
Annotation-based storage and retrieval of models and
simulation descriptions in computational biology

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

Promotionsgebiet: Datenbank- und Informationssysteme

vorgelegt von

Dagmar Waltemath geb. Köhn,

wohnhaft in Rostock,

geboren am 23.03.1981 in Waren (Müritz)

Rostock, 23. 03. 2011

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2011-0134-5

Principal advisor: Prof. Dr. rer. nat. habil. Andreas Heuer,

Database and Information Systems, University of Rostock,

Rostock, Germany

External reviewers: Dr. Nicolas Le Novère,

European Bioinformatics Institute,

Cambridge, UK

Prof. Dr. Ulf Leser,

Institute for Computer Science, Humboldt-Universität zu Berlin,

Berlin, Germany

Date of defense: 2011-07-27

URN: urn:nbn:de:gbv:28-diss2011-0134-5

Abstract

The purpose of this work was to enhance the reuse of computational biology models

by identifying and formalizing relevant meta-information, and to develop extended

model storage and retrieval concepts.

The work focussed on models in XML formats and annotated with RDF-encoded

meta-information. One particular type of meta-information investigated in this the-

sis is experiment-related meta-information attached to a model, which is necessary

to accurately recreate simulations. The implementations in this work were carried

out using methods from the research area of ’Information Retrieval’, and proposed

solutions were tested on the BioModels Database repository.

The main results of the study are: a detailed concept for model annotation, a

proposed format for the encoding of simulation experiment setups, a storage solution

for standardized model representations, and the development of a retrieval concept.

A model annotation strategy has been developed for the model representation

format SBML. The proposed simulation experiment encoding is being considered

by various groups within the computational biology arena, including the SBML,

CellML and NeuroML working groups. It has been shown that a fine-grained storage

approach enables model search and versioning across different model representation

formats. The application of information retrieval techniques indicated how the model

search process can be enhanced by considering meta-information and incorporating

information from external resources.

The principal conclusion was that a fine-grained encoding and storage of model

meta-information enhances the retrieval process and thereby improves model reuse.

Zusammenfassung

Die vorliegende Arbeit widmete sich der besseren Wiederverwendung biologischer

Simulationsmodelle. Ein Ziel war dabei die Identifikation und Formalisierung rele-

vanter Modell-Meta-Informationen. Ein weiterer Schwerpunkt lag in der Entwick-

lung geeigneter Modellspeicherungs- und Modellretrieval-Konzepte.

Fokus der Arbeit waren in XML kodierte Modelle, die mit in RDF gespeicherten

Meta-Informationen angereichert wurden. Besondere Beachtung fand hierbei Meta-

Information über Experimente auf einem Modell. Realisiert wurde das Modellre-

trieval mit Methoden des Information-Retrievals. Die vorgeschlagene Lösung wurde

in dem Repository ’BioModels Database’ implementiert.

Wichtigste Ergebnisse der Arbeit sind ein detailliertes Konzept zur Modellan-

notation, ein Formatvorschlag für standardisierte Kodierung von Simulationsexperi-

menten in XML, eine Speicherlösung für Modellrepräsentationen, sowie ein Retrieval-

Konzept.

Im Rahmen der Dissertation wurde das Konzept der Modellannotationen für das

Repräsentationsformat SBML überarbeitet. Das entwickelte Format für Simulations-

experimentspeicherung wird in verschiedenen Gruppen getestet, z. B. SBML, CellML

und NeuroML. Das feingranulare Speicherungskonzept für Simulationsmodelle rea-

lisiert eine formatunabhängige Modellsuche und -versionierung. Der Einsatz von

Information-Retrieval-Techniken zeigt, wie Modellsuche verbessert werden kann,

wenn zsätzlich zur Modellstruktur Meta-Informationen und externe Resourcen ein-

bezogen werden.

Zusammenfassend kann festgehalten werden, dass eine feingliedrige Kodierung

und Spei-cherung von Modell-Meta-Informationen das Retrieval verbessert und somit

einen positiven Effekt auf die Modellwiederverwendung hat.

It was still possible in the 1960s for a human living to live in a

nation, and be subject to its laws, without the slightest

knowledge of that fact. If we find this astonishing, it is

because we human beings, unlike all other species on the

planet, are knowers. We are the only ones who have figured

out what we are, and where we are, in this great universe. And

we’re even beginning to figure out how we got there.

(D. C. Dennett, Freedom Evolves [Dennett 2004, Chap. 1])

i

Acknowledgements

Nicht, weil es so schwer ist, wagen wir es nicht, sondern, weil

wir es nicht wagen, ist es so schwer.

(Lucius Annaeus Seneca)

It is my pleasure to thank the different people who have made this thesis possible.

First of all, I would like to thank professor Adelinde Uhrmacher and professor An-

dreas Heuer for giving me the opportunity to join the dIEM oSiRiS research training

school. Being part of an international and integrative project was an exciting and

invaluable experience for me. Thanks also goes to my thesis committee for many

helpful comments on my work. Thank you for taking the time and effort to read my

thesis and traveling to Rostock for the thesis defense.

I owe my deepest gratitude to Dr. Nicolas Le Novère for his continuous support

throughout my phd studies – for his enthusiasm for my research work, for giving

me the opportunity to present my work at conferences and get in touch with the

relevant people in the field, for his patience in teaching me how to write ”proper

scientific articles”, for his advises on the various aspects of a phd student’s life in

general. I am also grateful to professor Olaf Wolkenhauer for continuous help and

support, in particular for having me join the group’s research seminar and feedback

on my work.

Most of my work was ”community based” and I would therefore like to take

this opportunity to thank my colleagues in the SBML and SED-ML community

for endless scientific discussions and many exciting meetings. My work would be

nothing without you.

iii

A phd thesis cannot be done without the support of the likely-minded, also suffer-

ing phd colleagues. Thank you, RIGZ-colleagues for an enjoyable time in the Rostock

office, for making me become a coffee-addict, for wonderful Christmas parties, BBQs,

wine deliveries and baby-BATS. I am grateful to my colleagues at CompNeur for

teaching me how diverse life in a research group can be. Thank you for making me

an expert in table football, badminton, piano playing, jogging and bus-pub-hopping.

I would also like to thank my colleagues from the SBI group who so kindly welcomed

me in their group. Your coffee is the best I have ever had. Thank you, Yvonne,

Felix and Ron for doing all the printing jobs for me! I am pleased to thank Ron

Henkel, who has contributed a lot to this thesis in many ways. Finally, I would like

to thank Lu Li for encouraging me not to give up, without her I might have stopped

and rewinded.

This thesis could not have been written without the support of my family and

friends, in particular without the various baby sitters who took care of Emil & Hans

during my working hours. Special thanks goes to my parents and my parents-in-

law, but also to Yvonne for organising pyjama parties for my elder son, to Ron and

Katja who could not be scared away by bacillus Bacillicus, to Virginia who sang

good night songs to my younger son in the office. You were great.

At the very last, I need to thank the Deutsche Bahn for enjoyable traveling days

in which I was cut-off the World Wide Web. Those were the days I worked most

efficiently.

Dagmar Waltemath

Rostock, September 19, 2011

This research has been financially supported by the interdisciplinary DFG Graduiertenkol-

leg dIEM oSiRiS. Research visits to the European Bioinformatics Institute were

kindly funded by the Marie-Curie Fellowship and the DFG.

iv

Contents

1. Introduction 1

1.1. Context . 2

1.2. Problem definition . 6

1.3. Contribution . 8

1.4. Outline . 9

2. Background 11

2.1. Modeling and simulation in computational biology 11

2.2. Representation formats . 16

2.2.1. Systems Biology Markup Language 17

2.2.2. CellML . 18

2.2.3. πML . 19

2.2.4. Further investigations . 20

2.3. Meta-information . 21

2.3.1. Data – information – knowledge – meta-information 21

2.3.2. The concept of Ontology . 23

2.3.3. MIBBI . 26

2.3.4. Resource Description Framework 26

2.4. Storage of XML documents . 30

2.5. Retrieval . 31

2.5.1. The information retrieval process 38

2.6. Summary . 41

3. State-of-the-art 43

3.1. Meta-information for computational biology models 43

3.1.1. The mosaic of standards . 44

3.1.2. Biology ontologies for model annotation 45

3.1.3. Minimum Information Required In the Annotation of Models 49

3.1.4. Further investigations: Meaning facets 50

3.2. Meta-information encoding . 51

3.2.1. The MIRIAM reference standard 51

v

3.2.2. Meta-information in SBML 52

3.2.3. Meta-information in CellML 54

3.2.4. Annotations in use . 56

3.3. Storage of computational biology XML-models 58

3.3.1. Model repositories . 58

3.3.2. Model versioning . 64

3.4. Simulation description formats . 66

3.5. Summary . 68

4. SBML meta-information encoding 71

4.1. Problem statement . 71

4.2. Enhanced SBML annotations: Annot package 74

4.2.1. Package scope and integration into SBML 74

4.2.2. Qualifier names . 75

4.2.3. Container and collection support 75

4.2.4. Attribute annotations . 76

4.2.5. Annotations about annotations 78

4.2.6. Person’s meta-information . 79

4.3. Summary . 79

5. Exchange and reuse of simulation experiments 85

5.1. Problem statement . 85

5.2. Minimum Information About a Simulation Experiment 87

5.2.1. Scope . 88

5.2.2. Guidelines . 89

5.2.3. Example . 93

5.3. Kinetic Simulation Algorithm Ontology 94

5.4. Simulation Experiment Description Markup Language 97

5.4.1. URI scheme . 97

5.4.2. Language elements . 99

5.4.3. Conceptual design of a simulation experiment database . . . 110

5.5. Implementation . 112

5.6. Summary . 114

6. Format-independent model storage 121

6.1. Problem statement . 121

6.2. Prerequisites . 123

6.2.1. Annotated bio-models . 123

6.2.2. The model information coordinate system 124

vi

6.2.3. Model parser . 126

6.2.4. Internal representation format 127

6.3. Model storage . 131

6.3.1. Considered storage approaches 131

6.3.2. Model database mDB . 134

6.3.3. Relation model . 137

6.4. Model versioning . 142

6.4.1. Aspects of bio-model versioning 144

6.4.2. Model versioning approach 145

6.5. Implementation . 148

6.6. Summary . 151

7. Meta-information-based ranked retrieval 159

7.1. Problem statement . 159

7.2. Prerequisites . 160

7.3. Ranked retrieval of computational biology models 161

7.3.1. Feature dimensions . 161

7.3.2. Features (conceptual) . 163

7.3.3. Structure information . 168

7.3.4. Conceptual architecture . 169

7.3.5. Sample query . 173

7.4. Test framework . 175

7.5. Implementation . 177

7.6. Summary . 181

8. Conclusions 185

A. Appendices 189

A.1. Qualifiers . 189

A.1.1. Biomodels.net qualifiers . 189

A.1.2. Proposed revised biomodels.net qualifiers 190

A.2. Bio-Models . 191

A.2.1. Leloup Goldbeter 1999 (original and modified SBML encoding)191

A.2.2. Euglena movements (πML) 194

A.3. Annotated bio-models . 198

A.3.1. Example . 198

A.3.2. πML annotations . 201

A.3.3. Goldbeter 1991 (CellML with MIRIAM annotations) 203

vii

A.4. SED-ML . 206

A.4.1. SED-ML language URNs . 206

A.4.2. The SED-ML XML Schema 207

A.4.3. The SED-ML UML Schema 214

A.4.4. Sample SED-ML experiment description 216

A.5. mDB . 219

A.5.1. Internal Representation format (XML Schema) 219

A.5.2. Representation format to IRF to mDB mapping 226

A.5.3. Sample search on BioModels Database demo 232

A.5.4. mDB to eDB to Mosan Object Model mapping 234

A.6. Publications that have arisen from this work 236

viii

List of Figures

1.1. Systems biology workflow . 3

1.2. BioModels Database statistics . 5

2.1. RDF representations . 28

2.2. The model management workflow . 32

2.3. Categorization of IR-models . 35

3.1. Mosaic of standards . 44

3.2. Meaning facets . 50

3.3. SBML standard annotation format 53

3.4. Model management model (UCL Beacon). 62

3.5. SBML history and associated elements 65

5.1. Examples for complex simulation experiments 87

5.2. MIASE rules (flowchart) . 91

5.3. Sample KiSAO classification . 96

5.4. SED-ML: Generic processes . 99

5.5. SED-ML: Model specification . 100

5.6. SED-ML: Perturbation specification 102

5.7. SED-ML: Simulation setup specification 104

5.8. SED-ML: Task definition . 105

5.9. SED-ML: DataGenerator definition 107

5.10. SED-ML: Output definition . 108

5.11. Database schema (sDB) . 111

5.12. Screenshot of the SBW simulation tool RoadRunner 113

6.1. Model information coordinate system 125

6.2. Import of model representations the mDB 135

6.3. mDB relation model . 138

6.4. The ontology for change classification in bio-model versions 147

6.5. Abstract XML Diff algorithm . 150

6.6. SED-ML for Mosan . 156

ix

7.1. Conceptual architecture of the ranked retrieval 169

7.2. Sample search . 174

7.3. Sombi framework . 176

7.4. Preview of the Sombi Front-end standard module 181

8.1. Conclusion . 186

A.1. The SED-ML UML model. 215

A.2. Search result for the sample query 234

x

List of Tables

5.1. Mapping MIASE and SED-ML . 115

6.1. Meta-information stored in mDB . 136

6.2. Change defection with XML Diff . 149

6.3. mDB concepts mapped on the UCL Beacon meta-model 152

7.1. Identified dimensions . 162

7.2. Features in the administrative data dimension 164

7.3. Features in the persons dimension 165

7.4. Features in the dates dimension . 165

7.5. Features in the publication dimension 165

7.6. Features in the constituent dimension 166

7.7. Features in the user generated content dimension 167

7.8. Features in the experiment dimension 168

7.9. Extract of the Semantic Index . 172

7.10. Features incorporated in the standard ranking function 179

A.1. Model qualifiers . 189

A.2. Biology qualifiers . 190

A.3. Proposed revised biomodels.net qualifiers 190

A.4. SED-ML language URNs . 207

A.5. Mapping: Administrative data dimension on the IRF 226

A.6. Mapping: Person dimension on the IRF 227

A.7. Mapping: Dates dimension on the IRF 228

A.8. Mapping: Publication dimension on the IRF 229

A.9. Mapping: Constituents dimension on the IRF 230

A.10.Mapping: User generated content dimension on the IRF 232

A.11.Mapping: Model-related dimension on the IRF 232

A.12.mDB and eDB data structures mapped on Mosan’s Object structure 235

xi

1. Introduction

The re-use of models requires an understanding for the

information that is needed to support reuse and how it should

be presented [..].

(Sauro et al. [2006], citing [Overstreet et al. 2002])

Computer science technologies and methodologies nowadays support research in

various areas. As one application, they help understanding biological systems by

means of modeling and simulation techniques. This accelerates the modeling and

simulation process, and allows for sophisticated analyses of complex biological sys-

tems. Systems biologists study biological systems such as pathways inside a cell,

cell interactions, or whole organs. Testing hypotheses computationally facilitates

reduction of time and costs for experimental biologists.

The modeler relies on previously obtained findings from collaborators and liter-

ature for a modeling project to work. The evolution of the cell cycle model which

investigates the process a cell undergoes to divide and replicate itself is an example

for the reuse of existing knowledge. The cell is a so-called autopoietic system, i. e. it

is capable of self-creating the processes that reproduce itself. One key process in cell

replication is the division of the cell. Cell division periodically appears in unicellu-

lar systems. A well-known representation of that phenomenon has been described

by John Tyson in a small mathematical model in 1991 [Tyson 1991]. The publica-

tion explains the complex cell cycle mechanism in a mathematical model using only

six interacting species and nine reactions. Tyson showed that the oscillating con-

centration of the Maturation Promotion Factor (MPF) is dependent on the cyclin

concentration. In the following years, Tyson’s lab developed a number of enhanced

models based on the first representations of the cell cycle.

A computational model of a biological system is an abstract representation of the

living system, simplified by a number of restrictions, and instantiated with a certain

set of parameter values. Computational models are typically encoded in specifically

designed, computer-readable formats – allowing for model exchange across different

software tools. One way of studying the models is through simulation. A simula-

tion mimics the temporal development of the system, for example, determining the

changes in concentration of a particular entity over time.

1

The model description solely represents model structure and initial parametriza-

tion. It lacks formal descriptions of model-related information such as the build-in

assumptions, the modeler’s intention, and related simulations on the considered

model. However, these are important aspects of a model – not only to understand

the model and to allow for reuse in other contexts, but also to verify the results.

Looking at the first Tyson model, one learns a lot about the cell cycle. However,

the model misses information on the implicitly made assumptions and also on the

scope of the modeled system.

Incorporating additional information gives further insights (e. g. reading the refer-

ence publication, studying related models, or investigating simulation experiments

performed on the model). If, in addition, the model is sufficiently described by

meta-information, one can infer the considered aspects and implied assumptions.

For example, a model linked to a particular biological system (such as “unicellular

biological systems”) will be more applicable and reusable; a model with a detailed

explanation of all involved species can be faster understood; a model with associ-

ated simulation experiments and simulation results can be better understood, and

modifications on the simulation settings can be easier reconstructed.

Given that additional information for a model can be provided, computational

support is needed to facilitate efficient storage, versioning, and later retrieval of

both the model and its associated information.

In this thesis, I argue that improved reuse of computational biology models can

only be achieved with an enhanced understanding of the model and its components.

The understanding depends on the available information on the model. Relevant

models can be applied to the modelers problem with less effort when providing

detailed information on the model entities, the assumptions, the model context and

behavior, and also the simulations. The computer-interpretable encoding of that

information enables support by computational methods. Appropriate storage and

search techniques have to be developed to realize successful model retrieval. With

the growing number of existing models, the development of ranking mechanisms

that suggest a user the best model for his needs has become necessary. Solutions

are proposed and discussed in this work.

1.1. Context

The research that led to this thesis was funded by the research training school

“die Integrative Entwicklung von Modellierungs- und Simulationsmethoden für

Regenerative Systeme” (The Integrative Development of Modeling and Simula-

2

Figure 1.1.: The systems biology workflow from the dIEM oSiRiS perspective (green-blue box), the

challenges for visualization (red box) and for database and information systems (orange

box) research. Extended from [Unger et al. 2007].

tion Methods for Regenerative Systems) (dIEM oSiRiS, [Uhrmacher et al. 2009]).

dIEM oSiRiS is a joint project of different groups at the Institute of Informatics and

the Faculty of Medicine and Biology at Rostock University (Germany). Within the

research training school, Biologists perform experiments and generate experimental

data that is then used in the dry laboratory (i. e. computationally) to build models

and to evaluate newly developed modeling and simulation techniques. The graduate

school also elaborates on visualization techniques for the different kinds of data.

Unger et al. [2007] describes the Systems Biology workflow from biological data to

the simulation of a computational model from the perspective of the dIEM oSiRiS

project. Since the description only reflects a data-oriented view, Figure 1.1 shows a

revised version of that workflow, integrating also database aspects.

The box in the middle (blue-green) represents the dIEM oSiRiS workflow for the

modeling of biological systems. The dissertation of Unger [2010] discusses missing

parts of the original workflow from a visualization tools’ perspective, meaning the

evaluation of visualization support (red box). Contrarily, my work discusses missing

support on the database and information systems side (orange box). The demands

are not restricted to the dIEM oSiRiS project, but apply to computational biology

in general.

3

The dIEM oSiRiS project studies new methods for the modeling of biological sys-

tems which are explored in the biology laboratory at the same time (green box).

The complex functioning of biological systems cannot be understood by pure intu-

ition [Kitano 2002b; Klipp et al. 2009]. Focusing only on the individual parts of a

biological system (e. g. its individual proteins or organs) will miss on properties of

the system that emerge only in the network of interactions that is formed by its com-

ponents [Nature 2005]. Systems Biology investigates the system-level understanding

of biology [Kitano 2001, 2002b], making it an “integrative study of the interactions

between different components of biological systems, and how such interactions give

rise to the function and behavior of a system” [De Schutter 2008]. The EraNet1, a

consortium of funding bodies for systems approaches to biological research, agreed

to define the systems biology approach as follows:

Systems biology aims at understanding the dynamic interactions between

components of a living system, between living systems and their inter-

action with the environment. Systems biology is an approach by which

biological questions are addressed through integrating experiments in

iterative cycles with computational modelling, simulation and theory.

Modelling is not the final goal, but is a tool to increase understanding

of the system, to develop more directed experiments and finally allow

predictions. [Pastori et al. 2008]

Biology experiments lead to hypotheses about a system, but these hypotheses

often cannot be combined into a larger picture as the global behavior cannot be

inferred from the knowledge of its parts [Klipp et al. 2009, pp. 4-5]. In this situa-

tion, mathematical modeling and computer simulation can help to understand the

dynamics of the system under observation, its internal nature, and the possible fu-

ture development. The effect of interactions on the system’s environment can be

tested [Klipp et al. 2009, Sec. 1.1]. The approach to understand biological systems

combines both experimental and computational methods to answer questions of bi-

ological interest, focusing on the systems’ behavior. Computational systems biology

(CSB) applies computational methods on systems biology problems (i. e. it inves-

tigates systems biology by computational means). It focuses on the observation

of properties such as a system’s robustness and evolvability from the study of a

biological network [Nature 2005]. Two important research tasks are:

1. the development of computational models that represent the biological world,

and

1http://www.erasysbio.net/, last accessed 14 March 2011.

4

Figure 1.2.: Growth of BioModels Database during 18 releases, as of September 2010: The upper

panel shows the number of models stored in BioModels Database at each release; the

lower panel shows the number of distinct species and reactions encoded in the total

number of models at each release. Adjusted from [Henkel et al. 2010].

2. the simulation and analysis of those models.

The study of a biological system can be represented by a computational model

which can then be parametrized and simulated (Figure 1.1, blue box). Computa-

tional models of biological systems – especially the ones dedicated to the under-

standing of highly non-linear biochemical systems – proved to be very helpful (e. g.

to map out promising experiments in the wet laboratory by analyzing simulation

runs) [Köhn et al. 2009]. They can be diverse in scale and complexity, ranging

from ‘omics’-scale (i. e. modeling whole genomes and proteomes) to modeling small

sub-circuits of a network (e. g. few proteins that function as an amplifier) [Ferrell

2009].

The number of developed computational biology models grows quickly. BioModels

Database, a repository for computational biology models, reflects this tendency (Fig-

ure 1.2, upper panel). The number of stored, curated models has increased from 22

in the year 2005 when BioModels Database was launched to 630 models in September

20102. However, BioModels Database does not only grow in terms of the amount of

2http://www.ebi.ac.uk/biomodels-main/static-pages.do?page=release_20100930, last ac-

cessed 10 March 2011.

5

http://www.ebi.ac.uk/biomodels-main/static-pages.do?page=release_20100930

models, but also regarding the variety of modeled entities (Figure 1.2, lower panel).

Furthermore, the modeled reaction networks increase in size, indicated by a raising

average number of reactions per model3. The history of cell cycle modeling, for

example, shows the increasing complexity of models for a given biological system:

An XML-encoded version of the first “Tyson model” is available from BioModels

Database4. It represents the published model in SBML format using nine species.

One of its successors, the 1993 Novak/Tyson model [Novak and Tyson 1993] already

encodes 14 species and 23 reactions5. Both models are single-compartmental. Since

then more models on the cell cycle have been published; one example is the 2004 cell

cycle model by Chen et al. [2004a]; its computational encoding is build of 74 species

and 94 reactions6; it is still a single-compartmental model. The most complex model

in BioModels Database in terms of number of encoded species and reactions as well

as size of the model file is a model for the yeast molecular interaction network7. It

contains 36263 species and 30965 reactions in one compartment; the XML file has

a size of 50 MB.

1.2. Problem definition

The need to maintain computational biology models led to the incorporation of

database and information systems techniques in dIEM oSiRiS (Figure 1.1, orange

box). Information sharing is fundamental for the following investigations as it facil-

itates science [Piwowar et al. 2007]. Sharing of materials, methods, and data in the

life sciences has received increased attention in recent years [Nordlie et al. 2009]. A

research community that shares its data avails itself to viewing the data from dif-

ferent perspectives. Additionally, data sharing helps to identify errors in the data,

discourages fraud and can be used in the training of new researchers [Piwowar et al.

2007].

Developing models is a time-consuming process; sometimes it can even be life-

long. A model on the function of a single protein can result in a PhD-thesis. Some

researchers dedicate their career to “just one” model. For example, Guyton started

developing a model on the “Relative importance of venous and arterial resistance in

3April 2005: 31.55 reactions/model; April 2010: 94.9 reactions/model (provided by Nicolas Le

Novère)
4http://www.ebi.ac.uk/biomodels-main/BIOMD0000000005, last accessed 14 March 2011.
5http://www.ebi.ac.uk/biomodels-main/BIOMD0000000107, last accessed 14 March 2011.
6http://www.ebi.ac.uk/biomodels-main/BIOMD0000000056, last accessed 14 March 2011.
7http://www.ebi.ac.uk/biomodels-main/MODEL3883569319 (DOI doi:10.1371/journal.pone/

0010662), last accessed 17 February 2011.

6

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000005
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000107
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000056
http://www.ebi.ac.uk/biomodels-main/MODEL3883569319
doi:10.1371/journal.pone/0010662
doi:10.1371/journal.pone/0010662

controlling venous return and cardiac output” in the 1950s [Guyton et al. 1959]; he

continued working on that model until his retirement in the 1980s [Montani et al.

1989]. The great effort put into model development is one reason to reuse a model

also in other biological contexts. In order to test a new hypothesis in silico, it is

desirable to take an existing model dealing with a similar or related system as a

starting point. Considering previously developed models and components timely

and qualitatively accelerates the model creation process (e. g. reoccurring structures

and motifs such as feedback-loops [Wolf and Arkin 2003]). Also, studying existing

models of a biological system helps to get an understanding of it. The fact that

the number and complexity of models stored in public databases is increasing faster

than the number of species and reactions encoded in the models suggests that the

duplication of computationally encoded species and reactions is increasing, which is

another justification for investigations in model reuse8.

The need for model- and model component reuse is not doubted. Since 2006,

model reuse has been repeatedly discussed as one major issue in CSB [Sauro et al.

2006; Le Novère 2006; Nordlie et al. 2009]. Nordlie et al. [2009], for example, empha-

size the urge for reuse of models of neuronal networks, stating that “after more than

50 years of neuronal network simulations, we still lack [..] established practices for

describing network models in publications. This hinders their [the models’] reuse”.

Model reuse is already practiced, but it is limited. Famous examples for “phy-

logenies of models” include models on MAPK, Glycolysis, or the aforementioned

cell cycle. In these examples, existing models were reused and then evolved into

more complex representations of the system. However, only the knowledge about a

model’s existence eased its reuse and extension. Consequently, “quantitative models

will be only as useful as their access and reuse is easy for all scientists” [Le Novère

2006]. I argue that modelers in the future need support in accessing models and

following on their developments. When looking for existing models, it is essential

to find them. Hence sophisticated model retrieval techniques are a prerequisite to

model reuse (Figure 1.1, orange box).

The mentioned model retrieval relates to the well-known problem of information

retrieval (IR). IR deals with techniques to efficiently find relevant data [Baeza-Yates

and Ribeiro-Neto 1999]. Ranking then sorts the results according to the user’s

demands. A number of challenges arise when applying IR techniques on the retrieval

of computational biology models. Some are relevant to all IR methods, for example,

the identification of relevant data, the definition of a suitable format to store the

8Duplicated species include, for example, the chemicals C (Carbon), O2 (Oxygen), H2 (Dihy-

drogen), N (Nitrogen), or Fe (Iron). Examples for duplicated reactions include oxidation or

deduction. Examples provided by Ron Henkel.

7

data that has been found relevant, or the development of suitable mechanisms to

find the stored data and present it to the user in a meaningful manner. Others owe

to the complexity of the biological knowledge encoded in those models, for example,

the variety of data and scales or the incompleteness and uncertainty of the given

data.

A model’s meta-information is independent of the model encoding format and

abstracts from the underlying modeling approach. Similar structures are used across

different communities, mainly building on RDF and ontologies. This fact suggests to

shift the model retrieval problem from the model-encoding XML level to the meta-

information level. Once an extended storage concept for model meta-information

exists the similarity determination can rely on the meta-information, instead of being

limited to the information gained from the XML structure.

While model reuse is a recognized problem, the distinction between reuse and

retrieval is often not sufficient: Finding a relevant model and reusing it are two dif-

ferent issues. Often, reusing a model implies studying it in the different parametriza-

tions provided in the reference publication. Also, the information how to simulate

the model (e. g. which simulation algorithm to use or what tasks to perform on the

model) is necessary to reuse the retrieved model. A standardized format for the

encoding of simulation information is therefore needed to describe the modifications

on the model as well as the simulation setup.

1.3. Contribution

I have focused my work on enhancing model reuse through better model retrieval,

thereby concentrating on two major aspects:

1. the identification and appropriate storage of standardized information and

meta-information for the search process, and

2. the application of existing information retrieval techniques on model retrieval,

incorporating the previously identified information.

My first contribution is a proposal for an enhanced format to encode model meta-

information in XML-based model representation formats [Waltemath et al. 2011d].

The existence of such standard allows to encode meta-information on a model. Ap-

plying the standard to different model encoding formats allows for a comparison of

models based on their meta-information.

8

Secondly, I identified experiment-related meta-information as one key aspect to

model retrieval. I developed a storage and exchange format for simulation experi-

ments applied on CSB models [Köhn and Le Novère 2008; Waltemath et al. 2011b].

Such a format enables the unified description of performed experiments, but also

the experiment’s exchange and reproduction. The information can be extracted and

used for model retrieval. The basis of the developed XML language is a Minimum

Information Guideline for simulation experiment descriptions which I developed in

cooperation with a number of other institutes working in CSB [Waltemath et al.

2011a].

Thirdly, I identified further relevant data and meta-information for the character-

ization of computational biology models, and I defined the relational mapping on a

database schema. A wide range of different data and meta-information on a model

can thereby be stored, including the model structure, model annotations, but also

model-related, experiment-related and model meta-information [Köhn 2009; Köhn

et al. 2009; Waltemath et al. 2011c]. Further controlled vocabularies and ontologies

were needed to encode parts of the identified information. My contribution is the

development of a simulation algorithm ontology [Courtot et al. 2011].

My fourth contribution is the application of information retrieval techniques on

“bio-model retrieval” [Köhn 2009; Köhn et al. 2009]. Using existing IR techniques,

we developed a retrieval and ranking system that enhances the search for computa-

tional models of biochemical reaction networks [Henkel et al. 2010, 2011]. Retrieval

is performed with focus on the meta-information of the models in question, not on

the model structure alone [Köhn and Strömbäck 2008; Köhn et al. 2009]. The overall

concept is used by the search system of the standard model repositories, BioMod-

els Database [Henkel et al. 2010]. In order to evaluate the approach, I propose a

framework called Sombi for the testing of such functions on different data bases

[Waltemath et al. 2011c].

Additional problems, such as the evaluation of annotations, the evaluation of

different ranking functions and ranking models for the use case of bio-model retrieval

and so on are not part of this thesis, but will be investigated in future works.

1.4. Outline

I start by providing background information to the addressed problems (Chapter 2),

and continue by elaborating on the state-of-the-art of model encoding, model anno-

tation, model retrieval, and model storage (Chapter 3).

Chapter 4 describes an effort to enhance the current annotation scheme of SBML, a

model representation format, by standardizing the SBML-relevant meta-information

9

on a more detailed level. The result of this work is a proposal for an SBML extension

package, called annot package.

Chapter 5 describes an approach to the formal encoding of simulation experiments

as one important type of model-related meta-information (referred to as experiment-

related meta-information). I introduce the set of guidelines identifying the Minimum

Information About a Simulation Experiment (MIASE). A concrete implementation

of those guidelines is described in full detail, and a storage solution for the demanded

information is outlined.

Chapter 6 concentrates on the storage of model meta-information. It analyzes the

requirements and introduces an extended storage concept for computational biology

models. Experiences gained in the Annotation package development, but also during

the study of different model representation formats led to the development of a

database for format independent, meta-information based bio-model storage.

Chapter 7 shows how the information stored in mDB can be used to enable format-

independent ranked retrieval of bio-models. The result of this work is a detailed

retrieval concept with two existing implementations. The first one is a Lucene-

based prototype implementation for mDB9, and the second one a retrieval solution

for BioModels Database10. Furthermore, I investigated a framework for the testing

of different ranking functions on different model repositories, called Sombi .

Finally, Chapter 8 concludes and points to future prospects.

9Implementation by Ron Henkel, Diploma Thesis [Henkel 2009] (main supervisor)
10Implementation by Ron Henkel, Leonardo stipend, [Henkel et al. 2010]

10

2. Background

What is the difference between a live cat and a dead one? One

scientific answer is ’systems biology’. A dead cat is a collection

of its component parts. A live cat is the emergent behavior of

the system incorporating those parts.

(Nature [2005])

This work is concerned with the enhanced storage and retrieval of computational

biology models. Section 2.1 gives an overview of modeling basics in computational

systems biology. A “model” can be considered a formal description of a system.

Model representation formats enable exchange and reuse of those models; the two

widely-known formats SBML and CellML, and the preliminary format πML are

introduced in Section 2.2.

One way to provide further knowledge about the encoded system is to use model

meta-information. The notion of meta-information is introduced in Section 2.3,

including the concepts of controlled vocabulary, ontologies and the Resource De-

scription Framework.

The technical background of this work are existing XML storage approaches (Sec-

tion 2.4) and Information Retrieval techniques (Section 2.5).

2.1. Modeling and simulation in computational biology

Modeling and Simulation (M&S) is a traditional research field in computer science.

A variety of definitions for the concept of a model co-exist; some stem from the

60s or 70s [Minsky 1965; Gottschalk et al. 1971; Eykhoff 1974], others are more

recent [Fishwick 1995]. A generic definition is provided in [Cellier 1991, p. 5] (citing

[Minsky 1965]):

Definition 2.1.1 (Model [Cellier 1991]). A model of a system S and an experi-

ment E is anything to which E can be applied in order to answer questions about S.

Following [Cellier 1991, p. 5], the scope of the term model is here restricted to

models that are codable as computer programs.

The above definition necessitates the further explanation of an experiment:

11

Definition 2.1.2 (Experiment [Cellier 1991]). An experiment is the process of ex-

tracting data from a system by exerting it through its inputs.

In order to apply the experiment to a model, we will consider the concept of

simulation:

Definition 2.1.3 (Simulation [Cellier 1991]). A simulation is an experiment per-

formed on a model.

The generic and concise definition of simulation describes it as a task that is

applied to some entity. Here, the entity is a model, and the task is an experiment.

[Cellier 1991, p. 4] explains experiments on a system as “a set of external conditions

applied to the accessible inputs, and the observation of the reaction of the system

to these inputs by observing the [..] behavior”. The model itself is a representation

of a specific system under question on which such an experiment is performed.

Modeling lies at the heart of systems biology [Finkelstein et al. 2004]. A model

in CSB summarizes established knowledge about a biological system in a coherent

mathematical formulation [Klipp et al. 2007a, p. 5]. It furthermore explains the

mechanism behind an observed behavior. A “model” is here regarded a computa-

tional, abstract representation of objects or processes of biological nature.

Definition 2.1.4 (Computational biology model (bio-model)). A computational

biology model is a formal description of the interactions in a biological system, mostly

describing quantitative dynamics that allow for the modeled system to be simulated

over time.

For the scope of this work, the terms model and bio-model will be used inter-

changeably.

The modeling and simulation of biological systems supplements experiments in the

wet laboratory; a suitable model can make useful and testable predictions [Klipp

et al. 2009, Sec. 1.2]. The modeling process forces the researcher to describe his

model’s characteristics explicitly and in a formal manner. Modeling often reveals

unspecified components or interactions, and it allows to stretch and compress space

and time at will. Simulating a developed model for the aim of testing a hypothesis

is cheap compared to biology experiments. Moreover, it is possible to simulate a

system in a way that could experimentally not be done; a biological study is often

based on a snapshot of the system while a simulation allows for the observation of a

system’s dynamics over time. The basic characteristics of a bio-model include [Klipp

et al. 2009, pp. 6-9]:

12

• Model scope: A bio-model only considers certain aspects of the system, and

disregards others. The scope of the model is within the considered aspects of

the system, which should be chosen in a way that the disregarded properties

do not compromise the basic answers obtained with the model.

• System state: The system state is a snapshot of the system at a given time

and described by the set of variable values.

• Variables, parameters, constants: The variables, parameters and con-

stants describe the used quantities and constitute the “model parametriza-

tion”.

• Model behavior: The model behavior is determined by environmental influ-

ences and processes taking place within the system.

• Model classification: Processes can be classified with respect to a set of

criteria, including quantitative, deterministic, discrete and others.

Kitano [2002a] defines further key properties for the understanding of a biological

system at system-level: System structures representing the network of interactions,

system dynamics describing how the system behaves over time under given condi-

tions, control methods controlling the state of the cell, and the design methods used

to modify and construct biological systems. Progress on the different aspects relies

on a better understanding of computational sciences, including the better integration

of such discoveries with existing knowledge [Kitano 2002a] (Section 3.1.2).

A bio-model is build of different parts, or components. While the fact that nature

is modular on different levels is well-accepted, the identification of the specific bio-

logical constituents, and how they are identified is often not so clear. Fine-grained

distinctions of model components have been proposed in literature, for example by

Wolf and Arkin [2003] who distinguish several kinds of model parts (i. e. motifs,

modules and games). As another example, Cooling et al. [2010] mention the impor-

tance of defining and characterizing standard mathematical model components (as

opposed to biological components) for in silico systems definition, and proposes an

online repository for Standard Virtual Biological Parts (SVPs) as part of the CellML

Model Repository (Section 3.3.1). For the scope of this work, however, the general

term constituent will be used for any part of a bio-model.

Definition 2.1.5 (Bio-model constituent, following [Le Novère et al. 2005]). A bio-

model constituent (constituent) is any identifiable part of the model, but also the

model itself.

13

The long tradition of M&S in Computer Science led to the development of a

wide range of different modeling approaches. Some of them have also been applied

on CSB problems. Besides kinetic models simulated and analysed, for example,

with differential exuations, other computational approaches include process calculi,

logical modeling, and Petri Nets [Priami and Quaglia 2004; Materi and Wishart

2007; Fisher and Henzinger 2007; Ewald et al. 2007].

One particular way to model concurrent processes in biological systems is the use

of process algebras. The following paragraph introduces the π Calculus in more

detail1. The π calculus, as process algebras in general, focuses on the continuation

and communication of concurrent processes. A calculus is build of a number of

defined processes and interactions, or rules, between those processes. Large systems

can be modeled step-wise, making use of concurrent or parallel processes. Processes

are named and connected via channels. A channel is a communication connection;

one process acts as a sender, the other as a receiver. The message transferred over a

channel is also named and therefore can be re-used in further interactions – allowing

for the modeling of networks.

The following definitions are taken from [Milner 1999]. Channels are denoted

with small letters a, b, . . . , x, y, z, Local channels are defined in one process and

can only be used in the process they belong to. Global channels are valid for the

whole π model and visible to all processes. Actions are denoted with capital letters

P,Q,R A number of actions form a process.

Definition 2.1.6 (π Calculus actions).

π :: = x!(y) (2.1)

| x?(z) (2.2)

| τ (2.3)

| [x = y]π (2.4)

| [x 6= y]π (2.5)

x!(y) denotes that y is the object that is sent via channel x (2.1). x?(z) denotes

that the object z is received via channel x (2.2). τ denotes that the action is not

visible to other processes (no send or receive action) 2.3). [x = y]π denotes that

action π is executed if the condition [x = y] is fulfilled (2.4). [x 6= y]π denotes that

the action π is executed if [x 6= y] is fulfilled (2.5).

1The thorough description of the π Calculus does not reflect a specific role in the modeling of

biological systems; it is necessary for the conceptual work on an XML-based standard format.

14

Definition 2.1.7 (π calculus syntax).

P :: = 0 (2.6)

| π.P (2.7)

| P +Q (2.8)

| P | Q (2.9)

| (νx)P (2.10)

| !P (2.11)

0 denotes the finishing process (2.6). In π.P , P denotes a process. P can only

be executed once π has finished. For example, in x!(y).P P is executed once y has

been sent over x (2.7). A full description is given in [Kühn 2008] (citing [Sangiorgi

and Walker 2001]). P + Q denotes a summation of two processes precluding each

other (2.8). Either P or Q are executed. P | Q denotes the parallel execution of two

processes (2.9). Both, P and Q are executed. (νx)P denotes a newly created process

(2.10). x is a new, unambiguous name in P . !P denotes the infinite replication of

process P .

Example 2.1.1 GenA = t?().(ProteinB | GenA) + a?().t?().GenA

Example 2.1.1 shows the definition of a process GenA. a and t are global channels.

ProteinB is a process. The process definition of GenA implies that one of the two

alternative executions (+) will take place when GenA is called:

• if any message is received on channel t (t?()) then the two processes ProteinB

and GenA are executed in parallel (ProteinB|GenA).

• if any message is received on channel a (a?()) then the system waits until a

message is received on t (t?()). Afterwards, process GenA (GenA) is executed.

The second option simply implements a delay. The first option calls GenA itself,

but also a second process, ProteinB. A full example for the modeling of Euglena

movement in dependency of light is given in Listing A.2 in Appendix A.2.2.

In an extension, exponentially distributed stochastic delays have been assigned to

the interactions, which constituted the stochastic π Calculus [Priami 1995]. Further

extensions developed within the graduate research school dIEM oSiRiS with regard

to modeling problems in CSB include the space π [John et al. 2008a] or the attributed

π [John et al. 2008b].

15

2.2. Representation formats

The application of mathematical concepts and M&S techniques to Biology demands

techniques to store, integrate, and exchange models [Kitano 2002b; Le Novère 2006;

Gennari et al. 2008]. Standardization plays a central role in facilitating the exchange

and interpretation of the outcomes of scientific research, and in particular of com-

putational modeling [Klipp et al. 2007b]; it is crucial to enable data, information

and knowledge exchange. The definition of standards and guidelines maximizes a

model’s output and its scientific production. Several standards for systems biology

have been proposed over the last years [Klipp et al. 2007b, suppl. results]. One

such development is devoted to standardized representation formats for bio-models

[Le Novère 2006]. Already in 1969, Garfinkel advocated

establish[ing] a standard form of what a model should be like, how it

should be described and documented [...]. This is intended in part to

facilitate communication of information about models, which may be

difficult owing to their complexity. [Garfinkel 1969]

A standardized, machine-readable format facilitates model exchange between users,

databases and different simulation tools. Exchange formats enable the unified de-

scription of models, in the optimal case disregarding their particular underlying

modeling approach. However, given the diversity of research questions and the

number of different modeling frameworks used in CSB, there will not be a single

standard description language that covers every aspect of biological modeling. Con-

trarily, rather specific standards with particular purposes will be used in the future

[Strömbäck et al. 2007].

In this work, a bio-model representation format is considered any agreed-upon

encoding of a bio-model in an exchangeable format. Agreement includes the code

language, and the way the model is encoded in that language. Representation for-

mats are typically defined using either the Extensible Markup Language (XML, [Bray

et al. 2008]), or the Web Ontology Language (OWL, [McGuinness and van Harmelen

2004]). In the context of biological modeling, the most prominent representation for-

mats are the standardized Systems Biology Markup Language (SBML) [Hucka et al.

2010] for the encoding of biological processes and the CellML for the encoding of

cell biological processes. Further attempts for standardized representation of models

include the NeuroML [Gleeson et al. 2010] for the encoding of neurophysiology mod-

els, but also formats for discrete event based models such as the Biology Petri Net

Markup Language (BioPNML, [Chen et al. 2002]) for the representation of Petri

Net models representing biological systems, or the π Calculus Markup Language

16

(πML, [Köhn and John 2007]) for the representation of π Calculus based models

(Section 2.2.3).

2.2.1. Systems Biology Markup Language

The Systems Biology Markup Language (SBML, [Hucka et al. 2010]) is a community

effort encompassing researchers and software developers from different institutes.

It is a standard representation format for the description of biochemical reaction

networks, including cell signaling pathways, but also metabolic pathways, gene reg-

ulation networks etc. SBML has been adopted by more than 200 software systems

from simulators to modeling tools and databases. As such it has been the most suc-

cessful standard in the field so far [Li et al. 2010]. SBML’s major revisions are called

levels. A level represents substantial changes to the composition and structure of

the language [Hucka et al. 2010]. Minor revisions lead to a new SBML version, and

each errata results to a new revision. The current version is SBML level 3, version 1

core. An SBML model2 incorporates the following main parts [Hucka et al. 2010]:

• Function definition: A named mathematical function available for use in

the model.

• Unit definition: A named new unit of measurement.

• Compartment: Container for species location, either representing physical

structures or not. It is assumed to be a well-stirred one.

• Species: A pool of any kind of entities of the same kind.

• Parameter: A quantity with a symbolic name (constants or variable, global

or local).

• InitialAssignment: A mathematical expression defining the initial condition

of the model.

• Rule: A mathematical expression defining how to calculate the value or the

rate of change of a variable.

• Constraint: A mathematical expression computing a true/false value from

model variables, parameters and constants.

• Reaction: Statement with an associated rate expression and describing a

process that might change the amount of one or more species.

2In the following, an “SBML model” is considered being an SBML level 2, version 1 model.

17

• Event: Statement describing instantaneous, discontinuous change in one or

more variables when a condition is triggered.

From level 3 on, SBML is modular, with a core definition and several proposed ex-

tensions (e. g. for multi-components or spatial information3). Sample SBML models

are provided in Appendix A.2.

2.2.2. CellML

CellML [Cuellar et al. 2009] is an “implementation-independent model description

language for specifying and exchanging biological processes” [Wimalaratne et al.

2009b]. Its language definition is available from the CellML Document Type Defini-

tion (DTD) [Cuellar et al. 2006]. The current version of the language is CellML 1.1,

the successor of CellML version 1.0. CellML4 supports a modular structure, allowing

modelers to reuse parts of existing models [Cuellar et al. 2006].

CellML focuses on the mathematical formulation of biological processes. The main

characteristics of a CellML model are the “explicit representation of modularity” and

the “flexibility of the language” [Lloyd et al. 2004]. Both allow for the description of

a diverse range of cellular and sub-cellular systems, including biochemistry, electro-

physiology, system physiology and the mechanics of the intracellular environment

[Lloyd et al. 2004].

CellML, in contrast to SBML, puts its major focus on the definition of components

(i. e. functional units representing biological entities such as physical compartments

or species, but also modeling abstractions [Cuellar et al. 2006]). From its resources5,

CellML now offers a set of standard components in CellML 1.1 format that through

their public interfaces can be recombined into greater models of biological systems

[Cooling et al. 2010]. A CellML model is build as a network of connections between

self-contained components [Cuellar et al. 2006]:

• <model> element: The CellML root element, contains all the following ele-

ments

• <component> element: Smallest functional unit of a model, contains the vari-

ables and mathematics to describe the behavior of the subsystem

• <connection> element: Connects components to each other, and maps vari-

ables in one component to variables in another

3Further information is available from http://sbml.org, last accessed 14 March 2011.
4In the following, a “CellML model” is considered being a CellML 1.1 model.
5http://models.cellml.org, last accessed 14 March 2011.

18

http://sbml.org
http://models.cellml.org

• <import> element: Allows for import of further valid CellML models

• <unit> element: Allows for the definition of units, apart from standard units

already provided; every variable and number has to have a unit assigned

• <group> element : Allows to define logical (encapsulation) and physical (con-

tainment) relationships between components to form hierarchical structures

(i. e. a tree of components linked by parent-child relationships of the same

type)

2.2.3. πML

Preliminary work on an exchange format for the π Calculus, called πML [Köhn and

John 2007], shows how the encoding of π Calculus models is feasible. We propose an

XML Schema that can be used to describe π Calculus models in a common XML-

based encoding. It is available online from the sourceforge project6. The major

building block of a basic πML-encoded bio-model are:

• channel definitions (global and private)

• nested process definitions

• initial process definitions

The language is build in a modular way, consisting of a core πML XML schema

plus extensions for existing π Calculus variants. The current language has three

extensions:

times The times extension allows to call a process n times, while the original πML

schema needs to call each process separately, even the ones of the same type.

polyadic π The polyadic π Calculus allows to communicate more than one name

over a channel. This πML module extends the original definition and call by

additional lists of parameters. A number of parameters for that process can

be defined with each new process definition.

stochastic π The stochastic π Calculus allows to assign rates to communications

(i. e. assign the probability of that action to take place). The extension defines

a rate attribute for local channels.

Listing 2.1 shows the simplest extension for the core πML language, the times

extension. It redefines the original schema by extending the callType definition

with the additional XML attribute times.
6http://www.sourceforge.net/projects/piml, last accessed 14 March 2011.

19

http://www.sourceforge.net/projects/piml

1 <xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema">

2 <xs:redefine schemaLocation="PIML.xsd">

3 <xs:complexType name="calltype">

4 <xs:complexContent >

5 <xs:extension base="calltype">

6 <xs:attribute name="times" type="xs:positiveInteger"

7 use="optional"/>

8 </xs:extension >

9 </xs:complexContent >

10 </xs:complexType >

11 </xs:redefine >

12 </xs:schema >

Listing 2.1: The times extension of the core πML language.

In [Köhn and John 2007] we presented a simple π Calculus model that simulates

Euglena movements. Appendix A.2.2 shows the XML example complying with the

XML schema for the basic π Calculus.

2.2.4. Further investigations

A range of further formats and format proposals exist. For example, computational

neuroscientists investigate means for successful exchange of models and simulations

[Nordlie et al. 2009]. The community is well-aware the benefits of sharing and model

descriptions, and also simulation code, through model repositories and standard

languages. It just recently published an updated specification for the standard

model description language NeuroML [Gleeson et al. 2010]. The language exists in

three Levels with different focuses: Level 1 describes the neuronal morphology and

meta-data assigned to a model (MorphML). Level 2 extends Level 1 to describe also

electrical properties of the model (ChannelML). Level 3 then provides constructs to

describe the neuronal network of a model (NetworkML). NeuroML is XML-based

and uses a modular approach to defining XML Schemas for the different language

levels. In contrast to SBML and CellML, it defines very specific, high-level model

features [Gleeson et al. 2010].

BioPNML is another example for an XML-based format fostering the standard-

ized representation of biology models in Petri Net modeling. The format definition

focuses on the representation of metabolic networks. It covers information on the

network, but also encodes so-called exchange data such as for the graphical repre-

sentation of the network.

For further information on model representation formats, Strömbäck et al. [2007]

lists investigations beyond the above-named.

20

2.3. Meta-information

Existing representation formats focus on encoding the model structure, including

the mathematical knowledge, interactions between the modeled entities and net-

work structures. In SBML and CellML, the initial parametrization is also part of

the model itself. However, one prerequisite for further working with a model is

the incorporation of meta-information. It provides additional knowledge about the

modeled system and enhances the computer-processed understanding of what is en-

coded in the XML strings. Hence modelers neither have to worry about details of

file formats, nor do they have to dissect a model to understand what it is about

[Le Novère 2006]. Meta-information are, for example, incorporated in the vitaliza-

tion of models [Wimalaratne et al. 2009b], the transformation of models from one

format into another [Villéger et al. 2010], the integration of models [Krause et al.

2009] and model-related data [Lambrix et al. 2009], the reasoning about models

[Kell and Mendes 2008], the search for models [Henkel et al. 2010], or the model’s

presentation to a user in an information resource [Li et al. 2010; Swainston 2010].

2.3.1. Data – information – knowledge – meta-information

For the exploration of a model’s meaning, different sources and levels of sources can

be used. The following definitions are given to help in distinguishing them in the

remainder of this work.

Data simply exists and has itself no significance beyond its existence [Bellinger

et al. 2004]. Following Rowley and Hartley [2008], data is considered unprocessed,

discrete facts or observations; it lacks context and interpretation. Classical database

and information systems refers to data as the values of the different attributes in

the database relations.

Example 2.3.1 For example, the sequencing of a DNA results in a set of data,

which is a collection of letters ‘A’, ‘G’, ‘C’, ‘T’, ‘N’.

Meta-data then is the explanation of the data. In Information Systems science, it

is used to “store derived properties of media useful” [Kashyap and Sheth 1996]. In

a database, the table- and attribute names are considered meta-data. Furthermore,

the description of the data (e. g. in a data dictionary) can be referred to as meta-data.

Example 2.3.2 A possible meta-data for the above sequence of letters is an ex-

planation what those letters stand for: A – adenine, G – guanine, C – cytosine, T –

thymine, and N – non-defined.

21

Different types of meta-data can be distinguished. Following Kashyap and Sheth

[1996], the relevant sub-groups that further describe the content of the document

are:

content independent meta-data captures information that is independent of the

content of the document it is associated with, for example modification date,

or location of a document.

content dependent meta-data depends on the content of the document is associ-

ated with.

• direct content-based meta-data is based directly on the contents of

the document, for example full-text indices based on the text of the doc-

ument.

• content-descriptive meta-data describes the content of a document

without direct utilization of the documents’ content, for example textual

annotations.

– domain-specific meta-data describes the meta-data in the man-

ner specific to the application or subject domain of information, for

example domain-specific ontologies.

While domain-specific meta-data is related to a particular application area, all

other types of meta-data reflect the format and organization of the underlying data

[Kashyap and Sheth 1996].

The process of interpreting data leads to information [Lehner 1999]:

Definition 2.3.1 (Information). Information is data that has been given meaning

by way of relational connection. (Ackoff in [Bellinger et al. 2004])

In other words, data becomes information after it has been processed such as that

it is then relevant for a specific purpose or context, and therefore is meaningful,

valuable, useful and relevant [Rowley and Hartley 2008]. However, Lehner [1999]

warns that providing information is no commitment to the truth of that information.

In computer parlance, a relational database makes information from the data

stored within it [Bellinger et al. 2004]. In general, the rule applies that the better

the data the more trustful the information gained from it [Lehner 1999].

Example 2.3.3 The processing of the above letters (data) will lead to DNA se-

quence information. The information gained from a sequencing data set could, for

example, be ATG or AUG. It is specific to the context of DNA/RNA analysis.

22

Using techniques that collect relevant information and process leads to the gain

of knowledge:

Definition 2.3.2 (Knowledge). Knowledge is the capacity for effective action in a

domain of human practice. [Denning 2001]

In contrast to information, knowledge involves understanding [Rowley and Hartley

2008]; it can be referred to as “justified true belief” [Lehner 1999].

Example 2.3.4 Understanding the above sample sequences ATG and AUG will

lead to the knowledge that both are start codons of the DNA and RNA respectively.

The knowledge about ATG might include the fact that it encodes “amino acid

methionine (Met) in eukaryotes”.

Knowledge by itself does not allow for further knowledge inference. Cognitive

and causal processes are part of the understanding, that is taking knowledge and

synthesizing new knowledge from it, as exemplified by Ackoff in [Bellinger et al.

2004]:

[..] elementary school children memorize, or amass knowledge of, the

”times table”. They can tell you that ”2 x 2 = 4” because they have

amassed that knowledge (it being included in the times table). But when

asked what is ”1267 x 300”, they can not respond correctly because that

entry is not in their times table.

Dealing with understanding is not within the scope of this thesis.

In database and information systems, the meta-information level is rarely con-

sidered. One can, however, refer to meta-information as additional information on

both, the data and the meta-data.

The CSB environment often refers to annotations as the thing that encodes meta-

information and meta-data. The term annotation is a very general one, often denot-

ing an additional, explanatory note – a “note of explanation or comment added to a

text or diagram”7 or, more generally, to a document. For the scope of this work an

annotation is considered additional information (i. e. meta-information) on a model

or a model constituent, mostly encoded using references to entries of ontologies. It

may be provided together with the model or externally.

2.3.2. The concept of Ontology

Addressing the issues of terminological and conceptual conflicts is the task of on-

tological engineering – a research field studying methods and methodologies for

7New Oxford American Dictionary, Second Edition, Oxford University Press Inc.

23

ontology development. Ontologies have become particularly popular with the up-

streaming work on the semantic web – the “extension of the current Web in which

information is given a well-defined meaning by annotating Web content with ontol-

ogy terms” [Lambrix 2005]. Another application area of ontologies is the use for

meta-information encoding in the context of biological data and models.

In 1993, Gruber [1993] defined an ontology as: “a specification of a conceptu-

alization”, saying that it is considered “a description (like a formal specification

of a program) of the concepts and relationships that can exist for an agent or a

community of agents”8. The generic definition has been further precised by Smith

[2010]:

Definition 2.3.3 (Ontology). Ontology is the science of what is, of the kinds and

structures of objects, properties, events, processes and relations in every area of

reality. For an information system, an ontology is a representation of some pre-

existing domain of reality which:

1. reflects the properties of the objects within its domain in such a way that there

obtains a systematic correlation between reality and the representation itself

2. is intelligible to a domain expert

3. is formalized in a way that allows it to support automatic information process-

ing.

Barry Smith’ definition of Ontology restricts the concept to real world entities.

There exist oppositional definitions that see Ontology as a broader concept (see for

example the discussion on “The Problem of Abstract Entities” in [Carnap 1956,

pp. 13-22]). However, for the scope of biology ontologies used in the context of

this work, we will follow the above definition. “Reality” is extended by mathemat-

ical terms and modeling concepts to apply Definition 2.3.3 on the Systems Biology

Ontology (Section 3.1.2).

Ontologies in computer science In computer science, the term “ontology” refers

to an

engineering artifact, constituted by a specific vocabulary used to describe

a certain reality, plus a set of explicit assumptions regarding the intended

meaning of the vocabulary words [Guarino 1998].

8A detailed explanation of that short definition can be found on http://www-ksl.stanford.

edu/kst/what-is-an-ontology.html, last accessed 01 May 2010. An explanation of Gruber’s

interpretation of the term “conceptualization” can be found in [Guarino 1997].

24

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

Ontologies are used without its philosophical aspects and rather concentrate on the

specification of concepts of a domain of interest in a computer- and human-readable

way, respecting the concepts’ shared understanding [Stevens et al. 2010]. Opposed to

the Ontology concept introduced above, an ontology in computer science is language-

dependent. Therefore, two ontologies can use different vocabulary but still share the

same conceptualization.

Apart from specifying terms and relating them to each other, ontologies’ benefits

further include the “reuse, sharing and portability of knowledge across platforms,

and improved maintainability, documentation, maintenance, and reliability” [Lam-

brix 2005].

