Der Einfluss von Hydrogensulfid auf die Aktivität humaner Endothelzellen und die Neointimabil dung im Mausmodell

Inauguraldissertation
zur Erlangung des akademischen Grades
Doktor der Medizin
der Medizinischen Fakultät
der Universität Rostock

vorgelegt von
Gina Klee
geboren am 31.08.1994 in Güstrow

Rostock 2019

https://doi.org/10.18453/rosdok_id00002680
Dekan: Prof. Dr. med. Emil Christian Reisinger

1. Gutachter: Prof. Dr. med. Brigitte Vollmar, Institut für Experimentelle Chirurgie, Universität Rostock

2. Gutachter: PD Dr. sc. nat. Marcus Frank, Elektronenmikroskopisches Zentrum, Universität Rostock

3. Gutachter: Prof. Dr. med. Eike Sebastian Debus, Universitäres Herz- und Gefäßzentrum, Universitätsklinikum Hamburg-Eppendorf

Jahr der Einreichung: 2019

Jahr der Verteidigung: 2020
„Ich wollte nicht nur Namen von Dingen wissen. Ich erinnere mich, dass ich wirklich wissen wollte, wie alles funktioniert hat.“

Elizabeth Blackburn
Inhaltsverzeichnis

1 Zusammenfassung ... 4
2 Abstract 6
3 Glossar 7
4 Einleitung .. 10
 4.1 Hydrogensulfid ... 10
 4.1.1 Metabolismus..10
 4.1.1.1 Cystathionin y-Lyase .. 11
 4.1.1.2 Cystathionin ß-Synthase .. 12
 4.1.1.3 3-Mercaptoppyruvat Sulfurtransferase ... 12
 4.1.2 Protein S-Sulfhydrierung ... 13
 4.1.3 Endogene Funktionen ... 13
 4.1.3.1 Zentralnervensystem .. 14
 4.1.3.2 Herz-Kreislaufsystem ... 16
 4.1.3.3 Gerinnungssystem ... 17
4.2 Thrombogenese ...18
 4.2.1 Virchow Trias ..19
4.3 Endothelzellen .. 20
 4.3.1 Funktionen der Endothelzellen .. 21
 4.3.1.1 Endothelzellen im Rahmen der Hämostase .. 22
 4.3.2 Endotheliale Adhäsionsmoleküle ...24
 4.3.2.1 Selektine ..24
 4.3.2.2 Integreine ..25
 4.3.2.3 Immunglobulin-Superfamilie ...25
 4.3.3 Endothelaktivierung ... 27
5 Zielstellung .. 28
6 Material und Methodik ...29
 6.1 Hydrogensulfid Donor GYY4137 .. 29
 6.2 In vitro Experimente .. 30
 6.2.1 HUVECs...
 6.2.2 WST Assay ...
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3 Durchflusszytometrie</td>
<td>31</td>
</tr>
<tr>
<td>6.2.4 ELISA</td>
<td>33</td>
</tr>
<tr>
<td>6.2.5 Biotin Switch Assay</td>
<td>34</td>
</tr>
<tr>
<td>6.2.6 Migrationsassay</td>
<td>35</td>
</tr>
<tr>
<td>6.3 In vivo Experimente</td>
<td>36</td>
</tr>
<tr>
<td>6.3.1 Versuchstiere</td>
<td>36</td>
</tr>
<tr>
<td>6.3.2 Versuchsgruppen</td>
<td>36</td>
</tr>
<tr>
<td>6.3.3 Experimentelles Tiermodell</td>
<td>37</td>
</tr>
<tr>
<td>6.3.3.1 Anästhesie</td>
<td>37</td>
</tr>
<tr>
<td>6.3.3.2 Präparation der Arteria carotis</td>
<td>37</td>
</tr>
<tr>
<td>6.3.3.3 Schädigung der Arteria carotis mit FeCl₃</td>
<td>39</td>
</tr>
<tr>
<td>6.3.3.4 Intravenöse Applikation von GYY4137/DMSO</td>
<td>39</td>
</tr>
<tr>
<td>6.3.3.5 Resektion der Arteria carotis</td>
<td>39</td>
</tr>
<tr>
<td>6.3.4 Histologie/Immunhistochemie</td>
<td>40</td>
</tr>
<tr>
<td>6.4 Statistische Analyse</td>
<td>43</td>
</tr>
<tr>
<td>7 Ergebnisse</td>
<td>44</td>
</tr>
<tr>
<td>7.1 WST Assay</td>
<td>44</td>
</tr>
<tr>
<td>7.2 Durchflusszytometrie</td>
<td>44</td>
</tr>
<tr>
<td>7.3 ELISA</td>
<td>47</td>
</tr>
<tr>
<td>7.4 Biotin Switch Assay</td>
<td>48</td>
</tr>
<tr>
<td>7.5 Migrationsassay</td>
<td>49</td>
</tr>
<tr>
<td>7.6 Neointimabildung</td>
<td>51</td>
</tr>
<tr>
<td>7.7 Immunhistochemie</td>
<td>52</td>
</tr>
<tr>
<td>8 Diskussion</td>
<td>54</td>
</tr>
<tr>
<td>8.1 Diskussion von Material und Methodik</td>
<td>54</td>
</tr>
<tr>
<td>8.1.1 Hydrogensulfid Donor GYY4137</td>
<td>54</td>
</tr>
<tr>
<td>8.1.2 WST Assay</td>
<td>55</td>
</tr>
<tr>
<td>8.1.3 Durchflusszytometrie</td>
<td>55</td>
</tr>
<tr>
<td>8.1.4 ELISA</td>
<td>56</td>
</tr>
<tr>
<td>8.1.5 Biotin Switch Assay</td>
<td>56</td>
</tr>
<tr>
<td>Nummer</td>
<td>Chapters</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Migrationsassay</td>
</tr>
<tr>
<td>8.1.7</td>
<td>In vivo FeCl₃-Thrombosemodell</td>
</tr>
<tr>
<td>8.1.7.1</td>
<td>C57BL/6J-Tyr Maus</td>
</tr>
<tr>
<td>8.1.7.2</td>
<td>Narkose</td>
</tr>
<tr>
<td>8.1.7.3</td>
<td>Modell der FeCl₃-Schädigung</td>
</tr>
<tr>
<td>8.2</td>
<td>Diskussion der Ergebnisse</td>
</tr>
<tr>
<td>9</td>
<td>Schlussfolgerung</td>
</tr>
<tr>
<td>10</td>
<td>Literaturverzeichnis</td>
</tr>
<tr>
<td>11</td>
<td>Abbildungs- und Tabellenverzeichnis</td>
</tr>
<tr>
<td>11.1</td>
<td>Abbildungen</td>
</tr>
<tr>
<td>11.2</td>
<td>Tabellen</td>
</tr>
<tr>
<td>12</td>
<td>Danksagung</td>
</tr>
<tr>
<td>13</td>
<td>Eidesstaatliche Erklärung</td>
</tr>
<tr>
<td>14</td>
<td>Thesen zur Dissertation</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

Zielstellung: Das Endothel ist eine wesentliche zelluläre Komponente im komplexen hämostasiologischen System und besitzt Enzymsysteme zur Synthese des gasförmigen Transmitters Hydrogensulfid (H$_2$S). H$_2$S entfaltet auf vaskulärer Ebene zahlreiche protektive Funktionen. Ziel der vorgestellten Studie ist es, den Einfluss des H$_2$S Donors GYY4137 (GYY) auf die Aktivität humaner Endothelzellen (HUVECs) in vitro, sowie auf die Neointimabildung in vivo zu evaluieren.

Ergebnisse: Die Vorbehandlung mit GYY vor der TNF-α induzierten Aktivierung der HUVECs führt im Vergleich zur alleinigen Stimulation zu einer signifikanten, dosisabhängigen Reduktion der Expression von CD62E und des mittleren

Schlussfolgerung: Anhand der Daten kann postuliert werden, dass GYY die Aktivierbarkeit von HUVECs reversibel reduziert. Zudem konnte eine toxische Wirkung ausgeschlossen werden. In vivo führt GYY zu einer verminderten Neointimabildung.
Abstract

Purpose: The endothelium is crucial during thrombogenesis. This study aims to evaluate the effect of the H\textsubscript{2}S donor GYY4137 (GYY) on the activity of human umbilical vein endothelial cells (HUVECs) in vitro and on neointimal formation in vivo.

Materials and Methods: Flow cytometry of resting, TNF-\textalpha stimulated or with 1, 5 or 10 mM GYY treated and subsequently stimulated HUVECs was performed to analyze the expression of CD62E, CD54 and CD106. To study a potential reversibility of the GYY action, CD62E expression was further assessed on HUVECs activated 24h after exposure to 10 mM GYY. A WST assay was performed to exclude toxic effects. To examine the cellular activity of GYY treated HUVECs, an ELISA for detection of von Willebrand factor (vWF) was additionally performed. Biotin switch assay served for analysis of S-sulfhydration of GYY exposed endothelial proteins. Furthermore a migration assay was carried out, in which the migration of untreated, VEGF stimulated, 1 mM GYY treated or simultaneously VEGF and GYY treated HUVECs was investigated. In vivo the effect of GYY on neointimal formation in the carotid artery was studied in the FeCl\textsubscript{3} injury model in GYY or vehicle treated mice. At day 7 or 21 after treatment, the carotid artery was removed for histological and immunohistochemical analysis.

Results: GYY treatment significantly reduces the expression of CD62E and CD54 but not of CD106. When HUVECs are stimulated 24h after GYY treatment, CD62E expression is no longer affected. The WST assay reveals no differences between the groups. GYY significantly increases the S-sulfhydration of endothelial proteins, leads to a restricted migration of HUVECs and reduction of vWF secretion. The in vivo studies show a reduction of the neointimal formation and a decrease in number of \alpha-smooth muscle actin and proliferating cell nuclear antigen positive cells under GYY treatment.

