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ABSTRACT  
Brain-computer interfaces (BCI) assist disabled person to control many appliances without 

any physically interaction (e.g., pressing a button). BCI systems are still very limited 

especially with reliable application because, the mechanism of human-brain responses are not 

sufficiently understood. Steady-state visual evoked potential (SSVEP) is brain activities 

elicited by synchrony evoked signals that are observed by visual stimuli paradigm. The 

observant signals of SSVEP are presented as harmony oscillation responses provoked by 

gathering brain activities occupied in quest electroencephalography (EEG). These occupation 

signals contain fundamental frequencies and harmonics described by amplitude, magnitude 

and phase corresponding to base-frequency of visual stimulation. In this dissertation were 

addressed the problems which are oblige more usability of BCI-system by optimising and 

enhancing the performance using particular design. The prototype design includes SSVEP 

methodology paradigms of brain activities. Main contribution of this work is improving and 

increasing the reliability of brain reaction response of SSVEP paradigm depending on two 

focal approaches: (1) achieving maximum cortical brain responses to use further in BCI 

applications as multiple commands depending on visual stimulation which constrained by 

multiple frequency, different dynamic colours, regular/irregular paradigms, changing levels 

on duty-cycle and multi-patterns. Those various stimulation paradigms reveal growth activity 

by increasing the measurable SSVEP signals that enhance brain waveform responses based-

BCI technologies; (2) developing adaptive sensitive algorithm to extract the features of weak 

SSVEP response from non-stationary signal that stimuli by aperiodic flicker oscillations using 

multi-threading process. In this study used variety visual stimulation that exploited the 

foundation of SSVEP to distinguish reveal features of brain responses. The approaches 

demonstrate the optimal frequency that achieves a maximum response from brain cortical. 

Furthermore, the presented work concerns three different dynamic colours that assess diverse 

effects on brain activities, allowing an improved and enhanced system design based on the 

lassitude of BCI users. Additional, this study applies a new paradigm of regular/irregular 

based-stimulation to explore the influences of brain response that directly increment the BCI-

commands; beyond visual stimulations provide different duty-cycles and multiple patterns in 

specific condition to present pragmatic and continuous brain responses. These attribute are 

rendered methodology to enhance performance the BCI system. The research study has 

engaged offline analysis topography to reveal the features of human-brain capability by 
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discriminating between response activities based on SSVEP fundamentals. Similarly, a 

configuration and setting of all empirical studies has considered a symmetrical balance in 

each individual experimental study. Consequently, a promising result achieves greater 

applicability based on brain response that increased the BCI-command numbers and enhances 

the extrication of SSVEP response signals. In general, substantial differences between 

stimulation states that contributed many valuable characteristics in BCI-system performance. 

The outcome results suggest a particular design of SSVEP-BCI based system that provides 

the possibility of a more highly accurate and reliable system without user training. This result 

could lead to robust BCI application-based brain response estimates in unsupervised clinical 

and e-home environment settings, as well as in other challenges of brain-technology tasks in 

the service of society. 
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CHAPTER1 
 

1. INTRODUCTION  
 

Brain-computer interface (BCI) is shared boundary across systems that obtained two 

separate units are represent on human-brains and certain machine such as computer system 

to exchange interaction information. The brain is the human-control centre that responds to 

observation and processes certain reactions. Different parts of the human-brain (lobes) are 

stimulated when a person focuses attention on a flickering spotlight, which creates an electric 

potential signal that reflects the neural firing of brain cells. These potential signals can be 

observed through recording signals based on electroencephalography (EEG). This technique 

of EEG is widely used to gather brain activity and providing an excellent temporal resolution, 

which is adorn as a non-invasive technique based on BCI system. The recorded signals from 

neurons are enabled to control definite actions using BCI methodology. The BCI structure is 

containing of communication system used the compute-system based-software/hardware co-

design. These kind paradigms allow control of any electronic device, such as wheelchair-

motorised, prosthetic limb, or any other elec.-device. The steady-state visual evoked potential 

(SSVEP) is a classified as responses that presents the influence of brain activities which 

attractive with external visual stimuli. In this dissertation were focuses on increasing the 

number of brain reaction responses by optimising and enhancing the feature of extractions 

using SSVEP paradigms. In additions, different empirical approaches have been described 

based on diverse categories, such as multifarious frequencies, three different colours, several 

duty-cycle levels, and multiple patterns, which thereby affect to increase the BCI commands 

and enhance to adapt algorithm that extract reaction based-multiple computing. 
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1.1 Research Motivation  

Some serious diseases such as spinal cord injury (SCI) or amyotrophic lateral sclerosis 

(ALS) restrict the human-neural pathway-system. Nowadays, support disabled people to 

control the electronic/electronic machines, such as a computer, wheelchair and artificial-limb 

using (gaze tracking technique system or control stick held between the teeth) which are allow 

to control and enabled to move cursor computer monitor. However, not all these devices are 

convenient to use. Therefore, there are good alternative input devices based on brain-

computer interface (BCI) that establish a control system depending on direct communicate 

channel between machine and human-brain. The BCI technique is assist the incapacitated-

person and increase the productivity of healthy people based on brain technology. In BCI 

systems, the human-brain response signals are processed and acquired to extract specific 

features that reflect‎the‎user’s‎intent.‎These‎features‎are‎translated‎into‎certain reaction based-

BCI commands to activate device operations.  

 

Figure ‎1.1: Common structure of based brain-computer interface (BCI) system [170] 

This contribution work of this dissertation is motivated to employ the BCI technique to 

improve brain responses by increasing reaction-command number based-system; however is 

enhancing the feature extraction based on multiple analysis approaches. Figure 1.1 shows the 

main structure of BCI system, which includes the stimulation panels of visual stimuli and 

gathered brain activities to amplify and digitize the signals. The brain response activities are 
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extracted and translated into different commands by a decoded the pertinent of EEG signals. 

Those BCI-reactions are representing a control commands signals, which are dominate on 

certain device, such as wheelchair (motorised), or prosthetic-limb controller or speller 

alphabet device. Particular, the EEG raw signal has commonly used to recognize and 

extracting the dynamic responses of brain activities. One such a method based on the steady-

state visual evoked potentials (SSVEP), which is represented the extraction brain responses 

paradigm. The SSVEP paradigms can be recorded during visual stimulus, which is directed 

effect on brain responses with respect to frequency of flicker-light. Since the visual stimulator 

plays an important role, it can be presented on a computer screen using flashing spotlights or 

flickers grids of (LEDs) that allow to consider different stimulation parameters such as 

pattern, frequency and position. However, the present flickers of standalone lights/LED is 

more flexible than a computer monitors because, the number refresh/frame of screen-monitor 

is always limited by flicker frequency and non-stability that restricted by refresh rate of 

monitor type. Therefore, the LEDs flicker (light/spots) with band of frequency and pattern 

with respect of phase-tagged triggers (PTT) is support to indict the temporal and phase of that 

response. The promising assessment of existing SSVEP based BCI systems cannot realize full 

potential signals due to difficulties of low signal to noise ratios (SNRs) extraction based on a 

single trial of gathered EEG signals. Although, the multiple trials are prevented to increase the 

number of BCI commands because time evoked stimuli signal with respect to EEG recording; 

however, decreasing EEG electrodes based on brain region is optimally more convenient 

which are typically used in BCI-systems 

1.2 General Problems Statements based on BCI techniques  

Brain-computer interface (BCI) researchers invariably face substantial problems. In general, 

any types of non-invasive BCI design system still a way to achieve a robust reaction of brain 

responses based on BCI-system design, due to several important issues, namely: 

 The feature of signal response is uncompleted extraction and hard-classification that 

restrict incoming results especially when increasing the BCI reaction commands  

 Low signal-to-noise-ratios (SNRs) based on single-stimulus-trial which essentially require 

a long-time that exhausts the BCI user from intent onset recognition 

 Inadequate of brain response to recognition due to undesirable signal of inter-brain 

activities of artifacts that decreased reaction command numbers based-BCI design 
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 Demand more pay-attentions on stimulation paradigm to evoke powerful brain activity 

which generates fatigue and neglect because of distortion  response signals  

 Continuous attentiveness procedure will lead to increase exhaust and  fatigue the BCI-user 

after few work-hours operation that minimal distractions the brain activities  

 Bulky and expensive equipment which are employed to build a BCI system leads to a 

complicated computational analysis of extraction features and difficult configuration and 

usability  

1.3 SSVEP Paradigm Problems based on BCI techniques 

In this study, have been concerned the brain reaction response signals, which are exploited 

based on steady-state visual evoked potential (SSVEP) paradigms. The SSVEP response is 

elicited from the brain cortex. However, this paradigm easily extracts features from brain 

activity responses, which are dependent on synchrony by observing flickering of visual 

stimuli. Additionally, the SSVEP approach provides a good advantage based-BCI design, 

because this type of paradigm affords a high brain response in terms of executed time and 

conversely with other paradigm types. Correspondingly, the disadvantages revealed in SSVEP 

paradigm based on BCI tetralogy are summarised by:    

 Strenuous to adjust and setup the adequate flicker (spot light) of based on band of 

multiple-frequency in each stimuli to evoke strong SSVEP response signal 

 The stimuli of flicker LEDs are closely to each other which prompt higher eye artifacts 

and increase user fatigue 

 Reduce the electrodes numbers of acquisition data which are acquired from brain-lobes 

lead to confer a decent insight signals that enhanced the BCI performance 

 Need to understand of perception on SSVEP mechanisms that enhancement the reaction of 

brain responses to increase commands based-BCI system 

 Extraction signal feature using a complicated method based on signal processing process 

with respect to parametrization of frequency that  increased the analysis and extraction 

time  

 Existing SSVEP-based paradigm have not sufficient ability to realize the desired potential 

signals, due to a weak occupier protrusion of brain responses that are gathered from 

complicated EEG signals based on a single-trial stimulation 
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1.4 Contribution and Addressing Problems  

In these empirical studies were depending on existing SSVEP response signals with a low-

cost BCI prototype that has used 24 flicker LEDs representing as flicker spotlight. A multiple 

stimulations paradigm has been used in order to evoke a sufficiently robust, measurable brain 

response. These paradigms cover most visual stimulation, which are extracted from 

brainwaves based on activity and response; however, reduce the tiredness and fatigue of BCI-

users that are increased the artifacts and restrict extract feature to enhance performance. In 

addition, most brain-computer interface is implementing as system that have fulfil the main 

criteria based on BCI categories [5]. The thesis addresses the existing problems, which are 

described in the previous sections. Therefore, a practical design of BCI prototype was created 

to remove obstacles artifacts and engage to extract feature based on offline analysis. This 

contribution work is present a laboratory research that proved a new approach based-BCI 

design. The outcome results pursuing the aims of this thesis contribution that are presented in 

two main objectives:    

 Evaluate to optimise a different stimulus paradigms that achieve a maximum cortical 

response at different brain region to be further used in BCI-applications based on various 

empirical studies. Estimate a paradigm that used different frequency, diverse colours, 

regular/irregular of periodic and non-periodic stimulation evoked signals; however, 

easement dissimilar duty-cycle levels; in addition evaluate a multiple patterns stimulation 

effect. All these experimental studies have been implemented to increase and enhance the 

measurable signal that contents a SSVEP-response, which substantially incremented the 

BCI-command numbers based on the reaction of brain activities. Thus experiments are 

reveal growth to use in brain technologies based on the these contribution of different 

studies  

 Improve adaptive extract algorithm that depends on multi-thread process using new 

approach. This assessment is discipline a parallel computing to overcome the problems of 

execution time and extract a weak protrusion SSVEP response. The high-speed 

computational is robust analysis that used to disentangle reactions from massive non-

stationary EEG signals in terms of execution time consumption. High performance 

computing (HPC) was evaluated based on BCI techniques, and implement the algorithm to 

improve the processing  based on a large amount of EEG dataset dependent on multi-

thread processing with open source-library (OpenMP) 
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The experimental studies and stimulation setup stabilized production the provocation 

signals to represent consequence brain activities, which rapidly change according to visual 

stimuli. The promising assessment of the main hypothesis pursued items that are needed to 

increase the number of BCI reaction-commands, subsequently compatible to use in BCI-

system, which can be recognized as certain commands corresponding to brain activities. The 

substantial SSVEP problems based BCI addressed in this contribution work are as follows:  

 Reduce the numbers EEG channels that are used of gathering active responses at sensory 

cortex region of occipital-lob of brain: optimize pre-design a new BCI based-SSVEP 

paradigm that used a minimal number of unipolar EEG channels (see chapter 3, section 

3.1) 

 Objectively measured the EEG signals to find out the optimal stimulation frequency 

towards selection of effect band frequency that provides a higher amount of brain 

activities based-SSVEP response; and minimize visual obstruction though evoke-process 

of SSVEP at different frequencies (chapters 3 and 4, sections 3.2, 4.1) 

 Estimates latencies of time delayed based on the dynamic-time analysis to increase BCI 

active-commands and decrease distortion of responses using a three different colour 

stimulus; and exploit the influence on brain activity with respect to phase shifts of each 

stimuli actions (see chapter 4, sections 4.2 and 4.3)      

 Achievement a robust signal of SSVEP response based on diverse duty-cycle level 

stimulation; and evoked brain activities by proposing three different stimuli duty-cycle 

paradigms that are adapted to comfortable the BCI users; however, enhance the extracted 

signal feature by removing the artifacts using ICA technique and high response filter such 

as finite impulse response (FIR) (see chapter 5, section 5.1) 

 Evaluate strong measurable signal based-SSVEP response using regular/irregular 

paradigms and multiple pattern stimulations, leading to a novel dynamic brain responses 

that increases amount of BCI-command ( see chapter 4 and 5, sections 4.3 and 5.2) 

 Instead to decrease execution time of extraction and analysis, evaluate algorithm based on 

high performance computing (HPC) with multi-thread processing depend on OpenMP 

lead to high-speed computational performance on large amount of EEG dataset (see 

chapter 5, section 5.3) 
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Table 1.1 describes the summarized comparison between the new approaches, which are 

presented in this thesis and previous research work. However, the thesis presents the 

objectives pursued as two main goals directions: 

Table ‎1.1: Comparison between approaches based on this thesis and previous work 

Employed Material   This Thesis Work   Previous Work 

Brain locations Sensor 

Yes base brain region of : 
 Frontal 

 Partial left/right- temporal 

 Occipital 

Yes base brain region of : 
 Frontal 

 Partial left/right- temporal 

 Occipital 

Decreased number of EEG 
Channels 

Yes, employed Three-electrodes 
without references 

Yes, at least nine-electrodes 
without references  

Minimize eye and other 
interference artifacts  

Yes, ICA based technique and FIR 
filters  

Not all studies have been 
employed  

Study of SSVEP properties 

 Frequency response curves and 
power 

 Time dynamic based SSVEP  

 Duty-cycle Effect of SSVEP 
responses  

No 

Regular/Irregular stimuli 
effect  

Yes, based Frequency and Time 
Domains analyses and extraction  

No 

Colour SSVEP Stimuli to 
increase commands and 

reduce user fatigues 

Yes, using three Colours based stimuli No 

Increased number of SSVEP 
Commands based BCI 

Yes, 4 – 24 Commands based SSVEP  
Yes, 1 – 4 Commands based 

SSVEP 

Stimuli a Multiple patterns 
based SSVEP 

Yes, more than 12 patterns have been 
used 

No 

Clustering the SSVEP 
response based multiple and 

single core process 

Yes single core and multiple using 
OpenMP as HPC 

Consider a single Core  

SSVEP based BCI ITR No Yes 
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1.5 Organization of Dissertation and Structural 

The thesis contents six chapters that described approaches and results; however, the 

appendix and related-work that conclude important information based on research that 

organized as follows: 

 

Figure ‎1.2: Dissertation structure illustrating research path  
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Chapter 2: Surveys the state of the art and outline of EEG gathering signal techniques, by 

exploring background knowledge. This chapter also introduces extract information regarding 

brain-interfacing technology through essential EEG acquisition signals based-design BCI 

systems. In addition, the chapter focuses on the concept of classified brainwave that including 

structure and extraction method. 

Chapter 3: Discusses the adaptive efficiency of visual stimulus system, which is describes by 

a low-cost prototype that used 24 flicker-dot employed with all experiments. The propose 

design of prototype based on SSVEP of BCI-system is including the hardware equipment and 

software even tools that configured with different stimulus performance. In addition, data 

acquisition of raw EEG signal, which is scheduled recording based on individual time and 

stored as accumulated template technique. However, utilise pre-processing to clean-up the 

accumulate raw-data from any artifacts then stored again as new-dataset. Furthermore, 

explore the brain region regarding variant band frequency which exposure an adequate 

response with respect to SSVEP paradigm. 

Chapter 4: Explore the efficient of visual stimulus with different evoked signals through 

stimulation LED-flicker paradigms, which provide a different characteristic based on analysis 

of brain activity. The SSVEP response is elicited by existing iterate stimulus flicker at set of 

frequencies. The frequency at three bands of low frequency (LF), medium frequency (MF) 

and high frequency (HF) are direct exploit SSVEP responses with respect brain activities. 

This chapter discusses the effective frequency band that provides a stronger brain activity 

response. Beyond the stimuli frequency bands, the influence of three colours on brain 

activities directly affecting SSVEP responses is debated. Furthermore, two contrasting 

stimulation paradigms are presented as regular/irregular to discover the oddball/flicker and 

orderly/flicker effect on the brainwave, depending on brain activities. The criteria of 

frequency, colour and oddball paradigms are all applied to diverse experiments to determine 

response contiguous to a range of parameters that yield optimally strong and broadest level 

based SSVEP response paradigms. 

Chapter 5: This chapter inspects three empirical studies that discuss brain influence based 

on duty-cycle and multiple patterns based on extracted signals of SSVEP responses. The 

SSVEP are increasingly used in brain–computer interface techniques. The duty-cycle study is 

explored at three intensity levels of flicker LED, which are a deliberately deceptive effect in 

three different stimuli session to analysis of extracted feature from brainwaves. Furthermore, 
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employing a novel multiple patterns technique supports the analysis methodology in respect 

of execution time to distinguish between detected phases of each stimuli pattern. The multiple 

patterns technique based BCI requires extraction of a specific signal of SSVEP response from 

a huge dataset. This problem has been solved by analysing datasets in parallel on multiple 

processor cores using the OpenMP standard for shared memory programming [xxx159]. 

However, the high performance computing (HPC) based on BCI presents a reasonable 

solution that has improved the rapid process of a large amount of dataset dependent on 

multiple threads of processor-cores that are used with the open source library of Open Multi-

processing (OpenMP).This thesis focuses on an integrated approach to enhance and optimise 

SSVEP response based brain-computer interface technology. Figure 1.2 illustrates the 

dissertation structure in investigating brain activity, continuous visual flicker stimulation with 

ordinary LEDs. In addition to discussion, the results were applied to designing a prototype 

that optimised paradigms using several stimuli models (Chapter 4 and Chapter 5). In this 

work, assorted novel concepts are introduced and different innovations explored, in order to 

construct an acceptable new type of BCI-system that is efficient as a user-friendly based 

brain-computer interface technique 

1.6 Achievements Summary  

The thesis has achieved a substantial enhancement and optimization of the SSVEP based 

paradigms that extract cortical visual responses using signal processing algorithms, as well as 

achieving superior reliability of multiple command summarised in the following a main 

conclusions: 

 Evaluation of stimulation paradigms using ordinary 24-LEDs showed measurable SSVEPs 

signal to be elicited and a reliable prototype design dependent on a single-trial provided 

brain activities according to the evoked responses. However, user training based setup and 

configuration were unnecessary; since the setup evoked SSVEP within some factors 

dependent on the topic research, (see section 3.1.1).  

 The SSVEP responses depending on paradigms were estimated by selecting diverse brain-

regions at frontal, partial left/right-temporal and occipital sensor cortex brain locations to 

reduce electrodes, although compacting the strength, reproducibility and stationarity (see 

section 3.1.2)   
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 Performed  the SSVEP dynamic response signals based onset delays at the first peaks, and 

stationarity waveforms were strongly dependent on stimulation of multiple frequencies 

based on analysis of brain waveform bands, (see sections 4.2.1, and 4.3.1) 

 Assessment SSVEP signal based frequency domain providing responses respect to 

spectral analysis at 2Hz – 35Hz for flicker LED stimuli were studied to extract the optimal 

frequency range which are determined by 5Hz – 13Hz, referred to (see sections 3.2.1, and 

4.1.2)  

 Throughout stimulation based six-variant frequencies were compared at (2, 4, 8, 10, and 

12Hz) which were overlaid on alpha-band of brain waveform; whereas, 10Hz response 

exhibited the fastest stimuli-onsets and maximum signal stability, (see section 4.1.2) 

 A new paradigm based on single-trial using phase-tagged trigger (PTT) variability value 

was found by offline  analysis; furthermore, supplemental measurement of sensitive 

SSVEP signal according to stimuli-onset was shown. This approach provided energy 

based measure of FFT and ERP analyses methods, (see section 4.2.1) 

 Onset stimulation based on single-trial SSVEP responses were achieved and detected 

between 0.05 second and 0.5 second which is evaluated using a multiple colour oscillation 

paradigms; however, the different phases were given as new attitude based-ERP 

waveform which measured based-latencies, (see section 4.2.1) 

 Due to the colour stimuli based SSVEP of BCI design the visual field obstruction was 

substantially reduced as long-term of user fatigue, (see section 4.2.1) 

 Assessment was made of two different paradigms by regular/irregular, which offered 

important features of stability and reliability responses respect to desirable extraction 

methods, (see section 4.3.1) 

 Estimates were made of the distribution energy of fundamental frequency and harmonic in 

SSVEP based duty-cycle effect, which improves user comfort and attentions during the 

sessions, (see section 5.2) 

 The behavioural multiple-stimuli patterns on brain waveforms were realized using spectral 

power analysis and phase shifting signal extraction based-approach, (see sections 4.2, and 

5.2) 

 Improved analysis was applied based on computational algorithm design using the HPC to 

compute and recognition based-patterns in comparison and sliding-windows approach, 

(see section 5.3)   
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CHAPTER2 
 

2. BCI SYSTEM CONCEPTS AND 

PREVIOUS RESEARCH  
 

This chapter is a survey and state of the art of EEG signals based brain-computer interface 

(BCI) technology. Advances in BCI based brain activity technologies have begun to provide 

the ability to interface directly with the human brain. Human-computer Interaction (HCI) 

introduces the idea of a direct communication channel via (electrical-potential) signals, 

which are produced by the brain’s activities. In three decades, BCI based systems have 

rapidly increased by drawing from many other applications. This chapter discusses various 

approaches and methodologies that are employed to realise a fully functional based-BCI 

system. There are different approaches of practical BCI field that submit diverse concepts 

depending on integrated productivity with new human interactive technology. Furthermore, 

this chapter introduces the performance metrics that can be used to evaluate BCI systems 

based on various paradigms. 

  

 

 

 

 

 



15 

 

2.1 Brain-computer Interfaces (BCIs)  

Nowadays, advances in technology and signal processing techniques provide BCI 

researchers with a new view that allows further growth in BCI technology. Understanding of 

brain functionality enables progress in specific purposes based on BCI techniques that provide 

greater control in embedded-elec. units, such as artificial limb or motorised wheelchair 

controller. The BCI can be defined as a communication and control channel that is not 

dependent on the normal pathway of nerves and muscles [100]. Sending a message and 

commands through a BCI system is based on brain activity and response signals. Recently, 

brain-computer interface has been used as a communication system that depends on 

electroencephalography (EEG) raw encryption signals [102]. The EEG signal acquired from 

certain brain locations reconstructs hand movements that require different statistical solutions 

[107]; and EEG rhythms are classified into different frequencies based on brainwave forms 

[108]. In general, most BCI applications classify and divide accuracy and features by 

applying certain algorithms that employ a specific purpose [107]. Furthermore, BCI not only 

supports disabled people, but has also improved use by enabled people in high precision robot 

control and intelligent-vehicles. By evoking signals based-visual stimulus, the brain generates 

and activates electric-potential signals that are detectable to control embedded device, such as 

computer or any other electronics device. A well-known method of spectrum analysis in 

general converts the biomedical signal to frequency domain or spectral density estimation 

[101]. However, there are some methods of analysing EEG raw signals that can be applied in 

the time domain or in both time/frequency domains. The EEG signals contain convenient 

information about brain activities and responses, but it is very difficult to extract this 

information directly. Therefore, it is necessary to extract features using signal processing 

techniques. Most BCI-based systems prefer use recording signals from EEG electrodes, which 

reflect the potential of brain cortex [100]. Exploring EEG signals based on brain-computer 

interfaces (BCIs) has involved increasing the signal amplitude [103]. It is important to acquire 

brain activity signals through amplifiers and filters which decodes and classifies using an 

algorithm [104]. In practical terms, brain response based activities are a discrete reward 

response of brain activities. Thus, activities, signals and feedback from consequent brain 

response, carried-out to control the device, tend to form an essential part of a successful BCI 

system, which commonly contains sensory stimuli, such as visual [105] or auditory [106] 

attention, proportionally varying in response to discrete brain activity. 
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2.1.1 Brain-computer Interface (BCI) Definition  

A brain–computer interface (BCI) is sometimes called a brain–machine interface (BMI) 

[110], mind-machine interface (MMI), synthetic telepathy interface (STI), direct neural 

interface (DNI) [111], or human-computer interactions (HCI); all these abbreviations can be 

defined as direct communication routes between the human-brain and the external 

environment of electronic peripheral devices. In other words, the brain-computer interface 

(BCI) or any brain-to-machine communication system can interpret and execute intended 

brain reaction-commands without dependence on normal executive pathways of the human-

body, such as neural brain cell, muscle cells or nerves [112]. 

2.1.2 Importance of Brain-computer interfaces (BCIs) 

The brain-computer interface (BCI) is a communication system connecting between the 

brain and external world that enables brain signals to directly control the specific device by 

evoking activity based on brain responses using stimulation concept. The target clinical 

population for BCI treatment is constructed primarily for patients with amyotrophic lateral 

sclerosis (ALS) and severe central nervous system (CNS) damage, including spinal cord 

injuries (SCI), with substantial deficits in communication and motor-function [120]. A brain-

computer interface (BCI) is technology that allows a human brain to control a computer with 

focused attention. By evoking visual stimulus brain generates an electric signal called a 

detection signal of evoked potential or evoked response that correlates to control certain 

computer/commands.‎BCI‎is‎very‎useful‎in‎neural‎implants,‎such‎as‎a‎‘cochlear‎implant’‎that‎

supports people who have impaired hearing, by directly transmitting auditory signals into the 

brain using a visual stimulus. Moreover, cortical brain stimulation and deep brain stimuli are 

both used to help people who suffer from Parkinson’s‎ disease‎which‎ causes‎ shaking‎ palsy.‎

The future of BCI technology is very effective, since it has demonstrated safe use even with 

wireless power devices, and the possibility of involving complex stimulation patterns that 

increase responses. At the European Research and Innovation Exhibition held in Paris in June 

2006, the Brunner research group sent a simple message by concentrating on a display that 

identified a specific letter (alphabet)/character. The Brunner BCI system confirmed a method 

called the Wadsworth-system [81]. The Wadsworth is a training stimulation technique that 

adapts an algorithm depending on facilitated visual stimuli-pattern providing a 

communication channel between humans and machines. This technique was very useful and 

increasingly efficient with practice training times.  
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2.1.3 Brain-computer Interface (BCI) Requirement  

The electroencephalogram (EEG) is defined as a clinical diagnosis for brain sicknesses. 

Furthermore, the EEG signal enables the BCI technique in research and application. BCI is an 

impressive technology that establishes a new communicative pathway. Neural-signals are 

commonly used through video stimulus or voice stimulus, depending on biofeedback in most 

measurable EEG signal based BCI practical systems. The main approach of BCI systems was 

configured with respect to biofeedback therapy, which involves training sessions for 

volunteers (subjects). This approach allows control and process, based on recording signals 

using biomedical instruments such as electromyography (EMG), electrodermograph (EDG), 

electroencephalograph (EEG) and electrocardiogram (ECG) [101]. Some of electrodes, such 

as EEG channels are placed on Human-scalp of a patient/volunteer (subject) to measure the 

brain signals. The EEG signals are analysed by a process of decomposing the raw signal into 

simpler branches by the extraction of quantifier classification according to various actions. 

These actions can be in the contour of amplitude of power intensity or different phases. The 

extract command is used for a specific task, such as limb movements. The computers detect 

and classify these EEGs, using specific algorithms based on different tasks in order to control 

application.  

2.1.4 Brain Activity Rhythms 

The human brain tends to follow the different frequencies and harmonious item called brain 

activities rhythm characteristic that detected based on EEG signals; when listening to a piece 

of music with a fast tempo, the brainwaves distribution increases and decreases when 

listening to low/high tempo (music). Furthermore, the periodic flashing spot lights in front of 

human-eye are stimulates the brain, causing the coordination of brainwaves with respect to a 

similar frequency of light flashing. The faster flashing increases the rapidity of brainwaves. 

Billions of neurones are firing together which generate an oscillations and fluctuation 

presented a different brain activities. This frequency follows the effect of brainwaves, which 

respond to rhythmic stimulation, as shown in Figure 2.1. The most frequencies are assessing 

with electroencephalography (EEG) based brain activity.  

 Delta,‎δ:‎Wave‎lies‎between‎the‎ranges‎of‎0.5-4Hz that observe the highest amplitude in 

respect of waveform. It is primarily associated with deep sleep, serious brain disorder and 

in the waking state [117], [118]. 
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Figure ‎2.1: Different rhythms descried Delta, Theta, Alpha, Beta, and Gamma [http.wikipedia.org]  

 Theta,‎θ:‎Wave‎ lies‎between‎4-8 Hz with an amplitude usually greater than 20µv. Theta 

arises from emotional stress, especially frustration or disappointment and unconscious 

material, creative inspiration and deep meditation [117], [118]. 

 Alpha,‎ α:‎ Contains‎ the‎ frequency‎ range‎ from‎ 8-13 Hz, amplitude 30-50µv, mainly 

appearing in the posterior regions of the occipital lobe (brain region), usually associated 

with intense mental activity, stress and tension. Alpha activity recorded from sensorimotor 

areas, is also called mu activity [117], [118].  

 Beta,‎ β:‎ Is‎ in‎ the‎ frequency‎ range‎ of‎ 13-30Hz, low amplitude and varying frequencies 

symmetrically on both sides in the frontal area. Beta waves are characteristics of a 

strongly engaged mind. Beta wave is usually associate with active things, active attention, 

and focusing on the outside world or solving concrete problems [117], [118]. 

 Gamma, γ: Wave lies above 30 Hz, this rhythm is observed on maximal frequencies 

within 80Hz or 100Hz. The Gamma wave associates with various cognitive and motor 

functions occurring during sensory processing of sound and sight [117], [118]. 
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2.2 Brain-computer interfaces (BCIs) Types  

The fundamental of BCI-system is recognizing by individual stage. These stages are 

represented in different levels such as stimulation, gathers-data and finally analysis and 

extraction features. Therefore, the electroencephalography (EEG) is records the electrical-

potential activity among the brain cortical that is produced by the firing of neurons which is 

stimulated under some conditions [90] which present individual levels. Jacques Vidal, a 

computer scientist who is a researcher at UCLA, described the principles of direct brain-

computer interface (BCI) technique [113]. Subsequently technique is extract the result using 

online BCI implementation within (Four-BCI commands) [114]. Vidal used visual evoked 

potentials (VEP) that elicited a brief illumination of a checkerboard estimate in order to 

control a certain moving courser-object in a maze. The signal processing methodology 

awarded classification module based on acquisition of EEG raw signal. Edmond Dewan [115] 

described the first accounts in BCI as a communication channel between human-brain and 

machine.‎ Edmond’s‎ experiments‎ extracted‎ the‎ alpha‎ waveforms and converted the brain 

response to send a control-signal corresponding to the (Morse code). However, the recording 

technique‎of‎EEG‎signal‎does‎not‎provide‎a‎unique‎EEG‎pattern,‎according‎to‎different‎user’‎

intention. Practically, the brainwaves discern the evoked signal of visual stimulations using 

higher techniques of signal processing approach.  

The spontaneous EEG signal refers to the measurement of persistent brainwaves, which 

include Delta, Theta, Alpha, Beta and Gamma; on the other hand, the evoked signal 

represents periodic brain potentials as a short-duration reaction corresponding to recorded 

brain response to specifically evoked stimuli, such as a visual stimulus or auditory effort. In 

fact, the BCI task based system can be classified into two main categories:  

1. The first category (internal support) is specified by a mental state-paradigm based 

modification of unprompted brain response activity. The mental state BCI paradigms are 

also defined as Cognitive-Status (CS). Unfortunately, both approaches have a limited task 

range based design system [92] 

2. The second category is an external support, which is modified by normal brain responses 

based on the function of visible stimulus that provides appropriate brain activities. Evoked 

stimuli correspond to a selection of concordant attention to choose a certain target which 

is recognizable through detection by brain response [93], [12], [13], and [28] 
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Table ‎2.1: Consequence of internal and external supports summarised based on related work 

Refer to feature Driven by internally/externally 

Large Number of Commands Externally-supported  stimulus response 

High Reliability of Commands Externally-supported  stimulus response 

Short User Tuning Short Training Externally-supported  stimulus response 

No Stimulation Equipment Necessary Internally-supported 

No Sensory Engagement Necessary Internally-supported 

Resistant to Mental Fatigue Externally-supported  stimulus response 

Switch On/Off Both Internally/Externally -supported 

Resistant to Distraction Both are Not -supported 

Resistant to Neurological Disorders Both Internally/Externally -supported 

Attractive User/Neurofeedback 
Interface 

Both Internally/Externally -supported 

Comfortable for User Internally-supported 

 

The (internal) and (external) supports based on BCI task paradigms are strict controls and 

imposed using well-known cognitive imagery processes, such as motor imagery; however, 

external support is a robust phase-lock that is responsive to stimuli-based brain responses that 

are reliable and detectable from single stimulus/trials, such as SSVEP paradigm. Considering 

several paradigms of BCI system designs as related work, there are a number of methods that 

include features driven in both internal and external supports. These are presented in Table 

2.1. Parts of BCI systems are dichotomies in two main classification categories, which are 

dependent on principal brain signal acquisition [29]: 

1. Invasive signal recording of neuronal activities these techniques need a medical surgical 

operation to implant an electrode  

2. Non-invasive measurement of reflecting signals; these techniques are highly attractive in 

large scale of neuronal activations using an external sensory such as EEG, and fMRI 
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2.2.1 Invasive BCI Technique 

Recorded neuronal spike reaction potential-signals were measured using an array of tiny 

electrodes‎ that‎ are‎ implanted‎ inside‎ brain‎ tissue.‎ Since‎ 1996,‎ Kennedy’s‎ group‎ at‎ Neural‎

Signals, Inc. began implanting a special cone-electrode with bowl-shaped tips growth in the 

neural tissue of the brain [30]. The research group test was conducted with a voluntary 

(subject) equipped with an invasive BCI based system; the subject could control a computer 

cursor and spell three letters (alphabet)/minute [31].  Invasive BCI technique studies have 

demonstrated that it is possible to increase the complexity usage of direct neuronal activity to 

transfer information, such as the remote control of a TV-set or a computer cursor, which are 

designed by Donoghue’s‎Brain-Gate device [4]. The entire operation of a robotic gripper arm 

is controlled by optimizing brain signals from visual feedback [32], [33], and [39]. The 

procedure of the invasive approach benefits from implementing a local electrode field 

potential that reflects the activity of definite neurons group to expedite a signal from subdural 

or epidural regions under the skull to control a computer cursor, for example [99]. Recently, 

the restriction controlled signal based BCI systems have become complexes that lead to the 

involvement of a high-level signal processing. Nevertheless, the invasive methodology 

involves particular clinical risk and technical difficulties. For example, this technique may 

introduce an infection as a result of contamination from the external environment during a 

clinical operation, or making damage inside the human-brain; moreover, the region may 

become inflamed because of a foreign substance. From this point of view, the instruments and 

requirements are very costly and there is potential danger in conducting a surgical operation 

in order to implement electrodes for practical BCI systems. Researchers tend to veer away 

from invasive BCI systems as long as invasive recording techniques remain complicated and 

require an intricate procedure. Table 2.2 shows a summary of invasive technique based on 

BCI studies reviewed. 

Table ‎2.2: Summarised invasive technique based BCI system 

Approach Description 

Implanted Neurotrophic Electrodes 
Control the neural signals on switch 
on/off fashion [4] 

Implanted a micro-electrode Arrays which 
include the Brain-Gate system 

Transfer direct neuronal activity to control 
computer cursor or TV set [30] 

Implemented neural tissue electrode brain 
Control a computer cursor and spells 3 
letter/minute [31] 

Implanted a neurotrophic-electrode base system 
Robotic arm controller of visual feedback 
[32], [33], and [39] 
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2.2.2 Non-invasive BCI Technique 

In recent years, non-invasive research based BCIs have produced impressively successful 

techniques. This method requires less spectacular procedures due to the influential challenges 

posed by the recording of largescale synchronized brain activity. The variation in time of 

encephalographic (EEG) activity is defined by the difference in electric-potential between two 

electrodes‎ that‎ are‎ placed‎ on‎ the‎ surface‎ of‎ the‎ scalp‎ of‎ a‎ (subject’s)‎ head.‎ The‎ gathered‎

signals originate from multiple population cells behind the layers of the cerebrospinal fluid of 

the skull bone. These signals from EEGs are the summation of weight composed of a large 

number of neuronal cells in the brain called a cortex. Non-invasive techniques offer a wide 

range of real-life BCI applications, for both disabled and enabled users. Furthermore, this 

technique supports accurate controls, which include two-dimensional movement with high 

reliability compared to reports of invasive techniques in studies of non-muscular monkeys 

[90].  

