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0. Popularwissenschaftliche Einfiihrung
in das Thema

Osymandias
Percy Bysshe Shelley, Ubersetzung von Adolf Strodtmann’

Ein Wanderer kam aus einem alten Land,
Und sprach: Ein riesig Triimmerbild von Stein
Steht in der Wiiste, rumpflos Bein an Bein,
Das Haupt daneben, halb verdeckt von Sand.

Der Ziige Trotz belehrt uns: wohl verstand
Der Bildner, jenes eitlen Hohnes Schein
Zu lesen, der in todten Stoff hinein
Geprigt den Stempel seiner ehrnen Hand.

Und auf dem Sockel steht die Schrift: ,Mein Name
Ist Osymandias, aller Kon’ge Konig: -
Seht meine Werke, Mdcht’ge, und erbebt!*

Nichts weiter blieb. Ein Bild von distrem Grame,
Dehnt um die Trimmer endlos, kahl, eintinig
Die Wiiste sich, die den Koloss begribt.

Von der Weisheit des Sandes

Kopflos steht der grofiméchtige Pharao in der Wiiste und sein Reich ist seit mehr als 3000
Jahren Geschichte. Kopflos stiirmen wir hinterher, leisten Landver6dung und Waldster-
ben Vorschub. Ein Drittel des Festlandes, so lautet eine neue Schétzung, wird bis zum
Ende des Jahrhunderts versanden?. Sahara, Gobi, Kalahari, die Grofie Sandwiiste Aus-
traliens - Trockengebiete und menschengemachte Odlande dehnen sich immer weiter aus.
Der Aralsee, einst der viertgrofste See der Welt, besteht nur mehr aus drei Tiimpeln und
schickt giftige Salzstiirme aus. Abholzung, Uberweidung und Ubernutzung des Bodens,
falsche Bewisserung sowie Techniken und politische Entscheidungen, die keine Riicksicht
auf empfindliche Okosysteme nehmen, sind Ursachen fiir die Degradation der Landschaft.

L Adolf Strodtmann: Bibliothek auslindischer Klassiker in deutscher Ubertragung, 29. Band, Englische
Literatur, Shellens ausgewé#hlte Dichtungen, Erster Teil, Verlag des Bibliographischen Instituts, Hild-
burghausen (1866). Anmerkung: Osymandias ist der griechische Name von Ramses II.

Siche z.B. A. Newton: Ezpanding sands, Nature Reports Climate Change, abgerufen am 27. August
2009, doi:10.1038/climate.2009.84.
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Gendhrt und beschleunigt werden diese Entwicklungen durch den Konsumhunger derer,
die nicht darauf angewiesen sind, den ausgemergelten Béden ihren Lebensunterhalt ab-
zutrotzen.

Anderungen in der Bodenbedeckung gehéren neben Treibhausgasen, Aerosolen und
Verdnderungen der Sonneneinstrahlung zu den bestimmenden Einflussfaktoren der glo-
balen Erwirmung. Zwischen 1.8°C und 4°C wird laut Weltklimarat die Temperatur bis
Ende des Jahrhunderts im Vergleich zum letzten ansteigen®. Eine Erwirmung iiber 1.5°C
hinaus setzt unumkehrbare Prozesse in Gang. Der Weltklimarat schitzt, dass dann etwa
20-30% der im Modell beriicksichtigten Pflanzen- und Tierarten aussterben werden, so-
gar bis zu 70%, wenn die Temperatur um mehr als 3.5°C ansteigt. Das betrifft vor allem
empfindliche Lebenswelten wie Korallenriffe, Regen- und Mangrovenwilder, aber auch
Polareis, Gletscher und Tundra kénnten vollig von der Landkarte verschwinden. Etliche
Inseln und Kiistenstreifen werden im Meer versinken, in anderen Regionen werden ex-
treme Wetterschwankungen das Leben auf den Kopf stellen. Die Konsequenzen fiir die
Weltbevolkerung, die bis zum Jahr 2050 auf etwa 9 Milliarden anwachsen wird, sind ka-
tastrophal - eine Verschirfung der ohnehin vorhandenen globalen Probleme wie Hunger,
Armut und Krieg sind die Folge.

Koénnen griine Technologien den Klimawandel mildern?

Der Sand rinnt durch das Stundenglas. Es geht nicht mehr darum, einen Temperaturan-
stieg zu verhindern, sondern ihn zu beschrinken. Im Strategiespiel ,Civilization® ist das
einfach: man klettert hoher im Technologiebaum und erfindet z.B. die Technik ,,Okologie“
oder ,,Kernfusion®, das ermoglicht Umweltschutz, Kreislaufwirtschaft und stillt den wach-
senden Energiebedarf. Der Weltklimarat zeigt in seinem Bericht kurz- und langfristige
Méglichkeiten auf, wie sich die Menschheit dem Klimawandel anpassen und wie dieser
gebremst werden kann - dem technologischen Wandel kommt dabei eine Schliisselrolle
zu. Dazu gehoren nicht nur neues technisches Wissen und verbesserte Organisation, son-
dern auch fortschreitende Umweltkompetenz und gesellschaftliche Reife. Was niitzt das
energieautarke Okohotel an der Ostsee, wenn Urlauber dort Zwischenstation auf ihrem
Spafflug um den Globus machen? Auf die Bilanz kommt es an, zum Beispiel gemessen
am eigenen Gkologischen FuRabdruck?, und auf die Summe aller Mittel.

Verbesserte oder neue Technologien konnen die Anreicherung von Treibhausgasen in
der Atmosphére verringern. Die Internationale Energiebehorde beziffert zum Beispiel das
Einsparpotential von nicht-fossilen Energiequellen und Effizienzsteigerungen auf fast 15
Gigatonnen Kohlendioxid bis zum Jahr 2030, wodurch der Temperaturanstieg auf 2°C
begrenzt werden konnte. Den Lowenanteil von 80 % konnten Energieeffizienz und erneu-
erbare Energien sowie Biokraftstoffe iibernehmen, den Rest erbrichten die Speicherung
von Kohlendioxid und die Nutzung der Kernenergie (siehe Abb. 0.1)°. Dabei ziihlen Spei-

*Informationen aus dem 4. Sachstandsbericht des Zwischenstaatlichen Ausschusses fiir Klimaverinde-
rungen der Vereinten Nationen, Ref. IPCC (2007). Die Spannweite fiir den optimistischen Anstieg ist
1.1°C-2.9°C, fiir den pessimistischen 2.4°C-6.4°C.

*Zum Weiterlesen: www.footprintnetwork.org .

5Szenario-Schiitzung der Internationalen Energiebehirde, Referenz TEA (2009) im Literaturverzeichnis.
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O Effiziente Kraftwerke
1]
O Erneuerbare Energien Lo
O Biokraftstoffe
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Abbildung 0.1.: Werden bis 2030 etwa 15 Gigatonnen Kohlendioxid gespart, kann der
Temperaturanstieg auf 2°C begrenzt werden, beziffert die Internationale
Energiebehdrde.

chertechnologien im Gegensatz zur Kernenergietechnik zu den Umwelttechnologien - auch
wenn es besser wire, Schadstoffe zu vermeiden, als sie nachtriglich beseitigen zu miissen.

Umwelttechnologien konnen neben der Klimabilanz des Energiesektors auch die an-
derer Wirtschaftsbereiche verbessern. Beispiele sind Techniken zur Wassergewinnung
und -aufbereitung, Agrartechnologien, Aufforstung und Begriinung, geschlossene Stoff-
kreisldufe in der Industrie oder die Entwicklung von Materialien, die energieintensive
oder umweltschédigende Produkte ersetzen konnen. Insgesamt schitzt der Weltklimarat,
dass die Einsparsumme aus allen Technologien den Ausstofs von Treibhausgasen auf dem
Niveau des Jahres 2000 stabilisieren konnte. Doch um dieses Potential auszuschopfen,
muss in Forschung und Entwicklung investiert werden. In die Verbesserung der Energie-
effizienz und in die Erforschung nicht-fossiler Energiequellen miissten zum Beispiel etwa
12 Billionen US-Dollar innerhalb der néchsten 20 Jahre flieflen - das ist ungefihr das
Hundertfache des EU-Jahresetats (Quelle: Internationale Energiebehorde, IEA (2009)).

Ein unsicheres Geschift mit vielen Optionen

Wissenschaftler und Politiker wagen einen weiten Blick in die Zukunft. Wird die Ge-
samtheit aller Tiiftler und Unternehmer diese Summe aufbringen wollen und kénnen?
Was sind die Antriebsfedern und wie wird iiber eine Investition entschieden, wenn nicht
klar ist, ob die Idee auch fruchtet? Die Daumenregel lautet: Springt mehr heraus, als
investiert wird, lohnt sich der Plan und Geldgeber kénnten iiberzeugt werden. Die Unter-
nehmensberatung Berger schitzt, dass das Marktinteresse an Umwelttechnologien weiter
stark wachsen wird. Innerhalb der néchsten zehn Jahre wird sich ihr Handelsanteil mehr
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Energieeffizienz 450 900

Nachhaltige

Wasserwirtschaft 190 480

Nachhaltige

Mobilitst 180 sl

Energieerzeugung 100 280

Natiirliche Ressourcen &
ialeffizi ahr 2005
Materialeffizienz 40 130 J

. . Jahr 2020
Kreislaufwirtschaft, Abfall, 30 50

Wiederverwertung Angaben in Milliarden Euro

Abbildung 0.2.: Geschétzter Marktanteil von Umwelttechnologien aus der Sicht von Un-
ternehmen im Jahr 2020 in Milliarden Euro. Quelle: RBSC (2007).

als verdoppeln und etwa 2200 Milliarden Euro betragen (siehe Abb. 0.2). Das gilt fiir
alle Sektoren angefangen von Energieeffizienz, nachhaltiger Wasserwirtschaft, nachhalti-
ger Mobilitdt, Energieerzeugung, natiirlichen Rohstoffen und Materialeffizienz bis hin zu
Kreislaufwirtschaft, Abfall und Wiederverwertung.

Die Aussichten sind gut, doch die Schwierigkeit fiir Unternehmen besteht darin, ab-
zuschétzen, wieviel investiert werden muss und was die eigene Erfindung oder Weiter-
entwicklung einmal Wert sein wird. Forschung und Entwicklung ist ein unsicheres und
komplexes Geschift, das sich iiber Jahre hinweg ziehen kann und bei dem der Zufall kréf-
tig mitmischt. , Technischer Fortschritt“, so die Okonomin Joan Robinson (1903-1983), ,ist
vorgegeben durch Gott, Wissenschaftler und Ingenieure“.% Da kann man sich kaum auf
Papier und Bleistift verlassen, um das Vorhaben zu bewerten. Denn unter Umstidnden
scheitert die Investition und ein guter Teil des Geldes, nicht selten Millionen Euro, ver-
sackt im Sand. Ein Beispiel fiir eine solche irreversible Investition sind Wissenschaftler
und Techniker, die sich einen neuen Arbeitgeber suchen. Thr Wissen und ihre Erfahrung
sind fiir den Unternehmer verloren. Die Unsicherheit iiber Erfolg oder Misserfolg eines
Projektes fiihrt daher zu einem Risikoabschlag, wenn potentielle Investitionen gepriift
werden. Allerdings iiberschitzen klassische Bewertungsmethoden dieses Risiko, denn sie
klammern Handlungsspielrdume aus, die sich vor allem in langfristigen Projekten mit
Irreversibilitdt und hoher Unsicherheit eréffnen.

Eine alternative Bewertungsmethode ist die stochastische Optimierung. Sie liefert ein
Mittel an die Hand, aus einer Palette von Handlungsmdglichkeiten die bestmogliche
auszuwihlen. Mit Unsicherheit behaftete Grofen werden dabei mit Hilfe einer Wahr-
scheinlichkeitsverteilung beriicksichtigt, die aus der Erfahrung gewonnen werden kann.
Zum Beispiel ist zu entscheiden, ob mit voller Kraft oder zweckméfiger auf Sparflam-

®Gefunden auf Seite 151 in Dosi (2000).
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Wert eines Investitionsprojektes

A) chne und B) mit Beriicksichtigung
von Irreversibilitat und Unsicherheit

NPV: r
abgezinste Zahlungsstrome, g
englisch: Net Present Value

Optionswert:
z. B. Aufschubsoption,
Abbruchsoption,

Wachstumsoption, ... B

Quelle:
eigenes Foto
und Abbildung

Abbildung 0.3.: Wert eines Investitionsprojektes A) ohne und B) mit Beriicksichtigung
von Irreversibilitdt und Unsicherheit.

me gekocht werden soll, ob der Beginn verschoben, das Projekt abgebrochen oder der
eingeschlagene Kurs noch einmal iiberdacht werden soll. Viele dieser Optionen beste-
hen wéhrend der gesamten Umsetzung und konnen daher jederzeit in Frage kommen -
zumal Wissen und Erfahrung wachsen, die Unsicherheit dagegen iiber den weiteren Ver-
lauf abnimmt. In jedem Zeitpunkt wird dann fiir jede der Moglichkeiten gefragt, was
wire wenn? So gerdt die Wahl des optimalen Entscheidungspfades zur mathematischen
Herausforderung, doch die Fleiffarbeit kann ein Rechnerprogramm {ibernehmen.

Ein Ergebnis der stochastischen Optimierung ist, dass Handlungsspielrdumen ein Geld-
wert, der sogenannten Optionswert, beigemessen werden muss. Um diesen Betrag unter-
schitzen klassische Methoden, wie die Methode der abgezinsten Zahlungsstrome, Inves-
titionsprojekte (siehe Abb. 0.3). Der Fehler ist umso grofer, je mehr das Vorhaben durch
Irreversibilitdt und Unsicherheit geprigt ist. Aber genau das sind wichtige Kennzeichen
von Forschung und Entwicklung. Dass Handlungspielrdume bei der Bewertung meist un-
ter den Tisch fallen, ist ein Grund dafiir, dass zu zogerlich investiert wird.

Eine weitere Investitionsschwelle entsteht, weil Wissen auf Andere iiberschwappt und
diese nutzniefien konnen, ohne zu bezahlen. Patente schiitzen davor nur ungeniigend - die
Erfindung kann zum Beispiel imitiert werden. Das kann dazu fithren, dass ein Unterneh-
men beschlieft, die Entwicklung zunéchst einmal abzuwarten. Denn Wissen ist Kapital,
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und das soll zu allererst fiir das eigene Unternehmen arbeiten. Stiinde andererseits alles
Wissen frei zur Verfiigung, kénnte auch manchen Irrtiimern aus dem Weg gegangen und
nicht jedes Rad miisste zweimal erfunden werden. Solche Effekte aufierhalb des eigenen
Einflusses bewirken, dass insgesamt etwa zwei- bis viermal weniger in Forschung und
Entwicklung sowie den Erwerb von neuen Technologien investiert wird, als es klassische
Modelle erwarten lassen.”

Was hat Umweltpolitik mit Forschung und Entwicklung zu tun?

Umweltfreundlicher technischer Fortschritt bleibt im Vergleich noch mehr unter seinem
Potenzial. Denn es kommt hinzu, dass Umweltverschmutzung und Umweltverbrauch fiir
Unternehmen und Konsumenten kaum etwas kosten. Diese Kosten werden der Gesell-
schaft aufgebiirdet. So besteht wenig geldwerter Anreiz, 6kologisch und nachhaltig zu
wirtschaften - oder zu erfinden. Zum Beispiel effizienter mit Energie umzugehen. Durch-
schnittlich 3.5 Eurocent kostet es, den Energiebedarf fiir eine Stunde Strom herzustellen.
6-8 Eurocent miissten pro Kilowattstunde bei Kohle, Erdol und Erdgas draufgeschlagen
werden, wiirden die Kosten fiir Luftverschmutzung und Klimawandel eingerechnet. Mit
knapp einem Eurocent an nicht beriicksichtigten Kosten fiir die Allgemeinheit schnei-
den Wind, Wasser und Sonne schon besser ab (Quelle: BMU- Gutachten 2007, Krewitt
and Schlomann (2007)). Doch ohne staatliche Unterstiitzung wie Okosteuer oder dem
Erneuerbare Energien-Gesetz, das Preise und Abkaufsicherheit garantiert, wiren diese
Alternativen nicht wettbewerbsfihig.

Viele Unsicherheiten, zogerliche Investoren, iiberschwappendes Wissen, Umweltver-
brauch unter Wert - ist es also realistisch, dass die notwendigen 12 Billionen US-Dollar
innerhalb der nichsten 20 Jahre rollen werden, um mittels griiner Technologien den Kli-
mawandel zu verlangsamen? Es ist nicht realistisch, falls nicht Barrieren abgebaut und
Umweltpolitik ausgebaut wiirde, wirft der Weltklimarat ein. Also ist Umweltpolitik ge-
fragt, den technischen Fortschritt anzukurbeln und den Weg in die richtige Richtung
zu ebnen. Das Portfolio an Politiken ist vielseitig: Subventionen fiir Umweltforschung,
Steuern und Abgaben, handelbare Emissionszertifikate, dynamische Standards fiir Ener-
gieeffizienz, verschérftes Haftungs- und Umweltrecht oder griine Beschaffung durch die
offentliche Hand sind nur ein paar Beispiele.

Da stellt sich die Frage, was ist effizient? Préziser, was ist oko-effizient? Idealerwei-
se miissten Umweltpolitiker wissen, was in den Kopfen von Erfindern vorgeht, um ein-
schétzen zu konnen, welche der Technologien nicht nur viel verspricht. Sie miissen sogar
abschitzen, welche Auswirkungen Politikmafnahmen und Technologien haben werden.
Wird der Energieverbrauch tatséchlich sinken oder tappt man in Jevons Falle, d.h. es
wird zwar effizienter produziert, aber in der Summe mehr verbraucht? Aufwand und
Nutzen miissen im Verhéltnis stehen. Auch hier spielen Unsicherheiten eine wichtige
Rolle, denn ein Klima wandelt sich nicht von heute auf morgen, weder in die eine noch
in die andere Richtung. Auf welche Weise kann Umweltpolitik Unternehmen mobilisie-
ren, umweltfreundliche Technologien zu erforschen, wenn unsicher ist, wann und ob ein

"Quelle: Gillingham et al. (2009)
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Durchbruch erreicht werden kann? Welche Handlungsspielriume hat ein Unternehmen,
wenn Subventionen, Steueranreize oder Effizienzstandards unerwartet wegfallen oder ge-
dndert werden? Technologische Unsicherheit und Politikunsicherheit - das sind die beiden
Brillengléser, mit denen in dieser Arbeit die Investitionsentscheidungen eines einzelnen
Unternehmens studiert werden, um Antworten auf die aufgeworfenen Fragen zu finden.
Stochastische Optimierung (Theorie der Realoptionen) kommt zum Einsatz, um zum
Beispiel auszuloten, ob sich die Investition in Rostocks Meereswindpark lohnt oder wie
Energieeffizienzforschung befliigelt werden kann.

Das sind nur Mosaiksteinchen im Versténdnis dariiber, wie das Potenzial griiner Tech-
nologien ausgeschopft werden kann, um den Klimawandel zu mildern. In der Tat wird
jedes aus Mosaiksteinchen geformte Bild nur ein unvollstdndiges Abbild der Wirklichkeit
bleiben. Ein vollstdndiges Bild zu schaffen, hiefe, Vergangenheit und Zukunft genau zu
kennen. Das bringt uns zuriick an den Ausgang dieser Einfiihrung. Da immer Aspekte
der Vergangenheit im Dunkel bleiben werden, wird ein Historiker nicht perfekt rekon-
struieren konnen, was zum Untergang von Osymandias’ Reich fiihrte. Genauso wenig
wird ein Kiinstler die verwitterte Statue des legendéren Pharao detailgetreu wiederher-
stellen konnen. Und ebenso wenig ist Wissenschaft in der Lage, einen prézisen Weg in
die Zukunft zu beschreiben. Eine interessante Uberlegung findet sich da im Roman von
Antoine de Saint-Exupéry. Die Hauptfigur dieses Buches, der Prinz eines Wiistenstaates,
unterhilt sich auf langen Spaziergéingen mit seinem Vater iiber die Verantwortung, die
das Fillen von Entscheidungen mit sich bringt. Eines Tages sagt der Sohn: Immer geht
es nur darum, die Gegenwart zu ordnen. Was fruchtet es, iber ihre Erbschaft zu streiten?
Die Zukunft soll man nicht voraussehen wollen, sondern mdglich machen.® In diesem Sin-
ne soll die Arbeit dazu beitragen, besser zu verstehen, wie es dazu kommen kann, dass
Fehlentscheidungen getroffen werden und wie diese verhindert werden kénnen. Es ist von
Wert, Handlungsspielrdume offen zu halten, lautet ein zentrales Paradigma der Theorie
der Realoptionen.

8 Antoine de Saint-Exupéry: Die Stadt in der Wiiste, S. 187, Ullstein Buchverlage, Berlin (1997).
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1.1. Motivation

Ozymandias
Percy Bysshe Shelley’

I met a traveller from an antique land,
Who said - "two vast and trunkless legs of stone
Stand in the desert ... near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lips, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, this legend clear:

My name is Ozymandias, King of Kings,
Look on my Works ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away."”

The wisdom of the sands

The mighty pharaoh stands headless in the desert and his kingdom is history for more
than 3000 years. Mindlessly we are storming the earth, pushing the land to become
desolate and causing forests to die. One third of the continents, according to recent
estimate, will turn into sand by the end of this century?. Sahara, Gobi, Kalahari, the
Great Sandy Desert of Australia - drylands and man-made wastelands are expanding.
Lake Aral, once the fourth largest in the world, today barely three ponds, sends poisonous
sand storms towards villages and cities. Deforestation, overgrazing, soil over-use, wrong
irrigation, as well as techniques and political decisions that do not take our sensitive
eco-systems into consideration are reasons for the degradation of our landscape.
Canopy changes, along with green house gases, aerosols, and changes in solar irradia-
tion, are among the main factors that cause global warming. The global temperature will
rise, in comparison to its value at the end of the last century, between 1.8 °C and 4 ° C by

!Percy Bysshe Shelley: Ozymandias, MS Shelley e. 4 fol. 85 r, Bodleian, Library, University of Oxford
(1817-1818).

2See e.g. A. Newton: Ezpanding Sands, Nature Reports Climate Change, Published online: 27 August
2009, doi:10.1038/climate.2009.84.
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the end of this century according to the International Panel of Climate Change (IPCC)3.
An increase above 1.5 °C will trigger irreversible processes resulting in the death of 20 to
30 % of all the plants and animals considered in their model. If the temperature were to
increase by more than 3.5 °C, an alarming 70 % of species would become extinct. This af-
fects especially sensitive eco-systems such as coral reefs, rainforests and mangrove forests,
but also polar ice, glaciers, and tundra could completely disappear from the map. Many
islands and coastal areas would sink into the ocean. In other regions extreme weather
conditions would turn normal life upside down. Consequences for humankind, at a pro-
jected population of 9 billion people by the end of 2050, are catastrophic - intensifying
life-threatening global problems such as famine, poverty, and war.

Can green technologies alleviate climate change?

The sand is running through the hourglass. It is not about avoiding a temperature rise,
but limiting it. In the strategy game 'Civilization’ this is simple: the player climbs the tree
of technologies and invents techniques like ’ecology’ or ’fusion’ enabling environmental
protection and closed-loop industrial production. Even the growing hunger for energy
can be reduced. In its report, the IPCC suggests how we could adapt to and slow
down climate change in the short and long term. Technological change plays a key role.
Improved or new technologies allow lowering the accumulation of green house gases in
the atmosphere. According to the International Energy Agency, for example, non-fossil
energy sources and efficiency improvements have the potential to prevent the release of as
much as 15 gigatons of carbon dioxide by 2030 (IEA, 2009). This could limit the increase
in temperature to 2 °C. The lion’s share, 80 %, could be shouldered by energy efficiency,
renewable energies, and biofuels. The remainder could be attained by capturing carbon
and using nuclear energy. In order to tap the full potential, investments in research
and development are needed. For example, in order to improve energy efficiency and to
explore non-fossil energy sources. 12 trillion US Dollars are needed within the next 20
years. But the IPCC comments on the options to respond to climate change

"The capacity to adapt and mitigate is dependent on socio-economic and en-
vironmental circumstances and the availability of information and technology
.. and further on, "... The economic mitigation potential, which is generally
greater than the market mitigation potential, can only be achieved when adequate

policies are in place and barriers are removed...", (IPCC, 2007, p. 56-58).

Thus, green technologies bear a strong potential to alleviate climate change, but their
utilisation is contingent on interdependent factors which are by nature impossible to
anticipate or predict. Yet, decisions about adaption and mitigation measures have to be
made. A laissez-fair strategy is not an option. Therefore, a better understanding of the
aspects of this complex problem is needed. This thesis explores how the decision to invest

4th Synthesis Report, IPCC (2007). The error margin for the best estimate in the optimistic scenario
is 1.1 °C - 2.9 °C. For the pessimistic scenario it is 2.4 °C - 6.4 °C. Numbers are given for the years
2090-2099 relative to 1990-1999.
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in research and development towards greener technologies is influenced by environmental
policies in a world of technical and policy uncertainty.

1.2. Purpose and outline

Technical change can contribute to alleviating climate change, but this potential can
only be realised if policies provide incentives for firms to invest in innovations stimulat-
ing the development or adoption of greener technologies. Relatively little is known about
how to stimulate the phase of research and development, whereas the study of induced
technology adoption and diffusion has received considerable attention in environmental-
economics. This observation is the starting point for this thesis. On the basis of the-
oretical models, we will explore how policy can spur research and development (R&D)
of environmental technologies. A key issue in the investigation is to incorporate uncer-
tainty and irreversibility. But these features are most often missing in the literature.
There are several dimensions of uncertainty. A generic uncertainty of R&D is related to
the scientific progress of an R&D project. Therefore, apart from sunk investment cost,
this thesis considers technical uncertainty. The second important uncertainty, which we
will also include in the context of our research topic, is uncertainty about the policy
framework. Our sequential investment models are solved by stochastic optimisation (real
option analysis). In order to reduce the complexity of the research problem, we will focus
on the investment decisions of a single firm.

The background to the analysis is provided in Chapter 2. In Section 2.1, we will
discuss what is meant by ’green technological progress’, and we will present empirical
findings of its determinants. Section 2.2 continues with an outline of the rationale for
policy interventions, illustrating environmental and knowledge-related externalities. Ab-
stracting from uncertainties, principal options for environmental and technology policy
are reviewed and then discussed with respect to their (dynamic) efficiency. In Section 2.3,
we will introduce the concepts of irreversibility and uncertainty. We provide arguments
as to why neglecting these features can be misleading. The environmental-economics lit-
erature that takes irreversibility and uncertainty into consideration is small, particularly
where R&D investment is concerned. We will survey their findings on green technolog-
ical progress, uncertainty, and environmental policy. Section 2.4 concludes the chapter
by summarising open questions from the literature and implications for the design of
theoretical models.

In the beginning of Chapter 3, we illustrate the formalisation of technical uncertainty
and present the main findings from the literature on real options of R&D investments.
Afterwards, different sequential investment models incorporating sunk investment costs
and technical uncertainty are studied. In Section 3.3, we describe the basic model and
discuss its solution and limitations. To solve the model, we use the methods of dynamic
programming and Monte Carlo simulation. The basic model is then applied to offshore
wind park investments in Section 3.4. We extend the basic model to study the impact of
the German Renewable Energy Act on investment decisions. In Section 3.5, we develop
a model to analyse the impact of environmental policy on a firm’s decision to develop

10
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energy-saving technologies. Environmental policy takes the form of energy taxes, trad-
able and non-tradable energy quotas, as well as R&D investment subsidies. Section 3.6
summarises the chapter.

In Chapter 4, we introduce policy uncertainty. After a short discussion as to the
importance of this extension in Section 4.1, Section 4.2 outlines the findings in R&D
investment models that consider policy uncertainty. This is followed by a description of
our way to formalise this type of uncertainty (Section 4.3). The model in Section 4.4
analyses the influence of uncertain R&D subsidies on the investment decisions. We study
two cases. In the first one, it is uncertain how long subsidies will be available. In the
second one, the launch of an R&D programme is not known. In Section 4.5, we explore
the impact of uncertainty of energy taxes and quotas. The chapter is concluded by a
summary.

Chapter 5 summarises the main results of this thesis and discusses potential starting
points for future research.

11



2. Basic concepts and survey of
literature

2.1. Green technological progress

Progress is commonly understood as a gradual betterment. Thus, green technological
progress in principle describes technological innovation that benefits the environment.
This leads to three questions. First, what are the characteristics of technological change?
Second, what does ’benefiting the environment’ mean, and how can this be measured?
And third, what is the broader context green technological progress has to be placed in?

Technological progress passes three basic stages which are called invention, innovation,
and diffusion (Schumpeter, 1942). At first, ideas are born which may lead to an invention.
This can be a technical invention, i.e. a new process or a novel product, or an alternative
way of organising the production cycle. The invention is tested and further developed.
Some ideas ripen and are brought to the markets. This turns an invention into an
innovation. Possibly, an innovation spreads among other users who further adapt it to
their needs - the innovation enters the stage of diffusion'. Technological progress is,
however, not a linear process but complex and subject to interruptions, corrections, and
coincidences. Selected stylised facts of technical change are, for example, the ’intrinsically
uncertain nature of inventive activity’, the role of ’long-run planning for firms (and not
only for them)’, and ’a significant correlation between R&D efforts and an innovative
output’ (Dosi, 2000, p. 151).

In all three stages of the innovation process, the magnitude of change may be different.
A common taxonomy is to distinguish between 1) incremental and 2) radical innovation,
3) new technology systems, and 4) changes of techno-economic paradigms (Freeman and
Perez, 1988). Incremental innovations are continuous improvements of technologies or
prototypes in use, often conceptualised as learning by doing (Arrow, 1962) or learning
by using (Rosenberg, 1982). Radical innovations happen sporadically? and are typically
results of mid- or long-term research and development activities of a single firm or a
research network. Some of them, especially if technological and organisational innova-

!There are two stylised facts for the adoption of innovations. First, there is a lag between the avail-
ability of an innovation and its adoption. Second, the diffusion among applicants follows an S-curve.
Innovators are the first few users followed by a growing number of early adopters. Possibly, the
diffusion gains momentum until a majority has introduced the innovation. Afterwards, the diffusion
process slows down again reaching market saturation (Rogers, 1995). For a review on the literature of
timing of technology adoption, see Hoppe (2002). For a review of empirical literature see Vollebergh
(2007).

2That is if viewed from outside of the innovator’s institution. From inside, the learning process is to a
large extend also of ’cumulative nature’, see Dosi et al. (1994, stylised fact 25).

12
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tions are combined, have the potential to induce broader structural changes affecting
several sectors and establishing new technology systems. Even more far-reaching in the
magnitude of change is the fourth type. For this type, a new technological regime dom-
inates the development in most sectors and countries for decades, also able to shift the
behaviour of societies.

Technological change is to a large extend driven by steered economic activities that
promise profits.> The decision for these activities is influenced by various factors, e.g.
the stock of already existing knowledge, relative cost of input factors, expected market
demand, other market conditions such as the number of competitors, preferences of sup-
pliers and consumers, as well as institutional, legal, and policy structures. The relevance
of these factors is in flux during the innovation process. For example, supply-side factors
seem more important for research and development activities, whereas the diffusion of
innovation is likely stronger demand-side driven.?

Green technological progress drives the direction and rate of technological change to-
wards 'environmental benefits’. This is subject to on-going discussions on how to define
eco-innovations. We follow a recent definition stating

Eco-innovation is the production, application or exploitation of a good, service,
production process, organisational structure, or management or business method
that is novel to the firm or user and which results, throughout its life cycle, in a
reduction of environmental risk, pollution, and the negative impacts of resources
use (including energy use) compared to relevant alternatives (Kemp and Pear-
son, 2008).

Note that it is the actual benefit for the environment and not the intention of the innova-
tion that counts.® This implies on the one hand that conventional innovations, too, can
fulfill the criteria, e.g. new, resource saving products, as long as they are 'doing better’
than their alternatives. On the other hand, innovations with the attribute ’environmen-
tal’ are not necessarily eco-innovations. This has important implications for empirical
studies and the development of appropriate indicators. In order to assess whether an
innovation performs environmentally benign, the innovation should be - ideally - sub-
ject to a life cycle assessment. A possibility would be to measure how eco-efficient an
innovation is. This can be defined as a switch in the technology system through ... the

%See e.g. Ruttan (1997); Jaffe et al. (2003); Popp et al. (2009) for a comparison of the three major
theories that build on this assumption. The neoclassical induced innovation approach splits into
micro-economic investment models and macro-economic growth models (New Growth Theory). Both
are rooted in General Equilibrium Theory. On the contrary, permanent system changes are the center
of the evolutionary approach. It replaces maximising investment strategies with satisfying strategies
through selection, imitation, and variation. The path dependence approach draws from the historical
observation that dominant technologies determine development paths often leading to technological
irreversibilities and persistencies.

*For an introduction to the literature on ’pushing’ supply-side factors, ’pulling’ demand-side factors,
and policy push-and-pull for environmental innovations, see e.g. Horbach (2008); Rennings and
Rammer (2009). See Rennings (2000) for a discussion from the point of view of ecological-economics.

5 Accordingly, the stress of this definition is on the second and the third stage of green technological
progress as the environmental impact of an invention has to be assessed and not its ambition or
potential. For a discussion of this and the evolution of the definition see Kemp and Pearson (2008).
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Eco-innovation and sustainable manufacturing
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Figure 2.1.: Evolution of eco-innovations (upper part of figure) and estimates of the factor
for environmental efficiency improvements (lower part).

delivery of competitively priced goods and services that satisfy human needs and bring
quality of life while progressively reducing environmental impacts of goods and resource
intensity throughout the entire life cycle to a level at least in line with the Earth’s es-
timated carrying capacity ...” (WBCSD, 1996). Thus, eco-efficiency is operationalised
as the ratio of the product or service value to its environmental impact. Suggestions of
different aggregate and firm-level definitions of eco-efficiency are provided in Kemp and
Pearson (2008).

Derived from the above definition, eco-innovations are classified into A) environmental
technologies, e.g. green energy technologies, B) organisation innovation, e.g. environ-
mental auditing, C) product and service innovation, e.g. eco-housing, carsharing, and D)
green system innovations, e.g. renewables-based energy systems. Environmental tech-
nologies are further divided into pollution control technologies, cleaning-up technologies,
waste management equipment, cleaner process technologies, environmental monitoring
and instrumentation, noise and vibration control, water supply, and green energy tech-
nologies. Note that product changes are not included in the group of environmental
technologies while they are in a categorisation of Hohmeyer and Koschel (1995)°.

The magnitude of change an eco-innovation triggers relates to its potential to con-

®Hohmeyer and Koschel (1995) distinguish between integrated and additive environmental technologies.
Integrated technologies affect inputs, the production process, or outputs. Additive technologies are
‘attached’ at the end of a production process and are therefore also called end-of-pipe technologies.
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tribute to a sustainable development. The OECD recently published a strategy on how
to enable industrial green growth (OECD, 2010). The upper part of Fig. 2.1 visualises
this strategy showing the path for eco-innovations towards sustainable manufacturing.
Technological as well as non-technological change are considered. Green technological
change comprises 1) pollution control to ’treat’ environmental contamination, 2) cleaner
production technologies to reduce environmental burdens by substituting harmful sub-
stances or optimising resources and processes, and, 3) the concept of eco-efficiency for
systematic environmental management and monitoring. Non-technological change in-
cludes, in addition, the extension to life cycle thinking (e.g. green supply chain man-
agement), the introduction of closed-loop production (e.g. disposable fabrics), and the
development of an industrial ecology that is based on integrated systems of produc-
tion. Non-technological change partially overlaps with the concept of eco-efficiency. Its
potential impact is, however, bigger than that of technological change as it makes a
development towards new technology systems more likely.

In addition to this evolutionary concept by OECD, the lower part of Fig. 2.1 shows
the factor of improvement in environmental efficiency for different system innovations
and their development along the time horizon. The magnitude of improvements has
been estimated in research studies accompanying the Dutch Sustainable Development
Programme (Arentsen et al., 2002). In the short- to medium-term, improvements are
especially achievable through technical change, saturating after approximately 5-10 years
at a factor of 2.5. A partial system re-design and the establishment of new systems further
build on non-technical change. These offer higher factors - a factor 5 in medium-term
and a factor 10 in long-term, respectively.

There is a small but growing number of empirical studies on the relationship between
green technical change and its determinants. For reviews see Jaffe et al. (2003), Vries
and Withagen (2005), Popp et al. (2009), and Horbach (2008). The difficulty for an
empirical analysis is the identification of appropriate variables. For example, it is not
possible to directly observe the shadow price’ of environmental impacts or to simply
extract environmental innovation data from existing innovation statistics. Moreover,
specific indicators have just recently been introduced or are still under development.
However, typical proxies of eco-innovations are patent numbers as well as R&D related
expenditure and structures.

