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"There is only one good, which is knowledge, and one evil, which is ignorance."

Plato (c. 427 BC - 347 BC)

"In nature's infinite book of secrecy, A little I can read."

William Shakespeare (1605-1606)
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Chapter 1

| ntroduction and Fundamentals

This chapter contains introduction of our work, overview of this thesis and few
fundamental things. We have discussed about the previous works in this field. General
properties of exciton, band structure of cuprous oxide (Cu,0), the optical properties of
exciton in Cu,0 and the possibility of Bose-Einstein condensation (BEC) of exciton in

Cu,0 are discussed.
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1.1 Introduction

This thesis is a theoretical investigation of the relaxation behaviour of excitons in Cu,O
at ultra low temperatures when excitons are confined within a potential trap and also in a
homogeneous system. Excitons are in particular interest because in the low density limit
they are bosons, and therefore obey Bose-Einstein statistics. The possibility of BEC of
excitons in semiconductors was an interesting topic for many years [1,2]. Cuprous oxide
is a well known semiconductor as a good host for BEC for excitons [3,4]. Due to special
band structure, the exciton in cuprous oxide is a model system for kinetic studies.

In all physical systems, in which BEC has been demonstrated up to now, excitons
should be confined in a potential trap. This has the advantage that the diffusion process,
which reduce the exciton density is suppressed and the critical number of excitons

N, =(3) (;—g] 1)

with ¢ the Riemann Zeta function and Q the average oscillator frequency of the trapping

potential , required for the phase transition from exciton gas to BEC decreases much
faster with temperature than in free space [5].

Several works have been done in this field [6-23]. But all of these studies have been
undertaken for temperature above 1 K. In contrast, in our work we have studied excitons
inside the potential trap and for the temperatures in the millikelvin range. Excitons
behaviour under various conditions has been analyzed theoretically.

In typical experiment excitons are created with the kinetic energy of the order of
meV and then drift down to the potential trap. Now two questions arise: first, how long
time excitons take to thermalize and second, when does a BEC occurs.

We have studied theoretically the relaxation behavior of excitons in Cu,O in the
temperature range from 0.05 K to 5 K. It has been done numerically by solving the
Boltzmann equation [24] that describes the statistical distribution of particles in a fluid.
The Boltzmann equation has been solved by finite difference method and the method of

lines [25], using MATLAB. We assumed that the excitons are confined in a stress

induced parabolic potential trap with potential energy V (r) =ar? with a the steepness
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constant and 1 the radius. The relation between steepness constant a and oscillator
frequency Q is a:%MXQZ, where M, is the exciton mass. As relaxation processes, we

have included deformation potential phonon scattering, radiative, non-radiative decay,
Auger decay and elastic scattering.

First we have included the deformation potential LA phonon-scattering but no other
collisions of excitons. We find that the exciton exhibits a quasiequilibrium within the
potential trap due to the long lifetime of the order of microseconds. An important point is
that excitons can thermalize locally within their lifetime for all cases over 0.5 K but
below 0.5 K a non thermal distribution remains. In contrast, globally the excitons don’t
reach equilibrium with the lattice even at temperatures of 5 K, but show always a higher
effective global temperature. When we add radiative, non-radiative and Auger decay, we
find that both locally and globally the effective temperature is not coming down to the
bath temperature even after long times. If we include elastic and phonon-scattering
together, then the local cooling behaviour is same like the local cooling behaviour with
the phonon-scattering only. The global effective temperature is not coming down to the
bath temperature but coming down more closes towards the bath temperature in
comparison with the case of phonon scattering only.

In the first case we find a Bose-Einstein condensation (BEC) occurs for all
temperatures in the investigated range. Comparing our results with the thermal
equilibrium case, we find that BEC occurs for significantly higher number of excitons in
the trap. In the case of Auger decay, we do not find at any temperature a BEC due to the
heating of the exciton gas. In the case of elastic and phonon-scattering together, if the
excitons number is over the critical number of excitons, then excitons number at zero
energy state increasing with a high rate, which is an indication of BEC. In this case BEC

occurs for all observed temperatures.

1.2 Overview
The first chapter 'Introduction and fundamentals' contains introduction, previous works in

this field and the background information of the work presented in this thesis. General



Chapter 1. Introduction and Fundamentals

properties of exciton, band structure of Cu,0O, the optical properties of exciton in Cu,0O
and the possibility of BEC of exciton in Cu,0O are discussed.

Chapter 2 is entitled 'Boltzmann Equation with Drift and Force terms'. The first part
of this chapter contains the theory of Boltzmann equation with drift and force terms. The
next part contains about numerical modeling of the Boltzmann equation with drift and
force terms, initial condition, boundary conditions, and results.

Chapter 3 is entitled 'Phonon Scattering'. The first part of this chapter contains the
theory of phonon scattering. The second part of this chapter contains about numerical
modeling of phonon scattering. The next part contains the results of phonon scattering in
the homogeneous system and within the potential trap. The last part is short summary of
this chapter.

Chapter 4 is entitled 'Auger Recombination and Radiative and Non Radiative Decay'.
The first part of this chapter contains the theory of Auger recombination, radiative and
non-radiative Decay. The second part is about previous works on Auger decay and the
estimations of the Auger decay rate. The next part contains the results of the Boltzmann
equation including phonon scattering, Auger recombination, radiative and non radiative
decay. The last part is short summary of this chapter.

Chapter 5 is entitled 'Elastic Scattering'. The first part of this chapter contains the
theory of elastic scattering. The second part of this chapter contains about numerical
modeling of elastic scattering. The next part contains the results of elastic scattering in
homogeneous system and within a potential trap. The last part is short summary of this
chapter.

General conclusions of the main results are discussed in chapter 6.

1.3 Previousworksin thisfield

Several groups have been reported the observation of Bose distributions of excitons in
Cu,0 when using intense photo excitation [6-16]. The thermodynamics of long-lived
paraexcitons confined to a parabolic potential well in Cu,O was studied in reference [17].
The possibility of BEC of paraexcitons was examined both theoretically and

experimentally. They concluded that there are two barriers to achieve BEC of long-lived
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paraexcitons in Cu,O. First one was the limitation of exciton density due to Auger
collisions and second one was the rather slow thermalization of excitons in the well.

The Boltzmann kinetics for both of para and ortho excitons in Cuprous oxide
specially for a homogeneous gas have been analyzed numerically and within certain
approximations analytically in reference [18,19]. In reference [18] the thermalization of
the both optically quadrupole-allowed ortho and para excitons has been analyzed for

temperatures above and below the critical temperature T, for a BEC. They concluded that

the polariton effect prevents a steady-state BEC of ortho excitons in Cu,O. For
paraexcitons, a slow nonexponential occupation kinetics of the ground-state mode at

temperature T <T_ prevents the development of a steady state BEC within the optical

phonon assisted radiative lifetime. The effects of radiative recombination have been
added in reference [19].

The effects of optical-phonon emission, exciton interconversion and Auger decay
have been included in reference [20], but it has been assumed that the exciton gas is
continuously in internal equilibrium, and followed only the density and temperature of
the gas. They concluded that the para excitons condense while the ortho excitons fail to
do so. Finally, they remark that their analysis presents no fundamental reason why the
ortho excitons cannot condense, however, their multiplicity, their faster Auger decay, and
their conversion to para excitons make their condensation much more difficult than for
para excitons.

The relaxation of a spatially homogeneous gas of long-lived excitons under the
influence of elastic scattering and LA-phonon emission only has been investigated in
reference [21]. They reported that at low density a gas of bosons achieves a classical
equlibrium distribution of energies within just few characteristic scattering times but at
high densities, due to stimulated emission, the rate of scattering increases into low energy
states. they concluded that BEC may take place within the particle lifetime, and the
exciton-phonon interactions will not significantly increase the rate of approach to
condensation.

The relaxation kinetics of excitons in Cu,O due to scattering by LA-phonons have
been showed that the long living excitons in Cu,O can reach the critical values of a BEC
[3,9,10,13,16,21].
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The relaxation Kkinetics of excitons in Cu,O was studied in reference [22] and [23].
They included all of the known Kkinetics effects like optical and acoustic phonon
emission, Auger decay, elastic scattering and ortho-para-conversion, but not within a
potential trap. They concluded that due to the strong Auger decay process it is difficult to
get a thermodynamic condensation of excitons in Cu;O.

Reference [26] studied on quasi-two-dimensional excitons in an in-plane potential
trap. The photo luminescence measurements show that the quasi-two-dimensional
excitons indeed condense at the bottom of the traps, giving rise to a statistically
degenerate Bose gas.

To study about BEC, various systems have been examined in bulk [11, 13, 27] and
two-dimensional semiconductors [28, 29] and also in exciton—photon hybrid systems
[30-32]. Recently BEC of excitons has been studies experimentally at sub-kelvin
temperatures [33]. They demonstrated that it is nevertheless possible to achieve BEC by
cooling paraexcitons to sub-kelvin temperatures in a cold phonon bath. Emission spectra
from paraexcitons in a three dimensional trap show an anomalous distribution in a
threshold-like manner at the critical number of BEC expected for ideal bosons.

In our work we have studied the relaxation kinetics of excitons inside the potential

trap and for temperature in the millikelvin range.

1.4 Excitons

The concept of excitons was first proposed by Yakov Frenkel in 1931. He proposed that
this excited state would be able to travel in a particle-like fashion through the lattice
without the net transfer of charge [34, 35].
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Conduction band

Valence band

Figure 1.1: Direct band gap semiconductor with band gap energy Eq

The creation of exciton can be described in terms of band theory. A pure semiconductor
has no mobile charge carriers at zero temperature. So, all valence bands are completely
filled with electrons and all conduction bands are completely empty. In a direct band gap
semiconductor, excitons can be created in two ways: (i) by the absorption of a photon
with an energy hv that is less than the band gap energy Eg but sufficient to excite an
electron from the valence band to the excitonic bound state, or (ii) by the absorption of a
photon with an energy equal to or larger than the band gap energy, which creates a free
electron in the conduction band and a free hole in the valence band. This free electron
and free hole can bind into exciton. The free electrons then relax in energy usually by the
emission of phonons. In a direct band gap semiconductor, the minimum energy needed to
create a free electron and a free hole is Eg, see Fig. 1.1.

The binding energy of the exciton follows the same type of series as observed in
hydrogen, but is modified by the parameter ¢, which takes into account the screening

effect of the ions in the lattice.

E =t n_123.... )
n
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Where e is the electronic charge, ¢ is the static dielectric constant and z,, is the exciton

reduced mass. &=4reye,, Whereg, =8.85419x1077 A%*kg™m~ is the dielectric

.
constant and ¢, is the dielectric number of the material. ,, =m,m, /(m,+m,), where
m, and m, are the electron and hole effective mass respectively. Due to spin orbit
coupling, the paraexciton has slightly larger binding energy than orthoexciton.

The electron and the hole can be treated as two interacting particles with masses m, and

m,, respectively. The Hamiltonian can be written as [36, 37]:

2v72 2v72 2 2
VP RVE € A I+ -
2m, 2m, el -n| 2, v

e e

H=

where ¢ is the lattice dielectric constant, | is the angular momentum quantum number

and r, and r, are the positions of the electron and the hole, respectively. The

corresponding eigen values form a series of exciton energies, given by:

2
eZ
“ex( 4) 7 GO ()
E,= Eg - 22 + T2
2n°n 2M 2p, Y

(4)

Here E, is the band-gap energy, the second term is the exciton binding energy and the

third term is the kinetic energy of exciton of a wave vector k.

Exciton may make themselves visible by emission of photons. The radiative
recombination of the electron and hole back to the ground state by emitting a photon with
an energy:

hv=E, —E, +E, (5)
The recombination may also takes place together with the emission of phonon with an
energy:

hv=E, -E,+E tE, (6)

where E, is the exciton kinetic energy and E_ is the energy of the phonon and "+" and

"-"" corresponds to anti-stokes and stokes processes respectively. Momentum conservation
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requires that only two types of processes are possible: k =k for direct transitions and

photon

k=k +k for phonon-assisted transitions.

photon phonon

There are two types of excitons, Frenkel exciton and Wannier-Mott exciton (see
figure 1.2). The radius of the excitonic entity (half of the distance between the electron
and hole) is given by

me
a; =a,—~¢

- ™
e
Hey [j
&

f/@@ 900006 QQ\\

WWMQQOQQQQQO@oogw

e OQO@OOQOOQOO
000000000000
000000000000

OO00O0O0O0O0OO0OO0O0OO0O

Figure 1.2: A schematic diagram of Frenkel exciton and Wannier-Mott exciton, not to
scale.

Where a, is the Bohr radius and m, is the electron rest mass. When a, is large
(ag >lattice constant) then excitons are weakly bound. So the attraction between the
electron and hole is small in comparison with E_ . These excitos are called Wannier-Mott
exciton. When a; is smaller or on the order of the lattice constant, excitons are strongly

bound are called Frenkel exciton. Wannier-Mott excitons are mainly found in
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semiconductors like in gallium arsenide (GaAs), zinc selenide (ZnSe), copper chloride
(CuCl) and cuprous oxide (Cu,0). In this thesis the exciton radius is much larger than the

inter atomic distance, therefore it is a Wannier-Mott exciton.

1.5 Cuprous Oxide

Copper(l) oxide or cuprous oxide is one of the principal oxides of copper with the
formula Cu,O. Copper(l) oxide may be produced by several methods. Most
straightforwardly, it arises via the oxidation of copper metal:

4 Cu+ 0O, — 2 Cu0

(8)

Figure 1.3: Crystal structure of Cu,0O. Light grey balls represent copper and dark grey
balls represent oxygen.

The crystal structure of Cu20 (see figure 1.3) can be described by two interpenetrating
BCC (O atom in the center) and FCC (Cu atom in the center) sublattices. The Bravais
lattice is a simple cubic with a lattice constant 4.27 A. The unit cell contains 4 Cu atoms
and 2 O atoms.

The copper ion's electronic structure [38] ends with 3d'%4s°, where the 4s levels has
slightly higher energy than 3d levels. The Cu 3d levels form the valence band and Cu 4s

10
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levels form the conduction band in Cu,O. The lowest state in the conduction band *T";

and highest state in the valence band °T"; are at the center of the Brillouin zone, means

both state has the full periodicity of the lattice. So, Cu,0O has direct band gap. Both states
have a positive parity at zone center, causing a dipole-forbidden gap of Eg=2.173 eV.