Ontologies in modeling and simulation The use of ontologies for the linkage of

knowledge and information in M&S has already been advocated [Miller et al. 2004;

Fishwick and Miller 2004; Silver et al. 2007; Benjamin et al. 2006, 2007]. The

advantages of using ontologies in M&S include the possibility to archive taxonomic

properties, for educational purposes, but also to distinguish instances of a particular

model [Fishwick and Miller 2004]. One important application of ontologies in M&S

is the increase of interoperability, integration and reuse of simulation artifacts (i. e.

libraries, components, simulators, simulation tools, and models) [Miller et al. 2004].

The current approaches to use ontologies mainly focus on the simulation model

development task.

Ontologies in computational systems biology Biology ontologies (bio-ontologies)

encode biological knowledge in a structured way. They mainly concentrate on: bi-

ological entities (e. g. the CheBI term CHEBI:25699 organic ion), on biological

functions (e. g. the GO term GO:0043167:ion binding), and on biological processes

(e. g. the GO term GO:0051516:regulation of bipolar cell growth). One ad-

vantage of ontologies is that a concept can be used to handle ambiguous terms

and synonyms which particularly in Biology occur often. On the one hand, several

synonyms might exist for one biological thing (e. g. “Glucose synthesis”, “Glucose

biosynthesis”, “Glucose formation” or “Gluconegenisis”); on the other hand, the

same name might refer to different biological things depending on the particular

context (e. g. the phrase “bud initiation” which might be related to “flower bud

initiation” in flower development, to “cell bud initiation” in cell development, or

“tooth bud initiation” in tooth development)9. To give another example, there are

on average seven synonyms for a single human gene. The one with most synonyms

9Example provided by Janna Hastings during the EBI Roadshow Workshop http://www.ebi.ac.

uk/training/roadshow/100924_rostock.html, last accessed 14 March 2011.

25

http://www.ebi.ac.uk/training/roadshow/100924_rostock.html
http://www.ebi.ac.uk/training/roadshow/100924_rostock.html

counts 164 different terms10. The situation demands the definition of controlled

terms to handle different and identical concepts. Particular bio-ontologies will be

introduced in Section 3.1.2.

2.3.3. MIBBI

While representation formats (Section 2.2, Section 5.4) describe how to encode the

information pertaining to the models, they do not cover what to encode. Defining

rules for the latter is the role of so-called Minimum Information (MI) guidelines. The

notion of MI guidelines had originally been introduced to Biology to “clearly describe

an experiment and report the variables necessary for data analysis” [Quackenbush

2006].

The initiative behind MI checklists is the global Minimum Information for Bio-

logical and Biomedical Investigations project (http://www.mibbi.org). MIBBI is

coordinated by representatives of different communities developing MI checklists, or

guidelines. The web-based resource lists the existing MIs for the field of biological

and biomedical investigations, provides access to them and aims at improving the

transparency, accessibility, but also the interoperability of existing checklists which

leads to a unification of the standardization community [Taylor et al. 2008].

A guideline for minimum information is not intended as a substitute for production

protocols and procedures that are documented elsewhere; the provided information

will usually not be sufficient for reproduction, but it will clearly identify the relevant

entities of an experiment [Sherman 2009]. As such, the MI guidelines are a help-

ful mean for the semi-formal description of rules for the repetition of experiments

(in the very broad sense) and other procedures particularly used in the fields of

computational biology and biology.

While the sets of rules are human-understandable and descriptive, they cannot be

used for automatic processing in a computational environment. Consequently, the

guidelines need to be complemented by a certain data model in order to be “used”.

For MIRIAM, there exist several data models that comply with the MIRIAM guide-

lines. One example is SBML (Section 2.2).

2.3.4. Resource Description Framework

The Resource Description Framework (RDF, http://www.w3.org/RDF/) is “a lan-

guage for representing information about resources” [Miller and Manola 2004], in

particular for representing meta-data about Web resources in the World Wide Web.

The RDF primer generalizes the concept of a “Web resource” to “information about

10http://blog.novoseek.com, last accessed 26 March 2010.

26

http://www.mibbi.org
http://www.w3.org/RDF/
http://blog.novoseek.com

things that can be identified on the Web, even when they cannot be directly retrieved

on the Web” [Miller and Manola 2004, Sec. 1]. RDF reuses ideas from knowl-

edge management, artificial intelligence, data management, logic-based knowledge

representation, relational databases and more [Miller and Manola 2004, Sec. 2.5].

One advantage of the standardized and formal encoding of knowledge through RDF

statements is that it can be computationally processed by applications. The com-

mon framework provided by RDF to express the information in a standardized way

leverages the exchange of information between different applications.

RDF statements The basic concept of RDF is the identification of things using

Web identifiers, so-called Uniform Resource Identifiers (URIs). The resources are

described by properties with particular property values [Miller and Manola 2004].

The specific terminology used in RDF is (taken from [Miller and Manola 2004,

Sec. 2.1]):

Definition 2.3.4 (subject). The part that identifies the thing the statement is about

is called the subject.

Definition 2.3.5 (predicate). The part that identifies the property or characteristic

of the subject that the statement specifies is called the predicate.

Definition 2.3.6 (object). The part that identifies the value of a property is called

the object.

Because of the generality characteristic of URIs, they are used in RDF to identify

subjects, predicates, and objects in statements. Miller and Manola [2004] extend

the concept of URIs to URI references [Miller and Manola 2004, Sec. 2.1].

Definition 2.3.7 (URIref (URI reference), adapted). A URI reference (or URIref)

is a URI, together with an optional fragment identifier at the end. The fragment is

separated by the # character.

A resource is then:

Definition 2.3.8 (resource). A resource is defined as anything that is identifiable

by a URI reference).

Objects in RDF may either be URIrefs, or constant values, so-called literals. Both,

subject and predicate must not be literals, they always have to be URIrefs. Using

URIrefs as subject, predicate and object in statements supports the development

and use of shared vocabularies on the web [Miller and Manola 2004]. One advantage

27

Figure 2.1.: The RDF representation as a graph with nodes and arcs representing the resources, and

their properties and values (A). The triplet representation of the graph (B). The RDF

representation in RDF Syntax RDF/XML for recording and exchanging the graphs (C).

of using URIrefs for statement definitions is that an URIref allows for the more

precise identification of a thing than using a sole string. Another advantage is that

a thing with a URIref assigned can be further described by other RDF statements,

while a string chain (i. e. a literal) cannot.

The sample statement “#metaid is http://purl.org/dc/terms/created whose

value is 2011-01-11T21:14:48Z” defines the subject with a URIref. The predicate

is represented by the URIref http://purl.org/dc/terms/created, and the object

is a given by the literal 2011-01-11T21:14:48Z.

RDF notations RDF allows to model the encoded information in different ways

(Figure 2.1).

The graph representation uses nodes and arcs (Figure 2.1, A). An RDF graph is

formed based on the idea that “the things being described have properties which

have values” [Miller and Manola 2004, Sec. 2.1]. Resources are described by mak-

ing statements about those properties and values: The nodes in an RDF graph

represent the subject and object of a statement; the arc represents the predi-

cate. Each arc is directed from subject node to object node. Ellipses in the

RDF graph represent URIrefs (e. g. #metaid), while boxes represent literals (e. g.

2011-01-11T21:14:48Z).

The triplet notation (Figure 2.1, B) offers an alternative to the graph represen-

tation, for example if a graph gets to inconvenient to be drawn. Each statement

28

of the graph is written as a single triplet, consisting of the subject, object and

predicate (in that order). A triple describes a single arc in the graph, with the

subject being the arc’s beginning and the object being the arc’s ending. URIrefs

are put in angle brackets (e. g. <#metaid>), while literals are put in quotes (e. g.

"2011-01-11T21:14:48Z").

Furthermore, RDF uses XML to represent statements in a machine-processable

way (Figure 2.1, C). The syntax for writing RDF is called RDF/XML [Beckett

2004, Sec. 3]. The description of a statement is enclosed in an rdf:RDF XML el-

ement. The statement itself is enclosed in an rdf:Description element, being

regarded a description about the subject of the statement. The subject is re-

ferred to in the rdf:about attribute inside the rdf:Description element (e. g.

rdf:about="#metaid"). Nested within the containing rdf:Description element is

the property element representing the predicate (e. g. <dc:created />) and object

of the statement (e. g. 2011-01-11T21:14:48Z). The nesting indicates the applica-

tion of the property on the subject. More details on the RDF/XML syntax are given

in [Beckett 2004].

RDF containers and collections Often, there is a need to describe a group of

things in RDF. The framework provides four different concepts to encode grouped

statements, including the three different RDF containers rdf:Bag, rdf:Seq and

rdf:Alt, and the RDF collection rdf:List [Miller and Manola 2004, Sec. 4].

rdf:Bag A resource having the type rdf:Bag represents a group of resources or

literals [..] where there is no significance in the order of the members.

rdf:Seq A resource having the type rdf:Seq represents a group of resources or

literals [..] where the order of the members is significant.

rdf:Alt A resource having the type rdf:Alt represents a group of resources or literals

that are alternatives (typically for a single value of a property).

rdf:List A resource having the type rdf:List represents a group of resources or

literates that consists only of the specified members.

While bags, sequences and alternatives are open (i. e. there is no way of stating

that they cover all members of a group) the list collection defines a closed group of

resources.

29

2.4. Storage of XML documents

The focus for this work is on bio-models encoded in standardized XML formats.

XML documents can be classified into three types [Klettke and Meyer 2003a]:

data-centric, document-centric and semi-structured. Data-centric XML documents

are regular and structured documents with typed data (e. g. XML-encoded gene

sequence data) . Contrarily, document-centric documents contain predominantly

full text, mostly designed for human readers (e. g. XML-encoded brochures or text

books); they can be structured differently. Finally, semi-structured documents are

a mixture of the two former types, containing characteristics of both, i. e. pure data

but also textual descriptions [Klettke and Meyer 2003b]; the majority of bio-models

considered in this work is semi-structured.

A work on XML documents necessitates methods for efficient storage and access of

documents and document parts, the support of standardized XML query languages,

standardized interfaces to applications such as DOM, and multi-user support, par-

ticularly transaction support, recovery and resynchronization [Helmer et al. 2003].

General storage concepts for XML documents include [Klettke and Meyer 2003a]:

• Storing the XML documents as data files with additional indexing of the doc-

ument context (full text index) and structure (structure index)

• Storing the XML graph structure (simple or Document Object Model struc-

ture)

• Mapping the XML document structure on a relational or object oriented

database

The approach of indexing the XML documents is often taken for documents with

a document-centric structure. Here, native XML databases or DBMS supporting

XML as a data type can be used. They keep the XML document in its original

form. Furthermore, IR techniques can be applied and the document’s mark up can

be used for the interpretation of the XML document (e. g. <species> in an SBML

document). A schema definition is not necessary to store the documents [Klettke

and Meyer 2003a].

The mapping on a relational database schema is the preferred approach for data-

centric documents; a number of automatic as well as user-defined mapping solutions

exist. One prerequisite is the existence of an XML schema which is used to define the

mapping on the database schema. The full documents are not kept. Consequently,

a document re-creation is only partially realizable. The advantage of this approach

lies within the availability of techniques for the automatic mapping of the XML

30

document structure on a database structure. Furthermore, SQL queries are available

for later search on the data [Klettke and Meyer 2003a].

Typically, semi-structured XML documents are stored as graph structures. There-

fore, all XML elements and their values are stored in a relation, together with their

predecessors. A second relation stores the XML attribute names and their corre-

sponding values. The attributes are then linked to the elements they occur in. An

advantage of this storage approach is that an XML schema definition is not nec-

essary. However, the document re-creation is only hardly possible and demands a

high effort. The approach only allows for XQuery-like queries on the data. SQL has

to be adapted to work on the document tree. Updates and queries can be easily

realized with existing DOM methods [Klettke and Meyer 2003a].

Hybrid and redundant XML storage The above-introduced storage approaches

for XML documents can also be combined into hybrid approaches [Klettke and

Meyer 2003a]. This is often necessary if XML documents have to meet the demands

of more than one application. Also, if the document character cannot clearly be

determined, hybrid approaches are an appropriate solution. For example, in SBML

(Section 2.2.1), data-centric encoding of the list of species (listOfSpecies) can

be mapped on a relational schema; the document-centric encoding of SBML notes

(notes) is stored using an indexing approach.

Section 6.3 discusses the various storage options and their advantages and disad-

vantages for use with bio-models in full detail.

2.5. Retrieval

Chapter 1 has already mentioned the increasing complexity and number of compu-

tational models of biological systems (Figure 1.2 on page 5 shows the numbers for

BioModels Database). Because of the size of systems under consideration, as well as

their multi-scale aspects, modeling activity in integrative systems biology requires

researchers to leverage new approaches from prior work [Waltemath et al. 2011a]. In

addition, the modeled systems often build on each other or interact. Many groups

work on similar biological questions, often in close cooperation. All these facts call

for the reuse of existing models and their associated simulation experiments.

Reuse in general is considered “the action of using something again or more than

once”11. More specifically, reuse in Software Engineering is referred to as “the

isolation, selection, maintenance and utilization of existing software artifacts in the

11New Oxford American Dictionary, A. Stevenson and C.A.Lindberg (Ed.), Second Edition

31

Figure 2.2.: The model management workflow, showing the role of search, retrieval and storage.

development of new systems” [Robinson et al. 2004] (citing [Reese and Wyatt 1987]).

Brash [2001], in the context of Information Systems development, defines reuse as

“the employment of a previously used and explicitly defined systems development

artefact’s in another information systems development process”. Although the most

common form of reuse is practiced on code level, reuse can be applied to different

stages of development, including the requirements specification, the model design, its

implementation and testing [Robinson et al. 2004] (citing [Reese and Wyatt 1987]).

A successful retrieval is the prerequisite for model reuse. Figure 2.2 shows how the

retrieval problem is relevant for the systems biology workflow. Given a particular

question, hypothesis or problem, the model base can be searched for related models

dealing with that case. Ideally, a number of relevant models are retrieved and

adjusted (i. e. reused in a similar context). More precisely, a particular problem is

formulated. It represents the biological modeling question of interest. Keywords are

determined and then used to query the model base. The result is a set of retrieved

models. They are reused to solve the problem, for example by adaptation of the

existing models, or by merging them. The newly developed model undergoes the

typical verification, testings and potential refinements and corrections. Afterwards,

it is stored either as a new version or a new model in the model base.

In this work, the problem of retrieving relevant information from a given data-

and information base is partially addressed by using database techniques, but also

grounded on Information retrieval (IR) techniques. IR is the process of recovering

“an information stored in a system (i. e. a database) on users demand” [Ferber 2003].

Vannevar Bush’s article “As we may think” [Bush 1945] first popularized the IR idea.

Interestingly, Bush already then used an example from Biology to motivate the IR

32

problem, saying that

“Mendel’s concept of the laws of genetics was lost to the world for

a generation because his publication did not reach the few who were

capable of grasping and extending it; and this sort of catastrophe is

undoubtedly being repeated all about us, as truly significant attainments

become lost in the mass of the inconsequential”.12

IR supports vague queries on different kinds of documents, including text, im-

age, or music documents. Queries can be semantically more complex than SQL

statements; when searching a document collection, especially containing multime-

dia documents, the corresponding data bases are often searched by the document’s

characteristics.

While data retrieval queries typically return exactly matching data sets (i. e. a data

set is checked for the existence or absence of a particular entity), IR-techniques also

include vague or similar matches in the query result [Van Rijsbergen 1979]. A data

retrieval system searches for data by exactly defined, complete queries, mostly using

artificially constructed SQL statements (SELECT FROM WHERE). Opposed to that, IR

systems allow to query the data vaguely without formally defining the query (Find

all documents dealing with . . .). The query in that sense is an incomplete query in

natural language.

However, a certain error tolerance must always be accepted when using IR ap-

proaches, whereas in data retrieval all search results are relevant to the query [Ferber

2003]. An advantage of data retrieval methods over IR methods is that queries can

be explicitly answered by accessing the values of the corresponding attribute(s). The

data is stored in a structured way and can be directly queried. In an IR system, the

data is stored in an unstructured way; the demanded information to query is often

only implicitly given [Ferber 2003] and necessitates a preprocessing and analysis of

the documents.

Finally, data retrieval queries result in a set of equally relevant data sets. On the

contrary, IR queries result in a list of relevant documents, sorted by their relevance

regarding the query.

Information retrieval models

Information retrieval models (IR model)13 are existing IR based methods for the

retrieval of documents. They are defined as [Baeza-Yates and Ribeiro-Neto 1999,

12Mendelian Inheritance, first published in 1865 and 1866, and then re-discovered in 1900 http:

//en.wikipedia.orgh/wiki/Mendelian_inheritance, last accessed 14 March 2011.
13The term “model” must not be confused by the definition for a bio-model given earlier.

33

http://en.wikipedia.orgh/wiki/Mendelian_inheritance
http://en.wikipedia.orgh/wiki/Mendelian_inheritance

p. 23]:

Definition 2.5.1 (Information retrieval model). An information retrieval model is

a quadruple (D,Q,F,R(qi, dj)) where

1. D is a set of logical views/representations for the documents in the collection

2. Q is a set of logical views/representations for queries

3. F is a framework for modeling document representations, queries and their

relationships

4. R(qi, dj) is a ranking function defining ordering among the documents dj with

regard to the query qi

For the IR models considered in this work, the representation of a document

di ∈ D consists of a set of words. Processed words are called terms. IR systems

typically categorize the extracted terms into so-called features, that is “information

extracted from an object” [Baeza-Yates and Ribeiro-Neto 1999, p. 442] where the

information has some prominent attribute or property.

A query qi ∈ Q is considered a set of words which has been transformed into a

set of terms. Transformations include typical preprocessing methods such as lexical

analysis, stopword removal, stemming and others [Baeza-Yates and Ribeiro-Neto

1999, pp. 165-73].

IR systems can be classified by the underlying IR models. Kuropka [2004] provides

an overview of existing IR models (Figure 2.3). He distinguishes IR models by

(1) the mathematical model used, and by (2) the properties of the model. This

categorization follows the suggestions of [Baeza-Yates and Ribeiro-Neto 1999]. The

three different mathematical bases are:

• Set-theoretic models use set operators for the determination of similarities be-

tween a document and a query, e. g. ∩, ∪.

• In algebraic models, both query and document are represented as some alge-

braic mean such as vectors, matrices or tuples. The similarity is then calculated

using scalar products, cosine measures and others.

• Finally, probabilistic models determine similarities between document and query

as the probability for the relevance of a document for a given query.

Furthermore, [Kuropka 2004] distinguishes IR models by their ability to take term

interdependencies into account:

34

Figure 2.3.: Categorization of IR-models by Kuropka [2004]. IR-models used in this thesis are

marked in gray.

• Models without term-interdependencies consider each term an independent

entity.

• Models with immanent term-interdependencies define the interdependencies

between the terms themselves.

• Models with transcendent term-interdependencies have term interdependencies

defined by externals, e. g. the user.

From the classification of IR models given in [Kuropka 2004], we will here only

consider the Standard Boolean Model (SBM) and the Vector Space Model (VSM).

Standard Boolean Model The standard IR model is the simple yet powerful Stan-

dard Boolean Model (SBM, [Baeza-Yates and Ribeiro-Neto 1999], pp. 25-27). Follow-

ing the categorization by Kuropka [2004], the SBM is mathematically a set-theoretic

model, without any term-interdependencies (i. e each term is considered an indepen-

dent entity); it builds on Boolean algebra. The term weights are all binary (i. e. 0

or 1). A query q is a conventional Boolean expression in disjunctive normal form.

A document is relevant if it fulfills the requirements of the query q. Otherwise, the

document is predicted to be irrelevant.

It is defined as (definition 2.5.2):

Definition 2.5.2 (Standard Boolean Model, [Baeza-Yates and Ribeiro-Neto 1999],

35

p. 26). For the Boolean model, the index term weight variables are all binary i. e.

wi,j ∈ {0, 1}. A query q is a conventional Boolean expression. Let −→q dnf be the

disjunctive normal form for the query q. Further, let −→q cc be any of the conjunctive

components of −→q dnf . The similarity of a document dj to the query q is defined as

sim(dj , q)=

1 if ∃ −→q cc | (−→q cc ∈ −→q dnf) ∧ (∀ki, gi(
−→
d j) = gi(

−→q cc))

0 otherwise

If sim(dj , 1) = 1 then the Boolean model predicts that the document dj is relevant

to the query q (it might not be). Otherwise, the prediction is that the document is

not relevant.

The two main advantages of the SBM are its clearly defined IR model and its

simplicity [Baeza-Yates and Ribeiro-Neto 1999]. A restriction of the SBM, however,

is that it only distinguishes between “relevant” and “not relevant” documents. As

such, a result ranking cannot be realized. Also, a weighting of single query terms is

not possible, as for example in expressing that “it is particularly important that the

author of the document is Goldbeter and only a minor requirement that the model

describes the cell cycle”. Queries on a system containing a large set of similar,

domain-specific documents (e. g. a database for bio-models) might retrieve only a

small subset of documents which still contains several hundreds of unsorted hits.

To avoid some of the disadvantages, the standard boolean model can be improved,

for example, when using the Extended Boolean Model [Schmitt 2005]. An alternative

is the use of other IR models.

Vector Space Model The Vector Space Model (VSM) was first described in 1975

by Salton et al. [1975]. It is mathematically an algebraic model, without term-

interdependencies [Kuropka 2004]. Using the vector space model, each document

di and query qi are represented by a vector. Each dimension in the vector space

corresponds to a term ti. A formal definition of the Vector Space Model is given by

[Schmitt 2005]:

Definition 2.5.3 (Vector Space Model [Schmitt 2005]). T is a set of terms where

T = {t1, ..., tn} and D is a set of documents where D = {d1, ..., dm}. For each

document di ∈ D exists a term tk ∈ T with a weight wi,k ∈ <. The weights of

di can be combined in a vector wi = (wi,1, ..., wi,n) ∈ <n. The vector wi describes

a document in the vector space model it is called document vector. The query

vectors are constructed in the same way. A query q is represented by q ∈ <n. The

similarity between a document and a query is computed using a similarity function

s : <n ×<n → <.

36

The complexity of the VSM reveals particularly with large documents contain-

ing many terms. All documents have to be considered for a query and evaluated

for relevance. Furthermore, queries of high terms dimensionality result in a high-

dimensional vector space. Another disadvantage of the VSM is, as is true for the

SBM, that it does not consider the document structure (e. g. the word order). The

characteristic of term-independency regards all formed vectors as independent of

each other, while terms are often related to each other (“signaling pathway”).

For a limited set of documents with a reasonable number of terms, however, the

VSM reliably ranks documents relative to a given query vector. The dimensions can

be reduced by preprocessing methods (e. g. stopword removal) or by corpus reduction

through preprocessing with the SBM.

Similarity measures

There exist different measures to determine the similarity between two documents

[Ferber 2003], including the scalar product or the cosine similarity.

The cosine similarity determines the similarity of two vectors by measuring the

cosine of the angle between them. The bigger that similarity value the better a

match. A cosine of ’0’ denotes orthogonality of two vectors, thus indicating that

the corresponding documents are not similar. The retrieved objects are sorted in

descending order according to their simcos(d, q) value. To measure the dissimilarity

of objects, the Euclidean distance can be used. It calculates the distance between two

documents in the vector space. A distance of ’0’ denotes perfect matches. Returned

objects are sorted in ascending order according to their dissim(d, q) values.

Multimedia retrieval

One example for the use of IR techniques is multimedia retrieval. Existing Multi-

media Information Retrieval models (MIR models) describe songs, images, videos

and other multimedia documents with different kinds of information, including

meta-information like the document author, title, spectral information, or keywords

[Zhang et al. 2009]. Common measures to determine the similarity between multime-

dia documents exist. Metadata-based similarity measures (MBSM) define queries by

connecting keywords gained from the media object with Boolean operators like ∧,∨.

They use text retrieval techniques to compare these query keywords with features

of the model. Content-based similarity measures (CBSM) utilize so-called low-level

features (or automatically extractable items) such as rhythm and incorporate them

in the queries to search the content of music pieces. Different methods have been

developed to retrieve the items represented by low-level features (e. g. humming, tap-

37

ping or query-by-example). Semantic-description-based similarity measures (SDSM)

evaluate meta-information on multimedia objects that are described with predefined

words of different vocabularies.

2.5.1. The information retrieval process

The IR process may be split into (1) the preparation process which includes building

the collection from existing documents and creating the indexes, and (2) the retrieval

and ranking process which includes analyzing the queries, retrieving the relevant

documents, and ranking them. Two sample documents are used for illustration:

Example 2.5.1 Document d1 contains the sentence “DKK1 antagonizes WNT

signalling during head formation in mice.”14. Document d2 contains the sentence

“In the mouse, Ror2 and Ror1 knockout phenotypes resemble those of Wnt5a/ null

mice”15.

Collection creation from existing documents To support queries on unstructured

or semi-structured documents, the original documents are preprocessed: First, each

document is split into a set of words. These words are then transformed into terms,

using well-developed standard methods such as stemming, stopword removal and

alike. Structural information is lost during this process, as document elements are

considered mostly detached from their context. We refer to the set of documents di

with
∑
di = D as a collection.

Example 2.5.2 The result of the first preprocessing step for the sample documents

d1 and d2 might, depending on the particular algorithm, lead to the following list of

words:

d1 = {DKK1, antagonizes,WNT, signalling, during, head, formation, in,mice}
d2 = {in, the,mouse,Ror2, and,Ror1, knockout, phenotypes, resemble, those, of,

WNT, null,mice}

The list of words is then processed to contain the following list of terms for d1 and

d2, respectively16:

14taken from [Klaus and Birchmeier 2008].
15taken from [Nusse 2008].
16This example uses the Porter Stemmer and stopword removal. The Porter stemmer is one of the

most commonly used stemming algorithms; it realizes context sensitive suffix removal and has

first been described in [Porter 1980].

38

d1 = {DKK, antagon,WNT, signal, dure, head, format,mice}
d2 = {mous, ror, knockout, phenotyp, resembl,WNT, null,mice}

Index creation One or more indices are built from the collection representation

(Example 2.5.2, bottom). The inverted index (or inverted list) is the most promi-

nent indexing method [Cutting and Pedersen 1989]. It is a “text index composed of

a vocabulary and a list of occurrences” [Baeza-Yates and Ribeiro-Neto 1999, p. 445];

each index entry contains the term derived from the words in the document and a list

of associated documents17. Inverted indices can show different kinds of structure.

For example, a standard inverted file index only indicates the document in which

a word appears while a full inverted index also includes the exact position of the

term within the document. This information enhances the retrieval process. Fur-

ther information can be added to the (term, document) tuples, including the term

frequency, or the inverse document frequency. While the index size is increased,

such additional information allows for a more sophisticated retrieval process, as it

can include, for example, phrase search, if the order of terms is stored.

For each word occurring in a document that documents’ ID is stored in the corre-

sponding entry in the list of terms. The following example shows the inverted index

for d1 and d2.

Example 2.5.3 The inverted index with terms ti for the above documents d1 and

d2 is (extract):

t1 = antagon | d1

t2 = DKK | d1

t2 = dure | d1

t3 = mice | d1, d2

t3 = mous | d2

t4 = phenotyp | d2

t5 = WNT | d1, d2

and so on.

17NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, http://www.itl.nist.

gov/div897/sqg/dads/HTML/invertedIndex.html, last accessed 30 June 2010

39

http://www.itl.nist.gov/div897/sqg/dads/HTML/invertedIndex.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/invertedIndex.html

Query analysis The two processes of building the collection from existing docu-

ments (i. e. extracting words from the document and processing them into terms for

storage in the index) and processing user queries (i. e. converting them into terms

for the query of the index) must rely on the same algorithm. That is why, the pre-

processing of query words is directly dependent on the chosen preprocessing applied

for index creation from existing documents. For example, if Porter stemming is used

to build the index over a collection, then the same stemming method must be used

to preprocess the query into terms.

A processed query contains a set of terms ti that is used to query the built index.

A query term might be restricted to particular features (i. e. < feature, term >

pairs). How the restriction of a search term to a particular feature of the document

enhances the search process will be discussed in Chapter 7.

Example 2.5.4 Let us assume the sample user query uq1:

uq1 = ”WNT in mouse”

If the query is more specific and the system allows to assign the feature “organism”

to the query term “mouse” (organism : mouse), then the query can be refined into:

uq1rev = {WNT, in, organism : mouse}

Preprocessing of uq1rev leads to the internal query presentation q1:

q1 = {WNT, organism : mous}

Document retrieval The retrieval process results in a number of relevant docu-

ments (di, . . . , dj) with respect to a given query qi. To retrieve relevant models

from the document collection, the query terms are mapped on the index terms. All

relevant documents associated with those index terms are added to the result set.

Example 2.5.5 In the example, both documents d1 and d2 will be returned for the

query q1. d1 contains the query term WNT . d2 contains both query terms WNT

and mous.

Result ranking A ranking of the result documents helps the user finding the best

match for his query. A ranking function R (Definition 2.5.1) sorts a list of retrieved

documents by their relevance with respect to a query q. The ranking function can be

trivial to complex. The latter incorporate, for example, predefined weight concepts,

40

user-defined weights, or relevance feedback methods in the ranking process. The

choice of the similarity measure determines the result of the ranking process [Schmitt

2005] as well as the chosen IR model.

The VSM, for example, supports result ranking. Two standard methods to cal-

culate similarity values between a query and a document (as well as between docu-

ments) are the Scalar Product and the cosine similarity.

A further concept in information retrieval are weights. They can give a feature a

higher or lower importance, both in the query and in the result ranking. Weights

can be applied during indexing or during query time. Feature weights, for example,

are set manually during indexing. They weight a particular part of the document

(e. g. “species name” encoded in an SBML file). TF/IDF assign further weights to

terms based on the document and collection analysis. Term frequency (TF) refers to

the number of times a given term t appears in a particular document d (term count),

normalized by the number of terms in that document. Inverse document-frequency

(IDF) refers to the general importance of a specific term within a particular col-

lection; tf-idf is a common approach to determine term weights. Another type of

common weights are user given weights allowing users to assign weights to particular

query terms, for example through the search interface.

2.6. Summary

This chapter defined the basic terminology regarding modeling (model, simulation,

experiment, bio-model), storage approaches for XML files, meta-information (data,

information, knowledge), and information retrieval.

In this work, IR techniques extend the state-of-the-art SQL-based approaches

to model search. The incorporated model features are multisided and necessitate

a distinction between data, meta-data, information and meta-information. These

terms have been defined.

The next chapter elaborates on the state-of-the-art of representation formats,

meta-information encoding, and model storage.

41

3. State-of-the-art

People can’t share knowledge if they don’t speak a common

language.

(Tom Davenport, Lawrence Prusak: Working Knowledge)

One important step towards enhanced model retrieval is a sophisticated bio-model

search system. This can be facilitated by evaluating the meta-information encoded in

state-of-the-art XML model representations. Model meta-information helps inferring

knowledge on the Biology and assumptions behind the model and therefore enables

more detailed queries on the underlying data.

Section 3.1 summarizes available meta-information for bio-model characterization.

One concept for meta-information encoding are ontologies; a selection of existing bi-

ology ontologies is introduced in Section 3.1.2. The purpose of the MIRIAM Guide-

lines is to identify and informally describe relevant information about a model; the

guidelines are described in Section 3.1.3. Section 3.2 then introduces approaches

for the technical encoding of meta-information in SBML and CellML. Finally, Sec-

tion 3.3 outlines storage solutions for XML-based model representation files.

3.1. Meta-information for computational biology models

The CSB community is aware the value of meta-information [Le Novère 2006;

Le Novère et al. 2007; Wimalaratne et al. 2009b; Beard et al. 2009]. The CellML

community, for example, states that

there is an urgent need to [..] provide biological and biophysical annota-

tion of the models in order to facilitate model sharing, automated model

reduction and connection to biological databases. [Beard et al. 2009]

The needs for understanding existing models, reusing them in other context and

extending them resulted in efforts concerned with the identification and encoding of

relevant model meta-information. While the following section discusses the devel-

opment process of generic guidelines for model annotation, the technical encoding

of meta-information is described in Section 3.2.

43

Figure 3.1.: Standard mosaic showing different kinds of meta-information usable for knowledge gain

in the modeling and simulation of computational biological models. Adapted from

[Chelliah et al. 2009], first presented in [Le Novère 2008]. The development of standards

for simulation experiments is part of this thesis work.

3.1.1. The mosaic of standards

The community around SBML developed a set of standards for meta-information

encoding. Chelliah et al. [2009] propose to organize them in the mosaic of standards

shown in Figure 3.1.

On the data level (Figure 3.1, data-model), representation formats for model en-

coding (SBML, SBGN), for simulation experiment encoding (SED-ML, Section 5.4)

and numerical result encoding (SBRML) are shown. The Systems Biology Graphical

Notation (SBGN, [Le Novère et al. 2009]) is a standardized graphical notation for vi-

sualizing maps of biochemical and cellular processes in systems biology. The Systems

Biology Result Markup Language (SBRML, [Dada et al. 2010]) is an XML-based for-

mat for the encoding of numerical results associated with a bio-model. SBRML aims

at encoding and exchanging computational simulation results in a standardized way.

It furthermore relates experimental data to a particular bio-model. One SBRML file

may contain several data sets. Each data set contains a series of values associated

with model variables, and their corresponding parameter values [Dada et al. 2010].

A common way of defining data formats for CSB is by first specifying their Min-

imum Requirements. MIs are federated in the aforementioned MIBBI project (Sec-

tion 2.3.3). Most existing MI guidelines focus on the description of experimental

44

studies. However, some also cover computational systems biology problems: The

reference MI for SBML is MIRIAM (Section 3.1.3) and for SED-ML it is MIASE

(Section 5.2).

The third level shown in Figure 3.1 reflects the specifically developed ontologies

used in each data model to encode meta-information. For SBML, one such standard

ontology is SBO (Section 3.1.2). SED-ML uses KiSAO (Sections 3.1.2 and 5.3), and

SBRML considers the TEDDY ontology (Section 3.1.2).

3.1.2. Biology ontologies for model annotation

Due to the increasing complexity of developed bio-models, computer aid is needed

to analyze the meaning, expressivity and behavior of a model. While the sole in-

formation about the model structure might be sufficient to build a model graph or

to run it in a simulation environment, it is not sufficient to grasp a model’s mean-

ing. But as Le Novère et al. [2007] argue there is no point in exchanging data or

models if nobody except the initial authors could understand the meaning of the

data and the content of the models, respectively. In order to describe the biological

phenomena under study, the model’s XML representations are therefore additionally

annotated, for example, to state that “this XML element ’stands for’ the biologi-

cal entity Drosophila”. The models’ mathematics is unambiguous (as it does not

use words, but mathematical rules), but the meaning of the model and its biologi-

cal and conceptual entities is not communicateable through the sole description of

its mathematics. For the scope of this work, the meaning of an entity is regarded

the “common features of the situations in which it [the entity] is used and of the

activities which it produces” [Osgood et al. 1971, p. 2]. Ontologies are a suitable

technology to encode this knowledge, and they have become an important concept

for the annotation of bio-models (Section 2.3.2). Several communities are concerned

with the development of ontologies to increase semantic content and standardiza-

tion. One example is the Open Biomedical Ontologies (OBO) foundry [Smith et al.

2007]. It is a coordination body for the development and reformation of biomedical

ontologies with regard to agreed upon principles for ontology design, particularly the

ontology format, scope and standard relationships. As such it serves as an umbrella

organization for several bio-ontologies. The following section describes some of the

ongoing bio-ontology efforts.

45

Ontologies for biology entities

In 1998, the Gene Ontology Consortium1 was founded to build the Gene Ontology

(GO). It consisted of a group of database creators working in the field of bioin-

formatics. The initial goal of GO was to enhance the annotation of genes by a

detailed structuring of related vocabulary. Today, GO is a community-developed,

widely accepted controlled vocabulary [Ashburner et al. 2000]. It is made of three

different so-called organizing principles. Those are biological process (referring to

the question “What does the gene product do?”, e. g. “cell division”, GO:0051301),

molecular function (referring to the question “How does the gene product act?”, e. g.

“insulin binding”, GO:0043559), and cellular component (referring to the question

“Where does the gene act?”, e. g. “plasma membrane”, GO:0005886)2. GO is con-

structed of directed acyclic graphs (i. e. hierarchical structures that allow for terms

to have several parent terms). It has quickly developed into a widely-used tool for

biologists and systems biologists and is now a de facto standard for gene annotation,

used by many databases containing information about genes and proteins [Lambrix

2005]. The fact that it is considered a “community standard” and therefore heavily

involves the users in its development process is seen as one of the reasons for the

great success [Bada et al. 2004]. However, community efforts in the development of

ontologies involve contributions from across various research groups, often resulting

in terms that do not follow established conventions for the expression of concepts

[Verspoor et al. 2009]. The outcome is a growing inconsistency in the concept nam-

ing and as well between similar terms, leading, for example, to redundant terms.

Extra efforts have to be taken to assure the ontology quality (e. g. automatic term

transformations) [Verspoor et al. 2009].

The Chemical Entities of Biological Interest ontology (ChEBI, [Degtyarenko et al.

2008]) focuses on the conceptualization of small molecules from the perspective of

chemical entities. It is as well build of three different substructures, namely the

chemical entity ontology (referring to physical entities of interest in chemistry, e. g.

“ion”, CHEBI:24870), subatomic particle ontology (referring to particles smaller than

atoms, e. g. “proton”, CHEBI:24636), and the role ontology (referring to a particular

behavior shown by an entity, e. g. “enzyme inhibitor, CHEBI:23924). Besides the use

of general OBO relationships (e. g. is a or part of), ChEBI developed a wide range

of chemistry-specific relationships (e. g. is tautomer of).

GO and ChEBI each cover a small part of Biology. However, a huge number of fur-

ther ontologies, controlled vocabularies, and databases for biological knowledge are

1http://www.geneontology.org/GO, last accessed 17 January 2011.
2See Janna Hastings, EBI Roadshow Workshop http://www.ebi.ac.uk/training/roadshow/

100924_rostock.html, last accessed 14 March 2011.

46

http://www.geneontology.org/GO
http://www.ebi.ac.uk/training/roadshow/100924_rostock.html
http://www.ebi.ac.uk/training/roadshow/100924_rostock.html

available which concentrate on further aspects of Biology, such as protein sequences

(UniProt, http://www.uniprot.org/, phenotypes (Human Phenotype Ontology,

http://www.human-phenotype-\discretionary{-}{}{}ontology.org), anatomy

(Foundational Model of Anatomy, http://fma.biostr.washington.edu/), or tax-

onomy (NCBI Taxonomy, http://www.ncbi.nlm.nih.gov/taxonomy). Many on-

tologies are devoted to a single organism or species, for example the plant ontology

(http://www.plantontology.org/), or Flybase (http://flybase.org/).

Ontologies for biology modeling concepts

The Systems Biology Ontology (SBO, [Le Novère et al. 2007]) defines and relates

terms for quantitative modeling and thereby fills the gap between the quantita-

tive model (e. g. encoded in SBML) and the biological knowledge. For example,

the semantic information provided by SBO enables developers to specify whether a

species involved in a reaction was a simple chemical or a macro molecule, or what

role it plays in the described process such as being an enzyme or an allosteric acti-

vator [Courtot et al. 2011]. SBO terms can be linked to bio-model constituents. In

SBML, for example, the sboTerm attribute allows to explicitly put a model element

into relation with an SBO term. SBO is build of six different vocabularies:

• the modeling framework branch (the assumptions underlying the mathematical

description, e. g. “continuous framework”, SBO:0000062),

• the participant role branch (function of a physical entity, e. g. “catalyst”,

SBO:0000013),

• the entity branch (a real being participating in an interaction or process, e. g.

“enzyme”, SBO:0000014),

• the quantitative parameter branch (a number representing an entities quantity,

e. g. “Michaelis constant”, SBO:0000027),

• the mathematical expression branch (the formal representation of a calcu-

lus linking parameters and variables, e. g. “Henri-Michaelis-Menten rate law”,

SBO:0000029), and

• the interaction branch (the action or influence happening to an entity at a

given time or place, e. g. “ionisation”, SBO:0000209).

SBO is part of the biomodels.net effort. The ontology is available for download from

the bioportal3 in OBO format. It is an integral part of SBML but it is also used by

other communities such as CellML or SBGN.
3http://purl.bioontology.org/ontology/SBO, last accessed 12 December 2011.

47

http://www.uniprot.org/
http://www.human-phenotype-\discretionary {-}{}{} ontology.org
http://fma.biostr.washington.edu/
http://www.ncbi.nlm.nih.gov/taxonomy
http://www.plantontology.org/
http://flybase.org/
http://purl.bioontology.org/ontology/SBO

The Ontology of Physics for Biology (OPB, [Cook et al. 2008]) covers terms that

represent biophysical concepts and properties of anatomical entities. Doing so, it

aims at bridging structural knowledge from the bioinformatics community with pro-

cess knowledge from the biosimulation community [Cook et al. 2008]. OPB explicitly

describes the mathematics and physics used in the bio-model encoding, referred to as

“biophysical semantics of physics-based biosimulation models” [Cook et al. 2008]. It

does, on the contrary, neither cover the representation of those entities (as provided

by GO), nor their anatomies (as provided by the Foundational Model of Anatomy

(FMA, [Rosse and Mejino 2003])). The theoretical basis is systems dynamics theory.

OPB terms are to be used to annotate bio-model variables and equations. Cook et al.

[2008] refer to cardiovascular models to exemplify the need for OPB: While many

such models incorporate the blood pressure in the aorta, they use different variable

names for it (e. g. “Paorta”, “Pa”, “X”, or “Y”). To solve the problem of varying

variable names in different models, a reference to the OPB term “Fluid pressure”

(OPB:OPB 00509) can be used to characterize the physical entity represented by the

variable. Another sample term from OPB is the temperature dimension as a sub-

classOf the kinetic dimension. OPB has been implemented in the Protégé ontology

editor and is based on the OBO principles. It is available from the bioportal4.

Ontologies for model-related information encoding

Behavior The Terminology for the Description of Dynamics (TEDDY, [Courtot

et al. 2011]) provides terms for the systematic and machine-readable description of

a model’s observed behavior. It aims at covering the critical features of numerical

results, both obtained from simulation and experimental measurements. The four

branches of the TEDDY ontology cover vocabularies for concrete behavior, for diver-

sification of behavior, for characteristics of behavior, and for functional motifs gener-

ating particular types of behavior [Courtot et al. 2011]. The behavior characteristic

classifies the way that a dynamic system changes with respect to some environmental

aspect (e. g. “exponential growth”, teddy:TEDDY 0000014). The Behavior Diversifi-

cation identifies behaviors based on quantitative properties (e. g. “Hopf Bifurcation”,

teddy:TEDDY 0000072). The Functional Motifs describe identifiable patterns in a

(sub)model (e. g. “negative feedback”, teddy:TEDDY 0000034). The Temporal Be-

havior characterizes a (temporal) sequence of states following the initial state (e. g.

“Stable Limit Cycle”, teddy:TEDDY 0000114). TEDDY is encoded in OWL and it

is available from the bioportal5. It is also part of the biomodels.net effort.

4http://purl.bioontology.org/ontology/OPB, last accessed 12 December 2011.
5http://purl.bioontology.org/ontology/TEDDY, last accessed 12 December 2010.

48

http://purl.bioontology.org/ontology/OPB
http://purl.bioontology.org/ontology/TEDDY

Model simulation The Kinetic Simulation Algorithm Ontology (KiSAO, [Courtot

et al. 2011]) is an ontology for the classification and characterization of kinetic

simulation algorithms, mainly used in CSB. KiSAO has been developed during the

course of this thesis; a detailed description is given in Section 5.3.

3.1.3. Minimum Information Required In the Annotation of Models

First ideas for standardized annotation of biochemical computational models were

discussed during the October 2004 ICSB meeting. At the same time, Le Novère and

Finney [2005] worked on a format proposal to encode meta-information for SBML

models stored in BioModels Database. In 2005, the meeting manuscript and the

proposal were both merged and published as the Minimum Information Required

in the Annotation of Models (MIRIAM, [Le Novère et al. 2005]). Meanwhile, the

MIRIAM guidelines have turned into a standard guideline for model annotation

beyond the SBML community. They are also accepted by the CellML and NeuroML

community, to mention a few. Lloyd et al. [2008], for example, state that they respect

the MIRIAM framework in the model curation process.

MIRIAM defines the set of information to be provided about a model and its

constituents in line with the model’s publication. The goal of MIRIAM is to “define

processes and schemes that will increase the confidence in model collections and

enable the assembly of model collections of high quality” [Le Novère et al. 2007].

Information requested by MIRIAM includes the model author, the reference de-

scription, and information on the meaning of the model itself as well as of the model

constituents. A model providing all MIRIAM-required meta-information is called

MIRIAM-compliant. MIRIAM-required information can be divided into two parts

[Le Novère et al. 2005]:

Standard for reference correspondence It ensures that the encoded model is asso-

ciated with a reference description (i. e. a unique document describing it) and

that the model is consistent with that description.

Scheme for encoding annotations It ensures the documentation of a model by ex-

ternal knowledge. This includes information required to associate the model

with a reference description and the encoding process (attribution annotation)

and the annotation with external data resources (external data resources an-

notation).

The MIRIAM Standard for reference correspondence comprehends the syntactic

and semantic information about the model. It contains rules for the model encoding,

the model structure and the results when instantiating the model in a simulation.

49

Figure 3.2.: Meaning facets of a computational model of a biological system. Taken from [Knüpfer

et al. 2006].

An example for rules about the model encoding is that the model must be encoded

in a public, machine-readable format ([Le Novère et al. 2005, rule 1]). The require-

ment that a model structure must reflect the biological processes described in the

reference description is part of the rules about the model structure (rule 4). Finally,

the model should be made available together with all quantitative attributes that

are necessary for the instantiation in a simulation (e. g. initial conditions and param-

eters) as defined in the rules for results when instantiated in a simulation (rule 6).

The full list of MIRIAM compliance rules has been published in [Le Novère et al.

2005].

The attribution annotation associates a model unambiguously with a reference

description to define its origin and the people involved in the model creation. In-

formation on the encoding process has to be provided, including information on the

model authors and creators. As part of the annotation scheme, the external resource

annotation demands to provide meta-information about model constituents through

links to corresponding structures in external data resources. To unambiguously link

the external knowledge to a piece of model code, a so-called “triplet” consisting of

{data-type, identifier, qualifier} is recommended (Section 3.2.1).

3.1.4. Further investigations: Meaning facets

Knüpfer et al. [2006] advocate formal semantics for bio-models. The authors claim

that a formal representation for the simulation models and their mathematical expla-

nations (intrinsic meaning) exists. The model’s intended meaning (extrinsic mean-

ing), however, is often described in natural language [Knüpfer et al. 2006]. Knüpfer

et al. [2006] distinguish three levels of pragmatics which they identify as (1) the

model’s intention, (2) the model’s structure, and the shown behaviour. In total, one

arrives at six different meaning facets for a bio-model (Figure 3.2).

50

The discussion of meaning facets already led to the development of the TEDDY

ontology (Section 3.1.2) which tackles the problem of encoding the behavior facet of

a bio-model.

3.2. Meta-information encoding

The way meta-information is encoded in existing model representation formats is

important for the subsequent information extraction. Ideally, there would be a

common annotation scheme that allowed for abstracting from the underlying model

representation format. However, the current situation is different: The represen-

tation formats introduced earlier (Section 2.2) either do not provide explicit con-

tainers for annotations, or they use their own specific ones. Methods to encode

meta-information in SBML and CellML will be described in detail after a brief

introduction to the MIRIAM reference standard.

3.2.1. The MIRIAM reference standard

MIRIAM-required meta-information should be encoded in triplets [Le Novère et al.

2005; Laibe and Le Novère 2007], referred to as the MIRIAM reference standard in

the remainder of this work. The proposed annotation scheme follows the RDF idea

(Section 2.3.4) and conceptually consists of a {data-type,identifier,qualifier}
triplet [Le Novère et al. 2007] determining the predicate and object of a piece of

meta-information:

data-type The data-type is a unique reference to a data resource.

identifier The identifier points to a particular piece of knowledge inside a particular

data-type (i. e. both are connected).

qualifier The qualifier refines the relation between the annotated model constituent

and the piece of knowledge associated to it.

MIRIAM recommends to provide the data-type as a Unique Resource Identifier

(URI) (e. g. urn:miriam:obo.go) that can be resolved into a number of, for exam-

ple, URLs (e. g. http://www.geneontology.org/). MIRIAM Resources [Laibe and

Le Novère 2007] provide a repository of standardized URIs for a large set of different

information sources6.

The identifier is a particular entity from that data source (e. g. GO:0016055 for

the WNT receptor signaling pathway in Gene Ontology).

6http://www.ebi.ac.uk/miriam/, last accessed 28 July 2010.

51

urn:miriam:obo.go
http://www.geneontology.org/
http://www.ebi.ac.uk/miriam/

The qualifier describes how the referenced piece of knowledge is related to the

annotated model constituent (e. g. occursIn). A list of standardized qualifiers is

available from the biomodels.net web site7. The two distinguished types of quali-

fiers are model qualifier relating to the model and the bio-qualifier relating to the

biological meaning of a model constituent (including the model itself). An anno-

tation of a bio-model representing the WNT receptor signaling pathway might be

written in triplet form as {urn:miriam:obo.go,GO:0016055,is-a}.

3.2.2. Meta-information in SBML

The current SBML Specification offers the annotation element for controlled model

annotation. Furthermore, free-text meta-information can be provided with the

model through the SBML notes element [Hucka et al. 2010]. SBO terms are stored

in a specific sboTerms attribute.

The SBML annotation element In the current SBML version, meta-information

is stored in the annotation element [Hucka et al. 2010]. The annotation of an SBML

model and its constituents is optional. If it is present, however, it is suggested to

follow the SBML annotation scheme described in [Hucka et al. 2010, Sec. 6.3]. SBML

follows the proposed MIRIAM reference standard (Section 3.2.1); it uses RDF for the

encoding of annotations and also reuses a subset of Dublin Core8 and biomodels.net

qualifiers.

An annotation must be embedded in an rdf:RDF tag (Figure 3.3). The annotated

element is addressed through it’s metaid inside the rdf:about attribute. The ref-

erence to third-party knowledge specifying the element’s semantics must be placed

inside the rdf:Description, more specifically must it be contained in an rdf:li

list inside an rdf:Bag container. The link to an external resource must be peren-

nial (i. e. consistently existing and not changing). To uniquely identify a controlled

vocabulary term or object, the MIRIAM URI links to a physical source (i. e. a

URL). The connection of the addressed third-party knowledge and the annotated

element is established using any of the bio-qualifiers and model-qualifiers listed on

http://www.biomodels.net/qualifiers. If an annotation follows the proposed

scheme, it is considered an SBML MIRIAM annotation.

Listing 3.1 shows a sample annotation. Meta-information about the SBML species

Notch protein is provided in this listing. It is annotated with an entry from the

UniProt resource which is considered a homolog to the species itself (they have a

common ancestor).

7http://biomodels.net/qualifiers/, last accessed 28 July 2010.
8http://dublincore.org/, last accessed 28 July 2010.

52

http://www.biomodels.net/qualifiers
http://biomodels.net/qualifiers/

Figure 3.3.: The SBML standard annotation format. Taken from [Hucka et al. 2010]. Square brack-

ets denote concepts (referring to further XML definitions), the string “. . . ” denotes

zero or more elements of the same form as the preceding, the string “+++” denotes

further valid XML content complying with the standard’s definition.

1 <species metaid="metaid_0000097" id="N" name="Notch protein"

2 compartment="cytosol" initialConcentration="0.5"

3 sboTerm="SBO:0000252">

4 <annotation >

5 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

6 xmlns:dc="http: //purl.org/dc/elements /1.1/"

7 xmlns:dcterms="http://purl.org/dc/terms/"

8 xmlns:bqbiol="http:// biomodels.net/biology -qualifiers/"

9 xmlns:bqmodel="http:// biomodels.net/model -qualifiers/">

10 <rdf:Description rdf:about="#metaid_0000097">

11 [..]

12 <bqbiol:isHomologTo >

13 <rdf:Bag >

14 <rdf:li rdf:resource="urn:miriam:uniprot:P46531"/>

15 </rdf:Bag >

16 </bqbiol:isHomologTo >

17 </rdf:Description >

18 </rdf:RDF >

19 </annotation >

20 </species >

Listing 3.1: A sample SBML MIRIAM compliant annotation taken from the Goldbeter Pourquié

model (BIOMD0000000201)

53

The SBML SBO attribute Specifically for the annotation of SBML elements with

controlled vocabulary from SBO, SBML introduced the sboTerm attribute to the

basic SBase class (Listing 3.1, l. 3). The sboTerm helps overcoming the problem

that SBML name and id do not contain any semantic information. If an SBML

element has an sboTerm assigned to it, the sboTerm defines the entity encoded by

the SBML element. The SBML specification provides a mapping for the different

SBML elements on main SBO identifier branches applicable for the annotation of

that particular element [Hucka et al. 2010, p. 83].

In Listing 3.1, species N has an sboTerm assigned to it (SBO:0000252) which

encodes the information that N is a “polypeptide chain”. Further analysis of the

SBO tree leads to the information that polypeptide chains are “macromolecules”

(SBO:0000245).

3.2.3. Meta-information in CellML

Similar to SBML, CellML model representations do not capture biological informa-

tion. On the contrary, the structure of a CellML model is far more general than

the one of an SBML model (with CellML model elements “unit”, “component”,

“connection”, or “group” – opposed to the SBML “species”, “compartment”, “reac-

tion” constructs). While this generalization allows for CellML models to be widely

applicable, the language elements do express few biological information (e. g. they

do not represent the entities and processes in the variable and component names)

[Wimalaratne et al. 2009b]. Consequently, a thorough annotation scheme is crucial

to understand and interpret CellML models. Especially with focus on multi-scale

modeling issues, the CellML community emphasizes the need to further develop

meta-data structures by reusing standards such as OWL and RDF [Beard et al.

2009]. CellML offers three different standard types for annotations: free-form com-

ments of the person who coded the model into CellML (comment), a brief descrip-

tion of the limitations/scope of the content of the CellML element (limitation),

and the description of the level of validation of the content of the CellML element

(validation) [Cuellar et al. 2009].

While SBML considers all meta-data ’annotations’, CellML distinguishes annota-

tions from other meta-data and proposes two approaches to their encoding: the

CellML MetaData specification [Cuellar et al. 2009; Beard et al. 2009] and the

CellMLBiophysical/OWL model [Wimalaratne et al. 2009a,b].

The CellML Metadata specification is a labeling technique for CellML model

elements using the RDF framework. Models are given semantic meaning by linking

54

CellML model elements to ontologies and controlled vocabulary such as SBO terms,

BioPAX, UniProtKB or Gene Ontology entries [Lloyd et al. 2008].

The specification demands the description of a model’s origin and creator, but

also of the model itself and its constituents [Beard et al. 2009]. A special focus is set

on model provenance, that is encoding information on the model development over

time. CellML metadata aims at fulfilling the MIRIAM standard requirements, but

still faces some problems. Particularly the assertion of fully resolvable models repro-

ducing the results published in a reference description (as required by the MIRIAM

reference correspondence [Le Novère et al. 2005]) and unambiguous annotation of

each model constituent (as required by the MIRIAM external resource annotation

[Le Novère et al. 2005]) need further work and practice by the CellML community

[Beard et al. 2009]. The CellML community decided to use MIRIAM URIs to solve

the latter problem; an example is given in Appendix A.3.3.

The namespace "http://www.cellml.org/metadata/1.0#" with prefix cmeta:

was created for CellML metadata. Inside that namespace, different predefined

types of meta-data exist, including cmeta:modificationDate, cmeta:species, or

cmeta:bio entity [Cuellar et al. 2009]. A recommendation for species meta-data

is given in Listing 3.2. It shows the annotation of a CellML element with ID

#cellml element id which relates the element to a species (cmeta:species) “Mam-

malia” and a species “Xenopus laevis”.

1 <rdf:RDF

2 xmlns:cmeta="http://www.cellml.org/metadata /1.0#"

3 xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#">

4 <rdf:Description rdf:about="#cellml_element_id">

5 <cmeta:species >Mammalia </cmeta:species >

6 <cmeta:species >Xenopus laevis </cmeta:species >

7 </rdf:Description >

8 </rdf:RDF >

Listing 3.2: Recommended definition of species metadata. To be interpreted as: The element with

ID cellml element id is relevant for all mammals and Xenopus laevis. Taken from

[Cuellar et al. 2009, Fig. 18].

In addition to the meta-data specification, Nickerson and Buist [2009] propose the

CellML Simulation Metadata (CMS) for the encoding of simulation setups. A third

part of the metadata definition is the CellML Graphing Metadata (CGM) standard9

which proposes a method to link simulation results from one or more performed ex-

periments in order to provide two-dimensional graphs showing the model’s behavior.

Section 3.4 elaborates on the two standard proposals.

9www.cellml.org/specifications/metadata/graphs, last accessed 13 December 2010.

55

"http://www.cellml.org/metadata/1.0#"
www.cellml.org/specifications/metadata/graphs

CellMLBiophysical/OWL model The CellML Metadata approach is not capable

of expressing relationships between the biological processes and the annotated en-

tities [Wimalaratne et al. 2009b]. As shown in Listing 3.2, a relation between the

annotation and the annotated element is missing. The CellMLBiophysical/OWL

model extends the aforementioned meta-data approach by structuring “the biophys-

ical concepts captured in CellML models and allow modelers to explicitly annotate a

CellML model with physical and biological information” [Wimalaratne et al. 2009b].

A CellMLBiophysical/OWL model is created by transforming the CellML XML

representation into an OWL representation. An ontology has been developed for

the representation of physical and biological processes described in existing CelLML

models. The CellML/OWL model is annotated with biophysical concepts, in par-

ticular the CellML components and variables [Beard et al. 2009] using the so-called

cmeta:id attribute. The created CellMLBiophysical/OWL representation is finally

optimized using ontological mappings and graph reduction rules. The result is a sim-

plified version of the CellMLBiophysical/OWL model representation of the original

CellML model.

3.2.4. Annotations in use

Annotations are considered important and relevant by tool developers dealing with

bio-models. A whole community working on “model semantics” (i. e. the encod-

ing and processing of meta-information for bio-models) has evolved. Many efforts

are closely related to SBML models. A comprehensive overview of SBML model

annotation tools has been provided online by Frank Bergmann10 (February 2010).

