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fruct. fructose 

GLM General Linear Models 
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ID identification number 

Iso number of isolated micro-organism 

LAB lactic acid bacteria 

MB antimycotic + antibacterial treatment 

MEA malt extract agar 
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PAB Propionic acid bacteria 
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t time 
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1 INTRODUCTION 

Aerobic deterioration in silages occurs after the penetration of air, for example when  

damage to silo covers occurs during ensilage or after opening the silo during the feed-

out phase of a well fermented silage. 

 

Thus, aerobic spoilage of silages represents a problem for animal feeding.  

Microbial metabolic activity leads to dry matter and energy losses in the silage. Dry 

matter losses of up to 3.5 % per day can occur in high DM silages (30 % DM) when the 

temperature is elevated by 15 °C  above ambient (HONIG and WOOLFORD, 1980). A 

high proportion of DM losses can be explained by oxidation of fermentation acids 

(CRAWSHAW et al., 1980). 

Losses in energy and nutrients such as WSC and proteins reduce the nutritional value of 

silage for the ruminants and the accumulation of degradation products can reduce 

palatability and lead to feed refusals (DRIEHUIS et al., 1999). 

Aerobically spoiled silage can even represent a severe health risk for the animal and 

consequently human health if certain mycotoxins develop during mould growth 

(MÜLLER, 1987; ESCOULA, 1992; AUERBACH, 1996). 

Thus aerobically spoiled silage is an economic problem for the farmer and for these 

reasons it should be prevented. Practical solutions such as attention to detail and use of 

appropriate ensiling technique, i.e. a high consolidation of the plant material, keeping 

the silo airtight and a well adapted progression rate during the feed-out phase (>2.5 

m/week in summer, >1.5 m/week in winter) are the first and probably easiest areas to 

target. In addition, additives that prolong the aerobic stability e.g. chemical additives 

with the active agents sorbate and benzoate or heterofermentative inoculant lactic acid 

bacteria can be used to manipulate and improve the aerobic stability of silage. 

Nevertheless, if progress is to be made in addressing this problem it will be necessary to 

have a greater understanding of all causes and species/activity interactions during the 

course of aerobic deterioration.  

 

Generally, aerobic deterioration is the consequence of microbial metabolism, which is 

triggered when oxygen becomes available (PAHLOW et al., 2003). Compounds in the 

readily fermented silage are converted into heat and metabolites and the effects can be 

monitored by measuring the temperature rise and increase of pH due to decomposition 

of organic acids and dry matter losses. Visually, yeast and/or mould colonies are often 

observed. 
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The objective of this research was to identify the mechanisms involved in the initial 

aerobic changes in silages and the micro-organisms responsible for them. Thus a model 

system was developed where silage was simulated and the microbial groups 

differentiated using antibiotic treatment.  

 

This work was done during the employment in the EU SweetGrass Project (QLK5-CT-

2001-0498) from 2002-2005. The project had the objective of investigating the benefits 

of feeding ensiled ryegrass (Lolium perenne) cultivars which were bred for high WSC 

content to ruminants. It was divided into four workpackages addressing agronomy, 

ensiling, efficiency of rumen function and livestock production. The ensiling 

workpackage was led by the FAL. During the years 2002-2003 observations on the 

“SweetGrass” silages were made which are described in APPENDIX I. The questions 

raised led to the current work which was carried out during 2004. 

One assumption of the ensiling workpackage of the project was that high residual sugar 

contents might lead to higher aerobic instability of the silages as sugars are a nutrient 

source that is easily to metabolise for many micro-organisms. Thus this aspect 

represented an underlying working hypothesis of the thesis. 
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2 LITERATURE REVIEW  

An awareness of the problems caused by aerobic deterioration first arose during the 

1960s. This is reflected in the increasing numbers of scientific articles dealing with this 

subject in the 1970s.  

Many of them dealt purely with the chemical and physical characterisation of 

aerobically deteriorating silages (e.g. OHYAMA and MASAKI, 1971; OHYAMA et 

al., 1975; OHYAMA et al., 1977; OHYAMA et al., 1980; HONIG, 1975) and others 

with the inhibition of deterioration by chemical and biological additives (e.g. GROSS 

and BECK, 1970; DANIEL et al., 1970; OHYAMA and McDONALD, 1975). The first 

workers to recognise that yeasts might play an important role in aerobic deterioration in 

silage were BECK and GROSS, 1964. 

In this chapter those studies which concern the possible role of different microbial 

groups responsible for the aerobic deterioration of silages and were carried out over the 

last four decades are reviewed. 

 

The prevailing view of the development of the silage spoilage flora is shown in the 

figure below. 
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Figure 1: Silage spoilage flora (DRIEHUIS, 2002) 

 
As one can see, in the initial feed-out phase yeasts and acetic acid bacteria are 

considered as the main spoilage flora followed by bacilli, listeria and moulds later on. 

A relevant review of this subject entitled “The detrimental effects of air on silage” was 
published by WOOLFORD, 1990. Since that time knowledge of the microbiological 
principles of aerobic spoilage has not much expanded except that a broader range of 
potential additives against aerobic deterioration has been developed and in part 
approved by various bodies in member states of the EU. 

 

Spoilage flora

Ideal line



2 LITERATURE REVIEW 

    

 
4 

Table 1: The identity of some of the microorganisms isolated from aerobically deteriorating silages 
(WOOLFORD, 1990) 

Organism Silage Reference Organism Silage Reference 

Fungi (Yeasts) 
Candida krusei 

Hansenula anomala 
Pichia fermentans 
Pichia membranefaciens 

Saccharomyces bailii 
Saccharomyces exiguus 
Candida melinii 

Torulopsis candida 
Candida krusei 

Candida melinii 
Candida tenuis 
Candida valida 
Hansenula anomala 
Hansenula polymorpha 
Hansenula subpelliculosa 
Pichia fermentans 
Pichia media 
Pichia polymorpha 
Candida silvicola 
Candida tenuis 
Endomycopsis burtonii 
Endomycopsis selenospora 
Hansenula canadensis 
Candida lambica 

Saccharomyces cerevisiae 
Saccharomyces exiguus 
Candida holmii 

Candida famata 
Candida milleri 
Saccharomyces dairensis 

Fungi (Filamentous)  
Geotrichum sp. 
Monascus sp. 
Mucor sp. 
Monilia sp. 
Penicillium notatum 
Dactylomyces thermophilus 

Penicillium piceum 

Thermomyces langinosus 

 

Maize 

 

 

Maize 

 

 

Maize 
 

Grass 

 

 

 

 

 

 

 

 

Wheat & 
Lucerne 

 

 

 

Grass 

 

 

Maize 

 

 

 

 

Maize 

 

 

Maize 

 

Maize 

 

 

 

BECK & 
GROSS 
(1964) 

HARA and 
OHYAMA, 
1978 

WOOLFORD 
et al. (1978)  
 

WOOLFORD 
et al. (1979) 

 

 

 

 

 

 
 

MOON and 
ELY, 1979 

 

 

 

JONSSON & 
PAHLOW 
(1984) 
 

MIDDEL-
HOVEN & 
VAN 
BAALEN 
(1988) 

 

HARA & 
OHYAMA 
(1978) 
 

WOOLFORD 
(unpublished) 

OBERT et al., 
1976  

Bacteria (Proteolytic) 
Bacillus cereus                                       
Bacillus firmus  

Bacillus lentus  

Bacillus sphaericus 
Bacillus cereus  

Bacillus firmus  

Bacillus laterosporus 
Bacillus lentus  

Bacillus licheniformis 
Bacillus pulvifacienes 
Bacillus sphaericus 

Bacteria (Lactic acid) 
Lactobacillus buchneri 
Lactobacillus bulgaricus 
Lactobacillus viridescens 
Pediococcus cerevisiae 
Lactobacillus buchneri 
Lactobacillus bulgaricus 
Lactobacillus casei 
Lactobacillus coryneformis 
Lactobacillus helviticus 
Lactobacilus plantarum 
Lactobacillus salivarius 
Lactobacillus viridescens 

Bacteria (Acetic acid) 

Acetobacter sp. 

Bacteria (Actinomyces) 
Streptomyces sp.  
 

Streptomyces griseus 

 

 

Maize 

   

 

 

Grass 

 

 

 

 

 

 
 

Grass 

 
 

Grass 
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Maize 
 

Maize 
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et al. (1978) 

 

 
WOOLFORD 
et al. (1979) 

 

 

 

 

 

 
WOOLFORD 
et al. (1978) 

 
WOOLFORD 
et al. (1979) 

 

 

 

 
 

 
 

SPOELSTRA 
et al. (1988) 
 

BECK 
(1975) 

LYONS et 
al., 1975 
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Fungi 

Fungi are eukaryotic, heterotrophic organisms that take up nutrients by active or passive 

absorption. 

 

Fungi isolated from aerobically deteriorating silages are mainly classified as yeasts and 

some as filamentous fungi  and are summarised by WOOLFORD, 1990, in Table 1. 

 

Yeasts 

Yeasts belong to the fungal group possessing vegetative states, either as ascomycetes or 

basidiomycetes. They are generally characterised by budding or fission as the primary 

means of vegetative reproduction and have sexual states that are not enclosed in fruiting 

bodies (KURTZMAN and FELL, 1998). As heterotrophic fungi they obtain nutrients 

for their growth by secreting extracellular enzymes (proteases, lipases, amylases, 

cellulases) which break down complex organic molecules to simple monomers that can 

then be absorbed through their cell membranes (MCDONALD  et al., 1991). 

 

Yeasts are one group of micro-organisms that are present at ensiling, but they hardly 

contribute to the lactic acid fermentation itself. They are regarded as undesirable mainly 

because of their leading role in aerobic spoilage and their competition for carbohydrates 

with lactic acid bacteria (MCDONALD et al., 1991; OUDE ELFERINK et al., 1999a). 

Yeasts are present on fresh plant material. The majority of these are non-fermenting 

species of the genera Cryptococcus, Rhodotorula, Sporobolomyces and Torulopsis 

(MCDONALD et al., 1991; MIDDELHOVEN and VAN BAALEN, 1988). At the 

beginning of ensiling yeasts and other micro-organisms start to grow and compete for 

available nutrients until oxygen is used up.  

The aerobic yeasts are followed by growth of the fermentative species as anaerobic 

conditions prevail. 

During the storage phase facultatively anaerobic yeasts can ferment sugars mainly to 

ethanol and CO2 (OUDE ELFERINK et al., 1999a; LENGELER et al., 1999), but n-

propanol, iso-pentanol, acetic, propionic, butyric, iso-butyric and lactic acid are also 

formed (NORD and WEISS, 1958; MCDONALD et al., 1991).  

Under anaerobic conditions yeasts can be suppressed by acetic acid (in combination 

with 1,2-propanediol), which can be produced by, for example heterofermentative LAB 
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(OUDE ELFERINK et al., 1999b). Other inhibitors are butyric and propionic acid 

(OHYAMA and HARA, 1975). 

If not depressed, then after opening of the silo yeasts are considered to be the main 

initiators of aerobic spoilage in grass silage (OUDE ELFERINK et al., 1999a) which 

was also concluded from the studies described below. The majority of the yeasts 

described in literature are able to assimilate lactic acid and are Candida species or are 

strains of Saccharomyces cerevisiae (HOLDEN and BLACKBURN, 1987). On the 

other hand a dominance of Pichia anomala in perennial ryegrass silages was 

demonstrated (MARTENS and PAHLOW, 2003). 

 

Figure 2: Pichia anomala, left: cells, 100x magnified, right: branched pseudohyphae, 10x magnified 

 

The deleterious role of yeasts in silages on exposure to air was related to their particular 

ability to oxidise lactic acid (BECK and GROSS, 1964).  The pathway was described by 

ROOKE and HATFIELD, 2003. 

 

Lactic acid (CH3-CHOH-COOH) + O2 ----------------------------------------� CO2 + H2O 

     Glycolytic pathway, tricarboxylic pathway 

Figure 3: Oxidation of lactic acid by yeasts (ROOKE and HATFIELD, 2003) 

 

Studies focussing on yeasts in ensiled forages then commenced (BURMEISTER and 

HARTMAN, 1966; BUCHER, 1970). DANIEL et al., 1970, summarised the works of  

BECK and GROSS, 1964, WEISE, 1963, and HONIG, 1969, and a relationship 

between yeast numbers and aerobic stability of silages was found. Strictly anaerobic 

storage of silages kept yeast numbers low. However, even a yeast population size of     

< 105 cfu/g FM at the time of opening the silage did not necessarily mean that silage 

was aerobically stable (OHYAMA and McDONALD, 1975; HENDERSON et al., 

1979; MARTENS and PAHLOW, 2003, see Figure 4, box plot 2).  
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Figure 4: Frequency distribution of yeasts in unstable laboratory grass silages (untreated control) 
counted on malt extract agar; box plot 1 – from low DM silages stored airtight over 90 days, box plot 2 – 
from high DM silages stored airtight over 90 days, box plot 3 – from low DM silages with defined air 
infusion over 49 days storage period, box plot 4 – from high DM silages with defined air infusion over 49 
days storage period (MARTENS and PAHLOW, 2003) 

 

This figure shows that high yeast numbers of grass silages stressed with air during the 
storage period were correlated to the aerobic instability of those (box plots 3 and 4). If 
low DM silages were aerobically unstable after a gastight storage period, yeast numbers 
> 3 log cfu/g FM were found. If high DM grass silages deteriorated on exposure to air 
after a gastight storage period yeast numbers could either be high or low. 

This lack of correlation between yeast numbers and spoilage is not restricted to silages 
but has also been noted for wines (DEAK and REICHART, 1986). 

 In the 1980s JONSSON developed a synthetic plate count medium which contained 

lactic acid  as sole carbon source to select yeasts which can utilise lactic acid aerobically 

(JONSSON and PAHLOW, 1984; JONSSON, 1989). However, in the own preparatory 

work (see APPENDIX I) it was found out that the medium does not necessarily exclude 

other yeasts, as some use the nutrients stored from the silage and might even exchange 

them with “non-storage” yeasts. 

Studies from MIDDELHOVEN and FRANZEN, 1986, showed that the ability of the 

Candida and Saccharomyces strains investigated, to assimilate lactic acid only occurred 

or increased with decreasing pH (see also APPENDIX I). 

 

Moulds 

Moulds usually develop alongside or following the facultatively anaerobic yeasts as 

they prefer aerobic or microaerophilic conditions (MAGAN and LACEY, 1984). Their 

influence on initiating aerobic deterioration is considered to be low (WOOLFORD, 

1990). One exception is Penicillium roqueforti which regularly developed on solid 

Low DM ~ 25 % DM 

High DM ~ 35-40 % DM 

Unstable Ryegrass Silages 2002 
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medium containing lactic acid as a sole C-source and indicated that it was used as a 

nutrient (PAHLOW, 2005). However, moulds contribute to spoilage at the silage 

surface and some produce undesirable mycotoxins like zearalenone, roquefortin C and 

others that have the potential to have negative effects on animal health (AUERBACH, 

1996; Oldenburg, 1991). 

 

Bacteria 

Bacteria are prokaryotic organisms that take up nutrients by active or passive 

absorption. 

 

Bacteria isolated from aerobically deteriorating silages comprise the lactic acid bacteria, 

proteolytic bacilli, acetic acid bacteria and Actinomyces (Table 1, summarised by 

WOOLFORD, 1990). Furthermore, listeria and clostridia have also been found: 

- Bacillus spp. are endospore-forming aerobic bacteria with thermotolerant or even 

thermophillic properties and use a wide range of carbohydrates as substrate. They 

probably contaminate silage mainly through soil or manure (RAMMER et al., 1994, 

cited in OUDE ELFERINK et al., 1999a). Bacilli can play a role in the later stages 

of aerobic deterioration (LINDGREN et al., 1985).  

- Acetic acid bacteria are obligate aerobic, acid-tolerant bacteria using ethanol, lactic 

and acetic acids as preferred substrates and have been isolated from maize silages 

(SPOELSTRA et al., 1987). They can largely contribute to aerobic deterioration 

through their ability to oxidise organic acids (SPOELSTRA et al., 1988). 

LENGELER et al., 1999, described the oxidative pathway. 

 

C2H5OH ---� CH3CHO  --------….………………….. ---� C2H4O2     -------� CO2 

Ethanol   --� Acetaldehyde --� Acetaldehyde hydrate ---� Acetic acid ---� CO2 

      Alcohol dehydrogenase   Acetaldehyde dehydrogenase 

Figure 5: Oxidation of ethanol to acetic acid to CO2 by Acetobacter (LENGELER et al., 1999) 

 

- Streptomyces species which belong to the family Actinomyces are aerobic bacteria 

usually present in soil with the ability to degrade cellulose and other structural 

carbohydrates. They have been isolated from maize silage (BECK, 1975), but their 

role in aerobic deterioration has not been established. 

- The pathogenic aerobic bacterium Listeria monocytogenes has often been isolated 

from aerobically spoiled silages (FENLON and WILSON, 1996; COAN et al., 

2005). It can be isolated in low numbers from soil and plants and its growth in silage 
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is accelerated when oxygen is available (DONALD et al., 1995). Thus it has been 

associated with aerobic spoilage. 

- An increase in spore numbers of the obligately anaerobic Clostridium spp. was 

observed in the surface layers of maize silages of opened clamp silos. Their 

development was attributed to growth in anaerobic niches where pH was elevated 

due to aerobic deterioration (DRIEHUIS and TE GRIFFEL, 2005). The pathway for 

their activity was described by SCHLEGEL, 1992. 

CH3-CHOH-COOH + C2H4O2      ------� CH3CH2CH2-COOH + H2O + CO2 

lactic acid                 + acetic acid ------� butyric acid                + H2O + CO2 

Figure 6: Butyric acid fermentation by Clostridium tyrobutyricum (SCHLEGEL, 1992) 

 

- Lactic acid bacteria are regarded as desirable microorganisms in silage and are part 

of the epiphytic microflora of the plant material responsible for the lactic acid 

fermentation.  

However, some investigations implicating bacteria showed that Lactobacillus 

numbers can rise during the first days of spoilage (WOOLFORD and COOK, 

1978;WOOLFORD et al., 1978; WOOLFORD et al., 1979). 

A possible metabolic pathway was found for heterofermentative LAB (i.e. 

Lactobacillus buchneri and L. brevis) in silages. They were able to convert lactic 

acid to acetic acid (BUCHER, 1969, in BECK, 1969) as shown below. 

 

Figure 7: Anaerobic degradation pathway of lactic acid to acetic acid and 1,2-propanediol by 
Lactobacillus buchneri (OUDE ELFERINK et al., 1999b) 
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CRAWSHAW et al., 1980, made a general observation based on microbial counts in 

grass silage on exposure to air, i.e. an increase in total bacterial numbers was reflected 

by a decrease in yeast numbers.  

Results from other studies based on microbial counts were inconclusive (HENDERSON 

et al., 1979). Yeast counts increased during 9 days of aeration whether DM losses were 

high or low and neither increasing or decreasing numbers of bacteria were related 

directly to susceptibility to aerobic deterioration. 

 

There is however evidence to suggest that yeasts and lactic acid bacteria grow linearly 

with increasing oxygen content (REES and LOWE, 1984). 

 

There are still many questions to be answered on the relative roles of different microbial 

groups during aerobic deterioration of silage and this thesis will address some of these 

uncertainties.
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3 TASK AND AIM 

The aim of the work was to further elucidate the microbiological principles of aerobic 

changes in silages, i.e. the relative roles of bacteria, yeasts and eventually moulds. 

 

A review of research on spoilage by yeasts during the last 50 years including the food 

sector concluded that “little has changed in the knowledge of the biological processes 

and microbial interactions involved” (LOUREIRO and MALFEITO-FERREIRA, 

2003).  

Another evaluation on scientific literature on aerobic spoilage of silage by URIARTE et 

al., 2001, concluded that yet “there is not a complete understanding of the microbiology 

of aerobic deterioration”. 

 

A summary of the numerous works carried out indicates that most results have been 

obtained using classical plate count methods. These approaches have to be judged with 

caution because 

1. They have a wide margin of error, 

2. They do not always reflect activity (SEALE et al., 1990). 

3. They might underestimate the number of viable cells (ROSZAK and 

COLWELL, 1987). 

 

During the Eurobac Conference in Uppsala, Sweden, in 1986 it was postulated: 

“Thus a microbiological analysis should always be accompanied by a measurement 

of activity such as pH value, metabolite production or a direct measurement of 

microbial activity such as ATP production.” (SEALE et al., 1990) 

 

In this research project, to address this claim with using a practical and feasible 

approach a method was developed which simulates silage conditions in a batch culture 

and where the pH course and some metabolites were measured as indicators of 

microbial activity. 

 

Four different types of experiments were set up sequentually. 

Experiment type A:  

Single yeast strains, isolated from grass silages (on lactate agar; JONSSON and 

PAHLOW, 1984) were inoculated into synthetic lactate medium. 
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Experiment type B:  

The mixed microflora of silages was inoculated in synthetic lactate medium to extend 

the investigations on bacteria and their possible interactions. Antibiotics were used to 

distinguish between fungal and bacterial activity (WOOLFORD et al., 1977; 

WOOLFORD and COOK, 1978; WOOLFORD et al., 1979). 

 

Experiment type C:  

“Silage medium” with the indigenous microflora, original pH and nutrients in their 

given ratios was used to represent the original complex environment, together with 

antibiotics as in Experiment type B. 

 

Experiment type D:  

Autoclaved silage medium was inoculated with single yeasts or bacterial strains isolated 

from silages, to reproduce the effects of the activity of the indigenous microflora in 

Experiment type C. 

 

The 4 principle working hypotheses were: 

• Referring mainly to Experiment type A:  

Hypothesis 1:  
The pH does not influence the amount of lactate consumed by yeasts. 

The hypothesis was disproved if there was a significant difference (α =0.05) in the 

lactate concentration after 22 h (± 2h) and 45 h (± 2h) between the treatment at pH 3.8 and 

pH 5.5 (or ≥ 4.4 in Experiment type C and D). 

 

• Referring to the other 3 experiment types: 

Hypothesis 2: 
The decomposition of lactate and the rise in pH is solely caused by yeasts. 

The hypothesis was disproved if lactic acid decomposition and eventually pH rise was 

observed in the antifungal treatment. 

 

Hypothesis 3: 
Aerobic changes in silages are dominated by yeast activity. 

The hypothesis was disproved if the control differed significantly (α =0.05) from the 
antibacterial treatment. 
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Hypothesis 4: 
The decomposition of lactate and the rise in pH is not influenced by other available 

carbon sources and compounds. 

The hypothesis was disproved if the changes occuring in treatments without additional 

C-sources differed significantly (α =0.05) from the treatments with additional carbon 

sources. 
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4 MATERIALS AND METHODS 

4.1 Shaken batch culture system 

Experiments were carried out in a shaken batch culture system. 

Definition: “Batch cultures describe growth occurring in a fixed volume of culture 

medium that is continuously being altered by the metabolism of the growing organisms 

until it is no longer suitable for growth. During the early stages of exponential growth in 

batch culture conditions may remain relatively stable, but as the cell number increases 

drastic changes in the chemical composition of the medium occur.” (SMITH, 2004) 

Aliquots (40 ml) of the medium were transferred to sterile Erlenmeyer flasks (100 ml). 

The inoculated medium was covered by sterile aluminium foil. To achieve aerobic 

conditions the samples were shaken on orbital shakers. Two orbital shakers were used: 

Infors HT (Infors AG, Basel, Switzerland), KS250basic (IKA Labortechnik) as 

available. The speed was adjusted to about 175 rpm according to subjective visual 

criteria: the whole medium should be sufficiently moved so that all cells would 

constantly get in touch with air.  

To observe mould or pellicle (BECK and GROSS, 1964) growth there was usually one 

not shaken sample per silage. 

The samples were incubated in an air-conditioned room at 25 °C, usually for 2 days. 

 

For inoculation yeast and LAB strains were isolated from high DM (35-40 %) grass 

silages and were cultured for Experiment types A and D. For Experiment types B and C  

a mixed microflora was used which was extracted from the silages together with the 

natural medium for Experiment type C (for details see 4.1.1 to 4.1.4). For Experiment 

type C high DM silages were used which were presumed to be prone to aerobic 

deterioration (characterisation of the silages see 4.1.3). 

 

In the following the subtypes of the experiments are referred to as A, B, C, D 1, 2 et 

sqq.. 
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Table 2: Experiment types  

Experiment type A B C D 

Synthetic medium x x     

Silage medium      x   

Sterile silage medium       x 

Yeast isolates x     x 

LAB isolate       x 

Mixed microflora   x x   
 

4.1.1 Experiment type A – Synthetic media, mono-cultures 
In this type of experiment first the requirements for lactate oxidation by yeasts were 

investigated, that is primarily air ingress: unshaken and shaken, lactic acid concentration 

and pH conditions.Within experiments the effect of temperature (20 °C and 25 °C) and 

length of incubation was generally tested. 

In a second step a comparison was made of lactate assimilation by 4 yeast isolates at a 

low and high lactate concentration and a low and high pH. 

 

Synthetic medium 

The nitrogen source was based on Yeast Nitrogen Base (DifcoTM #233520). The only 

carbon source was lactic acid. There were 4 different media. The two lactic acid 

concentrations, 0.5 and 2.0 % v/v, were chosen to represent extremes found in silage 

under practical conditions on FM basis. The two pH levels were adjusted to the 

extremes in grass silages of 3.8 and 5.5 using 5 M NaOH. 

Table 3 : Media 1-4 

% lactate 

pH      

2.0 0.5 

3.8 1 3 

5.5 2 4 

 

Inoculants 

Yeasts from Lolium perenne silages (2002) which had developed on lactate agar were 
isolated and identified in the own laboratory (streaking subcultures for spatial isolation, 
BAST, 2001; identification see APPENDIX V). Four yeast strains were selected: Pichia 
anomala (CBS 113 and CBS 605) as the most common yeast identified, Issatchenkia 
orientalis (CBS 1910) as another known lactate utiliser and Saccharomyces cereviseae 
var. cereviseae (CBS 1782) as a further yeast commonly present in the investigated 
silages. The identity of these selected isolated yeasts was later on confirmed by the 
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DSMZ. For inoculation they were grown in 40 ml malt extract bouillon for 24 h at      
30 °C (recipe see APPENDIX IV) . 

 

Experiment A 1 

• 4 media as described above 

• Conditions: shaken,  not shaken, 20 °C and 25 °C 

• Inoculant: 1 ml of a Pichia anomala culture (CBS 113) 

• 2 replicates 

• uninoculated control, 4 media, shaken, 25 °C, one replicate 

Table 4: Experiment A 1 

Variant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Medium 1 x x x x x
Medium 2 x x x x x
Medium 3 x x x x x
Medium 4 x x x x x
Agitated x x x x x x x x x x x x
Stationary x x x x x x x x
20 °C x x x x x x x x
25 °C x x x x x x x x x x x x
P. anomala 1 x x x x x x x x x x x x x x x x
No of repl. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 

 

Experiment A 2 

• 4 media as described above 

• Conditions: shaken, 25 °C 

• Inoculants: 0.1 ml of the 4 yeast strains described above 

• 3 replicates 

Table 5: Experiment A 2 

Variant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Medium 1 x x x x
Medium 2 x x x x
Medium 3 x x x x
Medium 4 x x x x
P. anomala 1 x x x x
P. anomala 2 x x x x
S. cerevisiae x x x x
I. orientalis x x x x  
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4.1.2 Experiment type B – Synthetic media, mixed cultures 

In this experiment the ability of the mixed microflora of a silage to decompose lactate 

and possible interactions between bacteria and fungi were studied. 

 

Synthetic medium 

Media 3 (0.5 % lactic acid, pH 3.8) and 2 (2 % lactate, pH 5.5) were used (details see A) 

presuming a similarity to the pH and lactic acid content of the silage which the 

inoculant was extracted from (see below). 

 

Inoculant 

Fresh silage extract (1 ml), a 1:5 dilution was inoculated to 40 ml aliquots of lactate 

medium. To obtain the dilution 260 ml distilled sterile water were added to 65 g silage 

FM. The microorganisms were extracted during 5 min in a Stomacher. The volume of 1 

ml for inoculation was chosen to provide a sufficient amount and diversity of silage 

micro-organisms but at the same time to minimise the transfer of nutrients from the 

silage to the synthetic medium. 

 

Antibiotics 

To distinguish the activity of fungi and bacteria antibiotics were used. 

Antimycotic (AM): 1 ml of a 5 % Delvocid® (Natamycin) suspension, autoclaved, was 

added to 40 ml aliquots of medium. 

Antibacterial (AB): 1 ml of a Penicillin / Streptomycin solution, filter sterilised, was 

added to 40 ml aliquots of medium. Stock solution: 0.3 g Penicillin-G K-salt, 0.3 g 

Streptomycin sulphate, 100 ml distilled water. 

As a control to determine the effectiveness of the antibiotics, both AM and AB were 

combined (MB) as one treatment. 

 

Experiment B 1 

• 4 treatments with 3 replicates: Control (C), Antibacterial (AB), Antimycotic 

(AM) and MB treatment. Medium 2 (2 % lactate/ pH 5.5), microbial extract 

prepared from grass silage ID 15. 
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Experiment B 2 

• 4 treatments with 3 replicates: Control (C), Antibacterial (AB) and Antimycotic 

(AM) treatment. Medium 3 (0.5 % lactate/ pH 3.8), microbial extract prepared 

from maize silage ID 16. 

Table 6: Experiment B 1 and Experiment B 2 

Treatment 1 2 3 4 5 6 7 8 
Medium 2 x x x x     

Medium 3     x x x x 

C x    x    

AB  x    x   

AM   x    x  

MB    x    x 

Grass silage x x x x     

Maize silage     x x x x 

 

4.1.3 Experiment type C – Silage media, mixed cultures 

This type of experiment served to investigate in the complex microbial behaviour in an 

environment similar to silage. 

 

Silage medium 

Silages were extracted with sterile water in the ratio 1:5, i.e. one part of silage (g FM) 

and 4 parts of water (ml), for 5 min in a Stomacher. The ratio was adopted from a rapid 

fermentation test developed by PIEPER et al., 1996, and ZIERENBERG, 2000, using 

minced fresh grass and water. 

The chemical and microbial composition of silages used in these experiments is shown 

in tables 7 to 9. All silages except ID 15, 16 and 32 were taken from laboratory scale 

silos made in 1.5 l WECK® jars in 2004 prepared for the EU project SweetGrass 

 (QLK5-CT-2001-0498)(method presented by PAHLOW et al., 2004).  

For preparing those silages herbage was wilted for approximately 24 h, cut to 15 mm 

length and filled into the WECK jars with a pore volume of about 4.5 l/kg DM, that is 

about 670-610 g FM in 1.5 l volume for a DM content of 35-40 % in 4 replicates. 

Silages were stored for 49 or 90 days. To simulate suboptimal conditions on the farm 

and to enhance undesirable yeast growth silages were challenged by defined air infusion 

for 8 h after 4 and 6 weeks if stored for 49 days or after 4, 8 and 12 weeks if stored for 

90 days by opening two rubber seals allowing air in- and outflow.  

All laboratory silages except ID 25 (inoculated with commercially available 

Lactobacillus plantarum strains) were control silages, i.e. fermented without additives. 



4 MATERIALS AND METHODS 

    

 
19

Those high DM silages were chosen because it was presumed that they were more prone 

to aerobic deterioration due to lacking additive treatment and controlled air ingress 

during storage. 

One out of four replicate silages (spare sample) was taken for the batch culture.  

The other 3 replicates served for chemical analyses and together with a sample of the 

replicate for batch cultures for the evaluation of aerobic stability by temperature 

measurement according to HONIG, 1990 (APPENDIX II).  

Silages ID 15 and 16 were taken from bunker silos of the FAL experimental station. 

Silage ID 32 was a laboratory silage in a 20 l glass jar similar to an desiccator. The 

method of HONIG was applied to samples of these silages as well. 

All grass silages except ID 15 (original grass unknown) were made from Lolium 

perenne. Lucerne stands for Medicago sativa. 

Table 7: Chemical composition of silages used for preparation of the silage medium (% DM); used in 
Experiment type C 

Silage 
ID

Trial 
ID Type of silage Age (months) % DM pH

WSC 
(HPLC) Fruct. Gluc. Suc. Fructan

BC [Meq/kg 
DM]

15 10 Grass ~ 8.0 25.8 4.5 2.3 0.4 0.0 1.9 0.6 778.9

16 11 Maize ~ 7.0 31.7 3.8 0.0 0.0 0.0 0.0 0.9 590.7

17 12 Grass 1.5 38.6 4.8 13.5 10.5 2.9 0.1 0.4 556.8

19 13 Grass 1.5 37.3 4.7 15.7 12.5 3.1 0.1 1.3 523.8

20 13
Grass/lucerne 
75/25 1.5 38.3 4.6 11.7 9.4 2.2 0.0 1.2 653.6

21 13
Grass/lucerne 
50/50 1.5 40.1 4.6 7.2 5.6 1.6 0.0 1.0 775.5

24 14 Grass 3.0 37.9 4.8 12.4 9.8 2.5 0.1 0.3 538.2

25 14 Grass (L.plant.) 3.0 38.7 4.0 10.8 8.7 2.1 0.0 0.7 706.7

26 15 Grass 3.0 37.4 4.6 18.5 14.3 4.1 0.1 0.8 544.6

27 15
Grass/lucerne 
75/25 3.0 38.9 4.6 14.2 11.1 3.2 0.0 0.8 669.7

30 17 Grass 3.0 32.2 4.6 15.7 13.2 1.6 0.9 1.2 541.9

31 17
Grass/lucerne 
75/25 3.0 34.9 4.6 10.7 9.1 0.8 0.8 0.8 689.7

32 19/20 Grass 3.0 39.0 4.8 11.3 9.6 1.6 0.0 0.9 603.2

34 23/24 Grass 6.0 37.4 4.7 8.5 6.9 1.6 0.0 0.6 666.6  
* sum of fructose, glucose and sucrose 

 

 

 

 

 

 

 

*  
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Table 8: Volatile fatty acids and ethanol [% of FM]; Experiment type C 

Silage 
ID 

TrialID Type of silage %DM(cor.) Lactic 
acid 

Acetic 
acid 

Propionic 
acid 

Butyric acid 
(sum) 

Ethanol 

15 10 Grass 26.8 1.12 0.94 0.08 0.01 0.12 

16 11 Maize 32.6 2.74 0.37 0.02 0.00 0.33 

17 12 Grass 39.3 1.16 0.31 0.04 0.03 0.31 

19 13 Grass 37.6 0.94 0.26 0.02 0.02 0.38 

20 13 Grass/lucerne 
75/25  

39.0 1.44 0.33 0.01 0.03 0.29 

21 13 Grass/lucerne 
50/50 

40.9 1.96 0.36 0.03 0.00 0.31 

24 14 Grass 38.7 1.13 0.31 0.05 0.03 0.37 

25 14 Grass (L.plant.) 39.4 2.40 0.15 0.10 0.02 0.30 

26 15 Grass 38.1 1.10 0.29 0.01 0.02 0.43 

27 15 Grass/lucerne 
75/25  

39.5 1.57 0.29 0.00 0.02 0.29 

30 17 Grass 33.1 0.88 0.21 0.11 0.04 0.57 

31 17 Grass/lucerne 
75/25  

35.6 1.20 0.32 0.10 0.04 0.23 

32 19/20 Grass 38.6 1.10 0.38 0.21 0.04 0.61 

34 23/24 Grass 37.4  1.17  0.69  0.18  0.08  0.11  

 
*sum of i-butyric, n-butyric, i-valeric, n-valeric and n-hexanoic acid 

 

 Microflora 

The population density in 10 g silage FM corresponds to about 46-47 ml aliquots of 

silage medium. 