The second highest valence “T’; band lies 131 meV lower than highest valence band *T;

due to spin-orbit interaction.

A

41—‘8/
\M

2173 meV

k

Figure 1.4: Band structure of Cu,O near the zone center.

»
>
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The second lowest conduction band “T; lies 450 meV above the lowest conduction band

’I'; which serves as intermediate state for the optical phonon-assisted radiative

recombination and non-radiative Auger recombination processes. Cu,O has all ten
valence bands and four conduction bands. Figure (1.4) shows band structure of Cu,O
considering only two conduction bands and two valence bands which forms the visible

exciton series.

1.6 Exciton in Cuprous Oxide

Cuprous oxide is a favorite semiconductor among many physicist because all classes of
transition predicted by theory of exciton spectra are observed in different part of energy
region of Cu,O. The exciton in cuprous oxide is a model system for kinetic studies due to

its special band structure.

The yellow exciton series is formed from the *I"; conduction band and °T"; valence
band, (see figure 1.4) green exciton series formed from the *I"; conduction band and “T";
valence band, blue exciton series formed from the “T"; conduction band and °T"; valence
band and indigo series formed from the *I"; conduction band and *I"; valence band. The
ground excitonic state, formed from the °T"; conduction band and *I"; valence band, is

split into J=0 the singlet paraexciton (*T";) band and J=1 the triplet orthoexciton (°I'};)

band. Paraexciton lies 12 meV lower than orthoexciton.
Since both valence and conduction bands have a positive parity, the total parity is
determined by the parity of the exciton level. For an excitonic s-state, the parity is
positive, and the transition to the ground state is dipole forbidden, but quadrupole
allowed. For a p-state, the parity is negative, and the transition to the ground state is
dipole allowed.

Ortho and paraexciton are not simple product forms of the pure electron

(|T e>,|¢ e>) and hole spin states (|T h>,|¢ h>) Spin orbit coupling causes complicated

hole states. Wannier functions for yellow excitons in Cu,O [39, 40] are ¢, for the

12
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conduction band and ¢y, ¢, andg, for the valence band. The *I'; hole states

(|T H>,|¢ H>) are linear combination of |T h> and |~L h>:

[ H>=—%[(¢;z +igl)[¥ h)+ gy [T Y] ©)
e H>:—ﬁ[«o; ~ips)|Th) =gl [ h)] (10)
The singlet paraexciton and the triplet orthoexciton states can be written as follows:
1
|S>=$(|Te¢h>—|¢eTh>) (11)
|T+1>:|T el h> (12)
1
|T0>:$(|Te¢h>+|¢e1“ h>) (13)
|Tfl>=|¢e¢ h> (14)
If we say

Te) =i(|Tfl>—|T+l>) and [T, ) = i(|T71>+|T+1>) then we can write one paraexciton
7 7

state and three orthoexciton states in the following way

|P>=%¢§(|Tx>¢;z +i[T, ) or +[To) 0l (15)
Oxy>=%¢§(lﬂ>¢§z +i[T, )@y —[S) 0ly) (16)
0,) = 0280 +i[T) e -[T,) ) an)
0,) = 501 (T)0} +1[S) g ~[T, )0 (18)

1.7 Possibility of the Bose-Einstein condensation

Bose-Einstein condensation (BEC) is a macroscopic occupation of the lowest energy
state, at zero energy. When a liquid or gas of bosons cooled below critical temperature

13
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T., then a Bose-Einstein condensate forms. It was first predicted by Bose and Einstein
theoretically in 1924 [41, 42, 43] and it was first observed in 1995 in a remarkable series
of experiments on vapors of rubidium [44] and sodium [45] in which the atoms were
confined in magnetic traps and cooled down to extremely low temperatures, of the order
of fractions of microkelvins.

The possibility of Bose-Einstein condensation (BEC) of excitons in semiconductors
was an interesting topic for many years [1, 2]. The exciton, being composed of two
fermions, namely an electron and an hole, is the basic electronic excited state of an
intrinsic semiconductor. Its low effective mass is a favorable factor for the occurrence of
BEC at moderate particle densities.

Cuprous oxide is a well known semiconductor as a good host for Bose-Einstein
condensation for excitons [3, 4]. Due to special band structure, the exciton in cuprous
oxide is a model system for Kinetic studies. The excitons in Cuprous oxide showed
transient kinetic energy distributions which matched those expected for a Bose gas near
the critical density for Bose-Einstein condensation. The high binding energy (150 meV)

of excitons in Cu,O corresponds to a small Bohr radius of 7 A

At low densities (nag <<1, where a, is the exciton Bohr radius, n the density and D
the dimensionality) excitons are hydrogen like Bose particles. Because the exciton mass
is small even smaller than the free electron mass, then exciton BEC is expected to occure
at relatively high temperatures, about 1 K.

For a gas of bosons of mass m and concentration n,; , the phase transition to a Bose-
Einstein condensed phase occurs when their thermal de-Broglie wavelength becomes
comparable to their inter-particle distance [46-48]. For example, BEC takes place when

N,pAs =2.612 in 3D systems, where A, is the de Broglie wavelength and is given by

Age =+/270% | (mkgT) . This is of the order of n,, ~107cm™ for T, ~1 K and m of the

order of the electron mass e.g. excitons in bulk Cu,O.

The exciton, is a Boson because it is a composition of two fermions, is an integral spin

particle. The probability of boson of being scattered into state of wave-vector k is

proportional to 1+ f_ according to the quantum statistical rules for boson where f_ is the

14
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occupation number of the state. Assuming that the system is in thermal equilibrium at a

temperature T and chemical potential ., then the total number of particles in a box N is

equal to the sum of the occupation numbers [ 49, 50]

N:ka_zzNE (19)
k E=0
hZ 2
where E = oM is the kinetic energy of an exciton. Occupation number is given by the

X

Bose- Einstein distribution function,

1
le =Ng = ek _q (20)
The total number of particles can be replaced by an integral
N = [D N, -dE (21)
0

where D, is the density of states, D, = CE”?. If the exciton number N occupy a volume

V, then we can write C as

/2
gV (2M j"’
C= £ 22
Arx? ( h (22)
where g is the spin degeneracy. In terms of the gas density, n=N/V, we can finally write
B g2
S [
T 0 e kgT _1

In this case, the integral is finite and approaches a finite value as « approaches zero.

This implies a critical concentration above which no more particles can be added to the
excited states, so that any additional particles must then go into the zero energy state; this
is Bose-Einstein condensation.

To study on BEC various systems have been examined in bulk [11, 13, 27] and two-
dimensional semiconductors [28, 29] and also in exciton—photon hybrid systems [30-32].
Recently BEC of excitons has been studies at sub-kelvin temperatures [33]. Among them,
the 1s paraexciton state in a single crystal of Cu,O has been a prime candidate for BEC.
Due to the long life time [6, 51] and the large binding energy it is possible to prepare the
cold excitons in thermal equlibrium with the lattice. The 1s paraexciton is a pure spin
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triplet state, so it is decoupled from the radiation field. Paraexcitons are light quasi-

particles with effective mass M, =2.6m, (m, is the electron rest mass) [52], therefore

BEC has been believed to be attainable at moderate density n~10"cm™ at the
temperature of superfluid helium 2 K [11, 13, 27]. In this thesis we work on excitons

which are actually paraexcitons.

16



Chapter 1. Introduction and Fundamentals

Refer ences

[1] Blatt J M, Boer K W, and Brandt W, 1962, Phys. Rev. 126, 1691-1692, "Bose—
Einstein condensation of excitons".

[2] Moskalenko S A, 1962, Fiz. Tverd. Tela (Sov. Phys. Solid State) 4, 276.

[3] Griffin A, Snoke D W, and Stringari S, 1995, "Bose-Einstein Condensation"
(Cambridge: Cambridge University Press) Chaps. 13 and 14.

[4] Snoke D W, 2002, Science 298, 1368-1372, "Spontaneous Bose Coherence of
Excitons and Polaritons".

[5] Pethick C J and Smith H, 2002, "Bose-Einstein Condensation in Dilute Gases"
(Cambridge, UK: Cambridge University Press).

[6] Mysyrowicz A, Hulin D, and Antonetti A, 1979, Phys. Rev. Lett. 43, 1123-1126,
"Long Exciton Lifetime in Cu,0O".

[7] O’Hara K E, Gullingsrud J R, and Wolfe J P, 1999, Phys. Rev. B 60, 10872-
10885, "Auger decay of excitons in Cu,O".

[8] Beg M M and Shapiro S M, 1976, Phys. Rev. B 13, 1728-1734, "Study of phonon
dispersion relations in cuprous oxide by inelastic neutron scattering".

[9] Hulin D, Mysyrowicz A, and Benoit a" la Guillaume C., 1980, Phys.Rev. Lett. 45,
1970-1973, "Evidence for Bose-Einstein Statistics in an Exciton Gas".

[10] Snoke D W, Wolfe J P, and Mysyrowicz A, 1987, Phys. Rev. Lett. 59, 827-830,
"Quantum saturation of a Bose gas: Excitons in Cu,QO".

[11] Snoke D W, Wolfe J P, and Mysyrowicz A, 1990, Phys. Rev. B 41, 11171-11184,
" Evidence for Bose-Einstein condensation of excitons in Cu,O".

[12] Snoke D W and Wolfe J P, 1990, Phys. Rev. B 42, 7876-7884, "Picosecond
dynamics of degenerate orthoexcitons in Cu,O".

[13] Lin J L and Wolfe J P, 1993, Phys. Rev. Lett. 71, 1222-1225, "Bose-Einstein
condensation of paraexcitons in stressed Cu,QO".

[14] Naka N, Kono S, Hasuo M., and Nagasawa N, 1996, Prog. Cryst. Growth Charact.
Mater. 33, 89-92.

[15] Goto T, Shen MY, Koyama S, and Yokuochi T, 1997, Phys. Rev. B 55, 7609-

7614, "Bose-Einstein statistics of orthoexcitons generated by two-photon
resonant absorption in cuprous oxide".

17



Chapter 1. Introduction and Fundamentals

-- Goto T, Shen MY, Koyama S, and Yokuochi T, 1997, Phys. Rev. B 56, 4284-
4284, "Erratum: Theory of arbitrarily polarized quantum Hall states: Filling
fractions and wave functions”.

[16] Shen M Y, Yokouchi T, Koyama S, and Goto T, 1997, Phys. Rev. B 56, 13 066-
072, "Dynamics associated with Bose-Einstein statistics of orthoexcitons
generated by resonant excitations in cuprous oxide".

[17] Trauernicht D P, Wolfe J P, and Mysyrowicz A, 1986, Phys. Rev. B 34, 2561-2575,
"Thermodynamics of strain-confined paraexcitons in Cu,O".

[18] EIl C, Ivanov A L, and Haug H, 1998, Phys. Rev. B 57, 9663-73, "Relaxation
kinetics of a low-density exciton gas in Cu;O".

[19] Ivanov A L, Ell C, and Haug H, 1997, Phys. Rev. E 55, 6363-6369, "Phonon-
assisted Boltzmann kinetics of a Bose gas: Generic solution for T <T_".

-- lIvanov A L, Ell C, and Haug H, 1998, Phys. Status Solidi B 206, 235-247, "Phonon-
assisted Relaxation Kinetics of a Degenerate Bose gas".

[20] Kavoulakis G M, Baym G, and Wolfe J P, 1996, Phys. Rev. B 53, 7227-7243,
"Quantum saturation and condensation of excitons in Cu20: A theoretical
study".

[21] Snoke D W and Wolfe J P, 1989, Phys. Rev. B 39, 4030-4037, "Population
dynamics of a Bose gas near saturation.

[22] O'Hara K E and Wolfe J P, 2000, Phys. Rev. B 62, 12 909-921, "Relaxation
Kinetics of excitons in cuprous oxide".

[23] O'Hara K E, 1999, "Relaxation Kinetics of Excitons in Cuprous Oxide", Ph.D.
Thesis (University of Illinois, Urbana, Illinois, USA).

[24] Ashcroft N W and Mermin N D, 1976, "Solid State Physics" (Fortworth: Harcourt
Brace).

[25] William E. Schiesser and Graham W. Griffiths, 2009, "A Compendium of Partial
Differential Equation Models" (Cambridge University Press).

[26] Butov L V, Lai C W, Ivanov A L, Gossard A C, and Chemla D S, 2002, Nature
417, 47-51, "Towards Bose-Einstein condensation of excitons in potential
traps".

[27] Naka N and Nagasawa N, 2005, J. Lumin. 112, 11-16, "Bosonic stimulation of cold
excitons in a harmonic potential trap in Cu,O".

18



Chapter 1. Introduction and Fundamentals

[28] Butov L V, Gossard A C, and Chemla D S, 2002, Nature 418, 751-754,
"Macroscopically ordered state in an exciton system".

[29] Snoke D, Denev S, Liu Y, Pfeiffer L, and West K, 2002, Nature 418, 754-757,
"Long-range transport in excitonic dark states in coupled quantum wells".

[30] Deng H, Weihs G, Santori C, Bloch J, and Yamamoto Y, 2002, Science 298, 199-
202, "Condensation of semiconductor microcavity exciton polaritons”.

[31] Kasprzak J et al., 2006, Nature 443, 409-414, "Bose-Einstein condensation of
exciton polaritons".

[32] Balili R, Hartwell V, Snoke D, Pfeiffer L, and West K, 2007, Science 316, 1007-
1010, "Bose-Einstein condensation of microcavity polaritons in a trap™.

[33] Yoshioka K, Chae E, and Kuwata-Gonokami M, 2011, Nature Communications, 2,
328, "Transition to a Bose-Einstein condensate and relaxation explosion of
excitons at sub-Kelvin temperatures".

[34] Frenkel J, 1931, Phys. Rev. 37, 1276, "On the Transformation of light into Heat in
Solids. 1".

[35] Frenkel J, 1936, Soviet Experimental and Theoretical Physics, 6, 647.

[36] Karpinska K et al., 2005, J. of Luminescence, 112, 17-20, "Para-excitons in Cu,0 a
new approach”.

