EFFICIENT NON-SPATIAL AND SPATIAL
SIMULATION OF BIOCHEMICAL REACTION
NETWORKS

Dissertation
7ur
Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

der Fakultat fiir Informatik und Elektrotechnik

der Universitat Rostock

vorgelegt von
Dipl. Inf. Matthias Jeschke, geb. am 19. Dezember 1980 in Altdébern
aus Rostock

Rostock, 15. Dezember 2010

urn:nbn:de:gbv:28-diss2010-0195-4

Principal Advisor:

External Reviewers:

Date of Defense:

Prof. Dr. rer. nat. habil. Adelinde M. Uhrmacher

University of Rostock, Germany

Prof. Kevin Burrage
Ozxford University, United Kingdom,

PhD Koichi Takahashi
RIKEN Institute Yokohama, Japan

19-OCT-2010

i

Acknowledgments

Writing this thesis would not have been possible without the help and support of
many people. First and foremost I owe my sincerest gratitude to my supervisor, Prof.
Adelinde M. Uhrmacher, who has supported me throughout the last three years with
her motivation, patience, and knowledge while allowing me the room to work in my
own way. With her experience she always did not only see the bigger picture, but was
also able to paint it for others, which proved to be invaluable during the work in the
research training group.

I am furthermore deeply indebted to Dr. Koichi Takahashi. His invitation to a
reasearch visit at his lab gave me the opportunity to broaden my perspective on the
research field and also left a lasting impression on the beauties of Japan. I am heartly
thankful to Prof. Kevin Burrage, whose experience in the field lead to fruitful discus-
sions about new ideas and concepts eventually realized as part of this work.

In my daily work I have been blessed with a friendly and cheerful group of fellow
students, both from the research training and the modeling and simulation group. I
would like to thank Roland Ewald for his support: it is not an understatement to say
that his work made performing the numerous experiments a lot easier; without it, I
would likely still struggle with the other (unofficial) member of the M&S group I wish
to thank: JAMES II. In fact, I owe my gratitude to all the people who worked on this
tool during the last years and I would not have come this far without them.

Finally, I thank my parents and my girlfriend for supporting me throughout my
studies in Rostock and for providing me places to recharge my batteries.

This work was financially supported by the interdisciplinary DFG research training
group dIEM 0SiRiS and a research visit to the RIKEN institute, Yokohama, was funded
by the JSPS.

1l

Abstract

Reaction networks describe interactions between (molecular) species and their proper
function is crucial for all living beings. Analyzing them in wvitro is often aggravated
by the spatial and temporal scale of the system: the size of species can range from
nanometers to micrometers, some networks may fire in only a few nanoseconds while
others require days to finish. As an alternative to real-world experiments, the system
of interest (here: the reaction networks) can be abstracted to a model, which is then
taken as the input for an experiment in silico a simulation.

This dissertation is focused on algorithms for performing non-spatial and spatial
stochastic simulations of reaction networks and on the exploration of improved or al-
ternative approaches. A central topic is the evaluation and a subsequent comparison
of algorithm performance in terms of execution speed and accuracy. A thorough dis-
cussion on the intricacies of a such an evaluation is followed by two large-scale studies
which demonstrate the application of the elaborated concepts.

The second part of this work takes up the idea of temporal leap methods, extends
it to the spatial realm, and introduces a variant for a parallel execution. Subjected to
a theoretical and practical performance analysis, (parallel) spatial 7-leaping shows a
strong dependence to both algorithm and model parameters, e.g., the particle distri-
bution.

Finally, the realization of a multi-algorithm simulation is explored by introducing
inter-rules that forge a link between the synchronized execution of subsidiary algo-
rithms. A simple notation for the description of discrete-event simulations is extended
to allow the representation of moving individuals that can interact with particles in a
discretized volume. Despite being qualitative only, several example models and exper-

iments show the feasibility of this approach.

Keywords: stochastic simulation, SSA, spatial simulation, evaluation, 7-leaping, multi-

algorithm simulation

v

Zusammenfassung

Reaktionsnetzwerke beschreiben die Interaktionen zwischen (molekularen) Spezien und
dieses oft komplexe Zusammenspiel ist essentiell fiir das Funktionieren aller LLebewesen.
Die Analyse dieser Netzwerke in wvitro wird héufig erschwert durch die vorhandenen
Grofkenordnungen: die Spezien haben Durchmesser im Nano- bis Mikrometerbereich,
einige Netzwerke feuern innerhalb von Nanosekunden, andere konnen fiir alle Schritte
Tage bendétigen. Eine Alternative zur Arbeit mit lebenden Zellen stellt das Erstellen
von Modellen und das anschliefsende Experimentieren in silico dar die Simulation.

Die vorliegende Dissertation beschéftigt sich mit Algorithmen fiir die nicht-rdum-
liche und rdumliche stochastische Simulation von Reaktionsnetzwerken sowie deren
Verbesserung bzw. der Entwicklung neuer Ansétze. Ein zentrales Element hierbei ist
die Evaluierung und die dadurch geschaffene Moglichkeit des Vergleichs der Performanz
von Algorithmen in Hinsicht auf deren Ausfiithrungsgeschwindigkeit und Genauigkeit.
Die Arbeit formuliert und diskutiert Konzepte fiir solche Studien und wendet diese im
Rahmen zweier Beispielevaluierungen an.

Im weiteren Verlauf der Dissertation wird die Idee hinter den sogenannten Leap-
Methoden aufgegriffen, diese fiir rdaumliche Modelle erweitert und eine Variante fiir
eine parallele Ausfiihrung vorgestellt. Eine theoretische und praktische Evaluierung der
Methode zeigt eine deutliche Abhéngigkeit der Performanz sowohl von Algorithmen-
als auch von Modellparametern.

Ein dritter Schwerpunkt ist die Realisierung einer Multi-Algorithmen Simulation
durch die Einfiihrung von Inter-Regeln, welche eine Interaktion zwischen verschiede-
nen Algorithmen erlauben. Basierend auf einer einfachen Notation zur Beschreibung
von diskret-ereignisorientierten Simulationen wird ein mogliches Zusammenspiel zwis-
chen Individuen und Populationen innerhalb eines diskretisierten Raumes diskutiert.
Die Moglichkeiten, die dieses Konzept bietet, werden durch Beispielmodelle und -

experimente demonstriert.

Schlagworter: stochastische Simulation, SSA, rdumliche Simulation, Evaluierung, 7-

leaping, Multi-Algorithmen Simulation

Contents

List of Figures ix
List of Tables xii
List of Algorithms xiii
List of Symbols xiv
1 Introduction 1
2 Background 6
2.1 Biochemical Reaction Networks 6
2.2 Preliminary Considerations About Modeling And Simulation 13
2.3 Simulation of Reaction Networks 18
2.4 Stochastic Simulation00 20
2.4.1 The Chemical Master Equation 25

2.4.2 The Stochastic Simulation Algorithm 26

2.5 Spatial Stochastic Simulation 29
2.6 Simulation Using JAMES IT 34
2.7 SUMMATY . . . o v v e e e 35

3 Stochastic Simulation Algorithms: A Small Survey 37
3.1 Beyond The Origins 38
3.1.1 The Next Reaction Method 38

3.1.2 The Optimized and Logarithmic Direct Methods 41

3.1.3 Parallel Variants, 42

3.2 Leap Methods 45
3.2.1 The 7-leaping Algorithm 46

3.2.2 kyleaping .. o. oL 51

vi

Contents

3.2.3 Implicit 7-leaping o ol
3.3 Algorithms for Spatially Inhomogeneous Systems 53

3.3.1 Next Sub-volume Method 53

3.3.2 Gillespie Multi-Particle Method 55

3.3.3 Parallel Variants oo o7
3.4 Multi-X Methods 60
3.5 Summary . o.o.o. oL 62
The Spatial 7-leaping Algorithm 64
4.1 Problem Statement 64
4.2 Derivationo 67
4.3 Analysis L 73
4.4 Parallel Extension 82
4.5 SUmMmary e 85
Evaluating the Performance of Stochastic Simulation Algorithms 87
5.1 Problem Statemento 88
5.2 Performance Facets 90

5.2.1 Execution Speedo 92

5.2.2 ACCUTaCY 94
5.3 Benchmark Models 101
5.4 Bringing It All Together: The Evaluation Study 108
5.5 SUMmMAry oL e 112

Performance Evaluation Studies for Non-spatial and Spatial Simulation

Algorithms 115
6.1 Performance Analysis for Non-spatial Algorithms 116
6.1.1 Benchmark Models 116
6.1.2 Results. 118
6.2 Performance Analysis for Spatial Algorithms 127
6.2.1 Benchmark Models 128
6.2.2 Results. 129
6.3 Summary 147
Multi-algorithm Simulation 150
7.1 Problem Statement 150

Vil

Contents

7.2 Introduction — Discrete Event Simulation with SSA 154
7.3 Individual-based Discrete Event Simulation 156
7.4 Populations and Individuals 0000 161
7.5 Mobile Individuals 167
7.6 Individuals With Arbitrary Shapes 170
7.7 Realizing the Multi-algorithm DES Concept 176
7.7.1 Prerequisites: Multi-resolution NSM 176

7.7.2 The Multi-algorithm Simulator 178

7.8 Example Experimentso 184
7.9 Additional Remarkso o 190
710 SUMmMAry e 193

8 Conclusion and Future Work 195
Bibliography 199

viil

List of Figures

2.1
2.2

2.3
2.4
2.5

2.6
2.7

2.8
2.9

3.1
3.2

4.1

4.2
4.3
4.4
4.5
4.6
4.7

5.1

The canonical Wnt pathway.

The enzyme-substrate catalyzation process (Vickers, Tim. FEnzyme /
substrate induced fit diagram. 2006. Wikimedia Commons. Accessed:
11/10/09) o oo o

Visualization of a reaction network as a bipartite graph. ([SJUS08|) . .
The enzyme-substrate reactions as a bipartite graph.

Using modeling and simulation to get information about a modeled sys-

tem (reproduced and modified with permission from [Ste08])
Plot of the solution for the enzyme-substrate ODE system with.

A single trajectory from the stochastic simulation of the enzyme-substrate

reaction L
Examples for spatial discretization.

Small 3 x 3 model and the corresponding connectivity matrix.

Dependency graphs.o

Sequential versus parallel FRM execution.

Time steps calculated by the DM for different parametrizations of the

enzyme-substrate modelo
Asimple 5x5grid
The “toy models” used for analyzing the spatial 7-leaping algorithm . .
Leap and 6 values for the first toy scenario
Leap and 6 values for the second toy scenario
Leap and 6 values for the third toy scenario

Distributing the 7 calculation among 3 processing units P; to Py

Performance facets.

X

9
11
12

14
20

22
30
32

39
43

66
76
78
79
80
81
83

List of Figures

5.3

)
5.6

5.7
2.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

7.1
7.2
7.3
7.4
7.5

Probability distribution and population histograms for the enzyme-substrate
model . ..o 95
Example histograms for a species’ state 100

Example sample set and event id assignment for the enzyme-substrate

model 102
State space analysis of the enzyme-substrate model 103
Steady state solutions for the molecule generator model 107
Results for the Totally Independent System 119
Results for the Linear Chain System 119
Particle distribution of the LCS model 120
Results for the Cyclic Chain System 120
Comparing the performance of different RNG implementations 122
The 7-leaping algorithm with different parameter setups 123
The KS-Test statistic D for several species of the default LCS model . 124
Sample species distributions for the LCS model 126
The 2D phosphorylation model 129
Execution times for simulating a Molecule Generator model (10¢ C' par-

ticles) ..o 131
Execution times for simulating a Molecule Generator model (10% — 10°

Cparticles) 132

Speed-ups attainable for Molecule Generator and Radial model set-ups 133
Algorithm performance on different set-ups of the phosphorylation model 135

Algorithm performance on different set-ups of the Radial model 136
Algorithm performance on different set-ups of the Radial 2 model . . . 137
Snapshot of the radial model state. 138
Snapshot of the MolGen model state 140
J48 decision trees 143
Spider charts visualization 145

Algorithm performance for a parallel execution of different model types 146

A simple single particle model.o 157
Particle conversion example L. 159
Grid with different state representations 162
A multi-algorithm discrete event simulation 164
Applying rule compositiono 168

List of Figures

7.6
7.7

7.8
7.9

7.10
7.11
7.12
7.13
7.14
7.15

7.16
7.17
7.18

Multi-resolution population-based spatial simulation 171
Example trajectories for a comparison between a single and multi-resolution

simulationo 172
Partition of a sub-volume to represent a circular-shaped individual . . . 174

Spatial multi-resolution simulation without explicitly including this sub-

cells . . . e 175
Multi-resolution NSM results 179
mrNSM algorithm run time for different valuesof £ 180
Additional data structures used by the MA simulator 182
Trajectories for the four internal species A; to A4 of an A individual . . 184
Concentration of A and B particles for the crowding experiment 185

Histograms for the simulation times at which half of the population of

A and B particles have degraded oL 186
[ustration of the lipolysis process 187
Series of states for the lipolysis model 191

Histograms for the simulation times at which half of the TAG population
has been hydrolyzed oo oL 192

x1

List of Tables

2.1

6.1

6.2

6.3

The orders for the most basic reaction types. 25

Outputs from the two-sample KS-Tests to compare the accuracy of the
NRM and 7-leaping algorithms 125
Accuracy results for five different reaction-diffusion models, evaluated
at three time pointseach 137

Investigated model features. L. 141

xii

List of Algorithms

2.1

2.2

2.3

3.1
3.2

3.3
3.4
3.5

4.1

7.1
7.2

Pseudo-code description of a template for discrete-event stochastic simu-
lation algorithms. oo 27
Pseudo-code description for the Select NextReactions(x) variant of the
FRM . e 28
Pseudo-code description for the DM’s Select Next Reactions(x) method. 28

Pseudo-code description for the NRM’s Select NextReactions(x) method 40

Pseudo-code description for an alternative Select NextReactions(x) method

of the FRM 44
Pseudo-code description for the 7-leaping SelectNextReactions(x) method 50
Pseudo-code description of the NSM 56
Pseudo code description of the GMPM 58
Pseudo-code description for the spatial 7-leaping algorithm 74
Pseudo-code for the mrNSM’s split method 177
Pseudo-code for the mrNSM’s merge method 178

xiil

List of Symbols

S, R
X,Y
X(1),Y(1)
X(t), Y(t)

LxXN
ki?]

X
T~ P(X)

Vector

Matrix

Set

Random variable

Stochastic process of a single random variable

Stochastic process of a multivariate random variable

A vector with NN entries, the i-th being k € R and the rest
0, e.g., 13 = (1,0,0)

An L x N matrix, with entry (i, 7) set to k € R and the rest
to 0, e.g., 13%5* = <§ (é §)

The [-th row vector of the matrix X

A sample from the distribution P(X)

X1v

1 Introduction

Simulation is, generally speaking, the process of extracting knowledge from a system
by performing experiments on a representation, i.e., a model, of it. Though it would
be preferable to experiment with the system itself, this is not always possible; it may,
e.g., encompass time scales much larger than the life span of a single human (one could
think of erosion processes) or be too dangerous or big to work with — or too small, as
it is the case for biochemical reaction networks found in any living organism. A very
simple, yet for the moment entirely sufficient, explanation of what is going on in these
systems can be given in a few words: molecules, e.g., proteins, move through space
and interact with each other, they can react into other molecules, which are in turn
able to participate in other reactions. This all results in complex networks, evolved
over millions of years — and which scientists try eagerly to understand, because this
interplay between molecular entities is responsible for the proper function of every
living systems on this planet. On the other hand, their dysfunction is believed to
be the cause for many diseases, among them being, e.g., cancer and Alzheimer’s. So
understanding the dynamics of reaction networks does not only provide insights into
how life “works”, but also how to preserve it.

The motivation and benefits of investigating this specific type of system are clear —
but the actual task turns out to be difficult at least. Not only the scale of the system
poses problems, but also the conditions at which it can be observed. In-vitro and
in-vivo experiments each have undeniable advantages: the former allows the analysis
of how a selection of molecules interact in an isolated and confined environment —
but leaves out the fact that networks are often interwoven and interactions take place
in the presence of other entities, which may have an effect on the dynamics. In-vivo
experiments, on the other hand, are very close to the real environment but often
hard to control, because too much is going on inside a cell simultaneously. Other
factors not to be forgotten are money and time: preparing and cultivating cells can
take several weeks, the costs for the entire process easily sum up to several hundred

Euros, not including the actual hardware, e.g., microscopes, for which alone hundred

1 Introduction

of thousands of Euros could be spent, depending on the field of application.

But there is a third, complementary type of experiments: in-silico — which brings
the topic back to modeling and simulation (M&S). What the microscopes and Petri
dishes are for a biologist are the computers for scientists working in the field of M&S.
Just like wet-lab experiments, M&S offers a way to find answers to questions about
the system under study. But in contrast to the former, it does so by working with
a representation — a model, built with enough known information about the system
to find out about yet unknown characteristics of it. However, a model alone is only
half the battle; it requires a simulation algorithm to execute it. While an algorithm
is built to support one specific type of models, it is possible that there exist several
algorithms for the same type. To use the analogy of biologists again: depending on the
questions they ask, they will use different methods and tools to find an answer, though
their system of interest, e.g., a cell, stays the same. Some of the available alternatives
are more suited than others, on some occasions it could be even necessary to try a
completely different approach — in the end the job needs to be done, the less resources
(e.g., time, money) required for this the better.

This actually summarizes the main intention of this dissertation quite well, which
follows a path well-known to the scientific field: start by formulating questions and
look at the data that is available to you. Then get an overview of the available tools
and try to find out which are best suited for a given problem. If the results from this
first step hint to possible improvements of certain methods, then evaluate them as
well. It may even turn out that taking a step backwards and looking at the task from
another perspective could open the gates to new research directions. This path from
evaluation over improvement to exploration represents the recurrent theme connecting
all the parts in the dissertation and is embedded in the context of biochemical reaction
systems. Note that you likely cannot follow this way linearly: improvements and new
approaches also require evaluations, which may again point to further optimizations
and so on.

To get a feeling of what lies ahead, the central aspects and contributions of the work

shall be briefly summarized in the following.

Evaluation When delving into a new research area, it is natural to first have a look at
what is already there. A first step is often an intensive review of the literature published
on the topic of interest. It helps to get an overview of the tools developed for a wide

range of different model incarnations: for example, some may have been specifically

1 Introduction

developed for reaction networks having many particles, others are well-suited for dealing
with reaction sets including fast and slow reactions. If the models that should be
simulated are known, then it might suffice to chose one of the alternatives and perform
the experiments. However, a thorough evaluation can be especially important if the
complexity of the models is still largely unknown: how many reactions and molecules
will a model encompass and is it necessary to consider the spatial distribution of the
latter? If yes, what should be the desired abstraction, i.e., suffices it to say “there are
X particles in this component and Y in the other” or do the individual positions of all
entities need to be tracked?

Furthermore, so-called “silver bullets”, i.e., methods that supersede any other alterna-
tive for arbitrary models, do not exist. An evaluation study helps to identify strengths
and weaknesses of algorithms; these results could then be used to give recommenda-
tions for methods that have proven to be, e.g., very fast or accurate for certain model
types.

Chapter 5 is going to discuss the aspects and requirements of an evaluation study for
algorithms working with reaction network models. It points to possible pitfalls during
the evaluation and the subsequent analysis, argues for the use of artificial benchmark
models to cover a wide range of characteristics found in real systems, and exemplarily
shows a study defined for the simulation framework JAMES II. The application of
concepts laid down there will be eventually demonstrated in Chapter 6 that compares

the performance of non-spatial and spatial simulation algorithms

Improvement Analyzing the results from an evaluation may provide clues how to
enhance a certain algorithm — as it was said, each method has its strengths and
weaknesses. In contrast to exploration, which will be discussed below, an improved
algorithm keeps the basic “modus operandi” of its ancestor, i.e., the steps performed to
produce an output, but optimizes the operations involved in each step. This could be
as simple as switching to a more efficient data structure to observe a considerable boost
in execution speed or accuracy (Chapter 6 will come back to this). As an example and
without going much into detail, each exact stochastic simulation algorithm first finds
out the time and type of the reaction that will occur next and then “executes” it, i.e.,
the involved molecules gets removed and the products added. But the implementation
of these steps can differ significantly between the numerous variants published over
the last decades. Some make use of sorting algorithms to find the imminent event,

others store the reactions in an auxiliary queue structure, which ensures that the next

1 Introduction

dequeued reaction is the one that will fire next — nevertheless, each variant is not far
away from the original.

If more than one computational resource is available, then it could also be beneficial
to think about parallelizing an existing algorithm. Instead of having one machine
doing all the work, the load is shared among a set of resources; each machine is only
responsible for a fraction of the total calculations and therefore should need less time
to finish — so the theory goes. As long as there are no dependencies between the
calculations, e.g., no machine has to wait for results from another, a parallelization is
straightforward; if this condition is not given, then things quickly can become much
more intricate.

Chapter 4 presents an algorithm that extends the concepts behind the leap methods,
a famous family of algorithms that trade accuracy for execution speed, to simulate
reaction networks in a discretized space. A detailed derivation is followed by an analysis
that identifies potential strengths and weaknesses of this method and discusses some
further improvements, with a parallel implementation being one of those. Chapter
6 puts the algorithm in competition with two established variants and presents the

results from a thorough empirical evaluation.

Exploration An improvement takes an existing method and optimizes it towards a
more resource-efficient execution, e.g., the new algorithm either runs faster or requires
less memory or both. In contrast, an exploration goes beyond this — it takes another
perspective on the task, which is in M&S the representation of a system. It does so
by modifying the set of assumptions made about the system; some could be added
or removed, others maybe relaxed. For example, the aforementioned leap methods
abandon the idea of executing one reaction at a time in favor of larger time jumps and
an estimation of how often each reaction fired within the interval. The new assumption
here is that reactions fire at a bulk, each single execution is no longer of interest. It
was shown that the run time of a leap algorithm can be much shorter compared to
an exact competitor — but at a price of a decreased accuracy, so a trade-off must be
made.

Other techniques combine different methods in a unique way to compensate their
individual weaknesses. Leap methods shine when the population is large, but they may
run into problems if there are only a few molecules — so maybe they could be used
together with exact algorithms for models that include molecule types present in high

and low amounts.

1 Introduction

Given a collection of molecules and the knowledge how they can interact, it could
be explored, e.g., how they can be represented: maybe as individual entities, floating
around in space, maybe only as a number counting how many of a given type are
present or maybe both alternatives at the same time. Or what about their position
in space? Even in the case that molecules are just numbers, they still can be located
in compartments and are able to move between them.

Chapter 7 discusses how to combine algorithms, in particular individual-based and
population-based methods that operate on the same volume. An algorithm that im-

plements this type of interplay will then be presented and analyzed in Section 7.7.

Before discussing the main concepts of this dissertation, the next chapter will es-
tablish a basic set of definitions, notations and tools used extensively in the further

progress.

2 Background

This chapter is going to define the context of the presented work and shall equip
the reader with the fundamental terms, definitions, and notations that will be used
throughout the remaining sections. By doing so, it also sheds light on the title of the
dissertation: it will introduce biochemical reaction networks and provide first ideas
and concepts of how those can be modeled and simulated with or without assuming a

spatially homogeneous environment.

2.1 Biochemical Reaction Networks

The cell is the building block of all known living beings and the dynamics taking place
inside it are essential mechanisms that regulate vital functions of the organism. These
dynamics are the result of complex interactions between species inside the cell. For the
rest of this dissertation, a species can represent any intracellular entity whose specific
nature varies from simple molecules consisting only of a few atoms, like hydrogen or
water, to large, complex macromolecules, e.g., the DNA, that can be composed of
millions of smaller molecular structures. Some of these species are able to interact
with each other under certain conditions. They can participate in chemical reactions,
i.e., processes which transform a set of input species — called the reactants — into a
set of output species — the products. This is a high level abstraction; for the actual
reaction process to happen, several conditions must be fulfilled, e.g., the reactants have
to be close to each other, maintain the correct orientation, and the potential energy of
the involved species must be larger than the activation energy of the reaction. But a
single reaction is often only a small piece in a large puzzle. Most cell internal processes
are regulated by an ensemble of reactions; only a specific sequence of firings leads to
the designated effect. For such a sequence to exist, reactions have to share species, i.e.,

the products of one reaction are also reactants for another and vice versa.

Example 2.1.1 The canonical Wnt signaling pathway (cf. [Nus05, CCMO09|), whose

analysis, modeling, and simulation is one of the central subjects of the research training

2 Background

Cell membrane

O

e%9
> Q0
: o .. ‘.
P Proteolysis
m Becatenin EEGILECIE)
Axin Axin
E XD PED D
B-catenin

B-catenin
destruction cycle
Axin
N/
DD
B-catenin
B-catenin

Background degradation

(low rate) synthesis

Figure 2.1: The canonical Wnt pathway.

group dIEM oSiRiS', is a good example to illustrate the complex interplay between
species (see also Figure 2.1). It is focused around the regulation of the [-catenin protein
concentration within the cytosol and nucleus. In the absence of a Wnt signal, S-catenin
is constantly phosphorylated, i.e., a phosphate molecule is attached to its molecular
structure, by the so-called destruction complex, a compound of proteins. This tags the
[-catenin protein for ubiquitination, a process that eventually leads to its degradation.
But if Wnt3A proteins are present outside the cell, they can bind to a specific recep-
tor complex and the following reaction cascade deactivates the destruction complex,
interrupting the process of [-catenin phosphorylation and degradation. As a result,
[-catenin first accumulates in the cytosol and, after being shuttled, also in the nucleus
where it can bind to the TCF protein and trigger the transcription of its target genes.
The effect is twofold: a cell specific response to the Wnt signal, e.g., initiating the dif-
ferentiation, and a negative feedback on the inducing signal itself. But with a deeper
understanding of the pathway internals and participating species, scientists also began
to assume that a defective signaling can be the cause for various diseases [MKFKO04],
including cancer [Pol00, BCO0]|, kidney damage [TTO 03|, and schizophrenia [Miy99].

!Integrative Development of Modeling and Simulation Methods for Regenerative Systems

2 Background

For example, a mutation of APC, which is part of the destruction complex, disables
the degradation process of -catenin and leads to a constant transcription of the TCF

target genes, which in turn is assumed to promote the development of colorectal can-
cer [WSVT02].

The last part of Example 2.1.1 gives one reason why effort is spent into analyzing
reaction networks: to find the cause and, if possible, a cure for diseases such as cancer
or Alzheimer. Research in the wet-lab, i.e., the place where cell samples are cultivated
and experimented with, is often cumbersome: experiments take a long time, they are
usually cost intensive, and in the end only a small fraction of the cell culture might
respond to a treatment as required.

Complementary to the work done in wet-labs are experiments performed in a dry-lab,
i.e., inside a computer. Here the field of modeling and simulation provides powerful

tools to support the analysis of reaction networks.

Definition 2.1.1 Analyzing a network of interacting species using computational mod-
eling and simulation is the process of capturing the network’s essential features and
dynamics into a description that can be understood and processed, i.e., simulated, by

a computer.

This definition will suffice for the moment; a more in-depth discussion on the terms
“model” and “simulation” will follow in Section 2.2. In addition to lower costs and
usually faster experiment executions, working with artificial representations of reaction
networks offers full control over the experiment environment, which is nearly impossible
to achieve in wet-labs. Temperatures can be fixed, there is no bias caused by inaccurate
instruments or human errors, and the pathway of interest can be analyzed in isolation,
without other networks influencing the species population. However, the last argument
can also be used against modeling and simulation, as maybe essential or yet unknown
interactions are not included in the model and thus results could differ significantly
from the wet-lab data. Though this seems to be a vital point, it simply underlines a
fundamental restriction of models: they are never complete [Sto01]. This should be
kept in mind; modeling and simulation is an iterative process where results are verified
against real data and models modified or extended if necessary.

Regarding the biological context, the main interest during this dissertation is the
interplay between reactions and how they modify the species population over time;
the internals of single reaction, e.g., details at the atomic level, will not be considered.

Based on that, a first formal description of a biochemical reaction system shall be

2 Background

“substrate ‘ products‘

(/active site

=

"l

=

enzyme
enzyme + substrate enzyme / substrate enzyme / products enzyme + products
entering active site complex complex leaving active site

Figure 2.2: The enzyme-substrate catalyzation process. Here the speed for the dis-
sociation of the substrate molecules (S) is increased by the enzyme (FE). (Vickers,
Tim. Enzyme / substrate induced fit diagram. 2006. Wikimedia Commons. Accessed:
11/10/09)

presented next. To make this part easier, a small reaction network — the catalyzation
of reactions by enzymes — shall serve as an example throughout the rest of this chapter
(Figure 2.2). An enzyme is a special type of protein that is able to catalyze, i.e.,
increase the rate of, chemical reactions between other molecules, called the substrates.
The mechanisms behind the catalyzation effect vary between different enzyme types;
one common way is to lower the energy needed for inducing the substrate reaction.
The enzyme-substrate reaction starts with the binding of the substrate to the enzyme,
forming a complex that can now either release the products or split up again into its
constituent parts. In any case the enzyme is again available for the next substrate.
Processes of this form have been extensively studied during the last decades using
various modeling and simulation techniques, so they are a proper choice for introducing
reaction networks.

The set S = {S1,..., Sy} holds unique identifiers for all the species of interest;
these can be, e.g., their names or some abbreviations. An index set S® assigns a unique
number n € Ny to every species identifier. This allows an enumeration of the species
in S using elements from S%; for the rest of this dissertation the presence of such an

auxiliary set is assumed whenever a set is accessed via indices.

Example 2.1.2 The species and index sets for the example network can be defined
as S = {FE,S,ES, P} and S" = {1,2,3,4}, with the identifiers F for the enzymes, S
substrates, ES for the intermediate enzyme-substrate complex and P for the product.

With the help of S%, the elements of S can be enumerated; for example, it is possible

2 Background

to write either S7 or E, both are references to the same species.

The state vector x = (z1,...,xy) is responsible for keeping track of how many
particles exist for each species; for now it is assumed that entries of x are simply

integer numbers.

Example 2.1.3 The number of molecules for each of the species participating in the

enzyme-substrate network is stored inside the vector x = (g, s, Tps, Tp).

Reactions modify the state vector by removing reactant molecules and introducing
the products into the system. Similar to the species set, R = {Ry,..., Ry} holds
all reactions that can occur in the system. A single reaction R; € R is essentially a

mapping from reactant to product species and is defined as

N N
Rj Y unSi— Y kS, (2.1)
=1 i=1

with S; € S. The stoichiometric coefficients v}, and v}; give the number of molecules
for species S; that participate as reactants and products; they will be omitted in the
further course if they are one. Furthermore, as both sums run over all species indices, a
species will not be listed as reactant or product if v}; or v?i is zero, respectively. When
a reaction R; takes place, vj; particles of species S; are removed from the system while
v, are added. The net effect of a reaction execution on the state x shall be summarized

in the state change vector v;, a vector of length N with the i-th entry set to vfi — g

Example 2.1.4 Returning to the enzyme-substrate example, the set R consists of

three reactions:

RLQCE—FS\:\ES

(2.2)
R3 . ES — E+P

The double arrows indicate that the complex formation is a reversible reaction; R o
can also be written as two separate reactions Ry : E+ S — ES and Ry : ES — E+S.

The term “reaction network” has been frequently used to describe a set of coupled
reactions, but no formal definition was given so far. Having introduced both the species

and reaction sets now allows the following graph theoretical interpretation.

Definition 2.1.2 A reaction network is a weighted bipartite graph RN = (S, R, E),
with the two vertex sets S and R and an edge set £ = S x RxNUR x § x N,

10

2 Background

(@sicrophixplorer 181
I —

o (N NN NN DR S —

i

(N :
I .
| | |
i

i \ =
— \

] \| (=
El 1) Il
toneiE5_ W] 8]0 [raie (8]0] e

Figure 2.3: Visualization of a reaction network as a bipartite graph using separate
columns for species (left) and reaction (right) nodes. A link exists between entries
from the left and right column if the species participates either as a reactant (arrow
from left to right) or as a product (arrow from right to left) in the reaction. (|SJUSO08|)

Let R; € S and P; C S represent the set of reactants and products, respectively, for
reaction R;. For i € [1,N],j € [1, M], the edge set is defined as follows:

o (Si, Rj,v};) € Eiff S; € Ry, ie., S is a reactant of R;, and

o (Rj,8;,v%) € Eiff S; € Pj, ie., S;is created by R;.

A bipartite graph is a special type of graph with two distinct vertex sets and a single
edge set. Edges can only connect vertices from different sets; so in this case species
nodes are always linked to reaction nodes and vice versa. A reaction can be easily
identified by first looking for the appropriate node inside R and then following the
incoming edges to determine its reactant species and the outgoing edges to find its
products. The third entry of an edge tuple represents its weight, which is set to the

stoichiometry of the reactant or product, respectively.

Example 2.1.5 Equation 2.3 and Figure 2.4 show the reaction network for the enzyme-

11

2 Background

@
Ry

Figure 2.4: The enzyme-substrate reaction network as a bipartite graph. A single edge
connects a vertex from the species set with a vertex from the reaction set. The small
number associated to each edge denotes the stoichiometry for the species.

substrate catalyzation process.

RN., =(S, R, E)
S ={E, S, ES, P}
R ={Ry, Ry, R3} (2.3)

E ={(E,R1,1),(S,Ry,1),(ES, R3,1), (ES, Ry, 1),
(Rb ESa 1)7 <R27E7 1)7 <R27S7 1)7 (R37E7 1)7 (R37 P7 1)}

Representing a reaction network as a graph is merely one method. Other authors,
for instance, separate between atomic species and complexes [FH77|. Referring to
Examples 2.1.2 and 2.1.4, in addition to the species set {E, S, ES, P} a second set of
complexes could be defined as C' = {E + S, ES, E + P} and reactions would now take
place only between complex elements inside C'. It should be noted that the original
definition of C' is slightly more complicated (it is actually a vector space of real valued
functions on S, which assign stoichiometric values by multiplying an element of S
with a real number and define complexes as the sum of S elements), but the simple
interpretation given above suffices in this context.

An alternative to the rule-based interpretation of reaction networks, i.e., an explicit
description of reaction rules, involves communications between individuals. Possible
interactions are not written down as additional rules, but species now have the ability
to express with whom they are able to communicate. This individual-based inter-

pretation became particularly prevalent in the field of modeling languages during the

12

2 Background

last decade |[JLNU10, CHO09|, though first publications using it date back to the mid
seventies INVBDGT77].

2.2 Preliminary Considerations About Modeling And

Simulation

This section shall introduce terms and concepts regarding modeling and simulation
(M&S) which are necessary for the understanding of the remaining chapters. A research
field so broad and complex makes it difficult to cover it entirely within the narrow scope
of a dissertation, so the discussion will be by far not complete and several topics, e.g.,
model languages, visualization, verification and validation, are left out entirely.

As it is often the case, definitions for ubiquitous terms such as “simulation” can be
found in the literature of various research areas, e.g., in system simulation ([McL68, p.
3, p.6], [Gor77, p.5, pp. 17-18], [Riv72, pp. 109-110], [Sha98], [CGI1, pp. 6-7]), game
theory [WP03, p. 223|, or medicine [Jef05]. With this abundance of interpretations
it is a good approach to start with rather general definitions and subsequently refine

them to fit the context of interest.
Definition 2.2.1 A simulation is an experiment performed on a model [KW78|.

Definition 2.2.1 is remarkable for its simplicity: simulation is just a task applied on

some entity. The task in this case is performing an experiment.

Definition 2.2.2 An experiment is the process of extracting data from a system by

exerting it through its inputs [CG91].

Again, very simple but concise. According to Definition 2.2.2, performing an exper-
iment is nothing more than presenting a specific input to some system and observing
the generated output. It is not necessary to specify what a system is; all that is needed
can be found in Definition 2.2.2. The only functions a system has to provide to be used
as an experiment subject are taking inputs and generating outputs; nothing more is
needed, the internals, i.e., what it does with the input and how it produces the output,
are regarded as being hidden in a “black box”. There are some other, more verbose
definitions (e.g. [Zei84, Ste08, Gai79|), however, this interpretation fits the context of
this work very well.

Looking at the previous definitions, the answer to the question about the nature of

a model is, despite one key point, nothing of surprise.

13

2 Background

[System] [Question]—l Experiment I—b[Data,]—lInterpretationli
(a |

: Experiment (c)
| Modeling | gesign D i bl { Answer)

A

v

(b)
@—l Simulation I—P(Data,)—llnterpretationli

Figure 2.5: Using modeling and simulation as an alternative way to answer questions
about a system. Both the system and the question to be answered are taken into
account during the modeling and experiment design process (a). With the focus kept
on the simulation part, it is assumed here that the model used for the simulation has
been verified and validated (b). If the final answer does not provide the required infor-
mation, a new iteration of experiment design and simulation starts (c). (reproduced
and modified with permission from [Ste08|)

Definition 2.2.3 A model for a system S and an experiment F is anything to which

E can be applied in order to answer questions about S [CG91].

The interesting parts are the beginning and end of Definition 2.2.3. First of all,
a model is always linked to a reference system; it is a replacement for the latter,
created to provide answers about the substitute. Secondly, questions about a system’s
behaviour often cannot be answered by performing experiments with the system itself,
because it might be too complex, expensive, or small to work with or operate on time
scales which are difficult to observe (e.g., the time interval of interest is in the range
of nanoseconds or encompasses several centuries). Returning to the initial motivation,
the simulation of reaction networks, not all experiments a researcher would like to
conduct are possible in praxis; two limiting factors already mentioned above are time
and funding, others often depend on the questions asked. With standard wet-lab
equipment it is, for example, nearly impossible to continuously trace every protein
participating in a signaling pathway. This is where models enter the scientific stage.
An important statement shall be repeated at this point: models are never complete,
i.e., they are not intended to capture all features of its real counterpart; otherwise they
would become the system and their main purpose meaningless. Instead, if a system
turns out to be intractable for some experiments, a model can take its place and
might provide the required answers. Figure 2.5 summarizes the relationship between

simulation, experiment and model. It also shows the usual workflow: from defining the

14

2 Background

initial question to modeling and simulation to data interpretation and the answer. As
mentioned before, this is an iterative process; if the result is not as expected, then a
new cycle starts by, e.g., refining the experiment setup.

Formulating the set of questions as part of the problem statement should be the
first and most important step. They hint to system features which are essential and
thus need to be represented in some way. On the other hand, properties of lesser
importance could be ignored, reducing the model complexity. To sum up, they help to
find an appropriate framework for the forthcoming modeling task.

The theory behind modeling is spread over various research fields, from the develop-
ment of specific languages to express features of the system to model evaluation and
visualization. As stated at the beginning of this section, an in-depth introduction to
these topics is out of the scope for this dissertation and also not required. Instead,
the approach followed here is more focused on the actual simulation than on modeling
theoretical details. For simplicity, it is assumed that a system, e.g., a cannon shooting

a ball, can be modeled using the following three sets:

e The first one holds constant parameters representing the system’s time-invariant

features. Examples are the weight and size of the ball or the length of the muzzle.

e A second set, called the state, collects all features which can change over time.
Returning to the cannon ball, its position after leaving the cannon is a constantly

updated state variable.

e State variables are modified according to rules stored in the third set. Differential
equations describing how values change over time are one example and they can

also be applied for the cannon system.

A language which can express these sets is referred to as a modeling language and
an implementation translating the intended semantics into an output shall be called
a simulator. If, for example, mathematics is regarded as the language and rules are
coupled differential equations, a simulator would be any algorithm capable of solving
them numerically, e.g., the well-known Euler method. Revisiting Definitions 2.2.1 to
2.2.3 now gives the following basic simulation scheme. During an initialization step the
model is parameterized with the set of constant parameters and an initial state. While
some run condition holds, e.g., a stop time or a final state has not been reached, the
simulator cycles through the following steps: take the state variables as input, modify

them, and output the new state.

15

2 Background

State variables can be either defined on a discrete or continuous domain, depending
on the abstractions made during modeling. A first simplification was assuming the
existence of the three sets introduced above. Deciding for either domain can result in
further abstractions; two examples shall illustrate this. Using integers to count objects
or events seems natural: there can be only one, two, three etc. products or customer
visits, never one and a half. But allowing only discrete state changes could be more
difficult to model than switching to the continuous domain. Representing a state vec-
tor as a function with a continuous domain, e.g., time, and discrete codomain results
in non-differentiability at any point the state changes from one value to another. A
function is non-differentiable if it contains “jumps” and “gaps”, i.e., there exist argu-
ments for which the derivative is undefined. But if the discontinuities are treated as
continuous transitions (or: abstracted to be continuous), then differential equations
can be applied to model how the state changes within an infinitesimal interval; this
is commonly done in several fields, e.g., social sciences [GT05|, and can be regarded
a cornerstone in general system simulation (cf., e.g., [CKO06], which provides a good

overview of this topic).

A case for abstracting in the other direction, i.e., from a continuous system to dis-
crete model features, is the representation of an objects position, generally a three-
dimensional vector with real valued coordinate entries for each dimension. Despite the
fact that a digital computer is not able to handle continuous values though the pre-
cision of floating point numbers is sufficient for most applications and can be further
increased using arbitrary precision arithmetic (c¢f. [Knu97|) — modeling with this level
of detail comes often at the expense of time and resources needed for the simulation.
Taking a chessboard as a simple example, keeping track of a piece’s position as real
valued position vector would accurately reflect the real world, but is unnecessary; con-
sidering the field indices is not only easier to handle in a simulation but also closer to

the actual game.

Another general abstraction involves the treatment of time. Peoples perception and
interpretation of it differs, depending on the person who is asked; the smallest units in
everyday life are commonly seconds or minutes, demographers might be more interested
in processes that span months or years and biologist in dynamics at both very small
(microseconds or nanoseconds) and very large (hours, days, months) scales. The point
is: although time is continuous, it is only consciously perceived if linked to some event
of interest. This is reflected in simulation, with a state change of a system taking

the place of the event. Suppose that a system can be at any arbitrary time instant

16

2 Background

in any of the state within a set S = {S1,...,Sk}. Transitions, 77,75, ... change the
current state P € S to a successor () € S and take place in intervals denoted by
Aty, Aty, ..., At; € R

T; Tin

! At At
j j+1
~PeS—-QeS

PeS—-QeS ~PeS—-QeS

A simulation is called continuous if the number of transitions (events) within a certain
time interval is infinite; it is equivalent to say that in a continuous simulation the
individual time intervals At; between transitions are infinitesimal small. As it was
the case with state variables, a continuous representation of time is not possible on a
digital computer (also due to the possibility of infinite state transitions). Instead, the
simulation has to be broken down into discrete steps, as it is done, e.g., in numerical
integration methods to solve differential equations: an initial step size is chosen and it
is either kept constant or adapted for the remaining calculation steps. In continuous
simulations the domains for the time, state variables, input, and output are continuous;
models are described as sets of (partial) differential equations that represent how a
variable changes within an infinitesimal small time increment.

More interesting for this dissertation are simulations where the number of state
changes during an arbitrary time interval is finite (there are instances for which an
interval could be zero; however, these are special cases and need to be treated with care,
otherwise the simulation would come to a halt). Here the At¢; € R have either a fixed
size — a discrete-stepwise simulation — or are calculated dynamically, usually based
on the current state of the system, which is referred to as a discrete-event simulation
where time is skipped forward until something of interest, i.e., an event, happens. It
should be added that an explicit notion of time in a discrete-stepwise simulation may
in some cases not be necessary: if only the sequence of state changes matters and not
when they take place, then it suffices to consider the indices of the transition; time as
such is then represented implicitly, however, it is later still possible to assign a time
reference, e.g., the transition from one step to the next could represent a time span
of a month or year. In contrast to continuous simulations, the domains of the state
variables (and the respective inputs and outputs) can be either continuous or discrete.

Hybrid simulations are also possible by coupling the update schemes. Suppose a
continuously simulated variable; if at some point in time its value exceeds a threshold,
then an event is triggered and an output generated. For an outside observer it would

look like a regular discrete-event simulation, while it is actually a hybrid, with state

17

2 Background

variables updated continuously inside.

2.3 Simulation of Reaction Networks

Looking back at Definition 2.1.2, which introduced a first formal notion of the term
“reaction network”, it appears that it already comprises major elements of what has
been termed a “model” in the previous section. The state is given by the vector x and
the rules modifying it are stored as reactions inside R; additionally, the state space
S of a model shall be defined as the set of all possible states the model can be in.
The only part still missing before running a simulation is the actual simulator, which
should decide what rules can be applied next and update the state accordingly. It
is the part that encodes the semantics of the execution — which in turn are closely
coupled to the assumptions made about how the original system should be represented.
Some of those assumptions have been established right at the beginning: particles
are abstracted to numbers that denote how many entities of a specific species are
present; reactions are defined over species, they take a number of particles as inputs
and transform them into products — a simple interpretation, leaving out the complex
details of such a process, e.g., what happens at the level of atoms, because they do not
provide additional information regarding the main question of interest: how does the
number of particles change over time. In the following, several additional assumptions
and their implications on the semantics shall be discussed.

For the most basic non-spatial simulation of a reaction network defined hitherto
it is commonly assumed that the system is well-stirred and in thermal equilibrium.
Well-stirred (or well-mixed) means that the particles inside the volume are distributed
homogeneously, i.e., uniformly, on the time scale of the reactions. Though the firing
of reactions lead to local and temporal inhomogeneities in the real system, those are
removed by presuming that non-reactive collisions between the molecules drive the
system back into a well-stirred state in a time much smaller than the typical interval
between two reactions. Thermal equilibrium is reached when a change in the tempera-
ture can no longer be observed; as a consequence thereof, the velocities of all molecules
are distributed according to the Maxwell-Boltzmann distribution.

Now assumptions and derived semantics can be seen as being connected via an “if-
then” relationship. So why a well-stirred system with a constant temperature? If
a system does have these characteristics, then its dynamics, i.e., the evolution of

the state over time, can be well approximated by letting reactions fire at a certain

18

2 Background

rate. 'This means that all individual characteristics of particles, e.g., their energy,
shape, size, exact position, etc. do not have to be considered to represent a chemically
reactive system as long as reaction rates can be calculated. The theory behind this
is governed by the field of reaction kinetics. Each reaction is assumed to take place
with an intrinsic speed, quantified by the reaction rate constant, which depends on the
temperature, physical properties of the molecules, the viscosity of the solution, and so

on; it is provided as part of the reaction equation:

N N

Ry Y wns 3 urs, (2.4)
i=1 =1

A physically-grounded and very comprehensive derivation that lead to the existence
of such constants based on the above assumptions can be found in [Gil77]. There are
several factors influencing the speed at which a reaction occurs, one of which being the
concentration of the particles: the more molecules are present, the higher is the rate.
This relation finds its expression in the law of mass action, the most basic reaction
kinetic.

That said, it is time to go back to the initial question: how to simulate the evolution
of a systems state over time. A system changes its state whenever a reaction fires,
which, taken the statements from the last paragraph, occurs at a certain rate. The
relation between the change of a species state and the rates at which reactions fire
can be expressed in form of an ordinary differential equation (ODE), the “classic”

interpretation of reaction dynamics.

Example 2.3.1 Referring to the enzyme-substrate network, kinetic reaction constants

are assigned to the reactions from Equation 2.2:

Rip:E+S = ES
k2 (2.5)
Ry:BES™ FE+P

The concentration of the enzyme (E) changes when either reaction R;, Ry or Rj fires;
R, decreases the concentration, so it negatively contributes to the overall rate and the
reaction rate therefore has a negative sign, and Ry and R3 both increase the concen-
tration and the corresponding rates have a positive sign. The rate for reaction R; at
a time instant ¢ is, according to the law of mass action, the product of the reactants

concentrations, zp(t)zg(t), times the reaction constant. The following equations are

19

2 Background

10
T e
A
)
£ of
[=]
K=
iz
[
B 4f
=1
5
a
Q
O ol
0 1 fn
0 1 2 3 4 5 6 7 8
Time [s]
(— & — s — ES — p)

Figure 2.6: Plot of the solution for the enzyme-substrate ODE system. The reaction
constants are k; = 1Lmol 's™, ky = 157! and k3 = 10s~" and the system is initially
in a state with the concentrations for the species set to zg(0) = 1molL™!, z5(0) =
10mol L™! and zps(0) = 2p(0) = 0.

the ODEs representing the dynamics of the network:

D) e (t)es() + (ks + ho)rss(t)

dxs(t) = —kizg(t)xs(t) + kexps(t)
dt

o (2.6)
Er = hurp(t)as(t) = (K + ka)rss (1)

dxgt(t) = kﬁglﬁES(t)

Figure 2.6 shows how the state of the system changes for some example rate constants.

2.4 Stochastic Simulation

The solution to a system of ordinary differential equations represents a good approx-
imation of the system dynamics when the species are present in high concentrations
and a single reaction firing can be neglected. But when the concentration is very low,
this firing could indeed make a difference. To illustrate this, a model for viral kinet-

ics shall be taken as an example: a single viral template is introduced to some host

20

2 Background

[SYSY02|. Such a template can either infect a cell — which then produces further
template material, effectively spreading the infection — or the immune system of the
host detects and removes it. Simulating this scenario with a set of ODEs showed that
the infection always spreads throughout the host. In contrast, considering the race
between the infection of the first cell and the detection of the template, a stochastic
simulation revealed that the infection can be stopped before affecting further cells. So

what is special about this type of simulation?

A simulation using ODEs is always deterministic: given an initial state, the evo-
lution (or trajectory) is always the same, no matter how often the simulator (here:
the numerical integration algorithm) is run. But reaction firings are not deterministic.
Just because reactant particles are present does not mean that they actually react. For
that to happen, they first have to move into close proximity and then collide with the
correct orientation towards each other and enough energy to overcome the activation
barrier — if any of those prerequisites is not given, then they simply bump off and drift
away. Even if all factors influencing a reaction are known and considered, quantum-
mechanical effects still make it impossible to predict whether and when a reaction will
take place. In conclusion, reaction dynamics are subject to what is commonly referred
to as intrinsic and eztrinsic noise (e.g., cf. [TOO01, SES02, ELSS02|: the former repre-
sents the uncertainty in the outcome of an encounter between reactant particles while
the latter takes flucuations outside the network into account (e.g., the variation of
a protein’s concentration in a neighbor compartment, which influences how fast it is
transported into into the observed volume). Intrinsic noise is further enhanced by a low
copy number of reactive particles. Ordinary differential equations inherently assume
that the state variables have a continuous domain. While for large populations, which
are usually given as concentrations in mole per volume unit, with one mole having
~ 6.022 x 10 particles of the measured species, the continuity assumption does not
pose any problems, the case is different if only a few molecules are present, e.g., only
some hundreds or thousands. Now the result of a numerical integration could be that
for a time ¢ there are 100.23 particles of some species inside the volume — although

one would expect a discrete number.

As an example for all the points just mentioned, Figure 2.7 illustrates the difference
between a continuous deterministic and a discrete stochastic simulation (details about
how to perform a stochastic simulation will be given shortly). Note how the stochas-
tic simulation already stops after about 3s; all substrates have been converted into

products.

21

2 Background

10 : : _ —
st & o
8 7,
e 6f N
t.: \ !
[+
[=7 7/ N
S 4f N
B3 ’ M
Vi
* N
/ N
2- /7 N
4 \\\
0 AL B Ty L ECEP SR
0 1 2 3 4 5 6 7 3
Time [s]
" — E(stoch). — ES(stoch) -- E(det) -- ES(det.)]
— S (stoch.) — P (stoch.) -- S(det.) -- P (det.)

