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Chapter 1 
 

 
Introduction and Fundamentals 

 
 
This chapter contains introduction of our work, overview of this thesis and few 

fundamental things. We have discussed about the previous works in this field. General 

properties of exciton, band structure of cuprous oxide (Cu2O), the optical properties of 

exciton in Cu2O and the possibility of Bose-Einstein condensation (BEC) of exciton in 

Cu2O are discussed. 
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1.1  Introduction 
This thesis is a theoretical investigation of the relaxation behaviour of excitons in Cu2

     In all physical systems, in which BEC has been demonstrated up to now, excitons 

should be confined in a potential trap. This has the advantage that the diffusion process, 

which reduce the exciton density is suppressed and the critical number of excitons  

O 

at ultra low temperatures when excitons are confined within a potential trap and also in a 

homogeneous system. Excitons are in particular interest because in the low density limit 

they are bosons, and therefore obey Bose-Einstein statistics. The possibility of BEC of 

excitons in semiconductors was an interesting topic for many years [1,2]. Cuprous oxide 

is a well known semiconductor as a good host for BEC for excitons [3,4]. Due to special 

band structure, the exciton in cuprous oxide is a model system for kinetic studies. 

3

(3) B
c

k TN ς  =  Ω 

                                                                                                              (1)                                                                                                   

             
                     

 

with ς  the Riemann Zeta function and Ω  the average oscillator frequency of the trapping 

potential , required for the phase transition from exciton gas to BEC decreases much 

faster with temperature than in free space [5]. 

      Several works have been done in this field [6-23]. But all of these studies have been 

undertaken for temperature above 1 K. In contrast, in our work we have studied excitons 

inside the potential trap and for the temperatures in the millikelvin range. Excitons 

behaviour under various conditions has been analyzed theoretically.  

         In typical experiment excitons are created with the kinetic energy of the order of 

meV and then drift down to the potential trap. Now two questions arise: first, how long 

time excitons take to thermalize and second, when does a BEC occurs. 

        We have studied theoretically the relaxation behavior of excitons in Cu2O in the 

temperature range from 0.05 K to 5 K. It has been done numerically by solving the 

Boltzmann equation [24] that describes the statistical distribution of particles in a fluid. 

The Boltzmann equation has been solved by finite difference method and the method of 

lines [25], 

2( )V r ar=




using MATLAB. We assumed that the excitons are confined in a stress 

induced parabolic potential trap with potential energy  with a  the steepness 
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constant and r  the radius. The relation between steepness constant a  and oscillator 

frequency Ω  is 21
2 xa M= Ω , where xM  is the exciton mass. As relaxation processes, we 

have included deformation potential phonon scattering, radiative, non-radiative decay, 

Auger decay and elastic scattering.   

         First we have included the deformation potential LA phonon-scattering but no other 

collisions of excitons. We find that the exciton exhibits a quasiequilibrium within the 

potential trap due to the long lifetime of the order of microseconds. An important point is 

that excitons can thermalize locally within their lifetime for all cases over 0.5 K but 

below 0.5 K a non thermal distribution remains. In contrast, globally the excitons don’t 

reach equilibrium with the lattice even at temperatures of 5 K, but show always a higher 

effective global temperature. When we add radiative, non-radiative and Auger decay, we 

find that both locally and globally the effective temperature is not coming down to the 

bath temperature even after long times. If we include elastic and phonon-scattering 

together, then the local cooling behaviour is same like the local cooling behaviour with 

the phonon-scattering only. The global effective temperature is not coming down to the 

bath temperature but coming down more closes towards the bath temperature in 

comparison with the case of phonon scattering only. 

       In the first case we find a Bose-Einstein condensation (BEC) occurs for all 

temperatures in the investigated range. Comparing our results with the thermal 

equilibrium case, we find that BEC occurs for significantly higher number of excitons in 

the trap.  In the case of Auger decay, we do not find at any temperature a BEC due to the 

heating of the exciton gas. In the case of elastic and phonon-scattering together, if the 

excitons number is over the critical number of excitons, then excitons number at zero 

energy state increasing with a high rate, which is an indication of BEC. In this case BEC 

occurs for all observed temperatures. 

 

 

1.2  Overview 
The first chapter 'Introduction and fundamentals' contains introduction, previous works in 

this field and the background information of the work presented in this thesis. General 
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properties of exciton, band structure of Cu2O, the optical properties of exciton in Cu2O 

and the possibility of BEC of exciton in Cu2

       Chapter 2 is entitled 'Boltzmann Equation with Drift and Force terms'. The first part 

of this chapter contains the theory of Boltzmann equation with drift and force terms. The 

next part contains about numerical modeling of the Boltzmann equation with drift and 

force terms, initial condition, boundary conditions, and results. 

O are discussed. 

       Chapter 3 is entitled 'Phonon Scattering'. The first part of this chapter contains the 

theory of phonon scattering. The second part of this chapter contains about numerical 

modeling of phonon scattering. The next part contains the results of phonon scattering in 

the homogeneous system and within the potential trap. The last part is short summary of 

this chapter. 

       Chapter 4 is entitled 'Auger Recombination and Radiative and Non Radiative Decay'. 

The first part of this chapter contains the theory of Auger recombination, radiative and 

non-radiative Decay. The second part is about previous works on Auger decay and the 

estimations of the Auger decay rate. The next part contains the results of the Boltzmann 

equation including phonon scattering, Auger recombination, radiative and non radiative 

decay. The last part is short summary of this chapter. 

       Chapter 5 is entitled 'Elastic Scattering'. The first part of this chapter contains the 

theory of elastic scattering. The second part of this chapter contains about numerical 

modeling of elastic scattering. The next part contains the results of elastic scattering in 

homogeneous system and within a potential trap. The last part is short summary of this 

chapter. 

         General conclusions of the main results are discussed in chapter 6. 

 
 
1.3  Previous works in this field 
 
Several groups have been reported the observation of Bose distributions of excitons in 

Cu2O when using intense photo excitation [6-16]. The thermodynamics of long-lived 

paraexcitons confined to a parabolic potential well in Cu2O was studied in reference [17]. 

The possibility of BEC of paraexcitons was examined both theoretically and 

experimentally. They concluded that there are two barriers to achieve BEC of long-lived 

4
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paraexcitons in Cu2

           The Boltzmann kinetics for both of para and ortho excitons in Cuprous oxide 

specially for a homogeneous gas have been analyzed numerically and within certain 

approximations analytically in reference [18,19]. In reference [18] the thermalization of 

the both optically quadrupole-allowed ortho and para excitons has been analyzed for 

temperatures above and below the critical temperature 

O. First one was the limitation of exciton density due to Auger 

collisions and second one was the rather slow thermalization of excitons in the well. 

cT  for a BEC. They concluded that 

the polariton effect prevents a steady-state BEC of ortho excitons in Cu2

cT T≤

O. For 

paraexcitons, a slow nonexponential occupation kinetics of the ground-state mode at 

temperature  prevents the development of a steady state BEC within the optical 

phonon assisted radiative lifetime. The effects of radiative recombination have been 

added in reference [19]. 

         The effects of optical-phonon emission, exciton interconversion and Auger decay 

have been included in reference [20], but it has been assumed that the exciton gas is 

continuously in internal equilibrium, and followed only the density and temperature of 

the gas. They concluded that the para excitons condense while the ortho excitons fail to 

do so. Finally, they remark that their analysis presents no fundamental reason why the 

ortho excitons cannot condense, however, their multiplicity, their faster Auger decay, and 

their conversion to para excitons make their condensation much more difficult than for 

para excitons. 

          The relaxation of a spatially homogeneous gas of long-lived excitons under the 

influence of elastic scattering and LA-phonon emission only has been investigated in 

reference [21]. They reported that at low density a gas of bosons achieves a classical 

equlibrium distribution of energies within just few characteristic scattering times but at 

high densities, due to stimulated emission, the rate of scattering increases into low energy 

states. they concluded that BEC may take place within the particle lifetime, and the 

exciton-phonon interactions will not significantly increase the rate of approach to 

condensation. 

           The relaxation kinetics of excitons in Cu2O due to scattering by LA-phonons have 

been showed that the long living excitons in Cu2O can reach the critical values of a BEC 

[3,9,10,13,16,21].  
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          The relaxation kinetics of excitons in Cu2O was studied in reference [22] and  [23]. 

They included all of the known kinetics effects like optical and acoustic phonon 

emission, Auger decay, elastic scattering and ortho-para-conversion, but not within a 

potential trap. They concluded that due to the strong Auger decay process it is difficult to 

get a thermodynamic condensation of excitons in Cu2

           Reference [26] studied on quasi-two-dimensional excitons in an in-plane potential 

trap. The photo luminescence measurements show that the quasi-two-dimensional 

excitons indeed condense at the bottom of the traps, giving rise to a statistically 

degenerate Bose gas.  

O.  

         To study about BEC, various systems have been examined in bulk [11, 13, 27] and 

two-dimensional semiconductors [28, 29] and also in exciton–photon hybrid systems 

[30–32]. Recently BEC of excitons has been studies experimentally at sub-kelvin 

temperatures [33]. They demonstrated that it is nevertheless possible to achieve BEC by 

cooling paraexcitons to sub-kelvin temperatures in a cold phonon bath. Emission spectra 

from paraexcitons in a three dimensional trap show an anomalous distribution in a 

threshold-like manner at the critical number of BEC expected for ideal bosons. 

        In our work we have studied the relaxation kinetics of excitons inside the potential 

trap and for temperature in the millikelvin range. 

 

 

 

1.4   Excitons 
The concept of excitons was first proposed by Yakov Frenkel in 1931. He proposed that 

this excited state would be able to travel in a particle-like fashion through the lattice 

without the net transfer of charge [34, 35].  
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Figure 1.1: Direct band gap semiconductor with band gap energy E

 

g 

The creation of exciton can be described in terms of band theory.  A pure semiconductor 

has no mobile charge carriers at zero temperature. So, all valence bands are completely 

filled with electrons and all conduction bands are completely empty. In a direct band gap 

semiconductor, excitons can be created in two ways: (i) by the absorption of a photon 

with an energy hν  that is less than the band gap energy Eg but sufficient to excite an 

electron from the valence band to the excitonic bound state, or (ii) by the absorption of a 

photon with an energy equal to or larger than the band gap energy, which creates a free 

electron in the conduction band and a free hole in the valence band. This free electron 

and free hole can bind into exciton. The free electrons then relax in energy usually by the 

emission of phonons. In a direct band gap semiconductor, the minimum energy needed to 

create a free electron and a free hole is Eg, see Fig. 1.1. 

      The binding energy of the exciton follows the same type of series as observed in 

hydrogen, but is modified by the parameterε , which takes into account the screening 

effect of the ions in the lattice. 

                           
4

2 2 22
ex

b
eE

n
µ
ε

=


    1, 2,3........n =                                                               (2) 

E

k

Eg

Conduction band

Valence band
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Where e  is the electronic charge, ε  is the static dielectric constant and exµ  is the exciton 

reduced mass. 04 rε πε ε= , where 12 2 4 1 3
0 8.85419 10  A s kg mε − − −= ×  is the dielectric 

constant and rε  is the dielectric number of the material. / ( )ex e h e hm m m mµ = + , where 

em  and hm  are the electron and hole effective mass respectively. Due to spin orbit 

coupling, the paraexciton has slightly larger binding energy than orthoexciton. 

The electron and the hole can be treated as two interacting particles with masses em  and 

hm  respectively. The Hamiltonian can be written as [36, 37]: 

2 2 2 2 2 2

2

( 1)
2 2 2

e h

e h e h ex

e l lH
m m r r rε µ
∇ ∇ +

= − − − + ⋅
−

                                                                     (3) 

where ε  is the lattice dielectric constant, l is the angular momentum quantum number 

and er  and hr  are the positions of the electron and the hole, respectively. The 

corresponding eigen values form a series of exciton energies, given by: 

( )22
2 2 2

2 2 2

( 1)
2 2 2

ex

n g
ex

e
k l lE E

n M r

µ ε
µ

+
= − + + ⋅

 



                                                                     (4) 

Here gE  is the band-gap energy, the second term is the exciton binding energy and the 

third term is the kinetic energy of exciton of a wave vector k. 

 

                 Exciton may make themselves visible by emission of photons. The radiative 

recombination of the electron and hole back to the ground state by emitting a photon with 

an energy: 

                             g b kh E E Eν = − +                                                                                  (5) 

The recombination may also takes place together with the emission of phonon with an 

energy: 

                            g b k ph E E E Eν = − + ±                                                                           (6) 

where kE  is the exciton kinetic energy and pE  is the energy  of the phonon and "+" and 

"-" corresponds to anti-stokes and stokes processes respectively. Momentum conservation 
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requires that only two types of processes are possible: photonk k=  for direct transitions and 

photon phononk k k= +  for phonon-assisted transitions. 

      There are two types of excitons, Frenkel exciton and Wannier-Mott exciton (see 

figure 1.2). The radius of the excitonic entity (half of the distance between the electron 

and hole) is given by 

0
e

B
ex

ma a ε
µ

=  

or, 
2

2B

ex

a
eµ
ε

=
 
 
 

                                                                                                               (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: A schematic diagram of  Frenkel exciton and Wannier-Mott exciton, not to 
scale. 
 

Where 0a  is the Bohr radius and em  is the electron rest mass. When Ba  is large 

( Ba >lattice constant) then excitons are weakly bound. So the attraction between the 

electron and hole is small in comparison with gE . These excitos are called Wannier-Mott 

exciton. When Ba  is smaller or on the order of the lattice constant, excitons are strongly 

bound are called  Frenkel exciton. Wannier-Mott excitons are mainly found in 

+

+

e-

e-

Frenkel
exciton

Wannier-Mott 
exciton
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semiconductors like in gallium arsenide (GaAs), zinc selenide (ZnSe), copper chloride 

(CuCl) and cuprous oxide (Cu2

 

O). In this thesis the exciton radius is much larger than the 

inter atomic distance, therefore it is a Wannier-Mott exciton. 

