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1 Einleitung und Ziel der Arbeit 

Herz-Kreislauf-Erkrankungen führen in Deutschland zu 40 % aller Todesfälle (2011), wobei 

Herzinfarkt und Schlaganfall die häufigsten Todesursachen sind [129]. Die Hauptursache hierfür 

ist die Arteriosklerose, die zu einer Veränderung und Verengung aller Gefäße führt. In den 

Gefäßen der Arme und besonders der Beine führt die Arteriosklerose als periphere arterielle 

Verschlusskrankheit (pAVK) zu einer Minderversorgung der Extremitäten, was sich zunächst als 

Schmerzen manifestiert und mit zunehmendem Gefäßverschluss bis zur Amputation der 

betroffenen Extremität führen kann. Am häufigsten ist der femoropopliteale Gefäßabschnitt um 

die A. femoralis superficialis (SFA) von der pAVK betroffen [5, 108]. 

Bei fortgeschrittener pAVK werden neben der medikamentösen und der Bewegungstherapie 

interventionelle Verfahren, wie die perkutane transluminale Angioplastie (PTA) mit und ohne 

Implantation einer intravaskulären Gefäßstütze, eines sogenannten Stents, durchgeführt. Der 

über einen Katheter eingeführte und im verengten Gefäß platzierte Stent hält das Lumen des 

Gefäßes offen, so dass die Blutversorgung des Gefäßes aufrechterhalten wird. Die für periphere 

Gefäße verwendeten Stents sind zumeist aus der Formgedächtnislegierung Nitinol gefertigt und 

werden selbstexpandierend im Gefäß implantiert.  

Da Nitinolstents als permanente Implantate im Körper verbleiben, sind sie insbesondere im 

femoropoplitealen Gefäßabschnitt neben der regelmäßig zyklischen radialen Belastung durch 

den pulsatilen Blutfluss, zusätzlichen unregelmäßig zyklischen axialen, Biege- und Torsionsbe-

lastungen durch die Beinbewegung, z.B. beim Gehen, ausgesetzt. Diese zyklische Langzeitbe-

lastung der Stents kann zu Ermüdungsbrüchen führen, so dass sich das Auftreten von 

Strutbrüchen an bis zu 65 % der eingesetzten Stents [5] und das damit verbundene strukturelle 

Stentversagen als wesentliche Komplikation besonders im ersten Jahr nach der Implantation 

herausstellt [37]. Der damit verbundene Funktionsverlust des Stents und Gewebeverletzungen 

durch die Interaktion zwischen Gefäß und gebrochenem Stent können in der Folge zu einem 

erneuten Gefäßverschluss führen.  

Deshalb sind mechanische Prüfungen als Nachweis der Funktionssicherheit für die Marktzulas-

sung von Stents und deren Einführsystemen eine Forderung der Zulassungsbehörden und 

werden schon in der Entwicklungsphase miteinbezogen. Hierdurch kann die Produktqualität 

bewertet werden, um die Wirksamkeit des Produkts zu beweisen und vor allem die Patientensi-

cherheit zu gewährleisten. Die Prüfungen werden sowohl von zertifizierten bzw. akkreditierten 

Prüflaboren als auch von den entwickelnden Firmen selbst durchgeführt. Hierbei sind sowohl 

statische als auch dynamische Prüfungen im Rahmen von Normen vorgeschrieben, die die 

Belastungen des Stents vor, während und nach der Implantation unter Berücksichtigung der 

spezifischen Anforderungen des jeweiligen Implantationsortes nachempfinden. Dynamische 
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Prüfverfahren werden verwendet, um Aussagen bezüglich des Ermüdungsverhaltens der Stents 

treffen zu können, indem eine definierte Wechselbelastung eine Schädigung und Ermüdung 

hervorruft. Hierdurch können die strukturelle Langzeit-Unversehrtheit sowie die potentiellen 

Versagensarten von vaskulären Stents, wie z.B. Strut- oder Verbinderbrüche durch Ermüdung 

und Verschleiß, Risse, Korrosion, dauerhafte Verformung, Stentmigration oder Abrieb zwischen 

sich kontaktierenden Stents unter simulierten nachteiligsten physiologischen Bedingungen 

bewertet werden. 

Die durch die Beinbewegungen im femoropoplitealen Gefäßabschnitt erzeugten Stentbrüche 

führen zur Forderung nach einem Prüfregime, das die Stents bei einer überlagerten Wechselbe-

lastung durch axiale Kompression, Torsion und Biegung untersucht. Verfahren zur Prüfung der 

Ermüdungsfestigkeit von Stents gegenüber diesen Lasten sind nicht standardisiert. 

Im Rahmen der vorliegenden Arbeit wird ein neuartiger Mehrachsen-Stentprüfstand für eine 

dynamische Prüfung von peripheren Stents mit einer überlagerten mehrachsigen Wechselbelas-

tung durch axiale Kompression, Torsion und Biegung strukturmechanisch  charakterisiert. Über 

Validierungsmessungen und theoretische Ansätze werden allgemeine Einstellungen für die 

initiale Prüfstandeinrichtung entwickelt und definiert. Mit Hilfe numerischer Verfahren (Finite-

Elemente-Analyse, FEA) werden verschiedene Prinzipien der Biegebelastung untersucht und 

gegenübergestellt. Hierbei ist die wesentliche Zielsetzung die Charakterisierung der Basisverfah-

ren für die Realisierung der Biegebelastung durch Untersuchung der Stentbeanspruchung. Die 

Entwicklung eines biomechanischen FE-Referenzmodells ermöglicht anschließend die 

Einordnung der Ergebnisse in einen realitätsnahen Zusammenhang zur physiologischen 

Kniebeugung, um die Prüfmethode des Mehrachsen-Stentprüfstands zu beurteilen. 
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2 Medizinische und biomechanische Aspekte zum Einsatz 
von Stents in peripheren Arterien 

Adäquate Prüfmethoden für vaskuläre periphere Stents erfordern zunächst einen Einblick in die 

Entstehung und Auswirkungen sowie die Therapiemöglichkeiten der pAVK. Anschließend wird 

die Anatomie der Zielregion vorgestellt. 

2.1 Periphere arterielle Verschlusskrankheit (pAVK) und Therapie-
verfahren 

Die periphere arterielle Verschlusskrankheit (pAVK) beschreibt eine stenosierende Gefäßerkran-

kung der Extremitäten und wird in ihrer chronischen Form zu 95 % durch eine Arteriosklerose 

verursacht, die zu den häufigsten Erkrankungen der heutigen Zeit zählt [19]. Dabei ist die pAVK 

nur eine der unterschiedlichen Manifestationsformen dieser Erkrankung, die alle arteriellen 

Gefäßregionen des Körpers betreffen kann und mit einem hohen Morbiditäts- und Mortalitätsrisi-

ko durch kardiovaskuläre Ereignisse wie Herzinfarkt oder durch Schlaganfall verbunden ist [79]. 

Nach Definition der Weltgesundheitsorganisation WHO handelt es sich bei der Arteriosklerose 

um degenerative Veränderungen zumeist der arteriellen Intima, die sich morphologisch durch 

Ablagerungen von Lipiden, Zelldetritus und Kalzium sowie eine Proliferation des Bindegewebes 

zeigt [19, 143]. Durch den proliferativen Prozess führt die Arteriosklerose zur Plaquebildung mit 

der Gefahr eines thrombotischen graduellen (Stenose) oder kompletten (Okklusion) Arterienver-

schlusses, der zu einer Minderversorgung des entsprechenden Organs oder Gewebes führt.  

Die wesentlichen Risikofaktoren für die Arteriosklerose sind neben Übergewicht die arterielle 

Hypertonie, Hyperlipidämie, Hyperfibrinogenämie, Diabetes mellitus und inhalativer Nikotinkon-

sum. Da die Risikofaktoren eng vernetzt sind, steigt das Morbiditätsrisiko beim Zusammenwirken 

mehrerer Risikofaktoren exponentiell an. Besonders das starke Rauchen (4-fach höheres Risiko 

für pAVK) sowie ein Diabetes mellitus (2-4-fach höheres Risiko für pAVK) begünstigen periphere 

Gefäßverschlüsse [19, 52, 79].  

Insgesamt sind Beinarterien (90 %) wesentlich häufiger betroffen als Armarterien (10 %) [73], 

wobei der größte Anteil der Stenosen und Okklusionen im Oberschenkel auftritt (45 %) [108].  

In Abhängigkeit vom Stadium der Krankheit führt die pAVK bei den betroffenen Patienten zu 

Beschwerden wie Einschränkung der Belastbarkeit und Gehstrecke (Claudicatio intermittens, 

Schaufensterkrankheit), chronische Extremitätenischämie mit belastungsabhängigen Schmerzen 

und Nekrose mit drohender Amputation [85, 100]. Entsprechend der auftretenden klinischen 

Symptomatik wird die pAVK in unterschiedliche Stadien eingeteilt (Stadieneinteilung nach 
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Fontaine) bzw. klassifiziert (Rutherford-Klassifikation), wobei sich im klinischen Alltag die 

Stadieneinteilung nach Fontaine bewährt hat (Tabelle 1) [79]. 

Tabelle 1: Einteilung und Klassifikation der Stadien der pAVK [79] 

Fontaine 
Stadium 

 
Klinisches Bild 

Rutherford 
Grad 

 
Kategorie 

 
Klinisches Bild 

I asymptomatisch 0 0 asymptomatisch 

II a Gehstrecke > 200 m I 1 leichte Claudicatio intermittens 

II b Gehstrecke < 200 m I 2 mäßige Claudicatio intermittens 

  I 3 schwere Claudicatio intermittens 

III ischämischer Ruheschmerz II 4 ischämischer Ruheschmerz 

IV Ulzeration, Gangrän III 5 kleinflächige Nekrose 

  III 6 großflächige Nekrose 

 

Studien zeigen, dass in Deutschland jeder fünfte [40], in den USA insgesamt ca. 12 Mio. 

Menschen [7] an der pAVK leiden, wobei die Prävalenz altersabhängig ist und mit höherem 

Lebensalter ansteigt (Abbildung 1). Studien zeigen eine durchschnittliche Gesamtprävalenz der 

pAVK von 3-10 %, wobei sie ab einem Alter von 70 Jahren auf 15-20% ansteigt und in 

Risikogruppen bis zu 30 % erreicht [36, 66, 122]. In den USA zeigt eine Studie eine Prävalenz 

der pAVK von 29 % der Gesamtpopulation [67]. Die demographische Entwicklung führt zu einer 

weiteren kontinuierlichen Zunahme der Anzahl von Patienten, die von der pAVK betroffen sind, 

so dass sich ein steigender Behandlungsbedarf ergibt. 

Die Behandlungskosten einer pAVK lassen sich den Stadien der Erkrankung zuordnen, wobei ab 

Stadium III die stationären Kosten stark ansteigen (Abbildung 2). 

  

Abbildung 1: Prävalenz der pAVK in Abhängigkeit 
vom Alter und Geschlecht (modifiziert nach [36]) 

Abbildung 2: Behandlungskosten verschiedener 
Stadien der pAVK in D-Mark (modifiziert nach [55]) 

Die Therapie der peripheren arteriellen Verschlusskrankheit erfolgt mit dem Ziel, ein Fortschreiten 

der pAVK zu verhindern und das Risiko für vaskuläre Ereignisse wie Herzinfarkt oder 

Schlaganfall zu minimieren. Des Weiteren steht das Erzielen einer höheren Lebensqualität für die 

betroffenen Patienten durch die Verbesserung der Gehleistung und Belastbarkeit durch die 
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Revaskularisierung der betroffenen Gefäße im Vordergrund [79]. Der limitierende Faktor einer 

erfolgreichen Behandlung ist meistens die generalisierte Arteriosklerose.  

Zunächst wird das Stadium der pAVK nach Fontaine oder Rutherford durch Charakterisierung 

des Schmerzes, der Einschränkung der Gehstrecke und Eruierung des individuellen Risikoprofils 

ermittelt. Vor Beginn einer Revaskularisierung wird die Lokalisation, Ausprägung und 

Morphologie der Okklusionen und Stenosen mit Hilfe diagnostischer Verfahren, wie Angiographie 

mit Magnetresonanztomographie oder Computertomographie sowie Ultraschall, bestimmt [19]. 

Der Erfolg der Revaskularisierung ist von der Ausdehnung der Stenose im Hinblick auf ihre 

Größe bzw. Länge und dem Grad der systemischen Erkrankung sowie vorhandenen Begleiter-

krankungen abhängig.  

Die Behandlung erfolgt zunächst durch die Aggregationshemmung der Thrombozyten und die 

Einschränkung der wesentlichen Risikofaktoren der Arteriosklerose, wie Nikotinabusus, 

Einstellung des Blutzuckers bei Diabetes mellitus und des Blutdrucks sowie Behandlung einer 

Hypercholesterinämie [19, 79]. Des Weiteren wird die Blutversorgung der Extremitäten durch 

revaskulierende Maßnahmen optimiert, so dass sich die Gehleistung steigert und trophische 

Läsionen in ihrer Entstehung behindert werden. 

Revaskulierende Maßnahmen umfassen neben der perkutanen mechanischen Thrombektomie, bei 

der das thrombotische Material zerstört bzw. mechanisch entfernt wird, auch gefäßchirurgische 

Eingriffe wie eine Ausschälung, Bypassanlage oder Implantation einer Gefäßprothese. Das 

wichtigste revaskulierende Verfahren mit einer geringen Morbidität und Mortalität ist die perkutane 

transluminale Angioplastie mit und ohne implantierter Gefäßstütze (Stent) [100]. Sowohl nach einer 

PTA als auch nach einer Stentimplantation in periphere Gefäße ist eine lebenslange Indikation zur 

Einnahme von Thrombozytenaggregationshemmern gegeben [19, 29, 46, 100]. 

Eine perkutane transluminale Angioplastie (PTA) wurde 1964 erstmalig von Charles Dotter 

durchgeführt, indem eine Stenose zunächst mit einem Führungsdraht passiert und anschließend 

mehrmals mit Kathetern aufsteigenden Durchmessers geweitet wurde. Mit Einführung von 

Ballondilatationskathetern durch Andreas Grüntzig 1979 [63] wurde die PTA zur Behandlung der 

chronischen arteriellen Verschlusskrankheit etabliert (Abbildung 3). Während der PTA wird die 

Gefäßintima mit der Sprengung der Gefäßplaques und der Überdehnung der Gefäßintima 

und -media um ca. 20 % kontrolliert verletzt, wobei die stabile Adventitia eine vollständige 

Gefäßruptur verhindert. Die Heilungsphase dieser Endothelschädigung dauert etwa sechs 

Wochen und führt zu einer Reendothelialisierung und Glättung der Gefäßwand, wobei sich durch 

eine intimale Gefäßwandhyperplasie eine Restenose entwickeln kann, die die größte Komplikati-

on der Ballondilatation darstellt [108].  
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Zur Verminderung der Restenoserate werden unter anderem medikamentenbeschichtete Ballons 

verwendet, die das Medikament bei ihrer Entfaltung in das Endothel des dilatierten Gefäßabschnitts 

einbringen und die Neointimahyperplasie nach der PTA vermindern bzw. verhindern sollen [29, 132].  

 

Abbildung 3: Dilatation einer Stenose: a - Einlage einer Gefäßschleuse und Einführung eines 
Führungsdrahts durch die Stenose, b-d - Einführen und Dilatation eines Ballonkatheters, e - nach PTA 
(modifiziert nach [73, 108]) 

Durch die Kombination der PTA mit der Implantation eines Stents zeigt sich eine Senkung der 

Restenoserate. Stents sind alloplastische endoluminale Prothesen, die in Gefäße oder 

Hohlorgane implantiert werden, um die Wand radial nach außen abzustützen. Ein Oversizing, die 

Wahl eines 10-15 % größeren Stentdurchmessers als der Gefäßdurchmesser, garantiert, dass 

der Stent unter Ausnutzung der Elastizität des Gefäßes in die Gefäßwand drückt und so seine 

Migration verhindert wird. Die Stentimplantation erfolgt in Verbindung mit einer Katheteruntersu-

chung. Der auf einem Katheter befindliche Stent wird an die Engstelle im Gefäß vorgeschoben 

und expandiert. Hierbei wird zwischen ballonexpandierbaren und selbstexpandierenden Stents 

unterschieden (Abbildung 4). Ballonexpandierbare Stents sind auf einem Ballonkatheter montiert 

und werden durch dessen Dilatation plastisch verformt. Selbstexpandierende Stents, die zumeist 

aus Nitinol hergestellt sind, entfalten sich hingegen durch ihre spezifischen Materialeigenschaften  

selbst (vgl. Abschnitt 3.1), wobei eine vorzeitige Aufdehnung durch eine Hülle über dem Stent 

verhindert wird. Besonders im femoropoplitealen Gefäßbereich sind selbstexpandierende 

Nitinolstents wegen ihrer hohen Flexibilität von Vorteil, da große Deformationen durch die 

Beinbewegung auftreten können [29] (vgl. Abschnitt 4.1). Auch sind in diesem Gefäßbereich bei 

Nitinolstents die Restenoseraten niedriger als bei Edelstahlstents [114, 117]. Mit Sirolimus 

(Rapamycin) beschichtete Stents zeigen gegenüber unbeschichteten Stents keinen signifikanten 

Vorteil bei der Verringerung des Restenoserisikos [45].  
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Stenose 

 

Ballonexpansion 

 

Selbstexpansion 

 

implantierter Stent 

 

Abbildung 4: Dilatation einer Stenose durch ballonexpandierbare und selbstexpandierende Stents 
(modifiziert nach [73, 108])  

Durch die Stent-Gefäß-Interaktion kann die Gefäßwand verletzt werden. Hierbei kommt es durch 

den Einriss der Intima zur Einblutung zwischen Intima und Media mit nachfolgender Thrombozyten-

anlagerung an die geschädigte Gefäßwand sowie zur mechanischen Läsion und zum Abtrag des 

Endothels (Denudation) [140]. In einem multifaktoriellen Prozess kommt es anschließend durch die 

Wundheilungsreaktion zu einer Wiederverengung bzw. einem Wiederverschluss des Gefäßlumens 

(In-Stent-Restenose), die in drei Phasen abläuft (Tabelle 2) [83]. 

Tabelle 2: Phasen der Restenoseentwicklung [83] 

Phase Zeitraum Vorgänge 

Inflammation < 5 Tage Verletzung, Denudation 

Granulation 5-10 Tage 
Migration und Proliferation der glatten Muskelzellen 

Produktion extrazellulärer Matrix 
Beginn der Reendothelialisierung 

Remodeling 10-120 Tage 
Abschluss der Reendothelialisierung 

Reduzierung der Restenose 

 

Diese Schädigung der Gefäßwand kann sowohl direkt durch die Implantation als auch durch die 

unterschiedliche Struktursteifigkeit von Stent und Gefäß verursacht werden. So bestimmt z.B. die 

radiale Struktursteifigkeit eines Stents den Durchmessergewinn nach der Implantation, aber auch die 

Diskrepanz der Compliance zwischen gestentetem und ungestentetem Gefäß. Des Weiteren kann 

eine hohe Biegesteifigkeit des Stents zu einer starken Gefäßstreckung führen (vgl. Abschnitt 3.2.2), 

die wiederum Traumata im Gefäßendothel und die Entstehung von Restenosen bedingt. 

Die Erfolgsrate der PTA ohne und mit Stent bei Okklusionen und Stenosen im femoropoplitealen 

Gefäßbereich ist sowohl vom Stadium der pAVK als auch von der Lokalisation und vom angiogra-

phischen Bild der Gefäßveränderung sowie von der Läsionslänge und der klinischen Symptomatik 

abhängig [92, 108]. Im Mittel zeigen unterschiedliche Studien eine Erfolgsrate der PTA von 61 % bei 

einer Stenose und 48 % bei Vorliegen einer Okklusion nach 3 Jahren. Bei zusätzlicher Stentimplan-
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tation wird die Erfolgsrate nach 3 Jahren mit 66 % bei einer Stenose und 64 % bei einer Okklusion 

beschrieben [92] (Tabelle 3). Die Erfolgsrate der Stents im femoropoplitealen Gefäßbereich hängt 

jedoch zusätzlich stark von auftretenden Stentbrüchen ab [115, 117], die eine wesentliche 

Komplikation der Stentimplantation im femoropoplitealen Gefäßbereich darstellen. 

Tabelle 3: Erfolgsrate der Ballondilatation und Stentimplantation in die A. femoralis superficialis nach 
Stenose und Okklusion [92, 100] 

Erfolgsrate nach 1 Jahr [%] 3 Jahre [%] 5 Jahre [%] 

PTA – Stenose 77 61 55 

PTA – Okklusion 65 48 42 

PTA und Stent – Stenose 75 66  

PTA und Stent – Okklusion 73 64  

2.2 Anatomie des peripheren arteriellen Blutgefäßsystems  

Die Versorgung aller Organe durch den Stoffaustausch zwischen Blut und Gewebe erfolgt über 

die Blutgefäße, die zusammen mit dem Herz und der Lunge ein geschlossenes Kreislaufsystem 

zum Transport und zur Verteilung des Bluts bilden und auch für die Aufrechterhaltung einer 

konstanten Körperkerntemperatur über thermoregulatorische Mechanismen zuständig sind. 

Innerhalb dieses Herz-Kreislaufsystems wird der Blutfluss zirkulär und pulsierend durch das Herz 

als Pumpe im Körper verteilt. Zunächst wird das sauerstoffreiche Blut vom linken Herz über den 

Körperkreislauf (großer Kreislauf, Hochdrucksystem) den einzelnen Organen und dann dem 

rechten Herz zugeführt. Von dort fließt das Blut innerhalb des Lungenkreislaufs (kleiner Kreislauf, 

Niederdrucksystem) durch das Lungengefäßsystem und wieder zurück zum linken Herz. Das 

vom Herz kommende Blut wird in Arterien transportiert, während die Gefäße, die das Blut zum 

Herz transportieren, als Venen bezeichnet werden. 

Die vaskuläre Versorgung der unteren Extremität erfolgt über mehrere Leitungsbahnen, die durch 

verschiedene Öffnungen aus dem Beckenraum treten, wobei die Arterien zur Versorgung der 

Hüfte, der Oberschenkel und der Knie vor allem der A. iliaca externa und zu kleinen Teilen der A. 

iliaca interna entstammen. Die A. iliaca externa setzt sich als A. femoralis fort und tritt im weiteren 

Verlauf als A. poplitea in die Kniekehle ein. Die Endstrecke der A. iliaca externa, die A. femoralis 

communis, die sich in die A. profunda femoris und die A. femoralis superficialis (SFA) verzweigt, 

sowie die A. poplitea werden als femoropoplitealer Gefäßabschnitt zusammengefasst (Abbildung 

5). Mit zunehmender Entfernung zum Herz verjüngen sich die Gefäßdurchmesser, wobei die 

durchströmte Querschnittsfläche durch die zunehmende Gefäßverzweigung größer wird. Bis auf 

die kegelförmig zulaufende Aorta können die Arterien als zylindrisch mit einem zwischen den 

Verzweigungen konstanten Durchmesser angenommen werden. 
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Die Arterienwand ist aus drei konzentrischen Schichten aufgebaut (Abbildung 6). Vom Lumen 

ausgehend besteht die innerste Schicht, die Tunica intima, kurz Intima, aus einem einschichtigen 

Verband von Endothelzellen, die die Innenfläche des Gefäßes auskleidet und im Blutkontakt steht. 

Abluminal sind die Endothelzellen von subendothelialem Bindegewebe (Stratum subendotheliale) 

aus Kollagenfasern umgeben. Die Abgrenzung der Intima zur anschließenden Tunica media erfolgt 

durch eine kompakte Schicht elastischer Fasern (Membrana elastica interna) [60].  

 
 

Abbildung 5: Darstellung der für periphere arterielle 
Interventionen relevanten Arterien und ihre 
endovaskuläre Einteilung (modifiziert nach [78]) 

Abbildung 6: Wandaufbau einer mittelgroßen 
Arterie [60] 

Die der Intima anschließende Tunica media, kurz Media, besteht je nach Gefäßart und -abschnitt 

aus unterschiedlichen Anteilen von konzentrisch angeordneten glatten Muskelzellen, die in 

elastische Fasern und Kollagenfasern eingebettet sind. Die Media ist die stärkste der drei Schichten 

und wird bei Arterien vom muskulären Typ aus 4-40 Lagen glatter Muskelzellen gebildet, während 

bei Arterien des elastischen Typs eine stärker ausgeprägte Fasertextur mit 40-60 Lagen eine etwa 

0,5 mm dicke Media bildet [104]. Bei großen Arterien wird die Media von der anschließenden 

äußeren Gefäßschicht, der Tunica adventitia, kurz Adventitia, durch die Membrana elastica externa, 

einer kompakten Schicht axial orientierter elastischer Fasern, abgegrenzt [138]. 

Die Adventitia fixiert das Blutgefäß in seiner Umgebung durch kollagene Fasernetze und ist in 

Abhängigkeit vom Ort unterschiedlich stark ausgeprägt [60, 104]. 

Das Gewebe der arteriellen Blutgefäße hat einen Wassergehalt von etwa 70 %. In Abhängigkeit 

von der anatomischen Position sowie dem Durchmesser der Gefäße sind die Zusammensetzung 

und die Struktur der Arterienwand unterschiedlich (Tabelle 4) [93].   
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Tabelle 4: Prozentualer Anteil von Elastin und Kollagen in der Trockenmasse caniner Arterien [51] 

Arterie Wasser [%] Kollagen [%] Elastin [%] Kollagen/Elastin 

Coronaria 63,2 ± 1,0 47,9 ± 2,6 15,6 ± 0,7 3,12 ± 0,21 

Aorta, abdominal 70,4 ± 0,4 45,5 ± 1,7 30,1 ± 1,7 1,58 ±0,15 

Carotis 71,1 ± 0,1 50,7 ± 2,1 20,1 ± 1,0 2,55 ± 0,13 

Femoralis 68,0 ± 0,3 44,5 ± 1,4 24,5 ± 1,6 1,89 ± 0,14 

Renalis 70,4 ± 0,7 42,6 ± 1,6 18,7 ± 1,8 2,46 ± 0,27 

 

Je nach Aufbau der Media werden Arterien in den muskulären und den elastischen Typ unterteilt, 

wobei der Übergang kontinuierlich erfolgt. 

Herznahe Arterien, wie z.B. die Aorta, deren große Abgänge und die Aa. pulmonale gehören zu den 

elastischen Arterien, deren Media größtenteils aus laminar angeordneten elastischen Fasern 

besteht. Elastische Arterien können einen Teil der bei der Systole auftretenden Energie durch ihre 

passive Dehnung kurzfristig aufnehmen, um diesen in der nachfolgenden Diastole wieder 

freizusetzen. Durch diesen Windkesseleffekt wird die zwischen Systole und Diastole auftretende 

Druckdifferenz minimiert und der Blutfluss realisiert. Die elastischen Arterien weisen einen großen 

Durchmesser auf, während die Wandstärke im Verhältnis zu ihrem Durchmesser gering ist [138]. 

Herzferne Arterien sind vom muskulären Typ, deren Media vorwiegend aus glatten Muskelzellen 

besteht, wodurch sich die Gefäße reversibel kontrahieren können und der Durchfluss und die 

Durchblutung einzelner Organe und Körperabschnitte durch Änderung des Gefäßlumens 

gesteuert werden kann. Diese Arterien haben einen mittleren bis kleinen Durchmesser von 0,3 -

10 mm mit einer relativ dicken Gefäßwand [138]. 

Arteriolen sind die kleinsten Arterien mit einem Durchmesser kleiner als 0,3 mm. Die Gefäßwand 

der Arteriolen wird hauptsächlich aus glatten Muskelzellen gebildet, deren Tonus den Blutdruck 

im arteriellen System mitbestimmt, da die Arteriolen aufgrund ihres geringen Durchmessers einen 

erheblichen Strömungswiderstand darstellen. 

Die Kapillaren, oder Haargefäße, bilden den Abschluss des arteriellen Blutgefäßsystems und 

haben einen Durchmesser von 5 - 10 µm. Die Kapillargefäße werden aus einer Schicht 

Endothelzellen gebildet und sorgen durch ihre Semipermeabilität für den Stoffaustausch in den 

Organen und im Gewebe. 
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3 Nitinolstents und ihr Versagen  

Für die Prüfung von Nitinolstents sind sowohl das Materialverhalten als auch die Besonderheiten 

von Stents aus Nitinol von Bedeutung. Des Weiteren werden die Entstehung und die Bedeutung 

von Nitinolstentbrüchen im femoropoplitealen Gefäßbereich beschrieben, um die Bedeutung der 

adäquaten Stentprüfung aufzuzeigen. 

3.1 Formgedächtnislegierung Nitinol und ihre Anwendung in der 
Stenttechnologie 

Nitinol ist die Bezeichnung für eine nahezu äquimolare Legierung aus Nickel und Titan, wobei die 

Namensbezeichnung ein Akronym einer ehemaligen amerikanischen Forschungseinrichtung ist 

(Nickel Titanium Naval Ordnance Laboratories) [130]. Neben der Medizintechnik findet die 

Formgedächtnislegierung auch Anwendung in der Luft- und Raumfahrt, z.B. beim Ausklappen 

der Solarmodule von Satelliten. In der Medizintechnik wird Nitinol nicht nur bei Stents eingesetzt, 

sondern auch für z.B. Katheter-Führungsdrähte, Wurzelkanalbohrer und orthodontische Drähte 

für die Zahnmedizin, Fraktur-Fixationsdrähte, Knochenklammern oder flexible Instrumente für die 

Chirurgie verwendet [47]. 

Konventionelle Stentmaterialien wie Edelstahl oder Kobaltlegierungen haben im Vergleich zu 

körpereigenem Material ein unterschiedliches elastisches Deformationsverhalten, wobei die 

Deformation sehr gering ist. Im Unterschied dazu weist körpereigenes Material ein Spannungs-

Dehnungsverhalten mit einer charakteristischen Hysterese auf. Die Formgedächtnislegierung Nitinol 

zeigt ein ähnliches Verhalten mit Spannungsplateaus während der Be- und Entlastung, so dass bei 

gleich bleibender Kraft große Dehnungen erzielt werden können (Abbildung 7).  

                                  

Abbildung 7: Qualitative Spannungs-Dehnungs-Diagramme von körpereigenem Material, Nitinol und 
Stahl (modifiziert nach [123]) 

Die besonderen Eigenschaften von Nitinol, wie die Superelastizität, der Formgedächtniseffekt 

und die unterschiedlichen Materialsteifigkeiten für die Be- und Entlastung beruhen auf einem 

martensitischen Phasenübergang zwischen zwei Kristallmodifikationen, die bei unterschiedlichen 

Temperaturen stabil sind. Bei niedrigen Temperaturen (Niedertemperaturphase) liegt Martensit 

vor, während bei hohen Temperaturen (Hochtemperaturphase) kubisch-raumzentrierter Austenit 
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vorliegt. Der Beginn und das Ende der Phasenumwandlung wird durch die Austenit-Start- (As) 

und -Finish- (Af) sowie die Martensit-Start- (Ms) und -Finish-Temperatur (Mf) charakterisiert 

(Abbildung 8). Die Umwandlung von Austenit in Martensit erfolgt durch eine Kombination von 

Atombewegungen, Scherung und Volumendilatation ohne eine Änderung der chemischen 

Zusammensetzung. Sie kann sowohl spannungs- als auch temperaturinduziert erfolgen. 

 

Abbildung 8: Schematische Darstellung der charakteristischen Temperaturen und Volumenanteile der 
Hochtemperaturphase Austenit und Niedrigtemperaturphase Martensit während des Phasenüber-
gangs (modifiziert nach [90]) 

Durch den martensitischen Phasenübergang weist Nitinol mit dem Einweg- und Zweiwege-Effekt 

unterschiedliche Effekte neben dem superelastischen und normal-elastischen Verhalten auf, 

wobei der Zweiwege-Effekt bei Nitinolstents keine Bedeutung hat und somit nicht weiter 

behandelt wird. 

Der Einweg-Effekt ist dadurch charakterisiert, dass ein bei tiefen Temperaturen verformtes 

Werkstück seine Form solange behält, bis es erwärmt wird und in seine ursprüngliche Form 

zurückkehrt, an die es sich „erinnert“. Wird ein Werkstück in seiner Tieftemperaturphase verformt, 

wachsen bei Erreichen des Spannungsplateaus Martensitstrukturen, die günstig zur Spannung 

orientiert sind. Auch bei einer Entlastung behält das Werkstück in dieser Phase seine äußere 

Form bei. Mit der Erwärmung beginnt der eigentliche Einweg-Effekt, wobei sich der Martensit bei 

Erreichen einer kritischen Temperatur (As) in Austenit umwandelt. Da Austenit bei höheren 

Temperaturen stabiler ist als Martensit, nimmt das Werkstück nach der vollständigen Umwand-

lung seine Ausgangsform als die einzige mögliche Austenit-Form an. Beim Abkühlen erfolgt eine 

Rückumwandlung in Martensit ohne die Änderung der äußerlichen Form des Werkstücks 

(Abbildung 9). Dieser Effekt wird bei Nitinolstents für den Crimp- und Aufweitprozess genutzt. 
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Abbildung 9: Schematische Spannungs-Dehnungs-Diagramme der mechanischen Effekte von Nitinol 
bei unterschiedlichen Temperaturen (modifiziert nach [50]) 

In einem mittleren Temperaturbereich tritt der Pseudoelastizitäts- oder mechanische 

Formgedächtnis-Effekt auf, bei dem der Werkstoff auch nach großen Verformungen bei 

Entlastung wieder in seinen Ausgangszustand zurückkehrt (Abbildung 9). Aus dem in diesem 

Temperaturbereich thermisch stabilen Austenit wird bei der Verformung spannungsinduzierter 

Martensit gebildet. Ähnlich wie beim Einweg-Effekt bildet sich ein Spannungsplateau, wobei der 

Werkstoff bei einer Entlastung seine Form nicht beibehält, sondern in den Ausgangszustand 

zurückkehrt. Da hierbei Dehnungen von über 8 % elastisch kompensiert werden können, hat sich 

der Begriff der „Superelastizität“ etabliert [123, 131]. In diesem Temperaturbereich zeigt das 

Spannungs-Dehnungs-Diagramm von Nitinol eine charakteristische Hysterese, da bei einer 

dehnungskontrollierten Belastung höhere Kräfte aufgenommen werden können als bei der 

Entlastung. Dieser Effekt wird bei Nitinolstents nach der Implantation genutzt. 

Bei hohen Temperaturen weist Nitinol ein elastisches Verhalten auf, ähnlich dem anderer 

metallischer Werkstoffe, da der martensitische Zustand auch mit einer hohen mechanischen 

Spannung nicht mehr stabilisiert werden kann (Abbildung 9). 

Die für die beschriebenen mechanischen Effekte charakteristischen Übergangstemperaturen sind 

sowohl von den Prozessparametern als auch von der Legierungszusammensetzung, insbeson-

dere der Nickelkonzentration, abhängig. Die Übergangstemperaturen lassen sich in einem 

Bereich von -100 °C bis +100 °C einstellen [20]. 

Neben den guten mechanischen Eigenschaften der Formgedächtnislegierung Nitinol weist diese 

trotz des hohen Nickel-Anteils eine gute Biokompatibilität auf. Durch die Bildung einer passivieren-

den Titanoxidschicht an der Oberfläche wird die Freisetzung von Nickel-Ionen minimiert [113].  

Bei der Verwendung von Nitinolstents werden sowohl der Einweg- als auch der Pseudoelastizi-

täts-Effekt genutzt. Anhand des in Abbildung 10 dargestellten schematischen Spannungs-

Dehnungs-Diagramms des superelastischen Bereichs lässt sich die Belastungsgeschichte des 

Nitinolstents vom Crimpen auf den Katheter über die Freisetzung ins Gefäß bis hin zur 

Stentbelastung im Gefäß verfolgen. Selbstexpandierende Nitinolstents werden zunächst 

lasergeschnitten und auf einem Dorn bis zum Erreichen des gewünschten Durchmessers, der 
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größer als der des Gefäßes ist, radial expandiert. Durch einen anschließenden Glühprozess bei 

etwa 500 °C wird dem Stent diese Form eingeprägt (Abbildung 10, Punkt a). Durch Ausnutzung 

des Einweg-Effekts kann der Stent durch Abkühlung auf T < As auf einen Katheter gecrimpt und 

mit einer Schutzhülle fixiert werden, die ein ungewolltes Wiederaufdehnen des Nitinolstents 

verhindert (Abbildung 10, Punkt b). Da die Umwandlungstemperatur Af durch Wärmebehandlung 

auf ca. 30 °C eingestellt wird [131], entfaltet sich der Stent nach der Positionierung des Katheters 

in der Stenose durch Zurückziehen der Schutzhülle, bis er an der Gefäßinnenwand anliegt 

(Abbildung 10, Punkt c) (Abbildung 11). Hierbei ermöglicht der Einweg-Effekt die große radiale 

Verformung des Stents. Das Bestreben der Formgedächtnislegierung, die eingeprägte Form 

einzunehmen, ermöglicht eine konstante nach außen gerichtete Kraft des Stents (chronic 

outward force, COF), durch die das Gefäßlumen offen gehalten wird. Wird der Stent durch die 

pulsatile Gefäßkinematik oder durch äußere Einflüsse radial deformiert, wirkt er diesen 

Deformationen mit einer höheren Kraft entlang der Belastungskurve entgegen (radial resistive 

force, RRF) (Abbildung 10, Punkt d).  