[37] Libo R L, 2003, "Introductory quantum mechanics" (Addison Wesley).

[38] French M, Schwartz R, Stolz H, and Redmer R, 2009, J. Phys. Cond. Matter 21,
015502, "Electronic band structure of Cu,O by spin density functional theory".

[39] Kavoulakis G M, Chang Y C, and Baym G, 1997, Phys. Rev. B 55, 7593, "Fine
structure of excitons in Cu,O".

[40] Dasbach G, Frohlich D, Klieber R, Suter D, Bayer M, and Stolz H, 2004, Phys. Rev.
B 70, 045206, " Wave-vector-dependent exchange interaction and its relevance
for the effective exciton mass in Cu,QO",

[41] Bose S, 1924, Z. phys. 26, 178, "Plancks Gesetz und Lichtquantenhypothese™.

[42] Einstein, A, 1924, Sitzber. Kgl. Preuss. Akad. Wiss., 261.

[43] Einstein, A, 1925, Sitzber. Kgl. Preuss. Akad. Wiss., 3.

19



Chapter 1. Introduction and Fundamentals

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A, 1995,
Science 269, 198, "Observation of Bose-Einstein Condensation in a Dilute
Atomic Vapor".

Davis, K. B., M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle, 1995, Phys. Rev. Lett. 75, 3969.

Ketterle W, 2002, Rev. Mod. Phys., 74, 1131, Nobel lecture: "When atoms behave
as waves: Bose-Einstein condensation and the atom laser".

Cornell E A and Wieman C E, 2002, Rev. Mod. Phys., 74, 875, Nobel Lecture:
"Bose-Einstein condensation in a dilute gas, the first 70 years and some recent
experiments”.

Kavoulakis G M, 2003, J. Low Temp. Phys., 132, 297, "Bose-Einstein condensation
of indirect excitons in coupled quantum wells".

Kim J C and Wolfe J P, 1998, Phys. Rev. B, 57, 9861, "Bose-Einstein statistics of
an excitonic gas in two dimensions: Excitons and biexcitons in a GaAs quantum
well".

Swarup A and Cowan B, 2004, J. Low Temp. Phys., 134, 881, "Fermi-Bose
correspondence and Bose-Einstein con-densation in the two-dimensional ideal
gas".

Yoshioka K, Ideguchi T, Mysyrowicz A, and Kuwata-Gonokami M, 2010, Phys.
Rev. B 82, 041201(R), "Quantum inelastic collisions between paraexcitons in
CUzO".

Brandt J, Frohlich D, Sandfort C, Bayer M, Stolz H, and Naka N, 2007, Phys. Rev.

Lett. 99, 217403, "Ultranarrow optical absorption and two-phonon excitation
spectroscopy of Cu,O paraexcitons in a high magnetic field".

20



Chapter 2

Boltzmann Equation with Drift and Force Terms

The Boltzmann equation [1], also often known as the Boltzmann transport equation,
devised by Ludwig Boltzmann, describes the statistical distribution of particles in a fluid.
First we discretize the Boltzmann equation by finite difference method and then by
method of lines[2] we solve it numerically by using MATLAB. The Boltzmann equation
contains the drift, force, collision and interaction terms. In this chapter the Boltzmann
equation with Drift and force terms, initial condition and boundary conditions, which we
have used in our numerical simulation are discussed. We will discuss about the collision
and interaction terms in the next few chapters.
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2.1 Boltzmann equation

The Boltzmann equation describes the particle’s occupation number N(F,k,t) as a

function of radius ¥, momentum 7k and time t. The Boltzmann equation is

@W.ﬁmﬁlv—k,\.:(@
o n

ey
at jcollis'on+i nteraction

with v is the velocity, F istheforceand V, and V, are the nabla operator in r and k

space respectively. The terms on the left hand side are often referred to as the drift terms,
and the term on the right hand side as collision and interaction term. Collision and
interaction terms are phonon scattering, Auger decay, radiative and non-radiative decay
and elastic scattering. For starting the calculation, we have created the excitons that are
actually paraexcitons, which after phonon scattering, Auger decay, radiative and non-
radiative decay and elastic scattering excitons cool down to the bottom of the trap.

2.2 Drift and force terms of the Boltzmann equation

Drift and force terms of the Boltzmann equation (1) is are given by

(@j =—V.VN-F-
at Drift & force

where N is the exciton occupation number, t is the time, V is the velocity and F isthe

-V,N )

SR

force. Asweknow, P=7k=M V 0, V:Mik

AndF =-W (r), Where V(r)=af?> So,E =-2af, a is the steepness constant. Using
the potential V(r) in the force term we have created a potential trap (see figure 2.1).

By putting valuesof V and F in equation (2), we get

(6N] nk ON  —2ar oN
Drift & force

a7 _ MmN Ted 3)
ot M, or n ok
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Force (F)=-VI" (r) e

Lens ()= ar

Excitation beam

z
y r

X

Cu,O
crystal

Figure 2.1: In the left hand side, potential trap is formed by potential V(r) in the force

term in the numerical simulation. Generally in experiment it has been formed by pressing
the crystal by glass lens. In the right hand side, the potential trap which we have used in
our numerical simulation.

2.3 Numerical modeling

First we discretize the Boltzmann equation by finite difference method and then by
method of lines we solve it numerically by using MATLAB [2-4]. By using finite
difference method, we can write

AN N, —N,
Ar Ar

L Where r =r,.....r, and r, =iAr

. —N. AeyM
= L Where k =K,.......k; and k; = jAk;, with Ak, = =

Ak Ak n2e,

S0, equation (3) can be written as

N nk oo - . 2ar . .
(EjDriﬁ&force=_M Ar{N(I,J)_N(I_lJ)} +E{N(I'J+1)_N(I’J)} (4)

X
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21,2 H
But, we know e= i o= pe=% ang e =2M Vv’
2M M M
2V -
=== (5
Nl
Now, Ak_%Ae_i
de 2e
h I
MX
. 2e
2aAr.ih
< 2 _ \/ M, ZaAr\/_ i (6)
" hAk hAe M.V,

But with Ae= % , We can write

OoN
(E]Driﬁ & force rA \/7{ N(I J) N(I _11 J)}

+—2aArNi\/T{N(i

M v

X"s

J+D =N, )} (7)

2.4 Initial condition

We have used laser excitement which is representative for actual experimental studies[5].
Here the laser beam at energy e crosses the trap centrally and leads to exciton creation
a e=e —ar’. If o isthe spectral width, then the initial exciton occupation number
distribution can be formulated as

—(e—(eL —ar*z))2

20

N,(F,€) = n, exp O(r . —T)O(r) (8

where r_, = 2_eL

a
From these two step function, we get two conditions

First, from ©(F) weget r >0 and
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Second, from ©(F,, —F) weget ., —F>0o0r r<r,

So, we can write

>r>0 9
2(712 ©

(] —(jo—a(r<i»2))2J

No(i,J')—noeXp[

M
Here o, = o

Initial distribution is like figure 2.2.

N

2 0sl \N$0WWW’O‘O‘Q‘O‘W’W i

[/,;}3‘“é‘““‘o\‘o“‘&‘%}@%&?i:‘%fii‘éi’%‘%%?s&
Ol fam) e 1 en:(g\, eV

Figure 2.2: Initial distribution where excitons number within the trap is 4x10°. The
parameters, which we have used, are 0 =0.36 meV and g =2.1meV .

2.5 Boundary conditions

The boundary conditions are derived from the fact that no exciton flows takes place
outside the trap. Therefore
(1) The derivative of exciton occupation number with respect to radius
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0] %—N=Oatr<0, for al values of e.
r

for all values of e

max !

(i) a—N=Oatr>r
or

(i) %—Nzo ae>e, foral vauesofr.
r

(2) The derivative of exciton occupation number with respect to energy

0] %—N:O at e<O, foral valuesof r.
e

(i) %—N:O ae>e ., forall vauesofr.
e

for all values of e

max !

(i) a—N=Oatr>r
oe

In our case the maximum radius r.,, = 200 pm and the maximum energy €, =6 meV .

(&)}

D

w

Exciton occupation number
N

Figure 2.3: Boundary conditions which we have used in our numerical simulation.
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2.6 Results

After solving the equation (7) we are getting exciton occupation number N(i',et) asa

function of energy e, radius r and time t (see figure 2.4). Figure 2.4 represents exciton

distribution after solving Boltzmann equation without source term, at 5 ns. After 5 ns,

the distribution is stable like figure 2.4.

We have calculated total number of exciton by the equation
1

N, :(27)3 [[ 477 dr -4zk>dic- N(7 k) (10)

-
o
/

A

pation number
(0]

N
/

T
—
T
—
—

/[

Excitons occu

Figure 2.4: Exciton distribution after solving Boltzmann equation without source term, at
5 ns. When initially the excitons number within the trap is 1.98x10°. The parameters,
which we have used, are M _=2.61m,, m, =9.109x10"* kg is the electron rest mass,

V,=4.5x10°m/s, a=0.5- ueV - um=.
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the summation of exciton number aong T direction by the equation

n (e) = j 4772 N(F,€)-dr (11)
0

and the summation of exciton number along the direction of energy by the equation

-Azk?dkN (F, K) (12)

0= 1)

(27 ¥

t=0

2 3
energy (meV) energy (meV)

Figure 2.5: The distribution of summation of exciton number in 1 direction n, vs.
energy for different times. When initially the excitons number within the trap is
1.98x10°.

Figure 2.5 shows the distribution of summation of exciton number in I direction n, vs.

energy for different times. To check the boundary conditions, we have checked that the

total numbers of excitons are amost constant with increasing time (see figure 2.6).
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x 10°

3.5 1

2.5 4

N total
N
}

1.5

0.5 4
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Figure 2.6: The total number of excitons vs. time without including any source term. The
curve shows that the total numbers of excitons are almost constant with increasing time.
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Chapter 3

Phonon Scattering

In this chapter we have discussed about the phonon scattering, the results of the phonon
scattering in homogeneous system and the results of the Boltzmann equation with the
phonon scattering within the potential trap. The possibility of Bose-Einstein condensation
of exciton in Cu,0O, within the potential trap is discussed.
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3.1 Theory
3.11 General equation for the phonon scattering

Phonon scattering term, which describes the kinetics of a specially homogeneous system
of excitons. We use local approximation and neglect any phonon induced diffusion. The
phonon scattering term with decay term of the Boltzmann equation[1] is then given by

oN
ot

o ZS UM (PR TIN @ )@ Ny)
~(+ NI N 15(e; — €, —hay_)

h h
+[N|zn§_|z (L+Ny) =@+ N)@+ ng_R)Np]

x6(6; —€+hoy ()} — N /7, (1)

Where g =7°k*/2M, , e,=1"p*/2M, and hao_ =hv,

r)—IZ| are the exciton energy
in wavevector k state, exciton energy in wavevector p state and phonon energy,
respectively. N, N, and n;’f-=1/[exp(ha)p7E/kBTb)—1] are the exciton occupation
number in k state, exciton occupation number in p state and phonon occupation
number, respectively. foph(ﬁ—ﬁ)is the matrix element of the exciton-phonon
deformation potential interaction, and ¢, is the radiative lifetime of excitons. The
exciton-phonon coupling is given by|MX7ph(r)—IZ)|2 :hD2|r)—IZ|/(ZvaS), where D is
the deformation potential energy, V isthe crystal volume, p isthe crystal density, v, is

the longitudinal acoustic sound velocity and M is the exciton mass and ¢ is the Dirac

distribution. The first term in the square brackets on the right-hand side of equation (1) is
due to the Stokes scattering and the second term is for anti-Stokes scattering of excitons.
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3.12 Transfer momentum terms to energy terms

Then we transfer all N, terms in momentum space to N, terms in the one dimensional

energy space by

aN » T 2z o aN_

TV +[sin6do [ do[ k> —%dk )
ot (2”) 0 0 0 ot

where k, 8, ae the spherical coordinates of wave vector K.

ON_ -
Then we put the value of atk in equation (2) and transfer all k termsinto eterms where

e =n’k?/2M, and e, =n*p*/ 2M, .

ON. or V% 2z _ 2
R S 0dé | dp| p*dp|M p-k
6t h (277:)3.!)‘3n .([ q)J‘p p| x—ph(p )|
{1556, —€, —ha ) +1,55(6, —€, +ha, )} —(NQK_ /ropt) 3)

where I =[N_(1+ n.pfp)(1+ N,)— 1+ NR)nkP_“pr] and

| s =[NRn§TE (1+N,)— @+ N+ ngEE)Np]

oN D% * _

% - singdé| p*dp-|p—k

o e | SN006] R |pK
{1556, —€, —ha ) +1,s5(8, —€, +ha, )} —(NQK_ /ropt) (4)

Now let |p—k|=|g]

or, Jk?+ p* — 2Kpcoso = d

or, sinedezuk—du

p
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By using the relation sin&dé —uk—d; we get

ON ) u du _
& _ . 32dn. . _ e )
. 4@\/5 { j 5 pdp-{(Is+1 ) -5(6 —€, £V, (N /75 (5)
oN G% du € —€,
& _ . 52dn. ) P +lal (L —
or, o 47Z'phVS {_{ Kp pdp {(Is+ | as) 5( hv, i|u| Nep /Topt (6)

oN D2

54 SR
or, atei :_4ﬂphV52J;pEp'[%hvsepJ {|S.®(qs_\/€+\/e:)®(—qs+\/§+\/g)

x0(e. —e,)+ IAS-®(an—\/g+\/€)
x@(—qas+\/§+@)®(ep—ep)}—r\|%/ropt (7)

We have calculated step functions from delta functions which is in detail in the appendix.