 

1.5  Cuprous Oxide 
Copper(I) oxide or cuprous oxide is one of the principal oxides of copper with the 

formula Cu2

4 Cu + O

O. Copper(I) oxide may be produced by several methods. Most 

straightforwardly, it arises via the oxidation of copper metal: 

2 → 2 Cu2

 

O                                                                                                         

(8) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Crystal structure of Cu2

 

O. Light grey balls represent copper and dark grey 
balls represent oxygen. 

The crystal structure of Cu2O (see figure 1.3) can be described by two interpenetrating 

BCC (O atom in the center) and FCC (Cu atom in the center) sublattices. The Bravais 

lattice is a simple cubic with a lattice constant 4.27 Å. The unit cell contains 4 Cu atoms 

and 2 O atoms. 

       The copper ion's electronic structure [38] ends with 3d104s0, where the 4s levels has 

slightly higher energy than 3d levels. The Cu 3d levels form the valence band and Cu 4s 
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levels form the conduction band in Cu2
2

6
+ΓO. The lowest state in the conduction band  

and highest state in the valence band 2
7
+Γ  are at the center of the Brillouin zone, means 

both state has the full periodicity of the lattice. So, Cu2

4
8
+Γ

O has direct band gap. Both states 

have a positive parity at zone center, causing a dipole-forbidden gap of Eg=2.173 eV. 

The second highest valence  band lies 131 meV lower than highest valence band 2
7
+Γ  

due to spin-orbit interaction. 

 

 

 

 

 

 

 

                                         

 

 

 

 

 

 

 

 

 

 

 

                            

 

 

Figure 1.4: Band structure of Cu2

 

O near the zone center. 

2173  meV

450 meV

131 meV

E

k  
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The second lowest conduction band 4
8
−Γ  lies 450 meV above the lowest conduction band 

2
6
+Γ  which serves as intermediate state for the optical phonon-assisted radiative 

recombination and non-radiative Auger recombination processes. Cu2O has all ten 

valence bands and four conduction bands. Figure (1.4) shows band structure of Cu2

 

O 

considering only two conduction bands and two valence bands which forms the visible 

exciton series.  

 

1.6 Exciton in Cuprous Oxide 
Cuprous oxide is a favorite semiconductor among many physicist because all classes of 

transition predicted by theory of exciton spectra are observed in different part of energy 

region of Cu2

         The yellow exciton series is formed from the 

O. The exciton in cuprous oxide is a model system for kinetic studies due to 

its special band structure. 
2

6
+Γ  conduction band and 2

7
+Γ  valence 

band, (see figure 1.4) green exciton series formed from the 2
6
+Γ  conduction band and 4

8
+Γ  

valence band, blue exciton series formed from the 4
8
−Γ  conduction band and 2

7
+Γ  valence 

band and indigo series formed from the 4
8
−Γ  conduction band and 4

8
+Γ  valence band. The 

ground excitonic state, formed from the 2
6
+Γ  conduction band and 2

7
+Γ  valence band, is 

split into J=0 the singlet paraexciton ( 1
2
+Γ ) band and J=1 the triplet orthoexciton ( 3

25
+Γ ) 

band. Paraexciton lies 12 meV lower than orthoexciton. 

Since both valence and conduction bands have a positive parity, the total parity is 

determined by the parity of the exciton level. For an excitonic s-state, the parity is 

positive, and the transition to the ground state is dipole forbidden, but quadrupole 

allowed. For a p-state, the parity is negative, and the transition to the ground state is 

dipole allowed. 

           Ortho and paraexciton are not simple product forms of the pure electron 

( ),e e↑ ↓  and hole spin states ( ),h h↑ ↓ . Spin orbit coupling causes complicated 

hole states. Wannier functions for yellow excitons in Cu2
c
sϕO [39, 40] are  for the 
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conduction band and v
xyϕ , v

yzϕ  and v
zxϕ  for the valence band. The 2

7
+Γ  hole states 

( ),H H↑ ↓  are linear combination of  h↑  and h↓ : 

[( ) ]
3

v v v
yz zx xy

iH i h hϕ ϕ ϕ↑ = − + ↓ + ↑                                                                         (9) 

[( ) ]
3

v v v
yz zx xy

iH i h hϕ ϕ ϕ↓ = − − ↑ − ↓                                                                       (10) 

The singlet paraexciton and the triplet orthoexciton states can be written as follows: 

( )1
2

S e h e h= ↑ ↓ − ↓ ↑                                                                                        (11) 

1T e h+ = ↑ ↑                                                                                                                (12) 

( )0
1
2

T e h e h= ↑ ↓ + ↓ ↑                                                                                       (13) 

1T e h− = ↓ ↓                                                                                                                (14) 

If we say 

1 1
1 ( )
2XT T T− += − and 1 1

1 ( )
2YT T T− += +  then we can write one paraexciton 

state and three orthoexciton states in the following way 

0( )
3

c v v v
s X yz Y zx xy

iP T i T Tϕ ϕ ϕ ϕ= + +                                                                        (15) 

1 ( )
3

c v v v
xy s Y yz X zx xyO T i T Sϕ ϕ ϕ ϕ−

= + −                                                                      (16) 

0
1 ( )
3

c v v v
yz s yz zx Y xyO S i T Tϕ ϕ ϕ ϕ= + −                                                                       (17) 

0( )
3

c v v v
zx s yz zx X xy

iO T i S Tϕ ϕ ϕ ϕ−
= + −                                                                       (18) 

 

 

1.7  Possibility of the Bose-Einstein condensation  
Bose-Einstein condensation (BEC) is a macroscopic occupation of the lowest energy 

state, at zero energy. When a liquid or gas of bosons cooled below critical temperature 
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Tc,

       The possibility of Bose-Einstein condensation (BEC) of excitons in semiconductors 

was an interesting topic for many years [1, 2]. The exciton, being composed of two 

fermions, namely an electron and an hole, is the basic electronic excited state of an 

intrinsic semiconductor. Its low effective mass is a favorable factor for the occurrence of 

BEC at moderate particle densities. 

 then a Bose-Einstein condensate forms. It was first predicted by Bose and Einstein 

theoretically in 1924 [41, 42, 43] and it was first observed in 1995  in a remarkable series 

of experiments on vapors of rubidium [44] and sodium [45] in which the atoms were 

confined in magnetic traps and cooled down to extremely low temperatures, of the order 

of fractions of microkelvins. 

      Cuprous oxide is a well known semiconductor as a good host for Bose-Einstein 

condensation for excitons [3, 4]. Due to special band structure, the exciton in cuprous 

oxide is a model system for kinetic studies. The excitons in Cuprous oxide showed 

transient kinetic energy distributions which matched those expected for a Bose gas near 

the critical density for Bose-Einstein condensation. The high binding energy (150 meV) 

of excitons in Cu2 A


O corresponds to a small Bohr radius of 7 . 

       At low densities ( 1,D
Bna <<  where Ba  is the exciton Bohr radius, n the density and D 

the dimensionality) excitons are hydrogen like Bose particles. Because the exciton mass 

is small even smaller than the free electron mass, then exciton BEC is expected to occure 

at relatively high temperatures, about 1 K.  

      For a gas of bosons of mass m and concentration 3Dn , the phase transition to a Bose-

Einstein condensed phase occurs when their thermal de-Broglie wavelength becomes 

comparable to their inter-particle distance [46-48]. For example, BEC takes place when 
3

3 2.612D dBn λ =  in 3D systems, where dBλ  is the de Broglie wavelength and is given by 

22 / ( )dB Bmk Tλ π=  . This is of the order of 17 3
3 ~ 10Dn cm−  for ~ 1 KcT  and m of the 

order of the electron mass e.g. excitons in bulk Cu2

     The exciton, is a Boson because it is a composition of two fermions, is an integral spin 

particle. The probability of boson of being scattered into state of wave-vector 

O. 

k


 is 

proportional to 1 kf+   according to the quantum statistical rules for boson where kf   is the 
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occupation number of the state. Assuming that the system is in thermal equilibrium at a 

temperature T and chemical potential µ , then the total number of particles in a box N is 

equal to the sum of the occupation numbers [ 49, 50] 

0
Ek

Ek

N f N
∞

=

= =∑ ∑



                                                                                                          (19) 

where 
2 2

2 x

kE
M

=
  is the kinetic energy of an exciton. Occupation number is given by the 

Bose- Einstein distribution function, 

( )/

1
1BE E k Tkf N

e µ−= =
−

                                                                                                     (20) 

The total number of particles can be replaced by an integral 

0
E EN D N dE

∞

= ⋅ ⋅∫                                                                                                             (21) 

where ED  is the density of states, 1/2
ED CE= . If the exciton number N occupy a volume 

V, then we can write C as  
3/2

2

2
4

xMgVC
π

 =  
 

                                                                                                          (22) 

where g is the spin degeneracy. In terms of the gas density, n=N/V, we can finally write 
3 1 22

2
0

2
4 1B

x
E

k T

Mg En dE
e

µπ

∞

−
 =  
  −

∫


                                                                                  (23) 

In this case, the integral is finite and approaches a finite value as µ  approaches zero. 

This implies a critical concentration above which no more particles can be added to the 

excited states, so that any additional particles must then go into the zero energy state; this 

is Bose-Einstein condensation. 

       To study on BEC various systems have been examined in bulk [11, 13, 27] and two-

dimensional semiconductors [28, 29] and also in exciton–photon hybrid systems [30–32]. 

Recently BEC of excitons has been studies at sub-kelvin temperatures [33]. Among them, 

the 1s paraexciton state in a single crystal of  Cu2O has been a prime candidate for BEC. 

Due to the long life time [6, 51] and the large binding energy it is possible to prepare the 

cold excitons in thermal equlibrium with the lattice. The 1s paraexciton is a pure spin 

15
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triplet state, so it is decoupled from the radiation field. Paraexcitons are light quasi-

particles with effective mass 2.6x eM m=  ( em  is the electron rest mass) [52], therefore 

BEC has been believed to be attainable at moderate density 17 3~ 10n cm−  at the 

temperature of superfluid helium 2 K [11, 13, 27]. In this thesis we work on excitons 

which are actually paraexcitons. 
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Chapter 2 
 
 

Boltzmann Equation with Drift and Force Terms 
 
 
 
The Boltzmann equation [1], also often known as the Boltzmann transport equation, 

devised by Ludwig Boltzmann, describes the statistical distribution of particles in a fluid. 

First we discretize the Boltzmann equation by finite difference method and then by 

method of lines 

 

[2] we solve it numerically by using MATLAB. The Boltzmann equation 

contains the drift, force, collision and interaction terms. In this chapter the Boltzmann 

equation with Drift and force terms, initial condition and boundary conditions, which we 

have used in our numerical simulation are discussed.  We will discuss about the collision 

and interaction terms in the next few chapters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

21



Chapter 2. Boltzmann Equation with Drift and Force Terms 
 

 

 2.1 Boltzmann equation 
 
The Boltzmann equation describes the particle’s occupation number ( , , )N r k t



  as a 

function of radius r , momentum k


  and time t. The Boltzmann equation is 

 

   
collision+interaction

1
r k

N Nv N F N
t t

∂ ∂ + ⋅∇ + ⋅ ∇ =  ∂ ∂ 

   



                                                             (1) 

 
with v  is the velocity, F



 is the force and r∇  and k∇  are the nabla operator in r and k 

space respectively. The terms on the left hand side are often referred to as the drift terms, 

and the term on the right hand side as collision and interaction term. Collision and 

interaction terms are phonon scattering, Auger decay, radiative and non-radiative decay 

and elastic scattering. For starting the calculation, we have created the excitons that are 

actually paraexcitons, which after phonon scattering, Auger decay, radiative and non-

radiative decay and elastic scattering excitons cool down to the bottom of the trap.  

 
 
2.2 Drift and force terms of the Boltzmann equation 
 
Drift and force terms of the Boltzmann equation (1) is are given by 

 & 

1
r k

Drift force

N v N F N
t

∂  = − ⋅∇ − ⋅ ⋅∇ ∂ 

  





                                                                             (2)  

where N is the exciton occupation number, t is the time, v  is the velocity and F


 is the 

force. As we know, xP k M v= =
 



   so, 
x

v k
M

=


   

And ( )F V r= −∇
  

, Where 2( )V r ar=


   So, 2F ar= −


 , a  is the steepness constant. Using 

the potential ( )V r


 in the force term we have created a potential trap (see figure 2.1). 

By putting values of v  and F


 in equation (2), we get 
 

 & 

2

Drift force x

N k N ar N
t M r k

∂ ∂ − ∂  = − ⋅ − ⋅ ∂ ∂ ∂ 




                                                                           (3) 
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Figure 2.1: In the left hand side, potential trap is formed by potential ( )V r



 in the force 
term in the numerical simulation. Generally in experiment it has been formed by pressing 
the crystal by glass lens. In the right hand side, the potential trap which we have used in 
our numerical simulation. 
 
 
 
2.3  Numerical modeling 
 
First we discretize the Boltzmann equation by finite difference method and then by 
method of lines 

 

we solve it numerically by using MATLAB [2-4]. By using finite 
difference method, we can write 

1i iN NN
r r

−−∆
=

∆ ∆  
Where 0........ ir r r=  and ir i r= ∆  

 

1j j

j

N NN
k k

+ −∆
=

∆ ∆
Where 0........ jk k k=  and  j jk j k= ∆ , with 

2
x

j
j

e M
k

e
∆

∆ =


. 

 
So, equation (3) can be written as 

 

 & 

{ ( , ) ( 1, )}
Drift force x

N k N i j N i j
t M r

∂  = − − − ∂ ∆ 
 2 { ( , 1) ( , )}ar N i j N i j

k
+ + −

∆
                    (4) 
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But, we know 
2 2

2 x

ke
M

=
  , 0e je

M
=

 
, 0ee

M
∆ =  and 2

0 2 x se M v=   

So,  2 s

x

vk j
M M

=
                                                                                                            (5) 

Now, 
2

x

dk ek e
de e

M

∆
∆ = ∆ =



   

So, 

22 .
2 2x

x s

ea r i
Mar a r M i j

k e M v

∆
∆

= =
∆ ∆



 

                                                                       (6)              

But with 0ee
M

∆ = , we can write 

 

 & 

2 { ( , ) ( 1, )}s

Drift force

vN j N i j N i j
t M r

∂  = − − − ∂ ∆ 
 

                          2 { ( , 1) ( , )}
x s

a r M i j N i j N i j
M v
∆

+ + −                                                      (7) 

 
 
2.4  Initial condition 
 
We have used laser excitement which is representative for actual experimental studies 

Le

[5]. 