Figure 2.7: A single trajectory from the stochastic simulation of the enzyme-substrate
reaction. The reaction constants and the initial state are adapted from the deterministic
example with V =1L, so ¢; = 157, ¢; = 157!, c3 = 105! and the initial state is set
toxg =1, x5 = 10, xgs = xp = 0. Note that the unit of concentration has changed
to number of particles — there are now 10 molecules of F instead of 10molL~!. The
discrete-stochastic simulation makes jumps between the states while the ODE solutions
are continuous. After about three seconds the last substrate has been converted into a
product in the stochastic simulation.

22

2 Background

To account for both stochasticity and discreteness, the evolution the state x over
time, previously traced by a set of functions z;(t),7 € [1, N], shall now be represented
by a stochastic process X(t). Stochastic processes are sequences of random variables
(RV) whose order is defined by a (discrete or continuous) time index; as it is very likely
to have more than one species in a model, the general case of multivariate RV shall
be used for this introduction. X(¢) is therefore defined by a sequence (X; : ¢t € R) of
vectors containing discrete random variables that represent the state of each species at

some time t:

Xt - (Xl,tu X2,t7 o 7XN,t) (27)

The distribution of X; depends on what has been observed, i.e., on the history of
realizations (X; = x;:t € R,0<{ < t,x; € S):

px,(x) =PX, =x|(X;=x;: 0<t < t,x; €8)), (2.8)
with
P(XO = X) - 5X0,x07 (29)

i.e., the probability mass at time t = ¢y is located at the initial values of the species
Si,i € [1, N]. Note that for a single X;,, the entire previous state vectors are consid-
ered, not just the history of S;; as a result, the random variables may be correlated, an

aspect which will be relevant in Chapter 5.

If the history is restricted to only include the last state, i.e., if:

P<Xt:X’(X,§:XtA:Z?<t,XgGS)) =
P(Xt =X | Xpred(t) = Xpred(t))a Xpred(t) s (210)
and pred(t) is defined such that =3¢ : 0 < £ < t A pred(t) < £, then the stochastic

process has the Markov property. Applying a marginalization to the right hand side of

Equation 2.10 gives the unconditional probability to be in state x at time ¢:

P(X; =x) =Y P(X; = x| Xpear = ¥), (2.11)

yeS

Another special case are time-homogeneous processes; here the probability of a transi-

2x; is the configuration of the state variables as it was observed at , i.e., a realization of X;.

23

2 Background

tion from one state to a successor state is independent of the time, i.e.,:
P(Xt =X | Xpred(t) = y) = P(XS =X | Xpred(s) = y),t 7é S,y € S. (2.12)

In the following, most stochastic processes are assumed to be both Markovian and

time-homogeneous, so the time reference is left out in some equations.

A stochastic constant c; is assigned to each reaction R, and replaces the kinetic
constant k; introduced above. This also brings along a shift from reaction rates to
reaction probabilities: c¢; also depends solely on physical properties of the reactant
species, the solvent, the temperature, and other conditions, just like k;, but ¢; dt gives
now the probability that a particular set of reactant particles undergo reaction R;
during the infinitesimal time interval dt inside the system. Let H;(x) be the number
of distinct reactant combinations of reaction R; when the system is in state x; H;(x)

can be expressed as a product of binomial coefficients:

H,(x) = lN"[(;) (2.13)

with v;; as the change in the particle number of species \S; caused by a firing of R;.
Applying the law of mass action leads to the probability that reaction R; will take

place somewhere inside the volume during dt:
P(j;x,dt) = H;(x)c;dt. (2.14)

Note that Equation 2.14 does not imply that each combination of reactant molecules
has the same probability of participating in a reactive collision. This is clearly not
possible as the molecules may be located far away from each other. In fact, c; dt repre-
sents the average probability of a reactive collision over all possible relative positions
of a reactant set |GLPO7|. Furthermore, Equation 2.14 is only valid if the size of the
particles is negligible compared to the size of the volume — they are essentially points.
In a recent publication Gillespie studied the question how to modify this equation to
account for different reactant sizes |[GLP07|. The authors restrict their calculations to
the one-dimensional case because it is difficult to find a model that distributes finite-
sized particles in a uniform and non-overlapping way for higher dimensions. However,
they show that only minor modifications of Equation 2.14 are necessary to calculate

the desired probability.

24

2 Background

Zeroth-order (0; =0): R;: 0= S
First-order (O; =1): R;: 51 = Sy
Second-order (O; =2): R;:S1+ 5 5 5
R; : 25, 5 5
Third-order (O; =3): R;:S1+ 5+ 55 55,
R; 2S5+ Sy = S;
R; 1358 = S,

Table 2.1: The orders for the most basic reaction types.

As it may be guessed, both the stochastic and kinetic constants are closely linked
to each other. To be exact, they are related via the volume V. Kinetic constants
are relative to the unit volume because in the continuous deterministic regime the
elements of the state vector are usually given in units of concentration, e.g., molarity,
which denotes the number of molecules per liter of solution. In contrast, the state
vector for a stochastic model contains discrete numbers of molecules for each species.
So given a reaction R; of order O; > 0 (see Table 2.1), the stochastic constant ¢; can
be obtained from a given kinetic constant k; by multiplying the latter with 1/V %=1,

Based on Equation 2.14, a propensity a;(x) for reaction R; is defined as a;(x) =
H;(x)c;.

2.4.1 The Chemical Master Equation

The dynamics of a system interpreted as a stochastic process having the Markov prop-
erty can be expressed in form of the chemical master equation (CME), which is, in some
sense, the stochastic equivalent to the set of ODEs used above. Let P(x;t) = P(X,; = x)
be the function giving the probability that the system is in state x at time ¢ (see last
section); knowing it would completely characterize the state of the system for any point
in time. An expression for this function can be derived by first looking at how this

probability changes within a small time increment At.

P(x;t + At) = P(x;t)[1 — Z aj(x)At] + Z P(x —vj;t)aj(x — v;)At

The first term on the right hand side gives the probability that the system is in state x
at time t and no reaction will fire during At; the second term sums up for each reaction

R; the probability that the system is one firing of R; away from reaching state x (i.e.,

25

2 Background

the probability of being in a predecessor state x — v; at time ¢) and that this reaction
will be executed during At¢. Rearranging the terms and taking the limit At — 0 finally
results in the CME, a set of coupled differential equations describing the evolution of

the state probability density over time:

0P(x;t) y P(x;t + At) — P(x;1)

Ot Ao At
M M
= P(x—vjit)a;(x = v;) = P(x;) > a;(x)
i=1 j=1

It is fairly easy to write down the equation itself, but solving it can be difficult if not
impossible — an equation is necessary for each of the (possibly infinite) states the
system can be in. Despite this, it could be the case that not all states are actually
reachable within the time interval (o, ¢7] of interest and, as has been shown by Macna-
mara et al. [MBS08|, this can be exploited to find an approximate solution to P(x;1)
at different time points t € (¢, t] without the need for many SSA realizations.

But solving the CME, which is often intractable, is not the only way how to get the

desired information from a stochastic processes.

2.4.2 The Stochastic Simulation Algorithm

First works in the field of stochastic simulation date back to the publications of Kurtz
|Kur72|, Bortz, Kalos and Lebowitz |[BKL75| and Gillespie |Gil76, Gil77| from the early
to mid-seventies. While Kurtz focuses on relating the stochastic interpretation of re-
action dynamics to the deterministic one, Bortz et al. and Gillespie both propose a
method to generate trajectories of a continuous-time Markov chain (CTMC) that can
be described by a CME introduced in the previous section; the only significant dif-
ference between both approaches lies in the fields they were introduced to. While the
former has been presented as a novel technique to study Ising spin systems, i.e., models
for ferromagnetism, the latter was explicitly used to perform simulations of reaction
networks. The underlying principles are basically the same and today the method is
commonly referred to as stochastic simulation algorithm (SSA) (also Gillespie’s algo-
rithm in some publications).

Solving the CME gives the probability distribution for the state vector at an arbi-
trary point in time; this process is basically the stochastic equivalent to the analytical

treatment of an ODE system. However, if either is not analytically tractable, then

26

2 Background

Algorithm 2.1: Pseudo-code description of a template for discrete-event stochastic
simulation algorithms.

Parameters:
t (global time)
Input:
RN = (S,R,E) (reaction network)
x = (r1,...,xy) (initial state)
(tstart, tend) (simulation interval)
114 tstart;
2 while t < t.,q do
3 7,k < Select Next Reactions(x), 7 € R,k = (k1, ..., kum);
4 t<—1+T7;

ot

M
X<—X—|—Zk‘jVj;

j=1

numerical methods are required to find a solution. Instead of dealing with the CME;,
stochastic simulation algorithms can generate single trajectories through the state space
that represent realizations of the underlying Markov process. Reactions between the
species are seen as events that modify the state vector at discrete time points. If there
is a way to determine the type of the next event, i.e., the reaction that is going to
fire next, and the time when this will occur, then a basic simulation scheme could
look like the one shown in Algorithm 2.1. All that is needed here is an algorithm for
Select Next Reactions(x). Two equivalent variants, called the Direct Method (DM) and
the First Reaction Method (FRM), have been presented by Gillespie in |Gil77|. To
derive the second one (see Algorithm 2.2), it shall be remembered that the underlying
stochastic process is a continuous-time Markov chain. As such, being in some state x
at time t, the next possible states are the ones that can be reached by a single firing
of any reaction in R. The time it takes until R; will fire next is an exponentially dis-
tributed random number with rate parameter X set to a;(x) — a direct consequence of
the memoryless property of the process. All the FRM variant needs to do is to calcu-
lates for each R; a sample 7; from Exp(a;(x)) (e.g. via inverse transform sampling, so
7; = —InU(0,1)/a;(x)) and execute the reaction with the minimum next event time.
But this requires in any case the generation of M samples — which is why the FRM

is generally considered as being inferior to the other alternative, the DM.

This method first calculates the time when something will happen and afterwards

27

2 Background

Algorithm 2.2: Pseudo-code description for the Select NextReactions(x) variant
of the FRM. The return value k = lﬁ/" is an M-dimensional vector with &, = 1 and

Parameters: None
Input: x (current state)
for j € [1,M] do
L update propensity a;(x);
for j € [1,M] do
—In(U(0,1
e S0
a;j(x)
(7, 1) <= (minjep,an{7;}, argmin e 1 {7;});
6 return T, lfy

N =

w

'y

ot

Algorithm 2.3: Pseudo-code description for the DM’s SelectNext Reactions(x)
method.

Parameters:
ap(x) =0 (sum of propensities)
Input: x (current state)

for j € [1, M] do

-

2 update propensity a;(x);
3 ao(x) « ap(x) + a;(x);
—l 1
L —In(U.1)
ao(x)
5 determine p as smallest integer satisfying
"
a;(x)

>U(0,1),n € (1, M|;

o DRy UOmEn]

7 return T, 124

28

2 Background

what event actually will take place. It utilizes the fact that the sojourn time in a state x
is exponentially distributed with rate parameter ag(x) = Zj\il a;j(x), so it takes a time
7 ~ Exp(ag(x)) until any of the reactions from R will fire. After this time has expired
the system changes from state x to x 4+ v; with probability a;(x)/ao(x). Algorithm
2.3 summarizes the main steps performed in the DM. Note that instead of M samples
from the uniform distribution U(0, 1), the DM only requires two: the first one to get
the interval 7 and the second for finding the reaction that is about to fire.

Compared to a toolbox, the DM and FRM are the hammer and screwdriver: the
basic instruments that can be found in most of the simulation software released over
the last years. They are simple to implement and do their job, one reaction after
another; the latter is actually the reason why they are also called ezact algorithms,

each generated trajectory is a sample from the underlying stochastic process.

2.5 Spatial Stochastic Simulation

With the advent of high-resolution microscopy, the demand for stochastic algorithms
that can also handle inhomogeneous particle distributions grew — simulating the evo-
lution of a system not only over time, but also in space was considered as the next step
to deepen the understanding of reaction networks.

For the systems considered so far, space has been treated only implicitly, i.e., the
molecules of all species are distributed homogeneously inside the given volume, without
considering individual positions. But for some biological systems this approximation
does not reflect the inherent dynamics properly. One example is signaling pathways.

In the Wnt pathway introduced in Section 2.1 the signal from outside the cell causes
a reaction cascade across the cell membrane, the cytosol and the nucleus, which even-
tually triggers the transcription process. But before any reaction can take place its
reactants have to “find” each other, i.e., they have to move into close proximity. As
a consequence, the signal is not only transported over time but also through space.
To capture this, models for reaction-diffusion systems include an explicit treatment of
space. The most accurate representation would consider each molecule as an individ-
ual that moves continuously through the volume. But this accuracy often goes along
with high computational requirements which limit the number of molecules that can
be present within the volume and also the simulation time interval. And it could be
asked: is this detail even necessary to answer the questions about the system?

One way to reduce the computational effort is to discretize space into smaller sub-

29

2 Background

I
~

Asv/

A

%

A
Figure 2.8: Some examples for a 2D spatial discretization. From left to right: Sub-
volumes as squares, regular hexagons and Voronoi regions.

domains, commonly termed sub-volumes in the literature (cf. [Gil76]). Objects inside
these regions can still be either individuals or anonymous parts of a population, but
their movement is restricted to jumps from one sub-volume to a neighbor. The sub-
volumes can have an arbitrary shape as long as their union covers the entire volume,
though it is often convenient to use a square (2D) or cubic (3D) representation (see
Figure 2.8). Their size depends on the desired spatial resolution: a very fine-grained
discretization, i.e., the area (or volume in higher dimensions) of a single region ap-
proaches zero while their number increases, permits an almost continuous motion of
the molecules. Large sub-volumes, on the other hand, can be used to model entire

compartments, e.g., the exterior of a cell, the cytosol and the nucleus.

In the course of this dissertation, only very simple reaction-diffusion systems shall be
studied where the species are contained inside an n-dimensional hypercube with side
length A and a volume V' = A"; in the planar case (n = 2) the container is therefore
a square and in the three-dimensional space a cube. Let £ denote the discretization
parameter; the original cube-shaped volume is then sub-divided into L = &" sub-
volumes, each having a side length of Ay, = A/¢ and a volume of V,, = A7, (cf. Figure
2.8). Each of those smaller volumes is a well-stirred environment of its own: they
contain a number of particles which can react just like it was introduced previously.
The only addition is that particles are now allowed to leave a site and diffuse into
a neighbor; from the perspective of a single sub-volume, some molecules suddenly

“disappear” while others “show up”.

It has been shown [Gil76]| quite early that the task of simulating such a spatial model

can be reformulated to make use of an existing non-spatial simulation algorithm, e.g.,

30

2 Background

the DM or FRM from the last section. Given a reaction network RN, the fist step is
to create copies of the species and reactions such that each sub-volume basically has
its own sets. With N species and L sub-volumes, a new set S is defined on the basis

of the existing species:
S = {51,852, 55, ..., SN(=1)+i»- - - SNL} (2.15)

with species Sy—1)4+1 to Syg—1)+n = S “belonging” to sub-volume [. Similarly, the

state vector x is expanded as well:

X = {171,1’2,1‘3,...,C(]N(l_l)_H',...,l‘NL}. (2.16)

After defining the state of the model, the next step is to look at the rules that can
modify it. It is not only important to specify what species variables are changed, but
also where. A reaction previously defined for only one volume can now fire in any of
the L sub-volumes, which makes it necessary copy a rule L times, but with each copy

taking care of the state changes in only one sub-volume. Reactions in the general form:

N N
Ry i85 Y b.S;, (2.17)
=1 =1

are replaced in R by the following L subsidiary reactions:

L N N
U R ZU;,N(FI)HSNU—DH — va,N(l_l)HSN(Z—nﬂ; (2.18)
=1 =1 i=1

note that the state change v; y—1)4; only affects the state variable at position N (I —
1)+ in x.

But reactions are not the only rules that have to be considered; particles can diffuse
between sub-volumes, as mentioned above. An auxiliary structure, an L X 2n connec-
tivity matriz C, is defined that keeps track about the neighbors of each sub-volume
(cf. Figure 2.9), with C; = C|[l;1...2n] denoting the submatrix (in this case: vector)
consisting only of the entries in /-th row. Then a “diffusion” reaction expressed in form

of a rule may look like the following:

D;
Rijk : SN@-1)+i — SN(CL—1)+i- (2.19)

31

2 Background

Ja
1 2 3
3 4 2 7
4 5 6 1 5 3 8
a s C=
- 3 9 8 3 7 6
N

Figure 2.9: Small 3 x 3 model and the corresponding connectivity matrix. It is assumed
that the connectivity relation between the sub-volumes is toroidal, i.e., whenever a
particle would leave the volume, it diffuses into the sub-volume directly located on the
opposite side.

The rule removes one Sy(_1)4; particle and introduces it to the k-th neighbor of sub-
volume [. Taking all species and sub-volumes into account adds a total of NL2n
reactions to R — which only describe the movement of the species between the sub-
volumes. The diffusion constant D; is a measure for the speed at which species S; moves
through the volume. An expression for the propensity function a;;x(x) associated with
the diffusion reaction R;;j can be derived from Fick’s first law [Fic55], which relates
the flux J, i.e., the amount of substance diffusing through an area A during a unit
time interval, to the speed of the particles and the concentration difference along the

movement axis; so, for one spatial dimension, the flux is:

aC ()

J=—-DA o

(2.20)

To see how this can be used for deriving a;;(x), a small system is assumed, consisting
only of two sub-volumes, 1 and 2, with side length A, and a single species S; with
diffusion constant D; (ref. Figure 2.10). Each sub-volume contains only S; molecules,
so the state matrix can be therefore represented by the vector x = (2, xQ)T. How does
the propensity function a;;2(x) behave for the diffusion reaction Rj;2 : S} D, So?

As a first step, Equation 2.20 is approximated by a finite difference equation:

[C(z + Az) — C(x)] '

~ DA
J Ax

(2.21)

For the well-stirred sub-volumes 1 and 2, the concentration difference is the difference

in molecule numbers divided by the volume V,, =)\gv and Az is set to Ay, the center-

32

2 Background

1 —
Q OOZ
'@ -
LE

A.S’U

YYYYYYY
©
L - - -

Figure 2.10: Example 2 x 1 model used to derive the propensity function a;;2(x) for
the diffusion reaction Ry ;2 :S) D, Ss.

to-center distance between the two sites. Inserting this into Equation 2.21 finally gives:

a1,1,2(x) =Ja~ D)\ [$1 - xg] _ D[xl _ xg]

T 2 (2.22)

But diffusion shall only be allowed in the direction from high to low concentration, so
the propensity for an arbitrary diffusion reaction R, is defined as:

D [IN(1—1)+i - xN(cl,k—l)Jri}

ai,l,k<x) =)‘gv

i g = av@u > 0) o

0 else.

The state change vector for reactions of this type has a single —1 at position N(I—1)+1
and a 1 at N(C;; — 1) + 1, so for short:

Vilk = _1%6—1)+¢ + 1%%017,6—1)“ (2.24)

Everything is now prepared for a non-spatial simulation of a spatial model using ei-
ther the DM or FRM. Though not explicitly built for dealing with space, these basic
algorithms can still be used if the reaction network is expanded as described above;
from the perspective of an SSA, it just generates trajectories of a very large non-spatial
model. However, representing spatial models like this does have some serious draw-
backs. The size of the reaction network increases drastically when even only a few
species, reactions, or sub-volumes are added — which also means more work for an
algorithm. Furthermore, it is not very intuitive: there should be only N species, not

LN, and reactions basically have the same effect, no matter in what sub-volume they

33

2 Background

take place, so the expansion here should also be not necessary. Nevertheless, the fact
remains that it is possible this way and the last thirty years saw several new algo-
rithms, specifically tailored towards executing spatial models, which, more or less, are
built upon the basics laid out in this section. The next chapter will present some of

these and also discuss how to find a better representation of a reaction-diffusion system.

The Selection of \,, It has been long argued that for real systems \,,, i.e., the grid
spacing, cannot be chosen arbitrarily small because the representation of the dynamics
as a reaction-diffusion master equation (RDME), which is basically a generalization of
the CME for spatially discretized systems, would break down if A, is either smaller
than the mean free path between collisions or larger than the mean free path between
reactions [BM96] (the mean free path measures how far a particle can travel on average
before colliding or reacting with another molecule). These restrictions have been re-
evaluated lately by Sjoberg et al. [SBE09|, with the result that at least the lower bound
can be further decreased, allowing sub-volume sizes that come close to microscopic
length scales; however, doing so requires an adaptation of rate constants. Regarding
this topic, the dissertation is more focused on the algorithms that are able to simulate
non-spatial and spatial reaction networks, and less on their application to explicit
real world systems. Forthcoming chapters primarily use artificial benchmark models
(the decision for this type of models will also be discussed) that allow to analyze
how algorithms behave when faced with certain model parameters, e.g., high reaction
constants, slow diffusions, many sub-volumes or sub-volumes with different \,,; so
emphasis is laid on the question how the performance of an algorithm changes if, e.g.,
the diffusion constants increase by an order of magnitude or the number of sub-volumes
is doubled. Despite this, the results obtained by Sjoberg et al. are especially important

for Chapter 7 where an algorithm is introduced that uses a variable grid spacing.

2.6 Simulation Using JAMES |1/

The JAMES II (JAva-based Multipurpose Environment for Simulation) framework
[HUO7b| has been created to ease the development of modeling and simulation meth-
ods. In contrast to its successor, which was specifically designed for agent-based mod-
eling, JAMES II is targeted at a more general audience: it currently supports several
formalisms, e.g., variants of DEVS |ZPKO00|, the 7 calculus [Mil99], and Cellular Au-

tomata, and offers various implementations of corresponding simulation algorithms.

34

2 Background

The architecture of JAMES II is based on a concept called plug’n simulate, which en-
ables users to create plug-ins for a number of plug-in types, such as models, simulators,
random number generators, or event queues just to name a few. Over the years the
library of plug-ins grew constantly, encompassing now over 500 implementations; all
together the framework consists of more than 6000 classes with nearly 450.000 lines of
code. The main functions, like defining experiments and executing them, are collected
inside the JAMES II core, which represents the heart of the framework. Plug-ins
can be seen as extensions to this core functionality; for example, to implement a new
stochastic simulation algorithm all a user has to do is to implement the algorithm as a
plug-in for the PROCESSOR plug-in type and specify that this plug-in supports a certain
type of model (e.g., Species-Reaction models). If additional sub-algorithms are needed,
e.g., random number generators or event queues, than the instances are either created
explicitly by the user or by JAMES II; in the latter case the REGISTRY, which is a
repository for all registered plug-ins, is queried to find an appropriate implementation.

Models in the context of JAMES II are instances of model classes, which in turn are
again realized as plug-ins. Simple languages for an easier creation of model instances
for non-spatial and spatial stochastic simulations have been developed, but as this work
is focused on the simulation part they will not be discussed in detail here.

JAMES II has been used intensively for this dissertation. All of the algorithms
discussed in the evaluation study found in Chapter 6 (and several more) have been
implemented as plug-ins for the framework. Furthermore, the study also makes use
of advanced techniques for experiment execution, e.g., parallel simulation replication
[ELUO09| and automated runtime performance evaluation |[EU09|. A more in-depth
description of JAMES II can be found in the dissertation of Jan Himmelspach [Him07]|

and the software itself is available for download at www. jamesii.org.

2.7 Summary

The aim of this chapter was to provide the basic definitions, notations, and terms
used throughout the dissertation. Starting from a biological perspective, Section 2.1
motivated the use of simulation, i.e., performing experiments on a model of a system,
as a way to complement the work done in the wet-lab. Without a formal definition
of what a model actually is, a preliminary abstract representation for a real-world
biochemical reaction network has been introduced, making this the entry point into
the topic of modeling and simulation (M&S) that followed.

35

2 Background

Section 2.2 was a discourse into the field of M&S and provided the basic definitions
for “simulation”, “experiment”, and “model”; these terms and several more are going to
be used regularly in upcoming chapters.

The reaction network definition from the first section was re-visited and extended in
Section 2.3. Reactions are the rules that modify the state variables; it was discussed
how to include time by assigning reaction rate constants that quantify the intrinsic
speed at which those reactions fire. When it comes to the actual simulation, there
are several fundamental alternatives (solving differential equations, generating trajec-
tories of stochastic processes), all of which assume a homogeneous distribution of the
molecules inside the volume, i.e., a well-stirred system.

Discretizing the volume into smaller sub-units, called sub-volumes, allows a renunci-
ation from the well-stirred assumption. It has been shown in Section 2.5 how a spatial
model, where particles are allowed to diffuse between sub-volumes, can be reformulated
such that a non-spatial simulation algorithm is able to perform the simulation task.

Finally, Section 2.6 introduced JAMES II, the simulation framework that has been

extensively used for this dissertation.

36

3 Stochastic Simulation

Algorithms: A Small Survey

From the early beginnings thirty years ago to the present day there has been — and
still is — an active community behind the work on stochastic simulation of biochemical
reaction systems. Existing methods get revisited again, discussed in the light of larger,
more complex models which motivate the development of better, improved variants.
There are, for example, numerous extensions of the basic Direct Method introduced in
the last chapter; some of these descendants are again used as the foundation for others,
so an entire family tree of methods exist. Speaking of a family tree, at some points
a new seed gets planted that develops into a separate research direction; one example
are the so-called leap-methods that introduce further assumptions on the dynamics of

the underlying system.

On other occasions links are forged between research areas, either by developing a
method that closes the gap or by a combination of techniques from different fields. For
instance, starting with discrete stochastic exact algorithms (like the DM) it is possible
to successively add assumptions that further approximate the real solution and finally
arrive at the continuous deterministic reaction rate equations, the system of ODE’s

already mentioned previously.

The following sections will present some of the work that has been done in the field
of stochastic simulation in a sense, these can be seen as “branches” of different family
trees, some of which are quite new while others have grown over almost three decades.
To stay focused, only methods and concepts relevant for the further progress of this
dissertation shall be discussed in more detail; alternative variants will be mentioned as

well, but much more briefly.

37

3 Stochastic Simulation Algorithms: A Small Survey

3.1 Beyond The Origins

Taken as starting points, the DM and FRM (see Section 2.4.2) can be seen as “grand-
fathers” of modern exact stochastic simulation algorithms. Since their publication a
number of improved and optimized variants have been presented; still conserving the
basic modus operandi calculate the time and type of the next reaction, then update
the state and proceed with the next event — these methods are aimed at optimizing
time-consuming operations or performing them in parallel on multiple processing units.
Before introducing some of them, a different perspective on the representation of reac-
tion network dynamics shall be briefly discussed. Four years before Gillespie presented
his paper, Kurtz [Kur72| studied the relationship between deterministic and stochas-
tic models for chemical kinetics. The main difference to the stochastic representation
described in the previous chapter is that in the framework used by Kurtz the state of
the system at any time ¢ is defined by a vector of random variables representing the
number of firings for each reaction (he also shows how to obtain the number of particles
from this vector) and whose evolution is goverend by a Poisson process. While this
may be confusing and less intuitive at the beginning, it turns out that starting from
this premise it requires only a small step to arrive at the so-called leap methods that

will be discussed below. The work of Kurtz was later taken up again by, e.g., Anderson

[And07, Ando8].

3.1.1 The Next Reaction Method

A well-known representative is the Next Reaction Method (NRM) by Gibson & Brucks
[GBO00], who took the FRM and modified it to yield shorter execution times. As a
reminder, the basic steps the FRM performs are: update all propensities, calculate
for each reaction the interval until the next occurrence, take the minimum thereof,
and finally execute the respective event. Almost every step has been refined towards
a better performance. The first one, updating the propensities, is now limited to
dependent reactions. Looking at the definition of a;(x) reveals that it does not have to
depend on the entire state vector but only on the state of the reactant species. It can
be therefore concluded that the propensity of a reaction R; does not change unless a)
R; fires or b) another reaction fires that shares at least one species with the reactant
set of R;. This insight resulted in the introduction of an additional data structure —

the dependency graph Gp.

38

3 Stochastic Simulation Algorithms: A Small Survey

Rl » R2 > Rg
v v
R1 < Rg < Rg R4
(a) (b)

Figure 3.1: The dependency graphs for the a) enzyme-substrate reaction network and
b) the small example network defined by the set of reactions in Equation 3.1.

Definition 3.1.1 A reaction dependency graph Gp = (Ig, E') consists of the reaction
index set I and an edge set that is defined as follows. Let R; € S and P; C S be the
sets of reactant and product species for reaction R;. Then there exists a directed edge

(4, k) in the graph, i.e., R; depends on Ry, iff:
a) R; and Ry share reactant species, i.e., R; MRy # () or

b) Ry has products species that are also reactants for R, i.e., R; NPy # 0.

The graph can be easily created during the initialization of the algorithm. Once a
reaction has been executed, all dependent reactions are identified and their propensities
recalculated. The effectiveness of using the graph depends on the model: if the outgoing
order, i.e., the number of edges originating from a node, is large for the majority of
the reaction nodes, then more reactions have to be updated in each iteration and the

benefit of the dependency graph becomes less noticeable.

Example 3.1.1 The dependency graph for the enzyme-substrate reaction example is
shown on the left side of Figure 3.1. Here a firing of any reaction requires an update
of all other reactions, so for this example the dependency graph does not provide any
improvements over algorithms not using this structure. However, the scenario is quite

different for the following set of reactions:

R :A+B—C
Ry:D+FE— A
Ry:C—D+F
Ry,:F—G

(3.1)

The associated graph is depicted in Figure 3.1b. Executing Rj3 requires an update of
two other propensity values, while for any other event only a single additional update

is necessary.

39

3 Stochastic Simulation Algorithms: A Small Survey

Algorithm 3.1: Pseudo-code description for the NRM’s Select NextReactions(x)
method. Note that the NRM uses absolute instead of relative times, so if ¢, is the
smallest next event time stored inside the event queue and ¢ the current time, then
t, — t is the interval until the next event will occur. During initialization, with
X(0) = %o, the event queue EQ is filled with pairs (—In(U(0,1))/a;(x), R;).

Parameters:

EQ (event queue)

Gp (dependency graph)

< oo (last executed reaction)
Input:

x (current state)
t (current time)

1 if y; # oo then
2 D,, «—A{v:3(v,m) € Gp U # v};
3 update next event times for all R;,j € D,,:
s vyesztﬁ(M)m_tm;
ay (x)
5 requeue pairs (t,, R,),Vv € D, into EQ);
6 update propensity a,,(x) and calculate next event time for g
Pty —n(U(0,1)) /0, ()
8 enqueue pair (t,,, R,);
9 dequeue reaction R, from E(Q with the smallest next event time ¢,;

10 fy <— p
11 return ¢, —t, 13/[

Gibson & Bruck furthermore showed that calculating the next event time does not
necessarily require generating new random numbers, which is considered by the authors
as one performance bottleneck. A prerequisite for this is switching from relative to
absolute event times. If events have a relative time stamp, then a reference time point
is needed to determine when the event will take place. In both the DM and FRM 7 is
always given relative to the current time ¢; the next event time for the selected reaction
R,ist+T,.

The NRM, on the contrary, calculates for each R; the next event time ¢; and stores
the time-reaction pair (¢;, R;) inside an event queue. Algorithms of this type ensure
that at any time the top most event, i.e., the item that will be dequeued next, has the
minimum (or maximum, depending on the sorting preference) value for some sorting

criterion, which is usually the time stamp of the event, yet it can be any of its attributes.

40

3 Stochastic Simulation Algorithms: A Small Survey

After a reaction firing, the propensities of all dependent reactions need to be updated,
but doing so invalidates their stored next event times. Now the usual step would be
to draw fresh random numbers and determine the interval until each of the reactions
will fire again. Gibson & Bruck prove that by making the transition to absolute times
the next event time ¢; can be recalculated based on the current value and the updated
propensities, without making calls to the RNG. If R, is the executed reaction at t =1,
and D, = {v : 3(v,n) € GpUv # pu} the set holding the indices of reactions depending
on Iz, then

t, = (%) (t,—t)+t,v € D,. (3.2)
The only random number required is used to determine when R, will fire next, which
is done in the same way as it was for the FRM: by sampling from Exp(a,(x)) (see
Section 2.4.2). Algorithm 3.1 summarizes the Next Reaction Method in pseudo-code

description.

3.1.2 The Optimized and Logarithmic Direct Methods

A prevalent argument against the NRM is targeted at the more complex algorithmic
description and the need for additional data structures, e.g., an event queue implemen-
tation and a storage for the dependency information. Cao et al. [CLP04| presented an
optimized version of the DM (the Optimized Direct Method, or ODM for short), that
updates only dependent reactions similar to the NRM, but also uses an additional en-
hancement: the reactions are sorted by decreasing propensity values, which can speed
up finding the reaction that will be executed next. In the original DM, individual
probabilities a;(x)/ag(x) are summed up until the sum exceeds a generated uniform
random number. The index of the last reaction whose probability was added is selected
as the imminent reaction. This can be very inefficient if there are a lot of reactions that
only contribute with small propensity values to the overall sum. The ODM records
the amount of firings per reaction during an initial warm-up phase to calibrate itself.
It then sorts all reactions by their propensity, in descending order. This way higher
propensities are summed up first, which makes it more likely that the iteration stops
after only a few summations.

Other authors also identified the search for the reaction that will fire next as one
critical bottleneck of the original DM. Even including the ODM’s modifications, the
upper bound complexity for locating the imminent reaction is still O(M) — in the

worst case the sum runs over all reaction indices. Furthermore, relying solely on a pre-

41

3 Stochastic Simulation Algorithms: A Small Survey

simulation to find the ordering can lead to a non-optimal result if the reaction execution
behavior of the model changes over time, i.e., from some time point onwards reactions
that only had a low firing rate first start getting executed more often, yet they are
still near at the end of the sequence determined during the pre-simulation. But inter-
preting the task as a search problem, i.e., find the index j* € [1, M] in a list of partial
sums (a1(x), 23/:1 ajy(x),..., Zyzl aj(x)) for which Z;,*;ll aj(x) < U(0,1)ap(x) <
Z;’:l aj(x), opens up a wide range of special algorithms that perform this lookup
very efficiently. This idea finds its application, among others, in the Logarithmic Di-
rect Method [LLP06[; its name is derived from the average complexity required to locate
the index when using a binary search algorithm: O(log M). Another algorithm, the
Sorting Direct Method [MPC™06], is built upon the ODM and dynamically sorts the
reactions by decreasing propensity: after a reaction has fired, it is moved up in the
hierarchy, so even reactions that are “silent” at the beginning but active later on will
eventually appear near the start of the list.

It shall be noted that the basic idea for this type of algorithms (using a search to
find the next reaction) has been already proposed in 1995 by Fricke & Wendt [FW95]
in the context of reaction-diffusion systems. Here sub-volumes are classified according
to their propensity (called “reactivity” in the paper) and in the first step during each
iteration the class containing the volume that will execute an event next is found using
linear selection (by adding up the propensities, just like it is done in the DM), but with
the twist that the classes also get sorted by decreasing reactivity which makes it
more likely to find a class after only a few summations in subsequent iterations. The
next two steps select a sub-volume from the chosen class and then the event (diffusion

or reaction) that is going to take place.

3.1.3 Parallel Variants

The algorithms discussed so far are most often implemented as a sequential execution of
operations, i.e., they only perform a step after the previous one has finished. With the
advent of multi-core processing units, e.g., dual or quad-core CPUs or GPUs (graphics
processing units), which enable a concurrent execution of tasks, developers return to
some of the existing algorithms and try to adapt their implementations to the new
hardware. As it turned out, the FRM, considered as being inferior to the DM, is a
suitable candidate for this. Figure 3.2 illustrates the differences between a sequential

and parallel implementation of this method. The former variant always runs over all

42

3 Stochastic Simulation Algorithms: A Small Survey

update: calculate

a1(x), as(x), ..., a;(x),..., an(x) T1y T2y ey Tnoann LaY: ¥

7 = minjepan{7;}

. X(t+7)=x+V, |
= argmin; e, 1 {7;} -

| update: a(x),..., a%(x) |_>| calculate: 7,. .., ™ Ii
I au e y calculate: .
update: age 1), age(x) || caloulate: ry gy
1 1
I I
I

Figure 3.2: Sequential versus parallel FRM execution. The sequential algorithm (top,
blue) first calculates all propensities and then the 7 candidates. In contrast, a parallel
variant (bottom, green) partitions the set of M reactions across K < M processing
units, which perform the updates and calculations independently from each other.
After finishing their task, they send back the results and the minimum time interval is
determined.

reactions twice, first to update the propensities and then to find the minimum next
event interval. It should be noted here that Dittamo & Cangelosi [DC09| modified
the original algorithm, primarily to reduce its memory requirement, but it also avoids
the second loop (see Algorithm 3.2). The FRM has to store N state variables, M
propensities and M 7 candidates, which does not look like much but if memory is
limited (as it is the case for GPUs, details follow below) every additional object to

store can be critical.

Regardless of the sequential variant, the entire work is done by a single processor.
If the number K of available processing units is larger than one, e.g., 1 < K < M,
then it is possible to distribute the work load across these resources, as has been show,
e.g., by Dittamo & Cangelosi [DC09| and Niu et al. [NZC*07]. Doing so only requires
a partition of R into K subsets, each having at most [M /K| entries. Now these sets
and a reference to the state vector are assigned to each processor; they independently
perform all the steps listed in Algorithm 3.2 (with the loop of the k-th processor running
over the interval [[M(k—1)/K+1], [kM/K]], k € [1, K]) and send their results back to
some central unit, which collects the returned data into a new set with &k 7 candidates.
The final steps are similar to the original: find the minimum among these candidates,

execute the appropriate reaction and update the current time.

This data level decomposition (each processor basically runs the same code but cal-

culates the minimum 7 only for the reactions assigned to it) is characteristic for a

43

3 Stochastic Simulation Algorithms: A Small Survey

Algorithm 3.2: Alternative SelectNextReactions(x) variant for the FRM, which
avoids the second loop.

Parameters:
Tmin < 00 (minimum 7 candidate)

fmin < 00 (index of reaction having minimum 7)
Input: x (current state)

for j € [1,M] do
update propensity a;(x);
7 < —In(U(0,1))/a;(x);
if 7; < 7, then

Tmin < Tjs
5 .

Hmin <~

1M

Hmin

W N -

6 return 7,,,,

“parallelization inside a simulation run”!. The processors have to send their individual
results back to the central unit during each iteration; this overhead in message pro-
cessing should be much less than the actual computation to gain an advantage over a
sequential execution. The better the processors are connected, e.g., all are located close
together on the same chip, the more likely it is that this overhead can be neglected. In
contrast, with increasing distance the messages will also take longer until they reach
their destination; the step from a multi-core processor to a local network of computers
may result in losing the benefits of a parallel execution.

A point which has not been mentioned so far is the parallel generation of random
numbers. Simply using one RNG per processing unit may lead to correlations between
the sequences of different generators if they have been parameterized without caution.
Dittamo & Cangelosi |DCO09| avoid this problem by using a special RNG implementa-
tion which dynamically creates parameters for all parallel instances. Executing their
modified FRM variant on a GPU results in a speed-up of about 2 for the heat shock re-
sponse model of E.Coli. consisting of 28 species and 61 reactions. As it was mentioned
above, adapting the FRM for running on a GPU proved to be a challenging task; the
very fast on-chip memory has a size of only 16 KB, so it was necessary to somehow
reduce the storage requirement of the original version.

An alternative parallel execution approach has been presented by Niu et al. [NZC*07];

unfortunately, they do not provide any further information about how the processors

referred to as a “parallelism across the method” approach in [TB03]

44

3 Stochastic Simulation Algorithms: A Small Survey

are connected (they utilize the Java-based JADE framework for multi-agent systems,
which can distribute a simulation across several machines) or how random numbers
are generated in their DSSA. They report a maximum speed-up of about 4 for a large,
5000 reaction decay-only model and 6 processors; tests with the same number of units
and a MAPK model (86 species, 300 reactions) showed a decrease in execution time
by a factor of 2.5.

An alternative to “parallelization inside a simulation run” is called “parallelization

"2 Many runs, i.e., trajectories, are needed to derive characteristics

across a simulation
of the underlying stochastic process. Instead of having one processor calculating all
replications, each unit simulates a single run and returns the required data to the central
server at the end of the time interval. Communication only takes place after a processor
has finished an entire run, so the number of messages sent through the network is much
smaller than for a “parallelization inside a simulation run”. Such an approach has been
presented by Tian & Burrage [TB05] and is based on OpenMP [Ope], an APT for
shared-memory multi-processing. Interestingly, they do not use a parallel RNG at all;
a predetermined amount of numbers is generated and stored in a shared data structure
before each processors executes one or more SSA steps. Hence a simulation run is
interrupted more or less frequently to wait for the RNG (running on a single unit) to
fill up the data structure again (a more dynamic variant could produce a set of numbers
and pause the processors if all have been consumed). Also performing experiments with
the MAPK model, the speed-up reported is about 4.5 using 10 processors.

In a later publication by Petzold & Li [PL09| the same basic principle of parallel
replicated runs has been implemented on a graphics processing unit. Random numbers
are generated directly on the GPU using a multi-threaded version of the widely applied
Mersenne twister algorithm. The results are impressive: the authors were able to
accelerate the execution by a factor of 200 for both tested models, the first one being

a simple decay dimerization model and the second a spatially inhomogeneous system.

3.2 Leap Methods

Realizing that any exact algorithm suffers from the same drawback of becoming very
slow in case of large populations or high reaction constants, a second family of methods,
termed approzimative algorithms, originated from the 7-leaping algorithm that have
been published in 2001. As the name suggests, these methods do not provide an

%referred to as “parallelism across the simulation” in [TB05]

45

3 Stochastic Simulation Algorithms: A Small Survey

exact sample of the state space; instead, they sacrifice accuracy for execution speed by

making additional assumptions about the dynamics.

3.2.1 The 7-leaping Algorithm

The basic, non-spatial 7-leaping algorithm has been introduced by Gillespie et al.
|Gil01] to speed up the simulation of large biochemical reaction networks having many
species with high populations. In a nutshell, instead of simulating every single reaction
that occurs inside the system, as done by exact algorithms, the 7-leaping algorithm
performs “leaps” along the time line, calculating for all reactions how often they fire
during each interval. A more formal way to illustrate the basic difference between exact
and 7-leaping algorithms is to have a look at how the state is updated; the general

equation has been already introduced in Section 2.4.2 (Algorithm 2.1):

X(t+7)=x+Y kv;. (3.3)

J=1

The M-dimensional vector k stores how often each reaction is allowed to fire. Exact
methods handle every reaction execution as an independent event; if the execution of
R, is scheduled next, then k = li‘f, i.e., it is a zero vector with only the p-th entry set
to 1. In contrast, 7-leaping variants calculate a “leap” 7 usually being larger than the
interval until the next event, hence more than one reaction can fire within [t,¢ + 7] —
this also means that k can now have more than one entry set to a non-zero value. Each
ki, ks, ..., kys is no longer either zero or one, but a result of some function (or, maybe
more precisely, a sample from the random variable) K;(7;x) that depends on the size
of the leap and the current state of the model®. The difficulty in finding an expression
for these functions arises from the fact that they are (most likely) dependent random
variables — executing any reaction modifies the state and therefore also changes the
propensity of all dependent reactions. But if all RV are assumed to be independent,
then the £; could be sampled individually from univariate distributions. This transition

from dependent to independent RV is the first essential step towards an approximative

3In fact, the k; for the exact case can be written as results of functions. Given a sample u from the
uniform distribution U(0, 1), then:

. . J -
kj _ Kj(X) _ {(1) lﬁ argim ye(q s (Zj':1 aj/(X)/ao(x) > u) =3,
else.

46

3 Stochastic Simulation Algorithms: A Small Survey

simulation scheme. To see that the idea behind 7-leaping is based on the assumptions

already made for exact methods, it is necessary to have a closer look at the latter.

Suppose that at time t; the reaction network is in state x. The last chapter defined
the probability that a reaction R; will fire during the next interval [tg,?o + At] as
aj(x)At for small At (Equation 2.14). Based on this, a hypothetical exact simulation
algorithm could check for successive intervals [to+iAt, to+(i+1)At],i € Ny whether any
R;,j € [1, M] will fire. Because the checks are performed independently of each other
and nothing changes the state between two intervals, this corresponds to a sequence
of Bernoulli trials with probability a;(x)At of observing a “success” (i.e., a firing) and
(1 — aj(x)At) of observing a “fail” (no firing). Trials are performed until a success is
observed for some R, € [1, M]; like in any exact method (Algorithm 2.3), the state
is then altered by executing R,,, the propensities are updated and the sampling process

is started again.

Instead of performing the individual checks it is also possible to directly obtain the
index 7; of the interval [ty + 1;At, to + (i; + 1)At] during which the first firing of R;
is observed — it is a sample from the discrete geometric distribution with parameter
p = a;(x)At. If now At — 0, the geometric distribution can be replaced by its
continuous analogue, the exponential distribution, which gives the time interval until
R; fires next; taking the minimum over all j € [1, M] gives the imminent reaction.
Comparing this simulation scheme with Algorithm 2.2 reveals that it simply describes
Gillespie’s First Reaction Method.

Tau-leaping is very similar to what has been just described. Starting with x at time
to, an observer may realize that the sequence of reaction firings at times t{,ts,...tp
changes the state only insignificantly, i.e., |X(t;41) — X(t;)| < ¢, Vi € [0,T] for some
small e. With the difference between the new and old state being negligible small, it
is assumed that a;(x)At is constant for the interval 7 = t; — to. It has been asked
above how long it takes until the first reaction will fire; this time the interval is known
but not how often each reaction has fired. Again, Bernoulli trials can be performed
for successive intervals [t + A, to + (i + 1)At] until (i + 1)At = 7; the number k;
of successes for each reaction then determines how often R; is executed at ¢ 4+ 7. As
before, the individual trials can be avoided by generating samples from the Binomial
distribution, which models the number of successes observed in n = ¢ + 1 trials if
each has a success probability of p = a;(x)At; if At — 0, the Binomial distribution

converges to the continuous Poisson distribution with mean and variance a;(x)7.

However, the size of 7 is not known a priori; the only information given is the

47

3 Stochastic Simulation Algorithms: A Small Survey

state at time ty. Nevertheless, what is known is that the length of the interval should
be chosen such that the state does not change significantly; if a 7 can be calculated
that does not violate this leap condition, then the number of reaction firings can be
obtained by sampling from a Poisson distribution Pois(a;(x)7). But what does the
vague phrase “does not change significantly” mean? Tau-leaping has been developed
to handle models with large populations or high rate constants. The more particles
are present, the smaller is the impact of a single reaction and, further increasing the
population, also of several reactions executed as a bulk. So the answer to the question
above is: it depends on the current state of the model. First publications, e.g., [Gil01],
proposed eag(x) as the threshold for restricting the propensity change, with € as an
error control parameter. But this turned out to be too restrictive: suppose summing
up only high propensities and finally adding a very small one — the allowed change
for this last reaction would be very high, so in fact the leap should be rejected. Later
improvements defined a threshold based on individual propensities or bounded the
changes in the species populations such that the leap condition is satisfied |CGPO06|.
The original 7 selection equation shall be given here, however, it may look slightly
different for other variants of this technique; a more detailed derivation of this function

will be given in the next chapter that introduces a spatial extension to the leap method:

7= min {“LO(X) EGO(X)Q} (3.4)

jelt] | [(3)] (o(x))?

with p1;(x) and (o;(x)? defined as:

jeT i€[LN] (35)
(o) = Yay0 3 L,
j'eg i€[1,N] ¢

For now, let J = [1, M].

Having found a suitable 7, the next step would be to generate for each reaction R;
a sample from Pois(a;(x),7). But this may lead to incorrect results. Poisson RVs are
unbounded and it could happen that the population of a species becomes negative
as a consequence of too many reaction firings. Several methods have been published
to prevent this, e.g., by using bounded binomial random variables |[TB04, CVKO05| or

by classifying reactions into critical and non-critical and handling critical reactions

48

3 Stochastic Simulation Algorithms: A Small Survey

differently [CGPO5b|. As the 7-leaping variants implemented and studied for this
dissertation are based on the latter approach, it shall be explained in more detail.
A reaction is considered critical if one of its reactants is only n,. firings away from
depletion. After separating the indices of critical and non-critical reactions into two
disjoint sets J. and J,., the leap calculation in Equation 3.5 only runs over J =
Jne, producing a first 7 candidate 7,,.. The second candidate 7. is determined in the
same way as for the DM: 7. = —InU(0,1)/a§(x), with the sum af(x) running only
over the critical reactions in J.. If 7. < 7,., then a single critical reaction will be
executed; the method to find out which one is again the same as for the DM (Algorithm
2.3). Regardless of whether a critical reaction fires or not, how often each non-critical
reaction will be executed is sampled from a Poisson RV parameterized as described

above.

Most 7-leaping implementations switch to an SSA phase if 7,. is very small; the
threshold for this decision is the time interval until the next reaction will fire, which
is approximately 1/ag(x). If 7, is smaller than a multiple of this value, i.e., v/ag(x)
(with ~ usually set to 10), then a number Ngg4 of exact iterations is performed. This
is essentially an admission to the higher computational cost required to find a value for
Tne- A possible simple improvement avoids the fixed value for + by considering how long
it took to calculate a leap candidate. Let 7 be the time required to find a 7,. and tg
an estimation for the time it takes to calculate the step size an exact algorithm. Then
the ratio tr/tg gives the factor that denotes how much longer it took to find the leap
value. Multiplying this value with 1/ag(x) essentially approximates the length of the
interval simulated with an exact algorithm in #7 time units — if the outcome is larger
than 7,., then 7-leaping should be abaondoned for the moment. A similar condition
can be defined by looking at the ratio between 7,,. and 75 = 1/ag(x): if Tpcts/7s < tr,
then simulating an interval of size 7,,. takes less time with an exact algorithm than with
T-leaping. Using the time it takes to finish the task of calculating a leap candidate as
an additional criterion considers different implementations of the same algorithm; two
variants of the same method could differ, e.g., in the data structures used to represent
species and reactions. In conclusion, instead of calculating only small leap values, which
is equivalent to a huge effort with only small gain, the algorithm tries to overcome the
critical region in the state space by falling back to a much more simpler and, in this

case, often faster exact simulation.

49

3 Stochastic Simulation Algorithms: A Small Survey

Algorithm 3.3: Pseudo-code description for the Select Next Reactions(x) method
used in the 7-leaping algorithm. Calculate NonCriticalTau() can be implemented,
e.g., according to Equation 3.4. Additionally, the template from Algorithm 2.1 has
to be extended to test the final state if there are negative entries; if yes, then 7 is
halved and a new k calculated.

