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Zusammenfassung 

Im Rahmen dieser Arbeit wurde eine Reihe von Trityl-Verbindungen als Präkursoren für 

die Darstellung entsprechender [Me3Si]+-Salze untersucht. Trotz der Vielzahl der 

vollständig charakterisierten Verbindungen eignen sich nur ausgewählte Vertreter für den 

Einsatz als [Me3Si]+-Transferreagenz. Besonders das [CHB11Cl11]−-Ion stabilisierte Salz 

eignet sich für die weitere Verwendung. In einer systematischen Studie konnte ein 

Zusammenhang zwischen verschiedenartig halogenierten closo-Carborat-Derivaten, ihren 
13C-NMR-Resonanzen, NICS-Werten und Gasphasen-Protonen- bzw. [Me3Si]+-

Affinitäten gefunden werden.  

Die synthetisierten [Me3Si]+-Präkursoren konnten erfolgreich für die Synthese von 

persilylierten Sulfat-, Phosphat- und Sulfid-Ionen genutzt werden. Ferner konnte das 

Verhalten der neutralen silylierten Spezies gegenüber starken Basen untersucht werden. 

Es gelang erstmalig mono- bzw. bissilylierte Anionen, wie z.B. [O3SOSiMe3]− oder 

[O2P(OSiMe3)2]−, darzustellen. Die Chemie entspricht somit weitestgehend der der 

protonierten Mineralsäuren. 

Bisher schwer zugängliche Wasserstoffsäuren wie H-NSO und H-PCO konnten auf eine 

neue und einfache Weise synthetisiert und charakterisiert werden. Bestehende Lücken in 

der Literatur zur Folgechemie und das Fehlen an fundierten quantenchemischen 

Berechnungen bezüglich dieser Säuren konnten durch diese Arbeit geschlossen werden. 

  



 
IX 

Summary 

Within the scope of this work, a series of new trityl compounds was investigated as 

precursors for the synthesis of corresponding [Me3Si]+ salts. Despite the multitude of 

fully characterized compounds, only selected compounds qualify for the use as [Me3Si]+ 

transfer reagents. Particularly the [CHB11Cl11]− stabilized salt is suited for further use. In 

a systematic study a new coherence between various halogenated closo-carborates and 

their 13C NMR shifts, NICS values and gas phase proton / [Me3Si]+ affinities could be 

found.  

The synthesized [Me3Si]+ precursors were successfully used for the preparation of 

persilylated sulfate, phosphate and sulfide cations. It was possible to investigate the 

behavior against strong bases and therefore generate mono- / bissilylated anionic species, 

like [O3SOSiMe3]− and [O2P(OSiMe3)2]− for the first time. Thus, this chemistry largely 

corresponds to that of the protonated acids.  

Hydrogen acids hitherto difficult to access, such as H-NSO and H-PCO, could be 

synthesized and characterized with a new and easy synthetic procedure. This examination 

allowed to close the gaps in existing literature on follow-up chemistry and well-founded 

quantum chemical calculations concerning these acids. 
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1 Zielsetzung 
 

Im Zuge dieser Arbeit sollten in Anlehnung zu bereits bekannten Onium-Verbindungen, 

wie Halonium-[1,2] bzw. Pseudohalonium-Ionen,[3] neue homoleptisch trimethylsilylierte 

Kationen synthetisiert werden. Dabei sollten vor allem typische Mineralsäuren wie 

Schwefelsäure oder Phosphorsäure im Fokus stehen. Neben der Generierung von 

kationischen Derivaten sollte auch die klassische Säure-Base-Chemie der protonierten 

Vertreter auf die silylierten übertragen werden.  

Zusätzlich zu diesen klassischen Säuren, sollte auch ein neuer und einfacher Zugang zu 

den höchstlabilen Pseudohalogenwasserstoffsäuren H-NSO und H-PCO gefunden 

werden. Zur Charakterisierung der Säuren sollten hierbei neben magentresonanz-

spektroskopischen Untersuchungen in der flüssigen Phase auch Analysen der Säuren im 

Festkörper, mittels Röntgendiffraktometrie erfolgen. 

Für die Stabilisation solcher Systeme bedurfte es unter anderem äußerst robuster 

schwachkoordinierender Anionen, wie dem closo-Dodecacarborat-Ion. Quanten-

chemische Untersuchungen an diesen Käfig-Systemen sollten zukünftige Synthesen 

vereinfachen und Vorhersagen über die Stabilität und den möglichen Einsatz von 

protonierten und silylierten Ionenpaaren als H+/[Me3Si]+-Präkursoren geben können. 

Die Untersuchung des physikalischen, chemischen Verhaltens sowie der Struktur aller 

Verbindungen sollte durch schwingungsspektroskopische Methoden (IR- und Raman-

Spektroskopie) und multinukleare Kernresonanzspektroskopie (75As, 31P, 29Si, 19F, 17O, 
15N, 14N, 13C, 11B, 10B, 1H) in Lösung zum einen, zum anderen mit Hilfe der 

Röntgendiffraktometrie an geeigneten Einkristallen erfolgen. Anhand dieser Daten sollten 

die Bindungsverhältnisse der synthetisierten Verbindungen aufgeklärt und charakterisiert 

werden. Dadurch sollte sowohl der Zusammenhang zwischen Struktur und chemischer 

Bindung als auch die Ladungsverteilung und Reaktivität erklärt werden. Mithilfe von 

Strukturdaten aus DFT-Analysen sowie Ladungsverteilungen aus NBO bzw. NLMO-

Rechnungen sollten diese quantenchemische Daten zusätzlich zu den experimentellen 

Daten einen tiefgreifenden und umfassenden Überblick in die Konnektivität und 

Reaktivität der Verbindungen geben. Zusätzlich angefertigte NRT-Rechnungen sollten 

genutzt werden, um das Gewicht der verschiedenen Lewis-Formeln im Resonanzschema 

zu ermitteln.  
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2 Einleitung 
 

2.1 Ein Vergleich von Trimethylsilylium-Ionen und Protonen 
 

Die Chemie der Trimethylsilylium-Ionen [Me3Si]+ und die der Protonen H+ scheint erst 

auf den zweiten Blick recht ähnlich zu sein. Offensichtlich weisen beide Teilchen mit 

einfachen anorganischen Gegenionen wie Halogeniden stark unterschiedliche 

physikalische Eigenschaften auf (Tabelle 1). Charakteristika wie Schmelz- und 

Siedepunkte sowie die Dichte weisen teils drastische Unterschiede auf. Während die 

Schmelzpunkte der silylierten Spezies im Schnitt 30 °C über denen der Säuren liegen, 

sind die Unterschiede in den Siedepunkten noch deutlicher. So siedet HCl bereits bei 

−85 °C, während für Trimethylsilylchlorid erst bei einer Temperatur von 58 °C der Fall 

ist. Dies geht gleichzeitig einher mit niedrigeren Dichten für die sterisch größeren Silyl-

Spezies. Unter der Annahme, dass beide Spezies ein ähnliches chemisches Verhalten 

aufweisen, zeigt sich also, dass der Umgang mit den Silyl-Spezies um ein Vielfaches 

einfacher ist. So sind präparativ aufwendige Aufbauten mit Gasflaschen und 

Druckbehältern nicht nötig. Auch lassen sich stöchiometrische Verhältnisse mit wägbaren 

Substanzen deutlich leichter einhalten.  

Tabelle 1: Vergleich der Dichten, der Schmelz- und Siedepunkte von Me3Si-X und H-X (X = F, Cl, 

Br, I). 

 H-F Me3Si-F H-Cl 

Ph3C+ 

Me3Si-Cl H-Br 

Ph3Si-

X 

Me3Si-Br H-I Me3Si-I 
         
Smp. [°C] −83 −74 −115 −58 −87 −43 −51 −53 

Sdp. [°C] 20 17 −85 58 −66 80 −35 107 

ρ [g·cm−3] 0.96[4] 0.72[5] 1.20[4] 0.85[5] 2.15[4] 1.18[5] 2.80[4] 1.47[6] 

Beide Teilchen (H+ / [Me3Si]+) sind als isolierte Moleküle in der Gasphase hinreichend 

analysiert und mit diversen Methoden, u.a. als Chlor-Derivat (HCl, Me3SiCl) mittels UV-

Vis-,[7,8] Raman-,[9,10] Photoelektron-,[11,12] oder Mikrowellenspektroskopie[13,14] bereits 

charakterisiert worden. Ein Wechsel des Aggregatzustandes hin zu einem kondensierten 

System zeigt ebenso einige übereinstimmende Phänomene. So dauerte es bis in die 
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2000er Jahre, ehe eine strukturelle Aufklärung eines solvat- bzw. donorfreien [R3Si]+-

Kations erfolgen konnte. Die Zusammenarbeit der beiden amerikanischen Arbeitsgruppen 

um Joseph Lambert und Christopher Reed führte 2002 zur Synthese des 

[Mes3Si][CHB11Me5Cl6]·C6H6 (Mes = Mesityl, 2,4,6-Trimethylphenyl). Ausgehend von 

einer Röntgenstrukturanalyse sowie der stark tieffeldverschobenen 29Si-Resonanz im 

NMR-Spektrum (δ(29Si)exp. = 225 ppm) konnte der Silylium-Charakter der Verbindung 

bestätigt werden (Abbildung 1).[15]  

 

Abbildung 1. Original Ortep-Darstellung des [Mes3Si]-Kations.[15] 

Die sterisch sehr anspruchsvollen organischen Mesityl-Reste schützen das kationische 

Silizium-Zentrum vor einem nukleophilen Angriff eines Lösungsmittelmoleküls oder 

Anions. Die Verringerung des sterischen Anspruchs auf drei Methyl-Gruppen hingegen 

führt zum unweigerlichen Verlust des freien Silylium-Ionencharakters im Fall von 

[Me3Si]+. Alle literaturbekannten Versuche, ein Salz der Form [Me3Si][WCA] mit 

ähnlich großer 29Si-NMR-Tieffeldverschiebung bzw. einem planaren Silizium-Zentrum 

(∡ C-Si-C = 120°) zu generieren und strukturell zu charakterisieren, schlugen fehl. Im 

Jahr 2006 gelang der Arbeitsgruppe um Reed zumindest der strukturelle Nachweis eines 

Trimethylsilan stabilisierten Trimethylsilylium-Ions [Me3Si-H-SiMe3][CHB11Cl11]. Aber 

auch hier zeigt sich im Festkörper, dass es sich um kein nacktes [Me3Si]+ handelt (vgl. 

Tabelle 2, ∡ C-Si-C = 115.76°-117.19°, δ(29Si) = 82.2, 85.4).[16] Die Suche nach einem 

nicht nur durch quantenchemische Daten[17] charakterisierten, nackten Kation dauert 

dementsprechend noch bis heute an.[18,19]  
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Tabelle 2: 29Si-NMR-Verschiebungen und Summe der C-Si-C-Winkel. 

 δexp.(29Si) [ppm] δber.(29Si) [ppm][a]* ∑(∡ C-Si-C) [°][a,b] 
    [OTf]− 44.3[20] 48.3 339.3 

[ClO4]− 46.6[21] 47.3 339.5 

[B(C6F5)4]−[c] -[22] 74.4 
341.0 

(341.1)[22] 

[CHB11F11]− -[23,24] 137.1 
352.0 

(354.4)[23,24] 

[CHB11Cl11]−[d] 85.4 / 82.2[16] 101.3 
348.2 

(350.1 / 349.9)[16] 

[Me3Si]+ - 386.5 360 

[a] Berechnet: pbe1pbe/aug-cc-pwCVDZ; [b] (experimentelle Werte); [c] Toluol-Solvat;  
[d] TMS-H-Solvat.  

In Tabelle 2 sind einige typische isolierbare Anionen-Verbindungen mit ihren 29Si-NMR-

Verschiebungen und den dazugehörigen Strukturdaten zusammengefasst. Mit weiteren 

bekannten WCAs wie [BF4]−, [B(CN)4]−, [PF6]−, [SbF6]− oder [Al(OC(CF3)3)4]− ist das 

Trimethylsilylium-Ion nicht in der Lage, stabile Salze in der festen Phase zu bilden. Hier 

überwiegt der stark elektronenziehende Charakter des leeren pz-Orbitals des Silizium-

Atoms, welches bereitwillig mit jeder Art Donor eine bindende Wechselwirkung eingeht. 

Es folgt die Bildung von thermodynamisch begünstigteren Produkten wie  

Me3Si-F, Me3Si-CN oder Me3Si-OC(CF3)3. Es stellt sich somit die Frage wie ein freies 

Trimethylsilylium-Ion zu charakterisieren ist. In der Festphase lässt sich dies 

definitionsgemäß anhand der Winkel am zentralen Silizium-Atom bestimmen. Ausgehend 

von einer Röntgenstruktur sollten sie idealerweise alle Winkel einen Wert von 120° 

besitzen, sodass sich alle Schweratome in einer Ebene befinden. Dies bedeutet 

gleichermaßen, dass keine Pyramidalisierung am Silizium-Zentrum erfolgt.[25] Wie oben 

erwähnt, ist eine solche [Me3Si]+-Struktur bis dato unbekannt.  

* Sämtliche quantenchemische DFT-Berechnungen in dieser Arbeit sind mit der Methode 
pbe1pbe und dem Basissatz aug-cc-pwCVDZ gerechnet. Weiterführende Informationen 
befinden sich im Kapitel 5.3.1. 
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In der flüssigen Phase lässt sich dieses auf eine ebenso einfache Art und Weise 

überprüfen. Wechselwirkungen mit Gegenionen bzw. Solvenz-Molekülen (Abbildung 2) 

führen zum Verlust der ursprünglichen Planarität, gleichwohl eine Hyperkoordination des 

Silizium-Atoms diesem vorbeugen könnte. Dennoch führt die Wechselwirkung des 

Solvenz bzw. Anions zu einem Elektronendichteübertrag in das „leere“ pZ-Orbital. Dies 

wird ersichtlich durch einen drastischen Abfall der 29Si-NMR-Verschiebung (vgl. Tabelle 

2). Ottosson, Kraka und Cremer zeigten, dass selbst sehr schwache Donoren wie Alkane 

oder flüssiges Helium zu einer Interaktion mit dem Silizium-Zentrum neigen und die 

berechneten Gasphasen-Resonanz des Kerns von 387 ppm deutlich ins Hochfeld 

verschieben.[25] 

Si

Me

Me Me

+

Si

X

Me Me

+
Me

Si

X

Me

+X

Me
Me

 

Abbildung 2. X = Solvenz, Gegenion; (links) Pyramidalisierung durch Wechselwirkungen mit 

einem X, (mitte) idealisiertes planares [Me3Si]+-Kation, (rechts) Interaktion zweier X mit leerem pZ-

Orbital. 

Ein Blick auf das deutlich kleinere Proton zeigt, dass in dem Fall von H+-Ionen eine 

ebenso große Elektrophilie besteht. Während man wässrige Lösungen von formalen 

Verbindungen wie H[PF6] oder auch H[BF4] noch käuflich erwerben kann, sind 

solvatfreie Festkörperstrukturen äußerst selten bzw. unbekannt.[26,27] Erst ein äußerst 

starker Donor wie H2O ermöglicht die Stabilisierung des H+ als stabiles und isolierbares 

[    (   
  Oxonium-Molekül. Dabei sind bereits diverse Solvate dieser Verbindung 

strukturell charakterisiert, so z.B. [H3O][BF4],[28] [H7O3][CHB11Br11],[29] 

[H9O4][CHB11H5Br6][30] oder das klassische Zundel-Ion [H5O2][SbF6].[31] Die Synthese 

eines solvatfreien H+-Ions gelang der amerikanischen Gruppe um C. A. Reed, wie bereits 

erwähnt, erstmalig in den 2000er Jahren. Dabei wird das Proton lediglich durch ein 

perchloriertes Carborat-Anion als H[CHB11Cl11] stabilisiert.[32] Nach derzeitigem Stand 

der Wissenschaft stellt diese Verbindung die stärkste isolierbare Protonensäure der Welt 

dar.[33,34] Diese Aussage ist gleich bedeutend mit dem Fakt, dass es sich bei der 

Stoffklasse der Carborate um äußerst schwachkoordinierende Anionen handelt. Um einen 

Eindruck für diese Eigenschaft zu bekommen, eignet sich die Gasphasen Protonen-
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Affinität.[35] Sie ist in Schema 1 als die negative Enthalpieänderung definiert, die in der 

Gasphase bei der Bildung eines Salzes aus seinen Ionen frei wird. Auf gleiche Art und 

Weise ist auch die TMS-Affinität eines Salzes definiert (Schema 1).  

 

A+ +  Y- A-Y +     H298K, gas 

Schema 1. Gasphasen Protonen-/ TMS-Affinität. A = H, [Me3Si]; Y = Anion. 

In Tabelle 3 sind einige Verbindungen und ihre Proton- bzw. TMS-Affinitäten aufgelistet. 

Es wird deutlich, dass beide denselben Trends folgen. Je größer das korrespondierende 

Gegen-Molekül ist, je besser es die Ladung delokalisieren kann, je niedriger es geladen 

ist und je weniger Donor-Atome (i.d.R. Atome mit freien Elektronenpaaren) es enthält, 

desto kleiner ist die jeweilige Affinität. Ebenso offensichtlich ist der Fakt, dass die TMS-

Affinität mindestens um den Faktor 2 kleiner ist. Dies ist durch die Möglichkeit der 

Ladungsdelokalisation über die Methylgruppen zu erklären. Sie sorgt für eine 

intramolekulare Stabilisation des Silylium-Ions. Das Proton hingegen stellt lediglich eine 

isolierte Kugelladung dar, welches unter anderem durch Coulomb-Wechselwirkungen mit 

Anionen im Festkörper bzw. in der flüssigen Phase stabilisiert werden kann. Das 

theoretische Ziel eines de facto isolierten bzw. freien H+- oder [Me3Si]+-Ions wäre also  

dann erreicht, wenn 

  m
    

           g  
                   

entspricht. In der Praxis werden nun also schwachkoordinierende Anionen gesucht, die 

möglichst kleine H+- / TMS+-Affinitäten besitzen und somit geringe Wechselwirkungen 

(große Kationen-Anionen-Abstände) mit den korrespondierenden Gegenionen aufweisen 

(s. Tabelle 3).  

  

(1) 
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Tabelle 3: Protonen-/ TMS-Affinitäten ausgewählter Verbindungen [Y]. A = H+, [Me3Si]+ für 
homoleptische Verbindungen. 

[Y]      
  [kcal·mol−1]         

 
  [kcal·mol−1] 

   
[PO4] −  719.6 584.9 

[SO4] −  449.1 289.7 

[ASO4]− 312.6 156.8 

[ClO4] − 301.2 143.9 

[CF3SO3] − 301.2 145.1 

[CHB11H5Me6] − 268.5 97.8 

[CHB11H5I6] − 257.7 97.5 

[CHB11H5Cl6]− 253.2 98.4 

[CHB11I11]− 250.5 90.4 

[CHB11Cl11]− 240.9 88.8 

[CHB11H5(CF3)6] − 222.9 71.5 

A2SO4 170.8 55.9 

Es wird deutlich, dass Protonen und Trimethylsilylium-Ionen ähnliche Trends hinsichtlich 

ihrer thermodynamischen Eigenschaften aufweisen. So bleibt die Frage, ob ihre 

chemische Reaktivität auch Analogien aufweist.  

Die charakteristischste Reaktion, die man aus der Chemie der Protonen kennt, ist 

sicherlich die der Neutralisationsreaktion mit korrespondierenden Basen. So führt die 

Reaktion von Fluorwasserstoff und Natriumhydroxid zur Bildung von Natriumfluorid und 

Wasser (Schema 2). Die gleiche Reaktion mit dem entsprechenden Silylderivat führt in 

einer analogen Metathesereaktion zur Bildung von Trimethylsilanol und 

Natriumfluorid.[36] Problematisch gestaltet sich hierbei die außerordentliche pH-

Empfindlichkeit des Silanols, welches in Gegenwart von überschüssigen H+ bzw. OH− 

leicht zur Kondensation neigt und unter Wasserabspaltung Hexamethyldisiloxan bildet.[37] 

Die klassische Brønstedt-Säure H3O+, die gleichermaßen als Lewis-Säure 
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(Elektronenpaarakzeptor) fungiert, zeigt also wie das [Me3Si]+-Ion ein ähnliches 

Verhalten gegenüber Basen (Schema 2).[38] Dabei binden [Me3Si]+ bzw. H+ stets an das 

stärkere Nukleophil (vgl. Schema 1). Das stärkere Nukleophil ist durch eine größere 

Protonen- bzw. [Me3Si]+-Affinität gekennzeichnet (vgl. Tabelle 3).  

HF +  NaOH NaF + HOH

Me3SiF + NaOH NaF + Me3SiOH 

Schema 2. Klassische Neutralisationsreaktion und analoge Silyl-Metathese-Reaktion. 

Eine weitere Gemeinsamkeit besteht in dimeren Neutral-Verbindungen, also Wasserstoff 

H2 und Disilan (Me3Si)2, welche sich wiederum leicht durch den Einfluss von 

Alkalimetallen, wie Li oder K, in ihre anionischen Derivate, Metallhydride und 

Trimethylsilanide, zerlegen lassen.[39–43] 

Zusammenfassend zeigt sich also, dass es trotz einiger physikalischer Unterschiede 

zwischen H+ und [Me3Si]+-Verbindungen eine überraschend große Ähnlichkeit 

hinsichtlich Reaktivität und thermodynamischer Werte gibt. Daher kann man [Me3Si]+ 

durch u      „große  Proton“ beze chnen. Dieses gilt es, im Folgenden an ausgewählten 

Fallbeispielen zu untersuchen und aufzuzeigen.  
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2.2 Bekannte Trimethylsilyl-Verbindungen und ihre Protonen-Analoga 
 

Das Verständnis über die Chemie anorganischer Säuren stellt die Grundlage für die 

moderne Chemie dar. Viele industrielle Prozesse kommen ohne den Einsatz einfacher 

Brønstedtscher Mineralsäuren wie HF, HCl, H2S, HNO3, H2SO4, H3PO4 nicht aus.[44] 

Während Halogenwasserstoff-Säuren und Oxosäuren der Chalkogene bzw. Pniktogene 

meist im Megatonnen-Maßstab hergestellt und verbraucht werden, sind Säuren von 

Pseudohalogenen wie H-NCO, H-NCS oder H-PCO Labor-Raritäten. Daher sind sie nur 

von akademischen Interesse.[45] Neben den klassischen Neutralverbindungen sind auch 

exotischere Verbindungen wie [H2F][Sb2F11] strukturell bekannt. Die Supersäure wird aus 

der schwachen Brønstedt-Säure HF und der starken Lewis-Säure SbF5 gebildet.[46,47] 

Dabei entsteht ein Dihydrogenfluoronium-Ion, welches die Acidität des im wässrigen 

Milieu stärksten Protonierungsmittel [H3O]+ um mehr als 1016 übertrifft. Sie ist die erste 

strukturell charakterisierte Supersäure, obwohl ihre Eigenschaften bereits seit 1927 

bekannt sind.[48,49] Die Hammettsche Acidität gibt das Maß der Säurestärke von 

supersauren Verbindungen an und ist nicht an das Autoprotolyse-Gleichgewicht des 

Wassers gekoppelt.[50,51] In Abbildung 3 sind einige Beispiele supersaurer Spezies mit den 

dazugehörigen Hammett-Faktoren dargestellt. Carboransäuren sind Feststoffe, daher ist 

eine Einteilung nach Hammett nicht möglich. Jedoch weiß man, dass sie in der Lage sind 

Benzol zu protonieren und müssen dementsprechend saurer als protoniertes Benzol 

sein.[33,52–54] 

 

Abbildung 3. Hammett-Skala einiger supersaurer Spezies. Original-Abbildung entnommen aus 

Referenz [33]. 
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Die Chemie der entsprechenden Trimethylsilyl-Verbindungen begann erst weitaus später. 

Die erste bekannte Synthese einer Organosilizium-Verbindung, dem Tetraethylsilizium, 

ist auf das Jahr 1863 zurückzudatieren und den beiden amerikanischen Chemikern 

Charles Friedel sowie Jason M. Crafts zuzuordnen.[55] Erst die von Richard Müller und 

Eugene G. Rochow parallel entwickelten Darstellungs-Großverfahren von 

Organosilizium-Verbindungen R3Si-X (R = Alkyl, Aryl, X = Halogen) ermöglichten die 

Entwicklung der Silizium-Chemie.[56,57] Schema 3 gibt eine Übersicht über alle im 

Festkörper strukturell bekannten, homoleptischen Trimethylsilylium-Ionen. Neben den 

dargestellten Verbindungen existiert auch noch die Struktur des bissilylierten Triflat-Ions 

[(Me3SiO)2-S(O)CF3]+.[58] 

Im Kontrast hierzu ist die Zahl literaturbekannter kleiner Moleküle, die homoleptisch 

protonierte Ionen bilden und strukturell charakterisiert sind, äußerst gering. Neben der 

Struktur eines Phosphonium-Salzes[59] existieren nur noch eine Vielzahl an Strukturen mit 

dem Ammonium [NH4]+-Kation.[60–64] Viele kationische Spezies kleiner Moleküle mit 

Hauptgruppenelementen der zweiten und dritten Periode wie [H(H)NCO]+,[65]  

[H-I-H]+,[66] [H-NNN-H]+,[67] [SiH5]+,[68] [H-B-H]+[69] und [H(H)NS]+ [70] sind 

ausschließlich durch quantenchemische Rechnungen in der Literatur bekannt. Ferner 

existieren einige wenige massenspektroskopische Aufnahmen homoleptisch protonierter 

Ionen wie [H-NC-H]+,[71] [H-N(O)OH]+[72] und [H-SO2]+.[73]  
 

[(Me3Si)3-F]+

[Me3Si-D-SiMe3]+[(Me3Si)2-C]+

[(Me3Si)2-E-SiMe3]+

[(Me3Si)4-G]+

[Me3Si]+

A

B

C
D

E

F

[Me3Si][A]

A = CHB11F11, Et-CB11F11
[23,24]

G = N,[a,74] P, As[75,76]

F = S

D = H,[16] F, Cl, Br, I,[1,2] NCS, NCO, CN

E = NNC, NCN

C = NNN

G

[Me3Si-B]+

B = NCC,[3] Aromat[22]

 

Schema 3. Unterschiedliche Koordinationsmodi von kleinen homoleptischen Trimethylsilyl-Ionen; 
[a] [(Me3Si)3Si(H)Me2]+. 
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Homoleptische Trimethylsilyl-Kationen, T = Me3Si. 

A B C 

Ph3C+ 

D E 

Ph3Si-X 
     n=1 

T[CHB11F11] 

T[Et-CB11F11][23,24] 

[T-NCC]+ [3] 

[T-CAromat]+[22] 

[T-NCO-T]+  [T2-NNC-T]+ [T-CN-T]+ [T2-NNN]+ 

n=2 

[T-H-T]+ 

[T-X-T]+[a][1,2,16] 

[T-NCS-T]+ [T2-NCN-T]+   

n=3 

[T3-S]+ 
[(TO)2-S(O)CF3]+[58]    

n=4 

[T4-N]+[b][74] 

[T4-P]+ 

[T4-As]+[75,76] 

    

[a] X = Halogen; [b] Kation = [(Me3Si)3N(SiMe2H)]+. 





 
11 

3 Ergebnisse und Diskussion 
 

3.1 Synthese und Charakterisierung von Triphenylmethylium-Verbindungen  
 

Zur Darstellung eines [Me3Si]+-Ion übertragenden Salzes benötigt man einen passenden 

Präkursor. Für die Synthese solcher Salze hat sich der in der Literatur bekannte Bartlett-

Condon-Schneider-Hydrid-Transfer eines Silans auf ein korrespondierendes Trityl-Salz 

(auch Triphenylmethylium) [Ph3C][X] als der optimale Weg herausgestellt (Schema 4).[77] 

In der Literatur sind eine Vielzahl solcher Reaktionen zur Generierung von Silylium-

Salzen mit verschiedensten schwachkoordinierenden Anionen  

bekannt.[74,78–86] Die Chemie der Trityl-Salze ist bereits mehr als 130 Jahre alt. Erstmalig 

erwähnt wird das Trityl-Salz des Malonats von Henderson im Jahr 1887.[87] Trityl-Salze 

sind heutzutage an einer Vielzahl katalytischer Reaktionen wie Diels-Alder-

Reaktionen,[88] Michael-Reaktionen[89] oder Polymerisation von Olefinen beteiligt.[90–94]  

Me3Si-H + [Ph3C][Y] Ph3C-H + [Me3Si][Y]

2 Me3Si-H + [Ph3C][Y] Ph3C-H + [(Me3Si)2H][Z] 

Schema 4. Bartlett-Condon-Schneider-Hydridtransfer, Y = Carborate, Z = Carborate, Borate. 

Die Darstellung der Trityl-Präkursoren wiederum gelingt auf drei unterschiedlichen 

Synthesewegen (Schema 5).[95] Durch die einfache Salz-Metathese-Reaktion mit Silber- 

(1) bzw. Natriumsalzen (3) oder die Chlorid-Abstraktion mittels starker Lewis-Säuren (2) 

können eine Vielzahl an Trityl-Salzen isoliert und charakterisiert werden. 

 

Ph3C-X + Ag[Y] [Ph3C][Y] + AgX
RT, Lsm.

Ph3C-Cl + ECl3 [Ph3C][ECl4]
-80°C    RT,
 Lsm.

Ph3C-Cl + NaN3 Ph3C-N3 + NaCl
RT, Lsm.

(1)

(2)

(3)
 

Schema 5. Darstellung von [Ph3C][Y] Verbindungen; E = B, Al, Ga; X = Cl, Br; Y = BF4 (1), BCl4 

(2), AlCl4 (3), GaCl4 (4), PF6 (5), AsF6 (6), SbF6 (7), SbCl6 (8), CHB11H5Cl6 (9), CHB11Cl11 (10), 

CHB11H5Br6 (11), CF3SO3 (12), CF3COO (13), N3 (14).  
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Sämtliche Verbindungen sind mit Ausnahme von 8 und 14 hierbei erstmalig von uns als 

Einkristalle für die Röntgenstrukturanalyse isoliert worden. Neben strukturellen 

Gemeinsamkeiten wie gleichen Raumgruppen (P21/c) und ähnlichen Zellparametern 

(s. Kapitel 5.5) zeigen die Salze auch in Lösung ähnliche Eigenschaften. So weist das 

zentrale Kohlenstoffatom C1 (Abbildung 4) aller Trityl-Salze eine 13C-NMR-Resonanz 

zwischen 211.3 und 213.1 ppm auf. Kovalente Triphenylmethyl-Verbindungen verlieren 

hingegen ihren Salz-Charakter, was mit einer Hochfeld-Verschiebung der Resonanz des 

zentralen Kohlenstoffs einhergeht, so z.B. δ(13C) = 13: 95.5 ppm, 14: 78.2 ppm oder auch 

Ph3C-H (15): 57.5. Dieser Trend ist wie in der Einleitung beschrieben ebenso für Ionen 

der Form [R3Si]+ zu beobachten (vgl. δber(29Si) [Me3Si]+ = 360, Me3Si-    −17 ppm). 
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Tabelle 4: Übersicht über einige physikalische und spektroskopische Eigenschaften von 
[Ph3C][Y]-Verbindungen. 

[Y] Smp. [°C] δ(13C) [ppm] Raumgruppe d(C1···Anion) [Å] 
     

[BCl4]− (2) 188 211.3 Pbca 3.440 

[AlCl4] − (3) 169 211.3 P21/c 3.755 / 3.658 

[GaCl4]− (4) 174 211.3 P21/c 3.975 / 3.642 

[PF6] − (5) 230 213.1 P21/n 3.080 

[AsF6] − (6) 222 211.5 P21/n 3.070 

[SbF6] − (7) 213 211.5 P21/c 3.058 

[CHB11H5Cl6]− (9) 230 213.0 P21/c[a] 3.728 / 3.394[b] 

[CHB11Cl11]− (10) 207 213.3 P21/c[c] 3.576 / 3.477 [d] 

[CHB11H5Br6]− 
(11) 

240 211.3 Pna21
[e] 3.477 / 3.633[f] 

[CF3SO3]− (12) 118 211.4 P21/c 2.992 

[CF3COO]− (13) 127 95.5 P21/c 1.510 

[N3]− (14) 65 78.2  1 1.514 / 1.521 

H (15) 93 57.5     [g] -[h] 

OH (16) 162 82.4   [96] -[i] 

Cl (17) 114 82.2   [97] 1.874 / 1.847 / 
1.843 

Br (18) 156 80.3        [98] -[j] 

 

[a] Kristallisiert solvatfrei und als CH3CN-Solvat, [b] Solvatfrei / CH3CN-Solvat, [c] Kristallisiert 

solvatfrei und als Toluol-Solvat, [d] Solvatfrei / CH3CN-Solvat, [e] kristallisiert als CH2Cl2 und 

CH3CN-Solvat, [f] CH2Cl2 / CH3CN-Solvat, [g] kristallisiert als Toluol- und Benzol-Solvat, [h] nicht frei 

verfeinert, [i] keine Angabe.  
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Abbildung 4. ORTEP-Darstellung der Molekülstruktur von 7 (links) und 10 (rechts) im Kristall. 

Ellipsoide bei 50 % Wahrscheinlichkeit (173 K). Farbcode: Bor – braun, Chlor – grün, Kohlenstoff 

– grau, Antimon – braun, Fluor – blau, Wasserstoff – weiß.  

Neben den 13C-NMR-Verschiebungen in Lösung gibt auch der Anionen-C1-Abstand im 

Festkörper darüber Aufschluss, ob es sich um eine salzartige Struktur oder eine kovalente 

Molekülverbindung handelt. So beträgt der kürzeste Abstand zwischen dem zentralen 

Kohlenstoffatom (C1) des Trityl-Kations und dem Anion im Fall von 7 d(C1-X) = 3.06 Å 

und 10 d(C1-X) = 3.58 Å (s. Tabelle 4, Abbildung 4). Beide Abstände liegen deutlich 

außerhalb der Summe Kovalenzradien (∑rkov(C-F) = 1.36 Å,[99] ∑rkov(C-Cl) = 1.76 Å,[99] 

∑rvdW(C-F) = 3.17 Å,[100] ∑rvdW(C-Cl) = 3.45 Å[100]). Im Gegensatz dazu sind die 

entsprechenden Bindungen in den Strukturen 13, 14 und Ph3C-Cl eindeutig kovalenter 

Natur (vgl. d(C1-X) 13 = 1.51 Å, 14 = 1.51-1.52 Å, Ph3C-Cl = 1.84-1.87 Å,[98]  

∑rkov(C-O) = 1.47 Å,[99] ∑rkov(C-N) = 1.43 Å,[99] Abbildung 25).  

          

Abbildung 5. ORTEP-Darstellung der Molekülstruktur von 13 (links) und 14 (rechts) im Kristall. 

Ellipsoide bei 50 % Wahrscheinlichkeit bei (173 K). Fehlordnungen nicht dargestellt. Farbcode: 

Kohlenstoff – grau, Stickstoff – blau, Sauerstoff – rot, Fluor – blau, Wasserstoff – weiß.  

C1 
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Aus den Abbildung 4 und Abbildung 5 wird außerdem deutlich, dass das Tritylium-Ion, 

insofern es sich um eine salzartige Verbindung handelt, ein planares Kation darstellt  

(7 dx* = 0.015 Å und 10 dx = 0.004 Å). In den Verbindungen 13 (dx = 0.442 Å) sowie 14 

(dx = 0.451 / 0.457 Å) ist das zentrale Kohlenstoffatom C1 tetraedrisch koordiniert.[95] 

Dabei sitzt die positive Ladung nicht ausschließlich am Kohlenstoff C1 (+0.22 e) sondern 

wird auch über alle Wasserstoffatome delokalisiert (ø[q(H)] = +0.28 e). Alle weiteren 

Ring-Kohlenstoffatome hingegen tragen eine negative Partialladung (−0.12 - −0.24 e). 

Der Plot des elektrostatischen Potentials auf die Elektronendichte zeigt sehr schön die 

Ladungsdichte-Delokalisation im Trityl-Kation (Abbildung 6).  

 

Abbildung 6. Abbildung des elektrostatischen Potentials auf die Elektronendichte. Blaue 

Bereiche sind Orte positiver Ladung, rote Bereiche Orte mit negativem Ladungsschwerpunkt. 

Nicht alle der hier synthetisierten Trityl-Salze eignen sich für die anschließende Synthese 

eines Silylium-Salzes. Trityl-Salze der einfach zugänglichen, schwachkoordinierenden 

Anionen wie [Al(OCR(CF3)2)4]− (R = H, CF3),[101,102] [BF4]−, [B(CN)4]−,[103] [SbF6]− oder 

das Triflat [CF3SO3]− zeigen mit dem Trityl-Ion nur schwache Wechselwirkungen. Diese 

zeigen sich, wie bereits erwähnt, anhand der diskutierten Parameter in den 

Festkörperstrukturen und stark Tieffeld-verschobenen 13C-NMR-Resonanzen des C1-

Atoms. Die Umsetzung mit Me3Si-H führt in den meisten Fällen zum Abbau des Anions 

und zur Bildung kovalenter Me3Si-Verbindungen. Das [BF(CN)3]− zum Beispiel bildet im 

Festkörper ein Addukt Me3Si-NC-B(F)(CN)2 (vgl. d(Si-N) = 1. 7  Å  ∑rkov(Si-N) = 

1.80 Å).[99] 

 

*dx – Abstand zwischen dem Mittelpunkt der Fläche, welche die drei ipso-C-Atome der 
Phenylringe aufspannen zum zentralen Kohlenstoffatom C1 (Abbildung 4). 
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Das vor allem in der organischen Chemie als Silylierungsmittel[104–107] eingesetzte 

Trimethylsilyl-triflat Me3Si-OTf, ist eine kovalente Neutralverbindung (vgl. d(Si-O) = 

1.747 Å[108]  ∑rkov(Si-O) = 1.77 Å[99]). Im weiteren Verlauf wird typischerweise das 

[Ph3C][B(C6F5)4][1,2] und das [Ph3C][CHB11Cl11][95] für die entsprechenden Synthese der 

[Me3Si]+-Salze eingesetzt. Diese bilden entweder Silan-Addukte der Form 

[(Me3Si)2H][Y] oder solvatfreie Salze der Form [Me3Si][Z] (Y = [B(C6F5)4]−[109], 

[CHB11Cl11] −[16], Z = [CHB11F11] −,[23,24]). 
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3.2 Silylierte und protonierte Carba-closo-dodecaborate  
 

Bereits seit mehr als 100 Jahren wird die Chemie der closo-Borate und Carba-closo-

Borate untersucht. Alfred Stock gehörte mit seinen Forschungsergebnissen zu den 

Pionieren auf diesem Gebiet.[110] 1976 wurde William N. Lipscom schließlich mit dem 

Nobelpreis für seine Arbeiten im Bereich der Stereochemie der Boran-Käfige geehrt.[111] 

Als ursprüngliche Labor-Kuriosität betitelt, entwickelte sich die Chemie dieser 

Verbindungsklasse in den letzten Jahrzehnten sehr stark weiter. Heute bilden sie 

unverzichtbare Bausteine moderner Forschung und werden aufgrund ihrer schwachen 

Basizität, ihrer geringen Nukleophilie als auch ihrer (elektro)-chemischen und 

thermischen Robustheit vielseitig eingesetzt.[112–114] Da die Trityl-Salze dieser 

schwachkoordinierenden Anionen auch für die Synthese der Trimethylsilylium-

Verbindungen [Me3Si][Carborat] / [(Me3Si)2H][Carborat] benötigt werden, rückten die 

Käfig-Strukturen auch in unseren Fokus. Die Synthese und vollständige 

Charakterisierung ausgehend vom nido-Borat [B11H14]− hin zu verschiedenen Salzen des 

closo-Carborats [A][CHB11H11] (A = Me3NH, Cs) und des perchlorierten closo-Carborats 

[A][CHB11Cl11] (A = Cs, Ag, Ph3C) konnte bereits in einer früheren Arbeit gezeigt 

werden.[115] Im Folgenden werden nun Zusammenhänge zwischen messbaren 

physikalischen Eigenschaften und theoretischen, quantenchemisch berechneten Aspekten 

aufgezeigt. Gasphasen-DFT-Rechnungen verschiedener halogenierter closo-Carborate 

([A][CHB11H11−nXn]; n = 6, 11; X = H, F, Cl, Br, I; A = H, Me3Si) liefern zunächst die 

Grundlage für den Vergleich der elektronischen Situation, der NICS-Werte,[116] der  
13C-NMR-Verschiebungen, der Gasphasen-Protonen / [Me3Si]+-Affinitäten und der 

natürlichen Partialladungen[117–119] (Tabelle 6, Tabelle 7). Die Minimumstrukturen der 

Anionen sowie die der protonierten und silylierten Spezies, werden bestimmt (s. 

Kapitel 5.3.1). Die Anionen weisen alle C5v-Punktsymmetrie auf. Insofern das Anion eine 

Bindung zu einem [Me3Si]+-Ion besitzt, sind drei unterschiedliche Strukturisomere 

möglich. Die TMS-Gruppe kann in ortho-, meta- oder para-Position am Borat-Käfig 

koordinieren (s. Abbildung 7). Dabei ist stets der Angriff am para-Halogenatom 

begünstigt, wenngleich ein Angriff an der ortho-Ebene um lediglich 1.7 - 5.1 kcal·mol−1 

weniger begünstigt ist (Tabelle 5, vgl. o-, m-, p-Substitution Abbildung 7).  
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Tabelle 5: Strukturisomere und Energieunterschiede von [Me3Si][Carborat]-Derivaten. 

[Carborat] 

meta 

            
  

[kcal·mol−1] 

ortho 

            
  

[kcal·mol−1] 

para 

            
  

[kcal·mol−1] 

[CHB11H11]− 10.26 2.69 0.00 

[CHB11H5F6]− 19.02 5.05 0.00 

[CHB11F11]− 10.09 2.06 0.00 

[CHB11H5Cl6]− 17.48 3.04 0.00 

[CHB11Cl11]− 9.16 1.72 0.00 

[CHB11H5Br6]− 18.21 2.19 0.00 

[CHB11Br11]− 6.75 1.74 0.00 

[CHB11H5I6]− 19.56 1.28 0.00 

[CHB11I11]− 7.89 1.86 0.00 

Für die Protonierung des Carborat-Ions werden insgesamt 13 verschiedene Isomere 

gefunden. Dabei gibt es Isomere, die zwei Substituenten an einem Boratom tragen können 

(Abbildung 7, Isomer 1, Anhang Tabelle 13). Weiterhin kann das Proton zwischen zwei 

Halogenen oberhalb der Bor-Borbindungsebene liegen (Abbildung 7, Isomer 2). Ebenso 

ist eine Dreifach-Koordination zwischen drei Halogenen möglich (Abbildung 7, 

Isomer 3). Mit Ausnahme des vollständig mit Wasserstoff-Atomen substituierten Derivats 

[CHB11H11]− besitzen alle halogenierten Carborat-Derivate ihre Minimumstruktur in 

Isomer 2. Die Änderung der zweibindigen Konnektivität vom para-Halogen (Isomer 2) 

zu einem weiteren Halogen an der ortho-Ebene (Isomer 4) führt nur zu sehr kleinen 

Energieunterschieden                
  = 0.3 - 1.7 kcal·mol−1 (Isomer 4, s. Anhang Abbildung 

31-Abbildung 43). Auf der anderen Seite ist beispielsweise eine Koordination zwischen 

zwei Halogenen entlang der meta-Ebene deutlich ungünstiger                
 =  

0.6 - 28.8 kcal·mol−1 (Tabelle 13). Für das H[CHB11H11] spiegelt Isomer 1 die 

Minimumstruktur wieder. Dabei erfolgt eine Side-on-Koordination des Protonenpaares 

am B1-Atom (d(H-H) = 0.846 Å, d(B-H) = 1.354 Å) Eine Dreifachkoordination, wie in 

Isomer 3 dargestellt, ist mit 5.5 kcal·mol−1 energetisch deutlich weniger für das 

H[CHB11H11] begünstigt.  
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Abbildung 7. Drei ausgewählte Strukturisomere mit drei unterschiedlichen Protonen-

Konnektivitätsmustern von H[CHB11H11-nXn] (n = 6, 11; X, Y = H, F, Cl, Br, I), grün – para–

Boratom, rot – meta–Boratome und blau – ortho–Boratome.  

Mithilfe der optimierten Strukturen ist es nun möglich, weiterführende DFT-Rechnungen 

durchzuführen. Diese Rechnungen umfassen NMR-Verschiebungen und NBO-Ladungen. 

Es können auch gezielt die Protonen- und TMS-Affinitäten berechnet werden.  

Tabelle 6: Übersicht über einige spektroskopische und quantenchemische Eigenschaften von 
closo-Carboraten. 

Anion δber (13C) δexp(13C) q(C) [e] NICS 

[CHB11H11]− 52.8 51.4 −0.812 −27.7 
 

[CHB11H5F6]− 7.8 - −0.779 −34.8 

[CHB11F11]− 19.9 - −0.936 −33.3 

[CHB11H5Cl6]− 32.2 32.8[95] −0.801 −32.2 

[CHB11Cl11]− 51.3 47.4[115] −0.947 −34.4 

[CHB11H5Br6]− 37.6 41.5[120] −0.806 −30.6 

[CHB11Br11]− 54.4 54.1[121] −0.978 −32.0 

[CHB11H5I6]− 49.6 55.8[122] −0.816 −28.0 

[CHB11I11]− 59.6 55.5[121] −1.028 −28.5 

Alle berechneten 13C-NMR-Verschiebungen liegen zwischen 7.8 ppm [CHB11H5F6]– und 

59.6 ppm [CHB11I11]–. Durchschnittlich weichen die berechneten 13C-NMR-

Verschiebungen um 2.9 ppm von den tatsächlich beobachteten Werten ab. Ferner wird 
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deutlich, dass die Verschiebungen mit zunehmender Anzahl und Masse des Halogens 

größer werden. So sind alle 13C-NMR-Verschiebungen der perhalogenierten Derivate 

größer als die der sechsfach halogenierten Derivate (Tabelle 6). Weiterhin nimmt die 

NMR-Verschiebung mit der Größe und Masse des Halogens der Hauptgruppe von oben 

nach unten ebenfalls zu. Interessanterweise steht die aus NBO-Rechnungen bestimmte 

Partialladung q(C) nicht direkt im Zusammenhang mit der elektronischen Situation am 

Kohlenstoff und dem Trend, dass elektronenarme, entschirmte Kerne zu hohen 

Frequenzen und elektronreiche, abgeschirmte Kerne zu niedrigeren Frequenzen 

verschoben werden. Zu beobachten ist, dass im Fall der fluorierten Carborate, das 

sechsfach halogenierte Derivat eine deutliche Tieffeld-Verschiebung (δ(13C) = 7.8 ppm) 

und gleichzeitig eine positivere Ladung am Kohlenstoff (− .77  e) aufweist als das 

vollständig mit Wasserstoffatomen substituierte Derivat [CHB11H11]− (vgl. [CHB11H11]−: 

δ(13C) = 52.8, q(C    − . 1  e). Auf der anderen Seite besitzt das perfluorierte Derivat 

[CHB11F11]–, im Vergleich zum sechsfach fluorierten Derivat, eine ins Hochfeld 

verschobene 13C-NMR-Verschiebung (19.9 ppm) und eine deutlich negativere Ladung 

(− .  6  e). Dieser Trend ist für Halogenalkane ebenfalls zu beobachten.[123] Eine 

Erklärung für das beobachtete Phänomen könnte aus der Überlagerung der Beiträge des 

paramagnetischen und des diamagnetischen Teils der Abschirmungskonstanten 

hervorgerufen werden (Schema 6).  

      
       

    
     

     

 

Schema 6. Abschirmungskonstante σ eines Kernes i innerhalb eines diamagnetischen 
Moleküls.[124] ∑ σj – Summe der Abschirmungskonstanten aller Nachbaratome. 

Besonders durch die Schweratome Brom und Iod wird ein großer diamagnetischer 

Abschirmungsbeitrag hervorgerufen (Schweratomeffekt). Dies könnte dazu führen, dass 

die 13C-NMR-Resonanzen der schweren perhalogenierten Derivate im Vergleich zur 

Stammverbindung [CHB11H11]− ins Tieffeld verschoben werden (vgl. δ(13C) = 

[CHB11H11]− = 52.8, [CHB11Br11]− = 54.4, [CHB11I11]− = 59.6). Die leichteren Derivate 

hingegen werden ins Hochfeld verschoben (δ(13C)= [CHB11F11]− = 19.9, [CHB11Cl11]− = 

51.3). Der paramagnetische Teil verursacht in der Regel mit steigender Elektronegativität 

der Sub t  tuenten (F  C   Br  I  e nen zunehmenden E ektronenzug (−I-Effekt), also eine 

Entschirmung des Kohlenstoffs und somit auch positivere Partialladungen q(C) (vgl. 

q(C): [CHB11F11]−   − .   6  e, [CHB11Cl11]−   − . 47  e, [CHB11I11]−   −1.    e). Die 
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unterschiedlichen Substituenten wirken sich unterschiedlich stark auf die NMR-

relevanten Parameter aus. Dabei ist vor allem die Überlappung der pπ(B  - pπ(   ogen  – 

Orbitale entscheidend. Je besser die Überlappung ist (F, Cl, Br, I – fällt mit der Periode), 

desto mehr Elektronendichte kann auf das Käfig-Gerüst übertragen werden. 

    

Abbildung 8. HOMOs links: [CHB11F11]−, rechts: [CHB11Br11]−. 

Anhand der HOMOs der Carborate lässt sich sehr schön dieser Trend verdeutlichen 

(Abbildung 8). Während das HOMO für das [CHB11F11]− noch eine intakte 

Wechselwirkung entlang der B-F-Bindungsachse zeigen, ist das HOMO für die schweren 

Halogene wie [CHB11Br11]− bereits über dem Käfiggerüst delokalisiert. Der Hauptgruppe 

folgend kommt es also zu einer verstärkten Entschirmung (größere 13C-NMR-

Verschiebungen) des Kohlenstoffatoms. Dieser Effekt ist in der Literatur bereits in 

umgekehrter Reihenfolge beschrieben. Er ist besonders stark für das antipodale Bor-Atom 

in closo-Boraten (bei unterschiedlichen gegenüberliegenden Substituenten) ausgeprägt 

und wird daher auch als Antipodal-Effekt bezeichnet.[125,126] 1973 gelang der 

Arbeitsgruppe um Siedle erstmals der analytische Nachweis dieses Effektes an 

unterschiedlich substituierten Decahydrodecaboraten.[127,128] Genau wie Knoth zuvor 

vermutete, führen apikal-apikale Wechselwirkungen des Borgerüsts zu teils drastischen 

Unterschieden der dazugehörigen Abschirmungskonstante.[129] Es wirkt eine starke 

Entschirmung des 11B-NMR-Kerns entlang der z-Bindungsachse bedingt durch die 

Überlappung von besetzten und unbesetzten px- und py- Molekülorbitalen am 

Boratom B1. Dies führt zu einem verstärkten paramagentischen Teil im NMR-Tensor, der 

sich durch die elektronischen Eigenschaften des antipodalen Substituenten steuern lässt. 
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Je elektronegativer der Substituent aus der ersten Periode ist, desto stärker wird das 

antipodale Boratom abgeschirmt und ins Hochfeld verschoben.[130] Aus Tabelle 6 wird 

ersichtlich, je elektronegativer der Substituent am antipodalen Bor-Atom B1 ist, desto 

stärker wird der gegenüberliegende Kohlenstoff geschirmt und somit ins Hochfeld 

verschoben. Neben dem Einfluss der unterschiedlichen Substituenten können auch die 

NICS-Werte einen Einfluss auf die 13C-NMR-Verschiebung haben. Paul Ragué von 

Schleyer, der Begründer der NICS-Wert-Theorie, nutzte sie als Maß für die Aromatizität 

von Molekülen. Er fand bereits bei früheren Untersuchungen an unsubstituierten Mono- 

bzw. Di-Carba-closo-Boraten eine Art dreidimensionale Aromatizität.[131] So kann ebenso 

im Fall der untersuchten halogenierten Carborate mit NICS- erten zw  ch en − 7.7 

[CHB11H11]− und − 4.6 [C B 11H5F6]− von dreidimensionaler Aromatizität ausgegangen 

werden (Tabelle 6).[116,132,133] Der Einfluss der Aromatizität verbirgt sich im 

Abschirmungsteil aller Nachbaratome (Schema 6). So könnten, durch sie bedingt, 

Ringstromeffekte und Anisotropieeffekte zum Tragen kommen und zur Ausbildung des 

starken 13C-Resonanzgefälles innerhalb der Halogen-Hauptgruppe führen.[134–136] Nicht 

nur die NMR-Verschiebung und die Partialladungen folgen einem Trend. Mit einem 

Blick auf die Protonen- und [Me3Si]+-Affinität der Carborate lassen sich auch hier 

ähnliche Tendenzen erkennen.  

Tabelle 7: Übersicht über δ(29Si) und Gibbs-Enthalpien für die Protonierung und Silylierung 
halogenierter Carborate. 

Anion δber(29Si)      
   

[kcal·mol−1] 
    e S  

   
[kcal·mol−1] 

[CHB11H11]− 62.5 269.8 109.8 
 [CHB11H5F6]− 124.6 241.6 105.4 

[CHB11F11]− 135.4 226.4 94.7 

[CHB11H5Cl6]− 98.9 252.4 98.4 

[CHB11Cl11]− 106.6 240.9 88.8 

[CHB11H5Br6]− 94.4 255.4 97.9 

[CHB11Br11]− 98.7 245.7 89.3 

[CHB11H5I6]− 83.4 257.7 97.5 

[CHB11I11]− 86.4 250.5 90.4 
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Schema 7. H+- und [Me3Si]+-Affinität, A = H, [Me3Si] von Carborat-Ionen. 

Die Reaktion eines Moleküls ([Carborat]−) mit einem Proton führt zur Bildung eines 

H[Carborat]-Komplexes. Der negative Beitrag der Enthalpie, wird als Protonenaffinität 

definiert.[35] Eine erste Untersuchung, die verschiedene Moleküle und ihre 

Protonenaffinitäten vergleicht, wurde 1984 von S. G. Lias und J. F. Liebman 

veröffentlicht.[137] Da es sich beim Trimethylsilylium-Ion [Me3Si]+ ebenfalls um ein 

äußerst reaktives Teilchen handelt und es als großes Lewis-saures Pendant zum Proton 

angesehen werden kann, liegt es nahe, die TMS-Affinität in Analogie zur Protonen-

Affinität zu definieren. In Tabelle 10 sind einige Affinitäten von verschieden 

substituierten Carboraten zu finden. Die Protonen-Affinitäten sind annähernd um einen 

Faktor 3 größer als die dazugehörigen TMS-Affinitäten. Dies ist verständlich, da das 

[Me3Si]+-Ion in der Lage ist, sich durch intramolekulare Wechselwirkungen zu 

stabilisieren. Das Proton hingegen stellt eine kugelförmige Ladung dar, das nur durch 

attraktive Coulomb-Wechselwirkungen mit dem Anion stabilisiert werden kann. Die 

Protonen-Affinität steigt mit abnehmender Elektronegativität des Halogens. H[CHB11F11] 

stellt somit die stärkste Säure und das korrespondierende Anion [CHB11F11]− die 

schwächste Base dar (vgl. Literatur - 13C-NMR-Verschiebungen von Mesityloxid und 

ν(NH) von Tri(octyl)ammonium-Salzen).[33,109,138] Die unsymmetrisch substituierten 

Carborate besitzen immer eine größere Protonen-Affinität als ihre perhalogenierten 

Derivate. Die Bildung eines negativen Ladungsschwerpunktes durch die 

elektronenziehenden Halogene an der ortho-Ebene könnte die Proton-Anion-

Wechselwirkung insgesamt verstärken.  

Die [Me3Si]+-Affinitäten folgen nicht exakt demselben Trend, wie die H+-Affinitäten. Die 

größte TMS-Affinität besitzen die fluorierten Derivate (           
  [CHB11H5F6]− = 

105.4 kcal·mol−1, [CHB11F11]− = 94.7 kcal·mol−1). Derweil stellt [Me3Si][CHB11Cl11] das 

beste Transferreagenz dar (           
  = 88.8 kcal·mol−1) dar. Die Affinitäten nehmen zu 

den schweren Halogenen hin wieder zu. Die unsymmetrisch substituierten Carborate 

besitzen ebenso immer eine größere TMS-Affinität als ihre perhalogenierten Derivate. 

Anhand der Daten aus Tabelle 8 wird deutlich, warum dies so sein könnte. 
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Tabelle 8: Abstand (d) zwischen Halogen und Silizium-Zentrum, Partialladung (q) des Halogens, 

der TMS-Gruppe und des antipodalen Bor-Atoms. 

Anion d(X-Si) [Å] q(B1) [e] q(X1) [e] q(Me3Si) [e] 

[CHB11H11]− 1.633 −0.132 −0.043 0.705 
 [CHB11H5F6]− 1.826 0.273 −0.502 0.821 

[CHB11F11]− 1.850 0.281 −0.499 0.831 

[CHB11H5Cl6]− 2.265 0.010 0.002 0.605 

[CHB11Cl11]− 2.280 0.027 0.007 0.622 

[CHB11H5Br6]− 2.406 −0.003 0.163 0.536 

[CHB11Br11]− 2.419 −0.059 0.169 0.550 

[CHB11H5I6]− 2.609 −0.189 0.395 0.428 

[CHB11I11]− 2.617 −0.164 0.407 0.438 

Zunächst einmal sind die Partialladungen der Halogene, welche eine Bindung mit der 

[Me3Si]-Gruppe bilden, für die fluorierten Carborate deutlich negativer als die der 

schwereren Halogene. Das elektronenarme Silizium-Zentrum bindet dementsprechend 

stärker an das Anion, was auch durch die kurzen Si-F-Abstände unterstützt wird (d(Si-F) 

= 1.826 – 1.850 Å). Die hierdurch hervorgerufene große TMS-Affinität nimmt zu den 

schweren Halogenen hin ab. Die Silizium-Halogen-Abstände werden größer und die 

Partialladungen des gebundenen Halogens nehmen positive Werte an (vgl. Tabelle 8). 

Gleichzeitig wird die Ladungsdichte der [Me3Si]-Gruppe verringert. Eine heterolytische 

Bindungsspaltung in zwei geladene Ionen wird somit der Periode folgend erleichtert, die 

TMS-Affinitäten sinken dementsprechend. Die beiden chlorierten Carborate 

[CHB11H5Cl6]− und [CHB11Cl11]− stellen die besten TMS-Transferreagenzien dar. Die 

gebundenen Halogene besitzen in ihren Fällen sehr kleine Partialladungen (0.01 e / 

0.03 e) und die weiterhin positiv geladene TMS-Gruppe (q(Me3Si) = 0.61 e / 0.62 e) kann 

somit einfach heterolytisch vom Bor-Käfiggerüst abgespalten werden.  
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3.3 Synthese und Charakterisierung der silylierten Schwefelsäure und ihrer 
Derivate  
 

Bereits strukturell bekannte homoleptische Silylonium-Verbindungen existieren von 

einem guten Dutzend Verbindungen (s. Schema 3). Ausgehend von der protonierten 

Schwefelsäure und ihren Derivaten soll die klassische Säure-Base-Chemie auch auf ihr 

schweres, silyliertes Homolog übertragen werden. Die typischen Reaktionen, die dabei 

untersucht werden, sind zum einen die Anionenbildung mit stärkeren Basen und zum 

anderen die Kationenbildung mit stärkeren Säuren (Schema 8). 

A2SO4 + B [AB]+ + [ASO4]-

A2SO4 + [A][Y] [A3SO4]+ + [Y]-  

Schema 8. Säure-Base-Chemie der Schwefelsäure und der silylierten Schwefelsäure, A = H, 
[Me3Si], B = Base, Y = schwachkoordinierendes Anion.  

Die einfache Umsetzung von Schwefelsäure mit Kaliumhydroxid führt zur Bildung des 

strukturell bekannten Kaliumhydrogensulfats.[139] Ferner stellt Schwefelsäure das 

Vergleichssystem für Supersäuren dar. Alle Säuren, die 100%ige Schwefelsäure zu 

protonieren vermögen, werden als Supersäure bezeichnet.[51,140–142] So gelang es der 

Arbeitsgruppe um Rolf Minkwitz im Jahr 2002, die Struktur von [H3SO4][SbF6] 

aufzuklären.[143,144] Interessanterweise gelang die Darstellung von [H3SO4][SbF6] 

ausgehend von der silylierten Schwefelsäure (Me3SiO)2SO2 (19) mit der Supersäure 

HF/SbF5. In Anlehnung an diese Ergebnisse knüpft sich nun die Synthese der 

homoleptischen Silyl-Derivate an.  

Ausgehend von einer optimierten literaturbekannten Synthese gelang es uns, 19 als 

Reinststoff in 33 %iger Ausbeute zu isolieren.[5] Die Lösung der 

Einkristallstrukturanalyse zeigt eindeutige Gemeinsamkeiten zu der von Kemnitz 

publizierten Struktur der Schwefelsäure.[145] Während Schwefelsäure bedingt durch 

Wasserstoffbrückenbindungen eine kettenartigen Schichtstruktur aufweist und in der 

Raumgruppe C2/c kristallisiert, zeigt 19, ebenfalls C2/c monoklin, ein analoges 

Strukturmotiv (Abbildung 9).  
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Abbildung 9 (Links) Schichtstruktur von H2SO4-Molekülen aus Referenz [145], (Mitte) Monomere 

Grundeinheit mit intermolekularen Wechselwirkungen, T = [Me3Si], (Rechts) ORTEP-Darstellung 

der Molekülstruktur von (19) im Kristall. Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % 

Wahrscheinlichkeit (123 K). Farbcode: Sauerstoff – rot, Schwefel – gelb, Kohlenstoff – grau, 

Silizium – rosa, Wasserstoff – weiß. 

Wasserstoffatome lassen sich aufgrund der geringen Elektronendichte in Kernnähe nur 

schlecht durch Röntgenbeugungsmethoden detektieren. Dennoch geben verkürzte 

Abstände zwischen korrespondierenden Schweratomen Auskunft über die Lage der 

Protonen, wie im Fall von der Röntgenstruktur von Kemnitz (d(O-H) = 1.998 - 2.671 Å). 

Auch im Beispiel von 19 sind die Protonen nur mit einem geometrischen Modell in das 

Strukturmodel eingefügt. Die kürzesten intermolekularen Abstände finden sich zwischen 

den Sauerstoffatomen und Wasserstoffatomen der Methylgruppen 2.633-2.715 Å (vgl. 

∑rvdW(O-H) = 2.62 Å).[100] Die Wechselwirkungen sind äußerst schwach, liegen dennoch 

im Rahmen von van der Waals-Wechselwirkungen. Ebenso können Packungseffekte die 

Grundlage für die Schichtstruktur bilden. Neben den zwei unterschiedlichen S-O-

Abständen (d(S-OR) = 1.47-1.54 Å, d(S-O) = 1.42-1.47 Å  ∑rkov(S-O) = 1.70 Å, 

∑rkov(S=O) = 1.46 Å[99]) weist die Struktur keine weiteren Besonderheiten auf. Neben 

strukturellen Gemeinsamkeiten lassen sich ebenso einige spektroskopische 

Gemeinsamkeiten finden. Der Schmelzpunkt von H2SO4 beträgt 10.3 °C der von 19 nur 

48 °C. Die S-OH- und S-O-Schwingungen liegen trotz unterschiedlicher Reste nur 

maximal 70 cm−1 auseinander (vgl. H2SO4: ν(S-OH) = 909 cm−1, ν(S-O) = 1149 cm−1, 19: 

ν(S-OH) = 980 cm−1, ν(S-O) = 1185 cm−1, s. Anhang Abbildung 123). Neben der 

Schwingungsspektroskopie weist auch die NMR-Spektroskopie einige Gemeinsamkeiten 

zwischen beiden Substanzen auf. Besonders die 17O-NMR-Spektren der protonierten und 

der silylierten Spezies (19) zeigen ein ähnliches Muster. Freie Sulfat-Ionen weisen in 

Lösung jeweils ein Signal zwischen 167 ppm (K2SO4) und 169 ppm  
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([DMAP-SiMe3]2[SO4] auf (s. Tabelle 16). Die Alkylierung mit Methylgruppen führt zur 

Bildung zweier unterschiedlicher Signale, wie sie z.B. in Dimethylsulfat Me2SO4  

(δ(17O) = 103 / 144 ppm, S-OC / S-O) zu finden sind. Auch 19 zeigt ein ebensolches 

Verhalten (δ(17O) = 153 / 175 ppm, S-OSi / S-O). Für Schwefelsäure ergibt sich durch 

den schnellen Protonenaustausch in Lösung nur ein Signal bei 152 ppm. Ein Festkörper-

NMR (MASNMR) würde aber auch hier vermutlich zwei unterschiedliche 

Sauerstoffresonanzen aufzeigen, wie es Berechnungen vermuten lassen (δber(17O) = 203 / 

219 ppm, S-OH / S-O). 

Die Reaktion von H2SO4 mit Basen führt zur entsprechenden Bildung von 

monoprotonierten Hydrogensulfat-Anionen. Ebenso ist dieser Effekt bei der Reaktion von 

19 mit dem als organische Base fungierenden Trimethylphosphinoxid OPMe3 zu 

beobachten (20, Abbildung 10). 
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Abbildung 10. (Links) ORTEP-Darstellung der Molekülstruktur von (20) im Kristall. 

Fehlordnungen nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: 

Phosphor – orange, Schwefel – gelb, Kohlenstoff – grau, Silizium – pink, Wasserstoff – weiß, 

(Rechts) NBO-Partialladungen. 

Der Verlust einer Me3Si-Gruppe und die damit verbundene Anionenbildung führt im 

Vergleich zur Neutralverbindung 19 zur Verkürzung der unkoordinierten S-O-Bindungen, 

während die koordinierte S-OR-Bindung verlängert wird (d(S-OR) = 1.59 Å, d(S=O) = 

1.40-1.44 Å  ∑rkov(S-     1.7  Å  ∑rkov(S=O) = 1.46 Å[99], vgl. 19 s.o.). Es findet sich 

eine Anordnung von Anionen und Kationen im Kristallgitter, in der jeweils der negative 

und positive Ladungsschwerpunkt zu einander ausgerichtet sind. Dies führt dazu, dass es 

zur Bildung von Kationen- und Anionensträngen kommt. Eine anionische SO3-Einheit ist 

dabei stets auf das Phosphonium-Ende des Kations gerichtet. Mithilfe der NBO-

Ladungen von Kation (1.4 e Me3P-Gruppe / 0.7 e Me3Si-Gruppe  und An on (− .5  e SO3-

Gruppe, s. Abbildung 11) lässt sich diese Strangbildung sehr gut verdeutlichen. Dabei 

entstehen Stränge die nach außen hin nur Me3Si-Resten tragen. Im inneren dieser Stränge 
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wechseln sich stets zwei aufeinanderfolgende kationische PMe3-Reste mit zwei 

aufeinanderfolgenden anionischen SO4-Resten ab.  

 

Abbildung 11. Ball-and-Stick-Darstellung der Elementarzelle von 20. Wasserstoffatome nicht 

dargestellt.  
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Neben der Bildung eines monosilylierten Anions (Schema 9, Gl. 1) gelang auch die 

Abstraktion von zwei [Me3Si]-Gruppen mithilfe der starken organischen Base Kalium 

tert-Butanolat K[OCMe3] (Schema 9, Gl. 2). Die Metathese-Reaktion führte zur Bildung 

von Kaliumsulfat, welches mithilfe von ICP-OES und Raman-Spektroskopie auf seine 

Reinheit überprüft wurde. Gleichzeitig sind in den Kernresonanzspektren Signale für die 

Bildung von Me3SiOCMe3 zu detektieren (s. Anhang Abbildungen 109-111). 