Here the laser beam at energy  crosses the trap centrally and leads to exciton creation 

at 2
Le e ar= −

 . If σ  is the spectral width, then the initial exciton occupation number 

distribution can be formulated as  

( )( )
( ) ( )

22

0 0 max2( , ) exp
2

Le e ar
N r e n r r r

σ

 − − − = Θ − Θ  
 



                                                      (8) 

where max
2 Ler
a

= .  

From these two step function, we get two conditions 

First, from ( )rΘ
  we get 0r ≥  and  
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Second, from ( )maxr rΘ −
   we get max 0r r− ≥

   or maxr r≤
   

So, we can write 

( )( )22
0

0 0 2
1

( ( ))
( , ) exp

2

j j a r i
N i j n

σ

 − − − =   
 

Where max 0r r≥ ≥
                                      (9) 

Here 1
0

M
e
σσ =                                          

 

Initial distribution is like figure 2.2. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Initial distribution where excitons number within the trap is 64 10× . The 
parameters, which we have used, are 0.36 meVσ =  and 2.1 meVLe = . 
 
 
2.5  Boundary conditions 
 
The boundary conditions are derived from the fact that no exciton flows takes place 

outside the trap. Therefore 

(1) The derivative of exciton occupation number with respect to radius 
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     (i) 0 at 0,  for all values of .N r e
r

∂
= <

∂
 

     (ii) max0 at , for all values of .N r r e
r

∂
= >

∂
 

    (iii) max0 at , for all values of r.N e e
r

∂
= >

∂
 

 

(2) The derivative of exciton occupation number with respect to energy  

      (i) 0 at 0,  for all values of .N e r
e

∂
= <

∂
 

      (ii) max0 at , for all values of .N e e r
e

∂
= >

∂
 

      (iii) max0 at , for all values of .N r r e
e

∂
= >

∂
 

In our case the maximum radius max 200 μmr = and the maximum energy max 6 meVe = .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Boundary conditions which we have used in our numerical simulation. 
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2.6 Results  
 
After solving the equation (7) we are getting exciton occupation number ( , , )N r e t  as a 

function of energy e, radius r  and time t (see figure 2.4). Figure 2.4 represents exciton 

distribution after solving Boltzmann equation without source term, at 5 ns.  After 5 ns, 

the distribution is stable like figure 2.4. 

We have calculated total number of exciton by the equation 

( )
2 2

3
1 4 4 ( , )

2totalN r dr k dk N r kπ π
π

= ⋅ ⋅∫∫
 

                                                                        (10)  

 
 
 
 
 
 
 
 
 
 
                                                                                                                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: Exciton distribution after solving Boltzmann equation without source term, at 
5 ns. When initially the excitons number within the trap is 61.98 10× . The parameters, 
which we have used, are xM =2.61 em , 319.109 10  em kg−= ×  is the electron rest mass, 

sv =4.5 310× m/s, 20.5a eV mµ µ −= ⋅ ⋅ . 
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the summation of exciton number along r  direction by the equation  

2

0

( ) 4 ( , )rn e r N r e drπ
∞

= ⋅ ⋅∫
                                                                                                (11) 

and the summation of exciton number along the direction of energy by the equation   

( )
2

3
0

1( ) 4 ( , )
2en r k dkN r kπ
π

∞

= ⋅∫


                                                                                        (12) 

 

 

 
 
                                                                                        
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: The distribution of summation of exciton number in r  direction rn  vs. 
energy for different times. When initially the excitons number within the trap is 

61.98 10× . 
 
 

 

Figure 2.5 shows the distribution of summation of exciton number in r  direction rn  vs. 

energy for different times. To check the boundary conditions, we have checked that the 

total numbers of excitons are almost constant with increasing time (see figure 2.6). 
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Figure 2.6: The total number of excitons vs. time without including any source term. The 
curve shows that the total numbers of excitons are almost constant with increasing time. 
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Chapter 3 

 

Phonon Scattering 

 

 
In this chapter we have discussed about the phonon scattering, the results of the phonon 

scattering in homogeneous system and the results of the Boltzmann equation with the 

phonon scattering within the potential trap. The possibility of Bose-Einstein condensation 

of exciton in Cu2O, within the potential trap is discussed. 
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3.1  Theory 
 
3.11 General equation for the phonon scattering 
 
Phonon scattering term, which describes the kinetics of a specially homogeneous system 

of excitons. We use local approximation and neglect any phonon induced diffusion. The 

phonon scattering term with decay term of the Boltzmann equation 

 

[1] is then given by  

22 ( ) {[ (1 )(1 )phk
x ph pk k p

p

N
M p k N n N

t
π

− −

∂
= − − + +

∂ ∑


 












 

            (1 ) ] ( )ph
p pk k p k k pN n N e eδ ω

− −
− + − −   

 

   

             [ (1 ) (1 )(1 ) ]ph ph
p pk p k k p kN n N N n N

− −
+ + − + +   

 

   

             ( )} /p optk p k ke e Nδ ω τ
−

× − + −  


                                                                             (1) 

 

Where 2 2 / 2 xke k M=   , 2 2 / 2p xe p M=   and sp k v p kω
−
= −







   are the exciton energy 

in wavevector k


 state, exciton energy in wavevector p  state and phonon energy, 

respectively. kN  , pN  and 1/ [exp( / ) 1]ph
B bp k p kn k Tω

− −
= − 

   are the exciton occupation 

number in k


 state, exciton occupation number in p  state and phonon occupation 

number, respectively. ( )x phM p k− −


 is the matrix element of the exciton-phonon 

deformation potential interaction, and optτ  is the radiative lifetime of excitons. The 

exciton-phonon coupling is given by
2 2( ) / (2 )x ph sM p k D p k V vρ− − = −

 

 

 , where D is 

the deformation potential energy, V is the crystal volume, ρ  is the crystal density, sv  is 

the longitudinal acoustic sound velocity and xM  is the exciton mass and δ  is the Dirac 

distribution. The first term in the square brackets on the right-hand side of equation (1) is 

due to the Stokes scattering and the second term is for anti-Stokes scattering of excitons.  
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3.12 Transfer momentum terms to energy terms 
 
Then we transfer all kN   terms in momentum space to eN  terms in the one dimensional 

energy space by  

 

( )

2
2

3
0 0 0

sin
2

ke k
N NV d d k dk

t t

π π

θ θ ϕ
π

∞∂ ∂
=

∂ ∂∫ ∫ ∫




                                                                          (2)   

   
where ,  , k θ ϕ  are the spherical coordinates of wave vector  k



.                                                                                       

Then we put the value of kN
t

∂

∂



 in equation (2) and transfer all k


 terms into e terms where  

2 2 / 2 xke k M=   and 
2 2 / 2p xe p M=  . 

 

( )

2 22
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−

∂
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
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 
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where [ (1 )(1 ) (1 ) ]ph ph
S p pk k p k k pI N n N N n N

− −
= + + − +   

 

   and  

[ (1 ) (1 )(1 ) ]ph ph
AS p pk p k k p kI N n N N n N

− −
= + − + +   

 
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2

2

0

sin
4

ke

s

N D d p dp p k
t v

π

θ θ
πρ

∂
= − ⋅ −

∂ ∫ ∫




   

            ( ){ ( ) ( )} /
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− −
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

   
 
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Now let p k u− =


   

or, 2 2 2 cosk p kp uθ+ − =
 

    

or,  sin
 

u dud
k p

θ θ =  
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By using the relation  sin
 

u dud
k p

θ θ =  we get 

( )
2 2

2 {( ) ( )} /
4  

k

k

e
S AS p s e optk

s p u

N D u du p dp I I e e v k p N
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           (5) 

or, 
2 2

2
2

 ( ) /
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k

k

e pk
S AS e opt

s sp u

N e eD u du p dp I I u N
t v vk p

δ τ
πρ
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∫ ∫










 




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              (6) 

or,  ( ) ( )
22

2

 {
4  

ke pk
S s p s pk k

s sp

N e eD p dp I q e e q e e
t v vkπρ

∂ − 
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




 
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We have calculated step functions from delta functions which is in detail in the appendix. 

Using the relations 2
2

2 x pM e
p =







 or, 2 x
p

Mp dp de=


 and 2

2 x kM e
k =





 we get 
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22
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Now we say ke e=  and 1pe e= . Therefore, we get 

( )
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2
1 14 44 2
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D MN de e e
t v eπ ρ
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            ( ) ( )( )1 1 1 1
[ 1 1 1 ]ph ph

e e e e e e e eN n N N n N− −+ + − + +  

            ( ) ( ) ( )1 1 1 } /as as e optq e e q e e e e N τ×Θ − + Θ − + + Θ − −  .                              (9) 

        

3.13 Equation for zero energy state 

 
At k=0 Stokes scattering is not allowed. Therefore, the phonon scattering term only with 

anti-Stokes part [1] is given by  
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In terms of ke  
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or, 
0 0 0 0
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If we say ke e=  
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3.2  Numerical modeling 

We discretize the energy ( )1je j e= − ∆  where 1......j ne=  and 0ee
M

∆ =  with M is an 

integer. Analogously we discretize the energy 1 ( 1)qe q e= − ∆ . We know that 

01/ [exp( ( ) / ( )) 1]ph
j q BN e j q k TM− = − − . So we can write the equation (9) in the form  
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 where,  
2 3

4
x sD M vC

π ρ
=



. 

For Stokes scattering qmax ( )2

min 1q j M= − −=j-1 and  and for anti-Stokes scattering  

qmin is the maximum of q1min and q2min, where q1min ( )2

min2 1q j M= − −=j-1 and  

and  ( )2

max 1q j M= − + . Here j=2.......ne. We get these values of qmax  and qmin for 

Stokes and anti-Stokes scattering 

 

 from the Dirac distribution in equation (3) .  

We can write the equation (16), for j=1 in the form 
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3.3 Results in homogeneous system including phonon scattering 
 
As we have discussed in chapter 1, the relaxation kinetics of excitons in Cu2O due to 

phonon scattering have been investigated in references [1-8]. We have also investigated 

the Boltzmann kinetics of paraexcitons in Cu2

 

O in homogeneous system and also within 

the potential trap.  

 

 

 

 

 

 

 

 

 

 
Figure 3.1: The result of the phonon scattering with decay term in homogeneous system 
at 3 K when the exciton density is 5 31.5 10  mµ −×  and lifetime is 650 ns. The figure shows 
that with increasing time exciton number is increasing near zero energy and then it is 
decreasing with time.   
 

After solving the phonon scattering term of the Boltzmann equation we are getting the 

exciton occupation number as a function of energy e, and time t (see figure 3.1 and 3.2). 

In figure 3.1 we have plotted simulation result of phonon scattering with decay term and 

in figure 3.2 we have plotted simulation result of phonon scattering without decay term. 
Here the initial distribution [1] is given by the Gaussian 

2 2( 0) exp[ ( ) / ( ) ]e eN t N e e e= = − − ∆


  with the central energy e  and the width e∆ . The 

parameters, which we have used, are the exciton mass xM =2.61 em , 

319.109 10  em kg−= ×  is the electron rest mass, the longitudinal acoustic sound velocity 
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sv =4.5 310× m/s, the deformation potential energy D=1.68 eV and the crystal density 

3 36.11 10  /kg mρ = × .  

 

 

 

 

 

 

 

 

 

Figure 3.2: The result of the phonon scattering in homogeneous system at 3 K when the 
exciton density is 5 31.5 10  mµ −× . The figure shows that with increasing time exciton 
number stays constant.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: Exciton distribution in homogeneous system from zero to 5 ns for 3 K. In this 
case exciton density is 3 31.7 10  mµ −× . 
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Figure 3.4: Exciton distribution in homogeneous system for 0.5 K. Left hand side's 
figure is for 2 ns to 50 ns and right hand side's figure is for 50 ns to 1000 ns. Exciton 
density is 2 31.5 10  mµ −× . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5: Initial [3.5a, 3.5c] and final [3.5b, 3.5d] exciton distributions vs. energy for 
different temperatures. Final distributions are taken, at 100 ns for 3 K and at 1250 ns for 
0.3 K and 0.5 K. For 3 K, exciton density is 3 31.7 10  mµ −× ,  and for 0.3 K and 0.5 K 
exciton density is 2 31.5 10  mµ −× . Markers represent the results of the numerical 
simulation and solid lines are for the thermal equilibrium case. 
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Figure 3.6: Local exciton temperature Thomo

2 31.5 10  mµ −×

 vs. time for different bath temperatures in 
homogeneous system. Here we see that the effective temperature is decreasing with time 
for different bath temperatures. The arrows on the right hand side indicate the effective 
temperatures. For 0.5 K, 1 K and 3 K exciton densities are , 

2 31.5 10  mµ −× and 3 31.7 10  mµ −× , respectively. The curves serve as a guide to the eye. 
 
 
 
We have calculated the total number of excitons by the equation 

( )
2

3
0

V 4 ( )
2totalN k dk N kπ
π
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

                                                                                         (19) 

 

In figure 3.3 we have plotted exciton distribution for 3 K from zero to 5 ns. We see with 

increasing time distribution is coming close to zero energy. In figure 3.4 we have plotted 

exciton distribution for 0.5 K from 2 ns to 1000 ns. In figure 3.5 we have plotted initial 

and final exciton distribution for different bath temperatures. For 0.5 K it is thermalizing 

but taking long time to thermalize. For 0.3 K in the beginning it is not straight but then it 

is coming straight (see figure 3.5d) and there is some deviation between numerical result 

and thermal equilibrium case. Therefore, it is not thermalizing. Below 0.3 K, same thing 

happening like 0.3 K. We have calculated the local effective temperature Thomo (see 

figure 3.6) by fitting the long energy tail of the exciton distribution, using the equation 
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hom/e B oe k T− . This Boltzman distribution /( ) Be k Tf e e−=  is an approximation which is derived 

from Bose-Einstein distribution /

1( )
1Be k Tf e

e−=
−

 for Be k T>> . We see over 1 K it takes 

10 ns to come down to bath temperature in contrast below 1 K it takes around 100 ns to 

come down to bath temperature. 