Conclusions: Summarizing, GYY dose dependently and reversible decreases the activation of HUVECs in an untotoxic way and reduces neointimal formation in vivo.
3 Glossar

<table>
<thead>
<tr>
<th>3-MST</th>
<th>3-Mercaptopyruvat Sulfurtransferase</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Arteria</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Kalzium</td>
</tr>
<tr>
<td>CAT</td>
<td>Cystein Aminotransferase</td>
</tr>
<tr>
<td>CBS</td>
<td>Cystathionin β-Synthase</td>
</tr>
<tr>
<td>CO</td>
<td>Kohlenstoffmonoxid</td>
</tr>
<tr>
<td>CSE</td>
<td>Cystathionin γ-Lyase</td>
</tr>
<tr>
<td>DAO</td>
<td>D-Aminooxidase</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immuno sorbent assay</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>EZM</td>
<td>Extrazellularmatrix</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetales Kälberserum</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>Eisen(III)-chlorid</td>
</tr>
<tr>
<td>FSC</td>
<td>Vorwärtsstreuung</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glycerinaldehyd-3-Phosphat-Dehydrogenase</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-Aminobuttersäure</td>
</tr>
<tr>
<td>GYY</td>
<td>GYY4137</td>
</tr>
<tr>
<td>h</td>
<td>Stunde(n)</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogensulfid</td>
</tr>
<tr>
<td>HE</td>
<td>Hämatoxylin-Eosin</td>
</tr>
<tr>
<td>HuR</td>
<td>Human Antigen R</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HUVEC</td>
<td>Human umbilical vein endothelial cell</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intracellular adhesion molecule 1</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>IL-1</td>
<td>Interleukin 1</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>i.v.</td>
<td>Intravenös</td>
</tr>
<tr>
<td>K⁺</td>
<td>Kalium</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>Keap1</td>
<td>Kelch-like ECH-associated protein 1</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>Ko</td>
<td>Kontrolle</td>
</tr>
<tr>
<td>LFA-1</td>
<td>Lymphocyte function-associated antigen 1</td>
</tr>
<tr>
<td>LTP</td>
<td>Langzeitpotenzierung</td>
</tr>
<tr>
<td>MAC-1</td>
<td>Macrophage-1 antigen</td>
</tr>
<tr>
<td>MFS</td>
<td>Mittlerer Fluoreszenzshift</td>
</tr>
<tr>
<td>min</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>MMTS</td>
<td>Methylmethanethiosulfonat</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nekrosefaktor kappa B</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl-D-Aspartat</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>Nrf2</td>
<td>Nuclear factor erythroid 2-related factor</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>PSGL-1</td>
<td>P-Selektin Glykoprotein Ligand-1</td>
</tr>
<tr>
<td>SAM</td>
<td>S-Adenosylmethionin</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>SEM</td>
<td>Standardfehler des Mittelwerts</td>
</tr>
<tr>
<td>SMC</td>
<td>Smooth muscle cells</td>
</tr>
<tr>
<td>SNARE</td>
<td>Soluble N-ethylmaleimide-sensitive-factor attachment receptor</td>
</tr>
<tr>
<td>SSC</td>
<td>Seitwärtsstreuung</td>
</tr>
<tr>
<td>TF</td>
<td>Tissue factor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumornekrosefaktor alpha</td>
</tr>
<tr>
<td>t-PA</td>
<td>Tissue plasminogen activator</td>
</tr>
<tr>
<td>TRAP</td>
<td>Thrombin Rezeptor aktivierendes Peptid</td>
</tr>
<tr>
<td>TRPV4</td>
<td>Transient receptor potential cation channel subfamily V member 4</td>
</tr>
<tr>
<td>TVT</td>
<td>Tiefe Venenthrombose</td>
</tr>
<tr>
<td>V.</td>
<td>Vena</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vascular cell adhesion molecule 1</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>vs</td>
<td>Versus</td>
</tr>
<tr>
<td>vWF</td>
<td>Von Willebrand Faktor</td>
</tr>
<tr>
<td>Wo</td>
<td>Woche(n)</td>
</tr>
<tr>
<td>WPK</td>
<td>Weibel-Palade Körperchen</td>
</tr>
<tr>
<td>WST</td>
<td>Water soluble tetrazolium</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentralnervensystem</td>
</tr>
<tr>
<td>α-SMA</td>
<td>Alpha-smooth muscle actin</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>µM</td>
<td>Mikrometer</td>
</tr>
</tbody>
</table>
Einleitung

4 Einleitung

4.1 Hydrogensulfid

4.1.1 Metabolismus

4.1.1.1 Cystathionin y-Lyase

4.1.1.2 Cystathionin β-Synthase

4.1.1.3 3-Mercaptopruvrat Sulfurtransferase

Das Enzym, welches erst vor einigen Jahren als H_2S bildender Biokatalysator beschrieben wurde, ist die 3-MST. Sie wandelt ihr Substrat 3-Mercaptopruvrat neben dem H_2S zu Pyruvat, Ammoniak und elementarem Schwefel um (Shibuya et al. 2009). Das Substrat wird durch Transaminierung von L-Cystein durch die Cystein Aminotransferase (CAT, Ubuka et al. 1978) bzw. durch die D-Aminooxidase (DAO) aus D-Cystein (Shibuya et al. 2013) gebildet (Abb. 1). Die Produktion des H_2S über den Weg der 3-MST und CAT ist ebenfalls von der intrazellulären Ca^{2+}-Konzentration abhängig und findet am effektivsten während des steady states statt (Mikami et al. 2011).

4.1.2 Protein S-Sulfhydrierung

4.1.3 Endogene Funktionen

Aufgrund des pleiotropen Charakters von H₂S wurde dessen Einsatz bereits intensiv als potenzielles Therapeutikum bei Ischämie- und Reperfusionsschäden in Gehirn, Herz, Lunge und Leber untersucht. Außerdem reguliert H₂S die Aktivität der NO Synthetase (NOS), um
die Produktion des Stickstoffmonoxids zu kontrollieren. Auf der einen Seite erleichtert es die Phosphorylierung der Aktivierungsstelle der endothelialen NOS (eNOS) und erhöht so die NO Produktion (King et al. 2014). Auf der anderen Seite wird die Aktivität der neuronalen NOS (nNOS) durch H₂S in den glatten Muskelzellen des Colons unterdrückt (Sha et al. 2014).

4.1.3.1 Zentralnervensystem

Einleitung

Studie bezüglich zerebraler Ischämien nachgewiesen, dass \(\text{H}_2\text{S} \) durch anti-apoptotische Effekte in murinen Neuronen eine schützende Funktion vor neuronaler Apoptose zugeschrieben werden kann, welches sich in einem abnehmenden Infarktvolumen äußerte (Lin et al. 2012).

<table>
<thead>
<tr>
<th>Neuromodulation</th>
<th>Neuroprotektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMDA-Rezeptor</td>
<td>Alzheimer Krankheit</td>
</tr>
<tr>
<td>Hippocampale LTP</td>
<td>Morbus Parkinson</td>
</tr>
<tr>
<td>Synaptische Transmission</td>
<td>Schädel-Hirn-Trauma</td>
</tr>
<tr>
<td>GABA-β-Rezeptor</td>
<td>Zerebrale Ischämie</td>
</tr>
<tr>
<td>Intrazelluläres (\text{Ca}^{2+})</td>
<td>(\text{H}_2\text{S})</td>
</tr>
<tr>
<td>Intrazellulärer pH Wert</td>
<td>Alzheimer Krankheit</td>
</tr>
<tr>
<td></td>
<td>Morbus Parkinson</td>
</tr>
<tr>
<td></td>
<td>Schädel-Hirn-Trauma</td>
</tr>
<tr>
<td></td>
<td>Zerebrale Ischämie</td>
</tr>
</tbody>
</table>

Abb. 2: Effekte von \(\text{H}_2\text{S} \) auf das ZNS. Überblick über die vielfältigen neuromodulatorischen und neuroprotektiven Funktionen des \(\text{H}_2\text{S} \).

Der \(\text{H}_2\text{S} \) vermittelten Neuroprotektion stehen verschiedene und bereits ausführlich untersuchte Mechanismen zur Verfügung. So schützt \(\text{H}_2\text{S} \) die Nervenzellen durch seine reduzierende und somit anti-oxidative Wirkung (Yin et al. 2009) vor oxidativem Stress, der experimentell z.B. durch Glutamat (Kimura & Kimura 2004) oder Wasserstoffperoxid (Lu et al. 2008) induziert wurde. Der anti-inflammatorische Effekt von \(\text{H}_2\text{S} \) wurde erstmals 2007 von Hu et al. beschrieben. Es konnte gezeigt werden, dass sowohl endogenes als auch exogenes \(\text{H}_2\text{S} \) die Lipopolysaccharid induzierte NO Freisetzung und die TNF-α Produktion in Mikrogliazellen abschwächen kann (Hu et al. 2007). Neben der anti-oxidativen und anti-inflammatorischen Wirkung wird \(\text{H}_2\text{S} \) ein anti-apoptotischer Effekt zugeschrieben, der auf einer Inhibition pro-apoptotischer Signalwege beruht (Zhu et al. 2007, Yin et al. 2009, Lin et al. 2012). Außerdem verringert \(\text{H}_2\text{S} \) die Stressantwort des endoplasmatischen Retikulums (ER, Krishnan et al. 2011).
4.1.3.2 Herz-Kreislaufsystem

Durch den bereits beschriebenen Mechanismus der Regulation der eNOS schützt H$_2$S den Herzmuskel vor Ischämien und Reperfusionsschäden (Elrod et al. 2007, King et al. 2014). Die genetische Überexpression der CSE in Mäusen führt zu erhöhten H$_2$S Spiegeln, einer verbesserten linksventrikulären Leistung und einem gesteigerten Überleben bei ischämischer Herzinsuffizienz (Calvert et al. 2010). In einem Bluthochdruck induzierten Herzinsuffizienzmodell wurde gezeigt, dass H$_2$S die Progression zur nachteiligen Remodellierung des linken Ventrikels verlangsamt und myokardiale Angiogenese induziert (Polhemus et al. 2013). Es wurde außerdem nachgewiesen, dass H$_2$S bei chronischer Ischämie eine stark pro-angiogene Wirkung auf vaskuläre Endothelzellen ausübt, indem es extrazelluläre Kinase Signalkaskaden aktiviert, die das Gefäßwachstum fördern (Szabó & Papapetropoulos 2011). Viele Arbeitsgruppen haben beschrieben, dass H$_2$S die Endothelzellproliferation und -migration stimuliert, indem entweder das Zellwachstum gesteigert oder die Neubildung von Endothelzellen induziert werden (Cai et al. 2007, Papapetropoulos et al. 2009). Die zunehmende myokardiale Vaskularisierung und Perfusion sowie das Wachstum der Kardiomyozyten sind entscheidend, um das Fortschreiten der Herzinsuffizienz zu verhindern. H$_2$S scheint für diese Indikation ein aussichtsreicher, pro-angiogener und damit kardioprotaktiver Mediator zu sein (Polhemus und Lefer 2014). Außerdem zeigten Mani et al., dass H$_2$S durch Verringerung der Intimaproliferation einen protektiven Mechanismus in der Pathogenese der Atherosklerose darstellt und in CSE-
Einleitung

Knockout Mäusen zu einer beschleunigten Entwicklung von Atherosklerose führt (Mani et al. 2013).

4.1.3.3 Gerinnungssystem

Unter physiologischen Bedingungen besteht ein dynamisches Gleichgewicht zwischen pro- und anti-koagulatorischen Prozessen. An der Aufrechterhaltung dieses Equilibriums sind unter anderem die drei endogenen gasförmigen Mediatoren beteiligt. So wurde gezeigt, dass \(\text{H}_2\text{S} \) neben NO und CO wesentliche Funktionen in der Modulation des Gerinnungssystems zugeschrieben werden können. Im Jahr 2007 wurde erstmals der anti-thrombogene Effekt von \(\text{H}_2\text{S} \) nachgewiesen, der auf einer Inhibition der Aggregation der Thrombozyten beruht (Zagli et al. 2007, Grambow et al. 2014, Olas & Kontek 2014). Die anti-thrombogene Eigenschaft wird auf der einen Seite über die Hochregulation der NO Synthese (Kram et al. 2013) und andererseits durch die verminderte Thrombozytenaktivierung und die konsekutiv reduzierte Thrombozytenaggregation vermittelt (Morel et al. 2012, Grambow et al. 2014). Einen Mechanismus der Regulation der Adhäsionsmolekülexpression der Thrombozyten

4.2 Thrombogenese

Venöse Thrombosen sind im klinischen Alltag von großer Bedeutung, wobei die tiefen Bein- und Beckenvenenthrombosen (TVT) mit einer Inzidenz von 70 bis 110 pro 100.000 Einwohner die häufigsten Formen darstellen. Dabei kommt es als Folge, trotz verbesserter Therapieoptionen, bei etwa einem Drittel der Patienten zu einer Lungenarterienembolie (White 2003). Tiefe Venenthrombosen und die Lungenarterienembolie stellen während eines Krankenhausaufenthalts auch heutzutage noch eine der Hauptursachen für Morbidität und
Einleitung

4.2.1 Virchow Trias

Abb. 3: Komponenten der Virchow'schen Trias: pathophysiologische Grundlagen der Entstehung einer Thrombose.