(Me3SiO)2SO2 + OPMe3

(Me3SiO)2SO2 + 2 K[OCMe3] K2SO4 +  2 Me3Si-O-CMe3

(Me3SiO)2SO2 +  [(Me3Si)2H][B(C6F5)4] [(Me3SiO)3SO][B(C6F5)4] + Me3SiH

(1)

(2)

(3)

(20)

[Me3Si-O-PMe3][O3SOSiMe3]

(21)
 
Schema 9. Reaktionen mit silylierter Schwefelsäure.  

Die Reaktivität und Eigenschaften des protonierten bzw. silylierten Sulfat-Ions in 

Gegenwart von Basen zeigen somit ein sehr ähnliches Verhalten. Es bleibt die Frage, ob 

es möglich ist, mittels eines starken Silylierungsmittels das homoleptische 

Tris(siloxy)sulfinium-Ion [(Me3SiO)3SO]+ zu generieren. Zu diesem Zweck wird 

ausgehend von [(Me3Si)2H][B(C6F5)4] das in-situ gebildete [Me3Si···Toluol][B(C6F5)4] 

mit 19 umgesetzt (Schema 9, Gl. 3). Dabei kommt es auch zur vollständigen Lösung des 

Silyl-Toluol-Adduktes und zur Ausbildung des für das Borat-Iion typischen zweiphasigen 

Systems. Da es aus einem solchen System nicht mehr möglich ist, Einkristalle zu 

isolieren, wurde der Einsatz des polareren 1,2-Dichlorbenzol als Lösungsmittel gewählt. 

Auch hier kommt es zur vollständigen Lösung des Silyl-Aren-Adduktes. Es kann jedoch 

aus der Reaktionslösung nur 1,2-Dichlorbenzol auskristallisiert werden. Mithilfe der 

 29Si-NMR-Spektroskopie kann dennoch eindeutig die Bildung des 

[(Me3SiO)3SO][B(C6F5)4] (21), zumindest in der flüssigen Phase, nachgewiesen werden 

(Abbildung 12). 

  



 
30 

 

Abbildung 12. 29Si-INEPT-NMR-Spektren von unten nach oben 20, 19, 21, δ(29Si) = 28.01, 

33.58, 55.10 ppm. 

Die beobachtete starke Hochfeld-NMR-Verschiebung der Silizium-Kerne spricht für die 

Bildung eines kationischen Systems (vgl. δber(29Si) = 69.2 ppm). Die 11B sowie 19F NMR-

Spektren weisen auf ein intaktes Borat-Ion hin, sodass davon ausgegangen werden kann, 

dass das Sulfinium-Ion als stabiles und somit möglicherweise im Festkörper isolierbares 

Kation angesehen werden kann. Die Kristallisation und der damit verbundene strukturelle 

Nachweis könnten mithilfe des [CHB11Cl11]−-Anions gelingen.  

Neben diesen beiden klassischen Säure-Base-Reaktionen, die die protonierte und 

silylierte Schwefelsäure gemeinsam haben, kann eine weitere Eigenschaft der sehr 

starken Säure H2SO4 für das schwere silylierte Analog gefunden werden. Schwefelsäure 

neigt neben ihrer Autoprotolyse auch zur Selbstkondensation (Schema 10). Das bedeutet, 

sie ist formal in der Lage, sich selbst zu entwässern und dabei das Pyrosulfat-Ion [S2O7]2− 

zu bilden.  

  

[(Me3SiO)3SO]+ 
 
 
 
 
 
(Me3SiO)2SO2 
 
 
 
 
 
[O3SOSiMe3]− 
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2 H2SO4

2 H2SO4

[H3SO4]+ + [HSO4]-  >99.9%
Autoprotolyse

[H3O]+ + [HS2O7]-     <0.01%
Kondensation  

Schema 10. Autoprotolyse und Kondensations-Reaktion von Schwefelsäure.[146]  

Die Kondensationsreaktionsreaktion kann erfolgreich auf 19 übertragen werden (Schema 

11).  

2 OPMe3 + 2(Me3SiO)2SO2  [Me3SiOPMe3]2[S2O7] +  (Me3Si)2O
Toluol  

Schema 11. Darstellung [Me3SiOPMe3][S2O7]. 

Die Synthese führte zur Isolation des Kondensationsproduktes [S2O7] −  (Schema 11). 

Dabei wirkt ein Überschuss an Trimethylphosphinoxid vermutlich als Katalysator. Es 

bildet sich erneut das Trimethylsiloxytrimethylphosphonium und das Pyrosulfat als 

korrespondierendes Anion (22). Jedoch konnte die Synthese des Kondensationsproduktes 

bisher noch nicht reproduziert werden. 

 

Abbildung 13. ORTEP-Darstellung der Molekülstruktur von (22) im Kristall. Ellipsoide bei 50 % 

Wahrscheinlichkeit. Farbcode (123 K). Sauerstoff – rot, Schwefel – gelb, Kohlenstoff – grau, 

Silizium – pink, Phosphor – orange, Wasserstoff – weiß. 
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3.4 Synthese und Charakterisierung der silylierten Schwefelwasserstoffsäure 
und ihrer Derivate  
 

Ausgehend von den Ergebnissen der protonierten und silylierten Schwefelsäure und ihren 

Derivaten soll die klassische Säure-Base-Chemie auch auf die Schwefelwasserstoffsäure 

übertragen werden. Die typischen Reaktionen, die dabei untersucht werden sollen, sind 

ebenfalls die Anionenbildung mit stärkeren Basen und die Kationenbildung mit stärkeren 

Säuren (Schema 12). 

A2S + B [AB]+ + [AS]-

A2S + [A][Y] [A3S]+ + [Y]-  

Schema 12. Säure-Base-Chemie der Schwefelwasserstoffsäure und des silylierten Sulfids, A = 
H, [Me3Si], B = Base, Y = schwachkoordinierendes Anion.  

Die einfache Umsetzung von Schwefelwasserstoff mit Natriumethanolat führt zur 

Bildung des strukturell bekannten Natriumhydrogensulfids.[147] Ferner handelt es sich bei 

Schwefelwasserstoff um ein hochtoxisches Gas, d   be  −6  °C bereits siedet und schwer 

zu handhaben ist. Dennoch existiert eine Tieftemperatur-Röntgenstruktur für H2S.[148] Der 

strukturelle Beweis der bereits 1967 von G. Olah prognostizierten Sulfonium-Salze 

[H3S]+ fehlt bis heute.[149–152] Das aus der Reaktion von HF, H2S und AsF5 isolierbare 

Produkt ist thermodynamisch sehr instabil und zersetzt sich bereits bei Temperaturen 

oberh  b von −1  °C.[152] Dennoch sind zum Beispiel halogenierte Sulfonium-Derivate, 

wie das [Br3S][SbF6] von Passmore, strukturell bekannt.[153] Ausgehend von diesen 

Ergebnissen erfolgt zunächst die Synthese des silylierten Sulfids (23). 

Bis(trimethylsilyl)sulfid, auch Hexamethyldisilathian, kann aus elementarem Schwefel, 

Lithium und Trimethylsilylchlorid bei 0 °C gewonnen werden (Schema 13). Eine 

anschließende Destillation bei 74 °C (47 mbar) liefert eine farblose Flüssigkeit in 

83 %iger Ausbeute. Die Struktur von 23 konnte bereits durch die Arbeitsgruppe um  

S. Dehnen aufgeklärt werden.[154]  
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(Me3Si)2SS8

1) Li
2) Me3SiCl

THF, 0°C
-LiCl

[K@18-Krone-6][SSiMe3](Me3Si)2S + 18-Krone-6 + K[OCMe3]
THF
-Me3SiOCMe3

[(Me3Si)3S][B(C6F5)4][(Me3Si)2H][B(C6F5)4] + (Me3Si)2S
Toluol
-Me3SiH

(23)

(24)

(25)  

Schema 13. Darstellung von S(SiMe3)2 (23), [K@18-Krone-6][SSiMe3] (24) und 
[(Me3Si)3S][B(C6F5)4] (25). 

Der Einsatz einer starken Base wie Kalium tert-Butanolat liefert das monosilylierte 

Sulfid-Anion (24) (Schema 13, Abbildung 14). Der Schmelzpunkt von 24 ist mit 215 °C 

nur halb so groß, wie der von rein anorganischen Metallsalzen (vgl. Smp. NaSH = 

350 °C, KSH = 450-510 °C).[155,156] Ein Vergleich mit der von Sundermeyer publizierten 

organischen Verbindung [Me4N][SSiMe3] (Smp. = 184 °C) zeigt, dass auch in diesem 

Fall das Kronenether-Salz 24 thermisch stabiler ist.[157] 

 

Abbildung 14. ORTEP-Darstellung der Molekülstruktur von (24) im Kristall. Fehlordnungen nicht 

dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Sauerstoff – rot, Kalium – 

dunkelgrün, Kohlenstoff – grau, Silizium – pink, Schwefel – gelb, Wasserstoff – weiß. 

Die Umsetzung von 23 mit einem starken Silylierungsreagenz wie [(Me3Si)2H][B(C6F5)4] 

in aromatischen Lösungsmitteln soll zur Bildung des homoleptisch silylierten Sulfonium 

Salzes (25) führen. Jedoch kann trotz einer Vielzahl an unterschiedlichen Methoden zur 

Kristallisation keine einwandfreie Einkristallstruktur ermittelt werden. Aus dem 

Datensatz eines verzwillingten Kristalls war es möglich, ein Konnektivitätsbild der 

Struktur zu ermitteln (s. Anhang Abbildung 44). Eine vollständige 
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Einkristallstrukturanalyse ist mit einem anderen Anion, dem [CHB11H5Cl6]− bereits 

möglich gewesen.[115] Beide Salze weisen einen erstaunlich hohen Zersetzungspunkt von 

160 °C auf (vgl. Tzer([H3S][AsF6     −1  °C). Als auffälliges Merkmal dieser Strukturen 

erweist sich der nicht-planare Charakter des Sulfonium Ions.  

  

Abbildung 15. [(Me3Si)3S]+ im NBO-Bild. (links) freies Elektronenpaar am Schwefel, (rechts) σ*-

Orbital entlang der S-Si-Bindungsachse.  

In der NBO-Darstellung von [(Me3Si)3S]+ ist eindeutig zu erkennen, dass das Ion keine 

trigonal-planare Struktur einnehmen kann (Abbildung 15). Das freie Elektronenpaar hat 

einen weitaus größeren Platzbedarf als die Me3Si-Reste und sorgt für eine Abwinkelung 

dieser. Die Winkel aus der Röntgenstruktur des [(Me3Si)3S][CHB11H5Cl6]  

∡(Si-S-Si) 107.15(3)-109.84(4)°. Ein Vergleich mit der neutralen Verbindung 23 zeigt, 

dass der räumliche Anspruch des Elektronenpaares starr zu sein scheint und nicht durch 

einen weiteren Me3Si Substituenten beeinflusst wird (∡(Si-S-Si) 108.6(2)°).[154] 
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Abbildung 16. Darstellung der ELF von (links) 23 und (rechts) von [(Me3Si)3S]+. 

Zweidimensionaler Profilschnitt durch die Si-S-Si-Ebene (links) und die die Si-S-Bindungsachse 

(rechts). 

Die ELF (Elektronenlokalisationsfunktion) beider Verbindungen unterstützt das wie 

bereits in der NBO-Darstellung deutlich gewordene gewinkelte Strukturmotiv (Abbildung 

16). Ein Blick auf die NBO-Partialladungen zeigt, dass der Schwefel das negative 

Ladungszentrum der Verbindungen darstellt (q(S) 23   − .65  e, [(Me3Si)3S]+   − . 53 e). 

Das bedeutet gleichzeitig, dass das Zentralatom bei der Kationenbildung zum 

[(Me3Si)3S]+-Ion mehr als 15 % seiner Ladungsdichte in die (Me3Si)-Substituenten 

überträgt.  

Der 29Si-NMR-Kern eignet sich ebenso für die Unterscheidung der Ladungs- und somit 

Strukturverhältnisse wie für 19 und seiner Derivate. Das anionische 24 hat die kleinste 

positive Ladungsdichte (∑q(Si) = 1.47 e) und somit auch die größte Hochfeld-

Verschiebung (δ(29S     − .  . Mit der Zunahme der positiven Ladungsdichte (∑q(Si) / 

δ(29Si) 23 = 1.59 e / 14.6 ppm, 25 = 1.66 e / 38.1 ppm) verschieben sich die 29Si-NMR-

Resonanzen weiter in Richtung Tieffeld. 
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Abbildung 17. 29Si-INEPT-NMR-Spektren von unten nach oben 25, 23, 24, δ(29Si) = −0.86, 

14.61, 38.14 ppm. 

Zusammenfassend kann gezeigt werden, dass sich das Hexamethyldisilathian (23) in den 

chemischen Eigenschaften der Säure-Base-Chemie dem des Schwefelwassersstoffs sehr 

ähnelt. Während die Reaktion mit starken Basen Metallsalze mit einem Sulfid-Anion 

liefert, ist es ebenso möglich mit stärkeren Säuren homoleptisch substituierte, kationische 

Derivate zu erhalten. Alle Verbindungen können hierbei vollständig beschrieben und 

strukturell charakterisiert werden.  

  

[(Me3Si)3S]+ 
 
 
 
 
 
(Me3Si)2S 
 
 
 
 
 
[SSiMe3]− 
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3.5 Synthese und Charakterisierung des labilen Thionylimids und seiner 
Derivate 
 

Tertiäre und quartäre Systeme, die die Elemente N, S und O enthalten, bilden wichtige 

Bausteine in der biologischen, organischen und anorganischen Forschung.[158] Das nur 

durch theoretische Betrachtungen[159–163] und IR- sowie Mikrowellen-Spektroskopie[164–

176] charakterisierte Thionylimid, H-NSO (26), stellt einen äußerst labilen Vertreter dieser 

Verbindungsklasse dar. Es handelt sich um ein farbloses Gas, welches im flüssigen 

Zu t nd bere t  be  −7  °C zu polymerisieren beginnt.[177,178] Die erstmalige Darstellung 

von 26 gelang Ephraim und Piotrowski 1911 aus Ammoniak und Thionylchlorid.[179] 

Aufgrund der thermischen Unbeständigkeit werden niedrige Drücke und Temperaturen 

für die Synthese von 26 benötigt.[177] Unter Anwendung eines anderen 

Syntheseansatzes[180] gelingt es uns erstmalig bei der Umsetzung von K[NSO] (27) mit 

einer Fettsäure, 26 direkt zu erzeugen. Das Gas kann in Toluol-[D8] überführt werden und 

kann so als stabile verdünnte Lösung analysiert werden (Schema 14).[181,182] Weiterhin ist 

es ebenfalls möglich auf diese Art und Weise mit der Lewis-Säure B(C6F5)3 erstmalig 

Kristalle für eine Röntgeneinkristallstrukturanalyse eines 26-Adduktes zu isolieren ((28), 

Abbildung 18). 

K[NSO] + Me(CH2)16COOH
pur,

H-NSO + B(C6F5)3
CH2Cl2, -196°C

H-NSO      + K[O2C(CH2)16Me]

NSO

H

(F5C6)3B

Me3Si-NSO + K[OCMe3] K[NSO] + Me3SiOCMe3
THF, Rückfluß

(Me3Si)3N + SOCl2 Me3Si-NSO + 2 Me3SiCl
CH2Cl2, RT

(27)

(26)

(28)  

Schema 14. Darstellung von Me3Si-NSO, 27, 26 und 28. 

Für die Synthese von 26 wird zunächst Me3Si-NSO (29) als NSO-Präkursor benötigt. 

Dieses kann, ausgehend von Tris(trimethylsilyl)amin (Me3Si)3N und Thionylchlorid 

SOCl2, als farblose, bei 105-107 °C siedende, in 66 %iger Ausbeute isolierbare 

Flüssigkeit gewonnen werden. In einem nächsten Schritt wird durch eine klassische 

Salzmetathese-Reaktion der Me3Si-Rest mittels einer starken organischen Base gegen ein 
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Kalium-Ion ausgetauscht (Schema 14).[183,184] 27 ist ein farbloses, bei 197 °C 

schmelzendes, in Gegenwart von Wasser pyrophores Salz.[185,186] Es ist äußerst schlecht 

in organischen Lösungsmitteln löslich, weshalb quantitativ 18-Krone-6 zur Solvatation 

des Salzes für die NMR-spektroskopischen Untersuchungen benötigt wird.  

 

Abbildung 18. ORTEP-Darstellung der monomeren Molekülstruktur von (links) 28 und (rechts) 

Me3Si-OSN-B(C6F5)3 (30). Fehlordnungen sowie Fluoratome nicht dargestellt. Ellipsoide bei 50 % 

Wahrscheinlichkeit (173 K). Farbcode: Bor – braun, Sauerstoff – rot, Kohlenstoff – grau, Schwefel 

– gelb, Stickstoff – blau, Silizium – pink, Wasserstoff – weiß. 

Die Generierung der äußerst labilen H-NSO wird ebenfalls in einer Salzmetathese-

Reaktion, ausgehend von 27 und Stearinsäure als Protonenquelle, im Hochvakuum 

durchgeführt. Diese Herangehensweise ist bereits für die Synthese von Stickstoffwasser 

HN3 bekannt.[180] Dabei werden die hochschmelzende Fettsäure und 27 fein gemörsert 

und in einem Kolben im Hochvakuum langsam auf Schmelztemperatur (70 °C) der 

Stearinsäure erhitzt. Das dabei entstehende Gas 26 wird auf eine gefrorene Lösung 

(−1 6  °C) aus CH2Cl2 und B(C6F5)3 kondensiert. Langsames Auftauen der Lösung und 

anschließende Kristallisation bei 5 °C liefert 28 in 15 %iger Ausbeute. Die Bildung dieses 

im Festkörper trans N-gebundenen Lewis-Säure/Lewis-Base-Adduktes legt die 

Möglichkeit nahe, dass in Lösung eine freie Rotation entlang der NS-Bindungsachse 

möglich sein könnte. In der Tat finden sich im 1H-NMR-Spektrum von 28 zwei 

verschiedene Spezies. Eine temperaturabhängige NMR-Aufnahme ermöglicht es, das 

Verhältnis zwischen den beiden Isomeren zu bestimmen (Abbildung 19). Ausgehend von 

diesen Ergebnissen ist es möglich, eine Energiedifferenz von 0.58 kcal·mol−1 zwischen 

den beiden Isomeren zu bestimmen. Dieser Wert entspricht in guter Näherung dem 
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theoretisch berechneten Wert von 2.1 kcal·mol−1 in der Gasphase für das N-gebundene 

cis-/trans-Isomerenpaar.[181,182] 

 

Abbildung 19. Temperaturabhängige 1H-NMR-Spektren von 28. Durch * gekennzeichnete 

Signale bei 2 und 7 ppm entsprechen Toluol-[D8].  

In der Struktur von 28 fällt besonders der kurze SO-Abstand auf (vgl. d(S-O) = 

1.427(2) Å  ∑rkov (S      1.46 Å  ∑rkov (S≡     1. 5 Å[99], Abbildung 18). Auf der 

anderen Seite ist die N-S-Bindung relativ lang (d(N-S    1.5  (   Å  ∑rkov (N-S) = 

1.73 Å  ∑rkov (N=S) = 1.49 Å[99]). Ein Vergleich mit der durch Mikrowellenspektroskopie 

ermittelten Struktur von 26 zeigt, dass die sterisch anspruchsvolle Lewis-Säure B(C6F5)3 

auch zu einer Verkleinerung des NSO-Winkels beiträgt (vgl. 26: d(N-S) = 1.5123 Å,  

d(S-O) = 1.4513 Å,[99] ∡(NSO) = 120.41°,[187] 28: ∡(NSO) = 114.3°, Tabelle 9). 

Anhand Verbindung 29 soll nun gezeigt werden, ob diese Art der Isomerie auch mit dem 

schweren, silylierten NSO-Analog zu beobachten ist. In einer einfachen Reaktion mit der 

Lewis-Säure B(C6F5)3 und dem als Lewis-Base fungierenden 29 kann in 14 %iger 

Ausbeute 30 als farbloses Derivat isoliert werden. Eine Röntgeneinkristalluntersuchung 

führt zu dem Ergebnis, dass die Me3Si-Gruppe eine 1,3-Umlagerung zum Sauerstoff 

vollzogen hat und die Lewis-Säure am Stickstoff in trans-Position gebunden ist 

(Abbildung 18). Im 1H-NMR-Spektrum (δ(1     − . 1  sowie im 11B-NMR-Spektrum 
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(δ(11B    −6.5    nd jewe    nur e ne Spez e  zu detekt eren  was für die Existenz nur 

eines Isomers in der flüssigen Phase spricht (s. Kapitel 5.4.27). Die quantenchemische 

Berechnung aller unterschiedlichen Isomere legt nahe, dass es sich auch bei der Struktur 

von 30 um die globale Minimums-Gasphasen-Struktur handelt. Die Untersuchung zeigt, 

dass das Isomer B lediglich 0.4 kcal·mol−1 ungünstiger ist (Abbildung 20). Ferner liegen 

noch fünf weitere Isomere im Bereich von bis zu 6.1 kcal·mol−1 (Spezies C-G). Die 

Isomere, in denen die Substituenten am Sauerstoff gebunden sind bzw. jene Spezies bei 

denen die Me3Si-Gruppe am Schwefel lokalisiert ist, sind energetisch deutlich weniger 

favorisiert (Spezies H-L 20 - 65 kcal·mol−1).  

Beim Blick auf die Struktur von 30 fällt neben den unterschiedlichen Bindunsgmodi zu 

28 auch eine veränderte Situation in den Bindungslängen auf. Nun liegt ein längerer S-O-

Abstand im Molekül vor (vgl. d(S-O) = 1.556(   Å  ∑rkov (S-O) = 1.70 Å  ∑rkov (S=O) = 

1.46 Å,[99] Abbildung 18, Tabelle 9). Auf der anderen Seite ist die N-S-Bindung etwas 

verkürzt (d(N-S) = 1.445(   Å  ∑rkov (N=S) = 1.49 Å  ∑rkov (N≡S    1.37 Å[99]). Ebenso 

wie im Fall von 28 erzeugt die zusätzliche Valenz der Lewis-Säure ein stärkeres 

Abwinkeln der NSO-Einheit (vgl. 29: ∡(NSO) = 122.1°),[188] 30: ∡(NSO) = 117.1°). 

 
Tabelle 9: Ausgewählte Bindungslängen (d) und –winkel (∡) einiger NSO-Spezies. 

-NSO d(N-S) [Å] d(O-S) [Å] ∡(NSO) [°] 
    

26[187] 1.512 1.451 120.4 

27[185] 1.442 1.442 123.7 

28 1.530 1.427 114.3 

29[188] 1.508 1.444 122.0 

30 1.445 1.556 117.1 

31 1.540 1.439 114.6 
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Abbildung 20. Relative Energien [kcal·mol−1] aller Struktur- und Konformationsisomere von 30. 

Erel. 
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Um die Untersuchungen zu erweitern, wurde die sterisch weniger anspruchsvolle Lewis-

Säure GaCl3 eingesetzt. Die Synthese 2) liefert in 23 %iger Ausbeute das N,N-gebundene 

NSO-Addukt 31 (Schema 15, Abbildung 21). Ausgehend von der Synthese 1) für die 

Darstellung des Thionylimid-Addukts, können leider keine Kristalle für die 

Röntgenstrukturanalyse von HNSO·GaCl3 (32) gewonnen werden. Dennoch zeigen das 
1H- sowie 14N-NMR-Spektrum jeweils nur ein Signal (δ(1H) = 8.32, δ(14N    −11 .   

Abbildung 22). 

H-NSO + GaCl3
CH2Cl2, -196°C

Cl3Ga

Me3Si-NSO + GaCl3 Me3Si-NSO
CH2Cl2, -80°C

GaCl3

(2)

(1)

OSN-H

A
(31)

(32)  

Schema 15. Darstellung von HNSOGaCl3 (32) und OS(Me3Si)NGaCl3 (31). 

Die Strukturparameter von 31 ähneln denen des ebenfalls N,N-gebundenen Isomers 28. 

Das bedeutet die NS-Bindung ist etwas länger und die SO-Bindung dafür etwas verkürzt 

(vgl. d(S-O) = 1.439(2) Å, d(N-S    1.54 (    Å  ∑rkov (S=O) = 1.46 Å  ∑rkov (S≡     

1. 5 Å  ∑ rkov (N-S    1.7  Å  ∑ rkov (N=S) = 1.49 Å,[99] Abbildung 21, Tabelle 9).  

 

Abbildung 21. (links) ORTEP-Darstellung der Molekülstruktur von 31. Ellipsoide bei 50 % 

Wahrscheinlichkeit (173 K). Farbcode: Gallium – hellblau, Chlor – grün, Kohlenstoff – grau, 

Schwefel – gelb, Silizium – pink, Schwefel – gelb, Stickstoff – dunkelblau, Wasserstoff – weiß. 

(rechts) ELF von 31, zweidimensionaler Profilschnitt durch die O-S-N-Si(Ga)-Ebene. 
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Die ELF von 31 zeigt eine stark polarisierte NS-Bindung und eine noch stärker 

polarisierte SO-Bindung. Das freie Elektronenpaar am Schwefel wird durch die GaCl3-

Einheit stark in Richtung der S-O-Bindung deformiert. Ferner wird deutlich, dass die 

Ladungsdichte der Donor-Akzeptor-Bindung (d(Ga-N     .   (1  Å  ∑rkov (Ga-N) = 

1.95 Å[189]) deutlich am Stickstoff lokalisiert ist. Dies zeigt sich auch im relativ kleinen 

Ladungsübertrag von lediglich +0.16 e. Die 14N-NMR-Verschiebung von 31 (δ(14N) = 

−112.2) ist im Vergleich zu 32 deutlich ins Tieffeld verschoben (δ(14N    −  .   

Abbildung 22).  

 

Abbildung 22. 14N-NMR-Spektren von oben nach unten: 32, 31, 29, 26 und [NSO]−. 

Abbildung 22 zeigt sehr eindeutig, wie sensitiv der 14N-Kern auf elektronische und 

strukturelle Einflüsse der NSO-Einheit reagiert. Während das Signal für das isolierte 

Anion [NSO]− die größte Tieffeld-Resonanz (δ(14N) = 140) und gleichzeitig auch das 

breiteste Signal ( ν1/2 = 1050 Hz) aufweist, sind die Signale der neutralen protonierten 

und silylierten Spezies 26 und 29 deutlich ins Hochfeld verschoben (δ(14N) 26   −74  

29   −44 . Zugleich wird die Halbhöhenbreite der Signale deutlich durch die jetzt 

doppelte Valenz des N-Kerns verr ngert ( ν1/2 26 = 130 Hz, 29 = 60 Hz). Die erhöhte 

Symmetrie um den Quadrupol-Stickstoffkern fördert in beiden Fällen eine Verringerung 

der Halbhöhenbreite. Das Signal von 26 ist dennoch breiter, da in Lösung eine freie 

GaCl3 
 
 
 
 

 
GaCl3    

H-NSO       
 
 
 

Me3Si-NSO      
 
 
 
 
 
 
 
 
 
 
 
 

Me3Si-NSO 
 
 
 
 
 
 
 
 
 
 

H-NSO 
 
 
 
 
 
 
 
 
 

[NSO]− 
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Rotation des Protons um die S-N-Bindungsachse eine höhere Aktivierungsbarriere 

aufweist (        g  
 (cis-HNSO − trans-HNSO) = 2.9 kcal·mol−1, EA = 15.7 kcal·mol−1). 

Die Rotation der Me3Si-Gruppe zeigt in 29 eine niedrigere Aktivierungsbarriere. Dies 

führt zu einem schnelleren Austausch und einem schärferen Signal in der relativ 

langsamen 14N-NMR-Spektroskopie (          g  
 (cis-Me3SiNSO − trans-Me3SiNSO) = 

3.0 kcal·mol−1, EA = 5.3 kcal·mol−1). Die Einführung einer Elektronen-ziehenden Lewis-

Säure, wie GaCl3, führt zu unterschiedlichen Effekten im Hinblick auf die 14N-NMR-

Resonanz (Abbildung 22). Die N,N-Koordination von Lewis-Säure und Me3Si-Gruppe 

führt zum Elektronenzug aus dem S-O-Rückgrat von 31. Die negative Ladungsdichte am 

Stickstoff wird durch die direkte Nachbarschaft der Lewis-Säure erhöht (vgl.  

q(N) 31  −1. 6 e, 29   −1.17 e, Schema 16).  

N
S

O

Me3Si

N
S

O

Me3Si

Cl3Ga

N
S

O

H

N
S

O

H

GaCl3

0.67

-1.26
1.58

-0.82

-1.17
1.46

-0.88

0.59 0.40

-0.98
1.44

-0.86

0.42

-0.89
1.53

-0.91

 

Schema 16. NBO-Partialladungen [e] von 32, 31, 29, 26. 

Eine höhere negative Ladung am 14N-Kern führt zu einer weiteren Abschirmung des 

Kerns und somit zu einer Hochfeld-Verschiebung des Signals (vgl. δ(14N) 31   −11   29 

  −44 . Im Fall von 32 führt die Koordination des GaCl3 am Sauerstoff zu einem 

Elektronenzug aus dem NS-Rückgrat und der 14N-Kern verliert Elektronendichte. Er wird 

somit stärker entschirmt und ins Tieffeld verschoben (vgl. q(N) / δ(14N) 32   − .   e / 

−20 ppm, 26   − .   e   −74 ppm, Schema 16, Abbildung 22).  

Das homoleptische Kation [Me3Si-NSO-SiMe3]+ konnte bereits in einer früheren Arbeit 

ausgehend von 29 mit den Silylierungsmitteln [Me3Si][CHB11H5Cl6] sowie 

[Me3Si][CHB11Cl11] synthetisiert werden.[115] Dabei bildete sich das S-förmige  

[R1-NSO-R2]+ Isomer, welches in der Gasphase auch die globale Minimumstruktur 

bildet.[181,182] Dieses Strukturmotiv findet sich ebenso im Derivat 30 wieder. Beiden 
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Strukturen gemein sind die kurzen N-S-Bindungen und gleichzeitig längeren S-O-

Bindungen (s.o. und Strukturdiskussion Referenz [115]). Ihnen gegenüber stehen die in 

der Struktur von [R1R2-NSO] gebundenen Derivate 28 und 31. Hier finden sich die 

bereits beschriebenen längeren N-S- und kürzeren S-O-Bindungen wieder. Um einen 

zusammenfassenden Überblick zu erhalten, wurden neben dem bereits erwähnten Scan 

der Energiepotentialfläche, NBO und ELF-Rechnungen auch MO- sowie NRT aller 

Verbindungen angefertigt. Die Stammverbindungen [NSO]−, [H-NSO-H]+ und 

[H(H)NSO]+ sollen hierbei als Grundstrukturmotive dienen. Das MO-Bild im Fall von 

[NSO]− zeigt hierbei sehr eindeutig die 4-Elektronen-3-Zentren-Bindung (Abbildung 23).  

 

Abbildung 23. MO-Bild für die 4-Elektronen-3-Zentren-Bindung des [NSO]−. 

Das tiefstliegende unbesetzte Molekülorbital LUMO (MO3) ist vollständig unbesetzt. Im 

Gegensatz dazu stellt das MO1, welches das tiefstliegende besetzte Molekülorbital ist 

(HOMO), den bindenden Charakter entlang N-S-Bindung sowie S-O-Bindung dar. In der 

Mitte befindet sich das MO2, welches den antibindenden Charakter entlang der S-O-

Achse und bindenden Charakter entlang der NS-Bindung aufweist (Die Koeffizienten 

befinden sich in Referenz [181,182] Tabelle S18/S19). Eine Überlagerung der besetzten 

Molekülorbitale MO1 und MO2 verdeutlicht, dass es sich um eine schwache S-O-π-

Bindung und eine starke N-S-π-Bindung handelt. Die Bindungsordnung von ungefähr  

1 (S-O) und 2 (N-S) sowie die dominierende Lewis-Formeln (s. Schema 17) untermauern 

dieses Ergebnis.  
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Schema 17. Gewichtete Lewis-Formeln der Verbindungen [NSO]−, 26, 29, 28, 31, 30. Eine BF3-

Gruppe repräsentiert die Lewis-Säure B(C6F5)3 in den Fällen von 28 und 30.[181,182] 

Diese generelle Beschreibung gilt dabei besonders für die Strukturen [NSO]− sowie  

R-NSO und R-NSO-LS (R = H, Me3Si, LS = B(C6F5)3). Das Bild ändert sich 

dahingehend, dass es zu einer doppelten Koordination des Stickstoffs kommt, wie in den 

Fällen von 28 und 31. Hier wird deutlich, dass die Koeffizienten im MO1 des Sauerstoffs 

größer sind als die am Stickstoffatom. Daraus resultieren eine schwache N-S- und eine 

stärkere SO-π-Bindung. Das Ergebnis ist, dass die SO-Bindung kürzer und die  

N-S-Bindungen länger sind als in den einfach koordinierten Stickstoffverbindungen 26, 

29 und 28 (Tabelle 9). Die stärker dominierenden Lewis-Formeln R(LS)N-S=O (R = H, 

Me3Si, LS = B(C6F5)3, GaCl3) zeigen erneut denselben Trend wie die NBO- und 

Strukturergebnisse (Schema 17).  
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Zusammengefasst wird ein neuer und einfacher Syntheseweg für die Darstellung des 

äußerst labilen H-NSO vorgestellt. Ferner kann es erstmalig als Addukt isoliert und 

vollständig analytisch und strukturell beschrieben werden. Neben dem protonierten 

Derivat kann auch sein Trimethylsilyl-Analogon synthetisiert und ebenfalls verschiedene 

Lewis-Säure/Lewis-Base-Addukte vollständig charakterisiert werden.  

.  
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3.6 Synthese und Charakterisierung der silylierten Phosphorsäure und ihrer 
Derivate 
 

Es existiert lediglich eine strukturell bekannte homoleptische Silylphosphonium-

Verbindung der Form [(Me3Si)4P]+ (s. Schema 3). Ausgehend von der protonierten 

Phosphorsäure und ihren Derivaten wurde die klassische Säure-Base-Chemie auch auf ihr 

schweres silyliertes Analog übertragen. Die typischen Reaktionen, die dabei untersucht 

werden, sind zum einen die Anionenbildung mit stärkeren Basen und zum anderen die 

Kationenbildung mit stärkeren Säuren (Schema 18). 

A3PO4 + 3B [(AB)3]+ + [PO4]3-

A3PO4 + [A][Y] [A4PO4]+ + [Y]-

A3PO4 + 2B [(AB)2]+ + [APO4]2-

A3PO4 + B [AB]+ + [A2PO4]-

 

Schema 18. Säure-Base-Chemie der protonierten und silylierten Phosphorsäure, A = H, [Me3Si], 
B = Base, Y = schwachkoordinierendes Anion. 

Erstmalig in der Literatur erwähnt ist Tris(trimethylsilyl)phosphat (Me3SiO)3PO (33) 

1956 in Publikationen von Muller et al. und Franck und Sponer.[190,191] Jedoch wird die 

Synthe e   ed g  ch durch „herge t e  t  m L bor  n    % ger Re nhe t“ be c hr eben. Sekine 

und Mitarbeiter publizierten 1979 eine Synthese für 33 ausgehend von 

Tris(trimethylsilyloxy)phosphan und Methylphenylsulfoxid.[192] Schickmann und Rösler 

patentierten die Darstellung unter Verwendung von Me3SiCl und ortho-

Phosphorsäure.[193] Die japanische Arbeitsgruppe um Niida konnte ferner aufzeigen, dass 

eine selektive Darstellung eines gemischt protonierten / silylierten Phosphorsäure-

Derivats nicht möglich ist.[194] Es gelang uns, 33 in 96 %iger Ausbeute, ausgehend von 

KH2PO4 und Me3SiCl, ohne den Einsatz des giftigen Formamids nach einer neueren 

Vorschrift von Wessjohann zu isolieren (Schema 19).[195] 

KH2PO4 + Me3SiCl
n-Hexan, Rückfluß

OP(OSiMe3) + 2 KCl + HCl
A

 

Schema 19. Darstellung von 33. 
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Das 17O-NMR-Spektrum von 33 zeigt eine für Alkylverbindungen selten beschriebene 
17O-31P-Kopplung. Sie liegt mit 150 Hz im typischen Bereich eines monovalenten 

Sauerstoffs gebunden an einen Phosphor(V)-Kern.[196–198] Die chemische Verschiebung 

dieses Sauerstoffs beträgt 105 ppm, während die P-OSiMe3-Gruppen ins Tieffeld 

verschoben bei 83 ppm detektiert werden. Im Vergleich dazu besitzt zum Beispiel das 

alkylierte Trimethylphosphat (MeO)3PO ebenfalls zwei unterschiedliche 17O-NMR-

Signale, wobei beide Resonanzen im Vergleich zu 33 ins Tieffeld verschoben sind 

(δ(17O) = 74.5 / 23.3). Die 1J(17O-31P) Kopplungskonstante beträgt 160 Hz und ist somit 

im Bereich derer von 33 und anderen sauerstoffhaltigen Phosphor(V)-Spezies.[199]  

 

Abbildung 24. 17O-NMR-Spektrum (67.80 MHz) von 33 in CD2Cl2. 

Die zwei unterschiedlich valenten Sauerstoff-Spezies P-O und P-OSiMe3 sind auch im 

Raman-Spektrum zu beobachten (Abbildung 133). Die ν(P-O) Valenzschwingung ist bei 

1255 cm−1 zu detektieren, welche somit im Einklang mit der methylierten Spezies 

(MeO)3PO ν(P-O) = 1284 cm−1 ist.[200] Die Bande für die phasenverschobene P-OR 

Valenzschwingung von 33 (R = SiMe3) erscheint bei 1075 cm−1 und ist im Vergleich zur 

methylierten Spezies somit deutlich zu höheren Wellenzahlen verschoben (vgl.  

ν(P-OMe) = 849 cm−1).[200]  
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Ausgehend vom neutralen Derivat der silylierten Phosphorsäure kann durch den Umsatz 

mit dem Silylierungsmittel [(Me3Si)2H][B(C6F5)4] in Toluol das homoleptisch silylierte 

Phosphorsäure-Derivat [(Me3SiO)4P][B(C6F5)4] (34) gewonnen werden (Abbildung 25).  

 

Abbildung 25. Links: ORTEP-Darstellung der Molekülstruktur von 34 im Kristall. Fehlordnungen 

nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). Farbcode: Bor – braun, 

Kohlenstoff – grau, Fluor – blau, Phosphor – orange, Sauerstoff – rot, Silizium – pink, Wasserstoff 

– weiß, Rechts: Darstellung Kalottenmodells vom Kation. 

Das zentrale Phosphoratom ist tetraedrisch von vier Trimethylsiloxy-Resten umgeben. 

Die Phosphor-Sauerstoff-Bindungen liegen mit 1.509-1.534 Å im typischen Bereich einer 

PO-Doppe b ndung (vg . ∑rkov(P-     1.7  Å  ∑rkov(P=O) = 1.48 Å, dber(P-O) = 

1.55 Å).[99] Im Vergleich zur berechneten Gasphasenstruktur von 33 sind die Bindungen 

durch die Kationenbildung etwas verkürzt (dber(P-O) = 1.59 Å). Das PO4-Grundgerüst 

stellt eine starre Einheit dar. Die PO-Atomabständen in den Molekülen der Phosphorsäure 

bzw. dem Tetrahydroxyphosphonium-Kation weisen ähnliche Bindungslängen auf (vgl. 

H3PO4 d(P-O) = 1.55 Å,[201] [P(OH)4]+ d(P-O) = 1.53 Å[202,203]). Das Kation 

[(Me3SiO)4P]+ bildet eine Art Kugel mit dem positiven Ladungsschwerpunkt am 

zentralen Phosphoratom (q(P) = 2.75 e, Abbildung 25). Der große Kationen-Anionen-

Abstand verdeutlicht die nur schwachen attraktiven Wechselwirkungen aufgrund der 

kugelförmigen Gestalt der beiden Ionen (vgl. d(Kation-Anion) = 3.09 Å  ∑rkov(C-F) = 

3.17 Å). 

  



 
51 

Das 17O-NMR-Spektrum zeigt nun anstelle zweier Signale nur noch ein Signal ohne 

Kopplungsaufspaltung. Im Vergleich zur Ausgangsverbindung 33 ist das Signal leicht ins 

Hochfeld verschoben (δ(17O) 34 = 78.4, 33 = 83.1, Tabelle 17). Die Bande für die 

symmetrische und phasenverschobene (pv) P-OR-Valenzschwingung im Raman-

Spektrum wird bei 1100 cm−1 detektiert. Sie ist aufgrund der kürzeren PO-Bindungen und 

der stärkeren Polarisierung der Bindung im Vergleich zu 33 nochmals zu höheren 

Wellenzahlen verschoben (vgl. 33 νpv(P-OR) = 1075 cm−1). 

Die Darstellung des homoleptisch silylierten Kations 34 gelingt, wie bereits erwähnt, 

mithilfe eines stärkeren Silylierungsmittels [(Me3Si)2H][B(C6F5)4]. Die Synthese erfolgt 

in Analogie zur Darstellung des Tetrahydroxyphosphonium-Ions mithilfe der Supersäure 

HF/MF5 (M = As, Sb).[202,203] Ausgehend von diesen Ergebnissen sollen in Anlehnung an 

die klassische Säure-Base-Chemie die Darstellung der anionischen Spezies 

[O2P(OSiMe3)2]− und [O3POSiMe3] −  gelingen. Die Reaktion der neutralen Spezies 33 

mit einer starken organischen Base (B) sollte das Ionenpaar bestehend aus dem silylierten 

Kation [B-SiMe3]+ und das anionische Phosphat [O2P(OSiMe3)2]− liefern (35, Schema 

18). Im Zuge dessen war es möglich, durch die Umsetzung von Kalium tert-Butanolat mit 

33 das bisher unbekannte bissilylierte Phosphat-Anion zu generieren (Abbildung 26).  

 

Abbildung 26. ORTEP-Darstellung der Molekülstruktur von 35 im Kristall. Fehlordnungen und 

einkristallisiertes DME nicht dargestellt. Ellipsoide bei 50 % Wahrscheinlichkeit (123 K). 

Farbcode: Kalium – grün, Kohlenstoff – grau, Phosphor – orange, Sauerstoff – rot, Silizium – pink, 

Wasserstoff – weiß. 

 



 
52 

35 ist ein farbloses Salz, das bei 121 °C schmilzt und sich zersetzt. Das 17O-NMR-

Spektrum in CD2Cl2 zeigt weder Signale für den Kronenether noch für das Anion. Um 

Lösungsmitteleinflüsse auszuschließen wurde ein weiteres Spektrum in deuteriertem THF 

aufgenommen, doch bis auf das Lösungsmittel konnten auch hier keine weiteren Signale 

detektiert werden. Die Resonanzspektren der anderen Kerne hingegen weisen eindeutig 

auf die Bildung der anionischen Spezies hin. Die Resonanz der Siliziumkerne ist wie für 

die Anionen der anderen silylierten Mineralsäuren 19 und 23 (δ(29Si) (Me3SiO)2SO2 = 

33.6, [O3SOSiMe3]− = 28.0, (Me3Si)2S = 14.6, [SSiMe3]−   − .    . Kapitel 3.2 und 3.3) 

typisch ebenso ins Hochfeld verschoben (vgl. δ(29Si) 34 = 35.6, 33 = 20.4, 35 = 

10.3 ppm). 

Der Umsatz von zwei Äquivalenten Alkoholat und 33 führt zur Bildung einer 

hochviskosen Flüssigkeit. Das 31P-NMR-Spektrum der Reaktionslösung zeigt nur ein 

Signal, das für die Bildung der bissilylierten Spezies (35) spricht (δ(31P    −1 .7  33 = 

−13.0, [  P S  e  ber
 -  = 15.3, s. Anhang Tabelle 17). Die Bildung eines monosilylierten 

Dianions scheint somit nicht möglich zu sein. Ein Blick auf die Gasphasen-Struktur zeigt, 

dass sich ein stark gespannter Vierring bilden müsste (Abbildung 27). Für ortho-

Phosphate hingen ist unter Einfluss von Wärme und Entwässerungsreagenzien die 

Kondensationsreaktion unter Bildung von meta- und Polyphosphaten typisch.[204,205] 

Aufgrund der Tatsache das bei der Synthese des monosiylierten Dianions nur das Signal 

für 35 im 31P detektiert werden kann und das die Reaktionslösung hochviskos ist, könnte 

es zur Bildung von Polyphosphaten gekommen sein.  

 
Abbildung 27. Optimierte Gasphasenstruktur von [O3POSiMe3] − . Grau – Kohlenstoff, Grün – 

Silizium, Rot – Sauerstoff, Orange – Phosphor. ∡(OSiO) = 79°, ∡(OPO) = 89°. 
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3.7 Synthese und Charakterisierung der silylierten schwefligen Säure und 
ihrer Derivate 
 

Schweflige Säure ist, anders als die anderen beiden schwefelhaltigen Säuren, weder 

jemals im Festkörper noch in der kondensierten Phase isoliert worden. In der Gasphase 

hingegen ist es ein vermeintlich stabiles Molekül.[206,207] In wässriger Lösung liegen 

mehrere Gleichgewichte vor (Schema 20).[208–210] Wenn in der Gasphase SO2(g) mit H2O(g) 

reagiert, so ist die freie Gibbs-Enthalpie (        g  
  ) für diese Reaktion positiv und besitzt 

die Werte +8.5 kcal·mol−1 für die Bildung der schwefligen Säure (OS(OH)2)(g) und 

+22 kcal·mol−1 für die Bildung des Sulfonsäure-Tautomers (HSO3H)(g). Unter diesen 

gegebenen Bedingungen ist die Reaktion aus thermodynamischer Sicht somit nicht 

möglich. Versuche, schweflige Säure durch Einengen oder Temperaturerniedrigung zu 

isolieren, führen zur Kristallisation eines Clathrats SO2·5.75 H2O. Quantenchemischen 

Berechnungen zufolge bildet das H2SO3-Dimer ein thermodynamisches Minimum, das 

nicht zum direkten Zerfall in SO2 und H2O neigt.[211] 

SO2(aq) + H2O(l)

HO
S

OH

O

O
S

OH

H

O(aq) (aq)

HO
S

O

O

O
S

O

H

O(aq) (aq)

[H3O]+(aq)  + [H3O]+(aq)  +

2+

2+

+H2O

x2
2[H3O]+ + [S2O5]-2 + H2O

 

Schema 20. Tautomeriegleichgewichte der schwefligen Säure. 

Erdalkali- und Alkali(hydrogen)sulfite wie MgSO3 und CsHSO3 sind leicht zugänglich 

und strukturell bekannt.[212,213] In der Literatur finden sich keine Hinweise auf die 

Darstellung der kationischen schwefligen Säure. Sie ist bisher lediglich als MS-Fragment 

beobachtet worden.[214]  

Die Synthese der bissilylierten Neutralverbindung OS(OSiMe3)2 (36) soll auf 

verschiedene Arten gelingen. Ein erster Versuch, SO2 durch eine 0 °C gekühlte 

(Me3Si)2O-Lösung hindurch zu leiten, lieferte nicht den erhofften Silylether 36  
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(Schema 21, Reaktion 1). Ein Blick auf die Thermodynamik dieser Reaktion in der 

Gasphase zeigt, dass aus quantenchemischer Sicht, ebenso wie für die schweflige Säure, 

die Gibbs-Enthalpien positiv sind (          g  
  36 = +8.0 kcal·mol−1, Me3SiOS(O)OSiMe3 

= +28.2 kcal·mol−1). Diverse in Schema 21 dargestellte Syntheserouten liefern in keinem 

Fall das gewünschte Produkt. Als Syntheseprodukte werden in der Regel quantitativ 

Edukte, Me3SiCl, SO2 oder (Me3Si)2O isoliert. Die unterschiedlichen Ansätze reichen 

dabei über Redox-Reaktionen, Salzmetathese-Reaktionen, Fällungsreaktionen und 

Reaktionen mit Lewis-Säuren sowie –Basen zur Stabilisierung des gewünschten Produkts 

bzw. zum Abfang unerwünschter Nebenprodukte (Schema 21).  

Me3SiSiMe3 (Me3SiO)2SO2 (Me3SiO)2SO + (Me3Si)2O+
pur, 

Me3SiH Me3SiOS(O2)Cl (Me3SiO)2SO + [(C2H5)3NH]Cl+
Toluol

N(C2H5)3 +

SOCl2 2 (Me3Si)2O (Me3SiO)2SO + 2 Me3SiCl+
75 % H2SO4

(Me3SiO)2SO2 (Me3Si)2S (Me3SiO)2SO + (Me3Si)2SO+
p-Xylol, 

2 Na[OSiMe3] SOCl2 (Me3SiO)2SO + 2 NaCl+
Lösungsmittel*

2 Na[OSiMe3] SOCl2 (Me3SiO)2SO + 2 NaCl+
Lösungsmittel, LS

2 Me3SiOH SOCl2 (Me3SiO)2SO ++
Et2O

2 N(C2H5)3 +

2 Me3SiCl (Me3SiO)2SO + 2 AgCl
n-Pentan

Ag2SO3 +

2 [(C2H5)3NH]Cl

(Me3Si)2O SO2 (Me3SiO)2SO+ (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

 

Schema 21. Versuchte Darstellungen von 36, getestete Lösungsmittel* = Toluol, CH2Cl2 und 
THF, LS = Lewis-Säure. 

Die Bildung des bissilylierten 36 scheint also ebenso schwer synthetisch umzusetzen zu 

sein wie die Synthese von H2SO3. In der Literatur findet sich lediglich ein Beispiel eines 

spektroskopisch untersuchten mono-trimethylsilylierten Sulfit-Anions dem 

[NH4][O2SOSiMe3] von Bennett und Spicer.[215–217] Dieses weist eine ungewöhnlich stark 

ins Tieffeld verschobene 29Si-NMR-Resonanz von 37.9 ppm auf.[215] GIAO-Rechnungen 

zufolge besitzt die anionische Spezies [O2SOSiMe3]− eine NMR-Verschiebung von 

δber(29Si) = 0.3 ppm. Das korrespondiere anionische Sulfonsäure-Tautomer besitzt eine 

noch weiter ins Tieffeld verschobene NMR-Resonanz von δber(29Si)   −1 .  ppm  

(Tabelle 10).  
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Tabelle 10: δber(29Si) einiger ausgewählter trimethylsilylierter Sulfit-Verbindungen. 

 

Verbindung δber(29Si) 
  

[O2SOSiMe3]− (37) 0.3 

[Me3SiSO3]− −10.9 

OS(OSiMe3)2 (36) 30.3 

Me3SiS(O)2(OSiMe3) 28.2 / 32.9 

[S(OSiMe3)3]+ 59.6 

[Me3SiS(O)(OSiMe3)2]+ 69.1 / 62.6 

HS(O)2(OSiMe3) 41.4 

OS(OH)(OSiMe3) 34.9 

Me3SiS(O)2OH 32.7 

H3N·HS(O)2(OSiMe3) 35.0 

Me3SiS(O)2OH·NH3 25.2 

Me3SiOS(O)OH·NH3 28.8 

 

Aus Tabelle 10 geht hervor, dass das freie anionische, trimethylsilylierte Sulfit-Ion eine 

weitaus niedrigere 29Si-NMR-Verschiebung als den von Bennett und Spicer publizierten 

Wert von δ(29Si) = 37.9 ppm besitzen müssen. Dem hingegen sind ihrer publizierten 

Verbindung eher neutrale protonierte Spezies sowie Lewis-Säure / Lewis-Base-Addukte 

mit Ammoniak im Bereich zwischen δ(29Si) = 25.2 und 41.4 ppm zuzuordnen. In einer 

anderen Herangehensweise ist es uns gelungen [THF·M][O2SOSiMe3] (M = Na, K) zu 

synthetisieren. In Anlehnung an die Chemie der Carbonate, soll mittels Durchleitung von 

gasförmigem SO2 durch eine Lösung von Natrium/Kalium-trimethylsilanolat, das 

monosilylierte anionische Sulfit (37) gewonnen werden (Schema 22).[218,219] Die 29Si-

NMR-Resonanz dieses Produktes liegt mit 9.1 ppm (THF-[D8]), 14.8 ppm (CD3OD) im 

zu erwartenden Bereich (vgl. δber(29Si) = 0.3 ppm, Tabelle 10). 37 ist sehr schlecht in 

polaren protischen sowie aprotischen Lösungsmitteln wie THF, MeOH oder DMSO 
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löslich. Selbst der Zusatz von 15-Krone-5 als Lösungsvermittler führt zu keiner 

deutlichen Verbesserung dieser Eigenschaft.  

M[OSiMe3] + SO2 M[O2SOSiMe3]
A

THF

K[O2SOSiMe3] + Me3SiCl OS(OSiMe3)2 + KCl
A

n-Hexan, Rückfluß

(37)

(36)  

Schema 22. Darstellung von 37 und 36, M = Na, K. 

Die Darstellung von 36 ausgehend von 37 mithilfe von Me3SiCl, ebenfalls in Anlehnung 

an die Carbonat-Chemie,[218,219] führte nicht zur Isolation des gewünschten Produkts 

(Schema 22). Das 29Si-NMR-Spektrum zeigt nach einstündigem Refluxieren in n-Hexan 

lediglich das Signal für das Zersetzungsprodukt Hexamethyldisiloxan O(SiMe3)2 bei 

7.07 ppm. Unter der Annahme der leichten thermischen Zersetzlichkeit von 36 wurde der 

Versuch in einem polareren Lösungsmittel wie THF bei Raumtemperatur wiederholt. Als 

Reaktionsprodukte kann im 29Si-NMR-Spektrum diesmal neben den Edukten und 

(Me3Si)2O nur noch eine weitere Spezies mit einer für das bissilylierte Sulfit erwarteten 

Verschiebung von 23 ppm nachgewiesen werden (vgl. δber(29Si) 37 = 30.3, s. Anhang 

Abbildungen 104-107).  
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3.8 Synthese und Charakterisierung von H-PCO* 
 

Isocyansäure H-NCO[220] gehört genauso wie ihre drei anderen Strukturisomere 

(Cyansäure H-OCN[221], Fulminsäure H-CNO[222,223] und Isofulminsäure H-ONC[224,225]) 

zu den Pseudohalogen-Wasserstoffsäuren. Das schwere Homolog 

Oxymethylidinphosphan H-PCO (38) konnte bisher nur durch Gasentladungsexperimente 

in extrem verdünnten PH3/CO-Mischungen nachgewiesen werden. Es existieren 

Mikrowellen[226,227] und IR-Spektren[228], die wie zahlreiche quantenchemische 

Publikationen[229–234] die Existenz des ausschließlich Phosphor-gebundenen Isomers 

nahelegen. Die computergestützten Daten zeigen auf, dass 38 unter interstellaren 

Bedingungen eine stabile Verbindung darstellen könnte. Alle bisher experimentell 

ermittelten Daten stammen somit auch aus Experimenten, die bei sehr tiefen 

Temperaturen und niedrigen Drücken H-PCO generiert haben.[227,228] Um diesen äußerst 

ungünstigen Umstand zu umgehen, haben wir dieselbe Herangehensweise wie für die 

Synthese des labilen Thionylimids (26) gewählt.[181,182] Die Synthese erfolgt erneut in 

Analogie zu der Vorschrift von Günther, Meyer und Müller-Skjøld ausgehend von einer 

Fettsäure und einem 2-Phosphaethynolat Ion-Präkursor (Schema 23, vgl. Schema 14).[180]  

[Na   Dioxan][PCO] + Me(CH2)16COOH Na[O2C(CH2)16Me] + Dioxan + HPCO
pur,   

Schema 23. Synthese von 38. 

Dass es sich bei der so entstanden Pseudohalogen-Wasserstoffsäure ausschließlich um das 

Phosphor-gebundene Isomer handelt, legen DFT-Rechnungen nahe. Die Energiedifferenz 

zwischen den beiden Isomeren H-PCO und PCO-H beträgt 23.1 kcal·mol−1. Durch DFT-

Rechnungen konnte die für die Umwandlung erforderliche Energie zur Überwindung der 

Aktivierungsbarriere von 67.9 kcal·mol−1 und der dazugehörige Reaktionspfad durch 

IRC-Rechnungen ermittelt und bestätigt werden. Das 31P-NMR-Tieftemperatur-Spektrum 

unterm ue rt d e theoret  c hen Befunde. E  w rd nur e n S gn   be  − 16.7 ppm m t e ner 
1J(31P-1H) Kopplungskonstanten von 188 Hz detektiert.[235] Ebenso lassen sich jeweils im 
1H-NMR-Spektrum (δ(1H) = 0.25 ppm, 1J(1H-31P) = 188 Hz) sowie im 13C{1H}-NMR-

Spektrum (δ(13C{1H}) = 201.4 ppm, 1J(13C-31P) = 102 Hz) lediglich ein Signal finden. 

Alle experimentell gefundenen Werte stimmen sehr gut mit ihren berechneten überein 

und schließen erneut die Existenz des PCO-H-Isomers aus (δber(31P) 38   −   , PCO-H = 

−273, δber(13C) 38 = 206, PCO-H = 234). Gleichzeitig kann aufgrund deutlicher NMR-
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Verschiebungs-Unterschiede die Existenz eines anionischen [PCO]−-Derivats 

ausgeschlossen werden (vgl. [K@18-Krone-6][PCO][236,237] δ(31P    −  7  δ(13C) = 

170 ppm, 1J(13C-31P) = 62 Hz). In Dichlormethan oder Toluol gelöstes H-PCO stellen 

metastabile Lösungen dar, welche über acht Stunden bei −50 °C stabil sind. Bei 

Raumtemperatur zersetzen sich die 38-Lösungen innerhalb einer halben Stunde. In THF 

hingegen ist das H-PCO so reaktiv, dass die Lösungen sich bereits bei tiefen 

Temperaturen neben P2H4 (δ(31P    − 11  und P 3 (δ(31P    − 41  zu diversen 

Oligomeren zersetzen.[235]  

Unter dieser Voraussetzung ist es klar, dass lediglich Reaktionen mit adäquaten 

Reaktanten nur bei tiefen Temperaturen durchgeführt werden können. Jedoch kam es 

weder mit Acetonitril, Dimethylbutadien, Diphenylacetylen noch mit Metallkomplexen 

wie Cp*Ru(dppe)Cl oder dem Vaskas-Komplex (Ir(PPh3)2(CO)Cl) zu einer Reaktion. 

Das Erwärmen der Reaktionen führte ausschließlich zu den bereits beschriebenen 

Zersetzungsprodukten.  

In Anbetracht der Tatsache, dass das ebenfalls labile H-NSO bereitwillig mit Lewis-

Säuren, wie B(C6F5)3 oder GaCl3, (siehe oben) Addukte bildet, wurde versucht dieses 

Vorgehen auch auf H-PCO zu übertragen. Die Reaktionen liefern jedoch erneut nur 

Zersetzungsprodukte. Ein Blick auf die quantenchemisch berechneten Gasphasen-

Strukturen zeigt ebenfalls, dass es keine stabilen Lewis-Säure / Lewis-Base-Addukte auf 

der Energiehyperfläche gibt (Schema 24).  

H

P C O

B(C6F5)3 H

P C O

B(C6F5)3

P C O

H(F5C6)3B

P C O

B(C6F5)3H

2.22

3.06

3.91
2.77

23.5

0.0 3.0

23.7  
Schema 24. Isomere von 38·B(C6F5)3 - Addukten mit dazugehörigen B-P- und B-O-Abständen [Å] 
und relativen Energien [kcal·mol−1].# 

________________________________________________________________________ 
# Berechnungen auf dem Niveau PBE1PBE/6-31++G(d,p) unter Berücksichtigung von 
empirischer Dispersion (gd3bj). 
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Die berechneten Phosphor-Bor bzw. Sauerstoff-Bor Abstände von Lewis-Säure / Lewis-

Base-Addukten liegen allesamt weit außerhalb derer der Kovalenzradien für 

E nf chb ndungen (vg . ∑rkov(B-P) = 1.96 Å,[189] ∑rkov(B-O) = 1.50 Å).[99] Bei allen 

untersuchten B(C6F5)3-Isomeren handelt es sich somit um sehr schwach gebundene van 

der Waals Addukte. Ein genauerer Blick auf die Bindungs- und Ladungssituation von 38 

zeigt, warum es so schwierig ist Lewis-Base / Lewis-Säure-Addukte zu bilden 

(Abbildung 28, Abbildung 29).  

 
Abbildung 28. NBO-Darstellung von 38.  

In Abbildung 28 sind die Molekülorbitale dargestellt, die womöglich den größten Einfluss 

bezüglich der Reaktivität auf H-PCO haben. Sowohl das LUMO als auch das LUMO+2 

zeigen sehr eindeutig den antibindenden Charakter entlang der HP-C sowie der C-O-

Bindung. Das      ze gt h upt äc h  ch den π-Bindungsanteil entlang der P-C-

Bindung. Ferner zeigt das HOMO-2 den starken s-Orbital Einfluss des freien 

Elektronenpaares am Phosphor-Atom. 

Ein Blick auf die NBO-Ladungen zeigt ebenfalls, dass es sich bei H-PCO nur um ein sehr 

schwach polarisiertes Molekül handelt. Das Proton und der Phosphor besitzen Ladungen 

von 0.05 e und 0.03 e. Auf der anderen Seite weist der Kohlenstoff eine Ladung von 
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0.37 e und der S uer toff  e ne L dung von − .44  e auf (Abbildung 29). Dies führt dazu, 

dass es sich bei 38 weder um ein besonders gutes Nukleophil noch Elektrophil handelt.  

H

P C O
+0.37

-0.44+0.03

+0.05

(1.43)

(1.68) (1.16)

86.7°

175.5°

  
Abbildung 29. 38 - Links: Bindungswinkel, (Bindungslängen) in [Å] und NBO-Ladungen in [e] 

der optimierten Gasphasen-Struktur. Rechts: ELF zweidimensionaler Profilschnitt durch die (H)-P-

C-O-Ebene. 

Die ELF von 38 zeigt all diese Phänomene noch einmal. Zum einen erkennt man sehr gut 

das freie Elektronenpaar am Phosphoratom und zum anderen die ausgeglichene 

Ladungsverteilung entlang der PCO-Achse. Mit Bindungsordnungen von 1.43 (C-O) und 

1.36 (P-C) lassen sich auch sehr gut die berechneten Bindungslängen in der Gasphase in 

Einklang bringen (s. Abbildung 29  vg . ∑rkov(P C    1.67 Å  ∑rkov(C=O) = 1.19 Å).[99] 

Die Trägheit des HPCO-Moleküls mit Lewis-Säuren zu reagieren, wird noch einmal 

deutlich durch die Reaktion mit dem äußerst starken  

Elektrophil [Me3Si]+. In einem ähnlichen Ansatz, wie in Schema 23 beschrieben, wurde 

versucht H-PCO auf eine Suspension aus [Me3Si···Toluol][B(C6F5)4] aufzukondensieren 

und das silylierte Molekül abzufangen. Bedingt durch die schlechte Löslichkeit des 

Silylierungsmittels als auch die quantenchemischen Daten zeigt sich auch hier, dass keine 

Reaktion stattfinden kann. In den NMR-Spektren der Reaktionslösung konnten nur 

Signale für Zersetzungsprodukte wie z.B. PH3 detektiert werden.  

  

Längeneinheit: Bohr 
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H

P C O

SiMe3
(1.96)(1.64) (1.19)

(1.44)
Me3Si

P C O

H
(0.98)(1.58) (1.26)

(2.47)

 24.1

P C O

SiMe3
(1.97)(1.53) (1.34)

(0.97)
H

P C O
(1.43)

(1.74) (1.13)(2.43)

31.3

8.9

Me3Si

H
0

 
 
Schema 25 (Bindungslängen) in [Å] und relative Energien in [kcal·mol−1] für verschiedene 
[Me3Si/H···PCO]+-Isomere. 

Ein Blick auf die optimierten Gasphasen-Strukturen zeigt zunächst, dass das Isomer, 

welches eine P,P-Koordination der beiden Substituten besitzt, allen anderen Isomeren 

bevorzugt ist (Schema 25). Dennoch wird auch hier deutlich, dass die Bindung zwischen 

Lewis-Säure und Lewis-Base äußerst schwach ist. Die Si-P-Bindung ist mit 2.43 Å 

abermals weit länger als die Summe der Kovalenzradien für eine Si-P-Einfachbindung 

(∑rkov(Si-P) = 2.27 Å). Der Ladungstransfer von H-PCO auf das Silylium-Ion beträgt in 

diesem Fall  ed g  ch − .51  e, was vermutlich zu wenig für eine Donor-Akzeptor-

Bindung oder gar eine kovalente Bindungsbildung ist.  

Zusammenfassend ist festzustellen, dass metastabile H-PCO-Lösungen durch eine relativ 

einfache Syntheseroute zugänglich sind, diese jedoch keine besonders gute Reaktivität 

aufweisen. Nichtsdestotrotz gelangen die erstmalige Synthese und der analytische 

Nachweis ebenjenes Synthesebausteins in der kondensierten Phase. 

 

 

 

 

 

* Dieses Kapitel ist in enger Zusammenarbeit mit der Arbeitsgruppe um Prof. Dr. José 
Goicoechea (Universität Oxford) entstanden. Dabei wurden sämtliche quantenchemische 
Rechnungen auf das in dieser Arbeit verwendete System (Basissatz/Methode) angepasst. 
Mein Anteil umfasst weiterhin die Syntheseversuche der Lewis-Säure / Lewis-Base-
Addukte von H-PCO mit B(C6F5)3 sowie [Me3Si][CHB11Cl11].   
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4 Zusammenfassung und Ausblick 
 

Ziel der Arbeit war es neue homoleptische Silylonium-Ionen zu synthetisieren und zu 

charakterisieren. Diese sollen mit ihren protonierten Derivaten verglichen werden. 

Zunächst wurden eine Reihe von verschiedenen Trityl-Salzen, welche erstmalig 

vollständig charakterisiert und analysiert wurden, synthetisiert. Nur wenige dieser Trityl-

Salze eignen sich für die Synthese von [Me3Si]+-Präkursoren. Die Trimethylsilylium-

Salze der Carborate sind hervorragende Donoren der [Me3Si]+-Gruppe. Im Zuge dessen 

konnten einige neue Zusammenhänge zwischen experimentellen und theoretischen Daten 

von verschiedenartig halogenierten Käfiganionen aufgezeigt werden.  

Die erhaltenen [Me3Si]+-Salze konnten für die erfolgreiche Silylierung des Sulfat- sowie 

Phosphat-Ions eingesetzt werden. Gleichzeitig konnten auch bisher unbekannte silylierte 

anionische Spezies wie das [O3SOSiMe3]− oder [O2P(OSiMe3)2]− erhalten werden. Die 

Chemie der neutralen Spezies ähnelt somit sehr der Chemie protonierter Mineralsäuren. 

Dies zeigt sich auch im schwierigen Zugang zu den silylierten Derivaten der schwefligen 

Säure. Es konnte somit das klassische Konzept der Säure-Base-Chemie auf seine 

silylierten Vertreter übertragen werden. Das [Me3Si]+-Ion kann als das große Lewis-saure 

Pendant zum H+-Ion angesehen werden. Dies zeigt sich besonders in der einfachen 

Abstraktion und Addition beider Spezies von den Säurerest-Ionen.  

Ferner konnten neue Synthesewege für den einfachen Zugang zu sehr labilen Spezies wie 

H-NSO und H-PCO gezeigt werden. So gelang es erstmals auch mithilfe einer Lewis-

Säure ein H-NSO-Addukt zu kristallisieren und kristallographisch zu untersuchen. Das 

NSO erweitert somit die Reihe der Verbindungen des klassischen Pseudohalogenkonzepts 

wie CN, N3 oder auch NCS. H-PCO stellt hingegen eine zu schwache Base bzw. ein zu 

schwaches Nukleophil dar, sodass seine Reaktivität gegenüber Lewis-Säuren nicht 

erfolgreich untersucht werden konnte. Auch zahlreiche quantenchemische Analysen 

untermaueren diese Ergebnisse.  