M, _ /ZMXQZ
" dep and |k|: 2 we get
ON

o T L (5] ela- )

x@(—qs+@+Je?)®(eg—ep)+'As~®(qas—J¥+@)
x@( qas+\/7 \/7) ( )} N /7o 8

Using the relations 7 = 2 dp=
g therelations p* =—3=* or, p dp=

Now wesay e =e and e, = ¢, . Therefore, we get

ST

([N, (1402, ) (14 N, )= (14 N,)n*, N, 100, - Ve + g
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NN (14 N, )= (1+ N ) (1+ 0" )N, ]

e g-e

x@(qas—\/a+\/6)®(—qas+ el+\/6)®(el—e)}—Ne/rOpt : 9

3.13 Equation for zero energy state

At k=0 Stokes scattering is not alowed. Therefore, the phonon scattering term only with
anti-Stokes part [1] is given by

ON. 2 P
atk :_7”;|Mxph(p—k)| LN (@4 Np) = (@ N @+ 0PN, ]
x5(6, —€, +ha, )} —N, /7, (10)
Intermsof g,
N, 27 V T =\
— % == _2z(sinodof pdpM,_, (p-K
T [ snods( p p[M,. i (P=K)

h h
[N, N2, (1+N, )= (@+ N )(@+n" N, ]
x5(e, — €, +hw, )} N, /7, (12)

But with . =0, we get

aNek:o __872'2. V ) hDZ J‘|p.|3dp
ot ho(2z) 2Vpv,
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ON. IVE
or, —a0__D Mﬁj'ep de,
ot 7PV h
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N, o 4D*°M}y
o, ;; - ”ph: =[N _onf"(1+Ng ) = (1+ N, _o)@+nE")Ng1-N, o/ 7, (15)

Ifwesay g =¢e
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3.2 Numerical modeling

We discretize the energy e, =(j-1)Ae where j=1....ne and Ae=% with M is an

integer. Analogously we discretize the energy e, =(q-1)Ae. We know that

N ﬂ‘q =1/[exp(e,(j —q)/ (kyTM)) —1] . So we can write the equation (9) in the form

ON; C . 2
L=— =) x[{N; @+ NP,)@+N,) - (1+N,)N".N
ot Myzm%(] q) [{ J( qu)( q) ( 1) I-q q}
HN NS (14 N = @+ N)A+ NN =N, /7, (17)
2pn 1 3
where, C= b Nixvs.
h™p

For Stokes scattering Qmex=j-1 and ¢, =( j—1-vM )2 and for anti-Stokes scattering
. - - . 2

Omin 1S the maximum of qlmin and g2min, Where qlmin=j-1 and g2, :( J—l—N)

and q,,, :(«/j —1+N)2. Here j=2.......ne. We get these values of qmax and qmin for

Stokes and anti-Stokes scattering from the Dirac distribution in equation (3) .

We can write the equation (16), for j=1 in the form

oN, _[4D2vas

o

o ][N% (Ln2) =N (R =N )| (N L T 7y) (18)
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3.3 Results in homogeneous system including phonon scattering

As we have discussed in chapter 1, the relaxation kinetics of excitons in Cu,O due to
phonon scattering have been investigated in references [1-8]. We have also investigated
the Boltzmann kinetics of paraexcitons in Cu,O in homogeneous system and also within
the potential trap.

T.=3K ]
b
/
20— |

54— |

exciton occupation number
)
L

6

ime 2000 : 2 4

)

Figure 3.1: The result of the phonon scattering with decay term in homogeneous system
at 3 K when the exciton density is 1.5x10° xm* and lifetime is 650 ns. The figure shows

that with increasing time exciton number is increasing near zero energy and then it is
decreasing with time.

After solving the phonon scattering term of the Boltzmann equation we are getting the
exciton occupation number as a function of energy e, and time t (see figure 3.1 and 3.2).
In figure 3.1 we have plotted smulation result of phonon scattering with decay term and
in figure 3.2 we have plotted simulation result of phonon scattering without decay term.

Here  the initia distribution  [1] is given by the Gaussian
N, (t=0) = N, exp[-(e— &)’/ (Ae)*] with the central energy & and the width Ae. The

parameters, which we have used, ae the exciton mass M,=2.61m,

m, =9.109x10™*" kg is the electron rest mass, the longitudinal acoustic sound velocity
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v,=4.5x10°mV/s, the deformation potential energy D=1.68 eV and the crystal density

p =6.11x10° kg / m®.

exciton occupation number

2000
1
Me (ns ) 00 onefy

Figure 3.2: The result of the phonon scattering in homogeneous system at 3 K when the
exciton density is 1.5x10°> xm™. The figure shows that with increasing time exciton
number stays constant.
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Figure 3.3: Exciton distribution in homogeneous system from zero to 5 ns for 3K. Inthis
case exciton density is 1.7x10° um>.
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Figure 3.4: Exciton distribution in homogeneous system for 0.5 K. Left hand side's
figure is for 2 nsto 50 ns and right hand side's figure is for 50 ns to 1000 ns. Exciton
density is 1.5x10% xm™>.
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Figure 3.5: Initial [3.5a, 3.5c] and final [3.5b, 3.5d] exciton distributions vs. energy for
different temperatures. Final distributions are taken, at 100 ns for 3 K and at 1250 ns for

0.3 K and 0.5 K. For 3 K, exciton density is 1.7x10° zm™, and for 0.3 K and 0.5 K

exciton density is 1.5x10* um*. Markers represent the results of the numerical
simulation and solid lines are for the thermal equilibrium case.
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Figure 3.6: Local exciton temperature Tromo VS. time for different bath temperatures in
homogeneous system. Here we see that the effective temperature is decreasing with time
for different bath temperatures. The arrows on the right hand side indicate the effective

temperatures. For 05 K, 1 K and 3 K exciton densities arel.5x10* um?,
1.5x10* um2and 1.7x10° um2, respectively. The curves serve as a guide to the eye.

We have calculated the total number of excitons by the equation

total —

%IMkzdk- N(K) (19)
In figure 3.3 we have plotted exciton distribution for 3 K from zero to 5 ns. We see with
increasing time distribution is coming close to zero energy. In figure 3.4 we have plotted
exciton distribution for 0.5 K from 2 ns to 1000 ns. In figure 3.5 we have plotted initial
and final exciton distribution for different bath temperatures. For 0.5 K it is thermalizing
but taking long time to thermalize. For 0.3 K in the beginning it is not straight but then it
is coming straight (see figure 3.5d) and there is some deviation between numerical result
and thermal equilibrium case. Therefore, it is not thermalizing. Below 0.3 K, same thing
happening like 0.3 K. We have calculated the local effective temperature Thomo (SE€
figure 3.6) by fitting the long energy tail of the exciton distribution, using the equation
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g e This Boltzman distribution f () =e ™" is an approximation which is derived

from Bose-Einstein distribution f (e) = for e>>k,T . We see over 1 K it takes

efe/ KgT 1

10 nsto come down to bath temperature in contrast below 1 K it takes around 100 ns to

come down to bath temperature.

We know for constant potential energy, the critical density is given by

M k.T\*?
n=|—xB_ 20
¢ ( 27h? j (20)

o
o

o,
o

Tb=0'5 K T =3K

o
o S

o

S,

1250 ns
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IS

exciton occupation number
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exciton occupation number
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Figure 3.7: Exciton distribution in homogeneous system for 0.5 K and 3 K. For 0.5 K
and 3 K exciton densitiesare 1.5x10° xm™ and 1.7x10° um™ respectively. The critical

densities of exciton for 0.5 K and 3 K are1x10* um and 1.4x10° um™ respectively.
Here the exciton densities are higher than the critical densities and high peak at zero

energy indicates BEC.

In our numerical simulation, if we increase exciton density over the critical density, we
see high peak at zero energy in the exciton distribution (see figure 3.7). In the figure 3.7
represents exciton occupation vs. energy curves for 0.5 K and 3 K. Where for 0.5 K and

1.5x10° pum and 1.7x10° pm’®

3 K exciton densities are respectively but the critical

4 -3 5 -3

densities of exciton for 0.5K and 3K arel*10" #M™ gng 1.4x10° um™ recnertively.
Here the exciton densities are higher than the critical densities and we see high peak at
zero energy which indicates BEC.
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3.4 Results within a trap including phonon scattering

After solving the Boltzmann equation with phonon scattering term we are getting the
exciton occupation number as a function of energy e, radius r and time t (see Figure
3.8). We see that for a particular temperature, the excitons are going towards the bottom
of the trap with increasing time, and after some time they are accumulated in a place near

the bottom of the trap. In this case total exciton number within the trap is 1.7x10"* .

(b) t=5 ns
x10°

N
(9]

N
L

exciton occupation number

—

c)t=10 ns

1 (d)t=100 ns

exciton occupation number
exciton occupation number

Figure 3.8: The results of the simulation with phonon scattering at different times for 0.5
K when the initial exciton number within the trap is1.7x10*. The parameters, which we
have used, are M, =2.61m, m =9.109x10* kg is the electron rest mass,
V,=4.5x10°m/s, a=0.5- eV - um?, D=1.68 eV and p =6.11x10° kg / m’. The series of

figures shows that excitons are accumulated at the bottom of the trap within 100 nsat 0.5
K.
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We have calculated the total number of excitons by the equation

1
N =
total ( 27[ )3

j j 477 2dr -4rk2dk - N(F, K) (21)
00

the summation of exciton number aong r direction by the equation

n (e) = j AzF2dr -N,(F,€) (22)
0

we call it exciton occupation, and the summation of exciton number along the direction

of energy by the equation

n,(F) = 1 7 [4rkdk- N(7 k) (23)
(27)%

From n,(e), we get the total number of exciton by the equation

1 ZMX 3/2
Niota Zw[7J 'E\/E.de.nr(e) (24)

The critical number of excitons N a condensate for the BEC for the thermal equilibrium
case

3
N, = 1.202( :Bg j (25)

with the frequency Q = /% , the exciton mass M, = 2.61m,, the steepness constant

a=0.51eV - ym? and the temperature T.

The kinetics of bosonic excitons in a potential trap was studied in reference [9] by rate
eguation in the basis of the single-particle eigenfunctions, in contrast in our work we
have solved the Boltzmann equation. The thermodynamics of long-lived paraexcitons
confined to aparabolic potential well in Cu,O was studied in reference [10].

3.41 Low number of excitons

First we discuss about the results with low number of excitons within the trap. Figure 3.9

represents exciton occupation n, at 3 K by summation of total exciton number of non
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degenerate exciton in r direction vs. energy for zero to 1 ns. We see with increasing time
exciton distribution is coming close to zero energy and at 1 ns it has the boltzmann
distribution.

25

207

15,

n_ (um®)

101

0 0.5 1 15 2 25 3
energy (meV)

Figure 3.9: Exciton occupation n, at 3 K by summation of exciton number of non-
degenerate exciton gasin 1 direction vs. energy for different times. Initially total number

of excitons are 1.98x10°.

In figure 3.10 we have plotted exciton occupation n, at t=0 and at 100 ns by summation
of total exciton number of non degenerate exciton in r direction vs. energy for different
bath temperatures. For 0.3 K at 100 ns we see there is deviation between our simulation
result and thermal equilibrium case therefore, in this case we do not get the thermal
equilibrium.

In figure 3.11 we have plotted the total number of excitons Ny vs. time for different
bath temperatures with including phonon scattering. We see that in the beginning for all
temperatures the exciton number decreases very little with time and then it stays aimost
constant. As the origin of this initial decay we found that the excitons are scattered of the
finite energy space due to the somewhat singular initial distribution.
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Figure 3.10: Exciton occupation n, at t=0 [3.10a, 3.10c] and final [3.10b, 3.10d]
distribution n, at 100 ns by summation of exciton number of non-degenerate exciton gas
in 7 direction vs. energy for different temperatures. For 0.3 K, 0.5 K, 1 K and 3 K,

initially total number of excitons arel.3x10*, 1.5x10*, 1.5x10"° and 1.98x10°,
respectively. Markers represent the results of the numerical simulation and solid lines are
for the thermal equilibrium case.

Reference [11] reported about the same problem and therefore renormalized the exciton
number at each time step. To get rid of this numerical artifact, we always considered in
our numerical simulations the results for the actual number of excitons at each time.
Therefore, our conclusions do not depend on the actual initial number of excitons.

As we say in chapter 2, if we do not include any source term then the total number of
excitons are almost constant with increasing time (see figure 2.6). That means the

boundary conditions are working fine.
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Figure 3.11: Total number of excitons vs. time for different bath temperatures including
deformation potential phonon scattering. The curves show that how the total number of
excitons is changing with time for different bath temperatures. For 0.3 K, 0.5 K, 1 K and

3 K, initially total number of excitons are1.3x10*, 1.5x10*, 1.5x10* and 1.8x10°,
respectively. We see that for all temperatures the exciton number decreases very little
with time in the beginning and then it stays ailmost constant. The origin of this is the
excitons are scattering out from the finite energy space due to singular initial distribution.
For this reason we consider this as numerical artifact.

Then we have calculated the local effective temperature Tioca fOr non degenerate
case, by fitting the long energy tail of the exciton distribution by the function e **e= and
studied how it is changing with time. So, first we have calculated the summation of
excitons number n, along the r direction, plot log(n,) vs. energy curves, fit it with the
function that is proportional to e %"= and get the values of Tioy for different bath
temperatures (see Figure 3.12), We see that for temperatures above 1K the effective
temperature is coming down to bath temperature within ten nanoseconds. Thisis different
for temperatures below 1K, where the effective temperature is coming down to bath
temperature very slowly in around hundreds of nanoseconds only. Therefore we see
cooling time is same for homogeneous system and within the trap.
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Figure 3.12: Local exciton temperature Tioca VS. time for different bath temperatures
including deformation potential phonon scattering. Here we see that the effective
temperature is changing with time for different bath temperatures. The arrows on the
right hand side indicate the effective temperatures. For 0.5 K, 1 K, 3 K and 5 K initialy

total number of excitons are 1.5x10*, 1.5x10%, 1.98x10° and 1.99x10°, respectively.
The curves serves as a guide to the eye.

