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Abstract

Further improvement of implants for the human skeleton involves understanding inter-

actions between bone cells and surrounding bio-materials under different stimuli (bio-

chemical, biophysical, mechanical, electrical). In addition to experimental methods, the

computational approach has been a useful tool to investigate the mechanisms of these

interactions. In this thesis, we attempt to build a numerical model that predicts the trac-

tion forces and the actin distribution in osteoblasts when they interact with substrates

of different characteristics, where the effects of external electric field are addressed. Our

model is based on the bio-chemo-mechanical model proposed by Deshpande et al. [15],

which possesses many advantages and has been widely applied to simulate two and three

dimensional cells in interaction with various substrates.

The results we obtain in this thesis can be summarised in three main achievements.

First, we successfully reduced the complexity of the bio-chemo-mechanical model using

a semi-analytical approach. Our formulation delivered similar results compared to the

classical approach, while the computation time was significantly improved. Second, we

proposed an inhomogeneous adhesion and constructed smooth scaling functions repre-

senting the differences in strength of adhesion at different locations in the contact parts

between cells and micro-pillar structures. With our description for the adhesion, the bio-

chemo-mechanical model was able to predict the actin distribution in the experiments

of osteoblasts on titanium micro-pillar arrays. Finally, we enhanced the bio-chemo-

mechanical model with our description for the effects of the direct-current (DC) electric

field by letting the tension in stress fibres depend on their orientation and introduc-

ing a scaling function representing the weakening of adhesion at some parts of the cell.

Our enrichment of the model helped predict several existing experimental outcomes on

fibroblasts and osteoblasts when they are exposed to DC electric field.
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Zusammenfassung

Eine weitere Verbesserung von Implantaten für das menschliche Knochengerüst erfordert

ein besseres Verständnis der Wechselwirkung zwischen Knochenzellen und benachbarten

Biomaterialien im Hinblick auf verschiedene Stimuli (biochemische, biophysikalische,

mechanische, elektrische). Neben experimentellen Methoden erwiesen sich comput-

ergestützte Ansätze als ein nützliches Werkzeug zur Untersuchung der Mechanismen

dieser Wechselwirkungen. In dieser Arbeit wird versucht, ein numerisches Modell aufzustellen,

das die Traktionskräfte und die Aktinverteilung in Osteoblasten vorhersagt, wenn diese

mit Substraten unterschiedlicher Eigenschaften interagieren und dabei den Wirkun-

gen eines externen elektrischen Feldes unterliegen. Das vorgestellte Modell basiert

auf dem von Deshpande et al. [15] vorgeschlagenen bio-chemo-mechanischen Modell,

welches viele Vorteile aufweist und breit angewendet wurde, um zwei- und dreidimen-

sionale Zellen in Wechselwirkung mit verschiedenen Substraten zu simulieren. Die in

dieser Arbeit erhaltenen Ergebnisse können in drei wesentlichen Erfolgen zusammenge-

fasst werden. Erstens konnte die Komplexität des bio-chemo-mechanisches Modells

unter Verwendung eines semi-analytischen Ansatzes erfolgreich reduziert werden. Im

Vergleich zum klassischen Ansatz lieferte die neue Formulierung ähnliche Ergebnisse,

während die Rechenzeit deutlich verbessert wurde. Zweitens wurde eine inhomogene

Adhäsion vorgeschlagen und glatte Skalierungsfunktionen konstruiert, die die Unter-

schiede in der Haftfestigkeit an verschiedenen Stellen in den Kontaktteilen zwischen

Zellen und Mikrosäulenstrukturen darstellen. Mit der hier eingeführten Beschreibung

für die Adhäsion konnte das bio-chemo-mechanische Modell die in den Experimenten

mit Osteoblasten auf Titan-Mikrosäulen-Arrays beobachtete Aktinverteilung vorher-

sagen. Schließlich wurde das bio-chemo-mechanische Modell um eine Beschreibung der

Wirkung eines Gleichstromfeldes verbessert, indem die Zugspannung in den Stressfasern

in Abhängigkeit von ihrer Orientierung modelliert wurde und eine Skalierungsfunktion

einführt wurde, welche die Abschwächung der Adhäsion in einigen Teilen der Zelle

wiedergibt. Unsere Verbesserung des Modells trug dazu bei, mehrere experimentelle

Ergebnisse zu Fibroblasten und Osteoblasten unter der Wirkung eines Gleichstromfeldes

zuverlässig vorhersagen zu können.
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1. Introduction

1.1. Motivation

The quality of tissue engineered implants has been improved in the last decades thank

to the rapid development of tissue engineering, in which scientific principles are applied

to the design, construction, modification, growth, and maintenance of living tissues

[5, 7, 82]. Producing implants having the same structural organisation and functionality

as the healthy tissue in vivo is the final objective of tissue engineering. In order to achieve

this goal, it is crucial to understand and utilise various stimuli in the human body that

control the development and maintenance of the tissue structure and functionality [5, 8].

Besides biochemical cues, biophysical or mechanical stimuli are necessary to achieve the

desired functionality and texture of the engineered tissue. While these stimuli, together

with chemical, material-based and magnetic cues, are well-established tools in the in

vitro production of tissues and organs, electrical stimulation with its importance in the

physiology and development of the majority of all human tissues has become a potential

type of stimulus for further improvement of implants [5].

To efficiently employ these stimuli, it is essential to understand the underlying mecha-

nisms of the interactions between cells and their surrounding environment as they could

give us a better control over cell growth, cell contraction, cell migration, adhesion, and

orientation. An important aspect is to understand cellular forces, as they are crucial for

many biological processes [47, 50]. A great number of experiments have been carried out

to study the mechanisms for force generation of cells and their mechanical response to

external stimuli such as stretching, compressing, ultrasound and electrical stimulation.

Besides experimental techniques, mathematical modelling has been a powerful tool to

interpret the cellular behaviours. A great number of numerical models with different

scales and complexities have been proposed to analyse the cellular processes. The two

main classes of these models include micro/nano-structural approaches and continuum-

based approaches. While the former is required to model phenomena in small scales,

1



1. Introduction

such as in protein folding and fracture, the latter is more widely applied to interpret the

results on cellular responses using common experimental methods [106]. In continuum

models, the cell material is usually assumed to be passive. Recently, the active nature

of the cell has been addressed using several approaches and the models could predict

better many experimental results [73]. For example, when the dynamic reorganisation

of the cytoskeleton is taken into account, some models could simulate very well the high

concentration of stress fibres at focal adhesions or the influence of substrate stiffness on

the forces generated by the cells.

The effects of electrical stimulation on cell contractility and the formation of actin

filaments have been investigated experimentally [5, 14, 36]. However, they are not incor-

porated in most of the computational models. The objective of this thesis is to obtain a

numerical model for the mechanical responses of cells, where the influence of the exter-

nal electric field is addressed. In addition, a mathematical description for the adhesion

between the cell and the substrate is also to be proposed. The model should capture

several outcomes from the experiments on osteoblast cells which have been carried out

at the DFG Research Training Group 1505/2 “welisa” [55]. For instance, the formation

of actin in osteoblasts when they are cultured on titanium substrates of different geome-

tries. Moreover, the model should also be applicable to simulate the contraction and

cytoskeleton of different cell types when they are exposed to an external electric field,

as presented in existing literature.

1.2. Thesis outline

The thesis is organised as follow. Chapter 1 introduces the research topic and the

overview of the thesis. Chapter 2 provides the basic concepts and the essential equa-

tions used in numerical models that are based on the theory of continuum mechanics

and electromagnetics. A brief introduction to the techniques for solving these equations

is also presented. In Chapter 3, the structure and major components of biological cells

are introduced. Moreover, experimental techniques and numerical methods that have

been used to investigate the interactions between cells and their substrates are reviewed.

Chapter 4 represents the concepts and the formulation of a bio-chemo-mechanical model

that has been shown to be more advantageous compared to other mathematical descrip-

tions. As this model is very efficient, it is used as a foundation for the development of our

numerical model. In addition, a bio-mechanical model for cell adhesion that can be com-

2



1. Introduction

bined with this model is also presented. Our approach for an efficient implementation is

shown by presenting the finite element formulation for the coupling of this model to the

equations of continuum mechanics and the steps to transform it to software code. The

results using our implementation are compared to those presented in the literature. The

advantages of these models are demonstrated by their applications in the predictions of

several experimental studies. Chapter 5 presents our approach to reduce the complexity

of the model, while retaining its significant features. In Chapter 6, our description for

the adhesion between cell and substrate is proposed so that the model can capture the

formation of actin in osteoblasts when they are laid on titanium pillar structures. Our

suggestion for addressing the effects of external electric field is presented in Chapter 7.

The proposed idea gives the model the capacity to simulate the contractility of different

cell types under the presence of electric field exposure. Finally, Chapter 8 includes some

discussion and perspectives for future research.

3



2. Fundamentals for modelling

mechanical and electrical

interactions of cells

A class of computational models for mechanical responses of cells is based on continuum

mechanics, while the theory of electromagnetics is used to study electrical properties of

the cells. In this chapter, the main concepts and the elementary equations in these two

fields of physics are presented. Moreover, the approaches for time discretisation and the

finite element formulation for solving the partial differential equations are also described.

2.1. Theory of continuum mechanics

In this section, a short overview of continuum mechanics, the governing equations as well

as the formulation suitable for the application of finite element analysis are represented.

A more comprehensive introduction to the mechanics of structures can be found in [6],

while extensive formulations of non-linear finite element methods are presented in [12],

[13] and [110].

The motion of a body can be described by a function ϕ(X, t) of material coordinates

X and time t which determines the spatial positions of the material points x = ϕ(X, t).

Let u = x − X be the displacement vector, then the deformation gradient of the

transformation from reference to current configuration can be written as:

F =
∂x

∂X
=

∂

∂X
(X + u) = I +∇u (2.1)

where I represents the identical transformation. The determinant of the deformation

gradient, J = detF , is called the Jacobian of the deformation and expresses the ratio

between the deformed and undeformed infinitesimal volume elements. As both volume

elements are positive for realistic deformations, J is a positive number and F is an

invertible tensor.
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e1

e2

e3

X
x

u

φ(X, t)

Ω
Ωc

Γ Γc

Figure 2.1: Reference and current configuration to describe the motion of a body. Figure

adapted from [110].

2.1.1. Strain and stress measures

In continuum mechanics, several stress measures can be defined and they are usually

related by transformations between the reference and the current configurations. The

analysis of the structure can be performed using different theories (e.g. infinitesimal

strain theory, large strain theory), depending on the amount of the deformation. In

each theory, a different strain measure is used.

Strain measures

When a structure deforms, the strain represents the displacement between particles

in the body relative to a reference configuration. For geometrically linear analysis, in

which the displacement vector and its gradient are much smaller compared to unity (i.e.,

∥u∥ ≪ 1 and ∥∇u∥ ≪ 1), the linear strain tensor:

ε =
1

2

(
∇⊤u+∇u

)
(2.2)

which is the symmetric part of the gradient of the deformation vector, is usually used.

This strain tensor is also called Cauchy’s strain tensor or small strain tensor.

5



2. Fundamentals for modelling mechanical and electrical interactions of cells

For large deformation of the structure, the Green-Lagrange strain measure:

E =
1

2

(
F⊤ · F − I

)
=

1

2

(
∇⊤u+∇u+∇⊤u · ∇u

)
(2.3)

is used. Here, the symmetric tensor C = F⊤ · F is also called the right Cauchy-Green

tensor and is mathematically convenient in formulating constitutive laws. The Green-

Lagrange strain tensor is then written as E = 1
2
(C−I). It can be seen that the Cauchy’s

strain tensor is actually a linearisation of the Green-Lagrange strain tensor, where the

second-order terms are neglected.

Stress measures

The Cauchy stress, or physical stress, is defined as the total force per unit area in the

current configuration. For a given vector element of surface, let dΓ and n be the area

dΓ dΓc

n nc

df
dfc

Ω
Ωc

φ

Figure 2.2: A surface element in the reference (undeformed) and current (deformed)

configurations. Figure adapted from [6].

and the outward normal of the element, respectively, in the reference configuration. The

surface element is subjected to a traction t leading to a force vector df = tdΓ. Assuming

that the area becomes dΓc with outward normal nc and traction vector tc leading to a

force dfc after the deformation, the Cauchy stress σ can be written as:

nc · σdΓc = dfc = tcdΓc. (2.4)

For geometrically nonlinear analysis, stress measures in undeformed configuration are

used. The nominal stress, or first Piola-Kirchhoff stress, P is given by:

n · P dΓ = dfc = tcdΓc. (2.5)

The second Piola-Kirchhoff stress S is defined in a similar way, but unlike the nominal

stress, the force vector df = F−1 · dfc in the reference configuration is used:

n · SdΓ = F−1 · dfc = F−1 · tdΓ (2.6)

6



2. Fundamentals for modelling mechanical and electrical interactions of cells

Alternatively, this stress tensor can be written as

S = JF−1 · σ · (F−1)⊤ (2.7)

which is a transformation of the Cauchy stress into the reference configuration. Since

the Cauchy stress is symmetric, so is the second Piola-Kirchhoff stress.

2.1.2. Equations of motion

Consider an arbitrary subdomain of the body Ω with boundary Γ. Suppose that the

body has the density ρc and is subjected to the surface traction tc and the body force

ρcb in the current configuration, where b is a force per unit mass. The conservation of

mass gives the relation ρ = Jρc with ρ being the density in the reference configuration

and J = detF . In case of geometrically linear analysis, the Cauchy motion equation in

the so-called Euler formulation is given by:

ρcü = ∇σ + ρcb ∀x ∈ Ωc (2.8)

where ∇σ represents the divergence of σ with respect to the current configuration (
∂σij

∂xj
).

The static equilibrium is obtained by eliminating the inertia term:

∇σ + ρcb = 0 ∀x ∈ Ωc. (2.9)

At the boundaries that are subjected to surface traction, the boundary condition:

σ · nc = tc ∀x ∈ Γσ (2.10)

should be satisfied.

For geometrically nonlinear analysis, it is convenient to utilise the motion equation in

the so-called Lagrange formulation, which is obtained by relating the Cauchy equation of

motion to the reference configuration. This can be done by first multiplying the motion

equation (2.8) by J = detF and applying the identity J∇σ = ∇(F · S), where S is

the second Piola-Kirchhoff stress tensor. The derivation of this identity is presented

in [6], [48]. Note that ∇(F · S) represents the divergence of F · S with respect to the

reference configuration (∂/∂Xj). The equation of motion in the Lagrangian formulation

is obtained as:

ρü = ∇(F · S) + ρb ∀X ∈ Ω (2.11)

The condition for static equilibrium is then written as:

∇(F · S) + ρb = 0 ∀X ∈ Ω. (2.12)

7



2. Fundamentals for modelling mechanical and electrical interactions of cells

The traction boundary condition is described in the reference configuration as:

F · S · n = T ∗ ∀X ∈ Γσ (2.13)

where T ∗ is the traction applied on an undeformed body.

2.1.3. Constitutive laws

The relationship between the stress and the strain (and hence the displacement) charac-

terises the response of the material under loading and is called the constitutive equation.

This section presents some material models that are used in our simulations of cells, in-

cluding linear elasticity and hyperelasticity.

Linear elasticity

The response of the material may be considered to be linearly elastic when the structure

undergoes a small deformation and rotation. The Cauchy stress and linear strain tensors

are used and the relationship between them can be generally written as

σ = C : ε (2.14)

where C is a fourth-order tensor which is called the stiffness tensor or elasticity tensor.

For an isotropic linearly elastic material, the tensor C has 21 independent components

and is written as

C = λI ⊗ I + 2µI

where I is the unit tensor and the two independent material constants λ and µ are called

the Lamé constants which can be expressed in terms of the Young’s modulus E and the

Poisson’s ratio ν as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

Thus, the stress-strain relation for an isotropic linear elastic material is obtained as

σ = λ tr(ε)I + 2µε (2.15)

This relation can also be derived from σ =
∂W

∂ε
, where W is the strain energy per unit

volume and is given as a function of the strain tensor as:

W (ε) =
λ

2
tr(ε)2 + µ tr(ε2) (2.16)
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2. Fundamentals for modelling mechanical and electrical interactions of cells

Hyperelasticity

Hyperelastic materials are elastic materials for which the work done on the material

is independent of the load path [6]. The stress-strain relationship for elastic material

models is derived from a strain energy density function. Many hyperelastic models have

been developed, but only two of them are presented here.

Saint Venant–Kirchhoff model The Saint Venant–Kirchhoff model is the simplest

hyperelastic material model and is an extension of the linear elastic material model.

The strain energy density function for the St. Venant–Kirchhoff model is given by:

W (S) =
λ

2
tr(E)2 + µ tr(E2)

Then the relationship between the second Piola-Kirchhoff stress S and the Green-

Lagrange strain E is obtained as:

S =
∂W

∂E
= λ tr(E)I + 2µE (2.17)

Neo-Hookean material The strain energy density function for an compressible neo-

Hookean material is expressed in terms of the right Cauchy-Green tensor C = F⊤ · F
and is given by

W (C) =
µ

2
(IC − 3)− µ ln J +

λ

2
(ln J)2,

where IC = trC and J = detF . The stress is then derived as:

S =
∂W

∂E
= 2

∂W

∂C
= µ(I −C−1) + λ ln JC−1.

2.1.4. Solution of the equilibrium condition

Given a structure that is subjected to some forces (e.g. body force, surface traction)

and supports, its deformation can be obtained by solving a coupled system of partial

differential equations which include the kinematical relations, the equation of motion and

the constitutive law. For Lagrangian description, the use of the second Piola-Kirchhoff

stress tensor leads to the following equations:

Kinematics: E =
1

2

(
F⊤ · F − I

)
Equilibrium: ρü = ∇(F · S) + ρb ∀X ∈ Ω

Constitutive law: S =
∂W

∂E

9



2. Fundamentals for modelling mechanical and electrical interactions of cells

In addition, let Γ = ∂Ω be the boundary of the subdomain Ω, the displacement boundary

conditions are prescribed on Γu and the traction boundary conditions are formulated on

Γσ as:

u(X) = u∗(X), ∀X ∈ Γu, F · S ·N = T ∗, ∀X ∈ Γσ

The above system of partial differential equations can only be solved analytically in

some trivial cases. In practice, an approximate solution for this set of equations is

obtained using numerical methods such as finite difference or finite element, where the

latter is more widely used. For the use of finite element method, a variational formulation

of the equations is required. Two approaches that can be used to derive the variational

formulation are the uses of the principle of virtual work and the minimum total potential

energy principle.

The principle of virtual work

The weak form of the governing equations is obtained by multiplying the Eq. (2.11) by

a test function δu and integrating the product over the domain of the body:∫
Ω

δu · ü ρdV =

∫
Ω

δu · ∇(F · S)dV +

∫
Ω

δu · b ρdV (2.18)

where the test function δu has to vanish on the prescribed displacement boundary Γu.

The above weak form is known as principle of virtual work in classical mechanics and

the test function δu is also called virtual displacement. The approach using weak form

is suitable for general problems, for example, inelastic materials, since the assumptions

such as existence of a potential function are not required.

By applying the product rule δu · ∇(F ·S) = ∇(δu · (F ·S))−∇δu : (F ·S) and the

divergence theorem for the integral of the term ∇(δu · (F ·S)), the weak form becomes:∫
Ω

δu · ü ρdV +

∫
Ω

∇δu : (F · S)dV =

∫
Ω

δu · b ρdV +

∫
Γσ

δu · T ∗dA (2.19)

The second term on the left hand side can be expressed in terms of the variation of the

Green-Lagrange strain tensor δE. Using the fact that the scalar product of a symmetric

tensor with the antisymmetric part of a tensor is zero, the following identity is obtained

[110]:

δE : S =
1

2
δ(F⊤ · F − I) : S =

1

2
(δF⊤ · F + F⊤ · δF ) : S

= F⊤δF : S = δF : F · S
(2.20)

10



2. Fundamentals for modelling mechanical and electrical interactions of cells

here δF is the variation of the deformation gradient and is obtained by its definition

and by the fact that the coordinates of the reference configuration are unchanged as:

δF =
∂

∂X
(δX + δu) =

∂δu

∂X
= ∇δu (2.21)

With the above two identities, the principle of virtual work can be now written as:∫
Ω

δu · ü ρdV +

∫
Ω

δE : SdV =

∫
Ω

δu · b ρdV +

∫
Γσ

δu · T ∗dA (2.22)

The first term in the left hand side is called the virtual work of inertial forces δWdyn,

while the second term is the internal virtual work δWint. The sum in the right hand side

is the virtual work of external forces δWext.

