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2 Einleitung  
 
2.1 Mismatch-Reparatur-Defizienz  
 
2.1.1 Mechanismus und Funktion des Mismatch-Reparatur-Systems  
 
Im Laufe der Evolution haben sich in allen lebenden Organismen zahlreiche Repara-

turmechanismen der DNA entwickelt, mit dem Ziel, korrektes genetisches Material zu 

vererben. Die Hauptfunktion des Mismatch-Reparatur (MMR) Systems liegt im Erkennen 

und Reparieren von Basenfehlpaarungen infolge von Basen-Substitutionen, sowie Nuk-

leotid-Insertionen und -Deletionen (1). Das MMR System ist ebenfalls an Signalwegen 

bei DNA-Schäden, welche zum Zellzyklusarrest oder zur Apoptose führen, bei mutage-

nen Prozessen, wie der somatischen Hypermutation (somatic hypermutation), dem Klas-

senwechsel von Immunglobulin-Isotypen in B-Zellen (class switch recombination) und 

der Instabilität von DNA-Trinukleotid-Repeats beteiligt (2–4).  

Die Existenz dieses Reparaturmechanismus wurde erstmals von Modrich und Lahue 1996 

in dem Bakterium Escherichia coli nachgewiesen. Das E. coli-System beinhaltet drei 

„mutator“ oder „Mut“- Protein-Homodimere, MutS, MutL und MutH, welche unter-

schiedliche Funktionen bei den Reparaturprozessen einnehmen (5). Im menschlichen Or-

ganismus dient das humane MutS Homologus (hMSH) der Erkennung von fehlgepaarter 

DNA. Die prädominante Form des MutS Proteinkomplexes ist MutS𝛼, welches aus einem 

Molekül hMSH2 und einem Molekül hMSH6 gebildet wird. Es dient vor allem der Er-

kennung von Basen-Basen Fehlpaarungen und von kurzen Nukleotid-Insertionen und -

Deletionen. Der MutS𝛽 Proteinkomplex bildet sich aus je einem Molekül hMSH2 und 

hMSH3 und spielt bei der Erkennung von großen Nukleotid-Insertionen und -Deletionen 

eine Rolle (6,7). Die Proteinkomplexe MutS𝛼 und MutS𝛽 besitzen pro Molekül eine 

ATP-Bindungsstelle. Bei Vorliegen von ADP bindet MutS an das fehlgepaarte Basen-

paar. Durch das Entstehen von ATP bildet MutS eine bewegliche Klammer (sliding 

clamp), die durch Seitwärtsbewegung den fehlerhaften Tochterstrang von der DNA-Mat-

rize löst (8). Die Rekrutierung der Reparaturenzyme wird durch den Proteinkomplex hu-

man MutL Homologus (hMLH), bestehend aus einem hMLH1- und einem hPMS2- Pro-

tein, ausgeführt. Das, durch hMutS aktivierte, hMutL verdrängt die Polymerase und das 

proliferating cell nuclear Antigen (PCNA) vom fehlgepaarten Tochterstrang und rekru-

tiert anschließend Enzyme, wie die Exonuclease 1 (Exo1), die für die „long strand exci-

sion“ notwendig sind (9,10). Abhängig von der Lokalisation der Exzisionsstelle findet 

der Reparaturprozess entweder in 5‘- oder in 3‘- Richtung auf der DNA statt. Bei der 
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Reparatur in 5‘ Richtung werden ausschließlich MutS, Exo1 und das Replikationsprotein 

1 (RPA1), welches an den Einzelstrang bindet und diesen nach Exzision der Fehlpaarung 

stabilisiert, benötigt. Die Reparatur in 3‘ Richtung benötigt zusätzlich MutL, PCNA und 

den Replikationsfaktor C (RFC). RFC bildet einen Komplex mit PCNA, und hilft an-

schließend die DNA mit PCNA zu beladen. Das PCNA wiederum ist ein Ringklemmpro-

tein, welches die Prozessivität der Polymerase verbessert (11,12). Die Resynthese der 

DNA findet mittels der Polymerase δ und der DNA-Ligase statt (13) (Abb. 1). 

Laut dem klassischen Modell der Replikation in Eukaryoten wird der Hauptstrang der 

DNA durch die Polymerase e und der Tochterstrang durch die Polymerasen a und d re-

pliziert (14). Daraus resultiert eine Mutationsasymmetrie, welche auch bei der MMR-

Defizienz (MMR-D) zu finden ist. Da das MMR-System vor allem Fehlpaarungen auf 

dem Tochterstrang repariert, ist folglich die Polymerase d überwiegend an der Reparatur 

beteiligt. Somit kann das MMR-System zwischen Haupt- und Tochter-Strang der DNA 

differenzieren (15).  

 

 

 
 

2.1.2 Konsequenzen der MMR-Defizienz  

Das MMR-System wird durch zahlreiche Prozesse reguliert und beeinflusst. Aus der 

Masse an involvierten Proteinen und regulierenden Prozessen resultiert die große Band-

breite des Phänotyps, womit sich auch die Fehlerwahrscheinlichkeit erhöht (1). Geneti-

sche oder epigenetische Inaktivierungen führen zur MMR-D und damit verbunden auch 

zur Akkumulation von Mutationen in den betroffenen Zellen. Die am Häufigsten betroffe-

nen MMR-Gene sind hMLH1 und hMSH2 (ca. 70% aller Fälle), gefolgt von hMSH6 und 

hPMS2 (16). Hierbei ist zu erwähnen, dass hMSH6 und hPMS2 von ihren Bindungspart-

nern hMLH1 und hMSH2 abhängig sind. Bei verringerter Expression von hMSH2 liegt 

häufig auch eine verminderte Expression von hMSH6 vor. Gleiches gilt für hMLH1 und 

hPMS2, wobei hMLH1 auch durch epigenetische Hypermethylierung der Promotorregion 

Abbildung 1 Ablauf des MMR-Mechanismus. 

 (A) Erkennen des Mismatch durch MutS𝛼 (B) Rekrutierung der Reparaturenzyme durch MutL (C) „long 

strand excision“ mit Hilfe des Exonucleasekomplexes (D) Resynthese der DNA durch die DNA-Poly-

merase; Quelle: (190) 
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deaktiviert werden kann. Die epigenetische Promotormethylierung von hMLH1 ist keine 

Folge einer pathogenen Keimbahnmutation (= sporadisch). Heterozygote Keimbahn-Mu-

tationen im Exon TACSTD1, welches für EPCAM (epithelial cell adhesion molecule) ko-

diert, führt zum epigenetischen silencing von MSH2 und damit zur MSH2-Defizienz. Mu-

tationen in hMSH6 und hPMS2 sind generell isolierte Mutationen und unabhängig von 

hMLH1 und hMSH2 (17–19). Unabhängig von der ursächlichen MMR-Mutation resul-

tiert ein Mutator Phänotyp, charakterisiert durch zahlreiche spontane Mutationen in, für 

die Tumorgenese relevanten, Genen. Zu diesen zählen u.a. Gene der Apoptoseregulation 

(BAX), Inflammation (Caspase-5), Signaltransduktion (TGFß-RII, ACVR2) sowie der 

Transkriptionsregulation (TAF1B). Die Mutationen führen zur Translation teilweise bzw. 

komplett funktionsloser, trunkierter Proteine, sogenannter Frameshiftproteine. Werden 

diese Frameshiftproteine auf der Zelloberfläche präsentiert, so können sie von Immun-

system als fremd erkannt werden (= Tumor-spezifische Antigene). Da MMR-D grund-

sätzlich in allen Organen auftreten kann, ist das Tumorspektrum entsprechend komplex. 

Aufgrund der hohen Penetranz von MLH1- und MSH2- Mutationen entwickeln sich be-

sonders häufig kolorektale Karzinome (colorectal cancer; CRC). Extrakolische Malig-

nome umfassen u.a. Endometrium-, Ovarial-, Magen-, Urothel- und Pankreas-Karzinome 

und sind eher, jedoch nicht ausschließlich, mit MSH6 bzw. PMS2 Mutationen assoziiert 

(20). 

 

2.1.3 Mikrosatelliteninstabilität  

DNA-Mikrosatelliten (MS) sind kurze, repetitive Nukleosidsequenzen, die sich typi-

scherweise stetig, bis zu 100-mal wiederholen (21). MS finden sich in kodierenden und 

nicht-kodierenden Abschnitten der DNA. Aufgrund der sich wiederholenden Sequenz, 

neigen diese DNA Abschnitte zu Replikationsfehlern, die normalerweise durch das 

MMR-System korrigiert werden (22). Im Falle einer MMR-D kann es zu Längenverän-

derungen in den repetitiven Nukleotidsequenzen der DNA, einer sogenannten Mikrosa-

telliteninstabilität (MSI), kommen, wobei Mononukleotid-Repeats eine höhere Anfällig-

keit gegenüber Mutationsereignissen aufweisen als Dinukleotid-Repeats. Zur einheitli-

chen Analyse von MSI wurde das Bethesda Panel entwickelt. Hierbei werden fünf MS-

Marker untersucht, zwei Mononukleotid-Repeats (BAT26, BAT25) und drei Dinukleo-

tid-Repeats (D2S123, D5S346, D17S250) (23,24). Die Diagnostik wird ergänzt durch 

den immunhistochemischen Nachweis/Ausfall einzelner MMR-Proteine. Beide Tests 
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sollen parallel durchgeführt werden, um die Rate an falsch negativen Testergebnissen zu 

minimieren. So wirken die beiden Tests synergistisch (25). 

Untersuchte Tumorproben werden als MSI-High (MSI-H), MSI-Low (MSI-L) oder MS-

Stabil (MSS) klassifiziert. Das Tumorgewebe wird als MSI-H bezeichnet, wenn mindes-

tens zwei der fünf Marker, oder über 30% eines größeren Markerspektrums eine Instabi-

lität aufweisen. Von MSI-L wird bei einem instabilen Marker gesprochen und bei Fehlen 

von Instabilität liegt ein MSS vor (22,26).  

In der Zukunft könnte das gesamte Genom mittels Next Generation Sequencing noch ef-

fizienter und genauer auf MSI untersucht werden. Aktuell sind hierfür noch Speziallabore 

notwendig und die Kosten zu hoch (27). 

2.2 Das kolorektale Karzinom  

Das CRC ist das zweithäufigste Karzinom der Frau und das dritthäufigste Karzinom des 

Mannes. In Deutschland erkranken jährlich etwa 60.000 Menschen, wobei die Inzidenz 

in den Industrieländern wie Europa, Nordamerika und Australien deutlich höher ist, als 

in weniger entwickelten Ländern (28). Ebenfalls liegt ein Zusammenhang mit dem sozio-

ökonomischen Status vor (29). Wesentliche Einflussgrößen für die Entstehung sind Um-

weltfaktoren, wie fett- und fleischreiche Ernährung, Rauchen und fehlende körperliche 

Betätigung, genetische Faktoren und prädisponierende Erkrankungen, wie Colitis ulce-

rosa und Morbus Crohn.  

Es werden grundsätzlich drei Mechanismen der Kanzerogenese unterschieden (Abb. 2): 

1.  Suppressor Pathway mit chromosomaler Instabilität (60-70% aller Fälle) (30). Da-

bei treten Mutationen in spezifischen Onkogenen oder Tumorsuppressorgenen auf, 

die zu Chromosomenteilungsstörungen, DNA-Reparaturdefekten oder Telomer-

Funktionsstörungen führen (31).   

2. Methylator Pathway mit epigenetischen Methylierungen der DNA (ca. 20% der 

Fälle), die auch als „CpG island methylator phenotype“ (=Hypermethylierung des 

CpG Island-Promotor) bezeichnet werden (32). 

3. Mutator Pathway infolge von MMR-D/MSI (15% der Fälle, teilweise überlappend 

mit Methylator Pathway) (32).  
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Abbildung 2 Äthiologie des CRC 

Neuere Arbeiten klassifizieren das CRC nach sogenannten Consensus Molecular Sub-

types (CMS) (Abb. 3). Hierbei werden vier Gruppen unterschieden. Zu CMS1 (14%) zäh-

len CRC, bei denen MSI und eine starke Immunreaktion nachweisbar sind. Epitheliale 

Tumoren sind entweder CMS2 (37%) oder CMS3 (13%) zuzuordnen. Der Unterschied 

findet sich darin, dass Tumoren mit einem typischen Defekt im WNT-Signalweg und/o-

der in der MYC-Genexpression CMS2 und Tumoren mit einem metabolischen Defekt, 

genauer KRAS-Mutationen, CMS3 zugewiesen werden. CMS4 (23%) sind mesen-

chymale Tumoren, welche einen hohen Anteil an Stroma und eine hohe Aktivität von 

TGF-β und VEGF-R aufweisen (33). 

 
 

 
Abbildung 3 Molekulare Klassifikation des CRC.  

links: Unterteilung des CRC in die drei molekularen Hauptkategorien. rechts: Unterteilung in die vier 

Consensus Molecular Subtypes. Quelle: (34) 
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In Hinblick auf die Einflussgrößen lassen sich das hereditäre CRC vom sporadischen 

Karzinom unterscheiden. Die Erstdiagnose nach dem 50. Lebensjahr und eine unauffäl-

lige Familienanamnese sind typisch für das sporadische CRC. Die negative Familienan-

amnese lässt dabei auf eine somatische Mutation schließen (35).   

Bei etwa fünf bis zehn % aller CRC-Patienten liegt eine hereditäre Ursache der Erkran-

kung zugrunde. In den meisten Fällen handelt es sich um monogenetische Keimbahnmu-

tationen. Zu den häufigsten hereditären Tumorsyndromen zählen die familiäre adenomat-

öse Polyposis (FAP) und das Lynch Syndrom (36). Hinweisend sind die positive Famili-

enanamnese und ein frühes Erstdiagnosealter (37). 

Karzinome, die aufgrund von MMR-D entstehen, befinden sich meist in der rechten Ko-

lonseite und weisen einen typischen histopathologischen Befund auf. Charakteristisch 

sind hierbei muzinöse Merkmale, ein schlecht differenziertes medulläres Wachstums-

muster und Crohn-ähnliche lymphozytäre Reaktionen (38). 

Sowohl sporadische als auch hereditäre MSI-H-assoziierte Tumoren weisen eine weniger 

aggressive Klinik und eine bessere Prognose auf, als deren MSS Pendant (39). Durch den 

hypermutierten Phänotyp bei MSI-H CRC, tragen die Tumorzellen eine Vielzahl von Ne-

oantigenen und Immuncheckpoint-Molekülen, wie beispielsweise PD-1 (programmed 

cell death 1) und PD-L1 (programmed cell death 1 ligand 1) auf ihrer Zelloberfläche. 

Dadurch kann sich der Tumor schlechter dem Immunsystem entziehen und dieser gezielt 

eliminiert werden (40). 

Beim sporadischen und beim hereditären CRC steht die chirurgische Therapie an erster 

Stelle. Neoadjuvante oder adjuvante Chemo- oder Strahlentherapie können in gewissen 

Fällen, beispielsweise bei R1-Resektion oder Metastasierung zusätzlich eingesetzt wer-

den. Die aktuellen Leitlinien empfehlen keine adjuvante Chemotherapie im Stadium II 

von MSI-H CRC durchzuführen, da in zahlreichen Studien kein besseres Outcome nach-

gewiesen wurde (41). 

 

2.2.1 Lynch Syndrom  

Dr. Warthin begann 1895 erstmals mit der Dokumentation familiär gehäuft auftretender 

Karzinome im Kolorektum, Magen und Uterus. Basierend auf der Forschung von Henry 

Lynch, etablierte sich 1971 das cancer family syndrome (CFS), das neben der FAP, als 

weiteres familiär erbliches Karzinom angesehen und 1984 von Boland in das Lynch Syn-

drom umbenannt wurde (20).   
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Das Syndrom wird autosomal dominant vererbt und basiert, wie zuvor dargelegt, auf einer 

Keimbahnmutation in einem der MMR-Gene. Meist vererbt durch ein Elternteil, findet 

sich in jeder Zelle des Körpers eine defekte und eine intakte Genkopie des betroffenen 

MMR-Proteins. Die intakte Genkopie kann die MMR solange aufrecht halten, bis diese 

ebenfalls durch eine somatische Mutation betroffen ist. In prämalignen MMR-D Zellen 

häufen sich dann zahlreiche defekte Genkopien an, welche nicht mehr durch die MMR 

korrigiert werden können, wodurch sich die maligne Entartung massiv beschleunigt (42). 

Typisch ist das syndromale Auftreten von kolorektalen und anderen Karzinomen, wie 

Endometrium-, Ovarial-, Magen-, Haut- und Urothel-Karzinomen, vor allem im frühen 

Alter (durchschnittlich vor dem 45. Lebensjahr). Das Lebenszeitrisiko, an einem Karzi-

nom zu erkranken, beträgt in Abhängigkeit der zugrunde liegenden Keimbahnmutation 

für das Kolon 52-82%, das Endometrium 25-60%, den Magen 6-13% und das Ovar 4-

12% (43). Männliche Anlageträger haben ein höheres Risiko an einem CRC zu erkranken 

als Frauen (42).  

Lynch Syndrom-assoziierte Tumoren sind meist Adenokarzinome, welche bevorzugt in 

der rechten Kolonhälfte auftreten (44). Im Gegensatz zur FAP, liegen bei Patienten mit 

Lynch Syndrom meist nur einzelne Adenome oder Karzinome im Kolorektum vor, die 

sich makroskopisch nur schwer vom sporadischen Karzinom unterscheiden lassen 

(45,46). Daher wurden von der International Collaborative Group 1991 erstmals stan-

dardisierte Kriterien für die Diagnose entwickelt. Die Amsterdam-Kriterien I fokussieren 

sich vor allem auf die starke familiäre Häufung, das CRC und Auftreten im jungen Alter. 

Mit den Amsterdam-Kriterien II erweiterte sich das Spektrum auf Lynch-assoziierte ma-

ligne Neoplasien. Mit eingeschlossen sind dabei auch Patienten ohne Nachweis eines 

DNA-Reparatur-Defektes (24,47).  

Mit der Entdeckung von MSI als molekularer Marker für die MMR-D wurden im Jahre 

1997 die Bethesda-Guidelines entwickelt, welche 2002 revidiert und erneuert wurden. 

Mit Hilfe der Bethesda-Kriterien können Verdachtsdiagnosen für das Lynch Syndrom 

gestellt werden, ohne dass alle Kriterien erfüllt werden müssen (24,45,46,48). 

Positive Amsterdam oder Bethesda Kriterien haben eine weiterführende molekularpatho-

logische Untersuchung des Tumorgewebes zur Folge (Abb. 4). Hierbei wird das Tumor-

gewebe auf immunhistochemische Veränderungen der MMR-Proteine und MSI unter-

sucht. Bei Familien mit positiven Amsterdam- oder Bethesda-Kriterien, liegt in 35% der 

Fälle eine MSI vor (17,44).   
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Abbildung 4 Ablauf der HNPCC-Diagnostik.  

Der Leitfaden erläutert die Schritte der Diagnostik und erleichtert das Handeln bei Vorliegen eines 

HNPCC-Verdachtes. Quelle: (44) 

Lynch Syndrom Patienten haben auch nach erfolgreicher Ersttherapie des Primärtumors 

ein lebenslang erhöhtes Risiko, an weiteren Tumoren zu erkranken. Aus diesem Grund 

wurden Vor- und Nachsorgeprogramme entwickelt, die Risikopatienten zur Früherken-

nung dienen sollen (49). 

So wird empfohlen, ab dem 25. Lebensjahr und spätestens fünf Jahre vor dem Erstdiag-

nosealter des betroffenen Familienangehörigen, einmal Jährlich die folgenden Untersu-

chungen durführen zu lassen: körperliche Untersuchung, Abdomensonografie , Kolosko-

pie, Gastroskopie (ab 35. Lebensjahr), gynäkologische Untersuchung mit transvaginalem 

Ultraschall, Endometriumbiopsie (ab 35. Lebensjahr) (44). In einigen Studien konnte be-

wiesen werden, dass durch regelmäßige Koloskopien in Abständen von etwa zwei bis 

drei Jahren, Tumoren in den frühen Stadien entdeckt und damit die Mortalität gesenkt 

werden kann. Das optimale Koloskopie-Intervall liegt bei ein bis zwei Jahren (49).  

Weiterhin konnte gezeigt werden, dass Lynch Syndrom Patienten häufig multiple Tumor-

herde im Kolorektum aufweisen. Aus diesem Grund ist bei jungen Patienten (Alter unter 

45. Lebensjahr) eine subtotale Kolektomie mit Ileorektaler Anastomose als Therapieop-

tion in Erwägung zu ziehen. Dies führt zu einem verlängerten Überleben (49). Bei weib-

lichen Lynch Syndrom Patienten mit abgeschlossener Familienplanung sollte auch eine 

prophylaktische Hystrektomie mit Adnektomie diskutiert werde (50). 
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2.2.2 konstitutionelle MMR-Defizienz  

Im Jahre 1999 wurde die Konstitutionelle Mismatch-Reparatur-Defizienz (constitutional 

MMR-D, CMMR-D) zum ersten Mal beschrieben. Dabei handelt es sich um eine seltene 

biallelische Keimbahnmutation in einem MMR-Gen (51). Meist liegen die Mutationen in 

den MMR-Proteinen MSH6 oder PMS2, weshalb die Inzidenz innerhalb der Familie bei 

Verwandten ersten und zweiten Grades recht gering ist (52). Das Tumorspektrum der 

CMMR-D kann in vier Gruppen unterteilt werden: Hämatologische Neoplasien (akute 

lymphatische Leukämie, akute myeloische Leukämie, chronisch myeloische Leukämien, 

Non-Hodgkin-Lymphome und andere Lymphome), Hirntumoren (Medulloblastom oder 

Glioblastom), Lynch-Syndrom-assoziierte Neoplasien (CRC, Endometrium-Karzinom, 

Urothel-Karzinom) und Andere (Neurofibromatose Typ1 = NF1, Wilms-Tumor, 

Mamma-Karzinom, Rhabdomyosarkom, etc.). Das Tumorspektrum ist abhängig von der 

MMR-Keimbahnmutation. So treten bei Mutationen in MSH2 oder MLH1 häufiger hä-

matologische Neoplasien und in MSH6 und PMS2 vermehrt Hirntumoren auf (53). Cha-

rakteristisch ist das häufige Auftreten der Malignome bereits im frühen Kindesalter (54). 

Aufgrund des gemeinsamen Auftretens mit anderen Erkrankungen, wie der NF1 oder der 

FAP, wird die CMMR-D im klinischen Alltag häufig übersehen. Aus diesem Grund 

wurde ein Algorithmus entwickelt, der bei der Diagnose helfen soll. Wenn drei der fol-

genden klinischen Punkte vorliegen sollte an eine weiterführende Diagnostik gedacht 

werden (52): 1.) Café au Lait Flecken oder andere für die NF1 typische und/oder hy-

popigmentierte Hauterscheinungen 2.) Konsanguinität 3.) Lynch Syndrom-assoziierte 

Tumoren in der Familie 4.) sekundäre Malignome 5.) Zwilling mit Tumorerkrankungen 

im Kindesalter (53). Als weiterführende Diagnostik wird ein kombinierter molekular-

funktioneller Test durchgeführt, bestehend aus einer ex vivo MSI-Analyse und einem To-

leranztest. Letzterer basiert auf der Beobachtung, dass MMR-D Zellen eine höhere Tole-

ranz gegenüber methylierenden Agenzien haben, als MMR-suffiziente Zellen. Bei Ver-

dacht auf CMMR-D folgen die immunhistochemische Färbung der MMR-Proteine, sowie 

eine Keimbahn-MMR-Analyse (52).   

Regelmäßiges Screening verbessert die Tumordiagnostik im frühen Stadium und damit 

auch die Aussicht auf vollständige chirurgische Entfernung des Tumors. Regelmäßig soll-

ten körperliche Untersuchungen, Blutuntersuchungen inklusive Tumormarker CEA, 

MRT Gehirn, endoskopische Untersuchungen des GIT, endometriale Biopsien und trans-

vaginaler Ultraschall durchgeführt werden (53,55–58).  
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Dennoch ist die Prognose der CMMR-D im Gegensatz zum Lynch Syndrom deutlich 

schlechter. Dies ist auf das komplexe Tumorspektrum und das hohe Risiko für syn- bzw. 

metachrone Zweit- oder Dritttumore zurückzuführen (59). 

 

2.3 Experimentelle in vivo Modelle für MMR-D-assoziierte Erkrankungen  

Aufgrund der großen Ähnlichkeit in Bezug auf die Phylogenetik und Physiologie zwi-

schen Menschen und Mäusen, werden diese als Modell für die humane Biologie und Pa-

thogenese herangezogen. Durch die Möglichkeit, genetisches Material gezielt zu beein-

flussen, entwickelten sich knockout, knockin und transgene Modelle, wodurch sich das 

pathophysiologische Verständnis im menschlichen Körper verbessert hat.  

 

2.3.1 MMR-knockout Modell   

Um die MMR-D besser verstehen zu können, wurden zahlreiche Mausmodelle entwi-

ckelt, welche die humane Kanzerogenese darstellen. Die genaue Funktion im DNA-Re-

paraturprozess jedes einzelnen MMR-Proteins und die Pathogenese von MMR-D Karzi-

nomen, konnten mithilfe der unterschiedlichen Mauslinien analysiert werden (60).  

Ähnlich dem humanen MMR-System, spielen die MMR-Proteine MSH2 und MLH1, eine 

wichtige Rolle bei der murinen Kanzerogenese. Das Fehlen eines dieser Proteine ist mit 

einem starken Tumorphänotyp und einer entsprechend reduzierten Lebenserwartung in 

den betroffenen Tieren assoziiert. Zum Tumorspektrum zählen Karzinome im GIT, Lym-

phome und Hauttumoren. Zu unterscheiden ist bei den beiden Mauslinien die Fertilität. 

Bei den homozygot MSH2 defizienten Mäusen (MSH2-/-) sind sowohl Männchen als auch 

Weibchen fertil. Die Sterilität beider Geschlechter bei MLH1 defizienten Mäusen 

(MLH1-/-) lässt auf den Einfluss des MMR-Proteins MLH1 bei der Meiose schließen (61–

64). 

MSH6 defiziente Mäuse (MSH6-/-) weisen einen ähnlichen Phänotyp wie MSH2-/-Mäuse 

auf. Jedoch sind ein spätes Auftreten der Karzinome und eine geringe MSI-Frequenz ty-

pisch. Im humanen System finden sich MSH6-/- Tumoren fast ausschließlich bei atypi-

schen Lynch Syndrom Patienten, welche häufig nach dem 60. Lebensjahr auftreten und 

ein anderes Mutationsprofil aufweisen, verbunden mit einer geringeren Frequenz MSI-

spezifischer Mutationen (65).  

PMS2 defiziente Mäuse (PMS2-/-) haben ein erhöhtes Risiko für die Entstehung von Lym-

phomen und Sarkomen, nicht jedoch für CRC – in Analogie zu diesen Befunden, ist auch 

im humanen Pendant die Frequenz PMS2-assoziierter Tumor unterrepräsentiert (64,66). 
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2.4 Tumorimmunologie  

2.4.1 Abwehrmechanismen des Immunsystems   

Die Interaktion zwischen dem angeborenen und erworbenen Immunsystem spielt eine 

wichtige Rolle bei der Tumorabwehr.  