Empirical studies show that relative prices of inputs are a main driver of green tech-
nical change. Newell et al. (1999) confirm that energy prices induce energy efficiency of
household appliances. The authors analyse US patents of room air conditioners between
1958-1993, central air conditioners between 1967-1988, and gas water heaters between
1962-1993. Apart from changes in relative prices, oil shocks in the 1970s had a strong
influence on improvements in energy efficiency. Grupp (1999) use German patent indica-
tors as well as oil import costs and find a positive impact of price signals on sustainable
innovation in the long-run. Popp (2002) examines a strong positive impact of the energy
price on energy efficiency innovation in US energy patent data from 1970-1994. Rennings

"The shadow price is the price resulting when all environmental impacts are considered. See also the
next section on the concept of externalities.
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and Rammer (2009) survey 29,486 German firms (response rate 20 %) and find cost sav-
ings to be a main incentive for energy and resource efficiency innovation. This is also
the result of another survey of German panel data, Horbach (2008). Carrion-Flores and
Innes (2010) confirm the cost-saving benefits of green R&D), analysing patent data in US
manufacturing industries between 1986-2004 and toxic pollutant emissions.

One angle of technology and environmental policies is thus to influence technical change
via input prices, e.g. by providing subsidies to reduce production costs or by imposing
taxes or restrictions on certain inputs. Accordingly, the majority of studies confirm that
(environmental) policy itself is a main driver of innovation. Grupp (1999) finds policy
to be an important short-run driver. Brunnermeier and Cohen (2003) detect a small,
but significant increase in environmental innovation with abatement costs for patents of
US manufacturing industries between 1983-1992. Lanoie et al. (2007) surveying 4200
facilities from the 2003 OECD data base, with a response rate of 25 %, state that en-
vironmental policies induce cost-saving R&D, and that policy stringency is important.
This is also found by Horbach (2008) who surveys data of German manufacturing and
service firms from two panels.® An exception is Jaffe and Palmer (1997) who do not find
a significant relationship between the stringency of environmental regulation (measured
by compliance expenditure) and innovation activities of firms even though regulation in-
duce R&D increases.” Instead, the effect of stringency on green R&D is only significant
if an industry-specific filter is used. De Vries and Withagen (2005) study three different
empirical models for SO, abatement policies and their impact on national environmen-
tal R&D using the EU Patent Office database for 1970-2000. The first model captures
the effect of policy stringency on patents, considering the development of international
agreements and domestic changes in abatement protocols simultaneously. The second
model approximates the level of policy stringency by an ’index of environmental sensitiv-
ity performance’. Different pollutants are included but the international stringency level
is assumed to be constant over the years. The third model studies the impact of national
emission levels on green R&D, assuming that environmental strictness is not directly
observable (treated as a latent variable). Only in the third model, the most realistic
according to the authors, is the relationship between environmental policy stringency
and innovative activity significantly positive. Recently, Johnstone et al. (2010) examined
the influence of environmental policy in terms of stringency, predictability, and flexibility.
Cross sectional data from the OECD EPO database!? for the air, water, and waste sector
confirm the hypothesis that policy stringency has an effect on invention and that policy
predictability as well as policy flexibility have an effect on invention above and beyond
policy stringency.

8The Mannheim Innovation Panel was established in 1993. In 2001, questionnaires also gathered envi-
ronment related data (response rate: 20 %). The establishment panel of the Institute for Employment
Research was founded in 1993. It contains data of 753 firms that belong to the environmental sector.
Environmental innovation related questions are available for 2001 and 2004.

9A reason might be that policy compliance costs are not an appropriate variable (Jaffe and Palmer,
1997).

10State of the art in 2008. Collected data are from 1975-2007. Innovation was classified and only
high-value patents were counted.
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Source

Relationship between

Data set

Main finding

Newell et al. (1999)

Jaffe
(1997)

and Palmer

Grupp (1999)

Popp (2002)
Brunnermeier  and
Cohen (2003)
Vries and Withagen

(2005)

Mazzanti and Zoboli
(2006)

energy efficiency of house-
hold appliances and energy
prices

stringency of environmen-
tal regulation and innova-
tive activities of firms

short- and long-run input
price signals and sustain-
able innovation

energy price and energy-
efficient innovation
abatement pressure and
environmental innovation
environmental stringency
and country level innova-
tion in EU

firm characteristics, costs,
policy pressure, and envi-
ronmental R&D

room air conditioners 1958-1993,
central air conditioners 1967-1988,
gas water heaters 1962-1993
US  manufacturing  industry
patents and environmental com-
pliance cost data 1973-1991

DE patent indicators, oil import

costs, sector-expenditures for en-
vironmental protection

US energy patent data 1970-1994

US patents in manufacturing in-
dustries 1983-1992

EU Patent Office database 1970-
2000

Data of North Italian manufactur-
ing firms 2002-2004

inducement by energy prices,
partially autonomous technical
change, oil shocks are relevant

no significant relationship, small
positive when controlling for
industry-specific effects

long-run positive effect, short-
run:  governmental regulation
and procurement are important
drivers

strong positive impact, impor-
tance of stock of knowledge

small, but significant increase

only significant positive in model
including emission levels

importance of  networking,

among other drivers

Table 2.1.: Empirical findings on determinants of eco-innovations, 1999-2006.
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Source Relationship between Data set Main finding
Rennings et al. EMAS and environmental DE EMAS data positive relationship, R&D de-
(2006) innovation partment is a further trigger

Lanoie et al. (2007)

Horbach (2008)

Rennings and Ram-

mer (2009)

Carrion-Flores

Innes (2010)

Johnstone
(2010)

et

and

al.

environmental policy and
green R&D
environmental innovation
and various drivers

energy and  rescource
efficient innovation and

drivers

toxic pollutant emissions
and environmental innova-
tion

stringency, predictability,
flexibility of environmental
policy and innovation

survey of OECD data 2003 (4200
facilities)

Mannheim  Innovation  Panel
(2001), Institute for Employment
Research Panel (2001, 2004)

DE innovation (29.486

firms)

survey

patents and emissions in US man-
ufacturing industries 1986-2004

OECD EPO database for air, wa-
ter, and waste (1975-2005)

policy induces cost-saving R&D,
stringency is important

importance of knowledge capital,
soft skills, cost savings, expected
future demand, and policy incen-
tives

cost savings are main incentive

significant negative, cost-saving
benefits of green R&D, policy
stringency increases incentives

positive impact of stringency
on patent activity, predictability
and flexibility bring additional
increases

Table 2.2.: Empirical findings on determinants of eco-innovation, 2006-2010.
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Important drivers of green technological change are the availability of knowledge and
R&D structures in a firm (Popp, 2002; Rennings et al., 2006; Mazzanti and Zoboli, 2006;
Horbach, 2008), networking activities (Mazzanti and Zoboli, 2006), the introduction of
EU Environmental Management and Auditing Schemes (EMAS) (Rennings et al., 2006),
and the expected future demand (Horbach, 2008). The previous economic performance
as well as the utilisation of capacities have no or a small influence on eco-innovation
(Mazzanti and Zoboli, 2006; Horbach, 2008). Rennings and Rammer (2009) and Horbach
(2008) also study the difference between firms that are in general innovative and firms that
are specifically eco-innovative. According to Rennings and Rammer (2009), the later face
stronger barriers. Horbach (2008) finds that the expectation of higher employment levels,
demand, size of the firm, and highly qualified employees are relevant for both types of
innovative firms. Regarding the policy influence, subsidies are an important trigger. Eco-
innovation is strongly influenced by policy regulation, environmental management tools,
and strategic and organisational changes. A synopsis of empirical studies is provided in
Tabs. 2.1 and 2.2.

2.2. Rationale for policy interventions

2.2.1. Market failures and inefficiencies in the innovation system

The market potential of technologies to mitigate climate change is lower than their eco-
nomic potential'® (IPCC, 2007). The reason for this imbalance is the existence of exter-
nalities, i.e. the existence of benefits and costs that are not reflected through the price
mechanism. They are imposed on or spill over to other parties than the economically
active ones. An example of a negative externality is nutrient contamination of the Baltic
Sea by agriculture and forestry causing coastal euthropication and thus imposing burdens
on inhabitants and visitors. A positive externality would be e.g. the voluntary cleaning
of a river by members of a local community. In this case, benefits spread beyond the
group of activists. Externalities cause markets to fail and lead to inefficient innovation
systems driving a wedge between private and social costs'? and their theoretical opti-
mum. In the case of green technological progress, there are negative environmental and
- in sum - positive knowledge-related externalities.'® Both interact with each other and
influence the rate as well as the direction of green technological progress.

First, knowledge has the characteristics of a public good. Knowledge created by one

" The market mitigation potential is defined as ’the mitigation potential based on private costs and
private discount rates (reflecting the perspective of private consumers and companies)’. The eco-
nomic mitigation potential is defined as ’the mitigation potential that takes into account social costs
and benefits and social discount rates, assuming that market efficiency is improved by policies and
measures and barriers are removed’, (IPCC, 2007, p. 56).

12S0cial costs are the sum of private and external costs.

3For reviews on environment-technology externalities see Grubb and Ulph (2002), Jaffe and Stavins
(1995), and Popp et al. (2009). Gillingham et al. (2009) focus on externalities of an energy-efficient
technological change. Malerba (2009) and Aghion et al. (2009) discuss technology externalities from
an evolutionary perspective. Faber and Frentzen (2009) review the application of evolutionary theory
in environmental-economics.
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party can be used by others without reducing its amount (Nelson, 1959; Arrow, 1959).
This has consequences for entrepreneurs undertaking R&D, as other firms might benefit
without paying. Therefore, the amount invested in R&D will be too low. Externalities
also occur in relation to the production of knowledge. For example, the market value of
a new technology increases the better it is sold. Experiences in adopting the technology
spill over to other potential users - in this case also for the benefit of the inventor.!*
However, a firm counts only its own expenses and profits when deciding about R&D
investments. Therefore, the firm will not consider the full earning potential.'> Potential
competitors can also have an influence on the decision of an inventing firm. Severe
competition might increase investment efforts in order to realise advantages from being
the first inventor.

The notion of 'potential competitors’ raises a second issue. Markets for technologies
do not fulfill the criteria for perfect competition. The reason is that the number of
firms undertaking R&D in the same field is limited. Often, R&D markets are even
monopolistic. Furthermore, information is incomplete. This is foremost caused by the
uncertain nature of the innovation process. For example, as the success and failure
of R&D and its commercialisation potential is not known beforehand, the decision to
invest is complex and likely suboptimal. In addition, the inventor has to pay a high
risk premium if borrowing money from capital markets. Thus, financing constraints are
another barrier to R&D.'® Information is also incomplete because knowledge is part of
a firm’s capital and hence incentives are low to share information. On the other hand,
technological progress could be accelerated through cooperation. This is an argument for
‘open science approaches’ (Aghion et al., 2009). In total, knowledge and R&D spillovers
are positive leading to under-investments. Therefore, the rate of technological progress
is suboptimally low.!” Indeed, empirical studies find that the private rate of return on
R&D is about two to four times smaller than the social rate of return (Gillingham et al.,
2009).

The third issue is related to environmental externalities. These are ubiquitously neg-
ative as costs for polluting the environment, over-exploiting natural resources, or unsus-
tainably producing, marketing, and consuming are almost not considered nor fully paid
by the polluter. An extreme example is the oil spill in the Gulf of Mexico caused by the
exploded offshore oil platform "Deepwater Horizon’ in April 2010. Two months later, es-
timates for clean-up and legal expenses already amounted to 33 billion US dollars. First
doubts are spreading whether BP is able to pay these expenses.'® Such over-uses of the
environment could be avoided (or at least lessened) if environmental inputs, e.g. clean air

4Gee Jaffe and Stavins (1995); Popp (2010) for further discussions on externalities related to the adoption
and diffusion of new technologies and Gillingham et al. (2009) for adoption barriers in energy markets.

'5See Grubb and Ulph (2002) on this ’stand-alone effect’.

'8In addition, there is asymmetric information between the firm undertaking R&D and the financial
institution. This can also lead to problems of adverse selection, moral hazard, or principal-agent
constellations.

1"The impact of knowledge spillovers on the direction of technological progress is indirect, e.g. by limiting
invention possibilities and creating dependencies on research paths taken.

'8The Wall Street Journal Online, June, 10, 2010. http://europe.wsj.com/ .
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Figure 2.2.: External costs of different energy sources caused by climate change and air
pollution.

and water, natural resources, etc., were not free and markets for these goods existed.!?
The prices for unsustainable products and processes would increase and in turn create
markets for alternatives. Thus, environmental externalities primarily affect the direction
of technological change.?°

To illustrate the magnitude of environmental externalities, Fig. 2.2 and Tab. 2.3 show
estimates of external costs for different fossil and renewable energy sources (Krewitt and
Schlomann, 2007). For the fossil energy sources (brown coal, black coal, gas) assumed
conversion efficiencies (steam power plants/ combined cycle power plants) are given in
brackets.?! The renewable energy sources are solar (photo voltaic, PV, and solarthermal
power plants), on-shore wind (1.5 MW), offshore-wind (2.5 MW), and run-by-the-river
hydro energy without water reservoirs (300 kW). External costs have been quantified??

19See Johnstone (2005) for a further discussion.

20National security issues, e.g. for the supply of energy, also influence the rate of green technological
change (Gillingham et al., 2009).

21Steam power plants have assumed conversion efficiencies of 40% for brown coal and 43% for black coal.
Combined cycle power plants have conversion efficiencies for brown coal of 48% and for black coal of
46%. Note that a conversion efficiency of 46% for black coal seems low in comparison to brown coal.
Alternatively, other estimates predict at least 50% for a combined cycle power plant that uses black
coal. See e.g. www.energie-fakten.de. The conversion efficiency of the gas power plant (combined
cycle power plant) is 57%.

22Krewitt and Schlomann (2007) use the ’ExternE Method’ that has been developed in a series of projects
funded by the European Commission since 2001. See www.externe.info and Krewitt and Schlomann
(2007). External costs are calculated by multiplying emissions per unit of electricity generation with
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for damage categories 'climate change’?®, ’health risks’, ‘material damages’, and ’crop
losses’. The sum of external costs for electricity generation by renewable energies has
been estimated to be below 1 EUR ct/kWh. The exception is photo voltaic energy. Under
the current standard of technology, the production of solar cells is very energy intensive.
In contrast to renewable energies, external costs of fossil fuels are found to range between
6-8 EUR ct/kWh. If we assume an average price of private costs for electricity generation
of approximately 3.5 EUR ct/kWh, it is obvious that current private costs are far below
social costs.?* Fig. 2.2 shows that external costs of climate change dominate. This also
holds if the lower estimate of 15 EUR/t COq instead of the middle estimate of 70 EUR/t
COsq is used for the calculation. The figure furthermore illustrates the imbalance between
renewable and fossil energies. The latter have a substantial competitive advantage.

Concluding, externalities can lead to suboptimal economic activities of firms (or other
agents), i.e. there is a wedge between related private and social costs. As more than one
market failure is connected with the process of eco-innovation, the combination of differ-
ent policy instruments comes to mind. An often used justification for policy interventions
is that the double-externality problem can yield a double dividend?®, i.e. bring an eco-
logical (social) and an economic (private) benefit. The latter can be realised through in-
ternational competitive advantages for environmental technology leaders, compensating
for costs from complying with environmental regulation. The environmental externality
problem can be solved theoretically by adjusting prices for environmental consumption
via Pigouvian taxes or subsidies (Pigou, 1920), introducing environmental/technology
standards (Baumol and Oates, 1988), creating markets for environmental goods, intro-
ducing liability law, or starting information programmes (Coase, 1960). These basic
principles translate into different environmental policy measures. Knowledge related ex-
ternalities can be internalised by measures of technology policy, e.g. the promotion of
R&D via research loans, subsidies, grants, and patent policies, the provision of informa-
tion, and the support of research infrastructures. The following two sub-sections provide
an overview of typical instruments of environmental and technology policy to encourage
green technological progress as well as a discussion of their efficiency.

the specific damage costs. Impacts on the eco-system, geo-political effects, risks of proliferation, as
well as risk of major catastrophes are described qualitatively.

Z3Estimates of social carbon costs strongly depend on the chosen discount rate and the factor ’equity
weighting’ that accounts for worldwide welfare differences. Krewitt and Schlomann (2007) compare
different studies and follow Downing et al. (2005) with a middle cost estimate of 70 EUR per ton
CO2 equivalent (individual discount rate of 1%, equity weighting included). The low estimate is 15
EUR/t COz2, the high 280 EUR/t CO..

?4This is a rough estimate. The average end-user energy price for middle size households in Germany
was 0.1401 EUR/kWh in 2009 (http://epp.eurostat.ec.europa.eu) whereof 25% come from electricity
generation (http://strompreisentwicklung.org).

?5See the discussion around the Porter hypothesis (Porter and v. d. Linde, 1995).
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External costs photo voltaic photo voltaic hydro oushore wind offshore wind geothermal
in EUR ct/kWh (2000) (2003) (300 kW) (1.5 MW) (2.5 MW)

climate change 0.69 0.38 0.09 0.07 0.06 0.26
health 0.34 0.20 0.06 0.07 0.03 0.12
material damages 0.009 0.006 0.001 0.001 0.001 0.003
crop losses 0.005 0.003 0.001 0.002 0.0004 0.002
Sum ~1.0 ~ 0.59 ~0.15 ~0.15 ~(0.09 ~(0.39
External costs solarthermal ~ brown coal = brown coal black coal black coal gas
in EUR ct/kWh (40%) (48%) (43%) (46%) (58%)
climate change 0.09 7.4 6.4 5.9 5.5 2.7
health 0.085 0.50 0.28 0.37 0.26 0.17
material damages 0.002 0.015 0.008 0.013 0.01 0.005
crop losses 0.001 0.010 0.004 0.009 0.005 0.004
Sum ~(0.18 >7.9 >6.4 >6.3 >5.7 >2.9

Table 2.3.: Quantifiable external costs of different energy sources. Source: Krewitt and Schlomann (2007).
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2.2.2. Instruments of technology policy and environmental policy

The objectives of appropriate policy measures are to spur and direct technological progress
towards its social optimum?®. Therefore, environmental policy aims partially overlap
with and partially contradict those of general technology policy.2” For example, the EU
provides large funds for the development of general-purpose technologies, e.g. internet
technologies, space technologies, transport technologies, etc. These are not environmen-
tal technologies as they are likely to add further burdens on the environment. On the
other hand, some of these technologies have the potential to contribute to a direct or indi-
rect solution of environmental problems, e.g. by increasing the probability for a scientific
breakthrough in the exploration of an environmental technology.

Environmental policy instruments, particularly those targeting firms, are commonly di-
vided between market-based, regulatory (or command-and-control), and non-mandatory
instruments. Pigouvian taxes, subsidies, and user-fees, as well as the creation of markets
for pollution or emission rights belong to the first category. These instruments try to
influence a firm’s behaviour through market signals by increasing relative prices for envi-
ronmental consumption. This promotes a general green technological progress since firms
are free in their adaptive response. The category of regulatory instruments comprises
environmental standards, technology and performance-based standards®®, bans, and in-
put and output quotas, as well as environmental legislation, obligatory eco-labeling and
management schemes. These instruments target specific eco-innovations (technology
forcing). A firm has no (legal) option but to comply with the obligations. Examples for
non-mandatory instruments are voluntary agreements and information programmes, e.g.
to raise environmental awareness or to inform about less polluting alternatives. While
not addressing firms, an important additional measure is green public procurement. It
can foster the development and diffusion of environmental technologies.

Technology policy can be categorised depending on which innovation phase is primarily
targeted or what side of the market - supply or demand - is mainly supported. Invention,
innovation, as well as diffusion can be directly supported, e.g by providing loans, subsi-
dies, tax advantages, or other incentives. These measures aim to increase R&D spending
and technology investments. For reducing the impact of incomplete information, policies
furthermore support R&D infrastructures and integrated research networks or carry out
information programmes. Policies backing the supply-side are called technology-pull pro-
grammes. Those programmes supporting the demand-side are known as technology-push

26The social optimum in the static set-up can be achieved when the marginal social costs of environmental
consumption equal the marginal social benefits from consuming the next unit of environment. These
costs depend on the environmental-damage function which in turn is changing with technological
progress. Therefore, in the dynamic set-up, the optimal level of innovation has to be also chosen by
the social planner.

?7See also Grubb and Ulph (2002) for a discussion of the objectives of environmental and energy policy.
An example area of conflict would be energy security issues.

28This includes dynamic standards that provide incentives for a continuous improvement of eco-efficiency.
An example is the Japanese Top-Runner Programme introduced in 1999. Regularly, new efficiency
standards for the energy end-use of household appliances are set. The new standard is chosen above
the current highest available standard and it has to be reached within a fixed period depending on
the rate of technological progress.
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Knowledge externalities: a) suboptimal R&D spending, b) incomplete information

Invention Innovation Diffusion

a) R&D funding (loans, subsidies for market intro- tax incentives and other
grants, subsidies, tax duction, public green pro- adoption support, public
advantages etc.) curement, patenting green procurement

b) integrated R&D fun- information  programmes, infrastructure for techno-
ding, provision of in- support of infrastructure logy transfer, information
frastructure and networks programmes

Environmental externalities
I) market-based, IT) regulatory, ITT) non-mandatory instruments

Invention Innovation Diffusion

I) for all phases: environmental taxes, liability law, creation of markets for environ-
mental goods (e.g. trading of emission rights)

IT) for all phases: environmental standards, technology and performance based stan-
dards, bans, quotas, environmental legislation, obligatory management schemes

I1T) - - eco-labeling, public green
procurement, information
programmes, voluntary
agreements

Table 2.4.: Innovation-oriented environmental policies (based on Rennings et al. (2008,
p.35)).
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programmes. Tab. 2.4 provides an overview of innovation oriented environmental poli-
cies. For a recent survey of theoretical and empirical issues of induced innovation and the
‘tandem of environmental and technology policy’ see e.g. Popp et al. (2009). Lehmann
(2010) reviews the literature on policy-mix to prevent pollution. Rennings et al. (2008)
discuss and evaluate eco-innovation instruments that are applied in Germany.?’

2.2.3. Efficiency of policy measures

Neither the consumption of the environment nor its protection nor restoration come with-
out costs. Moreover, environmental externalities are not the only ones that cause social
costs (or concerns for the society). Therefore, internalisation measures should be enforce-
able and efficient. This depends on several factors such as the dynamic cost-efficiency of
an instrument, its opportunity costs, the ability of policies to increase the rate and steer
the direction of green technological progress, the best policy choice under uncertainty
and in a complex world®?, an instrument’s political feasibility, and its reliability. These
factors influence the optimal choice of an instrument, its stringency level, and its timing.

There is a broad theoretical literature on dynamic incentives for environmental R&D in-
vestments. A basic distinction is made between model types, endogenous-growth models,
and microeconomic decision-theoretic models.?! Endogenous Growth Theory studies the
implications of R&D and the role of policy at an aggregate level by introducing inno-
vation possibility frontiers or modelling knowledge as a capital stock. Its main interests
are imperfections in innovation markets (knowledge spillovers, crowding out effects) and
substitution effects between the generation of output and the generation of new knowl-
edge. Many theoretical and numerical models have shown that, first, cost effects from
policy measures (resulting in lower per-capita incomes) are larger than the compensating
effects of induced innovation, and second, general R&D can be crowded out by environ-
mental R&D. However, the opposite can also be the case.?? Decision-theoretic models
are basically partial equilibrium models. The decision of a policy-maker or firm/sector
is analysed in (finite) subsequent stages as an optimal control problem. Here, the topics
of interest are innovation incentives and welfare implications under perfect or imperfect
competition, with or without strategic options. The distinction between R&D invest-
ment and adoption investment is not always clear. Requate (2005, p. 179) defines that
a model is primarily an innovation model if ’there is a stochastic element, i.e. the size
of innovation, its date, or the R&D success is uncertain, or secondly, a patent is granted
on the innovation, or thirdly, spillovers occur, or finally, imitation is possible.’

The ranking of policy instruments is ambiguous. But instruments that influence rela-
tive prices and allow flexibility are often preferable over regulative instruments, because

29See also Section 2.1. for empirical findings on the determinants of eco-innovation that include policy
as an important driver.

30Note that damage functions, social optima, and policy impacts can only be estimated.

31 The following summary uses the reviews of Requate (2005), Jaffe and Stavins (1995), Goulder and
Parry (2008), and Popp et al. (2009). Note that we are not including findings on technology diffusion
and adoption.

*2For example, carbon-energy saving R&D replaces carbon-producing R&D instead of crowding out
neutral R&D when the three are modelled separately (Popp et al., 2009).
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market-based instruments enable adoption at least cost and provide incentives to con-
tinue R&D activities with a free choice of technology to achieve further cost reductions.
This is not the case for (static) regulatory instruments as there is no additional reward
in exceeding performance standards or choosing a technology, in the case that incentives
are connected with a certain technology. However, regulatory instruments are at an ad-
vantage in the effective cutting back of the level of environmental pollution or emission.
Furthermore, by defining dynamic standards, the problem of a ’technology freeze’ (Popp
et al., 2009) can be avoided, e.g. by setting technology standards according to the best-
available control technology at a time. A disadvantage is that regulatory instruments
become more vulnerable to issues of policy commitment and time consistency.

Models that study these factors take account of the possibility of firms and regulators
to anticipate and/or react to each others decisions. For example, regulators may choose
to adjust their policies after observing innovation effects (e.g. after listening to winners
and loosers of a new regulation) or simply because policy priorities change. Policy com-
mitment and timing in these models is then a matter of the social costs of pollution.
The level of environmental stringency has two antipodal effects. On the one hand, as
costs increase with stringency, incentives for R&D increase. On the other hand, R&D
incentives decrease as less output can be produced. Competition models show that tech-
nology leaders are in favour of higher environmental stringencies. However, the total
effect (and thus the policy ranking) depends on the magnitude of knowledge spillovers
and their appropriability, marginal abatement cost curves, as well as characteristics in
environmental technology markets (market power, number of firms, etc.). Many empiri-
cal studies support the important role of environmental policy and stringency to promote
green technological progress (see Section 2.1). Both market-based instruments as well as
regulatory instruments spur innovation and induce cost-reduction.

In the majority of environmental-economics studies, uncertainties are not taken into
account when analysing the efficiency of policy measures. This lack in the literature and
its impacts on decisions to invest in green R&D will be tackled in the following section.
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2.3. R&D decisions in a complex world

2.3.1. The role of irreversibilities and uncertainties

[rreversibility causes destabilisation processes that are connected with forgone options.
Examples for such forgone options are the lost option to maintain an ecological system,
e.g. the diversity of populations (Holling, 1973),33 the lost option of using a natural envi-
ronment, e.g. caused by technically irreversible construction projects in a redwood forest
(Arrow and Fisher, 1974),3* the decreased variety of investment choices or managerial
flexibilities (Henry, 1974; Dixit and Pindyck, 1994),3% or the loss of the development of
superior technologies due to historical lock-in phenomena (Arthur, 1989)3¢. Generalising
these examples, we will use the following definition

Irreversibility is a measure of the difficulty of returning to an initial state within
an economically meaningful time frame following a perturbation. (Perrings and

Brock, 2009, p. 224)

The reference to an ’economically meaningful time frame’ has two implications. First,
the definition includes more than strictly non-reversible systems. A reversible system
can be interpreted as an irreversible one if the speed of adjustment to a perturbation
is large in relation to the time horizon of the decision-maker. Second, it is assumed
that the backward-transformation can be expressed in cost categories. As a consequence,
irreversible decisions are associated with sufficiently large reversion costs. To give an
example, the irreversibility of capital investments is generated by the non-malleability
of capital (Perrings and Brock, 2009) resulting in sunk costs. According to Dixit and
Pindyck (1994), sunk investment costs can occur due to firm- or industry-specific in-
vestments, an under-evaluation of goods in second-hand markets, and governmental or
institutional regulation.?”

%3Holling (1973, p. 17) establishes a link between irreversibility and the resilience of a system. Resilience
"determines the persistence of relationships within a system and is a measure of the ability of these
systems to absorb changes of state variables, driving variables, parameters, and still persist. In this
definition resilience is the property of the system and persistence of probability of extinction is the
result’. Therefore, a system is irreversible if it has lost its resilience.

34 Arrow and Fisher (1974, 314) associate irreversibility with reversion costs. The time to transform a
natural environment backward ’is so great that, given some positive rate of time preference, it might
as well be irreversible.’

35Henry (1974) states that ’a decision is considered irreversible if it significantly reduces for a long time
the variety of choices that would be possible in the future’. In Dixit and Pindyck (1994), irreversibility
is expressed as sunk investment costs.

36 Arthur (1989, p. 117) relates irreversibility to the choice of one out of multiple equilibria resulting
in non-ergodicities and inflexibilities such that 'once an outcome (a dominant technology) begins to
emerge it becomes progressively more locked in’.

3"The inclusion of irreversibility and uncertainty when deciding about capital investments is subject
to the theory of real options. Myers (1977, p. 22) introduces this term as an analogy to financial
options, i.e. real options ’are opportunities to purchase real assets on possibly favorable terms’ and
'the value of real options reflects the possibility of rents or quasi-rents’. Thus, capital investments
can be treated as an American call option, i.e. the holder has a right to invest money (call) and
the option can be exercised at any time (American). The return on investment is a package of some
value that can be sold. The investment itself, however, is irreversible as costs are sunk. Note that
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The source of a perturbation can differ. Its impact on the evolution of the system,
i.e. the direction and magnitude of effects, strongly depends on the interplay between
uncertainties, non-linearities, and the time horizon. Obviously, uncertainty is larger the
greater the time horizon is - to guess what happens tomorrow is easier than to guess
what happens in the next century. Moreover, with time passing, hysteresis effects and
catastrophic events can occur, whose aftermaths are highly non-linear and irreversible,
further complicating a prediction of the system’s evolution.

Before we present the main literature findings on the uncertainty-irreversibility rela-
tionship, we will specify what is meant with 'uncertainty’. We will adopt the following
definition by Milliken (1987)

Uncertainty s ‘an individual’s perceived inability to predict something accu-
rately’. (Milliken, 1987, p. 136).

Thereby, the source of uncertainty is external to the individual or its organisation. This
is captured by the term ’environmental uncertainty’ and implies that uncertainty is not
a matter of objectiveness. Uncertainty originates from the inability of agents to assign
probabilities to future events or to gather and evaluate information of causalities be-
tween system variables and their impacts. Milliken (1987) distinguishes between three
types of environmental uncertainty. These are state uncertainty, effect uncertainty, and
response uncertainty. The first derives from not knowing and understanding how system
components (state variables) change and are interrelated. For example, a firm is un-
able to predict changes in environmental policy or the behaviour of competitors. Effect
uncertainty concerns the inability to foresee impacts of changes in the environment on
the agent’s organisation. For example, the Federal State of Mecklenburg-Vorpommern
is uncertain about how climate change will impact the region’s water levels. The third
category, response uncertainty, relates to the inability to identify all responsive options
or evaluate them. Fig. 2.3 illustrates this hierarchy of uncertainties from the perspective
of a single firm.

The self-amplifying interplay of irreversibility and uncertainty (Pindyck, 2007) can lead
to suboptimal decisions that are able to alter the micro- as well as the macro-system.
Arrow and Fisher (1974) find suboptimality in the social point of view. Irreversibility
adds an extra value to the reversible alternative. This value is called the option value and
creates an irreversibility bias in comparison to classical valuation methods. Kassar and
Lasserre (2004), among others, consider the possibility that species become extinct. Sim-
ilar to Arrow and Fisher (1974), uncertainty increases the value of biodiversity. Thus, in
these models, irreversibility reduces investment benefits and raises the opportunity costs
for developing a natural environment. Hence, an optimal policy under uncertainty is
to hesitate developing the natural habitat, keeping flexibility and not restricting future
options. A similar value of waiting is created in models with market uncertainty (Dixit

the option is competitive as it is open to others. Real options models belong to the class of partial
equilibrium models. Their main interest is to study the impact of irreversibility and uncertainty on
the critical investment threshold. See Dixit and Pindyck (1994) for a classical monograph on real
options. See Adner and Levinthal (2004) for the limitations of the approach. Section 3.2 reviews the
literature on real options for R&D investments.
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Environment environmental uncertainty
state uncertainty

Markets  market uncertainty
demand uncertainty supply uncertainty

Industry

Firm

response technical uncertainty effect

technological uncertainty

priceuncertainty ~ regulatory uncertainty  Policy

ecological uncertainty
damage cost uncertainty  impact uncertainty

Figure 2.3.: Hierarchy of uncertainties from the perspective of a single firm.

and Pindyck, 1994, among others).?® Tt arises from the possibility of updating infor-
mation as time passes (Bayesian learning). Pindyck (2002) analyses the optimal timing
of environmental policies, i.e. an earlier vs. a later one-time adoption of an emission
reducing policy. The model yields a value in postponing a policy decision, lowering the
benefits of an intervention.

However, the sign of the generated option value is ambiguous. Uncertainty can accel-
erate or hamper capital investments (or an activity in general). The direction depends
on the type of uncertainty and its structure. If investing (or some activity) can reveal
information, expanding the investment (or activity) is more valuable. If otherwise, learn-
ing is passive, the incentive to wait increases with irreversibility and uncertainty (see
e.g. Pindyck (1993); Leahy (1996); Ulph and Ulph (1997); Kort (1998)). The reason for
the postponing effect is that uncertainty imposes risks for reversing the activity without
creating prospects for its continuation. However, there are also factors that are able to
alter the negative investment-uncertainty relationship in models with a passive resolution
of uncertainty. Caballero (1991) studies the role of decreasing returns to scale or imper-
fect competition. He finds that under a negligible degree of imperfect competition the
relationship between investment and uncertainty is positive. The same applies if com-
petition is very high. In the latter case, the price of capital and its expected marginal
profitability become the dominating factors instead of the asymmetric adjustment costs.
Bar-Tllan and Strange (1998) analyse the option to abandon a project (with costly exit

% Note that the option value in Arrow and Fisher (1974) and Henry (1974) is connected to the value
originating from the real options theory of Dixit and Pindyck (1994). Fisher (2000) argues that both
are equivalent. But Mensink and Requate (2005) suggest to separate the real option value into two
parts - a value of obtaining new information equivalent to the theory by Dixit and Pindyck and a
second part deriving from lost benefits when postponing the decision.
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and entry) and the influence of an interest rate. In both cases, the marginal revenue from
the capital, the net present value, is a convex function of the variables. This leads to
a positive sign of the investment-uncertainty relationship. Sarkar (2000) finds that the
probability to invest increases with uncertainty for low-risk and slow-growth projects.?

Table 2.5 provides an overview of the types of uncertainties that have been studied.
We use the hierarchy of uncertainties by Milliken (1987) to structure this line of research.
The table shall serve as an entry point into the literature sorting early publications as
well as the emerging literature in environmental-economics that considers uncertainties
and/or irreversiblities and their influence on a decision-maker. Examples of two-period
models as well as time-continuous models are included. Some publications solely take
into account uncertainty. Furthermore, in a few cases, uncertainty is not a stochastic
variable but switches between deterministically chosen values. The discussion of findings
is postponed to the next section.

One might argue that uncertain variables could be replaced by their expectation values
and that this approximation is good enough for good estimates. However, Henry (1974)
as well as Arrow and Fisher (1974) have shown that suboptimal investment paths are
chosen under such a simplification. This is a consequence of irreversibility, non-linear
relations, and functionalities that are typical if the time horizon is long and uncertainties
are large.*® Apart from costs and benefits, discount rates are also a matter of the
uncertainty-irreversibility discussion. Replacing these with their expected values leads
to a smaller discount factor and the error accumulates rapidly with time. Therefore, the
‘effective discount rate’ (Pindyck, 2007) needs to be much lower than the expected. Using
IPCC estimates for climate sensitivity and policy costs, Golub et al. (2009) determine the
distribution of avoided climate change damages vs. sunk mitigation costs in a numerical
simulation. The latter turn out to be larger but the potential damages show a greater
variance. More importantly, the potential damages have a fat tail in the distribution.
This fat tail is caused by the high risk for catastrophic events. Golub et al. (2009)
conclude that models based on the expectation value method averaging these kind of
effects out are not suitable. Hence, alternative methods are called for (e.g. probabilistic
approaches, real options theory).

There are a few empirical findings on the effects of irreversibility and uncertainty. We
will shortly summarise the results of these publications focussing on the effects of invest-
ment decisions. Bulan (2005) confirms that industry and firm-specific uncertainty can
create an option to delay investments but competition can accelerate them. Using data
from the German manufacturing sector 1995-2001, Czarnitzki and Toole (2008) also find

39This is a controversial finding, see e.g. Lund (2005). Similar to Sarkar (2000), Lensink (2002) studies
an empirical model of aggregate investments for a set of developed countries. He finds that low levels
of uncertainty are likely to accelerate investments whereas high levels hamper investments.