The principle of minimum potential energy

For hyperelastic materials, which are characterised by the existence of a strain energy

function, a preferable approach to obtain the solution for the static problem is to solve

a potential energy minimisation problem. The functional for the total potential energy

Π associated with a body can be stated as:

Π(u) = Πint(u) + Πext(u) (2.23)

Here, the internal potential energy Πint can be expressed in term of the stored strain

energy density W (C) as:

Πint(u) =

∫
Ω

W (C(u))dV, (2.24)

while the external potential energy Πext due to body forces and surface traction is given

as:

Πext(u) = −
∫
Ω

ρ b · udV −
∫
Γσ

T ∗ · udA, (2.25)

The minimum total potential energy principle states that the deformations which fulfil

the equilibrium condition minimise the total potential energy. Minimisation of Π involves

solving the stationary condition F (u,w) = 0, where the directional derivative F (u,w)

at u along the direction w is given as:

F (u,w) := DΠ(u) ·w =
d

dα
Π(u+ αw)

⏐⏐⏐⏐
α=0

(2.26)

11
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With the definition of the total potential energy and by applying the chain rule for the

derivative w.r.t. α of Πint, the directional derivative becomes:

F (u,w) =

∫
Ω

∂W

∂C
: DC ·w dV −

∫
Ω

ρ b ·wdV −
∫
Γσ

T ∗ ·wdA (2.27)

From the relationship between the right Cauchy-Green strain tensor C and the Green-

Lagrange strain tensor E, the identity DC ·w = 2DE ·w, or δC = 2δE, is obtained.

Together with the definition of the second Piola-Kirchhoff stress tensor via the strain

energy function, S = 2∂W/∂C, the following equation is obtained:

F (u,w) =

∫
Ω

S : δE dV −
∫
Ω

ρ b ·wdV −
∫
Γσ

T ∗ ·wdA = 0 (2.28)

which is equivalent to the weak form (2.22) for static equilibrium.

2.2. Maxwell’s equations

In this section, the fundamental equations in electricity and magnetism are described.

Depending on the problem, different assumptions can be made and the equations can be

simplified. A very short description of the Maxwell’s stress tensor that has been applied

in molecular biology is also given. An extensive introduction to electrodynamics can be

found in [30], while the classification of the problems in electrical engineering as well as

solution methods are presented comprehensively in [104].

All electromagnetic phenomena can be described by a set of equations, the Maxwell’s

equations. They include four first-order partial differential equations which are stated

as follows:

∇×E = −∂B

∂t
(2.29)

∇×H = J +
∂D

∂t
(2.30)

∇ ·D = ρ (2.31)

∇ ·B = 0 (2.32)

where E is the electric field intensity (V/m), D is the electric flux density which is also

known as displacement field (As/m2), H is the magnetic field intensity (A/m), B is the

magnetic induction (Vs/m2), J is the electric current density (A/m2), and ρ is the space

charge density (As/m3).

12
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In addition, a set of equations that specifies the relations between the quantities, for

example between D and E, between H and B should be supplied. These relations are

specific to a material or substance and are called constitutive equations. For linear and

isotropic media, the following laws are given:

J = κE (2.33)

D = εE (2.34)

B = µH (2.35)

where κ is the electrical conductivity (S/m), ε is the electric permittivity (As/Vm) and

µ is the magnetic permeability (Vs/Am).

Continuity equation The principle of charge conservation states that electric charge

can neither be created nor destroyed. Local conservation of charge is a consequence

of the laws of electrodynamics and its mathematical statement can be derived from

Maxwell’s equations [30]. By taking the divergence of Eq. (2.30) and using the fact that

∇ · (∇×H) = 0, we obtain the identity:

∇ · J = −∇ · ∂D
∂t

(2.36)

Now if we interchange the space and time derivatives on the right hand side and apply

Eq. (2.30), we get:

∇ · J = −∂ρ

∂t
(2.37)

This is called continuity equation [104].

Stationary current fields A stationary current (which is also called steady current,

time-independent current, or constant current) is a type of direct current whose intensity

does not vary over time. Since charge is not piling up anywhere in a constant current,

∂ρ/∂t = 0 and the continuity equation becomes:

∇ · J = 0 (2.38)

with J = κE being the electric current density. Here, κ is the conductivity of the

medium and is a constant. Moreover, since the process is steady, the magnetic field

generated by a stationary current is a constant over time. Hence, ∇ × E = 0 (from

13
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Eq. 2.29) and the electric field can be uniquely described by a scalar potential function

[104]:

E = −∇ϕ (2.39)

Hence, Eq. (2.38) can be written as:

κ∇ ·E = −κ∇ · ∇ϕ = 0 (2.40)

which means that the potential satisfies Laplace’s equation ∆ϕ = 0

Maxwell’s stress tensor The Maxwell’s stress tensor is used to represent the interac-

tion between electromagnetic forces and mechanical momentum [30]. It is convenient for

finding the total electromagnetic force on a body. It has been used to examine electrical

interactions along and between molecules at cell-matrix and cell-surface interface, as

well as within tissues [31].

Suppose that a medium has a constant permeability µ and a constant permittivity ϵ

and experiences an electric fieldE and a magnetic fieldB. Components of the Maxwell’s

stress tensor Sel are given as:

Sel
ij = ϵ

(
EiEj −

1

2
δijE

2

)
+

1

µ

(
BiBj −

1

2
δijB

2

)
, i, j ∈ {1, 2, 3} (2.41)

where Ei and Bi are components of the electric field and magnetic field, respectively,

and δij is the Kronecker delta function [30]. The magnitudes of the electric field and

the magnetic field are computed as E =
√

E2
1 + E2

2 + E2
3 and B =

√
B2

1 +B2
2 +B2

3 ,

respectively.

2.3. Solution methods for time dependent problems

In modelling the process of the deformation of structures, the change of state variables

and deformations in time has to be considered. The time evolution of a variable u can

generally be written as:
∂u

∂t
= F (u) (2.42)

where the discretisation of the spatial domain can be described in the function F . An

example is the diffusion problem:

∂u

∂t
= ∆u+ f in Ω, for t > 0 (2.43)
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Figure 2.3: Time dependent behaviour of a displacement component ui. Figure adapted

from [110].

where f is a prescribed function and ∆ is the Laplace operator.

The first-order temporal discretisation using backward differences is written as:

uk+1 − uk

∆t
= F (u) (2.44)

where the superscripts k, k+1, respectively, indicate the current time level and the next

time level. Here, the time interval 0 ≤ t ≤ T is subdivided into multiple time steps ∆t,

as depicted in Fig. 2.3. The function F (u) can be evaluated using explicit or implicit

time integration.

2.3.1. Explicit time integration

In this method, the function F (u) is evaluated at the current time:

uk+1 − uk

∆t
= F (uk) (2.45)

and the value at the next time level can be explicitly computed from the existing values

uk:

uk+1 = uk +∆tF (uk) (2.46)
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2.3.2. Implicit time integration

This method evaluates the function F (u) at the next time:

uk+1 − uk

∆t
= F (uk+1) (2.47)

This leads to an implicit relation between the value at the current and the following

time step:

uk+1 −∆tF (uk+1) = uk (2.48)

To obtain the value of uk+1, this implicit equation can be solved using iterations.

2.4. Finite element formalism

In order to apply finite element methods for the solution of partial differential equations

(PDEs), the mathematical model is often formulated as a variational problem. A usual

approach is to multiply the PDE by a function v, which is called a test function, and per-

form an integration over the domain Ω. The variable u, whose approximate solution to

be sought, is also called a trial function, and the integral representation of the equation

is called a weak form. The key idea of finite element methods is to solve the varia-

tional problem on a finite-dimensional (discrete) space instead of an infinite-dimensional

(continuous) space [53, 110].

Linear problems

A linear variational problem can be generally written in the form: find u ∈ V such that

a(u, v) = L(v), for v ∈ V̂ , (2.49)

where V is the trial space and V̂ is the test space. Here the functional a : V × V̂ → R
is a bilinear form and L : V̂ → R is a linear form. The restriction of the above problem

to a finite-dimensional space can be stated as: find uh ∈ Vh ⊂ V such that

a(uh, v) = L(v) ∀v ∈ V̂h ⊂ V. (2.50)

In order to approximate the primary field variables, ansatz functions have to be chosen.

The approximation of the exact solution of the mathematical model is done using an

ansatz as:

uexact ≈ uh =
n∑

i=1

Niui, (2.51)
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where (u1, . . . , un) ∈ Rn is the vector of degrees of freedom to be computed and {Ni}ni=1

is a basis for Vh. Here, the space Vh has the dimension of n. Let {N̂i}ni=1 be a basis for

the test space V̂h and take v = N̂i, for i = 1, 2, . . . , n, the condition that uh is a solution

of the variational problem leads to:

n∑
i=1

uia(Ni, N̂i) = L(N̂i), i = 1, 2, . . . , n. (2.52)

The coefficient vector u = (u1, . . . , un) can be obtained by solving a linear system

Au = b, where the components Aij of the matrix A and bi of the vector b are defined

as:

Aij = a(Ni, N̂i),

bi = L(N̂i)

for i, j = 1, 2, . . . , n.

Non-linear problems

In general, a non-linear variational problem can be written in the form: find u ∈ V such

that

F (u; v) = 0, ∀v ∈ V̂ , (2.53)

where F : V × V̂ → R is a semi-linear form, which is linear in the second argument.

Equation (2.28) is an example for this kind of problem, where the nonlinearity is de-

scribed by the Green-Lagrange strain tensor E. The discretisation of the above problem

using finite-dimensional sub-spaces gives: find uh ∈ Vh ⊂ V such that

F (uh; v) = 0, ∀v ∈ V̂h ⊂ V̂ . (2.54)

Similar to the linear case, let {Ni}ni=1 be a basis for the trial space Vh and {N̂i}ni=1 be a

basis for the test space V̂h, the approximation uexact ≈ uh =
n∑

i=1

Niui leads to a non-linear

system of equations

b(u) = 0, (2.55)

where b : Rn → Rn and the components of b(u) are:

bi(u) = F (uh, N̂i), i = 1, 2, . . . , n. (2.56)

This non-linear system can be solved using iterative methods such as Newton-Raphson

method [87].
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3. Experimental and numerical

methods for cell-substrate

interactions

In this chapter, the structure and main components of biological cells are briefly pre-

sented. Then, a short review of research on the mechanical interactions between cells

and substrates will be given. Both experimental studies and numerical methods are

presented.

3.1. Cell structure

The cell is known as the basic structural, functional and biological unit of all recognised

living organisms. Cells consist of cytoplasm enclosed within a membrane, which contains

many biomolecules such as proteins and nucleic acids [1]. Cells are classified into two

types: eukaryotic has a nucleus, while prokaryotic does not. The space between cells in

the tissue is filled by the extracellular matrix, the cell’s shape is organised and maintained

by the cytoskeleton, and the connection between neighbouring cells or between a cell

and the extracellular matrix is provided by cell junctions.

3.1.1. Extracellular matrix

The extracellular matrix (ECM) fills a large part of the tissue volume and is constituted

by extracellular macromolecules. The composition of the ECM is different between

multicellular structures, but the common functions of the ECM are cell adhesion, cell-

to-cell communication and differentiation. In addition to binding the cells together,

the ECM also influences their survival, development, shape, polarity and behaviour [1].

Fibrous proteins and glycosaminoglycan (GAG) chains are the two main components
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Integrins

Actin filaments

Extracellular matrix

Myosin

membrane
nucleus

cytoplasm

Figure 3.1: 2D visualisation of some fundamental components of a cell and its environ-

ment. Figure adapted from [78].

that compose the ECM. GAGs are a heterogeneous group of polysaccharide chains that

are usually attached to extracellular matrix proteins to form proteoglycan molecules.

Proteoglycans take up a large volume and as they have a net negative charge, they form

hydrated gels in the extracellular space. On the surface of cells, proteoglycans also exist

and their functionality is to help cells respond to secreted signal proteins [1]. Examples

of fibrous proteins are fibrous collagens, fibronectin, tenascin, elastins and laminin [26].

Cytoplasm

Extracellular matrix

membrane

actin filaments

integrin

fibronectin

elastin

proteoglycan

collagen

Figure 3.2: Different proteins exist in extracellular matrix including collagen, fibronectin,

elastin and proteoglycan. Figure adapted from [23].
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The elasticity of the ECM is mainly contributed by an extensive cross-linked network

of fibres and sheets which is formed by elastin molecules. For different tissue types, the

elasticity of the ECM can be various by several orders of magnitude.

3.1.2. Cytoskeleton

All spatial and mechanical functions of cells depend on the so-called cytoskeleton, which

is a complex network of interlinked filaments. The cytoskeleton gives the cells the ability

to change their shape and move from place to place. It supports the cell membrane and

helps the cells to resist deformation and endure strains and external stresses. It also

provides machinery for force generation, through which cells sense and respond to the

surrounding environment [1].

Microtubules, intermediate filaments and actin filaments are the three common types

of filaments that comprise the cytoskeleton of many eucaryotic cells. They are formed

by three families of protein molecules. Due to the differences in the magnitudes of

the forces between the subunits and their structures, the three types of filaments have

different mechanical properties and dynamics (Fig. 3.3). Intermediate filaments are

made up of smaller subunits that are themselves elongated and fibrous. They are rope-

like structures, easy to bend but hard to break. The subunits that form the microtubules

and actin filaments are compact and globular. Microtubules are strong, rigid hollow

tubes. Actin filaments are the thinner than the other two types of filaments and are

hard to stretch but easy to break [1].

Figure 3.3: Mechanical properties of actin, tubulin and intermediate filament polymers.

Figure adapted from [1].
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In living cells, the filaments of all three types experience constant remodelling through

the assembly and disassembly of their subunits. For microtubules and actin filaments,

gaining and losing subunits happen only at their ends, where one end grows faster

than the other end. The cell has the ability to expand itself by repeating assembly of

large number of small subunits. Due to their very small size, the subunits are able to

diffuse rapidly with cytoplasm, while the assembled filaments are not. Hence, cells can

undergo rapid structural reorganisations, where filaments are disassembled at one site

and reassembled at another site far away (Fig. 3.4).

small soluble
subunits

large filamentous
polymer

(a)

disassembly of filaments and
rapid diffusion of subunits

reassembly of filaments
at new site

signal

(b)

Figure 3.4: (a) Formation of filaments from smaller protein subunits and (b) rapid re-

organisation of the cytoskeleton in a cell in response to an external signal.

Figure adapted from [1].

3.1.3. Cell Adhesion

The contact between neighbouring cells or between a cell and the extracellular matrix

is provided by cell junctions, which consist of multiprotein complexes. Three functional
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classes of cell junctions are occluding junctions, anchoring junctions and communicating

junctions. Tight junctions (occluding junctions) act as barriers regulating the movement

of water and solutes between epithelial layers, communicating (GAP) junctions enable

communication between neighbouring cells, while anchoring junctions link cytoskeletal

proteins in one cell to those in neighbouring cells as well as to proteins in the extracel-

lular matrix. Anchoring junctions are usually classified into four main types, including

adherens junctions, desmosomes, focal adhesions and hemidesmosomes. The first two

types connect cells together and are formed by cadherins, whereas the last two types

connect cells to extracellular matrix and are formed by integrins [1].

Focal adhesion Focal complex

Tight junction

Adherens junction

Desmosome

Gap junction

Hemidesmosome

nucleus

Extracellular matrix

nucleus

Figure 3.5: Cell-cell and cell-matrix adhesion apparatuses. Adherens junction, tight

junction, desmosome and gap junction support cell–cell adhesion, while adhe-

sion between cell and matrix is promoted by hemidesmosome, focal complex

and focal adhesion. Figure adapted from [62].

Focal adhesions are junctions that mediate cell-matrix adhesion, force transmission,

cytoskeletal regulation and signalling [43]. At the focal adhesions, extracellular matrix

molecules, such as laminin or fibronectin, interact with cell-surface matrix receptors

called integrins, which are linked to the actin cytoskeleton [1].

3.2. Experimental studies

The responses of cells to external stimuli have been measured using several force appli-

cation techniques.
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Micro-pipette aspiration was introduced by Mitchison and Swann [61] to measure the

mechanical properties of sea-urchin eggs. In this method, the amount of cell material

which is pulled into a glass pipette under an applied pressure is examined (Fig. 3.6a).

When combining with basic continuum models, this technique is able to measure the

elastic and viscous properties of cells of different stiffness magnitudes [40]. It has been

utilised to measure the Young’s modulus and viscoelastic properties of cells of various

types such as red blood cells, chondrocytes and endothelial cells [39, 73, 79, 93, 94].

cell

micro-pipette

(a) Micro-pipette aspiration

cantilever

(b) Micro-needle manipulation

ECM substrate

(c) Substrate deformation

DC power
supply

+-

+-
cells

agar
salt

bridges

(d) Electrical stimulation

Figure 3.6: Some force application techniques. (a) The micro-pipette aspiration setup

where a cell of circular shape is being aspirated into a pipette. (b) In micro-

needle manipulation technique, a thin and flexible micro-needle is used to

push and penetrate into cells. (c) Strain is applied to the cell by stretching

the underlying substrate. (d) A chamber for electrical stimulation is used to

apply electric field to the cells. Figures adapted from [56].

Micro-needle manipulation is a technique in which a thin and flexible glass micro-

needle is used to push and penetrate into organelles of living cells or to indent into the

cell membrane to measure the cellular elasticity [72] (Fig. 3.6b). This technique has
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been refined and applied to determine the mechanical material properties of different

cell types [46, 73, 83] and to study structural connectivity in the cytoplasm and nucleus

[54].

In the substrate deformation technique, cells are cultured on top of an elastic mem-

brane or gel coated with extracellular matrix protein and a strain can be applied by

stretching the underlying substrate using an indenter or vacuum pressure [73] (Fig.

3.6c). By applying various uniaxial loads, it is possible to assess the effect of substrate

deformation on the morphology, genetic regulation, metabolic activity, injury and phe-

notype of cells [105]. Jones et al. [41] applied homogeneous strains to osteoblast-like

cells and skin fibroblasts and observed that only periostal osteoblasts are sensitive to

strains within the physiological range, while higher, unphysiological strains were needed

to see the responses of osteoblasts derived from the haversian system and skin fibrob-

lasts. Wang et al. [108] combined this technique with mathematical model to study the

orientation response of human melanocytes under cyclic substrate strain. The response

of primary human endothelial cells and smooth muscle cells to mechanical forces was in-

vestigated by Greiner et al. [29]. The external mechanical stimulation was implemented

by applying stretches of different frequencies from 0.01 − 1.0Hz to elastic membranes

on which the cells were cultured. A remarkable finding presented in [29] was the fre-

quency dependence of the area of the focal adhesion and the reorganisation of the actin

cytoskeleton as well as the focal adhesions system. Moreover, there exists a threshold

frequency below which the responses of endothelial cells are not detectable.

One of electrical techniques is to apply electrochemical gradients or stimulation to

a population of cells using metal electrodes or salt bridges (Fig. 3.6d). Using this

technique, Gou et al. [33] found that with an electric field of 50–100mV/mm, human

dermal fibroblasts migrated directionally toward the anode but the migration was slow

and could only be detected after more than one hour. A stronger field 400mV/mm was

required in order for the migration to happen within one hour. Under physiological

electric fields, corneal epithelial sheets and bovine vascular endothelial cells migrated

toward the cathode and their migration was also voltage dependent [51, 113]. Here,

electric fields whose strengths lie in range of 1− 200mV/mm are considered physiolog-

ical, as suggested by Nuccitelli [68]. In addition to the cell migration, this technique

has also been used to study the effect of electric field on cell contraction or cell orienta-

tion and organisation. Influenced by physiological electric fields, embryonic fibroblasts

oriented their long axes in the direction perpendicular to the electric field [22]. Under

a voltage gradient of 400mV/mm and greater, the cells elongated in the perpendicular
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direction [22, 36]. Using a steady voltage gradient of 1V/mm, Curtze et al. [14] found

that osteoblast-like cells responded in two phases: they first retracted then aligned and

elongated perpendicular to the electric field direction.