Table ‎2.3: Summarised non-invasive techniques based BCI system 

Approach Description 

Alpha-wave based BCI 

First BCI study based alpha wave is detectable on the 
scalp on cortical surface. Purpose of this study to 
convey user wishes to use word processing programs 
and other software [116] 

P300 based oddball paradigm 
The P300 speller allows locked in patients to 
communicate with extremal environment [28] 

Slow cortical potentials (SCPs) 
The thought-translation device (TTD) is a training 
device and spelling program for the completely 
paralyzed [64], [65] 

Visual evoked potential (VEP) 
Evoked responses or event related potentials in human 
EEG signals were mostly studied with offline analogy 
recording and averaging [115] 

Steady state somatosensory 
evoke potential (SSSEP) 

Find out brain patterns that are easily detected, one of 
these detectable patterns present steady-state evoked 
potential (SSEP) which induced by visual sense [152] 

Steady state visual evoke 
potential (SSVEP) 

Applying Discrete Fourier transformation (DFT) and a 
lock-in analyser system; higher classification accuracy 
compared to one harmonic and to the standard 
positions O1 and O2 [137] 

 

The non-invasive are very useful techniques in extracting and measuring brain activity in 

different ways, such as magneto-encephalogram (MEG), functional magnetic resonance 

imaging (fMRI), electroencephalography (EEG), and positron emission tomography (PET) 

[41]. Table 2.3 shows a summary of reviewed studies that are covered in this thesis. One of 
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the new technologies in the non-invasive technique field is the near infrared spectroscopy 

(NIRS), which is defined by functional imaging absorbed with low-energy optical radiation of 

absorption from brain-tissue; the NIRS technique depends on reflected concentration of 

deoxyhemoglobin, which activates a trigger by altering neural activity. The disadvantages of 

non-invasive techniques are associated with providing a lower spatial signal resolution 

compared with invasive techniques, as they are susceptible to noise, and clinical risk. 

However, the non-invasive recording process depends on external electrodes that rest on the 

(subject’s)‎ scalp;‎ also,‎ the‎ cost‎ of‎ non-invasive techniques is far less than the invasive 

method. There are many examples pertaining to non-invasive based BCI-systems. 

2.2.3 Slow cortical potentials (SCPs) based BCI 

Slow cortical potential (SCP) based BCI control-paradigms have been initiated by the 

Birbaumer group at the University of Tübingen [64], and [65]. They used SCPs as operant 

conditioning type according to the BCI paradigm; their implementation is to control a spelling 

device with two alphabet (character)/minute respects to ITR ratio. This work is called a 

through-translation device (TTD), whereas the slow cortical potentials (SCPs) sort 

comprehensive EEG signals that agree with a very low frequency of theta brainwave (BW) 

bands. Electric-potential is generated by the cerebral cortex, which is observed at a frequency 

range of 1-2Hz; further, the SCP responses are respectively slow in terms of time elicited after 

300milliseconds. This time is correspondingly a long shot response. However, the SCPs 

technique requires special equipment that measures the overall trend of brain activity 

collected within an extended period of changes, although it needs to average all of these 

activities based on many stimuli-trials. Kubler attempted to increase response speed through 

modulation signals and established a limitation and very short intervals [119]. SCPs require 

intensive training and it is difficult to obtain accuracy, which tends to be moderate at around 

70–85% of control signals [119], [120]. In this paradigm of Kubler, based BCI systems where 

the subject could facilitate self-learn control using the SCPs technique [119]. SCPs is used to 

extract visual light stimulation, which affects and changes the electrical-potentials of the brain 

cortical activities. The brainwaves (BW) consist of a threshold regulation mechanism for local 

excitatory of negative/positive slow potentials which inhibit cortical networks [120]. The 

negative waveforms of SCP shift in respect of higher excitability and positive waveforms of 

SCP reflect concentration of excitability/inhibition [94], [95]. In Figure 2.2, a standard format 

of EEG raw is shown, which is recorded in the vertex region referred to extract SCP activities 
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by an appropriate filter [121]. Here, a request from the user to provide feedback from a visual 

computer screen shows two choices at the top and bottom [121]. Users choose between the 

top/bottom prospects to adopt by decreasing or increasing the measurable voltage level based 

on an initial voltage level. Within the next two seconds, the voltage appears as the vertical 

trend of a cursor, which indicates variety between the two choices. 

 

Figure ‎2.2: Slow cortical potentials (SCP) signal of cortex barin [121] 

Although the accuracy of this potential is different among different people, correcting the 

potential of the context would provide higher efficiency [95]. Multi-channel EEG recording 

shows the increased responses to SCPs signal size in the centre of the human-scalp; however, 

a method for feedback is proposed in this experiment [95]. 

2.2.4 P300 Evoke Potentials based BCI 

The P300 evoked potential that is widely studied describes a stable brain response [96], [97] 

based on event-related potential (ERP) as shown in Figure 2.3. P300 based BCI is involved in 

eliciting a large difference in ERP waveforms between the targeting and non-targeting of 

visual stimulus paradigms displayed on a computer screen [58]. Positive ERP potentials are 

recorded after 300milliseconds in EEG signals. Donchin has developed the first P300 

reflected signal based BCI system to select letters from a virtual keyboard [97].  
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Figure ‎2.3: P300 waveforms elicit different ERP responses between targeting and non-targeting [121] 

In this design, a grid contains a number of alphabet letters within addable flashing functions 

in each character, while the user focuses all theirs attention on the desired letter [97]. The 

target flash of P300 waveform signal will indicate a selected letter. This principle of P300 

allows high reliability; however, it is necessary to draw-in all multiple trials to achieve the 

desired letter. A P300 paradigm based BCI system increases attention effort that may cause 

fatigue faster than other BCI paradigms. The traditional ERP waveforms are averaged 

synchronously to enhance the evoked signal with respect to brain activity [96]. For example, 

using step-wise discriminant analysis (SWDA) by Farwell and Donchin [97] followed by 

peak picking and evaluation of the covariance. Alternatively, the discrete wavelet transform 

(DWT) could add to the SWDA algorithm to localize efficiently on ERP waveform 

components in both time and frequency domains [95]. In addition, the independent 

component analysis (ICA) was used to detect the P300 waveforms [99]. ICA is one of the 

appropriate approaches used to enhance the ERP waveform that have been employed by 

Makeig [98], which contributes to analysis and extracts prior knowledge information from 

ERPs and decides whether a component should be retained or erased. This related-work 

involves averaging signals using threshold technique and applying matching filter to 

determine existence of a P300 waveform. ICA corresponds to P300 waveforms after being 
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segmented by selecting a chunk of epoch in the range of -100 to +600 milliseconds, given a 

virtuous opportunity to detect and easily extract. However, the detection ERPs waveform 

based on single-trial EEG is favourable, since online processing of the digital signal 

processing (DSP) can also be performed by providing promptness and greater accuracy (see 

section 2.5.1 for more detail).  

2.3 Steady-state Visual Evoked Potential (SSVEP) 

Steady-state Visual Evoked Potential (SSVEP) is a brain activity response that precisely 

synchronized and modulated in amplitude, which is attractive with visual stimulation under 

certain condition. Although, the SSVEP signals are periodic waveforms, which are directly 

affect with different stimuli. In addition, the flashing-lights luminance or flickering-spot 

patterns on computer-monitor, which are directly effect on amplitude and power of SSVEP 

signal responses. The SSVEP response is a measurable signal within narrow band frequencies 

instead of invoking signals of visual stimuli base a certain frequency. However, the SSVEP 

signal can observed on Alpha band of brain rhythm as well as elicited on Theta band and 

Gama bands. A standard signal processing method exploits the specific characteristics of 

SSVEP responses, such as synchronization rhythmicity as illustrated in Figure 2.4. The signal 

of SSVEP is contents from special spikes that mirror  the brain responses; those spikes are 

substances from stimuli frequency and harmonics. The SSVEP propagated in an EEG signal 

can extract the power in each frequency being equal to the stimuli or being equal to harmonics 

based on stimulation frequency [129]. Generally, there are two main different definitions of 

SSVEPs: firstly, Regan [130] is considered a direct brain response in the primary of the visual 

cortex; and Silberstein [131] has suggested that SSVEP is an indirect cortical response to 

certain stimulus via the retina, which contains complex amplitudes and phases. However, 

current understanding is still far to understood and there is some distance from recognition of 

the SSVEP responses mechanism signals; in fact, it is possible to induce or evoked such as 

SSVEP response by different flickers in different frequency bands. As an example, the light-

emitting diode (LED) flicker can evoke a clear SSVEP response signals that is constructed by 

frequency range at 1–90Hz [19]. It has been reported that it is also possible to use a cathode 

ray tube (CRT-monitor) that can evoke an SSVEP response, taking into account refreshing 

rate frequency at 60Hz [20].  
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Table ‎2.4: Summary of steady-state visual evoked potentials (SSVEP) studies  

SSVEP response extracted 
Approaches 

Design Specifications 

Frequency Response Bands 

 Characteristics of average steady-state and 
transient responses evoked by modulated 
light [34-38] 

 SSVEP distributed sources and dynamics 
wave to flicker frequency [52] 

 Attentional modulation of SSVEP response  
depends on tagging of flicker frequency [45] 

 Human cerebral activation during SSVEP 
responses [134] 

Onset Responses 

 DFT comparison and lock-in amplifier 
features optimal electrode positions in 
SSVEP-based BCI [137] 

 Relation between psychophysics and 
electrophysiology based flicker [2] 

Time Dynamic Response 

 Neuromagnetic responses to chromatic 
flicker: implications for photosensitivity [50] 

 Steady state visual evoked potential 
abnormalities [49] 

Response on computer screen flicker 

 Human EEG responses 1–100 Hz flicker 
resonance phenomena in visual cortex and 
their potential correlation [19] 

 Steady-state visual evoked potential to 
computer monitor flicker [20] 

Size Effects 
 Electroretinographic and visual cortical 

potentials in response to alternating gratings 
[158] 

Activated Brain Regions 

 Steady-state VEP Attentional of visual 
processing cognitive of mind and brain [60] 

 Cortical sources of components that effect 
on visual evoked potential [124] 

 Frequency variation of a pattern-flash visual 
stimulus during PET activates on brain from 
striate through frontal cortex [41] 

Age and Gender Effect potential 
(SSVEP) 

 Interaction between flashing evoke SSVEP 
and the spontaneous EEG activity in 
children and adults [48] 

 Effect of retinal blur on peak latency of 
pattern evoked [47] 

 

Nonetheless, previous studies have engaged the CRT flicker and utilized the patterns is 

widely adopt as a visual stimulator [21–25], rather than the LED flicker reported in a few 

studies [18]. Therefore, the SSVEP techniques have improved to use with brain–computer 

interfaces (BCIs) based on many of studies [18] and used as application in multiple fields 

[21–26]. 
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Figure ‎2.4: SSVEP response signal based-stimuli flashing/light [18] 

The SSVEP-BCI based on development and implemented systems have provided more 

decoding accuracies by improving a most important features and selecting a suitable vital 

technique as visual stimulator. Table 2.4 presents a summary of studies which have explored 

and discovered many research based on steady-state visual evoked potentials (SSVEPs) 

paradigms. 

2.3.1 Stimulation Frequencies Responses Based SSVEP  

An early researcher, David Regan, has extensively studied several properties of the SSVEP, 

which affect the adult human-brain. These studies discovered three distinct frequency regions, 

which are termed low-frequency (LF), medium-frequency (MF) and high-frequency (HF) 

[37], [40], and [38]. Distinct frequencies are classified respect to brain activities of SSVEP 

responses paradigm [35]. The response amplitudes on the bands of LF, MF and HF regions 

provided an inverse relationship in respect of stimuli frequency; however, responses declined 

at faster light flicker rates [35]. Pastor studied the EEG signals based brain responses applying 

a flashing (White-strobe light) using 14 frequencies between 5-60Hz [134]. He found a 

maximal brain response as amplitude at 15Hz in the occipital brain region and at 25Hz in the 
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frontal brain region. However, Pastor has studied a measurable regional of cerebral blood 

flow (CBF) by employing the positron emission tomography (PET) during flicker stimuli at 5, 

10, 15, 25, and 40Hz. PET result showed activation in primary visual cortex at 5 Hz compares 

with Five-stimulation frequencies. Earlier PET researchers found the strongest response 

amplitude in the occipital cortex brain region at LF of (7 - 8) Hz using a grid of embedded 

Red light placed on goggles panel [41]. Furthermore, other researchers used a large 

(Black/Red) checkerboard [42]. Koch reported a new result based on his experiment using 

(Red) LED flicker, which indicated a maximum Near-infrared spectroscopy (NIRS) vascular 

response at (7 – 8) Hz [43]. In the same experiment by Koch, the responses were measured 

based on EEG signals by flicker stimuli 1 Hz, and (5 - 25) Hz [43]. Many experiments that 

have compared between EEG and MEG with respect to SSVEP responses demonstrate the 

disparities in measurements dependent on stimulation frequency using different techniques. 

However, Thorpe studied the frequency preferences by developing a visual stimulation that 

reverses larger (Black/White) checkerboard driven frequencies between (2 – 20) Hz [44]. He 

found the spectral power of SSVEP of amplitude at (15 – 20) Hz. In fact, the EEG studies 

noted the lower frequencies dominated brain responses for some stimulation types. 

Furthermore, Krishnan used a higher luminance of flickering LED and he found a near-linear 

decline in SSVEP peak response with frequency at 4 Hz [46]. However, Srinivasan, Bibi and 

Nunez showed dense (random dot-pattern) stimuli based on 16 frequencies varied between (3 

– 30) Hz, which elicited preferable evoked responses in the occipital brain region [135]. This 

was an important finding indicating a significant occurrence in the occipital cortex with 

respect to SSVEP response based frequencies. 

2.3.2 Dynamic Time of SSVEP Responses 

Recent research based EEG signals exploit short-term SSVEP oscillations, ignoring the 

envelope changes in time especially at higher stimuli frequencies [46]. The frequency 

spectrum of time-domain signal is representative of that signal in the frequency-domain. 

Several decades ago, Van der Tweel offered an examination of SSVEP onset responses 

corresponding to baseline levels exceeded after ~300 millisecond of visual stimulation applied 

on a single subject [2]. Subsequent Regan studies showed a long-term SSVEP response at 

15.5 Hz depending on a large 14° arc of a stimuli checkboard [34]. The initial onset transient 

in time coursing on first at 14 seconds of visual stimuli were found to gradually increase and 

then drop the synchronous activity. In addition, the Regan study presumed the existence of an 
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adaptive neural-mechanism by suppressing stimulation after (12 – 20) seconds [33]. These 

results illustrated the changes in SSVEP response amplitude according to the subjects 

observed. However, Regan compared his results using a digital computer in respect of 

filtering raw-data; he obtained a much larger variability in dynamics SSVEP response at 6 Hz 

of stimulus frequency [37]. Unfortunately, the Regan studies have dismissed the possibility of 

time-variable with respect to SSVEP response and the studies suggest implementing a 

hardware wider pass-band filter (PBF) to compare this result. Use a Fourier analyser was 

applied on a seven seconds of time segment, so that more noise passed through from adjacent 

raw-data of EEG signal.‎Therefore,‎Regan’s‎ result‎ indicates‎ that‎SSVEP‎dynamics‎ are‎ also‎

dependent on stimulus feedback-control, such as accommodative focusing. 

2.3.3 Effective an Additional parameters on SSVEP response 

Different studies have reported the effects of frequencies dominance, which captured the 

brain responses depending on recording modality. The SSVEP evoked stimulus is also reliant 

on parameters such as light-luminance, contrast and colour, which likewise play a crucial role 

[38]. Regan showed in his experiments that checkboard/pattern stimulation in small checks of 

0.2° arc exhibit LF preferences response peaks at ~7 Hz. Select patterns were set as larger 

checks with 0.7° arc to give a HF-stimulus in preference to a similar result to un-patterned 

flicker stimuli [37], and [38]. In this aspect, visual stimulation prevents the subject from 

elongated fatigue usage, especially when employing LEDs as stimulator. Surej and John [18] 

studied the (RGB LEDs) effects with (clear and frosted) glass and tested the performance and 

qualitative extract signal, taking user comfortability into account. They compared between 

frosted and clear stimuli in three different colours (Red, Green and Blue) under fickle based 

frequency of 7, 8, 9 and 10 Hz. The results were extracted using fast Fourier transform (FFT), 

which showed the stimuli frequency at 7 Hz of (Green-clear LED) the highest SSVEP 

response [18], although all voluntary subjects indicated that frosted case LED stimulation was 

more comfortable. Another study showed statistical differences in theta, alpha and beta of 

brainwave bands instead of SSVEP responses of spectrum power by evoking two colours of 

blue and red. Yang and Leung developed an SSVEP paradigm to test the differences 

influencing the effect between blue and red by looking at two-choices of optional colours 

[27]; the results were classified using a support vector machine (SVM) as classification 

model; the results showed accuracy between two different colours between 70 – 80 % 

respectively [27]. 
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2.3.4 Activation Brain-regions During SSVEP Response 

Functional magnetic resonance imaging (fMRI) is a technique that demonstrates the SSVEP 

responses by evoking a band of frequencies. The synchronized striate response at all 

frequencies affects the lateral geniculate nucleus (LGN), while slower activation occurs in the 

middle temporal (MT) [41]. The main cortical SSVEP activation occurs in the primary visual 

cortex, corresponding to the fMRI evidence of circular-stimuli at 6 Hz [123]. Watanabe 

research also used 10 Hz stimulations and found activation of parieto-occipital of brain region 

followed by slower occipital responses [50]. Furthermore, Srinivasan, also used fMRI 

responses at (3 – 14) Hz in occipital cortex and demonstrated activity that was significantly 

increased [51]. The frontal cortex was instrumental in giving more a dependable response 

based on frequency, recording maximal response peaks on (3 – 5) Hz [51]. The same study 

found the occipital cortex region is positively correlated to frontal voxels with respect to 

fMRI measured units, and the other brain lobe was negatively correlated [52]. 

2.4 SSVEP based BCI Attitude and Implantation  

SSVEP based BCI systems are widely used in different paradigms and digital signal 

processing techniques, offering many possibilities that provide various applications. 

Consequently, many research studies have improved and developed the SSVEP response 

signals; these provide an exact evoked frequency based on stimulation. Table 2.5 illustrates 

different contributions of SSVEP studies that present the various paradigms and summarises 

the BCI systems dependent on SSVEP responses. Currently SSVEP approaches provide the 

fastest and most reliable paradigm to implement a non-invasive BCI system. 

2.4.1 Designs SSVEP based BCI Approach  

Discrimination in SSVEP response based BCI approach describes the earliest successful 

online implementation [3]. The first approach modulated the amplitude and phase of SSVEP 

responses at (13 to 25) Hz flicker frequency; also, neurofeedback training was employed [53], 

and [66]. The US air force team designed a simple flight-simulator that incremented by 0.5° 

to the right if the responses of SSVEP amplitude increased, and to the left, if the amplitude 

was inhibited [66]. Most operators achieved 80 – 95 % information transfer rate (ITR) after 

30 minutes of training time. In the second approach, two stimuli flickering at 17.56 Hz and 

23.42 Hz were applied as base frequencies to select a command dependent on the feature of 

spectral amplitudes [54]. The mean result achieved 92% ITR with delay commands between 
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(1 – 2) seconds [54]. This approach is more efficient to apply the fundamental SSVEP based 

BCI that synchronizes brain activities to a certain flickering in visual stimulus. Regarding 

increase in the number of commands, a research group at Tsinghua University presented rise a 

12 command based BCI by designing a primitive keyboard-phone. Using (6 – 12) Hz 

flickering frequencies corresponded with high variability that gives an acceptable result based 

on Cheng study which detected the FFT outcome [22]. However, the gaming based on BCI 

system has taken the place of entertainment applications in the SSVEP approaches. In a 3D 

immersive game called Mind-Balance, an animated character is balanced on a tightrope by a 

gazing player at two reversed checkerboard patterns [136]. The primary result was dependent 

on phases of frequency band at (6 – 25) Hz; and offline  extraction feature using squared of 

Welsch power spectral density (WPSD), which estimated and correlated. Moreover, the 

Müller study concludes with the performance of four classes of SSVEP based BCI system, 

which depends on three harmonics of each target of frequency analysis. The flickering found 

based LED stimuli at (6, 7, 8, and 13) Hz as base frequencies that attached to the computer 

screen, providing a cockpit-design feedback [137]. The system was evaluated in each five 

second trial, and repeated four times on different days. Online analysis that varied in four 

conditions gave a variable result range of 35.1 % to 95.8 % improved by mean performance 

of 74 % [137].  

2.4.2 Applied Signal Processing in SSVEP Based BCI 

The signal processing technique allows extraction of the SSVEP responses based on EEG 

raw signals. Fast Fourier transform (FFT) is an important method that elicits spectral power 

density as preliminary estimated results. The aim of FFT concludes by extracting components 

of a frequency based frequency domain with the highest spectral power resolution 

corresponding to the exact SSVEP response according to stimuli frequency [66], [13], [138], 

and [136]. Consequently, improvement and robustness is contributed to FFT based methods 

by employing autoregressive spectral analysis [139], and [28] that exhibited better 

performance than power spectrum for a short chunk of EEG raw. This method requires more 

training sessions, which build the stability coefficient (SC) model [26]. The SSVEPs are 

valuable in BCI systems, since the excellent technique of signal-to-noise ratio (SNR) achieves 

the best performance. Among the different techniques in recent BCI approaches, the 

independent component analysis (ICA) was used, which is denoted as one of the most 

successful methods [7]. The ICA has been widely applied to improve SNR task based EEG 
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signal analysis. Furthermore, an efficient method online analysis of SSVEP based BCI 

approach may be used, such as canonical correlation analysis (CCA), which requires a data 

window shorter than power spectrum estimation [140]. 

Table ‎2.5: Summary of related work using SSVEP based non-invasive BCIs 

Number of 
Reaction-
command  

Paradigms flicker Style based 
research study 

Specification Design 

2 Stimulation large size checkerboard 
 Video camera mounted on 

remote-controlled toy truck [153] 

2 
Normal size checkerboard based 
SSVEP 

 Mind-Balance game [28] 

2 White squares on computer screen 
 Covert attention [141], [142], and 

[143] 

2 
White-button as unique pattern on 
computer screen 

 First comparison of amplitude- 
and frequency control SSVEP-
BCI [66] 

4 
LED stimulation board based 
SSVEP 

 Airplane cockpit design [152] 

4 
Stimulation Group LED evoked 
SSVEP 

 Grid of lights [137] 

4 LED stimuli panel using SSVEP  Simulated wheelchair [154] 

4 
Animation LED based computer 
screen 

 Lights mounted under computer 
screen [155] 

6 
LED based on multi-frequency to 
evoke SSVEP 

 An Sequential Presentation LED 
Study of methods [156] 

8 Stimuli a single LED by (on/off) 
 LEDs Anti-phase flicker of LED 

couples [157] 

10 
LED oddball-style flickering based 
SSVEP 

 LEDs Phone number selection 
[22] 

48 Based on 
only one 
subject 

LED-flicker as groups  LEDs Grid [13] 

 

2.4.3 Artifact Effects on SSVEP based System 

The EEG data are sensitive to external electrical noise signals emerging from an external 

environment. The EEG data that are recorded from brain activity are often influenced by 

external noise, which creates an artifact. These artifacts must be cleaned-up before continuing 

with analysis.  
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The artifact sources are found by electrooculography (EOG) system, which comes from 

eyes blinking and muscle tissue activity; additionally, the electrocardiographic (ECG) of 

heartbeat recode system is also defined as artifact in respect of acquisition data. However, 

electrical devices such as TV, computer, and lights are denoted as primary effect with high 

noise in EEG gathered signals. It is difficult to remove those artifacts without removing some 

relevant embedded information from brain activities related to interesting raw data.  

 

Figure ‎2.5:Eye blinking artifact is directly effect on EEG signal [69]  

Pre-processing steps are defined as a technique that converts regular raw data of signals into 

a new dataset of signals, which are de-noised and cleaned of any artifacts. In other words, the 

pre-processing allows an increase in the signal-to-noise-ratio (SNR) with respect to input 

signals using various methods, such as spatio-spectro-temporal filter (SSTF) [74 - 76]. Figure 

2.5 shows the typical artifacts of eye blinking effect on EEG signals, which are measured 

using an extra electrode placed on a location below the eyes labelled as (VEOG) electrode 

[69]. Eye-blinking artifacts consist of a monophasic deflection of 50–100mv [53], [62], [73], 

[56], and [68]. This makes it possible to distinguish between blinking eyes, which would 

produce an offsite voltage [69]. Some other techniques use the eventual type of feature 

classification in order to extract and remove eye blink and muscle artifacts [145]. 

Consequently, these methods have achieved successful results, with reconstructed data and 

verification to ensure there are no remaining identifiable artifacts. 
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2.4.4 Eye movements effective on SSVEP BCI 

SSVEP based BCI depend on user ability to move his/her eye and gaze, in order to attend 

and select certain choices by evoking a stimulus. Empirical studies have demonstrated that 

disabled people with very limited eye movements might have restricted ability to use the 

SSVEP based BCI systems. Firstly, Kelly discovered in his study that nearby flickers attended 

visual stimulation as compared to obvious attention; he found 20% drop, as a result of 

accuracy classification [141]. In addition, two further studies have attempted to quantify 

limitation effects problems. In the first study, two rectangular stimuli flickers were applied at 

two different frequencies of 10Hz and 12 Hz; subjects were asked to attend to flickering 

letters between A to H [141] in a pilot study of visual-spatial attention control. Likewise, 

realistic BCI systems acquire EEG signal by using two electrodes only [142]. The result 

achieved 72% based on five trials of a covertly attended flickering target. Kelly, in another 

report, employed 64 channels of EEG signals during a similar task approach. A linear 

discriminant analysis (LDA) determined the stimuli in the alpha band at 9.45Hz and 10.63Hz, 

14.1Hz and 17.01Hz based spatial attention. The higher frequency flicker gave a success rate 

by 70.3% with respect to information transfer rate by 2.1 bits/minute [143]. The SSVEP 

paradigm and alpha brainwave modulation produce higher classification rates. Zhang has 

developed an SSVEP based BCI in a covert attention using two large rotating set colour dots 

flicker. The system achieved online accuracy classifiers, which given 72.6% for two 

commands [144]. Other demonstrations of covert attention used reverse checkboard and line-

box stimulations without gaze shifting that enabled a sufficiently strong SSVEP response for 

BCI control [139]. The checkerboard-pattern flicker at 6 Hz and 15 Hz showed the feasibility 

based system without gaze shifting, but labelling was suggested by dependent/independent 

focusing of attention. As a result, checkerboards stimuli elicited much stronger SSVEP 

responses on line and boxes than checkboard patterns. 

2.5 Event-related potentials (ERP) 

Event-related potential (ERP) is a common title for electric-potential changes in EEG 

signals that occur with respect to visual stimulus as a particular event to evoke brain response. 

The research of Davis was declare unambiguous sensory of ERP recordings [57]. ERP 

waveform is a measurable signal of the brain response showing the direct result of specific 

sensors, such as cognitive or motor sensor event, which reflect a stereotyped brain activity to 
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a certain stimulus [58]. Consequently, it is possible to detect the evoked ERP waves by 

preparing a set of visual stimulation based paradigms. A particular ERP design based BCI is 

characterised by time-locked-event (TLE) according to the brain response. The TLE is a 

simultaneous signal occurring within stimulation time that present the neural brain activity in 

certain locked time [72]. One famous ERP design used a number of alphabet letters arranged 

as a matrix of visual stimuli [28]. The oddball paradigm is denoted by aperiodic evoked 

signal.  This paradigm is realized by randomly highlighting letters that recognize the brain 

reaction within a short period of 300 millisecond [58]; ERP is referred to the P300. It mainly 

relies on a positive/negative of potential-signals [59]. The average process is simplified in 

multiple trials of ERP waveforms which usually preserve the amplitude and phase with 

respect to the occurrence of stimulation events [77].   

2.5.1 ERP waveform Component  

ERPs are used as non-invasive techniques in clinical environments to indicate the brain 

functionality of human patients. ERP is a voltage change specified to a physical event or 

mental occurrence which is observed by an EEG signal record [79]. Figure 2.6 shows an ERP 

signal.  

 

Figure ‎2.6: ERP components proceed an  average the EEG under same condition  [58] 

The signal shown divided into two major parts, which represent a pre-stimuli section that 

consists of a baseline with no clear potentials, and post-stimuli section that consists of various 

potentials. ERP components are usually given with reference to their polarity and position. 

The first positive potential, called P1, is defined by a downward waveform, followed by a 

negative potential of N1, defined as an upward waveform, then P2, N2, and so on. The 

potential latencies are measured from stimulus onset to the maximum peak of potential. 

Sometimes these peaks are noted by a latency name, (e.g. N1 occurs at latency 40 

milliseconds called N40; therefore, a P3 occurring at latency 300milliseconds is called P300), 
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and so forth [69]. The baseline configuration presents the difference in amplitude between the 

response peak of potential and the mean of stimulus based (virtual Zero-line) [70], [78], and 

[86]. Furthermore, the shorter chunks of EEG data provide a linked latency to superior 

cognitive functions [80]. 

 

Figure ‎2.7: Time locked based-ERP result with respect to prior period [69] 

This latency can be increased in all accumulated data if the task is more difficult [87], [88]. 

The P300 potentials commonly occur at latencies between 300–1000millisecond associated 

with external attention, such as stimulus evaluation [78]. Moreover, the steady-state ERPs 

recorded a significant shortage response. A large number of studies that investigate the 

attention of steady-state ERP restrict the transient responses which are evoked by the 

stimulator. This potential of evoked signals has an asynchronous and low repetition rate [60]. 

However, the potentials are called transient because there is a slow rate in respect of the 

stimulation. The transient instance of steady-state ERP waveforms includes three major 

components of C1 at (60–80) millisecond, and P1 at (80–120) millisecond as shown in Figure 

2.7; however, the N1 is at 120–180 millisecond [60]. The rapid stimuli rates of brain response 

become the same stimulus as sinusoidal. The transient ERP waveform components having a 

variable phase may also reliably occur in relation to the repeated event [60]. The non-time-

lock of ERP waveforms are referred to induce the following occurrence-based stimulus with 

respect to the period prior to stimulus motor sensory. Because steady-state ERPs have a 

shortage with high temporal resolution in relation to transient ERPs, they are used only rarely 

in cognitive studies [69]. 
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2.5.2 ERP based BCI system 

The ERP components are contained potentials that are highly reliable in terms of latencies 

and can be easily detected [28]. ERP waveforms that contain positive and negative potential 

deflect the EEG signal with respect to occurrences labelled by time-lock after knowing the 

stimulus paradigm. Fabiani and Luck designed an ERP-based BCI system using oddball 

paradigm. This design was frequently presented depending on irrelevant stimuli, which were 

rarely interspersed with relevant target stimuli; this paradigm referred to odd stimulation due 

to the rarity of occurrence that is locked to time events [146]. However, Zickler research team 

validated a system dependent on small dots, used as strobe stimuli, which present directly on 

top of the application. This matrix contains dots, each of which represents one letter and one 

number, which were exchanged in respect of certain stimulation functions [147]. The system 

was demonstrated as an assistive technology device for smart environmental control. The 

control environment connected directly to the internet or email functions when users focused 

their attention on one of the stimulation dot-buttons present on top of the control panel, such 

as (send) button to send an email [147]. Münßinger and his colleagues suggested a painting 

entertainment application. Different painting functions, such as brush size selection or colour 

change, are also placed in the visual stimulus matrix and can be selected in the same manner, 

which has been previously described as smart environment applications [148]. The system has 

been demonstrated with enabled users, as well as severely disabled patients who were able to 

draw predefined paintings [148]. The ERP-based BCI systems have been suggested as 

wheelchair controllers, with the users selecting different control options from a visual stimuli 

display [149 - 151]. 
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CHAPTER3 
 

3. PROTOTYPE BCI-SYSTEM: DESIGN 

AND IMPLEMENTATION  
 

This chapter describes how to set up an SSVEP based-BCI system, which including 

hardware equipment stuff and software tool; as well accumulative EEG data and schedule 

EEG signal recording to store individually as template files; in addition, the pre-processing 

of collective data (templates) are cleaned up from any artifacts. In fact, there are many ways 

to set up evoked SSVEPs; and many of approaches that are used to extract feature from 

signals depending on topic research. Therefore, suggestions many empirical studies in this 

chapter that are provide decent starting point for most stimulation and configuration; also to 

acquisition EEG raw-data, and removing unwanted signals using filters technique based on 

digital signal processing (DSP). However, addressing the problem, which is mentioned in 

(Chapter 1) of reduce the EEG electrodes by inspecting the best responses based on brain-

regions. The contribution of this work has been published as interesting results from headline 

experiments: 

 

 New Paradigms for Brain Computer Interface Based on SSVEP, 2014 World Symposium On Web 

Applications and Networking, ISBN: 978-0-9940194-1-7 
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3.1 Stimuli Exhibition and Experimental setup  

The BCI system is depending on several techniques to extract the signal feature, such as 

steady-state visually evoked potential (SSVEP) which demand to use without need training 

between users and machine. In this conurbations work, a novel style of SSVEP based BCI 

prototype has been designed that induces many flicker points as (spotlights) based on different 

frequencies, several duty-cycle, divers colours, regular/irregular and pattern paradigms, which 

including stimulation attributes. The flicker paradigm was dependent on light emitting diode 

(LED) with respect to phase-tagged triggers (PTT) or time event-triggers structure to achieve 

a high transfer information rate (ITR) of data-transformation, and easy feature extraction. The 

light-emitting diodes (LEDs) present flicker/light sources that give an electroluminescence, 

rather than incandescence, which provides energy transacted to photons of light that move as 

wavelengths. These induce flicker light is elicit waveforms of brain activity affect the eye-

retina, which tangles SSVEP responses in respect of flicker frequencies attributes. The 

advantage of using the LEDs is that they provide an over incandescent light sources based on 

lower energy consumption, longer lifetime, improved robustness, relatively greater durability 

and reliability. In addition, they are comparatively expensive and require more precise current 

sources and fabrication compared with traditional light sources. Therefore, they elicit SSVEP 

response, which is switch-controlled by (On/Off) with respect to LED-flickering. 

Furthermore, there are supplementary attributes, which provide an all-in-one stimulation unit 

that content (multiple frequencies, multiple dynamic colours and multiple patterns). 

Consequently, a low-cost based system is evaluated according to multiple applications that are 

used in BCI technique. The design of stimuli-panel includes 24-positions. Each position has 

three (colours: Red, Blue, and White) different LEDs, which imposed a beam of visual 

induced signals. The users choose one command in respect of (LED positions under certain 

condition such as diverse frequency) by focusing their attention on repetitive visual stimuli 

that change periodically based on frequency, different colours, miscellaneous patterns and 

other characteristics effects on brain responses. These properties are rendered effective on the 

performance of the base model design in terms of comfort, applicability and safety used as 

prototype of the BCI platform. The comfort aspect of the design was a deliberate response to a 

custom questionnaire directly with users. Variability across voluntary subjects was found by 

exploring the results of evoke-stimuli properties that afford a significant brain influence 

within the performance and comfort of an SSVEP paradigm based-BCI. Generally, there are 

substantial differences between each visual stimuli state that are beneficially performance 
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with BCI-system. In order to fulfil all experiment setups within different stimulation based 

combinations of 24-LEDs (split spots/light positions). Individually controlled on LEDs-flicker 

with respect to certain frequency and other properties that prompt directly via (C-console) 

using a personal computer. The multiple visual effect of stimuli panel (shown in Figure 4.13) 

is prepared to evoke SSVEP response within a close-loop system that connects to a depth 

board crossing the computer in order to send various stimuli attributes. distinct advantage 

stimuli characteristics are defined by a couple of configurations provide a respectable 

concession between each experiment performance, such as choosing-colours, varieties 

frequency-band, from 1 to 24 LED at different position and diverse patterns module of each 

stimulus/LED. The flicker in each LED is configured with wide band-frequency based on 

brain activities response that defines by (0.2 to 38) Hz aspect to multiple stimulation 

paradigms. Consequences, the EEG/signals recorder system has been set to measure brain 

activity. 

3.1.1 Stimuli Configuration and Structure   

Differences in stimulation paradigms based on SSVEP evoked response signals are support 

to investigate according to the different stimuli types that evoke brain activity corresponding 

to the extraction features. A pairs of configurations is arranged to provide a compromise 

model in each stimulus that arrangement to evoke brain with decent responses. The low-cost 

system based on SSVEP reflects user attention by recording the EEG oscillations, which is 

present the first stage based on design system; typically the induce light system depending on 

the lights flicker stimuli at different frequencies and others attributes such as different position 

LEDs. However, there are requirements, which support to give a decent brain response based 

on SSVEP paradigm. Therefore, the major requirements are as follows in this contribution 

work:  

 Increment and enhanced the brain response signal which is representing on SSVEP 

paradigms based-system  

 High reliability recognition of SSVEP response signals that are clearly distinguishable 

using bands of frequencies and other characteristic such as different colours or diverse 

pattern duty-cycle attributes 

 No training is needed or just a few seconds training up which is used as classifier module, 

and self-paced performance if required 
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Eight empirical studies have demonstrated using the proposal of low-cost prototype SSVEP 

based design of multi-stimulus panel. The fabrication of stimulation panel is handmade. 