  

Abbildung 10: Belastungszyklus eines 
Nitinolstents, Schematische Darstellung der 
Hysterese im Spannungs-Dehnungs-Diagramm 
(modifiziert nach [131]) 

Abbildung 11: Beginnende Selbstexpansion 
eines peripheren Nitinolstents (S.M.A.R.T. ®, 
Cordis Corporation, USA)  

Zur besseren Röntgensichtbarkeit werden Nitinolstents mit Röntgenmarkern, z.B. aus Gold, Platin, 

Platin-Iridium oder Tantal, die zumeist an den Stentenden platziert werden, versehen. Des Weiteren 

können Nitinolstents z.B. mit Siliziumkarbid- (SiC), amorpher Kohlenstoffschicht (diamond like 

carbon, DLC) oder mit Medikamenten (drug-eluting Stents, DES) beschichtet werden [131]. 

Neben der Klassifizierung bezüglich klinischer Aspekte, ihres Materials oder bezüglich ihres 

Aufweitprinzips, lassen sich Stents nach ihrem Design und nach Fertigungsverfahren 

unterscheiden. Diese Unterscheidungsmerkmale führen zu unterschiedlichen Stentstrukturen, die 

die wesentlichen Merkmale der Stentmechanik beeinflussen. Besonders bei den Nitinolstents 

geht die Stententwicklung mit der Weiterentwicklung des Ausgangsmaterials Nitinol einher.  

Da Nitinol anfänglich nur in Drahtform erhältlich war, wurden zunächst drahtbasierte 

Stentdesigns aus spiralförmig gewundenen runden oder flachen Drähten entwickelt. In den 80er 

Jahren nutzte Charles Dotter eine warme Kochsalzlösung, um seine Spiralfeder im Gefäßlumen 
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zu expandieren. Mittlerweile kommen Spiralstents hauptsächlich bei nicht-vaskulären Problemen 

zur Anwendung, z.B. im gastroenterologischen Bereich. Ein großer Vorteil von Spiralstents ist 

deren relativ einfache Explantation in bestimmten Einsatzbereichen, indem sie mit gekühlter 

Flüssigkeit umspült und die geringere Materialsteifigkeit des Nitinols bei tiefen Temperaturen für 

die Entfernung des Spiralstents genutzt wird (Abbildung 12) [131].  

 

Abbildung 12: Nitinolstentdesigns: a - Spiralstent von Dotter [44], b - Freisetzung und Explantation 
(rechts) des Spiralstents Horizon (EndoCare, Inc., USA) [131] 

Neben den Spiralstents kann die Herstellung von Stents aus Nitinoldraht auch in Zickzack-Form 

(z.B. Cragg-Stent, MinTec, Frankreich; bzw. später Medi-Tech/Boston Scientific, USA) oder durch 

wickeln, flechten bzw. stricken (z.B. Supera, IDEV Technologies, Inc., USA) erfolgen. Freie 

Enden werden durch z.B. Punktschweißen oder über Hülsen miteinander verbunden (Abbildung 

13). Der wohl bekannteste Stent aus Draht ist der Wallstent, der, obwohl er aus Stahldraht oder 

aus Stahldraht mit Tantal-Kern hergestellt ist, aufgrund seines geflochtenen Designs selbstauf-

weitende Eigenschaften hat. Der Wallstent weist durch sein Design eine sehr glatte Außenkontur 

auf, wodurch eine gute Wandabdeckung vorliegt. Der Stent ist von sehr geringer axialer 

Steifigkeit und erfährt während der Expansion eine starke Verkürzung [118]. 

 

Abbildung 13: Geflochtene bzw. gewebte Stents: a und b - Supera® Stent mit Hülsenverbindung der 
Drahtenden (IDEV Technologies, Inc., USA), c - Carotid WALLSTENT® (Boston Scientific, USA) [2] 

Der große Nachteil von drahtbasierten Stentdesigns ist die durch die Überkreuzung der Drähte 

erhöhte Wandstärke und damit auch das größere Crimpprofil der Stents. Des Weiteren besteht 

die Gefahr von Korrosion und Stentversagen durch Reibung an den Überkreuzungsstellen [131]. 

Mit der Fertigung von Nitinolblechen wird das erste lasergeschnittene blechbasierte Stentdesign 

(Memotherm, Angiomed (Bard), Deutschland) entwickelt, wobei der Stent nach dem Schneiden 

aufgerollt und punktuell zusammengeschweißt wird. Eine andere Möglichkeit ist die Einstellung des 

Stentdurchmessers durch blockierende Elemente in der Stentstruktur beim Aufweiten (Abbildung 

14). Durch die Berührungspunkte treten jedoch dieselben Nachteile wie bei den drahtbasierten 

Stents auf, wobei diese Stents bei Aufweitung keine Verkürzung erfahren [131]. 
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Rohrbasierte Stentdesigns wurden durch die Entwicklung von nahtlosen Nitinolrohren Mitte der 

1990er Jahre ermöglicht. Heutzutage werden die meisten Nitinolstents aus Rohren lasergeschnit-

ten. Hierbei lassen sich das open-cell- und das closed-cell-Design als grundsätzliches 

Konstruktionsprinzip unterscheiden [131] (Abbildung 15).  

 
 

Abbildung 14: Durch Blockierungselemente 
größenveränderlicher Nitinolstent [126] 

Abbildung 15: Open- und closed-cell-Stentdesign 
als grundsätzliche Konstruktionsprinzipien der 
Stententwicklung 

Beim closed- oder multi-cell-Stentdesign sind geschlossene Zellen durch regelmäßige Brücken 

(Verbinder) miteinander verbunden, so dass eine steife Stentstruktur mit einer gleichmäßigen 

Gefäßwandabdeckung entsteht, die sowohl eine hohe Radial- als auch eine hohe Biegesteifigkeit 

hat. Die hohe Biegesteifigkeit stellt jedoch einen Nachteil sowohl bei der Einführung des Stent-

Delivery-Systems durch gewundene Gefäße als auch bei der Implantation an Gefäßverzweigun-

gen oder in gewundene Gefäße dar [5]. Durch Reduzierung der Anzahl der Verbinder kann die 

Biegesteifigkeit reduziert werden, wobei gleichzeitig die Wandabdeckung unregelmäßiger wird.  

Stents mit einem open- oder modular-cell-Design sind dagegen von geringerer Biegesteifigkeit. 

Durch die Trennung von radialer und axialer Deformation durch die sich versetzt wiederholenden 

Verbinder ist zudem die Biegesteifigkeit von der Radialsteifigkeit unbeeinflusst. Die größere 

Flexibilität dieser Stents erlaubt eine stärkere Längenänderung gegenüber den Stents mit einem 

closed-cell Design [5].  

Stents, die beide Konstruktionsprinzipien kombinieren, haben eine angepasste Längs- und 

Radialsteifigkeit, eine gleichmäßige Gefäßwandabdeckung sowie eine konstante Länge [118].  
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3.2 Versagen von Nitinolstentstrukturen im femoropoplitealen 
Gefäßabschnitt 

Stentbrüche in der SFA können zu Komplikationen, wie Restenose, Pseudoaneurysmen, 

Gefäßperforationen, Thrombose und in-Stent Embolien sowie zur Migration von Stentbestandtei-

len führen. Scheinert et al. [115] zeigen z.B., dass 32,8 % der gebrochenen Stents mit einer 

Restenose einhergehen (Abbildung 16).  

Die meisten Fälle von Stentbrüchen werden durch die Implantation eines weiteren Stents über 

den frakturierten Bereich behandelt [5]. 

 

Abbildung 16: Selbstexpandierender Nitinolstent, 9 Monate nach Implantation, mit mehreren Brüchen 
im distalen und weniger Brüchen im proximalen Stentbereich; die Angiographie zeigt eine deutliche 
Restenose mit einer Durchmesserverringerung um > 50 % [115] 

3.2.1 Mechanismen der Stentbruchentstehung 

Die Bewegungen des menschlichen Körpers finden zumeist zyklisch wiederholt statt, so dass 

implantierte Stents einer Wechselverformung unterliegen, die zu einer allmählichen Schädigung 

des Werkstoffs führt und die Lebensdauer des Implantats limitiert. Die auftretende Werkstoffver-

änderung und -schädigung wird als Ermüdung bezeichnet. Neben der Beanspruchungsfrequenz 

und der Laufzeit sind die mittlere Belastung und die Belastungsamplitude von besonderer 

Bedeutung für die ertragbare Lastwechselzahl. Neben Ermüdungsbrüchen treten auch 

Gewaltbrüche durch eine einmalige hohe Beanspruchung auf, auf die nicht näher eingegangen 

wird, da ihr Auftreten bei Gefäßstents untypisch ist. 

Bei vaskulären Stents wird die mittlere Belastung maßgeblich durch den Kontakt des Stents mit 

der Gefäßwand beeinflusst, wobei z.B. die spezifische Gefäßanatomie sowie die Wahl des 

Stentdurchmessers und damit das Oversizing diesen Einfluss verstärken kann. Die zyklische 

Belastungsamplitude der Stents ist an den meisten Implantationsorten primär der pulsatile 

Herzschlag mit dem systolischen und diastolischen Blutdruck und einer Frequenz von ca. 1 Hz, 
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wobei diese zyklische Blutdruckänderung nicht auf den Stent, sondern auf das Gefäß 

aufgebracht wird. Über die radiale Gefäßdehnung erfolgt die Realisierung der Belastung auf den 

Stent. Bei einer bekannten Compliance des gestenteten Gefäßes kann die zyklische radiale 

Dehnungsamplitude abgeschätzt werden. Allerdings ist die Compliance aufgrund ihrer starken 

Abhängigkeit vom Lebensalter und Gesundheitszustand des Gefäßes schwer zu bestimmen, so 

dass als worst-case Fall 5 % radiale Deformation eines jungen, gesunden Gefäßes bei einer 

Druckdifferenz von 100 mmHg angenommen werden kann. Ein implantierter Stent reduziert die 

Compliance in Abhängigkeit seiner radialen Steifigkeit auf ca. 2 % [47].  

Für periphere Nitinolstents in der SFA stellen Pelton et al. [103] jedoch heraus, dass die durch 

die pulsatile radiale Belastung verursachten Dehnungen zu klein sind, um Ermüdungsbrüche bei 

dem untersuchten Stent zu induzieren, auch wenn hohe Zyklenzahlen von durchschnittlich 

40 Mio./Jahr durchgeführt werden. Die durch die Beinbewegung verursachte kombinierte nicht-

pulsatile zyklische Belastung von Stents in der SFA mit weitaus größeren Verschiebungen als bei 

der radialen Belastung wird als deutlich kritischer für die Entstehung von Ermüdungsbrüchen an 

diesen Stents angesehen, auch wenn mit durchschnittlich 1 Mio./Jahr Lastwechseln deutlich 

niedrigere Zyklenzahlen absolviert werden [103]. 

Der Ermüdungsprozess von Nitinol wird von Shang et al. [125] in fünf Phasen unterteilt: Frühe 

mikrostrukturelle Schädigung, Keimbildung eines Mikrorisses, Ausbreitung von kurzen Rissen, 

Ausbreitung von makroskopischen Rissen und finaler Bruch. 

Die mikrostrukturelle Schädigung wird u.a. durch Oberflächendefekte, wie Fehlstellen, Risse, 

Kratzer, Einschlüsse oder Poren verursacht, die zur Bildung von Ermüdungsrissen, ausgehend 

von der Oberfläche, führen. Hierbei haben sowohl die Größe als auch die Anzahl und 

Lokalisation der Fehlstellen einen Einfluss auf das Versagen von Nitinolstents [147]. Somit spielt 

die Oberflächenqualität eine entscheidende Bedeutung für die Lebensdauer von Stents.  

Des Weiteren treten korrosionsbedingte Defekte an der Oberfläche auf. Shabalovskaya et al. 

[124] beschreiben oberflächennahe harte und spröde partikuläre Einschlüsse, die die chemische 

Zusammensetzung lokal verändern und lokale Korrosion verursachen können. Ebenso spielen 

Inhomogenitäten der oberflächlichen Oxidschicht eine Rolle bei der Korrosionsbildung. Trépanier 

et al. [134, 135] stellen fest, dass eine durch Elektropolieren erzeugte dünne Titanoxidschicht 

sowohl zu einer optimalen Korrosionsbeständigkeit als auch zu einer optimalen Biokompatibilität 

führt, wobei die gleichmäßig geringe Dicke der Schicht von Bedeutung ist. Titanoxidschichten mit 

einer größeren Dicke neigen dazu, bei großen Dehnungen zu reißen, so dass die Homogenität 

der Oxidschicht verschwindet.  

Auch die spannungsinduzierte Phasenumwandlung beeinflusst die mechanischen Eigenschaften 

und damit auch das Versagensverhalten von Nitinolstents. 
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3.2.2 Klinische Studien und Klassifikation von Stentbrüchen  

Im Rahmen klinischer Studien werden die Frakturraten von Stents in der SFA dokumentiert, 

wobei die statistische Beurteilung durch die Art der Bruchdetektion, die Bildqualität und die 

Methode der Bruchbeurteilung beeinflusst wird. Ein weiterer wichtiger Aspekt ist die unterschied-

liche Bezugsgröße für die Ermittlung der Bruchrate, die stent- (s), bein- (b), patienten- (p) oder 

läsionsbasiert (l) erfolgt (Tabelle 5). Die meisten Brüche treten im ersten Jahr nach der 

Implantation auf [28, 37, 45]. 

Die erste klinische Studie, in der ein hohes Aufkommen an Stentbrüchen identifiziert und 

publiziert wird, ist die SIROCCO Studie, bei der primär die Wirksamkeit eines Sirolimus-

freisetzenden Nitinolstents (SMART®, Cordis, USA) untersucht wird [45]. Trotz der Entwicklung 

unterschiedlicher Stentdesigns und -materialien ist das Entstehen von Stentbrüchen ein 

persistentes Problem, wie die verschiedenen klinischen und in vitro Studien zeigen (Tabelle 5). 

Tabelle 5: Auswahl klinischer Studien mit erfassten Brüchen peripherer Stents in der SFA und der 
A. poplitea; Auswertung stent- (s), bein- (b), patienten- (p) oder läsionsbasiert (l)  

Studienname Stent 
Mittlere 

Läsionslänge 
Follow-up Stentbruchrate Quelle 

ABSOLUTE Absolute®/Dynalink® 132 ± 71 mm 1 Jahr 2 % (p) [116] 

DURABILITY I Protégé EverFlex® 96,4 ± 26,8 1 Jahr 7,7 % (s); 8,1 % (p)  [25] 

DURABILITY II  Protégé EverFlex® 110 mm 1 Jahr 0,4 % (p) [84] 

Durability-200 Protégé EverFlex® 242 mm 1 Jahr 6 % (p) [24] 

FAST Luminexx 3® 45 ± 28 mm 1 Jahr 12 % (p) [72] 

FESTO 
SMART®  
SelfX®  

Luminexx® 
157 ± 59 mm 1 Jahr 

26,9 % SMART® (s) 
29,2 % SelfX® (s) 

53,3 % Luminexx® (s)  
[115] 

Misago 2 Misago® 63,9 mm 1 Jahr 3,1 (s) [120] 

RESILIENT LifeStent®  70,5 ± 44,3 1 Jahr 3,1% (s) [74] 

REAL-SL 
SMART® 

Luminexx® 
159 ± 89 mm 5 Jahre 

11 % SMART® (b) 
23 % Luminexx® (b) 

[70] 

SIROCCO 
SMART® bare stent 

SMART® DES 
83 mm 18 Monate 

20 % (p) 
36 % (p) 

[45] 

STELLA LifeStent® 220 ± 160 mm 1 Jahr 17,7 % (s) [38] 

 
Absolute/Dynalink® (Abbott Vascular, USA); Protégé EverFlex® (Covidien, Plymouth, MN, USA); 

LifeStent®, Luminexx® (Bard Peripheral Vascular Inc, USA); SMART® (Cordis Corp, USA), SelfX® 
(JOMED AG, Switzerland), Misago® (Terumo Medical Corporation, USA) 

 

Der finale Bruch eines Stents ist das Endergebnis eines komplexen Zusammenwirkens zwischen 

Bruchmechanik und einer Reihe von Faktoren, wie Stentvariablen, Anatomie und Physiologie des 

Zielgefäßes sowie verfahrenstechnischen klinischen Entscheidungen, auf die im Folgenden 

näher eingegangen wird. Widersprüchliche Ergebnisse verschiedener Autoren zum Einfluss der 

verschiedenen Faktoren zur Entstehung von Stentbrüchen verdeutlichen den Einfluss der 

individuellen Unterschiede zwischen den Patienten.  
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Der Einfluss der Stentvariablen auf die Entstehung von Stentbrüchen wird durch viele 

Parameter, wie Konstruktionsprinzipien, Auswahl des Materials sowie geeignete Fertigungsver-

fahren und Prozessparameter bei der Stentherstellung, wie Laserschneiden oder Oberflächenbe-

handlungen, wie Elektropolieren, bestimmt. 

Nikanorov et al. [99] zeigen bei sechs verschiedenen Stenttypen unter axialer Kompression und 

Biegebelastung, dass der Widerstand der Stents gegenüber Brüchen sowohl vom Stentdesign 

als auch von der Art der Belastung abhängt. So zeigt sich, dass z.B. der LifeStent® mit seinem 

spiralförmigen Design widerstandsfähiger gegenüber einer zyklischen Biegebelastung ist als 

gegenüber einer axialen Kompressionsbelastung. Optimierte Stentdesigns mit einer reduzierten 

Anzahl und einer gewundenen Form der Verbindungselemente führen zu einer höheren axialen 

Flexibilität und einer größeren Widerstandsfähigkeit gegenüber Ermüdungsbruch bei Biege-, 

Torsions- und äußeren Belastungen [37, 119]. Ältere Stentdesigns sind häufig steifer, so dass 

das Bruchrisiko erhöht ist [6]. Auch spiralförmige Designs, wie der Intracoil (eV3, USA) oder der 

aSpire (Vascular Architects, USA) zeigen in klinischen Untersuchungen keine Brüche [6]. Allie et 

al. [6] nennen eine überdurchschnittliche Radialsteifigkeit und das Spiraldesign mit offenen 

Windungen, das die Flexibilität bezüglich Biegung, Torsion und Längenänderung ermöglicht, als 

Begründung.  

Als Aspekt des Stentdesigns hat auch die Dimension des Strutquerschnitts einen Einfluss auf das 

Bruchrisiko, das bei Stents mit einem kleinen Strutquerschnitt steigt, da auftretende Mikrorisse 

schnell zu einer kritischen Länge heranwachsen können [5].  

Auch die Anatomie und Physiologie beeinflussen die Entstehung von Stentbrüchen, durch z.B. 

gekrümmte Gefäße und spezifische Kinematik und Belastung der Gefäße. Stentimplantationen 

führen zu einer Begradigung und Veränderung der strukturellen Steifigkeit des betroffenen 

Gefäßabschnitts, so dass der Steifigkeitssprung zwischen gestentetem und nativem Gefäß im 

Zusammenwirken mit physiologisch bedingten Initialkrümmungen des Gefäßes „Knick“-Stenosen 

bei der Beinbeugung verursachen kann (Abbildung 17) [133]. Dieses ist die Folge einer 

hochgradigen nichtlinearen Biegung des Gefäßes unter simultaner axialer Belastung während 

der Beinbeugung, so dass es sich bei den „Knick“-Stenosen um Kollaps-Erscheinungen 

individueller Gefäßquerschnitte an den Positionen der Steifigkeitssprünge infolge Überbelastung 

aus der Biegebeanspruchung handelt. Eine mögliche Interpretation als Stabilitätsversagen des 

Gefäßes erscheint daher vor allem physiologisch als nicht schlüssig. Durch die „Knick“-Stenosen 

werden lokale Spannungskonzentrationen insbesondere an den Stentenden erzeugt, die zum 

Stentbruch führen können [5]. Lässt sich eine Stentimplantation in diesen Regionen nicht 

vermeiden, können axial flexiblere Stents an das distale Ende angeschlossen werden, die einige 

Zentimeter in das native Gefäß einlaufen und somit einen Steifigkeitsübergang schaffen [8, 9]. 
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Abbildung 17: links: Auswirkung des Steifigkeitssprungs zwischen nativem und gestentetem Gefäß bei 
der Beinbeugung durch Ausbildung einer „Knick“-Stenose infolge nichtlinearer Biegung des Gefäßes; 
rechts: Ein weiterer Stent verbessert den Gefäßverlauf bei der Beinbeugung [8]  

In Abhängigkeit von der Anatomie und der spezifischen Gefäßphysiologie von Gefäßen, die 

großen Deformationen unterworfen sind, wie der A. femoralis und A. poplitea, steigt das Risiko 

für Stentbrüche durch die vom Implantationsort abhängigen sich wiederholenden biomechani-

schen pulsatilen und nicht-pulsatilen Belastungen während der Beinbewegung, die zu einer 

axialen Kompression, Torsion und Biegung und im Laufe der Zeit zur Materialermüdung und 

schließlich zum Bruch des Stents führen (vgl. auch Abschnitt 4.1). Da diese nicht pulsatile 

Belastung im femoropoplitealen Gefäßabschnitt variiert und im Bereich der distalen SFA und 

proximalen A. poplitea am größten ist (vgl. Abschnitt 4.1) beobachten viele Autoren hier 

signifikant mehr Stentbrüche [6, 37, 69]. Laird et al. [74] beobachten 80 % der schwerwiegende-

ren Brüche (Klasse IV, vgl. Abschnitt 3.2.2) in der mittleren SFA.  

Dass die Belastung durch die Beinbewegung einen signifikanten Einfluss auf die Bruchentste-

hung von Stents im femoropoplitealen Gefäßabschnitt hat, zeigen Iida et al. [69], dass Patienten 

mit einer hohen Geh-Aktivität ein erhöhtes Bruchrisiko ihrer Stents haben. 

Von Adlakha et al. [5] wird insbesondere die Biegebelastung in der A. femoralis und A. poplitea 

begünstigend für die Entstehung von Stentbrüchen beschrieben. Dieses hat zu einem 

vorsichtigeren Einsatz von Stents geführt. So berichten einige Autoren von einem präoperativen 

Beugetest des Beins um bis zu 90°, um Krümmungen der betreffenden Arterie vor der 

Intervention zu identifizieren und eine Stentimplantation in Bereichen auszuschließen, die einer 

hohen Biegebelastung ausgesetzt sind.  

Neben den Belastungen stellen sich, basierend auf der Literatur, verfahrenstechnische 

klinische Entscheidungen, wie z.B. die Stent- und Läsionslänge sowie die Anzahl der 

implantierten Stents, als wichtige Risikofaktoren für das Auftreten von Stentbrüchen heraus, denn 

neben langen Stents werden in langen Läsionen auch mehrere, sich an den Enden überlappende 

Stents implantiert. 
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Im ersten Teil der SIROCCO Studie treten alle Stentbrüche in Läsionen mit bis zu drei sich an 

den Enden überlappenden Stents auf, so dass im weiteren Verlauf der Studie die maximale 

Anzahl der Stents pro Läsion auf zwei begrenzt wird und bessere Resultate sowohl im Hinblick 

auf die Bruchrate als auch auf die Durchgängigkeit des Gefäßabschnitts erzielt werden [45, 46]. 

Sich überlappende Stents erhöhen die Struktursteifigkeit des gestenteten Gefäßes weiter und 

bringen zusätzliche Biegegelenke durch Kollabieren des Gefäßes im Übergang zwischen 

gestentetem und ungestentetem Bereich ein [5]. Zusätzlich bedingt die Abrasion zwischen den 

überlappten Stentstruts Schäden an der Stentstruktur. Die Brüche bei überlappten Stents treten 

bevorzugt im Übergang zum nicht-überlappten Bereich auf [6, 74]. Mit steigender Anzahl der 

Stents erhöht sich die Bruchrate und die Schwere der Schäden nimmt zu [6, 69].  

Die Verwendung einzelner Stents wird als Lösung für die Problematik der überlappten 

Stentimplantation gerade bei langen Läsionen angesehen [84, 115]. Trotzdem wird mit 

steigender Läsionslänge das Bruchrisiko erhöht, auch wenn nur ein Stent implantiert wird [69]. 

Des Weiteren wird die Gefahr der ungewollten axialen Streckung oder Stauchung von Stents 

während der Implantation beschrieben, die das Bruchrisiko durch die Veränderung des initialen 

Spannungszustands im Stent nach Implantation erhöhen kann [25, 74]. Bosiers et al. [25] führen 

90 % der Stentbrüche auf eine Überlängung der Stents um mehr als 10 % während der 

Implantation zurück. 

Allie et al. [6] entwickeln 2004 ein Klassifikationsschema für Brüche von Nitinolstents in 

peripheren Gefäßen, um eine standardisierte Bewertung bei Nachuntersuchungen zu 

ermöglichen. Eine Stentbruchklassifikation nach Typ I beschreibt einen einzelnen Strutbruch im 

Stent. Bei Typ II treten mehrere vereinzelte Strutbrüche auf, die bei Typ III zu einem kompletten 

Bruch quer zur Stentlängsachse führen, wobei jedoch keine Dislokationen auftreten. Bei Brüchen 

nach Typ IV führt der komplette Stentbruch zu einer Dislokation des Stents oder Teilen davon. 

2007 wird das Klassifikationsschema von Rocha-Singh et al. [109] um Typ V erweitert, bei dem 

Brüche zu einer spiralförmigen Frakturierung des Stents führen (Abbildung 18). 

 

Abbildung 18: Klassifikation von Stentbrüchen nach fünf Typen [109] 

Studien zeigen eine Korrelation zwischen der Bruchklassifizierung und den Offenheitsraten von 

Stents [115]. Allie et al. [6] zeigen, dass mehr als die Hälfte der Patienten mit Stentbrüchen, 
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besonders bei Typ III und IV, eine angiographisch sichtbare Restenose haben. Je mehr Brüche 

die Stents der betroffenen Patienten aufweisen, desto symptomatischer sind diese [37]. Es wird 

prognostiziert, dass einzelne Stentbrüche (Typ I) im Verlauf der Zeit zu schwerwiegenderen 

Brüchen eines höheren Typs führen. Bedingt durch das Formgedächtnis von Nitinol können die 

Bruchenden durch die Gefäßwand migrieren, den Stent dadurch weiter beanspruchen und in der 

Folge weitere Schäden verursachen. Werden mehrere Stents an den Enden überlappt 

implantiert, treten häufiger Brüche vom Typ III - V auf, wohingegen bei einzelnen Stents meist 

Brüche vom Typ I und II beobachtet werden [6]. Auch nach einer Überlängung von Stents 

während der Implantation treten häufiger Brüche des Typs IV und V auf [74]. 
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4 Dynamische strukturmechanische Prüfung peripher 
implantierter selbstexpandierender Nitinolstents 

Im Folgenden werden zunächst die spezifische Belastungssituation von Stents im femoropopli-

tealen Gefäßabschnitt ermittelt und adäquate Lastannahmen sowie Prüfregimes festgelegt. Des 

Weiteren werden die durch die relevanten Normen gezeigten Randbedingungen und die 

Einteilung der Ermüdungsprüfung in „Prüfung bis zum Bruch“ („Fatigue-to-Fracture“) und 

„Prüfung bis zum Erfolg“ („Fatigue-to-Success“) beschrieben. Anschließend wird der Stand der 

Technik anhand kommerziell erhältlicher Prüfstände und relevanter Patente für die mehrachsige 

Stentprüfung beschrieben. 

4.1 Belastungsregime peripherer Stents durch die physiologische 
Gefäßdeformation während der Beinbewegung 

Studien zeigen, dass periphere Arterien durch die Beinbewegung einem hohen Maß an sich 

wiederholender Deformation ausgesetzt sind. Durch Änderung der Gefäßkrümmung und 

Interaktionen zwischen Gefäß und umliegendem Muskel- und Knochengewebe wird diese Belastung 

durch Biegung, Torsion und Längenänderung ausgeübt (Abbildung 19). So führt z.B. die 

Kniebeugung zu einer Verkürzung der Gefäße in der Kniekehle, die durch zwei Effekte kompensiert 

wird. Ein Teil der überschüssigen Gefäßlänge wird durch die natürliche axiale Flexibilität des 

Gefäßes absorbiert, während der andere Teil durch Ausbildung von „Schlingen“ proximal des 

Kniegelenks abgebaut wird [141]. 

Die Beinbewegung kann durch den Knie- und Hüftwinkel beschrieben werden, wobei meist 

zwischen gestrecktem Bein (0°/0° Knie-/Hüftwinkel), leicht gebeugtem Bein (70°/20°, Gehen) und 

gebeugtem Bein (90°/90°, Hinsetzen-Aufstehen/Treppensteigen) unterschieden wird (Abbildung 19). 

               

Abbildung 19: Bereiche der peripheren Arterien, die einer Deformation durch Biegung und axiale 
Kompression ausgesetzt sind (modifiziert nach [76]); Knie- und Hüftwinkel bei der Belastung Gehen 
(modifiziert nach [59]) 
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Die Untersuchungen werden mit verschiedenen Verfahren und Auswertemethoden durchgeführt, 

die die Ergebnisse beeinflussen können. Weitere Einflüsse treten durch individuelle Unterschiede 

der untersuchten Patienten und Körperspender im Hinblick auf die Elastizität und Geometrie der 

Arterien auf. Ebenso beeinflusst das Alter und das Vorhandensein von Arteriosklerose die 

Messung der Gefäßdeformation.  

Teilweise werden Stents in die betreffenden Gefäße implantiert, um die Längenänderung besser 

messen zu können (Abbildung 20) [99, 128]. Diese können wiederum das Ergebnis der 

Messungen nativer Gefäße beeinflussen. So reduziert ein implantierter Stent die Fähigkeit des 

Gefäßes zur Biegung und Stauchung, so dass benachbarte ungestentete Gefäßabschnitte mehr 

Deformation aufnehmen müssen und es zur Ausbildung eines Biegegelenks im Übergangsbe-

reich kommen kann. Werden zwei Stents ohne Überlappung ihrer Enden in geringem Abstand 

zueinander implantiert, verstärkt sich dieser Effekt.  

 

Abbildung 20: Beispiel zur Messung der Längenänderung und des Biegewinkels anhand von Stents in 
Beinen von Körperspendern; A - neutrale Position (0°/0°), B - Knie- und Hüftwinkel (90°/90°) [99] 

Im folgenden Abschnitt zeigen Tabelle 6 - Tabelle 9 eine Auswahl an Publikationen zur Gefäßdefor-

mation, unterteilt in proximale (prox), mittlere (mid) und distale (dist) SFA sowie A. poplitea. 

4.1.1 Axiale Längenänderung der Gefäße  

Cheng et al. [31, 32] untersuchen die Deformationen der SFA im Vergleich zwischen jungen (20-

35 Jahre) und älteren gesunden Patienten (50-70 Jahre), wobei die SFA bei jüngeren Patienten 

eine stärkere Verkürzung während der Hüft-/Kniebeugung erfährt als bei älteren Patienten 

(Tabelle 6). Dieses wird auf eine Gefäßverlängerung und Reduzierung der Elastizität mit 

zunehmendem Alter zurückgeführt. Die stärkere Verformung der SFA im distalen Bereich wird auf 

die geringeren muskuloskeletalen Verbindungen distal des Adduktorkanals und die Nähe zur 

Krümmung des Kniegelenks zurückgeführt.  

Im Gegensatz zu Cheng et al. untersuchen Nikanorov et al. [99] die Deformationen ungestenteter 

Arterien anhand von Beinen von Körperspendern. Hierbei wird der Blutfluss durch warme 

Kochsalzlösung simuliert, um die Flexibilität der Gefäße und Muskeln zu erhalten und somit eine 

natürliche Bewegung des Beins zu ermöglichen. Die Ergebnisse zeigen deutlich, dass die native 
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Arterie während der Beinbeugung eine Verkürzung erfährt, die im Abschnitt der distalen 

SFA/proximalen A. poplitea am größten ist (Tabelle 6). Nach Stentimplantation verkürzt sich der 

gestentete Gefäßabschnitt weniger als der ungestentete Bereich, so dass dieser die durch den 

Stent verursachte mangelnde Beweglichkeit kompensiert. Die Autoren schlagen eine in vitro 

Prüfung der axialen Kompression für die Belastung Gehen (70°/20°) als häufigste Belastung mit 

5 % vor, was dem Mittelwert zwischen distaler SFA/proximaler A. poplitea und der A. poplitea 

entspricht (Tabelle 6). 

Auch theoretische Untersuchungen zeigen eine von der Knie- und Hüftbeugung abhängige axiale 

Kompression der femoropoplitealen Arterien, wobei vereinzelt auch eine Verlängerung um 

maximal 1 % beim Hinsetzen-Aufstehen berechnet wird [145]. 

Tabelle 6: Prozentuale axiale Kompression nativer und gestenteter peripherer Arterien; quantitative 
Angaben unterschiedlicher Autoren 

Knie-/Hüftwinkel SFA prox SFA mid SFA dist A. poplitea  

nativ nativ Stent nativ Stent nativ Stent  

0°/0°  

70°/20° 

90°/90° 

 0 

5 ± 4 

9 ± 5 

0 

3 ± 2 

3 ± 3 

0 

14 ± 5 

23 ± 2 

0 

4 ± 1 

6 ± 3 

0 

9 ± 5 

14 ± 3 

0 

6 ± 4 

11 ± 5 

[99] 

gebeugt   3,1 ± 1,8  5,3 ± 0,5  8,5 ± 3,2 [98] 

gebeugt 5,9 ± 3 6,7 ± 2,1  8,1 ± 2   [30] 

gebeugt                                                    13 ± 11 % (nativ) [32] 

90°/90°   4,1 ± 3,1  6,5 ± 2,1  10,2 
± 4,6 

[105] 

90°/90°   2,8 ± 2,1  5,7  7,1 ± 5,1 [105] 

gehen 

Treppensteigen 

hinsetzen-aufstehen 

 

              

                            8,3 ± 0,6 (nativ) 

                          11,9 ± 2,2 (nativ) 

                          14,7 ± 3,8 (nativ) 

[145] 

100° (Kniebeugung)    20   [27] 

Beine übereinander 
geschlagen 

                                 6,1 (nativ) 15,8  [71] 

70°/20°  5,9 ± 2,5  [56] 

fetal                               8,8 ± 4,4 (nativ)   [34] 

70°/20° 

90°/90° 

 

 5 

10 

 14 

23 

 9 

14 

 [127, 
128] 

flexibler Stent, Länge 
56 mm 

  4 

7 

flexibler Stent, Länge 
100 mm 

2,5 

3 

 6 

12 

 11 

14 

steifer Stent, Länge 
100 mm) 

4 

5 

 - 

10 

 3 

9 

90°                                       15   [8] 

90°/90°                                     5 (Stent)   [121] 

90°/90°                                    20 (nativ)   [39] 

70°/20°  

90°/90° 

                                    5 (Stent) 

                                    7 (Stent) 

  

90°/90°                             10 (Stents überlappt)   

90°/90° 
(Körperspender) 

 31-35  [18] 

gebeugt                                                4 ± 3 (Stent) [54] 
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4.1.2 Biegewinkel und Krümmung von Gefäßen 

Die maximale Biegung wird vor allem durch die regionalen Knochen- und Muskelstrukturen 

bestimmt und tritt in der A. poplitea auf (Tabelle 7). Im Bereich der mittleren SFA und der distalen 

SFA/A. poplitea ergibt sich bei 70°/20° ein geringerer Biegewinkel. Für die in vitro Prüfung von 

Stents unter Biegebelastung wird ein Biegewinkel von 48° als Mittelwert des Biegewinkels der 

A. poplitea vorgeschlagen [99]. 

Tabelle 7: Biegewinkel gestenteter peripherer Arterien bei verschiedenen Knie-/Hüftwinkeln; 
quantitative Angaben unterschiedlicher Autoren 

Knie-
/Hüftwinkel 

SFA mid 

Stent 

SFA dist 

Stent 

A. poplitea  

nativ Stent 

70°/20° 

90°/90° 

3 ± 4° 

4 ± 3° 

11 ± 12° 

15 ± 14° 

 33 ± 21° 

54 ± 25° 

[99] 

90°/90°   63° 69° [128] 

70°/20° 

90°/90° 

   48° 

96° 

[127] 

90°/90°    48° [121] 

70°/20° 

90°/90° 

   48° 

69° 

[39] 

 

Bei gestrecktem Knie verlaufen die gelenknahe SFA und A. poplitea gestreckt oder leicht S-

bogenförmig, wobei Cheng et al. [32] nur bei älteren Patienten eine Krümmung der nativen SFA 

beobachten. Die größte Arterienkrümmung wird im distalen Bereich bei gebeugtem Bein 

beobachtet (Tabelle 8) [32, 34, 71]. 