To quantify the forces generated by cells during their migration, contraction and

development, several force-sensing techniques have been developed and applied.

(a) Micro-needle arrays (b) Wrinkling membrane

Figure 3.7: Some force sensing techniques. (a) Micro-needle arrays can be used to es-

timate local cell forces at different regions. (b) In the wrinkling membrane

technique, force produced by the cells is estimated based on the number of

wrinkles and the lengths of the wrinkles formed on the substrate [35]. Figures

adapted from [89].

Traction Force Microscopy (TFM) is an experimental method in which cellular cultures

are seeded on or within an optically transparent 3D ECM embedded with fluorescent

microspheres. The traction forces generated by cells are estimated based on the dis-

placement field computed from the images. Wang et al. [109] applied TFM to test the

prediction that the stiffness of human airway smooth muscle cells increases proportion-

ally with the level of the tensile stress borne by filamentous structures. Using TFM to

measure the traction before and after treatment with the contractile agonist histamine,

the contractility of smooth muscle cells was found to be controlled by cell spreading

[91]. By analysing the dynamic characteristics of mechanical forces exerted by migrat-

ing fibroblasts, Munevar et al. [66] revealed several interesting results, for example, the

changes in the pattern of traction forces often preceded changes in the direction of mi-

gration. Soiné et al. [85] applied a new type of TFM, where a biophysical model and

additional images for cytoskeleton and adhesion are used, and found that in U2OS-cells,

ventral stress fibers experienced a higher tension than dorsal stress fibers or transverse

arcs.

Wrinkling membranes is a technique developed by Harris et al. [35] to measure the
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traction forces generated by cells (Fig. 3.7b). In this technique, cells are seeded on

a thin and flexible membrane of silicon rubber and the force produced by the cells is

estimated based on the number of wrinkles and the lengths of the wrinkles formed on the

substrate. Utilising this method, a great difference in the strength of cellular traction

was found between cell types. Moreover, the most mobile and invasive cells were found

to deliver the weakest traction [34]. Burton and Taylor [11] extended this method by

using substrata of new silicone polymer whose compliance can be adjusted precisely.

They were able to recognise forces of nano-newtons to micro-newtons in dividing cells.

The approach using micropost arrays to measure mechanical interactions between cells

and substrate was introduced by Tan et al. [89]. In this method, the compliance of the

posts can be adjusted by changing their geometrical parameters such as the height or

cross-sectional area. The cells are attached to the posts and when they move, the posts

are deflected differently at different regions. The traction force by the cell at each post

is then approximated by:

F =

(
3EI

L3

)
δ, (3.1)

where E, I, L and δ are the Young’s modulus, moment of inertia, height and the deflec-

tion of the post, respectively [89]. Using this method, Tan et al. [89] could quantify

the traction forces for spread and unspread bovine pulmonary artery smooth muscle

cells and found a positive correlation between the area of focal adhesions and the force

generated at those adhesions. Combining this technique with a multiple-particle track-

ing method, du Roure et al. [21] could quantify the dynamic traction forces exerted by

Madin-Darby canine kidney (MDCK) epithelial cells on a substrate. They found that

the highest intensity of the forces is localised at the edge of the cell and the magnitude

of the stresses at the edge of a cell monolayer is higher than that of a single cell. Schoen

et al. [81] suggested a contribution of substrate warping to have a better accuracy when

computing forces.

Since it was introduced, this method has been widely applied and extended in different

manners. Sniadecki et al. [84] built a force application system from an array of magnetic

and non-magnetic posts and used a magnetic field to apply external force to individual

adhesions of cells. They revealed interesting results, such as an increase in local focal

adhesion size at the regions where step forces were applied. Matschegewski et al. [55] used

regular arrays of titanium cubic pillars and investigated the dependency on substrate

characteristics of the architecture and function of human MG-63 osteoblasts. Based on

this approach, the research of Mörke et al. [63] suggested that in order for osteoblasts
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to maintain their function, implant biomaterials for bone replacement should provide

enough cell-material contact area and enough surface sides or area to provide a good

mechanical fixation of the implant in the native bone.

3.3. Mathematical modelling

Besides experimental studies, computational modelling has been a powerful approach

to the understanding of the mechanisms for the interactions between cells and their

surrounding environments, as it could give us an interpretation of the experimental

outcomes. Several modelling approaches can be used in cell biology, including agent-

based simulations, which are based on explicit tracking of all molecules in the cell, and

partial differential equation (PDE) modelling, which involve solving numerically a set of

PDEs on a continuous domain [64]. In cell mechanics, the latter is more widely used,

where the models are usually based on continuum mechanics and are solved using the

finite element method [73]. The models have different levels of complexity and hence

can capture the bio-mechanical behaviour of cells to different extents. Passive models,

in which cells are assumed to react passively to external stimuli, have the simplicity

but a limited ability to reflect cell behaviour. Constructed with a higher complication,

active models integrate active reactions and can simulate the remodelling of cells under

physical stimuli exposure [73].

Liquid drop models were developed to explain the rheological response of leukocytes

during micro-pipette aspiration. Their formulations were derived based on the assump-

tion that cells are comprised of one or more layers of cytoplasmic fluids, surrounded by

prestressed cortical shells [52, 73]. Tran-Son-Tay et al. [92] used a Newtonian liquid drop

model, in which the cell’s interior is assumed to be a homogeneous viscous Newtonian

fluid (Fig. 3.8a), to analyse the recovery process of a human neutrophil in an experiment

with micro-pipette. This model delivered a good agreement with the experimental data,

but was not able to capture the case when the cell was held for only a very short time

in the pipette [38, 92]. This limitation was overcome by using a compound Newtonian

liquid drop model, in which three layers were used for the cell: an outer membrane sur-

face, a shell layer, and a core [42] (Fig. 3.8b). In order to capture the rapid entry of cells

into a micro-pipette at the starting point of an aspiration test, a Maxwell liquid drop

model can be used. This model is an extension of the Newtonian liquid drop model,

where the cytoplasm is assumed to act like a Maxwell element [73]. Using this model,
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a Newtonian liquid droplet
is used for the cytoplasm

a fluid layer with constant
tension T0 is used for the cortex

µ

κ,
η,
T 0

(a) Newtonian liquid drop model

µ2 µ1

a more viscous
Newtonian liquid droplet
is used for the nucleus

cortex with constant
tension T1

cortex of nucleus
with constant

surface tension T2

a less viscous
Newtonian liquid droplet
is used for the cytoplasm

T1

T2

(b) Compound liquid drop model

Figure 3.8: (a) A Newtonian liquid drop model considers the cell as a Newtonian liquid

droplet contained in a cortical layer with a constant tension T0. The shear

viscosity of the cytoplasm is µ, while the coefficients of viscosity for surface

area dilation and shear of the membrane are κ and η, respectively. (b) Three

layers of a compound liquid drop model: the membrane, the cytoplasm (with

viscosity µ1) and the nucleus (with viscosity µ2; µ2 > µ1). Figures adapted

from [52].

Dong et al. [19] could predict the results of experiments with micro-pipette for both

cases: short-time small deformation and slow recovery after large deformation.

In solid models, the distinct cortical layer is not considered and the whole cell is

often assumed as homogeneous. Different material models can be used, but two of

them are widely accepted: elastic solid and visco-elastic solid [52]. Linear elastic solid

models consider the cell as homogeneous, elastic material conducted by Hook’s law.

The relationship between the deviatoric stress τij and the engineering strain γij in linear

elastic solid models is given by:

τij = Gγij, (3.2)

where G is the shear modulus, which is related to the Young’s modulus E and the

Poisson’s ratio ν by E = 2(1 + ν)G. The models are applicable for the estimation of

cell material properties, but they are generally inappropriate to describe the mechanics

of the cells, due to the oversimplification on the material law [73]. In micropipette

experiments where the pipette radius is much smaller than the local radius of the cell

surface, Theret et al. [90] considered the cell as an incompressible elastic half-space.
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a Maxwell liquid droplet
is used for the cytoplasm

a fluid layer with constant
tension T0 is used for the cortex
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µ

T0

(a) Maxwell liquid drop model

linear viscoelastic solid model
is used for the whole cell

µ

k2
k1

(b) Linear viscoelastic solid model

Figure 3.9: (a) In Maxwell liquid drop model, the cell is modelled as a Maxwell liquid

droplet with a viscous constant µ and an elastic constant k bounded by a

constant tension T0. (b) The whole cell is modelled as a homogeneous visco-

elastic linear solid with a viscous constant µ and two elastic constants k1 and

k2. Figures adapted from [52].

Doing this, the formula for an effective Young’s modulus of the cells could be derived

and applied for the determination of the mechanical properties of bovine endothelial cells

[52, 90]. Using a similar approach by modelling the cell as a linear elastic half-space in

the cytoindenter experiments, Shin and Athanasiou [83] could estimate the permeability

and the Poisson’s ratio of MG63 osteoblast-like cells. For magnetic twisting cytometry

experiment, Mijailovich et al. [59] modelled the cell as a three-dimensional slab, whose

material is linear elastic and incompressible, and could relate the elastic modulus to the

cell height and the degree of bead embedding.

In a linear visco-elastic solid model, the dependency of the stress in the cell on the

loading history is considered. The material law describes the relationship between the

deviatoric stress τij and the engineering strain γij and their rates of change as [80]:

τij +
µ

k2
τ̇ij = k1γij + µ

(
1 +

k1
k2

)
γ̇ij (3.3)

where µ is the viscosity and k1, k2 are the spring constants (Fig. 3.9b). Guilak et al.

[32] applied this theoretical model for the measurement of the osmotic and viscoelastic

properties of articular chondrocytes. The results of DiMilla et al. [18] employing a

viscoelastic-solid model could predict the influence of cell speed during migration on the
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cellular contractile force or the densities of ligand and receptor. Enhancing a viscoelastic

model by a cable network of stress fibres modelling the actin cytoskeleton, Milner et al.

[60] investigated the stress and strain in the cytoplasm and the nucleus of osteoblastic

cells under the application of high-frequency mechanical loading.

The active responses of the cells to the external stimuli have been addressed in the

active models with different levels of complexity. Zemel et al. [112] used actin-myosin

dipoles to represent the active remodelling of cytoskeleton in their dipole polymerisation

model. Under applied elastic strain, these dipoles respond by changing their orientation.

For a population of cells with ρ being the number of cells per unit volume, the average

value ρ⟨pij⟩ can be used to measure the cell polarisation. Here, pij =
∑

filj is the force

dipole tensor, where f is the force vector at each adhesion contact between the cell and

the matrix, l is the radius vector to the contact, and the sum is taken over all contacts.

In the direction of the principal strain, the polarisation of the cells is given in [112] as:

Pij = ρ (⟨pij⟩ − ⟨pij⟩0) (3.4)

which measures the increase in the average dipole tensor compared to the case when

the external forces are absent. This polarisation tensor Pij and the applied stress σa
ij

together produce the total excess stress in the system σij = σa
ij + Pij. The applied

stress is usually expressed through the excess strain uij and the elastic moduli C as

σa
ij = ϵCuij, where ϵ is the elastic permittivity tensor. Based on these definitions, an

interaction energy W between the cellular dipole pij and the local strain uloc
ij in the cell

vicinity can be established and the optimal orientation of cells under the application of

an elastic strain field can be predicted by solving an energy minimisation problem [112].

The model developed by Kaunas et al. [44] addresses the active response of the cell

to mechanical stretching by describing the reorganisation of actin stress fibres based on

constrained mixture theory. In the model, the assembly and disassembly of the fibres

are assumed to obey a first-order kinetics relation:

dΦi

dt
= −kiΦi (3.5)

where Φi expresses the mass fraction of the stress fibre i and ki is the disassembly

rate constant. Inspired by experimental observations, the constant ki is expressed as a

function of the fibre stretch αi as:

ki = k0

[
1 + k1

(
αi − α0

α0

)2
]
= k0[1 + k1(∆αi)] (3.6)
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where k0 and k1 are two constants and α0 is the homeostatic level of stretch [44]. Employ-

ing this model, the results for the changes in the distributions of stress fibre orientations

are in good agreement with experimental data [44].

In the constrained mixture model by Vernerey and Farsad [107], the development

of the stress fibre network within the cell is described through the coupling between

mechanics and chemistry. Using a multiphasic approach (with fluid, solid and solute

mixture phases), the contraction of the cell is mainly governed by four constituents: solid

cytoskeleton (s), fluid cytosol (f), stress fibre (p) and actin monomers (m). At every

cytosole

F-actin polymers

G-actin monomers

cytoskeletal network

focal adhesion

Figure 3.10: Illustration of a cell based on experiment of Parker et al. [70]. Every ma-

terial point in the cytoplasm is considered as a mixture of four constituents

including the cytoskeletal network, G-actin monomers, contractile stress

fibre and cytosol. Figures adapted from [107].

material point, each constituent is associated with a volume fraction ϕα (α = s, f,m, p)

which is the ratio between the unit volume of the constituent and the unit volume of

the mixture. With the assumption that the cell is made up by these four constituents,

the relation ϕs + ϕf + ϕm + ϕp = 1 is hold. The main features of the model include:

• Bio-mechanical contraction of stress fibres is represented by length-tension and

velocity-tension relationships of the fibre.

• The formation of the stress fibres is resulted by the mass exchange between them

and the available actin monomers in the cytoplasm, where the rate of the forma-

tion and the dissociation is assumed to be dependent on the tension in the fibre.

Moreover, the transport of fluid and monomers within the cell is assumed to obey

the laws of diffusion–convection.

• In addition to passive elasticity, the contribution of the active contractile stress,

which is based on the anisotropic distribution of stress fibres, is addressed.

31



3. Experimental and numerical methods for cell-substrate interactions

For a stress fibre in the direction associated with an angle θ between the fibre and the

base vector e1, the polymerisation rate is given as:

Γp
θ =

(
kf ϕ

m

ϕf
− kdϕp

θ

)
(3.7)

where kf and kd are the constants for the formation and the dissociation of the F-actin.

Here, ϕp
θ is a distribution function representing the variation in stress fibre density with

direction θ. A possible representation for this distribution is the π−periodic von Mises

distribution function proposed by Gasser et al. [27]:

ϕp
θ = ϕp

[
exp (b cos(2θ − θ0))

I0(b)

]
(3.8)

where

I0(b) =
1

π

π∫
0

exp(b cos θ)dθ (3.9)

is the zero-order Bessel’s function of the first kind, b represents the level of anisotropy

of the stress fibres and θ0 is corresponding to the direction which has the largest fibre

density. The plot of the von Mises distributions for some different values of b is shown

in Fig. 3.11.

θ0

maximum volume
fraction

0π

−π/2

π/2

(a) (b)

Figure 3.11: (a) An example of anisotropic distribution of stress fibres at a point in the

cell and (b) plot of von Mises distribution for different levels of anisotropy.

Figure adapted from [107].

The uni-axial contractile stress Tp in a fibre is assumed to be dependent on both the

strain ε and the strain rate ε̇ of the fibre and has the form as:

T p

T
= T ∗(ε, ε̇) (3.10)

32



3. Experimental and numerical methods for cell-substrate interactions

where T is the isometric contraction of the fibre when it is not deformed (ε = 0) and at

rest (ε̇ = 0). The function T ∗(ε, ε̇) was constructed based on the assumption that the

strain and the strain rate affect the fibre tension independently. For this, T ∗(ε, ε̇) can be

expressed as a product of two functions f(ε) and g(ε̇) representing the length–tension

relation and velocity-tension relation, respectively. These two functions should capture

several characteristics of the stress fibres in the experiments and are suggested to have

the forms [107]:

f(ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

[
−
(

ε

ε0

)2
]

ε < 0

exp

[
−
(

ε

ε0

)2
]
+

(
ε

ε1

)2

ε ≥ 0

, (3.11)

g(ε̇) = 1 +
ε̇/ε̇0√

(ε̇/ε̇0)2 + 1
(3.12)

where the parameter ε0 tells how fast the contraction decreases when the strain deviates

from zero and the parameter ε1 represents the passive strain hardening of the fibre. The

plots for f(ε) and g(ε̇) are shown in Fig. 3.12.

(a) Tension-length relation for ε1/ε0 = 1.4

−4 −2 0 2 4
ε̇/ε̇0

0.0

0.5

1.0

1.5

2.0

T
∗

(b) Tension velocity relation

Figure 3.12: Plots for tension-length and tension-velocity relations. Active and passive

responses of a stress fibre are addressed in the length-tension relationship.

Figures adapted from [107].

The model has been successfully applied to predict the influence of the stiffness of the

mechanical environment on the contraction of the cell as well as the development and
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orientation of a network of stress fibres in contracting fibroblasts [107]. The predictions

of those results for the case when the cells are subjected to constant or cyclic stretch

and are on substrates of different stiffnesses can also be obtained [24].

Addressing a similar level of detail compared to the model of Vernerey and Farsad

[107], the bio-chemo-mechanical model by Deshpande et al. [15] is supplied with a bio-

mechanical process and is shown to be efficient through numerous of its applications.

Due to its advantages, this model is selected as a foundation for our model. The detail

about the formulation as well as the applications of the model will be presented in the

next chapter.
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for cell contractility and adhesion

This chapter contains a part of our research article [99].

The bio-chemo-mechanical model proposed by Deshpande et al. [15] is one of the

most successful active computational models for the mechanical responses of cells. The

development of the model was inspired by the experiments of Tan et al. [89], where

smooth muscle cells were laid on beds of micro-needles and the force on each needle

was measured. By including the bio-chemical processes and describing the formation

and dissociation of cytoskeleton based on experimental observations, the model can

efficiently interpret a great number of results found from existing experiments on cell

contraction. For example, it can explain the strong dependence of the forces generated

by the cells on the substrate compliance and the influence of boundary conditions on the

orientation and formation of stress fibres. With a description for the contact between the

cell and the substrate, McGarry et al. [57] could apply the model for the simulations of

smooth muscle cells and other cell lines on arrays of micro-posts. When combined with a

bio-mechanical model for cell adhesion, this model could predict the distribution of high

and low affinity integrins in addition to actin filaments [17, 71]. The three dimensional

description of the model could give the actin distribution at the location near the cell

nucleus as well as at the contact regions in the force indentation experiments [20, 74, 75].

In this chapter, the relevant concepts and the governing equations of the bio-chemo-

mechanical model for cell contractility and the bio-mechanical model for cell focal ad-

hesion are presented. Then, our approach for an efficient software implementation of

the model is described. For our purpose of extending the model and applying it to

our research, such a good implementation is necessary. Finally, several applications of

the model are shown by comparing the results from our implementation to those in the

literature.
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4.1. The bio-chemo-mechanical model for cell

contractility

4.1.1. Background and assumptions

The bio-chemo-mechanical model of Deshpande et al. [15] was developed based on their

observations that the assembling of stress fibres is due to some signalling cascade in

the cell [1, 10] and the dissociation is caused by decrement of tension in the cell cyto-

plasm [10, 25]. According to Deshpande et al. [15], the contractility of cells is driven

by a mechanical term which is called active stress and is the result of tensions in stress

fibres in all directions caused by the activation in the cell. This active stress and the

level of activation are dependent on the rate of cell deformation and the remodelling of

the actin cytoskeleton which is influenced by the concentration of signal.

For the validity of the model, three fundamental assumptions were made [15]. Firstly,

the actin and myosin in the cell are assumed to be sufficient so that the activation of

the stress fibres in each direction is not limited by their availability. Secondly, it is

assumed that a fine scale network of fibres exists on a length scale much smaller than

the dimensions of the cell. Finally, the stress fibres are assumed to be able to form in

any direction with equal probability.