-

N

© 0 N o ook W

10
11
12

13
14
15
16
17
18
19
20

21

22

23

Parameters:

ecR (leap condition parameter)

veR (SSA threshold parameter)

Nsga € N (number of total SSA iterations)

h <0 (number of remaining SSA iterations)

ne € N (critical reaction threshold)
SelectNextReactions(x)* (an implementation from Algorithms 2.3, 2.2, or 3.1)

Input: x (current state)
for j € [1,M] do
update propensity a;(x);
if h > 0 then // check for additional SSA iterations
h+ h-—1;
return Select NextReactions(x)*;
else
Je = {j:j €1, M] Amingep nv,i<0 [2i/ [05i]] < n};
Ine < [1, M]\ Jg;
7" «— Calculate N onCritical Tawu(x, Jye, €);
if 77¢ < v/ap(x) then
h < Ngga — 1;
return Select Next Reactions(x)*;
ag(x) < Zje]c a;(x):
7 —In(U(0,1))//a§(x);
if ¢ < 7¢ then // no critical reaction fires
T 1"
[ie 4 00;

else // one critical reaction fires

T 4T
L pte < smallest integer j satisfying >, ; a;(x)/ag(x) > U(0,1);
create k € N with

0 J € Je,J F Hes
kjeq1 J € Jerj = Hes;
sample from Pois(a;(x),7) j € Jne

return 7,k

20

3 Stochastic Simulation Algorithms: A Small Survey

3.2.2 k,-leaping

An alternative leap method, called k,-leaping, has been presented along with 7-leaping
in [Gil01]. While it was previously the task to first find a 7 that satisfies the leap
condition and then calculate for each reaction how often it will fire, the order of these
operations is now reversed — at least for a specified reaction R, € R. The idea is to
determine the maximum number k, of times R, can be executed before the resulting
state change will violate the leap condition for one of the reactions in R and then use this
result to find 7 and the k;, j € [1, M],j # «. If it is assumed that the propensities are
nearly constant during the leap, then the time it takes for k, firings of R, is distributed
according to an Erlang distribution (a special type of a Gamma distribution, where the
shape parameter k is an integer), so 7 ~ Erl(k,, a,(x)). Having found 7, the remaining
k; are again sampled from Pois(a;(x), 7), just like in the 7-leaping algorithm. Both k-
leaping and 7-leaping are equivalent variants of the same basic technique: accumulate
reactions as long as the leap condition is satisfied. However, the developers of k.-
leaping argue that it often could be more convenient to use the alternative 7-leaping
(as a reminder, both methods have been presented in |Gil01|): with the latter it is
possible to perform a leap that precisely ends at some predetermined time point ¢', at
which, e.g.,, a new species is introduced into the system. If the current time is ¢ then
T-leaping can be performed until ¢ + 7 > t/; instead of executing this leap, 7 is set to
t' —t, so the simulation jumps exactly to ¢’ and the event scheduled at this time can be
executed. But basing 7 on the number of firings for one reaction makes it much more
difficult to handle such scenarios. However, several authors took the idea of k,-leaping
and presented improved offsprings of this technique. R-leaping [ACKO06| and the K-leap
[CX06] method are two examples; in contrast to the original, both restrict the number
of firings for each reaction channel, not just a single R,. Evaluation studies show that
they are not just faster than 7-leaping but also able to produce more accurate results,

which makes them interesting alternatives.

3.2.3 Implicit 7-leaping

The leap methods presented so far are essentially exzplicit solvers, i.e., they take the
current state as an input and calculate how it will evolve over the next leap 7 — very
similar to explicit numerical integration algorithms used to find a solution for a system
of differential equations, like Euler’s method. As this, they are susceptible to stiff

systems, which are generally characterized by having well-separated fast and slow time

o1

3 Stochastic Simulation Algorithms: A Small Survey

scales, with the fast ones being stable. Stiffness may be present in systems including
reversible reactions, like the earlier mentioned enzyme-substrate reaction network (see
Equation 2.5); if ky >> kg, i.e., the substrate unbinding is much faster than the actual
transformation into the product, then the system exhibits a stiff behavior [CGP05a].
Reactions R; and R, simply undo each other and shortly after starting a simulation
run the populations of S and ES will quickly reach some equilibrium state (the number
of particles fluctuate around a mean value) and stay nearly constant until eventually

an 'S reacts into a product P and an enzyme FE.

When faced with such systems, explicit methods can become unstable, i.e., they
start oscillating around the equilibrium, which eventually can lead to large errors in
the computation (see, e.g., |[RPCGO03|). One way to prevent this is to reduce the
maximum allowed step size to the time scale of the fastest reactions; however, this

would limit the performance of the algorithm drastically.

Luckily, as stiff systems are also a prominent problem in numerical analysis, better
techniques more suited for this type of systems have been developed over time, which
are generally summarized as implicit methods. Instead of looking only at the current
state, algorithms of this type take the still unknown future state also into account
when, in the case of stochastic simulation of reaction networks, determining how often
each reaction fires during an interval. However, while implicit leap methods, like the
one presented by Rathinam et al. in [RPCGO03|, overcome the stability problems, they
require additional steps to find a leap candidate, with the result that they are slower

than explicit variants in case of a non-stiff system.

But what if it is unknown whether some model is stiff or not? Or maybe it is non-stiff
for some time, but then becomes stiff as time progresses and initially infrequent reac-
tions start to fire more often. Adaptive methods offer one solution [CGP07, San09b].
As was mentioned above, the presence of reversible reactions and large differences be-
tween rate constants may hint to a potentially stiff system. An adaptive algorithm
somehow has to determine what method (explicit or implicit) is better suited for the
next leap based on the current state of the system. Cao et al. propose to make this
decision based on the sizes of an explicit and implicit leap: both are calculated accord-
ing to Equation 3.4, but the set J is different in Equation 3.5: it is replaced with J,.
for the explicit and J,./Jp. for the implicit case. Here the set J,. contains the indices
of reactions which are reversible and in partial equilibrium, i.e., that have almost the
same propensity as the respective complementary reaction; the idea behind implicit

leaping is to “ignore” these reactions during 7 calculation as their firings would only

52

3 Stochastic Simulation Algorithms: A Small Survey

have a marginal impact on the overall state change during the leap. If now the explicit
leap value is much smaller than the implicit one (e.g., by a factor of 100), then the

system is considered to be stiff and the state change is calculated implicitly.

3.3 Algorithms for Spatially Inhomogeneous Systems

The first attempt to simulate spatially inhomogeneous systems, as presented in Sec-
tion 2.5, essentially reformulated the task to utilize non-spatial algorithms: each sub-
volume gets their own set of species and diffusions are modeled as unimolecular re-
actions. While possible, creating models this way can be cumbersome if the number
of sub-volume is increased. For the following discussion on spatial stochastic simula-
tion algorithms, a more convenient description for reaction-diffusion systems shall be
introduced.

Each sub-volume contains a number of particles for each of the NV species defined in
the reaction network. With L sub-volumes, each one being a well-stirred environment
of its own, the state of the entire system can be represented by combining all state

variables into an L x N state matriz X, which essentially replaces the state vector x:

r11 12 ... TN
To21 T22 ... TN

X = (3.6)
rr1 TL2 XL,N

The evolution of the system, i.e., how the number of particles in each sub-volume
changes over time, is again interpreted as a stochastic process X(t), but this time
defined over a matriz of random variables; X(t) = X shall denote the current state
and, similar to the connectivity matrix, X; represents the row vector X [[;1... N], i.e.,
the state of sub-volume [€ [1, L]. If not stated otherwise, the set R only contains the
rules regarding the reactions between species, but not the equations describing their
diffusion; the latter is handled implicitly by the algorithms and the modeler only has
to provide the set of diffusion constants D = {D;,..., Dy} along with S and R.

3.3.1 Next Sub-volume Method

The Next Sub-volume Method [EE04| can be roughly described as a spatial algorithm

incorporating techniques from both the DM and NRM. Instead of time-reaction pairs,

33

3 Stochastic Simulation Algorithms: A Small Survey

each sub-volume together with its next event time is inserted into an event queue.
Events are no longer only reactions, but can also be diffusions between neighboring
sites. They are processed in a hierarchical manner by first finding out where the next

event will occur and then specifying what type (reaction or diffusion) it is going to be.

If X(t) = X is the current of the system, a}(X) the propensity sum and d}(X) the
sum of diffusion rates for sub-volume [, then sampling from Exp(a}(X) + d}(X)), i.e.,
—InU(0,1)

") T A(X) 0

gives the time interval until either a reaction inside or a diffusion originating from
sub-volume [takes place. At the start of an iteration, the sub-volume [* with the
minimum next event time 75« is taken from the queue. Each event type has a probability

proportional to its rate sum, hence

I X
P{event is reaction} = —; a (3 (3.8)
(ag (X) + dy (X))
and
dy (X)
P{event is diffusion} = ———2-"— ; (3.9)
(ag (X) + d (X))
deciding what will occur is then equivalent to testing, e.g., whether
P{event is reaction} > U(0, 1). (3.10)

If true, i.e., the event is a reaction, the index p € [1, M] of the imminent reaction is
found in the same way as it is for the DM. Executing R, first adds its state change
vector to the state of the SV, then both a} (X) and d} (X) get updated and finally

Equation 3.7 calculates a new next event time.

Otherwise, i.e., in case of a diffusion, each species S;,i € [1, N| has probability

xl*7iDi

that during 7 one of its particles moves from the selected sub-volume to a neighbor.

Just like finding the index g for the imminent reaction, the index ¢ of the diffusing

o4

3 Stochastic Simulation Algorithms: A Small Survey

species can be determined by finding the smallest integer satisfying

Z;ZZ; > U(0,1),¢ € [1, N]. (3.12)

A particle of S, is allowed to diffuse freely into any of the sub-volume’s neighbors, each
of which having therefore the same probability 1/2n of being selected as the diffusion
target; finding it is simply a matter of randomly picking an index from the neighbor
list C;«. Assuming that SV [’ has been chosen, the final step updates both states X
and Xy, the values for al (X), a} (X),d (X), and d} (X), and recalculates the event

intervals 75+ and 7p.

3.3.2 Gillespie Multi-Particle Method

The Gillespie Multi-Particle Method |RKDBO06| uses operator splitting to clearly sep-
arate between reaction and diffusion events, with the latter taking place as a bulk and
in predetermined intervals. The time 7; between two diffusion events of species S; € S
is approximately the same needed by a single molecule to cross a sub-volume of side
length \,,, so

A2
2nD;’

with D; € D as diffusion coefficient for species .S; and n as the dimension of the system,

(3.13)

T =

e.g., n = 3 for a 3D volume. As a consequence, diffusion in GMPM is independent of
the system’s state; all molecules of S; will be propagated at fixed time points 7, =
kt;, k € Ni. During initialization, the species are inserted into an event queue according
to their first event time 7,;. An iteration at time ¢ starts by receiving the species S
with the smallest next diffusion time 7 from the queue. The only events that can
occur during [t, 4+ 7] are reactions, so an SSA variant runs locally in every sub-volume
for this interval. At ¢ + 7, the algorithm switches to the diffusion phase in which all
particles of species S are simultaneously distributed across neighboring sub-volumes.
Finally, the current time is updated, i.e., t =t + 7, the next diffusion event for S is
scheduled at ¢ + 7 and a new iteration starts.

The models simulated with the GMPM in [RKDBO06| differ heavily in their com-
plexity, which leaves the impression that the algorithm can be used as a multi-purpose
method. As a first test case GMPM has been applied to a small gene expression model

characterized by having only slow moving particles and thus diffusion limited reactions.

)

3 Stochastic Simulation Algorithms: A Small Survey

Algorithm 3.4: A short pseudo code description of the Next Sub-volume Method.

® N O ok W N =

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Parameters:

t

(global time)

EQ (event queue)
Input:

RN

D
C

X(0)
[tstarta tend]

(reaction network)
(diffusion constants)
(connectivity matrix)
(initial state)
(simulation interval)

1+ tstart;
for [€ [1,L] do

al = a)(X);
= d\(X) + ZnZ_le“/)\
Sl = SO(X> — a; + dl,
store a;, d;, s;;
—InU(0,1)/s;
enqueue (77,1) into EQ;

S’U’

while t < t,,4 do

take X(¢) = X as current state;
dequeue (7,1) from EQ, get a;, d;, si;
if U(0,1) < a;/(s;) then

Jj=1 a;j
Xl(t—f-T)(—Xl—f—Vu,

update: a;, d;, s;;

—InU(0,1)/s;
enqueue (77,1) into EQ;
else

Xl(t—FT) (—Xl—]_fv;
Xl/(t + 7') <— Xl/ + 1£V;
update: a;, d;, s, ay, dy, sy;

enqueue (73,1), requeue (7p,1');

determine p as smallest integer satisfying
b ah(X)/a > U(0,1),p € [1, M];

determine ¢ as smallest integer satisfying
Z;Zl l’uDi/()\gvdl) > U(O, 1), L€ [1, N],
sample index ¢ from interval [1,2n], get neighbor I’ < C;;;

—InU(0,1)/s;, 7o <+ —InU(0,1)/sp;

// initialization

// reaction event

// diffusion event

26

3 Stochastic Simulation Algorithms: A Small Survey

The larger second model is a pathway which is part of the glycolysis and involves 17
species that can interact via 20 reactions; the species vary in their diffusion speed and
the set of reactions contains both slow and fast channels. Compared to microscopic
and macroscopic simulations the algorithm has shown to yield good overall results.

GMPM seems to be an efficient alternative to the NSM, considering that it avoids
calculating single diffusion events but processes them in a bulk. It will be interesting
to see how this approximation affects the outcome of a simulation, especially how well
it captures the spatial distribution of the particles.

It should be noted that GMPM, in contrast to the spatial 7-leaping algorithms
discussed in the following chapter, does not have any algorithm parameters that can be
varied to make it either faster or more accurate (cf. the parameter € in Section 3.2.1).
The only way a user can influence the execution of the algorithm is to change model
parameters, e.g., making Ay, smaller or increasing the diffusion constants lowers the
interval between the diffusion phases. But this can be interpreted as using an entirely
new model instead of performing a simulation of the same one with different simulation
parameters. This should be kept in mind when analyzing the results presented in
Chapter 6.

3.3.3 Parallel Variants

As was mentioned in Section 3.1.3, the idea of a parallel simulation is to distribute the
work among available computational units; it is reasoned that if each processor has to
take care only of a small part of the problem, then their concurrent execution should
be faster than a sequential simulation of the entire model. The methods discussed in
this sections demonstrated that it is possible to achieve a speed-up for non-spatial bio-
chemical reaction systems by letting certain tasks, e.g., the recalculation of the reaction
propensities, run in parallel (i.e., a “parallelization inside a simulation run”). However,
the practical application of this concept to spatial systems seems much more difficult,
as was shown, e.g., in [JPET08]. The authors took the NSM (Section 3.3.1) and parti-
tioned the collection of sub-volumes into disjoint subsets which then got assigned to the
processors as work load. Thus each of the latter essentially executed the algorithm only
for the sub-volumes in the set it was given to; it was expected that this would speed
up the simulation, like as has been observed for the non-spatial case. But it turned
out that the effort to synchronize all processors is significant — up to the point that

a parallel execution was much slower than a sequential one. One reason for this is the

o7

3 Stochastic Simulation Algorithms: A Small Survey

Algorithm 3.5: Pseudo code description for the Gillespie Multi-Particle Method
(GMPM). Note that an update vector is used as temporary storage for the particles

that diffuse into other sub-volumes. This is necessary, because these particles cannot
be added to a neighbor’s state unless the latter has been processed (otherwise the
neighbor site would not use the current, but an already modified state vector).

[

'y

© 0 N o O

10
11
12
13
14

15
16

17

18

Parameters:
t (global time)
EQ (event queue)
SSA(RN, X, tsart, tena) (an SSA variant, e.g., DM, FRM, or NRM)
(k1y..., kr) (update vector)
n (dimension of the system)
Input:
RN (reaction network)
D (diffusion constants)
C (connectivity matrix)
Asv (side length of a SV)
X(0) (initial state)
[tstart, tena) (simulation interval)
l <« tstart;
for i € [1, N] do // initialization
2
QHDZ ’

| enqueue (7,1) into EQ);

while t < t.,4 do
dequeue (7,17) from EQ);
for [€ [1,L] do
run SSA(RN, X, t,t+ 7) locally in SV [during [t,t + 7];
for k € [1, 2n] do // neighbor diffusion
get neighbor " < C;
sample number of S; particles diffusing from [to I:
k ~ Binom(x;;, k/2n);
update local state: x;; < x;; — k;
adapt update vector: ky < ky + k;

for [€ [1,L] do // diffusion processing
update state with incoming S; particles stored in update vector:

B Xl(t—i-T)%Xl—Fk]iw;
B t<—1+T;

28

3 Stochastic Simulation Algorithms: A Small Survey

stochastic nature of the problem: diffusions between sub-volumes take place randomly
and require an update of both the source and target site. What is no problem between
sub-volumes contained on the same subset becomes quite intricate if source and target
are hosted by different processors. To see this it shall be remembered that, from a
global perspective, the events (reactions and diffusion) have to be processed in the
order of increasing time-stamps, otherwise a causality error would spoil the simulation
results. Now causality is guaranteed for events processed within a processor — but,
due to the concurrent execution, not necessarily for events that are sent between them,
i.e., the information about diffusing particles. There are two ways to make sure that
events are only processed with increasing time-stamps. The first alternative involves
a negotiation between the units: to put it simply, all processors have to agree on a
time interval during which it is safe to execute internal events without the risk of a
“straggler” event arriving from another processor (a straggler is an event with a time-
stamp smaller than the current time of the recipient). A prerequisite is that each unit
knows when it will send out events next — a task which is impossible if the inter-event
times are, e.g., an exponentially distributed random variable. Hence the just described

conservative synchronization seems not applicable to reaction-diffusion systems.

The second scheme allows causality errors to occur if a processor can recover from
them. Processors send each other events as soon as they occur; if a straggler arrives,
then the execution stops, the state of the system right before the time-stamp of the
straggler is restored (a so-called “rollback” is performed, e.g., by loading a previously
stored state from memory or reverse-executing processed events until the correct time
point is reached), the interrupting event executed, and the algorithm continues its
work. In comparison to the conservative approach there is no negotiation required;
however, if processors have to rollback frequently, then the cost for maintaining the
causality may exceed the effort spent with the actual simulation and the overall perfor-
mance deteriorates — which was one result discussed in [JPE108]. But later a second
publication showed that a speed-up is indeed possible [DMO08]. The authors based their
work also on the NSM and partitioned the sub-volume set similar to [JPET08], but
used custom-built low-level implementations for the synchronization and inter-thread
communication. With these improvements they were able to decrease the run-time of a
simple predator-prey model by factors between 1.22 and 8.06, depending on the model

size.

29

3 Stochastic Simulation Algorithms: A Small Survey

3.4 Multi-X Methods

The term “multi-x” shall refer to a wide range of methods that operate on different levels
of resolution (multi-resolution) or scales (multi-scale) simultaneously or utilize more
than one technique to accomplish a task (rmulti-algorithm, also referred to as hybrid
algorithms). These attributes are not necessarily mutually exclusive; for example, in
some cases a method uses a particular algorithm to simulate parts of the system at a

certain level of resolution, hence it is both multi-scale and multi-algorithm.

The motivation to build a multi-x method often stems from the observation that each
method has its strengths and weaknesses; it is therefore reasoned that a combination
of algorithms may compensate for the weaknesses and eventually perform better in
some cases than a single one. Section 3.2.1 introduced one alternative how to handle
stiff systems within the framework of the leap methods. Implicit leaping is able to
dampen the fluctuations caused by fast reversible reactions which significantly restrict
the maximum step size of explicit methods. While a stiff system is characterized
by having reactions executed at different time scales, the leap methods still treat all
reactions basically the same, regardless whether they are fast or slow. This is different
for the slow scale stochastic simulation algorithm (ssSSA) [CGPO05¢|. It separates both
species and reactions into fast and slow components. This is a two-step process: first
R is partitioned into two sets, the first one containing all reactions having an expected
next event time much smaller than each member of the second set. A species is then
considered as “slow” if its state is only changed by slow reactions (from the second
set) and it is “fast” when reactions from both sets can alter the state. This initial
separation is later refined with respect to two essential requirements. The stochastic
process which governs the evolution of the fast species (termed “virtual fast process”
because the influence of slow reactions is neglected) must be stable in the sense that
the probability of a certain configuration of the fast state variables at some time t+ At,
given an initial state at ¢, does not change if At approaches infinity. In other words:
starting from an initial probability distribution for the fast state variables, after some
time it converges to a “stable distribution”, i.e., it ceases to change with increasing
time. The second requirement is closely linked to the first one: the partition of R must
be chosen such that the time until the distribution is stabilized (i.e., until the firing of
the fast reactions does no longer change the estimation of the fast state variables) is
much smaller than the expected time of the next slow reaction. If these two conditions

can be fulfilled, then a multi-scale stochastic simulation algorithm can be constructed

60

3 Stochastic Simulation Algorithms: A Small Survey

which selects and executes the slow reactions similar to the DM and updates the fast

variables using a sample from the converged virtual fast process.

What is not mentioned in the paper is if it is possible to use ssSSA in an adaptive
manner. In the original publication the partition is done during the initialization and
takes the initial state to separate slow and fast reactions and species. But some systems
may undergo transitions from non-stiff to stiff dynamics; here it would be interesting
to see if the proposed algorithm can be modified to allow a re-partitioning during

execution.

A different direction was taken by Takahashi et al. [TKHTO04] with their multi-
algorithm, multi-timescale method implemented as part of the E-Cell simulation envi-
ronment. They follow the “no silver bullet” philosophy, which means that algorithms
have both strengths and weaknesses and it is unlikely that one method supersedes
all others for all possible problem instances (see also Chapter 6). Central to the
approach proposed by Takahashi et al. is a coordinator algorithm (which is called
meta-algorithm in the publication) which coordinates the execution of steppers, inde-
pendent algorithms that are responsible for updating a subset of the state variables.
Steppers are classified into discrete-event, discrete-time, and continuous variants; the
coordinator successively selects the stepper having the minimum next step time and
executes it. If it is a continuous stepper, then the state of its variables is updated using
a numerical integration algorithm which considers the contributions from all steppers
that are also able to change these variables. A discrete-event stepper implements, e.g.,
one of the non-spatial SSA introduces previously and modifies its variables as usual by
adding the state change vector of the selected reaction. After processing a stepper, the
coordinator notifies all dependent modules to update internal parameters such as the
next event time; the dependency is defined such that a stepper S; requires an update
after S, has been selected if S; has read access to variables that can be modified by
Ss.

This concept of a multi-algorithm simulation has proven to be faster than even a pure
deterministic treatment. One remarkable advantage is the modularity: new stepper
modules can be added easily and different variants exchanged without difficulty a

point which will be taken up again in a later chapter.

These were just two examples of non-spatial multi-x methods, more can be found in
the literature [WLV07, MBS08|; but research in this direction is also progressing for
reaction-diffusion systems. Kalantzis [Kal09| presented a hybrid simulation algorithm

that partitions events (reaction and diffusion) into fast and slow subsets and updates

61

3 Stochastic Simulation Algorithms: A Small Survey

the species population using both PDEs for the fast and SSA for the slow events.
Bayati et al. [BCKO08|, developed a multi-resolution spatial algorithm that supports
sub-volumes of inhomogeneous size. Up to now the model volume has been discretized
into sub-volumes with a fixed side length \,,. This way regions that may be of lesser
interest, e.g., inside the cytosol, are represented with the same spatial resolution as,
e.g., the area near a membrane where finer spatial details could be more important.
The algorithm presented by Bayati et al. now allows to selectively modify the spatial
resolution: the discretization is higher near membranes and other areas where inhomo-
geneity is assumed to play an important role, but can be significantly lower elsewhere
— which also reduces the effort for the simulation. Changing the grid resolution causes
disparities in both the reaction propensities and diffusion rates, an important aspect
also discussed and quantitatively analyzed in the paper. A similar technique, but with
a different motivation, will be used in Chapter 7.

The multi-x methods mentioned in this section have been specifically developed for
the use with reaction networks or reaction-diffusion systems and represent only a very
small subset of the work that is done in this direction. However, they should give a
first impression that there are further alternatives to the algorithms given in previous

sections for the simulation of biochemical reaction systems.

3.5 Summary

The survey presented in this chapter is by far not complete, but if it was able to invoke
the impression that there are a lot of choices and alternatives when it comes to the
stochastic simulation of reaction networks, then it achieved its main goal.

The DM and FRM from Chapter 2 can be seen as the basic algorithms from which
several optimized variants have originated. A central addition is the reaction depen-
dency graph, which nowadays can be found in the majority of algorithms; it limits the
number of propensity updates after a reaction has fired. Another potential bottleneck
has been identified and tackled by several authors: the reaction selection process. As
this is basically a search problem, the knowledge from this field has been integrated
into the algorithm development.

To counteract the performance loss of exact algorithms (which simulate each event
independently) in case of reactions with high propensities, a new strain of methods
have emerged: the leap algorithms (Section 3.2). The most prominent member is 7-

leaping: a time interval constrained to the leap condition, which requires the changes

62

3 Stochastic Simulation Algorithms: A Small Survey

in the propensities during this interval to be bounded by an error control parameter, is
determined and then used to calculate how often each reaction fired during the jump.
Some variants restrict the number of firings instead of the leap size; others have been
specifically developed to handle stiff systems.

Just like the algorithms for well-stirred systems, spatial methods have also evolved
over the last years (Section 3.3). One of the best known variants is the exact Next
Sub-volume Method used in the MesoRD tool [HFE05|, which stores the sub-volumes
according to their next event time into an event queue and subsequently processes the
sites where the next event (a diffusion or reaction) takes place. As an alternative, the
Gillespie’s Multi-Particle Method, an approximative operator-split algorithm, avoids
single diffusion events and distributes the particles of a species in predetermined time
intervals; between each diffusion phase a non-spatial SSA runs locally in each sub-
volume and takes care of the reactions.

Yet another family of algorithms is added if parallel methods are considered as
well (Sections 3.1.3 and 3.3.3); they utilize more than one computational resource
to accomplish the simulation task, which seems a worthwhile approach given that
the number of processors per chip is steadily increasing. Two techniques have been
introduced: “parallelization inside a simulation run” and “parallelization across the
simulation™ in the former case the individual processors have to send and receive
event messages frequently, e.g., when a particle diffuses between two sub-volumes that
are hosted by different workers. In the latter type the workers need to communicate
much less or even not at all; some tools, e.g., JAMES II, offer the distribution of an
ensemble of replications among the computational units, with each unit then running
a sequential variant of the simulation algorithm to generate one trajectory. Different
publications report speed-ups between 2 and 8 for the first type and up to 200 for the
second type.

The last section in this chapter was dedicated to multi-x approaches, i.e., methods
that operate on multiple scales or resolutions or use more than one algorithm to sim-
ulate a model. They follow the “separation of concerns” principle: for example, fast
reactions are treated differently than slow ones to decrease the overall run time of
the simulation. Most often some kind of coordinator is used to steer the execution of

distinct methods, each responsible for a specific part of the model.

63

4 The Spatial 7-leaping Algorithm

The topic of approximative spatial stochastic simulation algorithms was intentionally
left out in the survey of the last chapter. Non-spatial leap methods avoid executing
each reaction individually; if the leap condition is fulfilled for some time interval 7, then
the number of times each reaction fires during 7 can be sampled from a Poisson random
variable. As long as a single leap comprises enough reaction events the execution can
be much faster than an exact variant (a more in-depth analyze of the performance of
7-leaping will follow in a later chapter).

In this chapter the leap principle is taken into the spatial realm. It is first motivated
why a step in this direction could be promising; being not the first attempt, already
existing approaches will be discussed as well. The main part of this chapter is then

dedicated to the derivation and analysis of the spatial 7-leaping algorithm.

4.1 Problem Statement

All exact stochastic simulation algorithms, regardless whether a variant considers space
or not, simulate each event individually, one at a time. As already defined earlier, for

a model with L sub-volumes and N species, the L x N matrix

11 12 ... X1N
X211 1'272 ... T2 N

X = (4.1)
Xri1 L2 ... XLN

denotes the state of the model and X(¢) the stochastic process governing its evolution
over time. With X(¢) = X being the state at time ¢, the entries of the row vector
X; = X][l;1,..., N] are the numbers of molecules currently present in sub-volume [. In
general, the average time interval between two events is the inverse of Zle(aé(X) -

d(X)); each term sums up the total propensity and diffusion rate over all reactions and

64

4 The Spatial T-leaping Algorithm

species (the second rate quantity is set to zero for non-spatial algorithms having only
a single sub-volume). Due to this inverse relationship, the time interval can become
very small if the sum increases. Returning to the bottom, the propensity and diffusion

rate functions are defined as

di(X) = HI(X) = ¢;]| <‘””lvf> (4.2)
d\(X) = Qn&xli. (4.3)

In terms of probability, ¢;dt gives the chance for any of the H]l (X) independent trials to
have a positive outcome. Higher values for this constant therefore make it more likely
to observe a “hit”, i.e., a reaction in this case, when testing each of the HJZ(X) reactant
groups. On the other hand, given a fixed ¢; the same effect can also be achieved
by increasing the number of trials, which means nothing more than adding reactant
particles to the system. A similar argumentation line can be given for the diffusion
equation. Note that here the probability 2nD;dt/)\?, that a particle will leave a sub-
volume within the next dt depends on two constants: the diffusion “speed” D; and the
side length \,, of the sub-volume; making the particles faster or the sub-volume smaller
both increases the chance that a particle will diffuse away. Figure 4.1 gives an example
how model parameters influence the size of the time step calculated by the non-spatial
Direct Reaction method. Raising the population from initially 100 to 10000 particles
decreases the average and median time intervals approximately by the same order of

magnitude; the minimum interval is even lowered by a factor of 10 in the dense case.

Just like the DM, the NSM is an exact spatial stochastic simulation algorithm and
its execution speed thus suffers if any of the above parameters increases significantly.
Things look even worse for models which include, e.g., not only some ubiquitous species
present in large amounts, but whose diffusion constants are high as well; it is very likely
that most of the time required to simulate those types of models is spent on propagating

particles of less interesting species.

There are several alternatives available, developed with a similar motivation in mind
that lead to the development of the non-spatial 7-leaping algorithm (Section 3.2.1).
The GMPM looks promising, though concerns may be expressed about the spatial
accuracy, i.e., how well it captures the distribution of the particles in space. Particle
displacement is an all-or-nothing step: in each diffusion phase all particles of a sub-

volume are distributed among its neighbors, leaving it empty if it does not receive new

65

4 The Spatial T-leaping Algorithm

Time Interval 7

1078

107°

10—10

107!

0.0 0.2 04 0.6 0.8 10
Time

(« BE=s=10 - E=S=10° - E=5=10)

Figure 4.1: Time steps calculated by the DM for different parametrizations of
the enzyme-substrate model. Red (green, black) dots show the interval values
for a single run of a model with initially 100 (1000, 10000) £ and S parti-
cles present. The smallest, largest, average and median time intervals for each
parameter set are: (2.35 x 1075,0.035,1.982 x 1073,5.5 x 107%) for the 100 parti-
cle model, (7.4 x 1072,0.19,3.6 x 1074,2.9 x 107°) for the 1000 particle model, and
(1.1 x 1071,0.12,4.3 x 1075,2.0 x 1079) for the 10000 particle model.

66

4 The Spatial T-leaping Algorithm

entities — which occurs when all neighbors did not contain any own particles; this
scenario will be further discussed in the next chapter.

Another approximative method is the binomial spatial 7-leaping algorithm (BStau,
[MLBO7]). Based on the NSM, it allows more than one event per iteration; BStau is
essentially a local binomial 7-leaping, calculating for each sub-volume an individual
leap value. Among those the minimum is taken as the time increment for the current
iteration. Using the 7-leaping approach, it is determined for the sub-volume having
the minimum time stamp how often each reaction fires and how many particles dif-
fuse into neighboring sub-volumes during this interval. But calculating the leap value
does not consider particles diffusing into a sub-volume; clearly being an additional
approximation, it is not stated if this has a noticeable impact on the accuracy.

In a later publication Rossinelli et al. |[RBKO08| also presented a spatial leap algo-
rithm, this time based on the modified 7-leaping algorithm by Cao et al. [CGPO06].
While accounting for incoming particles, the authors split the 7 calculation for a single
sub-volume to find a leap candidate for reaction and diffusion events independently; the
final leap value is then the minimum of both. However, reaction and diffusion events
take place concurrently, so both event types are not independent — an argument also
raised in a recent publication by Iyengar et al. [[HC10] which introduced a spatial
T-leaping variant very similar to the one that will be derived below.

Other authors also used the leap method to simulate spatially inhomogeneous sys-
tems, e.g., [V1a08, CV06]. An interesting hybrid algorithm was proposed by Ferm et
al. [FHL10|, with the aim to speed up the simulation of the diffusion events. The dis-
tinct feature of this method is that it decides for each species and sub-volume neighbor
pair whether to use a macroscopic (numerical integration), approximative mesoscopic
(7-leaping), or exact mesoscopic (NSM) diffusion scheme for the current iteration. Like
GMPM, it is also based on operator splitting, however, it differs from the former in
that the time increment 7 is calculated at each iteration instead of doing this only
during initialization for each species.

What follows in the next section is a detailed derivation of the spatial 7-leaping
algorithm (S7).

4.2 Derivation

For simplicity, the introduction to the spatial 7-leaping algorithm follows closely the

steps made by Gillespie to derive the original 7-leaping idea [Gil01]. Before starting,

67

4 The Spatial T-leaping Algorithm

some basic preparations have to be made. A new reaction set R’ is defined as
N
R/:RUU{RM+ZSZC—Z>®}
i=1

The additional reactions represent the diffusion of species into neighboring sub-volumes,
with ¢; = 2nD;/\2,; their propensity is calculated similar to unimolecular reactions, i.e.,
al;(X) = di(X) = ¢;z;. Each new Ry4; € R has a state change vector vy = —17,

i.e., the N-dimensional vector with vy, = —1 and vy4; = 0,5 # .

What was only mentioned briefly in Section 3.2.1 shall now be elaborated in more
detail: how to find a value for the leap 7 without violating the leap condition. As a
reminder, the latter restricts the size of 7 to be small enough that the propensity change
|ATa§(X)| of each reaction is insignificant during the leap; expressed more formally,

the leap condition states that
|Aal (X)| < max{ea’(X), ¢;},5 € [L, M + NJ. (4.4)

Note that the threshold is based on the individual propensities, a necessary modification
of the original condition ensuring that reactions having a small propensity do not fire
more often than actually intended [CGPO06]; the constant ¢; is a lower bound on the
change of each propensity function and avoids that ATaé- (X) (and, as a consequence,

also 7/) approaches zero if a}(X) — 0.

Due to its dependence on the state, the propensity of R; changes whenever the
population of its reactants is modified; so given X, an expression for the left hand side
of Equation 4.4 is found by taking the difference between the current propensity and
the updated one after the leap:

Ardi(X) £|a (X + A(T; X)) — ai(X)]
L N Oat 4.5
~tr(Vay(X) AT X)) =) 0> Acay, o (ZX) ; (45)

I'=1 i=1

?

A;x;; is the entry in A(7;X) at position (/,7) and the second line is a result of a
Taylor expansion around X. The matrix A(7;X) represents the state change from X
to X(t47); however, only the propensity change A.a}(X) is of interest, so da}(X)/dxy ;
is zero for all I # [and thus only the [-th row vector of A(7;X), denoted by A;(7;X),

needs to be considered, which gives the change in the population of sub-volume [during

68

4 The Spatial T-leaping Algorithm

the leap.

In the original non-spatial 7-leaping algorithm, A;(7;X) only depends on how often

each reaction fired during 7:
M
A7 X) =D KT X)v;. (4.6)
j=1

But with reaction-diffusion systems the state can now also be changed by diffusing
particles that either leave or enter [. While the first case is simply captured by replacing
R with R/, the second requires an additional vector representing how many particles

of each species diffuse from [’s neighbors into it. Thus Equation 4.6 is replaced with

M+N N
A(riX) = > K mX)v + > (X)L, (4.7)
j=1 i=1

The difference to the original 7-leaping state update is the additional term: it sums up
the changes made by particles diffusing into SV [. Similar to the non-spatial 7-leaping
algorithm, if a 7 satisfies the leap condition, the number of firings for an event R; € R’
inside [can be approximated by a Poisson random variable Pois(a’(X),7) with mean
and variance a}(X)7, so

K(7;X) ~ Pois(a(X), 7). (4.8)
However, knowing how to deal with the first sum is just half the truth; it still needs to
be shown how to approximate the second function If (1; X), i.e., the number of particles

diffusing into [. As a first step, an incoming diffusion rate 3'(X) shall be defined as

2n

1 c
! :
Bi(X) = m aMlJ]:z'(X)-
k=1
Notice the factor 1/2n: the diffusion rate aAijZ(X) for S; in sub-volume £ is calculated
over all possible sides a particle can leave k (2n for a spatial dimension of n), but now

only the direction towards [is of interest.

If the leap condition is satisfied for both the reaction propensities and the outgoing

diffusion rates for all neighbors of [, then the number of incoming particles can also be

69

4 The Spatial T-leaping Algorithm

approximated with a Poisson random variable with mean and variance S!(X)7:

i 2 Cl k (49)

the transition from the first to the second line applies a well-known property of Poisson
random variables: the sum of N Poisson RV, each one having a rate parameter \;, is
again a RV that also follows a Poisson distribution with A = Zf\;l Ai. What is done
here is basically to look at the states of all neighbors of SV [and approximate how
many S; particles will diffuse into [during a leap of size 7. In other words: if a sample
of Pois(ah,,;(X),7) gives the number of S; particles that will diffuse out of I (see
Equation 4.8) during 7 and each of the 2n neighbors of [has the same probability of
being selected as a target, then sampling from Pois(a),,;(X)/2n, 7) gives the amount of
particles that will enter one specific neighboring site. However, the algorithm samples
only from Pois(a},;(X),7); then, for each particle that leaves [a target neighbor is
selected from C; with a point probability of 1/2n.

Returning to Equation 4.7, inserting Equations 4.8 and 4.9 and defining the vector
b as

b= Z Pois(8L(X), 7)1Y = (Pois(BL (X, 7), ..., Pois(By(X), 7))

gives
M+N

A(m;X) = Z Pois(aé-(X), T)v; + b. (4.10)

Now putting this result into Equation 4.5 provides an approximation for the propensity

change, given a leap value 7:

N 1 M+N
Acah(X) = > 0a,(X) > Pois(al, (X), 7)viy + b (4.11)
T — a‘xl’z — i) 1] (3 . .

Writing the propensity change this way makes it very easy to explain what is calculated
here: at first it is determined how the propensity depends on species S;. If \S; is not

a reactant of R;, then da’(X)/0x,; is zero and is it not necessary to look at the part

70

4 The Spatial T-leaping Algorithm

inside the brackets. On the other hand, if reaction R; depends on S;, then the state
change of the latter during 7 is estimated — which is given by the value inside the
brackets: the first term sums up the changes made by reactions and outgoing diffusion
events (again, v;; = 0 if .S; is neither a reactant nor product of Rj), the second one

counts how many S; particles enter [.

Equation 4.11 does not look very useful: still depending on random variables, how
to constrain this expression according to the leap condition from Equation 4.47 The
answer is to relax the condition and only require the mean and the variance of the
expected change A;a’(X) to be bounded by max{ea’(X),¢;}:

(Arah (X)) < max{eal(X), c;} Avar {A;a}(X)} < max{ed;(X),¢;}?,j € [1, M + N].
(4.12)
So all that is left to do is to substitute the random variables in Equation 4.11 with

their respective means and variances — which is very convenient for Poisson RV, as

(Pois (A, 7)) = var {Pois (A, 7)} = AT.

N dal M+N
(A (X Z Dor <Z (Pois(al, (X), 7)) viy + (bl>>

'=1

N dal (X M+N (4.13)
~ Z C(;j;” : <Z aly (X) v + 55(X)T> =u5 (X) 7
N [0al(X ? [MAN
var { A-a(X)} ~ Z (aﬂqf”)> (Z var { Pois(a’,(X), 7)} v}, + var {bz}>
. l R (4.14)
N [9al(X MtN ,
~2 (o)) (Z ol (X)r +5£<X>r> _ (ol(x)*

Finally,zinserting ph (X) 7 and (oé.(X))2 7 into Equation 4.12, dividing by pf (X) and
(aé- (x)) , respectively, and taking the minimum of both gives a single 7 candidate for
R; in sub-volume [. Doing this for every reaction in all sub-volumes eventually results

in the leap value:

7 = min { min {max‘{;?z)((xl) CJ}7 max{ea;(X),c;} }} (4.15)

I
J
le[1,L] | je[1l,M+N] (g (X))

71

4 The Spatial T-leaping Algorithm

The derivation so far represents the core of the algorithm, i.e., the steps performed
in the Calculate NonC'riticalTau() method of Algorithm 4.1; an actual implementa-
tion would include, e.g., further optimizations or modifications such as replacing the
Poisson with binomial random variables or re-formulating the leap condition to bound
the allowed change in the species concentration. The latter shall be discussed briefly
because the spatial 7-leaping algorithm used in the forthcoming performance study
(Chapter 6) is based on it.

Each propensity function depends on the number of reactant particles present at the
current time point, a fact which is, loosely speaking, exploited by the alternative 7
selection procedure: instead of focusing on the dependent variable, i.e., the propensity
functions in Equation 4.4, it should also be possible to restrict the change in the
argument, i.e., the state X. Or, more formally, find a leap value for sub-volume /[

subject to the condition:
Acxy; < max{ery;, 1},Vi € [1, N],Vl € [1, L] (4.16)

that is also a valid choice under the original leap condition. Notice the individual
error control parameters ¢;: a reaction can have more than one reactant species, but
its propensity change A.a}(X) still has to be bounded by max{ea}(X),¢;}. Finding a
general expression for ¢; is difficult, but approximations can be given by analyzing the
fundamental reactions of order up to three [CGPO06|. It turned out that setting the
error parameters to €/g}(X) is sufficient to ensure that the leap condition still holds,

with -
gi(X) = h(i) + ZEZ) > -

i) = T

L . [San09b) (4.17)

The values for h(i) and n(i) are taken over the set R® C R of all reactions having S;
as a reactant: h(i) denotes the highest order of any reaction inside R’ and n(i) the
maximum vj; over all R; € R' with order h(i). Having found ¢;, Equation 4.10 provides
an approximation for the left hand part of Equation 4.16. As before, the mean and

variances should be bounded, so:

M

(Arxy;) ~ (Pois(a’(X), 7)) vij + (b;)

J

+
2

2 o
+
2)—‘

(4.18)

Q

a (X) 7y + B(X)7 = i (X) 7
1

<.
Il

72

4 The Spatial T-leaping Algorithm

M+N
var {A,x;;)} =~ Z var {Pois(aé.(X),)} (vi;)? + var {b;}
Aﬁv (4.19)
ak(X)7 (vg) L+ B(X)r = (O’f(X))Q T

Compared to Equation 4.14, it is much easier to calculate the required values for the

T selection procedures, which changes slightly to

7 = min { min {max{ex“/gl)1} maX{ele/glV } }} (4.20)

le[1,L | i€[1,N] ‘ui | 7 (Ul'(X)

7

4.3 Analysis

This section provides a more detailed look at implementation issues and internals of
the spatial 7-leaping algorithm. Before testing the method “in the field”, i.e., conduct-
ing an empirical performance analysis (see Chapter 6) for several model instances, it
could be worthwhile to first identify potential performance bottlenecks, both from an
implementation as well as a theoretical point of view.

Algorithm 4.1 summarizes the main steps performed by S7, including the check for
critical reactions to avoid negative populations. It is a straightforward representation:
almost the entire derivation done in the previous section is condensed into the single
call to CalculateNonCritical Tau(Xy, I,

holding the current state of sub-volume 1, I, as the set of indices for non-critical events

€) (line 6), with X; denoting the row vector

(reactions and outgoing diffusions), and e providing the upper bound in the relative
propensity changes Ara}(X)/a’(X), j € I,.. The remaining operations essentially first
write the state changes (i.e., the calculated entries of A(7;x)) to a temporary storage
and eventually apply them to the actual state matrix. This is necessary due to the
sequential iteration over all sub-volumes and the occurrence of diffusion events. Let
[be the current sub-volume for which lines 15 to 24 are about to be executed. It is
not possible to update the state vector of a sub-volume k selected as the target for a
diffusion event from [directly because this (new) state would be used in k’s iteration to
determine how often each reaction will fire and how many particles will leave k& during
T — an approximation based on the wrong state.

It could happen that a state is driven negative by too many reaction firings (just as

73

4 The Spatial T-leaping Algorithm

Algorithm 4.1: Pseudo-code description for the spatial 7-leaping algorithm. This
represents a short and condensed version, though it already considers critical and
non-critical reactions to avoid negative populations; some additional details can be
found in the 7-leaping algorithm (Algorithm 3.3).

N Ot R W =

®

10
11

12
13

14
15
16
17
18
19
20
21

22
23
24

25
26
27
28
29
30

31

Parameters:
e € R (leap condition parameter) Ngga € N (number of total SSA iterations)

v €R (SSA threshold parameter)

Input:
RN (reaction network) X (update matrix)
C (connectivity matrix) [tsiart, tend] (simulation interval)

X(0) (initial state matrix)

t < tstart;

while ¢ < t.,q do

for i €[1,L] do // calculate 7 candidates
update propensities;
get critical and non-critical reaction sets: I’ I!

c) T ner

k.« CalculateNonCritical Tau(X, I, €);
e (U (0,1))/ e b (X);

Tne €= minle[l,L]{Trch}Q

T < mingep {7t}

'+ argminle[l,L]{Té}Q

if 7 <79/ ZZL:I ZjeM—f—N aé’(X) then
perform Ngg4 NSM iterations;
continue with next iteration;

\]

< min{7e, Te };
orl/ec[l,L] do // calculate update matrix
if r=71.Al=1 then
sample reaction index p from Ié;
if > M then

‘ diffusion: update particle counts in X; and random neighbor X, ke Cp;
else

=ty

L reaction: update particle count in Xj;

generate samples s; + Pois(ak(X), 7),j € I\

j ne’
diffuse s; particles to neighbors k € C; for all j > M, j € I -

nc’

execute events: update particle counts in XZ and Xk, k e Cy;

orle[l,L] do // apply update matrix
X;(t+7) %Xl-i-Xl;
if 32;; <0,i € [1,N] then

undo changes for [* € [1,1];

Tne & Tne/2;

goto line 11;

(=g}

t<t+T;

74

4 The Spatial T-leaping Algorithm

in the non-spatial variant, cf. Section 3.2.1). In this case the algorithm needs to undo
the changes made in line 26 for all already processed sub-volumes, e.g., by subtracting

the X, from the respective states.

However, as it is very cost-intensive to iterate over all sub-volumes three times (as it
is done in Algorithm 4.1), a first optimization could be targeted at reducing the number
of necessary loops. One alternative variant of the above algorithm relocates the update
process from the third loop into the first one. Before calculating a 7 candidate for sub-
volume [, the respective entries from the update matrix are applied to the state of [
and any neighbor that has not been updated so far. Going back to Algorithm 4.1, the

last loop can be removed and the following additional steps get added after line 3:

1 if [needs update then
2 X[(t+7)<—XZ+XZ;
3 update propensities;

4 mark [as updated;

5 for k € C; do
6 if k needs update then

7 Xk(t+T)<—Xk—|—Xk;
8 update propensities;
9 mark k as updated;

The 7 value is the result from the previous iteration. Modifying the original algorithm
this way entirely avoids one loop, but it has to be considered that while the current
time has been updated at the end of an iteration, the state matrix has not; the system’s
state at ¢t 4+ 7 is therefore only valid after finishing the first loop. But this should be
no problem in practice as it is just a matter of adapting the condition when to read
out the current state, e.g., for visualization purposes. Just like in Algorithm 4.1, it is
also necessary to revert the changes if during the update any state variable is driven

negative.

Another technique incrementally makes copies of the state vectors and is based on two
observations. First of all, the current state is required for calculating the state change
values, unaffected by any incoming particles. Algorithm 4.1 ensures this condition by
keeping the entire state matrix untouched within the second loop; instead, it writes

the results into a temporary structure. Secondly, each sub-volume [has 2n neighbors,

75

4 The Spatial T-leaping Algorithm

whose indices are stored in the connectivity vector C;; particles from [can only reach
those adjacent sites during 7, any other of the L — 2n sub-volumes remains untouched.
As a direct consequence thereof, | can only be selected as the target for a diffusion
event by any of its 2n neighbors in other words, the possible “interactions” of [with
other sub-volumes are limited to a very small subset of [1, L].

Now linking both observations gives rise to a modi-

fied update processes. Figure 4.2 depicts a small, two- x0 1 2 3 4

dimensional 5 x 5 gl"ld with the sub-volumes labeled 0 1 6 | 11| 16| 21

column-wise; this image shall help to demonstrate the ap- e T Tl

proach, which operates according to the following scheme:
2 3 8§ [13 | 18 | 23

Initialization: Start with sub-volume [y = 1, store the cur- sl wuliolau

rent states of all its neighbors inside an auxiliary set
415 [10]15]20 |25

C' and perform steps 16 to 23 from Algorithm 4.1.

Notice that a neighbor’s state is allowed to be mod- Figure 4.2: A simple 5 x 5
ified during those steps because the original popula- grid.

tion has been stored in C.

Iteration: Proceed with sub-volume [;;; = [;+ 1 and store
the state of a neighbor I* € C;,,, in C only if I* > [;;; (all sub-volumes with a
lower id have been already processed and their states can be updated without
risk). Then take (but not remove) the stored state X;,,, from C and use it to

perform steps 16 to 23 from Algorithm 4.1.

As an example, the initial set C' for the 5 x 5 grid is {Xy, X5, X4, Xo1}. After deter-
mining how many particles left or reacted inside sub-volume 1, the counter increases
to [y = 2 and the neighbor states of the corresponding sub-volume are stored, i.e.,
C'U{X3,X7, X9} Now the stored state X, can be taken as an input for calculating
the number of reaction firings and outgoing diffusion events. Starting with the third
column, the first sub-volumes can recalculate their propensities: after 11 has been pro-
cessed, all neighbors of sub-volume 6 have calculated the state updates, so 6 is now
allowed to update its propensities and check whether there are negative state entries;
if yes, then the process has to be aborted and the original states restored using the
entries from C. Note that it is also possible to perform these steps at the beginning of
a new iteration.

Timing studies showed, at least for the implemented variants and models under

study, that the overall execution time is nearly unaffected by the choice of the update

76

4 The Spatial T-leaping Algorithm

method; using an update matrix turned out to be slightly faster than making copies of
the state vectors X;, so this technique has been used for the study in Chapter 6.
Apart from possible optimizations, it also could be interesting to see how the ba-
sic algorithm behaves when faced with different problem instances. However, before
delving into the analysis it must be clear what questions can be answered with a pure
theoretical approach. The derivation made in the previous section ultimately resulted
in an estimation for a value 7 compliant with the leap condition. Given a simple model,
this value can be calculated easily and compared with the average step size made by
the Next Sub-volume Method — which gives a first (yet rough) impression about the
attainable speedup. To see how this can be useful, Algorithm 4.1 shall be again used

as the starting point. Lines 11 to 13 read:

. L
1A T </ D000 D ieman at(X) then
2 L perform Ngg4 NSM iterations;

3 continue with next iteration;

It is checked whether the 7 candidate for the non-critical reactions is at least y-times
larger than the average NSM step size I/Zle D ieMiN ab(X); if not, then 7-leaping
is abandoned for the moment and a number of NSM steps performed instead. This is a
common procedure found in several 7-leaping algorithms; not every state allows a large
7 value and before making tiny jumps that would require much effort to calculate, the
more simple (yet in this case more efficient) Next Sub-volume Method is used (or any
other exact algorithm).

That said, it could be worthwhile to analyze the following two question:

e Given a model, what are the conditions on the current state so that a St leap is

at least v times larger than a single average NSM step?
e How does this value scale with the model size?

While specific answers could be found for any model, it may be a better approach
to start with small benchmark problems representing common model characteristics,
e.g., the spatial distribution of particles (a more in-depth discussion about benchmark
models will follow in Section 5.3). Figures 4.3a to 4.3c¢ show a simple 3 x 3 model
with reflective boundaries and a single species A allowed to diffuse into every sub-

volume. The problem is simplified by the assumption that each edge sub-volume (F)

7

4 The Spatial T-leaping Algorithm

(a) (b) (c)

Figure 4.3: The “toy models” used for analyzing the spatial 7-leaping algorithm. (a)
Only the center sub-volume contains A particles. (b) Some particles diffused into
neighboring sub-volumes. (¢) Each sub-volume now contains at least one A particle.

contains the same amount particles (xg 4); this also applies for the corner sub-volumes
(Co and x¢, 4). Initially, A particles are only present in the center (Figure 4.3a); as
time progresses, they diffuse into the nearest neighbors (Figure 4.3b) and eventually
reach the outermost sub-volumes (Figure 4.3c). In summary, this model represents
the simplified transition of a system from an initially inhomogeneous to a well-stirred
particle distribution.