Tabelle 8: Krümmung und Biegeradius gestenteter und nativer peripherer Arterien bei verschiedenen 
Knie-/Hüftwinkeln; quantitative Angaben unterschiedlicher Autoren 

Knie-
/Hüftwinkel 

SFA prox 

nativ 

SFA mid 

nativ 

SFA dist 

nativ 

A. poplitea  

nativ Stent 

gebeugt 1,5 ± 0,6 mm
-1

 0,9 ± 0,7 mm
-1

 4,1± 2,2 mm
-1

   [30] 

übereinender 
geschlagen 

0,4 ± 0,4 mm
-1

 2 ± 0,9 mm
-1 

 70] 

70°/20°  2,4 ± 0,9 mm
-1 

 [56] 

fetal                          0,014 ± 0,022 mm
-1

  [34] 

0,016 mm
-1

 0,012 mm
-1

 0,039 mm
-1

  

90°/90°  13 mm 20 mm [128] 

70°/20° 

90°/90° 

  45 mm 

20 mm 

[127] 

90°/90°   45 mm [121] 

70°/20° 

90°/90° 

  45 mm 

20 mm 

[39] 

gebeugt                                           0,014 mm
-1

 (Stent) [54] 

 

Neben der eigentlichen Biegung im Bereich der A. poplitea und der distalen SFA beobachten 

verschiedene Autoren eine „Schlingenbildung“ der SFA bei der Beinbeugung. Während die 

Beinbeugung bei einer jugendlichen, normal elastischen Arterie zu einer passiven axialen 

Kontraktion des Gefäßes durch die elastischen, kollagenen Bestandteile führt und sich der 
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Gefäßverlauf harmonisch der Knochen- und Muskelstruktur anpasst (Abbildung 21, links) [139, 148], 

kommt es gerade bei älteren Patienten zu einer zunehmenden „Schlingenbildung“ mit Ausprägung 

von Biegegelenken im Gefäß, die zu einem Kollaps der Gefäßwand führen können (Abbildung 21, 

Mitte und rechts). Bei 32 % der Patienten setzt sich die „Schlingenbildung“ bis in die distale SFA fort. 

 

Abbildung 21: Kniegelenknahe Arterien bei gebeugtem Kniegelenk; links: harmonischer Verlauf der 
A. poplitea; Mitte: ausgeprägte „Schlingenbildung“ des Gefäßes ohne Biegegelenke; rechts: Bildung 
von „Schlingen“ des Gefäßes mit Biegegelenken [148] 

Die „Schlingen“ werden zumeist in arteriosklerosefreien Gefäßabschnitten gebildet. Als Ursache 

wird der mit dem Alter zunehmende Elastizitätsverlust der Gefäßwand mit einer reduzierten 

radialen Dehnbarkeit und axialen Kontraktilität durch Fragmentation und Verkalkung der 

elastischen Fasern der Gefäßmedia (vgl. Abschnitt 2.2) genannt [148]. Aus strukturmechanischer 

Sicht ist die „Schlingenbildung“ eine Folge einer hochgradigen nichtlinearen Biegung unter 

simultaner Wirkung einer axialen Gefäßbelastung, analog zur Ausbildung von „Knick“-Stenosen 

(vgl. Abschnitt 3.2.2). Die Implantation eines Stents verstärkt diesen Effekt [9, 148]. 

Wensing et al. [141] beschreiben die „Schlingen“ bei Beinbeugung durch einen Radius und einen 

Winkel, wobei bei allen untersuchten Patienten drei oder mehr „Schlingen“ mit einem mittleren 

Radius von 63 mm und einem mittleren Winkel von 33,5° auftreten. Die Rückbildung der „Schlingen“ 

bei einer Streckung des Kniegelenks findet nur bei jüngeren Patienten vollständig statt. Diese 

Unterschiede zwischen älteren und jüngeren Patienten werden von drei Faktoren beeinflusst: 

Gefäßverlängerung, Reduzierung der axialen Elastizität und Gleitfähigkeit des Gefäßes im 

Adduktorenkanal. Besonders die altersbedingte Gefäßverlängerung in Kombination mit einer 

geringeren axialen Elastizität verstärkt die „Schlingenbildung“ bei der Beinbeugung. Im Gegensatz 

zu Zocholl et al. [148] wird keine altersbedingte Abhängigkeit der „Schlingenanzahl“ beobachtet.  
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4.1.3 Torsion von Gefäßen 

Torsion der SFA und der A. poplitea wird nur von wenigen Autoren untersucht und meist als 

unkritisch im Hinblick auf Stentbrüche angesehen [128].  

Cheng et al. [32] beobachten, dass 75 % der linken SFA entgegen dem Uhrzeigersinn und 

87,5 % der rechten SFA im Uhrzeigersinn tordieren. Der größte Torsionswinkel wird im Bereich 

der distalen SFA und der A. poplitea beobachtet (Tabelle 9). 

Tabelle 9: Torsionswinkel [°/cmGefäßlänge] nativer peripherer Arterien bei verschiedenen                   
Knie-/Hüftwinkeln; quantitative Angaben unterschiedlicher Autoren 

Knie-/Hüftwinkel SFA prox SFA mid SFA dist A. poplitea  

gebeugt 1,3 ± 0,8 1,8 ± 1,1 2,1 ± 1,3  [30] 

gebeugt                                      2,8 ± 1,7 [31] 

übereinandergeschlagen               1,69 ± 1,01                 3,46 ± 1,9 [71] 

70°/20°                   3,8 ± 2,2 [56] 

fetal                  8 ± 4  [34] 

4.2 Relevante Normen zur mehrachsigen dynamischen Stentprü-
fung  

Die Prüfung von Stentsystemen erfolgt nach den Anforderungen der jeweiligen länderspezifischen 

Normen und Richtlinien, z.B. nach ISO 25539-2 [42], ASTM F2477 [11] und FDA Guidance 1545 

[136]. Die Auswahl der vorzunehmenden Prüfungen berücksichtigt dabei die Versagensarten der 

Einführ- und Stentsysteme und deren Auswirkungen auf die Implantatfunktion. In den Normen sind 

die Merkmale der zu prüfenden Stent- und Einführsysteme sowie die Problemstellung und die zu 

prüfenden Eigenschaften aufgeführt. Des Weiteren werden Grundlagen zur Entwicklung geeigneter 

Prüfverfahren und Vorschläge zur Realisierung angegeben. Generell lässt sich die strukturmechani-

sche Prüfung von Stents nach statischen und dynamischen Prüfverfahren unterteilen, wobei auf die 

statischen Prüfverfahren hier nicht weiter eingegangen wird. Nach ISO 25539-2 [42] erfolgt die 

weitere Unterteilung der Prüfverfahren nach Einführ- und Stentsystem, Stent, vorklinische in vivo 

Bewertung, klinische Bewertung, Überwachung nach der Einführung auf dem Markt, Herstellung, 

Sterilisation und Verpackung. Es wird im Weiteren nur auf die Prüfung von Stents eingegangen, 

auch wenn einige Eigenschaften des Einführsystems stentbezogen sind, wie z.B. die äußere Kontur 

des auf den Katheter gecrimpten Stents für eine gute Passierbarkeit des Systems auch durch 

Gefäßkrümmungen oder die Mechanik der Stentfreisetzung, wie z.B. Längenänderung und 

Expansionsprofil. Auf die Prüfung von ballonexpandierbaren, beschichteten und Drug-Eluting Stents 

wird im Weiteren ebenfalls nicht eingegangen. 

Bisher beinhalten die Normen ISO 25539-2 und ASTM F2477 [11] allein die Prüfung der 

Ermüdungsfestigkeit von Stents bei zyklischer Radialbelastung zur Bewertung von Aspekten der 

strukturellen Langzeit-Unversehrtheit des Stents und seiner Beschichtung. Es wird zwar eine 

Prüfung bei zusätzlichen Beanspruchungen durch kombinierte Belastungen aus z.B. axialer 



4 Dynamische strukturmechanische Prüfung peripher implantierter selbstexpandierender Nitinolstents 

 - 30 - 

Kompression, Torsion und Biegung gefordert, wenn sie für die Stentindikation relevant ist, aber 

nicht weiter spezifiziert. Bezüglich der zyklischen Belastung von Stents durch axiale Kompressi-

on, Biegung und Torsion werden im Weiteren Informationen aus dem ASTM-Standard F2942 [12] 

verwendet, in dem die Prüfung der drei Belastungsarten in separaten Prüfverfahren beschrieben 

wird. Neben der Belastung vaskulärer Stents in peripheren Gefäßen, wie die Biege- und axiale 

Belastung in der A. femoralis superficialis (SFA) durch Gehen, werden auch die Biegung der A. 

renalis während der Atmung oder auch die Biegebelastung der Koronararterien während des 

Herzschlags miteinbezogen.  

4.2.1 Generelle Vorgaben der relevanten Normen 

Generell ist für die meisten Prüfverfahren in den Normen eine Vorkonditionierung der Prüfmuster 

in simulierter physiologischer Umgebung vorgeschrieben, um die Bedingungen in vivo, die die 

Prüfergebnisse beeinflussen könnten, zu simulieren. Hierzu zählen neben der Sterilisation z.B. 

einzelne oder mehrfache Passagen des Katheter-Stent-Systems durch ein anatomisch 

repräsentatives Modell sowie die Stentaufweitung. 

Für die meisten Prüfverfahren werden die Stents in künstliche Gefäße, im Folgenden als 

Prüfschlauch bezeichnet, implantiert. Hierfür werden vorwiegend Silikon- oder Polyurethan-

schläuche verwendet. In Abhängigkeit vom Prüfverfahren weisen die Prüfschläuche, z.B. für die 

Prüfung des Ermüdungsverhaltens von Stents gegenüber radialer Belastung, eine vergleichbare 

Compliance zu nativen Gefäßen auf, um die Bedingungen in vivo zu simulieren. Die Implantation 

der Stents in Prüfschläuche bietet den Vorteil der sicheren Einspannung im Prüfstand. Die 

Stentimplantation erfolgt nach Herstellerangaben in den vom Hersteller für worst-case 

Bedingungen definierten Gefäßdurchmesser. Es ist auf einen ausreichenden Abstand der 

Stentenden zum Prüfschlauchende und zu evtl. im selben Schlauch implantierten Stents zu 

achten. Sofern ein Überlappen der Stentenden für den klinischen Einsatz erwartet wird, z.B. bei 

oberflächlichen Femoralarterien oder Koronargefäßen, sollte die überlappte Länge der in der 

Klinik verwendeten entsprechen. 

Die Prüfschläuche müssen den Prüfbedingungen dauerhaft standhalten können und die 

geforderte Stentdeformation während der gesamten Prüfdauer übertragen können. Der 

Innendurchmesser des gestenteten Prüfschlauchs muss im Verlauf der Prüfung konstant bleiben. 

Die Wandstärke, der Reibparameter und die mechanischen Eigenschaften des Prüfschlauchs 

können einen Einfluss auf das Prüfergebnis haben und müssen gegebenenfalls berücksichtigt 

werden. So kann mit einem ungeeigneten Prüfschlauch eine unerwünschte Durchmesserände-

rung oder Ovalisierung bis hin zum Kollaps der Schlauchwand während der Belastung auftreten. 

Des Weiteren kann ein ungeeigneter Reibparameter des Prüfschlauchs zu Problemen bei der  

axialen Kompression des Stents führen. 
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Ein geeigneter Prüfschlauch muss nicht zwangsläufig eine physiologisch relevante Compliance 

aufweisen. Generell übertragen Prüfschläuche mit einer höheren Wandstärke die gewünschte 

Deformation auf den Stent besser. Ein sehr wichtiger Punkt bezüglich des Prüfschlauchs ist die 

Verhinderung einer Migration des Stents im Schlauch während der Prüfung. 

Die meisten Prüfverfahren werden in einer temperaturgeregelten physiologischen Umgebung bei 

37 °C ± 2 °C in z.B. phosphatgepufferter Kochsalzlösung (PBS) durchgeführt. Der pH-Wert des 

PBS ist während der Prüfung mit geeigneten Chemikalien, wie z.B. mit Dinatriumhydrogenphos-

phat (Na2HPO4) zur pH-Erhöhung und Natriumdihydrogenphosphat (NaH2PO4) zur pH-

Absenkung, bei 7,4 ± 0,5 zu halten. Es wird eine Kontrollmöglichkeit für die Temperatur gefordert. 

Abgesehen von zu begründenden Ausnahmen wird eine Zyklenzahl absolviert, die einer 

Lebensdauer von zehn Jahren entspricht, wobei eine beschleunigte Prüfung durch höhere 

Frequenzen möglich ist. Allerdings wird die Prüffrequenz hierbei von der Trägheit des Stents und 

des Gesamtsystems begrenzt. Es wird ein Gerät zur Zyklenzählung gefordert.  

Es ist sicherzustellen, dass der Stent die geforderten Belastungen erfährt. Da diese durch 

Einspannungseffekte, Rutschen zwischen Prüfschlauch und Stent oder dynamische Effekte 

beeinflusst werden, müssen die tatsächlichen Belastungen am Stent nachgewiesen werden. 

Hierfür können Stents verwendet werden, die den zu prüfenden Stents in ihrer Struktur ähnlich 

sind, wobei es ausreichend ist, dieses für einen Stent nachzuweisen. Hierfür werden Messgeräte 

zur Längenmessung, wie Laser oder Hochgeschwindigkeitskameras benötigt, die gegebenenfalls 

kalibriert werden müssen. 

Können in Validierungsmessungen mathematische Beziehungen zwischen den Verschiebungen 

der Achsen und des Stents nachgewiesen werden, so können diese hier angewendet werden. 

Bei der Biegebelastung kann es erforderlich sein, die Orientierung des Stents bezüglich seiner 

Achse im Prüfschlauch zu überprüfen, da diese, in Abhängigkeit vom Stentdesign, einen Einfluss 

auf die Ermüdungsfestigkeit des Stents haben kann.  

Im Rahmen von Inspektionen nach festgelegten Prüfintervallen und am Prüfungsende sind die 

Stents im Hinblick auf Brüche zu untersuchen, wobei alle durchgehenden Strutbrüche mit ihrem 

Ort in einem Protokoll vermerkt werden. Da die Registrierung von Stentbrüchen schwierig ist, 

wenn der Stent in den Prüfschlauch implantiert und im Prüfsystem installiert ist, kann die 

Inspektion durch optische Sonden, Röntgen oder ein beleuchtetes Vergrößerungsglas erfolgen. 

Hierfür sind durchsichtige Prüfschläuche von Vorteil. Bei der Inspektion ist sicherzustellen, dass 

die Stents nicht beschädigt werden. Eine Explantation des Stents aus dem Prüfschlauch und 

seine anschließende Re-Implantation werden nicht empfohlen, da die Stentkonfiguration im 

Prüfschlauch verändert wird und der Stent beschädigt werden kann. Am Prüfungsende können 

die Stents aus den Prüfschläuchen entfernt werden und mit Hilfe eines Lichtmikroskops oder 

Rasterelektronenmikroskops (REM) abschließend inspiziert werden, so dass alle Brüche und ihre 

Lokalisation registriert werden können. 
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Die Norm schreibt die Dokumentation der Prüfungen vor. Hierin werden sämtliche Materialien, 

Methoden, Prüfbedingungen, die Probenanzahl und -konfiguration bzw. -spezifikation, die 

Prüffrequenz und alle verwendeten Prüfparameter sowie die Ergebnisse aufgeführt. Des 

Weiteren sind die Belastungs- sowie Verformungsarten und -umfänge mit Hilfe von physiologi-

schen Modellen und Analysen zu begründen. 

4.2.2 Rahmenbedingungen zur mehrachsigen Stentprüfung 

Da der ASTM-Standard F2942 [12] die Prüfung der drei Belastungsarten axiale Kompression, 

Biegung und Torsion in separaten Prüfverfahren beschreibt, wird diese Unterteilung im 

Folgenden beibehalten. 

Bei der zyklischen Prüfung der axialen Kompression ist es theoretisch möglich, den Stent 

direkt, ohne einen Prüfschlauch, in den Prüfstand einzuspannen. Die Einspannung sollte hierbei 

keine zusätzlichen Spannungen und Dehnungen einbringen, durch die Brüche entstehen 

könnten. Allerdings ist hierdurch nur eine Prüfung der zyklischen axialen Dehnung möglich, da 

die Belastung bezüglich der axialen Kompression zu einem Ausknicken der Stents führt. Die 

Prüfung der axialen Kompression wird erst durch die Implantation der Stents in Prüfschläuche 

möglich, die vor der Stentimplantation vorgedehnt werden. Durch Entlastung des Schlauchs wird 

eine axiale Kompression des Stents ohne Ausknicken realisiert. Durch axiales Dehnen des 

Prüfschlauchs über den Ausgangszustand hinaus kann der Stent mit einer axialen Dehnung 

belastet werden. Wird der Stent in Prüfschläuche implantiert, die noch nicht im Prüfstand montiert 

sind, ist darauf zu achten, dass das Stent-Schlauch-System durch die Montage weder tordiert, 

noch eine zusätzliche Längenänderung erzeugt wird.  

Nach der Stentimplantation sollte die Länge des freigesetzten Stents gemessen werden, da 

Differenzen zwischen der vom Hersteller angegebenen und der implantierten Stentlänge einen 

signifikanten Einfluss auf die Ermüdungsfestigkeit des Stents haben können. Deshalb sollte ein 

Kriterium entwickelt werden, das die Länge des freigesetzten Stents beurteilt, z.B. dass die 

freigesetzte Stentlänge ± 10 % der Länge nach Herstellerangaben entspricht. Um eine eventuelle 

Stentmigration während der Prüfung zu registrieren, werden die Prüfschläuche auf Höhe der 

Stentenden markiert und die Stentlänge nach Prüfungsende erneut gemessen und mit der 

Ausgangslänge verglichen. 

Bei der axialen Belastung ist generell die unterschiedliche Struktursteifigkeit des gestenteten 

gegenüber dem nicht gestenteten Prüfschlauch zu beachten, die dazu führt, dass die 

aufgebrachte Verschiebung nicht der tatsächlichen Stentverschiebung entspricht. 

Bei der Überprüfung der geforderten axialen Kompression/Dehnung des Stents ist der 

Unterschied zwischen der statischen und der dynamischen Längenänderung zu beachten, so 

dass zur Überprüfung die Längenänderung des Stents dynamisch bestimmt werden muss. Die 

axiale Längenänderung wird in Prozent angegeben. 
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Eine regelmäßige Überprüfung des Prüfstands in vorgeschriebenen Intervallen garantiert die 

korrekte Realisierung der axialen Verschiebung und der Stentposition während der Prüfung.  

Auch für die Realisierung der zyklischen Biegebelastung wird der Stent in einen Prüfschlauch 

implantiert. Der Abstand des Stents von den Einspannungen des Schlauches sollte groß genug 

sein, um eine gleichförmige Biegung des Stents zu realisieren.  

Ein zusätzlicher Innendruck auf den Prüfschlauch kann das Abflachen und Deformieren bzw. 

Ovalisieren des Schlauchquerschnitts reduzieren. Allerdings muss hierbei die Durchmesserände-

rung des Prüfschlauchs beachtet werden, damit die Prüfung mit dem vorgeschriebenen 

Schlauchdurchmesser abläuft. Lässt sich eine merkliche Ovalisierung des Stents nicht 

vermeiden, muss der minimale und maximale Stentdurchmesser parallel und senkrecht zur 

Biegeachse für jeden Krümmungsradius bestimmt werden [10]. 

Analog zur Prüfung der axialen Ermüdungsfestigkeit wird die freigesetzte Stentlänge gemessen 

und bezüglich der vom Hersteller angegebenen Stentlänge beurteilt.  

Nach der Einspannung von Stent und Prüfschlauchenden oder nur der Schlauchenden wird der 

minimale und maximale erforderliche Biegeradius des Stents eingestellt. Wenn sichergestellt ist, 

dass der statisch bestimmte Radius mit dem dynamischen übereinstimmt, ist es ausreichend, den 

statischen Krümmungsradius zu bestimmen. Im Verlauf der Prüfung sowie am Prüfungsende ist es 

erforderlich sicherzustellen, dass der Krümmungsradius und die Stentposition konstant bleiben.  

Der ASTM-Standard 2942 [12] beschreibt die Aufbringung einer Biegebelastung durch die drei 

Methoden Knicken sowie Biegung ohne und mit Dorn. Bei der Auswahl der Methoden sind 

sowohl das Stentdesign und seine spezifischen Reaktionen auf die Biegebelastung als auch die 

klinische Relevanz der einzelnen Verfahren zu berücksichtigen.  

Die Realisierung der Biegebelastung durch Knicken erfordert eine frei rotierende Einspannung 

des Prüfschlauchs (Abbildung 22). Durch lineare Verschiebung der oberen zur unteren 

Einspannung wird die Biegebelastung des Stents realisiert. Die Rotation der Einspannungen lässt 

eine gleichförmige Biegung des Stents über seine Länge zu. 

Bei dem Prinzip des Biegens ohne Dorn werden ein oder beide Enden des Prüfschlauchs mit 

implantiertem Stent zyklisch, z.B. durch die Rotation eines Hebelarms, an dem ein Prüfschlau-

chende fixiert ist, im Kreisbogen zwischen zwei definierten Winkeln verschoben (Abbildung 23).  
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Abbildung 22: Beispiel zur Aufbringung der 
Biegebelastung auf Stents durch Knicken 
(modifiziert nach [10]) 

Abbildung 23: Schematische Darstellung der 
Biegung ohne Dorn (modifiziert nach [10]) 

Sowohl beim Biegen durch Knicken als auch beim Biegen ohne Dorn ergibt sich der Biegeradius 

aus der Reaktion des gestenteten Prüfschlauchs, wobei bei beiden Verfahren eine starke 

Abhängigkeit des Biegeradius von der Stentsteifigkeit existiert.  

Die Messung des Biegeradius kann z.B. optisch erfolgen, wobei ein Referenzobjekt zur Messung 

in der Ebene des Prüfschlauchs vorhanden sein sollte. Anhand der mittels des Referenzobjekts 

kalibrierten Bilder kann die Bestimmung des minimalen und maximalen Krümmungsradius 

erfolgen. Bei undurchsichtigen Prüfschläuchen muss deren Wandstärke mit einbezogen werden. 

Die Bestimmung des Krümmungsradius kann z.B. auch mit Hilfe einer kalibrierten Schablone 

erfolgen. Für die dynamische Bestimmung des Krümmungsradius wird eine Hochgeschwindig-

keitskamera oder ein Stroboskop unter Verwendung einer kalibrierten Schablone empfohlen. 

Bei der Biegung mit Dorn wird der in einen Prüfschlauch implantierte Stent, z.B. durch Rotation 

der an einem Hebelarm befestigten Einspannung, um einen Dorn mit kreisförmigem Querschnitt 

gebogen (Abbildung 24). Dabei können sowohl beide als auch nur ein Prüfschlauchende im 

Kreisbogen geführt werden. Der Radius des Dorns gibt den Biegeradius vor. Alternativ kann der 

Prüfschlauch an den Enden fixiert und der Dorn nach dem Prinzip Stempel und Matrize in den 

Schlauch geschoben werden, bis der gewünschte Biegeradius erreicht ist (Abbildung 25). Bei 

langen Stents muss hierbei beachtet werden, dass nur ein Teil des implantierten Stents in 

Kontakt mit dem Dorn ist und gebogen wird.  

Während der Biegung müssen die Prüfschlauchenden bei allen Prinzipien zusätzlich verschoben 

werden, damit keine zusätzliche axiale Längenänderung erzeugt wird. Bei der Einrichtung des 

Prüfstands ist die Länge des gebogenen Stents zu bestimmen, so dass sowohl beim minimalen 

als auch beim maximalen Krümmungsradius dieselbe Stentlänge gebogen wird.  
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Um zusätzliche Deformationen des zu prüfenden Stents zu vermeiden, sollte die Reibung 

zwischen Prüfschlauch und dem Dorn oder dem Stempel-Matrize-System durch Schmiermittel 

oder geringe Reibwerte des verwendeten Materials minimiert werden. Um eine Dislokation des 

Prüfschlauchs auf dem Dorn zu verhindern, kann dieser mit einer konkaven Vertiefung, 

entsprechend dem Außenradius, versehen werden.  

 
 

Abbildung 24: Biegung des im Prüfschlauch 
implantierten Stents um einen Dorn (modifiziert 
nach [10]) 

Abbildung 25: Biegung um einen Dorn unter 
Verwendung von Stempel und Matrize 
(modifiziert nach [10]) 

Für die zyklische Torsionsbelastung kann der Stent sowohl direkt eingespannt als auch in 

Prüfschläuche implantiert werden. Zur Realisierung der Torsionsbelastung wird ein Ende des 

Prüfschlauchs/Stents zyklisch um seine Achse rotiert, während das andere Ende festgehalten 

wird. Wird die Torsion über einen Prüfschlauch übertragen, muss die geforderte Torsion auf dem 

Stent z.B. durch Messen der Rotation durch durchscheinende Prüfschläuche nachgewiesen 

werden. Der Torsionswinkel wird pro Längeneinheit des Stents angegeben und sollte mit einer 

Genauigkeit von ± 1° bestimmt werden können. 

4.3 Ermüdungsprüfung von Stents als „Fatigue-to-Success“ und 
als „Fatigue-to-Fracture “ 

Für die Prüfung des Ermüdungsverhaltens lassen sich zwei Typen ableiten: „Fatigue-to-Success“ 

(FtS) und „Fatigue-to-Fracture“ (FtF).  

Der Stand der Technik bei der Ermüdungsprüfung von Stents sieht eine Prüfung nach dem 

„Fatigue-to-Success“- (FtS-) Prinzip vor, bei dem eine hinreichende Anzahl von Stents eine 

Ermüdungsprüfung mit physiologisch relevanten worst-case Belastungen über eine Lastwechsel-

anzahl, die der Lebensdauer des Implantats entspricht, ohne Brüche absolviert. Nach 

Prüfungsende entscheiden die Anzahl und die Klassifikation der Stentbrüche (vgl. Abschnitt 5.4) 

über einen erfolgreichen Abschluss der Prüfung. Dieses Prinzip ist zeit- und kostenintensiv, aber 

einfach durchzuführen und auszuwerten. 
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Beim FtS-Prinzip werden die Stents unter physiologischen worst-case Bedingungen für eine der 

Lebensdauer entsprechende Zyklenzahl geprüft, wobei die Unversehrtheit des Stents gegenüber 

Brüchen das Akzeptanzkriterium ist. Aus der Literatur, Herstellerangaben über das Material oder 

weiteren Experimenten nach dem FtS-Prinzip werden Dauerfestigkeitskurven erstellt, aus denen 

Sicherheitsfaktoren berechnet werden können. Über numerisch basierte Berechnungen wird 

anschließend untersucht, ob die mittlere Spannung und die Spannungsamplituden in Bezug auf 

die Dauerfestigkeitskurven sicher sind. 

Ein großer Nachteil des FtS-Prinzips liegt in der Schwierigkeit der Definition von physiologisch 

relevanten worst-case Bedingungen für den Stent, die oftmals nicht aus klinischen Studien, 

sondern aus präklinischen Studien, wie z.B. in vitro Vergleichen mit zertifizierten Stents oder 

Tierversuchen, stammen. Obwohl alle Stents in dieselbe Umgebung implantiert werden, ändern 

sich die worst-case Bedingungen durch die Stentimplantation in Abhängigkeit vom Stenttyp. Wird 

der Stent außerhalb seiner benannten Indikation und damit außerhalb der geprüften worst-case 

Bedingungen verwendet, existiert kein Anhaltspunkt über die Grenzen der Verwendungsmöglich-

keiten. Werden neben worst-case Belastungen zusätzlich auch worst-case Materialeigenschaften 

und Dimensionen gewählt, wird der Stent überdimensioniert geprüft und der Einfluss anderer 

potentiell kritischer Aspekte, wie z.B. die Belastung bei der Implantation, wird reduziert. 

Wird die Prüfung nach dem FtS-Prinzip erfolgreich absolviert, tritt kein Bruch auf. Allerdings muss 

ohne Kenntnis des Versagensbildes und -verlaufs angenommen werden, dass alle Brüche ein 

klinisches Versagen des Stents zur Folge haben und dadurch nicht toleriert werden können, was 

nicht zwangsweise zutreffen muss. Eine Aussage bezüglich des Zeitpunktes eines eventuell 

auftretenden Bruchs ist in diesem Fall nicht möglich [57]. 

Im Gegensatz zum FtS-Prinzip werden die Stents beim „Fatigue-to-Fracture“- (FtF-) Prinzip 

verschiedenen Belastungsniveaus über eine bestimmte Anzahl von Lastzyklen unterworfen. Im 

Zusammenhang mit den Lastbedingungen und dem Materialverhalten kann dadurch eine 

Aussage zum Ermüdungsverhalten getroffen werden. Schwierigkeiten treten hierbei bei der 

genauen Bestimmung des Zeitpunktes, an dem der erste Bruch auftritt, auf. Ein Bestandteil der 

FtF-Prüfung kann die FtS-Prüfung sein. Die Prüfung nach FtF bietet Informationen, wann und 

unter welchen Bedingungen ein Bruch auftreten kann und liefert eine Aussage über das Risiko 

eines Versagens. 

Beim FtF-Prinzip werden zunächst die Spannungen/Dehnungen im Rahmen einer Spannungs-

analyse, durch z.B. FEM, unter physiologischen worst-case Belastungen ermittelt. Diese werden 

mit den quasistatischen und dynamischen Materialeigenschaften für die benötigte Lebensdauer 

verglichen und Sicherheitsfaktoren für physiologische Lasten berechnet. Anschließend werden 

für verschiedene Zyklenzahlen Dauerfestigkeitskurven erstellt und Vorhersagen für ein 

Stentversagen bei Deformationen getroffen, die größer sind als die Deformationen, die durch 

physiologische Belastungen hervorgerufenen werden. Diesen Belastungen werden die Stents in 

einer experimentellen Ermüdungsuntersuchung für die entsprechenden Zyklenzahlen ausgesetzt. 



4 Dynamische strukturmechanische Prüfung peripher implantierter selbstexpandierender Nitinolstents 

 - 37 - 

Durch den Vergleich der Ergebnisse mit den erstellten Dauerfestigkeitskurven können Aussagen 

zur Betriebssicherheit, wie z.B. eine 90% Überlebensrate, getroffen werden [57].  

Der Vorteil der Prüfung nach dem FtF-Prinzip ist der Nachweis von grenzwertigen Kräften und 

Deformationen, bei denen ein Bruch bei einer bestimmten Zyklenzahl auftritt. Das Auftreten von 

Brüchen während der Prüfung ermöglicht die genaue Untersuchung und Beurteilung des 

Schadensbildes, so dass der Versagensmechanismus im Hinblick auf ein potentielles klinisches 

Risiko untersucht werden kann.  

4.4 Stand der Technik zur mehrachsigen Stentprüfung 

Der Stand der Technik wird in die Bereiche der publizierten Prüfverfahren zur mehrachsigen 

Stentprüfung und Beispiele für patentierte Vorrichtungen zur nicht-radialen Stentprüfung unterteilt 

und die Vor- und Nachteile der Verfahren und Vorrichtungen beschrieben. 

4.4.1 Beispiele für Patente zur nicht-radialen Stentprüfung 

Zwei Patente erfahren die Umsetzung in einem kommerziell erhältlichen Prüfstand zur 

mehrachsigen Stentprüfung (vgl. Abschnitt 4.4.2), wobei das System und die Methode für eine 

mehrachsige Vorrichtung zur Ermüdungsprüfung (US 7 624 648 B2 [97]) sowie das Werkzeug 

zur Realisierung einer Biegebelastung (US 7 546 775 B2 [33]) patentiert sind. 

Das Patent US 7 624 648 B2 (Abbildung 26) sieht die Implantation des Stents in einen Prüfschlauch 

vor (101), der an seinen Enden eingespannt ist (103/107) und die pulsatile oder stationäre 

Durchströmung des Stents mit einem Fluid ermöglicht. Die Einspannungen können verschieblich 

ausgeführt werden, so dass eine Torsionsbelastung des Stents um seine Längsachse aufgebracht 

werden kann. Die obere Einspannung (103) ist auf einer Schiene (112) verschieblich gelagert, um 

eine Translation zu ermöglichen, die den Stent axial belastet. Die Biegebelastung wird über 

Querkraftbiegung um einen Dorn ermöglicht (136/137), wobei der Biegewinkel und die Krümmung 

sowohl durch die horizontale Verschiebung des Formstücks (137) als auch durch die vertikale 

Verschiebung der Einspannungen beeinflusst werden. Durch Aneinanderreihung der patentierten 

Vorrichtung können beliebig viele Stents gleichzeitig geprüft werden. 

             

Abbildung 26: In US 7 624 648 B2 patentierte Vorrichtung für die Ermüdungsprüfung von Stents 
(modifiziert nach [97]) 



4 Dynamische strukturmechanische Prüfung peripher implantierter selbstexpandierender Nitinolstents 

 - 38 - 

In US 7 546 775 B2 [33] wird ein Formstück für die Realisierung der Biegebelastung beschrieben 

(Abbildung 27). Dieses besteht aus einer Vielzahl von steifen Stiften (225), die die Kontaktfläche 

mit einem Prüfschlauch bilden. Die Stifte sind drehbar gelagert, um Reibungseffekte und lokale 

Dehnungen am Schlauch zu reduzieren.  

        

Abbildung 27: In US 7 546 775 B2 patentiertes Formstück zur Realisierung einer Biegebelastung auf 
Stents (modifiziert nach [33]) 

Zur Aufbringung der Biegebelastung (Abbildung 27) wird das Formstück (150) lateral gegen 

einen Prüfschlauch (110), in den ein Stent (105) implantiert ist, geschoben, um diesen mittels 

Querkraftbiegung um einen Dorn zu belasten. Hierfür ist der Prüfschlauch an seinen Enden 

eingespannt (130/135), wobei beide Einspannungen vertikal verschieblich sein können, um die 

Biegebelastung in der Stentmitte zu garantieren. Beide Einspannungen können für die 

Realisierung einer Torsionsbelastung beweglich gelagert sein. Zwei weitere Formstücke 

(145/140) bilden die äußeren Stützen für die hier angestrebte Querkraftbiegung. Der Erfinder 

beschreibt Probleme durch Reibung an den Kontaktstellen mit den Formstücken, bei denen die 

Prüfschläuche vor Prüfungsende versagen. 

Ein weiterer Nachteil des Formstücks bzw. der Vorrichtung in Abbildung 26 und Abbildung 27 

sind die bei der Querkraftbiegung benötigten großen Wege und die damit verbundenen großen 

translatorischen Trägheitskräfte bei zunehmender Frequenz. Hierdurch bedingt erfordert eine 

solche Prüfvorrichtung ein entsprechendes Prüfstandvolumen. 

Olson et al. [101] patentieren Prüfmöglichkeiten zur Realisierung einer Biege-, Torsions- oder 

axialen Belastung auf einen Stent. Die Biegebelastung erfolgt hierbei nach dem Prinzip des 

Biegens mit Dorn (Abbildung 28). Hierbei wird der Radius über ein Formstück (40) gesteuert, um 

das der in einen Schlauch implantierte Stent mit Hilfe eines Stempels (33) gebogen wird. Der 

Stempel wird dabei in einer Kurvennut (41) geführt. An einem Ende ist der Schlauch eingespannt 

(39). Für die Torsionsbelastung (Abbildung 28) wird der Schlauch mit dem implantierten Stent mit 

Hilfe von Gummiringen an beiden Enden eingespannt (25) und durch den Antrieb (23) um seine 

Achse tordiert. Hierbei werden die absolvierten Zyklen erfasst (26). Die Verschiebung der beiden 

Einspannungen (25) in axialer Stentrichtung ermöglicht bei diesem Prüfaufbau die axiale 

Dehnung oder Stauchung des Stents.  
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Abbildung 28: Biegung mit Dorn (links) und Realisierung der Torsionsbelastung (rechts), patentierter 
Prüfstand von Olson et al. [101] 

Auch das Biegen ohne Dorn ist als Lösung zur Ermüdungsprüfung von Stents patentiert [81] 

(Abbildung 29). Hierfür werden Stents (2) in elastische Schläuche (17) implantiert, die an beiden 

Enden eingespannt werden (5/6). Durch vertikale Verschiebung der Einspannungen (5) wird eine 

axiale Belastung der Stents erreicht (L). Eine Rotation der Einspannung (5) resultiert in einer 

Torsionsbelastung des Stents. Eine drehbare Aufhängung der Einspannung ermöglicht eine Biegung 

des Stents ohne Dorn durch vertikale Verschiebung der Einspannung (D) (Abbildung 29). 

 

Abbildung 29: Patentierte Vorrichtung zur mehrachsigen Stentbelastung (modifiziert nach [81]) 

Beim Biegen ohne Dorn sowie durch Knicken ist der Stent über seine Gesamtlänge der 

Biegebelastung ausgesetzt. Ein großer Nachteil dieses Verfahrens ist allerdings, dass eine 

gleichzeitige axiale oder Torsionsbelastung des Stents nicht möglich ist. Des Weiteren ergibt sich 

der Biegeradius bei diesem Verfahren aus der Reaktion des gestenteten Prüfschlauchs auf die 

translatorische Verschiebung der Enden, wobei eine starke Abhängigkeit des Biegeradius von 

der Stent- und Schlauchsteifigkeit existiert. Hierdurch ist es bei jeder Prüfung erforderlich, den 

Biegeradius zu bestimmen. Da bei der Biegung ohne Dorn sowie dem Knicken keine radiale 

Lagerung des Prüfschlauchs/Stents erfolgt, ist dieses Verfahren klinisch nicht relevant. 
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4.4.2 Prüfverfahren und Publikationen zur mehrachsigen Stentprüfung 

Bose Corporation (Minnesota, USA) vertreibt mit dem ElectroForce®9400 einen Mehrachsen-

prüfstand für Stents, die in periphere Arterien, wie die A. renalis, A. carotis und A.femoralis sowie 

A. poplitea, implantiert werden, wobei der Schwerpunkt auf der Prüfung von Stents für die SFA 

liegt (Abbildung 30).  