4.1.2. The equations

The bio-chemo-mechanical model [15] is defined for a single stress fibre and is described

by three equations. First, as bio-chemical processes are complex and not well understood,

a simple exponential function is used to represent the concentration:

C = exp(−t/θ) ∈ [0, 1], (4.1)

where θ is the decay constant of a chemical compound, t is the time measured from the

instant of the most recent signal. The plot of the function C(t) for two sample values of

θ is shown in Fig. 4.1a. Second, to describe the remodelling of the actin cytoskeleton,

a non-dimensional term called activation level η ∈ [0, 1] is introduced and the equation

for evolution of η is established based on experimental observations as:

η̇ = [1− η]
Ckf

θ
−
[
1− σf

σ0

]
η
kb

θ
, (4.2)
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(a) (b)

Figure 4.1: (a) The plot of the concentration for two different values of θ. The value

θ determines the amount of time until the concentration is close to zero.

(b) Hill-like equation for stress-strain rate relationship. Figure adapted from

[16].

where the term [1− η]
Ckf

θ
expresses the rate of stress-fibre-formation dependent on the

signal C, controlled by the constant kf. Similarly, the second term on the right hand

side is a non-negative number that expresses the rate of stress fibre dissociation, which

depends on the current tension relative to the isometric tension σ0 and is controlled by

the constant kb. Here, σ0 is the maximum tension allowed in the stress fibre correspond-

ing to the activation level η and is given as σ0 = ησmax, where σmax is the maximum

tension at η = 1, that is, when the stress fibre is fully activated. Finally, a linearised Hill

equation [37] is used to describe the relationship between tension σf and the lengthening

/ shortening strain rate ε̇f as:

σf

σ0

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0

ε̇f
ε̇0

< − η

kv

1 +
kv

η

(
ε̇f
ε̇0

)
− η

kv

≤ ε̇f
ε̇0

≤ 0

1
ε̇f
ε̇0

> 0

(4.3)

where kv is the fractional reduction in fibre stress upon increasing the shortening rate

relative to ε̇0. The plot for this stress-strain rate relationship is shown in Fig. 4.1b.
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4.1.3. Incorporating the bio-chemo-mechanical model into the

framework of continuum mechanics

To apply the bio-chemo-mechanical model for a cell comprising a network of stress

fibres, a representative volume element (RVE) is defined and the constitutive relation is

established [16]. Due to generated tensions of stress fibres, the total stress in the cell

should include the active stress, in addition to the passive non-contractile stress. The

appearance of the active stress in the continuum mechanics frameworks is described by

introducing an additional stress term to the Eq. (2.12) so that the equilibrium equation

becomes:

∇ · (FStotal) + ρ0b = 0 ∀X ∈ Ω0 (4.4)

where

Stotal = Sactive + Spassive (4.5)

and Sactive,Spassive denote the active and passive stress tensors, respectively. Usually, an

elastic material model is used for the cell and Spassive becomes the second Piola-Kirchhoff

stress tensor, which is related to the Green-Lagrange strain tensor E by the constitutive

equation Spassive = C :E with C being the material stiffness tensor.

As stress fibres can form in any direction in the RVE, this active stress tensor is

obtained as an integral with a coordinate transformation from the fibre direction to

the Cartesian coordinate. In finite element implementation, only approximated values

are obtained by choosing a set of Nd (relatively large) directions for stress fibres, each

direction is represented by a unit vector m. The equations (4.2), (4.3) are then solved

for these Nd directions and active stresses are computed as numerical integrals.

2D modelling When it is assumed that the cell thickness is small compared to the

other two dimensions and that only in-plane contractility occurs, then a 2D finite element

analysis can be applied. A set of Nd directions is obtained by spacing equally Nd angles

ϕ ∈ [−π/2, π/2], where ϕ is the angle between the stress fibre and the e1 axis, as shown

in Figure 4.2a. The unit vector m(ϕ) corresponding to the angle ϕ is then written

as m(ϕ) = cos(ϕ)e1 + sin(ϕ)e2. Generally, the activation at each point in the cell is

different in each direction (Fig. 4.2b).

The strain rate ε̇f of the stress fibre associated with direction ϕ is calculated from the

material strain rate Ėij as

ε̇f ≡ Ė11 cos
2 ϕ+ Ė22 sin

2 ϕ+ Ė12 sin 2ϕ (4.6)
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e1

e2

φ

cell

(a) Fibre direction defined in cell

coordinate

(b) A large number of directions

for stress fibres

Figure 4.2: In 2D implementation, a set of fibre directions needs to be defined and the

equations are solved in these directions. A possible sampling is the division

of a circle into many equal angles.

and the average active stress in Cartesian coordinate generated by the fibres is obtained

as

Sij =
1

π

π/2∫
−π/2

σfmi(ϕ)mj(ϕ)dϕ i, j = 1, 2 (4.7)

where σf is the tension in the stress fibre. The value of this stress is calculated using

numerical integration. The active stress tensor is written as

Sactive =
1

π

π/2∫
−π/2

⎛⎜⎝ σf (ϕ) cos
2 ϕ

σf (ϕ)

2
sin 2ϕ

σf (ϕ)

2
sin 2ϕ σf (ϕ) sin

2 ϕ

⎞⎟⎠ dϕ (4.8)

3D modelling In the general case where stress fibres can form in any direction in

the space, a 3D analysis should be performed. The orientations of stress fibres are

determined by distributing Nd unit vectors in 3D space such that the minimum distance

from a vector to its neighbours is maximised [3, 74]. Each unit vector is defined by a pair

of angles ω and ϕ (Figure 4.3a) as m(ω, ϕ) = sin(ω) cos(ϕ)e1+sin(ω) sin(ϕ)e2+cos(ω)e3.

The activation is generally different in each direction (Fig. 4.3b).

The strain rate ε̇f in the fibre associated with m(ω, ϕ) is related to the strain rate in
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e1

e2

e3

φ

ω

(a) Fibre direction defined in

cell coordinate

(b) A large number of direc-

tions for stress fibres

Figure 4.3: In 3D implementation, a possible sampling for fibre orientations is obtained

by distributing a great number of unit vectors at the origin so that the

minimum distance from each vector to its neighbours is maximised.

the RVE by:

ε̇f = Ėijmimj = Ė11 sin
2 ω cos2 ϕ+ Ė22 sin

2 ω sin2 ϕ+ Ė33 cos
2 ω

+ 2Ė12 cosϕ sinϕ sin
2 ω + 2Ė23 sinω cosω sinϕ

+ 2Ė13 sinω cosω cosϕ

(4.9)

and the active stress σf of each fibre contributes to the stress state in the RVE as

Sij =
1

V

∫
V

σf (ω, ϕ)mi(ω, ϕ)mj(ω, ϕ)dV for i, j = 1, . . . , 3 (4.10)

which can be numerically calculated as an average value for all directions

Sactive
ij =

1

Nd

Nd∑
k=1

σf (ωk, ϕk)mi(ωk, ϕk)mj(ωk, ϕk) (4.11)

Contact behaviour between cell and substrate At the region where the cell is in

contact with the substrate, a behaviour for this contact needs to be described. McGarry

et al. [57] used a simple adhesion model, in which the shear traction Ti between the cell

membrane and the substrate at the contact region is given by a linear elastic relation

as:

Ti = kt ·∆i, (4.12)

where ∆i is the relative sliding between the cell and the substrate, kt (in nN/µm3) is the

shear stiffness of the adhesion. This shear stiffness can be understood as the product of
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the concentration of focal adhesion complexes per unit area (1/µm2) and the stiffness

of the complex (nN/µm). An illustration for using this simple adhesion model together

ECM substrate

∇(FStotal) + ρb = 0

Stotal
ij nj = −kt∆i

Figure 4.4: The adhesion behaviour needs to be described as a boundary condition at

the region where the cell is in contact with the substrate.

with the bio-chemo-mechanical model is shown in Fig. 4.4.

Measure for actin distribution For every state of the activation level in the cell, there

is a measure that is shown to be corresponding to the patterns of actin distribution [57].

This measure is defined as:

Π = ηmax − η̄, (4.13)

where ηmax is the maximum activation and η̄ is the average activation in all directions.

The mean value η̄ is written as

η̄ =
1

π

∫ π/2

−π/2

η(ϕ)dϕ (4.14)

for the 2D case, and

η̄ =
1

V

∫
V

η(ω, ϕ)dV (4.15)

in case of 3D. In the above configurations, these integrals are also computed numerically.

4.2. The bio-mechanical model for cell focal adhesion

The construction of the bio-mechanical model for cell focal adhesion (FA) of Deshpande

et al. [17] is based on the investigation of the formation of FAs via the bonding of integrins

in the cell surface to suitable ligands on the extracellular matrix (ECM). Integrins are

known as adhesion receptors that are responsible for bidirectional transmission of signals
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across the plasma membrane [111]. They exist in two conformational states: low-affinity

(bent) and high-affinity (straight) integrins (Fig. 4.5), whereas only the latter form

bonds.

cell membrane intracellular

extracellular

high affinity
integrinlow affinity

integrin

Figure 4.5: The bent (low-affinity) and extended-open (high-affinity) conformations of

integrin. There exists a ligand-binding site in the high-affinity integrin, which

is indicated by the triangle. Figure adapted from [45, 49].

Deshpande et al. [17] suggested that the chemical potential χL of low affinity integrins

with a concentration ξL can be described as:

χL = µL + kT ln
ξL
ξ0

(4.16)

where µL is the internal energy, ξ0 is the total concentration of integrins, k is the Boltz-

mann constant and T is the absolute temperature.

Due to their straight configuration, high affinity integrins are less stable so it is ex-

pected that they have a higher reference potential compared to low affinity integrins

(µH > µL). The chemical potential χH of high affinity integrins with a concentration ξH

(ξH + ξL = ξ0) when their bonds experience a stretching ∆i is proposed as:

χH = µH + kT ln
ξH
ξ0

+ Φ(∆i)− Fi∆i (4.17)

where Φ is the stretch energy stored in the integrin-ligand complex and Fi∆i is the

mechanical work due to stretch ∆i. The force Fi is dependent on the stretch energy and

they are related by

Fi =
∂Φ

∂∆i

(4.18)

As the formation of bonds and the conversion of the low affinity integrins to high

affinity ones take place in a time scale much smaller than all other involved processes,
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the concentrations of the integrins are determined from the thermodynamic equilibrium

condition χH = χL. When this condition is met, the concentrations of high and low

affinity integrins are obtained as:

ξH =
ξ0

exp

[
µH − µL + Φ− Fi∆i

kT

]
+ 1

(4.19)

ξL =
ξ0

exp

[
−µH − µL + Φ− Fi∆i

kT

]
+ 1

(4.20)

Finally, the stretch energy Φ is to be specified as a function of ∆i to complete the

model. As the integrin-ligand complexes have a finite rupture energy, the function Φ

has to satisfy the condition that γ ≡ Φ(∆i → ∞) is a finite number. A simple piecewise

quadratic function for the stretch energy is suggested as:

Φ =

⎧⎪⎨⎪⎩
0.5κs∆

2
e ∆e ≤ ∆n

−κs∆
2
n + 2κs∆n∆e − 0.5κs∆

2
e ∆n < ∆e ≤ 2∆n

κs∆
2
n ∆e > 2∆n

(4.21)

where κs is the stiffness of the complex, ∆e =
√
∆2

1 +∆2
2 is the magnitude of the stretch.

The plots for the stretch energy function and its derivative ∂Φ/∂∆e are shown in Fig. 4.6.

∆n 2∆n
∆e

γ

st
re
tc
h
en
er
gy

Φ

(a) Stretch energy Φ(∆e)

∆n
∆e

∂
Φ
/∂

∆
e

(b) Derivative ∂Φ/∂∆e

Figure 4.6: Plot for the stretch energy and its derivative with respect to the effective

stretch.

To include the model of cell focal adhesion to simulations that use the continuum

mechanics theory, the stretch of the complexes should be related to the deformation of
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the system. In case of stiff substrate, a possible relation between the stretch ∆i and the

displacement ui of the cell is given as follows [17, 71, 75, 77]:

∆̇i =

⎧⎨⎩ u̇i ∆e ≤ ∆n or

[
∂Φ

∂∆e

∆e < 0

]
,

0 otherwise

(4.22)

Moreover, the tractions on cell surface should be in equilibrium with the stresses at the

boundary (Fig. 4.7). This equilibrium condition requires that Ti = Sijnj = −ξHFi,

ECM substrate

Sijnj = −ξHFi

Figure 4.7: The model for cell focal adhesion is included as a boundary condition at the

region where the cell is in contact with the substrate.

where nj is the surface normal and Sij are the components of the stress tensor S in the

cell. In 2D, the indexes i, j ∈ {1, 2} refer to the horizontal and vertical directions. When

coupling with the bio-chemo-mechanical model, this stress becomes Stotal = Spassive +

Sactive.

4.3. Finite element formulation for the coupled problem

In part due to its positive features and several advantages, the bio-chemo-mechanical

has a high level of complexity compared to many other models. Devising an efficient

software implementation that can be easily extended and applied for several simulations

is therefore a demanding task. In this section, we present our approach to implementing

the model in 2D in a way such that the generalisation in 3D can be obtained without

much effort. We chose the simulation for cells on micro-post arrays, where the contact

behaviour between the cell and the substrate needs to be described. For other 2D

simulations, the implementation is often simpler and can be done in a similar way. In our

approach, the mixed finite element method, in which several variables are approximated
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simultaneously [9, 53, 86], is used for the contact problem. The solution space is then a

mixed function space, which is the tensor product of several function spaces.

We utilise the open source framework FEniCS [53] to solve the system of partial

differential equations. For the use of this software, the weak form of the system is

derived in this section. The detail of the implementation in FEniCS is presented in the

Appendix.

4.3.1. Time discretisation for the activation level

Applying the explicit Euler method for Eq. (4.2), we obtain:

ηk+1 − ηk

dt
=

(
[1− ηk]

Ckf

θ
−
[
1− σf

σ0

]
ηk

kb

θ

)
(4.23)

where dt = tk+1 − tk is the time step and the superscript indicates the time step. For

the detail of our implementation, Eq. (4.23) is solved at each element by multiplying it

with a test function and integrating over the cell domain to obtain the weak form.

4.3.2. Computation of the active stress tensor

To obtain the active stress tensor, the integral in Eq. (4.8) has to be performed. In finite

element implementation, a numerical integration scheme such as trapezoidal rule can be

applied to compute this integral [16]. By dividing the interval [−π/2, π/2] into Nd equal

sub-intervals and letting ϕi be the grid points, with i = 1, . . . ,Nd + 1, the components

of the active stress tensors can be written as:

Sactive
11 =

1

2Nd

(
σ(ϕ1) cos

2 ϕ1 + 2

Nd∑
k=2

σ(ϕk) cos
2 ϕk + σ(ϕNd+1) cos

2 ϕNd+1

)

Sactive
12 =

1

4Nd

(
σ(ϕ1) sin 2ϕ1 + 2

Nd∑
k=2

σ(ϕk) sin 2ϕk + σ(ϕNd+1) sin 2ϕNd+1

)

Sactive
22 =

1

2Nd

(
σ(ϕ1) sin

2 ϕ1 + 2

Nd∑
k=2

σ(ϕk) sin
2 ϕk + σ(ϕNd+1) sin

2 ϕNd+1

) (4.24)

4.3.3. Weak form for the coupled problem

The active stress is the only trigger for the deformation of the cell and there is no body

force or surface traction applied. The cell is attached to the pillars via a simple adhesion
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model, where the traction on the cell at the contact region is Ti = kt ·∆i, with kt being

a constant and ∆i being the relative distance between the cell and the pillars. Assuming

to have elastic behaviour and to be incompressible, the pillar is modelled as a disc of

high Young’s modulus value which is connected to a spring with stiffness constant ks.

Figure 4.8: Division of the cell body into contact and non-contact regions. Illustrated is

the cell on 2× 2 pillars, but the same approach is used for other problems.

Our approach for solving the contact problem between the cell and the pillars is to

first divide the cell domain into sub-domains:

Ω = Ωpillars ∪ Ωnon-contact, with Ωpillars ∩ Ωnon-contact = ∅

where Ωpillars is the sub-domain in which the cell is in contact with the pillars and

Ωnon-contact = Ω \ Ωpillars (Fig. 4.3.3). Then, using a mixed function space, the static

problem is to find u = (ucell,upost) ∈ V × V , where V is the function space for the

displacements, so that the equilibrium conditions are satisfied:

∇ · Fcell(S
active
cell + Spassive

cell ) = 0 ∀X ∈ Ω (4.25)

∇ · FpostSpost = 0 ∀X ∈ Ω. (4.26)

Here, the body weight is ignored and the gradient is taken with respect to the initial

configuration. The transformation gradients for cell and posts are Fcell = 1+∇ucell and

Fpost = 1 + ∇upost, while Spassive
cell and Spost are the second Piola-Kirchhoff stresses in

the cell and post domains, respectively.

Let (wcell,wpost) be a test function in the mixed space V × V , the weak form for the

coupled problem can be written as:∫
Ω

[∇ · Fcell(S
active
cell + Spassive

cell )] ·wcell dV +

∫
Ω

[∇ · FpostSpost] ·wpost dV = 0 (4.27)
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By applying the product rule (∇·FS)·w = ∇·(FS ·w)−∇w : (FS) and the divergence

theorem for the integral of the term ∇ · (FS ·w), the above weak form becomes:∫
Ω

∇wcell : [Fcell(S
active
cell + Spassive

cell )] dV −
∫
Γσ

T ∗
cell ·wcelldA

+

∫
Ω

∇wpost : [FpostSpost] dV −
∫
Γσ

T ∗
post ·wpostdA = 0

(4.28)

where T ∗
cell and T ∗

post are the tractions on the boundaries of the cell and the posts,

respectively. With δE denoting the variation of the Green-Lagrange strain tensor, the

identity ∇w : (FS) = δE : S holds. This identity is shown in [110] based on the fact

that the scalar product of a symmetric tensor with the antisymmetric part of a tensor

is zero and δE is the directional derivative of E in the direction w. The weak form is

then written as: ∫
Ω

(Sactive
cell + Spassive

cell ) : δEcell dV −
∫
Γσ

T ∗
cell ·wcelldA

+

∫
Ω

Spost : δEpost dV −
∫
Γσ

T ∗
post ·wpostdA = 0

(4.29)

Now, on the boundaries where the cell is in contact with the posts, the traction due

to the adhesion is applied on both the cell and the posts. Additionally, displacement of

the post causes a traction due to the spring connected to it:

T ∗
cell = −kt(ucell − upost) (4.30)

T ∗
post = −kt(upost − ucell)−

ks
Apost

upost (4.31)

where Apost is the cross-sectional area of each post. The final weak form is obtained as:∫
Ω

(Sactive
cell + Spassive

cell ) : δEcell dV +

∫
Ω

Spost : δEpost dV

+

∫
Γcontact

ks
Apost

upost ·wpost dA+

∫
Γcontact

kt(ucell − upost) ·wcell dA

+

∫
Γcontact

kt(upost − ucell) ·wpost dA = 0

(4.32)

In case that both the cell and the posts are thin flat plates, as assumed in the work

of McGarry et al. [57], the plane stress problem can be applied. Then, the last three
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boundary terms in the above equation can be written as volume integrals divided by

the corresponding thickness. As upost is only defined in the post region, the following

Dirichlet boundary condition is required for the convergence of the solution procedure:

upost = 0 in Ωnon-contact.

It should be noted that the obtained weak form for the coupled problem does not

depend on the formulation of the activation level. To use the classical representation in

[15], the only modifications in the implementation are the equation for the activation

level and the construction of the active stress tensor.

4.4. Applications of the bio-chemo-mechanical model

The advantages of the bio-chemo-mechanical (BCM) model had led to it being employed

to predict the results from several experimental studies on the mechanical responses of

different cell types. Moreover, many in silico experiments have been performed based

on the 2D and 3D versions of this mathematical model. In this section, a number of

applications of the model are presented by showing the results obtained by our finite

element software implementation in comparison with those in the literature.