Das angeborene Immunsystem wirkt durch die Aktivierung von zahlreichen Effektorzel-

len, wie zytotoxischen T-Zellen (cytotoxic T-Lymphocyte, CTL), Natürlichen Killerzellen 

(NK-Zellen) und Makrophagen auf den Tumor ein. Diese werden durch die vom Tumor 

präsentierten Antigene aktiviert (67). Im Zusammenhang mit der Kanzerogenese werden 

Makrophagen als Tumor-assoziierte Makrophagen (TAM) bezeichnet. Hierbei werden 

zwei Typen unterschieden. Makrophagen vom M1-Typ wirken proinflammatorisch und 

lysieren Tumorzellen, M2-Typ Makrophagen hingegen fördern das Tumorwachstum, 

beispielsweise durch Stimulation von (Lymph-) Angiogenese, Proliferation und Metasta-

sierung (68,69). M2-TAMs sezernieren IL-10 und TGF-β, welche sowohl die Aktivität 

von dendritischen Zellen (dendritic cells, DC), als auch T-Zellen hemmen (70–72). T-

Zellen werden nach den Makrophagen am zweithäufigsten in Tumoren gefunden (73,74). 

Befinden sich ausreichend Tumorantigene auf der Oberfläche der Tumorzellen, kommt 

es im frühen Tumorstadium zur T-Zellaktivierung (Abb. 5). Die aktivierten T-Zellen 

wandern von den Lymphknoten in das Tumorgewebe und eliminieren dort die immuno-

genen Tumorzellen. CD8+-T-Zellen werden durch die antigenpräsentierenden Zellen (an-

tigen presenting cells, APC) aktiviert und zerstören mittels Perforinen und Granzymen 

die Zielzellen (75). T-Helferzellen (CD4+-T-Helferzellen, Th1) sezernieren proinflamm-

atorische Zytokine wie IL-2, TNF-α und IFN-γ, wodurch die antitumorale Aktivität von 

Makrophagen, NK-Zellen und CTL verstärkt wird (76,77). Die regulatorischen CD4+-T-

Zellen (Treg) wiederum hemmen die Funktionen anderer Effektorzellen. Durch die Ex-

pression von Immuncheckpoint-Molekülen wie PD1/PD-L1, LAG-3 (Lymphozytenakti-

vierungsgen 3) oder CTLA4 (cytotoxic T-lymphozyte-associated Protein 4), sowie durch 

Produktion von IL-10, TGF-β, Prostaglandin E2, Adenosin und Galectin-1, wirken Treg 

immunsuppressiv (75). Die NK-Zellen sind ein weiterer wichtiger Bestandteil der ange-

borenen Immunantwort. Sie binden an die Oberfläche MHC-I-negativer Tumorzellen und 

bewirken eine Zytolyse (78,79). Weniger gut verstanden ist aktuell die Rolle der B-Lym-

phozyten in den Kanzerogenese, wobei vermutet wird, dass diese Entitäten-spezifisch 

entweder wachstumsfördernde oder - inhibierende Wirkung auf den Tumor haben (80). 

Die DC (=spezialisierte APC) sind ein wichtiger Brückenbildner zwischen dem 
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erworbenen und den angeborenen Immunsystem. Hauptfunktion ist die Präsentation von 

endogenen und exogenen Antigenen den naiven und Gedächtnis-T-Zellen. Abhängig von 

der Kostimulation und der Entzündungsreaktion im Tumor, reagieren die T-Zellen ent-

weder mit einer Immuntoleranz oder Immunreaktion, dem Tumor gegenüber (81,82) 

(Abb. 5).  

Eine weitere wichtige Gruppe sind die myeloiden Suppressorzellen (myeloid-derived 

suppressor cells, MDSC). Hierbei handelt es sich um eine heterogene Gruppe unreifer 

myeloider Zellen, zu dessen Hauptfunktion die Suppression anderer Immunzellen zählt. 

Die Hauptzielzellen sind die T-Lymphozyten. Hierbei findet die Suppression sowohl An-

tigen-spezifisch als auch unspezifisch, durch NO- und Zytokinproduktion, statt. Zu un-

terscheiden sind zwei Gruppen, PMN-MDSC (polymorphonuclear) und M-MDSC (mo-

nocytic). Die PMN-MDSC sind phänotypisch und morphologisch sehr ähnlich zu den 

neutrophilen Granulozyten und machen etwa 80% der MDSC aus. Die M-MDSC ähneln 

den Monozyten. Neben der Suppression, sind die MDSC auch an der Tumorprogression 

beteiligt. Sie fördern die Angiogenese durch Sekretion von Wachstumsfaktoren, wie 

VEGF oder bFGF (basic fibroblast growth factor) (83–86). 

 

 
Abbildung 5 Entwicklung des Tumormikromilieus.  

Bei der immun-vermittelten Tumorwachstumshemmung sind Typ1-Makrophagen, sowie NK- und T-Zellen 

beteiligt. Sie induzieren Apoptose in den entarteten Zellen. Durch zahlreiche Mechanismen (Immunsupp-

ression, Angiogenese, Hypoxie und Switch der Makrophagen-Subtypen) gelingt es dem Tumor, dem Im-

munsystem zu entkommen. Hierbei spielen die Treg und die MDSC eine wichtige Rolle, da diese die NK-

Zellen, Typ1-Makrophagen, DC, T- und B-Zellantworten inhibieren. Typ2-Makrophagen (protumorigenic 

TAM) und Tumor-assoziierte Fibroblasten (cancer associated fibroblast, CAF) fördern durch Freisetzung 

von VEGF und EGF das lokale Tumorwachstum und die Angiogenese im Tumor. Quelle: (87) 
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2.4.2 Immun-Escape-Mechanismen  

Die relevante Frage ist: „Wie können die Tumorzellen dem hochkomplexen Immunsys-

tem entkommen?“. Karzinome und Metastasen bestehen aus neoplastischen Zellen, ext-

razellulärer Matrix, endothelialen Zellen und infiltrierten Immunzellen, die sich zu einem 

komplexen Mikromilieu formieren (88).  

In allen Stadien der Tumorentwicklung finden Tumor-assoziierte Entzündungsreaktionen 

statt, welche Ursache zahlreicher Reaktionen sind (Abb. 6). Ausgelöst werden die Ent-

zündungen durch abnormale Funktionen des angeborenen und erworbenen Immunsys-

tems dem Tumor gegenüber. Im frühen Stadium der Kanzerogenese werden die immu-

nogenen Tumorzellen von den zytotoxischen Immunzellen (NK-Zellen und CTL) erkannt 

und zerstört. Die aggressiven Tumorzellen werden jedoch nicht angegriffen und bleiben 

dem Immunsystem, als Folge von Immunsuppression, verborgen (89). Durch das Fehlen 

von Tumorantigenen auf der Zelloberfläche können die CTL die Tumorzellen nicht er-

kennen und erfolgreich eliminieren (90).  

Zusätzlich wird mit Hilfe der TAM und Treg versucht, die Immuntoleranz aufrecht zu 

erhalten (Abb. 6). TAMs und Treg inhibieren ihrerseits die Sekretion von IL-2 aus DC 

und inhibieren NK-Zellen sowie T-Effektorzellen (75,91). 

 
 
Abbildung 6 Verlauf der Tumorentwicklung und der Einfluss von Immunzellen.  

Von der Tumorentwicklung bis zur Metastasierung kommt es zu einem immunologischen Wandel. Während 

zu Anfang die antitumoralen Effektorzellen (NK-Zellen, CD8+-T-Zellen, Th1-Zellen und Typ1-Makropha-

gen) dominieren, entwickelt der Tumor Escape-Mechanismen, welche in eine Immuntoleranz mündet. Be-

teiligt sind dabei zahlreiche Zellen. Dadurch kommt es zur unkontrollierten Proliferation und schließlich 

zur Metastasierung. Quelle: (75) 
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2.4.3 Immuntherapie solider Tumoren  

Eine möglichst selektive und kurative Therapie ist Ziel bei jeder malignen Erkrankung. 

Bei den Standard-Therapien, wie Chirurgie, Radiatio und Chemotherapie, wird meist 

auch gesundes Gewebe in Mitleidenschaft gezogen. Aus diesem Grund werden immuno-

logische Therapieansätze zunehmend präklinisch und teilweise bereits auch schon kli-

nisch eingesetzt, mit dem Ziel, Tumorzellen gezielt zu eliminieren (92). 

Zwei prinzipielle Mechanismen werden in der Immuntherapie unterschieden, die passive 

und die aktive Immuntherapie. Als passiv wird das direkte Applizieren spezifischer An-

tikörper, wie Trastuzumab (anti-HER2neu-Ak) oder Rituximab (anti-CD20-Ak), und der 

Transfer von CTL oder NK-Zellen bezeichnet. Die breiteste klinische Anwendung haben 

gegenwärtig Immuncheckpoint-Inhibitoren (z.B. anti-PD1/anti-PD-L1-Ak/anti-CTLA-4-

Ak), welche innerhalb kürzester Zeit die Immuntherapie revolutioniert haben. Der Wirk-

mechanismus dieser monoklonalen Antikörper basiert auf der Hemmung der Rezeptor-

Liganden-Bindung („Breaking the breaks“) zur Restoration der Immunantwort. Immun-

checkpoint-Moleküle wie CTLA-4 und PD-L1 haben physiologische Funktionen beim 

Schutz vor Autoimmunität. Im Kontext von malignen Erkrankungen führen diese Mole-

küle jedoch zur Suppression antitumoraler Immunantworten. Vor diesem Hintergrund 

stellt die gezielte Blockade von Immuncheckpoint-Molekülen, welche sowohl auf tumor- 

als auch Immunzellen nachweisbar sind, einen vielversprechenden therapeutischen An-

satz dar (93,94). Allerdings wirken Immuncheckpoint-Inhibitoren nur bei Tumoren, die 

stark mit T-Zellen infiltriert sind (sogenannte „immunologisch heiße Tumoren“). Bei ge-

ringer oder fehlender T-Zellinfiltration ist die Immuncheckpoint-Inhibitor-Therapie in 

der Regel wirkungslos. Hierbei stellen aktive Ansätze, wie beispielsweise Vakzinierungs-

strategien eine gute Option dar. Vakzinen aktivieren die spezifische Immunantwort des 

Körpers und können (theoretisch) sowohl prophylaktisch, als auch therapeutisch appli-

ziert werden. Zu unterscheiden sind Peptid-basierte und Gesamttumorlysat-Vakzinen 

(95). 

 Bei den Protein-/Peptid-Vakzinen werden Tumor-assoziierte oder –spezifische (Neo-) 

Antigene injiziert, welche das Immunsystem durch gesteigerte Produktion von Antikör-

pern und CTL stimulieren sollen. Ebenfalls zu den spezifischen Vakzinen zählen die DC-

Vakzine. Hierbei werden DC verabreicht, welche Peptide, ganze Proteine oder Tumor-

mRNA/-DNA enthalten (89,96). 
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Gesamttumorlysat-Vakzine können aus autologem oder allogenem Tumormaterial beste-

hen. Der Vorteil dieses Ansatzes ist das breite Spektrum Tumor-assoziierter Antigene, 

welche dem Immunsystem präsentiert werden. Hierbei werden Vakzine aus Antigenen 

des Patienten-eigenen Tumors eingesetzt. Allogene Vakzine wiederum bestehen aus Tu-

mor-Antigenen anderer Patienten oder Zelllinien desselben Tumors (96). 

Um die Effizienz von Vakzinen zu erhöhen, können diese mit weiteren immunstimulie-

renden Substanzen (z.B. bakterielle/virale/synthetische Adjuvantien) oder auch bestimm-

ten zytostatischen Substanzen (s. 2.4.4.) kombiniert werden. In der Vergangenheit wur-

den bereits verschiedene Kombinationsstrategien präklinisch, sowie teilweise auch kli-

nisch validiert (96,97). 

2.4.4 Chemo-Immuntherapie solider Tumoren 
 
Durch den zytotoxischen Effekt von Chemotherapeutika auf die Tumorzellen werden ver-

mehrt Tumor-assoziierte Antigene in den Lymphknoten eingeschwemmt. Da Chemothe-

rapeutika jedoch nicht nur Tumorzellen, sondern auch gesunde Zellen angreifen, kommt 

es häufig zu Neutropenie, Lymphopenie, Thrombozytopenie und Anämie, wodurch eine 

Immunsuppression bedingt ist (98). Daher wurde lange Zeit von der Chemo-Immun-

Kombinationstherapie abgeraten.  

Die zytotoxische Wirkung der Chemotherapeutika ist häufig Folge von DNA-Schäden 

während des Zellzyklus. Diese umfassen u.a. DNA-Doppelstrangbrüche durch Inkorpo-

ration falscher Basen in die DNA. Dies führt zur Hemmung der Replikation und Trans-

kription, sowie zur Induktion von Apoptose. Auch Nekrose, Autophagie, Seneszenz oder 

mitotische Katastrophen können ausgelöst werden, sodass zytostatische Therapien folg-

lich verschiedene Formen von Zelltod induzieren. Der ausgelöste Zelltod kann entweder 

immunogen oder nicht immunogen sein. Bei erstgenanntem werden intrazelluläre Mole-

küle, wie das Calretikulin, High Mobility Group B1, ATP oder Nukleinsäuren an die 

Oberfläche transloziert oder sezerniert. Diese wirken als Damage Associated Molecular 

Patterns und werden von Phagozyten erkannt. In der Folge wird eine nicht-adaptive Im-

munreaktion ausgelöst. Gleichzeitig werden vermehrt Neoantigene freigesetzt, welche 

spezifisch das adaptive Immunsystem aktivieren. Diese können sekundär als körperei-

gene Vakzine wirken (97).  

Obgleich die meisten Chemotherapeutika keinen immunogenen Zelltod auslösen, gibt es 

eine Reihe zytostatischer Substanzen, für die in der Vergangenheit immunmodulatorische 

Aktivitäten beschrieben wurden (97). Zu diesen zählen Taxane, Bleomycin, 
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Cyclophosphamid (CPX) und Doxorubicin. Darüber hinaus gibt es Evidenz für die posi-

tive Wirkung des Nukleosidanalogons Gemcitabin. Hauptindikation für Gemcitabin sind 

neben dem Pankreaskarzinom, auch lokal fortgeschrittene oder metastasierte nicht-klein-

zellige Bronchialkarzinome, Harnblasen-, Mamma- und Ovarialkarzinome (99–101). So 

konnte zusätzlich gezeigt werden, dass Gemcitabin das Tumorantigen-spezifische „Pri-

ming“ durch verstärkte Antigenpräsentation, T-Zellexpansion und –Infiltration fördert 

(98,102). Zusätzlich gibt es Hinweise darauf, dass dieser immunstimulierende Effekt T-

Zellspezifisch ist, da unter Gemcitabinbehandlung sowohl die B-Zellproliferation, als 

auch die Aktivität myeloider Suppressorzellen gehemmt wurde (98,103). 

Somit lassen sich die indirekten Chemotherapie-assoziierte Effekte, wie folgt, zusam-

menfassen: Infolge der Induktion von immunogenem Zelltod werden mehr (Neo-)Anti-

gen-spezifische T-Zellen, vor allem Th1 Zellen aktiviert. TAM sezernieren ihrerseits ver-

mehrt IL-12 und zytotoxische Effekte gegenüber residuellen Tumorzellen werden durch 

aktivierte NK- und CD8+-Zellen ausgelöst (Abb. 7) (97,104–106). Somit können be-

stimmte Chemotherapeutika, je nach Applikationsart, Dosis und Intervall die Immunre-

aktion verstärken und additiv zur Immuntherapie wirken.   

 

Abbildung 7: Wirkmechanismus der Chemo-Immuntherapie.  

Bestimmte Zytostatika induzieren in Tumorzellen einen immunogenen Zelltod. Dies führt zur verstärkten 

Freisetzung Zelltod-assoziierter Moleküle (z.B. HMGB1, Calretikulin), sowie Tumorantigenen und schließ-

lich zur Aktivierung Antigen-spezifischer T-Zellen. Quelle:(107) 
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3 Zielstellung  
 
In der vorliegenden Arbeit wurde unter Anwendung des präklinischen MLH1-/- Modells 

die Effizienz einer kombinierten Chemo-Immuntherapie untersucht. Diese Untersuchun-

gen basieren auf einer vorangegangenen Studie, in der ein Gesamt-Tumorlysat eines gast-

rointestinalen MLH1-/- Tumors eingesetzt wurde. Im Rahmen dieser Vorarbeiten wurde 

die grundsätzliche Wirksamkeit zellulärer Vakzinen im präklinischen Modell erstmals 

experimentell aufgezeigt. Die repetitive Gabe des Tumorvakzins beeinflusste sowohl die 

Tumorgenese (= prophylaktischer Ansatz), als auch das Tumorwachstum (= therapeuti-

scher Ansatz) durch Stimulation bzw. Modulation des Immunsystems.  

Ausgehend von diesen Arbeiten sollte der immuntherapeutische Ansatz durch Kombina-

tion mit Chemotherapeutika weiterentwickelt werden. Als Chemotherapeutika wurden 

Gemcitabin sowie CPX eingesetzt, dessen immunstimulierende Potenz in der Literatur 

belegt ist.  

Hinsichtlich der prophylaktischen Gabe sollte die tumorfreie Zeit verlängert und die Tu-

morinzidenz reduziert werden. Bei dem therapeutischen Ansatz standen die Verbesserung 

des Therapieschemas und somit auch die Überlebenszeitverlängerung durch effizientere 

Tumorwachstumskontrolle im Vordergrund. Das Tumorvolumen wurde anhand hochauf-

lösender bildgebender Verfahren erfasst. Zusätzlich erfolgten longitudinale immunolo-

gisch-phänotypische, sowie funktionelle Analysen, um potentiell Therapie-assoziierte 

immunologische Veränderungen zu identifizieren. Das Tumormikromilieu wurde anhand 

immunfluoreszenzmikroskopischer Färbungen detailliert untersucht, welche dazu beitra-

gen, den Einfluss der gewählten Therapieschemata auch auf lokaler Ebene zu erfassen. 

Schließlich erfolgte der molekularpathologische Nachweis von Mutationen in Zielgenen 

der murinen MSI-Tumorgenese, mit dem Ziel, neue Marker für weiterführende spezifi-

sche Therapieansätze zu identifizieren. 

Mithilfe dieses komplexen Methodenspektrums sollte einerseits das immuntherapeuti-

sche Potential der gewählten Therapieschemata suffizient erfasst und andererseits die 

Grundlage für weiterführende Therapiestudien geschaffen werden. 
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4 Material und Methoden 

4.1 Material  

4.1.1 Laborgeräte 

Laborgeräte Hersteller Hauptsitz 
ABI3100 Sequencer  Thermo Fisher Scientific GmbH  Waltham, USA 
BD FACSTM Universal 
Loader  

BD Biosciences  Heidelberg, Deutsch-
land 

Brutschrank  Heraeus instruments Hanau, Deutschland 
CaptairTM (Abzug)  Erlab simpler safer Val de Reuil Cedex, 

Frankreich 
CaptairTMchem (Abzug) Erlab simpler safer  Val de Reuil Cedex, 

Frankreich 
Eismaschine Scotsman Mailand, Italien  
Feuchte Kammer UMR Eigenbau Rostock, Deutschland 
Freezing Container, 
Nalgene® Mr. Frosty 

Thermo Fisher Scientific  Waltham, USA 

Gamma-Bestrahlungsan-
lage  

Gammabestrahlungsanlage IBL 
673  

 

Gefrierschrank -80°C  Liebherr Deutschland GmbH, 
Bieberach Kryotec-Kryosafe 
GmbH 

Hamburg, Deutsch-
land 

Glomax-Gerät Promega Bio Systems Sunny-
vale  

Sunnyvale, USA 

Isoflurananlage    
Kühlschrank (4°C) / Ge-
frierschrank (-20°C) 

Elektrolux   Stockholm, Schwe-
den 
 

Kühlschrank (4°C) / Ge-
frierschrank (-20°C) 

Liebherr  Bulle FR, Schweiz 

Lichtmikroskop (Nikon 
Eclipse TE200) 

Nikon  Tokio, Japan  

Mikroskop (Immunfluo-
reszens) 

Zeiss Jena, Deutschland 

Multistepper Eppendorf  Hamburg, Deutsch-
land 

Nano Drop 1000 Spektro-
photometer 

Thermo Fisher Scientific  Waltham, USA 

Neubauer Zählerkammer Marienfeld 
 

Lauda Königshofen, 
Deutschland 

PET/CT  Siemens München, Deutsch-
land 

Pipetboy (accu-jet pro) Brand  Wertheim, Deutsch-
land 

Pipetten (2.5µl, 10 µl, 100 
µl, 200 µl, 1000 µl) 

Eppendorf Hamburg, Deutsch-
land 

Sprout Mini-Zentrifuge Heathrow Scientific Vernon Hills, USA 
Sterile Werkbank  Hera-
safeTM 

Thermo Fisher Scientific Waltham, USA 
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4.1.2 Verbrauchsmaterialien 

Verbrauchsmaterialien Hersteller Hauptsitz 
6 well Zellkulturplatte Cel-
lstarTM 

Greiner bio-One  Kremsmünster, Österreich 

96-Well 340µl Storage Platte 
(FACS-Platte) 

Corning  NY, USA 
 

96-Well ELISpot-Platten (Mul-
tiCreen Filter Plates), steril  

Merck Millipore  Burlington, USA 

96-Well PCR-Platte (Halbrand)  Sarstedt Ag & Co Nümbrecht, Deutschland 
96-Well Platte mit F-bottom, 
steril   

Greiner bio-One Kremsmünster, Österreich 

96-Well Platte mit U-bottom, 
steril  

Greiner bio-One  Kremsmünster, Österreich 

Cell Strainer (100µm Poren-
größe) steril  
EASY strainerTM 

Greiner bio-One  Kremsmünster, Österreich 

Chirurgisches Besteck-Set (chi-
rurgische Schere, chirurgische 
und anatomische Pinzette) 

Aesculap AG Tuttlingen 
Deutschland 
 

Combitips advanced, steril 
(5ml, 10ml) 

Eppendorf  Hamburg, Deutschland 

Dako Pen Dako  Glostrup, Dänemark 
Deckgläser (22 x 22 mm) iDL  Nidderau, Deutschland 
Deckgläser (24 x 32 mm) Thermo Fisher Scientific Waltham,USA 
End-to-End Kapillare 20µl K2E Sarstedt AG & Co Nümbrecht, Deutschland 
Falcon Tube (15ml, 50ml)  Greiner bio-One  Kremsmünster, Österreich 
NuncTM KryoTubeTM Vials    Thermo Fisher Scientific  Waltham,USA 
Objektträger (76 x 26mm) Engelbrecht Edermünde, Deutschland 
Pasteur Pipetten (150mm) Assistent Glaswarenfabrik 

Karl Hecht GmbH & Co 
KG 

Sondheim vor der Rhön, 
Deutschland 
 

FischerScientific Ontario, Kanada 

Thermal Cycler 
C1000TM 

Bio - Rad Hercules, USA 

Thermomixer Comfort  Eppendorf  Hamburg, Deutsch-
land 

Vortex-Gerät reax top Heidolph Schwabach, Deutsch-
land 

Waage MP-300 Kern   Reinach,  
Schweiz 

Wasserbad Gesellschaft für Labortechnik 
mbH 

Burgwedel, Deutsch-
land 

Zentrifuge 5418 Eppendorf  Hamburg, Deutsch-
land 

Zentrifuge Rotina 35R Hettich  Tuttlingen, Deutsch-
land 

Zentrifuge Rotina 38R Hettich  Tuttlingen, Deutsch-
land 

Zentrifuge Rotina 420  Hettich  Tuttlingen, Deutsch-
land 
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Pasteur Pipetten (250mm) Assistent Glaswarenfabrik 
Karl Hecht GmbH & Co 
KG 

Sondheim vor der Rhön, 
Deutschland 
 

Fischer Scientific Ontario, Kanada 
PCR-Reaktionstubes (Low 
Tube) 

Bio-Rad Hercules, USA 

PCR-Reaktionstubes-Deckel 
(flat cap) 

Bio-Rad Hercules, USA 

Peha-soft nitrile fino puderfrei 
Einmal-Handschuh, unsteril  

Paul Hartmann AG Heidenheim, Deutschland 
 

Pipetten  Eppendorf  Hamburg, Deutschland 
Pipettenspitzen  
 

Eppendorf Hamburg, Deutschland 
Bioenzym  Hessisch Oldendorf, 

Deutschland 
Probengefäß 1,3ml K3E  Sarstedt AG & Co Nümbrecht, Deutschland 
Reaktionsgefäß, braun (1,5ml)  Sarstedt Ag & Co Nümbrecht, Deutschland 
Reaktionsgefäße, safe-lock tu-
bes (1,5ml) 

Eppendorf  Hamburg, Deutschland 

Serologische Pipette, steril (5ml, 
10ml, 25ml, 50ml) 

Greiner bio-One  Kremsmünster, Österreich 

Skalpell präzisa plus, steril Dahlhausen Köln, Deutschland 
Sterile Spritzen Braun Melsungen, Deutschland 
Tissue-Tek Cryomold  Sakura Finetek Europe 

B.V.  
Alphen aan den Rijn, Nie-
derlande 

U-100 Insulin-Spritzen  Becton Dickinson GmbH 
 

Heidelberg, Deutschland  

Zellkulturflaschen 200ml  Greiner bio-One Kremsmünster, Österreich 
 
 
4.1.3 Chemikalien  

Chemikalien Hersteller Hauptsitz 
96% Ethanol  Walter CMP  Kiel, Deutschland 
Aceton Fisher Scientific  Ontario, Kanada 
Ammoniumchlorid Merck Darmstadt, 

Deutschland 
Bacillol AF (Flächendesinfekti-
onsmittel)  

Hartmann Heidenheim, 
Deutschland 

BCIP/NBT (Western Blue Sub-
strat for Alkaline Phosphatase) 
Substrat-Lösung 

Sigma Aldrich  

 

Taufkirchen, 
Deutschland 

Bradfodreagenz 
 

Bio-Rad Hercules, USA 

Cyclophosphamid (CPX)  ZAP UMR Rostock, Deutsch-
lad 

Roti-Mount Fluorcare DAPI 
Medium 

Roth Karlsruhe, 
Deutschland 

DFS-Taq DNA Polymerase Bioron  Römerberg, 
Deutschland 

DMEM/Ham’s F12 (1:1)  PAA Pasching, Öster-
reich 
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DMSO (dimethyl sulfoxide)  AppliChem  Darmstadt, 
Deutschland 

dNTP 10mM Bioron  Römerberg, 
Deutschland 

Fetales Kälberserum (FKS) Pam-Biotech  Aidenbach, 
Deutschland 

Gemcitabin 
Cyclophosphamid 

VEZ Universität Rostock  Rostock, Deutsch-
land 

GeneScan™ 500 LIZ™  Size 
Standard 

Appliedbiosystems by 
Thermo Fisher Scientific  

Woolston, UK 

HCl (Salzsäure)  Merck Darmstadt, 
Deutschland 

HiDi Formamide ThermoFisher Scientific 
GmbH 

Waltham,USA 

Intracellular Straining Perm 
Wash Buffer   

Biolegend  SanDiego, USA  

Isofluran Forene® Abbvie North Chicago, Il-
linois, USA  

Isopropanol Walter CMP  Kiel, Deutschland 
Ketamin 10% Bela-pharm GmbH & Co. 

