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Abstract

Further improvement of implants for the human skeleton involves understanding inter-
actions between bone cells and surrounding bio-materials under different stimuli (bio-
chemical, biophysical, mechanical, electrical). In addition to experimental methods, the
computational approach has been a useful tool to investigate the mechanisms of these
interactions. In this thesis, we attempt to build a numerical model that predicts the trac-
tion forces and the actin distribution in osteoblasts when they interact with substrates
of different characteristics, where the effects of external electric field are addressed. Our
model is based on the bio-chemo-mechanical model proposed by Deshpande et al. [15],
which possesses many advantages and has been widely applied to simulate two and three

dimensional cells in interaction with various substrates.

The results we obtain in this thesis can be summarised in three main achievements.
First, we successfully reduced the complexity of the bio-chemo-mechanical model using
a semi-analytical approach. Our formulation delivered similar results compared to the
classical approach, while the computation time was significantly improved. Second, we
proposed an inhomogeneous adhesion and constructed smooth scaling functions repre-
senting the differences in strength of adhesion at different locations in the contact parts
between cells and micro-pillar structures. With our description for the adhesion, the bio-
chemo-mechanical model was able to predict the actin distribution in the experiments
of osteoblasts on titanium micro-pillar arrays. Finally, we enhanced the bio-chemo-
mechanical model with our description for the effects of the direct-current (DC) electric
field by letting the tension in stress fibres depend on their orientation and introduc-
ing a scaling function representing the weakening of adhesion at some parts of the cell.
Our enrichment of the model helped predict several existing experimental outcomes on

fibroblasts and osteoblasts when they are exposed to DC electric field.



Zusammenfassung

Eine weitere Verbesserung von Implantaten fiir das menschliche Knochengeriist erfordert
ein besseres Verstandnis der Wechselwirkung zwischen Knochenzellen und benachbarten
Biomaterialien im Hinblick auf verschiedene Stimuli (biochemische, biophysikalische,
mechanische, elektrische). Neben experimentellen Methoden erwiesen sich comput-
ergestiitzte Ansatze als ein niitzliches Werkzeug zur Untersuchung der Mechanismen
dieser Wechselwirkungen. In dieser Arbeit wird versucht, ein numerisches Modell aufzustellen,
das die Traktionskrafte und die Aktinverteilung in Osteoblasten vorhersagt, wenn diese
mit Substraten unterschiedlicher Eigenschaften interagieren und dabei den Wirkun-
gen eines externen elektrischen Feldes unterliegen. Das vorgestellte Modell basiert
auf dem von Deshpande et al. [15] vorgeschlagenen bio-chemo-mechanischen Modell,
welches viele Vorteile aufweist und breit angewendet wurde, um zwei- und dreidimen-
sionale Zellen in Wechselwirkung mit verschiedenen Substraten zu simulieren. Die in
dieser Arbeit erhaltenen Ergebnisse konnen in drei wesentlichen Erfolgen zusammenge-
fasst werden. Erstens konnte die Komplexitat des bio-chemo-mechanisches Modells
unter Verwendung eines semi-analytischen Ansatzes erfolgreich reduziert werden. Im
Vergleich zum klassischen Ansatz lieferte die neue Formulierung ahnliche Ergebnisse,
wahrend die Rechenzeit deutlich verbessert wurde. Zweitens wurde eine inhomogene
Adhasion vorgeschlagen und glatte Skalierungsfunktionen konstruiert, die die Unter-
schiede in der Haftfestigkeit an verschiedenen Stellen in den Kontaktteilen zwischen
Zellen und Mikrosdulenstrukturen darstellen. Mit der hier eingefiihrten Beschreibung
fiir die Adhésion konnte das bio-chemo-mechanische Modell die in den Experimenten
mit Osteoblasten auf Titan-Mikrosaulen-Arrays beobachtete Aktinverteilung vorher-
sagen. Schliefllich wurde das bio-chemo-mechanische Modell um eine Beschreibung der
Wirkung eines Gleichstromfeldes verbessert, indem die Zugspannung in den Stressfasern
in Abhéangigkeit von ihrer Orientierung modelliert wurde und eine Skalierungsfunktion
einfithrt wurde, welche die Abschwéachung der Adhésion in einigen Teilen der Zelle
wiedergibt. Unsere Verbesserung des Modells trug dazu bei, mehrere experimentelle
Ergebnisse zu Fibroblasten und Osteoblasten unter der Wirkung eines Gleichstromfeldes

zuverlassig vorhersagen zu konnen.
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1. Introduction

1.1. Motivation

The quality of tissue engineered implants has been improved in the last decades thank
to the rapid development of tissue engineering, in which scientific principles are applied
to the design, construction, modification, growth, and maintenance of living tissues
[5, 7, 82]. Producing implants having the same structural organisation and functionality
as the healthy tissue in vivo is the final objective of tissue engineering. In order to achieve
this goal, it is crucial to understand and utilise various stimuli in the human body that
control the development and maintenance of the tissue structure and functionality [5l g].
Besides biochemical cues, biophysical or mechanical stimuli are necessary to achieve the
desired functionality and texture of the engineered tissue. While these stimuli, together
with chemical, material-based and magnetic cues, are well-established tools in the in
vitro production of tissues and organs, electrical stimulation with its importance in the
physiology and development of the majority of all human tissues has become a potential

type of stimulus for further improvement of implants [5].

To efficiently employ these stimuli, it is essential to understand the underlying mecha-
nisms of the interactions between cells and their surrounding environment as they could
give us a better control over cell growth, cell contraction, cell migration, adhesion, and
orientation. An important aspect is to understand cellular forces, as they are crucial for
many biological processes [47, [50]. A great number of experiments have been carried out
to study the mechanisms for force generation of cells and their mechanical response to
external stimuli such as stretching, compressing, ultrasound and electrical stimulation.
Besides experimental techniques, mathematical modelling has been a powerful tool to
interpret the cellular behaviours. A great number of numerical models with different
scales and complexities have been proposed to analyse the cellular processes. The two
main classes of these models include micro/nano-structural approaches and continuum-

based approaches. While the former is required to model phenomena in small scales,



1. Introduction

such as in protein folding and fracture, the latter is more widely applied to interpret the
results on cellular responses using common experimental methods [I06]. In continuum
models, the cell material is usually assumed to be passive. Recently, the active nature
of the cell has been addressed using several approaches and the models could predict
better many experimental results [73]. For example, when the dynamic reorganisation
of the cytoskeleton is taken into account, some models could simulate very well the high
concentration of stress fibres at focal adhesions or the influence of substrate stiffness on

the forces generated by the cells.

The effects of electrical stimulation on cell contractility and the formation of actin
filaments have been investigated experimentally [5l 14} 36]. However, they are not incor-
porated in most of the computational models. The objective of this thesis is to obtain a
numerical model for the mechanical responses of cells, where the influence of the exter-
nal electric field is addressed. In addition, a mathematical description for the adhesion
between the cell and the substrate is also to be proposed. The model should capture
several outcomes from the experiments on osteoblast cells which have been carried out
at the DFG Research Training Group 1505/2 “welisa” [55]. For instance, the formation
of actin in osteoblasts when they are cultured on titanium substrates of different geome-
tries. Moreover, the model should also be applicable to simulate the contraction and
cytoskeleton of different cell types when they are exposed to an external electric field,

as presented in existing literature.

1.2. Thesis outline

The thesis is organised as follow. Chapter 1 introduces the research topic and the
overview of the thesis. Chapter 2 provides the basic concepts and the essential equa-
tions used in numerical models that are based on the theory of continuum mechanics
and electromagnetics. A brief introduction to the techniques for solving these equations
is also presented. In Chapter 3, the structure and major components of biological cells
are introduced. Moreover, experimental techniques and numerical methods that have
been used to investigate the interactions between cells and their substrates are reviewed.
Chapter 4 represents the concepts and the formulation of a bio-chemo-mechanical model
that has been shown to be more advantageous compared to other mathematical descrip-
tions. As this model is very efficient, it is used as a foundation for the development of our

numerical model. In addition, a bio-mechanical model for cell adhesion that can be com-
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bined with this model is also presented. Our approach for an efficient implementation is
shown by presenting the finite element formulation for the coupling of this model to the
equations of continuum mechanics and the steps to transform it to software code. The
results using our implementation are compared to those presented in the literature. The
advantages of these models are demonstrated by their applications in the predictions of
several experimental studies. Chapter 5 presents our approach to reduce the complexity
of the model, while retaining its significant features. In Chapter 6, our description for
the adhesion between cell and substrate is proposed so that the model can capture the
formation of actin in osteoblasts when they are laid on titanium pillar structures. Our
suggestion for addressing the effects of external electric field is presented in Chapter 7.
The proposed idea gives the model the capacity to simulate the contractility of different
cell types under the presence of electric field exposure. Finally, Chapter 8 includes some

discussion and perspectives for future research.



2. Fundamentals for modelling
mechanical and electrical

interactions of cells

A class of computational models for mechanical responses of cells is based on continuum
mechanics, while the theory of electromagnetics is used to study electrical properties of
the cells. In this chapter, the main concepts and the elementary equations in these two
fields of physics are presented. Moreover, the approaches for time discretisation and the

finite element formulation for solving the partial differential equations are also described.

2.1. Theory of continuum mechanics

In this section, a short overview of continuum mechanics, the governing equations as well
as the formulation suitable for the application of finite element analysis are represented.
A more comprehensive introduction to the mechanics of structures can be found in [6],
while extensive formulations of non-linear finite element methods are presented in [12],
[13] and [L10].

The motion of a body can be described by a function ¢(X,t) of material coordinates
X and time ¢ which determines the spatial positions of the material points x = ¢(X, ).
Let w = & — X be the displacement vector, then the deformation gradient of the

transformation from reference to current configuration can be written as:
_O0r 0
X 0X

where I represents the identical transformation. The determinant of the deformation

(X +u) =T+ Vu (2.1)

gradient, J = det F', is called the Jacobian of the deformation and expresses the ratio
between the deformed and undeformed infinitesimal volume elements. As both volume
elements are positive for realistic deformations, J is a positive number and F' is an

invertible tensor.
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. g

€3

Figure 2.1: Reference and current configuration to describe the motion of a body. Figure
adapted from [110].

2.1.1. Strain and stress measures

In continuum mechanics, several stress measures can be defined and they are usually
related by transformations between the reference and the current configurations. The
analysis of the structure can be performed using different theories (e.g. infinitesimal
strain theory, large strain theory), depending on the amount of the deformation. In

each theory, a different strain measure is used.

Strain measures

When a structure deforms, the strain represents the displacement between particles
in the body relative to a reference configuration. For geometrically linear analysis, in
which the displacement vector and its gradient are much smaller compared to unity (i.e.,

|ul| < 1 and ||[Vul|| < 1), the linear strain tensor:
e
e=3 (V'u+ Vu) (2.2)

which is the symmetric part of the gradient of the deformation vector, is usually used.

This strain tensor is also called Cauchy’s strain tensor or small strain tensor.
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For large deformation of the structure, the Green-Lagrange strain measure:

E:%(FT~F—I):%(VTu+Vu+VTu~Vu) (2.3)

is used. Here, the symmetric tensor C = F'T - F is also called the right Cauchy-Green
tensor and is mathematically convenient in formulating constitutive laws. The Green-
Lagrange strain tensor is then written as £ = %(C —1I). It can be seen that the Cauchy’s
strain tensor is actually a linearisation of the Green-Lagrange strain tensor, where the

second-order terms are neglected.

Stress measures

The Cauchy stress, or physical stress, is defined as the total force per unit area in the

current configuration. For a given vector element of surface, let dI' and n be the area

n

T e (e

M

Figure 2.2: A surface element in the reference (undeformed) and current (deformed)

configurations. Figure adapted from [6].

and the outward normal of the element, respectively, in the reference configuration. The
surface element is subjected to a traction t leading to a force vector df = tdI'. Assuming
that the area becomes dI'. with outward normal n. and traction vector t. leading to a

force df. after the deformation, the Cauchy stress o can be written as:
n.-odl. =df. = t.dl.. (2.4)

For geometrically nonlinear analysis, stress measures in undeformed configuration are
used. The nominal stress, or first Piola-Kirchhoff stress, P is given by:

n-Pdl'=df. =t.dl.. (2.5)

The second Piola-Kirchhoff stress S is defined in a similar way, but unlike the nominal

stress, the force vector df = F~! - df. in the reference configuration is used:

n-Sdl' = F ' df.=F ' tdl (2.6)
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Alternatively, this stress tensor can be written as
S=JF .o - (F ' (2.7)

which is a transformation of the Cauchy stress into the reference configuration. Since

the Cauchy stress is symmetric, so is the second Piola-Kirchhoff stress.

2.1.2. Equations of motion

Consider an arbitrary subdomain of the body §2 with boundary I'. Suppose that the
body has the density p. and is subjected to the surface traction t. and the body force
peb in the current configuration, where b is a force per unit mass. The conservation of
mass gives the relation p = Jp. with p being the density in the reference configuration
and J = det F'. In case of geometrically linear analysis, the Cauchy motion equation in

the so-called Fuler formulation is given by:

pcu = Vo + pb Vo € (), (2.8)
where Vo represents the divergence of o with respect to the current configuration (%ij)
The static equilibrium is obtained by eliminating the inertia term:

Vo+pb=0 vV € Q. (2.9)
At the boundaries that are subjected to surface traction, the boundary condition:
o-n.=t. Ve e T, (2.10)

should be satisfied.

For geometrically nonlinear analysis, it is convenient to utilise the motion equation in
the so-called Lagrange formulation, which is obtained by relating the Cauchy equation of
motion to the reference configuration. This can be done by first multiplying the motion
equation by J = det F' and applying the identity JVo = V(F' - S), where S is
the second Piola-Kirchhoff stress tensor. The derivation of this identity is presented
in [6], [48]. Note that V(F - S) represents the divergence of F' - S with respect to the
reference configuration (0/0X;). The equation of motion in the Lagrangian formulation
is obtained as:

pii=V(F-S)+pb VX e (2.11)

The condition for static equilibrium is then written as:

V(F-S)+pb=0 VX Q. (2.12)
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The traction boundary condition is described in the reference configuration as:
F-S - n=T" VX eI, (2.13)

where T™ is the traction applied on an undeformed body.

2.1.3. Constitutive laws

The relationship between the stress and the strain (and hence the displacement) charac-
terises the response of the material under loading and is called the constitutive equation.
This section presents some material models that are used in our simulations of cells, in-

cluding linear elasticity and hyperelasticity.

Linear elasticity

The response of the material may be considered to be linearly elastic when the structure
undergoes a small deformation and rotation. The Cauchy stress and linear strain tensors

are used and the relationship between them can be generally written as
oc=C:e (2.14)

where C is a fourth-order tensor which is called the stiffness tensor or elasticity tensor.
For an isotropic linearly elastic material, the tensor C has 21 independent components

and is written as
C=MNI+2ul

where I is the unit tensor and the two independent material constants A and p are called
the Lamé constants which can be expressed in terms of the Young’s modulus E and the

Poisson’s ratio v as

N Ev B E
T Ui -20) " 21ty

Thus, the stress-strain relation for an isotropic linear elastic material is obtained as

o = Mtr(e)I + 2ue (2.15)

. . . ow . . :
This relation can also be derived from o = ——, where W is the strain energy per unit
€

volume and is given as a function of the strain tensor as:

W(e) = %u(.e)? + ptr(e?) (2.16)
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Hyperelasticity

Hyperelastic materials are elastic materials for which the work done on the material
is independent of the load path [6]. The stress-strain relationship for elastic material
models is derived from a strain energy density function. Many hyperelastic models have

been developed, but only two of them are presented here.

Saint Venant—Kirchhoff model The Saint Venant—Kirchhoff model is the simplest
hyperelastic material model and is an extension of the linear elastic material model.

The strain energy density function for the St. Venant-Kirchhoff model is given by:
A
W(S) = 3 tr(E)* + ptr(E?)

Then the relationship between the second Piola-Kirchhoff stress S and the Green-
Lagrange strain F is obtained as:

ow

S=—=Mr(E)I+2uFE 2.17

= \u(B)T + 2 (217)
Neo-Hookean material The strain energy density function for an compressible neo-
Hookean material is expressed in terms of the right Cauchy-Green tensor C = F' - F
and is given by

W(C) = 2 (le—3) = plnJ + 2(n J)2,

2 2
where I = tr C and J = det F'. The stress is then derived as:
oW oW 1 1

2.1.4. Solution of the equilibrium condition

Given a structure that is subjected to some forces (e.g. body force, surface traction)
and supports, its deformation can be obtained by solving a coupled system of partial
differential equations which include the kinematical relations, the equation of motion and
the constitutive law. For Lagrangian description, the use of the second Piola-Kirchhoff

stress tensor leads to the following equations:

Kinematics: E= % (FT -F — I)
Equilibrium: pu =V (F -S)+ pb VX €Q
ow
Constitutive law: S=—
onstitutive law 5F
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In addition, let I' = 0€2 be the boundary of the subdomain 2, the displacement boundary
conditions are prescribed on I', and the traction boundary conditions are formulated on

I', as:
u(X)=u"(X), VX eTl,, F.- S N=T*" VvXel,

The above system of partial differential equations can only be solved analytically in
some trivial cases. In practice, an approximate solution for this set of equations is
obtained using numerical methods such as finite difference or finite element, where the
latter is more widely used. For the use of finite element method, a variational formulation
of the equations is required. Two approaches that can be used to derive the variational
formulation are the uses of the principle of virtual work and the minimum total potential

energy principle.

The principle of virtual work

The weak form of the governing equations is obtained by multiplying the Eq. (2.11]) by

a test function du and integrating the product over the domain of the body:

/5u-dpdV:/5u'V(F~S)dV+/§u~bpdV (2.18)
0 0 0

where the test function du has to vanish on the prescribed displacement boundary I',,.
The above weak form is known as principle of virtual work in classical mechanics and
the test function dwu is also called virtual displacement. The approach using weak form
is suitable for general problems, for example, inelastic materials, since the assumptions
such as existence of a potential function are not required.

By applying the product rule u-V(F-S) = V(éu- (F-S))—Vou : (F-S) and the

divergence theorem for the integral of the term V(du - (F - S)), the weak form becomes:

/5u - pdV + /Vé'u, (F-8)dV = /5u : bpdV+/c5u -T*dA (2.19)
Q Q Q T,

The second term on the left hand side can be expressed in terms of the variation of the
Green-Lagrange strain tensor 0 . Using the fact that the scalar product of a symmetric

tensor with the antisymmetric part of a tensor is zero, the following identity is obtained
[110]:
1
6E:S:§6(FT-F—I):S: (6FT-F+F'".6F): S

1
2 (2.20)
=—F'6F.:S=6F:F-8S

10
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here 0 F' is the variation of the deformation gradient and is obtained by its definition

and by the fact that the coordinates of the reference configuration are unchanged as:

=0 ox o= 2 g, 221

F =
g 0X

With the above two identities, the principle of virtual work can be now written as:

/6u-ilpdV—|—/5E:SdV:/éu-bpdV+/5u-T*dA (2.22)

Q Q Q T

The first term in the left hand side is called the virtual work of inertial forces 6Wgyn,
while the second term is the internal virtual work §Wi,;. The sum in the right hand side

is the virtual work of external forces dWey.