We have also calculated global effective temperature for non degenerate case, (see figure
3.13) from the ng(r) vs. energy curves by using the relation of the exciton distribution

n,(F) ~ e{é] with &= kBT% and the steepness constant a=0.5ueV -um?.
Therefore, we take the value of 1 at the half maximum of the exciton distribution, and
therefore determined the effective temperature. In this case the global effective
temperature is not coming down to bath temperature and there is deviation between
simulation result and thermal equilibrium curve at 200 ns. In figure 3.14, we see that for
the bath temperature 0.5 K, Tgopa IS coming down to 0.8 K and for the bath temperature

3 K Tgoba IScoming downto 4 K.
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Figure 3.13: Spatial distribution ne of excitons for different temperature as a function of
time for non degenerate case, i.e. the summation of exciton number over the direction of
energy vs. radius r, only with phonon scattering for 0.5 K and 3 K at different times. For
0.5 K and 3 K, initially total number of excitons are 1.02x10" and 1.98x10°,
respectively. Dotted curve represents ne vs. r for thermal equilibrium case.
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Figure 3.14: Tgwa VS time for different bath temperatures including deformation
potential phonon scattering only. For 0.5 K and 3 K, initially total number of excitons are

1.02x10* and 1.98x10°, respectively. The arrows on the right hand side indicate the
effective temperatures.
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3.42 High number of excitons and the possibility of the Bose-Einstein Condensation

BEC of excitons has been studied in references [12-18]. Recently BEC of excitons has
been studied theoretically [19] and experimentally at sub-Kelvin temperatures [20]. In a
real experiment [20] the photoluminescence intensity, which is proportional to the
number of excitons, is measured as a function of location z and the spectral position

ho =e+e,, where g, is the minimum energy of the trap. From the Boltzmann equation

we get the exciton distribution N(7,e") as a function of local energy e'=r%w—ar’ —e,

and radius 1. Then we transfer i to the Cartesian coordinates x, y and z and from the
distribution N(r,e") we have calculated the distribution N(z,e"), where N(ze") isthe
exciton occupation number as a function of energy € and location z . We see only the
middle of the trap, therefore in our case x is equal to zero and the distance, that is actually
the projected dlit width, is Ax. Then by integrating N(z,e") over the location y we get
the energy distribution

N(Z € j4 k2. % N(r =y2+ Z,e)dy (26)
or,
N(z,e) .74/2zM 2 2 2

:Zj 3 -\/E-N(rzwly +2z ,e)dy : (27)

AX 0 h
. N(ze) L o

Then we have integrated x over the z direction and got the energy distribution
NA(e) jN(z e)dz= 2jN(z e)dz (29)

whichis proportlonal to the experimentally measured spectrum.

In figure 3.15, we have plotted vs. energy curves for the temperature of 0.5 K with

N(e)
AX
different exciton numbers within the trap and for different times. We see that if the initial

exciton number within the trap is 1.02x10° then no BEC occurs (see figure 3.15a). At 10

ns exciton number is 1.86x10°. After 10 ns the exciton number and the curve is stable
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like 10 ns. In the next two steps we increase the exciton number by factor of 8. If the
initial exciton number within the trap is 4.08x10° and at 10 ns exciton number is
3.1x108, till no BEC occurs (see figure 3.15b), but finally if the initial exciton number
within the trap is 8.16x10°, then at 10 ns the BEC occurs (see figure 3.15¢) and it is

stable over along time. At 10 ns exciton number is 4.6x10° and a high peak near zero
energy indicates BEC. To find the BEC we have changed excitons number in the trap. By
changing np in the initial distribution we have changed exciton number.
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Figure 3.15: The spectral distribution N(e)/Ax of excitons as a function of time vs.

energy at 0.5 K for a non degenerate case. Figure 3.15a represents number of excitons
within the trap vs. energy for 0.5 K at different times when initial exciton number within

the trap is 1.02x10°, at 10 ns exciton number is 1.86x10° and Ax=1 um. Figure 3.15b
represents N(e)/ Ax vs. energy spectrum for 0.5 K at different times when initial exciton
number within the trap is 4.08x10° and at 10 ns exciton number is 3.05x10°. In both
cases we can not see any BEC. Figure 3.15c represents N(e) / Ax vs. energy for 0.5 K at
different times when initial exciton number within the trap is 8.16x10° at 10 ns exciton

number is 4.61x10°. In figure 3.15c at 10 ns a high pesk near zero energy (indicated by
star) indicates the occurrence of BEC.
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3.43 Comparison with the thermal equilibrium case

The table 1 shows (see Table 1.) acomparison between N¢(Tgan), Nc(Tgioba), and Niota-
Niota 1S the total number of excitons within the trap from our numerical simulations for
which for the first time the BEC appears. N¢(Tgan) IS the critical number of excitons at
thermal equilibrium for the bath temperature. N¢(Tgoba) IS the critical number of the
excitons at thermal equilibrium for the global effective temperature. From our numerical
simulations, we see that the BEC occurs for all observed temperatures over and below the
bath temperature of 1K. From the table we see that from our numerical simulations the
values of Niqa at the BEC are always one order of magnitude higher than N¢(Tgan) for
all temperatures.

Table 1. comparison between N¢(Tpath), Ne(Terr) @and Niota -

Than (K) Tgoba (K) N¢(T bath) Ne¢(T global) Niotal
05 0.9 5.45x 107 3.16x10° 4.61x10°
1 1.4 4.36x10° 1.2x10° 1.97x10°
3 4.6 1.18x10° 4.21x10° 6.5x10%
° 5.43 5.45x10" 6.93x10% 9.34x10"

Figure 3.16 shows the total number of excitons Nuy Within the trap for which for the
first time the BEC appears vs. time curves for the bath temperatures 0.5 K, 1 K, 3 K and
5 K, where we can see that exciton number is decreasing with time and coming to the
BEC within the trap.
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Figure 3.16: Exciton number vs. time curves for different temperatures. Red curves
represent total number of excitons within the trap for which first time condensate appears
vs. time for 0.5 K, 1 K, 3 K and 5 K. In these cases exciton number is decreasing with
time and coming to condensate. Black dotted curves represent critical number of excitons
at global effective temperature for the thermal equilibrium case. Blue curves represent
critical number of excitons at bath temperature for the thermal equilibrium case.

3.5 Summary

We have seen the relaxation behaviour of excitons between 0.3 K to 5 K in homogeneous
system and also within a potential trap. In homogeneous system and within the trap for
both cases we see for temperatures between 0.5 K to 3 K excitons are thermalizing but
for 0.3 K excitons are not thermalizing within their lifetime.
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Within the trap, we see locally, that for the bath temperatures between 1 K to 5 K the
local effective temperature Toca IS COMing down to bath temperature very quickly within
10 nanoseconds, but for the bath temperatures below 1 K, the Tioa 1S cOming down to the
bath temperature very slowly within 100 nanoseconds only. Cooling time is same in
homogeneous case. This effect can be related to the freezing out of phonons for very low
temperatures. On a global scale, exciton effective temperature Tgosa 1S NOt cOMing down
to the bath temperature. For low temperatures the global effective temperature is almost a
factor of 2 larger than the bath temperatures.

We see from our numerical simulations, that the BEC occurs for all observed
temperatures. By comparing our results with the thermal equilibrium case, we see that for
al temperatures the BEC comes at a higher number of excitons than in thermal
equilibrium case. The effective temperature at the time of BEC has good agreement with
the global effective temperature.
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Chapter 4

Auger Decay, Radiative and Non-Radiative Decay

This chapter contains the theory of Auger decay, radiative and non-radiative decay and
the results of the Boltzmann equation with the phonon scattering, Auger decay, radiative
and non-radiative decay within a potential trap. Previous work on Auger decay and the
estimation of the Auger decay rate has been discussed.
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4.1 Auger decay

In a semiconductor in which the electrons and holes remain unbound, one can observe a
process in which one electron-hole pair recombines and giving the band gap energy to the
remaining electron or hole. This three body process is called Auger recombination. In
Cu,0 at low temperatures, the excitons are the dominant species and the density
dependent decay is due to the collision of two excitons. In this case, Auger decay [1]
destroys two excitons by recombination of one exciton and ionization the other one. The

decay rate of excitons due to this two body decay is An’> where A isthe Auger constant
and n isthe gas density.

We assume that all of the ionized carriers released by Auger decay rebind to form new
excitons, and we distribute these excitons over the whole energy range. Indeed, the
electron hole pairs also recombine into orthoexcitons, but these are then converted into
paraexcitons. Therefore, only paraexcitons need to be considered. So, in recovery, we are
getting back half of the destroyed excitons by Auger decay. The complete effect of Auger
decay on the exciton occupation number is[1]

N, o 1, (27)
(& ]AUWDM_ Appn(r)N(r,k)+2Abpn(r) Ida

D

or,

ON, A (N7 (27)°
(at jAugerDecay_ AN+ A”"n(r) ‘TM’ M{e

N

0

3n® (271)

_Appn(r)N(r e)+ App ( ) 8\/_ Ms/z 3/2

(2)

The first term is due to two body decay and the second term is due to recovery. A

is the Auger constant. n(i) is the local density obtained by summation of exciton

occupation number along the direction of energy.
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n(r) = N(F, k)dk ©)

or,

n(r)= -N(F,e)de 4

1 J4ﬁ7z|v|f’2fe
(27[)3 ! h3

We have used an Auger constant A, =107 cm®/ ns taken from recent experiments
[2].
4.2 Radiative and non-radiative decay

The radiative and non-radiative decay [2] of paraexcitons occurs with the total rate I ,

i.e

oN, e
( ot ]R NRdecay_ rpN(r,e) ©

From recent experiment the decay rateis I' ) =1/650 ns™ [2].

4.3 Numerical modeling

By using the relation e:% : Ae:% with M is an integer, we can write n(r) (see

equation 4) in the following way

- 324”“" I[ j NG, ) (6)

Therefore we can write

(Zﬂh )3

R ()
> a2z (fzj Ji

ON.
(W’j =~ AOING, 1)+ £ A,nG)
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d N, =T _N(,j (8)
i (ﬂwm“ NED)

4.4 Previous works on Auger decay and the estimations of the Auger
decay rate

Several groups have been reported about the study on Auger decay process and also
Auger decay constant. The first theoretical estimate of the Auger decay rate seems to be
that by Culik [3]. From the Fermi's Golden rule he finds the transition rate from a pair of
excitons to afree electron and hole. He finds Auger decay constant is zero for 1s excitons

and 10 cm?®/ns for 2p excitons in Cu,O.

The first experimental measurement of the Auger decay rate of excitons in Cu,O was by
Mysyrowicz et. a. [4]. That measurement was made with the steady state excitation.
They extracted an Auger decay constant for the paraexcitons is 2x10™° cm®/ns. This
experiment produces gasses consisting mainly of paraexcitons because the ortho to
paraexciton conversion rate is fast on the scale of paraexciton lifetime. The two body

decay constant was determined in [5] to be of the order of 1x10% cm®/ns.

The first determination of the Auger decay constant through direct observation of the
exciton decay rate was made by Snoke and Wolfe [6]. In acrystal at 2 K, Snoke and
Wolfe measured the lifetime of the orthoexciton luminescence following an intense 100

ps laser pulse. They reported an Auger decay constant 10*® cm®/ns for orthoexcitons.

Trauernicht, Wolf and Mysyrowicz [7] reported a rate 0.05/sec for paraexcitons confined
to a parabolic strain well.

OHara et a. [8] determined the density of excitons by measuring their absolute
brightness in a calibrated optical system and measuring the expanding volume occupied
by the excitons. The luminescence signal following sub nanosecond laser excitation
exhibits a decay rate which is strongly depend on the particle density. They reported that

the effective Auger constant is A=7x10"cm®/ns.
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Warren et al. [9] examined the decay of thermalized excitons in Cu,O and determined
their lifetime against two-body decay. They reported that the Auger constant is

A=0.6x10"*cm?/ns.

Kavoulakis and Mysyrowicz [10] examined the interconversion between the angular-

momentum triplet state excitons and the angular momentum singlet-gate excitons by a

spin exchange process. They estimated the two-body decay constant is A~ 10 °cm?®/ns.

Wolf et al. [11] studied Auger recombination of excitons in Cu,O by time and space
resolved luminescence. Their measured Auger constant range  from

A(72K) =1.8x10"° cm®/ns to A(212K) = 0.5x107*° cm®/ns respectively.

Kavoulakis and Baym [12] studied the non-radiative Auger decay of excitonsin Cu,O, in
which two excitons scatter to an excited electron and hole. They calculated the Auger
decay rate for both the direct and phonon assisted mechanisms and they concluded that
the rate of the phonon assisted Auger mechanism is much larger than the rate of the direct
process. Furthermore, the experimental results differ by at least four orders of magnitude
from the theoretical predictions[11, 12].

Recently, Yoshioka et al. [13] studied a density dependent loss of optically inactive
paraexcitons as a function of temperature over a wide range of densities in Cu,O. They
reported that the Auger decay rateis 4x10*® cm®/ns in bulk crystals.

Recently [14], it was suggested that the two-body decay process is actually related to the
formation of a biexciton state.

As our am is to model the experimental work of Ref. [2], we take the Auger constant

fromthisreport as A, =10 cm®/ns.

4.5 Results within a potential trap including phonon scattering, Auger
decay, radiative and non-radiative decay

The Boltzmann equation with radiative and non-radiative decay and Auger decay is given
by
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oN 2v, NG NG
E__NN\/T{N(I,J) N@i-1 j)}

2aArM . o oN

" M sz I\/T{ N (I , J +1) - N (I , J)} ’ (Ejphonon—scattering

oN oN

(& (5
8t R_NR_decay at Auger_decay

(9)

451 Low number of excitons

After solving the Boltzmann equation with phonon scattering, radiative, non-radiative
decay and Auger decay with low number of excitons within the trap we don't see any
Auger effect. In section 4.4 we already discussed about previous estimates of Auger

decay constant. We have used the Auger constant A =107 cm®/ns [2] from recent

experimental work.

0.16 : ‘ 35
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Figure 4.1: Spatial distribution ne of excitons for different temperatures as a function of
time i.e. the summation of exciton number over the direction of energy vs. radius r
including Auger decay, radiative and non-radiative recombination with phonon scattering
for 0.5 K (figure 4.1a) and 3 K (figure 4.1b) at different times. At 0.5 K and 3 K initial

total number of excitons are 1.02x10* and 1.98x10°, respectively.
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4.52 High number of excitons and the possibility of the Bose-Einstein condensation

After solving the Boltzmann equation with phonon scattering, radiative, non-radiative

decay and Auger decay with the Auger constant A =10"° cm®/ns [2], and with high

number of excitons within the trap we see that the total number of excitons decreasing
with increasing time. Figure 4.2 represents exciton occupation n, a 3 K by summation of
exciton number of non-degenerate exciton gas in r direction vs. energy for different
times. We see how exciton distribution is changing with time from O to 200 ns.