KG 
Vechta, Deutsch-
land 

L-Glutamin  Pan-Biotech  Aidenbach, 
Deutschland 

Methanol JT Baker  Deventer, Nieder-
lande 

 Natriumhydroxid (NaOH)  Roth Karlsruhe, 
Deutschland 

Phosphat buffered saline 
(pH7,4) 

Sigma-Aldrich Chemie 
GmbH 

Taufkirchen, 
Deutschland 

Reac. Buffer for DFS-Taq, High 
Taq 

Bioron Römerberg, 
Deutschland 

Roti-Mount FluorCare DAPI 
15ml 

Carl Roth GmbH Karlsruhe, 
Deutschland 

Streptavidin-ALP  Promega  Madison, USA 
Tissue Tek O.C.T. Compound 
Containing 

Sakura Finetek Europe  AJ Alphen aan den 
Rijn, Niederlande 
 

TRISureTM Bioline  Luckenwalde, 
Deutschland 

Trypan blau (0.02 %)  Sigma-Aldrich Chemie 
GmbH 

Taufkirchen, 
Deutschland 

Trypsin/EDTA (0.25%/0.02%)  Biochrom GmbH Berlin, Deutsch-
land 

Tween  Sigma-Aldrich Chemie 
GmbH 

Taufkirchen, 
Deutschland 

 
 
4.1.4 Antikörper  
 
Eine Übersicht der verwendeten Antikörper findet sich im Anhang unter Punkt 13.4. 
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4.1.5 Medien, Puffer, Lösungen  

 
1 M Tris/HCl 12,1 g Tris ad 100ml Aqua dest + pH-Einstellung mit 

HCl auf 8,0 
2 % BSA in PBS  
 

2 g BSA  
in 100ml PBS 

50 mM NaOH 0,2 g NaOH Plätzchen  
ad 100 ml Aqua dest. 

70 % Ethanol 36 ml 96 % Ethanol  
15 ml Aqua dest.  

Erythrozyten-Lyse-Puf-
fer  

0,16 M Ammoniumchlorid + 0,17 M TRIS 
Verhältnis 1:10 

FluoroFix™ Buffer  ready-to-use 
10X Intracellular Stain-
ing Perm Wash Buffer  

5 ml Buffer + 45 ml A. dest;  
Verhältnis 1:10 

Freezing Medium  
 

45 ml FKS (90 % final)  
5 ml DMSO (10 % final)  

PBS 80,00 g Natriumchlorid 
2,00 g Kaliumchlorid 
18,05 g Dinatriumhydrogenphosphat  
2 x H2O  
2,00 g Kaliumhydrogenphosphat 
ad 1000 ml Aqua dest.  

PBS-Tween 2,5 M Natriumchlorid 
0,05 M Kaliumchlorid 
0,2 M Dinatriumhydrogenphosphat-dihydrat 0,04 M Kali-
umhydrogenphosphat 
0,5 % v/v Tween20 
Aqua dest. ad 2000 ml  

Vollmedium 
 

500 ml DMEM/Ham’s F12 (1:1)  
50 ml FKS (final: 10%)  
6-8 ml L-Glutamin (final: 20 mM)  

 
4.1.6 Kits  
 
Kit  Bestandteile  Herstller Hauptsitz 
Wizard® Genomic 
DNA Purification 
Kit  

Nuclei Lysis Solu-
tion   

Promega Woods, USA  

RNase Solution 

Precipitation Solu-
tion 
DNA Rehydration 
Solution 

 
 
4.1.7 Primer  
 
Eine Übersicht der verwendeten Primer findet sich im Anhang unter Punkt 13.5. 
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4.1.8 Software 

Software Programm 
FACS-Analyse  CellQuest software (BD Pharmingen) 
Fragmentanalyse GeneMapper v4.1 
NanoDrop 1000  Thermo Fisher Scientific  
PET/CT Auswertung Inveon Research Workplace 4.2 software 
Textprogramm Microsoft Office (Excel, Word, PowerPoint)  
Statistik  Sigma-Stat 3.0  

 
 
4.1.9 Zelllinien  

Zelllinie Wachstum Ursprung Beschreibung 

MLH-/- 
A7450    
T1 M1 

Adhärent epithelial 

Allograft eines gastrointestinalen 
MLH1-/- Tumors (MLH1-/- A7450; A 
– Allograft, 7450 – Mausnummer, 
aus welcher der Tumor ursprünglich 
isoliert wurde)  

MLH1-/- 
328 Adhärent epithelial Zelllinie direkt aus primärem GIT 

etabliert 

MLH1-/- 

1351 
Suspension lymphoid Zelllinie ist direkt aus einem Milzly-

mphom etabliert  

YAC-1 Suspension lymphoid 
Lymphoblasten-Zelllinie eines 
Maus-Lymphoms. Zielzellen für NK-
Zellen 

 
 
4.1.10 Versuchstiere  
 
MLH1-/--Mausmodell 
 
Die Tiere stammten aus eigener Zucht der Zentralen Versuchstierhaltung des Instituts für 

Experimentelle Chirurgie (Direktorin: Prof. Dr. med. B. Vollmar) 

Die Untersuchungen erfolgten an weiblichen und männlichen homozygoten MLH1-/- 

Mäusen (Stamm: B6.129-Mlh1tm1Rak). Alle Untersuchungen wurden durch das Landes-

amt für Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-Vorpommern 

genehmigt (AZ: 7221.3-1.1-053/12 bzw. -1-026/17). Da die homozygoten Nachkommen 

infertil sind, werden heterozygote Tiere verpaart. Alle lebenden Nachkommen wurden 

mittels Schwanzspitzenbiopsie genotypisiert, da ausschließlich homozygote MLH1-/- 

Tiere in die eigentlichen (Therapie-) Versuche eingeschlossen wurden.  

Die Tiere wurden in speziellen Filterkäfigen, mit maximal vier Tieren pro Käfig, unter 

freiem Zugang von Wasser und Standardfutter (autoklavierte Pellets), in einem zwölf-

stündigen Tag-/Nachtzyklus bis zum Ende des Beobachtungszeitraumes (max. 80 
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Wochen) gehalten (=SPF nahe Haltung). Vor dem eigentlichen Versuchsbeginn erfolgte 

eine einwöchige Adaption an die Haltungs- und Versuchsbedingungen. Den Versuchstie-

ren wurden Nagehölzer, Nestbaumaterialien, Mausiglus und Papierrollen als Enrichment 

zur Verfügung gestellt.  

Die in dieser Arbeit verwendeten MLH1-/- Mäuse tragen eine dominant negative Nullmu-

tation im Mlh1 Gen (Exon 2 Deletion). Sie sind somit homozygot negativ für alle MMR 

Proteine und zeigen einen starken Tumorphänotyp. Spontan entwickeln sich zwischen 

dem fünften und siebten Lebensmonat Lymphome, wobei entweder Thymome oder an-

dere generalisierte Lymphome auftreten. GIT entwickeln sich erst später, etwa nach acht 

Monaten.  

Zwei MMR-D-assoziierten Tumoren wurden spezifisch an diesem Modell untersucht: das 

Lynch-Syndrom und die CMMR-D. 

  



Material und Methoden 
 

 30 

4.2 Methoden  

4.2.1 In vivo Untersuchungen  

4.2.1.1 prophylaktische Vakzine 

Mäuse, die acht bis zehn Wochen alt waren und klinisch keine Anzeichen auf eine Tu-

morentwicklung zeigten, erhielten repetitive prophylaktische Vakzine, welche entweder 

in Monotherapie oder Kombination mit einmaliger Chemotherapie appliziert wurden 

(Tab. 1). Die Vakzinierung erfolgte durch subkutane (s.c.) Injektion des Tumorlysates 

aus einem MLH1-/- A7450 Allograft. Dabei wurden 10 mg/kg Körpergewicht einmal pro 

Woche für vier Wochen (q7dx4) verabreicht. Die Tiere erhielten daraufhin acht weitere 

monatliche Applikationen der Vakzine (à 2,5 mg/kg KG Tumorlysat) (Σ 12 Applikatio-

nen). Bei der kombinierten Gabe mit den Chemotherapeutika Gemcitabin bzw. CPX wur-

den diese einmalig vor der ersten Vakzinierung intraperitoneal in einer Dosis von 100 

bzw. 120 mg/kg KG appliziert. 

Die maximale Behandlungszeit betrug 224 Tage. Die Tiere verblieben bis zur Ausbildung 

klinisch-pathologischer Veränderungen (Gewichtsverlust, vorgewölbtes Abdomen, be-

ginnende Moribundität) im Versuch. Sollten die Tiere auch nach dieser Behandlungszeit 

keine Anzeichen einer Tumorentwicklung gezeigt haben, so wurden die Tiere noch ma-

ximal neun weitere Monate nachbeobachtet. 

Vor Beginn der Therapie, sowie im Verlauf wurden Blutproben durch Punktion des ret-

robulbären Venenplexus (pro Entnahme max. 50 µl Vollblut) gewonnen. Die Blutentnah-

men erfolgten unter kurzer Isoflurannarkose. Das entnommene Blut wurde einerseits zur 

Gewinnung von Plasma und andererseits für immunologisch-funktionelle Analysen ein-

gesetzt, wie nachfolgend unter Punkt 4.2.2.6 dargelegt. 

 
Tabelle 1: Unterteilung der Prophylaxegruppen. 

Gruppe Intervention 

1 (Kontrollgruppe) keine 

2 (Kontrollgruppe)  Chemo (Gemcitabin 100 mg/kg KG), einmalig 

3 (Prophylaxegruppe)  Vakzine mit MLH1-/- A7450 Lysat (10 bzw. 2,5 mg/kg KG, s.c.), repetitiv 

4 (Prophylaxegruppe)  

 
Chemo-Immuntherapie (Gemcitabin 100 mg/kg KG, i.p., MLH1-/- A7450 

T1 M1 Lysat (10 mg/kg KG, s.c.), alternierend 

5 (Prophylaxegruppe)  Chemo-Immuntherapie (CPX 120 mg/kg KG, i.p., MLH1-/- A7450 T1 M1 

Lysat (10 mg/kg KG, s.c.), alternierend  
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4.2.1.2 therapeutische Vakzine 

Mäuse die acht bis elf Monate alte waren und Anzeichen eines gastrointestinalen Tumors, 

wie ein leichter, stetiger Gewichtsverlust über zwei Wochen, leicht struppiges Fell und 

einen veränderten Habitus zeigten, wurden mit der Positronen Emissions Tomogra-

phie/Computertomographie (PET/CT) untersucht. Dabei wurde der Bauchraum auf Tu-

morherde gescreent und die Tumoranzahl, -größe und -lokalisation untersucht. Die Ana-

lyse wurde unter Verwendung des Glukoseanalogon Fluor-Deoxyglukose (F-18-FDG) 

durchgeführt, welches den gesteigerten Umsatz von Glukose nachweist und somit Tum-

orgewebe identifizieren lässt. Die kontrastverstärkte Computertomographie dient zusätz-

lich zur Bestimmung der Durchblutung des Tumorgewebes.  

Die Tiere wurden in zwei Kontroll- und zwei Therapiegruppen eingeteilt (Tab. 2). Die 

Vakzine wurde in einer Dosis von 10 mg/kg KG einmal wöchentlich für vier Wochen 

und danach 14-tägig appliziert (q14dx8) (Σ 12 Applikationen). Bei der kombinierten 

Chemo-Vakzine wurde in Analogie zum Vorgehen bei der Prophylaxe zusätzlich 100 

mg/kg KG Gemcitabin 24h vor der ersten Vakzine einmalig i.p. verabreicht. Die Tiere 

verblieben bis zur Verschlechterung des Allgemeinzustandes, jedoch maximal sechs Mo-

nate nach Therapieende (= Tag 210) im Versuch.  

Vor Beginn der Therapie, sowie im Verlauf wurde Blut durch Punktion des retrobulbären 

Venenplexus entnommen. Dies erfolgte unter einer Isoflurannarkose.  

Das entnommene Blut wurde einerseits zur Gewinnung von Plasma und andererseits für 

immunologisch-funktionelle Analysen eingesetzt, wie nachfolgend unter Punkt 4.2.2.6 

dargelegt. 

 
Tabelle 2: Unterteilung der Therapiegruppen 

Gruppe  Intervention 

1 (Kontrollgruppe)  keine  

2 (Kontrollgruppe)  Chemo (Gemcitabin 100 mg/kg KG, i.p.), einmalig 

3 (Therapiegruppe)  Vakzine mit MLH1-/- A7450 T1 M1 Lysat (10 mg/kg KG, s.c.) 

4 (Therapiegruppe) Chemo-Immuntherapie (Gemcitabin 100 mg/kg KG, i.p., MLH1-/- 

A7450 T1 M1 Lysat (10 mg/kg KG, s.c.), alternierend  
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Abbildung 8 Behandlungsschema der Prophylaxe- und Therapie-Gruppen.   

 

4.2.1.3 Monitoring und Probenentnahme  

Nach Erreichen des dritten Lebensmonats wurden die Tiere stetig, jedoch mindestens drei 

bis viermal pro Woche kontrolliert. Dabei wurde besonders auf das Gewicht (Messung 

ein-zweimal wöchentlich), den Allgemeinzustand, das Fell und die Vergrößerung lym-

phatischer Organe, ersichtlich durch ein vorgewölbtes Abdomen (Leber und Milz) oder 

durch eine beginnende Schnappatmung (Thymus), geachtet. Lag eine starke Verschlech-

terung des Allgemeinzustandes und/oder eine schnelle Gewichtsreduktion vor, bezie-

hungsweise befand sich die Maus bereits länger als 45 Wochen im Versuch, ohne Anzei-

chen auf eine Verschlechterung des Allgemeinzustandes, so wurde das Tier mittels Keta-

min/Xylazin (90/6 mg/kg KG, i.p.) und einer anschließenden retrobulbären Blutentnahme 

(entbluten) aus dem Versuch genommen. Über eine mediane Laparotomie und einer Tho-

rakotomie wurden der Bauchraum und Thorax eröffnet. Bereits der erste Blick in das 

eröffnete Abdomen ließ ein generalisiertes Lymphom von einem GIT unterscheiden. 

Mäuse mit GIT wiesen eine normalgroße Milz und Leber auf, bei Inspektion des Gastro-

intestinaltrakts fanden sich im Dünndarm (häufiger als im Kolon) Tumorknoten. Der be-

troffene Darmabschnitt wurde reseziert, anschließend der Tumorknoten in einer Pet-

rischale sorgfältig vom umliegenden gesunden Darmgewebe abgesetzt und dieser unter 

sterilen Bedingungen zweigeteilt. Ein Teil des nativen Gewebes wurde in Tissue Tek ein-

gebettet bei minus 80°C für histologische Schnittpräparate weggefroren. Das restliche 

Tumorgewebe wurde durch ein 100 µm Zellsieb filtriert und für weiterführenden Unter-

suchungen asserviert.  
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Bei Tieren, die ein Lymphom entwickelt hatten, fanden sich bei der Obduktion zwei un-

terschiedliche pathologische Bilder. MLH1-/--assoziierte Non-Hodgkin-Lymphom prä-

sentieren sich mit einer deutlich vergrößerten Milz und Leber, der GI-Trakt ist vollkom-

men unauffällig. Bei Vorliegen eines generalisierten Lymphoms wurde die Milz entnom-

men und unter sterilen Bedingungen für weiterführende Untersuchungen weiter prozes-

siert. Im Falle einer malignen Transformation im Thymus war das Abdomen häufig un-

auffällig. Im eröffneten Thoraxraum befand sich ein vergrößerter Thymus, der im fortge-

schrittenen Zustand mehr als die Hälfte des Thorax ausfüllte. Der Thymus wurde reseziert 

und die Zellen ebenfalls unter sterilen Bedingungen für nachfolgende Untersuchungen 

sowohl nativ, als auch vital asserviert.  

4.2.2 Zellbiologische Arbeiten 

4.2.2.1 Kultivierung der Zellen  

Die Zellen wurden im Brutschrank (37 °C, 5 % CO2) unter sterilen Bedingungen in Voll-

medium (= DMEM/Ham’s F12, + zehn 10% FKS, + 1% P/S, + 6mM L-Glutamin; VM) 

kultiviert. Bei allen vier Zelllinien (MLH1-/- A7450 T1 M1, MLH1-/- 328, MLH1-/- 1351 

und YAC-1) wurde zweimal pro Woche unter sterilen Bedingungen ein Mediumwechsel 

durchgeführt. 

 

4.2.2.2 Zellernte  

Das Medium wurde unter sterilen Bedingungen abgesaugt, die Zellen mit 5 ml 1x phos-

phatgepufferte Salzlösung (PBS) gespült, erneut abgesaugt und 2-3 ml 1x Trypsin/ Ethy-

lendiamintetraessigsäure (EDTA) hinzugegeben. Dies inkubierte für 5-15 min im Brut-

schrank. Sobald die Zellen sich gut vom Boden der Flasche abgelöst hatten, wurde die 

Reaktion mit 20-30 ml 1x PBS oder VM abgestoppt und so die Zellen in einer Suspension 

aufgenommen. Diese wurde in ein 50 ml Falconröhrchen überführt und anschließend die 

Zellzahl mittels Neubauerzählkammer bestimmt.  

 

4.2.2.3 Zellzahlbestimmung mittels Neubauerzählkammer 

Aus der Zellsuspension wurden 50 µl entnommen, in eine unsterile 96-well Platte mit 

flachem Boden überführt und 50 µl Trypanblau zugegeben. Von dieser Suspension wur-

den 10 µl in die Neubauer-Zählkammer überführt. Unter dem Mikroskop wurden Zellen 

in zwei der vier Gruppenquadrate, welche in 16 Kleinquadraten unterteilt sind, ausge-

zählt. Die Anzahl der gezählten Zellen wurde durch die Anzahl der ausgezählten 
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Großquadrate dividiert und mit der Verdünnung (1:2) und dem Kammerfaktor (104) mul-

tipliziert. Auf diese Weise erhält man die Zellzahl pro ml.  
𝑍𝑒𝑙𝑙𝑧𝑎ℎ𝑙

𝐴𝑢𝑠𝑔𝑒𝑧äℎ𝑙𝑡𝑒	𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑒 𝑥	𝑉𝑒𝑟𝑑ü𝑛𝑛𝑢𝑛𝑔𝑠𝑓𝑎𝑘𝑡𝑜𝑟	𝑥	𝐾𝑎𝑚𝑚𝑒𝑟𝑓𝑎𝑘𝑡𝑜𝑟	(10
?) 

 
4.2.2.4 Kryokonservierung und Auftauen von Zellen 

Um Zellen langfristig vital zu asservieren, wurden diese in Freezing-Medium (FM), be-

stehend aus 90 % FKS und 10 % DMSO aufgenommen. Die Zellsuspension wurde in 

einen Freezing Container überführt und bei minus 80°C pro min um minus ein Grad her-

untergekühlt. Anschließend wurden die Zellen dauerhaft in flüssigem Stickstoff bei mi-

nus 190°C in der Gasphase gelagert.  

Sollten die Zellen rekultiviert werden, wurden diese bei Raumtemperatur aufgetaut, mit 

VM versetzt und mittels Zentrifugation (180 x g, 8 min) pelletiert. Anschließend wurde 

der Überstand abgesaugt und die Zellen erneut in VM resuspendiert.  

 

4.2.2.5 Herstellung von Tumorlysaten und Proteinbestimmung  

Tumoren, die als Allograft in MLH1+/- expandiert und deren maximale Tumorgröße er-

reicht wurde, wurden explantiert, das Tumorgewebe homogenisiert und durch Zentrifu-

gation pelletiert (200 x g, 10 min). Der Überstand wurde abgesaugt und das Pellet in 5-

10 ml steriler 1x PBS-Lösung aufgenommen. Anschließend folgten ein Hitzestress bei 

42°C im Wasserbad für 5 min und vier Gefrier- (flüssiges N2)/Tau- (56°C Wasserbad) 

Zyklen für je 5 min. Das resultierende Lysat wurde mit 60 Gy (Strahlenquelle: 137Cs) 

bestrahlt. Zuletzt folgte die Proteinbestimmung nach Bradford. Im ersten Schritt wurde 

aus dem Lysat eine 1:100er Verdünnung hergestellt. Nun konnte unsteril weitergearbeitet 

werden. Aus der 100er Verdünnung wurden 400er, 600er und 800er Verdünnungen an-

gesetzt. Bei jedem neuen Probelauf musste eine neue Eichkurve mit einer Standardver-

dünnungsreihe von 1-25 µg/ml erstellt werden. Für diese wurde erst eine Bovines Semr-

umalbumin (BSA) -Stammlösung aus 15,7 mg BSA und 11,1 ml A. dest. gemischt. Für 

die Verdünnungsreihe wurden dann die Konzentrationen 0, 1, 2, 4, 6, 9, 12, 16, 20, 25 

µg/ml aus der BSA-Stammlösung hergestellt. Je 800 µl der Standardverdünnungsreihe 

und der 400er, 600er und 800er Verdünnung des Lysates wurden mit 200 µl Bradfordre-

agenz versetzt. Rasch wurden die Proben der Standardreihe in Duplikaten und die drei 

Verdünnungsreihen des Lysates in Triplikaten auf eine 96-Wellplatte mit flachem Boden 

pipettiert. Hierbei wurden je 200 µl aufgetragen und anschließend die Proben im Glomax 
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bei einer Extinktion von 600 nm gemessen. Schließlich wurde anhand der Standardkurve 

die Proteinkonzentration berechnet und Aliquots á 200 µg bei minus 80 °C asserviert. 

 

4.2.2.6 Gewinnung von Plasma und Erythrozytenlyse aus peripherem Blut 

Ein Teil des Blutes wurde zur Isolation von Plasma verwendet. Hierzu wurde das Blut für 

8 min bei 2000 x g zentrifugiert, der zellfreie Überstand abpipettiert und das Plasma um-

gehend bei minus 80°C asserviert. Das verbleibende Blut wurde einerseits für durch-

flusszytometrische Analysen (s. Punkt 4.2.3) und andererseits für funktionelle Analysen 

eingesetzt. Bei letztgenanntem erfolgte zunächst eine Erythrozytenlyse. Hierzu wurden 5 

ml Erythrozyten-Lyse-Puffer in ein 50 ml Falconröhrchen vorgelegt und das Blut darin 

resuspendiert. Bei Raumtemperatur inkubierte das Blut unter gelegentlichem Schütteln 

für 5-8 min. Die Reaktion wurde mit 5 ml 1x PBS abgestoppt und anschließend die Zell-

suspension bei 500 x g für 10 min zentrifugiert. Das Pellet wurde anschließend erneut in 

3 ml 1x PBS resuspendiert, die Probe gewaschen (500 x g, 8 min), der Überstand abge-

saugt und das Pellet in 1,5 ml VM aufgenommen. Die Leukozyten wurden gezählt und 

Aus diesem konnten nun Zellen für den ELISpot eingesät (s. Punkt 4.2.4) werden.  

 

4.2.2.7 Probenasservierung und Herstellen einer Einzelzellsuspension aus GIT  

Das Tumorgewebe wurde in steriler 1x PBS-Lösung auf Eis transportiert, unter sterilen 

Bedingungen zerteilt und ca. die Hälfte des Gewebes nativ in TissueTek eingebettet. Die-

ses wurde kurz in flüssigen Stickstoff schockgefroren und anschließend bei minus 80°C 

asserviert. Die zweite Hälfte wurde durch ein Zellsieb (100 µm Porengröße) gedrückt, um 

das Gewebe zu homogenisieren. Die resultierende Zellsuspension wurde zentrifugiert 

(180 x g, 8 min) und der Überstand abgesaugt. Anschließend wurde das Pellet in 20 ml 

1x PBS gelöst und die Zellzahl mittels Neubauerzählkammer bestimmt. Die Zellsuspen-

sion konnte nun weiter prozessiert werden.  

 

4.2.2.8 Herstellen einer Einzelzellsuspension aus lymphatischen Organen  

Milz sowie Thymusgewebe wurden in steriler 1x PBS-Lösung eingebettet auf Eis trans-

portiert, unter sterilen Bedingungen durch ein Zellsieb (100 µm Porengröße) prozessiert 

und in 1x PBS gelöst. Das Homogenat wurde zentrifugiert (1200 x g, 8 min) und der 

Überstand abgesaugt. Das Pellet wurde in 5-10 ml Erythrozyten-Lyse-Puffer resuspen-

diert und bei Raumtemperatur für 5-8 min unter gelegentlichem Schütteln inkubiert. 

Durch die Zugabe von 5 ml 1x PBS wurde die Reaktion unterbrochen und die 
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Zellsuspension erneut bei 1200 x g für 8 min zentrifugiert. Der Überstand wurde abge-

saugt und das Pellet in 20 ml 1x PBS resuspendiert. Die Zellzahl wurde mittels Neubauer-

zählkammer bestimmt und die Zellen für die entsprechende Fragestellung weiter prozes-

siert.  

 

4.2.3 Immunphänotypisierung mittels Durchflusszytometrie  
 
Allgemeines Funktionsprinzip  

Um die Untergruppen der Lymphozyten besser differenzieren zu können, werden die Zel-

len mit unterschiedlich fluoreszierenden Antikörpern markiert, welche spezifisch an 

Oberflächenantigene oder intrazelluläre Antigene binden. 

Die Zellen wandern nacheinander durch eine dünne Messkammer im Durchflusszytome-

ter. Die Messkammer wird auch Flusszelle genannt und entsteht durch die hydrodynami-

sche Fokussierung, wodurch die Flüssigkeit in Tröpfchen unterteilt wird. Die Tröpfchen 

sind klein, sodass nur eine Zelle pro Tröpfchen vorliegt. Die Zellen werden beim Passie-

ren der Messkammer von einem Laser bestrahlt, wobei das Fluoreszenzsignal angeregt 

und registriert wird. Auf diese Weise wird die Anzahl der passierenden Zellen erhoben. 

Anschließend wird das Ergebnis grafisch dargestellt. 

In dieser Arbeit wurden alle durchflusszytometrischen Analysen am BD FACS VerseTM 

durchgeführt. Hierzu wurden 20.000 Events im Live Gate gemessen und mithilfe der BD 

FACSuite™ Software ausgewertet. 