Complete hardware design of visual stimulation panel is powered by pure DC of 9V power 

source to avoid any kind of AC interference component. A maximum error accuracy of flicker 

frequency was measured, gives less than 0.001% at room temperature corresponding to 

progress measuring that validates by a digital oscilloscope. There is no common way to 

present the ideal BCI system, in which connects human-brain to certain machine such as 

personal computer; in other hand, the BCI-system is always dependent on brain activities, 

which mirror the responses using the EEG signals. Although, the visual stimulation plays an 

important role that can represent the flicker LEDs rendering to the main setup argument in 

prototype designed. The brain waveform of activities provides a primary signal that is 

amplified and fed into the computer with confident circumstances of visual stimulus. The 

BCI-prototype was depend is consist of (3 – 12) EEG/channels in addition to the two-main 

reference electrodes (channels) that connect directly configured according to BioSemi of 

EEG-amplifier setup. The BioSemi amplifier is also connected to computer that recording 

EEG raw-signals from the voluntary subjects under confident stimuli test. Therefore, the 

visual stimulation produces an incentive specific frequency in different pattern according to 

type of experiment setup. The visual stimulation board (stimuli-panel) is horizontally fixed at 

the eye level of participants (voluntary subjects), with a distance of approximately 80 

Centimetres in between. The stimuli LEDs are separated into different groups by colours that 

coordinate in the centre and surround as Red group and other two more groups of Blue and 

White, which are similarly symmetric. Adapted the (Eight-LEDs) in each colour, and 

distributed on the board, as illustrated in Table 3.1. Most experiments depend on Four-LEDs, 

which present a one cycle of single visual stimuli to evoke brain activities that are followed 

by next stimuli-cycle.  

Table ‎3.1: Distribution LEDs according to stimuli position  

Position on Board 
Colour groups  

Red Blue White 

Centre 𝑅𝑐
1, 𝑅𝑐

2, 𝑅𝑐
3, 𝑅𝑐

4 𝐵𝑐
1, 𝐵𝑐

2, 𝐵𝑐
3, 𝐵𝑐

4 𝑊𝑐
1, 𝑊𝑐

2, 𝑊𝑐
3, 𝑊𝑐

4 

Surround 𝑅𝑠
1, 𝑅𝑠

2, 𝑅𝑠
3, 𝑅𝑠

4 𝐵𝑠
1, 𝐵𝑠

2, 𝐵𝑠
3, 𝐵𝑠

4 𝑊𝑠
1, 𝑊𝑠

2, 𝑊𝑠
3, 𝑊𝑠

4 
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The amplitude assessment of light-lumens is significantly large enough to induce the 

evoked signals of SSVEP response in different paradigms. Such a case study provides many 

possibilities that deal with inducing electrical-potential waveforms based brain activity that 

lead to inspecting different stimuli effects of BCI techniques according to flecked LEDs. 

Evaluating all attendee experiments by estimated the scheduled recording time, relaxing-time 

(Break) in respect of scene and break-time. Each empirical study has been fixed recording-

time intervals toward distinguishing brain response. All experiments are intended to extract 

the influence of brain responses in respect of prepare scenarios based on stimulation 

paradigms, which are lead to enhance the outcome result based-research:  

 Decrease artifacts that prevent optimization by developing a different approaches (see 

section 3.2) 

 Adjust the suitable evoke frequency based on different brain-lobe stimulation (see section 

3.2) 

 Multiple frequencies based LF, MF and HF brainwave bands (see section 4.1) 

 Three different colours influence based brain responses (see section 4.2) 

 Distinguish brain activities dependent on regular/irregular paradigms (see section 4.3) 

 Reduce delays of SSVEP signals by minimizing tension and fatigue (see section 4.2) 

 Duty-cycle properties inspiration during stimuli (see section 5.1) 

 Constructing the brain recognizing based on multiple pattern effects (see section 5.2) 

Figure 3.1 demonstrates the procedure of EEG signal recording that began with Relaxation 

time; here requested from participant to close his/her eye within 20 seconds through recording 

time of the EEG signal, foreword to use as baseline-data, which covers as comparison based 

on offline  analysis. Toward, three-times recoding issue of EEG signals in every scene shot of 

a single visual stimulus throughout the schedule procedure of 40 seconds recording time. 

Conversely, more than three minutes between each session as break-time during experiment. 

 

Figure ‎3.1: Time table of schedule recording EEG signal process according to the experiment setup   
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The EEG record signals were started on the first flicker light/LEDs, which began after a 

request from the subject to gaze on flickered LED. Three recording times of (20 – 40) seconds 

in each session of both control and application studies by gazing at individual flickered 

groups of LEDs corresponded to experiment format. However, the appropriate of EEG-

laboratory is designed with specific conditions of EEG raw recording signals that prevent the 

interference signal, which effect on the EEG-signal by provides a comfortable environment 

and good peripheral. Further, the EEG-laboratory is prepared to decrease the power line 

effect. More than thirty-healthy volunteer subjects participated in a variety experiments based 

on different empirical studies. All participants had normal or corrected to normal vision. The 

average age of all participants was between 22 and 39 years. Furthermore, all the voluntary 

participants agreed to take part as a subject in this thesis, following an approval talk before 

participating in each experiment test. This ensured participants were fully informed of all 

procedures in advance, towards a clear understanding of experiment behaviour. Finally, 

before the experiment began, voluntary subjects were shown a brief stimuli sequence with 

increasing/decreasing of flickering-LEDs luminance in order to test for photosensitivity in 

order to increases/decrease the luminance intensity to minimize tension and fatigue.  

3.1.2 EEG-Data Acquisition based on BioSemi system  

EEG raw-signal was recorded via BioSemi EEG-system with two main sintered Ag/AgCl 

active electrodes. Active electrodes bias the electronics flow, allowing substantially higher 

signal-to-noise ratio (SNR) and improved sensitivity to weak brain signals. Two additional 

electrodes, denoted by driven right leg (DRL) as passive electrode, and active electrode 

present by common mode sense (CMS) [85]; both located in the posterior of the vertex region 

that used to enhance the common-mode in respect of the different voltage points. These 

experimental studies have investigated the SSVEP responses signal characteristics and 

behaviour that lead to find out a strong response and increase the brain reaction which 

increase amount of BCI-commands based on archetypes. Employed empirical studies, which 

are performed with a three-channel EEG-electrodes on a rear-head region of the skull that is 

configured on the scalp. A highest sampling rate is utilized a 2048 Hz based on BioSemi 

configure‎ system,‎ and‎ adjusts‎ all‎ electrode‎ impedance‎ less‎ than‎ 3‎ kΩ.‎ Further,‎ a‎ special 

electrode Gel is injected between surface skin of the head-scalp and each active electrode 

points to increase conductivity. The electrodes are placed on the head skin surface of human-

scalp, and connect to the AD-Box of BioSemi system through optical-fibre (wires) that to 
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thwart any electrical interference and keep the acquisition of EEG raw-data to clean out from 

external noises. Offline  analysis is exploited on a cumulative EEG data and stored as dataset 

as individual templets files that used to distinguish between response different with respect to 

BCI technique. The accumulated dataset reveals SSVEP features in each individual recording 

stimulus. All EEG-signals are gathered as epochs of collocation EEG signals that subsequent 

extraction periods in each recoding level of each session based on EEG signals. These signals 

are collected as templates-file based on individual epochs to analyse offline and compare 

outcome results referring to brain activity depending on strong SSVEP responses in different 

amplitudes, magnitudes and phases. 

3.1.2.1 ActiveView and Software based EEG-BioSemi 

 ActiView is a software controller functions regularly used with BioSemi set-system that 

developed to supervisor EEG signals platform. ActiveViwe provide a new standard of higher 

resolution measurement based on multi-channel of EEG-electrodes to support the researches 

and diagnosis. Complementary software of EEG acquisition data is designed to display all 

EEG-data/multi-channels on a computer screen within external support signals that are used 

to signify trigger-functions.  

 

Figure ‎3.2: BioSemi control-Front panel GUI described 32-EEG channels within 8-triggers                       
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The software saves all EEG raw-data on local computer hard-disk as BioSemi data-format 

denote as BDF files. Figure 3.2 shows the GUI layout that provides graceful and simple 

confirmation of data quality. The ActiView is an open source software compatible with 

LabVIEW platform that makes a particularly versatile tool. This software (ActiView) has 

been used to convert the acquisition EEG raw-data to digital binary-data. In addition, is 

support to gather external signal through analogy AD-box; the digital triggers are also 

connected to the box. Several analogies filter and down sampling are allowed to use 

corresponded adaptation and enhancement the outcome signals. However, digital buffering 

single techniques completely construct acquisition of raw-data, which are stable and reliable 

during multi-tasking experiment. Furthermore, the AD-box adaptor contains circuitry based 

digital signal conditioning which is connected to the computer via USB port. This system 

provides many types of setting channel that distributed archetypes by (32, 64 and 128) 

electrodes/EEG-channels of recording raw signal. In this thesis have reduced the number of 

EEG-channels and used 12-EEG-channels as maximum amount of electrodes based on active 

mode including the references. 

3.1.2.2 EEG Signal Electrodes Adoption and Localization   

Considering common mode rejection (CMR) of amplification module, the EEG signals are 

compete adapted using the BioSemi system. The difference voltages between active-

electrodes and reference-electrodes are achieving potential signal. Advanced technology 

based-BCI system allow reduce amount of EEG-channel numbers; however, the high 

accuracy based on digitalized signal resolution; rather than input modulation range that 

provide a good solution respect with sampling rate and power consumption. In this 

contribution work utilized a sintered Ag/AgCl type as active electrodes against two reference 

nodes (CMS and DRL), as mentioned previously in section 3.1.2. Subtractions between 

electrical-signals presented on active electrodes and reference node, which evidenced 

potential signals presented by brain responses. Furthermore, the active electrodes are design 

in smaller-size and less-weight which offering better gathering attributes in terms of noise 

signal at low and high frequency. Flat active electrodes have used with proportions 

dimensions‎of‎11mm‎width,‎17mm‎length,‎and‎4.5‎mm‎height‎which‎designed‎by‎BioSemi’s‎

appropriate with all human body-surface and applications. 
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Figure ‎3.3: Configuration and setting 14-EEG channel including references electrodes  

 

Figure ‎3.4: Configuration and setting 8-EEG channel including references electrodes 

 

Figure ‎3.5: Configuration and setting 5-EEG channel including references electrodes 
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Consequently, low input impedance avoids external environmental noise signals, such as 

power sources. The common mode rejection (CMR) does not depend only on electrode 

impedance, is also depend on input amplifier impedance of BioSemi system. The contact 

impedance between the electrodes and scalp skin was calibrated less than 3 kΩ.‎In‎addition,‎

the flat shape of electrodes offer an ideal measure for acquisition of EEG signals. These 

empirical studies have used maximum (12 flat active/EEG-electrodes) that withdraw a high 

data rate of measured signal. The Figures 3.3, 3.4 and 3.5 shows three-scheme types that 

describe the electrode setup and setting configurations based on the BioSemi system 

arrangement. Therefore, Figure 3.3 illustrates the first scheme, which is used to measure the 

EEG raw-signal. This scheme used 12-channels are distributed on brain lobes and placed 

cover the parietal lobe at PO3, PO4, PO7, PO8 and Pz, and occipital lobe at O1, O2, and Oz; a 

further two-addition reference electrode of CMS, DRL is fixed on posterior vertex region in 

standard position. The second scheme in Figure 3.4 demonstrates partly of the parietal lobe at 

PO3, PO4, and Pz, and conceals most of the occipital lobe at same points of previous scheme. 

Finally the ultimate scheme presented in Figure 3.5 show the three main O’s‎ electrodes, 

which are configured on the occipital region because this brain region provide the strongest 

response amplitude respected to LF and MF frequency band in forwarding results. 

3.1.2.3 EEG Cleaning-up and Artifacts Rejection 

The discussion in Chapter 2 reviewed the state of the art and background of cleaning 

process for EEG raw-signal (sections 2.4.3 and 2.4.4). This process leads to discover many 

approaches that remove artifacts, which are basis contamination through recording the EEG 

signals. These contaminant signals (artifacts) such as eye movement, eye blinking and muscle 

activity are rooted with EEG raw-signals. A large comprehensive EEG raw-signals are present 

a great noises when, therefore, the independent component analysis (ICA) over average 

process is support to remove some affected artifacts. In other hands, comparative strategies 

such as systematic artifacts occur between certain conditions than others. It is possible to 

reduce the contaminant signals using digital signal processing (DSP) techniques [86] by 

employing a high precision filtering process or other filtering techniques. However, increasing 

stimulus to evoke trial numbers is not effective on EEG data but reduce the contaminant noise 

signals by averaging chunks of EEG raw-epochs. Furthermore, the most concluding results 

are considered the average process techniques. The average process used primary dataset, 

then moving on to reject artifacts using the procedures accumulating based on point to point 

then formulate a new-datasets.  



50 

 

The averaged approaches of EEG-chunks based on individual trials produce residual noise 

that content signal-to-noise-ration (SNR) which progressively permits the artifacts affected. In 

these studies, have been handled three trials recording EEG raw-signal that conserved in each 

session under the same circumstances (see section 3.1.1) to overcome the problem of 

contaminant noise by average the entries trials. This procedure presents the initial process of 

averaging technique that is proved a succeeded eliminating of contaminant noise component 

in every experiment setup [90]. The primary extract results have been achieved ~30 percent of 

reducing unwanted signals based on average approach, which depends on time-locking events 

according to phase-tagged trigger (PTT) of stimulus that provide a least loose signals. In fact, 

increasing the number of trials is a reasonable solution, which reduces contaminant noise 

signal in such a case of eliminating artifacts. However, the long time span of the experiment 

causes fatigue for participants (voluntary subjects), thereby increasing contamination. 

Therefore, independent components analysis (ICA) has been vindicated mathematically in 

recent studies, since the ICA technique can be used to remove a blinking and eye movement 

artifacts that mixture with electrical noise signals [86]. 

The artifact rejection based on ICA can involve problematic progress in averaging 

procedure, because accumulated EEG raw-signal based on targets-event/(brain response) in 

which the ICA is applied to remove eye blinking and other tissue activities such as movement 

muscle. Essentially, the ICA is presented by an input array of x as linear superposition of 

component vectors s, which is substantiated by the assumption model: 

𝑥(𝑘) = 𝐴 . 𝑠(𝑘)                                                                    3.1 

where the linear 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘) … 𝑥𝑞(𝑘)]
𝑇
 represents the q observed sensor at time 

point k, and source vector of 𝑥(𝑘) = [𝑠1(𝑘), 𝑠2(𝑘) … 𝑠𝑛(𝑘)]𝑇 are unknown by (n) which 

presents components with respect to sensor space. Non-singular matrix (A) contains unknown 

mixture signal sized by  𝑞 × 𝑛 Jung group, who originally developed the ICA technique [86], 

which conducted in this study (see Appendix A.1). In particular, this approach provided 

convincing results that depends on the assumption model in respect of time course artifacts 

according to PTT technique.  

3.1.2.4 Alpha Brainwaves based SSVEP responses   

Alpha-brainwaves are kind of oscillatory EEG/signals that divert between 8-13Hz which is 

stimulated using simple light flickers. The largest amplitude of alpha waveform is located in 

posterior brain-lobe and occipital brain-lobe regions, also occurs frequently when subjects 
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respond to evoked visual stimuli (see section 2.1.4). These types of brain-signals are mostly 

used and appointed based on contribution empirical studies of this thesis. A strong 

rhythmicity of EEG/signal is affected by the visual cortex, which achieved high responses by 

applying flashing-lights directly on eyes-levels, which is apparent a sudden rise in alpha 

amplitudes brainwave. In particular, the alpha-brainwave provides the best rhythm and 

harmony based SSVEP response signals, which is realized by the averaging process. The 

significance of alpha waveforms provides a promising result, theoretical have been proved the 

BCI control system based on foundation and experimental experience that controlled more 

complex devices such as (personal computer). The stimulus flickers that induce the brain 

response which is detecting alpha brainwave based-EEG of non-linearity singles. The alpha 

brainwave is locked into narrow band frequency [90]. Because of alpha brainwaves can be 

considerable as self-organized oscillations through the interactions of a massive number of 

brain-cell activities [82]. Underlying, the mechanism of alpha brainwave is modelled by a 

coupled of non-linear oscillator system [83]. Dependence alpha waveform on brain response 

properties that are affect directly with stimuli frequency, light intensity and stimulus colour to 

provide powerful transformation information [84]. Underlying the mechanism of the alpha 

brainwave is spatiotemporal characteristics [84]. Furthermore, observe the temporal EEG 

signal properties based alpha brainwave through empirical studies, which identify a non-linear 

oscillation of brain signals and conducted to stimulation frequency (see sections 4.1.4 and 

4.2.2). The EEG signals under certain flicker stimuli is strongly include a steady-state visual 

evoked potential (SSVEP); as well as, the transient signals that are termed by alpha 

brainwaves providing decent evoked brain potentials which have the same base-frequency of 

stimulus flicker.  

3.2 Extract SSVEP Response base Time-locked events 

The SSVEP signal is a periodic response reflects the repetitive visual stimulus modulated at 

a fixed or multiple–frequency. This response is embrace within comprehensive of EEG raw-

signals. Most recent studies depend on some sorting of averaging process that extract feature 

signal and reduces contamination noises (artifacts); correspondingly, the average procedure is 

typically accompanied by a procedure that removes the artifacts effect. This approach is 

relatively simple, and Figure 3.6 shows the traditional method of averaged signal technique 

[58]. The brain responses are labelled using an external marker (trigger-events) signals. This 

method is depending on trigger on occur event with respect to evoke stimulus of brain 
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response. The locked-response-events or stimulus tagged-trigger are used with average 

process to accumulate response signals and correct the position at assured time point [58]. 

These markers are aligned with EEG recording in respect to time-locked-event (TLE) which 

depends on cycle mode-trigger and flicker mode-trigger paradigms. These triggers are present 

on each onset-stimulation to indicate event occurring through recording procedure and 

bounded by marker signals. These triggers simplify the averaged process, which allowed 

gathering the dissimilar EEG-chunks aspect of extracting epochs between boundaries 

markers, in manner of point-to-point tagged-triggers-events in every schedule recording time. 

There is an assumption of bounded epochs/EEG-chunks that select a trial consisting of 

SSVEP response with a high mixture of signal to noise ratio (SNR). The gathering approach 

of individual trials of EEG based on average process is applied simultaneously on equivalent 

stimuli conditions.  

 

Figure ‎3.6: EEG raw-signals of individual trails are gathering into dataset respect to average process [58] 
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The SSVEP responses are present in a different time, which match each stimulus trial with 

respect to response waveform. Extract these waveforms based-SSVEP responses from a 

single or multiple trials. The tagged-trigger has been used to detect and determine exact firing 

time-point in each onset-stimulus with respect to trial, and extract the feature based on time-

locked-response then stored in datasets. Extracted features of brain response from stored 

dataset that is contained an SSVEP response signals within random contaminant signals. 

Mathematically, the number of trials (N) presents the stimulated EEG signal that contains a 

noise range of signal ratio (R) average process of (N) trials is equal to (1 √N⁄ ) R. The average 

process is a function of the square root applied to multiple stimulus trials. In order to decrease 

the contaminated of artifacts signal and increase SSVEP respond based on the square root 

function, since cumulative data of EEG signals are reduce the effect of contamination signals 

using average process using the square root role methods (see section 4.1.2.1). However, the 

accumulate signal-to-noise-ratio (SNR) is increase to collect the respond functionality of 

SSVEP. In other words, the relationship between the number of trials and averaged SNR 

achieves a significant acquired signal based on a repetitive number of trials, which improve 

the quality of accumulative data by increasing the number of trials to decrease noise effects as 

mentioned before. 

3.2.1 Frequency Domain Procedure based SSVEP response 

Decomposed of any signals into a set of (sine- /cosine-waves) indicatives a various 

frequencies, harmonics, amplitudes and phases; these signals can be easily reconstructed 

again based on effort domains with respect to time-domain or frequency-domain. The filtering 

techniques, in terms of decomposing signal provide the ability that increasing induced 

characteristic and suppress other based on configuration and filter types. These induce 

characteristic and feature properties are extracted using filters, which expressed usually by 

transferred function based exertion domain. The transfer functions are extract the incoming 

signals that rendered into components. The responses are specified by filtering approach, 

which observed the changing in amplitudes of each frequency and different phases with 

respect of response functions of each incidence brain stimulation. The principle of 

transformation signals between frequency-domain and time-domain is exact gives a (sine- 

/cosine) waves-set that represented by different frequencies and different phases. 

Mathematical, the procedure apply the fast Fourier transform (FFT) (see Appendix A.3), 

which adapt any signal into frequency-domain; in such a case providing power spectrum, 
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which is computed to extract both amplitudes and phases. However, it is possible to inverse 

the out-come result using inverse fast Fourier transform (IFFT) to convert again to the 

original signal. In fact, the frequency responses can be constructed by setting many of scale-

factor, which configured to suppress and restrain the signal. Attenuate some frequency by a 

specific amount corresponding to scale-factor. To complete suppression and an inter-mediate 

value for undesired frequencies will be partially attenuated based-filters design. The 

structured filter design is setup values, which are allowed to (passed or un-passed) band of 

frequencies by zero or one; these values can pass certain frequencies without unaffected by 

designed filter; and completely suppress undesired frequencies which are partially or 

completed attenuated. In other word, the frequency response function is a convolution 

between two signals in the frequency domain or time domain. The essential filters are 

amplified and digitalized the non-stationary of EEG signal. Therefore, it is necessary to setup 

filters, which are suppressions and attenuate unwanted signals, such as AC power-line noise. 

All empirical studies that contributed in this thesis have used the sampling rate of 2K Hz. This 

sample-rate allow to use a high precision filters and provides the highest accuracy base 

Nyquist frequency (NF). In addition, it is necessary to suppress very low frequencies of 

artifacts, such as eye-blinking or eye-movements; by setting a high pass filter (HPF) with (low 

cut-off freq. at 2 Hz) to remove such is eye-movement artifacts. However, all experiment 

strategies were depending to eliminate the effects of power AC electrical line noise, which are 

as described before (see section 3.1.2.3). On the other hands, it is possible to reduce all 

effective of power-line noises sufficiently. A more specific way by implemented a low pass 

filter as half amplitude, within high cut-off freq. at 35 Hz that direct effectively on noise 

without misrepresenting the EEG raw-data as much as the notch filters design. 

3.2.1.1 Selective Brain region-based Spectra Analysis (First study) 

Open source tool of EEGLAB provides a graphic user interface (GUI) that is consecutively 

under the MATLAB platform environment, which processes multiple functions applied on 

accumulative EEG raw-signals such as average procedure based on point-to-point under 

multiple trails with same conditions. Built-in functions of EEGLAB such as the Fourier 

transform that decompose and interpret signal into frequency-domain. However, there are 

other many functions, which depend on triggers to interpret signals in time-domain, can be 

applied on individual channels. The EEGLAB functions are structured as stand-alone 

processing unit to process filtering raw-signals, artifacts rejection and average-process.  
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Figure ‎3.7:Power spectrum result present 32-EEG channels respect to brain lobes analysis 
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Independent component analysis (ICA) technique, which extracts the consistency 

component of each electrode supported by bootstrap statistical methods based on data 

resampling, has been considered to extract statistical results. A preliminary assessment is used 

all 32 channels of EEG-electrodes, which decompose the EEG raw-signal to inspect the 

stronger stimuli based on distribution of spectrum power on scalp maps in respect of 

topographical result. This approach is estimate to find out stronger power spectrum that 

appear on different brain lobe areas; however, it is possible to measure diverse effects based 

on event-related potential (ERP) on specific located points. Cleaning the EEG signals and 

stored, as dataset is one important function done it with EEGLAB. The gathered of 

EEG/epochs are passed through a high pass filter (HPF) at (1 – 20) Hz to remove drift signal 

and low pass filter (LPF) at 38 Hz to remove power-line contaminate noise. However, 

removal of all artifacts that are associated with eye-artifacts blinking and movement using 

ICA in each EEG epoch. The spectrum analysis has been applied on a cleaned dataset, which 

is gathered based on multi-trials recording procedure to extract features of brainwave under 

same conditioner of visual stimulus. Figure 3.7 illustrates four brain-regions, whereas the 

occipital lobe react the activity with alpha frequency band near to ~10 Hz, however the frontal 

lobe activity with theta frequency near to ~5 Hz, also theta band, and the partial left/right-

temporal lobes demonstrate the activities on region near to ~3 Hz and ~20 Hz. The power 

spectrum based on brain activity in this experiment was calculated in order to analyse the 

effect of stimulation on brain regions with respect to different stimulus-frequency bands. The 

topographical result of spectrum analysis showed significant alpha and theta band frequencies 

which lead to major effects in the frontal and occipital lobes region.  Furthermore, it was 

discovered that a narrow-band frequency associated with alpha brain waveform has more 

effect on occipital lobes, which is recording a maximum spectrum. Therefore, it was 

determined that different levels on amplitude in cerebral areas and give higher alpha band 

frequency (10 – 13) Hz as the strongest response. The activate brain region is examined with 

respect to stimuli events by determining the model and setting the log-transform base on 

normalize distribution in each EEG-channel. However, a range of frequencies (10 – 13) Hz 

presents the alpha band that are selected to estimate in other experiment based-spectral power 

analysis. Different effects of spectral power are presented on the single electrode, which are 

located on EEG-channel No.31; this channel is representing occipital centre lobe that denoted 

by (Oz) as shown in Figure 3.8.  
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Figure ‎3.8:Power-estimation on Oz present brain activity at  centre of occipital brain region  

The illustrated results are separated into two main categories: the first presents result that 

extract the event-related-potential (ERP) in blue-curve and the second, estimation power 

spectrum of red-curve. The results are confined to a single electrode at Oz, which provides 

significant differences in the frequency band based-power estimation of induced potential 

signals. However, the feature of ERPs is given a vital response based on SSVEP evoked 

signal that is growth affected on alpha band. 

3.2.2 Time Domain Procedure based SSVEP 

Time-domain procedure is described by setting a filter-type, which is considered a common 

approach of epitomizes the suppression process of high noises signal effects. Attenuate the 

high noises and other effects using the average-voltage process (AVP) which is utilized as 

time-point accumulator with respect to presenting the pick-voltage. Adjustment the time-point 

dependent on (time tagged-triggers) accumulated responses. In fact, this design is 

accumulative filter that computes time-point (n) based on unfiltered data points of (n – 1) and 

(n + 1) with respect to cover all data points. Consequently, the fundamental of inverse-Fourier 

transform (IFT) allow presenting the SSVEP response signals in time-domain, according to 

time-points voltage average process in terms of time-series-point. This designed filter is 
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eliminating the responses based-brain waveform activities. This procedure on accumulate 

averaged response can be formalised based on SSVEP responses by:  

𝑓𝑆𝑆𝑉𝐸𝑃𝑖
=  ∑ 𝑊𝑆𝑆𝑉𝐸𝑃𝑖+𝑗

𝑛

𝑗=−𝑛

                                                      3.2 

Since,  𝑓SSVEPi
 present a time-domain signals, which are gathering responses of SSVEP 

waveform at time of i-time at each point (n). However, compute the averaged-voltages and 

summation the weight of each (n) with respect to recording series-time data. Therefore, the 

weight summation is modulating one-side at certain time-point respect to current value 𝑊 =

1 (2𝑛 + 1)⁄ . This technique is called the averaging (post-points) aspect to current points of 

(+n), whereas the (next-point) presented on (2n+1). This filter type is providing a 

straightforward to attenuate and remove the higher noise signals. By gathers unfiltered raw 

EEG signal with respect to incident of brain response using triggers, in which is equal to sum 

of high/low components based time domain.  

The impulse response function is equal to weight-function process. Wherein, the desired 

signal is symmetrical shape waveform that respect to baseline assumption. Since, the visual 

stimulus iterates periodically and subsequently the brain-evoked responded are echoed the 

periodic-stimulation. However, the concept of digital filter that is implemented based on 

impulse response function to extract responded signals at certain time-point of waveform 

instead to the weight function is formalised as: 

𝑓𝑆𝑆𝑉𝐸𝑃𝑖
=  ∑ 𝐼𝑅𝑗  𝑊𝑆𝑆𝑉𝐸𝑃𝑖−𝑗

𝑛

𝑗=−𝑛

                                                      3.3 

The same procedure of filtering operation is performed as described in equation 3.2 by 

substituting and adopting argument of 𝐼𝑅𝑗, which presents the coefficient values of impulse 

response function at the desired time j. The combination of impulse response function and 

weighting signal according to responses, which are convoluted together based-DSP technique. 

Therefore, improved the question 3.3 regard to convolution signals based on state of impulse 

response function and unfiltered waveforms; a new formal of combination filter can be 

written as: 

𝑓𝑆𝑆𝑉𝐸𝑃 =  𝐼𝑅 ∗  𝑆𝑆𝑉𝐸𝑃                                                         3.4 

Impulse response functions and brain waveforms manner are convolved together and 

typically symbolized by (∗) in equations that indicate convolution operator. In fact, the sub-set 
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of filters in equation 3.4 and called impulse response filters. This filter does not need a 

feedback signal; however, it is easily designed and implementation using MATLAB/script or 

tools.  

3.2.2.1 Relationship between Time and Frequency Domains  

Digital signal processing (DSP) allows to design filters that achieve both frequency-domain 

and time-domain based techniques. The time/frequency domains are two different methods 

used to examine the incoming signals. However, the analysis domains are commonly used in 

many applications such as (electronics, acoustics signals and others). The time domain 

analyses is convert the raw-signal over chunk period that measured the variability against time 

function, (e.g. electronic signal are mainly analysed based on voltage-time plotted). Rather, 

the frequency domain is a technique that used to convert time function signal to frequency and 

different phases. Furthermore, the frequency domain analysis is mostly used to detect power 

spectrum with respect to periodic or non-periodic signals. 

 

Figure ‎3.9:Relationship between time and frequency domains that convolved and multiplied [58] 
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However, it is possible to analyse raw-signal, such as non-stationary in frequency-domain. 

There are many different mathematical algorithms that can used to evaluate and analysis the 

signals, which are referred in both of time/frequency-domains. Indeed, the design filter is a 

straightforward signal conversion among the responses based on convolution or 

multiplication; the domains are dependent on transfer function, which determines by 

convolved or multiply functions respect to domain. The multiplication constructed in the 

frequency-domain, which is equivalent to convolution in the time domain, is fulfilled to 

establish a relationship between time domain and frequency domain. Often the convolution 

operation‎ is‎ denoted‎ by‎ ‘*’‎ and‎multiplication‎ operation‎ is‘×’; in order to classify between 

them. Therefore, it is possible to determine a filter-type that transforms response function into 

frequency-domain. However, inverse Fourier transform (IFT) types of function can used to 

recover any time function, which convolved with Fourier transform. In fact, impulse response 

function is equal to Fourier transform based-filter design. The impulse response function is 

obtain the desired transferring function conversely simply transformations function into time 

domain, as illustrated in Figure 3.9 [58]. Constructing filters technique is usually 

recommended to obtain of extraction features from time series functions. The function could 

convolve or multiply to extract features based on contribution domain. 

3.2.2.2 Extract Feature using Time/Frequency Domains 

The filtering technique in EEGLAB gives the advantage of linear filtering that implemented 

with the signal processing toolbox of MATLAB platform. The time/frequency decomposition 

in EEGLAB is a separate tool that includes morelet wavelets to use in different manners. As 

mentioned before the EEGLAB is an open source tool that contributes to implement 

time/frequency analysis. The new approach integrates the ICA technique regarding to 

time/frequency analysis. The changes of induced potential signals on evoked brainwaves 

based-stimuli events are measured in dynamic-power spectrums, although event-related 

potential (ERP) is nearly complementary to explain these changes in electrical-potentials 

signal according to certain stimulus respect to brain responses. This approach of 

time/frequency analysis takes place to attractive the gathered of EEG raw-signals, which are 

stimulated under same conditions process to cover all 32-EEG-channels instantaneously. The 

EEG-channels are individual indicated which referring to stand-alone electrodes denoted by 

EEG-channel name.  
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The anticipated epoch of EEG-raw signal is filtered using the finite impulse response (FIR) 

with low frequency at 38 Hz and high frequency at 2 Hz that remove the AC power line 

effects; however, reject the artifacts of eyes and other muscle movements using ICA 

technique; correspondingly averaging process have been take place on selective EEG/epochs. 

Here, the data of EEG-recording signals order to provide the best stimulate frequency based 

on different brain regions. The brain activities are realised the different cortical areas that are 

concurrently responded. Consequently, each EEG recording channel has own weight mixture-

signal that signifies different in cortical neuron sources based-activities respect to strong 

responses. A single spick or basin waveforms in event-related-potential (ERP) might present 

an index that combines brain response. Figure 3.10 shows (two-dimensional) results of evoke 

ERPs dynamic signal in respect to time domain analysis consistency across a multi-trial based 

on time-lock-events trigger technique that contributed in this experimental work. The 

measured activity regarding to ERP represent independent component sources, which are 

occurrence on positive and negative waveforms. 

 

Figure ‎3.10:Primery result based on ERP waveform respect to overall brain regions 

From the point of view, the time-domain analysis that exposes ERPs results according to 

the time-locking events are emerge several interesting argument from deduction in each 

channel. Averaged process of ERP is provide the alpha band stimulation effect at frontal 
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region at F3, F4, Fz, FPz, central region C3, C4, Cz and FC1, FC2, FC5, FC6, temporal T7, T8, 

parietal P3, P4, P7, P8, Pz, cerebral region at CP1, CP2, CP5, CP6; and occipital O1, O2, Oz. The 

stimulation effect on results were exploited overall EEG-channels that placed on helmet on 

scalp, and provide significant differences in alpha band frequency based-evoked potentials. 

The features of power spectrum and ERPs results provide a substantial SSVEP responses 

affect. 

3.3 Conclude of Initial Experiment based-Configuration  

Brain-computer interface (BCI) based-system has been implemented as a low-cost 

prototype to induce the brain activities and responses based on steady state visually evoked 

potential (SSVEP) paradigms. Light-emitting diode (LED) that is used to stimuli the subject-

brains. Set up LED flickers with fixed flickers represented by (spotlights) with respect to 

time-locked events. Intended essential amplified and digitalized of non-stationary EEG signal. 

All un-necessary signals have been suppression and attenuate using different filters type, 

which are remove the artifacts from EEG-raw signal. In this chapter, the experimental study is 

prepared to observe different brain-region based on band diverse band of stimulation 

frequency. The comprehensive EEG signals are sorting to process averaged technique that 

maximized the feature extractions. The averaged approach has taken place to extract 

responses and support to removal must of the artifacts effect. Open source of EEGLAB based-

graphic user interface (GUI), consecutively used under MATLAB platform environment are 

processes an accumulative amount of comprehensive EEG-raw signals. A 12-EEG channels 

are place on scalp to cover the parietal lobe at PO3, PO4, PO7, PO8 Pz, and occipital lobe at O1, 

O2, and Oz, and two-addition reference electrode of (CMS, DRL) that used to gather the raw-

signals. Utilize different scheme that configure EEG-channels to improve the best responses 

power based-four differ brain region. Reducing amount of EEG-channels number that are 

configured in different schemes. Topographical results represent the spectrum analysis of 

brain responses behaviour under different stimuli frequency. The spectral-power illustrate the 

responses in four different brain-regions and different frequency, at occipital lobe with alpha 

frequency band near to ~10 Hz high activity, frontal lobe with theta frequency near to ~5 Hz 

high activity, and theta band in left/right-temporal region near to ~3 Hz to ~30 Hz high 

activity. The result of spectrum analysis shows significant alpha and theta band frequencies 

which lead to major effects in the frontal and occipital regions. However, different effects of 

estimate spectral powers are present a single electrode, which is located on centre of occipital 
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lobe no. channel 31 denoted by (Oz). However, a stimuli range of frequencies at (10 – 13) Hz 

of alpha band present a decent power. Time-domains procedure is considered the event 

related potentials (ERPs) according to the time-locked event technique, which provide several 

interesting points from deduction in each channel effort based on potential signals. This 

technique is extracted directly depending on average-voltage process (AVP) beads on time-

point-series and event tagged-triggers to accumulate responses. The outcome result of ERP is 

illustrate different responses between brain region, which allowed to select the occipital 

region and frontal because are provide the SSVEP responses, and neglect the partial of 

left/right brain region- 
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CHAPTER4 
4. SSVEP BASED ON FREQUENCY, 

COLOUR, AND TWO DIFFERENT 

STIMULUS-PARADIGM  
The visual cortex-brain is highly adaptive with effective visual stimulus. Different responses 

can be evoked through stimuli flicker, which contains different characteristic based on brain 

activity. Steady-state visual evoked potential (SSVEP) paradigm is echo of brain activity 

responses that elicited by iterate brain-stimulus at appropriate medium, such as spotlights 

flicker based certain frequency. The flicker is depending on range of frequencies bands of LF, 

MF and HF based on SSVEP paradigms. This chapter discusses the effective frequency band 

that gives a stronger brain activity response. Beyond stimulus frequency band debated a three 

dynamic colours that influence the brain activities and directly effect on SSVEP response. 