The microbial composition of the silages is shown in the Table 9 below. 

Table 9: Numbers of micro-organisms used to prepare the silage medium used in Experiment type C   

(log cfu/g FM) 

Silage ID Yeasts Moulds Aer. bacteria LAB 

15 < 2 (n.d.) 8.5 - 

16 5.9 n.d. 5.2 - 

17 7.4 n.d. 7.0 - 

19 6.4 n.d. 7.6 - 

20 n.d. 6.3 6.9 - 

21 n.d. 7.0 7.2 - 

24 7.0 n.d. 5.2 5.3 

25 5.4 4.9 4.5 < 5 

26 6.8 n.d. 5.7 5.7 

27 6.1 6.4 5.4 5.4 

30 6.7 n.d. 6.0 4.9 

31 6.8 n.d. 6.0 5.4 

32 6.6 n.d. 6.9* 6.0 

34 6.2 n.d. 6.8* 6.5 

n.d.= not detected; - = missing value; * on plate count agar 

*  
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Stomacher

5 min65 g FM silage

Silage:H2O

1:5
1  

2 
3

 

40 ml extract in 
Erlenmeyer flasks

Additives

Orbital shaker

4

5

6
 

Figure 8: Sample preparation 
 

 

1) pH-measurement       2) Transfusion of 2-3 ml 

 

 

 

 

 

 

3) Centrifugation            4) Fill in vials              5) Measurement by HPLC  
 

Figure 9: Sample measurement 
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Antibiotics 

Antimycotic AM:  

1 ml of a 5 % w/v Delvocid® (Natamycin) suspension, autoclaved, was added to 40 ml 

aliquots of medium. 

Antibacterial AB: 

a) 1 ml of a Penicillin / Streptomycin solution was filter sterilised and added to 40 

ml aliquots of medium.  

Stock solution: 0.3 g Penicillin-G K-salt, 0.3 g Streptomycin sulphate, 100 ml 

distilled water. 

This composition was used for the silages 15, 16 and 17. For the latter it did not prove 

to be sufficiently effective in the MB treatment (antibacterial + antimycotic), i.e. 

particularly in grass silages. Thus the composition described below was used: 

b) A modified antibacterial solution (0.8 ml) described by WOOLFORD and 

COOK, 1978, was filter sterilised and added to 40 ml aliquots of medium.  

Stock solution (100fold):  500 mg Chlortetracycline, 500 mg Penicillin-G K-salt, 

500 mg Chloramphenicol, 500 mg Streptomycin sulphate, 1250 mg Bacitracin, 

100 mg Polymyxin B, 100 ml distilled water. 

The utilisation of dye rose bengal as suggested by WOOLFORD was abandoned 

because of the fungistatic effect sometimes observed (MARTIN, 1950; 

MOSSEL et al., 1980). 

As a control on the effectiveness of the antibiotics, both AM and AB were combined 

(MB) in Silages ID 15, 17, 19, 24. 

 

Additives 

Tannic acid 

1 ml of a 5.7 % (w/v) tannic acid solution, filter sterilised, was added to 40 ml aliquots 

of silage medium. This corresponded to a tannin concentration equivalent to about     

2.5 % in the DM of fresh whole plant lucerne (23 % DM) (MILTIMOR  et al., 1970) or 

of a wilted lucerne silage (~ 40 % DM) mixed with grass (60 % lucerne in FM). The 

origin of the tannic acid was the quebracho wood (Aspidosperma quebracho-blanco), a 

South American tree. 

 

Fructose 

To study the effect of residual WSC fructose was added at two different concentrations. 

Fructose was chosen as the predominant sugar left after ensiling of perennial ryegrasses 

(Lolium perenne) (own observation).  
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One or 2 ml resp. of a 30 % w/v filter sterilised fructose solution were added to 40 ml 

aliquots of silage medium. This corresponds to roughly 3 % and 6 % fructose resp. on 

silage FM base. Assuming a DM content of 40 % this corresponds to about 7.5 and     

15 % fructose in the DM. 

  

Potassium chloride 

Potassium chloride was used to increase the osmotic pressure in the silage medium. 

Potassium was preferred to sodium due to its lower toxicity against yeasts (ONISHI, 

1957). To adapt the medium to the osmolality of high DM grass silages a concentration 

of 8 % w/v KCl was used. According to WEISSBACH, 1968, this corresponds to the 

osmotic pressure prevailing at about 40 % DM of a silage. Silage samples (ID 17, 30, 

34) measured by an osmometer were at the level of 2.3-2.7 osmol/kg. 

 

Varying pH 

To decrease the pH concentrated H2SO4 was used. H2SO4 was chosen because it is an 

inorganic acid with little side assumed effect, except the release of H+ ions. Due to its 

high concentration the volume needed was so small that the effect on the total volume 

of the medium was minimised.  

 

Oxygen 

To test the influence of different aeration regimes the liquid volume to air space ratio 

was varied, i.e. 200 ml Erlenmeyer flasks were tested versus 100 ml flasks. 

 

 

Grass silages: 

Experiment C 1 

• 3 treaments with 3 replicates: Control (C), Antibacterial (AB) and Antimycotic 

(AM) treatment. Silages ID 15, 17, 19, 24, 25, 26, 30, 32, 34. (9 silages in total).  

MB treatment was applied for silages ID 15, 16, 17, 19, 24. Aerobic stability 

test. 

 

Experiment C 2 

• 3 treatments with 3 replicates: C, AB and AM + 3 % fructose in FM. Silages ID 

17, 19, 24, 25, 26, 30. (6 silages in total). 
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Experiment C 3 

• 3 treatments with 3 replicates: C, AB and AM + 6 % fructose in FM. Silages ID 

19, 32, 34. (3 silages in total). Aerobic stability test. 

 

Experiment C 4 

• 6 treatments with 3 replicates: C, AB and AM in 8 % KCl solution in 100 ml 

and in 200 ml erlenmeyer flasks. Silage ID 34.  

 

Experiment C 5 

• 2 treatments with 3 replicates: C and AB + 0.57 % tannic acid in FM. Silage    

ID 17. 

 

Experiment C 6 

• 6 treatments with 3 replicates: pH of the medium adjusted to 3.8, C, AB, AM 

without and with 6 % fructose. Silage ID 32. 

Table 10: Treatments Experiment C 1 - Experiment C 8 

Treatment C1 C2 C3 C4 C5 C6 C7 C8 

C x x x x x x x x 

AB x x x x x x x x 

AM x x x x   x x x 

+ 3 % fructose   x           x 

+ 6 % fructose     x     ±     

+ tannic acid         x       

8 % KCl       x         

Adj. pH 3.8           x     

200 ml volume       ±         

Grass silage x x x x x x     

Grass-lucerne sil.             x x 

Maize silage             x   

Aerobic stab. test x  x      

 

Silages other than pure grass 

Experiment C 7 

• 3 treatments with 3 replicates: Control (C), Antibacterial (AB) and Antimycotic 
(AM) treatment. Maize silage ID 16, Grass-lucerne silages ID 20, 21, 27, 31.    
(5 silages in total). 
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Experiment C 8 

• 3 treatments with 3 replicates: C, AB and AM + 3 % fructose in FM. Grass-
lucerne silages ID 27, 31. (2 silages in total). 

 

4.1.4 Experiment type D – Autoclaved silage media, mono- & co-cultures 
This type of experiment served to confirm the conclusions made from the results of 

Experiment type C under defined conditions. On the other hand, some of results found 

in Experiment type D were confirmed in Experiment type C or vice versa.  

In this type of experiment defined isolates were inoculated into sterile silage medium.  

 

Silage medium 

Silage medium was prepared as described in Experiment type C. It was autoclaved at 

110 °C for 15 min. By plating on MEA it was ensured that no microbes had survived. 

One maize and one grass silage were used. The maize silage was taken from a silo 

bunker from the FAL experimental station. The grass silage was chosen from farm 

silages where the detailed composition was already known with the criteria of being a 

silage of > 30 % DM and judged to be a good silage according to the DLG key 

(ANONYMUS, 1997). 

Table 11: Chemical composition of silages used for preparation of the silage media (%  DM) used in 
Experiment type D 

Type 
of 
silage 

Age 
(months) 

% 
DM pH 

WSC * 
(HPLC) Fruct. Gluc. Suc. Fructan 

BC 
[Meq/kg 
DM] 

Grass 10 32.6 4.4 2.4 1.7 0.7 0.0 0.4 934.7 
Maize ~ 7 31.7 3.8 0.0 0.0 0.0 0.0 0.9 590.7 

* sum of fructose, glucose, sucrose 

 

Table 12: Organic acids and ethanol [% of FM] of silages used in Experiment type D 

Type 
of 

silage 
%DM 
(corr.) Lactic acid Acetic acid 

Propionic 
acid 

Butyric acid 
(sum) Ethanol 

Grass 33.5 2.72 0.50 0.00 0.05 0.19 

Maize 32.6 2.74 0.37 0.02 0.00 0.33 

 

Inoculants 

2 yeast strains as described in 4.1.1 were used: Pichia anomala (CBS 113) and 
Saccharomyces cereviseae var. cereviseae (CBS 1782). For inoculation they were 
grown in 40 ml malt extract broth for 24 h at 30 °C. Aliquots (0.1 ml) were inoculated 
into the silage medium. 
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One LAB strain was isolated from 2 days batch culture from silage ID 19, found on 
Rogosa agar. It showed no production of CO2 during growth on glucose and was as 
such revealed as a homofermentative LAB. It was identified as Lactobacillus plantarum 
by the DSMZ. For inoculation it was grown in 40 ml MRS broth for 24 h at 30 °C. 
Aliquots (0.1 ml) were inoculated into the silage medium. 

For recipes for the broths used see APPENDIX IV. 

 

Additives 

Fructose 

Fructose (6 % w/v on FM) base was added to study the effect of the amount of residual 
WSC (see Experiment type C). 

 

Potassium chloride 

An 8 % KCl (w/v) solution was made using sterile KCl and autoclaved silage medium 
to adapt the osmotic pressure in the medium to that prevailing in silages. 

 

Adjustment of pH 

To increase the pH of the silage medium 5 M NaOH was used. To decrease the pH 

concentrated H2SO4 was used. 

 

Oxygen 

To test the influence of different aeration regimes 200 ml Erlenmeyer flasks were tested 

in comparison with 100 ml flasks. 

 

Experiment D 1 

• 6 treatments with 3 replicates: Pichia anomala, Lactobacillus plantarum, Pichia 
anomala + L. plantarum were inoculated into grass silage or maize silage 
medium. 

Experiment D 2 

• As for D1, but + 6 % fructose on FM base. 

 

Experiment D 3 

• As for D1, but maize silage medium adjusted to the pH of the grass silage (4.4) 
and vice versa (3.8). 

 

Experiment D 4 

• As for D3, but + 6 % fructose on FM base. 
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Experiment D 5 

• 3 treatments with 3 replicates: Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum were inoculated into medium extracted from grass 

silage containing 8 % KCl. 

 

Experiment D 6 

• As for D5, but + 6 % fructose on FM base. 

 

Experiment D 7 

• 3 treatments with 3 replicates: Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum were inoculated into grass silage medium. 40 ml 

aliquots of medium were transfused to 200 ml Erlenmeyer flasks, instead of 100 

ml flasks. 

Table 13: Treatments Experiment D 1-Experiment D 9 

Treatment D1 D2 D3 D4 D5 D6 D7 D8 D9 

Pichia anomala x x x x x x x     

Saccharomyces cerevisiae               x x 

P. anomala + S. cerevisiae                 x x 

Lactobacillus plantarum x x x x x x x     

P. anomala + L. plantarum x x x x x x x     
P. anomala + L. plantarum + 
 S. cerevisiae               x x 

+ 6 % fructose   x   x   x     x 

8 % KCl         x x       

Adj. pH 3.8     x x       ± ± 

Adj. pH 4.4     x x           

200 ml volume             x     

Grass silage x x x x x x x x x 

Maize silage x x x x           

Experiment D 8 

• 6 treatments with 3 replicates: Saccharomyces cerevisiae, Saccharomyces 

cerevisiae + Pichia anomala, Saccharomyces cerevisiae + Pichia anomala + 

Lactobacillus plantarum were inoculated into grass silage medium with either 

the natural pH of 4.4 or adapted to pH 3.8. 

 

Experiment D 9 

• As for D8, but + 6% fructose on FM base. 
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pH measurement 

pH was measured electrometrically by a pH-meter (Microprocessor pH/ION Meter 

pMX2000 WTW). The pH-meter was calibrated daily using two buffers, pH 4.00 and 

pH 7.00 (Riedel-de Haën).  

To avoid microbial contamination of the samples the electrode was rinsed with distilled 

water as well as with 70% ethanol (denatured) after each sample measurement. 

Final measurements of pH in 100 ml Erlenmeyer flasks was generally made after 0, 22 

(±1), 34 (±1), 47 (±2) h of incubation and sometimes even after 5, 10 or 12 h. In later 

experiments the time intervals of the initial period of incubation (5, 10 h) were missed 

out as it had been found that during the first 12 h there was generally no measurable pH 

change. For the second day the 34 h measurement replaced the 30 h measurement for 

the same reason. 

 

Analysis of alcohols and volatile fatty acids 

After the pH measurement at 22 and 47 h, aliquots (2-3 ml) of each sample were placed 

in test tubes. They were centrifuged at 4000 rpm for 10 min (EBA 12R / Hettich 

Zentrifugen), then transferred to vials and analysed for alcohol (ethanol), lactic acid and 

volatile fatty acids (acetic, propionic acid) by High Performance Liquid 

Chromatography (HPLC) (Kontron Instruments, column: Rezex ROH-Organic Acid H+ 

/ Phenomenex). Further details see APPENDIX III. 

In the results these major metabolites are presented, i.e. lactic, acetic, propionic acid and 

ethanol (for Experiment type A only lactic acid).  

Other components that were measured in the standard HPLC analysis like butyric acid, 

valeric acid, partly formic acid, butanol, n-propanol, 2,3-butanediol, 1,2-propanediol 

were either not detected or only in traces (< 1.6 mg/ml ≈ 7.5 g/kg FM). 

 

O2 measurement 

In one experiment (Experiment D 7) dissolved oxygen was measured in uninoculated 

silage medium at 25 °C on the orbital shaker and after 2 days of incubation in the 

inoculated silage media. A WTW OXI 530 with the electrode WTW TriOxmatic® EO 

200 was used, calibrated with distilled water in WTW PE/OXI OxiCal®, which 

corresponded to 101.7 % O2 saturation or 8.23 ppm (mg/l). 
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Microbial counts 

For recipes see APPENDIX IV. 

 

Experiment type A + D 

1 ml aliquots of the 24 h cultures were used to prepare tenfold serial dilutions using 

quarter strength Ringer solution. 

Yeasts were spread-plated on MEA while LAB were spread-plated on MRS agar.  

Triplicate plates were incubated at 30 °C for 3 days and all visible colonies counted.  

For method compare SEALE et al., 1990. 

 

Experiment type B + C 

All aerobic silage microorganisms were counted.  

Silage was suspended in sterile distilled water in the ratio 1:10, i.e. one part of silage 

FM and 9 parts of water, and treated in a Stomacher for 2 minutes. A logarithmic series 

of serial dilutions was then prepared with Ringer solution (see SEALE et al., 1990). 

The dilution was spread-plated on selective media as described below. 

MEA was used as a complex medium for fungi as well as aerobic bacteria. To 

differentiate between the two microbial groups it was treated with the same antibiotics 

as used for the silage medium (AB and AM). 

For silages ID 32 and 34 only Plate Count Agar (BUCHBINDER et al., 1953, ISO 

17410 Standard, 2001;ISO 4833 Standard, 2003) was used to enumerate aerobic 

bacteria as a commonly used medium for aerobic plate counts.  

Rogosa agar (ROGOSA et al., 1951) was used to enumerate LAB in silages ID 24-27, 

30-32 and 34 when in the course of investigations it was found that LAB might also 

cause aerobic changes in the silage medium. 

The plates were incubated at 30 °C for 3 days and all visible colonies counted. 

Colonies of yeasts and moulds were distinguished visually. As yeasts dominated and 

moulds were found only in association with lucerne or additive treated silages in the 

results mould numbers are only given in those rare cases. 
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4.2 Yeast identification 

For identification the current methodology at the German Collection of Microorganisms 

and Cell Cultures (DSMZ Braunschweig) was used (HOFFMANN, 2003). 

This methodology makes use of the API50 CH test kits (Biomérieux), supplemented by 

a fermentation test (glucose), a nitrate utilisation test, temperature tolerance tests (if 

necessary) and microscopic morphology (cell shape, pseudomycelium formation, sexual 

reproduction). For further details see APPENDIX V. 

 

4.3 Characterisation of silages 

DM 

The dry matter content of silages was calculated after drying at 105 °C for 48 h in a 

forced air oven. 

 

Corrected DM (DMcor) 

The DM was corrected for volatiles by the factors: 

Maize silage: DMcor (%) = 2.22 + 0.960 * DM 

Other silages: DMcor (%) = 2.08 + 0.975 * DM 

according to WEISSBACH and KUHLA, 1995. 

 

Crude Ash 

Milled dry silage was ashed at 600 °C for 3 h (Weende feed analysis). 

 

WSC fractions 

WSC fractions (fructose, glucose, sucrose and fructan) were analysed by High 

Performance Liquid Chromatography (HPLC) (Kontron Instruments, column: Rezex 

RPM Monosaccharide / Phenomenex). For details see APPENDIX VI. 

 

BC 

The method used was that by Teagasc, Grange Research Centre, Dunsany Co. Meath, 

Ireland (see APPENDIX VII), based on PLAYNE and McDONALD, 1966; 
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McDONALD and HENDERSON, 1962; MUCK et al., 1991. 

 

Osmolality 

Osmomat 030 – Cryoscopic Osmometer / Gonotec calibrated with 5.66 % NaCl -  

corresponding to 1.8 osmol/kg.    

 

Volatile fatty acids and ethanol 

Fresh silage was extracted with sulfuric acid and analysed by High Performance Liquid 

Chromatography (HPLC) (see APPENDIX III). 

 

4.4 Statistics 

Means and standard deviation were calculated using Microsoft® Excel (2002), graphs 

were created using SigmaPlot 8.0 (2002; 1986-2001 SPSS Inc.).  

Analysis of variance was conducted using the procedure GLM (F-test, Tukey test) and 

regression analysis was conducted using the procedure REG provided by the software 

SAS 9.1 (2002-2003 by SAS Institute Inc., Cary, NC, USA). 
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5 RESULTS 

All measured values presented in the results are also listed in APPENDIX IX. 

Values for organic acid contents in the media are given in mg/ml as this was the 
concentration the micro-organisms actually encountered under the experimental 
conditions. It can be converted to the approximate value for g/kg FM by multiplying the 
figure by 4.6 or 4.7 for 40 or 35 % DM content of the original silage respectively (for 
calculation see APPENDIX III). 

 

5.1 Experiment type A  

5.1.1 Experiment A 1  – Lactate concentration, pH, shaken – not shaken, temperature 

To verify the effect of shaking, temperature, pH and lactate concentration 

• 4 media  

• Conditions: shaken, not shaken, 20 °C and 25 °C 

• Inoculant: 1 ml of a Pichia anomala culture (CBS 113) 

• 2 replicates 

• uninoculated control, 4 media, shaken, 25 °C, one replicate 

 

Within individual media there were no significant differences in pH and lactic acid 

content between different temperatures but always a significant difference between 

shaken and and not shaken treatments at all time points.  

The pH and lactic acid concentration in the uninoculated control treatments did not 

change over 53 h incubation period. 

In the not shaken treatments pellicle forming was observed after 25 h. 

 

Medium 1: 2.0 % lactate, pH 3.9 

The not shaken treatments did not change significantly in pH and lactic acid content 

over 53 h of incubation at either temperature (Figure 10 & Figure 12).  

Within the first 25 h the shaken treatments did not change in pH but lactic acid 

concentration decreased from 18.8 mg/ml to 15.5 mg/ml (0.6 s.d.) (Figure 11 & Figure 

13). After 48 h the concentration of lactic acid had declined to 10.7 mg/ml (0.9 s.d.). 

The pH at that time point was 4.8 (0.4 s.d.). 
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Figure 10 (top left): Changes in pH and lactic acid content over 53 h in medium 1, not shaken, at 20 °C 

Figure 11 (down left): Changes in pH and lactic acid content over 53 h in medium 1, shaken, at 20 °C 

Figure 12 (top right): Changes in pH and lactic acid content over 53 h in medium 1, not shaken, at 25 °C 

Figure 13 (down right): Changes in pH and lactic acid content over 53 h in medium 1, shaken, at 25 °C 

 

Medium 2: 2.0 % lactate, pH 5.5 

The not shaken treatments changed very little in lactic acid content, from 18.8 to 17.5 

mg/ml (0.2 s.d.) over 48 h (Figure 14 & Figure 16), but at 25 °C the final pH rose to 6.3 

after 53 h (Figure 16).  

The pH of the shaken treatments rose steeply over 48 h to 8.3 (0.0 s.d.) (Figure 15 & 

Figure 17). At the same time the lactic acid concentration decreased from 18.8 to 13.7 

mg/ml (0.1 s.d.). In comparison to the same treatments with medium 1 16 % lactic acid 

less was decomposed. 

pH Lactic Acid
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Figure 14 (top left): Changes in pH and lactic acid content over 53 h in medium 2, not shaken, at 20 °C 

Figure 15 (down left): Changes in pH and lactic acid content over 53 h in medium 2, shaken, at 20 °C 

Figure 16 (top right): Changes in pH and lactic acid content over 53 h in medium 2, not shaken, at 25 °C 

Figure 17 (down right): Changes in pH and lactic acid content over 53 h in medium 2, shaken, at 25 °C 

 

Medium 3: 0.5 % lactate, pH 3.8 

In the not shaken treatments the lactic acid concentration decreased slightly over 48 h, 

from 4.7 to 3.8 mg/ml (0.4 s.d.), with no change in pH at this time (Figure 18 & Figure 

20). 

In the shaken treatments the lactic acid was decomposed completely within 48 h (Figure 

19 & Figure 21). There was a difference (n.s.) in the pH development during the first 25 

h between the treatments at 20 and 25 °C. At 20 °C the pH rose from 3.8 to 4.2 (0.1 

s.d.). At 25 °C it rose to 5.9 (0.6 s.d.), but after 53 h both treatments had a pH of 8.1 (0.1 

s.d.). 

pH Lactic Acid
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Figure 18 (top left): Changes in pH and lactic acid content over 53 h in medium 3, not shaken, at 20 °C 

Figure 19 (down left): Changes in pH and lactic acid content over 53 h in medium 3, shaken, at 20 °C 

Figure 20 (top right): Changes in pH and lactic acid content over 53 h in medium 3, not shaken, at 25 °C 

Figure 21 (down right): Changes in pH and lactic acid content over 53 h in medium 3, shaken, at 25 °C 

 

Medium 4: 0.5 % lactate, pH 5.5 

In the not shaken treatments the lactic acid concentration declined slightly from 4.8 to 

3.3 mg/ml (0.3 s.d.) within 48 h (Figure 22 & Figure 24). The pH rose faster at 25 °C 

and a pH of 5.9 after 25 h, compared to pH 5.3 at 20 °C. However, after 53 h the 

difference diminished, 6.7 resp. 6.2. 

Within 48 h the pH of the shaken treatments rose towards 8.5 and the lactic acid content 

declined to 0.2 mg/ml at 20 °C (Figure 23) and to 0.7 mg/ml at 25 °C (Figure 25), 

leaving on average 9 % more lactic acid than the comparable treatments with medium 3. 

pH Lactic Acid
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Figure 22 (top left): Changes in pH and lactic acid content over 53 h in medium 4, not shaken, at 20 °C 

Figure 23 (down left): Changes in pH and lactic acid content over 53 h in medium 4, shaken, at 20 °C 

Figure 24 (top right): Changes in pH and lactic acid content over 53 h in medium 4, not shaken, at 25 °C 

Figure 25 (down right): Changes in pH and lactic acid content over 53 h in medium 4, shaken, at 25 °C 

 

Summary 

In all not shaken treatments only small amounts of lactic acid were decomposed within 

48 h of incubation, but pH only was affected in the treatments starting with a high pH. 

If considering the treatments with same initial lactic acid content, but different initial pH 

there was a higher decomposition rate of lactic acid in the treatments with the lower 

initial pH. The results from these experiments provide evidence to disprove  

Hypothesis 1 which says that the pH does not influence the amount of lactate 

consumption by yeasts. 

pH Lactic Acid
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Considering the treatments with same initial pH but different lactic acid content: initial 

pH 3.8/3.9: there was a higher pH response in the treatments with lower lactic acid 

content, pH 5.5: the pH development was quite similar regardless of the lactic acid 

content. 

There was no consistent temperature effect. 

For future experiments it was concluded that shaking was needed to provide sufficient 

aeration of the media to enable oxidative metabolism, but that the choice of one of the 

two temperature regimes could be made upon practical criteria. 

An incubation period of two days was proved to be enough time for a significant 

decrease in lactic acid concentration in the shaken treatments. 

 

5.1.2 Experiment A 2 – Lactate concentration, pH, 4 different yeast strains 

To compare different yeast species and strains and their ability to assimilate lactate in 
different concentrations and at varying pH levels 

• 4 media  

• Conditions: shaken, 25 °C 

• Inoculants: 0.1 ml of 4 yeast strains  

• 3 replicates 

 

Medium 1: 2.0 % lactate, pH 3.9 

After 23 h of incubation the treatment inoculated with Issatchenkia orientalis differed 

significantly from the other treatments in pH and in lactic acid concentration (Figure 26 

to Figure 29). At this time the treatment with Saccharomyces cereviseae also differed 

significantly from the other treatments in lactic acid concentration. 

After 47 h the S. cerevisiae treatment differed significantly from all other treatments in 

both pH and lactic acid concentration. At that time the treatment with Pichia anomala 

(CBS 605) differed significantly from all other treatments in lactic acid concentration. 

 

Medium 2: 2.0 % lactate, pH 5.5 

After 23 h, I. orientalis and S. cerevisiae behaved as in medium 1, additionally the 

treatment with P. anomala (CBS 113) differed significantly from all other treatments in 

pH. 

After 47 h, the same results as in medium 1 were obtained. Corresponding graphs can 

be viewed in APPENDIX VIII, figures 1-4. 
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Figures: Changes in pH and lactic acid concentration over 54 h, error bars = s.d. 

Figure 26 (top left): Medium 1, inoculated with Issatchenkia orientalis 

Figure 27 (down left): Medium 1, inoculated with Saccharomyces cerevisiae 

Figure 28 (top right): Medium 1, inoculated with Pichia anomala (CBS 113) 

Figure 29 (down right): Medium 1, inoculated with Pichia anomala (CBS 605) 

 

 

Medium 3: 0.5 % lactate, pH 3.9 

After 23 h, I. orientalis behaved as in medium 1, additionally the treatment with P. 

anomala (CBS 113) differed significantly from S. cerevisiae in lactic acid content 

(Figure 30 to Figure 33). 

After 47 h, the S. cerevisiae treatment differed significantly from all other treatments as 

well as in pH as in lactic acid content. 

pH Lactic Acid
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Figures: Changes in pH and lactic acid concentration over 54 h, error bars = s.d. 

Figure 30 (top left): Medium 3, inoculated with Issatchenkia orientalis 

Figure 31 (down left): Medium 3, inoculated with Saccharomyces cerevisiae 

Figure 32 (top right): Medium 3, inoculated with Pichia anomala (CBS 113) 

Figure 33 (down right): Medium 3, inoculated with Pichia anomala (CBS 605) 

 

Medium 4: 0.5 % lactate, pH 5.5 

After 23 h, treatments with I. orientalis and S. cerevisiae differed significantly from 

each other and from the two P. anomala treatments in pH as well as in lactic acid 

content. 

After 47 h, same changes occurred as in medium 3, additionally I. orientalis differed 

significantly from all other treatments in lactic acid content (i.e. > P. anomala < S. 

cerevisiae). Corresponding graphs can be viewed in APPENDIX VIII, figures 5-8. 

 

Issatchenkia orientalis 

Regardless of which medium used I. orientalis decomposed lactic acid faster than all 

other inoculant species. 

Pellicle formation was observed after 23 h. 

pH Lactic Acid
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During incubation for 47 h in medium 1 lactic acid concentration decreased from 19.0 

to 17.1 (0.2 s.d.) at 23 h to 11.4 mg/ml (0.3 s.d.) and the pH increased to 4.4. 

In medium 2 lactic acid concentration diminished from 18.6 mg/ml to 16.2 mg/ml after 

23 h and to 12.2 mg/ml after 47 h. The pH rose to 8.3 (0.1 s.d.) after 47 h. 

In medium 3 lactic acid declined from 4.7 mg/ml to 2.5 mg/ml (0.3 s.d.) after 23 h and 

to 0.1 mg/ml after 47 h. The pH increased to 7.9 (0.1 s.d.) after 47 h. 

Lactic acid concentration decreased from 4.9 mg/ml to 3.1 mg/ml after 23 h and to 1.0 

mg/ml after 47 h. The pH rose to 8.2 (0.0 s.d.) after 47 h. 

After 47 h the highest amount of lactic acid was decomposed in the following ranking 

order: medium 1 (7.6 mg/ml), medium 2 (6.4 mg/ml), medium 3 (4.6 mg/ml), medium 4 

(3.9 mg/ml). The higher the lactate concentration and the lower the initial pH, the more 

lactate was decomposed in a given time. 

There was a large difference in pH change in treatments starting with a low pH and 

dependent on the lactate concentration, in contrast to treatments starting with a high pH. 

  

Saccharomyces cerevisiae 

Regardless of which medium was used S. cerevisiae showed the lowest decomposition 

rate of lactate compared to the other inoculant yeasts. 

No pellicle was formed. 

Within 23 h there was neither a change in pH nor in lactic acid concentration in all 4 

media. 

After 47 h the lactic acid concentration diminished by 1.6 mg/ml (medium 1), 

respectively 1.4 mg/ml (medium 2), 0.9 mg/ml (medium 3) and 0.6 mg/ml (medium 4). 

The pH did not change significantly in medium 1 and only slightly in medium 3. It 

increased in the other two media to 7.0 (0.3 s.d.) (medium 2) and 6.3 (0.3 s.d.) (medium 

4). 

 

Pichia anomala (CBS 113 and CBS 605 ) 

The two P. anomala type strains behaved similarly except that in media 1-3 the lactate 

decomposition of CBS 113 was more effective after 47 h than that of the counterpart. 

Both type strains formed pellicles. 

Medium 1, 23 h, lactic acid content: CBS 113 -0.6 mg/ml, CBS 605 –0.8 mg/ml, 47h, 

CBS 113 -7.3 mg/ml , CBS 605 -5.9 mg/ml. The pH remained stable during the first 23 

h and rose to 4.3 (0.1 s.d.) after 47 h with both inoculants. 
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Medium 2, 23 h, lactic acid content: CBS 113 -0.9 mg/ml, CBS 605 -1.0 mg/ml, 47h, 

CBS 113 -5.9 mg/ml, CBS 605 -4.7 mg/ml. The pH increased to 6.2 (CBS 113) resp. 

5.7 (CBS 605) after 23 h and to 8.0 (0.1 s.d.) after 47 h with both inoculants. 

Medium 3, 23 h, lactic acid content: CBS 113 -0.9 mg/ml, CBS 605 -0.8 mg/ml, 47h, 

CBS 113 -4.7 mg/ml, CBS 605 -4.6 mg/ml. The pH did not rise during the first 23 h, but 

added up to 7.9 (CBS 113) resp. 7.7 (CBS 605) after 47 h. 

The reduction of lactic acid in medium 4 was quite similar to medium 3. However this 

had a strong effect on the pH already after 23 h, risen up to 6.6 (CBS 113) or 6.5 resp.. 

After 47 h a pH of 8.2-8.4 was achieved. 

General conclusions are quite similar to that of Issatchenkia orientalis.  

 

Summary 

Issatchenkia orientalis was the most effective lactate decomposing yeast followed 

closely by the Pichia anomala strains. Saccharomyces cereviseae had virtually no 

potential to metabolise lactic acid as the sole carbon source. 