Ein Schwerpunkt für Folgearbeiten kann die Synthese der Kationen der persilylierten 

Kohlensäure sein. Ferner würden Untersuchungen zu den Derivaten der salpetrigen Säure 

und Salpetersäure das Spektrum der klassischen Mineralsäuren und ihrer silylierten 

Analoga vervollständigen.  
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5 Anhang 

5.1 Arbeitstechnik 
 

Sofern nicht anders angegeben, wurden alle Experimente, bei denen absolute 

Lösungsmittel verwendet wurden, unter Argon-Atmosphäre mit Hilfe der Schlenk-

Technik durchgeführt. Alle Glasgeräte werden dafür dreimal mit einem Heißluftgebläse 

im Hochvakuum ausgeheizt und unter Argon-Atmosphäre abgekühlt. Das Ab- und 

Umfüllen Hydrolyse-empfindlicher Substanzen wird in einer Drybox unter 

Inertgasatmosphäre (Argon) durchgeführt. Lösungsmittel werden unter Argon-

Atmosphäre destilliert und für die Versuche mit Einwegspritzen umgefüllt. Die 

Einwegspritzen werden zuvor dreimal mit Argon gespült. 

Die verwendeten Lösungsmittel werden über den Chemikalienhandel erhalten und wenn 

nötig nach literaturbekannten Methoden gereinigt und getrocknet (Tabelle 11).[238] 

Dichlormethan CH2Cl2, wird analog zu einer Literaturvorschrift[239] gereinigt und ebenso 

wie CD2Cl2 erst über Phosphorpentoxid (P4O10), dann über Calciumhydrid (CaH2) 

getrocknet und destilliert. Tetrahydrofuran THF, Diglyme, Diethylether Et2O, 

Dimethoxyethan DME und Toluol werden über Na/Benzophenon getrocknet und frisch 

destilliert. n-Hexan sowie n-Pentan werden über Na/Benzophenon/Tetraglyme getrocknet 

und frisch destilliert. 1,2-Dichlorbenzol und Chloroform werden über P4O10 getrocknet 

und frisch destilliert. Ethanol wird über Natrium frisch destilliert. Acetonitril wird über 

CaH2 getrocknet und frisch destilliert. Ausgangsverbindungen werden entweder über den 

Chemikalienhandel erhalten oder nach bekannten Vorschriften aus der Literatur 

hergestellt. 

 

Tabelle 11: Eingesetzte Chemikalien, deren Herkunft und Reinigung. 
 

Substanz Herkunft Reinigung 
   Me3SiCl (99 %) Merck Über CaH2 destilliert 

Me3SiH Synthetisiert[1,2] Über CaH2 gelagert 

B(C6F5)3 Synthetisiert[1,2]  

Na[OSiMe3] 95 % ABCR Sublimiert im HV mit  

(S. 185) 

Me3SiSiMe3 Synthetisiert  
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Li[N(SiMe3)2] Synthetisiert[240] Sublimation (HV) 

(Me3Si)3N Synthetisiert[74]  

[(Me3Si)2H][B(C6F5)4] Synthetisiert[1,2]  

(Me3SiO)3PO Synthetisiert[195] (S. 226) 

BCl3 (99.9 %) Aldrich  

BCl3/n-Hexan Synthetisiert[1,2]  

Stearinsäure 99 % VEB Apolda Im HV für 2 h getrocknet 

C6BrF5 (99%) Alfa Aeser Destilliert 

AlCl3 (subl, +98 %). Riedel-de-Haën Sublimiert (120°C, HV) 

GaCl3 (99.999 %) Aldrich Sublimiert (RT, HV) 

[Ph3C][SbCl6] (99 %) Alfa Aeser (S. 194) 

NaN3 > 99 % Aldrich  

Ag[BF4] 99 % Acros  

Ag2[SO3] Synthetisiert  

Ag[AsF6] 99 % Alfa Aeser  

Ag[SbF6] 98 % ABCR  

Ag[PF6]  Synthetisiert K[PF6] + Ag[NO3] in 

CH3CN 

Ag[OS(O)2CF3]  Synthetisiert[241]  

Ag[OC(O)CF3]  Synthetisiert[242]  

Ag[CHB11H5Br6] Synthetisiert[243]  

Ag[CHB11H5Cl6] Synthetisier [243]  

Ag[CHB11Cl11] Synthetisiert[115]  

K[PF6] 99 % ABCR  

KH2[PO4] (99-100 %) VEB Laborchemie Apolda  

Li (>99 %) Merck Abgetupft mit Papier 

S8 VEB Laborchemie Apolda  

H2SO4 (95 %) Chemsolute  

K[OCMe3] (>97 %) Fluka Sublimiert 220 °C (HV) 

18-Krone-6 ( 99 %) Fluka Zweimal aus Acetonitril 

umkristallisiert 

anschließend zweimal aus 

THF 
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OPMe3 (98 %) Riedel-de-Haen AG Aus CH2Cl2 umkristallisiert 

(Me3Si)2S Synthetisiert[244] (S. 210) 

(Me3SiO)2SO2 Synthetisiert[5] (S. 203) 

SOCl2 (+99.5%) Acros Destilliert 

Me3SiNSO Synthetisiert[245] (S. 219) 

K[NSO] Synthetisiert[186] (S. 215) 

SO2Cl2 (z. Syn. 98%) Merck destilliert 

CsOH·H2O (98%, Cs2CO3 

<0.5%) 

Alfa Aeser  

NaOH (Plätzchen Ph. Eur. 

98.8%) 

VWR  

KOH (Plätzchen z.A. min. 

85%) 

Th. Geyer  

NaH (Öl-Dispersion 57-

63%) 

Alfa Aeser Extraktion mit n-Hexan 

Trimethylaminhydrochlorid 

(98%) 

TCI  

NaBH4 (Pulver, 98%) ABCR  

Ph3CBr (98%) Alfa Aeser Aus Benzol/ 2 mL 

Acetylbromid 

umkristallisiert 

Acetylbromid 98+ % Alfa Aeser  

Ph3CCl (purum., >97%) Fluka Aus n-Hexan/ 2 mL 

Acetylchlorid 

umkristallisiert 

Natrium Stücke (99%) Aldrich  

Benzophenon (GC, 99%) Aldrich  

CaH2 (extra pure, ca. 93%, 

 0-2 mm Korngröße) 

Acros  

Trifluormethansulfonsäure Fluorochem Destilliert 

CsCl (99.5 %) Fluka, Bio Chemica  

Na2SO3 VK Labor- u. 

Feinchemikalien 
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P4O10 (Pulver, >99%) Carl Roth  

1,1,1,3,3,3-

Hexamethyldisilazan 

Merck Destilliert 

Digylme (99%, stabl. mit 

100 ppm BHT) 

Alfa Aeser Destilliert über 

Na/Benzophenon 

AgNO3 Altbestand  

BF3·OEt2  BASF Destilliert 

1,2-Dichlorbenzol (zur 

Synthese >98%) 

Merck Destilliert über P4O10 

anschließend über CaH2 

destilliert 

Kieselgur (geglüht, 

gereinigt) 

Riedel-de-Haën  

Aceton-[D6] (99.9%) Euriso-Top Gelagert über Molsieben  

CD3CN (99.8%) Aldrich Destilliert über CaH2 

Benzol-[D6] (99.9%) Euriso-Top Destilliert über Natrium 

DMSO-[D6] (99.9%) Euriso-Top Destilliert über CaH2 

Toluol-[D8] (99.9%) Euriso-Top Destilliert über Natrium 

THF-[D8] Euriso-Top Destilliert über Natrium 

und über Molsiebe (3 Å) 

bei 5 °C gelagert  

CD2Cl2 (99.9%) Euriso-Top Destilliert über P4O10, 

anschließend über CaH2 
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5.2 Analysemethoden 
 

Einkristallstrukturanalyse 

 

Kristalle zur Einkristallröntgenstrukturanalyse wurden in Kel-F-Öl (Riedel-de-Haën) oder 

Fomblin YR-1800 (Alfa Aesar) bei Raumtemperatur selektiert. Alle Proben wurden 

während der Messung auf 173(2) K oder 153(2) K gekühlt. Die Daten wurden auf einem 

Bruker-Nonius Apex X8 CCD Diffraktometer, Bruker D8 Quest Diffraktometer oder einem 

Bruker Apex Kappa-II Diffraktometer mit monochromatischer (Graphit) Mo- α -

Str h ung (λ    .71 7  Å   ufgenommen. D e Strukturen wurden durch d rekte  ethoden 

(SHELXS-2013)[246] bzw. (SHELXS-2014)[247] gelöst und durch full-matrix least squares 

Prozeduren (SHELXL-2013)[248] bzw. (SHELXL-2014)[249] verfeinert. Semi-empirische 

Absorptionskorrekturen wurden angewendet (SADABS).[250] Alle Nicht-Wasserstoff-

Atome wurden anisotrop verfeinert, Wasserstoff-Atome wurden, insofern sie nicht frei 

verfeinert werden konnten, rechnerisch eingefügt. 

 

NMR-Spektroskopie 

 
75As, 31P-, 31P{1H}-, 29Si{1H}-, 29Si-INEPT- 19F-, 19F{1H}-, 17O-, 1H, 15N-HMBC-, 14N, 
14N{1H}-, 13C{1H}-, 11B-, 11B{1H}, 10B, 10B{1H}, 1H{11B}, 1H, 1H,1H-COSY, 1H,13C-

HMBC, 1H,13C HSQC-NMR-Spektren wurden auf einem Bruker AVANCE 250 

Spektrometer (mit einem BBO Probenkopf), auf einem Bruker AVANCE 300 

Spektrometer (mit einem BBFO Probenkopf), auf einem Bruker AVANCE 400 

Spektrometer (mit einem BBO Probenkopf) oder auf einem Bruker AVANCE 500 

Spektrometer (mit einem BBO Probenkopf) aufgenommen. Die NMR-Spektren wurden 

intern auf die verwendeten deuterierten Lösungsmittel oder protischen Verunreinigungen 

kalibriert. Kalibrierung der X-Kerne – 31P−NMR: extern 85 % H3PO4: 0 ppm, 29Si−NMR: 

extern Me4Si: 0 ppm, 19F−NMR: (CCl3F) extern ppm, 1H,15N−HMBC−NMR: extern ⅓‰ 

CH3NO2 / Lösemittel: 0 ppm, 14N{1H}−N R  extern ⅓ ‰ C 3NO2 / Lösemittel: 0 ppm, 
13C{1H}−NMR: DMSO-[D6]: (CD3) 39.5 ppm; CD2Cl2: 54.0 ppm; Aceton-[D6]: (CD3) 

29.84 ppm; CD3CN: (CD3) 1.32 ppm; Toluol-[D8]: (CD3) 20.43 ppm; Benzol-[D6]: 

128.06 ppm, THF-[D8]: (OCCD2) 25.31 ppm, 11B-NMR: extern BF3·OEt2: 0 ppm, 
1H−NMR: DMSO-[D6]: (CD2H) 2.5 ppm, CD2Cl2 (CDH): 5.32 ppm; Aceton-[D6]: 

(CD2H) 2.05 ppm; CD3CN: (CD2H) 1.94 ppm; Toluol-[D8]: (CD2H) 2.08 ppm; Benzol-



 
68 

[D6] (CD5H): 7.16 ppm, THF-[D8]: (OCCDH) 1.72 ppm. Die δ(15N)-NMR-Resonanzen 

werden  ntern  uf d e “un f ed  c   e” kalibriert.[251] Dabei entspricht [15N] = 10.136767 

der Verschiebung von Nitromethan bei 0 ppm.[252] Die Spektren werden als inverses 2D-

NMR-Spektrum aufgenommen.  

Die NMR-Messungen von [(Me3Si)3S][B(C6F5)4] in Toluol oder 1,2-DCB werden auf 

extern verwendete Lösungsmittel kalibriert. Die NMR-Messungen von Me3SiNSO in 1,2-

DCB werden auf extern verwendete Lösungsmittel, wie Toluol-[D8] kalibriert. 

 Dabei wird in das äußere Young-Hahn-NMR-Rohr ein inneres, kleineres 

Präzisionsglasrohr mit dem jeweiligen deuterierten Lösungsmittel gesteckt. Die 

Beschreibung der NMR-Spektren erfolgen wie folgt: (Lösungsmittel ext. ref. deuteriertes 

Lösungsmittel). 

 

IR-Spektroskopie 

 

Für die Aufnahmen der Spektren wurde ein Nicolet 380 FT-IR-Spektrometer mit einer 

Smart Orbit ATR-Einheit verwendet. 

 

Raman-Spektroskopie 

 

Für die Aufnahme der Spektren wurde entweder ein a) Bruker VERTEX 70 FT-IR mit 

RAM II FT-Raman-Modul ausgerüstet mit einem Nd:YAG-Laser (1064 nm) verwendet 

oder ein b) LabRAM HR 800 Horiba Jobin YVON, ausgestattet mit einem BX40 

Mikroskop (Fokus 1 μm) oder einer Olympus Mplan 50xNA 0.70 Linse. Zur Anregung 

wurde ein Infrarotlaser (785 nm, 100 mW, luftgekühlter Diodenlaser), ein roter Laser 

(633 nm, 17 mW, HeNe-Laser), ein grüner Laser (532 nm, 50 mW, luftgekühlter, 

frequenzverdoppelter Nd: YAG-Festkörperlaser) oder ein blauer Laser (473 nm, 20 mW, 

luftgekühlter Solid State Laser) verwendet. 

 

Elementaranalyse 

 

Verwendet wurde ein Flash EA 1112 Analysator von Thermo Quest oder ein A vario 

MICRO cube (Elementar). 
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Schmelzpunkt 

 

Die Schmelzpunkte sind nicht korrigiert (EZ-Melt, Stanford Research Systems). Heizrate 

20°C/min (Klärpunkte werden angegeben).  

 

DSC 

 

DSC: 823e von Mettler-Toledo (Heizrate 5°C/min) wurde verwendet. 
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5.3 Anmerkungen  
 

5.3.1 Quantenchemische Rechnungen 
 

Sämtliche Rechnungen wurden mit dem Programm Gaussian09[253] durchgeführt. Die 

Rechnungen wurden alle mit der DFT-Methode PBE1PBE[254–256] durchgeführt. Ferner 

wurden folgende Basissätze verwendet: H – aug-cc-pvDZ[257], B; C; N; O; F; P; Si; S; Cl 

– aug-cc-pwCVDZ,[257,258] Ga – aug-cc-pVDZ[259]. Ausnahmen bilden die B(C6F5)3 

Addukte von H-PCO/H-OCP. Diese wurden mit dem 6-31++G(d,p)-Basissatz 

gerechnet.[260–267] Zusätzlich wurden hier Effekte der empirischen Dispersion 

berücksichtigt (gd3bj).[268] Sämtliche Strukturen wurden vollständig optimiert und durch 

eine Frequenzanalyse als Minima bestätigt. Die natürliche Bindungsorbitalanalyse (NBO) 

wurde auf demselben Theorielevel durchgeführt.[269–272] Die NBO-Analyse gibt 

Aufschluss über Ladungsverteilungen, Bindungspolarisation und Hybridisierung-Effekte 

innerhalb der Moleküle. Die Berechnung und Darstellung der Eleketronenlokalisations-

Funktion (ELF) erfolgt mithilfe des Programms Multiwfn.[273–275] Für die Darstellung der 

natürlich lokalisierten Molekülorbitale (NLMO) wurde das Programm Avogadro 

verwendet.[276] 

Berechnete chemische Verschiebungen und Kopplungskonstanten wurden durch die 

GIAO-Methode erhalten.[277–281] D e berechneten  b o uten Ver c h ebungen (σiso) wurden 

auf die absoluten Verschiebungen von (CH3)4Si, BF3·OEt2, H2O und CH3NO2 in der 

Gasphase und 85 % H3PO4 referenz ert. σRef 1     1.4711 ppm  σRef 11B = 108.2832 ppm, 

σRef 13C   1  .     ppm  σRef 14N = –1  . 1   ppm  σRef 17       .76 7  ppm und σRef 
29Si = 352.6934 ppm – Verschiebungen dieser Kerne wurden anhand folgender Gleichung 

berechnet. 

δber.   σRef – σiso 

Die berechneten absoluten Verschiebungen des 31P-NMR-Kerns (σber,X) wurden auf die 

experimentell absolute Verschiebung von 85 % H3PO4 in der Gasphase (σRef,1 = 

328.35 ppm),[282] und PH3 als zweiten Standard referenziert.[283] Unter Verwendung der 

oben erwähnten Methode und des Basissatzes ergibt sich für σber,PH3 ein Referenzwert von 

+590.4521 ppm. Die chemische Verschiebung (δber,X) ermittelt sich wie folgt: 
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δber,X = (σref,1 − σref,2) – (σber,X – σber,PH3) 

   = σber,PH3 – σber,X – 266.1 ppm 

 

Es sei darauf hingewiesen, dass alle Berechnungen für isolierte Moleküle in der 

Gasphase durchgeführt wurden. Die berechneten Eigenschaften können sich zum Teil 

erheblich von denen in kondensierter Phase bzw. Lösung unterscheiden. 

 

Alle Rechnungen wurden entweder mithilfe des Computerclusters MoSGrid[284] oder auf 

dem Computercluster am ITMZ der Universität Rostock durchgeführt.  

Im Folgenden sind die Z-Matrizen der optimierten Strukturen angeben. Es wird jeweils 

nur das energetisch günstigste Isomer betrachtet. 
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[CHB11H11]− – C5v    H[CHB11H11] – CS 

Etot   − 1 .6 6        Etot = –319.0666525 

 

 

 

 

  
C 0.000000 0.000000 1.516739  H 2.878950 0.114471 0.000000 
H 0.000000 0.000000 2.603520  B −0.694858 −1.372510 0.000000 
B 0.892843 1.228894 −0.769943  B 0.779727 −1.213168 0.915724 
B 0.000000 1.509570 0.734806  B −0.748609 −0.433721 −1.472161 
B 1.435687 0.466483 0.734806  B −0.748609 −0.433721 1.472161 
B −0.892843 1.228894 −0.769943  B 0.779727 −1.213168 −0.915724 
B 1.444651 −0.469396 −0.769943  B −1.708140 0.041734 0.000000 
B 0.000000 0.000000 −1.701449  H 1.338084 0.918901 2.387445 
B −1.435687 0.466483 0.734806  H −2.899847 0.018346 0.000000 
B 0.887303 −1.221268 0.734806  H −1.180108 2.178439 1.474584 
B −1.444651 −0.469396 −0.769943  H −1.298070 −0.790880 −2.468049 
B 0.000000 −1.518996 −0.769943  B −0.748609 1.234382 0.894240 
B −0.887303 −1.221268 0.734806  H −1.298070 −0.790880 2.468049 
H 2.477414 −0.804961 −1.279256  C 0.692281 1.367208 0.000000 
H 1.473509 −2.028112 1.395953  H 1.288103 −2.101238 1.526923 
H 0.000000 −2.604907 −1.279256  B 0.765254 0.477248 1.443539 
H 0.000000 0.000000 −2.901760  B 1.695980 −0.007773 0.000000 
H −1.473509 −2.028112 1.395953  H 1.288103 −2.101238 −1.526923 
H −2.477414 −0.804961 −1.279256  B −0.748609 1.234382 −0.894240 
H −2.384188 0.774670 1.395953  H −1.654299 −2.327289 0.000000 
H −1.531126 2.107414 −1.279256  H 1.182606 2.336709 0.000000 
H 0.000000 2.506884 1.395953  B 0.765254 0.477248 −1.443539 
H 1.531126 2.107414 −1.279256  H 1.338084 0.918901 −2.387445 
H 2.384188 0.774670 1.395953  H −1.180108 2.178439 −1.474584 

     H −0.899662 −2.710585 0.000000 
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[Me3Si][CHB11H11] – C1 

Etot = –727.5280554 

 
C −3.061385 −0.000019 −0.257676 
H −4.125732 −0.000031 −0.475254 
B −1.083074 0.902649 1.406175 
B −2.401868 1.440056 0.355074 
B −2.605838 −0.000260 1.379889 
B −0.746203 1.460519 −0.268638 
B −1.082995 −0.903073 1.405902 
B 0.000368 −0.000016 0.357528 
B −2.062139 0.891223 −1.302342 
B −2.401747 −1.440223 0.354609 
B −0.532533 0.000269 −1.308577 
B −0.746075 −1.460400 −0.269119 
B −2.062055 −0.890821 −1.302610 
H 0.191552 0.000443 −2.260326 
H −0.157338 −2.475835 −0.485908 
H −0.713233 −1.523255 2.356516 
H −0.157471 2.476033 −0.485090 
H −0.713321 1.522516 2.356999 
H 1.155737 0.000019 0.892921 
H −2.533231 −1.473777 −2.227314 
H −3.099676 −2.389151 0.525894 
H −3.439087 −0.000458 2.230045 
H −2.533372 1.474406 −2.226871 
H −3.099848 2.388883 0.526705 
Si 2.525382 0.000022 0.004247 
C 3.540562 −0.000470 1.567273 
H 3.346354 −0.891641 2.177257 
H 4.607604 −0.000474 1.299720 
H 3.346486 0.890366 2.177785 
C 2.667764 1.577147 −0.952679 
H 3.708445 1.671671 −1.298297 
H 2.006621 1.586908 −1.825489 
H 2.436329 2.446540 −0.326058 
C 2.667667 −1.576626 −0.953490 
H 2.435765 −2.446275 −0.327396 
H 2.006786 −1.585738 −1.826505 
H 3.708434 −1.671261 −1.298801 
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[CHB11H5F6]− – C5v    H[CHB11H5F6] – C1 

Etot = −913.9229306    Etot = –914.316303 

 

 

 

  
C 0.00000 0.00000 −2.17986  C −0.874080 0.000000 2.030658 
H 0.00000 0.00000 −3.26509  H −1.306396 0.000000 3.026828 
B 0.00000 1.52984 0.10317  B 0.407166 −1.475473 0.138451 
B 0.88595 1.21941 −1.40527  B 0.546488 −0.900458 1.817323 
B −0.88595 1.21941 −1.40527  B −1.022435 −1.444963 1.148423 
B 1.45496 0.47275 0.10317  B 1.337259 0.000000 0.544347 
B −1.45496 0.47275 0.10317  B −1.173184 −0.922807 −0.563625 
B 0.00000 0.00000 1.05780  B 0.302829 0.000000 −0.843000 
B 1.43350 −0.46577 −1.40527  B 0.546488 0.900458 1.817323 
B −1.43350 −0.46577 −1.40527  B −1.973231 0.000000 0.728077 
B 0.89922 −1.23766 0.10317  B 0.407167 1.475473 0.138451 
B −0.89922 −1.23766 0.10317  B −1.173184 0.922807 −0.563625 
B 0.00000 −1.50727 −1.40527  B −1.022434 1.444964 1.148423 
H 0.00000 −2.51837 −2.03614  H −1.567632 2.391111 1.613879 
H −2.39511 −0.77822 −2.03614  H −3.144728 0.000001 0.922333 
H −1.48026 2.03740 −2.03614  H −1.567633 −2.391110 1.613879 
H 2.39511 −0.77822 −2.03614  H 1.050309 1.496868 2.711079 
H 1.48026 2.03740 −2.03614  H 1.050308 −1.496868 2.711079 
F −2.63760 0.85701 0.70804  F −1.841297 −1.643077 −1.508470 
F 0.00000 2.77334 0.70804  F 1.075034 −2.570669 −0.343825 
F −1.63013 −2.24368 0.70804  F −1.841297 1.643077 −1.508470 
F 1.63013 −2.24368 0.70804  F 1.075035 2.570669 −0.343825 
F 2.63760 0.85701 0.70804  F 2.677969 0.000000 0.007195 
F 0.00000 0.00000 2.43632  F 1.369193 0.000000 −1.968199 
     H 2.183880 0.000000 −1.345512 
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[Me3Si][CHB11H5F6] – C1 

Etot = – 1322.8170817 

 

C −3.163345 0.000405 −0.642302 
H −4.200485 0.000589 −0.962935 
B −0.549480 0.000851 −1.444655 
B −2.072378 −0.889122 −1.587369 
B −2.072368 0.891022 −1.586311 
B −0.860396 −1.466484 −0.431424 
B −0.860376 1.467009 −0.429686 
B −0.163182 −0.000175 0.281802 
B −2.571441 −1.439558 0.028979 
B −2.571406 1.439564 0.030684 
B −1.364874 −0.908234 1.216115 
B −1.364848 0.906827 1.217200 
B −2.876968 −0.000581 1.029354 
F 0.438880 0.001503 −2.413250 
F −0.116393 −2.612557 −0.600803 
F 1.247137 −0.000346 0.780408 
F −1.019137 −1.618614 2.337995 
F −1.019049 1.615851 2.339903 
F −0.116274 2.613186 −0.597770 
H −2.427043 −1.479400 −2.555529 
H −3.262832 −2.399300 0.139332 
H −2.427003 1.482466 −2.553769 
H −3.262790 2.399177 0.142175 
H −3.774891 −0.001025 1.807119 
Si 2.928980 −0.000008 0.068275 
C 2.979731 1.571642 −0.889901 
H 2.686207 2.429181 −0.272221 
H 4.008603 1.738354 −1.242041 
H 2.319634 1.524305 −1.763779 
C 2.979026 −1.569756 −0.893086 
H 4.008816 −1.738826 −1.241381 
H 2.680565 −2.427650 −0.278249 
H 2.322478 −1.518864 −1.769424 
C 3.869341 −0.002008 1.657936 
H 3.643287 −0.894244 2.255338 
H 4.948192 −0.002988 1.445250 



 
76 

H 3.645114 0.889840 2.256594 
 

  



 
77 

[CHB11H5Cl6]− – C5v    H[CHB11H5Cl6] – C1 

Etot   −4 5. 1 6 1     Etot = –405.7226577 

 

 

 

  

C 0.000000 0.000000 −2.586677  H −1.490669 −1.642716 2.758886 
H 1.479833 2.036815 −2.443103  B −0.000023 −0.032394 −0.509151 
H −1.479833 2.036815 −2.443103  B −1.471605 −0.377147 0.437296 
H 0.000000 0.000000 −3.672608  B 1.470745 −0.380953 0.437156 
H 2.394419 −0.777994 −2.443103  B −0.909113 1.318689 0.173284 
H −2.394419 −0.777994 −2.443103  B −0.001718 −1.396770 0.590227 
H 0.000000 −2.517642 −2.443103  B 0.912520 1.316355 0.173169 
B 0.000000 1.526406 −0.307246  H −2.393252 1.160860 2.364510 
B 0.886592 1.220289 −1.813142  Cl 1.845312 2.456408 −0.828920 
B −0.886592 1.220289 −1.813142  H 0.003809 2.873244 2.108308 
B 1.451699 0.471685 −0.307246  Cl 2.951996 −1.017595 −0.327930 
B −1.451699 0.471685 −0.307246  B 0.002369 1.789899 1.623686 
B 0.000000 0.000000 0.645676  Cl −1.839117 2.460997 −0.828839 
B 1.434536 −0.466109 −1.813142  C 0.000632 0.396100 2.603233 
B −1.434536 −0.466109 −1.813142  Cl −2.954501 −1.010070 −0.327725 
B 0.897199 −1.234889 −0.307246  B −1.439387 0.760556 1.782940 
B −0.897199 −1.234889 −0.307246  B −0.898168 −0.920294 2.027053 
B 0.000000 −1.508360 −1.813142  Cl −0.003942 −3.003772 −0.276599 
Cl 1.849619 −2.545783 0.468483  B 1.441477 0.756848 1.782792 
Cl −1.849619 −2.545783 0.468483  Cl −0.000932 −0.618635 −2.273034 
Cl −2.992747 0.972403 0.468483  H 0.000886 0.555364 3.677937 
Cl 2.992747 0.972403 0.468483  B 0.896003 −0.922583 2.027031 
Cl 0.000000 3.146761 0.468483  H 1.486738 −1.646514 2.758801 
Cl 0.000000 0.000000 2.433440  H 2.396413 1.154748 2.364260 
     H −0.003076 −1.937307 −1.707725 
 

 

  



 
78 

[Me3Si][CHB11H5Cl6] – C1 

Etot = –814.1954535 

 

C 3.136349 0.000139 −1.337085 
H 4.090556 0.000195 −1.856132 
B 1.732126 0.903957 0.831978 
B 3.180394 −0.000554 0.357976 
B 2.684851 1.438545 −0.561779 
B 1.731835 −0.904978 0.831246 
B 0.912860 1.463356 −0.675094 
B 0.350468 −0.000019 0.162428 
B 2.684384 −1.438747 −0.562944 
B 1.880311 0.890032 −2.045637 
B 0.912386 −1.462891 −0.676280 
B 0.411811 0.000692 −1.610002 
B 1.880023 −0.888774 −2.046360 
Cl 1.608760 1.831817 2.354018 
Cl 1.608170 −1.834030 2.352533 
Cl −1.161198 −0.000256 1.261336 
Cl −0.040797 −2.977343 −0.720037 
Cl −1.023478 0.001368 −2.690357 
Cl −0.039797 2.978172 −0.717656 
C −3.466674 −1.583803 −0.516589 
C −4.101477 −0.000815 2.066578 
C −3.466928 1.584615 −0.515076 
H −2.865091 −1.610103 −1.430910 
H −3.198734 −2.443761 0.108690 
H −4.529022 −1.674585 −0.792191 
H −3.854985 0.891707 2.654925 
H −5.189360 −0.000857 1.899059 
H −3.854800 −0.893782 2.654170 
H −4.529680 1.676520 −0.788736 
H −3.197177 2.443874 0.110386 
H −2.866858 1.611123 −1.430382 
Si −3.259873 −0.000020 0.409293 
H 3.380724 −2.399825 −0.587391 
H 4.208653 −0.000960 0.950958 
H 2.034470 −1.478403 −3.065072 
H 3.381501 2.399416 −0.585450 
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H 2.034946 1.480436 −3.063872 
 

  



 
80 

[CHB11H5Br6]− – C5v    H[CHB11H5Br6] – C1 

Etot   −  16.161  71     Etot = –2816.5756061 

 

 

 

  

C 0.000000 0.000000 −2.948339  H 0.000095 0.347646 4.077192 
B 0.000000 0.000000 0.284482  B −0.907456 1.329113 0.627990 
H 0.000000 0.000000 −4.034481  Br −0.000542 −3.120872 −0.132616 
Br 0.000000 0.000000 2.235338  Br −1.929829 2.651244 −0.369078 
H −1.479107 2.035815 −2.807543  Br −3.111645 −1.013369 −0.055391 
H 1.479107 2.035815 −2.807543  Br 3.111336 −1.014400 −0.055437 
H 2.393245 −0.777612 −2.807543  Br 1.930693 2.650653 −0.369056 
H −2.393245 −0.777612 −2.807543  H 1.486717 −1.786790 3.017201 
H 0.000000 −2.516406 −2.807543  B −0.896836 −1.017897 2.332039 
B 1.435277 −0.466350 −2.175601  H 2.394913 1.031896 2.803731 
B 0.887050 1.220919 −2.175601  B 0.000270 1.712155 2.105161 
B −0.887050 1.220919 −2.175601  C 0.000058 0.259027 2.994199 
B −1.435277 −0.466350 −2.175601  H −2.394575 1.032646 2.803701 
B 0.000000 −1.509139 −2.175601  B 1.468582 −0.377494 0.778280 
B 1.449638 0.471016 −0.670362  B −1.440337 0.673219 2.197044 
B −1.449638 0.471016 −0.670362  B 1.440578 0.672773 2.197047 
B 0.895925 −1.233135 −0.670362  B 0.000055 0.029955 −0.158477 
B −0.895925 −1.233135 −0.670362  Br −0.000093 −0.410241 −2.111351 
B 0.000000 1.524239 −0.670362  B −0.000211 −1.398864 0.867422 
Br 0.000000 3.302412 0.155726  B −1.468643 −0.377040 0.778283 
Br −3.140781 1.020502 0.155726  B 0.907889 1.328834 0.627995 
Br 3.140781 1.020502 0.155726  H −1.487243 −1.786338 3.017203 
Br 1.941109 −2.671708 0.155726  B 0.896558 −1.018172 2.332020 
Br −1.941109 −2.671708 0.155726  H 0.000456 2.761154 2.659642 

     H −0.000150 −1.942824 −1.515362 
 

 

  



 
81 

[Me3Si][CHB11H5Br6] – C1 

Etot = –3225.0438249 

 

C −2.068250 0.000238 2.789023 
H −2.659378 0.000324 3.700587 
B −0.427586 −1.460496 1.147110 
B −0.625792 −0.888975 2.814424 
B −2.039598 −1.439307 1.893095 
B 0.456250 0.000713 1.728506 
B −1.865360 −0.903468 0.214330 
B −0.331068 0.000017 0.138256 
B −0.626328 0.890355 2.813909 
B −2.914941 −0.000438 1.320664 
B −0.428486 1.461038 1.146260 
B −1.865901 0.902610 0.213812 
B −2.040475 1.439293 1.892269 
Br 2.386354 0.001323 2.063008 
Br 0.500643 3.123089 0.709988 
Br 0.502685 −3.122130 0.711673 
Br −2.569635 −1.926388 −1.291557 
Br −2.570813 1.924235 −1.292659 
Br 0.519310 −0.000519 −1.703379 
H −2.641622 −2.398486 2.248211 
H −0.278872 1.479306 3.783958 
H −2.643080 2.398312 2.246828 
H −4.101230 −0.000805 1.291311 
H −0.277978 −1.477149 3.784816 
Si 2.916299 0.000066 −1.908706 
C 3.533199 1.584586 −1.183779 
H 4.610889 1.659130 −1.397925 
H 3.031162 2.447583 −1.637351 
H 3.389219 1.623014 −0.098880 
C 2.919851 −0.000364 −3.771067 
H 3.967823 −0.000262 −4.108441 
H 2.437864 −0.893518 −4.187603 
H 2.437534 0.892422 −4.188003 
C 3.533992 −1.583887 −1.183210 
H 3.031828 −2.447271 −1.635900 
H 4.611543 −1.658341 −1.398097 
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H 3.390749 −1.621698 −0.098193 
 

  



 
83 

[CHB11H5I6]− – C5    H[CHB11H5I6] – C1 

Etot   −    .5  6  5     Etot =–2089.9975196 

 

 

  

C 0.000000 0.000000 −3.152211  H −0.000043 0.210669 4.299269 
H 2.390631 −0.775126 −3.017612  B −0.906585 1.306916 0.885211 
H 1.475935 2.034098 −3.017612  I 0.001681 −3.354071 −0.038524 
H 0.000000 0.000000 −4.238651  I −2.051819 2.828983 −0.145893 
H 0.001557 −2.513153 −3.017612  I −3.325317 −1.073517 0.078411 
H −1.478453 2.032268 −3.017612  I 3.326472 −1.070242 0.078411 
H −2.389669 −0.778087 −3.017612  I 2.048937 2.831011 −0.146058 
B 1.450727 0.471794 −0.875243  H 1.484033 −1.881678 3.165615 
B 1.435417 −0.465901 −2.381656  B −0.894431 −1.092279 2.503818 
B 0.886666 1.221191 −2.381656  H 2.393334 0.939210 3.050113 
B 0.897002 −1.233931 −0.875243  B −0.000732 1.643343 2.375004 
B −0.000404 1.525516 −0.875243  C −0.000007 0.161368 3.213534 
B 0.000000 0.000000 0.083975  H −2.394068 0.936972 3.050194 
B 0.000470 −1.509133 −2.381656  B 1.467152 −0.401138 0.971478 
B −0.887427 1.220638 −2.381656  B −1.440513 0.600426 2.429630 
B −0.896349 −1.234406 −0.875243  B 1.440058 0.601818 2.429582 
B −1.450977 0.471027 −0.875243  B −0.000029 0.039672 0.042638 
B −1.435126 −0.466795 −2.381656  I 0.000045 −0.263362 −2.138066 
I 0.000000 3.519676 −0.000619  B 0.000743 −1.432214 1.023003 
I 3.347411 1.087640 −0.000619  B −1.466701 −0.402556 0.971540 
I 2.068814 −2.847478 −0.000619  B 0.905376 1.307794 0.885159 
I −2.068814 −2.847478 −0.000619  H −1.482081 −1.883092 3.165684 
I −3.347411 1.087640 −0.000619  B 0.895632 −1.091397 2.503780 
I 0.000000 0.000000 2.252957  H −0.001242 2.671736 2.966921 

     H 0.000269 −2.000515 −1.562087 
 

 

  



 
84 

[Me3Si][CHB11H5I6] – C1 

Etot = –2498.4616413 

 

C 1.120098 0.000147 −3.373531 
H 1.413006 0.000176 −4.420064 
B 0.043080 −1.459272 −1.314019 
B −0.264648 −0.888562 −2.966083 
B 1.359723 −1.440132 −2.508721 
B −0.972128 0.001437 −1.605722 
B 1.693602 −0.903498 −0.853852 
B 0.250636 −0.000038 −0.315193 
B −0.263087 0.891043 −2.965574 
B 2.365305 −0.001275 −2.224405 
B 0.045684 1.460284 −1.313187 
B 1.695195 0.901317 −0.853365 
B 1.362258 1.439507 −2.507911 
H 1.829333 −2.396717 −3.030991 
H −0.879287 1.479563 −3.791627 
H 1.833554 2.395549 −3.029654 
H 3.505288 −0.002186 −2.553771 
H −0.881848 −1.475541 −3.792485 
Si −2.488680 0.000043 2.808177 
C −3.291483 1.586311 2.289743 
H −4.271230 1.653672 2.788428 
H −2.688772 2.450156 2.595170 
H −3.447810 1.632221 1.206565 
C −1.997759 −0.001891 4.609216 
H −2.918352 −0.001801 5.213268 
H −1.422852 −0.895516 4.882516 
H −1.421687 0.890522 4.884027 
C −3.293593 −1.584189 2.286851 
H −2.692062 −2.449472 2.590542 
H −4.273384 −1.651177 2.785488 
H −3.450082 −1.627778 1.203608 
I −0.798296 −3.321706 −0.581756 
I −3.135140 0.003245 −1.379986 
I −0.792391 3.323746 −0.579817 
I 2.979088 2.050944 0.467489 
I 2.975472 −2.056105 0.466394 
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I v0.043713 −0.000286 1.898637 
 

  



 
86 

[CHB11F11]− – C5v    H[CHB11F11] – C1 

Etot   −14  .  6 1 1     Etot = –1410.3572916 

 

 

  

C 0.000000 0.000000 −1.634920  H −1.183610 −0.001076 −2.479035 
H 0.000000 0.000000 −2.723434  B 0.645342 1.489359 0.333310 
B 0.000000 1.541486 0.644912  F 1.343038 −2.563087 0.805485 
B 0.895276 1.232241 −0.860067  F 1.339439 2.565063 0.805206 
B −0.895276 1.232241 −0.860067  F 2.913892 0.001917 0.387633 
B 1.466040 0.476345 0.644912  F −1.523795 −1.645085 2.089355 
B −1.466040 0.476345 0.644912  F −1.525851 1.643434 2.089088 
B 0.000000 0.000000 1.573329  F −1.489124 −2.519905 −1.146641 
B 1.448587 −0.470674 −0.860067  B 0.727498 −0.916994 −1.352166 
B −1.448587 −0.470674 −0.860067  F −3.115968 −0.002123 −0.353995 
B 0.906062 −1.247088 0.644912  B −0.836726 1.465918 −0.606910 
B −0.906062 −1.247088 0.644912  C −0.714616 −0.000583 −1.494250 
B 0.000000 −1.523134 −0.860067  F 1.223240 1.578006 −2.421085 
F −2.637222 0.856885 1.256328  B −0.911431 −0.929835 1.111790 
F 0.000000 2.772939 1.256328  B 0.726276 0.917779 −1.352354 
F −1.629893 −2.243355 1.256328  B −1.780271 −0.001204 −0.141210 
F 1.629893 −2.243355 1.256328  B 0.567628 0.000489 1.298850 
F 2.637222 0.856885 1.256328  F 1.652925 0.001246 2.383941 
F 0.000000 0.000000 2.948535  B 0.647312 −1.488434 0.333576 
F 2.529153 −0.821772 −1.622808  B 1.572118 0.001084 −0.120131 
F 1.563102 2.151426 −1.622808  B −0.912678 0.928752 1.111606 
F −1.563102 2.151426 −1.622808  F 1.225345 −1.576796 −2.420749 
F −2.529153 −0.821772 −1.622808  B −0.834767 −1.467142 −0.606642 
F 0.000000 −2.659308 −1.622808  F −1.492507 2.517797 −1.146901 

     H 2.464086 0.001512 1.753909 
 
 
  



 
87 

[Me3Si][CHB11F11] – C1 

Etot = –1818.8630311 

 

C 2.551783 0.000025 0.417474 
H 3.605332 0.000025 0.696689 
B 0.242877 1.477395 0.298791 
B 1.496510 0.901505 1.417662 
B 1.937216 1.458374 −0.237739 
B −0.030203 0.000062 1.332223 
B 0.686497 0.913821 −1.378594 
B −0.462447 −0.000026 −0.382745 
B 1.496539 −0.901340 1.417760 
B 2.207566 −0.000069 −1.261262 
B 0.242889 −1.477376 0.298941 
B 0.686492 −0.913978 −1.378516 
B 1.937190 −1.458364 −0.237596 
F −0.499998 2.613000 0.489771 
F −0.980239 0.000196 2.328387 
F −1.877317 0.000012 −0.821527 
F −0.499954 −2.612956 0.490165 
F 0.283839 −1.616061 −2.478900 
F 0.283780 1.615809 −2.479022 
F 1.983236 1.561654 2.498141 
F 2.754108 2.531597 −0.378437 
F 1.983215 −1.561406 2.498320 
F 2.754041 −2.531646 −0.378171 
F 3.227417 −0.000129 −2.154892 
Si −3.563472 0.000002 −0.060955 
C −3.579170 −1.571568 0.896772 
H −4.602338 −1.746886 1.261935 
H −3.289313 −2.427357 0.275030 
H −2.910920 −1.520174 1.764090 
C −4.526435 −0.000105 −1.634528 
H −5.601220 −0.000198 −1.401293 
H −4.313316 0.892510 −2.235952 
H −4.313170 −0.892723 −2.235893 
C −3.579255 1.571588 0.896730 
H −4.602355 1.746780 1.262141 
H −2.910788 1.520308 1.763880 



 
88 

H −3.289632 2.427384 0.274899 
 

  



 
89 

[CHB11Cl11]− – C5v    H[CHB11Cl11] – C1 

Etot   −477.5250851    Etot = –477.9164516 

 

 

 

  

C 0.000000 0.000000 −1.704566  H −0.079462 0.618597 −2.760587 
H 0.000000 0.000000 −2.792017  B −1.393165 −0.730578 0.422088 
B 0.000000 1.532859 0.591425  Cl 1.544112 2.410189 1.879742 
B 0.894114 1.230642 −0.921654  Cl −2.768192 −1.598210 1.129114 
B −0.894114 1.230642 −0.921654  Cl −2.107241 1.938379 1.878750 
B 1.457835 0.473679 0.591425  Cl 3.084160 −0.840203 1.129295 
B −1.457835 0.473679 0.591425  Cl 0.412169 −3.186521 0.925088 
B 0.000000 0.000000 1.529793  Cl 2.684538 1.700559 −1.651778 
B 1.446707 −0.470063 −0.921654  B −0.220691 1.706850 −0.607765 
B −1.446707 −0.470063 −0.921654  Cl 2.027364 −1.747220 −2.357260 
B 0.900992 −1.240109 0.591425  B −0.772505 −1.091428 −1.212000 
B −0.900992 −1.240109 0.591425  C −0.049483 0.382852 −1.697867 
B 0.000000 −1.521157 −0.921654  Cl −3.029942 0.960599 −1.650794 
Cl 1.845425 −2.540010 1.360483  B 1.533205 −0.352571 0.422322 
Cl −1.845425 −2.540010 1.360483  B −1.533290 0.499698 −0.844535 
Cl −2.985961 0.970198 1.360483  B 1.025149 −0.859624 −1.211340 
Cl 2.985961 0.970198 1.360483  B 0.033934 −0.263544 1.378414 
Cl 0.000000 3.139625 1.360483  Cl 0.125244 −0.967981 3.091257 
Cl 0.000000 0.000000 3.311623  B 0.760465 1.237848 0.809712 
Cl 2.878904 −0.935413 −1.862500  B −1.050229 1.004446 0.809159 
Cl 0.000000 −3.027059 −1.862500  B 0.199439 -1.541341 0.192594 
Cl −2.878904 −0.935413 −1.862500  Cl −0.433959 3.353533 −1.195117 
Cl −1.779260 2.448942 −1.862500  B 1.355016 0.873561 −0.844757 
Cl 1.779260 2.448942 −1.862500  Cl −1.514738 −2.205429 −2.358119 

     H 0.289937 −2.233115 2.435311 
 
 
  



 
90 

[Me3Si][CHB11Cl11] – C1 

Etot = –886.3921529 

 
C −2.352782 −0.000043 0.608684 
H −3.376424 −0.000073 0.979077 
B −0.627056 0.907505 −1.334408 
B −2.141715 0.000222 −1.090399 
B −1.784967 1.453583 −0.096593 
B −0.627111 −0.907065 −1.334701 
B −0.040404 1.466743 0.283501 
B 0.629074 0.000042 −0.459626 
B −1.785052 −1.453477 −0.097060 
B −1.206063 0.898707 1.506111 
B −0.040490 −1.466859 0.283029 
B 0.316927 −0.000226 1.283036 
B −1.206116 −0.899144 1.505820 
Cl −0.288872 1.832137 −2.810725 
Cl −0.288983 −1.831247 −2.811314 
Cl 2.277171 0.000115 −1.323769 
Cl 0.884661 −2.973281 0.468934 
Cl 1.561266 −0.000479 2.560020 
Cl 0.884815 2.973062 0.469895 
Cl −3.518014 0.000439 −2.192939 
Cl −2.806650 2.885985 −0.218572 
Cl −2.806819 −2.885789 −0.219496 
Cl −1.652051 −1.779393 2.968357 
Cl −1.651951 1.778513 2.968921 
C 4.320415 −1.584591 0.751523 
C 5.296551 −0.000483 −1.729457 
C 4.321207 1.584968 0.750835 
H 3.610738 −1.597915 1.585022 
H 4.117541 −2.442127 0.099000 
H 5.338580 −1.693247 1.156759 
H 5.127716 0.892220 −2.344272 
H 6.353980 0.000113 −1.423466 
H 5.128382 −0.894012 −2.343247 
H 5.340235 1.694630 1.153620 
H 4.116110 2.442109 0.098485 
H 3.613406 1.598009 1.585924 
Si 4.255322 -0.000002 −0.192021 



 
91 

 
  



 
92 

 
[CHB11Br11]− – C5    H[CHB11Br11] – C1 

Etot   −4  7.4 7  16     Etot = –4897.8059176 

 

 

 

  

C 0.000000 0.000000 −1.746955  H −0.000394 0.470875 −2.835341 
H 0.000000 0.000000 −2.834360  B 0.909106 1.178161 0.704676 
B 0.000171 1.531650 0.552959  Br 0.002167 −3.317390 1.090526 
B 0.894273 1.230861 −0.961210  Br 1.925012 2.409130 1.796071 
B −0.894273 1.230861 −0.961210  Br 3.105366 −1.206786 1.196363 
B 1.456739 0.473144 0.552959  Br −3.103783 −1.210810 1.196453 
B −1.456633 0.473468 0.552959  Br −1.928156 2.406516 1.796172 
B 0.000000 0.000000 1.494403  Br −1.866129 −2.229261 −2.366222 
B 1.446964 −0.470147 −0.961210  B 0.906536 −1.040092 −1.191746 
B −1.446964 −0.470147 −0.961210  Br −3.018772 1.302153 −1.837356 
B 0.900143 −1.239231 0.552959  B −0.001133 1.690987 −0.746080 
B −0.900420 −1.239031 0.552959  C −0.000227 0.296750 −1.760749 
B 0.000000 −1.521428 −0.961210  Br 3.017024 1.306172 −1.837356 
Br 1.862377 2.563685 −1.982240  B −1.472347 −0.515589 0.418511 
Br 3.013715 −0.979003 −1.982240  B 1.454419 0.651265 −0.922110 
Br 3.126302 1.016251 1.386250  B −1.455321 0.649333 −0.922070 
Br −0.000432 3.287329 1.386250  B 0.000130 −0.181940 1.374941 
Br 1.932593 −2.659251 1.386250  Br 0.000602 −0.778225 3.279918 
Br 0.000000 0.000000 3.438532  B 0.000996 −1.527593 0.242593 
Br −3.126569 1.015430 1.386250  B 1.473018 −0.513658 0.418456 
Br −1.931894 −2.659759 1.386250  B −0.910607 1.176958 0.704726 
Br −3.013590 −0.979387 −1.982240  Br 1.869086 −2.226794 −2.366197 
Br 0.000202 −3.168742 −1.982240  B −0.905187 −1.041278 −1.191737 
Br −1.862703 2.563448 −1.982240  Br −0.002356 3.470758 −1.479556 
     H 0.001552 −2.275460 2.540453 
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[Me3Si][CHB11Br11] – C1 

Etot = –5306.2757301 

 

C −2.035736 0.000244 0.809987 
H −3.019169 0.000387 1.276453 
B −0.499355 0.905102 −1.290182 
B −1.985312 −0.000690 −0.902821 
B −1.535641 1.453418 0.051323 
B −0.499144 −0.906562 −1.289187 
B 0.239235 1.465440 0.261724 
B 0.841124 −0.000168 −0.542761 
B −1.535302 −1.453647 0.052923 
B −0.807201 0.899655 1.591959 
B 0.239576 −1.465018 0.263338 
B 0.689609 0.000800 1.224291 
B −0.806990 −0.898014 1.592946 
C 4.829712 −1.586218 0.371545 
C 5.661812 −0.001084 −2.154376 
C 4.829852 1.587128 0.369679 
H 4.127165 −1.631720 1.210120 
H 4.654946 −2.447576 −0.284239 
H 5.854445 −1.657079 0.768857 
H 5.470451 0.892167 −2.761746 
H 6.731317 −0.001297 −1.892305 
H 5.469918 −0.894760 −2.760955 
H 5.854674 1.658499 0.766675 
H 4.654899 2.447716 −0.287063 
H 4.127491 1.633577 1.208356 
Si 4.692019 −0.000087 −0.566287 
Br −2.653596 −3.022948 0.020710 
Br −1.138633 −1.863440 3.228907 
Br −0.308639 1.919488 −2.931468 
Br −3.590601 −0.001463 −1.968817 
Br −2.654298 3.022424 0.017369 
Br −1.139063 1.866808 3.226854 
Br 1.253043 −3.115575 0.377263 
Br 2.155273 0.001672 2.503725 
Br 1.252300 3.116374 0.373825 
Br −0.308192 −1.922705 −2.929355 
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Br 2.531512 −0.000656 −1.655154 
 

  



 
95 

[CHB11I11]− – C5    H[CHB11I11] – C1 

Etot   − 565.  17 54     Etot = –3565.7368215 

 

 

 

  

C 0.000000 0.000000 −1.772074  H 0.000382 0.292164 −2.883177 
H 0.000000 0.000000 −2.859514  B 0.910138 1.215516 0.606725 
B 0.000000 −1.532414 0.533141  I −0.005512 −3.485102 1.275502 
B −0.895694 −1.233177 −0.984967  I 2.043477 2.661650 1.732810 
B 0.896036 −1.232928 −0.984967  I 3.305430 −1.200650 1.324187 
B −1.457412 −0.473542 0.533141  I −3.309082 −1.190309 1.324343 
B 1.457412 −0.473542 0.533141  I −2.035072 2.668089 1.732831 
B 0.000000 0.000000 1.475617  I −1.984859 −2.523095 −2.355915 
B −1.449606 0.470783 −0.984967  B 0.903804 −1.114127 −1.143612 
B 1.449475 0.471186 −0.984967  I −3.204857 1.258880 −2.038904 
B −0.900730 1.239749 0.533141  B 0.002528 1.642924 −0.875579 
B 0.900730 1.239749 0.533141  C 0.000264 0.187350 −1.800068 
B −0.000212 1.524137 −0.984967  I 3.208715 1.248877 −2.039031 
I 3.320220 −1.076901 1.451466  B −1.472065 −0.488007 0.435157 
I 1.978611 −2.722344 −2.113866  B 1.457483 0.589151 −0.983379 
I 0.001811 −3.490497 1.451466  B −1.455669 0.593716 −0.983314 
I −1.977678 −2.723021 −2.113866  B −0.000118 −0.096428 1.377319 
I −3.319101 −1.080345 1.451466  I −0.000685 −0.514775 3.534975 
I −3.200883 1.039424 −2.113866  B −0.002335 −1.517418 0.322694 
I −2.053128 2.822807 1.451466  B 1.470571 −0.492604 0.435096 
I −0.000576 3.365421 −2.113866  B −0.906320 1.218349 0.606765 
I 2.050198 2.824936 1.451466  I 1.976783 −2.529376 −2.355958 
I 3.200527 1.040520 −2.113866  B −0.907314 −1.111277 −1.143586 
I 0.000000 0.000000 3.640485  I 0.005632 3.580050 −1.803083 

     H −0.003910 −2.249901 2.829150 
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[Me3Si][CHB11I11] – C1 

Etot = –3974.2012331 

 

C −1.818655 0.034435 1.064608 
H −2.729028 0.053485 1.660185 
B −0.591106 0.824812 −1.277325 
B −2.000382 −0.069407 −0.636494 
B −1.448709 1.446564 0.159475 
B −0.559319 −0.982688 −1.171427 
B 0.341458 1.483739 0.123589 
B 0.858933 −0.021643 −0.670740 
B −1.397122 −1.460133 0.330490 
B −0.507638 0.992477 1.618989 
B 0.393122 −1.439336 0.296108 
B 0.942322 0.085459 1.099859 
B −0.476068 −0.805280 1.725423 
C 5.288070 −1.555597 −0.214001 
C 5.782173 −0.154885 −2.921260 
C 5.284261 1.612982 −0.431928 
H 4.717572 −1.547450 0.720588 
H 5.026027 −2.458357 −0.779001 
H 6.361230 −1.601033 0.030311 
H 5.523034 0.695191 −3.564637 
H 6.875372 −0.148900 −2.788955 
H 5.517326 −1.086790 −3.436153 
H 6.349346 1.683249 −0.160493 
H 5.052416 2.428900 −1.127348 
H 4.684659 1.742096 0.475510 
Si 5.002009 -0.034152 −1.229813 
I −0.642870 2.182028 3.406280 
I −2.600916 −3.226569 0.558999 
I −0.574327 −1.778215 3.641174 
I −3.932934 −0.158390 −1.574324 
I −2.712954 3.186087 0.178905 
I −0.671143 1.847829 −3.178066 
I 1.446341 3.334528 −0.010155 
I −0.601846 −2.226303 −2.937711 
I 1.558807 −3.255761 0.380793 
I 2.745243 0.189651 2.290558 
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I 2.545115 −0.079352 −2.129788 
 
  



 
98 

OPMe3 – C3V      [Me3SiOPMe3]+ – C1 

E0   −5 6.  65  5     E0   − 44. 7      

 

  

  
    
    

P 0.000000 0.000000 0.179924  P −1.505407 −0.000427 −0.076835 
O 0.000000 0.000000 1.679308  O −0.041157 0.004893 −0.628076 
C 0.000000 1.657643 −0.552771  C −1.941613 1.604736 0.582528 
H 0.889077 2.198241 −0.205887  H −1.807871 2.367656 −0.193693 
H 0.000000 1.619647 −1.649373  H −2.990509 1.597541 0.905260 
H −0.889077 2.198241 −0.205887  H −1.303189 1.844821 1.440763 
C −1.435561 −0.828821 −0.552771  C −1.723461 −1.231193 1.205021 
H −1.402656 −0.809824 −1.649373  H −2.776432 −1.252950 1.513323 
H −1.459194 −1.869084 −0.205887  H −1.439358 −2.218906 0.822989 
H −2.348271 −0.329157 −0.205887  H −1.104604 −0.985132 2.076162 
C 1.435561 −0.828821 −0.552771  C −2.576750 −0.384295 −1.452450 
H 1.402656 −0.809824 −1.649373  H −2.442055 0.367399 −2.239374 
H 2.348271 −0.329157 −0.205887  H −2.321104 −1.373207 −1.851200 
H 1.459194 −1.869084 −0.205887  H −3.623372 −0.382945 −1.123344 
     Si 1.623180 0.002318 −0.038756 
     C 1.964200 −1.729952 0.536240 
     H 3.022559 −1.817198 0.821356 
     H 1.371789 −2.012691 1.416437 
     H 1.780357 −2.462894 −0.260371 
     C 2.586767 0.488329 −1.539901 
     H 3.660885 0.504415 −1.307667 
     H 2.435154 −0.225332 −2.360124 
     H 2.308178 1.488639 −1.895741 
     C 1.713520 1.246425 1.341374 
     H 2.754581 1.319672 1.687647 
     H 1.412578 2.250590 1.014616 
     H 1.112267 0.961027 2.215794 
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 [Me3SiS]− – C3V      (Me3Si)2S – C2 

E0   −  7.15   66     E0   −1 16.15   5   

 

 

 

  
S 0.000000 0.000000 1.872972  S 0.000000 0.000000 1.255929 
Si 0.000000 0.000000 −0.186570  Si 0.000000 1.746397 –0.024911 
C 0.000000 1.742166 −0.964131  Si 0.000000 –1.746397 –0.024911 
H 0.885901 2.304249 −0.633510  C 0.493195 –3.142893 1.122781 
H 0.000000 .711652 −2.066716  H –0.202295 –3.220861 1.969159 
H −0.885901 2.304249 −0.633510  H 0.485066 –4.104261 0.589031 
C 1.508760 −0.871083 −0.964131  H 1.501192 –2.985431 1.528340 
H 1.552588 −1.919338 −0.633510  C –1.715838 –2.068301 –0.708631 
H 1.482334 −0.855826 −2.066716  H –1.729802 –3.008537 –1.279712 
H 2.438489 −0.384912 −0.633510  H –2.446377 –2.154255 0.106501 
C −1.508760 −0.871083 −0.964131  H –2.049355 –1.263671 –1.375780 
H −1.482334 −0.855826 −2.066716  C 1.239414 –1.604761 –1.425953 
H −1.552588 −1.919338 −0.633510  H 0.965256 –0.826874 –2.150281 
H −2.438489 −0.384912 −0.633510  H 2.243967 –1.380237 –1.044705 
     H 1.288421 –2.559260 –1.970422 
     C –1.239414 1.604761 –1.425953 
     H –0.965256 0.826874 –2.150281 
     H –2.243967 1.380237 –1.044705 
     H –1.288421 2.559260 –1.970422 
     C 1.715838 2.068301 –0.708631 
     H 1.729802 3.008537 –1.279712 
     H 2.446377 2.154255 0.106501 
     H 2.049355 1.263671 –1.375780 
     C –0.493195 3.142893 1.122781 
     H 0.202295 3.220861 1.969159 
     H –0.485066 4.104261 0.589031 
     H –1.501192 2.985431 1.528340 
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[(Me3Si)3S]+ - C3 

E0   −16 4. 66 6 4  

  
S 0.000000 0.000000 0.737738 
Si 0.000000 2.146688 –0.003995 
Si –1.859087 –1.073344 –0.003995 
Si 1.859087 –1.073344 –0.003995 
C 1.503755 –2.882005 0.249983 
H 0.727891 –3.270378 –0.419552 
H 2.430269 –3.432656 0.028775 
H 1.229629 –3.107399 1.287927 
C 3.198333 –0.484182 1.143006 
H 4.112688 –1.056796 0.926751 
H 3.438063 0.577421 1.018785 
H 2.934832 –0.663978 2.192986 
C 2.154753 –0.646885 –1.792470 
H 3.013050 –1.236654 –2.147614 
H 1.297029 –0.898509 –2.428088 
H 2.406241 0.410148 –1.941760 
C –1.179853 3.011928 1.143006 
H –0.892394 2.873628 2.192986 
H –1.141132 4.090090 0.926751 
H –2.219093 2.688739 1.018785 
C 1.744012 2.743293 0.249983 
H 1.757633 3.821003 0.028775 
H 2.076272 2.618589 1.287927 
H 2.468285 2.265561 –0.419552 
C –0.517158 2.189514 –1.792470 
H 0.129617 1.572515 –2.428088 
H –1.558319 1.878792 –1.941760 
H –0.435551 3.227705 –2.147614 
C –1.637596 –1.542629 –1.792470 
H –2.577499 –1.991050 –2.147614 
H –1.426646 –0.674006 –2.428088 
H –0.847922 –2.288940 –1.941760 
C –2.018480 –2.527747 1.143006 
H –1.218970 –3.266161 1.018785 
H –2.042438 –2.209650 2.192986 
H –2.971556 –3.033294 0.926751 
C –3.247767 0.138712 0.249983 
H –4.187902 –0.388347 0.028775 
H –3.305901 0.488810 1.287927 
H –3.196176 1.004817 –0.419552 
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102 

[Me3SiOSO3]− – C1     (Me3SiO)2SO2 – C2 

E0   −11 7.   5514     E0   −1516.  4465  

 

 

 

  
S −1.580411 −0.006164 −0.049728  S 0.000000 0.000000 1.075359 
O −2.342666 −1.088016 −0.668205  O −0.406052 1.184668 1.790367 
O −1.163562 −0.261032 1.344389  O 0.406052 −1.184668 1.790367 
O −2.101858 1.340160 −0.285573  O 1.163589 0.367792 0.078228 
O −0.130244 −0.026449 −0.882865  O −1.163589 −0.367792 0.078228 
Si 1.323004 −0.000776 −0.040146  Si −1.543143 −1.992553 −0.440102 
C 1.658508 −1.595840 0.884411  Si 1.543143 1.992553 −0.440102 
H 2.666070 −1.589967 1.327659  C 2.290284 2.910799 0.992191 
H 0.913447 −1.726132 1.678276  H 2.625787 3.907402 0.671354 
H 1.588455 −2.455861 0.203453  H 1.558932 3.034183 1.800005 
C 1.486953 1.482659 1.090366  H 3.160843 2.373836 1.391631 
H 2.505178 1.555090 1.501954  C −2.290284 −2.910799 0.992191 
H 1.268964 2.407645 0.538795  H −2.625787 −3.907402 0.671354 
H 0.766573 1.401776 1.913215  H −1.558932 −3.034183 1.800005 
C 2.589534 0.153751 −1.426651  H −3.160843 −2.373836 1.391631 
H 3.616882 0.162020 −1.032437  C 0.000000 −2.795681 −1.098614 
H 2.501322 −0.687283 −2.128820  H −0.240442 −3.783705 −1.516283 
H 2.434306 1.081497 −1.995143  H 0.451872 −2.192387 −1.896846 
     H 0.742974 −2.930181 −0.303290 
     C 2.787450 1.654794 −1.783204 
     H 3.169717 2.598678 −2.196530 
     H 3.642990 1.086234 −1.395545 
     H 2.340895 1.082538 −2.606942 
     C −2.787450 −1.654794 −1.783204 
     H −3.169717 −2.598678 −2.196530 
     H −3.642990 −1.086234 −1.395545 
     H −2.340895 −1.082538 −2.606942 
     C 0.000000 2.795681 −1.098614 
     H 0.240442 3.783705 −1.516283 
     H −0.451872 2.192387 −1.896846 
     H −0.742974 2.930181 −0.303290 
 

  



 
103 

[(Me3SiO)3SO]+ - C1 

E0   −1  5.61 6775  

  
S −0.031946 0.013587 −0.713187 
O 1.014488 −0.933403 −0.137988 
O −0.589704 −0.382309 −1.966949 
O 0.681704 1.347987 −0.819534 
O −1.073770 0.150491 0.399918 
Si −2.819645 0.609473 0.185570 
Si 1.975668 2.137688 0.171400 
C 3.551474 1.306628 −0.329950 
H 4.399386 1.810586 0.155760 
H 3.574271 0.251577 −0.031909 
H 3.706275 1.368863 −1.414778 
C −3.647079 −0.893597 −0.508410 
H −4.724766 −0.700869 −0.609312 
H −3.259417 −1.143823 −1.503576 
H −3.530410 −1.762676 0.152116 
C −2.835151 2.079453 −0.940307 
H −3.865107 2.455536 −1.023053 
H −2.217309 2.899209 −0.551765 
H −2.494168 1.826541 −1.951965 
C 1.816557 3.880824 −0.421326 
H 2.585644 4.504525 0.056130 
H 1.961418 3.946252 −1.507263 
H 0.837387 4.309740 −0.173635 
C −3.264821 0.981074 1.942438 
H −4.331716 1.238559 2.004144 
H −3.095688 0.114186 2.593931 
H −2.694190 1.831452 2.336674 
C 1.508339 1.888745 1.948564 
H 2.229803 2.424178 2.582452 
H 0.512867 2.293868 2.169844 
H 1.531530 0.832717 2.245140 
Si 0.925921 −2.717140 0.199188 
C 0.153680 −2.828582 1.879420 
H 0.124949 −3.879541 2.200669 
H 0.727439 −2.268642 2.628863 
H −0.878132 −2.455162 1.878852 
C 2.725164 −3.140358 0.151976 
H 2.858032 −4.209235 0.371004 
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H 3.156458 −2.947799 −0.838660 
H 3.295352 −2.576277 0.901195 
C −0.081585 −3.484293 −1.149523 
H −1.137180 −3.188665 −1.108128 
H 0.309277 −3.236804 −2.144060 
H −0.039295 −4.577471 −1.034757 

 

  



 
105 

[SO3]2− – C3V      [SO4]2− – Td 

E0   −6  .4   7 4     E0   −6  .641 1 4  

 

 

 

  
S 0.000000 0.000000 0.337868  S 0.000000 0.000000 0.000000 
O 0.000000 1.448145 −0.225245  O 0.874485 0.874485 0.874485 
O 1.254130 −0.724073 −0.225245  O −0.874485 −0.874485 0.874485 
O −1.254130 −0.724073 −0.225245  O −0.874485 0.874485 −0.874485 
     O 0.874485 −0.874485 −0.874485 
 

  



 
106 

[(Me3SiO)SO2]− – C1     [(Me3Si)SO3]− – C1 

E0   −1   .64 51 7     E0   −1   . 6193021 

 

 

 

  
S −1.840350 0.056856 −0.457895  S −1.209951 0.000507 0.001030 
O −1.494776 1.238227 0.405061  O −1.594489 −0.538741 −1.329839 
O −2.432368 −1.061672 0.326872  O −1.595761 1.422334 0.198829 
O −0.217112 −0.578862 −0.837769  O −1.596648 −0.882278 1.132716 
Si 1.119871 −0.050860 0.002166  Si 0.987666 −0.000349 0.000029 
C 1.575851 1.733956 −0.380361  C 1.584090 −1.767887 −0.241179 
H 2.514483 2.024310 0.116552  H 1.195713 −2.164953 −1.188641 
H 1.704998 1.876612 −1.463314  H 2.682783 −1.835973 −0.253982 
H 0.767835 2.394204 −0.041552  H 1.201305 −2.403304 0.568714 
C 2.530034 −1.140540 −0.628865  C 1.591148 0.675121 1.648908 
H 3.489202 −0.870137 −0.160501  H 2.690194 0.698532 1.708105 
H 2.329866 −2.199319 −0.410815  H 1.209196 1.694310 1.795963 
H 2.643098 −1.040192 −1.718094  H 1.207988 0.053513 2.469301 
C 0.994160 −0.285744 1.860404  C 1.584554 1.091158 −1.410911 
H 0.733553 −1.326826 2.097375  H 1.205019 2.112931 −1.276169 
H 1.942645 −0.039837 2.363159  H 2.683232 1.127883 −1.469975 
H 0.195506 0.355932 2.252813  H 1.192896 0.712973 −2.364760 
 

  



 
107 

[(Me3SiO)2SO] – C1     [(Me3SiO)S(O2)SiMe3] – C1 

E0   −1441.6          E0   −1441.6 71661  

 

 

 

  
S 0.014667 −1.131957 −0.660302  S −0.429602 −0.853180 0.002195 
O −0.068859 −1.561527 0.747775  O −0.049967 −1.161907 1.382829 
O 0.946229 0.217561 −0.685592  O 0.685180 0.141230 −0.603454 
O −1.367442 −0.407819 −1.055767  O −0.595397 −1.959210 −0.931534 
Si 2.509248 0.281037 0.041233  Si −2.249837 0.441099 −0.034663 
Si −2.503874 0.302877 0.051166  C −3.574276 −0.681718 0.640105 
C 3.385677 −1.340184 −0.255905  H −3.331466 −1.008037 1.659366 
H 4.414282 −1.289356 0.128634  H −4.539215 −0.155725 0.668823 
H 2.879688 −2.169724 0.255567  H −3.688139 −1.573054 0.010107 
H 3.440646 −1.576515 −1.327142  C −2.495013 0.900701 −1.822938 
C 2.323668 0.632837 1.860627  H −3.408410 1.500633 −1.943306 
H 3.308226 0.727540 2.340296  H −1.646628 1.487189 −2.197421 
H 1.774971 1.569104 2.028825  H −2.590313 −0.000595 −2.441665 
H 1.774558 −0.180149 2.352424  C −1.861113 1.887904 1.074503 
C 3.333985 1.689516 −0.857874  H −1.023681 2.473765 0.675294 
H 2.765055 2.621029 −0.737294  H −2.733313 2.552108 1.156295 
H 4.346483 1.860322 −0.465607  H −1.595663 1.544819 2.082495 
H 3.416948 1.478996 −1.932241  Si 2.323802 0.241475 −0.031524 
C −3.390406 −1.065111 0.950836  C 2.335546 1.116775 1.612833 
H −4.176470 −0.652008 1.599132  H 1.782121 0.536107 2.360783 
H −3.866559 −1.758162 0.244376  H 3.367633 1.246812 1.968475 
H −2.690101 −1.634784 1.574003  H 1.880086 2.113483 1.537484 
C −3.639223 1.215243 −1.111843  C 3.123996 1.274667 −1.361159 
H −4.456455 1.697088 −0.556436  H 4.181939 1.454403 −1.122816 
H −3.096516 1.995597 −1.661430  H 3.077653 0.771040 −2.335595 
H −4.087106 0.531457 −1.845029  H 2.631347 2.251434 −1.457290 
C −1.637575 1.466945 1.219122  C 3.056816 −1.465143 0.063220 
H −1.047082 2.210750 0.669091  H 2.567128 −2.058639 0.845105 
H −2.379183 2.003065 1.828759  H 2.942700 −1.995901 −0.891049 
H −0.967459 0.921062 1.894188  H 4.130077 −1.405023 0.294278 
 

  



 
108 

[(Me3SiO)3S]+ – C1     [(Me3SiO)2S(O)SiMe3]+ – C1 

E0   −1 5 .46 6 7     E0   −1 5 .4 14455  

 

 

 

  
S 0.077565 −0.072262 −0.854703  S −0.105548 0.470628 −0.343736 
O −0.825063 1.181574 −0.934586  O −0.811740 −0.585082 0.557432 
O 1.355701 0.479548 −0.138308  O 1.340730 0.524013 0.198597 
O −0.537404 −0.961914 0.286796  O −0.194420 0.131047 −1.749758 
Si 2.881812 −0.435067 0.095270  Si −0.918418 2.560217 0.176179 
Si −1.837572 −2.172743 0.062873  C −2.643160 2.489320 −0.497454 
Si −1.051992 2.617233 0.137076  H −3.271200 1.773124 0.045142 
C −1.816959 −2.653300 −1.731329  H −3.100150 3.483403 −0.382430 
H −2.574964 −3.431681 −1.899916  H −2.653692 2.241016 −1.565944 
H −2.066914 −1.814023 −2.394363  C 0.254440 3.633062 −0.776452 
H −0.849510 −3.068502 −2.043107  H −0.049123 4.683053 −0.651765 
C −3.395677 −1.302374 0.564326  H 1.283867 3.536594 −0.410929 
H −4.250170 −1.988247 0.477803  H 0.231662 3.405215 −1.849631 
H −3.351427 −0.961178 1.606619  C −0.778271 2.629096 2.022560 
H −3.600057 −0.438613 −0.081860  H 0.263427 2.545157 2.355443 
C −1.321489 −3.522072 1.219651  H −1.164653 3.598255 2.371381 
H −1.204218 −3.146400 2.244467  H −1.371038 1.841241 2.503711 
H −2.089805 −4.307711 1.241486  Si 2.764317 −0.578393 0.085208 
H −0.378041 −3.988925 0.908666  C 2.514188 −1.831130 1.429505 
C 2.846042 −1.823615 −1.140069  H 1.643666 −2.472265 1.243201 
H 2.026646 −2.529990 −0.949711  H 3.397439 −2.482684 1.492015 
H 2.769602 −1.461905 −2.173757  H 2.387022 −1.349054 2.407174 
H 3.782884 −2.393623 −1.062640  C 4.138276 0.613747 0.427828 
C 2.824886 −1.012596 1.854352  H 5.098355 0.078365 0.433389 
H 3.749692 −1.552810 2.101542  H 4.198017 1.392352 −0.343414 
H 2.739150 −0.167872 2.550066  H 4.022889 1.096541 1.406671 
H 1.981781 −1.693052 2.029515  C 2.795691 −1.290649 −1.624024 
C 4.169872 0.849013 −0.241464  H 1.949769 −1.961299 −1.815744 
H 4.069451 1.704241 0.439555  H 2.793516 −0.505403 −2.390125 
H 5.170704 0.421259 −0.087772  H 3.719457 −1.875014 −1.745468 
H 4.118329 1.217472 −1.273906  Si −1.844768 −1.982966 0.084236 
C 0.328642 3.775488 −0.292453  C −2.236214 −2.669659 1.758585 
H 1.307369 3.373107 −0.004503  H −2.883828 −3.551716 1.653977 
H 0.342743 3.997980 −1.367216  H −1.329085 −2.984105 2.290320 
H 0.186582 4.726606 0.240513  H −2.767622 −1.939304 2.381968 



 
109 

C −2.715070 3.195249 −0.435170  C −0.825052 −3.113304 −0.973701 
H −3.499209 2.458180 −0.219520  H −1.418046 −4.010483 −1.203370 
H −2.983038 4.127011 0.083117  H −0.554228 −2.640858 −1.925737 
H −2.718764 3.401740 −1.513112  H 0.087425 −3.450505 −0.465697 
C −1.030038 2.025934 1.895450  C −3.318922 −1.295260 −0.805901 
H −1.796999 1.262491 2.075120  H −3.901372 −0.613313 −0.173561 
H −0.054262 1.618566 2.185972  H −3.038079 −0.777705 −1.731719 
H −1.247187 2.876108 2.558148  H −3.983865 −2.125826 −1.083643 
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Abbildung 30: Relative Energien [kcal·mol–1] der Struktur- und Konformationsisomere von 32. 