 
We know for constant potential energy, the critical density is given by 
 

3/2

22
x B

c
M k Tn
π

 =  
 

                                                                                             (20) 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: Exciton distribution in homogeneous system for 0.5 K and 3 K. For 0.5 K 
and 3 K exciton densities are 5 31.5 10  mµ −×  and 6 31.7 10  mµ −×  respectively. The critical 
densities of exciton for 0.5 K and 3 K are 4 31 10  mµ −×  and 5 31.4 10  mµ −×  respectively. 
Here the exciton densities are higher than the critical densities and high peak at zero 
energy indicates BEC.  
                
In our numerical simulation, if we increase exciton density over the critical density, we 

see high peak at zero energy in the exciton distribution (see figure 3.7). In the figure 3.7 

represents exciton occupation vs. energy curves for 0.5 K and 3 K. Where for 0.5 K and  

3 K exciton densities are 
5 31.5 10  mµ −×  and 

6 31.7 10  mµ −×  respectively but the critical 

densities of exciton for 0.5 K and 3 K are
4 31 10  mµ −×  and 

5 31.4 10  mµ −×  respectively. 

Here the exciton densities are higher than the critical densities and we see high peak at 

zero energy  which indicates
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3.4  Results within a trap including phonon scattering 

 
After solving the Boltzmann equation with phonon scattering term we are getting the 

exciton occupation number as a function of energy e, radius r  and time t (see Figure 

3.8). We see that for a particular temperature, the excitons are going towards the bottom 

of the trap with increasing time, and after some time they are accumulated in a place near 

the bottom of the trap. In this case total exciton number within the trap is 41.7 10×  

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: The results of the simulation with phonon scattering at different times for 0.5 
K when the initial exciton number within the trap is 41.7 10× . The parameters, which we 
have used, are xM =2.61 em , 319.109 10  em kg−= ×  is the electron rest mass, 

sv =4.5 310× m/s, 20.5a eV mµ µ −= ⋅ ⋅ , D=1.68 eV and 3 36.11 10  /kg mρ = × . The series of 
figures shows that excitons are accumulated at the bottom of the trap within 100 ns at 0.5 
K.  

0
0.2

0.4
0.6

0
20

40
60

80
0

0.5

1

1.5
x 10-5

energy (meV)radius (µm)

ex
ci

to
n 

oc
cu

pa
tio

n 
nu

m
be

r

(b) t=5 ns

 
0

0.2
0.4

0.6

0
20

40
60

80
0

2

4

6

8
x 10-6

energy (meV)
radius (µm)

ex
ci

to
n 

oc
cu

pa
tio

n 
nu

m
be

r

(a) t=1 ns

 

0
0.2

0.4
0.6

0
20

40
60

80
0

0.5

1

1.5

2
x 10-5

energy (meV)
radius (µm)

ex
ci

to
n 

oc
cu

pa
tio

n 
nu

m
be

r

(c) t=10 ns

 
0

0.2
0.4

0.6

0
20

40
60

80
0

0.5

1

1.5

2

2.5
x 10-5

energy (meV)radius (µm)

ex
ci

to
n 

oc
cu

pa
tio

n 
nu

m
be

r

(d) t=100 ns

 

42



Chapter 3.  Phonon Scattering 
 

 

 

We have calculated the total number of excitons by the equation 

( )
2 2

3
0 0

1 4 4 ( , )
2totalN r dr k dk N r kπ π
π

∞ ∞

= ⋅ ⋅∫ ∫
 

                                                                       (21)  

the summation of exciton number along r direction by the equation  

2

0

( ) 4 ( , )r en e r dr N r eπ
∞

= ⋅∫
                                                                                                 (22) 

we call it exciton occupation, and the summation of exciton number along the direction 

of energy by the equation   

( )
2

3
0

1( ) 4 ( , )
2en r k dk N r kπ
π

∞

= ⋅∫


                                                                                       (23) 

From ( )rn e , we get the total number of exciton by the equation 

( )

3/2

2 2

21 ( )
2

x
total r

e

MN e de n e
π

 = ⋅ ⋅ ⋅ 
  ∫


                                                                         (24)    

The critical number of excitons Nc

3

1.202 B
c

k TN  =  Ω 

 at condensate for the BEC for the thermal equilibrium 
case 

                                                                                                          (25) 

with the frequency 2

x

a
M

Ω =  , the exciton mass 2.61x eM m= , the steepness constant 

20.5a eV mµ µ −= ⋅  and the temperature T. 
    

 

The kinetics of bosonic excitons in a potential trap was studied in reference [9] by rate 

equation in the basis of the single-particle eigenfunctions, in contrast in our work we 

have solved the Boltzmann equation. The thermodynamics of long-lived paraexcitons 

confined to a parabolic potential well in Cu2

 

O was studied in reference [10]. 

    

3.41  Low number of excitons  

 
First we discuss about the results with low number of excitons within the trap. Figure 3.9 

represents exciton occupation nr at 3 K by summation of total exciton number of non 
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degenerate exciton in r direction vs. energy for zero to 1 ns. We see with increasing time 

exciton distribution is coming close to zero energy and at 1 ns it has the boltzmann 

distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Exciton occupation nr
r

 at 3 K by summation of exciton number of non-
degenerate exciton gas in  direction vs. energy for different times. Initially total number 
of excitons are 61.98 10× . 
 

 

In figure 3.10 we have plotted exciton occupation nr 

       In figure 3.11 we have plotted the total number of excitons N

at t=0 and at 100 ns by summation 

of total exciton number of non degenerate exciton in r direction vs. energy for different 

bath temperatures. For 0.3 K at 100 ns we see there is deviation between our simulation 

result and thermal equilibrium case therefore, in this case we do not get the thermal 

equilibrium.  

tot vs. time for different 

bath temperatures with including phonon scattering. We see that in the beginning for all 

temperatures the exciton number decreases very little with time and then it stays almost 

constant. As the origin of this initial decay we found that the excitons are scattered of the 

finite energy space due to the somewhat singular initial distribution. 
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Figure 3.10: Exciton occupation nr at t=0 [3.10a, 3.10c] and final [3.10b, 3.10d] 
distribution nr

r
 at 100 ns by summation of exciton number of non-degenerate exciton gas 

in  direction vs. energy for different temperatures. For 0.3 K, 0.5 K, 1 K and 3 K, 
initially total number of excitons are 41.3 10× , 41.5 10× , 41.5 10×  and 61.98 10× , 
respectively. Markers represent the results of the numerical simulation and solid lines are 
for the thermal equilibrium case. 
 

 

 

Reference [11] reported about the same problem and therefore renormalized the exciton 

number at each time step. To get rid of this numerical artifact, we always considered in 

our numerical simulations the results for the actual number of excitons at each time. 

Therefore, our conclusions do not depend on the actual initial number of excitons. 

As we say in chapter 2, if we do not include any source term then the total number of 

excitons are almost constant with increasing time (see figure 2.6). That means the 

boundary conditions are working fine. 
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Figure 3.11: Total number of excitons vs. time for different bath temperatures including 
deformation potential phonon scattering. The curves show that how the total number of 
excitons is changing with time for different bath temperatures. For 0.3 K, 0.5 K, 1 K and 
3 K, initially total number of excitons are 41.3 10× ,  41.5 10× , 41.5 10×  and 41.8 10× , 
respectively. We see that for all temperatures the exciton number decreases very little 
with time in the beginning and then it stays almost constant. The origin of this is the 
excitons are scattering out from the finite energy space due to singular initial distribution. 
For this reason we consider this as numerical artifact. 
 

           Then we have calculated the local effective temperature Tlocal

/e B locale k T−

 for non degenerate 

case, by fitting the long energy tail of the exciton distribution by the function and 

studied how it is changing with time. So, first we have calculated the summation of 

excitons number nr along the r direction, plot log(nr

/e B locale k T−

) vs. energy curves, fit it with the 

function that is proportional to  and get the values of Tlocal

 

 for different bath 

temperatures (see Figure 3.12), We see that for temperatures above 1K the effective 

temperature is coming down to bath temperature within ten nanoseconds. This is different 

for temperatures below 1K, where the effective temperature is coming down to bath 

temperature very slowly in around hundreds of nanoseconds only. Therefore we see 

cooling time is same for homogeneous system and within the trap. 
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Figure 3.12: Local exciton temperature Tlocal

41.5 10×

 vs. time for different bath temperatures 
including deformation potential phonon scattering. Here we see that the effective 
temperature is changing with time for different bath temperatures. The arrows on the 
right hand side indicate the effective temperatures. For 0.5 K, 1 K, 3 K and 5 K initially 
total number of excitons are ,  41.5 10× , 61.98 10×  and 61.99 10× , respectively. 
The curves serves as a guide to the eye. 
 

 

We have also calculated global effective temperature for non degenerate case, (see figure 

3.13) from the ne

2

( ) ~
r

en r e ξ
 

− 
 

(r) vs. energy curves by using the relation of the exciton distribution 

 with B globalk T
a

ξ =  and the steepness constant 20.5a eV mµ µ −= ⋅ . 

Therefore, we take the value of r  at the half maximum of the exciton distribution, and 

therefore determined the effective temperature. In this case the global effective 

temperature is not coming down to bath temperature and there is deviation between 

simulation result and thermal equilibrium curve at 200 ns. In figure 3.14, we see that for 

the bath temperature 0.5 K, Tglobal is coming down to 0.8 K and for the bath temperature 

3 K Tglobal

 

 is coming down to 4 K. 
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Figure 3.13:  Spatial distribution ne

41.02 10×

  of excitons for different temperature as a function of 
time for non degenerate case, i.e. the summation of exciton number over the direction of 
energy vs. radius r, only with phonon scattering for 0.5 K and 3 K at different times.  For 
0.5 K and 3 K, initially total number of excitons are  and 61.98 10× , 
respectively. Dotted curve represents ne
 

 vs. r for thermal equilibrium case. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 3.14: Tglobal

41.02 10×

 vs. time for different bath temperatures including deformation 
potential phonon scattering only. For 0.5 K and 3 K, initially total number of excitons are 

 and 61.98 10× , respectively. The arrows on the right hand side indicate the 
effective temperatures. 
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3.42  High number of excitons and the possibility of the Bose-Einstein Condensation     

 

BEC of excitons has been studied in references [12-18]. Recently BEC of excitons has 

been studied theoretically [19] and experimentally at sub-Kelvin temperatures [20]. In a 

real experiment [20] the photoluminescence intensity, which is proportional to the 

number of excitons, is measured as a function of location z and the spectral position 

0e eω = + , where 0e  is the minimum energy of the trap. From the Boltzmann equation 

we get the exciton distribution ( , ')N r e   as a function of local energy 2
0'e ar eω= − −



  

and radius r . Then we transfer r  to the Cartesian coordinates x, y and z and from the 

distribution ( , ')N r e  we have calculated the distribution ( , ')N z e ,  where ( , ')N z e  is the 

exciton occupation number as a function of  energy e' and location z . We see only the 

middle of the trap, therefore in our case x is equal to zero and the distance, that is actually 

the projected slit width, is x∆ . Then by integrating ( , ')N z e  over the location y we get 

the energy distribution 

 
2 2 2( , ) 4 ( , ')N z e dkk N r y z e dy

x de
π

∞

−∞

= ⋅ ⋅ = +
∆ ∫                                                                  (26)                                                                     

or,  

( )
3/2

2 2
3

0

4 2( , ) 2 , 'xMN z e e N r y z e dy
x

π∞

= ⋅ ⋅ = +
∆ ∫



  .                                                  (27) 

Then we have integrated ( , )N z e
x∆

 over the z direction and got the energy distribution 

0

( ) ( , ) 2 ( , )N e N z e dz N z e dz
x

∞ ∞

−∞

= =
∆ ∫ ∫                                                                                  (28) 

which is proportional to the experimentally measured spectrum. 
 

In figure 3.15, we have plotted ( )N e
x∆

 vs. energy curves for the temperature of 0.5 K with 

different exciton numbers within the trap and for different times. We see that if the initial 

exciton number within the trap is 91.02 10×  then no BEC occurs (see figure 3.15a). At 10 

ns exciton number is 81.86 10× . After 10 ns the exciton number and the curve is stable 
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like 10 ns. In the next two steps we increase the exciton number by factor of 8. If the 

initial exciton number within the trap is 94.08 10×  and at 10 ns exciton number is 
83.1 10× , still no BEC occurs (see figure 3.15b), but finally if the initial exciton number 

within the trap is 98.16 10× , then at 10 ns the BEC occurs (see figure 3.15c) and it is 

stable over a long time. At 10 ns exciton number is 84.6 10×  and a high peak near zero 

energy indicates BEC. To find the BEC we have changed excitons number in the trap. By 

changing n0 

 

in the initial distribution we have changed exciton number.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.15: The spectral distribution ( ) /N e x∆  of excitons as a function of time vs. 
energy at 0.5 K for a non degenerate case. Figure 3.15a represents number of excitons 
within the trap vs. energy for 0.5 K at different times when initial exciton number within 
the trap is 91.02 10× , at 10 ns exciton number is 81.86 10×  and 1 mx µ∆ = . Figure 3.15b 
represents ( ) /N e x∆  vs. energy spectrum for 0.5 K at different times when initial exciton 
number within the trap is 94.08 10×  and at 10 ns exciton number is 83.05 10× . In both 
cases we can not see any BEC. Figure 3.15c represents ( ) /N e x∆  vs. energy for 0.5 K at 
different times when initial exciton number within the trap is 98.16 10×  at 10 ns exciton 
number is 84.61 10× .  In figure 3.15c at 10 ns a high peak near zero energy (indicated by 
star) indicates the occurrence of BEC. 