“ONote that it is typically assumed that cost and benefit functions are not linear but quadratic. Pindyck
(2007) gives a simple example of the difference for the calculation of abatement cost when expected
values are used to replace uncertain variables. Abatement costs C' are given by C(A4,€) ~ [(1+¢)A]2.
A is the abatement level in percentage. € is a random variable that takes -1 or +1, each with a
probability of 0.5. Thus, abatement costs equal A% when using the expected value of ¢, E[e] = 0. On
the other hand, E[C(A,¢€)] = 0.5C(A,—1) +0.5C(A,1) = 24% when directly using the definition of
the expectation value.
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Ecological uncertainty

impact uncertainty:

damage cost uncertainty:

Market uncertainty

Chao and Wilson (1993); Kolstad (1996); Pizer (1999);
Pindyck (2002); Fisher and Narain (2003); Kassar and
Lasserre (2004); Wirl (2006); Baker et al. (2006); Lin
et al. (2007); Baker and Adu-Bonnah (2008); Golub and
Markandya (2009); Goeschl and Perino (2009); Ansar and
Sparks (2009)

Laffont and Tirole (1996); Ulph and Ulph (1997); Pindyck
(2002); Newell and Pizer (2003); Lin et al. (2007); Baker and
Adu-Bonnah (2008); Blanford (2009); Bosetti et al. (2009)

benefit uncertainty:
cost uncertainty:
demand uncertainty:

Regulatory uncertainty

Weitzman (1974); Arrow and Fisher (1974); Stavins (1996);
Hassett and Metcalf (1999); Ansar and Sparks (2009)
Weitzman (1974); Stavins (1996); Menanteau et al. (2003);
Zhao (2003); Laurikka and Koljonen (2006); Fuss (2010)
Caballero (1991); Chao and Wilson (1993)

regulatory uncertainty:

Industry-wide uncertainty

Larson and Frisvold (1996); Farzin and Kort (2000); Isik
(2004); Baker and Shittu (2006), this thesis

technological uncertainty:

Firm-specific uncertainty

Pizer (1999); van Soest and Bulte (2001); van Soest (2005);
Ohyama and Tsujimura (2008); Goeschl and Perino (2009);
Fuss (2010)

technical uncertainty:

Grossman and Shapiro (1986); Pindyck (1993); this thesis

Table 2.5.: Literature studying different types of uncertainties and their influence on a
decision-making institution.
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that strategic rivalry increases the option to postpone investments. Another result is that
large firms are less responsive to market uncertainty. Using US firm panel data, Baum
et al. (2008) confirm that firm-specific uncertainty and market uncertainty are signifi-
cant. In particular, firm-specific uncertainty is more important for investment decisions
than market uncertainty. Studying UK manufacturing companies for the years 1972-
1991, Bloom et al. (2007) find that uncertainty generates a significant ’cautionary effect’.
They conclude that in times of high uncertainties, firms might respond to policy incen-
tives weakly. Hoffmann et al. (2008) develop a taxonomy for regulatory uncertainty that
they apply to the FEuropean Emission Trading Scheme launched in 2005. They estimate
that regulatory uncertainty has a significant impact in all four categories. Uncertainties
concern the basic direction of regulation, measures and rules, the implementation process,
as well as interdependencies. Johnstone and Hascic (2009) also study the impact of regu-
latory uncertainty using the World Wide Statistical Database PATSTAT from 2008. The
more unpredictable environmental and technology policies are, the smaller the induced-
innovation effect, and the longer investments are postponed. Moreover, unstable policies
can create market uncertainty. Finally, Lensink (2002) finds evidence for a non-linear
investment-uncertainty relationship providing an explanation for the ambiguous findings
on the sign of the relationship. In a quantitative case study of the Finnish electricity
sector, Laurikka and Koljonen (2006) analyse the influence of the European Emission
Trading scheme (EU ETS) on investments under uncertainty of the baseline fuel price
and the price of emission allowances. Investors have the option to switch investments
between coal-fired plants and gas-fired plants or to postpone investments. The EU ETS
influences the decision through output prices, the value of surrendered allowances, op-
erating hours, and the value of free allowances allocated for installations. Uncertainty
about the impact of the EU ETS on these parameters decreases investments in gas plants.
In particular, high uncertainty regarding the allocation of free allowances is decisive for
switching to gas. Interestingly, renewable energy and nuclear power plant investments
are not affected by this type of uncertainty.

Of course, not all decisions under irreversibility and uncertainty decisively transform
the system or alter optimal policies. Pindyck puts up the following condition for environ-
mental policies: ’irreversibility will affect current decisions if it would constrain future
behaviour under plausible outcomes’ (Pindyck, 2007, p. 56). Even though irreversibili-
ties and uncertainties alone do not cause market failures, one might argue that policies
could aim to reduce uncertainties and hence lessen their impact on environmental and
knowledge externalities. Indeed, instruments like fluctuation margins, safety valves, or
guaranteed prices aim for this. See e.g. Goulder and Parry (2008) for a discussion. How-
ever, such kind of policies lead to a trade-off between adjusting policies with the arrival
of new information and not causing policy uncertainty themselves. Furthermore, policies
also contain large irreversibilities making policy failures costly. Still, Aghion et al. (2009)
argues in favour of the common ’environmental cautionary principle’ stating that inactiv-
ity might also not be an option. Nordhaus and Popp (1997) derive the value of resolving
uncertainty within a global warming model. It can be used to get an understanding of the
relevance of uncertainties in this context. Nordhaus and Popp (1997) consider uncertainty
about the slowdown in the growth of population and production, the accumulation rate
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of green house gases, climate feedbacks, time preferences, the output rate of green house
gases, and the costs of mitigation. They find that these parameters cause substantial
uncertainty about climate change costs and benefits as well as optimal policy responses.
Finally, Nordhaus and Popp (1997) estimate the value of perfect foresight. Knowing all
about 2045 already today (1995) is worth between 45 and 108 Billion US dollars. Most
valuable is information about climate change damages followed by resolved uncertainty
about the emission reduction costs, the relationship between temperature and carbon
dioxide, the growth in population, the de-carbonisation rate, the atmospheric retention
rate of carbon-dioxide, and the future growth in productivity. Nordhaus and Popp (1997)
estimate that resolved uncertainty involving behavorial and social sciences accounts for
85 % of the total value, whereas uncertainties involving natural sciences contribute 15 %.

Therefore, it is useful to better understand the impact of environmental policies on
investment decisions towards green technologies. Uncertainties most relevant in this
context are apparently those connected with the ecological system, e.g. the impact of
climate change and cost of mitigation measures, as well as uncertainties occurring within
the stages of innovation. Indeed, the optimal policy strongly depends on and varies with
the available knowledge about the technological progress. Concerning ecological uncer-
tainty, parameters and shapes of damage cost functions are largely uncertain (Pindyck,
2007). Also not known is the probability distribution for catastrophic events as well as
future social discount rates. Regarding the innovation process, some uncertainties are
likely to be more relevant in one stage than in another. Earlier stages in the innovation
process are more influenced by supply-side factors such as input prices, output prices,
policy parameters, technical uncertainty, and market power. But for the diffusion of en-
vironmental technologies demand-side uncertainties are more decisive.*! Here, the most
relevant irreversibilities are sunk cost of policy intervention, sunk cost of complying with
policy measures, and sunk cost of investment decisions.

2.3.2. Green technological progress, uncertainty, and environmental policy

In a seminal paper studying the impacts of uncertainty on the choice of quantity and
quality instruments, Weitzman (1974, p. 482) states an important result of a two-period
model:

In the presence of uncertainty, price and quantity instruments transmit central
control in quite different ways. It is important to note that by choosing a specific
mode for implementing an intended policy, the planners are at least temporarily
locking themselves into certain consequences. The value of n and 0 are at first
unknown and only gradually, if at all, become recognized through their effects.
After the quantity q is prescribed, producers will continue to gemerate that as-
signed level of output for some time even though in all likelihood

Bi(q,n) # C1(q,0) .

*ISee also Section 2.1 for the drivers of green technological progress.
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In the price mode on the other hand, ¢(6) will be produced where except with
negligible probability

Bi1(q(0),m) # C1(4(0),0) .

Thus neither instrument yields an optimum ex post. The relevant question is
which one comes closer under what circumstances.

Here, 7 is the random variable in the function describing expected benefits B. 6 is the
random variable in the expected cost function Cj.

As marginal benefits do not equalise marginal costs, both policies are not first best
policies when uncertainty and irreversibility are present. The ranking of the instruments
depends on the slope and structure of benefit and cost functions.

Weitzman (1974) assumes a quadratic form for both. After the policies have been
fixed, agents choose their optimal output depending on the stochastic price. Outputs
are denoted by ¢ in case of the price and ¢ in case of the quantity regime. In order to
compare the two regimes, Weitzman (1974) studies the expected comparative advantage
of the policies

A= E[B(q(0),n) — C(4(0),0) = (B(g,n) — C(g,0))] (2.1)

with E being the expectation value operator. The transformation of A and the execu-
tion of the expectation value yields the interesting finding that the ranking of the policy
regimes under uncertainty is ambiguous. Why is this so? First, let us only consider
uncertainty of benefits. In this case, outputs are the same under both policies as cor-
responding marginal costs are not influenced by this type of uncertainty. But adding
cost uncertainty introduces asymmetry to the decision problem. In the quantity regime,
marginal costs become uncertain. In the price regime, the output level ¢ becomes uncer-
tain.*? It turns out that the slope of marginal benefit and cost functions is the decisive
parameter for the policy ranking as

0.2

A = 20172 (B” + C”) = {

>0 if [B"| <|C"],
<0 if [B"|>|C"],

(2.2)

where o2 is the variance in relation to . Note that B” < 0 and C” > 0. Therefore, if
expected marginal benefits are relatively flat in comparison to expected marginal costs,
the price instrument results in smaller deadweight losses (see the left-hand side in Fig.
2.4). The influence of 6 on actual benefits is relatively small even for a broad margin
of cost fluctuations. Thus, the optimal output-bias in the price regime is relatively
small when comparing optimal levels before and after the resolution of uncertainty. The
opposite is the case if expected marginal benefits are relatively steep (see the right-hand
side in Fig. 2.4). The deadweight loss in the quantity regime decreases, whereas it

2 Weitzman (1974) makes a quadratic approximation. He henceforth allows only small fluctuations of
G(0) around §. This leads to benefit functions and cost functions that are dependent on g — g, only.
Their expected marginal values are then denoted by C’ = E[C1(4,0)] and B’ = E[B1(q,n)]. The
second derivative describes the slope of these functions.
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Figure 2.4.: Deadweight loss of price and quantity instruments under uncertainty. Source:
Pizer (1997), p.5.

increases in the price regime. This time, benefits are more sensitive to the stochastic
parameters. But the resulting broad margin has only a small impact on the optimal
output. Thus, the uncertainty result under the quantity regime is relatively close to the
optimal policy when assuming certainty.

Subsequent to the publication of Weitzman (1974), the impact of uncertainty and ir-
reversibility on the efficiency of policy instruments has been subject to several studies.
In what follows, we will review recent theoretical literature with respect to 1) the choice
of the policy instrument, 2) the intensity of environmental policy, 3) the timing of en-
vironmental policy, 4) the impact of policy uncertainty, and 5) uncertainty of the green
technological progress. Tables in Appendix A.l summarise the review.

1. Choice of environmental policy under uncertainty

Weitzman’s comparison of prices vs. quantities has been extended by Stavins (1996),
who allows for correlations between cost and benefit uncertainties, and Newell and Pizer
(2003), who develop a time-continuous model. Stavins (1996) finds that covariance can
change the ordering. In case of a positive correlation, quantity instruments are favoured.
In case of a negative correlation, price instruments are the better choice. The size of this
effect is proportional to the correlation parameter and the magnitude of costs and bene-
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fits. In addition to theoretical analysis, Stavins (1996) performs a numerical application
with realistic parameters, yielding the preference of quantity instruments. Newell and
Pizer (2003) confirm the decisive impact of slopes of marginal benefit and cost functions.
They study the evolution of the stock of a regulated good under time-correlated costs.
Quantity instruments perform better for lower stock decay rates, lower discount rates,
higher rates of benefit growth, and higher correlation in costs across time. Pizer (1999)
combines economic, climate, and trend models*? with economic and climate change uncer-
tainty**. He finds that taxes are preferable over output controls since marginal damages
are relatively flat and the correlation with marginal costs is negative.

Zhao (2003) studies a fictitious social planner who maximises the aggregate firm pay-
offs under two policy regimes - tradable abatement taxes and tradable emission per-
mits setting an industry-wide abatement level. Uncertainty of the permit price leads to
stochastic abatement costs. Under both policies, cost uncertainty hampers investments.
But tradable permits are preferable over abatement taxes.

van Soest (2005) studies the decision of a single firm to adopt a new energy-efficient
technology when its arrival at the markets is not known. Environmental policy is specified
as non-tradable quotas and per-unit taxes on the use of energy. In a real options model, he
derives the optimal adoption time and finds that the ranking of the policy instruments is
ambiguous. If the policy instrument is less strict, the technology will be earlier adopted
in the quota regime. If the intensity of the policy instrument increases, the adoption
lag is smaller for the tax regime. In Section 3.5 of this thesis, we develop a sequential
investment model in which technological progress is not exogenous but a function of the
firm’s R&D investment efforts. Analysing the impact of the same policy instruments
as van Soest (2005), we find that the value to invest increases with uncertainty. The
ranking of the policy instruments is also ambiguous in our model. Only if the level of
policy stringency is very low are energy taxes the better choice in terms of inducing
energy-saving R&D investments. We furthermore analyse a cap-and-trade instrument
for the use of energy. This instrument dominates the quota instrument.

Bosetti et al. (2009) perform a simulation of a global climate-economy, which yields
the result that investments in energy-efficiency R&D can be higher under a tax policy.
But what matters is the way the new technology improves the environmental balance®®.
For example, investments in renewable energies are higher in a cap-and-trade regime.

Concluding, when uncertainty and irreversibility are present neither quality nor quan-
tity instruments lead to first-best allocations. Cost and benefit uncertainties slow down

43The economic model describes the development of outputs, capital stocks, and consumption. The
climate model computes the concentration of emissions as well as the new temperature. The trend
model considers exogenous changes in productivity, population, and the ratio of emissions per output.

“Economic uncertainty (labour productivity and consumer preferences) is expressed in a joint likelihood
function describing the distribution of historical data (1952-1992 U.S. Worksheets) and exogenous
shocks of labour productivity. The development of the likelihood function is conditional on the
model parameters, i.e. the probabilities are being up-dated according to a Bayesian rule. Climate
uncertainty is modelled by stochastic shocks of the growth rate, climate impacts, control costs and
damages, and long-term growth trends.

Y5 For further details, see also Subsection 2.3.2, item 5, on optimal environmental policy under uncertain
green technological progress.
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investments as they create an incentive to wait for the resolution of uncertainties. The
situation is different if information can be actively obtained, e.g. by undertaking R&D,
thereby resolving technical uncertainty. In this case, investments would be accelerated.
The ranking of quantity and quality instruments is ambiguous. The relative advantage
of an instrument depends on 1) the relative slopes of marginal benefit and cost functions
(if marginal benefits are relatively flat, then price instruments are preferable), 2) the cor-
relation between benefits and costs (if the correlation is negative, price instruments are
preferable), and 3) the stringency of the policy instruments. Using realistic parameters,
there is a tendency to prefer tradable quotas over non-tradable quotas and quotas over
taxes.

2. Intensity of policy instruments under uncertainty

Next, we will summarise contributions that add to a better understanding of the optimal
intensity of a policy instrument under uncertainty and irreversibility.

Kolstad (1996) uses a combined economy-climate model. In his global growth model,
a social planner maximises the expected net present value of the per-capita utility for a
representative consumer. Uncertainty is resolved by learning as time goes by*® described
via a 'news probability vector’ of world state variables. This vector is continuously up-
dated according to the learning history. Results of the model are twofold. First, in the
absence of climate change irreversibilities (emission stock effects are irreversible), uncer-
tainty and learning about emission stock effects are not the dominating factors. Second,
in the presence of uncertainty and learning, irreversible policy costs (sunk capital to con-
trol emissions) lead to lower control levels. Kolstad (1996) interprets this finding in two
different ways. If learning is fast and hence uncertainty can be resolved quickly, poli-
cies should ’go slow’ and choose a low intensity of the environmental policy instrument.
The second interpretation is that temporary carbon taxes are preferable over permanent
taxes.

Ulph and Ulph (1997) explore the relevance of irreversibility in global warming mod-
els. In their two-period model, costs about environmental damages are stochastic. Ir-
reversibility of environmental damages implies that the stock of greenhouse gases in the
second period cannot fall below a certain fraction of the stock in the first period. They
derive a set of criteria for which irreversibility effects should hold. The criteria are tested
in an empirical multi-period model. Similar to Kolstad (1996), Ulph and Ulph (1997)
find that an anti-irreversibility effect holds in many cases. The abatement level should be
lower if more information about damage cost is revealed over time. However, the model
also shows that such an effect is absent if the discount rate is low and uncertainty is high.

Fisher and Narain (2003) continue this discussion by introducing endogenous damages
from the stock of greenhouse gases (GHG) to the two-period model. This means that
the probability of warming and resulting damages are a function of the GHG stock. The
scheme of learning about the costs of global warming and the definition of irreversibilities
are different from Kolstad (1996) and Ulph and Ulph (1997). Abatement costs are sunk

“6Kolstad (1996) differentiates between active learning by observation, purchased learning through R&D
expenditures, and autonomous learning with passing time (Bayesian learning).
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because they are lost for other purposes. Learning in their model is such that the social
planner makes observations in the beginning of the second period. A climate event may
occur or not, e.g. the global temperature could increase strongly. The social planner can
observe if the impact of such an event on abatement costs is low or high. Fisher and
Narain (2003) find that the optimal abatement investment in the first period is always
higher if uncertainty of environmental damages is endogenous and not exogenous. There
are two reasons for this. First, lower risks for global warming yield higher welfare gains.
Second, the probability of warming increases in the second period if emissions in the first
period are high. A numerical simulation using parameters from the DICE climate model
allows the quantification of the role of irreversibilities. The irreversibility effect of sunk
investments is substantially larger than that of GHG accumulation.

Wirl (2006) analyses the relationship between global warming caused by burning fossil
fuels, uncertainty of the global temperature, and two kinds of irreversibilities (aggregation
of CO2 emissions and stopping COg emissions). A social planner chooses the level of
emissions that maximises the sum of expected benefits from burning fossil fuels and
expected costs of global warming. There is a critical value for the temperature at which
expected costs equal expected benefits. Above this critical value, it is optimal to refrain
from all emission. Hence, the social planner will not increase emission levels to trigger
an increase in the temperature beyond this value. The lower the chosen emission level,
the stricter environmental policies are. Considering an irreversible aggregation of COq
emissions, the critical temperature threshold is lower than that of the reversible problem.
Considering the option to abandon fossil fuels for some time with the possibility of a later
re-introduction (reversible stopping of emissions), the critical temperature threshold is
even lower. Similarly, a simulation in Pizer (1999) yields the result that uncertainties
raise the optimal level of emission reduction. Half of this effect is caused by the influence
of future discount rates. Corresponding welfare gains are about 30 % higher than in the
deterministic model.

Baker et al. (2006) develop a two-period model to find the optimal level of global
R&D investments under uncertainty of the impact of climate change. They consider
different R&D programmes depending on how the global production function is affected,
e.g. constant emission reductions, emission cost reductions, and emission reductions
proportional to the output level. The optimal R&D strategy resulting from the analytic
model is fed into a DICE model. The combined model yields the result that policy
is seldom able to hedge against uncertainty. Policies should instead aim to push the
probability for a technological advance.

Golub et al. (2009) perform Monte Carlo simulations to study combined exogenous
uncertainties, e.g. uncertainty of the feedback of the climatic system, climate sensitivity,
and temperature damage costs. They obtain a global distribution for potentially avoided
damages and for sunk mitigation costs. Remarkably, costs are not compensated by the
benefits. This suggests that the policy target of 450 ppm COs concentration is too strict
and not efficient. But the distribution of potential damages has a fat tail implying that
catastrophic events are more likely. Therefore, even though a stricter policy target is
more expensive, it is connected with lower risks.

Summarising this section, a general result can be noted. Two kinds of irreversibilities
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are opposing each other - the irreversibility of environmental damages (implying stricter
environmental policies) and sunk costs of environmental policy instruments (implying a
lower policy intensity). The relative dominance of one and its impact depend on the
magnitude of uncertainties, the prospect of learning, and the discount rate. There is a
tendency to opt for a higher intensity of present policy instruments if 1) this later on
opens up flexibilities, if 2) learning could be accelerated and hence future policies would
be better adjustable, and if 3) hedging the risk of a catastrophe compensates inefficiencies
of too strict policies.

3. Optimal timing of environmental policy under uncertainty

After presenting an overview of the optimal choice and intensity of pollution control
instruments, we now turn to optimal timing problems of environmental policies. An
early contribution is Arrow and Fisher (1974). Assuming uncertainty of development
and preservation costs, the authors find that an optimal policy hesitance to start an ir-
reversible development, because maintaining flexibility and waiting for more information
has a value in itself.

Pindyck (2002) develops a real options model for the optimal timing of a one-time
environmental policy with two opposing irreversibilities. First, environmental policy im-
poses sunk costs on the society. Thus, postponing a regulation is rational. Secondly,
immediately acting is of benefit for the environment. The evolution of the pollution
stock as well as environmental costs and benefits are uncertain in the model. Pindyck
(2002)’s model yields the result that a large uncertainty of benefits increases the option
to wait with policy intervention. Furthermore, the smaller the variance in the pollution
stock, the higher regrets are in the in case that damages are lower than expected. This
‘good news principle’ raises the critical value for the amount of pollution above which
an environmental policy will be adopted. But the critical value decreases the higher
the initial pollution stock is. Lin et al. (2007) extend Pindyck’s (2002) model by allow-
ing for correlations between the uncertainties. Furthermore, sunk costs are quadratic.
These assumptions increase the critical threshold value in comparison to Pindyck (2002).
Hence, policy tends to wait even longer with an intervention. An extension of Pindyck’s
(2002) model for strategic effects and random technological improvements is published
by Ohyama and Tsujimura (2008). If only strategic effects are considered, two competing
agents will adopt an environmental policy simultaneously. The critical threshold value
for intervention is higher than in the model with only one agent. In the case of uncertain
technological progress, incentives to become the first mover exist.

The optimal strategy of a social planner is studied by Baranzini et al. (2003). The
sequential investment model takes into account uncertainty in the ratio of benefits and
costs associated with global warming. Baranzini et al. (2003) find that the risk of a catas-
trophe increases the probability of an immediate policy implementation. Furthermore,
the lower the discount rate, the earlier environmental policies are adopted.

In sum these studies show that the optimal timing of environmental policy depends on
the type of irreversibility. Irreversible environmental damages call for an earlier adoption,
whereas sunk costs of policy intervention postpone activities. The time lag closes if the
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discount rate decreases, if uncertainty is high (low) about environmental damages (policy
benefits), and if the correlation between uncertainties is small. Finally, the probability
of a catastrophic event shifts the optimal timing towards the present.

4. Impact of policy uncertainty

Environmental policy itself can also be a source of uncertainty. The consequences of this
type of uncertainty is the topic of this section.

Larson and Frisvold (1996) explore a firm’s investment decision when the polluting in-
put is taxed. In the first period, the firm chooses its optimal amount of factor-augmenting
R&D in order to improve its technologies. The first technology utilises a polluting input,
whereas the second technology makes use of an environmentally benign input. At the
time when the investment choice is made, neither the market prices nor the pollution
tax are known. In the second period, the firm observes the realisations of the uncertain
quantities. Using this knowledge, the firm now maximises profits from the production
with the two inputs, thereby utilising the new factor efficiencies that result from the
R&D investments in the first period. The effect of uncertain taxes depends on how new
technologies alter the demand for the polluting input in the second period. This issue
is complicated as the demand depends recursively on the elasticity of prices. To under-
line: if tax uncertainty increases, the firm avoids investing if investing implies a lower
responsiveness to future price changes.

Farzin and Kort (2000) study the impact of uncertain per-unit emission taxes. When
the firm invests in abatement technologies, less emissions per unit of output are produced.
The environmental damage is assumed proportional to the output level. The latter is
chosen by maximising the net present value of the firm’s future cash-flows from producing
and/or investing in emission abatement. Farzin and Kort (2000) consider two kinds of
policy uncertainty - an uncertain increase in the size of the tax at a certain time (jump
to a lower or higher level) and a certain tax increase at an uncertain time. They derive
a critical value for the tax rate above which investments always decrease. Below that
value tax uncertainty hampers investments compared to the deterministic case. In case
of an uncertain size of the emission tax, the model yields the result that investments are
accelerated before an expected increase of the tax rate occurs. But at the time when
the tax is changed, the level of investment depends on actual tax realisations. If the
change in taxes is lower than expected, a lower investment rate is chosen. In case of an
uncertain timing of a tax raise, investments are accelerated in order to avoid upcoming
higher costs. This effect is stronger the more credible the policy commitment is. Finally,
Farzin and Kort (2000) show that the optimal timing problem with an uncertain tax
increase cannot be simplified by assuming a certainty-equivalent discount rate.

Baker and Shittu (2006) argue that the results are sensitive to how abatement in-
vestments affect the level of emissions. They differentiate between R&D investments
into carbon-based technologies and alternative technologies. The latter result in cost
reductions, i.e. the price bias between carbon-based technologies and non-carbon based
technologies decreases. R&D investments into carbon-based technologies lead to lower
emissions per unit of output. Baker and Shittu (2006) study a two-period model. A single
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firm can produce and perform R&D at the same time. In the first period, the firm chooses
the optimal level of its R&D expenditure not knowing the size of taxes. In the second
period, after observing the actual tax level, the firm maximises its production. A main
result is that R&D efforts do not increase monotonically with an expected carbon tax.
R&D investments depend on the elasticity of substitution between non-carbon energy
and carbon-energy. If the substitution of elasticity is high enough, R&D into alternative
technologies increases. But R&D efforts decrease if both inputs are not good substitutes.
For the case that it is optimal to invest in carbon-technologies, investments increase as
long as the tax rate is lower than a critical threshold value. Furthermore, Baker and
Shittu (2006) find that investment incentives are low if the probability of a high tax is
small. The rigsk of a tax raise expands investments into alternative technologies if the
elasticity of substitution is high, and contracts investments if low.

Isik (2004) considers uncertainty of cost-share subsidies studying the impact on the
adoption of site-specific technologies. Such technologies are, as an example, relevant for
farmers optimising the use of fertilisers. Farmers have the choice between continuing with
a conventional technology or investing into the site-specific technology. The investment
is irreversible. Related costs and benefits are uncertain. A first finding is that higher
cost-share subsidies are needed to compensate the impact of uncertainty. Otherwise, the
farmer has an incentive to postpone investments. A second finding is obtained considering
policy uncertainty, i.e. the government can switch between a regime granting subsidies
and one in which there is no policy support. Investments are best induced if cost-share
subsidies are immediately installed and if policy commits to a soon withdrawal.

Summarising this section, uncertainty of policies generally creates an incentive to post-
pone investments. However, the better a firm is able to realise advantages from investing
in abatement measures, the earlier it will invest. The latter is the case if the firm expects
a soon withdrawal of cost-share subsidies or an up-coming tightening of environmental
taxes or standards. Better adjustment possibilities of the firm, e.g. a high substitution-
ability of polluting inputs, promote investments in the same way.

5. Optimal environmental policy under uncertain technological progress

Green technological progress in itself is highly uncertain. We will discuss in the fol-
lowing related consequences. A couple of contributions analyse impacts on the social
optimal level of environmental R&D and/or abatement investments (Ohyama and Tsu-
jimura, 2008; Baker and Adu-Bonnah, 2008; Bosetti and Tavoni, 2009; Bosetti et al.,
2009; Goeschl and Perino, 2009; Blanford, 2009). Optimal technology adoption from the
perspective of a firm or a sector is the focus of Chao and Wilson (1993); van Soest (2005);
Ansar and Sparks (2009), as well as Fuss (2010) whereas, this thesis explores a firm’s
R&D activities.

The majority of contributions assume that the technological advance is exogenous
leading to direct cost reductions (Baker and Adu-Bonnah, 2008; Bosetti and Tavoni,
2009; Goeschl and Perino, 2009; Blanford, 2009; Fuss, 2010) or efficiency increases (van
Soest, 2005; Ohyama and Tsujimura, 2008; Goeschl and Perino, 2009). Chao and Wilson
(1993) define technological advance implicitly by assuming a decreasing industry-wide
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demand for emissions with time. An endogenous approach is undertaken by Ansar and
Sparks (2009) and Bosetti and Tavoni (2009) who model the technological progress at
an aggregate/global level. An endogenous approach at firm-level is studied in this thesis.
Tab. 2.6 gives an overview of the formalisation of uncertain green technological progress
in the different contributions.

One of the earliest contributions is Chao and Wilson (1993) who develop a real option
model to study the implications of the 1990 U.S. Clean Air Act. Environmental policy sets
an annual quota on unscrubbed emissions. Firms have the possibility to buy additional
emission allowances or to invest in scrubbers. But the scrubbing capacity is constrained.
Chao and Wilson (1993) study the effect of uncertainty of the industry-wide demand for
emissions. This demand influences the allowance price and the industry-wide abatement
investments. The model yields the result that the market price of emission allowances
can be larger than the marginal costs of installing a scrubber, and that this difference
can be substantial. It illustrates the flexibility of emission allowances in comparison to
the risk of sunk investment costs. Uncertainty of the future demand for emissions lowers
investments as it drives the market price of allowances.

As discussed in the previous sections, results can vary depending on the assumed
type of a technology. Different types of technologies are explored in Baker and Adu-
Bonnah (2008); Blanford (2009); Bosetti and Tavoni (2009), and Goeschl and Perino
(2009). Baker and Adu-Bonnah (2008) study how the success probability of an R&D
programme?” influences its optimal amount of funds. Each programme aims to achieve a
prior set target for technological change. Progress either directly reduces abatement costs
(in the case of alternative technologies) or it reduces the emission-output ratio (in the
case of conventional technologies). Baker and Adu-Bonnah (2008) find that programmes
for alternative technologies, which are more risky, can require an higher optimal R&D
level. This is the case if the probability for severe environmental damages or technologi-
cal breakthroughs is small. But optimal investments into carbon-technologies are almost
independent of the programme risk.*® This is due to the large share of carbon-based
technologies in the markets. Thus, already incremental improvements substantially re-
duce environmental burdens lowering the programme risk. Therefore, it is important to
increase the market share of alternative technologies. However, Baker and Adu-Bonnah
(2008) also find that the spread of alternative technologies in the markets is only ac-
celerated if environmental damages are severe. A similar result is found in Blanford
(2009). The author performs simulations in an energy-economy model*® analysing the
optimal allocation of investments into three different R&D programmes. He considers
performance improvements in the generation of fossil-based electricity, cost reductions

“"Baker and Adu-Bonnah (2008) capture uncertainty in technological change by allowing for three
possible R&D outcomes: a radical breakthrough at which abatement is possible at no costs, an R&D
outcome that just meets expectations, and a total failure. The probability at which these outcomes
are realised describes the risk of the R&D programme (high risk, low risk).

*®The robustness of results from the stochastic growth model is checked in a simulation with DICE.

““The 'model for evaluating regional and global effects of GHG reduction policies’ MERGE is an inter-
temporal general equilibrium model with 9 macroregions combining top-down elements (neoclassical
optimal growth model) and bottom-up elements (specification of energy-input). See Blanford (2009).
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Contribution

Description of green technological progress

Implicit modelling

Chao and Wilson (1993)

Ezogenous arrival

industry-wide demand for emissions depends on a random vari-
able; in the case of technological advance, demand decreases

van Soest and Bulte
(2001); van Soest (2005)
Ohyama and Tsujimura

(2008)
Baker and Adu-Bonnah
(2008)
Bosetti and  Tavoni
(2009)

Blanford (2009)

Goeschl and Perino
(2009)
Fuss (2010)

Endogenous progress

energy efficiency parameter following a Poisson process

reduction of the cost of environmental policy following a Poisson
process

reductions in abatement cost depend on the risk of the R&D
programme (as expected, breakthrough, failure)

reductions in abatement cost of backstop technologies can
switch between success or failure

parameterised knowledge production function with optimistic
& pessimistic technology paths lowering global abatement costs
probability to invent either a backstop technology or a
boomerang technology, passive learning included

technology improvements following a Poisson process; decreas-
ing investment costs for non-carbon technologies

Ansar  and  Sparks

(2009)
Bosetti et al. (2009)

this thesis

drift parameter of the technology benefit is linked to the
industry-wide adoption rate leading to cost reductions and
longer life-time (learning by doing)

energy R&D increases the stock of knowledge improving global
efficiencies & reducing costs (low-tail distributed productivity)
learning by performing R&D (Brownian motion)

Table 2.6.: Concepts of modelling green technological progress

of renewable energies, and the viability of CCS technologies. Technological progress is
embodied in a parameterised knowledge production function with decreasing returns to
scale. The production function depends on technology paths (pessimistic/optimistic),
beliefs about future policies, and total budget constraints. Technology paths are derived
from expert interviews and are matched to empirical data. Only on the optimistic path
are the ’challenging’ policy goals achievable. The model also incorporates a lag in the
adoption of available technologies. Blanford (2009) finds that the social value of techno-
logical progress strongly depends on the market shares of technologies. He concludes that
policies should diversify the R&D portfolio in order to account for the characteristics of
different technologies.

Bosetti and Tavoni (2009) explore the difference between investments in traditional
carbon-free technologies, e.g. fission, and carbon-free backstop technologies, e.g. wind
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energy. The latter are subject to uncertain R&D outcomes. In the model, a social
planner minimises costs to meet a carbon emission target. This is done by choosing
the optimal amount of investments into both types of technologies, thereby determining
the shares of the technologies in reducing global emissions. Bosetti and Tavoni (2009)
find that technological uncertainty leads to higher optimal R&D levels and lower policy
costs. Furthermore, conservative non-carbon technologies also play an important role.
These technologies are able to hedge downside risks of R&D investments into renewable
alternatives. Therefore, given such a backup, R&D programmes can be efficient regardless
of high or low success probabilities. In a combined simulation of their model with the
climate model WITCH?®®, analytic results of the two-period model are confirmed.

Goeschl and Perino (2009) study the interplay between backstop and boomerang tech-
nologies. In each period, one of these technologies can be invented. A backstop technol-
ogy is able to solve all environmental problems. A boomerang technology creates a new
type of accumulating pollutant. But boomerang technologies are still connected with an
advantage. In the beginning, the new stock of pollutants is zero. The time-continuous
stochastic optimisation model is solved in the following way. First, the optimal R&D
policy and subsequently the optimal environmental policy are determined. The former
equalises marginal benefits of a technology and marginal costs from the technology’s stock
of pollutants. Environmental policy maximises the social welfare by comparing the ben-
efits of all technologies with environmental damages. The first result is that step-by-step
investments are preferable over a strategy that pulls out all resources at once, because
boomerang technologies relieve environmental burdens - at least for a while. Therefore,
many boomerang technologies can substitute a backstop technology implying that R&D
is not anymore driven by environmental concerns. Also note that investments are im-
mediately stopped if a backstop technology is invented. The second result of Goeschl
and Perino (2009) is that it is optimal to limit the number of technologies. This calls for
reduced R&D rates. The background is that higher rates can accumulate environmental
burdens in the future. This is in particular the case if a couple of boomerang technologies
have already been discovered. But if the probability of inventing a certain technology
type is not known, even a small increase in the expectation to invent a backstop technol-
ogy accelerates investments significantly. Goeschl and Perino (2009) conclude that the
possibility of a breakthrough increases in the case that the government primarily funds
basic research. Finally, the society has to except higher equilibrium pollution stocks
under the optimal investment strategy. This is a part of the social costs.

Bosetti et al. (2009) compare the optimal amount of energy related R&D investments
under a cap-and-trade regime with the optimal choice of an emission tax regime. In the

**The World Induced Technical Change Hybrid model WITCH is a combination of top-down elements
with bottom-up elements. The model is defined for 12 macroregions of the world. Social planners
maximise interdependently the per-capita consumption in their regions by choosing optimal capital
stock investments, the R&D expenditure for energy technologies, and the consumption of fossil fuels.
The model distinguishes between an electric and a non-electric use of energy. Oil, natural gas, coal,
uranium, traditional biomass, and biofuels are the six power-generating technologies. Irreversibility
is expressed as a limitation in the substitutionability of the technologies. See Bosetti et al. (2009) for
details. Adoption lags are also incorporated.
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former, each region receives emission rights. In the tax regime, emissions are subsidised
(taxed) if the actual amount of emissions is below (above) the cap set in the cap-and-
trade regime. Marginal abatement costs are assumed to be the same world-wide. The
simulation with the WITCH model yields the result that investments are higher under
the tax policy. Bosetti et al. (2009) also study the dependence of this result on the
type of technology. They find that investments in renewable energies are higher in the
cap-and-trade regime. Fuss (2010) studies investment decisions in the electricity sector.
Investors can invest in fossil power plants (subject to fuel price uncertainty) or in wind
farms (subject to an uncertain arrival of technological change). The optimal investment
strategy is to postpone investments into wind farms since once investments are sunk,
the firm cannot benefit from further cost reductions. Thus, if further cost reductions
are expected, the option value of waiting increases. Finally, she finds that technological
uncertainty is more important than fuel price uncertainty.

van Soest (2005) studies the influence of energy quotas and taxes on the decision of a
firm to adopt an improved technology. The arrival of the new technology is uncertain.
The problem is one of an optimal timing solved in a real option model.’! Environmental
policy takes the form of non-tradable quotas and per-unit taxes on the use of energy.
The model yields the result that the ranking of the policy instruments is ambiguous. If
the policy instrument is more strict, the technology will be earlier adopted in the tax
regime. If the intensity of the policy instrument is low, the adoption lag is smaller for the
quota regime. The adoption of technologies is also the focus in Ansar and Sparks (2009).
They develop a time-continuous real options model based on Hassett and Metcalf (1999).
Benefits from the adoption are described as a combined Brownian motion with a Poisson
process. The former reflects increasing returns from learning by doing. The latter mimics
jumps caused by policy uncertainty or climate catastrophes. Ansar and Sparks (2009)
derive that the rate of return that just induces investment (hurdle rate) is high. Indeed,
the hurdle rate is always higher than the risk-adjusted discount rate. Ansar and Sparks
(2009) argue that this can explain high implicit discount rates for the adoption of new
technologies. The hurdle rate is a U-shaped function of the discount rate. For small
discount rates, future benefit uncertainty strongly influences today’s decisions. This
'markup effect’ is connected with high hurdle rates. But when the discount rate slowly
increases, the future matters less and the hurdle rate falls. This is reversed when the
discount rate reaches some critical value; for discount rates above that value the hurdle
rate increases. This is due to the ’basis effect’ - discounting requires higher internal rates
of return. Finally, Ansar and Sparks (2009) find that if a severe climate catastrophe is
likely, the hurdle rate drops significantly.