Tools for bio-model meta-information encoding A number of software tools are

concerned with the automatic or semi-automatic annotation of bio-models. SAINT

[Lister et al. 2009], for example, is a web application providing a “lightweight an-

notation integration environment”. SAINT aims at overcoming the manual, time-

consuming process of annotating a model, identified by the developers as one of the

facts that hamper model reuse. The tool facilitates rapid and systematic model an-

notations and thereby helps in providing annotated quantitative bio-models to the

CSB community. SAINT encodes annotations in the MIRIAM reference standard

(Section 3.2.1). The annotation process is based on an integrated view of different

data sources for model annotation, including UniProtKB11, or PathwayCommons12,

10http://www.slideshare.net/fbergmann/, last accessed 04 February 2011.
11http://www.uniprot.org/help/uniprotkb, last accessed 04 February 2011.
12http://www.pathwaycommons.org/pc/, last accessed 04 February 2011.

56

http://www.slideshare.net/fbergmann/
http://www.uniprot.org/help/uniprotkb
http://www.pathwaycommons.org/pc/

SBO, Gene Ontology and others. A query to SAINT is translated into single sub-

queries to the web services behind the above-mentioned data resources. As a result,

SAINT suggests matching data, mostly ontology entries, for the automatic annota-

tion of the model. The main focus is on the annotation of the model’s entities (e. g.

species). While SAINT has originally been developed to work with SBML models,

ongoing investigations test its applicability on CellML models.

libSBMLAnnotation [Swainston and Mendes 2009] is a library with annotation

functionality. On top of the manipulation functions for the reading and writing

of annotations from and to (SBML) models provided by libSBML [Bornstein et al.

2008], the tool offers functionality to relate the annotations to external resource en-

tries or among each other. One application of libSBMLAnnotation is the comparison

of differently annotated model constituents in order to make a statement about their

relation (e. g. finding identical or similar entities in two models that carry different

entity names and annotations). libSBMLAnnotation uses the MIRIAM web service

and incorporates cross-references provided by the single data resources. libSBM-

LAnnotation has been useful in the creation of large models, for example during

the development of the genome-scale model of yeast metabolism13 [Swainston and

Mendes 2009].

The aim of semanticSBML [Krause et al. 2009] is to “help users to check and edit

MIRIAM annotations and SBO terms in SBML models”. The tool was designed

to enable the merging of SBML models. Merges can be suggested and matching

sub-models be identified based on the identified relations between the model con-

stituent’s annotations. SemanticSBML allows to edit and update model annotations

graphically. It also supports the aforementioned MIRIAM reference standard. Based

on query terms, possibly matching data source entries are suggested for annotation.

External resources such as KEGG, ChEBI, or the Gene Ontology are incorporated

in that matching process.

Tools for model transformation and visualization Annotations are furthermore

used to visualize models and to perform transformations on them. One sample

application is SBGN, a standard representation for biological network structures.

SBO terms are used to annotate the SBGN graph14; those SBO terms are proposed

to be used for the conversion of SBGN into SBML later on.

A second example for the use of annotations in model transformation tasks are the

converters offered by BioModels Database to build different representation formats

13urn:miriam:biomodels.db:MODEL0072364382, last accessed 23 September 2010.
14A detailed example is given in [Juty et al. 2010].

57

urn:miriam:biomodels.db:MODEL0072364382

from the existing SBML models15 (e. g. CellML models).

Tools for model comparison and combination The aforementioned semanticS-

BML tool (formerly known as sbmlMerge) provides means for the semi-automatic

merging of models. The mapping suggestions partially rely on the annotations.

Also the already mentioned libSBMLAnnotation library finds corresponding entities

in different models based on their annotations.

A second approach to using annotations for model comparison is the Semantics

of Biological Processes (SemSim16, last accessed 28 February 2011.) project. One of

the sub-projects is concerned with annotating existing models of different formats

and building an OWL representation of the semantic knowledge gained about those

models. Based on that OWL model, tasks such as as model merging or sub-model

extraction shall be enabled.

3.3. Storage of computational biology XML-models

The following first introduces approaches to bio-model storage (Section 3.3.1). Af-

terwards, a project concerned with model management issues in systems biology is

described (Section 3.3.1). As model versioning is one specific aspect discussed in

this work, solutions for bio-model versioning are then introduced in Section 3.3.2.

3.3.1. Model repositories

Published models are available from so-called model repositories. Among the best

known ones are BioModels Database [Li et al. 2010], the CellML Model Repository

[Lloyd et al. 2008], the JWS Online Model repository [Snoep and Olivier 2003],

and ModelDB [Hines et al. 2004]. Those repositories will be introduced briefly, with

special consideration of the chosen storage approach and provided search possibilities.

BioModels Database BioModels Database [Le Novère et al. 2006; Li et al. 2010]

is a repository of freely accessible bio-models. It is an open-source project, and

it is open to commercial and academic use. BioModels Database accepts models

submitted by modelers (e. g. for reference in a publication) but also imports models

from collaborative model repositories such as the CellML Model Repository. The

main focus is on SBML-encoded models. For import of other formats a number

of converters have been developed. The repository provides 269 curated and 361

15provided on the BioModels Database homepage http://www.ebi.ac.uk/biomodels-main/, last

accessed 14 March 2011.
16http://sites.google.com/site/semanticsofbiologicalprocesses/

58

http://www.ebi.ac.uk/biomodels-main/
http://sites.google.com/site/semanticsofbiologicalprocesses/

non-curated models with together hundreds of thousands of reactions17. BioModels

Database provides several services, including model curation and annotations but

also model presentation through a web interface, or model simulation through em-

bedded simulation tools [Li et al. 2010]. The focus for this work, however, is on the

model storage and search facilities.

Bio-models in SBML format are stored in two different ways: the quantitative

information, kinetic laws and model entities are kept in the SBML representation

format and the XML files are stored as such. Apache Lucene (http://lucene.

apache.org) is used to index a subset of those model elements, and the index is kept

for later search. The SBML file history is tracked using Subversion. Furthermore,

the so-called model metadata is stored separately in a MySQL database. Meta-

data includes information on the submission and modification dates of a model file,

authors’ information, references and annotations encoded in the MIRIAM reference

standard (MIRIAM URNs).

BioModels Database supports browsing and searching for models. Stored models

can either be browsed from a list of available models (sorted by BioModels Database

ID (BMID), model name, publication ID, or date of last modification)18 or by using

a tree-structured browser based on GO terms encoded in the models’ annotations19.

Search results are returned in an unordered result set. According to [Li et al. 2010],

the so-called multi-step search system works in three sequential steps.Given a search

term20,

• First, the meta-data, publications and the annotations stored in the MySQL

database are queried. The result of this search is a set of BMIDs.

• Secondly, the stored SBML XML files are queried, using the previously gen-

erated indexes, and parsing information such as the SBML <notes> tag. The

returned BMIDs are added to the result set.

• If the search included query terms from external resources, then, thirdly, sup-

plementary information is searched, either using information available in the

local MySQL database, or web services. For the specific case of searching for

a term in a taxonomy, the taxonomy tree is also traversed for neighbor terms,

and model IDs associated with that term are additionally added to the result

set.

17Last accessed 14 March 2011.
18http://www.ebi.ac.uk/biomodels-main/publmodels, last accessed 16 January 2011.
19http://www.ebi.ac.uk/biomodels-main/modelstree, last accessed 16 January 2011.
20The following is a simplified description of the search capabilities that does not distinguish be-

tween simple and advanced search.

59

http://lucene.apache.org
http://lucene.apache.org
http://www.ebi.ac.uk/biomodels-main/publmodels
http://www.ebi.ac.uk/biomodels-main/modelstree

The output is generated by using the BMIDs to query the MySQL database for the

formerly extracted meta-data that is necessary for display on the web site.

The CellML Model Repository The CellML Model Repository [Lloyd et al. 2008]

is an online repository for CellML models at different stages of curation. It is an

instance of the Physiome Model Repository 2 (PMR2), a model management system

based on the Content Management System Plone21.

The available models cover a wide range of different biological processes, among

others signal transduction pathways, metabolic pathways, electrophysiology, im-

munology, cell cycle, muscle contraction and mechanical models [Lloyd et al. 2008].

It is the intention of the maintainers of the repository to bring forward the model

curation and annotation process so that ideally all models “replicate the results in

the published paper” and the search for models and elements within models is facili-

tated. The CellML model repository contains about 500 model exposures22 encoded

in the CellML format. An exposure is a model and its associated documentation

and meta-information.

Models in the CellML Model Repository are browsed by different (physiological)

categories, including cell cycle, signal transduction, or metabolism. A CMS-wide

full-text search is offered that allows for simple free text search. Additionally, models

of different curation states can be searched. A search by particular model features

(e. g. specifically by author or publication year) is not possible. Search results are

returned in an unordered result set.

ModelDB ModelDB23 [Hines et al. 2004] is a database for curated models related

to computational neuroscience and independent of a particular model encoding for-

mat. The design of ModelDB focused on providing authors a repository for the

storage of models, in particular in preparation for submission in neuroscience jour-

nals. ModelDB is capable of storing models “encoded in any language for any

environment” [Hines et al. 2004]. It stores the originally submitted model files,

that is the complete code specifying the attributes of the original biological system

represented in the model, including interface and control code to run the model

in the associated simulation environment, and a non-standardized readme text file

explaining briefly how to use the provided computer code [Hines et al. 2004]. The

submitted code should contain the biological entities (e. g. neuron or synapse) but

also used concepts such as synaptic plasticity or pattern recognition, and

21http://plone.org, last accessed 14 March 2011.
22Last accessed 02 March 2011.
23http://senselab.med.yale.edu/modeldb/, last accessed 14 March 2011.

60

http://plone.org
http://senselab.med.yale.edu/modeldb/

the software used to implement the model (e. g. NEURON or XPP). Secondly, ModelDB

stores model meta-information which is incorporated in the model search. This in-

formation includes a concise statement of the model purpose, how to use it, and a

complete citation of the reference publication [Hines et al. 2004].

The underlying database management system is Oracle 1024. ModelDB is an

instance of the Entity–Attribute–Value/Classes–Relationship framework (EAV/CR,

[Marenco et al. 2003]) for data representation (also referred to as “open schema”).

The EAV approach originated from the context of artificial intelligence where it was

developed as an information representation format: Data are stored in a single table

with three columns, namely the entity (i. e. the object being described), an attribute

(i. e. an aspect of the described entity), and the atomic value of that attribute

[Marenco et al. 2003]. The approach is similar to the generic storage approach

for XML documents. In addition, the CR approach then combines object-oriented

concepts with the EAV concept. Each object of the database must belong to a

particular class, and values may be other objects. In that way, relationships between

objects are defined. The EAV/CR concept is also used to build the RDF statement

structure introduced earlier (Section 2.3.4). An example for such EAV/CR triple as

stored in ModelDB is Neuron (entity) – Soma location (attribute) – ParsCompacta,

S.Nigra25 (value).

The search functionality in ModelDB relies on the meta-information entered by

the model submitter. Search by author name or accession number (modelDB ID) are

supported. The complete list of models can be returned sorted by the model name

or by the author. Additionally, some predefined queries regarding different criteria

such as cell type or simulators are available. However, the queries do not incorporate

the model files themselves; as such a search on the model code is not possible. The

meta-information is not standardized, but consists of partially predefined strings

and partially manually entered data. Third-party knowledge is not incorporated in

the search process; the submitted models are not annotated.

JWS Online – Model Database The JWS Online – Model Database26 is part

of the JWS Online Simulator [Olivier and Snoep 2004], a web-based simulator for

biochemical kinetic models. The model repository serves as the maintainer for a

number of kinetic models that can be interactively run online. It supports the

search for SBML models by a limited number of characteristics, including the author,

publication title and journal, organism or model type. A web-based tool offers a

24from e-mail correspondence, 22 September 2010.
25The S.Nigra is a brain structure located in the mid brain.
26http://jjj.biochem.sun.ac.za/database/, last accessed 14 March 2011.

61

http://jjj.biochem.sun.ac.za/database/

Figure 3.4.: Systems biology meta-model identifying key concepts in systems biology and their re-

lationships. Construction: model, compound model, scheme, constraints, view compo-

nents. Analysis: model, context, engine, interpretation, ground components. Valida-

tion: model, aspect, observation, assumptions, interpretation components. Taken from

[Finkelstein et al. 2004].

searchable categorization of models in the repository, distinguishing, for example,

between “cell cycle” models and “metabolism”. A full text search is not supported.

Search results are returned ordered by author name. As there does not exist a

publication on the technical background of the model repository, further information

on the backend of the provided interface cannot be given.

The UCL Beacon Meta-model A general study of the model management issues

for Systems Biology models [Finkelstein et al. 2004] has been provided in line with

the UCL Beacon project (http://grid.ucl.ac.uk/biobeacon/). The motivation

behind this work was to enable the indexing, comparison and integration of diverse

computational systems biology models. The two main suggested concepts for use

in systems biology were simplification which allows to abstract from the biological

complexity and modularity which is required to enable the break up of complex

systems into manageable components which later on can be reassembled [Finkelstein

et al. 2004].

A model-centric storage approach for computational models has been developed to

realize the project goals. It encodes three information regions necessary in systems

biology modeling: (model) construction, analysis and validation. The meta-model

62

http://grid.ucl.ac.uk/biobeacon/

consists of 12 connected entities and their attributes (Figure 3.4). Only the following

subset of entities is relevant for this work [Finkelstein et al. 2004]:

model A model is a standardized file with a certain underlying scheme and a version

(e. g. “Biomodels Model 21” in SBML Level 2 Version 1 format).

scheme A (representation) scheme corresponds to the language that the model is

constructed in (e. g. “SBML Level 2 Version 1”).

aspect Models represent particular biological aspects such as ”system description”

(i. e. properties of biological interest that can be seen as labels for a model).

Aspects are described through ontology references which are recorded in a

special origin entity and include experiments, publication references, etc.

interpretation Models can be instantiated and then yield interpretations through

analysis (e. g. simulation or static analysis). The results and conclusions gained

from the model are stored in the interpretation entity.

observations Biology experiments lead to observations about a phenomenon; they

enable the development of hypotheses about a biological model, but also vali-

dation of interpretations derived from those models.

context The context entity refers to data that is required to interpret the model (i. e.

the model’s input). It holds all information about the model parametrization,

including the values and their assigned confidence.

engine For each model there is a number of engines defined which describe how

to execute the model to yield a particular interpretation. Engines include

simulation tools, computer programs, or humans. One example for such an

engine is the COmplex PAthway SImulator (COPASI, [Hoops et al. 2006]).

The disregarded entities (e. g. assumptions, view, constraint, or ground) only

play a minor role in the following work; they are described in [Finkelstein et al.

2004].

A subset of the identified entities are considered in the model database design

introduced in Section 6.3.3. A second subset is relevant for the development of the

simulation experiment description format introduced in Section 5.4. In contrast to

this work, the UCL beacon project does not investigate search and retrieval methods

for the stored data. The UCL beacon project focuses on model management issues.

It concentrates on the model surroundings rather than on the fine-grained definition

of model constituents. Furthermore, it deals with model-related issues, including

related experiments, findings and assumptions during the modeling.

63

3.3.2. Model versioning

Models may be produced in different versions over time, and by different research

groups; furthermore, researchers may produce a number of instances of a model,

using different configurations [Finkelstein et al. 2004]. One also has to distinguish

versioning inside the model files from versioning provided by the model repository.

Versioning support has been discussed in both, the representation format communi-

ties, and among the model repository developers. However, model versioning tools

for the user are at preliminary stage.

Another problem, not addressed in this thesis though, is the versioning of bio-

ontologies. When working with meta-information based on ontology references, it is

important to keep track of ontology evolutions and ensure that the annotations are

valid and consistent. However, the good practice with bio-ontologies is to keep all

term identifiers, but only mark them “obsolete” if necessary.

Versioning support in representation formats

The CellML community discusses the importance of thorough versioning concepts

for the model reuse process [Beard et al. 2009], saying that the current CellML

metadata specification allowed for detailed revision histories to be associated with

a model. Beard et al. [2009] distinguish “trivial changes” (e. g. error corrections

during the translation of a model to CellML) from “substantial” ones (e. g. creating

revisions of a model), but for any changes applied to a model they demand “these

changes are listed and fully documented so that a prospective user knows what has

been changed and why, by whom and when”. As an example for the usefulness of

model versioning the publication mentions the history of parameter value changes.

SBML provides a model history concept through additional elements for the de-

scription of modifications in an SBML model and its constituents [Hucka et al. 2010,

Sec. 6.6]. The history is restricted to the SBML encoding and does not cover con-

ceptual changes in the model. The main points are the provision of information

on the creators of the encoding, and the provision of modification dates (recording

the creation of the model constituents and their subsequent changes). The model

history is embedded in an SBML file as part of the SBML meta-information en-

coding (Figure 3.3 on page 53). It might occur in any model constituent, being

defined in an rdf:Description block inside the annotation element. The history

always refers to a piece of SBML code addressable by an SBML META ID. Figure 3.5

shows the definition of the model history in detail [Hucka et al. 2010, p. 89]. The

history encodes information on the creator of an annotation using the Dublin Core

64

Figure 3.5.: The SBML history and associated elements. Taken from [Hucka et al. 2010, p. 89].

Square brackets denote concepts (referring to further XML definitions), the string “. . . ”

denotes zero or more elements of the same form as the preceding, the string “+++”

denotes further valid XML content complying with the standard’s definition.

dc:creator, including the name, email-address and organization name27. That in-

formation must be followed by the dc:terms:created element that provides the

creation date of that model constituent. Then a list of dcterms:modified elements

contains the modification dates. Dublin Core makes use of the W3C date format

for the encoding of that time information.

Versioning support in model repositories

The BioModels Database team intends to investigate a sophisticated versioning sys-

tem for SBML models [Li et al. 2010]. The aim is to allow users to retrieve and

compare different versions of a model and its annotations. BioModels Database

to date provides a bio-model in different encodings, including the various levels of

SBML and automatically generated format such as CellML. Internally, the SBML

model version at each release is kept in an SVN repository. However, the particular

SBML file in its different versions is not available for the users. An exception is the

link to the original file, which is the first uploaded version of the model in its original

format. Changes that might have been applied to the model during its existence in

27In SBML, the creator is referred to as the person who created the SBML encoding of the referenced

model constituent.

65

the model repository are not traceable.

ModelDB provides preliminary version support for a subset of the available mod-

els28 through an instance of the distributed version control system Mercurial29. The

system provides a list of versioned model, sorted by accession number. A more de-

tailed log is available for each model, including the age of each particular version

available for that model, the version submitter, and a short description of that

version, similar to an SVN comment. The log can be visualized in similar ways, in-

cluding a tag-based view, a graph-based view, or a branch-based view. Finally, the

change set between two model code versions can be determined, using a standard

diff algorithm.

Similar to ModelDB, CellML uses a Mercurial repository to keep track on differ-

ent model versions. Models can be stored locally in a version-controlled Mercurial

instance, a so-called model workspace [Magjarevic et al. 2009]. Once submitted to

the CellML Model repository, those models can then be imported as a particular

revision of a workspace. The workspace revisions also enable authors to review the

change sets of their models. The way that Mercurial is used in PMR2 allows not

only for the maintenance of models but of any generic file type (e. g. experimental

setups, docs, or simulation experiment descriptions).

3.4. Simulation description formats

The necessity for storing simulation experiment descriptions led to the development

of formats for the description of simulation experiments – both for the field of CSB,

and for simulation experiments in general.

Some of the efforts existing in CSB are limited to particular simulation tools and

serve as internal storage formats rather than broad exchange formats. One example

is the internal XML format used by the simulation tool COPASI [Hoops et al. 2006].

It allows to export and import simulation experiment descriptions run on a model

inside COPASI.

The CellML community developed its own format that is independent of the

simulation tool, called the Simulation Metadata Specification [Miller 2009]. In using

RDF, it follows the style of CellML model development and meta-data annotation.

The meta-data may not only be included in the model specification but can also

be stored in a separate document. An example for simulation meta-data specified

inside a CellML model is given in Listing 3.3.

1 <model name="CoupledPendulum_version01" [..]

28http://neuro.med.yale.edu/hg, last accessed 14 March 2011.
29http://mercurial.selenic.com/, last accessed 14 March 2011.

66

http://neuro.med.yale.edu/hg
http://mercurial.selenic.com/

2 cmeta:id="CoupledPendulum_version01">

3 <rdf:RDF [..]>

4 <rdf:Description rdf:about="">

5 <cs:simulation rdf:parseType="Resource">

6 <cs:simulationName >SwingFor100s </cs:simulationName >

7 <cs:multistepMethod >implicit -runge -kutta -2</cs:multistepMethod >

8 <cs:linearSolver >direct </cs:linearSolver >

9 <cs:variablesImportantInSimulation rdf:parseType="Collection">

10 <rdf:Description rdf:about="#time" />

11 <rdf:Description rdf:about="#a_angle" />

12 <rdf:Description rdf:about="#b_angle" />

13 </cs:variablesImportantInSimulation >

14 <cs:boundIntervals rdf:parseType="Collection">

15 <rdf:Description >

16 <cs:boundVariable >

17 <rdf:Description rdf:about="#time" />

18 </cs:boundVariable >

19 <cs:maximumStepSize >1</cs:maximumStepSize >

20 <cs:tabulationStepSize >0.1</cs:tabulationStepSize >

21 <cs:startingValue >0</cs:startingValue >

22 <cs:endingValue >100</cs:endingValue >

23 </rdf:Description >

24 </cs:boundIntervals >

25 </cs:simulation >

26 </rdf:Description >

27 </rdf:RDF >

28 </model>

Listing 3.3: Extract from a CellML model including simulation meta-data following the suggestions

by Miller [2009]

The format proposal consists of the following parts (line numbers refer to the exam-

ple given in Listing 3.3):

• a simulation reference from inside the model description (cs:simulation) with

an optional name (ll. 6-7),

• a description of the linear solver (cs:linearSolver) (l. 9), an iteration method

(cs:iterationMethod), or a multistep method (cs:multistepMethod) (l. 8),

and

• the definition of bound variables and the boundaries (cs:boundIntervals)

(ll. 15-25).

The specification is used for the description of simulation experiments on CellML

models only. Nickerson et al. [2008] further state that the format is intended for

the description of simulation meta-data for electrophysiological models. Apart from

that restriction, a second disadvantage of the CellML meta-data approach is that

the description is tied to one particular model which is referenced through the

67

rdf:Description about="model " element (l. 6). It is in addition not possible to

specify model perturbations within the simulation description. Last but not least,

the information about the solver and iteration method are stored as string chains in

an XML element, instead of using controlled vocabularies.

The JAMES II framework [Himmelspach et al. 2008] uses an internal, but very

generic format to describe simulation experiment descriptions. The demands for the

description of a JAMES II experiment include an unambiguous model identification,

the separation of model and experiment, the consideration of different model for-

malisms (i. e. modeling frameworks) and programming languages, as well as means

for the configuration of an experiment [Himmelspach et al. 2008]. The ExML format

[Oertel 2009] is a proposal for a generic XML exchange format aiming at fulfilling

the demands mentioned above. Due to its generality it is applicable to a wide range

of simulation experiments. The structure of an ExML encoded experiment descrip-

tion separates model description and experiment description. The model description

includes the model definition and system data (i. e. data related to the model and

necessary for further applications), for example parameter value updates or refer-

ences to validation data sets. The experiment description contains the complete set

of experiments applied to the model, and their description [Oertel 2009]. To the

authors knowledge, ExML is so far not supported by existing software.

An investigation for the development of a programming language like format for

the description and conduction of simulation experiments is Simplex-EDL [Leh 2008]

which is used as the internal format in the Simplex III simulation environment.

3.5. Summary

In this chapter, I explained ongoing works related to the meta-information encod-

ing of computational biology models, thereby, for the first time, desribing meta-

information related efforts to model reuse in a structured and comprehensive man-

ner.

A number of different standards evolved over the last years, including Minimum

Information guidelines, formats for the technical encoding of the different informa-

tion, and ontologies to describe the encoded knowledge in a standardized way. I

introduced MIRIAM which describes the meta-information that should be deliv-

ered with a model. The technical approaches to encoding that meta-information in

two model representation formats, SBML and CelLML, have been discussed in de-

tail. Bio-ontologies play an important role in representing the biological knowledge

in a computer-readable and stable manner. The relevant ontologies for this work

have been introduced and characterized. The state-of-the-art in bio-model stor-

68

age has been illustrated with particular focus on the major repositories (BioModels

Database, CellML Model repository, JWS database, and ModelDB). Finally, pre-

liminary work on the encoding of simulation experiments has been introduced.

I conclude that the next step towards better model reuse is the development of

a generic retrieval system applicable to the introduced model repositories as cur-

rent systems lack sophisticated search and versioning capabilities. Furthermore, the

standardized encoding of simulation experiments is necessary to incorporate infor-

mation on applicable simulation runs in the model retrieval process and to enable

faster simulation of retrieved models.

The following conceptual works are based on the just introduced approaches; parts

of the state-of-the-art methods are extended and improved.

69

4. SBML meta-information encoding

’When I use a word,’ Humpty Dumpty said, in a rather

scornful tone,’ it means just what I choose it to mean, neither

more nor less.’

(Alice in Wonderland)

Model reuse postulates the definition of an expressive and correct format for meta-

information encoding.

Here I propose a format for meta-information encoding in SBML models. Sec-

tion 4.1 summarizes the known problems and shortcomings with current SBML

annotations. Section 4.2 then introduces the enhanced meta-information encoding

approach. Finally, Section 4.3 summarizes the results and discusses the applicabil-

ity of the proposed annotation standard on other representation formats using the

example of πML.

The described proposal has been advocated to the SBML community as the Annot

package extension to the SBML Level 3 Core [Waltemath et al. 2011d]. The approach

is also applicable to other bio-model representation formats.

4.1. Problem statement

Existing model representation formats use their own annotation schemes. Although

the MIRIAM standard is widely accepted for model annotation requirements, the

syntactical encoding of meta-information is not standardized. Standardized meta-

information encoding, however, is a prerequisite for comparing models on the anno-

tation level regardless of the underlying modeling approach.

SBML is the main standard for the encoding of bio-models (Section 2.2.1). Al-

ready in 2006, the annotation standard for SBML models was suggested (Sec-

tion 3.2.2) and soon adopted by software tools. Figure 3.3 on page 53 shows the

structure of the current SBML annotation standard. Over the last years, the SBML

annotation scheme has been embraced by a variety of tools to encode, process and

visualize semantic information about a bio-model [Krause et al. 2009; Schulz et al.

2010; Lister et al. 2009; Swainston and Mendes 2009; Henkel et al. 2010]. The evalua-

71

tion of annotated models, however, showed some weaknesses regarding the encoding

and interpretation of annotations. It furthermore lacks expressiveness of complex

relations such as nested and listed annotations. The specification is not detailed

enough and leaves too much room for interpretation, as well as misinterpretation.

With the progress in modeling biological systems and the models’ increasing com-

plexity, more information than currently possible needs to be encoded. This section

depicts the identified problems with the current SBML annotation scheme described

in the SBML L3 specification [Hucka et al. 2010]. Section 4.2 will afterward propose

solutions.

Container and collection support The SBML standard annotation supports the

RDF container rdf:Bag only. It does not approve rdf:List, rdf:Alt and rdf:Seq

(Section 2.3.4).

Negations of annotations Using RDF, constituents can be described through their

specified characteristics. However, exclusion of particular characteristics is not sup-

ported. It is as well impossible to define closed lists (rdf:List) to implicitly make

negative statements, as SBML only allows using the rdf:Bag container.

RDF/XML centric view The current SBML annotation standard takes a syntax-

oriented approach to describing the annotation scheme; its capabilities are defined

on RDF/XML level. However, RDF offers different ways of modeling statements

(Section 2.3.4). Modeling on the RDF graph level is robust and unambiguous. One

RDF graph can be represented by several different RDF/XML notations. Hence cur-

rent SBML RDF statements cannot be modeled on RDF graph level as the SBML

annotation-compliant serialization into a syntactical representation cannot be as-

sured. Defining the expressiveness of annotations on RDF/XML level restricts the

users to that particular notation and therefore disregards many RDF tools.

Qualifying relations The qualifying relations used in the SBML annotation scheme

are limited to bio- and model-qualifiers (Appendix A.1). The RDF primer [Miller

and Manola 2004] suggests the naming of subject, predicate and object to be con-

sidered as parts. For example, the subject is defined as “the part that identifies

the thing the statement is about” [Miller and Manola 2004, Sec. 2.1], and the pred-

icate is defined as “the part that identifies the property or characteristic of the

subject that the statement specifies”. A typical RDF triple, or statement, con-

sisting of {subject, predicate, object} then reads: “subject has a predicate

whose value is object”. The current naming of bio-qualifiers (e. g. is, isVersionOf,

72

isHomolog) and model-qualifiers (e. g is, isDescribedBy) does not easily allow to

formulate the above statements. The main problem is that the names do not refer

to nouns but are verbs.

Missing attribute annotations The current annotation scheme takes the RDF

approach to providing rdf:Descriptions for SBML XML elements such as for

species or compartment, but it lacks a mechanism to annotate SBML attributes

such as the initial concentration of the species (Listing 4.1).

1 <species metaid="metaid_0000042" id="Y" name="Intravesicular Calcium"

2 compartment="intravesicular" initialConcentration="0.36">

3 <annotation >

4 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

5 xmlns:bqbiol="http:// biomodels.net/biology -qualifiers/">

6 <rdf:Description rdf:about="#metaid_0000042">

7 <bqbiol:is >

8 <rdf:Bag >

9 <rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI %3 A29108"/>

10 <rdf:li rdf:resource="urn:miriam:kegg.compound:C00076"/>

11 </rdf:Bag >

12 </bqbiol:is >

13 </rdf:Description >

14 </rdf:RDF >

15 </annotation >

16 </species >

Listing 4.1: SBML species element with annotation. Namespaces partially removed. Example

extracted from urn:miriam:biomodels.db:BIOMD0000000100.

Both annotations in the rdf:Bag (ll. 8-11) describe the species instance (ll. 1-2)

as a whole. However, it is impossible to specify that an annotation is particularly

denoted to an SBML element’s attribute (e. g. compartment).

Annotations about annotations To date annotations about annotations are not

supported. For example, the person who provided a particular annotation can-

not be encoded (e. g. rdf:Description rdf:about="#metaid 0000042", ll. 6-13 in

Listing 4.1). It is also not possible to specify who last modified a particular anno-

tation and why. The general problem is that the current SBML annotation scheme

only supports a subset of RDF which excludes identifiers on the rdf:Description

elements. Consequently, annotations can only be related to SBML elements (by

referring to the SBML elements’ metaid) but not to other annotations.

Relating several qualified annotations Elements having a bio-qualifier or model-

qualifier as their predicate inside the rdf:Description are referred to as “qual-

ified annotations”. With all qualified annotations for a model constituent being

73

urn:miriam:biomodels.db:BIOMD0000000100

at the same level (Listing 4.1, ll. 8-11), it is currently impossible to define re-

lations between them. A nesting of qualified annotations is not supported (e. g.

“species #metaid 0000042 bqbiol:is [A and (B OR C)]”). However, the nesting

determines the biological meaning of annotated constituent.

4.2. Enhanced SBML annotations: Annot package

The following sections summarize the main solutions to the problems introduced in

Section 4.1. Namespace declarations are suppressed. The complete documentation

is available from [Waltemath et al. 2011d].

4.2.1. Package scope and integration into SBML

Due to the modular nature of SBML L3, package definitions can extend the core lan-

guage definition. One such extension is the Annotation package definition which pro-

poses to expand the current <annotation> element. The Annotation package defines

the encoding of annotation information inside SBML models. SBML recommends

a namespace scheme for packages1; the Annotation package namespace follows this

standard and is http://www.sbml.org/sbml/level3/version1/annot/version1.

Two proposals were made originally for the use of the new annotation scheme in

SBML: The first attempt was to use a new <annot:annotation> element inside the

current <annotation> element, but outside the current <rdf:RDF> block as a sub-

element of annotation. However, a new <annot:annotation> element has finally

been defined as a sibling of the existing <annotation> element (Listing 4.2). This

solution provides a much clearer distinction between the package extension elements

and the core SBML file. Listing 4.2 shows the use of the Annotation package in an

SBML file.

1 <sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3"

version="1"

2 xmlns:annot="http://www.sbml.org/sbml/level3/version1/annot/version1

"

3 [..]

4 annot:required="false" [..] />

5 [..]

6 <model>

7 <listOfReactions >

8 <reaction id="Reaction1" metaid="_905823" name="degradation of LacI

transcripts" reversible="false" sboTerm="SBO:0000179">

9 <annotation >

10 <rdf:RDF >

1http://sbml.org/Community/Wiki/SBML_Level_3_Core/Package_mechanism, last accessed 21

October 2010.

74

http://www.sbml.org/sbml/level3/version1/annot/version1
http://sbml.org/Community/Wiki/SBML_Level_3_Core/Package_mechanism

11 [SBML STANDARD ANNOTATION]

12 </rdf:RDF >

13 </annotation >

14 <annot:annotation >

15 <rdf:RDF >

16 [ANY RDF SPECIFIED IN THE ANNOT PACKAGE]

17 </rdf:RDF >

18 </annot:annotation >

19 <listOfReactants />

20 <kineticLaw />

21 </reaction >

22 </listOfReactions >

23 </model>

24 </sbml>

Listing 4.2: Integration of <annot:annotation> annotations in SBML

Specific to the Annotation package are (1) the namespace declaration (l. 2), and

(2) the declaration of the annot:annotation element as optional (l. 4). An SBML

model can correctly be parsed and executed without the information encoded in

Annotation package. The annot element is therefore optional. This is indicated

by adding the XML attribute annot:required to the <sbml> element and setting

its value to false (l. 4). Each SBML element may then have SBML standard

annotations assigned to it (ll. 9-13), but also annotations from the annot namespace

(ll. 14-18). The package definition does not depend on other packages.

4.2.2. Qualifier names

To comply with the RDF scheme of subject-predicate-object triples where all parts

are nouns (read: “SUBJECT has PREDICATE who’s value is OBJECT”) the ex-

isting qualifiers have been updated. While predicates in the past have been verbs or

word groups starting with a verb, all predicates were transformed into nouns. For

example, the former bio-qualifier “bqbiol:is” was converted into “bqbiol:identity”

(Appendix A.1).

4.2.3. Container and collection support

To enable the definition of closed lists, ordered annotations and alternative annota-

tions, the Annotation package extends the current list of supported containers (i. e.

rdf:Bag elements) by rdf:List, rdf:Seq and rdf:Alt elements.

SBML annotations to date imply (implicitly) an alternative relationship between

two or more annotations inside an rdf:Bag (Listing 4.1, ll. 8-11). The rdf:Alt

container as proposed by the Annotation package now allows to explicitly say that

an SBML element can have alternative annotations. Similarly, the rdf:List allows

75

to explicitly provide a closed list of valid annotations, and the rdf:Seq allows to

define a sequence of elements.

Listing 4.3 exemplifies the application of rdf:Alt containers: The species with

meta-id meta glc may be annotated as urn:miriam:obo.chebi:CHEBI%3417234 or

as urn:miriam:kegg.compound:C00234. Both annotations are alternatives and as

such valid.

1 <species id="glc" metaid="meta_glc" name="Glucose">

2 <annot:annotation >

3 <rdf:RDF >

4 <rdf:Description rdf:about="#meta_glc">

5 <bqbiol:identity >

6 <rdf:Alt >

7 <rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI %3417234"/>

8 <rdf:li rdf:resource="urn:miriam:kegg.compound:C00234"/>

9 </rdf:Alt >

10 </bqbiol:identity >

11 </rdf:Description >

12 </rdf:RDF >

13 </annot:annotation >

14 </species >

Listing 4.3: Use of RDF containers in the Annotation package. Taken from [Waltemath et al. 2011d].

4.2.4. Attribute annotations

To support attribute annotations, the Annotation package proposes to extend the

current reference system to distinguish SBML element references from SBML at-

tribute references. Examples for the specific attribute annotation are providing the

information (1) who set up an initial concentration value (opposed to providing in-

formation on who defined the species) or (2) why an attribute has a given value.

The first example demands a reference to a person and the second one needs a link

to an external publication describing the value.

The current notation to refer to an SBML element inside an annotation block is

shown in Listing 4.4.

1 <listOfSpecies >

2 <species metaid="metaid_0000042" id="Y" name="Calcium"

3 compartment="intravesicular" initialConcentration="0.36">

4 <annotation >

5 <rdf:RDF >

6 <rdf:Description rdf:about="#metaid_0000042">

7 <bqbiol:is >

8 <rdf:Bag >

9 <rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI %3 A22984"/>

10 </rdf:Bag >

11 </bqbiol:is >

12 </rdf:Description >

76

urn:miriam:obo.chebi:CHEBI%3417234
urn:miriam:kegg.compound:C00234

13 </rdf:RDF >

14 </annotation >

15 </species >

16 </listOfSpecies >

Listing 4.4: SBML element reference

The sample listing shows the annotation of an SBML species element. It is cur-

rently not possible to further annotate the initialConcentration attribute. One

might, for example, want to specify a reference to the relevant literature that justifies

the provided value, or to say who set the concentration value.

Contrary to that, the Annotation package allows to refer to XML attributes.

While elements are addressed by rdf:about="# elementMetaID", an attribute is

referred to using XPath [Clark and DeRose 1999]. XPath is a standard technology

for referencing elements and attributes inside an XML document. It offers a well

defined scheme, and a great number of tools exist for the evaluation of XPath expres-

sions. Using the XPath concept in the rdf:about attribute enables the addressing of

any local object. The general scheme is: rdf:about="xpath:XPathToTheObject".

Listing 4.5 shows an example.

1 <species metaid="metaid_0000042" id="Y" name="Intravesicular Calcium"

2 compartment="intravesicular" initialConcentration="0.36">

3 <annot:annotation >

4 <rdf:RDF >

5 <rdf:Description

6 rdf:about="xpath: // species[@id=’Y’]/ @initialConcentration">

7 <bqbiol:description >

8 <rdf:li rdf:resource="urn:miriam:pubmed:12343565"/>

9 </bqbiol:description >

10 </rdf:Description >

11 </rdf:RDF >

12 </annot:annotation >

13 </species >

Listing 4.5: SBML Annotation package attribute reference

Here the initial concentration of species Y is annotated with a PubMed article ref-

erence, using the qualifier bqbiol:Description.

Within the Annotation package, XPath must not be used to address attributes and

elements by their (ordering) number (e. g. //species[7]/@initialConcentration)

as SBML per se does not give meaning to the element order. Instead, the abbreviated

XPath syntax as specified in the W3C recommendation [Clark and DeRose 1999,

Sec. 2.5] must be used to identify an XML element by its id and then refer to the

particular attribute (e. g. //species[@id="Y"]/@initialConcentration).

77

4.2.5. Annotations about annotations

To provide a statement about an existing annotation, both must relate to each

other (e. g. to state that “The annotation with ID rdf:about="# 000002" has been

provided by a person called ’John Doe’.“).

The current SBML annotation standard does not support the rdf:ID concept.

It is therefore impossible to refer to an rdf:Description block. To enable anno-

tations about annotations in the future, the Annotation package proposes the use

of the RDF reification concept [Miller and Manola 2004, Sec. 4.3]. Reification al-

lows to assign further statements to any statement carrying an rdf:ID. Subsequent

statements refer to a statement by specifying the rdf:ID in the rdf:about attribute

of the rdf:Description attribute. An example for an annotation about another

annotation is given in Listing 4.6.

1 <species metaid="metaid_0000042" id="Y" name="Intravesicular Calcium"

2 compartment="intravesicular" initialConcentration="0.36">

3 <annot:annotation >

4 <rdf:RDF >

5 <rdf:Description rdf:about="xpath: // species[@id=’Y’]/

@initialConcentration">

6 <bqbiol:description rdf:ID="statement1">

7 <rdf:li rdf:resource="urn:miriam:pubmed:12343565"/>

8 </bqbiol:description >

9 </rdf:Description >

10 <rdf:Description rdf:about="#statement1">

11 <dc:creator >John Smith</dc:creator >

12 </rdf:Description >

13 </rdf:RDF >

14 </annot:annotation >

15 </species >

Listing 4.6: SBML annotations about annotations

The example shows two statements: The first one annotates a species attribute

(ll. 5-10). The second statement (ll. 11-13) then specifies the creator of the first

statement, saying that John Smith provided the first annotation.

Sometimes it is necessary to group different annotations together and relate them

to a single subject. The Annotation package proposes to reuse the RDF blank node

concept. For example, to express that “Hexokinase 2 is modified by phosphoser-

ine in position 158” [Waltemath et al. 2011d] one needs to make two statements:

First, “Hexokinase2 is modified by phosphorerine”. Secondly, “The modification is

observed at position 158”2. Both statements together need to be applied to the

particular species. Listing 4.7 shows the encoding.

2bqbiol:position is not yet an agreed updon qualifier.

78

1 <species id="x" metaid="meta_x" name="Hexokinase 2">

2 <annot:annotation >

3 <rdf:RDF >

4 <rdf:Description rdf:about=" xpath: // species[@id=’meta_x ’]/">

5 <bqbiol:modification rdf:nodeID="node1"/>

6 </rdf:Description >

7 <rdf:Description rdf:nodeID="node1">

8 <bqbiol:modifier rdf:resource="urn:miriam:obo.psimod:MOD %3 A00046"/>

9 <bqbiol:position rdf:datatype="xsd:integer">158</bqbiol:position >

10 </rdf:Description >

11 </rdf:RDF >

12 </annot:annotation >

13 </species >

Listing 4.7: SBML unary statements [Waltemath et al. 2011d]

4.2.6. Person’s meta-information

SBML annotations currently are limited in specifying information on persons in-

volved in the model building, publishing, curating and maintaining process (e. g.

model creator or model curator). Only the dc:creator can be specified for a model.

The Annotation package, however, proposes to use the dc:creator to provide meta-

information about different persons, allowing it on both the model itself and any of

the model sub-elements. The implicit semantics of such an annotations is that such

annotations are inherited from parent nodes when a given node is not annotated.

For example, if a model element is annotated with a dc:creator but none of its

sub-elements are, it is assumed that all sub-elements have been created by the model

creator [Waltemath et al. 2011d].

4.3. Summary

Results

This chapter introduced the first draft proposal of an enhanced annotation format for

SBML. The proposal has been developed together with Allyson Lister (University of

Newcastle) and Neil Swainston (University of Manchester). It has been furthermore

discussed on the annot-discuss mailing list. The first version of the Annot package

proposal has been released without fully having solved all identified issues of the

current SBML annotation approach. In particular, the absence of model constituents

cannot yet be encoded.

However, the current draft is an improvement to the existing SBML annotation

scheme. The main achievements are:

79

annot-discuss

1. full support of RDF containers which allows to be more specific with collections

of annotations about an SBML element,

2. support of the RDF ID concept which enables annotations about annotations,

3. and thereby the further explanation of model constituents but also of the

annotations provided about a constituent.

The SBML extension has been published as the SBML Level 3 Package Proposal:

Annotation [Waltemath et al. 2011d].

Discussion and future prospects

The identified short-comings in the current SBML annotation standard have been

discussed during the “Modeling biological systems: Bio-model similarities and dif-

ferences based on semantic information” Workshop3 in Rostock in February 2010.

Consequently, the development of an SBML Level 3 package specifically addressing

solutions for the annotation of SBML models and its constituents followed. A second

meeting in May 2010 resulted in a first draft proposal for that package4.

Application on πML As shown earlier in this work, the current SBML annotation

scheme can be adopted in other representation formats. For example, CellML reuses

the MIRIAM URNs as part of the SBML annotation scheme. While the Annotation

package has been advocated as an SBML Level 3 extension, it is applicable to other

representation formats, too. The annotation scheme is generic as it builds on the

use of standard RDF and biomodels.net qualifiers. It can, for example, be applied

with πML (Section 2.2.3). While the πML language definition does not per se

support annotations, an extension can easily enable annotation support. To realize

annotations in πML, the following minimal changes to the schema have to be made:

• Add RDF namespace to the language to support RDF annotations. Alterna-

tively, import the SBML annotation package.

• Add a <piml> root element to the language that holds the original πML model

and the annotations.

• Add an optional <annotation> element to the XML Schema. It must appear

outside the <pimodel> element.

3http://www.informatik.uni-rostock.de/~dk103/meetings/modelMeeting10, last accessed 14

March 2011.
4http://sbml.org/Events/Other_Events/Annotation_package_workshop_2010, last accessed 14

March 2011.

80

http://www.informatik.uni-rostock.de/~dk103/meetings/modelMeeting10
http://sbml.org/Events/Other_Events/Annotation_package_workshop_2010

• Add a mandatory metaid attribute to all language elements (i. e. the pimodel

element and all occurrences of definition, process, channel elements). The

attribute is needed to refer to particular model parts from the annotation

section.

An <rdf:Description> block inside the <annotation> element must be created to

provide meta-information about either the πML model (model-qualifier or biology-

qualifier) or its constituents (biology-qualifier). The rdf:about attribute must con-

tain a reference to an XML element ID or one of its attributes inside the pimodel

element, or the pimodel element itself. Following the Annotation package proposal,

the rdf:Description block must have a qualifier specified that defines the relation

of the annotation to the referenced XML element. Listing 4.8 provides an example

for the Annotation package-compliant annotation of a πML model constituent.

1 <pimodel metaid="metaid_000001">

2 [..]

3 <definitions >

4 <!-- Euglena Prozess -->

5 <definition name="euglenaSpecies" metaid="metaid_000005 ">

6 <annot:annotation >

7 <rdf:Description rdf:about="xpath: // definition[@metaid=

8 ’metaid_000005 ’]">

9 <bqbiol:identity rdf:resource="urn:miriam:taxonomy:3038"/>

10 </rdf:Description >

11 </annot:annotation >

12 [..]

13 </definition >

14 [..]

15 </definitions >

16 [..]

17 </pimodel >

Listing 4.8: Annotation of a πML process definition using the Annotation package proposal

Here, the process definition with metaid="metaid 000005" is annotated as being

the Euglena species, following the definition given in the NCBI Taxonomy. A de-

tailed example is given in Appendix A.3.2. In the same way, CellML model elements

can be annotated (Appendix A.3.3).

Negations of annotations A remaining issue is the encoding of negative knowledge

(i. e. encoding the fact that something is known to be untrue).

One way to implicitly encode negations is the creation of a closed rdf:list which

explicitly names all true objects (URNs) for a given subject (model constituent) with

regard to a particular predicate (qualifier). A list implies that all unlisted objects

are excluded from the semantic description.

81

There is, however, a difference between listing all valid objects, and specifically

excluding a number of objects. For example, the following three statements differ

in their meaning:

• “species #metaid 0000042 bqbiol:is (A and B)”, open set of characteristics

(e. g. using the rdf:Bag concept),

• “species #metaid 0000042 bqbiol:is only (A and B)”, closed set of character-

istics using the rdf:List collection concept), and

• “species #metaid 0000042 bqbiol:is not (C)”.

The first statement lists a possible sub-set of characteristics that is not necessarily

complete. The second one fully determines the characteristics and ensures that no

further definitions of the subject exist. The third statement determines a sub-set of

invalid characteristics, without saying anything about possible other characteristics.

Statement one is supported by the current SBML annotation standard, as well as

by the Annotation package proposal (Listing 4.1).

Statement two is not supported by the current SBML annotation scheme as col-

lection support is missing. The problem can be solved with the Annotation package

as it allows to use rdf:list elements: If we can list the true objects for a given sub-

ject, we can infer that all other possible statements are not true and as such could

be considered negative annotations. However, given the diversity and complexity of

biological systems and considering the fact that many things are still unknown, this

approach does not seem feasible.

None of the discussed annotation schemes supports statement three as they do

not have negation mechanisms defined. However, these mechanisms are especially

important as the finding of a negative fact often needs to be explicitly stated (“I

found that species X is not phosphorylated.”). One proposed solution is the ex-

tension of currently existing qualifiers by their negative counterparts. For exam-

ple, the bio-qualifier is will be complemented by the bio-qualifier isNot. List-

ing 4.9 shows an example. The annotation states that reaction metaid 905823 is a

degradation process (urn:miriam:obo.sbo:0000179) but is not a transport reac-

tion (urn:miriam:obo.sbo:SBO:0000185).

1 <listOfReactions >

2 <reaction id="Reaction1" metaid="metaid_905823" name="degradation of

LacI transcripts" reversible="false" sboTerm="SBO:0000179">

3 <annot:annotation >

4 <rdf:RDF >

5 <rdf:Description rdf:about="#metaid_905823">

6 <bqbiol:identity >

7 <rdf:Bag >

82

8 <rdf:li rdf:resource="urn:miriam:obo.sbo:0000179"/>

9 </rdf:Bag >

10 </bqbiol:identity >

11 </rdf:Description >

12 <rdf:Description rdf:about="#metaid_905823">

13 <bqbiol:isNot >

14 <rdf:Bag >

15 <rdf:li rdf:resource="urn:miriam:obo.sbo:SBO:0000185"/>

16 </rdf:Bag >

17 </bqbiol:isNot >

18 </rdf:Description >

19 </rdf:RDF >

20 </annot:annotation >

21 <listOfReactants [..] />

22 <kineticLaw [..] />

23 </reaction >

24 </listOfReactions >

Listing 4.9: Use of negative qualifiers in the Annotation package

One remaining problem is how to explicitly state the absence of a constituent.

As none of the so far suggested options fully satisfied all needs, supporting negation

statements might demand moving to OWL5.

Semantics of RDF lists The Annotation package supports all types of RDF con-

tainers. The rdf:List defines a closed list of ordered references. However, the

semantics behind that order are not clear, and they are not defined by the Annota-

tion package as the rdf:List may be used in various different annotations (e g. in a

list of modification dates, in a list of species descriptions, or in a list of publication

references). The context determines the semantics of the listing (e. g. temporal or-

der, quality, or relevance). A mechanism to specify the rdf:List’s semantics is not

yet suggested.

Consistence of annotations Currently, the person or software working with a

model is fully responsible for the annotations’ consistence as the model code evolves.

With two different annotation schemes (i. e. the SBML standard annotation and the

Annotation package) inconsistencies may occur easily. For example, one software

tool may not support the Annotation package and therefore add and update exist-

ing SBML standard annotations. These annotations might then contradict with the

ones encoded in the Annotation package proposal.

5This suggestion was made by Nadia Anwar during the first COMBINE meeting, Edinburgh,

October 2010, http://sbml.org/Events/Forums/COMBINE_2010, last accessed 14 March 2011.

83

http://sbml.org/Events/Forums/COMBINE_2010

Annotating experimental data Another idea for future work is to integrate ex-

perimental and model data for the retrieval approach. As the retrieval is based on

meta-information, existing experimental data needs to be annotated in order to be

comparable to the model and to the simulation result data. One concrete appli-

cation where annotation of experimental data is needed is the Mosan tool [Unger

2010] that allows for the visualization of experimental and simulation runs. In order

to find suitable bio-models for the result data sets, a matching between the entities

used in Mosan and the components stored in mDB must be realized. Annotations –

both in the old and the new annotation scheme – are a promising concept to achieve

that goal. The approach is described in more detail in Section 6.6.

Converting the proposal into a package The main future goal is the acceptance

of the Annotation package proposal as an SBML extension. Therefore, the package

proposal as discussed during the Annotation package meeting6 and published in

[Waltemath et al. 2011d] has to be implemented by two software tools. Once the

extended annotation scheme is used for the annotation of SBML models, evaluations

will take place.

6http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Annotations, last accessed 19

October 2010.

84

http://sbml.org/Community/Wiki/SBML_Level_3_Proposals/Annotations

5. Exchange and reuse of simulation

experiments

An unplanned, hit-or-miss course of experimentation with a

simulation model can often be frustrating, inefficient, and

ultimately unhelpful.

(Kelton and Barton [2003])

One important aspect of meta-information related to bio-models is the information

about simulation experiments applicable to the model. To benefit computationally

from such information, it must be encoded in a standardized format.

This chapter introduces a guideline for the minimum information necessary to

describe a simulation experiment, a format for the encoding of such simulation ex-

periment descriptions, and an ontology for the classification and characterization

of simulation algorithms. First, Section 5.1 discusses the drawbacks of the current

situation. Section 5.2 then describes the minimum information guideline in detail

(MIASE). A data model for the description of MIASE-compliant simulation ex-

periments is the Simulation Experiment Description Markup Language (SED-ML,

Section 5.4). SED-ML utilizes an ontology to refer to simulation algorithms. The

ontology is called Kinetic Simulation Algorithm Ontology (KiSAO, Section 5.3).

The chapter concludes with implementation details (Section 5.5) and a discussion

(Section 5.6).

The MIASE guidelines Waltemath et al. [2011a] are considered by different areas

in computational biology, including neuroscience, cell physiology, or drug discovery.

A first version of SED-ML has been published [Waltemath et al. 2011b], and support

is currently being implemented by different software tools1.

5.1. Problem statement

By stating that “any scientific activity should be based on controlled and indepen-

dently repeatable experiments”, Pawlikowski et al. [2002] advocate to apply the

1SED-ML support is listed on http://sed-ml.org/, last accessed 21 March 2011.

85

http://sed-ml.org/

scientific method to simulation, resulting in a situation where “many repetitions [of

a non-sequential simulation] can eventually obtain the final results with acceptably

small statistical errors”.

One goal of the modeling process is to understand a systems’ behavior by running

simulations on it [Kelton and Barton 2003]. An important aspect when aiming at

reusing a model is the existence of a valid, useful and documented computational

experiment that can easily be performed on the model. The first prerequisite is

successful retrieval of a relevant model description. The next step then is to simulate

that model to obtain a desired output, often based on an existing simulation protocol

[Waltemath et al. 2011a]. At the same time, a model with an associated, valid

simulation experiment can be judged “more relevant” than a model that has no

proof of correct working associated with it.

The state-of-the-art procedure of applying an experiment on a bio-model is to read

the simulation description in the corresponding publication. This is an error-prone

and time-intense process. It is often impossible to reconstruct the simulation setup

from the information given in the literature. In many cases, the information does

not comply with the final setup, it is wrong or out-dated. In addition, the textual

simulation description in a particular (for many researchers foreign) language might

be ambiguous and imprecise. In those cases, finding the correct information required

for the simulation steps must rely on “educated guesses”. Sometimes, hints on the

parametrization are given in the <notes> tag inside the model representation format

(e. g. Listing A.1, ll. 61-66) but the description is non-standardized and informal. It

cannot be automatically extracted.

At present, software does not provide means to retrieve experiments together with

a bio-model. Providing a checklist of simulation-relevant information, however, will

increase the efficiency of simulation experiment reuse, and thereby also enhance bio-

model reuse. Experiment setups require a very detailed knowledge of the model and

the modeled system, including important inputs to the model, degree of sensitivity

to changes in the input, usage of random numbers, applicable simulation algorithms,

post-processing of simulation results and output performance measures [Kelton and

Barton 2003; Waltemath et al. 2011a]. The encoding of such information saves time

and effort when repeating simulation experiments on models [Nickerson et al. 2008;

Waltemath et al. 2011a]. If simulation experiments can be reused, they can also be

exchanged among researchers, fostering co-operations and simplifying communica-

tion and discussion about models and their shown behavior.

The aforementioned co-existence of representation formats (e. g. SBML, CellML,

and NeuroML) entails the existence of a great number of different simulation tools

[Beard et al. 2009; Endler et al. 2009]. None of them supports more than a sub-

86

Figure 5.1.: Examples for complex simulation experiments. Extracted from [Le Novère 2009], first

presented in [Le Novère 2008]. The left diagram presents the result of a time course

simulation plotting different biological entities on a logarithmic x-axis. The original

simulation results are given in the reference publication [Edelstein et al. 1996]. The

middle diagram shows the result of a phase plane analysis of the biological entities

mRNA and Per mRNA as described in [Ueda et al. 2001]. The right diagram shows a

more complex post processing with a three-dimensional visualization of the simulation

result. The plot represents the simulation results described in the reference publication

[Borneimer et al. 2004]. .

set of the existing standards. Moreover, many existing tools do not support the

import and export of their internal simulation experiment description, but only

of the model used in the simulation itself. This situation restricts a user to the

particular simulation tool used in the reference description. Therefore, simulation

experiments run on the models may remain inaccessibly unless the user decides to

“learn” another software or to adapt the simulation experiment.

The description of a simulation experiment can be trivial (e. g. running a simple

timecourse simulation) but usually it is complex; Figure 5.1 shows some examples.

From the sole plot, it is impossible to infer the applied post-processing on the model.

Also, potential changes in the initial model parametrization are not indicated. A

simulation experiment description format enables those experiments’ reuse.

5.2. Minimum Information About a Simulation Experiment

The Minimum Information About a Simulation Experiment (MIASE, [Waltemath

et al. 2011a]) guidelines are the outcome of investigations specifying the core infor-

mation to be provided to users of existing models, so that they can perform defined

simulations on those models. The success of MI guidelines in other fields of biol-

ogy and CSB (e. g. checklists for microarray experiments (MIAME) or checklists for

model annotation (MIRIAM, Section 3.1.3)) suggests that MI guidelines can also

facilitate better simulation reuse in CSB. The MIASE guidelines have been devel-

oped together with scientists from various modeling and simulation groups in CSB

87

(reflected by the list of authors on the corresponding publication [Waltemath et al.

2011a]). The guidelines and the format used to formalize the guidelines (Section 5.4)

are considered by groups in the SBML, CellML and NeuroML communities.

Section 5.2.1 first describes the scope of the guidelines. Section 5.2.2 then explains

the guidelines in detail. Finally, Section 5.2.3 provides an example for a MIASE-

compliant experiment description.

5.2.1. Scope

The exchange and reuse of models in the field of computational biology have been

advocated for several years now, and MIs such as MIRIAM [Le Novère et al. 2005]

have become widely accepted. Once the models are retrieved, the next step is to

test existing simulation protocols on them to obtain a desired output. Already the

MIRIAM guidelines (rule 6) state that

The model, when instantiated within a suitable simulation environment,

must be able to reproduce all relevant results given in the reference de-

scription that can readily be simulated. [Le Novère et al. 2005]

How to enable reproducibility of the relevant results is not specified in MIRIAM as

the procedure to fulfill this rule is not within its defined scope. That is why the

MIASE effort set out to enable better reproducibility of simulation results in the

field of CSB. The concept of reproducibility for the scope of this work is given in

Definition 5.2.1.

Definition 5.2.1 (Reproducibility, adapted from [McNaught and Wilkinson 1997]).

The closeness of agreement between independent results obtained with the same

method on identical test material but under different conditions (different operators,

different apparatus, different laboratories and/or after different intervals of time).

MIASE guidelines advocate for the reproducibility of a simulation experiment,

opposed to the fact that MI guidelines are usually aiming at repeatability (i. e.

redoing a simulation experiment with an identical experimental set-up) [Waltemath

et al. 2011a].