Der entwickelte Prüfstand ist in der Lage, mehrere Stents zeitgleich mit Biegung, Torsion, 

axialem Zug und/oder Druck sowie radial zu belasten. Hierfür werden die Stents in Prüfschläuche 

mit einem Innendurchmesser von 5 - 8 mm implantiert und mit isotonischer Kochsalzlösung 

durchströmt. Neben einzelnen Stents können auch Stents mit überlappten Enden geprüft werden. 

Die Stents werden an ihren Endquerschnitten und/oder an den Endquerschnitten der Prüfschläu-

che eingespannt. 

 

Abbildung 30: Multiaxialer Prüfstand ElectroForce®9400 (Bose Corp., Minnesota, USA) für periphere 
Stents [23] 

Es kann eine zyklische radiale Deformation von 5 % mit einer Frequenz von maximal 60 Hz 

erreicht werden. Die tatsächliche Prüffrequenz ist von den Prüfbedingungen, wie der Stentgeo-

metrie und -compliance, dem Durchmesser und der Wandstärke des Prüfschlauchs sowie der 

gewünschten Durchmesseränderung abhängig. Die Durchmesseränderung wird mittels 

Lasermessung überprüft. 

Die Biegebelastung wird durch eine definierte weg- bzw. kraftgesteuerte Querbeanspruchung 

durch Querkraftbiegung über eine symmetrische, kreisförmige Kontaktfläche realisiert (Abbildung 

31). Das generelle Prüfprinzip dieser Biegebelastung ist Inhalt des Patents US 7 546 775 B2 [33] 

sowie US 7 624 648 B2 [97]. Es können Biegewinkel von 0 - 90° eingestellt werden.  
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Abbildung 31: Multiaxialer Prüfstand ElectroForce®9400 (Bose Corp., Minnesota, USA) für periphere 
Stents; links: Ausgangszustand, rechts: Unter Biegebelastung [23] 

Die Prüfung der Stents kann mit einer axialen Kompression von 0 - 20 % Dehnung und einem 

Torsionswinkel von 0 - 60° erfolgen. 

Bei der Biege- und Torsionsbelastung sowie bei axialer Kompression wird eine Prüffrequenz von 

1,5 Hz erzielt, wobei eine Prüfung mit überlagerten Belastungen die Frequenz auf 1 Hz reduziert. 

In Abhängigkeit von den Prüfparametern dauert eine 10-Jahres-Simulation von Stents mit 

200 mm Länge 90-120 Tage [23]. Neben einer 10-Jahres-Simulation kann auch eine Prüfung bis 

zum Bruch erfolgen, wobei nicht angegeben wird, wie die Bruchdetektion erfolgt. 

Als Dienstleister bietet MDT (Medical Device Testing Services (USA)) verschiedene Prüfverfah-

ren für vaskuläre Stents an. Neben einachsigen Prüfverfahren, z.B. bezüglich Biege- oder 

zyklischer radialer Belastung, wird auch ein Prüfverfahren zur Simulation der Gefäßkinematik 

beim Gehen als Ermüdungsprüfung für periphere vaskuläre Stents angeboten. Das Prüfverfahren 

basiert auf einem modifizierten Torsionsprüfstand (ElectroForce® 3300 Axial Torsion Instrument, 

Bose Corp., USA), der sowohl lineare als auch Rotationsmotoren beinhaltet.  

Die Belastungen Torsion, Biegung und axiale Kompression werden über einen Prüfschlauch als 

10-Jahres Simulation auf den implantierten Stent aufgebracht. Die Prüfschläuche sind mit 

Kochsalzlösung gefüllt und die Prüfung wird bei einer Temperatur von 37 °C durchgeführt. Es 

können bis zu 16 Stents gleichzeitig geprüft werden.  

Im ersten Schritt der Prüfung wird eine axiale Kompression von 1 - 25 mm aufgebracht. Anschlie-

ßend wird die Torsionsbelastung mit einem Winkel von 1 - 100° und die Biegebelastung mit einem 

Biegeradius von 10 - 50 mm nach dem Stempel-Matrize-System realisiert (Abbildung 32).  

Die korrekte Realisierung der geforderten Belastungen vom Prüfschlauch auf den Stent wird 

mittels Hochgeschwindigkeitskamera untersucht. 
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Abbildung 32: Prüfprinzip der Beinbewegung von MDT (modifiziert nach [3]) 

In Abhängigkeit von den gewählten Prüfparametern läuft der Stentprüfstand mit einer Frequenz 

von 1 - 3 Hz. 

Die Sichtprüfung mit einem digitalen Mikroskop lässt sich bei bis zu 100-facher Vergrößerung vor, 

während und nach der Prüfung durchführen und dient ebenso zur digitalen Archivierung der 

Prüfkörper. Mit einem hochauflösenden Olympus Endoskop mit beweglichem Ende können die 

Stents im Schlauch von innen vor, während und nach der Prüfung betrachtet werden, ohne die 

Stents aus den Prüfschläuchen zu explantieren. Die Video-Aufzeichnung ermöglicht die digitale 

Archivierung der Bilder [3]. Das Versagen der Stents wird bei einem Bruch oder Riss, der bei 

einer 30-fachen Vergrößerung zu erkennen ist, definiert und während der Prüfung sowie am 

Prüfungsende untersucht. 

Neben den oben beschriebenen Prüfverfahren, bei denen der Stent in einen Prüfschlauch 

implantiert wird, kann die Belastung auch direkt auf den Stent aufgebracht werden. Müller-

Hülsbeck et al. [91] untersuchen sieben unterschiedliche kommerziell erhältliche Nitinolstents auf 

Biegung, axiale Kompression und Torsion. Die Biegung wird nach dem Prinzip des Biegens um 

einen Dorn ausgeführt, indem das bewegliche Stentende um 40° nach oben und 30° nach unten 

bewegt wird (Abbildung 33). Aufgrund des um 2 mm kleineren Abstands der Dorne gegenüber 

dem Stentaußendurchmesser entsteht durch die Einspannung eine Querschnittsovalisierung 

(Abbildung 33). Für die axiale Stentkompression wird ein Stentende eingespannt, während am 

anderen Ende eine Verschiebung um 40 % der Stentlänge bzw. eine Torsion um ± 90° 

aufgebracht wird.  

 

Abbildung 33: Direkt auf den Stent aufgebrachte Biegebelastung (modifiziert nach [91]) 
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Die hier vorgestellten bestehenden Prüfverfahren zur mehrachsigen Stentprüfung basieren auf 

dem Prinzip der Biegung um einen Dorn. Hierbei ist der Vorteil die einfache technische 

Umsetzung der geforderten Parameter Biegeradius und Biegewinkel durch die Ausführung des 

Dorns. Zusätzlich kann der Dornquerschnitt variiert werden, so dass z.B. auch sich verkleinernde 

Biegeradien untersucht werden können. Die Verwendung eines Stempel-Matrize-Systems 

ermöglicht eine Abstützung des Prüfschlauch-/Stentquerschnitts in radialer Richtung, so dass die 

Entstehung von Querschnittsdeformationen behindert wird. Allerdings wird hierbei eine 

Sichtkontrolle der Stents erschwert. Ein weiterer Nachteil sind die Kontaktstellen zwischen Dorn 

oder Stempel/Matrize und Prüfschlauch, durch die Reibung bis hin zum Versagen des Schlauchs 

auftritt. Bei der Biegung um einen Dorn wird der Stent in Abhängigkeit von seiner Länge und dem 

Dorndurchmesser nicht über die gesamte Länge belastet, so dass bei der Auswertung der 

auftretenden Brüche der relevante Bereich zu berücksichtigen ist. 

Für die Realisierung der Biegebelastung als Querkraftbiegung, wie sie bei den vorgestellten 

Prüfverfahren verwendet wird, sind relativ große Verschiebungen erforderlich (vgl. Abschnitt 

6.3.1), die in Abhängigkeit von der Prüffrequenz große translatorische Trägheitskräfte zur Folge 

haben. Entsprechend hat die Dimensionierung des Prüfstands zu erfolgen (vgl. Abbildung 30 und 

Abbildung 36). 



5 Prinzip eines neuartigen Mehrachsen-Stentprüfstands und experimentelle Analyse der strukturmechanischen Beanspruchung 
von Nitinolstents unter mehrachsiger Belastung 

 - 44 - 

5 Prinzip eines neuartigen Mehrachsen-Stentprüfstands 
und experimentelle Analyse der strukturmechanischen 
Beanspruchung von Nitinolstents unter mehrachsiger 
Belastung  

Aus der in Abschnitt 4.1 und 4.2 beschriebenen physiologischen Belastungssituation sowie den 

Angaben aus den relevanten Normen werden im Folgenden Anforderungen und Rahmenbedin-

gungen an eine Prüfmethode zur mehrachsigen Stentprüfung beschrieben, bevor das Prinzip 

eines neuartigen Mehrachsen-Stentprüfstands, entwickelt im Institut für ImplantatTechnologie 

und Biomaterialien e.V. (iiB), dargestellt wird. Anschließend werden Details des Prüfregimes 

festgelegt und die Justierung des Prüfstands mit linearen und nichtlinearen Methoden 

beschrieben. Der besondere Einfluss der Prüfschlauchbettung während der Biegebelastung wird 

unter statischen Bedingungen separat untersucht. 

5.1 Anforderungen an eine Prüfvorrichtung zur mehrachsigen 
Stentprüfung und Prinzip eines neuartigen Mehrachsen-
Stentprüfstands 

5.1.1 Anforderungen an eine Prüfvorrichtung und Lastannahmen zur 
mehrachsigen Stentprüfung 

Eine Prüfvorrichtung sowie das dazugehörige Prüfverfahren sollten zum Prüfen von Stents aus 

Metalllegierungen, Polymeren und aus Kombinationen von beiden sowie beschichteten und 

biodegradierbaren Stents und endovaskulären Grafts geeignet und damit flexibel einsetzbar sein. 

Vorzugsweise sind periphere, selbstexpandierende Stents mit Indikation für den femoropoplitealen 

Gefäßabschnitt für diese Prüfmethode vorgesehen, da die hier vorherrschenden Belastungen häufig 

zu Strut- oder vollständigen Stentbrüchen sowie zum Stentversagen führen (vgl. Abschnitt 3.2).  

Die Voraussetzung für die Simulation von physiologischen worst-case Bedingungen in einem 

Prüfstand sind Studien zur Erforschung der zutreffenden Grundbelastungsarten und biomechani-

schen Kräfte, die überlagert auf einen Stent im femoropoplitealen Gefäßabschnitt wirken. 

Ausgehend von dieser in Abschnitt 4.1 aufgeführten physiologischen Belastung durch Zug, Druck, 

ein- oder zweiachsige Biegung sowie Torsion werden die Anforderungen an die Prüfmethode 

bezüglich der zu realisierenden Belastungen eingegrenzt und festgelegt (Tabelle 10).   
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Tabelle 10: Auf Grundlage von Publikationen (Abschnitt 4.1) festgelegte Anforderungen an die 
Prüfmethode „Mehrachsen-Stentprüfstand“ bezüglich der kinematischen Randbedingungen  

Parameter Anforderung 

Belastungen 

Axiale Kompression maximal 12 % der implantierten Stentlänge 

Biegung Radius 20 mm und 45 mm, Umschlingungswinkel 48° 

Torsion 2,8°/cmStentlänge  

Prüftemperatur  37 ± 2 °C 

Lastwechselzahl  10 Mio. gehen, 1 Mio. Treppensteigen; Auflösung: ± 1000 

 

Diese Grundbelastungsarten sollten periodisch und sowohl separat als auch überlagert sowie 

unabhängig voneinander kombinierbar aufgebracht werden können. Frei wählbare, voneinander 

unabhängige Phasenverschiebungen der einzelnen Belastungen zueinander ermöglichen eine 

weitere Annäherung des Prüfregimes an die realen Bedingungen im Körper. Die Prüffrequenz 

soll frei wählbar sein. 

Es sollen unterschiedliche Biegeradien realisiert werden und die spezifischen Eigenschaften des 

Implantationsortes mit seiner flexiblen Bettung nachgebildet werden können, damit die 

Formänderung des zu prüfenden Stents äquivalent zur Verwendung an den verschiedenen 

Implantationsorten erfolgen kann. 

Zur Gewährleistung zertifizierungsfähiger und nach dem Stand der Technik zugleich reproduzier-

barer Prüfergebnisse wird eine Vorrichtung zum Erfassen der Lastwechselzahl benötigt. Das 

System sollte sich nach Erreichen einer voreingestellten Lastwechselzahl automatisch 

abschalten. 

Der zu entwickelnde Prüfstand sollte flexibel auf alle relevanten Stentdurchmesser und -längen 

einstellbar sein. 

Für die Realisierung der Belastungen werden Fixierungsvorrichtungen benötigt, in die die 

Endquerschnitte der Stents oder der Prüfschläuche, in die Stents implantiert sind, eingespannt 

werden.  

Für den Prüfstand ist eine Möglichkeit zur Umspülung der Stents mit einem auf 37 °C 

temperierten Prüfmedium, z.B. Elektrolytlösung, zu integrieren. Auftretende Fehler bei der 

Umspülung der Stents, wie z.B. Leckagen, müssen detektiert und der Prüfstand muss in diesem 

Fall gestoppt werden. Des Weiteren soll die Möglichkeit eines Mediumwechsels unter 

Reinraumbedingungen geschaffen werden, damit bei Bedarf eine Untersuchung der während der 

Prüfung freigesetzten Partikel erfolgen kann. Hierfür ist eine Entnahmemöglichkeit der 

vorgedehnten Schläuche unter Beibehaltung der Vordehnung angestrebt, damit keine 

Veränderungen der Stentbelastung auftreten. 

Neben der Möglichkeit zur äußeren visuellen Inspektion der Stents ist eine intraluminale 

Inspektion durch z.B. ein Endoskop zu berücksichtigen.  
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Zur Minimierung der Prüfzeiten für wechselbeanspruchte Implantate sollen mit der zu 

entwickelnden Prüfvorrichtung und dem dazugehörigen -verfahren mehrere Stents zeitgleich dem 

gleichen Prüfregime unterworfen werden können. 

5.1.2 Prinzip eines neuartigen Mehrachsen-Stentprüfstands und Festlegung 
des Prüfregimes 

Das Prinzip des neuartigen Mehrachsen-Stentprüfstands basiert auf der vom Institut für 

ImplantatTechnologie und Biomaterialien e.V. (iiB) in DE 10 2009 050 576 B4 [111] patentierten 

Prüfvorrichtung mit zwei Fixiervorrichtungen, in denen die Endquerschnitte des Stents oder des 

Prüfschlauchs, in den der Stent implantiert ist, befestigt werden können (Abbildung 34). Der 

Prüfschlauch ermöglicht die stationäre Durchströmung des Stents mit temperiertem Medium.  

 

Abbildung 34: Vorrichtung zur mehrachsigen Stentprüfung (modifiziert nach [111]) 

Auf der rechten Seite ist die Fixiervorrichtung an einem Schlitten (6) befestigt, der mit Hilfe eines 

Antriebs (Motor/Achse 1) auf einer Schiene (5) in x-Richtung bewegt wird und eine axiale 

Kompression/Extension auf den Stent ausübt (Abbildung 34).  
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Die Realisierung der Torsionsbelastung auf den Stent/Prüfschlauch erfolgt über einen an den 

Schlitten (6) gekoppelten und am äußeren Umfang der rechten Fixiervorrichtung gelenkig 

befestigten starren Stab (7), der von Motor/Achse 3 in y-Richtung hin- und herbewegt wird. Dadurch 

kann die Torsion um die Stentlängsachse in eine oder beide Richtungen erfolgen (Abbildung 34). 

Auf der linken Seite ist die Fixiervorrichtung an einem auswechselbaren Führungselement (8) 

befestigt (Abbildung 34, Abbildung 35). Eine Drehachse (9) (Motor/Achse 2), an die das 

Führungselement fest gekoppelt ist, überträgt durch ihre Rotation um die y-Achse eine 

weggesteuerte Rotationsbiegung auf den Stent/Prüfschlauch. Im Vergleich zu dem beim 

ElectroForce®9400 verwendeten Prinzip der Querkraftbiegung (vgl. Abschnitt 4.4.2) werden bei 

der Rotationsbiegung kleinere Wege benötigt (vgl. Abschnitt 6.3.1), so dass die translatorischen 

Trägheitskräfte bei ähnlicher Prüffrequenz geringer sind. Zusätzlich kann der Prüfstand durch die 

Verringerung der Wege bei der Rotationsbiegung kompakter gestaltet werden, als es bei der 

Querkraftbiegung der Fall ist, wie es qualitativ im Vergleich von Abbildung 30 und Abbildung 36 

zu erkennen ist. 

Das Führungselement (8) ist mit einer kreisförmigen Bahnkurve versehen, die durch einen 

tangentialen Auslauf an ihrem Ende einen stetigen Übergang zwischen gebogenem und nicht-

gebogenem Stent/Prüfschlauch ermöglicht (Abbildung 35).  

 

Abbildung 35: Führungselement des neuartigen Mehrachsen-Stentprüfstands für die Rotationsbiegung 

Die Geometrie des Führungselements sowie die des Querschnitts der Bahnkurve, an die sich der 

Stent während der Biegung anformt (Prüfschlauchbettung), können im Zusammenspiel mit der 

Materialsteifigkeit des Führungselements variiert werden (vgl. Abschnitt 5.3). Hierdurch können 

z.B. spezifische Bettungseigenschaften des Implantationsortes nachgebildet werden. Es können 

Führungselemente mit unterschiedlichen Biegeradien verwendet werden, wobei auch komplexe, 

nicht kreissegmentförmige Bahnkurven realisierbar sind. 

Mit der entwickelten Prüfvorrichtung ist der Stentdurchmesser nicht limitiert, wobei sowohl das 

Führungselement als auch der Prüfschlauch und dessen Fixiervorrichtungen entsprechend dem 

Stentdurchmesser angepasst werden müssen. 
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Mit der in Abbildung 34 beschriebenen Prüfvorrichtung wird ein Prüfstand mit zwölf Prüfplätzen 

(PP1 - PP12) aufgebaut (Abbildung 36).  

  

Abbildung 36: Neuartiger Mehrachsen-Stentprüfstand mit zwölf Prüfplätzen; rechts: einzelne 
Prüfvorrichtung mit Führungselement, Prüfschlauch mit implantiertem Stent 

Die Prüfvorrichtung wird durch drei voneinander unabhängige Linearmotoren mit frei wählbarer 

Phasenverschiebung und Frequenz angetrieben. Hierdurch ist eine flexible Gestaltung des 

Prüfregimes möglich. Eine phasengleiche Aufbringung aller Beanspruchungsarten führt zu einer 

ungleichmäßigen axialen Kompressions- und Torsionsbelastung des Stents über die Stentlänge 

bei zunehmender Biegung, da bei zunehmendem Kontakt des Prüfschlauchs mit dem 

Führungselement sowohl die Torsions- als auch die axiale Belastung durch Reibung behindert 

werden. Deshalb wird ein Prüfregime festgelegt, das eine worst-case Simulation ermöglicht, 

indem zunächst die axiale Kompression und die Torsion aufgebracht werden. Anschließend 

erfolgt die Biegebeanspruchung des axial komprimierten und tordierten Stents. Die Beendigung 

des Zyklus erfolgt in umgekehrter Reihenfolge. Durch dieses Prüfregime werden alle Beanspru-

chungsarten in der Mitte jedes Lastzyklus überlagert. Dabei ist zu beachten, dass nicht gesichert 

ist, ob dieser Lastfall in vivo tatsächlich eintritt. In jedem Fall erfolgt hierdurch jedoch eine worst-

case Betrachtung. 

Die Steuerung des Prüfstands erfolgt über die Motorcontroller, denen der Programmablauf 

entsprechend dem festgelegten Prüfregime vorgegeben wird. Da die Steuerung der Motoren 

geschwindigkeitsabhängig erfolgt, werden die Frequenz und damit auch die Prüfdauer direkt von 

den gewählten Prüfparametern bestimmt. In Abhängigkeit von den für das Prüfregime benötigten 

Wegen kann eine Prüffrequenz von 2 - 2,3 Hz erreicht werden. 
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5.2 Justierung des Mehrachsen-Stentprüfstands 

Vor den ersten Stentprüfungen ist eine Validierung des Mehrachsen-Stentprüfstands erforderlich, 

mit der gezeigt wird, dass die Komponenten des Prüfstands korrekt funktionieren, so dass es 

nicht notwendig ist, die Biegung und Torsion des Stents vor jeder Prüfung zu kontrollieren. Die 

axiale Stentkompression hingegen muss vor jedem Prüfbeginn justiert werden, da sie sowohl 

stark von der Stentlänge als auch vom Stenttyp sowie von den Parametern Schlauchlänge, 

initiale Schlauchdehnung und Verschiebung der Schlauchenden (Fahrweg des Motors) abhängt. 

Um den iterativen Prozess der Justierung zu vereinfachen, werden Ergebnisse theoretischer 

Untersuchungen zur Berechnung der axialen Stentkompression vorgestellt, mit deren Hilfe die 

benötigten Parameter eingegrenzt werden können. Trotzdem ist vor jedem Prüfbeginn die 

experimentelle Überprüfung der axialen Stentkompression erforderlich.  

5.2.1 Validierung des Mehrachsen-Stentprüfstands  

Vor jedem Prüfbeginn erfolgt die Montage und Anpassung der für die geforderte Biegebelastung 

erforderlichen Führungselemente. 

Da die Belastungen auf den Stent über einen Prüfschlauch aufgebracht werden, muss ein 

Oversizing des Stentaußendurchmessers gegenüber dem Prüfschlauch-Innendurchmesser 

realisiert werden. So werden im Rahmen der Validierung Stents mit einem Außendurchmesser 

von 7 mm in einen Prüfschlauch mit einem Innendurchmesser von 5 mm implantiert.  

Der Prüfschlauch wird in Abhängigkeit von der Länge des zu prüfenden Stents zugeschnitten. Es 

wird festgelegt, dass bei langen Stents (lStent > 100 mm) eine initiale Schlauchlänge von lSchlauch = 

lStent und für kürzere Stents (lStent < 100 mm) lSchlauch = lStent+ 10 mm verwendet wird. 

Als Fixiervorrichtung für die Prüfschlauchenden werden Einschraubverschraubungen mit einem 

passenden Durchmesser verwendet (Abbildung 37). 

 

Abbildung 37: Silikonprüfschlauch mit Fixiervorrichtungen. Die linke Fixiervorrichtung wird im 
Führungselement, die rechte (Einschraubverschraubung) am Schlitten befestigt 

Nachdem an allen Prüfplätzen Silikonprüfschläuche eingebaut sind, wird der Schlitten von 

Motor 1 zunächst soweit verschoben, dass die Prüfschläuche keine Vordehnung aufweisen. 

Anschließend wird die freie Schlauchlänge zwischen den Fixervorrichtungen für jeden Prüfplatz 

gemessen und notiert.  

Da die Realisierung einer axialen Stentkompression die initiale Dehnung des Prüfschlauchs 

erfordert, um ein Ausknicken des Stents aus seiner Längsachse zu verhindern, wird der Schlitten 
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manuell um uI verschoben. Hierbei gilt: lSchlauch_ui ≥ lStent + 10 mm, damit die Enden des 

anschließend implantierten Stents auch bei axialer Kompression sichtbar bleiben (Abbildung 38). 

Es ist darauf zu achten, dass eine ausreichend große Vordehnung aufgebracht wird, damit die 

gewünschte axiale Kompression des Stents erzielt werden kann (vgl. Abschnitt 5.2.2). Die durch 

die Vordehnung des Prüfschlauchs verursachte Querschnittsverringerung wird vernachlässigt. 

In Vorbereitung zur Stentimplantation wird die nominelle Stentlänge auf dem Prüfschlauch 

markiert, wobei l1 = l2 ≥ 5 mm gilt (Abbildung 38). Für die Implantation der Stents können die 

vorgedehnten Prüfschläuche mit Hilfe eines Rahmens aus dem Mehrachsen-Stentprüfstand 

herausgenommen werden. Die Verwendung von Kältespray auf den Fixiervorrichtungen und dem 

Prüfschlauch erleichtert eine genaue Platzierung der Nitinolstents bei der Implantation, da sich 

deren Expansion durch die niedrige Temperatur stark verzögert. Hierdurch wird auch eine 

implantationsbedingte axiale Dehnung oder Stauchung des Stents verhindert. 

 

Abbildung 38: In vorgedehnten und markierten Silikonprüfschlauch implantierte partiell-überlappte 
Stents mit stentfreien Schlauchbereichen zwischen Stentende und Schlaucheinspannung 

Die initiale Stentlänge wird mittels Messschieber gemessen und dokumentiert. Wenn die 

vorgedehnten Prüfschläuche zur Stentinspektion aus dem Mehrachsen-Stentprüfstand 

herausgenommen werden, ist auch die eingespannte Prüfschlauchlänge nach dem Wiedereinbau 

zu kontrollieren. 

Die anschließende Verschiebung des Schlittens um uo in negative x-Richtung erzeugt die 

gewünschte prozentuale axiale Kompression des Stents, so dass sich die komprimierte 

Stentlänge ε*lStent einstellt (Abbildung 39). Für jeden Prüfplatz wird ε*lStent mittels Messschieber 

gemessen und notiert. Bei Bedarf erfolgt eine Anpassung von uo. Um ein Knicken des 

Prüfschlauchs mit implantierten Stent auszuschließen, gilt stets uo < uI. Sind Erfahrungswerte für 

die zu prüfende Stentgröße vorhanden, so können diese als Ausgangswerte für die Justierung 

der neuen Prüfung verwendet werden. Eine Überprüfung muss dennoch erfolgen. 

 

Abbildung 39: Verschiebung des rechten Silikonprüfschlauchendes zur Realisierung der axialen 
Stentkompression; mit konstruktionsbedingtem Lagerspiel ∆, hervorgerufen durch uI, um die 
Vordehnung des Prüfschlauchs zu erzeugen 
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Aufgrund der stentfreien Schlauchbereiche l1 und l2 und dem daraus resultierenden Steifigkeits-

unterschied zwischen stentfreiem und gestentetem Schlauch wird uo nicht vollständig vom 

Prüfschlauch auf den Stent übertragen, so dass unter Auftreten eines Verlusts α eine 

Verschiebung αuo am Stentende erzielt wird.  

Die statisch ermittelte Verschiebung des Schlittens uo zur Erzielung der axialen Stentkompressi-

on wird Motor 1 übergeben und im dynamischen Betrieb mit Hochgeschwindigkeitsaufnahmen 

(CamRecord CR600x2, Optronis) überprüft (Abbildung 40) (vgl. Abschnitt 5.2.3). Bei Bedarf 

erfolgt eine Anpassung des Fahrwegs von Motor 1.  

 

Abbildung 40: Hochgeschwindigkeitsaufnahmen des Stents zur Validierung der axialen Stentkompression 

Die Validierung der korrekten Biegebelastung erfolgt durch Messung des Biege- oder 

Umschlingungswinkels, der durch Motor 2 gesteuert wird. Eine Validierung des Biegeradius 

entfällt, da dieser durch das Führungselement vorgegeben wird. Der Biege- oder Umschlin-

gungswinkel wird über Hochgeschwindigkeitsaufnahmen überprüft, wobei hierfür eine mm-Skala 

auf dem oberen und dem unteren Führungselement befestigt wird, an der die Bogenlänge durch 

einen feststehenden Zeiger abgelesen werden kann (Abbildung 41). Die Ablesegenauigkeit der 

Bogenlänge liegt bei 0,5 mm. 

 

Abbildung 41: Ermittlung des Umschlingungswinkels bei der Biegebelastung über Messung der 
Bogenlänge mit Hochgeschwindigkeitsaufnahmen; links: Ausgangssituation, rechts: Endpunkt der 

Biegebelastung; hier: 37,5 mm ≙ 48° 
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In Abhängigkeit vom Biegewinkel wird das Mitführen des Schlittens während der Biegebelastung 

durch Motor 1 der jeweiligen Bogenlänge angepasst und entsprechend programmiert, damit die 

Stent- und Prüfschlauchlänge während der Biegebelastung konstant bleiben. Dieses lässt sich über 

das Oszillogramm der Motorsteuerung validieren, wobei sich der gesamte Fahrweg des Motors 1 

aus dem Anteil für die axiale Stentkompression und der Bogenlänge ergibt (Abbildung 42). 

 

Abbildung 42: Exemplarisches Oszillogramm der Motorsteuerung von Motor 1 

Der erforderliche Torsionswinkel, der über Motor 3 gesteuert wird, kann ebenfalls mit Hilfe von 

Hochgeschwindigkeitsaufnahmen validiert werden, wobei ein Zeiger an der rotierenden 

Fixiervorrichtung befestigt wird, der sich entlang einer feststehenden Winkelskala bewegt 

(Abbildung 43). Da der Antriebsweg für die Torsion durch ein spielfreies, starres Gestänge auf 

jeden Prüfplatz übertragen wird, ist sichergestellt, dass alle Prüfplätze dieselbe Torsion erfahren 

und die Messung an einem Prüfplatz repräsentativ für die anderen Prüfplätze steht.  

Neben der Validierung der Belastungen werden auch das Aufheizen der Prüfkammer und des 

Prüfmediums sowie der Lastwechselzähler validiert.  

 

Abbildung 43: Validierungsmessung des Torsionswinkels durch Zeiger und feststehende Winkelskala  
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5.2.2 Lineare und nichtlineare Berechnung einer definierten axialen Kompres-
sion des implantierten Stent und experimentelle Validierung 

Im Folgenden werden theoretische Untersuchungen zur Berechnung der stentfreien Prüf-

schlauchlänge, der initialen Schlauchdehnung und der zu fahrenden Wege des Motors zur 

Realisierung der axialen Stentkompression im Mehrachsen-Stentprüfstand vorgestellt. Diese 

bieten einen Anhaltspunkt für die aufwendige und zeitintensive iterative Bestimmung der 

Fahrwege (vgl. Abschnitt 5.2.1 und 5.2.3) und erleichtern dadurch die Justierung des Prüfstands 

vor jeder Prüfung. 

Über die Herleitung von Gleichungen mit linearem Ansatz wird zunächst die Abhängigkeit der zu 

erzielenden axialen Stentkompression von der initialen Schlauchdehnung und den Verschiebun-

gen der Schlaucheinspannungen (Fahrweg des Motors) untersucht. Da die axiale Stentkompres-

sion von Nichtlinearitäten, wie dem Materialverhalten oder großen Dehnungen, geprägt ist, wird 

anschließend eine nichtlineare Finite-Elemente-Analyse des Problems durchgeführt, um die 

Auswirkungen der Vernachlässigung der Nichtlinearität beurteilen zu können.  

Die lineare Berechnung der stentfreien Schlauchlänge und Verschiebungen lässt sich auf 

Basis der unten stehenden Gleichungen (1) - (4) vornehmen (Herleitung im Anhang aufgeführt), 

wobei die Variablen α, ε, u0 und uI (vgl. Abschnitt 5.2.1, Abbildung 39) bestimmt werden. Für die 

Ermittlung der Dehnsteifigkeit des Prüfschlauchs mit (EA*) und ohne Stent (EA) wird auf den 

Anhang verwiesen. 
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In Abhängigkeit von der verwendeten Gleichung lassen sich mit den oben aufgeführten 

Gleichungen die in Abbildung 44 aufgeführten Variablen bestimmen. 

 

Abbildung 44: Matrix der vorgegebenen und zu berechnenden Variablen  

Durch einen direkten Vergleich der linear berechneten Ergebnisse mit experimentellen Daten von 

zwei unterschiedlichen Stentlängen l2 lässt sich die Anwendbarkeit der hergeleiteten Gleichungen 

für die Justierung des Mehrachsen-Stentprüfstands bezüglich der axialen Stentkompression 

beurteilen (Abbildung 45). Das Lagerspiel ∆ und die stentfreie Schlauchlänge l1 (19,5 mm) 

werden hierfür experimentell ermittelt. Die Dehnsteifigkeit (EA) und (EA)* wird über den 

Parameter β variiert, wobei β = 0,88 dem gemessenen Dehnsteifigkeitsverhältnis entspricht. Für 

Stents mit einer höheren axialen Steifigkeit wird β < 0,88 verwendet. 

Erwartungsgemäß erfolgt mit einer Verringerung des Dehnsteifigkeitsverhältnisses eine erhöhte 

axiale Kompression bei gleich bleibender Verschiebung u0. Die axiale Kompression ist bei 

gleicher Verschiebung u0 und uI für den längeren Stent erwartungsgemäß niedriger.  
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     l2 = 95 mm;     ∆ = 3,2 mm      l2 = 115 mm;     ∆ = 1,92 mm 

  

  

  

u0 [mm]  

Abbildung 45: Linear berechnete und experimentelle Werte der prozentualen axialen Stentkompression ε 
in Abhängigkeit von uI und u0 
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Insgesamt zeigt sich eine gute Übereinstimmung des Kurvenverlaufs zwischen der theoretischen 

linearen Berechnung und den experimentell statisch ermittelten Werten (Abbildung 46), wobei die 

tatsächliche axiale Stentkompression um etwa 1,5 - 2 % höher ist als die linear berechnete. 

 

Abbildung 46: Axiale Stentkompression ε in Abhängigkeit zur Verschiebung u0; Gegenüberstellung der 
linear berechneten Ergebnisse mit experimentellen statischen Messungen der Stentlänge 
(l2 = 115 mm; ∆ = 1,92 mm) 

Mit Hilfe der Finite-Elemente-Analyse lassen sich die auf einem linearen Ansatz basierenden 

Gleichungen ((1)-(4)) durch eine nichtlineare Berechnung der stentfreien Schlauchlänge und 

der Verschiebungen auf ihre Leistungsfähigkeit im Hinblick auf die Vernachlässigung der 

Nichtlinearität bewerten. 

Hierfür wird ein FE-Modell auf der Basis von räumlichen zwei-Knoten Balkenelementen (B31) mit 

einem Rohrquerschnitt (Øi = 5 mm, Wandstärke t = 1 mm) und einem linear-elastischen 

Materialverhalten (E = 2 MPa, µ = 0,49) erstellt, wobei kein Unterschied zwischen gestentetem 

und ungestentetem Schlauch gemacht wird. Das Lagerspiel bleibt unberücksichtigt. Die 

Berechnung erfolgt mit Abaqus/Standard (Version 6.8-EF1, Dassault Systèmes, 2008). Nach 

dem ersten Lastschritt, bei dem die Verschiebung uI in positive x-Richtung erfolgt, werden die 

Knoten bestimmt, die die festgelegten Längen l1 und l2 repräsentieren. Anschließend erfolgt im 

nächsten Lastschritt die Verschiebung um u0 in negative x-Richtung, so dass durch Auswertung 

des Knotenabstands die axiale Stentkompression bestimmt werden kann.  

Im Vergleich der linearen und nichtlinear berechneten axialen Stentkompression zeigt sich ein 

ähnlicher Kurvenverlauf, wobei mit zunehmender Verschiebung u0 die axiale Stentkompression 

aus der nichtlinearen FE-Rechnung stärker ansteigt als die linear berechnete (Abbildung 47). Die 

nichtlinear berechnete axiale Stentkompression weist eine gute Übereinstimmung mit der statisch 

gemessenen auf. Die Vernachlässigung der Nichtlinearität führt somit zu einer Unterschätzung 

der axialen Stentkompression um bis zu 2 % bei gleicher Parameterwahl.  
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Abbildung 47: Ergebnis der nichtlinearen im Vergleich zur linearen Berechnung der Zusammenhänge 
zwischen stentfreier Schlauchlänge, axialer Stentkompression ε und den Verschiebungen uI und u0 

Unter Berücksichtigung dieser Unterschätzung der axialen Stentkompression um bis zu 2 % ist 

die Verwendung der Gleichungen (1)-(4) ein praktikabler Ansatz zur Annäherung der Parameter 

Schlauchlänge, initiale Schlauchdehnung und Fahrweg des Motors. Ein Nachteil der Gleichungen 

(1)-(4) ist ihre Anwendbarkeit bei unterschiedlichen Stenttypen, da die Dehnsteifigkeit des 

Prüfschlauchs mit implantiertem Stent für verschiedene Stenttypen variiert und dementsprechend 

abgeschätzt werden muss. Trotzdem können die Gleichungen für eine Annäherung der 

Parameter verwendet werden, da deren Überprüfung zu Kontroll- und Dokumentationszwecken 

durch experimentelle Untersuchungen erfolgt (vgl. Abschnitt 5.2.3).  

