Aus der Urologischen Klinik und Poliklinik der
Universitätsmedizin Rostock
Direktor: Prof. Dr. med. Oliver Hakenberg

Kritische Auswertung des PADUA-Scores
zur Bewertung perioperativer
Einflussfaktoren bei der Nierenteilresektion

Inauguraldissertation
zur
zur Erlangung des akademischen Grades
Doctor medicinae
der Universitätsmedizin Rostock
vorgelegt
von
Veronika Quetz
geboren am 15.02.1990 in Stuttgart

urn:nbn:de:gbv:28-diss2016-0056-8
Gutachter:

1. Gutachter:
 Prof. Dr. med. Oliver Hakenberg
 Urologische Klinik und Poliklinik, Universitätsmedizin
 Rostock

2. Gutachter:
 Prof. Dr. med. Maurice Stephan Michel
 Klinik für Urologie, Universitätsmedizin Mannheim

3. Gutachter:
 Prof. Dr. med. habil. Michael Fröhner
 Klinik und Poliklinik für Urologie, Universitätsklinikum
 Dresden

Datum der Einreichung: 08. Dezember 2015

Datum der Verteidigung: 23. März 2016
Inhaltsverzeichnis

1. Einleitung .. 1

 1.1. Anatomie und Funktion der Niere .. 1
 1.1.1. Makroskopischer Aufbau ... 1
 1.1.2. Gefäß- und Nervenversorgung .. 1
 1.1.3. Mikroskopischer Aufbau ... 2
 1.1.4. Funktion .. 2

 1.2. Nierenzellkarzinom .. 2
 1.2.1. Epidemiologie .. 2
 1.2.2. Risikofaktoren .. 3
 1.2.3. Histopathologie .. 3

 1.3. Gutartige Veränderungen der Niere ... 5

 1.4. Klinik und Diagnostik .. 7

 1.5. Einteilungen .. 7

 1.6. Therapie ... 9
 1.6.1. Operative Therapie .. 9
 1.6.2. Alternativen zur operativen Therapie ..12
 1.6.3. Systemische Therapie ..13

 1.7. Prognostische Scores für die perioperativen Komplikationen bei der Nierenteilresektion 14
 1.7.1. Der PADUA-Score ..14
 1.7.2. RENAL Nephrometry Score ...17
 1.7.3. C-Index-Score ..18

 1.8. Prognose .. 18

 1.9. Zielsetzung der Arbeit ... 20

2. Material und Methoden .. 21

 2.1. Material .. 21
 2.1.1. Patientenauswahl ..21
2.2. Methoden .. 22

3. Ergebnisse ... 25

3.1. Deskriptive Statistik ... 25
 3.1.1. Patientencharakteristika ... 25
 3.1.2. Morphologische und pathologische Merkmale 27
 3.1.3. Operationsdaten ... 30
 3.1.4. Postoperativ erhobene Daten ... 32

3.2. Regressionsanalyse .. 37
 3.2.1. Binär logistische Regression ... 37
 3.2.2. Lineare Regression ... 40

4. Diskussion ... 46

5. Zusammenfassung ... 55

6. Thesen .. 57

7. Literaturverzeichnis ... 58

8. Anhang .. I
 8.1. Danksagung ... I
 8.2. Eidesstattliche Erklärung ... II

Abbildungsverzeichnis .. III

Tabellennachweis .. IV

Abkürzungsverzeichnis ... V
1. Einleitung

1.1. Anatomie und Funktion der Niere

1.1.1. Makroskopischer Aufbau

Zum grundlegenden Verständnis dieser Fragestellung soll im Folgenden einleitend ein kurzer Überblick über die anatomischen Verhältnisse der Niere gegeben werden (1–5).

Makroskopisch hat die Niere ein bohnenförmiges Äußeres mit einer convexen Seite zur lateralen und der konkaven Seite zur medialen Körperhälfte. An der medialen Seite liegt der Hilus renalis mit Gefäßen und Ureter.

Die Ausmaße der Niere betragen in der Länge 10–12 cm, die Breite liegt bei 6 cm und die anterior-posteriore Ausdehnung bei circa 4 cm. Das Gewicht variiert zwischen 120–200 g (6).

Umgeben ist die Niere von einer Organkapsel (Capsula fibrosa). Daran angrenzend folgt eine Fettschicht (Capsula adiposa), die wiederum von der Gerota-Faszie (Fascia renalis), welche auch die Nebenniere umkleidet, bedeckt wird.

1.1.2. Gefäß- und Nervenversorgung

Die arterielle Versorgung der Niere wird durch eine rechte und linke Arterie renalis, welche direkt der Aorta entspringen, gewährleistet. Die venöse Versorgung läuft über parallel zu den Arterien verlaufende Venen mit Mündung in die Vena cava.

Der sympathische Nervenplexus tritt zusammen mit den arteriellen Gefäßen in die Niere ein, parasympathische Äste entspringen direkt als Rami renales dem Nervus vagus.
1. Einleitung

1.1.3. Mikroskopischer Aufbau
Mikroskopisch lässt sich die Niere in zwei Gewebe gliedern, die außen liegende Rinde (Cortex renalis) und das innen liegende Mark (Medulla renalis).
Innerhalb des Markes lassen sich die Markpyramiden finden, welche den Urin über ihre nach innen ausgerichteten Papillen an das Nierenkelchsystem weiterleiten. Aus dem Nierenkelchsystem gelangt der Urin in das Nierenbecken, aus welchem die Ureteren zum Weitertransport Richtung Blase entspringen.
Die Nierenrinde ist zwischen den Markpyramiden säulenförmig angeordnet (Columnae renalis oder Bertinische Säulen). In ihr verlaufen die Markstrahlen (Radii medullares) als Ausläufer der Pyramiden.
Histologisch lassen sich in der Niere jeweils rund 1,2 Millionen Nephrone nachweisen, welche sich aus Nierenkörperchen (Malpighi-Körperchen, Corpusculum renale) und Nierentubuli zusammensetzen. In den Nierenkörperchen, genauer gesagt innerhalb des Glomerulum, findet die Filtration von 100 ml/min mit kleinmolekular gelösten Stoffen statt, was einem Dreifachen des gesamten Körperwassers entspricht (7). Ein Großteil der filtrierten Flüssigkeit wird innerhalb der Nierentubuli rückresorbiert, zusätzlich befreit sich der Körper über sekretorische Mechanismen von unbrauchbaren Substanzen.

1.1.4. Funktion
Die Niere ist ein Organ, welches mit ihren vielfältigen Aufgaben auf verschiedenen Ebenen in die Funktion des Körpers eingebunden ist. Sie stellt das zentrale Organ für die Regulation des Wasserhaushaltes und damit der Blutdruckregulation dar.
Mechanismen sind einerseits die Filtration und Resorption von Flüssigkeit und damit die Adaptation des intravasalen Druckes an entsprechende Situationen, andererseits die Messung des Blutdruckes- und des Natriumgehaltes über Druck- und Chemorezeptoren, was zur hormonellen Ausschüttung von Renin führt. Damit können anschließend über den Renin-Angiotensin-Aldosteron-Regelkreislauf weitere Anpassungsprozesse initiiert werden.
Weitere wichtige Aufgaben sind die Elimination von metabolischen und toxischen Abfallprodukten und die Regulation des Elektrolyt- und Säure-Base-Gleichgewichtes durch filtrierende, diffusive und sekretorische Prozesse.
Auf hormoneller Ebene ist die Niere neben der Blutdrucksteuerung durch Renin in die Regulation der Erythropoese durch Erythropoetin-Synthese und über Calcitriol-Bildung in die des Calciumstoffwechsels eingebunden.
Neben der Leber stellt die Niere das wichtigste Organ der Glukoneogenese dar.

1.2. Nierenzellkarzinom
1.2.1. Epidemiologie
Das Nierenzellkarzinom (NZK) macht ca. 2-3% aller malignen Organveränderungen mit einer Inzidenz von 5,8/100.000 und einer Mortalität von 1,4/100.000 weltweit aus (8). Es stellt mit rund 90% die häufigste maligne Veränderung der Niere dar.
Das durchschnittliche Erkrankungsalter liegt im 6. bis 7. Lebensjahrzehnt, wobei für Männer im
1. Einleitung

Vergleich zu Frauen ein 1,5 : 1,0 erhöhtes Risiko für die Erkrankung gilt (8,9).
In Deutschland lies sich für das Jahr 2011 eine Neuerkrankungsrate von 9.034/100.000 für Männer und 5.593/100.000 für Frauen festhalten. Die Letalitätsrate lag mit 3.223/100.000 bei Männern etwas höher als 2.104/100.000 bei Frauen. Die Erkrankungshäufigkeit ist weltweit steigend. Innerhalb der letzten Jahre war ein Anstieg von ca. 2% weltweit und in Europa sichtbar, wobei in den skandinavischen Ländern seit den 1980er Jahren und in Frankreich, Deutschland, Österreich und den Niederlanden seit den 1990er Jahren ein Rückgang vermerkt werden kann. Trotzdem zeigen andere europäische Länder weiterhin eine steigende Inzidenz (Kroatien, Estland, Griechenland, Irland, Slowakei) (8).

1.2.2. Risikofaktoren

1.2.3. Histopathologie

Histologisch lassen sich die Nierenkarzinome verschiedenen Entitäten zuordnen, die sich bezüglich Morphologie, molekular-genetischer Ausprägung und dem jeweiligen Wachstums- und Metastasierungsverhalten unterscheiden.

Klarzelliges NZK

Das klarzellige NZK macht mit 80-90% den größten Teil der Renalzellkarzinome aus. Es hat seinen Ursprung im proximalen Tubulus und erscheint mikroskopisch mit hellem und klarem Zytoplasma (8). Manifestationen finden sich auf beiden Nierenseiten gleichermaßen, in weniger als 5% kommt es zu einem bilateralen Befall.

Tumore vom klarzelligen Typ zeigen ein wesentlich früheres und aggressiveres Metastasierungsverhalten als Tumore des gleichen Stadiums vom papillären und chromophoben Zelltyp, wobei das Metastasierungsrisiko mit Größe des Tumors ansteigt. Auch hinsichtlich des Wachstumsmusters besteht ein größeres Risiko für mikrovaskuläre sowie für lymphatisch-capilläre Invasion (11).

Bevorzugter Metastasierungsort ist die Lunge über den hämatogenen Metastasierungswege, zusätzlich lässt sich häufig ein Lymphknotenbefall nachweisen. Besonderheiten des klarzelligen Nierenzellkarzinoms sind ein Auftreten von Metastasierungsbefunden kontralateral der Fundstelle des Primärtumors, sowie eine Manifestation der Metastasen nach langer Latenzzeit von mehr als
1. Einleitung

zehn Jahren (12).
Damit zeigt dieser Tumor eine im Vergleich zu den anderen histologischen Typen relativ schlechte Prognose. In circa 8% der Fälle lässt sich eine sarkomatoide Ausprägung des klarzelligen Tumors nachweisen. Dabei kommt es zu histologischen Veränderungen wie spindelförmiger, eosinophiler oder fibroblastoider Transformation. Diese Befunde gehen mit einer wesentlich schlechteren Prognose einher, das mediane Überleben liegt hier bei 3 bis 10 Monaten (13).
Das klarzellige NZK kommt vermehrt bei verschiedenen genetischen Syndromen, wie dem Birt-Hogg-Dubé-Syndrom und der tuberösen Sklerose, vor (8).

Papilläres NZK
Mit 10-15% ist das papilläre NZK die zweithäufigste histologische Tumorentität und entsteht ebenfalls im Bereich des proximalen Tubulus.
Eine Besonderheit des papillären Tumors ist die häufiger bilaterale und multifokale Ausprägung, wobei es unklar bleibt, ob es sich hierbei um unabhängige maligne Transformationen oder um intrarenale Metastasierungsherde handelt (14).
Die papillären Nierenzellkarzinome lassen sich aufgrund histologischer und prognostischer Merkmale zwei Untergruppen zuordnen: Typ I mit basophilen Zytoplasma und einzelschichtig an der Basalmembran angeordnet, Typ II mit eosinophiler Erscheinung und schlechterer Prognose (15).
Auch beim papillären NZK lassen sich in manchen Fällen genetische Veränderungen nachweisen. Dabei spielt das HPRC (hereditary papillary renal carcinoma) eine Rolle, welches sich durch Auftreten eines papillären NZK vom Typ-I und einer Mutation im met-Protoonkogen auszeichnet.
Die zweite wichtige Mutation geht mit der Kombination aus kutaner und uteriner Leiomyomatose und einem papillären NZK vom Typ II (HLRCC: hereditary leiomyomatosis and renal cell carcinoma) einher. Diese Form hat einen sehr aggressiven Verlauf (16).
Die 5-Jahre-Überlebensrate liegt für das papilläre Nierenzellkarzinom bei ca. 85% im Vergleich zum klarzellen Typ mit einer Rate von ungefähr 78% (17).

Chromophobes NZK
Das chromophobe Nierenzellkarzinom entsteht aus Zellen des distalen Tubulus. Die Prävalenz liegt bei 2-4% aller Renalzellkarzinome. Frauen wie Männer erkranken mit nahezu gleicher Häufigkeit und in allen Altersklassen. Mit einer 5-Jahres-Überlebensrate von bis zu 100% hat diese Form die beste Prognose aller Nierenzellkarzinomen.

Weitere NZK
Ein an allen Nierenzellkarzinomen gemessener sehr seltener Nierentumor ist das Ductus-Bellini-Karzinom mit einer Prävalenz von < 1%. Die 5-Jahre-Überlebensrate liegt bei nur 45,3-58% (12,18).
Weitere Zelltypen werden der Kategorie der „nicht-klassifizierbaren NZK“ zugeordnet.
1. Einleitung

Tabelle 1: Hereditäre Nierenzellkarzinome (19)

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>genetische Veränderung</th>
<th>renale Manifestation</th>
<th>weitere klinische Manifestationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>von Hippel-Lindau Syndrom (VHL)</td>
<td>VHL, 3q25-26</td>
<td>Klarzelliges NZK (bilateral, multipel)</td>
<td>zentralvenöse und retinale Hämagioblastome, Pankreaszysten, neuroendokrine Tumoren, Phäochromozytom, Endolymphsacktumoren</td>
</tr>
<tr>
<td>Hereditary papillary RCC (HPRC)</td>
<td>MET, 7q31</td>
<td>Papilläres NZK (bilateral, multipel)</td>
<td></td>
</tr>
<tr>
<td>Hereditary leiomyomatosis RC (HLRCC)</td>
<td>FH, 1q42-43</td>
<td>Papilläres NZK (unilateral, solitär)</td>
<td>kutane und uterine Leiomyome, Leiomyosarkome</td>
</tr>
<tr>
<td>Birt-Hogg-Dubé Syndrom (BHD)</td>
<td>BHD, 17q11.2</td>
<td>Onkozytisch-chromophobes NZK, Chromophobes NZK, Klarzelliges NZK, Onkozytom</td>
<td>Fibrofollikulom, Trichodiskom, Acrochorda, Pneumothorax, kolorektale Polypen</td>
</tr>
<tr>
<td>Tuberöse Sklerose (TSC)</td>
<td>TSC1, 9q34 TSC2, 16q13</td>
<td>Klarzelliges NZK, Angiomyolipom</td>
<td>faziale Angiofibrome, periunguale Fibrome, shagreen patches, Hypopigmentierungen, kortikale Hamartome, Nierenzysten, kardiale Rhabdomyome, retinale Hamartome</td>
</tr>
</tbody>
</table>

1.3. Gutartige Veränderungen der Niere

Durch die zunehmend verbesserte Bildgebung werden immer häufiger auch gutartige Neubildungen der Niere als Zufallsbefund diagnostiziert. Da sich auch die Daten dieser Arbeit teilweise auf gutartige Neubildungen beziehen, wird im Folgenden eine kurze Übersicht über die hier relevanten Veränderungen gegeben.