The principle of minimum potential energy

For hyperelastic materials, which are characterised by the existence of a strain energy
function, a preferable approach to obtain the solution for the static problem is to solve
a potential energy minimisation problem. The functional for the total potential energy

IT associated with a body can be stated as:
M(w) = Hine(w) + ey (u) (2.23)

Here, the internal potential energy Il can be expressed in term of the stored strain
energy density W (C') as:
M (1) = / W(C(w))dV, (2.24)
Q

while the external potential energy Il. s due to body forces and surface traction is given
as:

Hext(w) = — /pb cudV — /T* -udA, (2.25)

Q Ts

The minimum total potential energy principle states that the deformations which fulfil
the equilibrium condition minimise the total potential energy. Minimisation of II involves
solving the stationary condition F(u,w) = 0, where the directional derivative F'(u,w)
at uw along the direction w is given as:

F(u,w):=DIl(u) - w = %H(u + aw) (2.26)

11
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With the definition of the total potential energy and by applying the chain rule for the

derivative w.r.t. « of Il;,, the directional derivative becomes:

F(u,w) = g—Z:DC-de—/pb-de—/T*-'wdA (2.27)
I's

From the relationship between the right Cauchy-Green strain tensor C' and the Green-
Lagrange strain tensor E, the identity DC - w = 2DFE - w, or 0C = 20F, is obtained.
Together with the definition of the second Piola-Kirchhoff stress tensor via the strain

energy function, S = 20W/0C, the following equation is obtained:

F(u,w):/S:5EdV—/pb-de—/T*-wdA:O (2.28)
I's

which is equivalent to the weak form ([2.22)) for static equilibrium.

2.2. Maxwell’s equations

In this section, the fundamental equations in electricity and magnetism are described.
Depending on the problem, different assumptions can be made and the equations can be
simplified. A very short description of the Maxwell’s stress tensor that has been applied
in molecular biology is also given. An extensive introduction to electrodynamics can be
found in [30], while the classification of the problems in electrical engineering as well as

solution methods are presented comprehensively in [104].

All electromagnetic phenomena can be described by a set of equations, the Maxwell’s

equations. They include four first-order partial differential equations which are stated

as follows:
oB
E-_22 2.29
vV x = (2.29)
VXH:J+8—D (2.30)
ot
V-D=p (2.31)
V-B=0 (2.32)

where E is the electric field intensity (V/m), D is the electric flux density which is also
known as displacement field (As/m?), H is the magnetic field intensity (A/m), B is the
magnetic induction (Vs/m?), J is the electric current density (A/m?), and p is the space

charge density (As/m?).

12
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In addition, a set of equations that specifies the relations between the quantities, for
example between D and E, between H and B should be supplied. These relations are
specific to a material or substance and are called constitutive equations. For linear and

isotropic media, the following laws are given:

J=kE (2.33)
D =cE (2.34)
B—uH (2.35)

where & is the electrical conductivity (S/m), € is the electric permittivity (As/Vm) and

& is the magnetic permeability (Vs/Am).

Continuity equation The principle of charge conservation states that electric charge
can neither be created nor destroyed. Local conservation of charge is a consequence
of the laws of electrodynamics and its mathematical statement can be derived from
Maxwell’s equations [30]. By taking the divergence of Eq. and using the fact that
V- (V x H) =0, we obtain the identity:

oD

Now if we interchange the space and time derivatives on the right hand side and apply

Eq. (2.30), we get:
dp
J=-= 2.37
\Y T (2.37)

This is called continuity equation [104].

Stationary current fields A stationary current (which is also called steady current,
time-independent current, or constant current) is a type of direct current whose intensity
does not vary over time. Since charge is not piling up anywhere in a constant current,

Jdp/0t = 0 and the continuity equation becomes:
V-J=0 (2.38)

with J = kFE being the electric current density. Here, x is the conductivity of the
medium and is a constant. Moreover, since the process is steady, the magnetic field

generated by a stationary current is a constant over time. Hence, V x E = 0 (from

13
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Eq. 2.29)) and the electric field can be uniquely described by a scalar potential function
[104]:
E=-Vo¢ (2.39)

Hence, Eq. (2.38]) can be written as:
kV-E =—-kV-V¢p=0 (2.40)

which means that the potential satisfies Laplace’s equation A¢ = 0

Maxwell’s stress tensor The Maxwell’s stress tensor is used to represent the interac-
tion between electromagnetic forces and mechanical momentum [30]. It is convenient for
finding the total electromagnetic force on a body. It has been used to examine electrical
interactions along and between molecules at cell-matrix and cell-surface interface, as
well as within tissues [31].

Suppose that a medium has a constant permeability p and a constant permittivity e
and experiences an electric field E and a magnetic field B. Components of the Maxwell’s

stress tensor S° are given as:

1 1
_51..152) o1 (BiB- -
2 J U J

15--32) , 0,5 €1{1,2,3} (2.41)

Sl-e} =€ (EzE] - 9 i

where F; and B; are components of the electric field and magnetic field, respectively,
and ¢;; is the Kronecker delta function [30]. The magnitudes of the electric field and
the magnetic field are computed as F = /E? + E2 + E2 and B = /B} + B} + B2,

respectively.

2.3. Solution methods for time dependent problems

In modelling the process of the deformation of structures, the change of state variables
and deformations in time has to be considered. The time evolution of a variable u can
generally be written as:

ou

o = Fw (2.42)

where the discretisation of the spatial domain can be described in the function F. An

example is the diffusion problem:

%:Au+f in ), fort>0 (2.43)

14
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displacement u;

At

Figure 2.3: Time dependent behaviour of a displacement component u;. Figure adapted
from [110].

where f is a prescribed function and A is the Laplace operator.
The first-order temporal discretisation using backward differences is written as:
——— =F(u 2.44
= F(u) (241
where the superscripts k, k+ 1, respectively, indicate the current time level and the next
time level. Here, the time interval 0 <t < T is subdivided into multiple time steps At,

as depicted in Fig. 2.3l The function F'(u) can be evaluated using explicit or implicit

time integration.

2.3.1. Explicit time integration

In this method, the function F'(u) is evaluated at the current time:

k+1 k
utt —
—— =Ff 2.45
o = F() (2.45)
and the value at the next time level can be explicitly computed from the existing values
k
u®:

Pt = w4 AL (u) (2.46)

15
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2.3.2. Implicit time integration

This method evaluates the function F'(u) at the next time:
Bl _ gk

At
This leads to an implicit relation between the value at the current and the following

“ = F(u") (2.47)

time step:
Pt — AtF(uPT) = o (2.48)

k+1

To obtain the value of """, this implicit equation can be solved using iterations.

2.4. Finite element formalism

In order to apply finite element methods for the solution of partial differential equations
(PDEs), the mathematical model is often formulated as a variational problem. A usual
approach is to multiply the PDE by a function v, which is called a test function, and per-
form an integration over the domain 2. The variable u, whose approximate solution to
be sought, is also called a trial function, and the integral representation of the equation
is called a weak form. The key idea of finite element methods is to solve the varia-
tional problem on a finite-dimensional (discrete) space instead of an infinite-dimensional

(continuous) space [53] [110].

Linear problems

A linear variational problem can be generally written in the form: find v € V' such that
a(u,v) = L(v), forveV, (2.49)

where V' is the trial space and V is the test space. Here the functional a : V' x V >R
is a bilinear form and L : V — R is a linear form. The restriction of the above problem

to a finite-dimensional space can be stated as: find u, € V;, C V such that
a(up,v) = L(v) YoeV,cV. (2.50)

In order to approximate the primary field variables, ansatz functions have to be chosen.
The approximation of the exact solution of the mathematical model is done using an
ansatz as:

Uexact ~ Up = Z Niuia (251)

=1
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where (uq,...,u,) € R™ is the vector of degrees of freedom to be computed and {N;},
is a basis for Vj,. Here, the space Vj, has the dimension of n. Let {N;}"_, be a basis for
the test space V;, and take v = Ni, fori=1,2,...,n, the condition that w; is a solution

of the variational problem leads to:

> wia(N;, N;) = L(N;), i=1,2,...,n. (2.52)
i=1
The coefficient vector w = (uy,...,u,) can be obtained by solving a linear system

Au = b, where the components A;; of the matrix A and b; of the vector b are defined

as:

fori,7=1,2,...,n.

Non-linear problems

In general, a non-linear variational problem can be written in the form: find u € V' such
that

Flu;v) =0, YoeV, (2.53)
where F : V x V — R is a semi-linear form, which is linear in the second argument.
Equation ([2.28) is an example for this kind of problem, where the nonlinearity is de-
scribed by the Green-Lagrange strain tensor E. The discretisation of the above problem

using finite-dimensional sub-spaces gives: find u, € Vj, C V such that
F(up;v) =0, YoeV,cV. (2.54)

Similar to the linear case, let {N;}"_, be a basis for the trial space V}, and {N;}7_, be a

basis for the test space Vh, the approximation Ueyact ~ up = Y N;u; leads to a non-linear

=1
system of equations
b(u) =0, (2.55)
where b : R" — R™ and the components of b(u) are:
bi(w) = F(up, N;), i=1,2,...,n. (2.56)

This non-linear system can be solved using iterative methods such as Newton-Raphson
method [87].
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3. Experimental and numerical
methods for cell-substrate

interactions

In this chapter, the structure and main components of biological cells are briefly pre-
sented. Then, a short review of research on the mechanical interactions between cells
and substrates will be given. Both experimental studies and numerical methods are

presented.

3.1. Cell structure

The cell is known as the basic structural, functional and biological unit of all recognised
living organisms. Cells consist of cytoplasm enclosed within a membrane, which contains
many biomolecules such as proteins and nucleic acids [I]. Cells are classified into two
types: eukaryotic has a nucleus, while prokaryotic does not. The space between cells in
the tissue is filled by the extracellular matrix, the cell’s shape is organised and maintained
by the cytoskeleton, and the connection between neighbouring cells or between a cell

and the extracellular matrix is provided by cell junctions.

3.1.1. Extracellular matrix

The extracellular matrix (ECM) fills a large part of the tissue volume and is constituted
by extracellular macromolecules. The composition of the ECM is different between
multicellular structures, but the common functions of the ECM are cell adhesion, cell-
to-cell communication and differentiation. In addition to binding the cells together,
the ECM also influences their survival, development, shape, polarity and behaviour [1].

Fibrous proteins and glycosaminoglycan (GAG) chains are the two main components

18
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nucleus

membrane cytoplasm

% Integrins

e Actin filaments

<. Extracellular matrix

~ Myosin

Figure 3.1: 2D visualisation of some fundamental components of a cell and its environ-

ment. Figure adapted from [7§].

that compose the ECM. GAGs are a heterogeneous group of polysaccharide chains that
are usually attached to extracellular matrix proteins to form proteoglycan molecules.
Proteoglycans take up a large volume and as they have a net negative charge, they form
hydrated gels in the extracellular space. On the surface of cells, proteoglycans also exist
and their functionality is to help cells respond to secreted signal proteins [I]. Examples

of fibrous proteins are fibrous collagens, fibronectin, tenascin, elastins and laminin [26].

]Extracellular matrix\

proteoglycan

&3
%

integrin

actin filaments

Figure 3.2: Different proteins exist in extracellular matrix including collagen, fibronectin,

elastin and proteoglycan. Figure adapted from [23].

19



3. Experimental and numerical methods for cell-substrate interactions

The elasticity of the ECM is mainly contributed by an extensive cross-linked network
of fibres and sheets which is formed by elastin molecules. For different tissue types, the

elasticity of the ECM can be various by several orders of magnitude.

3.1.2. Cytoskeleton

All spatial and mechanical functions of cells depend on the so-called cytoskeleton, which
is a complex network of interlinked filaments. The cytoskeleton gives the cells the ability
to change their shape and move from place to place. It supports the cell membrane and
helps the cells to resist deformation and endure strains and external stresses. It also
provides machinery for force generation, through which cells sense and respond to the
surrounding environment [I].

Microtubules, intermediate filaments and actin filaments are the three common types
of filaments that comprise the cytoskeleton of many eucaryotic cells. They are formed
by three families of protein molecules. Due to the differences in the magnitudes of
the forces between the subunits and their structures, the three types of filaments have
different mechanical properties and dynamics (Fig. [3.3). Intermediate filaments are
made up of smaller subunits that are themselves elongated and fibrous. They are rope-
like structures, easy to bend but hard to break. The subunits that form the microtubules
and actin filaments are compact and globular. Microtubules are strong, rigid hollow
tubes. Actin filaments are the thinner than the other two types of filaments and are
hard to stretch but easy to break [I].

—— microtubules
intermediate filaments

— actin filaments

deformation —

deforming force —

Figure 3.3: Mechanical properties of actin, tubulin and intermediate filament polymers.

Figure adapted from [1].
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In living cells, the filaments of all three types experience constant remodelling through
the assembly and disassembly of their subunits. For microtubules and actin filaments,
gaining and losing subunits happen only at their ends, where one end grows faster
than the other end. The cell has the ability to expand itself by repeating assembly of
large number of small subunits. Due to their very small size, the subunits are able to
diffuse rapidly with cytoplasm, while the assembled filaments are not. Hence, cells can
undergo rapid structural reorganisations, where filaments are disassembled at one site

and reassembled at another site far away (Fig. [3.4)).

small soluble large filamentous
subunits polymer
(e}
° S ‘. e ‘.....""l
]
o o ©° —»
[} .. © 00 © D f k
e o0 o

disassembly of filaments and

PTOLY O L reassembly of filaments
rapid diffusion of subunits /

Yt new site
(<]

signal

(b)

Figure 3.4: (a) Formation of filaments from smaller protein subunits and (b) rapid re-
organisation of the cytoskeleton in a cell in response to an external signal.

Figure adapted from [1].

3.1.3. Cell Adhesion

The contact between neighbouring cells or between a cell and the extracellular matrix

is provided by cell junctions, which consist of multiprotein complexes. Three functional

21



3. Experimental and numerical methods for cell-substrate interactions

classes of cell junctions are occluding junctions, anchoring junctions and communicating
junctions. Tight junctions (occluding junctions) act as barriers regulating the movement
of water and solutes between epithelial layers, communicating (GAP) junctions enable
communication between neighbouring cells, while anchoring junctions link cytoskeletal
proteins in one cell to those in neighbouring cells as well as to proteins in the extracel-
lular matrix. Anchoring junctions are usually classified into four main types, including
adherens junctions, desmosomes, focal adhesions and hemidesmosomes. The first two
types connect cells together and are formed by cadherins, whereas the last two types

connect cells to extracellular matrix and are formed by integrins [I].

Tight junction
Adherens junction
Desmosome

Gap junction nucleus

Extracellular matrix
Hemidesmosome Focal adhesion Focal complex

Figure 3.5: Cell-cell and cell-matrix adhesion apparatuses. Adherens junction, tight
junction, desmosome and gap junction support cell-cell adhesion, while adhe-
sion between cell and matrix is promoted by hemidesmosome, focal complex

and focal adhesion. Figure adapted from [62].

Focal adhesions are junctions that mediate cell-matrix adhesion, force transmission,
cytoskeletal regulation and signalling [43]. At the focal adhesions, extracellular matrix
molecules, such as laminin or fibronectin, interact with cell-surface matrix receptors

called integrins, which are linked to the actin cytoskeleton [1].

3.2. Experimental studies

The responses of cells to external stimuli have been measured using several force appli-

cation techniques.
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Micro-pipette aspiration was introduced by Mitchison and Swann [61] to measure the
mechanical properties of sea-urchin eggs. In this method, the amount of cell material
which is pulled into a glass pipette under an applied pressure is examined (Fig. [3.6al).
When combining with basic continuum models, this technique is able to measure the
elastic and viscous properties of cells of different stiffness magnitudes [40]. It has been
utilised to measure the Young’s modulus and viscoelastic properties of cells of various
types such as red blood cells, chondrocytes and endothelial cells [39, [73] [79, (93], ©04].

cell

/,

cantilever

(a) Micro-pipette aspiration (b) Micro-needle manipulation

DC power |+
supply

|
ECM substrate

(c) Substrate deformation (d) Electrical stimulation

Figure 3.6: Some force application techniques. (a) The micro-pipette aspiration setup
where a cell of circular shape is being aspirated into a pipette. (b) In micro-
needle manipulation technique, a thin and flexible micro-needle is used to
push and penetrate into cells. (c¢) Strain is applied to the cell by stretching
the underlying substrate. (d) A chamber for electrical stimulation is used to

apply electric field to the cells. Figures adapted from [56].
Micro-needle manipulation is a technique in which a thin and flexible glass micro-

needle is used to push and penetrate into organelles of living cells or to indent into the

cell membrane to measure the cellular elasticity [72] (Fig. [3.6b)). This technique has
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been refined and applied to determine the mechanical material properties of different
cell types [46], 73, B3] and to study structural connectivity in the cytoplasm and nucleus
[54].

In the substrate deformation technique, cells are cultured on top of an elastic mem-
brane or gel coated with extracellular matrix protein and a strain can be applied by
stretching the underlying substrate using an indenter or vacuum pressure [73] (Fig.
. By applying various uniaxial loads, it is possible to assess the effect of substrate
deformation on the morphology, genetic regulation, metabolic activity, injury and phe-
notype of cells [105]. Jones et al. [4I] applied homogeneous strains to osteoblast-like
cells and skin fibroblasts and observed that only periostal osteoblasts are sensitive to
strains within the physiological range, while higher, unphysiological strains were needed
to see the responses of osteoblasts derived from the haversian system and skin fibrob-
lasts. Wang et al. [108] combined this technique with mathematical model to study the
orientation response of human melanocytes under cyclic substrate strain. The response
of primary human endothelial cells and smooth muscle cells to mechanical forces was in-
vestigated by Greiner et al. [29]. The external mechanical stimulation was implemented
by applying stretches of different frequencies from 0.01 — 1.0Hz to elastic membranes
on which the cells were cultured. A remarkable finding presented in [29] was the fre-
quency dependence of the area of the focal adhesion and the reorganisation of the actin
cytoskeleton as well as the focal adhesions system. Moreover, there exists a threshold

frequency below which the responses of endothelial cells are not detectable.

One of electrical techniques is to apply electrochemical gradients or stimulation to
a population of cells using metal electrodes or salt bridges (Fig. [3.6d). Using this
technique, Gou et al. [33] found that with an electric field of 50-100mV/mm, human
dermal fibroblasts migrated directionally toward the anode but the migration was slow
and could only be detected after more than one hour. A stronger field 400mV/mm was
required in order for the migration to happen within one hour. Under physiological
electric fields, corneal epithelial sheets and bovine vascular endothelial cells migrated
toward the cathode and their migration was also voltage dependent [51], 113]. Here,
electric fields whose strengths lie in range of 1 — 200mV /mm are considered physiolog-
ical, as suggested by Nuccitelli [6§]. In addition to the cell migration, this technique
has also been used to study the effect of electric field on cell contraction or cell orienta-
tion and organisation. Influenced by physiological electric fields, embryonic fibroblasts
oriented their long axes in the direction perpendicular to the electric field [22]. Under

a voltage gradient of 400mV /mm and greater, the cells elongated in the perpendicular
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direction [22, [36]. Using a steady voltage gradient of 1V /mm, Curtze et al. [14] found
that osteoblast-like cells responded in two phases: they first retracted then aligned and

elongated perpendicular to the electric field direction.