N
(e

)/∆
x

(m
eV

-1
·µ

m
-1

)

energy (meV)

t=0

t=5 ns

t=10 ns

× 0.2

(a) T=0.5 K

 

× 0.1
t=0

t=5 ns

t=10 ns

energy (meV)

N
(e

)/∆
x

(m
eV

-1
·µ

m
-1

)

(b) T=0.5 K

 

× 0.1
t=0

t=5 ns

t=10 ns

energy (meV)

N
(e

)/∆
x

(m
eV

-1
·µ

m
-1

)

(c) T=0.5 K

*

 

50



Chapter 3.  Phonon Scattering 
 

 

 

3.43  Comparison with the thermal equilibrium case 

 
The table 1 shows (see Table 1.)  a comparison between Nc(TBath), Nc(Tglobal),  and Ntotal. 

Ntotal is the total number of excitons within the trap from our numerical simulations for 

which for the first time the BEC appears. Nc(TBath) is the critical number of excitons at 

thermal equilibrium for the bath temperature. Nc(Tglobal) is the critical number of the 

excitons at thermal equilibrium for the global effective temperature. From our numerical 

simulations, we see that the BEC occurs for all observed temperatures over and below the 

bath temperature of 1K.   From the table we see that from our numerical simulations the 

values of  Ntotal at the BEC are always one order of magnitude higher than Nc(TBath

 

) for 

all temperatures.  

 

Table 1. comparison between Nc(Tbath), Nc(Teff) and Ntotal

T

. 

bath T (K) global     N (K) c(Tbath N) c(Tglobal     N) total 

0.5  

1 

3  

5  

0.9 

1.4 

4.6 

5.43 

75.45 10×  

84.36 10×  

101.18 10×  

105.45 10×  

 

83.16 10×  

91.2 10×  

104.21 10×  

106.93 10×  

84.61 10×  

91.97 10×  

106.5 10×  

109.34 10×  

 
 

 

       Figure 3.16 shows the total number of excitons Ntotal

 

 within the trap for which for the 

first time the BEC appears vs. time curves for the bath temperatures 0.5 K, 1 K, 3 K and 

5 K, where we can see that exciton number is decreasing with time and coming to the 

BEC within the trap. 
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Figure 3.16: Exciton number vs. time curves for different temperatures. Red curves 
represent total number of excitons within the trap for which first time condensate appears 
vs. time for 0.5 K, 1 K, 3 K and 5 K. In these cases exciton number is decreasing with 
time and coming to condensate. Black dotted curves represent critical number of excitons 
at global effective temperature for the thermal equilibrium case. Blue curves represent 
critical number of excitons at bath temperature for the thermal equilibrium case. 
 

 

3.5  Summary      

We have seen the relaxation behaviour of excitons between 0.3 K to 5 K in homogeneous 

system and also within a potential trap. In homogeneous system and within the trap for 

both cases we see for temperatures between 0.5 K to 3 K excitons are thermalizing but 

for 0.3 K excitons are not thermalizing within their lifetime.  
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Within the trap, we see locally, that for the bath temperatures between 1 K to 5 K the 

local effective temperature Tlocal is coming down to bath temperature very quickly within 

10 nanoseconds, but for the bath temperatures below 1 K, the Tlocal is coming down to the 

bath temperature very slowly within 100 nanoseconds only. Cooling time is same in 

homogeneous case. This effect can be related to the freezing out of phonons for very low 

temperatures. On a global scale, exciton effective temperature Tglobal

We see from our numerical simulations, that the BEC occurs for all observed 

temperatures. By comparing our results with the thermal equilibrium case, we see that for 

all temperatures the BEC comes at a higher number of excitons than in thermal 

equilibrium case. The effective temperature at the time of BEC has good agreement with 

the global effective temperature.                 

 is not coming down 

to the bath temperature. For low temperatures the global effective temperature is almost a 

factor of 2 larger than the bath temperatures.  
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Chapter 4 
 

 
Auger Decay, Radiative and Non-Radiative Decay 

 
 
This chapter contains the theory of Auger decay, radiative and non-radiative decay and 

the results of the Boltzmann equation with the phonon scattering, Auger decay, radiative 

and non-radiative decay within a potential trap. Previous work on Auger decay and the 

estimation of the Auger decay rate has been discussed. 
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4.1  Auger decay 
 
In a semiconductor in which the electrons and holes remain unbound, one can observe a 

process in which one electron-hole pair recombines and giving the band gap energy to the 

remaining electron or hole. This three body process is called Auger recombination. In 

Cu2

2An

O at low temperatures, the excitons are the dominant species and the density 

dependent decay is due to the collision of two excitons. In this case, Auger decay [1] 

destroys two excitons by recombination of one exciton and ionization the other one.  The 

decay rate of excitons due to this two body decay is  where A  is the Auger constant 

and n  is the gas density. 

We assume that all of the ionized carriers released by Auger decay rebind to form new 

excitons, and we distribute these excitons over the whole energy range. Indeed, the 

electron hole pairs also recombine into orthoexcitons, but these are then converted into 

paraexcitons. Therefore, only paraexcitons need to be considered. So, in recovery, we are 

getting back half of the destroyed excitons by Auger decay. The complete effect of Auger 

decay on the exciton occupation number is [1] 

 
( )3

2
3

Auger Decay

21( ) ( , ) ( )
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pp pp
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A n r N r k A n r

t d k
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 

  

                                                         (1) 
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2 4 2
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N A n r N r e A n r
t M e de

π

π
∂  = − + ⋅ ∂ 

∫

  



   

                              
( )33

2
3/2 3/2

max

3 21( ) ( , ) ( )
2 8 2pp pp

x

A n r N r e A n r
M e
π

π
= − + ⋅



  

                                       (2) 

 
         The first term is due to two body decay and the second term is due to recovery. ppA  

is the Auger constant. ( )n r  is the local density obtained by summation of exciton 

occupation number along the direction of energy.  
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                                                                                                  (3) 
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                                                                                 (4) 

        We have used an Auger constant 18 310  cm / nsppA −=  taken from recent experiments 

[2]. 

 
4.2  Radiative and non-radiative decay 
 
The radiative and non-radiative decay [2] of paraexcitons occurs with the total rate pΓ , 

i.e. 

R_NR decay

( , )e
p

N N r e
t

∂  = −Γ ∂ 


                                                                                                     (5) 

 
From recent experiment the decay rate is 11/ 650 nsp

−Γ =  [2]. 
 
 
4.3  Numerical modeling 
 
By using the relation 0e je

M
=

 
, 0ee

M
∆ =  with M is an integer, we can write ( )n r (see 

equation 4) in the following way 
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Therefore we can write 
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and 
R_NR decay

( , )j
p

N
N i j

t
∂ 

= −Γ ∂ 
                                                                                      (8) 

 
 
 
4.4 Previous works on Auger decay and the estimations of the Auger 
decay rate 
 
Several groups have been reported about the study on Auger decay process and also 

Auger decay constant. The first theoretical estimate of the Auger decay rate seems to be 

that by Culik [3]. From the Fermi's Golden rule he finds the transition rate from a pair of 

excitons to a free electron and hole. He finds Auger decay constant is zero for 1s excitons 

and 14 310  cm /ns−  for 2p excitons in Cu2

 

O. 

The first experimental measurement of the Auger decay rate of excitons in Cu2

19 32 10  cm /ns−×

O was by 

Mysyrowicz et. al. [4]. That measurement was made with the steady state excitation. 

They extracted an Auger decay constant for the paraexcitons is . This 

experiment produces gasses consisting mainly of paraexcitons because the ortho to 

paraexciton conversion rate is fast on the scale of paraexciton lifetime. The two body 

decay constant was determined in [5] to be of the order of   20 31 10  cm /ns−× . 

 
The first determination of the Auger decay constant through direct observation of the 

exciton decay rate was made by Snoke and Wolfe [6].  In a crystal at 2 K, Snoke and 

Wolfe measured the lifetime of the orthoexciton luminescence following an intense 100 

ps laser pulse. They reported an Auger decay constant 18 310  cm /ns−  for orthoexcitons. 

 
Trauernicht, Wolf and Mysyrowicz [7] reported a rate 0.05/sec for paraexcitons confined 

to a parabolic strain well. 

 
O'Hara et al. [8] determined the density of excitons by measuring their absolute 

brightness in a calibrated optical system and measuring the expanding volume occupied 

by the excitons. The luminescence signal following sub nanosecond laser excitation 

exhibits a decay rate which is strongly depend on the particle density. They reported that 

the effective Auger constant is 17 37 10 cm /nsA −= × . 
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Warren et al. [9] examined the decay of thermalized excitons in Cu2

16 30.6 10 cm /nsA −= ×

O and determined 

their lifetime against two-body decay. They reported that the Auger constant is 

. 

 
Kavoulakis and Mysyrowicz [10] examined the interconversion between the angular-

momentum triplet state excitons and the angular momentum singlet-state excitons by a 

spin exchange process. They estimated the two-body decay constant is 16 310 cm /nsA −≈ . 

 
Wolf et al. [11] studied Auger recombination of excitons in Cu2

16 3(72 ) 1.8 10  cm /nsA K −= ×

O by time and space 

resolved luminescence. Their measured Auger constant range from 

 to 16 3(212 ) 0.5 10  cm /nsA K −= ×  respectively. 

 
Kavoulakis and Baym [12] studied the non-radiative Auger decay of excitons in Cu2

 

O, in 

which two excitons scatter to an excited electron and hole. They calculated the Auger 

decay rate for both the direct and phonon assisted mechanisms and they concluded that 

the rate of the phonon assisted Auger mechanism is much larger than the rate of the direct 

process. Furthermore, the experimental results differ by at least four orders of magnitude 

from the theoretical predictions [11, 12]. 

Recently, Yoshioka et al. [13] studied a density dependent loss of optically inactive 

paraexcitons as a function of temperature over a wide range of densities in Cu2

16 34 10  cm /ns−×

O. They 

reported that the Auger decay rate is  in bulk crystals.  

Recently [14], it was suggested that the two-body decay process is actually related to the 

formation of a biexciton state. 

As our aim is to model the experimental work of Ref. [2], we take the Auger constant 

from this report as 18 310  cm / nsppA −= . 

 

 

     4.5  Results within a potential trap including phonon scattering, Auger 
decay, radiative and non-radiative decay 
 
The Boltzmann equation with radiative and non-radiative decay and Auger decay is given 
by 
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N N
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                                                                                    (9) 

 
 
 
 
4.51  Low number of excitons  
 
After solving the Boltzmann equation with phonon scattering, radiative, non-radiative 

decay and Auger decay with low number of excitons within the trap we don't see any 

Auger effect. In section 4.4 we already discussed about previous estimates of Auger 

decay constant. We have used the Auger constant 18 310  cm / nsppA −=  [2] from recent 

experimental work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1:  Spatial distribution ne

41.02 10×

  of excitons for different temperatures as a function of 
time i.e. the summation of exciton number over the direction of energy vs. radius r 
including Auger decay, radiative and non-radiative recombination with phonon scattering 
for 0.5 K (figure 4.1a) and  3 K (figure 4.1b) at different times.  At 0.5 K and 3 K initial 
total number of excitons are  and 61.98 10× , respectively.  
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4.52  High number of excitons and the possibility of the Bose-Einstein condensation  
 
After solving the Boltzmann equation with phonon scattering, radiative, non-radiative 

decay and Auger decay with the Auger constant 18 310  cm / nsppA −=  [2], and with high 

number of excitons within the trap we see that the total number of excitons decreasing 

with increasing time. Figure 4.2 represents exciton occupation nr

r

 at 3 K by summation of 

exciton number of non-degenerate exciton gas in  direction vs. energy for different 

times. We see how exciton distribution is changing with time from 0 to 200 ns. 

In figure 4.3, we see locally, that the effective temperatures are not coming down to the 

bath temperatures even after 600 ns. We have calculated the local effective temperature 

Tlocal

/e B locale k T−

 by fitting the long energy tail of the exciton distribution by a function proportional 

to . This Boltzman distribution /( ) Be k Tf e e−=  is an approximation which is 

derived from Bose-Einstein distribution /

1( )
1Be k Tf e

e−=
−

 for Be k T>> . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Exciton occupation nr

r
 at 3 K by the summation of exciton number of non-

degenerate exciton gas in  direction vs. energy at different times. Initially total number 
of excitons is 111.98 10× . 
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Figure 4.3: Local effective temperature Tlocal

91.02 10×

 vs. time curves for different bath 
temperatures including deformation potential phonon scattering, radiative, non-radiative 
decay and Auger decay. The arrows on the right hand side indicate the effective 
temperatures. We see that the effective temperatures are not coming down to bath 
temperatures even after 600 ns. At 0.5 K, 1.5 K and 3 K initial exciton number within the 
trap are , 102.76 10×  and 111.99 10× , respectively. The curves serve as a guide to 
the eye.  
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                   
 
 
Figure 4.4:  Spatial distribution ne

91.02 10×

  of excitons for different temperatures as a function of 
time for non degenerate case, i.e. the summation of exciton number over the direction of 
energy vs. radius r including Auger decay, radiative and non radiative decay with phonon 
scattering for 0.5 K (figure 4.4a) and  3 K (figure 4.4b) at different times.  At 0.5 K and 3 
K initial total number of excitons are  and 111.98 10× , respectively.  
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Figure 4.4 represents exciton distribution ne  vs. radius at different times for 3 K and 0.5 

K. We have calculated global effective temperature Tglobal (see figure 4.5) from the ne

2

( ) ~
r

en r e ξ
 

− 
 

(r) 

vs. energy curves by using the relation of the exciton distribution , with 

B globalk T
a

ξ =  and the steepness constant 20.5a eV mµ µ −= ⋅ . Therefore, we take the value 

of r  at the half maximum of the exciton distribution, and determined the effective 

temperature. Globally, the effective temperature is also not coming down to the bath 

temperature. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5: Excitons global temperature Tglobal

 

 vs. time for different bath temperatures 
including Auger decay. The arrows on the right hand side indicate the effective 
temperatures. We see the global effective temperatures are not coming down to the bath 
temperatures. 
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Figure 4.6: The spectrall distribution N(e)/ ∆x of exciton as a function of time vs. energy 
at 3 K with and without Auger decay, radiative and non-radiative decay. Figure 4.6a 
represents the results only with phonon scattering. Here initial exciton number within the 
trap is 115.97 10×  and at 15 ns exciton number is 106.5 10× . At 15 ns, we see that a high 
peak near zero energy occurs which indicates BEC. Figure 4.6b represents the results 
including Auger decay, radiative and non-radiative decay with the phonon scattering, and 
the same exciton number within the trap. In this case we don't see any BEC. 
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3

1.202 B
c

k TN  =  Ω 

                                                                                                          (10) 

with the frequency 2

x

a
M

Ω =  , the exciton mass 2.61x eM m= , the steepness constant 

20.5a eV mµ µ −= ⋅  and the temperature T. 
 