The scope of MIASE is within calculations performed on bio-models, regarding

the temporal and spatial evolution of a biological system. Examples are time series

(i. e. the development of a system over time), parameter scans (i. e. performing a

simulation for a range of values of certain parameters), but also sensitivity analysis,

bifurcation studies and more. MIASE, being a reporting guideline [Taylor et al.

2008], concentrates on describing simulation experiments (i. e. how to report clearly

and unambiguously what has been done, by describing the entities involved in the

88

experiment). Contrarily, it does not provide information about the experiment’s

quality (i. e. statements on the correctness of experimental approaches, or on how

an experiment should be performed). Consequently, MIASE does not require state-

ments on the correctness of a simulation result nor the conditions under which a

result is valid. That discussion is left to the potential users of the simulation experi-

ment description. Also, MIASE does not demand the user to provide information on

the models’ structure, nor information on how to gain a valid model parametrization.

For the time being, MIASE is restricted to simulation descriptions of biological

systems that could be (but are not necessarily) written with ordinary and partial

differential equations [Waltemath et al. 2011a], that are mathematical models of

biochemical and physiological systems. The reason for that restriction is the launch

of the project in the CSB and physiome community. As stated in [Waltemath et al.

2011a], however,

MIASE principles are of general applicability and should appeal to other

communities. It can be expected that MIASE compliance will be directly

applicable to a wider range of simulation experiments, being of help

for other communities using similar approaches, such as computational

neuroscience or ecological modeling. Furthermore MIASE could even be

extended to cover other areas of mathematical modeling in life science,

for instance process algebra.

5.2.2. Guidelines

For a simulation experiment description to be MIASE-compliant the following rules

must hold (published in [Waltemath et al. 2011a]):

1. All models used in the experiment must be identified, accessible, and fully

described.

a) The description of the simulation experiment must be provided together

with the models necessary for the experiment, or with a precise and un-

ambiguous way of accessing those models.

b) The models required for the simulations must be provided with all gov-

erning equations, parameter values and necessary conditions (initial state

and/or boundary conditions).

c) If a model is not encoded in a standard format, then the model code must

be made available to the user. If a model is not encoded in an open format

or code, its full description must be provided, sufficient to re-implement

it.

89

d) Any modification of a model (pre-processing) required before the execu-

tion of a step of the simulation experiment must be described.

2. A precise description of the simulation steps and other procedures used by the

experiment must be provided.

a) All simulation steps must be clearly described, including the simulation

algorithms to be used, the models on which to apply each simulation, the

order of the simulation steps, and the data processing to be done between

the simulation steps.

b) All information needed for the correct implementation of the necessary

simulation steps must be included, through precise descriptions,r or ref-

erences to unambiguous information sources.

c) If a simulation step is performed using a computer program for which

source-code is not available, all information needed to reproduce the sim-

ulation, and not only repeat it, must be provided, including the algorithms

used by the original software and any information necessary to implement

them, such as the discretization and integration methods.

d) If it is known that a simulation step will produce different results when

performed in a different simulation environment or on a different compu-

tational platform, an explanation of how the model has to be run with

the specified environment/platform in order to achieve the purpose of the

experiment must be given.

3. All information necessary to obtain the desired numerical results must be

provided.

a) All post-processing steps applied on the raw numerical results of simula-

tion steps in order to generate the final results have to be described in

detail. That includes the identification of data to process, the order in

which changes were applied, and also the nature of changes.

b) If the expected insights depend on the relation between different results,

such as a plot of one against another, the results to be compared have to

be specified.

The rules specify the content of a MIASE-compliant simulation experiment de-

scription. Figure 5.2 visualizes the presented MIASE rules.

A simulation setup bases on one or more bio-models. As such, the first essen-

tial step is the specification of all model(s) involved in the simulation experiment

90

Figure 5.2.: Flowchart representing the rules for a MIASE-compliant simulation (page 90). Rect-

angles represent processes, diamonds represent decision points [ISO 5807 1985].

91

(rule 1). Different ways of referencing a model from a simulation experiment de-

scription include joining the model with the experiment description, or referenc-

ing it through a link. The reference must, however, guarantee to be precise and

unambiguous to ensure the model’s long-term access (rule 1A). MIASE recom-

mends the use of models in standard (representation) formats that comply with the

MIRIAM guidelines. Examples are referenced models using BioModels Database

URNs (urn:miriam:biomodels.db:modelID) or models from the CellML Model

Repository (http://models.cellml.org). A .zip format delivering both mod-

els and the simulation description has been proposed recently by Frank Bergmann

and can be used with the software framework Systems Biology Workbench (http:

//sbw.sourceforge.net/). It is recommended for models that are not publicly

available (rule 1C). All models must be submitted together with all parameters,

equations and conditions relevant for the simulation experiment (rule 1B). Fur-

thermore, any preprocessing to be applied to a model before simulation must be

precisely described in the experiment description (rule 1D). Examples are the up-

date of a parameter or a mathematical function but also the range of a parameter

in a parameter scan.

A MIASE-compliant simulation description contains all information necessary for

the simulation itself (rule 2). The particular type(s) of simulation experiment to

be run on the model must be specified (e. g. time course simulation, parameter

scan, and bifurcation analysis). Together with the type, all necessary information

for the simulation run must be submitted (e. g. the step size for a uniform time

course simulation, or the particular simulation algorithm used to run the simula-

tion). For multi-step simulations, the order of all simulation steps must be given. If

the output of a simulation step must be processed before it is used in the follow-up

simulation step, then the processing must be unambiguously described (rule 2A).

The identification of the simulation algorithm and its variant used in the simulation

experiment is particularly important as the numerical results often depend on the

chosen implementation. MIASE recommends the use of controlled vocabulary to

refer to a particular simulation algorithm. One proposal for an ontology of simu-

lation algorithms is the KiSAO (Section 5.3). Sometimes the simulation run might

depend on further parameters. Those have to be defined in the MIASE-compliant

simulation description (e. g. the choice of random number generator for stochastic

simulations or the meshing method used for discretisation in spatial simulations)

(rule 2B). Same as for the availability of the models used in the experiment, also

the simulation software must be available. If a closed-source software is used, all in-

formation necessary to reproduce the simulation must be provided (i. e. information

to re-implement the software) (rule 2C). If a simulation run demands particular

92

urn:miriam:biomodels.db:
http://models.cellml.org
http://sbw.sourceforge.net/
http://sbw.sourceforge.net/

hardware setups or software libraries, those must be specified and explained in the

simulation description (rule 2D).

Furthermore, MIASE requires information essential to obtain a particular simula-

tion output (rule 3). The experiment description must contain all information about

post-processing on the raw simulation output, if it has to be applied (rule 3A). Ex-

amples are the normalization of a data set or the output of data on a logarithmic

scale. The particular type of output can lead to different insights of the system.

It therefore has to be specified in a MIASE-compliant simulation description. Ex-

amples are the output as a 2D plot, a movie, or a simple data table. Plotting two

variables on a time axis shows their change in concentration over a given range of

time, while plotting them against one another leads to a phase portrait showing the

dependency of both variables.

5.2.3. Example

The following simulation description of the LeLoup and Goldbeter model [Leloup

and Goldbeter 1999]2 shows the application of the MIASE guidelines. The aim is to

run a timecourse simulation of the LeLoup model reproducing the chaotic oscillation

of the tim mRNA complex as shown in Figure 3B in the reference publication. A

MIASE-compliant description of that experiment is:

1. Use the model urn:miriam:biomodels.db:BIOMD0000000021 for the simula-

tion experiment. (rule 1A+1B)

2. Update the model parameters. (rule 1A)

• Update the initial value of the parameter V mT to 0.28. (rule 1D)

• Update the initial value of the parameter V dT to 4.8. (rule 1D)

3. Run a timecourse simulation on the model. Use the CVODE solver described in

Cohen S, Hindmarsh C: Cvode, A Stiff/nonstiff Ode Solver In: Com-

puters in Physics, Vol. 10 (2), pages 138-143 (1996) for that simulation.

(rule 2A).

4. Run the timecourse simulation of the model for 1000 time units, taking mea-

surements after every single time unit. (rule 2A)

5. After simulation, create a 2-dimensional plot with one curve showing time on

the x-axis and the values of Mt on the y-axis. (rule 3B)

2“Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in

drosophila”, Appendix A.2.1.

93

The first item in the enumeration defines the model used in the simulation. In this

example, the referenced model (urn:miriam:biomodels.db:BIOMD0000000021) is

available from BioModels Database. Resolving the URN leads to its SBML encoding.

SBML provides the model with all necessary parameters and the corresponding

initial values, as well as the reactions taking place.

The second item in the enumeration describes the necessary parameter updates

before simulation. The original model is changed by applying two updated parameter

values: a new value for the parameter V mT and a new value for the parameter V dT.

The third and fourth item in the enumeration refer to the simulation setup itself.

The model should be simulated in a uniform timecourse simulation over 1000 time

units. The simulation algorithm to be used is the CVODE solver; the algorithm is

specified through an informal reference to literature.

The last item in the enumeration then defines the output of the simulation as

being a 2-dimensional plot. The values of Mt are shown in the plot.

http://libsedml.svn.sourceforge.net/ provides an extended version of the

example which compares the Mt value in the original parametrization with the one

using an updated parametrization.

5.3. Kinetic Simulation Algorithm Ontology

One important part of a simulation experiment is the simulation algorithm used to

solve the system. Simulation results may differ depending on the chosen algorithm

[Waltemath et al. 2011a]. The sole reference of a simulation algorithm through its

name in form of a string is error prone and unambiguous. Firstly, typing mistakes

or language differences may make the identification of the intended algorithm diffi-

cult. Secondly, many algorithms exist with more than one name, having synonyms

or various abbreviations that are commonly used [Waltemath et al. 2011b]. MIASE

demands reference to an unambiguous source of simulation algorithms for each sim-

ulation setup specified (rule 2A). An ontology of existing simulation algorithms

allows to provide that information.

Ontologies are already used in the context of M&S. Fishwick and Miller [2004], for

example, show a small ontology for Petri Net types. Another example is the Discrete-

Event-Modeling Ontology (DeMO, [Miller et al. 2004]), an ontology for discrete-event

modeling and simulation. It covers several types of discrete-event models, and is built

of four different hierarchies (event-, state-, activity- and process oriented models)

[Fishwick and Miller 2004]. The developers aimed at capturing knowledge about the

DE modeling domain. They identified, from their point of view, all relevant concepts

and provided (where possible) machine-interpretable formal specifications for these

94

http://libsedml.svn.sourceforge.net/

concepts [Miller et al. 2004]. However, DeMO is very restricted in its scope as it does

not address much of the modeling and simulation domain – for example, continuous

models, statistical modeling, output analysis, random variates [Silver et al. 2007] are

not covered. An ontology for simulation algorithms has so far not been developed.

The Kinetic Simulation Algorithm Ontology [Courtot et al. 2011] (KiSAO) is an

ontology for the classification and organization of simulation algorithms mainly used

for kinetic simulation experiments. KiSAO development is work at an early stage;

current versions are available in OBO3 and OWL format. The ontology is maintained

as a sourceforge project4. It is part of the biomodels.net effort5 and it is registered

at the bioportal6 which also provides a visual KiSAO browser. KiSAO consists of

61 classes, covering 53 algorithms and their variants.

Classification KiSAO has four main branches (i. e. categories) with several sub-

branches (Figure 5.3). The branches implement general concepts such as algo-

rithm using adaptive timesteps (KISAO : 0000041) and more specific ones such

as Gillespie-like approximate simulation method (KISAO : 0000001). Each of the

concept classes characterizes the contained simulation algorithms. As an example,

Figure 5.3 shows the classification of Gillespie’s first reaction method: It is a stochas-

tic algorithm with adaptive time steps that uses discrete variables and disregards

spatial information (algorithm using non-spatial description). From the ontology,

one can infer that Gillespie’s first reaction method is a special case of the more

general optimized reaction method. Both belong to the class of Gillespie-like exact

stochastic simulation method.

Characterization Each algorithm class has a set of attributes attached to it which

characterizes the encoded algorithm. Properties include a definition that holds a

link to the reference publication, possible synonyms for the algorithm names, and a

label. For the example of Gillespie’s first reaction method, the corresponding entry

in the OBO version of the ontology is shown in Listing 5.1.

Use cases Information on the simulation algorithm can help in finding relevant

models, for example, when searching for models solvable in a particular simulation

environment. KiSAO is used in SED-ML to reference a particular simulation algo-

rithm from a simulation setup (Section 5.4.2). Furthermore, the kisaoID is stored

3http://rest.bioontology.org/bioportal/ontologies/download/40844, last accessed 14

March 2011.
4http://sourceforge.net/projects/kisao/, last accessed 10 August 2010.
5http://biomodels.net/kisao, last accessed 15 December 2010.
6http://www.bioportal.org/bioontology, last accessed 15 December 2010.

95

http://rest.bioontology.org/bioportal/ontologies/download/40844
http://sourceforge.net/projects/kisao/
http://biomodels.net/kisao
http://www.bioportal.org/bioontology

Figure 5.3.: Example for the classification of the “Gillespie’s first reaction method”

(KISAO:0000015).

1 [Term]

2 id: KISAO :0000015

3 name: Gillespie ’s first reaction method

4 def: "Stochastic simulation algorithm using the next -reaction density

5 function , [..]. Gillespie DT. A General Method for Numerically

6 Simulating the Stochastic Time Evolution of Coupled Chemical

7 Reactions. J.CompPhysics , Volume 2 , pages 403 -434 (1976) ."

8 is_a: KISAO :0000034 ! optimized direct method

Listing 5.1: The characterization of Gillespie’s first reaction method

96

in the simulation database sDB (Section 5.4.3); it forms one characteristic for the

model retrieval and ranking approach (Chapter 7).

5.4. Simulation Experiment Description Markup Language

Existing guidelines need to be converted into normative standards [Sherman 2009]

(citing [Burgoon 2006]). The MIASE guidelines have been implemented in an XML

Schema [W3C 2004] representing the Simulation Experiment Description Markup

Language (SED-ML) [Köhn and Le Novère 2008]. The schema has been defined

based on a UML model which has been automatically transformed into a preliminary

XML Schema using Magic Draw UML 16.0. The result has then been manually

adjusted. Appendix A.4 shows both, the UML diagram and the full XML Schema.

The first official version of SED-ML is SED-ML Level 1 Version 1 Release Can-

didate 1 (in the following referred to as SED-ML). It has been developed in co-

operation with several modeling and simulation groups in CSB. SED-ML meetings

started off as a regular session during SBML-related meetings; the first meeting

discussing SED-ML was the 12th SBML Forum Meeting in 2007. Later on, SED-

ML discussions moved to combined efforts meetings such as the Super-hackathon

”standards and ontologies for Systems Biology”7 in 2008, the combined CellML-

SBGN-SBO-BioPAX-MIASE 2009 workshop8, and the COmputational Modeling in

BIology NEtwork9 (COMBINE) meeting in 2010.

Section 5.4.1 first introduces the SED-ML URN concept which is one basic ref-

erence mechanism in SED-ML. Section 5.4.2 provides an overview of the SED-ML

language. The full language specification of the first SED-ML Release Candidate is

available online from http://sourceforge.net/projects/sed-ml/ and described

in [Waltemath et al. 2011b]. Section 5.4.3 briefly discusses possibilities for the extrac-

tion and storage of SED-ML information in a database for later use in the retrieval

process.

5.4.1. URI scheme

The URI Scheme is applied at several points in SED-ML: to refer to model encodings

(i. e. publicly available model representation files), to specify the language of the

referenced model, to address implicit model variables, and to annotate SED-ML

elements. A standardized URI Scheme ensures long-time availability of a resource;

that resource can unambiguously be identified.

7http://sbgn.org/Events/SBGN-3.5, last accessed 14 March 2011.
8http://www.cellml.org/workshop/workshop2009/, last accessed 14 March 2011.
9http://sbml.org/Events/Forums/COMBINE_2010, last accessed 14 March 2011.

97

http://sourceforge.net/projects/sed-ml/
http://sbgn.org/Events/SBGN-3.5
http://www.cellml.org/workshop/workshop2009/
http://sbml.org/Events/Forums/COMBINE_2010

Model references The preferred way to refer to a bio-model is the MIRIAM ref-

erence standard (Section 3.2.1). urn:miriam:biomodels.db:BIOMD0000000048, for

example, points to the model with ID BIOMD0000000048 in BioModels Database.

miriam indicates that the URN is a standard MIRIAM URN. biomodels.db indi-

cates that the resource is BioModels Database. SED-ML does not specify how to

resolve the URNs. However, web services offered by MIRIAM Resources can be used

to do so [Laibe and Le Novère 2007]. For the above example, the resolved URL may

look like:

• http://biomodels.caltech.edu/BIOMD0000000048 or

• http://www.ebi.ac.uk/biomodels-main/BIOMD0000000048

depending on the physical location of the resource chosen to resolve the URN.

Language references A model’s encoding is specified by a SED-ML standard URN

(Appendix A.4.1) with the structure urn:sed-ml:language:language. SED-ML

allows to generally specify the model representation format as XML, if no standardized

representation format has been used to encode the model (urn:sed-ml:language:

xml). But one can be as specific as defining a model as “SBML Level 2, Version 2”

(urn:sed-ml:language:sbml.level-2.version-2)10. The language URNs can be

resolved into URLs pointing to the language specification11.

Symbol URNs Some variables used in a simulation experiment are not explicitly

defined in the model, but may be implicitly contained in it. For example, to plot

a variables behavior over time, the variable is defined in an SBML model; however,

time is not explicitly defined in the model.

Implicit variables (so-called symbols) provide SED-ML with a standardized scheme

to overcome that shortcoming. Symbols are defined externally in the SED-ML

namespace, following the idea of MIRIAM URNs. The corresponding SED-ML

URN scheme is urn:sedml: symbol:implicit variable. To refer from a SED-ML file

to the definition of time, for example, the URN is urn:sedml:symbol:time. The

list of predefined symbols is available from http://biomodels.net/sed-ml.

SED-ML URNs only provide a standardized location for implicit variables. From

each such URN a mapping of SED-ML symbols on possibly existing concepts in the

corresponding representation formats is provided.

10Language levels and versions are separated by a “.”.
11For example, the resolved URL for the just given SBML version is http://www.sbml.org/

specifications/sbml-level-2/version-2/revision-1/sbml-level-2-version-2-rev1.pdf

98

urn:sed-ml:language:
urn:sed-ml:language:xml
urn:sed-ml:language:xml
urn:sed-ml:language:sbml.level-2.version-2
http://biomodels.net/sed-ml
http://www.sbml.org/specifications/sbml-level-2/version-2/revision-1/sbml-level-2-version-2-rev1.pdf
http://www.sbml.org/specifications/sbml-level-2/version-2/revision-1/sbml-level-2-version-2-rev1.pdf

Figure 5.4.: Overview: The generic processes for the definition of a SED-ML file.

5.4.2. Language elements

I will explain the SED-ML data model using a workflow representation. It is de-

scribed in the Business Process Modeling Notation (BPMN, [White 2004]). Images

were created using the Oryx workflow designer [Decker et al. 2008] and its successor

Signavio Oryx V 4.1.5 (http://academic.signavio.com). Examples are partially

taken from [Waltemath et al. 2011b]. Figure 5.4 gives an overview of the SED-ML

workflow processes. All steps will be described in more detail and the most im-

portant concepts (instantiated as XML elements and attributes) will be discussed.

In a very generic sense, a SED-ML file is created by

1. defining all models participating in the experiment,

2. defining all simulation setups that will be used in the experiment,

3. connecting a model and a simulation setup at a time, and

4. defining the desired output.

To exemplify the use of SED-ML, a simulation experiment description of the

“Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM

proteins in drosophila” model by LeLoup and Goldbeter [Leloup and Goldbeter

1999] is used. A (textual) MIASE-compliant description of the same experiment has

already been given in Section 5.2.3.

Model specification

A simulation experiment can incorporate zero to many models which have to be

unambiguously referenced and described (Figure 5.5).

99

http://academic.signavio.com

Figure 5.5.: Model specification process for the definition of a SED-ML file.

Model references The SED-ML approach uses the source attribute to point to

any model file and the model reference scheme described in the URI scheme (Sec-

tion 5.4.1).

Preferably, the model resource is defined by an unambiguous, consistent URI

pointing to a single model in a particular version and encoded in an XML file (e. g.

source="urn:miriam:biomodels.db:BIOMD0000000021"). Any resource registered

at MIRIAM resources12 can be used for model references. If the model is not

yet published in a model repository registered with MIRIAM resources, then the

model might be referenced using a URL13. However, long-term availability cannot be

guaranteed for the references as URLs are not necessarily consistent. If the model

code is not yet published, and SED-ML shall be used, then a reference to a local

copy of the model code might be used (e. g. source="./models/mymodel.xml").

Exchange of such simulation experiment descriptions is limited though.

If a change is applied on a model, the source attribute references the original

model by its SED-ML modelID.

Model encoding language Encoding the language for each referenced model is a

helpful tool for simulation environments to quickly decide on whether or not they

support a SED-ML description file (i. e. can load the model code). Again, SED-ML

recommends the use of standardized URIs to refer to a particular representation

format or model encoding (Section 5.4.1).

Listing 5.2 shows the generic XML listOfModels element containing two model

element definitions.

12http://www.ebi.ac.uk/miriam.main, last accessed 14 March 2011.
13An example for a URL is source="http://models.cellml.org/workspace/leloup_goldbeter_

1998/@@rawfile/f14389c9271d0fe25e56c3cfc8d1a25d23c129af/leloup_1998b.cellml".

100

urn:miriam:biomodels.db:BIOMD0000000021
./models/mymodel.xml
http://www.ebi.ac.uk/miriam.main
http://models.cellml.org/workspace/leloup_goldbeter_1998/@@rawfile/f14389c9271d0fe25e56c3cfc8d1a25d23c129af/leloup_1998b.cellml
http://models.cellml.org/workspace/leloup_goldbeter_1998/@@rawfile/f14389c9271d0fe25e56c3cfc8d1a25d23c129af/leloup_1998b.cellml

1 <listOfModels >

2 <model id="model1" name="model name" language="URN to the language

specification"

3 source="URN to the corresponding XML file" />

4 <model id="model2" name="perturbed version of model1"

5 language="URN to the language specification" source="model1" >

6 <listOfChanges >

7 [description of perturbations]

8 </listOfChanges >

9 </model>

10 </listOfModels >

Listing 5.2: Definition of a set of models in SED-ML (general)

Listing 5.3 shows the definition of two models for the sample simulation. One origi-

nates from a public repository (urn:miriam:biomodels.db:BIOMD0000000021), and

the second one is a perturbed version of the first model with applied changes.

1 <listOfModels >

2 <model id="model1" language="urn:sedml:language:sbml.level -2. version -1"

3 source="urn:miriam:biomodels.db:BIOMD0000000021" />

4 <model id="model2" language="urn:sedml:language:sbml" source="model1">

5 [..]

6 </model>

7 </listOfModels >

Listing 5.3: Definition of a set of models in SED-ML (example)

The listing also shows the use of SED-ML language URNs: model1 is characterised

as an SBML Level 2, Version 1 compliant model while model2 is more generally

defined as an SBML model. One possible reason can be that SBML Level 2 Version 1

compliance cannot be assured for the modified model version.

Model perturbations

Necessary changes on a model before simulation are defined in a listOfChanges, an

optional sub-element of model (Figure 5.6).

Model code updates SED-ML distinguishes changes on the attribute values of a

model’s XML representation (changeAttribute), changes in the model’s XML rep-

resentation (addXML, changeXML, removeXML), and changes based on mathematical

calculations (computeChange).

The first type updates the value of an XML attribute (e. g. changing a parameter

value in the model, or updating an initial condition in SBML). The second type of

change allows to exchange any XML code inside the model by another valid piece of

XML (e. g. exchanging a compartment definition by another, or changing a rate law

definition in SBML). The third type of change allows to change the definition of a

101

Figure 5.6.: Perturbation specification process for the definition of model perturbations in a SED-

ML file.

mathematical function to calculate a new value for a model parameter or variable.

For example, instead of giving a fixed value to a parameter in an SBML file, the

value could be calculated based on the concentration of another model parameter. A

mathematical expression may consider model variables and additional parameters for

the calculations. Therefore, the listOfVariables and listOfParameters elements

are introduced as sub-elements to the computeChange element.

Updates in the mathematics The SED-ML language reuses MathML 2.0 [Pop-

pelier et al. 2003] concepts to define both, pre-processing on the model before sim-

ulation and post-processing on the simulation results after simulation. Is is an in-

ternational standard for encoding mathematical expressions in XML. It is also used

by other standardization formats (e. g. SBML and CellML) to express mathemati-

cal constructs. As MathML is a very complex language, SED-ML uses a restricted

subset of MathML 2.0 as defined in [Waltemath et al. 2011b, Sec. 2.1].

Code references Each type of change needs to address the particular piece of XML

in the model encoding file. SED-ML uses XPath [Clark and DeRose 1999] to address

nodes in the XML tree. XPath offers an unambiguous way of identifying an XML

102

element or attribute in an XML file. In a SED-ML file, the target attribute stores

the XPath expression.

The specification of all three types of changes is exemplified in Listing 5.4.

1 <model>

2 <listOfChanges >

3 <changeAttribute target="any attribute in the XML (XPath)"

4 newValue="new value" />

5 <changeXML target="any attribute or element in the XML"

6 newXML="valid piece of XML declaration" />

7 <computeChange target="any attribute or element in the XML (XPath)">

8 <listOfVariables >

9 [variables to be used for the calculation]

10 </listOfVariables >

11 <listOfParameters >

12 [parameters to be used for the calculation]

13 </listOfParameters >

14 <math>

15 [any expression compliant with the SED -ML MathML subset]

16 </math>

17 </computeChange >

18 </listOfChanges >

19 </model>

Listing 5.4: Definition of model perturbations (generic)

Listing 5.5 defines a value change on the original LeLoup model. The parametriza-

tion of model2 is specified based on model1 and by updating the values of the two

parameters V mT (l. 7) and V dT (l. 8).

1 <listOfModels >

2 <model id="model1" language="urn:sedml:language:sbml.level -2. version -1"

3 source="urn:miriam:biomodels.db:BIOMD0000000021" />

4 <model id="model2" language="urn:sedml:language:sbml.level -2. version -1"

5 source="model1">

6 <listOfChanges >

7 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/

sbml:parameter[@id=’V_mT ’]/ @value" newValue="0.28" />

8 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/

sbml:parameter[@id=’V_dT ’]/ @value" newValue="4.8" />

9 </listOfChanges >

10 </model>

11 </listOfModels >

Listing 5.5: Definition of a model perturbation (example)

Simulation setups

Similarly to the model definitions, a number of simulation setups can be defined

(Figure 5.7). Simulation setups include the experiment type, but also the particular

simulation algorithm, and the simulation settings.

103

Figure 5.7.: Simulation setup specification process for the definition of a SED-ML file.

Simulation types The first essential information is the type of simulation exper-

iment. Examples are time course simulations, parameter scans, or steady state

analyses. The SED-ML schema supports the encoding of uniform timecourse simu-

lations (uniformTimeCourse). The following simulation settings are specified: the

initial time (initialTime), the start time for the output (outputStartTime), and

the end time for the output (outputEndTime) of the simulation. As a uniform time-

course simulation plots a curve at different yet uniform time points, either the step

size or the number of points has to be provided. SED-ML stores the number of

measurement points within the given time interval (numerOfPoints).

Simulation algorithms The last step in describing a simulation setup is the specifi-

cation of the simulation algorithm. One algorithm must be defined for each simula-

tion setup. SED-ML demands reference to controlled vocabulary; the use of KiSAO

(Section 5.3) is recommended.

Listing 5.6 shows the general setup of a simulation.

1 <listOfSimulations >

2 <uniformTimeCourse id="simulation setup ID" name="some simulation"

3 initialTime="time" outputStartTime="start time" outputEndTime="end time

"

4 numberOfPoints="number of points">

5 <algorithm kisaoID="KISAO:id" />

6 </uniformTimeCourse >

7 [FURTHER SIMULATION EXPERIMENT DEFINITIONS FOLLOWING]

8 </listOfSimulations >

Listing 5.6: Definition of simulation setups in SED-ML (generic).

104

Figure 5.8.: Task definition process in a SED-ML file.

Listing 5.7 defines two particular time course simulations with uniform ranges, one

using a deterministic algorithm (CVODE, KISAO : 0000019) and the other one a

stochastic algorithm (Gillespie Direct method, KISAO : 0000029).

1 <listOfSimulations >

2 <uniformTimeCourse id="s1" name="deterministic simulation"

3 initialTime="0" outputStartTime="50" outputEndTime="500" numberOfPoints

="100">

4 <algorithm kisaoID="KISAO:0000019" />

5 </uniformTimeCourse >

6 <uniformTimeCourse id="s2" name="stochastic simulation"

7 initialTime="0" outputStartTime="50" outputEndTime="500" numberOfPoints

="100">

8 <algorithm kisaoID="KISAO:0000029" />

9 </uniformTimeCourse >

10 </listOfSimulations >

Listing 5.7: Definition of a simulation setup (example).

Assigning a simulation to a model

SED-ML constructs a simulation experiment from several different experiment se-

tups. The modular definition of model and simulation setups allows SED-ML to

execute elements of the model and simulation pools in different combinations. A

pair of model and simulation setup is called a task (Figure 5.8). Each task has a

mandatory id. It then consists of a model reference, pointing to one of the models

in the model pool (listOfModels), and a simulation reference, pointing to one of

105

the simulation setups in the simulation pool (listOfSimulations). Within a single

task, only one model and one simulation can be grouped together. However, the def-

inition of a set of tasks is possible. Both, models and simulations might be assigned

to more than one tasks. Listing 5.8 shows the definition of a task in SED-ML.

1 <listOfTasks >

2 <task id="task ID" name="task name" modelReference="reference to modelID

"

3 simulationReference="reference to simulationID" />

4 [FURTHER TASK DEFINITIONS FOLLOWING]

5 </listOfTasks >

Listing 5.8: Definition of a task (generic)

Listing 5.9 shows the definition of two tasks, both using the same simulation setup,

but different versions of a model. The first task runs simulation s1 on model model1;

the second task applies simulation s1 to model model2.

1 <listOfTasks >

2 <task id="t1" name="deterministic simulation of the original Leloup

model"

3 modelReference="model1" simulationReference="s1" />

4 <task id="t2" name="deterministic simulation of the perturbed Leloup

model"

5 modelReference="model2" simulationReference="s1" />

6 </listOfTasks >

Listing 5.9: Definition of a task (example)

Post-processig simulation data

The simulation output specification is part of SED-ML. As a prerequisite, the nec-

essary output data needs to be defined (Figure 5.9). The dataGenerator element

encodes all relevant information to prepare the raw simulation data for the output.

If a data generator uses the raw output of the simulation, then it contains a sim-

ple reference to the particular piece of XML (e. g. to a species in SBML). However,

in many cases, the raw result of the simulation is not sufficient to represent a phe-

nomenon or to analyse the data. The post-processing steps have to be applied to the

simulation result (e. g. normalization of data or calculation of mean values). SED-

ML encodes post-processing through mathematical functions encoded in MathML.

Each data generator contains the post-processing information to be applied to a

data source. The data source does not necessarily have to come from inside the

model. It is also possible to define “external” parameters using the URI concept

(Section 5.4.1), for example to provide a definition of time. A whole pool of data

generators can be created and later be reused in the output specification. List-

106

Figure 5.9.: DataGenerator definition in a SED-ML file.

ing 5.10 shows the generic structure of a data generator. In a SED-ML file, either

the target or the symbol may be present; both must not occur at the same time.

1 <listOfDataGenerators >

2 <dataGenerator id="data generator id" name="name"/>

3 <listOfVariables >

4 <variable id="variable id" name="some internal variable name"

5 taskReference="task that contains the model in which the variable

occurs"

6 target="XPath to attribute or element in the model representing the

variable"

7 symbol="implicit variable" />

8 </listOfVariables >

9 <math>

10 [mathML expression]

11 </math>

12 <listOfParameters >

13 [PARAMETER DEFINITIONS]

14 </listOfParameters >

15 </dataGenerator >

16 [FURTHER DATA GENERATOR DEFINITIONS]

17 </listOfDataGenerators >

Listing 5.10: Definition of dataGenerators (generic)

Listing 5.11 shows an example for the definition of two data generators, one refer-

encing a model parameter (d2), the other one defining time (d1). Time is an implicit

variable.

1 <listOfDataGenerators >

2 <dataGenerator id="d1" name="time"/>

3 <listOfVariables >

4 <variable id="v1" taskReference="t1" symbol="urn:sed -ml:symbol:time"/>

5 </listOfVariables >

6 <listOfParameters />

107

Figure 5.10.: Output definition process in a SED-ML file.

7 <math>

8 <ci> v1 </ci>

9 </math>

10 </dataGenerator >

11 <dataGenerator id="d2" name="V_T" >

12 <listOfVariables >

13 <variable id="v2" name="V_T" taskReference="t1" target="/sbml:sbml/

sbml:model/sbml:listOfParameters/sbml:parameter[@id=’V_mT ’]" />

14 </listOfVariables >

15 <listOfParameters />

16 <math>

17 <ci> v2 </ci>

18 </math>

19 </dataGenerator >

20 </listOfDataGenerators >

Listing 5.11: Definition of dataGenerators (example)

Output specification

The output is specified based on the existing data generators (Figure 5.10); the

different data sources (e. g. d1 and d2) are mapped on the output parameters (e. g.

axes of a plot or columns of a table). Every output definition is characterized by a

certain output type. SED-ML supports 2D plot, 3D plot and tables. Depending on

the output type, the necessary data sources are applied to the output components.

For example, a two-dimensional plot requires the definition of both, an x-axis and

a y-axis. One data source is assigned to each axis by linking to a particular data

generator. Listing 5.12 shows the generic definition of outputs.

108

1 <listOfOutputs >

2 <plot2D id="plot id" name="name for the plot" />

3 <listOfCurves >

4 <curve id="c1" logX="true/false" logY="true/false"

5 xDataReference="data generator to be plotted on x-axis"

6 yDataReference="data generator to be plotted on y-axis" />

7 [FURTHER CURVE DEFINITIONS]

8 </listOfCurves >

9 </plot2D >

10 <plot3D >

11 <listOfSurfaces >

12 <surface id="sf1" logX="true/false" logY="true/false"

13 logZ="true/false"

14 xDataReference="data generator to be plotted on x-axis"

15 yDataReference="data generator to be plotted on y-axis"

16 zDataReference="data generator to be plotted on z-axis" />

17 [FURTHER SURFACE DEFINITIONS]

18 </listOfSurfaces >

19 </plot3D >

20 <report >

21 <listOfDataSets >

22 <dataSet id="ds1" dataReference="data generator for report"

23 label="label of data set" />

24 [FURTHER DATA SET DEFINITIONS]

25 </listOfDataSets >

26 </report >

27 </listOfOutputs >

Listing 5.12: Definition of dataGenerators (generic)

An example for an output definition is given in Listing 5.13. It shows the speci-

fication of a two-dimensional plot. Time is plotted on the x-axis (referring to d1

in Listing 5.11). The VT parameter value of both the original (referring to d2 in

Listing 5.11) and perturbed LeLoup model (d3, not shown in Listing 5.11) is plotted

in two different curves on the y-axis.

1 <listOfOutputs >

2 <plot2D id="plot1" name="V_T (original and perturbed) over time">

3 <listOfCurves >

4 <curve xDataReference="d1" logX="false" yDataReference="d2"

5 logY="false" />

6 <curve xDataReference="d1" logX="false" yDataReference="d3"

7 logY="false" />

8 </listOfCurves >

9 </plot2D >

10 </listOfOutputs >

Listing 5.13: Definition of a 2 dimensional plot (example)

The output will be a two-dimensional plot that shows the development of variable v1

from model model1 (referred to via task1) over time.

109

SED-ML examples

The complete example for the SBML version of the LeLoup model14 has been pub-

lished in [Köhn and Le Novère 2008]. A second complete example for a SED-ML

compliant simulation experiment description of a CellML model, and with detailed

explanation of the experiment is given in Appendix A.4.4.

Further examples for SED-ML simulation experiments created in line with the

development of SED-ML support in the SBW Workbench are available from http:

//libsedml.sourceforge.net.

5.4.3. Conceptual design of a simulation experiment database

Extracting some of the information in SED-ML and storing it explicitly allows for

indexing that data and incorporating it in the ranked search proposed in Chapter 7.

A first approach to storing SED-ML information in a structured way is shown in

the relation diagram in Figure 5.11. I will refer to the database as the Simulation

Experiment Database (sDB).

The main relation is simEx. It holds an internal ID for each stored simula-

tion experiment description (idSimEx) and stores both, the description file itself

(simExFile) and its format (simExFormat). All information is mandatory. In ad-

dition, a short textual description of the simulation experiment might be provided

(simExDescr).

Further information stored in sDB include the output type used in the experiment

(i. e. 2D plots, 3D plots, table, video) and links to result data. The output type is

stored in the outputType attribute of the output entity; the link to the result data

is stored in the resultDataLink attribute of the result entity. That attribute

ideally contains a URI to a result data file in a standard format such as SBRML

(Section 3.1.1). Furthermore, the characteristic behavior of the system, as shown in

the linked result data set, can be stored in the dynamics attribute. The use of a

TeDDY ID (Section 3.1.2) is recommended.

Both, the model and the applied experiment type are pair-wise stored in the task

entity. The model idModel entity links to one of the pre-defined modelFormat at-

tribute values in the model entity. The experimentType idExperimentType links to

one of the pre-defined expTypeName attribute values in the experimentType entity.

The proposed storage allows to answer some fundamental questions on the simu-

lation experiments:

• Show all experiments for model modelID

14urn:miriam:biomodels.db:BIOMD0000000021, last accessed 14 March 2011.

110

http://libsedml.sourceforge.net
http://libsedml.sourceforge.net
urn:miriam:biomodels.db:BIOMD0000000021

Figure 5.11.: Proposed database schema for the storage of SED-ML encoded simulation experiment

descriptions.

111

• Show all simulation experiments for model modelID that have result data

attached

• Show all experiments that are bifurcation analyses on model modelID

Combination with a model repository (mDB , Chapter 6) allows for even more com-

plex queries:

• Show all models on the cell cycle that have a time course simulation experiment

available, where the result data shows oscillating behavior.

The suggested structure does, however, not allow to query for individual entities

used in the simulation. Queries for “simulation experiments simulating the transient

concentration of beta-catenin in the nucleus in a time course simulation” are

currently not supported.

5.5. Implementation

The introduced SED-ML format15 has been implemented in an XML Schema (Ap-

pendix A.4). The current SED-ML version is Level 1 Version 1 Release Candidate 1.

Prototype implementations of SED-ML are available in different simulation tools.

In addition, SED-ML libraries for Java and C++ and a SED-ML validation tool

have been developed by colleagues from different institutes.

Simulation tools The Systems Biology Workbench (SBW, [Bergmann and Sauro

2006]) is a modular framework for modelling, simulation and analysis applications in

systems biology. It comes with the simulation tool roadRunner which supports the

import and export of SED-ML files version L1V1R1. SBW internally uses a .sedml

format that stores the model files together with the actual SED-ML description. An

additional SED-ML Script Editor is available to change existing SED-ML files in

a Python based script language. All implementation work has been done as part

of the Ph.D. project of Bergmann [2010]. Figure 5.12 shows a screenshot of the

SED-ML script language and the SED-ML import.

The second simulation tool implementing support for SED-ML is Virtual Cell

(VCell, [Moraru et al. 2008]), a software tool for the analysis, modelling and simu-

lation of cell biological processes.

JWS Online Simulator as well investigates SED-ML support. So far, only tests

with semi-automatic import and export of SED-ML files have been done. Con-

ceptually, the SED-ML format is mappable on the internal JWS Online Simulator

15https://sourceforge.net/projects/sed-ml, last accessed 15 December 2010.

112

https://sourceforge.net/projects/sed-ml

Figure 5.12.: Screenshot of the SBW simulation tool RoadRunner. Left: The SED-ML Script Ed-

itor. Right: An imported and simulated SED-ML experiment using two different

models (model1 and model2). Figure taken from [Bergmann 2010, Fig. 57, bottom].

simulation description format; SED-ML support in that tool is feasible and only a

matter of implementation costs.

SED-ML validator Richard Adams at the Centre for Systems Biology at Edinburgh

developed a SED-ML validator that allows to check the validity of a given SED-ML

file against the L1V1R1 schema16.

SED-ML libraries Two libraries support application developers working with SED-

ML. The first one is called LibSedML17. LibSedML implements all constructs avail-

able in SED-ML (i. e. the simulation experiments, models, model modifications,

along with the description of output formats). Using this library, existing SED-ML

documents can be read, and new documents can be constructed [Bergmann 2010].

The second library is called jlibSEDML18. jlibSEDML is a Java library supporting

SED-ML L1V1R1. Its functionality includes the creation and reading of SED-ML

files, and allows for the manipulation of encoded MathML expressions. A validator

16http://www.bioinformatics.ed.ac.uk:8080/SBSVisualWebApp/html/sedml/, last accessed 14

March 2011.
17http://libsedml.sourceforge.net/. LibSedML has been implemented in C# by F. Bergmann.

Last accessed 14 March 2011.
18http://jlibsedml.sourceforge.net/. jlibSEDML has been developed by I. Moraru, R. Adams,

D. Vasilescu and A. Lakshminarayana and is available under the MIT license. Last accessed 14

March 2011.

113

http://www.bioinformatics.ed.ac.uk:8080/SBSVisualWebApp/html/sedml/
http://libsedml.sourceforge.net/
http://jlibsedml.sourceforge.net/

is integrated as well.

The CellML group works on a SED-ML Processing Service (SProS).

SED-ML in BioModels Database Li et al. [2010] mention the distribution of SED-

ML files together with the models as one of their future aims.

5.6. Summary

Results

This chapter introduced a Minimum Information guideline (MIASE) which in a

general, format-independent way defines the minimum information for simulation

experiments in the area of computational biology. Following the investigations on

MIASE, the SED-ML format for the encoding of such simulation experiments has

been developed. Figure 3.1 on page 44 shows how the developed formats integrate

with existing standardisation efforts.

The main achievement is the possibility to store, export, import and exchange

simple simulation experiments in a standardized, XML-based way. The information

encoded in SED-ML can be incorporated in the ranked retrieval process and as

such extends the search possibilities by what is referred to as experiment-related

meta-information. Besides that, SED-ML in general is a helpful tool for the reuse

of simulation experiments performed on a bio-model. Its existence saves time and

effort in running a model, may it be for educational purposes, model curation or

experiment repetition.

The use of SED-ML for the latter tasks has been shown in different library im-

plementations which are included in running simulation tools. The extraction of

meta-information available from SED-ML, and how that information can be stored

in a relational database has furthermore been outlined.

Discussion

MIASE compliance in SED-ML SED-ML respects the MIASE guidelines. Ta-

ble 5.1 shows a mapping of MIASE rules (numbers) on SED-ML concepts (XML

element names). The generic simulation experiment examples used in Section 5.2.3

are linked to the different concepts for clarification.

The current version of SED-ML does not fully encode all information requested

by MIASE. Especially the information about dependencies on the used simulation

environment and platform is currently not encoded in SED-ML (rule 2d). While

links to the specific algorithms have to be provided through a KiSAO ID, not all

114

rule SED-ML element/attribute sample code

1a model (ll. 167-181) Listing 5.2

1b model (ll. 167-181), listOfChanges (ll. 298-312) Listings 5.2, 5.4

1c language (l. 174) Listing 5.2

1d listOfChanges (ll. 298-312) Listing 5.4

2a∗ task (ll. 114-127), algorithm (ll. 85-94) Listings 5.6, 5.8

2b uniformTimeCourse (ll. 95-113) Listing 5.6

2c∗ algorithm (ll. 86-94) Listing 5.6

2d∗ - -

3a dataGenerator (ll. 380-394) Listing 5.10

3b listOfOutputs (ll. 229-241) Listing 5.12

Table 5.1.: Mapping of MIASE rules sorted by number (first column) on SED-ML XML element

names and attribute names (second column). The line numbers comply with the schema

definition in Appendix A.4. The third column refers back to the sample listings showing

the corresponding generic code for a SED-ML instance. Some MIASE rules are not fully

supported by SED-ML; they are marked with an asterix (*).

algorithms are available: information on how to implement those algorithms are not

demanded by SED-ML (rule 2c). Furthermore, the definition of nested simulations

with data processing in between the simulation setups as well as the definition of

a particular order of simulation steps are not supported in the current SED-ML

version (rule 2a). They are, however, planned for the future.

Reuse and exchange of simulation experiment descriptions The major idea of

SED-ML is the standardized encoding of simulation experiments, thereby improving

bio-model reuse. In this process, not only the models are of relevance; equally

important is the ability to reuse simulation experiments applied to them.

SED-ML enables the exchange of simulation experiment descriptions between dif-

ferent work groups, using similar or different platforms. As a proof of concept,

SED-ML has been used to exchange simulation setups between the simulation tools

Roadrunner and JWS online simulator. A simulation experiment has been per-

formed in the JWS online simulator, the SED-ML file has been exported and then

been re-loaded into the SBW simulator RoadRunner. The same simulation result

was obtained for a time course simulation19.

192010 CellML Annual workshop, Auckland, http://www.cellml.org/community/events/

workshop/2010/presentations/Waltemath_sedml.pdf, last accessed 07 February 2010.

115

http://www.cellml.org/community/events/workshop/2010/presentations/Waltemath_sedml.pdf
http://www.cellml.org/community/events/workshop/2010/presentations/Waltemath_sedml.pdf

Use of simulation experiment information for model retrieval Information en-

coded in SED-ML can be incorporated in the ranked retrieval process. Section 5.4.3

showed a database schema proposal extracting relevant information about a sim-

ulation experiment. That information can be used for the ranking introduced in

Chapter 7.

Although MIASE and SED-ML already proved to be applicable, there are a num-

ber of limitations and open tasks.

Generality of MIASE and SED-ML MIASE is currently restricted to certain ap-

plication fields within systems biology. In the long run, we wish to define MIASE

in a way that applies to a broader range of simulation experiments and models. It

can be expected that a similar development to the one taken by MIAME will take

place where “its widespread adoption by scientific journals also exposed some of its

weaknesses, including the need to develop domain-specific extensions” [Quackenbush

2006].

The current SED-ML version only covers time course experiments. One goal is

to extend SED-ML towards other experiment types such as bifurcation analyses.

SED-ML has so far been applied to models encoded in SBML20 and CellML. We

wish to extend the evaluation of SED-ML on other representation formats. Ongoing

discussions address the application of SED-ML on the encoding of simulation ex-

periments in the neuroscience community, using both NeuroML and NineML21. For

example, researchers from the Computational Neurobiology group at the EBI (Hinx-

ton) and colleagues from the Adaptive and Regenerative Software Systems group at

Rostock University aim at testing SED-ML for the description of neuronal network

simulation.

Extending KiSAO KiSAO needs to be extended by concepts that better describe

the covered simulation algorithms. For example, each algorithm has a number of

defined characteristics, or parameters, that need to be applied before simulation

(e. g. the step size in a Runge-Kutta-based simulation, or upper and lower limits).

The parameters must be studied for the different algorithms, and then be formalized

in a way that they can be used with the different algorithms. The encoding of such

characteristics is not trivial, neither is the identification and generalization of the

particular parameters – a task that will require domain knowledge. Moving to OWL

20http://libsedml.svn.sourceforge.net/viewvc/libsedml/trunk/Samples/ provides a list of

examples, last accessed 29 September 2010.
21http://www.nineml.org/, last accessed 17 March 2011.

116

http://libsedml.svn.sourceforge.net/viewvc/libsedml/trunk/Samples/
http://www.nineml.org/

instead of OBO format is considered for the next version to allow for more complex

relationship types between classes.

Model evolution SED-ML files use the source attribute to refer to external re-

sources containing the model code for simulation. While the repositories do provide

stable and standardized URN’s for their models, they do not yet distinguish between

different versions of a model referenced from a SED-ML file.

For example, an early SED-ML description pointed to the Repressilator model

available from BioModels Database (source="urn:miriam:biomodels.db:BIOMD0000000012").

However, since then the Repressilator model representation has been updated by

adding an additional parameter and an assignment rule to the model, and normal-

izing each reaction. This change already influences the outcome of the SED-ML

simulation, if undiscovered. A thorough versioning concept that will allow SED-ML

users to refer to a model in a particular version is needed to overcome this prob-

lem. Bio-model versioning is further discussed in Section 6.4. Unfortunately, the

proposed solution does not help the SED-ML problem as long as a unique identifier

for each model version is missing in the reference system.

SED-ML validity SED-ML, as it stands at the moment, allows for applying changes

to the model before simulation, as long as the change addresses an XML element or

attribute in the model with a valid XPath expression. Additionally,

• the ComputeChange contains a valid piece of mathML, as well as it defines the

used variables by valid XPath references and

• the newXML element contains a valid piece of XML.

For the moment, none of the conditions are checked when a SED-ML file is loaded

into a simulation environment as SED-ML files are intended to be automatically

created by the simulation tool. Simple checks for the validity of the exported file

against the SED-ML XML schema are possible using the aforementioned SED-ML

validator.

However, for further checks on a simulation experiment description, it will be

useful to have means for validating changes on a model before simulation. One

application is the versioning of available models in online resources; a valid SED-

ML file might become invalid if the models referred to by the SED-ML description

evolve in a way that is incompliant with the SED-ML modifications. For exam-

ple, the extract of a SED-ML model change specification given in Example 5.5

updates the attribute value of V mT to the new value 0.28. The XPath expres-

sion /sbml/model/listOfParameters/parameter[@id=’V mT’]/@value identifies

117

the attribute inside the referenced model (i. e. it assumes the existence of a piece of

XML code as shown in Listing 5.14).

1 <sbml>

2 <model>

3 <listOfParameters >

4 <parameter id="V_mT" value="SOME VALUE" />

5 [..]

6 </listOfParameters >

7 [..]

8 </model>

9 </sbml>

Listing 5.14: Extract of the updated model code leading to an invalid SED-ML description

A change in the referenced model (e. g. the update to the model specification given

in Listing 5.15) will lead to incorrectness of the SED-ML specification file.

1 <sbml>

2 <model>

3 <listOfParameters >

4 <parameter id="V" value="SOME VALUE" />

5 [..]

6 </listOfParameters >

7 [..]

8 </model>

9 </sbml>

Listing 5.15: Extract of the model code that is perturbed by the SED-ML file extract given in

Listing 5.5

The updated model extract has a changed parameter id (either it is changed, or the

parameter with id=V mT is deleted and a new parameter with id=V is introduced).

As a consequence, the XPath expression pointing to the parameter with id=V mT

is invalid. The value cannot be updated and the simulation experiment cannot be

reproduced.

The same problem occurs at any point of the SED-ML file specification where

XPath is used, for example it can also lead to inconsistency in the output of a sim-

ulation. A first step towards avoiding invalid SED-ML files due to model evolution

is a check on all given XPath expressions and specified MathML snippets before

simulation. This service could be provided externally by the SED-ML community.

One possibility to realize the validation is a simple XPath expression validator.

Explicit variables in SED-ML One limitation of SED-ML is that the XPath concept

only allows to address explicitly defined model entities (using an XPath expression).

While the concept of implicit variables solves problems such as defining time, there

is no solution for the explicit addressing of implicitly modeled entities. For example,

some models allow to generate pools of entities (e. g. a pool of 1000 neuronal cells)

118

at run time; these entities are not explicitly represented in the bio-model’s XML

representation. Therefore, it is not possible with the current implementation of

SED-ML to address one instance out of the entity pool.

119

6. Format-independent model storage

After all, a rose by any other name is still a rose; you just

cannot find it in the database.

(Quackenbush [2006])

Adequate bio-model storage is a prerequisite for later applications, including

model retrieval, model management, model coupling, or model visualisation.

The following chapter investigates storage and versioning solutions for bio-models

and introduces an annotation-based bio-model storage approach. After a problem

statement (Section 6.1), prerequisites for the annotation-based bio-model storage

approach are described in Section 6.2. The proposed storage, including the devel-

oped database schema, is introduced in Section 6.3. It is shown how the combination

of black-box storage and additionally extracted semantics provides an appropriate

information base for later model retrieval. Section 6.4 then discusses model ver-

sioning as one improvement of the developed system over existing solutions. The

summary of implementations (Section 6.5) is followed by main results and future

prospects (Section 6.6).

The result is a database schema for bio-model storage [Köhn et al. 2009; Wal-

temath et al. 2011c]. The schema is generic and therefore can be used with different

representation formats. The database supports bio-model versioning [Hälke et al.

2011] and is currently being evaluated for the use of a next-generation bio-models

storage and maintenance system developed in cooperation at the Deutsches Krebs-

forschungszentrum (Germany) and the European Bioinformatics Institute (UK)1.

6.1. Problem statement

While model representation formats enable model exchange among tools and re-

searchers, they are not sufficient to determine the models’ nature [Henkel et al. 2011].

Model representations are mostly automatically created from software, resulting in

meaningless XML element and attribute names such as s1 to sn for encoded species,

1Just a Model Management Platform, https://bitbucket.org/jummp/, last accessed 18 February

2011.

121

https://bitbucket.org/jummp/

or r1 to rn for encoded reactions [Henkel et al. 2010]. Models that are created from

literature use convenient and biologically non-meaningful names that cannot be as-

sociated directly with a particular biological function or entity [Li et al. 2010]; the

strings do not allow for inference of any information on the constituent’s meaning.

Even if the modeler provides real names for species and reactions through the XML

element and attribute names, the information content is limited. Strings are affine to

typing mistakes. Different languages result in different names for the same semantic

concept. At the same time, many cases for synonyms and hynonyms can be found.

When aiming at model retrieval, XML instance matching techniques (such as the

ones proposed in [Miller et al. 2001; Engmann and Massmann 2007]) are not suf-

ficient. Meta-information have to be incorporated in the retrieval process [Henkel

et al. 2010]. Prerequisites are the encoding of information in the bio-model and a

suitable storage concept to maintain that information. The standardized encoding

and annotation of bio-models with meta-information (Sections 2.3 and 4.2) addressed

the first problem. Existing model repositories (Section 3.3) aim at solving the second

one. With annotated bio-models being encoded in different model representation for-

mats several model repositories evolved. Opposed to the model representation in

XML, the encoded meta-information is independent of the underlying structure. Al-

though there exist different approaches for meta-information encoding (Section 3.2)

they all are based on RDF. This suggests to construct a model storage system using

a formalism-independent, meta-information based apporach. The feature of sepa-

rating model and meta-information then allows for efficient retrieval and comparison

of models independent of the model encoding [Köhn et al. 2009].

Such an approach also facilitates better model management within international

projects. International modeling projects cooperating on large-scale development

of biological systems in Europe and world wide are of high research interest (e. g.

the SysMO project that is concerned with systems biology for micro organisms

http://www.sysmo.net/ or the BaSysBio project that is concerned with Bacillus

Systems Biology http://www.basysbio.eu/). The projects involve groups from

different countries. For example, 15 European Research groups and one Australian

university are involved in the BaSysBio project. Major database-related tasks in-

clude the maintenance of models, their versions and variants. Often, the developed

models are stored and maintained in distributed repositories such as Wikis, Content

Management Systems, SVNs or just local stores, making them available to col-

leagues on demand. This situation easily leads to update problems, and it hampers

the models’ reuse. Solutions for bio-model management are needed, in particular for

bio-model versioning. Model versions are being created during the development pro-

cess and, in addition, modified during the curation process to justify the reference

122

http://www.sysmo.net/
http://www.basysbio.eu/

publication or to erase modeling and annotation errors. A storage system should

adhere to both, changes in the model code and in the annotations. Current model

repositories, however, lack thorough versioning concepts. Although models in exist-

ing repositories change both in structure and annotation (and therefore potentially

in meaning), users are not notified about these updates. They can neither follow

nor recapitulate a model’s development over time. Explanations of why changes

had been applied are missing. As a consequence, a user cannot rely on a model

resource to be stable; he cannot address a particular version of a model. Changes

in the model might also affect other models built on top of a particular model in

a particular version. To change that situation, a detailed version system must be

developed and then be coupled with the model storage system.

6.2. Prerequisites

The following discussions assume the existence of annotated bio-models in stan-

dardized, XML-encoded representation formats. Although a solution for models of

different types of biological systems is desirable, the main focus of this work is on

the storage of biochemical cell models as those represent the majority of models

developed today. This is justified in the comparably large number of bio-models for

chemical reaction networks available online for testing.

As shown in Section 3.2, sophisticated solutions for the encoding of model meta-

information exist. While mathematical models are often annotated, and some jour-

nals even require annotation information to be present, the situation is different for

discrete-event based modeling. In that community, a widely-accepted way of provid-

ing meta-information for bio-models in a computer readable standardized manner is

missing.

Section 6.2.1 extends the previously given definition of bio-model; a detailed exam-

ple for the encoding of a model is given. Identified meta-information for bio-models

has been categorised in a coordinate system (Section 6.2.2). Section 6.2.3 introduces

the idea of a generic parser for the information extraction from bio-model files. The

export format of the parser which is also used for the storage and ranked retrieval

is described in Section 6.2.4.

6.2.1. Annotated bio-models

The following chapters necessitate an extension of Definition 2.1.4 to distinguish

bio-model source code, bio-model annotations, and XML comments.

Definition 6.2.1 (Annotated Bio-model (adapted from [Hälke 2010])). An anno-

123

tated bio-model (in the following also bio-model) mbio is a computational model of

a biological system that allows for an explanation of the mechanism behind the ob-

served behavior of the biological system. The bio-model is considered to be annotated

with meta-information. mbio then can be described as a tuple mbio = (mS ,mA,mC)

of

1. model source code mS in a machine-readable format,

2. in XML encoded annotation information mA describing the biological nature

of the bio-model and of it’s constituents, and

3. in XML encoded comments mC .

A distinction between annotation information of the model itself and of its con-

stituents will not be made, unless stated otherwise. All following concepts assume

the existence of annotated bio-models in a representation format. Appendix A.3.1

summarises the steps from modeling a biochemical reaction to encoding it in an

annotated bio-model, using the example of modeling an enzymatic reaction.

6.2.2. The model information coordinate system

Figure 3.1 on page 44 outlined the kinds of meta-information with respect to the

different levels on which meta-information can be defined. To classify the diverse bio-

model data and information, Figure 6.1 organizes the different types in a coordinate

system. An adopted and simplified version of the Leloup and Goldbeter [1999]

model2 has been used to clarify the approach. The SBML code is available from

Appendix A.2.1.