4.4.1. Simulations of cells on micro-post arrays

Since the micro-needle array technique was introduced by Tan et al. [89] in their exper-

iments, there have been many attempts for mathematical descriptions that can capture

the behaviour of cells in such experiments. The analytical description of [65] suggests

that the fibres experience some contraction when they are subjected to activated motor

proteins or some chemical treatment. In this model, cell actin network is considered a

discrete set of elastic filaments and a prestrain value is used to describe the fibre con-

traction. In the work of Nelson et al. [67], a prescribed thermal strain is also used to

describe the contractility of the cell. However, instead of a set of discrete filaments,

the cell is modelled as two layers with an isotropic incompressible elastic material: a

contractile layer with a Young’s modulus of 500Pa and a thinner passive layer with a

value of 100Pa for Young’s modulus.

Compared to such analytical descriptions, the bio-chemo-mechanical is more efficient

in many aspects, for example in explaining the strong dependence of the forces generated

by the cell on the post stiffness, or the distribution of actin filaments within the cells.

By describing the focal adhesion between cells and posts at the contact area, McGarry
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et al. [57] have shown that the model is applicable to numerical studies of the generated

forces and the formation of actin within the cells of different cell lines.

Parameter value

σmax 3.9 [nN/µm2]

θ 720 [s]

kv 10

kf 10

kb 1

ε̇0 2.8 · 10−4 [s−1]

Ecell 0.4 [nN/µm2]

νcell 0.3

(a)

Parameter value

σmax 25 [nN/µm2]

θ 70 [s]

kv 7

kf 10

kb 1

ε̇0 0.003 [s−1]

Ecell 0.4 [nN/µm2]

νcell 0.3

(b)

Table 4.1: Two sets of parameters for the BCM model and cell material properties.

Smooth muscle cells on regular post-arrays McGarry et al. [57] performed the

simulations of the development of actin in smooth muscle cells when they are cultured

on arrays of 2×2, 3×3 and 4×4 posts. Their results could capture several outcomes from

the experiments of Tan et al. [89]. For example, the average deflection of the pillars and

the highest concentration of actin were well predicted. Figure 4.9 shows the results for

actin distribution of muscle cells from our implementation based on the models described

by McGarry et al. [57]. Parameters for the BCM model are given in Table 4.1b. For

the passive stress in the cell, the linear elasticity material model is used. The values

for Young’s modulus and Poisson’s ratio can also be found in this table. The posts are

with 1.5µm radius and 32nN/µm bending stiffness, the spacing between post centres is

10µm. The cell thickness is b = 1µm and the adhesion stiffness is kt = 500nN/µm3. For

the simulations of cells on 2× 2 and 3× 3 posts, no difference was found in our results

compared to those in [57]. In case of 4×4 posts, we observed a slight difference between

our result and that in [57], but the prediction of experimental outcome remains valid.

That is, the highest actin distribution is located near the cell periphery and the borders

of the posts, while the cell central region appeared with a low distribution.
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2× 2 3× 3 4× 4
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0.17

0.30

0.42

0.55

Figure 4.9: Predicted steady-state distribution of actin of smooth muscle cells on arrays

of 2×2, 3×3 and 4×4 micro-posts, in comparison with experimental results

by Tan et al. [89]. The simulations were first done by McGarry et al. [57].

Shown are results using our implementation with FEniCS.

The influence of post stiffness An advantage of the bio-chemo-mechanical model

is that it can capture the strong dependence of the stress generated by the cell and

the formation of actin filaments on the compliance of the substrate. This feature of

the model was demonstrated in [57] by investigating the responses of cells for different

stiffness values of the posts, while the same geometry of the post arrays was used. For

three values of post’s normalised bending stiffness, which is defined as k̄s = ks/(σmax · b),
where b is the cell thickness, the steady-state actin distribution of a muscle cell on an

array of 5× 5 posts was computed. Figure 4.10 shows our results using the open source

software FEniCS, which are in very good agreement with those in [57]. The results

illustrated that for stiffer posts, the higher level of actin polymerisation within the cell

is produced and therefore higher contractile forces by the cells are obtained.

The influence of post distance For posts of the same material properties, the ge-

ometrical parameters, such as their cross-sectional area or the spacing between them,

have effects on the responses of cells. Figure 4.11 shows the plots of actin distribution
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k̄s = 0.128 k̄s = 1.28 k̄s = 4.0
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Figure 4.10: Our FEniCS result for a single muscle cell on 5×5 posts with three different

normalised bending stiffnesses k̄s. The parameters in [57] are used (Tab.

4.1b). The post radius is 1.5µm, while the distance between two posts is

10µm.

l/b = 20 l/b = 6.67

0.05

0.17

0.30

0.42

0.55

Figure 4.11: Our FEniCS results for a cell on an array of 5× 5 posts with two different

post distances. The value b = 1µm is used for the cell thickness.

for two configurations of posts, where different values for the spacing between the posts

are used (l = 20µm and l = 6.67µm), from our implementation. The results are in very

good agreement with those in [57], which illustrated the effect that a larger post spacing

resulted in a higher actin distribution near the posts.

Fibroblast on an irregular array of 29 posts The bio-chemo-mechanical model is

applicable for different cell lines and is not limited to symmetric geometries of the cells.

Using a smaller value of the maximum stress, i.e. σmax = 3.25nN/µm2, McGarry et al.

[57] conducted a simulation for the response of a fibroblast on an irregular array of

29 posts. Their predicted steady-state actin distribution agreed very well with their

experimental results. Figure 4.12c shows our FEniCS result, which has been done using
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(a) (b) (c)
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Figure 4.12: (a) A fibroblast cell spreads over 29 posts in the experiment of McGarry

et al. [57]. (b) The shape of the cell in our simulation and the sub-domains

where the cell is in contact with the posts. (c) Plot for our predicted steady-

state distribution of actin filaments (characterised by the measure Π in Eq.

(4.13)) for simulation of a fibroblast on an irregular of 29 posts. The study

was first done by McGarry et al. [57].

the model and parameters described by McGarry et al. [57]. We constructed our cell

shape using straight lines connected smoothly to their neighbours. Due to using a

different geometry, we observed a slight difference in our result in comparison with that

by McGarry et al. [57]. However, the steady-state actin distribution in the experiment

is still very well predicted.

4.4.2. Development of actin cytoskeleton and focal adhesion

The bio-chemo-mechanical model can be combined with the bio-mechanical model for

cell adhesion (presented in Section 4.2) to simulate the development of the stress fibres

in the cell and the integrins at the contact regions. Pathak et al. [71] performed such

simulations for cells of different shapes.

The features of the combination of the two models were demonstrated by studying a

triangular cell and a circular cell on a ligand patch of the same shape. The dimensions

of the cells are illustrated in Fig. 4.13. For both cell shapes, the parameters in Tab. 4.2

are used for the BCM model and the focal adhesion model. The variables to be solved

for are the deformation of the cell, the activation with the cell, and the concentration of
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40µm

40
µ
m

r = 4.5µm r

r

cell R
= 17.

5µ
m

cell

Figure 4.13: The size of a triangular and a circular cell. Figures adapted from [71].

high affinity integrins at contact regions.

Parameter value

σmax 4.0 [nN/µm2]

θ 720 [s]

kv 6

kf 10

kb 1

ε̇0 2.8 · 10−4 [s−1]

Ecell 0.08 [nN/µm2]

νcell 0.3

Parameter value

T 310 [K]

µH − µL 5 [kT ]

κS 0.015 [nN/µm]

∆n 130 [nm]

ξ0 1000 [1/µm2]

Table 4.2: The parameters for the BCM model (left) and the focal adhesion model

(right).

The plots for the steady-state distributions of stress fibre concentration, which is

characterised by Γ = (ηmax− η̄)/ηmax, and high affinity integrin concentration are shown

in Fig. 4.14 and Fig. 4.15. Here are our results using our implementation with FEniCS,

which are in very good agreement with those in [71]. The results demonstrated that,

for both cell shapes, high actin distribution and high focal adhesion concentrations are

found along the cell periphery. In the interior part of the cells, the network of actin
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Figure 4.14: Plots for predicted steady-state distributions of the stress fibre (above) and

high affinity integrins (below) concentrations for a triangular cell on a ligand

pattern of the same shape as in [71]. Our FEniCS results using the BCM

model in combination with the focal adhesion model. Obtained results are

in very good agreement to those in [71].

filaments is almost isotropic [71].

The development of the focal adhesion over time was studied by computing the concen-

trations of the integrins at different time periods. Figure 4.16 shows these concentrations

for the circular cell at different locations, determined by the distance r to the cell centre.

At the initial state, the integrins are distributed uniformly in the cell, where the low

affinity integrins are dominating. In response to the contractility of the cell, the focal

adhesions developed and the evolution happened in a time scale much smaller than the

stress fibre development. Large changes were found in the concentrations of the high

and low affinity integrins within the time of t = 0.5θ, while no significant change found

after t = 9θ. The deformation of the cell caused the transformation from low to high

affinity integrins. At the cell periphery, where the cell experienced largest deformation,

the concentration of high affinity integrins was highest.
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Figure 4.15: Plots for predicted steady-state distributions of the stress fibre (above) and

high affinity integrins (below) concentrations for a circular cell on a ligand

pattern of the same shape as in [71].
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Figure 4.16: Normalised concentrations of high and low affinity integrins for the circu-

lar cell. Results obtained from our implementation and are in very good

agreement with those in [71].

55



5. Model order reduction of the

bio-chemo-mechanical model

This chapter includes my contribution to the journal article [3].

The applicabilities and the advantages of the bio-chemo-mechanical have been confirmed

in numerous studies [15–17, 20, 57, 71, 73–77]. The very advantageous features of the

model came at the cost of high complexity and hence high computation requirements.

The solution procedure includes sampling a large number of stress fibre directions at

every point in the cell and solving for the activation level in these directions. The

number of degrees of freedom to be solved for is therefore very high in 3D analysis, and

even in many 2D simulations. Presented in this chapter is our approach to reducing the

complexity of the model by employing a quadratic form to approximate the activation

level at every point in the cell. The results obtained with our formulation are close to

those presented in the literature, while the computation time is significantly reduced.

5.1. Semi-analytical formulation

The key idea of coupling the bio-chemo-mechanical model to the equations of continuum

mechanics is to add the active stress tensor to the computation of the total stress at

every point in the cell. This active stress tensor is the average of active tension in stress

fibres in all directions. Usually, a large number of directions is defined and the activation

level in the cell, which is described in Eq. (4.2), is solved in these directions. Our semi-

analytical formulation is derived based on the approximation of the distribution of the

activation level η at every point in the cell by a quadratic function restricted to a circle

in 2D and to a sphere in 3D.

In our quadratic representation, the activation level in the direction characterised by
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an angle ϕ is written as:

η(ϕ) = a11 cos
2(ϕ) + 2a12 cos(ϕ) sin(ϕ) + a22 sin

2(ϕ) (5.1)

where a11, a12, a22 are the coefficients of the ellipse and are different for different material

points in the cell. The activation in any direction at a given point can be determined

(a)

φ1

φ2

φ3

(b)

Figure 5.1: (a) A possible configuration for the activation level at a point in 2D using

the classical representation and (b) an approximation using our quadratic

representation and the basis directions that determine them. Here, a possible

basis for the quadratic representation are the three vectors (cos(ϕi), sin(ϕi))

for ϕi ∈ {0, 2π/3, 4π/3}.

when the values of these coefficients are known. So, instead of solving the activation

for a large number of directions, it is sufficient to solve for these three values. The

formulation is completed by establishing the evolution equation for the aij coefficients

based on Eq. (4.2).

Let ϕ1, ϕ2 and ϕ3 be the three angles corresponding to the basis directions that de-

termine the quadratic form (Fig. 5.1b), the evolution of the activation level in these

directions is obtained as:

η̇(ϕi) = ȧ11 cos
2(ϕi) + 2ȧ12 cos(ϕi) sin(ϕi) + ȧ22 sin

2(ϕi), i = 1, . . . , 3 (5.2)

As cos(ϕi) and sin(ϕi) are constant values for the known angles ϕi, the above equation

can be written in matrix form as:⎛⎜⎝η̇(ϕ1)

η̇(ϕ2)

η̇(ϕ3)

⎞⎟⎠ = Ce ·

⎛⎜⎝ȧ11

ȧ12

ȧ22

⎞⎟⎠ (5.3)
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where Ce is the 3× 3 matrix whose components cij are as follow:

ci1 = cos2(ϕi), ci2 = 2 cos(ϕi) sin(ϕi), ci3 = sin2(ϕi), i = 1, . . . , 3.

Then the time derivative of the aij coefficients can be achieved as:⎛⎜⎝ȧ11

ȧ12

ȧ22

⎞⎟⎠ = C−1
e ·

⎛⎜⎝η̇(ϕ1)

η̇(ϕ2)

η̇(ϕ3)

⎞⎟⎠ (5.4)

Since η is an expression of aij, this equation describes the rate of change of aij as a

function of aij.

(a) (b)

Figure 5.2: (a) A possible configuration for the activation level at a point in 3D us-

ing the classical representation and (b) an approximation using our 3D

quadratic representation and the directions that determine them. The six

directions for the quadratic representation are corresponding to the vec-

tors (0, λ1,±λ2), (λ1,±λ2, 0), (±λ2, 0, λ1) in the Cartesian coordinate system,

where λ1 = 1/
√

1 + ϕ2, λ2 = λ1 · ϕ with ϕ = (1 +
√
5)/2.

In a similar way, the approximation of the activation level in 3D by a quadratic form

suggests that its value in the direction associated with the pair of angles (ω, ϕ) in the

spherical coordinate system has the form:

η(ω, ϕ) = a11 sin
2 ω cos2 ϕ+ a22 sin

2 ω sin2 ϕ+ a33 cos
2 ω

+ 2a12 cosϕ sinϕ sin
2 ω + 2a23 sinω cosω sinϕ

+ 2a13 sinω cosω cosϕ

(5.5)

Let (ωi, ϕi), i = 1, . . . , 6 be the six basis directions that determine the quadratic form

58



5. Model order reduction of the bio-chemo-mechanical model

(Fig. 5.2), the components cij of the matrix Ce are obtained as:

ci1 = sin2 ωi cos
2 ϕi, ci2 = 2 cosϕi sinϕi sin

2 ωi,

ci3 = 2 sinωi cosωi cosϕi, ci4 = sin2 ωi sin
2 ϕi, i = 1, . . . , 6

ci5 = 2 sinωi cosωi sinϕi, ci6 = cos2 ωi,

so that the evolution in time for the coefficients aij is written as:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ȧ11

ȧ12

ȧ13

ȧ22

ȧ23

ȧ33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= C−1

e ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η̇(ω1, ϕ1)

η̇(ω2, ϕ2)

η̇(ω3, ϕ3)

η̇(ω4, ϕ4)

η̇(ω5, ϕ5)

η̇(ω6, ϕ6)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.6)

Average and maximum value of activation level The average value for the activation

level η can be obtained as an expression of the coefficients aij by an analytic integration.

For instance, η̄ can be written as:

η̄ =
1

π

π/2∫
−π/2

ηdϕ =
1

π

π/2∫
−π/2

(a11 cos
2(ϕ) + 2a12 cos(ϕ) sin(ϕ) + a22 sin

2(ϕ))dϕ

=
1

2
a11 +

1

2
a22

(5.7)

In a similar way, an integration of (5.5) over the domain [0, 2π]× [0, π] gives

η̄ =
1

3
a11 +

1

3
a22 +

1

3
a33

for the 3D case.

The maximum and minimum values of η are actually evaluated at the angles associated

with the minor and the major axes of the corresponding ellipse, which is the isosurface

of the quadratic form. Finding these values involves solving an eigenvalue problem for

the matrix of coefficients aij. In 2D, they are simply the maximum and minimum values

of η evaluated at two angles:

αcrit1 =
1

2
arctan

(
a11 − a22
2a12

)
αcrit2 = αcrit1 + π/2

There are no such simple explicit formulas in 3D, but applying an eigenvalue solver

still makes the implementation simple.
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Components of the active stress tensor In 2D, by replacing η and ε̇ in Eq. (4.3) by

those in Eq. (5.1) and Eq. (4.6), the integrals in Eq.(4.7) are obtained as:

Sactive
11 =

1

2
σmax

(
3a11 + a22

4
+ kv

3Ė11 + Ė22

4ε̇0

)

Sactive
22 =

1

2
σmax

(
a11 + 3a22

4
+ kv

Ė11 + 3Ė22

4ε̇0

)

Sactive
12 =

1

2
σmax

(
a12
2

+ kv
Ė12

4ε̇0

) (5.8)

In a similar way, the components of the active stress tensor in 3D can be related to

the coefficients aij and the strain rate Ė as:

Sactive
11 = σmax

(
3a11 + a22 + a33

15
+ kv

3Ė11 + Ė22 + Ė33

15ε̇0

)

Sactive
22 = σmax

(
a11 + 3a22 + a33

15
+ kv

Ė11 + 3Ė22 + Ė33

15ε̇0

)

Sactive
33 = σmax

(
a11 + a22 + 3a33

15
+ kv

Ė11 + Ė22 + 3Ė33

15ε̇0

)

Sactive
12 = σmax

(
2a12
15

+ kv
2Ė12

15ε̇0

)

Sactive
13 = σmax

(
2a13
15

+ kv
2Ė13

15ε̇0

)

Sactive
23 = σmax

(
2a23
15

+ kv
2Ė23

15ε̇0

)

(5.9)

5.2. Weak formulation for finite element implementation

For finite element software implementation, a weak formulation for the coupled problem

using our quadratic representation has to be derived. Compared to the classical repre-

sentation in section 4.3, only the equation of the activation level and the construction

of the active stress tensor are different.

Integration of the Eq. (5.4) over the cell domain gives:
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∫
Ω

⎛⎜⎝ȧ11

ȧ12

ȧ22

⎞⎟⎠ dx =

∫
Ω

C−1
e ·

⎛⎜⎝η̇(ϕ1)

η̇(ϕ2)

η̇(ϕ3)

⎞⎟⎠ dx (5.10)

Applying the explicit-time integration method for the above equation, we obtain:

1

dt

∫
Ω

⎛⎜⎝ak+1
11 − ak11

ak+1
12 − ak12

ak+1
22 − ak22

⎞⎟⎠ dx =
1

dt

∫
Ω

C−1
e ·

⎛⎜⎝ηk+1(ϕ1)− ηk(ϕ1)

ηk+1(ϕ2)− ηk(ϕ2)

ηk+1(ϕ3)− ηk(ϕ3)

⎞⎟⎠ dx (5.11)

where dt = tk+1 − tk is the time step and the superscript indicates the time step. The

right hand side can be obtained from the values of the activation level at the previous

time step using Eq. (4.2) as:∫
Ω

ηk+1(ϕi)− ηk(ϕi)

dt
dx =

∫
Ω

(
[1− ηk(ϕi)]

Ckf

θ
−
[
1−

σk
f

σ0

]
ηk(ϕi)

kb

θ

)
dx (5.12)

For the active stress tensor, its components are computed as in Eq. (5.8), instead of

using a numerical integration.

5.3. Results and error analysis

In order to evaluate our semi-analytical formulation, we have compared the results using

our approach and those in the literature. Different simulations with various range of

complexity have been reproduced. Moreover, an error analysis was performed to confirm

the appropriateness of our quadratic representation.

5.3.1. Results

We have performed all the simulations presented in Section 4.4, where our semi-analytical

formulation was used instead of the classical representation. Our obtained results are

almost identical to those in the literature. The good agreement of our results shows

that the applicability of our method is not limited to some simple problems, but also to

simulations of high complexity, such as those which include a contact behaviour between

the cell and the substrate, or those which are coupled with the focal adhesion model.

To further demonstrate our approach, we present here two more examples: a 2D

problem where an analytical solution can be derived; and the use of our quadratic
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representation in 3D simulation. The advantage in computing time of our method is

also illustrated by a performance analysis.

Cell under bi-axial isometric tension We use the demonstrating example by Desh-

pande et al. [16], where a rectangular cell is subjected to a single activation signal at

t = 0. The cell is constrained such that the top and the bottom sides cannot move

vertically, the left and the right sides of the cell cannot move horizontally (Fig. 5.3a).