To study on BEC in the case of Auger decay, if we increase the exciton number 

over the critical number we do not see any BEC for any temperature at any time. In figure 

4.6 we compare the total number of excitons within the trap vs. energy for the bath 

temperature of 3 K with and without Auger decay, radiative and non-radiative decay with 

the same initial exciton numbers within the trap. Here we see that without Auger decay, 

radiative and non-radiative decay the BEC exist at 15 ns (see figure 4.6a) but with Auger 

decay, radiative and non-radiative decay no BEC occurs at any time (see figure 4.6b). A 

similar behaviour was found for other temperatures.  

 

 
 
 
4.6  Summary 
 
After solving the Boltzmann equation with the phonon scattering, radiative, non-radiative 

decay and Auger decay, we see locally and globally for both cases the effective 

temperature is not coming down to the bath temperature after long times due to the 

heating of the exciton gas.  In this case, no BEC occurs. Whereas in the case of phonon 

scattering only, as we discussed in chapter 3, we have seen that locally the effective 

temperature was coming down to the bath temperature but  globally the effective 

temperature was not coming down to the bath temperature. In that case BEC occurs for 

all temperatures over and below 1 K. Therefore Auger decay makes a barrier to get the 

BEC. 

 
 
 
 
 

66



Chapter 4. Auger Decay, Radiative and Non-Radiative Decay 
 

  

References: 
 
  [1] O'Hara K E  and Wolfe J P,  2000, Phys. Rev. B 62,  12 909-921, "Relaxation 

kinetics of excitons in cuprous oxide". 
 
  [2]  Schwartz R, Naka N, Kieseling F, and Stolz H, 2011, New Journal of Physics 14, 

023054, "Dynamics of excitons in a potential trap at ultra-low temperatures: 
paraexcitons in Cu2

 
O". 

  [3]   Culik F, 1966, Czech J Phys 16, 194, "Exciton-exciton Collisions in crystals". 
 
  [4]  Mysyrowicz A, D Hulin, and C Benoit a la Guillaume, 1981, J Luminescence 24,   

629, "Study of Exciton Luminescence in Cu2
 

O". 

  [5]  Hulin D, Mysyrowicz A, and  Benoit a la Guillaume C, 1980, Phys. Rev. Lett., 45, 
1970, "Evidence for Bose-Einstein Statistics in an Exciton Gas". 

 
  [6]  Snoke D W and J P Wolfe, 1990, Phys Rev B 42, 7876, "Picosecond dynamics of 

degenerate orthoexcitons in Cu2
 

O". 

  [7]  Trauernicht D P, Wolf J P, and Mysyrowicz A, 1986, Phys. Rev. B 34, 2561, 
"Thermodynamics of Strain-confined Paraexcitons in Cu2

 
O". 

  [8]  O'Hara K E, J R Gullingsrud, and J P Wolfe, 1999, Phys Rev B 60, 10872, "Auger 
Decay of Excitons in Cu2

 
O". 

  [9]  Warren J T, O'Hara K E, and Wolfe J P, 1999, Phys Rev B 61, 8215, "Two-body 
Decay of Thermalized Excitons in Cu2

 
O". 

[10]  Kavoulakis G M and Mysyrowicz A, 2000, Phys Rev B 61, 16619, "Auger decay, 
spin exchange, and their connection to Bose-Einstein condensation of excitons 
in Cu2

 
O". 

[11]  Wolfe J P, Jang J I, 2005, Solid State Communications 134, 143, "New perspectives 
on kinetics of excitons in Cu2

 
O". 

[12]  Kavoulakis G M and Baym G, 1996, Phys. Rev. B 54, 16625, "Auger decay of 
degenerate and Bose-condensed excitons in Cu2

 
O". 

[13]  Yoshioka K, Ideguchi T, Mysyrowicz A and Kuwata-Gonokami M, 2010, Phys. 
Rev. B, 82, 041201, "Quantum inelastic collisions between paraexcitons in 
Cu2

 
O".  

[14]  Jang J I and Wolfe J P, 2006, Phys. Rev. B, 74, 045211, "Auger recombination and 
biexcitons in Cu2O: A case for dark excitonic matter". 

67



 
 
 
 
 
 
 
 
 
 
 

Chapter 5 
 
 

Elastic Scattering 
 
 
 
 
 
 
In this chapter we have discussed about the elastic scattering, the results of the 

Boltzmann equation with the elastic scattering and the phonon scattering in the 

homogeneous system and the results of the Boltzmann equation with the elastic scattering 

and the phonon scattering within a potential trap. The possibility of Bose-Einstein 

condensation of exciton in Cu2

 

O, within the potential trap is discussed. 
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5.1  Theory 
 
5.11 General equation for the elastic scattering 
 
Elastic scattering term of the Boltzmann equation [1] describes the two-body scattering of 

boson gas in a homogeneous system. The scattering rate involves all events in which 

excitons of momentum p and p2 scatter into k and k2

 

. There are two initial exciton 

momenta and two final exciton momenta involved whereas in the case of phonon 

scattering, one initial exciton momentum and one final exciton momentum involved. 

The scattering rate of the exciton into state k is [2, 3] 
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elastic in scattering
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2

2 2
2 / 2 xke k M=
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the exciton energy in wavevector k


 state, p  state, 2p  state, and 2k


 state, respectively. 

kN  , pN  , 
2pN  and  

2kN   are the exciton occupation number in k


 state, p  state, 2p  state, 

and 2k
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 state, respectively. 
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14
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x
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 is the matrix element [3] with 1a  the 

scattering length. Here 
22 p pk ke e e e= + − 

   or 2 2 2
2 2k p p k= + −
 

  . 

 
The scattering rate of the exciton out of state k is [2, 3] 
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22
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The net scattering rate of the exciton in and out of the volume of  k space 3d k



 is given by 
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5.12 Transfer momentum terms to energy terms 
 
We know 2 2 / 2 xke k M=   , 2 2 / 2p xe p M=    and 

2

2 2
2 / 2p xe p M=

 . 

Therefore 2

2 x kM e
k =





, 
2

1 
2

2

p

x

p dp de

M

=
 
 
 



 and 
22 2 2

1 
2

2

p

x

p dp de

M

=
 
 
 



. 

 

By using these relation we get 
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Now two conditions arise [4, 5], the first one is k pe e>  and then we can write the 

equation  
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The second condition is k pe e<  and then we can write the equation 
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Therefore the complete equation is 
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5.13 Equation for zero energy state 

 

At k=0 the elastic scattering term is given by 

 

2 2 2

2
0 1

03
0 0_

4 [{ (1 )(1 )}k

p p k k

e x
p p e e e e

elastic scattering

dN a M de de N N N N
dt π

∞ ∞
=

=

  
= ⋅ ⋅ + +     

∫ ∫


 

 



 

                                    
22

0{ (1 )(1 )}]
p pk ke e e eN N N N=− + +

 

 

                                                   (12) 

 

 

 

5.14 Equations for in-scattering and out-scattering terms from k=0 state 

 

If 2 0k =
 

, we get [6] 
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with 

2p pke e e= −   and V is the volume. 
 
Similarly if  2 0p =

 , we get [6] 
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with 

2 pk ke e e= − 
 . 

 
 
 
 
5.2  Numerical modeling 

We discretize the energy ( )1kke j e= − ∆   where 1......kj ne= , ne is an integer and 

0ee
M

∆ =  with M is an integer. Analogously we discretize the energy ( 1)p pe j e= − ∆ , 

2 2
( 1)p pe j e= − ∆ , ( )22

1kke j e= − ∆ . 
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We can write the equation (12), for 1kj =  in the form 
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Therefore the complete elastic scattering equation is [6] 
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5.3 Results in homogeneous system including phonon scattering and 

elastic scattering 

 
The relaxation kinetics of excitons in Cu2O due to phonon scattering and elastic 

scattering have been investigated in references [2, 4]. We have also investigated the 

Boltzmann kinetics of paraexcitons with phonon scattering and elastic scattering in Cu2

 

O 

in the homogeneous system.  

After solving the phonon scattering and elastic scattering term of the Boltzmann equation 

we are getting the exciton occupation number as a function of energy e, and time t. We 

have used the initial distribution [7] which is Gaussian 
2 2( 0) exp[ ( ) / ( ) ]e eN t N e e e= = − − ∆



  with the central energy e  and the width e∆ .  

 

The parameters, which we have used, are the exciton mass xM =2.61 em , 

319.109 10  em kg−= ×  is the electron rest mass, the longitudinal acoustic sound velocity 

sv =4.5 310× m/s, the deformation potential energy D=1.68 eV, the crystal density 

3 36.11 10  /kg mρ = × , the volume 3V 1 mµ= , the steepness constant  20.5a eV mµ µ −= ⋅    
and the scattering length 1 2 nma = . 

 

There have been several theoretical estimations of the exciton-exciton scattering for bulk 

systems [8-12] and quantum wells [13, 14] as well as calculations on biexciton-biexciton 

scattering [15]. These are generally in terms of scattering length 1a  which is related to the 

cross-section by the equation 2
14 aσ π= . References [4, 9] have used the scattering cross 

section 250 nmσ = . We have also used scattering cross section 250 nmσ = . 
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Figure 5.1: Exciton distribution in homogeneous system for 0.5 K from 0 to 750 ps. In 
this case exciton density is 3 31 10  mµ −× . 
 

 

Figure 5.1 represents the exciton distribution for 0.5 K at different times. We see at 750 

ps the exciton distribution is taking the Boltzmann distribution. Figure 5.2 represents the 

exciton distribution for different temperatures at different times. We see for 3 K the 

exciton distribution is coming to the thermal equilibrium within 5 ns in contrast for 0.5 K 

it is taking 150 ns and for 0.3 K it is taking 400 ns to reach to the thermal equilibrium. 

For 0.1 K (see figure 5.2d) exciton distribution does not reach thermal equilibrium even 

at 5000 ns. The calculations, in the results for figure 5.2, are without including the 

equation for zero energy state, but the behaviour is same if we include the equation for 

zero energy state. 

Figure 5.3 represents exciton's local effective temperature vs. time curve for different 

bath temperatures.  We have calculated the local effective temperature Teff

/e B effe k T−

 by fitting the 

long energy tail of the exciton distribution using the equation .  
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Figure 5.2: Exciton distribution in homogeneous system for different bath temperatures 
at different times. In these cases exciton densities are 3 31.7 10  mµ −×  for 3 K and 

3 31 10  mµ −×  for 0.5 K, 0.3 K and 0.1 K. Full lines represents the results of the numerical 
simulations and markers represent the thermal equilibrium case for each temperature. In 
figure 5.2d, markers with dashed curve represents thermal equilibrium for 0.1 K where 
we see that the exciton distribution does not reach the thermal equilibrium even at 5000 
ns. 
 
 
 
We see that for 3 K the local effective temperature is coming down to the bath 

temperature within 5 ns, in contrast for 0.5 K it is taking around 100 ns and for 0.3 K it is 

taking 250 ns. But for 0.1 K the local effective temperature is coming down to 0.17 K at 

5000 ns. For 0.05 K the relaxation behaviour is almost identical to that of 0.1 K, 

especially the excitons cool down to 0.17 K at 5000 ns.  
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Figure 5.3: Local exciton temperature Teff

3 31.8 10  mµ −×

 vs. time for different bath temperatures in the 
homogeneous system. Here we see that the effective temperature is changing with time 
for different bath temperatures. The arrows on the right hand side indicate the effective 
temperatures. For 3 K the exciton density is   and for 0.05 K, 0.1 K, 0.3 K 
and 0.5 K the exciton density is 3 31 10  mµ −× .  
 
 
We know for constant potential energy, the critical density is given by 
 

3/2

22
x B

c
M k Tn
π

 =  
 

                                                                                             (22) 

 
In our numerical simulations, if we do not include the equation for in-scattering and out-

scattering terms are equal to zero and increase the exciton density over the critical density 

then over 1.5 K, we see the high peak in the exciton distribution (see figure 5.4). Below 

1.5 K simulations can not be performed over long time due to the excitons number at zero 

energy state is increasing with a high rate, which is an indication of BEC (see figure 5.5 

for 0.5 K, which is almost same with and without including in-scattering and out-

scattering terms are equal to zero). 

If we include the equation for in-scattering and out-scattering terms are equal to zero, 

then for the all investigated temperatures excitons number at zero energy state is 

increasing with a high rate, which is an indication of BEC. 
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Figure 5.4: Exciton distribution in homogeneous system for 3 K when exciton density 
is 5 31.66 10  mµ −× . Left hand side figure represents the exciton distribution between 
energy range zero to 4 meV whereas right hand side figure represents a close view of 
exciton distribution between energy range zero to 0.5 meV. The critical density of 
exciton for 3 K is 5 31.4 10  mµ −× . Here exciton density is higher than the critical density. 
 
 

 

 

 

 

 

 

 

 

Figure 5.5: Ground state occupation number vs. time for different bath temperatures 
includes the equation for in-scattering and out-scattering terms are equal to zero. For 3 K 
and 0.5 K, exciton densities are 5 31.8 10  mµ −×  and 5 31.2 10  mµ −×  respectively. The 
critical densities of exciton for 3 K and 0.5 K are 5 31.4 10  mµ −×  and 4 31 10  mµ −×  
respectively.  Here the exciton densities are higher than the critical densities and we see 
that the ground state exciton number is increasing with a high rate with time. 
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Figure 5.4 shows the exciton occupation number vs. energy curve for 3 K, where the 

exciton density 5 31.66 10  mµ −×  is higher than the critical density 5 31.4 10  mµ −× for 3 K. 

