source

nodes and the relays after applying an IA solution is equivalent to optimizing the

energy allocation in interference free channels.

• Optimizing the energy allocation on the top of an IA solution does not improve

the system performance significantly especially at high SNRs.

• For multiuser relay networks, optimizing the energy allocation among the source

nodes and the relays is equivalent to optimizing the energy allocation in in-

terference channels after applying a transmission scheme which mitigates the

interferences but not fully nullifying them.

• Energy allocation in interference channels plays a key role in improving the system

performance.

• In interference channels, the sum rate is not a concave function of the allocated

energies rather it is a difference of two concave functions. This structure of the

difference of two concave functions can be exploited to find the global maximum

sum rate efficiently.
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