Furthermore, two stimuli-types of regular/irregular paradigm are found out the oddball effort 

based on SSVEP responses. The criteria of frequency, colour, and oddball paradigm are 

applied in different experiments to discover and discriminate the contiguous range of 

parameters that yield optimal strong and largest level base-SSVEP response. These 

contribution works have been published results as follows: 

 Multiple frequency effects on Human-brain based Steady-state visual evoked potential (SSVEP), 2016 IEEE 6th 

International Conference on Advanced Computing, 978-1-4673-8286-1/16 © IEEE 

 Beyond Pure Frequency and Phases Exploiting: Color Influence in SSVEP Based on BCI, Computer Technology 

and Application 5 (2014) 

 Discriminate the Brain Responses of Multiple Colors Based on Regular/Irregular SSVEP Paradigms, Journal of 

Medical and Bioengineering 2015, 5.2.89-92/2016  

 Exploiting a Short-Terms Adaptation: In Brain Computer Interface Based on Steady State Visual Evoked 

Potential, 2014 NNGT: International Journal of Information Systems, ISSN Online: 2356-5888 
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4.1 Stimulation using Multiple Frequencies 

The visual cortex provides robust brain activities dependent on light flicker; high responses 

can be defined at most stimulation frequency bands of LF, MF, and HF. In order to expose 

specific band frequencies that depend on the relationship of flicker stimuli based SSVEP 

paradigms, this section, presents a low cost prototype BCI based on multiple flickering 

frequencies of visual stimulus, as shown in Figure 4.1. However, the phase-tagged (PT) 

technique has been used with all conceivable of stimuli flickering that directly indicated with 

SSVEP response signals, which are revealed certain brain activity. The design model is 

prepared as a closed-loop and ready to extract features of an offline /online analysis based 

system. The stimuli-frequency responses are extract features from EEG raw-signals that 

decoded from brain activities regarding the voluntary subjects to intention on desired flicker. 

The differences between several bands of frequencies that are demonstrated based on 

flickering LED light to distinguish the responses in amplitude of spectral power recorded 

from EEG signals using three electrodes. This study has explored the frequency bands to 

discover the optimal frequency that provides a reasonable response quality of SSVEP signals. 

Consequently, the stimulus flicker frequency confined in low frequency (LF) and medium 

frequency (MF) bands, which are covered at (2 - 25) Hz, can evoke the largest SSVEP 

responses amplitude compared to the high frequency (HF) band. Using transection phase 

information based on phase-tagged trigger (PTT) in analysis, which supports the encoding of 

the SSVEP approach. However, a classified the accuracy dependent on the primary influence 

strength response based system. Using the signal-to-noise-ratio (SNR) property to extract 

features of brain wave activity based stimuli-frequency, which restricts SSVEP response 

signals. The stimulation paradigm of multiple frequency sequence is set up on a stimuli panel, 

which responds via an embedded microcontroller crossing a computer in order to change the 

individual frequency in each position of light emitted diode (LED). Visual stimulators play an 

important role by presenting a flicker within multiple frequencies using a single LED. Taking 

into account the effect of stimulation parameters relying on stimuli frequency, the 

methodology of FFT was employed as the (offline ) technique to recognize the different 

responses regarding (power-spectrum) analysis. However, wavelet was used to decompose the 

EEG signal into a series of frequencies depending on three band levels of LF, MF and HF, 

which included many impulsive components based on evoked component of brain waves. The 

spontaneous nature of SSVEP components is influenced by the potential evoked based 

frequency, so that the differences between amplitude according to analysis signals are uneven. 
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4.1.1 Accumulation EEG Signals based Multiple Frequency  

The configuration system of the current experiment is illustrated below in Figure 4.1. The 

system of a multi-stimuli panel was configured with programmable LEDs using depth 

embedded system board. The EEG signals were recordings of brain activity that are fed to an 

“Estimator‎ prototype”.‎ The‎ prototype‎ consists‎ of‎ an‎ EEG‎ analytic‎ module‎ to‎ (analyse‎

brainwave), where the instruction of the visual-stimulation changes, along with decoded 

command that connected to controller to updates the evoked of stimulus LED, and SSVEP 

generator mixer utilises ordering to change a new stimulus based frequencies.  

 

Figure ‎4.1: Proposed prototype that used a unique-colour LEDs based on stimulus evoke signals 

The flickering/LED base-frequency was set into diverse frequencies at (2, 4, 6, 8, 10, 12, 

14, and 16) Hz. The panel contained (Eight-visual stimulus positions) distributed in the centre 

( 𝑅𝑐
1, 𝑅𝑐

2, 𝑅𝑐
3, 𝑅𝑐

4  ), and surrounding  (  𝑅𝑠
1, 𝑅𝑠

2, 𝑅𝑠
3, 𝑅𝑠

4  ) according to (Table 3.1), which is 

presented a fashion of patterns. The stimuli patterns were considered to exploit the multiple 

frequency effects on brain activities; in addition, the duty-cycle stimulation effect (see section 

5.1) was employed to explain in other experiment that discriminate the influence of brain 

responses based on new paradigm. In order to produce the experimental conditions 
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corresponding to an SSVEP responses paradigm based BCI system, all LEDs are set to attract 

with a flicker simultaneously (in same time of evoke stimulation), and each stimulus/flicker 

corresponded to a different frequency. The active Ag/AgCl based on EEG recordings were 

timed at 20 seconds duration for each stimulation onset in each session (see section 3.1.1). 

The voluntary participants (subjects) were instructed to pay attention to the single LED, 

driven by computer a permanent-command that switched a definite LED attend with specific 

frequency. Taking into account main verbal instructions which guided the subject to focusing 

on the desired LED in the centre and surrounding manner corresponding to a given frequency 

by (𝑓). Due to the completion time of the experiment, it was divided into eight sessions of 60 

seconds, which were recorded complete three session times. Analysis of the EEG raw-signals 

was distributed into individual EEG/epochs in split of set-files (templates), which are 

substantial to arrangement as dataset of experiment contribution.  

4.1.2 Process analysis and Result of Multiple Frequency  

The voluntary participants were seated at a constant distance of ~0.9 meters from LED 

stimulus panel. Each LED had a diameter of eight millimetres with light intensity of 1450 

mcd. The stimulation LEDs were controlled using a microcontroller that connected to the 

computer via a serial-data bus. The accuracy of the generated stimulus frequency was checked 

for validity using a digital oscilloscope. The flicker patterns were previously stored in the 

memory of the microcontroller that implemented with FPGA using a depth board that 

controlled by computer of permit-command. A variety of band frequencies based on phase-

shift of flicker frequencies had been sorted with respect to patterns, which were used to evoke 

the SSVEP signal. A maximum error of stimuli-frequency was measured within less than 

0.0015 Hz, which provides a high accuracy flickering under normal operating conditions and 

room temperature. Considering individual LED as a evoke-signal presenter stimulator, the 

variation in frequency with regard to phase-shift was constrained also in phase-tagged triggers 

(PTT) technique, which depends on a marker boundary among evoked brain (response-signals 

in time-consuming) based on segmenting epochs of EEG signal recordings. The stimuli 

sequence was recoded into 20 seconds that were marked with cycle trigger and onset firing 

trigger, which indicated when LED state-on. Flickering LED in all stimuli frequencies 

depended on 25% of duty cycle. A multiple frequency empirical study had been protocoled 

based on variable flicker frequencies of (2, 4, 6, 8, 10, 12, 14 and 16) Hz to induce evoked 

SSVEP signals. These frequencies were used to ensure the best flickering frequency for 
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stimulation; subsequently, offline  analysis occurred of induced SSVEPs effect based on EEG 

recordings of brain activity. Furthermore, in this experiment consider single trial, which used 

to measure the SSVEP response strength. The EEG signal was pre-processed by extracting 

and cleaning the dataset from artifacts, which included the eye-blinks and AC-powerline 

interaction (see section 3.1.2.3).   

 

Figure ‎4.2 : Different stimuli flicker based frequencies which impart diverse levels of spectrum power 

The power-spectrum of different stimulation frequencies imparted as primary result that is 

illustrated in Figure 4.2. The result of this study identified optimal range frequencies that are 

restricted on LF and MF bands frequency at (2 – 16) Hz based-induced evoke SSVEP 

responses. These results were extracted using filters of high-pass (HPF) and low-pass (LPF) 

which were implemented using MATLAB within offline  analysis. The preliminary analysis 

helps to select the best stimuli frequency based-evoked SSVEP response signals, which are 

employed as the main stimulation flicker to use afterward in further experiments.  
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Excerption results provide evidence, since 2 Hz and 4 Hz stimuli-frequencies give a 

similarly low power spectrum at 14 Hz and 16 Hz. In other words, the power spectrum at 

stimuli frequency at (8, 10, and 12) Hz with respect to response is sufficiently large. The 

induced SSVEP signal was carried out at a fixed frequency within a regular interval (periodic 

pattern), as illustrated in Figure 4.2. The LED flicker depended directly on cycle was trigger 

using phase tagged (PT) according to various frequencies, as mentioned before. Each LED 

has a certain phase based individual flicker sequence of base stimulus frequency that presents 

in 𝑖𝑡ℎ LED and delay time  𝑡𝑖 corresponding to Equations 4.5, and 4.5. All stimuli flicker are 

generated within a constant regular interval based on various frequencies. The demonstrated 

result presents the primary consequences of different frequencies that influence brain 

activities based on SSVEP paradigms. 

4.1.2.1 Signal to noise ratio (SNR) based on Multiple Frequency   

The EEG raw-signal was acquired using unipolar optical-fibre of EEG/channels with three 

electrodes and two more of reference electrodes are fixed on a scalp-helmet, and connected to 

the bio-signals recorder of BioSemi-EEG system. More than (Twenty) voluntary healthy 

subjects, aged between 23 and 39, participated in this study. Each participant was asked to 

focus their attention by eye-gazing at individual flickering LEDs (see section 3.1.1). The EEG 

raw-data was recorded under control setup conditions and actual modes of experiment study. 

This experiment was set to discover the optimal effect frequency and reduce amount number 

of recording channels-EEG. The stimuli frequency and EEG-channel amounts number played 

a role in design of a practical BCI-system in real time applications. The steady-state visual 

evoked potentials (SSVEPs) are defined from a visual cortex of the brain region, in terms of a 

natural accumulation of EEG signals by placing EEG-electrodes over the occipital brain 

region. In this model, the bio-signals measured at main occipital of (O1, O2 and Oz) as 

illustrate in Figure 3.5 (as shown in previous chapter 3), in compliance with the BioSemi EEG 

system (see section 3.1.2.2). In this experimental work have realistic electrode locations were 

obtained by preliminary measurements. However, acquiring a (wet gel) to reduce impedance 

between the scalp and contact electrode to obtain a high signal quality that assisted in 

exploiting and extracting. SSVEP response was investigated using Signal to noise ratio (SNR) 

based on three electrodes. The highest SNR value are located in the occipital brain region, as 

proved in this experiment. The filtering technique has been widely used in EEG signal 

analysis; and pre-processing is conducted to improve the SNR values based on EEG signal 
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inquiry. In practice, the synchronize interaction of EEG signals are used with setup filters to 

compute a linear combination of EEG signals based on all electrodes (as shown previous 

chapter 3). Therefore, the EEG signals have been sampled at 2 KHz, subsequently setting a 

band pass filtered (BPF) in frequency range at (0.5 - 35) Hz, which prevents the artifacts. The 

measurement of electric-potential based on neuronal interactions is conducted to validate the 

SNR value. Improve the SNR technique by selecting a three recoding electrodes, which is 

computed dependent on the SNR ratio between power intensity that is given by base 

frequency of (stimuli) and neighbouring frequency of induced SSVEP response. To generalize 

equation that compute the SNR in desired design system is as follows in Equation 4.1:  

𝑆𝑁𝑅𝑚(𝑓𝑛) =  
𝑃𝑚(𝑓𝑛)

1

𝑥
∑ 𝑃𝑚(𝑓𝑛+𝑞)𝑥

𝑞−𝑥

            𝑞 ≠ 0                                      4.1 

     Since, the  𝑃𝑚(𝑓𝑛) presenting the Fourier of spectrum power at anticipated frequency at 𝑓𝑛 

in channel (m); however, the (x) represent the neighbouring frequencies, which distributed by 

upper and lower bounds. Hence, the reference signal is defined 𝑓, which presents the exact of 

stimulating frequency. In the case of the study only three-channel have been used, produced 

the SNR based on evoked SSVEP responses were calculated using the EEG channels 

projection analysis mode. The SNR signals of three EEG channels were estimated the values 

in defined mode, which is selected a combinations of two electrodes that including the 

reference electrodes (channels). Furthermore, feature extraction of SNR value is averaged 

structured to demonstrate the compression between two flicker frequencies. This procedure 

was applied on all stimulation frequency terms of this experiment. Anywise allocated area of 

EEG-channels consumed the highest SNR signal, which was selected to compare between 

responses.  

4.1.2.2  Fast Fourier Transform (FFT) based on Multiple Frequency  

 This analysis is described by detecting variable parameters such as amplitudes and phases 

based on flickering-light /LEDs of stimulation frequency that is distributed into various 

frequency bands. Firstly, the stimulus-frequency is provoked the strongest SSVEP response 

which are extract from multiple stimuli frequencies using Fourier Transform (FT), followed 

by filtering signal to clean-up from any artifacts and find the spectacle power of induced 

evoke-signal based-desired flicker/LED of stimuli-frequency. Essential analysis is 

implemented by a digital signal processing (DSP) technique called fast Fourier transform 

(FFT) given by Equation 4.2; the aim of Fourier analysis is decompose any periodic signal-
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type in terms of amplitude, frequency and phase which is expressed as sufficient result in 

frequency-domain. This facilitate is support to extract the spectrum-power of multiple 

frequency bands in different terms results, more mathematically detail (see appendix 7.A.3).  

𝐹(𝑓) =  ∫ 𝑥(𝑡). 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

∞

−∞

                                                        4.2 

The applicant of signal 𝑥(𝑡) is present in the time-domain where signals are transformed 

into frequency-domain signal by 𝐹(𝑓). Each frequency is integrated with respect to 

conjugating over 2 𝜋 periodicity in one cycle. Theoretically, the terms of the signal processing 

based FFT can be extract decent features corresponding to Equation 4.2 that obtained on 

sufficient length of waveform.  

 

Figure ‎4.3 Multiple flickering observed the 10Hz stimulus strongest response of SSVEP 

The first target was isolating desired stimulation frequencies depending on responses that 

are presented in brainwaves. The purpose of FFT is to distinguish a difference between 

stimulation frequencies, as shown in Figure 4.3. The spectral power have been plotted based 

on different visualized flickers, which are instructed with each individual stimulus-frequency. 

Robust evidence is discriminated 10 Hz stimulus-frequency of induced signal, which provides 
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the strongest evoke SSVEP responses. As well as that is proved in previous chapter (see 

section 3.2.1.1). Digital signal processing (DSP) support to utilize precise-filters, such as 

finite impulse response (FIR), which proceed to extract features based on FFT approach. The 

biological signals of EEG raw are contaminated with 50 Hz power-line frequency 

interference. Therefore, it is necessary to extract pure features and cleared from unusual 

contaminants signals. However, the reason for choosing FIR is that it is inherently stable, 

having a linear phase and being flexible in magnitude responses and easier implementations 

using MATLAB tools. A common transfer function implemented as filter design corresponds 

to Equation 4.3: 

𝐻(𝑧) =  
𝑌(𝑧)

𝑋(𝑧)
=  

∑ 𝑏𝑘𝑧−𝑘𝑀
𝑘=0

1 +  ∑ 𝑎𝑘𝑧−𝑘𝑁
𝑘=0

                                                         4.3 

The linear filter is adapted to enhance the response based SSVEP paradigms have been used 

in this approach. The linear filter is presented by 𝐻(𝑧) aspect to 4.3, which produces an 

output that dependent on components 𝑏𝑘 and 𝑎𝑘. Anywise, the objective to use a linear filter 

that enhanced the extraction feature of response based-SSVEP signal, however this filter-type 

is adjustment tolerate to change filter-coefficient regarding to anticipated stimulus frequency. 

The adaptive filter is involves minimizing a cost design by determining the filter-coefficients 

with each flicker frequency. Since the EEG is a non-stationary and non-linear; therefore, the 

desired design of filter is allowed to change any coefficients in respect of time according to 

achieve optimum response signal. The analysis result leads to decent evidence of a reliable 

design that customizes by coefficient-filters, which isolate the sturdiest evoke SSVEP signal 

based on recording of brainwave activities. From Equation 4.3, can be substitute  𝑁 = 0, and 

non-feedback FIR filter of linear time invariant (LTI) system that optimize filter performance. 

This design methodology is denoted as a non-recursive filter of the Equiripple-filter. The 

Equiripple filter is a uniform tolerance that limits each band of stimuli frequency, thereby 

minimizing noises and optimize ratio in each band frequency corresponding to the Equation 

4.4: 

    𝜖 =  𝑚𝑎𝑥𝑤 |𝐸(𝑤)|                                                                     4.4   



74 

 

 

Figure ‎4.4 : A low-pass based FIR Filter design and implantation 

 

Figure ‎4.5: A high-pass based FIR Filter technique design and implantation  
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Designed FIR filter of low pass filter (LPF) and high pass filter (HPF) have been utilized 

the parameters, as illustrated in Figure 4.4 and Figure 4.5. The purpose design is contribute 

with different stimulation frequencies that are used in this empirical study, and provide decent 

results based on brainwave influence responses with respect to evoked SSVEP signals, which 

are plotted as spectral amplitude power on frequency-domain. The extant result present 

individual of each flickering frequency that is extracted from bands of evoked stimulus. 

Figure 4.6 shows a multiple frequency spectrum based on the source of LED light/stimuli-

frequency, that isolated in each flicker sessions. 

 

Figure ‎4.6 : Comparison spectrum based-multiple frequencies stimulations of evoked SSVEP response 

 In this experiment, the participant subjects were asked to direct pay their attention at a 

particular frequency (e.g., 2 Hz flickering on LED No. 2), while other stimuli/frequencies 

were flickering on other LEDs simultaneously. The idea was to access the effect of attention 

bias on induced SSVEP responses, if the subject chooses to pay attention to one flickering 

frequency while other frequencies are also flickering.  
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As shown in Figure 4.6 the stimulus frequency at 10 Hz provides the strongest induced 

responses in terms of imparted amplitude of spectral-power ~5μv,‎consequently,‎ computing‎

the neighbourhood effects of stimulus-frequency at 10 Hz that indicates decent response 

based on SSVEP signal corresponding to the SNR topography.  

By quantizing the spectrum analyses aspect of Equation 4.3 at 10 Hz with other neighbour 

frequencies with respect to SNR value, this argument makes more sense concrete discussions 

between neighbourhood frequencies and stimulus-frequency effects. The average results of 

SNR topography demonstrated in Figure 4.7 illustrates the target of base-frequency at 10 Hz 

to substitute in comparing formal of  𝐹𝑖, 𝐹𝑖 ± 𝑓𝑗; however, the other frequency substituted 

in 2𝐹𝑖, 𝑎𝑛𝑑 2𝐹𝑖 ± 𝑓𝑗. Both frequencies present the visual flicker, which are observed 

simultaneously.  

 

 

 

 

 

 

Figure ‎4.7 : A comparison between desired target and other stimulation frequency respect to SNR 

The topographically result demonstrate the effect between the target of base stimulus-

frequency at 10 Hz and the neighbourhood frequency at diverse stimulations. The quantitative 

values of SNR ratio provide compression between desired target frequency (i.e., 10Hz) on 𝐹𝑖 

and other stimuli of eight neighbouring frequencies. Substitute the eight neighbouring 

frequencies on 𝐹𝑖 ± 𝑓𝑗 to become new set of stimuli frequency at (2, 4, 6, 8, 12, 14, 16 and 

18) Hz. However, gathered target frequency that presented by 2Fi with a double of eight-

neighbouring stimuli frequencies by substituting on 2Fi, 2Fi±fj at (6, 12, 16, 18, 22, 24, 26 

and 28) Hz respectively corresponding to desired stimulus. By substituting in Equation 4.1 to 

compute the effect on target frequency in respect of other different stimuli frequencies based 

SNR topography, which is achieved by setting anticipated of stimulus-frequency and one 

neighbourhood of frequency.   

By substituted veritable freq.:   𝑆𝑁𝑅𝑖(𝑓𝑗) =  
𝑃𝑖(𝑓𝑗)

1

8
∑ 𝑃𝑚(𝑓𝑖+𝑞)4

𝑞−𝑥

            𝑞 ≠ 0                  4.1 

Target 10Hz 

Fi ± 

fi 

2Fi ± 

fi 
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Figure 4.8, presents a bar chart of SNR comparison ratio that computes all involved subjects 

after the averaged procedure, wherein, each bar indicates to average SNR value respect to 

different stimuli-frequency and neighbourhood. As illustrated in the chart of Figure 4.8, the 

target stimulus-frequency successfully indicates differences evoked respect to SSVEP 

response by comparing with other eight-stimulus-frequency. Additionally, the induced effect 

of SSVEP is robust to stimulation in neighbouring frequency spectra. Therefore, average 

processes have taken place in SNR technique over participant subjects in this experiment, and 

showing effects that are consistent over the statically test.  

 

Figure ‎4.8: Average SNR of desired target frequency at 10Hz with neighbouring frequencies 

However, the chart shows individual SNR result, which are averaged together with respect 

to the SNR in both target frequency by 𝐹𝑖 and neighbour frequency, which is substituted 

on 2𝐹𝑖. Consequently, the FFT results, which are reported in Figure 4.3, demonstrated all 

stimuli-frequency. Therefore, the stimulation frequency is strong near to all neighbouring 

frequency and interference based on the outcome result of average SNRs. A powerful 

analytical technique depends on signal processing approach, which utilises the independent 

component analysis (ICA) (see appendix A.1 more theoretical details). The independent 

components ICA analysis a multi-dimensional data (MDD) that depend on multi-variate 

sources (MVS), which are separated between the linearity components of mixture signals.  
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Figure ‎4.9: Reflected multi-channel depend on SSVEP paradigm by decomposed EEG based-ICA 

The signal processing based on ICA implies discover the target signal that has a minimal 

correlation with other additive components (signals). The designed model sorts a separation 

components by assuming multiple variant-sources which are non-Gaussian in nature and 
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statistically independent. The EEG raw-signal that co-operative from first study presented by 

32-configuration channels transformed a simultaneously the brain responses under stimuli 

condition (see section 3.2.1.1). Therefore, accumulating the EEG signals from different 

positions of the brain depend on multi-channels. The ICA and BSS were performed using a 

multidimensional-data projection (MDDP) onto un-mixed matrix in time-domain, since the 

(un-mixed matrix) is composed of weighted and linear combination based on fundamental 

frequencies. Subsequently, the experiment of multiple frequency analysis offline , to found 

out the possibility of observe spectra frequency that corresponding to induced power based on 

linear independent of evoked response signals of ICA technique. As demonstrated in Figure 

4.9 hue colours to present the dark-red region of maximal SSVEP responses and the gradually 

diminished in yellow-region; however, the green and blue–regions respectively plotted a 

decreasing the evoked response. The accumulated signals of the multi-source of mixture 

signals is decomposed into linear-independent frequency components of each frequency by 

awarding band of brainwaves which are denoted onto delta: (1 – 3) Hz, theta: (4 – 8) Hz, and 

alpha: (9 – 14) Hz. Furthermore, Figure 4.9 shows the separated independent source result, 

which provides a relatively strong reflection of response among each stimulus frequency of 

inducing SSVEP response signals, whereas the stimuli frequency at 10 Hz presents the 

strongest induced response. However, the electrode at Oz that placed on centre occipital lobe 

of brain region provides sturdy power with respect to stimulus-frequency (as show in Figure 

4.9) and previously proved in chapter 3. 

4.1.2.3 Extract a Brain wave in Wavelet Approach respect to SSVEP 

The EEG biological raw-signals are gathered from the surface of the scalp by placing pairs 

of electrodes, which transfer the stream potentials of firing neural cells as non-stationary and 

noisy signal in both amplitude and phases. The frequency-domain based on EEG analysis is 

complicated because analytic signals are dependent on amplitude and instantaneous phase on 

signals. In other words, the time-domain methodology supports understanding of signal 

behavioural-based time interpretation. Therefore, the wavelet transform (WT) methodology is 

particularly presents an influential tool that analyse EEG signals within a time and frequency 

interprets. In this methodology, the quantitative of time-frequency parameters have been 

extracted from EEG signals during time discrimination of flicker based on stimulation row of 

regular pattern, which are illustrated in Table 4.2. Compute a wavelet topography 

correspondent to the origin EEG signal in respect of time series of 𝑥(𝑡), which convolved 
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with a certain scale and converted to the new form based-wavelet function as illustrate of 

Equation 4.5:  

𝑊𝑥
𝜓

= 𝐴𝜓 . ∫ 𝜓∗ ( 
𝑡−𝑏

𝑎
 ) . 𝑥(𝑡) 𝑑𝑡                                                      4.5   

The convolution technique on incoming‎signals‎cooperate‎with‎coefficients;‎since‎ψ‎denote 

as a complex number that represent the conjugate function; both b and a represent wavelet 

scale parameters; also 𝐴𝜓 is presents a normalized parameter [161]. This function is a 

contemporary of continuous complex wavelets [161]. Here the continuous function contains 

complex exponential by which it modulates the signals depending on restriction values of a, 

and b. The tuneable parameter is related to the (time and frequency) resolutions that are 

determined by the standard deviations of (𝜎𝑡 and 𝜎𝑓), respectively [7]. In this contribution 

work, the tuneable parameter was fixed as ad-hoc constraint coefficients in each of three 

considerable rhythms at 5 Hz, 10 Hz and 25 Hz are setting up based-experiment stimuli-

frequencies. However, those stimuli-frequencies are applied using only single LED1. This 

approach has been implemented in order to improve the evoked SSVEP response resolution 

based on time and frequency analysis. The electrodes that are placed on occipital lobe 

presented by O1, O2, and Oz have been utilized to reflect the activity of brainwaves, which are 

analysed based on wavelet approach. In particular, the values of 𝜎𝑡 are expressed in 

milliseconds and 𝜎𝑓 is expressed in Hertz (Hz) at real-signals, which provide a suitable result 

that is describe the temporal spectral change related to external stimuli based-flicker LED1. 

The results are presented respectively the brain activity responses in frequencies of (theta-

band) at at 𝜎𝑓 = 5 Hz, however the response of (alpha-band) presented by 𝜎𝑓 = 10 Hz, and 

(beta-band) at 𝜎𝑓 = 25 Hz with respect to wavelet analyses of EEG brainwave rhythms as 

demonstrate in figure 4.10. Several variation signals in EEG rhythm activities were found 

close to stimulus-flicker, which offset signals by shifting the target of stimulus-frequency. To 

extract the feature based on average technique depends on marker-indexes (triggers) of 

quantitative values of EEG epochs with respect to phase tagged of three base-frequency and 

different time intervals. Besides the results of wavelet amplitude oscillation were 

demonstrated to begin at zero point and increase time variants until decreasing back to zero, 

which typically exhibits the visualizing flicker in different frequencies, which are convolved 

with a wavelet form frequency; however, the frequencies of the wavelet can be specified by 

the number of data points in the time series. Wavelet technique is used the topography result 

that divides the continuous time signal into different scales with respect to time invariant 
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component; however, there are used three different frequency range of each time invariant 

component can be assigned, according to varying of EEG rhythms. Oscillatory changes in 

frequency are fact to distinguish three different rhythm theta, alpha and beta of brainwave 

bands. Figures 4.10 shows the total average change of incoming signals based on wavelet 

analytic perspective of activations signal 𝑊𝑥, which present three stimuli fashion levels. While 

Figure 4.10 illustrates the first band level of (theta) brainwave, and demonstrates the (alpha) 

brainwave level; however, the (beta-wave) band showed in same figure. 

 

Figure ‎4.10: Reflected SSVEP paradigm by decomposed EEG based-wavelet analysis 
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The dark red colour region indicates the increase in brain activity in respect of response 

compared with the other two stimuli, and the dark blue colour region indicates non-activity 

regions in respect of brain responses; however, the orange, yellow and light-blue regions 

present the gradation response with respect to stronger evoked signals of SSVEP paradigms. 

The extracted results based on three bands of brainwaves of brain activity levels. The analysis 

method dependent on time-invariant to distinguishes between different responses of brain 

activities. Discrimination results occupied corresponding to time intervals segmented to 

produce three brainwave bands of (theta, alpha and beta) respectively of stander stimulus 

duration represented as (50, 100 and 200 ms). The gathered, occupied segments are analysed 

by considering the wavelet coefficients and obtaining the evoked potential through 

conventional average in all involved participant subjects. Generally, the results are 

deliberately given a specific property, depending on signal processing, to combine the 

extracted alpha brain waves band activity at different points on three levels, which indicates 

more activations related to the occipital-brain lobe. Alpha brainwave is interesting and 

reliable, according to stimulus flicker.  

4.1.3 Multiple Frequencies Conclusion 

These three empirical studies implement SNR, FFT and wavelet, which are demonstrate the 

multiple frequencies effects using a low-cost prototype of BCI based on SSVEP paradigm. A 

visual stimuli-panel has been designed with electronic circuit, which includes buffers, shift-

registers, ordinary LEDs and some other electronics components. The stimulation LEDs 

contain two main groups: The first group placed in the centre; and the second group placed in 

the surrounding area. Each group contains four LEDs in different positions. Software controls 

all LEDs by permitting in C-program that regulates the flickers and distributes the frequencies 

on individual LEDs, according to close-loop system with respect to experiment setup 

configuration. Voluntary participant subjects were asked to gaze on one stimulus-LED, which 

is flicker with respect to a certain frequency. The experiment was performed successfully to 

induce SSVEP responses with all voluntary participants. Three major frequency bands of 

theta-θ,‎ alpha-α,‎ and‎ beta-β‎ were‎ considered,‎ which‎ determine‎ the‎ brainwaves of activity 

levels. An offline  analysis was concluded using FFT and wavelet transform (WT) to realize 

the behaviour of brain activity base frequencies band of SSVEP paradigms. Firstly, the FFT 

extraction detects the spectrum power analysis of maximum and minimum spectrum-power in 

each band frequency. There are three bands based brain activities were exploited by 
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implementing simple filters; however, the extracting result based on frequencies band 

improved by ICA to remove unwanted signals; and FIR technique to restrict frequency band. 

The FFT result provides all stimuli frequencies of (2, 4, 6, 8, 10, 12, 14 and 16) Hz. The 

stimuli frequency at 10 Hz proves to be decent stimulus/flicker, which provides a greatest 

power with respect to SSVEP responses. The second step use SNR to measure the EEG 

signals at main electrodes of (O1, O2 and Oz). These realistic electrode locations are obtained 

in the preliminary experiment setup. Investigation by SNR based on SSVEP response depends 

deference categorize acquisition of the brain response, which is concluded in previous 

Chapter 3. The highest SNR was discovered to be located on the occipital brain region 

compared with other brain lobe locations, according to multi-trials in terms of the number of 

voluntary subjects by applying eight stimuli-frequencies sessions. However, the ICA 

technique beside SNR proves to determine the evoked brain region based SSVEP responses. 

Furthermore, it was found that stimuli frequency at 10 Hz presents the most robust induced 

SSVEP at electrode Oz occupying the occipital brain region, which affords the strongest 

power with respect stimulus frequency. The filters technique was utilised, together with the 

wavelet function, to determine the ad-hoc results according to multiple frequencies which 

concerned the EEG rhythms at 5 Hz, 10 Hz, and 25 Hz, in order to improve SSVEP responses 

resolution based on (time and frequency) domains, which are proved the alpha band as decent 

stimuli frequency. A different influence on SSVEP response was discovered with respect to 

brainwave activities, which indicates the stimuli at 10 Hz is more appropriate within occipital 

brain region. Interesting results were published in: 

 Multiple frequency effects on Human-brain based Steady-state visual evoked potential 

(SSVEP), 2016 IEEE 6th International Conference on Advanced Computing, 978-1-

4673-8286-1/16 $31.00 © 2016 IEEE  
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4.2 Stimulation using Multiple Colours 

This section describes the efficient parameters that directly effect on BCI-system. 

Stimulation of evoked signals that depend on visual different colour flickers within a fixed 

(stimulus-frequency) to observe brain influence, which provides difference in SSVEP 

responses based on EEG activities in respect of different colours of visual stimuli. In this 

section, addressing the problem, which consider fatigue and exhausting when engaging the 

SSVEP paradigms that mean uncomfortable users to stare at a flickering stimuli procedure, 

causing tiredness and lack of attention. This experimental study investigates how the different 

colour simulations directly influence on brain activities based on SSVEP paradigms, which 

analyse to extract the different result based on frequency and phase (latency). The colour 

flickering simulations that are applied and utilise a regular intervals paradigm to excerpt 

SSVEP affect. Three different colours have been employed, dependant on two (base-

frequencies). However, the phase-tagged triggers (PTT) presented in the visualize stimulus 

were used to indicate the flickering events of each LED and terminus cycle event. A new 

prototype as closed-loop BCI system has been realized to gathered EEG raw (datasets) and 

analyse the extract epoch offline . The analyses methodology is used detecting SSVEP 

response depending on stimuli-periodic manner. Nevertheless, in this study three types of 

analyses have been performed: using fast Fourier transform (FFT); event related potential 

(ERP); and one way analysis of variance (ANOVA), which support the conclusions. 

4.2.1 Multiple Colour Flickers Technique 

The dynamic brain responses effectiveness and influence by SSVEP paradigm based on 

BCI techniques were demonstrated, utilizing (three-LED colour) to flicker onto 24 positions. 

Figure 4.13 shows the configurations and positions of each colour LED on the stimuli panel 

with regard to designing a porotype proposed as a BCI system. The designed and 

implemented module inspects the brain response influence based on a closed-loop BCI system 

using two fixed flickering frequencies at 6 Hz and 13 Hz, which are present the boundary of 

alpha band of brainwaves (see section 3.1.2.4). The stimulation board is fixed at eyelevel on 

the participant subjects. The multi-function panel connects via FPGA depth board through 

computer to control on each LED in respect of the experiment setup. The control signal is 

received from the personal computer to change the colours and positions (i.e., red LED (𝑅𝑐
1) 

blink at centre of first position; whereas the other LEDs are blinking in different colour and 

frequency at other positions (surround or centre), which is controlled by a promote command 
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signals. The complete multi-function panel powered by 9V battery, to avoid any kind of AC 

interference. 

 

Figure ‎4.11: Multi-function panel LED based stimulation of BCI-prototype 

The flicker on each LED depends on a single pattern previously stored in the local memory 

of the depth board. As shown in Figure 4.13, there are three colour LED categories based on 

the experiment setup configuration, which are distributed on the stimuli panel by Red, Blue 

and White, which presented with the (black colour in Figure 4.13 for illustrative purposes). 

Each colour contains eight LEDs to represent a certain group in rows at centre positions and 

sporadic in surrounding fashion. There are 24 LEDs in total spread onto the multi-function of 

the stimuli panel, which provides different phase-tagged signals (e.g. 0°, 90°, 180°, and 270°) 

that indicted within EEG raw-signal through AD-Box of BioSemi system (see section 3.1.2) 

with respect to flicker frequency at 6 Hz and 13 Hz. A stimulus-LEDs group is labelled as 

shown in Table 4.1, divided into different clusters to represent individual colours coordinated 

in respect of the centre and surrounding manner of the stimulation paradigm. Each group has 

an ID, LED colour and position (respectively), similarly symmetric to the LED names. All 

groups LED-cluster are arranged correspondingly to three colours of Red, Blue and White 

LEDs respectively. The advantages of this technique are produces a confident evoked flicker 

to stimulate brain activity to reduce the fatigue BCI users; however, the designed model 

prevents‎the‎shifting‎of‎participants’‎eyes‎during‎the‎stimulation‎procedure‎of‎the‎experiment. 
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Table ‎4.1: Stimulus LED shows different positions and colours of each, fixed on stimulation panel 

Colour Flickered LEDs setup 

Group ID Total  LED 
LED 

Colour 
LED Location 

LED Names and 
Position 

1 4 RED Centre 𝑅𝑐
1, 𝑅𝑐

2, 𝑅𝑐
3, 𝑅𝑐

4  

2 4 RED Surround 𝑅𝑠
1, 𝑅𝑠

2, 𝑅𝑠
3, 𝑅𝑠

4 

3 4 BLUE Centre 𝐵𝑐
1, 𝐵𝑐

2, 𝐵𝑐
3 , 𝐵𝑐

4 

4 4 BLUE Surround 𝐵𝑠
1, 𝐵𝑠

2, 𝐵𝑠
3 , 𝐵𝑠

4 

5 4 WHITE Centre 𝑊𝑐
1, 𝑊𝑐

2, 𝑊𝑐
3, 𝑊𝑐

4 

6 4 WHITE Surround 𝑊𝑠
1, 𝑊𝑠

2, 𝑊𝑠
3, 𝑊𝑠

4 

 

The EEG signal recorded from three electrodes of O1, O2, and Oz locations on the occipital 

scalp region, as shown in Figure 3.5 (see section 3.1.2.2). The common mode sense (CMS) 

activates electrodes and drives right leg (DRL) passive electrode drive (average potential with 

respect to BioSemi EEG recoding system, see section 3.1.2). 