Onkozytom

1. Einleitung

Angiomyolipom
Das Angiomyolipom tritt meist innerhalb der Nierensinus oder in peripheren Regionen auf. Histologisch lässt sich ein buntes Bild mit unterschiedlichen Anteilen an Fettgewebe, glatten Muskelzellen und Blutgefäßen nachweisen. Ein multifokales Wachstum sowie die Ausdehnung auf angrenzende Strukturen sind möglich, wodurch diese Veränderung im CT als bösartiger Tumor missinterpretiert werden kann.

Weitere gutartige Veränderung
Zystische Veränderungen finden sich bei mehr als einem Drittel der über 50-Jährigen. Sie werden meist als Zufallsbefunde bei der abdominalen Bildgebung entdeckt und verhalten sich in der Regel klinisch unauffällig.

Tabelle 2: Bosniak- Klassifikation

<table>
<thead>
<tr>
<th>Bosniak-Kategorie</th>
<th>malignes Entartungsrisiko (%) und Maßnahmen</th>
<th>morphologisches Korrelat</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>< 1, keine weiteren Maßnahmen notwendig</td>
<td>glattwandig, dünn, scharf-begrenzte und ebenmäßige Wand, keine Kalzifizierung, homogene Zysten-Echogenität</td>
</tr>
<tr>
<td>II</td>
<td>< 3, keine weiteren Maßnahmen notwendig</td>
<td>feine Kalzifizierung innerhalb Septen oder Wand, Durchmesser < 3 cm, hyperdense Zyste</td>
</tr>
<tr>
<td>IIIF</td>
<td>5-10, Follow-up empfohlen</td>
<td>multiple dünne Septen, Kalzifikationen, intrarenal, > 3 cm, keine Kontrastmittel-Anreicherung</td>
</tr>
<tr>
<td>III</td>
<td>40-60, Exzision empfohlen</td>
<td>verdickte Wand, irreguläre Kalzifikationen, dicke Septen, Kontrastmittel-Anreicherung</td>
</tr>
<tr>
<td>IV</td>
<td>> 80, Exzision empfohlen</td>
<td>große zystische Komponenten, irreguläre Kanten, solide Kontrastmittel-Anreicherungen Septen unababhängig</td>
</tr>
</tbody>
</table>

Auch hierbei spielt die nicht hundertprozentige Gutartigkeit in der CT-Diagnostik klinisch eine große Rolle.
1. Einleitung

1.4. Klinik und Diagnostik
Tumoren der Niere sind oft bei Diagnose asymptomatisch, da sie in circa 50% der Fälle als Zufallsbefund während einer radiologischen Untersuchung entdeckt werden.
Die früher häufig, heute immer seltener auftretende klinische Trias (Makrohämaturie, Flankenschmerz und tastbare Raumforderung) sind aufgrund zunehmend frühzeitiger Diagnose selten geworden. 30% der klinisch auffälligen Tumoren äußern sich in Form paraneoplastischer Syndrome, zu denen zum Beispiel das Auftreten von Hypertonie, Fieber unklarer Genese oder Hyperkalzämie gehören (24).
In weit fortgeschrittenen Stadien kommen die durch Metastasen ausgelösten Symptome, wie zum Beispiel Knochenschmerzen oder anhaltender Husten hinzu (8).

Neben der Sonographie, der Computertomographie und der Magnetresonanztomographie als bildgebenden Untersuchungen zur Diagnostik und Therapieplanung steht prinzipiell die Biopsie zur Verfügung. Diese erleichtert die histologische Klassifizierung und die damit verbundene Einschätzung bezüglich unklarer Malignität, abwartender oder ablativer Therapie und der Zuordnung einer passenden Target-Therapie (8). Die klinische Erfahrung zeigt jedoch, dass die Biopsie aufgrund der Eindeutigkeit bildgebender Diagnostik in der Regel nicht notwendig ist. Auch wenn die Spezifität und Sensitivität der Nierenbiopsie hoch sind und nur 10-20% zu einem ergebnislosen Befund führen, müssen die Risiken der Tumorverschleppung, Infektion, Hämatom, Fistel- und Pneumothorax-Bildung berücksichtigt werden (25,26).

1.5. Einteilungen

TNM-Klassifikation
Die Einteilung des Nierenzellkarzinoms erfolgt nach der TNM-Klassifikation durch die Union International Contre le Cancer (UICC), welche 2010 überarbeitet wurde und durch vielfache Studien gesichert ist (27).

Tabelle 3: TNM-Stadium des Nierenzellkarzinoms

<table>
<thead>
<tr>
<th>T-Primärtumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
</tr>
<tr>
<td>T0</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T1a</td>
</tr>
<tr>
<td>T1b</td>
</tr>
<tr>
<td>T2</td>
</tr>
</tbody>
</table>
1. Einleitung

<table>
<thead>
<tr>
<th>T2a</th>
<th>Tumor 7-10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2b</td>
<td>Tumor ≥ 10 cm</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor infiltriert das perire nale Fettgewebe oder große Venen, keine Infiltration der ipsilaterale Nebenniere oder der Gerota-Faszie</td>
</tr>
<tr>
<td>T3a</td>
<td>Tumorausdehnung in Nierenvene, ihre Segmente oder perirenales Fettgewebe, keine Infiltration der Gerota-Faszie</td>
</tr>
<tr>
<td>T3b</td>
<td>Tumorausdehnung in V. cava unterhalb des Zwer chfells</td>
</tr>
<tr>
<td>T3c</td>
<td>Tumorausdehnung in V. cava oberhalb des Zwerchfells oder Befall der Venenwand</td>
</tr>
<tr>
<td>T4</td>
<td>Tumorausdehnung über Gerota-Faszie hinaus</td>
</tr>
</tbody>
</table>

N-Regionale Lymphknoten

<table>
<thead>
<tr>
<th>Nx</th>
<th>Regionale Lymphknoten können nicht beurteilt werden</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>kein Anhalt für regionale Lymphknoten</td>
</tr>
<tr>
<td>N1</td>
<td>Metastase in regionalen Lymphknoten</td>
</tr>
</tbody>
</table>

M-Fernmetastasen

<table>
<thead>
<tr>
<th>Mx</th>
<th>Fernmetastasen nicht beurteilbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>kein Anhalt für Fernmetastasen</td>
</tr>
<tr>
<td>M1</td>
<td>Fernmetastasen vorhanden</td>
</tr>
</tbody>
</table>

Durch diese Klassifikation lässt sich das anatomische und prognostische Staging nach UICC vornehmen:

Tabelle 4: Tumorstadien nach UICC des Nierenzellkarzinoms

<table>
<thead>
<tr>
<th>Stadium I</th>
<th>T1</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadium II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stadium III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1, T2, T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Stadium IV</td>
<td>T4</td>
<td>N0, N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>alle T</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>alle T</td>
<td>alle N</td>
<td>M1</td>
</tr>
</tbody>
</table>

8
1. Einleitung

Robson-Einteilung
Die früher übliche Einteilung nach Robson (1969) wurde weitestgehend durch die TNM-Klassifikation ersetzt und wird heute nur noch in den USA benutzt.

Fuhrman-Grading
Es wird für das histopathologische Grading der Nierenzellkarzinome die 1982 durch Fuhrman entwickelte Einteilung verwendet. Besonders fokussiert wird dabei auf die Kerngröße, die Form und die Prominenz der Nucleoli (28).

Tabelle 5: Fuhrman- Einteilung

<table>
<thead>
<tr>
<th>Grad</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Zellen mit kleinem (ca. 10 μm), runden Kern, unauffällige oder keine Nukleoli</td>
</tr>
<tr>
<td>II</td>
<td>Zellen mit unregelmäßigen Kernen (ca. 15 μm), Nukleoli unter starker Vergrößerung sichtbar (400x)</td>
</tr>
<tr>
<td>III</td>
<td>Zellen mit großem (ca. 20 μm) und auffällig unregelmäßigen Kern, Nukleoli bei weniger Vergrößerung sichtbar (100x)</td>
</tr>
<tr>
<td>IV</td>
<td>wie Grad III, zusätzlich bizarre, multilobuläre Nukleoli und Chromatin-Ansammlungen</td>
</tr>
</tbody>
</table>

International Society of Urological Pathology Grading (ISUP)
2012 entstand anlässlich einer Konferenz der International Society of Urological Pathology eine neue Einteilung zur Bestimmung prognostischer Faktoren, Staging und immunhistochemischer sowie molekular-biologischer Einflüsse (29). Nach der Einteilung werden die Grade 1-3 nach Fuhrman anhand der Kernpolymorphie bestimmt, bei Grad 4 spielen neben Kernpolymorphien, Tumor-Riesenzellen und die sarkomatoide bzw. rhabdoide Differenzierung eine Rolle. Weitergehend sind die mikrovaskuläre Invasion und die histologische Differenzierung als prognoseweisende Faktoren zu berücksichtigen (29).

1.6. Therapie

1.6.1. Operative Therapie
Die chirurgische Entfernung stellt als einzige kurative Therapie die Grundlage der Behandlung dar. Dabei wird zwischen der früher standardmäßig angewandten radikalen Nephrektomie (RN) und der sich immer weiter verbreitenden partiellen Nephrektomie (PN) unterschieden.
1. Einleitung

Mit der voranschreitenden Qualität bildgebender Diagnostik werden Tumoren der Niere in immer früheren Stadien entdeckt. Anhand dieser oftmals weniger als 4 cm großen, pathologischen Befunde, wurde die radikale Nephrektomie immer mehr in Frage gestellt. In den vergangenen Jahren hat sich somit eine Präferenz hin zur partiellen Nierentumorentfernung in offener oder laparoskopischer Operationsweise ergeben (partielle Nephrektomie, PN). Die zu Beginn noch engen Indikationsstellungen der PN haben sich inzwischen ausgeweitet und stellen heute das Mittel der Wahl bei der Therapie von Tumoren bis zu 7 cm Größe dar (30,31).

Auf der anderen Seite bedarf es eines präoperativ exakten Stagings sowie einer Aussage über die anatomischen Eigenschaften des Tumors.

Die PN stellt einen großen Fortschritt in der Entwicklung der Therapie des Nierenzellkarzinoms dar, jedoch unter genauer Abwägung der Indikationen. Bei bereits weit fortgeschrittenen und ungünstig gelegenen Tumoren sowie bei gesundheitlichen Einschränkungen kommt ein solcher Eingriff nicht in Frage (8).

Die PN kann in offener, laparoskopischer oder roboterassistierter Verfahren durchgeführt werden, was abhängig von der Ausstattung des Zentrums und dem durchführenden Operateur ist. Hinsichtlich der Komplikationsrate der PN unterscheiden sich das offene und das laparoskopische Verfahren kaum (33). Die Laparoskopie bietet Vorteile durch verminderten Blutverlust und verkürzten Krankenhausaufenthalt, jedoch muss die Indikation auf möglichst kleine und peripher gelegene Tumoren beschränkt bleiben.

Die roboterassistierte PN befindet sich momentan noch im Entwicklungsstadium, jedoch mit zunehmender Anwendung. Zwar ist sie im Vergleich zum offenen und laparoskopischen Verfahren kostspieliger, jedoch wird prognostiziert, dass sie mit einer geringeren Mortalitäts-, Transfusions- und Krankenhausaufenthaltsrate verbunden sei (34,35).

In den vergangenen Jahren wurde der Fokus vieler Studien und Veröffentlichungen auf die Ausweitung der Indikation zur Nierenteilresektion gelegt. Leitliniengerecht wird die partielle Entfernung standardmäßig bei kleinen tumorösen Veränderungen (T1a, Größe ≤ 4cm) angewendet. Auch die meisten Studien stimmen damit überein (1). Seit einigen Jahren wird auch für größere Tumorausdehnungen die PN diskutiert, da sich der postoperative Verlauf auch bei Durchmessern > 4 cm nicht signifikant verschlechtert (2–5).

Die Indikation zur Nierenteilresektion, unabhängig von der Tumogröße, liegt bei vermindelter Nierenfunktion der kontralateralen Niere - wie sie bei beidseitigem Tumorseiten, dem chronischen Nierenversagen oder bei Einzelniere vorkommen - in jedem Fall vor (36).

Relative Indikation stellt ein in absehbarer Zeit auftretender Nierenfunktionsverlust der Gegenseite, wie sie beispielsweise bei Vaskulitiden und polyzystischen Nephropathien auftreten können, dar. Patienten, die unter Nierenzellkarzinomen genetischer Ursache leiden, profitieren durch den Organerhalt ebenfalls von einer Teilresektion (8).
1. Einleitung

Kontrovers werden das Outcome und die postoperativen Überlebenschancen der radikalen Nephrektomie (RN) und partiellen Nierenteilresektionen diskutiert. Einige Autoren proklamieren die überwiegende Gleichheit beider Verfahren, andere wiederum sehen Vorteile in einem der beiden Verfahren (36-38).

Durch den Organerhalt bei der PN und die damit weniger stark geminderte GFR kann eine Reihe von Komorbiditäten, wie kardiovaskuläre Erkrankungen, Anämie, Malnutrition und Neuropathie und damit das Risiko an nicht-Krebs-assoziierten Erkrankungen zu sterben, gesenkt werden (39,40). Eine erhöhte Gefahr bei der PN besteht hinsichtlich der Invasion perirenalen Fettgewebes. Daneben bleibt die Anwendung der PN bei Tumoren mit hohem Risikoprofil (Größe > 7 cm, UICC III-IV, pT3) eine noch unzureichend evaluierte Indikation (39). Einige Studien zeigen aber gegensätzliche Ergebnisse, bei denen die RN ein verbessertes kardiovaskuläres Outcome zeigte (31,41).

Zur Therapieplanung lässt sich der unten aufgeführte Algorithmus zu Hilfe nehmen (8). Darüber hinaus bedarf es jedoch einer individuellen Betrachtung jedes Tumors, vor allem hinsichtlich der anatomischen Gegebenheiten.