Eine Veränderung der Viskosität kann durch eine Änderung der Zusammensetzung des Blutes bedingt sein und somit zu einer Hyperkoagulabilität führen. Hierbei besteht ein Ungleichgewicht zwischen Gerinnung und Fibrinolyse (Herold 2017). Die Risikofaktoren der Hyperkoagulabilität können entweder angeboren oder erworben sein (Seligsohn & Lubetsky...

Veränderungen des Blutflusses sind am häufigsten durch Immobilisation, z.B. in Folge eines operativen Eingriffes, bedingt. Es kommt aber auch durch rechtsventrikuläre und linksventrikuläre Herzinsuffizienz sowie eine lokale Stase zu einer Strömungsverlangsamung, was die Bildung einer Thrombose begünstigt. Varizen können zu einer Wirbelbildung und somit ebenfalls zu Blutstromveränderungen führen (Herold 2017). Dabei entsteht anstelle einer linearen Strömung eine turbulente Strömung. Endothelalterationen entstehen unter anderem aufgrund lokaler Entzündungen, Traumata, arterieller Hypertonie, Diabetes mellitus und durch Nikotinabusus (Herold 2017).

4.3 Endothelzellen

Man unterscheidet histologisch das kontinuierliche, fenestrierte und diskontinuierliche Endothel, wobei das kontinuierliche, geschlossene Endothel in den meisten Abschnitten des Gefäßsystems vorkommt. Die Permeabilität ist entsprechend des Organs sehr
Einleitung

4.3.1 Funktionen der Endothelzellen

Moleküle, die die Aktivierung von Thrombozyten und die Koagulationskaskade regulieren, wodurch der Blutfluss erhalten und die Thrombusbildung nach der Gefäßverletzung verhindert wird (Pearson 1999, Van Hinsbergh 2012).

4.3.1.1 Endothelzellen im Rahmen der Hämostase

Abb. 4: Rasterelektronenmikroskopie aktivierter HUVECs und Thrombozyten. Übersichtsaufnahme der HUVECs und Thrombozyten in 500-facher Vergrößerung (A) und Nahaufnahme der HUVECs mit anhaftenden TRAP-aktivierten humanen Thrombozyten in 3000-facher Vergrößerung (B).
4.3.2 Endotheliale Adhäsionsmoleküle

4.3.2.1 Selektine

4.3.2.2 Integrine

4.3.2.3 Immunglobulin-Superfamilie

Die endothelialen Adhäsionsmoleküle ICAM-1, ICAM-2 und VCAM-1 gehören zur Immunglobulin-Superfamilie. Sie weisen mehrere Immunglobulin Domänen auf und sind durch eine typische räumliche Struktur charakterisiert.

4.3.3 Endothelaktivierung

5 Zielstellung

Ziel der vorliegenden experimentellen Studie war es, den Einfluss des H₂S Donors GYY4137 auf die Aktivität humaner Endothelzellen in vitro, sowie auf die Neointimabildung in vivo zu evaluieren. In zahlreichen Studien wurde bereits gezeigt, dass H₂S einen Einfluss auf die Thrombogenese und wesentliche Faktoren der Virchow'schen Trias geltend macht. Bisher ist jedoch noch nicht hinreichend untersucht, welchen Effekt H₂S auf die Endothelzellen als einen der Faktoren der Trias ausübt. Daher ergaben sich für die vorliegende Studie folgende Fragestellungen:

1. Welchen Einfluss hat H₂S auf die Expression pro-thrombogener endothelialer Adhäsionsmoleküle aktivierter Endothelzellen?

2. Welchen Einfluss hat H₂S auf die vWF Sekretion aktivierter Endothelzellen?

3. Beeinflusst H₂S die Protein S-Sulfhydrierung endothelialer Proteine?

4. Hat H₂S einen Einfluss auf das Migrationsverhalten der Endothelzellen?

5. Beeinflusst H₂S die Neointimabildung im geschädigten arteriellen Gefäßareal?
6 Material und Methodik

6.1 Hydrogensulfid Donor GYY4137

Für alle folgenden Versuche diente die Substanz GYY4137 (GYY, Abb. 5) als H₂S Donor (Li et al. 2008). Es ist wasserlöslich und setzt H₂S sowohl in vitro als auch in vivo langsam und in physiologischen Konzentrationen frei. Ursprünglich wurde GYY als Beschleuniger bei der Vulkanisation von Naturkautschuk in den späten 1950er Jahren entwickelt und erst einige Jahrzehnte später als potenzieller Arzneimittelkandidat ins Auge gefasst (Rose et al. 2015).

![Chemische Synthese von GYY4137 mit Hilfe von Dichlormethan unter Raumtemperatur (Li et al., 2008).]

6.2 In vitro Experimente

6.2.1 HUVECs

Die in vitro Analysen erfolgten ausschließlich an Human Umbilical Vein Endothelial Cells (HUVECs). Die primär isolierten HUVECs sind die wahrscheinlich populärsten Endothelzellen in der Forschung, da die menschlichen Nabelvenen häufiger verfügbar sind als andere Arten von Blutgefäßen. Für die Versuche wurden die HUVECs (PromoCell, Heidelberg, Deutschland) mit dem Endothelial Cell Growth Medium (C-22010, PromoCell) inklusive 2% fetalem Kälberserum (FCS) kultiviert. Zu dem Medium wurde außerdem ein Supplement-Mix, Penicillin-Streptomycin zur Antibiotikaprophylaxe und 8% FCS, um eine Gesamtkonzentration von 10% FCS zu erreichen, hinzugefügt.

6.2.2 WST Assay

Mit Hilfe des WST-1 (water soluble tetrazolium) Assays wurde zunächst eine mögliche Zytotoxizität des H₂S Donors GYY und anderer Substanzen, die in dieser Studie Anwendung finden, untersucht. Der WST Assay beruht auf der enzymatischen Umsetzung des schwach rot gefärbten Tetrazoliumsalzes WST-1 (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-Benzol-Disulfonat) in das dunkelrot gefärbte Formazan durch vitale Zellen. Die HUVECs wurden in 96 Well-Platten mit einer Zellzahl von 4 x 10³ ausgeplattet. Neben den unbehandelten Zellen wurden die HUVECs separat mit dem Vehikel, mit 10 ng/ml TNF-α, welches für 3 Stunden zur inflammatorischen Stimulation der HUVECs diente, sowie für jeweils eine Stunde mit GYY in Konzentrationen von 1, 5 und 10 mM behandelt. Anschließend erfolgte zu unterschiedlichen Zeitpunkten (30 Minuten, 1, 2, 3 und 4 Stunden) die Messung der Absorption mittels eines Photometers (VICTOR™ X3, PerkinElmer, Waltham, Massachusetts, USA) bei einer Wellenlänge von 450 nm zur Beurteilung der Absorptionsschwächungen und der damit einhergehenden potentiellen toxischen Effekte.
6.2.3 Durchflusszytometrie

Für die durchflusszytometrischen Analysen wurden die HUVECs in 6-Well Platten mit einer Zellzahl von 1×10^5 ausgeplattet. Nach 24 Stunden war ein konfluentes Wachstum erreicht, sodass die Behandlungen erfolgen konnten.

Im ersten Ansatz der Durchflusszytometrie (Abb. 6) erfolgte die Behandlung der HUVECs mit GYY in Konzentrationen von 1, 5 oder 10 mM für jeweils eine Stunde. Zur Analyse der E-Selektin und ICAM-1 Expression erfolgte nach Wechsel des Mediums die Aktivierung der Zellen mit TNF-α für 3 Stunden. Um die Expression von VCAM-1 zu beurteilen, wurden die HUVECs für 24 Stunden mit TNF-α inkubiert. Am Ende des Settings wurde die FACS-Analyse durchgeführt.

Abb. 6: Versuchsaufbau Durchflusszytometrie 1. Im ersten Setting erfolgte die Behandlung der HUVECs mit 1, 5 oder 10 mM GYY für jeweils eine Stunde. Anschließend erfolgten ein Mediumwechsel und die Zellaktivierung durch zusätzliche Exposition mit TNF-α, entsprechend des Adhäsionsmoleküls für jeweils 3 oder 24 Stunden, sowie die anschließende FACS-Analyse.

Für eine genaue Messung wurde das FACScan Durchflusszytometer (Becton Dickinson, Franklin Lakes, New Jersey, USA) mit Fluoreszenz-Standard-Microbeads (CaliBRITE Beads, Becton Dickinson, Franklin Lakes, New Jersey, USA) kalibriert. Von jeder Probe wurden 20.000 Zellen pro Messung ausgewertet. Die Endothelzellen wurden mit dem Programm CellQuest (Becton Dickinson, Franklin Lakes, New Jersey, USA) identifiziert und hinsichtlich ihrer Fluoreszenz analysiert. Die Fluoreszenzmessung der unbehandelten Probe diente zur Erfassung des Dot-Plots sowie der Eigenfluoreszenz.

Für die durchflusszytometrische Analyse der E-Selektin Expression (Abb. 7) wurde ein monoklonaler, APC-markierter Maus anti-Human anti-CD62E Antikörper (20 µl, 551144, BD

Abb. 7: Durchflusszytometrie E-Selektin. Fluoreszenzmessung der E-Selektin Expression von ruhenden, nicht stimulierten humanen Endothelzellen (A) und mit TNF-α stimulierten HUVECs (B).

Material und Methodik

Abb. 8: Versuchsauflauf Durchflusszytometrie II. In einem zweiten Setting wurden die HUVECs mit der höchsten GYY Konzentration von 10 mM für eine Stunde behandelt. Anschließend erfolgte identisch zu Setting I ein Mediumwechsel. Um anhand der E-Selektin Expression zu untersuchen, ob die Effekte von Hydrogensulfid reversibel sind, erfolgte die dreistündige Stimulation der Endothelzellen mit TNF-α erst nach weiteren 24 Stunden.

6.2.4 ELISA

6.2.5 **Biotin Switch Assay**

Um den potentiellen Wirkmechanismus von H_2S zu analysieren, erfolgte die Messung der S-Sulfhydrierung endothelialer Proteine mit Hilfe eines Biotin Switch Assays (Mustafa et al. 2009). Dazu wurden die HUVECs jeweils mit einer Konzentration von 1, 5, oder 10 mM GYY bzw. dem Vehikel exponiert. Nach der Inkubation mit Formaldehyd erfolgte die Waschung mit PBS bei 10.000 rpm für 5 Minuten. Darauffin wurde das entstandene Pellet in HEN Puffer (250 mM Hepes-NaOH; pH 7,7; 1 mM EDTA; 0,1 mM Neocuproin), welches mit 100 μM Deferoxamin supplementiert war, resuspendiert und bei 13.000 g und 4 °C für 10 Minuten zentrifugiert. Das Zelldrysat wurde zur Blockade unspezifischer Bindungen gepuffert (HEN Puffer eingestellt mit 2,5% Natrium-dodecyl-sulfat (sodium dodecyl sulfate, SDS), mit 20 mM Methylmethanethiosulfonat (MMTS)), in neue Reagenzgefäße überführt sowie für 20 Minuten bei 50 °C kontinuierlich gevortext. Anschließend wurde das MMTS durch Zugabe von zwei Volumina Aceton entfernt und die Proteine für 20 Minuten bei -20 °C präzipitiert.