5.2.3 Vergleichende experimentelle Untersuchung der statischen und 
dynamischen axialen Stentkompression 

Die linear berechneten Parameter initiale Schlauchdehnung, Schlauchlänge und Fahrweg des 

Motors (vgl. Abschnitt 5.2.2) müssen im Rahmen der Justierung des Mehrachsen-

Stentprüfstands vor jedem Prüfbeginn experimentell überprüft und dokumentiert werden. Dieses 

kann sowohl unter statischen als auch unter dynamischen Bedingungen erfolgen. Hierbei ist zu 

beachten, dass nach der Stentimplantation in den initial vorgedehnten Prüfschlauch allein der 

Parameter des Fahrwegs variiert werden kann. Ist die initiale Schlauchdehnung oder die 

Schlauchlänge nicht ausreichend, so muss eine Explantation und erneute Implantation des 

Stents nach veränderter initialer Dehnung und/oder Änderung der Schlauchlänge erfolgen.  

Für die Messungen werden zwei unterschiedliche Stenttypen (Øa = 7 mm) in partiell-überlappter 

Konfiguration mit einer überlappten Länge von 15 mm in den oberen (PP1) und den mittleren 

Prüfplatz (PP7) implantiert (Stenttyp 1: l2 = 95 mm (80 mm + 30 mm); Stenttyp 2: l2 = 115 mm 

(100 mm + 30 mm)). Zunächst wird der kurze Stent nahe dem Führungselement implantiert, der 

somit das linke Ende der partiell-überlappten Stentkonfiguration bildet (vgl. Abbildung 38).  

0

5

10

15

20

25

30

0 10 20 30 40 50

ε
[%

]

u0 [mm]

ui=25mm_linear ui=25mm_FE

ui=34mm_linear ui=34mm_FE

ui=45mm_linear ui=45mm_FE

statische Messung_ui=25mm



5 Prinzip eines neuartigen Mehrachsen-Stentprüfstands und experimentelle Analyse der strukturmechanischen Beanspruchung 
von Nitinolstents unter mehrachsiger Belastung 

 - 58 - 

Für verschiedene initiale Dehnungen des Prüfschlauchs, erzeugt durch den Fahrweg uI, wird die 

axiale Stentkompression in Abhängigkeit vom Fahrweg des Motors 1 u0 gemessen. Die 

Messreihen werden bei einer axialen Stentkompression von 16 % beendet, um eine Beschädi-

gung der Stents zu vermeiden.  

Die statische Messung der axialen Stentkompression erfolgt mittels Messschieber, während die 

Messung im dynamischen Betrieb mittels Video-/Bildauswertung von Hochgeschwindigkeitsauf-

nahmen erfolgt (vgl. Abschnitt 5.2.1). 

Im Vergleich der beiden untersuchten Stenttypen wird deutlich, dass die spezifische Stentsteifig-

keit einen großen Einfluss auf die axiale Kompression hat (Abbildung 48, Abbildung 49). Dieses 

ist insbesondere bei der zeitgleichen Prüfung unterschiedlicher Stenttypen im Mehrachsen-

Stentprüfstand zu beachten, da nicht alle Stents die gleiche axiale Kompression erfahren und 

somit das Prüfergebnis beeinflusst wird. Erwartungsgemäß steigt die axiale Stentkompression mit 

zunehmendem Fahrweg u0. Mit geringerer initialer Dehnung, erzeugt durch Fahrweg uI, wird bei 

gleich bleibendem Fahrweg u0 eine um bis zu 3,3 % höhere axiale Stentkompression erreicht 

(Abbildung 48, Abbildung 49). 

  

Abbildung 48: Dynamische axiale Stentkompressi-
on von Stenttyp 1 (l2 = 95 mm) in PP1 und PP7 in 
Abhängigkeit von ui und u0 

Abbildung 49: Dynamische axiale Stentkompres-
sion von Stenttyp 2 (l2 = 115 mm) in PP1 und PP7 
in Abhängigkeit von ui und u0 

Es zeigt sich, dass die Ergebnisse für die statische und dynamische Messung der axialen 

Stentkompression nur geringe Abweichungen aufweisen (Abbildung 50), so dass die Überprü-

fung und ggf. Anpassung der Parameter unter statischen Bedingungen erfolgen kann. Dieses 

bietet den Vorteil der vereinfachten Messung der axialen Stentkompression unter statischen 

Bedingungen mittels Messschieber. Die Video-/Bildauswertung von Hochgeschwindigkeits-

Aufnahmen unter dynamischen Bedingungen wird abschließend zu kontroll- und dokumentati-

onszwecken vor dem Beginn des Mehrachsen-Stentprüfstands durchgeführt.  
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Abbildung 50: Vergleich von statischer und dynamischer axialer Stentkompression von Stenttyp 1 
(l2 = 95 mm) in PP1 

5.3 Einfluss der Prüfschlauchbettung auf die Deformation eines 
implantierten Stents unter statischer Biegebelastung 

Das modulare System der Prüfvorrichtung zur Prüfung des Ermüdungsverhaltens von 

Gefäßimplantaten (vgl. Abschnitt 5.1.2) ermöglicht eine Anpassung des Führungselementes für 

die Biegebelastung an die am Implantationsort zu erwartenden Verhältnisse durch unterschiedli-

che Ausführung des Querschnitts der Bahnkurve (Prüfschlauchbettung). Hierdurch wird 

insbesondere die Querschnittsdeformation (Ovalisierung) des Prüfschlauchs bzw. des in den 

Prüfschlauch implantierten Stents bei der Biegebelastung beeinflusst. 

Mit Hilfe eines Mikro-Computertomographen (µCT) (SkyScan 1172, x-ray Microtomograph, S/N: 

07D01082; Auswertesoftware: CT Analyser Version 1.10.0.2) lässt sich die Stentdeformation 

unter Biegebelastung darstellen und der Stentquerschnitt bestimmen.  

Hierfür werden unterschiedliche Prüfschlauchbettungen realisiert. Die ebene starre (esB) sowie 

die gekrümmte starre Bettung (gsB) basieren auf einer starren Auflagefläche des Prüfschlauchs, 

während der Prüfschlauch bei der partiell elastischen Bettung (peB) in einem halbierten 

Silikonschlauch der gleichen Größe liegt, der auf einer ebenen starren Bettung fixiert ist 

(Abbildung 51). Die esB entspricht der Prüfschlauchbettung beim ElectroForce®9400, während 

die gsB aktuell beim Mehrachsen-Stentprüfstand verwendet wird (vgl. Abschnitt 4.4.2 und 5.1.2). 
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ebene starre Bettung (esB) gekrümmte starre Bettung (gsB) partiell elastische Bettung (peB) 

Abbildung 51: Schematische Darstellung der experimentell untersuchten Prüfschlauchbettungen im 
Mehrachsen-Stentprüfstand 

Die für die Untersuchungen im µCT konstruierten Führungselemente weisen in Anlehnung an die 

am häufigsten genutzten Führungselemente des Mehrachsen-Stentprüfstands einen Biegeradius 

von 45 mm zur Prüfschlauchmitte (Øi = 5 mm, t = 1 mm, l = 60 mm) auf. Die Prüfschlauchenden 

werden mit Einschraubverschraubungen am Führungselement befestigt. Des Weiteren wird eine 

Vorrichtung zum Einspannen der Konstruktion im µCT vorgesehen (Abbildung 52). 

  

Abbildung 52: Technische Zeichnung und Baugruppe des Führungselements esB für Untersuchungen 
im µCT 

Um eine vergleichbare Stentbelastung zum Mehrachsen-Stentprüfstand herzustellen, wird der in 

den Fixiervorrichtungen eingespannte Silikonprüfschlauch linear auf eine freie Schlauchlänge von 

65 mm vorgedehnt, bevor ein Stent implantiert wird (Øa = 7 mm, l = 30 mm). Nach der 

Stentimplantation werden die Fixiervorrichtungen am Führungselement befestigt und dadurch die 

Biegebelastung auf den Stent aufgebracht.  

Die Bestimmung der Stentquerschnitte aus den µCT-Aufnahmen erfolgt im oberen und unteren 

Stentbereich sowie in der Stentmitte (Abbildung 53).  

Während sowohl bei der peB als auch bei der gsB keine Querschnittsdeformation des Stents 

auftritt, ist bei der esB eine deutliche Ovalisierung des Querschnitts zu beobachten. Hierdurch 

wird insbesondere die seitliche Stützwirkung der gekrümmten starren Bettung deutlich, die sich 

auch bei der partiell elastischen Bettung deutlich zeigt (Abbildung 53). 
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(peB) 

Abbildung 53: µCT-Aufnahme des gebogenen Stents: Darstellung der Stentquerschnitte unter 
Biegebelastung mit verschiedenen Prüfschlauchbettungen 

Da die Querschnittsovalisierung am deutlichsten senkrecht und quer zum Führungselement zu 

beobachten ist, werden die ausgemessenen Innendurchmesser der durch die Biegebelastung 

deformierten Stents bezüglich der Diagonalen zwischen den Messpunkten 1-2 und 3-4 dargestellt 

(Abbildung 54). Wie erwartet zeigt sich bei der esB eine deutliche Ovalisierung des Querschnitts 

von + 21,5 % (Punkt 3 zu 4) und - 22,7 % (Punkt 1 zu 2) im Vergleich zum mittleren nahezu 

undeformierten Stentquerschnitt bei einer peB und gsB von 4,8 ± 0,15 mm. Es ist keine 

veränderte Querschnittsdeformation bezüglich des Messbereichs auf der Stentlängsachse zu 

beobachten (Abbildung 54). 

          

Abbildung 54: Vermessung des Innendurchmessers der Stents unter Biegebelastung bei verschiede-
nen Prüfschlauchbettungen: ebene und gekrümmte starre Bettung (esB und gsB), partiell elastische 
Bettung (peB) 

Die erzielten Ergebnisse zeigen, dass eine ebene starre Prüfschlauchbettung bei der 

Biegebelastung eines Stents zu einer deutlichen Ovalisierung des Querschnitts führt, so dass der 

Stent eine zusätzliche Beanspruchung erfährt. Im Rahmen der hier untersuchten Prüfschlauch-
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vordehnung zeigen sich bei der gsB und der peB keine Querschnittsdeformation und damit keine 

zusätzliche Beanspruchung des Stents während der Biegung. Da auszuschließen ist, dass in vivo 

eine starke Querschnittsdeformation des Prüfschlauchs während der Biegebelastung durch  

Knie-/Hüftbeugung auftritt, ist eine Stentprüfung mit einer esB als nicht realitätsnah zu betrachten 

und als solche zu bewerten (vgl. Abschnitt 6.3.2 und 6.5). 

5.4 Methodik zur Bewertung des Ermüdungsverhaltens eines 
Stents im Mehrachsen-Stentprüfstand  

Die primäre Beurteilungsgröße der Ermüdungsanalyse von Stents im Mehrachsen-Stentprüfstand 

ist das Auftreten von Brüchen der Stentstruts bis hin zum Herauslösen von Stentbestandteilen. 

Die Schäden können während der Prüfung sowohl endoskopisch intraluminal als auch 

fotografisch von außen an den in die Prüfschläuche implantierten Stents dokumentiert werden, 

wobei eine Beurteilung von außen bei den im Prüfstand eingebauten Prüfschläuchen sehr 

schwierig ist. 

Bei partiell-überlappten Stents werden drei Bereiche A, B und C festgelegt, für die die Brüche 

dokumentiert werden (Abbildung 55). 

 

Abbildung 55: Aufteilung der Stentbereiche für die Bruchzuordnung bei partiell-überlappten Stents: B -
kurzer Stent, C - überlappter Stentbereich, A - langer Stent 

Die Inspektion der Stents mit dem Endoskop ermöglicht es, den vollständigen Stent zu 

inspizieren und Video- sowie Fotoaufnahmen zur Dokumentation anzufertigen. Allerdings ist die 

Entdeckung von Strutbrüchen gerade im überlappten Bereich schwierig, so dass nicht immer 

klare Brüche zu erkennen sind. Erst wenn die Bruchflächen deutlich auseinanderklaffen, sind die 

Brüche eindeutig zu erkennen (Abbildung 56). Besonderheiten wie in das Lumen hereinragende 

Struts werden hingegen sehr gut erkannt.  
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Abbildung 56: Beispiel für die Stentbruchdetektion während der Prüfung; oben: Inspektion von außen; 
unten: Endoskopische Aufnahmen, schwierige Bestimmung von Strutbrüchen im überlappten Bereich 
(links), Beispiel eines Strutbruchs (rechts) 

Nach Beendigung der Prüfung werden die Prüfschläuche mit den Stents aus dem Stentprüfstand 

entfernt und in n-Heptan gelegt, wodurch das Silikon aufquillt und sich die Stents aus den 

Schläuchen entfernen lassen.  

Die Inspektion der explantierten Stents erfolgt dann mittels Stereozoom, wobei zwischen Brüchen 

(strut fracture, SF) und fehlenden Struts (missing strut, MS) unterschieden wird, da diese oftmals 

abschwimmen und nicht nachvollzogen werden kann, ob die fehlenden Struts zusätzliche Brüche 

aufweisen. 

Damit die Lokalisation der Brüche bezüglich der Stentlängsachse dokumentiert werden kann, 

werden Strutbrüche der Reihe nach durch Kleinbuchstaben und fehlende Struts mit römischen 

Zahlen auf einem Foto des Stents bezeichnet. Die Reihenfolge der Nummerierung beginnt am 

Stentende, das am weitesten von der Biegebelastung entfernt ist (Abbildung 57). Zusätzlich 

werden lichtmikroskopische Aufnahmen der Brüche und fehlenden Struts gemacht, um Brüche an 

Verbindern oder Struts zu unterscheiden.  
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Abbildung 57: Beispiel für die Methodik zur Bewertung des Ermüdungsverhaltens von Stents; 
mikroskopisch ermittelte Stentbrüche (strut fracture, SF) und fehlende Stentstruts (missing strut, MS) 
werden über die Stentlänge dokumentiert 

Der Vergleich zwischen endoskopischer Inspektion und der Inspektion am explantierten Stent 

mittels Stereozoom zeigt deutlich, dass die endoskopische Inspektion zu einer Unterschätzung 

der tatsächlichen Anzahl führt (Abbildung 58).  

 

Abbildung 58: Strutbrüche und fehlende Struts zu festgelegten Inspektionszyklen mittels Endoskop 
und am Prüfungsende nach Stentexplantation mittels Stereozoom (10,62 Mio. Lastwechsel), 
beispielhaft für LifeStent® in partiell-überlappter Konfiguration  

Abschließend erfolgt die Inspektion der Stents im Rasterelektronenmikroskop (REM), wofür die 

Stents im Ultraschallbad für drei Minuten gereinigt werden. Hierbei werden die Brüche und 

fehlenden Struts dokumentiert und die Bruchflächen genauer untersucht, wenn sie weit genug 

voneinander entfernt sind. Ebenso werden typische Effekte, wie Abriebstellen in der überlappten 

Region und Ablagerungen an der äußeren Stentoberfläche durch den Kontakt zum Silikonprüf-

schlauch dokumentiert. Des Weiteren ist eine genaue Unterscheidung zwischen Strutbruch und 

fehlenden Struts möglich (Abbildung 59). 
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Abbildung 59: Beispiel für REM-Untersuchung anhand geprüfter LifeStents®: a - Abriebstellen durch 
partielle Überlappung der Stents, b - Ablagerungen an der Stentaußenfläche, c - detaillierte 
Aufnahme der Bruchfläche, d - Registrierung fehlender Stentstruts 

 

 a  b  

 c  d 
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6 Theoretisch-numerische Analyse der Beanspruchung 
von Nitinolstents im Mehrachsen-Stentprüfstand 

Zur genaueren Betrachtung der Stentbeanspruchung im Mehrachsen-Stentprüfstand wird das 

numerische Verfahren der Finite-Elemente-Analyse (FEA) angewendet. Numerische Simulatio-

nen haben sich als effektives Werkzeug für die Entwicklung und Optimierung von Stentdesigns 

erwiesen [35].  

Die FEA wird im Rahmen dieser Arbeit eingesetzt, um die Mechanismen der Prüfmethode des 

Mehrachsen-Stentprüfstands aufzuzeigen und einzugrenzen, wobei explizit darauf hingewiesen 

wird, dass keine Aussage bezüglich des Ermüdungsverhaltens von Stents getroffen wird. Da die 

Mechanismen der Prüfmethode ihre Hauptunterschiede in der Biegebelastung aufweisen (vgl. 

Abschnitt 4.4.2), werden im Folgenden die Auswirkungen der konstruktionsbedingten 

Unterschiede bei der Realisierung der Biegebelastung untersucht, ohne zusätzliche Einflüsse 

durch weitere Belastungsarten, z.B. durch axiale Kompression und Torsion, einzubringen. Des 

Weiteren wird die Torsionsbelastung eines Stents in der SFA als unkritische Belastungsart 

angesehen [128]. 

Die numerische Simulation der Stentbeanspruchung im Mehrachsen-Stentprüfstand und 

besonders in einer anatomienahen Umgebung (vgl. Abschnitt 6.4) ist durch starke Nichtlinearitä-

ten beeinflusst. So werden die zu simulierenden Belastungen im Mehrachsen-Stentprüfstand 

(vgl. Abschnitt 6.3) und im biomechanischen FE-Referenzmodell (vgl. Abschnitt 6.4) von großen 

Starrkörperverschiebungen und -rotationen bestimmt, wodurch große Dehnungen auftreten. 

Zusätzlich sind zahlreiche Kontaktprobleme während der Simulationen zu lösen. Des Weiteren ist 

die Mehrzahl der für die Simulationen verwendeten Materialeigenschaften nichtlinear, wie z.B. für 

den Nitinolstent, den Prüfschlauch oder körpereigene Materialien, wie die Bestandteile der 

Arterienwand (vgl. Abschnitt 3.1). 

Im Folgenden wird zunächst ein Überblick über den Stand der Technik der FEA von Nitinolstents 

gegeben, bevor die Strukturmodelle und deren FE-Idealisierung dargestellt werden. Anschlie-

ßend erfolgt die Untersuchung der Stentbeanspruchung bei Biegebelastung nach unterschiedli-

chen Prinzipien. Die Entwicklung eines biomechanischen FE-Referenzmodells der Kniebeugung 

ermöglicht die Betrachtung der Stentbeanspruchung in einer idealisierten anatomienahen 

Umgebung. Mit Hilfe des Referenzmodells können abschließend die Ergebnisse der Simulation 

des Mehrachsen-Stentprüfstands bewertet werden. Für alle Berechnungen werden die 

Belastungen als quasistatisch angenommen. 
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6.1 Stand der Technik zur Finite-Elemente-Analyse (FEA) von 
Nitinolstents  

Die Auswertung der Vielzahl der existierenden Publikationen über die FEA von Stents ermöglicht 

einen Überblick über die verwendeten Materialeigenschaften, Elementtypen sowie Rand- und 

Kontaktbedingungen, aus denen geeignete Parameter verwendet und angepasst werden können. 

Im Folgenden wird eine Auswahl vorgestellt, wobei der Schwerpunkt auf Veröffentlichungen zur 

Nitinolstent-Gefäß/Prüfschlauch-Interaktion liegt, da die Simulation der Stentbelastung im 

Mehrachsen-Stentprüfstand einen Kontakt zwischen Stent und Gefäß/Prüfschlauch erfordert. 

Bezüglich der Verwendung der Materialmodelle für den Nitinolstent (Abschnitt 6.2.1) und das 

Gefäß/Prüfschlauch (Prüfschlauch: Abschnitt 6.2.1, Arterie: Abschnitt 6.4.1) wird auf die 

entsprechenden Abschnitte verwiesen.  

In Abhängigkeit von den untersuchten Stentdesigns wird häufig die Symmetrie des Stents 

ausgenutzt und die Verschiebung der Symmetrieflächenknoten normal zur Symmetrieebene 

behindert [48, 49, 88, 89, 142]. So berechnen z.B. Whitcher et al. [142] 1997 in einer frühen 

numerischen Untersuchung von selbstexpandierenden Stentstrukturen das strukturelle Verhalten 

sowie die Ermüdungseigenschaften eines aus Draht zusammengeschweißten Nitinolstents unter 

radialer Belastung. Durch Ausnutzung der Symmetrie wird ein Achtel einer Stentzelle modelliert 

und in eine Ebene projiziert, so dass die radiale Belastung durch Aufbringung einer Kraft auf ein 

Strutende realisiert werden kann. 

Bei der Simulation der Stent-Gefäß-Interaktion wird das Gefäß zumeist vereinfacht als gerader 

Hohlzylinder dargestellt [43, 48, 49, 61, 65, 86–89], wobei Einflüsse von z.B. gekrümmten oder 

verzweigten Gefäßen, z.B. durch Generierung der Gefäßgeometrie aus Patientendaten, 

berücksichtigt werden können [13, 35, 65, 106, 144]. Häufig wird von einem stenosierten Gefäß 

mit unterschiedlicher Plaquestruktur ausgegangen, deren Ruptur durch die Stentimplantation 

unberücksichtigt bleibt. 

Bevor die Stent-Gefäß-Interaktion simuliert werden kann, müssen zunächst die Lastschritte 

Crimpen und Expansion in das Gefäß berechnet werden. Der Crimpprozess kann durch eine 

radiale Verschiebungsrandbedingung direkt auf die Stentknoten realisiert werden [89] (Abbildung 

60), wobei das Crimpen zumeist über eine Kontaktbedingung mit einem außen liegenden 

Zylinder, dessen Knoten radial verschoben werden, simuliert wird [13, 35, 43, 48, 49, 61, 65, 68, 

86, 87, 106, 144] (Abbildung 61). 
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Abbildung 60: Crimpen durch radiale 
Verschiebungsrandbedingung auf die 
Stentknoten; Aufweitung durch elastische 
Rückfederung des Nitinolstents nach Entfernung 
der radialen Verschiebungsrandbedingung 

Abbildung 61: Crimpen über Kontaktbedingung 
mit einem außen liegenden Zylinder, dessen 
Knoten radial verschoben werden; Aufweitung 
durch Umkehr der Verschiebung, bis Stent mit 
Gefäß in Kontakt tritt  

Die Stentexpansion wird zumeist durch die Wiederaufdehnung des Crimpzylinders (Abbildung 61) 

und/oder durch Löschen des Kontakts zwischen Stent und Crimpzylinder (Abbildung 62) 

realisiert, so dass der Nitinolstent zurückfedert [13, 35, 43, 61, 68, 86, 87, 89, 106, 144]. Nur 

wenige Autoren simulieren die Stentfreisetzung durch axiale Verschiebung des Crimpzylinders, 

was der Realität entsprechen würde [48, 49, 65] (Abbildung 63).  

  

Abbildung 62: Aufweitung des Stents durch 
Löschen des Kontakts zum Crimpzylinder 

Abbildung 63: Aufweitung des Stents durch 
axiale Verschiebung des Crimpzylinders 

Im Gegensatz zur Stentexpansion direkt in das Gefäß [58, 75, 89] simulieren einige Autoren den 

Kontakt zwischen Nitinolstent und Gefäß, indem sie das Gefäß durch einen Innendruck auf einen 

Innendurchmesser größer als den Stentdurchmesser aufweiten. Durch anschließende 

Reduzierung des Gefäßinnendrucks federt das Gefäß zurück und der Kontakt zwischen Stent 

und Gefäß wird hergestellt. Vorteilhaft für die Rechenzeit ist hierbei die Vernachlässigung des 

Crimp-Lastschritts. Allerdings sind die hierdurch erzielten Ergebnisse kritisch zu betrachten, denn 

das Materialverhalten von Nitinol ist im Be- und Entlastungsbereich verschieden (vgl. Abschnitt 

3.1). Auch werden insbesondere die Schubkräfte, die durch die Verkürzung des Stents während 

der Expansion auf das Gefäß wirken, vernachlässigt. 

Neben den verschiedenen Finite-Elemente-Solvern werden unterschiedliche Elementtypen für 

die Modellierung des Nitinolstents und des Gefäßes, sowie unterschiedliche Kontakteigenschaf-

ten zwischen Stent und Gefäß verwendet (Tabelle 11). 
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Tabelle 11: Auswahl von Publikationen über Nitinolstent-Gefäßinteraktion; verwendete Elementtypen 
und Kontakteigenschaften 

 
Autor 

 
Jahr 

 
Quelle 

 
FE-Solver 

     Elementtypen 
Stent              Gefäß 

 
Kontakteigenschaften 

Auricchio 2011 [13] A. Explicit C3D8R C3D8R general contact, µ=0,05 

Conti 2009 [35] A. Explicit C3D8R C3D10M Keine Angaben 

Dordoni 2014 [43] ANSYS SOLID185 SOLID185 µ=0,2 

Early 2011 [49] Marc/Mentat Type 7 Type 84 reibfrei 

Grujicic 2012 [61] A. Standard C3D8 S4 Keine Angaben 

Harvey 2011 [65] Marc/Mentat   reibfrei 

Hsiao 2014 [68] A.Standard C3D8 C3D8 reibfrei 

Lally 2005 [75] Marc/Mentat   reibfrei 

Meoli 2013 [86] ANSYS SOLID185  µ=0,2 

Migliavacca 
2004 [89] A. Standard C3D10M C3D10M Keine Angaben 

2007 [88] Abaqus S4 C3D8H reibfrei, endl. Verschiebung 

Rebelo 2009 [106] A. Standard C3D8R S3 Keine Angaben 

Wu 2007 [144] ANSYS Hyper58 SOLID185 µ=0,05 

Zhao 2012 [146] A. Explicit B31 C3D8R general contact, µ=0,15 

 
C3D8  

C3D8R 
C3D10M 
C3D8H  
S3/S4 

SOLID185 
Type 7 

Type 84 
B31  

Hyper58 
A.Standard 
A.Explicit 

- voll intergriertes lineares Hexaederelement 
- reduziert integriertes lineares Hexaederelement 

- modifiziertes zehn-Knoten Element mit Hourglass-Kontrolle 
- hybrid Hexaederelement 

- Drei-/Vierknoten-Schalenelement 
- voll integriertes lineares Hexaederelement  
- voll integriertes lineares Hexaederelement 

- hybrid Hexaederelement 
- 3D-Balkenelement, Interpolation 1. Ordnung 

- voll integriertes lineares Hexaederelement für hyperelastische Strukturen 
- Abaqus/Standard 
- Abaqus/Explicit 

 

Neben den in Tabelle 11 aufgeführten Volumenelementen zur Modellierung eines Stents können 

auch Strukturelemente, wie Schalen- oder Balkenelemente sowie Kombinationen genutzt werden 

[17, 88], auf die nicht weiter eingegangen wird, da im Folgenden Kontinuumselemente verwendet 

werden. Diese bieten den Vorteil der Konsistenz der Freiheitsgrade, besonders bei der 

Simulation komplexer Kontaktprobleme. 

Die Simulation der Stentexpansion in ein Gefäß erlaubt die Untersuchung des Spannungszu-

stands der Gefäßwand, der durch die Implantation von Stents mit unterschiedlichem Design oder 

Material entsteht. Hierfür wird die Arterie häufig zusätzlich durch eine statische Belastung durch 

den mittleren arteriellen Blutdruck [43, 49, 88, 89] oder eine axiale Vordehnung beansprucht [43, 

49, 88, 89]. Early et al. [48] bringen vor der Stentimplantation eine axiale Vordehnung und 

zunächst den diastolischen Blutdruck auf das Gefäß auf. Nach der Stentexpansion wird der 

Innendruck der Arterie auf den systolischen Blutdruck erhöht.  
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Migliavacca et al. [89] z.B. vergleichen den Spannungszustand in einer koronaren Gefäßwand, 

der durch die Expansion eines selbstexpandierenden und eines ballonexpandierbaren Stents 

erzeugt wird. Es wird eine axiale Vordehnung der zylindrischen Arterie von 10 % berücksichtigt, 

die in einem ersten Lastschritt zusammen mit dem mittleren Blutdruck von 100 mmHg 

aufgebracht wird. Analog zur Gefäßwand wird der mittlere Blutdruck auch auf die Stentinnenflä-

che aufgebracht. Im Vergleich mit dem ballonexpandierbaren Stent zeigt sich deutlich die 

geringere Struktursteifigkeit des Nitinolstents, bei dem der Gefäßdurchmesser und die Spannung 

in der Gefäßwand nach der Stentexplantation und dem Aufbringen des mittleren Blutdrucks 

kleiner sind. 

Bei der Verwendung einer aus Patientendaten generierten Arteriengeometrie für die Simulation der 

Stent-Gefäß-Interaktion wird zumeist keine statische Belastung durch den mittleren arteriellen 

Blutdruck oder eine axiale Vordehnung des Gefäßes aufgebracht [13, 35, 106]. Die verwendete 

Gefäßgeometrie entspricht dabei der belasteten Geometrie in vivo, wobei dadurch der durch die 

initialen Belastungen hervorgerufene Beanspruchungszustand der Gefäßwand vernachlässigt wird.  

Da anatomische Gefäßmodelle bei der Simulation häufig gekrümmt sind, wird der Stent zumeist 

nach dem Crimpprozess gebogen, um bei der Expansion den Kontakt zur Gefäßwand zu 

simulieren [13, 14, 35]. Hierbei kann es zu einem unvollständigen Kontakt zwischen dem 

expandierten Stent und der gekrümmten Gefäßgeometrie kommen, wie Auricchio et al. [13] und 

Wu et al. [144] für unterschiedliche Stenttypen zeigen [106] (Abbildung 64). Des Weiteren zeigen 

Conti et al. [35] eine Begradigung des initial gekrümmten Gefäßes durch den Stent, was 

besonders im Übergang zwischen Stent und Gefäß zu beobachten ist (Abbildung 65). 

 

 

Abbildung 64: Unvollständige Wandabdeckung des 
simulierten Stents nach Implantation in ein gekrümmtes 
Gefäß [106] 

Abbildung 65: Begradigung eines 
gekrümmten Gefäßes durch simulierte 
Implantation eines Stents [35] 

Nach der Stentimplantation in ein Gefäß wird häufig die Stentbeanspruchung während der pulsatilen 

radialen Belastung durch den systolischen und diastolischen Blutdruck untersucht [61, 65, 68]. 

Neben der radialen Belastung der Stents durch den Blutdruck werden auch weitere Belastungen 

auf das Stent-Gefäß-System untersucht, wobei insbesondere die Beanspruchung in der SFA 

durch Biegung und axiale Kompression des Gefäßes simuliert wird.  
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Dordoni et al. [43] untersuchen die Beanspruchungen eines in die SFA implantierten Nitinolstents 

durch axiale Kompression und Biegung. Vor der Stentimplantation in ein um 5 % axial 

vorgedehntes Gefäßmodell mit Stenose unterschiedlicher Geometrien, wird eine PTA durch 

Balloninflation simuliert. Nach der Stentimplantation wird das Gefäß in seine Ausgangslänge 

zurückgeführt und das Stent-Gefäß-System mit einem mittleren Blutdruck belastet. Es werden 

drei Be- und Entlastungszyklen der axialen Kompression durch Verschiebung der Stenoseenden 

simuliert, da innerhalb dieser Zyklen eine Stabilisierung des Materialmodells eintritt. Durch die 

Reibung zwischen Stent und Gefäß wird die axiale Kompression nahezu vollständig auf den 

Stent übertragen. Am Ende jedes Zyklus der axialen Kompression wird die Biegung an den 

Enden des ungedehnten Gefäßes durch Rotation der Stenoseenden aufgebracht. 

Auch Early et al. [49] untersuchen die Stent- und Gefäßbeanspruchungen bei einer Belastungssi-

tuation durch Biegung und axiale Kompression, wobei sowohl ein Stahl- als auch ein Nitinolstent 

untersucht werden. Vor der virtuellen Stentimplantation werden ein mittlerer Blutdruck von 

13,3 kPa und eine axiale Vordehnung des Gefäßes aufgebracht. Die Biegebelastung wird durch 

Rotation eines Arterienendes um 60°, die axiale Kompression durch Verschiebung eines Endes 

um 25 % der vorgedehnten Arterienlänge realisiert.  

Eine Kombination von verschiedenen Stentbelastungen wird von Harvey et al. [65] untersucht. 

Zunächst wird die Beanspruchung des Stent-Gefäß-Systems während der Änderung des 

Blutdrucks von 80 auf 160 mmHg untersucht. Anschließend erfolgt eine axiale Dehnung des 

Gefäßes um 5 % sowie eine Biegebelastung um 32-48° durch Rotation der Arterienenden. 

Hierbei wird ein konstanter Innendruck von 160 mmHg beibehalten. Das gebogene Gefäß wird 

zusätzlich um 20° an seinen Enden tordiert. Ab einem Biegewinkel von 32° wird der Kontakt 

zwischen Stent und Gefäß im Biegeinnenradius gelöst.  

Auch Meoli et al. [86] untersuchen die Stentbeanspruchung unter verschiedenen nicht-radialen 

Belastungen. Hierbei orientieren sie sich an in vitro Prüfungen zweier Stenttypen, die in 

Publikationen mit widersprüchlichen Ergebnissen bezüglich des Ermüdungsverhaltens 

veröffentlicht sind. Zum einen simulieren die Autoren die axiale Kompression und Biegung der 

expandierten Nitinolstents ohne Gefäßkontakt. Hierfür wird ein Stentende fixiert, während das 

andere Ende axial bzw. lateral verschoben wird. Zum anderen wird die Stentbeanspruchung in 

einem Silikonschlauch als Gefäßmodell untersucht, wobei das Gefäß vor der Stentimplantation 

axial vorgedehnt wird. Durch Verschiebung der Gefäßenden wird die axiale Kompression auf die 

Stents aufgebracht. Die Biegebelastung wird ohne eine Vordehnung des Gefäßes simuliert. Mit 

Hilfe zweier starrer Platten an den Gefäßenden, deren Winkel zueinander verändert wird, wird die 

Biegebelastung auf den Stent aufgebracht. Zusätzlich wird die Überlappung von Stentenden in 

der Simulation berücksichtigt. Hierfür werden zwei Stents mit einer überlappten Länge von 

11 mm in ein vorgedehntes Gefäßmodell virtuell implantiert. Zwischen den Stents wird eine 

Kontaktbedingung erstellt, die ein Lösen des Kontakts verhindert, um Konvergenzprobleme zu 

vermeiden. Die mittlere Dehnung der partiell-überlappten Stents ist identisch mit derjenigen der 
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einzelnen Stents, wobei die Dehnungsamplitude größer ist und im Übergang zwischen 

überlapptem und nicht-überlapptem Bereich auftritt.  

Neben den aus der vorgestellten Literatur entnommenen Hinweisen zur Modellierung von 

Nitinolstents im Gefäßkontakt wird bei der folgenden Beschreibung der Modellierung auch auf 

generelle Erfahrungswerte am Institut für Biomedizinische Technik (IBMT) zur Simulation von 

Stents zurückgegriffen. 

6.2 Strukturmodelle und deren FE-Idealisierung 

Im Folgenden werden die Strukturmodelle und deren FE-Idealisierung mit den verwendeten 

Materialmodellen beschrieben. Des Weiteren werden die zum jeweiligen Belastungsregime 

gehörigen Rand- und Kontaktbedingungen dargestellt. Die Auswahl der Elementtypen für den 

Stent erfolgt auf Basis einer Konvergenzstudie. 

Für die Simulation wird ein bekanntes Stentdesign verwendet, das als abgerollte zweidimensionale 

Kontur vorliegt (Abbildung 66). Im aufgerollten Zustand hat der Stent einen Außendurchmesser von 

5 mm und eine Wandstärke von 150 µm. Für die Berechnungen werden unterschiedliche 

Stentlängen verwendet, indem die Anzahl der Ringsegmente variiert wird. Die an den Stentenden in 

Abbildung 66 befindlichen Röntgenmarker werden für die Berechnungen nicht berücksichtigt. 

 

Abbildung 66: Abgerollte zweidimensionale Kontur des verwendeten Stentdesigns 

Nach der Modifikation des in Abbildung 66 dargestellten Stentmodells bezüglich der für die 

jeweiligen Modelle benötigten Anzahl an Ringsegementen erfolgt das Aufrollen der zweidimensi-

onalen Stentfläche zu einer zylindrischen Struktur mit einem Durchmesser von 5 mm 

(Pro/ENGINEER Wildfire 5.0, Parametric Technology Corp., USA) (Abbildung 67).  
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Abbildung 67: Prinzip der Modellerstellung eines Stents: Aufrollen der zweidimensionalen Struktur, 
Vernetzen als Schalenmodell und Aufdicken der Wandstärke durch Erzeugung von Kontinuumselementen 

Die Modellerstellung erfolgt anschließend mit ABAQUS/CAE Version 6.8-EF1 (SIMULIA, 

Dassault Systèmes, USA). Zunächst wird die zylindrische Schalenstruktur mit Schalenelementen 

vernetzt, die durch eine Aufdickung der Wandstärke auf 0,15 mm in dreidimensionale 

Kontinuumselemente überführt werden. 

6.2.1 Definition der Werkstoffkennwerte und verwendete Elementtypen 

Abaqus (Dassault Systèmes Corp., USA) bietet den Nutzern ein Modell zur Simulation des 

superelastischen Materialverhaltens von Nitinol bei großen Dehnungen sowohl für implizite 

(UMAT für Abaqus/Standard) als auch für explizite zeitabhängige (VUMAT für Abaqus/Explicit) 

Rechnungen.  