In figure 4.3, we see locally, that the effective temperatures are not coming down to the
bath temperatures even after 600 ns. We have calculated the local effective temperature
Tioca by fitting the long energy tail of the exciton distribution by a function proportional

to %"= This Boltzman distribution f(e)=e®*" is an approximation which is

derived from Bose-Einstein distribution f (€) = for e>>Kk,T .

efe/ KT 1

10 : : :
Nt0t=1.98x1011
6

1074 T=3K
& 10'}
€
=
- 102 F

t=60ns |
10°| t=100 ns /

t=200 ns

0 05 1 15 2 25 3
energy (meV)

Figure 4.2: Exciton occupation n, at 3 K by the summation of exciton number of non-
degenerate exciton gasin r direction vs. energy at different times. Initially total number

of excitonsis 1.98x10™.
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100

Tiocal (K)
S

‘ ~

w

~

1 Tbathm ﬂK
——3K
—=—15K
—+—0.5K
0.1 \ T
0.001 0.1 10 1000
Time (ns)

Figure 4.3: Local effective temperature Tioca VS. time curves for different bath
temperatures including deformation potential phonon scattering, radiative, non-radiative
decay and Auger decay. The arrows on the right hand side indicate the effective
temperatures. We see that the effective temperatures are not coming down to bath
temperatures even after 600 ns. At 0.5K, 1.5 K and 3 K initial exciton number within the

trap are 1.02x10°, 2.76x10" and 1.99x 10", respectively. The curves serve as a guide to
the eye.
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Figure 4.4: Spatial distribution ne of excitons for different temperatures as a function of
time for non degenerate case, i.e. the summation of exciton number over the direction of
energy vs. radiusr including Auger decay, radiative and non radiative decay with phonon
scattering for 0.5 K (figure 4.4a) and 3 K (figure 4.4b) at different times. At 0.5K and 3

K initial total number of excitons are 1.02x10° and 1.98x 10", respectively.
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Figure 4.4 represents exciton distribution ne vs. radius at different times for 3 K and 0.5
K. We have calculated global effective temperature Tqona (See figure 4.5) from the ne(r)

r

vs. energy curves by using the relation of the exciton distribution n (') ~ ef[gj , with

kT,
&=, 9% and the steepness constant a = 0.5u€V - um2. Therefore, we take the value
a

of r a the half maximum of the exciton distribution, and determined the effective

temperature. Globally, the effective temperature is also not coming down to the bath

temperature.
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Figure 4.5: Excitons global temperature Tgona VS. time for different bath temperatures
including Auger decay. The arrows on the right hand side indicate the effective
temperatures. We see the global effective temperatures are not coming down to the bath

temperatures.
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Figure 4.6: The spectrall distribution N(e)/ Ax of exciton as a function of time vs. energy
a 3 K with and without Auger decay, radiative and non-radiative decay. Figure 4.6a
represents the results only with phonon scattering. Here initial exciton number within the
trap is 5.97x10" and at 15 ns exciton number is 6.5x10. At 15 ns, we see that a high
peak near zero energy occurs which indicates BEC. Figure 4.6b represents the results
including Auger decay, radiative and non-radiative decay with the phonon scattering, and
the same exciton number within the trap. In this case we don't see any BEC.

The critical number of excitons N at condensate for the BEC for the thermal equilibrium
case
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3
N, = 1.202( :Bg j (10)

with the frequency Q= /% , the exciton mass M, =2.61m,, the stegpness constant
a=0.51eV - ym? and the temperature T.

To study on BEC in the case of Auger decay, if we increase the exciton number
over the critical number we do not see any BEC for any temperature at any time. In figure
4.6 we compare the total number of excitons within the trap vs. energy for the bath
temperature of 3 K with and without Auger decay, radiative and non-radiative decay with
the same initial exciton numbers within the trap. Here we see that without Auger decay,
radiative and non-radiative decay the BEC exist at 15 ns (see figure 4.6a) but with Auger
decay, radiative and non-radiative decay no BEC occurs at any time (see figure 4.6b). A
similar behaviour was found for other temperatures.

4.6 Summary

After solving the Boltzmann equation with the phonon scattering, radiative, non-radiative
decay and Auger decay, we see locally and globally for both cases the effective
temperature is not coming down to the bath temperature after long times due to the
heating of the exciton gas. In this case, no BEC occurs. Whereas in the case of phonon
scattering only, as we discussed in chapter 3, we have seen that locally the effective
temperature was coming down to the bath temperature but globally the effective
temperature was not coming down to the bath temperature. In that case BEC occurs for
all temperatures over and below 1 K. Therefore Auger decay makes a barrier to get the
BEC.
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Chapter 5

Elastic Scattering

In this chapter we have discussed about the elastic scattering, the results of the
Boltzmann equation with the elastic scattering and the phonon scattering in the
homogeneous system and the results of the Boltzmann equation with the elastic scattering
and the phonon scattering within a potential trap. The possibility of Bose-Einstein

condensation of exciton in Cu,O, within the potential trap is discussed.

68



Chapter 5. Elastic Scattering

5.1 Theory
5.11 General equation for the elastic scattering

Elastic scattering term of the Boltzmann equation [1] describes the two-body scattering of
boson gas in a homogeneous system. The scattering rate involves all events in which
excitons of momentum p and p, scatter into k and k,. There are two initial exciton
momenta and two final exciton momenta involved whereas in the case of phonon

scattering, one initial exciton momentum and one final exciton momentum involved.

The scattering rate of the exciton into state k is [2, 3]

dt elastic_in_ scattering h (

NN, L+ N )@+ N )35(P+ P, - k —k,)

k d°p d®p, d°k, M2

matrix

x5(e,+€, 6 —€ ) 1)

Where e. =7°k*/2M, , e, =h*p*/2M, , n'p,12M, and g =7’k /2M, are

the exciton energy in wavevector k state, p state, p, state, and IZ2 state, respectively.

N;, N, N, and N_ are the exciton occupation number in k state, p state, p, state,

Adrh’a

and IZ2 state, respectively. M is the matrix element [3] with a the

matrix ~
X

scattering length. Here e, =e, +e, —€, or k, =/ p*+ P, -k’ .

The scattering rate of the exciton out of state k is [2, 3]

(dNRJ d3l2 272' V
dt elastic_ out _ scattering h (

NN (L+ N+ N, )}5(k +k,— p—p,)

K d°p d®p, d°k, M2

matrix
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x5(6; +6, —€,—€,) (2)

The net scattering rate of the exciton in and out of the volume of k space d°k is given by

S .

- - 3)
dt elastic_ scattering dt elastic_in_ scattering dt elastic_ out _ scattering
or,

(dNRJ 27r Vv’
dt elastic_ scattering

[N N, (L+ N )L+ N, ISP+ B, — k —k,)

pd®p, d’k, M?

matrix

xo (e, +€, —§ —§ )—{N;N. (1+N,)A+ Ny )}

xS(K+k, —P-P,)5(g +8 —€,—e,)] (4)

(%J 2w V? [4@2 j @y 2V
dt elastic_ scattering h (27[) M.V

x| Pdp] p;dp, -min[p, B, K. k.-~ -
PP,
AENGN,, (L N+ N OF{NN, (L5 N,)(L+N, )} (5)

(dNRJ _z Vv .(4”h231j2-(2n)2.2'\"x.1
dt elastic_ scattering h (27[)6 M.V hz R

X_[ ﬁdpj r)zdpz ' min[p’, pz’ R’ R2]
X[{N N, @+N)A+ NIZZ )}_{NRNRZ @+ N,)@+ N, )} (6)
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5.12 Transfer momentum termsto energy terms

We know g =7°k*/2M, , e,=h*p*/2M, and e, =7*p,’>/2M, .

2M, & 1 1
Therefore k = et p dp:Tdep and p, dp, :Tdepz.
v, v,

2M,

2M

X

By using these relation we get

{dNeg] r VP (47rh2a1j2 (27)? (ZMXT 1
_m VT 2n) .
dt elagtic_ scattering h (27[) M XV 4 h2 2M er

h2

x| de, [ de,, -min[p, B, k.k,]

AN, N, (04N )@+ N NN, @+ N)A+N T (D)

dN 4alM, 1 -
(d—?Jdastic_Scattering :%E -[dep.[depz ' mln[ﬁ’@’@’\/%]

AN, N, (04N )@+ N BN N, @+ N)A+N T (@)

Now two conditions arise [4, 5], the first one is > e, and then we can write the

equation

dN 4a2M. 1 % 7 :
(T?Jd T ihsx.ﬁ { depekL e M 8 B8
astic_ scattering ]

AN, N, (14N )@+ N 3NN, LN AN (9)

The second condition is g <e, and then we can write the equation
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dN_
(d—teklasﬂc scattering 431 M J-de .[de m|n[\/€ \/T’Z’\/g’\/e‘:]

<N, N% 1+ N+ N, 3-{N N, L+ N, )@+ N, )}]

Therefore the complete equation is

dN 4a2M, 1 |% i :
(d—f]elastic_scattering ) ihs } F | '!.dep eK'_[ep depz .mm[\/g’\/%’\/g’\/q:]
+T depTdepz -min[\/%,\/%,\/g,\/%ﬂ
e 0

KN, N, L+ N )+ N, 34N N, @+ N, )@+ N, )}

5.13 Equation for zero energy state

At k=0 the elastic scattering term is given by

dN, _ _4alM,
( detkOJ ih J'de J'de TN, N, (@ N )(+ N, )}
elastic_ scattering

AN, 5N, @+N,)A+N, )}]

5.14 Equationsfor in-scattering and out-scattering terms from k=0 state

If k, =0, we get [6]
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2
Mo _2r V' (4zh'a -NEZ_OTDde.szz.Mx.Ql
dt | ) P
out _ scattering _ zero

h (2,,)6 M.V Vv n”okp
{N,N, =N (1+N, +N,)} (13)
or,
dN, 27 V? (4zita)) Neo . , (MY %1
= 5 . 872' . > '[_ dep
dt , no(2z) \ MYV \Y} h * k
out _ scattering _ zero
Ny N, =N, (1+N, +N, )} (14)
or,
dN 2 N &
&, =0 _4a1 &, =0 1
out _ ering _ zero

with e, =€ —€, and V is the volume.

Similarly if p, =0, we get [6]

dNeA -0 4812 NeA =0 F 1
2 _T4 % Z.de. {N. 1+N. +N_.)=N_N 16
( dt Jin gm0 ﬂ'h V ik p { ep( &, %z) & eﬁz} ( )

with E%Zz =€, €.

5.2 Numerical modeling

We discretize the energy e =(jk—1)Ae where j, =1....ne, ne is an integer and

Ae:% with M is an integer. Analogously we discretize the energy e, =(j,-1)Ae,

e, =(I,, —DAe, 6 =(ij —1)Ae.

a “aM, 1 (eo jz L
K _ x . J2 . min -1, °1 Y =]
( ot Jelastic_sc:attering h’ \/Jk -1 \M ; jk_sz [\/Jp \/Jpz \/Jk \/sz ]
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33 minhT, LT, L/ LT, -1

N, N, (@+N@+N RN, N, @+N))A+N ) (17)

We can write the equation (12), for j. =1 in the form

N, o (o [e
( dt Jdaﬂic—swnering ﬂ.h?’ [ M J ZO: ZO:[{ Io" ( + Ik:1)( + Jip )}

N, LN, (@+N, )@+ ij)}]} (18)
Similarly we can write the equations (15) and (16), for j. =1 and j, =1 inthe form
dt ‘ zfaM, V. M
out _ scattering _ zero

{zk“ 1 -{ijNJpz—NJR(1+NJP2+N].¢)}} (19)

jp=0 JR _1

(depzlj _ 43’ . Nipfl .(&jm
dt in_ scattering _ zero 7 \ ZMX v M

> 1
{Z T 1 Nl +Njk>—NJRNjkz}] (20)

Therefore the complete elastic scattering equation is [6]

dN, dN, dN,
Jk — Jk + le
dt elastic_ scattering _ whole dt elastic_ scattering dt out_ scattering _ zero

2 (dN" ‘1] (21)
42 —2
dt in_ scattering _ zero
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5.3 Results in homogeneous system including phonon scattering and

elastic scattering

The relaxation Kinetics of excitons in Cu,O due to phonon scattering and elastic
scattering have been investigated in references [2, 4]. We have also investigated the
Boltzmann kinetics of paraexcitons with phonon scattering and elastic scattering in Cu,O

in the homogeneous system.

After solving the phonon scattering and elastic scattering term of the Boltzmann equation
we are getting the exciton occupation number as a function of energy e, and time t. We

have used the initial distribution [7] which IS Gaussian

N, (t =0) = N, exp[-(e—&)* / (Ae)*] with the central energy & and the width Ae.

The parameters, which we have used, are the exciton mass M, =2.61m,
m, =9.109x10"* kg is the electron rest mass, the longitudinal acoustic sound velocity
v,=4.5x10°m/s, the deformation potential energy D=1.68 eV, the crystal density
p=6.11x10° kg / m®, the volume V =1 um®, the steepness constant a=0.5ueV - um™

and the scattering length a, =2 nm.

There have been several theoretical estimations of the exciton-exciton scattering for bulk
systems [8-12] and quantum wells [13, 14] as well as calculations on biexciton-biexciton

scattering [15]. These are generally in terms of scattering length &, which is related to the
cross-section by the equation o =4za’. References [4, 9] have used the scattering cross

section o =50 nm?. We have also used scattering cross section o =50 nm?.
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Figure 5.1: Exciton distribution in homogeneous system for 0.5 K from 0 to 750 ps. In
this case exciton density is 1x10°® zm™.

Figure 5.1 represents the exciton distribution for 0.5 K at different times. We see at 750
ps the exciton distribution is taking the Boltzmann distribution. Figure 5.2 represents the
exciton distribution for different temperatures at different times. We see for 3 K the
exciton distribution is coming to the thermal equilibrium within 5 ns in contrast for 0.5 K
it is taking 150 ns and for 0.3 K it is taking 400 ns to reach to the thermal equilibrium.
For 0.1 K (see figure 5.2d) exciton distribution does not reach thermal equilibrium even
at 5000 ns. The calculations, in the results for figure 5.2, are without including the
equation for zero energy state, but the behaviour is same if we include the equation for

zero energy state.