The higher the concentration of lactic acid and the lower the initial pH the more lactic 

acid was decomposed by the lactate utilisers. The lower the lactic acid concentration 

and the higher the initial pH the highest pH was achieved in a given time. 

The results from this experiment provide additional evidence to disprove     

Hypothesis 1.  

 

SYNOPSIS Experiment type A 

• Results obtained in Experiment type A provided evidence that shaking supplied 

sufficient aeration to the cultures to oxidise lactic acid.  

• There were no significant differences between an incubation temperature of 20 

or 25 °C. For practical reasons it was decided to continue with the higher 

temperature. 

• Pichia anomala strains and Issatchenkia orientalis metabolised lactic acid as 

sole carbon source whereas Saccharomyces cerevisiae did not. 

• High initial concentration of lactic acid and low initial pH enhanced lactate 

decomposition by Issatchenkia orientalis and the two Pichia anomala strains. 

That fact provided evidence to disprove Hypothesis 1 which says that the pH 

does not influence the amount of lactate consumption by yeasts. 
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5.2 Experiment type B 

In this type of experiment the behaviour of the mixed microflora in lactate medium was 
investigated. 

 

Experiment B 1 – Mixed culture from grass silage 

• 4 treatments with 3 replicates: Control (C), Antibacterial (AB), Antimycotic 
(AM) and Antibacterial & -mycotic (MB) treatment. Synthetic medium 2, 
inoculant: extract from grass silage ID 15. 

 

There were no significant differences between all treatments over 47 h in pH, lactic acid 

and acetic acid concentration. Only ethanol concentration was significantly different 

between the control and the AB and MB treatments. Over 47 h pH and lactic acid 

content was fairly stable in all treatments. Corresponding graphs can be viewed in 

APPENDIX VIII, figures 9-12. 

 

Experiment B 2 – Mixed culture from maize silage 

• 4 treatments with 3 replicates: Control (C), Antibacterial (AB), Antimycotic 
(AM) and Antibacterial & -mycotic (MB) treatment. Synthetic medium 3, 
inoculant: extract from maize silage ID 16. 

 

C and AB treatments were quite similar and differed significantly from AM and MB in 
pH at all time point (Figure 34 to Figure 37). After 46 h there was a significant 
difference in lactic acid content between the treatments C+AB and AM+MB.  

During the first 22 h all treatments maintained a stable pH and lactic acid content. The 
treatments AM and MB continued this trend whereas the pH of C rose to 6.3 (0.8 s.d.) 
and that of AB to 5.6 (0.7 s.d.) after 46 h. At the same time the lactic acid content 
declined by 3.2-3.3 mg/ml in C and AB. 

 

This finding provided evidence to confirm Hypothesis 2 saying that the decomposition 
of lactate and rise in pH is solely caused by yeasts. 
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Figures: Changes in pH, volatile fatty acids and ethanol concentrations in synthetic medium inoculated 
with mixed micro-flora from maize silage over 50 h, error bars = s.d. 

Figure 34 (top left): Control 

Figure 35 (down left): Antimycotic treatment 

Figure 36 (top right): Antibacterial treatment 

Figure 37 (down right): Antimycotic and –bacterial treatment 

 

As there were very large variations in pH between the replicates for treatments C 
and AB after 46 and 50 h (s.d. 1.0 resp. 1.2) (in contrast to Experiment C 7 with the 
same silage which was done at the same time) it was decided not to continue with 
this type of experiment. 

Lactic Acid Acetic Acid Propionic Acid EthanolpH



5 RESULTS 

    

 
44

5.3 Experiment type C 

 

Grass silages: 

5.3.1 Experiment C 1 – Antibiotics 

To investigate the general behaviour of silage microflora in silage extract and to 
differentiate between the contribution of bacteria and fungi to activity 

• 3 treatments with 3 replicates: Control (C), Antibacterial (AB) and Antimycotic 

(AM) treatment. Silages ID 15, 17, 19, 24, 25, 26, 30, 32, 34. (9 silages in total). 

MB treatment in Silages ID 15, 17, 19, 24. Aerobic stability test. 

 

Initially 6 silages were examined whose extracts were quite similar in initial pH, lactic 
acid content and yeast counts (ID 19, 24, 26, 30, 32, 34). pH ranged from 4.6-4.8 (mean 
4.7, 0.1 s.d.) (Table 14), lactic acid content was in the range 2.2-2.9 mg/ml (mean 2.6, 
0.3 s.d.), yeast numbers were 6.2-7.0 log cfu/g FM (mean 6.7). For those silages where 
numbers were enumerated (silages 24, 26, 30, 32, 34), LAB counts were in the range 
4.9-6.5 log cfu/g FM (mean 6.0). 

Table 14: Initial pH and concentrations of some chemical components [mg/ml] of the silage extracts; 
Experiment C 1 

0 h pH Lactic acid Acetic acid 
Propionic 

acid Ethanol 

Silage 19 4.7 2.2 0.8 0.0 0.9 

Silage 24 4.8 2.9 0.9 0.1 0.5 

Silage 26 4.6 2.4 0.9 0.1 0.6 

Silage 30 4.6 2.7 0.6 0.2 1.5 

Silage 32 4.8 2.5 0.7 0.4 1.7 

Silage 34 4.7 2.7 0.9 0.4 1.8 

 

Silages 15, 17 and 25 are considered separately because of their differences (see below). 

 

Control treatment 

During the first 22 h the pH declined in all silage media by 0.1-0.5 (0.3 on average) 
(Table 15, column C; figures D to I in APPENDIX VIII). At the same time the lactic 
acid content rose slightly by 0.1-0.8 mg/ml except in one medium (Silage ID 30, -0.5 
mg/ml). During this time acetic acid rose by 0.3 mg/ml, propionic acid increased only 
by 0.1 mg/ml on average and ethanol increased the most, by 2.2 mg/ml on average (1.1 
s.d.). 

Pellicle growth in the not shaken treatments was usually observed after 32-35 h, but in 
silage ID 34 only after 46 h. 
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At approximately 45 h after incubation the pH rose again compared to 22 h of 
incubation, on average it differed by -0.1 units from the initial pH. Only one medium, 
silage ID 32, rose above the initial value at this point of time by + 0.4. Lactic acid 
contents diminished by 0.0-1.4 mg/ml from the initial figure whereas acetic and 
propionic acid rose by 1.1 and 0.4 mg/ml on average. Ethanol content declined 
compared to the previous 24 h but was still 1.7 mg/ml higher than at the beginning. 

 

Fungal activity (Antibacterial treatment) 

As with the control treatment there was a small pH decline of -0.2 on average during the 
first 22 h of incubation (Table 15, column AB; figures D to I in APPENDIX VIII). In 
contrast to the control this was not due to an increase in lactate content which on the 
contrary decreased by -0.4 mg/ml from the beginning. Acetic acid content remained 
more or less constant. Propionic acid and ethanol contents increased on average by the 
same amount as the control.  

After 45 h the pH rose by 0.0-1.6 units compared to the initial value, to an average 
value of pH 5.2. The lactic acid content diminished by -1.6 mg/ml (-1.2- -2.2) from the 
start of the experiment. Acetic acid rose by 0.5 mg/ml (-0.1- +1.4), propionic acid did 
not increase on average as well as ethanol compared to 22 h of incubation. However in 
single cases the ethanol content increased or decreased between 22 and 45 h by -0.7- 
+1.9 mg/ml. 

Table 15: Measured and statistical differences in pH and some chemical components [mg/ml] between 
AB and C, α =0.05; Experiment C 1 

  pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB C   AB C   AB C   AB C   AB C   

22 h                               

Silage 19 4.6 4.2 * 1.8 3.0 * 0.8 1.3 * 0.1 0.2 ns 3.6 3.5 ns 

Silage 24 4.6 4.5 * 2.2 3.1 * 1.1 1.3 * 0.2 0.3 ns 2.5 2.8 ns 

Silage 26 4.5 4.4 * 2.0 2.6 * 0.7 1.0 * 0.1 0.2 ns 4.3 4.3 ns 

Silage 30 4.3 4.2 * 2.0 2.2 * 0.7 0.9 * 0.3 0.2 ns 4.0 4.1 ns 

Silage 32 4.7 4.6 * 2.0 2.7 * 0.7 1.0 * 0.5 0.5 ns 3.2 3.1 ns 

Silage 34 4.6 4.6 ns 2.8 3.0 ns 0.9 1.0 ns 0.5 0.5 ns 2.6 2.4 ns 

Mean 4.6 4.4   2.1 2.8   0.8 1.1   0.3 0.3   3.4 3.4   

45 h                               

Silage 19 4.9 4.4 * 0.9 1.9 * 1.3 2.1 * 0.2 0.3 ns 3.8 3.3 ns 

Silage 24 5.6 4.8 * 0.7 1.6 * 2.3 3.3 ns 0.2 0.9 * 1.9 1.6 ns 

Silage 26 4.8 4.4 * 1.0 2.4 * 1.1 1.6 * 0.2 0.2 ns 3.9 3.7 ns 

Silage 30 4.6 4.3 * 1.0 1.6 * 0.8 1.2 * 0.2 0.3 ns 4.2 3.5 ns 

Silage 32 6.5 5.3 * 0.6 1.1 * 0.6 1.3 * 0.5 0.7 * 2.0 2.4 ns 

Silage 34 4.7 4.5 * 1.5 2.3 ns 1.5 1.7 ns 0.6 1.1 * 4.5 2.9 ns 

Mean 5.2 4.6   1.0 1.8   1.3 1.9   0.3 0.6   3.4 2.9   
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Except in the case of ID 34 AB from all silages differed significantly from the control in 
pH, lactic acid and acetic acid contents after 22 h and 45 h (only acetic acid content in 
silage 24 was similar to C after 45 h) (Table 15). AB from silage ID 34 differed 
significantly from C in pH and propionic acid content only after 45 h. 

 

Bacterial activity (Antimycotic treatment) 

During 45 h there was a pH decline by 0.6 on average (s.d. 0.2) (Table 16, column AM; 
figures D to I in APPENDIX VIII). Lactic acid content rose during the first 22 h by 0.8 
mg/ml on average (s.d. 0.6) and partly declined afterwards. Acetic, propionic acid and 
ethanol contents increased steadily within 45 h. Acetic acid rose by 4.4 mg/ml on 
average (s.d. 2.9), propionic acid by 1.7 mg/ml (s.d. 1.0) and ethanol by 2.0 mg/ml (s.d. 
0.8) after 45 h. 

After 22 h AM treatments from all silages differed significantly from the control in 
lactic and acetic acid contents (Table 16). Five out of 6 silages differed from C as well 
in pH and propionic acid contents. Four out of 6 silages differed from C also in ethanol 
contents. 

After 45 h propionic acid contents of all 6 silages differed significantly from the control. 
Five out of 6 silages differed also significantly from C in pH and acetic acid contents. 
Four out of 6 still differed in lactic acid contents.  

Table 16: Measured and statistical differences in pH and some chemical components [mg/ml] between 
AM and C, α =0.05; Experiment C 1 

  pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AM C   AM C   AM C   AM C   AM C   

22 h                               

Silage 19 4.1 4.2 * 3.5 3.0 *  2.9 1.3 *  0.8 0.2 *  1.8 3.5 * 

Silage 24 4.3 4.5 * 3.7 3.1 *  2.3 1.3 *  0.9 0.3 *  1.2 2.8 * 

Silage 26 4.1 4.4 * 3.8 2.6 *  1.5 1.0 *  0.2 0.2 ns 1.6 4.3 * 

Silage 30 4.3 4.2 ns 2.7 2.2 *  1.8 0.9 *  1.0 0.2 *  1.6 4.1 * 

Silage 32 4.2 4.6 * 3.9 2.7 *  1.8 1.0 *  1.2 0.5 *  2.5 3.1 ns 

Silage 34 4.6 4.6 * 2.9 3.0 ns 0.9 1.0 ns 0.5 0.5 ns 3.0 2.4 ns 

Mean 4.3 4.4   3.4 2.8   1.9 1.1   0.8 0.3   1.9 3.4   

45 h                               

Silage 19 3.9 4.4 * 3.2 1.9 *  5.6 2.1 *  1.4 0.3 *  3.3 3.3 ns 

Silage 24 4.3 4.8 ns 2.0 1.6 ns 10.7 3.3 *  3.1 0.9 *  1.8 1.6 ns 

Silage 26 4.0 4.4 * 3.8 2.4 *  3.8 1.6 *  1.0 0.2 *  2.5 3.7 ns 

Silage 30 4.1 4.3 * 1.4 1.6 ns 4.6 1.2 *  2.3 0.3 *  3.2 3.5 ns 

Silage 32 4.4 5.3 * 1.7 1.1 *  4.0 1.3 *  3.0 0.7 *  3.3 2.4 * 

Silage 34 3.8 4.5 * 7.3 2.3 *  2.1 1.7 ns 0.8 1.1 *  5.4 2.9 * 

Mean 4.1 4.6   3.2 1.8   5.1 1.9   1.9 0.6   3.2 2.9   
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MB 

Antibacterial + antifungal treatment (MB) was applied for silage ID 15, 17, 19, 24. 

Except for silage 17 it proved to maintain the initial lactic acid level quite well within 

the measuring period. Other components changed until 46 h, especially ethanol content 

rose in most cases (figures 16, 20, 36, 40 in APPENDIX VIII). However, as the 

antibiotics applied separately in AB and AM showed significant effects on the 

development compared to the control they were regarded as sufficiently effective to 

enhance the microbial group that was not suppressed.  

 

Summary 

The control treatment resulted from fungal as well as from bacterial activity. The initial 
increase in lactic acid content was caused by bacteria. The rise in acetic and propionic 
acid was also mainly due to bacterial activity whereas the initial production of ethanol 
was caused by yeast metabolism.  

The results of these experiments provide evidence to disprove Hypothesis 3 which says 
that aerobic changes are dominated by yeast activity as the development of C and AB 
was not equal. 

 

The other three remaining silages 15, 17 and 25 are considered separately because of 
their difference in the initial chemical and microbial composition 

 

Silage 15 

The initial medium pH was 4.5, lactic acid and acetic acid content were nearly equal 
(2.6 resp. 2.5 mg/ml), yeast numbers were below the detection limit (< 2.0 log cfu/g 
FM), aerobic bacteria were detected at a level of 8.5 log cfu/g FM. 

During the first 22 h there was no pH change in all three treatments but a reversion of 
the ratio of lactic and acetic acid contents (2.3 versus 2.5 mg/ml on average) (Table 17; 
figures J in APPENDIX VIII). 

After 47 h the treatments differed from each other except for propionic acid and ethanol 
contents. Ethanol contents did not change significantly from the beginning. 

The control had a mean pH of 5.6 with a high standard deviation of 1.4. The fungal 
treatment had an average pH of 4.9 (n.s.) whereas the pH of the bacterial treatment did 
not change (n.s.). 

In the control the lactic acid content diminished to 1.1 mg/ml, the acetic acid content 
varied between 0.1-2.6 mg/ml (mean 1.6 mg/ml). In the antibacterial treatment lactic 
acid content decreased to 1.8 mg/ml, the acetic acid content to 1.4 mg/ml. After 22 and 
47 h C and AB differed significantly in lactic acid content (Table 17). No pellicle 
forming was observed but mould on the surface of AB after 47 h. In the antimycotic 
treatment there was also a decrease in lactic acid to 1.3 mg/ml but a rise in acetic acid to 
3.4 mg/ml. As lactic acid was also decomposed by bacteria more evidence was 
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provided to disprove Hypothesis 2 which says that the decomposition of lactate is solely 
caused by yeasts. Acetic acid content differed from the control only after 47 h.  

Table 17: Measured and statistical differences in pH and some chemical components [mg/ml] between 
antibiotic treatments and control, α =0.05; Silage ID 15 

Silage 15 pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

  C   C   C   C   C  

0 h  4.5   2.6   2.5   0.2   0.3  

22 h  4.5   2.2   2.5   0.2   0.4  

AB 4.5  ns 2.4  * 2.6  ns 0.2  ns 0.4  ns 

AM 4.5  ns 2.2  ns 2.4  ns 0.2  ns 0.4  ns 

47 h  5.6   1.1   1.6   0.4   0.3  

AB 4.9  ns 1.8  * 1.4  ns 0.3  ns 0.4  ns 

AM 4.5  ns 1.3  ns 3.4  * 0.3  ns 0.4  ns 

 

Silage 17 

This silage had a very high initial lactic acid content of 6.5 mg/ml, that was on average 
2.5 times higher than the 7 silages described above. The initial pH was 4.8 and yeast 
numbers accounted for 7.4 log cfu/g FM, aerobic bacteria for 7.0 log cfu/g FM. 

During the first 22 h the lactic acid content decreased significantly in all treatments. 

In the control it diminished to 3.5 mg/ml, in the antibacterial treatment to 1.9 mg/ml and 
in the antimycotic treatment to 3.7 mg/ml (Table 18; figures K in APPENDIX VIII).  
The pH of the control and AM decreased at the same time to 4.5 or 4.2 respectively, 
whereas it remained relatively stable in the AB treatment (4.7). Small amounts of acetic 
acid were produced in the control and AB, 0.5 resp. 0.2 mg/ml, but 1.9 mg/ml in the 
AM treatment. The propionic acid content changed significantly in the AM treatment by 
+ 1.1 mg/ml. The ethanol content rose in all 3 treatments to 1.5-1.9 mg/ml. 

After 46 h the pH of the control rose to 5.0, of AB to 6.5 and AM remained lowest at 
4.4. 

The lactic acid content decreased further in all treatments: C 1.2 mg/ml, AB 0.7 mg/ml, 
AM 2.1 mg/ml. Acetic acid content rose in the control to 1.9 mg/ml and in AM to 5.2 
mg/ml whereas it remained stable in AB at 1.1 mg/ml. Propionic acid content increased 
slightly in the control to 0.7 mg/ml but remarkably in AM to 3.4 mg/ml. In AB there 
was no change. The ethanol content was almost equal to the initial content in C and AB 
but rose in AM to 2.1 mg/ml. 

After 22 and 46 h there were significant differences between control and AB in pH, 
lactic, acetic and propionic acid contents as well as between the control and AM in pH, 
acetic acid and propionic acid contents. After 46 h AM differed from C also in ethanol 
content.  

These findings provided further evidence to disprove Hypothesis 3 which says that 
aerobic processes in silages are dominated by yeasts. 
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Table 18: Measured and statistical differences in pH and some chemical components [mg/ml] between 
antibiotic treatments and control, α =0.05; Silage ID 17 

Silage 17 pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

  C   C   C   C   C  

0 h  4.8   6.5   0.9   0.2   0.9  

22 h  4.5   3.5   1.4   0.3   1.9  

AB 4.7  * 1.9  * 1.1  * 0.2  * 1.5  ns 

AM 4.2  * 3.7  ns 2.8  * 1.3  * 1.7  ns 

46 h  5.0   1.2   1.9   0.7   0.8  

AB 6.5  * 0.7  * 1.1  * 0.2  * 1.2  ns 

AM 4.3  * 1.2  ns 5.2  * 3.4  * 2.1  * 

 

The biggest difference between changes that occurred in this silage medium compared 
to the others was that the treatment AM decomposed lactic acid despite the fact that 
residual WSC were available. This resulted in a high production of acetic and propionic 
acid leading to a lower pH value than the initial one. Lactic acid degradation in 
treatment AM provides further evidence to disprove Hypothesis 2 which says that the 
decomposition of lactate is solely caused by yeasts. 

 

 

Silage 25 

Inoculation of the grass with commercially available Lactobacillus plantarum (DSM 
8866, 8862) before fermentation resulted in a silage with relatively low pH of 4.0 and 
high lactic acid content of 6.2 mg/ml in the medium. Beside yeasts (5.4 log cfu/g FM) 
there were also moulds (4.9 log cfu/g FM) in contrast to the preceding silages. LAB 
numbers were below 5.0 log cfu/g FM, aerobic bacteria numbers were 4.5 log cfu/g FM. 

There was virtually no bacterial activity (AM treatment) except some ethanol 
production up to 2.3 mg/ml after 44 h (figure 42 in APPENDIX VIII). Control and AM 
differed significantly in pH and lactic acid content (Table 19). 

The development of control and AB looked quite similar (figures 41 and 43 in 
APPENDIX VIII). There was no significant difference between these treatments in any 
variable at both measurement times. Under the conditions imposed by the extract from 
this type of silage (i.e. low pH and high lactate concentration) Hypothesis 2 and 
Hypothesis 3 were supported saying that the aerobic changes including decomposition 
of lactate and rise in pH are solely caused by yeasts. After 21 h the pH value was still 
the same but lactic acid content diminished to 5.5 resp. 5.3 mg/ml (C, AB). The ethanol 
content rose to 2.2 or 2.1 mg/ml respectively whereas the acetic acid content remained 
at 0.4 mg/ml. Propionic acid content increased at most by 0.1 mg/ml. 

Pellicle growth was observed after 34 h in the not shaken treatment. 

After 44 h the pH rose to 4.8 in both treatments. The lactic acid content of the control 
diminished to 3.4 mg/ml and of the antibacterial treatment to 3.0 mg/ml. The acetic acid 
content increased to 0.9 resp. 1.0 mg/ml. Propionic acid content was 0.1 mg/ml in both 
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treatments. Ethanol content was lower than after the first 22 h and varied from 0.2-1.5 
mg/ml (mean of C and AB 1.0 mg/ml). 

Table 19: Measured and statistical differences in pH and some chemical components [mg/ml] between 
antibiotic treatments and control, α =0.05; Silage ID 25 

Silage 25 pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

  C   C   C   C   C  

0 h  4.0   6.2   0.4   0.0   0.2  

21 h  4.0   5.5   0.4   0.0   2.2  

AB 4.0  ns 5.3  ns 0.4  ns 0.1  ns 2.1  ns 

AM 4.0  ns 6.4  * 0.3  ns 0.0  ns 1.8  ns 

44 h  4.8   3.4   0.9   0.1   0.9  

AB 4.8  ns 3.0  ns 1.0  ns 0.1  ns 1.1  ns 

AM 4.0  * 6.3  * 0.5  ns 0.1  ns 2.3  ns 

 

In contrast to silage 17 which had a similar initial lactic acid content there was virtually 
no bacterial activity. Within 44 h the lactic acid content increased by 0.2 mg/ml, acetic 
and propionic acid content by 0.1 mg/ml and ethanol by 2.1 mg/ml. AM differed 
significantly from the control in lactic acid content and after 44 h also in pH.    

 

A comparison of the results for batch culture with those obtained using the aerobic 
stability test (HONIG, 1990) 

The temperature changes during up to 8 days at an ambient temperature of 20 °C of the 
9 silages used in experiment C 2 are considered. Initial and final pH of the silages as 
well as organic acid contents were determined in an extract of the final silage diluted as 
in the batch culture. 

The results can be divided in two groups: 7 silages became unstable (ID 17, 19, 24, 25, 
26, 30, 32) (example see Figure 38), i.e. rose > 3 °C above ambient, within 96 h, 2 
silages (ID 15, 34) remained stable during this time. 

If the unstable silages are considered first, the temperature of 5 of them (ID 17, 24, 26, 
30, 32) rose > 3 °C above ambient within 48 h and in silage 19 and 25 the temperature 
rose within 72 h. 

The final pH of all those silages was above 7.0. The lactic acid content declined to 
below 0.4 mg/ml.  

 

Silage ID 34 did not become unstable during the measurement period of 96 h nor 
changed in pH, but increased in lactic acid content from 2.7 to 3.3 mg/ml. In the batch 
culture of the same silage there were only slight pH changes within 46 hours and the 
highest lactic acid production was shown by the bacterial treatment when compared to 
the other silages. 
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Silage ID 15 became unstable only after 144 h, the pH did not rise after 8 days. Acetic 
acid content was slightly higher (+ 0.3 mg/ml) then than lactic acid content which 
accounted for 2.4 mg/ml. 

Those two silages had no or only late pellicle growth as batch culture. 

 

Along with monitoring the temperature, in two silages, ID 32 and 34, in addition, the 
changes in pH and organic acid and ethanol concentrations were checked daily over 4 
days. Two replicate samples were taken daily. 

In silage 32, from day 0 to day 1, a slight rise in lactic acid content to 2.8 mg/ml (+0.3 
mg/ml, s.d. 0.4) was observed and a rise in ethanol content by 0.6 mg/ml (s.d. 0.4) to 
2.4 mg/ml. Acetic and propionic acid changed slightly by -0.1 resp. -0.2 mg/ml. pH rose 
only by 0.1 to 5.0. 

From day 2 on all measured components diminished (compared to the initial values) 
whereas the pH increased, day 2: lactic acid -0.5 mg/ml, ethanol -1.0 mg/ml, acetic acid 
-0.6 mg/ml, propionic acid -0.3 mg/ml, pH 6.1, day 3: lactic acid -1.8 mg/ml, ethanol -
1.2 mg/ml, acetic acid -0.5 mg/ml, propionic acid -0.4 mg/ml, pH 7.1. On day 4 there 
was only 0.4 mg/ml lactic acid left and none of the other components, pH 8.3. 

 

As in the temperature test silage ID 34 remained stable within 4 days the development 
was different to silage ID 32. 

The pH fluctuated only by +0.1 units maximum and could be de facto considered as 
constant. 

Nevertheless lactic acid contents varied every day. On day 1, lactic acid content 
diminished from 2.6 to 2.1 mg/ml and increased again the following days to: 2.5, 2.8, 
3.3 mg/ml on day 2, 3, and 4. The content on day 4 was significantly higher compared 
to day 1.  

Ethanol contents diminished by 0.5-0.7 mg/ml from day 1 to 4. Acetic acid contents 
changed from 0.9 to 0.7 mg/ml on day 1 and rose again to 1.0 mg/ml on day 4. 
Propionic acid contents varied by ± 0.1 mg/ml. 

 

Figure 38: Temperature changes 
over 7 days and 
initial and final pH 
of silage ID24, 
error bars = s.d. 
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5.3.2 Experiment C 2 – +3 % fructose 
To investigate the effect of increasing residual WSC levels on fungi and bacteria in 

comparison to results obtained in experiment C 1 

• 3 treatments with 3 replicates: C, AB and AM + 3 % fructose in FM. Silage ID 

17, 19, 24, 25, 26, 30. (6 silages in total). 

 

Five silages are considered together whose media were quite similar in initial pH and 
yeast counts (ID 17, 19, 24, 26, 30). pH varied from 4.6-4.8 (Table 20), yeast numbers 
were 6.4-7.4 log cfu/g FM. 

Table 20: Initial pH and concentrations of some chemical components [mg/ml] of the silage extracts; 
Experiment C 2 

0 h pH  Lactic acid Acetic acid Propionic 
acid 

Ethanol 

Silage 17 4.8 6.5 0.9 0.2 0.9 

Silage 19 4.7 2.2 0.8 0.0 0.9 

Silage 24 4.8 2.9 0.9 0.1 0.5 

Silage 26 4.6 2.4 0.9 0.1 0.6 

Silage 30 4.6 2.7 0.6 0.2 1.5 

 

The pH development in these silages was similar. In all treatments there was a pH 

decline after 22 h. Only silage ID 25 which started with a low pH is considered 

separately. 

 

Control treatment 

The pH declined from 4.7 to 4.3 on average (Table 21, column C*; figures M to Q in 

APPENDIX VIII). There was a further slight decrease up to 45 h by 0.1 units. The 

development of lactic acid was not consistent and ranged from  -3.3 to +0.7 mg/ml (-0.7 

mg/ml on average) during the first 22h and further -0.2 mg/ml after 45 h to 2.4 mg/ml 

on average. 

Acetic acid, propionic acid and ethanol contents rose within 45 h compared to the initial 

value: acetic acid 1.3 mg/ml (+0.5 mg/ml) after 22 h, 3.1 mg/ml (+2.3 mg/ml) after 45 

h, propionic acid 0.3 mg/ml (22 h), 0.5 mg/ml (45 h), ethanol 5.7 mg/ml (+4.8 mg/ml) 

after 22 h and 4.5 mg/ml after 45 h. 

Compared to the control without added fructose (Experiment C 1) after 22 h 4 out of 5 

silages differed significantly from its sugar supplemented counterpart in pH and ethanol 

contents (Table 21). After 45 h there were significant differences in all silages in pH and 

acetic acid contents. Treatments of 3 out of 5 silages also differed significantly in lactic 

acid and ethanol contents. 
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Table 21: Measured and statistical differences in pH and some chemical components [mg/ml] between 
C* with additional fructose and C without, α =0.05; Experiment C 2 

C pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  C* C   C* C   C* C   C* C   C* C   

22 h                               

Silage 17 4.3 4.5 * 3.2 3.5 ns 1.5 1.4 ns 0.4 0.3 * 2.4 1.9 ns 

Silage 19 4.2 4.2 ns 2.9 3.0 ns 1.5 1.3 ns 0.2 0.2 ns 6.4 3.5 * 

Silage 24 4.5 4.5 * 2.7 3.1 ns 1.3 1.3 ns 0.2 0.3 ns 4.7 2.8 * 

Silage 26 4.3 4.4 * 2.5 2.6 ns 1.2 1.0 ns 0.3 0.2 * 7.6 4.3 * 

Silage 30 4.2 4.2 * 2.1 2.2 ns 1.1 0.9 * 0.3 0.2 ns 7.2 4.1 * 

Mean 4.3 4.4   2.7 2.9   1.3 1.2   0.3 0.2   5.7 3.3   

45 h                               

Silage 17 4.2 5 * 2.8 1.2 * 2.8 1.9 * 0.6 0.7 ns 2.4 0.8 * 

Silage 19 4.1 4.4 * 2.4 1.9 * 3.3 2.1 * 0.4 0.3 ns 5.8 3.3 * 

Silage 24 4.2 4.8 * 2.6 1.6 * 5.5 3.3 * 0.8 0.9 ns 2.9 1.6 ns 

Silage 26 4.1 4.4 * 2.6 2.4 ns 2.4 1.6 * 0.3 0.2 ns 6.5 3.7 * 

Silage 30 4.1 4.3 * 1.8 1.6 ns 1.8 1.2 * 0.3 0.3 ns 4.9 3.5 ns 

Mean 4.2 4.6   2.4 1.7   3.1 2.0   0.5 0.5   4.5 2.6   
 

Fungal activity (Antibacterial treatment) 

The pH decreased from 4.7 to 4.4 on average after 22 h (Table 22, column AB; figures 

M to Q in APPENDIX VIII). In contrast to the AB treatment without added fructose 

where the pH increased, in this treatment the pH did not change between 22 and 45 h of 

incubation.  

Within 22 h lactic acid was decomposed by 1.5 mg/ml to 1.9 mg/ml and declined 

further to 1.1 mg/ml after 45 h. Acetic acid contents increased especially during the 

second day to 2.4 mg/ml after 45 h, that is an increase of 1.6 mg/ml compared to the 

starting concentration. Propionic acid contents increased only by 0.1 mg/ml to 0.2 

mg/ml until 45 h. However, ethanol was produced to a large extent during the first 22 h: 

+ 4.6 mg/ml to 5.5 mg/ml in total. It slightly decreased to 5.2 mg/ml towards 45 h. 

 

Compared to the control after 45 h there was significantly less lactic acid in all AB 

treatments (Table 22). In 3 out of 5 silages there were also significant differences in pH, 

acetic and propionic acid contents. Again this provides evidence to disprove  

Hypothesis 3. 

After 22 and 45 h the pH and acetic acid concentrations differed significantly between 

the AB without and with additional fructose. In 4 out of 5 silages also the ethanol 

content differed significantly. 
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Table 22: Measured and statistical differences in some chemical components [mg/ml] between AB and C, 
both with added fructose, α =0.05; Experiment C 2 

+3% 
fructose pH     

Lactic 
acid   

Acetic 
acid   

Propionic 
acid Ethanol   

  C AB   C AB   C AB   C AB   C AB   

22 h                               

Silage 17 4.3 4.5 * 3.2 1.5 * 1.5 1.3 * 0.4 0.2 ns 2.4 2.4 * 

Silage 19 4.2 4.4 * 2.9 1.8 * 1.5 1.0 * 0.2 0.2 ns 6.4 6.9 ns 

Silage 24 4.5 4.5 ns 2.7 2.1 * 1.3 1.2 ns 0.2 0.2 ns 4.7 4.8 ns 

Silage 26 4.3 4.3 ns 2.5 2.0 * 1.2 1.0 ns 0.3 0.1 ns 7.6 7.3 * 

Silage 30 4.2 4.2 ns 2.1 2.0 ns 1.1 1.0 * 0.3 0.2 ns 7.2 6.0 ns 

Mean 4.3 4.4   2.7 1.9   1.3 1.1   0.3 0.2   5.7 5.5   

45 h                               

Silage 17 4.2 4.6 ns 2.8 1.1 * 2.8 2.1 * 0.6 0.2 ns 2.4 2.7 * 

Silage 19 4.1 4.4 * 2.4 1.1 * 3.3 2.4 * 0.4 0.2 ns 5.8 7.0 * 

Silage 24 4.2 4.6 ns 2.6 1.2 * 5.5 4.0 ns 0.8 0.3 ns 2.9 4.3 * 

Silage 26 4.1 4.4 * 2.6 1.1 * 2.4 2.0 ns 0.3 0.2 ns 6.5 6.7 ns 

Silage 30 4.1 4.3 * 1.8 1.1 * 1.8 1.5 * 0.3 0.2 ns 4.9 5.4 ns 

Mean 4.2 4.4   2.4 1.1   3.1 2.4   0.5 0.2   4.5 5.2   
 

Table 23: Measured and statistical differences in some chemical components [mg/ml] between AB* with 
added fructose and AB without, α =0.05; Experiment C 2 

AB pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB* AB   AB* AB   AB* AB   AB* AB    AB* AB   

22 h                               

Silage 17 4.5 4.7 * 1.5 1.9 ns 1.3 1.1 * 0.2 0.2 ns 2.4 1.5 ns 

Silage 19 4.4 4.6 * 1.8 1.8 ns 1.0 0.8 * 0.2 0.1 ns 6.9 3.6 * 

Silage 24 4.5 4.6 * 2.1 2.2 ns 1.2 1.1 * 0.2 0.2 ns 4.8 2.5 * 

Silage 26 4.3 4.5 * 2.0 2.0 ns 1.0 0.7 * 0.1 0.1 ns 7.3 4.3 * 

Silage 30 4.2 4.3 * 2.0 2.0 ns 1.0 0.7 * 0.2 0.3 ns 6.0 4.0 * 

Mean 4.4 4.5   1.9 2.0   1.1 0.9   0.2 0.2   5.5 3.2   

45 h                               

Silage 17 4.6 6.5 * 1.1 0.7 * 2.1 1.1 * 0.2 0.2 ns 2.7 1.2 * 

Silage 19 4.4 4.9 * 1.1 0.9 ns 2.4 1.3 * 0.2 0.2 ns 7.0 3.8 * 

Silage 24 4.6 5.6 * 1.2 0.7 ns 4.0 2.3 * 0.3 0.2 ns 4.3 1.9 * 

Silage 26 4.4 4.8 * 1.1 1.0 ns 2.0 1.1 * 0.2 0.2 ns 6.7 3.9 * 

Silage 30 4.3 4.6 * 1.1 1.0 ns 1.5 0.8 * 0.2 0.2 ns 5.4 4.2 ns 

Mean 4.4 5.3   1.1 0.9   2.4 1.3   0.2 0.2   5.2 3.0   

 

Concerning the pH but not the lactic acid decomposition the results provide evidence 

to disprove Hypothesis 4 saying that the decomposition of lactate and the rise in pH is 

not influenced by other available carbon sources. 
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Bacterial activity (Antimycotic treatment) 

After 22 h the pH dropped from 4.7 to 4.2 on average and further to 4.1 after 45 h 

(Table 24, colum AM; figures M to Q in APPENDIX VIII), the lowest value obtained 

for the three treatments. At the same time (22 h) the lactic acid content differed between 

-2.8 to +1.3 mg/ml (mean 0.1 mg/ml) from the initial value. Acetic acid content 

increased by 1.4 mg/ml on average, propionic acid increased by 0.7 mg/ml and ethanol 

concentration by 0.8 mg/ml. 