4.2.2 Variable Flickers Approach  

The aim of this study is exploit the SSVEP paradigm properties and characteristic based 

BCI system using two-fixed frequency corresponding to the variable colour flickers. In this 

empirical study, all possibility and conditions are conserved to induce the evoked SSVEP 

response signals based on configuration setup. Stimulus of the brain activities was obtained 

(side-by-side) with accumulated evoked signal according to the phase-tagged triggered (PTT) 

technique which possibility each colour group of stimulation, and EEG raw-signals recording 

from brain activity which are gathered completely dependent on the combinations of (three 

EEG-channels), in addition to the two reference electrodes. The generated stimulation pattern 

is divided into four-cycles of multi-colour rhymester stimuli, based on focus a single LED in 

each session, as shown in Figure 4.14. Rhymester stimulation style corresponds to the time 

difference between each stimuli LED, depending in each cycle of base-stimulation frequency. 

The flickered patterns are considered a phase-tagged triggering (PTT) generated by Equation 

4.5: 

 𝜃𝑖 = (𝑖 − 1) ∗  90°;   𝑤ℎ𝑒𝑟𝑒 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑒𝑑  𝑖 = 1, 2, … , 𝑁                  4.5 

Since, flicker’s‎LEDi is shifted respect to phases, which distributed into (phase-angle) over 

full cycle by 360
◦‎
incremented by (N = 1, 2, 3, 4 and 5), however can be compute the delay for 

each trigger regarding to Equation 4.6: 



87 

 

𝑡𝑖 =  
𝜃𝑖

360°
∗ 𝑇                                                                   4.6                                    

Here 𝜃𝑖   is present the phase delay of each flicker sequence of LEDith and ti is conformed 

the delay time, which is request according   𝑇 =  1/𝑓. In addition, the period T is presents the 

flicker cycle duration, where the f presents the flicker of stimuli base-frequency. Setting a 

fixed flicker base-frequency at 6 Hz and 13 Hz, which are characterized the bounded alpha 

band brainwave. Although the other stimulus LEDith is used same evoke pattern but in diverse 

of phase shifting as illustrate in Table 4.2 of regular stimulation.  

 

Figure ‎4.12: Regular pattern flicker with 25% duty-cycle as sequence based on 4-LED in one-cycles 

The regular pattern is generated based on (Four LEDs) within equivalent time intervals, in 

five cycles of two-stimulus rhymester as demonstrate in Table 4.2. The time difference of 

flicker sequence is divided into (0, 19.225, 38.45, and 57.75) milliseconds as illustrated in 

above Figure 4.14 which is demonstrate 13 Hz as base-frequency based on 4-LED of 25% 

duty cycle. Single row group stimulations have phase delay that presented by 𝜃𝑖  in respect of 

LEDi=1, gives a onset of certain angles by (0°, 360°, 720°, 1080°, and 1440°) respectively. 

Two trigger events were invoked in each cycle. The first trigger was present at the onset of 

each time pulse-on of individual LEDs while the second trigger indicated every new cycle. 

The complete stimulus cycle had a period T, contained in Ton and Toff demarcation. The onset 

flicker contains on-time stimulus presented in red blocks, and LED off-time presented in 
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white spaces; however, the blue blocks indicate cycle trigger, also the grey indicate when the 

LED is on-state as shown in Figure 4.14. A 25% duty-cycle flickering has typically been 

used, which provides comfortable viewing to subjects (user). Contrast in the experiment setup 

was effected by setting the flickering frequency to high/low according to desired base both 

frequencies at 6Hz and 13Hz. 

4.2.3 Extract Colours Effects based on ERP, FFT, and ANOVA 

Firstly, the features are extracted from accumulated EEG epoch of raw-signals as primitive 

(dataset) from all participant subjects based on three analyses methods that are presented by 

event related potential (ERP), fast Fourier transform (FFT) and one-way variance analysis of 

ANOVA respectively. Therefore, the amplitudes and phases are extracted with regard to two-

fixed stimuli frequencies at 6 Hz, which presents a low-stimuli level and 13Hz to presents a 

high-stimuli levels. However, the gathered signals of EEG are sub-divided into two groups of 

datasets corresponding to two stimuli frequencies. These analysis methods depend on 

segmenting the EEG epoch/trials according to onset-flicker of LEDs based on PTT pulses in 

each colour of recording session (see section 3.1.2).  

4.2.3.1 Event related potentials (ERP) Analysis Results 

Event related potential (ERP) process detects the phase difference and the latencies in each 

colour with regard to two fixed stimuli frequencies of 6 Hz and 13 Hz of low and high 

stimulation fashions. In this analysis technique, the EEG raw-signals converts into datasets 

were segmented into epoch/trial according to the firing onset of flickering stimuli with respect 

to PTT pulses. However, the signals were divided into groups, corresponding to two stimuli 

frequencies. The pre-processing signals by passing through a low pass filter (LPF) with cut-

off frequency at 16 Hz and high pass filter (HPF) of cut-off frequency at 2 Hz. These filters 

removed unwanted signals of AC-line noise, and DC component from any other artifacts apart 

of eye blinks or movements, which were using the (Cartool) software that depending on 

ICA/BSS technique. However, a threshold voltage by 100µV was set to remove the muscle 

artifacts, which are not allowed above any threshold potentials. Each trail/epoch was reliant 

on time-line trigger-window respect a baseline (BL) setup. The time-window was configured 

by selecting 250 milliseconds as Pre-frame duration prior to trigger, and Post-frame 500 

milliseconds after the next trigger.  
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ERP is a technique that provides quantified brain activities response to sensory stimulation 

(see section 2.5). The ERP is a method of non-invasive mythology, which demonstrates the 

stereotypical brain signals as different latencies based on responses. Practical the EEG record-

signals reflect the brain activity in respect of evoked response over brain reaction that 

consummates from the scalp-area. The electric-potential component background is mixed 

with ERP waveform, which increases to distinguish between noisy signal and actual ERP 

waves. Multiple trials are conducted to solve this problem over the same stimulation 

conditions to average together of accumulated responses signals that indicate on the same 

stimulus. However, the signal-to-noise-ratio (SNR) provides another solution that increases 

diminished background components of noise signal based ERP waveform analysis to distinct 

and clarity. Conversely, there is an important assumption, which restricts the recording EEG 

trials by adding an event, such as PTT, to store locked onset-events. These PTT locked event 

signals are aligned beside the EEG signals, properly averaged is reduce the background noise 

signals. Using correlated inter-trial of recording EEG signals can be accounted based ERPs 

according to Equation 4.7: 

𝑦(𝑡, 𝑛) = 𝑠(𝑡) + 𝑘(𝑡, 𝑛)                                                               4.7 

 Where 𝑠(𝑡) presenting the desired signal and 𝑘(𝑡, 𝑛) is noise signal. The averaging of M 

trials can be mathematically formulated using Equation 4.8: 

𝑦(𝑡) =
1

𝑀
 ∑ 𝑦(𝑡, 𝑛)

𝑀

𝑛=1

= 𝑠(𝑡) +  
1

𝑀
 ∑ 𝑘(𝑡, 𝑛)

𝑀

𝑛=1

                                        4.8 

However,‎the‎quotient’s‎area‎is‎conserved‎by‎ERP‎waveforms‎and‎provides‎an expected the 

average value of signals  𝑦(𝑡)  in respect of time, wherein the estimation value  𝐸[𝑦(𝑡)] 

equals  𝑠(𝑡). Subsequently, the variance can be computed based on the following Equation 

4.9: 

𝑉𝑎𝑟 [ 𝑦(𝑡)]  = 𝐸[(𝑦(𝑡)  − 𝐸[ 𝑦(𝑡)])2]                                                

=  
1

𝑀2   𝐸 [ (∑ 𝑘(𝑡, 𝑛)𝑀
𝑛=1 )2]                                             

=  
1

𝑀2   𝐸 [ 𝑘(𝑡, 𝑛)2 ]                                                          

=  
𝜎2

𝑀2
                                                                            4.9  

A de-coding is attempted of ERP event waveforms that occur in brain activities, depending 

on the signal of evoked SSVEP responses based on locked-event of stimulation, which is 
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invoked by external stimuli-signals of the multi-colours. ERP waveforms are extracted in 

different potentials of amplitude signals. The gathered signals are averaged the extracted brain 

response waveforms with respect to the same stimuli conditions and circumstances based on 

baseline (BL) manner and phase-tagged triggers (PTT) techniques, which restrict a particular 

time-locked event. Figure 4.15 shows the ERP waveform extracted form of brain responses. 

The average process of ERP waveforms was obtained by accumulating the trials/EEG epochs 

in respect of relevant flicker frequency at 6 Hz. These results present three mean brain 

waveforms of evoked SSVEP signal, which are affected by individual three-colours of 

flickering LEDs. These waveforms are pre-defined in terms of standard nomenclature of ERP 

signal, which is denoted by the traditional number of negative N peaks and positive P peaks. 

Three curves in red, blue, and black correspond to the three stimuli of LED colours by (red, 

blue, and white) respectively. The nomenclature curves present a maximum peak in white 

LED stimulation results with respect to a positive peak at P1; however, the blue LED 

stimulation results at P1 peak, and red LED stimulation results at P1 peak.  

 

Figure ‎4.13: ERP result at 6 Hz that appeared three different colours white, red and blue 

These nomenclature curves indicate the white LED stimuli flicker presents the highest 

potential corresponding to stimulation by blue LED and red LED flickers. Furthermore, 

significant differences are observed in the phase between three stimuli signals in respect of 
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one stimulation cycle based on 400 milliseconds. The white stimuli LED demonstrate at 53 

milliseconds, and red stimuli LED appear on 87 milliseconds; however, the blue stimuli LED 

arrival on 65 millisecond is estimated to the SSVEP response. Therefore, the red and blue 

stimuli LED have lagged latencies behind the white stimuli LED, with the differences in 

phases being apparent for both positive P and negative N cycles. Moreover, the differences in 

amplitude of ERP waveforms presented on the white stimuli colour LED invoked the highest 

SSVEP response by 2µv, corresponding to a comparison between the red stimuli LED 0.5µv 

and blue stimuli LED 1.3µv.  

 

Figure ‎4.14: ERP result at 13Hz that appeared three different colours white, red and blue 

Similarly, with a high flicker stimulus frequency at 13 Hz, a different SSVEP response is 

observed, as shown in Figure 4.16, by following the standard ERP nomenclature, as discussed 

earlier, in the white LED stimulation; however, the red LED stimulation and blue LED 

stimulation result in positive P peaks. The amplitudes analysis of ERP waveforms shows that 

on the positive part, where the white LED stimulation results provide saturation to a higher 

potential than blue and red LED stimulation, these are consistent at 6 Hz stimulation results. 

In addition, the red LED stimulation is more smoothing to induce SSVEP responses; on the 

other hand, the blue and white stimulations have a considerably smaller rise potential. 

Conversely, for negative peaks the blue LED stimulation lags (latencies), followed at the 
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same time by white LED and red LED stimulation. These results indicate differences in 

induced SSVEP responses are dependent upon the flickering frequency of the stimulus. In 

phase analysis, there are differences between positive peaks N that are relatively larger at 50 

milliseconds compared with 6 Hz stimuli frequency. However, the negative peaks are 

observed as tiny differences in between and can be called all waves are synchronous. This 

indicates minimum contingent negative variation of induced SSVEP responses. 

4.2.3.2 Frequency Domain Results  

The EEG signals are pre-processed by involving a similar step, which is described in the 

previous sections (see section 4.1.1) of removing the artifacts effects using ICA technique and 

filtering the gathered of raw-signals from multi-trials (see sections 4.1.2). Induced evoked 

SSVEP signals based on frequency-domain components of response are analysed after 

modifying the signals with fast Fourier transformer (FFT) methodology. The frequency 

analysis of SSVEP responses based on onset of measuring approach is supported by gathered 

SSVEP signal strength, according to multi-trial of the colour stimulation. FFT was used to 

extract the SSVEP response at 6 Hz, which is presents a (low stimulus frequency), and at 13 

Hz to presents a (high stimulus frequency) based on spectrum power extractions. The Fourier 

analysis fundamental provides analytical spectrum power exploration by extracting the 

amplitude and phases which have been given in Equation 4.2 (more details see appendix A.3). 

The objective to use a Fourier analysis that is decomposes any type of periodic signals. In this 

study utilised a regular stimuli of periodic flicker based on different colours. The brain 

influences that are affected by the three colours-stimuli of red, blue and white based on 

low/high frequencies of alpha brainwave range. The SSVEP responses of the primary result 

are discriminated between induce responses, which are captured via EEG signal. The non-

stationary signals, such as EEG signals, include the coefficients that are changed with respect 

to time according to the variation of brainwave activities. The DSP is utilised to establish a 

precise filter such as FIR, which proceeds to extract features based on FFT-based approach. 

The reason for used FIR is that it provides inherent stability on flexible magnitude responses; 

however, this is easy to implement, as mentioned in the previous section (see 4.1.2.2). The 

transforming function of FFT in Equation 4.2, and implementation of the FIR by Equation 4.3 

enhance the responses based SSVEP paradigms. The FIR filter design of low pass filter (LPF) 

and high pass filter (HPF) has employed parameters that are discrete to a certain brainwave of 

alpha‎(α),‎as‎shown‎in‎previous‎Figures‎4.4, and Figure 4.5. The above analysis was followed 

to relay the strongest induced SSVEP response in recording brain activities.  
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Figure ‎4.15: SSVEP response record 7.2µv for red LED stimulus flicker at 6Hz 

 

 

Figure ‎4.16: SSVEP response record 2.9µv for red LED stimulus flicker at 12Hz 
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Figure ‎4.17: SSVEP response record 8.2µv for blue LED stimulus flicker at 6 Hz 

 

 

Figure ‎4.18: SSVEP response record 3.3µv for blue LED stimulus flicker at 13 Hz 
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Figure ‎4.19: SSVEP response record 9.6µv for white LED stimulus flicker at 6 Hz 

 

 

Figure ‎4.20: SSVEP response record 4.9µv for white LED stimulus flicker at 13 Hz 
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Figures 4.17, 4.18, 4.19, 4.20, 4.21, and 4.22 demonstrate the spectral power dependent on 

induced SSVEP responses; the flicker frequencies are based at 6 Hz and 13 Hz of stimuli in 

three types of flickers onto colour-LEDs of red, blue, and white respectively. The reported 

results illustrate that the red stimuli LED has induced a stronger SSVEP response at 6 Hz by 

recording a 7.2µv compared with the red stimuli LED at 13 Hz recording a 2.9µv. In 

consequence, the blue stimuli LED has recorded the strongest response on 8.2µv at a lower 

frequency of 6Hz and on 3.3µv at a higher stimuli frequency at 13Hz. Therefore, the white 

stimuli flicker LED is the induced evoked SSVEP response, which records 9.6µv at 6Hz and 

4.9µv at 13Hz. In exploring the results, there are induced potentials differences between the 

low/high frequencies, which restrict the brainwaves of each stimuli colour, since the white 

stimuli gives a robust power response of evoked SSVEP paradigms, according to spectral 

analysis. However, the slower flicker provides a powerful response compared with the higher 

flicker with respect to amplitude of power spectrum analysis. The low and high frequency 

corresponding to 6Hz and 13Hz present a superior SSVEP response in all stimulation colours. 

Furthermore, the white LED stimulation results induce a much sturdier power based SSVEP 

response compared with red and blue stimuli LEDs; in addition, the blue stimulations provide 

satisfactory power compared with red stimulation. 

4.2.3.3 One way analysis of variance (ANOVA) Results 

The exploration of extracting the spectral powers is followed by boosting powerful 

statistical analyses used to discern effect of each stimulus colour based on evoked of SSVEP 

response. One-way analysis of variance ANOVA procedure assumes that the EEG datasets 

are normally distributed, in addition to those variances of different conditions also being 

identical based analysis. One-way ANOVA a comparison process establishes a significant 

hypothesis for the different entire groups. This approach enables determination of whether the 

mean of any group member is significantly different from others.  

A null hypothesis 𝐻0 is assumed, which establishes (all-entry groups) are equal to mean 

values that determine whether any entry group is significantly different from others, as 

illustrated in 4.10:  

𝐻0:  𝜇1 =  𝜇2 = 𝜇3 …  =  𝜇𝑘                                                    4.10 

Correspondingly, the invalid null-hypotheses are established by considering the alternative 

hypothesis of 𝐻1, which represents an unequal entry group in respect of the mean values of a 

significantly different hypothesis according to 4.11: 
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𝐻1:  𝜇1 ≠  𝜇2 ≠ 𝜇3 …  ≠  𝜇𝑘                                                  4.11 

The different strictures of statical-analysis results of the ANOVA test are computed 

likewise; the mean square within groups by (MSwithin) based on mean square between groups 

of (MSbetween), which are the summation of squares within groups in (SSwithin), according to 

4.12: 

𝑆𝑆 within = ∑( 𝑌𝑖𝑗 − 𝑌𝑖

𝑛𝑖

𝑗=1

 )2,       𝑑𝑓 within = 𝑛𝑖 − 1                         4.12 

The square is substituted between groups (SSbetween), since the individual group is 

represented by observing the value on  𝑌𝑖𝑗 of pattern j of each group; however, the 𝑌𝑖 

represents the sample mean for group i.  

Correspondingly, in 4.13 the estimate mean square is computed within group values: 

MS within = 𝑆𝑆within 𝑑𝑓 within⁄                                               4.13 

Estimated from the summation of the square between groups, the distinction of j within 

group is computed as follows in 4.14: 

𝑆𝑆 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =  ∑ 𝑛𝑖 ( 𝑌𝑖̅  −   𝑌𝑖̿

𝑘

𝑖=1

 )2 ,        𝑑𝑓 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑘 − 1                    4.14 

Here 𝑌𝑖̿ represents the grand mean, since the k is a unique deviation based on degrees of 

freedom 𝑑𝑓 with respect to  𝑘 − 1. Similarly, the mean square is estimated between groups, 

which employed the formula on 4.15: 

𝑀𝑆 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =  𝑆𝑆 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑓 𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁄                                       4.15 

Following a summary of one-way analysis of variance (ANOVA), Figures 4.23 and 4.24 

show the analysis between entry groups that have provided three stimuli colours of (blue, red, 

and white) corresponding to (1, 2, and 3) respectively on the illustrated scheme. Firstly, 

remediation of pure EEG (raw data) is considered by removing the eye-blink artifacts using 

threshold technique then occupying as a (new dataset), which does not apply any kind of filter 

on gathering of raw-data.  

Figure 4.23 illustrates a low colour stimulus at 6 Hz to the analysis between groups, which 

demonstrates white and blue are tightly packed and much closer to each other by inducing the 

responses based on evoked SSVEP paradigms.  
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Figure ‎4.21: Stimuli LED flicker at 6 Hz in three different groups   

 

 

Figure ‎4.22: Stimuli LED flicker at 13 Hz in three different groups 
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However, the red stimuli flicker is loosely packed. Furthermore, Figure 4.24 shows the 

different schemes between the three stimuli based on colour present a high level with respect 

to the alpha band of brainwave at 13 Hz. Here, the white stimuli LED records a strong 

response compared with other two stimuli of red and blue. On other hand, the high-level 

stimuli based frequency provides a compatible result, which is explored previously. From the 

fundamental of ANOVA analysis, it was discovered that the induced response of SSVEP 

effect is much stronger than red and blue LEDs at 13 Hz. The ANOVA test on 6 Hz stimuli 

frequency shows a stronger effect for all three conditions in respect of the value of rejection 

area [F (2, 12) = 927], and the probability equal to [p < 0.005]. A multiple comparison shows 

a significant effect of white stimuli LED by M = 0.6, and SD = 0.18 compared to red stimuli 

LED on M = 0.46, and SD = 0.23, also the blue stimuli LED is provide M = 0.53, and SD = 

0.18. Correspondingly, the induced SSVEP response at 13 Hz, of the blue and white stimuli 

LEDs induces much stronger effect than red stimuli. The test result shows stronger effect for 

all three conditions with respect to rejection area [F (2, 12) = 603], and the probability equal 

to [p = 0.001]. A post-hoc multiple comparison shows significant effect of (white stimuli 

LED) by M = 0.67, and SD = 0.12 compared to red stimuli LED in M = 0.52, and SD = 0.31 

and blue stimuli LED in M = 0.7, and SD = 0.27. 

4.2.4 Multiple Colour Conclusion 

The contribution of this work successfully demonstrates as low-cost prototype BCI system 

based on SSVEP paradigms using three colours of white, blue and red LEDs. Visual 

stimulation board was powered by a 9V battery source to avoid any AC-line interferences. 

Each colour has established with eight-stimuli-LEDs starred in the centre and surrounding 

area on a stimuli board. Throughout the experiment, a regular flicker paradigm was preferred 

to evoke the brain activities respect to SSVEP responses. The flicker of periodic sequence of 

each LED was regularized according to a mathematical formula with respect to individual 

groups of variable flicker approach. The flicker was set with constant base frequency at (6 and 

13) Hz that were present on stimulation LEDs for each recording session. The experiment 

results were obtained on three analyses methods; using the event related potential (ERP), 

which revealed the phase shifted behaviour in each colour stimulus, and the FFT to detect the 

maximum amplitude power in each colour. However, the one-way ANOVA was employed to 

realize the behaviour of brain activities with respect to colour stimulus by extracting the EEG 

raw-signal to detect the maximum effect.  
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These results present three main brain waveforms of SSVEP response affected by 

individual colours of flickering LED. ERP results have demonstrated the phase different 

waveforms, which possessed average trails accumulate technique with respect to relevant 

flickers of high and low based alpha band. These waveforms are defined in terms of the 

standard nomenclature of ERP signals, which are denoted by negative upward N-peak and 

positive downward P-peak. Nomenclature curves of ERP analysis present by N and P peaks as 

maximum and minimum values. The white LED-stimulus at positive peak P1 recorded  a 

higher evoked SSVEP responses of potential 2µv. Correspond, to red stimuli-LED, that 

records 0.5µv, also blue stimuli-LED on 1.3µv. A significant difference between observed 

phases of three stimuli signals according to latencies, since the white and blue colours are 

leading red at 6 Hz of stimuli frequency according to ERP waveform results. On other hand, 

the white colour is leading from blue, and red LEDs is lagging from blue at 13 Hz of stimuli 

frequency. However, the colours appear in phase in P downward at both stimuli of 13 Hz and 

6 Hz. This indicates a minimum contingent of negative variation of induced SSVEP 

responses. The results of FFT indicate that colour stimuli based flickering induces strong 

responses. However, it was discovered that the white stimuli LED induced a much stronger 

SSVEP effect based on analysis; also, the red and blue stimuli LEDs induced SSVEP 

irrespective of flicker frequency. Indeed, base frequencies were found to be much stronger at 

6 Hz stimuli frequency effect than 13 Hz stimuli on all stimuli session. ANOVA explores the 

results of different induced potentials between (low and high frequency) which are restrict 

alpha brainwaves based-stimuli colour, since tightly packed on white and blue are much 

closer to each other by inducing the responses based SSVEP paradigms. However, the red 

stimuli flicker provides a loosely packed flicker stimulus at 6 Hz. From the fundamental of 

ANOVA, analysis discovered the induced evoked response is a much stronger SSVEP effect 

than red and blue LEDs at 13 Hz, although the different schemes between three stimuli based 

on colours are present at high-level responses with respect to alpha band of brainwave at 13 

Hz. Therefore, the experiment is adapted to configure as online BCI application based 

SSVEP. Multi-colours could be helpful in new applications to support  disabled people for a 

more attractive external environment. This will make a more objective comparison among 

BCI systems with single and multiple colours. A multi-colours paradigm will introduce a 

different protocol for different applications. Finally, this provides advantages to exploit this 

method as a future application work in SSVEP based on BCI system fields since it is adapted, 
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optimized, and configured with the support of FPGA as future online experiments. The 

interesting results were published in: 

 

 Beyond Pure Frequency and Phases Exploiting: Color Influence in SSVEP Based on BCI, 

Computer Technology and Application 5 (2014) 

 Discriminate the Brain Responses of Multiple Colors Based on Regular/Irregular SSVEP 

Paradigms, Journal of Medical and Bioengineering 2015, 5.2.89-92/2016 Journal of 

Medical 
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4.3 Short Terms Adaptation based SSVEP paradigm   

Brain-computer interfaces (BCI) have successfully emerged to assist disabled people by 

introducing a new technique which provide possibilities to use based on brain technology. 

The increased amount of BCI-command control number offer higher possibilities for BCI 

users, and leading to decrease classification algorithm effort and increase accuracy. This 

empirical study explores a prospect by employing irregular versus regular-stimulations to 

increase the number of target of reaction BCI-commands. Dynamic brain activities, which are 

extracted from evoked signals of SSVEP response, are dependent on non-symmetrical 

paradigms in order to increase the commands hypothesis. The Flickering stimulus, found by 

Phase-tagged (PT) with respect to EEG signals, which is facilitated to extract the induced 

SSVEP responses from brain activity. Moreover, the SSVEPs can be automatically detected 

by engaging a series of signal processing steps that include pre-processing by filter that 

prevent artifacts, and extract features using spectral content at stimulation frequencies. Visual 

stimulator presents two main pattern based flickers of regular and irregular on a single LED 

based constant frequency. The average of stimuli effects that are recommended are combined 

using fast Fourier transform (FFT) to find spectral different and event related potential (ERP) 

to explore phases and latency of brain responses. As offline analyses based on accumulative 

brainwave of EEG raw-signal, which extracted to distinguish the brain activities in terms of 

evoked SSVEP paradigms. The decent results between regular versus irregular are found by 

high different on amplitude with respect to a conjunction of stimuli-flickers based fixed-

frequency according to two-patterns. 

4.3.1 Exploit a Short Terms by Regular/Irregular Paradigms  

The steady-state visual evoked potential (SSVEP) is a brain response type evoked by 

invoked light/flicker of visual stimulus based on a frequency range from (1 to 90) Hz [19]. A 

virtuous response is normally acquired on (5 to 15) Hz, which has been proved previously 

(see section 4.1). These two stimuli paradigms of regular/irregular based SSVEP supplement 

augmentation of brain activity. The preliminary experiment results of short term explores the 

ability of the human brain to distinguish between regular/irregular based SSVEP paradigms, 

where the different SSVEP evoked elicit the difference between amplitude and phases of 

brain waves response. Pre-progressing towards a concept requires an understanding of the 

extent of brain activity, which enables excitations to specific tasks. The inspired of this study 

is increases the amount of brain commands based-BCI system depending on stimulus 
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sequence. By compare the regular with irregular stimulus to recognize the influence of 

brainwave based-stimulation paradigms. In general, the multi-stimulus panel can offer four-

stimulation LEDs to evoke SSVEP response. Both paradigms of stimuli flicker LEDs are 

induced the evoked brain responses with respect to PTT that used to decide the different 

phases in each mould paradigms regarding to unique frequency. The LEDs are configured 

with base frequency at (12 Hz of 4-LED × 2 Paradigms).  

Table ‎4.2: Regula paradigms present 4LEDs onset respect to four different phases 

Stimuli LEDs Position 
Number 

LED Pattern 
Different Phases 

θ⁰ 

LED1 1000, 1000, 1000, 1000 0⁰, 180⁰, 360⁰, 540⁰ 

LED2 0100, 0100, 0100, 0100 45⁰, 225⁰, 405⁰, 650⁰ 

LED3 0010, 0010, 0010, 0010 90⁰, 270⁰, 450⁰, 630⁰ 

LED4 0001, 0001, 0001, 0001 135⁰, 315⁰, 495⁰, 675⁰ 

 

Table ‎4.3: Irregular paradigms present 4LEDs onset respect to four different phases   

Stimuli LEDs Position 
Number 

LED Pattern 
Different Phases 

θ⁰ 

LED1 1000, 0100, 1000, 0100 0⁰, 225⁰, 360⁰, 585⁰ 

LED2 0100, 0010, 0100, 0010 45⁰, 270⁰, 405⁰, 650⁰ 

LED3 0001, 0001, 0010, 0001 90⁰, 315⁰, 540⁰, 670⁰ 

LED4 1001, 0000, 1001, 0000 0⁰, 135⁰, 360⁰, 495⁰ 

 

The SSVEP evoked by stimuli are separated into two different groups to demonstrate as 

symmetry regular paradigm and likewise for a non-symmetry irregular paradigm. The 

rhymester on Four-LED includes calculation with White stimulus-LEDs because the white 

stimulation provides a stronger evoked response as proved before (see section 4.1.2.2) based 

on onset stimulation of flicker with respect to main shift phases, while is change base phase 

incremented by 45⁰ respectively, according to the configuration of Equation 4.16: 

𝜃𝑖 = (𝑖 − 1) ∗ 45°;     𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … , 𝑁                                  4.16 

In spite of stimuli configuration, Table 4.2, and Table 4.3 illustrate the different phases on 

θ⁰ with respect to Regular/Irregular paradigms; furthermore, the stimuli flickers are always 
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displaced with (45⁰) among Four-LEDs, into one cycle of one rhymester stimulation. The 

time difference between each stimuli LED based-one cycle is discriminated according to 

single frequency. Two additional signals provided in each cycle decelerated events of onset 

LED-trigger and the other is cycle began, confined by periods of  𝑇𝑜𝑛 and  𝑇𝑜𝑓𝑓. The EEG 

signals were measured by three-electrodes placed on (O1, O2, and Oz) of occipital lobe of 

(brain region); while, the CMS activates electrode and DRL passive electrode drives the 

average potential accord to references electrodes of BioSemi EEG system. 

4.3.2 Extract Feature based Onset of Regular/Irregular  

The technique of flicker was identified by fixed stimulation frequency, which elicits as the 

strongest evoked SSVEP response that is proved in (section 4.1.2.2). The based frequency 

was isolated using independent component analysis (ICA) followed by filtering signal 

procedure by digital signal processing (DSP) to clear induced effects of brain activities, then 

implementing a basic analysis of Fourier analysis fundamental 4.2: 

𝐹(𝑓) =  ∫ 𝑥(𝑡). 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

∞

−∞

                                                       4.2 

The purpose of the Fourier analysis is to decompose any periodic signal-type within a 

sufficient length based on the foundation of transformation analysis [144]. The rhymester on 

Four-LEDs includes onset-stimulation flicker with respect to phase shifts in 45⁰ among each 

LED into one cycle. This work realizes the difference between two paradigms based on 

change in phase and amplitude onto brainwave activities. Therefore, the work relies on two 

types of analysis methods to distinguish the brain responses, which are gathered EEG raw-

signal then sorted as individual group of EEG/epochs (template) according to each recording 

session. Thereafter, analyses the template file separately according to methods of frequency 

and times –domains. The FFT is utilised to present the spectral-power in the frequency-

domain; while the ERP analyser is utilised as time domain to distinguish the phase shift in 

each paradigm. The hypothesis of irregular paradigm of random LED flicker provides high 

amplitude responses based on brain activities. Therefore, it is easy to distinguish between 

paradigms in respect of diverse stimuli patterns, which are evoked potentials signals of 

produced SSVEP responses; furthermore, irregular paradigm leads to increasing the control 

commands based BCI system compared to multi-frequency flicker. 
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4.3.2.1 Frequency-domain Analysis of Regular/Irregular paradigms  

Firstly, the FFT is utilised to achieve the power spectral in each paradigm corresponding to 

the entrance stimulus-frequency, which is proved previously in (section 4.1.2.2). The 

frequency-domain analysis approach is applied after gathered EEG/epochs have been pre-

processed by setting filters of low-pass filtered (LPF) that contain cut-off frequency at 35Hz 

to release power line interference artifacts. Notably, the signal processing is performed to 

deduct unwarranted signals by automatic artifacts rejection using MATLAB tools, based on 

ICA technique to remove the eye-blink and muscle movement artifacts (see Appendix A.1). 

The candidate signals x(t), according to the Equation 4.2, represent the time domain signal 

that is transformed into frequency domain signal F(f) by integrating each constituent 

frequency. The term signal has infinite bound but in practice, it can be integrated over 

sufficient length to obtain a good approximation. Therefore, conjugates‎over‎a‎period‎of‎2‎π‎

periodicity. The first target of the extraction approach is of stimuli frequency at 12 Hz, in 

order to compute the amplitude by withdrawing the power spectral depending on certain 

frequency from inward EEG/epochs as offline analysis.  

 

Figure ‎4.23: Primarily result demonstrate regular paradigm response based single stimulus white-LED 
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The FFT is applied onto different stimulation ranges of regular and irregular of both 

paradigms, as illustrated in Figure 4.25, and Figure 4.26, which illustrate the plotting resu7lt 

of spectral in each visualize stimuli frequency. The EEG signals are non-stationary, and 

spectrum will change with respect to frequency domain is not given an exact result; or can be 

approximated piecewise from non-stationary signals. Therefore, questing a short chunk from 

EEG/epochs, according to trial-windows (see section 5.3.2.1) that proved to given an 

sequence of independent stationary segments which conclude a good result. All 

individual/trials are gathered from voluntary (subjects) participant to average and extract 

based on evoked SSVEP signals in each paradigm. The trial-windows are normalized among 

~5 seconds before applying FFT algorithm as baseline (BL) of threshold value. Subsequently, 

the FFT is performed, which depicts a spectral frequency of SSVEP response.  

 

Figure ‎4.24: Primarily result determine irregular paradigm response based single stimulus white-LED  

In addition, consider removing the second and third harmonics with respect to base 

stimulus-frequency, which are effects on extracted responses. The concept of the alpha 

brainwave band contributes significantly to a sharp peak of spectral distribution amid at 12 Hz 

flicker stimuli, which is described in the previous section (see 4.1.2). Therefore, extracted 

amplitude on alpha band is fetched under the same condition of the stimulus frequency from 

gathered epochs that provide a similar response flicker stimuli frequency.  
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In fact, the spectra analyses under invoked signals of stimuli conditions are similar in each 

paradigms; however, there are two amplitude peak appear in most stimulus in both paradigms 

of regular/irregular stimulations, which are illustrate the SSVEP response effect according of 

two-pattern (as shown in Figures 4.25 and 4.26). Observed clearly amplitude signal (spikes), 

which defined differs paradigms as primary results based on this study. In particular, the 

amplitude of the spectral demonstrates a second harmonics is comparable with flicker 

frequency and smaller than SSVEP response signals in term of fundamental of frequency 

domain, referred to in (section 4.1.2).   

 

Figure ‎4.25: Discernment amplitudes that demonstrate the regular/irregular paradigms response 

In other word, Figure 4.27 shows the feature of amplitude that evoked from SSVEP signal 

in medium frequency (MF) range of alpha waveform band (see section 2.1.4), which are 

extracted from flicker stimuli using a fundamental of FFT after applying the FIR on the clean-

dataset which are gathered from raw EEG/epochs. The results of irregular paradigm over 

equivalent circumstances recognize the maximum spectral by ~1.9µv compared to the spectral 

efficiency in regular paradigm as ~1.5µv. 
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4.3.2.2 Dynamic Time-domain Analysis of Regular/Irregular paradigms    

The second analysis approach considers the advantage of ERP techniques to detect the 

phase difference in each paradigm with respect to phase-tagged PTT structure according to 

stimulation configuration. The fundamental concept of amplitude and phases of de-coding 

EEG signals by average process to extract epochs identifies based on target across the 

reference of phases using ERP technique. In this work the offline analysis based occur event 

of ERPs that referred to baseline (BL) and threshold (voltage). Reveals reasonable evoked 

SSVEP responses are extricating associated with brain activity of evoked stimuli signals that 

provides a clearly distinguishing between two stimuli paradigms. Usually the ERP waveforms 

presents by latencies of responses, which content from amplitude and phases. The ERP 

waveforms are measured depending on averaging process of gathered evoked response 

signals. An effective approach has been dependent on reflecting brainwaves correspondingly 

to accumulate of multiple-trials of EEG/epoch. ERP waveform processing is reflect an 

external events of stimuli light/flicker specifically at LF and MF, which are concentrated 

around the occipital and central brain regions based recording EEG/epochs (see section 3.2.2). 

The visual flickers are elicits by brain response based on ERP event occur. Extracted epochs 

from EEG raw-signals were accumulated from each participant and gathering individually 

according to stimuli-based two paradigms. The phase-locked events (PLE) have been 

obtained by PTT in terms of (timing windows technique), which accumulating process a 1536 

epoch in each template file to present one evoke-paradigm session. Each recording file 

(templet) represents onset stimulus-paradigm accrual by adding the external triggering signals 

to indicate flickers onset-trigger and a complete take place of one cycle-trigger. The constraint 

ERP waveforms is compute based on SSVEP responses for each epoch, dependant on time 

interval of elicited evoke signal based-triggered in each trial-window and baseline (BL), 

which are determined by pre-frame duration and post-frame duration. These windows are 

averaged together according to restrict PTT pulses which associated with brain activity 

property of SSVEP response signals. This method detected induced SSVEP signals, which 

have averaged onto epoch amount according same stimulation conditions, particularly for 

each paradigm group regarding regular/irregular patterns. In order to compare the result 

between frequency-domain base (FFT) and dynamic time-domain base (ERP) with respect to 

essential components of ERPs which are systematically extracting regarding to time-locked 

windowing techniques corresponding to phase-trigger PTT that illustrate the different 

between latencies of amplitudes and phases.  
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Figure 4.28 shows the phases in regular paradigm stimulation, which gathered after being 

averaged from individual voluntary subjects under stable conditions, based on fixed stimuli 

frequency at 12 Hz. The brainwaves represent the SSVEP responses as extracted into ERP 

waveform; correspond to positive P peaks in one cycle as (0, 88, 177, 266 and 355) 

milliseconds‎respectively‎and‎different‎phases‎in‎θ⁰‎with‎respect‎to‎single‎flicker/LED‎that‎is‎

presented‎ by‎ (0⁰,‎ 180⁰,‎ 360⁰,‎ 540⁰,‎ and‎ 720⁰)‎ respectively‎ attuned‎ to‎ Table‎ 4.2.‎ The‎ time‎

shifting of SSVEP responses are demonstrated onto an extracted curve in one stimulation 

cycle that is directly affected on ERPs waveform with latency responses based on brain 

activities.  