On the one hand, a distinction between model and meta-model is proposed (y-

axis). The model is the actual XML code mS . The meta-model is formed based on

the annotation information mA given for a model. On the other hand, a distinction

between structure and data is shown (x-axis). For the scope of this work, the struc-

ture is given by the defined reactions of a bio-model (i. e. its network representation)

or its meta-model respectively. The data includes all information available from the

description of the model, or the meta-model respectively.

A model on structure level is the XML document tree resulting from the XML

representation of a bio-model. Formats supporting that representation have been

mentioned earlier in this work and include SBML, CellML or πML (Section 2.2).

For example, the structure in Figure 6.1 shows two unary reactions: species T0

2urn:miriam:biomodels.db:BIOMD0000000021, last accessed 27 September 2010.

124

urn:miriam:biomodels.db:BIOMD0000000021

Figure 6.1.: Dimensions for information sources: Data, model, structure, meta-model. The model

encoding structure (inferred from the XML documents) is shown in blue, the model

annotation structure (inferred from the annotations) is shown in orange.

as a reactant is transformed into species T1 which is the reaction product, and

species T1 playing the role of a reactant is then transformed into the product T2.

A model on data level represents the data encoded in the model, including con-

stituent names, and a particular parametrization (i. e. initial values of the entities).

Examples from SBML are the species names, model parameters, and compartment

sizes. Some formats might prefer to provide concrete parametrization of the model

constituents in a separate file. They are nevertheless regarded data for this work.

The model on data level as shown in Figure 6.1 contains three species “TIM pro-

tein (unphosphorylated)”, “TIM protein (mono-phosphorylated)”, and “A”. Fur-

thermore the initial concentrations for T0 and T1 are given (0). Finally, the reaction

between T0 and T1 is named “r1”, and the reaction T2 is named “TIM-2 degra-

dation”. These constituent names are provided in the model code. They are not

necessarily meaningful; often they are created automatically by modeling tools, lead-

ing to namings such as “r1”, or “A”.

A meta-model on structure level is built based on the annotations provided with

a model and concerned with the function of its entities. The resulting connectivity

graph does not have to correspond with the document tree, as models are not neces-

sarily fully annotated. In the given example, the reaction between T1 and codeT2 is

125

not annotated, and as such not included in the meta-model. Annotations on struc-

ture level describe the functionality of the single structural elements of the accord-

ing bio-model. For example, in Figure 6.1 r1 is identified as a phosphorylation,

and TIM-2 degradation (the name of the reaction constituent) is identified as a

degradation. Typically, those information are provided by the SBO term (Sec-

tion 3.1.2) associated to a model constituent.

A meta-model on data level is built based on the annotations provided with a

model and concerned with the biological meaning of its entities. The information can

technically be encoded in the same way as the meta-model information on structure

level, but it conceptually differs in the perspective it describes the model. In Fig-

ure 6.1, the species T0 and T1 are both annotated as the biological entities Protein

timeless. Another example to show the difference of meta-model annotation on

structure and data level is the predator-prey model. All information on the model

side may stay the same, and also the meta-model structure may be identical. But a

change in the meta-model on data level can change that bio-model’s biological ref-

erence: Imagine a change in annotation of the species from “rabbit” to “zebrafish”

and from “fox” to “shark”.

In addition to the meta-information that is encoded in common representation

formats, other model characteristics such as model behavior or model scope (Sec-

tion 2.1) need to be considered. Ongoing research investigates their encoding in

bio-ontologies (Section 3.1.2).

6.2.3. Model parser

The necessary information for mDB , in particular the model meta-information,

needs to be extracted from the bio-model encoding. As this work aims at a format-

independent storage approach, a general model parser is desirable. However, exist-

ing representation formats use different XML schemas for encoding their bio-models.

Even though many do make use of annotations in rdf:RDF format, the way that they

implement annotation support varies (Section 3.2). This section introduces a model

parser that is capable of extracting the relevant information from a bio-model. It is

based on a modular set of XSLT stylesheets. While the current focus is on SBML

model import, the parser can be extended towards the support of other formats in

the future.

Existing solutions to parse SBML files include: (1) the libSBML, an extensive

C++ library to work on SBML files that is developed by the SBML community, (2)

JSBML3, is a library similar to libSBML, but written in Java, and (3) the libAn-

3http://jsbml.sourceforge.net/, last accessed 14 January 2011.

126

http://jsbml.sourceforge.net/

notationSBML [Swainston and Mendes 2009], a library particularly working with

annotations of SBML files. After evaluation of libSBML and libAnnotationSBML4,

the decision was made for developing a new parser specifically for the import of

annotations from existing models in common representation formats [Hälke 2009].

The so-called tiny-parser provides two different output types: (1) an XML format,

also referred to as the internal representation format (IRF, Section 6.2.4), and (2)

a Java object representation for use in software tools.

6.2.4. Internal representation format

The internal representation format (IRF) is provided as an XML Schema definition

(Appendix A.5.1). IRF instances are used to import the model meta-information

and data into mDB . A detailed description of the IRF-to-mDB mapping follows

in Section A.5.2. The IRF furthermore represents the internal exchange format

within the Sombi framework (Section 7.4); it forms the information base for the

ranked retrieval functions and for the front-end implementation. Section A.5.2 also

provides the mapping of IRF concepts on the features used for the ranked retrieval.

The structure of the IRF relates to the SBML structure, due to the fact that the

main application area of this work is the retrieval of biochemical models, with most

examples being encoded in SBML.

Introducing an intermediate layer between representation formats and applications

(mDB , ranking, front-end) has certain advantages. The IRF is a stable interface

that allows developers of different representation formats (and different versions

of the formats) to write their own mappers. It is presumably easier to map on

another XML format than to map on a database schema that is, in addition, likely

to evolve over time. The ranked retrieval benefits from the IRF representation as

the implementation is only accessing the IRF files and therefore does not have to be

updated for each new supported model representation format. The user front-end

as well stays independent of the underlying model representation format.

IRF and SBML. An extract of an IRF file representing parts of the information

parsed from an SBML model is given in Listing 6.1. The listing will be used to

explain the major building blocks of the IRF.

1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>

2 <model>

3 <nameID >Gardner1998_CellCycle_Goldbeter </nameID >

4 <name />

5 <dbModelID />

6 <dateCreated >2005 -01 -30 T13:02:57Z </dateCreated >

4JSBML was not available at that time.

127

7 <dateModified >2009 -08 -10 T15:44:34Z </dateModified >

8 <dateSubmitted >2010 -10 -03 T09:16:51 .609Z</dateSubmitted >

9 <stable >true</stable >

10 <modelDescription >

11 This a model from the article: A theory for controlling cell cycle

dynamics using a reversibly binding inhibitor. [..]

12 Abstract: We demonstrate , by using [..]

13 </modelDescription >

14 <modelFormalism >

15 <type>urn:sedml:language:sbml.level -2. version -4</type>

16 </modelFormalism >

17 <modelFile >

18 <fileLocation [..] />

19 <fileVersion [..] />

20 <modelFileContent [..] >

21 <annotationFileContent [..] />

22 <experiment/>

23 </modelFile >

24 <listOfQualifiers >

25 <modelQualifier modelQualifierRole="is">

26 <URI>urn:miriam:biomodels.db:BIOMD0000000008 </URI>

27 <URI>urn:miriam:biomodels.db:MODEL6614879888 </URI>

28 </modelQualifier >

29 [..]

30 </listOfQualifiers >

31 <listOfKeywords/>

32 <listOfAuthors >

33 <author authorRole="creator" main="false">

34 <firstName >Bruce</firstName >

35 <lastName >Shapiro </lastName >

36 <organisation >NASA Jet Propulsion Laboratory </organisation >

37 <email />

38 </author >

39 <author authorRole="publisher" main="true">

40 <firstName >T S</firstName >

41 <lastName >Gardner </lastName >

42 <organisation >Center for BioDynamics and Department [..]

43 </organisation >

44 <email />

45 </author >

46 <author authorRole="submitter" main="false" [..]/>

47 [..]

48 </listOfAuthors >

49 <referenceDescription >

50 <referenceURI >urn:miriam:pubmed:9826676 </referenceURI >

51 <referenceTitle >A theory for controlling cell cycle dynamics using a

reversibly binding inhibitor.</referenceTitle >

52 <referenceAbstract >We demonstrate , by [..] </referenceAbstract >

53 </referenceDescription >

54 <distributionStatement />

55 <listOfCompartments >

56 <compartment >

57 <id>Cell</id>

58 <metaid >_202836 </metaid >

128

59 <name>Cell</name>

60 <notes />

61 <bioQualifier bioQualifierRole="identity">

62 <URI>urn:miriam:obo.go:GO%3 A0005737 </URI>

63 </bioQualifier >

64 </compartment >

65 </listOfCompartments >

66 <listOfSpecies [..] />

67 <listOfReactions [..] />

68 </model >

Listing 6.1: The internal representation format, with an extract of the information parsed from an

SBML model (urn:miriam:biomodels.db:BIOMD0000000008)

Most important is the information on the model itself, including the model name,

ID, internal databaseID, stability information about the model, and creation and

modification dates (ll. 3-9). Another important aspect of information is that about

the people involved in the model development and storage process, referred to as

authors. They may take different roles, such as creator or publisher (ll. 32-46).

The IRF also encodes information on the reference description, including the link

to that publication (l. 49) and more detailed information on the publication title

and the abstract (ll. 50-51). Finally, the major part of the document consists of

model meta-information extracted from the annotations of model elements, including

compartments, species and reactions (ll. 54-66). The ontology references are stored

together with the corresponding qualifiers.

Information that cannot automatically be extracted from the model representation

files needs to be added either by the user (e. g. through a web interface) or determined

by the system. It includes the model submitters (l. 45) and version information

(l. 19).

IRF and other representation formats. The IRF as it stands now is capable of

storing the relevant SBML meta-information. With slight extensions in the tiny-

parser’s XSLT scripts it can also be used to extract annotations from CellML or

πML models. The simple πML example given in Listing A.7 on page 201, for

example, can be represented in the internal representation format as exemplified

in Listing 6.2.

1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>

2 <model>

3 <nameID >nameID46 </nameID >

4 <name>euglena.xml</name>

5 <dbModelID [..] />

6 <dateCreated >2005 -01 -30 T13:02:57Z </dateCreated >

7 <dateModified >2009 -08 -10 T15:44:34Z </dateModified >

8 <dateSubmitted >2010 -10 -03 T09:16:51 .609Z</dateSubmitted >

9 <stable >false </stable >

129

urn:miriam:biomodels.db:BIOMD0000000008

10 <modelDescription [..] />

11 <modelFormalism >

12 <type>PiML</type>

13 </modelFormalism >

14 <modelFile [..] />

15 <listOfQualifiers >

16 <bioQualifier bioQualifierRole="identity">

17 <URI>urn:miriam:taxonomy:3038 </URI>

18 </bioQualifier >

19 [..]

20 </listOfQualifiers >

21 <listOfKeywords [..]/ >

22 <listOfAuthors >

23 <author authorRole="creator" main="false">

24 <firstName >Robert </firstName >

25 <lastName >Kuehn</lastName >

26 <organisation >Rostock University </organisation >

27 <email [..] />

28 </author >

29 [..]

30 </listOfAuthors >

31 <referenceDescription [..] />

32 <distributionStatement [..] />

33 <listOfCompartments [..] />

34 <listOfSpecies >

35 <species >

36 <id [..] />

37 <metaid >metaid_000005 </metaid >

38 <name>euglenaSpecies </name>

39 <notes />

40 <bioQualifier bioQualifierRole="identity">

41 <URI>urn:miriam:taxonomy:3038 </URI>

42 </bioQualifier >

43 </species >

44 </listOfSpecies >

45 <listOfReactions >

46 <reaction >

47 <id [..] />

48 <metaid >metaid_000004 </metaid >

49 <name>phot</name>

50 <bioQualifier bioQualifierRole="identity">

51 <URI>urn:miriam:obo.go:GO%3 A0015979 </URI>

52 </bioQualifier >

53 <bioQualifier bioQualifierRole="identity">

54 <URI>urn:miriam:obo.go:GO%3 A0019684 </URI>

55 </bioQualifier >

56 </reaction >

57 </listOfReactions >

58 </model >

Listing 6.2: The internal representation format, encoding information from the sample πML model

shown in Listing A.7.

130

6.3. Model storage

The identified meta-information must be stored in a way that allows for easy ac-

cess and indexing, thereby improving tasks such as model retrieval, visualization,

coupling, or merging.

Model repositories differ in how they store bio-models and to what extend they

respect standardization efforts. Some drawbacks have been mentioned in the in-

troduction to this chapter. How to solve the problem of differing meta-information

standards has been discussed in Chapter 4.

The storage approach introduced in this section aims at solving the two following

problems:

• Existing databases are autonomous, partially heterogeneous and not inte-

grated. Most repositories are specialized on storing models of one specific

model representation format. (An exception is the ModelDB which follows a

format-independent storage approach that is based on a small set of user-given

meta-information.)

• Existing model repositories lack sophisticated model version control mecha-

nisms. This situation is problematic when referencing models in a reuse sce-

nario.

6.3.1. Considered storage approaches

The fast development of XML-based standards for biology models over the last

years is reflected in more than 80 XML-based standards of various interest having

been available for the community in 2006 [Strömbäck et al. 2007]. Of these, 14

were of common use for the export of data from databases or the import of data

to various analysis or simulation tools. Most formats are XML-based (e. g. the

introduced SBML or CellML formats), but many are also OWL-based and integrate

ontology information directly, for example BioPAX. To store different XML formats

commonly (e. g. files validating against the CellML Schema, and files validating

against the various versions of SBML Schemas) a mapping on a more general schema

is necessary – attributing to all concepts implemented in the different languages. A

probable solution should even consider the storage of different XML-related formats,

such as including BioPAX models specified in OWL. Furthermore, a common query

technique for all formalisms should be available. During the investigations of this

work the following options have been considered:

• Converting different formats into a “super-formalism” [Köhn and Strömbäck

2008]

131

• Object-oriented database storage approach [Ou 2009]

• Federated database approach

• Hybrid XML storage

• “Black Box” storage + meta-information [Köhn 2009]

The different approaches will be discussed in the following.

Conversion of different formats into one “Super-Formalism” One option to over-

come the structural gap between the different standards is the provision of a mapping

of different standards either on each other, or on a common format.

The attempt to convert formats into each other (e. g. SBML ↔ PNML, SBML

↔ CellML) leads to specific transformation scripts that are valid for particular

languages versions but do not provide a generic solution [Köhn 2009].

A common “super-formalism” in OWL format is a second solution. Similari-

ties between XML Schema and OWL model include the fact that both languages

were designed to define common vocabularies and structures to support informa-

tion exchange. They both build upon data type definitions (i. e. xsd:simpleType

and xsd:complexType in the XML Schema versus owl:DatatypeProperty and

owl:ObjectProperty in the OWL model). However, OWL offers a wide range

of relations between classes to chose from (i. e. subClassOf, intersectionOf, and

unionOf). Such a clear definition of relationships between classes (or, as they are

called in XML Schema, types) is not possible in XML Schema. There, relations are

restricted to IS A- and PART OF-relations; statements such as “Element E1 is the

contrary of element E2.” are not supported. The only way of defining semantics

in XML Schema is the hierarchical composition of elements and type definitions,

resulting in an “implicit” definition of the semantics.

In [Köhn and Strömbäck 2008], we used the little implicit semantics to define a

mapping of XML concepts into OWL concepts for the specific domain of pathway

standards. The initial idea for the storage of bio-models was to shred the created

OWL representation-based models into a relational database. However, this ap-

proach showed several disadvantages. As the different representation formats cover

different areas of biology on different granularities, a mapping of those standards is

either incomplete, or results in a large schema with a low percentage of matching

concepts. Even if a mapping can be defined, it heavily relies on the maintenance

of the transformation scripts as standards evolve5. Furthermore, the transforma-

5For example, SBML has been available in 9 different levels and versions since the issue of SBML

Level 1 Version 1 in March 2001.

132

tion loses information, for example on the model structure, which cannot be taken

into account during the search process. Last but not least, the approach does not

consider the model meta-information. Therefore, the information available for other

tasks is very limited. A matching on OWL-level has been evaluated in [Köhn and

Strömbäck 2008] and did not show the desired results.

Object-oriented database storage approach The SBML schema consists mainly

of references between SBML elements; the XML structure is therefore relatively flat.

The majority of SBML elements does not contain any textual content, but rather

various attributes with corresponding values. Many attributes and elements are op-

tional. These characteristics suggest an object-oriented approach to SBML model

storage instead of using a relational one [Jung et al. 2006; Ou 2009]. Storing SBML

models in an object-oriented structure enables simple queries such as “Find reaction

products named ’C’.”, associative queries (i. e. queries incorporating associative re-

lations) such as “Find reactions named ’Aldolase’ in the compartment ’glycosome’.”,

and complex queries such as “Find all models, their according species and compart-

ments, in which there exist structures for reactions that convert ’ADP’ into ’ATP’.”

[Ou 2009]. However, the meta-information is not directly encoded in the model, but

has to be resolved from external resources. Therefore this approach as well does

not allow to incorporate meta-information in the search. The reconstruction of the

original models is not possible from the object structure. Also, when considering

a format-independent storage approach, the object-structure of the different repre-

sentation formats has to be mapped on a general one, which will lose capabilities in

the different types of queries mentioned above.

Federated databases One approach to maintain existing bio-model files of differ-

ent formats and resources is a federated database system (FDBS, [Sheth and Larson

1990]), defined as a collection of cooperating database systems that are autonomous

and possibly heterogeneous. It consists of so-called component databases that are,

while autonomous, participating in a federation to allow partial and controlled shar-

ing of their data. The degree of integration may vary, depending on the chosen

architecture [Sheth and Larson 1990]. However, one of the crucial aspects of an

FDBS is cooperation, that is the fact “that a component DBS can continue its local

operations and at the same time participate in a federation”.

The current situation shows very different approaches to model storage. Most

model repositories do not make use of the standard database system features. They

are rather storage containers than fully fledged database systems. With one leading

model repository in the area, BioModels Database, it seemed hard to build a fed-

133

eration of equal databases under the administration of a third party. On the other

hand, the integration of the component databases did not seem to be possible on

the side of the model repository developers, due to very limited work force. Another

reason to decide against the use of a FDBS lies within the fact that most capabilities

for fine-grained annotation-based model storage and versioning were not existent for

the majority of formats considered for storage. A development of a new system for

testing purposes did therefore seem to be the most promising solution.

Hybrid XML storage Another option is the relational storage of models (as XML

type), with additional extraction of the identified model formalism components

which are then stored in their XML-format using the provided XML datatype pro-

vided by the DBMS.

However, the major advantage of current representation formats is their rich se-

mantic annotation. These meta-information are not part of the XML code and

therefore need to be extracted and stored separately. Information gained from the

XML-representation of model parts is very limited and does not justify the storage

effort.

Black-box storage + format-independent meta information This storage ap-

proach is based on an abstraction of the actual model representation format, re-

lying on the available meta-information. Doing so, the generalized storage approach

suits different model representation formats such as SBML, CellML or πML [Köhn

et al. 2009]. Example A.7 showed that the proposed annotation format introduced in

Chapter 4 does not depend on the underlying model representation format. As such,

a storage approach based on the model meta-information is applicable to XML-based

model representation formats that follow the meta-information provision scheme in

general6.

6.3.2. Model database mDB

I propose to extract data, meta-data and meta-information from bio-model repre-

sentations (Definition 6.2.1) and store them in a relational database called mDB .

Models are imported by parsing the model representation formats and creating the

IRF (Section 6.2.4) which can be mapped on the mDB schema as shown in Fig-

ure 6.2. The mappings are defined in Section 7.4.

The transformation, again, is not loss-less – only data, meta-data and meta-

information regarded necessary for the later retrieval and maintenance of bio-models

6This is given the different communities can agree on a common annotation scheme.

134

Figure 6.2.: The import process of model representations in XML format into the mDB via an

internal representation format.

are extracted from the XML representations. However, the approach allows for

the comparison of models of different formats on a common base. As the original

model representation files are as well kept (black box storage), the system can be

extended towards further queries, for example by using XQuery to query the XML

files directly. The extracted meta-data includes some information on the model’s

network structure and allows for later structural queries.

Bio-model XML- representation The physical model file is stored in a black-box

manner. However, the retrieval of models based on the syntactical structure of the

model encoding formats does not provide sufficient information. Even models with a

similar XML structure may differ in their meaning. The model’s semantics plays an

important role in the determination of model similarities. By using the annotations

for model search, the system design is not dependent on a certain model format.

Nevertheless, the model file needs to be kept in the system for later retrieval, as

well as for the determination of diffs in the versioning process, and for structure

queries not supported by the mDB structure itself. To realize structure queries,

languages such as XQuery will be used in the future. XQuery [Boag et al. 2010] is

an ad-hoc query language for XML documents based on XPath.

Model and structure data The model data (Figure 6.1 on page 125) extracted

from the bio-model representation includes the names of the model constituents as

encoded in the XML file. These constituents are stored as model components in

mDB and have a specific role attached (e. g. species, reaction, or event).

The structure (i. e. the relation between different model components) is in addition

encoded through further relations in mDB . For example, the participatesIn rela-

tion encodes the relation between a species and a reaction component. The species

135

Meta-information Meta-information type Value for ranking

Model name content-independent low

*Creator content-independent low

*name, email content-independent low

main contact, organization content-independent low

*Creation date content-independent low

*Reference description domain-specific high

Distribution statement content-independent low

Keyword content-descriptive medium

*Formalism domain-specific medium

Experiment content-independent medium

Compartment domain-specific high

Species domain-specific high

Reaction domain-specific high

*Component domain-specific medium

Table 6.1.: Main meta-information stored in mDB (left column), their meta-information type (mid-

dle), and their importance for the ranking function (right column). Meta-information

that are converted into a feature for the ranking are marked by an asterix (*). The notion

of features and reasons for their associated values are discussed in detail in Section 7.3.1.

can participate in a reaction in the role of a reactant, modifier, or product.

Some representation formats (e. g. SBML) include the initial parametrization (pa-

rameter values to be used as the starting point for simulation) in the model descrip-

tion. For example, Figure 6.1 on page 125 shows the component T0 and its value

0. However, the initial values are not stored in the mDB representation. Instead,

concrete values for model constituents should be stored separated from the model,

for example using SED-ML (Section 5.4), or formats like SBRML (Section 3.1.1).

Model and structure meta-information Different kinds of meta-information are

extracted from the original XML file, expanded and then stored. Table 6.1 lists the

main meta-information. All information required by MIRIAM is covered; additional

meta-information stored in mDB includes model versions, keywords, formalism, and

a fine-grained storage of information about persons involved in the model evolution.

The meta-information covers information on the model level that refers to content-

independent meta-information (e. g. the name of the model or the model creator).

Additionally, a number of references to external resources can be stored to describe

the modeled system. These meta-information refer to content-dependent meta-

136

information, in particular domain-specific meta-data (Section 2.3). Examples in-

clude the stored information on the model constituents, in particular the encoded

species, reactions and compartments. Resources such as Gene Ontology, ChEBI,

and KEGG were incorporated.

Meta-information that was considered relevant but did not have standardized

encoding formats are the simulation experiment related to a bio-model and the sim-

ulation algorithm applicable to the model’s simulation. Proposals for such formats

have been developed and are described in Section 5.4.

6.3.3. Relation model

Figure 6.3 shows the full mDB relation model. The current design is closely related

to the SBML schema, in the way that it has predefined component roles species,

reactions, compartment, parameter and so on. Also, it stores id and metaID for

each such component. If necessary, a generalization and relaxation of the schema to

serve further formats will take place in the future. The mapping of other formats,

such as CellML or πML is possible on the database structure.

In the following, the single mDB entities shown in Figure 6.3 are explained briefly7.

model The model entity is one major entity of the mDB . It stores the modelName,

declares versions as stable or unstable and keeps information on the latest

version of a model. Each uploaded model gets its internal model ID by which

it is identified within the system.

file The file entity contains information on the XML files associated with a model

ID. The modelFile contains the XML code that is assigned to the model;

optionally, the file location can be stored in the database. Some representation

formats store their annotation information in a separate file which can be

kept in the anntotationFile attribute. Each mDB model in addition has a

versionFile associated that contains the version information, as described in

Section 6.4.

modelAnnotation A number of meta-information needs to be stored with every

uploaded model. The modelAnnotation relation stores all that information,

including the model creationDate indicating when the model was originally

created, the modificationDate indicating when the model was (last) modified,

and the submissionDate indicating when the model was submitted to the

7A full description of the database schema, the entity and attribute structure is available from

[Kolbe 2009].

137

Figure 6.3.: The mDB relation model.

138

system. In addition, general notes, potentially stored with the model, are kept

in the notes attribute.

The concepts behind the model file, the model annotations (modelAnnotation

entity), and the model itself differ. Therefore, the relation model keeps them in

three entities (although, from a database schema design point of view they could

have been merged into one entity, due to the 1:1 relation between them).

A model is typically build on the basis of a reference publication. Information on

the publication associated with a model is therefore stored in mDB . It is linked to

a model via the model annotations.

publication The publication entity holds the referenceURN to the reference pub-

lication. In addition it stores the title of that publication, and a short de-

scription. The description typically corresponds to the paper abstract, as for

example available from PubMed.

The life cycle of a model involves several different persons which are kept in mDB

to comprehend who was involved in the model building process.

person The person entity contains general information about a person, including

firstName, lastName, organisation and email. Each database entry has an

ID. Depending on the relation a person occurs in, it can be a model submitter,

creator, curator, or publisher.

submittedBy The relation associates a model with the persons who uploaded the

model to the repository.

createdBy The relation associates a model with the persons who originally created

the XML representation of the model.

annotatedBy The relation associates the model with the persons who annotated

the model. Often, these correspond to the model curators as well.

publishedBy The relation associates the model with the authors of the reference

publication. The additional main attribute indicates the main author.

A model can be linked to both, biology and simulation experiments; the links can

be stored in mDB . Model-related information is considered valuable for later work

on the model (e. g. to provide a user not only with the model code itself but also

with instructions for simulation and with means to validate the model against real

data).

139

experiment The experiment entity stores links to experiments associated with a

model. The link, given in form of a URN (e. g. for SED-ML descriptions) or

URL should point to an unambiguous, stable and valid third party resource

providing the experiment description. The experimentType attribute deter-

mines whether the experiment is a biology or a simulation experiment.

linksTo The linksTo relation relates an experiment to a model entity.

Given the lack of standardized encoding formats for biology experiments, the

experiment relation is solely used to link simulation experiment descriptions to a

model ID.

Another type of relevant information stored explicitly for each model is the un-

derlying model representation format.

formalism The formalism entity stores information on existing model representa-

tion formats: their name, version, and a referenceURN containing the defi-

nition of the representation format, in the ideal case a schema definition. The

list may be extended if needed. Each entry in the model entity is associated

with one entry in the formalism relation.

A bio-model contains a wide range of model annotations which are stored sep-

arately from the model but linked to a model ID. Examples are the publication,

distribution statements, keywords and references to external resources which fur-

ther describe the model.

distribution The distribution statement can optionally be stored for each model

entity, either as free text (statementText) or via a link to an already defined

distribution statement (referenceURL) such as the General Public License

(GPL).

keyword Keywords are optional free text added by the model submitter, providing

catchwords about it.

qualifier The qualifier relation stores pairs of qualifier name and namespace. Each

defined qualifier has an ID that is referred to from the modelQualifier or

the bioQualifier respectively. The relation currently stores the qualifiers

available from the biomodels.net initiative. Further qualifiers may be added

on demand.

modelOntologyEntry A model’s meta-information is extracted when the model

is imported into the database. Annotations that concern the model as a

140

whole (model annotations) are stored in the modelOntologyEntry entity. The

modelOntologyURI is kept together with a link to the pre-defined list of

modelQualifier stored in the qualifier relation.

Besides storing the model and model meta-information, the different components

forming a model are extracted and stored together with their annotations.

component The component entity is a generic concept capable of storing all kinds

of annotated model constituents. A name, a metaID, and a modelComponentID

(corresponding to the components internal model id) can be stored for each

model constituent. A mandatory attribute of the component relation is the

component type which is one of a predefined list of names (e. g. species or

parameter. Additional notes can be stored for each component.

componentOntologyEntry Similarly to how the modelOntologyEntry stores meta-

information on the model, the constituentOntologyEntry stores the con-

stituents’ meta-information. Each ontology entry is build of a bioOntologyURI

and a bioQualifier putting the annotation in relation with the model con-

stituent.

Examples for components relevant to SBML are the species, reaction or com-

partment constituents. Components can also map other representation format’s

concepts such as CellML “modules” or πML “definitions”. Both can already be

further characterized in mDB by the component’s role.

Instead of storing the full meta-information in mDB , only the reference URNs are

kept (modelOntologyURI and componentOntologyURI). The information encoded in

the linked resource is incorporated in the indexing of the database (Chapter 7) and

can be retrieved from that resource with available web services [Laibe and Le Novère

2007]8.

Further relations enable mapping the model structure on the database for later

queries. They allow to re-create, for example, parts of the reaction network of a

model directly from mDB . As a result, the XML model file does not have to be

parsed with each structure query.

participatesIn If the component is a species, the information about the reaction it

participates in is of interest for the network structure. The participatesIn

relation stores exactly that information by relating two components at a time.

Each relation has a specific role associated; predefined roles are modifier,

reactant, and product.

8The more efficient way of resolving the URNs and storing the encoded information locally is de

jure disputable and also leads to update problems. It has therefore been neglected.

141

locatedIn Often the location of a component is of interest, for example the location

where a reaction takes place. The information is stored in the locatedIn

relation which relates two components.

6.4. Model versioning

Current model repositories lack sufficient support of version control mechanisms.

The CellML model repository, for example, provides different model versions on their

web site but no information about the kinds of changes. The versioning information

given by ModelDB is even more preliminary. While an SVN system is available

for registered users of the curation system, BioModels Database currently does not

provide general access to the different versions of a model. Changes cannot be

tracked by the user and often they are not even mentioned on the web site. MIRIAM

does not request to keep track on model evolutions. However, information on model

updates should be required as it is of great interest for modelers working with a

repository [Lloyd et al. 2008], for example, modifications in the mathematics or

in the initial parameter assignments. If one wants to use a model that has been

described in a paper and he retrieves it from a model repository, he should be

made aware of the potential differences between the bio-model available from the

repository and the bio-model description in the reference paper. Model changes are

also relevant for meta-information based model retrieval (Chapter 7) as one needs to

assure that the annotations of a model comply with the model semantics at the time

it is queried (related to the update problem in DBMS). Furthermore, only explicitly

defined model versions will allow for the usage of simulation descriptions such as

SED-ML (Section 5.4).

Storing model changes The SBML modification history in principle allows to form

a time line of modifications as a first step towards model versioning. The necessary

information is implicitly given by the dcterms:created and dcterms:modified

elements. However, to create the time line tree of a given model, one has to apply

the following procedure:

1. Set date to model creation date.

2. Find the next later modification date.

3. Find all XML elements annotated with that modification date.

4. Create point on time line and list the modified elements.

142

5. Repeat 2-4.

The result is a time line showing the time points with modifications and to which

model constituents those changes have been applied.

BioModels Database could make use of that information by providing the accord-

ing XML SBML file for each of the modification dates, given a new file version

is stored after each modification. The recreation process, however, is still time-

consuming and does furthermore not provide a description of the type of changes

made.

XML versioning approaches As mentioned in Section 3.3.1, existing model repos-

itories internally use common version control systems such as Subversion or Mer-

curial. Those systems are specialized on the determination of diffs between text

documents. In this work, a diff is considered an operation describing the trans-

formation of a model version into its successor [Hälke et al. 2011]. The Longest

Common Subsequence (LCS, [Hottinger and Meyer 2005]) algorithm is the standard

procedure to detect changes. It detects differences between two files through line-by-

line comparison of the string chains and identifies the longest sequence of common

characters in two files. From that, a diff file is generated containing only the dif-

ferences between the files. In addition, the operations necessary to transform the

original document into a new version can be stored. However, those algorithms are

not particularly suitable for XML documents [Hälke 2010]. For example, an SBML

file does not consider the order of elements. Each tool importing and exporting an

SBML file may use its own way of writing the XML without changing the meaning

of its content. A tool might decide to write out the SBML file in one single line.

The LCS algorithm does not detect a change in the XML accurately but returns

the whole XML document as “changed” in the diff file. The problem of finding

algorithms for the versioning of XML files in general has been studied in different

work groups before [Cobena et al. 2002; Chen et al. 2004b]. Solutions for particu-

lar applications have been developed, including a version control for XML-encoded

Office documents [Rönnau et al. 2005] or for pathway models in systems biology

based on the definition of XML patches [Saffrey and Orton 2009]. A third inter-

esting approach to XML-versioning with particular focus on XML native databases

has just recently been published by Arévalo Rosado et al. [2009] who do not only

store the difference between two documents but build a so-called version tree which

contains, for a given XML file, all modifications of all existing versions of that file.

Hälke [2010] describes all mentioned approaches in detail. The conclusion of the

evaluation is that bio-models demand an extended versioning technique that can,

however, be based on existing solutions.

143

Identifying types of changes Particularly with the versioning of bio-models the

characterization of applied changes is important. First of all, it will be interesting to

know what exactly has changed in a model constituent by providing the difference

(e. g. new and old parameter values). Secondly, it will be helpful to be informed

about the reasons of change, as well as on the general type of change [Hälke et al.

2011]. This problem has to our knowledge so far not been addressed for the version-

ing of XML data – neither in systems biology nor in general. However, the complex

nature of bio-models makes it an important task.

This section proposes an enhanced versioning system for bio-models. It is capable

of identifying the difference between two bio-models, storing it and characterizing

the changes. The approach can be used as an integrated extension to the mDB , but

also with other model repositories.

The versioning concept is described in Section 6.4.2. Before that, the different

notions of bio-model versioning and the question when to speak of a new model ver-

sion are discussed in Section 6.4.1. A prototype implementation has been developed

by Hälke [2010] and will be briefly described in Section 6.5.

6.4.1. Aspects of bio-model versioning

Depending on a bio-model’s usage, different points of view on the important aspects

of a model can be distinguished. A modeler, for example, might concentrate on the

equations and mathematics that form the model, including the underlying laws that

have been used to describe the system. A biologist, on the other hand, might prefer

to view the model as an abstract thing that he can load into a simulation tool to

gain knowledge about a system of interest. He will be particularly interested in

the modeled biological entities, and their concentrations before and after running

the simulation experiment. For verification, he might also consider the reference

publication an important detail about a model. A simulator (the piece of software)

will solely be interested in the underlying formalism (i. e. whether it can load the

model), the initial parametrization of variables, and instructions how to simulate

the given piece of code.

Each user group judges different changes in a bio-model relevant. For example,

an update in the publication reference will be of high interest for the modeler and

biologist, while it will be irrelevant for the simulator. A change in the annotation

of a bio-model entity resulting in a reference to a different species will be highly

relevant for a biologist, but again not at all matter to the simulator. A change in

the underlying mathematics of the bio-model, however, is potentially not relevant

144

to the biologist as long as he can see the result and understand the basic network

structure, while it does matter to the modeler and the simulator.

The differing view points complicate the development of a generic versioning con-

cept. When shall we speak of a new model version and when of a new model? In

this work, each change leads to a new model version. Later on, tailored applica-

tions using the versioning approach might disregard certain changes as irrelevant.

A discussion on how to classify the changes follows in Section 6.4.2.

Changes on the model source code A change in the XML file can either lead to

a change in the bio-model structure, or to a change in the element/attribute names

(according to the x-axis of the coordinate system shown in Figure 6.1 on page 125).

A change in the XML tree could occur, for example, if a reaction is deleted from the

reaction network or if additional species are introduced in the model. Changes in a

string chain inside the XML file (e. g. changing the value or name of elements and

attributes) are also relevant. The deletion of empty spaces and the reformatting of

the XML representation, however, should be neglected by the system and not lead

to a new model version.

There are border-line examples for the usefulness of introducing new versions for

each renaming process such as changing the (string) name of an XML element. A

change in a species name, for example from “fox” to “pickerel”, might have conse-

quences. A change in a species name is from “spec1” to “spec2”, however, might

or might not justify a new model version. Names like spec1 and spec2 are un-

likely to hold any significant meaning. In opposition, a naming like “pickerel” in

a predator-prey model might give a hint that the modeled system represents the

entities in a predator-prey model in lakes. However, “pickerel” is only a string chain

as well, and the true biological meaning of that entity should ideally be encoded in

an annotation.

Changes on the annotation information A change in the annotation often leads

to a change in the model’s meaning. Annotations occur on all levels of a bio-model

representation. Each update in an annotation is relevant and justifies a new model

version.

6.4.2. Model versioning approach

Definition 6.2.1 defines a bio-model. The introduced solution distinguishes between

versioning of the model source code mS and the encoded annotation information mA.

CommentsmC in the XML code are so far neglected, however, one should be aware of

their existence. The bio-model mbio uses annotation information mA to formally and

145

explicitly encode biological aspects of the modeled system as precisely as possible.

Including that information in the versioning process implicitly allows to infer on

changes in the underlying biology.

The versioning approach stores the different bio-model versions during the model’s

life-cycle. Each version might be of later relevance and therefore is stored. Together

with a model version, the changes with respect to the preceding version are identified

and kept. A three-folded concept for such a versioning system, called Biochemical

Model Versioning System (BiVeS9), has been developed by Hälke [2010] and is de-

scribed in [Hälke et al. 2011]. It consists of an implemented XML diff algorithm

that identifies the difference between two model versions through storage of the diff

operations (insert, delete, update, move), an ontology for the classification of each

diff operation, and a surrounding management system that keeps the versioning

information in a so-called model-history.

XML diff algorithm One prerequisite for reliable versioning is a suitable algorithm

to determine the differences between two instances of a bio-model. Hälke et al. [2011]

propose an adapted version of the existing XyDiff algorithm10. While the original

algorithm only supports the standard functions insert and delete, the new version

also allows for the detection of moves, updates, and combinations of both [Hälke

2010]. At the same time, the algorithm’s output is easy to interpret. The specifics

of the implementation introduced by Hälke [2010] are the reduction of numbers of

comparisons in the change detection, and the detection of moves. Section 6.5 on page

148 and Hälke [2010] provide more details on the implementation of the algorithm.

Ontology for change classification As mentioned earlier, changes on a bio-model

may vary from simple reformatting of the XML code to updates on the model struc-

ture and annotations. These changes may or may not be relevant to a user, de-

pending on the application. To overcome the problem of deciding for relevant and

irrelevant changes, each identified change between two bio-model instances is anno-

tated with a term from a change ontology [Hälke 2010] (Figure 6.4). The ontology

has been developed in OWL and is divided into three main branches [Hälke et al.

2011]:

1. Terms from the XML branch reflect all changes on the technical level, which

cover classical change operations (insert, delete, update, move) on XML ele-

ments mS .

9http://bives.sourceforge.net/, last accessed 14 March 2011.
10http://leo.saclay.inria.fr/software/XyDiff/, last accessed 14 March 2011.

146

http://bives.sourceforge.net/
http://leo.saclay.inria.fr/software/XyDiff/

Figure 6.4.: First draft of an ontology for change classification in bio-model versions (skeleton).

Adjusted from [Hälke 2010].

2. Terms from the Annotation branch reflect updates on the model annotations.

The branch allows to separate simple XML code updates from updates on the

annotations mA.

3. Terms from the Biology branch reflect all changes on the modeled biological

system such as changes in the parametrization, changes in the models back-

ground, or changes in the mathematical equations.

Version management system BiVeS manages the different bio-model versions and

combines the generated diffs with the classifications given by the ontology.

Based on the ideas published in [Arévalo Rosado et al. 2009], the system only

stores the differences between two bio-models, their hierarchical version, and branch

information in a so-called model history. The model history consists of two parts,

namely the versionTree which contains information on all versions of the model and

the diffList which contains the set of diffs, each associated to a specific version [Hälke

et al. 2011]. Diffs consist of change operations on the models, expressing in which

version the corresponding component has been added, deleted or modified.

Each operation in the diffList can be annotated with terms from the different

ontology branches. Annotations from the XML branch, characterizing the kind of

change on the technical level, can be assigned automatically. Changes in annotations

(Annotation branch) can in many cases be detected, while terms specifying changes

on the biology have to be manually associated with the corresponding diffs. Besides

147

annotations from the ontology, additional information on each branch (e. g. names,

change submitter, or comments) can be stored.

6.5. Implementation

πML

To enable the exchange, RDF-based annotation and a better model reuse for π Cal-

culus models, the πML format has been developed. It is an XML-based format for

the encoding of basic, stochastic and polyadic π Calculus models.

The language is encoded in XML schema. The core πML schema definition, the

extensions, and sample models are available from http://piml.svn.sourceforge.

net/. A library for the creation of πML representations out of software tools does

not yet exist.

mDB

The relation model introduced in Section 6.3.3 has been implemented in a MySQL

database. However, the relation model design allows for easy implementation of the

developed database schema using other DBMS.

tinyParser The tinyParser developed by Robert Hälke during his study thesis has

been extended to import SBML models into mDB . The import module is part of

the test framework for ranked model retrieval. Details are given in Section 7.5.

Versioning with BiVeS

The versioning concept has been extended and implemented by Robert Hälke dur-

ing his Diploma Thesis [Hälke 2010]. Existing approaches to the determination of

differences between documents in general and XML-files in particular have been

evaluated and tested for the bio-model versioning. However, traditional approaches

such as SVN, have not been judged satisfying. The developed library for version-

ing of bio-models, called The Biochemical Model Versioning System (BiVeS, [Hälke

et al. 2011]), is a Java-based implementation of a versioning system that is build of

the three different components introduced in Section 6.4.2.

XML diff algorithm The algorithm for the determination of diffs in XML doc-

uments, called XyDiff, is the basis for the developed XML diff algorithm used in

BiVeS.

148

http://piml.svn.sourceforge.net/
http://piml.svn.sourceforge.net/

Operation Path Hash value

move (exact match) p(i) 6= p(i′) h(i) = h(i′)

move (partial match) p(i) 6= p(i′) h(i) 6= h(i′)

update p(i) = p(i′) ∨ p(i) 6= p(i′) h(i) 6= h(i′)

insert i′n /∈M ′ ∧ in ∈M i′ /∈M ′ ∧ in ∈M
delete in /∈M ∧ i′n ∈M ′ i /∈M ∧ i′n ∈M ′

Table 6.2.: Identifyable operations based on the changes in the path and hash values of the combined

identifiers Hälke [2010]

Each node in a bio-model’s XML tree has a unique identifier generated; the identi-

fier consists of a node’s XPath p and its hash value h. A comparison of two bio-model

file versions doc and doc′ can be reduced to a comparison of both documents’ sets

of identifier M and M ′. In a first step, all identical identifiers are removed from

both sets and only changed identifiers are considered. Depending on the kind of

difference between two nodes in their path and/or hash values, the type of change

can be determined being either a move, an update, an insert or a delete. To do

so, the remaining identifiers i ∈ M and i′ ∈ M ′ are compared and the changes are

classified as shown in Table 6.2 (taken from Hälke [2010]).

Moves can easily be detected as they only change the p-part of the identifier and

keep the h-part. The full algorithm is explained in [Hälke 2010, pp. 45-48]; the

abstract XML diff algorithm is shown in Figure 6.5 (taken from Hälke [2010]).

Ontology for change classification The three-folded ontology encoding the differ-

ent kinds of changes on a bio-model has been implemented in the Web Ontology

Language (OWL), using the software tool Protégé. The ontology is in a preliminary

state. The XML branch describing the possible XML changes (update, insert, delete

of elements, attributes or values) has been fully modeled. However, the other two

branches are still skeletons. The Annotation branch contains classes that describe

the different possible annotation updates. Currently changes in the annotation can

be marked as new annotations (insert), updated annotations (update), or removed

annotations (delete). The most preliminary part of the ontology are the biology-

related classes. Only the three different classes parameters, mathematics, and back-

ground have been defined so far, denoting the change of model parametrization,

changes in the mathematical encoding of the model, and changes in the biological

background, respectively.

The assignment of ontology entries to a particular diff is therefore either automatic

(for XML changes), semi-automatic (for annotations) or user-driven (for the biology

branch).

149

Figure 6.5.: Abstract XML diff algorithm as developed by [Hälke 2010].

150

Version management system The BiVeS library manages the storage of identified

diffs in a diffList and the version history in terms of branches and merges in a

verionTree. Together those two elements represent the so called modelHistory.

The output is an XML format complying with the XML Schema definition available

from http://bives.svn.sourceforge.net/. The modelHistory stores all diffs for

a given model in a single file, including the history and optional metaData.

6.6. Summary

Results

This chapter introduced a format-independent storage and versioning approach for

XML-encoded, annotated model representations of bio-models. A database schema

was proposed to realize the storage approach. It has been implemented in a MySQL

database (mDB) as part of a test framework for bio-model retrieval (Sombi). Fur-

thermore, a versioning concept for models stored in mDB has been developed. As a

proof of concept, models in SBML format have been imported in a test implemen-

tation, stored and versioned with the given concepts. How the format-independent

storage works for other formats has been shown conceptually, using the example of

a developed XML format for π Calculus models.

The proposed storage system differs from existing repositories by a fine-grained

storage of meta-information extracted from the model representations and stored in

a relational schema. Consequently, the advantages of DBMS can be used, including

a thorough user rights management, transaction support, and data consistency. The

database design allows to store both, data and information about models (encoding

mainly in the model representation format) and model meta-information (encoded

mainly in the annotations). The meta-information storage is format-independent.

Moreover, mDB is coupled with further databases providing information on related

experiments and results. The integration of all three sources allows for queries not

only addressing one step in the modeling and simulation workflow, but to integrate

the constraints on different steps. For example, a user can restrict his search results

to models for which valid experiments exist.

Discussion

mDB vs UCL Beacon The mDB structure elements introduced in Section 6.3.3 can

be mapped on the meta-model developed by the UCL Beacon project (Section 3.3.1).

The mappings are shown in Table 6.3. The focus of the UCL Beacon project is

on the description of the model surrounding. mDB , on the contrary, delegates

151

http://bives.svn.sourceforge.net/

Concept mDB Beacon

model definition model model

concise description of modeled system modelAnnotation aspect

values used to instantiate the model experiment (implicit) context

cause that led to model construction - assumption

information sources publication origin

experiment description experiment -

execution information experiment (implicit) engine

results and conclusions experiment (implicit) interpretation

simulation/biology experiment result experiment (implicit) -

persons involved in M&S process person (only modeling) person

Table 6.3.: Table-to-table mapping of the mDB and the UCL Beacon meta-model regarding selective

concepts. Implicit entities denote that the concept is implicitly contained in the relation

model and can be derived (e. g. by resolving a reference to another data resource such

as sDB (Section 5.4.3)).

the description to the related experiment description format (SED-ML), using a

single experiment entity (Figure 6.3 on page 138). The focus of mDB lies on the

detailed storage of ontological information about the model and its constituents (i. e.

modelOntologyEntry, componentOntologyEntry). Further focus lies on the storage

of different model versions. Both aspects are disregarded by the UCL Beacon project.

Coupling the versioning system with existing storage solutions The first attempt

for versioning was directly integrated in the mDB schema through providing prede-

cessor and successor information for each model and each model annotation. The

current schema, however, handles versioning externally. A model in mDB only con-

tains a link to the last version of its kind. The remaining versioning information

is managed by an external tool that creates and updates a version history for each

submitted model.

The developed system can therefore be coupled with existing model repository

solutions: For each new upload of a model, the system can determine the change

with respect to the model’s previous version. As the versioning is done outside the

bio-model files, it does neither affect the bio-model code, nor the storage solution. It

will be useful, however, to extend the upload interface to provide the user means for

(semi-automatically) annotating the identified changes with terms from the change

ontology. A sample architecture for the integration of BiVeS with existing SVN

repositories has been proposed by Hälke/Henkel during the 3rd model meeting11.

11http://dbis.informatik.uni-rostock.de/~dk103/files/bivesIntegrationSvn.pdf, last ac-

152

http://dbis.informatik.uni-rostock.de/~dk103/files/bivesIntegrationSvn.pdf

To reconstruct the history of a bio-model, its associated modelHistory file needs

to be read. All existing versions can be gained easily from the versionTree. The

diffs leading from one version to the other can be obtained from the diffList.

Depending on the application of the versioning tool, different modifications may be

shown to and respectively hidden from the user. The concept of change annotation

allows for the definition of rules for the diff presentation to the user by evaluating

the ontology terms associated with each of the diff operation.

Generic versioning concept The current versioning prototype concentrates on the

versioning of SBML models. However, a more generic solution to the problem is

needed to enable the versioning for all different kinds of model encoding stored in

mDB . The solution introduced in [Hälke 2010] has to be tested for applicability to

CellML and πML. Once it is successfully integrated, it has to be evaluated regarding

both, usability and performance.

Relating simulation data and model data The internal ID is used to address a par-

ticular experiment from outside, for example to link to it from the experimentURL

attribute in the experiment relation in mDB (Section 6.3.3 on page 138). Alterna-

tively, if both databases are integrated, then the experimentURL attribute in mDB

contains the idSimEx.

Relating experimental data and model data The incorporation of experimental

data in the ranking process is a next step towards enhanced model retrieval. Ex-

perimental data therefore has to be stored in a way that it can be integrated with

the current model storage system. Starting from the year 2006, we have developed

the experimental database12 (eDB) to provide a simple and tailored solution for the

storage of biology experimental data collected in the dIEM oSiRiS project. eDB

stores Western blot and microscopy experiment setups, but also the result data. It

is implemented as a MySQL database with a PHP frontend, supporting the defini-

tion of new experiments and data upload for each experiment as well as providing

sophisticated user right management for sharing experiments with collaborators.

The collected data needs to be annotated (preferably using MIRIAM URNs) to

be incorporated in the retrieval process. This has to date not been done, one of the

major issues being the lack of experts for the data annotation process. The OBI

foundry investigated enhanced annotation of experiment descriptions using ontology

references [Brinkman et al. 2010]. One step towards solving the biology experiment

cessed 17 December 2010.
12 http://diem.informatik.uni-rostock.de/, last accessed 12 October 2010.

153

http://diem.informatik.uni-rostock.de/

description problem in a more general sense is the integrated maintenance of models,

simulations and result data in a common workflow, as done by the FuGe project

(http://fuge.sourceforge.net/); it suggests a modular approach to describing,

storing and exchanging complete biological workflows. Once annotations exist in

eDB , the retrieval concept can be extended to include also data associated with a

model.

Linking models, simulations, and data with SED-ML The information provided

by the different developed databases (mDB , eDB , sDB) enables integrative search

for models with associated simulation and biology experiments. Going from biolog-

ical data to the modelling approach and the subsequent simulation task (Figure 1.1

on page 3) demands the integration of the corresponding data. Specific problems

that arise have been characterized by Unger and Schumann [2009] in the context

of visualization research. They define three so-called “process levels”: the model

level, the experiment level, and the level of multi-run simulation data13. On a given

model, several experiments may be performed. Each experiment may have a num-

ber of different simulation data sets associated with it. The model level describes

the model structure, including its components (chemical compounds) and reactions.

The experiment level describes the specific settings of a model for which the sim-

ulation is performed. Unger and Schumann [2009] thus consider an experiment an

“instance of the model under certain conditions”. The multi-run simulation data

level finally describes the system state over time which is determined by the values of

the state variables (of the discrete event based system) over time14. The simulation

data may vary even for a single experiment (instance of the model). This is due to

the stochasticity in the system. The connectivity of the different levels is essential

for the Mosan concept: The model level – in addition to the model structure – links

to the simulation data distinguished for the different simulation experiments. Fur-

thermore, the analysis of an experiment needs to work on the links to the multi-run

simulation data.

SED-ML (Section 5.4) can help to encode the linking between bio-models and

result data, as well as simulation and experimental data. The latter step is needed in

order to validate the correctness of the model. A sample SED-ML file integrating the

different information sources is shown in Listing 6.3. As SED-ML lacks elements for

the encoding of linked result data and experimental wet lab setups, the information

13The framework is defined for stochastic simulation of biochemical reaction networks as discrete-

event systems” [Unger and Schumann 2009], but it could be extended towards other modeling

approaches.
14Please note, that in the scope of this work the term “result set” is used rather than “simulation

data”.

154

http://fuge.sourceforge.net/

is stored as annotations, using the <notes> element.

1 <sedML>

2 <listOfSimulations >

3 <uniformTimeCourse id="simulation1" initialTime="0" outputStartTime="0

" outputEndTime="1000" numberOfPoints="1000" >

4 <algorithm kisaoID="KiSAO:0000088"/>

5 </uniformTimeCourse >

6 </listOfSimulations >

7 <listOfModels >

8 <model id="model1" name="Repressilator" language="SBML" source="

mdb:0001" />

9 </listOfModels >

10 <listOfTasks >

11 <task id="task1" name="Oscillation using a deterministic simulator"

modelReference="model1" simulationReference="simulation1">

12 <notes>

13 <experimentSetup name="Western blot experiment setup"

14 experimentReference="edb:056209" />

15 </notes>

16 </task>

17 </listOfTasks >

18 <listOfDataGenerators >

19 <dataGenerator id="time" name="Time" [..] />

20 <dataGenerator id="LaCI" name="LaCI repressor" [..] />

21 <dataGenerator id="TetR" name="TetR repressor" [..] />

22 <dataGenerator id="CI" name="CI repressor" [..] />

23 </listOfDataGenerators >

24 <listOfOutputs >

25 <plot2D id="plot1" name="protein numbers per time point">

26 <listOfCurves >

27 <curve [..] xDataReference="time" yDataReference="LaCI" />

28 <curve [..] xDataReference="time" yDataReference="TetR" />

29 <curve [..] xDataReference="time" yDataReference="CI" />

30 </listOfCurves >

31 <notes>

32 <simulationResult name="result time course simulation in Copasi"

33 resultReference="http://www.comp -sys -bio.org/static/examples/example2

.xml" />

34 </notes>

35 </plot2D >

36 </listOfOutputs >

37 </sedML>

Listing 6.3: Prototypic SED-ML file specification for integration of model, biology experiment, and

simulation information for Mosan. Namespaces omitted, no complete definition of all

necessary elements.

The SED-ML file specifies the model to load into Mosan, namely the model in mDB

with ID 0001 (l. 8). The model is then used in the task definition (ll. 11-16) together

with the defined simulation setup (ll. 3-5). That specific task corresponds to the

biological experiment with ID 056209 as described in eDB . The chosen output of

the experiment is a 2D plot that shows the change in concentration of LaCI (l. 27),

155

Figure 6.6.: Conceptual design: SED-ML for the combined storage of models, related simualtion

setups and simulation results in Mosan

TetR (l. 28) and CI (l. 29) over time. The result data produced by the output is

exported and stored in an SBRML file which is referred to in the notes element

(ll. 31-34).

SED-ML has been discussed as the exchange format to provide unambiguous link-

ing between the three information sources in Mosan (Figure 6.6). mDB represents

the model resource; eDB is the source for experimental data, and SBRML encodes

the simulation result data. A SED-ML description then links one or more instances

of a model from mDB , a corresponding simulation description stored in sDB , the

result data set for the experiment in SBRML format (stored in an online resource,

or in mDB), and finally the reference wet lab experiment (stored in eDB). For the

application on Mosan, all information is then loaded into the tool via a defined

interface. The information encoded in SED-ML is mapped on the Mosan object

structure (Table A.12 in Appendix A.5.4) and then visualized.

Model coupling One of the challenges of systems biology is the construction of

complex models from smaller existing models [Liebermeister 2007]. The construction

of large-scale bio-models can be supported by methods for successful integration of

smaller models.

156

Li et al. [2010] mention several problems: Models from the same domain space can

still show very different behavior and as such exhibit significant variations. Models

are developed by different researchers, at different times, with different background

knowledge and a different perspective on the problem. They also exist in different

formats. All the reasons hamper the model reuse in a coupling scenario.

However, cells themselves provide an obvious and natural form of biological mod-

ularity – by physically partitioning off biochemical reactions [Kitano 2002b]. The

investigation in modularization and then coupling of model components (including

full models) seems promising. Spiegel et al. [2005] did a case study on contextual

information necessary to reuse and compose simulation models. This study should

be evaluated, and its application on mDB should be tested. mDB provides a very

modular storage solution for different model components. Using the annotations,

components with different names can be compared with regard to their biological

function or meaning. The idea of integrating different models based on their onto-

logical information has already been presented in [Gennari et al. 2008] with a focus

on multi-scale simulation models. The approach uses its own ontology. The ideas

have to be evaluated regarding the storage scenario in mDB .

Once matching models are identified, the approach to composing simulation mod-

els based on an XML-description of their interfaces [Röhl 2008] might enable bio-

model coupling. In a first step, the meta-information based retrieval (Chapter 7) can

be used to find relevant model. In a second step, information on the model interface

as encoded by Röhl [2008] could be incorporated to check for composability of the

models.

157

7. Meta-information-based ranked

retrieval

But do you know that, although I have kept the diary [..] for

months past, it never once struck me how I was going to find

any particular part of it in case I wanted to look it up?

(Bram Stoker’s Dracula, 1897)

Soldatova and King [2005] state that “more and more biological data are stored

on computers, the problem of efficient retrieval and analysis of these data becomes

the most important scientific bottleneck, and the problem is particularly acute in

biology because biological data are notorious for their complex form and semantics”.

The provision of meta-information for the determination of a model’s meaning as

discussed in the previous chapters is the first step towards model reuse. The process

of retrieving the given information and making sense of it is at least as important.

The following chapter describes the application of IR techniques on the retrieval

of annotated bio-models. Section 7.1 discusses the problem in detail, followed by

the prerequisites for the ranking system (Section 7.2). Section 7.3 then explains the

concept of bio-model retrieval, including an introduction to the different feature types

considered in the ranking process. To help software developers evaluating available

ranking functions for their data base, I propose a modular test framework called

Sombi (Section 7.4). The chapter continues with an overview of implementations

(Section 7.5) and then closes with a summary of results and a short discussion

(Section 7.6).

This work showed the successful application of IR techniques on bio-model re-

trieval [Köhn et al. 2009; Waltemath et al. 2011c]. The developed concept has been

implemented to support ranked retrieval in BioModels Database [Henkel et al. 2010].

7.1. Problem statement

Ongoing efforts to foster reuse in CSB consider artifacts representing full models and

artifacts representing model components. For example, Krause et al. [2009] inves-

tigate improved model merge capabilities based on overlapping model constituents.