 
111 

H-N(GaCl3)SO – CS    H-NSO-GaCl3 – C1 

E0 = –3833.393749    E0 = –3833.392194 

 

 

 

  
S −0.055777 −2.471809 0.000000  S 2.375406 −0.908922 0.000000 
O 0.709751 −3.710917 0.000000  O 1.518641 0.329752 0.000000 
N 0.779126 −1.174235 0.000000  N 1.737138 −2.267886 0.000000 
H 1.798992 −1.276036 0.000000  H 0.710437 −2.338955 0.000000 
Ga −0.060000 0.762977 0.000000  Ga −0.547457 0.411137 0.000000 
Cl 0.779126 1.510829 1.840464  Cl −0.903037 −0.748144 1.799318 
Cl 0.779126 1.510829 −1.840464  Cl −0.903037 −0.748144 −1.799318 
Cl −2.156985 0.218322 0.000000  Cl −0.903037 2.518267 0.000000 
 
  



 
112 

Cl3Ga-NSO-H – CS    H-NS(GaCl3)O – CS 

E0 = –3833.369523    E0 = –3833.367020 

 

 

 

  
S 0.141934 2.326123 0.000000  S 0.095125 −2.168771 0.000000 
O −0.649455 3.746161 0.000000  O −1.117031 −2.987710 0.000000 
N −0.786009 1.182066 0.000000  N 1.478269 −2.785893 0.000000 
H −1.613778 3.603743 0.000000  H 1.513114 −3.811627 0.000000 
Ga 0.010065 −0.755211 0.000000  Ga −0.048610 0.958166 0.000000 
Cl 2.144284 −0.288920 0.000000  Cl 2.061129 1.222780 0.000000 
Cl −0.786009 −1.492420 1.861252  Cl −1.117031 0.924250 1.842295 
Cl −0.786009 −1.492420 −1.861252  Cl −1.117031 0.924250 −1.842295 
 
  



 
113 

Cl3Ga-O(H)SN – C1    H-OS(GaCl3)N – CS 

E0 = –3833.362753    E0 = –3833.338506 

 

 

 

  
S −2.518301 0.366603 −0.400369  S −0.106196 −2.098523 0.000000 
O −0.901112 −0.211902 −1.110573  O 1.492115 −2.555646 0.000000 
N −3.587476 −0.604038 −0.465779  N −1.088774 −3.170941 0.000000 
H −0.986185 −1.140718 −1.387931  H 2.024475 −1.737450 0.000000 
Ga 0.747382 −0.001776 0.086034  Ga −0.087314 0.886635 0.000000 
Cl 1.900210 1.548477 −0.843656  Cl 2.063777 0.749901 0.000000 
Cl 1.422928 −2.048473 −0.022168  Cl −1.088774 1.109458 1.859883 
Cl −0.356586 0.573737 1.881813  Cl −1.088774 1.109458 −1.859883 
 
  



 
114 

[PO4]3− – TD      [(HO)2PO2]− - C1 

Etot   −641.5 464     Etot   −643.259191 

 

 

 

  
P 0.000000 0.000000 0.000000  P −0.000495 0.106897 0.140356 
O 0.924306 0.924306 0.924306  O 0.004487 −0.909687 1.259443 
O −0.924306 −0.924306 0.924306  O −1.290167 −0.301760 −0.841917 
O −0.924306 0.924306 −0.924306  O −0.007620 1.590870 0.293313 
     O 1.292778 −0.289572 −0.842239 
     H −1.564933 −1.168825 −0.527305 
     H 1.576543 −1.153444 −0.526829 
 

  



 
115 

[Me3SiOPO3]2− - C1    [(Me3SiO)2PO2]− – C1 

Etot   −1 51. 1 1     Etot   −146 .1 657   

 

 

 

 
 

P 1.559412 0.000003 0.051087  P −0.000049 −1.040900 −0.000025 
O 0.485122 −0.000063 −1.167356  O 0.769482 −1.742205 1.081260 
O 2.336580 −1.301523 0.157776  O −0.769899 −1.741875 −1.081292 
O 2.336541 1.301561 0.157673  O −1.035704 0.034550 0.721313 
O 0.273494 0.000027 1.135440  O 1.035627 0.034728 −0.721136 
Si −1.007425 0.000001 −0.029481  Si 2.520337 0.392716 −0.034258 
C −1.674508 −1.599834 −0.861486  Si −2.520274 0.392792 0.034286 
H −2.741212 −1.796526 −0.659795  C 3.697225 −1.062578 −0.100335 
H −1.499365 −1.571328 −1.947349  H 4.685804 −0.797227 0.304158 
H −1.084410 −2.442047 −0.464739  H 3.269801 −1.883663 0.488964 
C −1.674534 1.599835 −0.861466  H 3.830474 −1.411841 −1.134081 
H −2.741257 1.796475 −0.659826  C 2.359204 1.029659 1.719645 
H −1.084489 2.442045 −0.464634  H 3.332321 1.354778 2.117553 
H −1.499327 1.571400 −1.947320  H 1.664884 1.880313 1.762806 
C −2.355396 −0.000011 1.439806  H 1.956081 0.228595 2.351900 
H −2.236396 0.888682 2.085320  C 3.199035 1.770131 −1.125758 
H −3.391672 −0.000025 1.050062  H 2.543652 2.652252 −1.098559 
H −2.236373 −0.888695 2.085327  H 4.202583 2.081623 −0.799266 
     H 3.269802 1.437992 −2.171280 
     C −3.199167 1.769916 1.126031 
     H −2.543786 2.652048 1.099177 
     H −4.202663 2.081486 0.799454 
     H −3.270108 1.437500 2.171455 
     C −3.697114 −1.062564 0.099724 
     H −4.685595 −0.797152 −0.304957 
     H −3.269524 −1.883502 −0.489672 
     H −3.830604 −1.412080 1.133351 
     C −2.358774 1.030148 −1.719424 
     H −1.664360 1.880738 −1.762240 
     H −1.955612 0.229216 −2.351827 
     H −3.331793 1.355464 −2.117408 
 

  



 
116 

(Me3SiO)3PO - C1     [(Me3SiO)4P]+ – C1 

Etot   −1 6 .1 6  7     Etot = −2278.0341376 

 

 

 

  
P 0.002063 0.001399 −0.055117  P 0.000012 0.000112 −0.000072 
O −0.460869 1.361095 −0.730713  O 0.864585 −1.052534 0.738813 
O −0.942513 −1.080893 −0.729152  O −0.865358 −0.738519 −1.052229 
O 1.411880 −0.277194 −0.728399  O −0.864457 0.739473 1.052314 
O 0.000844 0.004450 1.431011  O 0.865298 1.052006 −0.739201 
Si −1.547798 2.512355 −0.071627  Si 1.802337 −2.442799 0.206911 
Si −1.407271 −2.594440 −0.071736  Si −1.804005 −0.206180 −2.441733 
Si 2.954352 0.081462 −0.071350  Si −1.803271 0.207994 2.442042 
C 4.108362 −0.182004 −1.510546  C −3.049751 1.564414 2.642100 
H 3.867707 0.497811 −2.338576  H −3.707481 1.644352 1.766897 
H 5.151187 −0.000177 −1.214673  H −3.683419 1.369606 3.518397 
H 4.039158 −1.211794 −1.885973  H −2.561190 2.535430 2.796182 
C 2.969962 1.851564 0.513726  C −2.563168 −1.430700 2.003980 
H 2.671150 2.536867 −0.290648  H −3.193745 −1.362734 1.108151 
H 2.282817 1.987952 1.358660  H −1.805623 −2.207368 1.837355 
H 3.978113 2.137392 0.845518  H −3.202857 −1.767734 2.831771 
C 3.300959 −1.102786 1.323232  C −0.603953 0.098826 3.853935 
H 3.264159 −2.145081 0.979366  H −0.148100 1.074382 4.068242 
H 4.298062 −0.921469 1.748795  H −1.123511 −0.229039 4.765004 
H 2.555416 −0.974463 2.118640  H 0.197626 −0.622106 3.648158 
C −0.713509 3.381909 1.347704  C 2.561212 −2.005262 −1.432403 
H −0.463395 2.658505 2.134681  H 1.803065 −1.838444 −2.208446 
H 0.212569 3.875091 1.023546  H 3.192115 −1.109618 −1.365020 
H −1.373766 4.148825 1.776342  H 3.200348 −2.833280 −1.769908 
C −1.874973 3.664520 −1.499011  C 3.049601 −2.643264 1.562559 
H −2.331867 3.129956 −2.342417  H 2.561545 −2.796897 2.533900 
H −2.557561 4.472237 −1.199283  H 3.682723 −3.519907 1.367549 
H −0.943392 4.125317 −1.853822  H 3.707805 −1.768362 1.641928 
C −3.099888 1.638559 0.479892  C 0.602354 −3.854207 0.098827 
H −3.537716 1.052575 −0.339216  H 0.147225 −4.068270 1.074776 
H −2.889232 0.960897 1.317328  H −0.199744 −3.648277 −0.621480 
H −3.851620 2.367557 0.814079  H 1.121365 −4.765484 −0.229336 
C −2.606622 −2.301202 1.322035  C −0.605107 −0.099228 −3.854136 
H −3.494058 −1.753269 0.977958  H −0.150762 −1.075542 −4.068209 



 
117 

H −2.943208 −3.255685 1.750964  H −1.124542 0.229004 −4.765141 
H −2.123307 −1.715765 2.114790  H 0.197612 0.620608 −3.648963 
C 0.115430 −3.494332 0.518117  C −2.561441 1.433668 −2.003724 
H 0.860752 −3.579932 −0.283535  H −3.191704 1.366692 −1.107597 
H 0.574611 −2.966491 1.364086  H −1.802747 2.209305 −1.837529 
H −0.142912 −4.509772 0.850570  H −3.201033 1.771458 −2.831278 
C −2.209715 −3.463573 −1.511209  C −3.052527 −1.560875 −2.640847 
H −1.498574 −3.598656 −2.337000  H −3.709942 −1.639578 −1.765291 
H −2.574928 −4.456258 −1.212305  H −3.686350 −1.365399 −3.516882 
H −3.065869 −2.890043 −1.890761  H −2.565477 −2.532657 −2.794873 
     Si 1.804950 2.440987 −0.207242 
     C 0.606752 3.853851 −0.098489 
     H 1.126935 4.764470 0.229630 
     H 0.151493 4.068560 −1.074234 
     H −0.195320 3.648720 0.622080 
     C 3.052141 2.640174 −1.563148 
     H 3.709227 1.764467 −1.642872 
     H 2.564104 2.794687 −2.534358 
     H 3.686408 3.515967 −1.368023 
     C 2.563818 2.002094 1.431712 
     H 3.193648 1.105733 1.363827 
     H 3.204049 2.829275 1.769199 
     H 1.805786 1.835926 2.208005 
 

  



 
118 

[PCO]− – C∞V     H-PCO – Cs 
E0 = –454.484655    E0 = –455.007837 

 

 

  
C 0.000000 0.000000 −0.509950  C 0.000000 0.588948 0.000000 
O 0.000000 0.000000 −1.709955  O 0.044146 1.743372 0.000000 
P 0.000000 0.000000 1.115956  P 0.067392 −1.094070 0.000000 
     H −1.364046 −1.069617 0.000000 

 
 
  



 
119 

H-OCP – Cs 
E0 = –454.971397 

 

 

C 0.000000 0.373934 0.000000 
O −0.043647 1.673961 0.000000 
P −0.033325 −1.178816 0.000000 
H 0.849051 2.046952 0.000000 
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(F5C6)3B(H)-PCO – C1   (C6F5)3B(H)-OCP – C1 
E0 = –2660.865726    E0 = –2660.833919 

 

 

 

  
C −1.485447 0.156920 2.999370  P −2.122715 −0.038743 4.412638 
P 0.195226 0.065136 2.597218  C −0.884884 −0.164921 3.481966 
B 0.087170 0.024540 0.342060  B 0.153836 0.034476 −0.425807 
C 0.157272 1.596400 0.000595  C −0.482826 1.458504 −0.488551 
C −0.881318 2.457865 0.365684  C −1.738743 1.733688 0.066996 
C 1.203105 2.213889 −0.689348  C 0.159957 2.541147 −1.100719 
C −0.893400 3.819144 0.108020  C −2.316660 2.993997 0.036619 
C 1.228330 3.575814 −0.976151  C −0.397165 3.808720 −1.169003 
C 0.176054 4.385173 −0.575309  C −1.641332 4.034701 −0.590856 
C 1.414250 −0.854522 0.075976  C 1.699502 −0.149718 −0.268119 
C 1.476607 −1.914655 −0.828828  C 2.391419 −1.204407 −0.877848 
C 2.613990 −0.579445 0.731202  C 2.484640 0.730329 0.490005 
C 2.634472 −2.656328 −1.047868  C 3.761926 −1.379797 −0.758546 
C 3.785789 −1.294063 0.555397  C 3.854026 0.572711 0.647197 
C 3.794072 −2.347181 −0.352524  C 4.494886 −0.486008 0.013732 
C −1.292599 −0.718158 −0.042287  C −0.771780 −1.232410 −0.546493 
C −1.739770 −1.859263 0.619324  C −0.578790 −2.391761 0.205246 
C −2.071699 −0.339021 −1.135400  C −1.849974 −1.276663 −1.435812 
C −2.881876 −2.566021 0.274976  C −1.383544 −3.514360 0.116294 
C −3.220814 −1.019528 −1.523658  C −2.669645 −2.388961 −1.576336 
C −3.629756 −2.140771 −0.815199  C −2.436367 −3.512508 −0.793135 
F −1.947555 1.972553 1.026362  F 1.927472 1.758306 1.121991 
F −1.913041 4.577990 0.498605  F 4.555616 1.421010 1.388380 
F 0.187837 5.683887 −0.840777  F 5.801104 −0.642920 0.145687 
F 2.253211 4.102705 −1.637957  F 4.375798 −2.385840 −1.370215 
F 2.249218 1.515131 −1.135923  F 1.742524 −2.086196 −1.639735 
F 0.414310 −2.267444 −1.556807  F 0.424596 −2.453434 1.111686 
F 2.635579 −3.655072 −1.924620  F −1.160094 −4.578770 0.875577 
F 4.901947 −3.047752 −0.551021  F −3.213309 −4.575948 −0.907685 
F 4.888943 −0.980801 1.227075  F −3.669242 −2.387217 −2.447903 
F 2.652721 0.440596 1.614830  F −2.117086 −0.234126 −2.220515 
F −1.055007 −2.314987 1.689804  F 1.349440 2.377652 −1.680343 
F −3.256813 −3.636547 0.968431  F 0.241359 4.802228 −1.776075 
F −4.725202 −2.797467 −1.172314  F −2.182836 5.240241 −0.638851 
F −3.923575 −0.609045 −2.574228  F −3.501820 3.214338 0.591405 
F −1.725727 0.707272 −1.890460  F −2.426769 0.773611 0.683141 
O −2.590356 0.092176 3.285818  O 0.158627 −0.212110 2.713873 
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H 0.303440 1.446185 2.912049  H 0.313855 −1.114476 2.383772 
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H-PCO-B(F5C6)3 – C1   H-OCP-B(F5C6)3 – C1 
E0 = –2660.867135    E0 = –2660.834596 

 

 

 

 
 

P 2.777238 0.048629 3.550643  C −1.063937 0.002953 3.643372 
C 1.148003 0.040580 3.129185  P 0.488233 −0.055579 3.739027 
B −0.216034 0.002993 −0.396609  B 0.094316 −0.015121 −0.441036 
C 1.258904 0.485488 −0.607775  C −1.136448 0.960824 −0.518313 
C 1.777421 1.611417 0.040175  C −2.339642 0.711162 0.140949 
C 2.149071 −0.190217 −1.450139  C −1.099999 2.154675 −1.245933 
C 3.087318 2.037683 −0.115538  C −3.422626 1.572180 0.126013 
C 3.458254 0.221646 −1.650583  C −2.172667 3.034668 −1.313071 
C 3.929671 1.340339 −0.973154  C −3.339308 2.745465 −0.615641 
C −0.522989 −1.532705 −0.341257  C 1.538788 0.574011 −0.356741 
C −1.671567 −2.084487 −0.917612  C 2.632517 −0.039989 −0.979681 
C 0.334576 −2.441576 0.286570  C 1.823940 1.754773 0.340966 
C −1.953461 −3.442395 −0.888105  C 3.918741 0.474581 −0.925697 
C 0.075587 −3.802036 0.355873  C 3.101537 2.285985 0.434439 
C −1.074377 −4.304154 −0.242599  C 4.152692 1.642773 −0.208966 
C −1.374677 1.043415 −0.251619  C −0.140315 −1.560982 −0.460907 
C −2.478992 0.817040 0.579580  C 0.666018 −2.449020 0.263367 
C −1.375221 2.263294 −0.938728  C −1.172480 −2.149719 −1.202208 
C −3.506256 1.735860 0.735851  C 0.459376 −3.820635 0.270616 
C −2.395498 3.195521 −0.822726  C −1.394767 −3.517942 −1.235507 
C −3.464683 2.929362 0.024623  C −0.574099 −4.356351 −0.489461 
F 1.451574 −2.014630 0.884760  F −2.489183 −0.410595 0.880385 
F 0.910562 −4.624342 0.980422  F −4.523326 1.286069 0.813648 
F −1.332260 −5.601174 −0.196105  F −4.364200 3.579208 −0.656576 
F −3.048355 −3.923483 −1.465285  F −2.091090 4.147419 −2.030061 
F −2.544452 −1.303792 −1.555239  F −0.011395 2.487252 −1.936975 
F −2.570951 −0.305225 1.290230  F 2.464256 −1.155428 −1.690063 
F −4.525122 1.486372 1.550505  F 4.922342 −0.132779 −1.547841 
F −4.442241 3.811563 0.153999  F 5.375179 2.142319 −0.140257 
F −2.360729 4.332754 −1.508085  F 3.328213 3.398126 1.122424 
F −0.381292 2.568426 −1.773328  F 0.856523 2.409432 0.981102 
F 1.747913 −1.264967 −2.130453  F 1.667522 −1.993549 1.012228 
F 4.261366 −0.439567 −2.476169  F 1.237394 −4.622499 0.986424 
F 5.180229 1.738263 −1.142060  F −0.777344 −5.662915 −0.502678 
F 3.542505 3.094399 0.547780  F −2.376882 −4.031237 −1.967343 
F 1.017591 2.308879 0.887633  F −1.984941 −1.394592 −1.943833 
H 2.517012 1.254871 4.264083  O −2.354402 0.065637 3.619972 
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O 0.042629 −0.039377 2.788720  H −2.681386 −0.148338 2.729142 
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[Me3Si-P(H)CO]+ – C1 
E0 = –863.668813 

 

 

P –0.908439 1.304496 –0.100912 
Si 0.985805 –0.212853 0.001311 
C 0.936247 –1.029756 –1.664746 
H 1.837882 –1.654206 –1.763517 
H 0.071635 –1.695024 –1.787568 
H 0.949276 –0.304845 –2.488406 
C 2.319821 1.062161 0.221142 
H 2.226455 1.613664 1.165409 
H 3.284781 0.531749 0.248638 
H 2.361917 1.776659 –0.610636 
C 0.744192 –1.347839 1.449695 
H 1.639247 –1.983688 1.536948 
H 0.639562 –0.802348 2.396030 
H –0.115461 –2.019047 1.326476 
C –2.113839 0.050685 0.022448 
O –2.911108 –0.753235 0.000975 
H –1.099639 1.563966 1.292916 
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Tabelle 12: Ausgewählte NMR-Verschiebungen, Gasphasen und [Me3Si]+-Affinitäten von Carba-closo-boraten. 

 

       n H+ + [A](  −  [HnA](−  n [Me3Si]+ + [A](  −  [(Me3Si)nA](−  

 
δ13C 
exp. 

δ13C 
ber.[a] 

 δ 13C 
(exp-ber) qC [e] δ29Si[a] NICS[b] 

 G 298 K    298 K   E tot  G 298 K   298 K   E tot 

[kcal·mol−1] [kcal·mol−1] 

[CHB11H11]−  51.4 52.8 −1.4 −0.812 62.5 −27.7 −272.3 −269.8 −276.2 −97.1 −109.8 −112.7 

  
           

[CHB11H5F6]− -[c] 7.8 - −0.779 124.6 −34.8 −234.9 −241.6 −246.7 −93.1 −105.4 −107.9 
[CHB11F11]− -[c] 19.9 - −0.936 135.4 −33.3 −227.5 −226.4 −232.7 −82.1 −94.7 −97.0 
[CHB11H5Cl6]−  32.8[95] 32.2 0.6 −0.801 98.9 −32.2 −253.2 −252.4 −257.1 −85.1 −98.4 −100.7 
[CHB11Cl11]−

  47.4 51.3 −3.9 −0.947 106.6 −34.4 −241.0 −240.9 −245.4 −74.8 −88.8 −90.9 
[CHB11H5Br6]−  41.5[120] 37.6 3.9 −0.806 94.4 −30.6 −256.2 −255.4 −259.4 −84.5 −97.9 −100.2 
[CHB11Br11]− 54.1[121] 54.4 −0.3 −0.978 98.7 −32.0 −245.6 −245.7 −249.5 −75.4 −89.3 −91.3 
[CHB11H5I6]−  55.8[122] 49.6 6.2 −0.816 83.4 −28.0 −258.5 −257.7 −261.4 −84.6 −97.5 −99.6 
[CHB11I11]− 55.5[121] 59.6 −4.1 −1.028 86.4 −28.5 −251.5 −250.5 −254.0 −77.3 −90.4 −92.4 

 
[a] Mit der GIAO-NMR-Methode berechnet; [b] Im Zentrum des Käfigs berechnet, ORTEP[285] wurde für die Positionierung des Zentroids 
verwendet; [c] Keine experimentellen Daten vorhanden. 
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Tabelle 13: Zusammenfassung NBO-Ergebnisse für Carba-closo-borate. 

 [HnA](−  [(Me3Si)nA](−  

 q(B) [e] q(H) [e] d(X-H) 
[Å] q(X) [e] QLT [e] q(B) [e] q(Me3Si) 

[e] 
d(X-Si) 

[Å] q(X) [e] QLT [e] 

[CHB11H11]− (2) −0.138 0.301 0.846 0.30 −0.70 −0.132 0.705 1.633 −0.043 −0.30 

 

[CHB11H5F6]− 0.269 
0.369 0.632 1.025 

1.440 
−0.42 
−0.49 −0.37 0.273 0.821 1.826 −0.502 −0.18 

[CHB11F11]− 0.268 
0.301 0.634 1.027 

1.438 
−0.41 
−0.47 −0.37 0.281 0.831 1.850 −0.499 −0.17 

[CHB11H5Cl6]− 
(4) 

0.011 
−0.006 0.28 1.739 

1.458 
−0.011 
0.121 −0.72 0.010 0.605 2.265 0.002 −0.39 

[CHB11Cl11]− (3) 0.007 
−0.019 0.285 1.461 

1.738 
0.133 
0.016 −0.71 0.027 0.622 2.280 0.007 −0.37 

[CHB11H5Br6]− −0.098 
−0.077 0.17 1.644 

1.817 
0.263 
0.154 −0.83 −0.003 0.536 2.406 0.163 −0.46 

[CHB11Br11]− −0.089 
−0.044 0.172 1.670 

1.785 
0.263 
0.2 −0.83 −0.059 0.550 2.419 0.169 −0.45 

[CHB11H5I6]− −0.244 
−0.135 0.040 1.830 

2.038 
0.496 
0.334 −0.96 −0.189 0.428 2.609 0.395 −0.57 

[CHB11I11]− −0.177 
−0.219 0.037 1.873 

1.985 
0.484 
0.411 −0.96 −0.164 0.438 2.617 0.407 −0.56 
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Tabelle 14: Energieunterschiede zwischen verschiedenen Protonierungsseiten für Carba-closo-borate. 

 

 
Anion 

 G [kc  ·mo −1] 

1[a] 2[a] 3[a] 4[a] 5[a] 6[a] 7[a] 8[a] 9[a] 10[a] 11[a] 12[a] 13[a] 
[CHB11H11]−  0[b]      5.48 10.53 10.58  42.10[c]   

 
[CHB11H5F6]−   0 0.32[c]  0.56 2.23 6.81      
[CHB11F11]−   0 0.67[c] 6.12 9.70 5.90 10.71 8.83  23.97 17.03[c]  
[CHB11H5Cl6]−    0 1.41  20.34 4.04[c]      11.49[c] 
[CHB11Cl11]−    0 0.80 5.42 8.17    45.99  18.59[c]  
[CHB11H5Br6]−  25.41[c] 0 1.67  25.41       11.87[c] 
[CHB11Br11]−   0 1.00 4.93 7.47    49.76    
[CHB11H5I6]−  26.05 0 1.39  28.77       9.25 
[CHB11I11]−   0 0.91 4.05 6.10      13.34[c]  

 
[a] Graphische Darstellung der protonierten Anionen s. ff. S.; [b] Tiefstliegendstes Isomer als 0 gekennzeichnet; [c] NIMAG ≥ 1.  

 

 

  

Protonierungs- 
seite 
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Abbildung 31. Isomer 1. 

 

Abbildung 32. Isomer 2. 

 

Abbildung 33. Isomer 3. 

 

Abbildung 35. Isomer 4. 

 

Abbildung 34. Isomer 5. 

 

Abbildung 36. Isomer 6. 
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Abbildung 40. Isomer 10. 

 

Abbildung 41. Isomer 11. 

 

Abbildung 42. Isomer 12. 

 

Abbildung 37. Isomer 7. 

 

Abbildung 38. Isomer 8. 

 

Abbildung 39. Isomer 9. 
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Abbildung 43. Isomer 13. 
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Tabelle 15: Silylierte Konstitutions-Isomere von [SO3]2−. 

 
  G [kc  ·mol−1][a]   G [kcal·mol−1][b] 
[SO3] −  - - 
[Me3Si-SO3]− −274.93  
[Me3SiO-SO2]− −294.51 19.57 
[Me3Si-S(O)(OSiMe3)] −130.79  
[(Me3SiO)2-SO] −150.95 20.16 
[Me3Si-S(O)(OSiMe3)2]+ −  .    
[(Me3SiO)3-S]+ −48.67 20.60 

 
[a] Die Reaktion von [Me3Si]+ mit dem jeweils thermodynamisch favorisierten Isomer; [b] 
Energiedifferenz zwischen beiden Isomeren. 
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Tabelle 16: Ausgewählte berechnete und beobachtete 17O-NMR-Verschiebungen 
von verschiedenen Schwefel-Sauerstoff Verbindungen.  

 

 δ(17O) [ppm] δber(17O) [ppm] 
[SO4] −  - 215.8 
K2[SO4] 167.1  

[HSO4]− 160.0 
[KHSO4] 

222.7 (SO) 
210.8 (OH) 

H2SO4 151.88 218.5 (SO) 
202.5 (OH) 

[NH4]2[SO4] 168.3  

   
[SO3] −   317.3 
Na2[SO3] 210.4  

[SO2(OH)]−  
300.1 (SO) 
267.6 (OH) 

[HSO3]−  247.1 

OS(OH)2  
251.9 (SO) 
227.8 (OH) 

HSO2(OH)  
237.6 (SO) 
207.8 (OH) 

   

(Me3SiO)2SO2 
152.6 (OSi) 
174.5 (OS) 

215.6 (OSi) 
232.2 (OS) 

   
[DMAP-T]2[SO4] 169.0  

[DMAP-T][TO-SO3] 167.8 219.9 (OSi) 
234.3 (OS) 

   
Ag[O3SCF3] 158.9 216.2  

K2[S2O7] 160.2[a] 226.2 (SO) 
332.5 (SOS) 

Na2[S2O3] 227.4 302.9 

K2[S2O5] 
176.4 (SO2) 
165.5 (SO3) 

275.4 (SO2) 
212.5 (SO3) 

[a] Zersetzung.  
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Tabelle 17: Experimentelle und berechnete NMR-Verschiebungen und 
Kopplungskonstanten. 
 

 δ[17O] δ[29Si] δ[31P] 
[PO4] −  134.9 - 54.5 

[H2PO4] −- 127.5 
88.3[a]  14.7 

−0.1[a] 

[Me3SiOPO3] −  
136.1 (PO) 
216.0 (SiO) 
193.9 (SiO) 

−102.5 15.3 

[(Me3SiO)2PO2]− 
162.5 (PO) 
141.9 (SiO) 

[c] 

6.5 
10.3[b] 

3.5 
−13.0[b] 

(Me3SiO)3PO 

163.0 (PO) 
105.3 (PO)[b] 

[218 Hz / 150 Hz][d] 
132.6 (SiO) 
83.1 (SiO)[b] 

28.4 
20.4[b] 

−4.4 
−25.8[b] 

[(Me3SiO)4P]+ 129.8 
78.4[b] 

47.3 
35.6[b] 

−13.0 
−35.9[b] 

 

[a] experimentelle Werte, in D2O gemessen; [b] in CD2Cl2 gemessen; [c] kein Signal 
beobachtet; [d] 1J(17O-31P). 
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5.3.2 NBO-Analyse 
 
Tabelle 18: NBO-Analyse von [CHB11H11]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.81212 1.99915 4.77490 0.03807 6.81212 
H 2 0.31129 0.00000 0.68071 0.00800 0.68871 
B 3 −0.17792 1.99850 3.13289 0.04653 5.17792 
B 4 0.00802 1.99835 2.94734 0.04629 4.99198 
B 5 0.00786 1.99835 2.94664 0.04715 4.99214 
B 6 −0.17792 1.99850 3.13289 0.04653 5.17792 
B 7 −0.17897 1.99850 3.13346 0.04701 5.17897 
B 8 −0.16060 1.99856 3.11662 0.04542 5.16060 
B 9 0.00786 1.99835 2.94664 0.04715 4.99214 
B 10 0.00906 1.99835 2.94612 0.04647 4.99094 
B 11 −0.17897 1.99850 3.13346 0.04701 5.17897 
B 12 −0.17919 1.99850 3.13401 0.04668 5.17919 
B 13 0.00906 1.99835 2.94612 0.04647 4.99094 
H 14 0.05169 0.00000 0.94258 0.00573 0.94831 
H 15 0.04107 0.00000 0.95325 0.00568 0.95893 
H 16 0.05190 0.00000 0.94229 0.00581 0.94810 
H 17 0.04820 0.00000 0.94545 0.00636 0.95180 
H 18 0.04107 0.00000 0.95325 0.00568 0.95893 
H 19 0.05169 0.00000 0.94258 0.00573 0.94831 
H 20 0.04135 0.00000 0.95296 0.00569 0.95865 
H 21 0.05137 0.00000 0.94296 0.00567 0.94863 
H 22 0.04146 0.00000 0.95276 0.00578 0.95854 
H 23 0.05137 0.00000 0.94296 0.00567 0.94863 
H 24 0.04135 0.00000 0.95296 0.00569 0.95865 
============================================================== 

* Total * −1.00000 23.98195 49.39577 0.62228 74.00000 
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Tabelle 19: NBO-Analyse von H[CHB11H11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.07271 0.00000 0.91970 0.00759 0.92729 
B 2 −0.29824 1.99766 3.25485 0.04573 5.29824 
B 3 −0.13759 1.99848 3.09247 0.04665 5.13759 
B 4 −0.15436 1.99846 3.10722 0.04868 5.15436 
B 5 −0.15436 1.99846 3.10722 0.04868 5.15436 
B 6 −0.13759 1.99848 3.09247 0.04665 5.13759 
B 7 −0.13099 1.99849 3.08804 0.04446 5.13099 
H 8 0.07210 0.00000 0.92100 0.00690 0.92790 
H 9 0.07983 0.00000 0.91238 0.00779 0.92017 
H 10 0.07184 0.00000 0.92122 0.00694 0.92816 
H 11 0.08235 0.00000 0.91053 0.00712 0.91765 
B 12 0.02446 1.99838 2.92805 0.04910 4.97554 
H 13 0.08235 0.00000 0.91053 0.00712 0.91765 
C 14 −0.81039 1.99916 4.76466 0.04658 6.81039 
H 15 0.07979 0.00000 0.91314 0.00707 0.92021 
B 16 0.02422 1.99838 2.92835 0.04905 4.97578 
B 17 0.02231 1.99839 2.93157 0.04773 4.97769 
H 18 0.07979 0.00000 0.91314 0.00707 0.92021 
B 19 0.02446 1.99838 2.92805 0.04910 4.97554 
H 20 0.30116 0.00000 0.69099 0.00785 0.69884 
H 21 0.33835 0.00000 0.65379 0.00786 0.66165 
B 22 0.02422 1.99838 2.92835 0.04905 4.97578 
H 23 0.07210 0.00000 0.92100 0.00690 0.92790 
H 24 0.07184 0.00000 0.92122 0.00694 0.92816 
H 25 0.29962 0.00000 0.69218 0.00820 0.70038 
============================================================== 

* Total * 0.00000 23.98109 49.35210 0.66681 74.00000 
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Tabelle 20: NBO-Analyse von [Me3Si][CHB11H11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.80752 1.99915 4.76550 0.04287 6.80752 
H 2 0.33513 0.00000 0.65685 0.00802 0.66487 
B 3 −0.16262 1.99843 3.11325 0.05093 5.16262 
B 4 0.02574 1.99837 2.92743 0.04846 4.97426 
B 5 0.02528 1.99838 2.92817 0.04817 4.97472 
B 6 −0.18012 1.99843 3.12855 0.05314 5.18012 
B 7 −0.16260 1.99843 3.11323 0.05093 5.16260 
B 8 −0.13165 1.99793 3.07273 0.06099 5.13165 
B 9 0.02390 1.99837 2.92870 0.04903 4.97610 
B 10 0.02573 1.99837 2.92743 0.04846 4.97427 
B 11 −0.18703 1.99845 3.13982 0.04876 5.18703 
B 12 −0.18008 1.99843 3.12851 0.05314 5.18008 
B 13 0.02386 1.99837 2.92874 0.04903 4.97614 
H 14 0.06187 0.00000 0.93071 0.00742 0.93813 
H 15 0.06968 0.00000 0.92225 0.00808 0.93032 
H 16 0.07584 0.00000 0.91735 0.00681 0.92416 
H 17 0.06969 0.00000 0.92224 0.00808 0.93031 
H 18 0.07585 0.00000 0.91734 0.00681 0.92415 
H 19 −0.04305 0.00000 1.02667 0.01638 1.04305 
H 20 0.06729 0.00000 0.92611 0.00660 0.93271 
H 21 0.06748 0.00000 0.92585 0.00667 0.93252 
H 22 0.06756 0.00000 0.92580 0.00664 0.93244 
H 23 0.06729 0.00000 0.92611 0.00660 0.93271 
H 24 0.06748 0.00000 0.92585 0.00667 0.93252 
Si 25 1.80681 9.99761 2.14433 0.05125 12.19319 
C 26 −1.20018 1.99935 5.18301 0.01782 7.20018 
H 27 0.27462 0.00000 0.72165 0.00374 0.72538 
H 28 0.27367 0.00000 0.72384 0.00248 0.72633 
H 29 0.27461 0.00000 0.72165 0.00374 0.72539 
C 30 −1.20476 1.99935 5.18548 0.01993 7.20476 
H 31 0.27624 0.00000 0.72132 0.00244 0.72376 
H 32 0.28520 0.00000 0.70873 0.00607 0.71480 
H 33 0.28104 0.00000 0.71464 0.00432 0.71896 
C 34 −1.20475 1.99935 5.18547 0.01993 7.20475 
H 35 0.28105 0.00000 0.71463 0.00432 0.71895 
H 36 0.28520 0.00000 0.70873 0.00607 0.71480 
H 37 0.27625 0.00000 0.72132 0.00244 0.72375 
============================================================== 

* Total * 0.00000 39.97679 73.17999 0.84322 114.00000 
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Tabelle 21: NBO-Analyse von [CHB11H5F6]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 -0.77930 1.99918 4.74314 0.03697 6.77930 
H 2 0.32567 0.00000 0.66670 0.00762 0.67433 
B 3 0.43751 1.99708 2.50112 0.06429 4.56249 
B 4 -0.07283 1.99835 3.02680 0.04767 5.07283 
B 5 -0.07283 1.99835 3.02680 0.04767 5.07283 
B 6 0.43705 1.99708 2.49991 0.06596 4.56295 
B 7 0.43705 1.99708 2.49991 0.06596 4.56295 
B 8 0.39633 1.99711 2.54719 0.05937 4.60367 
B 9 -0.07396 1.99836 3.02733 0.04827 5.07396 
B 10 -0.07396 1.99836 3.02733 0.04827 5.07396 
B 11 0.43848 1.99708 2.49946 0.06498 4.56152 
B 12 0.43848 1.99708 2.49946 0.06498 4.56152 
B 13 -0.07400 1.99836 3.02801 0.04764 5.07400 
H 14 0.06641 0.00000 0.92788 0.00570 0.93359 
H 15 0.06633 0.00000 0.92803 0.00564 0.93367 
H 16 0.06617 0.00000 0.92818 0.00565 0.93383 
H 17 0.06633 0.00000 0.92803 0.00564 0.93367 
H 18 0.06617 0.00000 0.92818 0.00565 0.93383 
F 19 -0.51686 1.99994 7.50222 0.01470 9.51686 
F 20 -0.51669 1.99994 7.50214 0.01461 9.51669 
F 21 -0.51720 1.99994 7.50227 0.01498 9.51720 
F 22 -0.51720 1.99994 7.50227 0.01498 9.51720 
F 23 -0.51686 1.99994 7.50222 0.01470 9.51686 
F 24 -0.51032 1.99994 7.49576 0.01462 9.51032 
============================================================== 

* Total * −1.00000 35.97309 85.24036 0.78656 122.00000 
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Tabelle 22: NBO-Analyse von H[CHB11H5F6]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.78846 1.99919 4.74307 0.04619 6.78846 
H 2 0.35087 0.00000 0.64150 0.00762 0.64913 
B 3 0.45315 1.99697 2.48319 0.06670 4.54685 
B 4 −0.04664 1.99835 3.00040 0.04789 5.04664 
B 5 −0.06283 1.99837 3.01491 0.04955 5.06283 
B 6 0.36933 1.99662 2.57710 0.05695 4.63067 
B 7 0.47931 1.99711 2.45983 0.06376 4.52069 
B 8 0.26940 1.99632 2.67392 0.06037 4.73060 
B 9 −0.04664 1.99835 3.00040 0.04789 5.04664 
B 10 −0.07054 1.99839 3.02382 0.04832 5.07054 
B 11 0.45315 1.99697 2.48319 0.06670 4.54685 
B 12 0.47931 1.99711 2.45983 0.06376 4.52069 
B 13 −0.06283 1.99837 3.01491 0.04955 5.06283 
H 14 0.09506 0.00000 0.89834 0.00661 0.90494 
H 15 0.09752 0.00000 0.89524 0.00724 0.90248 
H 16 0.09506 0.00000 0.89834 0.00661 0.90494 
H 17 0.09397 0.00000 0.89955 0.00649 0.90603 
H 18 0.09397 0.00000 0.89955 0.00649 0.90603 
F 19 −0.49053 1.99994 7.47433 0.01626 9.49053 
F 20 −0.49732 1.99994 7.48142 0.01596 9.49732 
F 21 −0.49053 1.99994 7.47433 0.01626 9.49053 
F 22 −0.49732 1.99994 7.48142 0.01596 9.49732 
F 23 −0.49159 1.99993 7.47678 0.01488 9.49159 
F 24 −0.41660 1.99993 7.39974 0.01693 9.41660 
H 25 0.63175 0.00000 0.35995 0.00831 0.36825 
============================================================== 

* Total * 0.00000 35.97172 85.21504 0.81324 122.00000 
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Tabelle 23: NBO-Analyse von [Me3Si][CHB11H5F6]. 

 
Natural Population 

 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.77998 1.99918 4.73646 0.04433 6.77998 
H 2 0.34529 0.00000 0.64718 0.00753 0.65471 
B 3 0.43300 1.99697 2.50445 0.06559 4.56700 
B 4 −0.06406 1.99836 3.01697 0.04873 5.06406 
B 5 −0.06407 1.99836 3.01697 0.04873 5.06407 
B 6 0.44642 1.99701 2.48955 0.06702 4.55358 
B 7 0.44646 1.99701 2.48954 0.06699 4.55354 
B 8 0.27349 1.99654 2.65430 0.07567 4.72651 
B 9 −0.06289 1.99836 3.01598 0.04855 5.06289 
B 10 −0.06291 1.99836 3.01600 0.04855 5.06291 
B 11 0.45933 1.99706 2.47966 0.06395 4.54067 
B 12 0.45935 1.99706 2.47964 0.06396 4.54065 
B 13 −0.06389 1.99837 3.01667 0.04885 5.06389 
F 14 −0.51298 1.99994 7.49796 0.01509 9.51298 
F 15 −0.50768 1.99994 7.49175 0.01600 9.50768 
F 16 −0.50247 1.99992 7.47713 0.02542 9.50247 
F 17 −0.50056 1.99994 7.48558 0.01504 9.50056 
F 18 −0.50056 1.99994 7.48558 0.01504 9.50056 
F 19 −0.50767 1.99994 7.49174 0.01600 9.50767 
H 20 0.08891 0.00000 0.90474 0.00635 0.91109 
H 21 0.08916 0.00000 0.90446 0.00638 0.91084 
H 22 0.08891 0.00000 0.90474 0.00635 0.91109 
H 23 0.08916 0.00000 0.90447 0.00638 0.91084 
H 24 0.08908 0.00000 0.90457 0.00636 0.91092 
Si 25 1.99134 9.99707 1.96162 0.04998 12.00866 
C 26 −1.24231 1.99934 5.22183 0.02114 7.24231 
H 27 0.28710 0.00000 0.70854 0.00436 0.71290 
H 28 0.27618 0.00000 0.72155 0.00226 0.72382 
H 29 0.29322 0.00000 0.69997 0.00681 0.70678 
C 30 −1.24239 1.99934 5.22193 0.02113 7.24239 
H 31 0.27618 0.00000 0.72156 0.00226 0.72382 
H 32 0.28723 0.00000 0.70840 0.00437 0.71277 
H 33 0.29322 0.00000 0.70000 0.00679 0.70678 
C 34 −1.23256 1.99936 5.21501 0.01819 7.23256 
H 35 0.27983 0.00000 0.71661 0.00356 0.72017 
H 36 0.27435 0.00000 0.72304 0.00260 0.72565 
H 37 0.27981 0.00000 0.71664 0.00356 0.72019 
============================================================== 

* Total * 0.00000 51.96737 109.05277 0.97986 162.00000 
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Tabelle 24: NBO-Analyse von [CHB11H5Cl6]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.80123 1.99915 4.76146 0.04062 6.80123 
H 2 0.07503 0.00000 0.91768 0.00729 0.92497 
H 3 0.07503 0.00000 0.91768 0.00729 0.92497 
H 4 0.33089 0.00000 0.66098 0.00814 0.66911 
H 5 0.07523 0.00000 0.91745 0.00732 0.92477 
H 6 0.07523 0.00000 0.91745 0.00732 0.92477 
H 7 0.07530 0.00000 0.91726 0.00743 0.92470 
B 8 0.00345 1.99686 2.91056 0.08913 4.99655 
B 9 −0.00798 1.99812 2.95146 0.05840 5.00798 
B 10 −0.00798 1.99812 2.95146 0.05840 5.00798 
B 11 0.00272 1.99686 2.90991 0.09050 4.99728 
B 12 0.00272 1.99686 2.90991 0.09050 4.99728 
B 13 −0.00415 1.99676 2.91608 0.09131 5.00415 
B 14 −0.00896 1.99812 2.95177 0.05907 5.00896 
B 15 −0.00896 1.99812 2.95177 0.05907 5.00896 
B 16 0.00381 1.99686 2.91047 0.08886 4.99619 
B 17 0.00381 1.99686 2.91047 0.08886 4.99619 
B 18 −0.00890 1.99812 2.95232 0.05846 5.00890 
Cl 19 −0.14872 10.00000 7.13090 0.01781 17.14872 
Cl 20 −0.14872 10.00000 7.13090 0.01781 17.14872 
Cl 21 −0.14856 10.00000 7.13080 0.01776 17.14856 
Cl 22 −0.14856 10.00000 7.13080 0.01776 17.14856 
Cl 23 −0.14853 10.00000 7.13080 0.01773 17.14853 
Cl 24 −0.13198 10.00000 7.11398 0.01800 17.13198 
============================================================== 

* Total * −1.00000 83.9708 85.00434 1.02487 170.00000 
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Tabelle 25: NBO-Analyse von H[CHB11H5Cl6]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.09592 0.00000 0.89644 0.00764 0.90408 
B 2 −0.02181 1.99645 2.93890 0.08647 5.02181 
B 3 0.00067 1.99682 2.90815 0.09435 4.99933 
B 4 0.00069 1.99682 2.90813 0.09436 4.99931 
B 5 0.00353 1.99689 2.91066 0.08893 4.99647 
B 6 −0.00773 1.99669 2.92869 0.08235 5.00773 
B 7 0.00354 1.99689 2.91065 0.08891 4.99646 
H 8 0.09648 0.00000 0.89567 0.00785 0.90352 
Cl 9 −0.10560 10.00000 7.08597 0.01963 17.10560 
H 10 0.09608 0.00000 0.89564 0.00828 0.90392 
Cl 11 −0.11331 10.00000 7.09321 0.02010 17.11331 
B 12 0.00363 1.99817 2.94056 0.05764 4.99637 
Cl 13 −0.10561 10.00000 7.08597 0.01963 17.10561 
C 14 −0.80136 1.99916 4.75921 0.04298 6.80136 
Cl 15 −0.11332 10.00000 7.09322 0.02010 17.11332 
B 16 −0.00121 1.99814 2.94359 0.05949 5.00121 
B 17 0.00057 1.99811 2.94265 0.05866 4.99943 
Cl 18 −0.00574 10.00000 6.97983 0.02591 17.00574 
B 19 −0.00127 1.99814 2.94364 0.05949 5.00127 
Cl 20 0.15620 10.00000 6.81023 0.03356 16.84380 
H 21 0.35068 0.00000 0.64083 0.00849 0.64932 
B 22 0.00060 1.99811 2.94262 0.05867 4.99940 
H 23 0.09591 0.00000 0.89645 0.00764 0.90409 
H 24 0.09648 0.00000 0.89567 0.00785 0.90352 
H 25 0.27596 0.00000 0.70912 0.01492 0.72404 
============================================================== 

* Total * 0.00000 83.97040 84.95571 1.07389 170.00000 
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Tabelle 26: NBO-Analyse von [Me3Si][CHB11H5Cl6]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.80359 1.99915 4.75263 0.05181 6.80359 
H 2 0.34857 0.00000 0.64403 0.00740 0.65143 
B 3 0.00256 1.99688 2.90979 0.09077 4.99744 
B 4 −0.00042 1.99812 2.94402 0.05829 5.00042 
B 5 −0.00039 1.99812 2.94470 0.05757 5.00039 
B 6 0.00256 1.99688 2.90980 0.09076 4.99744 
B 7 −0.00152 1.99685 2.91296 0.09171 5.00152 
B 8 −0.00458 1.99648 2.91473 0.09336 5.00458 
B 9 −0.00039 1.99812 2.94470 0.05757 5.00039 
B 10 −0.00160 1.99814 2.94497 0.05849 5.00160 
B 11 −0.00152 1.99685 2.91296 0.09171 5.00152 
B 12 −0.00063 1.99684 2.91627 0.08751 5.00063 
B 13 −0.00161 1.99814 2.94497 0.05850 5.00161 
Cl 14 −0.11858 10.00000 7.09925 0.01933 17.11858 
Cl 15 −0.11858 10.00000 7.09925 0.01933 17.11858 
Cl 16 0.02153 10.00000 6.94733 0.03114 16.97847 
Cl 17 −0.12832 10.00000 7.10928 0.01905 17.12832 
Cl 18 −0.13457 10.00000 7.11596 0.01861 17.13457 
Cl 19 −0.12832 10.00000 7.10927 0.01905 17.12832 
C 20 −1.22706 1.99932 5.20534 0.02240 7.22706 
C 21 −1.22062 1.99936 5.20189 0.01937 7.22062 
C 22 −1.22706 1.99932 5.20534 0.02240 7.22706 
H 23 0.29234 0.00000 0.70083 0.00682 0.70766 
H 24 0.28230 0.00000 0.71335 0.00434 0.71770 
H 25 0.27387 0.00000 0.72347 0.00267 0.72613 
H 26 0.27667 0.00000 0.71948 0.00385 0.72333 
H 27 0.27601 0.00000 0.72108 0.00290 0.72399 
H 28 0.27667 0.00000 0.71948 0.00385 0.72333 
H 29 0.27386 0.00000 0.72347 0.00267 0.72614 
H 30 0.28234 0.00000 0.71332 0.00434 0.71766 
H 31 0.29233 0.00000 0.70086 0.00681 0.70767 
Si 32 1.75346 9.99759 2.19174 0.05722 12.24654 
H 33 0.09327 0.00000 0.89885 0.00788 0.90673 
H 34 0.09308 0.00000 0.89898 0.00794 0.90692 
H 35 0.09233 0.00000 0.89959 0.00808 0.90767 
H 36 0.09327 0.00000 0.89885 0.00788 0.90673 
H 37 0.09233 0.00000 0.89959 0.00808 0.90767 
============================================================== 

* Total * 0.00000 99.96616 108.81240 1.22144 210.00000 
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Tabelle 27: NBO-Analyse von [CHB11H5Br6]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.80579 1.99914 4.76504 0.04161 6.80579 
H 2 0.07760 0.00000 0.91473 0.00767 0.92240 
H 3 0.07760 0.00000 0.91473 0.00767 0.92240 
H 4 0.33246 0.00000 0.65921 0.00833 0.66754 
H 5 0.07779 0.00000 0.91450 0.00771 0.92221 
H 6 0.07779 0.00000 0.91450 0.00771 0.92221 
H 7 0.07786 0.00000 0.91431 0.00782 0.92214 
B 8 −0.07018 1.99667 2.98355 0.08996 5.07018 
B 9 −0.00942 1.99806 2.95114 0.06022 5.00942 
B 10 −0.00942 1.99806 2.95114 0.06022 5.00942 
B 11 −0.07080 1.99667 2.98334 0.09078 5.07080 
B 12 −0.07080 1.99667 2.98334 0.09078 5.07080 
B 13 −0.09176 1.99655 3.00115 0.09406 5.09176 
B 14 −0.01027 1.99806 2.95137 0.06084 5.01027 
B 15 −0.01027 1.99806 2.95137 0.06084 5.01027 
B 16 −0.07000 1.99667 2.98416 0.08917 5.07000 
B 17 −0.07000 1.99667 2.98416 0.08917 5.07000 
B 18 −0.01013 1.99806 2.95185 0.06022 5.01013 
Br 19 −0.07385 27.99906 7.06409 0.01070 35.07385 
Br 20 −0.07389 27.99906 7.06407 0.01076 35.07389 
Br 21 −0.07389 27.99906 7.06407 0.01076 35.07389 
Br 22 −0.07402 27.99906 7.06417 0.01078 35.07402 
Br 23 −0.07402 27.99906 7.06417 0.01078 35.07402 
Br 24 −0.05261 27.99904 7.04301 0.01056 35.05261 
============================================================== 

* Total * −1.00000 191.96372 85.03718 0.99911 278.00000 
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Tabelle 28: NBO-Analyse von H[CHB11H5Br6]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.35053 0.00000 0.64075 0.00872 0.64947 
B 2 −0.07814 1.99670 2.99116 0.09029 5.07814 
Br 3 0.15393 27.99886 6.82985 0.01736 34.84607 
Br 4 −0.02635 27.99905 7.01545 0.01185 35.02635 
Br 5 −0.03381 27.99905 7.02237 0.01238 35.03381 
Br 6 −0.03381 27.99905 7.02237 0.01238 35.03381 
Br 7 −0.02635 27.99905 7.01545 0.01185 35.02635 
H 8 0.09579 0.00000 0.89630 0.00791 0.90421 
B 9 −0.00402 1.99805 2.94564 0.06032 5.00402 
H 10 0.09648 0.00000 0.89541 0.00811 0.90352 
B 11 0.00145 1.99810 2.94077 0.05968 4.99855 
C 12 −0.80430 1.99915 4.76242 0.04273 6.80430 
H 13 0.09648 0.00000 0.89541 0.00811 0.90352 
B 14 −0.07830 1.99665 2.98613 0.09552 5.07830 
B 15 −0.00204 1.99808 2.94274 0.06122 5.00204 
B 16 −0.00203 1.99808 2.94273 0.06122 5.00203 
B 17 −0.09780 1.99636 3.01427 0.08717 5.09780 
Br 18 0.26292 27.99871 6.71713 0.02125 34.73708 
B 19 −0.07663 1.99654 2.99761 0.08248 5.07663 
B 20 −0.07831 1.99665 2.98614 0.09552 5.07831 
B 21 −0.07816 1.99670 2.99118 0.09029 5.07816 
H 22 0.09579 0.00000 0.89630 0.00791 0.90421 
B 23 −0.00404 1.99805 2.94566 0.06032 5.00404 
H 24 0.09631 0.00000 0.89527 0.00842 0.90369 
H 25 0.17442 0.00000 0.81097 0.01461 0.82558 
============================================================== 

* Total * 0.00000 191.96291 84.99948 1.03761 278.00000 
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Tabelle 29: NBO-Analyse von [Me3Si][CHB11H5Br6]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.80925 1.99914 4.75750 0.05261 6.80925 
H 2 0.34913 0.00000 0.64334 0.00753 0.65087 
B 3 −0.07835 1.99668 2.98922 0.09245 5.07835 
B 4 −0.00284 1.99808 2.94445 0.06031 5.00284 
B 5 −0.00166 1.99806 2.94408 0.05952 5.00166 
B 6 −0.07336 1.99667 2.98755 0.08914 5.07336 
B 7 −0.07665 1.99670 2.98942 0.09053 5.07665 
B 8 −0.07587 1.99634 2.98603 0.09351 5.07587 
B 9 −0.00283 1.99808 2.94444 0.06031 5.00283 
B 10 −0.00231 1.99806 2.94605 0.05820 5.00231 
B 11 −0.07838 1.99668 2.98925 0.09245 5.07838 
B 12 −0.07666 1.99670 2.98943 0.09054 5.07666 
B 13 −0.00165 1.99806 2.94407 0.05952 5.00165 
Br 14 −0.05604 27.99904 7.04503 0.01197 35.05604 
Br 15 −0.04998 27.99906 7.03910 0.01182 35.04998 
Br 16 −0.04998 27.99906 7.03911 0.01182 35.04998 
Br 17 −0.03964 27.99905 7.02883 0.01176 35.03964 
Br 18 −0.03964 27.99905 7.02883 0.01176 35.03964 
Br 19 0.16297 27.99866 6.81566 0.02271 34.83703 
H 20 0.09383 0.00000 0.89806 0.00811 0.90617 
H 21 0.09277 0.00000 0.89891 0.00832 0.90723 
H 22 0.09383 0.00000 0.89806 0.00811 0.90617 
H 23 0.09415 0.00000 0.89694 0.00891 0.90585 
H 24 0.09277 0.00000 0.89891 0.00832 0.90723 
Si 25 1.68971 9.99766 2.25368 0.05894 12.31029 
C 26 −1.22574 1.99933 5.20456 0.02186 7.22574 
H 27 0.27277 0.00000 0.72429 0.00295 0.72723 
H 28 0.27996 0.00000 0.71569 0.00435 0.72004 
H 29 0.29252 0.00000 0.70131 0.00617 0.70748 
C 30 −1.21888 1.99936 5.20010 0.01942 7.21888 
H 31 0.27608 0.00000 0.72092 0.00300 0.72392 
H 32 0.27487 0.00000 0.72123 0.00390 0.72513 
H 33 0.27486 0.00000 0.72123 0.00390 0.72514 
C 34 −1.22574 1.99933 5.20456 0.02186 7.22574 
H 35 0.27997 0.00000 0.71567 0.00435 0.72003 
H 36 0.27276 0.00000 0.72430 0.00295 0.72724 
H 37 0.29251 0.00000 0.70132 0.00617 0.70749 
============================================================== 

* Total * 0.00000 207.95883 108.85111 1.19006 122.00000 
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Tabelle 30: NBO-Analyse von [CHB11H5I6]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.81550 1.99912 4.77353 0.04285 6.81550 
H 2 0.07987 0.00000 0.91210 0.00802 0.92013 
H 3 0.07973 0.00000 0.91234 0.00793 0.92027 
H 4 0.33492 0.00000 0.65664 0.00844 0.66508 
H 5 0.07976 0.00000 0.91195 0.00829 0.92024 
H 6 0.07973 0.00000 0.91234 0.00793 0.92027 
H 7 0.07987 0.00000 0.91210 0.00802 0.92013 
B 8 −0.22032 1.99678 3.12156 0.10198 5.22032 
B 9 −0.00820 1.99802 2.94733 0.06286 5.00820 
B 10 −0.02099 1.99803 2.95371 0.06926 5.02099 
B 11 −0.20238 1.99677 3.11554 0.09007 5.20238 
B 12 −0.13013 1.99679 3.03370 0.09964 5.13013 
B 13 −0.24791 1.99667 3.14321 0.10804 5.24791 
B 14 −0.00891 1.99801 2.94784 0.06306 5.00891 
B 15 −0.02099 1.99803 2.95371 0.06925 5.02099 
B 16 −0.20238 1.99677 3.11554 0.09007 5.20238 
B 17 −0.22032 1.99678 3.12156 0.10198 5.22032 
B 18 −0.00821 1.99802 2.94733 0.06286 5.00821 
I 19 0.05482 45.99767 6.93569 0.01182 52.94518 
I 20 0.05851 45.99764 6.93507 0.00878 52.94149 
I 21 0.05856 45.99764 6.93508 0.00871 52.94144 
I 22 0.05856 45.99764 6.93508 0.00871 52.94144 
I 23 0.05851 45.99764 6.93507 0.00878 52.94149 
I 24 0.08341 45.99760 6.91063 0.00836 52.91659 
============================================================== 

* Total * −1.00000 299.95562 84.97866 1.06573 122.00000 
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Tabelle 31: NBO-Analyse von H[CHB11H5I6]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.35096 0.00000 0.64032 0.00872 0.64904 
B 2 −0.21765 1.99679 3.12882 0.09204 5.21765 
I 3 0.33382 45.99697 6.65444 0.01476 52.66618 
I 4 0.11029 45.99762 6.88287 0.00922 52.88971 
I 5 0.10421 45.99763 6.88845 0.00971 52.89579 
I 6 0.10422 45.99763 6.88844 0.00971 52.89578 
I 7 0.11030 45.99762 6.88286 0.00922 52.88970 
H 8 0.09445 0.00000 0.89751 0.00804 0.90555 
B 9 −0.01844 1.99803 2.95106 0.06935 5.01844 
H 10 0.09529 0.00000 0.89651 0.00820 0.90471 
B 11 0.00108 1.99805 2.93866 0.06222 4.99892 
C 12 −0.81065 1.99914 4.76814 0.04338 6.81065 
H 13 0.09529 0.00000 0.89651 0.00820 0.90471 
B 14 −0.23221 1.99678 3.12876 0.10668 5.23221 
B 15 0.00006 1.99804 2.93917 0.06274 4.99994 
B 16 0.00007 1.99804 2.93916 0.06274 4.99993 
B 17 −0.24402 1.99655 3.14960 0.09788 5.24402 
I 18 0.49628 45.99650 6.49006 0.01715 52.50372 
B 19 −0.13522 1.99672 3.04432 0.09418 5.13522 
B 20 −0.23221 1.99678 3.12877 0.10667 5.23221 
B 21 −0.21766 1.99679 3.12883 0.09205 5.21766 
H 22 0.09445 0.00000 0.89751 0.00804 0.90555 
B 23 −0.01845 1.99803 2.95108 0.06934 5.01845 
H 24 0.09528 0.00000 0.89614 0.00857 0.90472 
H 25 0.04047 0.00000 0.94367 0.01586 0.95953 
============================================================== 