Fortyfive hours after incubation the lactic acid content decreased to 2.5 mg/ml (-0.9 

mg/ml). On the other hand acetic acid content increased to 5.9 mg/ml with an increase 

of 5.3 mg/ml from the start of the incubation. Propionic acid content increased to 2.9 

mg/ml (+2.8 mg/ml) and ethanol content to 2.8 mg/ml (+1.9 mg/ml). 

The observed lactate decomposition by bacteria provides evidence to disprove 

Hypothesis 2 which says that lactate degradation is solely caused by yeasts. 

 

Compared to the control treatment after 22 and 45 h there were significant differences in 

acetic acid and propionic acid contents in all treatments (Table 24). Partly there were 

also differences in ethanol and lactic acid contents and pH. 

 

Table 24: Measured and statistical differences in some chemical components [mg/ml] between AM and 
C, both with added fructose, α =0.05; Experiment C 2 

+3% fructose pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

 C AM   C AM  C AM   C AM   C AM  

22 h                
Silage 17 4.3 4.2 * 3.2 3.7 ns 1.5 2.6 * 0.4 1.2 ns 2.4 2.0 * 

Silage 19 4.2 4.2 ns 2.9 3.1 ns 1.5 2.8 * 0.2 1.0 * 6.4 1.7 * 

Silage 24 4.5 4.3 * 2.7 4.0 * 1.3 2.3 * 0.2 0.8 * 4.7 1.7 * 

Silage 26 4.3 4.1 * 2.5 3.7 * 1.2 1.6 * 0.3 0.2 * 7.6 1.5 * 

Silage 30 4.2 4.3 * 2.1 2.5 * 1.1 1.6 * 0.3 0.9 * 7.2 1.3 * 

Mean 4.3 4.2  2.7 3.4  1.3 2.2  0.3 0.8  5.7 1.6  

45 h                

Silage 17 4.2 4.2 ns 2.8 2.0 * 2.8 5.5 * 0.6 5.2 ns 2.4 2.5 * 

Silage 19 4.1 4.0 * 2.4 2.5 ns 3.3 5.8 * 0.4 1.8 * 5.8 3.6 * 

Silage 24 4.2 4.2 ns 2.6 2.6 ns 5.5 9.8 * 0.8 4.1 ns 2.9 1.9 * 

Silage 26 4.1 3.9 * 2.6 3.7 * 2.4 3.8 * 0.3 1.1 * 6.5 2.6 * 

Silage 30 4.1 4.1 ns 1.8 1.4 ns 1.8 4.7 * 0.3 2.4 * 4.9 3.2 * 

Mean 4.2 4.1  2.4 2.5  3.1 5.9  0.5 2.9  4.5 2.8  

 

Compared to the AM treatment without additional fructose after 45 h, 3 out of 5 silages 

had significant differences in lactic and propionic acid contents (Table 25). 
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Table 25: Measured and statistical differences in pH and some chemical components [mg/ml] between 
AM* with additional fructose and AM without, α =0.05; Experiment C 2 

AM pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

 AM*  AM  AM*  AM  AM*  AM  AM*  AM  AM*  AM  

22 h                
Silage 17 4.2  ns 3.7  ns 2.6  * 1.2  * 2.0  ns 

Silage 19 4.2 4.1 ns 3.1 3.5 * 2.8 2.9 ns 1.0 0.8 * 1.7 1.8 ns 

Silage 24 4.3 4.3 ns 4.0 3.7 ns 2.3 2.3 ns 0.8 0.9 ns 1.7 1.2 ns 

Silage 26 4.1 4.1 ns 3.7 3.8 ns 1.6 1.5 ns 0.2 0.2 ns 1.5 1.6 ns 

Silage 30 4.3 4.3 ns 2.5 2.7 ns 1.6 1.8 * 0.9 1.0 * 1.3 1.6 ns 

Mean 4.2 4.2  3.4 3.4  2.2 2.1  0.8 0.7  1.6 1.5  

45 h                
Silage 17 4.2  ns 2  * 5.5  * 5.2  * 2.5  ns 
Silage 19 4.0 3.9 ns 2.5 3.2 * 5.8 5.6 ns 1.8 1.4 * 3.6 3.3 ns 

Silage 24 4.2 4.3 ns 2.6 2.0 * 9.8 10.7 ns 4.1 3.1 * 1.9 1.8 ns 

Silage 26 3.9 4.0 ns 3.7 3.8 ns 3.8 3.8 ns 1.1 1.0 ns 2.6 2.5 ns 

Silage 30 4.1 4.1 ns 1.4 1.4 ns 4.7 4.6 ns 2.4 2.3 ns 3.2 3.2 ns 

Mean 4.1 4.1  2.5 2.6  5.9 6.2  2.9 2.0  2.8 2.7  

 

Silage ID 25 

Corresponding graphs can be viewed in APPENDIX VIII, figures R. 

 

Control treatment 

Until up to 21 h of incubation the pH remained stable at 4.0 whereas the lactic acid 
content decreased from 6.2 to 5.0 mg/ml (Table 26, column Fr3, row C) which was 
significantly lower than its counterpart without additional fructose. Acetic acid and 
propionic acid contents rose only by 0.1 mg/ml, but ethanol contents increased most by 
3.0 mg/ml from an initial concentration of 0.2 mg/ml. 

After 44 h the pH increased to 4.3, that was 0.5 units less than the control without 
additional fructose (Table 26), lactic acid content decreased to 3.4 mg/ml, that was the 
same amount as the control without additional fructose. Acetic acid content increased 
by 1.8 mg/ml to 2.2 mg/ml, propionic acid increased from 0.0 to 0.2 mg/ml and ethanol 
content to 3.1 mg/ml which was significantly higher than the counterpart without 
additional fructose. 

 

Fungal activity (Antibacterial treatment) 

During the first 21 h the pH remained stable at 4.0 (Table 26, column Fr3, row AB). 
The lactic acid content was reduced by 1.5 mg/ml, acetic acid content increased by 0.1 
mg/ml, propionic acid content changed very little and 1.3 mg/ml ethanol was produced. 

After 44 h the pH reached 4.4, lactic acid content was reduced by 2.7 mg/ml, acetic acid 
content increased to 1.9 mg/ml, propionic acid to 0.2 mg/ml and ethanol to 2.9 mg/ml. 
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Compared to the control treatment there was a significant difference in ethanol content 
after 21 h only. 

Compared to the AB treatment without additional fructose, like in the control there was 
only a significant difference in lactic acid content after 21 h and in ethanol content after 
44 h (Table 26). 

 

Bacterial activity (Antimycotic treatment) 

There was very little change in pH and lactic acid and propionic acid content within 44 

h, similar to the AM treatment without additional fructose (Table 26). 

Acetic acid content raised by 0.2 mg/ml after 21 h which was significantly higher than 

in the counterpart without additional fructose, but decreased after 44 h to the initial 0.4 

mg/ml. Ethanol content increased to 1.3 mg/ml after 21 h and to 1.8 mg/ml after 44 h. 

Compared to the control there were significant differences in lactic acid contents after 

21 and 44 h. After 21 h additionally there were significant differences in pH and ethanol 

content. After 44 h the treatments differed from the control in lactic and acetic acid 

contents. 

There were no significant differences compared to the AM treatment without additional 

fructose except for the acetic acid content after 21 h. 

 

Because of the different results within the two measurement times there was no 
evidence to disprove nor to confirm Hypotheses 2, 3 and 4. 

Table 26: Measured and statistical differences in pH and some chemical components [mg/ml] between 
treatments with (Fr3) and without (Fr0) additional fructose, α =0.05; Silage ID 25 

Silage 
25 

pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

 Fr3 Fr0  Fr3 Fr0  Fr3 Fr0  Fr3 Fr0  Fr3 Fr0  

0 h  4.0   6.2   0.4   0   0.2  

21 h                

C 4.0 4.0 ns 5.0 5.5 * 0.5 0.4 ns 0.0 0.0 ns 3.2 2.2 ns 

AB 4.0 4.0 ns 4.7 5.3 * 0.5 0.4 ns 0.0 0.1 ns 1.5 2.1 ns 

AM 4.0 4.0 ns 6.2 6.4 ns 0.6 0.3 * 0.0 0.0 ns 1.3 1.8 ns 

44 h                

C 4.3 4.8 ns 3.4 3.4 ns 2.2 0.9 ns 0.1 0.1 ns 3.1 0.9 * 

AB 4.4 4.8 ns 3.5 3.0 ns 1.9 1.0 ns 0.1 0.1 ns 3.1 1.1 * 

AM 4.0 4.0 ns 6.0 6.3 ns 0.4 0.5 ns 0.1 0.1 ns 1.7 2.3 ns 
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5.3.3 Experiment C 3 – +6 % fructose 
To investigate the effect of increasing residual WSC levels on fungi and bacteria in 

comparison to results obtained in Experiment C 1 and C 2 

• 3 treatments with 3 replicates: C, AB and AM + 6 % fructose in FM. Silage ID 

19, 32, 34. (3 silages in total). Aerobic stability test. 

Table 27: Initial pH and concentrations of some chemical components [mg/ml] of the silage extracts; 
Experiment C 3 

0 h pH  Lactic acid Acetic acid Propionic 
acid 

Ethanol 

Silage 19 4.7 2.2 0.8 0.0 0.9 

Silage 32 4.8 2.5 0.7 0.4 1.7 

Silage 34 4.7 2.7 0.9 0.4 1.8 

 

Control treatment 

After 22 h the pH decreased by 0.4 units on average (Table 28, column C*; figures S-U 

in APPENDIX VIII). Lactic acid was produced, 0.3 mg/ml on average, acetic and 

propionic acid as well, 0.7 and 0.2 mg/ml respectively. Ethanol production varied from 

1.6 to 7.8 mg/ml (3.3 mg/ml on average). 

There was a further drop in pH after 45 h by 0.7 units from the beginning to 4.1. All 

other parameters increased: lactic acid content rose further by 0.6 mg/ml to 3.0 mg/ml, 

acetic acid by 2.6 mg/ml to 3.4 mg/ml, propionic acid by 0.4 to 0.7 mg/ml and ethanol 

by 7.0 mg/ml to 8.5 mg/ml on average. 

Table 28: Measured and statistical differences in pH and some chemical components [mg/ml] between 
C* with additional fructose and C without, α =0.05; Experiment C 3 

C pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  C* C   C* C   C* C   C* C   C* C   

22 h                               

Silage 19 4.2 4.2 * 2.8 3.0 ns 2.2 1.3 * 0.3 0.2 * 8.7 3.5 * 

Silage 32 4.3 4.6 * 2.5 2.7 * 1.2 1.0 * 0.6 0.5 ns 9.6 3.1 * 

Silage 34 4.5 4.6 * 2.9 3.0 ns 0.9 1.0 ns 0.5 0.5 ns 3.4 2.4 ns 

Mean 4.3 4.5  2.8 2.9  1.4 1.1  0.5 0.4  7.2 3.0  

45 h                

Silage 19 4.0 4.4 * 2.5 1.9 * 3.9 2.1 * 0.4 0.3 ns 7.8 3.3 * 

Silage 32 4.2 5.3 * 1.9 1.1 * 2.5 1.3 * 0.7 0.7 ns 7.9 2.4 * 

Silage 34 4.0 4.5 * 4.6 2.3 * 3.7 1.7 * 1.0 1.1 ns 9.8 2.9 * 

Mean 4.1 4.7  3.0 1.7  3.4 1.7  0.7 0.7  8.5 2.9  
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Compared to the control without additional fructose after 45 h there were significant 

differences in pH, lactic and acetic acid contents and in ethanol contents in all 3 silages 

(Table 28). 

 

Fungal activity (Antibacterial treatment) 

Within 22 h the pH dropped by 0.3 units on average (Table 29, column AB; figures S-U 

in APPENDIX VIII). Lactic acid concentration fell by 0.2 mg/ml, whereas acetic acid 

and propionic acid were produced (0.3 and 0.1 mg/ml resp.). Ethanol content rose by 

5.8 to 7.2 mg/ml on average. 

After 45 h the pH further decreased to 4.3 and the lactic acid content to 1.6 mg/ml (-0.9 

mg/ml). At the same time acetic acid content increased by 1.8 mg/ml to 2.6 mg/ml, 

propionic acid to 0.4 mg/ml, ethanol by 7.9 mg/ml to 9.3 mg/ml. 

Compared to the control treatment after 45 h there were significant differences in lactic, 

acetic and propionic acid concentrations (Table 29). For silages 19 and 34 the pH 

differed significantly from the control. 

Table 29: Measured and statistical differences in pH and some chemical components [mg/ml] between 
AB and C with additional fructose, α =0.05; Experiment C 3 

+6% fructose pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

 C AB  C AB  C AB  C AB  C AB  

22 h                
Silage 19 4.2 4.3 * 2.8 2.0 * 2.2 1.3 * 0.3 0.2 * 8.7 9.0 ns 

Silage 32 4.3 4.3 ns 2.5 2.2 * 1.2 1.1 * 0.6 0.5 ns 9.6 9.1 ns 

Silage 34 4.5 4.6 * 2.9 2.7 ns 0.9 0.9 ns 0.5 0.4 ns 3.4 3.7 ns 

Mean 4.3 4.4  2.8 2.3  1.4 1.1  0.5 0.4  7.2 7.2  

45 h                

Silage 19 4.0 4.2 * 2.5 1.2 * 3.9 2.9 * 0.4 0.2 * 7.8 9.8 ns 

Silage 32 4.2 4.4 ns 1.9 1.3 * 2.5 2.1 * 0.7 0.5 * 7.9 8.2 ns 

Silage 34 4.0 4.2 * 4.6 2.2 * 3.7 2.8 * 1.0 0.5 * 9.8 10.0 ns 

Mean 4.1 4.3  3.0 1.6  3.4 2.6  0.7 0.4  8.5 9.3  

 

In comparison to the AB treatment without additional fructose there were significant 

differences in pH, acetic acid and ethanol contents (Table 30). 

Concerning the pH but not the lactic acid decomposition Hypothesis 4 was disproved 

saying that changes in both parameters are not influenced by other available carbon 

sources. 
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Table 30: Measured and statistical differences in pH and some chemical components [mg/ml] between 
AB* with additional fructose and AB without, α =0.05; Experiment C 3 

AB pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB* AB   AB* AB   AB* AB   AB* AB   AB* AB   

22 h                               

Silage 19 4.3 4.6 * 2.0 1.8 ns 1.3 0.8 * 0.2 0.1 ns 9.0 3.6 * 

Silage 32 4.3 4.7 * 2.2 2.0 * 1.1 0.7 * 0.5 0.5 ns 9.1 3.2 * 

Silage 34 4.6 4.6 * 2.7 2.8 ns 0.9 0.9 ns 0.4 0.5 ns 3.7 2.6 ns 

Mean 4.4 4.6  2.3 2.2  1.1 0.8  0.4 0.4  7.2 3.1  

45 h                

Silage 19 4.2 4.9 * 1.2 0.9 ns 2.9 1.3 * 0.2 0.2 ns 9.8 3.8 * 

Silage 32 4.4 6.5 * 1.3 0.6 * 2.1 0.6 * 0.5 0.5 ns 8.2 2.0 * 

Silage 34 4.2 4.7 * 2.2 1.5 ns 2.8 1.5 * 0.5 0.6 ns 10.0 4.5 * 

Mean 4.3 5.4  1.6 1.0  2.6 1.1  0.4 0.4  9.3 3.4  

 

Bacterial activity (Antimycotic treatment) 

After 22 h the pH dropped by 0.4 to 4.4 (Table 31, column AM; figures S-U in 

APPENDIX VIII). Lactic acid content rose by 0.7 mg/ml to 3.2 mg/ml, acetic acid 

content rose by 1.0 mg/ml to 1.8 mg/ml, propionic acid concentration rose by 0.5 mg/ml 

and ethanol content by 1.1 mg/ml. 

Table 31: Measured and statistical differences in pH and some chemical components [mg/ml] between 
AM and C with additional fructose, α =0.05; Experiment C 3 

+6% fructose pH   Lactic acid Acetic acid Propionic 
acid 

Ethanol  

 C AM  C AM   C AM   C AM   C AM   

22 h                
Silage 19 4.2 4.1 ns 2.8 3.2 ns 2.2 2.8 * 0.3 1.0 * 8.7 1.9 * 

Silage 32 4.3 4.3 ns 2.5 3.4 * 1.2 1.5 * 0.6 0.9 * 9.6 2.1 * 

Silage 34 4.5 4.7 * 2.9 3.0 ns 0.9 0.9 ns 0.5 0.4 ns 3.4 3.6 ns 

Mean 4.3 4.4  2.8 3.2  1.4 1.8  0.5 0.8  7.2 2.5  

45 h                

Silage 19 4.0 4.0 ns 2.5 2.3 ns 3.9 5.9 * 0.4 2.0 * 7.8 3.7 * 

Silage 32 4.2 4.1 ns 1.9 2.9 * 2.5 4.0 * 0.7 4.2 * 7.9 2.9 * 

Silage 34 4.0 3.8 * 4.6 8.2 * 3.7 2.2 * 1.0 0.6 * 9.8 6.0 * 

Mean 4.1 4.0  3.0 4.5  3.4 4.0  0.7 2.3  8.5 4.2  

 

After 45 h the pH dropped further to 4.0, additional lactic acid was produced to a 

content of 4.5 mg/ml. Acetic acid content increased to 4.0 mg/ml, propionic acid rose 

by 2.0 mg/ml to 2.3 mg/ml, ethanol content increased by 2.7 mg/ml to 4.2 mg/ml on 

average.  
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After 45 h the acetic acid, propionic acid and ethanol concentrations of all 3 silages 

differed significantly from the control (Table 31). In two out of 3 silages the lactic acid 

contents were also significantly different. 

AM treatments of silages 19 and 32 with and without additional fructose differed 

significantly in lactic acid and propionic acid contents after 45 h (Table 32). Silage 34 

had no significant differences within the measurement period. 

Table 32: Measured and statistical differences in pH and some chemical components [mg/ml] between 
AM* with additional fructose and AM without, α =0.05; Experiment C 3 

AM pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AM*  AM   AM*  AM   AM*  AM   AM*  AM   AM*  AM   

22 h                               

Silage 19 4.1 4.1 ns 3.2 3.5 ns 2.8 2.9 ns 1.0 0.8 * 1.9 1.8 ns 

Silage 32 4.3 4.2 * 3.4 3.9 * 1.5 1.8 * 0.9 1.2 * 2.1 2.5 ns 

Silage 34 4.7 4.6 ns 3.0 2.9 ns 0.9 0.9 ns 0.4 0.5 ns 3.6 3.0 ns 

Mean 4.4 4.3   3.2 3.4   1.8 1.9   0.8 0.8   2.5 2.4   

45 h                           

Silage 19 4.0 3.9 ns 2.3 3.2 * 5.9 5.6 ns 2.0 1.4 * 3.7 3.3 ns 

Silage 32 4.1 4.4 ns 2.9 1.7 * 4.0 4.0 ns 4.2 3.0 * 2.9 3.3 ns 

Silage 34 3.8 3.8 ns 8.2 7.3 ns 2.2 2.1 ns 0.6 0.8 ns 6.0 5.4 ns 

Mean 4.0 4.0   4.5 4.1   4.0 3.9   2.3 1.7   4.2 4.0   

 

Comparison of the batch culture technique to temperature development in the 

aerobic stability test (HONIG, 1990) 

In the aerobic stability test a concentrated fructose solution was added to silages 32 and 

34 in two replicates, resulting in additional 6 % fructose. Temperature development, pH 

and organic acids and ethanol were recorded for 4 days. 

Silage 32 became unstable after 24 h, i.e. rose > 3 °C above ambient, whereas silage 34 

remained stable within 96 h. 

The calculated DM losses in silage 32 of the treatment with added fructose were 2.5 

times higher (21.5 %) than the counterpart without fructose added. In the stable silage 

(ID 34) there were no differences. 

 

Silage 32 

Regarding silage 32 the pH development was similar to the control but ended with a 

significantly lower pH value of 7.8 compared to 8.3 after 96 h (Figure 39 and Figure 

40). The fructose treatment did not differ significantly from the control in any parameter 

on any day during the measurement period, except for pH after one and 4 days. 
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Grass silage 32, Trial 19/20
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Figures: Daily changes in pH and some chemical components [mg/ml] in the temperature test over 4 
days, error bars = s.d. 

Figure 39 (left): Untreated control 

Figure 40 (right): With addition of 6 %  fructose on FM base 

 

The corresponding batch culture had a much higher ethanol production and acetic acid 

was produced instead of consumed, in contrast to the actual silage in the HONIG 

aerobic stability test. In addition, the pH dropped instead of rising. However the lactic 

acid content was comparable within the same measurement period. 

At the end of the incubation period over 4 days on exposure to air the silage replicate 

with the lower pH (7.8) of the treatment with fructose addition and the one with the 

higher pH (8.3) of the control were investigated microbiologically as the daily visual 

scoring for yeasts and moulds showed a slower (visible) growth of yeast in the fructose 

treatment compared to the control. The yeast counts of the fructose treatment were 9.5 

log cfu/g FM and LAB 8.2 log cfu/g FM, whereas in the control yeast counts were 11.4 

log cfu/g FM and LAB 7.0 log cfu/g FM, i.e. the control had nearly a 100-fold higher 

amount of yeasts compared to the fructose added treatment, but in contrast the latter had 

an approximately 20-fold higher amount of LAB.                                             

 

Silage 34  

The pH, organic acid and ethanol concentrations remained more or less stable over 4 

days. Only the ethanol content of the fructose treatment decreased significantly within 

the first 24 h. 

During the first two days of incubation there was no significant difference between the 

fructose treatment and the control. On day 3 and 4 the control had a significantly higher 
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ethanol content and on day 4 the acetic acid content was also significantly higher in the 

control compared to the fructose treatment. 

The corresponding batch culture increased in all variables (lactic, acetic, propionic acid 

and ethanol contents), whereas the actual silage in the HONIG aerobic stability test 

remained more or less stable in the acids and ethanol was decomposed. 

 

Summary: Influence of WSC content on changes occurring in batch cultures 

General observations (Experiment C 1-Experiment C 3) 

 

Control treatment 

The higher the WSC content of the medium the higher the level of ethanol production 

and the later and smoother the pH rise. 

There was a trend towards a lower final pH as the WSC content increased. Arranging 

the treatments according to their total WSC content (sum of fructose, glucose, sucrose) 

after 53 h of incubation (including grass-lucerne silages (Experiment C 7 and 

Experiment C 8), silage 25 excluded): 

Least significant difference 0.21. 

Means with the same letter in the Tukey grouping are not significantly different. 

Table 33: Tukey grouping of pH values after 53 h of incubation in relation to the corresponding initial 
WSC content in FM 

Tukey grouping pH mean n % WSC 
      

 A  5.55 3 4.4 

 B  5.13 3 3.7 

 C  4.89 3 4.7 

 D  4.64 3 3.2 

 D  4.56 3 5.5 

 D  4.54 3 6.9 

 D  4.51 3 5.1 

E D  4.45 3 5.9 

E D  4.44 3 6.7 

E F  4.26 3 10.4 

E F  4.26 3 7.7 

G F  4.16 3 9.9 

G F  4.14 3 8.1 

G F H 4.10 3 8.5 

G F H 4.09 3 8.9 

G H  4.01 3 9.2 

 H  3.92 3 11.9 
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Three way correlations between pH, time and WSC content 
 

For grass silages (ID 15, 17, 19, 24, 26, 30, 32, 34): 

pH(t)=5.09-0.01*t[h]+0.0002*t²[h]-0.08*WSC[% FM], r²=0.51, n=174. 

 

For grass silages (ID 15, 17, 19, 24, 26, 30, 32, 34) plus grass-lucerne silages (ID 27, 

31) (Experiment C 7 and Experiment C 8): 

pH(t)= 5.08-0.01*t[h]+0.0002*t²[h]-0.08*WSC[% FM], r²=0.53, n=228. 

 

Correlation between pH, time and (WSC*BC): 

pH(t)=4,99-0.01*t[h]+0.0002*t²[h]-0.0003*WSC[% FM]*BC[Meq  in FM], r²=0.43, 

n=228. 

 

Fungal activity (Antibacterial treatment) 

The higher the WSC content of the medium the higher the level of ethanol production 

and the later and smoother the pH rise. 

 

Correlation between pH, time and WSC content 
 

For grass silages (ID 15, 17, 19, 24, 26, 30, 32, 34): 

pH(t)=5.3-0.005*t[h]+0.0002*t²[h]-0.12*WSC[% FM], r²=0.39, n=174. 

 

For grass silages (ID 15, 17, 19, 24, 26, 30, 32, 34) plus grass-lucerne silages (ID 27, 

31) (Experiment C 7 and Experiment C 8): 

pH(t)=5.28-0.005*t[h]+0.0003*t²[h]-0.12*WSC[% FM], r²=0.44, n=228. 
 
Correlation between pH, time and (WSC*BC): 

pH(t)=5.13-0.005*t[h]+0.0003*t²[h]-0.0005*WSC[% FM]*BC[Meq in FM], r²=0.35, 
n=228. 

 

Bacterial activity (Antimycotic treatment) 

There was no significant influence of WSC concentration of the medium on the 

development of pH, organic acid or ethanol concentrations. 

 

Correlation between pH, time and WSC content 
 

For grass silages (ID 15, 17, 19, 24, 26, 30, 32, 34): 

pH(t)=4.78-0.022*t[h]+0.0002*t²[h]-0.01*WSC[% FM], r²=0.68, n=174 
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For grass silages (ID 15, 17, 19, 24, 26, 30, 32, 34) plus grass-lucerne silages (ID 27, 

31) (Experiment C 7 and Experiment C 8): 

pH(t)=4.82-0.02*t[h]+0.0001*t²[h]-0.02*WSC[% FM], r²=0.58, n=228 
 
Correlation between pH, time and (WSC*BC): 

pH(t)=4.78-0.02*t[h]+0.0001*t²[h]-0.0001*WSC[% FM]*BC[Meq in FM], r²=0.57, 
n=228. 

 

The correlation equations show that the influence of WSC was highest in the AB 

treatment and lowest in the AM treatment. This relationship also holds true for the 

product WSC*BC. 

 

5.3.4 Experiment C 4 – Potassium chloride, 100 ml – 200 ml Erlenmeyer flasks 
To study the influence of osmotic pressure adjusted to conditions in the actual silage, on 

the microbial activity 

• 6 treatments with 3 replicates: C, AB and AM in 8 % (w/v) KCl solution in 100 

ml and in 200 ml erlenmeyer flasks. Silage ID 34.  

 

Yeast numbers in the silage were 6.2 log cfu/g FM and LAB numbers 6.5 log cfu/g FM. 

 

Within 22 h all treatments behaved similarly compared to the counterparts without KCl 

addition. pH and organic acid values remained relatively stable from the beginning. 

Only ethanol was produced. 

The treatments in 200 ml erlenmeyer flasks (figures V in APPENDIX VIII) resembled 

the counterparts in 100 ml volume. 

 

Control treatment 

After 46 h of incubation the pH decreased from 4.6 to 4.4 (Figure 41). Lactic acid 

content increased from 2.5 to 2.7 mg/ml. Acetic acid content rose from 0.8 to 0.9 

mg/ml, propionic acid content from 0.4 to 0.5 mg/ml. Ethanol content increased from 

the initial concentration of 1.6 mg/ml to 4.7 mg/ml. 

Compared to the control without KCl (figure 30 in APPENDIX VIII) there were no 

significant differences after 22 h but after 46 h pH, acetic acid and propionic acid 

contents differed significantly. 

 



5 RESULTS 

    

 
66

Fungal activity (Antibacterial treatment) 

Neither after 22 nor after 46 h there were significant differences between AB and C in 

any variable (Figure 43). 

Compared to AB without KCl (figure 32 in APPENDIX VIII) there were significant 

differences after 46 h in pH, lactic and acetic acid contents. pH and acetic acid content 

were significantly lower with KCl whereas lactic acid content was significantly higher. 
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Figures: Changes in pH and some chemical components in grass silage extracts with 8 % KCl (silage ID  

34) in 100 ml Erlenmeyer flasks over 51 h 

Figure 41 (top left): Control 

Figure 42 (down left): Antimycotic treatment 

Figure 43 (top right): Antibacterial treatment 

 

Bacterial activity (Antimycotic treatment) 

There were no significant differences between C and AM after 22 and 46 h except that 
the pH of AM was significantly higher after 46 h (+0.2 units) (Figure 43). 

Only after 46 h AM with and without KCl (figure 31 in APPENDIX VIII) differed 
significantly in pH, lactic, acetic and propionic acid contents. The organic acid contents 
were significantly higher without KCl and pH was significantly lower (-0.8 units). 



5 RESULTS 

    

 
67

5.3.5 Experiment C 5 – Tannic acid 
To investigate the effect of tannin as a characteristic ingredient of legumes on aerobic 

changes 

• 2 treatments with 3 replicates: C and AB + 0.57 % tannic acid in FM. Silage    

ID 17. 

 

Yeast numbers accounted for 7.4 log cfu/g FM and aerobic bacteria numbers for 7.0 log 

cfu/g FM. 

 

Control treatment 

After 22 h the pH rose to 5.0 (Table 34, column C*, figure 74 in APPENDIX VIII). That 

is 0.5 units higher than the control without additive. Lactic acid concentration decreased 

from 6.5 to 3.5 mg/ml. Acetic acid concentration declined from 0.9 to 0.5 mg/ml in 

contrast to the untreated control which rose by 0.5 mg/ml. Propionic acid content was 

slightly reduced (-0.1 mg/ml) in contrast to the counterpart. Ethanol content increased to 

4.4 mg/ml (without tannin 1.9 mg/ml). 

There were significant differences in pH (+0.5 units), lactic (-0.7 mg/ml), acetic (-0.9 

mg/ml) and propionic acid (-0.2 mg/ml) concentrations compared to the control without 

tannin after   22 h. 

After 46 h the pH reached 6.6, that is 1.6 units more than the counterpart. Lactic acid 

concentration decreased to 1.2 mg/ml, acetic acid to 0.2 mg/ml. Propionic acid content 

increased to 0.3 mg/ml, ethanol content to 4.9 mg/ml. 

At that point of time there were significant differences in pH, acetic and propionic acid 

and ethanol concentrations compared to the control without tannin (Table 34). On 

average, with tannin acetic acid content was only a tenth compared to the control 

without tannin and ethanol content was 6.5-fold higher. 

Table 34: Measured and statistical differences in some chemical components [mg/ml] between C* with 
tannin and C without, α =0.05; Experiment C5 

Tannic 
acid pH     

Lactic 
acid   

Acetic 
acid   

Propionic 
acid Ethanol   

  C* C   C* C   C* C   C* C   C* C   

0 h 4.8     6.5     0.9     0.2     0.9     

22 h 5.0 4.5 * 2.8 3.5 * 0.5 1.4 * 0.1 0.3 ns 4.4 1.9 * 

46 h 6.6 5.0 * 1.2 1.2 ns 0.2 1.9 * 0.3 0.7 * 4.9 0.8 * 
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Fungal activity (Antibacterial treatment) 

Within 22 h the pH rose to 4.9 (counterpart 4.7) (Table 35). The lactic acid content 

diminished from 6.5 mg/ml to 2.8 mg/ml (cp. 1.9 mg/ml). Acetic and propionic acid 

behaved like the control. Ethanol content amounted for 2.1 mg/ml (cp. 1.2 mg/ml). 

AB with tannin differed significantly from AB without tannin in pH (-0.2 units), lactic 

(+ 0.9 mg/ml) and acetic acid contents (-0.6 mg/ml). 