Die Proteine wurden nach der Entfernung des Acetons in HEN Puffer (HEN eingestellt mit 1% SDS) resuspendiert, gefolgt von der Zugabe von vier Volumina 4 mM in DMSO gelöstem N-(6-(biotinamido)hexyl)-3-(2-pyridyldithio) propionamid (Biotin-HPDP). Nach der zweistündigen Inkubation bei Raumtemperatur wurden die durch Biotin-HPDP biotinylierten Proteine im Folgenden durch zwei Volumina Aceton gefällt. Vor dem Immunoblotten wurde das Aceton erneut entfernt und die Proteine in HEN Puffer resuspendiert. Die biotinylierten Proteine wurden mit dem gleichen Volumen von zweifachem SDS-Polyacrylamidgelelektrophorese (PAGE) Ladepuffer verdünnt und für 5 Minuten auf 95 °C erhitzt. Das Gesamtprotein (15 μg) wurde durch SDS-PAGE aufgetrennt (12% Gele) und auf Polyvinylidifluorid Membranen aufgetragen. Die immobilisierten Proteine wurden mit 2% bovinem Serumalbumin (BSA; Santa Cruz Biotechnology, Santa Cruz, CA, USA) geblockt und die Membranen über Nacht bei 4 °C mit einem monoklonalen anti-Biotin Antikörper (1:1.000; Sigma-Aldrich, St. Louis, Missouri, USA) inkubiert. Darauf folgte die Inkubation mit einem sekundären Peroxidase gebundenen anti-Maus Antikörper (1:60.000; Sigma-Aldrich, St. Louis, Missouri, USA). Die Proteinexpression wurde durch Luminol verstärkte
Chemilumineszenz (ECL plus; Amersham Pharmacia Biotech, Freiburg, Deutschland) sichtbar gemacht und mit Hilfe des ChemiDox™ XRS Systems (Bio-Rad Laboratories, Berkeley, CA USA) digitalisiert. Die Signale wurden am Ende des Versuches quantitativ densitometrisch ausgewertet (Quantity One, Bio-Rad Laboratories, Berkeley, CA USA) und gegenüber dem β-Aktin Signal (Maus monoklonaler anti-β-Aktin Antikörper; 1:20.000; Sigma-Aldrich, St. Louis, Missouri, USA) normalisiert.

6.2.6 Migrationsassay
Um zu untersuchen, ob sich die Beeinflussung der endothelialen Aktivität auch im Migrationsverhalten der Zellen widerspiegelt, erfolgte ein Migrationsassay. Die Endothelzellen wurden hierfür mit einer Zellzahl von 0,5 x 10^5 in ibidi® µ-Dish^{35mm. low} Culture Insert-Wells (ibidi GmbH, Martinsried, Deutschland) ausgeplattet (Abb. 9).

Abb. 9: Migrationsassay. Die HUVECs wurden in Culture Insert 2-Well Platten (A) (Ibidi®) ausgeplattet (B). Nach etwa 24 Stunden war ein konfluentes Wachstum erreicht, so dass das Silikonkissen entfernt werden konnte (C). Anschließend erfolgten die Behandlungen der Zellen (D) und die Migrationsanalysen mittels Stereomikroskopie nach 0, 8, 12 und 24 Stunden.
6.3 In vivo Experimente

6.3.1 Versuchstiere

Für die in vivo Versuche wurden ausschließlich männliche C57BL/6J-Tyr Mäuse mit einem Alter zwischen zwei und sechs Monaten und einem Körpergewicht (KG) von 20 g bis 30 g verwendet. Die Tierversuche waren gemäß dem Tierschutzgesetz §8 genehmigt (AZ: LALLF M-V/TSD/7221.3-1.1-029/17) und standen stets unter der Aufsicht des Tierschutzbeauftragten am Rudolf-Zenker-Institut für Experimentelle Chirurgie der Universität Rostock.

6.3.2 Versuchsgruppen

Die Wirkung von GYY auf die Gefäßwand und die Bildung der Neointima wurde anhand vier experimenteller Gruppen untersucht (Tab. 1). Die Versuchstiere wurden unmittelbar nach der Gefäßschädigung der linken A. carotis communis einmalig durch eine Injektion von GYY (50 mg/kg KG) oder einer äquivalenten Menge des Vehikels in die rechte Vena jugularis externa behandelt. Anschließend erfolgte nach einer bzw. drei Wochen die Resektion des entsprechenden Carotissegments zur histologischen und immunhistochemischen Analyse.

<table>
<thead>
<tr>
<th>Versuchsgruppen</th>
<th>1 Woche</th>
<th>3 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYY (50 mg/kg KG in DMSO)</td>
<td>n=7</td>
<td>n=8</td>
</tr>
<tr>
<td>DMSO (30 vol/vol in 0,9% NaCl)</td>
<td>n=7</td>
<td>n=8</td>
</tr>
</tbody>
</table>

Tab. 1: Überblick über die in vivo Versuchsgruppen. Dargestellt sind die vier Versuchsgruppen mit den jeweiligen Behandlungen und der Anzahl der Versuchstiere pro Gruppe.
6.3.3 Experimentelles Tiermodell

6.3.3.1 Anästhesie

Die Versuchstiere wurden mittels intraperitonealer Injektion von Xylazin (25 mg/kg) und Ketamin (90 mg/kg) anästhesiert. Für die initiale Anästhesie wurde eine Stammlösung aus Xylazin 2% (20 mg/ml, Rompun, Bayer Healthcare, Leverkusen, Deutschland) und Ketamin 10% (100 mg/ml, Belapharm, Vechta, Deutschland) in einer 1 ml Spritze (0,2 ml Xylazin, 0,6 ml Ketamin) hergestellt und verwendet. Für eine eventuell notwendige Aufrechterhaltung der Narkose wurde der gleiche Ansatz 1:10 verdünnt und erneut intraperitoneal injiziert. Zur Prophylaxe möglicher Wundschmerzen wurde eine Analgesie mit Metamizol (5 Tropfen von 500 mg/ml Metamizol in 100 ml Trinkwasser, täglicher Wechsel des Trinkwassers) durchgeführt und bereits 24 Stunden vor dem ersten Versuch begonnen, um einen konstanten Wirkspiegel unmittelbar nach dem Erwachen aus der Narkose zu gewährleisten. Die Analgesie mit Metamizol wurde über den gesamten Versuchsablauf hinweg fortgeführt.

6.3.3.2 Präparation der Arteria carotis

Arteria carotis communis begonnen werden, welche unter dem Mikroskop (Leica Microsystems, M651, Wetzlar, Deutschland) erfolgte. Nach einem Mittellinieneinschnitt des Halses, der sich vom Unterkiefer zur suprasternalen Kerbe und der darüber liegenden Haut erstreckte, wurde das freiliegende vordere Halsdreieck stumpf mit einer gebogenen Pinzette präpariert, um die linke Halsschlagader vom umgebenden Gewebe zu befreien. Anschließend wurde das Gefäß mit Hilfe der Pinzette unterfahren und für eine bessere Sicht und Hervorhebung der A. carotis communis zwei Fäden Prolene® 4-0 (Ethicon, Somerville, New Jersey, USA) unter das Gefäß gebracht (Abb. 10). Des Weiteren wurde die Freilegung und Darstellung der rechten V. jugularis externa für die intravenöse Applikation der Substanzen GYY bzw. DMSO vorbereitet.

Abb. 10: Präparation der Arteria carotis. Zum Hervorheben und zur besseren Darstellung wurden zwei Fäden (Prolene® 4-0) und ein Stück Filterpapier unter die Arterie gelegt.
6.3.3.3 Schädigung der Arteria carotis mit FeCl₃

6.3.3.4 Intravenöse Applikation von GYY4137/DMSO

Unmittelbar nach der Schädigung der A. carotis communis wurde den Versuchstieren je nach Versuchsgruppe intravenös die Substanz GYY (50 mg/kg KG) bzw. das Vehikel in die zuvor präparierte V. jugularis externa appliziert. Im Anschluss wurden die Wunden mit einer Hautnaht (6-0 Prolene®, Ethicon, Somerville, New Jersey, USA) verschlossen. Der gesamte Versuch, inklusive der Anästhesie, Präparation und Schädigung der A. carotis communis und der i.v. Applikation von GYY bzw. des Vehikels, nahm eine Zeit von etwa 45 Minuten ein. Anschließend erwachten die Versuchstiere unter einer Rotlichtwärmelampe (Body Fit, Beurer, Ulm, Deutschland) aus der Narkose, um die Aufrechterhaltung der Körpertemperatur zu gewährleisten. Bis zur Resektion des Gefässes wurden die Tiere bei Standardfutter für Nager und freiem Zugang zu Wasser in einem zwölfstündigen Tag-Nacht-Rhythmus gehalten.

6.3.3.5 Resektion der Arteria carotis

Je nach Versuchsgruppe wurde das geschädigte Carotissegment nach einer oder drei Wochen reseziert. Dazu wurden die Versuchstiere nach der entsprechenden Zeit erneut mit Ketamin-Xylazin narkotisiert und die linke A. carotis communis, wie unter 6.3.3.2 beschrieben, präpariert. Für eine bessere Sicht auf das Zwerchfell und das Herz wurde die Leber nach einer Medianlaparotomie vorsichtig mit Hilfe eines Wattestäbchens zur rechten
Seite ausgelagert. Anschließend erfolgte nacheinander die intrakardiale Applikation von 5 ml NaCl und 5 ml Formalin. Unmittelbar danach wurde die mit FeCl₃ geschädigte A. carotis oberhalb und unterhalb der makroskopisch sichtbaren Läsion mit einer mikrochirurgischen Schere abgesetzt, in einer Einbettkassette verschlossen und anschließend in einer wässrigen Formalinlösung mit 4% Formaldehyd bei Raumtemperatur fixiert, um das Gewebe möglichst natürlich und in der ursprünglichen Architektur zu erhalten. Die Resektion, inklusive der Anästhesie, dauerte ca. 30 Minuten.

6.3.4 Histologie/Immunhistochemie

Brutschrank (Memmert, Büchenbach, Deutschland) getrocknet und zur besseren Haftung aufbewahrt. Nach dem Schneiden und Trocknen wurden die Schnitte mit dem Intermedium X-TRA entparaffiniert, durch eine absteigende Alkoholreihe wieder in ein wässriges Milieu überführt und schließlich in den jeweiligen Färbelösungen gefärbt.

nuclear antigen (PCNA, ab29, abcam, Cambridge, UK) in einer Verdünnung von 1:1000 aufgetragen und über Nacht bei 4 °C inkubiert werden. Am darauffolgenden Tag wurden die Schnitte für eine Stunde bei Raumtemperatur mit dem jeweiligen Sekundär-Antikörper behandelt. Für α-SMA wurde als sekundärer Antikörper Goat anti-Rabbit AP (D0487, Dako, Carpenteria, CA, USA) und für PCNA Goat anti-Maus AP (D0486, Dako, Carpenteria, CA, USA) verwendet. Danach wurden die Schnitte für 6-8 Minuten mit Permanent Red Chromogen (K0640, Dako, Carpenteria, CA, USA) behandelt, um die Zielantigene in der anschließenden Lichtmikroskopie zu identifizieren. Zum Abschluss wurden die immunhistochemisch behandelten Schnitte für 5 Minuten mit Hämalan gefärbt, mit der aufsteigenden Alkoholreihe entwässert, zur Verdrängung des Alkohols mit X-TRA behandelt und mit dem X-TRA Kitt eingedeckt. Im Anschluss konnten die gefärbten Präparate unter dem Lichtmikroskop (BX51, Olympus, Shinjuku, Tokio, Japan) ausgewertet werden. Für die Auswertung wurden die Dicke und die Fläche der Neointimabildung mit der Software Olympus cellSens Standard (Olympus K. K., Shinjuku, Präfektur Tokio, Japan) ermittelt und die α-SMA und PCNA positiven Zellen gezählt.