 

Figure ‎4.26: ERP waveform of regular paradigm with PTT pulses in each onset-LED and cycle 

The vertical Black Boxes show the onset-event occurs with respect to triggers which illicit 

the responses corresponding to latency in each evoke-event. However, the Blue Boxes present 

a complete stimulation cycle. This paradigm has been adapted as a result of sensory responses 

which provides a positive downward at (N30) followed by negative upward  on (P70) of brain 

waveform based-ERP, which means the response on the negative part has been delayed ~30 

milliseconds; however, the positive part has been delayed by ~70 milliseconds. The focusing 

attenuation plays a role by provides the identical stimuli indices based on the visual cortex 

storing strength of the inhibitory pathway of human-neural system. The downward of positive 
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waveform‎ aspects‎ on‎ P70’s‎ are‎ present‎ the‎ absolute‎ amplitude‎ of‎ difference‎ proceeding‎

through and the negative upward on N30. Both P70 and N30 can elicit a steady-state signal of 

SSVEP paradigm (responses). The entire sequence in one cycle covers 355 milliseconds that 

include the whole onset-LED based on a single stimulation paradigm. The effect of random-

contour with respect to irregular paradigm, shown in Figure 4.29, that demonstrates the 

brainwave response based ERP result. 

 

Figure ‎4.27: ERP waveform of irregular paradigm respect to PTT in each onset-LED and cycle 

The positive peak appears on ~P40 followed by N10, which means the positive downward 

peak occurs after 40 milliseconds and the negative occurs after 10 milliseconds in respect of 

latency of ERP components. However, a clear onset based-stimuli two-pattern can be 

observed according to the ERP of latency components. Nevertheless, it is difficult to 

determine the other component because there is a temporal (event-position) extension without 

a sharp peak. In other words, the hypothetical of stimuli pattern shows all the expected spikes 

in the reserved time window that can be measured on one complete cycle, which includes 

negative N and positive P peaks. The design pattern of irregular related to evoke brainwave 

that obtains ERP component to compute the different sites based on SSVEP responses. The 

brainwave activities in one cycle are represented by (50, 120, 225, 305 and 280) milliseconds 

respectively,‎according‎ to‎positive‎downward‎P‎on‎different‎phases‎at‎θ⁰ of stimulus flicker 
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(0⁰, 225⁰, 360⁰, 585⁰, and 720⁰) respectively, (see section 4.3.1), as mentioned in Table 4.3. 

Generally, different latencies are recommended by combining ERP result in both paradigms. 

Since the optimal parameters appear in 30% - 50% increasing area based on latencies, with a 

slightly negative boundary by N components and with a slightly at positive boundary for P 

components. 

  

Figure ‎4.28: ERP waveform of regular/irregular paradigms indicates different phases and amplitudes 

Theoretical, the ERP waveform present stimuli patterns, which reveal two curve based 

SSVEP response with respect to the same timing windows as analogous to construction of 

(black and red curves), as shown in Figure 4.30. The properties of stimuli are affected in 

terms of short flickering with respect to different paradigms. Illustrated curves in above 

Figure 4.30 are shifted along the time axis, since the N components occur later than in the 

control condition within 50 milliseconds. In this case, the peak of downward positive and 

upward negative latency difference reflects the actual shift with respect to origin stimulus. A 

uniform black curve implies smoothness across brainwave responses, which have been 

evoked as a regular paradigm, but it is not as much amplitude value compared to the red 

curve,‎ which‎ presents‎ an‎ irregular‎ paradigm,‎ having‎ approximate‎ amplitude‎ values‎ 4μv in 

agreement to the base frequency. In other words, both involved the same base frequency at 12 

Hz. 
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4.3.3 Short Terms Paradigms Conclusion  

A low-cost prototype SSVEP based BCI system was constructed to demonstrate brainwave 

utilization Four-LED stimulation that evoked SSVEP signals. Voluntary participants (subject) 

gazed at LED flickers depicting two paradigms types, according to phase-tagged production 

of PTT that was obtained to recognize the target-LED. Two approaches have been used and 

combined the results. Conventional technique of offline analysis SSVEP response is used to 

extract feature. Firstly, FFT methodology used to distinguish between extracted spectral-

power based on frequency-domain; second, ERP technique was used to discriminate between 

evoked stimuli phases and different in latencies. The stimulation of two paradigms based 

SSVEPs revealed standard procedure to evaluate a latency effect, which estimates the 

differences between phases of satisfactory paradigms depended on PTT technique. The 

analysis results were consistent in tendency under effect of invoked stimuli flicker; spectra 

EEG/epochs were considerable difference brain activity with respect to SSVEP responses. 

Discovering difference responses between two paradigms based on regular/irregular. The 

most important features of this study were stability and reliability in respect of desirable 

methods. Wherein, the regular paradigm drives limitation view based-BCI design system, in 

fact restricts a single frequency with one or more patterns dependent on number of LEDs that 

used in stimulation procedure. On the other hand, irregular paradigm authorizing to introduce 

many stimuli-patterns that used regarding unique frequency based-single or multiple-LEDs of 

visual attention. The analyses methods are obtaining robust spectral results to observe 

stronger power on irregular compared with regular paradigms. However, the amplitude of 

ERP result indicates regular paradigms, which provide less amplitude than irregular. 

Furthermore, ERP result spreads phases between stimulation paradigms, which indicate shift 

in time of both paradigms based-onset of stimulation. Moreover, ERP results found out 

positive downward P and negative upward N components are similar with regular paradigm; 

on other hand, the same components were non-similar with irregular, despite the advantages 

of irregular paradigms that expand number of stimuli commands by increasing oddball 

patterns. This empirical study is optimized SSVEP. The interesting results were published in: 

 New Paradigms for Brain Computer Interface Based on SSVEP, 2014 WSWAN, ISBN: 

978-0-9940194-1-7 

 Exploiting a Short-Terms Adaptation: In Brain Computer Interface Based on Steady State 

Visual Evoked Potential, 2014 NNGT: ISSN: 2356-5888  
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CHAPTER5 
 

 

5. EXTRACT SSVEP BY DUTY-CYCLE 

AND MULTIPLE PATTERNS   
 

The steady-state visual evoked potentials (SSVEP) in brain–computer interface technique 

(BCI) progressively increased in recent years. This chapter inspects three empirical studies 

that discuss brain influences based on BCI technology by induced duty-cycle effect on the 

evoked signal of brain activities and invoked multiple patterns to extract the SSVEP 

responses. The duty-cycle study explored with three intensity flicker types that discuss the 

attractive of brainwaves effect. The Hilbert transform (HT) based analysis technique was 

utilised to distinguish between patterns by detecting the phases of each stimuli. High 

performance computing (HPC) has been used to reduce exaction time based-system. The 

multiple patterns technique with high performance computing is new challenge paradigm that 

extracts a specific signal from a massive EEG dataset. This new prototype design presents an 

effective solution to improve rapidly process dependent on multi-core using open source 

library of OpenMP. The approaches and result of this contribution works have published in 

the following compact journal and conference papers:  

 Recognition a Multi-pattern in BCI system Based SSVEPs, ERK'2015 conference, IEEE Slovenia section, 

ERK'2015 

 Rapid Computation and Analysis using a Multiple Core to enhance SSVEP based system, notifications 

(accepted) in IEEE society on 01 Sep. 2016 well presented in NGCT-2016 on 15.Oct. 2016 

 Duty-cycle beyond Three stimulation frequencies effect based on evoked signal of SSVEP paradigms 

(accepted) in IEEE on 21.Sep. 2016 well presented in ICCES conference at 22.Oct. 2016 
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5.1 Duty-cycle effects beyond SSVEP response 

Evoked SSVEP signals of a non-invasive technique that are detected using the 

electroencephalogram (EEG) are efficient paradigms based on BCIs. One important issue in 

SSVEP paradigms is converting the influence of brainwaves stimulated through duty-cycle 

effect of stimuli/flicker. These sections discuss and develop an SSVEP based-BCI system 

engaging a duty-cycle flicker that affects alpha and beta band frequencies with respect to 

brain activity changes. The duty-cycle effect is evaluated using impact flicker-LED stimuli 

with a constant luminance at 0.25cd/m
2
 to evoke the SSVEP signal of brain responses. Three 

types of stimulation paradigms are proposed depending on single of white-LED that exploits 

different behaviour of brainwaves based on duty-cycle influences using visual stimulation 

technique, which is provides a decent brain responses as described in the previous section 

4.1.1. However, the accumulated approach of EEG raw-signal was used again to compare 

between extract epochs in respect of each stimulus, according to time-locked events (TLE). 

Typically, the SSVEP response evoked signals were leveraged by flickering under certain 

frequencies directly on the amplitude signal by selecting stimuli frequencies lower than 20 Hz 

to achieve a high SNR; thus, taking into account critical frequency based flicker, which often 

make subjects feel uncomfortable which proved in (Chapter 3). The proposed design 

employed a single flicker LED based on three frequencies at 5 Hz, 12 Hz and 24 Hz driven by 

consistent sequences of repetitive stimulus cycles with fixed duration of three types duty-

cycle on 25%, 50% and 75% based-onset of powered stimuli-LEDs. Each stimulus cycle 

included two flexible states duration represented by TON and TOFF; the duty-cycle is defined 

by T = TON + TOFF, which were extracted from the ratio by TON/T based on approach of time-

locked event (TLE). The stimulus flicker also depended on white colour LED that proved 

strongest power effect (as explored in section 4.2). Consequently, the SSVEP responses were 

induced in three different duty-cycles using LED flickers by adopting the phase-tagged 

techniques of PTT based on time locked events manner of TLE, as mentioned previously in 

(section 4.2.2); however, the setup and configuration of this experiment were conducted in the 

same routine as previous studies that are described in (section 3.1.1). The EEG signals were 

prominent in the cortex of the occipital brain region. Classified results, using offline analysis, 

were obtained to extract epochs by employing a time-series-analysed based on DSP of 

special-filter type. The amplitude of regular paradigm stimuli fashion is considered. The 

relationship between amplitude and the higher harmonic based on duty-cycle takes the place 

from the fundamental frequency. 
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5.1.1 Difference SSVEP by Configure Duty-cycle Approach 

The amplitude and phase are define brain response depending on focal parameters, which 

are described by frequencies, intensity of lights flickering and structure of visual patterns; all 

these arrangements are directly effect on SSVEP paradigms. This research point has used an 

ordinary stimulus generator by light-emitting diode (LED) of flicker/-light using the multi-

stimulation panel (see section 4.2.1). The stimulus panel was horizontally fixed at eye-level. 

Repetitive stimulus approach was considered in three constant base frequencies and unique 

colour of (white LED). The SSVEP responses recorded the EEG signals by accumulating the 

(raw-data) from the human-scalp. The accumulated signals were almost too sinusoidal in 

waveform, which gives the same fundamental frequency as driving from a stimulus flicker, 

often including higher harmonics. These sinusoidal signals or pulse structure signals contain 

the amplitude attributes of SSVEP response depending on upon of the stimulus flicker 

frequency of intensity and duty-cycle. Using single LED as a spot flicker/-LED light allows 

selection of a suitable duty-cycle, in order to obtain a larger of measurable SSVEP response 

amplitude based stimuli. Three base frequencies were selected at (5, 12, and 24) Hz as pulses 

LED to drive brainwave evoked signals, and the duty-cycle was set up by 25%, 50%, and 

75% based on three paradigms that were tested with oscilloscope. Each paradigm corresponds 

to a different duty-cycle effect, which is considered to change in each base frequency. Table 

5.1 illustrates the stimuli signal that is structured into three paradigms in respect of base 

frequencies. Identical protocol in each paradigm was applied with voluntary subjects, who 

were requested to gaze at a particular white-LED of EEG time recoding. The task is organised 

to record the EEG epoch/multi-trials equalized within each subject; all the trials were divided 

into two time periods of EEG recording blocks. Each block has three trials, and each trial 

consists of a continuous 20-second recording time, which demonstrates the three flicker 

scenario of different frequencies and different duty-cycles. However, a break-time of five 

minutes as rest was inserted between each recording block, with this scenario being repeated 

in the same manner with all subjects (see section 3.1.1). From previous studies, the spectrum 

power of SSVEP responses was extracted using the main fundamental frequency of FFT 

technique. In this study, a spatial filter (SF) technique is used and statical calculation made to 

classify between the extracted results based EEG epochs/trails analyses. The relation between 

the duty-cycles and SSVEP responses led to creating a new BCI paradigm approach, since 

each evoked based stimulus can provide a new command relating to, for example, selecting 

reliable symbols based on duty-cycle. Corresponding paradigms teste a different duty-cycle; 
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the first paradigm had been set to provide the duration of total T = TON + TOFF, since total T is 

equal T = 25% in respect of the whole cycle of 100% which is repetition based on visual 

stimulation in white LED. Therefore, the second paradigm was set as T = 50%; however, the 

final duration is given period by T = 75%, which represents a structure paradigm for each 

base frequency of  T =  1/f. 

Table ‎5.1: Setup three base frequencies based on three type of duty-cycle stimuli  

Duty-cycle Flickered LED 

Paradigm Group ID Frequency (Hz) Duty-cycle 

 
A 
 

5 
5 
5 

25% 
50% 
75% 

 
B 
 

12 
12 
12 

25% 
50% 
75% 

C 
24 
24 
24 

25% 
50% 
75% 

 

The regular pattern has been generated depending on five-cycles of stimuli rhymester. This 

pattern of flickered LED was packed with phase-tagged triggering (PTT) by 5.1: 

𝜃𝑖 = (𝑖 − 1) ∗  45°;   𝑖 = 1, 2, … , 𝑁                                         5.1 

Where flickering LEDi is shifted respect to phase angle distribution over the full phase 

series of five segment cycle of 360
◦‎
incremented by N. Delayed trigger signals are computed 

based on  𝑡𝑖 = (𝜃𝑖 360°⁄  ). 𝑇, since 𝜃𝑖   presents the delay in phase of each flicker sequence 

based ti of time.  

5.1.2 Assessment of the duty-cycle approach  

Duty-cycle influence on brain activities based evoked SSVEP signals can traced the 

dependence of stimulus-frequency based on frequency-domain as mentioned in previous 

sections (see section 4.1.2.2). In real BCI application, there are several categories that have a 

direct effect on SSVEP responses and can be taken into account such as duty-cycle properties. 

However, other categories of SSVEPs correspond to specific frequencies or phases, which are 
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discussed in previous sections on (4.1, 4.2 and 4.3). The stimulation process based on a single 

LED flicker is set according to three base frequencies at (5, 12 and 24) Hz, to achieve varied 

duty-cycles onto invoked signals by 25%, 50% and 75% within a maximum constant of 

luminance by emitting LED light. In this assessment, a spatial filter (SF) and statical analyses 

technique have been used to compute the gathered EEG/epochs as a multiple predefined 

classes that are extracted from the clean dataset. Since Nf classes are considered for each 

group of A, B, and C as illustrated in Table 5.1, they correspond to SSVEP response. A visual 

stimulation of flicker frequency at f Hz is applied through the SF filter by the following signal 

of 𝑦𝑖(𝑡) which presents the potential of input voltage between electrode No. i, and reference 

electrodes (CMS and DRL) at time t: 

yi(t) =  ∑ ai,k

Nh

k=1

sin(2πkft + ∅i,k) +  Bi,t                                             5.2 

The gathered signals of EEG are decomposed and the extracted responses of SSVEP signals 

correspond to the evoked stimulus, prior to clean-up by removing the DC offset components 

and unwanted artifacts. Firstly, the evoked SSVEP responses signal, which are estimated from 

the number of harmonics frequencies related to the base stimulus frequency, are considered, 

with the number of harmonics represented by  𝑁ℎ. Therefore, the amplitude sinusoid signals 

are defined by 𝑎𝑖,𝑘 and phase  ∅𝑖,𝑘, according to 5.2, since the second part of harmonic 

presents the noise signals dedicated on 𝐵𝑖,𝑡. Detection of SSVEP signals based on this 

technique requires time segmentation of each epoch according to the recording time and 

sampling. Here, a segment time is considered by N numbers of harmonic, with respect to 

sampling frequency of Fs = 2048Hz. 

𝑦𝑖 =  𝑥𝑎𝑖 + 𝐵𝑖                                                                      5.3 

Since 𝑦𝑖  = [𝑦𝑖(1), 𝑦𝑖(2), ... , 𝑦𝑖(𝑁𝑡) ]
T
 contain evaluated EEG/epoch which represents an 

individual electrode by i in respect of time segmented. The responses of SSVEPs information 

appear in matrix the X within the size of Nt × 2Nh. Therefore, Ny represents all desired 

electrodes and is substituted in 5.4: 

𝑌 = 𝑋𝐴 + 𝐵                                                                        5.4 

Consequently, the matrix 𝑌 = [𝑦1, 𝑦2, ... , 𝑦𝑁𝑡
 ]

T
 represents all EEG sampled signals which 

have been accumulated from the three electrodes that are placed on the occipital brain region 

Figure 3.5. Improved combination between the three different electrodes is made by 5.4 to 
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discriminate the extracted features from incoming signals based on the desired channel. The 

signals that are accumulated from individual electrodes are converted into the weight vector 

of EEG-channel’s,‎which are substituted in 5.4. The extracted evoked SSVEP signals include 

a time-lock events (TLE) technique, which retrieves the results in the time-domain with 

respect to phase. Each recording session is triggered by one trap-event that allows the 

amplitudes of stimuli frequency and harmonic component to be averaged. Furthermore, a 

robust statistical analysis is used, which extracts the amplitude of each individual response 

signal of SSVEP (response-curve) to analyse the variance test by the one-way ANOVA. 

Comparison is made between significant hypotheses for the entire group, which is able to 

determine whether the mean of any group member is significantly different from others. By 

assumption, the null hypothesis on 𝐻0 is established as being all means are equal. 

𝐻0:  𝜇1 =  𝜇2 = 𝜇3 …  =  𝜇𝑘                                                    5.5 

Similarly, invalid hypothesis establishes all mean are not equal by the alternative hypothesis 

of 𝐻1  represents the entire group with a significant difference. 

𝐻1:  𝜇1 ≠  𝜇2 ≠ 𝜇3 …  ≠  𝜇𝑘                                                   5.6 

This method assumes each frequency provides correctly detected evoked SSVEP signals. 

However, it is necessary to remove the artifacts from considering hypotheses. Therefore, the 

relationships of hypotheses are observed from three expected waveforms base frequencies. 

This allows the combination of a fixed number of electrodes, which minimises the noise 

signals. The obtained channel can extract features from base frequencies and their harmonics, 

which are calculated from two other channels. Nonetheless, each base-frequency evaluates an 

SSVEP response. Finally, the epochs are prepared based on accumulated data of (Onset 

flickering) to discriminate and compare the difference in duty-cycle. 

5.1.2.1  Duty-cycle Result based Approaches   

 Before analysing the in-row EEG dataset, average approaches have been referenced 

between three-groups of (A, B, and C) from stimuli sessions Table 5.1. Relative in-sensitivity 

of evoked signal of SSVEPs, which are contaminated by common artifacts, permits rejection 

by setting the criteria of threshold value at 100µv. Furthermore, the averaged the in-row data 

depend on the baseline (BL) technique that refers to time-locked events, which are adopted 

based on trigger events that occur in each cycle of signal stimulation. Therefore, there are 

differences in amplitudes and phases, which illustrate the three types of duty-cycle. 
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Figure ‎5.1: Evoked SSVEP signals in time-domain with respect to three frequencies that are extracted   
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The distribution of phases between the three different paradigms is also detectable based on 

proposed BCI prototype. The time segment based trigger is considered dependable in the 

signal processing of the accumulated parameter of simulate conditions. Consequently, the 

Figure 5.1, show the average process at 5 Hz that provides ±2µv; on the other hand, the 12 Hz 

and 24 Hz are given approximately ±3µv, which provides more power based analysis. Table 

5.2 presents the detailed result based on three paradigms by execution of the SSVEP signals. 

The signals from the gathered dataset in each frequency have been averaged according to 

different paradigms, which are exposed as standard deviation (S.D.) and the accuracy (Acc.) 

based on statical analysis. Observing results from paradigms A, B, and C represents the 

classical setup for SSVEP experiments, whereas the duty-cycle is set up as previously 

described in Table 5.1. The total result of average values based on all three paradigms of A, 

B, and C have been processed with respect to paradigm A, which provides an average 

accuracy of 92.66% and SD value of 7.47. Furthermore, in paradigm B, the average accuracy 

is 90.73% with an average power of SD equal to 5.94, and in paradigm C the average 

accuracy is 84.38% and, similar to B, decreases within accuracy have clearly dropped total 

average accuracy at 84.83%. 

Table ‎5.2: statistical computational results based on three base-frequencies 

 
Frequency  

5Hz 
Frequency 12Hz 

Frequency  
24Hz 

Total 

Paradigm 
Group ID 

Mean S.D. 
Acc. 
% 

Mean S.D. 
Acc. 
% 

Mean S.D. 
Acc. 
% 

Mean S.D. 
Acc. 
% 

A 7.32 2.04 95.57 7.03 1.77 99.68 6.07 1.55 87.74 7.47 1.37 92.66 

B 5.66 1.30 93.62 6.21 1.17 97.75 5.97 1.42 88.82 5.94 0.97 90.73 

C 4.87 1.06 86.93 5.88 1.14 94.90 4.57 1.13 77.31 4.96 0.83 84.38 

 

However, the dataset shows an intake in the different duty-cycles on three stimuli levels 

that are plotted as shown in Figure 5.2. This figure illustrates the classes of A, B and C based 

on statistical analysis. Normalisation is used to balance the size of datasets of individual 

cleaned epochs, with each combination level of the experiment having taken the same number 

of observations of the brain responses. The plot demonstrates all entry affected means and 

interaction terms were not significant, as they probably represent only the means for main 

effects. The means are extracted from the epoch, which takes a few extra steps base analysis. 

Each of the three-classes of A, B and C corresponds to three different supplemental stimuli-

frequencies. 
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Figure ‎5.2:Statistically analysis of three different frequencies with three duty-cycle stimuli  

The spatial filter (SF) technique and statistical calculation are both classified in between to 

plot results based on EEG epochs/trials. The relation between duty-cycles and SSVEP 

responses led to significant differences between the entry groups. Correspondence to evoked 

paradigms was tested at different duty-cycles. The setting of the first paradigm of 25% 

provided a respectable result based on the three levels of stimulation frequency. However, the 

second paradigm set at 50% provided a sufficient result corresponding to three levels, and 

finally the 75% gradually decreases when the stimuli frequency increased. 

5.1.3 Conclusion of Duty-cycle influence  

The effect of the duty-cycles evoked the SSVEP signals using a visual stimulus of regular 

periodic evoked signal. During the tasks of this experiment, the activity of the brain 

influenced based SSVEP responses are sensitively impact with respect to different duty-cycle. 

By contrast, SSVEP simply applies an epoch/average process corresponding to the phase-

tagged technique. The fundamental frequency was improved by extracting the feature of 

signals using a spatial filter based time-domain analysis method. The classification accuracies 

depended on the average process of SSVEP response to all stimuli at each level based on 
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three sessions. Three types of duty-cycles and three base-flicker frequencies were 

recommended for testing voluntary subjects. Offline  analysis was utilized to classify the 

evoked response signals that successfully achieved with time segment based triggers 

approach. Fixed stimulus frequencies with assured duty-cycle evoked influences in brain 

responses based SSVEP paradigm, which invoked the largest SSVEP responses. The 

waveform distributions of fundamental frequency within harmonics in SSVEP signals are 

elicited vicissitudes, especially at duty-cycle of 5 Hz, which demonstrated in the time-domain 

analysis. There close effect with harmonics had non-clear effect in other stimuli. The 

prominent features of the proposed system included duty-cycle at 12 Hz waveform energy 

based fundamental frequency increases and provided more powerful evoked SSVEP signal. 

This variability also exists for duty-cycle effect as some clear performance drops and some 

stable situations were noted that gave a less comfortable achievement by high duty-cycle on 

75%. Hence, the analysis depended on statistical correspondence to evoke paradigms that 

tested a different duty-cycle, whereas setting the first paradigm at 25% provided a respectable 

result based on three levels of stimulation frequency. However, the second paradigm was set 

at 50%, providing a sufficient result into three-level. Future studies could conduct further 

research towards understanding and measuring the visual fatigue in relation to the duty-cycle. 

Interesting result that contributed in this work have been published as follows: 

  

 Duty-cycle beyond Three stimulation frequencies effect based on evoked signal of 

SSVEP paradigms (accepted) in IEEE on 21.Sep. 2016 presented in ICCES conference 

on 22.Oct. 2016 
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5.2 Stimulation using Multiple Patterns  

Brain–computer interface (BCI) systems using SSVEP paradigm allow disabled people to 

communicate with a certain machine. A multi-pattern of visual stimulus based on SSVEP is 

practically helpful to extract the observing of multiple patterns by distinct advantage 

differences between multi stimuli-patterns, which are alerted by dynamics brainwave that are 

presented from brain activity states. In this section, a novel SSVEP based BCI is 

demonstrated using multiple pattern flickers that included different types of variation in phase 

sequencing; furthermore, the technique that provides a practical BCI system is evaluated by 

designed new prototype. The multiple patterns evaluation is a sufficient hypothesis of the BCI 

control system, which evokes patterns to use with multiple commands. The brainwave 

dynamics expose a noisy signal, non-stationary, and non-linear based EEG raw. Therefore, 

three methods are utilized to extract features of stimuli responses based on two agreements of 

(i.e., phases and amplitude): ANOVA; modifying the quadrature amplitude demodulation 

(QAD); and Hilbert Transform (HT) to analyse based offline approaches. The human-brain 

has the capability of distinguishing between patterns that are dependent on regular/irregular 

stimulations, as mentioned in the previous section 4.3. The evoked brain signals of flicker 

LEDs from visual stimulation based SSVEP foundation exploited this ability. Analysis of 

Variance (ANOVA) based on QAD is used to explore the preliminary result. Furthermore, the 

Hilbert transform is followed to recognize the difference between patterns with respect to 

amplitude and phase shifting in SSVEP response. Six patterns were proposed in this 

contribution work that were verified by a series of experimental tests, corresponding to 

different responses in each pattern, which accompanied the effects on feature extraction.   

5.2.1 New Structural Prototype based BCI  

A multiple pattern flickered paradigm is realized in Figure 5.3, which illustrate the new 

prototype design. This model is structured on a stimulation board with unique colour LEDs 

that flickered at a sufficiently high amplitude of luminance to invoke the brain responses that 

controlled‎ via‎ a‎ personal‎ computer.‎ A‎ live‎ EEG‎ recording‎ of‎ the‎ human‎ subject’s‎ brain‎

activity resulted in recording signals using BioSemi device. Closed-loop system was designed 

to analyse the activity of the brain, as well as controlling the stimuli on the stimulation panel. 

LEDs on the stimulation board flickered at a fixed frequency rate of 11.8 Hz. The stimulation 

panel was fixed at eye-level and subjects were seated at a constant distance of 0.8 meters from 

the panel. A differential pattern flickering system was categorized as: 
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 Regular pattern flickering at fixed 

frequency 

 Irregular pattern flickering at fixed 

frequency 

Each invoked stimuli of regular/irregular presents three patterns; together with respect of 

phase-tagged triggered (PTT). As mentioned in the previous section 4.3.1, the (White LED) 

stimulation induced a stronger SSVEP in comparison to other colours, as proven in section 

4.2. The LEDs were soldered on a stimulation board in Matrix-fashion of (3 × 4), distributor 

centred on the board at (1 × 4) positions, taking into account the surrounding locations on the 

board in four-positions. Each LED of the Matrix produced six flickering patterns that are 

indicated in Table 5.3. 

Table ‎5.3: Six flickering sequences divided into regular and irregular patterns, for single LED 

Stimuli LEDs 
Number 
Position 

Pattern 
Number 

LED 
Colou

r 
LEDs Pattern 

Different 
Phases 

θ⁰ 

Pattern Type 

LED1 
Center/Surround  

1 White  1000,0000,0000,0000 0⁰ Regular 

LED1 
Center/Surround 

2 White 1000,1000,1000,1000 0⁰ 360⁰ 720⁰ Regular 

LED1 
Center/Surround 

3 White 1110,1110,1110,1110 0⁰ 360⁰ 720⁰ 
Regular/Duty-

cycle 

LED1 
Center/Surround 

4 White 1000,0100,1000,0010 0⁰ 450⁰ 720⁰ 1260⁰ Irregular 

LED1 
Center/Surround 

5 White 1000,0100,1000,0100 0⁰ 450⁰ 720⁰ 1170⁰ Irregular 

LED1 
Center/Surround 

6 White 1100,0110,1110,0110 0⁰ 450⁰ 720⁰ 1170⁰ 
Irregular/Duty-

cycle 

 

In order to exploit the human-brain behaviour and effectuation of activities based on all 

desired patterns, the stimuli cycle is divided into five segments of rhymester on LED as onset 

of stimulation. The SSVEP paradigm is provoked, depending on flickers beside the phase-

shift for each cycle according 𝜃𝑖 = (𝑖 − 1). 90° by increasing of  𝑖 = 1, 2, … , 𝑁, as mentioned 

in the previous Chapter 4; when the flickering 𝐿𝐸𝐷𝑖 shifts in respect of the phase angle 

distributed over full-phase 360°, 𝑁 = 5 is incremented by  90°. The stimulus of each LED 

flicker is considered a pulse trigger at the same time as the onset event. In each cycle, a 

control delay signal is implicit, which anticipates phase delay by 𝜃𝑖 that is evaluated by   𝑡𝑖  to 

indicate event occurrence with respect to time trigger event. 

𝑡𝑖 =  𝜃𝑖 360°⁄                                                                        5.7 
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Table 5.3 illustrates different patterns, which are considered in terms of (Regular and 

Irregular) stimulation paradigms with respect to different phases. Generated patterns depend 

on 𝜃° 
in each stimulus as functional of the onset flicker. The pattern numbers 2, 3, 5, and 6 are 

the same phases, but provide a high/low duty-cycle. In fact, to discern the brain activity when 

the effects increase, refer to the same stimulus patterns that are proven in section 5.1. 

Nonetheless, in this experiment a four-LED sequence in each pattern and consider a single 

flicker LED to evoke and extract the SSVEP response. The flicker frequency at 11.8 Hz is 

presented in sequence on four-LEDs that are controlled based system; in other words, 𝑡𝑖 is 

given the iteration time request compacting with  𝑇 = 1 𝑓⁄ , since T is flicker cycle duration, 

and f represents flicker frequency, setting one stimulus frequency, which is surrounded by an 

alpha brain response range of (8–13) Hz [15]. 

 

Figure ‎5.3: New Structural prototype based-BCI 

Time-locked events (TLEs) are used to mark the LED pulse-on event onset flicker and mark 

a new cycle that is indicated in every new stimuli-segment. This approach of phase-tagged 

segments each trial and take intra-trail epoch/averages for each stimulation based analysis. 
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5.2.2 Analysis SSVEP Response Approach 

The effectiveness of the induced SSVEP in brain activities is estimated with regard to 

regular and irregular based multiple pattern flickers, which employ an offline  analysis. 

Therefore, use of a common practical example is recommended, where it is assumed that non-

linearity and non-stationarity of dynamics brainwave of gathered EEG/signals; their sources 

in brain waveforms, and these signals are decomposed using two approaches. Figure 5.4 

shows the reliable approaches that have been used to extract the features from different 

patterns based on improve traditional techniques. 

  

Figure ‎5.4: Analysis approach based on amplitude and phase 

Offline analysis is adopted, after EEG raw-data have been accumulated into separate epochs 

according to LTE technique of time-shift signals requested by onset of the stimuli flicker 

sequence in each extracted epoch group. The difference between phases and amplitudes into 

the brainwaves of stimuli/patterns is obtained by dynamics time extraction based on ordinary 

technique of one way ANOVA in terms of adopting a quadrature amplitude demodulation 

(QAD) presented in the first approach. However, the Hilbert transform is approved to identify 

the difference between patterns based on diversity phases. 

5.2.2.1 Primarily Analysis based on Variance of ANOVA   

This study investigates the different influences between stimuli/patterns with respect to 

flickers on (Four-white LED), which motivates the change in brain activity based on SSVEP 

paradigms. Firstly, the Analysis of Variance of (ANOVA) technique is utilised to discriminate 

brain influence in respect of different patterns with stimuli frequency.  It is also concerned 

with the extraction of EEG/epochs in each recoded time-level of EEG-data/signals, which are 
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accumulated as templates to analyse and compare a significant hypothesis-based statistical 

exploration. ANOVA calibrates by the F-tests, which examine the pre-specified set of 

standard‎effects,‎(e.g.‎‘main‎effects’‎and‎‘interactions’),‎as‎described‎in‎statistical principles in 

the experimental design [15], depending on six stimulus patterns, which are supported to 

determine the change in brain activity corresponding to the evoked SSVEP response signals to 

present the primary result. The raw signals of EEG data are processed with respect to the 

experiment setup and configuration by involving a similar stimulation approach to that 

described in previously chapters. The artifacts are removed using ICA techniques, which 

include to removal the AC-Line interference of noise at 50 Hz, in addition removing the 

baseline of (reset-period) which corresponding to linear de-trending of any DC components. 

However, remove any artifacts that exist due to eye blink; furthermore, attempts a single-trial 

based SSVEP onset response have been obtained especially in this empirical study with 

respect to dynamics-time extraction.  

The synchronous of SSVEP response oscillations observed into embrace envelope which 

employed by demodulation procedure applied after gathered EEG-data/epochs [137]. The 

demodulation has been used productively generate a certain envelope that includes the 

oscillating of SSVEPs based on modified quadrature amplitude demodulation (QAD) method 

of EEG/signals. Further, the QAD method is utilized to recover the amplitudes and phase-shift 

based on Y1 and Y2 with respect to modulated carrier signal correspond to (SSVEP response 

signals): 

𝑌1 = 𝑋 cos 2𝜋𝑓𝑡 , 𝑎𝑛𝑑          𝑌2 = 𝑋 sin 2𝜋𝑓𝑡                                 5.8 

Both of   𝑌1 and 𝑌2 are used to reconstruct the modulating signal using the following equation: 

𝑍 = |𝐻𝑓(𝑌1)| + |𝐻𝑓(𝑌2)|                                                     5.9 

Since f represents the count-phases modulation frequency, and  𝐻𝑓 represents a Butterworth 

low-pass filter (BLPF). Here the QAD model provides an output by Z, which represents the 

envelope covered of single-trial SSVEP response, as shown in Figure 5.5. The envelope 

curves (green lines) in Figure 5.5 surrounded the desired signals (blue line), which 

demonstrate the mean values (red line), normalising the quadrature amplitude demodulation 

(QAD) by enveloping onset with respect to SSVEP responses. 
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Figure ‎5.5: Normalize QAD envelope based onset to present the effective SSVEP response signals 

The mean-values are accumulated from brain responses corresponding to patterns that 

demould the influences of each stimuli pattern. Comparisons between independent groups 

using the ANOVA approach, that determine whether any of those groups are significantly 

different from the others. The test assumed a null hypothesis 𝐻0 against alternative 

hypothesis 𝐻1. The  𝐻0 assumed all entry groups are equal based statical analysis of all 

stimulus-test conditions in each pattern and are equal without restricted common value. 

However, it is assumed the alternative hypothesis 𝐻1 signifies not equal, which is 

significantly different. 

𝐻0:  𝜇 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1 =  𝜇 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2  …  =  𝜇 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑘                                   5.10 

𝐻1:  𝜇 𝑃𝑎𝑡𝑡𝑒𝑟𝑛1 ≠  𝜇 𝑃𝑎𝑡𝑡𝑒𝑟𝑛2  …  ≠  𝜇 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑘                                   5.11 

The groups have individual and different values of Mean Squares, which are observed 

individually from each pattern in respect of the estimated value with respect to 5.12 [11]. 

𝑆𝑆 within = ∑( 𝑌𝑖𝑗 − 𝑌𝑖

𝑛𝑖

𝑗=1

 )2,                  𝑑𝑓 within = 𝑛𝑖 − 1                       5.12 

Hence, the (ni = 6) in each group, which represents individual LEDs within different 

patterns. Therefore, it is important to estimate the sum of square differences by SSwithin for 

each flicker session pattern. However, the df represents a degree of freedom, in this case 

representing the number of trials per subject [6].  
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Figure ‎5.6: Illustrate significant difference between entry groups respect of  six-stimuli pattern  
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ANOVA comparison results detect each stimuli output. Figure 5.6 shows six patterns of 

brain activity influences, which provide a significant difference between stimulation patterns. 