After 46 h the pH increased to 5.7 (cp. 6.5). Lactic acid content declined to 1.2 mg/ml 

(cp. 0.7 mg/ml), acetic acid content to 0.6 mg/ml (cp. 1.1 mg/ml). Propionic acid 

content remained stable. Ethanol amounted for 2.1 mg/ml (cp. 1.2 mg/ml). 

There were significant differences in the same variables as after 22 h.  

Table 35: Measured and statistical differences in some chemical components [mg/ml] between AB* with 
tannin and AB without, α =0.05; Experiment C5 

Tannic 
acid pH     

Lactic 
acid   

Acetic 
acid   

Propionic 
acid Ethanol   

  AB* AB   AB* AB   AB* AB   AB* AB   AB* AB   

0 h 4.8     6.5     0.9     0.2     0.9     

22 h 4.9 4.7 * 2.8 1.9 * 0.5 1.1 * 0.1 0.2 ns 2.8 1.5 ns 

46 h 5.7 6.5 * 1.2 0.7 * 0.6 1.1 * 0.2 0.2 ns 2.1 1.2 ns 
 

Compared to the control there were significant differences only after 46 h in acetic acid 

content which was higher in AB (+0.4 mg/ml) and in ethanol content which was less 

than half of the control (2.1 vs. 4.9 mg/ml) (Table 36). 

Table 36: Measured and statistical differences in some chemical components [mg/ml] between AB and C, 
both with tannin, α =0.05; Experiment C5 

Tannic 
acid pH     

Lactic 
acid   

Acetic 
acid   Propionic acid Ethanol   

  C AB   C AB   C AB   C AB   C AB   

0 h 4.8     6.5     0.9     0.2     0.9     

22 h 5.0 4.9 ns 2.8 2.8 ns 0.5 0.5 ns 0.1 0.1 ns 4.4 2.8 ns 

46 h 6.6 5.7 * 1.2 1.2 ns 0.2 0.6 * 0.3 0.2 * 4.9 2.1 ns 
 

Altogether tannic acid addition varied the development from the treatments without 

additive. 

This finding provides further evidence to disprove Hypothesis 4. 

5.3.6 Experiment C 6 – pH 3.8 (+ fructose) 

To investigate the effect of initial pH on aerobic changes without or in combination with 

additional WSC 

• 6 treatments with 3 replicates: pH of the medium adapted to 3.8, C, AB, AM 

without and with 6 % fructose. Silage ID 32. 
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Yeast numbers accounted for 6.6 log cfu/g FM and LAB numbers for 6.0 log cfu/g FM. 

In general, the statistical differences given relate to the differences between the 
treatments with and without added fructose. 

Corresponding graphs see figures X and Y in APPENDIX VIII. 

 

Control treatment 

The initially adjusted pH of 3.8 dropped to 3.6, and 3.4 (!) resp. with added fructose 

after 21 h (significant difference) (Table 37) which was the lowest pH achieved within 

all experiments. Lactic acid contents declined from 2.4 mg/ml to 1.9 mg/ml in both 

treatments (n.s.). Acetic acid decreased by 0.2 mg/ml to 0.6 mg/ml without additional 

fructose and increased by the same amount to 1.0 mg/ml with additional fructose 

(significant difference). Propionic acid contents remained stable within 45 h in both 

treatments. Ethanol content increased from 1.9 mg/ml to 3.3 mg/ml, 7.1 mg/ml 

respectively (significant difference). 

After 45 h the pH added up to 3.9 or 3.5 respectively (significant difference). Lactic 

acid further decreased to 1.0 mg/ml, 1.2 mg/ml respectively (significant difference). 

Acetic acid accounted for 0.3 mg/ml without additional fructose and 1.6 mg/ml with 

fructose addition, that is more than 5 times higher (significant difference). Ethanol was 

decomposed or volatilised to 1.4 mg/ml or 7.0 mg/ml respectively (significant 

difference). 

Within 45 h the treatment with additional fructose differs significantly from the 

treatment without additional fructose in pH, lactic acid, acetic acid and ethanol contents 

(Table 37). 

Table 37: Measured and statistical differences in some chemical components [mg/ml] between C without 
and C* with additional fructose at pH 3.8, α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  C C*   C C*   C C*   C C*   C C*   

0 h 3.8     2.4     0.7     0.4     1.9     

21 h 3.6 3.4 * 1.9 1.9 ns 0.6 1.0 * 0.5 0.5 ns 3.3 8.9 * 

45 h 3.9 3.5 * 1.0 1.2 * 0.3 1.6 * 0.5 0.4 ns 1.4 7.0 * 

 

Comparison to the treatments at natural pH  

After 21 h the control without additional fructose at low pH had a significantly lower 

lactic acid content than the counterpart at natural pH (1.9 vs. 2.7 mg/ml) (Table 38). The 

acetic acid content too, was significantly lower (0.6 vs. 1.0 mg/ml).  

After 45 h acetic acid and propionic acid content were significantly lower at low pH, 0.3 

vs. 1.3 mg/ml resp. 0.5 vs. 0.7 mg/ml. 
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Table 38: Measured and statistical differences in some chemical components [mg/ml] between C* at pH 
3.8 and C at natural pH (without fructose), α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  C* C   C* C   C* C   C* C   C* C   

0 h 3.8 4.8   2.4 2.5   0.7 0.7   0.4 0.4   1.9 1.7   

21 h 3.6 4.6   1.9 2.7 * 0.6 1.0 * 0.5 0.5 ns 3.3 3.1 ns 

45 h 3.9 5.3   1.0 1.1 ns 0.3 1.3 * 0.5 0.7 * 1.4 2.4 * 
 
 

The treatment with additional fructose at low pH had a significantly lower lactic acid 

content than the counterpart at natural pH (1.9 vs. 2.5 mg/ml) corresponding to the 

treatments without additional fructose after 21 h, the same was acetic acid content (1.0 

vs. 1.2 mg/ml) (Table 39). After 45 h lactic acid content was still significantly lower at 

low pH (1.2 vs. 1.9 mg/ml), the same as acetic acid content (1.6 vs. 2.5 mg/ml) and then 

propionic acid content (0.4 vs. 0.7 mg/ml).  

Table 39: Measured and statistical differences in some chemical components [mg/ml] between C* at pH 
3.8 and C at natural pH (with fructose), α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  C* C   C* C   C* C   C* C   C* C   

0 h 3.8 4.8   2.4 2.5   0.7 0.7   0.4 0.4   1.9 1.7   

21 h 3.4 4.3   1.9 2.5 * 1.0 1.2 * 0.5 0.6 ns 8.9 9.6 ns 

45 h 3.5 4.2   1.2 1.9 * 1.6 2.5 * 0.4 0.7 * 7.0 7.9 ns 

 

Fungal activity (Antibacterial treatment) 

After 21 h the pH changed like in the control. Lactic acid concentration diminished to 

1.8 mg/ml, 1.9 mg/ml respectively with additional fructose (n.s.) (Table 40). Acetic acid 

concentration declined from 0.8 to 0.5 mg/ml without additional fructose and rose to 0.9 

mg/ml with fructose added (significant difference). Propionic acid contents remained 

stable within 45 h in both treatments. Ethanol content increased from 1.9 mg/ml to 3.0 

mg/ml, 8.7 mg/ml respectively (significant difference). 

After 45 h the pH corresponded to the control (n.s.). Lactic acid content diminished to 

0.8 and 1.1 mg/ml respectively (significant difference). Acetic acid accounted for 0.6 

mg/ml or 1.4 mg/ml respectively (significant difference). Ethanol content was at the 

level 2.1 and 7.0 mg/ml (significant difference).  

 

At both measurement points AB did not differ significantly from C except a slightly 

lower acetic acid content after 21 h (Table 41 and Table 42). 
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Table 40: Measured and statistical differences in some chemical components [mg/ml] between AB 
without and AB* with additional fructose at pH 3.8, α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB AB*    AB AB*    AB AB*    AB AB*    AB AB*    

0 h 3.8     2.4     0.7     0.4     1.9     

21 h 3.6 3.4 * 1.8 1.9 ns 0.5 0.9 * 0.5 0.5 ns 3.0 8.7 * 

45 h 3.9 3.5 * 0.8 1.1 * 0.1 1.4 * 0.5 0.5 ns 2.1 7.0 * 
 

Table 41: Measured and statistical differences in some chemical components [mg/ml] between AB and C 
(without additional fructose) at pH 3.8, α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB C   AB C   AB C   AB C   AB C   

0 h 3.8     2.4     0.7     0.4     1.9     

21 h 3.6 3.6 ns 1.8 1.9 ns 0.5 0.6 * 0.5 0.5 ns 3.0 3.3 ns 

45 h 3.9 3.9 ns 0.8 1.0 ns 0.1 0.3 ns 0.5 0.5 ns 2.1 1.4 ns 
 

Table 42:  Measured and statistical differences in some chemical components [mg/ml] between AB and C 
(with additional fructose) at pH 3.8, α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB C   AB C   AB C   AB C   AB C   

0 h 3.8     2.4     0.7     0.4     1.9     

21 h 3.4 3.4 ns 1.9 1.9 ns 0.9 1.0 ns 0.5 0.5 ns 8.7 8.9 ns 

45 h 3.5 3.5 ns 1.1 1.2 ns 1.4 1.6 ns 0.5 0.4 ns 7.0 7.0 ns 

 

Comparison to the treatments at natural pH  

After 21 h lactic acid contents were significantly lower at low pH: 1.8 vs. 2.0 mg/ml 

without and 1.9 vs. 2.2 mg/ml with additional fructose, the same was acetic acid 

content: 0.5 vs. 0.7 mg/ml and 0.9 vs. 1.1 mg/ml (Table 43). After 45 h significant 

differences in lactic and acetic acid contents remained but ratios changed in the variable 

lactic acid without additional fructose. There the content at low pH was higher than at 

natural pH (0.8 vs. 0.6 mg/ml) (Table 44). 

 

Whether with or without fructose addition, after the first 21 h less lactic acid was left at 

low pH than at natural pH which provides evidence to disprove Hypothesis 1 saying 

that the pH does not influence the lactate consumption. However, after 45 h the results 

in lactic acid content and differences between the treatments at low and natural pH 

were contradictory. 
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Table 43: Measured and statistical differences in some chemical components [mg/ml] between AB* at pH 
3.8 and AB at natural pH (without fructose), α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB* AB   AB* AB   AB* AB   AB* AB   AB* AB   

0 h 3.8 4.8   2.4 2.5   0.7 0.7   0.4 0.4   1.9 1.7   

21 h 3.6 4.7   1.8 2.0 * 0.5 0.7 * 0.5 0.5 ns 3.0 3.2 ns 

45 h 3.9 6.5   0.8 0.6 * 0.1 0.6 * 0.5 0.5 ns 2.1 2.0 ns 
 

Table 44: Measured and statistical differences in some chemical components [mg/ml] between AB* at pH 
3.8 and AB at natural pH (with fructose), α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AB* AB   AB* AB   AB* AB   AB* AB   AB* AB   

0 h 3.8 4.8   2.4 2.5   0.7 0.7   0.4 0.4   1.9 1.7   

21 h 3.4 4.3   1.9 2.2 * 0.9 1.1 * 0.5 0.5 ns 8.7 9.1 ns 

45 h 3.5 4.4   1.1 1.3 * 1.4 2.1 * 0.5 0.5 ns 7.0 8.2 ns 
 

 

Bacterial activity (Antimycotic treatment) 

AM remained rather stable in pH and organic acid contents. There were no significant 

differences between AM with and without additional fructose at both measurement 

points (Table 45). 

Until 45 h lactic acid concentration increased by 0.2 mg/ml on average, acetic acid 

content dropped by 0.2 mg/ml. Propionic acid content did not change on average. 

Ethanol content increased from 1.9 to 3.3 mg/ml on average within 45 h. 

Table 45: Measured and statistical differences in some chemical components [mg/ml] between AM 
without and AM* with additional fructose at pH 3.8, α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid Propionic acid Ethanol   

  AM AM*    AM AM*    AM AM*    AM AM*    AM AM*    

0 h 3.8     2.4     0.7     0.4     1.9     

21 h 3.8 3.8 ns 2.5 2.4 ns 0.6 0.6 ns 0.5 0.4 ns 2.3 2.4 ns 

45 h 3.8 3.7 ns 2.7 2.6 ns 0.5 0.5 ns 0.4 0.3 ns 3.2 3.4 ns 
 

After 21 h AM treatments were significantly higher in pH (!), lactic acid and ethanol 

concentrations than the control treatments (Table 46). In the fructose treatments acetic 

acid and propionic acid contents were significantly lower at low pH (0.6 vs. 1.0 mg/ml 

and 0.4 vs. 0.5 mg/ml) (Table 47). 

After 45 h the AM treatment without fructose was significantly lower in lactic acid and 

ethanol concentrations than the control. In contrast, the AM treatment with additional 
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fructose had significantly higher ethanol and acetic acid contents than the control with 

fructose. 

Table 46: Measured and statistical differences in some chemical components [mg/ml] between AM and C 
(without additional fructose) at pH 3.8, α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AM C   AM C   AM C   AM C   AM C   

0 h 3.8     2.4     0.7     0.4     1.9     

21 h 3.8 3.6 * 2.5 1.9 * 0.6 0.6 ns 0.5 0.5 ns 2.3 3.3 * 

45 h 3.8 3.9 ns 2.7 1.0 * 0.5 0.3 ns 0.4 0.5 ns 3.2 1.4 * 
 

Table 47: Measured and statistical differences in some chemical components [mg/ml] between AM and C 
(with additional fructose) at pH 3.8, α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid 
Propionic 
acid Ethanol   

  AM C   AM C   AM C   AM C   AM C   

0 h 3.8     2.4     0.7     0.4     1.9     

21 h 3.8 3.4 * 2.4 1.9 * 0.6 1.0 * 0.4 0.5 * 2.4 8.9 * 

45 h 3.7 3.5 ns 2.6 1.2 * 0.5 1.6 * 0.3 0.4 ns 3.4 7.0 * 
 

Comparison to the treatments at natural pH  

After 21 h lactic acid contents of AM treatments at low pH were significantly lower 

than at natural pH (2.5 vs. 3.9 mg/ml without and 2.4 vs. 3.4 mg/ml with fructose 

addition) (Table 48 and Table 49), same were acetic acid and propionic acid contents 

(0.6 vs. 1.8 mg/ml and 0.6 vs. 1.5 mg/ml for acetic acid resp. 0.5 vs. 1.2 mg/ml and 0.4 

vs. 0.9 mg/ml for propionic acid).  

After 45 h there were still significant differences in lactic, acetic and propionic acid 

contents. However, with lactic acid ratios changed when no fructose was added. At low 

pH lactic acid content was higher than at natural pH (2.7 vs. 1.7 mg/ml).  

Table 48: Measured and statistical differences in some chemical components [mg/ml] between AM* at 
pH 3.8 and AM at natural pH (without fructose), α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid Propionic acid Ethanol   

  AM*  AM   AM*  AM   AM*  AM   AM*  AM   AM*  AM   

0 h 3.8 4.8   2.4 2.5   0.7 0.7   0.4 0.4   1.9 1.7   

21 h 3.8 4.2   2.5 3.9 * 0.6 1.8 * 0.5 1.2 * 2.3 2.5 ns 

45 h 3.8 4.4   2.7 1.7 * 0.5 4.0 * 0.4 3.0 * 3.2 3.3 ns 
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Table 49: Measured and statistical differences in some chemical components [mg/ml] between AM* at 
pH 3.8 and AM at natural pH (with fructose), α =0.05; Experiment C6 

pH 3.8 pH     Lactic acid Acetic acid Propionic acid Ethanol   

  AM*  AM   AM*  AM   AM*  AM   AM*  AM   AM*  AM   

0 h 3.8 4.8   2.4 2.5   0.7 0.7   0.4 0.4   1.9 1.7   

21 h 3.8 4.3   2.4 3.4 * 0.6 1.5 * 0.4 0.9 * 2.4 2.1 ns 

45 h 3.7 4.1   2.6 2.9 * 0.5 4.0 * 0.3 4.2 * 3.4 2.9 ns 
 

 

Experiments with silages other than pure grass 

5.3.7 Experiment C 7 – Maize, grass-lucerne 
To study aerobic changes in other silages compared to grass silages 

• One or 3 treatments with 3 replicates: Control (C), (Antibacterial (AB) and 
Antimycotic (AM) treatment). Maize silage ID 16, Grass-lucerne silage ID 20, 
21, 27, 31. (5 silages in total). 

 

5.3.7.1 Maize 

The maize silage was characterised by a pH of 3.8, 4.9 mg/ml lactic acid, no residual 
WSC, yeast numbers of 5.9 log cfu/g FM and aerobic bacteria numbers of 5.2 log cfu/g 
FM.  

 

Control treatment 

During 22 h the pH rose to 4.0 (Figure 44). Lactic acid content decreased by 1.1 mg/ml, 
acetic acid disappeared, propionic acid was absent and ethanol content remained 
constant. 

After 46 h the pH increased to 5.8. Lactic acid content diminished from the initial 4.9 to 
1.9 mg/ml, ethanol content by 0.7 to 0.1 mg/ml. 

Pellicle was formed in the not shaken treatment only after 3 days.  
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Figure 44: Changes in pH, 
organic acids and 
ethanol in maize 
silage extract, 
control, over 50 h 
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Fungal activity (Antibacterial treatment) 

The development of pH and organic acid contents and ethanol was like the control. 
Within 46 h there were no significant differences between AB and C. With maize silage 
results provide evidence to confirm Hypothesis 2 saying that the decomposition of 
lactate and the rise in pH is solely caused by yeasts. 

 

Bacterial activity (Antimycotic treatment) 

Within 46 h the pH remained constant (figure 83 in APPENDIX VIII). After 46 h the 
relation of lactic and acetic acid contents changed: lactic acid content dropped from the 
initial 4.9 mg/ml to 4.2 mg/ml whereas acetic acid content rose from 0.8 to 1.8 mg/ml. 
Ethanol content changed slightly from initial 0.8 mg/ml to 0.9 mg/ml after 22 h and 0.4 
mg/ml after 46 h. 

AM differed significantly from C in pH and organic acids in both measurement points. 

 

Comparing this maize silage cultures to grass silage cultures with similar initial 
conditions (ID 25) (Experiment C 1) the development of pH and acids were similar but 
the decomposition of lactic acid and pH increase was much more rapid in C and AB of 
the maize silage. 

 

Comparison of the batch culture technique to temperature development in the aerobic 
stability test (HONIG, 1990) 

In the aerobic stability test the maize silage became unstable after 42 h. There were two 
temperature peaks, the first after 54 h, the second after 126 h (Figure 45) indicating that 
two different microbial groups might have alternated. The pH rose from 3.8 to 5.8 after 
71 h and 8.3 after 168 h. Lactic acid content diminished from 4.9 to 2.4 mg/ml after 71 
h and was totally decomposed after 168 h (Figure 46). Acetic acid content decreased 
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Figure 45 (left): Temperature changes in maize silage in the aerobic stability test over 7 days 

Figure 46 (right): Changes in pH, volatile fatty acids and ethanol contentsin maize silage in the 
temperature test after 0, 3 and 7 days 

 
from 0.8 to 0.1 mg/ml after 71 h and was totally decomposed after 168 h. Ethanol 
content rose during the first 71 h from 0.8 to 3.0 mg/ml but disappeared after 168 h. 
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In the corresponding batch culture the change in pH (5.8), lactic acid (1.9 mg/ml) and 
acetic acid concentration (0.1 mg/ml) within the first 46 h was similar to that of the 
silage within 71 h. However, in contrast to the batch culture where the ethanol content 
decreased to 0.1 mg/ml within 46 h it increased 3.8 fold during the first 71 h in the 
aerobic stability test in the silage on exposure to air and disappeared only after 168 h.  

 

5.3.7.2 Grass-lucerne  

Two of the grass-lucerne silages (ID 20 and 21) were solely colonised by moulds (6.3 
resp. 7.0 log cfu/g FM) and had a pH of 4.6. Aerobic bacteria numbers ranged from 6.9-
7.2 log cfu/g FM. Only the control treatments were observed. 

 

In the batch cultures, the silage containing 25 % lucerne in FM (ID 20) remained stable 
in pH the first 21 h despite a high lactic acid accumulation of 6.9 mg/ml compared to 
the initial 3.6 mg/ml (Figure 47). At the same time acetic acid content rose from 0.9 to 
1.3 mg/ml. Propionic acid (0.1 mg/ml) was produced and ethanol content rose from 0.5 
to 2.0 mg/ml. 

After 35 h mould growth was observed on the surface. 

Until 45 h the pH dropped to 4.1 while the lactic acid content dropped as well from 6.9 
to 5.8 mg/ml. Acetic acid content remained rather stable at 1.2 mg/ml, propionic acid 
content increased further to 0.6 mg/ml and ethanol content to 4.1 mg/ml.  
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Figure 47 (left): Changes in pH and some chemical components in extract of grass-lucerne silage (ID 20) 
with 25 % lucerne on FM base over 53 h 

Figure 48 (right): Changes in pH and some chemical components in extract of grass-lucerne silage      
(ID 21) with 50 % lucerne on FM base over 53 h 

 

The silage containing 50 % lucerne (ID 21) had a comparable development except that 
the lactic acid production after 21 h was even higher (increasing from 4.5 to 8.1 mg/ml) 
and even a rise of pH within that time by 0.1 units (Figure 48). After 45 h the pH 
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dropped to 4.3, lactic acid content accounted for 7.2 mg/ml. At that time mould growth 
was observed on the surface. 

After 21 h cultures of silages 21 and 20 differed significantly in pH (4.7 vs. 4.6) and 
lactic acid content (8.1 vs.6.9 mg/ml). After 45 h they differed in the same variables, pH 
4.3 vs. 4.1, lactic acid content 7.2 vs. 5.8 mg/ml. 

 

Silage 27 with a lucerne fraction of 25 % was occupied as well from yeasts as from 
moulds (6.1 resp. 6.4 log cfu/g FM). LAB accounted for 5.4 log cfu/g FM. It started 
with a pH of 4.6 and a lactic acid content of 3.2 mg/ml. All 3 treatments (C, AB, AM) 
were carried through. 

 

Control treatment 

Within 22 h the pH dropped from 4.6 to 4.5 (Figure 49). Lactic acid content increased 
from 3.2 mg/ml to 3.6 mg/ml. Acetic acid content diminished by 0.3 mg/ml to 0.5 
mg/ml, propionic acid content remained at 0.1 mg/ml. Ethanol content rose from 0.5 to 
3.6 mg/ml. 

Mould growth was observed after 35 h in the unshaken treatment. 

After 46 h the pH dropped by another 0.1 unit. Lactic acid content increased to 3.9 
mg/ml, acetic acid content rose again to 1.3 mg/ml. Propionic acid content remained 
constant and ethanol content increased to 3.7 mg/ml. 

 

Fungal activity (Antibacterial treatment) 

In contrast to the control the pH remained constant during the first 22 h and rose by 0.4 
to 5.0 after 46 h (Figure 51). At the same time the lactic acid content dropped from 3.2 
mg/ml to 3.0 mg/ml after 22 h and to 2.0 mg/ml after 46 h. Acetic acid content 
decreased from 0.9 to 0.4 mg/ml within 22 h and rose again slightly to 0.8 mg/ml after 
46 h. Propionic acid content remained constant at 0.1 mg/ml and ethanol content rose to 
3.2 and 3.8 mg/ml resp.after 22 and 46 h. 

AB differed significantly from C in pH and lactic acid content in both measurement 
points. Additionally, after 46 h AB was significantly lower in acetic acid content (0.7 
vs. 1.3 mg/ml). The results provide evidence to disprove Hypothesis 3 saying that 
aerobic changes are dominated by yeasts activity. 

 

Bacterial activity (Antimycotic treatment) 

Within the first 22 h the pH dropped by 0.1 units equal to the control (Figure 50). 
However at the same time lactic acid and acetic acid content increased to 4.0 and 1.1 
mg/ml resp.. There was no change in propionic acid content (0.1 mg/ml). Ethanol 
content increased from 0.5 mg/ml to 1.2 mg/ml. 

After 46 h the pH dropped further to 3.9. Lactic acid was further produced to final 6.0 
mg/ml. Acetic and propionic acid content increased as well to 3.3 mg/ml and 1.3 mg/ml 
resp.. Ethanol content rose to 2.3 mg/ml.  
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Within 22 h AM was significantly higher in acetic acid than C (1.1 vs. 0.5 mg/ml) and 
significantly lower in ethanol content (1.2 vs. 3.5 mg/ml). Additionally, after 46 h the 
treatments differ in pH and lactic acid content (AM vs. C pH 3.9 vs. 4.4 and 6.0 vs. 3.9 
mg/ml lactic acid). 
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Figures: Changes in pH and some chemical components [mg/ml] in grass-lucerne silage extracts (silage 
ID 27) over  52 h, error bars = s.d. 

Figure 49 (top left): Control 

Figure 50 (down left): Antimycotic treatment 

Figure 51 (top right): Antibacterial treatment 

 

Silage 31 with 25 % lucerne contained 6.8 log cfu/g FM yeasts and no moulds. LAB 
were present with 5.4 log cfu/g FM. The silage had a pH of 4.6 and lactic acid 
accounted for 3.6 mg/ml. 

 

Control treatment 

After 22 h the pH diminished to 4.5, lactic acid content decreased by 0.6 mg/ml to 3.0 
mg/ml (Figure 52). Acetic acid content decreased from 0.9 to 0.7 mg/ml, propionic acid 
content remained constant at 0.2 mg/ml. Ethanol content increased from 0.7 to 2.6 
mg/ml. 

Pellicle growth was observed after 33 h in the unshaken treatment. 
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After 45 h the pH rose to 4.9. Lactic acid content further diminished to 1.8 mg/ml, 
acetic acid content increased to 1.0 mg/ml, propionic acid content to 0.5 mg/ml and 
ethanol content to 2.9 mg/ml. 

 

Fungal activity (Antibacterial treatment) 

The development during the first 22 h is nearly equal to C treatment (n.s.).  

After 45 h pH rose up to 5.6 (Figure 54), that is 0.7 units above the control. Lactic acid 
content diminished to 1.5 mg/ml, i.e. 0.3 mg/ml less compared to the control. Acetic 
acid content did not change from 22 to 45 h (0.6 mg/ml). Propionic acid content 
remained constantly at 0.2 mg/ml and ethanol content increased to 3.1 mg/ml. 

Only after 45 h the pH, acetic and propionic acid content differed significantly from C, 
pH 5.6 vs. 4.9, acetic acid 0.6 vs. 1.0 mg/ml, propionic acid 0.2 vs. 0.5 mg/ml. 
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Figures: Changes in pH and some chemical components [mg/ml] in grass-lucerne silage extracts (silage 
ID 31) over 51 h, error bars = s.d. 

Figure 52 (top left): Control 

Figure 53 (down left): Antimycotic treatment 

Figure 54 (top right): Antibacterial treatment 

 

Bacterial activity (Antimycotic treatment) 

In contrast to C and AB pH increased (!) during the first 22 h by 0.2 despite a lactic acid 
production of 0.6 mg/ml (Figure 53). Besides acetic acid content increased from 0.9 to 



5 RESULTS 

    

 
80

1.4 mg/ml, propionic acid content did not change (0.2 mg/ml) and ethanol content even 
diminished by 0.1 mg/ml. 

After 45 h the pH dropped to 4.5 whereas the lactic acid content decreased also to 1.6 
mg/ml, comparable to AB. Acetic and propionic acid reached an exceptionally high 
concentration of 4.1 mg/ml each. Ethanol content increased to 2.9 mg/ml. 

After 22 h AM and C differed significantly in all variables except for the ethanol 

content. After 45 h they still differed in pH, acetic and propionic acid contents. 

 

Comparison of the batch culture technique to temperature development in the 
aerobic stability test (HONIG, 1990) 

Silage 20 became unstable after 82 h, silage 21 after 96 h.  

Within 168 h pH of silage 20 rose from 4.6 to 8.2, lactic acid content diminished from 
3.6 to 0.6 mg/ml, acetic acid content from 0.9 to 0.3 mg/ml. There was no propionic 
acid and ethanol was completely depleted from 0.5 mg/ml initial content. 

The pH of silage 21 rose from 4.7 to 7.7 within 168 h. At the same time lactic acid 
content decreased from 4.5 mg/ml to 2.1 mg/ml and acetic acid content from 1.0 to 0.2 
mg/ml. Ethanol disappeared. 

Compared to the batch cultures it was similar that finally more lactic acid was left in the 
silage 21 with the higher ratio of lucerne. 

 

Silage 27 became unstable only after 120 h. This corresponded to the batch culture 
where the lactic acid content even increased within 46 h and pH dropped. After 168 h 
the silage pH rose to 7.2, lactic acid content diminished to 1.2 mg/ml, acetic acid 
content to 0.2 mg/ml. Ethanol and propionic acid disappeared.  

 

Silage 31 became unstable already within 6 h. pH rose from 4.6 to 7.7 after 168 h. 
Organic acids and ethanol were completely decomposed except a small amount of 
propionic acid (0.1 mg/ml). In the batch culture, within 45 h the lactic acid 
concentration halved and the pH rose to 4.9. 

 

5.3.8 Experiment C 8 – grass-lucerne +3 % fructose 

To investigate the effect of increased WSC level in grass-lucerne silages 

• 3 treatments with 3 replicates: C, AB and AM + 3 % fructose in FM. Grass-

lucerne silages ID 27, 31. (2 silages in total). 

 

Control treatment 

In both measurement points comparing the treatments with and without additional 
fructose of silage 27 the pH differed significantly, in the fructose treatment being lowest 
after 46 h with 4.0 (Figure 55). Besides the ethanol content with added fructose was 
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significantly higher, highest after 22 h with 6.0 mg/ml (without additional fructose 3.6 
mg/ml). After 46 h also lactic acid and acetic acid content were significantly higher with 
additional fructose (4.9 vs. 3.9 mg/ml and 1.8 vs. 1.3 mg/ml). 

In silage 31 there were similar significant differences in pH and ethanol contents, but 
acetic acid content differed already after 22 h (Figure 58). 

 

Fungal activity (Antibacterial treatment) 

Silage 27 

In both measurement points between AB with and without additional fructose there 
were significant differences in pH which remained rather constant with additional 
fructose (Figure 57), and in ethanol content which was as high as in the control with 
additional fructose in both silages. 

After 22 h AB differed significantly from C in pH and acetic acid contents. After 46 h 
there were significant differences in pH, acetic acid content and lactic acid content 
which was significantly lower. 
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Figures: Changes in pH and some chemical components [mg/ml] in grass-lucerne silage extracts with 
added fructose (silage ID 27) over 52 h, error bars = s.d. 

Figure 55 (top left): Control 

Figure 56 (down left): Antimycotic treatment 

Figure 57 (top right): Antibacterial treatment 
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Silage 31 

After 22 and 45 h pH, acetic acid and ethanol contents differed significantly from the 
counterpart without additional fructose. 

After 22 h there were no significant differences between AB and C. After 45 h pH was 
significantly higher in AB (4.5 vs. 4.4) and lactic acid content was significantly lower 
(1.8 vs. 2.6 mg/ml) (Figure 60) than in C. 

The findings provide evidence to disprove Hypothesis 3 which says that aerobic 
changes in silages are dominated by yeast activity. 
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Figures: Changes in pH and some chemical components [mg/ml] in grass-lucerne silage extracts with 
added fructose (silage ID 31) over 52 h, error bars = s.d. 

Figure 58 (top left): Control 

Figure 59 (down left): Antimycotic treatment 

Figure 60 (top right): Antibacterial treatment 

 

Bacterial activity (Antimycotic treatment) 

Silage 27 

After 22 h lactic and acetic acid contents were significantly higher than in AM without 

additional fructose. After 46 h only propionic acid content was significantly higher with 

fructose addition (Figure 56). 
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Comparing treatment AM to C after 22 h pH (!), lactic and acetic acid contents were 

significantly higher in AM. At the same time propionic acid and ethanol content were 

significantly lower. After 46 h there were also significant differences in all parameters, 

but pH of AM was lower and propionic acid content higher than in C. 

 

Silage 31 

After 22 h lactic and acetic acid content of AM with additional fructose were 

significantly higher than without additional fructose (5.0 vs. 4.3 mg/ml resp. 2.0 vs. 1.4 

mg/ml) (Figure 59).  

After 45 h pH was significantly lower and lactic acid content significantly higher with 

additional fructose compared to without. 

Comparing AM to C they were significantly different in all variables in both 
measurement points except propionic acid content after 22 h. 
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SYNOPSIS Experiment type C 

• Aerobic changes were observed in the fungal as well as in the bacterial variant. 

• In the antibacterial treatment lactic acid was decomposed and pH rose. 

• In the antifungal treatment in general, lactic acid was formed during the first day 

and decomposed during the second day of incubation, while pH dropped. This 

demonstrated that lactate oxidation can be also caused by bacteria, which 

provides evidence to disprove Hypothesis 2. 

• The control treatment neither corresponded totally to the antibacterial treatment 

nor to the antifungal treatment.  

• These findings provide evidence to disprove Hypothesis 3 which says that 

aerobic changes in silages are dominated by yeast activity. 

• Only when the initial pH was ≤ 4.0 were developments in control and AB equal. 

• Increased WSC level increased ethanol production by yeasts and reduced the pH 

rise. 

• Tannin addition reduced the lactate consumption of fungi but enhanced it in the 

control with the combined micro-flora. Ethanol production was increased with 

both treatments. 

• Those findings provide evidence to disprove Hypothesis 4 which says that the 

decomposition of lactate and the rise in pH is not influenced by other available 

carbon sources or compounds. 

• Potassium chloride (KCl) reduced both fungal and bacterial activity. 

• An interesting finding was that in the antibacterial treatment where the medium 

had been adjusted to pH 3.8, the pH dropped further during the first day of 

incubation and even more extremely when fructose was added, despite a 

reduction in lactic acid content. 

• With maize, yeast activity was similar to the control. 

• In grass silage with admixed lucerne the pH reacted rather slowly to changes in 

acid contents. 