Now the task is to analyze the dependence of 7 to the initial number of A particles for
each of the scenarios shown in Figure 4.3 and to compare the result with the respective
average NSM time interval. Using the modified formula from Equation 4.20, the size

of a leap calculated with the S7 algorithm is

max {ex; 4/¢'(X),1} max {ex; 4/¢"(X), 1}2 } | o)

"7 o) { [y (X)) ’ (04(X))?

Due to the simple structure of the model, it is not difficult to find the values for
g4 (X), 4 (X), and (U%(X))% Having no reactions defined, the only entry for the

vector R’ is the diffusion of A into neighboring sub-volumes,
Ry : A0, (4.22)

a first order reaction with c4 = 2nD4/)2, and ! (X) = cazya,l € {C, E,Co}; for
simplicity, the diffusion constant D, is set to 1s~! and the side length A\, to 1.

Furthermore, in a two-dimensional model (n = 2) each sub-volume has four neighbors,

'No units of length are given here as they are not relevant for now. Instead, D4 and Ay, can
be interpreted as being given relative to some unit length scale (e.g., if the scale is nm, then
Dy =1nm?s7! and A\, = 1nm).

78

4 The Spatial T-leaping Algorithm

100 6
10! i
=
= o4
£ 102 @
g £
k: 531l
y &
G 103N NG Il
%D‘ \ 5~ 2
=
W7 N, . NN KON O —— e e S
10 - 1L
B i i i i i i i i
10 2000 4000 6000 8000 10000 f 2000 4000 6000 8000 10000
TC A ToA
| — 7 — T8 —— Tst\[]

(a) (b)

Figure 4.4: Leap and 6 values for the first toy scenario having only A particles inside
the center sub-volume.

so taken all together the propensity function reduces to a}(X) = 2nz; 457! = 4 457

Species A only occurs in Ry, so according to Equation 4.17 ¢',(X) = 1,1 € {C, E, Co}.
The only values yet to be found are pY(X) and (alA(X))Q, but with a propensity as

defined above both are easy to write down:

pG(X) = —dzcs + 4zp 4 (05(X))* = 4w a + 4 4 (4.23)
2

pE(X) = —3Tp A+ Toa+2Tcon (O‘E(X)) =5Tp A+ Toa+2xcoa (4.24)
o o 2

,U,g (X) = _23700,14 -+ 2£IZ'E7A (Ug (X)) = 63700,14 -+ 237E,A~ (4.25)

Finally, to get a 7 from Equation 4.21 for each of the scenarios is simply a matter of
inserting the results just presented and using an appropriate initial configuration of
{zca,TE A, Tcon}. Figure 4.4 shows the minimum leap values for the center and edge
sub-volumes and the average NSM step size for the first toy scenario, with an initial
population {[1,10000],0,0}* and € = 0.03. As expected, 7¢ will eventually converge to
0.0075 (e/4) and 7g is always 1/x¢ 4. The Next Sub-volume method takes a step of
size 1/(a%(X) + 4a¥(X) + 4a{°(X)) = 1/4xc 4, 50 0 = 4, i.e., a single leap is roughly
equivalent to performing four NSM iterations — a sobering result, considering the
complexity of the St algorithm. But this example also hints to another optimization:

the corner sub-volumes do not have any influence on the leap value, hence they can

2{[1,10000], 0, 0} shall actually denote the set of configurations {{1,0,0},{2,0,0},...,{10000,0,0}.

79

4 The Spatial T-leaping Algorithm

10 T . : , 60
10°F 50k
=10~
T < 401
> 2]
g1 £
& & 30F
o . =
g 10 l
= = 20}
S 10
1 - S U A 10ff-
6 ; ; ; | ; ; ; ;
10 2000 4000 6000 8000 10000 9 2000 4000 6000 8000 10000
TEA TEA

(a) (b)

Figure 4.5: Leap and 6 values for the second toy scenario. The number of particles
inside the center sub-volume is fixed (10000) and the A population is varied in the
interval [1,10000] for the edge sites (zg 4.

be ignored during the calculation (which generally applies to every sub-volume that is
empty and whose neighbors also do not contain any particles).

Results for the next scenario (Figure 4.3b) are shown in Figure 4.5, with {10000,
[1,10000],0} as configurations and € again set to 0.03. The sites dominating the 7
selection for most of the initial setups are the corner sub-volumes, similar to edges
in the previous example. Both the center and the edges would allow larger jumps,
but the size will eventually be restricted by 1/(2zg 4), i.e., the particles diffusing into
the corners, and thus as xp 4 is increased ¢ will converge to 10. In contrast to the
former scenario there is a peak of about 6 = 60 for the ratio between 7g, and Tnygas,
located at {10000, 380, 0}; it occurs at the intersection between 7 and 7¢, (see Figure
4.5a). With increasing zg 4 in the edge sub-volumes, the difference between particles
coming from and leaving towards the center decreases, and so does |uE(X)}. But at
the same time the ratio 1/(2xpg 4) gets lower, leading to smaller 7 candidates for the
corners; the peak therefore represents the optimum number of particles at the edge
sites, i.e., the configuration yielding the maximum leap value. The strange shape of
the curve for 7z in figure 4.5a can be explained by looking at the values for the mean
and variance: at xp 4 ~ 3333, the expected mean change |[L1E(X)| reaches its minimum
at approximately 1, so one leap candidate would be 7z ~ 100 s; however, the final leap
value is capped by the expected variance (J{E(X))2 to ~ 0.375s.

For the third and final scenario the initial number of particles inside the edge and

80

4 The Spatial T-leaping Algorithm

log[rc] log[7r] log[G = Ts.,/ TNSM]
10k 10 = le+06
7500 i
< le+05
S 5000 1e-01
8]
2500 1602 led
002500 5000 7500 10k 1% 00~ 2500 5000 7500 10k -
e e S 1000
log[rco] log[rnsu] 8
10k — 1 1e-04
7500 1e-01 100
< 1e-02
S 5000 1le-05
B 1e-03 10

2500 ==

le-04

0 1e-06 0

0 2500 5000 7500 10k de08 0 2500 5000 7500 10k

(a) (b)

Figure 4.6: Leap and 0 values for the third toy scenario. Now both zp 4 and xcoa
are independently varied in the interval [1,10000] while z¢ 4 is again fixed to 10000.
With a high overall population a single St iteration is equivalent to performing several
thousands of NSM steps.

0 2000 4000 6000 8000 10000
TpA

corner sub-volumes are varied independently, i.e., the configuration set is defined as
{10000, [1, 10000], [1, 10000]} (Figure 4.6). There are optimal setups for each of the
7 candidates (the “red stripes” in Figure 4.6a) and the overall result also looks quite
promising: with large numbers of A particles in all sub-volumes, 6 is about 10°, so
a single ST leap iteration encompasses ~ 10° NSM iterations. Even low populations
still allow considerable jump intervals compared to a single NSM step, e.g., # ~ 54
for {10000, 350, 100}. But it should be emphasized at this point that a value of ~ 10°
is not the attainable speed-up this would only be the case if a single St iteration
takes almost as long as an NSM iteration, which is very unlikely. As an example, if
the implementation is such that a leap candidate can be found and the jump executed
within the time it takes to perform, e.g., 500 NSM steps, than S7 should be faster by
a factor of approximately 200.

To sum this section up, the St algorithm offers several starting points for optimiza-
tions, e.g., calculating the state update and applying it can be interwoven in several
ways. Being a spatial algorithms, it is especially interesting to analyze how it behaves
for different particle distribution patterns, three of which having been discussed on the
previous pages. While ST may have problems with states that contain a mix of empty
and non-empty sub-volumes, its performance should get better compared to NSM if a

certain minimum population is present at all sites.

81

4 The Spatial T-leaping Algorithm

4.4 Parallel Extension

Even with only two loops, the overhead of processing each sub-volume twice could be
significant for models hosting thousands or millions of them. Looking at the operations
performed in the first loop, the only data accessed are the state vectors for the current
sub-volume and its neighbors and the set of reactions. Furthermore, the order in
which the sub-volumes are processed does not matter, the loop iterations can in fact
be executed independently from each other; all that is needed are the 7 candidates
from each site. As a consequence, if more than one processing unit is available (e.g.,
a multi-core CPU, a cluster, or a network of computers) then it is possible to split up
this work and distribute it among them.

Section 3.1.3 already introduced two parallelization methods: parallelization inside
a simulation run and across a simulation. While the latter technique is generally appli-
cable to reduce the execution time required for an ensemble of stochastic runs (hence
the ST algorithm can be used without making any changes), the former represents a
modification of the original algorithm aimed at making a single run more efficient. The
basic idea for a parallel extension of S7, roughly outlined above, can be summarized
as follows. If L is the number of sub-volumes and K processing units are available,
then [1, L] is sub-divided into K sets with at most [L/K| entries each. All of those
units need access to the state matrix and the reaction vector; how this is achieved
depends on the actual implementation, e.g., in a shared memory environment the data
structure representing the state can be directly read and written to by all processes
whereas copies need to be send around if memory is only private to one unit.

Assuming the availability of K processors, lines 3 to 10 from Algorithm 4.1 can be

replaced by the following abstract description of a parallel 7 calculation (see also Figure
4.7):

-

for k € [1, K] do
create parallel process Py ([[L(k —1)/K + 1], [kL/K|],X, R, ¢);
start process Pj;

N

w

4 wait until all processes returned their respective tuple (7x e, Tic, [},);

ot

Tne < Milgen k1{Tkne};
Te = Milgep, k) { Tk}

7k argmingepy {7}, U < U

[=2]

82

4 The Spatial T-leaping Algorithm

(n,
L 2 3 4 5 ’ZC’TI,Q//
P1 0
1 f2]13]4]5
6 17819
" i i ’ v 10 (l,) Tne = min{Tl,nC7 T2me; T3.,nc}
T2,mes T2,05 A
12|35 |—p 2| s | 2202 = min{rie o T}
P2 T
16 | 17 | 18 | 19] 20 16 | 17 | 18 argmin {ry. .}
19 | 20
21 | 22123 |24 | 25)
(Tae
P3|21f22]23]24]25 (T3n0

Figure 4.7: Distributing the 7 calculation among 3 processing units P; to P;. With
25 sub-volumes in total, each unit takes care of at most [25/3] = 9 sites. They
independently determine the leap values and send them back to the main process
where the global interval is taken as the minimum of thereof.

A process Py simply gets the set L, of indices for all sub-volumes it is responsible for
and then performs all the task done inside CalculateNonCriticalTau(X,I..,¢€) for
each [€ L. Finally, it reports back the 7 values for both the non-critical and critical
reaction sets and the index of the critical sub-volume, i.e., the site having the minimum
critical 7. Getting a reference to the state matrix X, P, does not only have access to
the state vectors for all [€ L, but also knows the current population of sites not in-
cluded in its sub-volume index set — which is required to estimate how many particles

are going to enter a sub-volume having neighbors not in L.

At this point it makes sense to distinguish between two possible implementations,
the first one using shared, the second one only private memory. While the partition of
L sub-volumes into the K lists L, can be done once and the result send to the processes
during initialization, it seems to be redundant to provide the entire state matrix. Being
the only data structure that will change over time it has to be constantly updated on
every processor. This should pose no problem for a shared memory environment, but
could be critical if the matrix has to be sent across a network during each iteration. One
way to reduce the load is to send only those state vectors that are actually necessary,
i.e., every X; with [€ Ly and the set

U {Xm:meCiamg L}, (4.26)

leLy

i.e., states for sub-volumes which are neighbors to others but not in L.

With the first loop parallelized, the next step is to look at the second one and see if

83

4 The Spatial T-leaping Algorithm

a similar replacement can be made there as well. But the problem here is again to find
an update process that ensures that all state changes have been calculated based on
the current state of a sub-volume. As it turns out, both optimizations discussed in the
previous section can be applied with minor modifications. The adaptation of the first
one — write the changes to an auxiliary matrix and relocate the state update into the

first loop — is straightforward. Lines 15 to 24 in Algorithm 4.1 are substituted with:

for k € [1,K] do
2 L create parallel process Py ([[L(k —1)/K + 1], [kL/K]],X,l', T, R);

start process Py;

Ju—

w

wait until all processes returned their respective update matrix Xk;

'y

Now the processes running during the 7 calculation (see the first pseudo code snippet
from this section) are slightly modified as well: a process Py gets the following set as

an additional parameter:

{(Xpbu |J {Xp:33m(l € Lame Ly Am e C)}, (4.27)
KeK/k

i.e., its own update matrix and all updates for neighbors not managed by P.. Again,
the processors have to check for negative state variables and abort the process if one is
detected; before returning, they restore the original state using the information from
the update matrix. This is a very abstract description of how to parallelize parts of the
St algorithm and details are up to the actual implementation. For example, if memory
is shared among processors then only a single update matrix is necessary; all units get

a reference to it and are able to directly read and write entries in a synchronized way.

The second variant makes copies of the current states instead of storing the changes
made to them. A general adaptation for a parallel execution requires a communication
between the processors. To see this, sub-volumes 9 and 10 from Figure 4.7 are taken as
examples. Both are managed by different units; if P, starts the update with 10, then it
is possible that particles diffuse into 9, which is hosted by another process P;. Now P,
can send a message to P, announcing a state change for 10; if 10’s current state is not
an element of the auxiliary set, it gets added to it and the state modified according to
Py’s message. Note that a processor can only finish after receiving a “done” message

from all neighboring units; though it may have updated its last sub-volume, particles

84

4 The Spatial T-leaping Algorithm

can still arrive from other processors. Communication can be avoided entirely if the
sets C' and Co (which holds the indices of the last sub-volume processed by each P)
and the state matrix are shared among the units. The steps from the sequential variant
need to be adjusted as well:

Initialization: Set C'o, = —1, start with sub-volume [y = Ly, and store its state in

C.

Iteration: Proceed with the current sub-volume [; and set C'o, = 7. Store the state of

each neighbor {* € C;, in C only if either of the following conditions is true:
e [*c Land " > I;
e [F € Lk/ and [* > OOkl

Take the stored state from C, use it to perform the steps 16 to 23 from Algorithm
4.1, and set li-l—l = lz + 1.

The update technique just described assumes that it is possible to quickly determine
the owner of a sub-volume [, i.e., the Py with [€ L;. Whether this is done using, e.g.,
some formula or a lookup table is again dependent on the actual implementation. At
the end of an iteration, all sub-volume states have been updated; at the beginning of
the next iteration it can be checked whether there are negative state entries.

It should be remarked that working with shared memory often requires means to
synchronize the access to variables that can be read or written to concurrently by
several processes (e.g., the counter Co;, or the data structure representing the current
state), otherwise inconsistencies can occur. For example, while changing a variable a
process gets interrupted before he can write the result; during this interrupt, another
process also modifies the variable, but this change gets later overwritten by the result
from the interrupted process. But being concentrated on the general procedure and
due to the fact that nowadays many programming languages offer those features via
semaphores or locking mechanisms, details in that direction will not be discussed in

the course of this dissertation.

4.5 Summary

The algorithm presented in this chapter extends the basic principle of the leap methods
into the spatial realm. S7 considers both incoming and outgoing diffusion events and

includes reactions and diffusion into the 7 calculation. A detailed derivation shows how

85

4 The Spatial T-leaping Algorithm

to find the leap candidate for a sub-volume and use the minimum thereof to determine
how often each reaction fired and how many particles of each species diffused into a
neighboring site.

Section 4.3 provided an analysis that was aimed at further optimizations of the
algorithm. Two alternative implementations have been discussed which avoid the third
loop over all sub-volumes that was originally necessary to finally apply the state changes
calculated before. This process can either be relocated to the beginning of the loop
for determining the leap candidate or, with the help of additional data structures,
combined with the state change calculations.

Apart from these optimizations, it has also been investigated how the size of the
leap depends on the particle number and distribution. A preliminary conclusion can
be drawn from the results: the closer ST gets to a homogeneous particle distribution,
the larger is the ratio between the leap size and a single step taken by the NSM.

The final section discussed a parallel extension to S7. FEach processor operates only
on a subset of all sub-volumes and thus may require less time to find a leap candidate
and calculate the state update; if this assumption is true is going to be analyzed in a

following performance study.

86

5 Evaluating the Performance of

Stochastic Simulation Algorithms

Both the background section and the survey list several stochastic simulation algo-
rithms and variants thereof, either exact or approximative, and even more can be
found when reading further literature from this field, e.g., [STP08, Sol09, SV05]. The
spatial 7-leaping algorithm presented in the last chapter, for example, is one out of sev-
eral methods for the simulation of spatial biochemical reaction networks — the NSM,
GMPM, or Binomial spatial 7-leaping are all viable alternatives. So how “good” is ST
compared to those? But maybe this is too specific; more generally, the question should

be: how “good” is one stochastic simulation algorithm compared to some others?

Both developers and users have a strong interest in the evaluation of algorithms.
The former group needs a way to compare a newly designed method to competing
approaches. For what problems is it better suited, where are its weaknesses, but also:
how could it be further improved? The second group, more interested in applying these
methods to their specific problems, may require some guidance through the “huddle”
of available algorithms. If it can be stated for what models it makes sense to use a
certain method and in which cases it does not, then the task of choosing a simulator

can be simplified — at least to a certain extent.

But what does “evaluation” in general and in the context of stochastic simulation
algorithms in particular actually mean and what are the intricacies of performing one?
This chapter will discuss these topics; it is not a straightforward guide how to conduct
such a study, it rather focuses on selected aspects and points to some pitfalls that may
be encountered. The concepts presented here will then be applied in two case studies,

one for non-spatial and one for spatial simulation algorithms, in the next chapter.

87

5 Evaluating the Performance of Stochastic Simulation Algorithms

5.1 Problem Statement

Definition 5.1.1 Evaluation is the systematic acquisition and assessment of informa-

tion to provide useful feedback about some object |[TDO6].

Being very general, Definition 5.1.1 has to be put into the context of this work: the
objects under observation are simulation algorithms and the information that shall
be acquired and assessed are measurements for performance facets, discussed in more
detail in the next section, which help to compare different methods with each other.
With this in mind, an evaluation can be regarded as a special type of experiment: not
the outputs of the algorithms are the central element of the study, but how they are
produced. It involves measuring, e.g., how fast or accurately the system generates the
results and the amount of resources it requires to fulfill the task.

Publications about new algorithms usually start with a motivation for the devel-
opment, then proceed with the derivation of the method and eventually perform an
evaluation study, which shall demonstrate the superiority over selected competitive
variants. There are two main approaches to do the latter, often used in conjunction:
one is to manually deduce performance properties from an abstract description of the
algorithm, the other is to empirically observe the performance of a concrete implemen-
tation on real hardware.

Theoretical analysis of algorithm complexity is a cornerstone of computer science;
it allows to characterize problem complexity and to gain deep insights into the nature
of both algorithms and computational problems. It is a valuable tool to measure the
intrinsic efficiency of an algorithm, i.e., how it performs independent from implemen-
tation or hardware. But what is undeniably an advantage can also be regarded as a
weakness, because analysis techniques such as asymptotic complexity [Knu76] might
miss important aspects of algorithm performance in reality. This is because the full
complexity of modern hardware is difficult to model theoretically [SFO1]; for exam-
ple, Turing machines, where memory access is sequential and all basic operations have
equal cost, are too simple to capture algorithm performance on hardware supporting
a multi-layered memory hierarchy (e.g., cf. [LL97]), parallel execution (e.g., GPUs,
cf. [PAYS09]), and so on. Additionally, algorithms can be non-monolithic, i.e., they
could be dependent on the presence of other algorithms. If an algorithm A requires dur-
ing execution functions provided by another algorithm B, then A is said to be dependent
on B and B shall be called a sub-algorithm with respect to A. Well-known examples

for sub-algorithms in simulation are random number generators (RNGs) [LK99| and

88

5 Evaluating the Performance of Stochastic Simulation Algorithms

event queues |GT03, HUO7a|. Both types are so common in simulator development that
they are often simply assumed “to be present”, without considering them as indepen-
dent variables that may have a strong impact on overall performance. The limitations
of a theoretical treatment also apply to all sub-algorithms and their interplay with the
host algorithm — which makes analysis even harder.

The alternative, empirical performance studies that directly measure the run time
and other properties, suffer from different drawbacks. Executing algorithm implemen-
tations on physical hardware is as close at it can get to reality, but it is unfeasible to
consider all possible setups. Furthermore, such studies involve a lot of effort, as the
corresponding experiments have to be designed and executed carefully. Still, the input
space is only marginally covered: models are needed, which naturally can represent
only a small fraction of the problem space, and many algorithms require parameters
for which appropriate values have been found.

Assessing the performance impact of sub-algorithms may appear simple at first
glance, but is often cumbersome: the evaluation of all available setups and their corre-
lation with overall performance is needed. An otherwise slow simulator could well be
working quite efficiently in the presence of a suitable sub-algorithm; so in principle it
is necessary to re-evaluate algorithm performance whenever a new implementation or
a new sub-algorithm is available.

A good summary about the advantages and disadvantages of theoretical and em-
pirical studies is given in [DI00]. All in all, the two approaches should go hand in
hand [JohO03] to get the best out of both worlds.

But the results from thorough evaluation does not only tell a developer or user where
the algorithm shines, they may also point to scenarios where it could run into problems;
maybe some model features force it to make only very small steps (as it is the case with
explicit 7-leaping and stiff systems, see Section 3.2.3) or it does not provide the required
accuracy (which could be the case for all approximative variants). This could not only
stir future development and provide a starting point for other researchers, but also
ease the work of selecting an algorithm for a given problem. Having maybe only little
experience in the field of simulation, most users have to rely on the implementations
provided by their tools of choice; they are more interested in “getting the job done” than
in the internals of the underlying algorithms. But without at least some information
about the strengths and weaknesses of available alternatives they could be stuck with

slow running, resource devouring methods that are entirely not suited for their task.

That said, the evaluation principles presented in the next sections will especially

89

5 Evaluating the Performance of Stochastic Simulation Algorithms

focus on requirements for empirical studies, as these are more common in the field
of SSA. Note that this discussion is specifically tailored towards evaluating stochastic
simulation algorithms and only covers a small area in the wide field of Ezperimental
Algorithmics, which was first proposed by McGeoch [McG96| and later reviewed by,
e.g., Demetrescu |[DI00| and Moret [Mor02].

5.2 Performance Facets

CPU Load w

Execution

Speed

Energy
Consumption

Figure 5.1: Performance facets for empirical evaluation studies.

The phrase “algorithm performance” appeared frequently in the last section, but

nothing has been written so far about what performance actually means.

Definition 5.2.1 Algorithm performance is a general term for describing both the
quantity (“how much”) and quality (“how good”) of the work done by an algorithm

compared to the required resources (e.g., time, CPU, memory).

According to Definition 5.2.1, speaking of “the performance of an algorithm” is im-
precise; any statement about performance has to include the aspect or facet which has
been studied.

If evaluation is the general assessment of information, then facets specify their par-
ticular type. Depending on the type, a difference can be made between facets studied
in a theoretical or empirical analysis. The former considers the algorithm itself, i.e.,
the sequence of instructions to perform a specific task, and is interested in answering
questions such as, given a large input, how long it will take asymptotically for the algo-

rithm to finish — which is the subject of the already mentioned asymptotic complexity

90

5 Evaluating the Performance of Stochastic Simulation Algorithms

analysis. An empirical analysis, in contrast, depends on a concrete implementation

running on real hardware, so the facets of interest include measurements for, e.g.,
e cxecution speed and accuracy, both will be discussed in more detail below,
e CPU and memory load, the two main limiting resources of computers, or

e network load, which is important for any algorithm operating across several ma-

chines.

Facets are not only used for comparing algorithms, but they are also central to the
field of algorithm optimization (not to be confused with optimization algorithms, i.e.,
methods for finding an argument that maximizes or minimizes a target function). Here
the evaluation results are taken as an input for the refinement of the algorithm; its
execution could be geared towards being, e.g., faster in general or for certain problem
instances, less resource-demanding or more accurate. However, optimization is often
limited by the diametric relationship between some facets. Minimizing both CPU and
memory load at the same time can only be done to a certain limit; from then on each
further modification in either direction will have to be balanced by making sacrifices
at the opposite side (the time-memory trade-off, cf., e.g., [Sta03]). For example, to
save computation time, values frequently used and originally calculated with a time-
consuming procedure during run time could be pre-calculated and stored within some
data structure, e.g., a map or list. This also works for the other direction, saving
memory by performing additional computations.

Similarly, algorithms which are fast and accurate for a variety of problem instances
are also very unlikely. Being exact comes often at the cost of a slow execution; simula-
tion methods calculating every single event, e.g., DM or FRM, generally need longer to
finish than approximative methods such as 7-leaping. Still, it should be added that this
is not always the case; a later section will revisit this statement and present conditions
for which it does not hold.

At the end of the day it is the user that has to weigh one facet over another — or,
more specifically, one algorithm over another. There could be several alternatives (as
is the case for the stochastic simulation of chemical reactions), each one having their
own strengths and weaknesses: some might be more tailored for a fast execution of
larger models, others for a very detailed simulation at a lower scale. To ease the task
of selecting a method, exhaustive evaluations, both theoretically and empirically, are

a vital instrument.

91

5 Evaluating the Performance of Stochastic Simulation Algorithms

In the course of this dissertation, the diametric performance facets execution speed
and accuracy will be studied in detail for multiple non-spatial and spatial stochastic
simulation algorithms. The following two paragraphs shall provide an overview of the

techniques applied for their evaluation.

5.2.1 Execution Speed

Performing simulations means working with two different time references: the simula-
tion time and the wall-clock time. The former specifies the time interval for which the
system is simulated, e.g., usually nanoseconds or microseconds for reaction networks
or hours, days or weeks for meteorological models; the latter measures how long it
takes for the algorithm to finish its task. There is usually no connection between both
references: a simulation can run for days before finally having processed a single second
in the time frame of the system (cf. [RKS98|); on the other hand, simple estimations

about population dynamics over several years can be done within milliseconds.

Definition 5.2.2 Execution speed relates the wall-clock time to the simulation time.
The smaller the wall-clock time required to process a certain simulation time interval,

the higher is the execution speed of the algorithm.

That said, measuring execution time is, to put it simply, nothing more that starting a
timer at the beginning of a simulation and stopping it at the end. Although this can be
done easily, a meaningful speed comparison still requires some precautions, especially
when dealing with stochasticity. Firstly, the computed trajectories might differ in their
characteristics, potentially biasing the results of a single execution. Therefore, multiple
replications have to be executed and averaged execution times need to be considered.
For example, the model studied in [SYSYO02] can evolve via two different dynamics:
either the viral template gets degraded shortly after the simulation starts or it infects
the first cell, reproduces itself and starts attacking neighboring cells. A run of the first
scenario finishes much more quickly than a run of the second one; without the template,
no further reactions will take place, so the next event time would be infinity, i.e., the
algorithm can already terminate. As a consequence, depending how often the first case
occurs, the distribution of observed running times may vary significantly, which should
be considered during result analysis.

Secondly, the hardware, operating system (OS), and (in case of Java) the virtual
machine all introduce additional stochastic noise and bias. Their states are hard to

control, apart from keeping their configuration fixed throughout the experiments and

92

5 Evaluating the Performance of Stochastic Simulation Algorithms

101

R T—

_| e
l—l---[:;D-l

101 f-+

!

e i
gl .

. .

Y .
@%'7{’9 Tt s 4
%]ttt L
‘S‘e@»—{:[]»{ .

Time [s]
S
S—
N
%
.
A
.
‘.
3
ER R "
-
N
S o S
sl .
ey
i o _44m,_v_v__mé_hw
S i

TT
i T
igi Eﬂ ab
- I o+
L i
1 S L i L L L L L
X S (SIS A& &) & D
IS S “62; & S5 0?5& & C’@@o «2»3 %o" 6@‘: S o8
& & ¥ § S e &
(<) O"x bé& b& o&‘; Q&e @&“ S” \> §>\ Szy *s‘°° s
A

Figure 5.2: Benchmark results for selected programming languages, taken from the
Computer Language Benchmark Game website!. The tests measure the run time,
size and memory allocation of several programs. This chart analyzes the run time
differences as follows: for each benchmark test 7' the run time ¢/ for each language
is normalized to t] / maxt]. The median (red) and quartiles (25% and 75%) are then
calculated for a language over all benchmarks. Outliers are shown as small crosses.

avoiding any unusual load (e.g., that may come from processes running in the back-
ground). How they influence the performance of a specific implementation is non-
negligible and non-trivial to assess (e.g., cf. [VDB04]). To counter these effects, i.e., to
reduce the bias, the design spaces of each algorithm can be explored, i.e., testing vari-
ous algorithm and parameter combinations, each with multiple replications to account
for noise and unobserved variables (e.g., cache state, etc.). The amount of required
simulation runs motivates techniques for sequential experiment design [Rob52| (where
the further progress of an experiment is based on what has been observed previously),
in order to efficiently explore the algorithms’ runtime distributions [ELU09|, and the
usage of a dedicated performance database [EHUOS].

Related to the second point is the discussion about what algorithm implementation
to use for a fair evaluation study. According to Johnson [Joh03|, the best option is
to obtain the source code from the authors and let the algorithms run against each
other on a local machine. Doing so represents an absolute comparison, as it leaves
the original code untouched; each implementation is the same as the one used for the
primary publication of the algorithm. But this approach is open for debate: though a
single hardware setup for all experiments avoids one source for bias, the performance

differences between programming languages just may add another one. Figure 5.2

93

5 Evaluating the Performance of Stochastic Simulation Algorithms

illustrates benchmark results for a couple of languages, collected by the Computer
Language Benchmark Game website!. This chart provides only a rough and by far not
exhaustive comparison, still it suffices to support the message.

An alternative, listed by Johnson as the second best option, is the development of
own implementations for the algorithms under scrutiny, preferably in one language.
This relative comparison may actually be the better choice. Everything up to the
programming language is the same for each test candidate, so the evaluation is more
focused on the actual algorithmic operations. Furthermore, an algorithm is not tied
to a specific language (just as it is not tied to hardware, OS etc.); it only enumerates
the steps to perform a specific task. Re-implementing these steps should be possible
based on the description and pseudo-code provided in the publication; if any problems
are encountered, the original authors can still be asked for help. Once done, the basic
assumption of a relative comparison can be formulated as: if the algorithm was faster
by some factor as a competitor implemented in the same language, then it should also
be faster by a similar factor after re-implementing both in another language (given
that no bias has been introduced by the person who implemented the algorithms).
This dissertation follows the second option: all algorithms have been implemented as
plug-ins for JAMES II. Java may no yield the same peak performance as compiler-

optimized C or C++ code, but, as argued above, this is not required for an evaluation.

5.2.2 Accuracy

While execution speed is usually measured in the time or number of steps an algorithm
needs to finish a task, it may be more difficult to evaluate the quality of the produced
results. To begin with, a standard textbook definition for accuracy may look like the

following;:
Definition 5.2.3 Accuracy specifies how close a calculation comes to the true value.

Depending on the subject under study, the true value can be anything from a numer-
ical value to a target function or even just the expectation about the correct outcome.
As a first example, the most simple method to judge quality is using qualitative means.
Plots of raw output data, e.g., trajectories, may help to get a first impression about
how good the results are. The true values taken here could be a plot of the real solu-

tion or some constraints defined on the output. Those constraints can be formulated,

"http://shootout.alioth.debian.org

94

5 Evaluating the Performance of Stochastic Simulation Algorithms

0.4 r
703
I 2
02
& 0.1 [S]
0.0
10 L1
t=20]
9
8
¥
6
[
4
3
2
1 1
0 (P) 0 (P}
1 4 7 10 0.0 0.1 0.2 0.3 0.4 1 4 7 10 0.0 0.1 0.2 0.3 0.4
S P(Xp=2z) S P(Xp=2z)
I] T
000 0.02 004 006 008 010 012 014 016 018 0.00 0.02 0.04 006 0.08 010 0.12 0.4 0.16 0.8 020 0.22
P(Xs=x,Xp=1) P(Xs=x,Xp=1)

Figure 5.3: Probability distribution and population histograms (for the substrate S
and product P) of the enzyme-substrate model from Equation 2.2, measured at time
points ¢t = 1.0 (left) and ¢ = 2.0 (right) and based on 2000 replications.

e.g., for a species population: if it is expected that the number of molecules should
only decrease over time but never increase and yet the latter can be observed, then
something must be wrong with either the model or the simulation algorithm.

In the field of SSA, the true value is the time-dependent state probability function
P(x;t) introduced in Section 2.4.1. The task at hand is to evaluate the accuracy of
stochastic simulation algorithms whose output is a single path through the state space.
More formally, an SSA trajectory is one realization of the underlying Markov process,
which is completely characterized by P(x;t). If the time point is fixed to an arbitrary
t, performing replicated runs of a stochastic simulation algorithm and storing the state
vector at { provides an approximation P(x;) ~ P(x;) in form of a histogram (see also
Figure 5.3 for an example). Having found P(x;#), the question is: how well did the
algorithm capture the dynamics of the system, i.e., how close is this approximation to
the exact solution P(x; f)? The first problem encountered when attempting to answer
this question is that P(x;#) may be unknown, which is likely for most of the more
complex models. If this is the case, then the only alternative is to approximate it
as well and consider the solution P(x;?) as the true value. There are basically two
ways how to get P(x;%): the first one is to directly solve it for simpler systems (see
e.g., [JUL0|) or to calculate it with methods such as the sliding windows approach
[WGMH10] or finite state projections [MBSO08|; the second one is an approximation

95

5 Evaluating the Performance of Stochastic Simulation Algorithms

via replicated runs, but using only ezact SSA variants (like the NRM or ODM). In
this dissertation the second alternative is applied: in contrast to the first one, it does
not require additional information from the user. While the authors in [WGMH10]
argue that their method is faster than running the model several thousand times, it
is, e.g., not clear what shape the window should have for a certain model or if this
can be determined automatically. One advantage of the second alternative is that it is
basically applicable to any type of model without making any assumptions about how
the state will evolve over time. Still, a lot of replications are necessary; to ease the
task, JAMES II offers a convenient way to perform replications on multiple processors
concurrently, which allows to utilize a network of computers or a cluster [ELUQ9].
But the question remains: how many replications are actually necessary to compute
meaningful statistics? For this dissertation the number has been fixed but this is clearly
not the best solution. Sandmann [San09a| proposed a method for limiting the number of
replications necessary to narrow down the confidence interval for the variable of interest
(e.g., the population mean) by calculating the interval for successive replications until
its half width is below a certain (relative or absolute) threshold. This approach is
currently tested in form of a replication criterion for JAMES Il and may be extended
in the future to allow an accuracy comparison of different simulation algorithms that
does not rely on a fixed number of trajectories.

The central idea is quite simple: based on collected samples {y*!,...,y°} and {x!,
..., x9} of state vectors observed at an arbitrary time point ¢ for both a test (approx-
imative) and a reference (exact) algorithm, the former is considered as being accurate
w.r.t. the latter if P(y;#) ~ P(x;#)%. But how to perform this comparison? With
two sample sets, one for exact and one for the approximative algorithm, the compari-
son essentially involves measuring the difference between the underlying distributions,
either represented by the histograms (approximates the probability density function)
or the empirical distribution functions (edf, approximates the cumulative distribution
function). If there is only a single species defined in the model, then one way to do this
is to use a two-sample statistical test, e.g., the Kolmogorov-Smirnov, X2, or Student’s
t-test.

Cao & Petzold |[CP06| devised an adapted technique, which does not rely on any
existing test but is based on the underlying theory and also measures the distance

between the histograms and the edfs. However, the distance alone does not say anything

20 state vectors at t are stored for both algorithms. Tt is then tested whether the distributions the
sample vectors came from are similar.

96

5 Evaluating the Performance of Stochastic Simulation Algorithms

about how good the approximation actually is; for this, a threshold is necessary —
defined by the authors as the self-distance, i.e., the distribution distance between two
sample sets generated by the same algorithm. In other words: if there are sample
sets from two different algorithms (e.g., DM and 7-leaping) and the measured distance
between them is smaller than the distance between two sets generated by one of these
algorithms (e.g., DM), then the null hypothesis that the distributions sampled by both

algorithms are similar would be accepted.

If multiple species are defined, then the state is a vector of random variables, which
makes testing for the null hypothesis much more difficult than for the univariate case.
The following discussion is made to provide concepts how this can be done using an

iterative scheme; however, several issues are still open and future work is required.

To test for ls(y; t) ~ 15(x; t) either requires a multivariate analysis, e.g., Hotelling’s
T? test (see, e.g., [She07]), or an iterative method that tests whether:

P({z;:ieI};i)~P{y :iel};l), I e P(N),

with P(N) as power set of {1,..., N}. Instead of comparing the entire set of state vari-
ables right from start, the latter begins with the one-dimensional marginal distributions

(k=1):

P(zw;t) ~ Py b);

each single comparison can be done by an arbitrary statistical test. Should all of these
pass, i.e., the null hypothesis Hy stating that the test and reference samples for each
species come from the same universe cannot be rejected, it then proceeds with the next

higher dimensions, i.e.,:

: f)(xiaxj;f) ~ f)(yivyj;g)J € [LN]?Z <j <N

A ~ A

2

97

5 Evaluating the Performance of Stochastic Simulation Algorithms

approx. SSA P(yN; t) P(zy;?) exact SSA
approx. SSA P(y2;£) P(wz;ﬂ exact SSA
y, approx. SSA P(yuﬂ p($1§f) X, exact SSA
A A A A
: Ho

)

\

Q _/
Figure 5.4: First iteration of the accuracy evaluation using replicated runs. The dis-
tributions P(y;;t) and P(x;;t) for each species S; € S are compared individually.

If any of the N tests rejects the null hypothesis (both distributions are similar),
then the evaluation is stopped; otherwise the next iteration will start, testing for

s mfm -
N S

o~
o~

A ~ A

P(ys,y;:t) ~ P(xi, x55t),i € [1,N],i < j < N.

the final step eventually includes the entire state vector. During any of the NV iterations
one of the tests may reject Hy at the given significance level; this suffices to show that
also the initial assumption P(y;%) ~ P(x;f) does not hold and the method can be
stopped at this point.

Alternatively, the (],Z) tests per iteration can also be condensed into a single one by
adapting an existing statistical test procedure. This direction has been explored for
the accuracy evaluation of spatial stochastic algorithms; the goal is to get a single test
statistic per k that tells the user if the species distribution over all sub-volumes is similar
for the test and reference algorithm. As it is often unknown how this distribution
will look like, an adapted variant of the non-parametric two-sample Chi-square test
(see, e.g., [Pla83|) was chosen as the test procedure because it does not make any
assumptions in this regard: given the two histograms for sets of test and reference
samples, it checks whether the observed number of points in each bin is similar. Before
the actual evaluation can start, the method requires a calibration phase in which a
threshold for rejecting the null hypothesis Hy (test and reference samples come from
the same distribution) is calculated using replicated runs of an exact spatial algorithm,
e.g., the Next Sub-volume Method; this approach of finding a threshold for deciding
whether to reject or accept Hy is similar to what has been done in |[CP06|. During
this initialization, Rep;,; replications are distributed among Rep, sets, each one having

therefore Repy,/Reps entries. A single X;?,q candidate is obtained by comparing two

98

5 Evaluating the Performance of Stochastic Simulation Algorithms

of these sets p and ¢:
N

2 - (ﬁl,i,m _le,i,m)2
Xp,q B Z Z Z: : (5-1)

=1 it m1 Prim T Qim

The values p;;, and ¢y, are the relative frequencies for state m of species .S; in sub-
volume [. With Rep; sets in total, a pairwise comparison results in Reps(Reps — 1)/2
X? candidates; depending on the chosen significance level «, one of these candidates
is selected as the threshold. To get this value, a vector of candidates is defined such
that for any index pair (7, j) with i < j the relation X? < X7 is true. Then the entry
at index Reps(1 —), denoted by X2, is used in the following evaluation to decide
whether the null hypothesis is rejected or not.

After this initial step, which essentially used samples from just one algorithm to
approximate a Chi-square distribution, it is then tested if the X,?,q value for a test
set, p and reference set ¢ is a sample from this very distribution. All that is needed
is to compare the threshold with this value, i.e., reject Hy if X2, > X7. Should this
be the case, then the p-value (the probability of finding a X? at least as extreme as
the calculated value) can be obtained by finding the fraction of candidates which are
higher than X]%q. Note that the current implementation of this test runs over all sub-
volumes, which may not be necessary and could lead to long run times for models
with a large number of sites. The replications performed to find the threshold during
the calibration phase could be used to limit the number of sub-volumes to the ones
having, e.g., a minimum number of particles present, which means that the comparison

is focused in the regions in space where the majority of the particle mass is located.

While it seems a lot of effort — in the worst case, the first methods requires
éivl (Lév) checks for a model with IV species, with L = 1 for the non-spatial case, while

the maximum for the second is the number of iterations, i.e., LN — the fact that the
computation may already finish after only a few iterations makes these methods still
worthwhile to consider. Additionally, this property can also be exploited to reduce the
number of replications that have to be performed. Starting with only a limited number
of trajectories, the method runs until either a test fails or the amount of replications is
no longer sufficient to compare higher dimensional distributions; in the latter case new
simulation runs are performed, their results added to the sample set and the process
continued. However, what sounds simple is actually rather difficult: how many addi-
tional replications are required for the k-th iteration? This could be answered using a
multivariate power analysis and considering data (means, standard deviations, corre-

lations) provided by already generated state vectors (see, e.g., [DNZ01]), but still may

99

5 Evaluating the Performance of Stochastic Simulation Algorithms

samples = 100 # samples = 500 # samples = 2000 # samples = 10000

0.040 0.030

0.025

0.035 -
0.04 — e 0.020}
0.030

0.020
| gooxsp

=4
=
&
e
2
S

0.015

Frequency

§
20020
g

4 = -
= 0015 D :
0010
] sk
0.005 L0
0.005

50 100 150 200 0'0000 50 100 150 200 0’0000 50 100 150 200 0'0000 50 100 150 200

State State State State

Frequency
Frequency

=4
=
=
o
2
S

=4
=]

o

=3

S
o

Figure 5.5: Example histograms for a species’ state at some time ¢ if the distribution
is roughly Gaussian with ¢ = 100 and ¢ = 20. The red line shows the appropriate
probability density function. If the number of samples (replications) is increased, then
the shape of the histogram gets more closer to the continuous probability density
function.

be a complex task; as estimating the amount has not been resolved yet, the accuracy
tests in Chapter 6 are limited to £ = 1.

If this number can be found, then trajectories can be generated on demand instead of
collecting a large number right from the start to conduct an N-dimensional statistical
test.

Example 5.2.1 It is known that the particle numbers of six species S; to Sg at time
t are all “roughly” distributed according to a normal distribution with p = 100 and
o = 20 (note that the number of particles for S;,i € [1,6] is a discrete variable,
so the distributions would also be discrete, but a normal distribution is defined over a
continuous domain; “roughly distributed” means in this context that the histogram, i.e.,
the empirical probability distribution, can be approximated by a normal distribution;
see also Figure 5.5). This means that for each S; over two third (68%) of the samples fall
on one of the 40 states ranging from 80 to 120 and nearly all of them (& 95%) are located
between the states 60 and 140 so, approximately 1360 samples get distributed among
40 states and, assuming no correlations between the species, 2000 replications should
be sufficient to get a good approximation of the underlying distributions. However, if
the particle numbers of two species S; and S; are correlated, then it is necessary to
also test the two-dimensional normal distribution P(z1, z9;t); here the number of states
within one and two standard deviations ¢ = (20,20) from the mean p = (100, 100)
increases to 1600 and 6400. Again, with 2000 replications 1360 samples now fall into
a range of 1600 states — which already may be too few to get a picture of the two
dimensional distribution distribution. And in in the case that the state variables of

all siz species are not independent, then 40° states are located within one standard

100

5 Evaluating the Performance of Stochastic Simulation Algorithms

deviation — about four billion.

Admittedly, for high-dimensional distributions it makes sense using binning to reduce
the number of states. Looking at Example 5.2.1 again, a possible binning could be

defined for each species by:
Bl(l'i < 60), 32(60 <z < 70), ey Bg(l?)o <z < 140), 310(140 < l’i), (52)

with a B; holding the number of samples that fall within its range. Thus a sample for
one species is assigned to one of ten possible bins; if N = 6, the total number of states
now to consider is 10° — compared to 40°, this is a reduction by a factor of 2!2. Note
that this is only an example; a more sophisticated strategy for deciding the bin width
can be found, e.g., in [LY06]. However, a common requirement for the Chi-square test
is that there is a minimum number of observations for each bin (usually more than 5),
otherwise the test is not valid.

Common to all the discussed methods is that the sample sets for iterations which
compare multi-variate distributions may require a pre-processing (if k& = 1, then only
the individual species distributions are compared and their state values can be directly
taken as the input set). For & > 1, an event (in the context of probability) is defined by
the values of k state variables. As an example, with £k = 2 and N species, two events
er = (r1,29,...,xy) and ey = (y1,92,...,yn) are equal iff z; = y; Uz = yo; any
additional state variable is not considered. To ease the evaluation, a unique number
can be assigned to each event and the set of all identifiers for an event class {z; : i €
I}, I € P(N) is taken as the input for the & = |I| dimensional accuracy evaluation,
thus modifying the accuracy analysis to a comparison of event distributions (see also

Figure 5.6 for an example).

5.3 Benchmark Models

Having discussed what should be analyzed during an evaluation — the performance
facets — the next step is to shed some light on the inputs for such a study: the models.
The most obvious choice are representations of real world systems, e.g., the enzyme-
substrate catalyzation process used as an example throughout this dissertation or a
signaling pathway. Information about these models can often be found by scanning
through the literature; especially the enzyme-substrate reaction network has been the

subject of a variety of publications because similar dynamics can often be found in

101

5 Evaluating the Performance of Stochastic Simulation Algorithms

state sample event id

£S S {E,ES} | {E,S} | {P,S} | {E,ES, P}
k=2 k=2 | k=2 k=3

1 1 1 1

FRFHFOO0OO0OO0OO0OHOOHOOOR O
O O O = e e O O e = O

LW O N U W Wk WUt ks U~ W R Ot

N 00RO O U OO Ut ot O N ot N
N NN H = =N DN~ FFDN

© 00~ O R RN R N OUR W

© 00~ O b R RN R RO R W

© 00~ O R RN R N OUR W

{E,ES}

Relative frequency

9 11 13 15 17
Event id Event id

{P,S} {E,ES, P}

Relative frequency

9 11 13 15 17
Event id

9 11 1‘3 1‘5 1:7
Event id
Figure 5.6: Example sample set and event identifier assignment for the enzyme-
substrate model. The state is recorded at a predetermined time point (¢ = 1.0 in
this case) and a unique event id is assigned to each of those samples. For example,
considering the pair { £, ES} there can only be two event ids, corresponding to the two
states the enzyme can be in: either it is free (E = 1, ES = 0) or a substrate is bound
to it (F =0, ES = 1). The table also suggests that there is no difference between the
ids for the event classes {F, S}, {P, S}, and {E, ES, P}, so testing the distribution for
either one may be sufficient for the evaluation (see also Figure 5.7 for a state space
analysis of the enzyme-substrate reaction network); this is additionally supported by
the histograms for the event frequencies shown at the bottom (2000 replications).

102

5 Evaluating the Performance of Stochastic Simulation Algorithms

E/S/ES

Ry Ry
{zg — 1,225,255 + 1,2p — 1}

{ep, 25 + 1, 2p5,0p — 1} {zp — 2,25 — 1,2ps + 2,2p — 1}
\R:s JR;; \R;;
Ry Ry
P {zp+ 1,25+ 1,255 — l,ap} «——— {25, 25,255, 2p} ~——— {2p — L, 25 — 1,255 + 1, 2p}
lﬁg Ry ers
Ry
{JI?E +2,25+ 1,25 —2,2p + 1}

Ry

{zp+1,25,255 — 1,2p + 1} {zp,2s — 1,2ps,2p + 1}

Figure 5.7: State space analysis of the enzyme-substrate model from Equation 2.2. The
task is to show that the values of two state variables are sufficient for uniquely identi-
fying state. To do so, an arbitrary state is taken as a starting point and it is observed
how the number of particles changes when each of the reactions fires exactly once. If
reaction R; gets executed, then one enzyme and one substrate molecule are converted
into the compound ES; R, simply reverses this process. R3 decreases the amount of
ES particles and adds the enzyme and one product to the state vector. Between two
rows the state vectors differ in the number of product particles, which changes only
via reaction Rs3; within a row, each vector is unique in the particle amount for either
of the three remaining species F, S, or £ S. Taking both observations together, one
state can be unambiguously identified by a pair (zp,x;), with i € {E, S, ES}.

103

5 Evaluating the Performance of Stochastic Simulation Algorithms

more complex reaction networks (the destruction complex from the Wnt pathway can
be seen as one example: it binds to [-catenin and either attaches a phosphate or
again releases the protein, which is essentially captured by the set of reactions defined
in Equation 2.2). They are undeniably helpful being designed with a real world
system in mind, they are as close as it can get to a typical problem instance for any
algorithm implementation. But there are two sides to every coin: those models do
not only represent “a typical”, but at the same time also “just one” problem instance.
Admittedly, this is not a concern for studies that are focused on getting insights to
a system, but testing the efficiency of algorithms with such “static” models (a fixed
parameter set based on empirical data) may result in biased assessments caused by
limiting the problem space to only a small area. Five models selected are merely
five points in the parameter space spanned by, e.g., one axis for the number of initial
particles present, one for the number of reactions, a third representing the degree of
interdependency between reactions, and so on.

Most models can be categorized according to several characteristics inherent to them.
Some have just been mentioned, others include, e.g., the distribution of species in space
or dynamics such as oscillations or multistability (depending on the initial seed of the
RNG, the model ends up in one of several possible steady states), just to name a
few. Considering this, the evaluation task may shift from observing an algorithm’s
behavior when faced with a couple of static models towards analysing the influence of
model characteristics on their performance. Models that have been specifically designed
to represent typical characteristics shall be called benchmark models. Though not of
immediate biological relevance, their application still has several advantages compared

to real-world models. Additionally to those already mentioned, they may offer:

e Comparability: Agreeing on a fixed set of models (e.g., two of the models used
to study the performance of non-spatial algorithms have been presented by Cao
et al. [CLP04]) makes it possible to compare the runtime performance of the
realizations. Large deviations may indicate subtle implementation errors or the
dependency on additional, yet undiscovered factors (such as specific hardware or

compiler optimizations).

e Ease of Implementation: Due to their simple structure, the synthetic models
can be generated automatically and are easily prepared for any SSA implementa-

tion. This is important for re-validating the results with other implementations.

e Scalability: The synthetic models are built to scale. Their size can be varied by,

104

5 Evaluating the Performance of Stochastic Simulation Algorithms

e.g., adjusting the number of species N, which allows us to analyze the efficiency
of a simulator when the problem size grows. There are many algorithms that
perform very well on small problems, but become more and more inefficient when
the problem size is increased. Scalable models help to find the problem size for

which an algorithm is most efficient.

e Parameterization: Parameters of synthetic models allow us to investigate al-
gorithm performance on classes of real-world models. For example, adjusting
one parameter of the cyclic chain system, a model defined in detail in the re-
sults chapter, controls the degree of interdependency between reactions, i.e., how
many propensity updates are necessary after executing a reaction, which in turn

influences the effectiveness of a dependency graph.

e Analytical treatment: It is usually much easier to derive analytical results for
synthetic models, since they exhibit a regular and simple structure. This may
guide the developers in case of invalid results and could facilitate result analysis

in general.