There is only one contribution studying strategic effects (Ohyama and Tsujimura,
2008). Their model is an extension of Pindyck’s (2002) model for the optimal timing of
environmental policies (see also the discussion in the previous section). The authors find
that the incentive to wait with policy intervention is higher in comparison to the model

5'The model builds on van Soest and Bulte (2001). Technological advance in that model is factor-
augmenting, i.e. a new technology increases the efficiency in the use of energy. Technological un-
certainty generates a value of waiting until the efficiency parameter reaches a critical value. The
investment lag is a concave function of the mean arrival rate of new technologies.
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with only one agent. This is due to the possibility of accelerated investments induced by
competition and uncertainty about the technological progress.

Concluding, uncertainty of green technological progress strongly affects optimal invest-
ment decisions at firm, sector, and global level, because environmental technologies are
connected with higher risks associated with their novelty and low market share. There-
fore, environmental policies, which hedge those risks are promising. Examples for such
policies are the funding of basic research or the diversification of the social R&D portfolio.

2.4. Chapter summary

Green technological progress stems from eco-innovations of which environmental tech-
nologies are a part. The decision to invest in research and development towards green
technologies is characterised by the following stylised facts

e The process of R&D and its results are largely uncertain.

e The planning horizon for R&D activities is long.

e Learning is a cumulative process.

e R&D efforts and innovative outputs are significantly correlated.
e R&D investments are largely irreversible.

e Supply-side factors are more relevant for R&D investments than demand-side fac-
tors.

e Cost-savings are a main incentive for research activities.

These facts suggest points of departure for the design of theoretical models.

As was illustrated in Section 2.2, there is a need for policy intervention in order to cor-
rect market failures caused by knowledge and environmental externalities. The objective
of policy instruments is to spur and direct technological progress towards its social op-
timum. In the environmental-economics literature, uncertainties and irreversibilities are
often neglected when evaluating the optimal choice of a policy instrument, as well as that
instrument’s intensity and timing. Both features have been recognised in financial eco-
nomics as key issues since the self-amplifying interplay of uncertainty and irreversibility
in connection with non-linear functionalities and long-time horizons lead to suboptimal
decisions. When studying environmental R&D investment decisions, relevant uncertain-
ties and irreversibilities are those occuring within the stages of innovation, with some
uncertainties likely being more relevant in one stage than in another. Earlier stages in
the innovation process are more influenced by supply-side factors such as input prices,
output prices, policy parameters, technical uncertainty, and market power. In the longer
term, sunk costs of investment decisions become the most relevant irreversibilities. Con-
sidering these facts and the questions left open from the literature review, we chose to
incorporate sunk investment costs and two types of uncertainties, which are technical

47



2. Basic concepts and survey of literature

and policy uncertainty, into the models we will develop in this thesis. In order to reduce
the complexity of the problem, our focus is constraint to the investment decision of a
single firm.

In Section 2.4.2, we discussed the state of the art in the literature on green techno-
logical progress, uncertainty, and environmental policy. The review disclosed that most
contributions study the decision problem of a social planner focusing on policy instru-
ments that foster the diffusion of environmental technologies. Much less attention has
been paid to the decision problem of a firm undertaking R&D. It is of interest to analyse
the extent to which environmental policy instruments can provide incentives for green
R&D investments. In addition, while most contributions consider ecological and market
uncertainties, such as uncertainty of environmental impacts and uncertainty of costs and
benefits, there is a lack of models exploring the consequences of regulatory uncertainty
and uncertainty of the technological progress, particularly when the progress is not ex-
ogenous (see Tables 2.5 and 2.6). To our knowledge, there is no contribution combining
both uncertainties. Regarding formal issues, the majority of models are restricted to the
analysis of two time periods.

Moving foreward from the existing literature, we will focus on R&D investment deci-
sions from the perspective of a single firm. The first step will take account of technical
uncertainty endogenous to the firm. In a second step, we explore how additional uncer-
tainty of environmental policies affects the optimal R&D investment decision. A suitable
approach to incorporate these features is the theory of real options. In our implementa-
tion of this theory, we will develop continuous-time sequential investment models going
beyond two-period descriptions.
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3.1. Concept and formalisation of technical uncertainty

Research and development projects are not one-time investments but take time and may
run several months or years. They require repeated investments, e.g. to pay researchers
for their work or to purchase and maintain installations, equipment, and devices. This
sequential character of R&D investments allows for different kinds of managerial flexibil-
ities and creates option values.

In order to keep the option of continuing the project open, it is usually necessary
to proceed at least with a minimum investment rate. For example, researchers may
be contracted to receive guaranteed payments even if the R&D project is put on the
back burner. R&D projects are also characterised by a high degree of irreversibility. If
the project is abandoned, a large share of investments will be lost. Examples for such
sunk costs includes researchers moving to other projects or R&D equipment which is too
specific to be re-used for other purposes.

The fourth feature of R&D projects is that they involve substantial uncertainty over
future developments. This results in an unknown evolution of input factor and output
factor costs. As distinguished from other sequential investment projects, uncertainty
connected with the scientific progress is particularly important to R&D projects. It is
difficult to predict if a project will be successful, or from a more optimistic point of view,
how much time and expenditure are needed in order to achieve the desired research goals.
Following Pindyck (1993), we will call this type of uncertainty technical uncertainty.!

Technical uncertainty can be resolved by undertaking an R&D project. Step by step,
the firm learns about the project and its success or failure probability. As this type of
uncertainty is specific to a single project, it is endogenous to the firm and thus indepen-
dent from environmental or market conditions. Therefore, technical uncertainty cannot
be eliminated through diversification.

The reduction of technical uncertainty at each investment step lowers uncertainty
about the remaining investments required to complete the project. Hence, this type
of uncertainty creates a shadow value of the R&D project which makes the investment

!Note that in the literature often two terms, technical and technological uncertainty, are used inter-
changeably. However, these are two different kinds of uncertainties that should not be confused.
One is associated with uncertainty in a single project. The other describes an industry-wide uncer-
tainty, e.g. uncertainty about the availability of specific technologies in the future. Hence, Oriani
and Sobrero (2008) suggest to name the former technical uncertainty and the latter technological
uncertainty.
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more attractive. To illustrate this feature of technical uncertainty, consider the following
simple example of a project with a one-time possibility to review the investment decision.
For simplicity, we refrain from discounting future cash-flows.

Let us consider a firm that plans an initial investment of 0.5 Million EUR in order
to improve the efficiency of a portable device for energy storage. After half a year the
firm will review the development progress. There is a 50% chance that the project
will be finalised by that time. However, time could also reveal bad news making the
investment of another 1.6 Million EUR, necessary. Suppose the firm expects total profits
of 1.2 Million EUR selling the improved devices. From a classical point of view, it is
not rational to invest at all as expected investment costs exceed expected profits and the
resulting Net Profit Value is negative, i.e. 1.2 MEUR - (0.5 MEUR + 0.5*1.6 MEUR) =
-0.1 MEUR. However, with the option to abandon, the firm has the flexibility to review
the project and decide about its continuation. After the first investment stage, the value
of continuing the project is -0.5 MEUR + 0.5*1.2 MEUR = 0.1 MEUR. Therefore, in
hindsight the possibility to abandon, it would have been rational to have started with
the first investment step. Thus, even if the classical Net Profit Value is negative, it might
be rational to start an investment project that involves technical uncertainty. Classical
valuation methods, such as the Net Profit Value Method (NPV), neglect the possibility
to abandon the project when bad news occurs.

Technical uncertainty can be formalised using stochastic processes®. Sudden knowledge
breakthroughs can be described by Poisson processes - the economic quantity depending
on technical uncertainty will jump with a certain probability to a lower or higher level.
For example, Berk et al. (2004) use a Poisson process to describe an incremental technical
progress by assigning a success probability to infinitesimal research stages. The firm’s
R&D productivity is thereby depending on the number of completed stages and the
cumulative amount of time spent investing. Thus, technical learning is based on previous
success.

Another possibility is to model technical uncertainty with controlled diffusion pro-
cesses® whose increments fluctuate around a trend. We follow Pindyck (1993) by analysing
the effect of technical uncertainty on the expected remaining investments required to
complete the project. This expenditure is a cumulative quantity denoted with K (¢) and
measured in units of a numéraire. Thus, the total cost to completion is a stochastic
variable K and K = £(K). In the trend, the expected cost to completion K (t) decline
as investments proceed with investment rate I(¢). When K reaches zero, the project is
finalised, i.e. K(T') = 0 with T being the time needed to complete the project. Infinites-
imal changes in K are given by a stochastic differential equation

dK (t) = —I(t)dt + (I, K) dw(t) . (3.1)

A continuous decrease of K(t) is described by the first term of Eq. (3.1), the drift

2See Appendix A.1 for a basic introduction of essential terms.

3Diffusion processes are continuous time parameter stochastic processes which possess the strong
Markov property and for which the sample paths X (¢) are almost always continuous functions of
time ¢. This means it is relatively unlikely that large displacements occur in e-small time intervals.
See e.g. Karlin and Taylor (1981, Chap. 15) for a definition and properties.
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Figure 3.1.: Realisations of expected investment cost to completion K ().

term. Fluctuations around this trend are modelled by the second term, the diffusion
term. Tts stochastic increments dw(t) are those of a Wiener process* w(t). They are
independent of each other and their variance grows linearly with time. The Wiener
process is assumed to be idiosyncratic, i.e. uncorrelated with the economic environment.
The expected remaining expenditure K (t) required to complete the project can also be
understood as a monetary valuation of ignorance that is being reduced with investments
I(t). Fluctuations around the trendline are thus unexpected knowledge increments (below
the trendline) or unexpected backlashes (above the trendline).

Regarding the function g(I, K), the following assumptions are made. ¢(0,K) = 0,
i.e. without investments, the expected cost to completion does not change as no new
knowledge will be revealed. Accordingly, the rate of investment I(¢) controls Eq. (3.1).
g(I, K) also needs to satisfy dg/dI > 0, i.e. an increase of K implies that the progress
was slower than expected. In addition, the variance of the expected cost to completion
decreases with K, and the actual total cost will only be known for certain once the
project is finalised. A common specification of g(I, K) satisfying these assumptions is

g(I7K):’YVI(t)K(t) ) (3-2)

where v is a constant, positive parameter depicting the overall technical uncertainty.
In Fig. 3.1, samples of the evolution of K(¢) according to Eq. (3.1) with specification
Eq. (3.2) are shown.® We assume initial cost of K(0) = 10, a constant investment rate
of I = 2, and technical uncertainty v = 0.5. In a world of certainty, it would take

*A Wiener process obeys dw = (;/dt where (; is a normally distributed random variable with zero
mean and unit standard deviation. See also Fig. 3.2 ( right-hand part). Thus, the expectation value
of w is £(dw) = 0 and its variance is Var[dw] = &((dw)?) = dt.

®Stochastic paths are created in a simulation solving the stochastic differential equation Eq. (3.1) with
the Euler-Maruyama method. At was chosen as 107°.
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five investment steps to reduce the initial cost to zero. However, with uncertainty, the
path of remaining investments required to complete the project fluctuates. Therefore,
the completion time T’ is scattered around the deterministic realisation time 7' = 5, yet
not normally distributed. This is shown in the left-hand part of Fig. 3.2. The 10000
simulated paths with their realisation times 7" have been sorted into 1000 bins of equal
length. On the contrary, the random number (; of the Wiener process in Eq. (3.1) is
normally distributed (see the right-hand part of Fig. 3.2). In this figure, 10000 random
numbers are simulated and their distribution is plotted together with the standard normal
distribution.

Eq. (3.2) furthermore implies that the instantaneous variance of dK/K increases
linearly with I /K. The longer investments have been undertaken, the lower the likelihood
for surprises. The latter is not the case in early phases of the project when K is high.
This can also be seen from the sample paths in Fig. 3.1. The variance of the actual total
cost K can be derived analytically as
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2-7
for details see the Appendix A.3.1. To bring in the feature of R&D projects that technical
uncertainty is larger in earlier stages of the R&D project, Kort (1998) modifies Eq. (3.2)
by introducing an additional constant parameter 6 > 0. Then, g(I, K) takes the form

g(I.K) =y K0’ VIDK() - (3.4)

Var(K) = K? and ~v< V2, (3.3)

2

We will use both specifications later on.
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3.2. Review of real options literature on R&D investments

A suitable approach to evaluate sequential research and development projects under
uncertainty is to study real option R&D models. We will briefly review the main findings
of this literature. There, capital investment decisions (real options) are treated similarly
to financial options, i.e. knowledge is seen as a strategic asset that is of value and includes
executable options. These business options contribute to the value of a project which is
not simply quantifiable as it depends on principally unknown future developments. Of
main interest is how technical and/or market uncertainty affects the value of investment
projects. In a recent review paper, Newton et al. (2004) divide research on real R&D
options into ten primary, partly overlapping lines: general R&D planning, planning R&D
in stages, testing, the timing of new product developments, operations, abandonment,
risk sharing, market funding, industry strategy, and regulations. In this thesis, research
is concerned with R&D planning, timing, and the influence of policy regulations under
technical uncertainty that can be resolved by investing in in-house research projects.5

Real option models draw substantially from the seminal works of McDonald and Siegel
(1986), Majd and Pindyck (1987), and Pindyck (1993).” McDonald and Siegel (1986)
and Majd and Pindyck (1987) study sequential investment projects with stochastic bene-
fits from the project and stochastic investment cost. With the investor having the choice
between waiting or investing, the optimal strategy depends on a critical threshold for the
expected cost to complete the project. While these models do not include technical risks,
Pindyck (1993) develops a sequential investment model under technical and input cost
uncertainty. The basic finding is that the value of the investment opportunity increases
with technical uncertainty, whereas input cost uncertainty depresses investments.® These
models have been applied to various investment decision problems, most often to phar-
maceutical R&D and natural-resource utilisation such as the optimal exploitation of oil
fields or mines. Recent books on these applications are, e.g., Brennan and Trigeorgis
(2000) and Paxson (2003).

Schwartz and Moon (2000) study four phases in the development of new drugs, consid-
ering uncertainty about investment costs, future payoffs, and the possibility of a catas-
trophic event able to terminate the project. They derive critical asset values for each
phase and analyse the dependence of these values on types of uncertainty (technical un-
certainty, asset value uncertainty) and model parameters. They find that uncertainty

SThere is another broad line of research exploring capital investment decisions when new technologies are
exogenous to the firm, i.e. technologies arrive at a random date for purchase at markets. Applications
in environmental-economics are Chao and Wilson (1993); van Soest and Bulte (2001); van Soest
(2005); Ansar and Sparks (2009); Fuss (2010). See Section 2.3.2 for a discussion.

TA classical book on investment under uncertainty is Dixit and Pindyck (1994).

®In a time-continuous stochastic control model, Grossman and Shapiro (1986) determine optimal R&D
investment paths of a single firm when either the amount of progress is not known or there is a
stochastic relationship between effort and progress. They find that the prospect of more information
about a well running project accelerates investment efforts. If the progress is exogenous and smaller
than expected, the firm might instead scale down or stop the project. If otherwise, the progress
depends on the firm’s efforts: bad news leaves the rate of investment unchanged. Thus, uncertainty
in R&D expenses results in favouring risky projects even if the return after completion does not
increase.
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3. R&D investment under technical uncertainty

always increases the project value. However, the value of investment opportunity de-
pends positively on the asset value and negatively on expected costs. Uncertainty in
expected costs (modelled as technical uncertainty) lowers the critical value of the option
to invest as investments reveal information. On the other hand, uncertainty in the asset
value does not improve investment conditions.

Common to the aforementioned models is the treatment of investment projects as
American call options, i.e. the investor has the right to decide at any time about con-
tinuing or abandoning the investment. However, closed-form solutions of American call
options are generally not known, instead one relies on numerical solutions or simulations.
The latter transfer an American call option to ’exotic’ options leading to discrete rather
than of time-continuous models. Schwartz (2004) solves a sequential investment model
for patent protected R&D projects by simulation. He considers cash-flow uncertainty,
uncertainty in the cost-to-completion, and the possibility of catastrophic events. The op-
tion of abandoning the project contributes significantly to the project value if uncertainty
is high. Lint and Pennings (2003) among others? relax the assumption that volatilities
are the same throughout the project. They separate R&D into distinct phases, i.e. a
research phase, a development phase, and a start-up phase. Each of these phases have a
different underlying characteristic and have to be passed successfully before entering the
next stage. Errais and Sadowsky (2008) study a model in which investment costs are a
function of uncertainty and remaining stages. They find that learning in earlier phases
has a crucial effect. In a different approach, Kort (1998) explores the influence of higher
uncertainty in the earlier phases of an R&D project and also confirms the importance of
this feature.

Moélls and Schild (2006) deal with the role of a corridor for the investment rate instead
of the usual choice between zero-investment and investment with a maximum rate. A
result is that a marginal increase of the lower boundary for the investment rate creates
further incentives to invest with maximum efforts. The effect of an ’initial euphoria’ (Bar-
[llan and Strange, 1998) still exists, but the enthusiasm is lower, if a minimum investment
rate is introduced. Multiple R&D projects are studied by Childs and Triantis (1999).
Under these conditions, the optimal research policy for a single firm is to foster a lead
project, whereas other projects are just kept alive as 'back-ups’. However, if competition
is introduced, the firm prefers to run projects in parallel. The analysis of strategic options
under competition is a research area of recent interest. By considering research spillovers,
game theoretic analysis is combined with real options theory, see Kulatilaka and Perotti
(1998) among others. For example, Lukach et al. (2007) develop a two-stage R&D model
with technical uncertainty and strategic actions. They focus on welfare implications, e.g.
effects on the cost-efficiency of new technologies, generating ambiguous results.

In real options models, technology policy typically enters the decision problem in form
of R&D subsidies or taxes. Supply-side support (technology-push policy) backs up R&D
investment costs and hedges technical risks. Demand-side support (market-pull policy)
aims to bolster returns from developing new technologies and to facilitate market access.
As reviewed in Section 3.3.2, the impact of environmental policy on sequential investment

See e.g. the review in Newton et al. (2004).
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3. R&D investment under technical uncertainty

decisions of a firm undertaking R&D has gained little attention so far. In the remaining
chapters of this thesis, we will explore such kinds of models. Next, however, we will
study Pindyck’s (1993) model with technical uncertainty in detail to supply the basic
background and provide the benchmark for following analysis. This model is extended
and applied to R&D investments in offshore wind parks including feed-in tariffs (Section
4.4). Section 4.5 explores R&D decisions for energy-efficient technologies under energy
taxes, energy quotas, research grants, and emission trading. Chapter 5 additionally
introduces uncertainty about environmental policy into the investment problem.

3.3. The basic model and its solution

In this section, we discuss Pindyck’s (1993) basic model to solve a sequential investment
problem under irreversibility and technical uncertainty.

Consider a firm planning to self-finance an R&D project that requires time to be
completed. The project can only be realised if all investment stages are passed success-
fully. Thus, the firm holds a sequential call option. We assume that the major source
of uncertainty is a technical one, expressed by the fact that the firm can only make a
projection about the time required and total remaining expenditure needed to complete
the project. Remaining investment costs to completion decline with a trend controlled by
the firm’s investment rate and fluctuate around the trend due to technical uncertainty.
Actual investment cost will only be known for certain once remaining cost to completion
has reached zero (for more details see Section 4.1). After the finalisation of the project,
the firm receives cash-flows that are assumed to be known for certain. The model is a
continuous-time model, i.e. the firm reviews its investment decisions constantly and can
abandon the project at any time if the progress is not satisfying. However, once the
project has been stopped, investments are lost and re-investment is not possible (irre-
versibility feature). For simplicity, we neglect additional costs that are incurred if the
project is abandoned (this does not change the general results).

We will denote the expected cost to completion by K (). Actual total cost K(t) are
stochastic. Thus, K(t) = £(K(t)) where £ is the expectation-value operator. K (T)
vanishes if the project is completed. T is the actual, stochastic completion time. The
evolution of the expected cost to completion K () is modelled by the stochastic equation

dK (t) = —I(t)dt + /IO K )dw(t) (3.5)

I(t) being the investment rate at time ¢ and dw(t) the increment of a Wiener process.
The constant parameter v > 0 describes overall technical uncertainty. We assume that
there is a maximum investment rate Imax at which the firm can productively invest
(feature ’time to build’). Thus,

0<I(t) < Imax - (3.6)

Now we can formulate the firm’s stochastic control problem. Controlling the flow of
investments I(t), the firm aims to maximise the value of the investment opportunity.
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3. R&D investment under technical uncertainty

Introducing a discount rate r, this value is given by a function F' as

00 T
F(K(t) = r?(%)xgo /Pexp(—rt)dt—/I(t)exp(—rt)dt
LT 0

1(t)

T
= max&p gexp(—rT)—/I(t)exp(—rt)dt , (3.7)
0

also called the value-function of the decision problem.!® The first term describes the
discounted cash-flows after completing the project, whereby P is the constant cash-flow
per period. In sum, the firm will hold an asset worth V' = P/r. The second term describes
the sum of investments needed to complete the project. The problem is stochastic due
to the stochastic completion time 7. Therefore, the expectation operator for the initial
decision at time ¢t = 0, &, rules the development of future net profits. Eq. (3.7) is
subject to the constraint of a maximum productive investment rate Imax, Eq. (3.6), and
K(T) = 0. The evolution of K(t) is given by Eq. (3.5).

The solution of Eq. (3.7) serves as a toolbox for the firm to decide if the investment
in the R&D project is profitable. It determines the optimal investment rate I(t) for each
moment of time maximising the value function F'(K(t)). Note that the value function
F(K(t)) is positive for all K(t). It is even strictly positive for all ¢ if I(¢) > 0. But
F(K(t)) is zero if it is optimal not to start with investments or to abandon the project
midstream. Furthermore, F(K (t)) has the same structure for all ¢ and depends only on
the starting value of K (t).

The stochastic control problem can be solved by different methods, see e.g. Spall
(2003) for an overview. In the following sections, we will solve the model by means of
standard dynamic programming techniques and by Monte Carlo simulation.

For the case of certainty (y = 0) it is straightforward to obtain the following solution."
Investment with the maximum investment rate is optimal as long as the expected cost
to completion K are smaller than a critical threshold K* which is

1

gro dmaxy gV . (3.8)
r Imax

3.3.1. Solution by dynamic programming

The rationale for the solution of stochastic control problems via dynamic programming
is based on Bellman’s principle of optimality stating

An optimal policy has the property that, whatever the initial state and initial
decisions are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision (Bather, 2000, p. 18 [f).

p(K(t)) is a short notation for F(K(t);I(t), P). I(t) can be dropped as it controls K (t).
""'The critical threshold K* for the cost to completion is obtained by solving Eq. (3.7) for F(K*) = 0.
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3. R&D investment under technical uncertainty

The intent of Bellman’s principle is to split the problem into smaller sub-problems. The
general solution is found in a backward recursion.'? The application of this principle
defines the Bellman equation for the value function F(K(t))

1
rF(K(t)) = I?(E%)X{ I(t) + dth[dF]} . (3.9)
The interpretation of this equation is as follows. The left-hand side expresses the dis-
counted value of the investment opportunity. This value attains its maximum if the
sum of immediate payments and expected total returns per unit time from holding the
investment opportunity is maximised (right-hand side).

Eq. (3.9) can be further evaluated using stochastic calculus. First, we apply Ito’s
Lemma'? to derive an expression for infinitesimal changes of F. We obtain

OF 1 0*F OF
dF(K) = —T—dt + ~7V*IK ——dt + yWIK ——dw . 1
(K) o™ T R gt TV R (3.10)
Next, we expand this expression using a Taylor series and execute the expectation-value
operator. Being interested in the derivative, we truncate after the linear terms in dt.

Doing so (and suppressing time arguments for simplicity), we get up to order dt?

EldF] = E[F(K + AK,I+AI|K,I) — F(K,I)]
oF ~?___9’F 9
- <Ia_K + ?IKW> dt + O(dt?) . (3.11)

Note, A is the difference operator and O denotes the order of approximation in Landau
notation. Inserting this expression into the Bellman equation, Eq. (3.9), gives

OF(t)  ~? O?F(t)
o) 2 TR g }

rF(K(t)) = max {—I(t) —1(t) (3.12)

1(t)
As this equation is linear in I(¢), the maximisation can be executed and a first important
result can be obtained: it is optimal to invest either at the maximum investment rate
Imax or not at all (bang-bang solution). Note that this simple investment policy also
holds if K (t) is not only subject to technical uncertainty but depends additionally on
input cost uncertainty correlated with the economy (see Pindyck (1993)). However, the
rule does not hold if K(t) and the project value V(¢) are subject to uncertainty and if
these processes are correlated (see e.g. Schwartz (2004)).
Eq. (3.12) has a free boundary K* that separates an investment region from a non-
investment region. If the expected remaining costs to completion K are smaller than

12This depends on the class of stochastic processes involved. Diffusion processes belong to the class
of Markov processes. A fundamental property of Markov processes is that future developments
can be separated from the past ones conditional on the initial stage. The consequence is that the
probability distribution of some z;+1 can be described by x; and by a decision variable a; (Lagrangian
L(l’t+1|l't, ag, t))

3Tto’s Lemma gives the differential of stochastic processes dx = a(x,t)dt + b(z,t)dz as dF(x;t) =
9E gt 4+ 9E gy + L2E ()2, See e.g. Pindyck (1993, Chap. 3).

2 9z2
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3. R&D investment under technical uncertainty

K*, the firm will invest. If K > K*, it is optimal to refrain from investment. Good (as
well as bad) surprises are not likely to induce large displacements of K. Thus, there is
a critical value which can not be pushed by the stochastic nature of the model however
promising the news might be. The optimal investment rule is thus

I(t) _ { Imax if K< K ,

0 if K>K*. (3.13)

The free boundary K*(t) satisfies two boundary conditions for all ¢, the value-matching
condition and the smooth-pasting condition

FE*(t) =0, F(K*(t)=0. (3.14)

The first condition ensures that the border values of the value function F(K(t)) in the
investment region and the non-investment region match. The second condition ensures
that this is done smoothly, i.e. the values meet tangentially at the boundary (see Pindyck
(1993) for details).

Moreover, it holds that

FO)=V , lim F(K)=0. (3.15)
K—o0
The first equation describes the payoff from the project once it is completed. The second
condition states that it is not reasonable to start the project at all if K (¢) is tending to
infinity as the value function F' for the investment opportunity approaches zero.

Next, the free boundary K* has to be calculated. For K < K*, Eq. (3.12) is a second-
order ordinary differential equation that can be solved by eliminating its singularity at
K = 0 with the substitution K = exp(x) for I # 0 (see Appendix A.3.2 for details).
This transforms Eq. (3.12) into a system of coupled first-order differential equations,
Egs. (A.10), a system of equations that can be solved numerically by standard shooting
methods. We use a Runge-Kutta-Merson method. The programme code is included as
Appendix A.3.3. Numerical results and comparative statistics for the basic model are
discussed in Section 3.3.3. First, we explain how to solve the model by a Monte Carlo
simulation.

3.3.2. Solution by the Monte Carlo method

The idea of the Monte Carlo approach is to simulate many random paths of K (¢) and to
derive the optimal investment policy in a backward recursion for each path. The value
function F'(t) can then be calculated averaging variables that define the optimal evolu-
tion. By this method, the time-continuous investment model is replaced by a discrete
investment model.

The solution procedure starts with the creation of n stochastic paths for K(t) condi-
tional on investing at the maximum investment rate Imax. Stochastic Eq. (3.5) is then
solved by the Euler-Maruyama method.'* This method makes a discrete approximation

1 An excellent introduction to algorithms for simulating stochastic differential equations is Higham
(2001).
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Figure 3.3.: Flow chart of the Monte Carlo code to solve the basic sequential investment
model under technical uncertainty.

of the time-continuous evolution. Expected cost to completion K at a point in time
and for path n take the form of a matrix equation

Kli] = Knli — 1] — Imaxdt + vv/Tmax Kn[i — 1] dwli] . (3.16)

The size of dt is given by dt = tg,,, /m, with tg;,,, being the total simulation time and m
the total number of time steps. The stochastic increment is simulated as dw|i] = ¢[i]v/dt
where ([i] is a vector of normally distributed random variables.'® Note that K,[i] is filled
with zeros for all i once K, has been reduced to zero. Fig. 3.1 illustrates some example
paths for v = 0.5, K(0) = 10, Imax = 2, tg;; = 50, and m = 10000. The simulation
procedure is illustrated in the flow chart Fig. 3.3.

Following the generation of n random paths, the optimal investment policy is derived
in a backward recursion for each path. The decision in each time step ¢ to continue or
to stop investments is conditional on the fact that the project will not be abandoned

in i + 1.1 This choice is made by calculating the net expected values of the project

'5Standard distributed random numbers can be created using the Box-Muller algorithm, ([i] =
/=2 In(u) sin(27 v) where u and v are computer generated, uniformly distributed random numbers.
In our simulations, the pseudo random number generator srand() has been used for this purpose.
'6This decision has already been made as we are going backward in time.

29



3. R&D investment under technical uncertainty

in time step 4. If this value is positive, continuation is optimal. Otherwise, the project
will be abandoned. The procedure begins at T = m * dt. This is the time when the
project is finalised, i.e. K,[T] = 0. At this point, the conditional expected project value
EPV,[T] is known for certain and always positive as the firm can retrieve an asset of value
V. However, one step back in time things could look different because an infinitesimal
investment of Imaxdt still would be needed to complete the project and it is the net
expected conditional project value that is relevant for the decision at time step i — 1.17
When the optimal investment rule in a time step ¢ is found, the stepping-back procedure
is repeated until the initial time is reached'®. This is done for all paths.

The challenge is to calculate expected conditional project values if investments are not
finished and uncertainty has not completely been resolved. A first idea might be to use
the discounted project value of one period ahead in time. However, this underestimates
the complex role of uncertainty and leads to a bias towards the proper solution of Eq.
(3.7). In this way not every dependency on all paths and decision times will be taken
into account. A more practical approximation of expected conditional project values has
been proposed in Longstaff and Schwartz (2001) who regress discounted expected project
values of the next period EPV ,[i+ 1] by the expected cost to completion for the current
period K,[i] for all not abandoned paths. There are different possibilities to specify
basis functions for this regression. For our simulation, we apply the Longstaff-Schwartz
method using a polynomial regression of degree 5.

After having approximated the conditional expected project values, we test for each
i going backward in time if the net values are positive, i.e. the necessary incremental
investment Imaxdt in i does not exceed the regressed EPV ,[i]. Otherwise EPV ,[i] is
set to zero. When the initial time is reached, the optimal investment policy for each
path will have been determined by this method. The value function F'(K) can then be
calculated by adding up discounted EPV,[i] and averaging over all paths. The critical
threshold K* for the investment cost to completion can be found by increasing initial
costs to completion K,[0] until it is optimal to abandon investments for all paths in the
project.

Fig. 3.4 compares the solution for K* in dependence of v obtained by dynamic pro-
gramming and by Monte Carlo simulation. The later was run with 10000 paths and
30000 time steps in a total simulation time of tg;,, = 10. Both approaches match and
replicate results of Dixit and Pindyck (1994, p. 350). The table to the right shows the
growing number of abandoned paths when K,[0] approaches K*. For example, when
K,,[0] reaches the deterministic critical threshold for the cost to completion of about
K* =~ 9, only 2049 paths out of 10000 are abandoned at v = 0.5. Fig. A.1 (Appendix
A.3.4) depicts how the completion times for these abandoned paths are distributed (upper
graph). Their mean completion time is < 7" >= 5.7 with a standard deviation ¢ = 1.8.
The lower graph of Fig. A.1 shows the distribution of the times at which the decision to

"Note that the probability to abandon the project in later time steps is much smaller than in earlier
time steps as strong fluctuations of K are rather unlikely.

8Taking the backward-decision only at the finalisation time of the project corresponds to a European
rather than an American option. The latter allows one to execute the option to abandon the project
at any time.
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Figure 3.4.: Comparison of the free boundary K* obtained by dynamic programming and
by Monte Carlo simulation (left). The table to the right shows the number
of abandoned paths when K™ is approached.

stop these investment paths are made. 87% of the paths are abandoned within the first
quarter of the total simulation time. The mean time of abandoning is < 7" >= 1.2 with
standard deviation o = 1.1.

While this kind of statistical information cannot be revealed by dynamic programming,
its advantage is that the numerical error is very small at short running times (up to four
decimal places within seconds). In contrast, the accuracy of the Monte Carlo simulation
has to be bought at the cost of long code run times as the normal distribution is realised
by a finite set of N random numbers according to v/N. Thus, increasing the accuracy
by one digit requires the increase of the sample by a factor of 100. The other important
parameter in the simulation is dt. Only for dt — 0 does the time-discrete solution con-
verge to the solution of the continuous-time model.'? Finally, there is a numerical error
resulting from the regression of conditional expected project values. This is, however,
small in comparison to the approximations discussed before.

3.3.3. Results and comparative statistics

The solution of Eq. (3.7) yields a basic finding: technical uncertainty raises the critical
cost to completion and thus expands the investment region. Investments are rewarded
with information about the success or failure probability of the R&D project creating a
shadow value, in addition to the direct value, in completing the project. Fig. 3.5 shows
the dependence of the critical costs to completion from parameters of the basic model.
These are the technical uncertainty ~, the discount rate r, the maximum investment rate
Imax, and the payoff after completion V.

The numerical example for the graphs is chosen as in Dixit and Pindyck (1994). The
project is assumed to be worth V' = 10. Thus, a discount rate of » = 5% and a maximum

19This corresponds to the difference between an American and the corresponding Bermuda option.
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Figure 3.5.: Comparative statistics of the basic model with technical uncertainty.

investment rate of Imax = 2 cause critical cost to completion to be less than K* = 8.93
in a world of certainty (see Eq. (3.8)). This value is the starting point of the upper left
graph showing the dependence of K* on ~. The line ascends steeply illustrating how
important it is to consider technical uncertainty, especially for R&D projects where
can be large. This is also confirmed in the other graphs where the functional relation
of K* to the parameters is always shown for two levels of 4. Note that in an R&D
project, v can easily reach values of 0.5 to 1.0.2° In comparison, v = 0.1 is close to
the certainty case. The dependence of K* on r appears in the upper right part of Fig.
3.5. An increase in 7 lowers the critical cost to completion. r affects the value of the
project as it is seen today.?! As can be inferred from the lower right figure, a decrease in
V reduces the region of investment as K* decreases. Obviously, if the project does not
yield any payoff, investment is never optimal. The lower left graph shows the dependence
of K* on Imgax. If the firm can invest more at a time, the region where investment is
profitable is enlarged. Indeed, K* depends more sensitively on Imax the smaller it is
(in our numerical example, if Imax < 2). This means the firm intends to reduce cost

20F.g. we estimate uncertainty in offshore wind park investment to be around 0.5. See Section 3.4.

'For r = 0, an analytical expression for the solution of Eq. (3.7) can be found. It has the form
F(K)=V — K + f(K,V,v). This splits the value of investing into the value of a project that can
not be abandoned (first term) and the value of the abandoning option (second term). See Dixit and
Pindyck (1994), p. 349.
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Figure 3.6.: Values of the investment opportunity F'(K) for technical uncertainty v = 0.0
and 7 = 0.5. The histogram to the right shows the distribution of completion
times of paths not abandoned.

and to resolve uncertainty as fast as possible by preferring a short project time. Thus,
in particular for long-term R&D projects, it is beneficial if investment resources can be
expanded. However, there is a limit for the optimal investment approached from below
and given by the expected cash-flows from the project. Uncertainty boosts this value
from K* = 10 (case of certainty) to almost K* = 15.

Tab. 3.6 compares the value function F'(K) without and with uncertainty for different
values of K. For K = 9, the deterministic critical threshold for investing is reached.
But F(K) = 0.6 if v = 0.5. Hence, investment is still profitable. This difference is
measured by how much the investment opportunity is underestimated if uncertainty and
irreversibility are neglected. To compare the magnitude, note that Fmax = 7.8. This
maximum is attained in the case that the project comes at no cost. Furthermore, given
K = 9 and v = 0.5, the option to abandon will be exercised for about 20 % of the
10000 paths. The graph to the right shows the distribution of finalisation times for
the 7951 paths that are not abandoned. From this histogram, we can deduce a mean
completion time of < T >= 4.1 and a standard deviation of ¢ = 1.3. Remarkably, there
are 14 events in the bin for 7" = 10. If only abandoned paths are sorted, there are 100
events in that bin. The mean completion time and the standard deviation for abandoned
paths are larger, i.e. < T >= 5.7 and ¢ = 1.8. For 59% of the abandoned paths,
investments are stopped within the first quarter of the mean completion time, i.e. within
< T > /4 = 1.025. The mean time of abandoning is slightly smaller with < 7" >= 1.2
and standard deviation o = 1.1.?> The number of abandoned paths grows approximately
according to 0.02 * exp(1.26 * K).