Under these conditions, the strain has a zero value at every time step (E = Ė = 0)

resulting that the active stresses always get the isometric value (σf = σ0) in any di-

rection. Thus, the activation level η has the same value in any direction and increases

cell

(a)

0 1 2 3 4 5 6 7 8
time (t/θ)

0.0

0.1

0.2

0.3

0.4

0.5

S
11
/σ

m
a
x

(b)

Figure 5.3: Cell under bi-axial isometric tension and the plot for the normalised active

stress S11 over time. The parameters from Table 4.1a are used. The left

figure is adapted from [16], the right figure is the result using our elliptic

representation.

until the maximum value (η = 1) is reached at the steady state. In our formulation,

this means that at every point, the coefficient a12 is zero, and the distribution of the

activation level η is a circle with radius a11 = a22 (see Eq. (5.1)). At the steady state,

the average activation level is obviously η̄ = 1 (as from Eq. (5.7) with a11 = a22 = 1)

and the components of the active stress tensor obtained analytically from Eq. (5.8) are

S11 = S22 = 0.5 · σmax (Fig. 5.3b), which are exactly the results described in [16].

Improvement in computing time In order to evaluate the advantage in computing

time of the quadratic representation, we set up three configurations to use the BCM

model:

• with the divisions of the interval [−π/2, π/2] into 36 and 72 equal angles,
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• with the elliptic distribution of the activation level

and applied it for two different simulations:

• the bi-axial isometric tension example with a mesh such that the number of degrees

of freedom (DOFs) to solve for the cell displacement is 442, with the timestep

∆t = 1s until the time t = 10, 000s is reached,

• the example with a cell on a micro-post array with 37, 372 DOFs for the displace-

ment, with the time-step ∆t = 1s and the end time is at 400s,

on a computer with 32GB RAM, Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz. No

parallelism like OpenMP is utilised.

72 directions 36 directions quadratic form

Bi-axial tension 2356.0 682.0 53.8

Cell on posts 5852.6 2109.3 553.8

Table 5.1: Computing time (in seconds) for three different configurations of two simula-

tion set-ups: the bi-axial isometric tension example with a mesh of 221 nodes

and the cell on micro-post arrays with a mesh of 18,686 nodes.

It can be seen from Tab. 5.1 that for both simulation set-ups, using our quadratic

representation gives a much better performance compared to dividing the half circle

into many equal angles. Moreover, it can also be noticed that less advantage is obtained

from the elliptic representation when the mesh is finer. The explanation is that the

computing time spent to compute the cell deformation is dominant when the size of the

system matrix is large. Nevertheless, the computation is still 5-10 times faster. This will

be especially important when the problem under study is more complex and realistic.

A 3D example To demonstrate the quadratic representation in 3D, we run a simulation

for a round cell on a stiff substrate. Its geometry is adapted from Ronan et al. [74]. Two

configurations are set up: (i) with the ellipsoidal approximation for the activation level,

and (ii) with 120 directions for stress fibres spaced so that the minimum distance between

each fibre and its neighbours is maximised. As in [74], the cell nucleus and the cytoplasm

are assumed to have different material properties. The linear elasticity model is used for

the passive stresses of both nucleus and cytoplasm whereas the active stress caused by

stress fibre activation is only applied to the cytoplasm. The parameters from Table 4.1b

are used where the value Enuc = 4.0nN/µm2 is suggested for the Young’s modulus of the
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Figure 5.4: Dimensions of a round cell (left, adapted from [74]), mesh (middle) and plot

for the average activation level η̄ at the steady state (right). Our quadratic

representation for the BCM model is used with the six basic directions spec-

ified in Fig. 5.2b.

nucleus. As in [57], a simple shear adhesion is used for the contact between the cell and

the substrate, with the shear stiffness value kt = 500nN/µm3. Two meshes with 58,566

and 173,024 tetrahedral elements are used where a refinement is done at the transition

between the cytoplasm and the nucleus and at the contact region. The computation on

∼ 58k elements ∼ 173k elements

quadratic repr. 1.38 hours 10.64 hours

120 directions 15.92 hours not possible due to

insufficient memory

Table 5.2: Computation time of the 3D simulation on two meshes for our quadratic

approximation and the classical representation with 120 directions. The

computer used is with 32GB RAM, Intel(R) Xeon(R) CPU E5-1607 v2 @

3.00GHz.

the finer mesh was only possible with our quadratic representation, using our computer

with 32GB RAM, Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz. In case of the coarser

mesh, we obtained almost identical results for both configurations, with the maximum

relative error for cell displacement being around 3.4%. A plot for the steady state value

of the average activation level η̄ is shown in Fig. 5.4 and the processing time for two

configurations on two meshes is depicted in Tab. 5.2.

64



5. Model order reduction of the bio-chemo-mechanical model

5.3.2. Error analysis

In order to assess the consistency of our quadratic representation, we have estimated the

error in simulation results using our method compared to the classical approach. Since

our formulation uses only a linearised part of the fibre tension-strain rate relationship

instead of the tri-linear equation, as described in Eq. (4.3), the error produced by this

relaxation is also analysed. We performed different simulations using three configura-

tions:

• the classical representation with the divisions of the interval [−π/2, π/2] into 36

directions and the tri-linear fibre tension-strain rate relationship

• the classical representation with the divisions of the interval [−π/2, π/2] into 36

directions and the linearised fibre tension-strain rate relationship

• our quadratic representation which was derived using the linearised fibre tension-

strain rate relationship

The results using the first configuration are used as the reference values.

For the cell under bi-axial isometric tension, which is shown in Section 5.3.1, the

zero strain rate leads to the same equations for all three configurations. Therefore, the

solutions for the cell deformation and activation level are identical up to the machine

precision (Fig. 5.5).

Figure 5.5: The plot for the differences in minimum and maximum activation level at

any point in the cell.

For the case of non-homogeneous activation level in the cell, we investigate a square
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cell suspended by springs at four corners, which was demonstrated by Deshpande et

al. [15]. Using the parameters in [15], we obtained similar results, where the average

activation levels at four different periods of time are shown in Fig. 5.6. The values for

t/θ = 1.5 t/θ = 4.5 t/θ = 7.5 t/θ = 10.5

0.0

0.08

0.16

0.24

0.32

Figure 5.6: The distribution of average activation level at four selected times. FEniCS

results using our quadratic representation.

active stress and the activation level are high at the corners, where the cell is connected

to the springs.

Figure 5.7 shows the relative error in cell displacement at three points with different

activation levels for using the linearised tension-strain rate relation compared to the

reference configuration. It can be seen from the plot that there is almost no error between

p1

p2

p3

cell

width

Figure 5.7: The three points of interest and the plot of relative error |(u− uref)/uref| in
cell displacement.

using our quadratic representation and the classical representation. The error of using

the linearised equation for tension-strain rate relationship is larger at the location where
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5. Model order reduction of the bio-chemo-mechanical model

the activation level is higher. However, the relative error is around 0.006 and still in an

acceptable range.
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6. Numerical study on actin formation

of osteoblasts on titanium arrays

This chapter closely follows our journal article [97].

Knowledge about the interaction between bone cells and their surrounding biomate-

rials is essential for the improvement in quality of an implant. Numerous experiments

have been done to measure mechanical interaction between cells and the underlying

substrates. Well-known methods include those introduced by Harris et al. [34], Burton

et al. [11], Balaban et al. [4]. A more efficient method was introduced by Tan et al.

[89], in which cells are laid on a bed of micro-needles so that forces exerted by cells can

be measured from the individual displacements of the needles. This method was widely

applied and adapted to achieve further understanding on behaviour of the cells. For

example, Sniadecki et al. [84] used magnetic and non-magnetic posts to apply external

forces and monitor traction forces. Matschegewski et al. [55] investigated the difference

in actin concentration of bone cells when they are laid on either a planar surface or cubic

pillar structures of different dimensions.

In this chapter, we aim to apply the bio-chemo-mechanical model to predict the

tendency for the concentration of actin in osteoblasts observed in the experiments of

Matschegewski et al. [55], where they were laid on arrays of regular titanium pillars.

It is revealed from the experimental results that for osteoblasts actin was distributed

in short fibres on the titanium pillar structure. While in the experiments of Tan et al.

[89] for smooth muscle cells, actin was found as long fibres distributed intensely around

the pillars. Therefore, simply applying the approach of McGarry et al. [57], which was

applied for smooth muscle cells, will not be feasible. We will propose a set of parameters

and a hypothesis for inhomogeneous adhesion and show that the bio-chemo-mechanical

model can help predict the tendency of the osteoblast actin distribution.
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6. Numerical study on actin formation of osteoblasts on titanium arrays

6.1. Description for cell-pillar adhesion

It is revealed from the experiments of Matschegewski et al. [55] that cell adhesion was

not uniform in the contact region between the cell and the pillars, and spot-adherence

existed. To model this inhomogeneity of the adhesion, we use a scaling function g(x, y),

whose value is in the range [0, 1], to represent the concentration level of the adhesion on

a single pillar. The value 1 is assigned to the regions where spot-adherence occurs, while

the zero value indicates the disappearance of the adhesion. The pillars are assumed to

have square shape with blunt corners, which are close to those used in the experiments of

Matschegewski et al. [55]. For simplicity and from the observation that spot-adherence

s
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0.25

0.50

0.75

1.00

(a)

0 s/2 s
0

1

(b)

Figure 6.1: Plot of an exemplary function for the concentration level of the adhesion on

a single pillar (left) and plot of a slice through two spots (right). Outside of

the pillar, the function vanishes. Maximal function values are reached near

the four corners of the pillar.

usually appeared near the periphery of the pillars, especially the corners, we constructed

a smooth function that holds a small value everywhere except for the regions near the

four corners of the pillar. The left part of Fig. 6.1 displays a possible choice for our

function, while the right figure shows the 1D plot of a slice through two spots. With s

being the side of the pillar and we denote:

f(x) =
1

2

(
cos

(
6π

x− 0.5s

0.9s

)
+ 1

)
∈ [0, 1], for x ∈ [0, s], (6.1)

the expression for the adhesion level that we used is:

g(x, y) =

⎧⎪⎨⎪⎩
0.9 ∗ f(x) ∗ f(y) + 0.1, if |x− 0.5s|, |y − 0.5s| ∈ [0.15s, 0.45s]

0.1, otherwise

(6.2)
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for (x, y) ∈ [0, s] × [0, s] representing a point on the pillar structure. The values of

the function g are in the range [0.1, 1]. This is equivalent to the assumption that the

adhesion at the peak points is ten times stronger than that at those points where the

strength of adhesion is lowest. When desired, the function can easily be adjusted to

meet other assumptions. The simple adhesion model in [57] is then modified so that the

traction in the cell at the contact region becomes

Ti = g(x, y) · kt ·∆i, (6.3)

where kt is the shear stiffness constant of the adhesion, when the cell moves a distance

∆i from the pillar.

6.2. Results and discussion

We apply the bio-chemo-mechanical model together with our suggested model for the

adhesion of the cell to the pillar structure to simulate the actin distribution of osteoblasts

on titanium arrays of different dimensions. The parameters for the bio-chemo-mechanical

model, the material properties of the pillars as well as the passive mechanical material

Parameter Value Description

σmax 0.15[nN/µm2] maximum fibre tension

θ 70 [s] decay constant of signal

kv 7 tension reduction coefficient with respect to strain rate

kf 10 formation rate constant

kb 1 dissociation rate constant

ε̇0 10−5 [s−1] initial fibre contraction rate

kt 500[nN/µm3] focal adhesion stiffness

Ecell 0.4[nN/µm2] Young’s modulus of the cells

νcell 0.3 Poisson’s ratio of the cells

Epillar 1.0 · 103[nN/µm2] Young’s modulus of the pillars

νpillar 0.35 Poisson’s ratio of the pillars

Table 6.1: Parameters for the BCM model, material properties of the pillars and passive

mechanical material properties of the cell.

70



6. Numerical study on actin formation of osteoblasts on titanium arrays

properties of the cell are shown in Table 6.1. The values for θ, kf, kb and kv are the same

as those in [57]. From experimental observation we know that osteoblasts generate a very

small contraction force. Thus, the values that we used for σmax and ε̇0 are 0.15[nN/µm
2]

and 10−5[s−1], respectively, which are much smaller than the values in [57]. At the

regions where the cell is in contact with the pillars, the value kt = 500nN/µm3 is used

for the focal adhesion stiffness, which is also the same as that in [57] and Eq. (6.3) is

used for the shear traction.

The system of governing equations, which includes the equilibrium condition and Eq.

(4.2), is solved using finite element analysis. Since almost no deflection of the pillars was

found in the experiments, the usual approach is considering the pillars as rigid bodies

and applying a homogeneous Dirichlet boundary condition. Here, we used the approach

in [57] and modelled the pillars as rounded rectangular surfaces connected to springs of

a large stiffness. This relaxation allows the stability of the solution procedure, while the

obtained displacement of the pillars is small enough to be ignored. The linear elastic

material model is used for both the cell and the pillars.

We used the gmsh generator [28] to create the meshes and the open source framework

FEniCS, version 2016.2 [53] to compute the solution. For time discretisation, we used an

explicit method with a maximum time step of 2 seconds and performed a convergence

study to make sure that the solution is stable with our choice of time step.

To demonstrate the applicability of our model using an inhomogeneous adhesion func-

tion, we carried out the simulations for osteoblasts on arrays of square pillars of different

sizes: 5µm × 5µm and 3µm × 3µm. For simplicity, we used the same function g(x, y)

(Eq. (6.2)) for the adhesion at all pillars.

6.2.1. Osteoblast on arrays of titanium coated pillars of 5µm×5µm

We first apply the model to a cell patch on 26 pillars in our experiment, as shown in

Fig. 6.2a. We constructed a cell geometry with the assumption that the initial cell has

straight edges between pillars and it fits perfectly to the 26-pillar sub-array depicted

in Fig. 6.2b. Moreover, we also assume that the pillars are of perfect square shape

with blunt corners. The side length of the pillars is 5µm, while the radius of the corner

fillet is 0.5µm (area ≈ 24.77µm2). The distance between two neighbouring pillars is also

5µm. The stiffness of the springs connected to the surfaces representing the pillars is

7.5nN/µm.

The simulation result for actin formation is shown in Fig. 6.2c. It can be seen that the
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Figure 6.2: (a) Fluorescence image of the actin filament distribution in MG-63 os-

teoblasts (actin in green, LSM 780, bar 10µm; with courtesy of H. Rebl

and R. Lange). The white line demonstrates a simplified form of one cell.

(b) Sketch of the patch of a cell used in the simulation. (c) Our predicted

result for actin distribution (characterised by the measure Π) using the bio-

chemo-mechanical model and our description for the cell-pillar adhesion.

highest amount of actin is on the pillars and it is distributed non-uniformly. Moreover,

at the longest edges of the cell, there is more actin than at other edges. The obtained

maximum displacement of the pillars is around 7nm, which is 0.14% of the side length

of the pillar. Analogous outcome is achieved when we apply the model for an osteoblast

on an array of 19 pillars, which is illustrated in Fig. 6.3.

It should be noted that without our adaptation of the model for the adhesion of muscle

cells to the adhesion of osteoblasts involving an inhomogeneous adhesion behaviour, the

result would not agree with the experiment, as the predicted actin would form around

the pillars and there would be a uniform low level of actin on the pillars. To further

improve the agreement between the results using our approach, the complexity of the

model should be increased: a more complex function g(x, y) should be constructed and

the function could also be different for each pillar.
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(a)

5µm

5µm
5µm

(b) (c)

0.05

0.17

0.30

0.42

0.55

Figure 6.3: (a) Experimental result for the actin distribution of a MG-63 osteoblast on

a 5µm× 5µm pillar array by Matschegewski et al. [55], (b) sketch of the cell

used in the simulation and (c) our predicted actin distribution (characterised

by the measure Π in Eq. (4.13)) for this cell.

6.2.2. Osteoblast on array of titanium coated pillars of 3µm×3µm

Similar steps are applied for the simulation of osteoblast on an array of 25 pillars of

dimension 3µm × 3µm. The radius for the rounded corners is chosen to be 0.4µm and

the distance between two neighbouring pillars is 3µm, as in the experiment in [55]. As

the area of the pillar is around 8.85µm2, which is smaller than that in the previous

example, the corresponding spring stiffness is set to 2.68nN/µm.

(a)

(b)

3µm

3µm

3µm

(c)

Figure 6.4: (a) Experimental result for the actin distribution of a MG-63 osteoblast on

a 3µm×3µm pillar array by Matschegewski et al. [55], (b) dimensions of the

pillars and (c) sketch of the cell used in the simulation.

The predicted actin distribution is shown in Figure 6.5. As in the previous case, the
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6. Numerical study on actin formation of osteoblasts on titanium arrays

highest concentration of actin is located on the pillars. Since the distance between the

pillars is small, a relatively high level of actin can also be found in the parts of the cell

connecting the pillars. In the experiment, at some regions, the actin concentration in

those parts is similar to that on the pillars.

(a) (b)

0.02

0.10

0.18

0.26

0.35

Figure 6.5: (a) Actin formation of osteoblasts as described by Matschegewski et al. [55]

and (b) our simulation result for MG-63 osteoblasts on 3µm × 3µm pillar

structures. The predicted actin distribution is characterised by the Π mea-

sure in Eq. (4.13).

6.2.3. Effect of the adhesion scaling function

To study numerically the dependency of actin patterns on the adhesion between the cell

and the pillars, we constructed different configurations for our adhesion scaling function.

0.00

0.25

0.50

0.75

1.00

Figure 6.6: Different adhesion scaling functions for a single pillar. In the left figure,

the strongest adhesions locate at four spots with a large area distributed

uniformly on the pillar. In the middle and right figures, peak adhesions are

at four and three spots, respectively, with a small area distributed near the

corners of each pillar. The definition of these functions are provided in Tab.

6.2.
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We varied the location and the area of strong adhesion near the peak points. We also

used different number of peak points on each pillar. Examples of our adhesion scaling

functions defined on a single pillar are shown in Fig. 6.6.

f1(x) =
1

2

(
cos

(
4π

x− 0.5s− 0.225s

0.9s

)
+ 1

)
∈ [0, 1], for x ∈ [0, s],

g1(x, y) =

⎧⎪⎨⎪⎩
0.9 ∗ f1(x) ∗ f1(y) + 0.1, if |x− 0.5s| ≤ 0.45s and |y − 0.5s| ≤ 0.45s

0.1, otherwise

f2(x) =
1

2

(
cos

(
8π

x− 0.5s− 0.3375s

0.9s

)
+ 1

)
∈ [0, 1], for x ∈ [0, s],

g2(x, y) =

⎧⎪⎨⎪⎩
0.9 ∗ f2(x) ∗ f2(y) + 0.1, if |x− 0.5s|, |y − 0.5s| ∈ [0.225s, 0.45s]

0.1, otherwise

f3(x) =
1

2

(
cos

(
8π

x− 0.5s− 0.3375s

0.9s

)
+ 1

)
∈ [0, 1], for x ∈ [0, s],

g3(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.9 ∗ f3(x) ∗ f3(y) + 0.1, if |x− 0.5s|, |y − 0.5s| ∈ [0.225s, 0.45s]

and (x < 0.5s or y < 0.5s)

0.1, otherwise

Table 6.2: Three different scaling functions for the adhesion on a single pillar. Here, s

is the side length of the square pillar and a point on the pillar is represented

by (x, y) ∈ [0, s]× [0, s].

Using these scaling functions for the adhesion, we performed the analysis for the actin

distribution of an osteoblast on an array of 19 pillars of 5µm × 5µm × 5µm. It can be

seen from the analysis results, which are shown in Fig. 6.3 and Fig. 6.7, that changing

the size of the peak adherence does not affect much the trend of the actin formation

on the pillars. However, the small area of these peak points gives a more smooth actin

distribution. Modifying the number of peak points could deliver a different pattern of

actin on the pillars, where the amount of actin is affected. This result supports our

suggestion that using different scaling functions for different pillars could give a better

agreement between simulation and experimental results.
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Figure 6.7: Predicted results for actin distribution of an osteoblast on an array of 19

pillars using different adhesion scaling functions. Each function is applied

for all 19 pillars in every simulation.