 

Durchführung 

Mithilfe der Durchflusszytometrie wurde ein immunologisches Verlaufsscreening aus 

dem peripheren Blut, sowie eine Endpunktbestimmung aus der Milz durchgeführt. Hier-

für wurden 30 µl Blut/Well bzw. 1 x 105 Splenozyten/Well pipettiert und mit den entspre-

chenden Antikörpermixen versetzt. Es wurden die entsprechenden, mit unterschiedlichen 

Fluorochromen markierten, Antikörper-Gemische (2 µg/AK; Tab. 3) in einer 96-Well 

Platte mit konischem Boden vorgelegt und anschließend die jeweilige Zellsuspension zu-

gegeben. Dies inkubierte bei 4°C für 30 min. Anschließend erfolgte die Erythrozytenlyse 

(s. Punkt 4.2.2.6). Im Falle einer intrazellulären Färbung wurden die Proben zunächst 

20min mit 1x FluoroFix™ Buffer fixiert, gewaschen (300 x g, 8 min) und mit 200 µl 

Fix/Perm Solution permeabilisiert (15 min, 4°C). Anschließend wurde die Platte bei 500 

x g für 5 min zentrifugiert, der Überstand abgesaugt und das Pellet in 200 µl 1x PBS bzw. 

AK-Lösung für die intrazelluläre Färbung gelöst. Hierfür wurde das AK-Gemisch in 1x 
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Fix/Perm Solution angesetzt. Anschließend wurden 100 µl Färbeansatz pro Well (mit je 

1 µg/AK) hinzugegeben. Nach einer Inkubationszeit von 40 min (RT) wurde die Reaktion 

mit 100 µl 1x PBS abgestoppt und die Platte bei 300 x g 8 min zentrifugiert. Der Über-

stand wurde abgesaugt und das Pellet in 200 µl 1x PBS resuspendiert. Die Proben wurden 

anschließend am BD FACSVerse™ gemessen.  

 
Tabelle 3: Antikörpermixe FACS-Analyse 

 

4.2.4 ELISpot (Enzyme-Linked Immunospot Assay) 

Allgemeines Funktionsprinzip  

Immunzellen sezernieren nach Stimmulation durch Antigene (Peptide, Tumorzellanti-

gene oder virale Antigene), welche von MHC I präsentiert werden, Zytokine. Das heißt 

alle Zellen, die potentiell auf ein bestimmtes Antigen reagieren, können anhand ihrer Zy-

tokinproduktion detektiert werden. Der ELISpot ist ein sehr sensitiver Immunoassay, wel-

cher die Detektion von sezernierten Zytokinen auf Einzelzellebene erlaubt. 

Diese Methode wird eingesetzt, um präformierte oder Therapie-induzierte Immunantwor-

ten, beispielsweise aus dem peripheren Blut oder sekundären lymphatischen Organen, 

nachzuweisen. Der Nachweis basiert auf einer von Antikörper und durch Enzyme ver-

mittelten Farbstoffreaktion. Die Größe und Intensität jedes individuellen Spots repräsen-

tiert den Anteil sezernierter Zytokine pro Zelle. 

 

Färbeansatz extrazellulär 

Mix 1 CD44 FITC CD62L PE CD197 APC 

Mix 2 CD3 FITC CD4 PE CD25 APC 

Mix 3 CD3 FITC CD8 PE CD25 APC 

Mix 4 TCR FITC NK1.1 PE CD178 APC 

Mix 5 CD11b FITC Gr1 PE CD127 APC 

Mix 6 CD69 FITC CD166 PE CD19 APC 

Mix 7 

-Tumor 

 

CD104 FITC 

 

PD-L1 PE 

 

CD279 APC 

-Blut CD3 FITC 

Mix 8 IL17 FITC LAG-3 PE IDO-1 APC 

Mix 9 CD200R FITC CD117 APC 

Intrazelluläre Färbung 

Mix 1 CD152 (CTLA-4) PE 

Mix 2 IL17A FITC IDO-1 APC 
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Durchführung 

Im ersten Schritt wurde die ELISpot-Platte mit dem anti-IFN-γ Antikörper (Klon: AN18) 

beschichtet. Hierfür wurde die Platte unter sterilen Bedingungen mit 15 µl einer 35%igen 

Ethanollösung pro Well befeuchtet. Dies inkubierte maximal 1 min bei RT. Die Platte 

wurde fünfmal mit 200 µl/Well sterilem Wasser gewaschen. Der Antikörper wurde 1:66 

in 1x PBS gelöst und 50 µl des Antikörpergemischs/Well aufgetragen. Die Platte inku-

bierte bei 4-8°C über Nacht. Am darauffolgenden Tag wurde der Inhalt der Platte dekan-

tiert, die Platte einmal mit 200 µl Medium/Well gewaschen, 100 µl Medium/Well zuge-

geben, welches für eine Stunde inkubierte (= Blockierung unspezifischer Bindungsstel-

len). Die Platte konnte dann bei minus 20°C asserviert werden.  

Für die Analyse wurde die Platte auf RT erwärmt. Die Tumorzellen (Zellen der vier Zell-

linien MLH1-/- A7450 T1 M1, MLH1-/- 328, MLH1-/- 1351 und YAC-1) geerntet und die 

Zellzahl wie zuvor unter Punkt 4.2.2.3 dargelegt, erhoben. Als Effektorzellen dienten die 

gewonnen Lymphozyten aus dem peripheren Blut und der Milz. Pro Well wurden 10.000 

Zielzellen in Triplikaten auf die ELISpot-Platte aufgetragen und mit Leukozy-

ten/Splenozyten versetzt (= 50.000 Zellen/Well). Die Platte inkubierte über Nacht im 

Brutschrank.  

Am folgenden Tag wurden die Zellen und das Medium verworfen, die Platte fünfmal mit 

200 µl/Well PBS gewaschen und der biotinylierte Detektionsantikörper RA-6A2 (Ver-

dünnung: 1:2000 mit 1x PBS-Tween20) hinzugefügt. Nach vier h Inkubation bei RT, 

folgten vier Waschschritte mit 1x PBS-Tween20. Im nächsten Schritt wurde Streptavidin-

ALP 1:1000 mit PBS verdünnt und 100 µl/Well aufgetragen. Dies inkubierte 2 h bei RT. 

Es folgten vier Waschschritte mit 1x PBS. Anschließend wurden 50 µl BCIP/NBT Sub-

strat-Lösung pro Well zugefügt, welches eine h bei RT inkubierte. Mit Hilfe dieser Indi-

katorsubstanz konnte die enzymatisch-vermittelte Farbstoffreaktion (Blaufärbung) nach-

gewiesen werden. Die Farbstoffreaktion wurde durch Zugabe von Leitungswasser abge-

stoppt. Die Platte trocknete dann und die Spots wurden mithilfe des ELISpot Readers 

quantifiziert.  

 

4.2.5 Immunfluoreszenz-Färbung 

Allgemeines Funktionsprinzip 

Mithilfe der Immunfluoreszenzfärbung ist es möglich, das Tumormikromilieu detailliert 

zu untersuchen. Das Prinzip beruht auf Antikörpern, welche mit fluoreszierenden Farb-

stoffen markiert wurden und nach spezifischer Bindung an das gesuchte Antigen unter 
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dem Fluoreszenzmikroskop aufleuchten. In dieser Arbeit wurden verschiedene Subpopu-

lationen Tumor-infiltrierender Immunzellen qualitativ und quantitativ detektiert.  

 

Durchführung 

Das Tumorgewebe wurde in Tissue Tek eingebettet, in flüssigem Stickstoff schockgefro-

ren und bei minus 80°C asserviert. Zur Herstellung von Kryostatschnitten wurde das Ge-

webe aufgeblockt und 4 µm dicke Schnitte hergestellt. Die Schnitte wurden für ca. 30 

min an der Luft getrocknet. Die Fixierung auf dem Objektträger erfolgte mit Methanol 

für 8-10 min. Anschließend wurden die Objektträger kurz luftgetrocknet und je zwei Ob-

jektträger Rücken an Rücken bei minus 20°C zunächst weggefroren. Für die Färbung 

wurden die Objektträger mit 1x PBS gewaschen, mit dem Dakopen ein Fettrand um die 

Schnitte gezogen und mittels 2%igem BSA (50 µl pro Schnitt) die unspezifischen Bin-

dungsstellen blockiert (Feuchtkammer, 1h, RT). Anschließend wurden 50 µl des Antikör-

per-Gemisches (final: 1:50; Tab. 4) aufgetragen und über Nacht in einer dunklen Feucht-

kammer bei 4°C inkubiert. Am folgenden Tag wurden die nicht gebundenen AK mittels 

1x PBS wieder entfernt. Hierfür wurden die Objektträger mindestens dreimal mit 1x PBS 

gespült. Zum Abschluss wurde eine Kernfärbung mittels DAPI durchgeführt, welches in 

die DNA interkaliert, und die Schnitte mit einem Deckgläschen unter Zugabe von Ein-

deckmedium Luftblasenfrei eingedeckt. Die mikroskopische Dokumentation erfolgte am 

konfokalen Laser-Scanning Mikroskop (Zeiss, LSM 780). 

 
Tabelle 4: Antikörpermixe für die Immunfluoreszenzfärbung 

 

 

 

 

 

 

 

 

4.2.6 Molekularbiologische Methoden 

4.2.6.1 DNA Extraktion aus Mausschwanzgewebe  

Die Schwanzspitze wurde in einem 1,5 ml Reaktionsgefäß mit 500 µl NaOH versetzt und 

bei 97°C für eine h im Thermocycler inkubiert. Anschließend wurde 50 µl einer Tris/HCl-

Färbeansätze 

CD11b - FITC  Gr1 - PE 

CD104 - FITC  CD4 - PE 

CD104 - FITC  CD8 - PE 

CD104 - FITC  LAG-3 - PE 

PD1 - FITC  NK 1.1 - PE 

CD11b - FITC  PD-L1 - PE 

CD11c - FITC Gr1 - PE 



Material und Methoden 
 

 40 

Lösung zugeführt und die Probe gut gevortext. Dabei sollte sich das Gewebe fast auflö-

sen. Die Probe wurde dann eine min bei 3000 x g zentrifugiert, um Knochen und Fellreste 

zu entfernen. Am NanoDrop wurde die DNA-Konzentration bei 260 nm bestimmt. Opti-

mal ist eine Konzentration im Bereich zwischen 50 und 100 ng/µl. Die Proben konnten 

bei minus 20°C asserviert oder direkt zur Genotypisierung eingesetzt werden.  

 

4.2.6.2 gDNA-Isolation aus Tumorgewebe 

In Vorbereitung auf die gDNA-Isolation wurden aus den in Einzelzellsuspension über-

führten Tumoren (GIT und Lymphom (Milz, Thymus)) je Präparat eine Mio. Zellen ent-

nommen. Die Zellsuspension wurde acht min bei 14000 x g zentrifugiert und der Über-

stand abgesaugt. Das trockene Pellet wurde bis zur weiteren Prozessierung bei minus 

20°C gelagert. Anschließend wurde das Pellet in 600 µl „Nuclei Lysis Solution“ gelöst, 

um die Zellen zu lysieren. Es wurden 3 µl „RNase Solution“ zugegeben und dies gut 

durchmischt. Anschließend inkubierte die Probe 30 min bei 37°C im Thermocycler. Für 

fünf min wurde anschließend die Probe bei RT heruntergekühlt und 200 µl „Precipitation 

Solution“ zugegeben. Dies wurde dann 20 Sekunden auf hoher Stufe gevortext und dann 

fünf min auf Eis inkubiert. Anschließend wurde vier min auf höchster Stufe (14000 x g) 

zentrifugiert, wobei die Proteine eine weißes Pellet bilden. Im Überstand befand sich nun 

die DNA. Dieser wurde vorsichtig abgenommen und in ein 1,5 ml Reaktionsgefäß über-

führt, in welchem bereits 600 µl Isopropanol vorgelegt waren. Der Mix wurde so lange 

geschwenkt, bis die DNA eine sichtbare Masse ergab. Für eine min wurde dann bei ma-

ximaler Stufe zentrifugiert und die DNA als kleines Pellet am Boden des 1,5 ml Reakti-

onsgefäß sichtbar. Vorsichtig wurde der Überstand abgenommen, das Pellet in 600 µl 

70%igen Ethanol gelöst und das Gefäß ausgiebig geschwenkt, um die DNA gut zu wa-

schen. Erneut folgte eine Zentrifugation bei maximaler Stufe für eine min. Der Überstand 

wurde sehr vorsichtig abgenommen und das Pellet bei umgedrehten 1,5 ml Reaktionsge-

fäß auf einer absorbierenden Oberfläche 15 min luftgetrocknet. Zuletzt wurde das Pellet 

im 30 µl „DNA Rehydration Solution“ resuspendiert und bei 65°C eine h lang im Ther-

mocycler rehydriert. Am NanoDrop wurde schließlich die gDNA-Konzentration bei 260 

nm gemessen. Für die nachfolgende PCR und Fragmentlängenanalyse wurden die Proben 

auf eine Konzentration von 25 ng/µl verdünnt. Die gDNA wurde bei minus 20°C asser-

viert. 
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4.2.6.3 Semiquantitative PCR 

Allgemeines Funktionsprinzip 

Die Polymerase-Kettenreaktion (PCR) ermöglicht eine gezielte Amplifikation geringster 

Mengen von DNA. Durch sich wiederholende Amplifikationszyklen (Denaturierung, Pri-

mer-Anlagerung, Elongation) können innerhalb kurzer Zeit große Mengen eines be-

stimmten DNA-Abschnitts gewonnen werden. Da nach jedem Zyklus die bereits beste-

henden und die neu synthetisierten DNA-Abschnitte amplifiziert werden, steigt die 

Menge exponentiell an. Markiert werden die gewünschten DNA-Abschnitte mittels Pri-

mer, wobei jeweils ein Primer für den Leitstrang und einer für den Folgestrang der DNA 

ausgewählt wird. Diese beiden Primer lagern sich dann jeweils am Ende des zu amplifi-

zierenden DNA-Abschnitts an.  

Die Methode zeugt von einer hohen Geschwindigkeit, Einfachheit und breiten Anwend-

barkeit, da sie in jeden Abschnitt der DNA angewendet werden kann und ist somit ein 

wichtiger Bestandteil der Genanalyse.  

Durchführung Genotypisierung  

Pro PCR-Reaktion wurden ca. 50 ng DNA benötigt. Der Mastermix wurde, wie in Tab. 5 

beschrieben, vorbereitet und die DNA im Thermal Cycler C1000TM vervielfältigt. Zusätz-

lich wurde eine Positiv-Kontrolle mit wildtypischer MLH1 DNA, beziehungsweise 

MLH1-knockout DNA, und eine Negativ-Kontrolle ohne DNA untersucht. Die PCR-Pro-

dukte konnten dann entsprechend der Basenpaar-Größe untersucht und somit eine Eintei-

lung in homozygot knockout, Wildtyp und heterozygot vorgenommen werden. 

 
Tabelle 5: PCR Multiplex-Ansatz 

 

 

 

 

 

 

  

  

 

Volumen [µl] / Ansatz Reagenz 

1,0 µl DNA 

2,5 µl PCR-Puffer 

0,5 µl dNTPs  

0,5 µl MLH1 mouse forward Primer 

0,5 µl MLH1 mouse reverse Primer 1 

0,5 µl MLH1 mouse reverse Primer 2 

0,2 µl Taq-Polymerase 

25,0 µl Aqua dest. 
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Tabelle 6: Ablauf der PCR-Reaktion 

 

 

 

 

 

 

 

4.2.6.4 PCR zum Nachweis kodierender und nicht-kodierender Mikrosatelliten 

Durchführung 

Zunächst wurde ein Mastermix aus den einzelnen PCR Komponenten hergestellt (Tab. 

7). Pro Ansatz wurde 1 µl DNA (= 25 ng) des Probenmaterials vorgelegt und 11,5 µl des 

Multiplexes zugeführt. Dies wurde kurz anzentrifugiert. Im Thermal Cycler C1000TM er-

folgte die Amplifikation (35 Zyklen), wodurch es zu einer exponentiellen Amplifikation 

der DNA-Abschnitte kam (Tab. 8). 

Tabelle 7: PCR Multiplex Ansatz 

 

 

 

 

 

 

 

 
Tabelle 8: Ablauf der PCR-Reaktion 

 
 
 
 

Reaktion Temperatur Zeit [min] 

Initiale Denaturierung  94°C 3:00 

Denaturierung  94°C 1:00 

Primeranlagerung 65°C 2:00 

Strangsynthese 72°C 1:00 

Abschluss der Synthese  72°C 4:00 

Lagerung  4°C Unendlich  

Volumen [µl] / Ansatz Reagenz 

1,0 µl gDNA 

2,5 µl PCR-Puffer 

0,5 µl dNTPs  

0,5 µl forward Primer 

0,5 µl reverse Primer 

0,2 µl Taq-Polymerase 

19,8 µl Aqua dest. 

Reaktion Temperatur Zeit [min] 

Initiale Denaturierung 94°C 4:00 

Denaturierung 94°C 0:30             

Primeranlagerung 58°C 0:45     

Strangsynthese 72°C 0:30 

Abschluss der Synthese 72°C 6:00 

Lagerung 4°C unendlich 

35 Zyklen  

35 Zyklen 
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4.2.6.5 Aufarbeitung der PCR-Produkte für die Fragmentlängenanalyse am 

ABI3100 Sequencer 

Die PCR-Produkte wurden in der 96-Well-Platte mit rundem Boden 1:10 mit Aqua dest. 

verdünnt. Unter dem Abzug wurde der HiDi-LIZ-Mix mit 24 µl HiDi und 0,3 µl LIZ pro 

Probe angesetzt. Aus der Probenverdünnung wurden dann 1 µl der Probe pro Well einer 

96-Well-Platte vorgelegt und 24 µl HiDi-LIZ-Mix pro Well hinzugefügt. Die Platte 

wurde dann im ABI3100 Sequencer eingelesen. Mit Hilfe des Genomsequencer-Auswer-

tungsprogramms konnten die Proben nun auf Mutationen in MS untersucht werden. Le-

serastermutationen konnten dabei aufgrund ihrer veränderten Produktlänge detektiert 

werden.  
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5 Ergebnisse  

Im Rahmen der vorliegenden Dissertation konnte zunächst gezeigt werden, dass sowohl 

die prophylaktische, als auch therapeutische Gabe des Vakzins die Tumorinzidenz und 

das -wachstum verzögern. Damit wurden die Vorbefunde, in denen das Vakzin erstmals 

im MLH1-/- Modell eingesetzt wurde, bestätigt (108). Dieser Vakzine-basierte Ansatz 

wurde nun um eine Kombinationstherapie, bestehend aus niedrigdosierter Chemotherapie 

mit Gemcitabin oder CPX, erweitert. Die Ergebnisse sind nachfolgend dargestellt. 

 
5.1 MLH1 Genotypisierung  

Um MLH1-/- Nachkommen zu erzeugen, wurden heterozygote Tiere verpaart. Zur Be-

stimmung des Genotyps erfolgte eine MLH1-spezifische Genotypisierung an Maus-

schwanzspitzenbiopsien vier bis fünf Wochen alter Tiere. Von dem erhaltenen Gewebe 

wurde zunächst die DNA extrahiert und anschließend eine PCR durchgeführt. Die PCR 

Produkte wurden gelelektrophoretisch aufgetrennt und somit eine Unterteilung in Wild-

typ, Heterozygot oder Homozygot für das MLH1-Gen möglich. Für die eigentlichen Ver-

suche wurden ausschließlich homozygot negative Tiere, welche die spezifische klinische 

Symptomatik entwickelten, eingesetzt.  

In der Gelelektrophorese wurde zusätzlich zur Probe, eine Kontrolle mit wildtypischer 

MLH1 DNA, beziehungsweise MLH1-knockout DNA, und eine Negativ-Kontrolle ohne 

DNA untersucht. In Abb. 9 sind repräsentative Ergebnisse einer typischen Genotypisie-

rung dargestellt. Die Anzahl homozygoter Nachkommen folgt der Mendel‘schen Vertei-

lung und liegt bei ca. 24%. 

 
 

 

 

 

 

 
Abbildung 9 MLH1 Genotypisierung.  

DNA wurde aus Mausschwanzgewebe extrahiert und mittels MLH1-spezifischer Primer in einer Endpunkt-

PCR amplifiziert. Dargestellt ist ein repräsentatives Bild einer Agarose-Gelelektrophorese, links: Kontrol-

len, rechts: experimentelle Versuchstiere. +/+ Wildtyp; +/- heterozygot; -/- homozygot knockout MLH1. 
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5.2 Prophylaktische Chemo-Immuntherapie  

Zunächst erhielten MLH1-/- Mäuse, die klinisch noch keine Anzeichen für eine Tumo-

rentwicklung aufwiesen, eine prophylaktische Chemo-Vakzine. Die Zytostatika Gemci-

tabin bzw. CPX wurden jeweils 24 h vor der ersten Vakzine, in einer Dosis von 100 mg/kg 

KG bzw. 120 mg/kg KG, intraperitoneal appliziert. Zusätzlich erhielten Tiere ausschließ-

lich die repetitiven Gaben des Vakzins, um die Effekte der Kombination zu eruieren.  

 

5.2.1 Tumorinzidenz, Überleben und Verteilung der Tumoren  

MLH1-/- Tiere entwickeln spontan in einem medianen Alter von 25,3 ± 11,7 Wochen 

Lymphome und im Alter von 35,5 ± 9,3 Wochen Tumoren im Gastrointestinaltrakt. Die 

prophylaktische Gabe des Vakzins verzögerte die Tumorgenese, im Vergleich zur Kon-

trolle, um ca. 11,9 ± 0,8 Wochen. Insgesamt waren 15,4 % der Tiere durch die alleinige 

Vakzinierung, bis zum Versuchsende (80 Wochen), tumorfrei. Die kombinierte Gabe mit 

niedrig-dosierter Chemotherapie führte, in Abhängigkeit des eingesetzten Zytostatikums, 

zur weiteren Verzögerung der Tumorgenese und somit auch zur Überlebensverlängerung 

(Abb. 10). 33,0 % der Mäuse waren durch eine Präkonditionierung mit Gemcitabin bis 

zum experimentellen Endpunkt tumorfrei. Die kombinierte Gabe mit CPX erzielte bei 

11,1 % der Tiere eine Tumorfreiheit.  

Mit Hilfe der Kaplan-Meier-Überlebenskurve in der Logrank Survival Analyse wurde die 

Überlebenszeit der einzelnen Gruppen veranschaulicht. Der Logrank-Test bietet die Mög-

lichkeit, zwei Überlebenskurven miteinander zu vergleichen und dabei die Signifikanz 

beider Kurven zu überprüfen.  

Beide Kombinationstherapien verlängerten das Gesamtüberleben signifikant (p< 0,001). 

Ebenfalls liegt p<0,01, beim Vergleich der Vakzine-Monotherapie mit der Gemcitabin 

Kombinationstherapie, vor. Somit ist auch hier ein Signifikanzniveau von 1% erreicht.  

Wie in Abb. 10 zu erkennen ist, führte insbesondere die Kombinationstherapie mit 

Gemcitabin zu einem deutlich besseren Überleben, als die Monotherapie und die Kon-

trolle.  

Zusammenfassend verlängert die Präkonditionierung mit einem Chemotherapeutikum 

(Gemcitabin oder CPX) die tumorfreie Zeit und somit auch das Überleben.  
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Hinsichtlich der Verteilung der einzelnen Tumoren zeigten sich ebenfalls Unterschiede 

zwischen den einzelnen Gruppen (Tab. 9). Unter der Vakzine-Monotherapie entwickelten 

sich weniger GIT (3/10), diese traten im Alter von 42,0 ± 8,5 Wochen auf. Bei 5/10 Tieren 

entwickelten sich Lymphome, welche im Vergleich zu den unbehandelten Kontrolltieren 

mit 30,8 ± 10,0 Wochen später auftraten. 

Bei den mit Gemcitabin präkonditionierten Mäusen entwickelten sich häufiger GIT als 

Lymphome (GIT bei 4/9 Mäusen vs. Lymphome bei 2/9 Mäusen). Währende die GIT im 

Alter von 53,4 ± 14,1 Wochen detektierbar waren, entwickelten sich die Lymphome be-

reits im Alter von 23,5 ± 13,4 Wochen. Dies entspricht der Tumorinzidenz der Kontroll-

tiere. Folglich beeinflusst diese Form der Chemo-Vakzine ausschließlich die gastrointes-

tinale Tumorgenese.  

Abbildung 10 Kaplan-Meier Überlebenskurve (Log rank Analyse) von MLH1-/- Mäusen in der Prophy-

laxe.  

Die Tiere erhielten eine Chemo-Immuntherapie aus Gemcitabin (100 mg/kg KG, i.p., n = 9 Mäuse) oder 

CPX (120 mg/kg KG, i.p., n = 9 Mäuse) 24 h vor der ersten Vakzine. Anschließend folgte die repetitive 

Gabe der Vakzine im entsprechenden Rhythmus. Sechs Tiere erhielten eine Vakzine-Monotherapie (10 

mg/kg KG, s.c.). Den Kontrolltieren (n = 4) wurde einmalig Gemcitabin (100 mg/kg KG, i.p) verabreicht 

bzw. erhielten keine Therapie. Die Tiere wurden anhand von definierten Abbruchkriterien (humane End-

punkte) getötet. Diese umfassen u.a. eine Gewichtsreduktion ≥15%; rektale Blutung, sowie stark veränder-

tes Sozialverhalten, welche Anzeichen für eine Schmerzsymptomatik darstellen. 
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Bei der CPX-Vakzine-Kombitherapie entwickelten sich bei zwei von neun Mäusen GIT 

(33,3%). Das mediane Alter, in dem GIT nachweisbar waren, lag bei 47,7 ± 5,9 Wochen. 

Bei dieser Kombitherapie traten vermehrt Lymphome (55,5%), jedoch im Vergleich zu 

den unbehandelten Kontrolltieren, leicht verzögert im Alter von 34,3 ± 6,9 Wochen auf.  

Die alleinige und einmalige Applikation von Gemcitabin beeinflusste die Tumorentwick-

lung nicht. Da CPX in der Kombination keinen Überlebensvorteil erzielte, wurde auf die 

alleinige Gabe ohne Vakzine verzichtet. Alle Tiere der Gemcitabin-Kontrollgruppe ent-

wickelten Tumoren, welche sowohl hinsichtlich des zeitlichen Auftretens (Lymphome: 

26,7 ± 9,3 Wochen; GIT: 36,8 ± 6,8 Wochen), als auch der Verteilung mit den unbehan-

delten Kontrolltieren vergleichbar war. Folglich wurden die Daten beider Kontrollgrup-

pen zusammengefasst. 3,2 % der Kontrolltiere entwickelten ein erweitertes Tumorspekt-

rum, wie beispielsweise Tumoren der Haut oder Niere. Diese seltenen, i.d.R. benignen 

Tumoren sind bereits in der Literatur dokumentiert (62,64,109) und stellen eine direkte 

Folge des generalisierten MLH1-knockouts und der damit einhergehenden MMR-D dar. 