• Results of the aerobic stability test were not clearly related to the batch culture 

results, but proved that lactic acid and ethanol can be formed in silages on 

exposure to air. 
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5.4 Experiment type D 

 

In Experiment type C it was demonstrated that yeasts and/or LAB can play a role in the 

aerobic changes of silage. Experiment type D was carried out to verify the relative roles 

of these groups of micro-organisms in a silage-based medium, but in absence of a 

natural microbial population. Sterile silage medium was inoculated with either a yeast, a 

lactic acid bacterium or a mixture of both micro-organisms. 

The treatments inoculated with yeasts and LAB can be compared to the control (C) of 

Experiment type C, treatments with yeasts can be compared to AB and treatments with 

LAB are comparable to AM. 

Propionic acid contents played a minor role in these samples (0.0-0.5 mg/ml) and 

remained at a relatively stable level. It is therefore not generally mentioned in the 

following. 

 

The inoculation rates were similar, but only equal if the experiments were carried out on 

the same date. 

 

5.4.1 Experiment D 1 – grass, maize 

To investigate the activity of yeast and LAB isolates in grass and maize silage medium 

• 6 treatments with 3 replicates: Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum were inoculated in grass silage medium as well as in 

maize silage medium. Compare to Experiment C 1 and Experiment C 7. 

 

The initial lactic acid contents of grass and maize silage media in this experiment were 

7.4 mg/ml and 6.0 mg/ml respectively at pH levels of 4.4 and 3.8 respectively. 

 

Grass and maize silage media were inoculated with 6.7 log cfu/40 ml silage extract 

Pichia anomala (CBS 113) and 8.3 log cfu/40 ml silage extract Lactobacillus 

plantarum. This is a higher level of LAB relative to yeasts compared to the natural 

population density of the silages investigated in Experiment type C where yeast 

numbers were equal to LAB numbers or up to 1.8 log units lower.  

Compared to the average population density of the investigated grass silages in 

Experiment C 1 in Experiment type D there were around one log unit lower numbers of 

yeasts (that is 10 times) but 1.3 log units more LAB. 
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Grass  

Yeasts 

Within 23 h pH rose from 4.4 to 4.5 (Figure 63). Lactic acid content declined from 7.4 

to 6.5 mg/ml, acetic acid content from 1.6 to 0.9 mg/ml, propionic acid content 

remained constant at 0.2 mg/ml and ethanol content slightly increased from 0.2 to 0.6 

mg/ml. 

After 47 h the pH reached 6.2. Lactic acid content further decreased to 3.4 mg/ml, that 

is less than half of the initial amount. Acetic acid content remained at 0.9 mg/ml, 

propionic acid disappeared and ethanol content diminished to 0.2 mg/ml which was the 

initial value. 
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with          

inoculants over 52 h 

Figure 61 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 62 (down left): Lactobacillus plantarum 

Figure 63 (top right): Pichia anomala 
 

LAB 

In contrast to the yeasts treatment pH dropped and lactic acid content increased during 

the measurement period (Figure 62). After 23 h pH decreased from 4.4 to 4.3, lactic 
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acid content increased from 7.4 to 7.8 mg/ml. Acetic and propionic acid content 

remained constant and ethanol content increased by 0.2 mg/ml. 

After 47 h pH was at 4.0, lactic acid amounted for 10.2 mg/ml. Acetic acid and 

propionic acid content differed from the initial value by -0.1 mg/ml. Ethanol content 

increased to 1.1 mg/ml. 

Treatment LAB differed significantly from treatment Yeasts in pH, lactic and acetic 

acid contents at both measurement points. 
 

Yeasts + LAB 

This treatment (Figure 61) had an equal development as the LAB treatment. There were 

no significant differences to the LAB treatment. The yeasts treatment differed 

significantly in pH, lactic and acetic acid content from the other treatments at all time 

points. 
 

Maize 
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved maize silage extract with          

inoculants over 52 h 

Figure 64 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 65 (down left): Lactobacillus plantarum 

Figure 66 (top right): Pichia anomala 
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Yeasts 

Within 23 h the pH increased from 3.8 to 4.1 (Figure 66). Lactic acid content 

diminished from 6.0 to 3.8 mg/ml. Acetic acid was totally decomposed (-0.9 mg/ml). 

Propionic acid was absent. Ethanol content remained constant at 0.5 mg/ml. 

After 47 h pH increased further to 7.7. All other components were nearly completely 

decomposed. There were 0.1 mg/ml lactic and acetic acid remaining. 

 

LAB 

There was nearly no change in any parameter during 47 h (Figure 65). 

After 47 h pH decreased by 0.1 units, 0.2 mg/ml lactic acid was produced, 0.1 mg/ml 

acetic acid was formed and ethanol content increased to 0.8 mg/ml. 

 

Yeasts + LAB 

This treatment (Figure 64) was comparable to the yeasts treatment. There was no 

significant difference between the both in any parameter at both measurement points. 

However, it differed significantly from the LAB treatment in pH, lactic and acetic acid 

content. Final pH was 7.8.  

 

5.4.2 Experiment D 2 – grass, maize +6 % fructose 

To study the effect of increased residual WSC level on yeast and LAB 

• As for Experiment D 1 (Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum inoculated in grass and maize silage medium) but + 6 

% fructose on FM base. Compare to Experiment C 3. 

 

Inoculation rate was as in Experiment D 1. 

 

Grass  

Yeasts 

Compared to the treatment without added fructose there were significant differences in 

pH, acetic acid and ethanol contents. 

The pH curve was much more shallow and pH increased only to 4.6 after 47 h, i.e. a 

plus of 0.2 units (Figure 69). Final lactic acid content amounted to 4.2 mg/ml, that is 0.8 

mg/ml more than in the treatment without additional fructose (n.s.). These findings 

provide evidence to disprove Hypothesis 4. Final acetic acid content exceeded the 

counterpart by 0.8 mg/ml (significant). Ethanol production was highest after 23 h with a 

content of 4.1 mg/ml (cp. 0.6 mg/ml, significant difference). 
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LAB 

There were no significant differences in any parameter between the LAB treatment with 

and without fructose addition at both measurement points except for propionic acid 

which was significantly higher after 47 h (0.2 mg/ml vs. 0.0 mg/ml) (Figure 68). Also 

after 47 h there is a higher ethanol content on average in the fructose treatment (2.3 

mg/ml), that is 1.2 mg/ml higher than of the counterpart (n.s.). 

 

Yeasts + LAB 

This treatment (Figure 67) again corresponds to the LAB treatment. Only the final 

ethanol content is higher with 3.4 mg/ml instead of 2.3 mg/ml without additional 

fructose (n.s.). 
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with          

inoculants and additional fructose over 52 h 

Figure 67 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 68 (down left): Lactobacillus plantarum 

Figure 69 (top right): Pichia anomala 
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Maize 

Autoclaved Maize Silage Extract
Inoculated with P. anomala (Iso10 ) + 6% Fructose in FM
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved maize silage extract with          

inoculants and additional fructose over 52 h 

Figure 70 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 71 (down left): Lactobacillus plantarum 

Figure 72 (top right): Pichia anomala 

 

Yeasts 

There are significant differences in pH, lactic and acetic acid content between the 

treatments with and without additional fructose in both measurement points. 

During the first 23 h pH decreased (!) by 0.1 units even though the lactic acid content 

diminished by 1.4 mg/ml (Figure 72), i.e. a significant lesser decomposition compared 

to the treatment without fructose. Acetic acid content decreased by 33 % and ethanol 

content increased to 6 times higher (3.1 mg/ml) than the initial content. Both differed 

significantly from the counterpart. 

After 47 h the pH rose to 4.3. Lactic acid content diminished to 1.1 mg/ml, which was 

significantly higher than the counterpart without fructose. The same was true for acetic 

acid content which increased to 1.5 mg/ml. Ethanol was decomposed again to 1.0 

mg/ml on average (n.s.). 
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The findings provide evidence to disprove Hypothesis 4 saying that lactate 

decomposition and pH rise are not influenced by other available carbon sources. 

 

LAB 

There were no significant differences between the treatment with and without additional 

fructose in any variable at both measurement points. All parameters remained relatively 

stable within 47 h of incubation (Figure 71). 

 

Yeasts + LAB 

There were no significant differences between this treatment and the yeasts treatment 

with fructose in any parameter at both measurement points (Figure 70). 

 

5.4.3 Experiment D 3 – grass, maize with reversed pH 

To assess the influence of pH and fodder crop type on aerobic changes 

• As for Experiment D 1 (Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum inoculated in grass and maize silage medium), but 

maize silage medium adjusted to the pH of the grass silage (4.4) and vice versa 

(3.8). Compare to Experiment C 6. 

 

Inoculation rate was comparable to Experiment D 1: Pichia anomala 6.7 log cfu/g FM, 

Lactobacillus plantarum 8.5 log cfu/g FM. 

 

Grass  

Yeasts 

The adjusted pH of 3.8 remained constant during the first 23 h (Figure 75). At the same 

time the lactic acid content diminished from 7.0 to 5.9 mg/ml, that means significantly 

more lactic acid was decomposed than at pH 4.4 (+0.3 mg/ml on average). Acetic acid 

content decreased from 1.5 to 0.9 mg/ml. Propionic acid content remained stable at 0.1 

mg/ml. Ethanol content increased to 1.2 mg/ml, that is about twice as much as the 

treatment at pH 4.4 (significant difference). 

After 47 h the pH increased to 4.1. Lactic acid content decreased to 3.8 mg/ml, that was 

a 0.4 mg/ml higher content than of the counterpart at the natural pH (n.s.). Acetic acid 

content further diminished to 0.2 mg/ml which was significantly lower than the 

counterpart at pH 4.4 and ethanol content rose to 1.8 mg/ml (cp. 0.2 mg/ml, n.s.). 
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LAB 

The pH did not change within 47 h (Figure 74). However lactic acid content diminished 

from 7.0 to 6.0 mg/ml within 23 h and remained constant until 47 h. It differed 

significantly from the LAB treatment at pH 4.4 which increased. 

Acetic acid content did not change within 47 h. Propionic acid content increased 

slightly by 0.1 mg/ml and ethanol content rose steadily from 0.2 to 1.0 mg/ml after 23 h 

(significantly different from LAB treatment pH 4.4) to 1.9 mg/ml after 47 h. 

 

Yeasts + LAB 

In contrast to the counterpart at pH 4.4 which resembled the LAB treatment 

(Experiment D 1) this treatment resembled the yeasts treatment (Figure 73). There were 

no significant differences in any parameter at any point of time.  
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with          

inoculants with an initial pH of 3.8 over 52 h 

Figure 73 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 74 (down left): Lactobacillus plantarum 

Figure 75 (top right): Pichia anomala 
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Maize 

Yeasts 

At the adjusted initial pH of 4.4 the pH rose to 5.6 after 23 h (Figure 78). Lactic acid 

was decomposed from 5.7 mg/ml to 3.3 mg/ml, that is a significantly higher 

decomposition rate (by 0.5 mg/ml) than of the counterpart at the natural pH level. 

Acetic acid content decreased from 0.8 to 0.4 mg/ml whereas in the counterpart it was 

depleted completely within 23 h (significant difference). Ethanol content decreased 

from 0.8 to 0.6 mg/ml which was similar to the counterpart at pH 3.8 (n.s.). 

After 47 h the pH rose to 8.2. Lactic acid content diminished to 0.3 mg/ml, acetic acid 

content to 0.2 mg/ml and ethanol content to 0.4 mg/ml. At this point of time organic 

acid contents did not differ significantly from the counterpart at pH 3.8. 

Compared to the grass silage at pH 4.4 the lactic acid decomposition in maize silage 

extract was faster, -5.4 mg/ml in contrast to -4.1 mg/ml within 47 h.  
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved maize silage extract with          

inoculants with an initial pH of 4.4 over 52 h 

Figure 76 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 77 (down left): Lactobacillus plantarum 

Figure 78 (top right): Pichia anomala 

 



5 RESULTS 

    

 
94

LAB 

After 23 h the pH dropped from 4.4 to 4.3 (Figure 77). Lactic acid content decreased 

from 5.7 to 5.2 mg/ml which was in contrast to the LAB treatment with the initial pH of 

3.8 which was constant. Acetic acid content did not differ significantly from the 

counterpart. Ethanol content increased to 1.4 mg/ml (significantly higher than in LAB 

treatment at pH 3.8). 

After 47 h the pH decreased further to 4.2. Lactic acid content accounted for 5.4 mg/ml 

(significantly lower than cp. at pH 3.8 with 6.1 mg/ml). Acetic acid content rose to 1.6 

mg/ml which was significantly higher than the counterpart at pH 3.8. Ethanol content 

increased to 2.7 mg/ml which again was significantly more than in the counterpart. 

The trend of decomposing instead of producing lactic acid was opposing the grass silage 

treatment at pH 4.4 (Experiment D 1). 

 

 Yeasts + LAB 

There were no significant differences in the variables between this treatment (Figure 76) 

and the yeasts treatment at both measurement points, but for pH and lactic acid content 

after 23 h. pH accounted for 5.1 then which was significantly lower than the yeasts 

treatment (5.6). Lactic acid content dropped to 3.8 mg/ml which was 0.5 mg/ml higher 

than in the yeasts treatment. 

 

5.4.4 Experiment D 4 – grass, maize with reversed pH +6 % fructose 

To assess the influence of pH and fodder crop type on aerobic changes providing 

residual WSC 

• As for Experiment D 3 (Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum inoculated in grass and maize silage medium at 

adjusted pH 3.8 and 4.4 resp.) but + 6 % fructose on FM base. Compare to 

Experiment C 6. 

 

Inoculation rate was as in Experiment D 3. 

 

Grass  

Yeasts 

Within 47 h the pH remained stable whereas the lactic acid content decreased from 7.0 

to 5.9 mg/ml after 23 h (significantly higher content than in the counterpart without 

additional fructose) (Figure 81). Acetic acid content was not significantly different to 
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the counterpart without additional fructose. However within 23 h ethanol content 

increased to 5.2 mg/ml, that was 4 times higher than without additional fructose 

(significant difference) (Experiment D 3).  

After 47 h lactic acid content decreased to 4.0 mg/ml which did not differ significantly 

from the treatment without additional fructose. Finally 1.2 mg/ml acetic acid were 

contained, a 6 times higher amount than without additional fructose (significant 

difference). Ethanol content rose further to 6.7 mg/ml, that was 3.7 times higher than 

without additional fructose (significant difference). 

Comparing this treatment to the fructose treatment at the natural pH significantly less 

lactic acid was decomposed during the first 23 h in the latter (difference of 1.0 mg/ml). 

At the lower pH the ethanol production was significantly higher (+ 1.1 mg/ml) after    

23 h. 

After 47 h there was no more significant difference in lactic acid content, but in acetic 

acid content which was higher at the higher pH level. Ethanol content was significantly 

higher at the lower pH (2.4 times). 
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with          

inoculants with an initial pH of 3.8 and additional fructose over 52 h 

Figure 79  (top left): Pichia anomala + Lactobacillus plantarum 

Figure 80 (down left): Lactobacillus plantarum 

Figure 81 (top right): Pichia anomala 



5 RESULTS 

    

 
96

LAB 

After 23 h the lactic acid content in the fructose added treatment (Figure 80) was 

significantly lower than in the counterpart without additional fructose (5.7 vs. 6.1 

mg/ml). Acetic acid and ethanol content did not differ significantly from each other in 

both treatments.  

After 47 h there were no significant differences between both. 

Comparing this treatment to the counterpart with fructose at the natural pH (Experiment 

D 2) there were big differences in lactic acid content which increased at the high pH and 

which decreased at the low pH level during 47 h. Acetic acid content did not differ 

significantly after 23 h but ethanol content was significantly higher at the low pH by 0.5 

mg/ml. This difference diminished after 47 h and was no more significant. 

 

Yeasts + LAB 

At both measurement points this treatment (Figure 79) did not differ significantly from 

the yeasts treatment in any parameter. 

 

Maize 

Yeasts 

During the first 23 h the pH declined from 4.4 to 4.3 (Figure 84). The counterpart 

without fructose rose to 5.6 (Experiment D 3). Lactic acid content diminished from 5.7 

to 4.1 mg/ml (cp. 3.3 mg/ml, significant difference). In contrast to the counterpart acetic 

acid content was not reduced after 23 h (significant difference). Ethanol content rose to 

4.5 mg/ml whereas it was reduced to 0.6 mg/ml in the treatment without fructose 

(significant difference).  

After 47 h pH rose to 5.3 (cp. 8.2). Lactic acid content was reduced to 1.4 mg/ml which 

was significantly less reduction compared to the counterpart without additional fructose. 

These results again provide evidence to disprove Hypothesis 4. Acetic acid content 

increased to 1.9 mg/ml whereas it diminished to 0.2 mg/ml in the counterpart without 

fructose (significant difference). Ethanol content finally accounted for 4.3 mg/ml which 

was significantly higher than in the counterpart. 

Compared to the yeasts treatment with additional fructose at the natural pH there were 

significant differences in lactic and acetic acid but not in ethanol content after 23 h. 

Lactic acid content was higher at the low natural pH whereas acetic acid and ethanol 

content were higher at the higher pH. After 47 h lactic and acetic acid content were 

similar but ethanol content was significantly higher at the high pH. 
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The lactic acid decomposition was higher in the maize silage extract at pH 4.4 (-4.3 

mg/ml within 47 h) than in the grass silage extract at pH 3.8 (- 3.0 mg/ml). Ethanol 

production was also higher in the maize silage extract. 
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved maize silage extract with          

inoculants with an initial pH of 4.4 and additional fructose over 52 h 

Figure 82 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 83 (down left): Lactobacillus plantarum 

Figure 84 (top right): Pichia anomala 

 

 

LAB 

The development of the LAB treatment with fructose looks very similar to “without 

fructose”. There were slight but significant differences at the single measurement points 

in lactic and acetic acid contents. 

After 23 h the pH dropped from 4.4 to 4.3 (Figure 83). Lactic acid content diminished 

from 5.7 to 5.1 mg/ml, acetic acid content remained constant and ethanol content 

increased from 0.8 to 1.3 mg/ml. 
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After 47 h the pH dropped further to 4.0 (cp. without fructose 4.2). Lactic acid was then 

produced and increased to 6.3 mg/ml (cp. 5.4 mg/ml). Acetic acid content remained 

stable at 0.9 mg/ml whereas it increased to 1.6 mg/ml without fructose. Ethanol content 

increased to 2.9 mg/ml. 

This treatment differed significantly from the counterpart with fructose at the natural pH 

(Experiment D 2) in lactic acid and ethanol contents in both measurement points as all 

values remained constant at the low pH. 

Compared to the treatment with grass silage extract at pH 4.4 there is a similar pH 

trend. However the lactic acid production in maize silage extract is much lower 

compared to grass silage: final lactic acid content in maize silage extract with fructose 

6.3 mg/ml (+ 0.6 mg/ml), in grass silage extract with fructose 10.5 mg/ml (+ 3.1 

mg/ml), without additional fructose 10.2 mg/ml (+ 2.7 mg/ml). 

 

Yeasts + LAB 

There are no significant differences between this treatment and the yeasts treatment at 

both measurement points except for pH and lactic acid content after 23 h. pH dropped to 

4.1 at that time whereas in the yeasts treatment it dropped only to 4.3 (Figure 82). Lactic 

acid content decreased to 5.0 mg/ml in contrast to 4.1 mg/ml with only yeasts. 

 

5.4.5 Experiment D 5 – Potassium chloride 

To study the influence of osmotic pressure adjusted to the conditions in the actual silage 

• 3 treatments with 3 replicates: Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum were inoculated in 8 % KCl medium from grass silage. 

Compare to Experiment C 4. 

 

Inoculation rate was 7.7 log cfu/ 40 ml silage extract Pichia anomala and 9.7 log cfu/ 

40 ml silage extract Lactobacillus plantarum. 

Lactic acid contents were not compared directly to the treatments without KCl by the 

Tukey test because of lower initial contents due to the KCl addition. 

 

Yeasts 

The addition of KCl lead to a relative stability of pH and organic acid contents (Figure 

87). 
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After 23 h pH remained at 4.4. Lactic acid content rose slightly from 5.2 to 5.6 mg/ml. 

Acetic acid content dropped from 1.2 to 1.1 mg/ml. Ethanol content increased from 0.2 

to 0.6 mg/ml. 

After 47 h the pH rose to 4.6. Lactic acid content resembled the initial content. Acetic 

acid content further diminished to 0.5 mg/ml. Ethanol content increased to 1.5 mg/ml. 

This treatment varied conspicuously from the counterpart without KCl (Experiment D 

1) which rose clearly in pH (6.2 after 47 h) and only decomposed lactic acid (-4.1 

mg/ml within 47 h resp. -55 %). The final ethanol content of the KCl treatment was 

higher than without KCl (1.5 mg/ml vs 0.2 mg/ml on average, n.s.). 

 

LAB 

KCl restricted the bacterial activity but still lactic acid was formed. 

Within 23 h the pH remained constant at 4.4 (Figure 86). Lactic acid content rose from 

5.2 to 6.0 mg/ml. Acetic acid content increased from 1.2 to 1.3 mg/ml, ethanol content 

from 0.2 to 0.9 mg/ml. 

After 47 h the pH dropped to 4.2. Lactic acid content increased to 6.8 mg/ml, that was a 

production of 1.6 mg/ml (+ 31 %) within 47 h in contrast to 2.7 mg/ml (+ 37 %) without 

KCl. Acetic acid content rose to 1.4 mg/ml which was similar to the treatment without 

KCl. Ethanol content increased to 2.2 mg/ml which was more than twice as much as 

without KCl (n.s.).  

After 23 h the LAB treatment differed significantly from the yeasts treatment in pH and 

lactic acid content. After 47 h lactic acid content of both treatments differed 

significantly (6.7 mg/ml in LAB vs. 5.2 mg/ml) and acetic acid content (1.4 mg/ml vs. 

0.5 mg/ml). 

  

Yeasts + LAB 

This treatment (Figure 85) resembled the LAB treatment. There were no significant 

differences at both measurement points except for acetic acid content after 47 h. Then 

the yeasts + LAB treatment was significantly lower in acetic acid content compared to 

the LAB treatment (0.6 to 1.4 mg/ml). 
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with          

inoculants with 8 % KCl (w/v) over 52 h 

Figure 85 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 86 (down left): Lactobacillus plantarum 

Figure 87 (top right): Pichia anomala 

 

5.4.6 Experiment D 6 – Potassium chloride +6 % fructose 

To study the influence of osmotic pressure adjusted to the conditions in the actual silage 

with added residual WSC 

• As for Experiment D 5 (Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum inoculated in 8 % KCl medium from grass silage) but + 

6 % fructose on FM base. 

 

Inoculation rate was as in Experiment D 5. 

 

Yeasts 

After 23 h there was no significant difference to the KCl treatment without additional 

fructose (Experiment D 5). 
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After 47 h acetic acid content was significantly higher with fructose than without (1.1 

vs. 0.5 mg/ml), same was the ethanol content (5.2 vs. 1.5 mg/ml). 

 

LAB 

After 23 and 47 h there were no significant differences to the KCl treatment without 

additional fructose (Experiment  D 5). 

 

Yeasts + LAB 

After 23 h lactic acid content was significantly lower than with KCl without additional 

fructose (5.7 vs. 6.1 mg/ml). 

After 47 h the acetic acid content was significantly higher than in the counterpart 

without additional fructose. Ethanol content was significantly higher with fructose 

addition: 4.6 vs. 1.8 mg/ml. 

 

5.4.7 Experiment D 7  – 200 ml Erlenmeyer flasks 

To study the effect of increased air influx 

• 3 treatments with 3 replicates: Pichia anomala, Lactobacillus plantarum, Pichia 

anomala + L. plantarum were inoculated in grass silage medium. 40 ml aliquots 

of medium were transfused to 200 ml Erlenmeyer flasks instead of 100 ml 

flasks. 

 

Inoculation rate as Experiment D 5. 

 

Yeasts 

Within the first 23 h the pH rose from 4.5 to 4.7 while lactic acid content diminished 

from 5.9 to 5.6 mg/ml (Figure 90). Acetic acid content of initially 1.2 mg/ml halved. 

Ethanol content increased from 0.2 to 0.8 mg/ml.  

After 47 h the pH increased to 6.8. Lactic acid content decreased to 2.1 mg/ml, that is 

36 % of the initial content (-3.8 mg/ml within 47 h). In 100 ml flasks lactic acid 

decreased to 45 % of the initial content (-4.1 mg/ml within 47 h). Acetic acid as well as 

ethanol concentration in 200 ml flasks accounted for 0.7 mg/ml and did not differ 

significantly from the treatment in 100 ml flasks. 
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LAB 

After 23 h the pH decreased from 4.5 to 4.4 (Figure 89). Lactic acid content increased 

from 5.9 to 6.6 mg/ml. Acetic acid content remained stable at 1.2 mg/ml and ethanol 

content rose from 0.2 to 1.0 mg/ml. 

After 47 h the pH dropped to 4.2. Meanwhile the lactic acid content further increased to 

7.5 mg/ml. That was an increase of 1.6 mg/ml within 47 h (+27 %), compared to 2.7 

mg/ml (+37 %) in 100 ml flasks (Experiment D 1). Acetic acid content rose to 1.3 

mg/ml and ethanol content to 2.1 mg/ml. Ethanol production was higher in the 200 ml 

flasks compared to the 100 ml flasks (+1.0 mg/ml, n.s.). 

 

Yeasts + LAB 

In 200 ml flasks the development after 47 h resembled rather the yeasts treatment in 

contrast to the 100 ml flasks where it resembled the LAB treatment (Experiment D 1). 

Within 23 h the pH remained constant at 4.4 (Figure 88). Same did the lactic acid 

content. Within the same time in the yeasts treatment 0.4 mg/ml lactic acid were 

decomposed and in the LAB treatment 0.7 mg/ml lactic acid were produced. Acetic acid 

content was halved from initially 1.6 mg/ml. Ethanol content increased from 0.2 to 0.6 

mg/ml. 

After 47 h the pH rose to 6.1 (yeasts treatment 6.7). Lactic acid content diminished to 

2.4 mg/ml (yeasts treatment 2.1 mg/ml, n.s.). Acetic acid content accounted for 1.0 

mg/ml and ethanol content for 0.8 mg/ml. Ethanol content was significantly lower than 

in the LAB treatment, but was nearly equal to the yeast treatment (n.s.). 

 

Oxygen measurement 

The initial oxygen saturation of the uninoculated silage medium was about 95 %. At the 

end of the two days of incubation oxygen was nearly used up in the treatments that 

contained yeasts (< 2 %) but with LAB only the oxygen saturation was still above 90 % 

and could even resemble the initial content. 
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Autoclaved Grass Silage Extract / 200 ml Erlenmeyer
Inoculated with P. anomala (Iso 10 ~ CBS 113) + L. plantarum
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with 

inoculants in 200 ml Erlenmeyer flasks over 52 h 

Figure 88 (top left): Pichia anomala + Lactobacillus plantarum 

Figure 89 (down left): Lactobacillus plantarum 

Figure 90 (top right): Pichia anomala 

 

5.4.8 Experiment D 8 – + Saccharomyces cerevisiae 

To study the behaviour of the fermentative yeast S. cerevisiae alone and in co-culture 

In Experiment C 6 the adjusted pH of 3.8 still dropped over 21 h of incubation in the 

antibacterial treatment. Experiment D 8 was done to verify whether this rather unusual 

finding might be due to the activity of Saccharomyces cerevisiae and also to study the 

difference of a yeast specie cultured alone or in co-culture with another yeast specie. 

• 6 treatments with 3 replicates: Saccharomyces cerevisiae, Saccharomyces 

cerevisiae + Pichia anomala, Saccharomyces cerevisiae + Pichia anomala + 

Lactobacillus plantarum were inoculated in grass silage medium either with the 

natural pH of 4.4 or adjusted to pH 3.8. Compare to Experiment C 1 and 

Experiment C 6. 
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Inoculation rates: Saccharomyces cerevisiae 7.4 log cfu/ 40 ml silage extract, Pichia 

anomala 7.4 log cfu/ 40 ml silage extract, gave together 7.7 log cfu/ 40 ml silage 

extract, Lactobacillus plantarum 9.6 log cfu/ 40 ml silage extract. 

 

Yeasts 

Saccharomyces cerevisiae 

• At natural pH 

Even though Saccharomyces cerevisiae could nearly not metabolise lactic acid when 

offered as sole carbon source (see Experiment A 2) the yeast decomposed lactic acid in 

the complex silage medium very effectively. That provides evidence to disprove 

Hypothesis 4 saying that the decomposition of lactate and the rise in pH is not 

influenced by other available carbon sources. 

Within 23 h the pH rose from 4.4 to 4.6 (Figure 92). Lactic acid content diminished 

from 6.2 to 5.5 mg/ml. Acetic acid content decreased from 1.5 to 0.7 mg/ml. Ethanol 

content increased from 0.2 to 1.7 mg/ml. 

After 47 h the pH reached 7.5. Lactic acid content dropped to 2.1 mg/ml, that was a 

decrease of 4.1 mg/ml or 66 %. Absolutely that was the same amount as was 

decomposed by Pichia anomala (Experiment D 1), relative to the initial content Pichia 

anomala metabolised only 55 % of the available lactic acid. Acetic acid content 

diminished to 0.1 mg/ml, propionic acid content rose to 0.2 mg/ml. Ethanol content 

accounted finally for 2.3 mg/ml which was more than with Pichia anomala (1.1 mg/ml, 

n.s.). 

• At adjusted pH 3.8 

There was no significant difference to the treatment at natural pH in any variable 

(except pH) at both measurement points except that lactic acid content was slightly but 

significantly higher at the lower pH (5.6 vs. 5.5 mg/ml) after 23 h. The pH rose from 3.8 

to 3.9 after 23 h and to 6.0 after 47 h (Figure 86 in APPENDIX VIII). 

 

The finding in Experiment C 6 of dropping pH could not be repeated with this 

experiment. 

 

Saccharomyces cerevisiae + Pichia anomala 

• At natural pH 

Within 23 h the pH rose to 4.6 as with Saccharomyces cerevisiae alone (Figure 93). 

Lactic acid content decreased to 5.3 mg/ml which was a slightly but significantly higher 

decrease than with Saccharomyces cerevisiae alone (-0.1 mg/ml difference). Acetic acid 
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content dropped from 1.5 to 0.8 mg/ml (Saccharomyces cerevisiae 0.7 mg/ml, 

significant difference). Ethanol content increased to 1.4 mg/ml (n.s.). 

After 47 h the pH increased to 6.7 which was significantly lower than with only 

Saccharomyces cerevisiae (7.5). Corresponding to that lactic acid was less decomposed 

to final 2.7 mg/ml (significant difference). Acetic acid content decreased to 0.6 mg/ml 

which was significantly higher than with Saccharomyces cerevisiae alone. Propionic 

acid rose to 0.2 mg/ml. Ethanol content remained at 1.4 mg/ml which was significantly 

lower than in the Saccharomyces cerevisiae treatment. 

Inoculated with both yeasts lactic acid decomposition and pH rise were not intensified 

but slightly lessened after 47 h.  

• At adjusted pH 3.8 

The development of organic acid and ethanol contents was similar to the treatment at 

natural pH. After 23 h there were slight but significant differences in lactic acid content 

which was 0.2 mg/ml higher at the lower pH and in acetic acid content which was 0.1 

mg/ml lower at the lower pH (figure 86 in APPENDIX VIII). 

After 47 h there were significant differences in acetic acid contents accounting for only 

0.1 mg/ml at the low pH versus 0.6 mg/ml.  

 

Yeasts + LAB 

• At natural pH 

Within the first 23 h pH and lactic acid content remained constant (Figure 91). However 

acetic acid content decreased to 0.9 mg/ml and ethanol content increased to 1.4 mg/ml 

(n.s. compared to the two yeasts treatment). 

After 47 h the pH rose to 5.9 which was still significantly lower than in the yeasts 

treatments. Lactic acid content diminished to 2.8 mg/ml (n.s. compared to the two 

yeasts treatment). Acetic acid content finally accounted for 1.2 mg/ml which was 

significantly higher than in the yeasts treatments. Ethanol concentration increased to 1.5 

mg/ml, comparable to the two yeasts treatment (n.s.). 

In contrast to the treatment with only Pichia anomala and Lactobacillus plantarum 

(Experiment D 1) whose development resembled the LAB’s treatment this treatment 

resembled much more the yeasts treatment. 
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• At adjusted pH 3.8 

After 23 h the lactic acid content was significantly lower than at natural pH (5.6 vs. 6.2 

mg/ml), the same was acetic acid content (0.7 vs 0.9 mg/ml) (figure 85 in APPENDIX 

VIII ). 

After 47 h the lactic acid content was as high as in the two yeasts treatment (3.0 mg/ml), 

but was not significantly higher than at the natural pH (2.7 mg/ml). Acetic acid content 

was significantly lower than at natural pH (0.3 vs. 1.2 mg/ml) and significantly higher 

than the two yeasts treatment at pH 3.8 (0.1 mg/ml). 

Autoclaved Grass Silage Extract 
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with 

inoculants at natural pH over 52 h 

Figure 91 (top left): Saccharomyces cerevisiae + Pichia anomala + Lactobacillus plantarum 

Figure 92 (down left): Saccharomyces cerevisiae 

Figure 93 (top right): Saccharomyces cerevisiae + Pichia anomala 
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5.4.9 Experiment D 9 – + Saccharomyces cerevisiae +6 % fructose 

To study the behaviour of the fermentative yeast S. cerevisiae alone and in co-culture 

with WSC supply 

• Like Experiment D 8 (Saccharomyces cerevisiae, Saccharomyces cerevisiae + 

Pichia anomala, Saccharomyces cerevisiae + Pichia anomala + Lactobacillus 

plantarum were inoculated in grass silage medium either with the natural pH of 

4.4 or adjusted to pH 3.8) + 6% fructose. Compare to Experiment C 3 and 

Experiment C 6. 