To quantify the forces generated by cells during their migration, contraction and

development, several force-sensing techniques have been developed and applied.

ST, B

(a) Micro-needle arrays (b) Wrinkling membrane

Figure 3.7: Some force sensing techniques. (a) Micro-needle arrays can be used to es-
timate local cell forces at different regions. (b) In the wrinkling membrane
technique, force produced by the cells is estimated based on the number of
wrinkles and the lengths of the wrinkles formed on the substrate [35]. Figures
adapted from [89].

Traction Force Microscopy (TFM) is an experimental method in which cellular cultures
are seeded on or within an optically transparent 3D ECM embedded with fluorescent
microspheres. The traction forces generated by cells are estimated based on the dis-
placement field computed from the images. Wang et al. [109] applied TFM to test the
prediction that the stiffness of human airway smooth muscle cells increases proportion-
ally with the level of the tensile stress borne by filamentous structures. Using TFM to
measure the traction before and after treatment with the contractile agonist histamine,
the contractility of smooth muscle cells was found to be controlled by cell spreading
[91]. By analysing the dynamic characteristics of mechanical forces exerted by migrat-
ing fibroblasts, Munevar et al. [60] revealed several interesting results, for example, the
changes in the pattern of traction forces often preceded changes in the direction of mi-
gration. Soiné et al. [85] applied a new type of TFM, where a biophysical model and
additional images for cytoskeleton and adhesion are used, and found that in U20S-cells,
ventral stress fibers experienced a higher tension than dorsal stress fibers or transverse

arcs.

Wrinkling membranes is a technique developed by Harris et al. [35] to measure the
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traction forces generated by cells (Fig. [3.7b). In this technique, cells are seeded on
a thin and flexible membrane of silicon rubber and the force produced by the cells is
estimated based on the number of wrinkles and the lengths of the wrinkles formed on the
substrate. Utilising this method, a great difference in the strength of cellular traction
was found between cell types. Moreover, the most mobile and invasive cells were found
to deliver the weakest traction [34]. Burton and Taylor [I1] extended this method by
using substrata of new silicone polymer whose compliance can be adjusted precisely.
They were able to recognise forces of nano-newtons to micro-newtons in dividing cells.

The approach using micropost arrays to measure mechanical interactions between cells
and substrate was introduced by Tan et al. [89]. In this method, the compliance of the
posts can be adjusted by changing their geometrical parameters such as the height or
cross-sectional area. The cells are attached to the posts and when they move, the posts

are deflected differently at different regions. The traction force by the cell at each post

F- () o

where E, I, L and ¢ are the Young’s modulus, moment of inertia, height and the deflec-

is then approximated by:

tion of the post, respectively [89]. Using this method, Tan et al. [89] could quantify
the traction forces for spread and unspread bovine pulmonary artery smooth muscle
cells and found a positive correlation between the area of focal adhesions and the force
generated at those adhesions. Combining this technique with a multiple-particle track-
ing method, du Roure et al. [21] could quantify the dynamic traction forces exerted by
Madin-Darby canine kidney (MDCK) epithelial cells on a substrate. They found that
the highest intensity of the forces is localised at the edge of the cell and the magnitude
of the stresses at the edge of a cell monolayer is higher than that of a single cell. Schoen
et al. [81] suggested a contribution of substrate warping to have a better accuracy when

computing forces.

Since it was introduced, this method has been widely applied and extended in different
manners. Sniadecki et al. [84] built a force application system from an array of magnetic
and non-magnetic posts and used a magnetic field to apply external force to individual
adhesions of cells. They revealed interesting results, such as an increase in local focal
adhesion size at the regions where step forces were applied. Matschegewski et al. [55] used
regular arrays of titanium cubic pillars and investigated the dependency on substrate
characteristics of the architecture and function of human MG-63 osteoblasts. Based on

this approach, the research of Mérke et al. [63] suggested that in order for osteoblasts
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to maintain their function, implant biomaterials for bone replacement should provide
enough cell-material contact area and enough surface sides or area to provide a good

mechanical fixation of the implant in the native bone.

3.3. Mathematical modelling

Besides experimental studies, computational modelling has been a powerful approach
to the understanding of the mechanisms for the interactions between cells and their
surrounding environments, as it could give us an interpretation of the experimental
outcomes. Several modelling approaches can be used in cell biology, including agent-
based simulations, which are based on explicit tracking of all molecules in the cell, and
partial differential equation (PDE) modelling, which involve solving numerically a set of
PDEs on a continuous domain [64]. In cell mechanics, the latter is more widely used,
where the models are usually based on continuum mechanics and are solved using the
finite element method [73]. The models have different levels of complexity and hence
can capture the bio-mechanical behaviour of cells to different extents. Passive models,
in which cells are assumed to react passively to external stimuli, have the simplicity
but a limited ability to reflect cell behaviour. Constructed with a higher complication,
active models integrate active reactions and can simulate the remodelling of cells under
physical stimuli exposure [73].

Liquid drop models were developed to explain the rheological response of leukocytes
during micro-pipette aspiration. Their formulations were derived based on the assump-
tion that cells are comprised of one or more layers of cytoplasmic fluids, surrounded by
prestressed cortical shells [52, [73]. Tran-Son-Tay et al. [92] used a Newtonian liquid drop
model, in which the cell’s interior is assumed to be a homogeneous viscous Newtonian
fluid (Fig. [3.8a), to analyse the recovery process of a human neutrophil in an experiment
with micro-pipette. This model delivered a good agreement with the experimental data,
but was not able to capture the case when the cell was held for only a very short time
in the pipette [38, 92]. This limitation was overcome by using a compound Newtonian
liquid drop model, in which three layers were used for the cell: an outer membrane sur-
face, a shell layer, and a core [42] (Fig. . In order to capture the rapid entry of cells
into a micro-pipette at the starting point of an aspiration test, a Maxwell liquid drop
model can be used. This model is an extension of the Newtonian liquid drop model,

where the cytoplasm is assumed to act like a Maxwell element [73]. Using this model,
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a fluid layer with constant
tension 7T is used for the cortex

a less viscous
Newtonian liquid droplet
. 1
is used for the cytoplasm

a more viscous rteX of nucleus
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. o ; P ith constant
a Newtonian liquid droplet Newtonian liquid droplet L S
is used for the cytoplasm is used for the nucleus surface tension T
(a) Newtonian liquid drop model (b) Compound liquid drop model

Figure 3.8: (a) A Newtonian liquid drop model considers the cell as a Newtonian liquid
droplet contained in a cortical layer with a constant tension 7. The shear
viscosity of the cytoplasm is p, while the coefficients of viscosity for surface
area dilation and shear of the membrane are x and 7, respectively. (b) Three
layers of a compound liquid drop model: the membrane, the cytoplasm (with
viscosity p1) and the nucleus (with viscosity po; po > p1). Figures adapted
from [52].

Dong et al. [19] could predict the results of experiments with micro-pipette for both

cases: short-time small deformation and slow recovery after large deformation.

In solid models, the distinct cortical layer is not considered and the whole cell is
often assumed as homogeneous. Different material models can be used, but two of
them are widely accepted: elastic solid and visco-elastic solid [52]. Linear elastic solid
models consider the cell as homogeneous, elastic material conducted by Hook’s law.
The relationship between the deviatoric stress 7;; and the engineering strain «;; in linear
elastic solid models is given by:

Tii = Gij, (3.2)

where G is the shear modulus, which is related to the Young’s modulus F and the
Poisson’s ratio v by E = 2(1 + v)G. The models are applicable for the estimation of
cell material properties, but they are generally inappropriate to describe the mechanics
of the cells, due to the oversimplification on the material law [73]. In micropipette
experiments where the pipette radius is much smaller than the local radius of the cell

surface, Theret et al. [90] considered the cell as an incompressible elastic half-space.
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(a) Maxwell liquid drop model (b) Linear viscoelastic solid model

Figure 3.9: (a) In Maxwell liquid drop model, the cell is modelled as a Maxwell liquid
droplet with a viscous constant p and an elastic constant k£ bounded by a
constant tension 7. (b) The whole cell is modelled as a homogeneous visco-
elastic linear solid with a viscous constant p and two elastic constants k; and

k. Figures adapted from [52].

Doing this, the formula for an effective Young’s modulus of the cells could be derived
and applied for the determination of the mechanical properties of bovine endothelial cells
[52, 90]. Using a similar approach by modelling the cell as a linear elastic half-space in
the cytoindenter experiments, Shin and Athanasiou [83] could estimate the permeability
and the Poisson’s ratio of MG63 osteoblast-like cells. For magnetic twisting cytometry
experiment, Mijailovich et al. [59] modelled the cell as a three-dimensional slab, whose
material is linear elastic and incompressible, and could relate the elastic modulus to the
cell height and the degree of bead embedding.

In a linear visco-elastic solid model, the dependency of the stress in the cell on the
loading history is considered. The material law describes the relationship between the
deviatoric stress 7;; and the engineering strain ~;; and their rates of change as [80]:

. ki .
Tij + T = kivij +p |1+ . ) i (3.3)
2 2
where p is the viscosity and kq, ko are the spring constants (Fig. [3.9b). Guilak et al.
[32] applied this theoretical model for the measurement of the osmotic and viscoelastic

properties of articular chondrocytes. The results of DiMilla et al. [I8] employing a

viscoelastic-solid model could predict the influence of cell speed during migration on the
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cellular contractile force or the densities of ligand and receptor. Enhancing a viscoelastic
model by a cable network of stress fibres modelling the actin cytoskeleton, Milner et al.
[60] investigated the stress and strain in the cytoplasm and the nucleus of osteoblastic

cells under the application of high-frequency mechanical loading.

The active responses of the cells to the external stimuli have been addressed in the
active models with different levels of complexity. Zemel et al. [112] used actin-myosin
dipoles to represent the active remodelling of cytoskeleton in their dipole polymerisation
model. Under applied elastic strain, these dipoles respond by changing their orientation.
For a population of cells with p being the number of cells per unit volume, the average
value p(p;;) can be used to measure the cell polarisation. Here, p;; = > fil; is the force
dipole tensor, where f is the force vector at each adhesion contact between the cell and
the matrix, I is the radius vector to the contact, and the sum is taken over all contacts.

In the direction of the principal strain, the polarisation of the cells is given in [112] as:

Py = p((pij) — (pij)o) (3.4)

which measures the increase in the average dipole tensor compared to the case when
the external forces are absent. This polarisation tensor F;; and the applied stress o7,
together produce the total excess stress in the system o;; = of; + P;. The applied

stress is usually expressed through the excess strain wu;; and the elastic moduli C' as
Z‘.‘j
interaction energy W between the cellular dipole p;; and the local strain ui‘;c in the cell

vicinity can be established and the optimal orientation of cells under the application of

of: = eCu,j, where € is the elastic permittivity tensor. Based on these definitions, an

an elastic strain field can be predicted by solving an energy minimisation problem [112].

The model developed by Kaunas et al. [44] addresses the active response of the cell

to mechanical stretching by describing the reorganisation of actin stress fibres based on

constrained mixture theory. In the model, the assembly and disassembly of the fibres
are assumed to obey a first-order kinetics relation:

dd?

dt

= kP (3.5)

where ®° expresses the mass fraction of the stress fibre i and £ is the disassembly
rate constant. Inspired by experimental observations, the constant k’ is expressed as a

function of the fibre stretch o' as:

k' = ko

(%]

14k (O‘i - 0‘0) 2] = o[l + ki (Aa?)] (3.6)
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where kg and k; are two constants and «y is the homeostatic level of stretch [44]. Employ-
ing this model, the results for the changes in the distributions of stress fibre orientations
are in good agreement with experimental data [44].

In the constrained mixture model by Vernerey and Farsad [107], the development
of the stress fibre network within the cell is described through the coupling between
mechanics and chemistry. Using a multiphasic approach (with fluid, solid and solute
mixture phases), the contraction of the cell is mainly governed by four constituents: solid

cytoskeleton (s), fluid cytosol (f), stress fibre (p) and actin monomers (m). At every

focal adhesion

1

cytoskeletal network

(G-actin monomers

F-actin polymers

|

cytosole

Figure 3.10: Illustration of a cell based on experiment of Parker et al. [70]. Every ma-
terial point in the cytoplasm is considered as a mixture of four constituents
including the cytoskeletal network, G-actin monomers, contractile stress
fibre and cytosol. Figures adapted from [107].

material point, each constituent is associated with a volume fraction ¢* (a = s, f,m, p)
which is the ratio between the unit volume of the constituent and the unit volume of
the mixture. With the assumption that the cell is made up by these four constituents,
the relation ¢* + ¢/ + ¢™ + ¢ = 1 is hold. The main features of the model include:

e Bio-mechanical contraction of stress fibres is represented by length-tension and
velocity-tension relationships of the fibre.

e The formation of the stress fibres is resulted by the mass exchange between them
and the available actin monomers in the cytoplasm, where the rate of the forma-
tion and the dissociation is assumed to be dependent on the tension in the fibre.
Moreover, the transport of fluid and monomers within the cell is assumed to obey

the laws of diffusion—convection.

e In addition to passive elasticity, the contribution of the active contractile stress,

which is based on the anisotropic distribution of stress fibres, is addressed.
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For a stress fibre in the direction associated with an angle 6 between the fibre and the
base vector ey, the polymerisation rate is given as:
o
I = (k;f o kdqsg) (3.7)
where k/ and k7 are the constants for the formation and the dissociation of the F-actin.
Here, ¢} is a distribution function representing the variation in stress fibre density with
direction #. A possible representation for this distribution is the m—periodic von Mises

distribution function proposed by Gasser et al. [27]:

5= o {eXp (b C?S((;@ - 90))} (3.8)
where i
Iy(b) = %/exp(bcos 0)de (3.9)

0
is the zero-order Bessel’s function of the first kind, b represents the level of anisotropy

of the stress fibres and 6, is corresponding to the direction which has the largest fibre

density. The plot of the von Mises distributions for some different values of b is shown

in Fig. [3.11]
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Figure 3.11: (a) An example of anisotropic distribution of stress fibres at a point in the
cell and (b) plot of von Mises distribution for different levels of anisotropy.
Figure adapted from [107].

The uni-axial contractile stress T}, in a fibre is assumed to be dependent on both the

strain € and the strain rate € of the fibre and has the form as:

TP
— =T g, 5 3.10
= (¢,€) (3.10)
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where T is the isometric contraction of the fibre when it is not deformed (¢ = 0) and at
rest (¢ = 0). The function T*(e, €) was constructed based on the assumption that the
strain and the strain rate affect the fibre tension independently. For this, T (e, €) can be
expressed as a product of two functions f(e) and g(¢€) representing the length—tension
relation and velocity-tension relation, respectively. These two functions should capture

several characteristics of the stress fibres in the experiments and are suggested to have

the forms [107]:
_ N2
exp | — (—) e <0
€o

fle) = . :_ (55_0>2: . (2)2 . , (3.11)
ge) =1+ # (3.12)

where the parameter g, tells how fast the contraction decreases when the strain deviates
from zero and the parameter ; represents the passive strain hardening of the fibre. The

plots for f(e) and g(¢) are shown in Fig. |3.12]

X0 passive 2.01
active

1.5 —— total 1.51
S0 S0
0.51 0.51

0.0 0.0 ‘ ‘ ,

-3 -2 -1 0 1 2 3 —4 —2 0 2 4

8/60 é/éo
(a) Tension-length relation for e1/ep = 1.4 (b) Tension velocity relation

Figure 3.12: Plots for tension-length and tension-velocity relations. Active and passive
responses of a stress fibre are addressed in the length-tension relationship.

Figures adapted from [107].

The model has been successfully applied to predict the influence of the stiffness of the

mechanical environment on the contraction of the cell as well as the development and
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orientation of a network of stress fibres in contracting fibroblasts [107]. The predictions
of those results for the case when the cells are subjected to constant or cyclic stretch
and are on substrates of different stiffnesses can also be obtained [24].

Addressing a similar level of detail compared to the model of Vernerey and Farsad
[107], the bio-chemo-mechanical model by Deshpande et al. [I5] is supplied with a bio-
mechanical process and is shown to be efficient through numerous of its applications.
Due to its advantages, this model is selected as a foundation for our model. The detail
about the formulation as well as the applications of the model will be presented in the

next chapter.
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for cell contractility and adhesion

This chapter contains a part of our research article [99).

The bio-chemo-mechanical model proposed by Deshpande et al. [I5] is one of the
most successful active computational models for the mechanical responses of cells. The
development of the model was inspired by the experiments of Tan et al. [89], where
smooth muscle cells were laid on beds of micro-needles and the force on each needle
was measured. By including the bio-chemical processes and describing the formation
and dissociation of cytoskeleton based on experimental observations, the model can
efficiently interpret a great number of results found from existing experiments on cell
contraction. For example, it can explain the strong dependence of the forces generated
by the cells on the substrate compliance and the influence of boundary conditions on the
orientation and formation of stress fibres. With a description for the contact between the
cell and the substrate, McGarry et al. [57] could apply the model for the simulations of
smooth muscle cells and other cell lines on arrays of micro-posts. When combined with a
bio-mechanical model for cell adhesion, this model could predict the distribution of high
and low affinity integrins in addition to actin filaments [17, [71]. The three dimensional
description of the model could give the actin distribution at the location near the cell

nucleus as well as at the contact regions in the force indentation experiments [20), 74} [75].

In this chapter, the relevant concepts and the governing equations of the bio-chemo-
mechanical model for cell contractility and the bio-mechanical model for cell focal ad-
hesion are presented. Then, our approach for an efficient software implementation of
the model is described. For our purpose of extending the model and applying it to
our research, such a good implementation is necessary. Finally, several applications of
the model are shown by comparing the results from our implementation to those in the

literature.
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4.1. The bio-chemo-mechanical model for cell

contractility

4.1.1. Background and assumptions

The bio-chemo-mechanical model of Deshpande et al. [I5] was developed based on their
observations that the assembling of stress fibres is due to some signalling cascade in
the cell [1, 10] and the dissociation is caused by decrement of tension in the cell cyto-
plasm [10, 25]. According to Deshpande et al. [15], the contractility of cells is driven
by a mechanical term which is called active stress and is the result of tensions in stress
fibres in all directions caused by the activation in the cell. This active stress and the
level of activation are dependent on the rate of cell deformation and the remodelling of
the actin cytoskeleton which is influenced by the concentration of signal.

For the validity of the model, three fundamental assumptions were made [15]. Firstly,
the actin and myosin in the cell are assumed to be sufficient so that the activation of
the stress fibres in each direction is not limited by their availability. Secondly, it is
assumed that a fine scale network of fibres exists on a length scale much smaller than
the dimensions of the cell. Finally, the stress fibres are assumed to be able to form in

any direction with equal probability.

4.1.2. The equations

The bio-chemo-mechanical model [I5] is defined for a single stress fibre and is described
by three equations. First, as bio-chemical processes are complex and not well understood,

a simple exponential function is used to represent the concentration:
C =exp(—t/0) € [0,1], (4.1)

where 0 is the decay constant of a chemical compound, ¢ is the time measured from the
instant of the most recent signal. The plot of the function C(¢) for two sample values of
0 is shown in Fig. [{.Tal Second, to describe the remodelling of the actin cytoskeleton,
a non-dimensional term called activation level n € [0, 1] is introduced and the equation

for evolution of 7 is established based on experimental observations as:

0= [1—?7]7_— [1—ﬂ] g (4.2)
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Figure 4.1: (a) The plot of the concentration for two different values of 6. The value

6 determines the amount of time until the concentration is close to zero.