3.3.4. Limitations and conclusions

The basic model of sequential investment decisions under technical uncertainty neglects
the origin of financing for the capital investment. Thus, it is either assumed that the

*?The histogram for these numbers is given in Fig. A.1.
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investment decision can be separated from the decision of its financing (Modigliani and
Miller, 1958) or that the firm is able to completely self-finance the project. However, at
least for smaller enterprises as well as new start-ups, in-house resources are likely to be
limited. Moreover, capital markets are imperfect due to transaction costs or information
asymmetries between the financier and the investor or other agents.?® This can lead to
higher costs for external financing and the rationing of credits, see e.g. Greenwald et al.
(1984) and Hall (2002). Findings in the literature are somewhat mixed. First, results
depend on the framework of study (static or dynamic set-up). Second, they depend
on which option value dominates the model (the value of postponing the investment or
the value of accelerating investments). Extending the model of McDonald and Siegel
(1986) by allowing for a firm to simultaneously determine its investments and capital
structure, Mauer and Triantis (1994) find that "... if a levered firm uses the investment
and operating policies of an equivalent unlevered firm, there is a negligible loss in firm
value". In the dynamic framework the firm has an option to delay the investment. This
makes shields, e.g. from tax-advantaged depth financing, less effective. Other findings
from the real options literature show that financing constraints can decrease the value
of waiting as well as the critical threshold for investing (Boyle and Guthrie, 2003). This
leads to suboptimal investment rushes?* since the firm tries to avoid future financing
risks. McGee (2010) develops a model that includes two constraints: the first due to the
irreversibility of capital investments and the second a financing constraint. He finds that
only for the fastest-growing firms does the investment rush due to financing constraints
dominate the value of waiting. This is a result of irreversibility and certain types of
uncertainty (e.g. market correlated input cost).

However, these findings apply to capital investments in general. Hall (2002) reviews
theoretical and empirical evidence of the impact of financing constraints on R&D invest-
ments. He summarises that "...The evidence for a financing gap for large and established
R&D firms is harder to establish. It is certainly the case that these firms prefer to use in-
ternally generated funds for financing investment."?> On the other hand, the theoretical
contributions discussed in Hall (2002) are not based on dynamic or real options analysis.
As we can see, the basic model of Pindyck (1993) can provide insights into R&D invest-
ment decisions of established firms, firms which can rely on different sources of internal
financing and thus hedge financing risks.

The study of financing constraints for newly founded, small-, and medium-size enter-
prises is left to future research. A possibility to include this feature would be to model
the availability of credits in dependence of stochastic shocks. Another question arises

23For example, there are also information asymmetries between researchers and managers of an R&D
project, making moral hazard a potential.

?41n a dynamic model with stochastic financing constraints, Kasahara (2008) obtains that it is necessary
to take future risks into account, and that this can induce a more active investment behaviour. In his
model, the firm completely relies on internal funding and can only invest if the capital stock equates
at least to the maximum productive investment rate.

*5Yet, Hall (2002) notes that he ignores "arguments based on R&D spillovers and externalities. There is
a good reason to believe that the latter are a much more important consideration for large established
firms, especially if we wish those firms to undertake basic research that is close to industry but with
unknown applications."
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from the fact that for R&D investments technical uncertainty is more relevant than in-
put cost uncertainty (Kort, 1998; Czarnitzki and Toole, 2008). For this reason we did
not incorporate this type of uncertainty (second limitation). Because, with technical
uncertainty there is no incentive to postpone decisions as new information only arrives
when the firm is active and invests, it would be interesting to study the relationship
between technical uncertainty and imperfect capital markets since technical uncertainty
leads to a value of investing. This could be done by firstly, letting the maximum produc-
tive investment rate Imax develop stochastically. Secondly, a minimal investment rate
I}i could be introduced reflecting that e.g. payments for researchers need to be con-
tinued. The model could then be solved by Monte Carlo simulation using the following
investment rules: 1) in the region of investment and in the case that the firm faces no
financing constraints, investment at I'max is chosen, 2) if financing is constrained, but it
is still profitable to invest, the firm invests with Imax > I > I;;;,, otherwise 3) the firm
refrains from investments.

A third limitation in our model is that competition and the impact of rivals are not
considered. Competition can lead to an innovation race in order to realise a first mover-
advantage that is rewarded with market power. This calls for a game-theoretic analysis.
There are other exogenous factors that can influence the development of the remaining
cost to complete an R&D project, for example, knowledge spillovers. Kort (1998) extends
his model of a single firm replacing Eq. (3.5) by

dK(t) = —I(t) exp(wt)dt . (3.17)

The constant parameter w > 0 denotes the rate of technological development outside
of the firm. Note that the model becomes deterministic. Kort (1998) obtains that this
modification generates a value of waiting in that the firm now has an incentive to await
technological progress and postpone investments.

A fourth limitation is that the payoff from R&D investments is assumed to be certain
and, furthermore, not subject to decreasing returns. Schwartz (2004) studies the effect
of stochastic cash-flows C' from the project. He introduces a post-patent cash-flow as
being a multiple of the cash-flow (M x C'). Both determine the value of the project V.
Model equations are specified in the following way

dC = aCdt+¢Cdw ,
V(C, T) = MxC . (3.18)

Thus, the net cash-flow rate is model-led as a geometric Brownian motion. Increments
dw are correlated with the market portfolio and with the expected cost for completing the
project. Drift parameter o describes characteristics of a particular R&D programme. M
is a measure of competitiveness and it reaches zero when the market becomes perfectly
competitive. By running a Monte Carlo simulation, Schwartz (2004) yields the result
that the project value and the probability of abandoning the project increase when the
cash-flow rate as well as the terminal cash-flow multiple M increase.

Finally, we have neglected costs to shut down the R&D project. However, this is
justifiable as the majority of R&D costs are wages and salaries of highly specialised
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engineers and scientists (Hall, 2002). Moreover, installations and equipment are likely to
be re-used and thus might not cause large sunk costs.

Despite these limitations, the basic model allows us to elucidate the dynamics of in-
vestment decisions of a firm endowed with sufficient resources to self-finance an R&D
project. Generic features of R&D investments can be incorporated. In the following
sections of this chapter, Pindyck’s (1993) basic sequential decision model is extended
to study a firm’s R&D investment decisions in different environmental /technology policy
frameworks. One model explores offshore wind park investment under feed-in tariffs. The
second model analyses policy incentives to spur R&D for energy-saving technologies. In
addition to technical uncertainty, policy uncertainty is introduced in Chapter 5 to study
the relationship between these two types of uncertainties.

3.4. An application to offshore wind farm investment

3.4.1. Motivation: Rostock’s offshore wind park Baltic 1

By 2020, 20% of EU energy is targeted to originate from renewable sources (KOM,
2006). The German Renewable Energy Sources Act of 2009 sets an even more ambitious
goal of 30% for the share of renewables in total electricity consumption by 2020. A
huge potential is seen for offshore wind energy amounting to a long-term goal of up
to 25 GW of cumulative capacity for Germany by 2030 (BMU, 2007). Currently, the
capacity of offshore wind parks in operation is only 42 MW. That leaves Germany behind
Great Britain (2.4 GW), Sweden (2.2 GW), Denmark (2.2 GW), Netherlands (1.2 GW),
and Belgium (300 MW). However, nearly a capacity of 10 GW (approx. 25 parks) has
already been licensed and meanwhile a capacity of 17 GW (approx. 28 parks) is currently
undergoing the approval process (DENA, 2010; EWEA, 2009).

Since 1991, when the first park was installed near Vindeby in Denmark, offshore wind
technology developed into a cutting-edge technology. Naturally, a large amount of uncer-
tainty is involved when planning, installing, and operating such a farm. This includes,
foremost, technical cost uncertainty but also uncertainties related to the cost of input
and/or output factors. Technical cost uncertainty exists due to the still limited experi-
ence with offshore wind technology. Therefore, a substantial amount of R&D costs need
to be considered, e.g. for finding the optimal location, anchoring the foundation in the
sea, establishing a grid connection, or maintaining the farm under sea weather conditions.
Input cost or output cost uncertainties, on the other hand, can also be correlated with
the economy. For example, turbine costs are likely to fluctuate with changes in the world
wide demand for steel and other metals. Output cost can e.g. be subject to changes
in policies as wind farm operators rely on guarantees to sell electricity to the market.
The yearly wind yield can only be estimated as it is very demanding to forecast wind
and weather conditions. Therefore, electricity cannot be produced constantly, leading to
typical load factors of 35 % of the installed capacity (ODE, 2007).

Consequently, the decision to invest in an offshore wind farm is risky and moreover
involves a high amount of irreversible cost since investments are site-specific and hence
only partially recoverable. The real options approach is a way to evaluate the oppor-
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tunity to invest under these circumstances. Among others, Pindyck (1993) applies a
real options model to evaluate nuclear power plant investments under technical and cost
uncertainty. Kjaerland (2007) derive a real option value of hydro-power investments in
a non-sequential model under uncertainty of returns. Davis and Owens (2003) evaluate
US onshore wind power investments under energy price uncertainty.

We will apply real options theory to review the investment decision for the planned
offshore farm ’Baltic 1’ currently being built near Rostock. This is a particularly inter-
esting project as it is expected to run as Germany’s first commercial offshore wind farm.
We will use a sequential investment model reflecting that the project needs time to be
realised. At any time, the project can be stopped if the investment costs exceed expected
payoffs. Technical uncertainty is explicitly included in the model. The basic model that
we will extend was developed by Pindyck (1993). We will compare two policy regimes
that are currently active in Germany. The first one offers a sprinter bonus for offshore
wind farms if they are in operation before 2016. This higher electricity feed-in tariff is
replaced by a baseline tariff after 12 years. The second policy regime considers only the
baseline tariff. Costs for operation and maintenance as well as the expected life time of
the wind park affect the expected payoff. Therefore, we will take account of different
schemes.

In the next section, we will extend the sequential investment model introduced in
the beginning of this chapter to the policy framework relevant to offshore wind farm
investments. This is followed by an analysis of available data of European offshore wind
parks in order to specify necessary model parameters. Finally, we discuss results and
draw conclusions for this application.

3.4.2. The model with an extension for feed-in tariffs

A large energy corporation plans to self-finance and build an offshore wind farm. We as-
sume a maximum productive investment rate as the realisation of the investment project
involves a considerable amount of R&D costs and takes time, e.g. for planning, getting
a license, constructing, and testing the farm. Thus, the firm has to solve a sequential in-
vestment problem when assessing the opportunity to implement the project. At any point
in time it may turn out that the continuation of the investment is not profitable. But the
firm has the option to abandon the project. Though, the project is stopped, the invested
money cannot be recovered. This makes the investment irreversible. Furthermore, the
project can only be realised if all investment stages have been passed successfully. Thus,
the firm holds a sequential call option.

We assume that the main source of uncertainty is the scientific/technical difficulty in
carrying out the offshore wind farm project. This is realistic as salaries for specialists and
engineers sum up to 40 % of installment and decommissioning costs (e.g. ODE (2007)).
Even if input prices were known for sure and all plans that depend on factors outside of
the firm’s influence would turn out perfectly, positive or negative changes could occur.
Thus, the firm does not know how installation costs will develop and how long it will
take to put the farm into operation. Actual costs are only known for certain once the
project is finalised. This type of uncertainty is site-specific and typical for a project
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using cutting-edge technologies - it can only be resolved when investment is actually
undertaken. Otherwise, learning to deal with the difficulties stops. Therefore, facing
technical uncertainty, there is no incentive to postpone the project.

In comparison to uncertainty about the technical progress, the firm shall be, at least
relatively, certain about the outcome of the investment. This can be justified as wind
offshore technology is a capital-intensive technology. Investments for establishing the
farm make up to 80% of the cost expected during the total lifetime of the plant (Blanco,
2009). Moreover, the policy framework of feed-in tariffs is fixed by law supporting a rela-
tively certain prediction of future cash-flows. Finally, we assume that the firm completely
self-finances the project.

Despite uncertainty, the firm is able to form an expectation about the remaining cost
to completion K (t) such that K (t) = E(K(t)) with K being the actual total cost and &
being the expectation value operator. The project is completed when K(T') = 0. This
defines the time 7" at which the wind farm is operable. With I(¢) being the investment
rate at time ¢, v denoting technical uncertainty, and dw(t) denoting the increments of
a Wiener process, the evolution of the expected cost to completion is modelled as in
Pindyck (1993)

dK(t) = —I1(t)dt + /IO K (1) dw(t) . (3.19)

The decision whether to invest or not is straightforward. The firm invests if the
expected payoff from the wind park is higher than the sum of investments made. In
order to get the highest possible net payoff, the firm can control the flow of investments
at each instant in time. This can be formalised in a value function F(K(t)) for the
investment opportunity

T

F(K(t)) nll(axé'o /Pexp —rt)d /I exp(—rt)dt| . (3.20)
t
0
The first term describes the discounted cash-flows after the plant is installed. P is the
constant cash-flow per period and r is the discount rate. In sum, the firm will hold an
asset worth V' = P/r. The second term is the total expenditure needed to realise the
project. If investment is optimal, F(K(t)) satisfies the following inequality?®

_, OR(E®) GE(E (D)

K1) +0.592 K(t) K (1)?

>0 . (3.21)
Equality in (3.21) defines a critical value of expected investments required to complete
the project K*. At this critical threshold, the value function F(K*) becomes zero. If
the expected cost to completion are smaller than K™, the firm will invest the maximum.
Otherwise the firm will not invest. The optimal investment rule is

{Imax, if K< K* |

! 0, if K>K*.

(3.22)

26This equation satisfies Eqs. (3.12, 3.13). Tt is not a stochastic differential equation anymore.

68



3. R&D investment under technical uncertainty

As a result, it is sufficient to calculate K™ which can be done numerically. The crit-
ical value is a free boundary between the region of investment and the region of non-
investment, which fulfills the conditions

F(0)=V=P/r, lm F(K)=0, F(K)=0, F(K)=0. (3.23)

The first condition describes the discounted payoff V' after completing the R&D project.
The second condition states that for a large K it is not reasonable to start the project
at all. The two last boundary conditions are matching conditions between the regions of
investment and non-investment.

Next, we extend the model to describe the current policy framework. The German
Renewable Energies Resources Act from 2009 (BMU, 2009) supports offshore wind en-
ergy with guaranteed feed-in tariffs for wind generated electricity. The act also sets an
obligation for regional or national grid utilities to purchase the offered electricity. The
guaranteed selling price for electricity is 0.035 EUR/kWh. In addition, a sprinter bonus
is offered for offshore wind parks if they are in operation before January 2016, amounting
to 0.15 EUR/kWh during the first 12 years. Taking this and the limited lifetime of the
plant into account, we need to modify the first term of Eq. (3.20) as P is now time
dependent. We obtain

T+Th T+T1+Ts ) e}
/ Pre "t dt + / Pye " dt + / Pye " dt = / P(t)e " dt . (3.24)
T T+T, T+T1+Ts T

T is the completion time of the project. For a time 77, the sprinter bonus is used to
calculate the firm’s payoff. In the case considered, the lifetime of the plant ends after
another period of T. The left-hand side of Eq. (3.24) can be split into terms, which
depend on the stochastic completion time 7" and those that do not. This allows us to
integrate the three integrals into one (right-hand side). Therefore, apart from Eq. (3.20),
only the first of the four boundary conditions in Eq. (3.23) is affected by our extension
for the policy regime. We need to replace P with P given by

P = P+ (PQ — Pl)e_rTl + (Pg — PQ)G_T(TH_TQ) . (3.25)

In the following application of the sequential investment model, we will consider four
different policy/lifetime scenarios:

1. Sprinter bonus, 20 years running time: During the first 12 years, electricity
can be sold at the bonus price of 0.15 EUR/kWh. From year 12-20 the baseline
feed-in tariff of 0.035 EUR/kWh is guaranteed. The wind farm is expected to run
20 years (Vattenfall, 2010). Thus, 77 = 12, T, =8, and P; = 0.

2. Sprinter bonus, infinite running time: For the first 12 years, a price of 0.15
EUR/kWh is guaranteed. Afterwards, the payoff will be calculated with the base-
line feed-in tariff of 0.035 EUR/kWh. The farm operates forever (P, = P3).
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3. Baseline feed-in tariff, 20 years running time: Electricity can only be sold
at the baseline feed-in tariff of 0.035 EUR/kWh (no sprinter bonus). The farm is
expected to run 20 years. Thus, P, = P3 =0 and 77=0, T5 = 20.

4. Baseline feed-in tariff, infinite running time: The baseline feed-in tariff of
0.035 EUR/kWh is guaranteed forever and the lifetime of the farm is not limited.
Thus, P1 = 0, PQ = Pg, T1 =0.

3.4.3. Data sources and parameter derivation

Preparations for the construction of the offshore wind park Baltic 1 began in July 2009.
It is planned to go into operation at the end of 2010 making Baltic 1 the first commercial
wind park in Germany. Other German wind parks, e.g. Alpha Ventus, are so far only
running as test fields. Baltic 1 will an installation of 21 wind turbines near Rostock,
15-16 km north of the peninsula Darss/Zingst. With a final installed capacity amounting
to 48.3 MW, it will serve about 50.000 households for at least 20 years. The data are
summarised in Tab. 3.1.

In order to calculate the option value of investment for Baltic 1, we need estimates for
the uncertainty parameter -, expected initial investment cost K (0), the maximum rate
of investment Imax, and the net value of the wind farm’s capacity P. The net value of
capacity is given by expected payoffs less expected cost for operation and maintenance
(short: O&M costs). The latter range from 0.017 - 0.045 EUR/kWh (KPMG, 2007)%"
and also include reserves for deconstructing the wind farm. Expected investment cost
will be estimated in the next section by a multiple regression analysis of offshore wind
farm data. For simplicity, the maximum rate of investment will be assumed constant
over the years of construction.

Location: Baltic Sea, North of Peninsula Darss/Zingst
Distance from shore: 16 km

Size: approx. 7 km?

Depth: 16-19 m

Total capacity: 48.3 MW

Annual yield: 176.4 GWh/a

Average wind speed: 9m/s

Number of turbines: 21, each 2.3 MW

Number of transformer stations: 1

Expected running time: at least 20 years

Expected building time: 2 years, 6 years incl. planning and testing

Table 3.1.: Data for Offshore wind park Baltic 1 (Source: Vattenfall (2010)).

2TO&M costs are thus 3.06-8.10 MEUR /year for operating Baltic 1. We take the lower number for the
low and the upper number for the high O&M regime.
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The expected construction period ranges between 1.5 and 6 years. Therefore, we will
calculate values for 1.5 years, 2, 3, 4, 5, and 6 years. The maximum rate of investment is
then simply given by dividing expected investment cost by the expected time of construc-
tion. However, this does not imply that the firm knows how much time is needed to build
the farm. The derivation of expected investment cost and the uncertainty parameter ~y
follow.

Expected investment costs of Baltic 1

Data of 40 offshore wind parks are available from different sources (DENA, 2010; EWEA,
2009; KPMG, 2007; Snyder and Kaiser, 2009a,b). For 27 parks, investment costs (in US$)
has been published in a single source adjusted for inflation (Snyder and Kaiser, 2009b).
These are the most comparable investment cost data we could find. KPMG (2007) also
analyse investment cost data using a data set of 27-30 wind farms. However, only average
cost have been published in order to make data anonymous. Farms were grouped into
three categories depending on their distance from the shore, water depth, and size of
turbine. Using this categorisation, most data in Snyder and Kaiser (2009b) belong to
categories 1 and 2. Planned German offshore parks, however, belong to category 3 due
to their comparatively large distance from shore.

The average price of a MW capacity is about 1.85 + 0.16 MEUR for the sample of
Snyder and Kaiser (2009b). KPMG (2007) expects an average price of 2.2 MEUR per
MW for planned but not realised farms in 2005. We will use data of Snyder and Kaiser
(2009b) for further analysis although information on cost components is limited. In
addition, we have compared data sources to check for comparability to other data. In
case of differences, we have chosen the latest update available from EWEA (2009). Our
final data set is attached in the appendix, Tab. A.2. The sample includes 27 wind farms.
We calculated prices in EUR using the annual exchange rate for 2008 from the Statistical
Data Warehouse of the European Central Bank with a EUR/USS ratio of 1.4708.

Next, we run multiple regressions, including non-linearity tests, in order to find vari-
ables explaining expected investment costs. Candidates are the distance from shore,
water depth, total capacity, age of farm, number, and size of turbines. For illustration,
Fig. 3.7 shows the distribution of investment cost in Millions of Euro with dependence on
possible explanatory variables. Investment costs are expected to grow with the distance
from shore and water depth. Transport cost are likely to increase and special equipment
and techniques could become necessary. For similar reasons, it is likely that investment
cost would also grow with the capacity of the farm calculated from the number and size
of turbines. If the number of turbines and their complexity increase, more material and
sophisticated techniques are asked for.

We do not expect to see a significant time-dependence of investment cost in our sample
covering a period of only 17 years. In the medium- and longterm however, costs due to
technical difficulties in installing the farm will decrease with the growing experience in
the offshore sector. Factor costs, on the contrary, are likely to continue to rise due to the
growing world-wide demand for raw materials and metals.
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Figure 3.7.: Distribution of investment costs of offshore wind farms in Million Euro with
regard to possible explanatory variables.

Dependent variable: Investment cost [MEUR|

E

xplanatory variable Model 1

Model 2

Model 3

Intercept
Capacity in MW
Distance in m
Depth in m

Age in years

-45.074

2.308 (7.8 E-12)
0.005 (0.027)

-72.961

2.376 (5.1 E-09)
0.006 (0.049)
-0.425 (0.812)
3.511 (0.263)

-37.658

2.224 (7.5 E-10)
0.006 (0.042)
-1.202 (0.471)

Observations 27
R-squared 0.936
adj. R-squared 0.931

27
0.941
0.930

27

0.937
0.929

Table 3.2.: Results of multiple regression to explain investment cost of offshore wind
parks (confidence level: 0.95, P-Values in brackets).
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Distance from shore 15 km 16 km
Investment cost [MEUR] 134.5 139.1
Investment cost per capacity [MEUR/MW| 2.785 2.879
Standard error [%)] 38 37

Table 3.3.: Estimated investment cost for Baltic 1 in MEUR.

A check for collinearity showed that most variables are moderately correlated (< 0.6).
However, the turbine size and the farm’s age are strongly correlated (= —0.86) as are
the number of turbines and the farm’s capacity (= 0.93). Therefore, we will include only
one from each pair of strongly correlated variables. Tab. 3.2 describes the three best
regression models ranked according to their adjusted R-squared. We find that capacity
and distance are a significant factor for investment costs of the sample. Both, as expected,
increase investment costs when growing. Snyder and Kaiser (2009b), running multiple
regressions, and KPMG (2007), running simple regressions, also find that the depth is
significant in explaining investment cost. However, they estimate that this influence is
comparatively small.

Next, we calculate expected investment cost for the offshore wind park Baltic 1 using
the best regression model, Model 1, and data given in Tab. 3.1. We obtain an expected
investment cost of 139 MEUR, + 37% for a distance of 16 km and 135 MEUR + 38% for
a distance of 15 km (see Tab. 3.3). We take these as the lower and upper boundaries for
further analysis.

Estimates of uncertainty parameters

Technical uncertainty is site-specific and time-independent, whereas cost uncertainty
grows with the time horizon. Both types of uncertainties can be decomposed and ex-
tracted by analysing time series and cross-sectional variations of these data (see e.g.
Griffiths and Anderson (1989); Heshmati and Kumbhakar (1994); Pindyck (1993)).

Technical uncertainty follows from the standard variance of expected investment cost
assuming the sample is filtered for its time dependency. The variance of expected invest-
ment cost is given by Eq. (3.3). We did not find a significant dependency of investment
cost on the year of construction or the farm’s age in the data. Thus, depending on the
assumed distances from shore, we have

[ 0489, for 15km
| 0503, for 16km

Input cost uncertainty can principally be estimated from the trend of time series.
However, available data cannot be used for this, because first, they only sparsely cover
a period of 17 years, and second, the data do not show a significant dependence on the
farm’s age, neither linear nor in higher orders. This was also found by Snyder and Kaiser
(2009a). Apart from the limitations of the data, opposing trends affecting investment
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costs could be another reason. On the one hand, the sector-wide learning rate and
economies of scale are causing a downward trend for investment costs. On the other
hand, costs for steel and copper have been rapidly growing since 2002. The demand for
wind turbines is higher (and is predicted to remain higher) than the supply, which in turn
affects market prices and delivery times, see Blanco (2009); ODE (2007); Ernst&Young
(2009); Snyder and Kaiser (2009b). In total, it is not clear which effect will dominate in
what years. Only long-term forecasts for the year 2030 and beyond predict a decline in
cost prices (Ernst&Young, 2009; ODE, 2007).

However, for our analysis of Baltic 1, we expect technical uncertainty to be more rele-
vant than input cost uncertainty for two main reasons. First, wind offshore technique is a
very new technology and the establishment of each farm can be seen as a fresh experiment.
KPMG (2007) point out that geographic conditions, particularly in Germany, lead to
higher project risks as farms are planned to be installed comparatively far away from
the shore. Second, the building time of 1.5-6 years is rather short making it less likely
for input cost prices to influence the project. It is realistic that they are covered in
contracts set up 2-3 years in advance. Hence, we will only study the influence of technical
uncertainty on expected investment cost and on its critical threshold.

3.4.4. Results from the real option model
Conventional net profit value of Baltic 1

We start our analysis by neglecting uncertainty. We calculate net profit values resulting
from yearly cash-flows in the different policy regimes. Net profit values depend on con-
struction times and the costs for operation and maintenance of the farm. We assume a
risk-adjusted discount rate of r = 5%.

Our results for the value function F'(K (t)) and the critical threshold of investment costs
K™ in the case of certainty are given in Tab. A.3 in the appendix. In principle, it is worth
investing in Baltic 1 if F/(K) is positive. In this case, expected payoffs from operating
the offshore farm exceed the expected cost to completion. K* separates the regions of
investment and non-investment. Only if expected cost K are below K* is investment
profitable. Neglecting uncertainty, we find that it is profitable to invest in Baltic 1 if a
sprinter bonus for offshore farms is guaranteed and if the construction time is less than 4
years. This is independent of the amount of O&M costs. The finding also holds for both
distances of the park from the shore, 15 km and 16 km. However, if the construction
takes longer than 4 years, the investment is only profitable if costs for O&M are low.
For the expected construction time of 1.5 years, we find that critical investment cost are
214.4 MEUR/ 157.0 MEUR (low/ high O&M costs) and 214.8 MEUR/ 157.2 MEUR
(low/ high O& M costs) for a distance of 15 km and 16 km from shore, respectively. The
slightly larger values for the longer distance is a result of the higher maximum productive
investment rate at 16 km. Thus, the total remaining expenditure required to install the
farm can be reduced faster.

The result also depends on the discount rate. However, in a conventional feasibility
study for offshore wind farms in the Apulia region of Italy, Pantaleo et al. (2005) also
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v=0 v = 0.5
15 km 16 km 15 km 16 km
. K* 157.0 157.2 177.6 176.7
high OGM iy 22.6 18.2 24.9 20.8
K* 214.4 214.8 243.0 241.8
low O&M F(K) 81.7 77.3 82.6 78.2

Table 3.4.: Value of investment F'(K) and critical investment cost K* for Baltic 1.

use a discount rate of 5%. Jeske and Hirschhausen (2005) take a risk-adjusted discount
rate of 4% in their sensitivity analysis for two planned German offshore parks carried out
for the policy framework of 2004. However, if we lower the discount rate by 1%, critical
investment cost only slightly increase, e.g. from 157.2 MEUR to 158.5 MEUR in case
of 1.5 years construction time, 20 years of operation time, sprinter bonus, high O&M
costs, and a distance of 16 km. As results are comparatively insensitive to changes in
the discount rate, we keep the discount rate at 5%.

Including technical uncertainty

When technical uncertainty is present, the value function F(K(t)) as well as the critical
investment cost to completion K* increase. Thus, we can confirm an incentive to invest
if irreversibility and the option to abandon are taken into account. Tab. 3.4 summarises
the results for an expected construction time of 1.5 years (which is the current plan), an
operation time of 20 years, and a guaranteed sprinter bonus. Extended results for F/(K)
and K* with varying policies, technical uncertainties, investment costs, construction
times, operation times, and costs for O&M are available in Tabs. A.4 and A.5. In order
to get an understanding of the importance of technical uncertainty, we compare the values
under the current policy regime at an expected construction time of 1.5 years. In this
case, technical uncertainty raises K* by as much as 12 %. Even with a construction time
of over 3 years, the investment is still profitable regardless of the distance from shore (15
km/ 16 km) or the corridor of costs for operation and maintenance.

We can furthermore confirm that sprinter bonus guarantee is crucial. If only a baseline
tariff is offered, F'(K) is zero and hence, offshore wind projects comparable to Baltic 1 are
not profitable. This is caused by high investment costs as well as high costs for operation
and maintenance. The reduction of these costs, e.g. by learning or economies of scale,
will be a major task if wind generated energy shall become competitive. Assuming a
sprinter bonus and an operation time of 20 years, Tabs. A.6 and A.7 moreover show the
sensitivity of K* to the maximum productive rate of investment (or expected time of
construction). The standard variation of the samples with low /high O&M and 15/16 km
is smaller than 6 %. In numbers, uncertainty raises mean critical cost to completion with
low/high O&M from K*=199.7 MEUR/ 148.7 MEUR (v = 0) to K*=227.8 MEUR/
169.1 MEUR (v ~ 0.5) in case of 15 km and from K*=200.4 MEUR/ 149.1 MEUR
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T |years|] O&M V [MEUR| stopped paths < 7T > (o) ta
1.5 high 164 458 of 10000  1.46 (1.5) 371 of 458
1.5 low 228 30 of 10000  1.50 (0.6) 9 of 30
2.0  high 164 505 of 10000 1.94 (0.7) 366 of 505
2.0 low 228 33 of 10000  2.00 (0.7) 6 of 33
3.0 high 164 596 of 10000  2.90 (1.0) 356 of 596
3.0 low 228 43 of 10000  2.99 (1.1) 2 of 43
4.0 high 164 713 of 10000  3.84 (1.3) 364 of 713
4.0 low 228 43 of 10000  4.00 (1.4) 1 of 43
5.0 high 164 832 of 10000  4.78 (1.6) 378 of 832
5.0 low 228 16 of 10000  4.96 (1.7) 1 of 16

Table 3.5.: Risk of non-profitable investment in Baltic 1.

(v =0) to K*=227.0 MEUR/ 168.4 MEUR (v ~ 0.5) in case of 16 km.

In addition to solving the sequential decision model by dynamic programming, we run
a Monte Carlo simulation with 10000 paths. The total simulation time is 10 years and
the number of time steps is 30000. Other parameters are the same as in the numeric
model.

The average completion time < 7" > for the installation of the wind farm ranges
between 1.46 4+ 0.5 and 4.96 £ 1.7 years depending on the expected construction time
T and the O&M regime, see Tab. 3.5.28 We obtain that 5-9 % (in case of high O&M
costs) and up to 0.4 % (low O&M costs) of the 10000 paths are abandoned under the
current policy framework.?? For 45-81 % of these abandoned paths in the high O&M
regime (for varying expected construction times T'), investments are stopped within the
first year. As expected, the data show that the option to stop the project is more often
exercised as the expected completion time increases. In the case of low O&M costs, only
16-43 paths out of 10000 are abandoned. As these numbers are low, we cannot draw a
statistical conclusion on the likely time of stopping investments.

3.4.5. Limitations and conclusions

In coming years, offshore wind farms will contribute largely to the generation of energy.
However, experience with offshore technology is still limited. Thus, these projects are
very risky. Baltic 1 with a planned capacity of 48.3 MW is currently under construction
and will run as the first commercial offshore wind park in Germany. We have estimated
the value for investment in a real options approach taking into account technical uncer-
tainty. This type of uncertainty is a major source of uncertainty for capital and R&D

28In Tab. 3.5: T is the expected construction time, V is the expected payoff, < T > is the average com-
pletion time, o is the corresponding standard deviation, and ¢, gives the number of paths abandoned
within the first year of implementation.

29Results are given for a distance of 15 km from shore. Results for 16 km do not differ substantially.
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intensive technologies. Uncertainty related to cash-flows from the project are incorpo-
rated via upper and lower boundaries for expected operation and maintenance costs.
Environmental policy takes the form of two types of feed-in tariffs (baseline tariff and
sprinter bonus).

We performed multiple regressions and found expected costs to sum up to 134.5/
139.1 MEUR depending on the distance from shore. Technical uncertainty for Baltic 1
was estimated to be of the magnitude v = 0.5 allowing critical investment costs to rise
by 12 %. Results furthermore show that under the German Renewable Energy Resources
Act of 2009 wind farms comparable to Baltic 1 can be run profitably, but policy support,
by guaranteeing a sprinter bonus tariff, is crucial. In this case, the risk for investing
in a non-profitable project is not higher than 9 %. We did not find evidence for input
cost uncertainties in the data. However, it is expected that they will play a major role
in the future. Technical uncertainty should instead decrease with growing experiences
establishing and running offshore wind farms.

Limitations of the model lie in our neglect of financing issues, rivalry, and possible
costs for abandoning. Then again, as discussed in Section 3.3.4, the theoretical and
empirical evidence suggests that established firms are less likely to face R&D financing
gaps (see also Mauer and Triantis (1994); Kort (1998); Hall (2002); Czarnitzki and Toole
(2008)). Competitors are likely to spur a firm’s investments in order to gain advantage
and expand market power, thereby potentially increasing critical investment cost. The
inclusion of midstream deconstruction cost would have the following impacts. On the one
hand, additional costs would drive K closer to K*, while on the other hand, they would
generate opportunity costs for stopping the project raising the incentives to continue
with investments. Moreover, results are not very sensitive to changes in the maximum
productive investment rate. Thus, we expect the total effect to be small*®. To improve
the realism of the model, separate project stages could be included that are connected
with specific risks and have to be passed successfully. Finally, only limited data of
offshore parks and costs, as well as their breakdown, are available to date. Despite the
limitations, the application provides an understanding of the magnitudes of parameters
and their impacts. These estimates are useful in further theoretical analysis increasing
the realism of parameter values.

3.5. An application to environmental R&D decisions

3.5.1. Motivation: energy efficiency to mitigate climate change

Any decision to invest in R&D is a decision under uncertainty as future conditions, e.g.
future costs and benefits, market conditions etc., are not known beforehand. This is an
important question of how policy measures can provide incentives to spur R&D. As the

30Note that wind park operators are required to give a loan guarantee for decommissioning. However,
due to a lack of experiences actual cost are not known. ODE (2007) estimate decommissioning cost
per turbine of about 0.4 MEUR (2006 prices). This implies about 8 MEUR for Baltic 1. The most
pessimistic estimate we found sums up to 13 % of installed costs (Bayou, 1997). These costs can
serve as an upper estimate for (sequential) midstream deconstruction costs.
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Figure 3.8.: Abatement potential of and necessary investments in Billion of USD in dif-

ferent energy sources or efficiency measures to limit global temperature rise
to below 2 °Celsius. Source: TEA (2009).

world is facing the threat of climate change, policy measures supporting the develop-
ment of energy-saving technologies, and thereby increasing the potential for emissions
reductions, are of particular interest.

In a recent scenario approach by the International Energy Agency in its World Energy
Outlook 2009, TEA (2009), consequences and policy implications to limit an increase of
the global temperature to below 2 °C were studied.?! Two findings are especially relevant
for the purpose of our analysis. First, energy efficiency plays a major role in mitigating
climate change. Fig. 3.8 illustrates that energy efficiency measures have the potential
to contribute almost two thirds of the necessary abatement of green house gases in 2020
and about 50 % in 2030.32 Second, IEA (2009) states that additional investments of
about 10.5 Trillion USD in energy infrastructure and energy-related capital stocks are
required in comparison to the business-as-usual scenario. The latter would lead to a
global temperature increase of about 6 °C. Thus, policy measures that can stimulate
R&D investments are crucial in this respect.

This section analyses how R&D investment decisions in energy-efficient technologies are
influenced by policy incentives when technical uncertainty is present. We will explore how
environmental policy influences R&D efforts by the choice of an environmental instrument
and by its intensity. In general, environmental policy has two impacts on the firm’s
decision. First, it will influence available investment resources. Second, it will influence
the payoff after completion of the R&D project.

We adopt Kort’s modification (Kort, 1998) of Pindyck’s model featuring that uncer-
tainty in early phases of the R&D project is usually higher than towards its completion.
Only by investing can the firm reduce uncertainty. Another restriction is that the R&D

31This can be reached by keeping the long-term concentration of green house gases in the atmosphere at
450 parts per million of CO2. The current level is about 380 ppm COz-eq. Therefore, this scenario
is also called the 450 scenario.