Die numerische Abbildung des Materialverhaltens von Nitinol wird durch die Hysterese mit ihren 

nichtlinearen Zusammenhängen erschwert. In Abaqus erfolgt die Umsetzung mit einem 

nutzerdefinierten Materialmodell (UMAT/VUMAT) (Abbildung 68) nach der Theorie von Auricchio 

und Taylor [15, 16, 82].  
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Abbildung 68: Schematische Spannungs-Dehnungs-Kurve und Materialkonstanten für VUMAT für 
superelastisches Materialverhalten von Nitinol in Abaqus [4] 

Mit diesem Materialmodell lässt sich das unterschiedliche Verhalten von Nitinol bei Be- und 

Entlastung sowie die E-Moduln von Austenit und Martensit getrennt beschreiben, wobei die 

Belastung sowohl mechanisch als auch thermisch erfolgen kann [58]. Zusätzlich werden 

spezifische Variablen, wie z.B. der Anteil an Martensit, Umwandlungsdehnungen sowie 

Vergleichsspannungen und -dehnungen berücksichtigt.  

Die für dieses Materialmodell benötigten Konstanten (Abbildung 68, Tabelle 12) können aus 

einachsigen Zugversuchen bei Be- und Entlastung, Wiederbelastung und Temperaturänderungen 

gewonnen werden [107]. Diese individuellen Materialkonstanten schwanken durch die speziellen 

Produktionsanforderungen von Nitinol in Abhängigkeit von der Anwendung sehr stark. Die Dichte 

von Nitinol wird mit ρ = 6,45·10
-6

 kg/mm³ festgelegt [112]. 

Für eine weitergehende Beschreibung des Materialmodells sowie seine Überführung in den 

dreidimensionalen Fall wird auf die Arbeit von Auricchio und Taylor verwiesen [15, 16].  
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Tabelle 12: Materialkennwerte des verwendeten Materialmodells für Nitinol (interne Daten IBMT)  

Nr. Symbol Bedeutung Wert 

1 EA E-Modul der Austenitphase 49990 

2 µA Querkontraktionszahl der Austenitphase 0,3 

3 EM E-Modul der Austenitphase 17000 

4 µM  Querkontraktionszahl der Austenitphase 0,3 

5 ε
L
 Dehnung während der Gefügeumwandlung 0,055 

6 (δσ/δT)L δσ/δT bei Belastung 0 

7 σL
S
 Initialspannung zur Gefügeumwandlung bei Belastung 396 

8 σL
E
 Finale Spannung nach der Gefügeumwandlung bei Belastung 424 

9 T0 Referenztemperatur 37 

10 (δσ/δT)U δσ/δT bei Entlastung 0 

11 σU
S
 Initialspannung zur Gefügeumwandlung bei Entlastung 94 

12 σU
E
 Finale Spannung nach der Gefügeumwandlung bei Entlastung 81 

13 σCL
S
 Initialspannung zur Gefügeumwandlung bei Druckbelastung 480 

14 εV
L
 Volumendehnung 0,055 

15 NA Anzahl der Glühvorgänge während der Analyse 0 

 

Analog zum Mehrachsen-Stentprüfstand wird für die Simulationen von einem Silikonprüf-

schlauch als Gefäßmodell ausgegangen. Aufgrund der zu erwartenden großen Dehnungen 

wird hyperelastisches Materialverhalten für den Silikonprüfschlauch auf der Basis von 

experimentellen Daten verwendet. Die Realisierung von hyperelastischem Materialverhalten ist in 

Abaqus mit unterschiedlichen Ansätzen implementiert und erfordert die Eingabe von Wertepaa-

ren aus technischer Spannung und Dehnung (Abbildung 69). Diese werden über einen 

einachsigen quasistatischen Zugversuch (Prüfgeschwindigkeit 5 mm/min, T = 37 °C) ermittelt 

(Universalprüfmaschine Zwick ZN 2.5; Zwick GmbH & Co. KG, Ulm, Deutschland; Kraftaufneh-

mer 50 N). Die Prüfkörper (n=5) werden mit Hilfe einer Stanze als Schulterproben aus 

Silikonschläuchen (Øi = 5 mm, Øa = 7 mm) (ESSKA.de GmbH, Hamburg, Deutschland) mit einer 

Strutbreite von 4 mm und einer Ausgangslänge (freie Länge) von l0 = 18 mm gestanzt. Es wird 

eine Dichte von ρ = 9,15·10
-7

 kg/mm³ festgelegt.  
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Abbildung 69: Technisches Spannungs-Dehnungs-Diagramm des Silikon-Schlauchmaterials und 
verwendete Spannungs-Dehnungs-Wertepaare für ein hyperelastisches Materialmodell für die FEA 

Auf Basis einer Materialevaluation wird bis zu einer Dehnung von ca. 30 % (entspricht 48 mm 

Weg, vgl. Abbildung 70) eine gute Übereinstimmung sowohl mit dem Ansatz nach Marlow als 

auch mit dem Polynom-Ansatz 2.Ordnung erzielt. Bei zunehmender Dehnung ist das hyperelasti-

sche Materialverhalten des Silikonprüfschlauchs am besten mit dem Ansatz nach Marlow 

abzubilden (µ = 0,48) (Abbildung 70). 

 

Abbildung 70: Kraft-Weg-Diagramm der Materialevaluation von Silikon für die FEA  

Der Silikonschlauch wird mit acht Knoten Kontinuums-Hybrid-Elementen (C3D8H) vernetzt, die 

für nahezu inkompressible Materialien empfohlen werden. Es werden zwei Elemente über die 

Wandstärke verwendet. 

Den bei der Simulation verwendeten Modellbestandteilen, deren Beanspruchung nicht von 

Interesse ist, wie z.B. die zylindrischen Schalen für den Aufweit- und Crimplastschritt, wird linear-
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elastisches Materialverhalten (E = 210 000 MPa, µ = 0,3) mit einer Dichte von ρ = 1·10
-8

 kg/mm³ 

zugewiesen. Die Vernetzung erfolgt mit reduziert integrierten Vier-Knoten-Schalen- (S4R) bzw. 

Acht-Knoten-Volumenelementen (C3D8R).  

Der für den Stent verwendete Elementtyp wird in Abschnitt 6.2.3 beschrieben. 

6.2.2 Lastfälle, Rand- und Kontaktbedingungen  

Für die in den folgenden Kapiteln untersuchten FE-Modelle erfolgt zuerst die Aufweitung der 

Stentstruktur auf ihren Nennaußendurchmesser von 7 mm. Diese verformte Struktur wird als 

spannungs- und dehnungsfreies Ausgangsmodell verwendet, der den spannungsfreien Zustand 

des Stents nach der thermischen Behandlung darstellt. Als nächste Lastschritte erfolgen 

anschließend das Crimpen und die Expansion des Stents in das jeweilige Gefäßmodell, bevor die 

eigentliche Simulation durchgeführt werden kann. 

Für alle Berechnungen werden Materialmodelle entsprechend Abschnitt 6.2.1 zugewiesen. 

Der Stent erhält an allen Schnittflächen zu benachbarten Ringsegmenten eine Zwangsbedingung 

(multi-point-constraint, MPC LINK), um das Ebenbleiben der Schnittflächen zu erreichen 

(Abbildung 71).  

Der erste Lastschritt ist die Aufweitung des Stentmodells von einem Außendurchmesser von 

5 mm auf 7 mm, was dem Nenndurchmesser des Stents entspricht. Der Aufweitlastschritt wird 

mit dem impliziten Solver Abaqus/Standard Version 6.8-EF1 (SIMULIA, Dassault Systèmes, 

USA) berechnet. Hierfür ist es ausreichend, ein linear-elastisches Werkstoffverhalten für den 

Stent anzunehmen (E = 210 000 MPa, µ = 0,3), da die Beanspruchungszustände im Stent nicht 

von Interesse sind [35]. Die Aufweitung des Stents erfolgt über eine Kontaktbedingung mit einer 

dünnwandigen zylindrischen Schale (t = 1·10
-4

 mm), deren Knoten radial verschoben werden 

(Abbildung 71). Die Kontaktbedingung erlaubt endliche Relativverschiebungen und wird als 

Knoten-Flächen-Kontakt definiert, wobei die Schale als Masterfläche festgelegt wird. Ein 

minimaler Reibkoeffizient von µ = 0,02 wird zur numerischen Stabilisierung des Kontakts 

festgelegt. In Normalenrichtung wird eine Kontaktsteifigkeit von 10 000 MPa, die linear von dem 

Abstand der Kontaktflächen abhängt, definiert. Zur Entsingularisierung des numerischen Modells 

des Stents (Eliminierung von Starrkörpermoden) wird jeweils ein Knoten der Schnittflächen zu 

einem Nachbarring in axialer Richtung fixiert. Zusätzlich wird einer dieser Knoten in tangentialer 

Richtung behindert. Die Schnittflächen zu den Nachbarringen des Stents werden mit Hilfe von 

Zwangsbedingungen (MPC LINK) eben gehalten (Abbildung 71). Die Starrkörpermoden der 

Schale werden ebenfalls blockiert.  
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Abbildung 71: Modellerstellung zur Berechnung des Aufweitvorgangs für die Konvergenzstudie 

Das Crimpen des Stents erfolgt analog zum Aufweitlastschritt, wobei eine zylindrische Schale mit 

linear-elastischem Materialverhalten den Stent von außen kontaktiert, wie es auch bei der 

Mehrzahl der Publikationen der Fall ist (vgl. Abschnitt 6.1). Hierbei wird dieselbe Kontaktbedin-

gung wie beim Aufweitlastschritt verwendet. Der Crimplastschritt wird mit dem expliziten Solver 

Abaqus/Explicit Version 6.8-EF1 (SIMULIA, Dassault Systèmes, USA) berechnet. 

Die als technischer Parameter bei der Mehrachsen-Stentprüfung benötigte initiale Dehnung des 

Prüfschlauchs ε, erzeugt durch den Fahrweg uI (vgl. Abschnitt 5.2.1), erfolgt vor der Stentexpan-

sion durch Verschiebungsrandbedingungen an den Schlauchenden. Eine durch ε hervorgerufene 

Einschnürung des Silikonprüfschlauchs wird an den Schlauchenden zugelassen. 

Für die Expansion des Stents in das entsprechende Gefäßmodell werden die Knoten des 

Crimpzylinders radial nach außen verschoben (vgl. Abschnitt 6.1), so dass der Nitinolstent 

zurückfedern kann, bis die Stentaußenfläche mit der Gefäßinnenfläche in Kontakt tritt. 

Ausgehend von einem Silikonprüfschlauch wird die Kontaktbedingung zwischen Stentaußenflä-

che und der Innenfläche des Gefäßes in tangentialer Richtung als rau festgelegt, da ein 

Rutschen zwischen Stent und Silikonschlauch im Mehrachsen-Stentprüfstand für den Idealfall 

ausgeschlossen wird. Für die Kontaktbedingung in Normalenrichtung werden in Abhängigkeit 

vom jeweiligen FE-Modell unterschiedliche Kontaktsteifigkeiten angenommen. Der Lastschritt zur 

Freisetzung des Stents in das Gefäßmodell wird mit dem expliziten Solver Abaqus/Explicit 

Version 6.8-EF1 (SIMULIA, Dassault Systèmes, USA) berechnet. Während der Expansion 

werden die Starrkörperverschiebungen und -rotationen des Stents behindert. Nach dem 

Expansionslastschritt werden diese entfernt, da die weitere Entsingularisierung des Stents über 

die Kontaktbedingung erfolgt. Die Kontaktbedingung zwischen Stent und Crimpzylinder wird 

ebenfalls entfernt. 
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6.2.3 Stentdiskretisierung und Konvergenzstudie  

Die Berechnung von Spannungskonzentrationen und großen Dehnungsänderungen erfordert eine 

Diskretisierung des Stentmodells vorzugsweise mit Kontinuumselementen, um die in den 

Rechnungen vorherrschenden multiplen Kontaktprobleme darzustellen. Hexaederelemente mit 

linearem Verschiebungsansatz bieten hierbei einen guten Kompromiss zwischen Ergebnisgenauig-

keit und Effizienz bezüglich der Rechenzeit. Kontinuumselemente mit einem quadratischen 

Verschiebungsansatz bieten eine höhere Ergebnisgenauigkeit, so lange das zu lösende Problem 

keine komplexen Kontaktbedingungen beinhaltet. Deshalb werden diese Elemente, auch wenn sie 

bei Problemen, die von Biegung dominiert werden, sehr effektiv sind, nicht weiter betrachtet [77]. 

Vollintegrierte Elemente (C3D8) werden aufgrund der im Stent vorherrschenden Biegebelastung 

nicht empfohlen, so dass reduziert integrierte Elemente (C3D8R) und solche mit inkompatiblen 

Moden (C3D8I) bei der Stentsimulation bevorzugt verwendet werden [1].  

Bei reduziert integrierten Elementen erster Ordnung tritt in Spannungs-Dehnungs-Analysen das 

Hourglassing auf. Dadurch, dass sie nur einen Integrationspunkt haben, können die Elemente so 

stark verzerren, dass die Dehnungen an diesem Integrationspunkt Null sind, was zu einer 

unkontrollierten Verzerrung der Elemente führen kann. Eine automatische Hourglass-Kontrolle 

bietet eine ausreichende Genauigkeit auch bei mittlerer Vernetzung bei nur leicht erhöhter 

Rechenzeit und ein besseres Ergebnis für nichtlineares Materialverhalten bei großen Dehnungen 

gegenüber der Hourglass-Kontrolle durch Formulierung einer zusätzlichen Steifigkeit. Gerade bei 

hyperelastischem Materialverhalten kommt diese Hourglass-Kontrolle zur Anwendung [77].  

Bei voll integrierten Kontinuumselementen (C3D8) tritt kein Hourglassing auf, jedoch können die 

einzelnen Elemente keine Biegemoden darstellen, wodurch Modelle mit diesen Elementen bei 

Biegebelastung zu steif werden, besonders, wenn die Elementkantenlänge der Größenordnung 

der Wandstärke entspricht [77]. 

Kontinuumselemente mit inkompatiblen Moden (C3D8I) sind voll integrierte Elemente und haben 

neben den Verschiebungsmoden der Knotenfreiheitsgrade auch interne knotenunabhängige 

Verschiebungsmoden, weshalb die Biegemoden korrekt dargestellt werden können. Durch die 

zusätzlichen internen Freiheitsgrade der inkompatiblen Moden erhöht sich die Rechenzeit mit 

diesen Elementen gegenüber den vollintegrierten Kontinuumselementen erster Ordnung. 

Gegenüber Kontinuumselementen zweiter Ordnung ist die Rechenzeit mit Elementen mit 

inkompatiblen Moden geringer [77]. 

Neben dem Elementtyp beeinflusst die Anzahl der Freiheitsgrade und die Bandbreite des 

Gleichungssystems die Ergebnisgenauigkeit und Effizienz, so dass für die Konvergenzstudie ein 

Stentsegment eines Stentrings mit unterschiedlicher Vernetzung und unterschiedlichen 

Elementtypen in einem Aufweitlastschritt mit ABAQUS/Standard berechnet wird. In Anlehnung an 

[1] werden drei Netzverfeinerungen mit den beiden Kontinuumselementtypen mit reduzierter 

Integration (C3D8R) und mit inkompatiblen Moden (C3D8I) untersucht (Abbildung 72). 
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a) 4_4_6 

 
b) 8_8_12 

 
c) 12_12_24 

Abbildung 72: Stentsegment für Konvergenzstudie mit unterschiedlicher Netzfeinheit; Elementanzahl 
über Strutbreite_Wandstärke_90°-Kreisbogen 

Die Berechnung des Aufweitlastschritts erfolgt mit den in Abschnitt 6.2.2 aufgeführten Rand-, 

Zwangs- und Kontaktbedingungen, wobei zusätzlich die Starrkörperverschiebungen 

und -rotationen des Stentsegments über eine tangentiale Fixierung der Schnittflächen zu den 

Nachbarsegmenten behindert werden (Abbildung 73).  

Als Konvergenzkriterium wird die Spannung an der lastfreien Oberfläche des Stents in 

Normalenrichtung bewertet, die aus Gleichgewichtsgründen gegen Null konvergieren muss [110] 

(Abbildung 73). Zusätzlich wird die Anzahl der Knotenfreiheitsgrade als Kriterium für die Effizienz 

bezüglich der Rechenzeit in die Bewertung einbezogen.  

 

Abbildung 73: Tangentiale Fixierung der Schnittflächen zu den Nachbarsegmenten zur Berechnung 
des Aufweitvorgangs für die Konvergenzstudie; Knoten zur Auswertung der Normalspannung  
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Die reduziert integrierten Kontinuumselemente bieten durch ihren einzelnen Integrationspunkt in 

der Elementmitte eine kosteneffiziente Berechnung des numerischen Problems im Vergleich zu 

den Elementen mit inkompatiblen Moden für die betrachteten Vernetzungen (Abbildung 74). 

Aufgrund der im Stent vorherrschenden Biegebelastung ist eine gute Kontrolle des Hourglassings 

erforderlich, wobei die automatisch unterstützte Kontrolle verwendet wird [1]. 

  

Abbildung 74: Anzahl der Freiheitsgrade und Normalspannung am lastfreien Rand in Abhängigkeit von 
Netzfeinheit und Elementtyp 

Die Normalspannung am lastfreien Rand konvergiert mit zunehmender Netzfeinheit gegen Null, 

wobei die Kontinuumselemente mit inkompatiblen Moden eine bessere Konvergenz bei einem 

gröberen Netz zeigen (Abbildung 74). 

Ausgehend hiervon werden in den folgenden Rechnungen für den Stent Kontinuumselemente erster 

Ordnung mit inkompatiblen Moden verwendet, wobei jeweils vier Elemente über die Wandstärke und 

Strutbreite sowie sechs Elemente auf einem 90°-Kreisbogen verwendet werden. Da im Folgenden 

die Ergebnisse der numerischen Untersuchungen vergleichend bewertet werden, ist eine höhere 

Ergebnisgenauigkeit durch eine feinere Vernetzung des Stents nicht erforderlich. 

6.3 FEA der Stent-Beanspruchung im Mehrachsen-Stentprüfstand 

Ausgehend vom Stand der Technik zur mehrachsigen Stentprüfung (vgl. Abschnitt 4.4) werden 

zunächst die wesentlichen Unterschiede der beiden in der Praxis verbreiteten Basisverfahren 

Querkraft- und Rotationsbiegung herausgestellt. Anschließend erfolgt die Untersuchung von 

verschiedenen Querschnitten des Führungselements für die Rotationsbiegung, indem 

unterschiedliche Prüfschlauchbettungen modelliert und miteinander verglichen werden. Neben 

dem Biegeradius wird hierbei auch der Einfluss des technischen Parameters der initialen 

Prüfschlauchdehnung ε betrachtet.  

Zunächst werden die Prüfschläuche ohne implantierten Stent betrachtet, um Grenzbedingungen bei 

den gewählten Parametern aufstellen zu können. Aus den Ergebnissen ausgewählte Grenzfälle 

werden anschließend mit Stent untersucht. Zur Bewertung der Ergebnisse wird abschließend ein 

anatomienahes FE-Referenzmodell der Kniebeugung entwickelt. 

1

10

100

1000

C3D8R C3D8I

A
n

z
a
h

l 
d

e
r 

F
re

ih
e
it

s
g

ra
d

e

4_4_6

8_8_12

16_16_24

Netzfeinheit

4_4_6 8_8_12 16_16_24

-3,5

-3

-2,5

-2

-1,5

-1

-0,5

0

0 1 2 3 4

N
o

rm
a
ls

p
a
n

n
u

n
g

 [
M

P
a
]

C3D8R

C3D8I



6 Theoretisch-numerische Analyse der Beanspruchung von Nitinolstents im Mehrachsen-Stentprüfstand 

 - 82 - 

6.3.1 Rotations- vs. Querkraftbiegung als alternative Basisverfahren für die 
mehrachsige Stentprüfung 

Die Mechanismen von Rotations- und Querkraftbiegung lassen sich durch eine numerische 

Simulation einander gegenüberstellen. Hierbei werden die Ausbildung der aus der Biegebelas-

tung resultierenden maximalen Querschnittsdeformation durch Ovalisierung sowie die 

Belastungsgeschichte durch die zeitliche Entwicklung und die Höhe des Bettungsdrucks 

zwischen Prüfschlauch und Führungselement/Bettung analysiert. Zunächst wird die Biegebelas-

tung eines Prüfschlauchs ohne Stent betrachtet, bevor die Gegenüberstellung der beiden 

Biegeverfahren mit einem in den Prüfschlauch implantierten Stent erfolgt.  

Für den Vergleich der Rotations- und Querkraftbiegung werden zwei Führungselemente 

modelliert (Abbildung 75), wobei die Rotationsbiegung dem beim Mehrachsen-Stentprüfstand 

und die Querkraftbiegung dem im Stentprüfstand ElectroForce®9400 (Bose Corp., USA) 

verwendeten Verfahren (vgl. Abschnitt 4.4.2 und 5.1.2) entspricht. Zwischen den Kontaktpartnern 

wird ein reibungsfreier Kontakt mit endlichen Verschiebungen modelliert. 

 

Abbildung 75: Modelle zur Rotations- (links) und Querkraftbiegung (rechts) 

Über einen Referenzpunkt (RP) werden die Randbedingungen der Führungselemente 

aufgebracht. Bei der Rotationsbiegung (Abbildung 75) wird die Biegung durch Rotation von RP 

um die z-Achse um 48° realisiert, was dem Umschlingungswinkel für den Silikonschlauch 

entspricht. Zusätzlich wird das freie Prüfschlauchende um den Betrag der Bogenlänge in 

negative x-Richtung verschoben, um eine gleichbleibende Prüfschlauchlänge während der 

Biegebelastung zu realisieren.  

Die Querkraftbiegung (Abbildung 75) erfolgt durch Verschiebung des Führungselementes in y-

Richtung. Entsprechend der benötigten Bogenlänge werden beide Schlauchenden in x-Richtung 

verschoben, wobei die Endquerschnitte des Prüfschlauchs um ± 24° verkippt werden. Die für den 

entsprechenden Biegeradius und die initiale Prüfschlauchdehnung anzupassenden Verschiebun-

gen des Führungselements und der Prüfschlauchenden werden konstruktiv ermittelt 

(Pro/ENGINEER Wildfire 5.0, Parametric Technology Corp., USA), wobei das Führungselement 

um Δy und die Prüfschlauchenden um Δx verschoben werden (Abbildung 76). Die Prüfschlauch-

länge l entspricht der Länge nach der initialen Prüfschlauchdehnung, sofern diese vorgesehen 

ist. Durch l = konstant und die Bogenlänge des Führungselements ergeben sich die erforderli-

chen Verschiebungen Δx und Δy.  
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Abbildung 76: Geometrische Ermittlung der für die Querkraftbiegung benötigten Wege 

Als Prüfschlauchbettung wird eine ebene starre Schlauchbettung (esB) gewählt (vgl. Abschnitt 

5.3, Abbildung 51), wie sie im Prüfsystem ElectroForce®9400 (Bose Corp., Minnesota, USA) [23] 

verwendet wird. Die Modelle für die Rotations- und Querkraftbiegung (Abbildung 75) werden mit 

unterschiedlichen Biegeradien versehen (R = 5 mm; 22,5 mm, 45 mm). Des Weiteren wird der 

technische Parameter der initialen Prüfschlauchdehnung variiert (ε = 0 %, 10,53 %, 21,05 %, 

31,58 %, 52,63 %).  

Bei der technischen Biegung treten durch die Bewegung der Führungselemente Trägheitswir-

kungen auf. Für die Rotationsbiegung ist hierbei eine Rotation des Führungselementes um den 

gewünschten Biegewinkel erforderlich. Bei der Querkraftbiegung hingegen ist eine Translation 

des Führungselementes bei den hier durchgeführten theoretischen Untersuchungen um bis zu 

28,4 mm (R = 5 mm, ε = 52,63 %), in Abhängigkeit von der Prüfschlauchlänge, der initialen 

Dehnung des Prüfschlauchs ε und des Biegeradius R, erforderlich. Bei beiden Verfahren wird die 

Prüfschlauchlänge durch Verschieben der beweglichen Schlauchenden um den Betrag der 

Bogenlänge konstant gehalten. 

Die Ausbildung von Querschnittsdeformationen ist stark durch den technischen Parameter der 

initialen Prüfschlauchdehnung geprägt. Zumeist bildet sich eine Ovalisierung des Querschnitts 

aus, die mit steigender initialer Prüfschlauchdehnung sowohl bei der Rotations- als auch bei der 

Querkraftbiegung zunimmt. Bei der Querkraftbiegung ist eine geringfügig verstärkte Quer-

schnittsdeformation zu beobachten (Abbildung 77).  
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Prüfschlauchvordehnung ε 
 

Rotationsbiegung Querkraftbiegung 
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Abbildung 77: Querschnittsdeformationen im Vergleich von Rotations- und Querkraftbiegung; 
exemplarisch: Biegeradius R = 22,5 mm, ebene starre Bettung (esB) 

Die Querschnittsdeformationen beeinflussen die Verteilung des maximalen Bettungsdrucks 

zwischen Bettung und Prüfschlauchwand in tangentialer Richtung (Abbildung 78). Sowohl bei der 

Rotations- als auch bei der Querkraftbiegung geht die Verteilung des Bettungsdrucks mit 

zunehmender initialer Prüfschlauchdehnung von einem einzelnen Maximum bei ε = 0 % in zwei 

Maxima über, die die beginnende Querschnittsdeformation der Prüfschlauchwand anzeigen. Bei 

einer geringen initialen Schlauchdehnung bis 10,53 % sind der Bereich des Bettungsdrucks und 

damit die Breite der Kontaktfläche zwischen Prüfschlauch und Bettung bei der Rotationsbiegung 

kleiner als bei der Querkraftbiegung. Dieses kehrt sich mit zunehmender Prüfschlauchvordeh-

nung um. Im Bereich der maximalen Prüfschlauchvordehnung von 52,63 % ist der Bettungsdruck 

bei der Querkraftbiegung am größten (Abbildung 78).   
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Rotationsbiegung Querkraftbiegung 

  

                                     ε   

Abbildung 78: Verteilung des maximalen Bettungsdrucks zwischen Bettung und Prüfschlauchwand in 
tangentialer Richtung bei maximaler Biegung in Abhängigkeit von der initialen Schlauchdehnung ε für 
R = 22,5 mm 

Die zeitliche Entwicklung des Bettungsdrucks zwischen Prüfschlauch und Führungselement 

wird exemplarisch ohne initiale Prüfschlauchdehnung (ε = 0 %) in Abhängigkeit vom Biegeradi-

us R entlang der Schlauchlängsachse gezeigt (Abbildung 79). Erwartungsgemäß baut sich im 

Laufe eines Lastzyklus der Bettungsdruck zwischen der Bettung und der Prüfschlauchwand im 

Mehrachsen-Stentprüfstand kontinuierlich auf. Hierbei verteilt sich der Bettungsdruck mit 

zunehmendem Biegeradius über die Länge des Prüfschlauchs, so dass der Bettungsdruck 

sowohl bei der Rotations- als auch bei der Querkraftbiegung kleiner wird (Abbildung 79). 

Bei der Rotationsbiegung zeigt sich bei einem kleinen Biegeradius von R = 5 mm die Ausbildung 

eines zweiten Maximums des Bettungsdrucks im Verlauf des Biegezyklus. Parallel dazu wird der 

maximale Bettungsdruck kleiner. Diese Beobachtung korreliert mit den in Abbildung 77 bei einem 

kleinen Biegeradius beobachteten Querschnittsdeformationen, die die ungleichmäßige Verteilung 

des Bettungsdrucks verursachen. Bei einem größeren Biegeradius tritt dieser Effekt nicht auf. Der 

zeitliche Verlauf des Bettungsdrucks zeigt bei der Rotationsbiegung eine Verschiebung des Ortes 

des maximalen Drucks über die Prüfschlauchlänge (Abbildung 79). 

Im Vergleich der beiden Biegeverfahren zeigt sich insbesondere eine unterschiedliche 

Verweildauer der Prüfschlauchelemente im Kontakt mit dem Führungselement. Bei der 

Rotationsbiegung ist der Ort des maximalen Bettungsdrucks im Verlauf des Lastzyklus variabel, 

während der maximale Bettungsdruck bei der Querkraftbiegung stets am selben Ort auftritt. Mit 

zunehmendem Biegeradius erfolgt eine Verteilung des Bettungsdrucks über eine zunehmende 

Prüfschlauchlänge (Abbildung 79). 
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R 
[mm] 

Rotationsbiegung Querkraftbiegung 

5 

  

22,5 

  

45 

  

 

Abbildung 79: Gegenüberstellung der zeitlichen Entwicklung des Bettungsdrucks an der Prüf-
schlauchaußenwand in Längsrichtung bei Rotations- und Querkraftbiegung und verschiedenen 
Biegeradien R; 0 % initiale Schlauchdehnung 

Der maximale Bettungsdruck tritt jeweils zum Zeitpunkt der maximalen Biegung auf und steigt mit 

abnehmendem Biegeradius und zunehmender initialen Prüfschlauchdehnung erwartungsgemäß 

deutlich an. Besonders bei einem kleinen Biegeradius steigt der Einfluss der initialen Schlauch-

dehnung auf den Bettungsdruck (Abbildung 80).  
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Rotationsbiegung Querkraftbiegung 

  
ε  

Abbildung 80: Maximaler Bettungsdruck bei veränderlichem Biegeradius R und initialer Prüfschlauch-
dehnung ε  

Bei der Rotationsbiegung fällt der Bettungsdruck besonders bei einem kleinen Biegeradius 

deutlich geringer aus als bei der Querkraftbiegung, wobei auch die Abhängigkeit von der initialen 

Prüfschlauchdehnung kleiner ist. Mit zunehmendem Biegeradius ist der Bettungsdruck bei der 

Rotationsbiegung größer als bei der Querkraftbiegung (Abbildung 80). 

Für die Simulation der Stentbeanspruchung bei Rotations- und Querkraftbiegung wird 

exemplarisch eine initiale Prüfschlauchdehnung von ε = 21,05 % und ein Biegeradius von 

R = 45 mm untersucht. Die Simulation der Stentimplantation erfolgt nach Abschnitt 6.2.2, wobei 

im Bereich des Kontakts zwischen Stent und Prüfschlauch eine feinere Vernetzung des 

Schlauchs erfolgt (Abbildung 81). 

 

Abbildung 81: Lage des Stents und Vernetzung bei Rotations- und Querkraftbiegung  

Neben der Auswertung des Bettungsdrucks im Vergleich zur Biegung ohne Stent wird die 

Stentbeanspruchung durch die beiden Biegeverfahren anhand der maximalen Hauptdehnung 

dargestellt. 
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Die Betrachtung des maximalen Bettungsdrucks zwischen Führungselement und Prüfschlauch 

mit implantiertem Stent zeigt sowohl bei der Rotations- als auch bei der Querkraftbiegung, dass 

der Kontaktbereich zwischen Führungselement und Prüfschlauch in tangentialer Richtung des 

Schlauchs durch die Stentimplantation schmaler wird (Abbildung 82). Die radiale Steifigkeit des 

Stents führt zu einer Abstützung der Prüfschlauchwand, so dass deren Querschnittsdeformation 

während der Biegebelastung reduziert wird und damit die Abflachung an der Schlauchunterseite 

vermindert wird (vgl. Abbildung 77 sowie Abbildung 92, Abschnitt 6.3.2). Trotzdem treten bei 

beiden Biegeverfahren zwei Maxima des Bettungsdrucks zu den Seiten hin auf, so wie es auch 

bei der Biegebelastung ohne implantierten Stent der Fall ist (Abbildung 82). 

 

 

Abbildung 82: Verteilung des maximalen Bettungsdrucks über die Prüfschlauchwand in tangentialer 
Richtung bei Rotations- und Querkraftbiegung eines Stents bei ebener starrer Bettung (R = 45 mm, 
ε = 21,05 %) 

Die maximale Hauptdehnung tritt sowohl bei der Rotations- als auch bei der Querkraftbiegung an 

der Außenseite im Übergang zum Strutende unterhalb der Stentmittelachse auf (Abbildung 83). 

Die Stentbeanspruchung ist bei der Querkraftbiegung (8,8 %) größer als bei der Rotationsbie-

gung (7,1 %) (Abbildung 84), was mit dem höheren Bettungsdruck bei Querkraftbiegung korreliert 

(Abbildung 82).  
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Abbildung 83: Verteilung und Ort der maximalen 
Hauptdehnung im Stent unter Biegebelastung mit einer 
ebenen starren Bettung, R = 45 mm, ε = 21,05 % 
(exemplarisch: Querkraftbiegung) 

Abbildung 84: Maximale Hauptdehnung 
im Stent bei Rotations- und Querkraft-
biegung (R = 45 mm, ε = 21,05 %, esB) 

Zusammenfassend lässt sich insgesamt eine geringfügig erhöhte Beanspruchung durch die 

Querkraftbiegung im Vergleich zur Rotationsbiegung bei einer ebenen starren Bettung feststellen. 

Dieses lässt sich durch die geringfügig stärker ausgeprägte Querschnittsdeformation des 

Prüfschlauchs durch die Querkraftbiegung begründen, durch die sich ein erhöhter Bettungsdruck 

zwischen Prüfschlauchwand und Bettung aufbaut, was sich durch eine Stentimplantation 

verstärkt. Für die weitere Einordnung der Ergebnisse in einen anatomienahen Zusammenhang 

wird auf Abschnitt 6.5 verwiesen. 

6.3.2 Einfluss der Prüfschlauchbettung auf die Querschnittsdeformation des 
Prüfschlauchs unter Biegebelastung 

Die während der Biegebelastung des Silikonprüfschlauchs im Mehrachsen-Stentprüfstand 

auftretenden Querschnittsdeformationen werden sowohl vom technischen Parameter der 

Schlauchvordehnung, wie es schon im vorigen Abschnitt 6.3.1 gezeigt werden konnte, als auch 

von der Form der Prüfschlauchbettung im Führungselement beeinflusst. Der implantierte Stent 

erfährt durch diese Querschnittsdeformation eine sekundäre Beanspruchung zusätzlich zur 

reinen Biegebeanspruchung, so dass ein erhöhtes Risiko für das Versagen der Stentstruktur bei 

einer Dauerbelastung besteht.  

Im Rahmen einer qualitativen Parameterstudie wird der Einfluss verschiedener Prüfschlauchbet-

tungen auf die Prüfschlauchkinematik untersucht. Die Untersuchungen werden exemplarisch 

anhand der Rotationsbiegung des Prüfschlauchs durchgeführt. Die Betrachtung der Stentbean-

spruchung wird anschließend anhand eines ausgewählten Grenzfalls dargestellt. 

Es werden zunächst sowohl zwei starre (ebene starre Bettung - esB, gekrümmte starre Bettung -

gsB) als auch zwei elastische Bettungen (partiell elastische Bettung - peB, voll elastische 
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Bettung - veB) modelliert (Abbildung 85), wobei die esB der Prüfschlauchbettung des Prüfstands 

ElectroForce®9400 (Bose Corp., Minnesota, USA) [23] und die gsB der aktuell beim Mehrach-

sen-Stentprüfstand genutzten Prüfschlauchbettung entspricht. Bei der peB wird ein Bettungs-

schlauch direkt auf dem Führungselement fixiert, während bei der veB ein Bettungsschlauch über 

die komplette Länge des Prüfschlauchs modelliert wird (Abbildung 85). Starre Prüfschlauchbet-

tungen sind wegen ihrer einfachen technischen Realisierbarkeit bei Stentprüfständen als Stand 

der Technik anerkannt, obwohl sie aus physiologisch-anatomischer Sicht ungeeignet erscheinen. 

Eine elastische Bettung ist demgegenüber nicht nur in der technischen Realisierung aufwendiger 

als eine starre Bettung, sondern zusätzlichen Parametern, wie der Bettungssteifigkeit 

und -geometrie unterworfen. 

ebene starre 
Bettung (esB)  

      

 

gekrümmte starre 
Bettung (gsB)  

 

 

 

 

partielle elastische 
Bettung (peB)  

       

 
 

voll elastische 
Bettung (veB)  

        

 

 
 

Abbildung 85: Schematische und CAD-Darstellung der vier Bettungsarten: Prüfschlauch (rot), starre 
Bettung (blau), elastische Bettung (grün)  
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In Abhängigkeit der im Mehrachsen-Stentprüfstand benötigten technischen Parameter wird die 

Krümmung über den Radius des Führungselements (R = 5 mm; 22,5 mm; 45 mm) bei einem 

konstanten Umschlingungswinkel α = 48° sowie die prozentuale initiale Prüfschlauchdehnung 

(ε = 0 %; 10,53 %; 21,05 %; 31,58 %; 52,63 %) variiert. 

Die Erstellung der Modelle Prüfschlauch und Führungselement erfolgt nach Abschnitt 6.3.1, 

wobei Werkstoffkennwerte nach Abschnitt 6.2.1 zugewiesen werden. Die gsB hat einen 

Bettungsdurchmesser von 7 mm, damit der Prüfschlauch am Führungselement anliegt. Die 

elastischen Bettungen werden mit einem Silikonprüfschlauch (Øi = 7 mm; Wandstärke t = 1 mm) 

mit hyperelastischem Materialverhalten nach Abschnitt 6.2.1 realisiert, dessen Vernetzung zwei 

Elemente über die Wandstärke aufweist. Die für die Rotations- und Querkraftbiegung benötigten 

Rand- und Kontaktbedingungen werden nach Abschnitt 6.3.1 zugewiesen. 