6.4 Statistische Analyse

7 Ergebnisse

7.1 WST Assay

Anhand der Absorptionsabschwächungen der einzelnen Gruppen im Verhältnis zur Kontrollgruppe, welche 100% gesetzt wurde, war bei der Auswertung des WST Assays nach 3 Stunden zu erkennen, dass keine der Behandlungen relevante Unterschiede zur Kontrolle aufzeigten (Abb. 12). Somit geht weder vom H₂S Donor GYY, noch von dessen Vehikel bzw. von TNF-α eine relevante Zytotoxizität aus.

![Statistische Auswertung des WST Assays](image)

7.2 Durchflusszytometrie

In der durchflusszytometrischen Untersuchung zeigten die ruhenden Endothelzellen eine äußerst geringe Expression von E-Selektin, ICAM-1 sowie von VCAM-1. Durch die pro-inflammatorische Stimulation der Endothelzellen mit TNF-α ließ sich die Expression der Adhäsionsmoleküle E-Selektin und ICAM-1 signifikant steigern (Abb. 13A und 14A). Die
Ergebnisse

Exposition TNF-α aktivierter Endothelzellen mit GYY in aufsteigenden Konzentrationen führte zu einer dosisabhängigen Reduktion der Expression aller untersuchten Adhäsionsmoleküle. Die Expression von E-Selektin wurde dabei am stärksten beeinflusst und deutlich herunterreguliert. Die Applikation der geringsten GYY Konzentration von 1 mM führte zu keinem signifikanten Effekt der Adhäsionsmolekülexpression. Die Steigerung der GYY Konzentration auf 5 mM bzw. auf 10 mM reduzierte die Expression hingegen signifikant von 56,6 ± 2,7% TNF-α aktivierter Endothelzellen auf 39,2 ± 3,4% (p=0,010) bzw. auf 24,0 ± 4,5% (p<0,001, Abb. 14A). Wurden die HUVECs 24 Stunden nach der 10 mM GYY Exposition mit TNF-α stimuliert, so zeigte sich, dass die Zellen das Adhäsionsmolekül wie die unbehandelten Endothelzellen exprimierten (p=0,758, Abb. 13B).

Abb. 13: Durchflusszytometrische Analyse der E-Selektin Expression humaner Endothelzellen. Die Endothelzellen wurden im ruhenden Zustand sowie nach Exposition mit TNF-α und steigenden GYY Konzentrationen auf die Expression des Adhäsionsmoleküls E-Selektin untersucht. Eine Stunde nach GYY Behandlung zeigte sich eine signifikante, dosisabhängige Reduktion der Expression von E-Selektin (A), wohingegen eine Stimulation 24 Stunden nach GYY Exposition keinen signifikanten Unterschied der E-Selektin Expression im Vergleich zur alleinigen TNF-α Aktivierung aufwies (B). MW ± SEM; ANOVA; Dunn’s Method; n=6-9; * p<0,05 vs TNF-α ∅ GYY; † p<0,001 vs TNF-α ∅ GYY.
Auf die ICAM-1 Expression hatte die Behandlung der TNF-α stimulierten Endothelzellen mit der höchsten GYY Konzentration ebenfalls einen deutlichen Effekt. Der mittlere Fluoreszenzshift wurde dabei durch Behandlung mit 10 mM GYY signifikant von 874,7 ± 139,1 nach TNF-α Stimulation auf 311,1 ± 28,5 reduziert (p=0,014, Abb. 15A). Die Expression des Adhäsionsmoleküls VCAM-1 wurde durch die Applikation von 10 mM des H₂S Donors hingegen nur marginal von 91,9 ± 6,7 auf 77,6 ± 5,1 gesenkt (p=0,384, Abb. 14B).

Abb. 14: Durchflusszytometrische Analyse der ICAM-1 und VCAM-1 Expression humaner Endothelzellen. Die Endothelzellen wurden im ruhenden Zustand sowie nach Exposition mit TNF-α und steigenden GYY Konzentrationen auf die Expression der Adhäsionsmoleküle ICAM-1 (A) und VCAM-1 (B) untersucht. Durch die Behandlung mit 1, 5 oder 10 mM GYY kam es zu einer signifikanten und dosisabhängigen Reduktion der ICAM-1 Expression (A). Demgegenüber wurde die Expression des Adhäsionsmoleküls VCAM-1 unter GYY Behandlung nur marginal beeinflusst (B). MW ± SEM; ANOVA; Holm-Sidak; ICAM-1: n=4-5; * p<0,05 vs TNF-α ∅ GYY; VCAM-1: n=6-7.
7.3 ELISA

Im ELISA zur Analyse der vWF Sekretion zeigte sich, dass es durch Stimulation der Endothelzellen mit Histamin zu einer Freisetzung des in den Weibel-Palade-Körperchen gespeicherten vWF kam. Die Freisetzung des vWF konnte durch die Aktivierung mit Histamin von 1,2 IU/ml (25%-Quantil: 1,0 IU/ml; 75%-Quantil: 3,6 ng/ml) im ruhenden Zustand auf 6,83 IU/ml (25%-Quantil: 4,73 IU/ml; 75%-Quantil: 9,95 IU/ml) gesteigert werden (p<0,05). Durch die Behandlung mit dem H₂S Donor GYY, sowohl mit 5 mM als auch mit 10 mM, ließ sich die vWF Ausschüttung signifikant auf 1,65 IU/ml (25%-Quantil: 1,0 IU/ml; 75%-Quantil: 4,23 IU/ml) bzw. 1,45 IU/ml (25%-Quantil: 1,05 IU/ml; 75%-Quantil: 2,8 IU/ml) reduzieren (p<0,05), was annähernd den Werten der Kontrollgruppe entspricht (Abb. 15).

Abb. 15: Statistische Auswertung der vWF Sekretion. Die vWF Konzentration wurde im Medium humaner Endothelzellen untersucht. Dabei wurde die vWF Sekretion durch die GYY Behandlung signifikant reduziert. Median mit 25%- und 75%-Quantil; ANOVA; Dunn’s Method; n=7-8; * p<0,05 vs Histamin ∅ GYY.
7.4 Biotin Switch Assay

In der quantitativen densitometrischen Analyse stellte sich dar, dass die Behandlung der HUVECs mit 1 mM GYY im Vergleich zur Vehikelgruppe zu einer signifikanten Steigerung der relativen Intensität des an SH-Gruppen gebundenen Proteins von 0,54 (25%-Quantil: 0,34; 75%-Quantil: 0,73) auf 2,72 (25%-Quantil: 1,49; 75%-Quantil: 3,07) führte (p<0,05), welches die gesteigerte S-Sulfhydrierung endothelialer Proteine widerspiegelt. Die Analyse des Biotin Switch Assay erfolgte durch die spezifische Bindung von Biotin an sulfhydrierte Proteine, die im Westernblot sichtbar wurden. Durch die Steigerung der GYY Konzentration auf 5 und 10 mM konnte keine signifikante Zunahme der endothelialen Protein S-Sulfhydrierung erzielt werden (Abb. 16).

Abb. 16: Quantitative Densitometrie des Biotin Switch Assays von endothelialen Proteinen. Der Biotin Switch Assay erfolgte entsprechend des Protokolls von Mustafa et al. (2009). Statistisch wurde die relative Intensität sulfhydrierter Proteine ausgewertet, welche durch Exposition mit GYY 1 mM signifikant zunimmt. Median mit 25%- und 75%-Quantil; ANOVA; Holm-Sidak-Method; n=5; * p<0,05 vs Vehikel ∅ GYY.
7.5 Migrationsassay

In Abbildung 17 wird exemplarisch der Migrationsverlauf von unbehandelten, VEGF stimulierten sowie gleichzeitig mit GYY und VEGF behandelten Endothelzellen dargestellt. Anhand der mikroskopischen Bilder des Migrationsassays war deutlich zu erkennen, dass die mit VEGF behandelten Endothelzellen im Vergleich zur Kontrollgruppe eine gesteigerte Migration aufwiesen. Demgegenüber führte die gleichzeitige Behandlung mit VEGF und GYY, verglichen mit der alleinigen VEGF Stimulation, zu einer verzögerten Migration der Endothelzellen.

Abb. 17: Migration von HUVECs im ibidi® Migrationsassay. Darstellung der Migration humaner Endothelzellen im unbehandelten, mit VEGF stimulierten und gleichzeitig mit GYY und VEGF behandelten Zustand mittels Stereomikroskopie. Es war zu erkennen, dass die mit VEGF behandelten HUVECs, gegenüber der Kontrolle, eine beschleunigte Migration aufzeigten. Demgegenüber stellte sich der Migrationsverlauf der HUVECs, die mit GYY und VEGF gleichzeitig behandelt wurden, im Vergleich zur alleinigen VEGF Stimulation verzögert dar.
Bei der statistischen Auswertung der von HUVECs bedeckten Fläche nach 12 Stunden wurde bestätigt, dass der pro-angiogene VEGF Stimulus im Vergleich zu unbehandelten HUVECs zu einer signifikant gesteigerten Migration von 10,6 ± 0,9% auf 14,9 ± 0,7% (p=0,012) führte. Die isolierte Behandlung mit GYY schränkte das Migrationsverhalten der humanen Endothelzellen gegenüber dem unbehandelten Zustand ebenfalls signifikant auf 4,1 ± 0,5% (p<0,001) ein. Die simultane Applikation von VEGF und GYY wies mit 10,6 ± 1,3% wiederum einen Migrationsverhalten auf, das den unbehandelten Endothelzellen gleich (p=0,998) Die Behandlung der HUVECs mit dem Vehikel hatte im Vergleich zur Kontrolle keinen Effekt auf die Migration (p=0,967, Abb. 18).