Left hand side figure of the figure 5.4 represents the exciton distribution between energy 

range zero to 4 meV whereas right hand side figure represents a close view of exciton 

distribution between energy range zero to 0.5 meV.  Here we see that the high peak 

shows up at the zero energy. Figure 5.5 shows the ground state occupation number vs. 

time for different bath temperatures, where the exciton densities for 3 K and 0.5 K,  are 
5 31.8 10  mµ −×  and 5 31.2 10  mµ −×  respectively, which are over the critical density of 

exciton for 3 K and 0.5 K are 5 31.4 10  mµ −×  and 4 31 10  mµ −× , respectively. Here we see 

that the exciton number at zero energy state is increasing with a high rate [5]. Therefore 

numerical simulations can not performed over long time, but this is an indication of BEC.  
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5.4 Results within a potential trap including phonon scattering and 
elastic scattering  
 
After solving the Boltzmann equation with phonon scattering and elastic scattering terms 

we are getting the exciton occupation number as a function of energy e, radius r  and 

time t. We see that for a particular temperature, the excitons are going towards the bottom 

of the trap with increasing time, and after some time they are accumulated in a place near 

the bottom of the trap. In Fig. 5.6, this is demonstrated by an example at a bath 

temperature of T=0.1 K for t=0ns and t=10 ns.   

 

From the exciton occupation numbers Ne(r,e,t), one can calculate the interesting 

quantities like total excitons number Ntotal

We approximate the number of particles at 

 (eq. 21, chapter 3) and the excitons occupation 

(eq. 22, chapter 3) as usual. However, it has to be stressed, that these quantities refer only 

to the thermal excitons at e>0. To obtain the number of excitons in the condensate, we 

have to include the state at e=0 in the following way: 

0=k  by the number of excitons in the k


-
space volume 3k∆  at 0=k . The condensed exciton density at the position l R⋅∆  is 

3

0
X

N( l , )n ( l ,t )
R

=
∆

.The total number of condensed excitons is obtained by summing over 

the total volume as 

Figure 5.6: The result of the simulation with phonon and elastic scattering for T = 0.1 K. 
The left panel shows the initial distribution (t=0ns), the right panel shows the result for t = 
10 ns. Initial exciton number within the trap is 81.1 10× . 
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2 2

3

1 0 4 4 0C
l l

N ( t ) N( l , ) ( l R ) R N( l , ) l
R

= ⋅ π⋅ ⋅∆ ⋅∆ = π ⋅
∆ ∑ ∑ .                  (23) 

 
 
5.4.1 Influence of quantization volume 

In contrast to phonon scattering, the elastic scattering rates between thermal and 

condensed excitons depend explicitly on the quantization volume V (see eq. 19 and 20).  

To see its influence we have calculated for different volumes the exciton occupation nr 

vs. energy curves for 0.5 K with different volume and different initial number of excitons 

(see figures 5.7, 5.8, 5.9). From these diagrams one can draw the conclusion that the 

exciton occupation nr 

31 mV = µ

shows no influence of the volume on the relaxation behavior. 

Therefore, the following calculations will be always done with  . 

. 

 
 
 
 
 
 
 
 

Figure 5.7: Exciton occupation nr at 0.5 K by the summation of exciton number in r  
direction vs. energy for different times t for a volume 310 μmV = . In figure (a) the initial 
exciton number is 63.87 10×  and in figure (b) it is 81.16 10× . 
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Figure 5.8: Exciton occupation nr at 0.5 K by the summation of exciton number in r  
direction vs. energy for different times t for a volume 31 μmV = . Figure (a): Initial exciton 
number 63.87 10× ; figure (b): Initial exciton number 81.16 10× . 
 

 Figure 5.9: Exciton occupation nr at 0.5 K by the summation of exciton number in r  direction 
vs. energy for different times t for a volume 30.1 μmV = . Figure (a): Initial exciton number 

63.87 10× ; figure (b): Initial exciton number 81.06 10× . 
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5.4.2. Numerical Stability 
 
An important issue in the numerical simulation is a possible loss (or gain) of excitons due 
to the finite resolution and boundaries in real and momentum space. To check this, we 
have undertaken a series of simulations for T=0.5K and 0.1K and plotted the total exciton 
number as a function of time (figures 5.10 and 5.11).  
 
 
 
 
 
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10 represents the total number of excitons (Ntotal

31 μm

) vs. time curves for 0.5 K with 

the volume of .  Here we see that for the small initial exciton number Ntotal is 

Figure 5.10: Total number of excitons vs. time for 0.5 K with the volume of 31 μm  
including deformation potential phonon scattering and elastic scattering. The curves 
show how the total number of excitons is changing with time with different initial 
number of excitons. 
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Figure 5.11: Total 
number of excitons 
vs. time for 0.1 K 
with the volume of 

31 μm  including 
deformation potential 
phonon scattering and 
elastic scattering. 
Initial total number of 
excitons: 81.1 10× . 
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almost constant with increasing time. But for large initial excitons numbers up to 
82.32 10×  the variation of Ntotal

( )total cN N+

 stays below a factor of 3. In fig. 5.11 we extended for 

T=0.1K the calculation to t=1000ns and plotted the actual total number of excitons 

 including the condensate obtained from eq. (23) vs. time with 81.1 10×  

initial number of excitons (see chapter 5.4.5). Here we see that up to 10 ns, the exciton 

number is decreasing but after that it stays almost constant. 

 
From the data we conclude that the calculation has sufficient numerical stability so that 

reliable results can be obtained. 

                
5.4.3. Low number of excitons 
 
For low number of excitons we expect no difference to the results including phonon 

scattering only. The question is from which exciton number the elastic scattering plays a 

significant role.   
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Figure 5.12: Local exciton temperature Tlocal vs. time for bath 
temperature of 0.5 K including elastic and phonon scattering. Number 
of excitons is 51 10× . Curve serves as a guide to the eye. 
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In figure 5.12 we have plotted local exciton temperature Tlocal

51 10×

 vs. time for the bath 

temperature of 0.5 K including elastic and phonon scattering at a exciton number of 

. We have calculated the local effective temperature Tlocal

/e B locale k T−

 by fitting the long 

energy tail of the exciton distribution by a function proportional to and studied 

how it is changing with time. If we compare this figure with the figure 3.12 including 

phonon scattering only at an initial exciton number of 41.5 10×  then we get no such 

differences. Therefore there is no effect of elastic scattering when the exciton number is 
51 10× . 

 
5.4.4. High number of excitons 
 

For high number of excitons we expect a strong effect of elastic scattering on the 

relaxation behavior. This shows up most significantly in the exciton occupation nr

 

. Data 

for T=0.5K have already been given in Fig.5.8, for T=0.1K the results are shown in Fig. 

5.13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
For both temperatures we see that a thermal distribution is obtained for times larger than 

10ns, so that we can compare the effective local temperatures for times larger than 10 ns 

for bath temperatures of 3K, 0.5K and 0.1K. 
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Figure 5.13: Exciton occupation nr at 0.1 K by the summation of exciton number in r  
direction vs. energy for different times for the volume 31 μm . Here the initial exciton 
number is 81.1 10× .  
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5.4.4.1. Local Temperature 

 

Figure 5.14 represents the local effective temperatures vs. time curves for the bath 

temperatures 3 K, 0.5 K and 0.1 K. For 0.5 K and 3 K initially total number of exciton is 
81.16 10×  and for 0.1 K initially total number of exciton is 81.1 10× . We have calculated 

the local effective temperature Tlocal

/e B locale k T−

 by fitting the long energy tail of the exciton 

distribution by a function proportional to and studied how it is changing with 

time. Here we see that the local effective temperature is coming down to the bath 

temperature for 3 K and 0.5 K, but for 0.1 K this is not the case. For 0.5K bath 

temperature is reached within 100 ns, but for 0.1 K the local effective temperature is not 

coming down to bath temperature even at 1000 ns. 
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Figure 5.14: Local exciton temperature Tlocal vs. time for different bath 
temperatures including elastic and phonon scattering. Here we see that the effective 
temperature is changing with time for different bath temperatures. The arrows on 
the right hand side indicate the effective temperatures. For 0.5 K and 3 K initially 
total number of exciton is 81.16 10×  and for 0.1 K initially total number of exciton 
is 81.1 10× . The curves serve as a guide to the eye. 
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5.4.4.2. Global temperature 
 
To obtain information about the global distribution of excitons, we compare as in Sec. 5.2 
and 5.3 the radial density distribution of excitons.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.18:  Spatial distribution ne

81.16 10×

 of excitons for different bath temperatures for 10 ns, 
100 ns, and 1000 ns, i.e. the summation of exciton number over the direction of energy 
vs. radius r, with phonon and elastic scattering for different time.  For 0.5 K and 3 K, 
initially total number of excitons is .  
 
Figure 5.18 represents spatial distribution ne of excitons, i.e. the summation of exciton 

number over the direction of energy vs. radius r, with phonon and elastic scattering for 

different time for the temperatures 0.5 K and 3 K.  
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Figure 5.19:  Spatial distribution ne of excitons for a bath temperature of 0.1 K with 
81.1 10×  initial number of excitons, i.e. the summation of exciton number over the 

direction of energy vs. radius r, with phonon and elastic scattering for different times. 
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Figure 5.19 represents the spatial distribution ne

 

 of excitons vs. radius r, with phonon and 

elastic scattering for different times for the temperature 0.1 K.  

To calculate the global effective temperature we have plotted ne
2

( ) ~
r

en r e ξ
 

− 
 

(r) vs. radius curves (see 

figures 5.18 and 5.19) by using the relation of the exciton distribution  with 

B globalk T
a

ξ =  and the steepness constant 20.5a eV mµ µ −= ⋅ . Therefore, we take the value 

of r  at the half maximum of the exciton distribution, and determined the effective 
temperature. 
 

In figure 5.20 we have plotted the global effective temperature Tglobal

 

 vs. time for the bath 

temperatures 0.1 K, 0.5 K and 3 K. Here we see that for the bath temperatures of 0.1 K 

both the local and global effective temperatures stay really a high value of 0.2 K even 

after 1000 ns.       

 

Figure 5.20: Tglobal vs. time for different bath temperatures including phonon scattering and 
elastic scattering. For 0.5 K and 3 K, initially total number of excitons is 81.16 10×  and for 0.1 
K, initially total number of excitons is 81.1 10× .  The arrows on the right hand side indicate the 
effective temperatures. 
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From the results we see that for the temperatures at and over 0.5 K the local effective 

temperature is coming down to the bath temperature but the global effective temperature 

is not coming down to the bath temperature staying about 10% larger. For the 

temperatures much below 0.5 K, as demonstrated for the temperature of 0.1 K both local 

and global temperatures are not coming down to bath temperatures and moreover seem to 

be the same. 

However, a closer inspection of the radial distributions shows a remarkable behavior. 

While for T=3K, the distributions do not change at all, we find for the other temperatures 

a decrease in ne(r) with time, most prominent for T=0.1K. As one can easily check that 

the critical temperature for BEC for N=108

 

 particles is 0.8K, we would expect that the 

loss of thermal excitons is due to condensation. 

5.4.5. Exciton condensation at T=0.1K 

The exact criterium for condensation, even for nonequilibrium systems, is that the 

chemical potential  µ is reaching zero. This should occur first in the center of the trap, 

where the excitons density is highest.  To obtain the temperature and chemical potential 

we  therefore fitted the occupation number distribution at radius equal to zero N(0,e) with 

Bose-Einstein distribution [17] 1

exp( ) 1
B

f e
k T

µ=
−

−
 , where µ  is the chemical potential. 

Figure 5.21: The exciton occupation number at r=0 versus kinetic exciton energy at 
different times t for the bath temperature of 0.1 K including elastic and phonon 
scattering. Initially total number of excitons is 81.1 10× . 
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The results are shown in Fig. 5.21 for different times and demonstrate again the  

 

quasiequilibrium distribution of the excitons in the trap. From these fits we have drawn 

the temperature vs. time and chemical potential vs. time curves (see figure 5.22) where 

we see that the temperature is decreasing with time and at 1000 ns it is coming down to 

0.2 K. As well the chemical potential is increasing with time and for times larger than 

300 ns it is zero within the numerical accuracy ( 5 eV± µ ). This clearly demonstrates that 

for times larger than 300 ns the condition for condensation is fulfilled and we can observe 

the formation of a condensate. 

This is substantiated by the dependence of the number of condensed excitons calculated 

from eq.(23) and shown in figure 5.23. Here we see a strong increase in the number of 

condensed excitons for times greater than 300 ns. 

As the system  is in local equilibrium, we expect that the condensate fraction  
c

c
total c

N
N N

=
+

η  follows the equilibrium result for the local temperature, which is given 

by [17]: 
3 3

1 1.202 . 1 1.202B B
c

k T k Tη φ
      = − −      Ω Ω          

                                    (24) 

Figure 5.22: The exciton temperature T vs. time (red dots) and chemical 
potential vs. time (blue dots) for the bath temperature of 0.1 K including elastic 
and phonon scattering. Initially total number of excitons is 81.1 10× . 
 

91



Chapter 5. Elastic Scattering 
 

 
 
Hereφ  is  the Heaviside step function. Obviously, the condensate fraction cη  depends 

only on the local temperature and on the trap frequency. To obtain a continuous 

dependence, we interpolate the results for the temperature vs. time shown in Fig. 5.22 and 

those for the total number of excitons (Fig. 5.11) linearly and compare the resulting cη  

Figure 5.23: The condensed exciton number cN  vs. time for the bath temperature of 0.1 
K including elastic and phonon scattering. Initially total number of excitons is 81.1 10× . 
The curve is a guide to the eye. 
 
 

Figure 5.24: Time dependence of the condensate fraction cη  obtained from eq. 5.23 (full 

line) and the ratio c

total c

N
N N+

(blue dots) obtained for a bath temperature of 0.1 K including 

elastic and phonon scattering and an initial total number of excitons of 81.1 10× . vs. time. 
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with c

total c

N
N N+

 obtained from the calculations vs. time for the bath temperature of 0.1 K. 