 
Tabelle 9: Tumorentwicklung unter prophylaktischer Chemo-Immuntherapie im Vergleich zur Kon-

trolle 

Prophylaxe-
gruppe Alter bei Tumorauftreten 

[Wochen ± SD] Tumortyp [%] 
Tumorfrei  
[%] 

Lymphom GIT Lymphom GIT Andere 

Kontrolle* 25,3 ± 11,7 35,5 ± 9,3 62,1 34,7 3,2 0,0 

Vakzine 30,2 ± 10,0 47,4 ± 8,5 51,7 33,3 0,0 15,0 

GEM + 
Vakzine 23,5 ± 13,4 53,4 ± 14,1 22,2 44,4 0,0 33,3 

CPX + Vakzine 34,3 ± 6,9 47,7 ± 5,9 55,5 33,3 0,0 11,1 

* - unbehandelt bzw. 1x Gemcitabin, keine Vakzine. 

 

5.2.2 Immunmonitoring und Nachweis immunologischer Veränderungen unter Chemo-

Immuntherapie 

Das Immunmonitoring wurde vor Beginn und während der prophylaktischen Therapie 

regelmäßig durchgeführt. Hierfür wurde peripheres Blut durch Punktion des retrobulbä-

ren Venenkomplexes entnommen, dieses mithilfe spezifischer Antikörper gefärbt und 

schließlich durchflusszytometrisch untersucht. Ziel war es, Veränderungen im Blut und 

somit die Auswirkungen der Prophylaxe auf das Immunsystem zu dokumentieren.  
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Bei allen Kontrolltieren kam es im Verlauf zu einem leichten Abfall, sowohl der 

CD3+/CD4+ T-Helferzellen, als auch der CD3+/CD8+ CTL im Blut. Die Vakzine-Mono-

therapie führte zu einem leichten Anstieg der CD3+/CD4+ T-Helferzellen und der 

CD3+/CD8+ CTL.  

Die Kombitherapie aus Gemcitabin und Vakzine hatte ähnliche Effekte. Der Anteil 

CD3+/CD4+ T-Helferzellen und CD3+/CD8+ CTL im Blut stieg transient. Demgegenüber 

wurden ab Tag 63 weniger T-Helferzellen nachgewiesen. Die CTL stiegen nach einem 

zeitweiligen Abfall wieder an. NK-Zellen, sowie PD-1+ und LAG-3+ Lymphozyten stie-

gen im Verlauf der Behandlung ebenfalls an (Daten nicht gezeigt). Die lymphozytäre PD-

L1 Expression reduzierte sich geringfügig, bis zum Ende der Therapie. Der Anteil an B-

Lymphozyten sowie g/d T-Zellen nahm im Verlauf leicht ab (Daten nicht gezeigt).  

Die Präkonditionierung mit CPX hatte keinen Einfluss auf CD3+/CD4+ T-Helferzellen, 

der Anteil an CD3+/CD8+ CTL hingegen war bis zum Versuchsende leicht erhöht (Abb. 

11). Während auch hier die NK-Zellen und PD-1 leicht anstiegen, kam es zum Abfall von 

LAG-3 und PD-L1. Auch die B-Lymphozyten verminderten sich (Daten nicht gezeigt). 

Interessanterweise war der Anteil an MDSC bei allen Versuchsgruppen unverändert. Bei 

allen Tieren kam es im Verlauf zu einem Anstieg dieser Zellen, mit tendenziell höheren 

Werten bei Tieren, welche die CPX-Vakzine-Kombination erhielten (Abb. 11).  

Zusammenfassend konnte eine positive Modulation der Immunantwort durch die prophy-

laktischen Kombinationstherapien aufgezeigt werden. 



Ergebnisse 
 

 49 

 
Um ein umfassendes Bild der immunologischen Veränderungen infolge der Prophylaxe 

zu erhalten, wurde am Endpunkt das Milzgewebe untersucht. Hierfür wurde die Milz ent-

nommen und wie bereits beschrieben (Punkt 4.2.2.8) für die immunologischen Untersu-

chungen aufbereitet.  

Die Vakzine-Monotherapie führte zu einem leichten Anstieg der T-Helferzellen, der An-

teil an CTL und MDSC war im Vergleich zur Kontrolle unverändert. Ebenso waren nur 

marginale Unterschiede hinsichtlich der PD-1 und LAG-3 Expression detektierbar.  

Demgegenüber wurde infolge der Chemo-Vakzine mit Gemcitabin vermehrt T-Helfer- 

und CTL nachgewiesen, gleichzeitig nahm der Anteil an MDSC ab. Ebenfalls wurde ein 

geringerer Anteil von Treg und Immuncheckpoint-Molekülen (LAG-3- und PD-L1) auf 

den Leukozyten erfasst. 

Abbildung 11 Immunphänotypisierung des peripheren Blutes von MLH1-/- Mäusen in der Prophylaxe.  

Quantitative Darstellung des Anteils positiver Zellen von Tieren nach prophylaktischer Chemo-Immunthe-

rapie (GEM + Vakzine; CPX + Vakzine) im Vergleich zu Tieren, die eine Vakzine-Monotherapie erhielten, 

sowie Kontrolltieren (Gemcitabin bzw. keine Intervention). Die Messung erfolgte im Durchflusszytometer. 

Pro Messung wurden 20.000 Ereignissen erfasst. Angegeben sind die Mittelwerte ± SD. N = 4 – 6 

Tiere/Gruppe. 
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Die Chemo-Immuntherapie mit CPX zeigte ähnliche Effekte, mit einem Anstieg an T-

Helferzellen und CTL. Im Vergleich zur Prophylaxe mit Gemcitabin waren jedoch mehr 

MDSC nachweisbar. Lediglich der Anteil an Zellen, die LAG-3 exprimierten, war signi-

fikant verringert und wurde bei weniger als 10 % der Zellen nachgewiesen.   

Alle Behandlungen führten zu einer Abnahme von Treg (Abb. 12).  

Insgesamt zeigt sich, dass sowohl die Vakzine-Monotherapie als auch Chemo-Vakzine 

zur Modulation des Immunsystems führt, welche u.a. charakterisiert durch einen Anstieg 

an T-Zellen und Abnahme regulatorischer Zellen, sowie Immuncheckpoint-Molekülen 

auf der Zelloberfläche. Diese Veränderungen stehen somit in direktem Zusammenhang 

mit der Therapie.  

 

 

 

 

 

 

 

 

 

 

 

 
In Ergänzung zu der durchflusszytometrischen Phänotypisierung wurden Zytokine aus 

Blutplasma zum Versuchsende erfasst. In Abb. 13 dargestellt sind IL-6 (von Monozyten 

und Makrophagen sezerniert), IL-10 (von Treg und Th2-Zellen sezerniert) und IL-13 (von 

Th2 sezerniert). Die Vakzine-Monotherapie und die Chemo-Vakzine mit Gemcitabin re-

duzierte im Vergleich zur Kontrolle die Sekretion von IL-6 und IL-10 und führte zur 

erhöhten IL-13 Produktion. Demgegenüber wurden nach Chemo-Immuntherapie mit 

CPX erhöhte Level an IL6 nachweisbar. IL13 zeigte ein inverses Profil, dieses Th2-

Abbildung 12 Immunphänotypisierung der Milz in der Prophylaxe.  

Quantitative Darstellung des Anteils positiver Zellen von Tieren nach prophylaktischer Chemo-Immunthe-

rapie (GEM + Vakzine; CPX + Vakzine) im Vergleich zu Tieren, die eine Vakzine-Monotherapie erhielten, 

sowie Kontrolltieren (Gemcitabin bzw. keine Intervention). Die Messung erfolgte im Durchflusszytometer. 

Pro Messung wurden 20.000 Ereignissen erfasst. Angegeben sind die Mittelwerte ± SD; N = 4 – 7 

Tiere/Gruppe. *p < 0.05 vs. Kontrolle; #p < 0.05 vs. Vakzine; §p < 0.05 vs. CPX + Vakzine; (Holm Sidak 

Methode) 
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Zytokin war gegenüber Kontrolltieren nicht erhöht. Betrachtet man diese drei Interleu-

kine im Einzelnen, unter Berücksichtigung der Klinik, und vergleicht die Zytokinlevel 

bei tumorfreien und tumortragenden Tieren, so sind die Unterschiede deutlicher ausge-

prägt. Mäuse, die erfolgreich prophylaktisch behandelt wurden, haben deutlich niedrigere 

IL6, IL10 und IL13-Level als Mäuse, die Tumoren entwickelt haben (Abb. 13, unten).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
5.3 Therapeutische Chemo-Immuntherapie   

Die therapeutische Chemo-Vakzine wurde ausschließlich an Tieren durchgeführt, die 

GIT entwickelten. Bei Tumorverdacht wurde bei Mäusen, welche über 30 Wochen alt 

waren, ein PET/CT durchgeführt. Bei Bestätigung der Diagnose wurde die Therapie be-

gonnen. Ausgehend von den Vorbefunden in der prophylaktischen Situation, wurde für 

die therapeutische Chemo-Immuntherapie das Zytostatikum Gemcitabin verwendet. 

Hierbei erhielten die Tiere einmalig 24 h vor der ersten Vakzine Gemcitabin, gefolgt von 

Abbildung 13 Plasmazytokinlevel von MLH1-/- Mäusen in der Prophylaxe.  

Oben: Quantitative Analyse von IL-6, IL-10 und IL-13 im Blutplasma von Tieren nach prophylaktischer 

Chemo-Immuntherapie (GEM + Vakzine; CPX + Vakzine) im Vergleich zu Tieren, die eine Vakzine-Mo-

notherapie erhielten, sowie Kontrolltieren (Gemcitabin bzw. keine Intervention). Unten: Darstellung un-

terschiedlicher Zytokinlevel zwischen tumorfreien und tumortragenden Tieren. Angegeben sind die Mittel-

werte ± SD; N = 3 – 4 Tiere/Gruppe. 
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repetitiven Gaben des Vakzins. Dieses wurde viermal wöchentlich und danach im 14-

tägigen Rhythmus acht weitere Male appliziert. 

 

5.3.1 Tumorwachstum und Überleben  

Vor Beginn und im Verlauf der Therapie wurden Tumorwachstum und die Anzahl der 

Tumorherde im Abdomen mit Hilfe des 18F-FDG PET/CT untersucht, um die Größe (Vo-

lumen) und Anzahl der einzelnen Tumoren zu quantifizieren.  

Aufgrund des progredienten Wachstums wurde bei Kontrolltieren nur ein initiales 

PET/CT durchgeführt, eine Verlaufsmessung erfolgte ausschließlich bei den Therapie-

gruppen. Diese wurden vor Beginn der Untersuchungen randomisiert. MLH1-/- Mäuse, 

die eine Vakzine-Monotherapie erhielten, hatten vor Therapiebeginn im Durchschnitt 3,5 

± 1,7 Tumorknoten. Das mittlere Tumorvolumen betrug 93,4 ± 74,8 mm3. Eine ähnliche 

Verteilung zeigte sich auch in der Chemo-Immuntherapie-Gruppe. Im Durchschnitt konn-

ten 3,0 ± 1,7 Tumorknoten bei den Mäusen nachgewiesen werden, welche ein mittleres 

Volumen von 110,1 ± 90,6 mm3 hatten. 

Die wiederholten PET/CT-Untersuchungen nach 28 bis 40 Tagen zeigten ein vergleich-

bares Ergebnis bei beiden Therapiegruppen (Abb. 14). Sowohl die Vakzine-Monothera-

pie, als auch die Chemo-Immuntherapie führte zur partiellen Remission um 31 % bzw. 

26 %. Bei einem Tier kam es durch die Chemo-Immuntherapie zur kompletten Remis-

sion, welche bis zum Versuchsende (über 40 Wochen) aufrechterhalten blieb.  

Abbildung 14 Quantitative Analyse des Tumorvolumen [mm3] von MLH1-/- Mäusen in der Therapie. 

Das Tumorwachstum und die Anzahl der Tumorherde im Abdomen wurden mit Hilfe des 18F-FDG PET/CT 

quantifiziert. Die Messung erfolgte vor Therapiebeginn (= Tag 0), sowie im Verlauf bei Tieren nach thera-

peutischer (Chemo-)Immuntherapie (Vakzine, GEM + Vakzine) (N = 5 Tiere/Gruppe). links: Vakzine-Mo-

notherapie; rechts: Chemo-Immuntherapie; M – Maus. 
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5.3.2 Überlebenszeitanalyse  

 Die Überlebenszeit der Therapietiere wurde mit Hilfe der Kaplan-Meier-Überlebens-

kurve dargestellt. Die Befunde der PET/CT, hinsichtlich des Tumorwachstums, resultier-

ten in ein verlängertes Gesamtüberleben beider Therapiegruppen, im Vergleich zu den 

Kontrolltieren, welche innerhalb von fünf Wochen nach Diagnosestellung verstarben. So-

wohl beim Vergleich der Kontrolle mit der Vakzine-Monotherapie, als auch der Kontrolle 

mit der Chemo-Vakzine liegt p<0,05 (Abb. 15). Somit ist ein statistisch signifikanter Un-

terschied mit einem Signifikanzniveau bei 5 % erbracht.  

Beim direkten Vergleich beider Therapien zeigt sich zunächst kein Überlebensvorteil 

durch die Kombination innerhalb der ersten 15 Wochen nach Therapiebeginn. Betrachtet 

man jedoch den Gesamtversuchszeitraum, so ist das Langzeitüberleben bei Tieren, die 

die Chemo-Vakzine erhielten mit bis zu über 40 Wochen verbessert.  

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Abbildung 15 Kaplan-Meier Überlebenskurve in der Log rank Analyse von MLH1-/- Mäusen in der The-

rapie.  

Tiere mit gesichterten GIT erhielten entweder eine Chemo-Immuntherapie (N = 5), bestehend aus einer 

einmaligen Gabe Gemcitabin (100 mg/kg KG, i.p.) 24 h vor der ersten Vakzine (10 mg/kg KG, s.c.) oder 

ausschließlich die Vakzine (10 mg/kg KG, s.c.). Den Kontrolltieren wurde einmalig Gemcitabin (100 mg/kg 

KG, i.p.) (N =3) appliziert bzw. keine Intervention vorgenommen (n=5). Die Tiere wurden anhand von 

definierten Abbruchkriterien (humane Endpunkte) getötet. Diese umfassen u.a. eine Gewichtsreduktion 

≥15%; rektale Blutung, sowie stark verändertes Sozialverhalten, welche Anzeichen für eine Schmerzsymp-

tomatik darstellen. 
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5.3.3 Immunmonitoring  
 
Der Immunstatus der Tiere wurde regelmäßig während der Therapie und am Endpunkt 

erfasst. Aufgrund der kurzen Überlebenszeit der Kontrolltiere erfolgte nur ein direkter 

Vergleich zwischen den beiden Therapiegruppen. Ziel war es, die Veränderungen im Blut 

und somit die Auswirkung der Therapie auf das Immunsystem zu dokumentieren.  

Unter der Vakzine-Monotherapie kam es zu einem kontinuierlichen Anstieg der 

CD3+/CD8+ CTL, der MDSC und einer Hochregulation von PD-L1 auf Lymphozyten 

(Abb. 16). Durch die Chemo-Vakzine wurde im Blut eine signifikant verringerte Anzahl 

an zirkulierenden MDSC, sowie PD-L1 und LAG-3 positiven Immunzellen nachgewie-

sen. Die CD3+/CD8+ CTL stiegen im Verlauf der Therapie bis zum Endpunkt deutlich 

an. Zum Versuchsende wurde im Blut beider Therapiegruppen vermehrt LAG-3 detek-

tiert.   
 

Abbildung 16 Immunphänotypisierung des peripheren Blutes von MLH1-/- Mäusen in der Therapie. 

Quantitative Darstellung des Anteils positiver Zellen von Tieren nach therapeutischer Chemo-Immunthe-

rapie (GEM + Vakzine) im Vergleich zu Tieren, die ausschließlich mit Tumorvakzinen geimpft wurden. Die 

Untersuchung des Immunstatus wurde regelmäßig während der Therapie und am Endpunkt durchgeführt. 

Die Messung erfolgte im Durchflusszytometer. Pro Messung wurden 20.000 Ereignissen erfasst. Angege-

ben sind die Mittelwerte ± SD. N = 4 – 7 Tiere/Gruppe. *** p < 0.001 vs. Kontrolle; T-test 
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In ergänzenden Analysen erfolgte die Immunphänotypisierung der Milz nach Versuchs-

abschluss. Es wurde ein ähnlicher Immunphänotyp, wie im Blut, nachgewiesen. Milzzel-

len der Kontrolltiere hatten ca. 25% T-Zellen und ca. 5% Treg. Immuncheckpoint-Mole-

küle wie PD-1 und LAG-3 waren ebenfalls auf Lymphozyten nachweisbar (Abb. 17).   

Infolge der Vakzine-Monotherapie war die Anzahl der T-Helferzellen und CTL etwas 

höher, als in der Kontrollgruppe. MDSC waren ebenfalls leicht erhöht und der Anteil an 

Treg leicht reduziert. Die Chemo-Vakzine erzielte ähnliche Effekte, mit signifikant mehr 

infiltrierenden T-Zellen (CD3+CD4+ und CD3+CD8+). Die MDSC und die Treg wiede-

rum wurden durch die kombinierte Gabe deutlich gesenkt (Abb. 17). Keine der beiden 

Therapien hatten einen Einfluss auf die Abundanz von Immuncheckpoint-Molekülen 

(PD-L1 und LAG-3).  

 
Abbildung 17 Immunphänotyp der Milz von MLH1-/- Mäusen in der Therapie. 

 Quantitative Darstellung des Anteils positiver Zellen von Tieren nach therapeutischer Chemo-Immunthe-

rapie (GEM + Vakzine), im Vergleich zu Tieren, die ausschließlich mit Tumorvakzinen geimpft wurden 

bzw. keine Intervention erhielten. Die Untersuchung des Immunstatus wurde am Endpunkt durchgeführt. 

Die Messung erfolgte im Durchflusszytometer. Pro Messung wurden 20.000 Ereignissen erfasst. Angege-

ben sind die Mittelwerte ± SD; N = 5 – 7; * p < 0.05 vs. Kontrolle; one-way ANOVA (Holm Sidak Methode). 

 

Das zum Versuchsende gewonnene Plasma wurde nachfolgend weiter untersucht, um die 

Plasmakonzentrationen unterschiedlicher Zytokine zu bestimmen. Dabei zeigten sich, 

einhergehend mit den in vivo Befunden, Unterschiede zwischen den Kontroll- und The-

rapietieren (Abb. 18). Beide Therapieschemata führten zu einer verminderten Produktion 

des antiinflammatorischen und von Th2-Zellen sezernierten IL10. Ähnliches gilt für IL-

13, sowie die CC-Chemokine Eotaxin und RANTES (regulated and normal T cell 
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expressed and secreted), welche von CD8+ CTL und neutrophilen bzw. eosinophilen Gra-

nulozyten sezerniert werden. Monocyte chemotactic protein 1 (MCP1) wird von Monozy-

ten, T-Gedächtniszellen und DC sezerniert und war in beiden Therapiegruppen erhöht. 

Dies war besonders bei der alleinigen Vakzinetherapie zu erkennen. MCP1 induziert die 

Migration von Monozyten, NK-Zellen und DC in Gewebe.  

 
Abbildung 18 Plasmazytokinkonzentrationen von MLH1-/- Mäusen in der Therapie.  

Quantitative Darstellung von IL-10, IL-13, MCP-1, RANTES und Eotaxin nach therapeutischer Chemo-

Immuntherapie (GEM + Vakzine) im Vergleich zu Tieren, die ausschließlich mit Tumorvakzinen geimpft 

wurden bzw. keine Intervention erhielten. Die Erhebung der Zytokinlevel erfolgte am Endpunkt. Angegeben 

sind die Mittelwerte ± SD; N = 3 - 5 Tiere/Gruppe. 

 
5.3.4 ELISpot IFNγ-Assays 

Um die Spezifität der antitumoralen Immunantwort zu untersuchen, wurde die antigen- 

induzierte Freisetzung von IFNγ aus Splenozyten nach Ko-Kultivierung mit malignen 

Zellen (MLH-/- A7450 T1 M1, MLH-/- 328, MLH-/- 1351) mittels ELISpot bestimmt. Zu-

sätzlich wurden YAC-1 Zellen als Zielzellen eingesetzt, um die NK-Zellreaktivität nach-

zuweisen bzw. auszuschließen.  

Splenozyten der Kontrolltiere zeigten eine geringe Reaktivität gegenüber allen MLH1-/- 

Zielzellen, welche nur schwach höher war, als gegen YAC-1 Zellen. Somit war die spon-

tane Reaktivität primär auf NK-Zellen zurückzuführen. Infolge der Vakzine-Monothera-

pie wurde eine erhöhte Reaktivität gegen alle Zielzellen detektiert (Abb. 19). Diese war 

insbesondere nach Ko-Kultur mit MLH1-/- 328 Zellen und MLH-/- 1351 Lymphomzellen 

deutlich ausgeprägt. Lymphozyten aus Tieren, welche die Chemo-Vakzine erhielten, re-

agierten mit deutlich stärkerer IFNγ-Freisetzung nach Ko-Kultur mit MLH-/- 328 und 

IL-10
IL-13

MCP-1
RANTES

Eotaxin

Pl
as

m
a 

Zy
to

ki
nk

on
ze

nt
ra

tio
n 

[p
g/

m
L]

0

200

400
800 Kontrolle

Vakzine
GEM + Vakzine



Ergebnisse 
 

 57 

MLH-/- A7450 T1 M1 Zellen und erkannten somit Zielantigene auf den Epithelzellen 

gastrointestinalen Ursprungs. NK-Zellreaktivitäten wurden nicht detektiert. 

Die Reaktivität der Splenozyten insbesondere gegen MLH-/- A7450 T1 M1 und MLH-/- 

328 Zellen lässt darauf schließen, dass die Tumorzellen ähnliche Tumor-spezifische An-

tigene als Zielstruktur für die Lymphozyten aufweisen. Durch die Kombinationstherapie 

konnten mehr Antigen-spezifische T-Zellantworten induziert werden, als durch die allei-

nige Vakzine.  
 

 

 

 

 

 

 

 
 
 
 
 
Abbildung 19 ELISpot IFNγ-Assay zum Nachweis Antigen-spezifischer Immunantworten.  

Splenozyten (= Effektorzellen) wurden mit vier verschiedenen Tumorzelllinien (MLH-/- A7450 T1M1, MLH-

/- 328, MLH-/- 1351, YAC-1) ko-kultiviert und anschließend die Anzahl INFγ-sezernierender Zellen be-

stimmt. Angegeben sind die Mittelwerte ± SD; N = 5 Tiere/Gruppe. 

 

5.4 Veränderungen des Tumormikromilieus 

Gewonnene Tumorpräparate von prophylaktisch und therapeutisch behandelten Tieren 

wurden weiter prozessiert, um die lokalen Veränderungen im Tumormikromilieu näher 

zu untersuchen. Hierzu wurden Gewebeschnitte mithilfe der Immunfluoreszenz analy-

siert.   

Von besonderem Interesse war es, sowohl die Art der infiltrierenden Lymphozyten, als 

auch deren Anzahl im Tumor zu erfassen und so potentiell Rückschlüsse auf eine erfolg-

reiche Rekrutierung immunologischer Effektorzellen nach Therapie zu erhalten. Die für 

Tumoren typischen Escape-Mechanismen und die damit verbundene Immuntoleranz dem 

Tumor gegenüber, sollten durch die Therapie reduziert bzw. im Idealfall aufgehoben 
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werden. Unter Einsatz spezifischer Antikörper konnten Zellen im Präparat dargestellt und 

quantifiziert werden.  
 

5.4.1 Tumormikromilieu nach prophylaktischer (Chemo-) Vakzine  

MLH1-/--assoziierte Tumoren zeigen eine natürliche Infiltration, insbesondere von 

MDSC (Abb. 20). Der Anteil CTL und T-Helferzellen ist demgegenüber gering. Durch 

die prophylaktische Vakzine waren die Tumoren stark mit CD11c+ DC infiltriert, NK-

Zellen und CTL waren kaum nachweisbar (Abb. 20). 

Die Präkonditionierung mit Gemcitabin vor der Vakzine resultierte in eine erhöhte Infilt-

ration von CD11c+ DC, bei gleichzeitiger Reduktion CD11b+ Makrophagen und Elimina-

tion von MDSC. CTL waren vereinzelt detektierbar, NK-Zellen wurden nicht erfasst. Ein 

ähnliches Bild zeigte die Kombinationstherapie aus CPX und Vakzine. Wobei der Anteil 

infiltrierender NK-Zellen im Vergleich zur GEM-Vakzin-Kombination geringer war. 

Ähnliches gilt für CD11c+ DC.  

PD-L1+-Zellen wurden insbesondere nach kombinierter Chemo-Vakzine, sowohl mit 

Gemcitabin, als auch CPX nachgewiesen.  
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5.4.2 Tumormikromilieu nach therapeutischer (Chemo-) Vakzine  

Sowohl die Vakzine-Monotherapie, als auch die Chemo-Vakzine führten zu einer ver-

stärkten Immunzellinfiltration. In beiden Therapiegruppen kam es zu einem Anstieg an 

infiltrierenden CD4+ und CD8+ T-Zellen, letztere insbesondere nach vorangegangener 

Chemo-Immuntherapie (Abb. 21). Interessanterweise führten beide Therapieschemata 

aber auch zu einer Hochregulation von LAG-3+ und PD-L1+ auf den Lymphozyten. 

CD11b+PD-L1+ myeloide Zellen, die vermutlich suppressiv wirken, wurden ausschließ-

lich nach Vakzine-Monotherapie detektiert. Weitere Unterschiede konnten hinsichtlich 

der infiltrierenden MDSC (CD11b+Gr1+) identifiziert werden. Durch die Vakzine-Mono-

therapie reduzierte sich die Anzahl auf 6,3 ± 6,9 Zellen/Gesichtsfeld (vs. Kontrolle: 53,1 

± 63,1 Zellen/Gesichtsfeld). Dieser Effekt war nach kombinierter Chemo-Vakzine noch 

deutlicher ausgeprägt, mit lediglich 2,0 ± 3,8 Zellen/Gesichtsfeld. Bei den noch residuel-

len myeloiden Zellen handelte es sich Großteils um Gr1+, CD11b− Granulozyten. Die 

Abbildung 20 Fluoreszenzmikroskopie von GIT-Präparaten aus MLH1-/- Mäusen in der Prophylaxe. 

Dargestellt sind repräsentative Aufnahmen von vier µm Dünnschnittpräparaten nach prophylaktischer 

Chemo-Immuntherapie (GEM + Vakzine; CPX + Vakzine) im Vergleich zu Tieren, die eine Vakzine-Mo-

notherapie erhielten, sowie Kontrolltieren (Gemcitabin bzw. keine Intervention). DAPI - Kernfärbung. Die 

Aufnahmen erfolgten am konfokalen Laserscanning Mikroskop (Zeiss). Originalvergrößerung 20x. DC – 

dendritische Zellen; MDSC – myeloide Suppressorzellen; CTL – zytotoxische T-Zellen; NK – natürliche 

Killerzellen. 
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CD11b+ Zellen exprimierten kein PD-L1 auf der Oberfläche. Die Infiltration von CD11c+ 

DC stieg nach der Vakzine-Monotherapie auf 107,5 ± 70,1 Zellen/Gesichtsfeld und auf 

58,2 ± 31,1 Zellen/Gesichtsfeld nach der Chemo-Vakzine (vs. Kontrolle: 45,0 ± 16,5 Zel-

len/Gesichtsfeld). Hingegen führten beide Therapieschemata zu einer tendenziellen Ab-

nahme F4/80+ Tumor-assoziierter Makrophagen (Abb. 21 und 22).  