6.3. Conclusion

The bio-chemo-mechanical model proposed by Deshpande et al. has the capability to

simulate the contractility and actin formation of biological cells when they are laid on

different kinds of substrate. Using this model and a simple model for the adhesion

between cell and substrate, McGarry et al. [57] successfully simulated the actin distri-

bution in smooth muscle cells and fibroblasts on arrays of polydimethylsiloxane posts.

Direct application of the approach of McGarry et al. to the experiments with osteoblasts

on titanium pillar arrays of Matschegewski et al. [55] would lead to a great disagreement

between experimental and simulated results. We suggested a mathematical model for

inhomogeneous adhesion and constructed a function that represents the different con-

centrations of adhesion at different regions on a pillar. We demonstrated our approach

by applying it to our experiments and to experimental results by Matschegewski et al.

[55]. Using our model, the predicted actin distribution agrees better to the experimental

results than with other existing models. Our finding reconfirms a feature of the bio-

chemo-mechanical model that it is able to capture the strong influence of the boundary

condition on the formation of actin within the cells.
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7. Contractility of fibroblasts and

osteoblasts under DC electric field

This chapter closely follows a paper draft intended to be published with the title “Mod-

elling effects of DC electric field on contractility and cytoskeleton of fibroblasts and

osteoblast-like cells using a bio-chemo-mechanical model” [98].

It is significant to understand and utilise different biophysical and biochemical stimuli

to improve the quality of engineered tissue implants. Electrical stimulation is important

in the physiology and development of the majority of all human tissues and is a potential

type of stimulus for further improvement of implants [5].

Numerous observations on the responses of various cells to direct-current (DC) electric

field have been obtained through experimental methods [14, 36, 69]. In the work of Harris

et al. [36], a DC electric field of 1V/mm was applied to embryonic chick fibroblasts

on silicone rubber substrata and the contractility and cytoskeleton of the cells were

investigated. Several interesting results were found, where there are some remarkable

effects of the electric field on fibroblast contractility and actin orientation. First, the cell

was found to retract in the axis parallel to the electric field and the cell contractility was

found to be weaker in this direction. After that, the alignment and the elongation of the

cells and a higher contractility were observed in the direction perpendicular to the electric

field. Those responses of fibroblasts were not different for three different substratum

materials: silicone rubber sheets, glass and polysterene. In case of silicone rubber, the

changes in the patterns of wrinkling in the substrate were found: the wrinkles that run

transversely to the voltage gradient disappeared progressively, while new wrinkles that

run in the parallel direction were formed. These changes indicate that the concentration

of the cellular traction forces became dominant in the direction perpendicular to the

electric field.

Using similar approaches, Curtze et al. [14] observed that osteoblast-like cells deliv-

ered analogous behaviours when they are exposed to a DC electric field, but the process

77



7. Contractility of fibroblasts and osteoblasts under DC electric field

happened in a different time scale. In addition to that, the changes in cytoskeletal con-

traction were obtained by culturing the cells on collagen-coated flexible polyacrylamide

sheets containing fluorescent marker beads and analysing the traction forces based on

the obtained images.

The underlying mechanisms of the migration and orientation are still poorly under-

stood. Harris et al. [36] suggested three possible mechanistic causes for morphological

reorientation: (i) the electric field could stimulate the protrusion in the direction per-

pendicular to the voltage gradient, or (ii) the contraction in the direction parallel to the

field, and / or (iii) weaken the adhesions between the cells and the substrate at those

parts of the cells that face the field.

Several numerical models have been proposed to describe the cell contractility and the

interaction between cells and substrate. The bio-chemo-mechanical model proposed by

Deshpande et al. [15] takes into account the dynamic reorganisation of the cytoskeleton

and has many advantages compared to other models [15]. In this chapter, we will supply

this model with a description for the effects of DC electric field to study numerically the

contractility and cytoskeleton of fibroblasts and osteoblast-like cells under electric field

exposure.

7.1. Modelling the effects of DC electric field

Stimulation of contraction in the direction of the electric field To address the

influence of the DC electric field to the contraction of the cells, we suggest a change of

the two constants, the maximum fibre tension σmax and the initial shortening rate ε̇0, so

that they become dependent on the directions of the fibres and on time. The argument

for the choice of these parameters is that they significantly determine the magnitude and

the speed of cell contraction. Note that the modification of ε̇0 is equivalent to that of the

constant kv relating the tension and the shortening rate of the fibres. Alternatively, the

other parameters such as the controlling constants for the formation and dissociation

rates can also be modified, but we observed that the two parameters we chose are most

significant.

Our suggestion for addressing the effects of the DC electric field is that the parameters

σmax and ε̇0 should be larger in the direction parallel to the electric field and smaller in

the perpendicular direction. To formulate this, we introduce a scaling function s(t) ≥ 1

and assume that at time t, the two parameters σmax and ε̇0 increase s(t) times in the
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(a) A proposed scaling function for the max-

imum active tension in the direction of

electric field.

(b) The scaling for the maximum active ten-

sion in different directions at four periods
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Figure 7.1: (a) A possible scaling function to represent the raise of the maximum tension

in the direction parallel to the electric field and (b) a possible function to

represent stimulation of the active stress in different directions at four time

periods.

parallel direction and decrease s(t) times in the perpendicular direction. As the electric

field gradually affects the cells within a period of time, the function s(t) should increase

slowly in a time interval before it reaches a maximum value. For example, to express

the idea that the maximum fibre tension can rise up to 3.5 times in the direction of the

electric field and in around 40 minutes, we use the function s(t) ∈ [1, 3.5] as follows:

s(t) =
5

2

(
1

2
− 1

2
tanh

(
t− 1200

500

))
+ 1 (7.1)

The plot of this function is shown in Fig. 7.1a. Compared to the case where the electric

field is absent, at the time t, the maximum fibre tension is scaled by s(t) in the direction

of the electric field and by 1/s(t) in the perpendicular direction. We further assume that

the scaling factor for the maximum tension in the direction that makes an angle ϕ to

the electric field is given by:

s(ϕ, t) = s(t) cos2 ϕ+ (1/s(t)) sin2 ϕ (7.2)

The plot of this scaling function at four periods of time is shown in Fig. 7.1b. Here

we would like to note that ideally these functions should include dependency on the

cell types and the magnitudes of the electric field. In this work, we slightly modify the

79



7. Contractility of fibroblasts and osteoblasts under DC electric field

functions for each simulation, but later when there are sufficient experimental data, they

can be easily parametrised.

Decrease in cell-substrate adhesion at the regions facing the electrodes To model

the reduction in the strength of the adhesions between the cells and their substrate in

the regions of the cells facing the electrodes, we introduce a scaling function for the

adhesion shear stiffness kt in Eq. (4.12). This function is defined so that for every line

parallel to the electric field cutting the cell, the function value should hold the value 1

at the middle of the line and decrease at the two ends. An example for this function
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Figure 7.2: (a) A function for the scaling of the adhesion between the cell and the sub-

strate when assuming that under the electric field, the strength of the ad-

hesion is reduced two times at the cell peripheries facing the electrodes. (b)

Plot for the scaling function on a line through the cell and parallel to the

electric field.

is illustrated in Fig. 7.2, where it is assumed that the adhesion at the cell peripheries

facing the electrodes are two times weaker than in the middle part of the cell. Let p1

and p2 be the intersecting points between the cell and a line parallel to the electric field,

the function on the line segment between p1 and p2 is defined as follows:

g(d) =
1

2
exp

[
−
(
6d

L

)2
]
+

1

2
(7.3)

where d is the distance to the middle point and L is the length of the line segment.

Thus, given a scaling value at the cell peripheries facing the electrodes, the value of the

scaling function g(x, y) is determined for every point (x, y) in the cell.
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7.2. Results

We used the mshr library [2] to create the meshes and the open source framework

FEniCS, version 2016.2 [53] to compute the solution. For time discretisation, we used

an explicit method with a maximum time step of 2 seconds and performed a convergence

study to make sure that the solution is stable with our choice of time step.

7.2.1. Magnitude of the Maxwell stress tensor

We examine the total electromagnetic force on the cell by computing the value of the

Maxwell stress tensor. Suppose a cell of a typical size is suspended in a culture medium

and is exposed to a DC electric field of strength 1V/mm (Fig. 7.3a). The distribution

27µm

24
µ
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E

y
x
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(a) (b)
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Figure 7.3: (a) Sketch of a typical cell under a DC electric field exposure and (b) plot of

electric field magnitude (V/mm) in the cell. The applied field is in horizontal

direction and with a strength of 1V/mm. The parameters in Tab. 7.1 are

used for the electrical properties of the cell membrane, cell cytoplasm and

the culture medium. The computation is done using the software COMSOL

MULTIPHYSICS R⃝.

of the electric field in the cell can be obtained by solving Eq. (2.40). The plot of the

electric field distribution is shown in Fig. 7.3b, where the values in Tab. 7.1 are used

for the electrical properties of cell cytoplasm, membrane and the culture medium.

Then, the Maxwell stress tensor can be computed from the electric field using Eq. (2.41).

The plot of the components of the Maxwell stress is shown in Fig. 7.4. We can see that

the highest value of the Maxwell stress in the cell is around 2 ·10−10Pa. This value is too
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Parameter value

Cytoplasmic conductivity σcyto = 1.5[S/m]

Cytoplasmic relative permittivity εcyto = 80

Membrane conductivity σmem = 5 · 10−7[S/m]

Membrane relative permittivity εmem = 11.3

Culture medium conductivity σmedium = 1.5[S/m]

Culture medium relative permittivity εmedium = 80

Membrane thickness d = 5nm

Table 7.1: Electrical properties of the cell membrane, cell cytoplasm and the culture

medium. The values are taken from [58] and [88].
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Figure 7.4: Plot of the components of the Maxwell stress tensor Sel (in Pa). The com-

putation is done using the software COMSOL MULTIPHYSICS R⃝.

small compared to the active stress in the bio-chemo-mechanical model, which is usually

in the range 0.2 − 25kPa. Therefore, we will ignore the contribution of the Maxwell

stress in our simulations.

7.2.2. Fibroblast contractility and cytoskeleton

We first apply the bio-chemo-mechanical model together with our description for the

effects of DC electric field for the simulation of the contractility and actin formation in

fibroblasts observed in the experiments of Harris et al. [36]. A fibroblast cell of typical

dimension is used in our simulation. The shape of the cell is constructed based on an

image from the experiments of Harris et al. [36] and is shown in Fig. 7.5. A DC electric

field of 1V/mm is applied in the vertical direction, as in [36].
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Figure 7.5: Shape and size of a fibroblast cell used in our simulation and the scaling

function for the adhesion.

The parameters for the bio-chemo-mechanical model and the mechanical material

properties of the cell are shown in Tab. 7.2. The value for the decay constant θ is

Parameter σmax θ kv kf kb ε̇0 Ecell νcell

Unit [nN/µm2] [s] [s−1] [nN/µm2]

Value 3.25 720 7 10 1 0.003 0.4 0.3

Table 7.2: Parameters for the BCM model and cell material properties that are used for

fibroblasts.

720s, as in [15], while other parameters are the same as those in [57]. For the substrate,

we used the value 0.4 for the Poisson’s ratio. As the Young’s modulus is not given in

[36], we used the value of 6nN/µm2, which is close to the values described in [14], and

observed that changing this value by 30% does not affect the results significantly. For

the contact between the cell and the substrate, we also use the same value as in [57],

which is kt = 500nN/µm3, for the shear stiffness of the adhesion.

With these parameters used, we suppose that under the electric field, the value of σmax

rises up to 2.5 times in around 50 minutes after the start of applying the electric field.

In other words, the following scaling function (as in Eq. (7.1)) is used for fibroblasts

with the field strength of 1V/mm and the given set of parameters:

s(t) =
3

2

(
1

2
+

1

2
tanh

(
t− 1600

400

))
+ 1 (7.4)

In addition to that, it is assumed that the strength of the adhesion at the cell margins
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facing the electrodes decreases to 10% of the initial value. This means that the equation

(7.3) for fibroblasts is modified to:

g(d) =
9

10
exp

[
−
(
6d

L

)2
]
+

1

10
(7.5)

The scaling function for the adhesion is shown in Fig. 7.5b.

Our simulation results for the changes over time of the bounding box of the cell in

the parallel and perpendicular directions are shown in Fig. 7.6. It can be clearly seen

that with the introduction of our scaling function for the active stress, the cell retracts

in around 20 minutes then it elongates perpendicular to the electric field. In the model,
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Figure 7.6: Change of the bounding box of a fibroblast cell over time.

the weakening of the adhesion at the margins facing the electrodes can indeed predict

the increase of the cell contraction in the direction parallel to the field. However, the

effect is very small and without the modification of the active stress, a large retraction

in the parallel direction and the elongation of the cell in the perpendicular direction

cannot be obtained. Using a very small value for the strength of the adhesion at the cell

margins facing the electrodes would allow a higher contraction of the cell in the electric

field direction, but the adhesion would not be realistic as a major part of the cell would

be no longer in contact with the substrate.

84



7. Contractility of fibroblasts and osteoblasts under DC electric field

7.2.3. Dynamic changes in traction forces by osteoblasts under DC

electric field exposure

We then apply the model to simulate the response of osteoblast-like cells observed in the

experiments of Curtze et al. [14]. The parameters in Tab. 7.3 are used. As osteoblasts

Parameter σmax θ kv kf kb ε̇0 Ecell νcell

Unit [nN/µm2] [s] [s−1] [nN/µm2]

Value 0.2 720 7 10 1 0.0004 0.4 0.3

Table 7.3: Parameters for the BCM model and cell material properties that are used for

osteoblast-like cells.

generate very small contraction in absence of an electric field, the values used for σmax

and ε̇0 are smaller compared to those for fibroblasts. The value kt = 500nN/µm3 is

again used for the shear stiffness of the adhesion.

Since the contraction of the cells is reported to be high under the electric field exposure,

we suggest that the value of σmax rises up to 9 times in around 20 minutes after the start

of applying the electric field. In other words, the following scaling function (as in Eq.

(7.1)) is used for osteoblasts with the field strength of 1V/mm and the given set of

parameters:

s(t) = 8

(
1

2
+

1

2
tanh

(
t− 600

200

))
+ 1 (7.6)

For the weakening of the adhesion at the cell margins facing the electrodes, we use the

same scaling function as for fibroblasts, which is provided in Eq. (7.5).

The simulation is done first for an osteoblast cell of around 27µm width and 24µm
height. The geometry of the cell is constructed from an image provided in [14] (Fig.

7.7a). In this simulation, the value Esub = 4.32nN/µm2 is used for the Young’s modulus

of the substrate, which is the same as in the experiment in [14].

We used different values for the initial maximum fibre active tension σmax while other

parameters in Tab. 7.3 remain unchanged and observed the change of the bounding

box of the cell over time. Figure 7.8 shows our simulation results for the change of

the bounding box of the cell in the parallel and perpendicular directions together with

the experimental results by Curtze et al. [14]. It can be seen that with the value

σmax = 2.0, the change of the bounding box in the parallel direction agrees very well
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Figure 7.7: Cell geometries and the direction of DC electric field. Two osteoblast-like

cells of different shape are investigated in our simulation. The geometries are

constructed based on the images in Fig. 1 and Fig. 7 in [14]. The electric

field is in the horizontal direction and of strength 10V/cm.

with the experiment. In the perpendicular direction, the simulation can predict the

trend that there is a contraction in the first 20 minutes then the cell starts to elongate.

However, the magnitudes of the contraction and the elongation are smaller by a factor of

about 2 compared to the experiment and the cell cannot reach its initial size. The smaller

values of σmax (e. g. σmax = 0.2 and σmax = 0.8) can better predict the elongation, but

again the magnitudes are not in agreement with the experimental results, especially in

the parallel direction. In this case, an improvement in the results can be obtained by

using a smaller value for the adhesion at the margins of the cell facing the electrodes.

However, as we already pointed out in the case of fibroblasts, this adhesion is not realistic

and can lead to the instability of the cell structure.

The simulation is repeated for another geometry of the cell, which is also constructed

based on an image from [14] and is shown in Fig. 7.7b. The value for the substrate

stiffness is changed to 6nN/µm2 as in the experiment, while other parameters are not

modified. Figure 7.9 shows the differential substrate displacement vectors at the cell

boundary for six periods of time. To obtain these results, we first computed the defor-

mation of the substrate using the parameters in Tab. 7.3 together with our description

for the effects of the electric field. Then, the displacement of the substrate in absence

of the electric field was calculated. In this case, again the parameters in Tab. 7.3 were

applied, but the value ε̇0 = 0.0002[1/s] was used for the initial strain rate, as the contrac-

tility in osteoblasts is usually weak without electrical stimulation. Finally, the differences
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Figure 7.8: (a) The change over time of the bounding box around every cell in the

direction along parallel and perpendicular to the electric field (Figure from

[14]). The strength of the field is 10V/cm. (b, c) Our simulation results.

in the substrate displacement were obtained for two cases. In a short period of time,

the change in the displacement of the substrate is linearly related to the change of the

traction forces by the cell. Therefore, these results give some insights on the differential

traction forces during cellular alignment, which are obtained by Curtze et al. [14] by

solving an inverse problem. The trend of the displacement changes is in good agreement

with the traction force change in the experiment in [14] at many regions and periods of

time. However, in Fig. 7.9e and 7.9f, the highest values of the displacement changes are

at the peripheries facing the electrodes, which is not the case in the experiment. Our

explanation for this disagreement is that the strength of the adhesion at those regions

should be weaker than our suggested value. Again this reconfirms the remaining weak

points of the simple adhesion model that is used in our simulation. To improve the

results, it is necessary to build a more efficient description for the adhesion. Neverthe-
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less, by explaining several effects found in the existing experiments, our mathematical

description based on the bio-chemo-mechanical model support the hypothesis by Harris

et al. [36] that the cell contraction is promoted in the direction of the electric field and

the adhesion is weakened at the regions facing the electrodes.

7.3. Conclusion

We enhanced the bio-chemo-mechanical model [15] with our description for the effects

of the DC electric field based on the proposed mechanisms of Harris et al. [36]. We

then applied this extended model for the simulation of the experiments on fibroblasts

by Harris et al. [36] and osteoblasts by Curtze et al. [14]. Our conclusions can be

summarised as follow:

• The bio-chemo-mechanical model is very efficient in simulating the dynamics of

actin formation in cells of different types, as it addresses the bio-chemical process.

Together with our description for the DC electric field, this model can predict

very well many experimental results in [14] and [36], for example, the retraction in

the direction parallel to the electric field and the elongation in the perpendicular

direction, or the dynamic change of the substrate displacement.

• In order to explain the experimental results using this model, it is necessary to

include the idea proposed by Harris et al. [36] that under the electric field ex-

posure, the strength of the adhesion is weakened at those parts of the cell facing

the electrodes. However, considering only the weakening of the adhesion is not

sufficient. Instead, a stimulation of the contraction in the direction parallel to the

field or a stimulation of the protrusion in the perpendicular direction also needs

to be addressed.

• Our mathematical description was able to predict several effects of DC electric field

on both fibroblasts and osteoblasts that are found in the existing experiments. To

overcome the remaining weak points, our further investigation will focus on a

more efficient model for the adhesion between the cell and the substrate. The

bio-mechanical model for focal adhesion by Deshpande et al. [17] is a possibility

for use as a foundation. Moreover, in order to better predict the elongation of

the cell in the direction perpendicular to the electric field, we will investigate the

contribution of cell spreading in the model.
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(a) t = 30s (b) t = 60s (c) t = 90s

(d) t = 120s (e) t = 300s
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Figure 7.9: Dynamic change of the difference in substrate displacements near the cell

peripheries obtained by our simulations. The arrows present the increase in

substrate deformation under the effect of electric field and were computed

by the subtraction of the substrate displacements for two cases: with and

without the presence of the electric field. As in the experiment of Curtze et

al. [14], the substrate stiffness is 6000Pa.
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The aim of this thesis is to study the underlying mechanisms of the interactions be-

tween osteoblasts and their surrounding bio-materials using computational approaches.