* Total * 0.00000 299.95369 84.95165 1.09467 386.00000 
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Tabelle 32: NBO-Analyse von [Me3Si][CHB11H5I6]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.81359 1.99913 4.76613 0.04833 6.81359 
H 2 0.34946 0.00000 0.64227 0.00827 0.65054 
B 3 −0.23380 1.99679 3.13147 0.10554 5.23380 
B 4 −0.01174 1.99805 2.94633 0.06737 5.01174 
B 5 −0.00029 1.99802 2.94066 0.06161 5.00029 
B 6 −0.15345 1.99680 3.05894 0.09770 5.15345 
B 7 −0.22068 1.99681 3.12956 0.09432 5.22068 
B 8 −0.18854 1.99651 3.08421 0.10782 5.18854 
B 9 −0.01173 1.99805 2.94631 0.06737 5.01173 
B 10 −0.00263 1.99801 2.94368 0.06093 5.00263 
B 11 −0.23376 1.99679 3.13142 0.10554 5.23376 
B 12 −0.22071 1.99681 3.12959 0.09432 5.22071 
B 13 −0.00029 1.99802 2.94067 0.06161 5.00029 
H 14 0.09341 0.00000 0.89841 0.00817 0.90659 
H 15 0.09218 0.00000 0.89948 0.00834 0.90782 
H 16 0.09341 0.00000 0.89841 0.00817 0.90659 
H 17 0.09370 0.00000 0.89734 0.00896 0.90630 
H 18 0.09218 0.00000 0.89948 0.00834 0.90782 
Si 19 1.59220 9.99776 2.35004 0.06000 12.40780 
C 20 −1.22292 1.99934 5.20094 0.02265 7.22292 
H 21 0.27126 0.00000 0.72545 0.00329 0.72874 
H 22 0.27733 0.00000 0.71801 0.00466 0.72267 
H 23 0.29048 0.00000 0.70349 0.00604 0.70952 
C 24 −1.21604 1.99937 5.19666 0.02002 7.21604 
H 25 0.27580 0.00000 0.72095 0.00325 0.72420 
H 26 0.27206 0.00000 0.72379 0.00415 0.72794 
H 27 0.27204 0.00000 0.72382 0.00415 0.72796 
C 28 −1.22295 1.99934 5.20097 0.02264 7.22295 
H 29 0.27736 0.00000 0.71798 0.00466 0.72264 
H 30 0.27127 0.00000 0.72545 0.00329 0.72873 
H 31 0.29047 0.00000 0.70349 0.00604 0.70953 
I 32 0.08752 45.99762 6.90526 0.00960 52.91248 
I 33 0.08012 45.99756 6.90998 0.01234 52.91988 
I 34 0.08756 45.99762 6.90523 0.00960 52.91244 
I 35 0.09902 45.99762 6.89412 0.00925 52.90098 
I 36 0.09901 45.99762 6.89413 0.00925 52.90099 
I 37 0.39529 45.99646 6.58582 0.02243 52.60471 
============================================================== 

* Total * 0.00000 315.95006 108.78994 1.25999 426.00000 
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Tabelle 33: NBO-Analyse von [CHB11F11]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.93593 1.99909 4.89336 0.04348 6.93593 
H 2 0.35176 0.00000 0.64013 0.00811 0.64824 
B 3 0.37645 1.99715 2.56333 0.06308 4.62355 
B 4 0.56408 1.99716 2.37465 0.06410 4.43592 
B 5 0.56408 1.99716 2.37465 0.06410 4.43592 
B 6 0.37645 1.99715 2.56199 0.06442 4.62355 
B 7 0.37645 1.99715 2.56199 0.06442 4.62355 
B 8 0.38992 1.99728 2.55490 0.05791 4.61008 
B 9 0.56180 1.99716 2.37581 0.06523 4.43820 
B 10 0.56180 1.99716 2.37581 0.06523 4.43820 
B 11 0.37829 1.99715 2.56122 0.06334 4.62171 
B 12 0.37829 1.99715 2.56122 0.06334 4.62171 
B 13 0.56206 1.99716 2.37748 0.06331 4.43794 
F 14 −0.50199 1.99994 7.48711 0.01494 9.50199 
F 15 −0.50183 1.99994 7.48703 0.01487 9.50183 
F 16 −0.50234 1.99994 7.48717 0.01523 9.50234 
F 17 −0.50234 1.99994 7.48717 0.01523 9.50234 
F 18 −0.50199 1.99994 7.48711 0.01494 9.50199 
F 19 −0.50154 1.99994 7.48623 0.01538 9.50154 
F 20 −0.49854 1.99994 7.48369 0.01491 9.49854 
F 21 −0.49899 1.99994 7.48374 0.01531 9.49899 
F 22 −0.49899 1.99994 7.48374 0.01531 9.49899 
F 23 −0.49854 1.99994 7.48369 0.01491 9.49854 
F 24 −0.49838 1.99994 7.48362 0.01482 9.49838 
============================================================== 

* Total * −1.00000 45.96726 115.11681 0.91593 162.00000 
 
  



 
150 

Tabelle 34: NBO-Analyse von H[CHB11F11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.37835 0.00000 0.61377 0.00788 0.62165 
B 2 0.38634 1.99706 2.55138 0.06523 4.61366 
F 3 −0.48375 1.99994 7.46766 0.01615 9.48375 
F 4 −0.48374 1.99994 7.46765 0.01615 9.48374 
F 5 −0.47862 1.99993 7.46358 0.01511 9.47862 
F 6 −0.47708 1.99994 7.46058 0.01656 9.47708 
F 7 −0.47708 1.99994 7.46058 0.01656 9.47708 
F 8 −0.47314 1.99993 7.45701 0.01620 9.47314 
B 9 0.60308 1.99727 2.33677 0.06288 4.39692 
F 10 −0.47272 1.99993 7.45647 0.01632 9.47272 
B 11 0.58305 1.99729 2.35491 0.06475 4.41695 
C 12 −0.96036 1.99912 4.90576 0.05548 6.96036 
F 13 −0.47302 1.99993 7.45659 0.01650 9.47302 
B 14 0.41648 1.99718 2.52247 0.06388 4.58352 
B 15 0.60310 1.99727 2.33676 0.06288 4.39690 
B 16 0.57645 1.99732 2.36594 0.06029 4.42355 
B 17 0.26755 1.99652 2.67476 0.06117 4.73245 
F 18 −0.40953 1.99993 7.39165 0.01796 9.40953 
B 19 0.38634 1.99706 2.55138 0.06522 4.61366 
B 20 0.30116 1.99669 2.64709 0.05506 4.69884 
B 21 0.41647 1.99718 2.52248 0.06388 4.58353 
F 22 −0.47303 1.99993 7.45659 0.01650 9.47303 
B 23 0.58305 1.99729 2.35491 0.06476 4.41695 
F 24 −0.47314 1.99993 7.45700 0.01620 9.47314 
H 25 0.63380 0.00000 0.35827 0.00792 0.36620 
============================================================== 

* Total * 0.00000 45.96651 115.09200 0.94148 162.00000 
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Tabelle 35: NBO-Analyse von [Me3Si][CHB11F11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.94477 1.99910 4.89477 0.05090 6.94477 
H 2 0.37172 0.00000 0.62021 0.00807 0.62828 
B 3 0.38143 1.99709 2.55538 0.06611 4.61857 
B 4 0.58015 1.99724 2.35843 0.06418 4.41985 
B 5 0.58015 1.99725 2.35996 0.06264 4.41985 
B 6 0.36719 1.99705 2.57150 0.06426 4.63281 
B 7 0.39546 1.99714 2.54434 0.06306 4.60454 
B 8 0.28086 1.99675 2.64837 0.07403 4.71914 
B 9 0.58018 1.99724 2.35840 0.06418 4.41982 
B 10 0.57860 1.99726 2.36040 0.06374 4.42140 
B 11 0.38142 1.99709 2.55538 0.06611 4.61858 
B 12 0.39548 1.99714 2.54431 0.06306 4.60452 
B 13 0.58009 1.99725 2.36001 0.06264 4.41991 
F 14 −0.49420 1.99994 7.47818 0.01608 9.49420 
F 15 −0.49918 1.99994 7.48396 0.01528 9.49918 
F 16 −0.49916 1.99992 7.47284 0.02640 9.49916 
F 17 −0.49420 1.99994 7.47818 0.01608 9.49420 
F 18 −0.48749 1.99994 7.47223 0.01532 9.48749 
F 19 −0.48750 1.99994 7.47223 0.01532 9.48750 
F 20 −0.47998 1.99993 7.46415 0.01590 9.47998 
F 21 −0.47903 1.99993 7.46342 0.01567 9.47903 
F 22 −0.47998 1.99993 7.46415 0.01590 9.47998 
F 23 −0.47903 1.99993 7.46342 0.01567 9.47903 
F 24 −0.47893 1.99993 7.46345 0.01554 9.47893 
Si 25 1.98918 9.99707 1.96402 0.04974 12.01082 
C 26 −1.24509 1.99934 5.22427 0.02149 7.24509 
H 27 0.28025 0.00000 0.71743 0.00232 0.71975 
H 28 0.28897 0.00000 0.70649 0.00454 0.71103 
H 29 0.29321 0.00000 0.70009 0.00670 0.70679 
C 30 −1.23528 1.99936 5.21743 0.01849 7.23528 
H 31 0.27785 0.00000 0.71949 0.00266 0.72215 
H 32 0.28213 0.00000 0.71420 0.00367 0.71787 
H 33 0.28213 0.00000 0.71420 0.00367 0.71787 
C 34 −1.24509 1.99934 5.22426 0.02149 7.24509 
H 35 0.28025 0.00000 0.71743 0.00232 0.71975 
H 36 0.29321 0.00000 0.70009 0.00670 0.70679 
H 37 0.28897 0.00000 0.70649 0.00454 0.71103 
============================================================== 

* Total * 0.00000 61.96199 138.93354 1.10447 202.00000 
 
  



 
152 

Tabelle 36: NBO-Analyse von [CHB11Cl11]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.94745 1.99890 4.89093 0.05762 6.94745 
H 2 0.36704 0.00000 0.62129 0.01166 0.63296 
B 3 −0.02225 1.99661 2.92837 0.09726 5.02225 
B 4 0.17024 1.99656 2.73401 0.09919 4.82976 
B 5 0.17024 1.99656 2.73401 0.09919 4.82976 
B 6 −0.02250 1.99661 2.92747 0.09842 5.02250 
B 7 −0.02250 1.99661 2.92747 0.09842 5.02250 
B 8 0.00860 1.99679 2.90182 0.09278 4.99140 
B 9 0.16915 1.99656 2.73372 0.10057 4.83085 
B 10 0.16915 1.99656 2.73373 0.10057 4.83085 
B 11 −0.02104 1.99661 2.92776 0.09667 5.02104 
B 12 −0.02104 1.99661 2.92776 0.09667 5.02104 
B 13 0.16949 1.99656 2.73502 0.09893 4.83051 
Cl 14 −0.11125 10.00000 7.09281 0.01844 17.11125 
Cl 15 −0.11125 10.00000 7.09281 0.01844 17.11125 
Cl 16 −0.11115 10.00000 7.09270 0.01845 17.11115 
Cl 17 −0.11115 10.00000 7.09270 0.01845 17.11115 
Cl 18 −0.11116 10.00000 7.09271 0.01844 17.11116 
Cl 19 −0.11076 10.00000 7.09210 0.01866 17.11076 
Cl 20 −0.10003 10.00000 7.08066 0.01937 17.10003 
Cl 21 −0.10004 10.00000 7.08064 0.01940 17.10004 
Cl 22 −0.10003 10.00000 7.08066 0.01937 17.10003 
Cl 23 −0.10015 10.00000 7.08077 0.01939 17.10015 
Cl 24 −0.10015 10.00000 7.08077 0.01939 17.10015 
============================================================== 

* Total * −1.00000 133.96155 114.68271 1.35574 250.00000 
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Tabelle 37: NBO-Analyse von H[CHB11Cl11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.38154 0.00000 0.60739 0.01107 0.61846 
B 2 −0.02380 1.99658 2.92554 0.10168 5.02380 
Cl 3 −0.07555 10.00000 7.05532 0.02023 17.07555 
Cl 4 −0.08349 10.00000 7.06266 0.02083 17.08349 
Cl 5 −0.07559 10.00000 7.05536 0.02024 17.07559 
Cl 6 −0.08339 10.00000 7.06248 0.02090 17.08339 
Cl 7 0.02019 10.00000 6.95272 0.02709 16.97981 
Cl 8 −0.05716 10.00000 7.03604 0.02111 17.05716 
B 9 0.16811 1.99671 2.73658 0.09861 4.83189 
Cl 10 −0.05968 10.00000 7.03851 0.02117 17.05968 
B 11 0.16915 1.99665 2.73518 0.09902 4.83085 
C 12 −0.94909 1.99893 4.88790 0.06227 6.94909 
Cl 13 −0.05695 10.00000 7.03577 0.02118 17.05695 
B 14 −0.02441 1.99658 2.92564 0.10220 5.02441 
B 15 0.16678 1.99668 2.73666 0.09988 4.83322 
B 16 0.17010 1.99665 2.73510 0.09815 4.82990 
B 17 −0.00826 1.99646 2.92196 0.08984 5.00826 
Cl 18 0.16971 10.00000 6.79619 0.03410 16.83029 
B 19 −0.02129 1.99664 2.92727 0.09738 5.02129 
B 20 −0.02115 1.99664 2.92776 0.09675 5.02115 
B 21 −0.03467 1.99645 2.94685 0.09137 5.03467 
Cl 22 −0.05583 10.00000 7.03448 0.02134 17.05583 
B 23 0.16686 1.99668 2.73662 0.09983 4.83314 
Cl 24 −0.05971 10.00000 7.03858 0.02114 17.05971 
H 25 0.27758 0.00000 0.70701 0.01541 0.72242 
============================================================== 

* Total * 0.00000 133.96164 114.62557 1.41280 250.00000 
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Tabelle 38: NBO-Analyse von [Me3Si][CHB11Cl11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.95302 1.99891 4.88522 0.06889 6.95302 
H 2 0.38021 0.00000 0.60945 0.01034 0.61979 
B 3 −0.02334 1.99663 2.92778 0.09893 5.02334 
B 4 0.16859 1.99663 2.73613 0.09865 4.83141 
B 5 0.16882 1.99662 2.73654 0.09802 4.83118 
B 6 −0.02334 1.99663 2.92778 0.09893 5.02334 
B 7 −0.02772 1.99660 2.93121 0.09991 5.02772 
B 8 0.01186 1.99651 2.89578 0.09585 4.98814 
B 9 0.16882 1.99662 2.73653 0.09802 4.83118 
B 10 0.17071 1.99664 2.73299 0.09967 4.82929 
B 11 −0.02772 1.99660 2.93121 0.09991 5.02772 
B 12 −0.03026 1.99659 2.93727 0.09640 5.03026 
B 13 0.17071 1.99664 2.73299 0.09966 4.82929 
Cl 14 −0.08800 10.00000 7.06793 0.02007 17.08800 
Cl 15 −0.08800 10.00000 7.06793 0.02007 17.08800 
Cl 16 0.02729 10.00000 6.94196 0.03075 16.97271 
Cl 17 −0.09789 10.00000 7.07808 0.01981 17.09789 
Cl 18 −0.10439 10.00000 7.08485 0.01954 17.10439 
Cl 19 −0.09789 10.00000 7.07808 0.01981 17.09789 
Cl 20 −0.06451 10.00000 7.04381 0.02069 17.06451 
Cl 21 −0.06477 10.00000 7.04400 0.02077 17.06477 
Cl 22 −0.06478 10.00000 7.04400 0.02077 17.06478 
Cl 23 −0.06659 10.00000 7.04564 0.02095 17.06659 
Cl 24 −0.06658 10.00000 7.04564 0.02095 17.06658 
C 25 −1.22870 1.99932 5.20685 0.02253 7.22870 
C 26 −1.22343 1.99935 5.20450 0.01958 7.22343 
C 27 −1.22870 1.99932 5.20685 0.02253 7.22870 
H 28 0.29179 0.00000 0.70141 0.00680 0.70821 
H 29 0.28386 0.00000 0.71177 0.00437 0.71614 
H 30 0.27709 0.00000 0.72019 0.00272 0.72291 
H 31 0.27845 0.00000 0.71763 0.00392 0.72155 
H 32 0.27893 0.00000 0.71813 0.00294 0.72107 
H 33 0.27844 0.00000 0.71764 0.00392 0.72156 
H 34 0.27708 0.00000 0.72020 0.00272 0.72292 
H 35 0.28390 0.00000 0.71172 0.00437 0.71610 
H 36 0.29179 0.00000 0.70143 0.00678 0.70821 
Si 37 1.76131 9.99757 2.18518 0.05594 12.23869 
============================================================== 

* Total * 0.00000 149.95718 138.48633 1.55649 290.00000 
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Tabelle 39: NBO-Analyse von [CHB11Br11]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.97794 1.99887 4.91780 0.06126 6.97794 
H 2 0.37090 0.00000 0.61701 0.01209 0.62910 
B 3 −0.03635 1.99641 2.93286 0.10709 5.03635 
B 4 0.07733 1.99631 2.81685 0.10950 4.92267 
B 5 0.07734 1.99631 2.81685 0.10950 4.92266 
B 6 −0.12451 1.99639 3.01933 0.10879 5.12451 
B 7 −0.12451 1.99639 3.01933 0.10879 5.12451 
B 8 −0.08713 1.99658 2.98519 0.10536 5.08713 
B 9 0.09165 1.99631 2.80990 0.10214 4.90835 
B 10 0.09165 1.99631 2.80990 0.10214 4.90835 
B 11 −0.10693 1.99639 3.01275 0.09779 5.10693 
B 12 −0.10693 1.99639 3.01275 0.09779 5.10693 
B 13 0.09050 1.99631 2.81102 0.10217 4.90950 
Br 14 −0.01399 27.99895 7.00346 0.01158 35.01399 
Br 15 −0.01399 27.99895 7.00331 0.01173 35.01399 
Br 16 −0.02670 27.99903 7.01679 0.01089 35.02670 
Br 17 −0.03161 27.99903 7.01702 0.01556 35.03161 
Br 18 −0.02682 27.99903 7.01683 0.01096 35.02682 
Br 19 −0.02640 27.99902 7.01656 0.01082 35.02640 
Br 20 −0.02670 27.99903 7.01679 0.01089 35.02670 
Br 21 −0.02682 27.99903 7.01683 0.01096 35.02682 
Br 22 −0.01399 27.99895 7.00331 0.01173 35.01399 
Br 23 −0.01407 27.99895 7.00327 0.01185 35.01407 
Br 24 −0.01399 27.99895 7.00346 0.01158 35.01399 
============================================================== 

* Total * −1.00000 331.94786 114.69917 1.35294 448.00000 
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Tabelle 40: NBO-Analyse von H[CHB11Br11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.38206 0.00000 0.60635 0.01159 0.61794 
B 2 −0.11200 1.99641 3.01701 0.09859 5.11200 
Br 3 0.19960 27.99881 6.77895 0.02264 34.80040 
Br 4 0.01143 27.99902 6.97745 0.01210 34.98857 
Br 5 0.00377 27.99902 6.98457 0.01264 34.99623 
Br 6 0.00377 27.99902 6.98457 0.01264 34.99623 
Br 7 0.01143 27.99902 6.97746 0.01210 34.98857 
Br 8 0.02758 27.99894 6.96082 0.01265 34.97242 
B 9 0.07006 1.99638 2.82296 0.11060 4.92994 
Br 10 0.03244 27.99893 6.95589 0.01275 34.96756 
B 11 0.08493 1.99644 2.81653 0.10211 4.91507 
C 12 −0.97751 1.99889 4.91522 0.06340 6.97751 
Br 13 0.03243 27.99893 6.95589 0.01275 34.96757 
B 14 −0.13009 1.99637 3.01980 0.11392 5.13009 
B 15 0.08370 1.99641 2.81726 0.10262 4.91630 
B 16 0.08372 1.99641 2.81724 0.10262 4.91628 
B 17 −0.08863 1.99636 2.99614 0.09613 5.08863 
Br 18 0.26345 27.99873 6.71686 0.02096 34.73655 
B 19 −0.04394 1.99626 2.94786 0.09982 5.04394 
B 20 −0.13011 1.99637 3.01981 0.11393 5.13011 
B 21 −0.11202 1.99641 3.01703 0.09858 5.11202 
Br 22 0.02759 27.99894 6.96081 0.01265 34.97241 
B 23 0.07006 1.99638 2.82296 0.11061 4.92994 
Br 24 0.03447 27.99892 6.95364 0.01298 34.96553 
H 25 0.17182 0.00000 0.81134 0.01683 0.82818 
============================================================== 

* Total * 0.00000 35.97309 85.24036 0.78656 448.00000 
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Tabelle 41: NBO-Analyse von [Me3Si][CHB11Br11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −0.98819 1.99888 4.91357 0.07574 6.98819 
H 2 0.38252 0.00000 0.60721 0.01028 0.61748 
B 3 −0.11518 1.99640 3.01762 0.10117 5.11518 
B 4 0.08518 1.99637 2.81597 0.10247 4.91482 
B 5 0.08757 1.99636 2.81541 0.10065 4.91243 
B 6 −0.11518 1.99640 3.01762 0.10115 5.11518 
B 7 −0.12570 1.99639 3.02208 0.10724 5.12570 
B 8 −0.05922 1.99634 2.96094 0.10194 5.05922 
B 9 0.08757 1.99636 2.81541 0.10065 4.91243 
B 10 0.07907 1.99638 2.81604 0.10851 4.92093 
B 11 −0.12570 1.99639 3.02208 0.10724 5.12570 
B 12 −0.06542 1.99639 2.96557 0.10346 5.06542 
B 13 0.07906 1.99638 2.81603 0.10853 4.92094 
C 14 −1.22672 1.99932 5.20479 0.02261 7.22672 
C 15 −1.22165 1.99936 5.20275 0.01954 7.22165 
C 16 −1.22672 1.99932 5.20479 0.02261 7.22672 
H 17 0.29146 0.00000 0.70165 0.00688 0.70854 
H 18 0.28049 0.00000 0.71510 0.00440 0.71951 
H 19 0.27529 0.00000 0.72175 0.00297 0.72471 
H 20 0.27623 0.00000 0.71981 0.00396 0.72377 
H 21 0.27852 0.00000 0.71840 0.00308 0.72148 
H 22 0.27623 0.00000 0.71981 0.00396 0.72377 
H 23 0.27529 0.00000 0.72175 0.00297 0.72471 
H 24 0.28049 0.00000 0.71510 0.00440 0.71951 
H 25 0.29146 0.00000 0.70166 0.00688 0.70854 
Si 26 1.69918 9.99763 2.24528 0.05790 12.30082 
Br 27 0.02533 27.99893 6.96313 0.01262 34.97467 
Br 28 0.02321 27.99893 6.96528 0.01258 34.97679 
Br 29 −0.00133 27.99902 6.99008 0.01223 35.00133 
Br 30 0.02563 27.99893 6.96274 0.01271 34.97437 
Br 31 0.02533 27.99893 6.96313 0.01262 34.97467 
Br 32 0.02321 27.99893 6.96528 0.01258 34.97679 
Br 33 −0.01187 27.99903 7.00063 0.01221 35.01187 
Br 34 −0.02110 27.99901 7.00638 0.01571 35.02110 
Br 35 −0.01187 27.99903 7.00063 0.01221 35.01187 
Br 36 −0.00133 27.99902 6.99008 0.01223 35.00133 
Br 37 0.16885 27.99866 6.80953 0.02296 34.83115 
============================================================== 

* Total * 0.00000 347.94308 138.51506 1.54186 488.00000 
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Tabelle 42: NBO-Analyse von [CHB11I11]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −1.02734 1.99888 4.95270 0.07576 7.02734 
H 2 0.37194 0.00000 0.61390 0.01416 0.62806 
B 3 −0.22012 1.99653 3.11144 0.11215 5.22012 
B 4 −0.05396 1.99637 2.94793 0.10966 5.05396 
B 5 −0.05396 1.99637 2.94793 0.10965 5.05396 
B 6 −0.27315 1.99652 3.16155 0.11507 5.27315 
B 7 −0.27314 1.99652 3.16154 0.11508 5.27314 
B 8 −0.18445 1.99669 3.07339 0.11437 5.18445 
B 9 −0.05899 1.99637 2.94948 0.11313 5.05899 
B 10 −0.05899 1.99637 2.94948 0.11313 5.05899 
B 11 −0.27247 1.99652 3.16253 0.11341 5.27247 
B 12 −0.27246 1.99652 3.16253 0.11342 5.27246 
B 13 0.01231 1.99638 2.88506 0.10625 4.98769 
I 14 0.11838 45.99760 6.87514 0.00888 52.88162 
I 15 0.13260 45.99738 6.86077 0.00926 52.86740 
I 16 0.11643 45.99762 6.87529 0.01066 52.88357 
I 17 0.13260 45.99738 6.86077 0.00926 52.86740 
I 18 0.11838 45.99760 6.87514 0.00889 52.88162 
I 19 0.13253 45.99738 6.86077 0.00932 52.86747 
I 20 0.11838 45.99760 6.87517 0.00885 52.88162 
I 21 0.12918 45.99741 6.86110 0.01231 52.87082 
I 22 0.11838 45.99760 6.87517 0.00885 52.88162 
I 23 0.13253 45.99738 6.86077 0.00932 52.86747 
I 24 0.11539 45.99760 6.87757 0.00944 52.88461 
============================================================== 

* Total * −1.00000 529.93256 114.63715 1.43029 646.00000 
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Tabelle 43: NBO-Analyse von H[CHB11I11]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
H 1 0.37965 0.00000 0.60682 0.01353 0.62035 
B 2 −0.28269 1.99655 3.17136 0.11479 5.28269 
I 3 0.41124 45.99684 6.57598 0.01593 52.58876 
I 4 0.15782 45.99759 6.83514 0.00945 52.84218 
I 5 0.15062 45.99761 6.84164 0.01013 52.84938 
I 6 0.15061 45.99761 6.84165 0.01013 52.84939 
I 7 0.15782 45.99759 6.83514 0.00945 52.84218 
I 8 0.17568 45.99737 6.81720 0.00975 52.82432 
B 9 −0.06601 1.99642 2.95880 0.11079 5.06601 
I 10 0.18217 45.99734 6.81079 0.00970 52.81783 
B 11 0.00109 1.99649 2.89481 0.10761 4.99891 
C 12 −1.02529 1.99890 4.95000 0.07639 7.02529 
I 13 0.18216 45.99734 6.81080 0.00970 52.81784 
B 14 −0.28085 1.99651 3.16344 0.12089 5.28085 
B 15 −0.07271 1.99646 2.96238 0.11387 5.07271 
B 16 −0.07274 1.99646 2.96241 0.11387 5.07274 
B 17 −0.17730 1.99656 3.07360 0.10714 5.17730 
I 18 0.48351 45.99663 6.50260 0.01727 52.51649 
B 19 −0.21930 1.99643 3.11743 0.10543 5.21930 
B 20 −0.28085 1.99651 3.16345 0.12089 5.28085 
B 21 −0.28270 1.99655 3.17135 0.11480 5.28270 
I 22 0.17568 45.99737 6.81720 0.00975 52.82432 
B 23 −0.06597 1.99642 2.95877 0.11078 5.06597 
I 24 0.18135 45.99736 6.80857 0.01273 52.81865 
H 25 0.03701 0.00000 0.94581 0.01717 0.96299 
============================================================== 

* Total * 0.00000 529.93091 114.59714 1.47194 646.00000 
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Tabelle 44: NBO-Analyse von [Me3Si][CHB11I11]. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

--------------------------------------------------------------------------------------------------------- 
C 1 −1.03952 1.99888 4.94781 0.09282 7.03952 
H 2 0.38209 0.00000 0.60658 0.01133 0.61791 
B 3 −0.27961 1.99654 3.16669 0.11639 5.27961 
B 4 −0.00058 1.99643 2.89561 0.10854 5.00058 
B 5 −0.06802 1.99642 2.95914 0.11246 5.06802 
B 6 −0.27717 1.99654 3.16597 0.11467 5.27717 
B 7 −0.27518 1.99652 3.16511 0.11355 5.27518 
B 8 −0.16394 1.99650 3.05977 0.10767 5.16394 
B 9 −0.06875 1.99642 2.95993 0.11240 5.06875 
B 10 −0.05652 1.99645 2.95049 0.10958 5.05652 
B 11 −0.27359 1.99651 3.16414 0.11294 5.27359 
B 12 −0.22790 1.99653 3.12887 0.10250 5.22790 
B 13 −0.05941 1.99644 2.95074 0.11223 5.05941 
C 14 −1.22283 1.99933 5.20075 0.02275 7.22283 
C 15 −1.21804 1.99936 5.19872 0.01996 7.21804 
C 16 −1.22298 1.99933 5.20044 0.02321 7.22298 
H 17 0.28996 0.00000 0.70394 0.00610 0.71004 
H 18 0.27802 0.00000 0.71729 0.00469 0.72198 
H 19 0.27273 0.00000 0.72406 0.00322 0.72727 
H 20 0.27284 0.00000 0.72297 0.00419 0.72716 
H 21 0.27745 0.00000 0.71930 0.00324 0.72255 
H 22 0.27325 0.00000 0.72257 0.00418 0.72675 
H 23 0.27283 0.00000 0.72396 0.00321 0.72717 
H 24 0.27696 0.00000 0.71836 0.00467 0.72304 
H 25 0.29011 0.00000 0.70382 0.00607 0.70989 
Si 26 1.59803 9.99773 2.34405 0.06019 12.40197 
I 27 0.17407 45.99734 6.81932 0.00926 52.82593 
I 28 0.17572 45.99734 6.81728 0.00965 52.82428 
I 29 0.17358 45.99734 6.81942 0.00965 52.82642 
I 30 0.17233 45.99738 6.81740 0.01289 52.82767 
I 31 0.17580 45.99735 6.81725 0.00961 52.82420 
I 32 0.14709 45.99759 6.84555 0.00977 52.85291 
I 33 0.13535 45.99760 6.85701 0.01005 52.86465 
I 34 0.14670 45.99759 6.84603 0.00969 52.85330 
I 35 0.13432 45.99759 6.85802 0.01006 52.86568 
I 36 0.12823 45.99753 6.86174 0.01251 52.87177 
I 37 0.40658 45.99647 6.57503 0.02191 52.59342 
============================================================== 

* Total * 0.00000 545.92705 138.45515 1.61780 686.00000 
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Tabelle 45: NBO-Analyse von [Me3SiOSO3]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 2.58890 9.99888 3.16916 0.24305 13.41110 
O 2 −1.00442 1.99981 6.97154 0.03306 9.00442 
O 3 −1.03917 1.99982 7.00393 0.03541 9.03917 
O 4 −1.00995 1.99981 6.97621 0.03392 9.00995 
O 5 −1.12011 1.99979 7.08328 0.03704 9.12011 
Si 6 1.96830 9.99791 1.97984 0.05394 12.03170 
C 7 −1.21391 1.99939 5.19538 0.01914 7.21391 
H 8 0.23166 0.00000 0.76599 0.00235 0.76834 
H 9 0.27733 0.00000 0.71881 0.00387 0.72267 
H 10 0.24736 0.00000 0.74985 0.00279 0.75264 
C 11 −1.21575 1.99939 5.19732 0.01904 7.21575 
H 12 0.23152 0.00000 0.76616 0.00232 0.76848 
H 13 0.25267 0.00000 0.74425 0.00308 0.74733 
H 14 0.27692 0.00000 0.71909 0.00399 0.72308 
C 15 −1.19938 1.99942 5.18302 0.01694 7.19938 
H 16 0.23334 0.00000 0.76419 0.00247 0.76666 
H 17 0.24708 0.00000 0.75002 0.00290 0.75292 
H 18 0.24760 0.00000 0.74948 0.00292 0.75240 
=========================================================== 

* Total * −1.000000 33.99423 55.48753 0.51824 90.00000 
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Tabelle 46: NBO-Analyse von 19. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 2.63583 9.99861 3.12579 0.23977 13.36417 
O 2 −0.93569 1.99980 6.89725 0.03863 8.93569 
O 3 −0.93569 1.99980 6.89725 0.03863 8.93569 
O 4 −1.05969 1.99978 7.02711 0.03280 9.05969 
O 5 −1.05969 1.99978 7.02711 0.03280 9.05969 
Si 6 1.94377 9.99777 2.00875 0.04971 12.05623 
Si 7 1.94377 9.99777 2.00875 0.04971 12.05623 
C 8 −1.22076 1.99938 5.20228 0.01909 7.22076 
H 9 0.25859 0.00000 0.73887 0.00253 0.74141 
H 10 0.27956 0.00000 0.71677 0.00367 0.72044 
H 11 0.26383 0.00000 0.73309 0.00308 0.73617 
C 12 −1.22076 1.99938 5.20228 0.01909 7.22076 
H 13 0.25859 0.00000 0.73887 0.00253 0.74141 
H 14 0.27956 0.00000 0.71677 0.00367 0.72044 
H 15 0.26383 0.00000 0.73309 0.00308 0.73617 
C 16 −1.22148 1.99939 5.20277 0.01932 7.22148 
H 17 0.26017 0.00000 0.73725 0.00259 0.73983 
H 18 0.26106 0.00000 0.73540 0.00354 0.73894 
H 19 0.27790 0.00000 0.71822 0.00388 0.72210 
C 20 −1.20925 1.99939 5.19195 0.01791 7.20925 
H 21 0.25915 0.00000 0.73818 0.00267 0.74085 
H 22 0.26450 0.00000 0.73236 0.00313 0.73550 
H 23 0.26042 0.00000 0.73634 0.00324 0.73958 
C 24 −1.20925 1.99939 5.19195 0.01791 7.20925 
H 25 0.25915 0.00000 0.73818 0.00267 0.74085 
H 26 0.26450 0.00000 0.73236 0.00313 0.73550 
H 27 0.26042 0.00000 0.73634 0.00324 0.73958 
C 28 −1.22148 1.99939 5.20277 0.01932 7.22148 
H 29 0.26017 0.00000 0.73725 0.00259 0.73983 
H 30 0.26106 0.00000 0.73540 0.00354 0.73894 
H 31 0.27790 0.00000 0.71822 0.00388 0.72210 
=========================================================== 

* Total * 0 49.98964 79.35899 0.65138 130.00000 
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Tabelle 47: NBO-Analyse von [(Me3SiO)3SO]+. 

 
Natural Population 

 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 2.70006 9.99845 3.06865 0.23284 13.29994 
O 2 −1.01772 1.99977 6.98844 0.02951 9.01772 
O 3 −0.87690 1.99979 6.83314 0.04397 8.87690 
O 4 −1.00946 1.99975 6.98009 0.02962 9.00946 
O 5 −1.01829 1.99977 6.98561 0.03291 9.01829 
Si 6 1.92913 9.99764 2.02522 0.04800 12.07087 
Si 7 1.93364 9.99762 2.02194 0.04680 12.06636 
C 8 −1.22427 1.99937 5.20488 0.02002 7.22427 
H 9 0.28034 0.00000 0.71682 0.00284 0.71966 
H 10 0.26862 0.00000 0.72708 0.00430 0.73138 
H 11 0.27796 0.00000 0.71857 0.00346 0.72204 
C 12 −1.22815 1.99937 5.20883 0.01995 7.22815 
H 13 0.28246 0.00000 0.71463 0.00291 0.71754 
H 14 0.27992 0.00000 0.71618 0.00391 0.72008 
H 15 0.26749 0.00000 0.72877 0.00374 0.73251 
C 16 −1.23198 1.99937 5.21295 0.01966 7.23198 
H 17 0.28373 0.00000 0.71345 0.00282 0.71627 
H 18 0.26856 0.00000 0.72728 0.00416 0.73144 
H 19 0.28071 0.00000 0.71512 0.00416 0.71929 
C 20 −1.22005 1.99937 5.20140 0.01928 7.22005 
H 21 0.27962 0.00000 0.71738 0.00300 0.72038 
H 22 0.27932 0.00000 0.71728 0.00340 0.72068 
H 23 0.27181 0.00000 0.72459 0.00361 0.72819 
C 24 −1.21943 1.99937 5.20018 0.01988 7.21943 
H 25 0.28072 0.00000 0.71633 0.00296 0.71928 
H 26 0.27302 0.00000 0.72345 0.00354 0.72698 
H 27 0.27079 0.00000 0.72557 0.00363 0.72921 
C 28 −1.22494 1.99938 5.20539 0.02017 7.22494 
H 29 0.28261 0.00000 0.71441 0.00298 0.71739 
H 30 0.26915 0.00000 0.72677 0.00408 0.73085 
H 31 0.26715 0.00000 0.72865 0.00420 0.73285 
Si 32 1.93024 9.99762 2.02511 0.04703 12.06976 
C 33 −1.22120 1.99937 5.20190 0.01993 7.22120 
H 34 0.28135 0.00000 0.71579 0.00286 0.71865 
H 35 0.27139 0.00000 0.72485 0.00376 0.72861 
H 36 0.26629 0.00000 0.72958 0.00413 0.73371 
C 37 −1.22072 1.99937 5.20171 0.01964 7.22072 
H 38 0.28179 0.00000 0.71529 0.00292 0.71821 
H 39 0.27667 0.00000 0.71983 0.00350 0.72333 
H 40 0.27124 0.00000 0.72514 0.00362 0.72876 
C 41 −1.22896 1.99938 5.21001 0.01957 7.22896 
H 42 0.27114 0.00000 0.72432 0.00454 0.72886 
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H 43 0.28270 0.00000 0.71335 0.00395 0.71730 
H 44 0.28241 0.00000 0.71477 0.00282 0.71759 
=========================================================== 

* Total * 1.00000 65.98477 103.23067 0.78456 170.00000 
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Tabelle 48: NBO-Analyse von [Me3SiS]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 −1.00522 9.99931 6.97345 0.03246 17.00522 
Si 2 1.47015 9.99843 2.46105 0.07036 12.52985 
C 3 −1.18386 1.99943 5.16606 0.01837 7.18386 
H 4 0.23789 0.00000 0.75885 0.00327 0.76211 
H 5 0.21984 0.00000 0.77730 0.00286 0.78016 
H 6 0.23789 0.00000 0.75885 0.00327 0.76211 
C 7 −1.18430 1.99943 5.16628 0.01858 7.18430 
H 8 0.23801 0.00000 0.75880 0.00319 0.76199 
H 9 0.21986 0.00000 0.77729 0.00285 0.78014 
H 10 0.23809 0.00000 0.75874 0.00317 0.76191 
C 11 −1.18430 1.99943 5.16628 0.01858 7.18430 
H 12 0.21986 0.00000 0.77729 0.00285 0.78014 
H 13 0.23801 0.00000 0.75880 0.00319 0.76199 
H 14 0.23809 0.00000 0.75874 0.00317 0.76191 
=========================================================== 

* Total * −1.000000 25.99604 31.81777 0.18619 58.00000 
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Tabelle 49: NBO-Analyse von 23. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 −0.65293 9.99904 6.59908 0.05482 16.65293 
Si 2 1.58661 9.99814 2.36697 0.04828 12.41339 
Si 3 1.58661 9.99814 2.36697 0.04828 12.41339 
C 4 −1.18441 1.99939 5.1649 0.02013 7.18441 
H 5 0.25971 0.00000 0.73722 0.00307 0.74029 
H 6 0.25355 0.00000 0.74355 0.0029 0.74645 
H 7 0.25957 0.00000 0.73709 0.00334 0.74043 
C 8 −1.19075 1.99938 5.1691 0.02226 7.19075 
H 9 0.25332 0.00000 0.74378 0.0029 0.74668 
H 10 0.25977 0.00000 0.73656 0.00367 0.74023 
H 11 0.25331 0.00000 0.74239 0.0043 0.74669 
C 12 −1.19088 1.99938 5.17033 0.02117 7.19088 
H 13 0.24934 0.00000 0.74722 0.00344 0.75066 
H 14 0.25927 0.00000 0.73705 0.00368 0.74073 
H 15 0.25805 0.00000 0.73888 0.00307 0.74195 
C 16 −1.19088 1.99938 5.17033 0.02117 7.19088 
H 17 0.24934 0.00000 0.74722 0.00344 0.75066 
H 18 0.25927 0.00000 0.73705 0.00368 0.74073 
H 19 0.25805 0.00000 0.73888 0.00307 0.74195 
C 20 −1.19075 1.99938 5.1691 0.02226 7.19075 
H 21 0.25332 0.00000 0.74378 0.0029 0.74668 
H 22 0.25977 0.00000 0.73656 0.00367 0.74023 
H 23 0.25331 0.00000 0.74239 0.0043 0.74669 
C 24 −1.18441 1.99939 5.1649 0.02013 7.18441 
H 25 0.25971 0.00000 0.73722 0.00307 0.74029 
H 26 0.25355 0.00000 0.74355 0.0029 0.74645 
H 27 0.25957 0.00000 0.73709 0.00334 0.74043 
=========================================================== 

* Total * 0 41.99161 55.66913 0.33926 98.00000 
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Tabelle 50: NBO-Analyse von [(Me3Si)3S]+. 

 
Natural Population 

 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 −0.53088 9.99892 6.47725 0.05471 16.53088 
Si 2 1.65983 9.99791 2.29559 0.04666 12.34017 
Si 3 1.65983 9.99791 2.29559 0.04666 12.34017 
Si 4 1.65983 9.99791 2.29559 0.04666 12.34017 
C 5 −1.20209 1.99935 5.18173 0.02101 7.20209 
H 6 0.26142 0.00000 0.73454 0.00404 0.73858 
H 7 0.28522 0.00000 0.71110 0.00367 0.71478 
H 8 0.27346 0.00000 0.72252 0.00403 0.72654 
C 9 −1.20192 1.99935 5.18059 0.02198 7.20192 
H 10 0.28116 0.00000 0.71537 0.00347 0.71884 
H 11 0.26748 0.00000 0.72760 0.00491 0.73252 
H 12 0.27611 0.00000 0.71987 0.00402 0.72389 
C 13 −1.20425 1.99935 5.18259 0.02232 7.20425 
H 14 0.28424 0.00000 0.71223 0.00354 0.71576 
H 15 0.26641 0.00000 0.72890 0.00470 0.73359 
H 16 0.26322 0.00000 0.73262 0.00415 0.73678 
C 17 −1.20192 1.99935 5.18059 0.02198 7.20192 
H 18 0.27611 0.00000 0.71987 0.00402 0.72389 
H 19 0.28116 0.00000 0.71537 0.00347 0.71884 
H 20 0.26748 0.00000 0.72760 0.00491 0.73252 
C 21 −1.20209 1.99935 5.18173 0.02101 7.20209 
H 22 0.28522 0.00000 0.71110 0.00367 0.71478 
H 23 0.27346 0.00000 0.72252 0.00403 0.72654 
H 24 0.26142 0.00000 0.73454 0.00404 0.73858 
C 25 −1.20425 1.99935 5.18259 0.02232 7.20425 
H 26 0.26641 0.00000 0.72890 0.00470 0.73359 
H 27 0.26322 0.00000 0.73262 0.00415 0.73678 
H 28 0.28424 0.00000 0.71223 0.00354 0.71576 
C 29 −1.20425 1.99935 5.18259 0.02232 7.20425 
H 30 0.28424 0.00000 0.71223 0.00354 0.71576 
H 31 0.26641 0.00000 0.72890 0.00470 0.73359 
H 32 0.26322 0.00000 0.73262 0.00415 0.73678 
C 33 −1.20192 1.99935 5.18059 0.02198 7.20192 
H 34 0.26748 0.00000 0.72760 0.00491 0.73252 
H 35 0.27611 0.00000 0.71987 0.00402 0.72389 
H 36 0.28116 0.00000 0.71537 0.00347 0.71884 
C 37 −1.20209 1.99935 5.18173 0.02101 7.20209 
H 38 0.28522 0.00000 0.71110 0.00367 0.71478 
H 39 0.27346 0.00000 0.72252 0.00403 0.72654 
H 40 0.26142 0.00000 0.73454 0.00404 0.73858 
=========================================================== 

* Total * 1.00000 57.98680 79.51300 0.50020 138.00000 
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Tabelle 51: NBO-Analyse von [PO4]3−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
P 1 2.49621 9.99947 2.34673 0.15758 12.50379 
O 2 −1.37405 1.99987 7.34783 0.02635 9.37405 
O 3 −1.37405 1.99987 7.34783 0.02635 9.37405 
O 4 −1.37405 1.99987 7.34783 0.02635 9.37405 
O 5 −1.37405 1.99987 7.34783 0.02635 9.37405 
=========================================================== 

* Total * −3.00000 17.99897 31.73804 0.26300 50.00000 
 

Tabelle 52: NBO-Analyse von [H2PO4]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
P 1 2.52371 9.99915 2.34220 0.13494 12.47629 
O 2 −1.22319 1.99986 7.18591 0.03742 9.22319 
O 3 −1.05769 1.99985 7.02894 0.02890 9.05769 
O 4 −1.17447 1.99985 7.13559 0.03903 9.17447 
O 5 −1.05771 1.99986 7.02896 0.02889 9.05771 
H 6 0.49466 0.00000 0.49900 0.00634 0.50534 
H 7 0.49468 0.00000 0.49898 0.00634 0.50532 
=========================================================== 

* Total * −1.00000 17.99857 31.71957 0.28187 50.00000 
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Tabelle 53: NBO-Analyse von [Me3SiOPO3]2−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
P 1 2.54965 9.99804 2.32111 0.13120 12.45035 
O 2 −1.22985 1.99987 7.18927 0.04071 9.22985 
O 3 −1.22952 1.99985 7.19876 0.03091 9.22952 
O 4 −1.22952 1.99985 7.19876 0.03091 9.22952 
O 5 −1.21610 1.99986 7.17126 0.04498 9.21610 
Si 6 1.97291 9.99779 1.96036 0.06893 12.02709 
C 7 −1.19194 1.99938 5.17237 0.02019 7.19194 
H 8 0.19954 0.00000 0.79711 0.00335 0.80046 
H 9 0.22903 0.00000 0.76736 0.00361 0.77097 
H 10 0.24246 0.00000 0.75462 0.00293 0.75754 
C 11 −1.19194 1.99938 5.17237 0.02019 7.19194 
H 12 0.19955 0.00000 0.79710 0.00335 0.80045 
H 13 0.24246 0.00000 0.75462 0.00293 0.75754 
H 14 0.22903 0.00000 0.76736 0.00361 0.77097 
C 15 −1.18511 1.99943 5.16326 0.02241 7.18511 
H 16 0.21089 0.00000 0.78515 0.00395 0.78911 
H 17 0.18757 0.00000 0.80901 0.00342 0.81243 
H 18 0.21089 0.00000 0.78515 0.00395 0.78911 
=========================================================== 

* Total * −2.00000 33.99346 55.56500 0.44154 90.0000 
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Tabelle 54: NBO-Analyse von [(Me3SiO)2PO2]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
P 1 2.57976 9.99830 2.28980 0.13213 12.42024 
O 2 −1.17682 1.99985 7.14030 0.03667 9.17682 
O 3 −1.17684 1.99985 7.14032 0.03667 9.17684 
O 4 −1.20533 1.99981 7.17115 0.03438 9.20533 
O 5 −1.20530 1.99981 7.17112 0.03438 9.20530 
Si 6 1.97530 9.99790 1.97253 0.05427 12.02470 
Si 7 1.97530 9.99790 1.97252 0.05427 12.02470 
C 8 −1.21649 1.99939 5.19898 0.01812 7.21649 
H 9 0.23226 0.00000 0.76541 0.00233 0.76774 
H 10 0.28358 0.00000 0.71245 0.00396 0.71642 
H 11 0.24505 0.00000 0.75227 0.00268 0.75495 
C 12 −1.21651 1.99939 5.19836 0.01876 7.21651 
H 13 0.23227 0.00000 0.76540 0.00233 0.76773 
H 14 0.24819 0.00000 0.74867 0.00314 0.75181 
H 15 0.28150 0.00000 0.71457 0.00393 0.71850 
C 16 −1.19917 1.99941 5.18298 0.01677 7.19917 
H 17 0.24533 0.00000 0.75186 0.00281 0.75467 
H 18 0.23412 0.00000 0.76337 0.00251 0.76588 
H 19 0.24684 0.00000 0.75041 0.00274 0.75316 
C 20 −1.19917 1.99941 5.18298 0.01677 7.19917 
H 21 0.24533 0.00000 0.75186 0.00281 0.75467 
H 22 0.23412 0.00000 0.76337 0.00251 0.76588 
H 23 0.24684 0.00000 0.75041 0.00274 0.75316 
C 24 −1.21650 1.99939 5.19898 0.01813 7.21650 
H 25 0.23225 0.00000 0.76542 0.00233 0.76775 
H 26 0.28360 0.00000 0.71243 0.00397 0.71640 
H 27 0.24504 0.00000 0.75228 0.00268 0.75496 
C 28 −1.21652 1.99939 5.19837 0.01876 7.21652 
H 29 0.24819 0.00000 0.74867 0.00314 0.75181 
H 30 0.28150 0.00000 0.71457 0.00393 0.71850 
H 31 0.23227 0.00000 0.76541 0.00233 0.76773 
=========================================================== 

* Total * −1.00000 49.98981 79.46725 0.54294 130.0000 
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Tabelle 55: NBO-Analyse von 33. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
P 1 2.64933 9.99790 2.22383 0.12894 12.35067 
O 2 −1.17042 1.99979 7.14015 0.03049 9.17042 
O 3 −1.17061 1.99979 7.14048 0.03035 9.17061 
O 4 −1.17122 1.99979 7.14074 0.03070 9.17122 
O 5 −1.13315 1.99984 7.08925 0.04406 9.13315 
Si 6 1.95966 9.99777 1.99374 0.04883 12.04034 
Si 7 1.95913 9.99777 1.99373 0.04936 12.04087 
Si 8 1.95966 9.99777 1.99368 0.04889 12.04034 
C 9 −1.20734 1.99940 5.19084 0.01710 7.20734 
H 10 0.26092 0.00000 0.73603 0.00305 0.73908 
H 11 0.25572 0.00000 0.74165 0.00263 0.74428 
H 12 0.25995 0.00000 0.73706 0.00299 0.74005 
C 13 −1.21860 1.99940 5.20055 0.01865 7.21860 
H 14 0.25878 0.00000 0.73769 0.00353 0.74122 
H 15 0.26802 0.00000 0.72726 0.00472 0.73198 
H 16 0.25795 0.00000 0.73950 0.00254 0.74205 
C 17 −1.21821 1.99939 5.20063 0.01818 7.21821 
H 18 0.25701 0.00000 0.73961 0.00337 0.74299 
H 19 0.25627 0.00000 0.74118 0.00255 0.74373 
H 20 0.27557 0.00000 0.72065 0.00379 0.72443 
C 21 −1.21838 1.99939 5.20029 0.01870 7.21838 
H 22 0.27645 0.00000 0.71973 0.00383 0.72355 
H 23 0.25658 0.00000 0.73995 0.00347 0.74342 
H 24 0.25609 0.00000 0.74134 0.00258 0.74391 
C 25 −1.20713 1.99940 5.19029 0.01743 7.20713 
H 26 0.26089 0.00000 0.73603 0.00307 0.73911 
H 27 0.25547 0.00000 0.74183 0.00270 0.74453 
H 28 0.25978 0.00000 0.73717 0.00305 0.74022 
C 29 −1.21824 1.99940 5.20012 0.01872 7.21824 
H 30 0.25861 0.00000 0.73786 0.00353 0.74139 
H 31 0.26728 0.00000 0.72792 0.00480 0.73272 
H 32 0.25796 0.00000 0.73942 0.00262 0.74204 
C 33 −1.21799 1.99939 5.20033 0.01827 7.21799 
H 34 0.25678 0.00000 0.73977 0.00345 0.74322 
H 35 0.25632 0.00000 0.74113 0.00255 0.74368 
H 36 0.27560 0.00000 0.72060 0.00380 0.72440 
C 37 −1.21858 1.99940 5.20065 0.01853 7.21858 
H 38 0.25871 0.00000 0.73777 0.00353 0.74129 
H 39 0.26807 0.00000 0.72723 0.00471 0.73193 
H 40 0.25812 0.00000 0.73931 0.00258 0.74188 
C 41 −1.20729 1.99940 5.19028 0.01761 7.20729 
H 42 0.26101 0.00000 0.73595 0.00304 0.73899 
H 43 0.25554 0.00000 0.74181 0.00265 0.74446 
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H 44 0.25992 0.00000 0.73705 0.00303 0.74008 
=========================================================== 

* Total * 0.00000 65.98499 103.35207 0.66295 170.0000 
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Tabelle 56: NBO-Analyse von [(Me3SiO)4P]+. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
P 1 2.75481 9.99772 2.12096 0.12652 12.24519 
O 2 −1.15659 1.99977 7.12818 0.02864 9.15659 
O 3 −1.15663 1.99977 7.12813 0.02874 9.15663 
O 4 −1.15663 1.99977 7.12813 0.02873 9.15663 
O 5 −1.15657 1.99977 7.12816 0.02864 9.15657 
Si 6 1.94554 9.99767 2.01032 0.04648 12.05446 
Si 7 1.94546 9.99767 2.01041 0.04647 12.05454 
Si 8 1.94545 9.99767 2.01041 0.04647 12.05455 
C 9 −1.21373 1.99938 5.19600 0.01835 7.21373 
H 10 0.26583 0.00000 0.73062 0.00355 0.73417 
H 11 0.27530 0.00000 0.72168 0.00302 0.72470 
H 12 0.26950 0.00000 0.72703 0.00347 0.73050 
C 13 −1.21982 1.99939 5.20120 0.01923 7.21982 
H 14 0.26313 0.00000 0.73270 0.00417 0.73687 
H 15 0.26302 0.00000 0.73228 0.00470 0.73698 
H 16 0.27826 0.00000 0.71880 0.00294 0.72174 
C 17 −1.21782 1.99939 5.19971 0.01873 7.21782 
H 18 0.26625 0.00000 0.73024 0.00351 0.73375 
H 19 0.27594 0.00000 0.72113 0.00293 0.72406 
H 20 0.26659 0.00000 0.72947 0.00393 0.73341 
C 21 −1.22010 1.99939 5.20113 0.01958 7.22010 
H 22 0.26314 0.00000 0.73221 0.00465 0.73686 
H 23 0.26318 0.00000 0.73265 0.00418 0.73682 
H 24 0.27831 0.00000 0.71877 0.00292 0.72169 
C 25 −1.21382 1.99938 5.19606 0.01838 7.21382 
H 26 0.26959 0.00000 0.72698 0.00344 0.73041 
H 27 0.27531 0.00000 0.72164 0.00305 0.72469 
H 28 0.26581 0.00000 0.73062 0.00357 0.73419 
C 29 −1.21777 1.99939 5.19983 0.01856 7.21777 
H 30 0.26623 0.00000 0.73026 0.00351 0.73377 
H 31 0.26660 0.00000 0.72950 0.00391 0.73340 
H 32 0.27588 0.00000 0.72117 0.00295 0.72412 
C 33 −1.21783 1.99939 5.19972 0.01873 7.21783 
H 34 0.26625 0.00000 0.73024 0.00351 0.73375 
H 35 0.27594 0.00000 0.72113 0.00293 0.72406 
H 36 0.26660 0.00000 0.72947 0.00393 0.73340 
C 37 −1.21982 1.99939 5.20120 0.01923 7.21982 
H 38 0.26313 0.00000 0.73270 0.00417 0.73687 
H 39 0.26302 0.00000 0.73228 0.00470 0.73698 
H 40 0.27826 0.00000 0.71879 0.00294 0.72174 
C 41 −1.21373 1.99938 5.19600 0.01834 7.21373 
H 42 0.26582 0.00000 0.73063 0.00356 0.73418 
H 43 0.27530 0.00000 0.72168 0.00302 0.72470 
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H 44 0.26951 0.00000 0.72703 0.00347 0.73049 
Si 45 1.94554 9.99767 2.01032 0.04647 12.05446 
C 46 −1.21777 1.99939 5.19982 0.01856 7.21777 
H 47 0.27588 0.00000 0.72117 0.00295 0.72412 
H 48 0.26624 0.00000 0.73025 0.00351 0.73376 
H 49 0.26659 0.00000 0.72950 0.00391 0.73341 
C 50 −1.21382 1.99938 5.19606 0.01838 7.21382 
H 51 0.26581 0.00000 0.73062 0.00357 0.73419 
H 52 0.26959 0.00000 0.72697 0.00344 0.73041 
H 53 0.27531 0.00000 0.72164 0.00305 0.72469 
C 54 −1.22010 1.99939 5.20113 0.01958 7.22010 
H 55 0.26317 0.00000 0.73265 0.00418 0.73683 
H 56 0.27831 0.00000 0.71877 0.00292 0.72169 
H 57 0.26314 0.00000 0.73221 0.00465 0.73686 
=========================================================== 

* Total * 1.00000 81.98006 127.23834 0.78160 210.0000 
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Tabelle 57: NBO-Analyse von [Me3SiOSO2]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 1.68837 9.99908 4.10825 0.20429 14.31163 
O 2 −1.05062 1.99986 7.01160 0.03917 9.05062 
O 3 −1.02398 1.99985 6.98472 0.03941 9.02398 
O 4 −1.14765 1.99982 7.11399 0.03384 9.14765 
Si 5 1.95353 9.99795 1.98996 0.05855 12.04647 
C 6 −1.21345 1.99941 5.19507 0.01896 7.21345 
H 7 0.22814 0.00000 0.76940 0.00245 0.77186 
H 8 0.23902 0.00000 0.75807 0.00291 0.76098 
H 9 0.27365 0.00000 0.72214 0.00421 0.72635 
C 10 −1.19515 1.99943 5.17868 0.01703 7.19515 
H 11 0.22923 0.00000 0.76816 0.00261 0.77077 
H 12 0.24416 0.00000 0.75294 0.00290 0.75584 
H 13 0.24144 0.00000 0.75577 0.00280 0.75856 
C 14 −1.21630 1.99940 5.19722 0.01968 7.21630 
H 15 0.24899 0.00000 0.74771 0.00330 0.75101 
H 16 0.22604 0.00000 0.77156 0.00240 0.77396 
H 17 0.27456 0.00000 0.72041 0.00503 0.72544 
=========================================================== 

* Total * −1.000000 31.99480 49.54565 0.45955 82.00000 
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Tabelle 58: NBO-Analyse von 36. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 1.81898 9.99883 4.02906 0.15313 14.18102 
O 2 −0.96917 1.99985 6.92228 0.04705 8.96917 
O 3 −1.07694 1.99981 7.04318 0.03394 9.07694 
O 4 −1.06054 1.99981 7.03043 0.03029 9.06054 
Si 5 1.93492 9.99781 2.01575 0.05152 12.06508 
Si 6 1.93728 9.99775 2.01476 0.05022 12.06272 
C 7 −1.22448 1.99940 5.20582 0.01926 7.22448 
H 8 0.26069 0.00000 0.73664 0.00267 0.73931 
H 9 0.26814 0.00000 0.72758 0.00428 0.73186 
H 10 0.26014 0.00000 0.73600 0.00386 0.73986 
C 11 −1.21774 1.99939 5.19924 0.01910 7.21774 
H 12 0.25618 0.00000 0.74121 0.00261 0.74382 
H 13 0.25820 0.00000 0.73833 0.00347 0.74180 
H 14 0.27331 0.00000 0.72294 0.00375 0.72669 
C 15 −1.20717 1.99940 5.19006 0.01770 7.20717 
H 16 0.26118 0.00000 0.73573 0.00309 0.73882 
H 17 0.25666 0.00000 0.74068 0.00266 0.74334 
H 18 0.26164 0.00000 0.73526 0.00310 0.73836 
C 19 −1.21889 1.99939 5.20006 0.01944 7.21889 
H 20 0.25551 0.00000 0.74186 0.00263 0.74449 
H 21 0.25950 0.00000 0.73727 0.00323 0.74050 
H 22 0.27546 0.00000 0.72077 0.00378 0.72454 
C 23 −1.20813 1.99940 5.18989 0.01884 7.20813 
H 24 0.25570 0.00000 0.74154 0.00277 0.74430 
H 25 0.26117 0.00000 0.73566 0.00317 0.73883 
H 26 0.26160 0.00000 0.73530 0.00309 0.73840 
C 27 −1.21896 1.99939 5.19939 0.02018 7.21896 
H 28 0.26086 0.00000 0.73540 0.00374 0.73914 
H 29 0.25664 0.00000 0.74069 0.00267 0.74336 
H 30 0.26826 0.00000 0.72633 0.00540 0.73174 
=========================================================== 

* Total * 0 47.99024 73.46913 0.54064 122.00000 
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Tabelle 59: NBO-Analyse von [(Me3SiO)3S]+. 

 
Natural Population 

 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
S 1 1.91359 9.99864 3.95148 0.13629 14.08641 
O 2 −1.00989 1.99981 6.98161 0.02847 9.00989 
O 3 −1.02301 1.99980 6.98804 0.03516 9.02301 
O 4 −1.02760 1.99980 6.99133 0.03647 9.02760 
Si 5 1.92780 9.99768 2.02755 0.04697 12.07220 
Si 6 1.92474 9.99769 2.03088 0.04669 12.07526 
Si 7 1.92418 9.99760 2.02934 0.04888 12.07582 
C 8 −1.23299 1.99939 5.21336 0.02024 7.23299 
H 9 0.28504 0.00000 0.71183 0.00313 0.71496 
H 10 0.26946 0.00000 0.72619 0.00435 0.73054 
H 11 0.26877 0.00000 0.72687 0.00436 0.73123 
C 12 −1.22130 1.99938 5.20192 0.02000 7.22130 
H 13 0.28027 0.00000 0.71669 0.00303 0.71973 
H 14 0.26975 0.00000 0.72669 0.00356 0.73025 
H 15 0.26505 0.00000 0.73076 0.00419 0.73495 
C 16 −1.21861 1.99938 5.20027 0.01896 7.21861 
H 17 0.27431 0.00000 0.72221 0.00349 0.72569 
H 18 0.27952 0.00000 0.71740 0.00308 0.72048 
H 19 0.26863 0.00000 0.72765 0.00372 0.73137 
C 20 −1.23300 1.99939 5.21451 0.01910 7.23300 
H 21 0.26007 0.00000 0.73495 0.00498 0.73993 
H 22 0.27288 0.00000 0.72258 0.00454 0.72712 
H 23 0.28620 0.00000 0.71069 0.00311 0.71380 
C 24 −1.22160 1.99938 5.20157 0.02065 7.22160 
H 25 0.27816 0.00000 0.71890 0.00294 0.72184 
H 26 0.27248 0.00000 0.72392 0.00360 0.72752 
H 27 0.26856 0.00000 0.72749 0.00395 0.73144 
C 28 −1.21983 1.99938 5.20152 0.01893 7.21983 
H 29 0.27306 0.00000 0.72340 0.00355 0.72694 
H 30 0.27952 0.00000 0.71745 0.00303 0.72048 
H 31 0.27376 0.00000 0.72272 0.00351 0.72624 
C 32 −1.22221 1.99938 5.20342 0.01941 7.22221 
H 33 0.26860 0.00000 0.72733 0.00407 0.73140 
H 34 0.27451 0.00000 0.72202 0.00348 0.72549 
H 35 0.27798 0.00000 0.71907 0.00295 0.72202 
C 36 −1.21896 1.99938 5.19963 0.01995 7.21896 
H 37 0.26808 0.00000 0.72827 0.00365 0.73192 
H 38 0.27785 0.00000 0.71913 0.00302 0.72215 
H 39 0.27607 0.00000 0.72058 0.00335 0.72393 
C 40 −1.22396 1.99938 5.20375 0.02084 7.22396 
H 41 0.26580 0.00000 0.72960 0.00460 0.73420 
H 42 0.26863 0.00000 0.72694 0.00443 0.73137 
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H 43 0.27966 0.00000 0.71736 0.00298 0.72034 
=========================================================== 

* Total * 1.00000 63.98545 97.35888 0.65567 162.00000 
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Tabelle 60: NBO-Analyse von [PCO]−. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
C 1 0.12447 1.99949 3.82815 0.04789 5.87553 
O 2 −0.67470 1.99977 6.62004 0.05490 8.67470 
P 3 −0.44977 9.99806 5.41839 0.03332 15.44997 
=========================================================== 
* Total * −1.00000 13.99732 15.86658 0.13611 30.00000 

 
 
Tabelle 61: NBO-Analyse von 38. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
C 1 0.36889 1.99955 3.58907 0.04249 5.63111 
O 2 −0.44439 1.99975 6.39595 0.04870 8.44439 
P 3 0.02873 9.99811 4.92359 0.04957 14.97127 
H 4 0.04678 0.00000 0.94999 0.00323 0.95322 
=========================================================== 
* Total * 0.00000 13.99741 15.85860 0.14399 30.00000 

 
 
Tabelle 62: NBO-Analyse von H-OCP. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
C 1 −0.15964 1.99926 4.12774 0.03264 6.15964 
O 2 −0.67948 1.99971 6.63727 0.04250 8.67948 
P 3 0.32106 9.99753 4.64798 0.03343 14.67894 
H 4 0.51807 0.00000 0.47211 0.00982 0.48193 
=========================================================== 

* Total * 0.00000 13.99650 15.88511 0.11839 30.00000 
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Tabelle 63: NBO-Analyse von [Me3Si-P(H)CO]+. 
 

Natural Population 
 

Atom No 
Natural 
Charge Core Valence Rydberg Total 

---------------------------------------------------------------------------------------------------- 
P 1 0.18199 9.99797 4.76289 0.05716 14.81801 
Si 2 1.57778 9.99779 2.38184 0.04259 12.42222 
C 3 −1.21523 1.99935 5.19194 0.02394 7.21523 
H 4 0.29453 0.00000 0.70191 0.00356 0.70547 
H 5 0.27440 0.00000 0.72104 0.00455 0.72560 
H 6 0.28208 0.00000 0.71397 0.00396 0.71792 
C 7 −1.21069 1.99935 5.18782 0.02353 7.21069 
H 8 0.27934 0.00000 0.71682 0.00384 0.72066 
H 9 0.29535 0.00000 0.70112 0.00353 0.70465 
H 10 0.28170 0.00000 0.71451 0.00379 0.71830 
C 11 −1.21345 1.99935 5.19004 0.02407 7.21345 
H 12 0.29399 0.00000 0.70250 0.00351 0.70601 
H 13 0.27930 0.00000 0.71666 0.00403 0.72070 
H 14 0.27273 0.00000 0.72208 0.00519 0.72727 
C 15 0.53041 1.99952 3.42586 0.04422 5.46959 
O 16 −0.29865 1.99974 6.25515 0.04376 8.29865 
=========================================================== 

* Total * 1.00000 29.99306 39.70604 0.30090 70.00000 
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5.3.3 Strukturverfeinerung der Einkristallstrukturen 
 

Fehlgeordnete Gruppen oder Moleküle werden wenn möglich in verschiedene Lagen 

aufgespalten. Die Besetzungswahrscheinlichkeit jeder Lage wird frei verfeinert. Dies 

betrifft die monokline Struktur [Ph3C][OS(O)2CF3] (12), in der ein Phenylring 

fehlgeordnet ist und in zwei Lagen aufgespalten wird (Besetzungswahrscheinlichkeit: 

0.62(3) / 0.38(3)).  

Weiterhin betrifft es das CH2Cl2 Molekül in der orthorhombischen Struktur 

[Ph3C][CHB11H5Br6] · CH2Cl2 (11·CH2Cl2) welches fehlgeordnet ist 

(Besetzungswahrscheinlichkeit: 0.915(7)/0.085(7)).  

Ebenso ist die CF3 – Gruppe in Ph3COC(O)CF3 (13) fehlgeordnet und wird in zwei Lagen 

aufgespalten (Besetzungswahrscheinlichkeit: 0.584(12)/0.416(12)).  

Die H2O-Atome in [Ph3C][CHB11Cl11] (10) ebenso in [Ph3C][CHB11Cl11] · 2 C7H8 

(10·2·C7H8) konnten frei verfeinert werden.  

In der orthorhombischen Struktur [K@18-Krone-6][SSiMe3] (24) sind zwei 

Fehlordnungen zu finden. Zum einen gibt es für die Methylgruppe am Si1A zwei Lagen 

(Besetzungswahrscheinlichkeit: 0.720(4) / 0.143(4)) und noch eine gesamte zweite 

[Me3Si]-Lage (Besetzungswahrscheinlichkeit: 0.862(3) / 0.138(3)).  