 

 
 

 

 

Abbildung 21 Fluoreszenzmikroskopie von GIT-Präparaten aus MLH1-/- Mäusen in der Therapie.  

Dargestellt sind repräsentative Aufnahmen von 4 µm Dünnschnittpräparaten nach therapeutischer Chemo-

Immuntherapie (GEM + Vakzine) im Vergleich zu Tieren, die ausschließlich mit Tumorvakzinen geimpft 

wurden, bzw. keine Intervention erhielten. DAPI - Kernfärbung. Die Aufnahmen erfolgten am konfokalen 

Laserscanning Mikroskop (Zeiss). Originalvergrößerung 20x. DC – dendritische Zellen; MDSC – myeloide 

Suppressorzellen; CTL – zytotoxische T-Zellen; NK – Natürliche Killerzellen. 

Abbildung 22 Quantitative Analyse des Anteils Tumor-infiltrierender Zellen.  

GIT-Präparate von MLH1-/- Mäusen nach therapeutischer Chemo-Immuntherapie (GEM + Vakzine) im 

Vergleich zu Tieren, die ausschließlich mit Tumorvakzinen behandelt wurden bzw. keine Intervention er-

hielten (N = 3 – 5 Tiere/Gruppe). Dargestellt ist die Anzahl positiver Zellen/Gesichtsfeld. Die Daten wur-

den in fünf unterschiedlichen Feldern erhoben. Angegeben sind die Mittelwerte ± SD.  
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5.5 Nachweis von MSI im Tumorgewebe  

Bei Vorliegen einer MMR-D kommt es zu Längenveränderungen in MS, welche nicht 

korrigiert werden können (=MSI). MSI ist ein molekularer Marker für die Diagnose des 

Lynch Syndroms, sowie sporadischen MMR-D-assoziierten CRC. Neben der hohen Sen-

sitivität und Spezifität bei MMR-D Tumoren, ermöglichen die MSI-Marker die Eintei-

lung in MSI-H, MSI-L und MSS, was wiederrum für die Prognosebestimmung ein wich-

tiger Faktor ist. Für das murine System sind bereits einige Marker, sowohl in kodierenden, 

als auch nicht-kodierenden Genabschnitten, bekannt und wurden als pathogenetisch rele-

vant für MMR-D Tumoren beschrieben (110–113). Im Rahmen der vorliegenden Arbeit 

wurde (I) einerseits das Mutationsspektrum kodierender MS-Marker in MLH1-/--assozi-

ierten Tumoren erfasst und (II) zusätzlich neue Marker identifiziert, welche Relevanz in 

der murinen Tumorgenese haben. In die Fragmentlängenanalyse wurden insgesamt 44 

Marker eingeschlossen, das Mutationsspektrum wurde an insgesamt 109 Tumoren unter-

schiedlichen Ursprungs (GIT, Lymphome) untersucht.  

 
5.5.1 Nachweis von MSI in nicht-kodierenden Markern zur Bestätigung der Diagnose 

Da die nicht-kodierenden Abschnitte den Großteil des menschlichen Genoms ausmachen 

und auch besonders anfällig für Mutationen sind, dienen die Marker in nicht-kodierenden 

Genabschnitten als interne Qualitätskontrolle und ergänzend zu den histologischen Ana-

lysen zur Sicherung der Diagnose. Mononukleotidrepeats sind anfälliger für Mutationen 

als Dinukleotidrepeats. Dies zeigte sich auch bei den insgesamt zehn untersuchten Mar-

kern (repräsentative Darstellung in Abb. 23). Zu den Mononukleotidrepeats zählen bei-

spielsweise Bat30 (A30 Wiederholungen; 91,2% MSI), Bat59 (A59 Wiederholungen; 

98,0% MSI), Bat26 (A26 Wiederholungen; 96,2% MSI) und U12235 (A24 Wiederholun-

gen; 63,0% MSI). Ebenfalls zeigt sich, dass die Repeatlänge mit dem Ausmaß an MSI 

korreliert. Als Dinukleotidmarker wurden D1Mit79 (CA31Wiederholungen; 47,7% MSI) 

und D15Mit93 (CA32Wiederholungen; 28,8% MSI) untersucht. Darüber hinaus zeigten 

sich Unterschiede zwischen Lymphomen und GIT. Während die Marker D1Mit79 und 

D15Mit93 bei 22,9% und 17,4% der Lymphome eine MSI aufwiesen, konnte bei 23,0% 

und 10,1% der analysierten GIT eine MSI nachgewiesen werden.  
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Abbildung 23 MSI Analyse der MLH1-/- Tumoren mit nicht-codierenden Markern. 

Repräsentative Darstellung von drei nicht-kodierenden MS-Markern (BAT26, BAT30, AA003063). Die 

charakteristischen, teilweise biallelischen Deletionen sind der Wildtyp-DNA gegenübergestellt. (darge-

stellt mit „minus“ + Zahl der Shifts). wt – Wildtyp; - – Deletion. 
 

5.5.2 Detektion von MSI in kodierenden Mikrosatelliten 

Wir untersuchten an 109 MLH1-/- Mäusen 28 Marker in kodierenden Genabschnitten, de-

ren Mutationsfrequenz in einer vorangegangenen Studie bereits erfasst wurde (113). 

Durchschnittlich lag bei 17% der getesteten Marker eine Mutation in den kodierenden 

MS vor. Deletionen wurden häufiger detektiert als Insertionen. 

Die Häufigkeit der MSI unterschied sich zwischen den Markern. Betrachtet man die Ge-

samtzahl untersuchter Tumoren (GIT und Lymphome), so wurden einige Entitäten-über-

greifende kodierende MS Mutationen, sogenannte shared mutations nachgewiesen. Zu 

den am häufigsten mutierten Markern zählen Phactr4 (25,7%), Senp6 (37,6%), Sdccag1 

(41,1%), Rasal2 (41,7%) und Rfc3 (65,6%) vor.  

Die Subgruppenanalyse lässt Unterschiede zwischen GIT und Lymphomen erkennen. 

GIT hatten häufiger Mutationen in den kodierenden MS von Senp6, Phactr4 und Rfc3. 

Bei den Lymphomen wurden demgegenüber hauptsächlich Mutationen in Tmem60, 

Sdccag1 und Rasal2 identifiziert. Dies ist in Übereinstimmung mit dem unterschiedlichen 

klinischen Verlauf und der entsprechend differenten Organmanifestation. 

 
 
 
 
 
 

BAT30 

wt 

wt/-1  

BAT26 

wt 

-2 

wt 

-3 

AA003063 



Ergebnisse 
 

 63 

 

 
 

Abbildung 24 MSI Analyse der MLH1-/- Tumoren mit codierenden Markern.  

Repräsentative Darstellung von kodierenden MS Markern. Typisch für die kodierenden Genabschnitte sind 

monoallelische Deletionen (ein Allel Wildtyp / Deletion des zweiten Allels). wt – Wildtyp; - – Deletion. 
 

5.5.3 Identifikation neuer Marker mit potentieller Relevanz für die Tumorgenese 

Um das Spektrum der Marker für MSI zu erweitern, wurde das Mutationsprofil von fünf 

neuen kodierenden MS-Markern zunächst an den drei etablierten MLH1-/- Zelllinien 

A7450 T1 M1, 328 und 1351, sowie nachfolgend an 55 primären MLH1-/- Tumoren un-

tersucht.  

Aufgrund des hohen Anteils an Tumorzellen eignen sich etablierte Zelllinien, die grund-

legend molekular charakterisiert sind, im Gegensatz zu Primärtumoren gut zur Identifi-

kation neuer Mutationen in kodierenden MS Markern. In den vorliegenden Untersuchun-

gen konnte bei allen fünf Markern, in mindestens einer Linie eine Frameshiftmutation 

nachgewiesen werden (Tab. 10). Alle drei Zelllinien tragen eine Akt3 (AKT serine/thre-

onine kinase 3) Mutation, welche sehr wahrscheinlich pathogenetisch relevant ist. Dar-

über hinaus wurde bei 2/3 Linien eine Interleukin 1 Familien Mitglied 9 (interleukin-1 

family member 9; Il1f9 oder IL-36γ), (A10 repeat), bzw. split ends (Spen), (A8 repeat), 

Mutation detektiert. 
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Tabelle 10: Identifikation von Mutationen innerhalb neuer kodierender MS-Marker bei MLH1-/- Tu-

morzellen.  

Dargestellt ist die Mutationsfrequenz der einzelnen Marker an den drei Zelllinien (MLH1-/- A7450 T1 M1, 

MLH1-/-328, MLH1-/- 1351). wt – Wildtyp; - – Deletion. 

Anschließend wurde die Fragmentlängenanalyse an 55 MLH1-/- Tumoren (38 GIT, 15 

Lymphome und zwei Andere) durchgeführt, um zu überprüfen, ob die detektierten Mu-

tationen in den Markern DnaJ Heat Shock Protein Family (Hsp40) Member C2 

(DNAJC2), IL1F9, Circadian Locomotor Output Cycles Kaput (Clock), Akt3 und Spen 

auch im Primärgewebe nachweisbar sind. Untersucht wurden sowohl therapierte Mäuse, 

als auch Kontrollmäuse. Insgesamt wurden GI-Tumorproben von 21 Kontrolltieren, sechs 

Tieren der Prophylaxe (3 x Vakzine, 2 x Gemcitabin + Vakzine, 1 x CPX + Vakzine) und 

elf Tieren der Therapiegruppen (3 x Vakzine, 5 x Gemcitabin + Vakzine, 3 x Gemcitabin) 

untersucht. Proben (N = 15) von Tieren, die ein Lymphom entwickelten, gliederten sich 

wie folgt: 4 x Kontrolle, 11 x Prophylaxegruppe (7 x Gemcitabin + Vakzine, 4 x Gemci-

tabin). Hierbei zeigte sich, dass die Mutationen grundsätzlich im Primärgewebe nach-

weisbar sind, die Mutationsfrequenz jedoch variiert (Tab. 11). In Analogie zu den in vitro 

Befunden der Zelllinien wurde erneut die höchste Mutationsfrequenz in Akt3 beobachtet. 

65,5 % aller Tumoren tragen eine Frameshiftmutation im T8-Repeat. In Tab. 12 ist die 

hohe Anzahl an MSI in Akt3, sowohl beim GIT, als auch bei Lymphomen in allen Grup-

pen dargestellt. Ein Drittel aller Tumoren hatte zusätzlich Mutationen in IL1F9 bzw. 

Clock. Somit sind alle fünf Marker relevant für die MLH1-/--assoziierte murine Tumor-

genese.  
  

 Dnajc2 Il1f9 Clock Akt3 Spen 

MLH1-/- 

A7450 T1M1 
wt wt/-1 wt wt/-1 wt 

MLH1-/- 328 wt wt wt wt/-1 wt/-1 

MLH1-/-1351 wt/-1 wt/-1 wt/-1 wt/-1 wt/-1 
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Tabelle 11: Fragmentlängenanalyse neuer Marker an 55 primären MLH1-/- Tumorproben 1.  
 

Verteilung der einzelnen Tumorproben: GIT (N = 38), Milzlymphome (N = 6), Leberlymphome (N = 6), 

Thymome (N = 6), Hauttumoren (N = 1), Hals-/Brusttumoren (N = 1). Dargestellt ist die Mutationsfrequenz 

pro untersuchtem Marker in den 55 Gewebeproben. wt – Wildtyp; - – Deletion; + – Insertion.  

 

Tabelle 12: Fragmentlängenanalyse neuer Marker an 55 primären MLH1-/- Tumorproben 2. 

 

Detaillierte Auflistung der MSI Häufigkeit in % in den Gewebeproben von GIT, Lymphom und anderen 

Tumoren. *Kontrolle ( N = 21), *Prophylaxe (N = 6), *Therapie (N = 11), #Kontrolle (N = 4), #Prophylaxe 

(N = 11), #Therapie (N = 3). 

 

Art der Mutation/ 

Frequenz [%] 
Dnajc2 Il1f9 Clock Akt3 Spen 

wt/-1 10,3 34,5 29,3 63,8 15,5 

wt/-2 1,7 0,0 1,7 0,0 0,0 

wt/+1 3,4 0,0 0,0 0,0 0,0 

-1 1,7 0,0 0,0 1,7 1,7 

1 1,7 0,0 0,0 0,0 0,0 

Gesamt 18,8 34,5 31,0 65,5 17,2 

MSI Frequenz [%] Dnajc2 Il1f9 Clock Akt3 Spen 

GIT (n=38) 

Kontrolle* 23 43 62 57 24 

Prophylaxe* 17 33 33 50 33 

Therapie* 9 18 9 64 27 

Lymphom 

(n=15) 

Kontrolle# 0 25 50 75 25 

Prophylaxe# 36 45 9 100 9 

Therapie# 0 67 0 33 0 

Andere 

(n=2) 
Therapie 0 0 0 0 0 
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6 Diskussion  

MMR-D-assoziierte Tumoren präsentieren eine Vielzahl Tumor-spezifischer Antigene 

(Frameshiftproteine) auf der Zelloberfläche, die vom Immunsystem erkannt werden (20). 

Aufgrund der hohen Tumorimmunogenität haben diese Tumoren verschiedene escape-

Mechanismen entwickelt, um sich dem Immunsystem zu entziehen (89). Folglich zielen 

immuntherapeutische Konzepte primär auf Reaktivierung bereits präformierter Neoanti-

gen-spezifischer Immunantworten ab, um Tumoren möglichst effektiv zu eliminieren. 

Ein möglicher Ansatz ist die Applikation Tumor-assoziierter oder -spezifischer (Neo-) 

Antigene (aktive Immuntherapie) in Form von Tumorvakzinen, um das Immunsystem zu 

stimulieren. Die Effizienz eines solchen Vakzins bei MMR-D-assoziierten Tumoren 

konnte in einer vorangegangenen Studie der Arbeitsgruppe an dem MLH1-/- Mausmodell 

aufgezeigt werden (108). Im Rahmen dieser Vorarbeiten wurde bestätigt, dass die repeti-

tive Gabe eines Gesamttumorlysates sowohl die Tumorgenese, als auch das Tumorwachs-

tum, durch Aktivierung des Immunsystems, verzögern. In der vorliegenden Dissertati-

onsschrift sollte dieser Ansatz durch kombiniert Chemo-Immuntherapie weiterentwickelt 

und verbessert werden. 

Die Ergebnisse werden im Folgenden diskutiert. 

6.1 Gemcitabin und Cyclophosphamid als immunmodulatorisch wirksame 

Chemotherapeutika und deren Anwendbarkeit in Kombination mit Immun-

therapie 

Untersuchungen zur Wirksamkeit von Arzneimitteln erfolgen typischerweise an Tiermo-

dellen. Jedoch ist die Wirksamkeit einiger Chemotherapeutika nicht direkt vom murinen 

auf das humane System übertragbar (114).  

Unter anderem spielt die Toxizität der Medikamente eine entscheidende Rolle. In einem 

Report von 2002 wurde die Toxizität an Mensch und Maus, ausgehen von Ergebnissen 

des International Life Sciences Institute (ILSI) und der multinationalen pharmaceutical 

company, verglichen. Hierbei stimmt die Toxizität bei Nagetieren lediglich in 43% der 

Toxizität beim Menschen überein. Dies beruht auf den biochemischen und physiologi-

schen Unterschieden zwischen Mensch und Nagetier. Insbesondere Unterschiede bei Ab-

sorption, Distribution, Metabolismus und Exkretion sind hauptverantwortlich (115,116).  

Dennoch sind Nagetiermodelle aktuell noch sehr weit verbreitet, um neue Therapiestra-

tegien für Tumorpatienten präklinisch zu evaluieren. Dies gilt in identischer Weise für 

das in dieser Arbeit verwendete MLH1-/- knockout Modell, welches ein klinisch 
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relevantes Modell der MMR-D-assoziierten Tumorgenese darstellt. MMR-D-assoziierte 

Tumoren treten, wie eingangs bereits beschrieben, sowohl sporadisch als auch hereditär 

im Kontext des Lynch Syndroms, sowie der CMMR-D auf. Lynch Syndrom Patienten 

entwickeln häufig in frühen Jahren CRC, aber auch andere Tumoren. Das Tumorspekt-

rum von CMMR-D Patienten ist entsprechend komplex und umfasst neben hämatologi-

schen Neoplasien auch Glioblastome, sowie gastrointestinale Tumoren. Dies stellt eine 

besondere Herausforderung für die Therapie dar. MMR-D-assoziierte bzw. MSI-H Tu-

moren stellen einen eigenen molekularen Subtyp dar, verschiedene Arbeiten konnten zei-

gen, dass damit einhergehend auch das Ansprechen auf bestimmte zytostatische Thera-

pien (z.B. 5-FU vs. Irinotecan) anders ist, als bei MSS Tumoren (52,59,117–119). 

In dieser Arbeit wurden zwei aus der Klinik bekannte Substanzen in vivo für eine kombi-

nierte Chemo-Immuntherapie eingesetzt: der Antimetabolit Gemcitabin und das Alkylanz 

CPX. Beide Substanzen wurden jeweils 24 h vor Beginn der Vakzine appliziert. Dieses 

Vorgehen orientiert sich an einer Arbeit aus der Literatur, in der CPX erfolgreich im Rah-

men einer Chemo-Immuntherapie im murinen Mammakarzinom-Modell eingesetzt 

wurde. Hierbei erhielten Mäuse ein HER2/neu positives Tumorzelllysat als subkutane 

Impfung. Zusätzlich wurde 24 h vor der ersten Vakzine CPX systemisch appliziert. Mit 

der Kombinationstherapie konnte eine Regression spontaner Mammakarzinome erreicht 

werden (120). Ziel dieses kombinierten Ansatzes ist, zytostatische Effekte in der thera-

peutischen Situation zu verstärken und gleichzeitig immunmodulatorisch, durch Elimina-

tion bestimmter Suppressorzellen, sowohl in der prophylaktischen, als auch therapeuti-

schen Situation, zu wirken.  

Gemcitabin ist ein Pyrimidin-Antagonist und wirkt durch den Einbau falscher Basen 

hemmend auf die DNA-Replikation. In vorangegangenen Arbeiten konnte die gute Wirk-

samkeit von Gemcitabin gegenüber MMR-D/MSI-H Zellen bereits aufgezeigt werden, 

welche den Einsatz in der vorliegenden Arbeit rechtfertigen. In einer Studie von Pelosof 

et al. wurden MSI-H und MSS Zelllinien auf unterschiedliche Chemotherapeutika getes-

tet (121). Hierbei zeigte sich, dass MSI-H Zellen besonders gut auf Gemcitabin anspre-

chen (IC50 80–350 nM), während MSS Zellen resistent gegenüber Gemcitabin sind (IC50 

≥1250 nM). In Übereinstimmung mit der Literatur zeigten in Voruntersuchungen die 

MLH1-/- Zellen ebenfalls ein gutes Ansprechen auf das Gemcitabin (122). Zwei Trans-

porter, human concentrative nucleoside transporter und human equilibrative nucleoside 

transporter, stellten sich als relevant für die Aufnahme von Gemcitabin in die Zelle her-

aus. Die Cytidin-Desaminase und Desoxycytidin Kinase wiederum haben einen wichti-

gen Einfluss auf den Metabolismus von Gemcitabin. Jedoch ergaben sich keine 
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Zusammenhänge zwischen dem erhöhten Ansprechen auf Gemcitabin und den Transpor-

tern oder dem Metabolismus. Der Mechanismus für das bessere Ansprechen ist bisher 

noch unbekannt (121). 

Neben seiner zytotoxischen hat Gemcitabin auch eine immunstimulierende Wirkung. 

Diese beruht, wie zuvor in der Einleitung (Punkt 2.4.4) dargelegt, u.a. auf der spezifischen 

Reduktion von MDSC. Durch die Induktion von immunogenem Zelltod in Tumorzellen 

werden überdies vermehrt Tumorantigene freigesetzt, welche von professionellen APC 

aufgenommen, prozessiert und schließlich T-Zellen präsentiert werden. Dies führt es zu 

einer Aktivierung und Expansion Antigen-spezifischer CD8+ und CD4+ T-Zellen, aber 

auch aktivierter NK-Zellen (98,123,124).  

In der vorliegenden Arbeit wurde Gemcitabin niedrig dosiert (100 mg/kg KG, i.p.) so-

wohl prophylaktisch, als auch therapeutisch verabreicht, sodass weniger die zytotoxische 

und mehr die immunstimulierende Wirkung im Vordergrund stand. In anderen Studien 

wurden teilweise höhere Dosen appliziert (120 mg/kg KG i.p.) (98,123).  

Durch die regelmäßigen Blutuntersuchungen, sowohl in der Prophylaxe als auch in der 

Therapie, wurde die Auswirkung der Therapie auf den Immunstatus beobachtet. In der 

Prophylaxe führte die Kombinationstherapie aus Vakzine und Gemcitabin, wie erwartet, 

zu einem Anstieg der CTL und NK-Zellen. Jedoch, entgegen der erwarteten immunmo-

dulatorischen Wirkung von Gemcitabin, wurden auch vermehrt MDSC im peripheren 

Blut detektiert. In der Milz hingegen waren weniger MDSC vorhanden. Interessanter-

weise hatte die kombinierte Chemo-Immuntherapie einen Einfluss auf die Infiltration von 

MDSC in den Tumor. Im Vergleich zur Vakzine-Monotherapie wurden ausschließlich 

nach Kombinationsbehandlung weniger MDSC im Tumormikromilieu nachgewiesen. 

Damit erzielte die einmalige Applikation von Gemcitabin auch Langzeiteffekte. 

Während in der Therapie die Vakzine-Monotherapie zu einem kontinuierlichen Anstieg 

der CTL und der MDSC führte, zeigte die Chemo-Vakzine eine signifikant verringerte 

Anzahl an zirkulierenden MDSC und einen deutlichen Anstieg der CTL. Das gleiche Bild 

zeigte sich bei der Immunphänotypisierung der Milz und bei der Untersuchung des Tu-

mormikromilieus.  

Somit bestätigt sich die Hypothese, dass Gemcitabin zusätzlich immunmodulatorisch 

wirksam ist.   

Wie erklärt sich jedoch die fehlende Suppression von MDSC in der Prophylaxe? Sowohl 

in der Prophylaxe, als auch in der Kombinationstherapie wurde Gemcitabin einmalig 24 

h vor der ersten Vakzine verabreicht. Daher kann der unterschiedliche Effekt nicht auf 

der Dosis beruhen. Für den prophylaktischen Ansatz wurden sehr junge Tiere in die 
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Untersuchungen eingeschlossen, die noch keine Anzeichen auf eine Tumorentwicklung 

und damit Immunsuppression aufwiesen. Es besteht somit die Möglichkeit, dass Gemci-

tabin zu früh appliziert wurde und die Anzahl an MDSC noch zu gering war, um deutli-

chere Effekte hervorzurufen. In zukünftigen Studien könnte daher eine Modulation des 

Therapieprotokolls helfen, MDSC effektiv zu eliminieren. Gegebenenfalls ist auch eine 

wiederholte Gabe in Erwägung zu ziehen. In Anbetracht der Gesamtversuchsdauer (80 

Wochen) wären monatliche Applikationen alternierend zur Vakzine durchaus realistisch. 

Neben dem Gemcitabin wurde auch CPX in Kombination mit der Vakzine appliziert. 

CPX wurde ursprünglich eingesetzt, um die Angiogenese von Tumoren im Endstadium 

zu hemmen (125).  

Das Alkylanz CPX besitzt, ähnlich wie Gemcitabin ebenfalls immunmodulatorische Ei-

genschaften, die primär auf der Inhibition von Treg basieren (126–128). Daneben sind 

auch Effekte auf NK-Zellen, DC und MDSC beschrieben. CPX induziert DC, welche 

vermehrt IL-12 und vermindert IL-10 produzieren. Somit wird die T-Zell-Antwort ver-

bessert und die Treg-Expansion unterdrückt. Im Gegensatz zu Gemcitabin scheint CPX 

allerdings MDSC zu induzieren. Bezüglich der NK-Zellen finden sich widersprüchliche 

Daten. Einerseits wird über eine verminderte Anzahl von NK-Zellen durch CPX berich-

tet, andererseits entfällt die hemmende Wirkung von Treg auf die NK-Zellen, wodurch 

die NK-Zell-Aktiviert wieder ansteigt. Hinzu kommt, dass CPX die T-Zell Immunantwort 

über den PD-1-PD-L1 Signalweg hemmt (129–132). 

Wir injizierten prophylaktisch einmalig i.p. 120 mg/kg KG CPX 24 h vor der ersten Va-

kzine. CPX zeigte hierbei auch entgegengesetzte Wirkungen. Wir konnten eine Unter-

drückung der Immuntoleranz nachweisen (Anstieg von CTL, NK-Zellen, Abfall von 

LAG-3). Die Anzahl an MDSC in der Prophylaxe war bei CPX deutlich höher, als beim 

Gemcitabin und bestätigt damit Angaben aus der Literatur (123,131).  

Aufgrund der fehlenden Suppression von MDSC und der geringeren immunmodulieren-

den Wirkung als Gemcitabin, ist CPX keine gute Alternative zum Gemcitabin. Möglich 

wäre jedoch eine kombinierte Gabe von Gemcitabin, CPX und Vakzinen in einer weiteren 

Studie zu testen, da auf diese Weise sowohl die Suppression der Treg, als auch der MDSC 

und somit wichtiger immunsupprimierender Zellen vereint werden könnte.   

  

Auch die Vakzinierung könnte durch Änderungen bei der Applikationsform möglicher-

weise verbessert werden. Einerseits könnte die s.c.-Injektion durch eine i.p.-Injektion er-

setzt werden. Beispielsweise erwies sich die i.p.-Injektion bei DC-Vakzinen als vorteil-

haft, da auf diesem Weg die abdominellen Lymphknoten besser erreicht werden (133). 
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Auch eine intratumorale Injektion von Vakzinen könnte das Outcome verbessern. In einer 

klinischen Studie Phase eins konnte gezeigt werden, dass eine intratumorale Injektion von 

DC-Vakzinen die Produktion von spezifischen Zytokinen erhöhte und das Überleben der 

Patienten verlängerte (134). 

 

6.2 Einfluss der prophylaktischen Chemo-Immuntherapie auf die Entwicklung 

von MLH1-/- Tumoren und das Gesamtüberleben 

Das Spektrum hereditärer MMR-D-assoziierter Tumoren ist sehr komplex und variiert 

stark zwischen den einzelnen Krankheitssyndromen (Lynch Syndrom und CMMR-D). 