159

Klipp and Liebermeister [2006] furthermore introduce a set of so-called “recurrent

building blocks” in the modeling of signaling pathways, discussing a set of sample

models of particular signaling pathways, including Jak-Stat or the WNT/β-catenin

pathway. That set of models, although showing different designs, reuses the formerly

introduced building blocks. Unfortunately, the identified building blocks are not

made available for modeling in an open component database. As another example,

the CellML community proposes a “Repository of modular Modeling Components

for Synthetic Biology” [Cooling et al. 2010] to enable modular biological modeling

[Cooling et al. 2008]. A common limitation of the abovementioned approaches is

the assumption that the models are already known to be suitable for reuse. The

preceding step of retrieving relevant model constituents is neglected.

Contrary to semi-structured XML documents considered in literature, bio-model

encodings do not contain all relevant information for the search. More than that,

the documents contain pointers to external resources which then provide the corre-

sponding information. Figure A.6 on page 200 gives an example: The information

encoded directly in the SBML file is limited to the species name E (a string) and

the ID species 1. Linked to that species is an annotation, pointing to the exter-

nal resource at urn:miriam:uniprot:P00439. The location of the species is given

as compartment 1. To incorporate the knowledge provided by the URNs, external

resources have to be resolved and processed.

Existing search facilities in model repositories are neither sufficient, nor detailed

enough. Query possibilities are limited and not all information available from the

model’s structure and its annotation are used to find relevant models for a query.

A ranking is missing, and the user needs to be informed about the reasons why a

particular model has been returned for his query. Also, flexible ways of adapting

the search to a user’s demands are required.

Bio-model retrieval necessitates several different types of queries: Some prelim-

inary information is gained from the XML code itself. The structure information

gives insights on the system’s underlying network structure. Finally, annotations,

provided as links to external resources, help to identify the nature of the bio-model.

7.2. Prerequisites

The similarity between two entities (models, model constituents, queries) A and B

is related to their commonality. The more commonality they share, the more similar

they are [Lin 1998, intuition 1].

We adapt the general definition for reuse in the context of Information Systems

Development [Brash 2001] (Section 2.5) to the more restricted application area of

160

urn:miriam:uniprot:P00439

bio-model reuse:

Definition 7.2.1 (Bio-model reuse). Bio-model reuse is the employment of a previ-

ously used and explicitly defined bio-model artifact in another bio-model development

process.

We furthermore define a bio-model retrieval model for the determination of sim-

ilarities between a query and a set of bio-models, based on the definition for infor-

mation retrieval [Baeza-Yates and Ribeiro-Neto 1999]:

Definition 7.2.2 (Bio-model retrieval model, adapted from [Henkel et al. 2010]).

A bio-model retrieval model is a quadruple (M,Q,F,R(qi,mj)) where

1. M is a set of representations mi for bio-models in the collection

2. Q is a set of queries qi, each represented as a set of triples < f, t, w >, where

f is a feature, t is a term and w is a weight

3. F is a computational framework for modeling bio-model representations, queries

and their relationships

4. R(qi,mj) is a ranking function defining ordering among the models mj with

regard to the query qi

7.3. Ranked retrieval of computational biology models

Progress comes when what is actually true can be separated

from what is only believed to be true.

(Basili et. al)

The following section discusses the conceptual architecture for ranked bio-model

retrieval. The features incorporated in the retrieval and ranking are categorized

(Section 7.3.1) and then explained (Section 7.3.2). The support for structure queries

is discussed in Section 7.3.3. Afterward, the whole architecture is described in detail

(Section 7.3.4) and a sample query is given (Section 7.3.5).

7.3.1. Feature dimensions

Available meta-information for bio-models as described in the different standardiza-

tion efforts and formats shown in Figure 3.1 on page 44 have influenced the feature

dimensions (i. e. MIRIAM and its external resources, SBO, SED-ML and KiSAO,

161

dim Name Weight Sample features

1 Administrative very low file name, version, formalism

2 Persons medium author, encoder, submitter

3 Publications high title, abstract, full-text, journal

4 User generated content very high keywords, remarks, tags

5 Dates low submission or modification date

6 Constituents very high reactions, species, functions

7 Experiment high behavior, simulationAlgorithm

Table 7.1.: Identified dimensions. Extended from [Henkel et al. 2011] with an additional seventh

dimension “Experiment”.

and TEDDY). In addition, features have been derived from the representation for-

mat structures. Further features have been added which can be extracted from the

information available during model submission to a model repository. Their val-

ues originate from queries on the relation model shown in Figure 6.3 on page 138

(implemented in the mDB).

From the study of available meta-information, seven dimensions of features are

distinguished (Table 7.1, following [Henkel et al. 2011]).

Administrative data contains specific information about the model file and repre-

sentation format used to encode the model. It holds information suitable to

filter by different model attributes (e. g. the formalism a model is encoded in,

or its version).

Persons contains meta-data about persons related to the model. Each person has

a designated role (i. e. author, encoder, submitter of a model, or author of the

reference publication of a model).

Publications contains information about publications related to a model, including

reference descriptions, reviews of a model, or related dry and wet lab results.

User generated content contains information provided by a user (e. g. keywords,

tags or remarks). This information reflects the users point-of-view on a bio-

model.

Dates contains different timestamps that enable time-wise filtering of models (e. g.

creation date, modification date or submission date).

Constituents contains information about encoded model constituents, both directly

encoded in the model, and provided via annotations.

162

Experiment contains information about experiments related to a model. Those can

be either simulation experiments or Wet Lab experiments, and their associated

information.

The experiment dimension contains result data, but also experiment descriptions,

for example encoded in standardized XML-format or in described in free-text. The

information is different to the reference publication, which is a long textual docu-

ment or report describing the system under study, the experimental setup and the

experimental results.

All but the constituents dimension can be applied to the various modeling for-

malisms implementing the MIRIAM specification. They are format-independent.

The constituents dimension, however, is format-dependent. A format intended for

neuronal modeling will certainly have a different constituent spectrum than a format

for kinetic rate law models. This does not touch the concept of annotation though.

Detailed descriptions of the different dimensions are given in Section A.5.2.

Relation to the coordinate system

The coordinate system in Figure 6.1 on page 125 already introduced different kinds of

searchable entities. Its axes can be assigned to the aforementioned dimensions: From

the data level (data axis), information on the model parametrization (experiment

dimension) can be inferred, for example “find me a model where the KM value of

the KM parameter is 40”.

The constituent names (constituent dimension) are also part of the data level;

due to the fact that they are often rather meaningless, they are not considered

of high priority for the search. From the meta-model, information on the biological

meaning of the model constituents can be inferred (data level), as well as information

on the mathematics used to encode the model (structure level), for example, “find

me models encoding phosphorylations”. Both kinds of information are part of the

constituents dimension.

Model information (administrative dimension), publication information (publi-

cation dimension), dates (dates dimension) and the user generated content (user

generated content dimension) are not covered by the coordinate system. They ei-

ther belong to the model level (instead of annotating model entities), or they belong

to the data provided by the DBMS and manually by the user, respectively.

7.3.2. Features (conceptual)

The conceptual design of the ranked retrieval approach builds on a variety of different

features for the model similarity determination. Regarding the classification given

163

feature name meaning origin

ID internal modelID modelID (mDB)

additionalID modelID in the XML file repFormat / mDB

path model file location system

content aggregated content of all feature values system

formalism representation format formalism (mDB)

Table 7.2.: Features in the administrative data dimension with the feature name, its interpretation

(meaning), and the origin of information.

in Section 2.3.1, they belong to the class of associated content-independent and

content-dependent meta-information. All conceptually identified features can either

be extracted from the model representation format during model submission, or

from the data stored inside the database mDB . The following section introduces all

conceptually identified features while the subset of features used in the prototype

implementation in BioModels Database is provided in Section 7.5.

Features of the administrative data dimension

The features of the administrative data dimension and where they are obtained from

are shown in Table 7.2. The administrative data dimension keeps the information

on the internal model IDs in both the database system (ID) and the model file

itself (additionalID). The model location is furthermore indexed (path), and the

particular encoding format (i. e. formalism) is indexed. The formalism allows to

restrict a search to particular encodings. For example, if the user is depending on

the use of a particular simulation environment, the encoding of the model must be

so that he will be able to run the model.

Finally, the administrative data dimension indexes all other feature values of all

dimensions in the content feature to allow for a quick retrieval based on general

queries which do not address a particular feature [Henkel 2009].

Features of the persons dimension

The features of the persons dimension and where they are obtained from are shown in

Table 7.3. The ranked retrieval uses a fine-grained splitting of person roles involved

in the model development process. Different features distinguish between the model

submitter, creator, publisher and curator. For each role (except the submitter to

the repository who is a single person), the main person is furthermore determined.

Explanations of the different person roles have been given in the mDB relation model

description in Section 6.3.3 on page 137.

164

feature name meaning origin

submitter model submitter (repository) submittedBy (mDB)

creator model creator createdBy (mDB)

publisher publisher of reference publication publishedBy (mDB)

curator person who curated the model addedBy (mDB)

mainCreator main creator (model file) createdBy:main (mDB)

mainPublisher main publisher publishedBy:main (mDB)

mainCurator main curator (model file) annotatedBy:main (mDB)

Table 7.3.: Features in the persons dimension with the feature name, its interpretation (meaning),

and the origin of information.

feature name meaning origin

submissionDate date of submission to repository submissionDate (mDB)

creationDate date of model creation creationDate (mDB)

modificationDate date of last model modification repFormat / versioning

Table 7.4.: Features in the dates dimension with the feature name, its interpretation (meaning),

and the origin of information.

Features of the dates dimension

The features of the dates dimension and where they are obtained from are shown

in Table 7.4. The dates dimension consists of three features: the date of first sub-

mission of a model to the repository (submissionDate), the date of model creation

(creationDate), and the date of last modification of a model (modificationDate).

Features of the publication dimension

The features of the publication dimension and where they are obtained from are

shown in Table 7.5. The features in the publication dimension comprise informa-

tion extracted from the reference publication, including the publication identifier,

feature name meaning origin

publicationID publication identifier referenceURN (mDB)

publicationText publication abstract descriptionText (mDB)

publicationTitle title (reference publication) title (mDB)

distributionStatement distribution type (model) distribution:type (mDB)

Table 7.5.: Features in the publication dimension with the feature name, its interpretation (mean-

ing), and the origin of information.

165

feature name meaning origin (mDB and repFormat)

modelName model name repFormat/model:name

species species name component:name[@role=species]

reaction reaction name component:name[@role=reaction]

compartment compartment name component:name

[@role=compartment]

parameter parameter name component:name[@role=parameter]

function function name component:name[@role=function]

event event name component:name[@role=event]

modelURI model URI repFormat/modelOntologyURI

speciesURI species URI repFormat/componentOntologyURI

reactionURI reaction URI repFormat/componentOntologyURI

compartmentURI compartment URI repFormat/componentOntologyURI

parameterURI parameter URI repFormat/componentOntologyURI

functionURI function URI repFormat/componentOntologyURI

eventURI event URI repFormat/componentOntologyURI

Table 7.6.: Features in the constituent dimension with the feature name, its interpretation (mean-

ing), and the origin of information.

typically a URN pointing to a PubMed entry.

So-called model-related meta-information encoded in the annotations include in-

formation on the model that is only derivable by querying third-party resources, such

as controlled vocabulary, or ontologies. Features include the referenceURN and the

title of the reference publication, the publisher (refer to the publishedBy rela-

tion in the person dimension in Table 7.3). In addition, the textual description of the

linked publication (as provided by external resources) is parsed and indexed, build-

ing the publicationText feature. The title of the publication is indexed separately.

Finally, the distributionStatement makes up another feature in the publication

dimension.

Features of the constituents dimension

The features of the constituents dimension and where they are obtained from are

shown in Table 7.6. The constituents dimension is split into features regarding

the name element contents in the model file and features regarding the annotation

contents in the model file.

Model-related meta-information in the constituent dimension includes the differ-

ent URIs given for the model itself and the model constituents. The index is build

166

feature name meaning origin

keywords tags (model submission) keyword:name

modelDescription model description repFormat/

modelAnnotation:notes

componentDescription component description repFormat/

component:notes

Table 7.7.: Features in the user generated content dimension with the feature name, its interpreta-

tion (meaning), and the origin of information.

in a fine-grained manner: It uses five different features for the speciesURN and

species name, compartmentURN and compartment name, reactionURN and reaction

name, parameterURN and parameter name, as well as eventURN and event name to

support very specific queries on model constituents. The index in addition considers

the relation of the annotated constituent and the annotation itself, by relating the

qualifier information to the component.

Features of the user generated content dimension

The features of the user generated content dimension and where they are obtained

from are shown in Table 7.7. When using the ranked retrieval approach inside a

particular software framework, the users may provide tags for the submitted models

and model versions. The tags can be stored in line with the model files (as proposed

for mDB). The keywords feature then indexes the tags. It is regarded a valuable

feature, as it is manually provided information, usually by domain experts.

If representation formats furthermore provide a textual description of the model

and its constituents, for example the SBML <notes> tags, it is also indexed for later

use in the search process.

Features of the experiment dimension

The features of the experiment dimension and where they are obtained from are

shown in Table 7.8. Values for the experiment-related features are available from

both, eDB (Section 6.6) and sDB (Section 5.4.3). Experiment types are extractable

from both databases (e. g. “uniform time course” in sDB and “Western blot” in

eDB). The simulation approach (kisao feature) and behavior are both extractable

for simulation experiments stored in sDB . The kisao feature allows to limit a search

to particular simulation approaches such as “discrete approaches”, or even to a set

of simulation algorithms, such as “models simulateable with Gillespie approaches”.

The behavior feature furthermore allows to restrict the search to models showing a

167

feature name meaning origin

experimentID experiment ID experimentID (sDB) /

experimentURL (mDB)

experimentType type of experiment experimentType (sDB)

kisao simulation approach kisaoID (sDB)

behavior observed behavior in simulation teddyID (sDB)

Table 7.8.: Features in the experiment dimension with the feature name, its interpretation (mean-

ing), and the origin of information.

particular desired behavior during simulation such as “steady-state”. The fact that

an experiment exists for a model does in addition enhance the model’s value, as

it does mark the model as “simulateable” for at least one certain parametrization.

Therefore, the similarity function boosts models for which links to simulation ex-

periments exist. It is assumed that a number of 1-5 experiments for a given model

positively effects its relevance. That is why, a similarity function giving a very low

punishment to models with 1 or more experiments assigned (> 0.6) and a high pun-

ishment (0.2) to models with no experiment assigned is a first reasonable approach

to extend the weight concepts.

7.3.3. Structure information

The above mentioned dimensions and associated features only allow for the use of

information retrieval queries. They do not support structured queries. However,

structural information encoded in bio-models is important to answer questions such

as “Find me all models that encode the species lacI as a reactant inside the com-

partment cell”, or “How many models with reactions of two reactants exist in the

model?”.

From the network structure (structure axis in the coordinate system in Figure 6.1

on page 125), information on “connected” species can be inferred. The information

is extractable from the representation formats. For example, reactions in SBML

have specified reactants and products each linking to a species definition. That

information, if kept in the database relations, can be used to enable above mentioned

queries. The database relation model in Figure 6.3 on page 138 shows a solution

to the problem: A general component entity keeps all information on the model

constituents. Each component has a particular role assigned. Via the isLocatedIn

and participatesIn relations, the structure can be queried using SQL queries.

The relation model in Figure 6.3 on page 138 shows that also information on the

number of compartments in a particular model can be calculated by determining all

168

Figure 7.1.: The conceptual architecture of the proposed ranked retrieval for bio-models [Henkel

et al. 2011].

components of a particular model that have the attribute role assigned with the

value compartment.

7.3.4. Conceptual architecture

The developed approach to ranked retrieval uses an architecture that builds on differ-

ent IR techniques (including text retrieval, stemming, term-frequencies) and types of

meta-information (including ontologies, model meta-information, and model-related

meta-information). The solution is based on the proposed measures for meta-data-

based similarity, content-based similarity, and semantic-description-based similarity

(as introduced in Section 2.5). MBSM techniques incorporate MIRIAM required

meta-information about the model and its constituents in the ranking. CBSM tech-

niques are applied by incorporating a model’s low level features such as encoded

species. SDSM techniques are applicable when evaluating user-provided tags and

keywords describing the model and its related information.

Figure 7.1 shows the conceptual architecture. Its main building blocks are the

query disassembler, the query expander, the query assembler, and the ranking and

retrieval system. A first version of that concept had been proposed by Henkel [2009],

and has since then been extended. Detailed descriptions of the architecture can be

found in [Henkel et al. 2010, 2011]. The main ideas of the architecture are described

in the following.

A user-given query q consists of a set of terms t that each have a feature f from

the set of defined features F and a user-given weight w assigned, forming triples of

(f, t, w). The concept supports two different kinds of queries, query by value and

query by model example [Henkel et al. 2010].

169

Query by value (QBV) The user query q contains features fi and free-text terms ρ.

The user-given features in the query are a subset of all available features F .

Query by model example (QBME) The user query q contains a model that forms

the basis for a search. The complete set of features fi ∈ F is aligned.

Query disassembler

The query q is first disassembled into sub-queries q1..qn. Each sub-query qi represents

a set of processed and normalized words (i. e. terms) ti assigned to a particular

feature fi and provided with a user-given weight w, forming triples of a feature,

associated terms, and weights (fi, t1..tn, w1..wn). Depending on the feature assigned

to the sub-query, different data resources are queried to enrich the user-given query.

Query Expander

Sub-queries addressing the structure of a model are executed on the Model Structure

Database. The matching model IDs are returned to the Query Assembler to enrich

the original query. Sub-queries addressing model constituents are executed on the

Semantic Index. External resources are queried to enrich the original query by

related terms. The result is returned to the Query Assembler ; the original user-

given weights are updated based on the relevance of the incorporated ontological

term. Sub-queries that do not need to be enriched are directly passed on to the

Query Assembler.

Model Structure Database If information on the model’s structure is available

from the model repository, that information can be used to filter or expand the

list of relevant models. Examples for model structure queries include “models with

more than 3 compartments”, or “models with the species Beta-Catenin as reaction

product”. All information can be gained from the reference database by executing

SQL queries. The result is a set of model IDs. Those IDs restrict or extend the

ranked result set in the retrieval and ranking system.

For example, to return all models that have the species Beta-Catenin as reaction

product, all models encoding species that are known as representing Beta-Catenin

and have the role product assigned, will be be added to the result set.

Semantic Index Queries regarding the existence of a particular model constituent

in a model are assigned to the Semantic Index. As one prerequisite of this work,

it is assumed that model constituents are described by annotation information mA

encoded in standard URIs. The search for a particular constituent will, however,

170

typically be formulated using a string chain. The Semantic Index provides a mapping

of all URIs used in the system on the string chains describing the URIs in the external

resource. It furthermore relates the occurring URIs to a particular qualifier, which

enables more specific queries (i. e. limited to a particular qualifier). Table 7.9 shows

an extract of the Semantic Index as implemented by Henkel et al. [2010] in BioModels

Database.

External Resources It is sometimes useful to include models containing similar,

and not only identical, constituents in the search result (e. g. if a search resulted in

only a few models) [Henkel et al. 2010]. Similar biological concepts can be identified

with the Biology Ontology. Here terms of different existing ontologies are mapped

on a common biology ontology [Schulz et al. 2010]; similar terms expand the query

in the enrichment process. For example, a user searching for models encoding the

species caffeine might also be interested in models encoding the species xanthine

which is structurally related to caffeine.

Further information from external resources include information about associated

simulation experiments and corresponding results (Section 5.4.3), as well as infor-

mation on the experimental setups (Section 6.6). For example, the existence of a

simulation or biology experiment for a model will enhance its confidence. The ob-

served behavior during simulation is another example for information relevant for

the ranking.

Query Assembler

The original query terms ti and the expanded query terms resulting from the en-

richment process qiexp are then re-assembled into a single query q∗, which is sent to

the ranking and retrieval system.

Ranking and retrieval system

The ranking and retrieval system works in two different steps: First, the Extended

Boolean Model retrieves all relevant models for the expanded query. Afterward, the

Vector Space Model ranks the result sets (Section 2.5). The relevance ranking is

additionally influenced by different types of weights.

ontology weights Terms that have been included in the assembled query q∗ due to

the evaluation of the Biology Ontology (i. e. terms that are related to the orig-

inal search terms, but not identical) are weighted lower in the result ranking.

The decrease of weight value depends on the distance between both terms in

the ontology, and the term’s depth in the tree.

171

URI qualifier content
bqbiol is bqbiol isVersionOf . . .

urn:miriam:obo.chebi.

CHEBI:27732

BIOMD0000000241 BIOMD0000000241 caffeine chebi 27732

chebi home advanced

browse ontology periodic

. . . moleculeschebimain

caffeine chebi 116485

central nervous sys-

tem stimulant caffeine

receptor modulator

1,3,7-trimethyl-3,7

dihydro-1h-purine-2,6

1,3,7-trimethylxanthine

msdchem d00528 kegg

[..]

urn:miriam:kegg.

compound:C07481

BIOMD0000000241 kegg compound

c07481 c07481 com-

pound caffeine 1,3,7-

trimethylxanthine

formula c8h10n4o2 mass

structure remark d00528

source coffea arabica

tax xanthines reaction

r07920 27732 knapsack

c00001492 [..]

urn:miriam:kegg.

compound:C00048

BIOMD0000000221

BIOMD0000000222

BIOMD0000000219

BIOMD0000000218

kegg compound c00048

c00048 glyoxylate

acid formula c2h2o3

mass structure reac-

tion r00013 purine

metabolism path

caffeine glycine ser-

ine null 1 threonine

metabolism [..]

.

Table 7.9.: Extract of the Semantic Index as implemented in [Henkel et al. 2010]: The URI column

contains all URIs occurring in all models stored in BioModels Database. The content

column contains the different string chains occurring in the external resource describing

each URI. The qualifier columns link the URIs to the particular model ID they occur

in, storing also how the URI relates to the model ID.

172

feature weights Each feature has a pre-defined weight assigned. For example, a

search in the speciesName feature is less important than in the speciesURN

feature. When concatenating the different similarity value for single features,

results of important features are boosted higher than results of features with

a lower importance.

user-defined weights Users might assign weights to each of their query terms. The

weights can increase the importance of particular terms and are incorporated

in the ranking.

common weight strategies The Model Index itself is used to incorporate weights

derived from IR techniques, such as term frequency–inverse document fre-

quency.

All weights assigned to the terms, which describe a model, are used to determine

the model’s position in the vector space. The ranking is then calculated based on

the model vector’s similarity with the query vector.

Model Index The Model Index contains references to all models mi ∈ M . For

each model, it stores information about the occurring model constituents, as well as

meta-information. As such, the index contains a column for each identified feature

(Section 7.3.2). The Model Index enables to restrict the search to a particular feature

(e. g. “models with Beta-Catenin being an encoded species”, or “models with Frizzled

being the author name”). In the second example, a query that does not restrict the

search term “Frizzled” to the author name will certainly return a major number

of WNT signaling pathway models, as Frizzled is the name of a receptor in that

pathway. However, to say that we were particularly interested in models by the

author named Frizzled, we can restrict our query to the author feature in the index.

7.3.5. Sample query

While the introduced dimensions and features are conceptual, the introduced archi-

tecture has been implemented with a subset of the proposed dimensions, using a

subset of the features. Figure 7.2 shows an example for the ranked retrieval of a set

of models for a given user query, using the prototype implementation available from

BioModels Database [Henkel et al. 2010]. User-given weights are not shown in the

example for better readability.

Imagine a user was looking for “Models by non-bogus authors describing the effect

of caffeine in the human digestive tract when drinking a cup of coffee”. Using the

173

Figure 7.2.: A sample scenario for a search using the ranked retrieval architecture proposed in Figure

7.1 (published in [Waltemath et al. 2011c]). The left hand side shows the index creation

process, the right hand side exemplifies a query with its result ranking.

above architecture, the query can be formulated as -author:(John Doe) +compart-

ment:(gut) +species:(caffeine) [Henkel et al. 2010]. The Query Disassembler creates

three sub-queries:

• -author:(John Doe)

• +compartment:(gut)

• +species:(caffeine)

In the Lucene syntax used here, the - indicates that a term must not occur, a

+ indicates that the term must occur, otherwise (no leading sign) a term should

occur [Hatcher and Gospodnetic 2004, p. 93]. The Query Expander expands the

sub-queries, if possible: The author feature is not expanded. The second sub-query

+compartment:(gut), however, can be expanded using the Semantic Index. The

string “gut” is looked up in the content column of the Semantic Index. If the term

is found, then all URIs containing it are added to the query. In this example, “gut”

is not found in any of the content columns, and therefore the sub-query cannot be

extended. The third sub-query +species:(caffeine) can also be expanded. The

string “caffeine” is looked up in the content column of the Semantic Index. For

this term, two occurrences are found: The URN corresponding to “caffeine”, and

the URN corresponding to the chemical formula “C8H10N4O2”, which is the chem-

ical notation of caffeine. Both URNs, Chebi:27732 and Kegg:C07481 (abbreviated

in the Figure for convenience), are candidates for a query expansion. However,

due to the additional restriction that the qualified relation must be an is relation,

only the Kegg URN forms a new sub-query. Chebi:27732 occurs as an annotation

174

using the isVersionOf qualifier. Consequently, the sub-query +(species:(caffeine)

speciesURI:C07481) is sent to the Query Assembler.

The subqueries are re-assembled into the expanded query q∗ and then sent to the

retrieval and ranking system. The Extended Boolean Model is used to determine the

relevant models fulfilling all the conditions. The result is a set of internal ModelIDs

(Index) and associated feature values. The relevant models are positioned in the

vector space (D1, D2 in Figure 7.2) and a relevance ranking is determined. A ranked

list of models is returned to the user. The similarity value indicates how similar the

found model is to the query.

7.4. Test framework

The working of ranked retrieval on computational biological models has been shown

in [Henkel et al. 2010], using the example of SBML models stored in BioModels

Database, and the ranking function implemented by Henkel [2009]. Already during

the conceptual development of the ranked search system, became obvious that the

fine-tuning of the ranking function and it’s parameters demands a lot of effort. Dif-

ferent settings for a ranking functions, including initial features weights or boosts,

must be tested on the data set to gain a satisfying ranking result. Furthermore,

different ranking functions might be applicable to a data set and therefore their

performances need to be compared. More than that, the CSB field uses a number of

different representation formats for different kinds of models (Section 2.2). There-

fore, a ranking function needs to be tested on a number of data sets, as it might

perform differently well depending on the nature of the encoded data [Waltemath

et al. 2011c].

This thesis proposes a framework for testing different similarity measures on dif-

ferent sets of computational biological models, called the Searching fOr Models an-

notated with Biological Information (Sombi) framework. The basic components of

the framework architecture are shown in Figure 7.3. Each rectangle in the Figure

corresponds to a so-called module class representing a particular software class. For

each such module class, a number of different modules may exist which can be added

interchangeably to the framework. The modules are interconnected via well-defined

interfaces, allowing for data exchange among them. The initial version of the Sombi

test framework has been implemented during the course of a software project at

Rostock university. The code is available on http://sombi.sourceforge.net/.

The framework prototype is written in Java and contains interfaces for the different

Sombi modules, providing general module classes that can be refined for the different

written modules. The framework contains the following module classes, including

175

http://sombi.sourceforge.net/

Figure 7.3.: The Sombi framework architecture [Waltemath et al. 2011c]

the mentioned modules.

Internal Representation module class The central module class is the Internal

Representation module class. It provides the model in an internal Java object and

XML representation. The internal representation format has been based on ideas of

the model parser for the mDB (Section 6.2.3). The XML Schema definition of the

internal representation shown in Appendix A.5.1 has first been developed by Hälke

[2009] and then been extended. The internal representation is the basis for all other

modules. It ensures that all information necessary for storage, retrieval and ranking

functionality, and for the front-end is provided. A model’s internal representation is

created during the model import process.

Import module class The Import module class provides modules for the import of

model from a particular model database or model repository for use in the Sombi

framework. While the framework contains a module for SBML model import, it

is generally expected that representation formats and model resources implement

their own parser for the data mapping onto the internal representation format. The

SBML parser available from the Sombi framework is called tinyParser [Hälke 2009]

176

(Section 6.2.3). It parses and imports SBML models in all levels and versions.

Parsers for other model formats, including πML and CellML can be developed by

extending the tinyParser. It is also possible to reuse existing parsers, such as libSBML

and adapt their output.

Database module class The Database module class stores model information. It

imports the information stored in the internal representation, but also stores the

original model files, and system data. Sombi ’s standard database is the mDB (Sec-

tion 6). mDB contains imported SBML models from BioModels Database. To

realize future incorporation of experimental and simulation result data, interfaces

for eDB (Section 6.6) and sDB (Section 5.4.3) are planned.

Retrieval module class The retrieval module class provides ranking functions for

the retrieval of models in the database module. The use of more than one rank-

ing function enables the comparison of different ranking strategies. The provided

ranking module incorporates information provided by Sombi ’s internal representa-

tion format. Sombi comes with two different ranking functions: The first one is

a Lucene implementation, combining the Standard Boolean Model and the Vector

Space Model, similar to the approach introduced in Section 7.5. A weight matrix

allows to adjust the parameters of the ranking function for testing. The second func-

tion is based on a simple XML parser which extracts the XML element names and

indexes them. However, users can add own implementations of ranking functions to

the system.

Front-End module class The front-end module presents the ranking results to the

user. It contains an explanation of how the similarity value was calculated. A simple

output has already been provided by Henkel [2009]. The front-end furthermore

should present the differences between the query and the retrieved models, as well

as the differences among the retrieved models. In the current implementation, the

in- and outputs of the different modules are command-line based; a portlet-based

front-end module is under development. Due to the modular design, plugging in

additional front-end implementations is easily possible.

7.5. Implementation

Ranked retrieval of bio-models has so far been applied to the BioModels Database

search system and on the Sombi framework.

177

Ranked retrieval in BioModels Database A ranked retrieval approach in a model

repository such as BioModels Database enhances the usability of the system and

results in a better reuse of existing information [Henkel et al. 2010]. The ranking

concept introduced in this chapter has been implemented in BioModels Database

by Ron Henkel [Henkel et al. 2010]. The advantage of using BioModels Database

lies in the amount of stored models – currently 630 models1 are available in SBML

encoding. Models from the curated branch are annotated. Consequently, they pro-

vide sufficient meta-information for a thorough testing of the ranking and retrieval

system. Analyzing the stored information together with the BioModels.net team led

to tentative weights for the different features (Table 7.10) and helped on pinpointing

the importance of different qualifiers [Henkel et al. 2010].

The implementation extends the BioModels Database standard search by includ-

ing features in the search process, by weighting different information, and by ranking

the results according to the user query. Support for both, QBV and QBME has been

provided. QBV allows to either perform a free text search that incorporates all fea-

tures, or alternatively a more sophisticated search selecting features of the different

dimensions to be searched. For instance, a user might search for models by a certain

author, or for models encoding a particular “species”. The different sub-queries of

a query might be weighted according to the implemented standard feature matrix.

Especially queries against the constituent dimension can be enriched or limited.

The index incorporates the available qualifiers (Appendix A.1). Depending on

the qualifier linked to a URI that URI might be weighted higher (e. g. isA) or lower

(e. g. hasPart). Additionally, the user can specify the importance of each search

term to influence the result ranking. Besides the sophisticated ranking and retrieval

system, the search engine supports common IR techniques like fuzzy search, range

or proximity search, as well as wild-cards or phrase search [Henkel et al. 2010].

QBME uses a model as the input to the search system. All values of the extracted

features are queried against the repository. A ranked list of best matching models

is retrieved. Enriched queries are switched off, as the example model itself provides

sufficient contextual information.

The search system can be tested via the BioModels Database demo system on

http://www.ebi.ac.uk/biomodels-demo/. The ranking incorporates the sub-set

of earlier identified features that can be extracted from the current BioModels

Database design (Table 7.10). Some features, however, could not be used as the

current database schema does not envisage their storage (e. g. simulation experi-

ment information or structure information).

To date, the model index incorporates 454 models with 140977 terms separated

1as of 30 September 2010

178

http://www.ebi.ac.uk/biomodels-demo/

Dimension Feature w Dimension Feature w

Constituents User generated

(description) modelName 4 content - -

species 3

compartment 3

reaction 3

parameter 1.5

event 1.5

function 1.5

modelDescription 0.5

(URI) modelURI 5

speciesURI 5

compartmentURI 5

reactionURI 5

parameterURI 3

eventURI 3

functionURI 3

Persons author 4 Dates creationDate 1

encoder 1 modificationDate 1

submitter 1

Publications publicationURI 5 Administrative

publicationText 2.5 data ID 1

additionalID 1

path 1

content 1

Table 7.10.: Features incorporated in the standard ranking function. Sorted by dimension and

with assigned standard weight (w). Adapted from [Henkel et al. 2010]. w denotes the

standard weight of the feature in the implemented ranking function.

179

into 25 different features. The semantic index contains 2261 URIs with 409124 terms.

The biology ontologies used for query expansion are NCBI Taxonomy, GO, ChEBI,

KEGG Compound and KEGG Reaction2. The Lucene Framework is integrated in

the search system to create, maintain and search both, the Model Index and the

Semantic Index. It provides retrieval functionality based on the Extended Boolean

Model; the ranking is based on the Vector Space Model. To implement the retrieval

and ranking process described above, Lucene has been extended to support the

necessary indices and sources.

A detailed example for the execution of a query has been given in [Henkel et al.

2010] (Appendix A.5.3).

Sombi Framework The Sombi concept has been prototypically realised as a mod-

ular framework. All code is available from the sourceforge site3. The current imple-

mentation consists of the following modules:

Import module class The Import module class contains a module for the parsing of

SBML models with the tinyParser. The parser extracts all necessary informa-

tion from the SBML model and transforms that information into the internal

representation format.

Database module class The Database module class provides a MySQL implemen-

tation of the mDB relation model, including the DDL and the commands to

fill the database instance with standard values for formalisms and qualifiers.

The module is capable of reading the IRF and importing its information into

the database.

Retrieval module class The Retrieval module class has three different modules for

the ranking which are all based on the IRF. The first module uses a full text

index that considers the IRF as a text document and extracts from it attribute

and element values. The second module uses the features also implemented

in BioModels Database and applies the combination of Boolean model/Vector

space model. The third module uses the same indexing method as the one

implemented in BioModels Database, but distinguishes only six different model

components.

The framework itself coordinates the integration of the different modules from the

existing classes. A predefined XML-format for the framework configuration is pro-

vided together with some standard examples.

2as of 14 April 2010
3http://sourceforge.net/projects/sombi/, last accessed 20 March 2011.

180

http://sourceforge.net/projects/sombi/

Figure 7.4.: Preview of the Sombi Front-end standard module [Waltemath et al. 2011c].

Modules for the Front-end module class are under development. One proposal

for a front-end architecture based on portlets is under development [Weitzel 2011

(to appear]. The front-end integrates different views on model management tasks,

including the model version history, the model meta-information display, and simu-

lation experiment descriptions linked with the model (Figure 7.4).

7.6. Summary

Results

This chapter applied standard IR techniques on bio-model retrieval. The work

assumed the existence of encoded meta-information in the bio-models. Here the

meta-information was obtained from mDB (Section 6.3.3).

I argue that an important step towards better model reuse is the ability to retrieve

181

relevant models for a query. The incorporation of meta-information on top of the

model’s structure is a key issue [Köhn et al. 2009]. Meta-information includes bio-

logical details about the modeled system, but also applied simulation experiments,

model parametrizations, and details about the computational model such as avail-

able model versions, the model author or reference publications. Another important

aspect is the consideration of structural information.

The application of IR techniques on bio-model retrieval improves existing search

facilities and results in a fine-grained similarity search. To show the feasibility of

the ranked retrieval system, parts of the concept have been implemented as a new

demo search system of BioModels Database.

Discussion

Evaluation So far, no evaluations have been done to measure the efficiency of the

retrieval approach. One major problem is the fact that the implementation provided

in [Henkel et al. 2010] was the first application of ranked retrieval to the bio-models

domain. Consequently, no systems existed for a comparison. The only reference

that has been used for testing is the former BioModels Database search system,

which is still available from the web site4. Sample searches with members of the

BioModels Database curator team have shown that the retrieval approach returns

more relevant models for a given query. For example, a search for models dealing

with caffeine in the original BioModels Database search system returns one result

model (i. e. BIOMD0000000241). The new search system, however, returns 15 models

of which three models are relevant. Indeed, the first model is BIOMD0000000241

(similarity value of 0.3914), the model on caffeine pressor tolerance, the second model

is BIOMD0000000015 (0.0405), a model involving purine which is chemically related

to caffeine. The third model, BIOMD0000000060 (0.0334), models the ryanodine

receptor which is also known as a caffeine-sensitive calcium-release receptor. While

those examples show the use of our search approach, they cannot be measured in

terms of a Gold standard. The development of such a standard is underway though.

Current works in the BioModels Database team include the tagging of models in the

system. This will enable the definition of sample queries and expected results for

those queries in order to form a test set which can then be used to evaluate different

approaches to model retrieval.

The introduced Sombi framework serves as a framework for the testing of differ-

ent ranking functions on different model resources. The data resource used in Sombi

is mDB which contains all models from BioModels Database and stores them in

4http://www.ebi.ac.uk/biomodels-main/search, last accessed 22 November 2011.

182

http://www.ebi.ac.uk/biomodels-main/search

the meta-information focused manner. Three different ranking functions are avail-

able. As the framework is in prototype stage, it lacks evaluations of the different

incorporated ranking functions and model sources though.

Usability mDB to date does not sufficiently inform the user about why a model

was found. The current interface is prototypical and as such does not comply with

current usability standards. Technically, all needed information is available from

the retrieval system, but it is not presented to the user. For example, the search for

models by the author Elowitz that involve the lactose inducer (LacI) gives a great

number of results for which it would be useful to have a way of communicating:

• Which models are exact matches (models by Elowitz that really encode LacI)

• Which models are models that encode LacI, but are not designed by Elowitz

• Which models are Elowitz models, but might not include LacI

Flexible weights First observations have shown that the ranked retrieval approach

is feasible, but needs to be extended towards a more flexible concept for weights and

user preferences, as the different user groups working with the data have varying

demands. As mentioned in Section 7.3.2, the identified features are of different

importance for the ranked retrieval, depending on the kind of user. For example,

a user intending to simulate a model in a given simulation environment may assign

a particular importance to the algorithm feature. A systems biologist searching

for a model of a particular biological system, however, may decide to disregard the

model’s encoding format, but instead assign a particular importance to the biological

background the model is able to provide; he might be flexible on the simulation

environment to use.

Demands regarding model retrieval differ for user classes. One way of solving

is to allow users to boost particular query terms. However, a second idea is to

encode standard feature matrices for the different user groups (i. e. user profiles).

For the moment, feature weights are preset. They might be adjusted using relrevance

feedback methods in the future.

Incorporated similarity features The concept incorporates meta-information on

the model, but as well on existing model versions, on existing simulation experi-

ments, on the observed model behavior and so on. Parts of the information can

be encoded in standard formats (Section 3.1.1).So far, only parts of the concept for

integrating meta-information and model-related information have been incorporated

183

in the implementations, and evaluations are necessary to put the value of the ap-

proach in numbers. Further investigations in standardization formats and ontologies

are necessary.

Two-step retrieval Besides the approach to encode and use the semantics of bio-

models, there have also been attempts to use the model’s structure to facilitate model

reuse [Kell and Mendes 2008], for example as components of coupled systems [Röhl

and Uhrmacher 2005]. However, evaluating the structural information of the XML

file alone is far too general to define a similarity mapping between different models.

One solution for models stored in mDB is a two-step search process: First, relevant

models are identified based on their matching annotations. Secondly, relevant models

are analyzed on the structure level to find overlapping or similar model constituents.

This work only realizes the first step. The second step needs to be implemented in

future versions, probably requiring to move to a storage approach that is tailored

towards XML storage and fulfills the specific requirements described in Section 2.4.

184

8. Conclusions

If we knew what it was we were doing, it would not be called

research, would it?

(Albert Einstein)

Computational support has become an integral part of studying biological phe-

nomena. The number and variety of computational models in public databases are

increasing rapidly, demanding new methods for efficient model search.

This thesis investigates methods and techniques for enhanced model retrieval.

The consequence will be augmented reuse of existing models. Figure 8.1 shows the

particular contributions of this thesis to the research area, as well as their inter-

connections. Major aspects are (1) the enhancement of meta-information encoding

(Chapter 4), (2) the development of a format for the exchange of simulation ex-

periments (Chapter 5), (3) the development of a format-independent database for

model storage (Chapter 6), and (4) the application of ranked retrieval on bio-models

(Chapter 7). The main XML model encoding format used for this work is SBML as

a wide range of SBML models is available from public resources for testing.

I improved the encoding format of model annotations in SBML. In this work I

proposed an improved version of the SBML annotation scheme, referred to as the

annot package. Resulting from first experiences with the retrieval implementation

and from an evaluation of the current SBML Level 3 Core annotation standard,

we proposed an extended annotation concept together with colleagues at different

institutes (e. g. Humboldt University Berlin, Manchester University, Newcastle Uni-

versity, European Bioinformatics Institute). The major outcome of the project is

an extension to the current annotation scheme, instantiated in a stand-alone SBML

“package”. The Annotation package takes advantage of the expressiveness provided

by RDF. Allowing full RDF in SBML annotations now enables, for example, distin-

guished relations between annotations and the annotated SBML element, annota-

tions of XML attributes and statements about statements. Consequently, biological

knowledge can be more precisely encoded in future SBML models. The use of RDF

statements also allows for evaluation by existing reasoning tools.

185

Figure 8.1.: Investigated aspects, realizations and applications of model storage and retrieval.

I developed standards for simulation experiment encoding. Standardization ef-

forts for the encoding of reusable information are important. They are integral

to some areas of computational systems biology (e. g. kinetic modeling), but not

yet established in all of them. Particularly standard formats for the encoding of

simulation experiment descriptions are missing. I developed an ontology, called

KiSAO, for the characterization and classification of existing simulation algorithms

used for the simulation of kinetic models. I also developed a format for the encod-

ing of simulation experiment descriptions, called SED-ML. It is based on a set of

Minimum Information guidelines for simulation experiments, called MIASE. I have

shown that simulation experiments encoded in SED-ML can be reproduced, even

in different simulation environments. The proposed language SED-ML Level 1 Ver-

sion 1 is considered a standard format for simulation experiment encoding not only

by the SBML community, but also by the CellML community and the NeuroML

community.

I developed a format-independent, meta-information based storage solution for

bio-models. While SBML is the de-facto standard for the encoding of biological

models, other formats co-exist. Model repositories restrict themselves to particular

186

representation formats: SBML-encoded models are typically stored in BioModels

Database, but also in the JWS Online model repository. CellML-encoded models

are stored in the CellML Model repository. Models with a strong focus on neuronal

systems might be found in ModelDB, and so on. However, a model’s actual XML

encoding is often marginal. On the contrary, a comprehensive collection of existing

knowledge about the model (i. e. meta-information) is of interest.

I have therefore designed a format-independent model database, called mDB. It

realizes a meta-information-centric storage approach in a relational database schema.

The result is a system that allows for formalism-independent storage and retrieval

of computational biology models. It also incorporates model meta-information and

model-related information such as associated simulation experiments. The fine-

grained meta-information storage comprises a thorough versioning system to follow

the evolution of stored models and enables model retrieval, model visualization,

model versioning, and similar tasks.

I designed a ranked retrieval approach to model search. Current model search

systems rely on data retrieval techniques. They only partially incorporate meta-

information and do not rank their search results.

As one part of my thesis I present the application of Information Retrieval methods

on bio-model retrieval. I developed a concept for ranked model search on the basis of

identified model features. The features were derived from the data, meta-data, infor-

mation, and meta-information stored in mDB . The retrieval system supports query

term boosts, feature weights and query expansion with knowledge from external

resources.

The meta-information-based search allows for a greater range of more specific

queries. It also returns more potentially relevant models for a query, including

similar, and not only identically matching results. The conceptual design benefits

from the incorporation of model-related simulation experiments and results, as well

as structural information extractable from the XML tree structure that maps the

biological network structure. A first implementation has been realized as part of a

Diploma thesis that I supervised. A second implementation has been integrated in

the BioModels Database search system.

Figure 8.1 shows how the different contributions are aligned. mDB is the central

database for testing the storage and retrieval concepts. The ranking approach has

first been tested on that database, before being implemented as a test search in

BioModels Database . A prerequisite for testing different ranking functions is Sombi

– a modular framework that can plug in different model repositories and ranking

187

functions, and allows to compare the outcomes of their combinations. Evaluations of

the mDB and ranking approaches led to the effort of defining an extended annotation

scheme for SBML models (SBML annot). The visualization tool Mosan uses the

mDB search to import and display ranked results; the advantage being that Mosan

is capable of handling multiple models and their experiments. mDB is connected to

an experimental database eDB that I developed to support the storage of biology

experiments within the research training school. In the future, the experiments

shall be annotated by domain experts, and then be incorporated in the search and

ranking process. Once that is done, the experiments in eDB will also be retrieved

for models displayed in Mosan. The third database designed in line of this thesis is

the simulation experiment database sDB that links experiments to models in mDB .

It is capable of storing SED-ML simulation experiment descriptions. The working of

SED-ML has been shown in the simulation environments Roadrunner, JWS Online

simulator and VCell by the software developers.

I am convinced that the promotion of standardization efforts is crucial to systems

biology projects as standards enable the exchange and reuse of information. Bio-

logical systems are too complex to be studied by isolated groups, and large scale

collaborations are a prerequisite to successful research. I would like to cite a col-

league here who said that “the synthesis of information has generated new insights,

and therein lies the power – and the beauty – of Systems Biology”1. Standard-

ization is the very basis to help researchers synthesize their work and knowledge.

Standardization thereby generates new science.

1M. E. Stefan, “On the function of calcium-regulated allosteric devices in synaptic plasticity”,

dissertation (2009)

188

A. Appendices

A.1. Qualifiers

A.1.1. Biomodels.net qualifiers

The following are the qualifiers proposed by the biomodels.net effort (taken from

the biomodels.net web site1). They are distinguished in model qualifiers and biology

qualifiers.

Model qualifiers

These kind of qualifiers define the relationship between a modelling object and its

annotation. The used namespace prefix is bqmodel :

qualifier description

is The modelling object represented by the model component is the subject of the refer-
enced resource. For instance, this qualifier might be used to link the encoded model
to a database of models.

isDerivedFrom The modelling object represented by the component of the encoded model is derived
from the modelling object represented by the referenced resource. For instance, they
can be the fruit of a refinement or their adaptation for usage in a different context.

isDescribedBy The modelling object represented by the component of the encoded model is described
by the referenced resource. This relation might be used to link a model or a kinetic
law to the literature that describes this model or this kinetic law.

Table A.1.: biomodels.net model qualifiers

Biology qualifiers

These kind of qualifiers define the relationship between a biological object repre-

sented by a model element and its annotation. The used namespace prefix is bqbiol.

qualifier description

encodes The biological entity represented by the model component encodes, directly or by
transitivity the subject of the referenced resource.

hasPart The biological entity represented by the model component includes the subject of the
referenced resource, either physically or logically. This relation might be used to link
a complex to the description of its components.

hasProperty The subject of the referenced resource is a property of the biological entity represented
by the model component. This relation might be used when a biological entity has a
given activity or exerts a specific function.

hasVersion The subject of the referenced resource is a version or an instance of the biological entity
represented by the model component.

1Available from http://www.biomodels.net/qualifiers/, last accessed 1 February 2011.

189

http://www.biomodels.net/qualifiers/

is The biological entity represented by the model component is the subject of the refer-
enced resource. This relation might be used to link a reaction to its exact counterpart
in KEGG or Reactome for instance.

isDescribedBy The biological entity represented by the model component is described by the ref-
erenced resource. This relation should be used for instance to link a species or a
parameter to the literature that describes the concentration of the species or the value
of the parameter.

isEncodedBy The biological entity represented by the model component is encoded, directly, or by
transitivity, by the subject of the referenced resource.

isHomologTo The biological entity represented by the model component is homologous to the subject
of the referenced resource, i. e. they share a common ancestor.

isPartOf The biological entity represented by the model component is a physical or logical part of
the subject of the referenced resource. This relation might be used to link a component
to the description of the complex is belongs to.

isPropertyOf The biological entity represented by the model component is a property of the refer-
enced resource.

isVersionOf The biological entity represented by the model component is a version or an instance
of the subject of the referenced resource.

occursIn The biological entity represented by the model component takes place in the subject
of the reference resource.

Table A.2.: biomodels.net biology qualifiers

A.1.2. Proposed revised biomodels.net qualifiers

The following is a list of proposed revised and extended qualifiers for bio-model

annotation. The list is published in [Waltemath et al. 2011d, p. 14]. The new

qualifiers have been discussed on the sbml-annot mailing list; there is as of now no

final agreement.

qualifier description

bqmodel:is bqmodel:identity
bqmodel:isDerivedFrom bqmodel:progenitor, bqmodel:antecedent, bqmodel:ancestor, bq-

model:basis, bqmodel:base, bqmodel:foundation, bqmodel:origin
bqmodel:isDescribedBy bqmodel:description
bqbiol:hasPart bqbiol:part
bqbiol:hasProperty bqbiol:property
bqbiol:hasVersion bqbiol:version
bqbiol:is bqbiol:identity
bqbiol:isDescribedBy bqbiol:description
bqbiol:isHomologTo bqbiol:homolog
bqbiol:isEncodedBy bqbiol:encoder
bqbiol:encodes bqbiol:encodement
bqbiol:isPartOf bqbiol:encompassment, bqbiol:assembly, bqbiol:partship,

bqbiol:parthood, bqbiol:whole, bqbiol:meronym
bqbiol:isPropertyOf bqbiol:bearer, bqbiol:carrier
bqbiol:isVersionOf bqbiol:consociate, bqbiol:cohort, bqbiol:superclass, bqbiol:hyponym
bqbiol:occursIn (physical contain-
ment)

bqbiol:encompassment, bqbiol:containment

bqbiol:occursIn (taxonomic instantia-
tion)

bqbiol:instantiation

Table A.3.: Proposed revised biomodels.net qualifiers

190

A.2. Bio-Models

A.2.1. Leloup Goldbeter 1999 (original and modified SBML encoding)

The original SBML encoding of the model describing the publication “Chaos and

birhythmicity in a model for circadian oscillations of the PER and TIM proteins in

Drosophila“ [Leloup and Goldbeter 1999] is available from urn:miriam:biomodels.

db:BIOMD0000000021. The modified encoding of the model is shown in Listing A.1.

Modifications compared to the original file are2:

• Namespaces omitted

• Species id="T2" renamed to name="A"

• Reaction id="T0 to T1" renamed to name="r1"

• Reaction id="T1 to T2" annotations removed

• SboTerm sboTerm="SBO:0000179" added to reaction id="T2 degradation"

1 <?xml version="1.0" encoding="UTF -8"?>

2 <sbml xmlns="http://www.sbml.org/sbml/level2" metaid="metaid_0000001"

level="2" version="1">

3 <model metaid="metaid_0000002" id="Leloup1999_CircClock_periodic"

4 name="Leloup1999_CircClock">

5 <listOfUnitDefinitions [..] />

6 <listOfCompartments [..] />

7 <listOfSpecies >

8 <species metaid="metaid_0000013" />

9 <species metaid="metaid_0000014" id="T0" name="TIM Protein (

unphosphorylated)" compartment="Cell" initialConcentration="0">

10 <annotation >

11 <rdf:RDF >

12 <rdf:Description rdf:about="#metaid_0000014">

13 <bqbiol:isVersionOf >

14 <rdf:Bag >

15 <rdf:li rdf:resource="urn:miriam:uniprot:P49021" />

16 </rdf:Bag >

17 </bqbiol:isVersionOf >

18 </rdf:Description >

19 </rdf:RDF >

20 </annotation >

21 </species >

22 <species metaid="metaid_0000015" />

23 <species metaid="metaid_0000016" id="T1" name="TIM Protein (mono -

phosphorylated)" compartment="Cell" initialConcentration="0">

24 <annotation >

25 <rdf:RDF >

26 <rdf:Description rdf:about="#metaid_0000016">

27 <bqbiol:isVersionOf >

28 <rdf:Bag >

29 <rdf:li rdf:resource="urn:miriam:uniprot:P49021"/>

30 </rdf:Bag >

2model version 29 September 2010

191

urn:miriam:biomodels.db:BIOMD0000000021
urn:miriam:biomodels.db:BIOMD0000000021

31 </bqbiol:isVersionOf >

32 </rdf:Description >

33 </rdf:RDF >

34 </annotation >

35 </species >

36 <species metaid="metaid_0000017" [..] />

37 <species metaid="metaid_0000018" id="T2" name="A" compartment="Cell"

initialConcentration="0">

38 <annotation >

39 <rdf:RDF >

40 <rdf:Description rdf:about="#metaid_0000018">

41 <bqbiol:isVersionOf >

42 <rdf:Bag >

43 <rdf:li rdf:resource="urn:miriam:uniprot:P49021"/>

44 </rdf:Bag >

45 </bqbiol:isVersionOf >

46 </rdf:Description >

47 </rdf:RDF >

48 </annotation >

49 </species >

50 <species metaid="metaid_0000019" [..] />

51 [..]

52 </listOfSpecies >

53 <listOfParameters >

54 <parameter metaid="metaid_0000008" id="Pt" name="Total Per"

55 constant="false"/>

56 <parameter metaid="metaid_0000009" id="Tt" name="Total Tim"

57 constant="false"/>

58 <parameter metaid="metaid_0000010" id="V_mT" value="0.7">

59 <notes>

60 <body xmlns="http://www.w3.org /1999/ xhtml">

61 <p>V_mT =.7 (physiological oscillations); 0.28 (chaos); .4 or .99

62 (biorhythmicity example)</p>

63 </body>

64 </notes >

65 </parameter >

66 <parameter metaid="metaid_0000011" id="V_dT" value="2">

67 <notes>

68 <body xmlns="http://www.w3.org /1999/ xhtml">

69 <p>V_dT=2 (physiological oscillations); 4.8 (chaos); 3.8 or 2

70 (biorhythmicity example)</p>

71 </body>

72 </notes >

73 </parameter >

74 </listOfParameters >

75 <listOfRules />

76 <listOfReactions >

77 <reaction metaid="metaid_0000025" />

78 <reaction metaid="metaid_0000026" id="T0_to_T1" name="r1"

79 reversible="false">

80 <annotation >

81 <rdf:RDF >

82 <rdf:Description rdf:about="#metaid_0000026">

83 <bqbiol:isVersionOf >

84 <rdf:Bag >

85 <rdf:li rdf:resource="urn:miriam:ec -code:2 .7.11.1"/>

86 <rdf:li rdf:resource="urn:miriam:obo.go:GO \%3 A0006468"/>

87 </rdf:Bag >

88 </bqbiol:isVersionOf >

89 </rdf:Description >

90 </rdf:RDF >

91 </annotation >

192

92 <listOfReactants >

93 <speciesReference species="T0"/>

94 </listOfReactants >

95 <listOfProducts >

96 <speciesReference species="T1"/>

97 </listOfProducts >

98 <kineticLaw />

99 </reaction >

100 <reaction metaid="metaid_0000027" [..] />

101 [..]

102 <reaction metaid="metaid_0000030" id="T1_to_T2" name="Second

Phosphorylation of TIM" reversible="false">

103 <listOfReactants >

104 <speciesReference species="T1"/>

105 </listOfReactants >

106 <listOfProducts >

107 <speciesReference species="T2"/>

108 </listOfProducts >

109 <kineticLaw />

110 </reaction >

111 <reaction metaid="metaid_0000031" [..] />

112 <reaction metaid="metaid_0000032" [..] />

113 <reaction metaid="metaid_0000033" [..] />

114 <reaction metaid="metaid_0000034" [..] />

115 <reaction metaid="metaid_0000035" [..] />

116 <reaction metaid="metaid_0000036" [..] />

117 <reaction metaid="metaid_0000038" id="T2_degradation" name="TIM -2

degradation" reversible="false" sboTerm="SBO:0000179">

118 <annotation >

119 <rdf:RDF >

120 <rdf:Description rdf:about="#metaid_0000038">

121 <bqbiol:isVersionOf >

122 <rdf:Bag >

123 <rdf:li rdf:resource="urn:miriam:obo.go:GO \%3 A0030163"/>

124 </rdf:Bag >

125 </bqbiol:isVersionOf >

126 </rdf:Description >

127 </rdf:RDF >

128 </annotation >

129 <listOfReactants >

130 <speciesReference species="T2"/>

131 </listOfReactants >

132 <kineticLaw />

133 </reaction >

134 <reaction metaid="metaid_0000039" id="PT_complex_formation" name="PER -

TIM complex formation">

135 <annotation >

136 <rdf:RDF >

137 <rdf:Description rdf:about="#metaid_0000039">

138 <bqbiol:isVersionOf >

139 <rdf:Bag >

140 <rdf:li rdf:resource="urn:miriam:obo.go:GO \%3 A0006461"/>

141 </rdf:Bag >

142 </bqbiol:isVersionOf >

143 </rdf:Description >

144 </rdf:RDF >

145 </annotation >

146 <listOfReactants >

147 <speciesReference species="P2"/>

148 <speciesReference species="T2"/>

149 </listOfReactants >

150 <listOfProducts >

193

1 p01: Euglena () := new(end)((EuglenaLight(end) | EuglenaColl(end)))

2 p02: EuglenaLight(toColl) := (phot(). EuglenaLight(toColl) +

3 phot().toColl <>. EuglenaUp () + phot(). toColl <>. EuglenaDown () +

4 phot(). toColl <>. Euglena ())

5 p03: EuglenaColl(toLight) := (coll <>. EuglenaColl(toLight) +

6 toLight ())

7 p04: EuglenaUp () := (coll(). Euglena () + coll <>. Euglena () +

8 phot(). Euglena ())

9 p05: EuglenaDown () := (coll(). Euglena () + coll <>. Euglena () +

10 phot(). EuglenaDown ())

11 p06: Photon () := phot <>.Photon ()

12 i0: (Photon ()|(Euglena ()))

Listing A.2: The Euglena model in process notation

151 <speciesReference species="CC"/>

152 </listOfProducts >

153 <kineticLaw /> <reaction metaid="metaid_0000040" [..] />

154 <reaction metaid="metaid_0000041" [..] />

155

156 </reaction >

157 <reaction metaid="metaid_0000040" [..] />

158 <reaction metaid="metaid_0000041" [..] />

159 <reaction metaid="metaid_0000042" [..] />

160 <reaction metaid="metaid_0000043" [..] />

161 <reaction metaid="metaid_0000044" [..] />

162 <reaction metaid="metaid_0000045" [..] />

163 <reaction metaid="metaid_0000046" [..] />

164 <reaction metaid="metaid_0000047" [..] />

165 <reaction metaid="metaid_0000048" [..] />

166 </listOfReactions >

167 </model>

168 </sbml>

Listing A.1: Modified SBML code of Leloup Goldbeter 1999

A.2.2. Euglena movements (πML)

Listing A.2 shows the definition of a simple model for Euglena movemens in depen-

dency of light (using π Calculus notation). The model can be represented in πML.