(b) Hill-like equation for stress-strain rate relationship. Figure adapted from
[16].

0 _
signal C', controlled by the constant k¢. Similarly, the second term on the right hand

where the term [1 — 7] expresses the rate of stress-fibre-formation dependent on the

side is a non-negative number that expresses the rate of stress fibre dissociation, which
depends on the current tension relative to the isometric tension oy and is controlled by
the constant ky,. Here, oy is the maximum tension allowed in the stress fibre correspond-
ing to the activation level n and is given as 0y = 70nax, Where o,y is the maximum
tension at n = 1, that is, when the stress fibre is fully activated. Finally, a linearised Hill

equation [37] is used to describe the relationship between tension o and the lengthening
/ shortening strain rate ¢ as:

(

0 g.—f<—_£
_ o ky
2 1+ﬁ(€.—f) L <<y (4.3)
g0 n \¢o ke T €0
1 s
\ 80

where k., is the fractional reduction in fibre stress upon increasing the shortening rate

relative to €. The plot for this stress-strain rate relationship is shown in Fig. [£.1b]
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4.1.3. Incorporating the bio-chemo-mechanical model into the

framework of continuum mechanics

To apply the bio-chemo-mechanical model for a cell comprising a network of stress
fibres, a representative volume element (RVE) is defined and the constitutive relation is
established [16]. Due to generated tensions of stress fibres, the total stress in the cell
should include the active stress, in addition to the passive non-contractile stress. The
appearance of the active stress in the continuum mechanics frameworks is described by
introducing an additional stress term to the Eq. so that the equilibrium equation
becomes:

V- (FS“) 4+ pob =0 VX € Q (4.4)

where
Stotal — Sactive 4 Spassive (45)

and Sactive §rassive denote the active and passive stress tensors, respectively. Usually, an
elastic material model is used for the cell and SP*"¥® becomes the second Piola-Kirchhoff
stress tensor, which is related to the Green-Lagrange strain tensor E by the constitutive

equation SP*V¢ — C: E with C being the material stiffness tensor.

As stress fibres can form in any direction in the RVE, this active stress tensor is
obtained as an integral with a coordinate transformation from the fibre direction to
the Cartesian coordinate. In finite element implementation, only approximated values
are obtained by choosing a set of N; (relatively large) directions for stress fibres, each
direction is represented by a unit vector m. The equations , are then solved

for these Ny directions and active stresses are computed as numerical integrals.

2D modelling When it is assumed that the cell thickness is small compared to the
other two dimensions and that only in-plane contractility occurs, then a 2D finite element
analysis can be applied. A set of N; directions is obtained by spacing equally Ny angles
¢ € [—7/2,7/2], where ¢ is the angle between the stress fibre and the e; axis, as shown
in Figure . The unit vector m(¢) corresponding to the angle ¢ is then written
as m(¢) = cos(¢p)e; + sin(¢)ey. Generally, the activation at each point in the cell is
different in each direction (Fig. [£.21).

The strain rate £ of the stress fibre associated with direction ¢ is calculated from the

material strain rate L;; as

€f = Ell COS2 (b + E22 Sil’l2 ¢ + E12 sin 2¢ (46)
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Figure 4.2: In 2D implementation, a set of fibre directions needs to be defined and the
equations are solved in these directions. A possible sampling is the division

of a circle into many equal angles.

and the average active stress in Cartesian coordinate generated by the fibres is obtained

as
w/2
1 .
—7/2
where o is the tension in the stress fibre. The value of this stress is calculated using

numerical integration. The active stress tensor is written as

o(¢) cos® ¢ UfT@) sin 2¢

- 1
goetive — — do (4.8)
71'742 O'fégb) sin 2¢ O-f((b) sin2 (b

w/2

3D modelling In the general case where stress fibres can form in any direction in
the space, a 3D analysis should be performed. The orientations of stress fibres are
determined by distributing /N; unit vectors in 3D space such that the minimum distance
from a vector to its neighbours is maximised [3],[74]. Each unit vector is defined by a pair
of angles w and ¢ (Figure[4.3a) as m(w, ) = sin(w) cos(¢)e; +sin(w) sin(¢p)es +cos(w)e;.
The activation is generally different in each direction (Fig. |4.3b)).

The strain rate £ in the fibre associated with m(w, ¢) is related to the strain rate in
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Figure 4.3: In 3D implementation, a possible sampling for fibre orientations is obtained
by distributing a great number of unit vectors at the origin so that the

minimum distance from each vector to its neighbours is maximised.

the RVE by:
Ef = Eijmimj = Fy sin®w cos® o+ Fyy sin® w sin? o+ E33 cos® w
+ 2E15 cos ¢ sin ¢ sin® w + 2 Ess sin w cos w sin ¢ (4.9)
+ 2E13 Sin w cos w cos ¢

and the active stress oy of each fibre contributes to the stress state in the RVE as

Si; = %/ of(w, ¢)m;(w, ¢)m;(w, ¢)dV fori,j=1,...,3 (4.10)
%

which can be numerically calculated as an average value for all directions
1
Syt = N, Z 0 (Wky )My (Wi, P )M (Wi, D) (4.11)
k=1

Contact behaviour between cell and substrate At the region where the cell is in
contact with the substrate, a behaviour for this contact needs to be described. McGarry
et al. [57] used a simple adhesion model, in which the shear traction T; between the cell
membrane and the substrate at the contact region is given by a linear elastic relation
as:

T =k - Ay, (4.12)
where A; is the relative sliding between the cell and the substrate, k; (in nN/pm?) is the

shear stiffness of the adhesion. This shear stiffness can be understood as the product of
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the concentration of focal adhesion complexes per unit area (1/pm?) and the stiffness

of the complex (nN/pm). An illustration for using this simple adhesion model together

V(FS") 4 pb = 0

( )
ECM substrate

total,,, __ )
SZ] n; = _ktAZ

Figure 4.4: The adhesion behaviour needs to be described as a boundary condition at

the region where the cell is in contact with the substrate.

with the bio-chemo-mechanical model is shown in Fig. [£.4]

Measure for actin distribution For every state of the activation level in the cell, there
is a measure that is shown to be corresponding to the patterns of actin distribution [57].

This measure is defined as:
II = Tmax — 1], (413)

where 7.y is the maximum activation and 7 is the average activation in all directions.

The mean value 7 is written as

1 w/2
1= [ non (4.14)
™ J_n/2
for the 2D case, and
1
== [ n(w,e)av (4.15)
Vv

in case of 3D. In the above configurations, these integrals are also computed numerically.

4.2. The bio-mechanical model for cell focal adhesion

The construction of the bio-mechanical model for cell focal adhesion (FA) of Deshpande
et al. [17] is based on the investigation of the formation of FAs via the bonding of integrins
in the cell surface to suitable ligands on the extracellular matrix (ECM). Integrins are

known as adhesion receptors that are responsible for bidirectional transmission of signals
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across the plasma membrane [111]. They exist in two conformational states: low-affinity
(bent) and high-affinity (straight) integrins (Fig. [4.5)), whereas only the latter form
bonds.

< high affinity

low affinity integrin

Integrin

Figure 4.5: The bent (low-affinity) and extended-open (high-affinity) conformations of
integrin. There exists a ligand-binding site in the high-affinity integrin, which
is indicated by the triangle. Figure adapted from [45] [49].

Deshpande et al. [I7] suggested that the chemical potential x, of low affinity integrins

with a concentration &, can be described as:

XL = pr + kT ln% (4.16)

0

where i, is the internal energy, &, is the total concentration of integrins, k is the Boltz-

mann constant and 7" is the absolute temperature.

Due to their straight configuration, high affinity integrins are less stable so it is ex-
pected that they have a higher reference potential compared to low affinity integrins
(g > pr). The chemical potential y g of high affinity integrins with a concentration £y

(&y + &L = &) when their bonds experience a stretching A; is proposed as:

Xz = pg + kT n i—H + ®(A;) — FA; (4.17)
0

where @ is the stretch energy stored in the integrin-ligand complex and F;A; is the
mechanical work due to stretch A;. The force F; is dependent on the stretch energy and

they are related by
0P

T OA,

As the formation of bonds and the conversion of the low affinity integrins to high

F, (4.18)

affinity ones take place in a time scale much smaller than all other involved processes,
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4. An efficient theoretical framework for cell contractility and adhesion

the concentrations of the integrins are determined from the thermodynamic equilibrium
condition yg = xz. When this condition is met, the concentrations of high and low

affinity integrins are obtained as:

§o
§n = (4.19)
exp |:HH pr, + @ EAZ:| 1

kT

o
ke —p+ @ - FA;
kT

L = (4.20)

e | 1

Finally, the stretch energy ® is to be specified as a function of A; to complete the
model. As the integrin-ligand complexes have a finite rupture energy, the function ®
has to satisfy the condition that v = ®(A; — 00) is a finite number. A simple piecewise

quadratic function for the stretch energy is suggested as:

0.5k A2 A, <A,
Q=1 —kA%2+26,A,A, — 055,42 A, <A <24, (4.21)
AN A, > 24,

where K, is the stiffness of the complex, A, = \/A? + A2 is the magnitude of the stretch.
The plots for the stretch energy function and its derivative 0®/0A, are shown in Fig. |4.6|

Y

=

S <

5 D

= K

S Q

S

w0

Ay,
A,
(a) Stretch energy ®(A.) (b) Derivative 0®/0A,

Figure 4.6: Plot for the stretch energy and its derivative with respect to the effective
stretch.

To include the model of cell focal adhesion to simulations that use the continuum

mechanics theory, the stretch of the complexes should be related to the deformation of
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4. An efficient theoretical framework for cell contractility and adhesion

the system. In case of stiff substrate, a possible relation between the stretch A; and the

displacement w; of the cell is given as follows [17, [71] [75, [77]:

0o

1 A, <A —
U e <A, or L?Ae

A6<O},

A; = (4.22)

0 otherwise

Moreover, the tractions on cell surface should be in equilibrium with the stresses at the
boundary (Fig. [£.7). This equilibrium condition requires that T; = Sjjn; = —&pFj,

ECM substrate

Sijnj = —5HF¢

Figure 4.7: The model for cell focal adhesion is included as a boundary condition at the

region where the cell is in contact with the substrate.

where n; is the surface normal and S;; are the components of the stress tensor S in the
cell. In 2D, the indexes 7, j € {1, 2} refer to the horizontal and vertical directions. When

coupling with the bio-chemo-mechanical model, this stress becomes Stotal = gpassive |
Sactive.

4.3. Finite element formulation for the coupled problem

In part due to its positive features and several advantages, the bio-chemo-mechanical
has a high level of complexity compared to many other models. Devising an efficient
software implementation that can be easily extended and applied for several simulations
is therefore a demanding task. In this section, we present our approach to implementing
the model in 2D in a way such that the generalisation in 3D can be obtained without
much effort. We chose the simulation for cells on micro-post arrays, where the contact
behaviour between the cell and the substrate needs to be described. For other 2D
simulations, the implementation is often simpler and can be done in a similar way. In our

approach, the mixed finite element method, in which several variables are approximated
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4. An efficient theoretical framework for cell contractility and adhesion

simultaneously [9, 53, [86], is used for the contact problem. The solution space is then a
mixed function space, which is the tensor product of several function spaces.

We utilise the open source framework FEniCS [53] to solve the system of partial
differential equations. For the use of this software, the weak form of the system is
derived in this section. The detail of the implementation in FEniCS is presented in the

Appendix.

4.3.1. Time discretisation for the activation level

Applying the explicit Euler method for Eq. (4.2)), we obtain:

k41 _ ok T T
T k Ok or | kkv
M/ S T R P 123
o ([ '] { UJ " (4.23)
where dt = tF*! — ¥ is the time step and the superscript indicates the time step. For
the detail of our implementation, Eq. (4.23)) is solved at each element by multiplying it

with a test function and integrating over the cell domain to obtain the weak form.

4.3.2. Computation of the active stress tensor

To obtain the active stress tensor, the integral in Eq. has to be performed. In finite
element implementation, a numerical integration scheme such as trapezoidal rule can be
applied to compute this integral [16]. By dividing the interval [—7/2, 7/2] into N; equal
sub-intervals and letting ¢; be the grid points, with ¢ = 1,..., N; + 1, the components

of the active stress tensors can be written as:

Ny

. 1

e = (0(01) o 61 + 2 0(0n) co5® Gy + 0 (64) cos” ¢Nd“>
d k=2

Ny
Sastive = — | o(¢py) sin 2¢1 + 2 Z o (¢x) sin 2¢ + o (P +1) Sin 20,41 (4.24)
AN, —~

Ng
. 1 . . .
Sastive — N o(¢1)sin® ¢y + 2 Z o(¢p) sin® ¢y + o(Pn,41) sin’ ¢Nd+1>
k=2

4.3.3. Weak form for the coupled problem

The active stress is the only trigger for the deformation of the cell and there is no body

force or surface traction applied. The cell is attached to the pillars via a simple adhesion
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model, where the traction on the cell at the contact region is T; = k; - A;, with k; being
a constant and A; being the relative distance between the cell and the pillars. Assuming
to have elastic behaviour and to be incompressible, the pillar is modelled as a disc of

high Young’s modulus value which is connected to a spring with stiffness constant k.

a O\ O Dpittars
—1 Qrzonf(:(mr(u:t

QO

Figure 4.8: Division of the cell body into contact and non-contact regions. Illustrated is

the cell on 2 x 2 pillars, but the same approach is used for other problems.

Our approach for solving the contact problem between the cell and the pillars is to

first divide the cell domain into sub-domains:
= Qpillars U Qnon—contacin with Qpillars N Qnon—contact = @

where (s is the sub-domain in which the cell is in contact with the pillars and
Qnon-contact = 2\ Qpinars (Fig. [4.3.3). Then, using a mixed function space, the static
problem is to find w = (Ucen, Upost) € V X V, where V is the function space for the

displacements, so that the equilibrium conditions are satisfied:

V- FCG]](‘SaCtive 4 Spassive> -0 VX €0 (425)

cell cell

V . Fpostspost = 0 VX € Q (426)

Here, the body weight is ignored and the gradient is taken with respect to the initial
configuration. The transformation gradients for cell and posts are Fioy = 14 Ve and
Foost = 1+ Vupes, while Sfjfsm and Spost are the second Piola-Kirchhoff stresses in

the cell and post domains, respectively.

Let (Ween, Wpost) be a test function in the mixed space V' x V, the weak form for the

coupled problem can be written as:

/ [V - Foon (825 + Sf;fswe)] cWeen AV + / [V« FpostSpost] - Wpost AV =0 (4.27)
Q Q
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By applying the product rule (V-FS)-w = V-(FS-w)—Vw : (FS) and the divergence

theorem for the integral of the term V - (F'S - w), the above weak form becomes:

. active passwe
/vwcell . Fcell( cell Cell dV / cell * wcelldA

(4.28)
/prost : postspost dV / post wpostdA - O

where T, and T7 are the tractions on the boundaries of the cell and the posts,
respectively. With J E denoting the variation of the Green-Lagrange strain tensor, the
identity Vw : (F'S) = §E : S holds. This identity is shown in [I10] based on the fact
that the scalar product of a symmetric tensor with the antisymmetric part of a tensor
is zero and O F is the directional derivative of E in the direction w. The weak form is

then written as:

/ ( SCaeCltllve SESTSIVQ ) 5EC€H d V / Ce]l wcell dA
Q

+ / Spost : 0 Eipost AV — / post * WpostdA = 0
Q

(4.29)

Now, on the boundaries where the cell is in contact with the posts, the traction due
to the adhesion is applied on both the cell and the posts. Additionally, displacement of

the post causes a traction due to the spring connected to it:

Tctell = _kt (ucell - upost) (430)
. ks
Tpost = _kt(upost - ucell) - mupost (431)

where A is the cross-sectional area of each post. The final weak form is obtained as:

/(Sz:ltlive Spasslve) 5Ecell dVv -+ /Spost . (SEpost dVv

cell

Q Q
ks
+ / mupost * Wpost dA + / kt(ucell - upost) * Weell dA (432)
1—‘contact 1—‘contact
+ / kt (upost - ucell) * Wpost dA=0
Fcontact

In case that both the cell and the posts are thin flat plates, as assumed in the work

of McGarry et al. [57], the plane stress problem can be applied. Then, the last three
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boundary terms in the above equation can be written as volume integrals divided by
the corresponding thickness. As wupos is only defined in the post region, the following
Dirichlet boundary condition is required for the convergence of the solution procedure:

Upost = 0 in Q1101[1—(:ontact~

It should be noted that the obtained weak form for the coupled problem does not
depend on the formulation of the activation level. To use the classical representation in
[15], the only modifications in the implementation are the equation for the activation

level and the construction of the active stress tensor.

4.4. Applications of the bio-chemo-mechanical model

The advantages of the bio-chemo-mechanical (BCM) model had led to it being employed
to predict the results from several experimental studies on the mechanical responses of
different cell types. Moreover, many in silico experiments have been performed based
on the 2D and 3D versions of this mathematical model. In this section, a number of
applications of the model are presented by showing the results obtained by our finite

element software implementation in comparison with those in the literature.

4.4.1. Simulations of cells on micro-post arrays

Since the micro-needle array technique was introduced by Tan et al. [89] in their exper-
iments, there have been many attempts for mathematical descriptions that can capture
the behaviour of cells in such experiments. The analytical description of [65] suggests
that the fibres experience some contraction when they are subjected to activated motor
proteins or some chemical treatment. In this model, cell actin network is considered a
discrete set of elastic filaments and a prestrain value is used to describe the fibre con-
traction. In the work of Nelson et al. [67], a prescribed thermal strain is also used to
describe the contractility of the cell. However, instead of a set of discrete filaments,
the cell is modelled as two layers with an isotropic incompressible elastic material: a
contractile layer with a Young’s modulus of 500Pa and a thinner passive layer with a
value of 100Pa for Young’s modulus.

Compared to such analytical descriptions, the bio-chemo-mechanical is more efficient
in many aspects, for example in explaining the strong dependence of the forces generated
by the cell on the post stiffness, or the distribution of actin filaments within the cells.

By describing the focal adhesion between cells and posts at the contact area, McGarry
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et al. [57] have shown that the model is applicable to numerical studies of the generated

forces and the formation of actin within the cells of different cell lines.

Parameter value Parameter value

T max 3.9 [nN/pm’] O max 25 [nN/pm”]
0 720 [s] 0 70 [s]

ky 10 ky 7

ke 10 ks 10

kb 1 ki 1

€0 281074 [s‘l] I 0.003 [3_1]
Ecen 0.4 [nN/pm”] Ecen 0.4 [nN/pm?]
Veell 0.3 Veell 0.3

(a) (b)

Table 4.1: Two sets of parameters for the BCM model and cell material properties.