<table>
<thead>
<tr>
<th>Tabelle 6: Therapeutische Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T3, T4</td>
</tr>
</tbody>
</table>

Grundsätzlich kann in kalter oder warmer Ischämie operiert werden. Die Operation unter hypothermen Bedingungen bietet jedoch höhere Sicherheit bei längerer Operationsdauer. Bei Operation in warmer Ischämie sollte eine Durchblutungsunterbrechung von mehr als 20 Minuten
1. Einleitung

vermieden werden, da dies zu irreversiblen Nierenschäden führen kann (42). Durch kalte Ischämie lassen sich Schäden an der Niere bei bis zu 2 Stunden Abklemmung vermeiden, trotzdem sollte die Durchblutung so schnell wie möglich wiederhergestellt werden (43).

Wie genau sich die beiden Verfahren auf die postoperative Nierenfunktion auswirken, ist ungesichert (44). Jedoch stellen sie einen wichtigen Faktor im Outcome dar (45).

Auch die radikale Lymphknotenentfernung wird nur noch in Einzelfällen ausgeführt, da sich durch sie keine Vorteile im Langzeitüberleben ergeben (47). In Sonderfällen, wie zum Beispiel einem palpablen oder im CT auffälligen Lymphknoten, sollte eine Exzision erfolgen.

Postoperative Komplikationen können anhand der Clavien-Klassifikation eingeteilt werden. Dabei gibt es fünf Grade, die von leichten postoperativen Komplikationen bis hin zum letalen Ausgang reichen (48).

Tabelle 7: Clavien-Klassifikation

<table>
<thead>
<tr>
<th>Grad</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad I</td>
<td>Jede Abweichung vom normalen postoperativen Verlauf ohne Notwendigkeit einer pharmakologischen, operativen, endoskopischen oder radiologischen Intervention. Erlaubtes therapeutisches Regime: Medikamente wie Antiemetika, Antipyretika, Diuretika, Elektrolyte und Physiotherapie</td>
</tr>
<tr>
<td>Grad II</td>
<td>Bedarf an medikamentöser Behandlung mit nicht unter Grad I angeführten Medikamenten inklusive parenteraler Ernährung und Bluttransfusionen</td>
</tr>
<tr>
<td>Grad III</td>
<td>Komplikationen mit chirurgischem, endoskopischen oder radiologischem Interventionsbedarf</td>
</tr>
<tr>
<td>Grad IV</td>
<td>Lebensbedrohliche Komplikationen, die intensivmedizinische Behandlung verlangen</td>
</tr>
<tr>
<td>Grad V</td>
<td>Tod des Patienten</td>
</tr>
</tbody>
</table>

1.6.2. Alternativen zur operativen Therapie

Anstelle einer Operation kommen minimalinvasive Techniken, wie die perkutane Radiofrequenzablation (RFA), die Kryoablation, die Mikrowellenablation, die Laserablation und die HIFU („High intensity focused ultrasound“) zur Anwendung (49). Diese alternativen
1. Einleitung

Therapiestrategien kommen nur selten zum Einsatz, bieten jedoch bei inoperablen Patienten eine Interventionsmöglichkeit. Der onkologische Wert dieses Verfahrens bleibt umstritten.

1.6.3. Systemische Therapie

Da Chemo- und Radiotherapie, wie sie als häufige Therapieansätze bei anderen Krebserkrankungen angewandt werden, auf Nierenzellkarzinome nahezu keine Wirkungen entfalten, kommt neben der chirurgischen Behandlung bei metastasierten Nierenzellkarzinomen die sog. Target-Therapie in Betracht (13).

Zu den Substanzklassen der Target-Therapie gehören die Multikinaseinhibitoren (Pazopanib, Sorafenib, Sunitinib), die mTOR-Inhibitoren (Everolismus, Temsirolimus) und der VEGF-Antikörper (Bevacizumab).

Tabelle 8: First- und Second-Line Therapie beim metastasierten NZK (EAU 2010)

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Risiko/ vorherige Behandlung</th>
<th>empfohlenes Präparat</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Line</td>
<td>niedrig-mittel</td>
<td>Sunitinib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bevacizumab + INFα</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pazopanib</td>
</tr>
<tr>
<td></td>
<td>hoch</td>
<td>Temsirolismus</td>
</tr>
<tr>
<td>Second Line</td>
<td>vorherige Cytokin-Therapie</td>
<td>Sorafenib</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pazopanib</td>
</tr>
<tr>
<td></td>
<td>vorherige VEGF-Therapie</td>
<td>Everolimus</td>
</tr>
<tr>
<td></td>
<td>vorherige mTOR-Therapie</td>
<td>klinische Prüfung</td>
</tr>
</tbody>
</table>

1. Einleitung

1.7. Prognostische Scores für die perioperativen Komplikationen bei der Nierenteilresektion

1.7.1. Der PADUA-Score

Durch die steigende Rate an Nierenteilresektionen wurden im Lauf der letzten Jahre immer mehr Scores zur Einschätzung des intra- und postoperativen Verlaufs mit Hilfe verschiedener präoperativ erfasster Kriterien vorgestellt. Im Jahr 2009 entwickelte die Arbeitsgruppe um Ficarra et al. (52) einen entsprechenden Score mit Fokussierung auf die anatomischen Kriterien des vorliegenden Tumors. Im Verlauf ihrer Studie konnte die Arbeitsgruppe zeigen, dass die detaillierte Betrachtung der anatomischen Einflussgrößen eine genauere postoperative Verlaufseinschätzung zulässt, als die ausschließliche Betrachtung der klinischen Tumogröße. Außerdem versprachen sie sich durch die Studie eine verbesserte Vergleichbarkeit der verschiedenen chirurgischen Therapien (offen, laparoskopisch, roboter-assistiert). Das Ziel der Studie war die Entwicklung eines Scores, der die ärztliche Entscheidung für oder gegen eine Nierenteilresektion erleichtern sollte. Dazu stuften Ficarra et al. neben der klinischen Tumogröße weitere anatomische Faktoren wie die Lokalisation und das Wachstumsverhalten im Hinblick auf die Histologie und auf die Infiltration angrenzender Strukturen als wichtige Prädiktoren ein. Es entstand der PADUA-Score (Preoperative Aspects and Dimensions Used for an Anatomical Classification), welcher als Algorithmus eine Aussage über postoperative Komplikationsrisiken nach Nierenteilresektion geben soll (52).

Tabelle 9: PADUA- Kriterien

<table>
<thead>
<tr>
<th>Anatomische Eigenschaften</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>longitudinale Lokalisation</td>
<td></td>
</tr>
<tr>
<td>superior/ inferior</td>
<td>1</td>
</tr>
<tr>
<td>mittleres</td>
<td>2</td>
</tr>
<tr>
<td>exophytisches Wachstum</td>
<td></td>
</tr>
<tr>
<td>≥ 50%</td>
<td>1</td>
</tr>
<tr>
<td>< 50%</td>
<td>2</td>
</tr>
<tr>
<td>endophytisch</td>
<td>3</td>
</tr>
<tr>
<td>Renalear Rand</td>
<td></td>
</tr>
<tr>
<td>lateral</td>
<td>1</td>
</tr>
<tr>
<td>medial</td>
<td>2</td>
</tr>
<tr>
<td>Renalear Sinus</td>
<td></td>
</tr>
<tr>
<td>nicht-involviert</td>
<td>1</td>
</tr>
<tr>
<td>involviert</td>
<td>2</td>
</tr>
<tr>
<td>Ableitende Harnwege</td>
<td></td>
</tr>
<tr>
<td>nicht-involviert</td>
<td>1</td>
</tr>
<tr>
<td>disloziert/ infiltriert</td>
<td>2</td>
</tr>
</tbody>
</table>
1. Einleitung

<table>
<thead>
<tr>
<th>Tumorgröße (cm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 4</td>
<td>1</td>
</tr>
<tr>
<td>4,1-7</td>
<td>2</td>
</tr>
<tr>
<td>> 7</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fläche</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>anterior (a)</td>
<td>kein Punktwert, Kennzeichnung mittels „a“ bzw. „p“</td>
</tr>
<tr>
<td>posterior (p)</td>
<td></td>
</tr>
</tbody>
</table>

Aus den oben genannten Charakteristika ergeben sich Werte, die zu einer prädictiven Aussage über Verlauf und Sinnhaftigkeit einer Nierenteilresektion Auskunft geben.

Tabelle 10: PADUA-Score und Grad

<table>
<thead>
<tr>
<th>PADUA-Score</th>
<th>PADUA-Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-7</td>
<td>niedrig (1)</td>
</tr>
<tr>
<td>8-9</td>
<td>moderat (2)</td>
</tr>
<tr>
<td>≥ 10</td>
<td>hoch (3)</td>
</tr>
</tbody>
</table>

Mittels dieses Scores lassen sich individuelle Selektionskriterien und die Wahl der operativen Methode - darunter sind die offene oder laparoskopische PN sowie die minimalinvasiven ablatischen Verfahren zu verstehen - erüren (53).

Das Ergebnis zeigte einen höheren Voraussagewert bezüglich auftretender Komplikationen als vergleichbare Ergebnisse mit ausschließlicher Betrachtung der klinischen Tumorgröße.

Eine weitere Einschränkung gibt es hinsichtlich der Anwendbarkeit auf laparoskopische und roboterassistierte Operationen, da sich die Erfahrungen dieser Studie nur auf offene Verfahren beziehen sowie auf fehlende Ergebnisse zum Tumorstadium T1b (52). Nahezu vergleichbare Ergebnisse des PADUA-Scores bei der laparoskopischen Durchführung der PN im Vergleich zum offenen Vorgehen legen eine erfolgversprechende Anwendung des PADUA-Scores auch hier nahe (53,54).
1. Einleitung

Jedoch bleibt diese Fragestellung wenig untersucht und stellt ein interessantes Forschungsziel zukünftiger Analysen dar (33). In der Studie von Waldert et al. (53) wurde darüberhinaus die Anwendung auf T1b Tumoren untersucht. Hierbei zeigte sich mit zunehmender Tumorgröße eine höhere Komplikationsrate. Dieses Ergebnis steht der Aussage von Ficarra et al. – nur die Tumorgröße allein sei kein prädictiver Komplikationsfaktor – entgegen. Trotzdem verdeutlicht die Studie, dass der PADUA-Score als Werkzeug zur Selektion passender Tumoren im Stadium T1b (> 4 cm) für die Nierenteilresektion von Nutzen ist.

Abbildung 1: PADUA - Einteilung nach Ficarra et al. (nach Ficarra et. al., 2009)
1. Einleitung

1.7.2. RENAL Nephrometry Score

Tabelle 11: Kriterien des RENAL-Scores

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>1 Punkt</th>
<th>2 Punkte</th>
<th>3 Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius (cm) des Tumors</td>
<td>< 4</td>
<td>> 4 - < 7</td>
<td>≥ 7</td>
</tr>
<tr>
<td>Exophytische/endophytische Ausprägung</td>
<td>≥ 50%</td>
<td>< 50%</td>
<td>endophytisch</td>
</tr>
<tr>
<td>Nähe zu den ableitenden Harnwegen oder Sinus (mm)</td>
<td>≥ 7</td>
<td>> 4 - < 7</td>
<td>≤ 4</td>
</tr>
<tr>
<td>Anteriore/posteriore Eigenschaften</td>
<td>keine Punkte, Kennzeichnung mittels „a“ bzw. „p“</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokalisation bezogen auf die polare Linie (siehe auch Graphik (55))</td>
<td>über der oberen Linie/ unterhalb der unteren Linie</td>
<td>Überschreitung der polaren Linie</td>
<td>> 50% des Tumor über polarer Linie (a), Tumor überschreitet axiale Mittellinie (b), Tumor zwischen beiden polaren Linien (c)</td>
</tr>
</tbody>
</table>

Abbildung 2: Lokalisations-Punkteverteilung des RENAL-Scores (nach Kutikov et. al., 2009)
1. Einleitung

Hierfür ergibt sich folgende Punkte-Risiko-Einteilung:

<table>
<thead>
<tr>
<th>R.E.N.A.L.-Score</th>
<th>Risiko</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6</td>
<td>niedrig</td>
</tr>
<tr>
<td>7-9</td>
<td>moderat</td>
</tr>
<tr>
<td>10-12</td>
<td>hoch</td>
</tr>
</tbody>
</table>

1.7.3. C-Index-Score

Ziel des C-Indexes (C = Centrality) ist die Evaluation der Tumorlage in Hinblick auf dessen Zentralität. Er wird durch die Distanz zwischen Tumor- und Nierenzentrum sowie Tumorradius aus der Ableitung durch 2-dimensionale planare CT-Bilder gebildet. Ein C-Index < 1 bedeutet die Invasion des Tumors in das Nierenzentrum, ein Index von 1 eine randständige Lage bezogen auf die Nierenmitte. Die Bedeutung eines Index > 1 ist noch nicht klar definiert (57). Die klinische Bedeutung des C-Index ist gering; es soll deshalb hier nicht weiter betrachtet werden.

1.8. Prognose

1. Einleitung

Tabelle 13: Prognose des Nierenzellkarzinoms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organbegrenzt (insgesamt)</td>
<td>T1-T2 N0 M=</td>
<td>T1-T2 N0Mo</td>
<td>70-90%</td>
</tr>
<tr>
<td><4 cm</td>
<td>T1a N0M0</td>
<td>T1a N0M0</td>
<td>90–100</td>
</tr>
<tr>
<td>>4 cm und <7 cm</td>
<td>T1b N0M0</td>
<td>T1b N0M0</td>
<td>80–90</td>
</tr>
<tr>
<td>>7–10 cm</td>
<td>T2a N0M0</td>
<td>T2a N0M0</td>
<td>65–80</td>
</tr>
<tr>
<td>>10 cm</td>
<td>T2b N0M0</td>
<td>T2b N0M0</td>
<td>50–70</td>
</tr>
<tr>
<td>Tumorzellinvasion ins perirenale oder renale Sinus-Fettgewebe</td>
<td>T3a N0M0</td>
<td>T3a</td>
<td>50–70</td>
</tr>
<tr>
<td>Tumorzellinvasion in das renalen Venensystems</td>
<td>T3b N0M0</td>
<td>T3a N0M0</td>
<td>40–60</td>
</tr>
<tr>
<td>Tumorzellinvasion in die V. cava unterhalb des Zwerchfells</td>
<td>T3c N0M0</td>
<td>T3b N0M0</td>
<td>30–50</td>
</tr>
<tr>
<td>Tumorzellinvasion in die V. cava oberhalb des Zwerchfells oder in die Gefäßwand der V. cava</td>
<td>T3c N0M0</td>
<td>T3c N0M0</td>
<td>20–40</td>
</tr>
<tr>
<td>Direkte Tumorzellinvasion in die Nebenniere</td>
<td>T3aN0M0</td>
<td>T4 N0M0</td>
<td>0–30</td>
</tr>
<tr>
<td>Lokal fortgeschritten, Invasion der Gerota-Faszie</td>
<td>T4 N0M0</td>
<td>T4 N0M0</td>
<td>0–20</td>
</tr>
<tr>
<td>Infiltration in lymphatisches Gewebe</td>
<td>Jedes T, N+ M0</td>
<td>Jedes T, N+ M0</td>
<td>0–20</td>
</tr>
<tr>
<td>Systemische Metastasierung</td>
<td>Jedes T, N+ M1</td>
<td>Jedes T, N+ M0</td>
<td>0–10</td>
</tr>
</tbody>
</table>

Bei weiter fortgeschrittenen Befunden mit Lymphknotenbefall oder Ausdehnung auf extrakapsuläre Bereiche fällt die Rate auf 10-25% ab.