Figure 5.3 represents exciton's local effective temperature vs. time curve for different
bath temperatures. We have calculated the local effective temperature T by fitting the

long energy tail of the exciton distribution using the equation g ohelor |
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Figure 5.2: Exciton distribution in homogeneous system for different bath temperatures
at different times. In these cases exciton densities are 1.7x10° gm™® for 3 K and

1x10° um™ for 0.5 K, 0.3 K and 0.1 K. Full lines represents the results of the numerical

simulations and markers represent the thermal equilibrium case for each temperature. In
figure 5.2d, markers with dashed curve represents thermal equilibrium for 0.1 K where
we see that the exciton distribution does not reach the thermal equilibrium even at 5000
ns.

We see that for 3 K the local effective temperature is coming down to the bath
temperature within 5 ns, in contrast for 0.5 K it is taking around 100 ns and for 0.3 K it is
taking 250 ns. But for 0.1 K the local effective temperature is coming down to 0.17 K at
5000 ns. For 0.05 K the relaxation behaviour is almost identical to that of 0.1 K,

especially the excitons cool down to 0.17 K at 5000 ns.
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Figure 5.3: Local exciton temperature Tt vs. time for different bath temperatures in the
homogeneous system. Here we see that the effective temperature is changing with time
for different bath temperatures. The arrows on the right hand side indicate the effective

temperatures. For 3 K the exciton density is 1.8x10° zm™ and for 0.05 K, 0.1 K, 0.3 K
and 0.5 K the exciton density is 1x10° zm™.

We know for constant potential energy, the critical density is given by

M k.T )"
n = X ‘B 22
¢ ( 27h? j (22)

In our numerical simulations, if we do not include the equation for in-scattering and out-
scattering terms are equal to zero and increase the exciton density over the critical density
then over 1.5 K, we see the high peak in the exciton distribution (see figure 5.4). Below
1.5 K simulations can not be performed over long time due to the excitons number at zero
energy state is increasing with a high rate, which is an indication of BEC (see figure 5.5
for 0.5 K, which is almost same with and without including in-scattering and out-
scattering terms are equal to zero).

If we include the equation for in-scattering and out-scattering terms are equal to zero,
then for the all investigated temperatures excitons number at zero energy state is

increasing with a high rate, which is an indication of BEC.
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Figure 5.4: Exciton distribution in homogeneous system for 3 K when exciton density
is1.66x10° zm™. Left hand side figure represents the exciton distribution between

energy range zero to 4 meV whereas right hand side figure represents a close view of
exciton distribution between energy range zero to 0.5 meV. The critical density of

exciton for 3 K is1.4x10° uzm™. Here exciton density is higher than the critical density.
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Figure 5.5: Ground state occupation number vs. time for different bath temperatures
includes the equation for in-scattering and out-scattering terms are equal to zero. For 3 K

and 0.5 K, exciton densities are 1.8x10° xm™ and 1.2x10° um™ respectively. The
critical densities of exciton for 3 K and 0.5 K arel.4x10° um?® and1x10* gm™

respectively. Here the exciton densities are higher than the critical densities and we see
that the ground state exciton number is increasing with a high rate with time.
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Figure 5.4 shows the exciton occupation number vs. energy curve for 3 K, where the
exciton density1.66x10° zm™ is higher than the critical density 1.4x10° umfor 3 K.

Left hand side figure of the figure 5.4 represents the exciton distribution between energy
range zero to 4 meV whereas right hand side figure represents a close view of exciton
distribution between energy range zero to 0.5 meV. Here we see that the high peak
shows up at the zero energy. Figure 5.5 shows the ground state occupation number vs.
time for different bath temperatures, where the exciton densities for 3 K and 0.5 K, are

1.8x10° pm™® and 1.2x10° um™® respectively, which are over the critical density of

exciton for 3 K and 0.5 K are1.4x10° xm™ and1x10* xm®, respectively. Here we see

that the exciton number at zero energy state is increasing with a high rate [5]. Therefore

numerical simulations can not performed over long time, but this is an indication of BEC.
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5.4 Results within a potential trap including phonon scattering and
elastic scattering

After solving the Boltzmann equation with phonon scattering and elastic scattering terms
we are getting the exciton occupation number as a function of energy e, radius r and
time t. We see that for a particular temperature, the excitons are going towards the bottom
of the trap with increasing time, and after some time they are accumulated in a place near
the bottom of the trap. In Fig. 5.6, this is demonstrated by an example at a bath
temperature of T=0.1 K for t=0ns and t=10 ns.

From the exciton occupation numbers Ne(r,e,t), one can calculate the interesting
quantities like total excitons number N (9. 21, chapter 3) and the excitons occupation
(eq. 22, chapter 3) as usual. However, it has to be stressed, that these quantities refer only
to the thermal excitons at e>0. To obtain the number of excitons in the condensate, we
have to include the state at e=0 in the following way:

We approximate the number of particles at k =0 by the number of excitons in the k -
space volume Ak® at k = 0. The condensed exciton density at the position | - AR is
n,(l,t)= N{LO)

AR
the total volume as

The total number of condensed excitons is obtained by summing over

t=0 T t=10ns
s N .
£ 04 a ; . \.
H i hS e} H
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Figure5.6: The result of the simulation with phonon and elastic scattering for T = 0.1 K.
The left panel shows the initial distribution (t=0ns), the right panel shows the result for t =

10 ns. Initial exciton number within the trap is 1.1x108.
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1
AR

N(t)= D> N(1,0)-4n-(1-AR)*-AR=4n> N(1,0)-17. (23)

5.4.1 Influence of quantization volume

In contrast to phonon scattering, the elastic scattering rates between thermal and
condensed excitons depend explicitly on the quantization volume V (see eq. 19 and 20).
To see its influence we have calculated for different volumes the exciton occupation n;
vs. energy curves for 0.5 K with different volume and different initial number of excitons
(see figures 5.7, 5.8, 5.9). From these diagrams one can draw the conclusion that the

exciton occupation n, shows no influence of the volume on the relaxation behavior.

Therefore, the following calculations will be always done with V =1um® .

I ‘_ 6
106 (b) N!.ﬂ.!t!a!=1'16)(108 1 104 - @ Ninitial_3'87}(10
Volume=10 um3 2ns Volume=10 pma
10* 2ns T=05K | 10 ' T=05K
@ «
10 £
% . ns ER 10ns
~ 10 10 ¢ B ¥
c < 30ns
2
10° 4 107} A7
100 ns 100 ns
_2 -4 1 L
195 02 04 06 10 02 04 06
energy (meV) energy (meV)

Figure 5.7: Exciton occupation n, at 0.5 K by the summation of exciton number in r

direction vs. energy for different times t for a volumeV =10 um®. In figure (a) the initial

exciton number is 3.87x10° and in figure (b) it is 1.16x108.
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Figure 5.8. Exciton occupation n, at 0.5 K by the summation of exciton number in r
direction vs. energy for different times t for a volumeV =1 pm®. Figure (a): Initial exciton

number 3.87 x10°; figure (b): Initial exciton number 1.16x10°.

10'l @ N . =3.87X10° (b) N.._=1.06X10°

initial initial
Volume=0.1 um3
T=0.5K

Volume=0.1 pm? 4

2ns

10 T=05K
e &
5 10 £
3. ns r
-_/L 100 L i \._.JL
c [ o

30 ns

100 ns 100 ns
4 2 . .
10, 02 04 06 10 0 0.2 0.4 0.6
energy (meV) energy (meV)

Figure 5.9: Exciton occupation n, at 0.5 K by the summation of exciton number in r direction
vs. energy for different times t for a volumeV =0.1 um®. Figure (a): Initial exciton number

3.87x10°; figure (b): Initial exciton number 1.06x10°.
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5.4.2. Numerical Stability

An important issue in the numerical simulation is a possible loss (or gain) of excitons due
to the finite resolution and boundaries in real and momentum space. To check this, we
have undertaken a series of simulations for T=0.5K and 0.1K and plotted the total exciton
number as a function of time (figures 5.10 and 5.11).
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Figure 5.10: Total number of excitons vs. time for 0.5 K with the volume of 1 um’

including deformation potential phonon scattering and elastic scattering. The curves
show how the total number of excitons is changing with time with different initial
number of excitons.

Figure 5.10 represents the total number of excitons (Nal) VS. time curves for 0.5 K with
the volume of 1 um®. Here we see that for the small initial exciton number Ny is

109- T ——

Figure5.11: Total
number of excitons
vs. time for 0.1 K
with the volume of

1 um® including
deformation potential
phonon scattering and
elastic scattering.
Initial total number of
excitons: 1.1x10°.
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almost constant with increasing time. But for large initial excitons numbers up to
2.32x10° the variation of Ny Stays below a factor of 3. In fig. 5.11 we extended for

T=0.1K the calculation to t=1000ns and plotted the actual total number of excitons

(Ngw +N;) including the condensate obtained from eq. (23) vs. time with 1.1x10°

initial number of excitons (see chapter 5.4.5). Here we see that up to 10 ns, the exciton
number is decreasing but after that it stays almost constant.

From the data we conclude that the calculation has sufficient numerical stability so that
reliable results can be obtained.

5.4.3. Low number of excitons

For low number of excitons we expect no difference to the results including phonon
scattering only. The question is from which exciton number the elastic scattering plays a
significant role.

1.00E+00

*———o— 05K
—

T local (K)

——0.5K
1.00E-01
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Time (ns)

Figure 5.12: Local exciton temperature Tioa VS. time for bath
temperature of 0.5 K including elastic and phonon scattering. Number

of excitons is 1x10°. Curve serves as a guide to the eye.
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In figure 5.12 we have plotted local exciton temperature Tiocar VS. time for the bath
temperature of 0.5 K including elastic and phonon scattering at a exciton number of
1x10°. We have calculated the local effective temperature Ty by fitting the long
energy tail of the exciton distribution by a function proportional to e ®*s"= and studied
how it is changing with time. If we compare this figure with the figure 3.12 including
phonon scattering only at an initial exciton number of 1.5x10* then we get no such
differences. Therefore there is no effect of elastic scattering when the exciton number is

1x10°.
5.4.4. High number of excitons

For high number of excitons we expect a strong effect of elastic scattering on the
relaxation behavior. This shows up most significantly in the exciton occupation n,. Data
for T=0.5K have already been given in Fig.5.8, for T=0.1K the results are shown in Fig.
5.13.
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Figure 5.13: Exciton occupation n; at 0.1 K by the summation of exciton number in r
direction vs. energy for different times for the volumel um®. Here the initial exciton

number is 1.1x108.

For both temperatures we see that a thermal distribution is obtained for times larger than
10ns, so that we can compare the effective local temperatures for times larger than 10 ns
for bath temperatures of 3K, 0.5K and 0.1K.

86



Chapter 5. Elastic Scattering

5.4.4.1. Local Temperature

Figure 5.14 represents the local effective temperatures vs. time curves for the bath
temperatures 3 K, 0.5 Kand 0.1 K. For 0.5 K and 3 K initially total number of exciton is

1.16x10° and for 0.1 K initially total number of exciton is 1.1x10°. We have calculated
the local effective temperature T by fitting the long energy tail of the exciton

~¢Tes and studied how it is changing with

distribution by a function proportional to e
time. Here we see that the local effective temperature is coming down to the bath
temperature for 3 K and 0.5 K, but for 0.1 K this is not the case. For 0.5K bath
temperature is reached within 100 ns, but for 0.1 K the local effective temperature is not

coming down to bath temperature even at 1000 ns.
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Figure 5.14: Local exciton temperature Tioa VS. time for different bath
temperatures including elastic and phonon scattering. Here we see that the effective
temperature is changing with time for different bath temperatures. The arrows on
the right hand side indicate the effective temperatures. For 0.5 K and 3 K initially

total number of exciton is 1.16x10° and for 0.1 K initially total number of exciton
is 1.1x10°. The curves serve as a guide to the eye.
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5.4.4.2. Global temperature

To obtain information about the global distribution of excitons, we compare as in Sec. 5.2
and 5.3 the radial density distribution of excitons.
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Figure 5.18: Spatial distribution n. of excitons for different bath temperatures for 10 ns,
100 ns, and 1000 ns, i.e. the summation of exciton number over the direction of energy
vs. radius r, with phonon and elastic scattering for different time. For 0.5 K and 3 K,

initially total number of excitons is 1.16x10°.

Figure 5.18 represents spatial distribution ne of excitons, i.e. the summation of exciton

number over the direction of energy vs. radius r, with phonon and elastic scattering for

different time for the temperatures 0.5 K and 3 K.
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Figure 5.19: Spatial distribution n. of excitons for a bath temperature of 0.1 K with

1.1x10° initial number of excitons, i.e. the summation of exciton number over the
direction of energy vs. radius r, with phonon and elastic scattering for different times.
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Figure 5.19 represents the spatial distribution n. of excitons vs. radius r, with phonon and

elastic scattering for different times for the temperature 0.1 K.

To calculate the global effective temperature we have plotted ne(r) vs. radius curves (see

r

figures 5.18 and 5.19) by using the relation of the exciton distribution n, (") ~ e{‘fj with

KaT,
&=, [—29% and the steepness constant a = 0.5.€V - um 2. Therefore, we take the value
a

of r at the half maximum of the exciton distribution, and determined the effective
temperature.

In figure 5.20 we have plotted the global effective temperature Tgiobal VS. time for the bath
temperatures 0.1 K, 0.5 K and 3 K. Here we see that for the bath temperatures of 0.1 K
both the local and global effective temperatures stay really a high value of 0.2 K even
after 1000 ns.
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Figure 5.20: Tgonar Vs. time for different bath temperatures including phonon scattering and
elastic scattering. For 0.5 K and 3 K, initially total number of excitons is 1.16x10° and for 0.1
K, initially total number of excitons is 1.1x10°. The arrows on the right hand side indicate the
effective temperatures.
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From the results we see that for the temperatures at and over 0.5 K the local effective
temperature is coming down to the bath temperature but the global effective temperature
is not coming down to the bath temperature staying about 10% larger. For the
temperatures much below 0.5 K, as demonstrated for the temperature of 0.1 K both local
and global temperatures are not coming down to bath temperatures and moreover seem to
be the same.