Smooth muscle cells on regular post-arrays McGarry et al. [57] performed the
simulations of the development of actin in smooth muscle cells when they are cultured
on arrays of 2x2, 3x 3 and 4 x4 posts. Their results could capture several outcomes from
the experiments of Tan et al. [89]. For example, the average deflection of the pillars and
the highest concentration of actin were well predicted. Figure 4.9 shows the results for
actin distribution of muscle cells from our implementation based on the models described
by McGarry et al. [57]. Parameters for the BCM model are given in Table [4.1b] For
the passive stress in the cell, the linear elasticity material model is used. The values
for Young’s modulus and Poisson’s ratio can also be found in this table. The posts are
with 1.5pm radius and 32nN/pm bending stiffness, the spacing between post centres is
10pm. The cell thickness is b = Ipm and the adhesion stiffness is k; = 500nN/pm3. For
the simulations of cells on 2 x 2 and 3 x 3 posts, no difference was found in our results
compared to those in [57]. In case of 4 x 4 posts, we observed a slight difference between
our result and that in [57], but the prediction of experimental outcome remains valid.
That is, the highest actin distribution is located near the cell periphery and the borders

of the posts, while the cell central region appeared with a low distribution.
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Figure 4.9: Predicted steady-state distribution of actin of smooth muscle cells on arrays
of 2x2, 3x3 and 4 x 4 micro-posts, in comparison with experimental results
by Tan et al. [89]. The simulations were first done by McGarry et al. [57].

Shown are results using our implementation with FEniCS.

The influence of post stiffness An advantage of the bio-chemo-mechanical model
is that it can capture the strong dependence of the stress generated by the cell and
the formation of actin filaments on the compliance of the substrate. This feature of
the model was demonstrated in [57] by investigating the responses of cells for different
stiffness values of the posts, while the same geometry of the post arrays was used. For
three values of post’s normalised bending stiffness, which is defined as k; = ky/(0max - D),
where b is the cell thickness, the steady-state actin distribution of a muscle cell on an
array of 5 x 5 posts was computed. Figure shows our results using the open source
software FEniCS, which are in very good agreement with those in [57]. The results
illustrated that for stiffer posts, the higher level of actin polymerisation within the cell

is produced and therefore higher contractile forces by the cells are obtained.
The influence of post distance For posts of the same material properties, the ge-

ometrical parameters, such as their cross-sectional area or the spacing between them,

have effects on the responses of cells. Figure [4.11| shows the plots of actin distribution

20



4. An efficient theoretical framework for cell contractility and adhesion

I 0.55

— 042

Zo ' I—O.17
X AN ) e | 0.05

ks = 1.28 ks =4.0

Figure 4.10: Our FEniCS result for a single muscle cell on 5 x 5 posts with three different
normalised bending stiffnesses k;. The parameters in [57] are used (Tab.
4.1bf). The post radius is 1.5pm, while the distance between two posts is
10pm.

1/b=6.67

Figure 4.11: Our FEniCS results for a cell on an array of 5 x 5 posts with two different

post distances. The value b = 1pm is used for the cell thickness.

for two configurations of posts, where different values for the spacing between the posts
are used (I = 20pm and [ = 6.67pm), from our implementation. The results are in very
good agreement with those in [57], which illustrated the effect that a larger post spacing

resulted in a higher actin distribution near the posts.

Fibroblast on an irregular array of 29 posts The bio-chemo-mechanical model is
applicable for different cell lines and is not limited to symmetric geometries of the cells.
Using a smaller value of the maximum stress, i.e. opax = 3.25n1N/ pm2, McGarry et al.
[57] conducted a simulation for the response of a fibroblast on an irregular array of
29 posts. Their predicted steady-state actin distribution agreed very well with their
experimental results. Figure shows our FEniCS result, which has been done using
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055
|

— 0.42
- 0.30

— 0.17

0.05

(a) (b) (¢)

Figure 4.12: (a) A fibroblast cell spreads over 29 posts in the experiment of McGarry
et al. [57]. (b) The shape of the cell in our simulation and the sub-domains
where the cell is in contact with the posts. (c¢) Plot for our predicted steady-
state distribution of actin filaments (characterised by the measure IT in Eq.
(4.13)) for simulation of a fibroblast on an irregular of 29 posts. The study
was first done by McGarry et al. [57].

the model and parameters described by McGarry et al. [57]. We constructed our cell
shape using straight lines connected smoothly to their neighbours. Due to using a
different geometry, we observed a slight difference in our result in comparison with that
by McGarry et al. [57]. However, the steady-state actin distribution in the experiment
is still very well predicted.

4.4.2. Development of actin cytoskeleton and focal adhesion

The bio-chemo-mechanical model can be combined with the bio-mechanical model for
cell adhesion (presented in Section to simulate the development of the stress fibres
in the cell and the integrins at the contact regions. Pathak et al. [71] performed such
simulations for cells of different shapes.

The features of the combination of the two models were demonstrated by studying a
triangular cell and a circular cell on a ligand patch of the same shape. The dimensions
of the cells are illustrated in Fig. [4.13| For both cell shapes, the parameters in Tab.
are used for the BCM model and the focal adhesion model. The variables to be solved

for are the deformation of the cell, the activation with the cell, and the concentration of
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40pm

40pm

Figure 4.13: The size of a triangular and a circular cell. Figures adapted from [71].

high affinity integrins at contact regions.

Parameter value Parameter value

Omax 4.0 [nN/pm”] T 310 [K]

0 720 [s] HH — PL 5 [kT]

ky 6 Ks 0.015 [nN/pm)]
ke 10 A, 130 [nm]

k, 1 & 1000 [1/pm?]
o 2.8-107* [s71]

Ecen 0.08 [nN/pm?]

Veell 0.3

Table 4.2: The parameters for the BCM model (left) and the focal adhesion model
(right).

The plots for the steady-state distributions of stress fibre concentration, which is
characterised by I' = (fmax — 77) /Mmax, and high affinity integrin concentration are shown
in Fig. and Fig. [4.15] Here are our results using our implementation with FEniCS,
which are in very good agreement with those in [71]. The results demonstrated that,
for both cell shapes, high actin distribution and high focal adhesion concentrations are

found along the cell periphery. In the interior part of the cells, the network of actin
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. 1.0

—0.75

0.6
R

—0.45
—0.3

—0.15 1025

i 0.0 0.0

(Mmax — 7)/Mmax En/éo

Figure 4.14: Plots for predicted steady-state distributions of the stress fibre (above) and
high affinity integrins (below) concentrations for a triangular cell on a ligand
pattern of the same shape as in [71]. Our FEniCS results using the BCM
model in combination with the focal adhesion model. Obtained results are

in very good agreement to those in [71].

filaments is almost isotropic [71].

The development of the focal adhesion over time was studied by computing the concen-
trations of the integrins at different time periods. Figure[4.16|shows these concentrations
for the circular cell at different locations, determined by the distance r to the cell centre.
At the initial state, the integrins are distributed uniformly in the cell, where the low
affinity integrins are dominating. In response to the contractility of the cell, the focal
adhesions developed and the evolution happened in a time scale much smaller than the
stress fibre development. Large changes were found in the concentrations of the high
and low affinity integrins within the time of ¢ = 0.50, while no significant change found
after t = 90. The deformation of the cell caused the transformation from low to high
affinity integrins. At the cell periphery, where the cell experienced largest deformation,

the concentration of high affinity integrins was highest.
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0.6 1.0
o .

—0.45 —0.75

—0.3 —0.5
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(Mmax — 1)/ Tmax Eu /o

Figure 4.15: Plots for predicted steady-state distributions of the stress fibre (above) and
high affinity integrins (below) concentrations for a circular cell on a ligand

pattern of the same shape as in [71].

Lo t/6 = 0.10 1'0,,= “““““
0.8 t/6 =021 08
s £/ =0.35
S 0.6/ — t/60 =1.39 & 0.6
= /6 =9.10 = |
0.4 0.4
----- t/0=0.35
0.2 021 — /9 =139
RS, — t/0=9.10
et 0.0 ‘ / |
' 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
location r/R location /R
high affinity integrins low affinity integrins

Figure 4.16: Normalised concentrations of high and low affinity integrins for the circu-
lar cell. Results obtained from our implementation and are in very good

agreement with those in [71].
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5. Model order reduction of the

bio-chemo-mechanical model

This chapter includes my contribution to the journal article [3].

The applicabilities and the advantages of the bio-chemo-mechanical have been confirmed
in numerous studies [I5HI7, 20, 57, [71], [73H77]. The very advantageous features of the
model came at the cost of high complexity and hence high computation requirements.
The solution procedure includes sampling a large number of stress fibre directions at
every point in the cell and solving for the activation level in these directions. The
number of degrees of freedom to be solved for is therefore very high in 3D analysis, and
even in many 2D simulations. Presented in this chapter is our approach to reducing the
complexity of the model by employing a quadratic form to approximate the activation
level at every point in the cell. The results obtained with our formulation are close to

those presented in the literature, while the computation time is significantly reduced.

5.1. Semi-analytical formulation

The key idea of coupling the bio-chemo-mechanical model to the equations of continuum
mechanics is to add the active stress tensor to the computation of the total stress at
every point in the cell. This active stress tensor is the average of active tension in stress
fibres in all directions. Usually, a large number of directions is defined and the activation
level in the cell, which is described in Eq. , is solved in these directions. Our semi-
analytical formulation is derived based on the approximation of the distribution of the
activation level n at every point in the cell by a quadratic function restricted to a circle

in 2D and to a sphere in 3D.

In our quadratic representation, the activation level in the direction characterised by
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5. Model order reduction of the bio-chemo-mechanical model

an angle ¢ is written as:

n(¢) = a1y cos?(¢) + 2a2 cos(¢) sin(¢) + agy sin?(¢) (5.1)

where aq1, aq2, age are the coefficients of the ellipse and are different for different material

points in the cell. The activation in any direction at a given point can be determined

o5
b1

¢3
(a) (b)

Figure 5.1: (a) A possible configuration for the activation level at a point in 2D using
the classical representation and (b) an approximation using our quadratic
representation and the basis directions that determine them. Here, a possible
basis for the quadratic representation are the three vectors (cos(¢;), sin(¢;))
for ¢, € {0,27/3,47/3}.

when the values of these coefficients are known. So, instead of solving the activation
for a large number of directions, it is sufficient to solve for these three values. The
formulation is completed by establishing the evolution equation for the a;; coefficients
based on Eq. .

Let ¢1, ¢2 and ¢3 be the three angles corresponding to the basis directions that de-
termine the quadratic form (Fig. , the evolution of the activation level in these

directions is obtained as:
77<¢z) = an C082(¢i) + 2&12 COS((bi) Sln(¢2) + a22 Sin2(¢i>, = 1, e ,3 (52)

As cos(¢;) and sin(¢;) are constant values for the known angles ¢;, the above equation

can be written in matrix form as:

1(¢1) an
n(¢2) | = Ce- | a1z (5.3)
n(¢3) 20
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where C. is the 3 x 3 matrix whose components c;; are as follow:

cil = cos2(¢i), Cio = 2 cos(¢;) sin(¢;), ciz = sin2(¢i), 1=1,...,3.

Then the time derivative of the a;; coefficients can be achieved as:

an n(¢1)
arz | = C1 - | () (5.4)
22 1(¢3)

Since 7 is an expression of a,;, this equation describes the rate of change of a;; as a

function of a;;.

(a)

Figure 5.2: (a) A possible configuration for the activation level at a point in 3D us-

ing the classical representation and (b) an approximation using our 3D
quadratic representation and the directions that determine them. The six
directions for the quadratic representation are corresponding to the vec-

tors (0, A1, £X2), (A1, £A2,0), (£X2,0, A1) in the Cartesian coordinate system,
where A, = 1/4/1+ ¢2, Xy = Ay - ¢ with ¢ = (14 /5)/2.

In a similar way, the approximation of the activation level in 3D by a quadratic form

suggests that its value in the direction associated with the pair of angles (w, ¢) in the

spherical coordinate system has the form:

n(w, ) = a1 sin®w cos® ¢ + ag sin® wsin? ¢ + ass cos® w
+ 2015 cos ¢ sin ¢ sin’ w + 2a3 sin w cos w sin ¢ (5.5)

+ 2a43 sin w cos w cos ¢

Let (w;, ¢;), i = 1,...,6 be the six basis directions that determine the quadratic form
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(Fig. [5.2)), the components ¢;; of the matrix C. are obtained as:

2

¢;i1 = sin” w; cos? ¢;, Cio = 208 ¢; Sin @; sin? w;,

Ci3 = 25in w; COSw; €os ¢y, ;4 = sin’ w; sin’ ¢y, 1=1,...,6
— 9 : a2
Ci5 — 2sin W; COS W; S111 gbz‘, Cig = COS™ W;,

so that the evolution in time for the coefficients a;; is written as:

-

W

3

23

ot

5

Y

an n(wi, d1)

a2 n(wa, ¢2)
az | c-!. n(ws, ¢3) (5.6)

20 ‘ 1(wa, P4)

)

( )

3
<

as3 We, Ps
Average and maximum value of activation level The average value for the activation
level 7 can be obtained as an expression of the coefficients a;; by an analytic integration.
For instance, 77 can be written as:

w/2 /2

1= [ ndo=2 [ (ancos () + 2uacos(6) sin(0) + azsin’(0))do
—7/2 —7/2 (57)
1 1
= 5dn + 5422
In a similar way, an integration of over the domain [0, 27| x [0, 7] gives
M=3g0un+ %@2 + 5 s

for the 3D case.

The maximum and minimum values of 7 are actually evaluated at the angles associated
with the minor and the major axes of the corresponding ellipse, which is the isosurface
of the quadratic form. Finding these values involves solving an eigenvalue problem for

the matrix of coefficients a;;. In 2D, they are simply the maximum and minimum values

1 a1 — Ao
Qeritt = 5 arctan [ ————=

of 1 evaluated at two angles:

2@12

Olerit2 = Qleritl 1 7T/2

There are no such simple explicit formulas in 3D, but applying an eigenvalue solver

still makes the implementation simple.
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5. Model order reduction of the bio-chemo-mechanical model

Components of the active stress tensor In 2D, by replacing n and ¢ in Eq. (4.3) by
those in Eq. (5.1) and Eq. (4.6), the integrals in Eq.(4.7) are obtained as:

: 1 3&11 + Q92 - 3EWH + E22
Sactlve = —Opmax kv
n =50 T
. 1 a1 -+ 3&22 - Ell —+ 3E22
Sactlve = —Opmax kv 5.8
2 =5 VI 12, (5:8)
. 1 a2+ E12
Sactlve = —Opax | — kv_
12 =97 > "M

In a similar way, the components of the active stress tensor in 3D can be related to

the coefficients a,; and the strain rate E as:

3@11 + 929 -+ as3 — 3E11 + E22 + E33

Sactive = Opax kv
u =9 15 * 152
. a1 + 3@22 + ass3 — Ell + 3E22 + E33
Sactlve = Opmax kv
2 =0 15 i 15¢
; i+ ag +3azzs  — Fiy 4+ Fag + 3E33
S{actlve = Opmax kv -
B0 15 * 15¢
) (5.9)
. 2@12 — 2E12
Sactlve = Opmax kv .
2= 5 15,
- 2a13  — 2Ei3
Sactlve = Opmax kv .
13 =7 5 15,
: 2 — 2F
;gtlve = Omax a2 kv .23
15 1580

5.2. Weak formulation for finite element implementation

For finite element software implementation, a weak formulation for the coupled problem
using our quadratic representation has to be derived. Compared to the classical repre-
sentation in section only the equation of the activation level and the construction

of the active stress tensor are different.

Integration of the Eq. (5.4)) over the cell domain gives:
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5. Model order reduction of the bio-chemo-mechanical model

1(¢1)
/ (12 dx—/C L. ¢2 dz (5.10)

Q Q99

Applying the explicit-time integration method for the above equation, we obtain:

(- P 6n) — (o)
- / O | ) — () [ e (5)
o \asy' — af, kH (¢3) — n*(03)

where dt = t**1 — ¢* is the time step and the superscript indicates the time step. The

right hand side can be obtained from the values of the activation level at the previous
time step using Eq. (4.2) as:

e g, - / ([1 S - [ - ?] (o) ) dr (5.12)

Q Q

For the active stress tensor, its components are computed as in Eq. (5.8)), instead of

using a numerical integration.

5.3. Results and error analysis

In order to evaluate our semi-analytical formulation, we have compared the results using
our approach and those in the literature. Different simulations with various range of
complexity have been reproduced. Moreover, an error analysis was performed to confirm

the appropriateness of our quadratic representation.

5.3.1. Results

We have performed all the simulations presented in Section[4.4] where our semi-analytical
formulation was used instead of the classical representation. Our obtained results are
almost identical to those in the literature. The good agreement of our results shows
that the applicability of our method is not limited to some simple problems, but also to
simulations of high complexity, such as those which include a contact behaviour between

the cell and the substrate, or those which are coupled with the focal adhesion model.

To further demonstrate our approach, we present here two more examples: a 2D

problem where an analytical solution can be derived; and the use of our quadratic
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5. Model order reduction of the bio-chemo-mechanical model

representation in 3D simulation. The advantage in computing time of our method is

also illustrated by a performance analysis.

Cell under bi-axial isometric tension We use the demonstrating example by Desh-
pande et al. [16], where a rectangular cell is subjected to a single activation signal at
t = 0. The cell is constrained such that the top and the bottom sides cannot move
vertically, the left and the right sides of the cell cannot move horizontally (Fig. .
Under these conditions, the strain has a zero value at every time step (E = E = 0)
resulting that the active stresses always get the isometric value (o; = 0y) in any di-

rection. Thus, the activation level 1 has the same value in any direction and increases

cell 5
4

01 2 3 4 5 6 7 8
time (¢/0)

(a) (b)

Figure 5.3: Cell under bi-axial isometric tension and the plot for the normalised active
stress Sp; over time. The parameters from Table [4.1a] are used. The left
figure is adapted from [16], the right figure is the result using our elliptic

representation.

until the maximum value (7 = 1) is reached at the steady state. In our formulation,
this means that at every point, the coefficient a5 is zero, and the distribution of the
activation level 7 is a circle with radius a;; = ag (see Eq. ) At the steady state,
the average activation level is obviously 77 = 1 (as from Eq. with a1; = ag = 1)
and the components of the active stress tensor obtained analytically from Eq. are
S11 = S22 = 0.5 opax (Fig. , which are exactly the results described in [16].

Improvement in computing time In order to evaluate the advantage in computing
time of the quadratic representation, we set up three configurations to use the BCM

model:

e with the divisions of the interval [—7/2, 7/2] into 36 and 72 equal angles,
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5. Model order reduction of the bio-chemo-mechanical model

e with the elliptic distribution of the activation level
and applied it for two different simulations:
e the bi-axial isometric tension example with a mesh such that the number of degrees
of freedom (DOFs) to solve for the cell displacement is 442, with the timestep
At = 1s until the time t = 10, 000s is reached,
e the example with a cell on a micro-post array with 37,372 DOFs for the displace-
ment, with the time-step At = 1s and the end time is at 400s,
on a computer with 32GB RAM, Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz. No
parallelism like OpenMP is utilised.

72 directions 36 directions quadratic form

Bi-axial tension 2356.0 682.0 53.8
Cell on posts 5852.6 2109.3 553.8

Table 5.1: Computing time (in seconds) for three different configurations of two simula-
tion set-ups: the bi-axial isometric tension example with a mesh of 221 nodes

and the cell on micro-post arrays with a mesh of 18,686 nodes.