Despite all of these points, the algorithms should eventually work with models of real-
world systems. Anyhow, chances are that these models include features already repre-
sented by some benchmark models, i.e., the latter subsume sets of more realistic models
all exhibiting a specific property. The experimental results for benchmark models may
therefore still facilitate the selection of a suitable algorithm for the concrete problem
at hand. Considering the degrees of freedom in implementing and configuring any of
the methods discussed so far, e.g., with respect to event queue, RNG, or 7-leaping pa-
rameters like € or n. (cf. Section 3.2.1), the recorded performance data and its analysis
could eventually lead to selection rules that can be applied automatically |EHUOS].
This would greatly improve the usability of SSA methods for users with other back-
grounds than simulation.

The section shall be concluded with an example for a small benchmark model, called
the Molecule Generator Model or MolGen for short. It consists of two species, the
generator C' and the product A, and its dynamics are defined via the following two

reactions:

R:C3 0+ A

9.3
RQiAC—d>@. ()

105

5 Evaluating the Performance of Stochastic Simulation Algorithms

Species C'is able to produce a molecule of A, which gets degraded by the second reaction
Ry. What are the characteristics of this model? Both reactions are antagonistic with
respect to A: Ry increases its population, while Ry decreases it, and it is not difficult to
show that the number of A particles eventually converges to an average of (c,/cq)zc,
with x¢ as number of C' particles. This model does not seem to be very helpful, yet it
gets interesting if the transition is made from a well-stirred to a spatially inhomogeneous
system. Due to its simple structure, it also allows an easy steady state analysis in this
case, i.e., to find the state at which the number of A particles in every sub-volume does
not change any longer. According to the law of mass action, the change in concentration
for A is:

2n
dxl,A 1 1 QTLDA DA
o = cpwa — cda:l,AV —)\gv TpA+)\—gv ; TpA = 0. (5.4)

The values z; 4 and x4 represent the number of particles in sub-volume [and its k-th

neighbor, respectively. Rearranging the terms finally results in:

1 DA 2n
= vy =22 . 5.5
A= VT 4 20D (epzr V™" + A2, ; Tk.4) (5:5)

Figure 5.8 shows both the steady state solution of equation 5.5 and a numerical solution
of equation 5.4 for diffusion coefficients D4 = 1.0 (top) and D4 = 10.0 (bottom), a
fixed number of C' particles located in the center sub-volume, and a side length of 1.
The outer volume boundaries are assumed to be reflective, i.e., whenever a particle
wants to leave the model volume, it bounces off of the border and stays inside the

source sub-volume.

Results from this analytical treatment could guide subsequent performance experi-
ments. For instance, focusing on certain time intervals (e.g., observe only the transition
to the steady state for the Molecule Generator model) does not only save execution
time. Assuming the existence of a characteristic state transition pattern during this
simulation period, it also provides information about an algorithm’s performance when
confronted with this type of state dynamics — it might turn out that switching to an

alternative could be a better option.

To sum up this discussion: benchmark models can be a valuable tool especially for
evaluation studies, as they do not try to represent a real world system but instead

have been designed with specific model characteristics in mind, which may be found in

106

5 Evaluating the Performance of Stochastic Simulation Algorithms

¢,=0.2,¢,=02,D,=1.0

100

Population

— (6,6 == (5,;5) s (44) 20 e (3,3)

cp=0A2, cd=0'2’ D,=10.0

20

—_
Ut
T

Population
=

[— 66 -- 6H e (48 e 33|

Figure 5.8: Steady state solutions for the concentrations of A particles (scaled to the
interval [0, 1]) in a 2D 11 x 11 molecule generator model (colors represent the concen-
tration). The parameters are set to ¢, = 0.2, ¢q = 0.2, X(0) = 1000, D4 = 1.0 (top),
and D4 = 10.0 (bottom). The plots on the right side show the concentrations over time
for the four sub-volumes with coordinates (6,6) (the center), (5,5),(4,4), and (3, 3).

107

5 Evaluating the Performance of Stochastic Simulation Algorithms

a wide range of relevant models. However, they are not a replacement for real world
models, but rather being complementary to them. The best way to perform such an
evaluation may be to start with highly abstract benchmark models that narrow the
problem space well covered by the algorithm under scrutiny. Based on the results from
this first step, more realistic models located in this region are then added to the model

set, checking whether the method is also applicable under real conditions.

5.4 Bringing It All Together: The Evaluation Study

This part shall finally tie together all the points made so far in this section. As it
was stated right at the beginning, an evaluation can be seen as a special type of an
experiment, which itself has been defined as the process of presenting inputs to a system
and observing the generated outputs. Just like the definition of a simulation essentially
replaced the term “system” with “model” in the last sentence, it is now appropriate to
use “algorithm implementation” as the substitute: experiments on algorithms and the
subsequent output analysis are the central steps of a performance evaluation.
Experiments gather information about the subject of interest by feeding it some
input and collecting the output. If the system under study is an algorithm, the input

is a set of problem instances, with each instance consisting of
e a (benchmark) model,
e a set of model parameters, and

e an algorithm setup, i.e., values for parameters controlling the behavior of an
algorithm, e.g., € or Ngga (the threshold for switching to an exact SSA execution)
in case of a 7-leaping variant, but also the set of sub-algorithms, if required, and

their respective parametrization.

As it would be tedious to define each problem instance by hand, several techniques
exist to either automate or assist the user in this task. Parameter scanning takes
intervals or predefined lists with values for each parameter and creates instances by
combining entries from them. This can be done, for example, full factorial: having
two lists 1; = (l11,l12, - - ., 1) and 1y = (la1, 29, . .., 2k), a parameter tuple is defined
as (ly;,1y5),7 € [1,L],j € [1, K], so every element from 1; is paired with each 1, entry.
Though considering every possible combination, this design quickly generates a large

number of instances; with a set of N parameters and K;,i € [1, N] list entries for the

108

5 Evaluating the Performance of Stochastic Simulation Algorithms

1th element, there are Hjlv K; possible parameter combinations that have to be exe-
cuted — and this does not include any additional replications required for a stochastic
simulation. Alternatives to reduce the number of instances may consider only tuples
(I1;,12;) (which is straightforward if L = K, otherwise the missing entries could be set
to some default value), fractions of a full factorial combination, or are based on the
Plackett-Burman design for multifactorial experiments [PB46|; all of these designs are
already supported in JAMES II.

In addition, besides the generation of problem instances, stopping criteria have to be
defined and applied to all runs. The pseudo-code listings for all algorithms presented
so far require a start and an end time to be given as parameters; a single run then
updates the internal time variable and stops the computation if it exceeds the end
time. Though this is an obvious choice for a stopping criterion, it is just one of many
possible conditions. Instead of waiting until the simulation run reaches a certain time
point, it could also exit the main loop after an observed variable reached equilibrium or
a given threshold. One criterion exceptionally useful especially in evaluation studies is
the wall-clock time allowed for an algorithm to finish one problem instance from a given
set. Formulating rules such as “stop the execution after 20 minutes, regardless how far
the algorithm progressed”, permits us to “censor”, i.e., prematurely abort, runs that
exceed a maximum time window and thus sets a fixed limit for the length of a single
run. This may reduce the overall experiment execution time considerably if the set
of problem instances contains configurations with highly varying run times; Chapter 6

gives several examples for such a condition.

Stochasticity adds another layer of complexity to experiment design, as a single run
of an instance alone may not tell the full story, yet performing hundreds or thousands of
replications for a large number of problems could take a long time. Finding a balance
between providing meaningful results and the time spent to produce them is often
hard to achieve. If the task is, for example, to find the best algorithm setup for one
model and a fixed set of parameters, equally running each instance a predetermined
number of times may result in wasting a large fraction of the total experiment time for
processing the slowest (and thus uninteresting) setups. To avoid this scenario, but still
be confident in the outcome (a list with the best setups), only promising configurations
are executed more often, which decreases the run time variances and therefore provides
more reliable results. No further replications are spent on any setup showing a bad
performance after maybe one or two runs. JAMES II offers this technique in the form

of an AdaptiveSimulationRunner [ELUQ09|; the forthcoming studies presented in the

109

5 Evaluating the Performance of Stochastic Simulation Algorithms

next chapter make heavy use of this component.

The topics discussed up to now include experiment preparation and execution, so the
pieces still missing are output observation and analysis. Before making any statements
about an algorithm’s performance, e.g., how fast or accurate it is, the data backing up
any empirical evaluation has to be collected. And even before that it has to be clear
what data should be observed at all. Comparing the execution speed, for example,
requires information about how long it took an algorithm on average (or maximum /
minimum) to finish one or all replications for a single setup. The output of interest here
is execution time: a timer is started at the beginning of the computation (including
initialization) and stopped when the task is done, i.e., the abort criterion fulfilled. Note
that care must be taken if the execution is subject to a warm-up phase, as it is, e.g., the
case with applications running inside a Java virtual machine (JVM): the source code
is first compiled to bytecode, which is then loaded by the JVM; this extra time should
not be counted against the algorithm. JAMES II relies on the well-known observer
and instrumenter patterns, which are responsible for specifying what and who should
be observed, respectively. For example, to get the data for an accuracy analysis, i.e.,
samples of state vectors for a given set of snapshot time points, an observer would be
attached to the simulator via an instrumenter and gets notified whenever the model
state has been changed. It then compares the current time with the next snapshot
time; if the former exceeds the latter, the observer writes the last stored state into a
preconfigured data sink (e.g., a file or database).

Wrapping the above up, listings 5.1 and 5.2 show two simple experiment definitions
in JAMES II. Without going much into detail, the first one represents a full facto-
rial model parameter scanning for testing how an algorithm scales when increasing
the model size: the number of initial enzyme and substrate particles for the enzyme-
substrate catalyzation process is varied in a range from one to ten (lines 12, 14). Setting
the replication count to 100 (line 6) results in a total of 10000 runs for the entire ex-
periment. To reduce the execution time, line 31 instructs JAMES II to adaptively
assign more replications to promising algorithms; an AdaptiveSimulationRunner also
distributes the replications among available computational resources (e.g., CPUs on a
multi-core chip), so this is one implementation of a “parallelization across a simulation”,

which has been discussed briefly in Section 3.1.3.

The second listing actually creates several experiments and executes them sequen-
tially. In this example the impact of auxiliary data structures on the performance of

an algorithm is observed. Every combination of an event queue and a random number

110

5 Evaluating the Performance of Stochastic Simulation Algorithms

generator offered by JAMES II (lines 3 and 5) is tested and the execution times (100

replications for each setup) stored for further analysis (line 37).

1 public static void main(String[] args) throws Exception {

2 // Basic setup

3 BaseExperiment e = new BaseExperiment ();

4 e.setModelLocation(new URI("file —sr://localhost/home/user/models/+
5 EnzymeSubstrate.sr"));

6 e.setRepeatRuns (100) ;

7 // Add model parameters that should be modified during the experiment
8 // Full factorial: E= (1,2,...,10), S = (1,2,...,10)

9 List<ExperimentVariable<Integer>> variables = new ArraylList<¢>

10 ExperimentVariable<Integer>>();

11 variables.add(new ExperimentVariable<Integer>("E", 1,

12 new IncrementModifierInteger(l, 1, 10)));

13 variables.add(new ExperimentVariable<Integer>("S", 1,+

14 new IncrementModifierInteger(l, 1, 10)));

15 exp.setupVariables(variables);

16 // Set—up database connection

17 SimSpExPerspective.setDbConnectionData(new DBConnectionData («

18 "jdbc:mysql://localhost /param scanning”, "user", "password" ,<
19 "com.mysql.jdbc.Driver"));

20 // Choose simulator (optional)

21 e.getParameters ().getParameterBlock ().addSubBl (

22 ProcessorFactory. class.getName (), <«

23 NextReactionProcessorVarBFactory.class.getName ());

24 // Set stopping criterion: the simulation interval shall be [0,5]
25 ParameterBlock stopParameters = new ParameterBlock (<

26 SimTimeStopFactory.class .getName()).

27 addSubBl(SimTimeStopFactory.SIMEND, 5.0);

28 e.getParameters ().getParameterBlock ().addSubBl(

29 SimulationRunStopPolicyFactory.class.getName(), stopParameters);
30 // Use all available cores for parallel replication

31 e.setSimRunnerFactory(new AdaptiveSimulationRunnerFactory());

32 // Set—up performance database recorder

33 PerfDBRecorder perfDBRecorder = new PerfDBRecorder ();

34 e.getExecutionController ().addExecutionListner(perfDBRecorder);
35 // Execute experiment

36 perfDBRecorder.start ();

37 e.execute ();

38 perfDBRecorder.stop ();

39}

Listing 5.1: Example experiment definition for model parameter scanning.

This section shall be concluded by briefly giving the hardware specifications for
the experiment testbed. All performance measurements have been conducted on a
Windows XP 64-bit workstation with two 2.5-GHz QuadCore Xeon Processors and
8 GB RAM. To minimize bias from external load, no more than 6 simulation runs
are executed concurrently — two of the eight available cores were idling at any given
time, and could therefore handle any load from the operating system etc. Furthermore,
each sequential experiment was assigned to a single dedicated core, to further reduce

bias from thread-switching and caching. A single core of the workstation achieved a

111

5 Evaluating the Performance of Stochastic Simulation Algorithms

composite score of 528 for the (large) Java SciMark2 |Sci| benchmark, executed with
the 64-bit version of the JDK 1.7 (beta).

5.5 Summary

This chapter discussed several central aspects of conducting a performance study. It
has been defined what “performance” in the context of algorithms means: it is a col-
lective term for a number of facets, e.g., CPU, memory, or network load, each of which
can be analyzed for itself — thus comparing the performance of algorithms actually
involves comparing certain facets. Two of these facets are the subject of almost all
evaluations found in the literature on SSA: execution speed, i.e., how long it takes for
the algorithm to finish a certain simulation time interval, and accuracy, i.e., how close
the produced results come to the true value. Quantifying the first can be done by mea-
suring the elapsed time since the start of the simulation run; however, differences in the
underlying hardware and algorithm implementations have to be considered; further-
more, algorithms often depend on certain parameters or sub-algorithms, so analyzing
their design space is a must.

The accuracy comparison has been based on the fact that the results of two stochastic
simulation algorithms are similar if the null hypothesis Hy that the generated trajecto-
ries are samples coming from the same distribution cannot be rejected. A first approach
uses statistical tests to decide whether to accept Hy or not; it has to be considered that
the state variables may be correlated, so an iterative test procedure has been presented
that starts with the marginal distributions and continues with higher dimensional ran-
dom variables if Hj is not rejected. An alternative method was devised for spatial
algorithms that is based on a Chi-square test and outputs a single test statistic per
iteration.

Section 5.3 discussed the advantages and disadvantages of using benchmark models
instead of representations for real-world problems in an evaluation study. Though not
of direct biological interest, benchmark models have several benefits, e.g., they are
parameterizable and can be designed to reflect specific model characteristics (fast or
slow diffusions or reactions, homogeneous or inhomogeneous particle distribution etc.).

The last section finally brought all of the mentioned aspects together and outlined
the basic ingredients of a performance evaluation study. Further points are added
for consideration, e.g., how to balance between the number of replications and the

confidence in the results or how to define stopping criteria for simulations; one way

112

5 Evaluating the Performance of Stochastic Simulation Algorithms

to achieve a compromise for the former is to use an adaptive simulation runner that
executes more replications for algorithms whose results (execution speed, accuracy)
seem promising. However, the time invested to perform a more detailed analysis for the
good algorithms comes at the cost of limiting the number of runs for slow configurations;
in other words: the interest in those is dropped early during the evaluation and the
resources are relocated to more interesting setups.

The chapter concluded with two examples for how to define experiments using the
JAMES II framework.

113

5 Evaluating the Performance of Stochastic Simulation Algorithms

public static void main(String|[] args) throws Exception {
List<EventQueueFactory> eqgflist = SimSystem.getRegistry().+
getFactories(EventQueueFactory.class);
List<EventQueueFactory> rngflist = SimSystem.getRegistry ().«
getFactories(RNGGeneratorFactory.class);

// Set—up database connection

SimSpExPerspective.setDbConnectionData(new DBConnectionData(«
"jdbc:mysqgl://localhost /alg scanning", "user”", "password" , <
"com.mysql. jdbc.Driver"));

for (EventQueueFactory egf : equist)
for (RNGGeneratorFactory rngf : rngflList) {
// Basic setup
BaseExperiment e = new BaseExperiment ();
e.setModelLocation(new URI("file —sr://localhost /home/user/models/«
EnzymeSubstrate.sr"));
e.setRepeatRuns (100);
// Set up algorithm parameters
ParameterBlock parameters — new ParameterBlock (<«
NextReactionProcessorVarBFactory. class.getName ()).<
addSubBl (RNGGeneratorFactory.class .getName () ,+
rngf.getClass ().getName ()).+
addSubBl (EventQueueFactory. class .getName () ,+
eqf.getClass ().getName ());
// Choose specific simulator (optional)
e.getParameters ().getParameterBlock ().addSubBl (
ProcessorFactory.class.getName (), parameters);
// Set stopping criterion: the simulation interval shall be [0,5]
ParameterBlock stopParameters = new ParameterBlock(<>
SimTimeStopFactory.class .getName()).
addSubBl(SimTimeStopFactory.SIMEND, 5.0);
e.getParameters ().getParameterBlock ().addSubBl (
SimulationRunStopPolicyFactory.class.getName(), stopParameters);
// Use all available cores for parallel replication
e.setSimRunnerFactory(new AdaptiveSimulationRunnerFactory());
// Set—up performance database recorder
PerfDBRecorder perfDBRecorder = new PerfDBRecorder();
e.getExecutionController ().addExecutionListner(perfDBRecorder);
// Execute experiment
perfDBRecorder.start ();
e.execute();
perfDBRecorder.stop();

Listing 5.2: Example experiment definition for sub-algorithm scanning.

114

6 Performance Evaluation Studies
for Non-spatial and Spatial

Simulation Algorithms

Several stochastic simulation algorithms have been implemented as plug-ins for JAMES
IT, which now offers a wide range of methods that can be exploited to simulate either
spatial or non-spatial reaction network models. But diversity is a two-sided coin:
though it provides increased flexibility and may equip the user with a good set of tools
to handle the majority of his problems, he still has to select one of those alternatives
before starting any simulation runs. Without some measurement or assessment of how
good an algorithm is when faced with a certain problem instance, the inexperienced
user is left alone and may be overstrained by the tool originally built to support his
work.

But the diversity does not stop at the level of simulation algorithms. Only a few
publications go into details about sub-algorithms, e.g., what event queue or random
number generator has been used for the study. But is it justified to leave those details
out? JAMES II provides the capabilities to find answers to this question. Algorithms
can be parameterized, but not only by giving values for numerical features, e.g., the
error control parameter in 7-leaping variants; entire sub-algorithms, implemented as
plug-ins and independently executable, can be exchanged without additional effort,
which makes it convenient to assess their impact on the performance of the host algo-
rithm.

Based on the concepts outlined in Chapter 5, the next sections will present the
results of performance studies conducted for a selection of those algorithms. The overall
structure is the same for both the non-spatial and spatial case. A set of benchmark
models is introduced first, each one representing certain characteristics of real world
models. Those are then taken as the input for the actual experiments, whose aim is to

evaluate the speed at which the algorithms perform their tasks and the quality of the

115

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

produced results.

6.1 Performance Analysis for Non-spatial Algorithms

The algorithms under scrutiny are the classic Direct Reaction Method (DM) and its
optimized variant (ODM), the First Reaction Method (FRM) and its spiritual suc-
cessor, the Next Reaction Method (NRM), as well as the modified 7-leaping version
presented by Cao et al. in [CGP06|. Each method needs a source of random numbers;
additionally, the NRM uses an event queue to keep track of the reaction that is about
to fire next.

Six JAMES II plugins for random number generation have been used: the default
Java RNG, a custom implementation of a linear congruential generator (LCG) with
the same parameters as Java’s RNG, the Mersenne Twister [MN98], a recursion-with-
carry generator (Marsaglia’s mother of all RNGs [Mar95]), ISAAC (a cryptographically
secure RNG, [Jen96]), and RANDU, which is a classical LCG that is not of practical
relevance any more, due to its strong correlations. Generating random numbers for
stochastic simulations is not a trivial task, since the pseudo-random numbers may
correlate and therefore bias a stochastic simulation [Hel98, Gra93|. This is particularly
dangerous when RNGs are poorly initialized [MWKAOQT7|. However, the SSA variants
do not rely on high-dimensional tuples of random numbers, so that correlations should
be very rare. Therefore, studying the runtime performance was the main focus of
the RNG-related investigations. Another important aspect of RNGs in the context
of stochastic simulation is the size of their seed, as it limits the maximal number of
trajectories that can be generated [Mar03|; for the following evaluation, all RNG seeds
are of type long.

Though more are actually available, the set of event queues has been restricted
to a simple list implementation (SIMPLE), a heap event queue (HEAP proposed by
Gibson and Bruck in [GB00]), an MList with an additional variant for faster event time
updates (MLiST/MLISTRE — see |[GT03]), and a TwoList implementation |[BHP81|
(here the implementation from the TwoList2 plug-in of JAMES II is used).

6.1.1 Benchmark Models

Evaluation studies are often presented alongside new SSA variants to illustrate the

merits of the method. Unfortunately, most evaluations only consider a rather narrow

116

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

spectrum of benchmark models, e.g., a single model in [GB00|. This brings about
a potential bias that arises from focusing on such models that are easy to solve for
the proposed algorithm. In [CLP04], Cao et al. introduce two benchmark models for
comparing a new SSA variant to existing ones, with the emphasis laid on answering
the question how the execution speed scales with the initial state and the number of
reactions and their interdependency. For the sake of comparability and reproducibility,
both models are also included here. In total, three models are used as part of this
study: the Linear Chain System (LCS), the Totally Independent System (TIS), and a
Cyclic Chain System (CCS); the first two, LCS and TIS, were taken from the mentioned
publication |[CLP04|. Note that for the experiments the structure of a model, i.e., the
number species and reactions and the dependency between the latter, and the initial
state has been changed, but not the reaction constants; this was done to limit the

number of independent variables that have to be varied during a simulation.

Totally Independent System (TIS)
R;:S;i <50, i€l,N]

The default parameters are N = 600, ¢; = 1.0, and X;(0) = 10000,¢ € [1, N]. Each
reaction changes only the amount of its own reactant, hence there are no dependencies
between reactions. As a result, only a single propensity update is required in each
iteration, independent from the number of species present in the model; any algorithm
using a dependency graph structure should have an advantage compared to methods

that re-evaluate every propensity.

Linear Chain System (LCS)
RZ‘ : SZ c_,> Si+1, 1€ [1,N— 1]

If not specifically given, the parameters are set to N = 601, ¢; = 1.0,7 € [1, N]
and X;(0) = 10000. The N species can react via N — 1 reaction channels, with the
product of reaction R; participating as reactant for R;,;. This model describes a
loosely coupled system with all reactions except for Ry_; affecting two propensity
values — a firing of Ry_; only requires an update of ay_;(x), while for any other
reaction R;,j € [1, N — 2|, an additional update of a;;;(x) is necessary. Considering

this, the impact of a dependency graph should increase with the number of species.

117

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

Cyclic Chain System (CCS)

k 2k+1
Ri . ZS(i—‘rj)modN-f—l i Z S(i-l—j)modN—‘rl’ (S [17N]7 k€ [07 LN/SJ]
=0 j=k+1

This model can be additionally parameterized with a value for k, which determines the
coupling of the system such that a reaction execution affects min{3k+2, N} propensity
values. Per default, £ =2, N = 10, and X;(0) = 10000,7 € [1, N], so for this setup a
firing causes an update of 8 other reaction propensities. Two special cases are models
with & = 0, which represents a loosely coupled LCS (with an additional reaction
Sy_; st S1), and k = |N/3], a totally coupled system in which each propensity
needs to be updated if any reaction fires. As a result, the impact of the dependency
graph can be adjusted by using different values for k; smaller £ generate models that
should perform better with algorithms using the graph, while for larger k the benefit
decreases as more and more reactions need to be updated. Due to the structure and
the initial state of the default model, the 7-leaping algorithm is expected to yield the
best results: at the start of the simulation, the propensities for each reaction are the
same and if each reaction fires once, the state will not change — in other words, the

system has reached its equilibrium state, which allows 7-leaping to make large jumps.

6.1.2 Results

Overall Execution Speed Figures 6.1 to 6.4 summarize the results from performance
experiments that measured the execution speed of algorithms when faced with different
model setups. The 7-leaping algorithm performs best for the default TIS and CCS
models, while both the ODM and the NRM with the MListRe have shorter execution
times in case of the LCS model. Figure 6.1 suggest a classification of the algorithms into
three groups: the 7-leaping algorithm with execution times ranging from 0.1s to 0.355s,
the ODM and NRM/MListRe in the mid-range from 3.16s to 26.8s and the slowest
configurations, the DM, FRM, and NRM /Simple, with execution times starting around
37.85 s seconds and going up to 407.5s. The speedup from using the best configuration
compared to the second best is about 24, from best to worst it is even three orders
of magnitude. One important parameter for each leap method is ¢, the error control
parameter. A more detailed discussion will follow below, but Figure 6.1b already shows
how the run time increases for larger values of €. In general, this can be observed for

every benchmark model.

118

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

10!

Run time [s]
Run time [s]

1071F

10-2 i i H 102 i H
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Simulation end time [s] Simulation end time [s]
e—e DM =—a NRM/Simple e—e ODM e—o ¢=0.003 —a ¢=0.03 e—o ¢=0.09
v— FRM ©¢—¢ NRM/MListRe a4 7-leaping v =001 ¢ ¢=0.06 —a =03
(a) (b)

Figure 6.1: Results for the Totally Independent System. (a) The 7-leaping algorithm
performs best with this type of model, followed by the NRM parameterized with the
MListRe event queue. (b) While, as expected, lower values for € decrease the execution
speed of T-leaping, it still executes faster than the best exact variant.

10% ;
IR
1] mu— .'.7.;._..“.,./:».—..‘.‘. SOOI SO
— — . B S
2 2 ——
Py o s ﬂ—/”/ﬁ/’, :
g S 100 S il i
B B FEFEEED FEEEEEED EEEEEEEE CEEEEEEE SEERTERS
g g = B S
g g -
—]
107! g ¢
1074 . . . 102 i i i
10 20 30 40 50 100 200 300 400 500 600
Simulation end time [s] Number of species
e—e DM =—a NRM/Simple e— ODM o—e NRM/Simple =—a NRM/Heap oo r-leaping
v—v FRM ©¢—¢ NRM/MListRe a4 7-leaping v—v NRM/MListRe +—¢ ODM
(a) (b)

Figure 6.2: Results for the Linear Chain System. (a) Both the ODM and the NRM
with the MListRe event queue outperform the 7-leaping algorithm. Problematic for
the latter are species near the end of the particle distribution “wave”, which contribute
with 7 candidates that are just above the threshold before switching to an exact SSA
variant. Similar to the results from the TIS, there is an impressive gap between the
performances of the NRM variants; the speedup at a simulation end time of 50s is
about 21 when using the MListRe. (b) Run times for different model configurations.
Continuous and dashed lines represent results for models with initially 2000 and 10000
S particles, respectively. Though 7-leaping is inferior to both NRM and ODM, it shows
that it scales better with the number of initial particles than the other algorithms.

119

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

1800 -

1500(

—_
DO
o
o

Population
[{e)
S

D
(=]
S

Species

[o—e ¢— v =15 =—a =]

Figure 6.3: Particle distribution of the LCS model after 5s, 15s, and 25s, averaged
over 100 replications. The initial number of Sy particles is 10000.

= ? ? =
o ®
£ : : £
- H H -
g 10-1L H £ =]
510 : : 3
=4 ; ‘ =1
2 A
A 1
1072F S i
10-3 H H H H H
20 40 60 80 100 0 2 3 4
Simulation end time [s] k
e—e DM =—a NRM/Simple e—e ODM e—e DM =—a NRM/Simple e—e ODM
v—v FRM ©—¢ NRM/MListRe a4 7-leaping v—v FRM ©—¢ NRM/MListRe a4 7-leaping

(a) (b)

Figure 6.4: Results for the Cyclic Chain System. (a) The 7-leaping algorithm performs
best for this model type. Surprisingly, the NRM combined with the MListRe event
queue, which has proven to be a very good configuration for other models, is slower than
any other setup; it is even outperformed by the DM and FRM. (b) As expected, with a
larger value for £ the benefit of using a dependency graph vanishes. The turnover points
are k = 1 for NRM/MListRe and NRM/Simple and k = 3 for the ODM. The 7-leaping

algorithm is not affected by the parameter; in fact, after each leap all propensities are
updated anyway.

120

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

Figure 6.2a shows significant gaps between three groups, the first one consisting of
the ODM and the NRM/MTListRe, the second of the 7-leaping algorithm, and the third
one of the DM, NRM, and the NRM/Simple configuration. On average, a simulation
run is about 5 times slower when switching from the ODM to 7-leaping; this factor
increases to 40 if an algorithm from the third group (DM, FRM, NRM/Simple) is
selected instead. Noticeable is the poor performance of 7-leaping compared to the
other methods. Looking at the 7 candidates reveals that the minimum value is always
calculated for a species near the end of the state “wave” (see Figure 6.3). For example,
at t &~ 25 species S37 to S3g restrict the leap to a length which is slightly larger than
10/ap(x) (ten times the average time until the next reaction firing) — which means
that 7-leaping constantly operates near the border between an approximative and exact
execution because this “wave”, although it flattens with increasing simulation time, is
always present.

For the standard CCS (Figure 6.4) the 7-leaping algorithm clearly outperforms any
other configuration by several orders of magnitude. The standard deviation for the
slower setups (ODM, NRM /MListRe, NRM /Simple, DM, FRM) ranges from 0.47s for
an end time of 5s to 6.04s for 100s, so switching between algorithms in this set does

not provide any significant speedup.

Sub-algorithm and Parameter Dependence The sub-algorithm of interest here is
the event queue implementation for the NRM. For the TIS model (Figure 6.1) the
execution time is decreased by a factor of about 12.5 when the MListRe is used instead
of the much more simple sorted list. A similar result is shown in Figure 6.2b for the
LCS model; the speedup in this case is approximately 20. This looks impressive and
based on these results one could conclude that the MListRe seems to be the best choice
for the NRM. But Figure 6.4 provides a counter example for this statement: it is in
fact the worst setup for this model type with the default parameters £ = 2 and 10
species. The reason for this is the high number of reactions that have to be updated
after each execution; 8 out of 10 propensity values need to be recalculated and, in case
of the NSM, the respective reactions requeued with new next event times which is
apparently more expensive for the MListRe than it is for the simple list.

Regarding the dependence of the execution speed to the choice of the random number
generator: Figure 6.5 shows that at least for the utilized benchmark models the differ-
ence between the RNG implementations is not significant. Generating random samples

was assumed to be one performance bottleneck of stochastic algorithms [GB00|, how-

121

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

40

w
ot

-I—' -I-I B E | | | I|:| Lés}
» B CCS

[\V] w
at (==}
T T

Run time [s]
S

15¢
10F
5_
0
o g REN gﬁ;@gﬁ oF $Q§\é@0% é@& $«3~@§g\}§

Figure 6.5: Comparing the performance of different RNG implementations.

ever, the results indicate that its influence is only marginal compared to the impact of,

e.g., the event queue structure.

The only algorithm requiring a set of additional parameters is 7-leaping. Figure 6.6
shows the execution times for different parameter values; apparently, run time is very
sensitive to changes in the error control parameter and n. (the threshold for deciding
whether a reaction is critical or not). Making the former smaller by a factor of ten
nearly increases the run time five-fold. On the other hand, setting e to 0.3, i.e., ten times
the default value, halves the execution time. Those results could have been expected:
€ is essentially defining the leap condition by providing the upper bound of the allowed
relative propensity change, i.e., for a reaction R, it must hold that A a;(x)/a;(x) < €.
Increasing this bound permits larger changes without violating the leap condition and,

as a result thereof, also larger time steps.

The parameter n. is used for testing whether a reaction should be considered as
being critical or not, based on the current state of its reactants. With a larger value
for n., more reactions are considered critical and 7-leaping would gradually approach
an exact variant with only one reaction getting executed per iteration this effect
can be seen in the last setup of Figure 6.6. But as has been written earlier, smaller n,
could lead to negative state variables after a reaction fired more often than reactants
are actually available — while this could be avoided by decreasing the leap value and

re-sampling the number of firings, it also means additional operations that all add up

122

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

10

Run time [s]

H H H
0 Ne=10 ne =10 ne. =10 ne =10 ne =10 ne =10 n. = 100
€=0.003 €=0.03 €=0.03 €=0.03 €=0.03 e=03 €=0.03
Nssa =100 ||Nssa =100 ||Nsss=1000||Nssa =10 ||Nssa =100 |[Nssa =100 ||Nssa =100
vy=10 v =100 y=10 vy=10 y=1 vy=10 y=10

Figure 6.6: Results for 7-leaping algorithm applied to the LCS, with different values
for its parameters. Overall execution speed is especially dependent on the error control
parameter € and n. (the latter is used to separate the reactions into critical and non-
critical).

to a longer execution time.

Model Parameter Dependence Taking only Figure 6.2a, the ODM seems to be the
best choice when simulating models of the LCS type. But these are only results for a
single set of model parameters (N = 600, X;(0) = 10000); for Figure 6.2b the number
of species and the initial particle count for species S; are varied, showing that the
performance of 7-leaping is almost independent from these parameters. In contrast,
the execution time is increased by nearly a factor of 4 for all other algorithms when

the initial concentration of 57 is raised from 2000 to 10000 particles.

The last paragraph already mentioned the poor performance of the NRM/ MListRe
configuration, which could be caused by looking up dependent reactions if most of the
propensity values needs to be updated anyway; Figure 6.4b now provides further evi-
dence for this assumption. For the default parameters with 10 species, the maximum
value for k is [10/3| = 3. The NRM/MListRe setup is slightly faster than the NR-
M/Simple and DM for k£ = 0, i.e., an LCS. Let k denote the value for k at which the
execution time drops below either the DM or FRM time; for both NRM variants, k= 1,
for the ODM the turnover point is reached at k= 3, i.e., a totally coupled system. So
given this example, the DM should be preferred over the NRM as the choice for an

123

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

0.10F ‘ + 0.10
+ +
0.08} H : 0.08} v 3 +
+ + * ; ; P &
0.06F O I 0.06
A : : : : A
B P]
0.04} ‘ " | : : 0.04 B
o B @ 5] !] B X X o : :
0.02F (171 Et S SR SN, S e SIS . N S S—
: : F] : B
0.00 N S B N S N 0.00 N N EAR T
AS(] *53 SB SD 512 515 SIS S21 SZ4 527 68 Sl4 SZU SZG 532 538 544 SS[) 556 SG‘Z
Species Species
[x Nsm + TL0.03 = TL0.003] X NSM + TL0.03 o TL0.003]
(a) (b)

Figure 6.7: The KS-Test statistic D for several species of the default LCS model at
t =5 (a) and t = 25 (b). The value is an upper bound for the distance between the
empirical distribution functions sampled by the ODM / NRM (x), ODM / 7-leaping
with € = 0.03 (+), and ODM / 7-leaping with € = 0.003 (square). A red color denotes
the cases where the KS-Test rejects the null hypothesis that the samples come from
the same underlying distribution. The significance level « is 0.05.

exact algorithm if at least 5 reactions out of 10 need to be updated after an arbitrary

firing; for a totally coupled system the DM even outperforms the ODM.

Accuracy The LCS model was used for the accuracy studies because of its simple
dynamics: at the beginning of a simulation run the particle distribution over all species
takes the form of a spike, located at Sy, so molecules are initially only present for this
species. Over time S particles get converted into S, molecules, S5 into S3 and, more
generally, S; into S;1 1,7 € [1, N]; as a result, the distribution is “flattened” and its mean
is shifted towards Sy (Figure 6.3). Note that the evaluation is based on comparing
empirical probability distribution functions obtained by replicated runs of an exact
method (the ODM) and the test methods (7-leaping and NRM); see Section 5.2.2
for details. However, due to the simplicity of the LCS model (only monomolecular
reactions) it should be emphasized that it is also possible to find a solution for its
CME directly using a method presented in [JU10].

Figure 6.7 and Table 6.1 summarize the outputs of the two-sample KS-Test, with
the ODM taken as the exact algorithm. As expected, the NRM accurately captures
the state distribution for the majority of the observed species at both time points.

However, the null hypothesis is rejected in four cases (Si5 and Sig for t = 5, S5p and

124

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

t=2>5 t =25
T-leaping T-leaping
NRM e=0.03 e = 0.003 NRM e=0.03 e = 0.003
S p D p D p D S p D p D p D
So 0.5 | 0.04 || 0.01 | 0.07 || 0.83 | 0.03 || Ss || 0.91 | 0.02 1 0 1 0.01

Ss || 0.26 | 0.05 || 0.16 | 0.05 || 0.12 | 0.05 || S14 || 0.72 | 0.03 || 0.01 | 0.07 || 0.65 | 0.03
Se || 0.72 | 0.03 0 0.09 || 0.83 | 0.03 || Sz || 0.69 | 0.03 || 0.99 | 0.02 || 0.37 | 0.04
So || 0.29 | 0.04 || 0.01 | 0.07 || 0.72 | 0.03 || Sy || 0.76 | 0.03 || 0.02 | 0.07 || 0.47 | 0.04
Sz || 0.98 | 0.02 0 0.1 0.57 | 0.04 || S32 || 0.47 | 0.04 0 0.08 || 0.16 | 0.05
Sis || 0.01 | 0.07 || 0.03 | 0.07 || 0.65 | 0.03 || Sss 1 0.02 0 0.09 || 0.54 | 0.04
Sis 0 0.43 1 0.01 1 0.01 || Sy 0.1 | 0.06 || 0.29 | 0.04 || 0.65 | 0.03

So1 || 0.26 | 0.04 1 0 1 0 S50 0 0.48 1 0 1 0
Saq 1 0 1 0 1 0 Sse 0 0.1 1 0 1 0
Say 1 0 1 0 1 0 Se2 1 0 1 0 1 0

Table 6.1: Outputs from the two-sample KS-Tests to compare the accuracy of the NRM
and 7-leaping algorithms (with € set to 0.03 and 0.003) at time points t = 5 and ¢ = 25
for the default LCS model. The listing shows the p values and the KS statistic D; the
null hypothesis is rejected if p is smaller than the significance level «, which has been
set, to 0.05.

Sse for t = 25); this occurs for species far away from the distribution mean where only
a few states are visited and stochastic fluctuations may have a larger impact. It could
be that the number of replications — 1000 per default — is not large enough for these
cases; furthermore, it is known that the KS-Test is not the best choice for comparing
discrete distributions it seems to be useful if the distribution is nearly continuous
(S6 to Sia), but fails if the domain covers only a few states and discontinuities become

apparent (S5).

In contrast, the test rejects the null hypothesis for the majority of the observed
species when comparing 7-leaping (e = 0.03) with ODM samples. The reason for
this can be seen in Figure 6.8, which displays the normalized state frequencies for the
species Sg, Sg, Si2, and S5 at t = 5 as histograms. The red curve represents the
normal distribution with mean and standard deviation taken from the ODM samples.
While the standard deviation of the 7-leaping samples seem to fit the reference, the
mean is slightly shifted towards either a higher (Sg) or a lower (S and S;3) population
count; a similar picture is drawn for ¢ = 25. However, the results look much better
for a smaller € value (0.003); for this setup the accuracy of 7-leaping gets very close to
an exact algorithm, but this comes at the cost of longer execution times (see Figure
6.6). Summing up, when it comes to execution speed, the approximative algorithm is

the best choice for several models. But looking at the accuracy analysis of the LCS

125

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

9 %1072 ODM: S
1 - .
0 L L
1300 1400 1500 1600
-2 ODM: S,
g0l
1.75 1
0.00 : :
280 320 360 400 440
3 ><10*2 ODM: S;»
4 - 4
0 . .
15 30 45 60
a ODM: S
50 x10 | : 15
25 1
0.0 . -
0 2 4 6

9 %1072 NRM: S 9 %1072 TL 0.03: Sg 9 %1072 TL 0.003: S
1t | 1t 1 1t .
0 1 1 0 1 i 0 1 1
1300 1400 1500 1600 1300 1400 1500 1600 1300 1400 1500 1600
-2 NRM: S, -2 TL 0.03: S, -2 TL 0.003: S,
T L pEpl ol gl O
1.75} E 1.75} E 1.75} R
0.00 - - 0.00 . - 0.00 - :
280 320 360 400 440 280 320 360 400 440 280 320 360 400 440
g 102 NRM:), . %x10~2 TL0.03: Sy 5 10-2 TL0.003: Sy
nt . 4t] nt :
O 1 i O 1 1 O 1 1
15 30 45 60 15 30 45 60 15 30 45 60
-1 NRM: S -1 TL 0.03: S, -1 TL 0.003: S;
5.0 x10 . | 15 5.0 x10 ' : 15 0 x10 . : 15
2.5F b 25k 1 2.5F E
0.0 L L 0.0 L . 0.0 L L
0 2 4 6 0 2 4 6 0 2 4 6

Figure 6.8: Species state distributions for the LCS model at ¢t = 5. The mean and
standard deviation of the samples generated by the ODM — taken as the reference

distribution

is plotted as a red line. Notice how the histograms for the 7-leaping

(e = 0.03) algorithm differ for Sg, So, and Sis; its mean is slightly shifted towards either
a larger or smaller value. The last row shows the state frequencies for Si5, a species
near the “edge” of the distribution (near the end of the wave shown in Figure 6.3).
With only six states visited after 1000 replications, the distribution is very sensitive
to stochastic fluctuations — as a result, both the NRM and 7-leaping (e = 0.03) get
but not 7-leaping with ¢ = 0.003.

rejected

126

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

model, the results show a difference in the state distributions — for this model the
T-leaping trajectories for the majority of the species are sample paths of a different
stochastic process, in comparison with exact variants. At the end a choice has to be

made whether to sacrifice accuracy for a smaller run time or not.

6.2 Performance Analysis for Spatial Algorithms

The step from non-spatial methods to spatial methods is generally done by connect-
ing well-stirred sub-volumes and letting particles diffuse from one site to its neighbors.
Three algorithms supporting this type of models, the Next Sub-volume Method (NSM),
Gillespie’s Multi-particle Method (GMPM), and the spatial 7-leaping algorithm intro-
duced in Chapter 4, have been studied for this part of the evaluation. But before
continuing with the benchmark models it is necessary to discuss some general aspects
of the study.

Apparently, being stochastic algorithms each one requires a source of random num-
bers, just like in the non-spatial case. Apart from the size and structure of the reaction
network, i.e., the number of species and reactions, the rate constants and the depen-
dency between reactions, two additional factors now also characterize a model: the
number of sub-volumes and the initial distribution of the particles. Adding more sub-
volumes to a model should also increase the run time for each of the algorithms under
study. Taking the NSM as an example, with additional sites the respective diffusion
and reaction rates get added to the overall rate sum and thus the average time step
until the next event will occur is decreased. Similarly, both the GMPM and S7 need
to iterate over more sub-volumes, so the number of operations performed during one
algorithm iteration is increased.

How the particles are initially distributed may not be that relevant for the perfor-
mance of both the NSM and GMPM. For example, it does not matter if there are
10000 particles in only one of 100 sub-volumes or 100 particles at each site, the average
NSM time step (1/ 31, SN s5(X)) is the same for both scenarios. In case of the
GMPM, the length of the intervals between diffusion events is entirely independent of
the system’s state and during the SSA phase the time until the next reaction takes
place in any SV is approximately 1/ ZZL:I ZZJL ab(X). However, spatial 7-leaping is a
different subject. As it was shown with the theoretical analysis in Section 4.3, the closer
a system is to a homogeneous distribution, the better S7 should perform compared to

an NSM execution.

127

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

Furthermore, it shall be noted that only the diffusion but not the reaction constants
have been varied; for all experiments the latter have been set to fixed values. Modifying
the reaction constants likely has a serious impact on the performance of the algorithms
as they are an integral part of the reaction propensity calculation. Similar to the non-
spatial evaluation, to limit the number of independent variables it has been decided
to concentrate on the ratio between diffusion and reaction constants: multiplying the
former by a factor of, e.g., 100 and keeping the latter constant shifts the simulation

towards more diffusion events.

6.2.1 Benchmark Models

The test models for reaction-diffusion systems are specifically designed to represent
different conditions of spatial inhomogeneities in species distribution. Four model types
are used, each one with particular characteristics: two variants of a radial model, the
molecule generator model from Section 5.3, and the protein phosphorylation model.
Common to all models is a cube-shaped volume with a variable number of sub-volumes
per dimension, ranging from a small 5 x 5 x 5 = 125 SV setup to a large one with
21 x 21 x 21 = 9261 sub-volumes.

Radial Model The first variant consists of only a single species A which can diffuse
freely inside the system; it is initially located only in the center sub-volume. The
interesting characteristic of this model is the transition from a complete inhomogeneous
— initially all particles are located in the center sub-volume — to a nearly uniform

molecule distribution.

The second variant includes two additional species and a single reaction rule:
R :A+B3%C (6.1)

Similar to the first model, species A is located within the center sub-volume only.
In contrast, species B is ubiquitously present, i.e., it is distributed homogeneously
throughout the volume. Both A and B can diffuse freely. Though both variants of
the Radial Model start with A inside a single sub-volume, the first variant models its
distribution over time inside an empty volume, whereas the second represents a point-
sized injection of A into an area and the successive reaction with particles that are

already present.

128

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

®

®
& |—lo|— e
S —10r—| @

® ® Z

Figure 6.9: The 2D phosphorylation model. Initially, the protein molecules P are
located in the center sub-volumes, while kinase K (left) and phosphatase PH (right) are
only present at the model boundaries. During reaction R, the kinase adds a phosphate
molecule to the protein (triangle up), while R, removes it via the phosphatase (triangle
down).

Protein Phosphorylation Model (Phospho)

Ri:P+ KL PP+ K

C (6.2)
Ry : PP+ PH = P+ PH.

Phosphorylation is the process of attaching a phosphate to another molecule, which
often plays a crucial role in the activation and deactivation of enzymes. The model
is based on the one used by Brown and Kholodenko in [BK99|: a protein P is phos-
phorylated by a membrane-bound kinase K and dephosphorylated by a cytosolic phos-
phatase PH. Figure 6.9 shows the basic setup: starting in the center sub-volumes,
the P molecules diffuse into all directions. Some of them will react with the kinase
located at one side of the model grid, resulting in the phosphorylated protein form PP.
Eventually, PP will diffuse to the other end of the volume, where a phosphatase PH

removes the phosphate again, returning P back to its original state.

6.2.2 Results

Overall Execution Speed Evaluating algorithm performance for reaction-diffusion
systems is much harder than assessing algorithm performance for well-stirred systems:
the degree of inhomogeneity within the model has to be considered, the level of detail
with which the volume is discretized, as well as the extent of diffusion between those

sub-volumes. All these characteristics are explored by testing the algorithms on the

129

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

benchmark models discussed in the previous section. Each model was subject to fac-
torial experiments that shall illuminate the impact of their parameters on algorithm
runtime performance.

More than 150 model setups have been studied, in contrast to the 7 setups that have
been used for well-stirred systems (TIS, LCS, and some CCS setups with varying k.
cf. Section 6.1.2). This required some precautions regarding the overall experiment
design, in order to make the whole study feasible. In particular, three mechanisms of
the JAMES II experimental layer [HEU(S8| have been applied:

e The execution times often vary by several orders of magnitude, even on the same
model setup. To avoid overly long execution times, all executions are censored
(i.e., aborted) that exceeded a predetermined timespan. If not stated otherwise,
the maximal admissible duration for a single run was set to 1200 seconds, i.e., 20

minutes. Censored runs will be marked by an asterisk (*) in the graphs.

e Execution times do not only vary strongly between simulation configurations,
but also between different parameterizations of the same model. To avoid a
time-consuming trial-and-error searches for acceptable simulation end times, a
simple [EU09| calibration approach is employed that automatically determines a
simulation end time in the interval of [1072, 10%] seconds, so that NSM approxi-
mately runs for 300 seconds. If no simulation end time is given, this mechanism

has been used to determine a good end time for each model setup individually.

e A custom technique for sequential experiment design [Rob52| has been used to
adaptively replicate faster algorithms more often than others [ELU09|. While
the policy initially replicates each simulation configuration four times (i.e., even
the execution of a previously censored configuration gets repeated that often),
several remaining replications are then allocated to the faster algorithms by a
biased random selection. This scheme allows to invest additional computing
time to efficiently determine which of the algorithms is likely the best choice.
However, as can be seen below there is little doubt about the algorithm with

generally superior runtime performance.

Only four replicated runs for each setup seems very little, so the standard deviation
of all replicated run times was also checked, but found to be in reasonable limits: for
all runs longer than a couple of seconds, it was much lower than 10% of the execution
time. For the sake of clarity, the standard deviation is omitted and only averaged

results are shown.

130

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

104
103_
—_
= 102_
o
£
-~
g
2 101_
100F-
1071
X1 x11|[5x5x5 |[TIx1Ix11][5x5x5 |[TIx1Ix11|[5x5x5 |[TIx1IxI1|[5x565x5 |[1Ix1Ix11|[5x5x5
Dy=10 Dy=10 Dy=2 Dy=2 Dy=4 Dy=4 Dy=6 Dy=6 Dy=38 Dy=8
[- best GMPM [best NSM @O worst NSM I best ST]

Figure 6.10: Execution times for the Molecule Generator model with 10° C particles in
centre sub-volume. The diffusion rate D4 has been varied from 2 to 10 and the model
size is either 5 x 5 x 5 (125 sub-volumes) or 11 x 11 x 11 (1331 sub-volumes). All
replications ran for 3.0s.

While both GMPM and NSM were combined with the same event queue implemen-
tations used for the SSA evaluation on well-stirred systems, 7 x 6 x 5 = 210 parameter
setups for the S7 algorithm were defined: all combinations of n. € {2,3,4,5,7,9,10},
e € {0.03,0.034,0.038,0.042,0.046, 0.05}, and Ngga € {10, 20, 30,40, 50}. Several pub-
lications mention what parameter sets turned out to be suitable during their study.
The values here have been chosen to represent a common range of configurations, as

suggested in various literature, e.g., [CGP06, San09h|.