Abb. 18: Statistische Auswertung des Migrationsassays nach 12 Stunden. Die Behandlung mit dem Vehikel wies im Vergleich zur Kontrolle keinen signifikanten Unterschied auf. Der VEGF Stimulus führte zu einer signifikant gesteigerten Migration. Durch die alleinige GYY Behandlung kam es zu einer signifikant eingeschränkten Migration. Auch die simultane Behandlung mit VEGF und GYY führte zu einer signifikant verzögerten Migration im Vergleich zur alleinigen VEGF Stimulation. MW ± SEM; ANOVA; Holm-Sidak; * p<0,05 vs Ko; * p<0,05 vs Vehikel; * p<0,05 vs VEGF; * p<0,05 vs GYY.
7.6 Neointimabildung

Die histologische Untersuchung der A. carotis in HE-Färbung zeigte, dass sowohl der maximale Durchmesser als auch die Fläche der Neointima signifikant durch die GYY Behandlung verkleinert wurde. Eine Woche nach der FeC13 Applikation zeigte sich der maximale Durchmesser der Neointima durch die GYY Behandlung von 128,27 µm (25%-Quantil: 93,71 µm; 75%-Quantil: 163,76 µm) in Vehikel behandelten Tieren auf 43,34 µm (25%-Quantil: 36,92 µm; 75%-Quantil: 50,33 µm) reduziert (p<0,05). Auch nach drei Wochen war durch die einmalige Behandlung mit GYY ein signifikanter Effekt (p<0,05) auf die Reduktion des Durchmessers von 153,97 µm (25%-Quantil: 100,47 µm; 75%-Quantil: 250,1 µm) in Vehikel behandelten Mäusen auf 56,3 µm (25%-Quantil: 40,47 µm; 75%-Quantil: 71,27 µm) zu verzeichnen (Abb. 19A). Die Fläche der Neointima der A. carotis konnte durch die GYY Behandlung ebenfalls nach einer Woche und nach drei Wochen im Vergleich zu den Vehikel behandelten Tieren reduziert werden (Abb. 19B). Nach einer Woche konnte eine Reduktion der Fläche von 26074,35 µm² (25%-Quantil: 16995,93 µm²; 75%-Quantil: 28214,48 µm²) auf 8590,16 µm² (25%-Quantil: 7877,64 µm²; 75%-Quantil: 10131,72 µm²) gemessen werden (p=0,039). Nach 3 Wochen erreichte die Neointima in der Vehikelgruppe eine Fläche von 73500,1 µm² (25%-Quantil: 48545,5 µm²; 75%-Quantil: 75705,06 µm²), welche durch die einmalige Behandlung mit GYY auf 14070,58 µm² (25%-Quantil: 9751,66 µm²; 75%-Quantil: 22828,82 µm²) verkleinert werden konnte (p<0,001). Insgesamt kann somit auf eine Reduktion der Neointimabildung durch die GYY Applikation geschlossen werden.
Ergebnisse

Abb. 19: Statistische Auswertung der Neointimabildung. Die Auswertungen des maximalen Durchmessers (A) und der Fläche (B) zeigten durch die einmalige GYY Behandlung sowohl nach einer Woche als auch nach drei Wochen eine signifikante Abnahme beider Parameter. Median mit 25%- und 75%-Quantil; ANOVA; Dunn's Method (A); Holm-Sidak (B), n=6-7; * p<0,05 vs Vehikel 1 Woche bzw. Vehikel 3 Wochen.

7.7 Immunhistochemie

Während die immunhistochemischen Analysen nach einer Woche nur geringe Unterschiede zwischen den verschieden behandelten Versuchsgruppen aufwiesen, war nach drei Wochen eine Signifikanz hinsichtlich der α-SMA positiven und der PCNA positiven Zellen gegenüber der Kontrollgruppe zu verzeichnen. Anhand der Vehikelgruppe zeigte sich, dass die Anzahl der α-SMA positiven und der PCNA positiven Zellen innerhalb der Neointima zwischen der ersten und dritten Woche nach der FeCl$_3$ Applikation signifikant anstieg (p<0,05). Jedoch kam es auch innerhalb der mit GYY behandelten Gruppe zwischen Woche eins und Woche drei zu einem signifikanten Anstieg der α-SMA positiven Zellen von 11,3 ± 0,8 Zellen auf 18,2 ± 2,2 Zellen (p=0,015). Allerdings konnte der Anstieg der α-SMA positiven Zellen der Neointima nach drei Wochen im Vergleich zur Vehikelgruppe durch die Behandlung mit dem
H$_2$S Donor GYY von 35,4 ± 4,1 Zellen auf 18,2 ± 2,2 Zellen abgeschwächt werden (p=0,005, Abb. 20A). Die PCNA positiven Zellen konnten nach drei Wochen ebenfalls durch die GYY Behandlung von 13,0 ± 1,1 Zellen auf 5,3 ± 1,7 Zellen reduziert werden (p=0,002, Abb. 20B). Außerdem sind die PCNA positiven Zellen im Gegensatz zu den α-SMA positiven Zellen im Verlauf der GYY Behandlung, zwischen der ersten und dritten Woche, nicht signifikant gestiegen (p=0,803).

Abb. 20: Statistische Auswertung der Immunhistochemie. Die GYY Behandlung führte nach 3 Wochen zu einer signifikanten Abnahme der Anzahl der α-SMA positiven Zellen (A) sowie der PCNA positiven Zellen (B) gegenüber der jeweiligen Behandlung mit dem Vehikel. MW ± SEM; ANOVA; t-test mit Bonferroni-Korrektur; n=6-8; * p<0,05 vs Vehikel 1 Woche; # p=0,005 vs Vehikel 3 Wochen; § p=0,015 vs GYY 1 Woche (A). Holm-Sidak; n=6-8; * p<0,05 vs Vehikel 1 Woche; # p=0,002 vs Vehikel 3 Wochen (B).
8 Diskussion

8.1 Diskussion von Material und Methodik

8.1.1 Hydrogensulfid Donor GYY4137

GYY ist ein langsamer und kontinuierlicher H$_2$S freisetzender Donor, der im Vergleich zu den Sulfidsalzen Na$_2$S und NaHS über eine Pharmakokinetik verfügt, die die physiologischen Gegebenheiten der endogenen, konstanten H$_2$S Freisetzung besser widerspiegelt (Li et al. 2008). Die Liberation von H$_2$S aus GYY ist von der Temperatur und dem pH Wert abhängig. Die erhöhten H$_2$S Plasmakonzentrationen können für mindestens 180 Minuten aufrechterhalten werden (Li et al. 2008). Im Vergleich zu NaHS induziert GYY keine DNA Schäden und führt nicht zum programmierten Zelltod (Yang et al. 2004, Baskar et al. 2007), was durch die unterschiedlichen Freisetzungsmechanismen der H$_2$S Donatoren erklärt werden könnte (Li et al. 2008). Eine Studie zeigte außerdem, dass eine schnelle Freisetzung von H$_2$S aus NaHS eher pro-inflammatorische Wirkungen induziert, wohingegen eine langsame, kontinuierliche Freisetzung aus GYY hauptsächlich entzündungshemmende Wirkungen hervorruft (Whiteman et al. 2010). In den letzten Jahren hat der H$_2$S Donor GYY aufgrund seiner Imitation der annähernd physiologischen H$_2$S Freisetzung ein beträchtliches Interesse in der Forschung geweckt und wurde in zahlreichen Studien verwendet, um die Effekte von H$_2$S auf verschiedenste Organsysteme, wie z.B. das Herz und die Nieren zu evaluieren. Dabei kam es u.a. zu einem verbesserten Outcome nach myokardialen Reperfusionsschäden (Meng et al. 2015) und zu einer Protektion vor Myokardfibrose (Meng et al. 2015). Des Weiteren konnte durch den Einsatz von GYY nach der Induktion einer einseitigen Harnwegsobstruktion, gemessen anhand der Retentionsparameter, eine geringere Nierenschädigung erzielt werden. Zudem wurde histologisch der kortikale Verlust, die inflammatorische Schädigung sowie die tubulointerstitielle Fibrose gemildert (Lin et al. 2016), weshalb H$_2$S ebenfalls ein nephroprotektiver Charakter zugeschrieben werden kann.
8.1.2 WST Assay

H₂S wurde in zahlreichen Studien als toxisches Gas beschrieben (Smith & Gosselin 1979, Olson 2011) und gilt in hohen Konzentrationen, nach Kohlenmonoxid, als zweitwichtigste Ursache für gasbedingte Todesfälle am Arbeitsplatz (Guidotti 2010, Woodall et al. 2005). Daher wurde zunächst mittels eines WST-1 Assays eine Zytotoxizität des H₂S Donors GYY in den Konzentrationen 1, 5 und 10 mM ausgeschlossen. Durch diese Konzentrationen wurde eine H₂S Plasmakonzentration von etwa 5, 25 bzw. 50 µM erreicht (Li et al. 2008), die annähernd die physiologischen Bedingungen widerspiegeln, denn laut einer Studie von Whiteman und Moore liegt der physiologische H₂S Plasmaspiegel zwischen 34 µM und 65 µM (Whiteman & Moore 2009).

8.1.3 Durchflusszytometrie

8.1.4 ELISA

8.1.5 Biotin Switch Assay

der S-sulfhydrierten Proteine durch anti-Biotin-Antikörper sichtbar gemacht und quantitativ ausgewertet.

8.1.6 Migrationsassay
Um das Migrationsverhalten der humanen Endothelzellen zu untersuchen, wurde ein gut etablierter Wundverschluss Assay (Justus et al. 2014) durchgeführt und dazu ein Culture-Insert verwendet, um die Oberfläche der Zellkulturplatten vor Beschädigungen durch eine Pipettenspitze zu schützen und die artifizielle Wundgröße einheitlich zu gestalten und so Messfehlern vorzubeugen.

8.1.7 In vivo FeCl₃-Thrombosemmodell
8.1.7.1 C57BL/6J-Tyr Maus
C57BL/6 Mäuse stellen aufgrund des vollständig entschlüsselten Genoms und der damit einhergehenden Möglichkeit der gezielten genetischen Modifikation einen populären Inzuchtstamm für Laborversuche dar. Die weit verbreitete Nachfrage resultierte jedoch in der Bildung mehrerer B6-Substämme, wie C57BL/6J und C57BL/6N, mit unterschiedlichen Phänotypen. Die Substämme sind miteinander verwandt, jedoch nicht genetisch identisch, was sich in unterschiedlichen Verhaltensmustern der Tiere widerspiegelt (Bothe et al. 2004, Bryant et al. 2008). Der co-isogene C57BL/6J-Tyr Stamm enthält eine Mutation im Tyrosinase-Gen, die bei homozygoter Mutation durch Inhibierung der Melaninsynthese zu einem vollständigen Fehlen des Pigments in Haar, Haut und Auge und somit zu einer weißen Fellfarbe und roten Augen führt (Le Fur et al. 1996).
Für das FeCl₃-Thrombosemodell wurden ausschließlich männliche Versuchstiere verwendet, um fluktuierende Ergebnisse durch den Einfluss von Östrogenschwankungen im Hormonzyklus weiblicher Tiere zu vermeiden.

8.1.7.2 Narkose

8.1.7.3 Modell der FeCl$_3$-Schädigung

Es wird allgemein vermutet, dass FeCl$_3$ einen starken oxidativen Stress mit der Erzeugung freier Radikale verursacht (Li et al. 2013). Die Anwendung auf der Adventitia des Gefäßes führt zu einem vesikelgetragenen endozytisch-exozytischen Transport der Eisenionen zur luminalen Oberfläche und verursacht somit eine Endothelverletzung und anschließende Thrombusbildung (Tseng et al. 2006, Eckly et al. 2011). Jüngere Studien zeigten weitere mögliche zugrundeliegenden Mechanismen, wie die Adhäsion roter Blutkörperchen an die geschädigte Gefäßwand (Barr et al. 2013) sowie den physiochemischen Effekt der FeCl$_3$ induzierten Aggregation von Plasmaproteinen und Blutzellen (Ciciliano et al. 2015). Diese
neuen Erkenntnisse sprechen dafür, dass die potentiellen Mechanismen dieses Modells viel komplexer sind als bisher vermutet. Außerdem ist über die pathophysiologischen Mechanismen der Effekte des FeCl₃ auf die Media und Adventitia wenig bekannt, sodass das Modell bislang insgesamt schlecht verstanden bleibt.