*2The abatement potential in Fig. 3.8 is given in Million ton COs,. Necessary investments in the energy
infrastructure and the energy capital stock are given in Billion USD, 2008 prices.
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project is limited to self financing. This is realistic for firms that have market power and
are endowed with necessary resources to undertake in-house research projects. While
this is certainly a strong assumption, it is for two reasons not unrealistic (see also Kort
(1998)). First, if the firm does not depend on external finances, it does not need to un-
veil information. Thus, it can better capitalise on its advantage in know-how to further
strengthen its market position. Second, R&D projects with uncertain outcomes are risky
and will therefore lead to higher interest rates if funded externally.

Next, we will introduce the model and derive the optimal investment rule. We will
incorporate environmental policies taking the form of energy taxes, energy quotas, and
investment subsidies. Later on, the model is extended for a scheme of emission trading.

3.5.2. The model with an extension for energy taxes and quotas

Consider a firm planning to invest in an R&D project that will result in a more energy
efficient technology after its completion. As this project needs time to be completed, the
firm has to solve a sequential investment problem (sequential call option). We assume
that the firm is certain about the outcome of the investment but does not know the cost
and time needed to realise this R&D project. The firm can stop the project at any time
(option to abandon).

We incorporate solely technical uncertainty understood as uncertainty connected with
the creative process, unpredictable challenges, the need for resources, etc®®. The firm
has only an expectation of the actual total cost to completion K (t). The expectation of
the total expenditure required to complete the project is denoted by K (¢). It holds that
K(t) = E(K(t)) with & being the expectation value operator. The project is completed
when the cost to completion reach zero, K(7T) = 0 with T being the completion time.
We follow Kort (1998) in modelling the evolution of remaining investment required to
complete the project by

dK (t) = —I(t)dt +~(K())°\/T(t) K (t)dw(t) . (3.26)

Again, I(t) is the investment rate and dw(t) is the increment of a Wiener process. Pa-
rameter v is a constant and positive parameter. v denotes overall technical uncertainty.
0 reflects the realistic feature of R&D projects that technical uncertainty is larger in early
stages.

As stated in the introduction, we assume that the firm carries out an in-house R&D
project that is completely self-financed. Thus, investment resources have to be earned
by other activities of the firm. Neglecting alternative investment opportunities, the firm
has to choose in each investment period between accumulating profits = and investing
in the R&D project to realise gains later on from a better energy efficiency. We assume
a maximum productive investment rate describing that the project needs time to be
completed. The financing restriction for the R&D project is then given by

0<I(t) =cmy(t) <my(t) = Imax , 0<e<1. (3.27)

33See Section 3.1 of this chapter for a detailed discussion of technical uncertainty.
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Subscript 0 refers to using the current generation of technology. Superscript k indicates
the dependence on environmental policies. We will introduce them later on.

Next, we determine available present and future net profits depending on technology
generation ¢ = {0,1}. The firm produces an output ¢(E, L) with inputs of energy F
and labour L. The efficiency of an energy-saving technology is described via parameter
¢;. This parameter will change to a higher level once the investment project has been
finalised. We use a Cobb-Douglas production function with decreasing returns to scale

q(E,L) = 0(¢; E)*L? with o, >0, a+8<1 , (3.28)

where e and /3 are production elasticities of energy and labour. 6 is a general productivity
parameter. Net profits of the firm depend on output price P, input costs for energy and
labour, denoted by z and w respectively, and the environmental policy regime k. We
follow van Soest (2005) considering at first two basic types of environmental policies. The
first one is a tax regime k = T with a per-unit-of-energy tax rate 7. The second one is a
quota regime k = Q with a binding, non-tradable quota on the use of energy E.3* The
firm aims at maximising its profits. Thus, the present and future instantaneous profit
flows of the firm are calculated from

maXEvL{Pa(@E)O‘Lﬁ—(z—i—T)E—wL} i k=T,

3.29
maxy, { PO(¢; E)*L° — 2E — wL} if k=0. (329

(B, L; ¢;) = {

We assume that the policy will be set once and for all.3® As the policy does not change,
once the R&D project is realised, the firm will be able to produce under the same
conditions but with an increased energy efficiency ¢; = ¢;. In order to compare both
policy regimes, we next initialise them with the same level of energy use. The procedure
is as follows. First, the government chooses the tax rate equalising marginal benefits
and costs of the firm given the current technology ¢g. The amount of energy used in
this policy regime determines the corresponding energy quota. This quota is therefore a
function of tax rate 7. Formally, one has to solve the static profit maximisation problem
using the envelope theorem, see the Appendix A.5.1 for details. The energy quota can
then be derived as

1

B 1-81] 1=a=5
(@ ()] e e

Profit functions depending on an advanced technology generation ¢ = 1 and the initial
policy framework can be obtained in a similar way. They are given as

i B ngbYT for k=1T |, 531
771(¢1)—{5Q¢1/Q_2E for k=0 | (3.31)

E =

3 Later on, we will also analyse investment subsidies and emission trading. As the formal introduction
is straightforward, we refrain from a derivation.

35This assumption will be relaxed in Chapter 4. A discussion of possible time inconsistency problems
follows later in this section.
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where

¢ = [l-a-4

,3 Jé] ’YQ/Q
POE” <—> ] , (3.32)
w

with 77 = a/(1 —a — ) and 2 = a/(1 — B).

Knowing present profit functions, subscript 0, and future profit functions, subscript
1, we can determine the optimal investment plan of the firm. To this end, we have
to solve the stochastic control problem, Eq. (3.7). Controlling the flow of investments,
I(t) = {0, Imax}, the firm maximises the value of the investment opportunity F(K(t)).
Introducing a discount rate r, F(K(t)) is

¢ = (1-p

o0 T
F(K(t) = r?(a)xéfo /W’f exp(—rt)dt — /n’g exp(—rt)dt| . (3.33)
t
T 0

The first integral in Eq. (3.33) sums up the discounted cash-flows generated after com-
pleting the R&D project. The second integral describes the sum of investments required.
Eq. (3.33) is subject to Eq. (3.26), Egs. (3.31), and K(T") = 0. The completion time T'
of the project is stochastic. As the firm has only an expectation about this value, the
present time expectation value operator & acts on both integrals.

As shown in Section 3.3, standard dynamic programming techniques provide a means
to derive a critical value K* for the expected cost to completion. This threshold decides
whether or not to invest. In the region where investment is profitable, investment with
the possible maximum rate (¢ = 1 in Eq. (3.27)) maximises the value function F(K) in
Eq. (3.33). Hence, the optimal investment rule is

It) =

ko *
{7['0 if K<K*, (3.34)

0 if K>K".

Only if the expected cost to completion are below the critical threshold K™, investment
at the maximum productive investment rate 77(’)C is optimal. The project will be carried
out. Otherwise, the firm will refrain from investments.

K* is a free boundary and can be calculated numerically by solving the following
second order ordinary differential equation for I = 75.%6 We have

_ OF () '7_2 26§ 82F(t)
0__1_6K(t)+ 2K(t) K(t)aK(tP , (3.35)
under conditions
F(0) =xf/r , lm F(K)=0, F(K)=0, F(K)=0. (3.36)
—00

36Compare to Eq. (3.12) and its solution by dynamic programming.
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Parameter Value
Technical uncertainty ~ 0..<14
Technical uncertainty ¢ 0.. <05
Energy output elasticity « 0.1..0.5
Labour output elasticity £ 0.1..0.7
Total factor productivity 6 1.0
Output price P 1.0
Input price of energy z 0.1..1.0
Input price of labour w 0.1..1.0
Energy efficiency of current technology ¢q 1.0
Energy efficiency of future technology ¢; 1.2 .. 2.0
Discount rate r 0.05
Per-energy tax rate 7 0..10

Table 3.6.: Parameters used in the numerical solution.

The first condition describes the payoff after completing the R&D project. The second
one states that for large K it is not reasonable to start the project at all. The two last
boundary conditions match the regions of investment and non-investment.

Having all formalities set, we can next analyse how environmental policy and its strin-
gency influence investment decisions. We study how the critical cost for completion K*
depend on the policy regimes. Note that policy enters the problem via Eq. (3.34) and
Egs. (3.36) as the investment rate I and the payoff after completion V are a function of
the environmental stringency 7.

3.5.3. Parameter set-up and stability discussion

For a wide range of parameters (see Tab. 3.6), stable and systematic solutions have
been found. The functional dependence of the critical costs to completion K* on policy
stringency 7 shown in Fig. A.2 is typical. We will use the parameters in that figure as
the base case. Note that environmental stringency is given by a tax rate 7 from which
the equivalent energy quota E can be derived. 7 ranges between 0.0 and 1.0 implying
that environmental policy can double the input price of energy. Such a level has the
potential to close the gap between social and private costs in the production of energy
(see Section 2.2.1).

In order to study the dependence of K* on other model parameters, various values have
been used keeping the other parameters fixed. Tab. 3.6 gives the range of parameters used
in the numerical solution. Note that uncertainty parameters v and § are limited to values
smaller than v/2 and 0.5, respectively. Otherwise, a solution for K* does not exist for
the chosen stochastic process. As estimated in Section 3.4, investment projects involving
cutting-edge technologies are characterised by v ~ 0.5. The efficiency of the future
technology for the deployment of energy is described by parameter ¢;. In comparison to
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Parametero=0.3,3=0.5, w=0.2, z=0.1, P=1, r=0.0§,=1.0,¢=1.5
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Figure 3.9.: Critical investment cost K* as a function of environmental stringency 7 with
dependence on different values for uncertainty parameters « and §.

the current available technology ¢g, it can increase the energy efficiency up to a factor
of two. Output elasticities a and [ have also been tested for a broad range. Other
parameters are chosen as in the set-up used for a model studying the optimal timing of
technology adoption by van Soest (2005).

3.5.4. Results from the real options model

Investment is only profitable if the expected cost to completion K is smaller than K*.
Therefore and in general, the higher K*, the better the investment conditions are.

As a first result, the numerical survey suggests a universal behaviour of the functional
dependence of K* on the stringency of environmental policy 7. When 7 increases, K*
decreases. Thus, the less stringent the environmental policy is, the better the conditions
for the firm to invest (see Fig. 3.9). Environmental policy reduces profits making less
resources available for investing and more time necessary to develop the technology with
an improved energy efficiency. As a consequence, future payoffs also shrink.

One might expect that the difference between the tax and the quota regime disappears
for 7 — 0, but this is not the case. Fig. 3.10 illustrates this fact. As long as the
current technology ¢ is in use, the optimal amounts of energy and labour are the same
in both regimes, i.e. ET(¢g) = EQ(¢o) and LT (¢pg) = LQ(pp). However, when the new
technology ¢ is available, the firm increases its input of energy under taxes to ET(¢1)
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Figure 3.10.: Optimal inputs of energy ET and labour LT under taxes and quotas EQ,
LQ, as well as resulting investment resources I and profit flows .

(upper left graph). The input of labour will be augmented in both regimes but higher
in the more flexible tax regime, i.e. LT (¢1) > LQ(¢1) (top right graph). Note that the
gap between the inputs in the two regimes closes with an increase in 7. The optimal
choice of inputs defines the resources available for investments I(¢p) and thus the time
needed to realise the R&D project. For any 7 > 0, the firm can investment more in the
quota regime (lower left graph) since the lack of an energy tax to be paid means that
input costs of energy are smaller by the amount of 7E(7), see Eq. (3.29). However,
while the initialization of the policy regimes favours the quota regime at the start, when
technology ¢1 becomes available, the tax regime allows the firm to better adjust its
inputs explaining the higher profit flows 7(¢;) for small 7 (lower right graph). But the
advantage of higher inputs melts rapidly with 7 as energy input cost climbs with 7E(7).
This leads to an intersection of the profit flows in the two regimes at low stringencies.
The point of intersection is below 0.1 for all parameter ranges. As a consequence, the
K*-~ graphs for the tax and the quota regime also intersect.

We shall now go into more detail to provide a better intuition on the effect of environ-
mental policy. Fig. 3.11 shows the optimal input of energy chosen by the firm under the
old (black line) and under the improved technology (red line) as a function of environ-
mental stringency 7. In the absence of environmental policy, the optimal input of energy
is Fy. When an environmental policy is introduced, the firm lowers its input of energy
to E7. If the firm now invests into a better technology, less energy would be needed to
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Figure 3.11.: Optimal input of energy as a function of environmental stringency 7 and
technology generation i = {0,1}.

produce the same amount of output. This cheaper way of production is the motivation
for the firm to invest in R&D. In the tax regime, the firm additionally benefits from
increasing its input of energy to Fy once the new technology is available. Note, that this
additional benefit decreases with 7. For the first choice of 7 considered in the figure,
FE5 is even greater than Fj resulting in no environmental benefit from introducing the
policy. Yet, this depends on the level of environmental stringency. As you can see from
the second example in Fig. 3.11, F» is smaller than Ejy. Thus in this case, environmental
policy induces an emission reduction. However, as Fq will always be smaller than Fs, we
observe a partial rebound effect (see Fig. 3.12).

Returning to Fig. 3.9, it can be seen that K* strongly depends on v and 4. Fig. A.2
shows in addition the results for the deterministic case, v = 6 = 0. As both figures
illustrate, K* increases with « and §. For example, if the price for energy is doubled, K*
increases in the tax regime from 75 (y = § = 0) to 107 (y = 0.5,0 = 0.1), while in the
quota regime, K* increases from 110 to 158. By investing the firm can reduce uncertainty
and is rewarded with a better understanding about the remaining cost required to com-
plete the project. The larger the amount of uncertainty, the more of it can be resolved by
learning. Thereby, a shadow value for completing the project is created. Furthermore, if
7 is low, the firm has larger investment resources and hence can learn more. Note that
this result depends on the type of uncertainty. Output price uncertainty, for example,
reduces K* and generates a value of waiting.

As discussed above, taxes dominate quotas only if the level of environmental stringency
is small. The intersection between both regimes is thereby not strongly dependent on
variations in the parameters «, 8, 7, d, z, and ¢ (Figs. 3.9, A.2, A.3, A4). More
important is the finding that K* and « are positively correlated; the smaller the elasticity
of the energy output «, the less investment resources and future payoffs are affected. K*
is most sensitive to changes in the market price of energy z and in the future technology
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¢1. It is not surprising that an increase in ¢, induces K* to rise, whereas a higher z
causes K* to fall.

How do investment conditions change if investments are subsidised with a grant rate
denoted by g? This can be answered by replacing I with (1 —g¢)I in Eq. (3.33) and with
7k /(1—g) in Eq. (3.34), the upper constraint for the maximal investment rate. Fig. 3.13
illustrates the result. Investment subsidies induce an increase in K*. This is because an
investment grant implies that the firm can invest more, and thus the investment rate can
be increased. Therefore, the effect goes beyond a simple reduction of investment costs.
Though, this would not be the case if the firm could not productively invest more (see
also Kort (1998)).

3.5.5. Extension to emission trading

Recently, emission trading schemes have been implemented as an alternative or comple-
mentary measure to provide incentives for the reduction of e.g. green house gas emissions.
An example is the European Union Emission Trading Scheme introduced in 2005 (see
e.g. Hoffmann et al. (2008)).

We introduce the following simple scheme. The government freely distributes initial
permits for the use of energy. In the case that the firm wishes to expand its energy
use beyond what is permitted, the firm can purchase the additional amount at a permit
price zcap per unit of energy. Selling redundant amounts is also possible. Under the
assumption that emission trade markets are perfectly competitive, firms are price-takers.
To keep the model simple, the permit price is fixed and trading costs are neglected.
For comparing the three policy regimes (taxes, quotas, emission trading), we choose all
parameters in such a way that the firm’s optimal amount of energy is initially the same
in all regimes. This means, the permit price is set at the level of the tax rate 7, and
the cap on the input of energy E®P is chosen to equal the optimal amount of energy
in the quota regime. Thus, the use of energy is the same in all regimes until the new
technology ¢ has been developed. It is implied that initially the firm will neither buy
nor sell emission allowances. Only after completing the R&D project will the firm adjust
its inputs L and F. Future instantaneous profit flows in the cap-and-trade regime Wfap
are derived in a similar procedure as in the two other regimes. Eqgs. (3.29) and (3.32) are
given for the cap-and-trade regime as

m (B Lign) = maxg, {POE)*L’ — 2B — wL — zcap(E — E“P(r)) }

gcapgb’{cap + zcap E“?P (1) | (3.37)

. 5 4CaP /o
Po <L> <ﬁ> ] , (3.38)
zZ+ zcap w

where %P = a/(1 —a— ). zcap denotes the equilibrium permit price. Note that E4P
is a function of the policy parameter 7. Next, we solve Egs. (3.35-3.36) using Eq. (3.37).

with

¢ = l-a-4
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Figure 3.14.: Critical investment cost K™* as a function of environmental stringency 7 for
the tax regime, the quota regime, and the emission trading regime.

Fig. 3.14 shows the results for the cap-and-trade regime compared to the quota and the
tax regime. We find again that K* decreases with environmental stringency implying
that the region where investment is profitable shrinks. Environmental policy imposes
costs on the firm. It has to pay energy taxes or it is restricted to a certain amount of
energy and extra energy costs money. Thus, less resources are available for investing,
and less pay-off can be generated after the project’s finalisation. In the extreme, the
firm will choose to freeze its production (compare Fig. 3.12). What is the ranking of
the three policy regimes? We find that emission trading always leads to a higher critical
threshold for investment, K*. For example, K* increases by 5% in comparison to the
quota regime at 7 = 0.1. The firm under the emission trading regime can realise the
relative advantages of the tax as well as the quota regime. It can proceed as quickly with
the R&D project as in the quota regime plus it has the flexibility to expand its use of
energy under the new technology by purchasing additional permits. This is illustrated in
Fig. 3.15. Finally, the dashed brown lines in Fig. 3.14 indicate a realistic range for the
level of environmental stringency 7. A 7 = 0.01 implies that the energy tax raises the
energy price by 10%. A 7 = 0.1 implies that the energy price is doubled. In this range
the ranking of the three policy regimes is unambiguous: emission trading performs best
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followed by quotas.

Environmental policy thus implies an increase of energy costs potentially closing the
gap between related external and social costs. However, this is paid for dearly as incen-
tives to invest in energy-saving technologies are diminished. This disadvantage could be
avoided by granting R&D subsidies.

3.5.6. Limitations and conclusions

We have studied the impact of environmental policies on optimal R&D investment plans
of a single firm. The firm makes its investment decision under technical uncertainty and
irreversibility. The central findings are

e Investment in energy-saving technologies increases with technical uncertainty. This
is due to the fact that only by investing can the firm learn about the remaining
cost to completion. This finding is in line with other literature, e.g. Kort (1998).

e Taking account of technical uncertainty v = 0.5, critical investment costs increase
by 43 % for the tax and 44 % for the quota regime. This example holds for the
case that environmental policy doubles the price of energy.
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Parameter Impact on K*
Technical uncertainty -~y ++
Technical uncertainty +-++
Energy output elasticity « ++
Labour output elasticity 3 +
Input price of energy z ---
Future technology for deployment of energy ¢ ++
Environmental stringency 7 ---
R&D investment grants g ++

Equilibrium permit price zcap - -

Table 3.7.: Impact of selected parameters on the sum of critical investment costs in rela-
tion to the base case (Fig. A.2). Signs imply: + /- moderate impact on K*,
++4/- - strong impact on K*, +++ /— decisive impact on K*.

e The more stringent environmental policies are set, the less the incentives to invest
in R&D as investment resources and future payoffs are reduced.

e Granting R&D subsidies is a countermeasure.

e Among the three environmental policy regimes, emission trading performs best in
terms of inducing energy-saving R&D. The firm can flexibly choose its inputs with
the additional option to buy emission permits.

e The advantage of the cap-and-trade regime amounts to approximately 5 % relative
to the quota regime in the case that environmental policy doubles the energy price
and the equilibrium permit price equals the energy price. The firm will choose to
buy additional permits.

e The ranking of the tax and the quota regime is ambiguous. Only for very low
levels of environmental stringency do taxes dominate quotas. For these levels of
environmental stringency 7, the firm can additionally benefit from expanding its
inputs under the new technology. However, this benefit decreases with 7. At the
point of intersection, the advantage is no longer big enough to balance the higher
energy taxes which the firm does not have to pay under the quota regime. Model
parameters influence foremost the slope. The intersection point between the two
regimes is much less sensitive to parameter changes. Table 3.7 summarises the
qualitative results for the comparative statistics.

e In a realistic range for the level of environmental stringency, the ranking of the
three policy regimes is unambiguous: emission trading performs best followed by
quotas.

Several assumptions were made. First, we concentrated on the impact of environmen-
tal policy on a single firm. Doing so, we neglected aspects of competition and knowledge
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spillovers. The former can provide incentives to accelerate investments, whereas the lat-
ter slow them down. Second, we have assumed that the decision to perform R&D does
not depend on financing resources. This simplification is realistic for established firms
that exercise strong market power and have excess to sufficient financing resources (see
also the discussion in Section 3.3.4.). As a possibility for future research, the model can
be extended to include auctioning. Finally, we have assumed that environmental policy
once set does not change. In doing so, we assume that policy institutions are myopic;
a commitment problem does not exist. However, time consistency can be an unrealistic
assumption since an ex-ante optimal policy might be ex-post less favourable. For exam-
ple, once firms have invested, the government can turn towards other objectives. This
can imply changing policies, e.g. taking back taxes in order to give national firms a com-
petitive advantage in international markets. Then results would depend upon the ability
of firms or policy institutions to anticipate changes and adopt their optimal strategies
accordingly. However, institutional and legal obligations build natural barriers against
rapid changes. Hence, the assumption of continuing a certain policy stringency level can
hold at least for short- and medium-term projects. Implications if two uncertainties are
present, technical and policy uncertainty, are explored in the next chapter.

3.6. Chapter summary

We have studied the implications of irreversibility and technical uncertainty on the R&D
investment decisions of a single firm using the sequential investment model with the op-
tion to abandon, developed by Pindyck (1993). Dynamic programming techniques and
Monto Carlo simulation have been applied to solve and extensively discuss the model. Re-
sults confirm that technical uncertainty raises the critical threshold for investment costs,
adding a value to the R&D project in comparison to the case of certainty. An increase in
the payoff from completing the project increases the value of investing. An increase in the
risk-less discount rate and the maximum productive investment rate shrink the region for
investment. But the impact of the latter is less sensitive to higher investment rates. We
furthermore found that the risk for non-profitable investments increases exponentially
when approaching the border between the regions of investment and non-investment.
The model was extended for environmental policies, feed-in tariffs, to study the in-
vestment decision in offshore wind parks by large energy corporations. Germany’s first
commercial offshore farm, Baltic 1, served a case study. Apart from technical uncer-
tainty, uncertainty related to cash-flows from the project were included by considering
a corridor for expected operation and maintenance costs. Multiple regressions of data
for different European offshore parks were performed, resulting in the finding that ex-
pected investment costs amount to about 135 MEUR / 140 MEUR depending on the
distance from shore. Technical uncertainty was estimated to be about v = 0.5. This
magnitude induces the critical threshold for the expected investment cost to increase by
12 %. Results furthermore showed that under the German Renewable Energy Resources
Act of 2009, Baltic 1 can be run profitably. However, the guarantee of a sprinter bonus is
crucial. Under this regime, risks of non-profitable investments are not higher than 9 %.
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A third modification to the model was made to study the influence of environmental
as well as technology policies on the decision of a single firm to develop an energy-saving
technology. We analysed Pigouvian energy taxes, energy quotas, R&D subsidies, and a
scheme for emission-trading. The central finding was that investment in energy-saving
technologies will increase with technical uncertainty. In fact, the critical threshold for
expected investment cost increases by more than 40 %. This holds even if environmental
policy doubles the input costs for energy. However, more stringent environmental policies
hamper R&D investments. This can be balanced out by granting investment subsidies.
Among other model parameters, the efficiency parameter of the new energy-saving tech-
nology and the energy output elasticity also positively influence the critical threshold for
expected investment cost. However, the input price of energy and the equilibrium per-
mit price have a negative impact. When ranking environmental policy regimes, emission
trading performs best in terms of inducing energy-saving R&D. The ranking of the tax
and the quota regimes are ambiguous. Only for low environmental stringency will taxes
dominate quotas.

Despite limitations, generic features of R&D have been incorporated into our models.
They allowed us to elucidate the dynamics of investment decisions of a monopolistic firm
under the influence of environmental policies.
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policy uncertainty

4.1. Motivation

Due to market failures and inefficiencies of the innovation system connected with the
production of knowledge and environmental externalities, the level of green R&D invest-
ments is below its potential. Governments apply various incentive measures to overcome
investment barriers and to direct the development of technological change, such as the
provision of investment grants or the imposition of environmental taxes and quotas.
Thus, a firm’s investment decision also depends on environmental policy parameters in
addition to organisational and financial resources, prospective cash-flows, and scientific
challenges.! But environmental regulations are likely to be subject to substantial uncer-
tainty.

Reasons for policy uncertainty are various. Some are related to governmental learning.
It might, for example, become necessary to adjust policies with the arrival of new infor-
mation, e.g. after an evaluation yields the result that a regulation is not efficient. Coming
to a better understanding of the impacts of environmental damages and associated costs
is another example for adjustments in policy. But environmental policy uncertainty can
also be caused by changes in other policy areas switching regulative priorities. Fig. 4.1
illustrates the frequent adjustments of taxes in Germany that are imposed on the use of
fuels (introduced in 1951) and the use of electricity (introduced in 1999). It can be seen
that these environmental taxes have changed within relatively short periods compared
with the time horizon of many research projects. Additionally, increases in taxes can
be large. For example, the tax rate for the use of electricity in the industrial, agricul-
tural, and forestry sectors was sextupled within 5 years from 2.05 EUR/MWh to 12.3
EUR/MWh.

Apart from environmental regulation via taxes, quotas, or legislation, incentives in
form of R&D subsidies (e.g. as project grants) are also subject to uncertainties. Besides
the reasons for policy changes stated above, governmental R&D programmes are typi-
cally installed for only a couple of years. Their aim is to foster particularly short- and
mid-term investment behaviour. It is furthermore not known if such a programme would
be continued or how funds would be allocated, e.g. for the promotion of eco-innovations.
These decisions are often only made after long negotiations with stake-holders and in-
terest groups. Therefore, uncertainty about the availability of subsidies can strongly
affect the planning of long-term R&D. Fig. 4.2 shows the development of selected energy

!See also Section 2.1 for findings in the literature on policy as a factor in green technological progress.
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Figure 4.1.: Development of energy and electricity taxes in Germany. Source: BMBF,
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R&D subsidies from national (1991-2008) and European programmes (1997-2008). As
the data illustrate, the allocation of funds is not at all exclusive to environmental R&D
as large sums are directed to fusion and fission R&D. In the case of national funds, on
average 183 MEUR have been spent annually on R&D of environmental technologies.
The focus of the German government was on the development of renewable energy re-
sources (RES) and a more efficient deployment of energy. At the EU level, R&D funds
under the directive of DG Research supported foremost project proposals related to fuel
cells, energy sources, energy transport, energy storage (in particular hydrogen), renew-
able energies, COs-capture, and socio-economic interdependencies. Research under the
directive of DG TREN supported demonstration measures for renewable energies, eco-
building, polygeneration (e.g. combined heating and electricity), and alternative fuels.
An average of 124 MEUR (DG Research) and 122 MEUR (DG TREN) have been spent
annually. However, funds strongly fluctuate with standard deviations of 61 MEUR, and
25 MEUR respectively. In the case of funding from DG Research, support even dropped
to zero in 2004.

Certainly, policy uncertainty impacts the investment decision in addition to technical
uncertainty. In this chapter we extend the models from Chapter 3 to include both, and
we will study how this influences the optimal R&D decision of a single firm. After a
short review of the real options literature that considers policy uncertainty, we introduce
our approach to formalise this type of uncertainty. Two models with two different types
of uncertainty will be developed, i.e. uncertain R&D investment grants and uncertain
quotas and taxes on the use of energy.

4.2. Review of real options literature considering policy
uncertainty

In the last decade, the literature studying the impact of policy uncertainty on a firm’s
investment decision has been steadily growing; see Niemann and Sureth (2008) for a
review. Most contributions focus on policy uncertainty in general (Hassett and Metcalf,
1999; Bohm and Funke, 2000; Agliardi, 2001; Pawlina and Kort, 2005; Hoffmann et al.,
2008; Alvarez and Koskela, 2008; Niemann, 2010). Uncertainty of environmental policy
is considered in Larson and Frisvold (1996); Farzin and Kort (2000); Isik (2004), and
Baker and Shittu (2006). To the best of our knowledge, this thesis is the first to combine
uncertainty about the technical advance of a sequential R&D project and (environmental)
policy uncertainty.

Investment tax credits for new capital, i.e. implicit investment subsidies, are studied
in the seminal contribution of Hassett and Metcalf (1999). They model the evolution of
after tax returns allowing taxes to switch randomly between a high and low level. Policy
changes are assumed to be mean-preserving by linearly relating the Poisson distributed
arrival rates to output price realisations. Hassett and Metcalf (1999) find that in times
of high capital costs (low tax credits) the incentive to postpone investments increases;
it is optimal to wait for the likely up-coming improvements. Likewise, investments are
accelerated if capital costs are low. The authors find that the impact of policy uncertainty
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depends on the assumed stochastic process. Using a geometric Brownian motion, an
increase in uncertainty hampers investments, but a stationary jump process can also
result in an acceleration of investments. The latter finding opposes the conjectured
truism that greater policy uncertainty is counterproductive for investments. This is the
starting point of Bohm and Funke (2000) who assume demand uncertainty (Brownian
motion) and changes in investment credits. The latter follow a continuous-time Poisson
process switching between a high and a low level, as in Hassett and Metcalf (1999).
Hence, the resulting value function for the investment opportunity depends on a combined
Brownian motion-jump process. Numerical results support the general wisdom insofar as
the impact of tax uncertainty on the optimal investment decision is very small. Therefore,
tax uncertainty should neither be 'blamed’ for a hesitant investment behaviour nor will
a policy that aims to reduce tax uncertainty be a 'magic bullet’.

Agliardi (2001) analyses the interplay of uncertainty in the price of the capital stock
(Brownian motion) and uncertainty about future operating cash-flows. The price of the
capital stock is furthermore subject to discrete jumps caused by changes of investment
grants (Poisson arrival). The effect of uncertainty about changing investment grants is
ambiguous, but the higher the arrival rate, the lower the critical investment threshold is.
Hence, with increasing policy uncertainty, investments slow down. Niemann (2010) con-
firms that the impact of uncertainty on investment tax credits is ambiguous. The author
models uncertainty as an arithmetic Brownian motion which is not perfectly correlated
with cash-flow uncertainty?. Niemann (2010) finds that investments are accelerated if
uncertainty about the cash-flow and its correlation with policy uncertainty are high.

Pawlina and Kort (2005) study the impact of uncertain and discrete 'structural changes’,
e.g. caused by tax policies. They assume that the value of an investment project follows
a geometric Brownian motion and a structural change happens if it reaches some trigger
value. The firm is uncertain about the trigger value but expects a higher probability
for changes to occur in booming times. This will cause investment costs to jump to an
uncertain, higher level - e.g. when investment tax credits are cut. The new feature in
their model is that the structural change does not arrive at a constant rate over time as
is assumed with Poissonian distributed arrivals. In the case that a jump in investment
costs is likely, Pawlina and Kort (2005) obtain that it is optimal to invest just before
the change occurs. Uncertainty about the trigger value that causes the change has an
ambiguous impact. Initially, as long as uncertainty is still small, the critical project
value that induces investments decreases. Thus, earlier investments are optimal. How-
ever, if uncertainty continues to grow, this critical value increases and investments are
postponed. Pawlina and Kort (2005) furthermore find that a policy aiming to encourage
investments should abstain from using uncertainty as a policy instrument. Otherwise,
the average expected time to invest diminishes by 23 %. A similar result is obtained
by Isik (2004) who studies the impact of cost-share subsidies on the decision to adopt
site-specific technologies for more environmentally-benign farming.? Again, investments

2If both are perfectly correlated, then tax uncertainty is never independent from cash-flow uncertainty
since they would be linearly related.
2See also the review in Section 2.3.
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are accelerated just before an expected worsening of the investment conditions.

There are a few contributions that analyse the impact of uncertain taxes. Larson and
Frisvold (1996), Farzin and Kort (2000), and Baker and Shittu (2006) study the case of
environmental taxes. A linear progression of taxes and tax exemptions are analysed by
Alvarez and Koskela (2008) and Niemann and Sureth (2008). The contributions consid-
ering environmental taxes have been reviewed in Section 2.3. Here, we only report the
general result: uncertainty about environmental policies tends to slow down investments.
However, the better a firm is able to realise advantages from investing in abatement mea-
sures, the smaller the effect of postponing investments. This can be the case if the firm
expects a cut of policy support to come soon (e.g. a reduction in cost-share subsidies) or
an upcoming tightening of environmental taxes or standards. Better adjustment possibil-
ities of the firm (e.g. a high substitutionability of polluting inputs) promotes investments
in the same way.

Alvarez and Koskela (2008) analyse the implications of an uncertain linear progression
of an interest income tax and the possibility of a tax exemption. The result of the
irreversible investment model is the following. If the threshold for tax exemption is
below the sunk investment costs, investment decreases, because the net-of-tax payoff
decreases. But if the tax exemption threshold is larger than sunk investment costs, then
three different outcomes are possible. If, 1), the tax volatility is low, the optimal exercise
threshold increases and thus, investment decreases. However, the tax rate does not affect
the optimal policy. If, 2), the volatility increases up to the point where the critical
value for investment equals the level of tax exemption, then the optimal investment
policy is independent of the tax rate and its volatility. If, 3), the volatility of the tax
rate increases beyond this critical level, then the optimal investment policy becomes a
function of the tax rate (negative relationship) and the volatility (positive relationship).
This ’tax paradox’ is a result of the possibility of tax exemption. Tax exemption provides
a shield against risks.

Most studies have shown, policy uncertainty tends to slow down investments. However,
the magnitude of the effect depends on the possibility of a firm to hedge against future
risks. Furthermore, the process best used to describe the development of uncertain policy
parameters is open to discussion. Relating the trigger of policy changes to other model
parameters and/or allowing for time-dependent arrival rates represent potential areas for
development.

4.3. Concept and formalisation of policy uncertainty

4.3.1. Uncertain R&D subsidies

The question we concern ourselves with here is how policy uncertainty at the aggregate
level, as illustrated in Fig. 4.2 translates to policy uncertainty at the firm level. We
will consider R&D subsidies and assume that an R&D programme has just started. In
this case, it is foremost the duration of possible project support that is uncertain. For
example, a typical funding time of an R&D project is 3 years. In addition, there is often
the possibility to extend the project for another 1-3 years depending on the demand for
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total subsidies and remaining programme funds, although the maximum prolongation
is limited by the running time of the programme, typically 5-10 years.* This causes
uncertainty about the duration of financial support for the project. It is furthermore
typical that programmes have a standard reimbursement rate of 50 % for the private
sector. Small- and medium-size enterprises can receive up to 75%.

We will use a Weibull distribution (Weibull, 1951) to model uncertainty of the timing
of R&D subsidies. The advantage of a Weibull distribution is that it allows for time-
dependent arrival or failure rates. We will consider two scenarios. First, we study the
effect when an R&D programme has just started and it is uncertain how long the subsidies
will be granted to the firm undertaking the R&D (switch-off regime). We assume that
the average support for a project is 3 years. This defines the expectation value of the
distribution. Furthermore, it shall not be very likely that the support would be already
stopped before this average funding time. This implies that the maximum value of the
distribution is reached comparatively quickly. But afterwards, the probability to receive
further financing decreases relatively slowly over time until year seven when it is almost
zero, coinciding with the end of the funding programme. This assumption defines how
to choose the parameter describing the slope of the Weibull distribution. Secondly, we
study the effect when an R&D programme is still in the phase of planning and has
not yet been started. Here, a firm planning to start a project is now uncertain about
the actual time when funds will be available (switch-on regime). We assume that the
probability is high that subsidies will become available within the next two years. This
defines the expectation value of the second distribution. Furthermore, the probability
that the programme start would be postponed for more than 3 years shall be low.

The Weibull distribution for a random variable T, i.e. the time at which the policy
change occurs, and its expectation value E1,(T¢) are defined by

fwb(TC) = af Tg’_l eXP(—aTg) ) (4.1)
Egb(Te) = o /PTA+57) (4.2)
where o > 0 is the scale parameter, 8 > 0 the shape parameter, and I'() is the I-function

(Abramowitz and Stegun, 1972, p. 253-294). The considerations made above about the
policy regimes are best fit by the following parameters. For the switch-off regime, we

*An important source for project grants to carry out energy R&D in Germany is the Federal Energy
Research Programme (BMWi, 2005). The 5th programme period ran from 2003-2008. Currently,
the follow-up programme is in preparation, including discussions with stake-holders (e.g. Helmholtz-
Gemeinschaft (2009); Leopoldina (2009); Frauenhofer (2010)) and fine-tuning. The new national
energy concept is due in October 2010. The 6th Energy Research Programme is planned to start in
mid 2011. According to press releases, it is expected that more finances will be available for 1) R&D
of energy storage technologies, 2) re-modelling of energy networks, and 3) project grants. At the
EU level, the Research Framework Programmes provide grants for R&D. For example, more than 50
Billion EUR are available in 'key thematic areas’. Among these are ’energy’ and 'environment (incl.
climate change)’. EU Funding Programmes support projects on average between 3-5 years. In some
cases, the project can be extended. The current funding period started in 2007 and ends in 2013.
Negotiations with member states about the up-coming 8th programme period have started in 2009.
See e.g. http://ec.europa.eu/research/fp7/pdf/fp7-inbrief en.pdf.
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Figure 4.3.: Left-hand side: Weibull distribution for the policy switch-off regime. Right-
hand side: Weibull distribution for the policy switch-on regime.

chose @ = 16.81 and 8 = 2.6. The switch-on regime is modelled by o« = 2039 and = 5.
The resulting realisations for the Weibull distribution are illustrated in Fig. 4.3.
The variance of the Weibull distribution is also known analytically to be

Var(Te) = o P (T2 +1) —T(B7 ' +1)?) . (4.3)

4.3.2. Uncertain taxes and quotas on the use of energy

From Fig. 4.1 it can be seen that the tax rate on the use of energy in Germany has been
frequently changed since its introduction in 1999. The last change however occurred
in 2002. Following the current discussion in Germany about the upcoming new energy
concept, one might expect that the probability of a new adjustment in the near future
is high. We take this conjecture as the starting point for our next analysis of the effect
of policy changes on the optimal decision of a firm to invest in environmental R&D. As
policy instruments, we will consider a per-unit energy tax and a quota on the use of
energy.