Ob sich die Art der Operation- entweder radikale oder partielle Entfernung - auf die Prognose auswirkt, bleibt ungeklärt und ein umstrittenes Thema aktueller Forschungen. Viele Studien weisen in ihren Ergebnissen auf die Überlegenheit der PN aufgrund ihres schonenderen Vorgehens gegen-
1. Einleitung

über dem verbleibenden Nierengewebe hin. In der Folge ist damit eine bessere Prognose und eine höhere Überlebenszeit zu erwarten (39,59)

Demgegenüber weist eine Studie der European Organization for Research and Treatment of Cancer (EORTC) ein gegensätzliches Ergebnis ohne verbesserte Überlebenschancen durch PN auf (60).

1.9. Zielsetzung der Arbeit

Diesen verschiedenen Fragen wird in der vorliegenden Arbeit nachgegangen und anhand unseres Patientenkollektivs untersucht, wie sie sich bezüglich des PADUA-Scores verhalten und ob damit eine zukünftige Anwendbarkeit des Scores für prognostische Aussagen gerechtfertigt ist.

2. Material und Methoden

2.1. Material

2.1.1. Patientenauswahl

Diagnostik und präoperative Daten

Präoperativ wurde der Allgemeinzustand der Patienten mithilfe des ECOG-Performance-Status und des Charlson-Comorbidity-Index klassifiziert.

Die ausschlaggebende Diagnoseerhebung wurde mittels Computertomographie durchgeführt, ergänzt durch eine vorhergehende Sonographie. Aus den Befunden konnten die Kriterien für die Einteilung nach dem PADUA-Score und die Errechnung des PADUA-Grade ermittelt werden. Neben der bildgebenden Diagnostik wurden präoperativ die Retentionswerte erfasst und das Stadium der Nierentumoren mit der TNM-Klassifikation festgelegt.

Operation

Es wurde bei größeren Tumoren die Niere durch Umlegung mit Eis gekühlt, bei kleineren Tumoren wurde diese Vorgehen nicht durchgeführt.

2. Material und Methoden

Gesammelte Daten
Im Anschluss folgt eine kurze Übersicht über alle gesammelten Patientendaten, von denen im weiteren Verlauf der Arbeit nur die statistisch auffälligen Berücksichtigung finden.

- Geschlecht
- Alter
- Body-Mass-Index
- ECOG-Status
- Charlson-Comorbidity-Index
- ASA-Score (präoperative Einschätzung der Patientengesundheit)
- Symptome
- klinische Tumorgröße
- cTNM
- zystische Läsionen, polare Lokalisationen, Fläche (anterior – posterior)
- PADUA-Kriterien (longitudinale Lokalisation, exophytisches Wachstum, Befall renaler Rand, Befall renaler Sinus, Befall ableitende Harnwege, Tumorgröße)
- präoperatives Labor: Kreatinin, GFR
- Indikation der Nierenteilresektion
- OP-Verfahren: anatomischer Operationsweg, operative Technik, Zugangsort
- Operationszeit
- Ischämietyp und – zeit
- Lymphknotendissektion
- intraoperativ: Komplikationen, Blutverlust, Transfusion
- postoperativ: Komplikationen, Therapie
- Clavien Grad
- Krankenhausaufenthaltsdauer
- pathologische Tumorgröße
- histologische Kriterien: Typ, Grading, Nekrose, perirenale und sinusale Fettgewebsbeteiligung, venöser Tumorbefall, Beteiligung ableitender Harnwege)
- pTNM
- postoperatives Labor: Kreatinin, GFR
- Follow up

2.2. Methoden
Zur Komplettierung der zugrunde liegenden Daten wurden die verschiedenen Quellen (Aufnahmebefunde, Laborbefunde, Operationsprotokolle, radiologische Diagnostik, Stationsverlauf, Hausarzt-Dokumentationen) herangezogen. Die in einer Microsoft-Excel®-Datei festgehaltenen Werte wurden in einem zweiten Schritt in das Statistikprogramm IBM SPSS Statistics® (Statistical Package of Social Science) übertragen, um mit diesem im Folgenden die statistische Bearbeitung vornehmen zu können.

In einem ersten Schritt wurde mittels IBM SPSS Statistics® die deskriptive Statistik, das bedeutet Mengen, Durchschnitts- und Mittelwerte mittels Kreuztabellen, ausgewertet. In einem zweiten Schritt wurden die logistische Regression sowie lineare Regressionsanalyse berechnet. Diese beiden Methoden geben Aufschluss über die Zusammenhänge einzelner Variablen mit dem PADUA-Score, welche die Grundlage der hier vorliegenden Arbeit sind.
2. Material und Methoden

Die logistische Regression wird in dieser Arbeit genutzt, um Gruppenunterschiede zu erklären bzw. Gruppenzugehörigkeiten zu prognostizieren. Für die Durchführung wurden die abhängigen Gruppenvariablen dichotom aufgeteilt (siehe Tabelle 14). Der „Padua Score“ wird als Einflussfaktor mit drei Ausprägungen (niedriger PADUA-Grad, mittlerer PADUA-Grad, hoher PADUA-Grad) in Bezug auf die in der Tabelle 14 beschriebenen Parameter betrachtet.

Tabelle 14: Abhängige Variable der logistischen Regression

<table>
<thead>
<tr>
<th>abhängige Variable (y)</th>
<th>Parameter 1</th>
<th>Parameter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>postoperative Komplikationen</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>männlich</td>
<td>weiblich</td>
</tr>
<tr>
<td>cTNM-Klassifikation</td>
<td>T1a</td>
<td>T1b, T2</td>
</tr>
<tr>
<td>Histologie</td>
<td>maligne Histologie</td>
<td>benigne Histologie</td>
</tr>
<tr>
<td></td>
<td>klarzellige Histologie</td>
<td>andere Histologien</td>
</tr>
<tr>
<td></td>
<td>papilläre Histologie</td>
<td>andere Histologien</td>
</tr>
<tr>
<td>Symptome</td>
<td>Zufallsbefund</td>
<td>symptomatisch</td>
</tr>
<tr>
<td>Schweregrad postoperativer Komplikationen</td>
<td>leichte Komplikationen</td>
<td>schwere Komplikationen</td>
</tr>
</tbody>
</table>

Um die Stärke des Einflusses des Prädiktors „Padua Score“ zu beurteilen, verwendet man mit Hilfe des statistischen Programmpaketes SPSS den sogenannten Effektkoeffizienten, welcher die Wirkstärke der unabhängigen Variablen angibt. Der Effektkoeffizient entspricht der Odds Ratio (OR), welche die Wahrscheinlichkeit des Auftretens der ermittelten Daten angibt. Mit der Berechnung der Konfidenzintervalle der Odds Ratio wird beurteilt, ob die mit Hilfe von SPSS erhaltenen Ergebnisse signifikant sind. Eine OR > 1 bedeutet, dass der Einfluss der abhängigen mit der unabhängigen Variable steigen, bei einem Wert < 1 sinken die Chancen eines Zusammenhanges. Eine OR von 0 bedeutet, dass keine gegenseitige Beeinflussung vorliegt (61).

Ziel dieser Arbeit ist es, Rückschlüsse über die Zusammenhänge zwischen dem PADUA-Grad und der abhängigen Variablen herzustellen. Eine beispielhafte Fragestellung lautet somit: Lässt sich anhand der vorliegenden Symptome (symptomlos versus symptomatisch) bereits eine Aussage darüber treffen, ob mit der Berechnung des PADUA-Grad eine niedriges, mittleres oder hohes Risiko für die abhängige Variable einhergehen wird?
2. Material und Methoden

Darüber hinaus ergibt sich Frage: Besteht ein Zusammenhang zwischen der Schwere der postoperativen Komplikationen (leicht versus schwer) und dem PADUA-Grad? Geht ein hoher PADUA-Score Wert mit schwereren Komplikationen einher?

Der in der Arbeit angegebene p-Wert, auch Überschreitungswahrscheinlichkeit oder Signifikanzwert genannt, ist eine Kennzahl zur Auswertung statistischer Test und nimmt Werte zwischen 0 und 1 an. P-Werte kleiner oder gleich 0,05 werden als statistisch signifikant angesehen. Bei Vorliegen eines signifikanten Ergebnisses ließe dies eine Verallgemeinerung auf andere Patientenpopulationen mit strukturähnlich aufweisenden Charakteristiken wie das untersuchte Patientenkollektiv zu (62,63).

Anschließend an die logistische Regression wurde für die intervallskalierten Variablen eine lineare Regressionsanalyse durchgeführt, mit der in diesem Fall versucht wird, eine abhängige Variable durch eine unabhängige Variable zu erklären.

Zur Durchführung der linearen Regression werden die Werte der Einflussgrößen systematisch variiert, wobei die Veränderung der Zielgröße beobachtet und eine Voraussage über die Veränderung der Werte der abhängigen Variable möglich wird.

Graphisch wird die lineare Regression mit Angabe über Richtung und Stärke des linearen Zusammenhanges in Form einer Punktwolke dargestellt, sodass die Regressionsgerade gebildet werden kann, die die intervallskalierten Wertepaare der unabhängigen und abhängigen Variable bestmöglich abbildet. Die abhängige Variable wird auf der Ordinate, die unabhängige Variable auf der Abszisse dokumentiert.

Es wird das Prinzip der kleinsten Quadrate verwendet. Dabei soll die Summe der quadratischen Abweichungen der einzelnen Punkte der Kurve einen möglichst kleinen Wert annehmen.

Für die Interpretation der Ergebnisse der linearen Regressionsanalyse spielt das Bestimmtheitsmaß R^2, als Quadrat des multiplen Korrelationskoeffizienten definiert, eine wichtige Rolle. Es besagt, wie zutreffend der tatsächliche Zusammenhang zwischen abhängiger und unabhängiger Variablen ist. Die Werte variieren zwischen 0 und 1. Ein Wert von 0 bedeutet die Variation der Streuung der abhängigen Variablen kann nicht erklärt werden, ein Wert von 1 hingegen besagt, dass alle Streuungen erklärt werden können und damit auf einer Gerade liegen (64).

Andererseits ist der Korrelationskoeffizient als dimensionsloses Maß für den Grad des linearen Zusammenhangs von Bedeutung. Dieser kann Werte zwischen -1 und +1 annehmen, wobei bei einem Wert von 0 keine lineare Abhängigkeit, bei einem Wert von 1 eine vollständige positive und bei einem Wert von -1 eine vollständig inverse Abhängigkeit der beiden Variablen vorliegt (63,65).
3. Ergebnisse

3.1. Deskriptive Statistik

3.1.1. Patientencharakteristika

Die Geschlechtsverteilung (siehe Abbildung 4) betrug 75 weibliche (35,2%) und 138 männliche (64,8%) Patienten (Mittelwert Verhältnis Männer zu Frauen \pm Standardabweichung: 1,35 \pm 0,48).

Abbildung 3: Altersverteilung in Prozent zum Zeitpunkt der Operation

Abbildung 4: Geschlechtsverteilung mit Prozentangabe
3. Ergebnisse

Der durchschnittliche Bodymassindex wurde mit 27,86 errechnet, wobei die Werte um den Bereich zwischen 17,0 und 43,6 streuten (SD: ± 5,14, Medianwert = 27,2).

Zum Auftreten von Symptomen im Rahmen der Tumorerkrankung kam es bei nur 27 Patienten (13,1%). Der Großteil der Patienten (n = 185, 86,9%) hatte keine spezifische Symptomatik und die Diagnose stellte einen Zufallsbefund dar. Die Beschwerden waren in 11 Fällen durch Schmerzen (5,2%), in 9 Fällen mit einem Fortschreiten der Krankheit im Sinne von Metastasen (4,2%), in 4 Fällen mit Makrohämaturie (1,9%), in 3 Fällen mit Gewichtsverlust (1,4%) und in einem Fall durch Hyperkalzämie (0,5%) charakterisiert (siehe Abb. 6).

Abbildung 5: Verteilung der BMI-Werte mit Prozentangabe

Abbildung 6: Prozentuale Verteilung der Symptome
3. Ergebnisse

3.1.2. Morphologische und pathologische Merkmale

Zur Bestimmung des Tumorstadiums wurde die TNM-Klassifikation herangezogen. Die ermittelte klinische Einteilung zeigte für die primäre Tumorausdehnung bei 149 Patienten ein Anfangsstadium T1a mit einer Tumorausdehnung von ≤ 4 cm (70%), bei 49 Patienten wurde das Stadium T1b mit einer Ausdehnung von < 7 cm (23%) und bei 13 Patienten das Stadium 2 mit einer Tumorgröße > 7 cm (6,1%) gefunden.

Abbildung 7: Prozentuale Verteilung des klinischen T-Stadiums

Um die Berechnung des PADUA-Scores vornehmen zu können, wurden die einzelnen Kriterien bestimmt. Dabei zeigte sich für die polare Lokalisation bei 68 Patienten eine im unteren, bei 71 eine im mittleren und bei 69 Patienten eine im oberen Teil der Niere lokalisierte Raumforderung, während bei 5 Patienten ein multifokaler Befall bestand. Nach der PADUA-Klassifikation ist eine Lokalisation im mittleren Nierenbereich durch die ungünstige operative Zugänglichkeit mit einem schlechteren Ausgang verbunden. Somit ergibt sich bei 137 Patienten ein polarer Scorewert von 1 und bei 73 Patienten ein Scorewert von 2, das bedeutet mit einer medialen Lokalisation. 3 Patienten zeigten einen Scorewert von 3 bei multifokalem Tumorvorkommen.

In Bezug auf die Lage zum Nierenrand konnte in 78 Fällen eine laterale und in 32 Fällen eine mediale Lage gefunden werden, wobei die mediale Lokalisation nach dem PADUA-Score mit einem schlechteren Outcome verbunden ist. 170 Tumoren zeigten keine, die restlichen 43 Befunde zeigten eine Ausdehnung bis zum Nierensinus. Eine Einbeziehung der ableitenden Harnwege bestand in 14 Fällen.

Ein exophytisches Wachstumsverhalten von ≥ 50% gilt nach dem PADUA-Score als die prognostisch am günstigsten verlaufende Variante und zeigte sich bei 158 Patienten. Ein exophytisches Wachstum von ≤ 50% wurde bei 40 Patienten und das prognostisch am schlechtesten verlaufende endophytische Wachstum bei 15 Patienten festgestellt.