8.2 Diskussion der Ergebnisse

In der vorliegenden Studie wurde der Einfluss des H₂S Donors GYY auf die Aktivität, die Protein S-Sulfhydrierung und das Migrationsverhalten humaner Endothelzellen in vitro sowie auf die Neointimabildung in vivo untersucht.

Mithilfe eines WST Assays konnte eine Zytotoxizität des verwendeten H₂S Donors in den entsprechenden Konzentrationen und der weiteren Metabolite ausgeschlossen werden, sodass der Einsatz der in dieser Studie verwendeten Konzentrationen von H₂S als unbedenklich angesehen werden kann.

Obwohl die Gerinnungskaskade und die beteiligten Faktoren während der Thrombogenese gut untersucht und verstanden sind, wurden diese noch nicht ausreichend hinsichtlich einer möglichen pharmakologischen Beeinflussung, wie z.B. durch H₂S, untersucht und benötigen daher weitere Analysen.

In der durchflusszytometrischen Analyse zeigte sich anhand der Intensität der Antikörperbindung bzw. des mittleren Fluoreszenzshifts, dass durch Vorbehandlung TNF-α stimulierter HUVECs mit GYY eine signifikante und dosisabhängige Reduktion der Expression der endothelialen Adhäsionsmoleküle E-Selektin und ICAM-1 erzielt werden konnte. Die Expression von VCAM-1 wurde hingegen nur marginal durch die Anwendung von GYY reduziert. Allerdings konnte die Expression des Adhäsionsmoleküls durch den pro-inflammatorischen Stimulus mit TNF-α, im Vergleich zu der Expression von E-Selektin und ICAM-1, nicht aussagekräftig gesteigert werden, so dass dies eine Erklärung für den in dieser Studie nur mäßigen Effekt von GYY auf die VCAM-1 Expression sein könnte. Des Weiteren konnte erstmalig anhand der Expression von E-Selektin gezeigt werden, dass der Effekt des H₂S Donors GYY reversibel ist, was eine essentielle Eigenschaft für den potentiellen Einsatz des volatilen Mediators als Pharmakon darstellt.

gehören zum einen die Reduktion der durch TNF-α stimulierten intrazellulären ROS-
Produktion und zum anderen die Hemmung der NF-κB und p38 Signalwege sowie die
Hochregulierung der HO-1 Expression (Pan et al. 2009). Dies resultiert in einer verminderten
Adhäsionsmolekülexpression und wirkt folglich entzündungshemmend und einer
progredienten endothelialen Dysfunktion entgegen.

Nun wurde in dieser Studie gezeigt, dass auch der H₂S Donor GYY die Expression
endothelialer Adhäsionsmoleküle in HUVECs reduziert und somit die endotheliale Aktivität
herabsetzt und einen protektiven Einfluss auf die Pathogenese der Thromboseentstehung
sowie der Atherosklerose ausübt. Darüber hinaus könnte durch die Behandlung mit GYY das
Risiko für die Entstehung eines postthrombotischen Syndroms über die Reduktion der ICAM-
1 Spiegel im Serum durch die Behandlung mit GYY abgeschwächt werden.

Neben der Verringerung von oxidativem Stress und Modulation von Signalwegen stellt die
posttranslationale Modifikation von Proteinen, wie z.B. die Protein S-Sulphydrierung, einen
weiteren Wirkmechanismus von H₂S dar (Kabil & Banerjee 2010, Fukuto et al. 2012,
Verwendung des Biotin Switch Assays auch in dieser Studie eine signifikante Steigerung der
S-Sulphydrierung endothelialer Proteine durch Applikation von GYY nachgewiesen. Eine
Dosisabhängigkeit war im Gegensatz zu den durchflusszytometrischen Analysen jedoch
nicht zu finden. Die Anzahl der vorhandenen Cysteinresten könnte einen limitierenden Faktor
für die Protein S-Sulphydrierung darstellen, sodass bereits durch die niedrigste GYY
Konzentration ein Großteil der Cysteinreste sulfhydriert wird. Dies könnte eine mögliche
Ursache für die fehlende Dosisabhängigkeit sein. Daraus lässt sich jedoch auch schließen,
dass GYY mehrere Wirkmechanismen zur gleichen Zeit entfalten könnte und seine Wirkung
in unterschiedlichen Konzentrationen über die verschiedenen Mechanismen ausübt. In dem
Versuch bleibt außerdem ungeklärt, welche der endothelialen Proteine in welcher Intensität
und an welcher Position sulfhydriert werden. Es konnte jedoch rezent gezeigt werden, dass
die Expression des endothelialen Adhäsionsmoleküls E-Selektin indirekt über die S-
Sulphydrierung des RNA-bindenden Proteins Human Antigen R (HuR) vermindert wird (Bibli
et al. 2019), da die E-Selektin mRNA Spiegel durch HuR reguliert werden (Ceolotto et al. 2014). Außerdem induziert H\textsubscript{2}S die Keap1 S-Sulfhydrierung (Kelch-like ECH-associated protein 1) und unterdrückt somit die Diabetes-assoziierte Atheroskleroseentstehung über Nrf2 (nuclear factor erythroid 2-related factor) Aktivierung (Xie et al. 2016). Der exakt aktivierte Signaltransduktionsweg durch H\textsubscript{2}S innerhalb von Endothelzellen wurde jedoch noch nicht abschließend geklärt.

Die S-Sulfhydrierung ist auch im Hinblick auf die tonusregulierende Eigenschaft von H\textsubscript{2}S nicht zu vernachlässigen. Ein möglicher Angriffspunkt der Protein-Persulfidbildung ist die eNOS, wodurch die eNOS Aktivität steigt, vermehrt NO synthetisiert und somit eine Vasodilatation induziert wird (Altaany et al. 2014). Ein weiterer Mechanismus ist die S-Sulfhydrierung des Kationenkanals TRPV4 (transient receptor potential cation channel subfamily V member 4), sodass es zu einem Ca2+-Einstrom und folglich zur Aktivierung spannungsabhängiger K+-Kanäle kommt, was in einer endothelialen Hyperpolarisation und anschließender Vasodilatation resultiert (Naik et al. 2016). Basierend auf diesen molekularen Eigenschaften und dem Effekt auf die Regulation des Blutdruckes kann davon ausgegangen werden, dass H\textsubscript{2}S einen protektiven Effekt auf die Entwicklung eines metabolischen Syndroms besitzt. Der Einsatz von H\textsubscript{2}S könnte somit die Morbidität und Mortalität in der westlichen Welt senken, da das metabolische Syndrom eine Erkrankung mit stetig steigender Prävalenz und mit seinen Folgen eine führende Todesursache in den Industrienationen darstellt (Saklayen 2018, Desai et al. 2011).

In der Analyse des ELISAs zeigte sich durch Anwendung von H\textsubscript{2}S eine deutliche Reduktion der vWF Sekretion der mit Histamin aktivierten Endothelzellen. Dies könnte ein weiterer Mechanismus sein, über den H\textsubscript{2}S seine anti-thrombogenen Eigenschaften entfaltet, welcher in der Literatur bisher nicht beschrieben wurde.

Neben der Modulation der Ionenkanäle durch S-Sulfhydrierung deuten diese Ergebnisse auf einen Effekt des H\textsubscript{2}S auf die Exozytose der Weibel-Palade-Körperchen hin und bieten damit eine weitere Möglichkeit, um die Endothelzellen in ihrer Funktion zu beeinflussen. Die Exozytose der endothelialen Granula und ihrer Proteine, wie vWF und P-Selektin, gelingt

Die Angiogenese ist ein Prozess, der hauptsächlich mit Migration, Proliferation und Differenzierung vaskulärer Endothelzellen einhergeht und ist ein häufiges Phänomen bei vielen physiologischen und pathophysiologischen Prozessen, einschließlich Organentwicklung, Wundheilung, Tumorentwicklung und Metastasierung (Folkman & Shing 1992). Es wurde belegt, dass H\textsubscript{2}S die Proliferation und Differenzierung von Endothelzellen durch NO abhängige und unabhängige Mechanismen fördert (Altaany et al. 2013) und als endogener Stimulator die VEGF induzierte Angiogenese vermittelt (Papapetropoulos et al. 2009). Obwohl zahlreiche Signalmoleküle an der Wirkung von H\textsubscript{2}S beteiligt sind, ist die Identifizierung der molekularen Mechanismen und Rezeptoren, dem direkten Ziel von H\textsubscript{2}S, eine der herausforderndsten Fragen auf diesem Gebiet. Kürzlich wurde in einem Zell-freien System eine neue S-S-Bindung zwischen Cys1045 und Cys1024 in rekombinantem VEGFR2 identifiziert, dessen Aktivität durch H\textsubscript{2}S erhöht wurde (Tao et al. 2013) und somit als möglicher Rezeptor für H\textsubscript{2}S dient. Eine S-Sulfhydrierung der in VEGFR2 enthaltenen Cys-Reste wurde in der Studie allerdings nicht beobachtet. Die RNA-Interferenz von CSE, welche der gezielten Abschaltung von Genen dient, erzeugte eine fördernde Wirkung der Zellmigration sowohl bei Normoxie als auch bei Hypoxie, was darauf hindeutet, dass über CSE gebildetes H\textsubscript{2}S eine hemmende Rolle bei der Zellmigration von HUVECs spielt (Tao et al. 2017). In der vorliegenden Studie zeigte sich ebenfalls, dass die Migration der Endothelzellen durch den H\textsubscript{2}S Donor GYY deutlich reduziert wird, was für eine Verminderung der endothelialen Aktivität spricht und einen ergänzenden Ansatz für die anti-thrombogene Eigenschaft darstellt. Im Gegensatz dazu wurde durch die Behandlung von HUVECs mit dem herkömmlichen Sulfidsalz NaHS eine signifikant gesteigerte Proliferation von Endothelzellen induziert (Altaany et al. 2013). Diese kontroversen Ergebnisse könnten durch die unterschiedlichen pathophysiologischen Eigenschaften der H\textsubscript{2}S Donatoren erklärt
werden, da durch NaHS pro-inflammatorische und durch GYY entzündungshemmende Effekte hervorgerufen werden (Whiteman et al. 2010), die eine unterschiedliche Auswirkung auf die Induktion der Migration, Proliferation und damit die Angiogenese haben könnten.

Die vaskuläre Neointimabildung ist eine häufige Folge von Gefäßläsionen. Um nun die antithrombogene Eigenschaft des H₂S Donors GYY und dessen Mechanismen fortführend \textit{in vivo} zu untersuchen, wurde der Einfluss auf die Neointimabildung und die α-SMA und PCNA positiven Zellen im FeCl₃-Thrombose Mausmodell analysiert.

In einem weiteren Gefäßverletzungsmodell mittels Ligatur wurde gezeigt, dass der H₂S Donor NaHS neben der Neointimabildung auch die Migration der glatten Muskelzellen abschwächt (Yang et al. 2012). In dieser Studie wurde NaHS ebenfalls an 28 aufeinanderfolgenden Tagen intraperitoneal injiziert, jedoch mit einer Konzentration von 60 µM/kg KG, sodass hier von deutlich erhöhten H₂S Plasmaspiegeln ausgegangen werden kann (Yang et al. 2012).