 

Inoculation rate was as in Experiment D 8. 

 

Yeasts 

Saccharomyces cerevisiae 

• At natural pH 

After 23 h the pH dropped to 4.3 (figure 89 in APPENDIX VIII) and was significantly 

lower than without additional fructose (Experiment D 8). Lactic acid content diminished 

to 5.7 mg/ml which was a significantly higher content than without additional fructose 

(5.5 mg/ml). Acetic acid content dropped to 0.7 mg/ml which differed significantly 

from the treatment without additional fructose by -0.1 mg/ml. Propionic acid content 

rose to 0.5 mg/ml which was significantly higher than without fructose (0.2 mg/ml). 

Ethanol content was 3.4 times higher (5.8 mg/ml on average, significant difference).  

After 47 h the pH increased to 7.2 (7.5 without additional fructose, n.s.). Lactic acid 

content diminished to 2.8 mg/ml (2.1 mg/ml without additional fructose, significant 

difference). The acetic acid content of 0.1 mg/ml resembled the treatment without 

additional fructose. Final propionic acid content was still significantly higher than the 

counterpart (0.5 vs. 0.2 mg/ml). Ethanol content increased to 6.8 mg/ml (nearly 3 times 

higher than the cp.). 

• At adjusted pH 3.8 

There was no significant difference to the treatment at natural pH in any variable 

(except pH) at both measurement points except that lactic acid content was slightly but 

significantly lower at the lower pH (5.5 vs. 5.7 mg/ml) after 23 h (Figure 95). Propionic 

acid increased from 0.2 to 0.6 mg/ml during the first 23 h whereas without additional 

fructose it rose only to 0.3 mg/ml at the same time. The pH decreased very slightly over 

the first 23 h of incubation from 3.8 to 3.7 and increased to 4.5 after 47 h.  

This pH drop was at least an approach to the finding in Experiment C 6. 
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Saccharomyces cerevisiae + Pichia anomala 

• At natural pH 

Within 23 h the pH remained constant (figure 90 in APPENDIX VIII). Lactic acid 

content diminished from 6.2 to 5.5 mg/ml. Acetic acid content decreased from 1.5 to 1.2 

mg/ml. Ethanol content increased to 5.4 mg/ml. Figures of all variables were 

significantly different to the counterpart without additional fructose and to the treatment 

with only Saccharomyces cerevisiae. Propionic acid content was significantly lower 

than with only Saccharomyces cerevisiae. 

After 47 h pH rose to 5.0. Lactic acid content decreased to 3.2 mg/ml. Acetic acid 

content accounted for 1.3 mg/ml. Ethanol content rose to 5.5 mg/ml. These figures were 

significantly different from the treatments without additional fructose or with only 

Saccharomyces cerevisiae.  

Comparison Saccharomyces cerevisiae + Pichia anomala to only Pichia anomala with 

fructose (Experiment D 2) after 47 h: pH 5.0 versus 4.6 (-0.4 units, n.s.), lactic acid 

decomposition 2.9 mg/ml (-48 % of the initial content) versus 3.3 mg/ml (-44 %), acetic 

acid changes -0.1 versus +0.1 mg/ml, final propionic acid content 0.3 versus 0.0 mg/ml 

(significant difference), final ethanol amount 5.5 versus 2.8 mg/ml (significant 

difference). 

 

• At adjusted pH 3.8 

After 23 h lactic acid was decomposed from 6.2 to 5.2 mg/ml (Figure 96). That was the 

significantly highest degradation rate of lactate within 23 h of all Experiment D 8 and 

Experiment D 9 treatments. Only the rate of Saccharomyces cerevisiae + Pichia 

anomala without additional fructose at natural pH was comparable (n.s.). Acetic and 

propionic acid content decrease resembled the counterpart at natural pH. The increase in 

ethanol content to 5.9 mg/ml was highest in Experiment D 9 within 23 h and 

significantly higher than at natural pH. 

After 47 h lactic acid content decreased to 3.4 mg/ml which was comparable to the 

treatment at natural pH (n.s.). Acetic acid content diminished further to 0.7 mg/ml 

which was significantly lower than at natural pH but again comparable to the treatment 

without additional fructose at natural pH. Propionic acid content (0.3 mg/ml) resembled 

the counterpart at natural pH, but was lower than with Saccharomyces cerevisiae alone 

with fructose (0.5 mg/ml). Ethanol content (5.8 mg/ml) was not significantly higher 

than at natural pH. 

Comparison Saccharomyces cerevisiae + Pichia anomala to only Pichia anomala with 

fructose at pH 3.8 (Experiment D 4) after 47 h: pH 4.1 versus 3.9 (+0.2 units), lactic 

acid decomposition 2.8 mg/ml (46 % of the initial content) versus 3.1 mg/ml (44 % of 
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the initial content), acetic acid degradation 0.7 versus 0.3 mg/ml, final propionic acid 

content 0.3 versus 0.2 mg/ml (significant difference), final ethanol content 5.9 versus 

6.7 mg/ml  (n.s.). 

 

Yeasts + LAB 

• At natural pH 

After 23 h the pH decreased to 4.2 which was significantly lower than without 

additional fructose. Lactic acid content even increased from 6.2 to 6.4 mg/ml (figure 88 

see APPENDIX VIII). This increase was similar to the same treatment but with only 

Pichia anomala as yeast (Experiment D 2) (+0.3 mg/ml). Acetic acid content decreased 

from 1.5 to 1.2 mg/ml which was significantly higher than without additional fructose. 

Propionic acid content increased to 0.3 mg/ml (significantly higher than without 

additional fructose). Ethanol content rose to 5.1 mg/ml. That was significantly higher 

than without additional fructose and in the same treatment but with only Pichia 

anomala as yeast (+4.7 mg/ml) (Experiment D 2). 

After 47 h the pH rose to 4.8 whereas in the counterpart with only Pichia anomala as 

yeast dropped further to 3.9. Lactic acid content diminished to 4.0 mg/ml which was 

still the highest content in Experiment D 9 but significantly lower compared to the 

counterpart with only Pichia anomala which further increased to 10.5 mg/ml. Acetic 

acid content increased to 1.7 mg/ml and was therewith highest in Experiment D 9 and 

significantly higher than the counterpart with only Pichia anomala (1.2 mg/ml). 

Propionic acid content accounted for 0.3 mg/ml and was significantly higher than 

without additional fructose. Ethanol content rose to 5.3 mg/ml which was similar to the 

treatment without LAB. 

 

• At adjusted pH 3.8 

After 23 h compared to the treatment at natural pH: the lactic acid content was 

significantly lower (5.4 mg/ml vs. 6.4 mg/ml), acetic and propionic acid content were 

similar, ethanol content was significantly higher (5.6 mg/ml vs. 5.1 mg/ml). The lactic 

acid degradation was comparable to the counterpart with only Pichia anomala as yeast 

(Experiment D 4). 

After 47 h lactic acid content was not significantly lower than at natural pH but acetic 

acid content was (Figure 94). Propionic acid and ethanol contents were similar to those 

at natural pH. 

Comparing this treatment to the counterpart with only Pichia anomala as yeast after 47 

h: pH 4.1 vs. 3.8 (n.s.), lactic acid decomposition of 2.5 mg/ml (-41 % of the initial 

content) vs. 2.6 mg/ml (-37 % of the initial content), final acetic acid content 1.0 mg/ml 
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vs. 1.2 mg/ml, propionic acid content 0.3 mg/ml vs. 0.2 mg/ml, ethanol content 5.9 vs. 

6.5 mg/ml (n.s.). 

Autoclaved Grass Silage Extract / Artificial pH 3.8
Inoculated with S. cerevisiae + P. anomala (Iso 10) + L. plantarum + 6% Fructose
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Figures: Changes in pH and some chemical components [mg/ml] in autoclaved grass silage extract with 

inoculants with an initial pH of 3.8 and additional fructose over 52 h 

Figure 94 (top left): Saccharomyces cerevisiae + Pichia anomala + Lactobacillus plantarum 

Figure 95 (down left): Saccharomyces cerevisiae 

Figure 96 (top right): Saccharomyces cerevisiae + Pichia anomala 
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SYNOPSIS Experiment type D 

• Results of Experiment type D confirmed the findings of Experiment type C and 

the micro-organisms identified, that is yeasts and LAB, which were responsible 

for aerobic changes in silage extracts. 

• Pure Lactobacillus plantarum at a high inoculation rate dominated the whole 

process in grass silage extract at a natural pH of 4.4 in co-culture with Pichia 

anomala. 

• Higher air ingress and low pH (3.8) reduced the competitiveness of 

Lactobacillus plantarum significantly. 

• An answer to the question of whether lactate assimilation by yeasts was 

enhanced at low pH or not (Hypothesis 1) remained undecided. 

• Fructose addition decelerated pH increase in the yeast treatment as it was shown 

previously in the antibacterial treatment. 

• Despite the high inoculation rate Lactobacillus plantarum was not competitive 

in maize silage medium, even at the adjusted pH of 4.4 and with fructose added. 

• Saccharomyces cerevisiae oxidised lactate as well as Pichia anomala, in 

contrast to the finding in Experiment type A. 

• Inoculation of both yeast species in co-culture did not intensify lactate 

decomposition. However, in that case they dominated over the Lactobacillus 

plantarum activity. 

• Propionic acid was not found to be a by-product of Lactobacillus plantarum. In 

the antimycotic treatment in Experiment type C unidentified bacteria produced 

propionic acid. 

• The Saccharomyces cereviseae strain did not decrease the pH to the minimum 

found in the antibacterial treatment in Experiment type C with unidentified 

yeasts. 
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6 DISCUSSION 

6.1 Microbial activities under “normal” occurring condi tions 

To discuss the results, in the context of this thesis, there is a need to define what is 

considered “normal” conditions. 

“Normal” conditions means the standard preparation and incubation of batch cultures as 

described under 4.1 as well as the usual pH conditions for high DM grass and grass-

lucerne silages (30-40 % DM) which were in the range 4.4-4.7.  

Referring to Experiments C 1, C 7, D 1, D 8.  

 

6.1.1 Fungal metabolism 

Yeasts 

Refers to Experiment type A and Experiments C 1, C 7, D 1, D 8. 

 

• Lactic acid assimilation 

The indigenous yeast flora and the inoculated yeast strains of all silages generally 

assimilated lactate, leading to a considerable decrease in lactic acid content within two 

days of incubation. The only exception was Saccharomyces cereviseae which rarely 

consumed lactic acid when it was present as the sole carbon source, but when cultured 

in a complex medium it metabolised lactic acid as effectively as Pichia anomala.  

 

This ability of some yeasts to assimilate lactic acid is well documented and has long 
been used for taxonomic differentiation (WICKERHAM and BURTON, 1948). Good 
growth was observed with Pichia anomala (= Hansenula anomala), but lactate 
assimilation capacity can vary within the same strains (MILIGY et al., 1975). 

In a recent taxonomic study (BOEKHOUT et al., 2002), the ability of Saccharomyces 

cerevisiae to assimilate DL-lactate was described as variable (+-), which agreed with 

the findings of  KURTZMAN and FELL, 1998. WILES, 1953 (cited in MORRIS, 1958) 

described a positive effect on lactic acid as did SPENCER et al., 1997. DELFINI et al., 

2002, found that 100 % of the 48 Saccharomyces strains investigated could degrade 

L(+)-lactic acid whereas only 40 % could degrade D(-)-lactic acid.  

D(-)-lactic acid was found to be the predominant isomer produced in silage (CAI et al., 

1998; SCHAADT and JOHNSON, 1968) which means that the Saccharomyces 

cerevisiae strain used probably belonged to the minority of the Saccharomyces strains 

which is able to assimilate this lactate isomer.  
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The mechanism for the L-lactate, D-lactate, acetate, pyruvate and propionate transport 

in Saccharomyces cereviseae is electroneutral proton/anion symport (WALKER, 1998; 

CASSIO et al., 1987).  

In silage research it has generally been assumed that Saccharomyces cereviseae does 

not belong to the yeasts that decompose lactate, but rather consume residual WSC 

(JONSSON and PAHLOW, 1984). As shown in the current experiments, this yeast 

species metabolises lactic acid as well as sugars in a complex silage medium. 

High lactate concentrations had no inhibiting effect on yeast metabolism, on the 

contrary it stimulated metabolic activity as shown in Experiment type A. In addition the 

lactate concentration of the grass silage medium used in Experiment type D which was 

on average 2.6 times higher than most grass silages of Experiment type C did not show 

an inhibiting effect. MILIGY et al., 1975, found that growth rate decreased with 

increasing lactic acid concentration. However, limited growth is not correlated with 

decreased metabolic activity (MOON, 1983; THOMAS and DAVENPORT, 1985, cited 

in SAVARD et al., 2002). The current findings confirm the results of SAVARD et al., 

2002, who found that lactic acid alone (0.7 % v/v at pH 3.74) did not prevent the growth 

of yeasts. 

 

• Acetic acid production and degradation 

There were only slight changes in acetic acid contents in the complex media in the 

present work. Acetic acid concentrations either increased (by up to 1.4 mg/ml) or 

decreased (by up to 1.1 mg/ml) within 45 h. 

 

Acetic acid is regarded as minor fermentation product during the course of alcoholic 

fermentation. Acetate can be oxidised by the glyoxylate cycle enzymes (WALKER, 

1998).  

Also, it was observed that acetic acid can have inhibitory effects on yeast growth 

(SAVARD et al., 2002; WOLTHUSEN et al., 1989, “content of effective acetic acid”) 

although this was not examined in the present study. This mechanism is used to inhibit 

the growth of spoilage yeasts when heterofermentative LAB strains are inoculated onto 

forage before ensiling (OUDE ELFERINK et al., 1999b). 

 

• Propionic acid production and degradation 

Propionic acid was neither produced nor degraded except in the case of Saccharomyces 

cerevisiae when inoculated alone and in the presented cases generally, it was not 

metabolised by the indigenous yeast micro-flora or the inoculated ones. 
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There is evidence of the inhibitory effect of propionic acid on yeast activity (OHYAMA 

and HARA, 1975) and it is used as an additive in silage making (GROSS and BECK, 

1970) to prevent aerobic spoilage.  

In this context SAVARD et al., 2002, observed that Saccharomyces strains were only 

completely inhibited with a mixture of lactic, acetic and propionic acids of 0.7, 0.3 and 

0.2% (v/v), respectively at pH 3.74. 

 

• Ethanol production and degradation 

The highest increase in ethanol content usually occurred during the first day of 

incubation and often decreased again until the end of the second day. Saccharomyces 

cerevisiae produced more ethanol than Pichia anomala. 

 

This is not surprising as Saccharomyces cerevisiae is a facultative aerobic organism and 

ferments hexoses to alcohol under anaerobic as well as aerobic conditions, the latter by 

respiro-fermentative metabolism (FLIKWEERT, 1999; WALKER, 1998; 

ALEXANDER and JEFFRIES, 1990; HANEGRAAF et al., 2000; MOLLER et al., 

2002). 

Indeed Pichia anomala is also known to produce ethanol but at a lower level, if aerated. 

This suggests a role for this organism in low-alcohol wine production, with a positive 

side effect of an esteric and fruity flavour (ERTEN and CAMPBELL, 2001). This ester 

odour also occurred in the grass silage media in the present experiments.  

 

A partial ethanol depletion in the medium after a rise in ethanol content was observed. 

This might be explained by the mechanism of passive diffusion into the yeast cell 

(WALKER, 1998). Another explanation could be oxidation of ethanol to acetate by 

Pichia anomala following WSC depletion as oxygen availability decreased 

(FREDLUND et al., 2004). An example for this pathway is Experiment D 2 (maize 

silage extract with fructose addition). 

 

• pH effect 

The pH response to lactic acid consumption was not as rapid as anticipated. The pH 

could even decrease slightly despite the fact that organic acid concentrations 

diminished. This contradictory finding could not totally be explained by the buffering 

capacity of the silages (Table 7). 
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6.1.2 Bacterial metabolism 

As lactic acid was produced in most experiments, it was previously referred to as LAB 

activity in the results section. Here, this activity is considered more generally as LAB 

metabolism. 

 

The results of earlier investigations to elucidate whether LAB might be involved in 

aerobic activity in silages: BUCHER (1969) (cited in BECK, 1969), clearly 

demonstrated that heterofermentative LAB could metabolise lactic acid to acetic acid 

and therefore had potential for causing aerobic spoilage. 

In aerobically deteriorating maize silage, both WOOLFORD and COOK, 1978, and 

WOOLFORD et al., 1978, observed a substantial rise in LAB numbers within 7 days of 

exposure to air. A similar observation has been made in grass silage, the highest 

increase in LAB numbers (within 4 days of opening) being found in high dry matter 

silages (49 % DM) (WOOLFORD et al., 1979). 

 

• Lactic acid production and assimilation  

When the mixed microflora was used lactic acid was produced within the first day of 

incubation, but decomposed further during the second day. However, when 

Lactobacillus plantarum alone was inoculated the concentration increased until the end 

of the incubation period. 

In batch cultures from silages 15 and 17 lactic acid was decomposed from the start of 

the incubation (Experiment C 1). 

 

In support of this there is a body of published information that illustrates advantages of 

aerobic metabolism for LAB in silage. A number of pathways exist for the production 

of lactate, acetate, ethanol and other volatile fatty acids under aerobic conditions, such 

as the Embden-Meyerhoff-Parnas pathway, lactate dehydrogenase, pyruvate formate-

lyase pathway and others (CONDON, 1987). 

CONDON, 1987, listed several advantages of aerobic metabolism for heterolactic as 

well as for homolactic acid bacteria which included faster growth rates and higher yield 

of biomass during aeration. Indeed, some substrates such as lactate can only be utilised 

in the presence of O2. 

For Lactobacillus plantarum it was found that if grown in high glucose concentrations 

under aerobic conditions the end-products were D- and L-lactate only. However, when 

glucose was exhausted lactate was converted to acetate. MURPHY and CONDON, 

1984b  proposed that “The most likely mechanism consists of the O2 inducible pyruvate 

oxidase and an acetate kinase which converts acetyl phosphate to acetate with the 



6 DISCUSSION 

    

 
116 

synthesis of ATP”. This allows Lactobacillus plantarum to continue growing when O2 

is available (MURPHY and CONDON, 1984b, MURPHY and CONDON, 1984a, 

BROSNAN, 1984). For further discussion of this topic see 6.2.5. 

The latter finding would explain why lactic acid decomposed from the start of the 

incubation with silage 15 extract, as there was virtually no sugar available from this 

silage. A conversion of lactate to acetate during air infiltration in silages was also found 

by PAHLOW, 1982. 

The findings in the above mentioned references explain why evidence was provided to 

disprove Hypothesis 2 saying that the decomposition of lactate in silage is solely caused 

by yeasts. 

 

The lactate concentration of the grass silage medium used in Experiment type D which 

was on average 2.6 times higher than most of the grass silages of Experiment type C did 

not show an inhibiting effect on LAB metabolism. 

 

• Acetic acid production and degradation 

With a mixed microflora acetic acid content rose steadily during the two days of 

incubation from 0.9 up to 9.8 mg/ml maximum. Lactobacillus plantarum when 

inoculated alone hardly produced any acetic acid. 

 

Aerobic acetic acid production by LAB under aerobic conditions is related to lactate and 

sugar metabolism as described above. 

  

• Propionic acid production and degradation 

Propionic acid concentration increased over two days, with values ranging from +0.3 to 

3.0 mg/ml, highest with silage 17 with an increase of 3.4 mg/ml. With Lactobacillus 

plantarum alone as inoculum there was virtually no change in propionic acid content. 
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Lactobacillus diolivorans can degrade 1,2-propanediol to propionic acid anaerobically: 
HC-OH

1,2-Propanediol

n-Propanol

Propionate

Propionaldehyde

O=C-SCoA

HSCoA

HSCoA

2H

Pi

O=C- P

O=C-O
-

HC-OH

HCH

HCH

HCH

ADP
ATP

HC=O

H C-OH
2

HCH

HCH

  CH
3

  H O
2

 NADH+H
+

 NAD
+

  CH
3

  CH
3

  CH
3

  CH
3

  CH
3

 

Figure 97: Anaerobic degradation pathway of 1,2-propanediol to propionic acid and n-propanol by 
Lactobacillus diolivorans (KROONEMAN et al., 2002) 

 

Still, this cannot explain the high amounts of propionic acid produced in the AM 

treatments after 45 h incubation in Experiment C 1 with silage 30, C 2 with silage 17 

and 30 and C 3 with silage 32 as there was either no or a maximum of 0.5 mg/ml      

1,2-propanediol detected initially and after 22 h. 

Propionate is a minor fermentation product of many bacteria (SCHLEGEL, 1992). 

However, there are some bacteria that are able to form higher amounts of propionate 

like Propionibacterium spp., Veillonella alcalescens (=Micrococcus lactilyticus), 

Clostridium propionicum, Selenomonas and Micromonospora spp.(SCHLEGEL, 1992). 

Despite difficulties that have been encountered some propionic acid forming bacteria 

have been isolated from silages (MERRY and DAVIES, 1999). These belong to the 

genus Propionibacterium (PAB) and Veillonella alcalescens (ROSENBERGER, 1956; 

de MAN, 1957; WOOLFORD, 1975). The PAB are counted as anaerobic bacteria but 

are micro-aerotolerant (SCHLEGEL, 1992) and even aerotolerant in some cases 

(MCDONALD et al., 1991). Under anaerobic conditions they metabolise lactate to 

propionate and acetate via the Methylmalonyl-CoA- (or “randomising”) pathway 

(SCHLEGEL, 1992;LENGELER et al., 1999) and prefer lactate over sugar as substrate. 

The pathway from lactate to propionate was described by SCHLEGEL, 1992: 

 

3 CH3-CHOH-COOH ---� 2 CH3-CH2-COOH + CH3-COOH + CO2                           + H2O 

3 lactate                       ---� 2 propionate            + acetate         + carbon dioxide + water 

Figure 98: The formation of propionate from lactate via the Methylmlonyl-CoA pathway (SCHLEGEL, 
1992) 
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This pathway could partly explain the lactic acid degradation due to bacterial activity 

right from the beginning in silage 17, Experiment C 1, associated with high acetic acid 

and propionic acid production. However, lactate was not preferred over fructose there, 

as with additional fructose less lactic acid was decomposed and more propionic acid 

was formed (Experiment C 2) (formation of propionate from hexoses see 6.2.3). 

Literature describing an aerobic pathway was not found. Under controlled aeration PAB 

have a much higher cell yield than if grown under strictly anaerobic conditions 

(SCHLEGEL, 1992).  

In silages inoculated with PAB even higher propionic acid concentrations were found 

during ensiling when air stress was applied (PAHLOW and HONIG, 1994;WYSS et al., 

1994). Concerning the limited tolerance of PAB to low pH WOOLFORD, 1975, stated 

that “propionibacteria could survive the ensiling process even when the pH dropped to 

below 4”. 

The complex interaction between LAB and propionic acid bacteria has been studied, for 

example in hard cheeses (KERJEAN et al., 2000; PIVETEAU et al., 1995). In this 

process LAB prepare the cheese for the propionic acid fermentation through production 

of the lactate substrate. In addition, a large study with 42 LAB/PAB co-cultures showed 

that LAB could not only activate propionic acid bacteria or destroy inhibitors, but could 

also interact as antagonists (KERJEAN et al., 2000). On the other hand a mixed culture 

of Propionibacterium jensenii and Lactobacillus paracasei was found to inhibit food 

spoilage yeasts not only by their fermentation products but by their cells per se 

(SCHWENNINGER and MEILE, 2004). 

 

Clostridium propionicum is a propionic acid producing bacterium but can be excluded 

in the present work as it is obligately anaerobic (JANSSEN, 1991) and no butyric acid 

was detected.  

 

Propionic acid production in some of the present experiments together with the 

knowledge provided by the cited literature provides evidence that Propionibacteria 

were present and active in the aerobic processes in some silage extracts. 

 

For ruminant nutrition there are also health and nutritional benefits for propionic acid 

producing bacteria if they convert lactic acid to propionate in the rumen and thus reduce 

the incidence of lactic acidosis (ELSDEN, 1945) or raise protein:fat ratios (ABZUL-

RAZZAQ and BICKERSTAFFE, 1989). 
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• Ethanol  

Ethanol content increased continuously over two days. 

 

Ethanol can occur as a by-product of aerobic lactate production (KANDLER, 1983). 

This is not only true for heterofermentative LAB (PLIHON et al., 1996), but also for the 

homofermentative species (CONDON, 1987). 

 

• pH effect 

Even though there was no further increase and often a decrease in lactic acid 

concentration after 45 h of incubation, in many cases the pH still dropped compared to 

that observed at 22 h, or remained constant. Though acetic and propionic acid contents 

rose lactate is the strongest acid with the highest effect on pH (pKa 3.86; acetic acid 

4.76, propionic acid 4.87; RAUSCHER et al., 1965) and it is difficult to explain these 

observations. 

 

6.1.3 Co-culture 

In most cases pH and lactic acid content were intermediate to values for the antibacterial 

and antifungal treatments as a result of the opposing metabolic pathways of yeasts and 

LAB, except in Experiment D 1 where LAB dominated the process in all respects. The 

ethanol concentrations observed mainly corresponded to yeast activity and the acetic 

and propionic acid contents ranged between those for yeast and bacterial activity only. 

 

A number of published observations may help to explain the outcome of the present 

experiments which provide evidence to disprove Hypothesis 3, that aerobic changes are 

dominated by yeast activity. Recently more specific studies have been reported on the 

interaction of yeasts and lactic acid bacteria in mixed cultures in foods and beverages. 

For example, symbiotic associations were described for decreasing wine acidity 

(ELISEEVA et al., 2000). GOBETTI et al., 1994b, describe the metabolism of 

carbohydrates in sourdough and in these experiments Saccharomyces cerevisiae and 

Lactobacillus plantarum competed for fructose and the yeast had a detrimental effect on 

bacterial growth. Saccharomyces cerevisiae even increased ethanol production in co-

culture with LAB compared to the corresponding mono-culture (GOBETTI et al., 

1994b; DAMIANI et al., 1996). In other studies LAB growth suppressed the ethanol 

production by yeasts (NARENDRANATH et al., 1997). On the other hand yeasts can 

stimulate bacterial growth (GOBETTI et al., 1994a). 



6 DISCUSSION 

    

 
120 

Other investigations dealing with cheese surfaces showed that yeasts can liberate 

growth factors such as vitamins or amino acids for bacterial utilisation (CORSETTI et 

al., 2001). In kefiran production Saccharomyces cerevisiae was shown to enhance the 

growth of Lactobacillus kefiranofaciens (CHEIRSILP et al., 2003). 

LINDGREN and DOBROGOSZ, 1990, overviewed the subject of antagonistic 

substances derived from LAB such as the metabolic end products organic acids, 2,3-

butanediol, CO2 and others. They also discussed the role of bacteriocins which might be 

able to suppress yeast activity. However, SEALE, 1986, described the antibiosis of 

LAB against yeasts and moulds as weak.  

 

6.2 Factors influencing microbial metabolism 

6.2.1 pH 

In Experiment type A it was found that a low pH enhanced lactate assimilation by 

oxidative yeasts and provided evidence to disprove Hypothesis 1, but for grass silage 

extracts in Experiments C 6, D 3 and D 4 the finding was only true for the first 23 h of 

incubation and not for maize silage. 

The findings of MIDDELHOVEN and FRANZEN, 1986, that a low pH enabled or 

enhanced lactate assimilation of yeasts could not be generalised. 

 

With reference to Experiments C 1, C 6, D 1 to D 4, D 8 and D 9.  

There was a clear effect of pH on bacterial activity. A pH of 4.0 and below largely 

inhibited the metabolic activity of LAB and allowed the yeasts to control the whole 

aerobic process.  

This finding was confirmed by NARENDRANATH and POWER, 2005, who observed 

a reduction in specific growth rate of LAB and a corresponding decrease in lactic acid 

produced when the pH was lowered from 5.5 to 4.0. 

Numerous yeasts are capable of growth over a wide pH range reported to be 2-8 by 

WALKER, 1998. Pichia anomala has been found to grow even at pH values between 

2.0 and 12.4 (FREDLUND et al., 2002). 

On the other hand most LAB grow optimally at a pH of > 5.0 (HUTKINS and 

NANNEN, 1992; BECK, 1969). BECK, 1969, described a pH of 4.5-5.0 as optimum 

for growth of Lactobacillus plantarum, and assumed that there was still 90 % growth at 

pH 4.0 compared to the optimum. In the present batch culture experiments growth was 

not measured directly but metabolic activity was almost completely inhibited at a pH    

≤ 4.0. 
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pH regulation in lactic acid and other bacteria has been reviewed by  HUTKINS and 

NANNEN, 1992; TSAU et al., 1992; CHADWICK and GARDEW, 1999. 

A model describing the effect of medium parameters such as pH on the growth of 

isolates of Candida milleri and Lactobacillus sanfranciscensis from sourdough, 

confirmed the above observations showing an optimum pH between 5 and 6 for the 

LAB (GAENZLE et al., 1998). 

 

Figure 99: Effect of pH on maximum growth rates (µmax) for Lactobacillus sanfranciscensis 1 (○) and 2 
(∆) and Candida milleri (□) (GAENZLE et al., 1998) 

 

This pH effect on bacterial and fungal activity may explain why inoculated silages are 

more prone to aerobic deterioration (KUNG et al., 1991; PHILLIP and FELLNER, 

1992; SANDERSON, 1993; UMANA et al., 1991; WARDYNSKI et al., 1993; WYSS, 

1993) as they mostly achieve a lower pH than uninoculated silages.  

OHYAMA  et al., 1975, also found that silages with a pH value of < 4.0 deteriorated 

more often than those where the pH was > 4.0. Another consideration might be the 

“self-sterilisation” which leads to lower LAB numbers in mature inoculated silages 

(PAHLOW, 1982) if the LAB : fungi ratio is lowered. 

 

6.2.2 Fodder crop 

Grass and maize 

With reference to Experiments C 1, C 7, D 1, D 2, D 3, D 4. 

To determine whether the differences in activities between grass and maize silages were 

only due to differences in pH it was reversed in the two silage media used. Fructose was 

added to the maize silage medium where it was actually lacking.  

The high lactic acid production which occurred when grass silage medium (pH 4.4) was 

inoculated with the Lactobacillus plantarum was not achieved in the maize silage 

medium adjusted to pH 4.4 regardless of whether fructose was added. 
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The combination of Lactobacillus plantarum with Pichia anomala in the pH adjusted 

maize silage medium increased lactic acid production only slightly compared to Pichia 

anomala alone, whereas in the grass silage medium (pH 4.4) about the same amount of 

lactic acid was produced in co-culture as with Lactobacillus plantarum alone. 

Only when the pH of the grass silage medium was adjusted to 3.8 (corresponding to that 

of maize silage medium) was the lactate oxidising activity of Pichia anomala dominant 

in the co-culture. Lactobacillus plantarum alone in the adjusted grass silage medium 

also degraded lactic acid, whereas in the maize silage medium at pH 3.8 it remained 

inactive. 

These experiments demonstrated a principal difference in the behaviour of the same 

defined microorganisms (inoculants) in silage media depending on the type of crop 

fermented. 

 

6.2.3 Carbon sources and compounds 

• WSC 

With reference to Experiments C 2, C 3, D 2, D 4, D 6, D 9. 

Fructose addition enhanced ethanol production in the yeast treatments. In addition it 

increased acetic acid formation and decelerated the increase in pH. 

In the bacterial treatments the effect was not as clear as for the yeasts, but often more 

lactic and propionic acid was produced when fructose was added. 

This can be explained in terms of the stoichiometry of the process. Saccharomyces 

cerevisiae for example produces 2 CO2 molecules + 2 ethanol (C2H5OH) molecules 

from 1 glucose (C6H12O6) molecule (which is a hexose like fructose) by respiro-

fermentation (FLIKWEERT, 1999). 

In the sugar metabolism of LAB 1 glucose (C6H12O6) molecule yields 2 pyruvate 

molecules which can be converted into 2 lactic acid (CH3-CHOH-COOH) molecules. 

However, the conversion from pyruvate to lactate depends on several factors and it 

might be converted to ethanol, acetic acid, formate or acetoin and 2,3-butanediol as well 

(CONDON, 1987). 

The generation of propionate from hexoses might be explained by the following 

equation: 

 

3 C6H12O6  � 2 CH3-COOH- + 2 CO2                + 4 CH3-CH2-COOH-+ 6 H+   

3 Glucose   � 2 acetate-        + 2 carbondioxide + 4 propionate-                + 6 H+ 

Figure 100: The formation of propionate from glucose via the random pathway (LENGELER et al., 1999) 
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In the EU-Sweetgrass project it was found that optimal ensiling technique improved 

aerobic stability most regardless whether residual sugar contents were high or low 

because it suppressed the yeast growth during the storage phase successfully 

(PAHLOW et al., 2005). 

 

• Tannic acid 

With reference to Experiment C 5. 

The addition of tannic acid (C76H52O46) reduced lactic acid consumption and limited pH 

rise in the fungal treatment. It also enhanced ethanol production. 

However, in the control tannic acid accelerated lactic acid degradation and pH rise. 

Acetic and propionic acid production were reduced in favour of ethanol production. 

This was probably due to bacterial activity, although this was not investigated 

separately on that occasion due to a lack of silage material. 

Several workers have observed that legumes such as lucerne (Medicago sativa) have a 

stabilising effect on silages exposed to air, due to an inhibition of yeast growth 

(O´KIELY and MUCK, 1987;MUCK and O´KIELY, 1992;O´KIELY and MUCK, 

1992; PAHLOW et al., 2000). As it is not yet clear which is the active compound in 

these plants, tannin which is a characteristic component of lucerne was tested for its 

antimicrobial effect in this trial. 

In general, the antimicrobial activities of tannins (glucose esters of gallic acid) are well 

documented (CHUNG et al., 1998b).  