Figure 6.10 presents some rather encouraging performance results for S7, which con-
sistently outperforms NSM but in turn is outperformed by GMPM. It was expected
that GMPM will be faster than S7 because its strong approximations cut much com-
putational load. Another interesting aspect of the results in Figure 6.10 is the impact
of the event queue implementation on NSM performance. If the best S7 configuration
is compared to the best NSM configuration, it outperforms it usually by about one or-
der of magnitude. If, however, the worst NSM configuration is taken, the comparison

gets even more impressive. This clearly shows two important points: a suitable event

131

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

10%
% 1
& 10 fo s mnnsniins S ssworanvassssocnnvsemn s v I o s o i 555 R A R R D = s v S v s v s v S e S w e B s et o w oo QI s san s s icsansiy o e SN - o s e s 5 5
Q
£
]
2 100 Lo QN oo [- | P . - N R TSESEenmn————— - e .
1071
10—2 L Ll - = = = L L
I x1Ix11|| 5x5x5 |[11x11x11{] 5x5x5 [[11x11x11|| 5x5x5 [[11x11x11|| 5x5x5 |[11x11x11|| 5x5x5 [[11x11x1l|| 5x5x5
Dy=10 Dy=10 D4=10 Dy=10 Dy=10 Dy=10 Dy=2 Dy=2 Dy=2 Dy=2 Dy=2 Dy=2
C = 1000 C = 1000 C = 10000 C =10000 || C = 100000 || C = 100000 C = 1000 C = 1000 C = 10000 C' =10000 || C = 100000 || C = 100000
|EE best GMPM best NSM 3 worst NSM B best ST]

Figure 6.11: Execution times for the Molecule Generator model setup from Figure 6.10
(D4 € {2,10}), but now with 10 to 10° particles in the centre sub-volume.

queue is essential for NSM efficiency, and not re-validating runtime performance with
different implementations may introduce a strong bias to any performance comparison
for this family of algorithms. For the setups given above (and almost all others) the
MListRe event queue from JAMES IT was found to yield the best results.

Finally, Figure 6.10 also shows that the performance of St strongly depends on
the model size: the ST run times between otherwise equal setups having 5% or 113
sub-volumes differ significantly. Apart from that, the general trend is that increasing
D, also increases the run times of all algorithms — this is straightforward, as an
increased diffusion rate leads to more events within the same simulation time span
(here, simulation end time was fixed at 3.0 seconds for all setups).

After now having gained some confidence in the favorable run times of the new St
algorithm, it may seem safe to move forward and check its accuracy with respect to
NSM. But things are more intricate: the whole point of experimentally studying a
new algorithm is to explore the regions in the problem space where it is beneficial
— delineating them implies to also find problems where it performs worse than its
competitors.

Figure 6.11 shows the run times for the same setups of the Molecule Generator model,
but now varying the number of C particles from 10 to 10° (instead of 10°, as in Figure
6.10). The results for Dy € {4,6,8} are similar. Here, it becomes apparent that St

132

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

GMPM NSM : St

4 1P 10— —
3_ ... 102_ .. .

& S S 0

g 2 S g 101 ——— g

[[[

o o o

n n n 100_ ..

A A i . i A A i . ; r i . h i 1 i i . i B i i
010 20 30 40 50 60 70 80 070 10 20 30 40 50 60 70 80 1©70 10 20 30 40 50 60 70 80
Configuration Configuration Configuration

Figure 6.12: Sorted speed-ups attainable per algorithm for 80 Molecule Generator and
Radial model set-ups. Note the different scales of the logarithmic y-axes.

does not always outperform NSM: indeed, it only does so when applied to relatively
small (5 SVs) Molecule Generator models that contain many particles (> 10°). The
differing diffusion rate D4 seems to have less impact on relative algorithm performance.
It can also be seen that the impact of the event queue on NSM performance grows with
the size of the models, i.e., the difference between best and worst NSM configuration
increases. It should also be noticed that for some model setups (Xc(0) = 1000, size
= 11 x 11 x 11) NSM is even faster than GMPM, even though it does not use any
approximations. This rather counter-intuitive finding again illustrates the importance
of model features. Here, the effect of D4 is again negligible. Figure 6.11 also backs up
what Figure 6.10 already suggested: St is faster than the worst NSM configuration in
six out of twelve setups, but in four of those setups St is slower than the best NSM
configuration. Experiments neglecting event queue implementation specifics for NSM
would not yield any meaningful result in these cases. Of course, the design space of
simulation configurations must not only be explored for NSM, but also for GMPM and
S7. To do so, the potential speed-up per reaction-diffusion algorithm has been analyzed,
i.e., the execution time ratio between its fastest and its slowest configuration. This was
done for 79 setups of the Molecule Generator and Radial models; the results are shown
in Figure 6.12. The plots of the algorithms vary strongly from each other. GMPM
run time, for example, does not depend strongly on the event queue that is used —
the performance difference between the best and the worst simulation configuration
with GMPM was usually less than 10% of the fastest execution time, i.e., the speed-up
achievable by choosing a different GMPM setup was usually below 1.1. However, this
observation only holds for the models that have been analyzed in this present study;
GMPM’s event queue implementation may still be relevant for much larger problems.

For the problems considered so far, GMPM with the TWOLIST queue performs best in

133

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

ca. 60% of all setups; MLISTRE was second best (being optimal for ca. 20% setups).
NSM, in contrast to GMPM, was again shown to be very sensitive to the choice of event
queue (cf. Figure 6.10 and Figure 6.11). For several models, a speed-up over 50 was
observed, i.e., selecting a proper event queue sped up execution more than 50 times.
Here, the MLISTRE queue almost always worked best (=~ 94%) and was very close to
the optimal in all other cases. The results also showed that the simple event queue
implementation is by far the worst choice. Therefore, the design space explored in the
following experiments was restricted to the NSM and GMPM configurations that use
the MLISTRE queue; it performs well on all model setups and within both NSM and
GMPM.

For St, Figure 6.12 shows that there are some cases in which its parameters have a
huge impact on overall performance, leading to speedup higher than 20 — but for most
cases the achievable speed-up is below 8. It was further analyzed how the individual
parameters n., €, and Ngg4 influence the execution speed: of the 70 model setups for
which the best St configuration needed more than 1 second to simulate, the optimal
configuration was configured with n. = 2 in 76% of the cases and with n. = 10 in 21%
of the cases. Hence, there seems to be a certain model property that makes choosing a
large or small n. value advisable. Further, it has been observed that the choice of € has
little impact on runtime performance: e.g., although ca. 84% of the best configurations
had e set to 0.03, this is also true for the worst 70 % percent. This is somehow surprising,
as the value of € had a considerable influence on the execution speed of the non-spatial
variant. One answer can be found in the theoretical analysis in Section 4.3, which
showed how the leap size depends on the state of the model. Furthermore, it should
be remembered that € is only used to determine 7 for the non-critical reactions. In
case for systems with a high level of heterogeneity in the particle distribution, there
are many sub-volumes that have critical events, even if no reactions can take place —

because diffusion events are also classified into critical and non-critical.

The run times for a single setup usually cluster around the different n. values only.
As neither any impact from Ngga could be measured, the number of simulation con-
figurations for ST has been reduced to four: a default one with n. = 10, ¢ = 0.03, and
Ngssa = 10.0, and one adjusted configuration for each parameter, i.e., one with n, = 2,
one with € = 0.05, and one with Ngg4 = 50.0. Still, none of the following experiments
gave results that indicate a strong impact of € or Ngg4. All in all, the design space has
been reduced from over 200 simulation configurations to just six: NSM + MLISTRE,
GMPM -+ MLISTRE, and the four S7 configurations mentioned above. This greatly

134

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

500 IR—— =~ R—— ———— . [— (NS——— [——
!7;400 ..
=
(]
2
§300 ..
a1
100| I
0 Ll
11 x 11 x 11{{21 x 21 x 21 ({11 x 11 x 11|21 x 21 x 21{|11 x 11 x 11|21 x 21 x 21{|11 x 11 x 11|{21 x 21 x 21 {11 x 11 x 1121 x 21 x 21|11 x 11 x 11{|21 x 21 x 21
Dp =100 Dp = 100 Dp =100 Dp =100 Dp =10 Dp=10 Dp =10 Dp =10 Dp=1 Dp=1 Dp=1 Dp=1
P =100 P =100 P = 1000 P = 1000 P =100 P =100 P = 1000 P = 1000 P =100 P =100 P = 1000 P = 1000
|EE best GMPM [best NSM B best ST]

Figure 6.13: Algorithm performance on different set-ups of the phosphorylation model.
Similar results were obtained for Xx(0) = Xpg(0) = 100 instead of 1000. Sim-
ulation times vary across model set-ups, as their complexity differs strongly (they
have been calibrated automatically to let NSM run for ~ 300s, configurations with
Dp = 1,Xp(0) = 100 where so easy that even simulating until time 100 did not
impose greater load for NSM). Unfinished executions were aborted after 10 minutes.

facilitated the exploration of the problem space.

Figure 6.13 shows algorithm performance on the Protein Phosphorylation model,
where S7 is clearly not the best choice. It barely manages to finish in fwice the time
that NSM execution requires. Here, GMPM is the fastest algorithm by far. Note
that only for two problems S7 could finish in time, both of which are of moderate size
(11 x 11 x 11). Again, it is only comparable to NSM performance if the number of
particles is sufficiently high and there are many diffusion events.

While the various setups of the Phosphorylation model indicate where S7’s per-
formance is sub-optimal, algorithm performance on the Radial model is particularly
interesting because it contains such scenarios for both NSM and S7. As Figure 6.14
shows, both algorithms are censored at least once, and in both cases the respective
other method was faster by roughly one order of magnitude. Again, S7 could gain
significant speed-up (over 60 in two cases) when applied to small- and medium-sized
models but only if there are sufficiently many particles. It performed worst on
models with a high number of sub-volumes.

Similar results can be observed for the second variant of the Radial model; a subset of

135

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

104

103F ol

Run time [s]

— —

=] o — —
| | o] (=) (=}
s L 2 2. D
]
A
]
m
“
m
m
_

11><11><11
=10

5X5%5
Dy=
A=1le +UG

11><11>(11
=1

11><11><11
=1

21)(21)(21
=1

11><11><11
=1

><><5
=1

11)(11)(11
Dy=

5x5x%x5
Dy=1
A=1le+06

0 AT X T x T[Tt % 1T x T2l x 2T x BT A X L X 1] 5 x5%5
Da=10 | Dsy=10 || Da=10 || Dy=10 | Ds=10
A=1000 || A=10000 || A=10000 || A= 100000 | A= 100000

(EE best GMPM 1 best NSM B best S7)

A 1+06 A 1000 A 10000 A 10000 A 100000 A 100000 A= 1+OG

Figure 6.14: Algorithm performance on different set-ups of the Radial model. S7 out-
performs NSM on small to medium models with sufficiently many particles. The sim-
ulation end time was set to 5s.

the results is depicted in Figure 6.15. Compared to NSM, S7 could achieve a speed-up
of up to 6.5 (40 model setups have been used for the comparison). As for the Protein
Phosphorylation model, the simulation end time was calibrated to let NSM run for
approximately 5 minutes (300 s) and again, S7 fares well as long as the model is
not too big. Moreover, GMPM is always the fastest algorithm in these scenarios; this
performance pattern is preserved through all combinations of D, and Dg shown in

figure Figure 6.15.

Accuracy One conclusion from the lasts paragraphs is: the GMPM is almost always
the fastest algorithm, leaving its competitors often far behind. The NSM and St
algorithm shine for some model setups; they still get beaten by GMPM, but at least
for some configurations they can be considered as being on par with it. But the fastest
algorithm is worth nothing if it fails to produce accurate results.

Table 6.2 puts the results from the execution speed analysis into perspective. Using
the test procedure introduced in section Section 5.2.2, the accuracy experiments show
that, at least for the analyzed models, GMPM is far from capturing the spatial particle
distribution accurately. The null hypothesis, stating that both NRM and GMPM
sample from the same underlying distribution, is rejected for a significance level o =
0.05 in each experiment. Figure 6.16 shows a simple visualization of the radial model’s

state at t = 1.0. The size and the color of a box represent the mean and standard

136

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

Run time [s]

Tx1lx11 21 x 21 x 21 Tx 1l x11 20 x 21 x 21 x 11 x 21 x 21 x 2 Tx 1l x 11 21 x 21 x 21 Tx 1 x11 21 x 21 x x 1l x 11 20 x 21 x 21
Dy =100 Dy =100 A A Da=10 Da=10 Da=1 A Dy=1 Dy=1
Dp=1 5 Dp=1 B 5 Dp =10 Dp =10 Dp =10 5 Dp =10 Dp =10
A= 100000 e A=1e+06 A=1e+06 A=1e+06 A= 100000 A=1ec+06 A=1e+06
B =1000 B =1000 B =1000 B =1000 B =1000 B =1000 B =1000

| best GMPM [best NSM B best ST]

Figure 6.15: Algorithm performance on different set-ups of the Radial 2 model. The
results are mixed, S7 is quite fast for some setups but is beaten by both the GMPM
and NSM for the majority of models.

GMP T-leaping

Model Time X7 X2 Da X2 D
0.1 168.84 923.4 0 | 16297 0.49
Radial, D4 = 10, X 4(0) = 10* 0.5 340.9 951.37 0 | 334.11 0.21
0.9 354.02 | 418.17 0 | 343.18 043
1 408.05 | 1657.71 0 | 401.23 047
Radial, Ds =1, X4(0) = 10° 3 774.95 | 265298 0 | 770.54 0.13
5 867.65 2662 0 | 85594 0.39
Radial var. 2, D4 = 10, 0.1 | 1782.16 | 3129.69 0 | 1768.64 0.58
Dp =1, X4(0) = 10°, 0.2 | 1875.26 | 3183.37 0 | 1866.51 0.33
Xp(0) =10° 0.3 | 1887.16 | 3127.39 0 | 1898.22 (.02
Phospho, Dp = Dpp = 10, 0.1 738.18 | 1099.98 0 | 73285 0.19
Xp(0) =1.21-10%, 0.5 | 1112.22 | 1233.13 0 | 1099.12 0.34
Xk (0) = Xpu(0) = 100 0.9 | 1240.17 | 1317.1 0 | 121855 0.77

0.1 146.91 | 371.06 0 | 761.47 0

MolGen, D4 = 10, X¢(0) = 106 0.5 699.19 | 769.56 0 | 815.94 0
0.9 967.69 | 989.91 0 | 960.96 0.21

Table 6.2: Accuracy results for five different reaction-diffusion models, evaluated at
three time points each. The column X7 lists the threshold values calculated during
calibration; these are tested against the control values given in column X?2. The p-
value for each model-algorithm combination is calculated using a significance level of
a = 0.05. As can be seen, GMPM fails to capture the spatial distribution for every
test model, while the spatial 7-leaping algorithm shows good performance, except for
the molecule generator model.

137

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

45
40
35
30
25
20
15

10

ot

56
48 -10
42 -8z 48
36 =6 40
-4
30 | -
2 2
24
18 /
B / éo 16
e
6 :46 8
/) 5
0 9 4 6 8 10 0

Figure 6.16: Snapshot of the radial model state at ¢ = 1.0 for the NSM (a), St (b)
and GMPM (c). Parameters are set to D4 = 1, X4(0) = 10°. The size and the color
of a box encode the mean and standard deviation of the A particle population in a
sub-volume; mean values have been rescaled to fit the interval [0, 1]. NSM and S7 show
a good overall agreement, while the result for GMPM looks quite different.

138

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

deviation, respectively, of the A particle population inside the sub-volume, calculated
for a sample of 50 replications. The results for NSM (Figure 6.16a) and St (Figure
6.16b) look similar, though there are some differences in the standard deviations. Most
of the particles are still concentrated around the center, but some managed to diffuse
into the outer sub-volumes — after 50 replications nearly all sub-volumes contained at

least one A particle

The outcome for the GMPM (Figure 6.16¢) differs significantly. Particles are dis-
tributed in a three-dimensional “checkerboard” pattern: during each iteration all mole-
cules diffuse from a sub-volume into its neighbors, leaving the former empty. Addition-
ally, the particles did not diffuse as far as observed for the other methods; in fact, for
this model it is fairly easy to calculate the number L; of sub-volumes after ¢ iterations

that will contain at least a single molecule:

Lo=1 (6.3)
i—1

Li=Li+4i+2) 4j+2
j=1

With D4 = 1, the interval between two diffusion phases is t4 = 1/6, so during [0, 1] the
GMPM performs 6 diffusions. Inserting this into equation 6.3 gives 377 sub-volumes
that are not empty at the end of the interval, roughly one third.

Both the GMPM and St fail for the molecule generator model; the null hypothe-
sis is rejected for every time point. At first glance the state plot for ¢ = 0.5 (Figure
6.17) actually shows a good approximation by S7 compared to the NSM distribution.
A more detailed view at the test results revealed that the variance in the number of
molecules is high for most of the sub-volumes, so a reason could be the limited repli-
cation count. This number has been increased to include 100 samples per experiment,
which reduced the variance, but the test still rejects both S7 and GMPM. To sum it
up: despite being slower than the GMPM, the particle distribution simulated by St
matches the NSM outcome more closely than its competitor for the two radial variants
and the phosphorylation model. Though a visualization shows a good agreement also
for the molecule generator, the statistical test concludes that the distributions differ

significantly.

As a reminder: it was mentioned in Section 3.3.2 that GMPM does not have any
algorithm parameters to control the accuracy; this can only be done by decreasing the

interval between diffusion events, which in turn depends on the diffusion constants of

139

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

Figure 6.17: Snapshot of the MolGen model state at ¢t = 0.1 for the NSM (a), St (b)
and GMPM (c). Parameters are set to Dy = 10 and X¢(0) = 10%. The size and the
color of a box encode the mean and standard deviation of the A particle population in
a sub-volume; mean values have been rescaled to fit the interval [0, 1].

140

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

Symbol | Feature Description
Number of sub-volumes (cf. Section 2.5).

Overall number of particles in initial state: Zle Zf\il X1

Average initial number of particles: ~

Maximum initial number of particles per SV: maxle[l’L}{ZiIil T}
Sum of diffusion rates: Zf\;l D;

Average diffusion rate: %

Maximum diffusion rate: max;c1 vy Di

Initial diffusion propensity sum — the factor £ (cf. Section 2.5)
is omitted: Zle Zf\il D; -y,
Average initial diffusion propensity:

ialivtiwliwliack il Ravlis

I
L-N
Maximum initial diffusion propensity: max;ep r1,iep1,57(Di - T14)-

~f |

q’\(

Standard deviation initial diffusion propensity: \/ﬁ : Zle Zf\;l(x“ —1)2

Table 6.3: Investigated model features.

the species and the grid spacing A,,. This dissertation takes the position that changing
the latter corresponds to an entire new model, hence doing this only for GMPM makes
it impossible to compare the results with NSM and S7. That is why the same models

have been used for all methods.

Further Analysis of Runtime Performance The results discussed above motivate to
refocus on the performance of NSM and S7, as GMPM may be not accurate enough for
many models and the questions associated with them. Furthermore, the runtime per-
formance analysis suggested that model properties, e.g., the overall number of particles
or the number of sub-volumes, have a considerable impact on algorithm performance —
not just their overall execution time, but their relative order. To find out which model
properties determine the relative order of the algorithms, some general features from

the 155 model setups that were evaluated w.r.t. execution speed have been extracted.

The features are summarized in table Table 6.3. Some of these are fixed throughout
the simulation (e.g., L and D), others refer to the initial state (e.g., P and I). It
is reasonable to include features of the initial state into the analysis, as it can be
easily inspected before the simulation starts. Furthermore, if a feature of the initial
state is decisive for algorithm performance, this could motivate the development of
adaptive approaches that observe this feature’s fluctuation during simulation execution
and change the simulation algorithm accordingly. To account for inhomogeneity within

the sub-volumes of a model, the analysis did not just consider sums or averaged features

141

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

(e.g., P and D), but also maximum values (e.g., P and D) and a standard deviation
(I,).

The features defined in Table 6.3 were extracted from all model setups and, together
with the results from the performance analysis, fed into the WEKA [WF99| machine
learning toolkit to find relationships between model features and the relative perfor-
mance of the algorithms. Although learning to classify a problem according to the
algorithm that is most likely to succeed is not an easy task and requires much more
performance data (from more models), such analyses have already been conducted
successfully (e.g., [LBNS09]); they may help to discover new aspects of the given algo-
rithms. In this case WEKA’s implementation of Quinlan’s C4.5 decision tree learning
algorithm |[WF99, p. 159 et sqq.| has been used. C4.5 it is a supervised machine
learning algorithm for classification, i.e., it considers a training set of examples and
categorizes them into a finite number of classes. Furthermore, C4.5 is able to cope
with numerical attributes, so that it can be provided with the model features from
Table 6.3. The decision trees generated by C4.5, depicted in Figure 6.18, show which
model features are the most relevant for deciding which algorithm ought to perform
best on an untested model with given features. A decision tree is read top-down: tree
B, for instance, decides to use NSM instead of S7 if the maximal amount of particles
in a sub-volume, P, is < 10%. If P > 10%, however, it would check if the number of
sub-volumes L is < 113, and so on. Decision trees order attributes by their relevance;
for the above example, P is more relevant than L, so it appears at a higher node in
the tree.

The analysis was focused on two questions: is it possible to predict, given only a
model’s features (Table 6.3),

a) which algorithm will be the fastest?
b) whether St will outperform NSM?

For both questions, it is assumed that all three algorithms are configured optimally,
i.e., only their best-performing simulation configurations are considered. The trees A
and B from Figure 6.18 answer both questions, respectively; they were checked with
10-fold cross-validation [WF99, p. 125].

While 7, I, I , and I, showed little correlation with the runtime performance, most
other features had some impact on the algorithms’ execution speed. The most im-
portant features refer to the number of particles, i.e., P/p/P: NSM may outperform

GMPM only on ’sparse’ models with more sub-volumes than particles (tree A, Figure

142

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

ST(10) NSM

Figure 6.18: J48 decision trees to decide which of all algorithms is the fastest (A)
and whether S7 will perform better than NSM (B). Tree A misclassifies only 3 of 155
models (in two of those cases S7 is the fastest algorithm). Tree B, however, misclassifies
12 of the 155 models (ca. 8%) — so with the given features it is rather unclear whether
NSM or St shall be applied to a model. In B, the cases where St is classified to be
better are marked with red and the number of correctly classified examples is given
in parentheses. This indicates how often S7 outperformed NSM in which region of

the problem space — in total, this happened 46 out of 155 times (the other cases are
misclassified).

143

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

6.18), i.e., those rare cases where GMPM'’s diffusion approximation is not beneficial
because in most iterations only a single particle will diffuse from one sub-volume to
the other.

If more accuracy is desired, however, GMPM may not be a good option. Tree B
decides whether to use ST or NSM for a given model. In general, it can be seen that
ST is only beneficial if there is a sufficient amount of particles (]AD > 104, P > 272.73)
and not too many sub-volumes (L < 113). If this is the case, NSM only outperforms
S7 if many particles are initially concentrated in a single sub-volume (]5 > 10%) and
they are diffusing rather slowly (D < 4) — but this was only the case for two model
setups. All in all, tree B agrees with our prior analysis that St is inferior to NSM for
large numbers of sub-volumes and small numbers of particles.

Note that the coefficients given in Figure 6.18, e.g., 272.73, are not very meaningful
as such — only factorial experiments on the benchmark models have been conducted
to explore the overall performance space. The node L < 113 in tree B, for instance,
is unlikely to demarcate a true crossing point (which could be 123 ... 20% instead)
— only models with 53, 113, and 21% sub-volumes were included in the study, so the
border has to lie on one of those values. Similar arguments apply for all other features
— the trees just provide a quantitative summary of the presented results and help to
localize the regions in the problem space where one algorithm performs better than
the other. There was also an attempt to predict absolute run times and the speed-up
between different algorithmic variants, but the resulting trees had very large error rates

which also suggests that much more data is required for a good prediction.

Figure 6.19 is another approach to visualize some results from the evaluation study.
It displays optimal and non-optimal models, i.e., those which are executed much faster
(blue) or slower (red) with ST compared to the NSM. For example, according to this
figure, S favors models from the Molecule Generator type that are small or medium
sized and have initially a large number of particles. If the size exceeds a certain value,
then the algorithm should be replaced with the NSM.

Parallel Performance Section 4.4 discussed a parallel extension of the S7 algorithm,
which will be referred to as pSt in the following. Instead of having one processor do
all the work, i.e., finding a leap candidate and calculating the state update, the set of
sub-volumes is split up and distributed among the available computational resources,
hoping that each task can be processed faster if one processor is responsible for only a

fraction of the sub-volumes. JAVA itself already offers classes for a concurrent execution,

144

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

— tsr < insm| MolGen Phospho
— lgr > tnsm

~ =

2 P
Radial, var. 2 Radial

= =

P P

Figure 6.19: Spider charts visualizing the features of models for which S is significantly
faster (blue) and slower (red) than NSM. As an example, the plots for the phosphory-
lation model look quite similar. Indeed, most of the setups were simulated faster with
the NSM, so there seems to be no feature that would advise to use St instead.

145

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

30 " 103 T T T - 1400

%5 1200

107

1000
20

800
1 10t

Run time [s]
&

600

—
o

- 400}

200+

-1
0 MolGen, 10 Phospho, Phospho, Phospho, Phospho, 0 Radial2, Radial2, ial2, ial2, Radial2, Radial2, Radial2,
11x11x11 21 x21x21 [|21x21x21 |[11x11x11 |[21x21x21 11 x 11 x 11{[21 x 21 x 21 |[11 x 11 x 11]{21 x 21 x 21|21 x 21 x 21|21 x 21 x 21|21 x 21 x 21
D4=8 Dp =100 Dp=10 Dp=1 Dp=1 Dy=1 Dy=1 Ds=1 Dy=1 Dy=1
C=1e+06 P = 1000 P = 1000 P = 1000 P =1000 Dp=10 Dp=1 Dp=1 Dp=1
A=1e+06 || A=1e+06 || A=100000 | A=100000 || A=1e+06 || A=1le+ 06|l A= 100000
B =10000 || B=10000 || B=10000 || B=10000 || B= 10000 B = 1000 B = 1000
l- best St = pST(4) Bl pSr(6) Hl pST(8) El pST (16)]

Figure 6.20: Algorithm performance for a parallel execution of different model types.
The number of threads used is given in brackets in the legend. Both the Molecule
Generator and Phosphorylation model show only marginally lower execution times, in
some cases it event takes longer to finish the simulation. However, the results for the
second Radial model variant looks much better: here speed-ups factors 2 to 4 can be
achieved.

so the original S7 algorithm has been modified to utilize those by letting threads handle
the two main tasks during each iteration. Threads are created within processes and
execute a certain piece of code concurrently to their parents and other threads. On a
single-core machine the operating system (OS) has to switch between threads; each one
runs for some amount of time, is then put into a wait state and the OS decides what
thread should be resumed next. As a result, only one thread is “active”, i.e., it solely
uses the CPU, at any time. However, this restriction is lifted if more than one CPU
is available. With n cores present, n threads can run in parallel; it is the operating
system’s responsibility to schedule the tasks on each CPU independently, i.e., to decide

what thread to execute next on which processor.

Figure 6.20 shows performance results for a selection of model setups. Note that the
machine used for the study has eight cores, yet 16 was the maximum number of threads
used; this is one reason why for some setups a configuration with 16 threads is actually
slower than one with eight. At best, the run time for both the Molecule Generator and
the Phosphorylation model types was only marginally lower compared to a sequential
execution — in fact, for the majority of the tested model setups a single run needed

longer to finish the task. The reason for this can be found by analyzing how long it

146

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

takes for the sequential variant to find a 7 candidate and update the state matrix in
each iteration and comparing these results with the individual times for each of the
n € {4,6,8.16} processors in a parallel run. It turns out that at least for the Molecule
Generator and Phosphorylation models the time needed for these calculations is simply
too short to make a distribution of the work load profitable. This is reasonable, as
in both models a lot of sub-volumes remain empty during a simulation run and the
algorithm simply skips those where nothing can happen during the next interval.

However, the case is different for the second Radial model variant; Figure 6.20 sug-
gests that this model type is a better choice for a parallel execution. A simulation is
at least twice as fast as a sequential run, for larger models this factor even increases to
four. Best results are achieved for setups using eight threads on the same number of
cores; adding more threads does not further lower the execution time due to the over-
head generated by switching threads. Again, looking at the wall-clock times required
for the two main tasks shows that here the time intervals for both the 7 calculation and
the state update in a sequential run are large enough to allow a speed-up when paral-
lelizing the operations. In contrast to the other two models, every sub-volume contains
at least B particles, so the algorithm cannot skip any sites during an iteration; in this
case distributing the work among several processors proves to be beneficial.

As a conclusion: yielding a speed-up from a parallel execution of ST depends on how
long the sequential variant needs to find the leap value and execute the state update; if
this requires a considerable amount of time, e.g., the algorithm needs to process every
sub-volume, then the execution times can be reduced in a multi-processor environment.
Nevertheless, it should be considered that while a speed-up of four is possible, this
required eight processors to achieve — which could also be utilized to execute eight
sequential runs concurrently, i.e., to perform a “parallelization across simulations”, as
was discussed in Section 3.1.3. In other words: making a single run four times faster
on eight processors is still not as good as running eight sequential variants on each
computational units. However, if only a single run is needed at all, e.g., to do a more
detailed analysis of an interesting trajectory, then the parallel execution should be

preferred over a sequential run.

6.3 Summary

In this chapter the aspects of a performance study discussed in the previous chapter

have been applied to evaluate the execution speed and accuracy of both non-spatial

147

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

and spatial simulation algorithms. Each section started by introducing the benchmark
models used in the subsequent analysis. For non-spatial algorithms, emphasis was laid
on the number of species and reactions, the initial amount of particles, and the de-
pendency between reactions. With respect to execution speed, the 7-leaping algorithm
proved to be significantly faster than its competitors (DM, FRM, ODM, NRM with
different event queue implementations) for two benchmark models, the Totally Inde-
pendent System (TIS) and the Cyclic Chain System (CCS). However, this was not the
case for the Linear Chain System, where the particle distribution evolved as a “wave”
through the state space and species near the end of this wave turned out to be prob-
lematic for 7-leaping: the calculated leap values were close to the threshold that would
initiate a switch to an exact variant. As a result, the exact NRM and ODM variants

require less time than the approximative 7-leaping algorithm.

Another interesting observation regards the dependence of NRM to the selected event
queue implementation. The speed-up can be impressive if a more advanced queue
variant is used instead of a simple ordered list; however, it has also been shown that
this is not generally the case: for the CCS model, the setup NRM/MListRe, which
was best for the other two models, was actually much slower than the combination
NRM /Simple — in fact, it was the worst setup over all algorithms for a certain model

parameterization.

In the further progress, 7-leaping was also subject to a more in-depth analysis. It is
the only algorithm that depends on both a sub-algorithm (a random number generator)
and specific parameters, such as the error control parameter ¢ and the threshold Ngg4.
The results confirmed what has been expected: decreasing € or n. (which is used
for testing whether a reaction is considered as being critical or not) both lead to
longer run times; no noticeable influence could have been observed for the remaining
parameters Ngsa and . While being fast, the trajectories generated by 7-leaping with
default parameters are significantly different to exact results; making the error control
parameter smaller resolved this issue, but this comes at the cost of a lower execution

speed.

The spatial simulation algorithms considered in the second study all have their
strengths and weaknesses. GMPM’s execution speed, for instance, was excellent for
almost all of the test model setups yet it lacks the accuracy of the other methods. In
contrast, the NSM can be considered as being exact but slow for larger models. The
performance of the spatial T-leaping is somewhere located between these two; it is gen-

erally more accurate than GMPM, but also takes longer to finish a single run. On the

148

6 Performance Evaluation Studies for Non-spatial and Spatial Simulation Algorithms

other hand, it clearly outperforms NSM on various model setups, while still producing
comparable results. Using the machine learning toolkit WEKA, example decision trees
that suggest an algorithm depending on certain model characteristics have been pre-
sented in the last part of the study; the information from such data mining approaches
could be used to offer algorithm selection capabilities in simulation tools, e.g., JAMES
II.

A separate section has been dedicated to the study of pSt, the parallel spatial 7-
leaping variant. The results have shown that the run time of a single replication can
be decreased for certain models, which could be useful for an in-depth analysis of
interesting trajectories. However, if an ensemble of replications is required, then a
“parallelization across the simulation” that concurrently executes sequential runs on

the processors may be the better option.

149

7 Multi-algorithm Simulation

Early on during the PhD project, while learning about different ways how to simulate
reactions between and diffusions of particles, there was the idea to also ezplore if it
is possible to let those algorithms cooperatively accomplish a simulation task. Some
authors presented methods that already realize this, e.g., in [TKHTO04], where discrete
stochastic and continuous deterministic simulation schemes are successfully combined
as part of a new coordinator algorithm. However, being focused on the spatial simu-
lation, the question for this dissertation was: could something similar be also done for
methods in this area?

After motivating this research direction, the following parts of this chapter will in-
troduce a general way how to describe a discrete event simulation in the context of
SSA. Based on this, it is then discussed how to extend this interpretation first for
simulations considering individual entities and eventually also for a combination of the

latter with a population-based stochastic simulation.

7.1 Problem Statement

The sections presented so far focused on the simulation of populations: entities are
not considered as individuals, but rather belong to some class, e.g., a species, and are
represented as either discrete or continuous amounts. All interactions are located at the
class level: reactions are defined between species, not particles, an abstraction backed
up by the assumption of a well-stirred system in which all particles can potentially
interact with each other between two events. With a strong physical basis, stochastic
simulation algorithms evolved over the last thirty years into an essential tool for the
study of biochemical reaction systems; more efficient variants are published regularly
to keep up with models getting increasingly more complex. Compared to alternative
approaches, e.g., molecular or Brownian dynamics simulators at individual level or
numerical solvers for ordinary differential equations, they take an in-between position:

stochastic effects influence the path a model follows through the state space and discrete

150

7 Multi-algorithm Simulation

particle numbers reflect that there are indeed individuals at the lowest level, though it

may not be required to keep track of their states.

But some scenarios may ask for a finer control over the particles and how they can
interact. For example, the spatial 7-leaping algorithm introduced in the previous sec-
tion operates on a rectangular grid of sub-volumes, each of them being a well-stirred
environment just like in the non-spatial case. Particles are assumed to be propagated
solely by diffusion, i.e., an apparently random displacement caused by collisions be-
tween the object and solvent particles. As a consequence, the only way a modeler
can influence the movement of particles is to assign different diffusion constants, which
in fact only alters the average time interval between diffusion events of a species. In
contrast, nature is quite inventive when it comes to the task of transporting something
from place A to B. Just one example: entities could either move randomly according to
Brownian motion or, once attached to some cable-like structure, follow specific paths
through space towards some destination. Actually, this has been observed for organelles
in algae cells; they can bind to certain filaments and, if the “energy carrier” ATP is
present, start moving unidirectional along them [Kac85]. The authors also report that

organelles can “switch lanes”, i.e., change their transport cable.

While being attached to a filament, an organelle could also collide with others or
some obstacle. An encounter like this often resulted in a dissociation from the cable
and the particle returned to Brownian motion. So the physical presence of some other
object had an influence on the organelle’s motion; the space in front if it was simply
blocked by something and it was not able to continue its movement as intended. Now
such a scenario is not specific to the system it was observed in; any “solid” object
(from a macroscopic perspective) makes it impossible for others to occupy the same
space at the same time. This excluded volume effect is known to have a serious impact
on the dynamics of reaction-diffusion systems [CKLO04, EII01, EM06, Sch04]. Before
any reaction can take place, the reactants first have to move into close proximity,
then collide (with a sufficient energy and correct orientation), and finally undergo the
necessary changes to form the product. As contradictory as it may sound at first, under
excluded volume conditions this process can be both sped up or slowed down. If the
reactants are separated by many obstacles, e.g., other free moving molecules, static
structures such as filaments, and so on, then it may be very difficult if not impossible
for them to meet; they are blocked from each other and constantly bump into their
surrounding neighbors, which additionally slows them down. On the other hand, in

case they are already located close together, then those crowding agents now may

151

7 Multi-algorithm Simulation

avoid that the reactants once more drift apart and therefore promote the reaction. But
excluded volume is not considered in stochastic simulation algorithms; the well-stirred
premise, as mentioned above, allows a particle to potentially interact with any other
during the interval between two events. Thus, from the perspective of this particle,
there are no obstacles blocking its way and it can freely diffuse through the volume.
One idea to still model the excluded volume effect could be to reflect the presence
of other objects by lowering the speed at which molecules travel. Reaction equations
actually combine the two steps from above (move into proximity, then react) and can

be rewritten to separate between both processes:

k
}hA+BgC:HHB§ABgC, (7.1)

with kp = 4nDR = 4n(D4 + Dg)(ra + rp)/2 [VS17] as rate for the formation of AB,
a state with A and B being close enough to react, r4 and rg as radii of A and B
particles, k, determining how fast both reactants, once being in state AB, drift away,
and ky as intrinsic reaction rate. Assuming dzap/dt = 0, i.e., a steady-state for AB,
the kinetic constant k can be expressed in terms of kp, k,, and k;. As a first step,
considering that the number x5 of AB complexes does not change over time, it is

possible to write:

deB

dt :]{D{EAZEB—ZL‘AB(I{?T+I€f) =0 (72)
kaA$B

= - 7-3

A ky (7.3)

Now the change of C' can be given in dependence of k and £y, which, together with the

expression for AB above, leads to:

dre kikprarp
el krazp = kfrap = Tkt ko (7.4)
_ kka _ 47T(DA+DB)(TA+7’B)I€JC (7 5)
kr-+-kf 2<kr~+'kf) ’

Lowering the diffusion constants D, and Dpg decreases the kinetic constant k, thus
on average it takes longer until a pair of A and B particles form a product C. But
this adjustment takes place at the species level; all particles are affected, independent
of their location. Additionally, regardless how many other objects are present, the

propensity of Ry still depends only on the number of A and B particles; it does not

152

7 Multi-algorithm Simulation

matter whether there are, e.g., ten or ten thousand C particles also floating around in

the volume.

On some occasions it may be desirable to define a more complex behavior for a single
species than it is possible with reaction equations and the underlying assumption of
mass action kinetics. For example, thorough observations provided additional informa-
tion about the internal behavior of species A from the example above. It was known
that there is some process going on inside particles of this species and this has been
captured so far by the first order reaction A k—]> C. This abstraction might have been
sufficient for previous studies, but it turned out that the reduction to a single constant
is too simple in light of the new insights. So how can those internals be represented?

Why not introduce new species and reactions into the existing reaction network, e.g.:

Rj’l . Al + AQ k]—1> A3
kj)
RjIA—>C:> Rj72:A1+A3]%;2>A4 (76)
Rj74 : Ag + A4 —Iﬁj;i) O

Species A is no longer present, but has been replaced by A; to A4. Though possible,
this modification puts the intermediates on the same level as C, something that may
not be intended by the modeler; for instance, they would all be present in the same
volume, despite A; to A4 being more like internal species of an A particle, reacting
according to a separate network (and very likely: inside a separate volume, i.e., they
are enclosed by an A particle). Furthermore, all alternatives considered still assume
mass action kinetics and exponential event times, but a C' particle could be actually

produced out of an A particle in, e.g., fixed intervals.

If the conclusion is that population-based approaches (CME or ODEs) may not be
sufficient for certain model requirements, what are possible alternatives? Some of the
above, e.g., molecular crowding, can be realized with molecular or Brownian dynamics
(MD/BD) simulators, so why not use one of those if additional detail is required?
Both techniques consider only individuals, the former one even solvent molecules (e.g.,
water), those small particles causing the random movement of larger objects dissolved
in them. Though the performance of MD and BD simulators increased over the last
years |[ZTWO05, AB04|, propagating individuals and checking for reactive collisions can
still be very cost-intensive; doing this for thousands or millions of particles for a larger

time interval may take a long time.

The idea proposed in the following sections blends population and individual-based

153

7 Multi-algorithm Simulation

simulation methods together; some species, such as A from the example, are represented
with individual particles having an own state, while others, maybe of lesser interest,

are present as a population.

7.2 Introduction — Discrete Event Simulation with
SSA

In reaction networks defined so far the particles of a species were represented only as
numbers. The state vector x or matrix X stored how many of them are present at
any given time point; this was possible because particles had no distinct features, e.g.,
a position, shape, or size, and it was not necessary to identify a particular molecule.
The only components having a state were the species and it got modified with each
reaction execution: according to the stoichiometry, reactant particles get removed from
the system and the products added.

Central to this section shall be an alternative perspective on the modeled system
which puts a stronger focus on the particles themselves. Starting from the discussion
made in the problem statement, species now fall into two main groups. Members of the
first one have their state represented just like it was in the previous sections as an
amount of particles. However, species belonging to the second group are handled quite
differently. Their particles are present as individual entities with own state variables;
rules now apply to those and therefore modify the species state only indirectly. But
before making this step and introducing particles as individuals, the notion of states and
rules in the context of stochastic simulation algorithms shall be revisited; the sections
following up will then show that the proposed extension, although maybe uncommon
at first, still shows some similarities with the algorithms discussed up to this point.

Going back to the introduction of this dissertation, a discrete event simulation iter-

atively performs the following three steps:
1. Get the interval until the next event will occur.
2. Get the type of the next event.

3. Modify the state by executing the event from step 2 and update the global time

with the interval from step 1.

Each simulation algorithm discussed so far basically implements those steps. Point one

154

7 Multi-algorithm Simulation

from the enumeration can be formalized into an interval selection function
t: NN SRy, (7.7)

which maps the current state (a vector in the non-spatial case L = 1 and a L x N matrix
for spatial models) to the time interval until the next event. But before continuing with
the remaining steps, some words about events and reactions. Reaction equations are
the rules describing how to update the state once the reaction takes place. Though
for exact algorithms the analogy “event = reaction” can be made, this is no longer the
case for approximative variants because during a single leap more than one reaction is
allowed to occur. To reflect this, the state update for non-spatial algorithms has been
generalized to

X(t+7)=x+ Y kv, (7.8)

j€[1,M]

in the algorithm template from Algorithm 2.1. This very line actually represents the
execution of the next event, i.e., it applies each rule R; k; times to the current state,

with a single rule invocation defined as

R; : NV xN - NV

(7.9)
Rj(X, k) =X+ ij;

exact algorithms with the firing vector k defined as lff, i.e., only a single non-zero entry
at k,, can then be seen as special cases. But what are the event types in a stochastic
simulation, if not the reactions? In fact, there is only a single type: for exact algorithms
it is “the next reaction takes place”, for approximative variants “the leap condition is
violated” (note that the latter is very general; if critical reactions are handled as well,

then an additional event type could be called “the next critical reaction takes place”).

That said, the second and third point from the enumeration could be summarized
in the context of stochastic simulation as follows: determine the (reaction) rules the
imminent event is composed of and apply them to the state. Or, in terms of a rule

selection function:
r: NV x Ry — N, (7.10)

update the state vector x based on the current state and the interval 7 = ¢(x) using
elements from the rule set R. Keeping ¢, R;, and r in mind, the next section shall

introduce a general algorithm for the discrete event simulation of individual particles,

155

7 Multi-algorithm Simulation

built upon the same functions basically used throughout the dissertation.

7.3 Individual-based Discrete Event Simulation

The first step towards an algorithm for individuals is actually a step backwards, from
very specific function definitions for ¢, r, and R; to more general versions. With the
particles being now the smallest stateful components in the system, species no longer
have an explicit state but are themselves dependent on the variables defined for the
particles, which are not limited to merely integer valued numbers. Instead, they can be
chosen arbitrarily; for example, an essential feature of an object is its position in space,
usually expressed as a coordinate tuple (z,y, z) with z,y, 2 € R. However, the precise
nature of the state variables does not actually matter for this introduction as it is
likely to change between different models. Therefore, the k-th individual from species
S; shall be simply represented by the feature set Fix = {fix1, firzo, ...}, with, e.g.,
fik1 being the position (z,y, z) of the entity, f; ;2 its current shape, f; 3 the electrical
charge, and so on. This means adding another layer to the state hierarchy used so far;
the status of the entire model is defined via the species states, i.e., X = {Xj,... Xy},
but now X; = {F;1,...,Fio}. Over the course of a simulation run, the model state
is changed at different points in time with each event execution. A single trajectory
through the state space X (the set of all states a model can be in during any run')
shall be defined as the collection of states visited by the model during the simulation
interval [tsiart, tenal, 16, Y ={X;: X; € XAte [tstart, tend) }-

Similar to the last section, a discrete event simulation of a model that is built upon
individual entities can be expressed in terms of the three functions ¢, r, and R;. The
only differences are the domains they are defined on: the input is not an integer-valued
vector or matrix, but the feature sets of all individuals present inside the volume. Using
only the current state in t and r in the last section is an additional abstraction backed
by the assumption that the underlying stochastic process exhibits the Markov property,
i.e., it is memoryless. So more generally, ¢t : X<t — Ry and r : X=! x Ry — X, with
X<t as state history {Xp: Xyps € X Atr € [tstart, tena) A" < t} (if not explicitly stated
otherwise, only the current state is used in the forthcoming sections and the index ¢

therefore will be omitted).

'For simplicity it is assumed that the number N of species does not change during a simulation run.
However, each set X;,4 € [1, N] can contain an arbitrary number of feature sets (individuals). An
empty set for any X; shall denote that there are no particles present of this species.

156

7 Multi-algorithm Simulation

Figure 7.1: A simple model for a single particle which moves according to Brownian
motion and will eventually degrade.

Rules selected from the set R, as usual, take the current state X and modify it,
i.e., the most basic rule definition is R, : X — X. But what if the order in which
the rules are applied actually matters? In previous algorithms there was either a
single reaction or multiple ones firing during the interval, but even for the latter it
was not necessary to ensure that some reaction has to be executed before another
one. In contrast, applying rules to several individual features at the same time can
lead to entirely different outcomes. For example, what rule should be executed first:
the position update of an object or its decomposition into products? The difference
between both alternatives is the final placement of the products; the latter inserts new
particles at the origin of the object, the former somewhere around its target position.
Avoiding this non-determinism is the task of the rule selection function; a preference
order could be defined, e.g., by choosing a rule at random or using rule composition,
i.e., Ri(R2(X)), which first applies Ry to the current state and then executes R; on
the result.

Example 7.3.1 This example presents a very primitive individual simulator manag-
ing only a single entity that moves according to Brownian motion and can dissolve
during an infinitesimal time interval dt with probability Adt (Figure 7.1). A particle
propagated solely by diffusion over a time At is displaced in any direction by an av-
erage distance of V2DAt, with D being its diffusion constant [Chad3|. Admittedly,
instead of performing a simulation one could simply sample the time until the particle
dissolves and then use this value to determine where it happens repeating this sev-
eral times will eventually provide a good picture of the distances the particle can travel
until it degrades. However, despite the fact that no one would actually implement such
a simulator, it still serves the purpose of demonstrating the basic principles sketched

above.

157

7 Multi-algorithm Simulation

The only state variable required is a vector p = (x,y, z) to keep track of the particle’s
position in space, so the state of the model can be written as X = {p} = {(z,vy, 2)}*.
Two rules are defined; the first one represents the degradation of the particle, which is

reflected by removing its feature set from the model state?:

R :X =X (7.11)
Ry (X)=10 (7.12)

The second rule describes how to update the position of an object if its movement

follows Brownian motion:

R : X X Ry — X
Ro({(2,y,2)},7) = {(z + N(0,v2Dr),
y+ N(0,v2Dr),
2+ N(0,vV2D71))}.

(7.13)

In contrast to simple reactions, Ry additionally depends on the elapsed time interval
T to calculate the displacement. Both remaining functions ¢ and r are quite simple.
The interval between position updates is fixed at At and the time until the particle
dissolves can be sampled from Exp(\). So with m; = —InU(0,1)/\ and 7 = At, the

time and type of the next event are given by:

t:X%RO

(7.14)
7 =t(X) = min{n, n}
and

r: X XRO%X
Ry (R2(X, if 7 = 7.15
r(X,7) = (Ro(X, 7)) ifm =7 (7.15)

Ry(X,T) else.

Note how rule Ry will always be executed, regardless of the time to the next event.

If the particle does not dissolve during At, then it is simply moved by Ry to the new

2A condensed notation is used here. The state is actually X = {X4}, with X4 = {Fa1} and
Fa 1 = {p}. If it is clear from the context, then a shortened notation will be used for the rest of
this chapter.

3Similar to footnote 2: the new state is X = {X4}, with X4 = {} = 0.

158

7 Multi-algorithm Simulation

Figure 7.2: Particle conversion example. A reaction network is defined inside an indi-
vidual whose final reaction will trigger the conversion into another species.

position. Otherwise, i.e., 771 < At, rule Ry will be applied after Ry (now with 75 as
parameter, instead of At) because the particle is still subject to Brownian motion and
thus will be “pushed around” by the solvent molecules for a time 7 until it finally

degrades.

In Example 7.3.1 the rule selection function uses conditions to select the appropriate
event (which consists of one or more rules) that should be applied to the state. The
most basic condition for an event is that the time interval until it will occur next is
equal to the minimum over all events as calculated by ¢ (e.g., 1 = 7; later during this

chapter more complex conditions will also be defined.

State variables and the rules modifying them can be arbitrarily complex. In the
problem statement discussed above the question was raised how to model an n-step
conversion from one species to another, whereas each of those steps is not necessarily
a first order reaction itself. Simply adding the intermediate (or inner) species to the
model did not do the trick: the information that some species are only present inside
others got lost, with the consequence that all are treated at the same level. But now
state variables are no longer restricted to numerical values, but can be basically any-
thing — even the state vector of a reaction network. The following example shows how
to define a discrete event individual simulator that represents the conversion process
as intended (Figure 7.2).

Example 7.3.2 Again, only a single particle A is considered, which is transformed

159

7 Multi-algorithm Simulation

into another particle C' according to an internal reaction network defined by:

Rl : Al + A2 £1—> Ag
RQ : Al + A3 £2—> A4 (716)

Ry : Az + Ay K3y create C particle

The state variables of A are given with the feature set Fiy = {p,x,V}; here, p is
the position of A, the second vector x = (xy, zy,x3,24) holds the number of A; i €
{1,2, 3,4} particles and V denotes the current volume of the particle. It is necessary to
translate the reactions from Equation 7.52 into rules that operate on the model state
X = {F4}. Adapting the first and the second one is trivial, so only R; will be shown

here:

RliX%X

(7.17)
Ri(X)={{p,(x1 — L,zo — L,x3+ 1,24),V}};

the new state vector of the internal reaction network is a result of adding the state
change vector vi = (—1,—1,1,0) of Ry to the current state x, i.e., Xpep = X + V7.

R3 simply removes the feature set of the A individual from the state and adds C’s

state variables Fi*:

RgIX%X

(7.18)
R3(X) = {Fc}.

Similar to the previous example, the interval selection function determines the mini-
mum elapsed time span until the first event will occur — which is in this case the time

until the next rule invocation:

t: X — Ry
(7.19)
7 =t(X) = min{r, 7, 13},
with I U(0, 1) I U(0,1) I U(0,1)
—1In —In —1In
_ 0 =) =\ =77 7.20
n Vk’ll’lxg 2 ngl’ll‘:; 73 Vk3I3.734 ()

For this example, the relation “rule = event” actually holds, so it should be no surprise

“The expanded notation is X = {X 4, X¢}, with X4 = {} and X¢ = {Fc}

160

7 Multi-algorithm Simulation

that only a single rule is executed during any iteration:

T X X RO — X
Rl(X> ilezT
r(X,7) = Ro(X) ifmp=r1
Rs3(X) else.

(7.21)

Representing independent, individual entities whose behavior is partially controlled
by reaction networks located inside of them is nothing new. It can be compared
to stochastic simulations performed within compartments, i.e., encapsulated volumes
separated by membranes (or any comparable border structure); see, for example, the
two modeling languages S7@ calculus [VB07| and Beta Binders [PQ05]. The key
difference is the perspective taken to look at the modeling and simulation task: either
it is more language-centric, as in the given references, or focused on executing the
algorithms and performing simulations, the main field of this dissertation.

Having identified the basic ingredients for discrete event simulations with species or
individuals as interacting components, the next step is combining them into a multi-
algorithm method to benefit from their advantages: the former offers a fast execution,
even with many particles, while the latter attracts with an increased detail in the
entity representation (size, position). But doing so requires that entities from both
levels are aware of each other. Individuals occupy space that is not accessible by
population particles, which therefore collide and potentially react with those obstacles.
The next sections will discuss these mutual influences in more detail and present several

alternatives how to capture them into a model.