Ziel der Untersuchungen ist es, auf der Basis physikalisch-physiologisch plausibler Querschnitts-

deformationen des Prüfschlauchs unter Biegebelastung die Auswahl geeigneter Kombinationen 

aus initialer Prüfschlauchdehnung, Biegeradius und Bettung für die Methode der Rotationsbie-

gung qualitativ einzugrenzen. Für die Einordnung der Ergebnisse in einen anatomienahen 

Zusammenhang wird auf Abschnitt 6.5 verwiesen. 

Zunächst zeigt sich erwartungsgemäß eine zunehmende Querschnittsdeformation des 

Silikonprüfschlauchs bei zunehmender initialer Prüfschlauchdehnung und abnehmendem 

Biegeradius (Abbildung 86).  

Initiale Prüfschlauchdehnung ε 
 
 

 
 

   

 
Biegeradius R 

 

 

  
 

Abbildung 86: Querschnittsdeformation des Prüfschlauchs während Rotationsbiegung in Abhängigkeit 
von der initialen Prüfschlauchdehnung und dem Biegeradius am Beispiel der ebenen starren Bettung 
(esB); oben R = 22,5 mm; unten ε = 21,1 % 

Besonders die Querschnitte, die starr gebettet sind, passen sich der Form ihrer Bettung an, was 

mit zunehmender initialer Prüfschlauchdehnung und abnehmendem Biegeradius stärker 

ausgeprägt ist (Abbildung 87). Der Schlauchquerschnitt bei der esB wird im unteren Bereich 

deutlich abgeflacht, während sich der Prüfschlauch in die gsB einpasst und dadurch eine 

unsymmetrische Querschnittsdeformation erfährt. Durch die elastische Bettung mit einer 
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Bettungssteifigkeit von E1 wird eine moderate seitliche Abstützung erzielt, wobei kein Unterschied 

zwischen der peB und der veB zu beobachten ist. Bei zunehmender Steifigkeit der Bettung 

nähert sich die Querschnittsform der peB derjenigen der gsB an, während mit der veB eine 

gleichmäßige, geringe Ovalisierung des Prüfschlauchquerschnitts realisiert werden kann. 

 
ebene starre Bettung 

(esB) 

 
gekrümmte starre 

Bettung (gsB) 

 
partiell elastische 

Bettung (peB) 

 
voll elastische Bettung 

(veB) 

 

 

  

  E1 

  

  
  E2 = E1*10

2
 

Abbildung 87: Querschnittsdeformation des Prüfschlauchs in Abhängigkeit von der Prüfschlauchbettung 
(R = 22,5 mm; ε = 31,6 %); elastische Bettungen peB und veB mit unterschiedlicher Bettungssteifigkeit 

Querschnittsdeformationen, wie sie in Abbildung 86 und Abbildung 87 auftreten, können in 

Extremfällen auch bei vaskulären Gefäßen auftreten, auch wenn die lokale Strukturstabilität der 

Gefäßwand unter in vivo Belastung entscheidend für die physiologische Funktion ist. Han et al. 

[64] unterteilen die Deformationen des Gefäßes in Biege-, Torsions- und schraubenförmiges 

Beulen, Knicken und Lumenkollaps, wie das hier beobachtete partielle elastische Stabilitätsver-

sagen der Gefäßwandung. Ein Lumenkollaps von Blutgefäßen tritt auf, wenn der innere Druck zu 

gering oder der externe Druck den inneren um einen kritischen Wert überschreitet. Während 

venöse Gefäße häufig aufgrund des niedrigen inneren Drucks kollabieren, sind Arterien 

normalerweise durch den hohen Blutdruck und dickere Gefäßwände geschützt [64]. Deshalb wird 

für die technische Simulation der Biegebelastung von Stents in einer Ermüdungsprüfung ein 

lokales Stabilitätsversagen der Prüfschlauchwandung, wie es exemplarisch in Abbildung 88 

gezeigt wird, ausgeschlossen. 

             

                 
                  R = 5 mm; esB; ε = 21,1 %                  R = 22,5 mm; gsB; ε = 31,6 % 

Abbildung 88: Beispiele für physiologisch auszuschließende Querschnittsdeformationen durch 
lokales geometrisches Versagen der Prüfschlauchwand (esB - ebene starre Bettung, gsB -
gekrümmte starre Bettung) 
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Neben der Bewertung der Querschnittsgeometrie wird der Flächeninhalt der unter Biegebelas-

tung stehenden Prüfschlauchquerschnitte untersucht und bewertet, da angenommen wird, dass 

die vaskuläre Versorgung des Gewebes durch das Gefäß unabhängig vom kinematischen 

Zustand des Gefäßes gegeben ist. Aufgrund der für die technische Realisierung der Biegebelas-

tung benötigten initialen Dehnung des Prüfschlauchs, ist der Flächeninhalt des gebogenen 

Prüfschlauchquerschnitts stets kleiner als der Ausgangsquerschnitt, so dass die Querschnittsflä-

che bei Biegebelastung auf den Querschnitt des vorgedehnten Prüfschlauchs bezogen wird.  

Erwartungsgemäß wird die Querschnittsfläche des Prüfschlauchs bei Biegebelastung mit 

zunehmender initialer Schlauchdehnung und abnehmendem Biegeradius kleiner, wie es auch die 

Querschnittsdeformationen zeigen (vgl. Abbildung 86). Im Vergleich der Bettungstypen 

untereinander führt stets die gsB zur größten und die esB zur kleinsten Querschnittsfläche. Wie 

aufgrund der Auswertung der Querschnittsform bei der peB und veB zu erwarten ist, zeigt sich 

eine deutlich größere Querschnittsfläche bei den elastischen Bettungen mit einer erhöhten 

Materialsteifigkeit. Hierbei zeigt die veB die größte Querschnittsfläche (Abbildung 89). Zur 

Bewertung der Querschnittsflächen bezüglich einer physiologischen Biegebelastung wird der 

Grenzwert für die Abnahme der Querschnittsfläche bei 40 % der Ausgangsquerschnittsfläche 

festgelegt (Abbildung 89).  

 

Abbildung 89: Auf die Querschnittsfläche des Prüfschlauchs mit initialer Prüfschlauchdehnung 
bezogene Querschnittsfläche bei Biegebelastung in Abhängigkeit vom Bettungstyp, der Vordehnung 
und dem Biegeradius; * esB steifer - elastische Bettung mit E2 = E1·10
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Die Bewertung der numerischen Ergebnisse zur Querschnittsdeformation des Prüfschlauchs unter 

Biegebelastung mit Hilfe einer Matrix ermöglicht die Eingrenzung und Festlegung des technischen 

Parameters der initialen Prüfschlauchdehnung ε, des Biegeradius und der Bettung (Tabelle 13).  

Tabelle 13: Matrix der zulässigen Parameter für die Biegebelastung (grün) in Abhängigkeit vom 
Biegeradius, der Prüfschlauchbettung und -vordehnung; * - Bettungssteifigkeit erhöht (E2 = E1·10

2
) 

 ε = 0 % ε = 10,5 % ε = 21,1 % ε = 31,6 % ε = 52,6 % 

R 5 22,5 45 5 22,5 45 5 22,5 45 5 22,5 45 5 22,5 45 

esB 
 
 

              

gsB 
 
 

              

peB 
 
 

          *     

veB 
 
 

          *     

 

Die Simulation der Stentbeanspruchung bei der Belastung durch Rotationsbiegung mit 

unterschiedlichen Prüfschlauchbettungen wird exemplarisch für einen Biegeradius von R = 45 mm 

und eine initiale Schlauchdehnung von ε = 31,6 % gezeigt. Dieser Radius entspricht dem im 

Mehrachsen-Stentprüfstand am häufigsten verwendeten. Die gewählte initiale Prüfschlauchdehnung 

stellt die in Tabelle 13 definierte maximal zulässige Vordehnung dar.  

Der Betrag der maximalen Hauptdehnung im Stent ist bei der Rotationsbiegung mit der veB* am 

kleinsten, gefolgt von der gekrümmten starren Bettung (gsB) (Abbildung 90). Gegenüber den starren 

Bettungen ist die maximale Hauptdehnung im Stent bei den elastischen Bettungen größer, wobei die 

Erhöhung der Bettungssteifigkeit (peB*/veB*) zu einer geringeren Dehnungsbeanspruchung im Stent 

führt. Insgesamt führt die seitliche Abstützung des Prüfschlauchs durch die gekrümmte starre 

Bettung oder die elastischen Bettungen mit erhöhter Steifigkeit zu einer geringeren Stentbeanspru-

chung als die Bettungen ohne seitliche Abstützung des Prüfschlauchs (Abbildung 90). 

 

Abbildung 90: Betrag der maximalen Hauptdehnung im Stent bei Belastung durch Rotationsbiegung in 
Abhängigkeit von der Prüfschlauchbettung (* - elastische Bettung E2 = E1·10
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Abbildung 91 zeigt den Betrag und den Ort der maximalen Hauptdehnung des Stents unter 

Biegebelastung in Abhängigkeit von den untersuchten starren und elastischen Prüfschlauchbet-

tungen. 

 

 

 
ebene starre Bettung (esB) 

 
gekrümmte starre Bettung (gsB) 

  
 

partiell elastische Bettung (peB) 
 

partiell elastische Bettung mit E2 = E1·10
2
 (peB*) 

 
 

 
voll elastische Bettung (veB)  

 
voll elastische Bettung E2 = E1·10

2
 (veB*) 

Abbildung 91: Ort der maximalen Hauptdehnung des Stents unter Biegebelastung in Abhängigkeit 
von der Prüfschlauchbettung  
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Die Ergebnisse zeigen eine vergleichbare Dehnungsverteilung für alle untersuchten Prüfschlauch-

bettungen in den Stents. Die maximale Hauptdehnung konzentriert sich auf die Außenkontur der 

Struts im Übergangsbereich zu den Verbindern sowie an der Strutaußenseite im Übergang zu den 

Strutenden, außer bei der gsB und der peB*, bei der die maximale Hauptdehnung am Übergang zu 

einem Strutende auftritt (Abbildung 91). Hierdurch wird die Ähnlichkeit der beiden Prüfschlauchbet-

tungen verdeutlicht. Die Erhöhung der Steifigkeit der elastischen Bettung bei der peB* führt zu einer 

Annäherung an die gsB. 

Bei allen untersuchten Prüfschlauchbettungen tritt die maximale Hauptdehnung auf der Höhe der 

Stentmittelachse auf, bis auf bei der veB*, bei der sie an der Innenseite des gebogenen Stents ihr 

Maximum aufweist (Abbildung 91).  

Die Implantation des Stents führt zur Abstützung der Prüfschlauchwand, so dass die Querschnittsde-

formationen des Prüfschlauchs mit Stent geringer ausfallen als ohne Stent (Abbildung 92).  

 
Bettungstyp 

 
ohne Stent 

 
mit Stent 

esB 

 
 

gsB 

  

peB 

  

peB* 

  

veB 

  

veB* 

 
 

Abbildung 92: Querschnittsdeformationen des Prüfschlauchs mit und ohne Stent bei Belastung durch 
Rotationsbiegung in Abhängigkeit von der Prüfschlauchbettung (R = 45 mm und einer initialen 
Schlauchdehnung von ε = 31,6 %); * - elastische Bettung E2 = E1·10

2
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Die Stentimplantation führt zu einer Annäherung der Querschnittsformen der esB, peB und veB 

(Abbildung 92). Führt die Erhöhung der Bettungssteifigkeit bei der peB (peB*) ohne Stent zu einer 

Annäherung der Querschnittsform an die der gsB, so führt die Abstützung der Prüfschlauchwand 

durch den implantierten Stent zu einer gleichmäßigen Ovalisierung des Prüfschlauchquerschnitts, 

wie sie durch die veB* auch ohne Stent erzielt werden kann. 

Sowohl die Höhe als auch der Ort der maximalen Hauptdehnung korrelieren mit den Ergebnissen 

zur Querschnittsdeformation des Prüfschlauchs. So tritt die größte Verformung des Prüfschlauch-

querschnitts bei allen Bettungen auf Höhe der Stent-/Prüfschlauchachse bzw. leicht unterhalb dieser 

Achse auf, was sich sowohl bei der Höhe als auch beim Ort der maximalen Hauptdehnung des 

Stents widerspiegelt (Abbildung 90, Abbildung 91, Abbildung 92). 

Die Veränderung der Querschnittsfläche des Prüfschlauchs durch die Biegebelastung verdeutlicht 

ebenfalls die Stützwirkung des implantierten Stents (Abbildung 93). Besonders die gekrümmte starre 

Bettung (gsB) führt durch die über 270° des Umfangs starr abgestützte Prüfschlauchwand zu einer 

geringen Querschnittsdeformation (vgl. Abbildung 92) und Verringerung der Querschnittsfläche, 

solange die in Abschnitt 6.3.1 definierten Grenzen für die initiale Schlauchdehnung und den 

Biegeradius eingehalten werden. Die Verwendung einer steiferen elastischen Bettung führt zu einer 

mit den starren Bettungen vergleichbaren Abnahme der Querschnittsfläche (Abbildung 93), was 

ebenfalls mit der maximalen Hauptdehnung im Stent korreliert (vgl. Abbildung 90). 

 

Abbildung 93: Änderung der Querschnittsfläche des Prüfschlauchs mit und ohne Stent bei Biegebelastung, 
bezogen auf die Querschnittsfläche bei Beginn der Biegebelastung (* - elastische Bettung E2 = E1·10

2
) 

Zusammenfassend lässt sich mit der Parameterstudie zur Rotationsbiegung zeigen, dass die 

zulässige initiale Dehnung des Prüfschlauchs im Mehrachsen-Stentprüfstand nach oben hin 

begrenzt werden muss, um den Einfluss von Querschnittsdeformationen auf das Ergebnis einer 

Ermüdungsprüfung von Stents zu reduzieren. Des Weiteren hat die Wahl der Prüfschlauchbettung 

einen großen Einfluss auf die Querschnittsdeformation des Prüfschlauchs, wobei starre Bettungen 

zu einer verstärkten Querschnittsdeformation führen, die eine größere Stentbeanspruchung zur 

Folge haben.  
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6.4 Analyse der Stent-Beanspruchung in einem biomechanischen 
FE-Referenzmodell „Kniebeugung“  

Für die Bewertung der Ergebnisse aus den vorhergehenden Abschnitten wird ein biomechanisches 

FE-Referenzmodell für die Kniebeugung entwickelt, um die Stentbeanspruchung bei der 

Biegebelastung im Mehrachsen-Stentprüfstand mit einer anatomienahen Biegebelastung 

vergleichen zu können. In Abgrenzung zu existierenden FE-Modellen von Stents in der SFA, bei 

denen die Nachbildung der Gefäßdeformation im Vordergrund steht [41, 95], ist das Ziel des in 

dieser Arbeit entwickelten Referenzmodells die Darstellung der Stentbeanspruchung während der 

Kniebeugung und deren Vergleich mit der im Mehrachsen-Stentprüfstand erzielten Beanspruchung 

während der Biegebelastung. Hierfür wird das FE-Referenzmodell auf die für dieses Ziel 

erforderlichen wesentlichen Komponenten sowie Rand- und Kontaktbedingungen reduziert. 

Bei der FEA der Stentbeanspruchung im femoropoplitealen Gefäßabschnitt während der 

Kniebeugung sind multiple Nichtlinearitäten zu berücksichtigen. Insbesondere die Kontaktbedin-

gungen zwischen Körpern mit stark unterschiedlicher Materialsteifigkeit, wie z.B. zwischen 

Knochen und Weichgewebe, erschweren die numerische Simulation, wobei zusätzlich große 

Starrkörperdrehungen und -verschiebungen, z.B. des Unterschenkels während der Kniebeugung, 

auftreten. Neben dem nichtlinearen Materialverhalten von Nitinol beinhaltet das FE-

Referenzmodell zusätzlich nichtlineares Materialverhalten des Gefäßes und Gewebes. 

Dieses Materialverhalten wird durch Materialmodelle beschrieben, die zunächst auf der Basis von 

Publikationen zur Simulation des femoropoplitealen Gefäßabschnitts bei Kniebeugung 

beschrieben werden. Des Weiteren werden publizierte Simulationsmodelle der Gefäße während 

der Kniebeugung vorgestellt. Anschließend wird die Struktur des biomechanischen FE-

Referenzmodells „Kniebeugung“ beschrieben, bevor dessen Funktionalität anhand der 

Kniebeugung ohne Stent validiert wird. Abschließend erfolgt die Untersuchung der Stentbean-

spruchung bei Kniebeugung.  

6.4.1 Simulation von Gefäßen und der umgebenden Weichgewebebettung  

Viele Autoren haben Ergebnisse zu Untersuchungen von Stents in Blutgefäßen veröffentlicht. 

Diese Modelle beinhalten eine Reihe von komplexen Komponenten, wie gekrümmte, verzweigte 

und/oder konische Arteriengeometrien, symmetrische und asymmetrische Plaquegeometrien mit 

unterschiedlichen Materialmodellen, Fluid-Interaktionen und in vivo Lasten durch Pulsation, 

Torsion und Biegung der gestenteten Arterien sowie nutzerdefinierte Materialmodelle für das 

Stent- und Arterienmaterial. Die mechanische Umgebung der Gefäße, die Bettung, bleibt zumeist 

unbeachtet oder wird durch vereinfachende Randbedingungen berücksichtigt, die die großen und 

komplexen Deformationen im femoropoplitealen Gefäßabschnitt nicht widerspiegeln [41, 94].  

In der Literatur existiert eine große Varianz in den experimentellen Daten zu mechanischen 

Eigenschaften von vaskulärem Gewebe, da verschiedene Gefäße aufgrund ihrer Anatomie und 
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Funktion unterschiedliche Eigenschaften aufweisen. Hinzu kommt der Einfluss pathologischer 

Gefäßveränderungen, die sowohl in ihrer Zusammensetzung als auch in ihrer Geometrie stark 

differieren [14]. Des Weiteren wird die Bestimmung der mechanischen Eigenschaften durch 

Faktoren wie z.B. den Zeitabstand zwischen Tod, Präparation und Prüfung, das umgebende 

Gewebe, die Konservierung der Gefäße sowie das Alter und Krankheiten des Patienten 

erschwert [22, 138]. Eine der wesentlichen Eigenschaften arterieller Blutgefäße ist ihre 

Grundspannung sowohl in Umfangs- als auch in axialer Richtung, so dass z.B. Ringe, die aus 

einer Arterie geschnitten werden, aufspringen oder sich in axialer Richtung geschnittene Streifen 

nach außen wölben [21, 137]. Dadurch differieren die mechanischen Eigenschaften von Arterien 

ex vivo und in vivo. Des Weiteren sind Arterien anisotrop, mit unterschiedlichen Eigenschaften in 

Umfangs- und radialer Richtung [102]. Weitere Untersuchungen zeigen, dass nahezu jedes 

Weichgewebe, so auch Arterien, ein bestimmtes Maß an Viskoelastizität aufweist, was sich durch 

die Relaxation bei anhaltender Verformung und durch die Hysterese unter zyklischer Belastung 

zeigt [53]. Durch den hohen Wassergehalt der Arterienwand von 70-80 % kann diese im globalen 

Zusammenhang als inkompressibel angenommen werden [80].  

Für die FE-Simulation der mechanischen Eigenschaften von Arterien finden zumeist isotrope 

nichtlineare hyperelastische Materialmodelle Anwendung. Im Folgenden werden die beiden für 

die Entwicklung des FE-Referenzmodells relevanten Publikationen zur Simulation des 

femoropoplitealen Gefäßabschnitts bei Kniebeugung von Diehm et al. [41] und Ghriallais et al. 

[95] vorgestellt, wobei auch die daraus entnommenen Materialmodelle dargestellt werden. Die 

Autoren generieren ihre Modelle aus MRT- [41] bzw. CT-Daten [95], was den Vorteil der 

patienten-spezifischen Modelle bietet, die die große Varianz der Gefäßdeformationen durch 

individuelle vaskuläre und muskuläre Anatomie widerspiegeln können [32, 41].  

Diehm et al. [41] segmentieren MRT-Daten von acht Patienten in Knochen (Femur und Tibia), 

muskuläres Weichgewebe und Gefäße (Abbildung 94), wobei sowohl eine gestreckte als auch 

eine um 40°/20° (Knie-/Hüftbeugung) gebeugte Kniegelenksposition aufgenommen wird. Die 

Knochen werden mit starren Schalenelementen vernetzt. Der Femur wird raumfest fixiert und die 

Verschiebung auf die Tibia aufgebracht. Sowohl das Weichgewebe als auch die Arterie werden 

mit Tetraederelementen vernetzt. Die Autoren verwenden für das Gefäß und das Weichgewebe 

ein hyperelastisches Materialmodell nach Neo-Hooke (E = 0,045 MPa, µ = 0,45). Zwischen 

Weichgewebe und Knochen wird eine reibfreie Kontaktbedingung generiert, während zwischen 

Weichgewebe und Gefäß eine kraftschlüssige Verbindung erfolgt. Die Evaluation des FE-Modells 

durch Vergleich der berechneten und aus MRT-Daten generierten Biegung der Arterienmittellinie 

bei gestrecktem und gebeugtem Bein zeigt für die meisten Patienten eine gute qualitative 

Übereinstimmung gerade im Bereich des Kniegelenks, obwohl standardisierte mechanische 

Eigenschaften für Gefäß und Weichgewebe verwendet werden (Abbildung 94). Allerdings ist 

diese Aussage auf einen Knie-/Hüftwinkel von 40°/20° limitiert. Bei zwei Patienten wird eine 

schlechte Übereinstimmung festgestellt. Da diese Patienten einen sehr niedrigen Body-Mass-
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Index (BMI) aufweisen, wird vermutet, dass der Einfluss der muskulären Strukturen in der 

Gefäßumgebung wächst, wenn der Fettgehalt unter einem bestimmten Level ist. Es wird 

vermutet, dass die Arterien stärker in das muskuläre Weichgewebe eingebunden sind und 

dadurch den Verschiebungen des Weichgewebes genauer folgen. 

    

Abbildung 94: links: Simulationsmodell aus MRT-Daten; rechts: gute Übereinstimmung des simulierten 
(grau) und aus MRT-Daten generierten Gefäßverlaufs (schwarz) bei Kniebeugung (Patient p3)  [41] 

Im Gegensatz zu Diehm et al. [41] generieren Ghriallais et al. [95] ein FE-Modell aus CT-Daten, 

wobei Muskel, Knochen, Gefäße und Weichgewebe segmentiert werden (Abbildung 95). Die 

Autoren unterteilen in diesem wegweisenden Modell die Knochen in Tibia, Femur und Patella 

sowie die Muskeln in acht Muskelanteile, die von Weichgewebe umhüllt werden. Sowohl die 

Knochen als auch die Muskeln und das Weichgewebe werden mit Schalenelementen vernetzt, 

da die innere Beanspruchung dieser Modellbestandteile nicht von Interesse ist. Die Muskeln 

werden mit einem hyperelastischen Mooney-Rivlin Materialmodell versehen, das die großen 

nichtlinear-elastischen Deformationen der Muskeln nachbilden kann [62, 95].  

Das Gefäß wird mit Volumenelementen vernetzt, wobei drei Elemente über die Wandstärke 

(t = 0,637 mm) verwendet werden, die die drei Schichten der Arterienwand bilden. Für die Arterie 

wird ein hyperelastisches Materialmodell, basierend auf einer reduzierten polynomischen 

Dehnungsenergiefunktion sechster Ordnung verwendet, wobei unterschiedliche Koeffizienten für 

die drei Arterienbestandteile Intima, Media und Adventitia zugewiesen werden.  

Analog zu Diehm et al. [41] wird der Femur raumfest fixiert. Durch Kopplungsbedingungen zwischen 

Tibia und Femur wird das Kniegelenk simuliert, wobei der Drehpunkt des Gelenks durch einen 

Referenzpunkt an der Tibia definiert wird. Durch eine Verschiebungsrandbedingung am Tibiaende 

wird eine Kniebeugung von 90° erreicht. Am proximalen Ende des Femurs werden Knochen, 

Muskeln und Weichgewebe fixiert. Um den Einfluss der Knochen, Muskeln und des Weichgewebes 

auf die Arterie genau zu simulieren, werden die Muskeln durch Zwangsbedingungen an den 

Knochen gekoppelt, die die Verbindung zum Knochen durch Sehnen modellieren. Sämtliche 

Kontaktflächen, außer zwischen Femur und Tibia, werden mit einem Reibkoeffizienten von µ = 0,4 

versehen. Vergleiche zwischen der simulierten Arteriengeometrie und publizierter Bilder zeigen, 
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dass das Referenzmodell experimentelle Ergebnisse der Gefäßdeformation aus in vivo Studien 

nachbilden kann. Neben einer guten Übereinstimmung der axialen Längenänderung, Torsion und 

der Änderung der Gefäßkrümmung mit experimentellen Ergebnissen bei Kniebeugung aus der 

Literatur, ermitteln Ghriallais et al. [95] eine Abnahme des mittleren Gefäßlumens (Querschnittsflä-

che des Gefäßes) um 25 % vom gestreckten zum gebeugten Kniegelenk. Des Weiteren werden 

Querschnittsdeformationen des Gefäßes beobachtet (Abbildung 96).  

  

Abbildung 95: Simulationsmodell aus CT-Daten 
von Ghriallais et al. [95] (a - komplettes Modell, 
b - Modell ohne Haut, Darstellung der einzelnen 
Muskeln, c - Arterie) 

Abbildung 96: Simulation der Gefäßquerschnitte bei 
geradem (links) und gebeugtem Bein (rechts) von 
Ghriallais et al. [95] 

Sowohl der geringste Gefäßquerschnitt als auch die größte Querschnittsdeformation werden im 

Bereich der Kniekehle beobachtet. Unterschiede zwischen Simulation und publizierten Studien 

werden mit der Vernachlässigung des Hüftwinkels begründet, der in Studien zur Quantifizierung 

der Gefäßdeformation in Abhängigkeit zur Kniebeugung variiert. 

In einer weiterführenden Arbeit simulieren Ghriallais et al. [96] ein gestentetes Gefäß während der 

Kniebeugung, wobei der Stent nicht explizit dargestellt wird. Stattdessen definieren die Autoren den 

gestenteten Gefäßabschnitt mit einem steiferen, linear-elastischen Materialverhalten (E = 1,14 MPa; 

µ = 0,3) auf der Grundlage von Untersuchungen gestenteter Mock-Arterien. Hierdurch wird die 

entscheidende Interaktion zwischen Stent und Gefäß vernachlässigt. Es wird die Abhängigkeit der 

Gefäßdeformation und -spannung von der Stentlänge und -lokalisation untersucht. Die Simulationen 

führen zu zwei Schlussfolgerungen. Zum einen verändert die Stentimplantation in Arterienabschnitte 

die globale Deformationscharakteristik des Gefäßes über die gesamte Länge. Dieses geht mit einer 

Zunahme der Spannung und Dehnung einher. Zum anderen beeinflusst die Stentlänge und -

lokalisation die Längenänderung, Torsion und Krümmungsänderung des Gefäßes. So führt eine 

proximale Stentlokalisation zu einer geringeren Gefäßverkürzung und -torsion und zu einer größeren 

distalen Biegung als eine distale Stentimplantation. Zu beachten ist allerdings, dass Ghriallais et al. 

[96] in ihren Untersuchungen durch die Vernachlässigung der Stent-Gefäß-Interaktion neben dem 

Kontaktproblem auch das nichtlineare Materialverhalten des Nitinolstents sowie die differenzierte 

Steifigkeit des Stents in axialer und radialer Richtung vernachlässigen. 
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6.4.2 Struktur, Funktion und Validierung des biomechanischen FE-
Referenzmodells „Kniebeugung“ 

Die Entwicklung des biomechanischen FE-Referenzmodells „Kniebeugung“ erfolgt auf der Basis 

anatomischer Abbildungen und radiologischer Aufnahmen des gestreckten Beins, wobei sich 

eine geringe initiale Krümmung des Gefäßes erkennen lässt, mit der sich das im Gewebe 

eingebettete Gefäß der Form des Oberschenkelknochens anpasst (Abbildung 97).  

 

Abbildung 97: Radiologische Darstellung des Kniegelenks mit dem femoropoplitealen Arterienab-
schnitt im gestreckten Zustand [128] 

Mit Hilfe der CAD-Software ProEngineer (Pro/ENGINEER Wildfire 5.0, Parametric Technology 

Corp., USA) werden die wesentlichen Bestandteile des biomechanischen FE-Referenzmodells 

konstruiert, wobei zur Vereinfachung und Reduzierung der Modellgröße von einem symmetri-

schen Modell ausgegangen wird. Neben dem passiven Bewegungsapparat des Kniegelenks, 

bestehend aus den Knochen und Sehnen (grau), wird das Gefäß mit seinen drei Bestandteilen 

Adventitia (gelb), Media (orange) und Intima (rot) und die Bettung, unterteilt in Muskel (hellblau) 

und Weichgewebe (dunkelblau), mit dem die Haut sowie die Muskulatur des Unterschenkels 

vereinfacht dargestellt wird, modelliert (Abbildung 98).  
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Abbildung 98: Biomechanisches FE-Referenzmodell „Kniebeugung“, Darstellung der Vernetzung  

Die Knochen des Kniegelenks, Femur, Tibia und Patella, bilden die Tragstruktur des Gelenks, die 

nur sehr kleine elastische Verformungen erfahren und deren Beanspruchung nicht von Interesse 

ist, weshalb ein willkürliches linear-elastisches Materialverhalten zugewiesen wird 

(E = 210 000 MPa, µ = 0,3). Die Vernetzung der Knochen erfolgt mit vier-Knoten Tetraederele-

menten erster Ordnung (C3D4). Da keine Spannungsanalyse der Knochen erfolgt, kann eine 

relativ grobe Vernetzung erfolgen.  

Neben den Knochen werden zur numerischen Stabilisierung des Modells zwei Kreuzbänder 

sowie zwei Bänder für die obere und untere Patellasehne modelliert, die mit linearen zwei-Knoten 

Elementen vernetzt werden. Hierdurch kann ein Mehrkörpermechanismus des Modells verhindert 

werden. Da keine Spannungsanalyse der Bänder erfolgt, wird ein willkürliches linear-elastisches 

Materialverhalten zugewiesen (E = 210 000 MPa, µ = 0,3). Um eine einheitliche Steifigkeit der 

Bänder zu erreichen, werden deren Querschnitte anhand der Bandlänge nach 

c1 = c2 = 
(𝐸∗𝐴1)

𝑙1
=  

(𝐸∗𝐴2)

𝑙2
 berechnet (AKreuzband = 3 mm², APatellasehne-Oberschenkel = 1 mm², APatellasehne-

Unterschenkel = 1,309 mm²). 

Das Gefäß wird mit einem Innendurchmesser von Øi = 5 mm und einer Wandstärke von 

t = 0,64 mm modelliert. Die Vernetzung erfolgt mit linearen sechs-Knoten Elementen (dreieckige 

Prismen C3D6), wobei drei Elementreihen über die Wandstärke die drei Bestandteile der 

Arterienwand Intima, Media und Adventitia repräsentieren. Das Materialverhalten der 

Arterienwand wird nach Ghriallais et al. [95] zugewiesen (Tabelle 14). Das Gefäß wird durch eine 

kraftschlüssige Verbindung an die Kinematik des Weichgewebes/Muskelgewebes gebunden.  
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Tabelle 14: Koeffizienten für ein hyperelastisches Materialmodell für Arterien, basierend auf einem 
Polynom 6. Ordnung [62] 

 C10 [MPa] C20 [MPa] C30 [MPa] C40 [MPa] C50 [MPa] C60 [MPa] 

Intima 0,00679 0,54 -1,11 10,65 -7,27 1,63 

Media 0,00652 0,0489 0,00926 0,76 -0,43 0,0869 

Adventitia 0,00827 0,012 0,52 -5,63 21,44 0 

 

Die Gefäßbettung wird in Muskel und das umgebende Weichgewebe unterteilt und mit linearen 

vier-Knoten Elementen vernetzt. Das Materialverhalten wird nach Ghriallais et al. [95] 

zugewiesen (Tabelle 15). Durch Kraftschluss werden beide Bestandteile der Gefäßbettung 

miteinander verbunden.  

Tabelle 15: Koeffizienten für Materialmodelle zur Simulation von Muskeln und Weichgewebe [62] 

Muskel Weichgewebe 

Hyperelastisch,  
Mooney-Rivlin 

C10 = 0,00165 MPa 
C01 = 0,00335 MPa 

D1 = 0,49 
linear-elastisch 

E = 0,15 
µ = 0,46 

 

Zwischen den Kontaktpartnern Femur-Tibia und Femur/Tibia-Gefäßbettung wird eine 

Kontaktbedingung mit einem geringen Reibkoeffizienten von µ = 0,002 definiert. 

Zur Entsingularisierung des numerischen Modells wird der Femur in den drei Raumrichtungen 

fixiert. Zur numerischen Stabilisierung wird eine Aufhängung der Patella über eine Feder 

(c = 250 N/mm) an einem raumfesten Referenzpunkt erzeugt, so dass sich diese verkippen und 

verschieben kann. Zusätzlich werden Symmetrierandbedingungen festgelegt. Die Kniebeugung 

erfolgt über eine Verschiebungsrandbedingung des distalen Tibiaendes in y-Richtung, durch die 

eine Kniebeugung von 90° realisiert wird. 

Anhand von radiologischen Aufnahmen (Smouse et al. [128]) mit zunehmender Hüft-

/Kniebeugung (Abbildung 99) wird das biomechanische FE-Referenzmodell validiert. Es kann 

gezeigt werden, dass das Gefäß während der simulierten Kniebeugung der Knochenkontur folgt, 

so dass ein vergleichbares Bild zur angiographischen Aufnahme entsteht, wobei eine Beugung 

des Hüftgelenks bei der Simulation unberücksichtigt bleibt (Abbildung 99).   
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/Kniewinkel 
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(Smouse et al. [128]) 

 
Simulierte Kniebeugung  

(FE-Referenzmodell) 

0° 

 

 

 

70/20° 

 

 

 

90/90° 

  

Abbildung 99: Validierung des biomechanischen FE-Referenzmodells „Kniebeugung“ durch Vergleich 
der Gefäßdeformation mit radiologischen Aufnahmen von Smouse et al. [128]; es stellt sich ein 
Biegeradius des Gefäßes von R ≈ 24 mm ein 

Für das Gefäß stellt sich während der Kniebeugung ein Biegeradius von etwa 24 mm ein, der 

geometrisch durch Anlegen eines Kreises ermittelt werden kann (Abbildung 99). 

Die Simulation der Kniebeugung ohne Stent zeigt, dass das entwickelte biomechanische 

Referenzmodell in der Lage ist, die gewünschte Gefäßkinematik abzubilden, so dass im 

Folgenden die Untersuchung der Stentbelastung während der Kniebeugung erfolgt. 

R 
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6.4.3 Quasistatische Stent-Beanspruchung aus FE-Simulationen der 
Kniebeugung 

Die Simulation eines in das Gefäß des biomechanischen FE-Referenzmodells implantierten 

Stents unter Berücksichtigung der spezifischen Stentstruktur, der nichtlinearen Materialeigen-

schaften des Stents sowie der Stent-Gefäß-Interaktion bildet eine Weiterentwicklung der aus der 

Literatur bekannten Simulationsmodelle (vgl. Abschnitt 6.1). Des Weiteren wird die differenzierte 

Stentsteifigkeit in axialer und radialer Richtung durch Verwendung eines realen Stentmodells 

beachtet. Die Ergebnisse dieses Modells können anschließend für die Bewertung der 

Simulationsergebnisse des Mehrachsen-Stentprüfstands verwendet werden. 

Die Platzierung des Stents erfolgt analog zu Abbildung 100 in den initial gekrümmten Gefäßbereich. 

 

Abbildung 100: Stentlokalisation in neutraler Position (0°/0°) (modifiziert nach [99]) 

Es wird ein Stentmodell mit neun Ringen nach Abschnitt 6.2 in das Gefäß des Referenzmodells 

freigesetzt (Abbildung 101).  

 

Abbildung 101: Biomechanisches FE-Referenzmodell „Kniebeugung“ mit Stent, Darstellung der 
Vernetzung  
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Für die Platzierung des Stents in einen initial gekrümmten Gefäßabschnitt erfolgt zunächst der 

Crimp- und Freisetzlastschritt in einen Hilfszylinder. Durch Biegen des Hilfszylinders mit dem 

Stent, analog zum Rotationsbiegen nach Abschnitt 6.2.2, kann dieser anschließend in das 

gekrümmte Gefäß freigesetzt werden, indem die Kontaktbedingung zwischen Hilfszylinder und 

Stent deaktiviert und zwischen Stent und Gefäß aktiviert wird (Reibkoeffizient µ = 1). Nach der 

Stentfreisetzung in das Gefäß erfolgt die Kniebeugung analog zu Abschnitt 6.4.2. 

Die Steifigkeit des Stents führt zu einer deutlichen Begradigung des Gefäßes während der 

Kniebeugung, so dass die Gefäßwand und die Bettung im Bereich des Stentendes weiter 

Richtung Gelenkspalt geschoben werden (Abbildung 102). 