The alternative hypothesis condition of Mean values is factual, which indicates that the 

interties groups are not equal. However, the white stimulator LED is successful in inducing 

SSVEP effects across six pattern conditions. Table 5.4 presents the result under six pattern 

conditions that provide a statistical summary for each stimuli pattern. Therefore, the condition 

means are significantly different with respect to p < 0.05 for all six patterns [F (5; 350) = 

255.8; p = 0:002]. 

 

 Table ‎5.4: Analysis of variance of (ANOVA) result 

Source of Variation SS MS F 
P-value 
 < 0.05 

Between Groups 668.72 133.743 255.8 0.002 

Within Groups 484.88 
 

Total 10084 

 

5.2.2.2 Hilbert Transform (HT) technique based extraction features 

The Hilbert transform analysis was performed aligned to single-trial-approach based on 

evoked SSVEP response signals. The EEG/signal in Hilbert Space (HS) is decomposed, 

which gives a relative variable state for each frequency band, according to stimuli/frequency 

that proved previously (see section 4.3). The EEG/signals were analysed to determine an 

increased output of reaction brain command based BCI that is dedicated by demodulated 

SSVEP signals. Detecting reaction command signal by observed the phases of EEG signals 

were calculated using a normal process based on Hilbert transform (HT) method. The 

EEG/signals were accumulated from the occipital surface of the brain region at Oz, O1, and O3 

(EEG channels), followed by down sampling that applied by bandpass FIR filter. The raw-

data were processed and the prior signal set with FIR to remove any unknown and undesired 

noise signals. EEG also reveals the dynamic of brain activity signals, which is denoted as 

noisy, non-stationary and non-linear. Therefore, prominent results among previous sections 

4.1, 4.2, and 4.3 have used the traditional technique of Fourier transform (FFT), which 

decomposes the EEG raw signal into familiar state variables.  
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Typically, the Hilbert Transform (HT) provides a high spectral resolution of arbitrary 

frequencies. Furthermore, it is useful for rendering EEG decomposition into components 

corresponding to the diversity phases and spectrums, according to disparity of stimuli 

patterns. On the other hand, Hilbert transform offers a high temporal resolution and rapid 

analytical solutions to extract the frequencies, phases and amplitude of non-stationary EEG 

signals. Therefore, the Hilbert transform (HT) is very useful for handling and analysing non-

linear signals by expressed frequency as a rate of change based on phases, unlike the FFT 

topography, which pursues a linear type of periodic signal. Nevertheless, in Hilbert space 

(HS), the signals are decomposed into main two parts that present as real part of  v(t) and 

imaginary parts of  ui(t), as presented in 5.13.  

𝑉(𝑡) =  𝑣(𝑡) + 𝑢𝑖(𝑡)                                                     5.13 

Here, the real part v(t) represents the amplitudes signal, as in FFT topography analysis [7-

9], which is demonstrated in Figure 5.7; the imaginary part  ui(t) depicts a phase difference 

according to the following equation 5.14.  

𝑢𝑖(𝑡) =  
1

𝜋
  𝑃𝑉 ∫ 𝑉𝑖(𝑡́) / ( 𝑡 −  𝑡́) 𝑑𝑡́   

∞

−∞

                                         5.14 

The PV is the constant multiplier of (Cauchy Principal Value) [72]. The independent 

variable will not affect the resultant transformation  𝑢𝑖(𝑡); therefore, the output is dependent 

on the input function in the time domain. Similarly, the original function of V(t) presents the 

harmonic conjugation in Hilbert Space. However, the arctangent angles in polar coordinates 

depict the state variable of phases in each flickered pattern based on equation 5.15; more 

details are explained in Appendix A.2. 

𝑃(𝑡) =  tan−1
𝑢𝑖(𝑡)

𝑣(𝑡)
                                                          5.15 

In order to track phases that are presented on 𝑃(𝑡) over arbitrary values of 𝑢𝑖(𝑡) and  𝑣(𝑡), 

the‎large‎time‎intervals‎disjointed‎phase‎sequences‎are‎aligned‎to‎signals‎by‎adding‎[±π]‎to the 

desired of extraction epoch respect to EEG/signals. The sequences of digitized values provide 

a trajectory vector, which is rotated in the complex plane according to elapsed time. However, 

the EEG/epochs are accumulating by separated templates that are gathered from revealed 

SSVEP signals in each stimulus pattern by extracting the Hilbert approach in each epoch 

group. 
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Figure ‎5.7: Instantaneous result of amplitude and phase based-Hilbert space (HS) 

The results of HT presented a complex structure function based on the space value of  𝑉(𝑡) 

of Equation 5.13, corresponding to the component of amplitude and phase functions. 

Furthermore, the superior of Hilbert space functions in Figure 5.7 illustrates the frequency 

function of  𝑢𝑖(𝑡) and instantaneous phase function 𝑣(𝑡). Those components are outcomes of 

exploitation and provide a clear understanding in the event of incoming signals being non-

linear but stationary based on extracted features from EEG raw. Therefore, it is difficult to 

explain the behaviour of firing the brain-cells, which generates the activities that give the 

brain-waveforms in a classical sense of the main concept, because the EEG-signals are a 

mixture of signals and incorporated in long sequence event moments; nevertheless, it is 

possible to describe by means of amplitudes and phases.  
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Figure ‎5.8: Spectral analysis observing diversity spectral power of  multiple patterns stimulation  

The approach based on Hilbert analytic, is intuitive and directly adapted by decomposing 

signals and providing intrinsic models of various oscillations. Therefore, the amplitudes are 

explored from the real part  𝑢𝑖(𝑡) depending on Hilbert Space (HS), which detects the 

maximum spectral expected, based on six paradigms of regular/irregular stimuli patterns. 

These spectra demonstrate different frequency components in the brain response (Figure 5.8). 

The subplot of Figure 5.8 exploring the result of frequency components has been elicited by 

different spectral power at (5, 8, 10, 12, and 14) Hz corresponding to evoked stimuli patterns. 

A straight power is observable for each instantaneous frequency component, as expected from 

a theoretical perspective. However, there is a short deformation onto the signals, because of 

the short length of gathered signals and the sampling rates effects. In specific terms, the 

flickers of multiple stimuli/patterns present a variable amplitude and phase according to the 

certain frequency of time function. The second type of analysis was efficient in extracting the 

phase information from a single dimensional.  
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Figure ‎5.9: Influences of six patterns that observed different base-instantaneous phase 

The decomposition method of HT provided a posteriori definition derived from the 

incoming signals. Inherent mode has been dependent on the expanded intervals in [-π,‎+π]‎that‎

overcome the time-lag correlation on‎phase‎θ‎distributed‎ in‎ the‎ range‎of‎ stimulation‎events‎

corresponding to cycle and onset triggers. These intervals cover a trough-to-trough event, 

which is considered a time-locked event (TLE) using PTT technique. The instantaneous 

phases were extracted to discover the phase value based on equations 5.14 and 5.15. Figure 

5.9 shows the quantified response of induced SSVEP signals. Brain activity based responses 

are observed in (Three regular and Three irregular) pattern sequences, as mentioned in Table 

5.3; since, the HT shows discrimination statistics of phases on evoked SSVEP signals. The 

features extracted are associated with a stimuli flicker phase for every peak of one stimuli 

cycle, which illustrates six different patterns according to regular/irregular paradigms stimulus 

procedure,‎ as‎previously‎ explained.‎According‎ to‎ the‎experiment‎ setup,‎ this‎phase’s‎θ‎have‎

been accumulated in respect of each individual pattern, which discriminates the differences 

between patterns. 
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5.2.3 Conclude a Multiple Patterns  

This study has successfully demonstrated the aspect of inquiry offline analysis of evoked 

SSVEP signals. The results presented general outlined assessment of multi-patterns, which are 

defined by visual stimulus depends on SSVEP response paradigms. The structure of regular 

and irregular stimuli flickers at different patterns of stimuli according to the experiment setup 

configuration. Through the preferred experiment, different flicker paradigms observed 

different brain response which given an enhancement and improvement to increase reaction 

brain command based BCI. In fact, two approaches were concluded as analysis: firstly, 

analysis of variance (ANOVA) based on quadrature amplitude demodulation (QAD) using 

envelope technique, which realized behavioural brain responses with respect to a multi-

pattern stimulus by assumptions  hypotheses condition of  mean values; secondly, Hilbert 

transform (HT) to recognize different patterns in respect of phase shifting waves. A summary 

of the pattern recognition study of multi-patterns sequence found a different brain activities 

response between six patterns with regard to Regular/Irregular stimulus paradigm. Multi-

pattern paradigms presented a number of available choices commands reaching to 24, 

depending on each pattern slot, which prepared a different phase in each pattern. This 

experiment performed six patterns only, which were in pursuance of 64 theoretical 

commands. The results of ANOVA, which detects distinguishing patterns, and Hilbert 

transform, which discriminates amplitudes and phases were compared to discover there are 

varieties of brain responding activity levels in each pattern. Consequently, increased numbers 

of control signal command based-SSVEP paradigm, which provide stability and reliability in 

distinguishing detection in phase based stimuli patterns. This, in turn, leads to creation of new 

applications based-BCI system by increasing control commands depending on amount 

numbers of patterns. Although, this prototype based-brain technology is more attractive to 

external world environments with respect to several stimuli patterns, a multi-pattern paradigm 

would introduce a different protocol for different applications. Finally, this research study 

provides the advantages to exploit this method as a future applications work in SSVEP based 

BCI system fields since it has been adapted, optimised, and configured with the support of 

real time experiments. The interesting result was published in: 

 Recognition a Multi-pattern in BCI system Based SSVEPs, ERK'2015 conference, IEEE 

Slovenia section, ERK'2015 
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5.3 Efficiency of multi-core on BCI based SSVEP  

EEG-signal based brain-computer interfaces (BCI) face a significant challenge in online 

applications. Successful application of advanced techniques depend on miniature EEG 

electrodes and a distributed computing system to offer a promising result and to overcome 

existing gaps. Therefore, the obstacle in developing a BCI is ensuring reliable capability to 

take decisions in real time or predict an inclination in real-life application-based BCI systems. 

Brain-computer interface (BCI) technology is a communication system relying on a pathway 

to explore brain activities to the external world. The BCI technique makes it possible to 

monitor certain physical processes that occur within brain activity that correspond to certain 

forms of flickering through stimuli. A thousand brain activities are observed to be firing 

instantaneously, allowing a BCI system to clearly state one or more signals for control by 

computer command or dominance of any other devices. Furthermore, the speed of processors 

and clocks in the last decade has been developed based on modern computer techniques. 

Consequently, the neural methodology approaches realised by digital signal processing (DSP) 

can process a huge amount of EEG raw-data, which are sorted into short time periods as 

EEG/epochs. In other words, parallel computing systems are processing an analysis and 

comparing the gathered EEG/signals that have been collected in order to detect certain brain 

activity based paradigms. The parallelism performances precede an executed program under 

multi-processing paradigm or multi-core progression based on systems that decrease the 

consumed execution time. However, multi-core performance systems are available within an 

affordable price range. Previous studies employed a single CPU system that revealed a 

reasonable performance for smaller EEG/datasets, but open multi-processing, such as 

OpenMP platform, provide higher performance computing with more accuracy within large 

EEG/epochs (datasets). The main concept of parallel programming is that it can separate the 

tasks individually, which allows a parallelised process and analyses to extract features. In this 

section, two approaches have been utilized: firstly, high parallel performance computing to 

realize faster recognition based on evoked patterns detection by exploring the Hilbert 

transform (HT) depending on patterns detection; and secondly, classified feature based 

frequencies, employed after extracting the FFT within multiple window functions.  
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5.3.1 High-performance Computing (HPC) Perception  

Multi-core processing operates within a single computing component unit based on two or 

more independent processor-cores, which are read/write and execute program instructions [6]. 

Nowadays, a multi-core is widely used beyond many application domains that include a 

general-purpose, such as (DSP) and other scientific appliances that allow execution of 

instantaneous multiple task functions. The architect of multi-core shares same part of memory 

chunks that leads to increase overall speed and execute programs amenable to parallel 

computing. Therefore, a single core presents a particular part of the processor that can execute 

instructions one by one. The single core processor is an ordinary CPU, processing 

instructions, such as addition, subtraction, move, jump function and other conventional 

instructions based on 32/64 Bit-address, which fixes the length-variable of data. In 

comparison, a multi-core can also run multiple task instructions instantaneously that increase 

global speed of execution time. Rapid processing within smooth flow operation sequences 

based on read/write data is reasonably accountable with respect to multi-core in high 

performance based systems. Brain-computer interfaces (BCI) have largely been development 

based real-time analysis and extraction that depended on computational speed. Parallel 

processing is a fact that reduces the executed time and increases computational factors, 

leading to reduction in the complexity of design and cooperating with the largest algorithms 

that drive improvement of BCI based systems. Typically, this methodology is dependent on a 

particular algorithm that computes intensively using highly customised hardware architectures 

based on signal processing of DSP. Several of application-programming interfaces (API) 

support a shared memory and multiprocessing performance. Open Multi-processing 

(OpenMp) platform is one of the application-programming interfaces (API) that consists of a 

compiler of directives and environment variables that support influence to run-time behaviour 

programs. OpenMP is a scientific parallel computing application that allows progression of a 

huge dataset within high performance that achieves 100 times greater function compared to a 

standard unique-CPU [159]. Furthermore, OpenMP is reliable in parallel programming 

models that are supported by different programming languages, such as C/C++, under 

different platforms and operating systems. Any BCI system is comprised of several elements 

that amplify and digitise acquired EEG neural signals to produce an appropriate control signal 

by processing several levels to drive an output as indication signals. The signal processing 

levels depend on certain applications, such as control of a computer cursor or spelling system 

[64].  
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A high quality estimation of power spectrum and phase difference are recognise in fast 

Fourier transformation (FFT) and Hilbert Transform (HT) instead of steady-state visual 

evoked potentials (SSVEP) based BCI system. In this study, easement experiment datasets of 

multiple frequencies (see section 4.1.2) and multiple patterns (see section 5.2.3) are applied in 

two different approaches based on high-performance computing (HPC). The aim of this study 

is to increase the computational performance based parallelisation approach by addressing the 

power estimation algorithm and Hilbert technique to evaluate the use of a new prototype of 

parallel implementation. The parallel processing has been executed under single-core CPU 

and multi-core based on OpenMP platform. As mentioned previously in section 5.2.1 on the 

new prototype structure, which compares between evoked brain activities by multi-stimuli 

patterns. The different patterns and different frequencies of visual stimuli were predefined 

EEG/datasets and stored as individual templates. These templates have been prepared as new-

dataset of EEG/files that were cleaned and free from any kind of artifacts. 

5.3.2 Extraction and Detection by using HPC 

Signal processing is the first step that relies on filtering signals and analyses to extract a 

certain signal using parallelising process to detect specific action regarding multiple patterns 

experiment as HPC approach.  

 

Figure ‎5.10: HPC design with OpenMP platform to detect an active-control signal based SSVEP 
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The parallelisation provides an output signal; this (detection signal) is independent of other 

action signals and it is possible to calculate each action signal in any order with minute 

synchronization referred to (embarrassingly parallel) problem [159]. BCI based real time 

systems are still far from high-accuracy also is low-speed detection. This study contributes to 

implementing an algorithm specifically to evoke SSVEP brain responses using multiple 

patterns and intensively computational offline  analysis, which addresses the issue of 

increments in the reaction command based BCI system. The computational approach 

extracted the power spectral estimation and classification with multiple filter-types. The 

signal features were explored to extract the instantaneous phases with respect to multi-

patterns that select an action signal to control an output. Figure 5.10 shows a new design 

prototype which includes the processing unit, local store unit (memory blocks), and 

comparison unit. Two approaches are used: firstly, the windowing technique extracts an 

estimate in the power of various frequencies at (8, 10, 12, 14, and 16) Hz based on single and 

multi-core processors. Secondly, a comparison between templets (patterns detection) tested 

the equipped, stored patterns with strolling stream input filtered of EEG epochs, according to 

the preparation procedure of the previous sections 4.1, and 5.2. 

5.3.2.1 EEG based Windowing Function Analysis and Result 

As shown in Figure 5.10, the experiment setup of flickering LED corresponding to (Five 

base-frequencies). The configuration of this experiment was repeated in section 4.1.4, but the 

analysis method is in a different methodology. The experiment consists of five recording 

sessions distributed into 60 seconds per-session. Each recording/session appeared on one 

frequency based on LED-flicker fashion dependent on a single stimuli pattern that would 

change sequentially every 10 seconds. The voluntary subjects were asked to gaze at the LED 

corresponding to flickering based on multiple frequencies experiment. The EEG/signals were 

gathered based on only three active electrodes placed in the occipital cortex region. After 

cleaning from artifacts and filtering the EEG/dataset, the length was deducted from a 

complete chunk of each stimulus epoch in respect of time. The SSVEPs are continuous 

signals, which reflect the brain activities affected by repetitive stimulus. Therefore, the 

reasonable power density estimation based on certain frequency components achieved by the 

short time approach is important in SSVEP based BCI. In most SSVEP based BCIs, the 

Fourier-transforms are widely used to extract the power density estimation [45].  
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 This contribution work also estimates the power density at a definite frequency on ω with 

respect to time t; using short-time fourier transform (STFT) technique to determine the 

amplitude and phases both are distribute in EEG/epochs into small sections (segmenting 

process), which change over time. In continuous time of STFT written as 5.16: 

𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑤) =  ∫ 𝑥(𝜏) 𝑤(𝜏, 𝑡) 𝑒−𝑗2𝜋𝑤𝜏 𝑑𝜏

∞

−∞

                                            5.16 

Since the x represents the input signals, and w(s, t) presents the window time function, where 

the time (s) approaches from [t −‎L/2,‎ t + L/2]; therefore, L represents the size of window, 

where the power density estimation of frequency by ω at time t is according to 5.17: 

𝑃𝑤(t) =  
1

𝐿
 |𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑤)|2                                                               5.17 

The truncation signal in STFT provides a leakage problem as disadvantage when extracting 

the estimate energy. Subsequently the windowing functions are represented by Four-type 

filters as (Rectangle, Hamming, Hann and Triangle), which are used to reduce the leakage 

problem and increase the evoked SSVEP response signal. The spectral characteristics 

demonstrate the power density based on time-frequency properties in respect of Pω(t) 

function of stimulation frequencies at (8, 10, 12, 14 and 16) Hz; after applying a high pass 

filter (HPF) which is setting to clean dataset within cut-off frequency at 2 Hz that is allowed 

to pass all desired stimuli-frequencies. The windowing approach has been used a window 

setup with respect to size-time by (L = 5) seconds of time segmenting based [0.5, 5.5] 

seconds. Therefore, the power density of Pω(t) have been extracting using the rectangle 

window function as first result which is illustrated in Figure 5.11. All desired stimulation 

frequencies were used to extract the primary result using a (Rectangle-function). Wherein, 

Figure 5.11 (a) presents the observing power density of five-stimulus frequency components. 

Since the stimulus-frequency at 16 Hz provides faster oscillation than the stimuli frequencies 

at (8 Hz and 10 Hz) with clearly slower oscillation. However, applying the conventional FFT 

to fetch the Pω(t) function; consequence of primary result illustrate in Figure 5.12 (b) that 

shows the power spectrum density (PSD) of Pω(t). Furthermore, it is very clear oscillation in 

Pω(t) which declared an relationship between the amplitude of frequency domain at ω based 

on PSD. The amplitude of oscillation decreases when there is growth on ω base stimulus 

frequency.  
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Figure ‎5.11: Power density of STFT based on time-

frequency analysis 

 

 

Figure ‎5.12: Spectral  power of  STFT based on 

frequency analysis 
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The consequences results demonstrating in Figure 5.12 the spectrum analysis of frequency 

component in respect to estimation power in brainwave band of LF components. It is also 

declare to be much higher and making a larger oscillation than further stimulus frequencies, 

which indicate the SSVEP response signals on LF of the brain band are more powerful that 

gives more shore as mentioned in chapter 4. The procedure of STFT technique based 

(Rectangle-windows) function does not cover all evoked SSVEP point signals, which are 

stored in a new-dataset; indeed, the spectral leaked problem of power density estimation 

affects on extracted result. Nonetheless, high energy on LF is a revealing result that presents a 

spectral leakage problem. On the other hand, some other window functions can be used to 

reduce the leakage problem. By improving, the extracting results based on the leakage 

problem Figures 5.11 (c) and Figure 5.12 (d) shows the (Hamming-window) function, which 

reduces the oscillation but does not reduce the effect of LF component. Although, the High-

pass FIR (HP FIR) technique approach overcomes the leakage problem, as illustrated in 

Figures 5.11 (e) and Figure 5.12 (f), that demonstrate the extracted result of power density 

estimated. The output from HP FIR is not smooth but provides‎ an‎ exact‎ oscillation‎ on‎ω,‎

while the other frequencies still exist. Finally, Figures 5.11 (g) and 5.12 (h) are combinations 

between HPF and (Hamming-function) window, which provides smooth curves of power 

estimation. The second approach applied high performance computing (HPC) to compare 

between the windowing functions result after application of the four filter type functions to 

extract the power estimations from stored datasets. Assessment spectral powers were enjoined 

with windows filter functions in the second step of analysis. This step utilized different 

window function of four types which were applied on cleaned datasets, and then with the 

power spectral again using HPCs to compare between the extracted results before and after 

windowing with respect to the activities of SSVEP signals.  In this approach, two copies of 

cleaned-datasets have been created and stored into local memory blocks, and then applied the 

HPF on the first copy of the dataset, before applying the multiple windows functions on both 

datasets. Table 5.5 shows the existential results of accuracy rate in respect to multiple 

frequencies and four type window functions of Rectangle, Hamming, Hann, and Triangle. The 

results are classified between filtered and non-filtered dataset within HPF respect to brain 

activities, which demonstrated as comparison between applied filters. The best classification 

among result based on Four-windows functions are marked in bold. The Hamming, Hann and 

Triangle windows approach produce similar results, but the Rectangle window result is 

interesting because achieves better results after the filtration process.  
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Hence, the greatest accuracies of most subjects come from the rectangular window. The test 

was extended to different window sizes with respect to the time window by (L = 0.5, 1, 1.5 

and 5) seconds, extracting the accuracies before and after correspondingly applying HPF 

technique. 

Table ‎5.5: Four types’ windows functions accuracy rate within filtered and non-filtered datasets     

Subject 
Clean Dataset with HPF  Clean Dataset without HPF 

Rectangle Hamming Hann Triangle Rectangle Hamming Hann Triangle 

Sub.1 71.78 80.00 80.00 80.00 95.57 80.37 79.70 80.00 

Sub.2 86.59 75.74 77.37 79.11 92.44 81.89 77.22 80.23 

Sub.3 77.19 78.52 77.70 79.99 90.56 80.89 88.81 77.70 

Sub.4 89.80 78.021 68.99 73.99 93.00 70.03 89.80 79.70 

Sub.5 78.90 71.80 78.88 76.90 79.89 78.82 72.90 67.88 

Sub.6 84.90 68.90 69.90 78.00 88.71 82.90 76.89 73.90 

Mean 81.52 75.49 74.36 77.99 90.02 79.15 78.22 76.56 

 

Offline  analysis using MATLAB tools has implemented a linear discriminant analysis 

(LDA) that categorizes between the window filter functions. Figure 5.13 presents (blue stars 

and red circles), which indicate filtering and no filtering data-points. Explore the recognition 

accuracy rates in all four windows by growing the size in respect to increase the time-

window. Found out greatest accuracy when decreases of time-window width that indicated to 

effectively suppress. However, the accuracies are greatly improved after applying HPF. 

Furthermore, the increase in main width time-window of sorted frequency domain resolution 

gives a weakened, which leads to a decrease in accuracy. However, the result of HPC of 

comparison process is described in next section 5.3.2.2. 
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Figure ‎5.13: LDA classification between Filter and Non-filtered based-HPF 
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5.3.2.2 HPC based windows functions and patterns detection  

In this section, a new way to extract the features has been proposed, using multi-core 

processing based on the HPC technique. Parallel computing allows exhaustive computations 

and accelerates demand that leads to increased BCI commands, due to the high energy of LF 

components that extract the features based on FFT, HT, and STFT or other further techniques. 

In this work, two approaches have been used that efficiently implement basic HPC parallel 

processing programs with openMP platform based API. Firstly, the sliding-window procedure 

is utilized, which compares between the spectral power estimation coefficients of each 

stimulus according to iterated stimuli/patterns that are stored in memory blocks as individual 

templet clean EEG/epoch files. However, used patterns comparison as the second approach to 

indicate a match estimated coefficients. Both approaches are used an offline analysis and 

allow the development of an online analysis for future work. Several co-dependent values are 

calculated based on a simple process for serial processing within a single thread that 

compared with multiple threads based on the sharing memory technique of openMP platform. 

Subsequently the spectral power, does not present a perfect as parallel solution, because the 

processing contains numerous sequential steps; however, some of these steps depend on 

previous values. Therefore, the spectrum analysis process is a complicated when Thousand-

threads running at the same time that requires a several independent synchronization points 

based analysis technique. The CPU (processor) based a multi-threading algorithm is identical 

to that found in BCI2000 [xxx160]. Additionally, the thread-processing model plays a crucial 

role based on memory management in computational efficiency. Three memory space levels 

must be available with the threading process. The lowest level is reserved as local-memory for 

each thread and is not accessible out of threads. The next level is denoted by shared memory, 

which is visible to all threads in one-block. Consequently, the OpenMP allows many threads 

to work on the same memory blocks simultaneously. The highest level of global memory is 

visible for all threads to access certain block. In general, it is necessary to copy the desired 

segment of dataset (extracted clean EEG/epochs) into the global memory and further perform 

the computation of stored templet/files (certain EEG/segment indicted an response based on 

time locked event approach), which are shared between the global and shared memory. Figure 

5.13 shows the first accession of the parallel computing based windowing function technique. 

This approach averaged the extract signals and normalised the gathering responses with 

respect to the desired SSVEP signal, which is defined as a continuous brain activities that are 

evoked by a repetitive of visual stimulus frequency. The visual stimulus depends on different 
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frequencies that are consecutively presented to the subject, as described in section 5.3.2.1. 

The estimation of spectrum power requires the greatest amount of computational resources, in 

terms of sharing-memory and processing time. In this step, extracted spectral features are 

stored in certain memory chunks to slide over the pre-processing stream of stored EEG data as 

offline , which compares the performance efficiency base on single-core, dual-core, and quad-

cores. Wherein, the x-axis represents the number of repetition with respect to the execution 

time depend on CPU-cores. Initially the elements (normalized SSVEP responses) are 

calculated over the sliding loop based separate thread. It is important to consider the available 

number of CPU cores, which require 120 threads to the 120 overhead samples; each thread 

contributes significantly to the total computational time. A multi-thread CPU implementation 

outperforms an assessment using the single-thread implementation when the number of 

electrode channels is equal to, or greater than three. However, the sampling rate is 1200, 600, 

which is recommended by 125 Bit/Sec. 

 

Figure ‎5.14: Comparison between single-, dual- and quad-cores based-sliding window approach   
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The blue line in Figure 5.14 illustrates the speed of execution time processing for single-

thread, and the multithread based dual core and quad core processing that illustrates the black 

and red lines respectively. The second approach based on HPC technique is compares the 

independent pattern based detection of active stimulus signal. The acquired EEG data is 

gathered and cleaned-up of artifacts then placed on new datasets as templets (files). These 

new datasets are stored and sorted into main globule memory blocks; these files are 

segmented based on six different pattern stimulus based many trials see section 5.2. Each 

pattern stimuli have been iterated more than three times in respect to experiment 

configuration, as mentioned previously section 5.2.1. 

 

Figure ‎5.15: Comparison between single-, dual- and quad-cores based-template/pattern approach 

The estimating phase procedure is divided into distinct steps. The HT model is evaluated by 

extracting the coefficients of Imaginary part (Im) Figure 5.4, then finding out as resultant of 

statically crucial of different phases that extracted based on separated Six-pattern . The theory 

behind this algorithm is beyond the scope of this paper, but can be found in (Recognition a 

Multi-pattern in BCI system Based SSVEPs) [166] that discuss how to extract the brain 

responses based HT algorithm. The general concept is parallelization, which implements the 
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algorithm depending on the openMP platform. Wherein, the Hilbert transform (HT) was 

involved, which parallelised the computing process to compare all accumulated epochs in 

each pattern, in order to detect a specific brain activity performed by multiprocessing based 

openMP. Figure 5.15 shows the efficiency rate based on single-core, dual-core, and quad-

cores, which compare a single template with multiple patterns. Therefore, the x-axis 

represents the number of repetition patterns that respect to the execution time depend on 

CPU-cores.  

5.3.3 Windowing filters and detection patterns based HPC Conclusions  

This work depended on two experiment datasets which employed an offline  analysis to 

discover the effect beyond Four-windowing function based on Five-multiple frequencies and 

Six-multiple patterns. A four-type diverse window function was classified, which compared 

between them in respect to spectral power; however, detection patterns were used based on 

steady-state visual evoked potentials (SSVEPs) responses both of these studies have used a 

high performance computing (HPC) technique. Five different stimuli-frequencies were 

adopted to extract the power spectrum using short-time Fourier transform (STFT) results. The 

consequences results were exploited, leading to a high power response on low-frequency (LF) 

based on brainwave response regions. Four different timing windows based on Four-type 

filters were used to extract the accuracies before and after correspondingly applying a high-

pass finite impulse response filter (HP FIR). Consequently, the offline  analysis has used the 

MATLAB (tools) to implement a linear discriminant analysis (LDA) to distinguish between 

window function accuracy of filtering and non-filtering based EEG raw-data. The outcome 

results indicate recognition accuracy rates into four window types by increasing the size in 

respect to time of size L, which cover all evoked points in the stored new dataset. In fact, the 

spectral leaked problem of power density estimation affects the extracted result since the high 

energy on low-frequency (LF) reveals the effect; however the spectral leakage problem has 

been detected which affect directly on responses.  The extract results based on leaked problem 

were improved using (Hamming-function) window which reduces the oscillation but does not 

reduce the low-frequency component. In addition, the normal high pass filters (HPF) were 

used, which also overcame the leakage problem. The output form HPF is not smooth but 

provides‎the‎exact‎oscillation‎on‎ω,‎while‎the‎other‎frequencies‎still‎exist.‎Nonetheless,‎there‎

was a combination between HPF and Hamming window function, which provide smooth 

curves of power estimation. Furthermore, most accuracy results were similar and decrease 
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when reduced by time-window width, which indicates effective suppression. Rectangle 

window-function achieved more accuracy with respect to frequency-domain resolution 

analysis. Since the EEG data analysis using a single processor, based on the designed system, 

reveals a decent performance for a smaller dataset, in other hand the multi-processing has 

exposed enhanced performance and accuracy in a large scale of dataset. The multi-processing 

with OpenMP platform based application-programming interface (API) modifies a new 

structure model which employs the parallelization programming code. The constructed model 

was implemented using C language based on OpenMP of high performance computing (HPC) 

system, because it is an open sources library and the most suitable model for BCI application. 

Furthermore, the OpenMp depends on a shared memory approach and is easily installed on 

many platforms, compared with CUDA or OpenCl which face many restrictive problems, 

such as specific hardware support requirements to the essential graphical processing unit 

(GPU) and high accuracy routing. However, the message passing interface (MPI) models 

require a computer cluster and significant installation restrictions to support a high accuracy 

networking and maintenance environment. Therefore, a parallel computing based windowing 

function technique has been used after accumulating the averaged responses and normalising 

the gathered responses. A spectral power has been obtained from extraction signal features 

that are sorted and stored in a separate memory block; further a slide-window was passed over 

a stream of EEG data which is previously prepared to compare offline  the performance 

efficiency based on 1, 2, and 4 CPU-cores. It has been discovered that the multi-cores base 

multiple threads give the best result with respect to exaction time. The second approach is 

comparison of independent patterns base detection, after gathering acquired EEG data and 

cleaning to store as a new templet of datasets. This templet is sorted into main globule 

memory blocks, to compare all trial segments based on pattern. The final step of analysis used 

phase detection procedure based HPC. This analysis technique inspired from HT model, 

which extracts the different phase depending on imaginary part, then award of statically 

crucial of individual pattern phases. The computing process is parallelized to compare all 

accumulated epochs in each pattern in order to detect a specific brain activity performed by 

multiprocessing based OpenMP. 

Rapid Computation and Analysis using a Multiple Core to enhance SSVEP based system, 

NGCT 2016, IEEE 2016  
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CHAPTER6 
 

 

6. CONCLUSION AND OUTLOOK 
 

The research work was dependent on multipurpose empirical studies, which are described 

in this thesis; those studies are discusses to enhance essentially performance of brain-

computer interfaces (BCI) based-SSVEP paradigm. Generally, eight of EEG experiments 

were performed to obtain necessary information that extracted from brain waveforms. This 

contribution (thesis) has successfully proven signal processing techniques and 

neurophysiological recoding experiment. The following conclusion is contributed with diverse 

studies; also discussed open problems and future work based on research. 
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Chapter 2: In chapter 2, surveyed background details based-research of brain-computer 

interface (BCI) system, including perception and disparate concept approaches that inform 

practical paradigm. Furthermore, the chapter has included the materials that can be used to 

evaluate BCI systems based on diverse affected paradigms in different facilities of feature 

extraction methodologies and types of brain reaction responses. However, realize different 

types of brain waveforms and understand the EEG signals, which allowed observing the brain 

activities under a certain circumstances using an individual stimulation models.  

 

Chapter 3: This chapter has explored the main configurations and experiment setup, that 

including requirements of hardware/software equipment. In addition, the chapter has 

described accumulated EEG raw-signals by schedule time recording and provided a 

reasonable starting point for most essential stimulations. In addition, attainment biological 

EEG-raw signals using hardware of BioSemi system. Gathered all signals and divided as 

EEG/epochs to produce a clean datasets. Pre-processing based on digital signal processing 

(DSP) techniques have been exploring that including filtering on gathered EEG/epochs to 

render a new datasets which is free from any artifacts. This chapter has addressed the problem 

of extraction feature and classification using streaming scheme of acquisition EEG signals 

that is restrict results, especially when increasing BCI reaction commands based brain 

activities. Consequently, the feature extraction and classification signals optimising number of 

EEG-channels with respect to located electrodes on the scalp by reducing the acquisition 

electrode numbers (EEG-channels). This takes into account the averaging procedure, which is 

expounded based on onset of stimuli flickering that referred to phase-tagged triggers (PTT) of 

time locked events in both of time and frequency domains to be exploited and easy extracted. 

The brainwave activities indicate SSVEP responses signals by referring to the brain location 

in respect of frequencies that are uncover a primary result based-offline analyses. Through the 

headmost experiments that are holds in this chapter, a regular flicker paradigm has been 

preferred to evoke sequencing flicker/lights within individual LEDs that were randomised on 

locations according to the positions of stimulation panel. Mathematically formulate the 

flickering/lights in respect of individual groups into variable approaches. Each experiment 

explored the influences of brain (sensory-lobes) location based on measurable SSVEP 

response signal quality at Four-lobe brain regions located on the occipital region, left/right-

temporal region and frontal region respectively that allowed designation of the best brain lobe 

region according to the powerful responses of SSVEP signals.  
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These brain region locations offered a measureable signals using non-invasive paradigms of 

evoked SSVEP response, which indicated more effect on the occipital lobe with LF of alpha 

band at ~13 Hz in respect to brain activity waveform. Furthermore, the frontal lobe was 

affected by theta band that near to the stimulus frequency at ~5 Hz based brain activity; 

although the theta band indicates on the left/right-temporal regions at ~3 Hz in respect to 

brain waveform. However, found out that occipital brain lobe is inclined to provide the 

highest SSVEP response regarding alpha band-frequency, with weaker quality signals in other 

brain-cortex locations in respect of the same stimulus frequency band based on empirical 

study. Similarly, realize the stimuli frequency at 10 Hz presented the strongest evoked SSVEP 

signal based offline  analysis. Nevertheless, at a specific location that indicated by the 

electrode denotes by Oz, which occupied on occipital brain lobe region, strong power in terms 

of 10 Hz of stimulus frequency was recorded. 

 

Chapter 4: This chapter proposed three empirical studies, which addressed sufficient 

recognition of brain response that provide desirable brain activities to increase reaction 

command numbers based-BCI technique by exploiting human-brain capabilities using SSVEP 

paradigms. The chapter also addressed the problem of ceaseless attention producing fatigue 

after few work-hours operation that lead to minimal distractions; a low signal-to-noise-ratios 

(SNRs) is discussed whereas intent onset recognition essentially requires substantial time. 

Different responses can be evoked through improved paradigms of stimuli light/flicker, which 

consists of different characteristics that provide diverse responses based on brain activity. In 

fact, the steady-state visual evoked potentials (SSVEPs) present an echo that reflecting signals 

of brain activity responses elicited by existing iterate stimulus at an appropriately medium 

level, such as flicker LEDs light based definite frequency. The flicker stimulus is dependent 

on a wide range of frequency bands at LF, MF and HF based on SSVEP paradigms. This 

chapter discusses the effective frequency band that provides stronger brain activity response. 