7.4 Populations and Individuals

There are two questions two answer: how to represent individuals in the grid of sub-
volumes and how does this has an effect on the dynamics of a spatial stochastic sim-
ulation algorithm. The most simple way to show that some areas inside the grid are
blocked off by some obstacles is to remove sub-volumes from the model. Though the
volume might be discretized into, e.g., a 5 X 5 X 5 grid, not every sub-volume needs
to contain particles or be a potential diffusion target for others. If the initial pop-

ulation of some site [is zero and [does not appear in any neighbor index vector

161

7 Multi-algorithm Simulation

Cr, k € [1, L],k # [, then it will never receive any particles and its next event time is
always infinity — it is practically only present as an obstacle inside the grid, blocking

the way for any particle trying to diffuse into this non-existent sub-volume.

Now it is not difficult to fill these empty regions with a
life of their own; in fact, Example 7.3.2 already illustrated T1, -+ Ty
one way how to do this. All that is needed are new sets of X = | %21 o Tan

state variables specific to sub-volumes not managed by the

spatial SSA; those sites are now treated as individuals in

the same sense as introduced in the last section. As a re- L G| e

sult, two algorithms are used side-by-side to simulate this 2 |l 7 1217 | 22

compound model, the first one taking care of the inter- N R R I
actions within and between the well-stirred sub-volumes

while the other processes events issued by the individual 419 |114]119] 24

sites which essentially summarizes the basis for this part 5 1101151 20 | 25
of the dissertation. Starting from the very simple case of ;

. o . . X ={X1}

immobile individuals filling out an entire sub-volume, the X1 = {Fir, Fiia, Fios)

subsequent steps will then gradually increase the model-

ing detail and consider moving particles as well as entity Figure 7.3: 5 x5 grid with
different state representa-
tions for populations and
individuals.

shapes other than a cube.

If both simulations do not interfere with each other, i.e.,
one algorithm is not allowed to modify the other’s state, then they can actually be run
in parallel. Particles in well-stirred sub-volumes simply bump off of the individuals
without causing any state changes inside them; conversely, individuals do not remove
or add any particles from or to the surrounding sub-volumes. Easy as this may be, it
is probably not what a user has in mind. Instead, combining both approaches makes
only sense if there is some way to express interactions between them. If a particle of
the correct type hits an individual, than it is expected that the latter somehow reacts
to this event by changing its state. So in addition to the already existing intra-rules,
which change the state of either the population or individual model, a third type, the
inter-rule, is necessary. As the name suggests, inter-rules are defined on both state
representations: the L x N matrix X holding the number of particles for each species
in the sub-volumes and the set of individuals X from the previous section (see also

Figure 7.3); thus, their basic form, i.e., without any additional parameters such as

162

7 Multi-algorithm Simulation

sub-volume or individual indices, is:
R; NN 5 X o NPV 5 X (7.22)

Example 7.4.1 Going back to Example 7.3.2, it is now supposed that a particle
of species A; acts as the trigger for the transformation process from A to C (the
internal reaction network from 7.52 is taken over without changes). Initially, A only
contains particles of Ay while A; is abundant in the sub-volumes around the individual.
Therefore, an A; molecule first has to collide with A and enter it before initiating the

state change. Putting all this together, the state at the beginning of a simulation run
is given by {X, X'}, with

T1,A,
T2 Ay
X=1 " X = {{p,(0,22,0,0),V}}. (7.23)

XTr A,

One way to write down a rule modeling the just described interaction is:®

Ry NN « X x N — NN « X

(7.24)
Rl({Xv X}v l) - {X - lleNﬂ {{p: (171 + 1, w0, 23, I4), V}}}

The rule has an additional input [, which is used to specify the index of the sub-volume
that looses the particle; it does not pose any constraints on the selection of [, the rule
simply removes one particle of A; from it and adds it to the state of the individual.
Determining the appropriate sub-volume [is done in the rule selection function r that
will be discussed below.

After the first A; particle is “transfered” into the individual, the reaction network
defined in Equation 7.52 can start the transformation process. Note that more than
one A; particle is required for the entire conversion because both R; and Ry require

them as reactants.

As it was shown, inter-rules are the connections between algorithms; they allow
a simultaneous update of more than one state representation within a single event
execution. However, they will not be invoked unless they are selected by r — which

neither of the functions defined so far will do as they only take either the state matrix

>The symbol 1£iXN shall denote an L x N matrix with a single 1 at position (I, 7).

163

7 Multi-algorithm Simulation

Multi-algorithm DES

state : {X, X'}

t: NN X SR
P NEY o X xR — NEY « X
R; NN 5 X — NPV X

Y/

Population-based DES

Y

state - X = (o ’.1:.N>
t: NLXN — R
ro NLXN X R N NLXN

R] . NLXN N NLXN

Individual-based DES

state : X = {X1,..., Xy}
t: X =R
r: X xR—X
Rj:f(—>)~(

Figure 7.4: A multi-algorithm discrete event simulation makes use of the ¢, r, and R
functions defined for lower level algorithms (here: algorithms for a population-based
and individual-based DES). It additionally defines inter-rules, which can act on the
states of all subsidiary DES.

or the state set as an input, but not both. The answer is to implement the selection and
processing of inter-rules at a higher level that operates on multiple states, abstractly
depicted as a hierarchy shown in Figure 7.4. Existing functions 7, ¢, and R}, established
for either a population or individual-based algorithm, can very likely be reused in the
overlaying level, though it may be necessary to adapt them. It is possible that some
decisions whether to apply a rule or not can no longer be made at the lower levels if
they take part in a multi-algorithm DES. In that case the responsibility of selecting

and executing those rules has to be relocated to the next higher node in the hierarchy.

Example 7.4.2 (Continuation of Example 7.4.1) Just writing down the inter-rule R,
is not enough, what is still missing are expressions for ¢t and r. Before introducing
those, some more details about the population-based DES without the presence of any
individual A are required. First of all, A; particles diffuse between sub-volumes, which

can be generalized with the following rule:

Rp : NPV % N x N — NN (7.25)
Rp(X,1,1") = X = 15N + 177, (7.26)

In addition to the state matrix, Rp also takes the identifiers of the source and target

sub-volumes as inputs. A diffusion from a site [to [* removes one particle of A; from

164

7 Multi-algorithm Simulation

[and adds it to [*’s state vector. To make this example slightly more interesting, A;

particles can also degrade with a certain rate c,:

Ry : NN N — NIV (7.27)
Ry(X, 1) = X — 175" (7.28)

The next event that will take place is either one particle leaving a site and diffusing into
a neighbor or a degradation somewhere inside a sub-volume. From the introduction
and the previous sections it is already known how to write down the interval selection

function. First, let:

C —U(0,1)A2, —InU(0,1)
o(X.1) = 55 ta(X,0) = 2 (7.29)
tp(X) = min {tp(X, 1)} ta(X) = min {ta(X, 1)} (7.30)

denote the time spans until the next diffusion (fp) and degradation (4) will take place,

respectively. Then ¢ is defined as:

tZNLXN —)RO

. . (7.31)
7 =t(X) = min{tp(X), t4(X)}.
The next steps will make use of the following auxiliary functions:
p:N—=N, n:N-—N (7.32)

The first one, p(l), is a mapping between sub-volume identifiers and vectors (x,y, z) of
coordinates representing the corresponding position in the grid. The second function

n(l) returns one of the 2n neighbor identifiers (* € C,.

With the help of p and n the rule selection function can finally be written down. Let

Ip =argmin{tp(X,l)}, l4=argmin{ty(X,0)}, " =n(p(lp)), (7.33)
le[1,L] le[1,L]

165

7 Multi-algorithm Simulation

then

r: NPV Ry — NPV

Rp(X,Ip,1*) if 7 =tp(X) (7.34)

r(X,7) =)
Rq(X. 1y) if 7= #4(X),

Everything is now set up to perform a basic but not very exciting spatial stochastic
simulation. Particles diffuse through the volume and they will degrade until all of them
are eventually gone for good. Extending this simulation to also include an A particle
somewhere inside the volume requires a new set of functions to take care of applying
the inter-rule defined in Example 7.4.1 if an A; particle happens to “collide” with the
individual. So how may those functions look like? As it turns out, defining ¢ is simply
a matter of checking whether the individual or the population-based DES will execute

an event first:

tINLXNXX%RO

(7.35)
7 =t(X, X) = min{t(X), t(X)},

The next event time of the entire simulation is thus the minimum of the next event times
reported by all low-level algorithms. However, the rule decision gets more complex due
to the presence of the inter-rule. It is unknown to the population DES that one sub-
volume is different than the others. Hence whenever a particle is about to leave a site,
the higher level instance has to test whether the target is a “regular” sub-volume or
the individual A:

P NN X xRy — NIV « X
r(X,T) (a) if 7 = t(X)
(X, X,7) =< r(X, 1) (b) if 7 = 14(X) V (7 = tp(X) A p(I*) # p)
RUX, X, 1) (c)if 7 =1p(X)Ap(l*) = p.

(7.36)

The first choice (a) applies the r function from the individual DES if its internal reac-
tion network fires next. If instead the population DES has an event scheduled before
the other simulator, then either the second (b) or third (c) choice get selected; both
conditions then read: if a degradation takes place next or the target of a diffusion is

not A, then let the r function from the population DES update the state (b), otherwise

166

7 Multi-algorithm Simulation

execute the inter-rule (c).

There are two things to note here: first, the application of the second and third rule
make use of the fact that the position p of an individual always corresponds to a sub-
volume coordinate; it has been written earlier that for now an individual occupies an
entire sub-volume, which is a special case and shall be generalized below. The second
point is that for this example each collision of an A; particle with the individual leads
to a state change. This contrasts with a real system, where it is also possible that an

Aj; particle bounces off without inducing a reaction.

Now that the basics of a multi-algorithm simulation have been introduced, the next
paragraphs will take this approach one step further and discuss how to represent mobile,

sphere-shaped individuals.

7.5 Mobile Individuals

Section 7.3 already covered the movement of an object subject to Brownian motion.
This is just one example how an individual can be propagated through the volume:
getting pushed around by solvent molecules. Another, more complicated movement
pattern was referred to in the problem statement. Organelles have been observed that
not only diffuse, but also can attach to filament structures inside the cell and move
along them. Consequently, the rules governing the position update can be arbitrary
complex and an individual may be propagated differently depending on its current
state.

The last section laid out the basic interaction scheme between algorithms: a higher
level component has to take care of the inter-rules modifying several state representa-
tions at once. A simple model has been used to demonstrate this concept, which shall
now also be taken as the starting point for the discussion on how to represent moving
entities. As a reminder, an A particle is a special type of sub-volume with an own reac-
tion network working inside of it. Whenever one of the surrounding A; particles tries
to diffuse into the region occupied by the individual, it is consumed and can take part
as a reactant in the internal reaction network. The difference to the former example is
that A is no longer immobile but can move into adjacent sites in a single step. As the
target may not be empty, particles currently present there will get “pushed out” of the
sub-volume by the individual moving into it. Once A has reached its target position,

the now occupied sub-volume is empty, thus no reactions will take place inside it and

167

7 Multi-algorithm Simulation

QA
°
1 4 7 1 |94 7
— [eoo Ro(X, Rn(X)) [o °
A |leee| 8 > 2 A |8
— [eoe@ @
°
3 6 9 3 |96 9
@

Figure 7.5: Applying the rule composition Ry(X, R,,(X)) to the state shown on the
left side moves the A particle from sub-volume 2 to 5 and distributes the A; particles
currently inside 5 among the neighbors.

no particles leave or enter. From the perspective of the population-based DES algo-
rithm, this site has a next event time of infinity and if it gets selected as the target of
a diffusion event, the higher level component will apply R, instead. At the same time
the sub-volume located at the old position of the individual is “re-integrated” into the

lower-level DES; i.e., particles diffuse into it and reactions can take place.

Expressing this scenario in terms of a multi-algorithm DES can be done in a two
step process: move the individual to its new position, then update the populations in
the sub-volumes next to it. Similar to Section 7.3, an additional propagation rule takes

care of the first part:

R, : X X
Ry({{p,.. }}) = {{m(p),.. }}.

Function m selects one of the 2n neighbor coordinates of p, e.g., either at random

(7.37)

or according to a certain movement pattern (along a filament, only in increasing x
direction etc.). Some variant of R,, is likely to be found in each individual-based DES;
being an intra-rule, its effect is restricted to the state set X yet it should now also
trigger the distribution of the particles at the target site. The link between both levels

is done via rule composition in the high-level multi-algorithm DES. Let the function
1. N3
p N =N (7.38)

denote the inverse of p(l), i.e., given a sub-volume coordinate (x,y,z) the function
returns the index of the appropriate sub-volume index, so p~'(p(l)) = I,1 € [1,L].

The following inter-rule distributes the particles currently present inside sub-volume

168

7 Multi-algorithm Simulation

[= p~!(p) among the adjacent sites:
Ry : NN 5 X 5 NN o X

N 2n
Ra(X, Z(ol + Zh(xl,i,mgjgl),)() (739)
i=1 k=1

This rule indeed looks quite complicated. The first part of the right hand side is
a matrix update, setting the entries in the [-th row to zero (thus no particles are left
inside sub-volume) and adding the displaced particles to the neighbor states. Function

h(z, k) calculates how many particles are pushed towards each site I* € C; if, e.g.,

1
P(I* € C, is selected as the target for a single particle) = o (7.40)
n

and x;; being the number of particles for species S; inside [, then h(z;;, 1) = Binom(z;;, 1/2n),
h(z1;,2) = Binom(z;; — h(z,,1),1/(2n — 1)), and, more general®:

h:NxN-—N
hi = h(z,1) ~ Binom(z, 1/2n) (7.41)
hy = h(z, k) ~ Binom(z — hy—y — ... — hy,1/(2n — k + 1)).

The final step missing is to integrate R,, and R, into the time interval and rule
selection functions from Equations 7.35 and 7.36. For simplicity, movement updates
are assumed to take place at fixed time intervals At. Then finding the next event time

is simply a matter of adding At to the interval selection:

t: NN %« X = R

(7.42)
7 =t(X, X) = min{t(X), t(X), At},

If R,, gets invoked before R4, the latter uses the updated position p as an input for

Sh(z, k) is actually a sample from a binomial distribution, which itself is dependent on previously
generated samples.

169

7 Multi-algorithm Simulation

p~! and thus distributes the particles as intended:

NP o X xRy — NIV « X

(1(X,7) if 7 = t(X)

r(X,7) if 7 = (X)) V (1 = ip(X) A p(l*) £ p) (7.43)
RUX, X, 1) ifr=tp(X)Ap(l*) =p

| Ro(X, R(X)) if 7= At

r(X, X, 1) =

To sum it up: r re-uses a rule defined at a lower level as part of a rule composition. Note
that making the decision when to move the individual is not necessarily required to be
performed in the higher-level component and could be left within the individual-based
DES.

7.6 Individuals With Arbitrary Shapes

In the previous sections an individual had exactly the size and shape of a single sub-
volume — nothing more, nothing less. It moved by “jumping” from one site to another
and particles present at the target position are “pushed out” into neighboring sub-
volumes. But biological entities assume various shapes, e.g., they are elongated like
filaments, spherical or oval like cells — but very unlikely take the form of a cube. This
restriction shall now be lifted and the following paragraphs will introduce one way
how to allow arbitrary shapes for individuals but still represent them inside the grid of

sub-volumes.

Multi-resolution Spatial Simulation Before going into detail on the multi-algorithm
simulation, it is necessary to take a small “detour” and discuss a multi-resolution ex-
tension for population-based, spatial algorithms. Up to this point each sub-volume
was assumed to have a fixed side length A, and its interior was considered to be a
well-stirred mix of particles. For some species A, the rate at which its particles leave

a sub-volume towards a neighboring site is given by:

2nD
A2

d(xA) = TA, (7.44)

with x4 being the current number of A particles. Now the algorithms are modified

such that some sub-volumes can be represented with an increased spatial detail. Let

170

7 Multi-algorithm Simulation

3 3 3
- BrtrE
214 | ~ | 2 BT 4 c
1 Pelalale 2
5 5

(a) (b)

Figure 7.6: Multi-resolution population-based spatial simulation. (a) With k& = 4, the
center sub-volume has been replaced with 16 sub-cells, yet the behavior of the system,
i.e., the number of diffusing particles into and out of the sub-volumes, should still be
similar to the original system. (b) Sub-cell ¢ has four neighbors, two of them being
sub-volumes (red, f. = 2), the rest other sub-cells (blue, g. = 2).

the parameter k& € N denote the partition depth for a partition of a sub-volume into
a number k" of smaller volumes (they will be referred to as sub-cells in the further
course) with a respective length scale of A\, = A, /k. The diffusion rate for a species

A leaving one of those sub-cells is:

2nDk? x4

dk(ﬁCA) = \2 ﬁ

(7.45)

But simply replacing one large sub-volume with the smaller sub-cells, as shown in
Figure 7.6a, would lead to the wrong results because the rate for particles leaving
a sub-cell towards one of the neighbors 2 to 5 is based on the distance \;,. — they
would leave sub-volume 1 much more frequently than in the original system. To see
this, remember that the rate for particles diffusing away via one of the 2n sides should

match for both systems, so:

d(@a) _ 1n-19(T4)

7.46
2n 2n ()

Now this may need some explanations. If a sub-volume is divided into k" sub-cells,
then each of its sides actually consists of k"~ ! sub-cell sides and the rate at which par-
ticles diffuse through one of those is di(z4)/2n. The additional o = 1/k is required as
a scaling factor, ensuring that the diffusion rates match between the original and par-

titioned system (see Figure 7.7). Multiplying Equation 7.45 with «/2n gives therefore

171

7 Multi-algorithm Simulation

10*

—_

o
T
T

of Particles

Ju—

= |
)
T

1 i I i I
1055 0.2 0.4 0.6 0.8 1.0

Time [s]
— sv 2, single res. — Center, single res.
A A SV 2 multi-res., scaling A A Center, multi-res., scaling
- - SV 2, multi-res., no scaling - - Center, multi-res., no scaling

Figure 7.7: Example trajectories for a 3D version of the system shown in Figure 7.6a.
There is a single species A initially present only in the center sub-volume. The plot
shows how its population changes over time in the center sub-volume and one of its
neighbors. Solid lines represent the non-partitioned model, triangle and dashed lines
depict the results for a system with a partitioned center sub-volume (a 3 x 3 x 3
grid). Without scaling (dashed line), the dynamics are quite different compared to the
non-partitioned case.

the diffusion rate for a species A in case the neighbor is a non-partitioned sub-volume
(sub-cell ¢ to sub-volume 2 or 3 in Figure 7.6a).

Algorithms for a population-based spatial simulation can be easily adapted for the
multi-resolution case. A sub-cell is treated just like a normal sub-volume, with its own
entries in the state matrix X and connectivity matrix C. The next event time for a

diffusion from a sub-cell ¢ to some neighbor is given by:

7o = min {t1(2ei), fa(e)} (7.47)
ith
. b (2es) = —InU(0,1)2nk bo(0s) = —InU(0,1)2n (7.48)
T () T () |

Factor f. counts how many sides of ¢ have a non-partitioned sub-volume as a neighbor,
while g. does the same for sub-cells (ref. Figure 7.6b); if either of both happens to be
zero, than the respective time is set to infinity. If a diffusion takes place next in ¢ and
t; < ty, then a target is selected out of the set of neighboring sub-volumes; if instead

ty < tq1, a sub-cell is chosen. Whenever a particle enters a partitioned sub-volume from

172

7 Multi-algorithm Simulation

a non-partitioned one, it is added to the state of a randomly selected sub-cell.

Discretizing the Shape In the previous section about representing individual entities
at the population level, an individual’s shape exactly matched the size of a single sub-
volume, regardless of its true appearance. A first step towards more complex shapes
can be done by allowing several sub-volume to make up an individual’s form, so that
at least something that is larger than a site can be somehow represented. But this
would still only provide a very rough approximation and does not solve the problem
how to treat smaller entities. However, the basic idea to use more than one sub-
volume goes in the right direction — but the sub-volumes an individual is composed
of have to be smaller, which can be realized by partitioning the original sites into
smaller sub-cells. This technique is nothing new and already existed for decades in the
field of computer graphics under the name of wvozelization, “the process of converting
a geometric representation of a synthetic model into a set of voxels (pixels having
a volume, i.e., cubes) that best represent that synthetic model within the discrete
vozel space” |[KCY93| (also known as volume synthesis, 3D scan-conversion, or cell
decomposition).

Applying voxelization to spatial stochastic algorithms essentially results in a dynamic
multi-resolution spatial simulation. Sub-volumes intersecting with an individual are
split up into sub-cells, for which then the partition algorithm detects the sites currently
occupied (ref. to Figure 7.8a). Particles present in sub-cells now being part of the
individual are distributed among free sites, which can be either cells of the same sub-
volume or neighbors thereof.

The interaction between individuals and particles within sub-volumes (or sub-cells)
is very similar to what has been discussed earlier. Whenever a particle tries to diffuse
into a region belonging to an individual, the upper level component of a multi-algorithm
simulation intercepts this event and checks if a state changing rule needs to be applied
or not. Conversely, each position update of an individual causes a repartitioning of
all sub-volumes intersecting with it. However, this could be a performance bottleneck
if it occurs very frequently, i.e., if individuals move fast and thus the time between
two position updates is very short. There are different methods how to make this step
more efficient. For example, instead of dividing a sub-volume into k" cells a quadtree
partition can be used |[FB74] (or its 3D equivalent, the octree), which may reduce both
the effort to find an individual’s space occupancy and the number of sub-cells added to

the multi-resolution spatial simulation algorithm (see Figure 7.8b). Furthermore, it is

173

7 Multi-algorithm Simulation

k=10

(a) (b)

Figure 7.8: Partition of a sub-volume to represent a circular-shaped individual. The
darker regions are the sub-cells currently occupied by the object (for k = 1, this is the
entire sub-volume). (a) Increasing the partition depth k better captures the appearance
of the entity. (b) A quadtree partition, with a maximum depth of eight. The number
of new sub-volumes is 24, much less than the 64 required in (a) and k = 8.

not necessary to actually include the sub-cells in the simulation, but simply use them
only to calculate the time when either a particle will leave the sub-volume or collide
with the individual. After the partitioning, each one of the sub-cells not occupied has
the same concentration of particles and three possible types of neighbors: another free
sub-cell, a sub-cell being part of an individual or a sub-volume. Let x4 denote the total
number of particles for species A in sub-volume [and k the number of free sub-cells
in [, so k € [1,k"] (at least one sub-cell has to be free, otherwise nothing would take
place inside the sub-volume). Now equations similar to 7.47 and 7.48 are used, which
calculate the times when the next particle will either leave the sub-volume (¢; and ¢,)
or hit the individual (¢3):

—InU(0,1)X2,k
fiDkzy

—InU(0, 1)\, k —InU(0,1)A2,k
= 3 , t3(za) = 5
G D24 hiDk2x 4
(7.49)

tg(a’/‘A)

tl(l'A) =

with

e f; as the number of sides leading towards a non-partitioned sub-volume (red in
Figure 7.9)

e g; as the number of sides leading towards sub-cells of neighboring sub-volumes

174

7 Multi-algorithm Simulation

Figure 7.9: Spatial multi-resolution simulation without explicitly including the sub-
cells. In the bottom right sub-volume nine sub-cells are occupied by an individual.
There are two sub-cell sides leading out of it into cells of another sub-volume (blue),
four sides are shared with a non-partitioned sub-volume (red), and a diffusion via eight
sides would lead to a collision with an individual (green).

(blue in Figure 7.9), and

e h; as the number of sides leading towards sub-cells occupied by an individual

(green in Figure 7.9).

This modification can be interpreted as a more finer event classification: particles still
leave the sub-volume, but depending on their target the diffusion event will apply dif-

ferent intra- and inter rules.

To sum this part of the chapter up: Individual entities occupy space which is not
accessible by any other object, neither other individuals nor the well-mixed particles
within sub-volumes. By discretizing their shape they can be physically represented
at the level of a population-based spatial stochastic simulation: from the latter’s per-
spective there exist some regions in space no particle can diffuse into. Any of those
attempts is instead intercepted by a higher level simulation component and interpreted
as a collision with an individual — which could trigger a state change in the latter.
So both levels influence each other: the population level provides potential reactions
partners, but does so without requiring them to be present as stateful entities; indi-
viduals, on the other hand, reduce the volume available for the particles to react and
diffuse, an effect known as excluded volume. Though this effect is not represented
among populations (each particle is assumed to have a negligible size compared to a
sub-volume), there should be differences in the dynamics between systems with and

without the presence of individuals.

175

7 Multi-algorithm Simulation

7.7 Realizing the Multi-algorithm DES Concept

To provide a proof of concept for the presented multi-algorithm discrete event simu-
lation approach, a prototype algorithm supporting all the capabilities introduced so
far has been implemented. This section will first focus on the necessary extension for
the Next Sub-volume Method to allow a multi-resolution grid representation. It then
continues with the actual multi-algorithm simulator and discusses several details of
its implementation. The section concludes with examples showing how to apply the

algorithm to a selection of problems.

7.7.1 Prerequisites: Multi-resolution NSM

Representing individuals within a grid of well-stirred sub-volumes, as discussed in Sec-
tion 7.6, requires a spatial population-based algorithm that supports the splitting and
merging of sites. Splitting is the process of dividing a sub-volume into £ smaller sub-
cells (with k as partition depth), each having approximately the same concentration;
“approximately” because working with discrete numbers of particles makes it sometimes
impossible to distribute a sub-volume population equally among all sub-cells. Merging
is the reverse process: the state a of sub-volume is restored from the states of the cells
it has been split into.

The NSM (see Algorithm 3.5) has been chosen as the algorithm to adapt for a multi-
resolution spatial simulation (mrNSM). As a first step, the state matrix X is modified
to also include the state vectors of all sub-cells; so instead of L x N, its size is now
(L + 1)k™ x N, with rows one to L holding the state of the sub-volumes and L + 1 to
LE™ the number of particles inside the sub-cells:

‘Tl,l :ELQ . $17N
L1 L2 LN
Tr+1,1 Tr+1,2 cee LL+1,N
X = TL+kn 1 TL+kn 2 NN TL+kn N (750)
Tr4+kn+1,1 TL+kn+1,2 -+ TL+k"+1,N
TL42km 1 Tr4+2km2 «-. TL42k" N
L(L4+1)kn1 L(L4+1)kn2 -+ L(L+1)k7,N

176

7 Multi-algorithm Simulation

Algorithm 7.1: Pseudo-code description for the mrNRM'’s split method that dis-
tributes the current state of a sub-volume among its sub-cells.

Parameters:
X (current state, an (L + 1)k x N matrix)

EQ (event queue)

k,n,L (partition depth, dimension of the system, number of sub-volumes)
Input:

le[l,L] (sub-volume index)

get the indices of all sub-cells belonging to I
SC« [L+(—-1)k"+1,L+1k"];
distribute the particles from [among the cells in SC"
X« | X /k"|, Ve e SC
distribute remaining (X; mod k") particles randomly among the cells in SC'
remove [from EQ ;
calculate: a.,d,, s., 7. Ve € SC;
enqueue each sub-cell ¢ € SC;

®w N O otk W=

Algorithm 7.1 shows a pseudo-code description of the split method. Line 4 calculates
the integer part of the division X;/k", i.e., the number of particles that each sub-
cell initially contains at least. The remaining particles (X; mod k") that cannot be
distributed equally are then assigned randomly to the sub-cells in the next line. By
removing the split sub-volume [from the event queue in line 6, it will not be considered
by the mrNSM any longer during the process of determining the next event. Algorithm
7.2 describes the reverse operation to the split method: the number of particles from
each of [’s sub-cells is added to retrieve the state of [. In the next step, the sub-cells

get removed from the event queue and the index of the re-created sub-volume added.

Apart from adding the split and merge methods, it is also necessary to modify the
steps that calculate the diffusion rate of a species and determine the target sub-volume
of a diffusion event; they are now additionally dependent on the neighbors, i.e., whether
the source and target are of the same type (i.e., both are either a sub-volume or a sub-
cell) or not. Processing a diffusion event for a sub-volume is only slightly different from
the original method: the diffusion rate is calculated as usual, however, if during the
state update the selected target site is split, then the diffusing particle gets added to a
random sub-cell. The case is different for a sub-cell. If all neighbors are also sub-cells,
then the process is the same as for a sub-volume; but if not, then the rates for particles

leaving towards a sub-volume need to be calculated with the scaling factor in mind,

177

7 Multi-algorithm Simulation

Algorithm 7.2: Pseudo-code description for the mrNRM’s merge method that
restores the state of a split sub-volume.

Parameters:
X (current state, an (L + 1)k x N matrix)

EQ (event queue)

k,n,L (partition depth, dimension of the system, number of sub-volumes)
Input:

le[l,L] (sub-volume index)

1 get the indices of all sub-cells belonging to :
2 SC<« [L+(I—1k"+1,L+I1k"];

3 update [’s state:

4 X, ZcESC X, ;

5 calculate: a;,d;, s;, 1;

6 remove each sub-cell ¢ € SC from EQ);

7 enqueue [;

as discussed in Section 7.6. What has been already indicated by Figure 7.7 is further
underlined by Figure 7.10, which shows the particle distribution of a single species for
a simple 5 x 5 model as simulated by the original NSM and the multi-resolution variant
with (Figure 7.10 ¢) and without (Figure 7.10 d) considering the scaling factor; without
it, diffusion events out of the sub-cells into sub-volumes occur much more frequently
than between sub-volumes, leaving a smaller number of particles within the sub-cells.

It could be interesting to see how the choice of k£ influences the execution speed of
the algorithm. A larger value allows a finer voxelization of the individual but also
increases the number of sub-cells that get added when a sub-volume is split. Figure
7.11 plots the run time of the algorithm for different values of k (the model is the same
as in Figure 7.10). Increasing the number of sub-cells makes the simulation slower, so
a trade-off must be found between execution speed and spatial resolution.

The implemented mrNSM algorithm is a stand-alone module and can be run inde-

pendently from the multi-algorithm simulator that will be introduced next.

7.7.2 The Multi-algorithm Simulator

The design of the algorithm which coordinates the execution of underlying mrNSM and
individual-based simulators follows closely the abstract description given throughout
Sections 7.4 to 7.5. Both subsidiary simulators implement methods representing the

interval and rule selection functions; the former provides the time and the latter the

178

7 Multi-algorithm Simulation

X
1 2 3 4 5
100 i) 20
1 =1
g 20 15 8
.2 .2
50 E >3 F‘s
a, a
3 b
#* 4 10 &
5
0 5
(b) original NSM
b:
1 2 3 4 5
20 20
1
58 2 158
= .2
B »3 5
| & 2
l108 b
10 = 4 10 e
5
5 5
(c) mrNSM, split (d) mrNSM, split, no scaling

Figure 7.10: Multi-resolution NSM results for a simple 5 x 5 model (populations are
averaged over 100 replications). (a) Initially only four sub-volumes contain 100 particles
each, the remaining sites are empty. (b) After 0.5s the particles are distributed nearly
homogeneously in the volume. (c¢) The four sub-volumes that initially contained the
particles have been split before the simulation starts and again merged at the end.
With scaling enabled, the mrNSM shows similar results to the original variant. (d)
However, without scaling, the final particle distribution is considerably different.

179

7 Multi-algorithm Simulation

o m
05—73

Figure 7.11: The run time of the mrNSM algorithm for different values of k for the
model shown in Figure 7.10 (averaged over 50 replications). Decreasing the size of the
sub-cells and thus making their total number larger has a significant impact on the
execution speed of the algorithm.

information about the type of the next event. An additional methods takes care of
executing the selected event. The multi-algorithm (MA) simulator can access these
functions and decide which simulator should step next. By analyzing the returned
event information it is able to interfere with the normal event processing. For example,
after an individual has changed its position, the set of sub-volumes occupied by it
has to be updated. Furthermore, these information are also required for deciding if an
inter-rule can be applied. Again, as an example, before the mrNSM executes a diffusion
event it is tested whether the target site is occupied by an individual. If this is the
case, then the MA simulator checks the registered inter-rules for one that is defined for
the pair of particle and individual species and, assuming the search is positive, applies
it.

Splitting, Merging, and Particle Displacement One important aspect of the algo-
rithm is the dynamic splitting and merging of sub-volumes as part of the voxelization
of an individual. As it was mentioned, the former takes place whenever an individual
changes its position or new objects are created. In the current implementation a shape
(e.g., a circle) is assigned to each individual, which is used for an overlap test with the
set of sub-volumes. Given a side length Ay, and the coordinates (x;,y;) of sub-volume
[, the spatial extent of the site ranges from (Agxy, Aso¥1) t0 (Mg + Asoy Asoli + As)-
Testing for occupancy starts with an arbitrary point p lying inside the individual’s

shape, e.g., the center of a circle. The sub-volume icontaining this point is the one for

180

7 Multi-algorithm Simulation

which:
()\svxfy)\svy[) <p < ()\svajf +)\svv)\svy[=+)\sv)- (751)

Knowing that [is overlapped by the individual, the test continues with its neighbors

C; and subsequently processes and splits all sub-volumes that

e are occupied by the individual or
e adjoin a site that is (partly) occupied”.

While the first condition does not need an explanation, the second one seems counter-
intuitive as more sub-volumes get split than should be actually necessary. For each split
sub-volume the resulting sub-cells are also tested for intersection with the individual; all
overlapped sub-cells eventually represent the shape of the individual at the population
level. The reason for the second condition is that it is unclear how to test for a collision
between a particle and an individual if the former diffuses from a sub-volume into a
split site where only some sub-cells belong to the individual®.

Merging reduces the number of sub-cells and should take place whenever a sub-
volume is no longer occupied by an individual. Detecting this is not as simple as it may
initially appear: the occupancy check described above is done for a single individual,
testing all sub-volumes it previously overlapped and merging those for which this is
no longer the case does not consider sub-cells which are occupied by more than one
individual. To facilitate the merge process, two additional data structures are required
(see also Figure 7.12). The first one can be thought of as a mapping from a sub-
volume index to a set of individuals; with it, the MA simulator keeps track about
what sub-volumes are currently “controlled” by any individual. The second structure
is basically the reverse mapping, i.e., from individuals to the sub-volumes they control.
At the beginning of the occupancy check, the set of indices for the active individual is
retrieved from the second map and used to remove for each of its entries the individual
from the first map (a new set is built during the process described above and the
appropriate entries made in the first map). Whenever a sub-cell executes an event, it
is checked whether the sub-volume it belongs to has any controlling individuals (i.e.,

if there are sub-cells occupied by an individual); if not, then all sub-cells the site has

TOf course it should be guaranteed that the test is only performed for sites that does not have been
checked before, otherwise the procedure runs indefinitely.

8 An alternative is possible: when a particle diffuses from a sub-volume into a split site, the target
sub-cell is determined randomly. If the cell is occupied by the individual, then a collision takes
place — but it is unknown where the particle hit the individual in the first place if the target
sub-cell is located within the individual, i.e., if it is entirely surrounded by occupied cells.

181

7 Multi-algorithm Simulation

SV — {individual} individual — {SV}
1—{L} I —{1,2}
2—=A{6L, L} I, — {2}

L— {1} Io—{L, L1}

Figure 7.12: Additional data structures used by the MA simulator. The left one is a
mapping from sub-volumes indices to the set of individuals that currently control the
site. A second structure holds the reverse mapping, i.e., from individuals to the set of
sub-volume indices they control. No individual occupies any sub-cell of sub-volume 3,
so it is candidate for merging.

been split into can be merged. The just described process can be seen as a delayed
merging, triggered by an event execution in the mrNSM algorithm.

During the split process, the particles present inside occupied sub-cells get displaced
(“pushed out”) into free sites around the individual. What is simple for the case when
the individual has the size of a sub-volume and only moves from one site to a neighbor
(see Section 7.5) gets more complicated for complex shapes that get voxelized into a
number of sub-cells; in fact, this issue, among others, has not been resolved satisfac-
torily so far. Currently there are two approaches. The first method collects all states
of the overlapped sub-volumes and distributes the particles randomly among the free
sub-cells; it is used when a new individual is introduced to the systems as there is
no distinct direction into which the particles are pushed. But using this also after an
individual has moved to a new position can lead to strange results. Considering all
free sites, and not just the ones lying ahead of the individual, may result in a particle
appearing “behind” the object, i.e., it is moved opposing to the direction the individ-
ual is translated. This scenario is avoided by the second distribution method. Only
sub-volumes located in the movement direction are affected and the particles should

therefore be displaced into sites next to those.

Step Size of an Individual While an individual moves through space sub-volumes
get split with each position updated and merged again whenever their sub-cells are no
longer occupied. The maximum displacement of an individual during a movement event
should be limited to a certain size, otherwise there may be large “holes” in the spatial

distribution of the particles, i.e., a large number of sub-volumes previously occupied

182

7 Multi-algorithm Simulation

but after the position update empty until particles diffuse back into them from the
surrounding sites. To attenuate these artifacts, the upper bound for the distance an
individual is allowed to move at each iteration shall be given by the side length A, of
a sub-cell. For Brownian motion, the time between two movement events is fixed at
Atpgp, whose size depends on the microscopic time scale of the system 7 = min;{7;},
with 7; = (2r;)?/D;, r; as radius of particle 4, and D; as its diffusion constant, and is

9

usually in the range of 10777 to 107%7%. Restricting the maximum size of a step to

value smaller than \,. means setting At = min{Atgp, min,{\2./D;}}.

A First Example To show how the multi-algorithm simulation works, Example 7.4.1

shall be re-visited:

Rl : Al + A2 k—1> A3
R2 : Al + A5 £2—> A4 (752)

Ry : Az + Ay k3, create C particle

The model is defined for a 5 x 5 grid, with the individual A located at coordinate (2,2),
i.e., it completely fills out the center sub-volume. An equal amount of A; particles is
initially placed inside each sub-volume; the species has a diffusion constant D,, =
10 and its particles are allowed to move freely inside the volume. At the start of a
simulation run the individual A contains only A, particles, so A; needs to be transfered
from the outside into A to initiate the conversion process; the probability for this event
to occur when an A; particle collides with A is set to 0.5. Furthermore, all internal
reactions have equal rate constants of 1.0. Note that reactions Ry and R3 both require
As as a reactant: R, transforms A; and Az into an A4 particle while R3 takes one of the
latter and Ajs to trigger the creation of a type C'individual. However, it is not sure that
A gets transformed at all. If all A, particles have reacted with A;, but the resulting
Az are only consumed via Ry, then the conversion reaction will never fire. This makes
stochasticity an important factor which cannot be neglected. Figure 7.13a provides a
look inside an A individual during the simulation. It shows the trajectories for the four

internal species; a dot at the end marks the time point when A is transformed into a C

9The time scale can be derived from the mean square displacement in one direction of a particle
undergoing Brownian motion, (z?) = 2D;At, and setting (r?) = (2r;)2. 7; is then the time
required for one particle to move a distance corresponding to its own diameter. To avoid missing
collisions between individuals, the actual time step Atgp must be much smaller than the time
scale of the system.

183

7 Multi-algorithm Simulation

10% T T 1.0

e ° 2038
: S
w0 : E
I

: ﬁ/ 500
E 10! Z —/_‘ o o
A M =

. ad

:i e Fo 7/7% 504
/i]
7 I<

/)] &0.2

/ ;/ ’
/ / / / /'/ : :
109 : / 0.0 : :
0.005 0.01 0.015 0.02 0.025 0.03 . 10 11 12 13 14 15 16 17 18 19 20
Simulation time [s] # of Ay
| — A4 Ay — A /14|
(a) (b)

Figure 7.13: Analysis of Example 7.4.1. (a) Trajectories for the four internal species A,
to A4 of an A individual. The dot at the end of each line marks the time point where
an As particle reacted with an A, particle and thus initiated the conversion from an A
to the C individual. (b) Probability that the conversion takes place for different initial
values of Ay (based on 1000 replications).

individual. Initially there were 50 A; particles per non-occupied sub-volume and 70 A,
molecules inside A; with this amount of A, the conversion always took place in each of
the 100 replications. In Figure 7.13b, the probability that an A particle is transformed
into a C' particle (or: that reaction Rz will fire at all) is plotted against different initial
values for Ay (based on 1000 replications); it clearly shows that stochasticity plays
a major role when it comes to the fate of an A particle, e.g., with 11 A, molecules

initially present there is nearly a fifty percent chance that A will not be transformed.

7.8 Example Experiments

The chapter shall be concluded with two example studies: the first one analyzes if the
physical presence of the individuals has any influence on the dynamics simulated by
the population-based algorithm, the second one discusses a more complex qualitative

model for the process of lipolysis.

Crowding The problem statement already introduced the excluded volume effect
caused by macromolecules: each individual occupies a certain amount of space which
is not accessible by others. Reaction dynamics are altered in two possible ways when

crowding is considered, depending on the location of the reactants. If they are already

184

7 Multi-algorithm Simulation

[[| [[]
[[| [| |
[[| [[|
O n
[[| [| |
[[| [| |
[[| [[|
0 L
[[| [] |
[[| [| |
[[| [[|
[[] [[|

] : | . . o

0 15 30 45 60 75 90 0 6 12 18 24 30 36 42 48 54

Concentration Concentration

(a) (b)

Figure 7.14: Concentration (number of particles / area of sub-volume or sub-cell) of A
and B particles for the crowding experiment. Nine individuals have been added to the
system, which occupy approximately 28% of the available volume. The plots show the
state of the system at t =0 (a) and ¢ = 0.5 (b).

close together and cannot diffuse away because the path is blocked by others, then the
probability for a reactive encounter is increased; the contrary is the case for a scenario
where they are still far away from each other and it is difficult for them to move into

proximity and initiate the reaction.

As a first simple experiment it shall be observed if the excluded volume effect can also
be observed in a multi-algorithm simulation; the focus is laid on the population level,
as crowding effects are inherently present in an individual-based simulation. The initial
assumption is that the presence of individuals should be noticeable simply because the
available overall volume for reactions and diffusions is reduced and thus the effective
concentration of the particles increased; additionally, the individuals act as obstacles
for the particles, blocking their path through space. The model is defined over a 10x 10
grid with a variable number of individuals that are either static, i.e., cannot move, or
follow Brownian motion (with a diffusion constant set to 1.0). Figure 7.14a shows the
initial setup: particles for two species A and B are separated from each other and only

located inside two columns; they can both diffuse freely and annihilate each other on

185

7 Multi-algorithm Simulation

7 WSRO SN SUUSUUUON. SOOI, SOV S-Sy, OO, WV S
1 ORI JSUOUROO SO NSUUUORS SUUORRORE (00 NSOCIRUORE SRS
%10 B . —
g Sl ﬁ | ol A
o) S— - : R
YIS | S N]]
B pE ey
. I [

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Simulation time [s]

|I:I no indviduals [0 static | movingl

Figure 7.15: Histograms for the simulation times at which half of the population of
A and B particles have degraded. While the results are closely scattered around the
mean for dilute case, it takes not only longer if individuals are added to the system
but the simulation times are also spread over a larger internal.

contact, represented by the following reaction:
R,: A+ B0, (7.53)

with ¢; = 00, so as soon as two particles of A and B are inside the same sub-volume they
react. How many individuals are added to the systems depends on how pronounced
the crowding effect should be; in normal cells approximately 20% to 40% of the entire
volume is excluded by macromolecules |[ENI01, CKLO04|, so the size and number of
individuals is chosen to reflect these scenarios. For example, if all individuals have
the same circular shape with radius » = 1, then the area a single object occupies is
7r? = m; given the 10 x 10 grid and \,, = 1, then nine individuals exclude almost 28%
of the volume.

In Figure 7.15 the histograms (50 replications) for the time it takes until half of
the population has degraded are shown for three scenarios: without, nine static, and
nine moving individuals. Comparing the respective distributions reveals that they are
significantly different; if individuals are added to the systems, then the average time
until 500 reactions took place between A and B particles is nearly doubled. But not
only the mean, also the standard deviation in the end times is larger when individuals
are present (o = 0.05); the results are spread over an interval ranging from 0.34s to
0.62s, compared to the dilute scenario, where the times do not deviate that much
from the mean (0.23s to 0.25s, with ¢ = 0.006). However, the difference between

186

7 Multi-algorithm Simulation

(1) (2)
(> N (> N
(7) PKA
ﬂ
)
S <,
{pHSL}

HSL

M
A
v.;v.m'.:mw
i

1
g
“'“M“‘:‘;‘ =
it

I i

‘MHVM‘\\ A
1“‘7‘*"»’“9 ol
LT

Figure 7.16: Illustration of the lipolysis model. (1) A lipid droplet with a coating of
perilipin proteins, which protect the stored TAG from getting hydrolyzed by pHSL
(gray box). (2) Perilipin gets phosphorylated by the protein kinase A (PKA). (3) -
(4) When the droplet is no longer protected by perilipin, phosphorylated HSL is able
to attach to the droplet and initiate the hydrolysis of TAG (5).

crowded and dilute conditions is still small compared to the two orders of magnitude
as predicted in, e.g., [ENI01]. Nevertheless, it can be shown that at least for systems
where the reactants first have to travel a certain distance in space the excluded volume

effect caused by the presence of larger individuals cannot be neglected.

A Model for Lipolysis One highly efficient energy source for several organisms is fat:
it produces more energy per kilogram than saccharides (e.g., sugar), so basically less
resources are needed to ensure the function of the body. Fat is stored as triacylglycerols
(TAG) in lipid droplets [MPO6], “containers” that have T'AG at their core and are sur-
rounded by a monolayer of phospholipids and associate proteins. Though all cells can
develop droplets, they are mainly found inside special “fat cells”, the adipocytes. If the
organism requires energy from fat, the TAG have to be broken down into glycerol and
free fatty acids (the actual lipolysis process, see, e.g., [KBRST07, MSZ 06, LBS*99|)

with the latter then being used in the energy production process. This conversion

3

from T'AG into fatty acids is done by a lipase; in adipocytes, this role is taken by the
hormone-sensitive lipase (HSL). Figure 7.16 shows a schematic representation of the
process. Before HSL can become active, it first needs to be phosphorylated by a kinase
(protein kinase A, PKA) and then “dock” at the droplets to start the hydrolysis of

187

7 Multi-algorithm Simulation

T AG. However, the translocation of the lipase to the droplet is prevented by perilipin,
a protein present at the surface of the T'AG storage; but if perilipin is phosphorylated
as well (again by PK A), then the surface structure is altered and phosphorylated HSL
(pHSL) is able to dock and induce the hydrolysis process.

This is a very basic description of lipolysis, a more detailed discussion can be found
in, e.g., [LBST99|. The system is suitable for a multi-algorithm simulation: there are
larger individuals moving through space, with reactions occurring inside of them them
(the lipid droplets and the hydrolysis of TAG), and smaller particles surrounding the
individuals that both interact with each other (phosphorylation of HSL by PKA)
and with the larger entity (phosphorylation of perilipin by PKA, translocation of
phosphorylated HSL to the droplet).

For the individual DES it is assumed that the droplets are of spherical shape with a
certain radius r; they have as features a position p, the number of unphosphorylated
perilipin A proteins (perA), and an internal species state vector holding the amount of
stored TAG and bounded phosphorylated HSL enzymes; so the state of the individual
DES can be defined as:

X = {X;p}
Xep ={Fipa,---,Frpo} (7.54)

7
FLD,Z' - {sz Ty TiperA, X }7

with X = (% prsL, TiTAGs Ti free, Tigly)- The number of unphosphorylated perilipin
proteins (x; pera) is not part of the internal state vector; perilipin does not participate
in any of the reactions within the individual but its state is changed solely via an
inter-rule, i.e., whenever a PK A kinase attaches a phosphate to the protein. Inside an
individual Fip;, i € [1,0] a single reaction can take place: the conversion of a TAG

into free acid and glycerol molecules (whose numbers are given by z; freca and x;)
by pHSL:

RZZXXN%X

Ri(X,i) ={{. ., {Pi,7, Tiperas Xy b5 - - -} } (7.55)
x x'+(0,—1,1,)7;

new

it is assumed that the pHSL enzyme does not get consumed during this process.
Moving the individual is done using the previously defined intra-rule from Equation
7.37.

188

7 Multi-algorithm Simulation

The state for the population-based DES is given by an L x 3 matrix X:

T1,PKA T1,HSL T1,pHSL
X = (7.56)

XL PKA XL HSL TLpHSL

storing the number of PK' A, HSL, and pH S L particles currently present in the volume.
The only reaction that is defined is the phosphorylation of HSL by PK A, which results

in one pHSL molecule:
R,: PKA+ HSL - PKA+pHSL (7.57)

All molecules are furthermore allowed to diffuse freely between the sub-volumes.

The link between the individual- and population-based DES is done via two inter-
rules. Whenever a PK A molecule collides with a droplet, there is a chance that one of

the unphosphorylated perilipin proteins gets phosphorylated by the kinase:

Rpp : NN 5 X x N — NPV « X

| (7.58)
Rop({1X, X},0) = {X, {{. . APy Tipera — 1,X'}, ..}

No sub-volume index is required as the PK A molecule does not get consumed by
the reaction and the state of the sub-volume where the diffusion event originated is
therefore left unchanged. The second inter-rule represents the docking of an HSL

particle:

R : NPV 5 X x Nx N — NPV X

Ron({X, X3},0,0) = {X = 17056 AL - APi 1 Tipera, Xpow o - -1} (7.59)
Xpew = X'+ (1,0,0,0)%;

the pHSL molecule gets transfered from sub-volume [into the individual. Instead of
writing down the time interval and rule selection functions, whose main components
have been already introduced above, the discussion shall be restricted to a specific
event condition. Depending on how the lipolysis process shall be represented, it may
be that not all perilipin proteins need to be phosphorylated before a pHSL enzyme
is able to attach to the droplet. A condition for inter-rule R,y therefore probably
considers the current value of z;,.,4: for example, the rule shall only be applied if

the amount of unphosphorylated perilipin has dropped below a certain threshold; an

189

7 Multi-algorithm Simulation

alternative definition could make the probability for executing the rule dependent on
this amount, with a lower value for z; ;.4 making it more likely that a pH.SL docks
to the individual.

Figure 7.17 shows snapshots of the model state at different time points. Performing
a qualitative analysis, the following parameterization has been chosen arbitrarily: the
reactions constants for the events that apply the intra-rules R; and R, have been set
to 1.0; the probability that a collision of a PK A molecule with a lipid droplet (LD)
leads to a phosphorylation of one of the perilipin proteins is 0.1; after all of the latter
have been phosphorylated, a pHSL enzyme can dock at a droplet with probability
0.25 and start initiating the hydrolysis. At the beginning of a simulation, each LD
individual consists of a layer that contains 10 perilipin proteins, which protect 70 TAG
molecules from being hydrolyzed by pH S L enzymes; in all non overlapped sub-volumes
50 PK A and 100 HSL particles are present. Qualitative models, similar to benchmark
models, can be used to test various assumptions made regarding the dynamics, e.g.,
how modifying certain reaction constants change the behaviour of the system or how
much longer it would take if the number of perilipin proteins is increased (see Figure
7.18b). As an example, Figure 7.18 shows the distribution of the simulation times
at which half of the TAG molecules have been hydrolyzed (100 replications); for a
comparison, the histogram for a modified model is given in Figure 7.18a as well, where
an additional degradation reaction pHSL — HSL has been added, which directly
competes with the inter-rule that attaches a pHSL molecule to the lipid droplet.