MLH1-/- Mäuse entwickeln hämatologische Neoplasien (Lymphome; mittleres Erkran-

kungsalter: 3,8 Monate) und Lynch Syndrom-assoziierte Karzinome (GIT; mittleres Er-

krankungsalter: ca. 8,0 Monate) und vereinen damit Charakteristika beider Krankheits-

bilder (113,135). Als interessant erwies sich die Häufigkeit der unterschiedlichen Malig-

nitäten in der Prophylaxegruppe.  

Die alleinige Vakzine verzögerte die Tumorentwicklung, insbesondere bei den GIT, aber 

teilweise auch den Lymphomen, und verhinderte die Bildung anderer Karzinome, bei-

spielsweise der Haut (108). Wurde zusätzlich mit Gemcitabin präkonditioniert, so konnte 

primär die Entwicklung der GIT verzögert werden (um ca. 18 Wochen). Die wenigen 

Lymphome, welche sich unter dieser Prophylaxe entwickelten, traten besonders früh auf. 

Die Ursachen hierfür sind nicht vollständig geklärt. In allen Ansätzen wurde ein Tumor-

lysat eingesetzt, welches aus einem GIT gewonnen wurde. Entsprechend wurde – unab-

hängig vom Gemcitabin – die Genese gastrointestinaler Tumoren stärker gehemmt, als 

die der Lymphome. Gleichzeitig konnten wir zeigen, dass das Mutationsprofil zwischen 

beiden Entitäten heterogen ist und nur wenige „shared“ Antigene vorhanden sind (136). 

Daher ist es wahrscheinlich, dass primär Immunantworten gegen Antigene gebildet wur-

den, die von GIT präsentiert werden, weshalb, in der Konsequenz, primär die Genese von 

GIT beeinflusst wurde. 

Die CPX-Vakzine-Kombitherapie beeinflusste interessanterweise primär die Lympho-

magenese. Insgesamt zeigte sich ein ähnliches Tumorspektrum wie unter der Vakzine-

Monotherapie, jedoch mit deutlich verzögertem Auftreten der Lymphome. Die alleinige 

Gabe der Zytostatika hatte keinen Einfluss auf die Tumorentwicklung bzw. das -spekt-

rum. Daher wurden die Ergebnisse dieser Prophylaxegruppe mit den unbehandelten Kon-

trollen zusammengefasst. 
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MMR-D Tumorzellen akquirieren bei jeder Teilung neue Mutationen. In der Konsequenz 

entstehen hyper- oder ultrahypermutierte Tumoren (137,138). Da die Vakzinierung mit 

Tumorlysat nur dann wirksam ist, wenn diese vor einem Tumor-assoziierten Ereignis ver-

abreicht werden, sollten prophylaktische Vakzine möglichst früh appliziert werden, um 

den maximalen Effekt zu erzielen. Dies zeigten auch andere Vakzine-Studien, beispiels-

weise die prophylaktische Injektion des Totimpfstoffs bei Humanen Papilloma-Virus 

(HPV)-assoziierten Karzinomen (139) oder von DC-Vakzinen beim Pankreas-Karzinom 

(140).  

Dies könnte bei Patienten mit Lynch Syndrom und CMMR-D eine wesentliche Rolle 

spielen. Bei beiden Krankheitsbildern ist die Tumorgenese akzeleriert - charakterisiert 

durch eine verkürzte Adenom-Karzinom-Sequenz. 

Bei Lynch-Anlageträgern zeigte sich, dass durch eine prophylaktische Applikation von 

Ibuprofen oder Aspirin, das Risiko ein CRC zu entwickeln, gesenkt wird (141). Beide 

Medikamente hemmen die Cyclooxygenase 2, welche möglicherweise in MMR-D-asso-

ziierten Tumoren überexprimiert ist. Aspirin verringert zusätzlich die Anzahl der Tumor-

infiltrierenden Lymphozyten. Beide Mechanismen sind jedoch unabhängig von der 

Keimbahnmutation und gelten auch für das sporadische CRC (142,143). 

Den DC-Vakzinen wird eine wichtige Rolle in der Immuntherapie zugeschrieben. DC 

sind professionelle Antigen-präsentierende Zellen und besitzen daher die Fähigkeit Pep-

tide, beispielsweise Tumor-spezifische Antigene, effizient dem Immunsystem zu präsen-

tieren. Hierzu werden DC ex vivo entnommen und mit den spezifischen Antigenen bela-

den. Beispielsweise wurden DC-Vakzine in einer klinischen Phase I Pilotstudie beim 

Wilms-Tumor eingesetzt. Hierfür wurden DC mit dem Wilms Tumor Gen 1 Antigen be-

laden und anschließend s.c. in Axilla- oder Leistengegend injiziert. Zusätzlich verab-

reichte man Gemcitabin. Dadurch konnte der Progress von lokal fortgeschrittenen Tumo-

ren und nicht metastasierten Tumoren eingeschränkt werden (144). 

Gemeinsam mit der intensiven präventiven Diagnostik könnte die prophylaktische Ap-

plikation einer Tumorvakzine in Zukunft zu einem besseren Outcome der betroffenen 

Patienten führen (145,146).  

 

6.3 Einfluss der therapeutischen Chemo-Immuntherapie auf Tumorwachstum 

und Gesamtüberleben  

In der Vorstudie konnte bereits gezeigt werden, dass eine therapeutische Applikation der 

Tumorvakzine zu einem signifikant besseren Überleben von MLH1-/- Mäusen führt (108). 
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Durch die Kombinationstherapie mit Gemcitabin 24 h vor der ersten Vakzine erhofften 

wir uns eine Verbesserung der Überlebenszeit und eine Reduktion der Tumormasse. Je-

doch konnten wir in den Ergebnissen keine signifikante Verbesserung nachweisen. Be-

trachtet man die Tumorremission, so erzielte die Vakzine-Monotherapie sogar eine bes-

sere Remission, als die Chemo-Immuntherapie (31% vs. 26%). Die Mäuse der Vakzine-

Monotherapie wiesen Anfangs einerseits dezent mehr Tumorknoten auf, das Tumorvolu-

men war jedoch geringer als das der Chemo-Immuntherapie (3,5 ± 1,7 Tumorknoten und 

93,4 ± 74,8 mm3 Tumorvolumen vs. 3,0 ± 1,7 Tumorknoten und 110,1 ± 90,6 mm3 Tu-

morvolumen). Jedoch erzielte die Kombinationstherapie bei einem Tier eine komplette 

und bis zum Erreichen des experimentellen Endpunktes anhaltende Tumorremission. Im 

Vergleich zu den anderen Tieren war der Tumor bei diesem Tier besonders klein (< 50 

mm3), was eine mögliche Erklärung für das gute Ansprechen darstellt. 

In einer klinischen Studie zum Mammakarzinom stellte sich die Tumorgröße als wichti-

ges Maß für das Ansprechen der neoadjuvanten Chemotherapie heraus (147). Die durch-

schnittlich geringere Tumormasse bei der Vakzine-Monotherapie könnte ein Grund für 

das bessere Ansprechen dieser Therapie, im Vergleich zur Chemo-Immuntherapie sein.  

In Hinblick auf das Gesamtüberleben erzielte die Chemo-Immuntherapie einen Vorteil, 

da das Überleben über die 40. Lebenswoche hinaus erreicht wurde. Die therapeutischen 

Vorteile könnten auf die zusätzlich immunstimulierende Wirkung von Gemcitabin zu-

rückzuführen sein. Vor allem die MDSC konnten unter der Kombinationstherapie deut-

lich gesenkt werden. Zusätzlich wurde weniger PD-L1 auf zirkulierenden Lymphozyten 

nachgewiesen.  

Eine Möglichkeit zur Verbesserung des outcomes wäre eine Erhöhung der Dosis und/oder 

eine mehrmalige Applikation von Gemcitabin. Auch andere Kombinationen von Chemo-

Immuntherapie, beispielsweise mit Immuncheckpoint-Inhibitoren könnten in Zukunft 

bessere Ergebnisse erzielen. Weiterhin sollte diesbezüglich geforscht werden, da die Tu-

morremission und langanhaltende Remissionsfreiheit eines Tieres zeigt, dass dies ein 

richtiger Therapieweg sein kann.  

 

6.4 Auswirkungen der prophylaktischen und therapeutischen Chemo-Immunthe-

rapie auf das Tumormikromilieu 

Das Tumormikromilieu hat sich als ein komplexes, einzigartiges und eigenständiges im-

munologisches „Organ“ herausgestellt, welches häufig einen immunsuppressiven Cha-

rakter aufweist.  



Diskussion 
 

 73 

Das Tumormikromilieu von Lynch Syndrom Patienten wurde mikroskopisch untersucht 

und ergab Unterschiede zu den murinen GIT. Bezüglich des Tumormikromilieus von 

CMMR-D Patienten finden sich derzeit keine vergleichenden Daten. 

Ein spezifisches Charakteristikum MSI-H-assoziierter Neoplasien ist deren, im Vergleich 

zu MSS Tumoren hohe Anzahl Tumor-infiltrierender Lymphozyten. Hierbei zeigte sich 

eine sehr hohe Anzahl an CTL, welche sich besonders an der Invasionsfront des Tumors 

anreichern, und eine moderate Anzahl von T-Helferzellen (148–150). Ursächlich hierfür 

ist die vermehrte Produktion von Neoantigenen. Die Idee ist, dass diese Neoantigene spe-

zifisch für jeden Tumor und relevant für das Tumormikromilieu sind, wenn diese prozes-

siert und von APC den T-Zellen präsentiert werden (151–153). Es zeigte sich auch, dass 

die Anzahl von Tumor-infiltrierenden Lymphozyten mit der Anzahl an Frameshiftmuta-

tionen korreliert (154). 

Neben den Neoantigenen trägt beispielsweise auch die Produktion von immunregulatori-

schen Zytokinen und Chemokinen zur Entwicklung eines immunologischen Tumormik-

romilieus bei (40).  

Doch die Frage ist: „Wie können sich MMR-D-assoziierte Tumoren dem Immunsystem 

entziehen?“ Die Antwort findet sich bei der Untersuchung des Mikromilieus. Denn auf 

den Tumor-infiltrierenden Lymphozyten zeigt sich eine dramatische Überexpression von 

Immuncheckpoint-Molekülen, wie PD-1, CTLA-4, IDO und LAG-3, welche sich im 

Stroma und in der Invasionsfront befinden (40,155). Durch Schaffung eines lokalen im-

munsuppressiven Mikromilieus schützt der Tumor sich vor dem Immunsystem. Immun-

checkpoint-Moleküle sind physiologischerweise für die Selbsttoleranz zuständig und die-

nen dem Schutz von Autoimmunreaktionen. Jedoch können die Immuncheckpoint-Mo-

leküle durch Tumorzellen dysreguliert werden. Zu den zwei am Besten erforschten Im-

muncheckpoint-Rezeptoren zählen CTLA4 und PD-1. Beide gehören zu den inhibieren-

den Rezeptoren (93). Die Hauptaufgabe von CTLA4 liegt in der Hemmung der T-Helfer-

zellaktivität und der Steigerung der von Treg verursachten Immunsuppression (156). Die 

Regulation der T-Zellaktivität, beispielsweise bei einer Entzündungsreaktion im Gewebe 

auf Infektion oder Autoimmunität, ist die Hauptaufgabe von PD1. Dies wird unter ande-

rem über die vermehrte Produktion von Zytokinen, wie IFNγ und IL2, eine verminderte 

Expression von Zellwachstumsproteinen oder durch Veränderung der Interaktion mit den 

DCs und anderen Zielzellen erreicht. PD1 ist jedoch nicht nur auf den T-Lymphozyten 

zu finden, sondern auch auf NK-Zellen und B-Lymphozyten, wodurch die Zelllyse limi-

tiert wird (155,157,158). In Melanomen wird vermutet, dass die erhöhte PD-L1-Expres-

sion auf den Tumorzellen und die vermehrte T-Zell-Infiltration auf eine hohe IFNγ-



Diskussion 
 

 74 

Produktion durch die aktivierten T-Zellen zurückzuführen ist. Durch Bindung von PD-1 

und PD-L1 kommt es zur Hemmung der T-Zell-Aktivität, wodurch die antitumorale Wir-

kung inhibiert wird. Es gilt, dass MMR-D-assoziierte Tumoren mehr PD-L1 exprimieren, 

als deren Pendant und eine erhöhte IFNγ-Produktion von T-Zellen aufweisen. Jedoch 

wird nur eine geringe Anzahl von PD-L1 auf den Tumorzellen und ein Großteil von PD-

L1 auf MDSC exprimiert. 

Interessanterweise führte in der vorliegenden Arbeit sowohl die therapeutische Vakzine-

Monotherapie, als auch die therapeutische Chemo-Immuntherapie mit Gemcitabin zu ei-

ner Hochregulation von PD-L1 und LAG-3 auf den peripheren, sowie Tumor-infiltrieren-

den Lymphozyten. Die durch die Therapie deutlich reduzierten infiltrierenden MDSC ex-

primierten ausschließlich unter der Vakzine-Monotherapie vermehrt PD-L1.  

LAG-3 inhibiert aktivierte T-Zellen und findet sich vermehrt an der Oberfläche von Treg, 

wo es für eine verstärkte immunsuppressive Aktivität sorgt (93,159).  

Das Tumormikromilieu von unbehandelten MLH1-/- Mäusen weist Unterschiede zum hu-

manen Pendant auf. Die CTL und T-Helferzellen werden hier nur in einem bestimmten 

Ausmaß und die NK-Zellen in einer absoluten Minderheit nachgewiesen. Letzteres ist 

darauf zurückzuführen, dass MLH1-/- Tumoren MHC-I positiv sind (113). Die CD11b+ 

Granulozyten und CD200R+ Tumor-assoziierte (M2) Makrophagen infiltrieren den Tu-

mor stark. Beide Zelltypen fördern die Tumorprogression. Auch hier findet sich eine 

starke Expression von Immuncheckpoint-Molekülen. Während CTLA4 auf den Tumor-

zellen vermehrt exprimiert wird, sind PD-1 und PD-L1 auf den Stromazellen und den 

Tumor-infiltrierenden Lymphozyten erhöht. Interessant ist, dass LAG-3 nahezu nicht ex-

primiert wird (113,160). 

In der prophylaktischen Situation zeigte sich durch die kombinierte Gabe von Gemcitabin 

und Vakzine folgendes Bild: CD11c+ DC infiltrierten vermehrt, CD11b+ Makrophagen 

vermindert den Tumor und MDSC wurden effektiv eliminiert. Dies kann als erfolgreiche 

Immunmodulation interpretiert werden. CTL waren vereinzelt detektierbar, NK-Zellen 

wurden nicht erfasst. Durch die Kombination von CPX und Vakzine zeigte sich ein ähn-

liches Bild, jedoch infiltrierten CD11c+ DC weniger stark den Tumor. PD-L1+-Zellen 

wurden ebenfalls nachgewiesen.  

Infolge der therapeutischen Chemo-Immuntherapie mit Gemcitabin veränderte sich das 

immunhistologische Bild dahingehend, dass es zu einem deutlichen Anstieg der CTL und 

T-Helferzellen kam. Somit zeigte sich, dass ein proentzündlicher Prozess stattfindet. 

LAG-3+ und PD-L1+ wurden auf den Lymphozyten hochreguliert und die MDSC 
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reduzierten sich stark. DCs waren nach Kombitherapie nur marginal vermehrt detektier-

bar, der Anteil Tumor-assoziierter Makrophagen nahm ab.  

 

Da Mäuse prinzipiell in einer anderen Umgebung leben als Menschen und dabei Kontakt 

zu anderen Antigenen haben, finden sich Unterschiede im Immunsystem. Daher ist es 

auch verständlich, dass nicht jede neue Erkenntnis automatisch vom präklinischen Maus-

modell auf das humane System übertragen werden kann. Die allgemeine Struktur des 

Immunsystems beider Lebewesen stimmt überein. Jedoch ist beispielsweise die Anzahl 

an neutrophilen Granulozyten im menschlichen Blut besonders hoch, während Mäuse 

eine höhere Anzahl an Lymphozyten besitzen. Weiter Unterschiede finden sich unter an-

derem bei der Expression von Immunglobulinen, beim Klassenwechsel, bei der Entwick-

lung und Regulation von T-Zellen, sowie der Expression von Zytokinen und Chemokinen 

(161).  

Auch bei der Expression von Oberflächenmolekülen auf dem Tumor zeigen sich Unter-

schiede. Der Transferrin-Rezeptor CD71 und FasL sind bei MLH1-/- Zellen vermehrt ex-

primiert, während diese im humanen System nicht zu finden sind. FasL ermöglicht, durch 

die Induktion von Apoptose bei den Immunzellen, dem Tumor ein immunprivilegiertes 

Mikromilieu (162,163).  

 

Aufgrund der Überexpression von Immuncheckpoint-Molekülen könnten Immuncheck-

point-Inhibitoren effizient zur Therapie eingesetzt werden. Alle vier oben beschriebenen 

Immuncheckpoint-Moleküle, welche bei MMR-D-assoziierten Tumoren überexprimiert 

sind, werden aktuell in Studien getestet. PD-1 und PD-L1 Inhibitoren wurden bereits in 

der Therapie von malignem Melanom, nicht-kleinzelligem Bronchial-Karzinom, Nieren-

zell-Karzinom, klassischem Hodgkin-Lymphom, Plattenepithel-Karzinomen des Kopf-

Hals-Bereichs sowie fortgeschrittenem Urothel-Karzinom eingesetzt. Seit 2017 ist diese 

Therapie mit anti-PD-1 auch für MMR-D-assoziierte Tumoren zugelassen. Die Zulassung 

durch die FDA erfolgte damit auch erstmals aufgrund eines spezifischen Biomarkers 

(=MMR-D/MSI-H), unabhängig von der Organmanifestation. Insgesamt wurden 15 ver-

schiedene Tumorentitäten bei 149 Patienten identifiziert, die über fünf klinische Studien 

eingeschrieben wurden. Von den 149 Patienten, die den anti-PD-1 Antikörper Pembroli-

zumab in den Studien erhielten, erreichten 39,6% ein vollständiges oder teilweises An-

sprechen (164–167).  

Vor diesem Hintergrund sind Kombinationsstrategien mit Immuncheckpoint-Inhibitoren 

besonders vielversprechend für die Therapie MMR-D-assoziierter Tumoren. Eine 
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wesentliche Komponente ist dabei das weitere Erforschen der spezifischen immunologi-

schen Mechanismen im Tumormikromilieu, um auf diese Weise weitere Angriffspunkte 

für eine Immuntherapie zu identifizieren (40,155,168–170).  

 

6.5 Identifikation neuer MSI-Zielgene der murinen MLH1-/- Tumorgenese 
 
Aktuell gibt es nur sehr wenige Daten zum murinen Mutanom und der damit einherge-

henden relevanten Mutationen für die Tumorgenese. In einer Studie von Woerner et al., 

konnten sechs Gene (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3) in unterschiedli-

chen murinen MMR-D GIT identifiziert werden (112). Dabei stimmten Rfc3 und Elavl3 

mit dem humanen System in Länge und Typ überein. Beide Gene sind häufig mutiert bei 

humanen MMR-D-assoziierten Endometrium- und Magen-Karzinomen. Aufgrund von 

Überlappungen hinsichtlich der auftretenden Mutationen während der Onkogenese, kön-

nen partiell Aussagen von Maus auf Mensch übertragen werden.  

In dieser Arbeit wurde einerseits das Mutationsprofil bereits bekannter Zielgene bei un-

terschiedlichen MLH1-/- Tumoren erfasst und andererseits auch neue, potentiell relevante 

Zielgene untersucht. Die am Häufigsten mutierten Gene waren Phactr4 (25,7 %), Senp6 

(37,6 %), Sdccag1 (41,1 %), Rasal2 (41,7 %) und Rfc3 (65,6 %). Mutationen wurden 

Entitäten-übergreifend, jedoch mit unterschiedlicher Frequenz bei den GIT und NHL de-

tektiert, einhergehend mit dem klinischen Verlauf. Während Senp6, Phactr4 und Rfc3 

häufiger bei GIT mutiert waren, waren Mutationen in Tmem60, Sdccag1 und Rasal2 meist 

mit NHL assoziiert.  

Ebenfalls konnten fünf weitere Gene als potentielle Marker identifiziert werden, welche 

homolog zur Sequenz des Menschen sind.  

Das am Häufigsten betroffene Gen ist Akt3. Mutationen in diesem Gen scheinen ursäch-

lich für die Onkogenese von MMR-D Tumoren verantwortlich zu sein. Es kodiert für das 

Enzym RAC-gamma serine/threonine-protein kinase und ist beteiligt an zahlreichen Pro-

zessen wie Zellwachstum, Proliferation, Angiogenese und Metabolismus, es schützt vor 

Apoptose und DNA-Schädigung und sorgt für Genomstabilität und -motilität (171,172). 

Auch das zur Interleukinfamilie zählende Il1f9, welches von Interleukin 36 gamma Gen 

kodiert wird, wurde als häufiges Zielgen identifiziert. Es ist eines der drei agonistisch 

wirksamen Zytokine welches vom Interleukin 36 gamma Gen kodiert wird. Alle drei Zy-

tokine wirken über den gleichen Rezeptor und lösen die gleiche Signalkaskade aus, sie 

aktivieren beispielsweise nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

(NF-κB) und mitogen-activated protein Kinase (MAPK). Besonders stark sind die Gene 
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in der Haut und Lunge exprimiert, aber auch im Darm sind sie zu finden. Sie werden 

einerseits auf den Epithelzellen und andererseits auf Immunzellen exprimiert, wobei sie 

sowohl die angeborene, als auch die erworbene Immunantwort stimulieren. Unter ande-

rem stimuliert IL-36 das Reifen der Th1-Zellen und die Sekretion von IFN-γ, es fördert 

die Entwicklung von CD4+ T-Zellen zu Th17-Zellen und die Expansion von IL-17-sezer-

nierenden CD4+ Gedächtniszellen. Ein wichtiger Unterschied zu anderen Interleukinen 

ist die Expression auf den naiven T-Zellen. Somit ist IL-36 vor allem an der frühen Im-

munantwort beteiligt (173). 

Clock ist ein Gen, welches für CLOCK, einem Transkriptionsfaktor kodiert. CLOCK re-

guliert über die Kontrolle von anderen CLOCK-Proteinen die zirkadiane Rhythmik und 

steht im Zusammenhang mit Karzinomen. In der Studie von Alhopuro et al. wurde Clock 

als ein MSI Zielgen identifiziert. Auch wir konnten bei insgesamt 31 % der Tumoren eine 

Mutation im Clock-Gen nachweisen (174). 

Das Spen-Gen kodiert für die msx2-interacting Proteine. Die Proteine sind wichtige Ko-

Faktoren, beispielsweise von den Estrogenrezeptoren und beteiligt an der Transkription 

von Regressoren. Auch an der Regulation zahlreicher Signalwege, wie Notch, TCF/LEF 

und EGFR ist Spen beteiligt. Spen kann das Tumorwachstum hemmen und ist somit ein 

Tumorsuppressorgen. Vor allem in der Therapie des Mammakarzinoms hat Spen Auf-

merksamkeit erlangt, da es ein wichtiger Regulator der ER-abhängigen Transkription von 

Apoptose-assoziierten Genen und ein Angriffspunkt für die Tamoxifentherapie darstellt 

(175). Da bisher nicht nur im Mammakarzinom, sondern auch im Zervix- und Endomet-

rium-Karzinom vermehrt Mutationen im Spen-Gen nachgewiesen wurden, wird auch in 

vielen weiteren Karzinomen ein Zusammenhang mit diesem Gen vermutet (176). Bei 

17,2% aller untersuchten Gewebeproben wiesen wir eine Mutation im Spen-Gen nach.  

Schließlich wurde noch das Gen Dnajc2, welches für das Protein DnaJ homolog subfa-

mily C member 2 kodiert, erfasst. Das Protein kann sowohl als Chaperon, als auch als 

Regulator für Chromatin wirksam sein und reguliert die Transkription in Stammzellen 

(177). Dnajc2 Mutationen stehen vor allem im Zusammenhang mit der akuten und chro-

nischen myeloischen Leukämie (178,179). Ebenfalls wurden bei MMR-D-assoziierten 

Tumoren Mutationen in Dnajc2 nachgewiesen (180) Auch wir konnten bei 18,8% der 

Gewebeproben eine Mutation nachweisen.   

Damit wurden in dieser Arbeit neue Zielgene der murinen MLH1-/- Tumorgenese identi-

fiziert, welche neben der Relevanz bei der Tumorentstehung auch potentielle Zielstruk-

turen für nachfolgende Neoantigen-spezifische Peptid-basierte Ansätze darstellen. 
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6.6 Kritische Beurteilung der Vor- und Nachteile des verwendeten MLH1-/- Maus-

modells  

Der Leitspruch von Jacques Monod und François Jacob lautete „Anything found to be 

true of E. coli. must also be true of elephants.”(181), und beschreibt die Einheitlichkeit 

der Organismen, als Basis von Forschungsmodellen in der Biologie. Beim Übertragen 

bestimmter Aussagen von einem, auf einen anderen Organismus spielt neben der Einheit-

lichkeit jedoch auch die Diversität eine wichtige Rolle. Besonders das Mausmodell hat 

sich im Laufe der Jahre als ein bewährtes Studienmodell für Basisforschung biologischer 

Prozesse herausgestellt.  

Es gibt zahlreiche Vorteile, welche das Mausmodell in der Forschung so populär gemacht 

haben. Mäuse sind klein, haben eine hohe Reproduktionsrate und kurz Generationszeit, 

sie sind leicht zu transportieren und einfach in der Haltung, wobei ihre Umwelt gut be-

einflussbar ist. Das murine Genom ist sehr gut mittels Sequenzierung erforscht. Es zeigte 

sich, dass die Gene von Mäusen zum Großteil mit den humanen übereinstimmen, etwa 

85% der protein-kodierenden Genabschnitte. Auch die zahlreichen Möglichkeiten das 

murine Genom zu manipulieren, machen Mäuse zu einem idealen Forschungsmodell 

(182). 

So spielte das Mausmodell beispielsweise bei der Erforschung immunologischer Pro-

zesse, wie MHC Gene, T-Zellrezeptoren und der Produktion regulierender Antikörper 

eine wichtige Rolle.  

Mensch und Maus entwickelten sich evolutionär jedoch nicht gleichwertig, wodurch 

nicht alle Aussagen einheitlich für beide Organismen gelten (161,183). Die evolutionären 

Unterschiede entstanden durch Anpassung der Organismen an die Umwelt. Werden die 

evolutionären Ereignisse verstanden und in die Untersuchungen miteinbezogen, können 

die Probleme vorausgesagt und mitgerechnet werden (184). Daher sollten Forschungser-

gebnisse präklinischer Untersuchungen stets kritisch hinterfragt werden.  