Eine mittlere klinische Tumorgröße wurde für 206 Patienten mit 38 mm (Mittelwerte ± Standardabweichung: 37,89 mm ± 22,22 mm, Median: 33,50 mm) dokumentiert wobei sich eine
3. Ergebnisse

Spanne zwischen 8 mm bei dem kleinsten bis 170 mm bei der größten Tumorausdehnung zeigte. Bei 7 Patienten waren die Daten zur klinischen Größe nicht dokumentiert worden. Daraus ließ sich die Größeneinteilung nach der PADUA-Klassifikation folgendermaßen ableiten: für $n = 149$ eine Tumogröße ≤ 4 cm, für $n = 53$ eine Größe von 4,1-7 cm und für $n = 10$ eine Tumogröße > 7 cm. Die klinischen Größenangaben wurden aufgrund der einfachen Durchführbarkeit und genauen Bestimmbarkeit durch sonographische Bildgebung ermittelt.

Bei den Patienten mit multifokalem Auftreten wurden die einzelnen Werte summiert und gehen in Form eines Gesamtwertes in die Statistiktabelle mit ein.

Abbildung 8: Häufigkeitsverteilung der klinischen Tumorgröße (mm)

Bei 45 Patienten fand sich der Tumor anterior, in 68 Fällen posterior gelegen. Dieses Kriterium spielt keine Rolle für die Errechnung des PADUA-Scores, es fließt durch ein „a“ bzw. „p“ gekennzeichnet in die Aufzeichnung mit ein.

Mittels dieser erhobenen Daten konnte für jeden Patienten der PADUA-Score errechnet, daraus das Risiko abgeleitet und eine präoperative Einschätzung über den prognostischen Verlauf erhoben werden. Das Patientenkollektiv zeigte für den PADUA-Score einen mittleren Wert von 7,09 (SD \pm 1,48). 150 Patienten fielen damit in die Gruppe mit niedrigem, 47 Patienten in die Gruppe mit mittlerem und 16 Patienten in die Gruppe mit hohem Grad (siehe Tab. 16).
3. Ergebnisse

Tabelle 15: Patientendaten für PADUA- Kriterien

<table>
<thead>
<tr>
<th>PADUA-Parameter</th>
<th>PADUA-Kriterium (PADUA-Wert)</th>
<th>Patientenanzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>longitudinale Lokalisation</td>
<td>superior (1)</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>inferior (1)</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>mittel (2)</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>multifokal</td>
<td>5</td>
</tr>
<tr>
<td>Nierenrand</td>
<td>lateral (1)</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>medial (2)</td>
<td>32</td>
</tr>
<tr>
<td>Nierensinus</td>
<td>nicht-involviert (1)</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>involviert (2)</td>
<td>43</td>
</tr>
<tr>
<td>ableitende Harnwege</td>
<td>nicht-involviert (1)</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>involviert (2)</td>
<td>14</td>
</tr>
<tr>
<td>exophytisches Wachstum</td>
<td>≥ 50% (1)</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>≤ 50% (2)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>endophytisch (3)</td>
<td>15</td>
</tr>
<tr>
<td>Tumorgröße</td>
<td>≤ 4 cm (1)</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>4,1-7 cm (2)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>> 7 cm (3)</td>
<td>10</td>
</tr>
<tr>
<td>Fläche</td>
<td>anterior (a)</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>posterior (b)</td>
<td>68</td>
</tr>
</tbody>
</table>

Tabelle 16: Patientendaten für PADUA- Score

<table>
<thead>
<tr>
<th>PADUA-Score</th>
<th>Häufigkeit (Patientenanzahl)</th>
<th>Prozent</th>
<th>Gültige Prozenten</th>
<th>kumulierte Prozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>22</td>
<td>10,3</td>
<td>10,3</td>
<td>10,3</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>29,1</td>
<td>29,1</td>
<td>39,4</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>30,0</td>
<td>30,0</td>
<td>69,4</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>13,6</td>
<td>13,6</td>
<td>83,1</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>9,4</td>
<td>9,4</td>
<td>92,5</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>3,8</td>
<td>3,8</td>
<td>96,2</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>3,3</td>
<td>3,3</td>
<td>99,5</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
<td>100,0</td>
</tr>
<tr>
<td>Gesamt</td>
<td>213</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>
3. Ergebnisse

Tabelle 17: Patientenwerte für PADUA-Grad

<table>
<thead>
<tr>
<th>PADUA-Grad</th>
<th>Häufigkeit (Patientenanzahl)</th>
<th>Prozent</th>
<th>Gültige Prozente</th>
<th>Kumulierte Prozente</th>
</tr>
</thead>
<tbody>
<tr>
<td>niedrig (6-7)</td>
<td>150</td>
<td>70,4</td>
<td>70,4</td>
<td>70,4</td>
</tr>
<tr>
<td>mittel (8-9)</td>
<td>47</td>
<td>22,1</td>
<td>22,1</td>
<td>92,5</td>
</tr>
<tr>
<td>hoch (> 10)</td>
<td>16</td>
<td>7,5</td>
<td>7,5</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Abbildung 9: Prozentuale Häufigkeitserteilung des PADUA-Grades mit geschlechtsspezifischer Verteilung (low: 6-7 Punkte, moderate: 8-9 Punkte, high: > 10 Punkte)

3.1.3. Operationsdaten

Der ausschlaggebende Faktor, der zur Indikation für eine Nierenteilresektion führte, stellte in 169 Fällen die Tumogröße dar. Weitere Faktoren waren das Vorliegen einer Einzelniere (n = 16), beidseitiges Tumorvorkommen (n = 6), Nierensuffizienz (n = 7), Nierenzysten (n = 12), ein Angiomyolipom (n = 2) und eine Nephritis (n = 1).

Die Operation wurde wie vorausgehend bereits beschrieben durchgeführt. Dabei betrug die durchschnittliche Operationszeit 153,14 min (43 min und bis zu 310 min; 153,14 ± 41,64; siehe Abb. 10).

Von dem zugrundeliegenden Patientenkollektiv wurden 161 Patienten in Hypothermie (kalte Ischämie) und 49 Patienten mit einfacher Abklemmung (warme Ischämie) operiert (n.a. n = 3).

Die mittlere Ischämiezeit betrug bei den erfassten 134 Patienten 16,09 min mit einer Zeitspanne zwischen 2 und 50 min (16 ± 7,037).
3. Ergebnisse

Abbildung 10: Häufigkeitsverteilung der Operationsdauer (min)

![Abbildung 10](image10.png)

Abbildung 11: Häufigkeitsverteilung der Ischämiezeit (min)

![Abbildung 11](image11.png)

Der intraoperative Blutverlust gestaltete sich sehr variabel. Die Werte lagen zwischen dem Maximalwert von 2600 ml und dem Minimalwert von 100 ml mit einem Mittelwert von ca. 672 ml (SD ± 576,16 ml). Bei 5 Patienten führte der Blutverlust zu einer intraoperativen Transfusion.

Weitere intraoperative Komplikationen traten als Ausweitung des Operationsumfanges mit Adrenalektomie und einer totalen Nephrektomie auf.

Die Behandlungen umfassten die bereits oben erwähnten Transfusionen und Resektionen, Antibiotikagaben und eine Reanimation mit letalem Ausgang.
3. Ergebnisse

Bei dem zuletzt genannten Patienten lag bereits von Beginn an eine Risikosituation vor, da es sich um die Metastase eines zuvor aufgetretenen Nierentumors handelte.

3.1.4. Postoperativ erhobene Daten

Die stationäre Behandlungszeit der Patienten variierte in einer Zeitspanne zwischen einem (mit anschließender Verlegung) und 55 Tagen. Die mittlere Aufenthaltsdauer liegt bei ungefähr 9 Tage (9,13 ± 6,11).

Abbildung 12: Häufigkeitsverteilung der stationären Behandlungsdauer (Tage)

Postoperativ wurde die pathologische Tumogröße, mit einem Mittelwert von 3,59 cm bestimmt und lag damit nahe an der präoperativ bestimnten Größe (3,78 cm).

Die Einteilung der pathologischen Tumorausdehnung nach der TNM-Klassifikation wurde wie folgt ermittelt:

<table>
<thead>
<tr>
<th>pT</th>
<th>Anzahl n (Prozent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>107 (50,2%)</td>
</tr>
<tr>
<td>1b</td>
<td>27 (12,7%)</td>
</tr>
<tr>
<td>2a</td>
<td>3 (1,4%)</td>
</tr>
<tr>
<td>2b</td>
<td>2 (0,9%)</td>
</tr>
<tr>
<td>3a</td>
<td>11 (5,2%)</td>
</tr>
<tr>
<td>3b</td>
<td>1 (0,5%)</td>
</tr>
</tbody>
</table>
3. Ergebnisse

Die pathologische Beurteilung der Resektate ergab eine histologische Differenzierung in klarzellige (115), papilläre (27) tubulo-papilläre (2) und chromophobe Tumoren (5), Onkozytome (23), renale Zysten (18), Angiomyolipome (12), Adenome (2), Nephritiden (2) und Metastasen (3) durch jeweils ein Bronchial-, Nieren- und Peniskarzinom. Damit konnten 55 Histologien als benigne und 154 als maligne Neubildungen bestimmt werden.

Abbildung 13: Prozentuale Verteilung der postoperativ gefundenen Histologien

Die Beurteilung der Resektionsränder war in allen Fällen frei von Tumorgewebe, es handelte sich somit ausschließlich um R0-Ergebnisse.

Die Grading-Einteilung nach WHO zeigte folgende Ergebnisse: Grad 1 bei 41 Patienten, Grad 2 bei 93 Patienten, Grad 3 bei 14 Patienten und Grad 4 bei einem Patienten. Bei mehreren Tumorherden wurde immer das höhere Grading als Maßstab genommen.

Die Auswertung der Daten zum postoperativen Komplikationsverlauf ergab die im Folgenden dargelegten Ergebnisse. Von den insgesamt 213 operierten Patienten hatten im Verlauf 73 Patienten postoperative Komplikationen (34,3% mit und 65,7% ohne postoperative Komplikationen).

Dabei zeigten sich ganz unterschiedliche Ausprägungen und Schweregrade der auftretenden Komplikationen. Die meisten betroffenen Patienten litten unter leichten Beschwerden wie Temperaturerhöhung (n = 22), Anämie im Sinne einer Transfusions-Bedürftigkeit (n = 13), die Entstehung eines Urinoms (n = 11) und Hämatomen (n = 5). Weitere Komplikationen zeigten sich durch Wundinfektionen (n = 4), Abszesse (n = 3), akutem Harnverhalt (n = 2), in der Notwendigkeit der Durchführung einer forcierten Diurese (n = 2), der Ausbildung eines Ileus (n = 2), Erbrechen (n = 2) und einer Erhöhung der laborchemischen Infektparameter.

In wenigen Fällen kam es zu lebensbedrohlichen Komplikationen aus einer Kombination mit Abszess, renaler Arterien thrombose, Niereninsuffizienz, Sepsis und Delir. Ein Patient starb 6 Tage
3. Ergebnisse

nach Operation aufgrund einer Rechtsherzinsuffizienz.

Insgesamt wurden die postoperativen Komplikationen für die statistische Bewertung in zwei Gruppen unterteilt - leichte und schwere Komplikationen (siehe Abb. 15). Von den insgesamt 73 Patienten mit Komplikationen fielen 45 in die Gruppe mit leichten (61,1%) und 28 in die Gruppe mit schweren Komplikationen (38,4%).

Die leichten Komplikationen umfassten in dieser Einteilung Übelkeit, Temperaturerhöhung, die Entstehung eines Hämatoms und subkutane Abszesse sowie Wundheilungsstörungen.

Zu den schweren Komplikationen rechneten wir das Auftreten einer Anämie und eines Urinoms sowie die Kombination aus verschiedenen Komplikationen wie Nierenfunktionsstörung, renaler Hypertonie, Ileus und Sepsis.

Abbildung 14: Prozentuale Häufigkeitsverteilung postoperativer Komplikationen

Bei der Betrachtung des geschlechtsspezifischen Risikos für das Auftreten postoperativer Komplikationen zeigte sich mit 37,24% gegenüber 32,58% für Frauen ein erhöhtes Vorkommen von Komplikationen. Frauen hatten damit ein 1,4 zu 1 erhöhtes Risiko für einen postoperativ-komplizierten Verlauf.
3. Ergebnisse

Tabelle 19: Auftreten postoperativer Komplikationen im Geschlechtervergleich

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>postoperative Komplikationen</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine postoperativen Komplikationen</td>
<td>postoperative Komplikationen</td>
</tr>
<tr>
<td>männlich</td>
<td>93</td>
<td>45</td>
</tr>
<tr>
<td>weiblich</td>
<td>47</td>
<td>28</td>
</tr>
<tr>
<td>Gesamt</td>
<td>140</td>
<td>73</td>
</tr>
</tbody>
</table>

Abbildung 15: Prozentuales Vorkommen des Schweregrads postoperativer Komplikationen mit geschlechtsspezifischer Aufteilung

3. Ergebnisse

Tabelle 20: Clavien-Grade-Vorkommen nach PADUA-Grad

<table>
<thead>
<tr>
<th>PADUA-Grad</th>
<th>Clavien-Grade</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>niedrig</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>mittel</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>hoch</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt</td>
<td>5</td>
<td>37</td>
</tr>
</tbody>
</table>

Behandelt wurden die genannten Komplikationen mit Antibiotika, Diuretika, Antiemetika, parenteraler Ernährung, neurologischer Frührehabilitation, Bluttransfusionen, Dialyse, Anlegen perkutaner Nephrostomien, ureteralen Stents, Drainagen sowie Revisionsoperationen (Laparotomie, Nephrektomie).

Abbildung 16: Prozentuales Vorkommen der Clavien-Einteilung
3. Ergebnisse

3.2. Regressionsanalyse

Im folgenden Abschnitt werden die statistischen Ergebnisse der binär logistischen und der linearen Regression zum Vergleich von präoperativer PADUA-Klassifikation und postoperativem Verlauf dargestellt.

3.2.1. Binär logistische Regression

Als Einflussfaktor wurde in einem ersten Schritt der PADUA Grad mit den 3 Ausprägungen niedrig, mittel und hoch herangezogen.

In einer ersten Untersuchung wurde der PADUA-Score gegenüber dem Auftreten klinischer Symptome betrachtet. Es zeigt sich, dass die klinischen Beschwerden bei PADUA-Grad 2-Patienten um ein 2,11-faches Vorkommen anstiegen, dann aber bei PADUA-Grad 3-Patienten nur bei circa der Hälfte der Patienten vorlag. Die Resultate lassen aber aufgrund fehlender Signifikanz keine Verallgemeinerung zu.