Als Reaktion auf Gefäßverletzungen wandern glatte Muskelzellen (smooth muscle cells, SMC) von der Media in die Intima, wo sie an der Bildung der Neointima teilnehmen (Pauly et al. 1994). Der Prozess der SMC Migration wird durch eine Reihe von Signalen geregelt und könnte auch im FeCl₃-Thrombosemodell eine pathophysiologische Rolle spielen. Führende Signale umfassen die Wechselwirkung von Integrinen mit der umgebenden extrazellulären Matrix (EZM) sowie eine veränderte Expression von Matrix-abbauenden Proteasen (Bendeck

Über die Interaktionen zwischen H\textsubscript{2}S, Integreinen und MMPs wurde bereits in zahlreichen Studien berichtet. So schützte H\textsubscript{2}S das Herz vor oxidativem Stress und nachteiligem Remodelling bei chronischer Herzinsuffizienz, indem es die Expression von MMPs reduzierte (Calvert et al. 2010) und beeinträchtigte die Zelladhäsion von Keratinozyten durch Herunterregulierung der β4-, α2- und α6-Integreine (Gobbi et al. 2009). Die Auswirkungen von H\textsubscript{2}S auf Integreine und MMPs hinblicklich der SMC Migration sind jedoch nicht gut charakterisiert und könnten neben dem Einfluss von H\textsubscript{2}S auf die Endothelzellaktivität einen weiteren pathophysiologischen Ansatz der Gefäßprotektion darstellen. Qin et al. zeigten bereits im Rattenmodell eine Reduktion der durch FeCl\textsubscript{3} induzierten arteriellen Thrombose durch Anwendung von H\textsubscript{2}S (Qin et al. 2016). Allerdings wurde auch in dieser Studie NaHS als H\textsubscript{2}S Donor verwendet. Des Weiteren erfolgte eine NaHS Vorbehandlung an drei aufeinander folgenden Tagen und erst im Anschluss die Schädigung der A. carotis mittels FeCl\textsubscript{3}. Dabei wurde NaHS in einer Konzentration von 0,056, 0,56, 2,8 oder 5,6 mg/kg KG verwendet und 24 Stunden nach der Gefäßverletzung das Gewicht des herausgelösten Thrombus gemessen. Es zeigte sich, dass die Thrombusformationen in den Ratten, die mit einer Konzentration von 0,56 mg/kg KG NaHS vorbehandelt wurden, das geringste Gewicht aufwiesen. Durch diese Konzentration wurden H\textsubscript{2}S Plasmaspiegel von etwa 48 µM erreicht. Eine Reduktion der α-SMA Expression konnte durch die Anwendung von NaHS jedoch nicht erzielt werden (Qin et al. 2016).
Die Untersuchungen der hier vorliegenden Arbeit ließen eine signifikante Reduktion des Durchmessers, der Fläche sowie der α-SMA und PCNA positiven Zellen der arteriellen Neointimabildung der A. carotis communis durch die Behandlung mit GYY verzeichnen. So kann postuliert werden, dass der kontinuierlich und in physiologischen Konzentrationen liberierende H₂S Donor einen protektiven Effekt auf die Neointimabildung und somit auf die Entstehung einer arteriellen Thrombose besitzt. Im Vergleich zu dem salzförmigen H₂S Donor NaHS besitzt GYY zudem den Vorteil, dass die einmalige intravenöse Applikation ausreicht, um die protektiven Eigenschaften auf das Gefäßsystem zu entfalten. Zudem kann die Reduktion der α-SMA und PCNA positiven Zellen als Ausdruck einer Reduktion der Zellaktivität von SMCs und Fibroblasten gewertet werden und legt einen möglichen Mechanismus von H₂S dar.

9 Schlussfolgerung

Auch die eindeutigen Wirkmechanismen von H₂S sind noch immer kontrovers diskutiert, sodass die Mechanismen der Zellsignalisierung, welche die vielseitigen protektiven Effekte vermitteln, weiterhin in einer Vielzahl von Krankheitszuständen in einer Reihe von Studien untersucht werden müssen. Darüber hinaus ist es von äußerster Wichtigkeit, ein Verständnis des Mechanismus der H₂S Freisetzung, der Modulation der Synthese und des Abbaus zu
erlangen, um einen Weg in der klinisch therapeutischen Anwendung für zukünftige Vorteile der Verwendung von H₂S zu bieten. Auch in diesem Hinblick kann davon ausgegangen werden, dass GYY den anderen H₂S Donatoren aufgrund der besseren Steuerungsfähigkeit überlegen wäre.

Zusammenfassend legen die Ergebnisse dieser Studie nahe, dass GYY, als langsam und kontinuierlich liberierender H₂S Donor, durch seine anti-thrombogenen und anti-atherogenen Effekte ein potentielles Target in der medikamentösen Prophylaxe und Therapie von venösen und arteriellen Thrombosen sowie der Atherosklerose sein könnte.

Barr JD, Chauhan AK, Schaeffer GV, Hansen JK, Motto DG. **Red blood cells mediate the onset of thrombosis in the ferric chloride murine model.** Blood. 2013;121:3733-41.

De Pascual R, Baraibar AM, Méndez-López I, Pérez-Ciria M, Polo-Vaquero I, Gandía L, Ohia SE, García AG, de Diego AMG. Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells. Pflugers Arch. 2018;470:1255-1270.

Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR. **VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site.** Cell. 1990;60:577-84.

Krishnan N, Fu C, Pappin DJ, Tonks NK. *H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response.* Sci Signal. 2011;4:ra86.

Sanz J, Moreno PR, Fuster V. **The year in atherothrombosis.** J Am Coll Cardiol. 2012;60:932-42.

11 Abbildungs- und Tabellenverzeichnis

11.1 Abbildungen

Abb. 1: Schematische Darstellung der H$_2$S Biosynthese
Abb. 2: Effekte von H$_2$S auf das ZNS
Abb. 3: Komponenten der Virchow’schen Trias
Abb. 4: Rasterelektronenmikroskopie aktivierter HUVECs und Thrombozyten
Abb. 5: Chemische Synthese von GYY4137
Abb. 6: Versuchsaufbau Durchflusszytometrie I
Abb. 7: Durchflusszytometrie E-Selektin
Abb. 8: Versuchsaufbau Durchflusszytometrie II
Abb. 9: Migrationsassay
Abb. 10: Präparation der Arteria carotis
Abb. 11: Querschnitt durch die A. carotis nach FeCl$_3$ und Vehikel Behandlung
Abb. 12: Statistische Auswertung des WST Assays
Abb. 13: Durchflusszytometrische Analyse der E-Selektin Expression humaner Endothelzellen
Abb. 14: Durchflusszytometrische Analyse der ICAM-1 und VCAM-1 Expression humaner Endothelzellen
Abb. 15: Statistische Auswertung der vWF Sekretion
Abb. 16: Quantitative Densitometrie des Biotin Switch Assays von endothelialen Proteinen
Abb. 17: Migration von HUVECs im ibidi® Migrationsassay
Abb. 18: Statistische Auswertung des Migrationsassays nach 12 Stunden
Abb. 19: Statistische Auswertung der Neointimabildung
Abb. 20: Statistische Auswertung der Immunhistochemie
11.2 Tabellen

Tab. 1: Überblick über die *in vivo* Versuchsgruppen
12 Danksagung

An dieser Stelle möchte ich meinen Dank nachstehenden Personen entgegenbringen, ohne deren Mithilfe die Anfertigung dieser Promotionsschrift nicht möglich gewesen wäre.

In erster Linie danke ich meinem Betreuer Herrn Dr. med. Eberhard Grambow für die konsequente Unterstützung und außerordentliche Hilfe bei der Erarbeitung der Thematik und Fertigstellung der Dissertation. Weiterhin bedanke ich mich für die stetige Motivation sowie seine Geduld.

Ein besonderer Dank geht außerdem an Frau Professor Brigitte Vollmar, der Direktorin des Rudolf-Zenker-Instituts für Experimentelle Chirurgie der Universität Rostock, für die Möglichkeit, diese Arbeit an Ihrem Institut durchzuführen. Außerdem möchte ich mich für die wissenschaftliche und stets hilfsbereite Betreuung bedanken.

Großer Dank gilt auch Frau Berit Blendow, Dorothea Frenz, Maren Nerowski und Eva Lorbeer für die wertvolle technische Assistenz im Laboralltag sowie die fortwährende Hilfe und Unterstützung bei der Durchführung der Versuche.

Allen Mitarbeitern des Institutes der Experimentellen Chirurgie, auch den hier nicht namentlich genannten, bin ich für stetige Anregungen, die freundliche Zusammenarbeit und das angenehme Arbeitsklima im und außerhalb des Labors sehr dankbar.

Von Herzen bedanke ich mich bei meinem Partner Malte Kämmerling, der mir Mut zugesprochen hat die Arbeit für die Promotion aufzunehmen. Außerdem bin ich für den wertvollen Zuspruch, die fortwährende Motivation und Unterstützung sowie die Abwechslung im Alltag und die mir täglich zugewendete Liebe sehr dankbar.

Mein ganz besonderer Dank gilt meinen Eltern und Großeltern, die meinen bisherigen Lebensweg ermöglichten und mich während der gesamten Zeit des Studiums und der Promotion tatkräftig mit Hilfestellungen, Motivation, aufbauenden Worten sowie mit Zuneigung unterstützten.
13 Eidesstaatliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne unerlaubte fremde Hilfe angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Stellen sind als solche kenntlich gemacht.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keinem anderen Prüfungsamt vorgelegt und auch nicht veröffentlicht.

Ort, Datum Gina Klee
14 Thesen zur Dissertation

1. Obstruktive und thrombotische Herz-Kreislauf-Erkrankungen stellen trotz jahrelanger klinischer sowie experimenteller Forschung zur Prophylaxe und Therapie die häufigsten Ursachen für Tod und Invalidität in der entwickelten Welt dar.

3. Hydrogensulfid (H\textsubscript{2}S) ist ein endogener gasförmiger Transmitter. Aufgrund seiner bereits vielseitig beschriebenen protektiven Wirkung auf verschiedene Organsysteme und die Thrombogenese ist es wahrscheinlich, dass H\textsubscript{2}S sein anti-thrombogenes Potential neben der Beeinflussung von Thrombozyten ebenso über die Modulation endothelialer Aktivität ausübt.

4. In der vorliegenden Studie wurden die aktuell nicht hinreichend beschriebenen Effekte von H\textsubscript{2}S auf die Aktivität humaner Endothelzellen \textit{in vitro} und die Bildung von arteriellen Thrombosen \textit{in vivo} untersucht.

5. Als H\textsubscript{2}S Donor wurde GYY4137 (GYY) verwendet, welches in Dimethylsulfoxid (DMSO) gelöst wurde. Es handelt sich hierbei um eine Substanz, die H\textsubscript{2}S kontinuierlich über mehrere Stunden und in physiologischen Konzentrationen freisetzte und somit die physiologische, endogene Bildung widerspiegelt. DMSO diente als Kontrolle.
6. *In vitro* wurde die dosisabhängige Wirkung von GYY auf die Expression pro-thrombogener und pro-atherogener endothelialer Adhäsionsmoleküle E-Selektin, ICAM-1 und VCAM-1, die vWF Sekretion, die Protein S-Sulfhydrierung sowie das Migrationsverhalten humaner Endothelzellen mittels Durchflusszytometrie, ELISA, Biotin Switch Assay und Migrationsassay analysiert.

7. *In vivo* erfolgte die Analyse der Neointimabildung im FeCl₃-Thrombosemodell und die Auszählung der α-SMA und PCNA positiven Zellen innerhalb der arteriellen Thrombusformation. Hierzu wurden die Tiere mit GYY oder DMSO behandelt.