Thereby, adding innovative attributes and new characteristics, which essence providing a high 

modification and adaptability with respect to efficient visual stimulus system. The multiple 

stimulation units equip different stimuli frequencies, multiple colours stimulate LEDs and 

short-term irregular paradigms to prove a reasonable evoking signal instated to SSVEP 

responses. Therefore, a low-cost BCI prototype based-system has been designed and 

implemented stimulation panel. 
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The stimuli panel included (24-LEDs) spread uniformly in different positions within altered 

colours. Each position contained three colours of (Red, Blue and White LEDs) to stimulate 

SSVEP paradigms. 

 – Section 4.1: the first empirical study of multiple stimuli frequency considered three major 

frequencies‎ of‎ brain‎waveform‎band‎of‎ theta‎ (θ),‎ alpha‎ (α)‎ and‎beta‎ (β),‎which‎ determined‎

more actively responses of brain band levels. In this work, an offline analysis was concluded 

using FFT and wavelet transform (WT) to realise the behaviour of brain activities with 

frequencies level bands in respect to SSVEP paradigms. Primary results were extracted from 

FFT spectrum power analysis, which discussed maximum and minimum spectral in each band 

level. A three band levels based brain activities were exploited by implementing digital filters 

which extracting results based on various frequencies in term different band was improved 

using ICA to remove unwanted signals of noises signal; furthermore, FIR technique was used 

to restrict frequency band based on digital signal processing. The FFT result delivered all 

stimuli frequencies of (2, 4, 6, 8, 10, 12, 14 and 16) Hz. It was substantiated that stimuli 

frequency of 10 Hz furnished greatest power in respect of SSVEP responses of alpha band 

level. Further steps used SNR topography, which measured the EEG-signals at the three main 

electrodes of EEG-channels on (O1, O2 and Oz). This step realistically used EEG-electrodes, 

which were contained in preliminary experiment setup. The SNR results assimilated from 

electrodes were categorised and investigated based on SSVEP response. The highest SNR was 

discovered to be located on occipital brain region, compared with other brain lobe locations, 

according to multi-trials in respect of all stimuli frequency sessions that applied on multiple 

voluntary (subjects). The ICA technique, as well as SNR, provided evidence that determined 

crucial evoked brain region based SSVEP responses. Furthermore, it was discovered that the 

stimuli frequency at 10 Hz presented the most robust induced response signal of SSVEP at 

electrode Oz which occupying on occipital lobe of brain region and given a strongest power 

with respect of 10 Hz stimulus frequency. Digital filters technique was utilised by adding a 

wavelet function to determine results according different bands in respect to multiple 

frequencies, which considered the EEG rhythms at 5 Hz, 10 Hz and 25 Hz; in order to 

improve SSVEP responses signal resolution based time-frequency analysis in terms to found 

the affect brain band level. In this study, different influence based-SSVEP response was 

discovered with respect to brainwave activities, which indicated the stimuli at alpha level 

more certain on occipital brain region. 
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 – Section 4.2: Beyond the stimuli frequency at different band levels and three different 

colours stimulation that present second empirical study to illustrate effect and influences on 

brain activities based on colours/stimulation of SSVEP paradigms. Flickers/stimuli were set 

with two-constant base-frequencies at 6 Hz and 13 Hz, which proved to be low/high on alpha 

band waveforms and verified stronger responses. The evoked stimulus was obtained based on 

three different colours of red, blue and white. Recording EEG individual session depended on 

dynamic stimuli signal by markers based on time-locked events (TLE) techniques. The results 

concluded offline analyses of event related potential (ERP), which revealed the phase shifted 

behaviour in each colour stimulus, together with the FFT to detect the maximum amplitude of 

spectral power in each colour. Outcome of ERP results demonstrated brain waveforms in each 

colour/stimulation in respect of average EEG/epochs after cleaning the gathered signals. 

These results were defined in terms of standard nomenclature of ERP waveform. The 

nomenclature curves presented a maximum peak of white stimulation on a positive peak at P1 

to record highest evoked signal response by 2µv, corresponding to red stimulation that 

recorded 0.5µv and blue stimulation on 1.3µv at stimulus frequency of 6 Hz. In other hands, 

stimuli frequency at 13 Hz gives amplitudes as long as (1.8, 1.6 and 0.9) µv respectively in 

each stimulation colour. Significant differences were observed in phase between three 

colours/stimulations, since white and blue colour led on red stimulation at 6 Hz. Although the 

white colour led blue stimulation and red was lagging blue at 13 Hz. The flickers apparently 

in phase in P downward (waveform) at both stimuli of 13 Hz and 6 Hz, which indicated the 

minimum contingent of negative variation of SSVEP responses. Furthermore, the results of 

FFTs indicated strong response in respect of colour stimulation based-spectral power. 

Outcome result specified on white/stimulation that induced considerable power regarding 

SSVEP. However, red and blue stimuli LEDs induced SSVEP, irrespective of satisfactory 

response based frequencies of flicker finding a 6 Hz stimuli frequency effect much stronger 

than 13 Hz stimuli on all sessions. Finally, ANOVA explored is give consequences of 

difference induced potentials between low and high frequencies which restricted brainwaves 

of each stimuli colour, since white and blue are more tightly packed and much closer to each 

other as result of inducing responses based-SSVEP; however, red stimuli provided loosely 

packed flicker stimuli at 6 Hz. From the fundamental of ANOVA analysis that discovered the 

induced evoked response was much stronger from SSVEP response effects than red and blue 

LEDs at 13 Hz. Difference outcome schemes between the three stimuli based on colours 

presented high-level responses with respect to the alpha band of brainwaves at 13 Hz.  
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– Section 4.3: the short-term paradigm based on regular/irregular stimuli were extracted to 

distinguish between two prompting archetypes. The contention between two stimuli 

paradigm-types of regular and irregular paradigms was oddball (aperiodic) effect on SSVEP 

signals. The offline  analyses with FFT and ERP techniques were used to discriminate 

between evoked stimuli that referred to phases and amplitudes. The outcome result explored 

brain activity in respect of SSVEP responses, which specifically differed between the two 

paradigms. The analyses methods used were consequently very proficient and discriminated 

the contiguous range based addable parameters that yielded the largest and most optimally 

strong activity levels based on SSVEP response. This study extracted a robust spectral result 

that observed a stronger power on irregular compared with regular paradigms. However, the 

amplitude in ERP waveform result indicated the regular paradigms provided less amplitude 

than irregular. Furthermore, the ERP result spread the phases between stimulation paradigms, 

which indicated a shift in time in both paradigms with respect to onset of stimulation. 

Additionally, ERP results found the positive-downward and negative-upward of P and N 

components were of similar value in regular paradigms stimuli; on the other hand, the 

components were non-similar in respect of irregular stimuli paradigms. The advantages of 

irregular paradigms were that they expanded the number of stimuli commands by increasing 

the irregular in respect to the number patterns. Consequently, these three experiments can be 

adapted by configure three type stimulation which address the problem of enhancement and 

increase numbers application of BCI commands based SSVEP. 

 

Chapter 5: Three additional studies were inspected and discussed brain influences based on 

BCI technology by inducing differ duty-cycle effect on brain activities, and evoking multiple 

patterns to extract the SSVEP responses. In addition, high performance computing (HPC) was 

used based on BCI, which is improve speed of processing regrading to large amount number 

of EEG (datasets) dependent on multi-core process and multiple threads with open source 

library of openMP platform. These empirical studies address optimised problems that are 

adapted to configure as offline experiment using SSVEP of BCI application. 

– Section 5.1: BCI system must be convenient for all users and simple to use and adapts as 

new communication channel. The BCI systems require a special external stimulus evoked 

signal, which provides the quality to increase the BCI command numbers. The stimulation 

process must be reliable and free of any kind of inconvenience, such as visual fatigue or other 
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exertion problems. Consequently, there is possibility to obtain different responses that are 

related to diverse frequencies, as proved in previous studies, regardless of whether a duty-

cycle is increasing or decreasing the brain activities based on SSVEP responses signal, which 

has been presented in this chapter as first study. One important issue in SSVEP paradigm is 

converting influence of brainwaves that are stimulated through duty-cycle effect of stimuli-

flicker based fixed-frequency. The effect of duty-cycle on SSVEP signals using a visual 

stimulus using regular of (periodic stimuli signals). The activity of brain influenced by 

SSVEP responses insensitively that improved based-fundamental frequency to extract features 

of signals using a spatial filter. Three types of duty-cycles and three base-flickers/frequencies 

were recommended for testing and overcoming this problem. The contribution of this 

experimental study has been to focus on evoked SSVEP signals that compared with three 

stimuli/frequencies and three levels of duty-cycle based-BCI. Evoked SSVEP signals were 

detected based on non-invasive technique using efficient paradigms in BCIs. Typically, 

SSVEP response observes amplitude signal, by selecting stimulation frequencies lower than 

20 Hz to achieve a high SNR. Consequently, a prototype has been proposed to flicker a single 

LED with three frequencies at 5 Hz, 12 Hz and 24 Hz, which are driven by consistent 

sequences of repetitive stimulus cycles (periodic/regular) with fixed duration of duty-cycle on 

25%, 50% and 75% to conclude the extracted result. Classification accuracies depended on 

averaging process of SSVEP response of all stimuli at each level based on three individual 

sessions. Three types of duty-cycles and three base-flicker-frequencies are recommended for 

tests with voluntary subjects. Offline analysis has been utilized to classify evoked response 

signals that were successfully achieved with time segment based triggers techniques. Fixed 

stimulus frequencies with assured duty-cycles evoked an influence on brain responses based 

SSVEP paradigm, which can invoke largest SSVEP responses. Outcome results extracted 

SSVEP signals, which elicited vicissitudes, especially at duty-cycle 12 Hz, and demonstrated 

in time domain analysis. The prominent features of proposed system include the duty-cycle at 

12 Hz waveform energy based on fundamental frequency rises, and provision of more 

powerful evoked SSVEP signals. This variability also exists for duty-cycle effects as some 

clear performance drops were noticed and some stable situations gave less comfort achieved 

by high duty-cycle on 75%. Hence, the analytic method was depended on statistical 

computational correspond to evoked paradigms at different duty-cycle; since setting a first 

paradigm by 25% provided a respectable result based on three levels of stimulation frequency. 

However, the second paradigm was set at 50%, providing a sufficient result at three-levels. 
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– Section 5.2: multi-pattern evoked stimulus signals based on SSVEP were extracted 

practically by observing distinct differences between stimuli patterns, which alerted dynamic 

brainwaves that were presented by brain activity states. This experimental study presented the 

second research point in this chapter where a novel SSVEP based BCI was proved using 

multiple pattern flickers that included different types of flicker/light variations based on phase 

in each pattern sequence that address increasing reaction commands number problem based-

BCI. The multiple patterns evaluation sufficient hypothesis for a BCI control system, which 

evoked patterns to use in respect of evoking multiple commands based-system. Moreover, the 

dynamic-brainwaves exposed a noisy signal, non-stationary and non-linear based EEG raw-

signals. Therefore, three analyses methods were utilised, namely: ANOVA, Modified 

quadrature amplitude demodulation (QAD) and Hilbert Transform (HT). Extracting the 

features of stimulation responses was dependent on two agreements of (phases and 

amplitude). The analysis of variance based on QAD represented a preliminary result in this 

study. The Hilbert technique was used to recognise the difference between patterns with 

respect to amplitude and phase-shift of SSVEP response signals by proposing six-patterns. In 

this contribution verified a series of experimental tests corresponding to different patters 

responses in each stimulus session. A live EEG recording was conducted with voluntary 

subjects turning on to record signals using a BioSemi of biological signal-device. The LEDs 

on the stimulation board flickered at a fixed frequency rate of 11.8 Hz based on all 

stimulation/patterns. Each invoked stimuli-pattern of regular/irregular paradigms presented a 

three evoked patterns also utilized the phase-tagged trigger (PTT) technique to restrict the 

desired SSVEP response signals. The regular and irregular stimulation paradigms generated 

patterns depending on phases by θ° 
in each stimulus as a function of onset light/flickering. 

The inherent mode depended on expanding the intervals in [-π,‎+π],‎which‎overcame‎the‎time-

lag‎correlation‎on‎phase‎θ‎distributed‎in‎a‎range‎of‎stimulation‎events‎corresponding‎to‎cycle‎

and onset triggers. These intervals covered a trough-to-trough event, considered by time-

locked events (TLE). Furthermore, extracted EEG/epochs in each recoding time-level of EEG 

raw-signals were accumulated as templates to analyse and compare a significant hypothesis 

based statistical exploration. The primary result of the QAD model provided an output value, 

which was obtainable as a mean value that included trials of SSVEP responses. Mean values 

were gathered from brain responses corresponding to the same stimulus of each pattern that 

demoulding the influences individually.  
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The comparisons between independent groups using the ANOVA approach determined 

whether any of these groups were significantly different from each other. The test assumed a 

null hypothesis H0 against alternative hypothesis H1. Since the H0 assumed all entry groups 

were equal based on statistical analysis of all stimulus-tests, conditions in each pattern were 

equal without restricting common value. However, assuming alternative hypothesis 

H1 signified not equal, there were significant differences. The outcome result from the 

ANOVA analysis detected a different output in each pattern, which provided a significant 

difference between them. However, white stimulator LED successfully induced SSVEP 

effects crossing six-pattern conditions. Therefore, the means were significantly different with 

respect to p < 0.05 for all six patterns by [F (5; 350) = 255.8; p = 0.002] respectively 

according to test. The second approach in this study used the Hilbert transform analysis by 

performing aligned single-trial based on individual dataset of raw-data. The EEG/epochs in 

Hilbert Space (HS) were decomposed provided relatively variable state in each frequency 

band according to stimuli/frequency that observed diverse phases; however, the bandpass FIR 

filter was applied after down-sampling to remove any unknown and undesired signal. 

Furthermore, it was worthwhile to decompose EEG into components, corresponding to 

diversity phases and spectra analysis, according to disparity of stimuli patterns. Consequently, 

amplitudes were explored from the real part  𝑢𝑖(𝑡) of Hilbert Space (HS), which detected the 

maximum spectral expected based on six-paradigms of regular/irregular stimuli patterns. 

These spectral responses demonstrated different frequency components in brain activities, 

which explored the result of frequency components by eliciting different spectral power at (5, 

8, 10, 12, and 14) Hz, corresponding to evoked patterns. The decomposition method provided 

a posteriori definition derived from the incoming signals. Subsequently, led to increased 

amount number of control signal commands based on SSVEP paradigms, which had the 

stability and reliability to distinguish phase based stimuli patterns. In fact creating new 

aggregate applications based on BCI systems by increasing control commands depending on 

several patterns. Although this type of prototype based on brain-technology provides more 

attractive prospect with external world environments with regard to several stimuli patterns to 

introduce different protocol for different applications. Finally, this study give an advantage to 

exploit employ method as future applications work in SSVEP based BCI system fields, since 

it can be adapted, optimised and configured with support as real time experiments. 
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– Section 5.3: successful advanced techniques have been used based on massive EEG raw-

signal to extract features with distributed computing systems, which offer to solve the 

problem of decreases in computer processing time. The promising result is overcome problem 

of waked reactions and consumption time in computational analysis and extraction. Previous 

studies utilized single CPU system, which reveals a reasonable performance for a smaller 

(EEG dataset); on the other hand, the open multi-processing (OpenMP) platform give high 

performance computing with greater accuracy and supplemental precise outcome within large 

datasets. The main concept of parallelized computing is separated amount of dataset 

individually, which allows parallelization process to be used based on multiple CPUs. In this 

contribution include two approaches utilize high performance computing (HPC) to realize 

faster analysis reaction in respect to analysis brain activities and recognition based on evoked 

SSVEP signals by exploring the Hilbert transform (HT) and quadrature amplitude 

demodulation (QAD) techniques. However, five frequencies have been employed to extract 

features using a short-term Fourier transform (STFT) based on four types filters with 

windowing function. Both approaches were adapted into HPC technique to discriminate 

extraction and execution time. Consequently, neural methodology approaches realized by 

DSP that processed a vast amount of EEG raw as individual datasets by sorted into short-term 

periods. In other words, the parallel computing systems process an analysis and compare the 

gathered EEG signals in order to detect certain brain activity. However, the parallel 

computing performance defines by executed program under multiple processing paradigm or 

multi-core (CPUs) based systems, which decrease the execution time. Nonetheless, a multi-

core performance system now a day is available within a sensible price range. This study has 

contributed to the implementation of an algorithm that is specific to evoked SSVEP brain 

responses using multiple stimuli patterns and intensively computational offline analysis. The 

computation in the first approach extracted the spectral estimation and classification, as well 

as exploring the features to extract instantaneous phases in respect multi-patterns that select 

an action signal to control an output already used in previous sections. This work depended on 

two types of experiment datasets that were analysed offline to discover the effect beyond 

multiple frequencies based multiple patterns. Four types of diverse window functions were 

classified in order to make a comparison between them in respect of spectral power; however, 

detection patterns were used based on SSVEPs responses by HPC. Five different stimuli-

frequencies were adopted (8, 10, 12, 14, and 16) Hz to extract the estimation spectrum 

utilising STFT technique.  
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Four-different timing windows were extended based on Four-types of filters presented by 

(Rectangle, Hamming, Hann and Triangle), which were used to extract the accuracy features 

based on (Before and After) hypotheses by correspondingly applying high-pass of (HP FIR). 

Consequently, the offline analysis implemented a linear discriminant analysis (LDA) to 

categorise between window functions as to the accuracy of (Filtering and Non-filtering) based 

on clean EEG raw-data. Outcome resultant indicated recognition accuracy rates in four-

window types by increasing size with respect to time of window-size on L, which covered all 

evoked points in the new stored dataset. In fact, the spectral leakage problem of power density 

was estimate and appeared affected on high energy of low-frequency (LF). The extraction 

results based on the leakage problem were improved using (Hamming-function window) 

which reduced the oscillation without reducing response amplitude level in low-frequency 

(LF) components. In other hand, the high pass filters (HPF) used to overcome leakage 

problem and indicating greater accuracy. The output from HPF was not smooth but provided 

exact‎oscillations‎on‎ω,‎while‎the‎other‎frequencies‎remained.‎Nonetheless,‎ the‎combination‎

between HPF and Hamming window functions provided smooth curves of power estimation. 

Furthermore, most accuracy results were similar and decreased when there was a reduction in 

time-window width, which indicated effective suppression. Rectangle window-function 

achieved reasonable accuracy in respect of frequency-domain resolution result; since the EEG 

signal analysis using a single processor based on the designed system revealed performance 

for the smaller dataset. Therefore, steps over was used a multi-processing that exposed and 

enhanced the accuracy of performance in the large dataset. The multi-processing with 

OpenMP platform based application-programming interface (API) modified a new structure 

model that employed the parallelisation programming code. The constructed model was 

implemented using C language based on OpenMP of high performance computing (HPC) 

system, because it is an open sources library and the most suitable model for BCI application 

with simply impanation. Furthermore, the OpenMp depended on a shared memory approach 

and was easily installed on many platforms by comparison with CUDA or OpenCL, which 

face many restriction problems, such as specific hardware support, requisite essential 

graphical processing unit (GPU) ,and high accuracy routing. However, the message passing 

interface (MPI) models require a computer cluster and considerable installation restrictions 

that support a high accuracy networking and maintenance environment. Therefore, parallel 

computing based windowing function techniques were utilized after accumulating averaged 

responses and normalising the gathered epochs of EEG data.  
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A spectral power was extracted to obtain signal features, which are stored in separate 

template-files in memory block. The slide-window was passed over a stream of template-files 

to compare efficiency performance based on (1, 2 and 4) CPU-cores. The multi-cores base 

multiple threads were discovered the best results with respect to exaction time. The second 

approach compared independent patterns base detection. After the acquired EEG data had 

been gathered and cleaned to store as a new templet of datasets, the templet was sorted into 

main globule memory blocks, to compare all trial segments based on pattern. Phase detection 

procedure that used HT model exploited and extracted the imaginary part, then determined the 

statistically crucial phases based method. The computing process was parallelized by 

multiprocessing based OpenMP to compare all accumulated epochs in each pattern in order to 

detect specific brain activity. 
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Open Case Problems based study:  

This contributory work based on research of empirical study has exposed several unsolved 

problems. Some of these problems are described as fundamental-problems, since they require 

a new theory or new research level towards understanding the relevant brain mechanisms. 

Therefore, undoubtedly the efforts of many research groups will address solutions that are not 

yet evident. 

 

– The SSVEP response based frequency curves, stimulus shapes and colours:  

The brain activities that incite the SSVEP based stimulation are very reliant on various 

stimulus parameters; subsequently, the visual-brain system is highly sensitive to all 

circumstances of the visual scene. By estimating the SSVEP paradigms based on frequency 

curves, there is no distinguish-active-signal as to its profile. The particular importance of the 

stimulation procedure depends on frequency stimulus, shape, colour and composition pattern. 

As an example, SSVEPs stimulation using White stimuli provides a more reasonable response 

than SSVEP with other colour or natural content of stimulation patterns provide a good brain 

reaction. It is imperative that researchers should understand the objective of this stimulation 

dependency in the visual cortical area, so that conclusive result can be made in SSVEP 

applications without the need for complicated measurements in each stimulus form. From the 

research archive, knowing the SSVEP responses signals based frequency can contribute 

substantial results, which are improved by comparison between various studies, leading to the 

development of other, similar knowledge of mapping efforts [93]. 

 

– The time-dynamics problems by inherent SSVEP of non-stationarities signals:  

Although the subject can clearly perceive un-interrupted training based on evoked signal of 

SSVEP flickers, repeated recording of EEG brain activities is highly uneven (unequal) and 

changes over time-length into several milliseconds. Therefore, the stimulation paradigms are 

probably imperfect in respect of recording equipment; however, continuous interference 

between concurrent brain response processes in generating EEG-raw provides unstable output 

signal based SSVEP stimulation-bands. Consequently, it is very useful to create a new path of 

recording issues based on stationary evoked SSVEP signals within clear onsets and 

synchronised evoked signals. 
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– Methods and techniques for extraction of features:  

The gathering of signals from extraction of SSVEP response is dependent on research 

requirements. Therefore, the creation of systematic paradigms based on an SSVEP extraction 

algorithm is required that provides strength and sufficiently active-signals to allow and enabl 

researchers to make better comparisons between studies based on SSVEPs.  

 

 The SSVEP based BCI command delays; the time-dynamics limitation causes a 

postponement because of the inherent nature of brain activities. The incoming result 

in the phase-locking-events approach as offline is more sensitive and a promising 

alternative to the classic FFT based estimation methods. However, a more 

complicated approach is needed as an online signal processing extraction method that 

can reliably detect signals without extensive delay to the based onset, even with weak 

SSVEP signals 

 The SSVEP based BCI sensor (electrodes) problems, mainly use the conventional 

recording way of electroencephalography (EEG) for data-acquisition because of the 

compact size and high price of these kind devices. An essential problem related to 

record-mode that prevents the wide use BCI in daily applications. Here, the EEG-

electrodes (sensors) normally involve use of a conductive (gel) that provides 

acceptable SNR signals for the acquisition of brain activities. This gel might dry-out 

within a few hours and needs to be washed away at the end of each experiment. This 

kind of problem is recognised by Blankertz [104], who has developed a new type of 

(dry) electrodes without the need for a conductive (gel). Again, the primary 

experiments in Chapter 3 have explicitly investigated the feasibility of using such 

brain locations according to SSVEP based BCI, and found acceptable results, albeit 

with declined performance. However, this problem still remains with new signal 

processing techniques in achieving the weakness of non-stationary signals based 

SSVEP responses from brain-lobe locations 
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Future Work based on these contributions:  

Brain technology such as BCI has the strongest potential to serve within a social 

environment. In addition, it is possible to pursue future work directions regarding SSVEP 

based BCI designs systems as follows: 

 

 Strong brain activities based on a hybrid BCI system by integrating three or more 

independent system-types, such as SSVEP-BCI, motor-imagery BCI and P300-BCI. 

Accessibility in switching between them assists the user who has difficulties with a 

particular BCI-type; this leads to enhancing more command based BCI-types that are 

used simultaneously 

 The strength of the SSVEP based BCI system is that uses more than 24 independent 

reaction commands to work reliably in most home environments, which leads to 

implementing a new online algorithm based on this contribution work  

 The non-invasive nature of BCI technology allows the design of a remote control 

used in intelligent e-homes. SSVEP BCI system of e-homes might provide a novel 

feature with smart environments, such as TV or smart phones that correspond to BCI 

based system. 

 A standalone BCI system allow disabled people to control a wheelchair reliably 

depending on SSVEP, which provides high responses using FPGA with multiple 

processing based-HPC units that increase reaction commands; however, the algorithm 

of this study can be improved to use as individual processor-units that perform using 

a FPGA based embedded of hardware/software co-design system   

 Performed  data Fusion-techniques in BCI systems of gathering EEG signals in term 

of precision and accuracy to extract features [162]; new concept of gathering 

operators called ordered weighted averaging (OWA) [163]; this operator is different 

than a classical weighted average which is not associated directly with particular 

attribute but rather to ordered position [163]; introduce a new operator for 

accumulation EEG signal called ordered weighted aggregation (OWA) operator allow 

combining of spirit criteria under supervision of a quantifier [163]; most of criteria is 

satisfied correspond to one of OWA operators [164], that lead to enhance more 

command based BCI-types that are used simultaneously   
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  APPENDIX  

A.1 Independent Component Analysis (ICA) 
In this appendix, describe the details of Independent Component Analysis (ICA) theoretical 

method in more general case. 

A.1.1 Introduction  

The objective of ICA procedure is separates a multiple channels that include an input 

stationary signal of raw-data as source components. The un-mixing process based ICA 

performed without any prior knowledge of properties of input signals like EEG-signals. The 

estimation independent sources would afford low-complexity and best linearity predicted. The 

Independent Component Analysis (ICA) represents the subset depend on the blind source 

separation (BSS) approach, which include criteria of statistical independence components of 

datasets. Therefore, the ICA based BSS performance depend on several features such as 

(number of channels,‎data‎length‎and‎interface‎level‎of‎‘noise-signals’).‎The‎essential‎problem‎

in ICA techniques restricted by pre-processing the EEG-raw data based on DSPs, which 

present a challenge that select benefit component from mixture environment [5]. As well as, 

this technique will depend on a multi-trial structure by accumulating amount of datasets based 

raw-data [4]. 

A.1.2 Independent Component Analysis (ICA) algorithm  

The ICA is processing that can extracts from exploratory of observed data, which presented 

by the m-dimensional‎ of‎ vector‎ x(t),‎ where‎ t‎ =‎ 1,2,…,N.‎New‎ set‎ of‎ statistic‎ independent‎

components are presented by n-dimensional vector. The weight W matrix presents the activity 

of individual independent component, since multiply matrix of x present the active component 

of input-channels respect to time: 

𝑦(𝑡) =  Wx(𝑡)                                                                        a. 1.1 

The estimated component correspond a hidden or latent variable in dataset, which called 

sources. The ICA process is assumes that time series of x(t) has embedded mixture, can 

written as: 

𝑥(𝑡) =  As(𝑡)                                                                        a. 1.2 
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Here the A is denote as unknown mixture-matrix and s(t) is a vector which presenting 

unknown-hidden or (latent) variables. However, the ICA approach allowed de-mixing or 

decomposition that able to recover the original sources respect to time domain:  

𝑦(𝑡) =  𝑠̂(𝑡)                                                                        a. 1.3 

Hence, two or more of random variables are un-correlated and not imply. This fact is 

involved to use other methods such as Principal Component Analysis (PCA). This approach is 

seeks to find such independent directions through maximization of suitable cost function 

called‎ ‘contrast‎ function’‎ respect‎ to‎ statistical‎ independence.‎ Such as this function can be 

maximize or minimize to optimize extracted features. Therefore, can be considered a new 

extension of principal component analysis (PCA) method. Since, the input-data of PCA 

presented by x(t) which is de-correlated and the components are maximally un-correlated 

according to SOS topography. The principal components analysis (PCA) is one of suitable 

algorithm that concluded to solve the problem; by assuming available of data-set which 

multivariate respect to time series of {xi(t)},‎ where‎ t=1,2,…,m.‎ This‎ time‎ series‎ is‎ also‎

corresponding to individual EEG-signals, which accumulated from multiple electrodes; the 

consequences result of unknown mixture process is defined by the follow relationship: 

𝑥𝑖(𝑡) =  ∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑠𝑗(𝑡), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, . . , 𝑚              𝑎. 1.4 

That’s‎lead‎to‎similarly‎compact‎of‎matrix‎form‎𝑥(𝑡) =  As(𝑡)  as mentioned in (a.2) respect 

to the time variant in (t=1, 2, .., N); since the A presenting the unknown mixture matrix sized 

by (m by n), and hidden (latent) components presenting by s(t) = [s1(t), s2(t), … , sn(t)]T of 

individual sources. Hence, the observed data by vector in sj(t) presented on  x(t) =

 [x1(t), x2(t), … , xm(t)]T. Find-out the de-mixture matrix by extracting the weight matrix W 

from 𝑦(𝑡) = Wx(𝑡) which is separate the hidden independent components. It is possible to 

assume the number of sources of hidden components by same number of time series, which 

are observed by inputs n, when the matrix A is a square (n by n). 

𝑊 =  𝐴−1                                                                𝑎. 1.5  

Then we can perfect separation between y(t) = s(t). Optimization in y which is permutated 

and scaled version of s, since it possible to find W such that WA = PD, where P is also 

permutation matrix, furthermore the D is a diagonal scaling matrix. In general, the ICA of 

certain random vector of x(t) is obtained by (n by m), taken in account m ≥ n. 
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A.2 Hilbert Transform (HT) 
In this appendix section, have been describe the theoretical details of Hilbert Transform 

(HT) topography in more general case. 

A.2.1 Introduction  

Feature extraction from recording EEG-raw signal is further use in the field of brain-

computer interfaces (BCI). Congregated a lot of attention in recent years subsequently a large 

range of possibilities to choose among of features and diversity drives such as a methods to 

extract. Therefore, the Hilbert Transform (HT) is one of important technique that used to 

extract the instantaneous phase and magnitude over chunks of EEG-raw in time quantification 

by means of various statistical dependence parameters. In generally, the Hilbert Transform 

(HT) supports an inverse technique that related to real and imaginary fragments of complex 

function which defending by a ± ib. The relationship between real and imaginary parts gives 

the easily way that derived an application based on BCI. The definition equation can be seen 

the imaginary part of analytic function providing a component‎of‎phases‎θ‎and‎amplitudes‎A‎

according to the time function series. In other word, it seems a natural inspissation of inverse 

Fast Fourier Transform (FFT). 

A.2.2 Properties of HT Algorithm   

The traditional analysis methods based on linear and stationary hypotheses is distinguished 

features referring to incoming datasets. The Hilbert Transform (HT) is an experimentally data 

analysis method which expansion and adaptation techniques. Therefore it can produce the 

physically magnitudes that extract raw-data based non-linear and non-stationary approach. 

The real time function of x(t) of Hilbert transform (HT)  is defined as [8, 9]: 

𝑥̂(𝑡) = 𝐻[𝑥(𝑡)] =  
1

𝜋
 ∫ 𝑥(𝜏)

1

1 − 𝜏
 𝑑𝜏

∞

−∞

                                       𝑎. 2.1 

Realize from (a.2.1) an independent variable with non-change as consequence result of 

transformation approach, therefore the output of x̂(t) present the time dependent function. 

Furthermore, the x̂(t) present an linear function by x(t) that obtained to convolve with (πt)−1
 

as exposed in the following relationship: 
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𝑥̂(𝑡) =  
1

𝜋𝑡
 ∗ 𝑥(𝑡)                                                      𝑎. 2.2 

The traditional Fast Fourier Transform (FFT) provides a convolution after rewrite equation 

(a.2.2): 

𝐹{𝑥̂(𝑡)} =  
1

𝜋
 𝐹 {

1

𝑡
}  𝐹{𝑥(𝑡)}                                             𝑎. 2.3 

 

Where  𝐹 {
1

𝑡
} = ∫

1

𝑥

∞

−∞
 𝑒−𝑗2𝜋𝑓𝑥 𝑑𝑥 = −𝑗𝜋 𝑠𝑔𝑛 𝑓, Since  𝑠𝑔𝑛  of   𝑓 = {  

+1  𝑤ℎ𝑒𝑟𝑒  𝑓 > 0
0     𝑤ℎ𝑒𝑟𝑒  𝑓 =  0
−1  𝑤ℎ𝑒𝑟𝑒   𝑓 < 0

 

Therefore, the Fourier transform of Hilbert transform in x(t) is substituted in (a.2.3) which 

given: 

𝐹{(𝑥̂)} =  −𝑗  𝑠𝑔𝑛 𝑓 𝐹{𝑥(𝑡)}                                                    𝑎. 2.4 

Consequently, obtained the frequency domain by multiplying the spectrums in 𝑗 (
𝜋

2
) for 

negative part and −𝑗 (
−𝜋

2
) and positive part to overcome a result in time domain. However, 

performed an inverse Fourier transform that give a real signal x(t) [10], which described by 

the expression as: 

𝑦(𝑡) = 𝑥(𝑡) + 𝑗𝑥̂2(𝑡)                                                 a. 2.5 

Hence, the envelope of Z(t) is defined by √x2(t) + x̂2(t) which allowed to extract the 

instantaneous‎phase‎θ‎in‎complex‎plane‎defined‎by: 

θ(t) =  tan−1 (
x̂(t)

x(t)
)                                                 a. 2.6 

The common tangent respect to same value at a certain point of x̂(t)is determined by Z(t), 

since the slope and magnitude of original signal in x(t) at local maxima is consequently seen 

on Z(t) which is always a positive function. 
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A.3 Fast Fourier Transform (FFT) 
In this appendix, describe the Fast Fourier Transform (FFT) technique in more general case. 

A.3.1 Introduction  

Generally, the FFT is presenting the spectrum of various frequencies by plotting frequency 

carves of incoming signals. The EEG-signal is describe by amount of many individual 

frequency components and harmonics. Many of analysis approaches utilized the fast Fourier 

transform (FFT) of spectral analysis of EEG signals in frequency domain. Moreover, the 

Fourier transform is formulated and suitable for linear, periodic and stationary signals respect 

to the time domain based a certain frequency bands, which unchanging frequency 

components. The higher characteristic frequency elicited respect to responses, which allowed 

to implementation the BCI system using simple signal processing techniques. Therefore, the 

Fast Fourier Transform (FFT) has been utilizing to extraction the feature and classification. 

On the other hand, the FFT technique is restricted to detect frequencies which is maximized a 

half of sampling frequency called (Nyquist) frequency. The advanced signal processing is 

necessary to differentiate between classes which be forced a complicated in system design.  

A.3.2 Spectrum Frequency using FFT approach  

The basic approached that to analyses an acquisition EEG-signal, which proper desired 

information by applying the Fast Fourier transform (FFT) method. One of important condition 

that acquisitions signal is reversibility when applied method by converted satisfied signal 

based on one by one of frequency [3]. The Fourier based topography is assumed that the time 

series repeated as periodic waveform in case is implicit. This assumption leads to extract the 

spectral estimates. The spectral analysis based Fourier of acquisitions signal into frequency 

domain of signal is involved to decomposition, in other words the original signal can be 

separated into components which can observe the slim spikes that represent intentional 

frequency within harmonics. The spectral analysis techniques are considered as the best 

technique which transformation between time and frequency domains however with time-shift 

invariant. The Fourier transform pairs expressed as: 

𝑋(𝑓) = 𝐹{𝑥(𝑡)} =  ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡

∞

−∞

                                         𝑎. 3.1 
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The Fourier transform (FT) converts time domain signals into frequency domain 

illustrations and similarly; the discrete Fourier transform (DFT) converts discrete time 

sequences into discrete frequency versions derived by (a.3.2.) respect to k = 0, 1, 2, … , N − 1. 

𝑋𝑘 =  ∑ 𝑥𝑛𝑒−𝑗2𝜋𝑘𝑛 𝑁⁄

𝑁−1

𝑛=0

   =   ∑ 𝑥𝑛 𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

                                     𝑎. 3.2 

Where the signal x(t) present the time domain signal, and X(f) presenting the FT, since xth of 

input sequence signal, since the Xk in DFT present the  n number of samples. Nonetheless, the 

Fast Fourier Transform (FFT) is an optimized implementation of a DFT that takes less 

computation to perform. In 1965 J.W.Cooley and J.W.Tuckey reinvented the FFT for fast 

computation of the DFT [2]. However, the twiddle factor W is notation by 𝑒−𝑗
2𝜋

𝑁  whereas 

often to use at more compact form. This equation is identical FFT and simple to use an 

efficient programming method to implement it [137]. Furthermore, the inverse of DFT or FFT 

defined by: 

𝑥𝑛 =  
1

𝑁
 ∑ 𝑥𝑘𝑒−𝑗2𝜋𝑘𝑛 𝑁⁄

𝑁−1

𝑛=0

   =  
1

𝑁
 ∑ 𝑥𝑛 𝑊𝑘

−𝑘𝑛

𝑁−1

𝑛=0

                          a. 3.3  

The factor of 1 𝑁⁄   is defined rather inverse or not; however, this factor is used to adjust the 

scale of reversibility. Cooley and Tukey are constructed approach beyond FFT technique, 

which described through the length N of DFT is not prime number, the calculation component 

can be decomposed into a number of shorter length using DFTs [137]. 

.  
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