It can be seen from Tab. that for both simulation set-ups, using our quadratic
representation gives a much better performance compared to dividing the half circle
into many equal angles. Moreover, it can also be noticed that less advantage is obtained
from the elliptic representation when the mesh is finer. The explanation is that the
computing time spent to compute the cell deformation is dominant when the size of the
system matrix is large. Nevertheless, the computation is still 5-10 times faster. This will

be especially important when the problem under study is more complex and realistic.

A 3D example To demonstrate the quadratic representation in 3D, we run a simulation
for a round cell on a stiff substrate. Its geometry is adapted from Ronan et al. [74]. Two
configurations are set up: (i) with the ellipsoidal approximation for the activation level,
and (ii) with 120 directions for stress fibres spaced so that the minimum distance between
each fibre and its neighbours is maximised. As in [74], the cell nucleus and the cytoplasm
are assumed to have different material properties. The linear elasticity model is used for
the passive stresses of both nucleus and cytoplasm whereas the active stress caused by
stress fibre activation is only applied to the cytoplasm. The parameters from Table

are used where the value E,,. = 4.0nN/ pm2 is suggested for the Young’s modulus of the
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. 0.4

—0.3

.—042

—0.1

I 0.0

Figure 5.4: Dimensions of a round cell (left, adapted from [74]), mesh (middle) and plot

for the average activation level 77 at the steady state (right). Our quadratic
representation for the BCM model is used with the six basic directions spec-
ified in Fig. [5.2b,

nucleus. As in [57], a simple shear adhesion is used for the contact between the cell and
the substrate, with the shear stiffness value k; = 500nN/pm?3. Two meshes with 58,566
and 173,024 tetrahedral elements are used where a refinement is done at the transition

between the cytoplasm and the nucleus and at the contact region. The computation on

~ H8k elements ~ 173k elements
quadratic repr. 1.38 hours 10.64 hours
120 directions 15.92 hours not possible due to

insufficient memory

Table 5.2: Computation time of the 3D simulation on two meshes for our quadratic
approximation and the classical representation with 120 directions. The
computer used is with 32GB RAM, Intel(R) Xeon(R) CPU E5-1607 v2 @
3.00GHz.

the finer mesh was only possible with our quadratic representation, using our computer
with 32GB RAM, Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz. In case of the coarser
mesh, we obtained almost identical results for both configurations, with the maximum
relative error for cell displacement being around 3.4%. A plot for the steady state value
of the average activation level 7 is shown in Fig. [5.4] and the processing time for two
configurations on two meshes is depicted in Tab. [5.2]
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5.3.2. Error analysis

In order to assess the consistency of our quadratic representation, we have estimated the
error in simulation results using our method compared to the classical approach. Since
our formulation uses only a linearised part of the fibre tension-strain rate relationship
instead of the tri-linear equation, as described in Eq. , the error produced by this
relaxation is also analysed. We performed different simulations using three configura-
tions:
e the classical representation with the divisions of the interval [—7/2,7/2] into 36
directions and the tri-linear fibre tension-strain rate relationship
e the classical representation with the divisions of the interval [—7/2,7/2] into 36
directions and the linearised fibre tension-strain rate relationship
e our quadratic representation which was derived using the linearised fibre tension-

strain rate relationship
The results using the first configuration are used as the reference values.

For the cell under bi-axial isometric tension, which is shown in Section [5.3.1] the
zero strain rate leads to the same equations for all three configurations. Therefore, the
solutions for the cell deformation and activation level are identical up to the machine
precision (Fig. |5.5)).

x10~13 x10~13

1.0 1.0

quad. — quad.
36 dirs. . 36 dirs.

Nmin — Tlmin,ref
jan)
jan)

Nmaz — Mmazx,ref
ja)
jas)

—0.5 —0.5
—1. - - —1.
0 0 1000 2000 0 0 1000 2000
time [s] time [s]

Figure 5.5: The plot for the differences in minimum and maximum activation level at

any point in the cell.

For the case of non-homogeneous activation level in the cell, we investigate a square
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cell suspended by springs at four corners, which was demonstrated by Deshpande et
al. [15]. Using the parameters in [I5], we obtained similar results, where the average

activation levels at four different periods of time are shown in Fig. The values for

t/0=15 t/0 =45 0 =175 /0 =105

032

_024

Figure 5.6: The distribution of average activation level at four selected times. FEniCS

results using our quadratic representation.

active stress and the activation level are high at the corners, where the cell is connected

to the springs.
Figure shows the relative error in cell displacement at three points with different
activation levels for using the linearised tension-strain rate relation compared to the

reference configuration. It can be seen from the plot that there is almost no error between

p
! 0.006 I
S - 36 dirs., py
.p3 = —— quad., p»
5 ....... 36 dirs., ps
\0004_ —— quad., p3
'pQ 2? ....... gﬁ dirsf P3
s
cell 1 0.002
=
| width | 0.0001_ . ;
| | 0 5000 10000
time [s]

Figure 5.7: The three points of interest and the plot of relative error |(u — tyef) /Uref| In

cell displacement.

using our quadratic representation and the classical representation. The error of using

the linearised equation for tension-strain rate relationship is larger at the location where
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the activation level is higher. However, the relative error is around 0.006 and still in an

acceptable range.
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6. Numerical study on actin formation

of osteoblasts on titanium arrays

This chapter closely follows our journal article [97).

Knowledge about the interaction between bone cells and their surrounding biomate-
rials is essential for the improvement in quality of an implant. Numerous experiments
have been done to measure mechanical interaction between cells and the underlying
substrates. Well-known methods include those introduced by Harris et al. [34], Burton
et al. [I1], Balaban et al. [4]. A more efficient method was introduced by Tan et al.
[89], in which cells are laid on a bed of micro-needles so that forces exerted by cells can
be measured from the individual displacements of the needles. This method was widely
applied and adapted to achieve further understanding on behaviour of the cells. For
example, Sniadecki et al. [84] used magnetic and non-magnetic posts to apply external
forces and monitor traction forces. Matschegewski et al. [55] investigated the difference
in actin concentration of bone cells when they are laid on either a planar surface or cubic

pillar structures of different dimensions.

In this chapter, we aim to apply the bio-chemo-mechanical model to predict the
tendency for the concentration of actin in osteoblasts observed in the experiments of
Matschegewski et al. [55], where they were laid on arrays of regular titanium pillars.
It is revealed from the experimental results that for osteoblasts actin was distributed
in short fibres on the titanium pillar structure. While in the experiments of Tan et al.
[89] for smooth muscle cells, actin was found as long fibres distributed intensely around
the pillars. Therefore, simply applying the approach of McGarry et al. [57], which was
applied for smooth muscle cells, will not be feasible. We will propose a set of parameters
and a hypothesis for inhomogeneous adhesion and show that the bio-chemo-mechanical

model can help predict the tendency of the osteoblast actin distribution.
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6. Numerical study on actin formation of osteoblasts on titanium arrays

6.1. Description for cell-pillar adhesion

It is revealed from the experiments of Matschegewski et al. [55] that cell adhesion was
not uniform in the contact region between the cell and the pillars, and spot-adherence
existed. To model this inhomogeneity of the adhesion, we use a scaling function g(z,y),
whose value is in the range [0, 1], to represent the concentration level of the adhesion on
a single pillar. The value 1 is assigned to the regions where spot-adherence occurs, while
the zero value indicates the disappearance of the adhesion. The pillars are assumed to
have square shape with blunt corners, which are close to those used in the experiments of

Matschegewski et al. [55]. For simplicity and from the observation that spot-adherence

1.00

O 0O |

1 /\_/\
0 s/2 s

(a) (b)

Figure 6.1: Plot of an exemplary function for the concentration level of the adhesion on
a single pillar (left) and plot of a slice through two spots (right). Outside of
the pillar, the function vanishes. Maximal function values are reached near

the four corners of the pillar.

usually appeared near the periphery of the pillars, especially the corners, we constructed
a smooth function that holds a small value everywhere except for the regions near the
four corners of the pillar. The left part of Fig. displays a possible choice for our
function, while the right figure shows the 1D plot of a slice through two spots. With s
being the side of the pillar and we denote:

flz) = % (cos (w%) + 1) e [0,1], for = € [0, 4], (6.1)

the expression for the adhesion level that we used is:

0.9 f(z)* f(y) +0.1, if|z —0.5s|,|y — 0.5s| € [0.15s,0.45s]
g(z,y) = (6.2)
0.1, otherwise
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6. Numerical study on actin formation of osteoblasts on titanium arrays

for (x,y) € [0,s] x [0, s] representing a point on the pillar structure. The values of
the function ¢ are in the range [0.1,1]. This is equivalent to the assumption that the
adhesion at the peak points is ten times stronger than that at those points where the
strength of adhesion is lowest. When desired, the function can easily be adjusted to
meet other assumptions. The simple adhesion model in [57] is then modified so that the

traction in the cell at the contact region becomes

where k; is the shear stiffness constant of the adhesion, when the cell moves a distance

A,; from the pillar.

6.2. Results and discussion

We apply the bio-chemo-mechanical model together with our suggested model for the
adhesion of the cell to the pillar structure to simulate the actin distribution of osteoblasts
on titanium arrays of different dimensions. The parameters for the bio-chemo-mechanical

model, the material properties of the pillars as well as the passive mechanical material

Parameter Value Description

O max 0.15[nN /pm?] maximum fibre tension

6 70 [s] decay constant of signal

ke 7 tension reduction coefficient with respect to strain rate
Ef 10 formation rate constant

Ky, 1 dissociation rate constant

€0 107° [s71] initial fibre contraction rate

ky 500[nN /pm®] focal adhesion stiffness

Eean 0.4[nN/ pm2] Young’s modulus of the cells
Veell 0.3 Poisson’s ratio of the cells
Epittar 1.0 - 103N/ pmz] Young’s modulus of the pillars
Vpillar 0.35 Poisson’s ratio of the pillars

Table 6.1: Parameters for the BCM model, material properties of the pillars and passive

mechanical material properties of the cell.
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properties of the cell are shown in Table . The values for 0, k¢, ki, and k, are the same
as those in [57]. From experimental observation we know that osteoblasts generate a very
small contraction force. Thus, the values that we used for 0.y and £ are 0.15[nN /pm?]
and 107°[s™1], respectively, which are much smaller than the values in [57]. At the
regions where the cell is in contact with the pillars, the value k, = 500nN/ pm3 is used
for the focal adhesion stiffness, which is also the same as that in [57] and Eq. is

used for the shear traction.

The system of governing equations, which includes the equilibrium condition and Eq.
([4.2), is solved using finite element analysis. Since almost no deflection of the pillars was
found in the experiments, the usual approach is considering the pillars as rigid bodies
and applying a homogeneous Dirichlet boundary condition. Here, we used the approach
in [57] and modelled the pillars as rounded rectangular surfaces connected to springs of
a large stiffness. This relaxation allows the stability of the solution procedure, while the
obtained displacement of the pillars is small enough to be ignored. The linear elastic

material model is used for both the cell and the pillars.

We used the gmsh generator [28] to create the meshes and the open source framework
FEniCS, version 2016.2 [53] to compute the solution. For time discretisation, we used an
explicit method with a maximum time step of 2 seconds and performed a convergence

study to make sure that the solution is stable with our choice of time step.

To demonstrate the applicability of our model using an inhomogeneous adhesion func-
tion, we carried out the simulations for osteoblasts on arrays of square pillars of different
sizes: 5pm x bum and 3pm x 3um. For simplicity, we used the same function g(zx,y)
(Eq. (6.2))) for the adhesion at all pillars.

6.2.1. Osteoblast on arrays of titanium coated pillars of 5pmx5pum

We first apply the model to a cell patch on 26 pillars in our experiment, as shown in
Fig. [6.2al We constructed a cell geometry with the assumption that the initial cell has
straight edges between pillars and it fits perfectly to the 26-pillar sub-array depicted
in Fig. [6.2b] Moreover, we also assume that the pillars are of perfect square shape
with blunt corners. The side length of the pillars is 5pm, while the radius of the corner
fillet is 0.5pm (area & 24.77pm?). The distance between two neighbouring pillars is also
S5pm. The stiffness of the springs connected to the surfaces representing the pillars is
7.50N/pm.

The simulation result for actin formation is shown in Fig. [6.2d It can be seen that the
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Figure 6.2: (a) Fluorescence image of the actin filament distribution in MG-63 os-
teoblasts (actin in green, LSM 780, bar 10pm; with courtesy of H. Rebl
and R. Lange). The white line demonstrates a simplified form of one cell.
(b) Sketch of the patch of a cell used in the simulation. (c¢) Our predicted
result for actin distribution (characterised by the measure IT) using the bio-

chemo-mechanical model and our description for the cell-pillar adhesion.

highest amount of actin is on the pillars and it is distributed non-uniformly. Moreover,
at the longest edges of the cell, there is more actin than at other edges. The obtained
maximum displacement of the pillars is around 7nm, which is 0.14% of the side length
of the pillar. Analogous outcome is achieved when we apply the model for an osteoblast
on an array of 19 pillars, which is illustrated in Fig. [6.3]

It should be noted that without our adaptation of the model for the adhesion of muscle
cells to the adhesion of osteoblasts involving an inhomogeneous adhesion behaviour, the
result would not agree with the experiment, as the predicted actin would form around
the pillars and there would be a uniform low level of actin on the pillars. To further
improve the agreement between the results using our approach, the complexity of the
model should be increased: a more complex function g(z,y) should be constructed and

the function could also be different for each pillar.
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Figure 6.3: (a) Experimental result for the actin distribution of a MG-63 osteoblast on
a bpm x bum pillar array by Matschegewski et al. [55], (b) sketch of the cell
used in the simulation and (c¢) our predicted actin distribution (characterised
by the measure IT in Eq. (4.13])) for this cell.

6.2.2. Osteoblast on array of titanium coated pillars of 3pmx3pm

Similar steps are applied for the simulation of osteoblast on an array of 25 pillars of
dimension 3pm x 3um. The radius for the rounded corners is chosen to be 0.4pm and
the distance between two neighbouring pillars is 3pm, as in the experiment in [55]. As
the area of the pillar is around 8.85pm?, which is smaller than that in the previous

example, the corresponding spring stiffness is set to 2.68nN/pm.

L
=
=

w
=
2
5[1:

w
E
0D

000000000

googogao

O000000o

—
¢
~

Figure 6.4: (a) Experimental result for the actin distribution of a MG-63 osteoblast on
a 3um X 3um pillar array by Matschegewski et al. [55], (b) dimensions of the

pillars and (c) sketch of the cell used in the simulation.

The predicted actin distribution is shown in Figure As in the previous case, the
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6. Numerical study on actin formation of osteoblasts on titanium arrays

highest concentration of actin is located on the pillars. Since the distance between the
pillars is small, a relatively high level of actin can also be found in the parts of the cell
connecting the pillars. In the experiment, at some regions, the actin concentration in

those parts is similar to that on the pillars.

(a)

Figure 6.5: (a) Actin formation of osteoblasts as described by Matschegewski et al. [55]
and (b) our simulation result for MG-63 osteoblasts on 3pm x 3pum pillar

structures. The predicted actin distribution is characterised by the II mea-

sure in Eq. (4.13]).

6.2.3. Effect of the adhesion scaling function

To study numerically the dependency of actin patterns on the adhesion between the cell

and the pillars, we constructed different configurations for our adhesion scaling function.

oof° °f° -
O0)c ol off

Figure 6.6: Different adhesion scaling functions for a single pillar. In the left figure,
the strongest adhesions locate at four spots with a large area distributed
uniformly on the pillar. In the middle and right figures, peak adhesions are
at four and three spots, respectively, with a small area distributed near the

corners of each pillar. The definition of these functions are provided in Tab.
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We varied the location and the area of strong adhesion near the peak points. We also
used different number of peak points on each pillar. Examples of our adhesion scaling

functions defined on a single pillar are shown in Fig. [6.6]

filz) = 1 <cos (47rx — U5 - 0'2258) + 1) € [0,1], for z € [0, ],

2 0.9s
0.9 % fi(z) = fi(y) + 0.1, if|z —0.5s| < 0.45s and |y — 0.5s| < 0.45s

g(z,y) =
0.1, otherwise
1 —0.55 —0.3375
fo(z) = 3 <cos (87rx f).9s S) + 1) € [0,1], for x € [0, s],
0.9 % fo(x) * fo(y) + 0.1, if|z — 0.5s|, |y — 0.5s] € [0.225s, 0.455]
ga(w,y) =

0.1, otherwise

1 —0.55 = 0.3375
fs(z) = 3 (cos (87rx 39 8) + 1> € [0,1], for z € |0, s,
9s

0.9 % f3(z) * f3(y) + 0.1, if|z — 0.5s|, |y — 0.5s| € [0.225s, 0.45s]

g3(x,y) = and (x < 0.5s or y < 0.5s)

0.1, otherwise

Table 6.2: Three different scaling functions for the adhesion on a single pillar. Here, s
is the side length of the square pillar and a point on the pillar is represented
by (2,9) € [0,5] x [0, 5].

Using these scaling functions for the adhesion, we performed the analysis for the actin
distribution of an osteoblast on an array of 19 pillars of 5pm x 5pm X 5pm. It can be
seen from the analysis results, which are shown in Fig. [6.3 and Fig. [6.7], that changing
the size of the peak adherence does not affect much the trend of the actin formation
on the pillars. However, the small area of these peak points gives a more smooth actin
distribution. Modifying the number of peak points could deliver a different pattern of
actin on the pillars, where the amount of actin is affected. This result supports our
suggestion that using different scaling functions for different pillars could give a better

agreement between simulation and experimental results.
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Figure 6.7: Predicted results for actin distribution of an osteoblast on an array of 19
pillars using different adhesion scaling functions. Each function is applied

for all 19 pillars in every simulation.

6.3. Conclusion

The bio-chemo-mechanical model proposed by Deshpande et al. has the capability to
simulate the contractility and actin formation of biological cells when they are laid on
different kinds of substrate. Using this model and a simple model for the adhesion
between cell and substrate, McGarry et al. [57] successfully simulated the actin distri-
bution in smooth muscle cells and fibroblasts on arrays of polydimethylsiloxane posts.
Direct application of the approach of McGarry et al. to the experiments with osteoblasts
on titanium pillar arrays of Matschegewski et al. [55] would lead to a great disagreement
between experimental and simulated results. We suggested a mathematical model for
inhomogeneous adhesion and constructed a function that represents the different con-
centrations of adhesion at different regions on a pillar. We demonstrated our approach
by applying it to our experiments and to experimental results by Matschegewski et al.
[55]. Using our model, the predicted actin distribution agrees better to the experimental
results than with other existing models. Our finding reconfirms a feature of the bio-
chemo-mechanical model that it is able to capture the strong influence of the boundary

condition on the formation of actin within the cells.
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7. Contractility of fibroblasts and

osteoblasts under DC electric field

This chapter closely follows a paper draft intended to be published with the title “Mod-
elling effects of DC electric field on contractility and cytoskeleton of fibroblasts and

osteoblast-like cells using a bio-chemo-mechanical model” [98).

It is significant to understand and utilise different biophysical and biochemical stimuli
to improve the quality of engineered tissue implants. Electrical stimulation is important
in the physiology and development of the majority of all human tissues and is a potential

type of stimulus for further improvement of implants [5].