The according XML code is shown in Listing A.3.

1

2 <?xml version="1.0" encoding="UTF -8"?>

3 <!-- Euglena model -->

4 <pimodel xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:noNamespaceSchemaLocation="euglenaSchemaBasic.xsd">

5 <globalChannels >

6 <channel name="coll" />

7 <channel name="phot" />

8 </globalChannels >

9 <definitions >

10 <!-- Euglena Prozess -->

11 <definition name="Euglena">

12 <new>

194

13 <channel name="end" />

14 </new>

15 <process >

16 <parallel >

17 <process >

18 <call name="EuglenaLight">

19 <parameters >

20 <channel name="end" />

21 </parameters >

22 </call>

23 </process >

24 <process >

25 <call name="EuglenaColl">

26 <parameters >

27 <channel name="end" />

28 </parameters >

29 </call>

30 </process >

31 </parallel >

32 </process >

33 </definition >

34 <!-- EuglenaLight Process -->

35 <definition name="EuglenaLight">

36 <parameters >

37 <channel name="toColl" />

38 </parameters >

39 <process >

40 <summation >

41 <summand >

42 <receive channel="phot" />

43 <process >

44 <call name="EuglenaLight">

45 <parameters >

46 <channel name="toColl" />

47 </parameters >

48 </call>

49 </process >

50 </summand >

51 <summand >

52 <receive channel="phot" />

53 <process >

54 <summation >

55 <summand >

56 <send channel="toColl" />

57 <process >

58 <call name="EuglenaUp" />

59 </process >

60 </summand >

61 </summation >

62 </process >

63 </summand >

64 <summand >

65 <receive channel="phot" />

66 <process >

67 <summation >

68 <summand >

69 <send channel="toColl" />

70 <process >

71 <call name="EuglenaDown" />

72 </process >

73 </summand >

74 </summation >

195

75 </process >

76 </summand >

77 <summand >

78 <receive channel="phot" />

79 <process >

80 <summation >

81 <summand >

82 <send channel="toColl" />

83 <process >

84 <call name="Euglena" />

85 </process >

86 </summand >

87 </summation >

88 </process >

89 </summand >

90 </summation >

91 </process >

92 </definition >

93 <!-- EuglenaColl Process -->

94 <definition name="EuglenaColl">

95 <parameters >

96 <channel name="toLight" />

97 </parameters >

98 <process >

99 <summation >

100 <summand >

101 <send channel="coll" />

102 <process >

103 <call name="EuglenaColl">

104 <parameters >

105 <channel name="toLight" />

106 </parameters >

107 </call>

108 </process >

109 </summand >

110 <summand >

111 <receive channel="toLight" />

112 </summand >

113 </summation >

114 </process >

115 </definition >

116 <!-- EuglenaUp Process -->

117 <definition name="EuglenaUp">

118 <process >

119 <summation >

120 <summand >

121 <receive channel="coll" />

122 <process >

123 <call name="Euglena" />

124 </process >

125 </summand >

126 <summand >

127 <send channel="coll" />

128 <process >

129 <call name="Euglena" />

130 </process >

131 </summand >

132 <summand >

133 <receive channel="phot" />

134 <process >

135 <call name="Euglena" />

136 </process >

196

137 </summand >

138 </summation >

139 </process >

140 </definition >

141 <!-- EuglenaDown Process -->

142 <definition name="EuglenaDown">

143 <process >

144 <summation >

145 <summand >

146 <receive channel="coll" />

147 <process >

148 <call name="Euglena" />

149 </process >

150 </summand >

151 <summand >

152 <send channel="coll" />

153 <process >

154 <call name="Euglena" />

155 </process >

156 </summand >

157 <summand >

158 <receive channel="phot" />

159 <process >

160 <call name="Euglena" />

161 </process >

162 </summand >

163 </summation >

164 </process >

165 </definition >

166 <!-- Photon Process -->

167 <definition name="Photon">

168 <process >

169 <summation >

170 <summand >

171 <send channel="phot" />

172 <process >

173 <call name="Photon" />

174 </process >

175 </summand >

176 </summation >

177 </process >

178 </definition >

179 </definitions >

180 <!-- Init process definition sets the start conditions -->

181 <initProcess >

182 <call name="Photon" />

183 <call name="Euglena" />

184 <call name="Euglena" />

185 <call name="Euglena" />

186 <call name="Euglena" />

187 <call name="Euglena" />

188 </initProcess >

189 </pimodel >

Listing A.3: A sample PiML model

197

A.3. Annotated bio-models

A.3.1. Example

The following example for the modeling and encoding of a biological question sum-

marizes and illustrates the application of the different modeling and standardiza-

tion efforts, using an enzymatic reaction. Biochemical systems are often described

through networks of biochemical reactions. Example A.3.1 shows the encoding of

an enzymatic reaction.

Example A.3.1 [Enzyme kinetic reaction with enzyme-substrate complex]

E + S
k1−⇀↽−
k2
ES

k3−→ E + P

E = 5× 10−21 mol

S = 10−20 mol

P = 0 mol

ES = 0 mol

k1 = 0.0001 l ∗mol−1 ∗ second−1

k2 = 0.001 ∗ second−1

k3 = 1 ∗ second−1

It is a one-substrate reaction describing the reversible formation of an enzyme-

substrate complex (ES) from an enzyme (E) and a substrate (S), and an irreversible

reaction describing the degradation of the enzyme-substrate into the enzyme (E) and

a product (P). The system provides initial amounts for all entities involved (e. g. the

initial amount of the substrate S is 10−20 mol). Furthermore, the reaction rates

for all three reactions are given (e. g. the reaction rate for the formation of ES is

k1 = 0.0001 l/(mol ∗ second)).

In order to calculate the temporal behavior of the system, modeling and/or pro-

gramming languages may be used, for example MatLab3. A sample .m file imple-

menting parts of Example A.3.1 is shown in Listing A.4. The script defines a set

of global parameters, corresponding to the kinetic rates in the example. It then

sets the initial parametrization of the model at time 0 for the four modeled entities

(E,S,P ,ES) and finally calls an ODE solver (ode45). The system of differential

equations can directly be derived from the system of chemical equations given in

Listing A.3.1 but is irrelevant for the example and therefore omitted.

3http://www.mathworks.com/products/matlab/, last accessed 08 January 2011.

198

http://www.mathworks.com/products/matlab/

1 % Make rate constants available to subroutines

2 global k1,k2,k3

3 % Read/assign model parameters

4 k1 = 1e-4.;

5 k2 = 1e-3.;

6 k3 = 1.;

7 % Initial values

8 y0(1)= 5e-21;

9 y0(2)= 1e-20.;

10 y0(3)= 0.;

11 y0(4)= 0.;

12 % Call a routine to solve ODE

13 [t, y]= ode45(’michael ’, [0:0.1:10] , y0);

Listing A.4: Extract from a MatLab script to solve the system provided in Example A.3.1.
Parameter definitions and initial values are shown. Equations are omitted.

The known problems with code reuse in software design research also apply here:

A model encoded in MatLab is only reusable in a particular software environment

and hardly retrievable. Representation formats (Section 2.2) provide support for

model export, import, and also storage. An SBML snippet representing part of the

above example is given in Listing A.5. The SBML file encodes each biological entity

as a separate species in the listOfSpecies (ll. 8-13). Each species has a name

assigned to it, corresponding with the names given to the entities in Example A.3.1,

and each species has a defined initialConcentration which corresponds with the

amount given in Example A.3.1 (due to the fact that the model consistts only of

one compartment of size 1).

1 <sbml>

2 <model metaid="COPASI1" id="Model_1" name="NoTitle">

3 <listOfUnitDefinitions > [..] </listOfUnitDefinitions >

4 <listOfCompartments >

5 <compartment id="compartment_1" name="compartment" size="1"/>

6 </listOfCompartments >

7 <listOfSpecies >

8 <species metaid="m001" id="species_1" name="E" compartment="

compartment_1" initialConcentration="5e-21"/>

9 <species metaid="m002" id="species_2" name="S" compartment="

compartment_1" initialConcentration="1e-20"/>

10 <species metaid="m003" id="species_3" name="ES" compartment="

compartment_1" initialConcentration="0"/>

11 <species metaid="m004" id="species_4" name="P" compartment="

compartment_1" initialConcentration="0"/>

12 </listOfSpecies >

13 <listOfReactions >

14 <reaction id="reaction_1" name="enzyme -substrate complex" reversible="

true">

15 <listOfReactants >

16 <speciesReference species="species_1"/>

17 <speciesReference species="species_2"/>

18 </listOfReactants >

19 <listOfProducts >

199

20 <speciesReference species="species_3"/>

21 </listOfProducts >

22 <kineticLaw > [..]

23 <listOfParameters >

24 <parameter id="k1" name="k1" value="1e-4"/>

25 <parameter id="k2" name="k2" value="0.001"/>

26 </listOfParameters >

27 </kineticLaw >

28 </reaction >

29 <reaction id="reaction_2" name="product" reversible="false"> [..]

30 </reaction >

31 </listOfReactions >

32 </model >

33 </sbml>

Listing A.5: Enzymatic reaction in SBML notation

The model encodes one standard compartment compartment 1 (l. 6). The chemi-

cal reactions shown in Example A.3.1 are encoded in the SBML listOfReactions

element (ll. 14-34), each reaction in a single reaction element. The participat-

ing species are referenced from the listOfReactants (ll. 16-19 for reaction 1) or

the listOfProducts (ll. 20-22), respectively. The reaction kinetics are encoded in

the kineticLaw element where a listOfParameters defines a parameter for each

kinetic rate (l. 25 specifies k1=1e-4).

The representation format is the basis for model storage and the later retrieval

and ranking concept (Chapter 7). However, considering only the XML structure

of the encoded model is not sufficient for a model retrieval. Therefore, additional

meta-information can be attached to the SBML file using the SBO introduced in

Section 3.1.2 and the MIRIAM annotation scheme introduced in Section 3.2.1. An

annotated SBML species is shown in Listing A.6.

1 <sbml>

2 <model metaid="COPASI1" id="Model_1" name="NoTitle"> [..]

3 <listOfSpecies >

4 <species metaid="m001" id="species_1" name="E" compartment="

compartment_1" initialConcentration="5e-21">

5 <annotation >

6 <rdf:RDF ..>

7 <rdf:Description rdf:about="#m001">

8 <bqbiol:is >

9 <rdf:Bag >

10 <rdf:li rdf:resource="urn:miriam:uniprot:P00439" />

11 </rdf:Bag >

12 </bqbiol:is >

13 </rdf:Description >

14 </rdf:RDF >

15 </annotation >

16 </species >

17 [..]

18 </listOfSpecies >

19 <listOfReactions >

20 <reaction id="reaction_1" name="enzyme -substrate complex" [..]

21 sbo="SBO:0000432" />

22 [..]

23 </listOfReactions >

200

24 </model>

25 </sbml>

Listing A.6: Annotated SBML snippet

The given example also illustrates the distinction between data, meta-data, infor-

mation and meta-information as discussed in Section 2.3: The data of the SBML file

includes the values of the XML attributes (e. g. reaction1 or 5e−21). The meta-data

includes facts such as that reaction1 is a reaction, or that 5e− 21 is the initial con-

centration of a species (initialConcentration)4. The data and meta-data together

allow to draw conclusions sufficient, for example, to simulate the model. However,

meta-information provides additional information about the encoded mathematics

and biology. Information on the mathematical basis of reaction reaction1, for ex-

ample is provided by the sbo attribute (l. 21). The associated SBO term identifies

the reaction as an irreversible Michaelis Menten rate law for two substrates. In-

formation on the biological meaning of species species1, as another example for

meta-information, is provided by the < annotation > element (ll. 6-16). The anno-

tation identifies the species as the protein Phenylalanine-4-hydroxylase as the URN

urn:miriam:uniprot:P00439 which points to the particular entry in the UniProt

Database is connected with the species element through the qualifier bqbiol : is.

A.3.2. πML annotations

An example for an annotated version of the πML model presented in Appendix A.2.2

is given in Listing A.7.

1

2 <piml xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

3 xsi:noNamespaceSchemaLocation="euglenaSchemaBasic.xsd">

4 <!-- proposed annotation element -->

5 <annotation >

6 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

7 xmlns:dc="http: //purl.org/dc/elements /1.1/"

8 xmlns:dcterms="http://purl.org/dc/terms/"

9 xmlns:vCard="http://www.w3.org /2001/ vcard -rdf /3.0#"

10 xmlns:bqbiol="http: // biomodels.net/biology -qualifiers/"

11 xmlns:bqmodel="http:// biomodels.net/model -qualifiers/">

12 <rdf:Description rdf:about="#metaid_000001">

13 <!-- information on model creator -->

14 <dc:creator rdf:parseType="Resource">

15 <rdf:Bag >

16 <rdf:li rdf:parseType="Resource">

17 <vCard:N rdf:parseType="Resource">

18 <vCard:Given >Robert </vCard:Given >

19 <vCard:Family >Kuehn</vCard:Family >

20 </vCard:N >

21 <vCard:EMAIL >robert.kuehn@uni -rostock.de</vCard:EMAIL >

22 <vCard:ORG >

23 <vCard:Orgname >University of Rostock </vCard:Orgname >

4Unit information are omitted in the SBML code snippet.

201

urn:miriam:uniprot:P00439

24 </vCard:ORG >

25 </rdf:li >

26 </rdf:bag >

27 </dc:creator >

28 </rdf:Description >

29 <rdf:Description rdf:about="#metaid_000005">

30 <bqbiol:identity >

31 <rdf:Bag >

32 <rdf:li rdf:id="urn:miriam:taxonomy:3038" />

33 </rdf:Bag >

34 </bqbiol:is >

35 </rdf:Description >

36 <rdf:Description rdf:about="#metaid_000004">

37 <bqbiol:is >

38 <rdf:Bag >

39 <rdf:li rdf:id="urn:miriam:obo.go:GO%3 A0015979" />

40 <rdf:li rdf:id="urn:miriam:obo.go:GO%3 A0019684" />

41 </rdf:Bag >

42 </bqbiol:is >

43 </rdf:Description >

44 </rdf:RDF >

45 </annotation >

46

47 <!-- original PiML model -->

48 <pimodel metaid="metaid_000001">

49 <globalChannels >

50 <channel name="coll" metaid="metaid_000003" />

51 <channel name="phot" metaid="metaid_000004" />

52 </globalChannels >

53 <definitions >

54 <!-- Euglena Prozess -->

55 <definition name="euglenaSpecies" metaid="metaid_000005">

56 <new>

57 <channel name="end" metaid="metaid_000006"/>

58 </new>

59 <process metaid="metaid_000007">

60 <parallel >

61 <process metaid="metaid_000008">

62 <call name="EuglenaLight">

63 <!-- defined further down -->

64 <parameters >

65 <channel name="end" />

66 </parameters >

67 </call>

68 </process >

69 <process metaid="metaid_000009">

70 <call name="EuglenaColl">

71 <!-- defined further down -->

72 <parameters >

73 <channel name="end" />

74 </parameters >

75 </call>

76 </process >

77 </parallel >

78 </process >

79 </definition > [..]

80 </definitions >

81 <initProcess metaid="metaid_000010">

82 [..]

83 </initProcess >

202

84 </pimodel >

Listing A.7: An annotated πML model snippet, using the proposed MIRIAM reference standard.
The XML Schema for πML has been extended following the changes proposed in the
textual description.

The lower part of the listing shows a sample process definition complying with the

current πML XSD Schema (Euglena species). The upper part shows the possible

annotation of that process and its channels. First, the model creator is defined (ll. 14-

27). Then, the definition of euglenaSpecies is annotated with the NCBI Taxonomy

term “Euglena” (urn:miriam:taxonomy:3038, ll. 29-35). Finally, the phot channel

is annotated with the Gene Ontology term “photosynthesis, light reaction” (urn:

miriam:obo.go:GO%3A0015979 and urn:miriam:obo.go:GO%3A0019684, ll. 36-43).

Further annotations might be added.

A.3.3. Goldbeter 1991 (CellML with MIRIAM annotations)

A proposal to use MIRIAM annotations in CellML has been posted on the cellml-

team discussion mailing list, available from http://www.cellml.org/pipermail/

team/2009-August/001738.html. The following encodes and annotates the model

published in “A minimal cascade model for the mitotic oscillator involving cyclin

and cdc2 kinase” [Goldbeter 1991] in CellML. The original annotated CellML model

has been provided by Catherine Lloyd via e-mail exchange. The XML snippet shown

in Listing A.8 is a shortened version of it. Namespaces are omitted. Left out code

snippets are marked with “[..]”.

1 <model [..] cmeta:id="goldbeter_1991" name="goldbeter_1991">

2 <documentation xmlns="http:// cellml.org/tmp -documentation">

3 [..]

4 </documentation >

5 <units name="minute"> [..] </units>

6

7 <component cmeta:id="C" name="C">

8 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#" >

9 <rdf:Description rdf:about="#C">

10 <dc:title >C</dc:title >

11 <dcterms:alternative >cyclin concentration </dcterms:alternative >

12 </rdf:Description >

13 </rdf:RDF >

14 <variable units="micromolar" public_interface="out" cmeta:id="C_C" name

="C" initial_value="0.01">

15 <rdf:RDF [..]>

16 <rdf:Description rdf:about="#C_C">

17 <bqbiol:isVersionOf >

18 <rdf:Bag >

19 <rdf:li rdf:resource="urn:miriam:uniprot:Q4KLA0"/>

20 <rdf:li rdf:resource="urn:miriam:interpro:IPR006670"/>

21 <rdf:li rdf:resource="urn:miriam:obo.sbo:sbo %3 A0000252"/>

22 </rdf:Bag >

23 </bqbiol:isVersionOf >

24 </rdf:Description >

25 </rdf:RDF >

203

urn:miriam:taxonomy:3038
urn:miriam:obo.go:GO%3A0015979
urn:miriam:obo.go:GO%3A0015979
urn:miriam:obo.go:GO%3A0019684
http://www.cellml.org/pipermail/team/2009-August/001738.html
http://www.cellml.org/pipermail/team/2009-August/001738.html

26 </variable >

27 <variable units="dimensionless" public_interface="in" name="X"/>

28 [..]

29 <variable units="minute" public_interface="in" name="time"/>

30 <math xmlns="http://www.w3.org /1998/ Math/MathML">

31 [..]

32 </math>

33 </component >

34

35 <component cmeta:id="M" name="M"> [..] </component >

36 <component cmeta:id="M_star" name="M_star"> [..] </component >

37 <component cmeta:id="X" name="X"> [..] </component >

38

39 <component cmeta:id="X_star" name="X_star">

40 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#">

41 <rdf:Description rdf:about="#X_star">

42 <dc:title >X_star </dc:title >

43 <dcterms:alternative >fraction of inactive cyclin protease </

dcterms:alternative >

44 </rdf:Description >

45 </rdf:RDF >

46 <variable units="dimensionless" public_interface="out" name="X_star"

cmeta:id="X_X_">

47 <rdf:RDF >

48 <rdf:Description rdf:about="#X_X_">

49 <bqbiol:isVersionOf >

50 <rdf:Bag >

51 <rdf:li rdf:resource="urn:miriam:obo.go:GO%3 A0005680"/>

52 <rdf:li rdf:resource="urn:miriam:obo.sbo:sbo %3 A0000297"/>

53 </rdf:Bag >

54 </bqbiol:isVersionOf >

55 <bqbiol:hasVersion >

56 <rdf:Bag >

57 <rdf:li rdf:resource="urn:miriam:reactome:REACT_7165 .1"/>

58 </rdf:Bag >

59 </bqbiol:hasVersion >

60 </rdf:Description >

61 </rdf:RDF >

62 </variable >

63 <variable units="dimensionless" public_interface="in" cmeta:id="X_X"

name="X"/>

64 [..]

65 </component >

66

67 <component name="model_parameters"> [..] </component >

68

69 <connection >

70 <map_components component_2="C" component_1="environment"/>

71 <map_variables variable_2="time" variable_1="time"/>

72 </connection >

73 <connection >

74 <map_components component_2="M" component_1="environment"/>

75 <map_variables variable_2="time" variable_1="time"/>

76 </connection >

77 [..]

78 <connection >

79 <map_components component_2="model_parameters" component_1="X"/>

80 <map_variables variable_2="V3" variable_1="V3"/>

81 <map_variables variable_2="V4" variable_1="V4"/>

82 <map_variables variable_2="K3" variable_1="K3"/>

83 <map_variables variable_2="K4" variable_1="K4"/>

84 </connection >

204

85

86 <rdf:RDF >

87 <rdf:Description rdf:about="">

88 <dc:creator rdf:parseType="Resource">

89 <bqs:Person rdf:parseType="Resource">

90 <vCard:N rdf:parseType="Resource">

91 <vCard:Family >Lloyd</vCard:Family >

92 <vCard:Given >Catherine </vCard:Given >

93 <vCard:Other >May</vCard:Other >

94 </vCard:N >

95 </bqs:Person >

96 <bqs:Person rdf:parseType="Resource">

97 [..]

98 </bqs:Person >

99 [..]

100 </dc:creator >

101 </rdf:Description >

102 <rdf:Description rdf:about="#goldbeter_1991">

103 <bqs:reference rdf:parseType="Resource">

104 <dc:subject rdf:parseType="Resource">

105 <bqs:subject_type >keyword </bqs:subject_type >

106 <rdf:value >

107 <rdf:Bag >

108 <rdf:li >oscillator </rdf:li >

109 <rdf:li >cell cycle</rdf:li >

110 <rdf:li >cyclin </rdf:li >

111 <rdf:li >kinase </rdf:li >

112 </rdf:Bag >

113 </rdf:value >

114 </dc:subject >

115 </bqs:reference >

116 <bqs:reference rdf:parseType="Resource">

117 <bqs:Pubmed_id >1833774 </bqs:Pubmed_id >

118 <bqs:JournalArticle rdf:parseType="Resource">

119 <dc:creator >

120 <rdf:Seq >

121 <rdf:li rdf:parseType="Resource">

122 <bqs:Person rdf:parseType="Resource">

123 <vCard:N rdf:parseType="Resource">

124 <vCard:Family >Goldbeter </vCard:Family >

125 <vCard:Given >A</vCard:Given >

126 </vCard:N >

127 </bqs:Person >

128 </rdf:li >

129 </rdf:Seq >

130 </dc:creator >

131 <dc:title >

132 A minimal cascade model for the mitotic oscillator involving cyclin

and cdc2 kinase

133 </dc:title >

134 <dcterms:issued rdf:parseType="Resource">

135 <dcterms:W3CDTF >1991 -10 -15</dcterms:W3CDTF >

136 </dcterms:issued >

137 <bqs:Journal rdf:parseType="Resource">

138 <dc:title >Proceedings of the National Academy of Sciences USA</

dc:title >

139 </bqs:Journal >

140 <bqs:volume >88</bqs:volume >

141 <bqs:first_page >9107</bqs:first_page >

142 <bqs:last_page >9111</bqs:last_page >

143 </bqs:JournalArticle >

144 </bqs:reference >

205

145 <bqmodel:isDescribedBy >

146 <rdf:Bag >

147 <rdf:li rdf:resource="urn:miriam:pubmed:1833774"/>

148 </rdf:Bag >

149 </bqmodel:isDescribedBy >

150 <bqbiol:isHomologTo >

151 <rdf:Bag >

152 <rdf:li rdf:resource="urn:miriam:reactome:REACT_152"/>

153 </rdf:Bag >

154 </bqbiol:isHomologTo >

155 <bqbiol:isVersionOf >

156 <rdf:Bag >

157 <rdf:li rdf:resource="urn:miriam:kegg.pathway:hsa04110"/>

158 <rdf:li rdf:resource="urn:miriam:obo.go:GO%3 A0000278"/>

159 </rdf:Bag >

160 </bqbiol:isVersionOf >

161 <bqbiol:is >

162 <rdf:Bag >

163 <rdf:li rdf:resource="urn:miriam:taxonomy:8292"/>

164 </rdf:Bag >

165 </bqbiol:is >

166 </rdf:Description >

167 </rdf:RDF >

168 </model>

Listing A.8: Annotated CellML model

A.4. SED-ML

A.4.1. SED-ML language URNs

Table A.4 shows the standard URNs for reference to a particular model encoding

language, and the corresponding URL for the language specification. The up-to-date

list of SED-ML language URNs is availabe from http://biomodels.net/sed-ml/

#sedmlLanguage.

Language URN Specification URL

CellML (generic) urn:sedml:language:cellML none
CellML 1.0 urn:sedml:language:

cellml.1_0

http://www.cellml.org/specifications/

cellml_1.0

CellML 1.1 urn:sedml:language:

cellml.1_1

http://www.cellml.org/specifications/

cellml_1.1

NeuroML (generic) urn:sedml:language:neuroml none
NeuroML Version
1.8.1 Level 1

urn:sedml:language:neuroml.

version-1_8_1.level-1

none

NeuroML Version
1.8.1 Level 2

urn:sedml:language:neuroml.

version-1_8_1.level-2

none

SBML (generic) urn:sedml:language:sbml none
SBML Level 1 Version
1

urn:sedml:language:

sbml.level-1.version-1

http://sbml.org/Special/

specifications/sbml-level-1/

version-1/html/

SBML Level 1 Version
2

urn:sedml:language:

sbml.level-1.version-2

http://sbml.org/Special/

specifications/sbml-level-1/

version-2/html/

SBML Level 2 Version
1

urn:sedml:language:

sbml.level-2.version-1

http://www.sbml.org/specifications/

sbml-level-2/version-1/html/

206

http://biomodels.net/sed-ml/#sedmlLanguage
http://biomodels.net/sed-ml/#sedmlLanguage
urn:sedml:language:cellML
urn:sedml:language:cellml.1_0
urn:sedml:language:cellml.1_0
http://www.cellml.org/specifications/cellml_1.0
http://www.cellml.org/specifications/cellml_1.0
urn:sedml:language:cellml.1_1
urn:sedml:language:cellml.1_1
http://www.cellml.org/specifications/cellml_1.1
http://www.cellml.org/specifications/cellml_1.1
urn:sedml:language:neuroml
urn:sedml:language:neuroml.version-1_8_1.level-1
urn:sedml:language:neuroml.version-1_8_1.level-1
urn:sedml:language:neuroml.version-1_8_1.level-2
urn:sedml:language:neuroml.version-1_8_1.level-2
urn:sedml:language:sbml
urn:sedml:language:sbml.level-1.version-1
urn:sedml:language:sbml.level-1.version-1
http://sbml.org/Special/specifications/sbml-level-1/version-1/html/
http://sbml.org/Special/specifications/sbml-level-1/version-1/html/
http://sbml.org/Special/specifications/sbml-level-1/version-1/html/
urn:sedml:language:sbml.level-1.version-2
urn:sedml:language:sbml.level-1.version-2
http://sbml.org/Special/specifications/sbml-level-1/version-2/html/
http://sbml.org/Special/specifications/sbml-level-1/version-2/html/
http://sbml.org/Special/specifications/sbml-level-1/version-2/html/
urn:sedml:language:sbml.level-2.version-1
urn:sedml:language:sbml.level-2.version-1
http://www.sbml.org/specifications/sbml-level-2/version-1/html/
http://www.sbml.org/specifications/sbml-level-2/version-1/html/

SBML Level 2 Version
2

urn:sedml:language:

sbml.level-2.version-2

http://www.sbml.org/specifications/

sbml-level-2/version-2/revision-1/

sbml-level-2-version-2-rev1.pdf

SBML Level 2 Version
3

urn:sedml:language:

sbml.level-2.version-3

http://www.sbml.org/specifications/

sbml-level-2/version-3/release-1/

sbml-level-2-version-3-rel-1.pdf

SBML Level 2 Version
3 (Release 1)

urn:sedml:language:

sbml.level-2.version-3.

release-1

http://www.sbml.org/specifications/

sbml-level-2/version-3/release-1/

sbml-level-2-version-3-rel-1.pdf

SBML Level 2 Version
3 (Release 2)

urn:sedml:language:

sbml.level-2.version-3.

release-2

http://precedings.nature.com/

documents/58/version/2

SBML Level 2 Version
4

urn:sedml:language:

sbml.level-2.version-4

http://precedings.nature.com/

documents/2715/version/1

SBML Level 3 Version
1

urn:sedml:language:

sbml.level-3.version-1

http://precedings.nature.com/

documents/4123/version/1

VCML (generic) urn:sedml:language:vcml none

Table A.4.: SED-ML language URNs

A.4.2. The SED-ML XML Schema

The full SED-ML XML Schema is available from the Sourceforge SVN on http:

//sed-ml.svn.sourceforge.net/. The reference version for this Ph.D. work is

the file sed-ml-L1-V1.xsd, revision 265. The published SED-ML Level 1 Version 1

XML Schema definition is shown in Listing A.9.

1 <xs:schema targetNamespace="http://www.biomodels.net/sed -ml"

2 xmlns="http://www.biomodels.net/sed -ml" xmlns:xs="http://www.w3.org

/2001/ XMLSchema"

3 xmlns:math="http://www.w3.org /1998/ Math/MathML">

4 <xs:import namespace="http://www.w3.org /1998/ Math/MathML" schemaLocation

="sbml -mathml.xsd" />

5 <xs:simpleType name="SId">

6 <xs:annotation >

7 <xs:documentation >

8 The type SId is used throughout SED -ML as the type of the ’id’

attributes on model elements.

9 </xs:documentation >

10 </xs:annotation >

11 <xs:restriction base="xs:string">

12 <xs:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0 -9])*" />

13 </xs:restriction >

14 </xs:simpleType >

15

16 <!-- attribute group for elements with ID/name att -->

17 <xs:attributeGroup name="idGroup">

18 <xs:attribute name="id" use="required" type="SId"></xs:attribute >

19 <xs:attribute name="name" use="optional" type="xs:string"></

xs:attribute >

20 </xs:attributeGroup >

21

22 <!-- SED Base class -->

23 <xs:complexType name="SEDBase">

24 <xs:annotation >

25 <xs:documentation xml:lang="en">

26 The SEDBase type is the base type of all main types in SED -ML. It

serves as a container for the annotation of any part of the

experiment description.

27 </xs:documentation >

207

urn:sedml:language:sbml.level-2.version-2
urn:sedml:language:sbml.level-2.version-2
http://www.sbml.org/specifications/sbml-level-2/version-2/revision-1/sbml-level-2-version-2-rev1.pdf
http://www.sbml.org/specifications/sbml-level-2/version-2/revision-1/sbml-level-2-version-2-rev1.pdf
http://www.sbml.org/specifications/sbml-level-2/version-2/revision-1/sbml-level-2-version-2-rev1.pdf
urn:sedml:language:sbml.level-2.version-3
urn:sedml:language:sbml.level-2.version-3
http://www.sbml.org/specifications/sbml-level-2/version-3/release-1/sbml-level-2-version-3-rel-1.pdf
http://www.sbml.org/specifications/sbml-level-2/version-3/release-1/sbml-level-2-version-3-rel-1.pdf
http://www.sbml.org/specifications/sbml-level-2/version-3/release-1/sbml-level-2-version-3-rel-1.pdf
urn:sedml:language:sbml.level-2.version-3.release-1
urn:sedml:language:sbml.level-2.version-3.release-1
urn:sedml:language:sbml.level-2.version-3.release-1
http://www.sbml.org/specifications/sbml-level-2/version-3/release-1/sbml-level-2-version-3-rel-1.pdf
http://www.sbml.org/specifications/sbml-level-2/version-3/release-1/sbml-level-2-version-3-rel-1.pdf
http://www.sbml.org/specifications/sbml-level-2/version-3/release-1/sbml-level-2-version-3-rel-1.pdf
urn:sedml:language:sbml.level-2.version-3.release-2
urn:sedml:language:sbml.level-2.version-3.release-2
urn:sedml:language:sbml.level-2.version-3.release-2
http://precedings.nature.com/documents/58/version/2
http://precedings.nature.com/documents/58/version/2
urn:sedml:language:sbml.level-2.version-4
urn:sedml:language:sbml.level-2.version-4
http://precedings.nature.com/documents/2715/version/1
http://precedings.nature.com/documents/2715/version/1
urn:sedml:language:sbml.level-3.version-1
urn:sedml:language:sbml.level-3.version-1
http://precedings.nature.com/documents/4123/version/1
http://precedings.nature.com/documents/4123/version/1
urn:sedml:language:vcml
http://sed-ml.svn.sourceforge.net/
http://sed-ml.svn.sourceforge.net/
sed-ml-L1-V1.xsd

28 </xs:annotation >

29 <xs:sequence >

30 <xs:element ref="notes" minOccurs="0" />

31 <xs:element ref="annotation" minOccurs="0" />

32 </xs:sequence >

33 <!-- This must be a variable -type identifier ,i.e., (Letter | ’_’) (

NCNameChar)* that is unique in the document. -->

34 <xs:attribute name="metaid" type="xs:ID" use="optional"></xs:attribute >

35 </xs:complexType >

36 <xs:element name="sedML">

37 <xs:complexType >

38 <xs:complexContent >

39 <xs:extension base="SEDBase">

40 <xs:sequence >

41 <xs:element ref="listOfSimulations" minOccurs="0" />

42 <xs:element ref="listOfModels" minOccurs="0" />

43 <xs:element ref="listOfTasks" minOccurs="0" />

44 <xs:element ref="listOfDataGenerators" minOccurs="0" />

45 <xs:element ref="listOfOutputs" minOccurs="0" />

46 </xs:sequence >

47 <xs:attribute name="level" type="xs:decimal" use="required" fixed="1

" />

48 <xs:attribute name="version" type="xs:decimal" use="required" fixed=

"1" />

49 </xs:extension >

50 </xs:complexContent >

51 </xs:complexType >

52 </xs:element >

53 <!-- notes and annotations -->

54 <xs:element name="notes">

55 <xs:complexType >

56 <xs:sequence >

57 <xs:any namespace="http://www.w3.org /1999/ xhtml" processContents="

skip" minOccurs="0" maxOccurs="unbounded" />

58 </xs:sequence >

59 </xs:complexType >

60 </xs:element >

61 <xs:element name="annotation">

62 <xs:complexType >

63 <xs:sequence >

64 <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded" />

65 </xs:sequence >

66 </xs:complexType >

67 </xs:element >

68 <!-- KiSAO ID type -->

69 <xs:simpleType name="KisaoType">

70 <xs:restriction base="xs:string">

71 <xs:pattern value="KISAO: [0 -9][0 -9][0 -9][0 -9][0 -9][0 -9][0 -9]" />

72 </xs:restriction >

73 </xs:simpleType >

74

75 <!-- global element declarations -->

76 <xs:element name="variable">

77 <xs:complexType >

78 <xs:complexContent >

79 <xs:extension base="SEDBase">

80 <!-- at least one of taskReference or modelReference must be set -->

81 <xs:attribute name="taskReference" type="SId" use="optional" />

82 <xs:attribute name="modelReference" type="SId" use="optional" />

83 <!-- either target or symbol have to be used in the variable

definition -->

84 <xs:attribute name="target" type="xs:token" use="optional" />

208

85 <xs:attribute name="symbol" type="xs:string" use="optional" />

86 <xs:attributeGroup ref="idGroup" />

87 </xs:extension >

88 </xs:complexContent >

89 </xs:complexType >

90 </xs:element >

91 <xs:element name="parameter">

92 <xs:complexType >

93 <xs:complexContent >

94 <xs:extension base="SEDBase">

95 <xs:attributeGroup ref="idGroup" />

96 <xs:attribute name="value" type="xs:double" use="required" />

97 </xs:extension >

98 </xs:complexContent >

99 </xs:complexType >

100 </xs:element >

101 <xs:element name="algorithm">

102 <xs:complexType >

103 <xs:complexContent >

104 <xs:extension base="SEDBase">

105 <xs:attribute name="kisaoID" type="KisaoType" use="required" />

106 </xs:extension >

107 </xs:complexContent >

108 </xs:complexType >

109 </xs:element >

110 <xs:element name="uniformTimeCourse">

111 <xs:complexType >

112 <xs:complexContent >

113 <xs:extension base="SEDBase">

114 <xs:sequence >

115 <xs:element ref="algorithm" />

116 </xs:sequence >

117 <xs:attributeGroup ref="idGroup" />

118 <xs:attribute name="outputStartTime" type="xs:double" use="required"

/>

119 <xs:attribute name="outputEndTime" type="xs:double" use="required" /

>

120 <xs:attribute name="numberOfPoints" type="xs:integer" use="required"

/>

121 <xs:attribute name="initialTime" type="xs:double" use="required" />

122 </xs:extension >

123 </xs:complexContent >

124 </xs:complexType >

125 </xs:element >

126 <xs:element name="task">

127 <xs:complexType >

128 <xs:complexContent >

129 <xs:extension base="SEDBase">

130 <xs:attribute name="simulationReference" type="SId" use="required" /

>

131 <xs:attribute name="modelReference" type="SId" use="required" />

132 <xs:attributeGroup ref="idGroup" />

133 </xs:extension >

134 </xs:complexContent >

135 </xs:complexType >

136 </xs:element >

137 <xs:element name="plot2D">

138 <xs:complexType >

139 <xs:complexContent >

140 <xs:extension base="SEDBase">

141 <xs:sequence >

142 <xs:element ref="listOfCurves" minOccurs="0" />

209

143 </xs:sequence >

144 <xs:attributeGroup ref="idGroup" />

145 </xs:extension >

146 </xs:complexContent >

147 </xs:complexType >

148 </xs:element >

149 <xs:element name="plot3D">

150 <xs:complexType >

151 <xs:complexContent >

152 <xs:extension base="SEDBase">

153 <xs:sequence >

154 <xs:element ref="listOfSurfaces" minOccurs="0" />

155 </xs:sequence >

156 <xs:attributeGroup ref="idGroup" />

157 </xs:extension >

158 </xs:complexContent >

159 </xs:complexType >

160 </xs:element >

161 <xs:element name="report">

162 <xs:complexType >

163 <xs:complexContent >

164 <xs:extension base="SEDBase">

165 <xs:sequence >

166 <xs:element ref="listOfDataSets" minOccurs="0" />

167 </xs:sequence >

168 <xs:attributeGroup ref="idGroup" />

169 </xs:extension >

170 </xs:complexContent >

171 </xs:complexType >

172 </xs:element >

173 <xs:element name="model">

174 <xs:complexType >

175 <xs:complexContent >

176 <xs:extension base="SEDBase">

177 <xs:sequence >

178 <xs:element ref="listOfChanges" minOccurs="0" />

179 </xs:sequence >

180 <xs:attribute name="language" type="xs:anyURI" use="optional"

default="urn:sedml:language:xml" />

181 <xs:attribute name="source" type="xs:anyURI" use="required" />

182 <xs:attributeGroup ref="idGroup" />

183 </xs:extension >

184 </xs:complexContent >

185 </xs:complexType >

186 </xs:element >

187 <!-- math element , does not inherit from SEDBase -->

188 <xs:element name="math" type="math:Math" />

189 <!-- listOf elements -->

190 <xs:element name="listOfVariables">

191 <xs:complexType >

192 <xs:complexContent >

193 <xs:extension base="SEDBase">

194 <xs:sequence >

195 <xs:element ref="variable" minOccurs="0" maxOccurs="unbounded" />

196 </xs:sequence >

197 </xs:extension >

198 </xs:complexContent >

199 </xs:complexType >

200 </xs:element >

201 <xs:element name="listOfParameters">

202 <xs:complexType >

203 <xs:complexContent >

210

204 <xs:extension base="SEDBase">

205 <xs:sequence >

206 <xs:element ref="parameter" minOccurs="0" maxOccurs="unbounded" />

207 </xs:sequence >

208 </xs:extension >

209 </xs:complexContent >

210 </xs:complexType >

211 </xs:element >

212 <xs:element name="listOfTasks">

213 <xs:complexType >

214 <xs:complexContent >

215 <xs:extension base="SEDBase">

216 <xs:sequence >

217 <xs:element ref="task" minOccurs="0" maxOccurs="unbounded" />

218 </xs:sequence >

219 </xs:extension >

220 </xs:complexContent >

221 </xs:complexType >

222 </xs:element >

223 <xs:element name="listOfSimulations">

224 <xs:complexType >

225 <xs:complexContent >

226 <xs:extension base="SEDBase">

227 <xs:sequence >

228 <xs:element ref="uniformTimeCourse" minOccurs="0" maxOccurs="

unbounded" />

229 </xs:sequence >

230 </xs:extension >

231 </xs:complexContent >

232 </xs:complexType >

233 </xs:element >

234 <xs:element name="listOfOutputs">

235 <xs:complexType >

236 <xs:complexContent >

237 <xs:extension base="SEDBase">

238 <xs:sequence minOccurs="0">

239 <xs:element ref="plot2D" minOccurs="0" maxOccurs="unbounded" />

240 <xs:element ref="plot3D" minOccurs="0" maxOccurs="unbounded" />

241 <xs:element ref="report" minOccurs="0" maxOccurs="unbounded" />

242 </xs:sequence >

243 </xs:extension >

244 </xs:complexContent >

245 </xs:complexType >

246 </xs:element >

247 <xs:element name="listOfModels">

248 <xs:complexType >

249 <xs:complexContent >

250 <xs:extension base="SEDBase">

251 <xs:sequence >

252 <xs:element ref="model" minOccurs="0" maxOccurs="unbounded" />

253 </xs:sequence >

254 </xs:extension >

255 </xs:complexContent >

256 </xs:complexType >

257 </xs:element >

258 <xs:element name="listOfDataGenerators">

259 <xs:complexType >

260 <xs:complexContent >

261 <xs:extension base="SEDBase">

262 <xs:sequence >

263 <xs:element ref="dataGenerator" minOccurs="0" maxOccurs="unbounded"

/>

211

264 </xs:sequence >

265 </xs:extension >

266 </xs:complexContent >

267 </xs:complexType >

268 </xs:element >

269 <xs:element name="listOfCurves">

270 <xs:complexType >

271 <xs:complexContent >

272 <xs:extension base="SEDBase">

273 <xs:sequence >

274 <xs:element ref="curve" maxOccurs="unbounded" />

275 </xs:sequence >

276 </xs:extension >

277 </xs:complexContent >

278 </xs:complexType >

279 </xs:element >

280 <xs:element name="listOfSurfaces">

281 <xs:complexType >

282 <xs:complexContent >

283 <xs:extension base="SEDBase">

284 <xs:sequence >

285 <xs:element ref="surface" maxOccurs="unbounded" />

286 </xs:sequence >

287 </xs:extension >

288 </xs:complexContent >

289 </xs:complexType >

290 </xs:element >

291 <xs:element name="listOfDataSets">

292 <xs:complexType >

293 <xs:complexContent >

294 <xs:extension base="SEDBase">

295 <xs:sequence >

296 <xs:element ref="dataSet" maxOccurs="unbounded" />

297 </xs:sequence >

298 </xs:extension >

299 </xs:complexContent >

300 </xs:complexType >

301 </xs:element >

302 <!-- change -->

303 <xs:element name="listOfChanges">

304 <xs:complexType >

305 <xs:complexContent >

306 <xs:extension base="SEDBase">

307 <xs:sequence >

308 <xs:element ref="changeAttribute" minOccurs="0" maxOccurs="

unbounded" />

309 <xs:element ref="changeXML" minOccurs="0" maxOccurs="unbounded" />

310 <xs:element ref="addXML" minOccurs="0" maxOccurs="unbounded" />

311 <xs:element ref="removeXML" minOccurs="0" maxOccurs="unbounded" />

312 <xs:element ref="computeChange" minOccurs="0" maxOccurs="unbounded"

/>

313 </xs:sequence >

314 </xs:extension >

315 </xs:complexContent >

316 </xs:complexType >

317 </xs:element >

318 <xs:element name="newXML">

319 <xs:complexType >

320 <xs:sequence >

321 <xs:any processContents="skip" minOccurs="1" maxOccurs="unbounded" />

322 </xs:sequence >

323 </xs:complexType >

212

324 </xs:element >

325 <xs:element name="changeAttribute">

326 <xs:complexType >

327 <xs:complexContent >

328 <xs:extension base="SEDBase">

329 <xs:attribute name="target" use="required" type="xs:token" />

330 <xs:attribute name="newValue" type="xs:string" use="required" />

331 </xs:extension >

332 </xs:complexContent >

333 </xs:complexType >

334 </xs:element >

335 <xs:element name="changeXML">

336 <xs:complexType >

337 <xs:complexContent >

338 <xs:extension base="SEDBase">

339 <xs:sequence >

340 <xs:element ref="newXML" />

341 </xs:sequence >

342 <xs:attribute name="target" use="required" type="xs:token" />

343 </xs:extension >

344 </xs:complexContent >

345 </xs:complexType >

346 </xs:element >

347 <xs:element name="addXML">

348 <xs:complexType >

349 <xs:complexContent >

350 <xs:extension base="SEDBase">

351 <xs:sequence >

352 <xs:element ref="newXML" />

353 </xs:sequence >

354 <xs:attribute name="target" use="required" type="xs:token" />

355 </xs:extension >

356 </xs:complexContent >

357 </xs:complexType >

358 </xs:element >

359 <xs:element name="removeXML">

360 <xs:complexType >

361 <xs:complexContent >

362 <xs:extension base="SEDBase">

363 <xs:attribute name="target" use="required" type="xs:token" />

364 </xs:extension >

365 </xs:complexContent >

366 </xs:complexType >

367 </xs:element >

368 <xs:element name="computeChange">

369 <xs:complexType >

370 <xs:complexContent >

371 <xs:extension base="SEDBase">

372 <xs:sequence >

373 <xs:element ref="listOfVariables" minOccurs="0" />

374 <xs:element ref="listOfParameters" minOccurs="0" />

375 <xs:element ref="math" />

376 </xs:sequence >

377 <xs:attribute name="target" use="required" type="xs:token" />

378 </xs:extension >

379 </xs:complexContent >

380 </xs:complexType >

381 </xs:element >

382 <!-- data generator -->

383 <xs:element name="dataGenerator">

384 <xs:complexType >

385 <xs:complexContent >

213

386 <xs:extension base="SEDBase">

387 <xs:sequence >

388 <xs:element ref="listOfVariables" minOccurs="0" />

389 <xs:element ref="listOfParameters" minOccurs="0" />

390 <xs:element ref="math" />

391 </xs:sequence >

392 <xs:attributeGroup ref="idGroup" />

393 </xs:extension >

394 </xs:complexContent >

395 </xs:complexType >

396 </xs:element >

397 <xs:element name="curve">

398 <xs:complexType >

399 <xs:complexContent >

400 <xs:extension base="SEDBase">

401 <xs:attributeGroup ref="idGroup" />

402 <xs:attribute name="yDataReference" type="SId" use="required" />

403 <xs:attribute name="xDataReference" type="SId" use="required" />

404 <xs:attribute name="logY" use="required" type="xs:boolean" />

405 <xs:attribute name="logX" use="required" type="xs:boolean" />

406 </xs:extension >

407 </xs:complexContent >

408 </xs:complexType >

409 </xs:element >

410 <xs:element name="surface">

411 <xs:complexType >

412 <xs:complexContent >

413 <xs:extension base="SEDBase">

414 <xs:attributeGroup ref="idGroup" />

415 <xs:attribute name="yDataReference" type="SId" use="required" />

416 <xs:attribute name="xDataReference" type="SId" use="required" />

417 <xs:attribute name="zDataReference" type="SId" use="required" />

418 <xs:attribute name="logY" use="required" type="xs:boolean" />

419 <xs:attribute name="logX" use="required" type="xs:boolean" />

420 <xs:attribute name="logZ" use="required" type="xs:boolean" />

421 </xs:extension >

422 </xs:complexContent >

423 </xs:complexType >

424 </xs:element >

425 <xs:element name="dataSet">

426 <xs:complexType >

427 <xs:complexContent >

428 <xs:extension base="SEDBase">

429 <xs:attribute name="dataReference" type="SId" use="required"></

xs:attribute >

430 <xs:attribute name="label" use="required" type="xs:string" />

431 <xs:attributeGroup ref="idGroup" />

432 </xs:extension >

433 </xs:complexContent >

434 </xs:complexType >

435 </xs:element >

436 </xs:schema >

Listing A.9: SED-ML Level 1 Version 1 XML Schema

A.4.3. The SED-ML UML Schema

Figure A.1 shows the UML model for SED-ML Level 1 Version 1.

214

Figure A.1.: The SED-ML UML model.

215

A.4.4. Sample SED-ML experiment description

The following example is taken from [Waltemath et al. 2011b]. It provides a SED-ML

description for the simulation of the model based on the publication by Leoup, Gonze

and Goldbeter “Limit Cycle Models for Circadian Rhythms Based on Transcriptional

Regulation in Drosophila and Neurospora” [Leloup et al. 1999]. The model source

code is taken from the CellML Model Repository [Lloyd et al. 2008].

The model used in the simulation experiment is referred to with the URL (http://

models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/d6

613d7e1051b3eff2bb1d3d419a445bb8c754ad/leloup_gonze_goldbeter_1999_b.

cellml, ll. 15-16). In order to reproduce the simulation results given in the publi-

cation, the model needs to undergo some pre-processings. They are defined in the

listOfChanges from ll. 17-25. Each defined change updates particular parameter

values in the model.

A second model is defined in l. 28 in the example, using model1 as a source

and applying even further changes to it, in this case updating two more model

parameters.

The simulation setup defined in the listOfSimulations is a uniformTimeCourse

over 180 time units, using 1000 simulation points. The algorithm used is the CVODE

solver, as denoted by the KiSAO ID KiSAO:0000019.

A number of dataGenerators are defined in ll. 42-92. Those are the prerequisite

for defining the output of the simulation. The first dataGenerator named tim1 in

l. 45 maps on the Mt entity in the model that is used in task1 which here is the

model with ID model1. The second dataGenerator named per-tim in l. 57 maps on

the CN entity in model1. Finally the third and fourth dataGenerators map on the

Mt and per-tim entity respectively in the updated model with ID model2.

The output defined in the experiment constists of a 2D plot with two different

curves (ll. 96-102). Both curves plot the per-tim concentration against the tim

concentration. In the first curve the original parametrisation (as given in model1)

is used, in the second curve the updated one is used (as given in model2).

1 <?xml version="1.0" encoding="utf -8"?>

2 <sedML version="0.1" xmlns="http: //www.biomodels.net/sed -ml" xmlns:math="

http://www.w3.org /1998/ Math/MathML">

3 <!-- textual information about the experiment (optional) -->

4 <notes>Comparing Limit Cycles and strange attractors in Drosophila

5 </notes >

6 <!-- definition of simulation setup -->

7 <listOfSimulations >

8 <!-- uniform time course simulation with CVODE solver -->

9 <uniformTimeCourse id="simulation1" algorithm="KISAO:0000019"

initialTime="0" outputStartTime="0" outputEndTime="180"

numberOfPoints="1000" />

10 </listOfSimulations >

11

216

http://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/d6
http://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/d6
613d7e1051b3eff2bb1d3d419a445bb8c754ad/leloup_gonze_goldbeter_1999_b.
cellml

12 <!-- definition of models used during the experiment -->

13 <listOfModels >

14 <!-- reference to a cellML model -->

15 <model id="model1" name="Circadian Oscillations" type="CellML"

16 source="http: // models.cellml.org/workspace/leloup_gonze_goldbeter_1999

/@@rawfile/d6613d7e1051b3eff2bb1d3d419a445bb8c754ad/

leloup_gonze_goldbeter_1999_b.cellml" >

17 <!-- changing initial conditions in the original model -->

18 <listOfChanges >

19 <changeAttribute target="/cellml:model/cellml:component[@cmeta:id=’MP

’]/ cellml:variable[@name=’vsP ’]/ @initial_value" newValue="1"/>

20 <changeAttribute target="/cellml:model/cellml:component[@cmeta:id=’MP

’]/ cellml:variable[@name=’vmP ’]/ @initial_value" newValue="0.7"/>

21 <changeAttribute target="/cellml:model/cellml:component[@cmeta:id=’P2

’]/ cellml:variable[@name=’vdP ’]/ @initial_value" newValue="2"/>

22 <changeAttribute target="/cellml:model/cellml:component[@cmeta:id=’T2

’]/ cellml:variable[@name=’vdT ’]/ @initial_value" newValue="2"/>

23 <changeAttribute target="/cellml:model/cellml:component[@name=’

parameters ’]/ cellml:variable[@name=’k1 ’]/ @initial_value" newValue

="0.6"/>

24 <changeAttribute target="/cellml:model/cellml:component[@name=’

parameters ’]/ cellml:variable[@name=’K4P ’]/ @initial_value"

newValue="1"/>

25 <changeAttribute target="/cellml:model/cellml:component[@name=’

parameters ’]/ cellml:variable[@name=’K4T ’]/ @initial_value"

newValue="1"/>

26 </listOfChanges >

27 </model>

28 <!-- reference to the above model (model1) with additional changes of

initial values of MY and T2 -->

29 <model id="model2" name="Circadian Chaos" type="CellML" source="model1"

>

30 <listOfChanges >

31 <changeAttribute target="/cellml:model/cellml:component[@cmeta:id=’MT

’]/ cellml:variable[@name=’vmT ’]/ @initial_value" newValue="0.28"/>

32 <changeAttribute target="/cellml:model/cellml:component[@cmeta:id=’T2

’]/ cellml:variable[@name=’vdT ’]/ @initial_value" newValue="4.8"/>

33 </listOfChanges >

34 </model>

35 </listOfModels >

36 <!-- definition of tasks (combining simulation setup and model) -->

37 <listOfTasks >

38 <!-- limit cycle on model1 -->

39 <task id="task1" name="Limit Cycle" modelReference="model1"

simulationReference="simulation1"/>

40 <!-- strange attractors on the further perturbated model model2 -->

41 <task id="task2" name="Strange attractors" modelReference="model2"

simulationReference="simulation1"/>

42 </listOfTasks >

43 <!-- definition of the data generators needed to produce the output -->

44 <listOfDataGenerators >

45 <!-- definition of data generator for tim mRNA -->

46 <dataGenerator id="tim1" name="tim mRNA">

47 <listOfVariables >

48 <variable id="v1" taskReference="task1" target="/cellml:model/

cellml:component[@cmeta:id=’MT ’]" />

49 </listOfVariables >

50 <math:math >

51 <math:apply >

52 <math:plus />

53 <math:ci >v1</math:ci >

54 </math:apply >

217

55 </math:math >

56 </dataGenerator >

57 <!-- definition of data generator for the nuclear PER -TIM complex -->

58 <dataGenerator id="per -tim" name="nuclear PER -TIM complex">

59 <listOfVariables >

60 <variable id="v1" taskReference="task1" target="/cellml:model/

cellml:component[@cmeta:id=’CN ’]" />

61 </listOfVariables >

62 <math:math >

63 <math:apply >

64 <math:plus />

65 <math:ci >v1</math:ci >

66 </math:apply >

67 </math:math >

68 </dataGenerator >

69 <!-- definition of data generator for pertubated tim mRNA -->

70 <dataGenerator id="tim2" name="tim mRNA (changed parameters)">

71 <listOfVariables >

72 <variable id="v2" taskReference="task2" target="/cellml:model/

cellml:component[@cmeta:id=’MT ’]" />

73 </listOfVariables >

74 <math:math >

75 <math:apply >

76 <math:plus />

77 <math:ci >v2</math:ci >

78 </math:apply >

79 </math:math >

80 </dataGenerator >

81 <!-- definition of data generator for perturbated nuclear PER -TIM

complex -->

82 <dataGenerator id="per -tim2" name="nuclear PER -TIM complex">

83 <listOfVariables >

84 <variable id="v1" taskReference="task2" target="/cellml:model/

cellml:component[@cmeta:id=’CN ’]" />

85 </listOfVariables >

86 <math:math >

87 <math:apply >

88 <math:plus />

89 <math:ci >v1</math:ci >

90 </math:apply >

91 </math:math >

92 </dataGenerator >

93 </listOfDataGenerators >

94 <!-- output definition -->

95 <listOfOutputs >

96 <!-- definition of a 2D plot to show the tim mRNA concentration with

different initial conditions -->

97 <plot2D id="plot1" name="tim mRNA with Oscillation and Chaos">

98 <!-- definition of two output curves , both plotting per -tim (original

and perturbated) against the tim concentration (original and

perturbated) -->

99 <listOfCurves >

100 <curve logX="false" logY="false" xDataReference="per -tim"

yDataReference="tim1" />

101 <curve logX="false" logY="false" xDataReference="per -tim2"

yDataReference="tim2" />

102 </listOfCurves >

103 </plot2D >

104 </listOfOutputs >

105 </sedML>

Listing A.10: LeLoup Model Simulation Description in SED-ML

218

A.5. mDB

A.5.1. Internal Representation format (XML Schema)

The following listing shows the XML Schema of the internal representation format

used for the model import in mDB and for the exchange of information and meta-

information in the Sombi framework5.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <!-- created by Robert Haelke (University Rostock) -->

3 <!-- Model xml schema for parser internal representation -->

4 <!-- Date: 2009 -07 -08 -->

5 <!-- extended by KSWS project "Sombi" (University Rostock) -->

6 <!-- Date: 2010 -07 -21 -->

7 <!-- changed by Dagmar Waltemath (University Rostock) -->

8 <!-- Date: 2010 -08 -27 -->

9

10 <xs:schema xmlns:xs="http: //www.w3.org /2001/ XMLSchema">

11 <!-- model definition -->

12 <xs:element name="model">

13 <xs:complexType >

14 <xs:sequence >

15 <xs:element name="nameID" type="xs:string" maxOccurs="1" minOccurs="1

" />

16 <xs:element name="name" type="xs:string" maxOccurs="1" minOccurs="0"/

>

17 <xs:element name="dbModelID" type="xs:string" maxOccurs="1" minOccurs

="0"/>

18 <xs:element name="dateCreated" type="xs:date" maxOccurs="1" minOccurs

="0"/>

19 <xs:element name="dateModified" type="xs:date" maxOccurs="1"

minOccurs="0"/>

20 <xs:element name="stable" type="xs:boolean" maxOccurs="1" minOccurs="

0"/>

21 <xs:element name="lastVersion" type="xs:boolean" maxOccurs="1"

minOccurs="0"/>

22 <xs:element name="modelDescription" type="xs:string" maxOccurs="1"

minOccurs="0"/>

23 <xs:element ref="modelFormalism" maxOccurs="1" minOccurs="1" />

24 <xs:element ref="modelFile" maxOccurs="1" minOccurs="1" />

25 <xs:element ref="listOfQualifiers" maxOccurs="1" minOccurs="0" />

26 <xs:element ref="listOfKeywords" maxOccurs="1" minOccurs="0" />

27 <xs:element ref="listOfAuthors" maxOccurs="1" minOccurs="0"/>

28 <xs:element ref="listOfReferenceDescriptions" maxOccurs="1" minOccurs

="0"/>

29 <xs:element ref="listOfDistributionStatements" maxOccurs="1"

minOccurs="0"/>

30 <xs:element ref="listOfComponents" maxOccurs="1" minOccurs="0"/>

31 <xs:element ref="listOfCompartments" maxOccurs="1" minOccurs="0"/>

32 <xs:element ref="listOfSpecies" maxOccurs="1" minOccurs="0"/>

33 <xs:element ref="listOfReactions" maxOccurs="1" minOccurs="0"/>

34 </xs:sequence >

35 </xs:complexType >

36 </xs:element >

37

38 <!-- modelFormalism definition -->

39 <xs:element name="modelFormalism">

40 <xs:complexType >

5Last accessed 27 August 2010.