Mit einem signifikanten Ergebnis (p < 0,001) stellte sich der Zusammenhang zwischen klinischem cT-Stadium und PADUA-Grad dar, wobei ein steigender TNM-Grad mit höherem PADUA-Scores beobachtet wurde. Patienten mit einem mittleren Grad zeigten ein knapp Fünffaches, Patienten mit hohem Grad ein knapp 2,4-fach erhöhtes Risiko, ein fortgeschrittenes cT-Stadium (T1b/T2 versus T1a) gegenüber niedrig-Risikopatienten aufzuweisen. Aufgrund des niedrigen p-Wertes ist dieses Ergebnis signifikant und kann verallgemeinernd auch auf andere Gruppen angewandt werden.

Bei der Betrachtung postoperativer Komplikationen zeigte sich, dass bei Patienten mit niedrigem und mittlerem PADUA-Grad die Komplikationsrate beinahe unverändert blieb (OR 1,07). Bei PADUA-Grad 3-Patienten wurde demgegenüber eine Abnahme der Komplikationsrate auf etwas über die Hälfte im Vergleich zu niedrigem PADUA-Grad registriert (OR 0,63). Das Ergebnis zeigt keine Signifikanz.

Die Ergebnisse des Schweregrades postoperativer Komplikationen sind folgendermaßen zu interpretieren: bei mittlerem PADUA-Grad ist mit einem knapp 9-fachen Risiko gegenüber niedrigem PADUA-Grad für schwerwiegende Komplikationen zu rechnen (OR 8,82), wobei dieses Ergebnis signifikant ist. Hingegen nimmt bei hohem PADUA-Grad 3 die Wahrscheinlichkeit stark ab und ist sogar geringer als bei niedrigem PADUA-Grad (OR 0,90)

Wie für das klinische TNM-Stadium zeigt die logistische Regression auch für das pathologische TNM-Stadium ein plausibles Ergebnis. Mit steigendem pT-Stadium stieg ebenfalls der PADUA-
3. Ergebnisse

Grad. Für PADUA-Grad 2-Patienten zeigte sich gegenüber PADUA-Grad 1-Patienten ein knapp 2,5-fach erhöhtes Risiko für das Vorliegen eines T1b-Stadiums, anstelle eines T1a-Stadiums, für PADUA-Grad 3-Patienten sogar ein 3,2-fach erhöhtes Risiko. Dieses Resultat ist mit einem p-Wert von 0,074 zwar nicht signifikant, deutet aber auf einen Trend hin.

Abschließend wurde die Frage untersucht, wie sich der PADUA-Grad bezüglich der histologischen Klassifikation der Nierenzellkarzinome verhält. Gibt es eine bestimmte Differenzierung, die mit einem höheren PADUA-Grad einhergeht? Lässt dies wiederum eine Abschätzung auf die Aggressivität und den Verlauf der Krankheit zu?

Um dieser Frage nachzugehen, wurde erstmals die Art der Transformation, das bedeutet die Unterscheidung in maligne versus benigne untersucht. Dabei zeigte sich, dass mit steigendem PADUA-Grad die Malignität nicht zunimmt, sondern sogar abnimmt. PADUA-Grad 2-Patienten haben gegenüber PADUA-Grad 1-Patienten eine um 14% erhöhte Chance (OR 1,13), PADUA-Grad 3-Patienten eine sogar um 50% erhöhte Chance (OR 1,48) für eine benigne Transformation. Diese Ergebnisse sind allerdings nicht signifikant.

Die Betrachtung der beiden Haupthistologien, der klarzelligen und papillären Differenzierung, zeigte eine richtungweisende Korrelation mit dem PADUA-Grad. Für Patienten mit höherem PADUA-Grad stieg die Wahrscheinlichkeit des Vorliegens eines klarzelligen beziehungsweise papillären Tumors im Vergleich zu anderen Histologien.

Bezüglich der klarzelligen Histologie zeigte sich bei PADUA-Grad 3-Patienten ein 35% erhöhtes Risiko gegenüber PADUA-Grad 1-Patienten. Die Patienten mit PADUA-Grad 2 verfügten über ein 32% erhöhtes Risiko für eine papilläre Differenzierung gegenüber PADUA-Grad 1-Patienten.

Tabelle 21: Ergebnisse der binär logistischen Regression mit drei-teilter PADUA-Klassifikation

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>unabhängige Variable</th>
<th>OR</th>
<th>p-Wert</th>
<th>95%-KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Symptome</td>
<td>PADUA Grad 1</td>
<td>Referenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>2,11</td>
<td>0,089</td>
<td>0,89-5,0</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>0,52</td>
<td>0,541</td>
<td>0,06-4,20</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>2,36</td>
<td>< 0,001</td>
<td>2,42-9,82</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>4,87</td>
<td>0,122</td>
<td>0,79-7,0</td>
</tr>
<tr>
<td>postoperative Komplikationen</td>
<td>PADUA Grad 1</td>
<td>Referenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>1,07</td>
<td>0,85</td>
<td>0,54-2,12</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>0,63</td>
<td>0,44</td>
<td>0,2-2,04</td>
</tr>
</tbody>
</table>
3. Ergebnisse

<table>
<thead>
<tr>
<th>Schweregrad postoperativer Komplikationen</th>
<th>PADUA Grad 1</th>
<th>Referenz</th>
<th>0,001</th>
<th>2,46-31,64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>8,82</td>
<td>0,993</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>0,90</td>
<td>0,993</td>
<td>0,001</td>
</tr>
<tr>
<td>Clavien-Grad > 2</td>
<td>PADUA Grad 1</td>
<td>Referenz</td>
<td>0,411</td>
<td>0,53-4,69</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>1,6</td>
<td>0,957</td>
<td>0,61-69</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>1,05</td>
<td>0,957</td>
<td>0,61-69</td>
</tr>
<tr>
<td>Histologischer Typ – benigne Transformation</td>
<td>PADUA Grad 1</td>
<td>Referenz</td>
<td>0,734</td>
<td>0,54-2,38</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>1,137</td>
<td>0,494</td>
<td>0,48-4,63</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>1,486</td>
<td>0,494</td>
<td>0,48-4,63</td>
</tr>
<tr>
<td>Histologischer Typ – klarzellige Histologie</td>
<td>PADUA Grad 1</td>
<td>Referenz</td>
<td>0,922</td>
<td>0,26-3,05</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>1,05</td>
<td>0,707</td>
<td>0,28-6,59</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>1,35</td>
<td>0,707</td>
<td>0,28-6,59</td>
</tr>
<tr>
<td>Histologischer Typ – papilläre Histologie</td>
<td>PADUA Grad 1</td>
<td>Referenz</td>
<td>0,598</td>
<td>0,49-3,74</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>1,32</td>
<td>0,977</td>
<td>0,21-4,88</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>1,02</td>
<td>0,977</td>
<td>0,21-4,88</td>
</tr>
<tr>
<td>pT1b-Stadium</td>
<td>PADUA Grad 1</td>
<td>Referenz</td>
<td>0,033</td>
<td>1,07-5,57</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 2</td>
<td>2,446</td>
<td>0,074</td>
<td>0,89-12,4</td>
</tr>
<tr>
<td></td>
<td>PADUA Grad 3</td>
<td>3,320</td>
<td>0,074</td>
<td>0,89-12,4</td>
</tr>
</tbody>
</table>

Da die vorliegenden Resultate klinisch zum Teil schwer erklärbare Ergebnisse der Risikoerhöhung bezüglich des PADUA-Scores zeigten, wie zum Beispiel die Erhöhung eines bestimmten Faktors bei PADUA-Grad 2-Patienten, dann jedoch eine Abnahme bei PADUA-Grad 3-Patienten, wurde eine weitere statistische Auswertung durchgeführt. Aus dieser Beobachtung entstand die Überlegung einer zwei-geteilten PADUA-Graduierung in einen Grad < 8 Punkte versus einem Grad > 8 Punkten.

Wie bei den vorausgehenden Ergebnissen für den drei-geteilten PADUA-Grad zeigte sich auch für die zwei-gradige Klassifikation signifikante bzw. stark richtungsweisende Ergebnisse für das klinisches und pathologisches TNM-Stadium (primäre Tumorausdehnung): mit steigendem PADUA-Grad erhöhte sich ebenfalls das T-Stadium.

Für das cT-Stadium zeigten Patienten mit PADUA-Score > 8 Punkten ein 4-fach erhöhtes Risiko gegenüber Patienten mit einem Scores ≥ 8 Punkten für das Vorliegen eines klinischen TNM-Stadiums > T1a. Dieses Ergebnis lässt sich aufgrund seiner Signifikanz verallgemeinern (OR < 0,001).

Im gleichen Sinne zeigten Patienten mit PADUA-Score ≥ 8 Punkten ein 2,63-faches Risiko für ein
3. Ergebnisse

Erhöhtes pT1b-Stadium versus einem pT1a-Stadium im Vergleich zu Patienten mit einem Score < 8 Punkten. Dieses Ergebnis ist zwar nicht signifikant, lässt mit einem p-Wert von 0,012 aber eine eindeutige Richtung erkennen.

Für das Auftreten postoperativer Komplikationen zeigte sich eine Abnahme des Risikos mit steigendem PADUA-Score. Patienten mit ≥ 8 PADUA-Punkten waren etwas weniger häufig als Patienten mit < 8 PADUA-Punkten betroffen (OR 0,94). Das Ergebnis ist nicht signifikant (p-Wert 0,85).

Der Schweregrad postoperativer Komplikationen, das heißt die Wahrscheinlichkeit für das Auftreten schwieriger Komplikationen mit höherem PADUA-Score zeigte eine positive zusammenhängende Korrelation mit einem nahezu signifikanten Ergebnis (p-Wert 0,012). PADUA-Score ≥ 8 Patienten verfügten über ein knapp 5,5-faches Risiko für schwerere Komplikationen als Patienten mit einem niedrigem PADUA-Punktwert.

Tabelle 22: Ergebnisse der binär logistischen Regression mit zwei- geteilter PADUA- Klassifikation

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>unabhängige Variable</th>
<th>OR</th>
<th>p-Wert</th>
<th>95%-KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>cT-Stadium T1b, T2</td>
<td>PADUA Score < 8</td>
<td>Referenz</td>
<td>4,06</td>
<td>< 0,001</td>
</tr>
<tr>
<td></td>
<td>PADUA Score ≥ 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>postoperative Komplikationen</td>
<td>PADUA Score < 8</td>
<td>Referenz</td>
<td>0,94</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td>PADUA Score ≥ 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweregrad postoperativer Komplikationen</td>
<td>PADUA Score < 8</td>
<td>Referenz</td>
<td>5,43</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>PADUA Score ≥ 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT1b-Stadium</td>
<td>PADUA Score < 8</td>
<td>Referenz</td>
<td>2,63</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td>PADUA Score ≥ 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2. Lineare Regression

Um den Einfluss des Regressors auf das in dieser Arbeit betrachtete Patientenkollektiv genauer zu untersuchen, wurde mit Hilfe der Methode der linearen Regression analysiert, ob es einen linearen positiven oder negativen Zusammenhang zwischen den Patienten- und OP-Kriterien und dem Padua-Score gibt.
3. Ergebnisse

Lineare Regression: Alter
Der erste untersuchte Parameter war das Alter mit 66,26 ± 10,8 in Jahren. Das Bestimmtheitsmaß R^2 von 0,003 indiziert einen sehr schwachen bis eher keinen Grad des linearen Zusammenhanges zwischen den beiden Variablen PADUA-Score und Alter.

Tabelle 23: Lineare Regressionsanalyse - Alter (Jahre)

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>Korrelationskoeffizient nach Pearson R</th>
<th>Regressionskoeffizient B</th>
<th>Konstante</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>0,05</td>
<td>-0,36</td>
<td>68,85</td>
<td>0,501</td>
</tr>
</tbody>
</table>

Die graphische Darstellung zeigt folgendes Ergebnis mit Angabe der Regressionsgleichung.

Abbildung 17: Lineare Regressionsanalyse - Alter (Jahre)

Lineare Regression: Bodymass-Index
Auch der Bodymass-Index zeigte einen sehr schwachen gegenläufigen (negativ linearen) Zusammenhang mit dem PADUA-Score. Es ergab sich folgendes Ergebnis:

Tabelle 24: Lineare Regressionsanalyse - BMI

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>Korrelationskoeffizient nach Pearson R</th>
<th>Regressionskoeffizient B</th>
<th>Konstante</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>0,09</td>
<td>-0,31</td>
<td>30,07</td>
<td>0,24</td>
</tr>
</tbody>
</table>
3. Ergebnisse

Abbildung 18: Lineare Regressionsanalyse - BMI

Lineare Regression: Operationszeit
Für die Operationszeit in Minuten zeigte sich mit einem Bestimmtheitsmaß von $R^2 = 0.132$ ein schwacher linearer Zusammenhang mit dem Merkmal PADUA-Score.

Abbildung 19: Lineare Regressionsanalyse - Operationszeit (min)
3. Ergebnisse

Tabelle 25: Lineare Regressionsanalyse - Operationszeit (min)

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>Korrelationskoeffizient nach Pearson R</th>
<th>Regressionskoeffizient B</th>
<th>Konstante</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP-Zeit (min)</td>
<td>0,363</td>
<td>10,18</td>
<td>80,89</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Lineare Regression: Ischämiezeit

Bei der Betrachtung der Dauer der Ischämiezeit in Minuten zeigte sich ein positiver Zusammenhang. Das Bestimmtheitsmaß beträgt dabei $R^2 = 0,42$.

Tabelle 26: Lineare Regressionsanalyse - Ischämiezeit (min)

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>Korrelationskoeffizient nach Pearson R</th>
<th>Regressionskoeffizient B</th>
<th>Konstante</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischämiezeit (min)</td>
<td>0,428</td>
<td>1,89</td>
<td>2,71</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Abbildung 20: Lineare Regressionsanalyse - Ischämiezeit (min)

Lineare Regression: Blutverlust

Erwartungsgemäß zeigte sich für die Untersuchung zwischen PADUA-Score und intraoperativem Blutverlust (Milliliter) ein positiver Zusammenhang mit dem Bestimmtheitsmaß von $R^2 = 0,26$.
3. Ergebnisse

Tabelle 27: Lineare Regressionsanalyse - intraoperativer Blutverlust (ml)

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>Korrelationskoeffizient nach Pearson R</th>
<th>Regressionskoeffizient B</th>
<th>Konstante</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blutverlust (ml)</td>
<td>0,26</td>
<td>84,93</td>
<td>53,07</td>
<td>51,93</td>
</tr>
</tbody>
</table>

Abbildung 21: Lineare Regressionsanalyse - intraoperativer Blutverlust (ml)

Lineare Regression: Krankenhausaufenthalt
Erstaunlicherweise konnte zwischen PADUA-Score und Krankenhausaufenthaltsdauer (Tage), welche durch postoperativen Verlauf, Komplikationen und deren Therapie bestimmt wird, kein Zusammenhang dargelegt werden. Mit einem R-Wert von 0,059 und einer Signifikanz von 0,393 waren Patienten mit einem hohen PADUA-Score nicht dafür prädestiniert, nach erfolgter OP längere Zeit im Krankenhaus zu verweilen.