Successful theoretical description for those interactions can bring us an improved un-

derstanding of cell behaviour and give us a better control over actin formation and cell

adhesion. Such knowledge about cells helps further improving the quality of implants

and approaching the final aim of tissue engineering, which is to build an implant having

structural organisation and functionality similar to a healthy tissue. Particularly, in this

thesis, we focused on two main targets of our numerical model: (i) it should predict the

formation of actin in osteoblasts when they are cultured on titanium arrays, which were

carried out in the experiments at the Department of Cell Biology, University Medical

Center Rostock, (ii) it should address the effects of electric field on the contractility of

cells and explain the outcomes in existing experiments on different cell types.

We developed our model based on the bio-chemo-mechanical model of Deshpande

et al. [15], which has been widely applied in modelling cell contractility and shown to have

more advantages compared to most other mathematical descriptions in the literature.

The model is based on partial differential equations and is an active model, in which the

cell reacts actively to external stimulation instead of being a passive material. The active

response of the cell is addressed in the model by including the bio-chemical processes,

where a variable is introduced to represent the activation of the stress fibres in the cell.

The levels of activation are associated with the direction of the fibre and allowed to

be different at various locations in the cell. They are dependent on the strength of

signal and the current stress state of the cell. To use the bio-chemo-mechanical model

in the continuum mechanics framework, an active stress tensor, which results from the

activation of stress fibres, is added to the total stress and the equilibrium condition is

solved at each time step. The steady state of the cell is reached when the signal strength

approaches zero and there is almost no change in cell deformation and activation over

time. At that state, a measure defined as the subtraction between the maximum and the

average activation level in all directions can give a good prediction in the distribution
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of the stress fibres in the cell.

The bio-chemo-mechanical model has many applications in modelling mechanical in-

teractions between cells and substrate. It has been used to numerically study the actin

distribution in the cells as well as the forces generated by cells of different types, when

they are laid on arrays of micro-posts. The simulations can capture very well the de-

flection of the posts and the highest distribution of stress fibres within the cell that are

found in experimental studies. The model has been combined with a bio-mechanical

model for cell focal adhesion, which was proposed by Deshpande et al. [17], to study the

formation of stress fibres in the cell and the development of focal adhesions at the con-

tact regions between the cell and the substrate. The 3D model was applied for different

geometries of cells to study cell behaviour in the force indentation experiment.

In part due to its positive features and numerous advantages, the bio-chemo-mechanical

model does have a drawback that its order of complexity is very high. At every point

in the cell, the activation level needs to be computed for a large number of directions

of stress fibres. Together with the deformation of the cell, a great number of degrees of

freedom has to be solved for at each time step, even for some 2D simulations. Therefore,

significant computer resources are required and a great amount of computation time is

demanded. In our attempt to reduce the complexity order of the model, we introduced

a semi-analytical approach where a quadratic form is used to approximate the distri-

bution of activation level at every point in the cell. Doing this, instead of sampling

a large number of directions for stress fibres, we need to solve for the activation level

in three directions for the 2D case and six directions in the 3D case. In addition to

describing the formulation, we have provided the derivation of the weak forms that are

suitable for using finite element methods. These weak forms can be easily transformed

to code in our efficient software implementation that can be applied for a wide range of

simulations. We have confirmed the appropriateness of our quadratic representation by

comparing the results using our approach with those using the classical representation

in the literature. Our formulation delivered similar outcomes, while the computation

time was significantly reduced. Moreover, we observed numerically the error produced

by our method and confirmed that it is small and in an acceptable range.

Although the bio-chemo-mechanical model has been applied by McGarry et al. [57]

to simulate cells of different types on arrays of micro-posts, the same approach cannot

be directly used for simulating the interaction between osteoblastic cells and titanium

arrays in the experiments done at the Department of Cell Biology, University Medical

Center Rostock. The linear elastic adhesion model cannot capture the effect that the
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actin distribution tends to be higher on top of the pillars, instead of at the peripheries

of the pillars. We have introduced our mathematical description for the inhomogeneous

adhesion of the cell, based on the experimental outcomes that spot-adherence appeared

on the pillars. We constructed a smooth function representing the different strength

of adhesion at different location on the pillars. The results using our approach can

predict several effects in the experiments done by Matschegewski et al. [55]. Our finding

reconfirms a feature of the bio-chemo-mechanical model that it can capture the strong

influence of the boundary condition on the formation of actin filaments in the cells.

The contractility and cytoskeleton of cells of different types under external electric

field exposure have been observed experimentally in the literature. Harris et al. [36]

proposed a technique using silicone rubber substrate to study the influence of DC elec-

tric field on the contraction and stress fibre reorientation of fibroblasts. They found a

cell retraction accompanied by a gradual weakening in cell contractility in the axis par-

allel to the electric field followed by an elongation and a reorientation in the direction

perpendicular to the field. A similar approach was applied by Curtze et al. [14] for

osteoblast-like cells and analogous behaviour of the cells was found, where the response

to the electric field happened in a different time scale. Moreover, based on the obtained

images of substrate displacement, they estimated the dynamic changes in the traction

forces in the cells. The bio-chemo-mechanical model is efficient in modelling the con-

tractility and the dynamic reorganisation of the cytoskeleton, but the effects of electric

field have not been addressed. We proposed a mathematical description for these effects

based on the alternative mechanisms suggested by Harris et al. [36]. To express the

weakening of the adhesion at the cell margins facing the electrodes, we constructed a

smooth scaling function that holds a smaller value at those margins compared to the

inner part of the cell. We addressed the stimulation of the contraction in the electric

field direction by introducing another scaling function for the maximum tension in stress

fibres. This function has an initial value of 1 in every direction. Under the electric field

exposure, its value gradually increases in the direction of the field and decreases in the

perpendicular direction. Enhanced with our scaling functions, the bio-chemo-mechanical

model was then able to predict several results in the experiments of Curtze et al. [14]

and Harris et al. [36], despite a few disagreements. Our finding suggested that the

weakening of adhesion at cell regions facing the electrode did indeed contribute the

contraction of cell in the direction of the field and the elongation in the perpendicular

direction. However, regarding only the decrease in the strength of adhesion is not suffi-

cient. Instead, a stimulation of contraction in the direction of the field or the protrusion
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in the perpendicular direction should be included. Another suggestion from our finding

is that a more efficient model for cell-substrate adhesion and addressing cell spreading

in the bio-chemo-mechanical model will give an improved prediction of the experimental

results.

The future research based on the work done in this thesis can be driven in many

directions. First, a more advanced model for the adhesion between cell and substrate

can be used in the simulations of contractility of fibroblasts and osteoblasts under electric

field exposure. An alternative is to refine the bio-mechanical model for cell focal adhesion

by Deshpande et al. [17]. An efficient model such as this could not only better predict

experimental results by Curtze et al. [14] and Harris et al. [36], but also provide the

possibility to study the development of focal adhesion under the applied electric field.

Second, the effect of external electric field on the formation of actin in osteoblasts when

they are cultured on different titanium substrates, including micro-pillar structures,

can be studied numerically. Additional experiments can be set up for the verification

and further improvement of the model. Finally, the study of actin and electric field

distribution in a 3D cell under external electrical stimulation can be performed using

Maxwell’s equations and the 3D version of the bio-chemo-mechanical model. Addressing

and analysing the electric field will increase the complexity of the model. However, thank

to our quadratic representation, the computation time promises to remain acceptable.
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A. FEniCS implementation for

simulation of a cell on micro-post

array

The open source software FEniCS, version 2016.2 is used in our implementation. One of

the advantages of this framework is that the mathematical models are easily translated

into efficient finite element code [53]. For visualising the results, the software Paraview

and the plotting library matplotlib are used with Python.

Model parameters All the parameters involved for the bio-chemo-mechanical model

and cell material properties as suggested by McGarry et al. [57] are shown in Tab. A.1.

In addition to that, we used the values Epillar = 2.5·105nN/µm2, νpillar = 0.45 for Young’s

Parameter σmax θ kv kf kb ε̇0 Ecell νcell

Unit [nN/µm2] [s] [s−1] [nN/µm2]

Value 25 70 7 10 1 0.003 0.4 0.3

Table A.1: Parameters for the BCM model and cell material properties.

modulus and Poisson’s ratio of the pillars and observed that they behaved like rigid

bodies, when their straining is too small. The pillars have 1.5µm radius and 32nN/µm
bending stiffness. The spacing between pillar centres is 10µm. The cell thickness is

b = 1µm and the adhesion stiffness is kt = 500nN/µm3. The number of directions for

stress fibres is chosen to be 36, as in [15], while ∆t = 2s was used for the time step. We

carried out a careful analysis to ensure that these parameter choices are appropriate for

a meaningful solution. The declaration of all parameters is shown in Listing. A.1.
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Code Listing A.1: Define parameters for the model

# model parameters

nPost , dPost , rPost = 2, 10.0, 1.5

theta = 70

epsDot0 = 0.003

kvBar , kbBar , kfBar = 7.0, 1.0, 10.0

sigmaMax = 25.0 # nN/um2

thickness = 1.0 #um

ECell , nuCell = 0.4, 0.3 # nN/um2 , 1

EPillar , nuPillar = 2.0E5 , 0.4 # nN/um2 , 1

ksBar = 1.28

ks = ksBar * sigmaMax * thickness

ks = ks / (math.pi * (rPost**2)) # spring stiffness per area

kFA , xi = 0.15 , 3333 # nN/um, 1/um2

kt = kFA * xi

Ct = Constant(1) # level of signal

deltaT = Constant(2.0)

nDirs = 36

Mesh We used the gmsh generator to create most of our meshes. The dolfin-convert

command is then used to convert the generated meshes to xml file that can be read in

FEniCS. In order for OpenMPI parallelism to be utilised, we use a file of hierarchical

data format (HDF) to store the mesh together with its sub-domain data. An example

for creating a Mesh object in FEniCS using data from the hdf5 file is illustrated in

Listing A.2. Plots of the mesh and its sub-domain data for a cell on 2 × 2 pillars are

shown in Figure A.1.

Code Listing A.2: Read the mesh data from a hdf5 file

mesh = Mesh()

hdf = HDF5File(mesh.mpi_comm (), ’mesh.h5’, ’r’)

hdf.read(mesh , ’/mesh’, False)

subdomains = CellFunction(’size_t ’, mesh)

hdf.read(subdomains , ’/subdomains ’)

Function spaces The variables to be solved include the mixed displacement increment

∆u = (∆ucell,∆upillar) and the activation level η = (η1, . . . , ηNd
). The mixed displace-
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Mesh Cell function

0.0

0.25

0.5

0.75

1.0

Figure A.1: Mesh and physical regions for cell on 2×2 pillars that are stored in a hdf5 file.

The number of mesh cells is 15 624, while the numbers of degrees of freedom

for the deformation and the activation are 31 826 and 562 464, respectively.

ment is then obtained by a time integration u =
∫ t

0
u̇dt. First-order Lagrangian elements

are used for the displacements of both, cell and pillars. As the activation level in each

direction is a real number, zero-order discontinuous Lagrange elements are sufficient.

Listing A.3 shows how the function spaces and the primary variables are created.

Code Listing A.3: Define functional spaces

CG1 = VectorElement("Lagrange", mesh.ufl_cell (), 1)

V = FunctionSpace(mesh , MixedElement(CG1 , CG1))

u, u0 , deltaU = Function(V), Function(V), Function(V)

VEta = VectorFunctionSpace(mesh , "DG", 0, nDirs)

etaCoeff , etaCoeff0 = Function(VEta), Function(VEta)

Strain and stress tensors The cell and pillar materials are assumed to be isotropic

linearly elastic. Geometrically non-linear analysis is considered, so the Green-Lagrange

strain tensor E is used and the Saint Venant– Kirchhoff material model is applied. The

stress tensor is related to the strain tensor via the Lamé material constants λ and µ,

which can be expressed in terms of the Young’s modulus E and the Poisson’s ratio ν as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

The calculation of these constants for the cell and the pillars in the implementation is

shown in Listing A.4.
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Code Listing A.4: Compute the Lamé constants

muCell , lmbdaCell = ECell / (2 * (1 + nuCell)), ECell * nuCell / ((1

+ nuCell) * (1 - 2 * nuCell))

muPillar , lmbdaPillar = EPillar / (2 * (1 + nuPillar)), EPillar *

nuPillar / ((1 + nuPillar) * (1 - 2 * nuPillar))

The stress tensor is obtained as S = λ tr(E)I+2µE. Listing A.5 shows the computation

of the displacement u at each time step from the displacement increment ∆u, the strain

and stress tensors for cell and pillars.

Code Listing A.5: Define strain and stress tensors

(deltaUc , deltaUp) = split(deltaU)

(uc0 , up0) = split(u0)

uUpdate = u + deltaU

ucUpdate , upUpdate = uc0 + deltaUc , up0 + deltaUp

du1 , dv1 = TrialFunction(V), TestFunction(V)

a, L = inner(du1 , dv1)*dx , inner(uUpdate , dv1)*dx

problemU = LinearVariationalProblem(a, L, u)

solverU = LinearVariationalSolver(problemU)

dim = u.ufl_domain ().geometric_dimension ()

Id = Identity(dim)

Fc , Fp = Id + grad(ucUpdate), Id + grad(upUpdate)

Ec , Ep = 0.5 * (Fc.T*Fc - Id), 0.5 * (Fp.T*Fp - Id) # strain tensors

SPassiveCell = 2 * muCell * Ec + lmbdaCell * tr(Ec) * Id

SPassivePillar = 2 * muPillar * Ep + lmbdaPillar * tr(Ep) * Id

Finally, the strain rate in the cell domain can be obtained from the cell displacement

rate as Ėcell =
1
2
(Ḟ⊤

cell · Ḟcell − 1), with Ḟcell = 1+∇u̇cell:

Code Listing A.6: Define the strain rate tensor

Fcdot = Id + grad(deltaUc/deltaT)

strainRate = 0.5 * (Fcdot.T*Fcdot - Id) # strain rate for cell
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Computation of the active stress tensor Listing A.7 shows the computation of the

components of the active stress from Eq. (4.24). The active stress tensor is then con-

structed from these components. In addition, the increment for the activation level at

each time step, ∆η = η̇ ·∆t is also obtained:

Code Listing A.7: Construct the active stress and increment for the activation

strainRatePhi = []

deltaEta = []

activeStress11 , activeStress12 , activeStress22 = 0, 0, 0

phi = -math.pi / 2.0 # angle

deltaPhi = math.pi / (nDirs - 1.0)

for i in xrange(nDirs):

cosSquare = math.cos(phi) ** 2

sinSquare = math.sin(phi) ** 2

sin2phi = math.sin(2.0 * phi)

strainRatePhi.append(strainRate[0, 0] * cosSquare +

strainRate[0, 1] * sin2phi + strainRate[1, 1] * sinSquare)

activeStressPhi = sigmaMax * (etaCoeff.sub(i) + (kvBar /

epsDot0) * strainRatePhi[i])

deltaEta.append(Ct * (1.0 - etaCoeff.sub(i)) * kfBar / theta -

(-(kvBar / epsDot0) * strainRatePhi[i]) * kbBar / theta)

if (i == 0 or i == nDirs - 1):

activeStress11 += 0.5 * activeStressPhi * cosSquare

activeStress12 += 0.5 * activeStressPhi * sin2phi

activeStress22 += 0.5 * activeStressPhi * sinSquare

else:

activeStress11 += activeStressPhi * cosSquare

activeStress12 += activeStressPhi * sin2phi

activeStress22 += activeStressPhi * sinSquare

phi += deltaPhi

activeStress11 = (1.0 / (nDirs - 1.0)) * activeStress11

activeStress12 = (1.0 / (nDirs - 1.0)) * activeStress12 * 0.5

activeStress22 = (1.0 / (nDirs - 1.0)) * activeStress22

activeStress = as_matrix([[activeStress11 , activeStress12], [

activeStress12 , activeStress22]])
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dEta , dvEta = TrialFunction(VEta), TestFunction(VEta)

problemEta = LinearVariationalProblem(inner(dEta , dvEta)*dx,

inner(etaCoeff0 + deltaT * as_vector(deltaEta), dvEta)*dx,

etaCoeff)

solverEta = LinearVariationalSolver(problemEta)

Defining a non-linear form for the coupled problem The non-linear form is obtained

directly from Eq. (4.32).

Code Listing A.8: Arrange the weak form and define non-linear problem

# integrals for sub -domains: 1 for cell parts in contact with

pillars , 0 for the rest

dx = Measure("dx", domain=mesh , subdomain_data=subdomains)

du , w = TrialFunction(V), TestFunction(V)

# nonlinear variational problem

F = inner(SPassiveCell + activeStress , grad(vc)) * (dx(0) + dx(1)) #

cell

F += inner(SPassivePillar , grad(vp)) * dx(1) # post elasticity

F += ks * dot(upUpdate , vp) * dx(1) # springs on posts

F += dot(upUpdate , vp) * dx(0) # fix region without posts

F += kt * inner(ucUpdate - upUpdate , vc) * dx(1) # contact force on

cell

F += kt * inner(upUpdate - ucUpdate , vp) * dx(1) # contact force on

posts

J = derivative(F, deltaU , du)

problem = NonlinearVariationalProblem(F, deltaU , [], J)

solver = NonlinearVariationalSolver(problem)

solver.parameters[’newton_solver ’][’relative_tolerance ’] = 1E-6

Performing time-stepping The procedure for solving the time-dependent problem is

shown in Listing A.9. The solver is advanced in time from tn to tn+1 until the steady

state is reached, i.e., when ∆u and ∆a are close to zero. For convenience, we export the

mixed displacement and the activation level to hdf5 files and use another Python script
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A. FEniCS implementation for simulation of a cell on micro-post array

for post-processing of the results.

Code Listing A.9: Perform time stepping

fuFile = HDF5File(mesh.mpi_comm (), ’result/disp.h5’, "w")

fetaFile = HDF5File(mesh.mpi_comm (), ’result/etaCoeff.h5’, "w")

fuFile.write(u, "/initial")

faFile.write(aCoeff , "/initial")

# Time integration

t, timeEnd = 0, 2000

step = 0

while t < timeEnd:

t += float(deltaT)

print "Step: " + str(step) + ", time = " + str(t)

# update concentration C(t)

Ct.assign(math.exp(-t / theta))

# solve for deformation

solver.solve()

solverU.solve()

u0.vector ()[:] = u.vector () # update deformation

# solve for activation and update the values

solverEta.solve ()

etaCoeff0.vector ()[:] = etaCoeff.vector ()

step += 1

fuFile.write(u, "/values_{}".format(step))

fetaFile.write(etaCoeff , "/values_{}".format(step))

normDeltaU = norm(deltaU , ’l2’)

etaDot = project(as_vector(deltaEta), VEta)

normEta = norm(etaDot , ’l2’)

if (normDeltaU < 1E-4 and normEta/nDirs < 1E-4):

print "Steady -state is reached at t = " + str(t)

break

fuFile.close()

fetaFile.close ()
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B. Stability analysis

We carried out analyses to make sure that the solutions are stable with our choice of the

time step size. Figure B.1 shows an exemplary analysis for the simulation of a cell on

2× 2 posts. The plot illustrates the average activation at a specific point in the cell, for

different time step sizes used. Here, we chose the point (x0, y0) = (2.5µm, 2.5µm), where

the origin is located at the centre of the cell, as we saw the change in actin distribution

near this point. A fine mesh is used, with the maximum edge length of 0.248µm. We
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Figure B.1: Plot for the average activation at a point in the cell over time for different

time steps used.

can clearly see from the plot that there is almost no change in the results when the time

step is less than or equal to 2s. A similar outcome was obtained when we observed the

cell deformation.
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C. Convergence study

We performed different mesh convergence studies to ensure the accuracy of our solutions.

Figure C.1 shows an exemplary convergence study for the simulation of a cell on 2 × 2

posts. The plot illustrates the magnitudes of cell deformation and the relative errors,

for different sizes of the mesh. We used the time step size of 0.1s for all meshes and

made an analysis to assure that the solution is stable for the coarsest mesh. We can
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Figure C.1: Plot of the magnitudes of cell displacement and the relative errors

∥uk − uk−1∥/∥uk∥ for meshes of different sizes.

see that as the number of mesh cells increased, the displacement results converged and

the error approaches zero. A good accuracy is obtained for the mesh with 15 624 cells,

corresponding to the maximum edge length of around 0.25µm.
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