Uncertainty about the timing of a policy change at T is modelled using a Weibull
distribution, Eq. (4.1). Parameters « and [ are chosen to fit the expectation that a
change in policies occurs within 1 year or 2 years after the start of an R&D project, see
Eq. (4.2). The appropriate choice of parameters is a = 819.52, 5 = 5 and a = 25.61,
B = 5, respectively. Resulting Weibull distributions are illustrated in Fig. 4.4. The
left graph in this figure furthermore includes a Weibull distribution with constant arrival
rates, i.e. a =833 and § = 1. « is chosen to fit an expectation value of &g = 12
months. We use this particular representation of a Weibull distribution to analyse the
effect of constant versus time-dependent arrival rates.
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Figure 4.4.: Weibull distributions for a policy regime with an uncertain timing T for a
change in environmental stringency 7.

4.4. Application: uncertain R&D subsidies

4.4.1. The model and its solution

We extend the basic model accounting for technical uncertainty from Section 3.3 by
adding uncertainty of the timing of investment grants. A firm plans to invest in an
R&D project with certain payoff V. The total expenditure K(¢) needed to complete
the project is uncertain and largely irreversible. The realisation of this project takes
time and the completion date 7" is not known. Furthermore, the firm can reconsider
the continuation of the project depending on the progress made by investing (sequential
decision problem with the option to abandon). The required time build is captured by
a maximum productive investment rate Imax that we assume to be constant®. The firm
relies on its own financial resources, but a part of the investment cost can be taken over
by a governmental R&D subsidy programme®. Thus, we replace Imax by (1 — s)Imax
with s being the investment subsidy rate’. We assume s = 0.5, which is a typical
funding rate for the private sector in national and EU R&D programmes. The timing
of subsidies is subject to uncertainty. Two regimes are considered. In the first one, the

5Thus, we can directly compare the impact of policy uncertainty with the results obtained in the model
considering technical uncertainty exclusively. The relaxation of this assumption would be a topic for
future research.

5We do not take into account costs occurring in the application process for R&D funds as well as sunk
costs in the case that the project is not approved nor costs in the case that the project is abandoned.

"As the subsidy relaxes the financial constraints, the speed of investment can be increased. An inter-
pretation is that the firm is able to increase its production capacities.
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duration of support via subsidies is not known (policy switch-off at stochastic time T¢).
In the second regime, the launch of a new R&D programme is uncertain (policy switch-on
at stochastic time T¢). These kinds of policy uncertainties will be modelled with the
Weibull distributions fi,(Tc) specified in Section 4.3.1. Note that the possibility of a
policy change is exogenous to the single firm®.

By investing, the firm reduces the total cost expected for completing the project. But
the remaining sum is subject to uncertain changes that are caused by scientific progress
or technical drawbacks during the implementation. Like in Chapter 3, the expected
change in the remaining cost to completion is modeled by a controlled diffusion process

dK(t) = —I1(t)dt + /IO K (H)dw(t) . (4.4)

Again, the control I(t) can take two values: I = Imax if it is optimal to invest, and
I = 0 otherwise. ~ measures technical uncertainty, and dw(t) is the increment of a
Wiener Process.

The firm decides whether or not to invest by comparing expected cash-flows from the
project (once it is realised) with the cumulated sum of investments needed. If the benefits
are larger than these costs, investment is optimal. Otherwise the project is abandoned.
Note that investment costs are irreversible. The value of the investment opportunity
is described by the value function F(K(t)). Only if F(K(t)) > 0, is the R&D project
profitable. If F/(K(t)) equals zero, the firm is indifferent as to whether or not to invest.
The assumption of a maximum productive investment rate implies that subsidies only
influence F'(K (t)) by lowering the firm’s own investment expenses. Hence, governmental
support can induce the firm to invest in R&D projects that would otherwise not be
started. This creates two critical thresholds for the total sum of investment. The first
one is the value that makes investment optimal due to the subsidy. The second one is
the threshold that makes investment optimal regardless of policy support. The value
function F(K(t)) is given by

[e'e) T
F(K(t) = m(a)x &o /Pexp(—rt)dt - /I(t)(l —S(t))exp(—rt)dt| , (4.5)
I(t
T 0

where & is the present expectation value operator, r is the discount rate, and S(t) is the
subsidy rate.

In the deterministic case, i.e. if v = 0, we can derive an analytical solution for Eq.
(4.5) using T' = K/Imax and V = P/r. For the policy switch-off regime, it holds that
S(t) =0 for t > To and S(t) = s for t < Tx. We obtain

(4.6)

I 1 I
K*(y=0,T¢) = H;axln< 7 V/ Imax >

1+s(erTe —1)

8Tt would be possible to allow e.g. the size of subsidies to depend on the progress of a single R&D project,
but this is left to future research. Such an extension would require a stochastic drift term I(¢,v)
with v describing stochastic policy changes in the controlled diffusion process for the development of
critical investment cost K*, see Eq. (4.4).
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For the policy switch-on regime, S(t) = 0 for t < T and S(t) = s for t > T, we get

(4.7)

I 1— I
K*(y=0,Tc) = H;3X1n< str¥/ max)

1—se"1c

For s = 0, both results are reduced to Eq. (3.8) as expected.

In the uncertainty case, we solve the problem by a backward Monte Carlo simulation
using the Longstaff-Schwartz method (Longstaff and Schwartz, 2001)?. For varying tech-
nical uncertainties 7, we simulate the dependence of the critical investment threshold
K* on T¢. Next, we convolute each of the functions K*(y,T¢) with the Weibull distri-
butions specified in Section 4.3.1. By this, we obtain a Weibull average for K* denoted
by < K* >. This value is then a function of both technical and policy uncertainty
parameters'?. < K* > is formally defined as

< K*(v,Tc) >= /OOO K*(v,Tc) fyb(Te) dTc / /OOO fwb(Te)dIc . (4.8)

4.4.2. Discussion of the results
Uncertainty about the duration of R&D subsidies (switch-off regime)

We consider the same set of parameters as used for the basic model in Section 3.3. A
firm invests with a maximum productive investment rate of Imax = 2 yielding a payoff
from the project after completion of V' = 10. The discount rate is » = 0.05. Thus, in
the certainty case, K* can grow from 8.9 (s = 0 for all times ¢) to 16.2 (with s = 0.5 for
all ). This follows from Eq. (4.6) and creates the two black dashed lines in Fig. 4.5. If
subsidies are cut at a certain time T, K* is given according to Eq. (4.6). This result is
shown by the black solid line in Fig. 4.5. The other graphs show the critical investment
threshold K* as a function of T for different values of the technical uncertainty ~. The
lines interpolate the symbols, which themselves show the values obtained by different
simulations. As expected from the basic model in Section 3.3, K* increases with higher
~ and the larger T¢. In addition, Fig. 4.5 shows a grey line at T = 3 years. The grey
line shows the expectation value of the Weibull distribution &yp = 3 years. The two
dashed lines at T = 1.8 years and T = 4.2 years indicate the corresponding confidence
interval of the standard deviation o = y/Var(T¢) (see Eq. (4.3). We will use this interval
to show the effect of policy uncertainty.

The convolution of the K* (v, T¢)-functions with the Weibull distributed T, Eq. (4.1),
yields the blue symbols in Fig. 4.6. For expected investment cost to completion K greater
than the values depicted by the symbols, investment is not profitable even with policy
support. There is also a region where investment is profitable in the absence of policy
support - the region below the black graph which results from assuming s = 0 for any
time.

9Details are described in Section 3.3.2. We approximate expected conditional project values in the
simulation using a polynomial regression of degree 5.

10T his allows us to substantially shorten the simulation time by not having to simulate both uncertainties
at once.
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Fig. 4.6 furthermore shows a dashed green line obtained by assuming a certain change

in the policy at T = 3 years. Note that for higher v, the blue symbols are slightly below
the green line. This is caused by policy uncertainty. The deviation towards smaller K*
for v > 0 results from the asymmetry of the Weibull distribution due to our choice of
parameters.
The distribution of subsidy cut-offs is almost symmetric with a maximum around 3 years
and reaching zero around seven years. The small asymmetry towards the likelihood of
a shortened provision of subsidies lowers K*. In between the black and the green line,
investment is profitable if the switch-off time of subsidies is Weibull distributed.

The impact of uncertainty about the duration of policy support can be seen from
the error margins o to the blue symbols.'’ K* shifts to lower values in case of bad
news whereas, good news enlarges the region of profitable investment. For v = 0, these
values show the exclusive impact of policy uncertainty on K*. In this case, the critical
investment threshold can take values between K* = 10.7 and K* = 12.9.'? Finally, it
can be seen that with growing technical uncertainty -, the error margins o(7¢) increase.
Hence, the optimal investment strategy becomes more sensitive to policy uncertainty the
more the R&D project is subject to technical uncertainty.

Uncertainty about the launch of an R&D programme (switch-on regime)

The same parameter set-up is used to study the impact of an uncertain arrival of invest-
ment subsidies of size s = 0.5. The parameters are Imax = 2, V = 10, and r = 0.05. The
expectation of the arrival time is &y p(T) = 2 years with standard deviation o(T¢) = 0.5
years. The critical costs to complete the project K* in dependence on technical uncer-
tainty v and a certain change in policies at To are shown in Fig. 4.7. If both uncertainties
are absent, we obtain the dashed/dotted black lines and the black solid line. These lines
follow from assuming s = 0 at any time, s = 0.5 for all times, and s = 0.5 for t > T¢,
respectively. For v > 0, results are again obtained by Monte Carlo simulations. Fig. 4.7
shows that the later the subsidies are available, the lower K* is. K* also decreases with
lower «. Note that a launch of the R&D programme later than T = 4.5 for v = 0 means
that the project is never supported. From the convolution of each of the v —T-functions
with the Weibull distribution, Eq. (4.1), we obtain the dependence of < K* > on both
uncertainties. This is illustrated in Fig. 4.8. The result is similar to the switch-off regime.
The plane of < K* > and + is divided into three regions: a region where investment is
also profitable in the absence of policy support, a region where investment is profitable
if subsidies are Weibull distributed, and a region where investments are not profitable at
all. The latter region expands in case of bad news and shrinks in case of good news about
the up-coming policy support. There are three differences in comparison to the switch-off
regime. First, in the switch-off regime, the gap between < K* > in the case of uncertain
policy support and the case of no policy support grows with technical uncertainty ~ (see
Fig. 4.6).

"'The error margins are obtained by evaluating K* at FE(T1) & o(T}) in Fig. 4.5 for each ~.
12Note that K* = 8.9 if s = 0.0 for all times, and K* = 16.2 if s = 0.5 for all times. This holds in the
absence of uncertainties.
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Figure 4.7.: Critical threshold K™ in dependence of the time T for launching an R&D
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But in the switch-on regime, the distance between these two regions does not change.

Note that v > 0.5 for typical R&D projects (see Section 3.4.3). Second, < K* > is more
sensitive to policy volatility in the case of the switch-off regime. Both effects imply that
certainty about the prospect of continuing a project with policy support is more valuable
than certainty about the launch of an R&D programme.
Third, an imaginary line connecting the blue symbols in Fig. 4.8 is slightly higher than
the dashed green line. This is opposite to Fig. 4.6. This is caused by our different choices
for the parameters of the Weibull distribution. Note that the Weibull distribution in the
switch-on regime has an asymmetry towards switching times smaller than the expectation
value set to T¢ = 2 years. While this enlarges the region of profitable investments, the
opposite is true for the switch-off regime.

Conclusions and limitations

We have studied the impact of technical uncertainty and uncertainty about the timing of
subsidies on R&D investment conditions.'® Technical uncertainty can be actively reduced
by a continuation of investments. The timing of an R&D programme is modelled with a
Weibull distribution allowing for time-dependent arrival rates. We find that the critical
threshold of investment costs increases with technical uncertainty. Policy uncertainty
creates uncertainty about this critical threshold. In case of bad news (i.e. an earlier
cut in subsidies or their later introduction), the region of profitable investment shrinks.
However, it enlarges if the news about policy support is good. The critical threshold for
the cost to completion is more sensitive to an uncertain policy timing for higher values
of technical uncertainty ~. This effect is relatively small in the policy regime with an
uncertain launch of an R&D programme.

Several simplifications have been made in the model. In addition to the limitations of
the basic model discussed in Section 3.3.4., the extended model leaves out costs occur-
ring during the application process for subsidies. Furthermore, we have neglected costs
occurring when the project is stopped mid-stream, e.g. a reclaim of subsidies. Finally,
policy uncertainty is not related to other model parameters. The relaxation of these
assumption is left to future studies.

4.5. Application: uncertain energy taxes and quota

4.5.1. The model and its solution

We extend the model from Section 3.5 by introducing policy uncertainty about the timing
of a change in energy taxes and quotas. Again, a firm plans to self-finance an R&D project
for developing a more energy-efficient technology. There is a maximum productive rate
Imax describing that the project needs time to be completed. The firm has the option to
abandon the project mid-stream. We assume a Cobb-Douglas production function with
decreasing returns to scale for the inputs of energy and labour. The efficiency in the use
of energy is described by technology parameter ¢.

13For comparative statistics of other model parameters, see Section 3.3.3.
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Figure 4.9.: Evolution of expected investment cost under policy change.

The firm makes two decisions. First, it decides about the optimal input of energy and
labour, maximising profit flows from production. These in turn determine the resources
available for R&D investments. The optimal choice of inputs depends on input and out-
put prices, production elasticities, the environmental policy regime and its timing, as well
as the technology parameter. The second decision concerns the optimal investment path.
This is a question of whether to continue or abandon the project. The firm compares
expected payoffs from the project with the expected sum of investments required for its
completion. Technical uncertainty leads to stochastic fluctuations in the development of
expected cost to completion. The central parameter is the overall technical uncertainty
~. To highlight the fact that uncertainty is higher in earlier phases of the project, we
additionally introduce the parameter § (Kort, 1998). The evolution of the expected cost
to completion K (t) is furthermore dependent on the firm’s investment rate, the timing
of environmental policy, and the magnitude of its change. The project is realised if
K(T) = 0. T is the stochastic completion time. This is illustrated in Fig. 4.9, which
shows the evolution of initial investment cost of Ky = 100. In the example, the stringency
of environmental policy changes at T = 12 months from 79 = 0.05 to 7o = 0.1. In the
certainty case, the project is completed after 21 months assuming costs are being reduced
by investing at Imax. We use a controlled diffusion process to describe this behaviour
(Pindyck, 1993).

Policy uncertainty, i.e. the stochastic timing of a policy change at T¢, is given by

107



4. R&D investment under technical and policy uncertainty

the Weibull distribution specified in Section 4.3.2. As in Section 3.5.2, we consider two
environmental-policy regimes: a tax regime setting a per-unit energy tax 7, and a quota
regime with a binding quota on the use of energy E (van Soest, 2005). The government
chooses the tax rate equalising marginal benefits and costs of the firm. The amount of
energy chosen by the firm in this case also defines the energy quota.

To solve the sequential investment problem, we first derive a solution for the problem
considering only technical uncertainty dependent on a certain change in policies. For
this, Eqs. (4.9, 4.11-4.17) have to be solved (see the next page). Tab. 4.1 provides the
description of all variables.
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1. Technical and policy uncertainty, policy equations

dK(t) = —I(t)dt +~(K(t)°\/I(t)K(t)dw(t) , (4.9)
fun(Te) = abTi exp(—aT?) , (4.10)
1
_ 154 p « =5 1ma=p a/l—a—p
E = |PO|— . 4.11
o = [po(5) (25 5 (@11
2. Optimal choice of inputs by the firm
qE,L) = 0(p1E)*LP with a,8>0, a+8<1, (4.12)
T for k=T,
T (g(t),7(t) = s (4.13)
€907 —2E for k=Q ,
o g1 1/ (—a=p)
T — N—a-g|Po[-2 g
= -a-g P (£ ,
1
3 B Bl 1-8
€9 = (1-p)|PHE~ (—) ] . (4.14)
w
3. Optimal RED investment decision by the firm
3a. Policy changes before the RED project is completed, i.e. T <T
FFEK@) = nllax&] |:/ 7 (¢1, 70) exp(—rt)dt
t
() J
To T
- /ﬂk(qﬁo,m)exp(—rt)dt— /Wk((ﬁo,T(;)eXp(—rt)dt . (4.15)
0 Tc

3b. Policy changes after the REID project is completed, i.e. T > T

T+To e’}
Fk(K(t))ZHIlngo {/ (1, 70)exp(—rt)dt + / (1, 7¢) exp(—rt)dt
T T+Tc

T
/Wk((ﬁo,To)eXp(rt)dt} . (4.16)

0

3c. Self-financing restriction

k =7k T i
1) :{ Ihax = 7" (6(t),7(t)) if F(K(t)) >0,

(4.17)
Ifax =0 else .
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1. Technical and policy uncertainty

Bq. (4.9)

Eq. (4.10)

Eq. (4.11)

K(t) - expected investment cost to completion
I(t) - rate of investment

t - time

~ - technical uncertainty, parameter > 0

0 - technical uncertainty, parameter 0 < § < 0.5
dw(t) - increment of Wiener process

fwb - Weibull distribution

Tc - time of policy change

a - scale parameter > 0

b - shape parameter > 0

E(7,¢p) - energy quota (see also A.5.1. for the derivation)
7(t) - per-unit energy tax rate

¢o - current technology for the use of energy
P,w, z - price of output, labour, and energy

«, B - production elasticities of energy and labour
0 - general productivity parameter

2. Optimal choice of inputs by the firm

Bq. (4.12)

Eq. (4.13),
Bq. (4.14)

q - Cobb-Douglas production function for output ¢(E, L)

E, L - inputs of energy and labour

¢1 - improved energy technology after completion of R&D project
7*(¢(t), 7(t)) instantaneous profit flows of the firm, see also A.5.1.
k - denotes the policy regime: taxes or quotas

¢(t) - available technology for the use of energy

7(t) - environmental stringency, subject to uncertain timing T¢

3. Optimal RED investment decision of the firm

Eq. (4.15),
Eq. (4.16)

Bq. (4.17)

F(K(t)) - value of investment opportunity

¢1 - technology after completion of R&D project
¢o - technology before completion of R&D project
T - completion time of R&D project

Tc - uncertain time of policy change relative to T
7o - environmental stringency before policy change
To - environmental stringency after policy change
r - discount factor

Ik .x - maximum productive investment rate

Table 4.1.: Set of variables and parameters.
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4. R&D investment under technical and policy uncertainty

Parameter Value
Technical uncertainty -~y 0..1.0
Technical uncertainty 0,0.1
Energy output elasticity « 0.3
Labour output elasticity 8 0.5
Total factor productivity 6 1.0
Output price P 1.0
Input price of energy z 0.1
Input price of labour w 0.2
Energy efficiency of current technology ¢q 1.0
Energy efficiency of future technology ¢ 1.5
Discount rate r 0.05
Time of policy change T¢ 0.. 50
Per-energy tax rate 7 0. 1.0
Number of paths 10000
Number of time steps 30000
Degree of polynomial fit 5
Simulation time 50 (months)

Table 4.2.: Parameters used in the numerical solution.

Egs. (4.9, 4.11-4.17) are solved for both policy regimes using a Monte Carlo simulation.
The basic procedure for the simulation has been discussed in Section 3.3.2, but in order to
incorporate a change in policies, the simulation has to be extended. It needs to be tested
whether policies change before or after the completion of the R&D project since available
investment resources and payoffs from the project depend on the policy parameter .
The solution of this problem is described by a critical threshold K*(t;v,6,Tc, 7). If
the expected investment costs to completion K (t) are larger than this value, investment
is not profitable. K* is a function of the model parameters (see Tab. 4.2). We will focus
on the impact of technical and policy uncertainty.'?

The results from the first step of the solution procedure are shown in Fig. 4.10. The
blue (red) symbols are the simulation results for the quota (tax) regime. The dashed
lines are interpolations of these results.

Next, we convolute the functions K*(,T¢) with the Weibull distribution for T, Eq.
(4.10). Doing so, we obtain the Weibull weighted average of K* denoted by < K* >.
This value is a function of both uncertainties. Formally, this means

< K*(v,Tc) >= /OOO K*(v,Tc) fyb(Te) dTc / /Ooo fwb(Te)dIc . (4.18)

Fig. 4.11 shows the result for < K*(,T¢) >. Parameter choices for technical uncertainty

HFollowing, we will use the short notation K* (v, Tc).
'5See Section 3.5 for the comparative statistics of the other parameters.
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4. R&D investment under technical and policy uncertainty

are v =0 = 0, or v = 0.5 and § = 0.1. Parameter choices for policy uncertainty are
E(Tc) = 12 months or £(T¢) = 24 months. For the case that a policy change is expected
within 1 year, we calculate the results for two Weibull distributions with one having
constant and the other time-dependent arrival rates (see Fig. 4.4).

In the deterministic case (7 = 0, T certain), the critical investment threshold K™* can
be derived analytically. A change in the level of environmental stringency from 7y to 7¢
at To before and after the R&D project is completed at 1" yields the result

Te<T: (4.19)
K Lhax (70, ¢0) In < 1+ V¥(re, 1)/ Inax (1c; do) >
r e=rTe 4 (1 = e7mTe) Ifax (10, $0) / THax (1c, ¢0)
+ TC(II]%laX(TOaQSO) - IﬁlaX(TC,QbO)) )
T > T
K - Ihax (10, $0) n( 1+ 7 V¥(70, 1)/ Thax (10, $0) )
r L+ 7(VE(10, 1) — VE(10, ¢1)) / Tax (10, ¢0) e 10

V* = 7% /1 is the payoff after completion. Other variables are given in Tab. 4.1. The
dependence on energy efficiency parameters ¢g and ¢; leads to different certain comple-
tion times 7', which are 7" = 14.8 months in case T = 12 months and T" = 15.7 months
in case T = 24 months (quota regime). For the tax regime, we get 7' = 16.5 months in
case Tc = 12 months and 7' = 17.3 months in case T¢ = 24 months. Functions K*(T¢)
given by Egs. (4.19) for both policy regimes are illustrated in Fig. 4.10. The solid red
line (case T < T') and the dotted red line (case T > T') are the calculations for the tax
regime. The solid blue line (case T < T) and the dotted blue line (case T > T') are
the calculations for the quota regime.

4.5.2. Discussion of the results

Fig. 4.10 shows the critical cost to completion K* as a function of the time of a certain
policy change T using different technical uncertainties . Blue (red) symbols are sim-
ulation results for quotas (taxes). The dashed lines interpolate these symbols. We find
for both policy regimes that K* increases the later the environmental policy switches to
a stricter level. An increasing energy quota or energy tax reduces investment resources
as well as cash-flows from the project after its completion. The region where investment
is profitable expands when v grows. The quota regime yields larger K* compared to the
tax regime. The latter findings confirm the results of the model in Section 3.5. There,
environmental policy was set once and for all. For v = 0, the inflexion point is reached
when the policy changes exactly at the completion time of the project. This is where the
solid and the dotted line meet.

The introduction of uncertainty over the timing of an environmental policy change has
an ambiguous effect on the borderline between the profitable and unprofitable investment
regions. The ambiguity can be related to the existence of an inflexion point at which the
curve changes from a concave to a convex slope. If the policy is expected to change within
the investment phase, we are to the left of the inflexion point, and hence the convolution
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Figure 4.10.: Critical investment cost K* as a function of the time of a policy change T¢
and technical uncertainty ~.

will lead to a slight increase, in the case that the Weibull distribution is similar to
a Gaussian distribution. But if the policy is expected to change after the project’s
completion, we are to the right of the inflexion point and the slope is convex. Therefore,
the convolution with a Weibull distribution, similar to a Gaussian distribution, will
decrease the critical threshold of investment, K*. Finally, assuming time-independent
arrival rates for the policy change, K* will decrease in all cases.

With the introduction of policy uncertainty we find generally that its impact is of
much smaller magnitude in comparison to the influence of technical uncertainty. Fig.
4.11 visualises the results in a certainty-uncertainty plane for the dependence of critical
investment cost K* on the two policy regimes. In the deterministic case (upper left
part), the expected investment cost to completion can increase up to 83.4/118.2 (tax
regime/quota regime) if the environmental policy is changed in month 12. In the case
that the policy change happens after the completion of the project in month 24, the
deterministic K* can increase up to 96.8/131.7 (taxes/quotas).

Next, we consider policy uncertainty while keeping v = 0 (see lower left part of 4.11).
We observe a slight improvement of the investment conditions in case a policy change
is expected in a year and in case arrival rates are time-dependent. The corresponding
Weibull distribution has a small asymmetry towards later policy changes, and further-
more we are to the left of the inflexion point (compare 83.4 with 83.6). However, assuming
a constant arrival rate for the switch in policies and fitting the same expectation value
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Figure 4.11.: Critical investment cost K* for quotas and taxes in dependence of technical
and policy uncertainty, v and T¢.

for Tc, < K* > decreases to 79.0/114.1 (taxes/quotas). < K* > is also lowered if the
policy change is expected in month 24. In this case, the firm is very likely to complete
the project before the change in policy takes place, i.e. we are to the right of the inflexion
point. Error bars for < K* > are symmetric. The impact of positive (negative) surprises
from the government enlarge (shrink) the region of profitable investment with the same
magnitudes.

The upper right part of Fig. 4.11 shows the effect on K* when only technical un-
certainty is present. We observe that the critical threshold for investment cost strongly
increases for both policy regimes and for policy switching times. Considering in addition
policy uncertainty, < K* > decreases in all cases (lower right part of Fig. 4.11). Hence,
if technical uncertainty is present, the effect of policy uncertainty is not ambiguous. The
reduction of < K* > is strongest when assuming constant arrival rates for a change in
policies. We furthermore find that the inclusion of both policy and technical uncertainty
leads to an asymmetric impact on the standard deviation o(T¢) (depicted by error bars)
of < K* >. This effect is particularly large for the quota regime.

We can summarise the following. First, taking account of technical and policy uncer-
tainty, conditions for environmental R&D investments are considerably affected compared
to the case of certainty, but technical uncertainty has a much stronger impact. This is
not at odds with Pindyck’s findings (see e.g. Pindyck (1993)). I consider an uncertainty
about the timing of a policy change, whereas Pindyck assumes that cost uncertainty
affects the project throughout its lifetime. Secondly, the effect of policy uncertainty can
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be ambiguous depending on the specification for the distribution and the slope of K*.
These results are in line with the literature (Hassett and Metcalf, 1999; Bohm and Funke,
2000, e.g.). In most cases, we find that the critical threshold for the cost to completion
decreases when both types of uncertainties are considered. However, if policy changes
are expected in the more distant future, policy uncertainty can enlarge the region where
investment is profitable. Good surprises about environmental policies have a stronger
impact on the critical threshold than negative surprises.

We have made several assumptions. First, the limitations of the basic model continue
to apply. These have already been discussed in Section 3.5.6. In addition, we have
assumed that the timing of policies and the magnitude of change are exogenous to the
model. A coupling of both parameters with e.g. the evolution of the expected cost to
completion or an objective function of a social planner is an interesting topic for future
research. This furthermore raises the issue of time-inconsistency of environmental policy
and strategic behaviour of firms undertaking the R&D. Another interesting aspect to
explore is the effect of uncertainty of the magnitude of a policy change.

4.6. Chapter summary

We have extended the models with technical uncertainty discussed in Chapter 3 by
including uncertainty about the timing of technology and environmental policy. The
stochastic description is modelled by Weibull distributions allowing for time-dependent
arrival rates. We match these distributions to mimic current expectations about the
timing of governmental R&D programmes.

First we modelled uncertainty about the availability of investment subsidies in two
different scenarios. In the first scenario, the firm undertaking R&D is uncertain about
the continuation of governmental support: the R&D programme is already in place. In
the second scenario, we studied an uncertain start of a new R&D programme mimicking
current expectations about the upcoming German Energy Research Programme. For
both scenarios, we obtain that policy uncertainty increases the volatility of the critical
threshold for the cost to complete the project. This effect is amplified the more the
project is subject to technical uncertainty. The effect is stronger for the first scenario.

The second model type examined the influence of an uncertain timing in a change in
environmental regulation. We studied how this impacts the decision to invest in R&D of
an energy-saving technology. Expectations about an increase in the stringency of policies
are designed to resemble a possible upcoming jump in taxes for the use of electricity in
Germany. Considering energy taxes and quotas, we found, similar to the results in
Chapter 3, that the latter are preferable for our choice of model parameters. The critical
threshold for the cost to completion is larger under the quota regime. However, policy
uncertainty lowers this critical threshold in most cases. We furthermore observed that the
assumption of constant arrival rates for the policy change decreases the critical threshold
for the cost to completion. Thus, models allowing for time-dependent arrival rates should
predict more optimistic investment conditions.

Common to all models is that the impact of policy uncertainty is smaller than that
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4. R&D investment under technical and policy uncertainty

of technical uncertainty. Despite the limitations imposed, we can conclude that it is
more important to incorporate technical uncertainty into investment decision models.
However, we have neglected questions of time-inconsistency of environmental policy as
well as a strategic behaviour of a firm or a social planner. The sign of the effect of policy
uncertainty under these circumstances is, however, of continuing interest.
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5. Summary, conclusions, and outlook

The central question of these thesis is: How is the irreversible decision of a firm to
invest in environmental R&D influenced by uncertainty about the scientific progress and
uncertainty about the regulative environmental policy framework?

We explore sequential investment models that incorporate sunk R&D expenditure,
technical uncertainty, and policy uncertainty. Technical uncertainty affects the sum of
expected costs to the completion of a research project whose evolution is described by
a controlled diffusion process. The stochastic behaviour of policy changes are modelled
with a Weibull distribution allowing for time-dependent arrival rates.

The real options models with technical uncertainty and their results are

e Model 1 is a basic sequential investment model that originates from Pindyck (1993).
We demonstrate how to solve the model using dynamic programming and Monte
Carlo simulations. Comparative statistics and the discussion of model limitations
provide the background for further analysis.

e Model 2 is an application to investments into cutting-edge technologies (renew-
able energy sources). We analyse the investment framework for the case of the
first German commercial offshore wind park Baltic 1 in the context of the current
Renewable Energy Resources Act. An empirical estimate yields the results that
technical uncertainty is of magnitude 0.5 and expected investment cost for Baltic
1 add up to 134-139 MEUR depending on the distance from shore. Our model
demonstrates that an investment in a wind park of comparable size is only prof-
itable if the planned sprinter bonus (available for offshore farms in operation before
January 2016) is granted along with the foreseen feed-in tariffs for the generation
of electricity. Under this policy regime, the risk of abandoning the project is not
higher than 9 %.

e Model 3 studies policy incentives, i.e. R&D subsidies, taxes, non-tradable quotas,
and emission trading, to encourage invests in R&D of energy-saving technologies.
We find that the framework for investments becomes more attractive with increas-
ing technical uncertainty, but it worsens the more stringent environmental policies
are set. The firm can actively reduce technical uncertainty by learning and has
therefore an interest to continue with investments. Environmental policy, on the
other hand, lowers investment resources and prospective payoffs from the R&D
project. Among energy taxes, energy quotas, and emission trading, the latter per-
forms best in terms of inducing energy-saving R&D. Against the conventional wis-
dom, non-tradable quotas are preferable over taxes for realistic policy parameters.
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We furthermore find that investment grants are able to compensate for investment
conditions worsened under environmental policy regimes mentioned above.

Now we turn to models that include both, technical and policy uncertainty. The models
and their results are

e Model 1 studies the effect of uncertainty about the availability of R&D subsidies
on the optimal investment decision of a single firm. We consider two scenarios in
which policy uncertainty is designed to describe current expectations about EU and
national R&D programmes. In the first, the firm undertaking R&D is uncertain
about the continuation of policy support. In the second scenario, we analyse an
uncertain start of a new R&D programme that provides investment grants. The
central finding is that policy uncertainty increases the volatility of the threshold
of critical investment costs. The effect is amplified the more the project is charac-
terised by technical uncertainty.

e Model 2 includes uncertainty about the timing of stricter environmental regula-
tion. We analyse the influence of energy taxes and non-binding quotas for energy
use on the decision to invest in the development of an energy-saving technology.
Expectations about a change in environmental policies are designed to resemble
a possible up-coming jump in taxes for the use of electricity in Germany. Model
results confirm the preference of the quota regime for our choice of parameters. Un-
like technical uncertainty, policy uncertainty lowers the critical threshold for the
expected cost to completion in most cases. We furthermore find that the choice of a
particular distribution to describe regulative uncertainty matters for the observed
effect in terms of its magnitude and direction.

e Common to the models that combine technical and policy uncertainty is that tech-
nical uncertainty has a larger influence on the conditions of R&D investments.

Based on the results of the models above, we can conclude that it is indispensable to
take into account irreversibility, technical uncertainty, and policy uncertainty. Realistic
magnitudes of both uncertainties change the size and direction of parameters that are
used to derive optimal R&D investment strategies.

Ideas for future research

Still, our results derive from models that are based on restrictive assumptions. This opens
up possibilities for future research including a) an empirical foundation of assumptions
or their rejection, and b) a relaxation of the assumptions in extended theoretical models.
In particular, we see potential for the following research questions:

1. Empirical estimation of the real option value and the magnitude of un-

certainties in environmental R&D projects: By considering solely uncer-
tainty about the scientific progress and the policy framework, we distance from
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uncertainties in the markets and at an industry-wide level. According to theo-
retical models, the latter are likely to create an incentive to postpone investments,
following from the fact that the majority of firms are price-takers. Price volatil-
ities are hence not influenceable and produce uncertainty about the value of the
investment opportunity. However, up to now, only a few empirical tests of the
investment-uncertainty relationship are available. Furthermore, we only found one
contribution that specifically considers eco-innovations (i.e. their diffusion) in an
empirical real options framework (Kumbaroglu et al., 2008). A methodological
starting point for such an investigation at firm or project level would be e.g. Bulan
(2005), Bloom et al. (2007), Czarnitzki and Toole (2008), Baum et al. (2008), and
Johnstone and Hascic (2009). Related to environmental policy and uncertainty
are Johnstone et al. (2010), who consider the importance of policy predictability,
and Horbach (2008), who estimates the role of an expected future demand for an
environmental innovation. A real options model for the diffusion of new renewable
power generation technologies is worked out by Kumbaroglu et al. (2008). Finally,
uncertainty connected with technical progress of an R&D project is likely to be
technology-specific and empirical estimates are therefore of interest.

. Imperfect capital markets: By assuming that a risk-neutral firm owns enough
resources to self-finance an R&D project, we neglect financing constraints that
in particular small-size firms and newly established companies are likely to be
confronted with. There are some contributions that can serve as an entry into this
line of research. For example, Kasahara (2008) introduces financing constraints into
an optimal investment timing model and studies asymmetric information between
risk-neutral lenders and firms. Boyle and Guthrie (2003) also analyse the impact
of costly external financing and the possibility of future funding lacks.

. Strategic effects and market power: In analysing the optimal investment strat-
egy of a single firm, we ignore the influence of rivals and market power as well as
the possibility of policy anticipation. This opens the door to a game theoretic
analysis of the strategic behaviour of competitors and/or the government. Games
between rivals as well as models considering positive knowledge spillovers typically
deduce an incentive to accelerate investments as each of the firms aims to realise
a first-mover advantage and to strengthen its market power (e.g. Kulatilaka and
Perotti (1998); Lukach et al. (2007); Ohyama and Tsujimura (2008)). The timing
and commitment of environmental policies can be studied in regulation games (see
Requate (2005)). For the stage of invention and after the start of an R&D pro-
gramme, policy adjustments are likely to happen after observing the progress of
an R&D project or after recognising industry-wide learning curves. Policies change
in dependence on the diffusion rates for the supported environmental technologies.
The anticipation of policy changes can in turn lead to a correction of the optimal
investment path for a firm undertaking R&D.

. Correlation of uncertainties with other model parameters: In our mod-
els, the timing of policy is exogenous. Such a simplification cannot describe the
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influence of changing policies that adjust e.g. according to the scientific progress
achieved or in dependence on profits realised by firms. An example is the current
discussion in Germany about long-term subsidies granted to the solar industry.
Therefore, a straightforward extension of our model would be to allow for an un-
certain size of the policy change. Another idea would be to couple environmental
policy adjustments with model parameters. For example, Hassett and Metcalf
(1999) design a model for general capital investments in which the likelihood of
policy responses is also triggered by the firm’s profitability. Pawlina and Kort
(2005) link structural changes in the investment framework to the overall economic
performance. The probability of cutting a tax-credit in booming phases is high.
Another possibility better suited to R&D investments would be to link learning
- i.e. the resolution of technical uncertainty - to policy parameters and/or the
industry-wide learning curve.