In der orthorhombischen Struktur [Me3POSiMe3][O3SOSiMe3] (20) sind zum einen zwei 

Lagen der Methylgruppen an P2 fehlgeordnet (Besetzungswahrscheinlichkeit: 0.719(15) / 

0.281(15)), ferner ist der SO4 Tetraeder an S2 in zwei Lagen aufgespalten 

(Besetzungswahrscheinlichkeit: 0.675(7) / 0.325(7)) und es existieren drei Lagen des 

Kations S1A (Besetzungswahrscheinlichkeit: 0.6769(18) / 0.2306(19) / 0.0925(17)). 

In der monoklinen Struktur (Me3SiO)2SO2 (19) sind die SO4 Tetraeder der drei Moleküle 

der asymmetrischen Einheit fehlgeordnet (Besetzungswahrscheinlichkeit: S1 - 0.75(5) / 

0.25(5), S2 – 0.80(2) / 0.20(2), S3 – 0.754(12) / 0.246(12)).  

In der monoklinen Struktur (F5C6)3BN(H)SO (28) wird eine Fehlordnung einer 

Pentafluorophenyl-Gruppe gefunden (Besetzungswahrscheinlichkeit: 0.890(8) / 0.110(8)). 

In der triklinen Struktur [P(OSiMe3)4][B(C6F5)4]·2.5 Toluol (34·2.5 Toluol) ist das Kation 

dreifach fehlgeordnet (Besetzungswahrscheinlichkeit: 0.852(3) / 0.096(2) / 0.051(2)), 

ferner ist jedes der drei Toluol-Moleküle über zwei Lagen fehlgeordnet 

(Besetzungswahrscheinlichkeit: ipso-C37 0.718(17) / 0.282(17), ipso-C44 0.54(4) / 

0.46(4), ipso-C51 0.422(6) / 0.078(6)). 
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In der triklinen Struktur [P(OSiMe3)4][B(C6F5)4] (34) ist ein Teil des Kations 

fehlgeordnet und in zwei Lagen aufgespalten (Besetzungswahrscheinlichkeit: 0.9019(17) 

/ 0.0981(17)). Weiterhin werden in der triklininen Struktur [K@18-Krone-

6][O2P(OSiMe3)2] (35) zwei Fehlordnungen beobachtet. Zum einen ist ein Anion über 

zwei Lagen aufgespalten (Besetzungswahrscheinlichkeit: 0.738(6) / 0.262(6)) und zum 

anderen ist ein Solvenzmolekül DME über zwei Lagen aufgespalten 

(Besetzungswahrscheinlichkeit: 0.682(4) / 0.318(4)). 
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5.3.4 Start- und Referenzmaterialien 
 

5.3.4.1 Triphenylmethan – Ph3C-H (15) 

 

C19H16 (244.33 g/mol): Smp. 93°C. 1H NMR (25°C, CD2Cl2, 500.13 MHz): δ = 5.54 (s, 

1H, HCPh3), 7.13 (d, 6H, o-CH, 4J(1H-1H) = 7.95 Hz), 7.21 (tt, 3H, p-CH, 1J(1H-13C) = 

160 Hz, 4J(1H-1H) = 7.43 Hz, 3J(1H-1H) = 1.4 Hz), 7.29 (tt, 6H, m-CH, 1J(1H-13C) = 

160 Hz, 4J(1H-1H) = 7.44 Hz, 3J(1H-1H) = 1.5 Hz). 13C{1H} NMR (25°C, CD2Cl2, 

125.77 MHz): δ = 57.5 (s, HCPh3), 126.9 (s, p-CH), 128.9 (s, m-CH), 130.0 (s, o-CH), 

144.6 (s, ipso-C). IR (ATR, 32 Scans, 25°C, cm–1): 3079 (w), 3060 (w), 3041 (w), 3022 

(w), 2954 (w), 2914 (w), 2848 (w), 1955 (w), 1905 (w), 1888 (w), 1832 (w), 1814 (w), 

1766 (w), 1706 (w), 1677 (w), 1637 (w), 1596 (m), 1552 (w), 1519 (w), 1492 (m), 1444 

(m), 1390 (w), 1334 (w), 1313 (w), 1297 (w), 1280 (w), 1247 (w), 1178 (w), 1155 (w), 

1128 (w), 1078 (m), 1029 (m), 1002 (w), 989 (w), 972 (w), 918 (w), 860 (w), 852 (w), 

835 (w), 821 (w), 756 (m), 732 (s), 696 (s), 657 (m), 619 (m), 603 (s). Raman (632 nm, 

3 mW, 5 s, 6 Akk., 25°C, cm–1): 3194 (1), 3159 (1), 3078 (1), 3055 (3), 3042 (2), 2999 

(1), 2890 (1), 1597 (1), 1582 (1), 1451 (1), 1299 (1), 1248 (1), 1179 (1), 1165 (2), 1148 

(1), 1028 (4), 1001 (10), 917 (1), 859 (1), 845 (1), 818 (1), 755 (1), 732 (1), 658 (1), 618 

(1), 603 (1), 290 (1), 271 (1), 242 (1), 231 (3). (s. auch A. L. Smith / W. R. McWhinnie 

und R. C. Poller) [286,287] 

 

5.3.4.2 Schwefelsäure – H2SO4 (konz.) 

 

95% H2O4S: 17O-NMR (25 °C, pur, ext. ref. D2O, 67.83 MHz): δ = 17.66 ([    x
 , 

 ν1/2 = 450 Hz), 151.88 (SO4   ν1/2 = 750 Hz). Raman (473 nm, 6 mW, 10 s, 10 Akk., 

25 °C, cm−1): 3532-2632 (sehr breit), 1371 (1), 1149 (4), 1043 (3), 909 (10), 553 (4), 413 

(2), 391 (2). 
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5.3.4.3 Trimethylphosphinoxid – OPMe3 

 

C3H9OP (92.08 g/mol): Smp. 142 °C. 1H-NMR (25 °C, CD2Cl2, 300.13 MHz): δ = 1.36 

(d, PCH3, 1J(1H-13C) = 127.2 Hz, 2J(1H-31P) = 13.0 Hz). 13C{1H}-NMR (25 °C, CD2Cl2, 

75.47 MHz): δ = 18.31 (d, PCH3, 2J(13C-31P) = 69.5 Hz). 17O-NMR (25 °C, CD2Cl2, 

67.82 MHz): δ = 64.57 (d, OPC, 1J(17O-31P) = 150 Hz,  ν1/2 = 35 Hz). 31P{1H}-NMR 

(25 °C, CD2Cl2, 121.51 MHz): δ = 36.23 (s, PCH). Raman (473 nm, 5 mW, 10 s, 

10 Akk., 25 °C, cm−1): 2981 (9), 2911 (10), 2802 (1), 2573 (1), 2555 (1), 1451 (1), 1432 

(1), 1408 (1), 1310 (1), 1287 (1), 1145 (2), 947 (1), 934 (1), 874 (1), 859 (1), 738 (2), 664 

(6), 357 (1), 316 (1), 246 (1). 

(IR-Spektrum in G. Bauer, H Mikosch[288] oder J. Goubeau, W. Bereger zu finden.)[289] 

 

5.3.4.4 Kalium Dihydrogenphosphat – KH2[PO4] 

 

H2KO4P (136.09 g/mol). Smp. <260 °C (Zer.) Bildung von K5-nHnP3O10 · H2O. 1H-NMR 

(25 °C, D2O, 300.13 MHz): δ = 4.71 (s, 1J(1H-17O) = 81 Hz). 17O-NMR (25 °C, D2O, 

67.80 MHz): δ = 88.3 (PO/POH,  ν1/2 = 275 Hz).. 31P{1H}-NMR (25 °C, D2O, 

121.51 MHz): δ = − .   (    ν1/2 = 7 Hz). IR (ATR, 64 Scans, 25 °C, cm–1): 1280 (m), 

1072 (m), 864 (s), 530 (s). Raman (633 nm, 10 mW, 20 s, 20 Akk., 25 °C, cm−1): 914 

(10), 529 (1), 475 (1), 390 (3), 355 (2). 

 

5.3.4.4 Dinatrium Sulfit – Na2[SO3] 

 

Na2O3S (126.04 g/mol): 17O NMR (25 °C, D2O, 67.83 MHz): 210.4  ν1/2 = 180 Hz. IR 

(ATR, 64 Scans, 25 °C, cm–1): 1135 (w), 958 (s), 630 (m). Raman (532 nm, 23 mW, 5 s, 

20 Akk., 25 °C, cm–1): 985 (10), 946 (4), 635 (1), 493 (1), 180 (1), 138 (1), 87 (1). 
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5.3.4.5 Natrium Trimethylsilanolat – Na[OSiMe3] 

 

Natrium Trimethylsilanolat Na[OSiMe3] (25 g, 0.22 mol) werden im dynamischen 

Hochvakuum sublimiert. Dabei wird der Kolben mit zwei Heißluftgebläsen (je 2300 W, 

650 C) erhitzt. Es verbleibt ein dunkelgrauer pyrophorer Rückstand im 

Sublimationsgefäß. Während des Erhitzens steigt der Druck, aufgrund der Bildung von 

thermischen Zersetzungsprodukten, an. Die Sublimation liefert 5.6-12.5 g (50-111 mmol, 

23-51 %) farbloses Natrium Trimethylsilanolat. 

  

C3H9NaOSi (112.18 g/mol): Smp. >240 °C (Zer.). EA ber. (gef.), %: C, 32.12 (32.20); H, 

8.09 (8.45). 1H-NMR (25 °C, THF-[D8], 300.13 MHz): δ   − .17 ( , 9H, SiCH3, 1J(1H-
13C) = 114.7 Hz, 2J(1H-29Si) = 6.1 Hz). 13C{1H}-NMR (25 °C, THF-[D8], 75.47 MHz): δ 

= 5.08 (s, SiCH3, 1J(13C-29Si) = 53.9 Hz). 17O-NMR (25 °C, THF-[D8], 67.83 MHz): 

nicht beobachtet. 29Si INEPT-NMR (25 °C, THF-[D8], 59.52 MHz) δ   −1 .46  (dec, 

SiCH3, 2J(29Si-1H) = 6.1 Hz). IR (ATR, 8 Scans, 25 °C, cm–1): 2941 (m), 2887 (w), 2827 

(w), 1537 (w), 1434 (w), 1255 (m), 1240 (m), 1010 (w), 975 (s), 954 (m), 883 (w), 815 

(s), 730 (s), 659 (m), 613 (w), 549 (w). Raman (473 nm, 5 mW, 10 s, 30 Akk., 25 °C, 

cm–1): 3105 (1), 2943 (9), 2894 (10), 1428 (1), 1404 (1), 1251 81), 1236 (1), 1012 (1), 

964 (1), 951 (1), 819 (1), 730 (1), 657 (2), 602 (8), 382 (1), 353 (1), 268 (1), 214 (1). 
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5.4 Darstellung der Verbindungen 

 

5.4.1 Synthese und Charakterisierung von [Ph3C][BF4] (1) 
 

Ph3CCl + Ag[BF4]
CH2Cl2, Rt

[Ph3C][BF4] + AgCl
A

 
 

Silber Tetrafluoridoborat Ag[BF4] (140 mg, 0.72 mmol) und Tritylchlorid Ph3CCl (200 

mg, 0.72 mmol) werden zusammen in 6 mL CH2Cl2 gelöst. Dies führt zum sofortigen 

Ausfall eines farblosen Niederschlages und die Lösung verfärbt sich orange. Die 

Reaktionslösung wird für 5 Minuten im Dunklen gerührt. Anschließend wird der 

Niederschlag abfiltriert (G4) und die Lösung auf ~2 mL eingeengt. Einkristalle für die 

Röntgenstrukturanalyse können durch Gasdiffusion mithilfe von n-Hexan gewonnen 

werden. Der Überstand der Lösung wird mittels Spritze entfernt und die gelben Kristalle 

solange mit n-Hexan gewaschen, bis der Überstand farblos ist. Die Kristalle werden im 

Hochvakuum bei 60 °C getrocknet. Es werden 163 mg (0.34 mmol, 69 %) 

Triphenylmethylium Tetrafluoridoborat [Ph3C][BF4] erhalten. 

 

C19H15BF4 (330.13 g/mol): Smp. 209°C (Zer.). EA ber. (gef.), %: C, 69.13 (69.65); H, 

4.58 (4.75). 1H-NMR (25°C, CD3CN, 300.13 MHz): δ = 7.72 (d, 6H, o-CH, 3J(1H-1H) = 

8.29 Hz), 7.88 (t, 6H, m-CH, 3J(1H-1H) = 7.86 Hz), 8.29 (t, 3H, p-CH, 3J(1H-1H) = 

7.53 Hz). 11B-NMR (25°C, CD3CN, 96.29 MHz): δ = –1.18 (s, 1J(11B-19F) = 79.4 Hz). 
13C{1H}-NMR (25°C, CD3CN, 75.47 MHz): δ = 131.16 (s, m-CH, 1J(13C-13C) = 

54.1 Hz), 141.25 (s, ipso-C), 144.10 (s, p-CH), 144.15 (s, o-CH, partielle Überlagerung 

der Signale für o- und p-CH], 213.08 (s, CPh3). 19F{1H}-NMR (25°C, CD3CN, 

282.38 MHz): δ = –151.79 (s, 1J(19F-11B) = 79.4 Hz). IR (ATR, 32 Scans, 25°C, cm–1): 

3095 (w), 3070 (w), 1645 (w), 1621 (w), 1610 (w), 1579 (s), 1564 (m), 1511 (w), 1483 

(m), 1448 (m), 1353 (s), 1336 (m), 1311 (m), 1294 (m), 1191 (m), 1168 (m), 1132 (w), 

1091 (m), 1047 (s), 1035 (s), 995 (m), 977 (m), 948 (m), 914 (m), 871 (w), 844 (m), 808 

(m), 765 (s), 698 (s), 659 (m), 640 (w), 621 (m), 609 (s), 557 (w), 538 (w). Raman 

(784 nm, 65 mW, 6 s, 30 Akk., 25°C, cm–1): 3064 (1), 2939 (1), 1597 (5), 1587 (8), 1485 

(1), 1357 (3), 1312 (1), 1296 (1), 1198 (1), 1187 (3), 1161 (1), 1036 (2), 1001 (5), 987 

(1), 951 (1), 915 (2), 844 (1), 773 (1), 766 (1), 712 (1), 624 (3), 611 (1), 471 (2), 435 (1), 
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407 (3), 324 (1), 290 (10), 240 (2), 193 (1). MS (CI+, m/z (%)): 243 (100) [Ph3C]+, 167 

(3) [Ph2CH]+. 
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5.4.2 Synthese und Charakterisierung von [Ph3C][AlCl4] (3) 
 

Ph3CCl + AlCl3
CH2Cl2, Rt

[Ph3C][AlCl4]
A

 
 

Zu einer gerührten Suspension aus Aluminiumtrichlorid AlCl3 (134 mg, 1 mmol) in 3 mL 

CH2Cl2, wird eine Lösung aus 6 mL CH2Cl2 und 278 mg Tritylchlorid Ph3CCl (1 mmol), 

mithilfe einer Spritze gegeben. Die Reaktionslösung wird für weitere 30 Minuten gerührt. 

Anschließend wird die Reaktionslösung filtriert (G4) und das Lösungsmittel bis auf 

~2 mL und beginnender Kristallisation entfernt. Über Nacht können aus dieser Lösung 

Kristalle für die Einkristallstrukturanalyse gewonnen werden. Der Überstand wird mit 

einer Spritze entfernt und die Kristalle solange mit n-Hexan gewaschen bis der Überstand 

farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C getrocknet. Es werden 324 

mg (0.79 mmol, 79 %) Triphenylmethylium Tetrachloridoaluminat [Ph3C][AlCl4] 

erhalten. 

 

C19H15AlCl4 (412.12 g/mol): Smp. 169°C (Zer.). EA ber. (gef.), %: C, 55.37 (55.17); H, 

3.67 (3.90). 1H-NMR (25°C, CD2Cl2, 300.13 MHz): δ = 7.70 (dd, 6H, o-CH, 3J(1H-1H) = 

8.52 Hz, 4J(1H-1H) = 1.5 Hz), 7.91 (tt, 6H, m-CH, 3J(1H-1H) = 7.94 Hz, 4J(1H-1H) = 

1.5 Hz), 8.29 (tt, 3H, p-CH, 3J(1H-1H) = 7.50 Hz, 4J(1H-1H) = 1.4 Hz). 13C{1H}-NMR 

(25°C, CD2Cl2, 75.48 MHz): δ = 131.18 (s, m-CH, 1J(13C-13C) = 54.4 Hz), 140.48 (s, 

ipso-C, 1J(13C-13C) = 54.8 Hz), 143.36 (s, o-CH, 1J(13C-13C) = 55.4 Hz), 144.02 (s, p-CH, 
1J(13C-13C) = 54.4 Hz), 211.31 (s, CPh3). IR (ATR, 32 Scans, 25°C, cm–1): 3064 (w), 

2838 (w), 2713 (w), 2590 (w), 1579 (s), 1508 (w), 1481 (m), 1448 (m), 1407 (w), 1353 

(s), 1292 (s), 1184 (m), 1162 (m), 1126 (m) 1116 (w), 1099 (m), 1083 (m), 1027 (m), 

1004 (w), 995 (m), 979 (m), 954 (w), 948 (w), 914 (m), 892 (w), 844 (m), 833 (m), 806 

(m), 763 (m), 763 (m), 746 (m), 698 (s), 657 (m), 621 (s), 607 (s). MS (CI+, m/z (%)): 

243 (100) [Ph3C]+, 167 (61) [Ph2CH]+. 
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5.4.3 Synthese und Charakterisierung von [Ph3C][GaCl4] (4) 
 

Ph3CCl + GaCl3
CH2Cl2 /
n-Pentan, Rt

[Ph3C][GaCl4]
A

 
 

Zu einer gerührten Lösung aus 35 mL n-Pentan und 1.67 g Tritylchlorid Ph3CCl (6 mmol) 

wird tropfenweise eine Lösung aus 10 mL n-Pentan und 0.88 g Galliumtrichlorid GaCl3 

(5 mmol) gegeben. Die entstehende gelbe Suspension wird eine Stunde lang nachgerührt. 

Das Lösungsmittel wird mit einer Spritze entfernt und der gelbe Rückstand wird in 7 mL 

CH2Cl2 gelöst. Durch langsame Zugabe von n-Pentan (10 mL) entsteht erneut ein feiner 

gelber, mikrokristalliner Niederschlag. Der Überstand wird erneut mit einer Spritze 

entfernt und die Vorgehensweise noch ein weiteres Mal wiederholt. Anschließend wird 

das Produkt im Hochvakuum getrocknet und es wird 1.96 g feines, gelbes, 

mikrokristallines Triphenylmethylium Tetrachloridogallat [Ph3C][GaCl4] (4.32 mmol, 

86 %)) erhalten. 

Kristalle für die Einkristallstrukturanalytik können durch langsames Abkühlen einer 

warmen (40 °C) gesättigten CH2Cl2-Lösung des Trityl Gallats gewonnen werden.  

 

C19H15Cl4Ga (454.86 g/mol): Smp. 174°C (Zer.). EA ber. (gef.), %: C, 50.17 (50.13); H, 

3.32 (3.76). 1H-NMR (25°C, CD2Cl2, 500.13 MHz): δ = 7.70 (dd, 6H, o-CH, 3J(1H-1H) = 

7.79 Hz, 4J(1H-1H) = 1.4 Hz), 7.91 (tt, 6H, m-CH, 3J(1H-1H) = 8.42 Hz, 4J(1H-1H) = 

1.4 Hz), 8.29 (tt, 3H, p-CH, 3J(1H-1H) = 7.57 Hz, 4J(1H-1H) = 1.4 Hz). 13C{1H}-NMR 

(25°C, CD2Cl2, 75.47 MHz): δ = 131.20 (s, m-CH), 140.51 (s, ipso-C), 143.39 (s, o-CH), 

144.03 (s, p-CH) 211.34 (s, CPh3). IR (ATR, 32 Scans, 25°C, cm–1): 3065 (w), 1579 (s), 

1481 (m), 1448 (m), 1353 (s), 1293 (3), 1408 (w), 1184 (m), 1164 (m), 1127 (w), 1118 

(w), 1100 (w), 1086 (w), 1029 (w), 1007 (w), 994 (m), 980 (m), 954 (w), 949 (w), 915 

(w), 845 (m), 833 (m), 807 (m), 764 (m), 699 (s), 665 (m), 659 (w), 621 (s), 609 (s). 

Raman (1064 nm, 100 mW, 500 Akk., 25°C, cm–1): = 3073 (1), 1620 (1), 1596 (5), 1584 

(10), 1483 (2), 1452 (1), 1357 (4), 1332 (1), 1310 (1), 1297 (1), 1185 (2), 1166 (1), 1028 

(2), 997 (3), 955 (1), 916 (2), 845 (1), 835 (1), 772 (1), 709 (1), 687 (1), 623 (2), 610 (1), 

468 (1), 427 (1), 404 (2), 380 (1), 367 (1), 345 (1), 325 (1), 287 (2), 237 (1), 152 (1), 138 

(1). MS (CI+, m/z (%)): 243 (100) [Ph3C]+, 167 (9) [Ph2CH]+.  
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5.4.4 Synthese und Charakterisierung von [Ph3C][PF6] (5) 
 

Ph3CCl + Ag[PF6]
CH3CN, Rt

[Ph3C][PF6]  + AgCl
A

 
 

Zu einer gerührten Suspension von 16.54 g Tritylchlorid (59.33 mmol)) in 50 mL 

Acetonitril, wird eine Lösung aus 100 mL Acetonitril und 15 g Silber 

Hexafluoridophosphat Ag[PF6] (59.33 mmol) mithilfe eines Tropftrichters gegeben. Die 

Reaktionslösung verfärbt sich orange und es entsteht ein farbloser Niederschlag. Nach 

weiteren 30 Minuten rühren wird der der Niederschlag abfiltriert (G4). Nachdem das 

Lösungsmittel im Hochvakuum entfernt wurde, wird der verbleibende orange Rückstand 

in 60 mL CH2Cl2 gelöst. Nichtlösliche Bestandteile werden erneut abfiltriert. Das 

Lösungsmittel wird im Hochvakuum entfernt. Der gebildete feine Niederschlag wird 

dreimal mit n-Hexan gewaschen. Durch Trocknung des Niederschlages im Hochvakuum 

werden 20.51 g Triphenylmethylium Hexafluoridophosphat [Ph3C][PF6] (52.82 mmol, 

89 %) erhalten. Kristalle für die Einkristallstrukturanalytik können durch das langsame 

Herunterkühlen einer gesättigten Acetonitril-Lösung des Trityl Hexafluoridophosphats 

gewonnen werden.  

 

C19H15F6P (388.29 g/mol): Smp. 230°C (Zer.). EA ber. (gef.), %: C, 58.77 (58.86); H, 

3.89 (3.92). 1H-NMR (25°C, CD3CN, 300.13 MHz): δ = 7.72 (d, 6H, o-CH, 3J(1H-1H) = 

7.9 Hz), 7.88 (t, 6H, m-CH, 3J(1H-1H) = 7.7 Hz), 8.29 (t, 3H, p-CH, 3J(1H-1H) = 7.9 Hz). 
13C{1H}-NMR (25°C, CD3CN, 75.47 MHz): δ = 129.2 (s, m-CH), 131.2 (s, ipso-C), 

141.3 (s, o-CH), 144.2 (s, p-CH), 213.1 (s, CPh3). 19F{1H}-NMR (25°C, CD3CN, 

282.38 MHz): δ = –72.8 (d, PF6, 1J(19F-31P) = 707 Hz). 31P{1H}-NMR (25°C, CD3CN, 

282.38 MHz): δ = –144.6 (sept, PF6, 1J(31P-19F) = 707 Hz). IR (ATR, 16 Scans, 25°C, 

cm–1): 3052 (w), 1621 (w), 1610 (w), 1581 (m), 1562 (w), 1510 (w), 1484 (m), 1450 (m), 

1407 (w), 1355 (s), 1309 (m), 1294 (m), 1276 (m), 1240 (m), 1191 (m), 1164 (w), 1130 

(w), 1101 (w), 1054 (w), 1031 (w), 997 (m), 981 (m), 948 (w), 916 (w), 879 (w), 840 (s), 

827 (s), 765 (s), 698 (s), 684 (m), 659 (m), 621 (m), 609 (m), 555 (s). Raman (784 nm, 

6.5 mW, 10 s, 10 Akk., 25°C, cm–1): 3036 (1), 2915 (1), 1626 (1), 1597 (4), 1587 (9), 

1485 (1), 1357 (3), 1317 (1), 1295 (1), 1188 (3), 1162 (2), 1031 (2), 1000 (5), 985 (1), 

952 (1), 916 (3), 845 (1), 772 (1), 744 (1), 711 (1), 623 (4), 610 (1), 468 (3), 406 (4), 285 
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(10), 235 (2), 188 (1), 135 (4). MS (CI+, m/z (%)): 243 (100) [Ph3C]+, 185 (69) [Ph2CF]+, 

167 (3) [Ph2CH]+. 
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5.4.5 Synthese und Charakterisierung von [Ph3C][AsF6] (6) 
 

Ph3CCl + Ag[AsF6]
CH2Cl2, Rt

[Ph3C][AsF6] + AgCl
A

 
 

148 mg Silber Hexafluoridoarsenat Ag[AsF6] (0.5 mmol) und 139 mg Tritylchlorid 

Ph3CCl (0.5 mmol) werden zusammen in 8 mL CH2Cl2 gelöst. Dies führt zum Ausfall 

eines Niederschlages und die Reaktionslösung verfärbt sich orange. Die Reaktionslösung 

wird weite für 5 Minuten gerührt. Anschließend wird die Reaktionslösung filtriert und das 

Lösungsmittel des Filtrats bis auf ~2 mL im Vakuum entfernt. Kristalle für die 

Einkristallstrukturanalyse können durch Dampfdiffusion mit n-Hexan gewonnen werden. 

Der Überstand wird mit einer Spritze entfernt und die Kristalle solange mit n-Hexan 

gewaschen bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C 

getrocknet. Es werden 115 mg (0.27 mmol, 53 %) rot/oranges Triphenylmethylium 

Hexafluoridoarsenat [Ph3C][AsF6] erhalten. 

 

C19H15F6As (432.23 g/mol): Smp. 222°C. EA ber. (gef.), %: C, 52.80 (52.71); H, 3.50 

(3.61). 1H-NMR (25°C, CD2Cl2, 300.13 MHz): δ = 7.69 (dd, 6H, o-CH, 3J(1H-1H) = 

8.44 Hz, 4J(1H-1H) = 1.5 Hz), 7.90 (tt, 6H, m-CH, 3J(1H-1H) = 7.86 Hz, 4J(1H-1H) = 

1.6 Hz), 8.28 (tt, 3H, p-CH, 3J(1H-1H) = 7.53 Hz, 4J(1H-1H) = 1.5 Hz). 13C{1H}-NMR 

(25°C, CD2Cl2, 75.47 MHz): δ = 131.16 (s, m-CH, 1J(13C-13C) = 54.7 Hz), 140.53 (s, 

ipso-C), 143.33 (s, o-CH, 1J(13C-13C) = 55.3 Hz), 144.05 (s, p-CH, 1J(13C-13C) = 

52.7 Hz), 211.48 (s, CPh3). 19F{1H}-NMR (25°C, CD2Cl2, 282.38 MHz): δ = –66.18 

(1J(19F-75As) = 940 Hz). 75As-NMR (25°C, CD2Cl2, 85.64 MHz): δ = 0.106 (sept, AsF6, 
1J(75As-19F) = 940 Hz). IR (ATR, 32 Scans, 25°C, cm–1): 3095 (w), 1621 (w), 1575 (w), 

1506 (w), 1479 (m), 1448 (m), 1353 (s), 1305 (m), 1292 (m), 1186 (m), 1164 (m), 1130 

(w), 1101 (w), 1089 (w), 1025 (w), 993 (m), 979 (m), 948 (w), 914 (w), 854 (w), 838 (m), 

810 (m), 767 (m), 682 (s), 622 (s), 607 (s), 572 (m), 466 (m), 428 (w). Raman (784 nm, 

24 mW, 15 s, 10 Akk., 25°C, cm–1): 1594 (1), 1578 (4), 1483 (1), 1448 (1), 1357 (1), 

1352 (1), 1332 (1), 1315 (1), 1290 (1), 1182 (2), 1168 (1), 1024 (3), 997 (6), 992 (2), 915 

(1), 843 (1), 810 (1), 774 (1), 767 (1), 708 (2), 678 (5), 620 (3), 607 (2), 572 (2), 468 (2), 

429 (1), 403 (3), 365 (1), 322 (1), 286 (5), 239 (2), 231 (3), 147 (10), 123 (1), 106 (8). 

MS (CI+, m/z (%)): 243 (100) [Ph3C]+.  
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5.4.6 Synthese und Charakterisierung von [Ph3C][SbF6] (7) 
 

Ph3CCl + Ag[SbF6]
CH2Cl2, Rt

[Ph3C][SbF6] + AgCl
A

 
 

172 mg Silber Hexafluoridoantimonat Ag[SbF6] (0.5 mmol) und 139 mg Tritylchlorid 

Ph3CCl (0.5 mmol) werden zusammen in 5 mL CH2Cl2 gelöst. Dies führt zum Ausfall 

eines Niederschlages und die Reaktionslösung verfärbt sich gelb/orange. Die 

Reaktionslösung wird weite für 5 Minuten gerührt. Anschließend wird die 

Reaktionslösung filtriert und das Lösungsmittel des Filtrats bis auf ~2 mL im Vakuum 

entfernt. Kristalle für die Einkristallstrukturanalyse können durch Dampfdiffusion mit n-

Hexan gewonnen werden. Der Überstand wird mit einer Spritze entfernt und die Kristalle 

solange mit n-Hexan gewaschen bis der Überstand farblos ist. Die Kristalle werden im 

Hochvakuum bei 60 °C getrocknet. Es werden 138 mg (0.29 mmol, 58 %) tief gelbes 

Triphenylmethylium Hexafluoridoarsenat [Ph3C][SbF6] erhalten. 

 

 

C19H15F6Sb (479.07 g/mol): Smp. 213°C (Zer.). EA ber. (gef.), %: C, 47.63 (47.63); H, 

3.16 (3.10). 1H-NMR (25°C, CD3CN, 300.13 MHz): δ = 7.72 (d, 6H, o-CH, 3J(1H-1H) = 

8.1 Hz), 7.88 (t, 6H, m-CH, 3J(1H-1H) = 7.76 Hz), 8.29 (t, 3H, p-CH, 3J(1H-1H) = 

7.54 Hz). 13C{1H}-NMR (25°C, CD2Cl2, 75.47 MHz): δ = 131.2 (s, m-CH, 1J(13C-13C) = 

54.7 Hz), 140.6 (s, ipso-C), 143.4 (s, o-CH, 1J(13C-13C) = 54.9 Hz), 144.1 (s, p-CH), 

211.52 (s, CPh3). 19F{1H}-NMR (25°C, CD2Cl2, 282.38 MHz): δ = –124.1 (1J(19F-121Sb) 

= 1950 Hz, 1J(19F-123Sb) = 1060 Hz). IR (ATR, 32 Scans, 25°C, cm–1): 1619 (w), 1608 

(w), 1581 (m), 1562 (w), 1510 (w), 1483 (m), 1450 (m), 1413 (w), 1394 (w), 1353 (m), 

1305 (w), 1294 (m), 1186 (m), 1160 (w), 1130 (w), 1101 (w), 1101 (w), 1079 (w), 1029 

(w), 1008 (w), 995 (m), 981 (w), 973 (w), 954 (w), 943 (w), 914 (w), 846 (w), 837 (m), 

806 (m), 771 (m), 765 (m), 700 (m), 663 (m), 648 (s), 621 (m), 607 (m), 574 (m), 567 

(m). Raman (784 nm, 65 mW, 5 s, 10 Akk., 25°C, cm–1): 1483 (1), 1354 (4), 1294 (1), 

1199 (1), 1184 (4), 1170 (1), 1164 (1), 1027 (3), 1008 (1), 999 (6), 942 (1), 916 (2), 837 

(1), 775 (1), 763 (1), 711 (3), 656 (1), 644 (3), 622 (7), 610 (2), 469 (4), 427 (1), 403 (9), 

389 (1), 322 (1), 288 (10), 284 (9), 237 (3), 220 (1), 146 (4). MS (CI+, m/z (%)): 243 

(100) [Ph3C]+, 167 (32) [Ph2CH]+.   
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5.4.7 Charakterisierung von [Ph3C][SbCl6] (8) 
 

237 mg Triphenylmethylium Hexachloridoantimonat [Ph3C][SbCl6] (0.41 mmol) wird in 

5 mL CH2Cl2 gelöst. Die Reaktionslösung wird für weitere 10 Minuten gerührt und 

anschließend filtriert (G4). Das Lösungsmittel des Filtrats wird bis auf ~2 mL entfernt. 

Durch Lagerung der Lösung über Nacht bei −40 °C können Einkristalle erhalten werden. 

Der Überstand wird mit einer Spritze entfernt und die Kristalle solange mit n-Hexan 

gewaschen bis der Überstand farblos ist. Die Kristalle werden im Hochvakuum bei 60 °C 

getrocknet. Es werden 134 mg (0.23 mmol, 57 %) tief gelbes Triphenylmethylium 

Hexachloridoantimonat [Ph3C][SbCl6] erhalten. 

 

C19H15Cl6Sb (577.80 g/mol): Smp. 212°C (Zer.). EA ber. (gef.), %: C, 39.50 (39.49); H, 

2.62 (2.93). 1H-NMR (25°C, CD2Cl2, 250.13 MHz): δ = 7.70 (dd, 6H, o-CH, 3J(1H-1H) = 

8.57 Hz, 4J(1H-1H) = 1.4 Hz), 7.92 (tt, 6H, m-CH, 3J(1H-1H) = 7.91 Hz), 8.29 (tt, 3H, p-

CH, 3J(1H-1H) = 7.54 Hz, 4J(1H-1H) = 1.3 Hz). 13C{1H}-NMR (25°C, CD2Cl2, 

62.90 MHz): δ = 131.26 (s, m-CH), 140.52 (s, ipso-C), 143.40 (s, o-CH), 144.10 (s, p-

CH) 211.32 (s, CPh3). IR (ATR, 32 Scans, 25°C, cm–1): 3062 (w), 1619 (w), 1606 (w) 

1575 (m), 1560 (w), 1481 (m), 1448 (m), 1409 (w), 1353 (s), 1305 (m), 1292 (s), 1191 

(m), 1182 (m), 1164 (m), 1128 (m), 1101 (m) 1085 (m), 1064 (m), 1025 (m), 1006 (w), 

995 (m), 977 (m), 950 (m), 914 (m), 838 (m), 806 (m), 769 (s), 698 (s), 657 (m), 621 (m), 

607 (s). Raman (532 nm, 12 mW, 60 s, 10 Akk., 25°C, cm–1): 1590 (5), 1578 (10), 1555 

(2), 1479 (1), 1447 (1), 1350 (1), 1179 (3), 1162 (2), 1020 (3), 992 (2), 949 (1), 911 (4), 

766 (1), 704 (1), 618 (4), 463 (1), 425 (1), 399 (1), 281 (6). MS (CI+, m/z (%)): 243 (100) 

[Ph3C]+. 
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5.4.8 Synthese und Charakterisierung von [Ph3C][CHB11H5Cl6] (9) 
 

Ag[CHB11H5Cl6] + Ph3CBr
Toluol, CH3CN

Rt

[Ph3C][CHB11H5Cl6] + AgBr
a

CH3CN

 

 

siehe Referenz [115] 

 

5.4.9 Synthese und Charakterisierung von [Ph3C][CHB11Cl11] (10) 
 

Ag[CHB11Cl11] + Ph3CBr
Toulol / CH3CN, Rt

[Ph3C][CHB11Cl11] + AgBr
a

 
 

siehe Referenz [115] 
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5.4.10 Synthese und Charakterisierung von (11·CH2Cl2) 
 

Ag[CHB11H5Br6] Ph3CBr
1) Toluol / CH3CN, Rt
2) CH2Cl2

[Ph3C][CHB11H5Br6] + AgBr
a

+ CH2Cl2

 

 

Triphenylmethylium closo-6,7,8,9,10,11-Hexabromopentahydroundecacarborat 

[Ph3C][CHB11H5Br6] wird in Anlehnung an eine modifizierte Literaturvorschrift 

hergestellt.[290] Zu einer gerührten Lösung aus 2.17 g Silber closo-6,7,8,9,10,11- 

Hexabromopentahydroundecacarborat Ag[CHB11H5Br6] (3 mmol) in 20 mL Toluol und 

60 mL Acetonitril wird mit einer Spritze eine Lösung aus 1 g Tritylbromid Ph3CBr 

(3.1 mmol) in 20 mL Toluol gegeben. Die entstehende orange Suspension wird für eine 

weitere Stunde gerührt. Das Lösungsmittel wird vollständig im Vakuum entfernt und der 

Rückstand in 40 mL CH2Cl2 aufgenommen. Nach der Filtration (G4) der 

Reaktionslösung, wird die klare orange Lösung mit 40 mL n-Hexan versetzt. Der gelbe 

Überstand des feinen orangen mikrokristallinen Niederschlages wird mit einer Spritze 

entfernt. Die Kristalle werden im Hochvakuum getrocknet. Es werden 2.77 g (2.93 mmol, 

98 %) Triphenylmethylium closo-6,7,8,9,10,11-Hexabromopentahydroundecacarborat 

[Ph3C][CHB11H5Br6] als CH2Cl2-Solvat erhalten. Durch Lagerung einer gesättigten 

Lösung über Nacht bei 5 °C können Einkristalle erhalten werden 

 

C20H21B11Br6·CH2Cl2 (944.66 g/mol): 1H-NMR (25°C, C6D6, 300.13 MHz): δ = 0.6-1.9 

(m, 6H, BH/CH), 4.27 (s, CH2Cl2, 1J(1H-13C) = 178 Hz), 6.90 (dd, 6H, o-CH, 3J(1H-1H) = 

8.0 Hz, 4J(1H-1H) = 1.2 Hz), 7.10 (dd, 6H, m-CH, 3J(1H-1H) = 8.0 Hz, 3J(1H-1H) = 

7.5 Hz), 7.30 (dd, 3H, p-CH, 3J(1H-1H) = 7.5 Hz, 4J(1H-1H) = 1.2 Hz). 11B-NMR (25°C, 

C6D6, 96.29 MHz): δ = –19.7 (d, 5B, B2-6H, 1J(1H-11B) = 150 Hz), –9.00 (s, 5B, B7-11Br), 

–0.92 (s, 1B, B12Br). IR (ATR, 32 Scans, 25°C, cm–1): 3053 (w), 2601 (m), 1579 (s), 

1480 (m), 1447 (m), 1352 (s), 1292 (m), 1263 (m, δ(H-C-        )), 1183 (m), 1167 (m), 

1127 (m), 1099 (w), 1084 (w), 1027 (w), 993 (m), 978 (m), 950 (m), 932 (m), 915 (m), 

879 (w), 858 (m), 840 (m), 805 (m), 767 (m), 749 (w), 734 (m, ν(C-C       )), 698 (s), 

665 (w), 658 (w), 633 (m), 622 (m), 607 (m), 564 (w), 537 (w). 
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5.4.11 Synthese und Charakterisierung von (11·CH3CN) 
 

[Ph3C][CHB11H5Br6]
Toluol / CH3CN, Rt

[Ph3C][CHB11H5Br6] CH3CN + CH2Cl2CH2Cl2
A

 
 

4.91 g Triphenylmethylium closo-6,7,8,9,10,11-Hexabromoundecacarborat-

Dichloromethan-Solvat [Ph3C][CHB11H5Br6]·CH2Cl2 (5.20 mmol) werden in einer 

Lösung aus 10 mL Toluol und 40 ml Acetonitril gelöst. Es entsteht eine orange-rote 

Lösung. Das Lösungsmittel wird im Vakuum vollständig entfernt. Der Rückstand wird 

erneut in einer warmen Lösung aus 10 mL Toluol und 20 ml Acetonitril gelöst. 

Langsames Abkühlen der Lösung führt zur Bildung von orangen Kristallen. Der 

Überstand wird mit einer Spritze entfernt und die Kristalle werden im Hochvakuum bei 

getrocknet. Eine zweite Fraktion kann durch langsames Abkühlen des Überstandes auf 

−40 °C gewonnen werden. Es werden 3.81 g (4.23 mmol, 81 %) Triphenylmethylium 

closo-6,7,8,9,10,11-Hexabromopentahydroundecacarborat [Ph3C][CHB11H5Br6] als 

CH3CN-Solvat erhalten. 

 

C20H21B11Br6·CH3CN (900.78 g/mol): Smp. 239°C (Zer.). EA ber. (gef.), %: C, 29.33 

(29.65); H, 2.69 (2.62); N, 1.55 (1.49). IR (ATR, 32 Scans, 25°C, cm–1): 3047 (w), 2929 

(w), 2617 (w), 2599 (m), 2250 (w, ν(C-N     )), 1580 (s), 1481 (m), 1447 (m), 1353 (s), 

1292 (m), 1184 (m), 1169 (m), 1161 (m), 1124 (w), 1101 (w), 1085 (w), 1063 (w), 1026 

(w), 993 (m), 951 (m), 932 (m), 916 (m), 859 (m), 847 (m), 838 (m), 806 (m), 766 (m), 

749 (w), 718 (m), 700 (s), 689 (m), 659 (w), 632 (m), 622 (m), 607 (m), 563 (w), 537 (w). 

Raman (1064 nm, 33 mW, 500 Akk., 25°C, cm–1): 3068 (1), 3055 (1), 2929 (1), 2621 

(1), 2601 (1), 1596 (4), 1582 (10), 1509 (1), 1483 (2), 1357 (4), 1311 (1), 1297 (1), 1185 

(2), 1162 (1), 1025 (2), 996 (2), 954 (1), 917 (1), 848 (1), 790 (1), 774 (1), 750 (1), 711 

(1), 690 (1), 662 (1), 623 (2), 470 (1), 427 (1), 404 (2), 336 (1), 314 (1), 289 (2), 250 (1), 

233 (1), 201 (1), 146 (1). 
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5.4.12 Synthese und Charakterisierung von 11 
 

[Ph3C][CHB11H5Br6]   CH3CN [Ph3C][CHB11H5Br6]  +  CH3CN
a

pur,  
 

4.91 g fein gepulvertes Acetonitril-Solvat vom Triphenylmethylium closo-6,7,8,9,10,11-

Hexabromopentahydroundecacarborat [Ph3C][CHB11H5Br6]·CH3CN (5.2 mmol) werden 

langsam im Hochvakuum auf 120 °C für 12 h erhitzt. Dieser Vorgang führt zur 

quantitativen Bildung des orangen Triphenylmethylium closo-6,7,8,9,10,11-

Hexabromopentahydroundecacarborat [Ph3C][CHB11H5Br6]. 

 

C20H21B11Br6 (859.73 g/mol): Smp. 240°C (Zer). EA ber. (gef.), %: C, 27.94 (27.26); H, 

2.46 (2.30). 1H-NMR (25°C, CD2Cl2, 300.13 MHz): δ = 2.30 (q, 5H, BH, 1J(1H-11B) = 

165 Hz), 2.55 (s, 1H, CH), (CHaryl, nicht beobachtet). 11B-NMR (25°C, CD2Cl2, 

96.29 MHz): δ = –20.2 (d, 5B, B2-6H, 1J(1H-11B) = 165.4 Hz), –9.86 (s, 5B, B7-11Br), 

−1.70 (s, 1B, B12Br). 13C{1H}-NMR (25°C, CD2Cl2, 75.47 MHz): δ = 41.8 (s, CHAnion), 

131.3 (s, m-CH), 140.5 (s, ipso-CH), 143.4 (s, o-CH), 144.2 (s, p-CH), 211.3 (s, CPh3). 

IR (ATR, 32 Scans, 25°C, cm–1): 3045 (w), 2597 (m), 1580 (s), 1480 (m), 1447 (m), 

1353 (s), 1291 (s), 1184 (m), 1167 (m), 1125 (w), 1098 (w), 1083 (w), 1075 (w), 1025 

(w), 1002 (m), 994 (m), 978 (m), 950 (m), 932 (m), 914 (m), 879 (w), 857 (s), 838 (m), 

805 (m), 767 (s), 745 (m), 725 (w), 700 (s), 686 (m), 658 (w), 632 (m), 621 (s), 607 (s), 

562 (w), 535 (w). 
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5.4.14 Synthese und Charakterisierung von [Ph3C][OS(O)2CF3] (12). 
 

Ph3CCl + Ag[OS(O)2CF3]
CH2Cl2 Rt

[Ph3C][OS(O)2CF3] + AgCl
A

 
 

Zu einer gerührten Lösung von 775 mg Tritylchlorid Ph3CCl (2.78 mmol) in 10 mL 

CH2Cl2 werden 718 mg Silber Triflat Ag[OS(O)2CF3] (2.79 mmol) als Feststoff 

hinzugefügt. Dies führt zum sofortigen Ausfall eines Niederschlages und die Lösung 

verfärbt sich gelb. Die Reaktionslösung wird für weitere 30 Minuten gerührt. Nachdem 

der Niederschlag (G4) abfiltriert ist, wird das Lösungsmittel im Vakuum 

zurückkondensiert und der Niederschlag erneut gewaschen. Nach erneuter Filtration wird 

das Lösungsmittel bis auf ~4 mL entfernt. Um einige braune Verunreinigungen zu 

entfernen werden 15 ml n-Hexan zur Reaktionslösung hinzugefügt, sodass ein feiner 

mikrokristalliner Niederschlag ausfällt. Der Überstand wird mit einer Spritze 

abgenommen und der Rückstand getrocknet. Dieser Vorgang wird dreimal wiederholt, bis 

der Überstand nur noch schwach gelb ist. Der verbleibende Rückstand wird im 

Hochvakuum getrocknet. Es werden 883 mg (2.25 mmol, 81 %) tief gelbes 

mikrokristallines Triphenylmethylium Triflat [Ph3C][OS(O)2CF3] erhalten. Kristalle für 

die Einkristallstrukturanalytik können durch Lagerung einer gesättigten CH2Cl2-Lösung 

über Nacht bei −40 °C gewonnen werden.  

 

C20H15F3O3S (392.39 g/mol): Smp. 118°C (Zer.). EA ber. (gef.), %: C, 61.22 (61.14); H, 

3.85 (3.58). 1H-NMR (25°C, CD2Cl2, 300.13 MHz): δ = 7.70 (dd, 6H, o-CH, 3J(1H-1H) = 

8.33 Hz, 4J(1H-1H) = 1.3 Hz), 7.91 (tt, 6H, m-CH, 3J(1H-1H) = 7.91 Hz, 4J(1H-1H) = 

1.5 Hz), 8.29 (tt, 3H, p-CH, 3J(1H-1H) = 7.56 Hz, 4J(1H-1H) = 1.3 Hz). 13C{1H}-NMR 

(25°C, CD2Cl2, 75.47 MHz): δ = 121.32 (s, CF3, 1J(13C-19F) = 321.9 Hz), 131.12 (s, m-

CH, 1J(13C-13C) = 54.7 Hz), 140.49 (s, ipso-C, 1J(13C-13C) = 51.6 Hz), 143.33 (s, o-CH, 
1J(13C-13C) = 55.4 Hz), 143.99 (s, p-CH, 1J(13C-13C) = 54.4 Hz), 211.41 (s, CPh3). 
19F{1H}-NMR (25°C, CD2Cl2, 282.38 MHz): δ = –78.81 (s, 1J(19F-13C) = 321.9 Hz). IR 

(ATR, 8 Scans, 25°C, cm–1): 3064 (w), 3022 (w), 1619 (w), 1579 (s), 1481 (m), 1450 (m), 

1353 (s), 1292 (s), 1259 (s), 1220 (s), 1182 (s), 1153 (s), 1139 (s), 1025 (s), 995 (s), 975 

(m), 948 (m), 916 (m), 837 (m), 806 (m), 767 (s), 734 (m), 694 (s), 659 (m), 632 (s), 621 

(s), 607 (s), 570 (s). Raman (784 nm, 65 mW, 15 s, 4 Akk., 25°C, cm–1): 3133 (1), 3081 
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(1), 1597 (6), 1585 (10), 1485 (2), 1360 (5), 1187 (4), 1030 (3), 1001 (4), 919 (2), 624 

(4), 472 (3), 405 (5), 287 (6), 243 (3). MS (CI+, m/z (%)): 243 (100), 167 (100) [Ph2CH]+.  
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5.4.13 Synthese und Charakterisierung von Ph3COC(O)CF3 (13) 
 

Ph3CCl + Ag[OC(O)CF3]
CH2Cl2, Rt

Ph3COC(O)CF3 + AgCl
 

 

110 mg Silber Trifluoracetat (0.5 mmol) und 139 mg Tritylchlorid Ph3CCl (0.5 mmol) 

werden zusammen in 8 ml CH2Cl2 gelöst. Es bildet sich sofort ein farbloser Niederschlag 

und die Lösung verfärbt sich gelb. Die Reaktionslösung wird für weitere 5 Minuten 

gerührt. Nach anschließender Filtration (G4) wird das Lösungsmittel des klaren Filtrats 

bis auf ~2 mL und einsetzendend Kristallisation entfernt. Langsames Abkühlen einer 

heißen Lösung (60 °C) führt zur Bildung von Kristallen für die 

Einkristallstrukturanalytik. Der Überstand wird mit einer Spritze entfernt und die 

Kristalle solange mit n-Hexan gewaschen bis der Überstand farblos ist. Die Kristalle 

werden im Hochvakuum bei 60 °C getrocknet. Es werden 117 mg (0.33 mmol, 65 %) 

blass gelbes Triphenylmethyltrifluoracetat Ph3COC(O)CF3 erhalten. 

 

C21H15F3O2 (356.34 g/mol): Smp. 127°C. EA ber. (gef.), %: C, 70.78 (71.13); H, 4.24 

(4.28). 1H-NMR (25°C, CD2Cl2, 500.13 MHz): δ = 7.30-7.40 (m, 15H, o,m,p-CH) [s. 

S74[95]]. 13C{1H}-NMR (25°C, CD2Cl2, 125.77 MHz): δ = 95.47 (s, CPh3), 115.10 (q, 

CF3, 1J(13C-19F) = 287 Hz), 129.2 (s, CH), 131.2 (s, CH), 128.8 (s, CH), (partielle 

Überlagerung der Signale von o-, m- und p-CH) 141.8 (s, ipso-C), 155.37 (q, C(O)CF3, 
2J(13C-19F) = 42 Hz). 19F{1H}-NMR (25°C, CD2Cl2, 282.38 MHz): δ = –75.93 (s, CF3, 
1J(19F-13C) = 287 Hz, 2J(19F-13C) = 42 Hz). IR (ATR, 16 Scans, 25°C, cm–1): 3540 (w), 

3465 (w), 3062 (w), 3035 (w), 1963 (w), 1820 (w), 1780 (m), 1739 (w), 1596 (w), 1583 

(w), 1544 (w), 1490 (m), 1444 (m), 1388 (w), 1359 (m), 1328 (w), 1295 (w), 1220 (m), 

1211 (m), 1187 (m), 1139 (s), 1083 (m), 1031 (m), 1010 (m), 1002 (m), 956 (m), 943 (w), 

931 (m), 918 (m), 902 (m), 885 (m), 838 (m), 754 (s), 738 (m), 696 (s), 632 (s), 617 (m), 

584 (m), 555 (m), 530 (m). Raman (632 nm, 12 mW, 5 s, 10 Akk., 25°C, cm–1): 3063 

(2), 1599 (1), 1582 (1), 1189 (1), 1153 (2), 1034 (4), 1000 (10), 956 (3), 849 (1), 723 (2), 

702 (2), 658 (1), 618 (2), 495 (2), 278 (1), 266 (1), 249 (1), 211 (1), 189 (1). MS (CI+, 

m/z (%)): 243 (100) [Ph3C]+, 165 (13) [Ph2C – H]+. 
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5.4.15 Synthese und Charakterisierung von Ph3CN3 (14) 
 

Ph3CCl + NaN3
CH3CN, Rückfluß
Toluol

Ph3CN3 + NaCl

 
 

265 mg Natrium Azid NaN3 (4.08 mmol) und 982 mg Tritylchlorid Ph3CCl (3.52 mmol) 

werden zusammen in 20 mL Acetonitril vorgelegt. Die Suspension wird für 12 h unter 

Rückfluß erhitzt. Die Ursprünglich farblose Suspension verfärbt sich blass gelb. Nach der 

Filtration (G4) wird der Rückstand nochmal mit 20 mL Toluol extrahiert. Die vereinigten 

Lösungsmittelphasen werden im Vakuum auf ein Minimum eingeengt und anschließend 

mit 5 mL n-Hexan überschichtet. Die Lagerung der Reaktionslösung im Kühlschrank bei 

5 °C für 3 Tage führt zur Bildung von Einkristallen. Der Überstand wird mit einer Spritze 

entnommen und erneut mit 2 mL n-Hexan überschichtet und im Kühlschrank zur 

Kristallisation gebracht. Der erneute Überstand wird mit einer Spritze entfernt und die 

vereinigten kristallinen Phasen werden im Hochvakuum getrocknet. Es werden 764 mg 

(2.75 mmol, 78 %) Triphenylmethylazid Ph3CN3 erhalten. 

 

C19H15N3 (285.34 g/mol): Smp. 65°C. EA ber. (gef.), %: C, 79.98 (79.80); H, 5.30 (5.22); 

N, 14.73 (14.58). 1H-NMR (25°C, CD3CN, 300.13 MHz): δ = 7.27-7.45 (m, 15H, o,m,p-

CH). 13C{1H}-NMR (25°C, CD3CN, 75.47 MHz): δ = 78.2 (s, CPh3), 128.9 (s, p-CH), 

129.2 (s, m-CH), 129.4 (s, o-CH), 144.0 (s, ipso-C). 14N{1H}-NMR (25°C, DMSO-D6, 

36.14 MHz): δ = –135 (Nβ,  ν1/2 = 100 Hz), –163 (Nγ,  ν1/2 = 460 Hz) . IR (ATR, 32 

Scans, 25°C, cm–1): 3332 (w), 3085 (w), 3062 (w), 3033 (w), 3022 (w), 2811 (w), 2645 

(w), 2491 (w), 2105 (m), 2092 (s), 1594 (w), 1581 (w), 1552 (w), 1486 (m), 1444 (m), 

1394 (w), 1342 (w), 1326 (w), 1313 (w), 1286 (w), 1253 (m), 12313 (m), 1199 (m), 1184 

(m), 1166 (m), 1151 (m), 1114 (w), 1081 (w), 1031 (m), 1000 (m), 975 (w), 948 (w), 941 

(m), 916 (w), 896 (m), 842 (w), 769 (m), 761 (m), 752 (s), 717 (m), 696 (s), 667 (s), 628 

(s), 617 (m), 557 (m). Raman (784 nm, 65 mW, 20 s, 5 Akk., 25°C, cm–1): 3066 (1), 

1599 (1), 1583 (1), 1445 (1), 1185 (1), 1168 (1), 1155 (1), 1080 (1), 1024 (2), 1000 (10), 

937 (1), 893 (1), 842 (1), 759 (1), 717 (1), 702 (4), 666 (1), 637 (1), 616 (2), 589 (1), 453 

(1), 404 (1), 277 (2), 234 (2). MS (CI+, m/z (%)): 285 (8) [Ph3CN3]+ 243 (100) [Ph3C]+, 

180 (20) [Ph2CN]+. 
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5.4.16 Synthese und Charakterisierung von (Me3SiO)2SO2 (19) 
 

Me3SiCl + H2SO4 (Me3SiO)2SO2 + 2 HCl
pur, Rückfluß  

 

Zu einer gerührten Lösung Trimethylsilylchlorid Me3SiCl (32.5 g, 0.3 mol) wird 

tropfenweise konzentrierte Schwefelsäure H2SO4 (95 %, 14 g) über einen Zeitraum von 

15 Minuten gegeben. Der entstehende Chlorwasserstoff HCl wird durch ein 

Natriumhydroxid-Bad NaOH geleitet und neutralisiert. Zu Beginn der Reaktion kühlt das 

leicht trübe Reaktionsgemisch zunächst ab. Nach erfolgter vollständiger Zugabe klärt sich 

die Reaktionslösung allerdings wieder auf. Nach einer weiteren Stunde rühren bei 

Raumtemperatur wird keine weitere HCl-Entwicklung mehr wahrgenommen. Die 

Reaktionslösung wird im dynamischen Vakuum bei 110 °C destilliert. Es wird 10.4 g, 

0.05 mol, 33 %) farbloses Bis(trimethylsilyl)sulfat (Me3SiO)2SO2 erhalten. Kristalle für 

die Einkristallstrukturanalyse können über Nacht im Kühlschrank bei 5 °C aus einer 

gesättigten n-Pentan-Lösung erhalten werden. 

 

C6H18O4SSi3 (214.36 g/mol): Smp. 48 °C. EA ber. (gef.), %: C, 33.62 (33.72); H, 8.46 

(8.26); S, 14.96 (15.31). 1H-NMR (25 °C, Toluol-[D8], 300.13 MHz): δ = 0.18 (s, SiCH3, 
1J(1H-13C) = 120.7 Hz, 2J(1H-29Si) = 7.1 Hz). 1H-NMR (25 °C, C6D6, 300.13 MHz): δ = 

0.18 (s, SiCH3, 1J(1H-13C) = 120.5 Hz, 2J(1H-29Si) = 7.0 Hz). 1H-NMR (25 °C, DMSO-

[D6], 300.13 MHz): δ = 0.25 (s, SiCH3, 1J(1H-13C) = 120.1 Hz, 2J(1H-29Si) = 7.0 Hz). 1H-

NMR (25 °C, CD2Cl2, 300.13 MHz): δ = 0.35 (s, SiCH3, 1J(1H-13C) = 120.5 Hz, 2J(1H-
29Si) = 6.7 Hz). 1H-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D8], 300.13 MHz): δ = 0.22 

(s, SiCH3, 1J(1H-13C) = 120.7 Hz), 6.85 (m, m-H[1,2-DCB]), 7.11 (m, o-H[1,2-DCB]). 13C{1H}-

NMR (25 °C, Toluol-[D8], 75.48 MHz): δ = –0.36 (s, SiCH3, 1J(13C-29Si) = 60.2 Hz). 
13C{1H} NMR (25 °C, C6D6, 75.48 MHz): δ = –0.30 (s, SiCH3). 13C{1H}-NMR (25 °C, 

DMSO-[D6], 75.48 MHz): δ = 0.31 (s, SiCH3, 1J(13C-29Si) = 59.3 Hz). 13C{1H}-NMR 

(25 °C, CD2Cl2, 75.48 MHz): δ = 0.16 (s, SiCH3, 1J(13C-29Si) = 60.0 Hz). 13C{1H}-NMR 

(25 °C, 1,2-DCB, ext. ref. Toluol-[D8], 75.48 MHz): δ = –0.31 (s, SiCH3, 1J(13C-29Si) = 

60.1 Hz), 127.86 (m-CH[1,2-DCB]), 130.53 (o-CH[1,2-DCB]), 132.49 (ipso-CCl[1,2-DCB]). 17O-

NMR (25 °C, Toluol-[D8], 67.83 MHz): δ = 152.61 (b, 2O, OSiMe3,  ν1/2 = 180 Hz), 

174.49 (b, 2O, OS,  ν1/2 = 75 Hz). 29Si INEPT-NMR (25 °C, Toluol-[D8], 59.52 MHz) δ 
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= 31.84 (dec, SiCH3, 2J(29Si-1H) = 7.1 Hz). 29Si INEPT-NMR (25 °C, C6D6, 59.52 MHz) 

δ = 31.93 (dec, SiCH3, 2J(29Si-1H) = 7.0 Hz). 29Si INEPT-NMR (25 °C, DMSO-[D6], 

59.52 MHz) δ = 28.51 (dec, SiCH3, 2J(29Si-1H) = 7.0 Hz). 29Si INEPT-NMR (25 °C, 

CD2Cl2, 59.52 MHz) δ = 33.58 (dec, SiCH3, 2J(29Si-1H) = 6.7 Hz). 29Si INEPT-NMR 

(25 °C, 1,2-DCB, 59.52 MHz) δ = 32.55 (dec, SiCH3, 2J(29Si-1H) = 7.2 Hz). IR (ATR, 

8 Scans, 25 °C, cm–1): 2968 (w), 2908 (w), 1465 (w), 1415 (w), 1351 (m), 1257 (m), 1187 

(m), 1054 (w), 948 (s), 817 (s), 763 (s), 700 (m), 619 (m), 578 (m), 559 (m). Raman 

(473 nm, 6 mW, 30 s, 10 Akk., 25 °C, cm–1, 300 s Photobleach): 2978 (6), 2908 (10), 

1420 (1), 1388 (1), 1350 (1), 1255 (1), 1185 (2), 980 (1), 857 (1), 770 (1), 705 (1), 664 

(1), 614 (6), 531 (1), 364 (1), 252 (1), 233 (1), 195 (2). MS (CI+, m/z (%)): 243 (8) 

[(Me3SiO)2SO2 + H]+, 229 (20) [Me3Si-SO4-SiMe2H + H]+, 171 (100) [Me3Si-SO3H2]+, 

123 (77) [HSiSO3]+, 99 (77) [H3SO4]+, 91 (17) [Me3SiOH2]+, 79 (14) [MeSO2]+, 69 (17) 

[(CH2)3Si]+, 61 (23) [MeSiOH2]+. 
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5.4.17 Synthese und Charakterisierung von [Me3SiOPMe3][(Me3SiO)SO3] (20) 
 

OPMe3 (Me3SiO)2SO2 [Me3SiOPMe3][Me3SiOSO3]
a

+
Toluol  

 

Trimethylphosphinoxid OPMe3 (36 mg, 0.4 mmol) und Bis(trimethylsilyl)sulfat 

(Me3SiO)2SO2 (96 mg, 0.4 mmol) werden gemeinsam in 3 mL Toluol suspendiert. 

Leichtes Erwärmen der Suspension führt zur Bildung einer klaren, farblosen Lösung. Aus 

dieser Lösung können über Nacht im Kühlschrank bei 5 °C Einkristalle erhalten werden. 

Der Überstand wird mit einer Spritze abgenommen und das Produkt für 0.5 h bei 40 °C 

im Vakuum getrocknet. Es entstehen 103 mg (0.31 mmol, 77 %) farbloses 

Trimethylsiloxytrimethylphosphonium Trimethylsilylsulfat.  

 

C9H27O5PSSi2 (334.52 g/mol): Smp. 120 °C. EA ber. (gef.), %: C, 32.31 (31.89); H, 8.14 

(8.06); S, 9.59 (9.33). 1H-NMR (25 °C, CD2Cl2, 300.13 MHz): δ = 0.05 (s, SiCH3, 1J(1H-
13C) = 119 Hz, 2J(1H-29Si) = 6.8 Hz), 0.33 (s, SiCH3, 1J(1H-13C) = 120 Hz, 2J(1H-29Si) = 

7 Hz), 1.86 (d, PCH3, 1J(1H-13C) = 130 Hz, 2J(1H-31P) = 13.6 Hz). 1H-NMR (25 °C, 

CD2Cl2, 500.13 MHz): δ = 0.06 (s, SiCH3, 1J(1H-13C) = 118 Hz, 2J(1H-29Si) = 6.7 Hz), 

0.36 (s, SiCH3, 1J(1H-13C) = 121 Hz, 2J(1H-29Si) = 7 Hz), 1.66 (d, PCH3, 1J(1H-13C) = 

129 Hz, 2J(1H-31P) = 13.2 Hz). 1H-NMR (−   °C, CD2Cl2, 500.13 MHz): δ = 0.03 (s, 

SiCH3, 1J(1H-13C) = 118 Hz, 2J(1H-29Si) = 6.6 Hz), 0.30 (s, SiCH3, 1J(1H-13C) = 120 Hz, 
2J(1H-29Si) = 6.6 Hz), 1.85 (d, PCH3, 1J(1H-13C) = 130 Hz, 2J(1H-31P) = 13.5 Hz). 
13C{1H}-NMR (25 °C, CD2Cl2, 75.47 MHz): δ = 0.63 (s, SiCH3, 1J(13C-29Si) = 60.1 Hz), 

16.65 (d, PCH3, 1J(13C-31P) = 69.1 Hz). 29Si INEPT-NMR (25 °C, CD2Cl2, 59.63 MHz): 

δ = 28.01 (nicht aufgelöstes Signal). 31P-NMR (25 °C, CD2Cl2, 121.49 MHz) δ = 63.82 

(s, PCH3). 17O-NMR (25 °C, CD2Cl2, 67.83 MHz): 169 (br,  ν 1/2 = 900 Hz). IR (ATR, 

16 Scans, 25 °C, cm–1): 3004 (w), 2923 (w), 1421 (w), 1317 (w), 1299 (m), 1243 (m), 

1139 (m), 1054 (m), 1002 (s), 958 (s), 914 (m), 867 (s), 769 (m), 671 (m), 640 (w), 617 

(m), 599 (m), 586 (m), 570 (s). Raman (473 nm, 5 mW, 10 s, 30 Akk., 25 °C, cm–1): 

2981 (5), 2911 (10), 1419 (1), 1255 (1), 1053 (3), 857 (1), 776 (1), 702 (2), 642 (1), 619 

(2), 523 (1), 376 (1), 266 (1), 246 (1), 195 (1). MS (CI+, m/z (%)): 93 (100) [Me3POH]+, 

165 (1) [M]+.   
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5.4.18 Synthese und Charakterisierung von [(Me3SiO)3SO][B(C6F5)4] (21) 
 

[(Me3Si)2H][B(C6F5)4] + (Me3SiO)2SO2 [(Me3SiO)3SO][B(C6F5)4] + Me3SiH
a

Toluol / Toluol-[D8]  

 

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat 

[(Me3Si)2H][B(C6F5)4] (246 mg, 0.3 mmol) wird in 5 mL Toluol suspendiert. Die Lösung 

wird dreimal entgast. Bis(trimethylsilyl)sulfat (Me3SiO)2SO2 (73 mg, 0.3 mmol) wird in 

5 mL gelöst. Die Lösung wird über eine Spritze zur Borat-Lösung hinzugegeben. Die 

Reaktionslösung wird kurz auf 60 °C erwärmt, was zur Bildung des typischen 

zweiphasigen Systems führt. Die klare und farblose obere Toluol-Phase wird mit einer 

Spritze entfernt. Die viskose und ebenfalls farblose untere Phase wird in ein NMR-Rohr 

mit Toluol-[D8] überführt.* 

 

Verschiedene Kristallisationsversuche von [(Me3SiO)3SO)][B(C6F5)4] schlugen bei 

unterschiedlich gewählten Temperaturen (5 °C bzw. -20 °C) fehl. Auch die Zugabe 

unpolarer Lösungsmittel wie n-Hexan führte nicht zur Bildung eines festen Salzes. 

Versuche das komplette Lösungsmittel aus der unteren Phase zu entfernen schlugen 

ebenso fehl. Das Erwärmen der unteren Phase auf 60 °C im Vakuum führte zur 

Zersetzung des Produktes. Dies zeigte sich an der Bildung eines schwarzen unlöslichen 

Rückstandes.  