Numerous observations on the responses of various cells to direct-current (DC) electric
field have been obtained through experimental methods [14, [36] 69]. In the work of Harris
et al. [36], a DC electric field of 1V/mm was applied to embryonic chick fibroblasts
on silicone rubber substrata and the contractility and cytoskeleton of the cells were
investigated. Several interesting results were found, where there are some remarkable
effects of the electric field on fibroblast contractility and actin orientation. First, the cell
was found to retract in the axis parallel to the electric field and the cell contractility was
found to be weaker in this direction. After that, the alignment and the elongation of the
cells and a higher contractility were observed in the direction perpendicular to the electric
field. Those responses of fibroblasts were not different for three different substratum
materials: silicone rubber sheets, glass and polysterene. In case of silicone rubber, the
changes in the patterns of wrinkling in the substrate were found: the wrinkles that run
transversely to the voltage gradient disappeared progressively, while new wrinkles that
run in the parallel direction were formed. These changes indicate that the concentration
of the cellular traction forces became dominant in the direction perpendicular to the
electric field.

Using similar approaches, Curtze et al. [14] observed that osteoblast-like cells deliv-

ered analogous behaviours when they are exposed to a DC electric field, but the process
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happened in a different time scale. In addition to that, the changes in cytoskeletal con-
traction were obtained by culturing the cells on collagen-coated flexible polyacrylamide
sheets containing fluorescent marker beads and analysing the traction forces based on

the obtained images.

The underlying mechanisms of the migration and orientation are still poorly under-
stood. Harris et al. [36] suggested three possible mechanistic causes for morphological
reorientation: (i) the electric field could stimulate the protrusion in the direction per-
pendicular to the voltage gradient, or (ii) the contraction in the direction parallel to the
field, and / or (iii) weaken the adhesions between the cells and the substrate at those
parts of the cells that face the field.

Several numerical models have been proposed to describe the cell contractility and the
interaction between cells and substrate. The bio-chemo-mechanical model proposed by
Deshpande et al. [15] takes into account the dynamic reorganisation of the cytoskeleton
and has many advantages compared to other models [I5]. In this chapter, we will supply
this model with a description for the effects of DC electric field to study numerically the
contractility and cytoskeleton of fibroblasts and osteoblast-like cells under electric field

exposure.

7.1. Modelling the effects of DC electric field

Stimulation of contraction in the direction of the electric field To address the
influence of the DC electric field to the contraction of the cells, we suggest a change of
the two constants, the maximum fibre tension o,,,, and the initial shortening rate £g, so
that they become dependent on the directions of the fibres and on time. The argument
for the choice of these parameters is that they significantly determine the magnitude and
the speed of cell contraction. Note that the modification of ¢ is equivalent to that of the
constant k, relating the tension and the shortening rate of the fibres. Alternatively, the
other parameters such as the controlling constants for the formation and dissociation
rates can also be modified, but we observed that the two parameters we chose are most
significant.

Our suggestion for addressing the effects of the DC electric field is that the parameters
Omax and €y should be larger in the direction parallel to the electric field and smaller in
the perpendicular direction. To formulate this, we introduce a scaling function s(t) > 1

and assume that at time ¢, the two parameters o, and € increase s(t) times in the
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Figure 7.1: (a) A possible scaling function to represent the raise of the maximum tension
in the direction parallel to the electric field and (b) a possible function to
represent stimulation of the active stress in different directions at four time

periods.

parallel direction and decrease s(t) times in the perpendicular direction. As the electric
field gradually affects the cells within a period of time, the function s(¢) should increase
slowly in a time interval before it reaches a maximum value. For example, to express
the idea that the maximum fibre tension can rise up to 3.5 times in the direction of the

electric field and in around 40 minutes, we use the function s(t) € [1, 3.5] as follows:

5 /1 1 t — 1200

The plot of this function is shown in Fig. [7.1a] Compared to the case where the electric
field is absent, at the time ¢, the maximum fibre tension is scaled by s(t) in the direction
of the electric field and by 1/s(t) in the perpendicular direction. We further assume that
the scaling factor for the maximum tension in the direction that makes an angle ¢ to

the electric field is given by:

s(¢,t) = s(t) cos® ¢ + (1/s(t)) sin® ¢ (7.2)

The plot of this scaling function at four periods of time is shown in Fig. [7.1b. Here
we would like to note that ideally these functions should include dependency on the

cell types and the magnitudes of the electric field. In this work, we slightly modify the
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functions for each simulation, but later when there are sufficient experimental data, they

can be easily parametrised.

Decrease in cell-substrate adhesion at the regions facing the electrodes To model
the reduction in the strength of the adhesions between the cells and their substrate in
the regions of the cells facing the electrodes, we introduce a scaling function for the
adhesion shear stiffness k; in Eq. . This function is defined so that for every line
parallel to the electric field cutting the cell, the function value should hold the value 1

at the middle of the line and decrease at the two ends. An example for this function
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B
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* 025
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line cut in electric field direction

(a) (b)

Figure 7.2: (a) A function for the scaling of the adhesion between the cell and the sub-
strate when assuming that under the electric field, the strength of the ad-
hesion is reduced two times at the cell peripheries facing the electrodes. (b)
Plot for the scaling function on a line through the cell and parallel to the
electric field.

is illustrated in Fig. [7.2] where it is assumed that the adhesion at the cell peripheries
facing the electrodes are two times weaker than in the middle part of the cell. Let p;
and py be the intersecting points between the cell and a line parallel to the electric field,

the function on the line segment between p; and p, is defined as follows:

o(d) = 3 exp [— (%d)

where d is the distance to the middle point and L is the length of the line segment.

(7.3)

1
2

Thus, given a scaling value at the cell peripheries facing the electrodes, the value of the

scaling function g(z,y) is determined for every point (z,y) in the cell.
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7.2. Results

We used the mshr library [2] to create the meshes and the open source framework
FEniCS, version 2016.2 [53] to compute the solution. For time discretisation, we used
an explicit method with a maximum time step of 2 seconds and performed a convergence

study to make sure that the solution is stable with our choice of time step.

7.2.1. Magnitude of the Maxwell stress tensor

We examine the total electromagnetic force on the cell by computing the value of the
Maxwell stress tensor. Suppose a cell of a typical size is suspended in a culture medium
and is exposed to a DC electric field of strength 1V/mm (Fig. [7.3a). The distribution

culture lmedium

v _ x1073
B B 2.6
cytoplasm \ 2.2
S \
membrane F \ 1.8
(@] \\
A\
y \ )
T—>x \x,/// 10

(a) (b)

Figure 7.3: (a) Sketch of a typical cell under a DC electric field exposure and (b) plot of
electric field magnitude (V/mm) in the cell. The applied field is in horizontal
direction and with a strength of 1V/mm. The parameters in Tab. are
used for the electrical properties of the cell membrane, cell cytoplasm and
the culture medium. The computation is done using the software COMSOL
MULTIPHYSICS®.

of the electric field in the cell can be obtained by solving Eq. . The plot of the
electric field distribution is shown in Fig. [7.3b, where the values in Tab. are used
for the electrical properties of cell cytoplasm, membrane and the culture medium.
Then, the Maxwell stress tensor can be computed from the electric field using Eq. .
The plot of the components of the Maxwell stress is shown in Fig. [7.4] We can see that

the highest value of the Maxwell stress in the cell is around 2-107°Pa. This value is too
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Parameter value

Cytoplasmic conductivity Teyto = 1.5[S/m]
Cytoplasmic relative permittivity Ecyto = 80
Membrane conductivity Omem = 5+ 1077[S/m]
Membrane relative permittivity €mem = 11.3

Culture medium conductivity Omedium = 1.5[S/m]

Culture medium relative permittivity &€pedium = 80

Membrane thickness d = bnm

Table 7.1: Electrical properties of the cell membrane, cell cytoplasm and the culture

medium. The values are taken from [58] and [88].

><10;8 ><10612 ><10*010
' - Y 2N ‘ ’ i
N
1.6 . 0.0 1 0.8
\ A
\ \ L2\ \ 04\ 12
\ \
\ \\ 0.8 , N EE -1.6
v ‘ ) N P
\\\,‘, /‘ 0.4 g — il 1.2 - -2.0
(a) SE, (b) S5, (c) S5,

Figure 7.4: Plot of the components of the Maxwell stress tensor S (in Pa). The com-
putation is done using the software COMSOL MULTIPHYSICS®.

small compared to the active stress in the bio-chemo-mechanical model, which is usually
in the range 0.2 — 25kPa. Therefore, we will ignore the contribution of the Maxwell

stress in our simulations.

7.2.2. Fibroblast contractility and cytoskeleton

We first apply the bio-chemo-mechanical model together with our description for the
effects of DC electric field for the simulation of the contractility and actin formation in
fibroblasts observed in the experiments of Harris et al. [36]. A fibroblast cell of typical
dimension is used in our simulation. The shape of the cell is constructed based on an
image from the experiments of Harris et al. [36] and is shown in Fig. [7.5] A DC electric
field of 1V /mm is applied in the vertical direction, as in [36].
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Figure 7.5: Shape and size of a fibroblast cell used in our simulation and the scaling

function for the adhesion.

The parameters for the bio-chemo-mechanical model and the mechanical material

properties of the cell are shown in Tab. [7.2] The value for the decay constant 6 is

Parameter oy 0 ke ke kp & Eeen Veell
Unit [N/pm?] 5] [s7]  [0N/pm?]
Value 3.25 720 7 10 1 0.003 0.4 0.3

Table 7.2: Parameters for the BCM model and cell material properties that are used for
fibroblasts.

720s, as in [15], while other parameters are the same as those in [57]. For the substrate,
we used the value 0.4 for the Poisson’s ratio. As the Young’s modulus is not given in
[36], we used the value of 6nN/pm?, which is close to the values described in [14], and
observed that changing this value by 30% does not affect the results significantly. For
the contact between the cell and the substrate, we also use the same value as in [57],
which is k; = 500nN /pm?, for the shear stiffness of the adhesion.

With these parameters used, we suppose that under the electric field, the value of oyax
rises up to 2.5 times in around 50 minutes after the start of applying the electric field.
In other words, the following scaling function (as in Eq. (7.1])) is used for fibroblasts
with the field strength of 1V/mm and the given set of parameters:

3/1 1 t — 1600

In addition to that, it is assumed that the strength of the adhesion at the cell margins
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facing the electrodes decreases to 10% of the initial value. This means that the equation
(7.3) for fibroblasts is modified to:

g(d) = %eXp [— (%d)z

The scaling function for the adhesion is shown in Fig.

+— (7.5)

Our simulation results for the changes over time of the bounding box of the cell in
the parallel and perpendicular directions are shown in Fig. [7.6] It can be clearly seen
that with the introduction of our scaling function for the active stress, the cell retracts

in around 20 minutes then it elongates perpendicular to the electric field. In the model,
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Figure 7.6: Change of the bounding box of a fibroblast cell over time.

the weakening of the adhesion at the margins facing the electrodes can indeed predict
the increase of the cell contraction in the direction parallel to the field. However, the
effect is very small and without the modification of the active stress, a large retraction
in the parallel direction and the elongation of the cell in the perpendicular direction
cannot be obtained. Using a very small value for the strength of the adhesion at the cell
margins facing the electrodes would allow a higher contraction of the cell in the electric
field direction, but the adhesion would not be realistic as a major part of the cell would

be no longer in contact with the substrate.
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7.2.3. Dynamic changes in traction forces by osteoblasts under DC

electric field exposure

We then apply the model to simulate the response of osteoblast-like cells observed in the
experiments of Curtze et al. [14]. The parameters in Tab. are used. As osteoblasts

Parameter o 0 k, ki ky &0 Ecen Veell
Unit [N/pm?] (5] s [nN/pm’]
Value 0.2 720 7 10 1 0.0004 0.4 0.3

Table 7.3: Parameters for the BCM model and cell material properties that are used for

osteoblast-like cells.

generate very small contraction in absence of an electric field, the values used for o,ax
and &y are smaller compared to those for fibroblasts. The value k; = 500nN/pm? is
again used for the shear stiffness of the adhesion.

Since the contraction of the cells is reported to be high under the electric field exposure,
we suggest that the value of oy, rises up to 9 times in around 20 minutes after the start
of applying the electric field. In other words, the following scaling function (as in Eq.
(7.1)) is used for osteoblasts with the field strength of 1V/mm and the given set of

parameters:
1 1 t — 600
= -+ = h 1 .
s(t) 8<2+2tan ( 500 ))—l— (7.6)

For the weakening of the adhesion at the cell margins facing the electrodes, we use the
same scaling function as for fibroblasts, which is provided in Eq. (7.5)).

The simulation is done first for an osteoblast cell of around 27pm width and 24pm
height. The geometry of the cell is constructed from an image provided in [14] (Fig.
7.7al). In this simulation, the value Fgy, = 4.32nN/pm? is used for the Young’s modulus

of the substrate, which is the same as in the experiment in [14].

We used different values for the initial maximum fibre active tension o, while other
parameters in Tab. remain unchanged and observed the change of the bounding
box of the cell over time. Figure [7.8] shows our simulation results for the change of
the bounding box of the cell in the parallel and perpendicular directions together with
the experimental results by Curtze et al. [I4]. It can be seen that with the value

Omax = 2.0, the change of the bounding box in the parallel direction agrees very well
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Figure 7.7: Cell geometries and the direction of DC electric field. Two osteoblast-like
cells of different shape are investigated in our simulation. The geometries are
constructed based on the images in Fig. 1 and Fig. 7 in [I4]. The electric
field is in the horizontal direction and of strength 10V /cm.

with the experiment. In the perpendicular direction, the simulation can predict the
trend that there is a contraction in the first 20 minutes then the cell starts to elongate.
However, the magnitudes of the contraction and the elongation are smaller by a factor of
about 2 compared to the experiment and the cell cannot reach its initial size. The smaller
values of oy (€. 8. Omax = 0.2 and oy = 0.8) can better predict the elongation, but
again the magnitudes are not in agreement with the experimental results, especially in
the parallel direction. In this case, an improvement in the results can be obtained by
using a smaller value for the adhesion at the margins of the cell facing the electrodes.
However, as we already pointed out in the case of fibroblasts, this adhesion is not realistic

and can lead to the instability of the cell structure.

The simulation is repeated for another geometry of the cell, which is also constructed
based on an image from [I4] and is shown in Fig. [7.7b] The value for the substrate
stiffness is changed to 6nN/pm? as in the experiment, while other parameters are not
modified. Figure shows the differential substrate displacement vectors at the cell
boundary for six periods of time. To obtain these results, we first computed the defor-
mation of the substrate using the parameters in Tab. together with our description
for the effects of the electric field. Then, the displacement of the substrate in absence
of the electric field was calculated. In this case, again the parameters in Tab. were
applied, but the value £¢; = 0.0002[1/s] was used for the initial strain rate, as the contrac-

tility in osteoblasts is usually weak without electrical stimulation. Finally, the differences
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Figure 7.8: (a) The change over time of the bounding box around every cell in the
direction along parallel and perpendicular to the electric field (Figure from
[14]). The strength of the field is 10V /cm. (b, ¢) Our simulation results.

in the substrate displacement were obtained for two cases. In a short period of time,
the change in the displacement of the substrate is linearly related to the change of the
traction forces by the cell. Therefore, these results give some insights on the differential
traction forces during cellular alignment, which are obtained by Curtze et al. [14] by
solving an inverse problem. The trend of the displacement changes is in good agreement
with the traction force change in the experiment in [14] at many regions and periods of
time. However, in Fig. and [7.91] the highest values of the displacement changes are
at the peripheries facing the electrodes, which is not the case in the experiment. Our
explanation for this disagreement is that the strength of the adhesion at those regions
should be weaker than our suggested value. Again this reconfirms the remaining weak
points of the simple adhesion model that is used in our simulation. To improve the

results, it is necessary to build a more efficient description for the adhesion. Neverthe-
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less, by explaining several effects found in the existing experiments, our mathematical
description based on the bio-chemo-mechanical model support the hypothesis by Harris
et al. [36] that the cell contraction is promoted in the direction of the electric field and

the adhesion is weakened at the regions facing the electrodes.

7.3. Conclusion

We enhanced the bio-chemo-mechanical model [15] with our description for the effects
of the DC electric field based on the proposed mechanisms of Harris et al. [36]. We
then applied this extended model for the simulation of the experiments on fibroblasts
by Harris et al. [36] and osteoblasts by Curtze et al. [14]. Our conclusions can be

summarised as follow:

e The bio-chemo-mechanical model is very efficient in simulating the dynamics of
actin formation in cells of different types, as it addresses the bio-chemical process.
Together with our description for the DC electric field, this model can predict
very well many experimental results in [I4] and [36], for example, the retraction in
the direction parallel to the electric field and the elongation in the perpendicular

direction, or the dynamic change of the substrate displacement.

e In order to explain the experimental results using this model, it is necessary to
include the idea proposed by Harris et al. [30] that under the electric field ex-
posure, the strength of the adhesion is weakened at those parts of the cell facing
the electrodes. However, considering only the weakening of the adhesion is not
sufficient. Instead, a stimulation of the contraction in the direction parallel to the
field or a stimulation of the protrusion in the perpendicular direction also needs
to be addressed.

e Our mathematical description was able to predict several effects of DC electric field
on both fibroblasts and osteoblasts that are found in the existing experiments. To
overcome the remaining weak points, our further investigation will focus on a
more efficient model for the adhesion between the cell and the substrate. The
bio-mechanical model for focal adhesion by Deshpande et al. [17] is a possibility
for use as a foundation. Moreover, in order to better predict the elongation of
the cell in the direction perpendicular to the electric field, we will investigate the

contribution of cell spreading in the model.
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(a) t = 30s (b) t = 60s

(d) t =120s (e) t = 300s (f) t = 600s

Figure 7.9: Dynamic change of the difference in substrate displacements near the cell
peripheries obtained by our simulations. The arrows present the increase in
substrate deformation under the effect of electric field and were computed
by the subtraction of the substrate displacements for two cases: with and
without the presence of the electric field. As in the experiment of Curtze et
al. [14], the substrate stiffness is 6000Pa.
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The aim of this thesis is to study the underlying mechanisms of the interactions be-
tween osteoblasts and their surrounding bio-materials using computational approaches.
Successful theoretical description for those interactions can bring us an improved un-
derstanding of cell behaviour and give us a better control over actin formation and cell
adhesion. Such knowledge about cells helps further improving the quality of implants
and approaching the final aim of tissue engineering, which is to build an implant having
structural organisation and functionality similar to a healthy tissue. Particularly, in this
thesis, we focused on two main targets of our numerical model: (i) it should predict the
formation of actin in osteoblasts when they are cultured on titanium arrays, which were
carried out in the experiments at the Department of Cell Biology, University Medical
Center Rostock, (ii) it should address the effects of electric field on the contractility of

cells and explain the outcomes in existing experiments on different cell types.