5. Linkage to climate modelling: In our models, we give answers on the optimality
of investment decisions from the perspective of a single firm under the influence of
policy parameters. However, magnitudes of these parameters do not follow from
the objective function of a social planner. In order to derive conclusions about
the optimal design of policies from the perspective of a social planner and the
difference in implications for the firm’s optimal investment framework, our models
could be linked to aggregate simulation models. A prospective choice would be
climate models, described e.g. in Baker et al. (2007); Bosetti and Tavoni (2009);
Golub and Markandya (2009).

This thesis has shed light on the question of how irreversibility and uncertainty affect
the optimality of environmental R&D investment decisions. Of course, this is only a piece
of the complex puzzle of green technological change and its role in alleviating climate
change. Indeed, the puzzle itself is of infinite size. To see the whole picture, it would
not only be necessary to take into account all of history but also to anticipate future
developments to their full extent. This brings us back to the beginning of this thesis. As
it is not possible to fully recover the past, it will not be possible for historians to uncover
all details about the nemesis of Ozymandias’ kingdom, nor will it be possible to exactly
recreate the king’s broken statue in the desert. In the same way, economic research will
not be able to draw a precise path into the future. But, an interesting point has been
made by the author Antoine de Saint-Exupéry in his novel 'The wisdom of the sands’. In
this book, the main character, a prince, takes long strolls into the desert with his father
talking about the responsibility of decision-makers. On one such stroll, the prince says,
‘It is always about arranging the present. What use is it to quarrel over its heritage?
The task is not to foresee the future but to enable it.” In this sense, we hope to have
contributed to a better understanding about why decisions can be suboptimal and what
lessons can be drawn to avoid making them again. There is a value of keeping options
open - as states the central paradigm of real options theory.

120



A. Appendix: Data tables, figures, and

calculations
Contents
A.1. Basic background for stochastic processes . . . . . .. ... .. 121
A.2. Literature on uncertainty and green technological progress . 122
A.3. Appendix to the basic model and its solution ... .... .. 129
A.3.1. Derivation of the variance of the expected cost to completion . 129
A.3.2. Elimination of the singularity in Eq. (3.12) . .. .. ... ... 131
A.3.3. Fortran code for the numerical solution of the basic model . . . 131
A34. Results . . . . . .. o 134
A.4. An application to offshore windfarm investment . . . . . . .. 135
A.4.1. Offshore windfarm data . . . . . ... .. ... ... ... .. 135
A4.2. Results . .. .. oo 136
A.5. An application to environmental R&D decisions . . . . . . .. 141
A.5.1. Derivation of Egs. (3.30,3.31-3.32) . . . . .. .. ... ..... 141
A.5.2. Deterministic case . . . . . . ... 143
A53. Results . .. . oL 144

A.1. Basic background for stochastic processes

e A Stochastic process is a time-dependent random variable X (¢) whose realisation

is a path x(t). It is well defined in a probability space.

e All processes used in this work belong to the class of Markov processes. This
class of stochastic processes is continuous. A fundamental property of Markov pro-
cesses is that future developments can be separated from the past ones conditional
on the stage when the separation is made. The consequence is that the probabil-
ity distribution of X;y; can be described by Xy, and a decisions variable a;, i.e.

Lagrangian L(X;41|X¢, as,t).

e Diffusion processes belong to the class of Markov processes. They possess the
(strong) Markov property. Their sample paths z(t) are almost always continuous
functions of t. This means it is relatively unlikely that large displacements occur

in e-small time intervals.
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e A Wiener Process has the Markov equality. Its increments are independent from
each other and its infinitesimal time evolution is normally distributed. dw = (Vv dt
with (; being a random normally distributed variable.

e An Ito-Process or Generalized Brownian Motion also possesses the Markov
equality. Such processes are defined as

dX = a(X,t)dt + b(X, t)dw . (A1)

a(X,t) is called the drift rate and b(X,t) is the variance rate. dw is the increment
of a Wiener process w(t). It holds that £(dw) = 0, thus £(dX) = a(X,t)dt. The
variance of dX is Var[X] = b*(X,t)dt + o(dt).

e Ito-calculus for stochastic differential equations. State variable X (¢) evolves
stochastically over time ¢. Thus, an ordinary derivative does not exist. The Ito-
calculus provides means to work with stochastic Ito-Processes. An approximation
for the time derivative using Taylor-expansions is given by

_[oF oF 1, 0’F oF

For precise mathematical definitions, see e.g. the monographs of Karlin and Taylor
(1981).

A.2. Literature on uncertainty and green technological
progress

This section provides summarising tables of the theoretical literature on green technolog-
ical progress, uncertainty, and environmental policy. Publications are described by four
criteria: 1) the type(s) of uncertainties, 2) the kind of irreversibility, 3) the type of the
decision-maker (social planner, sector perspective, single firm), and 4) the type of the
model (two-period model, time-continuous model, global climate change model, stochas-
tic control model, real options optimal timing model, sequential investment model). The
first table includes contributions that analyse the choice of environmental policy instru-
ments. The second table summarises findings with respect to the intensity of environ-
mental policy. The third table comprises the literature on the timing of policies. The
fourth table gives an overview on the impact of policy uncertainty. The last two tables
present contributions considering uncertainty of green technological progress.
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Source Type of uncertainty E;iﬁflblhty Eiglizlggaker Main finding
Weitzman (1974) production cost and - social planner, no first-best solution, ranking of
benefit two-period model quantity and price instruments de-
pends on relative slopes
Stavins (1996) Weitzman ~ (1974) - social ~ planner, covariance can change ranking, with
correlated two-period model realistic parameters quantity instru-
ments better
Pizer (1999) economic, climate - social planner, uncertainty raises optimal abate-
change stochastic growth ment and welfare gains, taxes pre-
model ferred over control instruments
Newell and Pizer production cost and - time-continuous Weitzman’s result also holds in
(2003) benefit Weitzman (1974)  the dynamic model, under time-
covariance quantities are preferable
Zhao (2003) abatement cost investment social planner, ex- cost uncertainty slows down invest-
pectation general ment, tradable permits preferable
equilibrium model over emission taxes
van Soest (2005) technological investment single firm, opti- earlier adoption under quota for the
progress mal timing RO use of energy if policy is less strict

Table I: Choice of policy instrument under uncertainty

Table A.1.: Theoretical literature on uncertainty and green technological progress, Tables I-VI
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Source Type of uncertainty E;iliresmlhty ];)Ifgl;cglji—glaker Main finding

Kolstad damage by global damages, policy social planner, if learning is fast low policy levels

(1996) warming stochastic economy- are preferable or temporary carbon
climate model taxes instead of permanent ones

Ulph and damage cost stock of GHG social planner, two- irreversibility is a function of learn-

Ulph (1997)

Fisher  and
Narain (2003)

Baker et al.
(2006)
Wirl (2006)

Golub et al.
(2009)

evolution of GHG
stock

climate change im-
pact

temperature
climate  feedback,

climate sensitivity,
related costs

sunk cost, stock
of GHG

emissions  and
their stopping
mitigation costs

period global warm-
ing model

social planner, two-
period global warm-
ing model (DICE)

social planner,
decision-theoretic
model + DICE

social planner, opti-
mal timing RO
social planner,
global simulation
model (IPCC)

ing impacting global warming mod-
els only if uncertainty is high and
discount rates are low

if risk is endogenous investment is
accelerated, irreversibility of invest-
ment is larger than that of global
warming

optimal R&D can increase or de-
crease with uncertainty depending
on a specific programme, policy can
shift the probability of masses

the optimal irreversible emission
strategy is more conservative
mitigation costs are larger than the
benefits from avoided damages but
stricter target has higher risks

Table II: Intensity of policy instrument under uncertainty
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. Irreversibility  Decision-maker . .
T f Main fi
Source ype of uncertainty feature and model ain finding
Arrow and Fisher development and construction social planner, value to wait with investments, the

(1974)

Pindyck (2002)

Baranzini et al.

(2003)

Lin et al. (2007)

Ohyama and Tsu-
jimura (2008)

preservation cost

damage cost and
benefits, evolution
of pollution

ratio of climate
change benefits and
cost
like in  Pindyck
(2002) but corre-
lated

Pindyck
technological
progress

(2002),

damage and
policy cost

cost

damage, pol-
icy cost
damage, pol-
icy cost

two-period model

social planner, op-
timal timing RO

social planner, se-
quential RO

social planner, op-
timal timing RO

two competing
agents, optimal
timing RO

prospect of resolving uncertainty
favours flexibility

uncertain benefits increase the op-
tion to postpone a policy interven-
tion, good news increases regrets
of an early intervention

delay of policy intervention short-
ened if a catastrophe is more likely

option to wait increases with cor-
relation and deviation of social
cost but decreasing with the devi-
ation of pollution

simultaneous implementation of
policy but higher threshold, lead-
ership incentives possible

Table III: Timing of environmental policy under uncertainty
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. Irreversibility =~ Decision-maker . .
T f taint Main find
Source ype of uncertainty . and model ain finding
Larson and pollution tax R&D expendi- single firm, two-period increasing tax uncertainty encour-

Frisvold (1996)

Farzin and Kort
(2000)

Baker and Shittu
(2006)

Isik (2004)

pollution tax

carbon tax

cost-share subsidies,

cost investment and
its value

ture

installation
equipment

Investments

sequential RO

single firm, time-
continuous stochastic

control

single  firm, two-
period stochastic
control model

single firm, optimal

timing RO

ages investment if this implies
a lower responsiveness to future
prices

expectation of increasing tax
boosts investments, there is no
certainty-equivalent discount rate
for policy timing

R&D does not increase mono-
tonically with an expected car-
bon tax, investment in alterna-
tive R&D increases if inputs are
good substitutes, investments into
carbon-technologies generally de-
crease with risks of tax increases
adoption of site-specific technolo-
gies is accelerated (delayed) if the
risk of stopping (starting) R&D
support increases

Table IV: Impact of policy uncertainty
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Source Type of uncertainty E;et:flizablhty Elfgliirggaker Main finding
Chao and Wilson emission demand investment in social planner, time- market uncertainty drives the per-
(1993) scrubbers continuous RO mit price creating a large option
value, flexible allowances are pre-
ferred
Baker and Adu- catastrophic events, - social planner, optimal R&D depends on the type of
Bonnah (2008) technological stochastic ~ growth technology (fossil/non-fossil), risky
progress model R&D is high if a catastrophe is un-
likely
Blanford (2009) R&D paths - social planner, social value of technological progress
energy-econonny depends on the market share of tech-
model MERGE nologies, policy diversification is op-
timal
Bosetti and carbon-free backstop investments social planner, uncertainty causes a higher optimal
Tavoni (2009) two-period  growth R&D level, risk hedging by technolo-
model combined gies is possible
with WITCH

Table V: Optimal environmental policy under uncertain technological progress 1
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. Irreversibility Decision-maker . .

Source Type of uncertainty feature and model Main finding

Bosetti et al. abatement cost energy substitu- social planner, cli- the optimal level of R&D is higher

(2009) tionability mate model WITCH under uncertainty, price instruments
induce more energy R&D

Goeschl and Perino impact, technologi- investments social planner, a step-by-step policy is optimal, in-

(2009) cal advance growth model novation is not only driven by en-
vironmental concerns, technological
uncertainty lowers welfare

Ansar and Sparks adoption  benefits, investments firm and aggregate experience curve can explain high

(2009) catastrophes level, optimal timing implicit discount rates, high invest-

RO ment hurdle rates, option to wait
Fuss (2010) fuel price, technolog- investments electricity sector, op- price volatility is less important,

ical progress

timal timing RO

switching to wind farms not in the
short-run

Table VI: Optimal environmental policy under uncertain technological progress 11
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A. Appendix: Data tables, figures, and calculations

A.3. Appendix to the basic model and its solution

A.3.1. Derivation of the variance of the expected cost to completion

The variance of a random variable X is defined as
Var(X) = (- w2 (s

- /fo(x)dx—Q,u/xf($)d$+M2/f(x)dx
_ E[Xz] _MZ ) (A3)

f(z) is the distribution function and p = £(X) = [z f(z)dx is the expectation value
of X (first moment functional). This transformation uses the normalisation property

[ f(z)dz = 1.

For Eq. (3.1) with specification Eq. (3.2), the expected cost to completion is K (t) = p
(see the Appendix of Pindyck (1993)). E[X?] equals the second moment (n = 2) of the
hierarchy of functionals U,, that describe the random variable K. See Karlin and Taylor
(1981, p. 203) for the derivation of the general formula. The second moment is given by

T 2
E[X?|x—k = U2(K) = Bg (/ IdT]K> . (A.4)
0

Remember, K(t) is dK = vdt + odw = —Idt + yVIKdw;. The second moment of K
(short: Us(K) = U(K)) has to solve the corresponding Kolmogorov-Equation

0 = %O'Q(K)UKK(K)—i—I/UK(K)-i-QM(K)I (A.5)
= %’)/QIKUKK(K) — TUR(K) +2KT (A.6)

with boundary conditions
Us(0) =0 and Us(oo) = o0 . (A7)

The Kolmogorov-Equation is satisfied by

2

N

K? | (A.8)
aslong as 42 < 2and I # 0. The condition on v tests if K can be described by a controlled
diffusion process, i.e. fluctuations are thereby limited. Otherwise, another process has
to be used. Inserting the result for Us(K) in the definition of variance Var(K) gives Eq.
(3.3).

To proof that (A.8) satisfies the Kolmogorov-Equation (A.6), we use a power law
Ansatz

U=aK",
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with Ux = abK*"! and Uxg = ab(b— 1) K*~2. Inserting into (A.6) gives
K> =4%/4ab(1—b)+ab/2 for K > 0.

This has to be satisfied for all K > 0. Setting e.g. K =1 and K = 2, it must hold that

12-b — 92-b

This is only true if b = 2. Inserting b = 2 back e.g. for K = 1 shows that a = 2/(2 —~?2).
Boundary conditions are also satisfied.

Relationship between variance of random variable K and the Kolmogorov equation

The increments of random variable K (t) are given by a controlled diffusion process with
control I

dK =v(K,I)dt + o(K,I)dw; = —Idt + yVIKdw; .

The second moment of the probability distribution for K (=variance of K) is defined as
Eq. (A.3)

Var(K) = £[K?] — E(K)? ,

with the first moment of the probability distribution (=expectation value of K)

B(K) = [ k7R

and the second moment of a functional U(K),—2, Eq. (A.4),

= 2

E[K?) = U(K) = Ex (/OT Idr]K)

This equation describes the expectation value of hitting a border value at time 7" under
control I conditional on K.

We want to sketch that U(K) has to solve the Kolmogorov equation, Eq. (A.6), see
Karlin and Taylor (1981), p. 191 ff. and p. 202 ff.

We start by considering a general functional U(z) of random variable x with z = X(0),
as in Karlin and Taylor (1981), Eq. (3.31). U(xz) is the probability distribution for an
integrated function g(X(¢)) (=control) at which a border is reached by x. This defines
hitting time 7. In case the functional is specified with f(z) = 2™, random variable
Z = fOT g(X(7))dr can be described by moments generated through n.

We look for the general solution of U(z). Choosing a sufficiently short time duration h,
U(z) is developed by a Taylor expansion (Karlin and Taylor (1981), Eq. (3.33)). Using
the Markov property, the law of total probabilities, and retaining all contributions up to
order o(h), one arrives at a general Kolmogorov equation for U(z) (Karlin and Taylor
(1981), Eq. (3.37)).
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The nth moment of Z using U(z) is considered after Karlin and Taylor (1981), Eq.
(3.37). In case f(x) = 2™, the now specified functionals U, (x) fulfill a simplified Kol-
mogorov equation, see Karlin and Taylor (1981) Eq. (3.38=3.37"). With z = K, g =1,
and n = 2, we arrive at Egs. (A.5) and (A.6).

To summarize, the Kolmogorov equation can be associated with a functional that
describes a hitting time random variable. The differential equation is obtained when
approximating the functional (integral equation) with a Taylor distribution and using
properties of diffusion processes.

A.3.2. Elimination of the singularity in Eq. (3.12)

The elimination of singularity in Eq. (3.12) is done by substituting z = In K or K =
exp(z). We obtain

flx) = (Foexp)(z) = F(K) ,

) = DI )L = p)en(—a)
F'(K) = (312’[((]{) = [f"(z) exp(—x) — f'(z) exp(—z)] exp(—z) . (A.9)

With the help of these expressions, we transform the boundary conditions Eqs. (3.14,
3.15) and Eq. (3.12). For the former, we use for K’ — 0 and K — oo, *+ — —oo and
xr — 00, respectively. The latter transforms the second-order differential equation for
I # 0 into a system of coupled first order differential equations. For K < K* and using
g(z) = f'(x) and ¢'(z) = f”(x), we obtain

J@) = = |1+ ep(-0) + T 1) exple) + (o) |
fl@) = g(z), (A.10)

where f(—o0) =V, f(z*) =0, and g(2*) = 0. The singularity at K = 0 has now been
shifted to 6 = 0.5.

A.3.3. Fortran code for the numerical solution of the basic model

This is a simple code to show the principles of the numerical solution, it has not been
optimised to minimise the numerical expense. The programme output reproduces com-
parative statistics for the basic model illustrated in Fig. 3.5. Results are accurate at
least up to the second digit after the decimal place. The programme uses the root find-
ing routine dzerox and the Runge-Kutta-Merson routing dgmr from the CERN library
programme repository (CERN).
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Programme code for the basic sequential investment model in Sec. 3.3 *
to solve the set of linear differential equations Egs. (3.16 ) *
for f(x) within -infty <= x <= xx *
g’ (x) = 2/gamma/gamma( 1+g(x)exp(-x)+r/Imax f(x) )exp(x)+g(x) *
£2(x) = g(x) *
with boundary conditions (free boundary x=xx): *
f(-infty)=V f(x*x)=0 g(x*x)=0 *
Method: Runge-Kutta-Merson, Output: exp(x*) as f(parameters) *
module params
implicit none
real*8 :: gamma,r,V,RR
end module params
MASTER: 1) Definition of Parameters, 2) Runge-Kutta-Merson to find
root and 3) plot output
program gbsopt
use params
implicit none
integer :: 1i,j,mm,maxf,mode
real*8 :: aa,bb,eps,dzerox,finit,res
external finit
1) PARAMETERS *
gamma .. overall technical uncertainty *
r .. discount rate *
RR .. upper boundary of investment constraint (Imax in Chapter 3) *
v .. payoff after completion *
!gamma=1.0d0
r=0.05d0
RR=2.0d0
V=10.0d0
loop from j to mmm over parameter of choice
mm=1000
do j=1,mm

gamma=1.4d0*dble(j)/dble (mm)
'r=0.1d0*dble(j)/dble (mm)
'RR=20.0d0*dble (j)/dble (mm)
1V=20.0d0*dble(j)/dble (mm)
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! 2) Starts shooting by calling dzerox() from CERNLIB: returns zero of

*
! function finit in intervall (aa,bb) with accuracy eps, MAXF - max *
! references in loop to finit, mode - two choices for finding algorithm *
d .
aa=-10.0d0
bb=10.0d0
eps=1.0d-6
maxf=50
mode=1
res=dzerox(aa,bb,eps,maxf,finit,mode)
d .
! 3) Output *
d .
print ’(3el12.4)’,gamma,dexp(res)
end do
end program gbsopt
!
! Zero of this function establishes correct boundary in -infinity (x2)  *
! using dgmr() from CERNLIB: solves simult. first-order differential *
! eqations with Runge-Kutta-Merson, n - number of eq., hO - step length, *
! eps - accuracy, sub - set of eqs. defined externally, w - workspace *

real*8 function finit(x)
use params
implicit none
integer :: n
parameter (n=2)
real*8 :: x,x1,x2,h0,eps
real*8, dimension(n) :: y
real*8, dimension(6*n) :: w
external sub

x1l=x
x2=-10.04d0
y(1)=0.0d0
y(2)=0.0d0
h0=1.0d-2
eps=1.0d-3

call ddeqmr(n,x1,x2,y,h0,eps,sub,w)

write(11l,*) x,y(2)-V
finit=y(2)-V
end function finit
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! Set of linear differential equations *
!

subroutine sub(x,y,f)
use params
implicit none
real*8 :: x
real*8, dimension(2) :: y,f

£(1)=2.0d0/gamma**2+ (1.0d0+y (1) *dexp (-x)+r/RR*y(2)) *dexp (x)+y (1)

f(2)=y(1)
end subroutine sub

A.3.4. Results
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Figure A.1.: Histograms of abandoned paths (n=2049) for v = 0.5, I = 2, V = 10,
r = 0.05, total simulation time ¢t = 10, number of time steps m = 30000,
number of paths 10000. Means are given in <>, and o is the standard
deviation.
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A.4. An application to offshore windfarm investment

A.4.1. Offshore windfarm data

I C TS D Dt
Name Country Year IMEUR] [MW] [m] # fm] fm]
Vindeby DK 1991 7615 5 0.45 11 3.5 1500
Lely NL 1994 3264 2 050 4 7.5 800
Tuno Knob DK 1995 7615 5 0.50 10 4 3000
Dronten NL 1996  19.445 11 0.60 19 1.5 30
Bockstigen SE 1997 3264 3 0.55 5 6 3000
Blyth UK 2000 4.759 4 200 2 85 1000
Middlegrunden DK 2001 36.035 40 200 20 6 2000
Utgrunden SE 2001 9.519 10 143 7 86 7000
Yttre Stengrund SE 2001 12.238 10 2.00 5 8 4000
Horns Rev DK 2002 339.951 160 2.00 80 10 14000
Nysted DK 2003 253.603 158 230 72 7.75 10000
Samso DK 2003  35.355 23 230 10 20 3500
North Hoyle UK 2003 100.626 60 2.00 30 12 7000
Ronland DK 2003 17677 172 230 8 1 100
Scroby Sands UK 2004 105.385 60 2.00 30 16.5 2500
Arklow IE 2004 47593 25 3.60 7 3.5 10000
Kentish Flats UK 2005 147.539 90 3.00 30 5 10000
Barrow UK 2006 129.181 90 3.00 30 17.5 7500
Egmond aan Zee NL 2006  227.087 108 3.00 36 18 10000
Burbo Bank UK 2007 125.782 90 360 25 5 6500
Lillgrund SE 2007 203.971 110 230 48 7 10000
Q7 NL 2007 401.142 120 2.00 60 21.5 23000
Beatrice UK 2007 47593 10 5.00 2 45 22000
Robin Rigg UK 2008 520.125 2890 3.00 60 5 9000
Thornton bank BE 2008 849.878 2833 5.00 60 14 27000
Inner Dowsing UK 2008 203.971 2103 3.60 25 10 5200
Lynn UK 2008 203.971 2103 3.60 27 10 5200

Table A.2.: European offshore wind parks. Data given in the columns are the name
and country of the wind park, the year of its operation start, investment
cost (I) in Million Euro, capacity (C) in Mega Watt, turbine size (TS) in
meter, number of turbines per park (#), water depth of the foundation (D)
in meter, distance from shore (Dt) in meter. Sources: Snyder and Kaiser
(2009b); DENA (2010); KPMG (2007); EWEA (2009).
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A.4.2. Results

Distance: 15 km 16 km 15 km 16 km
T P 0&M o&M 0O&M O&M 0&M 0&M 0&M 0&M
high low high low high low high low
1.5 (1) 22580 81.694 18.205 77.318 156.963 214.412 157.181 214.815
(2) 10.293 103.810  5.918 99.434 144.788 235.441 144.974 235.925
(3) 0 0 0 0 - 40.501 - 40.516
(4) 0 0 0 0 - 63.657 - 63.693
2y. (1) 20409 78.064 16.087 73.742 154.780 210.406 155.060 210.918
(2) 8.426  99.634  4.104 95.312 142.923 230.640 143.163 231.253
(3) 0 0 0 0 - 40.350 - 40.370
(4) 0 0 0 0 - 63.288 - 63.336
3y. (1) 16.266 71.109 12.049 66.891 150.644 202.954 151.037 203.654
(2) 4.867  91.627  0.650 87.409 139.378 221.766 139.715 222.596
(3) 0 0 0 0 - 40.054 - 40.082
(4) 0 0 0 0 - 62.566 - 62.636
4y. (1) 12376 64.544  8.260 60.427 146.787 196.155 147.276 197.010
(2) 1.533  84.061 0 79.945 136.055 213.732 136.477 214.739
(3) 0 0 0 0 - 39.763 - 39.800
(4) 0 0 0 0 - 61.866 - 61.956
5y. (1) 8.725  58.348  4.706 54.330 143.179 189.920 143.752 190.903
(2) 0 76914 0 72.895 132932 206.414 133.429 207.565
(3) 0 0 0 0 - 39477 - 39.523
(4) 0 0 0 0 - 61.186 - 61.295
6y (1) 5.300  52.504  1.377 48.580 139.793  184.17  140.44 185.265
(2) 0 70.164 0 66.240 129.990 199.711 130.553 200.980
(3) 0 0 0 0 - 39.197 - 39.252
(4) 0 0 0 0 - 60.525 - 60.653

Table A.3.: Value of investment F'(K) and critical investment cost K* for v = 0. Four
policy regimes P are considered. (1) sprinter bonus, running time: 20 years;
(2) sprinter bonus, running time: oo; (3) basis tariff, running time: 20 years;
(4) basis tariff, running time: oo.
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K*(y=0503 ) K* (y=0489 ) K*(vy=08 ) K*(y=08 )
Distance: 15 km 16 km 15 km 16 km
T P 0O&M Oo&M  O&M o&M O&M O&M O&M 0O&M
high low  high low  high low  high low

15y. (1) 177.6 2430 1767 241.8 209.0 286.3 2092 286.8
(2) 1638  267.0 1629 2657 192.6 3147 192.8 3153
(3) - 457 - 454 - 53.58 - 53.59
(4) - T18 - T4 - 84.32 - 84.36
2y. (1) 1754 2389 1745 2379 206.6 2822 2069 282.5
(2) 1619  262.0 161.1  261.0 190.6 309.5 190.9 310.2
(3) - 455 - 453 - 534 - 534
(4) - 715 - 711 - 839 -840
3y. (1) 1711 2312 1704 2304 202.1 2738 2025 274.6
(2) 1582 2529 157.6  252.1 1868 299.8 187.1 300.7
(3) - 4522 - 450 - 531 - 531
(4) - 707 - 704 - 832 - 832
4y, (1) 1672 2242 166.6 2236 1979 2662 1984 267.2
(2) 1548 2446 1542 244 1831 290.8 183.6 291.9
(3) - 4493 Y - 528 - 528
(4) - 701 - 69.7 - 824 - 825
5y. (1) 1634  217.7 1629  217.2 1939 2593 1945 260.4
(2) 151.6  237.0 151.1 2365 179.7 282.6 180.2 283.9
(3) - 446 - 444 - 525 - 525
(4) - 69.3 - 69.0 - 81T - 818
6y. (1) 159.9 211.7 1595 2114 190.1 2528 190.8 254.0
(2) 1486  230.0 148.1  229.7 1764 2750 177.0 276.4
(3) - 444 - 441 - 522 - 522
(4) - 686 - 683 - 810 - 811

Table A .4.: Critical investment cost K* for different values of technical uncertainty ~.
Four policy regimes P are considered. (1) sprinter bonus, running time: 20
years; (2) sprinter bonus, running time: oo; (3) basis tariff, running time: 20
years; (4) basis tariff, running time: co.
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F(K) (7 =0503 ) F(K) (y=0489 ) F(K) (=08 ) F(K) (y=08)

Distance: 15 km 16 km 15 km 16 km
T P 0&M 0&M  0O&M 0&M  0O&M o&M 0O&M 0O&M
high low  high low  high low  high low
1.5 (1) 24.9 82.6 20.8 78.2 32.2 86.6 28.9 82.7
(2) 14.1 104.6 10.4 100.2 22.1 108.0 19.2 104.0
(3) 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0
2y. (1) 23.1 79.2 19.9 74.8 30.7 83.7 27.6 78.8
(2) 12.7 100.72 9.2 96.4 20.9 104.6 18.1 100.7
(3) 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0
3y. (1) 19.8 72.7 16.0 68.6 27.9 78.2 24.9 74.5
(2) 10.2 93.3 6.9 89.1 18.8 98.1 16.1 94.3
(3) 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0
4y. (1) 16.7 66.8 13.1 62.7 25.4 73.1 22.5 69.5
(2) 7.9 86.2 5.0 82.1 16.7 92.1 14.2 88.3
(3) 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0
5y. (1) 13.9 61.2 10.4 57.1 23.0 68.3 20.3 64.8
(2) 5.9 79.6 3.3 75.6 14.9 86.2 12.6 82.8
(3) 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0
6y (1) 11.3 55.8 8.2 51.9 20.8 63.8 18.2 60.4
(2) 4.2 73.5 2 69.5 13.2 81 11.0 77.5
(3) 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0

Table A.5.: Value of investment F'(K) for different values of technical uncertainty ~. Four
policy regimes P are considered. (1) sprinter bonus, running time: 20 years;
(2) sprinter bonus, running time: oo; (3) basis tariff, running time: 20 years;
(4) basis tariff, running time: oo.
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v = v = 0.493
O&M 0&M

T [a] high low high low
15 K* 157.2 214.8 176.7 241.8
: F(K) 18.2 77.3 20.8 78.2
9 K* 155.1 210.9 174.5 237.9
F(K) 16.1 73.7 19.9 74.8
6 K* 140.4 185.3 159.5 2114
F(K) 1.4 48.6 8.2 51.9

v = v = 0.493

O&M 0&M

T [a] high low high low
1.5 157.2 214.8 176.7 241.8
2 155.1 2109 174.5 2379
3 151.0 203.7 170.4 230.4
4 147.3 197.0 166.6 223.6
) 143.8 190.9 162.9 217.2
6 140.4 185.3 159.5 2114
(K" 149.1 200.4 1634 227.0
o %] 4 6 4 5

Table A.6.: Value of investment F(K) and critical investment cost K* in MEUR for
Baltic 1. 16 km distance from offshore and total investment I = 139.1 MEUR.
Dependence of K* on the construction time 7' in years [a] and technical
uncertainty parameter . Policy scheme: sprinter bonus for the first 12 years,
afterwards basis feed-in tariff, running time of the wind park: 20 years.
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v=0 v = 0.503
O&M O&M

T [a] high low high low
15 K* 157.0 214.4 177.6 243.0
' F 22.6 81.7 24.9 82.6
9 K* 154.8 210.4 1754 238.9
F 204 78.1 23.1 79.2
6 K* 139.8 184.2 159.9 211.7
F 5.3 52.5 11.3 55.8

v=0 v = 0.503

O&M O&M

T [a] high low high low
1.5 157.0 214.4 177.6 243.0
2 154.8 210.4 1754 238.9
3 150.6 203.0 171.1 231.2
4 146.8 196.2 167.2 224.2
5) 143.2 189.9 163.4 217.7
6 139.8 184.2 159.9 211.7
K% 148.7 199.7 169.1 9278
o %] 4 6 4 5

Table A.7.: Value of investment F(K) and critical investment cost K* in MEUR for
Baltic 1. 15 km distance from offshore and total investment I = 134.5 MEUR.
Dependence of K* on the construction time 7' in years [a] and technical
uncertainty parameter . Policy scheme: sprinter bonus for the first 12 years,
afterwards basis feed-in tariff, running time of the wind park: 20 years.
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A.5. An application to environmental R&D decisions

A.5.1. Derivation of Egs. (3.30, 3.31-3.32)

We are using a Cobb-Douglas production function of the form
q(E,L) = 0(6oE)*L’, a,<0, a+B8<1, (A.11)

with output ¢, inputs E (energy) and L (labour). Parameter ¢ describes the efficiency
of the use of energy in the initial stage, 6 is a general productivity parameter, and o and
(8 are the production elasticities of inputs.

To set both policy regimes k = {7, Q} to the same level of energy use we first determine
the profit maximising tax rate 7. Profits using the current technology are given by

7o (E,L) = Pq(¢o, E,L)— (z+7)E —  wL (A.12)
bene fits energy costs labour costs

where P is the constant output price, z is the constant energy price, and w is the constant
wage rate.

To solve the maximisation problem for the tax regime, we determine the partial deriva-
tives and set them equal to zero. We obtain

BLT('O (E L) = Pé?qﬁgEaﬂLﬁﬂ w =0 N Ea_PLg %Lﬁl_l e
#7d (B, L) = POSGaE " LP — (z+7) =0 = E°7' =37l

Next, we use one equation to substitute I in the other. This gives L as a function of

only parameters
11— «
o(e) (5
w Z+T

Using the same procedure and substituting L in E*~! derives E as a function of only

parameters
B B a 1-8| T—a—p _Z_
PO <E poripe gbé o (A.15)

These are the optimal inputs of energy and labour for a given tax rate 7. The optimal
energy input under the tax regime also defines the energy quota for the quota regime,
Eq. (3.30).

Profit ﬂows for the tax regime can now be calculated by inserting E and L, Eqs. (A.14,
A.15), into 7/ (replacing ¢o with ¢;). We get

3 1-8]T=a=F o
) ()]
w 24T
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11—« @
m(s) (55)
w Z+T
() ()
w Z+T ¢
11—« «@ o
(s (55)
w z2+T

T=a=p
It is possible to factor out ¢, *~7 := qﬁZT and (PH)POI‘*B := (PA)Y"/®. Other terms can
be merged. After some calculation, we optain Eq. (3.31, k =T)

B
1—a—p af

¢;7a7£

X

- (z47)

- w

(A.16)

= o] POy /e [ ! L]W i
E (z +7)*wh
% { [aaﬁﬁ] ’YT/O( [alfﬁﬁﬁ] ’YT/O( [aaﬁlfa] ’YT/CV}
a 8 VT/OC
= [l—a-/7] P0<237> (g)] ¢;T/a:§fr¢if.
57'

For the quota regime, we need to maximise Eq. (3.29) for L only as E = E. Be reminded
that E does not change and depends on ¢y. We get

0 Q1. o o o B—1 o
w1l 1 1 |8-1
- [EP@??EQ] | A

Next, we insert L back into Eq. (3.29) merging terms. We can separate the factors
qﬁ;ﬂ, (PG)_ﬁ and E77 1. Introducing the definition 42 := /(1 — ) derives Eq.
(3.31, k = Q)
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8115
POE® <é) ] $1° — 2B .
w

£Q

= (-9

A.5.2. Deterministic case

Let v — 0 in Eq. (3.12)

rF(K) =—1 (1 + ag(g)) : (A.18)

under investment constraint

koo ¥
- my if K<K
L= { 0 if K>K" ~ (A.19)
and boundary conditions
F(0) = wf/r , lim F(K)=0, F(K')=0, F'(K")=0. (A.20)
K—o0
The ansatz for the solution is
-1 K
F(K)=—+Cexp (——r) . (A.21)
r I
The first boundary condition determines constant C
FyT
c-Titl (A.22)
r
Derive K* from F(K*) =0
o= L [T (A.23)
= — In -
r 1

The second boundary condition is fulfilled if I is chosen to be 0 in the region of non-
investment, otherwise I = Imax = 7115.
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A.5.3. Results

price for energy doubled - — Quotas, uncertainty base case
— Taxes, uncertainty base case
— Taxes, certainty case
— — Quotas, certainty case -

*

Critical investment cost to completion K

w
o
o

200 Uncertainty base case: -
y=0.5,6=0.1,0=0.3,$=0.5,6 =1.0, P=1.0,
z2=0.1,w=02=1.0,¢=15, r =0.05

100

0 0.2 0.4 0.6 0.8 1
Environmental stringency

Figure A.2.: Critical investment cost K* as a function of environmental stringency 7.
Parameter values describe the base case.

T T T T I T
v 300 — Taxes, z=0.1|]
% — Taxes, z=0.3
8 Te~e_ - - Quotas, z=0.3
= Tt~ — — Quotas, z=0.
2 200~ =
s L T~ TTm=—
o |\ T~ Tmm=—
> -
£
©
-2 1001~ —
o
O 1 I 1 I 1 I 1 I 1
0 0.02 0.04 0.06 0.08 0.1

Environmental stringency

Figure A.3.: Critical investment cost K* as a function of environmental stringency 7 in
dependence of the energy price z. Parameters are v = 0.5, 6 = 0.1, a = 0.3,
5 =0.5, w = 0.2 and otherwise as given in Tab. 3.6.
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400 T T T T T T 1T I T T T T T T 1T I T T T T T T 1T
................. Tax increases
""""""" energy price z by 109
350w e —
- .
3 . (p1=1.8
o L - .
(5]
<
Q
£
§ 300 —
k= — quota regime
E | | — tax regime |
£
250 = ======z==mmao__ —— \ —
- Paramters: 7
y=0.5,8=0.1, r=0.05,
a=0.3,$=0.5,P=1, z=0.1, w=0.B=1, ¢,=1
1 I 1 1 e IN 1 J 1
2 O 1 1 1 1 11 1
8.0001 0.001 0.01 0.1

Environmental stringency

Figure A.4.: Critical investment cost K* as a function of environmental stringency 7 in
dependence of future energy technology ¢ .
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