Einer der wichtigsten Unterschiede zwischen Menschen und Mäusen ist die Größe. Diese 

spielt eine wichtige Rolle bei zahlreichen Abläufen im Körper, wie auch auf Grundumsatz 

und biologisch-ökologischen Merkmalen. Die Unterschiede im Grundumsatz betreffen 

zahlreiche anatomische, physiologische und biochemische Aspekte. Mäuse verfügen bei-

spielsweise über eine hohe dichte an Mitochondrien in der Zelle. In Bezug auf die biolo-

gisch-ökologischen Merkmale spielt die Größe ebenfalls eine wichtige Rolle. Sie beein-

flusst das Alter der Geschlechtsreife, die Schwangerschaftsdauer, das Geburtenintervall, 

wie viel Energie in Reproduktion investiert wird und die Lebenserwartung und -dauer. 
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Durchschnittlich leben Wild- und Labormäuse etwa drei bis vier Jahre, wobei die Lebens-

erwartung bei Wildmäusen deutlich niedriger ist (natürliche Selektion). Obwohl Labor-

mäuse eine längere Lebenserwartung haben, wird die Lebensdauer durch Entwicklung 

maligner Prozesse und Erkrankungen ebenfalls verkürzt. Auch hinsichtlich des Mikrobi-

oms, dem damit assoziierten Auftreten von Tumoren im Gastrointestinaltrakt, sowie de-

ren anatomischer Lage (Duodenum vs. Kolon), finden sich Unterschiede zwischen huma-

nen und murinen System. Die Unterschiede sind jedoch nicht nur auf genetische und epi-

genetische Ursachen zurückzuführen (114).  

Auch die Umwelt spielt eine entscheidende Rolle, beispielsweise beim Mikrobiom (114). 

Im menschlichen Darm befinden sich etwa 100 Trillionen Mikroorganismen (Bakterien, 

Viren und Pilze), welche ab dem ersten Lebensabschnitt gesammelt werden. Die Mutter 

übergibt die kommensale Flora von Haut, Vagina und Stuhl auf das Neugeborene. Das 

Mikrobiom ist durch Umwelteinflüsse, wie Infektionen, Ernährungsformen und Lebens-

stil dauerhaft im Wandel, wodurch sich eine Dysbalance mit Entzündung und Karzino-

genese im Darm entwickeln kann. Auch das Mikromilieu des Tumors ist durch die Im-

munreaktion und Entzündung definiert und hat einen großen Einfluss auf die Regulation 

und Zusammensetzung des Mikrobioms. Daher wird die Applikation von Probiotika oder 

Stuhltransplantationen als vorteilhaft in Bezug auf chronische Entzündungen und Ge-

notoxizität gesehen (185). Das Mikrobiom hat auch einen wesentlichen Einfluss auf Me-

tabolismus, Effektivität und Toxizität von Medikamenten (182,185,186). 

Beispielsweise wird ein übermäßiges Vorkommen des Bakteriums Fusobacterium nucle-

atum, welche ein Teil des humanen Mikrobioms darstellen, im Zusammenhang mit der 

CRC Genese gesehen, da die Proteine des Bakteriums MDSC rekrutieren und die T-Zell-

Proliferation hemmen. In den rekrutierten MDSC werden durch F. nucleatum auch Im-

muncheckpoint-Moleküle hochreguliert (155,187,188). 

Obwohl MLH1-/- Mäuse ein intaktes Immunsystem haben, wurden diese in einer SPF-

nahen Haltung gehalten, wobei jeglicher Kontakt mit Mikroorganismen fehlte. Daher ent-

wickeln diese Mäuse kein Mikrobiom, welches mit dem humanen vergleichbar ist. Da 

das Mikrobiom jedoch aus Gründen, welche oben beschrieben wurden, relevant für Tu-

morgenese und Therapie ist, sollte in den folgenden Versuchen über eine eventuelle zu-

sätzliche Applikation von Probiotika nachgedacht werden.  

 

Das MLH1-/- Mausmodell ist in vielerlei Hinsicht ein gut untersuchtes, präklinisches Mo-

dell, welches die Tumorgenese das Lynch Syndroms und der CMMR-D besser verstehen 

lässt. Da der Großteil der Patienten entweder eine MLH1- oder MSH2- 



Diskussion 
 

 80 

Keimbahnmutation tragen, lässt das Modell in Hinsicht auf Tumorentwicklung und The-

rapie Rückschlüsse ziehen (109). Jedoch unterscheidet sich das Tumorspektrum zwischen 

MLH1-/- Mäusen und betroffenen Patienten. Obwohl das Lynch Syndrom und die 

CMMR-D ein sehr breites Tumorspektrum aufweisen (Endometrium-, Ovarial-Karzi-

nom, Glioblastome, Leukämien, etc.), entwickeln MLH1-/- Mäuse, neben den GIT, am 

häufigsten Lymphome (Thymome und Non-Hodgkin-Lymphome) (43,53). Die Anzahl 

der sich spontan entwickelnden Tumoren bei den MLH1-/- Mäusen zeigte eine ähnliche 

Verteilung zwischen GIT und Lymphomen: 51 % Lymphome/Thymome, 47 % GIT und 

2 % andere Tumore (Haut-, Kopfhalstumoren). Somit bestätigte sich die Tumorverteilung 

aus den Vorarbeiten der Arbeitsgruppe (113). 
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7 Zusammenfassung 
Das Lynch Syndrom ist das häufigste Tumorprädispositionssyndrom und umfasst ca. 2-3 

% aller kolorektalen Karzinome (CRC). Ausgehend von einer monoallelischen Keim-

bahnmutation in einem der DNA Mismatch Reparatur (MMR) Gene, tragen somatische 

Mutationen im zweiten Allel ursächlich zur Tumorgenese bei. Ein weiteres, sehr seltenes 

und komplexes Krankheitsbild ist die konstitutionelle MMR-Defizienz (CMMR-D), wel-

che aufgrund einer biallelischen Keimbahnmutation entsteht. Beiden Syndromen liegt 

eine MMR-D als Ursache für die maligne Transformation zugrunde. Ein Charakteristi-

kum MMR-D-assoziierter Tumoren ist Mikrosatelliteninstabilität (MSI) und die damit 

einhergehende hohe Abundanz an Neoantigenen, welche auf der Tumorzelloberfläche 

präsentiert und von T-Zellen erkannt werden. Damit stellen MMR-D-assoziierte Tumo-

ren ideale Zielstrukturen für immuntherapeutische Interventionen dar. 

Vor diesem Hintergrund wurde in der vorliegenden Arbeit ein murines präklinisches Mo-

dell der spontanen MMR-D-assoziierten Tumorgenese (MLH1-/- gene knockout Mäuse) 

eingesetzt und die Wirksamkeit einer kombinierten Chemo-Immuntherapie eruiert. Die-

ser Ansatz basiert auf Vorarbeiten der Arbeitsgruppe, in denen gezeigt werden konnte, 

dass die alleinige Gabe eines Tumorvakzins (= Gesamttumorlysat eines MLH1-/- gastro-

intestinalen Tumors (GIT)) das Gesamtüberleben von MLH1-/- Mäusen signifikant ver-

längert. Ausgehend von diesen Befunden wurde der Vakzine-basierte Ansatz um die Zy-

tostatika Gemcitabin bzw. Cyclophosphamid (CPX), sowohl in der prophylaktischen, als 

auch therapeutischen Situation erweitert.  

Für den prophylaktischen Ansatz erhielten tumorfreie Tiere einmalig 24 h vor der eigent-

lichen Vakzine Gemcitabin (100 mg/kg KG, i.p., -24 h) oder CPX (120 mg/kg KG, i.p., 

-24 h), gefolgt von repetitiven Injektionen des Vakzins (10 mg/kg KG, s.c.). Bei der the-

rapeutischen Gabe wurden Tiere mit gesicherten Tumoren (mittels 18F-FDG PET/CT) mit 

Gemcitabin (100 mg/kg KG, i.p., -24 h) präkonditioniert und anschließend vakziniert (10 

mg/kg KG, s.c.). Der Einfluss der Therapie auf das Tumorwachstum wurde im Verlauf 

wiederholt mittels PET/CT erfasst. Die regelmäßigen Blutentnahmen und eine postmor-

tale Untersuchung der Milz ermöglichten das Immunmonitoring (durchflusszytometri-

sche Phänotypisierung, IFNγ Freisetzung mittels ELISpot). Das Tumormikromilieu 

wurde mithilfe der Immunfluoreszenz untersucht.  

Die prophylaktische Kombinationstherapie mit Gemcitabin verzögerte, im Vergleich zur 

Vakzinemono- oder Kombinationstherapie mit CPX, die Tumorentwicklung und verlän-

gerte das Gesamtüberleben (Mediane Überlebenszeit: 53,4 vs. 47,4 vs. 47,7 Wochen). 

Unter dieser Kombinationstherapie blieben 33,3 % der Mäuse bis zum Erreichen des 
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experimentellen Endpunktes tumorfrei. Diese Effekte wurden auch auf immunologischer 

Ebene, durch erhöhte Anzahl an CTL und NK-Zellen im peripheren Blut, bestätigt. Je-

doch wurden ebenfalls mehr PD-L1+ Leukozyten und myeloide Suppressorzellen 

(myeloid-derived suppressor cells, MDSC) detektiert, welche vermutlich einen erworbe-

nen Resistenzmechanismus darstellen. In den resultierenden Tumorresektaten wurden 

ebenfalls vermehrt NK-Zellen, sowie teilweise auch T-Zellen detektiert, bei gleichzeiti-

ger Reduktion von Makrophagen und MDSC.  

Die therapeutische Chemo-Immuntherapie zeigte, im Vergleich zur Vakzine-Monothera-

pie, nur einen geringen Einfluss auf das Gesamtüberleben (Mediane Überlebenszeit: 12,0 

Wochen (GEM + Vakzin) vs. 11,5 Wochen (Vakzin) vs. 3,0 Wochen (Kontrolle)). Die 

Tumoranzahl und Größe war zwischen beiden Therapiegruppen vergleichbar. Bei einem 

Tier erzielte die Kombinationstherapie eine komplette Tumorremission. Dieses Tier blieb 

bis zum Erreichen des experimentellen Endpunktes tumorfrei. Hinsichtlich des Tumor-

mikromilieus zeigten sich jedoch teilweise deutliche Unterschiede zwischen den Thera-

piegruppen, mit Anstieg der infiltrierenden T-Zellen und einer Reduktion der MDSC ins-

besondere nach Chemo-Immuntherapie. Gleichzeitig wurde eine verstärkte lymphozytäre 

Reaktivität im IFNγ – ELISpot gegen MLH1-/- Zielzellen detektiert, welche die erfolgrei-

che Stimulation des Immunsystems durch beide Therapieschemata (Vakzine und Chemo-

Immuntherapie) bestätigte.  

Ein weiterer Aspekt der vorliegenden Arbeit adressierte die Identifikation neuer potenti-

eller MSI-Zielgene der murinen MLH1-Tumorgenese. Unter Verwendung verschiedener 

maligner Zell- und Gewebeproben (Kontrolle und Therapie) wurden fünf neue Tumor-

spezifische MSI-Marker identifiziert, sowie deren Mutationsfrequenz und Verteilung in 

unterschiedlichen Tumoren (GIT und Lymphome) untersucht. Akt3 wurde als häufig mu-

tiertes Zielgen mit Relevanz für die Onkogenese muriner MLH1-assoziierter Tumoren 

identifiziert. 

Insgesamt konnte in dieser Arbeit gezeigt werden, dass die kombinierte Chemo-Immun-

therapie die Tumorinzidenz und das -wachstum sowohl in der prophylaktischen, als auch 

therapeutischen Situation verzögert, bedingt durch die positive Modulation des Immun-

systems und transiente Reduktion immunsuppressiver Zellen. Ausgehend von diesen Be-

funden zielen aktuelle Arbeiten auf weitere Kombinationsstrategien, u.a. durch Einsatz 

von Immuncheckpoint-Inhibitoren, um den vorgestellten Ansatz noch weiter zu verbes-

sern. 
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13 Anhang 
 
13.1 Thesen 
 
1. Bei fünf bis zehn % aller Patienten mit kolorektalem Karzinom liegt eine hereditäre 

Ursache der Erkrankung zugrunde. Das Lynch Syndrom ist dabei das häufigste Tu-

morprädispositionssyndrom (ca. 2-3 %). 

2. Monoallelische Keimbahnmutationen in einem der DNA Mismatch Reparatur 

(MMR) Gene (v.a. MLH1 und MSH2) sind zumeist Ursache des Lynch Syndroms. 

Das Tumorspektrum umfasst neben Kolorektalen Karzinomen auch Endometrium-

, Ovarial-, Magen-, Haut- und Urothel-Karzinome. Typisch ist das Auftreten vor 

dem 45. Lebensjahr.  

3. Biallelische Keimbahnmutationen in einem der DNA MMR Gene bedingen ein sehr 

seltenes und komplexes Krankheitsbild, die konstitutionelle MMR-Defizienz 

(CMMR-D).  

4. Ein Charakteristikum MMR-D-assoziierter Tumoren ist die Mikrosatelliteninstabi-

lität (MSI) und die damit einhergehende hohe Abundanz an Neoantigenen. 

5. MSI dient als diagnostische Marker für die MMR-D.  

6. MMR-D-assoziierten Tumoren sind aufgrund der hohen Immunogenität und histo-

logischen Besonderheiten besonders geeignet für eine Immuntherapie.  

7. Das MLH1-/- gene knockout Mausmodell ist ein präklinisches Modell für die Erfor-

schung der MMR-D und Durchführung von Therapiestudien.  

8. Die prophylaktische Chemo-Immuntherapie mit Gemcitabin und Tumorvakzinen 

verbessert, durch die verzögerte Tumorentwicklung und Modulation des Immun-

systems, des Gesamtüberleben von MLH1-/-  Mäusen.  

9. Die therapeutische Chemo-Immuntherapie hat im Vergleich zur Vakzine-Monothe-

rapie einen geringen Einfluss auf das Gesamtüberleben. 

10. Beide Therapieschemata (Vakzine und Chemo-Vakzine) stimulieren nachweislich 

das Immunsystem und beeinflussen das Tumormikromilieu positiv. 

11. Wesentlich ist die weitere Erforschung der spezifischen immunologischen Mecha-

nismen im Tumormikromilieu, um weitere Angriffspunkte für eine Immuntherapie 

zu identifizieren. 

12. Die Identifikation MSI-spezifischer Zielgene der murinen MLH1-Tumorgenese 

hilft einerseits, die Mechanismen der Tumorgenese besser zu verstehen und schafft 

andererseits die Basis für nachfolgende Peptid-basierte Ansätze. 
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13.2 Lebenslauf 
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2017 Famulatur an der Allgemein- und Viszeralchirurgie im LKH Feld-
bach/Fürstenfeld (30 Tage) 
Famulatur an der Universitätsklinik für Chirurgie Graz - Klinische 
Abteilung für Gefäßchirurgie (30 Tage) 
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13.3 Abkürzungsverzeichnis 
 
A 
AK  Antikörper 
Akt3  AKT serine/threonine kinase 3 
APC  Allophycocyanin 
APC  antigen presenting cells, antigenpräsentierenden Zellen 
 
B 
BSA  Bovines Serumalbumin  
bFGF  basic fibroblast growth factor  
 
C 
CFS  cancer family syndrome 
Clock  Circadian Locomotor Output Cycles Kaput 
CMMR-D Konstitutionelle Mismatch Reparatur-Defizienz; constitutional MMR- 
CMS  Consensus Molecular Subtypes 
CPX  Cyclophosphamid 
CRC  kolorektales Karzinom, colorectal cancer 
CTL  zytotoxische T-Zellen, cytotoxic T-Lymphocyte 
CTLA4 cytotoxic T-lymphozyte-associated Protein 4 
CT  Computertomographie 
 
D 
DNA  Desoxyribonukleinsäure 
DNAJC2 DnaJ Heat Shock Protein Family (Hsp40) Member C2 
DC  dendritischen Zellen, denditic cells 
DMSO  Dimethylsulfoxid   
 
E 
EDTA  Ethylendiamintetraessigsäure 
ELISpot Enzyme Linked Immuno Spot Assay 
EPCAM epithelial cell adhesion molecule 
Exo1  Exonuclease 1 
 
F 
FAP  familiäre adenomatöse Polyposis 
FITC  Fluorescein isothiocyanate 
FKS  Fetales Kälberserum 
FM  Freezing-Medium 
F-18-FDG Fluordeoxyglucose 
 
G 
Gem  Gemcitabin 
Gy  Gray  
 
H 
hMLH  human Mut L Homologus 
hMSH  human MutS Homologus 
HNPCC hereditary non-polyposis colorectal cancer, Hereditäres non-polypöses 

Kolonkarzinom 
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I 
i.p.  intraperitoneal 
IC50  mittlere inhibitorische Konzentration 
IFN  Interferon 
IL  Interleukin 
Il1f9  Interleukin 1 Familien Mitglied 9; interleukin-1 family member 9 
 
K 
KG  Körpergewicht 
 
L 
LAG-3  Lymphozytenaktivierungsgen 3 
 
M 
MDSC  myeloide Suppressorzellen; myeloid-derived suppressor cells 
MMR  Mismatch Reperatur 
MMR-D MMR-Defizienz 
MS  Mikrosatellit 
MSI  Mikrosatelliteninstabilität 
MSI-H  MSI-high; hochgradige Mikrosatelliteninstabilität 
MSI-L  MSI-low; niedriggradige Mikrosatelliteninstabilität 
MSS  MSI-Stabil 
Mut  mutator 
MCP1  monocyte chemotactic protein 1 
MAPK  mitogen-activated protein Kinase 
M-MDSC monocytic MDSC 
 
N 
NF1  Neurofibromatose Typ1 
NK-Zellen Natürliche Killerzellen 
NF-κB  nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 
 
P 
PBS  phosphatgepufferte Salzlösung 
PCNA  proliferating cell nuclear Antigen 
PCR  Polymerase-Kettenreaktion 
PD-1  programmed cell death 1 
PD-L1  programmed cell death 1 ligand 1 
PE  Phycoerythrin 
PET  Positronen Emissions Tomographie 
PMN-MDSC polymorphonuclear MDSC 
 
R 
RFC  Replikationsfaktor C 
RPA1  Replikationsprotein 1 
RANTES regulated and normal T cell expressed and secreted 
RT  Raumtemperatur 
 
S 
s.c.  subkutan 
Spen  split ends 
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T 
TAM  Tumor-assoziierte Makrophagen 
Th1  T-Helferzellen 
Treg  regulatorischen CD4+-T-Zellen 
 
V 
VM  Vollmedium 
VEGF  vaskuläre endotheliale Wachstumsfaktoren  
 
W 
wt  wild type, Wildtyp 
 
13.4  Antikörper  
 
Antigen Konjugat Spezifiät Klon Hersteller 
CD104  FITC mouse 346-11A BioLegend 
CD11b  FITC mouse M1 ImmunoTools 
CD200R  FITC mouse OX-110 BioLegend 

CD3e FITC mouse MEM-57 
 ImmunoTools 

CD44 FITC mouse IM7 BioLegend 
CD69  FITC mouse H1.2F3 BioLegend 

CD8 FITC mouse LT8 
 Immunotools 

IL17A  FITC mouse 17F3 
 Biolegend 

PD1 FITC mouse 4F12 
 Biolegend 

g/d TCR  FITC mouse B1 Immunotoole 
CD11c PE mouse N418 BioLegend 

CD166  PE mouse 3A6 
 Biolegend 

CD4 PE  mouse GK1.5 Immuno Tools 

CD62L PE mouse FMC46 
 Immunotools 

CD8 PE mouse RPA-T8 
 Immuno Tools 

Gr1  
 PE mouse RB6-8C5  

 ImmunoTools 

PD-L1 PE 
 mouse 10F.9G2 BioLegend 

CD152 
(CTLA-4) 

PE 
 mouse UC10-4B9 BioLegend 

LAG-3 PE mouse C9B7W  BioLegend 
NK1.1 
 PE mouse PK136 Immunotools 

CD117  
 APC mouse 2B8 Biolegend 

CD127  APC mouse A7R34 BioLegend 

CD178  APC mouse 10F2 
 Biolegend 
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CD19  APC mouse LT19 
 ImmunoTools 

CD197 APC 
 mouse 4B12 BioLegend 

CD25 APC mouse MEM-181 
 ImmunoTools 

CD279 APC mouse 29F.1A12 BioLegend 
IDO-1  APC mouse 2E2/IDO1 BioLegend 
mAb AN18 
(Anti-mouse 
INF-gamma)  

 mouse  Mabtech 

mAb R4-6A2- 
(Anti mouse 
INF-gamma) 

Biotin mouse   Mabtech  

 
13.5 Primer  
 
Gen  Repeat Primer-Sequenz [5’>3’]  Produkt-

größe[BP] 
Apc A8  F: ATTTCTCTGGATCGCCTTT 

R: GCGAATCTTTCCCGTAATCA  
189 

Tmem60 A9  F: CTTTGACCCTCGACATGGAT  
R: CAGCCAGTAAGGCCCATAAA  

164 

Senp6 A11  F: GCTGTGACTGATTCGAGTGC  
R: GCCATTCTCACTTTGGGTTC  

177 

Phactr4 A10  F: ATCTTCAAGCCGTGGAAATG  
R: TTTAATGCAGCAGGCTCAG  

185 

Aste1  A8 F: GAAGCCTGGTCCACAGACTC 
R: AGGCTGGCAACCTTTTTCTT 

199 

Bat30 A30  F: ATTTGGCTTTCAAGCATCCATA  
R: GGGAAGACTGCTTAGGGAAGA 

82 
 

Bat59 A59  F: GTAATCCCTTTATTCCATTTAGCA  
R: GGCTCACAACCATCCGTAACAAGA  

189 

Mdm2 A8 F: CGCAGGACAAAGACGAGAGT 
R: TCATTTGGATTGGCTGTCTG 

198 
 

AA003063 A23  F: ACGTCAAAAATCAATGTTAGG   
R: CAGCAAGGGTCCCTGTCTTA  

87 

U12235 A24  F: GCTCATCTTCGTTCCCTGTC  
R: CATTCGGTGGAAAGCTCTGA  

86 

L24372 A27  F: GGGAAGACTGCTTAGGGAAGA  
R: ATTTGGCTTTCAAGCATCCATA  

90 

AC096777 T27  F: TACAGAGGATTGTCCTCTTGGAG  
R: GCTGCTTCACTTGGACATTGGCT  

138 

Fasl A8 F: TCACCAACCAAAGCCTTAAAGT 
R: TCCCTGTTAAATGGGCCACA 

59 

Kit A8 F: TCAGCCTGACGTGCATTGAT 
R: AGAACTCGTGAGGCCATTGC 

108 
 

Rasal2 A8  F: CAAACTGGCGACCAGTCACAC  
R: TAGCCTTCCACCTCTTCATAGCA  

151 
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Tcf7l2 T8  F: CACCTTGTATGTAGCGAACGCA  
R: TCAACTTGCCGTGAGCATTAGA  

119 

Bend5 A8  F: CTGGGGAACAGATGTTCTGA  
R: CTCTGACGATGCTGAGCTTG  

113 

Asnsd1 A8 F: AGTGAAGCAAGGTTGTTGGC 
R: GCCCTCACAGCAACAAAAGT 

83 
 

Nktr1 A9  F: GCGAGACACTCTGATGGTCA  
R: TGTCTTCTGCAATGTTTCTGC  

95 

Il18 A8 F: GGACACTTTCTTGCTTGCCA 
R: TCCCCACCTAACTTTGATGTAAG 

124 
 

Supt16 A8  F: TGAGAAAGTTCGGCATAGCA  
R: AGAAGGATCTGCCCCAGCTA  

85 

C8a T8  F: CCTGGCGGATACTTCAATCT  
R: ACACCAGCTGAGTGGGACTT  

100 

Grb14 A10 F: GCATTTGCAGCTTTTCAGTG 
R: CGTCCTGCTCTGCTCTTCTT 

147 
 

Ptpn21 A8  F: TTTGAAAGGTGTCTGGGTACG  
R: CGCTCTGGTGGACACTTCTT  

176 

Rfc3 A10 F: TTGGCAGTAGTGATTTGGTGA  
R: AGGAGCAGTTTACCTGGGATT  

165 

BAT26 A26  F: TCACCATCCATTGCACAGTT  
R: CTGCGAGAAGGTACTCACCC  

134 

D1Mit79 CA31  F: GACCTGGAAGTTGGAAACCA  
R: TGATCCAGAACCTCTGCCTT  

150 

BAT24 A24  F: CATAGACCCAGTGCTCATCTTCGT  
R: CATTCGGTGGAAAGCTCTGA  

98 

D15Mit93 CA32  F: AAGAATTGGGGTGGGTAAGG  
R: CATGTGCAGAATACTTACACATATGC 

144 

Sdccag1 A11 F: GCATAGGCTGACAGGCTGAGAT  
R: TGCCAGCATTGAGAACAGTGAT  

132 

Casc3 C8 F: TGTCACACTTCCATAGAAACACACC  
R: GAGGACTCCCCAGCCGGT  

140 

Mbd6 G8 F: CCCTCTTCTTTCCAGCCAGT 
R: TGGAGGGATCTGGAGACTCT 

171 
 

Lig4 A9  F: TGAAGCCAAGGTGCTTACAG  
R: TGGGTTATTAACTGAAGAAGGCT  

133 

Taf1b A8  F: CATGTGACAACTTACGAA GAATCA  
R: TCCTTTCTTGGATCCTGAGC'  

180 

Mrpl37 A8 F: CGTGTCTTCCAGTTCCTGGT 
R: GAAATCAACAGGCCCAACAG 

171 
 

Mdc1 C8  F: GAAAGGCTGGTTGCTTCTTG  
R: ACTGATGATCTCGCCCATCT  

188 

Ercc5 A9 F: CTCAGAGTGGTGGCACGAAG 
R: CATCCACCACAGGCCTGAG 

152 
 

Casc5 A8 F: CAATGATGCAATGGAACTGACT 
R: TTTCTCTCTGAGTGGGCCAG 

124 
 

Akt3  T8 F: GGGCCAGATGATGCAAAAGA 65 
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 R: ACATCTTGCCAGTTTACTCCAG 
Spen A8 F: GGTGTTTTGCTGAGGGAAGG 

R: AGGATCCTGGCAGTCTTTGG 
129 

 
Il1f9 A10 F: GCACCAGAACAAGATCACGA 

R: CCAGCTCTCTCGTGTTCCAT 
87 

 
Clock T8 F: TGTTAGAGGCTCTTGATGGTTT 

R: ACTTCCATCTGTCATGATCGC 
50 

 
Dnajc2 A8 F: CAAGTGTTTTCTCCAGTGTTTGA 

R: CGAGGAGTTCATATCACCAAGC 
84 

 
Tgfbr2* 
 

A4GA4 F: CATTACTCTGGAGACGGTTTGC 
R: TCGTTGCACTCTTCCATGTTAC 

153 
 

MLH1 
mouse# 

 F: TGT CAA TAG GCT GCC CTA GG 
R1: TGG AAG GAT TGG AGC TAC GG 
R2: TTT TCA GTG CAG CCT ATG CTC 

500 Knock-
out 
350 Wildtyp 
350 + 500 
Heterozygot 

*(189); # Originalprimer aus PCR Protokoll NCI Mouse Repository (Strain Number: 
01XA2) 
 