WAUTERS et al., 2001, reported that tannic acid inhibited the growth of 

Saccharomyces cerevisiae due to iron deprivation. JACOB and PIGNAL, 1975, found 

that the effect of tannic acid and hydrolysing capacities of yeasts depended on its 

concentration and partly on the pH of the medium. 

AYED and HAMDI, 2002, investigated the production of tannase (an enzyme that 

degrades tannin) by Lactobacillus plantarum. Intestinal LAB were not inhibited by 

tannic acid up to a concentration of 0.5 mg/ml. This resistance was probably due to the 

fact that they do not require iron for growth (which is bound by tannic acid) (CHUNG 

et al., 1998a). 

In the present trial tannic acid seemed to inhibit the yeasts and alter the metabolic 

pathway, but enhanced bacterial lactate oxidation. Thus the stabilising effect of legumes 

observed in silages does not appear to be exclusively due to tannin. O´KIELY and 

MUCK, 1987, suggested that lucerne ony had a stabilising effect after fermentation had 

occurred. 
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The findings on WSC and tannic acid addition provide evidence to disprove 

Hypothesis 4 indicating that the decomposition of lactate and rise in pH is not 

influenced by other available carbon sources. 

 

6.2.4 Osmotic pressure / Halotolerance 

With reference to Experiments C 4, D 5, D 6.  

KCl reduced the metabolic activity of yeasts as well as bacteria, and in the 

concentration used it did not favour the dominance of the one or the other group of 

micro-organisms. Yeasts were virtually unable to oxidise lactate in the presence of KCl. 

With Pichia anomala alone small amounts of lactate were formed. With LAB organic 

acid production was clearly reduced. 

 

The osmolality of wilted grass silage amounts to about 1.8-2.5 osmol/kg or even higher 

(HOEDTKE, 2004). The osmolality of the silage medium was close to zero, about 0.2 

osmol/kg. To adapt it to the osmolality of high DM grass silages a concentration of 8 % 

KCl was used. As mentioned earlier, according to WEISSBACH, 1968, this 

corresponds to the osmotic pressure prevailing in a silage of  about 40 % DM. The 

osmolality of silage samples measured using an osmometer had values of 2.2-2.3 

osmol/kg. 

 

As the osmotic pressure was increased by adding salt it cannot be excluded that the 

inhibiting effect on microbial activity was due to a lack of halotolerance. This seems to 

be true, at least for the yeasts, where lactate assimilation ceased.  

When salt- and sugar tolerance of yeasts were compared under the same osmotic 

pressure (ONISHI, 1957) differences were observed that indicated limiting factors other 

than osmotic pressure. Temperature and pH can also affect the salt tolerance of 

microorganisms (ONISHI, 1963). 

In his studies Saccharomyces rouxii fermented glucose to increasing amounts of 

glycerol in parallel with rising NaCl or KCl concentrations, suggesting that these salts 

affect yeast metabolism and alter the fermentation pathway. 

This might explain why Pichia anomala produced lactate in the presence of KCl. 

Lactic acid formation in small amounts during yeast fermentation was also observed by 

NORD and WEISS, 1958. During alcoholic fermentation, a concentration of 0.3-0.7 

mg/ml lactic acid was generally found (DELFINI et al., 2002), but some wine yeasts 

were even able to raise the concentration to more than 20 mg/ml lactic acid (SUAREZ 

LEPE, 1999).  
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In future work an alternative way to alter the osmotic pressure in the medium is required 

for making such comparisons. 

 

6.2.5 Oxygen 

With reference to Experiments C 4 and D 7. 

The use of 200 ml Erlenmeyer flasks, rather than 100 ml to promote greater aeration of 

the cultures stimulated the yeast dominance in the combined microflora. 

The 200 ml cultures with KCl showed no significant differences to their counterparts in 

100 ml flasks. 

A very interesting finding was that there was virtually no O2 consumption in the 

treatments with LAB only, but a nearly complete depletion of O2 within 2 days when 

yeasts were inoculated. 

For yeasts, oxygen is described as essential nutrient (SPENCER et al., 1997). They can 

grow under microaerophilic conditions, but there are no strict anaerobes among the 

yeasts. Oxygen is the terminal electron acceptor at the end of the chain through which 

energy is released from carbohydrates taken up by the cell (SPENCER et al., 1997). 

 

LAB usually grow anaerobically but many of them are aerotolerant to a degree, or 

facultative anaerobes, depending on the substrate (CONDON, 1983). 

The rate of O2 uptake by Lactobacillus plantarum, which precedes H2O2 accumulation 

depends on the substrate and was recorded to be less with lactate added to a complex 

medium (MURPHY and CONDON, 1984b). The accumulation of H2O2 depends on the 

inoculation rate and the concentration of dissolved oxygen and is faster and higher with 

increasing rate and concentration (MURPHY and CONDON, 1984b). 

Due to a high intracellular level of Mn2+ which can scavenge O2
- Lactobacillus 

plantarum is able to grow under aerobic conditions (ARCHIBALD and FRIDOVICH, 

1981; KANDLER, 1983; ARCHIBALD, 1986).  There are also other mechanisms to 

help bacteria to tolerate reactive O2 species which can be formed in the metabolic 

pathway (O2
-, OH., H2O2) among LAB, for example superoxide dismutase (SOD), 

NADH oxidase/NADH peroxidase, adaptation (CONDON, 1987; GOETZ et al., 

1980a;GOETZ et al., 1980b; KANDLER, 1983; HIGUCHI et al., 2000) and 

Recombinase A activity (gene/proteine RecA) or Cytochrome d oxidase (gene/proteine 

cydA) (MIYOSHI et al., 2003).  

The presence of O2 “allows (the LAB) a wider range of substrates to be used for ATP 

generation and also the utilisation of pathways which are dormant in anaerobic cultures” 

(CONDON, 1987).    
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The findings suggest that LAB compete better with yeasts in the inner layers of silage 

where reduced concentrations of oxygen are available. This confirmed the observations 

made by PAHLOW, 1985, who studied different and defined levels of oxygen infusion 

throughout an ensiling period of 90 days. He found that the lowest oxygen infusion 

level of 100 mg/kg DM daily which corresponds to about 100 cm penetration depth in 

concrete silos, triggered LAB activity and thereby controlled the yeasts. 

 

6.3 Comparison of agitated batch culture system with the aerobic stability test 

according to HONIG, 1990 

With reference to Experiments C 1 and C 2. 

Temperature rise in the original fresh material during the aerobic stability test was not 

clearly related to pH rise in the batch cultures as temperature release is an indication for 

microbial metabolism per se whereas pH rise indicates the degradation of organic acids 

which is not necessarily the first metabolic activity to occur. 

The only rule that was observed was: corresponding batch cultures of those silages (ID 

15 and 34) that proved to be relatively stable in the aerobic stability test (> 4 days) did 

not change in their composition over the first 24 h of incubation.  

Another interesting finding was the visualisation and microbial counts of silage ID 32 

during the aerobic stability test. Even though the treatment without and with additional 

fructose did not differ significantly in pH and organic acid contents, there was an 

indication that the LAB were involved and competed for nutrients under aerobic 

conditions: higher final LAB numbers and slower yeast growth (visual observation) 

combined with lower final yeast numbers were observed in the fructose treatment in 

contrast to the control treatment (without additional fructose). 

One of the main differences of both approaches (HONIG test and batch culture) is the 

physical condition (solid and liquid). In a liquid medium all nutrients are freely 

available and equal distribution of micro-organisms is ensured. Another factor is the 

temperature which rises continuously in the insulated cans in the HONIG test once the 

spoilage process has started, whereas it remains very constant in the shaken batch 

cultures at ambient temperature. 

However, when investigating the changes of chemical composition in the aerobic 

stability test, it was proved that lactic acid (and ethanol) production can indeed take 

place in silages on exposure to air, as found in the batch cultures (see for example 

Experiment C 1, Silage ID 34). 
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This specific investigation during the temperature test which is usually carried out over 

7 days was much more labour intensive and required a higher number of samples than 

the measurement of the batch cultures. 

 

6.4 Evaluation of the in-vitro method 

The model in-vitro system in this work was developed as a tool to use alongside current 

microbiological approaches, that are often very time consuming and labour intensive 

and although of value do not always truly reflect the activities occurring in real time 

during the spoilage process. 

For example consumables required for the standard plate count method in silage 

microbiology are: 

• sterile Petri dishes,  

• agar, various nutrient compounds (at least a carbon and a nitrogen source) and 

antibiotics for the solid medium which has to be specific for each group of  

target micro-organisms 

• sterile Ringer solution for the dilution series and  

• sterile pipette tips for diluting and dispensing samples during plating out.  

The solid medium has to be prepared at least 2 days before the plating and can be stored 

up to 4 weeks at 4 °C. Autoclaved Ringer solution must be at ambient temperature 

before usage. Samples are diluted in decimal series taking several steps. The diluted 

samples are plated in triplicates, usually at least in two different logarithmic dilutions 

which have to be anticipated correctly. A count of colonies grown on the plates can be 

made after 3 days of incubation at 30 °C. 

By counts on the malt extract agar and lactate agar plates it can be calculated how many 

yeasts and moulds with the potential to assimilate lactate were present in about one 

gram of silage fresh matter at the time of opening. If samples were plated on Rogosa or 

MRS agar (in the correct dilution) they reveal the numbers of lactic acid bacteria. For 

the total count of aerobic bacteria the use of plate count agar is advisable. In this type of 

approach counts cannot directly indicate metabolic activity and interactions and are also 

subject to underestimation of both numbers and groups, due to non-culturability of some 

micro-organisms in laboratory media under the conditions employed. 

 

This contrasts markedly with the approach taken in the current work (see below) where 

the metabolic activity, rather than viable microbial counts was used as an indicator of 

different microbial activities. 
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For Experiment types A to D different media were used. The same processing was 

performed with an incubation period of 2 days, measurements by HPLC at day 0, 1 and 

2 and pH measurements, usually one at day 0 and 2 at each of the following days. 

 

The liquid lactate medium utilised in Experiment type A and type B requires lactic 

acid and Yeast Nitrogen Base as ingredients. It has to be prepared and pH adjusted one 

day before inoculation. The autoclaved medium can be stored for several months at 4 °C 

if kept in portions in sterile containers. 

Experiment type A revealed the performance of naturally-occurring yeasts isolated from 

silages to oxidise lactate in an artificial environment where lactic acid was the sole 

carbon source at different pH values. As revealed in Experiment type D the performance 

found under these conditions did not necessarily correspond to that in a complex silage 

medium (example Saccharomyces cerevisiae).  

Experiment type B showed the ability of the whole mixed microflora of a fresh silage to 

decompose lactate.  Bacterial and fungal activities were differentiated by antibiotics. 

Probably due to the high dilution of the mixed inoculant results were not quite 

consistent (high standard deviation). This approach was therefore given up in favour of 

the following: 

 

For the silage medium in Experiment type C sterile distilled water together with 

stomacher bags were required. The original indigenous microflora of the silage was 

included in the medium and its fungal and bacterial activity differentiated by antibiotics. 

This type of experiment revealed the actual effects of microbial activities and 

interactions in silage on exposure to air. The antibiotics used in this work coupled with 

the metabolites formed enabled the identification of the responsible groups of micro-

organisms. 

 

In order for the autoclaved silage medium in Experiment type D to reproduce results 

obtained in Experiment type C larger quantities of the same silage were required to 

provide an amount of homogeneous silage medium and perform a proof of principle 

experiment. 

With this type of experiment, which evolved over the duration of the project, the 

activity of known silage micro-organisms in a defined medium which had very close 

chemical composition to the silage was possible. 

 

Alltogether the four types of experiments allowed the observation of changes in silage 

composition during exposure to air as reflected the changes in organic acid and ethanol 
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concentrations over time. In turn this indicated which type of micro-organism was 

responsible for the respective changes. 

The current in vitro approach coupled with unlimited variations in experimental design 

offers a practical opportunity for investigating microbial activity during aerobic spoilage 

of silage. Past plate count method can only give evidence of the microbial status quo at 

one point of time and only the potential for deterioration can be estimated. 

 

The model system developed during these studies has allowed a detailed exploration of 

the relative roles of different microbial groups in the aerobic deterioration process in 

silage and also some factors which influences their activity. Its simplicity and 

convenience make it attractive for use in further in-depth studies of the aerobic spoilage 

process. 
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7 CONCLUSIONS 

1. This study confirmed the lactate assimilating activity of yeasts in silages upon 

exposure to air. 

2. Additionally it demonstrated a co-activity between lactic acid bacteria in grass 

and grass-legume silage media with a pH of ≥ 4.4 at silo opening, but not in 

maize silage medium in the initial aerobic phase. This activity was revealed by 

the detection of lactic and acetic acid produced during the first day and 

frequently the degradation of lactic acid during the second day of incubation. 

The major participation of LAB in aerobic processes is not aberrant as these 

mainly aerotolerant micro-organisms account for the dominant bacterial group in 

silages and it also explains the growing numbers of LAB colonies during 

exposure to air as described in the literature. 

3. Activity and competitiveness of LAB depends on their species composition and 

abundance and that of their competitors. In the presence of yeasts in most of the 

cases they maintain or increase the lactic acid content, at least during the first 

day of incubation. 

4. Increased air ingress enhances yeast dominance. 

5. Increased osmotic pressure by KCl (8 % w/v) inhibits the metabolism of yeasts 

and LAB likewise. 

6. The level of WSC content influences yeast metabolism in particular. The lower 

the content the faster the pH rise.  

7. A second bacterial group that can occur in silage are the propionic acid 

producers which were only identified by propionic acid formation.  

8. Results of the batch culture studies are not directly transferable to the fresh 

silages. However, the method is a useful tool for elucidating the microbial 

dynamics and influential factors during exposure of silage to air.  

It shows that even slight changes in growth conditions might alter the end result.  

9. The activity and competitiveness of lactic acid bacteria depends very much on 

the amount of oxygen they were exposed to. Thus many of the results may not 

refer to surface conditions but to the inner layers of the opened silo. 

10. The findings suggest one of the reasons why some silages change more rapidly 

than others under aerobic conditions, despite containing similar numbers of 

yeasts: 
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Aerobic stability of grass silages is a matter of interaction and 

competitiveness of lactic acid bacteria and yeasts and in some cases propionic 

acid producing bacteria. 

11. The presented in-vitro method of Experiment types C and D offers a feasible and 

systematic opportunity to study aerobic changes and processes in silages under 

controlled conditions. 

 

Future opportunities 

� The opportunities for future investigations by varying the presented method are 

nearly unlimited.  

� The influence of different concentrations of organic acids other than lactate 

(mainly acetic and propionic acid, WOLTHUSEN et al., 1989) if initially 

present, especially at low pH, might be investigated, as in preparing the silage 

medium silage is diluted 1:5.  

� A further attempt to increase the osmotic pressure of the medium might be the 

use of potassium phosphate as suggested by MIDDELHOVEN and FRANZEN, 

1986, although salt-intolerance versus osmotolerance might still present the 

same problem. 

� The possible role of bacilli might be studied if the ambient temperature was 

raised during the incubation period. This would inhibit the less thermotolerant 

yeasts. 

� The role of propionibacteria is yet to be elucidated. Inoculation of different 

strains of propionibacteria into autoclaved silage medium in individual or co-

culture offers one possibility. 

� Another very interesting subject is to find out if homofermentative lactic acid 

bacteria (at least Lactobacillus plantarum) are generally more competitive in 

grass silage medium than in maize silage medium and if so why. 

 

Exploiting the knowledge of microbial interrelationships in silage during exposure to air 

offers the opportunity to better control aerobic changes in the future. 

 

One of the strengths of this study was that it did not rely exclusively on colony 

counts, but examined metabolic processes and activity. Thus it provides a focus for 

future studies on interrelationships between different micro-organisms and factors 

influencing their growth and activity. 
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New requirements for future practical silage inoculant research in the industry and for 

silage management based on the current findings: 

� LAB inoculants for grass silages should be competitive under aerobic 

conditions. 

� Thus aerotolerant LAB with the ability to metabolise residual sugars into lactic 

acid under air stress are required. 

� High residual sugar contents in grass silages should be ensured to prevent the 

LAB from decomposing lactate after opening the silo. 

� The inoculant should only acidify the grass down to a pH of about 4.4, but be 

acid tolerant. 

� The competitiveness of LAB against yeasts should be enhanced in the feed-out 

phase by limiting the oxygen concentration in the silo. 

� More specific knowledge on PAB in silages is requested. This might require an 

improvement in culture and screening techniques to enable selection of 

competitive, aerotolerant and acid tolerant strains. 
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8 SUMMARY 

8.1 Summary 

Aerobically spoiled silage is still a problem in animal feeding. 

During the last four decades of research yeasts were identified as main initiators of 

aerobic deterioration of grass silages due to their ability to decompose lactic acid which 

represents the main silage preservative agent. 

Yet the microbial dynamics in silages on exposure to air is still not fully understood. 

 

The aim of the work was to elucidate the role of yeasts under different growth 

conditions and to identify the role of other micro-organisms possibly involved in 

aerobic changes of silages. 

 

Therefore silages on exposure to air were simulated in a shaken batch culture system 

which included the indigenous microflora of a silage and used either a synthetic lactate 

medium or diluted silage extract as the complex medium. Bacterial and fungal activity 

was differentiated by the use of antibiotics. Bacterial activity referred to antimycotic 

treatment, fungal activity to antibacterial treatment. In the control treatment the activity 

of the mixed microflora was observed. Incubation period was two days at 25 °C ambient 

temperature. Effects of microbial activity were determined at least 5 times during the 

incubation period by measuring pH and organic acid and ethanol contents (by HPLC). 

An attempt was made to compare the results obtained to a standard aerobic stability test. 

Generally, naturally fermented high dry matter grass silages (30-40 % DM) with a pH 

of 4.4-4.8 were investigated. 

The following results were obtained: 

1. Yeasts oxidised lactic acid as expected, which confirmed earlier studies from 

literature. 

2. In the bacterial treatment, activity of lactic acid bacteria was identified due to 

formation of lactic and acetic acid. 

3. This production counteracted the assimilation of lactic acid in the control where 

all microbial groups were present resulting in an intermediate level of lactic acid 

after the first day of incubation. 

4. During the second day of incubation lactic acid bacteria often started to oxidise 

lactic acid, possibly due to the depletion of available sugars. 

5. Additional fructose decelerated the pH increase in the antibacterial treatment, 

but hardly had an effect on the bacterial activity. 
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6. Tannic acid hampered yeast activity but favoured pH increase by bacteria. 

7. The use of KCl as a means of increasing the osmotic pressure to be comparable 

to silage conditions constrained both bacterial and fungal activity. 

8. Increased air ingress and low pH (≤ 4.0) favoured the growth of yeasts over 

lactic acid bacteria. 

9. A high propionic acid production which sometimes occurred in the bacterial 

treatment could not be explained by LAB metabolism, but was probably due to 

propionic acid producing bacteria e.g. propionibacteria. 

10. This in-vitro study revealed co-activity of lactic acid bacteria and yeasts under 

lightly aerobic conditions which might explain the stability of grass silages that 

sometimes occurrs despite high yeast numbers. 

11. The in-vitro method using silage extract as medium was suitable to monitor 

aerobic metabolic processes in silages and thus indicate the microbial groups 

responsible for them. 

 

The results suggest that aerobic stability is a matter of microbial interactions and 

competitiveness. 

For further studies on aerobic deterioration the dynamic approach of the method was 

proved to be extremely useful. 

 

8.2 Zusammenfassung 

Aerob verdorbene Silage stellt nach wie vor ein Problem in der Tierfütterung dar. 

Im Laufe der letzten vier Jahrzehnte wurden in der Forschung Hefen als 

Hauptverursacher des Beginns von aerobem Verderb von Grassilagen erkannt, da sie 

Milchsäure abbauen können, die als das hauptsächliche Konservierungsmittel 

natürlicherweise in Silage vorkommt. 

Trotzdem herrscht noch kein umfassendes Verständnis der mikrobiellen Prozesse in 

Silage unter Lufteinfluß. 

 

Das Ziel dieser Arbeit war es, die Rolle von Hefen unter verschiedenen 

Wachstumsbedingungen näher zu beleuchten und die mögliche Rolle anderer 

Mikroorganismen, die an aeroben Umwandlungen von Silage beteiligt sind, zu 

bestimmen. 
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Dazu wurde Silage unter Lufteinfluß in geschüttelten Batchkulturen simuliert. Dabei 

wurde der epiphytische Besatz der Silage einem synthetischen Milchsäuremedium 

zugesetzt oder in verdünntem Silageextrakt, der als komplexes Medium diente, genutzt. 

Bakterielle und pilzliche Tätigkeit wurde durch den Einsatz von Antibiotika 

unterschieden. Die antimykotische Behandlung beschrieb die bakterielle Aktivität, 

während die antibakterielle Behandlung zur Beschreibung der pilzlichen Aktivität 

diente. Die unbehandelte Kontrolle umfasste die Tätigkeit der gesamten Mischflora. Die 

Bebrütungsdauer betrug zwei Tage bei einer Umgebungstemperatur von 25 °C. Die 

Auswirkungen mikrobieller Stoffwechseltätigkeit wurden meist zu 5 Zeitpunkten 

während der gesamten Inkubationsdauer anhand von pH und dem Gehalt an 

organischen Säuren und Ethanol gemessen (über HPLC). Die Ergebnisse wurden 

teilweise mit dem Standardverfahren zur Bestimmung aerober Stabilität verglichen. 

Im allgemeinen wurden natürlicherweise vergorene hoch angewelkte Grassilagen mit 

einem Trockenmassegehalt von 30-40 % und einem pH von 4,4-4,8 untersucht. 

Dabei wurden die folgenden Ergebnisse gewonnen: 

1. Hefen oxidierten Milchsäure wie erwartet. Dies bestätigte frühere 

Untersuchungen aus der Literatur. 

2. In der Bakterienvariante wurde die Stoffwechseltätigkeit von 

Milchsäurebakterien identifiziert aufgrund der Bildung von Milchsäure und 

Essigsäure. 

3. Diese Säureproduktion wirkte dem Laktatabbau in der Kontrollvariante 

entgegen, in der alle Mikroorganismengruppen vertreten waren. Das führte 

nach dem ersten Tag der Bebrütung zu einem mittleren Milchsäuregehalt, 

der zwischen dem der Bakterien- und dem der Hefevariante lag. 

4. Im Laufe des zweiten Inkubationstages begannen die Milchsäurebakterien 

oftmals, Milchsäure zu oxidieren, was möglicherweise auf die Erschöpfung 

an verfügbaren Zuckern zurückzuführen ist. 

5. Zugesetzte Fructose verlangsamte den pH-Anstieg in der Hefevariante, hatte 

aber kaum eine Auswirkung auf die Bakterienvariante. 

6. Tannin schränkte die Hefeaktivität ein, aber förderte den Milchsäureabbau 

durch Bakterien. 

7. KCl, das dazu eingesetzt wurde, den osmotischen Druck im Medium dem 

der Silage anzupassen, schränkte sowohl Bakterien als auch Hefen in ihrer 

Aktivität ein. 

8. Erhöhte Luftzufuhr führte zu einer Dominanz der Hefeaktivität über die der 

Milchsäurebakterien. Einen ähnlichen Effekt hatte ein niedriger pH-Wert 

von ≤ 4,0. 
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9. Die starke Propionsäurebildung, die teilweise in der bakteriellen Variante 

auftrat, konnte nicht durch Stoffwechsel von Milchsäurebakterien erklärt 

werden, sondern ist auf die Tätigkeit von Propionsäure bildenden Bakterien 

wie die Propionibakterien zurückzuführen. 

10. Diese In-vitro-Untersuchung zeigte eine gleichzeitige Aktivität von 

Milchsäurebakterien zu Hefen unter eingeschränkt aeroben Bedingungen auf. 

Diese kann erklären, warum manche Grassilagen trotz hoher 

Hefekeimzahlen stabil bleiben. 

11. Die in-vitro-Methode, bei der Silageextrakt als Medium benutzt wurde, 

erwies sich als geeignet, um aerobe Stoffwechselprozesse in Silagen zu 

beobachten und lieferte damit einen Hinweis auf die dafür verantwortlichen 

Mikroorganismengruppen. 

 

Die Ergebnisse legen nahe, dass aerobe Stabilität eine Frage von mikrobieller 

Interaktion und Konkurrenzfähigkeit ist. 

Für weitere Untersuchungen zum aeroben Verderb hat sich dieser dynamische 

Versuchsansatz als besonders geeignet erwiesen. 
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THESES 

 

THESES 
 

“A N IN-VITRO STUDY OF AEROBIC CHANGES IN SILAGES  – Effects of microbial 
activities and impact factors” 
 

submitted by Siriwan Martens 

 

The aerobic deterioration of silages represents a  major problem for animal feeding. 

Microbial metabolic activity leads to dry matter and energy losses in the silage 

accompanied by reductions in feed value and palatability. If mycotoxins develop they 

can directly affect the health of animal and humans. 

To avoid aerobic spoilage of silages it is necessary to understand its basic principles. 

 

Aim of the work 

 

1. Many investigations showed that yeasts are responsible for the initiation of aerobic 

deterioration of silages, especially of grass silages. This is due to the ability of many 

yeasts to assimilate lactic acid which represents the principle preservative agent of 

silages. 

On the other hand, it has been observed that low numbers of yeasts at the time of 

opening do not necessarily reduce the chances of aerobic instability, nor do high 

numbers of yeasts always indicate that rapid deterioration will definitely occur. 

 

2. Moulds were found occasionally, but in general their activity was not closely related 

to the decomposition of organic acids. Different bacteria were also isolated from 

deteriorating silages such as proteolytic bacteria (bacilli), lactic acid bacteria, acetic 

acid bacteria, actinomyces, clostridia and listeria. Among those, the deleterious role 

of acetic acid bacteria was clearly identified in the initiation of aerobic spoilage in 

maize silages. After the oxidation of ethanol to acetic acid the acetic acid bacteria 

grow at the expense of complete oxidation of acetate to CO2. The thermotolerant 

bacilli develop during the later stages of deterioration. Clostridia can occur in 

anaerobic niches of deteriorating silages. Under certain conditions listeria are 

accompanying micro-organisms. Lactic acid bacteria are generally the predominant 

bacterial micro-flora at the time of opening as they have desirable activities in terms 

of preservation and are commonly added as inoculants to improve the lactic acid 

fermentation. 

 



 

   

 

3. The above mentioned findings are mainly based on plate count methods. Those do 

not always reflect activity. To gain new perceptions a novel method was used. 

 

4. The present investigations elucidated the roles of bacteria and fungi respectively in 

aerobic changes of silages.  

 

5. An in-vitro method was developed which simulates the silage environment in 

shaken batch cultures. pH and some metabolites such as lactic, acetic and propionic 

acid and ethanol were measured as indicators of microbial activity in a time course 

experiments. To differentiate bacterial and fungal action antimycotic and 

antibacterial agents were used in a medium containing the indigenous microflora 

from silage. 

 

6. The studies comprised three principle types of experiments:  

a) Yeast inoculants (4 type strains) inoculated into synthetic lactate medium 

b) Silage extract as a complex medium plus the indigenous microflora – 9 grass 

silages, 4 grass-lucerne silages and 1 maize silage were used to provide the 

extract 

c) Autoclaved silage extract from one grass and one maize silage with yeast (2) 

or/and lactic acid bacteria (1) inoculants 

 

7. Principle variations in experiment types 2 and 3: 

• Addition of fructose (3 and 6 % of FM w/v) to investigate the effect of increased 

levels of residual sugars  

• Adjusting the pH to 3.8 or 4.4 to investigate the pH effect 

• Changing the liquid volume to air space ratio to investigate the influence of 

different oxygen ingress (100 ml vs 200 ml Erlenmeyer flasks) 

• Use of 8 % KCl (w/v) to adjust the osmotic pressure to normal silage conditions 

 

Main conclusions of the work 

8. The lactate oxidising activity of yeasts was confirmed. 

 

9. A co-activity of lactic acid bacteria was revealed. They produce lactic acid in grass 

and grass-legume silage media with an initial pH of  ≥ 4.4 during the first day of 

incubation, but not in maize silage medium. 



 

   

 

10. This activity counteracts the lactate decomposition by yeasts in the initial phase of 

exposure to air and thus maintains or even increases the total concentration of lactic 

acid. During the second day of incubation lactic acid bacteria often contribute to the 

lactate degradation. 

 

11. A high level of residual water soluble carbohydrates hampers the pH rise by yeasts 

which consume organic acids and produce increased levels of ethanol by respiro-

fermentation. 

 

12. Yeasts are more competitive at low pH (≤ 4.0) or with increased air ingress. 

 

13. Propionic acid production occurred occasionally. It can be attributed to bacteria 

whose major fermentation product is propionic acid such as Propionibacteria. 

 

Scientific evaluation of the results 

14. The results confirm earlier investigations that yeasts represent the main spoilage 

microflora in grass silage. A new insight is provided, in that lactic acid bacteria 

compete with yeasts under aerobic (but oxygen limited) conditions and are able to 

slow down the onset of aerobic deterioration which is characterised by the 

decomposition of the preserving lactic acid. 

 

15. Another new finding is that propionic acid producing bacteria are active along with 

(facultatively) aerobic micro-flora of some grass silages. 

 

16. The in-vitro method applied was suitable to investigate the metabolic activity of 

silage microflora under defined conditions. 

 

17. Suggestions for further investigations are: 

• to gradually increase the ambient temperature during the course of incubation as 

it occurs in practice during deterioration,  

• to reduce the dilution rate of the silage extract to see if there is a possible effect 

of concentration 

• apply other means to raise the osmotic pressure to avoid the problem of salt-

intolerance 



 

   

 

• to find out if homofermentative lactic acid bacteria are generally less 

competitive in maize silage medium and why 

• to elucidate the role of Propionibacteria. 

 

Common importance of the results 

18. Recommendations to control aerobic deterioration: 

 The most general task is to support the competitiveness of lactic acid bacteria in 

silages upon exposure to air.  

To meet this claim: 

• High residual sugar contents should be ensured to prevent the lactic acid 

bacteria from decomposing lactate at an early stage after opening the silo. 

• Oxygen ingress in the silage should be limited during the feed-out phase to 

enhance the competitiveness of lactic acid bacteria against yeasts. 

• Whenever possible, grass should only be acidified down to a pH of about 4.4 

in the ensiling phase. 

• If inoculants are applied they should be aerotolerant and acid tolerant - 

criteria which are already postulated for the ensiling phase. 
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Own Preparatory Work  
 

The preliminary aim of the work was to investigate the role of yeasts in aerobic 

deterioration of grass silage. In the literature there are numerous reports that yeasts are 

the initiators of aerobic instability in grass and other silages (see LITERATURE 

REVIEW), especially yeasts with the ability of assimilating lactate (JONSSON and 

PAHLOW, 1984; JONSSON, 1989). 

JONSSON and PAHLOW, 1984, stated that a population of > 5 log cfu/g silage FM at 

the time of opening causes fast aerobic deterioration if the yeasts can utilise lactic acid 

aerobically. 

In order to investigate whether those observations can be generalised, first own 

observations were made in small scale laboratory silages in 2002/2003: if ensiled with 

defined air infusion (2*24 h over a 49 d storage period) (comparable to practical farm 

conditions) all unstable silages contained at least 5 log cfu/g silage FM.  On the other 

hand, if ensiled strictly anaerobic low dry matter grass silages (~ 25 % DM) were 

unstable with yeast numbers between 3-4 log cfu/g FM on malt extract agar and 

similarly on lactate agar which was introduced by JONSSON and PAHLOW, 1984, 

whereas in unstable high DM silages (35-40 % DM) yeast numbers varied widely from 

below the detection limit up to 5 log cfu/g FM (Figure 4 in the LITERATURE 

REVIEW; MARTENS and PAHLOW, 2003).  

 

The above mentioned lactate agar for the enumeration of lactate assimilating yeasts 

offering lactate as sole carbon source has a pH of 3.4-3.8. 

The question arose whether this medium would allow the development of all lactate 

assimilating yeasts grown under different conditions in silages. The two main 

differences between low and high dry matter grass silages were seen in pH and osmotic 

pressure, which are both higher in high DM silages. The pH of the latter can vary 

between 4.0 and 5.5 or even higher.  

MIDDELHOVEN and FRANZEN, 1986, investigated the ability of 6 yeast species (15 

type strains) to assimilate lactate by growing them at pH 5.8 and pH 4.0 in liquid 

cultures. They stated that most of the strains were able to grow with lactate as carbon 

source at the lower pH even when they did not grow at all at pH 5.8.  

Thus, to answer the above mentioned question, in the own work, the pH of the lactate 

agar was varied between 3.8 to 6.0 in 5 steps. In a second treatment the osmotic 

pressure was raised by 8.3 % KCl in the different pH levels respectively.  

Mixed silage flora was plated on the original lactate agar and on another one with a pH 

adjusted to the original pH of the silage.  
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Yeast isolates from grass silages were plated on 5 pH levels and the medium 

supplemented with KCl.  

No distinct effect could be observed except an inhibition by KCl.  

As even a yeast identified as Saccharomyces cereviseae whose abilities of lactate 

assimilation are inconsistent for taxonomical purposes grew on all modifications of the 

lactate medium it was doubted that the only offered carbon source was used.  

Growth tests on only Yeast Nitrogen Base agar and on pure agar without external C-

source were positive. That led to the assumption that some yeasts can either a) utilise 

nutrients from agar or b) carry over nutrients in their cells from the former growth 

medium. Additionally in a mixed yeast flora even an exchange of nutrients on the agar 

plate is possible, so that yeasts which cannot grow on the plates by their own 

metabolism can survive by others (HOFFMANN, 2004). DAVENPORT, 1980, also 

emphasizes that a medium is only part of an environmental system which includes 

interactions and carry-over. LOUREIRO and MALFEITO-FERREIRA, 2003, describe 

the general obstacles associated with selective media. 

The conclusion was that the plate count method was not specific enough to study the 

role of yeasts in high DM grass silage deterioration and the factors influencing their 

growth and activity. 

 