We developed our model based on the bio-chemo-mechanical model of Deshpande
et al. [15], which has been widely applied in modelling cell contractility and shown to have
more advantages compared to most other mathematical descriptions in the literature.
The model is based on partial differential equations and is an active model, in which the
cell reacts actively to external stimulation instead of being a passive material. The active
response of the cell is addressed in the model by including the bio-chemical processes,
where a variable is introduced to represent the activation of the stress fibres in the cell.
The levels of activation are associated with the direction of the fibre and allowed to
be different at various locations in the cell. They are dependent on the strength of
signal and the current stress state of the cell. To use the bio-chemo-mechanical model
in the continuum mechanics framework, an active stress tensor, which results from the
activation of stress fibres, is added to the total stress and the equilibrium condition is
solved at each time step. The steady state of the cell is reached when the signal strength
approaches zero and there is almost no change in cell deformation and activation over
time. At that state, a measure defined as the subtraction between the maximum and the

average activation level in all directions can give a good prediction in the distribution
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of the stress fibres in the cell.

The bio-chemo-mechanical model has many applications in modelling mechanical in-
teractions between cells and substrate. It has been used to numerically study the actin
distribution in the cells as well as the forces generated by cells of different types, when
they are laid on arrays of micro-posts. The simulations can capture very well the de-
flection of the posts and the highest distribution of stress fibres within the cell that are
found in experimental studies. The model has been combined with a bio-mechanical
model for cell focal adhesion, which was proposed by Deshpande et al. [I7], to study the
formation of stress fibres in the cell and the development of focal adhesions at the con-
tact regions between the cell and the substrate. The 3D model was applied for different

geometries of cells to study cell behaviour in the force indentation experiment.

In part due to its positive features and numerous advantages, the bio-chemo-mechanical
model does have a drawback that its order of complexity is very high. At every point
in the cell, the activation level needs to be computed for a large number of directions
of stress fibres. Together with the deformation of the cell, a great number of degrees of
freedom has to be solved for at each time step, even for some 2D simulations. Therefore,
significant computer resources are required and a great amount of computation time is
demanded. In our attempt to reduce the complexity order of the model, we introduced
a semi-analytical approach where a quadratic form is used to approximate the distri-
bution of activation level at every point in the cell. Doing this, instead of sampling
a large number of directions for stress fibres, we need to solve for the activation level
in three directions for the 2D case and six directions in the 3D case. In addition to
describing the formulation, we have provided the derivation of the weak forms that are
suitable for using finite element methods. These weak forms can be easily transformed
to code in our efficient software implementation that can be applied for a wide range of
simulations. We have confirmed the appropriateness of our quadratic representation by
comparing the results using our approach with those using the classical representation
in the literature. Our formulation delivered similar outcomes, while the computation
time was significantly reduced. Moreover, we observed numerically the error produced
by our method and confirmed that it is small and in an acceptable range.

Although the bio-chemo-mechanical model has been applied by McGarry et al. [57]
to simulate cells of different types on arrays of micro-posts, the same approach cannot
be directly used for simulating the interaction between osteoblastic cells and titanium
arrays in the experiments done at the Department of Cell Biology, University Medical

Center Rostock. The linear elastic adhesion model cannot capture the effect that the
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actin distribution tends to be higher on top of the pillars, instead of at the peripheries
of the pillars. We have introduced our mathematical description for the inhomogeneous
adhesion of the cell, based on the experimental outcomes that spot-adherence appeared
on the pillars. We constructed a smooth function representing the different strength
of adhesion at different location on the pillars. The results using our approach can
predict several effects in the experiments done by Matschegewski et al. [55]. Our finding
reconfirms a feature of the bio-chemo-mechanical model that it can capture the strong

influence of the boundary condition on the formation of actin filaments in the cells.

The contractility and cytoskeleton of cells of different types under external electric
field exposure have been observed experimentally in the literature. Harris et al. [30]
proposed a technique using silicone rubber substrate to study the influence of DC elec-
tric field on the contraction and stress fibre reorientation of fibroblasts. They found a
cell retraction accompanied by a gradual weakening in cell contractility in the axis par-
allel to the electric field followed by an elongation and a reorientation in the direction
perpendicular to the field. A similar approach was applied by Curtze et al. [14] for
osteoblast-like cells and analogous behaviour of the cells was found, where the response
to the electric field happened in a different time scale. Moreover, based on the obtained
images of substrate displacement, they estimated the dynamic changes in the traction
forces in the cells. The bio-chemo-mechanical model is efficient in modelling the con-
tractility and the dynamic reorganisation of the cytoskeleton, but the effects of electric
field have not been addressed. We proposed a mathematical description for these effects
based on the alternative mechanisms suggested by Harris et al. [36]. To express the
weakening of the adhesion at the cell margins facing the electrodes, we constructed a
smooth scaling function that holds a smaller value at those margins compared to the
inner part of the cell. We addressed the stimulation of the contraction in the electric
field direction by introducing another scaling function for the maximum tension in stress
fibres. This function has an initial value of 1 in every direction. Under the electric field
exposure, its value gradually increases in the direction of the field and decreases in the
perpendicular direction. Enhanced with our scaling functions, the bio-chemo-mechanical
model was then able to predict several results in the experiments of Curtze et al. [14]
and Harris et al. [30], despite a few disagreements. Our finding suggested that the
weakening of adhesion at cell regions facing the electrode did indeed contribute the
contraction of cell in the direction of the field and the elongation in the perpendicular
direction. However, regarding only the decrease in the strength of adhesion is not suffi-

cient. Instead, a stimulation of contraction in the direction of the field or the protrusion
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in the perpendicular direction should be included. Another suggestion from our finding
is that a more efficient model for cell-substrate adhesion and addressing cell spreading
in the bio-chemo-mechanical model will give an improved prediction of the experimental

results.

The future research based on the work done in this thesis can be driven in many
directions. First, a more advanced model for the adhesion between cell and substrate
can be used in the simulations of contractility of fibroblasts and osteoblasts under electric
field exposure. An alternative is to refine the bio-mechanical model for cell focal adhesion
by Deshpande et al. [I7]. An efficient model such as this could not only better predict
experimental results by Curtze et al. [14] and Harris et al. [36], but also provide the
possibility to study the development of focal adhesion under the applied electric field.
Second, the effect of external electric field on the formation of actin in osteoblasts when
they are cultured on different titanium substrates, including micro-pillar structures,
can be studied numerically. Additional experiments can be set up for the verification
and further improvement of the model. Finally, the study of actin and electric field
distribution in a 3D cell under external electrical stimulation can be performed using
Maxwell’s equations and the 3D version of the bio-chemo-mechanical model. Addressing
and analysing the electric field will increase the complexity of the model. However, thank

to our quadratic representation, the computation time promises to remain acceptable.
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A. FEniCS implementation for
simulation of a cell on micro-post

array

The open source software FEniCS, version 2016.2 is used in our implementation. One of
the advantages of this framework is that the mathematical models are easily translated
into efficient finite element code [53]. For visualising the results, the software Paraview

and the plotting library matplotlib are used with Python.

Model parameters All the parameters involved for the bio-chemo-mechanical model
and cell material properties as suggested by McGarry et al. [57] are shown in Tab. .
In addition to that, we used the values Epijjay = 2.5+ 10°nN/ me, Vpillar = 0.45 for Young’s

Parameter oy 0 ky ke ky £ Eeen Veell
Unit [N/pm?] (5] 57 [N/pm?]
Value 25 0 7 10 1 0.003 0.4 0.3

Table A.1: Parameters for the BCM model and cell material properties.

modulus and Poisson’s ratio of the pillars and observed that they behaved like rigid
bodies, when their straining is too small. The pillars have 1.5um radius and 32nN/pm
bending stiffness. The spacing between pillar centres is 10pm. The cell thickness is
b = 1pm and the adhesion stiffness is k; = 500nN/pm®. The number of directions for
stress fibres is chosen to be 36, as in [I5], while At = 2s was used for the time step. We
carried out a careful analysis to ensure that these parameter choices are appropriate for

a meaningful solution. The declaration of all parameters is shown in Listing. [A.T]
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Code Listing A.1: Define parameters for the model
# model parameters
nPost, dPost, rPost
theta = 70
epsDot0 = 0.003
kvBar , kbBar, kfBar 7.0, 1.0, 10.0
sigmaMax = 25.0 # nN/um2
thickness = 1.0 #um
ECell, nuCell = 0.4, 0.3 # nN/um2, 1
EPillar, nuPillar = 2.0E5, 0.4 # nN/um2, 1
ksBar = 1.28

ks = ksBar * sigmaMax * thickness

2, 10.0, 1.5

ks = ks / (math.pi * (rPost#*x*2)) # spring stiffness per area
kFA, xi = 0.15, 3333 # nN/um, 1/um2
kt = kFA * xi

Ct = Constant (1) # level of signal
deltaT = Constant (2.0)
nDirs = 36

Mesh We used the gmsh generator to create most of our meshes. The dolfin-convert
command is then used to convert the generated meshes to xml file that can be read in
FEniCS. In order for OpenMPI parallelism to be utilised, we use a file of hierarchical
data format (HDF) to store the mesh together with its sub-domain data. An example
for creating a Mesh object in FEniCS using data from the hdf5 file is illustrated in
Listing [A.2| Plots of the mesh and its sub-domain data for a cell on 2 x 2 pillars are

shown in Figure [A.]]

Code Listing A.2: Read the mesh data from a hdf5 file
mesh = Mesh()
hdf = HDF5File(mesh.mpi_comm(), ’mesh.h5’, ’r’)
hdf .read (mesh, ’/mesh’, False)
subdomains = CellFunction(’size_t’, mesh)

hdf .read (subdomains, ’/subdomains’)

Function spaces The variables to be solved include the mixed displacement increment

Au = (Aucen, AUpin,) and the activation level m = (ny,...,ny,). The mixed displace-
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Figure A.1: Mesh and physical regions for cell on 2x 2 pillars that are stored in a hdf5 file.
The number of mesh cells is 15 624, while the numbers of degrees of freedom

for the deformation and the activation are 31 826 and 562 464, respectively.

ment is then obtained by a time integration w = f; udt. First-order Lagrangian elements
are used for the displacements of both, cell and pillars. As the activation level in each
direction is a real number, zero-order discontinuous Lagrange elements are sufficient.

Listing shows how the function spaces and the primary variables are created.

Code Listing A.3: Define functional spaces

CGl = VectorElement ("Lagrange", mesh.ufl_cell (), 1)
V = FunctionSpace (mesh, MixedElement (CG1l, CG1))
u, u0, deltaU = Function(V), Function(V), Function (V)

VEta = VectorFunctionSpace (mesh, "DG", O, nDirs)

etaCoeff, etaCoeffO0 = Function(VEta), Function(VEta)

Strain and stress tensors The cell and pillar materials are assumed to be isotropic
linearly elastic. Geometrically non-linear analysis is considered, so the Green-Lagrange
strain tensor F is used and the Saint Venant— Kirchhoff material model is applied. The
stress tensor is related to the strain tensor via the Lamé material constants A\ and pu,

which can be expressed in terms of the Young’s modulus F and the Poisson’s ratio v as

Ev E

AT o) T Ay

The calculation of these constants for the cell and the pillars in the implementation is
shown in Listing [A.4]
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Code Listing A.4: Compute the Lamé constants
muCell, 1mbdaCell = ECell / (2 * (1 + nuCell)), ECell * nuCell / ((1
+ nuCell) * (1 - 2 * nuCell))
muPillar, 1lmbdaPillar = EPillar / (2 * (1 + nuPillar)), EPillar *
nuPillar / ((1 + nuPillar) * (1 - 2 * nuPillar))

The stress tensor is obtained as S = A tr(E)I+2uE. Listing[A.5|shows the computation
of the displacement u at each time step from the displacement increment Aw, the strain

and stress tensors for cell and pillars.

Code Listing A.5: Define strain and stress tensors
(deltaUc, deltaUp) = split(deltal)
(ucO0, up0) = split(u0d)

uUpdate = u + deltalU
ucUpdate, upUpdate = ucO + deltaUc, upO + deltalUp

dul, dvl = TrialFunction(V), TestFunction (V)

a, L = inner(dul, dv1l)*dx, inner (uUpdate, dvl)*dx

problemU = LinearVariationalProblem(a, L, u)
solverU = LinearVariationalSolver (problemU)
dim = u.ufl_domain () .geometric_dimension ()

Id = Identity(dim)
Fc, Fp = Id + grad(ucUpdate), Id + grad(upUpdate)
Ec, Ep = 0.5 * (Fc.TxFc - Id), 0.5 * (Fp.TxFp - Id) # strain tensors

SPassiveCell = 2 * muCell * Ec + lmbdaCell * tr(Ec) * Id
SPassivePillar = 2 * muPillar * Ep + 1lmbdaPillar * tr(Ep) * Id

Finally, the strain rate in the cell domain can be obtained from the cell displacement

rate as Ecell = %(FT . Fcell — 1), Wlth Fcell = 1 —|— v’u’cell:

cell

Code Listing A.6: Define the strain rate tensor
Fcdot = Id + grad(deltaUc/deltaT)
strainRate = 0.5 * (Fcdot.T*Fcdot - Id) # strain rate for cell
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Computation of the active stress tensor Listing shows the computation of the
components of the active stress from Eq. (4.24]). The active stress tensor is then con-
structed from these components. In addition, the increment for the activation level at

each time step, An = n - At is also obtained:

Code Listing A.7: Construct the active stress and increment for the activation
strainRatePhi = []
deltaEta = []

activeStressll, activeStressl2, activeStress22 = 0, 0, O

phi = -math.pi / 2.0 # angle
deltaPhi = math.pi / (nDirs - 1.0)

for i in xrange(nDirs):
cosSquare = math.cos (phi) ** 2
sinSquare = math.sin(phi) ** 2

sin2phi = math.sin(2.0 * phi)

strainRatePhi.append(strainRate[0, 0] * cosSquare +
strainRate[0, 1] * sin2phi + strainRate[l1, 1] * sinSquare)

activeStressPhi = sigmaMax * (etaCoeff.sub(i) + (kvBar /
epsDot0) * strainRatePhil[i])

deltaEta.append(Ct * (1.0 - etaCoeff.sub(i)) * kfBar / theta -
(-(kvBar / epsDot0) * strainRatePhi[i]) * kbBar / theta)

if (1 == 0 or i == nDirs - 1):
activeStressll += 0.5 * activeStressPhi * cosSquare
activeStressl2 += 0.5 * activeStressPhi * sin2phi
activeStress22 += 0.5 * activeStressPhi * sinSquare
else:
activeStressll += activeStressPhi * cosSquare
activeStressl2 += activeStressPhi * sin2phi

activeStress22 += activeStressPhi * sinSquare
phi += deltaPhi

activeStressl11l = (1.0 / (nDirs - 1.0)) * activeStressiil
(1.0 / (nDirs - 1.0)) * activeStressl12 * 0.5
(1.0 / (nDirs - 1.0)) * activeStress22

activeStress = as_matrix([[activeStressll, activeStressi2], [

activeStressi12

activeStress22

activeStressl12, activeStress22]])
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dEta, dvEta = TrialFunction(VEta), TestFunction(VEta)

problemEta = LinearVariationalProblem(inner (dEta, dvEta)*dx,
inner (etaCoeff0 + deltaT * as_vector(deltaEta), dvEta)*dx,
etaCoeff)

solverEta = LinearVariationalSolver (problemEta)

Defining a non-linear form for the coupled problem The non-linear form is obtained

directly from Eq. (4.32]).

Code Listing A.8: Arrange the weak form and define non-linear problem
# integrals for sub-domains: 1 for cell parts in contact with
pillars, O for the rest
dx = Measure("dx", domain=mesh, subdomain_data=subdomains)

du, w = TrialFunction(V), TestFunction (V)

# nonlinear variational problem

F = inner (SPassiveCell + activeStress, grad(vc)) * (dx(0) + dx(1)) #
cell

F += inner (SPassivePillar, grad(vp)) * dx(l) # post elasticity

F += ks * dot(upUpdate, vp) * dx(1) # springs on posts

F += dot (upUpdate, vp) * dx(0) # fix region without posts

F += kt * inner (ucUpdate - upUpdate, vc) * dx(1l) # contact force on
cell

F += kt * inner (upUpdate - ucUpdate, vp) * dx(1) # contact force on

posts
J = derivative (F, deltaU, du)

problem = NonlinearVariationalProblem(F, deltaU, [], J)
solver = NonlinearVariationalSolver (problem)

solver.parameters[’newton_solver’] [’relative_tolerance’] = 1E-6

Performing time-stepping The procedure for solving the time-dependent problem is
shown in Listing [A.9l The solver is advanced in time from " to ¢"*! until the steady
state is reached, i.e., when Au and Aa are close to zero. For convenience, we export the

mixed displacement and the activation level to hdf5 files and use another Python script

110



A. FEniCS implementation for simulation of a cell on micro-post array

for post-processing of the results.

Code Listing A.9: Perform time stepping

fuFile = HDF5File(mesh.mpi_comm(), ’result/disp.h5’, "w"
fetaFile = HDF5File(mesh.mpi_comm(), ’result/etaCoeff.h5’, "w")
fuFile.write(u, "/initial")

faFile.write(aCoeff, "/initial™")

# Time integration
t, timeEnd = 0, 2000
step = O

while t < timeEnd:
t += float(deltaT)
print "Step: " + str(step) + ", time = " + str(t)

# update concentration C(t)

Ct.assign(math.exp(-t / theta))

# solve for deformation
solver.solve ()
solverU.solve ()

u0.vector () [:] = u.vector() # update deformation

# solve for activation and update the values
solverEta.solve ()
etaCoeffO.vector()[:] = etaCoeff.vector ()

step += 1
fuFile.write(u, "/values_{}".format(step))
fetaFile.write(etaCoeff, "/values_{1}".format(step))

normDeltaU = norm(deltaU, ’127)
etaDot = project(as_vector(deltaEta), VEta)

normEta = norm(etaDot, ’127)
if (normDeltaU < 1E-4 and normEta/mnDirs < 1E-4):
print "Steady-state is reached at t = " + str(t)

break

fuFile.close ()
fetaFile.close ()
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B. Stability analysis

We carried out analyses to make sure that the solutions are stable with our choice of the
time step size. Figure shows an exemplary analysis for the simulation of a cell on
2 x 2 posts. The plot illustrates the average activation at a specific point in the cell, for
different time step sizes used. Here, we chose the point (xg, y9) = (2.5um, 2.5pm), where
the origin is located at the centre of the cell, as we saw the change in actin distribution

near this point. A fine mesh is used, with the maximum edge length of 0.2481m. We
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=
£0.18]
I=
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Figure B.1: Plot for the average activation at a point in the cell over time for different

time steps used.

can clearly see from the plot that there is almost no change in the results when the time

step is less than or equal to 2s. A similar outcome was obtained when we observed the

cell deformation.
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C. Convergence study

We performed different mesh convergence studies to ensure the accuracy of our solutions.
Figure shows an exemplary convergence study for the simulation of a cell on 2 x 2
posts. The plot illustrates the magnitudes of cell deformation and the relative errors,
for different sizes of the mesh. We used the time step size of 0.1s for all meshes and

made an analysis to assure that the solution is stable for the coarsest mesh. We can
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Figure C.1: Plot of the magnitudes of cell displacement and the relative errors

|ug — ugr—_1]|/||ug|| for meshes of different sizes.

see that as the number of mesh cells increased, the displacement results converged and
the error approaches zero. A good accuracy is obtained for the mesh with 15624 cells,

corresponding to the maximum edge length of around 0.25pm.
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