Tabelle 28: Lineare Regressionsanalyse - Krankenhausaufenthalt (Tage)

<table>
<thead>
<tr>
<th>abhängige Variable</th>
<th>Korrelationskoeffizient nach Pearson R</th>
<th>Regressionskoeffizient B</th>
<th>Konstante</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krankenhausaufenthalt (Tage)</td>
<td>0,059</td>
<td>-0,24</td>
<td>10,85</td>
<td>0,28</td>
</tr>
</tbody>
</table>
3. Ergebnisse

Abbildung 22: Lineare Regressionsanalyse - Krankenhaustag (Tage)

R^2 Linear = 0.003
4. Diskussion

Angesichts der vielen Veröffentlichungen innerhalb der letzten Jahre über die Aussagekraft von standardisierten Scoring-Systemen bei partieller Nierenresektion liefert diese Arbeit auch Ergebnisse, die einen relevanten Beitrag zur aktuellen Diskussion leisten können.

Ziel der Arbeit war es, den PADUA-Score zu bewerten und damit einen Teil zur Entwicklung eines allgemein gültigen Scores über die Nierenteilresektion zu liefern. Dazu ist es notwendig, die einzelnen Daten der verschiedenen Scores auszuwerten, um den Score mit der größten Relevanz hinsichtlich der Vergleichbarkeit von Patientendaten und deren Outcomes zu ermitteln.

Sinn der Arbeit war es nicht, die einzelnen PADUA-Kriterien, die von Ficarra et al. in der hier zugrundeliegenden Arbeit 2009 entwickelt wurden (52), zu bewerten, sondern die Anwendbarkeit des bereits erhobenen PADUA-Scores auszuwerten.

Die Datenerhebung erfolgte retrospektiv anhand der archivierten Daten der Urologischen Klinik der Universität Rostock. Für das ganzheitliche Verständnis der Arbeit ist dieser Aspekt wichtig, da die Unvollständigkeit einiger Daten festgehalten werden muss. So fehlte beispielsweise bei einem Patienten die Operationsdauer und bei zwei Patienten Angaben zum cT-Stadium. Daten, die aufgrund von größeren fehlenden Angaben eventuell zu fehlerhaften Ergebnissen geführt hätten, wurden bei der Auswertung nicht berücksichtigt.

Die Basisdaten der Patienten zeigen bei unserem Kollektiv ganz ähnliche Ergebnisse wie bei den Patienten in der Studie von 2009 von Ficarra et al. Das mediane Alter liegt hier bei 69 Jahren, in der Studie von Ficarra et al. bei 62 Jahren. 64,8% der Patienten waren männlich (Ficarra: 72,6%), 35,2% weiblich (Ficarra: 27,4%). Der mediane BMI-Wert liegt bei 27,17 und ist damit ebenfalls vergleichbar (25,4).

Aufgrund der vergleichbaren Datenlage kann von einem ähnlichen Patientenkollektiv und einer guten Übereinstimmung der demographischen Daten unseres Kollektivs mit denen von Ficarra et al. ausgegangen werden, wobei unsere Studie wegen der fast doppelt so großen Population (213 vs. 164 Patienten) eine höhere Repräsentativität aufzeigt.

In der hier untersuchten Population konnte dieser Zusammenhang jedoch nicht bestätigt werden.
4. Diskussion

Sollten sich in zukünftigen Studien mit zwei Risikogruppen ähnlich gute korrelative Resultate ergeben, könnte eine Reevaluation des Scores mit dem Ziel einer zweigeteilten Klassifizierung (low vs. high) erörtert werden.

Die Auswertung der Daten über die Clavien- Klassifikation, welche detaillierte Auskunft über den Grad postoperativer Komplikationen gibt, unterstreicht die gewonnen Ergebnisse mit negativer Korrelation zwischen PADUA-Score und möglichen Komplikationen. Die Ergebnisse liefern ein abnehmendes Grading bei zunehmenden PADUA- Score Punkten (PADUA Score 8-9 mit 1,6-fachem, Score > 10 mit nur 1,05-fachem Risiko gegenüber Score 6-7). Darüber hinaus stellte sich bei der Untersuchung über die Art der Komplikationen, sprich die Einteilung in leicht vs. schwerwiegende Komplikationen, eine bei PADUA-Score 8-9 Punkten steigende, bei PADUA-Score > 10 Punkten jedoch gleichbleibende Korrelation dar (für PADUA-Score 8-9 Punkte ein 9-fach und Score > 10 Punkte ein gleich bleibend erhöhtes Risiko gegenüber Score 6-7 Punkten). Dieser, den ursprünglichen Ergebnissen von Ficarra et al. nicht entsprechende Zusammenhang zwischen PADUA-Score und Schweregrad postoperativer Komplikationen/Clavien-Klassifikation konnte bereits in anderen Studien gezeigt werden. (53) Wie auch in der Studie von Wen Kong et al. (69) könnte diese negative Korrelation an der mangelnden Auswahl von betroffenen Patienten, - 45 mit leichten und 28 mit schweren Komplikationen - liegen. Der Zusammenhang zwischen dem PADUA-Score und Komplikationen wurde ebenfalls von Hew et al. (71) in einer 2011 veröffentlichten Untersuchung dargelegt. Auch hier wurden die Patienten in zwei Gruppen unterteilt, die eine mit dem Score < 10, die andere mit PADUA-Werten > 10. Nur bei der Einteilung in diese zwei Untergruppen und nicht wie eigentlich vorgesehen in drei Grade, konnte eine positive Korrelation gezeigt werden. Ebenso wie bei der vorliegenden Arbeit konnte
4. Diskussion

auch in der Untersuchung von Hew et al. keine Voraussage über leichte oder schwere Komplikationen mit dem PADUA-Score gemacht werden.

Ein wichtiger Faktor bei der Betrachtung der Ischämiezzeit der vorliegenden Untersuchung ist die Tatsache, dass nur Zeitangaben der kalten Ischämiezzeit aufgezeichnet wurden. Bei den in warmer Ischämiezzeit operierten Patienten wurde lediglich diese Charakterisierung festgelegt, es konnte jedoch nachträglich keine genaue Angabe zur Dauer eruiert werden. Trotzdem lässt sich anhand der vielen in den letzten Jahren positiv korrelierenden und auch in dieser Arbeit belegten Ergebnissen festhalten, dass sich mit Hilfe des PADUA-Systems eine Aussage über die zu erwartende intraoperative Ischämiezzeit und damit auch eine Voraussicht über die Komplexität der OP geben lässt.

Erstaunlicherweise konnte in unserer Arbeit kein Zusammenhang zwischen PADUA-Score und Dauer des Krankenhausaufenthalts festgestellt werden (Regressionskoefizient von – 0.24). Da die postoperative Hospitalisationszeit durch Patientenbefinden und Krankheitsverlauf bestimmt wird, stellt sie wiederum ein indirektes Maß für aufgetretene postoperative Komplikationen dar. Ähnliche Ergebnisse liefern die Arbeitsgruppen um Kruck et al. (74) und Okhunov et al. (66), ohne statistisch relevante Zusammenhänge. Der Erkenntnisstand legt also nahe, dass der PADUA-Score als Mittel zur Voraussage über die approximative Krankenhausaufentla.dauer nicht geeignet ist.
4. Diskussion

In welchem Umfang PADUA-Score und intraoperativer Blutverlust bzw. Hb-Abfall zusammenhängen, konnte durch andere Arbeitsgruppen sowie auch durch diese Arbeit nicht eindeutig geklärt werden.

Einerseits zeigte sich eine positive Korrelation, so bei Kong et al., der diese für laparoskopisch angewandte als auch offene Operationstechnik nachweisen konnte. In einer neueren Studie von Mottie et al. (75) zeigte sich sogar ein statistisch signifikantes Ergebnis, allerdings für roboterassistierte Operationen. In dieser Studie wird betont, dass dieser Zusammenhang jedoch von wenig klinischer Relevanz ist, da selbst in der High-Risk-Group nur ein minimaler Blutverlust registriert wurde. Durch die 2012 veröffentlichte Arbeit von Kruck et al. (74) konnte das Geschilderte auch für laparoskopische Verfahren nachgewiesen werden.

4. Diskussion

Ein gleichfalls negatives Ergebnis lieferte die Untersuchung zwischen Körpermasse (BMI) und PADUA-Score \((R = -0.31)\).

Obgleich der PADUA-Score von Ficarra et al. nicht für die Voraussage des Scores durch den BMI-Wert bzw. eine Voraussage über den BMI-Wert durch den Score entwickelt wurde, ist die Fragestellung inwieweit die beiden Kriterien miteinander zusammenhängen, interessant.

Eine interessante Beobachtung konnten wir bei der statistischen Auswertung der histologischen Kriterien machen.

In einem ersten Schritt wurde untersucht, ob es einen allgemeinen Zusammenhang zwischen gutartigen und bösartigen Veränderungen gibt. Lässt sich mit dem PADUA-Score bereits präoperativ die Wahrscheinlichkeit abschätzen, ob das postoperativ gewonnene Präparat eine maligne (klarzellige, papilläre oder chromophobe Histologie) oder eine benigne Veränderung (Onkozytom, Angiomyolipom oder Nierenzyste) zeigen wird?

Für unser Patientenkollektiv zeigte sich erstaunlicherweise eine inverse Korrelation, allerdings von nur geringem Ausmaß. PADUA-Grad-2-Patienten hatten eine 1,14-fach größere, PADUA-Grad-3-Patienten eine 1,49-fach erhöhte Chance auf eine benigne Veränderung gegenüber Grad 1-Patienten.

Bei weitgehender Auswertung der klarzelligen Histologie gegenüber allen anderen Vorkommen zeigte sich die gleiche Tendenz: eine abnehmende Inzidenz der bösartigen Histologien mit steigendem PADUA-Score.

Diese Daten stehen den bis dato erhobenen Ergebnissen anderer Studien gegenüber. So berichtet Cheville et al. über einen positiven Zusammenhang zwischen klarzelliger Histologie und Tumorkomplexität (80).

Aufgrund der Studie von Stavros et al. aus dem Jahr 2011 (70), in der eine erhöhte Komplikationsrate mit papillärer Histologie einhergeht, untersuchten wir ebenfalls die papilläre Differenzierung unseres Patientenkollektivs. Aber auch hier zeigte sich ein erhöhtes Risiko für eine papilläre Histologie mit niedrigem PADUA-Score.

Die Anzahl der Patienten mit papillär differenziertem Tumor lag bei \(n = 27\), welches einem Prozentanteil von 12,6 am Gesamtkollektiv ausmacht und damit relativ gering erscheint. Dieser Umstand muss bei der Diskussion berücksichtigt werden.

Unser Resultat steht anderen Studien (Cheville et al., Statsivam et al. (80,81)) gegenüber, die wie oben bereits erwähnt, eine niedrige Tumorkomplexität mit papillärer, hohe Tumorkomplexität mit klarzelliger Histologie in Verbindung bringen.

Wie sich die Zusammenhänge erklären lassen, ist nicht eindeutig geklärt. Ein möglicher Erklärungsansatz für das gemeinsame Auftreten von maligner Tumorentität mit schlechter Nierenfunktion könnte in der von Pierre Bigot et al. (77) plausibel dargelegte Pathophysiologie
4. Diskussion

liegen. Die Arbeitsgruppe beschreibt die Möglichkeit, dass durch die erhöhte Neovaskularisation, wie sie bei malignen Histologien bevorzugt auftritt, mit einer vermehrten Rate an arteriovenöser Fisteln zu rechnen ist, die wiederum die Nierenfunktion beeinträchtigen. Eine andere Möglichkeit wäre der Umstand, dass bösartige Tumoren auch eine erhöhte Komplexität und Größe zeigen und damit der operative Resektionsvorgang gravierendere Ausmaße annimmt, welche ebenfalls die postoperative Nierenleistung beeinträchtigen.

Ob und welche Histologien mit dem PADUA-Score korrelieren, bleibt also ungeklärt.

Eine weitere Frage, die wir uns stellten, beschreibt den Einfluss des PADUA-Scores auf präoperativ vorhandene Krankheitserscheinungen. Die Schlussfolgerung aus einem voliegenden Zusammenhang könnte sich folgendermaßen darstellen: eine starke Symptomatik lässt einen hohen PADUA-Score vermuten, der wiederrum mit dem entsprechenden Risiko für postoperative Komplikationen einhergeht.

Um dieser Frage weiter nachzugehen, teilten wir die Patienten in zwei Gruppen ein, die eine ohne (86,9%) und die andere mit Symptomen (13,1%). Logischerweise wäre hier mit einer zunehmenden Symptomatik bei ansteigendem Score zu rechnen, da Beschwerden wie Schmerz, Makrohämaturie und Gewichtsverlust bei einem fortgeschrittenen Tumorstaum und damit einer komplexeren Struktur verbunden sind (höherer PADUA-Score). Bei uns konnte zwischen den Patientengruppen mit Grad 1 und Grad 2 ein deutlicher Anstieg um ein 2,1-faches Risiko verzeichnet werden. Bei Patienten des Stadiums 3 (PADUA-Score > 10 Punkte) lässt sich ein Rückgang der Symptomatik feststellen. Hieraus ergibt sich die Frage, ob eine Einteilung in eine zwei-gradige PADUA-Klassifikation zu erörtern wäre.

Dieses Kriterium wird jedoch nur von wenigen Autoren berücksichtigt. Das Nierenzellkarzinom ist durch seine häufig frühzeitige Diagnose in der Regel asymptatisch (49), wodurch der symptomatische Komponente nur wenig Bedeutung zukommt. Wie bei Ficarra et al. mit einer Anzahl von 24 symptomatisch gewordenen Patienten (14,6%), liegt auch bei uns diese Anzahl nur bei 13,1% und repräsentiert damit eben diese Tatsache des meist asymptomatischen Auftretens.

In ihrer Studie von 2009 bemängeln Ficarra et al. eine ungenügende externe Evaluation des PADUA-Scores bei Tumoren mit TNM-Stadium T1b. Stadium pT1a wurde in unserem Kollektiv bei 109 (80,1 %) Fällen vermerkt, pT1b bei 16 (11,8 %) und pT2 nur bei 2 Patienten (1,5 %).

Unsere Arbeit gibt hinsichtlich der TNM-4-Stadien weitere Einblicke. Wir können für die Auswertung der klinischen TNM-Stadien 149 Patienten (70 %) für cT1a, 49 Patienten für cT1b (23 %) und 13 Patienten (6,1 %) für cT2 angeben. Für die Auswertung der pathologischen TNM-Stadien zeigen sich 107 Fälle (50,2 %) für ein pT1a-Stadium, 27 Fälle (12,7 %) für ein pT1b, 5 Fälle (2,3 %) für ein pT2 und 12 Fälle (5,6 %) für ein pT3-Stadium. Damit liegt die Gesamtzahl an Patienten mit einem Stadium > pT1a bei uns höher, als bei der Studie von Ficarra et al.