Here we see that after 200 ns cη is sharply increasing, indicating the sharp onset of 

condensation. For later times cη is in very good agreement with the values of  c

total c

N
N N+

 

as obtained from the numerical simulation. 

This clearly demonstrates that the numerical simulations give a consistent picture of the 

full relaxation dynamics including the condensate formation.  

 
 
 
 

5.5   Summary 
 
We have seen the relaxation behaviour of excitons in homogeneous system and also 

within a potential trap. In homogeneous system, over 1 K the effective temperatures are 

coming down to the bath temperatures within 5 to 10 ns whereas for 0.5 K it is taking 150 

ns, for 0.3 K it is taking 400 ns. In the case of 0.1 K, the effective temperature is not 

coming down to the bath temperature even after 1000 ns. 

 

Within the trap, with low number of excitons we see that for the temperatures between 

0.5 K to 3 K excitons are thermalizing but for 0.3 K and below 0.3 K a non thermal 

distribution, a bending remains. With high number of excitons this bending has been 

removed.  The local effective temperature is coming down to the bath temperature for 3 

K and 0.5 K, but for 0.1 K this is not the case. For 0.5K bath temperature is reached 

within 100 ns, but for 0.1 K the local effective temperature is not coming down to bath 

temperature even at 1000 ns, rather it stays really a high value of 0.2 K. On a global 

scale, the global effective temperature is coming down to 3.41 K for the bath temperature 

of 3 K and the global effective temperature is coming down to 0.55 K for the bath 

temperature of 0.5 K, but for the bath temperatures of 0.1 K the global effective 

temperatures stay really a high value of 0.2 K even after 1000 ns.       
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For the temperature of 0.1 K, from the chemical potential vs. time curve (figure 5.22) we 

see that for times larger than 300 ns the condition of condensation is fulfilled and we can 

observe the formation of a condensate. Condensate fraction cη  vs. time curve (figure 

5.24) shows that after 200 ns cη  is sharply increasing, which indicates condensation. 
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Chapter 6 
 

Conclusions 
 
 

 

In this thesis we have investigated the relaxation behaviour of excitons in cuprous oxide 

at ultra low temperatures when excitons are confined within a potential trap and also in a 

homogeneous system. It has been done numerically by solving the Boltzmann equation. 

Excitons behaviour under various conditions has been analysed. As relaxation processes, 

we have included the phonon scattering, Auger decay, radiative, non-radiative decay, and 

elastic scattering. 
 
In chapter 2, we have modeled numerically a potential trap by using the force term in the 

Boltzmann equation. Then we set an initial condition and boundary conditions. We 

assumed that the excitons are confined in a stress induced parabolic potential trap with 

the potential energy 2( )V r ar=


  with a  the steepness constant and r  the radius. The 

relation between the steepness constant a  and the oscillator frequency Ω  is 21
2 xa M= Ω , 

where xM  is the exciton mass. 

 

In chapter 3, we have modeled numerically the phonon scattering term of the Boltzmann 

equation. Starting from the Boltzmann equation in momentum space, we transfer it into 

the energy space and solve it by MATLAB.  In this case excitons behaviour has been 

analysed between 0.3 K to 5 K in a homogeneous system and also within a trap. Our aim 
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was to find the answer of two questions: first, how long time excitons take to thermalize 

and second, when does a BEC occurs. From the results we see that in a homogeneous 

system and also within the trap for both cases excitons are thermalizing between 0.5 K to 

3 K but at 0.3 K and below 0.3 K a non thermal distribution remains. Local cooling 

behaviour is same in homogeneous system and within the trap. We see locally, that for 

the bath temperatures between 1 K to 5 K the local effective temperature Tlocal is coming 

down to the bath temperature very quickly within 10 nanoseconds, but for the bath 

temperatures below 1 K, the Tlocal is coming down to the bath temperature very slowly 

within 100 nanoseconds only. This effect can be related to the freezing out of phonons for 

very low temperatures. Within the trap on a global scale, exciton effective temperature 

Tglobal

 

 is not coming down to the bath temperature. For low temperatures, the global 

effective temperatures are almost a factor of 2 larger than the bath temperatures.  

We see from our numerical simulations, that the BEC occurs for all observed 

temperatures. By comparing our results with the thermal equilibrium case, we see that for 

all temperatures the BEC comes at a higher number of excitons than in thermal 

equilibrium case. The effective temperature at the time of BEC has good agreement with 

the global effective temperature.    

              

In the chapter 4, we have included the Auger decay, radiative and non-radiative decay 

with the phonon scattering. We see locally and globally that for both cases the effective 

temperatures are not coming down to the bath temperatures even after long times. In this 

case, no BEC occurs. The global effective temperatures are the same with and without 

Auger decay. However, there is a difference in local temperatures which is higher if we 

include the Auger decay. This is due to the local heating by the Auger decay which is the 

reason for the absence of BEC with the Auger decay. In the results with phonon 

scattering only we see the BEC occurs for all temperatures over and below 1 K. 

Therefore the Auger decay makes a barrier to get the BEC. 

 

In the chapter 5, we have included the elastic scattering with the phonon scattering. We 

have seen the relaxation behaviour of excitons in a homogeneous system and also within 
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a potential trap between 0.05 K to 3 K. From the results we see that in a homogeneous 

system over 1 K the effective temperatures are coming down to the bath temperatures 

within 5 to 10 ns whereas for 0.5 K it is taking 150 ns, for 0.3 K it is taking 400 ns. In the 

case of 0.1 K and 0.05 K the effective temperature is not coming down to the bath 

temperature even after 1000 ns. This effect can be related to the freezing out of phonons 

for very low temperatures. Within the trap, the local cooling behaviour is almost same 

like in a homogeneous system. On a global scale, the excitons global effective 

temperatures Tglobal

 

 are not coming down to the bath temperatures. For the bath 

temperature of 0.1 K both the local and global effective temperatures stays really a high 

value of 0.2 K even after 1000 ns. 

From the results with high number of excitons for the temperature of 0.1 K we get clear 

indication of condensation. Therefore these numerical simulations give a consistent 

picture of the full relaxation dynamics including the condensate formation.  
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Appendix 

Appendix A: Calculations of integration limits for the Stokes  scattering part  
within the phonon scattering  
 
For Stokes part delta function is given below (see equation (1), chapter 3) 

( )pk k pe eδ ω
−

− − 


  

( )p ske e v k pδ= − − −






                                        [ sk p v k pω
−
= −







   ]          

( )2 2 2 cosp ske e v k p kpδ θ= − − + −


 

 

  

1 1
1 2 2 2 2

2 2 2 22 cosx x x x
s

M e M e M e M ee e vδ θ
 
 = − − + −
 
 



   

 

1 1 12

2 2 cosx
s

Me e v e e e eδ θ
 

= − − + −  
 





 

( )1 1 12 2 coss xe e v M e e e eδ θ= − − + −  

( )1 0 1 12 cose e e e e e eδ θ= − − + −                              [ 2
0 2 x se M v= ]                 (A.1) 

 

Now we have to find out the values of e1

cosθ

 in terms of e, when delta function will be zero 

for =1 and for cosθ = -1. 

When cosθ =1  

Putting delta function equal to zero, we get 

1 0 1 12 0e e e e e e e− − + − =                                                                                    (A.2) 

Or, ( )2

1 0 1 0e e e e e− − − =  

or, 1 0 1 0e e e e e− − − =                                                                                          (A.3) 

For Stokes 1e e> , so it should be 

 ( )1 0 1 0e e e e e− − − =                                                                                            (A.4)                                                                            

This is similar to step function ( )1sq e eΘ − +  for Stokes part. 

Now dividing it by e0, we get 
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11

0 0 0 0

0
eee e

e e e e

 
− − − =  

 
                                                                                            (A.5) 

Or, 1 1 0ξ ξ ξ ξ− − + =              [where 
0

e
e

ξ=  and 1
1

0

e
e

ξ= ] 

Or, 1
1 1
2 2

ξ ξ= + −  

Or,  1
1 1
2 2

ξ ξ = ± − 
 

                                                                                               (A.6) 

Now, if it is (-) means 1
2

ξ < , 

 

1
1 1 1
2 2

ξ ξ ξ= + − = −      

This is invalid, because here 1 ξ− > 1
2

 so, 1
1
2

ξ >  or, 1ξ ξ>  or, 1e e>  

But for Stokes it should be 1e e≤ . 

  

Now, if it is (+) means 1
2

ξ > , 

1
1 1
2 2

ξ ξ ξ= + − =  

Or, 1e e=  

Or, p=j                                                                                                                           (A.7)                                                                                                            

This is pmax 

1
2

ξ >

for Stokes scattering, and here it should be greater than M/4. Because 

 or, 
0

1
4

e
e

>  or,  

4
Mj > . 

 

When cosθ = -1  

Putting delta function equal to zero, we get 
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1 0 1 12 0e e e e e e e− − + + =                                                                                    (A.8) 

Or, ( )2

1 0 1 0e e e e e− − + =  

Or, 1 0 1 0e e e e e− − + =  

Or, ( )1 0 1 0e e e e e− − + =                                                                                       (A.9) 

This is similar to step function ( )1sq e eΘ − + +  for Stokes part. 

Now dividing it by e0

 

, we get 

11

0 0 0 0

0
eee e

e e e e

 
− − + =  

 
                                                                                          (A.10) 

Or, ( )1 1 0ξ ξ ξ ξ− − + =                                [where 
0

e
e

ξ=  and 1
1

0

e
e

ξ= ] 

Or, 1
1 1
2 2

ξ ξ= − + −  

Or, 1
1 1
2 2

ξ ξ = − ± − 
 

                                                                                           (A.11) 

Now, if it is (-) means 1
2

ξ < , 

1
1 1
2 2

ξ ξ ξ= − + − = −  

Or, 1e e= −  it is not possible. 

Now, if it is (+) means 1
2

ξ > , 

1
1 1 1
2 2

ξ ξ ξ= − + − = −  

Or, 1

0 0

1e e
e e

= −  

Or, ( )2

minp j M= −                             [where 0ee j
M

=  and 0
1

ee p
M

= ]               (A.12) 
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This is the value of pmin  

For Stokes scattering, 

for Stokes scattering. 

1e e≤ . This is similar to step function ( )1e eΘ − . 

 

Appendix B: Calculations of integration limits for the anti-Stokes scattering  
part within the phonon scattering  
 

For anti-Stokes part delta function is given below (see equation (1), chapter 3) 

( )pk p ke eδ ω
−

− + 


  

( )p ske e v p kδ= − + −






  

( )2 2 2 cosp ske e v p k kpδ θ= − + + −


 

 

  

1 1
1 2 2 2 2

2 2 2 22 cosx x x x
s

M e M e M e M ee e vδ θ
 
 = − + + −
 
 



   

 

1 1 12

2 2 cosx
s

Me e v e e e eδ θ
 

= − + + −  
 





 

( )1 1 12 2 coss xe e v M e e e eδ θ= − + + −  

( )1 0 1 12 cose e e e e e eδ θ= − + + −                                                                        (B.1) 

Now we have to find out the values of e1

cosθ

 in terms of e, when delta function will be zero 

for =1 and for cosθ = -1. 

When cosθ =1 

Putting delta function equal to zero, we get 

1 0 1 12 0e e e e e e e− + + − =                                                                                    (B.2) 

Or, 1 0 1 0e e e e e− + − =                                                                                         (B.3) 

But in anti-Stokes, 1e e>  so, it should be 

( )1 0 1 0e e e e e− + − =                                                                                              (B.4) 

This is similar to step function ( )1asq e eΘ + −  for anti-Stokes part. 
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Now dividing it by e0

11

0 0 0 0

0
eee e

e e e e

 
− + − =  

 

, we get 

                                                                                            (B.5) 

Or, ( )1 1 0ξ ξ ξ ξ− + − =                                   [where 
0

e
e

ξ=  and 1
1

0

e
e

ξ= ] 

Or, 1
1 1
2 2

ξ ξ= + −  

Or, 1
1 1
2 2

ξ ξ = ± − 
 

                                                                                                (B.6) 

Now, if it is (+) means 1
2

ξ > , 

1
1 1
2 2

ξ ξ ξ= + − =  

Or, 1e e=  

Or, p=j                                                                                                                            (B.7) 

 

Now, if it is (-) means 1
2

ξ < , 

1
1 1 1
2 2

ξ ξ ξ= − + = −  

Or, ( ) ( )2 2

1 1 1ξ ξ ξ= − = −   

Or, 
2

1

0 0

1e e
e e

 
= −  
 

 

Or, ( )2

minp j M= −                                                                                                  (B.8) 

 

So, there are two values of pmin for anti-Stokes part. These are p1min

( )2

min2p j M= −

=j and 

. pmin is the maximum values between p1min and p2min

 

. 

When cosθ = -1 
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Putting delta function equal to zero, we get 

1 0 1 12 0e e e e e e e− + + + =                                                                                    (B.9) 

Or, 1 0 1 0e e e e e− + + =  

Or, ( )1 0 1 0e e e e e− + + =                                                                                     (B.10) 

This is similar to step function ( )1asq e eΘ − + +  for anti-Stokes part. 

Now dividing it by e0

11

0 0 0 0

0
eee e

e e e e

 
− + + =  

 

, we get 

                                                                                          (B.11)                                                              

Or, ( )1 1 0ξ ξ ξ ξ− + + =                                 [where 
0

e
e

ξ=  and 1
1

0

e
e

ξ= ] 

1
1 1
2 2

ξ ξ= + +  

Or, 1
1 1
2 2

ξ ξ = ± + 
 

                                                                                              (B.12) 

If (+), then 

1
1 1 1
2 2

ξ ξ ξ= + + = +  

Or, ( )2

1 1ξ ξ= +  

Or, 
2

1

0 0

1e e
e e

 
= +  
 

 

Or, ( )2

maxp j M= +                       [where 0ee j
M

= and 0
1

ee p
M

= ]                      (B.13) 

 

This is pmax 

If (-), then 

for anti-Stokes part. 

1
1 1
2 2

ξ ξ ξ= − − = −  

It is not possible. 
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