 

1H-NMR (25 °C, Toluol-[D8], 300.13 MHz): δ = 0.08 (s, SiCH3, 1J(1H-13C) = 121.8 Hz, 
2J(1H-29Si) = 6.7 Hz). 11B-NMR (25 °C, Toluol-[D8], 96.29 MHz): δ = –16.16 (b, 

B(C6F5)4   ν1/2 = 20 Hz). 13C{1H}-NMR (25 °C, Toluol-[D8], 75.48 MHz): δ = –1.10 (s, 

SiCH3, 1J(13C-29Si) = 59.9 Hz), ipso-C (nicht beobachtetes Signal), 137.12 (dm, m-CF, 
1J(13C-19F) = 246 Hz), 138.79 (dm, p-CF, 1J(13C-19F) = 246 Hz), 149.25 (dm, o-CF, 
1J(13C-19F) = 241 Hz). 19F{1H}-NMR (25 °C, Toluol-[D8], 282.38 MHz): δ = –166.95 (t, 

6F, m-CF, 1J(19F-13C) = 245 Hz, –163.18 (t, 3F, p-CF, 1J(19F-13C) = 246 Hz), –131.88 (b, 

6F, o-CF, 1J(19F-13C) = 242 Hz). 17O-NMR (25 °C, Toluol-[D8], 67.83 MHz): δ = 157.99 
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(b, OSiMe3   ν1/2 = 900 Hz). 29Si INEPT-NMR (25 °C, Toluol-[D8], 59.52 MHz) δ = 

55.10 (dec, SiCH3, 2J(29Si-1H) = 6.7 Hz). 
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[(Me3Si)2H][B(C6F5)4] + (Me3SiO)2SO2 [(Me3SiO)3SO][B(C6F5)4] + Me3SiH
a

1,2-DCB ext. Toluol-[D8]  

 

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat 

[(Me3Si)2H][B(C6F5)4] (83 mg, 0.1 mmol) und Bis(trimethylsilyl)sulfat (Me3SiO)2SO2 

(23 mg, 0.1 mmol) werden in 0.5 mL 1,2-DCB* in einem Young-Hahn-NMR-Rohr 

suspendiert. Es wird ein weiteres kleineres NMR-Präzisionsrohr mit Toluol-[D8] in das 

größere eingeführt. 

 

*Die Bildung einer klareren bzw. homogeneren Lösung durch Erwärmen der Lösung auf 

60 °C führt zur unweigerlichen Zersetzung des Produktes. Dies kann erneut an der 

Bildung eines schwarzen Niederschlages erkannt werden.  

 

1H-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D8], 300.13 MHz): δ   − . 6 (   − .   (b  

 ν 1/2 = 7 Hz), 0.18 (s, S(SiCH3)2, 1J(1H-13C) = 119.8 Hz), 6.73 (m, o-CH[1,2-DCB]), 7.04 

(m, o-CH[1,2-DCB]). 11B-NMR (25 °C, 1,2-DCB, 96.29 MHz): δ = –16.14 (b, B(C6F5)4, 

 ν 1/2 = 22 Hz). 13C{1H}-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D8], 75.48 MHz): δ = 

− .7  (b   ν1/2 = 6 Hz), –0.71 (s, S(SiCH3)2, 1J(13C-29Si) = 60.4 Hz), –0.01 (s), 118.28 (b, 

ipso-CF), 127.77 (s, m-CH[1,2-DCB]), 130.54 (s, o-CH[1,2-DCB]), 132.62 (s, ipso-CCl[1,2-DCB]), 

136.54 (dm, m-CF, 1J(13C-19F) = 246 Hz), 138.65 (dm, p-CF, 1J(13C-19F) = 245 Hz), 

148.93 (dm, o-CF, 1J(13C-19F) = 241 Hz). 17O-NMR (25 °C, 1,2-DCB, 67.83 MHz): δ = 

158.52 (b, OSiMe3). 19F{1H}-NMR (25 °C, 1,2-DCB, 282.38 MHz): δ = –166.45 (t, 6F, 

m-CF, 1J(19F-13C) = 247  z   −16 .67 (t   F  p-CF, 1J(19F-13C) = 246 Hz), –131.70 (b, 6F, 

o-CF, 1J(19F-13C) = 243 Hz). 29Si INEPT-NMR (25 °C, 1,2-DCB, 59.52 MHz) δ = 48.28 

(dec, SiCH3, 2J(29Si-1H) = 6.9 Hz). 
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5.4.19 Synthese und Charakterisierung von [Me3SiOPMe3]2[S2O7] (22) 
 

2 OPMe3 2 (Me3SiO)2SO2 [Me3SiOPMe3]2[S2O7] + (Me3Si)2O
a

+
Toluol  

 

C12H36O9P2S2Si2 (506.66 g/mol): Smp. 70 °C, >180 °C (dec.). EA ber. (gef.), %: C, 28.45 

(26.40); H, 7.16 (7.03); S, 12.66 (12.92). 1H NMR (25 °C, CD2Cl2, 300.13 MHz): δ = 

0.05 (s, SiCH3, 1J(1H-13C) = 119 Hz, 2J(1H-29Si) = 6.9 Hz), 1.46 (d, PCH3, 1J(1H-13C) = 

128 Hz, 2J(1H-31P) = 13.3 Hz). 13C{1H} NMR (25 °C, CD2Cl2, 75.47 MHz): δ = 0.31 (s, 

SiCH3), 16.36 (d, PCH3, 1J(13C-31P) = 69 Hz). 29Si INEPT NMR (25 °C, CD2Cl2, 59.63 

MHz): δ = 22.54 (unresolved). 31P NMR (25 °C, CD2Cl2, 121.49 MHz) δ = 54.64 (s, 

PCH3). IR (ATR, 16 Scans, 25 °C, cm−1): 2998 (w), 2958 (w), 2917 (w), 1429 (w), 1342 

(w), 1317 (m), 1301 (m), 1240 (s), 1135 (m), 1101 (m), 1056 (m), 1031 (m), 1002 (s), 

960 (s), 914 (m), 842 (s), 761 (s), 748 (s), 727 (s), 671 (m), 640 (m), 621 (m), 599 (m), 

586 (m), 565 (s). Raman (473 nm, 5 mW, 10 s, 30 Akk., 25 °C, cm–1): 2997 (5), 2963 

(3), 2920 (10), 1408 (1), 1077 (3), 775 (1), 726 (1), 701 (2), 671 (1), 639 (1), 622 (1), 512 

(1), 309 (1), 245 (1), 219 (1), 200 (1). 
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5.4.20 Synthese und Charakterisierung von (Me3Si)2S (21) 
 

S8 S(Si(CH3)3)2
a

1) Li
2) (CH3)3SiCl

THF, 0°C  
 

Fein gemörserter Schwefel S8 (2 g, 62 mmol) werden in 40 mL THF suspendiert und auf 

0 °C herunter gekühlt. Ebenso fein gepulvertes Lithium Li (0.9 g, 125 mmol) wird zu 

dieser Suspension hinzugefügt. Der Kolben wird mit einem Rückflußkühler mit 

Druckausgleichsventil und Tropftrichter versehen. Trimethylsilylchlorid Me3SiCl (13.6 g, 

125 mmol) wird tropfenweise, in einem Temperaturbereich zwischen 0 °C und 5 °C, über 

einen Zeitraum von 2.5 h, zur gerührten Suspension hinzugegeben. Die Reaktionslösung 

verfärbt sich währenddessen rötlich braun. Anschließend wird das THF durch thermische 

Destillation entfernt. Das Rohprodukt wird durch fraktionierte Destillation im Vakuum 

(47 mbar) bei einer Temperatur von 74 °C erhalten. Es werden 9.2 g (52 mmol, 83 %) 

farbloses Hexamethyldisilathian (Me3Si)2S erhalten. 

 

C6H18SSi2 (178.44 g/mol): Sp. 74 °C (47 mbar). 1H-NMR (25 °C, CD2Cl2, 300.13 MHz): 

δ = 0.34 (s, 18H, SiCH3, 2J(1H-29Si) = 6.8 Hz, 1J(1H-13C) = 120.6 Hz). 1H-NMR (25 °C, 

1,2-DCB, ext. ref. Aceton-[D6], 300.13 MHz): δ = 0.37 (s, SiCH3, 1J(1H-13C) = 120 Hz). 
1H-NMR (25 °C, THF-[D8], 300.13 MHz): δ = 0.32 (s, SiCH3, 1J(1H-29Si) = 6.9 Hz, 
1J(1H-13C) = 120 Hz). 13C{1H}-NMR (25 °C, CD2Cl2, 75.47 MHz): δ = 4.46 (s, SiCH3, 
1J(13C-29Si) = 54 Hz). 13C{1H}-NMR (25 °C, THF-[D8], 75.47 MHz): δ = 4.44 (s, SiCH3, 
1J(13C-29Si) = 54 Hz). 29Si INEPT-NMR (25 °C, CD2Cl2, 59.62 MHz): δ = 14.61 (dec, 

SiCH3, 2J(29Si-1H) = 6.9 Hz). 29Si INEPT-NMR (25 °C, THF-[D8], 59.62 MHz): δ = 

14.03 (dec, SiCH3, 1J(1H-29Si) = 6.9 Hz) IR (ATR, 8 Scans, 25 °C, cm–1): 2956 (w), 2898 

(w), 1448 (w), 1403 (w), 1321 (w), 1247 (s), 1062 (w), 925 (w), 835 (s), 815 (s), 752 (m), 

690 (m), 624 (s). Raman (632 nm, 12 mW, 20 s, 10 Akk., 25 °C, cm–1): 2960 (3), 2899 

(8), 1448 (1), 1411 (1), 1263 (1), 1250 (1), 863 (1), 844 (1), 754 (1), 693 (1), 638 (9), 487 

(1), 438 (10), 240 (2), 220 (2), 181 (3), 164 (2). 
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5.4.21 Synthese und Charakterisierung von [K@18-Krone-6][SSiMe3] (24) 
 

K[OCMe3] S(SiMe3)2 [K   18-Krone-6][SSiMe3] + Me3SiOCMe3

a
++ 18-Krone-6

THF  
 

18-Krone-6 (100 mg, 0.4 mmol) und Kalium tert-Butanolat K[OCMe3] (42 mg, 0.4 

mmol) werden in 5 mL THF gelöst. Zur klaren Reaktionslösung wird 

Hexamethyldisilathian (Me3Si)2S (68 mg, 0.4 mmol) mithilfe einer µL-Spritze gegeben. 

Das Lösungsmittel wird soweit eingeengt, bis die Kristallisation einsetzt. Einkristalle für 

die Röntgenstrukturanalyse können aus einer warmen Lösung welche in einem 

Wasserbad langsam abkühlt erhalten werden. Die Kristalle werden dreimal mit jeweils 

einer kleinen Menge n-Pentan gewaschen. Die isolierten Kristalle werden im 

Hochvakuum bei 50 °C getrocknet. Es werden 130 mg (0.32 mmol, 80 %) farblose 

Kristalle von [K@18- r one−6 [SS  e3] erhalten.  

 

C15H33KO6SSi (408.67 g/mol): Smp. 215 °C. EA ber. (gef.), %: C, 44.08 (43.48); H, 8.14 

(7.53); S, 7.85 (7.43). 1H-NMR (25°C, [D8]-THF, 300.13 MHz): δ = 0.02 (s, 9H, SiCH3, 
1J(1H-13C) = 116.4 Hz, 2J(1H-29Si) = 6.4 Hz), 3.65 (s, 24H, CH2

[18-Krone-6], 1J(1H-13C) = 

141.2 Hz). 13C{1H}-NMR (25°C, THF-[D8], 75.47 MHz): δ = 9.39 (s, SiCH3), 71.01 (s, 

CH2
[18-Krone-6]). 29Si INEPT-NMR (25°C, THF-[D8], 59.63 MHz): δ = –0.86 (dec, SiCH3). 

IR (ATR, 16 Scans, 25°C, cm–1): 2937 (w), 2894 (w), 2871 (w), 2823 (w), 1631 (w), 

1475 (w), 1457 (w), 1436 (w), 1365 (w), 1348 (m), 1303 (w), 1282 (w), 1236 (m), 1228 

(m), 1137 (m), 1097 (s), 983 (w), 962 (s), 873 (w), 837 (m), 815 (s), 738 (m), 661 (m), 

640 (s), 590 (w), 528 (m). Raman (473 nm, 5 mW, 20 s, 10 Akk., 25°C, cm–1): 2960 (9), 

2943 (9), 2900 (9), 2877 (10), 2809 (2), 2722 (1), 1472 (3), 1449 (1), 1408 (1), 1364 (1), 

1270 (3), 1234 (2), 1134 (1), 1108 (1), 1079 (2), 1029 (1), 912 (3), 870 (3), 829 (2), 806 

(1), 746 (1), 659 (1), 642 (1), 548 (1), 508 (7), 363 (1), 306 (1), 278 (1), 242 (1), 197 (2). 

ESI+ (Mber., (Mgef.)): 302.12045 (303.12059) [K@18- r one−6 +. ESI− (Mber., (Mgef.)): 

105.01997 (105.02049) [Me3SiS]−.  
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5.4.22 Synthese und Charakterisierung von [(Me3SiO)3SO][B(C6F5)4] (25) 
 

[(Me3Si)2H][B(C6F5)4] S(SiMe3)2 [(Me3Si)3S][B(C6F5)4] + Me3SiH+

-80°C        Rt
Toluol

 

 

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat 

[(Me3Si)2H][B(C6F5)4] (659 mg, 0.8 mmol) wird in 0.6 mL Toluol suspendiert. Die 

Lösung wird dreimal entgast. Hexamethyldisilathian (Me3Si)2S (142 mg, 0.8 mmol) wird 

bei einer Temperatur von −80 °C zu dieser Suspension hinzugegeben. Nachdem die 

Lösung auf Raumtemperatur erwärmt wurde, entsteht das typische zweiphasige System, 

welches im Vakuum eingeengt wird. Kristalle für die Einkristallstrukturanalyse können 

aus dieser Lösung über Nacht gewonnen werden. Der Überstand wird mittels Spritze 

entfernt und die farblosen Kristalle werden mit ein Wenig kaltem Toluol gewaschen. 

Anschließend wird das Produkt im Vakuum bei 50 °C getrocknet. Es werden 340 mg 

(0.37 mmol, 46 %) von Tris(trimethylsilyl)sulfonium Tetrakis(pentafluorophenyl)borat 

[(Me3Si)3S][B(C6F5)4] erhalten. 

 

C33H27BF20SSi3 (930.67 g/mol): Smp. 158 °C (dec.). EA ber. (gef.), %: C, 42.59 (42.24); 

H, 2.92 (2.18). 1H-NMR (25 °C, 1,2-DCB, ext. ref. Aceton-[D6], 300.13 MHz): δ   −1.   

(s, 27H, SiCH3, 2J(1H-29Si) = 6.5, 1J(1H-13C) = 123 Hz), 5.52 (m, 2H, o-CH), 5.78 (m, 2H, 

m-CH). 1H NMR (25 °C, Toluol, ext. ref. CD2Cl2, 300.13 MHz): δ = 0.01 (s, 27H, 

SiCH3, 1J(1H-13C) = 123.1 Hz), 1.97 (s, 3H, CH3, 1J(1H-13C) = 126.3 Hz), 6.73-6.93 (m, 

5H, CH-Ph). 11B-NMR (25 °C, 1,2-DCB, 96.29 Hz): δ   −17.57 (s, B(C6F5)4   v1/2 = 

23 Hz). 11B-NMR (25 °C, Toluol, 96.29 Hz): δ   −16.41 (   B(C6F5)4   v1/2 = 25 Hz). 
13C{1H}-NMR (25 °C, 1,2-DCB, ext. ref. Aceton-[D6], 75.47 MHz): δ = –2.09 (s, 

SiCH3), 124.16 (b, ipso-CF), 127.09 (s, m-CH), 129.82 (s, o-CH), 131.88 (s, ipso-CCl), 

135.88 (dm, m-CF, 1J(13C-19F) = 245 Hz), 137.84 (dm, p-CF, 1J(13C-19F) = 245 Hz), 

148.18 (dm, o-CF, 1J(13C-19F) = 258 Hz). 13C{1H}-NMR (25 °C, Toluol, ext. ref. CD2Cl2, 

75.47 MHz): δ = 2.02 (s, SiCH3, 1J(13C-29Si) = 58 Hz), 20.99 (s, CH3), 125.13 (b, ipso-

CF), 125.53 (s, p-CH), 128.48 (s, m-CH), 129.29 (s, o-CH), 136.85 (dm, m-CF, 1J(13C-
19F) = 247 Hz), 138.01 (s, ipso-CH), 138.53 (dm, p-CF, 1J(13C-19F) = 245 Hz), 148.97 

(dm, o-CF, 1J(13C-19F) = 241 Hz). 19F{1H}-NMR (25 °C, 1,2-DCB, 282.38 MHz): δ = 
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−167.38 (t, m-CF, 1J(19F-13C     45  z    −16 .6  (t  p-CF, 1J(19F-13C) = 245 Hz), 

−132.99 (d, o-CF, 1J(19F-13C) = 258 Hz). 19F{1H}-NMR (25 °C, Toluol, 282.38 MHz): δ 

  −167. 7 (t  m-CF, 1J(19F-13C     45   z    −16 . 5 (t  p-CF, 1J(19F-13C) = 246 Hz), 

−132.08 (d, o-CF, 1J(19F-13C) = 245 Hz). 29Si-INEPT NMR (25 °C, 1,2-DCB, 

59.63 MHz): δ = 38.14 (dec, SiCH3, 2J(29Si-1H) = 6.5 Hz). 29Si{1H}-NMR (25 °C, Toluol, 

59.63 MHz): δ = 39.29 (s, SiCH3). Raman (764 nm, 33 mW, 80 s, 3 Akk., 7200 s 

Photobleach, 25 °C, cm–1): 2972 (1), 2912 (2), 1644 (1), 1417 (1), 1375 (1), 1269 (1), 821 

(2), 768 (1), 756 (1), 698 (1), 683 (1), 634 (7), 583 (10), 575 (2), 490 (5), 473 (4), 447 (5), 

421 (4), 393 (4), 356 (2), 283 (1), 275 (1), 245 (2), 240 (2). MS (CI+, m/z (%)): 73 (1) 

[Me3Si]+, 91 (3) [Me3SiF – H]+, 149 (16) [Me3SiSSiMe]+, 163 (100) [Me3SiSSiMe2]+, 

221 (7) [(Me3Si)2SSiMe]+, 237 (15) [(Me3Si)2SSiMe2]+, 512 (10) [B(C6F5)3]+. MS (ESI−, 

ber.. m/z, (gef. m/z)): [B(C6F5)4]− 678.97791 (678.98935).  
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5.4.23 Synthese und Charakterisierung von H-NSO (26)  
 

Sulfinylimid H-NSO wird wie in Kapitel 3.5 (S. ff. 37) beschrieben hergestellt. In ein 

Young-Hahn-NMR-Rohr wird zunächst Toluol-[D8] vorgelegt und entgast. Das bei der 

Synthese entstehende Sulfinylimid-G   w rd d rekt be  −1 6  °C in ein Young-Hahn-

NMR-Rohr kondensiert.  

 

HNOS (63.08 g/mol): 1H-NMR (–70 °C, Toluol-[D8], 500.13 MHz): δ    .54 ( ν1/2 = 

13 Hz) 1H-NMR (25 °C, Toluol-[D8], 500.13 MHz): δ = 9.86 (t, 1J(1H-14N) = 65 Hz). 
14N{1H}-NMR (–70 °C, Toluol-[D8], 36.13 MHz): δ = –7 .  ( ν1/2 = 130 Hz). 14N{1H}-

NMR (25 °C, Toluol-[D8], 36.14 MHz): δ = –7 .  (  ν1/2 = 390 Hz).  
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5.4.24 Synthese und Charakterisierung von K[NSO] (27) 
 

K[OCMe3] + Me3SiNSO
THF, Rückfluß

K[NSO] Me3SiOCMe3+
 

 

Zu einer gerührten Lösung von 1.5 g Kalium tert-Butanolat K[OCMe3] in 20 mL THF 

werden über einen Zeitraum von 15 Minuten 1.81 g N-Trimethylsilylsulfinylimin 

Me3SiNSO (13.4 mmol, ~1.8 mL) hinzu getropft. Die Lösung wird für 2 h unter Rückfluß 

erhitzt. Nachdem die Reaktionslösung über Nacht gerührt wird die gelbe Lösung 

abfiltriert. Der verbleibende Niederschlag wird zweimal mit 5 mL THF gewaschen. Der 

Rückstand wird im Vakuum bei 60 °C getrocknet. Es werden 313 mg beiges 

mikrokristallines Kalium Thiazat (3.1 mmol, 23 %) erhalten.  

 

KNOS (101.17 g/mol): Smp. 197 °C. EA ber. (gef.), %: N, 13.84 (13.23); S, 31.69 

(32.49). 1H-NMR (25 °C, Toluol-[D8], 300.13 MHz): δ = 3.47 (br, CH2
[18-Krone-6],  ν1/2 = 

28 Hz). 1H-NMR (25 °C, THF-[D8], 500.13 MHz): δ = 3.58 (b, CH2
[18-Krone-6], 

(Überlappung mit dem Lösungsmittelsignal). 13C{1H} NMR (25 °C, Toluol-[D8], 

75.47 MHz): δ = 71.1 (s, CH2
[18-Krone-6]). 13C{1H} NMR (25 °C, THF-[D8], 125.77 MHz): 

δ = 71.3 (s, CH2
[18-Krone-6]).14N{1H}-NMR (25 °C, THF-[D8], 36.13 MHz): δ = 140 (br, 

 ν1/2 = 1050 Hz). 17O-NMR (25 °C, Toluol-[D8], 67.83 MHz): δ = 1.49 (b, OCH2
[18-Krone-

6],  ν1/2 = 1150 Hz), (NSO nicht beobachtet). IR (ATR, 8 Scans, 25 °C, cm–1): 1268 (m), 

983 (s). Raman (632 nm, 3 mW, 15 s, 10 Akk., 25 °C, cm–1, 180 s Photobleach): 1267 

(7), 986 (10), 513 (3).  

 

In einem weiteren NMR-Experiment werden äquimolare Mengen an Kalium Thiazat 

K[NSO], Tris(pentafluorophenyl)boran B(C6F5)3 und 18-Krone-6 zusammen in eine 

Toluol-[D8]-Lösung eingewogen. 

 

1H-NMR (25 °C, Toluol-[D8], 300.13 MHz): δ = 3.11 (s, 16H, CH2
[18-Krone-6], 1J(1H-13C) = 

140 Hz). 11B-NMR (25 °C, Toluol-[D8], 96.29 MHz): δ = –10.2 (br, X-B(C6F5)3   ν1/2 = 
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80 Hz). 13C{1H}-NMR (25 °C, Toluol-[D8], 75.47 MHz): δ = 70.1 (s, CH2
[18-Krone-6]), 

123.7 (br, ipso-C[X-B(C
6

F
5

)
3
]), 137.3 (dm, m-CF[X-B(C

6
F

5
)
3
], 1J(13C-19F) = 247 Hz), 139.0 

(dm, p-CF[X-B(C
6

F
5

)
3
], 1J(13C-19F) = 246 Hz), 149.0 (dm, o-CF[X-B(C

6
F

5
)
3

], 1J(13C-19F) = 244 

Hz). 19F{1H}-NMR (25 °C, Toluol-[D8], 282.38 MHz): δ = –166.5 (m, 6F, m-CF[X-

B(C
6

F
5

)
3

]), –162.2 (t, 3F, p-CF[X-B(C
6

F
5

)
3
]), –132.6 (d, 6F, o-CF[X-B(C

6
F

5
)
3
]).  

 

Das Tris(pentafluorophenyl)boran B(C6F5)3 wird vermutlich über den Stickstoff des 

Thiazat-Ions koordinieren (s. Supporting Referenz [181,182]).  
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5.4.25 Synthese und Charakterisierung von (F5C6)3BN(H)SO (28) 
 

K[NSO] + CH3(CH2)16COOH HNSO
pur,

HNSO + B(C6F5)3
CH2Cl2,

K[OOC(CH2)16CH3]

-196°C       Rt

+

NSO

H

(F5C6)3B

 
 
205 mg Tris(pentafluorophenyl)boran B(C6F5)3 (0.4 mmol) werden in 10 mL CH2Cl2 

gelöst und anschließend entgast. In einem zweiten Reaktionskolben werden 43 mg 

Kalium Thiazat K[NSO] (0.4 mmol) und 115 mg, Stearinsäure CH3(CH2)16COOH (0.4 

mmol) zusammen vorgelegt. Beide Reaktionsgefäße werden über eine Brücke verbunden 

und unter Hochvakuum gesetzt. Das Gemenge K[NSO] / CH3(CH2)16COOH wird 

langsam in einem Ölbad auf 70 °C erhitzt. Insofern die Temperatur erreicht ist wird das 

rot-braune zähflüssige Gemisch bis auf 120 C erhitzt und für eine halbe Stunde bei dieser 

Temperatur gehalten. Das entstehende Gas wird kontinuierlich im zweiten 

Reaktionskolben mit dem Boran bei −196 °C ausgefroren. Die gelbliche Reaktionslösung 

wird langsam auf Raumtemperatur gebracht und für eine weitere Stunde gerührt. Nach 

der Filtration der Reaktionslösung wird das Lösungsmittel des Filtrats bis auf ~1 mL im 

Vakuum entfernt. Über Nacht können aus dieser Lösung Kristalle für die 

Einkristallstrukturanalyse im Kühlschrank (5 °C) gewonnen werden. Durch selektive 

Sortierung der Kristalle können so 35 mg N,N-Tris(pentafluorophenyl)borat 

Sulfinylamin-Addukt (F5C6)3BN(H)SO (0.06 mmol, 15%) erhalten werden. 

 

C18HBF15NOS (575.06 g/mol). Smp. 111 °C (Zer.) 1H-NMR (30 °C, Toluol-[D8], 

500.13 MHz): δ = 10.44 (b), 10.57 (b, partielle Überlappung beider Signale). 1H-NMR 

(−30 °C, Toluol-[D8], 500.13 MHz): δ    .   (b   ν1/2 = 30  z   1 . 1  (br   ν1/2 = 

25 Hz). 11B-NMR (30 °C, Toluol-[D8], 96.29 MHz)*: δ = 56.9 (b, B(C6F5)3   ν1/2 = 

1500 Hz), −10.1 (b, XB(C6F5)3   ν1/2 = 120 Hz). 13C{1H}-NMR (30 °C, Toluol-[D8], 

75.47 MHz): δ = 115.1 (br, ipso-C6F5), 137.7 (dm, m-CF, 1J(13C-19F) = 250 Hz), 141.1 

(dm, p-CF, 1J(13C-19F) = 250 Hz), 148.3 (dm, o-CF, 1J(13C-19F) = 240 Hz). 19F{1H}-NMR 

(30 °C, Toluol-[D8], 282.38 MHz): δ   −16 .  (br  6F  m-CF, B(C6F5)3,  ν 1/2 = 85 Hz), 

−143.1 (b, 3F, p-CF, B(C6F5)3   ν1/2    65  z    −1  .  (m  6F  o-CF, B(C6F5)3   ν1/2 = 

115 Hz). 1H,15N HMBC-NMR (−30 °C, Toluol-[D8], 50.69 MHz) δ = –95.1 (br, 1J(15N-
1     75  z    −1 6.  (b  1J(15N-1H) = 70 Hz). Raman (785 nm, 65 mW, 30 s, 100 Akk., 
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25 °C, cm–1): 3407-3201 (1), 1653 (1), 1382 (1), 1362 (1), 1309 (1), 1236 (1), 982 (1), 

892 (1), 855 (1), 807 (10), 772 (2), 746 (7), 637 (1), 584 (1), 575 (1), 536 (1), 498 (1), 

467 (1), 446 (1), 393 (1), 355 (2), 335 (5), 307 (7), 262 (1), 209 (1).  

 

* Für Gasphasen-NMR-Berechnungen siehe Supporting Referenz [181,182]. 
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5.4.26 Synthese und Charakterisierung von Me3SiNSO (29) 
 

.
.

CH2Cl2, Rt.
Me3SiNSON(SiMe3)3 + SOCl2 + 2 Me3SiCl

 

 

37.21 g Tris(trimethylsilyl)amin (Me3Si)3N (0.16 mol) werden in 40 mL CH2Cl2 gelöst. 

Zu dieser gerührten Lösung werden tropfenweise 20 g Sulfinychlorid SOCl2 (0.17 mmol) 

hinzugefügt. Die Reaktionslösung erwärmt sich dabei ein Wenig. Die orange Lösung 

wird über Nacht nachegrührt. Anschließend wird mithilfe einer Vigreux-Kolonne (12 cm) 

fraktioniert destilliert. Das Rohprodukt hat dabei einen Siedepunkt von 95 °C. Dieses 

wird ein weiteres Mal bei 105-107 °C destilliert. Anschließend wird noch zwei weitere 

Mal das Rohprodukt im Vakuum bei -50 °C umkondensiert. Es werden 14.25 g farbloses 

(0.11 mol, 66 %) N-Trimethylsilylsulfinylimin Me3SiNSO erhalten. 

 

C3H9NOSSi (135.26 g/mol): Smp. erstarrt nicht oberhalb von –80 °C. Sp. 105-107 °C. 

EA ber. (gef.), %: C, 26.64 (26.58); H, 6.71 (6.72); N, 10.36 (10.25). 1H-NMR (25 °C, 

CD2Cl2, 300.13 MHz): δ = 0.35 (s, 9H, SiCH3, 1J(1H-13C) = 120 Hz, 2J(1H-29Si) = 7.1 

Hz). 1H-NMR (25 °C, Toluol-[D8], 300.13 MHz): δ = 0.13 (s, 9H, SiCH3, 1J(1H-13C) = 

120 Hz, 2J(1H-29Si) = 7.1 Hz). 1H-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D8], 300.13 

MHz): δ = 0.16 (s, 9H, SiCH3, 1J(1H-13C) = 119 Hz), 6.80 (m, m-CH[1,2-DCB]), 7.09 (m, o-

CH[1,2-DCB]). 13C{1H}-NMR (25 °C, CD2Cl2, 75.47 MHz): δ = 1.0 (s, SiCH3, 1J(13C-29Si) 

= 58 Hz). 13C{1H}-NMR (25 °C, Toluol-[D8], 75.47 MHz): δ = 0.4 (s, SiCH3, 1J(13C-29Si) 

= 58 Hz). 13C{1H}-NMR (25 °C, 1,2-DCB, ext. ref. Toluol-[D8], 75.47 MHz): δ = 0.5 (s, 

SiCH3, 1J(13C-29Si) = 58 Hz), 127.8 (s, m-CH[1,2DCB]), 130.5 (s, o-CH[1,2-DCB]), 132.6 (s, 

ipso-CCl[1,2-DCB]). 14N{1H}-NMR (25 °C, CD2Cl2, 36.13 MHz): δ = –44 ( ν1/2 = 60 Hz). 
17O-NMR (25 °C, Toluol-[D8], 67.83 MHz): δ = 476 ( ν1/2 = 40 Hz). 29Si INEPT-NMR 

(25 °C, CD2Cl2, 59.62 MHz): δ = 7.2 (dec, SiCH3, 2J(29Si-1H) = 7.1 Hz). 29Si INEPT-

NMR (25 °C, Toluol-[D8], 59.62 MHz): δ = 5.9 (dec, SiCH3, 2J(29Si-1H) = 7.1 Hz). 29Si 

INEPT-NMR (25 °C, 1,2-DCB, ref. ext. Toluol-[D8], 59.62 MHz): δ = 6.2 (dec, SiCH3, 
2J(29Si-1H) = 7.0 Hz). IR (ATR, 8 Scans, 25 °C, cm–1): 3145 (w), 3052 (w), 2964 (w), 

2902 (w), 1411 (w), 1290 (s), 1251 (s), 1124 (m), 838 (s), 761 (s), 700 (w), 642 (m), 568 
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(m). Raman (785 nm, 65 mW, 60 s, 6 Akk., 25 °C, cm–1): 2971 (1), 2908 (6), 2790 (1), 

1421 (1), 1304 (1), 1267 (1), 1132 (10), 856 (1), 769 (1), 708 (1), 650 (5), 621 (1), 581 

(2), 518 (1), 500 (1), 366 (1), 239 (2), 195 (3), 158 (2), 100 (5), 96 (5), 83 (6). MS (CI+, 

m/z (%)): 63 (37) [HNSO]+, 69 (100), 73 (5) [SiMe3]+, 91 (35) [HSiNSO]+, 135 (11) 

[Me3SiNSO]+, 136 (13) [Me3SiNSO-H]+. 
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5.4.27 Synthese und Charakterisierung von Me3SiOSNB(C6F5)3 (30) 
 

Me3SiNSO + B(C6F5)3 OSN
CH2Cl2, Rt

Me3Si

B(C6F5)3

 

 

Zu einer gerührten Lösung aus 102 mg Tris(pentafluorophenyl)boran B(C6F5)3 

(0.2 mmol) in 2 mL CH2Cl2 werden 27 mg N-Trimethylsilylsulfinylimin Me3SiNSO 

(0.2 mmol, ~27 µL) mithilfe einer µL-Spritze gegeben. Dies führt zu einer sofortigen 

Farbveränderung der Reaktionslösung zu gelb. Über Nacht können aus dieser Lösung 

Kristalle für die Einkristallstrukturanalyse im Kühlschrank (5 °C) gewonnen werden. Der 

Überstand wird mit einer Spritze entnommen und die Kristalle werden mit ein wenig 

kaltem n-Hexan gewaschen. Die Kristalle werden im Hochvakuum bei 40 °C getrocknet. 

Es werden 35 mg farbloses (0.05 mmol, 79 %) N-Tris(pentafluorophenyl)borat-

Sulfinylimin-O-Trimethylsilylether Me3SiOSNB(C6F5)3 erhalten. 

 

C21H9BF15NOSSi (647.24 g/mol): Smp. 131 °C (Zer.). EA ber. (gef.), %: C, 38.97 

(38.98); H, 1.40 (1.47); N, 2.16 (2.22). 1H-NMR (25 °C, Toluol-[D8], 300.13 MHz): δ = 

–0.31 (s, 9H, CH3, 1J(1H-13C) = 121.3 Hz, 2J(1H-29Si) = 6.9 Hz. 11B-NMR (25 °C, Toluol-

[D8], 96.29 MHz): δ = –6.5 (b, NB(C6F5)3   ν1/2 = 180 Hz). 13C{1H}-NMR (25 °C, 

Toluol-[D8], 75.47 MHz): δ   − .5 (    S CH3, 1J(13C-29Si) = 59 Hz). 117.9 (br, ipso-

C6F5), 137.7 (dm, m-CF, 1J(13C-19F) = 245 Hz), 140.7 (dm, p-CF, 1J(13C-19F) = 231 Hz), 

148.6 (dm, o-CF, 1J(13C-19F) = 245 Hz). 19F{1H}-NMR (25 °C, Toluol-[D8], 

282.38 MHz): δ = –163.7 (m, 6F, m-CF, 1J(19F-13C) = 245 Hz, 3J(19F-19F) = 23 Hz), 

−157.0 (t, 3F, p-CF, 1J(19F-13C) = 245 Hz, 3J(19F-19F) = 23 Hz), –133.0 (d, 6F, o-CF, 
1J(19F-13C) = 241 Hz, 3J(19F-19F) = 23 Hz). 29Si INEPT-NMR (25 °C, Toluol-[D8], 

59.62 MHz): δ = 42.2 (dec, SiCH3, 2J(29Si-1H) = 6.9 Hz). IR (ATR, 8 Scans, 25 °C, 

cm−1)*: 3367 (w), 3292 (w), 2960 (w), 2914 (w), 1646 (m), 1602 (w), 1517 (s), 1456 (s), 

1394 (m), 1376 (m), 1338 (m), 1284 (m), 1263 (m), 1101 (s), 1022 (m), 966 (s), 919 (m), 

891 (m), 848 (s), 823 (m), 784 (m), 771(m), 738 (m), 730 (m), 682 (m), 655 (m), 619 (m), 

611 (m), 576 (m). Raman (632 nm, 6 mW, 20 s, 10 Akk., 25 °C, cm–1): 2979 (1), 2970 

(1), 2910 (3), 2538 (1), 1645 (3), 1518 (1), 1472 (1), 1415 (1), 1386 (4), 1376 (2), 1369 

(2), 1338 (5), 1306 (1), 1285 (2), 1100 (1), 1090 (1), 979 (1), 957 (3), 938 (6), 929 (4), 
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875 (1), 864 (1), 825 (2), 790 (1), 769 (1), 764 (1), 746 (1), 735 (1), 727 (1), 700 (1), 675 

(2), 646 (2), 630 (1), 621 (2), 607 (1), 596 (4), 580 (10), 574 (4), 490 (9), 484 (5), 445 (5), 

426 (7), 392 (6), 377 (1), 366 (1), 354 (1), 344 (1), 338 (1), 215 (1), 283 (1), 275 (1), 262 

(2), 235 (1), 227 (1), 200 (1), 178 (1), 154 (3), 141 (1), 128 (1), 122 (1). MS (CI+, m/z 

(%)): 136 (1) [Me3SiNSOH]+, 512 (100) [B(C6F5)3]+, 647 (1) [Me3Si-OSN-B(C6F5)3]+. 

 

* Rasch einsetzende Hydrolyse während des Messens. Ebenso sorgen längeres 

Stehenlassen bei Rautemperatur und Luftfeuchtigkeit für eine schnelle Zersetzung von 

30. 
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5.4.28 Synthese und Charakterisierung von Cl3GaN(H)SO (32) 
 

KNSO + CH3(CH2)16COOH HNSO
pur,

HNSO + GaCl3 NSO
Toluol, -196°C       Rt

+  K[OOC(CH2)16CH3]

H

GaCl3

 

 

70 mg Gallium(III)chlorid GaCl3 (0.4 mmol) werden in 10 mL CH2Cl2 gelöst und 

anschließend entgast. In einem zweiten Reaktionskolben werden 80 mg Kalium Thiazat 

K[NSO] (0.8 mmol) und 228 mg, Stearinsäure CH3(CH2)16COOH (0.8 mmol) zusammen 

vorgelegt. Beide Reaktionsgefäße werden über eine Brücke verbunden und unter 

Hochvakuum gesetzt. Das Gemenge K[NSO] / CH3(CH2)16COOH wird langsam in einem 

Ölbad auf 70 °C erhitzt. Insofern die Temperatur erreicht ist wird das rot-braune 

zähflüssige Gemisch bis auf 120 C erhitzt und für eine halbe Stunde bei dieser 

Temperatur gehalten. Das entstehende Gas wird kontinuierlich im zweiten 

Re kt on ko ben m t dem Bor n be  −1 6  °C ausgefroren. Nach der Filtration der 

Reaktionslösung wird das Lösungsmittel des Filtrats bis auf ~2 mL im Vakuum entfernt. 

Der Versuch Kristalle für die Einkristallstrukturanalyse zu gewinnen scheiterte. Auch ein 

zweiter Reaktionsansatz mit dem Wechsel des Lösungsmittels auf Toluol brachte kein 

Erfolg. Das Lösungsmittel wird im Hochvakuum entfernt und das mikrokristalline 

Rohprodukt für weite 15 Minuten getrocknet. Ein NMR-Spektrum von dem Rohprodukt 

wird angefertigt. 

 

HCl3GaNOS (239.16 g/mol): 1H-NMR (25°C, Toluol-[D8], 300.13 MHz): δ = 8.32 (b, 

 ν1/2 = 50 Hz). 14N{1H}-NMR (25 °C, Toluol-[D8], 36.13 MHz): δ = –11 .  ( ν1/2 = 

330 Hz).  
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5.4.29 Synthese und Charakterisierung von Me3SiN(GaCl3)SO (31) 
 

Me3SiNSO + GaCl3 NSO
CH2Cl2, -80°C

Me3Si

Cl3Ga

 

 

Zu einer kalten (−80 °C) gerührten Lösung aus 53 mg Gallium(III)chlorid GaCl3 

(0.3 mmol) in 4 mL CH2Cl2 werden 41 mg N-Trimethylsilylsulfinylimin Me3SiNSO 

(0.3 mmol) gegeben. Die Reaktionslösung wird für weitere 30 Minuten bei dieser 

Temperatur gerührt und anschließend wird das Lösungsmittel im Vakuum bis auf ~2 mL 

entfernt. Über Nacht können aus dieser Lösung Kristalle für die Einkristallstrukturanalyse 

im Tiefkühlschrank (−80 °C) gewonnen werden. Der Überstand wird mit einer Spritze 

entnommen und die Kristalle werden mit ein wenig kaltem n-Hexan gewaschen. Es 

werden 43 mg farbloses N,N-(Trimethylsilyl-Trichlorogallat-Sulfinylamin 

Me3SiN(GaCl3)SO (0.14 mmol, 23 %) erhalten. Das Produkt sollte unter Argon bei einer 

Temper tur von wen ger     −4  °C gelagert werden. 

 

C3H9Cl3GaNOSSi (311.34 g/mol): Smp. 50 °C (Zer.). EA ber. (gef.)*, %: C, 11.57 

(9.40); H, 2.91 (2.45), N 4.50 (4.45), S 10.30 (7.11). 1H-NMR (25 °C, CD2Cl2, 

300.13 MHz): δ = 0.59 (s, 9H, CH3, 1J(1H-13C) = 122 Hz, 2J(1H-29Si) = 7.1 Hz). 13C{1H}-

NMR (25 °C, CD2Cl2, 75.47 MHz): δ = 0.7 (s, CH3, 1J(13C-29Si) = 58.5 Hz). 14N{1H}-

NMR (25 °C, CD2Cl2, 36.13 MHz): δ = –  .  ( ν1/2 = 356 Hz). 29Si-INEPT (25 °C, 

CD2Cl2, 59.62 MHz): δ = 26.0 (NSiCH3). IR (ATR, 8 Scans, 25 °C, cm–1)*: 3238 (m), 

2958 (w), 2904 (w), 1606 (w), 1409 (s), 1328 (m), 1257 (m), 1241 (s), 1145 (w), 1058 

(m), 950 (m), 904 (m), 838 (s), 767 (s), 721 (s), 632 (m), 570 (m). Raman (473 nm, 

3 mW, 20 s, 10 Akk., 600 s Photobleach, 25 °C, cm−1): 2991 (3), 2967 (4), 2906 (7), 1418 

(1), 1255 (1), 1240 (2), 1055 (10), 862 (1), 773 (1), 718 (1), 633 (4), 436 (1), 393 (3), 353 

(9), 255 (3), 230 (3), 187 (4), 162 (4). MS (CI+, m/z (%)): 91 (46) [Me3SiOH2]+, 163 

(100) [(Me3Si)2OH]+, 237 (17) [NSO·GaCl3]+, 267 (14) [Me3SiOH2·GaCl3]+, 311 (3) 

[Me3Si(Cl3Ga)NSO]+. 
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* Für Me3SiN(GaCl3)SO berechnet. Trotz größter Sorgfalt und einem schnellen 

Messprozess werden die die Proben rasch durch einsetzende Hydrolyseprozesse zersetzt. 

Ebenso sorgen längeres Stehenlassen bei Rautemperatur und der Einfluß von 

Luftfeuchtigkeit für eine schnelle Zersetzung von 31. 
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5.4.30 Synthese und Charakterisierung von (Me3SiO)3PO (33) 
 

KH2PO4 + 3 Me3SiCl (Me3SiO)3PO + KCl + 2 HCl
n-Hexan, Rückfluß  

 

* In einem 250 ml Dreihalskolben mit Tropftrichter, Rückflußkühler und 

Druckausgleichsventil werden 9 g (66 mmol) Kalium Dihydrogenphosphat KH2PO4 in 

100 mL n-Hexan suspendiert. Zur gerührten Reaktionslösung werden 43 g (396 mmol) 

Trimethylsilylchlorid Me3SiCl innerhalb einer halben Stunde hinzu getropft. Die 

Reaktionslösung wird 9 h unter Rückfluß erhitzt. Entstehender Chlorwasserstoff wird 

durch eine NaOH-Lösung hindurch geleitet und neutralisiert. Die Reaktionslösung wird 

filtriert und das Lösungsmittel thermisch abdestilliert. Anschließend wird das Rohprodukt 

im Hochvakuum bei 70 °C noch einmal umkondensiert. Es entstehen 19.9 g (63 mmol, 

96 %) einer farblosen Flüssigkeit Tris(trimethylsilyl)phosphat (Me3SiO)3PO. 

 

*Nach einer optimierten Synthesevorschrift von [195]. 

 

C9H27O4PSi3 (314.54 g/mol): 1H-NMR (25 °C, CD2Cl2, 300.13 MHz): δ = 0.20 (s, 1J(1H-
13C) = 119 Hz, 2J(1H-29Si) = 7.0 Hz). 1H-NMR (25 °C, DMSO-[D6], 300.13 MHz): δ = 

0.22 (s, 1J(1H-13C) = 119 Hz, 2J(1H-29Si) = 7.3 Hz). 13C{1H}-NMR (25 °C, CD2Cl2, 

75.47 MHz): δ = 0.93 (d, 1J(13C-29Si) = 60.4 Hz, 2J(13C-31P) = 1.5 Hz). 13C{1H}-NMR 

(25 °C, DMSO-[D6], 75.47 MHz): δ = 0.24 (d, 1J(13C-29Si) = 60.2 Hz). 17O-NMR (25 °C, 

CD2Cl2, 67.80 MHz): δ = 83.1 (POSi,  ν1/2 = 315 Hz), 105.32 (d, PO, 1J(17O-31P) = 150 

Hz,  ν1/2 = 100 Hz). 29Si INEPT-NMR (25 °C, CD2Cl2, 59.63 MHz): δ = 20.39 (m). 
29Si INEPT-NMR (25 °C, DMSO-[D6], 59.63 MHz): δ = 20.40 (m). 31P{1H}-NMR 

(25 °C, CD2Cl2, 121.51 MHz): δ = −25.81 (s). 31P{1H}-NMR (25 °C, DMSO-[D6], 

121.51 MHz): δ = −25.78 (s). IR (ATR, 8 Scans, 25 °C, cm–1): 2962 (w), 2902 (w), 1457 

(w), 1419 (w), 1276 (m), 1249 (s), 1004 (s), 835 (s), 757 (s), 696 (m)m 607 (m). Raman 

(633 nm, 5 mW, 10 s, 20 Akk., 25 °C, cm−1): 3115 (1), 2967 (3), 2904 (10), 2493 (1), 

1416 (1), 1279 (1), 1255 (1), 1075 (1), 850 (1), 762 (1), 697 (1), 652 (2), 615 (4), 592 (2), 

452 (1), 349 (1), 259 (1), 245 (1), 216 (1), 186 (2), 170 (2).  
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5.4.31 Synthese und Charakterisierung von [(Me3SiO)4P][B(C6F5)4] (34) 
 

[(Me3Si)2H][B(C6F5)4] + (Me3SiO)3PO [(Me3SiO)4P][B(C6F5)4] + Me3SiH
Toluol  

 

Trimethylsilylium-Trimethylsilan Tetrakis(pentafluorophenyl)borat 

[(Me3Si)2H][B(C6F5)4] (180 mg, 0.22 mmol) wird in 4 mL Toluol suspendiert. Die 

Lösung wird dreimal entgast. 69 mg Tristrimethylsilylphosphat OP(OSiMe3)3 

(0.22 mmol) werden zur gerührten Suspension mithilfe einer µL-Spritze gegeben. Die 

Lösung wird eine Stunde in ein Ultraschallbad gegeben, um eine klare Lösung zu 

erhalten. Einkristalle für die Röntgenstrukturanalyse können über Nacht durch Lagern der 

Lösung bei −20 °C gewonnen werden. Der Überstand wird mit einer Spritze entfernt und 

die farblosen Kristalle mit kaltem n-Pentan bei −40 °C gewaschen. Anschließend wird 

das Produkt bei −20 °C im Hochvakuum getrocknet. Es werden 185 mg (0.17 mmol, 

83 %) Tetrakis(trimethylsiloxy)phosphonium Tetrakis(pentafluorophenyl)borat 

[(Me3SiO)4P][B(C6F5)4]* erhalten. 

 

* [(Me3SiO)4P][B(C6F5)4] sollte bei Temperaturen unterhalb von −40 °C unter einer 

Schutzgasatmosphäre gelagert werden, andernfalls setzt eine rasche Zersetzung der 

Probe ein. 
 

C36H36BF20O4PSi (1066.76 g/mol): Smp. <76°C (Zer.). EA ber. (gef.), %: C, 40.53 

(40.47); H, 3.40 (3.58). 1H-NMR (25°C, CD2Cl2, 300.13 MHz): δ = 0.41 (s, SiCH3, 
1J(1H-13C) = 120.5 Hz, 2J(1H-29Si) = 6.9 Hz). 11B-NMR (25°C, CD2Cl2, 96.29 MHz): δ = 

−16.56 (s). 13C{1H}-NMR (25°C, CD2Cl2, 75.47 MHz): δ = 0.77 (d, SiCH3, 1J(13C-29Si) = 

60.8 Hz, 3J(13C-31P) = 1.7 Hz), (ipso-CF nicht beobachte), 136.81 (dm, m-CF, 1J(13C-19F) 

= 246 Hz), 138.59 (dm, p-CF, 1J(13C-19F) = 243 Hz), 148.74 (dm, o-CF, 1J(13C-19F) = 

238 Hz). 17O-NMR (25°C, CD2Cl2, 67.80 MHz): δ   7 .4 (b   ν1/2 = 160 Hz). 19F{1H}-

NMR (25°C, CD2Cl2, 282.40 MHz): δ   −167.65 (m, m-CF, 1J(19F-13C) = 246 Hz), 

−163.84 (t, p-CF, 1J(19F-13C) = 245 Hz), –133.08 (s, o-CF, 1J(19F-13C) = 241 Hz). 29Si 

INEPT-NMR (25°C, CD2Cl2, 59.63 MHz): δ = 35.61 (ddec, POSiCH3, 2J(29Si-1H) = 

6.9 Hz, 1J(29Si-31P) = 1.6 Hz). 31P{1H}-NMR (25°C, CD2Cl2, 121.49 MHz): δ = 35.92 (s). 
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IR (ATR, 8 Scans, 25°C, cm–1)*: 3668 (νH2O), 2969 (w), 2910 (w), 1643 (m, νC−CToluol), 

1598 (w), 1556 (w), 1511 (m), 1459 (s), 1415 (w), 1382 (w), 1375 (w), 1367 (w), 1261 

(m), 1116 (s), 1081 (s), 1029 (w), 975 (s), 908 (w), 852 (s), 827 (s), 765 (s), 756 (s), 725 

(m), 707 (m), 682 (m), 659 (m), 609 (m), 603 (m), 572 (m). Raman (743 nm, 43 mW, 

60 s, 10 Akk., 25°C, cm–1): 2973 (1), 2907 (1), 1643 (1), νC−CToluol), 1418 (1), 1377 (1), 

1263 (1), 1100 (1), 859 (1), 820 (2), 767 (1), 700 (1), 642 (1), 583 (10), 575 (2), 492 (6), 

475 (6), 448 (7), 423 (6), 390 (4), 357 (2), 345 (1), 277 (1), 243 (3), 159 (5). ESI+ m/z 

ber. (gef.)): 387.14283 (387.144) [(Me3SiO4)4P]+. ESI− (m/z ber. (gef.)): 678.97737 

(678.9831) [B(C6F5)4]−. 

 

* Es setzt eine rasche Hydrolyse ein. Längeres stehenlassen der Probe bei 

Raumtemperatur und unter Luft(Feuchtigkeit) führt zur Zersetzung von 34. 
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5.4.32 Synthese und Charakterisierung von [K@18-Krone-6][O2(POSiMe5)2] (35) 
 

18-Krone-6 + K[OCMe3] + (Me3SiO)3PO [K@18-Krone-5][O2P(OSiMe3)2] + Me3SiOCMe3

a

DME  
 

Zu einer klaren gelben Lösung aus Kalium tert-Butanolat K[OC(CH3)3] (0.52 g, 

4.63 mmol) und 1,4,7,10,13,16-Hexaoxa-cyclo-octadecan (18-Krone-6, 1.2 g, 4.63 mmol) 

in 20 mL DME werden 1.46 g Tris(trimethylsilyl)phosphat (4.63 mmol) mittels einer 

Spritze gegeben. Die Lösung entfärbt sich sofort. Nachdem die Reaktionslösung für 

weitere 10 Minuten rührt, wird sie filtriert (G4). Die Hälfte des Lösungsmittels wird im 

Vakuum entfernt. Einkristalle für die Röntgenstrukturanalyse können über Nacht durch 

Lagern der Lösung be  −   °C gewonnen werden. Der Überstand wird mit einer Spritze 

entfernt und die farblosen Kristalle mit n-Pentan gewaschen. Anschließend werden die 

Kristalle für 15 Minuten im Hochvakuum bei 60 °C getrocknet. Es werden 2.1 g, 

farbloses [K@18-Krone-6][O2(POSiMe5)2] (3.9 mmol, 85 %) erhalten. 

 

C18H42KO10PSi2 (544.76 g/mol): Smp. 121 °C (Zer). EA ber. (gef.), %: C, 39.69 (38.98); 

H, 7.77 (7.47). 1H-NMR (25 °C, CD2Cl2, 300.13 MHz): δ = 0.16 (s, 18H, SiCH3, 1J(1H-
13C) = 116.2 Hz, 2J(1H-29Si) = 6.8 Hz), 3.62 (s, 24H, OCH2, 1J(1H-13C) = 141.4 Hz). 
13C{1H}-NMR (25 °C, CD2Cl2, 75.47 MHz): δ = 1.40 (s, SiCH3, 1J(13C-29Si) = 60 Hz), 

70.6 (s, OCH2). 17O NMR (25 °C, CD2Cl2, 67.83 MHz): δ = nicht beobachtet. 29Si 

INEPT-NMR (25 °C, CD2Cl2, 59.62 MHz): δ = 10.28 (nicht aufgelöstes Signal). 
31P{1H}-NMR (25 °C, CD2Cl2, 121.51 MHz): δ   −1 . 1 (   PO(Si)). IR (ATR, 

16 Scans, 25 °C, cm–1): 2954 (w), 2885 (m), 2829 (w), 1471 (w), 1454 (w), 1417 (w), 

1349 (m), 1284 (w), 1243 (m), 1218 (m), 1103 (s), 1089 (s), 1010 (m), 962 (s), 939 (s), 

865 (m), 835 (s), 756 (m), 686 (m), 599 (m), 532 (m). Raman (632 nm, 10 mW, 10 s, 

20 Akk., 25 °C, cm–1): 2961 (5), 2899 (10), 2846 (4), 2809 (2), 2732 (1), 2702 (1), 1477 

(2), 1457 (1), 1412 (1), 1365 (1), 1289 (1), 1273 (2), 1246 (1), 1149 (2), 1141 (2), 1112 

(1), 1094 (4), 1072 (1), 952 (1), 873 (5), 832 (2), 812 (1), 758 (1), 692 (1), 669 (1), 616 

(9), 598 (3), 548 (1), 380 (1), 364 (1), 326 (1), 281 (3), 253 (1). 202 (1). MS (ESI−, m/z 

ber. (gef.)): 241.04867 (241.04905). (ESI+, m/z ber. (gef.)): 303.12045 (303.1197).  
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5.4.33 Syntheserouten zur Darstellung von (Me3SiO)2SO (36) 
 

5.4.33.1 Redoxreaktion von Hexamethyldisilan mit Bis(trimethylsilyl)sulfat 

 

Me3SiSiMe3 (Me3SiO)2SO2 (Me3SiO)2SO + (Me3Si)2O+
pur,  

 

Zu 0.23 g Bis(trimethylsilyl)sulfat (Me3SiO)2SO2 (1 mmol) werden 0.14 g 

Hexamethyldisilan Me3SiSiMe3 (1 mmol) mit einer Spritze gegeben. Die 

Reaktionslösung wird entgast und anschließend für 12 h bei 130 °C unter Rückfluß 

erhitzt.  

 

Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Bis(trimethylsilyl)sulfat, 

Hexamethyldisilan und Hexamethydisiloxan. 

 

5.4.33.2 Reaktion von Trimethylsilan mit Trimethylsilylchlorosulphonat und 

Triethylamin 

 

Me3SiH Me3SiOS(O2)Cl (Me3SiO)2SO+
Toluol

N(C2H5)3 + + (C2H5)3N   HCl
 

 

Es werden 0.20 g Trimethylsilylchlorosulphonat (1.1 mmol) und 0.11 g Triethylamin 

N(C2H5)3 (1.1 mmol) in 2 mL Toluol gelöst. Die Reaktionslösung wird entgast. Bei −196 

°C werden 80 mg Trimethylsilan Me3SiH (1.1 mmol) auf die gefrorene Lösung 

kondensiert. Die Reaktionslösung wird über Nacht langsam aufgetaut. Es wird ein NMR-

Spektrum nach 24 h aufgenommen.  

Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Trimethylsilan, 

Trimethylsilylchlorosulphonat, Trimethylsilylchlorid und Hexamethydisiloxan. Nach drei 
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Tagen bei Raumtemperatur sind in der Reaktionslösung Kristalle gewachsen. Eine 

Einkristallstrukturuntersuchung ergab, dass es sich um Triethylaminhydrochlorid 

(C2H5)N·HCl handelt. 

 

5.4.33.3 Reaktion von Hexamethyldisiloxan mit Thionylchlorid  

 

SOCl2 (Me3Si)2O (Me3SiO)2SO + 2 HCl+
75% H2SO4  

 

Zu einer gerührten Lösung von 15 mL Hexamethyldisiloxan (Me3Si)2O und 5 mL 75 %-

ige Schwefelsäure H2SO4 wird eine Lösung aus 7 mL Hexamethyldisiloxan (Me3Si)2O 

und 20 mL Thionylchlorid SOCl2 über einen Zeitraum von einer 1 h gegeben. Die 

Reaktionslösung erwärmt sich leicht und eine Gasentwicklung ist zu beobachten. Nach 

einer weiteren Stunde rühren wird das zweiphasige System dekantiert. Die obere Phase 

wird mit Magnesiumsulfat MgSO4 getrocknet.* Ein NMR-Spektrum dieser Lösung wird 

angefertigt. ** 

 

* Nach einer modifizierten Literaturvorschrift von K Rühlmann[291] in der Diplomarbeit 

von Herrn Dr. J. Harloff gefunden.[292]  

** Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Bis(trimethylsilyl)sulfat 

und Hexamethydisiloxan. 
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5.4.33.4 Reaktion von Hexamethyldisilathian und Bis(trimethylsilyl)sulfat 

 

(Me3SiO)2SO2 (Me3Si)2S (Me3SiO)2SO + (Me3Si)2SO+

p-Xylol,  

 

Es werden 0.242 g Bis(trimethylsilyl)sulfat (Me3SiO)2SO2 (1 mmol) und 0.178 g 

Hexamethyldisilathian (Me3Si)2S (1 mmol) in 10 mL p-Xylol gelöst. Die 

Reaktionslösung wird entgast und im Anschluss für 150 h bei 140 °C unter Rückfluß 

erhitzt.*  

 

* Das NMR-Spektrum der Lösung zeigt nur ein Signal für Hexamethydisiloxan. 

 

5.4.33.5 Reaktion von Natrium Trimethylsilanolat und Thionylchlorid 

 

Na[OSiMe3] SOCl2 (Me3SiO)2SO + 2 NaCl+
Lm*  

 

Es werden 0.5 g Natrium-trimethylsilanolat (4.5 mmol) in 20 mL Diethylether gelöst und 

die Lösung auf −80 °C gekühlt. Es wird 0.265 g Thionylchlorid SOCl2 (2.2 mmol) über 

eine Spritze und über einen Zeitraum von 15 Minuten zur Lösung hinzugegeben. Die 

Reaktionslösung wird über Nacht langsam auf Raumtemperatur gebracht.  

 

* Das NMR-Spektrum der Reaktionslösung zeigt nur ein Signal für Hexamethydisiloxan. 

* Toluol, CH2Cl2 und THF führen zum selben Ergebnis.  

  



 
233 

5.4.33.6 Reaktion Natrium Trimethylsilanolat, Thionylchlorid und einer Lewis-Säure 

 

Na[OSiMe3] SOCl2 (Me3SiO)2SO + 2 NaCl+
Lm, Lewis-Säure*  

 

0.1 g Gallium(III)-chlorid GaCl3 (0.58 mmol) wird in 4 mL Toluol gelöst. Es werden 

70 mg Thionylchlorid SOCl2 (0.58 mmol) mit einer Spritze zur gerührten Lösung 

hinzugegeben. Eine weitere Lösung aus 0.13 g Natrium-Triemthylsilanolat Na[OSiMe3] 

(1.15 mmol) in 6 mL Toluol wird über einen Zeitraum von 15 Minuten zur 

Reaktionslösung hinzugetropft.* 

 

* Das NMR-Spektrum der Reaktionslösung zeigt nur ein Signal für Hexamethydisiloxan. 

* Die Verwendung der Lewis-Säure B(C6F5)3 und des Lösungsmittels CH2Cl2 führt zum 

selben Resultat.  

 

5.4.33.7 Reaktion von Trimethylsilanol mit Thionylchlorid und einer Lewis-Base 

 

2 Me3SiOH SOCl2 (Me3SiO)2SO +  2 (H5C2)3N  HCl+
Et2O

2 N(C2H5)3 +
 

 

0.56 g Trimethylsilanol Me3SiOH (6.2 mmol) werden in 10 mL Diethylether gelöst. Zu 

dieser Lösung werden 1.23 g Triethylamin N(C2H5)3 hinzugefügt. Zur gerührten 

Reaktionslösung werden 0.37 g Thionylchlorid SOCl2 (0.31 mmol) in 1 mL Et2O über 

einen Zeitraum von 15 Minuten getropft. Es wird ein farbloser Niederschlag beobachtet, 

welcher sich rasch dunkler verfärbt.* 

* Das NMR-Spektrum der Reaktionslösung zeigt nur Signale für Hexamethydisiloxan und 

Trimethylsilylchlorid.  
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5.4.33.8 Reaktion von Silbersulfit und Trimethylsilylchlorid 

 

2 Me3SiCl (Me3SiO)2SO + 2 AgCl
n-Pentan

Ag2SO3 +
 

2 g Silbersulfit Ag2SO3 (6.8 mmol) werden in 10 mL n-Pentan Suspendiert und auf 

−20 °C gekühlt. Zur gerührten Suspension werden 1.5 g Trimethylsilylchlorid Me3SiCl 

(13.8 mmol) über 5 Minuten hinzugefügt. Die Reaktionslösung wird über Nacht kräftig 

gerührt. Der Niederschlag wird abfiltriert und das Lösungsmittel thermisch abdestilliert.* 

 

* Das NMR-Spektrum der Reaktionslösung zeigt nur ein Signal für Hexamethydisiloxan. 
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5.4.34 Synthese und Charakterisierung von Na[O2SOSiMe3] (37) 
 

Na[OSi(CH3)3] + SO2 Na[O2SOSi(CH3)3]
A

THF
A  

 
Natrium Trimethylsilanolat Na[OSiMe3] (2 g, 17.8 mol) wird in 60 mL THF unter 

Rühren gelöst. In einem weiteren Kolben werden 40 g Natriumsulfit Na2SO3 in 60 mL 

dest. Wasser gelöst und das Gemisch auf 0 °C gekühlt. Unter Rühren wird langsam konz. 

H2SO4 zu dieser Suspension hinzugegeben. Das frisch entwickelte SO2 wird durch eine 

Waschflasche mit Schwefelsäure hindurch geleitet, bevor es durch ein Einleitrohr durch 

die Reaktionslösung geleitet wird. Die anfänglich leicht trübe Lösung, klart zunächst auf 

erstarrt aber zusehends zu einer festen Masse. Im Hochvakuum wird das Lösungsmittel 

entfernt. Es werden 1 g beiges Natrium Trimethylsilylsulfit Na[O2SOSiMe3] (0.17 mmol, 

83 %) erhalten.  

 

C3H9NaO3SSi (112.18 g/mol): mp. >240 °C (dec.). 1H-NMR (25 °C, THF-D8, 

300.13 MHz): δ   − .17 (       S CH3, 1J(1H-13C) = 114.7 Hz, 2J(1H-29Si) = 6.1 Hz). 
13C{1H}-NMR (25 °C, THF-D8, 75.47 MHz): δ = 5.08 (s, SiCH3, 1J(13C-29Si) = 53.9 Hz). 
17O-NMR (25 °C, THF-D8, 67.83 MHz): nicht beobachtet. 29Si INEPT-NMR (25 °C, 

THF-D8, 59.52 MHz) δ = −12.46 (dec, SiCH3, 2J(29Si-1H) = 6.1 Hz). IR (ATR, 16 Scans, 

25 °C, cm–1): 2958 (w), 1253 (m), 1195 (m), 1166 (s), 1072 (m), 1056 (s), 964 (s), 891 

(m), 838 (m), 752 (m), 657 (s), 561 (s). Raman (632 nm, 10 mW, 20 s, 10 Akk., 25 °C, 

cm–1): 3105 (1), 2943 (9), 2894 (10), 1428 (1), 1404 (1), 1251 81), 1236 (1), 1012 (1), 

964 (1), 951 (1), 819 (1), 730 (1), 657 (2), 602 (8), 382 (1), 353 (1), 268 (1), 214 (1). 
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5.5 Daten zu den Röntgenstrukturanalysen 
 

Tabelle 64: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (2), 
(3) und (4). 

 2 3 4 

Chem. Formel  C19H15BCl4 C19H15AlCl4 C19H15Cl4Ga 

M [g mol-1]  395.92 412.09 454.83 

Farbe gelb gelb orange 

Kristallsystem  orthorhombisch monoklin monoklin 

Raumgruppe  Pbca P21/c P21/c 

a [Å] 15.1777(7) 18.3399(5) 18.3614(11) 

b [Å] 13.7442(5) 14.4874(4) 14.4970(9) 

c [Å] 17.7550(7) 15.4168(4) 15.3862(8) 

α [°] 90 90 90 

β [°] 90 102.730(2) 102.604(1) 

γ [°] 90 90 90 

V [Å3]  3703.8(3) 3995.52(19) 3996.9(4) 

Z  8 8 8 

ρber. [g cm-3]  1.420 1.370 1.512 

μ [mm-1]  0.64 0.63 1.91 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 173 173 

Gesammelte Reflexe  57156 69248 47446 

Unabhängige Reflexe  6403 10587 12472 

Reflexe mit I > 2σ(I)  4448 6480 9063 

Rint.  0.061 0.066 0.032 

F(000)  1616 1680 1824 

R1 (R [F2 >  σ(F2)])  0.041 0.042 0.034 

wR2 (F2)  0.099 0.096 0.086 

GooF  1.003 1.006 1.018 

Parameter  217 433 433 

CCDC 1411641 1411642 1411643 
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Tabelle 65: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen (5), 
(6) und (7). 

 

 5 6 7 

Chem. Formel  C19H15F6P C19H15AsF6 C19H15F6Sb 

M [g mol-1]  388.28 432.23 479.06 

Farbe orange gelb gelb 

Kristallsystem  monoklin monoklin monoklin 

Raumgruppe  P21/n P21/n P21/c 

a [Å] 9.8773(5) 9.9122(3) 8.5402(6) 

b [Å] 8.6783(4) 8.7114(3) 12.8290(9) 

c [Å] 19.2866(9) 19.6044(7) 16.0775(11) 

α [°] 90 90 90 

β [°] 90.452(9) 91.469(2) 93.679 

γ [°] 90 90 90 

V [Å3]  1653.16(14) 1692.27(1) 1757.9(2) 

Z  4 4 4 

ρber. [g cm-3]  1.560 1.697 1.810 

μ [mm-1]  0.23 2.07 1.63 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 173 173 

Gesammelte Reflexe  22836 27230 31074 

Unabhängige Reflexe  4818 6112 6354 

Reflexe mit I > 2σ(I)  2980 4065 4759 

Rint.  0.057 0.056 0.046 

F(000)  792 864 936 

R1 (R [F2 >  σ(F2)])  0.048 0.038 0.028 

wR2 (F2)  0.114 0.087 0.064 

GooF  1.009 1.033 1.018 

Parameter  235 235 235 

CCDC 1411644 1411645 1411646 
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Tabelle 66: Daten zu den Röntgenkristallstrukturanalysen der (9), (9·CH3CN) 
und (10). 