Im klinischen T-Stadium konnten nicht die zu erwartenden Ergebnisse bestätigt werden. Das präoperative cT-Stadium zeigte zwar für die moderate-risk Gruppe (Grad 2) ein 4,87-Fach erhöhtes Risiko gegenüber der low-risk Gruppe für ein cT-Stadium > T1a. Bei der high-risk Gruppe nahm das Risiko hingegen wieder auf ein 2,36-faches gegenüber der low-risk Gruppe ab.

Für das pathologische T-Stadium zeigte sich hingegen zwischen den Patienten des PADUA-Scores Grad 1 und Grad 2 ein um das 2,44-Fachen erhöhtes Risiko für ein hohes pTNM-Stadium. Dies stieg bei PADUA- Grad- 3- Patienten sogar auf ein 3,31-Faches.

Aufgrund dieser divigenten Ergebnisse stellt sich auch hier die Frage, ob der PADUA-Score ein guter prognostischer Parameter ist, um die postoperativen Komplikationen wiederzugeben. Diese
4. Diskussion

Frage haben sich bei der näheren Betrachtung des Scores auch andere Autoren gestellt. Eventuell wäre eine Veränderung zu einem Score, der jeweils getrennt für pT1a und pT1b-Stadien angewendet wird, zu erörtern, nach Hew et al. (71).

Als weitere Alternative schlägt die Arbeitsgruppe eine ausschließliche Betrachtung der klinischen Größe als prognostischen Faktor vor. Anders als es Ficarra et al. postulierte, stellt auch die Tumorgröße allein einen Prädiktor für zu erwartennde Komplikationen dar (53). Andererseits beschreibt Waldert et al. in eben derselben Studie, dass der PADUA-Score eine exaktere Aussage über das Auftreten von Komplikationen liefert, als die alleinige Berücksichtigung der Tumogröße.

Bei den Ergebnissen der vorliegenden Arbeit ergaben sich Unstimmigkeiten in der Anwendbarkeit des PADUA-Scores, beispielsweise der eigentlich zu erwartende positive Zusammenhang zwischen postoperativer Komplikationsrate mit steigendem PADUA-Score. Mit dem Ziel auf eine höhere Übereinstimmung zwischen den Ergebnissen von Ficarra et al. und den Daten dieser Studie, wurde die logistische Regression in einem zweiten Schritt erneut durchgeführt. Dabei wurde eine zweiteilige Klassifizierung in eine Gruppe mit PADUA-Score < 8 und einer Gruppe mit ≥ 8 Punkten wie bei Wen Kong et al. (69) vorgeschlagen und bei Stavros et al. (70) durchgeführt, herangezogen.

Bei der statistischen Untersuchung wurde die Zuordnung der Symptome in leichte und komplizierte Komplikationen frei nach klinischer Einschätzung gewählt, was ebenfalls zu einer veränderten Ergebnislage geführt haben kann.

4. Diskussion

Die drei Scores (RNS), das PADUA-, RENAL- und C-Index- Systems, bilden den Hauptbestandteil der im Moment im Rahmen der partiellen Nierenresektion geführten Diskussionen. Ein Problem bei der Vergleichbarkeit verschiedener Scoringsysteme stellt die fehlende standardisierte Methodik zur Beschreibung renaler Neubildungen dar (77). Dadurch ist es schwierig, die Unterschiede und Outcomes der gleichen Interventionen unterschiedlicher Krankenhäuser mit den jeweiligen Operateuren herauszufinden.

Aus der Studienlage wird ersichtlich, dass dem PADUA- sowie dem RENAL-Score im Augenblick höherer Aufmerksamkeit geschenkt wird als dem C-Index (82).

Eindeutig konnte sich noch kein Score bislang zu einem klaren Favoriten entwickeln. Die meisten Autoren bevorzugen einen der Scores zur Validierung ihrer Daten. Die Entscheidung mit welchem Scoring-System zukünftig am erfolgversprechendsten eine Graduierung vorgenommen werden kann, bleibt offen.

Schlussfolgernd muss an dieser Stelle festgestellt werden, dass weiterhin keine eindeutige Datenlage vorliegt. Es wird deutlich, dass sich die Ischämiezeit als ein deutlich positiv korrelierender Faktor mit dem PADUA-Grad darstellt. Die Ischämiezeit stellt damit ein besonderes Gütekriterium dar, da sie nicht nur mit dem PADUA-Score korreliert, sondern gleichfalls mit den beiden anderen meist diskutierten Scores - dem RENAL-Score und dem C-Index. Diese Feststellung wurde nicht nur von uns gemacht, auch die meisten der hier berücksichtigten und zitierten Autoren konnten diese gleichen Erkenntnisse veröffentlichen (84).

Es bleibt weiteren Studien vorbehalten, eine genauere Anwendbarkeit und eine eventuelle Modifikation des PADUA-Scores vorzunehmen oder diesen gegebenenfalls mit anderen Scores zu kombinieren.
5. Zusammenfassung

Diese Beobachtungen führten zu weiteren Analysen mit einem zweigeteiltem (anstatt dreigeteilten) PADUA-Score (< 8 versus ≥ 8 Punkten), um eine mögliche Modifikation des Scores diskutieren zu können. Auch bei einem zweigeteilten PADUA-Score zeigte sich eine negative Korrelation mit dem Auftreten postoperativer Komplikationen. Hingegen war der Schweregrad postoperativer Komplikationen bei PADUA-Grad ≥ 8 Punkten um das knapp 5,5-Fache erhöht im Vergleich zu Patienten mit einem PADUA-Grad < 8 Punkten. Ein positiver Zusammenhang bestand ebenfalls zwischen dem klinischen und pathologischen T-Stadium und der zweigeteilten PADUA-Einteilung.

Die hier erhobenen Ergebnisse können die Aussagen der Erstbeschreiber des PADUA-Scores
5. Zusammenfassung

6. Thesen

1. Das Ziel der Arbeit war die Auswertung des PADUA-Scores im Rahmen der partiellen Nephrektomie, um einen Beitrag für die zukünftige Entwicklung eines präoperativ erfassten Scores zur Voraussage über mögliche Komplikationen bei Nierenteilresektion zu liefern.

3. Für Patienten mit einem PADUA-Score 8-9 war das Komplikationsrisiko im Vergleich zu Patienten mit 6-7 Punkten in etwa gleich, und war bei Patienten mit ≥ 10 Punkte sogar um zirka die Hälfte geringer.

5. Positive Assoziationen zeigten sich bei der Voraussage des PADUA-Scores bezüglich Operationszeit, Ischämiezeit (intraoperative Durchblutungsstopp) und der Menge des Blutverlustes.

8. Bei der zweigeteilten PADUA-Einteilung (< 8 Punkte versus ≥ 8 Punkte) nahm die Wahrscheinlichkeit postoperativer Komplikationen mit niedrigerem PADUA-Score ab (OR 0,94). Hingegen stieg die Wahrscheinlichkeit für das Auftreten schwerer postoperativer Komplikationen um ein knapp 5,5-Faches bei einem Score ≥ 8 Punkte an.

9. Es konnte eine positive Korrelation zwischen dem zweigeteilten PADUA-Score und dem klinischen sowie pathologischen T-Stadium beobachtet werden.

10. Die hier erhobenen Ergebnisse können die prognostische Bedeutung, die andere Autoren für die Wahrscheinlichkeit postoperativer Komplikationen bei der Nierenteilresektion dem PADUA-Score zumessen, nicht bestätigen.
7. Literaturverzeichnis

7. Literaturverzeichnis

29. The International Society of Urological Pathology (ISUP) Grading System for Renal Cell Carcinoma and Other Prognostic Parameters. [Internet]. Verf"ugbar unter: about:reader?url=http%3A%2F%2Fovidsp.tx.ovid.com%2Fsp-3.17.0a%2Fovidweb.cgi%3FT%3DJS%26PAGE%3Dfulltext%26D%3Dovft%26AN%3D00000478-201310000-00003%26NEWS%3DAN%26CSC%3DY%26CHANNEL%3D PubMed

38. Lane BR, Campbell SC, Gill IS. 10-Year Oncologic Outcomes After Laparoscopic and Open
7. Literaturverzeichnis

7. Literaturverzeichnis

64. Steinbach S. Der Einfluss des Ausbaustandes des nationalen Personalmanagements auf den Professionalisierungsgrad des internationalen Managements mittelständischer Unternehmen: Eine transaktionskostentheoretisch fundierte empirische Analyse. diplom.de; 2003. 123 S.
7. Literaturverzeichnis

7. Literaturverzeichnis

8. Anhang

8.1. Danksagung

Herrn Prof. Dr. med. Oliver Hakenberg danke ich herzlich für die Überlassung des Dissertationsthemas, sowie seine stete Hilfe und Begleitung auf dem Weg zur Fertigstellung der Arbeit.

Ganz besonderen Dank gebührt Frau Dr. med. Desiree-Louise Dräger, die mich durch die Heranführung an das Thema, die immer wieder richtungsweisenden Hilfestellungen und die Zusammenstellung von Daten tatkräftig unterstützt hat.

Ein besonderer Dank geht auch an meine Eltern, die die Fertigstellung der Arbeit mit Geduld, Korrekturvorschlägen und gutem Zuspruch gefördert haben.
8.2. **Eidesstattliche Erklärung**

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbst angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

Rostock, den

...........................
Veronika Quetz
8. Anhang

Abbildungsnachweis

Abbildung 1: PADUA - Einteilung nach Ficarra et al. (nach Ficarra et. al., 2009) 16
Abbildung 2: Lokalisations- Punkteverteilung des RENAL- Scores (nach Kutikov et. al., 2009)17
Abbildung 3: Altersverteilung in Prozent zum Zeitpunkt der Operation .. 25
Abbildung 4: Geschlechtsverteilung mit Prozentangabe ... 25
Abbildung 5: Verteilung der BMI-Werte mit Prozentangabe .. 26
Abbildung 6: Prozentuale Verteilung der Symptome .. 26
Abbildung 7: Prozentuale Verteilung des klinischen T- Stadiums ... 27
Abbildung 8: Häufigkeitsverteilung der klinischen Tumorgröße (mm) .. 28
Abbildung 9: Prozentuale Häufigkeitsverteilung des PADUA- Grades mit geschlechtsspezifischer Verteilung .. 30
Abbildung 10: Häufigkeitsverteilung der Operationsdauer (min) ... 31
Abbildung 11: Häufigkeitsverteilung der Ischämiezeit (min) ... 31
Abbildung 12: Häufigkeitsverteilung der stationären Behandlungsdauer (Tage) 32
Abbildung 13: Prozentuale Verteilung der postoperativ gefundenen Histologien 33
Abbildung 14: Prozentuale Häufigkeitsverteilung postoperativer Komplikationen 34
Abbildung 15: Prozentuales Vorkommen des Schweregrads postoperativer Komplikationen 35
Abbildung 16: Prozentuales Vorkommen der Clavien- Einteilung ... 36
Abbildung 17: Lineare Regressionsanalyse - Alter (Jahre) ... 41
Abbildung 18: Lineare Regressionsanalyse - BMI .. 42
Abbildung 19: Lineare Regressionsanalyse - Operationszeit (min) ... 42
Abbildung 20: Lineare Regressionsanalyse - Ischämiezeit (min) ... 43
Abbildung 21: Lineare Regressionsanalyse - intraoperativer Blutverlust (ml) 44
Abbildung 22: Lineare Regressionsanalyse - Krankenhausaufenthalt (Tage) 45
Tabbellennachweis

Tabelle 1: Hereditäre Nierenzellkarzinome ...5
Tabelle 2: Bosniak- Klassifikation ..6
Tabelle 3: TNM- Stadium des Nierenzellkarzinoms ..7
Tabelle 4: Tumorstadien nach UICC des Nierenzellkarzinoms ...8
Tabelle 5: Fuhrman- Einteilung ...9
Tabelle 6: Therapeutische Maßnahmen ..11
Tabelle 7: Clavien- Klassifikation ...12
Tabelle 8: First- und Second- Line Therapie beim metastasierten NZK (EAU 2010)13
Tabelle 9: PADUA- Kriterien ...14
Tabelle 10: PADUA- Score und Grad ..15
Tabelle 11: Kriterien des RENAL- Scores ...17
Tabelle 12: RENAL- Score ..18
Tabelle 13: Prognose des Nierenzellkarzinoms ...19
Tabelle 14: Abhängige Variable der logistischen Regression ...23
Tabelle 15: Patientendaten für PADUA- Kriterien ...29
Tabelle 16: Patientendaten für PADUA- Score ..29
Tabelle 17: Patientenwerte für PADUA- Grad ..30
Tabelle 18: Patientenwerte für das pT-Stadium ...32
Tabelle 19: Auftreten postoperativer Komplikationen im Geschlechtervergleich35
Tabelle 20: Clavien- Grade- Vorkommen nach PADUA- Grad ..36
Tabelle 21: Ergebnisse der binär log. Regression mit drei- geteilter PADUA- Klassifikation38
Tabelle 22: Ergebnisse der binär log. Regression mit zwei- geteilter PADUA- Klassifikation40
Tabelle 23: Lineare Regressionsanalyse - Alter (Jahre) ...41
Tabelle 24: Lineare Regressionsanalyse - BMI ..41
Tabelle 25: Lineare Regressionsanalyse - Operationszeit (min) ...43
Tabelle 26: Lineare Regressionsanalyse - Ischämiezeit (min) ...43
Tabelle 27: Lineare Regressionsanalyse - intraoperativer Blutverlust (ml)44
Tabelle 28: Lineare Regressionsanalyse - Krankenhausaufenthalt (Tage)44
Abkürzungsverzeichnis

PADUA: Preoperative Aspects and Dimensions Used for an Anatomical Classification

NZZK: Nierenzellkarzinom
RN: Radikale Nephrektomie
PN: Partielle Nephrektomie
HPRC: Hereditary papillary renal carcinoma
HLRCC: Hereditary leiomyomatosis and renal cell carcinoma
VHL: von- Hippel-Lindau-Syndrom
BHD: Birt-Hogg-Dubé-Syndrom
TSC: Tuberöse Sklerose
MCDK: Multicystic dysplastic kidney
ARPKD: Autosomal recessive polycystic kidney disease
ADPKD: Autosomal dominant polycystic kidney disease
UICC: Union internationale contre le cancer
GFR: Glomeruläre Filtrationsrate
RFA: Radiofrequenzablation
HIFU: High intensity focused ultrasound
TKI: Tyrosin-Kinase-Inhibitor
INF: Interferon
mTOR: mechanistic Target of Rapamycin
VEGF: Vascular Endothelial Growth Factor
TNM: T = Tumor, N = Nodes (Lymphknoten), M = Metastasen
RNS: Renal Nephrometry Score
SD: Standardabweichung
MW: Mittelwert