However, a closer inspection of the radial distributions shows a remarkable behavior.
While for T=3K, the distributions do not change at all, we find for the other temperatures
a decrease in ne(r) with time, most prominent for T=0.1K. As one can easily check that
the critical temperature for BEC for N=10° particles is 0.8K, we would expect that the

loss of thermal excitons is due to condensation.

5.4.5. Exciton condensation at T=0.1K
The exact criterium for condensation, even for nonequilibrium systems, is that the

chemical potential 4 is reaching zero. This should occur first in the center of the trap,

where the excitons density is highest. To obtain the temperature and chemical potential
we therefore fitted the occupation number distribution at radius equal to zero N(0,e) with

Bose-Einstein distribution [17] f =; , Where 4 is the chemical potential.

e—u
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Figure 5.21: The exciton occupation number at r=0 versus kinetic exciton energy at
different times t for the bath temperature of 0.1 K including elastic and phonon

scattering. Initially total number of excitons is 1.1x10°.
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The results are shown in Fig. 5.21 for different times and demonstrate again the
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Figure5.22: The exciton temperature T vs. time (red dots) and chemical
potential vs. time (blue dots) for the bath temperature of 0.1 K including elastic

and phonon scattering. Initially total number of excitons is 1.1x10°.

quasiequilibrium distribution of the excitons in the trap. From these fits we have drawn
the temperature vs. time and chemical potential vs. time curves (see figure 5.22) where
we see that the temperature is decreasing with time and at 1000 ns it is coming down to
0.2 K. As well the chemical potential is increasing with time and for times larger than

300 ns it is zero within the numerical accuracy (+5ueV ). This clearly demonstrates that

for times larger than 300 ns the condition for condensation is fulfilled and we can observe
the formation of a condensate.

This is substantiated by the dependence of the number of condensed excitons calculated
from eq.(23) and shown in figure 5.23. Here we see a strong increase in the number of
condensed excitons for times greater than 300 ns.

As the system is in local equilibrium, we expect that the condensate fraction

7. =ﬁ follows the equilibrium result for the local temperature, which is given
total + c
by [17]:
kT Y’ kT Y
=|1-1.202| -2 $|1-1.202| £ 24
o[z ST)fzm(5T]] e
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Figure 5.23: The condensed exciton number N, vs. time for the bath temperature of 0.1

K including elastic and phonon scattering. Initially total number of excitons is 1.1x10°.
The curve is a guide to the eye.

Here is the Heaviside step function. Obviously, the condensate fraction 7, depends
only on the local temperature and on the trap frequency. To obtain a continuous
dependence, we interpolate the results for the temperature vs. time shown in Fig. 5.22 and

those for the total number of excitons (Fig. 5.11) linearly and compare the resulting 7,

1 T T

condensate fraction
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Figure5.24: Time dependence of the condensate fraction 7, obtained from eq. 5.23 (full

line) and the ratio _ N (blue dots) obtained for a bath temperature of 0.1 K including

total + c

elastic and phonon scattering and an initial totabgumber of excitons of 1.1x10°%. vs. time.
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. N . . .
with ——=— obtained from the calculations vs. time for the bath temperature of 0.1 K.
total + c

Here we see that after 200 ns 7_is sharply increasing, indicating the sharp onset of

. . . . N
condensation. For later times 7_is in very good agreement with the values of N—CN
total + c

as obtained from the numerical simulation.
This clearly demonstrates that the numerical simulations give a consistent picture of the

full relaxation dynamics including the condensate formation.

55 Summary

We have seen the relaxation behaviour of excitons in homogeneous system and also
within a potential trap. In homogeneous system, over 1 K the effective temperatures are
coming down to the bath temperatures within 5 to 10 ns whereas for 0.5 K it is taking 150
ns, for 0.3 K it is taking 400 ns. In the case of 0.1 K, the effective temperature is not
coming down to the bath temperature even after 1000 ns.

Within the trap, with low number of excitons we see that for the temperatures between
0.5 K to 3 K excitons are thermalizing but for 0.3 K and below 0.3 K a non thermal
distribution, a bending remains. With high number of excitons this bending has been
removed. The local effective temperature is coming down to the bath temperature for 3
K and 0.5 K, but for 0.1 K this is not the case. For 0.5K bath temperature is reached
within 100 ns, but for 0.1 K the local effective temperature is not coming down to bath
temperature even at 1000 ns, rather it stays really a high value of 0.2 K. On a global
scale, the global effective temperature is coming down to 3.41 K for the bath temperature
of 3 K and the global effective temperature is coming down to 0.55 K for the bath
temperature of 0.5 K, but for the bath temperatures of 0.1 K the global effective
temperatures stay really a high value of 0.2 K even after 1000 ns.
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For the temperature of 0.1 K, from the chemical potential vs. time curve (figure 5.22) we
see that for times larger than 300 ns the condition of condensation is fulfilled and we can

observe the formation of a condensate. Condensate fraction 7. vs. time curve (figure

5.24) shows that after 200 ns 7, is sharply increasing, which indicates condensation.
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Chapter 6

Conclusions

In this thesis we have investigated the relaxation behaviour of excitons in cuprous oxide
at ultra low temperatures when excitons are confined within a potential trap and also in a
homogeneous system. It has been done numerically by solving the Boltzmann equation.
Excitons behaviour under various conditions has been analysed. As relaxation processes,
we have included the phonon scattering, Auger decay, radiative, non-radiative decay, and
elastic scattering.

In chapter 2, we have modeled numerically a potential trap by using the force termin the
Boltzmann equation. Then we set an initial condition and boundary conditions. We

assumed that the excitons are confined in a stress induced parabolic potential trap with

the potential energy V(r)=ar? with a the steepness constant and F the radius. The
relation between the steepness constant a and the oscillator frequency Q is a:%MXQZ,

where M, isthe exciton mass.

In chapter 3, we have modeled numerically the phonon scattering term of the Boltzmann
equation. Starting from the Boltzmann equation in momentum space, we transfer it into
the energy space and solve it by MATLAB. In this case excitons behaviour has been
analysed between 0.3 K to 5 K in a homogeneous system and also within atrap. Our am
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was to find the answer of two questions: first, how long time excitons take to thermalize
and second, when does a BEC occurs. From the results we see that in a homogeneous
system and also within the trap for both cases excitons are thermalizing between 0.5 K to
3 K but a 0.3 K and below 0.3 K a non thermal distribution remains. Local cooling
behaviour is same in homogeneous system and within the trap. We see locally, that for
the bath temperatures between 1 K to 5 K the local effective temperature Tioca IS COMINg
down to the bath temperature very quickly within 10 nanoseconds, but for the bath
temperatures below 1 K, the T IS cOming down to the bath temperature very slowly
within 100 nanoseconds only. This effect can be related to the freezing out of phonons for
very low temperatures. Within the trap on a global scale, exciton effective temperature
Tgoba 1S NOt coming down to the bath temperature. For low temperatures, the global

effective temperatures are almost afactor of 2 larger than the bath temperatures.

We see from our numerical simulations, that the BEC occurs for al observed
temperatures. By comparing our results with the thermal equilibrium case, we see that for
al temperatures the BEC comes at a higher number of excitons than in thermal
equilibrium case. The effective temperature at the time of BEC has good agreement with

the global effective temperature.

In the chapter 4, we have included the Auger decay, radiative and non-radiative decay
with the phonon scattering. We see locally and globally that for both cases the effective
temperatures are not coming down to the bath temperatures even after long times. Inthis
case, no BEC occurs. The global effective temperatures are the same with and without
Auger decay. However, there is a difference in local temperatures which is higher if we
include the Auger decay. This is due to the local heating by the Auger decay which isthe
reason for the absence of BEC with the Auger decay. In the results with phonon
scattering only we see the BEC occurs for all temperatures over and below 1 K.

Therefore the Auger decay makes a barrier to get the BEC.

In the chapter 5, we have included the elastic scattering with the phonon scattering. We

have seen the relaxation behaviour of excitons in a homogeneous system and also within
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a potential trap between 0.05 K to 3 K. From the results we see that in a homogeneous
system over 1 K the effective temperatures are coming down to the bath temperatures
within 5 to 10 nswhereas for 0.5 K it istaking 150 ns, for 0.3 K it istaking 400 ns. In the
case of 0.1 K and 0.05 K the effective temperature is not coming down to the bath
temperature even after 1000 ns. This effect can be related to the freezing out of phonons
for very low temperatures. Within the trap, the local cooling behaviour is almost same
like in a homogeneous system. On a global scale, the excitons global effective
temperatures Tgoba are not coming down to the bath temperatures. For the bath
temperature of 0.1 K both the local and global effective temperatures stays really a high
value of 0.2 K even after 1000 ns.

From the results with high number of excitons for the temperature of 0.1 K we get clear

indication of condensation. Therefore these numerical simulations give a consistent
picture of the full relaxation dynamics including the condensate formation.
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Appendix A: Calculations of integration limits for the Stokes scattering part
within the phonon scattering

For Stokes part delta function is given below (see equation (1), chapter 3)
5(eE - €, —ha)lzip)

:5(eﬁ—e|.0—hvS

k — ﬁ|) [~ W 5 =Vs

zé(qZ e, v K2+ r)z—ZIZr)cose)

2M.e 2M.g 2M.e [2M,g
e—el—hvs\/ P + P¥; -2, e J P¥; cos@}
e—el—hvs‘/zggx\/e+el—2\/5\/€cose]

5(e—el—vs\/mx\/e+el—2\/é\/€cose)
5(e—el—\/€\/e+el—2\/5\/€cose) [ & =2M V]

I
s%

Il
S,

(A1)

Now we have to find out the values of e; in terms of e, when delta function will be zero

for cos@ =1 and for cosé = -1.
When cosé =1
Putting delta function equal to zero, we get

e—el—\/g\/e+el—2\/é\/€ =0

Or, e~ - & (Ve &) =0
or, e—el—\/g‘\/é—\/a‘=0

For Stokese > g, s0 it should be

e—el—\/g(\/é—\/g)zo

This is similar to step function @(qs —\/E+\/€) for Stokes part.

Now dividing it by ey, we get
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i
Or, £-&—+JE+.J& =0 [where§=§ and%=§l]
Or, \/E=%+ f—%‘
1 1
OI’, \/Elzzi((—aj (A6)

Now, if it is (-) means\/—<%,

N B

Thisisinvalid, becauseherel—\/_>% 0, §l> or, \J& > JE or, g >e

But for Stokes it should beg <e.

Now, if it is (+) means./& >%,

VE -5 +VE-5=E
Or, g =e

Or, p=j (A.7)
This is pmax for Stokes scattering, and here it should be greater than M/4. Because

1 e 1
JE>Zor, =>= o,
2 e 4

. M
j>—.
4

When cosf =-1
Putting delta function equal to zero, we get
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e-g /g Je+e+2/eg =0 (A.8)

Or, e—el—\/g,l(\/éﬂ/a)z =0
Or, e—el—\/g‘\@h/g‘:o
or, e—el—\/g(\/@r\/a):o (A.9)

Thisissimilar to step function @(—qs+ e+\/€) for Stokes part.

Now dividing it by ey, we get

SR

€ &
Or, &- 1 1 =0 h —= d-L= 1
rE—¢ (\/7+\/E) [wereeo §ane0 &
or, J& - __+(__‘
or, J& = __+([_%j (A.12)

Now, if it is (-) means\/—<%,

51:__+__\/__ \/_
Or, \/E:—\/E- it is not possible.

Now, if it is (+) means /& >%,

1 1
\/gl:—?r\/_—g:\/g—l

Or,F:F_l
& V&

OF, Py =(\T-M ) [where e= j% and e — p%] (A.12)
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This isthe value of pyin for Stokes scattering.
For Stokes scattering, e <e. Thisissimilar to step function®(e—g,).

Appendix B: Calculations of integration limits for the anti-Stokes scattering
part within the phonon scattering

For anti-Stokes part delta function is given below (see equation (1), chapter 3)
5(eE —€,+ ha)ﬁ_g)

=5(e;;—ep+th EJ—ED

:5(eR —e, +hvs\/ﬁ2+R2—2Echose)

2M.e 2M.g 2M.e |2M.g
e—q+hvs\/ P + ¥ —2‘/ PE; ,/ PE; cosHJ
e—el+hvs‘/2}';/lzx\/e+el—2x/5\/€c059)

:5(e—el+vs\/2_h/lx\/e+el—2\/5\/€cos¢9)
:5(e—el+\/g\/e+el—2\/5\/€cose)

I
s%

Il
S,

(B.1)

Now we have to find out the values of e; in terms of e, when delta function will be zero

for cos@ =1 and for cosé = -1.
When cosé =1
Putting delta function equal to zero, we get

e—el+\/§\/e+el—2\/5\/€ =0
Or, e—el+\/€‘\/5—\/€‘=0

But in anti-Stokes, e > e 0, it should be

e—e1+\/§(\/€—\/5):0

Thisissimilar to step function ®(an +\/5—\/€) for anti-Stokes part.
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Now dividing it by ey, we get

e &, ﬁ_ﬁlzo 5
& & (J% Je

or, §—§1+(\/El—\/3)=0 [where§=§ and%=ei]

or JE-3+[E-5

or, JJ& =%i(\/2—%j (B.6)

Now, if it is (+) means /& >%,

1 1
\/EZEJF\/_—E:\/E
Or, g=e
Or, p=j (B.7)

Now, if it is (-) means\/—<%,

VE =5 E+5=1-4E

2

on &1=(1-B =(F

3

OF, Py =(\T-M ) (B.9)

So, there are two values of pmin for anti-Stokes part. These are plmin=] and

p2,. = (\/T—N)Z . Prin iS the maximum values between plmin and p2min.

When cosé =-1

104



Appendix

Putting delta function equal to zero, we get
e-e +./& e+g+2Ve e =0

or, e—e1+\/€‘x/5+\/€‘=

or, e—el+\/€(\/5+\/€)=0

Thisissimilar to step function G)(—qas ++Je+ \/E) for anti-Stokes part.

Now dividing it by ey, we get
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e e
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Thisis pme for anti-Stokes part.
If (-), then
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It is not possible.
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