 
Kniewinkel 

 
ohne Stent 

 

 
mit Stent 

60 °  

   
70 °  

  
80 °  

  

Abbildung 102: Kniebeugung des biomechanischen FE-Referenzmodells ohne und mit implantiertem 
Stent 

Durch die Begradigung des Gefäßes entsteht am Stentende eine annähernd singuläre 

Krafteinleitung in das Gefäß mit einem maximalen Kontaktdruck zwischen Stent und Gefäß von 

0,365 MPa (Abbildung 103). Im Vergleich dazu ist der Kontaktdruck zwischen Stent und Gefäß im 
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weiteren Verlauf mit maximal 0,124 MPa deutlich niedriger. Der hohe Kontaktdruck zwischen 

Gefäß und Stentende kann zu einer Schädigung der Gefäßwand führen. 

Durch die Kniebeugung entsteht die größte Stentbeanspruchung, dargestellt durch die maximale 

Hauptdehnung, an der Außenseite des im Außenradius liegenden Verbinders (Abbildung 104). 

 

 

 

Abbildung 103: Ort des maximalen Kontakt-
drucks zwischen Stentende und Gefäßwand 

Abbildung 104: Ort der maximalen Hauptdeh-
nung am oberen Verbinder des Stentendes 

Die Ergebnisse zur Stent- und Gefäßbeanspruchung der Kniebeugung mit implantiertem Stent 

zeigen, dass die Lage des Stents einen Grenzfall für die Implantation darstellt, da das Gefäß 

durch eine nahezu singuläre Krafteinleitung geschädigt werden kann.  

6.5 Diskussion der Simulationsergebnisse „Kniebeugung“ vs. 
Mehrachsen-Stentprüfstand 

Die Simulationsergebnisse des Mehrachsen-Stentprüfstands (vgl. Abschnitt 6.3) werden im 

Folgenden anhand der Ergebnisse des biomechanischen FE-Referenzmodells „Kniebeugung“ 

ohne und mit Stent bewertet und eingeordnet. 

Der wesentliche Unterschied zwischen der Kniebeugung und der im Mehrachsen-Stentprüfstand 

durchgeführten Biegebelastung liegt darin, dass das Kontaktproblem zwischen Prüfschlauch und 

Bettung im Prüfstand nicht der kraftschlüssigen Verbindung von Gefäß und umliegendem 

Gewebe in vivo entspricht. Hierdurch kann keine Ablösung des Gefäßes von der Bettung 

erfolgen. Das Kontaktproblem beim Mehrachsen-Stentprüfstand liegt sowohl bei der Rotations- 

als auch bei der Querkraftbiegung vor und hat die Ausbildung eines Bettungsdrucks zur Folge. 

Durch die Idealisierung der Gefäß-Bettungs-Interaktion im biomechanischen FE-Referenzmodell 

mit einer Kontaktbedingung kann auch hier ein Bettungsdruck ermittelt werden, der im Gegensatz 

zur Rotations- und Querkraftbiegung gleichmäßig in tangentialer und in Längsrichtung der 

Gefäßwand verläuft (Abbildung 105). Es prägt sich kein Maximum im Bettungsdruck beim 

Referenzmodell ohne Stent aus. 
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Abbildung 105: Verteilung des Bettungsdrucks zwischen Gefäß-/Prüfschlauchwand und Bettung in 
tangentialer und in Längsrichtung bei Rotations- und Querkraftbiegung mit ebener starrer Bettung 
sowie im Referenzmodell 

Die geringfügige und gleichmäßige Ausprägung des Bettungsdrucks beim Referenzmodell führt 

dazu, dass der Stent im Mehrachsen-Stentprüfstand sowohl bei der Rotations- als auch bei der 

Querkraftbiegung stärker belastet wird (Abbildung 106).  

 

Abbildung 106: Maximale Hauptdehnung im Stent bei Kniebeugung im Referenzmodell im Vergleich 
zur Rotations- und Querkraftbiegung im Mehrachsen-Stentprüfstand (ebene starre Bettung, 
R = 45 mm, ε = 21,05 %) 

Der Gefäßverlauf während der Kniebeugung (Abbildung 99, Abbildung 107) zeigt, dass die 

Rotationsbiegung phänomenologisch weitgehend der physiologischen Kniebeugung entspricht, mit 

dem Unterschied, dass das Gefäß bei der Kniebeugung an jedem Punkt gelagert ist. Im Gegensatz 

dazu ist der Prüfschlauch bei der Biegebelastung im Mehrachsen-Stentprüfstand nur am 

Innenradius gebettet. 
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Die Simulationsergebnisse aus dem biomechanischen FE-Referenzmodell „Kniebeugung“ ohne 

Stent zeigen, dass bei einer Kniebeugung von 90° nur geringfügige Querschnittsdeformationen 

des Gefäßes auftreten (Abbildung 107), im Gegensatz zu Ghriallais et al. [95]. Allerdings gehen 

die Autoren von reellen Gefäßen aus, die im Gegensatz zu dem im Referenzmodell verwendeten 

Gefäß keinen kreisförmigen Querschnitt zu Beginn der Simulation aufweisen, so dass die 

dadurch vorhandenen Störstellen zu einer bevorzugt ausgeprägten Deformation der Gefäßwand 

in den Untersuchungen von Ghriallais et al. [95] führen. Der Ort der maximal ausgeprägten 

Querschnittsdeformation bei 90° Kniebeugung des FE-Referenzmodells stimmt mit den 

Ergebnissen zur Querschnittsdeformation des Gefäßes von Ghriallais et al. [95] (Abschnitt 6.4.1, 

Abbildung 95) überein.  

Kniewinkel 
 

Simulierte Kniebeugung 
(FE-Referenzmodell) 

Gefäßquerschnitt aus Simulation 

0° 

 

 

 

 

90° 

 

 
 
 
 

 
 
 

Abbildung 107: Simulation der Kniebeugung mit FE-Referenzmodell; Deformation des Gefäßquer-
schnitts im maximal belasteten Bereich des Gefäßes (Markierung) 

Indifferente Zustände des Gefäßes, wie sie beim Mehrachsen-Stentprüfstand auftreten (vgl. 

Abschnitt 6.3.1 und 6.3.2), können aufgrund der erzielten Ergebnisse bei einer physiologischen 

Kinematik des Gefäßes mit realitätsnaher Bettung ausgeschlossen werden. Folglich ist die in 

Abschnitt 6.3.2 phänomenologisch getroffene Annahme zur lokalen Strukturstabilität der 

Gefäßwand zutreffend, indem keine starken Deformationen des Gefäßquerschnitts auftreten. Es 

wird ausdrücklich darauf hingewiesen, dass der im Mehrachsen-Stentprüfstand erforderliche 

Parameter der initialen Prüfschlauchdehnung zur Realisierung der axialen Stentkompression 

zwangsläufig zu einer stärker ausgeprägten Querschnittsdeformation des Prüfschlauchs führt. 
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Somit wird mit der Biegebelastung im Mehrachsen-Stentprüfstand eine höhere Stentbeanspru-

chung erzielt (Abbildung 106). 

Bei Betrachtung der Änderung des Flächeninhalts des Gefäßes/Prüfschlauchs durch die 

Biegebelastung im Mehrachsen-Stentprüfstand mit unterschiedlicher Bettung sowie im FE-

Referenzmodell zeigt sich, dass die Abnahme des Flächeninhalts des Gefäßquerschnitts im 

Referenzmodell der des Prüfschlauchquerschnitts im Mehrachsen-Stentprüfstand bei Bettung mit 

esB, gsB und peB ohne Prüfschlauchvordehnung entspricht (Abbildung 108). 

 

Abbildung 108: Änderung des Flächeninhalts während der Biegebelastung im Mehrachsen-
Stentprüfstand bei unterschiedlicher Prüfschlauchbettung (ε = 0 %, R = 22,5 mm) und während der 
Kniebeugung im biomechanischen FE-Referenzmodell 

Dieses Ergebnis bestätigt die in Abschnitt 6.3.2 getroffene phänomenologische Annahme, dass 

der Flächeninhalt des Gefäßes bei der physiologischen Kniebeugung nahezu invariant ist, damit 

zu jedem Zeitpunkt der Kinematik die vaskuläre Versorgung des Gewebes durch das Gefäß 

unabhängig vom kinematischen Zustand des Gefäßes ist. Unterstützt wird diese Annahme durch 

Untersuchungen von Brown et al. [26], die einen konstanten Flächeninhalt der A.femoralis bei 

Muskelkontraktion des gestreckten Beins messen. Im Gegensatz dazu messen Ghriallais et al. 

[95] eine Abnahme des Gefäßlumens durch die Kniebeugung um 25 %. Zu beachten ist hierbei 

allerdings, dass die Berücksichtigung einer realen Gefäßgeometrie mit initialer Krümmung und 

Imperfektionen, im Gegensatz zum im FE-Referenzmodell verwendeten idealisierten kreisförmi-

gen Gefäßquerschnitt, die Ausbildung von präferierten Querschnittsdeformationen mit 

Reduzierung des Flächeninhalts fördert. 

Aus physiologisch-anatomischer Sicht kann eine starre Prüfschlauchbettung ausgeschlossen 

werden. Aus technischer Sicht führt die starre Bettung allerdings als Grenzfall der harten 

Kontaktbedingung im Mehrachsen-Stentprüfstand zu einer höheren Sicherheit des implantierten 

Stents gegenüber Ermüdungsbruch und ist einfacher technisch zu realisieren als eine elastische 

Bettung. Allerdings behindern derartig verschärfte Prüfmethoden eine progressive Stententwick-

lung. Für Stentprüfungen nach dem „Fatigue-to-Fracture“-Prinzip kann eine starre Bettung 
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empfohlen werden, da die größere Beanspruchung des Stents häufiger zu Brüchen führt. 

Hierdurch kann das Bruchverhalten der Stents untersucht werden. Für eine realitätsnahe 

Stentprüfung im Mehrachsen-Stentprüfstand ist eine elastische Prüfschlauchbettung zu 

empfehlen, auch wenn deren Realisierung in einer technischen Simulation nicht nur aufwendiger, 

sondern zusätzlich durch Unsicherheiten bei der Wahl der Bettungsgeometrie und -steifigkeit 

behaftet ist.  

 



7 Zusammenfassung und Schlussfolgerungen für die Prüftechnik 

 - 113 – 

7 Zusammenfassung und Schlussfolgerungen für die 
Prüftechnik 

Gegenstand der vorliegenden Arbeit ist die strukturmechanische Analyse eines neuartigen 

Mehrachsen-Stentprüfstands. Die wesentliche Zielsetzung dabei ist die Charakterisierung der 

Basisverfahren für die Biegebelastung und deren Einordnung in den realitätsnahen Zusammen-

hang zur physiologischen Kniebeugung mit Hilfe der FEA, um die Methode des Mehrachsen-

Stentprüfstands zu bestätigen. Hierbei erfordert die Simulation die mathematische Nachbildung 

multipler Nichtlinearitäten, wie große Starrkörperverschiebungen und -rotationen, große 

Dehnungen und mehrfache Kontaktprobleme. 

Für die Behandlung von Gefäßkrankheiten, wie der peripheren arteriellen Verschlusskrankheit, ist 

die Implantation intravaskulärer Gefäßstützen, sogenannter Stents, etabliert, wobei bevorzugt 

selbstexpandierende Stents aus der Formgedächtnislegierung Nitinol eingesetzt werden. Da 

diese als permanente Implantate lebenslang im Körper verbleiben, sind sie einer Vielzahl von 

zyklischen Belastungen ausgesetzt. Insbesondere im femoropoplitealen Gefäßabschnitt treten 

neben der regelmäßig zyklischen radialen Belastung durch den pulsatilen Blutfluss zusätzliche 

unregelmäßig zyklische überlagerte axiale, Biege- und Torsionsbelastungen durch die 

Beinbewegung, z.B. beim Gehen, auf, die als Langzeitbelastungen zu Ermüdungsbrüchen bei bis 

zu 65 % der implantierten Stents führen. Dieses Strukturversagen der Stents ist eine wesentliche 

Komplikation der Stentimplantation im femoropoplitealen Gefäßabschnitt, die den Verlust der 

mechanischen Funktion des Stents sowie Komplikationen, wie Restenose, Thrombose oder 

Gefäßperforation zur Folge hat.  

Das mehrachsige Belastungsregime im femoropoplitealen Gefäßabschnitt wird im Rahmen dieser 

Arbeit durch eine Literaturrecherche quantifiziert. Durch unterschiedliche Verfahren und 

Auswertemethoden in den Studien sowie individuelle Unterschiede der untersuchten Patienten 

und Körperspender im Hinblick auf Alter, Krankenstand und Arteriengeometrie treten erhebliche 

Differenzen in den Ergebnissen bezüglich Längenänderung, Torsionswinkel sowie Biegewinkel 

und -radius der Gefäße auf. Ergebnis der Literaturrecherche ist die Definition eines Lastregimes. 

Des Weiteren wird ein Prüfregime vorgeschlagen, bei dem zunächst die axiale Stentkompression 

und Torsion aufgebracht werden, bevor der komprimierte und tordierte Zustand des 

Stents/Prüfschlauchs gebogen wird. Durch diese Kopplung der drei Belastungen in der Mitte des 

Lastzyklus wird ein worst-case-Prüfregime erreicht. 

Zur Reduzierung von Stentbrüchen sowie zur Beurteilung des Ermüdungsverhaltens von Stents, 

die diesen Belastungen ausgesetzt sind, sind dynamische Ermüdungsfestigkeitsprüfungen ein 

wesentlicher Bestandteil der Stententwicklung und -zulassung. Sie werden von Zulassungsbe-

hörden gefordert, um eine hohe technische Sicherheit für den Patienten zu gewährleisten. 

Hierbei legen die jeweiligen länderspezifischen Normen, wie z.B. ISO 25539-2, ASTM-Normen 
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oder Richtlinien, wie die FDA Guidance 1545, die allgemeinen Anforderungen an die Stentprü-

fung fest und geben Rahmenbedingungen für die Entwicklung von adäquaten Prüfmethoden für 

eine realitätsnahe Prüfung der Stents für ihre spezifische Einsatzregion vor. Hierfür wird der Stent 

in der Regel in einen Prüfschlauch implantiert, dessen Enden als Einspannung fungieren. 

Ein neuartiger patentierter Mehrachsen-Stentprüfstand (Institut für ImplantatTechnologie und 

Biomaterialien e.V.), basierend auf dem Prinzip der Rotationsbiegung, bietet die zeitgleiche 

Belastung von zwölf Stents bezüglich axialer Kompression, Torsion und Biegung. Zur 

Auswertung der Prüfergebnisse nach einer Mehrachsen-Stentprüfung wird eine Methodik 

festgelegt, die die Quantifizierung und Zuordnung der aufgetretenen Stentbrüche und fehlenden 

Stentfragmente als primäre Beurteilungsgröße ermöglicht. Dieses erfolgt zum einen mittels 

Endoskop zu festgelegten Inspektionsintervallen und zum anderen nach Prüfungsende und 

Stentexplantation durch Auszählen der Brüche/fehlenden Fragmente. Es zeigt sich, dass die 

Anzahl der Brüche/fehlenden Fragmente durch die endoskopische Inspektion unterschätzt wird, 

so dass hierdurch nur ein Anhaltspunkt für eine Bewertung des Prüfergebnisses gewonnen wird.  

Im Rahmen der Prüfstandvalidierung wird die Realisierung der oben aufgeführten Belastungen 

auf den Stent überprüft, wobei die geforderten Belastungen erzielt werden können. Allerdings 

muss ein besonderer Fokus auf die axiale Stentkompression gelegt werden. Hierfür ist eine 

initiale Dehnung des Prüfschlauchs vor der Stentimplantation erforderlich, um ein axialer 

Stabilitätsversagen des Prüfschlauchs während der axialen Kompression zu verhindern. Es zeigt 

sich, dass die axiale Stentkompression stark von der Schlauchvordehnung sowie von der 

spezifischen Stentsteifigkeit und damit vom Stenttyp und der -länge abhängt, so dass es 

erforderlich ist, den Mehrachsen-Stentprüfstand für jede Prüfung bzgl. der axialen Stentkompres-

sion erneut zu justieren. Anhand linearer Beziehungen lässt sich eine zuverlässige Abschätzung 

der Schlauchlänge und -vordehnung sowie der benötigten Fahrwege ermöglichen, wodurch die 

iterative Bestimmung der Parameter deutlich vereinfacht werden kann. Aufgrund der Vernachläs-

sigung der Nichtlinearität wird die axiale Stentkompression hierbei um bis zu 2 % unterschätzt, 

weshalb es erforderlich bleibt, die Parameter vor jeder Prüfung experimentell zu überprüfen. 

Bei Betrachtung bestehender Prüfsysteme zur mehrachsigen Stentprüfung und Vorschlägen aus 

der ASTM F2477-07 stellt sich die Biegebelastung als ein weiteres charakteristisches Merkmal 

der mehrachsigen Stentprüfung heraus. Während bestehende Prüfsysteme die Stentbiegung als 

Querkraftbiegung realisieren, teilen Vorschläge nach ASTM F2942 die Biegebelastung generell in 

Biegen mit und ohne Dorn sowie in Knicken ein. Die patentierte Prüfvorrichtung eines neuartigen 

Mehrachsen-Stentprüfstands hingegen realisiert die Biegebelastung als Rotationsbiegung um ein 

Führungselement. Die strukturmechanische Analyse von Rotations- und Querkraftbiegung mit 

Hilfe der Finite-Elemente-Analyse (FEA) zeigt, dass der wesentliche Unterschied zwischen 

beiden Verfahren in der zeitlichen Ausprägung des Bettungsdrucks zwischen Prüfschlauch und 

Bettung liegt. Hierdurch werden die Belastungsgeschichte der einzelnen Prüfschlauchelemente 

und deren Verweildauer auf der Bettung beeinflusst. Der höhere Bettungsdruck sowie größere 
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Querschnittsdeformationen des Prüfschlauchs bei der Querkraftbiegung führen zu einer höheren 

Stentbeanspruchung während der Biegung. Das Prinzip der Rotationsbiegung bietet gegenüber 

der Querkraftbiegung den Vorteil des Vermeidens großer Translationen und entsprechender 

Trägheitskräfte bei höheren Prüffrequenzen, wodurch der Prüfstand bei der Rotationsbiegung 

insgesamt kompakter ausgeführt werden kann. 

Die Prüfvorrichtung des neuartigen Mehrachsen-Stentprüfstands bietet durch die variable 

Gestaltung des Führungselements eine Anpassung an die am Implantationsort zu erwartenden 

Verhältnisse bezüglich des Biegeradius, der Bahnkurve oder der Bettung. Als direkte Folge des 

technischen Parameters der Prüfschlauchvordehnung tritt bei der Biegebelastung eine 

Querschnittsdeformation in Form einer Ovalisierung des Prüfschlauchs auf, die sich durch die 

konstruktive Gestaltung der Bettung des Führungselements beeinflussen lässt. Die Untersuchung 

der Querschnittsdeformation von in Prüfschläuchen implantierten Stents mit Hilfe eines µCT, die 

mit unterschiedlichen starren und elastischen Bettungen einer statischen Biegebelastung 

unterworfen werden, zeigen eine deutliche Ovalisierung des Stents bei einer ebenen starren 

Bettung. Hierdurch erfährt der Stent neben der Biegung eine zusätzliche Belastung. Die seitliche 

Abstützung des Prüfschlauchs durch eine gekrümmte starre oder partiell elastische Bettung 

verringert die Querschnittsdeformation deutlich, wie es auch durch die FEA gezeigt wird. In 

Übereinstimmung mit der Bestimmung der Querschnittsdeformation mittels µCT zeigt die FEA, 

dass eine elastische Bettung des Prüfschlauchs die geringsten Querschnittsdeformationen zur 

Folge hat. Aus physiologisch-anatomischer Sicht muss eine starre Prüfschlauchbettung 

ausgeschlossen werden, wobei diese aus technischer Sicht einfacher zu realisieren ist. Varianten 

einer elastischen Bettung sollten deshalb umgesetzt und experimentell untersucht werden. 

Die Entwicklung eines biomechanischen FE-Referenzmodells ermöglicht die Nachbildung der 

Gefäßkinematik während der Kniebeugung. Hierdurch kann gezeigt werden, dass die 

Querschnittsovalisierung des Gefäßes während der Kniebeugung nur geringfügig ist, so dass der 

materielle Volumenstrom des Blutes und damit die ausreichende vaskuläre Versorgung des 

Gewebes durch die Kinematik weitgehend unbeeinflusst sind. Die abschließende Simulation 

eines in das Gefäß des biomechanischen FE-Referenzmodells implantierten Stents unter 

Berücksichtigung der spezifischen Stentstruktur, des Stentmaterials sowie der Stent-Gefäß-

Interaktion bildet eine Weiterentwicklung der aus der Literatur bekannten Simulationsmodelle. 

Hierbei zeigt sich anhand des Bettungsdrucks, dass die Rotationsbiegung der realitätsnahen 

Kniebeugung ähnlicher ist als die Querkraftbiegung. Die Stentbeanspruchung ist sowohl bei der 

Rotations- als auch bei der Querkraftbiegung größer als im biomechanischen FE-

Referenzmodell. 

Die Ergebnisse dieser Arbeit zeigen, dass die Umsetzung der von den Zulassungsbehörden 

geforderten Stentprüfungen auf unterschiedliche Weise erfolgen kann, da die zuständigen 

Normen und Richtlinien nur Anforderungen und Rahmenbedingungen vorgeben. Das hat zur 

Folge, dass verschiedene Prüfverfahren für die mehrachsige Stentprüfung auch eine unter-
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schiedliche Beanspruchung der Stents verursachen. Prüfungen unter worst-case Bedingungen, 

die deutlich über den in vivo vorherrschenden Belastungen liegen und von den in vivo 

Bedingungen abweichen, gewährleisten eine ausreichende technische Produktsicherheit und 

damit auch Patientensicherheit. Auch ist hiermit eine gute Möglichkeit zur Stentprüfung nach dem 

„Fatigue-to-Fracture“-Prinzip gegeben, indem bewusst Stentbrüche angestrebt werden. 

Andererseits behindern gegenüber der realitätsnahen Stentprüfung verschärfte Methoden eine 

progressive Stententwicklung. Eine gute Möglichkeit zur Einschätzung des Prüfverfahrens 

würden vergleichende Untersuchungen verschiedener etablierter Stentdesigns bieten, indem 

sowohl Brüche auftreten als auch Stents ohne Brüche die Prüfung absolvieren.  

Insgesamt bestätigen die Ergebnisse dieser Arbeit, dass die Methode des Mehrachsen-

Stentprüfstands eine zuverlässige Aussage bezüglich des Ermüdungsverhaltens von Stents 

liefert. 
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Strukturierte Zusammenfassung zur Dissertation (Thesen) 

„Experimentelle und theoretische Strukturanalyse von Nitinolstents für periphere Arterien 

unter mehrachsiger Wechselbeanspruchung” 

1. Ein Therapieverfahren zur Behandlung der peripheren arteriellen Verschlusskrankheit ist 

die minimalinvasive Implantation intravaskulärer Stents. Es werden bevorzugt selbstexpan-

dierende Stents aus der Formgedächtnislegierung Nitinol eingesetzt. 

2. Eine wesentliche Komplikation der Stentimplantation im femoropoplitealen Gefäßabschnitt 

sind Ermüdungsbrüche bei bis zu 53 % der implantierten Stents. Das strukturelle Versagen 

der Stents hat den Verlust der mechanischen Funktion sowie das Risiko von Komplikatio-

nen, wie Restenose, Thrombose oder Gefäßperforationen zur Folge. 

3. Brüche sind die Folge des sich wiederholenden mehrachsigen physiologischen 

Belastungsregimes des femoropoplitealen Gefäßabschnitts während der Beinbewegung 

durch Überlagerung von axialer Längenänderung, Torsion und Biegung des Gefäßes.  

4. Zur Reduzierung von Stentbrüchen sowie zur Beurteilung des Ermüdungsverhaltens von 

Stents sind dynamische Ermüdungsfestigkeitsprüfungen ein wesentlicher Bestandteil der 

Stententwicklung und werden von Zulassungsbehörden gefordert, um eine hohe techni-

sche Sicherheit des Produkts für den Patienten zu gewährleisten.  

5. Bei bestehenden Prüfsystemen zur überlagerten mehrachsigen Ermüdungsprüfung von 

Stents dominiert das Prinzip der Querkraftbiegung zur Realisierung der Biegebelastung. 

6. Mit einem neuartigen Mehrachsen-Stentprüfstand lassen sich die Nachteile der 

Querkraftbiegung, wie z.B.  große Verschiebungen, die in Abhängigkeit von der Prüffre-

quenz große translatorische Trägheitskräfte zur Folge haben, vermeiden. 

7. Der vorgestellte und erprobte Mehrachsen-Stentprüfstand basiert auf einer Prüfvorrichtung 

zur zeitgleichen Belastung eines in einen Prüfschlauch implantierten Stents durch axiale 

Kompression, Torsion und Biegung nach dem Prinzip der Rotationsbiegung. Die Prüfvor-

richtung beinhaltet als wesentliches Bauteil ein Führungselement, das den Radius, die 

Bahnkurve sowie die Bettung des Prüfschlauchs während der Biegebelastung bestimmt.  

8. Die primäre Beurteilungsgröße der Ermüdungsanalyse von Stents im Mehrachsen-

Stentprüfstand ist das Auftreten von Stentbrüchen und -fragmenten. Während der Prüfung 

erfolgt eine endoskopische Inspektion zu festgelegten Intervallen, bei der die tatsächliche 

Anzahl an Brüchen/Fragmenten unterschätzt wird. Daher kann eine zuverlässige Aussage 

nur nach Prüfungsende und Stentexplantation erfolgen. 

9. Validierungsmessungen belegen die Zuverlässigkeit der Lastübertragung im neuartigen 

Mehrachsen-Stentprüfstand. 
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10. Die Justierung des Mehrachsen-Stentprüfstands bezüglich der axialen Kompression des 

Stents ist vor jedem Prüfbeginn erforderlich, da diese sowohl von der Stent- und Prüf-

schlauchlänge als auch von der Stentsteifigkeit abhängt. Lineare Formeln ermöglichen die 

Berechnung sowohl der benötigen Schlauchlänge als auch der -vordehnung, was der 

Vergleich zwischen Messung und nichtlinearer Finite-Elemente-Analyse (FEA) zeigt. 

11. Die Lastaufbringung durch drei voneinander unabhängige Linearmotoren ermöglicht eine 

flexible Gestaltung des Prüfregimes durch die frei wählbare Phasenverschiebung und 

Frequenz. Die phasengleiche Aufbringung von axialer Kompression und Torsion mit an-

schließender Biegung des komprimierten und tordierten Zustands, so dass in der Mitte des 

Lastzyklus alle Belastungen überlagert werden, wird als worst-case Prüfregime festgelegt. 

12. Die zeitliche Ausbildung des Bettungsdrucks kennzeichnet den wesentlichen Unterschied 

zwischen Rotations- und Querkraftbiegung, der durch die Belastungsgeschichte der einzel-

nen Prüfschlauchelemente und deren unterschiedlicher Verweildauer charakterisiert ist. 

13. Die experimentelle Untersuchung von starren und elastischen Bettungen des Prüf-

schlauchs zeigen deutliche Querschnittsdeformationen bei einer ebenen starren Bettung, 

die in vivo bei physiologischer Kniebeugung nicht vorkommen. 

14. Die Querschnittsdeformation des Prüfschlauchs während der Biegebelastung wird direkt 

vom technischen Parameter der Vordehnung sowie der Bettung beeinflusst. Eine seitliche 

Abstützung des Prüfschlauchs vermindert die Querschnittsdeformation und damit die 

Stentbeanspruchung. Elastische Bettungen haben hierbei die geringste Querschnittsde-

formation zur Folge, wie Messungen und die FEA zeigen. 

15. Ein höherer Bettungsdruck sowie größere Querschnittsdeformationen des Prüfschlauchs 

bei der Querkraftbiegung führen zu einer höheren Stentbeanspruchung während der Bie-

gebelastung. 

16. Die Entwicklung eines biomechanischen FE-Referenzmodells ermöglicht die Nachbildung 

der Gefäßkinematik während der Kniebeugung. Während der Simulation erfährt das Gefäß 

nur eine geringfügige Querschnittsdeformation.  

17. Der Vergleich mit einem biomechanischen FE-Referenzmodell zeigt, dass die Rotations-

biegung einer in vivo vorherrschenden Biegebelastung bezüglich der Belastungsgeschichte 

ähnlicher ist als die Querkraftbiegung. 

18. Die Stentbeanspruchung im biomechanischen FE-Referenzmodell ist deutlich kleiner als 

bei der Rotations- und Querkraftbiegung. 

19. Durch Variieren der Bettung und Prüfschlauchvordehnung kann die Stentbeanspruchung 

während der Biegung beeinflusst werden, so dass eine gute Möglichkeit zur Stentprüfung 

nach dem „Fatigue-to-Fracture“-Prinzip gegeben ist, indem bewusst Stentbrüche ange-

strebt werden 
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20. Für eine Stentprüfung, die der physiologischen Belastungssituation während der 

Kniebeugung ähnlich ist, kann eine elastische Bettung empfohlen werden. 

21. Das Prüfverfahren des Mehrachsen-Stentprüfstands erweist sich als sehr gut geeignet, um 

eine technisch zuverlässige Aussage bezüglich des Ermüdungsverhaltens von peripheren 

Stents zu treffen.  
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Anhang  

Herleitung zur linearen Abschätzung der stentfreien 
Schlauchlänge und Verschiebungen 

Schlauch ohne Stent mit Vorspannung 

Zunächst wird der Silikonprüfschlauch ohne den implantierten Stent betrachtet. Hierbei wird das 

rechte Ende des Schlauches der Ausgangslänge 0l  um 
Iu  in positive x-Richtung verschoben, 

während das linke Ende festgehalten wird (Abb. 1). Es ergibt sich II ull  0  . Die Verschiebung 
Iu  

ist in ihrer Größe frei wählbar. 

 

Abb. 1: Mechanisches Modell des Silikonprüfschlauchs mit Vorspannung ohne Stent 

Durch die Verschiebung uI des rechten Schlauchendes (Knoten 2) entsteht eine Vorspannung 
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Nach Abb. 1 folgt die Knotengleichung mit den kinematischen Randbedingungen (6), wobei sich die 
Steifigkeitsmatrix aus (7) ergibt. 
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Für den „eingefrorenen“ Zustand „I“ folgen somit die beiden Gleichungen  
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Vorgespannter Schlauch mit implantiertem Stent 

Die Betrachtung des Gesamtsystems, bestehend aus dem mit σI vorgespannten Silikonprüfschlauch 
mit implantiertem Stent, erfolgt ausgehend von dem vorgespannten Prüfschlauch mit einem 
spannungsfrei implantierten Stent. Stent und Prüfschlauch befinden sich durch die radialen 
Aufstellkräfte des Stents und den bestehenden Kontakt zwischen beiden in einem Gleichgewichtszu-
stand (Abb. 2). 

 

Abb. 2: Mechanisches Modell des Gesamtsystems, bestehend aus vorgespanntem Prüfschlauch mit 
spannungsfrei implantiertem Stent: 1 und 3 ((EA), l1, lx): vorgespannter Schlauch ohne Stent; 2 ((EA)*, l2): 
vorgespannter Schlauch mit spannungsfreiem Stent 

Für die zu bestimmende Schlauchlänge lx gilt die Bedingung (9). Falls gilt: 210 lll  , dann ist

xI lu  . 

xI lu 
 

 xI llll  21  
(9) 

Die Antwort auf die Frage „Wie groß ist lx zu wählen, damit bei einem vorgegebenen D4=-u0 die 
Verschiebung D3=-αu0 wird für 0 < α < 1 und unter Einhaltung von (9) basiert auf der Knotengleichung 
für den eingefrorenen Zustand (10) mit den kinematischen Randbedingungen nach Abb. 2 (11). Das 
Lagerspiel ∆ greift hierbei an der linken Seite (Knoten 1) an. 
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Zwischenbetrachtungen zur Berücksichtigung der Vorspannung in Form des Vektors fσ 

Es wird ein einzelnes mit 
)(i

I vorgespanntes Element i (i = 1, 2, 3) betrachtet (Abb. 3). 

 

Abb. 3: Einzelnes Element zur Berücksichtigung der Vorspannung fσ 

Nach dem Prinzip der virtuellen Arbeit ergibt sich (12): 
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Nach Diskretisierung ergibt sich (13): 
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Der Vektor der arbeitsäquivalenten Knotenkräfte fσ, resultierend aus der Vorspannung, ergibt sich 
aus (14):  
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Die virtuelle Dehnung ergibt sich aus (15) und (16). 
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Folglich ergibt sich durch Einsetzen von (16) in (14), wobei Aoi die Querschnittsfläche im unverformten 
Ausgangszustand ist: 
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Damit lauten die Elementgleichungen (18): 
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i = 1, 2, 3  (18) 

Aus den kinematisch verträglichen Gleichgewichtsbetrachtungen ergeben sich die Komponenten des 

Vektors fσ zu (19), mit A01=A03=A und A02= A2*=A* (nur Schlauch). 
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   mit A01=A03=A (19) 

---------------------------------------------------- 

Mit Hilfe der hergeleiteten Elementgleichungen und Komponenten des Vektors fσ lässt sich das 
Gleichungssystem (10) (nach Abb. 2) mit den kinematischen Zwangsbedingungen (11) lösen (20). 
Hierbei ist das Lagerspiel ∆ bekannt und die Verschiebung u0 vorgegeben. 
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wird Gleichung 2. und 3. aus (20) zu (22) mit den unbekannten Größen D2 und lx. 
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Aus Gleichung (22) folgt, dass fσ= fσ3=0 wird und somit die Vorspannung nur einen Einfluss auf die 
Reaktionskräfte an den Schlauchenden besitzt. Durch Ersetzen von (23) und Umstellen von (22) 
ergeben sich (25)-(25) mit der Dehnsteifigkeit des Schlauches EA sowie der Dehnsteifigkeit des 
Schlauches mit implantiertem Stent (EA)*. 
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Falls das Lagerspiel ∆ = 0 gesetzt wird, ergibt sich für lx (26). 
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Im Weiteren lässt sich die Stauchung des Schlauches ohne und mit Stent errechnen. Diese lineare 
Betrachtungsweise ist nur für Dehnungen ε < 5 % korrekt. 
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Ermittlung der Dehnsteifigkeit des Schlauches ohne (EA) und mit implantiertem Stent 

(EA)* 

Die Bestimmung der Dehnsteifigkeit des Schlauches mit implantiertem Stent (EA)* erfolgt im 
weggesteuerten Zugversuch bei einer Prüfgeschwindigkeit von 5 mm/min und einer Vorkraft von 
0,1 N bei Raumtemperatur (Universalprüfmaschine Zwick BZ2.5/TN1S). Die angegebenen 
Schlauchlängen beziehen sich auf die Einspannlänge. Hinzu kommen die Schlauchenden in den 
Einspannungen, wobei für das Bohrfutter 13 mm und die Schlauchklemme 8 mm Schlauch 
zuzurechnen sind. 

Zunächst wird ein klassischer Zugversuch mit einem Silikonschlauch (Ø i 5 mm, Wandstärke t = 1 mm, 
Einspannlänge l0 = 23,5 mm) bis zu einer Verschiebung uI durchgeführt, so dass sich eine Spannung 
σI im Silikonschlauch ausbildet (29). Die Dehnsteifigkeit des Schlauches (EA) lässt sich über das 
Hookesche Gesetz im linearen Bereich des Spannungs-Dehnungs-Diagramms bestimmen (∆l = 
1 mm) ((30), Abb. 6).  

  

Abb: 4: Mechanisches Modell zur Ermittlung der Dehnsteifigkeit (EA) aus dem Zugversuch 
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Die Implantation eines selbstexpandierenden Nitinolstents erfolgt in den unter Vorspannung infolge uI 
stehenden Silikonschlauch. Anschließend wird der Schlauch entspannt, so dass sich ein kraftschlüs-
siger Kontakt zwischen Schlauch und Stent einstellt (uI  0). Hierbei nimmt der Stent Druckspannun-
gen in axialer Richtung auf, während sich die positiven Vorspannungen im Schlauch abbauen (Abb. 
5). Die Ermittlung der Steifigkeit (EA)* erfolgt ausgehend von diesem vorgespannten Kontaktzustand. 
Bedingt durch das Kontaktproblem gilt (EA)* > (EA).  

Nach dem Einspannen des Schlauches mit implantiertem Stent in die Prüfmaschine erfolgt die 
erneute Durchführung des Zugversuchs (Abb: 4, Abb. 6). Der Schlauch mit dem implantierten Stent 
wird so eingespannt, dass die freie Länge für den Zugversuch der Länge des implantierten Stents 
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entspricht (Einspannlänge l0 = 22,5 mm) und die Stentenden nicht eingespannt werden. Die 
Dehnsteifigkeit des Schlauches mit implantiertem Nitinolstent berechnet sich analog zur Dehnsteifig-

keit des Schlauches nach (30): NEA 61,54)*(  .  

 

 

 

 
 

Abb. 5: Einstellen einer kraftschlüssigen 
Kontaktbedingung nach Entlastung des 
Schlauchs mit implantiertem Stent 

Abb. 6: Kraft-Verschiebungs-Diagramm aus dem Zugversuch 
eines Silikonschlauches ohne und mit implantiertem Stent 
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