 

 9 9·CH3CN 10 

Chem. Formel  C20H21B11Cl6 C22H24B11Cl6N C20H16BCl11 

M [g mol-1]  592.98 634.03 765.19 

Farbe gelb gelb gelb 

Kristallsystem  monoklin monoklin monoklin 

Raumgruppe  P21/c P21/c P21/c 

a [Å] 9.7294(3) 15.0043(5) 14.6907(5) 

b [Å] 21.1862(7) 9.2406(3) 12.9696(4) 

c [Å] 13.7313(4) 22.7560(8) 17.1114(5) 

α [°] 90 90 90 

β [°] 91.244(1) 100.944(2) 90.341(2) 

γ [°] 90 90 90 

V [Å3]  2829.75(15) 3097.71(18) 3260.22(18) 

Z  4 4 4 

ρber. [g cm-3]  1.392 1.360 1.559 

μ [mm-1]  0.62 0.57 0.95 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 173 173 

Gesammelte Reflexe  27901 47637 55749 

Unabhängige Reflexe  7308 9012 11302 

Reflexe mit I > 2σ(I)  5116 6006 6960 

Rint.  0.045 0.076 0.053 

F(000)  1192 1280 1512 

R1 (R [F2 >  σ(F2)])  0.050 0.044 0.041 

wR2 (F2)  0.131 0.102 0.100 

GooF  1.045 1.018 1.005 

Parameter  338 362 383 

CCDC 1411647 1411648 1411649 
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Tabelle 67: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen 

(10·2·C7H8), (11·CH2Cl2) und (11·CH3CN). 
 

 10·2·C7H8 11·CH2Cl2 11·CH3CN 

Chem. Formel  C34H32B11Cl11 C21H23B11Br6Cl2 C22H24B11Br6N 

M [g mol-1]  949.46 944.66 900.79 

Farbe gelb orange orange 

Kristallsystem  monoklin orthorhombisch orthorhombisch 

Raumgruppe  P21/c Pna21 Pna21 

a [Å] 9.3344(4) 16.4393(5) 16.1215(7) 

b [Å] 21.0342(9) 9.2308(3) 9.1353(4) 

c [Å] 22.4360(12) 21.2484(6) 21.4531(10) 

α [°] 90 90 90 

β [°] 91.276(2) 90 90 

γ [°] 90 90 90 

V [Å3]  4404.0(4) 3224.40(17) 3159.5(2) 

Z  4 4 4 

ρber. [g cm-3]  1.432 1.946 1.894 

μ [mm-1]  0.72 7.65 7.64 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 173 173 

Gesammelte Reflexe  56210 34478 17072 

Unabhängige Reflexe  10638 8541 6385 

Reflexe mit I > 2σ(I)  6543 7305 5683 

Rint.  0.095 0.040 0.035 

F(000)  1912 1792 1712 

R1 (R [F2 >  σ(F2)])  0.045 0.029 0.027 

wR2 (F2)  0.098 0.057 0.056 

GooF  1.018 1.003 1.002 

Parameter  540 371 362 

CCDC 1411650 1411651 1411652 
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Tabelle 68: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen 

(12), (13) und (14). 
 

 12 13 14 

Chem. Formel  C20H15F3O3S C21H15F3O2 C19H15N3 

M [g mol-1]  392.38 356.33 285.34 

Farbe gelb farblos farblos 

Kristallsystem  monoklin monoklin triklin 

Raumgruppe  P21/n P21/c P1  

a [Å] 8.3226(3) 10.2560(4) 8.8275(16) 

b [Å] 14.1510(5) 18.9306(6) 11.3271(19) 

c [Å] 15.4632(5) 9.0611(3) 15.3093(16) 

α [°] 90 90 78.008(4) 

β [°] 94.477(1) 100.141(2) 88.320(5) 

γ [°] 90 90 84.921(4) 

V [Å3]  1815.59(11) 1731.75(10) 1491.4(4) 

Z  4 4 4 

ρber. [g cm-3]  1.435 1.367 1.271 

μ [mm-1]  0.23 0.11 0.08 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 173 173 

Gesammelte Reflexe  30643 24814 29403 

Unabhängige Reflexe  6551 5060 8658 

Reflexe mit I > 2σ(I)  5367 2858 5966 

Rint.  0.032 0.062 0.053 

F(000)  808 736 600 

R1 (R [F2 >  σ(F2)])  0.040 0.052 0.048 

wR2 (F2)  0.116 0.125 0.121 

GooF  1.033 1.013 1.036 

Parameter  299 266 397 

CCDC 1411654 1411653 1411655 
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Tabelle 69: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen 

(15·C6H6), (15·C7H8) und (19). 
 

 15·C6H6 15·C7H8 19 

Chem. Formel  C25H22 C26H24 C6H18O4SSi2 

M [g mol-1]  322.42 336.45 242.44 

Farbe farblos farblos farblos 

Kristallsystem  trigonal trigonal monoklin 

Raumgruppe  R  :H R  :H C2/c 

a [Å] 10.8338(4) 11.1045(16) 21.003(2) 

b [Å] 10.8338(4) 11.1045(16) 20.985(2) 

c [Å] 27.1437(11) 27.063(3) 12.7728(12) 

α [°] 90 90 90 

β [°] 90 90 112.884(3) 

γ [°] 120 120 90 

V [Å3]  2759.1(2) 2890.0(9) 5186.9(9) 

Z  6 6 16 

ρber. [g cm-3]  1.164 1.160 1.242 

μ [mm-1]  0.07 0.07 0.42 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 173 123 

Gesammelte Reflexe  12548 7148 44838 

Unabhängige Reflexe  1602 996 9347 

Reflexe mit I > 2σ(I)  1262 685 6395 

Rint.  0.045 0.037 0.053 

F(000)  1032 1032 2080 

R1 (R [F2 >  σ(F2)])  0.049 0.051 0.060 

wR2 (F2)  0.131 0.139 0.123 

GooF  1.066 1.034 1.078 

Parameter  84 110 275 

CCDC 1411656 1411657  
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Tabelle 70: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen 

(20), (22) und (24). 
 

 20 22 24 

Chem. Formel  C9H27O5PSSi2 C12H36O9P2S2Si2 C15H33KO6SSi 

M [g mol-1]  334.51 506.65 408.66 

Farbe farblos farblos farblos 

Kristallsystem  orthorhombisch monoklin orthorhombisch 

Raumgruppe  Pbca Pc P212121 

a [Å] 13.1325(8) 11.6573(11) 8.3604(5) 

b [Å] 18.5688(12) 8.1454(8) 14.4338(12) 

c [Å] 29.7972(17) 13.7199(12) 18.3651(14) 

α [°] 90 90 90 

β [°] 90 104.544(5) 90 

γ [°] 90 90 90 

V [Å3]  7266.2(8) 1261.0(2) 2216.2(3) 

Z  16 2 4 

ρber. [g cm-3]  1.223 1.334 1.225 

μ [mm-1]  0.41 0.47 0.41 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  123 123 123 

Gesammelte Reflexe  110692 20834 21825 

Unabhängige Reflexe  12572 7551 5889 

Reflexe mit I > 2σ(I)  8551 5656 4764 

Rint.  0.069 0.037 0.078 

F(000)  2880 540 880 

R1 (R [F2 >  σ(F2)])  0.050 0.044 0.042 

wR2 (F2)  0.124 0.108 0.077 

GooF  1.074 1.020 1.024 

Parameter  522 257 286 

CCDC    
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Tabelle 71: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen 

(28), (α-30) und (β-30). 
 

 28 α-30 β-30 

Chem. Formel  C18HBF15NOS C21H9BF15NOSSi C21H9BF15NOSSi 

M [g mol-1]  575.07 647.25 647.25 

Farbe farblos farblos farblos 

Kristallsystem  monoklin triklin monoklin 

Raumgruppe  P21/c  1 P21/n 

a [Å] 15.7772(7) 9.1496(3) 14.0082(5) 

b [Å] 14.5861(7) 10.8727(4) 10.6941(4) 

c [Å] 8.4181(4) 12.2147(4) 16.0568(7) 

α [°] 90 82.055(2) 90 

β [°] 95.225(3) 88.565(2) 91.416(2) 

γ [°] 90 83.973(2) 90 

V [Å3]  1929.19(16) 1196.74(2) 2404.66(16) 

Z  4 2 4 

ρber. [g cm-3]  1.980 1.796 1.788 

μ [mm-1]  0.33 0.32 0.32 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 173 123 

Gesammelte Reflexe  28925 30053 38330 

Unabhängige Reflexe  5618 6296 8048 

Reflexe mit I > 2σ(I)  3058 4660 4983 

Rint.  0.071 0.029 0.063 

F(000)  1120 640 1280 

R1 (R [F2 >  σ(F2)])  0.050 0.036 0.043 

wR2 (F2)  0.127 0.086 0.101 

GooF  1.008 1.020 1.008 

Parameter  372 373 373 

CCDC 1469613 149615 149616 
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Tabelle 72: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen 

(28), (34) und (34·C7H8). 
 

 28 34 34·2.5·C7H8 

Chem. Formel  C3H9Cl3GaNOSSi C36H36BF20PO6Si4 C36H36BF20O4PSi4 · 
2.5 C7H8 

M [g mol-1]  311.33 1066.79 1297.12 

Farbe farblos farblos farblos 

Kristallsystem  monoklin triklin triklin 

Raumgruppe  P21/c    Pi 

a [Å] 8.4933(3) 12.8253(6) 13.2811(6) 

b [Å] 11.7873(4) 14.1922(7) 14.1949(6) 

c [Å] 11.4541(4) 15.0246(7) 17.3040(6) 

α [°] 90 112.456(1) 91.548(2) 

β [°] 91.901 105.496(2) 104.559(2) 

γ [°] 90 103.055(2) 104.040(2) 

V [Å3]  1146.07(7) 2264.39(1) 3049.7(2) 

Z  4 2 2 

ρber. [g cm-3]  1.804 1.225 1.413 

μ [mm-1]  3.34 0.29 0.23 

λ o α  [Å]  0.71073 0.71073 0.71073 

T [K]  173 123 123 

Gesammelte Reflexe  23693 139804 91757 

Unabhängige Reflexe  4140 16339 10727 

Reflexe mit I > 2σ(I)  3477 12757 6771 

Rint.  0.043 0.041 0.163 

F(000)  616 1080 1330 

R1 (R [F2 >  σ(F2)])  0.024 0.045 0.061 

wR2 (F2)  0.056 0.119 0.149 

GooF  1.028 1.058 1.084 

Parameter  103 653 1355 

CCDC 1469614   
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Tabelle 73: Daten zu den Röntgenkristallstrukturanalysen der Verbindungen 

(35), (22) und (30·C7H8). 
 

 35 22 22 

Chem. Formel  C18H42KO10PSi2 · 
0.75(C4H10O2) 

  

M [g mol-1]  612.35   

Farbe farblos   

Kristallsystem  Triklin   

Raumgruppe   1   

a [Å] 13.1409(10)   

b [Å] 15.2740(11)   

c [Å] 17.2277(12)   

α [°] 74.399(2)   

β [°] 83.771(3)   

γ [°] 79.867(3)   

V [Å3]  3271.7(4)   

Z  4   

ρber. [g cm-3]  1.243   

μ [mm-1]  0.33   

λ o α  [Å]  0.71073   

T [K]  123   

Gesammelte Reflexe  156098   

Unabhängige Reflexe  20779   

Reflexe mit I > 2σ(I)  14546   

Rint.  0.070   

F(000)  1318   

R1 (R [F2 >  σ(F2)])  0.050   

wR2 (F2)  0.106   

GooF  1.038   

Parameter  826   

CCDC    
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5.6 Ausgewählte Atomabstände und Winkel der Verbindungen 
 

Schema 26. Nummerierungsschema von 2. 

 

 

 

Tabelle 74: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
2. 

 

C1-C2 1.443(2) Cl4-B1-Cl1 108.8(2) 

C1-C8 1.431(2) Cl4-B1-Cl3 109.9(2) 

C1-C14 1.454(2) C2-C1-C8-C9 152.5(2) 

B1-Cl1 1.851(2) C2-C1-C8-C13 −27.5(2) 

B1-Cl2 1.840(2) C2-C1-C14-C15 −40.3(2) 

B1-Cl3 1.857(2) C2-C1-C14-C19 140.9(2) 

B1-Cl4 1.848(2) C8-C1-C2-C3 −35.0(2) 

C2-C1-C14 119.3(2) C8-C1-C2-C7 144.7(2) 

C8-C1-C2 121.3(2) C8-C1-C14-C15 139.1(2) 

C8-C1-C14 119.6(2) C8-C1-C14-C19 −39.8(2) 

Cl1-B1-Cl3 109.61(9) C14-C1-C2-C3 144.4(2) 

Cl2-B1-Cl1 109.2(2) C14-C1-C2-C7 −36.0(2) 

Cl2-B1-Cl3 109.8(2) C14-C1-C8-C9 −26.9(2) 

Cl2-B1-Cl4 109.65(9) C14-C1-C8-C13 153.3(2) 
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Schema 27. Nummerierungsschema von 3. 

 

 

 

Tabelle 75: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
3. 

 

Al1-Cl1 2.1436(8) Cl7-Al2-Cl6 108.61(4) 

Al1-Cl2 2.1289(9) Cl8-Al2-Cl5 107.48(4) 

Al1-Cl3 2.1277(9) Cl8-Al2-Cl6 108.59(4) 

Al1-Cl4 2.1371(8) Cl8-Al2-Cl7 111.22(4) 

Al2-Cl5 2.131(2) C2-C1-C8-C9 −36.0(3) 

Al2-Cl6 2.1361(9) C2-C1-C8-C13 143.5(2) 

Al2-Cl7 2.1300(9) C2-C1-C14-C15 151.5(2) 

Al2-Cl8 2.1253(9) C2-C1-C14-C19 −29.4(3) 

C1-C2 1.440(3) C8-C1-C2-C3 149.3(2) 

C1-C8 1.449(3) C8-C1-C2-C7 −31.8(3) 

C1-C14 1.445(3) C8-C1-C14-C15 −29.2(3) 

C20-C21 1.448(3) C8-C1-C14-C19 149.9(2) 

C20-C27 1.443(3) C14-C1-C2-C3 −31.5(3) 

C20-C33 1.443(3) C14-C1-C2-C7 147.5(2) 

C2-C1-C8 119.5(2) C14-C1-C8-C9 144.8(2) 
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C2-C1-C14 120.7(2) C14-C1-C8-C13 −35.7(3) 

C14-C1-C8 119.9(2) C21-C20-C27-C28 −34.9(3) 

C27-C20-C21 120.0(2) C21-C20-C27-C32 146.0(2) 

C33-C20-C21 121.0(2) C21-C20-C33-C34 148.8(2) 

C33-C20-C27 119.2(2) C21-C20-C33-C38 −31.0(3) 

Cl2-Al1-Cl1 108.48(4) C27-C20-C21-C22 149.1(2) 

Cl2-Al1-Cl4 109.45(4) C27-C20-C21-C26 −31.0(3) 

Cl3-Al1-Cl1 110.52(4) C27-C20-C33-C34 −31.0(3) 

Cl3-Al1-Cl2 111.49(4) C27-C20-C33-C38 149.2(2) 

Cl3-Al1-Cl4 108.56(4) C33-C20-C21-C22 −30.7(3) 

Cl4-Al1-Cl1 108.28(3) C33-C20-C21-C26 149.2(2) 

Cl5-Al2-Cl6 109.84(4) C33-C20-C27-C28 145.0(2) 

Cl7-Al2-Cl5 111.05(4) C33-C20-C27-C32 −34.1(3) 
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Schema 28. Nummerierungsschema von 4. 

 

 

 

Tabelle 76: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
4. 

 

C1-C2 1.438(3) Cl7-Ga2-Cl6 108.54(2) 

C1-C8 1.448(3) Cl8-Ga2-Cl5 107.19(3) 

C1-C14 1.445(3) Cl8-Ga2-Cl6 108.59(3) 

C20-C21 1.448(2) Cl8-Ga2-Cl7 111.51(3) 

C20-C27 1.441(3) C2-C1-C8-C9 −35.4(3) 

C20-C33 1.438(2) C2-C1-C8-C13 143.5(2) 

Ga1-Cl1 2.1851(5) C2-C1-C14-C15 151.5(2) 

Ga1-Cl2 2.1694(6) C2-C1-C14-C19 −29.8(3) 

Ga1-Cl3 2.1677(6) C8-C1-C2-C3 149.3(2) 

Ga1-Cl4 2.1776(5) C8-C1-C2-C7 −32.0(3) 

Ga2-Cl5 2.1716(7) C8-C1-C14-C15 −29.0(3) 

Ga2-Cl6 2.1771(6) C8-C1-C14-C19 149.7(2) 

Ga2-Cl7 2.1683(6) C14-C1-C2-C3 −31.2(3) 

Ga2-Cl8 2.1652(6) C14-C1-C2-C7 147.6(2) 

C2-C1-C8 119.47(2) C14-C1-C8-C9 145.1(2) 
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C2-C1-C14 120.68(2) C14-C1-C8-C13 −36.1(3) 

C14-C1-C8 119.88(2) C21-C20-C27-C28 −34.9(3) 

C27-C20-C21 119.95(2) C21-C20C27-C32 146.2(2) 

C33-C20-C21 120.84(2) C21-C20-C33-C34 148.9(2) 

C33-C20-C27 119.23(2) C21-C20-C33-C38 −31.3(3) 

Cl2-Ga1-Cl1 108.27(2) C27-C20-C21-C22 149.6(2) 

Cl2-Ga1-Cl4 109.55(2) C27-C20-C21-C26 −30.8(3) 

Cl3-Ga1-Cl1 110.61(2) C27-C20-C33-C34 −31.0(3) 

Cl3-Ga1-Cl2 111.77(2) C27-C20-C33-C38 148.9(2) 

Cl3-Ga1-Cl4 108.50(2) C33-C20-C21-C22 −30.2(3) 

Cl4-Ga1-Cl1 108.07(2) C33-C20-C21-C26 149.5(2) 

Cl5-Ga2-Cl6 109.94(3) C33-C20-C27-C28 144.9(2) 

Cl7-Ga2-Cl5 111.03(3) C33-C20-C27-C32 −34.1(3) 
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Schema 29. Nummerierungsschema von 5. 

 

 

 

Tabelle 77: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
5. 

 

C1-C2 1.452(2) F4-P1-F1 179.86(9) 

C1-C8 1.439(3) F5-P1-F1 89.57(7) 

C1-C14 1.450(2) F5-P1-F4 90.29(7) 

P1-F1 1.599(2) F6-P1-F1 90.19(7) 

P1-F2 1.588(2) F6-P1-F3 179.62(9) 

P1-F3 1.594(2) F6-P1-F4 89.77(7) 

P1-F4 1.594(2) F6-P1-F5 90.30(8) 

P1-F5 1.594(2) C2-C1-C8-C9 156.9(2) 

P1-F6 1.588(2) C2-C1-C8-C13 −23.3(3) 

C8-C1-C2 121.6(2) C2-C1-C14-C15 −40.4(2) 

C8-C1-C14 120.5(2) C2-C1-C14-C19 138.3(2) 

C14-C1-C2 118.0(2) C8-C1-C2-C3 146.9(2) 

F2-P1-F1 90.32(7) C8-C1-C2-C7 −32.1(3) 

F2-P1-F3 89.79(8) C8-C1-C14-C15 141.9(2) 

F2-P1-F4 89.81(7) C8-C1-C14-C19 −39.5(3) 

F2-P1-F5 179.15(9) C14-C1-C2-C3 −30.9(3) 
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F2-P1-F6 90.54(9) C14-C1-C2-C7 150.2(2) 

F3-P1-F1 89.97(7) C14-C1-C8-C9 −25.5(3) 

F3-P1-F4 90.06(7) C14-C1-C8-C13 154.4(2) 

F3-P1-F5 89.37(8)   
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Schema 30. Nummerierungsschema von 6. 
 

 
 
 

Tabelle 78: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

6. 

 

C1-C2 1.442(2) F4-As1-F6 90.50(6) 

C1-C8 1.447(2) F5-As1-F1 90.48(7) 

C1-C14 1.445(2) F5-As1-F2 179.44(7) 

As1-F1 1.707(2) F5-As1-F3 90.19(6) 

As1-F2 1.712(2) F5-As1-F4 90.39(7) 

As1-F3 1.722(2) F5-As1-F6 89.55(6) 

As1-F4 1.710(2) F6-As1-F3 179.69(6) 

As1-F5 1.706(2) C2-C1-C8-C9 25.3(2) 

As1-F6 1.718(2) C2-C1-C8-C13 −154.7(2) 

C2-C1-C8 120.0(2) C2-C1-C14-C15 −153.1(2) 

C2-C1-C14 118.5(2) C2-C1-C14-C19 24.6(2) 

C14-C1-C8 121.6(2) C8-C1-C2-C3 −142.1(2) 

F1-As1-F2 89.89(7) C8-C1-C2-C7 37.2(2) 

F1-As1-F3 90.06(6) C8-C1-C14-C15 24.9(2) 

F1-As1-F4 179.09(7) C8-C1-C14-C19 −157.6(2) 

F1-As1-F6 89.77(6) C14-C1-C2-C3 35.9(2) 

F2-As1-F3 90.22(6) C14-C1-C2-C7 −144.9(2) 

F2-As1-F6 90.04(6) C14-C1-C8-C9 −156.4(2) 
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F4-As1-F2 89.24(7) C14-C1-C8-C13 23.7(2) 

F4-As1-F3 89.67(6)   
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Schema 31. Nummerierungsschema von 7. 
 

 
 
 

Tabelle 79: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

7. 
 

C1-C2 1.452(2) F5-Sb1-F2 179.14(6) 

C1-C8 1.446(2) F5-Sb1-F3 89.63(7) 

C1-C14 1.437(2) F5-Sb1-F4 89.98(7) 

Sb1-F1 1.877(2) F5-Sb1-F6 91.13(7) 

Sb1-F2 1.858(2) F6-Sb1-F1 90.16(5) 

Sb1-F3 1.875(2) F6-Sb1-F3 179.21(6) 

Sb1-F4 1.873(2) F6-Sb1-F4 89.42(5) 

Sb1-F5 1.855(2) C2-C1-C8-C9 36.4(2) 

Sb1-F6 1.871(2) C2-C1-C8-C13 −146. (    

C8-C1-C2 119.1(2) C2-C1-C14-C15 −14 . (    

C14-C1-C2 120.2(2) C2-C1-C14-C19 31.4(2) 

C14-C1-C8 120.9(2) C8-C1-C2-C3 −141.6(   

F2-Sb1-F1 89.78(7) C8-C1-C2-C7 39.6(2) 

F2-Sb1-F3 89.52(7) C8-C1-C14-C15 31.9(3) 

F2-Sb1-F4 90.13(7) C8-C1-C14-C19 −147.0(2) 

F2-Sb1-F6 89.72(7) C14-C1-C2-C3 40.1(2) 

F3-Sb1-F1 89.61(5) C14-C1-C2-C7 −1  . (    

F4-Sb1-F1 179.57(5) C14-C1-C8-C13 35.2(2) 
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F4-Sb1-F3 90.81(6) C14-C1-C8-C9 −141.7(   

F5-Sb1-F1 90.12(7)   
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Schema 32. Nummerierungsschema von 11·CH2Cl2. 

 

 

 

Tabelle 80: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

11·CH2Cl2. 
 

C1-C2 1.438(6) C2-C1-C14-C19 30.2(6) 

C1-C8 1.439(6) C8-C1-C2-C3 −152.7(4) 

C1-C14 1.442(6) C8-C1-C2-C7 31.1(6) 

C2-C1-C8 121.5(4) C8-C1-C14-C15 31.4(6) 

C2-C1-C14 120.3(4) C8-C1-C14-C19 −148.6(4) 

C8-C1-C14 118.2(4) C14-C1-C2-C3 28.6(6) 

C2-C1-C8-C9 37.2(6) C14-C1-C2-C7 −147.7(4) 

C2-C1-C8-C13 −142.4(4) C14-C1-C8-C9 −144.0(4) 

C2-C1-C14-C15 −149.8(4) C14-C1-C8-C13 36.4(6) 
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Schema 33. Nummerierungsschema von 11·CH3CN. 

 

 

 

Tabelle 81: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

11·CH3CN. 

 

C1-C2 1.437(6) C2-C1-C14-C19 30.3(7) 

C1-C8 1.439(7) C8-C1-C2-C3 −150.5(5) 

C1-C14 1.442(7) C8-C1-C2-C7 30.1(7) 

C2-C1-C8 119.6(4) C8-C1-C14-C15 32.3(7) 

C2-C1-C14 119.8(4) C8-C1-C14-C19 −151.9(5) 

C8-C1-C14 120.6(4) C14-C1-C2-C3 27.4(7) 

C2-C1-C8-C9 35.6(7) C14-C1-C2-C7 −152.0(5) 

C2-C1-C8-C13 −142.7(5) C14-C1-C8-C9 −142.2(5) 

C2-C1-C14-C15 −145.6(5) C14-C1-C8-C13 39.5(7) 
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Schema 34. Nummerierungsschema von 12. 

 

 

 

Tabelle 82: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
12. 

 
C1-C2 1.441(2) O1-S1-C20-F2 −54.5(2) 

C1-C8A 1.458(5) O1-S1-C20-F3 −175.69(9) 

C1-C8B 1.44(2) O2-S1-C20-F1 −56.0(2) 

C1-C14 1.446(2) O2-S1-C20-F2 −175.18(9) 

F1-C20 1.333(2) O2-S1-C20-F3 63.6(2) 

F2-C20 1.330(2) O3-S1-C20-F1 −175.60(9) 

F3-C20 1.328(2) O3-S1-C20-F2 65.2(2) 

S1-C20 1.823(2) O3-S1-C20-F3 −56.1(2) 

S1-O1 1.440(2) C2-C1-C8A-C9A 29(2) 

S1-O2 1.4369(9) C2-C1-C8A-C13A −150.2(8) 

S1-O3 1.4353(9) C2-C1-C8B-C9B 31(2) 

C2-C1-C8A 117.7(4) C2-C1-C8B-C13B −149(2) 

C2-C1-C14 119.11(9) C2-C1-C14-C15 −143.0(2) 

C14-C1-C8A 123.2(4) C2-C1-C14-C19 36.0(2) 

C8B-C1-C2 125.1(5) C8A-C1-C2-C3 −146.3(5) 

C8B-C1-C14 115.7(5) C8A-C1-C2-C7 34.3(5) 

F1-C20-S1 111.73(8) C8B-C1-C2-C3 −149.5(8) 
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F2-C20-F1 106.6(2) C8B-C1-C2-C7 31.1(8) 

F2-C20-S1 111.60(8) C8A-C1-C14-C15 37.1(5) 

F3-C20-F1 106.9(2) C8A-C1-C14-C19 −144.1(5) 

F3-C20-F2 108.3(2) C8B-C1-C14-C15 40.0(7) 

F3-C20-S1 111.57(8) C8B-C1-C14-C19 −141.2(7) 

O1-S1-C20 103.00(6) C14-C1-C2-C3 33.8(2) 

O2-S1-C20 103.47(6) C14-C1-C2-C7 −145.8(2) 

O2-S1-O1 115.61(6) C14-C1-C8A-C9A −151.7(7) 

O3-S1-C20 102.66(6) C14-C1-C8A-C13A 30(2) 

O3-S1-O1 114.86(6) C14-C1-C8B-C9B −154(2) 

O3-S1-O2 114.71(6) C14-C1-C8B-C13B 29(2) 

O1-S1-C20-F1 64.8(2)   
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Schema 35. Nummerierungsschema von 13. 

 

 

 

Tabelle 83: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

13. 

 

C1-C2 1.529(2) F3A-21A-F2A 105(2) 

C1-C8 1.531(2) F3B-C21B-C20 113(2) 

C1-C14 1.524(2) F3B-C21B-F2B 104(2) 

C21A-C20 1.527(8) O1-C1-C2 107.0(2) 

C21A-F1A 1.26(3) O1-C1-C8 102.6(2) 

C21A-F2A 1.34(2) O1-C1-C14 108.5(2) 

C21A-F3A 1.29(2) O1-C20-C21A 108.8(7) 

C21B-C20 1.54(2) O1-C20-C21B 107.8(9) 

C21B-F1B 1.25(2) O2-C20-O1 130.8(2) 

C21B-F2B 1.34(2) O2-C20-C21A 120.5(7) 

C21B-F3B 1.28(2) O2-C20-C21B 121.4(9) 

O1-C1 1.510(2) C1-O1-C20-C21A −177.1(7  

O1-C20 1.312(2) C1-O1-C20-C21B −174(   

O2-C20 1.197(2) C1-O1-C20-O2 4.1(2) 
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C2-C1-C8 112.4(2) C2-C1-C8-C9 −  . (    

C14-C1-C2 116.0(2) C2-C1-C8-C13 88.3(2) 

C14-C1-C8 109.8(2) C2-C1-C14-C15 162.1(2) 

C20-O1-C1 122.6(2) C2-C1-C14-C19 −  . (  ) 

F1A-C21A-C20 113(2) C8-C1-C2-C3 7.4(2) 

F1A-C21A-F2A 108(2) C8-C1-C2-C7 −175. (    

F1A-C21A-F3A 110(2) C8-C1-C14-C15 −6 .5(    

F1B-C21B-C20 111(2) C8-C1-C14-C19 106.4(2) 

F1B-C21B-F2B 107(2) C14-C1-C2-C3 134.7(2) 

F1B-C21B-F3B 110(2) C14-C1-C2-C7 −47.7(2) 

F2A-C21A-C20 110(2) C14-C1-C8-C9 140.8(2) 

F2B-C21B-C20 114(2) C14-C1-C8-C13 −4 . (    

F3A-C21A-C20 114(2)   
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Schema 36. Nummerierungsschema von 14. 

 

 

 

Tabelle 84: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
14. 

 

C1-C2 1.535(2) C8-C1-C14-C19 10.2(2) 

C1-C8 1.533(2) C14-C1-C2-C3 150.4(2) 

C1-C14 1.544(2) C14-C1-C2-C7 −34.3(2) 

C20-C21 1.535(2) C14-C1-C8-C9 −80.8(2) 

C20-C27 1.541(2) C14-C1-C8-C13 96.6(2) 

C20-C33 1.530(2) C21-C20-C27-C28 −29.9(2) 

N1-C1 1.514(2) C21-C20-C27-C32 153.4(2) 

N1-N2 1.227(2) C21-C20-C33-C34 124.1(2) 

N2-N3 1.132(2) C21-C20-C33-C38 −58.4(2) 

N4-C20 1.521(2) C33-C20-C21-C22 155.4(2) 

N4-N5 1.231(2) C33-C20-C21-C26 −29.0(2) 

N5-N6 1.132(2) C33-C20-C27-C28 96.0(2) 

C2-C1-C14 112.8(2) C33-C20-C27-C32 −80.9(2) 

C8-C1-C2 111.02(9) C27-C20-C21-C22 −79.1(2) 

C8-C1-C14 111.6(2) C27-C20-C21-C26 96.6(2) 

C21-C20-C27 110.33(9) C27-C20-C33-C34 −0.7(2) 

C33-C20-C21 112.4(2) C27-C20-C33-C38 176.79(2) 
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C33-C20-C27 111.9(2) N1-C1-C2-C3 30.1(2) 

N1-C1-C2 109.9(2) N1-C1-C2-C7 −154.6(2) 

N1-C1-C8 103.40(9) N1-C1-C8-C9 35.0(2) 

N1-C1-C14 107.87(9) N1-C1-C8-C13 −147.9(2) 

N2-N1-C1 116.6(2) N1-C1-C14-C15 73.9(2) 

N3-N2-N1 172.6(2) N1-C1-C14-C19 −102.8(2) 

N4-C20-C21 104.7(2) N2-N1-C1-C2 58.3(2) 

N4-C20-C27 107.9(2) N2-N1-C1-C8 176.9(2) 

N4-C20-C33 109.52(9) N2-N1-C1-C14 −65.0(2) 

N5-N4-C20 115.6(2) N4-C20-C21-C22 36.7(2) 

N6-N5-N4 174.3(2) N4-C20-C21-C26 −147.8(2) 

C2-C1-C8-C9 152.8(2) N4-C20-C27-C28 −143.6(2) 

C2-C1-C8-C13 −30.1(2) N4-C20-C27-C32 39.7(2) 

C2-C1-C14-C15 −47.7(2) N4-C20-C33-C34 −120.2(2) 

C2-C1-C14-C19 135.9(2) N4-C20-C33-C38 57.4(2) 

C8-C1-C2-C3 −83.8(2) N5-N4-C20-C21 147.3(2) 

C8-C1-C2-C7 91.8(2) N5-N4-C20-C27 −95.4(2) 

C8-C1-C14-C15 −173.3(2) N5-N4-C20-C33 26.7(2) 
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Schema 37. Nummerierungsschema von 15·Toluol. 

 

 

 

Tabelle 85: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
15·Toluol. 

 

C1-C2 1.529(2) C2ii-C1-C2 112.6(2) 

C1-C2i 1.529(2) C2i-C1-C2-C3 95.1(2) 

C1-C2ii 1.529(2) C2ii-C1-C2-C3 −  .4(    

C2i-C1-C2ii 112.6(2) C2i-C1-C2-C7 − 5. (    

C2i-C1-C2 112.6(2) C2ii-C1-C2-C7 145.6(2) 
Symmetriecode: (i) –y+1, x–y+2, z; (ii) –x+y–1, –x+1, z; (iii) –x+y+1, –x+1, z;  
(iv) –y+1, x–y, z. 
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Schema 38. Nummerierungsschema von 15·C6H6. 

 

 
 

Tabelle 86: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

15·C6H6. 
 

C1A-C2A 1.527(2) C2B-C1B-C2Bii 113.6(6) 

C1A-C2Ai 1.527(2) C2Bii-C1B-C2Bi 113.6(6) 

C1A-C2Aii 1.527(2) C9iii-C8-C9 120.4(2) 

C1B-C2B 1.510(8) C8iv-C9-C8 119.7(2) 

C1B-C2Bi 1.510(8) C2Ai-C1A-C2A-C7A − 5. (    

C1B-C2Bii 1.510(8) C2Aii-C1A-C2A-C7A 144.6(2) 

C8-C9 1.381(3) C2Ai-C1A-C2A-C3A 94.5(2) 

C8-C9iii 1.373(3) C2Aii-C1A-C2A-C3A − 5. (    

C9-C8iv 1.373(3) C2Bii-C1B-C2B-C3B −77(   
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C2Ai-C1A-C2A 112.91(7) C2Bi-C1B-C2B-C3B 151.7(9) 

C2Ai-C1A-C2Aii 112.90(7) C2Bii-C1B-C2B-C7B 100.9(9) 

C2Aii-C1A-C2A 112.90(7) C2Bi-C1B-C2B-C7B − 1(   

C2B-C1B-C2Bi 113.6(6)   
Symmetriecode: (i) –y+1, x–y+2, z; (ii) –x+y–1, –x+1, z; (iii) –x+y+1, –x+1, z;  
(iv) –y+1, x–y, z 
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Schema 39. Nummerierungsschema von 19. 
 

 
 

Tabelle 87: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

19. 

 

S1-O1A 1.49(2) O6A-S2-O5A 109.8(2) 

S1-O2A 1.541(7) O6A-S2-O5Ai 107.7(2) 

S1-O3A 1.47(2) O6Ai-S2-O5Ai 109.8(2) 

S1-O4A 1.399(9) O6A-S2-O6Ai 121.4(4) 

S1-O1B 1.65(2) O6B-S2-O5B 110.7(6) 

S1-O2B 1.50(2) O6B-S2-O5Bi 99(2) 

S1-O3B 1.27(2) O6Bi-S2-O5B 99(2) 

S1-O4B 1.50(2) O6Bi-S2-O6B 111(2) 

S2-O5A 1.540(4) S2-O5A-Si3 129.9(3) 

S2-O5Ai 1.539(4) S2-O5B-Si3 138(2) 

S2-O5B 1.48(2) O7A-S3-O7Ai 95.4(4) 

S2-O5Bi 1.48(2) O7B-S3-O7Bi 132.3(2) 

S2-O6A 1.426(3) O7B-S3-O8B 109.3(5) 
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S2-O6Ai 1.426(3) O7B-S3-O8Bi 96.7(8) 

S2-O6Bi 1.46(2) O7Bi-S3-O8B 96.7(8) 

S3-O8A 1.415(3) O7Bi-S3-O8Bi 109.4(5) 

S3-O8Ai 1.415(3) O8A-S3-O7A 109.8(2) 

S3-O8B 1.48(2) O8Ai-S3-O7A 108.1(2) 

S3-O8Bi 1.48(2) O8A-S3-O7Ai 108.1(2) 

S3-O7A 1.544(3) O8Ai-S3-O7Ai 109.8(2) 

S3-O7Ai 1.544(3) O8Ai-S3-O8A 122.5(4) 

S3-O7B 1.48(2) O8B-S3-O8Bi 113(2) 

S3-O7Bi 1.48(2) S3-O7A-Si4 130.3(3) 

Si1-O1A 1.713(8) S3-O7B-Si4 136.4(9) 

Si1-O1B 1.77(3) O1A-S1-O2A-Si2 83.5(9) 

Si2-O2A 1.738(7) O1B-S1-O2B-Si2 103(2) 

Si2-O2B 1.69(2) O2A-S1-O1A-Si1 73(2) 

Si3-O5A 1.735(4) O2B-S1-O1B-Si1 74(2) 

Si3-O5B 1.72(2) O3A-S1-O1A-Si1 –38(2) 

Si4-O7A 1.731(3) O3A-S1-O2A-Si2 –163(2) 

Si4-O7B 1.73(2) O3B-S1-O1B-Si1 –48(3) 

O1A-S1-O2A 103.7(5) O3B-S1-O2B-Si2 –142(3) 

O3A-S1-O1A 109.7(5) O4A-S1-O1A-Si1 –170(2) 

O3A-S1-O2A 103.3(8) O4A-S1-O2A-Si2 –35(2) 

O4A-S1-O1A 110.2(8) O4B-S1-O1B-Si1 –177(2) 

O4A-S1-O2A 110.7(5) O4B-S1-O2B-Si2 4(3) 

O4A-S1-O3A 118.1(6) O5Ai-S2-O5A-Si3 –82.1(4) 

O2B-S1-O1B 95(1) O5Bi-S2-O5B-Si3 –51(2) 

O2B-S1-O4B 108(2) O6A-S2-O5A-Si3 30.0(6) 

O3B-S1-O1B 110(2) O6Ai-S2-O5A-Si3 164.1(3) 

O3B-S1-O2B 118(2) O6B-S2-O5B-Si3 69(2) 

O3B-S1-O4B 124(2) O7A-S3-O7B-Si4 –73(2) 

O4B-S1-O1B 98(2) O7Ai-S3-O7A-Si4 –86.8(4) 
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S1-O1A-Si1 137.0(9) O7Bi-S3-O7B-Si4 –47(2) 

S1-O2A-Si2 129.7(7) O8A-S3-O7A-Si4 24.6(5) 

S1-O1B-Si1 121(2) O8A-S3-O7B-Si4 75(2) 

S1-O2B-Si2 138(2) O8B-S3-O7A-Si4 18.4(9) 

O5Ai-S2-O5A 98.1(5) O8B-S3-O7B-Si4 73(2) 

O5B-S2-O5Bi 128(2) O8Bi-S3-O7B-Si4 –171(2) 
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Schema 40. Nummerierungsschema von 20. 
 

 
 

Tabelle 88: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

20. 

 

O1A-S1A 1.588(4) O3A-S1A-O1A 107.5(2) 

O1B-S1B 1.582(8) O3A-S1A-O2A 110.6(5) 

O1C-S1C 1.576(8) O3A-S1A-O4A 113.3(3) 

O6A-S2A 1.587(3) O3B-S1B-O1B 108.5(6) 

O6B-S2B 1.588(6) O3C-S1C-O1C 108(2) 

S1A-O2A 1.431(3) O4A-S1A-O1A 104.2(3) 

S1A-O3A 1.422(6) O4B-S1B-O1B 104.0(7) 

S1A-O4A 1.437(5) O4B-S1B-O3B 111.7(8) 

S1B-O2B 1.436(7) O4C-S1C-O1C 106.4(9) 

S1B-O3B 1.44(2) O4C-S1C-O3C 110(2) 

S1B-O4B 1.438(9) O7A-S2A-O6A 104.0(3) 

S1C-O2C 1.436(8) O7B-S2B-O6B 102.1(6) 

S1C-O3C 1.45(2) O8A-S2A-O6A 106.1(3) 
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S1C-O4C 1.440(9) O8A-S2A-O7A 112.5(3) 

S2A-O7A 1.443(3) O8B-S2B-O6B 105.2(6) 

S2A-O8A 1.443(4) O8B-S2B-O7B 115.0(6) 

S2A-O9A 1.440(4) O8B-S2B-O9B 113.5(9) 

S2B-O7B 1.446(6) O9A-S2A-O6A 106.4(3) 

S2B-O8B 1.415(6) O9A-S2A-O7A 112.4(4) 

S2B-O9B 1.446(7) O9A-S2A-O8A 114.4(4) 

Si1A-O1A 1.683(2) O9B-S2B-O6B 105.5(8) 

Si1B-O1B 1.677(5) O9B-S2B-O7B 114.0(8) 

Si1C-O1C 1.670(7) P1-O5-Si2 150.5(2) 

Si2-O5 1.677(2) P2-O10-Si4 142.3(2) 

Si3A-O6A 1.684(4) Si1A-O1A-S1A-O2A 136.8(4) 

Si3B-O6B 1.675(6) Si1A-O1A-S1A-O3A 18.7(4) 

Si4-O10 1.686(2) Si1A-O1A-S1A-O4A −1 1. ( 4  

P1-O5 1.548(2) Si1B-O1B-S1B-O2B −1  .5(    

P2-O10 1.555(2) Si1B-O1B-S1B-O3B −  . (    

S1A-O1A-Si1A 127.5(2) Si1B-O1B-S1B-O4B 90.3(9) 

S1B-O1B-Si1B 131.2(5) Si1C-O1C-S1C-O2C −1 7(   

S2A-O6A-Si3A 126.7(4) Si1C-O1C-S1C-O3C 142(2) 

S2B-O6B-Si3B 126.0(8) Si1C-O1C-S1C-O4C 24(2) 

S1C-O1C-Si1C 137.0(9) Si3A-O6A-S2A-O7A 142.0(4) 

O2A-S1A-O1A 105.5(4) Si3A-O6A-S2A-O8A −99.1(4) 

O2A-S1A-O4A 114.9(4) Si3A-O6A-S2A-O9A 23.1(6) 

O2B-S1B-O1B 111.2(8) Si3B-O6B-S2B-O7B 145(2) 

O2B-S1B-O3B 100.5(9) Si3B-O6B-S2B-O8B −96(2) 

O2B-S1B-O4B 120.6(9) Si3B-O6B-S2B-O9B 25(2) 

O2C-S1C-O1C 117(2)   

O2C-S1C-O3C 102(2)   

O2C-S1C-O4C 116(2)   
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Schema 41. Nummerierungsschema von 22. 
 

 
 

Tabelle 89: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

22. 

 

O2-P2 1.542(3) O5-S1-O6 106.0(2) 

O2-Si2 1.675(3) O7-S2-O6 108.2(2) 

P1-O1 1.542(3) O7-S2-O8 114.8(2) 

S1-O3 1.446(3) O7-S2-O9 115.2(2) 

S1-O4 1.429(3) O8-S2-O6 104.3(2) 

S1-O5 1.418(3) O8-S2-O9 112.5(2) 

S1-O6 1.666(3) O9-S2-O6 100.2(2) 

S2-O6 1.639(3) P1-O1-Si1 152.4(2) 

S2-O7 1.422(3) P2-O2-Si2 154.7(2) 

S2-O8 1.437(3) S2-O6-S1 123.2(2) 

S2-O9 1.447(3) O3-S1-O6-S2 152.4(2) 

Si1-O1 1.681(3) O4-S1-O6-S2 −  .7(    

O3-S1-O6 99.7(2) O5-S1-O6-S2 32.9(3) 

O4-S1-O3 115.0(2) O7-S2-O6-S1 44.1(3) 

O4-S1-O6 103.6(2) O8-S2-O6-S1 −7 .5(    

O5-S1-O3 115.0(2) O9-S2-O6-S1 165.0(2) 

O5-S1-O4 116.0(2)   
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Schema 42. Nummerierungsschema von 24. 

 

 
 

Tabelle 90: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 

24. 
 

K1-O1 2.893(2) Si1A-C2A K1-O1 

K1-O2 2.825(2) Si1A-C3A K1-O2 

K1-O3 2.922(2) Si1A-C1C K1-O3 

K1-O4 2.772(2) Si1A-C2C K1-O4 

K1-O5 2.947(2) Si1A-C3C K1-O5 

K1-O6 2.830(2) Si1B-C1B K1-O6 

S1-Si1A 2.064(3) Si1B-C2B S1-Si1A 

S1-Si1B 2.03(2) Si1B-C3B S1-Si1B 

S1-K1 3.1259(9) Si1A-S1-K1 S1-K1 

Si1A-C1A 1.861(8) Si1B-S1-K1 Si1A-C1A 
 
  



 
275 

Abbildung 44. Ball-and-Stick-Darstellung von [(Me3Si)3S][B(C6F5)4] (25). 
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Schema 43. Nummerierungsschema von 28. 

 

 

 
Tabelle 91: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
28. 
 

B1-C1 1.631(4) N1-B1-C13A 107.6(2) 

B1-C7 1.639(4) N1-B1-C7 108.4(2) 

B1-C13A 1.635(4) O1-S1-N1 114.3(2) 

B1-C13B 1.62(2) S1-N1-B1 126.7(2) 

N1-B1 1.624(3) S1-N1-H1 119(2) 

N1-H1 0.87(3) O1-S1-N1-B1 –175.7(2) 

O1-S1 1.427(2) S1-N1-B1-C1 109.0(2) 

S1-N1 1.530(2) S1-N1-B1-C7 –12.2(3) 

B1-N1-H1 115(2) S1-N1-B1-C13A –127.8(2) 

C13B-B1-N1 111.5(7) S1-N1-B1-C13B –128.6(7) 
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N1-B1-C1 102.3(2)   
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Schema 44. Nummerierungsschema von α-30. 

 

 

 

Tabelle 92: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
α-30. 

 

N1-B1 1.598(2) C16-B1-C10 113.1(2) 

S1-N1 1.445(2) N1-B1-C4 103.7(2) 

S1-O1 1.556(2) N1-B1-C10 102.3(2) 

Si1-O1 1.742(2) N1-B1-C16 109.8(2) 

Si1-C1 1.835(2) N1-S1-O1 117.08(8) 

Si1-C2 1.836(2) O1-Si1-C1 107.14(8) 

Si1-C3 1.838(2) O1-Si1-C2 105.91(9) 

C1-Si1-C2 112.2(2) O1-Si1-C3 102.11(9) 

C1-Si1-C3 114.8(2) S1-N1-B1 150.6(2) 

C2-Si1-C3 113.7(2) S1-O1-Si1 129.82(8) 

C4-B1-C10 114(2) O1-S1-N1-B1 −1.1(3) 



 
279 

C16-B1-C4 113.2(2) N1-S1-O1-Si1 164.88(9) 
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Schema 45. Nummerierungsschema von β-30. 

 

 

 

Tabelle 93: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
β-30. 

 

B1-N1 1.576(2) C16-B1-C4 114.4(2) 

S1-N1 1.453(2) N1-B1-C4 100.0(2) 

S1-O1 1.543(2) N1-B1-C10 108.5(2) 

Si1-O1 1.751(2) N1-B1-C16 111.6(2) 

Si1-C1 1.841(2) N1-S1-O1 116.32(8) 

Si1-C2 1.826(2) O1-Si1-C1 104.26(9) 

Si1-C3 1.829(2) O1-Si1-C2 107.37(9) 

C2-Si1-C1 112.2(2) O1-Si1-C3 100.33(9) 

C2-Si1-C3 115.9(2) S1-N1-B1 145.3(2) 

C3-Si1-C1 115.2(2) S1-O1-Si1 132.75(9) 

C10-B1-C4 115.1(2) O1-S1-N1-B1 10.3(2) 
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C10-B1-C16 107.4(2) N1-S1-O1-Si1 –149.7(2) 
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Schema 46. Nummerierungsschema von 31. 

 

 

 

Tabelle 94: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
31. 

 

Ga1-Cl1 2.1624(4) S1-N1-Ga1 114.24(6) 

Ga1-Cl2 2.1550(4) S1-N1-Si1 122.93(6) 

Ga1-Cl3 2.1354(4) Si1-N1-Ga1 122.44(6) 

N1-Ga1 2.004(2) N1-Ga1-Cl1 105.37(3) 

N1-S1 1.540(2) N1-Ga1-Cl2 106.13(3) 

N1-Si1 1.862(2) N1-Ga1-Cl3 109.10(3) 

O1-S1 1.439(2) Cl2-Ga1-Cl1 110.73(2) 

Si1-C1 1.843(2) Cl3-Ga1-Cl1 112.59(2) 

Si1-C2 1.843(2) Cl3-Ga1-Cl2 112.47(2) 

Si1-C3 1.846(2) S1-N1-Si1-C1 166.05(8) 

C1-Si1-C3 112.32(8) S1-N1-Si1-C2 47.1(2) 

C2-Si1-C1 110.90(8) S1-N1-Si1-C3 −75.33(9) 

C2-Si1-C3 115.45(8) Si1-N1-S1-O1 −0.2(2) 

C1-Si1-N1 106.87(6) Ga1-N1-S1-O1 −173.06(6) 

C2-Si1-N1 107.30(6) Ga1-N1-Si1-C1 −21.58(9) 

C3-Si1-N1 103.22(6) Ga1-N1-Si1-C2 −140.59(8) 

O1-S1-N1 114.59(6) Ga1-N1-Si1-C3 97.04(8) 
Schema 47. Nummerierungsschema von 34. 
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Tabelle 95: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
2. 
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O1A-Si1A 1.716(4) O1A-P1A-O3A 107.9(3) 

O1B-Si1B 1.71(3) O3B-P1B-O1B 116(2) 

O1C-Si1C 1.71(3) O3C-P1C-O1C 116(3) 

O2A-Si2A 1.702(5) O1A-P1A-O4A 111.5(3) 

O2B-Si2B 1.73(4) O1B-P1B-O4B 95(2) 

O2C-Si2C 1.73(4) O1C-P1C-O4C 96(2) 

O3A-Si3A 1.692(6) O2A-P1A-O3A 110.9(3) 

O3B-Si3B 1.94(4) O3B-P1B-O2B 119(2) 

O3C-Si3C 1.94(4) O3C-P1C-O2C 119(2) 

O4A-Si4A 1.721(5) O4A-P1A-O2A 109.3(3) 

O4B-Si4B 1.88(4) O2B-P1B-O4B 109(2) 

O4C-Si4C 1.89(4) O2C-P1C-O4C 109(2) 

P1A-O1A 1.512(5) O4A-P1A-O3A 107.4(3) 

P1B-O1B 1.52(4) O3B-P1B-O4B 109(2) 

P1C-O1C 1.51(4) O3C-P1C-O4C 108(2) 

P1A-O2A 1.513(5) P1A-O1A-Si1A 138.2(3) 

P1B-O2B 1.51(4) P1B-O1B-Si1B 140(2) 

P1C-O2C 1.51(4) P1C-O1C-Si1C 143(3) 

P1A-O3A 1.548(5) P1A-O2A-Si2A 140.9(3) 

P1B-O3B 1.37(3) P1B-O2B-Si2B 151(2) 

P1C-O3C 1.38(4) P1C-O2C-Si2C 155 (3) 

P1A-O4A 1.512(5) P1A-O3A-Si3A 137.4(3) 

P1B-O4B 1.57(3) P1B-O3B-Si3B 125(2) 

P1C-O4C 1.58(3) P1C-O3C-Si3C 124(2) 

O1A-P1A-O2A 109.8(3) P1A-O4A-Si4A 136.0(3) 

O2B-P1B-O1B 106(2) P1B-O4B-Si4B 137(2) 

O2C-P1C-O1C 108(3) P1C-O4C-Si4C 134(2) 
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Schema 48. Nummerierungsschema von 34. 

 

 

 

Tabelle 96: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
34. 

 

P1-O1A 1.519(2) O2B-P1-O3B 115.6(7) 

P1-O1B 1.63(2) O2B-P1-O4 119.6(5) 

P1-O2A 1.534(2) O3A-P1-O1A 110.36(8) 

P1-O2B 1.42(2) O3A-P1-O2A 109.18(7) 
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P1-O3A 1.509(2) O3A-P1-O4 111.28(8) 

P1-O3B 1.52(2) O3B-P1-O1B 102.8(7) 

P1-O4 1.521(2) O3B-P1-O4 98.5(5) 

O1A-Si1A 1.713(2) O4-P1-O1B 110.5(4) 

O1B-Si1B 1.717(8) O4-P1-O2A 107.94(7) 

O2A-Si2A 1.719(2) P1-O1A-Si1A 139.89(9) 

O2B-Si2B 1.715(8) P1-O1B-Si1B 142.2(8) 

O3A-Si3A 1.707(2) P1-O2A-Si2A 138.45(9) 

O3B-Si3B 1.688(8) P1-O2B-Si2B 144.3(9) 

O4-Si4 1.721(1) P1-O3A-Si3A 150.7(2) 

O1A-P1-O2A 110.43(8) P1-O3B-Si3B 149(2) 

O1A-P1-O4 107.61(7) P1-O4-Si4 138.22(8) 

O2B-P1-O1B 108.5(6)   
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Schema 49. Nummerierungsschema von 35. 
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Tabelle 97: Ausgewählte Bindungslängen [Å], -winkel [°] und Diederwinkel [°] von 
35. 

 
K1-O1 2.96(2) O17A-P2A-O18A 117.4(3) 

K1-O2 2.826(2) O17B-P2B-O18B 117.7(8) 

K1-O3 2.938(2) O17A-P2A-O19A 109.4(3) 

K1-O4 2.851(2) O17B-P2B-O19B 108.9(8) 

K1-O5 2.975(2) O17A-P2A-O20A 108.5(3) 

K1-O6 2.834(2) O17B-P2B-O20B 108.3(8) 

K1-O7 3.016(2) O18A-P2A-O19A 109.8(2) 

K1-O8 2.669(2) O18B-P2B-O19B 109.3(6) 

K2-O11 2.972(2) O18A-P2A-O20A 110.2(2) 

K2-O12 2.843(2) O18B-P2B-O20B 109.8(5) 

K2-O13 3.044(2) O19A-P2A-O20A 100.2(2) 

K2-O14 2.837(2) O20B-P2B-O19B 101.6(4) 

K2-O15 2.898(2) P1-O9-Si1 135.79(9) 

K2-O16 2.829(2) P1-O10-Si2 131.60(8) 

K2-O17A 2.796(7) P2A-O20A-Si3A 132.2(2) 

K2-O17B 2.82(2) P2B-O20B-Si3B 131.8(5) 

K2-O18A 2.783(5) P2A-O19A-Si4A 136.4(2) 

K2-O18B 2.71(2) P2B-O19B-Si4B 133.7(5) 

P1-O7 1.483(2) O7-P1-O9-Si1 15.8(2) 

P1-O8 1.481(2) O7-P1-O10-Si2 1.4(2) 

P1-O9 1.588(2) O8-P1-O9-Si1 −115.4(2) 

P1-O10 1.6(2) O8-P1-O10-Si2 131.9(2) 

P2A-O17A 1.481(3) O9-P1-O10-Si2 −115.9(2) 

P2A-O18A 1.483(3) O10-P1-O9-Si1 132.4(2) 

P2A-O19A 1.597(3) O17A-P2A-O19A-Si4A −92.6(4) 

P2A-O20A 1.602(2) O17B-P2B-O19B-Si4B −53(2) 

P2B-O17B 1.480(7) O17B-P2B-O20B-Si3B −160(2) 

P2B-O18B 1.481(7) O18A-P2A-O19A-Si4A 137.1(4) 

P2B-O20B 1.593(6) O18B-P2B-O19B-Si4B 177.3(7) 

P2B-O19B 1.600(6) O18B-P2B-O20B-Si3B −30(2) 
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O19A-Si4A 1.645(3) O19B-P2B-O20B-Si3B 85.9(8) 

O19B-Si4B 1.632(6) O20A-P2A-O19A-Si4A 21.3(4) 

O20A-Si3A 1.640(3) O20B-P2B-O19B-Si4B 61.3(8) 

O20B-Si3B 1.641(7)   

Si1-O9 1.64(2)   

Si2-O10 1.648(2)   

O7-P1-O9 111.30(8)   

O7-P1-O10 110.56(8)   

O9-P1-O10 99.61(8)   

O8-P1-O7 118.17(8)   

O8-P1-O9 107.85(9)   

O8-P1-O10 107.69(9)   
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5.6 NMR-Spektren 
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Abbildung 45. 1H-NMR-Spektrum (300.13 MHz) von 19 in Toluol-[D8]. 
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Abbildung 46. 13C{1H}-NMR-Spektrum (75.47 MHz) von 19 in Toluol-[D8].  



293 

 
Abbildung 47. 17O-NMR-Spektrum (67.83 MHz) von 19 in Toluol-[D8].  
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Abbildung 48. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 19 in Toluol-[D8]. 
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Abbildung 49. 1H-NMR-Spektrum (300.13 MHz) von 20 in CD2Cl2 bei 25 °C. 
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Abbildung 50. 1H-NMR-Spektrum (500.13 MHz) von 20 in CD2Cl2 bei 25 °C. 
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Abbildung 51. 1H-NMR-Spektrum (500.13 MHz) von 20 in CD2Cl2 bei −20 °C. 
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Abbildung 52. 13C{1H}-NMR-Spektrum (75.47 MHz) von 20 in CD2Cl2. 
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Abbildung 53. 17O-NMR-Spektrum (67.83 MHz) von 20 in CD2Cl2. 
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Abbildung 54. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 20 in CD2Cl2. 
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Abbildung 55. 1H-NMR-Spektrum (300.13 MHz) von 21 in Toluol-[D8].  
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Abbildung 56. 11B-NMR-Spektrum (96.29 MHz) von 21 in Toluol-[D8].  



303 

 
Abbildung 57. 13C{1H}-NMR-Spektrum (75.48 MHz) von 21 in Toluol-[D8].  
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Abbildung 58. 17O-NMR-Spektrum (67.83 MHz) von 21 in Toluol-[D8].  
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Abbildung 59. 19F{1H}-NMR-Spektrum (282.38 MHz) von 21 in Toluol-[D8].  
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Abbildung 60. 29Si INEPT-NMR-Spektrum (59.62 MHz) von 21 in Toluol-[D8].  



307 

 
Abbildung 61. 1H-NMR-Spektrum (300.13 MHz) von 21 in 1,2-DCB.  Extern auf Toluol-[D8] referenziert. 
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Abbildung 62. 1H-NMR-Spektrum (300.13 MHz) von 21 in 1,2-DCB. Extern auf Toluol-[D8] referenziert. Vergrößerter Signalbereich 
der Alkylgruppen. 
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Abbildung 63. 11B-NMR-Spektrum (96.29 MHz) von 21 in 1,2-DCB.  
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Abbildung 64. 13C{1H}-NMR-Spektrum (75.48 MHz) von 21 in 1,2-DCB. Extern auf Toluol-[D8] referenziert.  
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Abbildung 65. 13C{1H}-NMR-Spektrum (75.48 MHz) von 21 in 1,2-DCB. Extern auf Toluol-[D8] referenziert. Vergrößerter 
Signalbereich der Alkylgruppen.  
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Abbildung 66. 13C{1H}-NMR-Spektrum (75.48 MHz) von 21 in 1,2-DCB. Extern auf Toluol-[D8] referenziert. Vergrößerter 
Signalbereich der Alkylgruppen.  
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Abbildung 67. 17O-NMR-Spektrum (67.83 MHz) von 21 in 1,2-DCB.  
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Abbildung 68. 19F{1H}-NMR-Spektrum (282.38 MHz) von 21 in 1,2-DCB.  
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Abbildung 69. 29Si INEPT-NMR-Spektrum (59.62 MHz) von 21 in 1,2-DCB.  
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Abbildung 70. 1H-NMR-Spektrum (300.13 MHz) von 23 in THF-[D8]. 
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Abbildung 71. 13C{1H}-NMR-Spektrum (75.47 MHz) von 23 in THF-[D8]. 
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Abbildung 72. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 23 in THF-[D8]. 
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Abbildung 73. 1H-NMR-Spektrum (300.13 MHz) von 24 in THF-[D8]. 
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Abbildung 74. 13C{1H}-NMR-Spektrum (75.47 MHz) von 24 in THF-[D8]. 
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Abbildung 75. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 24 in THF-[D8]. 
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Abbildung 76. 1H-NMR-Spektrum (300.13 MHz) von 25 in Toluol. Extern auf CD2Cl2 referenziert. Spektrum direkt aus der 
Reaktionslösung heraus aufgenommen. 
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Abbildung 77. 11B-NMR-Spektrum (96.29 MHz) von 25 in Toluol. 
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Abbildung 78. 13C{1H}-NMR-Spektrum (75.47 MHz) von 25 in Toluol.  
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Abbildung 79. 19F{1H}-NMR-Spektrum (282.38 MHz) von 25 in Toluol. 
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Abbildung 80. 29Si{1H}-IG-NMR-Spektrum (59.63 MHz) von 25 in Toluol. 
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Abbildung 81. 1H-NMR-Spektrum (300.13 MHz) von 25 in 1,2-DCB. Extern auf Aceton-[D6] referenziert. 
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Abbildung 82. 11B-NMR-Spektrum (96.29 MHz) von 25 in 1,2-DCB. 
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Abbildung 83. 13C{1H}-NMR-Spektrum (75.47 MHz) von 25 in 1,2-DCB. Extern auf Aceton-[D6] referenziert. 
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Abbildung 84. 19F{1H}-NMR-Spektrum (282.38 MHz) von 25 in 1,2-DCB.  
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Abbildung 85. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 25 in 1,2-DCB. 
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Abbildung 86. 1H-NMR-Spektrum (300.13 MHz) von 33 in CD2Cl2. 
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Abbildung 87. 13C{1H}-NMR-Spektrum (75.47 MHz) von 33 in CD2Cl2. 
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Abbildung 88. 17O-NMR-Spektrum (67.80 MHz) von 33 in CD2Cl2. 
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Abbildung 89. 17O-NMR-Spektrum (67.80 MHz) von 33 in CD2Cl2, vergrößerter Signalausschnitt 
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Abbildung 90. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 33 in CD2Cl2. Der Stern markiert das Signal von (Me3Si)2O. 



337 

 
Abbildung 91. 31P{1H}-NMR-Spektrum (121.51 MHz) von 33 in CD2Cl2. 
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Abbildung 92. 1H-NMR-Spektrum (300.13 MHz) von 34 in CD2Cl2. 
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Abbildung 93. 11B-NMR-Spektrum (96.29 MHz) von 34 in CD2Cl2. 
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Abbildung 94. 13C{1H}-NMR-Spektrum (75.47 MHz) von 34 in CD2Cl2. 



341 

 
Abbildung 95. 17O-NMR-Spektrum (67.80 MHz) von 34 in CD2Cl2. 



342 

 
Abbildung 96. 19F-NMR-Spektrum (282.24 MHz) von 34 in CD2Cl2. 



343 

 
Abbildung 97. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 34 in CD2Cl2. 



344 

 
Abbildung 98. 31P{1H} NMR-Spektrum (121.49 MHz) von 34 in CD2Cl2. 
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Abbildung 99. 1H NMR-Spektrum (300.13 MHz) von 35 in CD2Cl2. 



346 

 
Abbildung 100. 13C{1H}-NMR-Spektrum (75.47 MHz) von 35 in CD2Cl2.  



347 

 
Abbildung 101. 29Si INEPT-NMR-Spektrum (59.62 MHz) von 35 in CD2Cl2.  
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Abbildung 102. 29Si INEPT-NMR-Spektrum (59.62 MHz) von 35 in CD2Cl2. Vergrößerter Signalausschnitt 



349 

 
Abbildung 103. 31P{1H}-NMR-Spektrum (121.51 MHz) von 35 in CD2Cl2.  
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Abbildung 104. !H-NMR-Spektrum (300.13 MHz) von 37 in THF-[D8]. 
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Abbildung 105. !H-NMR-Spektrum (300.13 MHz) von 37 in THF-[D8], vergrößerter Signalausschnitt.  



352 

 
Abbildung 106. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 37 in THF-[D8]. 
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Abbildung 107. 29Si INEPT-NMR-Spektrum (59.63 MHz) von 37 in THF-[D8], vergrößerter Signalausschnitt.  
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Abbildung 108. 17O-NMR-Spektrum (67.83 MHz) von K2SO4 in D2O. 



355 

 
Abbildung 109. 1H-NMR-Spektrum (300.13 MHz) von Me3SiOCMe3/DME in CD2Cl2. 



356 

 
Abbildung 110. 13C{1H}-NMR-Spektrum (75.47 MHz) von Me3SiOCMe3/DME in CD2Cl2. 



357 

 
Abbildung 111. 29Si INEPT-NMR-Spektrum (59.63 MHz) von Me3SiOCMe3/DME in CD2Cl2. 



358 

 
Abbildung 112. 17O-NMR-Spektrum (67.83 MHz) von reiner 95 %-iger H2SO4, ohne Lösungsmittel.  



359 

 
Abbildung 113. 17O-NMR-Spektrum (67.83 MHz) von Na2[SO3]. Der Stern markiert das Lösungsmittel D2O.  
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Abbildung 114. 1H-NMR-Spektrum (300.13 MHz) von K[OC(CH3)3] in THF-[D8]. 



361 

 
Abbildung 115. 13C{1H}-NMR-Spektrum (75.48 MHz) von K[OC(CH3)3] in THF-[D8]. 



362 

 
Abbildung 116. 1H-NMR-Spektrum (300.13 MHz) von OPMe3 in CD2Cl2. 



363 

 
Abbildung 117. 13C{1H}-NMR-Spektrum (75.47 MHz) von OPMe3 in CD2Cl2. 



364 

 
Abbildung 118. 17O-NMR-Spektrum (67.82 MHz) von OPMe3 in CD2Cl2. 



365 

 
Abbildung 119. 31P{1H}-Spektrum (121.51 MHz) von OPMe3 in CD2Cl2. 



366 

 
Abbildung 120. 1H-NMR-Spektrrum (300.13 MHz) von KH2[PO4] in D2O.  



367 

 
Abbildung 121. 17O-NMR-Spektrum (67.82 MHz) von KH2[PO4] in D2O. 



368 

 
Abbildung 122. 31P-NMR-Spektrum (121.49 MHz) von KH2[PO4] in D2O.
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5.6 IR- und Raman-Spektren 
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Abbildung 123. IR- (rot) und Raman- (grün) Spektrum von 19. 
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Abbildung 124. IR- (rot) und Raman- (grün) Spektrum von 20. 



372 

 
Abbildung 125. IR- (rot) und Raman- (grün) Spektrum von 23. 



373 

 
Abbildung 126. IR- (rot) und Raman- (grün) Spektrum von 24. 
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Abbildung 127. Raman-Spektrum von 25. 



375 

 
Abbildung 128. IR- (rot) und Raman- (grün) Spektrum von 33. 



376 

 
Abbildung 129. IR- (rot) und Raman- (grün) Spektrum von 34. Der Stern markiert die Valenzschwingung von Wasser ν(H2O), 
welche durch die rasche Hydrolyse der Probe entsteht.  
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Abbildung 130. IR- (rot) und Raman- (grün) Spektrum von 35. 
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Abbildung 131. IR- (rot) und Raman- (grün) Spektrum von 37. 
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Abbildung 132. Raman-Spektrum von H2SO4. 



380 

 
Abbildung 133. IR- (rot) und Raman- (grün) Spektrum von K2SO4. 



381 

 
Abbildung 134. IR- (rot) und Raman- (grün) Spektrum von Na2[SO3]. 



382 

 
Abbildung 135. IR- (rot) und Raman- (grün) Spektrum von K[OC(CH3)3]. 



383 

 
Abbildung 136. Raman-Spektrum von OPMe3.  



384 

 
Abbildung 137. IR- (rot) und Raman- (grün) Spektrum von KH2[PO4]. 
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