7.9 Additional Remarks

There are several topics that have not been covered in the last sections. For instance,
nothing has been written about collision detection between individuals. However, as
this is specific to an individual-based simulation algorithm and the focus of this disser-
tation was more on how to combine it with a spatial stochastic simulation in discretized
space, this was intentionally left out.

Furthermore, it is still an open issue how to determine the probabilities for the
decision whether a collision between a particle and an individual should lead to the
application of specific inter-rules. Looking at algorithms for an individual-based simu-
lation, one can find several different techniques how it is ensured that the dynamics at
the microscopic scale reflect those that have been observed at the macroscopic level.

Using probabilities dates back to the works of Collins and Kimball [CK49|; this

190

7 Multi-algorithm Simulation

M
0 20 40 60 80 100 120 140 160 0 30 60 90 120 150 180 210 240 270
Concentration Concentration
(a) (b)

VI
0 30 60 90 120 150 180 210 240 270 0 30 60 90 120 150 180 210 240 270
Concentration Concentration
(c) (d)

Figure 7.17: Series of states for the lipolysis model. (a), ¢ = 0: The initial state of the
model, three lipid droplets have been placed inside the volume. There are 50 PK A
and 100 HSL molecules within each sub-volume. (b), ¢ = 0.1: The lower right droplet
lost its protective coating of perilipin proteins and, as a result, the first phosphorylated
HSL enzymes have already docked to it and initiated the lipolysis. (c¢), t = 0.12: All
perilipin proteins have been phosphorylated for the lower left droplet. (d), t = 0.18:
The T'AG conversion started in the third droplet. At this point half of the TAG
population have been hydrolyzed into glycerol (gly) and free fatty acids (freeA).

191

7 Multi-algorithm Simulation

=

Frequency
[

[
Frequency
(e}

e
=

I M

4 JL‘ A M [
B , o m |

" TN m T

0
010 012 014 016 018 020 022 024 026 0.2 0.3 0.4 0.5 0.6
Simulation time [s] Simulation time [s]

[default model [with pHSL degradation | [E= 11 perilipin [25 perilipin = 50 perilipin |
(a) (b)

Figure 7.18: Histograms for the simulation times at which half of the T'AG population
has been hydrolyzed. (a) The results indicate that it takes longer for the conversion
process to reach the set threshold if the phosphorylated HSL enzymes are allowed
to get dephosphorylated. (b) Results for different numbers of perilipin proteins. As
expected, the conversion takes considerably longer if more proteins protect the stored

TAG.

method is also used, e.g., in the thesis by Arjunan [Arj09], where the individuals move
between spheres arranged in a grid and two entities can react with a certain probability
if one of them tries to move to the site occupied by the other. The author establishes
a relation between the macroscopic rate constant of the reaction and the probability
that it will occur on collision; the latter is determined a prior: by taking the ratio
between the number of reactive encounters (which is given for a specified time interval
by the reaction propensity) and the expected number of collisions, calculated for a

homogeneous entity distribution.

An alternative method without probabilities is the Smoldyn algorithm presented
by Andrews and Bray [AB04|. A critical argument against probabilities is that in
Brownian dynamics (BD) simulations a non-reactive collision is most likely followed
by subsequent collisions between the same reactant partners, which implies that the
reaction probability must very small (infinitesimal when the number of collisions is
infinite, as argued by Andrews and Bray). In Smoldyn, this is avoided by letting two
individuals undergo a reaction whenever their center-to-center distance is smaller than
a specific binding radius, whose value is based on the macroscopic rate constant of
the reaction; this radius does not have to correspond with the size of the involved

reactants, so they do not need to collide at all but only move into close proximity.

192

7 Multi-algorithm Simulation

When an individuals dissociates into two products, then the latter are placed at a
specific distance, the unbinding radius, which must be larger than the binding radius
to prevent the entities from reacting with each other again instantly. It should be
noted that in the proposed multi-algorithm simulator the problem of infinite collisions
between particles and individuals is not as present as in purely BD approaches because
the spatial resolution is constrained to the size of the sub-cells and an exact collision
detection, which would be triggered very often if the reactant’s positions are very close
to each other, is thus not performed.

The current implementation of the multi-algorithm simulator assumes that the prob-
abilities for reactive encounters are known by the modeler. With more complex indi-
viduals, this probability likely depends on their state; for example, in the lipolysis
model from Section 7.8, the reaction between a pHSL molecule and a lipid droplet
can only occur when there are a few or no unphosphorylated perilipin proteins left for
protecting the TAG from getting hydrolyzed. So providing the probability a priori is
in those cases not possible. But if there are no such dependencies, then second variant
discussed above, using binding radii instead of probabilities, could be utilized for the
presented MA simulator: if the reaction constants between particles and individuals
are known, then the shape defined by the binding radius may be represented at the
population level and used to decide whether particles are close enough to an individual

to initiate a reaction. This may be one starting point for further research.

7.10 Summary

This chapter presented an exploration into the topic of multi-x methods by defining a
discrete-event simulation (DES) scheme that coordinates the execution of two subor-
dinate DES, the first one operating on populations of species in a discretized volume
and the second one on individual entities. Having both populations and individuals
coexisting inside the same environment makes it possible to represent phenomena such
as the relocation of particles into confined mobile compartments where they can par-
ticipate into complex internal reaction networks that influence the behaviour of the
individual.

As a starting point, Section 7.2 established a basic tool set for the description of
discrete-event simulations (DES), which has been based on concepts that have already
been introduced in Chapter 2: the representation of a system as a set of state variables

that are modified at discrete time instances by the application of rules. Two essential

193

7 Multi-algorithm Simulation

functions that steer the execution of a DES have been defined, the time selection
function ¢ and the rule selection function r: the former calculates when the next event
will take place, the latter provides the rules that should be applied when the event is
executed. Each one of the algorithms discussed in the survey (Chapter 3) basically
implements these functions and it has been shown in Section 7.3 how this general
framework can also be applied to representations that interpret species as a set of
individual entities.

A first step towards a multi-algorithm simulation was made by introducing the con-
cept of inter-rules that act as links between different DES: in contrast to intra-rules,
e.g., reactions, they have access to more than one state representation (Section 7.4).
Intra-rules are still handled by the respective DES, but the decision when an inter-rule
should be applied is made within a coordinator component. This hierarchical scheme
is used to describe a combination of a population-based spatial stochastic DES with an
individual DES; here inter-rules can be used to model, e.g., the transport of a particle
into an individual when both collide.

Making both DES actually aware of each other (i.e., representing a collision between
a particle and an individual) was the second major topic during the first part of this
chapter (Sections 7.5 and 7.6). In the most simple case the individuals fill out a single
sub-volume and can only move into adjacent sites; after the position update, particles
currently present inside the target sub-volume get displaced into the neighbors. For
a finer shape representation a technique called voxelization is used that approximates
the form of an individual by partitioning the sub-volumes into smaller sub-cells and
checking each cell if it overlaps with the shape. Allowing this “splitting” essentially
resulted in a multi-resolution spatial stochastic simulation, but it was necessary to
introduce a modification to the diffusion rate calculation.

The presented theoretical concept of a multi-algorithm DES has been realized as a co-
ordinator that manages the executions of a multi-resolution Next Sub-volume Method
and a simple individual-based simulation algorithm (Section 7.7). Though there are
still open issues, e.g., how to determine the probability that a collision between a par-
ticle and an individual leads to the application of inter-rules, the method is already
suitable to perform experiments with qualitative models, e.g., to test whether the phys-
ical presence of the individuals has an influence on the dynamics at the population level
(Section 7.8).

194

8 Conclusion and Future Work

All of the individual research projects presented in this dissertation find their place in
the larger scheme of evaluating, improving, and exploring algorithms for a stochastic
simulation of biochemical reaction networks. Despite being placed in the middle, Chap-
ter 5 has been the first milestone. A start into the field of stochastic simulation is soon
accompanied by a feeling of becoming overwhelmed: there are a plethora of algorithms
already available, both exact and approximative, and several more are added if spa-
tially inhomogeneous systems and multi-x methods are considered as well. Faced with
the task to evaluate these algorithms, it has been realized that some fundamental con-
cepts are required to ensure a sound comparison. Without exception, every stochastic
simulation algorithm needs at least one sub-algorithm (a source for random numbers);
more sophisticated methods require additional inputs, such as further sub-algorithms
or parameters. It is one key statement of this thesis that these dependencies cannot
be neglected during a study, a point which is underlined by the results from Chapter
6. Looking at these also provides arguments for the working hypothesis that there is
no “silver bullet”, i.e., an algorithm dominating all competing variants for an arbitrary
model instance, which has been formulated in the introduction. Each method has
strengths and weaknesses, as evidenced by the spatial 7-leaping algorithm discussed in
Chapter 4. Developed to offer an approximative algorithm that applies the leap idea
to spatially discretized models, it is indeed faster than an exact variant if there are
sufficient particles present in all sub-volumes; otherwise it cannot compete because the
time required to find a leap candidate bears no proportion to the step size actually
taken. An additional improvement in terms of distributing the work load among more
than one processing unit showed better results for selected models, but also serves as a
demonstration for the limits for a “parallelization inside a simulation run”: if the overall
work (in this case: finding the leap value and calculating the state update) is already
small beforehand, then it is very unlikely to gain any benefits from distributing it.

A different research direction has been explored with Chapter 7. When it became

clear that some models may require a more flexible representation of a species, an

195

8 Conclusion and Future Work

approach was discussed that left the modeler the option to define a species as either a
collection of individual entities, each one equipped with its own state, or a population
of indifferent particles, distributed inside a discretized space. This basic idea lead
to the general concept of a multi-algorithm discrete-event simulation: algorithms still
handle intra-rules by themselves, however, their execution is synchronized by a higher
level component which also takes care of the selection and application of inter-rules
that form a link between the individual simulations. Artificial and biologically inspired
models provided a glimpse at the questions that could be formulated and answered by

the proposed method.

Future Work There are several routes that could be taken in future research endeav-
ors, some of which have already been mentioned in the respective chapters. A direct
continuation of the work done for evaluating simulation algorithm is the application
of data mining tools to generate decision trees out of a set of model features and the
data stored during the performance analysis. This has been shown only exemplarily in
the dissertation, without going much into detail. The next step will be to apply these
decision trees in real simulation studies in order to suggest a suitable algorithm that
is expected to meet the requirements set by both the model and the user. Obviously,
this selection would be based on the structure of the model and the initial state. With
the latter being variable over time, a re-evaluation of the algorithm choice could be
made during a simulation, which may be a step towards resolving the problem that
a method performs well at the beginning but gradually becomes worse over time due
varying system dynamics. Another step beyond the evaluation is an integration of the
results into algorithm ontologies, such as the Kinetic Simulation Algorithm Ontology
(KiSAO, |KLN08, KLNKO09]), which offer a classification of algorithms into different
categories. Efforts like KiSAO could benefit from performance studies in that the infor-
mation provided with each algorithm are enriched by listing those model characteristics
which proved to be (in)favorable for the method during an evaluation.

The evaluation concepts and their application in the two studies presented in this
work merely scratched the surface of what is possible — and what may be necessary for
algorithms to come. As one example, the GMPM requires an SSA as a sub-algorithm,
which itself could have additional dependencies that have to be satisfied, so the con-
figuration of GMPM is not flat but hierarchical; this aspect of the algorithm has not
been considered in this work and could be analyzed in future evaluations. With regard

to multi-algorithm methods, the problem of hierarchical configurations may become of

196

8 Conclusion and Future Work

increasing interest and worthwhile to explore.

A clear direction for spatial 7-leaping is, from the current point of view, difficult
to perceive. Though first steps have been made, it is still not entirely analyzed how
strong the impact of spatial inhomogeneity is on the performance; what conditions does
the particle distribution have to satisfy in order that spatial 7-leaping is considerably
faster than an exact alternative? Going from an explicit variant to an implicit, as
it has been done in the non-spatial case, is an arguable option: for this, the species
need to a) have high diffusion constants and b) be distributed almost homogeneously.
For those models the explicit algorithm would be very busy simulating the diffusion
events, although their execution only marginally changes the model state. But if two
sub-volumes have an almost equal amount of particles for all species, then the diffusions
between them can be interpreted as reversible reactions being in partial equilibrium —
and these can be ignored when calculating an implicit 7 candidate [San09b]. However,
without a nearly well-stirred mix of particles the final implicit leap value would be
closer or even equal to the explicit one (the minimum is taken over all sub-volumes and
with some of them having, e.g., empty neighbors the diffusion events between those
sites would not be in partial equilibrium); in this case it is likely that the explicit

variant is preferred over the implicit.

Still in a rather early state, the multi-algorithm DES offers a wide area for further
exploration, both in a theoretical and practical direction. Though a prototype simula-
tor is available, there is no formal way how to specify models for the use in a maDES.
An ongoing work in the context of the research training group dIEM o0SiRiS aims at
developing a rule-based formalism that shall equip the user with a convenient language
for expressing those models. On the practical side, the most obvious starting point is
applying the method to real-world problems. The models presented in this work are
biologically inspired, however, their parameterization was not based on real data and
finding it, especially regarding the inter-rules, is still an open problem. An approach
has been mentioned (using the technique behind Smoldyn to represent the binding
radii at the population level), yet there is the question if there are alternatives that
allow more complex interactions. Here a close cooperation with domain experts from

various fields, e.g., biology and physics, will certainly be necessary.

To sum this work up: the task of an efficient simulation of non-spatial and spatial
reaction networks has been addressed from three different directions. The first one,

efficiency via evaluation, was aimed at comparing algorithms and identifying meth-

197

8 Conclusion and Future Work

ods that perform better than others for specific problem instances. A second direction,
efficiency via improvement, has been followed with the extension of leap methods
into space and it was shown that for certain model characteristics the execution is faster
than exact variants. Finally, efficiency via separation of concerns was explored
in terms of a multi-algorithm DES concept where species can be either represented as

populations or individuals.

198

Bibliography

|ABO4]

|ACKO6|

[And07]

[Ando8|

[Arj09]

[BCOO]

[BOKOS]

[BHPS81]

S. S. Andrews and D. Bray. Stochastic simulation of chemical reactions
with spatial resolution and single molecule detail. Phys Biol, 1(3-4):137-
151, 2004. ISSN 1478-3967.

A. Auger, P. Chatelain, and P. Koumoutsakos. R-leaping: Accelerating
the stochastic simulation algorithm by reaction leaps. The Journal of
Chemical Physics, 125(8):084103+, 2006. doi:10.1063/1.2218339.

D. F. Anderson. A modified Next Reaction Method for simulating chem-

ical systems with time dependent propensities and delays. 2007.

D. F. Anderson. Incorporating postleap checks in tau-leaping. The Jour-
nal of Chemical Physics, 128(5):054103, 2008. doi:10.1063/1.2819665.

S. N. V. Arjunan. Modeling Three-Dimensional Spatial Regulation of
Bacterial Cell Division. Ph.D. thesis, Graduate School of Media and

Governance, Keio University, 2009.

M. Bienz and H. Clevers. Linking colorectal cancer to wnt signaling. Cell,
103(2):311-320, 2000.

B. Bayati, P. Chatelain, and P. Koumoutsakos. Multiresolution stochastic
simulations of reaction-diffusion processes. Phys. Chem. Chem. Phys.,
10(39):5963-5966, 2008. doi:10.1039/b810795e.

J. H. Blackstone, G. L.. Hogg, and D. T. Phillips. A two-list method for
synchronization of event driven simulation. In ANSS ’81: Proceedings

of the 14th annual symposium on Simulation, pp. 95-101. IEEE Press,
Piscataway, NJ, USA, 1981.

199

BIBLIOGRAPHY

[BK9Y

[BKL75]

[BMY6]

|CCMOY]

[CGo1]

[CGPO05al

|CGPO5b)

[CGPO5¢]

ICGPOG)|

ICGPO7|

G. C. Brown and B. N. Kholodenko. Spatial gradients of cellular phospho-
proteins. FEBS Letters, 457(3):452-454, 1999. ISSN 00145793. doi:10.
1016,/S0014-5793(99)01058-3.

A. Bortz, M. Kalos, and J. Lebowitz. A new algorithm for monte carlo
simulation of ising spin systems. Journal of Computational Physics,
17(1):10-18, 1975. ISSN 00219991. doi:10.1016/0021-9991(75)90060-1.

F. Baras and M. M. Mansour. Reaction-diffusion master equation: A
comparison with microscopic simulations. Physical Review E, 54(6):6139
6148, 1996. doi:10.1103/PhysRevE.54.6139.

A. J. Chien, W. H. Conrad, and R. T. Moon. A wnt survival guide:
from flies to human disease. The Journal of investigative dermatology,
129(7):1614 1627, 2009. ISSN 1523-1747. doi:10.1038/jid.2008.445.

F. E. Cellier and J. Greifeneder. Continuous System Modeling. Springer,
1 edition, 1991. ISBN 0387975020.

Y. Cao, D. T. Gillespie, and L. R. Petzold. Accelerated stochastic sim-
ulation of the stiff enzyme-substrate reaction. The Journal of chemical
physics, 123(14):144917, 2005. TISSN 0021-9606. doi:10.1063/1.2052596.

Y. Cao, D. T. Gillespie, and L. R. Petzold. Avoiding negative populations
in explicit poisson tau-leaping. J. Chem. Phys., 123:4104+, 2005. doi:10.
1063/1.1992473.

Y. Cao, D. T. Gillespie, and L. R. Petzold. The slow-scale stochastic
simulation algorithm. The Journal of chemical physics, 122(1):14116,
2005. ISSN 0021-9606. doi:10.1063/1.1824902.

Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient step size selection for
the tau-leaping simulation method. J Chem Phys, 124(4):044109, 2006.
ISSN 0021-9606. doi:10.1063/1.2159468.

Y. Cao, D. T. Gillespie, and L. R. Petzold. Adaptive explicit-implicit tau-
leaping method with automatic tau selection. The Journal of Chemical
Physics, 126(22):224101+, 2007. doi:10.1063/1.2745299.

200

BIBLIOGRAPHY

[CHO9]

[Cha43]

[CK49]

[CKO06]

[CKLO4|

|CLPO4]

[CPOG]

[CVO06]

ICVKO3|

[CX06]

F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling
and analysis of biological systems. Theorical Computer Science, 410(33-
34):3065 3084, 2009. doi:10.1016/j.tcs.2009.02.037.

S. Chandrasekhar. Stochastic problems in physics and astronomy. Reviews
of Modern Physics, 15(1):1-89, 1943. doi:10.1103/RevModPhys.15.1.

F. Collins and G. Kimball. Diffusion-controlled reaction rates. Journal
of Colloid Science, 4(4):425-437, 1949. Cited By (since 1996) 244.

F. E. Cellier and E. Kofman. Continuous System Simulation. Springer,
1 edition, 2006. ISBN 0387261028.

N. A. Chebotareva, B. I. Kurganov, and N. B. Livanova. Biochemical ef-
fects of molecular crowding. Biochemistry, 69(11):1239-1251, 2004. ISSN
0006-2979.

Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic
simulation algorithm for chemically reacting systems. J Chem Phys,
121(9):4059-4067, 2004. ISSN 0021-9606. doi:10.1063/1.1778376.

Y. Cao and L. Petzold. Accuracy limitations and the measurement of
errors in the stochastic simulation of chemically reacting systems. .J.
Comput. Phys., 212(1):6-24, 2006. ISSN 0021-9991. doi:10.1016/j.jcp.
2005.06.012.

A. Chatterjee and D. G. Vlachos. Temporal acceleration of spatially dis-
tributed kinetic monte carlo simulations. J. Comput. Phys., 211(2):596
615, 2006. ISSN 0021-9991. doi:10.1016/j.jcp.2005.06.004.

A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis. Binomial distri-
bution based tau-leap accelerated stochastic simulation. The Journal of
Chemical Physics, 122(2):024112, 2005. doi:10.1063/1.1833357.

X. Cai and Z. Xu. K-leap method for stochastic simulation of gene
expression. In 2006 IEEE International Workshop on Genomic Signal
Processing and Statistics, pp. 81-82. IEEE, 2006. ISBN 1-4244-0384-7.
doi:10.1109/GENSIPS.2006.353166.

201

BIBLIOGRAPHY

[DCO9)

[DI00]

[DMOS]

[DNZ01]

[EE04]

[EHUOS]

[E101]

[ELSS02]

C. Dittamo and D. Cangelosi. Optimized parallel implementation of
gillespie’s first reaction method on graphics processing units. Computer
Modeling and Simulation, International Conference on, 0:156 161, 2009.
d0i:10.1109/ICCMS.2009.42.

C. Demetrescu and G. Italiano. What do we learn from experimental
algorithmics? In Mathematical Foundations of Computer Science 2000,
pp. 36-51. 2000. doi:10.1007/3-540-44612-5 3.

L. Dematté and T. Mazza. On parallel stochastic simulation of diffusive
systems. In M. Heiner and A. M. Uhrmacher (eds.), Computational Meth-
ods in Systems Biology, volume 5307, chapter 16, pp. 191-210. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-88561-0.
d0i:10.1007/978-3-540-88562-7 _16.

E. J. D’Amico, T. B. Neilands, and R. Zambarano. Power analysis for
multivariate and repeated measures designs: A flexible approach using the
SPSS MANOVA procedure. Behavior Research Methods, Instruments, &
Computers, 33(4):479-484, 2001.

J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical
systems into spatial domains of opposite phases. Systems Biology, IEE
Proceedings, 1(2):230-236, 2004. doi:10.1049/sb:20045021.

R. Ewald, J. Himmelspach, and A. M. Uhrmacher. An algorithm selection
approach for simulation systems. In Proceedings of the 22nd Workshop
on Principles of Advanced and Distributed Simulation (PADS) 2008, vol-
ume 22, pp. 91 98. IEEE Computer Society, Los Alamitos, CA, USA,
2008. doi:10.1109/PADS.2008.9.

J. R. Ellis. Macromolecular crowding: an important but neglected aspect
of the intracellular environment. Current Opinion in Structural Biology,
11(1):114-119, 2001. doi:10.1016,/S0959-440X(00)00172-X.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic
Gene Expression in a Single Cell. Science, 297(5584):1183-1186, 2002.
doi:10.1126/science.1070919.

202

BIBLIOGRAPHY

[ELUO9]

[EMO6]

[EU09]

[FB74]

[FHT77]

[FHL10]

[Fic55]

[FW95]

R. Ewald, S. Leye, and A. M. Uhrmacher. An efficient and adaptive
mechanism for parallel simulation replication. In PADS ’09: Proceedings
of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced
and Distributed Simulation, pp. 104 113. IEEE Computer Society, Wash-
ington, DC, USA, 2009. ISBN 978-0-7695-3713-9. doi:10.1109/PADS.
2009.11.

R. J. Ellis and A. P. Minton. Protein aggregation in crowded envi-
ronments. Biological chemistry, 387(5):485-497, 2006. ISSN 1431-6730.
doi:10.1515/BC.2006.064.

R. Ewald and A. M. Uhrmacher. Automating the runtime performance
evaluation of simulation algorithms. In M. D. Rossetti, R. R. Hill, B. Jo-
hansson, A. Dunkin, and R. G. Ingalls (eds.), Proceedings of the Winter
Simulation Conference, pp. 1079-1091. IEEE Computer Science, 2009.

R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval
on composite keys. Acta Informatica, 4(1):1-9, 1974. ISSN 0001-5903.
do0i:10.1007/BF00288933.

M. Feinberg and F. Horn. Chemical mechanism structure and the coin-
cidence of the stoichiometric and kinetic subspace. In Archive for Ra-
tional Mechanics and Analysis, volume 66, pp. 83 97. Springer, 1977.
doi:10.1007/BF00250853.

L. Ferm, A. Hellander, and P. Lotstedt. An adaptive algorithm for simula-
tion of stochastic reaction-diffusion processes. Journal of Computational
Physics, 229(2):343-360, 2010. ISSN 00219991. doi:10.1016/j.jcp.2009.
09.030.

A. Fick. Uber diffusion. Annalen der Physik und Chemie, 170(1):59 86,
1855. ISSN 1521-3889. doi:10.1002/andp.18551700105.

T. Fricke and D. Wendt. The markoff-automaton - a new algorithm for
simulating the time-evolution of large stochastic dynamic systems. Inter-
national Journal of Modern Physics C (IJMPC), 6:277-306, 1995.

203

BIBLIOGRAPHY

[Gai79]

[GBOO]

[Gil76]

Gil77]

[Gil01]

[GLP07]

[Gor 77|

[Gra93]

|GT03]

[GT05]

[Hel98]

B. Gaines. General systems research: quo vadis? In General Systems:
Yearbook of the Society for General Systems Research, volume 24, pp.
1 9.1979.

M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chem-
ical systems with many species and many channels. J. Phys. Chem. A,
104(9):1876-1889, 2000. doi:10.1021/jp993732q.

D. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational
Physics, 22(4):403-434, 1976. ISSN 00219991. doi:10.1016/0021-9991(76)
90041-3.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340-2361, 1977.

D. T. Gillespie. Approximate accelerated stochastic simulation of chem-
ically reacting systems. The Journal of Chemical Physics, 115(4):1716—-
1733, 2001. doi:10.1063/1.1378322.

D. T. Gillespie, S. Lampoudi, and L. R. Petzold. Effect of reactant size
on discrete stochastic chemical kinetics. The Journal of chemical physics,
126(3):034302, 2007. TSSN 0021-9606. doi:10.1063/1.2424461.

G. Gordon. System Simulation. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1977. ISBN 0138817979.

P. Grassberger. On correlations in "good" random number genera-
tors. Physics Letters A, 181(1):43-46, 1993. doi:10.1016,/0375-9601(93)
91122-L.

R. Goh and I. Thng. Mlist: An efficient pending event set structure for
discrete event simulation. International Journal of Stmulation - Systems,
Science €& Technology, 4(5-6):66-77, 2003.

N. Gilbert and K. G. Troitzsch. Simulation for the Social Scientist. Open
University Press, 2005.

P. Hellekalek. Good random number generators are (not so) easy to find.
Math. Comput. Simul., 46(5-6):485-505, 1998. ISSN 0378-4754.

204

BIBLIOGRAPHY

[HEUOS]

[HFE05]

[Him07]

[HUO7a]

[HUO7D)

[THC10]

[JefO5]

[Jen96|

[JLNU10]

J. Himmelspach, R. Ewald, and A. M. Uhrmacher. A flexible and scalable
experimentation layer. In S. Mason, R. Hill, and O. R. L. Moench (eds.),
Proceedings of the Winter Simulation Conference. 2008.

J. Hattne, D. Fange, and J. Elf. Stochastic reaction-diffusion simulation
with mesord. Bioinformatics, 21(12):2923-2924, 2005. ISSN 1367-4803.
doi:10.1093 /bioinformatics/bti431.

J. Himmelspach. Konzeption, Realisierung und Verwendung eines all-
gemeinen Modellierungs-, Simulations- und Fxperimentiersystems - En-
twicklung und Evaluation effizienter Simulationsalgorithmen, volume 4.
Sierke Verlag, Gottingen, 1 edition, 2007. ISBN 978-3-940333-73-5. Dis-

sertation, Universitit Rostock.

J. Himmelspach and A. M. Uhrmacher. The event queue problem and
pdevs. In Proceedings of the SpringSim °07, DEVS Integrative MéS Sym-
posium, pp. 257-264. SCS, 2007.

J. Himmelspach and A. M. Uhrmacher. Plug’n simulate. In Proceedings
of the 40th Annual Simulation Symposium, pp. 137-143. IEEE Computer
Society, 2007.

K. A. Iyengar, L. A. Harris, and P. Clancy. Accurate implementation of
leaping in space: The spatial partitioned-leaping algorithm. The Journal
of Chemical Physics, 132(9):094101, 2010. doi:10.1063/1.3310808.

P. R. Jeffries. A frame work for designing, implementing, and evaluating
simulations used as teaching strategies in nursing. Nursing Education Per-
spectives, 26(2):96 103, 2005. doi:10.1043/1536-5026(2005)026 < 0096:
AFWFDI>2.0.CO;2.

B. Jenkins. ISAAC, a fast cryptographic random number gener-
ator. http://www.burtleburtle.net/bob/rand/isaacafa.
html, 1996.

M. John, C. Lhoussain, J. Niehren, and A. Uhrmacher. The attributed pi
calculus with priorities. Transactions on Computational Systems Biology
XII. Special Issue on Modeling Methodologies, 5945:13-76, 2010. doi:10.
1007/978-3-642-11712-1_ 2.

205

BIBLIOGRAPHY

[Joh03]

[JPE*08]

[JU10]

[Kac85|

[Kal09)]

[KBRS*07]

[KCY93]

[KLNOS|

D. Johnson. Data Structures, Near Neighbor Searches, and Method-
ology, chapter A theoretician’s guide to the experimental analysis of
algorithms, pp. 215 250. American Mathematical Society, Oxford,
United States, 2003. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.25.1550.

M. Jeschke, A. Park, R. Ewald, R. Fujimoto, and A. M. Uhrmacher.
Parallel and distributed spatial simulation of chemical reactions. In PADS
'08: Proceedings of the 22nd Workshop on Principles of Advanced and
Distributed Simulation, pp. 51-59. IEEE Computer Society, Washington,
DC, USA, 2008. ISBN 978-0-7695-3159-5. doi:10.1109/PADS.2008.20.

T. Jahnke and T. Udrescu. Solving chemical master equations by adaptive
wavelet compression. .J. Comput. Phys., 229:5724 5741, 2010. ISSN 0021-
9991. doi:http://dx.doi.org/10.1016/j.jcp.2010.04.015.

B. Kachar. Direct visualization of organelle movement along actin fila-
ments dissociated from characean algae. Science, 227(4692):1355-1357,
1985. doi:10.1126/science.4038817.

G. Kalantzis. Hybrid stochastic simulations of intracellular reaction-
diffusion systems. Computational biology and chemistry, 33(3):205-215,
2009. ISSN 1476-928X. doi:10.1016/j.compbiolchem.2009.03.002.

J. Kovsan, R. Ben-Romano, S. C. Souza, A. S. Greenberg, and A. Rudich.
Regulation of adipocyte lipolysis by degradation of the perilipin protein.
Journal of Biological Chemistry, 282(30):21704 21711, 2007. doi:10.
1074 /jbe. M702223200.

A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. Com-
puter, 26(7):51-64, 1993. ISSN 0018-9162. doi:10.1109/MC.1993.
274942. The definition can be found in the online version at

http://www.cs.sunysb.edu/ vislab/projects/volume/papers.html.

D. Kéhn and N. Le Novére. The kinetic simulation algorithm ontology
(kisao) - a proposal for the classification of simulation algorithms in sys-

tems biology. Invited Talk, Super-Hackathon, Okinawa, Japan, 2008.

206

BIBLIOGRAPHY

[KLNK09]

[Knu76|

[Knu97]

[Kur72|

[KW78|

[LBNS09]

[LBS*99

[LK99]

ILL97|

D. Koéhn, N. Le Novére, and C. Kniipfer. Beyond structure: Kisao and
teddy - two ontologies addressing pragmatical and dynamical aspects of
computational models in systems biology. 3rd International Biocuration
Conference, 2009. doi:10.1038 /npre.2009.3137.1.

D. E. Knuth. Big omicron and big omega and big theta. SIGACT News,
8(2):18 24, 1976. ISSN 0163-5700. doi:10.1145/1008328.1008329.

D. E. Knuth. Art of Computer Programming, Volume 2: Seminumerical
Algorithms (3rd Edition). Addison-Wesley Professional, 3 edition, 1997.
ISBN 0201896842.

T. G. Kurtz. The relationship between stochastic and deterministic mod-
els for chemical reactions. The Journal of Chemical Physics, 57(7):2976
2978, 1972. doi:10.1063/1.1678692.

G. A. Korn and J. V. Wait. Digital Continuous-system Simulation. Pren-
tice Hall, 1978. ISBN 013212274X.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness
models: Methodology and a case study on combinatorial auctions. Jour-
nal of the ACM, 56(4):1-52, 2009. ISSN 0004-5411. doi:10.1145/1538902.
1538906.

C. Londos, D. L. Brasaemle, C. J. Schultz, D. C. adler Wailes, D. M.
Levin, A. R. Kimmel, and C. M. Rondinone. On the control of lipol-
ysis in adipocytes. Annals of the New York Academy of Sciences,
892(THE METABOLIC SYNDROME X: Convergence of Insulin Resis-
tance, Glucose Intolerance, Hypertension, Obesity, and Dyslipidemias-
Searching for the Underlying Defects):155-168, 1999. ISSN 1749-6632.
doi:10.1111/j.1749-6632.1999.th07794.x.

A. Law and D. W. Kelton. Simulation Modeling and Analysis (Indus-
trial Engineering and Management Science Series). McGraw-Hill Sci-
ence/Engineering/Math, 1999. ISBN 0070592926.

A. LaMarca and R. E. Ladner. The influence of caches on the performance
of sorting. In SODA °97: Proceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms, pp. 370-379. Society for Industrial and

207

BIBLIOGRAPHY

[LP06)

[LY06]

[Mar95]

[Mar03|

[MBS08]

[McG96]

[McL68]

[Mil99]

[Miy99]

IMKFKO4]

Applied Mathematics, Philadelphia, PA, USA, 1997. ISBN 0898713900.
d0i:10.1006/jagm.1998.0985.

H. Li and L. Petzold. Logarithmic direct method for discrete stochastic
simulation of chemically reacting systems. Technical report, Department
of Computer Science, University of California at Santa Barbara, Santa
Barbara, USA, 2006.

Lucien Birgé and Yves Rozenholc. How many bins should be put in
a regular histogram. ESAIM: P&S, 10:24-45, 2006. doi:10.1051/ps:
2006001.

G. Marsaglia. The Marsaglia random number CDROM including the
Diehard battery of tests of randomness. http://www.stat.fsu.
edu/pub/diehard/, 1995.

G. Marsaglia. Seeds for random number generators. Commun. ACM,
46(5):90-93, 2003. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/
769800.769827.

S. Macnamara, K. Burrage, and R. B. Sidje. Multiscale modeling of chem-
ical kinetics via the master equation. Multiscale Modeling € Simulation,
6(4):1146-1168, 2008.

C. C. McGeoch. Feature article - toward an experimental method for
algorithm simulation. INFORMS Journal on Computing, 8(1):1-15, 1996.

J. McLeod. Simulation; the dynamic modeling of ideas and systems with
computers. McGraw-Hill, 1968. ISBN 9780070454330.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, 1999. ISBN 0521658691.

T. Miyaoka. Increased expression of wnt-1 in schizophrenic brains.
Schizophrenia Research, 38(1):1-6, 1999. ISSN 09209964. doi:10.1016/
S0920-9964(98)00179-0.

R. T. Moon, A. D. Kohn, G. V. Ferrari, and A. Kaykas. Wnt and (-
catenin signalling: diseases and therapies. Nat Rev Genet, 5(9):691-701,
2004. ISSN 1471-0056. doi:10.1038/nrgl427.

208

BIBLIOGRAPHY

[MLBO7]|

[MNOg]

[Mor02]

[MPO6]

[IMPC+06]

IMSZ+06]

[MWKAO7]

[Nus05]

T. Marquez-Lago and K. Burrage. Binomial tau-leap spatial stochastic
simulation algorithm for applications in chemical kinetics. The Journal
of Chemical Physics, 127(10):104101, 2007. doi:10.1063/1.2771548.

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans.
Model. Comput. Simul., 8(1):3-30, 1998. ISSN 1049-3301. doi:10.1145/
272991.272995.

B. M. E. Moret. Towards a discipline of experimental algorithmics. In
M. H. Goldwasser, D. S. Johnson, and C. C. McGeoch (eds.), Data Struc-
tures, Near Neighbor Searches, and Methodology: Fifth and Sizth DI-
MACS Implementation Challenges, volume 59 of DIMACS Monographs,
pp. 197-213. AMS Press, 2002.

S. Martin and R. G. Parton. Lipid droplets: a unified view of a dynamic
organelle. Nature Reviews Molecular Cell Biology, 7(5):373-378, 2006.
ISSN 1471-0072. doi:10.1038 /nrm1912.

J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and
N. F. Samatova. The sorting direct method for stochastic simulation
of biochemical systems with varying reaction execution behavior. Com-
putational Biology and Chemistry, 30(1):39-49, 2006. doi:10.1016/j.
compbiolchem.2005.10.007.

H. Miyoshi, S. C. Souza, H.-H. Zhang, K. J. Strissel, M. A. Christoffolete,
J. Kovsan, A. Rudich, F. B. Kraemer, A. C. Bianco, M. S. Obin, and
A. S. Greenberg. Perilipin promotes hormone-sensitive lipase-mediated
adipocyte lipolysis via phosphorylation-dependent and -independent
mechanisms. Journal of Biological Chemistry, 281(23):15837-15844, 2006.
d0i:10.1074/jbe.M601097200.

M. Matsumoto, I. Wada, A. Kuramoto, and H. Ashihara. Common defects
in initialization of pseudorandom number generators. ACM Trans. Model.
Comput. Simul., 17(4), 2007. TSSN 1049-3301. doi:10.1145/1276927.
1276928.

R. Nusse. Wnt signaling in disease and in development. Cell research,
15(1):28-32, 2005. ISSN 1001-0602. doi:10.1038/sj.cr.7290260.

209

BIBLIOGRAPHY

INVBDG77| I. Nemes, T. Vidoczy, L. Botéar, and D. Dezsé Gal. A possible con-

[NZC*07]

[Ope]

[PAYS09)

[PB46]

[PLO9)

[P1a83]

[Pol00]

[PQO5]

struction of a complex chemical reaction network. Theoretical Chem-
istry Accounts: Theory, Computation, and Modeling (Theoretica Chimica
Acta), 45(3):215 223, 1977. ISSN 1432-881X (Print) 1432-2234 (Online).
d0i:10.1007/BF00552683.

J.-q. Niu, H.-r. Zheng, J.-s. Chen, M. Ma, and X.-f. Wang. A distributed-
based stochastic simulation algorithm for large biochemical reaction net-
works. In ICBBE 2007. The 1st International Conference on Bioinfor-
matics and Biomedical Engineering, 2007, pp. 502 -505. 2007. doi:10.
1109/ICBBE.2007.132.

OpenMP. http://openmp.org. Accessed 04/2010.

K. S. Perumalla, B. G. Aaby, S. B. Yoginath, and S. K. Seal. Gpu-based
real-time execution of vehicular mobility models in large-scale road net-
work scenarios. In PADS ’09: Proceedings of the 2009 ACM/IEEE/SCS
23rd Workshop on Principles of Advanced and Distributed Simulation,
pp- 95 103. IEEE Computer Society, Washington, DC, USA, 2009. ISBN
978-0-7695-3713-9. doi:10.1109/PADS.2009.22.

R. L. Plackett and J. P. Burman. The Design Of Optimum Multifactorial
Experiments. Biometrika, 33(4):305-325, 1946. doi:10.1093/biomet /33.
4.305.

L. Petzold and H. Li. Efficient Parallelization of Stochastic Simulation
Algorithm for Chemically Reacting Systems on the Graphics Processing

Unit. International Journal of High Performance Computing Applica-
tions, 00:1094342009106066, 2009. doi:10.1177/1094342009106066.

R. L. Plackett. Karl pearson and the chi-squared test. International Sta-
tistical Review / Revue Internationale de Statistique, 51(1):59-72, 1983.
ISSN 03067734. doi:10.2307,/1402731.

P. Polakis. Wnt signaling and cancer. Genes € development, 14(15):1837-
1851, 2000. ISSN 0890-9369. doi:10.1101/gad.14.15.1837.

C. Priami and P. Quaglia. Beta binders for biological interactions. In

Computational Methods in Systems Biology, pp. 20-33. Springer, 2005.

210

BIBLIOGRAPHY

[RBKOS]

[Riv72)

[RKDB06]

IRKSOS|

[Rob52]

[RPCGO3|

[San(09a|

[San09b|

[SBE0Y]

[Scho4]

D. Rossinelli, B. Bayati, and P. Koumoutsakos. Accelerated stochas-
tic and hybrid methods for spatial simulations of reaction-diffusion sys-
tems. Chemical Physics Letters, 451(1-3):136 140, 2008. ISSN 00092614.
d0i:10.1016/j.cplett.2007.11.055.

P. Rivett. Principles of Model Building: The Construction of Models for
Decision Analysis. John Wiley & Sons Ltd, 1972. ISBN 0471724653.

V. J. Rodriguez, J. A. Kaandorp, M. Dobrzynski, and J. G. Blom. Spa-
tial stochastic modelling of the phosphoenolpyruvate-dependent phospho-

transferase (pts) pathway in escherichia coli. Bioinformatics, 22(15):1895—
1901, 2006. doi:10.1093/bioinformatics/btl271.

A. Rojnuckarin, S. Kim, and S. Subramaniam. Brownian dynamics sim-
ulations of protein folding: Access to milliseconds time scale and beyond.
Proceedings of the National Academy of Sciences of the United States of
America, 95(8):4288-4292, 1998.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin
of the American Mathematical Society, 58(5):527-535, 1952.

M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie. Stiffness in
stochastic chemically reacting systems: The implicit tau-leaping method.
The Journal of Chemical Physics, 119(24):12784-12794, 2003. doi:10.
1063/1.1627296.

W. Sandmann. Sequential estimation for prescribed statistical accuracy
in stochastic simulation of biological systems. Mathematical Biosciences,
221(1):43-53, 2009. ISSN 00255564. doi:10.1016/j.mbs.2009.06.006.

W. Sandmann. Streamlined formulation of adaptive explicit-implicit tau-
leaping with automatic tau selection. In WSC’09: Proceedings of the 2009
Winter Simulation Conference, Austin, Texas, pp. pp. 1104 1112. 2009.

P. Sjoberg, O. G. Berg, and J. Elf. Taking the reaction-diffusion master
equation to the microscopic limit. eprint arXiv:0905.4629, 2009.

S. Schnell. Reaction kinetics in intracellular environments with macro-

molecular crowding: simulations and rate laws. Progress in Biophysics

211

BIBLIOGRAPHY

[Sci]

ISES02]

[SFO1]

[Sha9g|

[She07]

1SJUSO08]

[Sol09]

[Sta03|

[Ste08|

and Molecular Biology, 85(2-3):235-260, 2004. ISSN 00796107. doi:10.
1016/j.pbiomolbio.2004.01.012.

J. Scimark. http://math.nist.gov/scimark2/. Accessed 02/2010.

P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic
contributions to stochasticity in gene expression. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 99(20):12795—
12800, 2002. doi:10.1073/pnas.162041399.

P. Sanders and R. Fleischer. Asymptotic complexity from experiments?
a case study for randomized algorithms. In Algorithm Engineering: 4th
International Workshop, WAE 2000, Saarbriicken, Germany, September
2000. Proceedings, pp. 135+. Springer, 2001.

R. E. Shannon. Introduction to the art and science of simulation. In
WSC, volume 2, pp. 7-14. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1998. ISBN 0-7803-5134-7.

D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Pro-
cedures. Chapman & Hall/CRC, 2007. ISBN 1584888148, 9781584838147.

H.-J. Schulz, M. John, A. Unger, and H. Schumann. Visual analysis of bi-
partite biological networks. In Proceedings of the Eurographics Workshop
on Visual Computing for Biomedicine 2008. Delft, Netherlands, 2008.

D. Soloveichik. Robust stochastic chemical reaction networks and
bounded tau-leaping. J. Comput. Biol., 16:501-522, 2009.

M. Stamp. Once upon a time-memory trade-off. http://www.cs.
sjsu.edu/faculty/stamp/RUA/TMTO.pdf, 2003.

B. Stein. Model construction for knowledge-intensive engineering tasks.
InY. Liu, A. Sun, H. T. Loh, W. F. Lu, and E.-P. Lim (eds.), Advances of
Computational Intelligence in Industrial Systems, volume 116 of Studies
i Computational Intelligence, chapter 7, pp. 139-167. Springer, 2008.
ISBN 978-3-540-78296-4. do0i:10.1007/978-3-540-78297-1 7.

212

BIBLIOGRAPHY

[Sto01]

[STPOS|

[SV05]

ISYSY02]

ITBOA|

[TBO3|

[TDOG|

[TKHTO4]

[TOO01]

D. Stockburger. Introductory Statistics: Concepts, Models, and Applica-
tions, Second Edition. Atomic Dog Publishing, 2nd edition, 2001. ISBN
1931442460.

A. Slepoy, A. P. Thompson, and S. J. Plimpton. A constant-time Kki-
netic monte carlo algorithm for simulation of large biochemical reac-
tion networks. The Journal of Chemical Physics, 128(20):205101, 2008.
d0i:10.1063/1.2919546.

A. Samant and D. G. Vlachos. Overcoming stiffness in stochastic sim-
ulation stemming from partial equilibrium: A multiscale monte carlo
algorithm. The Journal of Chemical Physics, 123(14):144114+, 2005.
d0i:10.1063/1.2046628.

R. Srivastava, L. You, J. Summers, and J. Yin. Stochastic vs. determinis-
tic modeling of intracellular viral kinetics. Journal of Theoretical Biology,
218(3):309-321, 2002. ISSN 00225193. doi:10.1006/jtbi.2002.3078.

T. Tian and K. Burrage. Binomial leap methods for simulating stochas-
tic chemical kinetics. The Journal of Chemical Physics, 121(21):10356—
10364, 2004. doi:10.1063/1.1810475.

T. Tian and K. Burrage. Parallel implementation of stochastic simula-
tion for large-scale cellular processes. In HPCASIA °05: Proceedings of
the Fighth International Conference on High-Performance Computing in
Asia-Pacific Region, p. 621. IEEE Computer Society, Washington, DC,
USA, 2005. ISBN 0-7695-2486-9. doi:10.1109/HPCASIA.2005.67.

W. Trochim and J. P. Donnelly. The Research Methods Knowledge Base.
Atomic Dog, 2006. ISBN 1592602916.

K. Takahashi, K. Kaizu, B. Hu, and M. Tomita. A multi-algorithm,
multi-timescale method for cell simulation. Bioinformatics, 20(4):538—
546, 2004. ISSN 1367-4803. doi:10.1093/bioinformatics/btg442.

M. Thattai and A. van Oudenaarden. Intrinsic noise in gene regulatory
networks. Proceedings of the National Academy of Sciences of the United
States of America, 98(15):8614-8619, 2001. doi:10.1073/pnas.151588598.

213

BIBLIOGRAPHY

[TTOT03]

[VBO7]

[VDBO4]

[V1a08]

IVS17]

[WF99)

Y. Terada, H. Tanaka, T. Okado, H. Shimamura, S. Inoshita, M. Kuwa-
hara, and S. Sasaki. Expression and function of the developmental
gene wnt-4 during experimental acute renal failure in rats. J Am Soc
Nephrol, 14(5):1223 1233, 2003. ISSN 1046-6673. doi:10.1097/01.ASN.
0000060577.94532.06.

C. Versari and N. Busi. Stochastic simulation of biological systems
with dynamical compartment structure. In M. Calder and S. Gilmore
(eds.), Computational Methods in Systems Biology, volume 4695 of Lec-
ture Notes in Computer Science, chapter 6, pp. 80-95. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-75139-7. doi:10.
1007/978-3-540-75140-3 6.

R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical models for em-
pirical search-based performance tuning. Int. J. High Perform. Comput.
Appl., 18(1):65-94, 2004.

D. G. Vlachos. Temporal coarse-graining of microscopic-lattice ki-

netic monte carlo simulations via tau-leaping. Physical Review FE,
78(4):046713+, 2008. doi:10.1103/PhysRevE.78.046713.

M. Von Smoluchowski. Versuch einer mathematischen Theorie der Koagu-
lationskinetik kolloidaler Losungen. Zeitschrift fiir physikalische Chemie,
92(2):129-168, 1917.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
1999.

[WGMHI10] V. Wolf, R. Goel, M. Mateescu, and T. Henzinger. Solving the chemical

[WLV07]

master equation using sliding windows. BMC' Systems Biology, 4(1):42+,
2010. ISSN 1752-0509. doi:10.1186/1752-0509-4-42.

Weinan, Liu, D., and Vanden-Eijnden, E. Nested stochastic simulation
algorithms for chemical kinetic systems with multiple time scales. Journal
of Computational Physics, 221(1):158-180, 2007. ISSN 00219991. doi:10.
1016/j.jcp.2006.06.019.

214

BIBLIOGRAPHY

[WPO03|

[WSV+02

[Zei84]

[ZPK00]

[ZTWO05)

M. J. P. Wolf and B. Perron. The Video Game Theory Reader. Routledge,
1 edition, 2003. ISBN 0415965799.

M. van de Wetering, E. Sancho, C. Verweij, W. de Lau, I. Oving, A. Hurl-
stone, K. van der Horn, E. Batlle, D. Coudreuse, A.-P. Haramis, M. Tjon-
Pon-Fong, P. Moerer, M. van den Born, G. Soete, S. Pals, M. Eilers,
R. Medema, and H. Clevers. The [-catenin/tcf-4 complex imposes a

crypt progenitor phenotype on colorectal cancer cells. Cell, 111(2):241—
250, 2002.

B. P. Zeigler. Multifacetted modelling and discrete event simulation. Aca-
demic Press Professional, Inc., San Diego, CA, USA, 1984. ISBN 0-12-
778450-0.

B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and
Simulation, Second Edition. Academic Press, 2 edition, 2000. ISBN
0127784551.

J. S. van Zon and P. R. Ten Wolde. Green’s-function reaction dynamics:
A particle-based approach for simulating biochemical networks in time
and space. J Chem Phys, 123(23):234910, 2005. ISSN 0021-9606. doi:10.
1063/1.2137716.

215

Thesis Statements

Title: Efficient Non-Spatial and Spatial Simulation of Biochemical
Reaction Networks
Name: Matthias Jeschke

1. An ever increasing number of algorithm variants for the stochastic simulation of
reaction networks makes it important to establish concepts for a thorough evaluation
of these methods.

1.1 An algorithm evaluation is aggravated by various factors, e.g., the dependence
of methods to algorithm parameters or sub-algorithms, differences in the hardware, or
implementation issues. The influence of these factors can be alleviated by performing
simulations within an environment that ensures the same conditions for each algorithm

under scrutiny.

1.3 Using benchmark models instead of real-world problems for evaluation studies
offers several advantages. They are parameterizable and scalable and thus capable of
covering a large area of the model space; furthermore, they allow to represent both
isolated model characteristics (e.g., how the particles are distributed in space) and a

combination thereof.

1.4 Performance results underline the statement that there is no “silver bullet”, i.e.,
an algorithm that dominates all other variants for arbitrary model instances. They also
show that statements regarding the performance can only be made in a rather narrow

scope.
2. The basic idea of leap methods can also be applied to spatially inhomogeneous

systems. Doing so requires the inclusion of incoming diffusion events into the leap

calculation and considering diffusions and reactions as dependent events.

216

2.1 Estimating or assessing the performance of spatial 7-leaping (S7) is much more
difficult than for the non-spatial variant because the (time-varying) particle distribu-
tion in space has a considerable influence that allows only small steps in case of large

inhomogeneities.

2.2 A “parallelization inside a simulation run” for S7 should only be used for the
analysis of single runs; if many trajectories are needed, a “parallelization across a sim-

ulation” technique is likely faster.

3. In a multi-algorithm DES (maDES), intra-rules are still handled inside the in-
dividual simulations, but the addition of inter-rules requires a coordinator component
which has to decide when those should be applied. It also takes care of the synchro-

nization between the subsidiary simulations.
3.1 A maDES can combine population-based and individual-based simulations, which
makes it possible to create more complex models for studying, e.g., the effect of crowd-

ing or active transport processes.

3.2 The physical presence of individual entities in a maDES can influence the dy-

namics of diffusion dependent reactions at the population level.

217