219

41 <xs:sequence >

42 <xs:element name="type" type="formalismURN" maxOccurs="1" minOccurs="

1" />

43 </xs:sequence >

44 </xs:complexType >

45 </xs:element >

46

47 <!-- formalismURN definition -->

48 <xs:simpleType name="formalismURN">

49 <!-- reused from SED -ML language definitions -->

50 <xs:restriction base="xs:anyURI">

51 <xs:enumeration value="urn:sedml:language:cellML"/>

52 <xs:enumeration value="urn:sedml:language:cellml .1_0"/>

53 <xs:enumeration value="urn:sedml:language:cellml .1_1"/>

54 <xs:enumeration value="urn:sedml:language:neuroml"/>

55 <xs:enumeration value="urn:sedml:language:neuroml.version -1_8_1.level

-1"/>

56 <xs:enumeration value="urn:sedml:language:neuroml.version -1_8_1.level

-2"/>

57 <xs:enumeration value="urn:sedml:language:sbml"/>

58 <xs:enumeration value="urn:sedml:language:sbml.level -1. version -1"/>

59 <xs:enumeration value="urn:sedml:language:sbml.level -1. version -2"/>

60 <xs:enumeration value="urn:sedml:language:sbml.level -2. version -1"/>

61 <xs:enumeration value="urn:sedml:language:sbml.level -2. version -2"/>

62 <xs:enumeration value="urn:sedml:language:sbml.level -2. version -3.

release -1"/>

63 <xs:enumeration value="urn:sedml:language:sbml.level -2. version -3.

release -2"/>

64 <xs:enumeration value="urn:sedml:language:sbml.level -2. version -4"/>

65 <xs:enumeration value="urn:sedml:language:sbml.level -3. version -1"/>

66 <xs:enumeration value="urn:sedml:language:vcml"/>

67 <xs:enumeration value="urn:sedml:other" />

68 </xs:restriction >

69 </xs:simpleType >

70

71 <!-- modelFile definition -->

72 <xs:element name="modelFile">

73 <xs:complexType >

74 <xs:sequence >

75 <xs:element name="fileName" type="xs:string"/>

76 <xs:element name="fileVersion" type="xs:string" maxOccurs="1"

minOccurs="0"/>

77 <xs:element name="modelFile" type="xs:string" maxOccurs="1" minOccurs

="0"/> <!-- the model file -->

78 <xs:element name="annotationFile" type="xs:string" maxOccurs="1"

minOccurs="0"/> <!-- the annotation file -->

79 <xs:element ref="experiment" maxOccurs="unbounded" minOccurs="0" />

80 </xs:sequence >

81 </xs:complexType >

82 </xs:element >

83

84 <!-- experiment definition -->

85 <xs:element name="experiment">

86 <xs:complexType >

87 <xs:sequence >

88 <xs:element name="experimentURL" type="xs:anyURI" maxOccurs="1"

minOccurs="0"/>

89 <xs:element name="experimentType" type="xs:string" maxOccurs="1"

minOccurs="0"/>

90 </xs:sequence >

91 </xs:complexType >

92 </xs:element >

220

93

94 <!-- listOfQualifiers defintion -->

95 <xs:element name="listOfQualifiers">

96 <xs:complexType >

97 <xs:sequence >

98 <xs:element name="modelQualifier" type="modelQualifierType" maxOccurs

="unbounded" minOccurs="1" >

99 <!-- no two identical URIs within "modelQualifier" -->

100 <xs:unique name="modelQualifierConstraint">

101 <xs:selector xpath="URI" />

102 <xs:field xpath="." />

103 </xs:unique >

104 </xs:element >

105 <xs:element name="bioQualifier" type="bioQualifierType" maxOccurs="

unbounded" minOccurs="1" >

106 <!-- no two identical URIs within "bioQualifier" -->

107 <xs:unique name="bioQualifierConstraint">

108 <xs:selector xpath="URI" />

109 <xs:field xpath="." />

110 </xs:unique >

111 </xs:element >

112 </xs:sequence >

113 </xs:complexType >

114 <!-- no two "modelQualifier" with same attribute -->

115 <xs:unique name="modelQualifierConstraint2">

116 <xs:selector xpath="modelQualifier" />

117 <xs:field xpath="@modelQualifierRole" />

118 </xs:unique >

119 <!-- no two "bioQualifier" with same attribute -->

120 <xs:unique name="bioQualifierConstraint2">

121 <xs:selector xpath="bioQualifier" />

122 <xs:field xpath="@bioQualifierRole" />

123 </xs:unique >

124 </xs:element >

125

126 <!-- modelQualifier definition -->

127 <xs:complexType name="modelQualifierType">

128 <xs:sequence >

129 <xs:element name="URI" type="xs:anyURI" minOccurs="0" maxOccurs="

unbounded" />

130 </xs:sequence >

131 <xs:attribute name="modelQualifierRole" use="required">

132 <xs:simpleType >

133 <xs:restriction base="xs:string">

134 <xs:enumeration value="is"/> <!-- = "modelURI" -->

135 <xs:enumeration value="isDescribedBy"/> <!-- = "pubmed" -->

136 <xs:enumeration value="isDerivedFrom"/>

137 </xs:restriction >

138 </xs:simpleType >

139 </xs:attribute >

140 </xs:complexType >

141

142

143 <!-- bioQualifier definition -->

144 <xs:complexType name="bioQualifierType">

145 <xs:sequence >

146 <xs:element name="URI" type="xs:anyURI" minOccurs="0" maxOccurs="

unbounded" />

147 </xs:sequence >

148 <xs:attribute name="bioQualifierRole" use="required">

149 <xs:simpleType >

150 <xs:restriction base="xs:string">

221

151 <xs:enumeration value="encodes"/>

152 <xs:enumeration value="hasPart"/>

153 <xs:enumeration value="hasProperty"/>

154 <xs:enumeration value="hasVersion"/>

155 <xs:enumeration value="is"/>

156 <xs:enumeration value="isDescribedBy"/>

157 <xs:enumeration value="isEncodedBy"/>

158 <xs:enumeration value="isHomologTo"/>

159 <xs:enumeration value="isPartOf"/>

160 <xs:enumeration value="isPropertyOf"/>

161 <xs:enumeration value="isVersionOf"/>

162 <xs:enumeration value="occursIn"/>

163 </xs:restriction >

164 </xs:simpleType >

165 </xs:attribute >

166 </xs:complexType >

167

168 <!-- listOfKeywords definition -->

169 <xs:element name="listOfKeywords">

170 <xs:complexType >

171 <xs:sequence >

172 <xs:element name="keyword" type="xs:string" maxOccurs="unbounded"

minOccurs="0"/>

173 </xs:sequence >

174 </xs:complexType >

175 </xs:element >

176

177 <!-- listOfAuthors definition -->

178 <xs:element name="listOfAuthors">

179 <xs:complexType >

180 <xs:sequence >

181 <xs:element name="author" type="authorType" maxOccurs="unbounded"

minOccurs="1"/>

182 </xs:sequence >

183 </xs:complexType >

184 </xs:element >

185

186 <!-- author definition -->

187 <xs:complexType name="authorType">

188 <xs:sequence >

189 <xs:element name="firstName" type="xs:string" maxOccurs="1" minOccurs=

"1"/>

190 <xs:element name="lastName" type="xs:string" maxOccurs="1" minOccurs="

1"/>

191 <xs:element name="organisation" type="xs:string" maxOccurs="1"

minOccurs="0"/>

192 <xs:element name="email" type="xs:anyURI" maxOccurs="1" minOccurs="0"/

>

193 </xs:sequence >

194 <xs:attribute name="authorRole">

195 <xs:simpleType >

196 <xs:restriction base="xs:string">

197 <xs:enumeration value="submitter"/>

198 <xs:enumeration value="creator"/>

199 <xs:enumeration value="adder"/> <!-- wrote annotation -->

200 <xs:enumeration value="publisher"/> <!-- wrote referenceDescription

-->

201 <xs:enumeration value="other"/>

202 </xs:restriction >

203 </xs:simpleType >

204 </xs:attribute >

205 </xs:complexType >

222

206

207 <!-- listOfReferenceDescriptions definition -->

208 <xs:element name="listOfReferenceDescriptions">

209 <xs:complexType >

210 <xs:sequence >

211 <xs:element name="referenceDescription" type="refDescType"/>

212 </xs:sequence >

213 </xs:complexType >

214 </xs:element >

215

216 <!-- referenceDescription definition -->

217 <xs:complexType name="refDescType">

218 <xs:sequence >

219 <xs:element name="referenceURI" type="xs:anyURI" maxOccurs="1"

minOccurs="0"/>

220 <xs:element name="referenceTitle" type="xs:anyURI" maxOccurs="1"

minOccurs="0"/>

221 <xs:element ref="listOfAuthors" maxOccurs="1" minOccurs="0"/> <!-- or

the Author himself? -->

222 <xs:element name="referenceAbstract" type="xs:string" maxOccurs="1"

minOccurs="0"/> <!-- just abstract , full text not available -->

223 </xs:sequence >

224 </xs:complexType >

225

226 <!-- listOfDistributionStatements definition -->

227 <xs:element name="listOfDistributionStatements">

228 <xs:complexType >

229 <xs:sequence >

230 <xs:element name="distributionStatement" type="distStateType"/>

231 </xs:sequence >

232 </xs:complexType >

233 </xs:element >

234

235 <!-- distributionStatement definition -->

236 <xs:complexType name="distStateType">

237 <xs:sequence >

238 <xs:element name="referenceURL" type="xs:anyURI" maxOccurs="1"

minOccurs="0"/>

239 <xs:element name="statementText" type="xs:string" maxOccurs="1"

minOccurs="0"/>

240 </xs:sequence >

241 <xs:attribute name="type" use="required">

242 <xs:simpleType >

243 <xs:restriction base="xs:string">

244 <xs:enumeration value="gnuGPL"/>

245 <xs:enumeration value="gnuLGPL"/>

246 <xs:enumeration value="creativeCommons"/>

247 <xs:enumeration value="BSD"/>

248 <xs:enumeration value="otherLicense"/> <!-- if not one of the first

four -->

249 </xs:restriction >

250 </xs:simpleType >

251 </xs:attribute >

252 </xs:complexType >

253

254 <!-- basicComponentType definition -->

255 <xs:complexType name="basicComponentType">

256 <xs:sequence >

257 <xs:element name="id" type="xs:string"/>

258 <xs:element name="metaid" type="xs:string"/>

259 <xs:element name="name" type="xs:string" minOccurs="0"/>

223

260 <xs:element name="notes" type="xs:string" minOccurs="0" maxOccurs="1"

/>

261 <xs:element name="bioQualifier" type="bioQualifierType" maxOccurs="

unbounded" minOccurs="0">

262 <xs:unique name="bioQualifierConstraint3">

263 <xs:selector xpath="URI" />

264 <xs:field xpath="." />

265 </xs:unique >

266 </xs:element >

267 </xs:sequence >

268 </xs:complexType >

269

270 <!-- listOfComponents definition -->

271 <xs:element name="listOfComponents">

272 <xs:complexType >

273 <xs:sequence >

274 <xs:element name="component" type="componentType">

275 <xs:unique name="bioQualifierConstraint4">

276 <xs:selector xpath="bioQualifier" />

277 <xs:field xpath="@bioQualifierRole" />

278 </xs:unique >

279 </xs:element >

280 </xs:sequence >

281 </xs:complexType >

282 </xs:element >

283

284 <!-- component definition -->

285 <xs:complexType name="componentType">

286 <xs:complexContent >

287 <xs:extension base="basicComponentType">

288 <xs:sequence >

289 <xs:element name="role" minOccurs="1" maxOccurs="1">

290 <xs:simpleType >

291 <xs:restriction base="xs:string">

292 <xs:enumeration value="parameter"/>

293 <xs:enumeration value="event"/>

294 <xs:enumeration value="other"/>

295 </xs:restriction >

296 </xs:simpleType >

297 </xs:element >

298 </xs:sequence >

299 </xs:extension >

300 </xs:complexContent >

301 </xs:complexType >

302

303 <!-- listOfCompartments definition -->

304 <xs:element name="listOfCompartments">

305 <xs:complexType >

306 <xs:sequence >

307 <xs:element name="compartment" type="basicComponentType">

308 <xs:unique name="bioQualifierConstraint5">

309 <xs:selector xpath="bioQualifier" />

310 <xs:field xpath="@bioQualifierRole" />

311 </xs:unique >

312 </xs:element >

313 </xs:sequence >

314 </xs:complexType >

315 </xs:element >

316

317 <!-- listOfSpecies definition -->

318 <xs:element name="listOfSpecies">

319 <xs:complexType >

224

320 <xs:sequence >

321 <xs:element name="species" type="speciesType" maxOccurs="unbounded"

minOccurs="0">

322 <xs:unique name="bioQualifierConstraint6">

323 <xs:selector xpath="bioQualifier" />

324 <xs:field xpath="@bioQualifierRole" />

325 </xs:unique >

326 </xs:element >

327 </xs:sequence >

328 </xs:complexType >

329 </xs:element >

330

331 <!-- species definition -->

332 <xs:complexType name="speciesType">

333 <xs:complexContent >

334 <xs:extension base="basicComponentType">

335 <xs:sequence >

336 <xs:element name="compartment" type="xs:string" minOccurs="0"/>

337 </xs:sequence >

338 </xs:extension >

339 </xs:complexContent >

340 </xs:complexType >

341

342 <!-- listOfReactions definition -->

343 <xs:element name="listOfReactions">

344 <xs:complexType >

345 <xs:sequence >

346 <xs:element name="reaction" type="reactionType" maxOccurs="unbounded

" minOccurs="0">

347 <xs:unique name="bioQualifierConstraint7">

348 <xs:selector xpath="bioQualifier" />

349 <xs:field xpath="@bioQualifierRole" />

350 </xs:unique >

351 </xs:element >

352 </xs:sequence >

353 </xs:complexType >

354 </xs:element >

355

356 <!-- reaction definition -->

357 <xs:complexType name="reactionType">

358 <xs:complexContent >

359 <xs:extension base="basicComponentType">

360 <xs:sequence >

361 <xs:element name="listOfReactants" type="speciesReferenceType"

maxOccurs="1" minOccurs="0"/>

362 <xs:element name="listOfProducts" type="speciesReferenceType"

maxOccurs="1" minOccurs="0"/>

363 <xs:element name="listOfModifiers" type="speciesReferenceType"

maxOccurs="1" minOccurs="0"/>

364 </xs:sequence >

365 </xs:extension >

366 </xs:complexContent >

367 </xs:complexType >

368

369 <!-- speciesReferenceType definition -->

370 <xs:complexType name="speciesReferenceType">

371 <xs:sequence >

372 <xs:element name="speciesReference" type="xs:string" maxOccurs="

unbounded" minOccurs="0"/>

373 </xs:sequence >

374 </xs:complexType >

225

RF concept
IRF mDB

SBML πML

modelName

sbml:level/version namespace - formalism:version
- formalism:name
modelFormalism:type formalism:referenceURN

model:name model:modelName
file name file name modelFile:fileName -

implicit/user user model:stable model:stable
- - - model:lastVersion

- - modelFile:fileVersion file:versionFile
model.xml model.xml modelFile:modelFile file:modelFile
- annotation.xml modelFile:annotationFile file:annotationFile

Table A.5.: Mapping of the different concepts in the administrative data dimension on the internal
representation format (IRF) elements and on the mDB attributes, using the example
of SBML and πML. The notation xx:yy[@zz] points to element:attribute[@value] ; the
notation xx:yy points to the element:subelement in the IRF column. The notation
relation:attribute points to the element:attribute in the mDB column.

375 </xs:schema >

Listing A.11: Internal Representation Format (IRF) XML Schema

A.5.2. Representation format to IRF to mDB mapping

The following provides the mapping of the SBML and πML language elements on

the IRF and mDB , respectively. The types of meta-information and data have

been separated into the different dimensions introduced in [Henkel et al. 2010] and

described in Section 7.3.1. Each of the dimensions, and the related mappings, are

described in the following paragraphs.

Administrative data dimension The concepts relating to the administrative data

dimension are shown in Table A.5.

The namespace used in the instances of the representation formats allow for the

mapping on standard language URNs. For example, the SBML level and version

attributes such as <sbml level=”2” version=”1” [..] /> can be resolved into the lan-

guage URN urn:sedml:language:sbml.level-2.version-1 that is kept in the

IRF. For this URN the name “SBML” and the version “Level 2 Version 1” are

stored in mDB .

The stable attribute in the IRF (and mDB) indicates whether the stored version

of the model is a stable one, or being worked on (unstable). For all models imported

from the curated branch of BioModels Database and CellML Model Repository the

attribute is set to stable=true. Models imported from the non-curated branch of

226

urn:sedml:language:sbml.level-2.version-1

RF concept
IRF mDB

SBML πML

vcard vcard author:organisation person:organisation
author:lastName person:lastName
author:firstName person:firstName
author:email person:email

user user author:authorRole[@submitter] submittedBy
dc:creator dc:creator author:authorRole[@creator] createdBy
from ref pub from ref pub author:authorRole[@publisher] publishedBy
user user author:authorRole[@adder] annotatedBy

user user author:authorRole[@main] createdBy:main
from ref pub from ref pub author:authorRole[@main] publishedBy:main
user user author:authorRole[@main] annotatedBy:main

Table A.6.: Mapping of the different concepts in the person dimension on the internal representation
format (IRF) elements and on the mDB attributes, using the example of SBML and
πML. The notation xx:yy[@zz] points to element:attribute[@value] ; the notation xx:yy
points to the element:subelement in the IRF column. The notation relation:attribute
points to the element:attribute in the mDB column.

BioModels Database have the attribute set to stable=false. For πML models, the

information must be provided by the user.

The lastVersion attribute contains the idmodel of the last version of that model,

i. e. if a newer version of a model is stored, the lastVersion attribute has to be

updated on all previous versions of that model. The initial value is NULL, denoting

the initial import of a model into the system. As the IRF only imports a model at

a time, without any knowledge of the model’s relatives, the lastVersion value is

not stored in the IRF; the relation of a model to other existing models in mDB has

to be indicated by the user.

The versionFile stores the version information for a particular model. It is used

by the external versioning system (Section 6.4) to maintain the version tree. The

modelFile stores the original model file. The annotationFile stores the original

annotation file, if that is kept seperated from the model file, as for example offered

by the πML language.

Person dimension The concepts relating to the person dimension are shown in

Table A.6.

mDB has a general person relation that stores information on persons, including

the organization, last name, first name and email. This construct corresponds to

the author element in the IRF. The information can be extracted from the vcard

elements in both SBML and πML.

To assign particular roles to the author, the authorRole in the IRF defines

submitter (i. e. the person who submitted the model to mDB , not encoded in the

227

RF concept
IRF mDB

SBML πML

dbms dbms model:dateSubmitted modelAnnotation:submissionDate
dc:created dc:created model:dateCreated modelAnnotation:creationDate
dc:modified dc:modified model:dateModified modelAnnotation:modificationDate

Table A.7.: Mapping of the different concepts in the dates dimension on the internal representation
format (IRF) elements and on the mDB attributes, using the example of SBML and
πML. The notation xx:yy[@zz] points to element:attribute[@value] ; the notation xx:yy
points to the element:subelement in the IRF column. The notation relation:attribute
points to the element:attribute in the mDB column.

RF), creator (i. e. the person who created the model, encoded in the dc:creator

element of the RF), publisher (i. e. the persons who published the reference pub-

lication), and the adder (i. e. the person who encoded the annotations, often over-

lapping with the creator). For SBML, the publisher are determined by resolving

the reference publication URN, and determining the authors of that publication, if

accessible.

To assign a main creator to a model, as well as a main publisher, the main attribute

is introduced. The information on the main creator has to be provided by the user.

The main publisher usually is the first author of the reference publication. The

authors are extracted from the reference publication by resolving the corresponding

URN to the publication library entry given in the model annotation (Table A.8).

Dates dimension The concepts relating to the dates dimension are shown in Ta-

ble A.7.

The submissionDate in mDB (dateSubmitted in IRF) refers to the time when

the model was stored in mDB . The creationDate (dateCreated in IRF) refers to

the time when the model representation file was initially created. That information

is extracted from the dc:created element in the SBML model, and πML model

respectively. The modificationDate (dateModified in IRF) refers to the time

when the model representation file was last modified. That information is extracted

from the dc:modified element in the SBML model, and πML model respectively.

The full history of the model is, however, only traceable from the versioning system,

as introduced in Section 6.4.

Publication dimension The concepts relating to the publication dimension are

shown in Table A.8. If existing, the reference publication pointing to the orig-

inal description of the model is given in the representation format, such as in

the model annotation of an SBML file. That URN is stored in the IRF in the

referenceURI element of the referenceDescription. It is then imported in mDB

228

RF concept
IRF mDB

SBML πML

bqmodel: bqmodel: referenceDescription: publication:
isDescribedBy isDescribedBy referenceURI referenceURN

referenceDescription:
from ref pub from ref pub referenceTitle publication:title

referenceDescription:
from ref pub from ref pub referenceAbstract -

publication:
user user descriptionText

distributionStatement[@type] distribution:type
distributionStatement: distribution:

user user referenceURL referenceURL
distributionStatement: distribution:

user user statementText statementText

Table A.8.: Mapping of the different concepts in the publication dimension on the internal rep-
resentation format (IRF) elements and on the mDB attributes, using the example of
SBML and πML. The notation xx:yy[@zz] points to element:attribute[@value] ; the no-
tation xx:yy points to the element:subelement in the IRF column. The notation rela-
tion:attribute points to the element:attribute in the mDB column.

into the publication relation, and there stored in the referenceURN attribute.

Each URN is resolved to the corresponding web resource, and the information on

the reference publication is stored in the referenceTitle element of the IRF and the

title attribute of the publication relation respectively. Furthermore, the paper’s

abstract is stored in the referenceAbstract element of the IRF. That information

is used during the index building process for the ranked retrieval (Chapter 7), but

not provided publicly.

If no published reference publication exists for a model, the user may add a free-

text description of the model, which is stored in the mDB in the descriptionText

attribute of the publication relation.

The publication has a number of authors assigned through the publishedBy re-

lation shown in Table A.6.

The distribution regulations are stored in the distribution relation of mDB for

each model. The user can assign a predefined distribution type to the model (e. g.

“gnuGPL” in the type attribute). In addition, the reference URL to the distribution

statement definition (referenceURL) and the textual description of it are stored, to

facilitate the definition of further statements (statementText), and to keep track

on possible changes. The predefined types given by the IRF are listed in the XML

Schema in Appendix A.5.1, ll. 241-251. All information on the distribution has to

be provided by the user. However, if a model repository defines its distribution

regulations, those are automatically taken over, as for example when importing the

SBML models from BioModels Database. The statement text for public licenses

229

RF concept
IRF mDB

SBML πML

bioQualifier
user user [@bioQualifierRole] qualifier:name

modelQualifier
user user [@modelQualifierRole] qualifier:name
user user - qualifier:namespace

bqmodel:any bqmodel:any model: modelOntologyEntry:
modelQualifier:URI modelOntologyURI

bqbiol:any bqbiolany model: modelOntologyEntry:
bioQualifier:URI modelOntologyURI

bqbiol:any bqbiol:any bioQualifier:URI componentOntologyEntry:
bioOntologyURI

component:name component:name
component:metaid component:metaID
component:id component:

modelComponentID

species, reaction,
compartment definition component[@role]
role[@parameter] component[@role]
role[@event] component[@role]
role[@other] component[@role]

species:compartment isLocatedIn

reaction:listOfReactants: participatesIn
speciesReference [@role=reactant]
reaction:listOfProducts: participatesIn
speciesReference [@role=product]
reaction:listOfModifiers: participatesIn
speciesReference [@role=modifier]

Table A.9.: Mapping of the different concepts in the constituents dimension on the internal rep-
resentation format (IRF) elements and on the mDB attributes, using the example of
SBML and πML. The notation xx:yy[@zz] points to element:attribute[@value] ; the no-
tation xx:yy points to the element:subelement in the IRF column. The notation rela-
tion:attribute points to the element:attribute in the mDB column.

is copied from the corresponding license definition, but own licenses may also be

defined.

Constituents dimension The concepts relating to the constituents dimension are

shown in Table A.9.

Each constituent annotation in the model representation format is stored in the

corresponding URI sub-element of the bioqualifier element of the IRF (e. g. the

component OntologyEntry relation in mDB). Each model annotation in the rep-

resentation format is stored in the corresponding URI sub-element of the IRF’s

modelQualifier element (referring to the modelOntologyEntry relation in mDB).

In both cases, the full URN is stored.

A list of pre-defined qualifiers is given in both the IRF and the mDB format. The

230

mDB , in addition, defines their namespaces. The list of qualifiers currently corre-

sponds with the list of bio-qualifiers and model-qualifiers provided by the biomod-

els.net team.

Three different types of ontology references are distinguished: Firstly, the anno-

tation of the model with a model-qualifier is extracted from the bqmodel:any an-

notation in the representation format, and then mapped on the URI element of the

modelQualifier element in the IRF. This corresponds with the modelOntologyURI

in mDB . Secondly, the annotation of a model with a bio-qualifier is extracted from

the bqbiol:any annotation of the model (pimodel element) in the representation

format, and then mapped on the URI element of the bioQualifier element in the

IRF. This also corresponds with the modelOntologyURI in mDB . Thirdly, the an-

notation of a constituent with a bio-qualifier is extracted from the bqbiol:any an-

notation of any constituent in the SBML or πML model file. Those are mapped on

the URI element of the bioQualifier element of any component, species, reaction,

or compartment element in the IRF. This corresponds with the bioOntologyURI

attribute in mDB .

Each constituent results in a single component element in the IRF (either a

species, a reaction, a compartment, or a general component element), and results

in a component entry in mDB . The stored information includes the components

name, its metaid, its id (modelComponentID in mDB) in the corresponding model

file. mDB does not have single relations for the different component types, but

stores the role of each component. A list of pre-defined components exists.

If the IRF component is a species, then mDB additionally stores which reaction

the species participates in. The IRF stores for each reaction a list of reactants, a

list of products and a list of modifiers. All elements contained in those lists link

to a species. The mDB then stores the reaction a species takes part in (using

the componentid), and which role the species fulfills (role attribute). mDB also

stores the location of each species in the isLocatedIn relation (extracted from the

compartment element in the IRF).

User generated content dimension The concepts relating to the user generated

content dimension are shown in Table A.10. A number of user-provided keywords,

or tags, can be provided with each model. The keyword element in the IRF, and

the name attribute of the keyword relation are used to store those.

The content of the notes elements which are allowed on any SBML and πML ele-

ment in the representation format, are stored in the notes element of the component

element in the IRF, and then stored in the notes attribute of the component rela-

tion (for component notes); or they are stored in the notes element of the model

231

RF concept
IRF mDB

SBML πML

user user keyword keyword:name
model:notes pimodel:notes model:modelDescription modelAnnotation:notes
notes notes component:notes component:notes

Table A.10.: Mapping of the different concepts in the user generated content dimension on the inter-
nal representation format (IRF) elements and on the mDB attributes, using the exam-
ple of SBML and πML. The notation xx:yy[@zz] points to element:attribute[@value] ;
the notation xx:yy points to the element:subelement in the IRF column. The notation
relation:attribute points to the element:attribute in the mDB column.

RF concept
IRF mDB

SBML πML

user user experiment:experimentURL experiment:experimentURL
user user experiment:experimentType experiment:experimentType

Table A.11.: Mapping of the different concepts in the model-related dimension on the internal rep-
resentation format (IRF) elements and on the mDB attributes, using the example
of SBML and πML. The notation xx:yy[@zz] points to element:attribute[@value] ; the
notation xx:yy points to the element:subelement in the IRF column. The notation
relation:attribute points to the element:attribute in the mDB column.

element in the IRF, and then stored in the notes attribute of the modelAnnotation

relation (for model notes), respectively.

Model-related dimension The concepts relating to the model-related dimension

are shown in Table A.11.

The representation formats SBML or πML do not link to experimental setups.

However, the mDB allows to link experiment descriptions to a model, using the

experiment relation. It stores an experimentURL, that is a link to an external exper-

iment description, and the experimentType, a value from a predefined set of exper-

iment types. The IRF allows to export that information, using the experimentURL

and experimentType sub-elements of the experiment element. An extension of the

mDB using a more fine-grained description of simulation experiments is suggested

in Section 5.4.3. Furthermore, a similar set-up as sDB could be used to store in-

formation about biological experiments in a standardized way. The information on

biological experiments is currently stored in the eDB (Section 6.6).

A.5.3. Sample search on BioModels Database demo

The following example has been published in [Henkel et al. 2010]. It illustrates the

functioning of the reference implementation. We want to search for recent models by

non-bogus authors describing the effect of caffeine in human’s digestive tract when

drinking a cup of coffee. The characteristics fulfilled by the resulting models are:

232

1. the model should have the compartment gut encoded

2. at least one species must be exactly caffeine (qualified using is)

3. the model should have been submitted later than 2008

4. the author of the reference publication must not be John Doe

The specification of different levels of requirements (should, must, must not) helps

to be more specific in restricting the search.

To answer the query, the system first resolves the constituent caffeine into a

set of URIs (semantic index). Since the search for caffeine is restricted to the

qualifier is (must be exactly caffeine), only the retrieved URIs that are linked

to a model using the is qualifier are kept. A weighted list of URIs is then build

and used for the feature speciesURI to query the model index. In the example,

the three best matching URIs are (a) urn:miriam:obo.chebi:CHEBI%3A27732, (b)

urn:miriam:kegg.compound:C07481 and (c) urn:miriam:kegg.compound:C00385.

The URIs (a) and (b) both define caffeine, one in ChEBI Degtyarenko et al. [2008]

and one in KEGG Kanehisa and Goto [2000]. The URI (c) describes xanthine, a

chemical structurally related to caffeine.

Together with the queries for gut in the component feature and not John Doe in

the author feature, the model index query is internally assembled to:

+speciesURI:(urn:miriam:obo.chebi:chebi%3A27732 ^0.82

urn:miriam:kegg.compound:C07481 ^0.67

urn:miriam:kegg.compound:C00385 ^0.55)

compartment:(gut)

-author:(John Doe)

date:([01/01/2009 - *])

The ˆ denotes the weight assigned to the sub-query results retrieved from the se-

mantic index.

We use the Extended Boolean Model to query the index for each feature inde-

pendently (compartment, speciesURI, date and author). The preliminary results

are four sets of matching internal model identifiers. These sets are then conjuncted

using Boolean algebra and taking into account whether a feature should, must or

must not occur.

In a second step, the results are ranked using the Vector Space Model, according

to the different types of weights. The predefined feature weights (Table 7.10) put a

particular importance on the speciesURI feature. Thus, all models that matched the

speciesURI feature are ranked high, incorporating the weight created by the sub-

query to the semantic index. If a retrieved model, besides the mandatory features

233

Figure A.2.: The search result returned for the sample query, Figure taken from [Henkel et al. 2010]

(must), matches additional optional features (should), the scores are summed up,

resulting in a higher rank. In the example, the feature “date” is not very important

– thus, it results only in a small increase of a model’s score if the feature matched.

The ranked results for the sample query performed on BioModels Database is shown

in Figure A.2.

A.5.4. mDB to eDB to Mosan Object Model mapping

Table A.12 shows the mapping of mDB concepts and eDB concepts on the Mosan

Object Model. Due to the similar structure of the data models inside mDB and

Mosan (species-compartment-reaction structure), the mapping of mDB features onto

the Mosan object structure is straight forward. All species information is provided

for Mosan, together with the associated interactions. Additionally, compartmental

information for each species is available. As mDB stores the link between a modelID

in mDB and existing experimental data inside eDB , the list of existing experimental

data sets can be loaded directly into Mosan and be mapped on the model structure.

Another strength of Mosan is the visualization of incomplete data, which is why

incomplete data sets from eDB can be handled easily (resulting from incomplete

data import or ongoing experiments), as well as incomplete model information from

mDB (resulting from incomplete model annotations and unstable model versions).

The conceptual idea of integrating SED-ML, mDB , eDB and Mosan has not yet

been implemented. It is so far only possible to load models from mDB in Mosan

for visualization. The remaining tasks are still under investigation (e. g. retrieving

matching experiments for a loaded model, and encoding simulation results from a

simulation run in SBRML).

234

c
o
n

c
e
p

t
m
D
B

E
n
ti

ty
e
D
B

E
n
ti

ty
M

o
sa

n
O

b
je

c
t

M
o
d

e
l

m
o
d

el
st

ru
ct

u
re

m
o
d

el
m

o
d

el
ID

m
o
d

el
n

am
e

m
o
d

el
sp

ec
ie

s
sp

ec
ie

sI
D

sp
ec

ie
s

n
am

e
sp

ec
ie

s
sp

ec
ie

s
ro

le
im

p
li

ci
t

co
m

p
ar

tm
en

t
co

m
p

ar
tm

en
tI

D
co

m
p

ar
tm

en
tN

am
e

re
ac

ti
on

re
ac

ti
on

ID
re

ac
ti

on
ID

p
ar

ti
ci

p
an

ts
im

p
li

ci
t

vi
a

ID
s

p
ar

ti
ci

p
an

t
ro

le
im

p
li

ci
t

vi
a

ID
s

an
n

ot
at

io
n

m
o
d

el
an

n
ot

at
io

n
m

o
d

el
O

n
to

lo
gy

E
n
tr

y
ex

p
er

im
en

tO
n
to

lo
gy

E
n
tr

y
*

ex
p

er
im

en
tT

y
p

eA
n

n
ot

at
io

n
*

en
ti

ty
an

n
ot

at
io

n
co

n
st

it
u

en
tO

n
to

lo
gy

E
n
tr

y
an

ti
b

o
d

y
O

n
to

lo
gy

E
n
tr

y
*

en
ti

ty
O

n
to

lo
gy

E
n
tr

y
ex

p
er

im
en

t
ex

p
er

im
en

tI
D

ex
p

er
im

en
tF

il
e

n
am

e
ex

p
er

im
en

t
n

am
e

d
at

e
d

at
e

u
se

r
co

n
d

u
ct

er
d

at
a

p
ar

am
et

ri
sa

ti
on

d
at

a
va

lu
es

p
ar

am
et

ri
sa

ti
on

(i
m

p
li

ci
t)

re
su

lt
d

at
a

d
at

a
ex

p
er

im
en

t
d

es
cr

ip
ti

on
ex

p
.

d
es

cr
ip

ti
on

ex
p

er
im

en
t

T
a
b
le

A
.1

2
.:

m
D

B
a
n
d

eD
B

d
a
ta

st
ru

ct
u
re

s
m

a
p
p

ed
o
n

th
e

M
o
sa

n
O

b
je

ct
st

ru
ct

u
re

.
A

n
a
st

er
ix

(*
)

in
d
ic

a
te

s
co

n
ce

p
tu

a
l

fe
a
tu

re
s

o
f

th
e

d
a
ta

b
a
se

th
a
t

a
re

p
la

n
n
ed

to
b

e
im

p
le

m
en

te
d

in
th

e
fu

tu
re

v
er

si
o
n
s.

235

A.6. Publications that have arisen from this work

The following lists the major reviewed publications that have arisen from this work.

Please note that after my marriage in 2008 my last name changed from “Köhn” to

“Waltemath”.

Journal publications

2010 Ranked Retrieval of Computational Biology Models

R. Henkel, L. Endler, A. Peters, N. Le Novère und D. Waltemath

BMC Bioinformatics 11(423)

Abstract: The study of biological systems demands computational support. If targeting a biological prob-

lem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable

models, however, becomes more challenging with the increasing number of computational models available,

and even more when considering the models’ growing complexity. Firstly, among a set of potential model

candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the

nature of an unknown model listed in a search result set, and to judge how well it fits for the particular prob-

lem one has in mind. Here we present an improved search approach for computational models of biological

processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach

incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the

search engine of BioModels Database, a standard repository for computational models. The introduced

concept and implementation are, to our knowledge, the first application of Information Retrieval techniques

on model search in Computational Systems Biology. Using the example of BioModels Database, it was

shown that the approach is feasible and extends the current possibilities to search for relevant models. The

advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and

that we provide the user with a relevance ranking of the models found for a query. Better search capabilities

in model databases are expected to have a positive effect on the reuse of existing models.

2011 Das Sombi-Framework zum Ermitteln geeigneter Suchfunktionen

für biologische Modelldatenbasen

D. Waltemath, R. Henkel, H. Meyer und A. Heuer

Datenbankspektrum

Abstract: Die Wiederverwendung von Simulationsmodellen biologischer Systeme ist mit der ansteigenden

Zahl der in Modelldatenbanken gespeicherten Modelle zu einem wichtigen Forschungsproblem geworden. Ein

Teilproblem ist die effiziente Suche nach relevanten Modellen in einer Datenbasis. Als Lösungsansatz wurde

kürzlich die Nutzung von Information-Retrieval-Techniken fr das bewertete Finden von Modellen vorgestellt.

Die im Folgenden beschriebene Software stellt Anwendungsentwicklern ein Framework zur Evaluation ver-

schiedener Retrieval- und Rankingfunktionen unter Nutzung unterschiedlicher Datenbasen zur Verfügung.

Der modulare Aufbau des Frameworks ermöglicht die Unterstützung weiterer XML-basierter Beschreibungs-

236

formate sowie das Einbinden zusätzlicher Funktionen. Voraussetzungen für die Verwendung des Frameworks

sind die Kodierung der Simulationsmodelle in einem XML-basierten Standard-Repräsentationsformat sowie

die Verfügbarkeit von semantischen Modellinformationen, z. B. in Form von in Ontologien kodierten Meta-

Informationen. Sombi wurde als Evaluationswerkzeug für Datenbankentwickler im Bereich der Modellspe-

icherung in der Systembiologie entwickelt. Eine Verwendung des Frameworks auf anderen Anwendungsge-

bieten ist jedoch vorstellbar.

2011 Minimum Information About a Simulation Experiment (MIASE)

D. Waltemath, R. Adams, D.A. Beard, F.T. Bergmann, U.S. Bhalla, R. Britten,

V. Chelliah, M.T. Cooling, J. Cooper, E. Crampin, A. Garny, S. Hoops, M. Hucka,

P. Hunter, E. Klipp, C. Laibe, A. Miller, I. Moraru, D. Nickerson, P. Nielsen,

M. Nikolski, S. Sahle, H. Sauro, H. Schmidt, J. Snoep, D. Tolle, O. Wolkenhauer,

N. Le Novère

PLoS Computational Biology 7(4)

Abstract: Reproducibility of experiments is a basic requirement for science. Minimum Information (MI)

guidelines have proved a helpful means of enabling reuse of existing work in modern biology. The MIRIAM

guidelines (Minimal Information Required In the Annotation of Models) promote the exchange and reuse of

biochemical computational models. However, information about a model alone is not sufficient to enable its

efficient reuse in a computational setting. Advanced numerical algorithms and complex modeling workflows

used in modern computational biology make reproduction of simulations difficult. It is therefore essential to

define the core information necessary to perform simulations of those models. The Minimum Information

About a Simulation Experiment (MIASE, glossary in Box 1) describes the minimal set of information that

must be provided to make the description of a simulation experiment available to others. It includes the

list of models to use and their modifications, all the simulation procedures to apply and in which order,

the processing of the raw numerical results, and the description of the final output. MIASE allows for the

reproduction of any simulation experiment. The provision of this information, along with a set of required

models, guarantees that the simulation experiment represents the intention of the original authors. Follow-

ing MIASE guidelines will thus improve the quality of scientific reporting, and will also allow collaborative,

more distributed efforts in computational modeling and simulation of biological processes.

2011 Controlled vocabularies and semantics in Systems Biology

M. Courtot, N. Juty, C. Knüpfer, D. Waltemath, A. Dräger, A. Finney, M. Golebiewski,

S. Hoops, S. Keating, D.B. Kell, S. Kerrien, J. Lawson, A. Lister, J. Lu, R. Machne,

P. Mendes, M. Pocock, N. Rodriguez, A. Villeger, S. Wimalaratne, C. Laibe, M.

Hucka und N. Le Novère

Nature Molecular Systems Biology (in the press)

Abstract: The use of computational modeling in the description and analysis of biological systems is at

the heart of Systems Biology. The structure of the models, the simulation descriptions or the numerical

237

results can be encoded in standard formats, but there is an increasing need to provide an additional seman-

tic layer. Semantic information add meaning on components of standard descriptions to help identifying or

interpreting them. Ontologies are one of the frequently used tools for such a purpose. We describe here

three ontologies created specifically to address the various needs of the Systems Biology community: the

Systems Biology Ontology (SBO) provides semantic information about the model components. The Kinetic

Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the

simulation of Systems Biology models, their characterization, and inter-relationships. The Terminology for

the Description of Dynamics (TEDDY) categorizes dynamical features of the simulation results and general

systems behavior. The provision of semantic information extends models’ longevity and facilitates their

reuse. It provides useful insight into the biology of modeled processes, and may be used to make informed

decisions on subsequent simulation experiments.

2011 Reproducible computational biology experiments with SED-ML –

The Simulation Experiment Description Markup Language

D. Waltemath, R. Adams, F.T. Bergmann, M. Hucka, F. Kolpakov, A. Miller, I.

Moraru, D. Nickerson, J.L. Snoep and N. Le Novère

submitted

Abstract: The increasing use of computational simulation experiments to inform modern biological research

creates new challenges to annotate, archive, share and reproduce such experiments. The recently published

Minimum Information About a Simulation Experiment (MIASE) propose a minimal set of information that

should be provided to allow the reproduction of simulation experiments among users and software tools.

In this article, we present an Extensible Markup Language (XML), the Simulation Experiment Description

Markup Language (SED-ML). SED-ML has been developed as a community project. It is defined in a de-

tailed technical specification and additionally provides an XML schema. The version of SED-ML described

in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation ex-

periments in the area, namely time course simulations. SED-ML encodes in a computer-readable exchange

format the information required by MIASE and thereby enables reproduction of simulation experiments.

SED-ML documents specify which models to use in an experiment, any modifications to apply on the mod-

els before using them, which simulation procedures to run on each model, what analysis results to output,

and how the results should be presented. The description is independent of the underlying model implemen-

tation. SED-ML is a software-independent format for encoding the description of simulation experiments; it

is not specific to particular simulation tools. Here, we demonstrate that with the growing software support

for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can

exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments

in different tools. Authors of papers reporting simulation experiments can make their simulation protocols

available for other scientists to reproduce the results. Because SED-ML is agnostic to the exact modelling

language(s) used, experiments covering models from different fields of research can be accurately described

and combined.

238

Conference proceedings

2008 A Method for Semi-Automatic Integration of Standards in Systems

Biology.

D. Köhn und L. Strömbäck

Database and Expert Systems Aplications (DEXA), Lecture Notes in Computer Sci-

ence

2008 SED-ML – An XML Format for the Implementation of the MIASE

Guidelines

D. Köhn und N. Le Novère

Computational Methods in Systems Biology (CMSB), Lecture Notes in Bioinformat-

ics

2009 Towards Enhanced Retrieval of Biological Models Through Annotation-

based Ranking

D. Köhn, C. Maus, R. Henkel und M. Kolbe

Databases in Life Sciences (DILS), Lecture Notes in Bioinformatics

Specifications

2011 SED-ML Level 1 Version 1

D. Waltemath, F.T. Bergmann, R. Adams, N. Le Novére

Nature precedings

This specification describes the Simulation Experiment Markup Language (SED-ML) and its elements in

full detail.

2011 SBML Level 3 Package Proposal: Annotation

D. Waltemath, N. Swainston, A. Lister, F.T. Bergmann, R. Henkel, S. Hoops,

M. Hucka, N. Juty, S. Keating, C. Knpfer, F. Krause, C. Laibe, W. Liebermeis-

ter, C. Lloyd, G. Misirli, M. Schulz, M. Taschuk und N. Le Novère

Nature precedings

This specification describes the proposed annotation package extension to the SBML Level 3 core.

239

Editorship

2009 21. Workshop Grundlagen von Datenbanken

Preprints aus dem Institut für Informatik der Universität Rostock

Mathias Virgin, Andre Peters, Dagmar Köhn (Eds.)

240

Bibliography

L. Arévalo Rosado, A. P. Márquez, and M. S. Sánchez. An XQuery-based version

extension of an XML native database. In Proceedings of the 2009 EDBT/ICDT

Workshops, EDBT/ICDT ’09, pages 99–106, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-650-2. doi: http://doi.acm.org/10.1145/1698790.1698807.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.

Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-

Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald,

G. M. Rubin, and G. Sherlock. Gene ontology: tool for the unification of biology.

Nature genetics, 25(1):25–29, May 2000. ISSN 1061-4036. doi: http://dx.doi.org/

10.1038/75556.

M. Bada, R. Stevens, C. A. Goble, Y. Gil, M. Ashburner, J. A. Blake, J. M. Cherry,

M. A. Harris, and S. Lewis. A short study on the success of the Gene Ontology.

Web Semantics: Science, Services and Agents on the World Wide Web, 1(2):

235–240, February 2004. ISSN 15708268. doi: 10.1016/j.websem.2003.12.003.

R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval. Addison-Wesley

Harlow, England, 1999.

D. A. Beard, R. Britten, M. T. Cooling, A. Garny, M. D. Halstead, P. J. Hunter,

J. Lawson, C. M. Lloyd, J. Marsh, A. Miller, D. P. Nickerson, P. M. Nielsen,

T. Nomura, S. Subramanium, S. M. Wimalaratne, and T. Yu. CellML metadata

standards, associated tools and repositories. Philosophical transactions. Series

A, Mathematical, physical, and engineering sciences, 367(1895):1845–1867, May

2009. ISSN 1364-503X. doi: 10.1098/rsta.2008.0310.

D. Beckett. RDF/XML Syntax Specification (Revised). W3C recommendation,

W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-

20040210/.

G. Bellinger, D. Castro, and A. Mills. Data, information, knowledge, and wis-

dom. Online publication. Accessed 16 February 2011, 2004. URL http://www.

systems-thinking.org/dikw/dikw.htm.

241

http://www.systems-thinking.org/dikw/dikw.htm
http://www.systems-thinking.org/dikw/dikw.htm

P. Benjamin, M. Patki, and R. Mayer. Using ontologies for simulation modeling. In

WSC ’06: Proceedings of the 38th conference on Winter simulation, pages 1151–

1159. IEEE press, 2006. ISBN 1-4244-0501-7. doi: http://doi.ieeecomputersociety.

org/10.1109/WSC.2006.323206.

P. Benjamin, K. Akella, and A. Verma. Using ontologies for simulation integration.

In WSC ’07: Proceedings of the 39th conference on Winter simulation, pages

1081–1089, Piscataway, NJ, USA, 2007. IEEE Press. ISBN 1-4244-1306-0.

F. T. Bergmann. An Integrative Approach to Modeling in Systems Biology. PhD

thesis, University of Washington, 2010.

F. T. Bergmann and H. M. Sauro. SBW - a modular framework for systems biology.

In WSC ’06: Proceedings of the 38th conference on Winter simulation, pages

1637–1645, 2006. ISBN 1-4244-0501-7.

S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.

XQuery 1.0: An XML query language (Second Edition). W3C recommenda-

tion. Online publication. Accessed 16 February 2011, DEC 2010. URL http:

//www.w3.org/TR/xquery/.

S. Borneimer, M. Maurya, M. Farquhar, and S. Subramaniam. Computational mod-

eling reveals how interplay between components of a GTPase-cycle module regu-

lates signal transduction. Proceedings of the National Academy of Sciences, 101

(45):15899–15904, 2004.

B. J. Bornstein, S. M. Keating, A. Jouraku, and M. Hucka. LibSBML: an API

Library for SBML. Bioinformatics, 24(6):880–881, March 2008. ISSN 1367-4811.

doi: 10.1093/bioinformatics/btn051.

D. Brash. Reuse in Information Systems Development: Classification and Com-

parison. In Proceedings of the Twelfth Australasian Conference on Information

Systems, 2001.

T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-McQueen. Extensible

markup language (XML) 1.0 (fifth edition). W3C recommendation, W3C, Nov.

2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

R. Brinkman, M. Courtot, D. Derom, J. Fostel, Y. He, P. Lord, J. Malone, H. Parkin-

son, B. Peters, P. Rocca-Serra, et al. Modeling biomedical experimental processes

with OBI. Journal of biomedical semantics, 1(Suppl 1):S7, 2010.

242

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

L. D. Burgoon. The need for standards, not guidelines, in biological data reporting

and sharing. Nature Biotechnology, 24(11):1369–1373, November 2006. ISSN

1087-0156. doi: 10.1038/nbt1106-1369.

V. Bush. As we may think. Atlantic monthly, 176(4):101–108, July 1945.

R. Carnap. Empiricism, semantics, and ontology. In J. Kim and E. Sosa, editors,

Metaphysics: an anthology, chapter 2. John Wiley & Sons Ltd, 1956.

F. E. Cellier. Continuous system modeling. Springer-Verlag, 1 edition, December

1991. ISBN 0387975020.

V. Chelliah, L. Endler, N. Juty, C. Laibe, C. Li, N. Rodriguez, and N. Le Novère.

Data Integration and Semantic Enrichment of Systems Biology Models and Sim-

ulations. In Proceeding of the 6th International Workshop on Data Integration in

the Life Sciences, DILS 2009, Manchester, UK. Springer, July 2009.

K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak, and J. J. Tyson.

Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell, 15(8):

3841–3862, AUG 2004a. ISSN 1059-1524. doi: 10.1091/mbc.E03-11-0794.

M. Chen, A. Freier, J. Köhler, and A. Regg. The Biology Petri Net Markup Lan-

guage. In Lecture Notes in Informatics: Promise 2002, 2002.

Y. Chen, S. Madria, and S. Bhowmick. DiffXML: change detection in XML data.

In Database Systems for Advanced Applications, pages 167–196. Springer, 2004b.

J. Clark and S. DeRose. XML path language (XPath) version 1.0. W3C recommen-

dation, W3C, Nov. 1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML docu-

ments. In Proceedings of the 18th International Conference on Data Engi-

neering, page 41. Published by the IEEE Computer Society, 2002. doi: http:

//doi.ieeecomputersociety.org/10.1109/ICDE.2002.994696.

D. L. Cook, J. L. Mejino, M. L. Neal, and J. H. Gennari. Bridging biological

ontologies and biosimulation: the ontology of physics for biology. AMIA Annual

Symposium proceedings, pages 136–140, 2008. ISSN 1942-597X.

M. T. Cooling, P. Hunter, and E. J. Crampin. Modelling biological modularity with

CellML. IET Systems Biology, 2(2):73–79, March 2008. ISSN 17518849. doi:

10.1049/iet-syb:20070020.

243

M. T. Cooling, V. Rouilly, G. Misirli, J. Lawson, T. Yu, J. Hallinan, and A. Wipat.

Standard virtual biological parts: a repository of modular modeling components

for synthetic biology. Bioinformatics, 26(7):925–931, April 2010. ISSN 1367-4811.

doi: 10.1093/bioinformatics/btq063.

M. Courtot, N. Juty, C. Knüpfer, D. Waltemath, A. Dräger, A. Finney,

M. Golebiewski, S. Hoops, S. Keating, D. Kell, S. Kerrien, J. Lawson, A. Lis-

ter, J. Lu, R. Machne, P. Mendes, M. Pocock, N. Rodriguez, A. Villeger,

S. Wimalaratne, C. Laibe, M. Hucka, and N. Le Novère. Controlled vocabu-

laries and semantics in systems biology. Nature Molecular Systems Biology, 2011.

in the press.

A. Cuellar, P. Nielsen, M. Halstead, D. Bullivant, D. Nickerson, W. Hedley, M. Nel-

son, and C. Lloyd. Cellml 1.1 specification. online, FEB 2006. available from

http://www.cellml.org/specifications/cellml_1.1.

A. Cuellar, M. Nelson, and W. Hedley. Cellml metadata specification 1.0. Technical

report, Auckland Bioengineering Institute, University of Auckland, 2009. URL

http://www.cellml.org/specifications/metadata/cellml_metadata_1.0.

D. Cutting and J. Pedersen. Optimization for dynamic inverted index maintenance.

In Proceedings of the 13th annual international ACM SIGIR conference on Re-

search and development in information retrieval, pages 405–411. ACM New York,

NY, USA, 1989.

J. O. Dada, I. Spasić, N. W. Paton, and P. Mendes. SBRML: a markup language for

associating systems biology data with models. Bioinformatics (Oxford, England),

26(7):932–938, April 2010. ISSN 1367-4811. doi: 10.1093/bioinformatics/btq069.

E. De Schutter. Why Are Computational Neuroscience and Systems Biology So

Separate? PLoS Computational Biology, 4(5):e1000078+, May 2008. ISSN 1553-

7358. doi: 10.1371/journal.pcbi.1000078.

G. Decker, H. Overdick, and M. Weske. Oryx - An Open Modeling Platform for the

BPM Community. In M. Dumas, M. Reichert, and M.-C. Shan, editors, Business

Process Management, volume 5240 of Lecture Notes in Computer Science, chap-

ter 29, pages 382–385. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-85757-0.

doi: 10.1007/978-3-540-85758-7 29.

K. Degtyarenko, P. de Matos, M. Ennis, J. Hastings, M. Zbinden, A. McNaught,

R. Alcántara, M. Darsow, M. Guedj, and M. Ashburner. ChEBI: a database and

244

http://www.cellml.org/specifications/cellml_1.1
http://www.cellml.org/specifications/metadata/cellml_metadata_1.0

ontology for chemical entities of biological interest. Nucleic Acids Research, 36

(suppl 1):D344–D350, January 2008. ISSN 1362-4962. doi: 10.1093/nar/gkm791.

D. C. Dennett. Freedom Evolves, chapter 1. Penguin, new ed edition, February 2004.

ISBN 0140283897.

P. J. Denning. The profession of IT: The IT schools movement. Commun. ACM, 44

(8):19–22, 2001. ISSN 0001-0782. doi: 10.1145/381641.381649.

F. Dyson. A meeting with Enrico Fermi. Nature, 427(6972):297, 2004. ISSN 0028-

0836.

S. Edelstein, O. Schaad, E. Henry, D. Bertrand, and J. Changeux. A kinetic mecha-

nism for nicotinic acetylcholine receptors based on multiple allosteric transitions.

Biological cybernetics, 75(5):361–379, 1996.

L. Endler, N. Rodriguez, N. Juty, C. Vijayalakshmi, C. Laibe, C. Li, and

N. Le Novère. Designing and encoding models for synthetic biology. Journal

of the Royal Society. Interface: suppl 4, pages 405–417, april 2009.

D. Engmann and S. Massmann. Instance matching with coma++. In Proceedings of

the Model Management und Metadaten-Verwaltung Workshop, BTW 2007, march

2007.

R. Ewald, C. Maus, A. Rolfs, and A. Uhrmacher. Discrete event modelling and

simulation in systems biology. Journal of Simulation, 1:81–96, May 2007. doi:

http://dx.doi.org/10.1057/palgrave.jos.4250018.

P. Eykhoff. System Identification: Parameter and State Estimation. John Wiley &

Sons Ltd, January 1974. ISBN 0471249807.

R. Ferber. Information Retrieval. dpunkt.Verlag, 2003.

J. Ferrell. Q&A: Systems biology. Journal of Biology, 8(1):2+, January 2009. ISSN

1475-4924. doi: 10.1186/jbiol107.

A. Finkelstein, J. Hetherington, L. Li, O. Margoninski, P. Saffrey, R. Seymour, and

A. Warner. Computational challenges of systems biology. IEEE Computer, 37(5):

26–33, 2004.

J. Fisher and T. A. Henzinger. Executable cell biology. Nature Biotechnology, 25

(11):1239–1249, November 2007. doi: 10.1038/nbt1356. URL http://dx.doi.

org/10.1038/nbt1356.

245

http://dx.doi.org/10.1038/nbt1356
http://dx.doi.org/10.1038/nbt1356

P. A. Fishwick. Simulation Model Design and Execution: Building Digital Worlds.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1995.

P. A. Fishwick and J. A. Miller. Ontologies for modeling and simulation: Issues and

approaches. Winter Simulation Conference, 1:251–256, 2004. doi: 10.1109/WSC.

2004.1371324.

D. Garfinkel. Construction of biochemical computer models. FEBS Letters (Suppl.

1), pages 9–13, 1969.

J. H. Gennari, M. L. Neal, B. E. Carlson, and D. L. Cook. Integration of multi-

scale biosimulation models via light-weight semantics. In Pacific Symposium on

Biocomputing, volume 13, pages 414–425, 2008.

P. Gleeson, S. Crook, R. C. Cannon, M. L. Hines, G. O. Billings, M. Farinella, T. M.

Morse, A. P. Davison, S. Ray, U. S. Bhalla, S. R. Barnes, Y. D. Dimitrova, and

R. A. Silver. NeuroML: a language for describing data driven models of neurons

and networks with a high degree of biological detail. PLoS computational biology,

6(6):e1000815+, June 2010. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1000815.

A. Goldbeter. A minimal cascade model for the mitotic oscillator involving cyclin

and cdc2 kinase. Proceedings of the National Academy of Sciences of the United

States of America, 88(20):9107–9111, October 1991. ISSN 0027-8424.

G. Gottschalk, R. Kaiser, H. Malissa, E. Schwarz-Bergkampf, W. Simon, H. Spitzy,

R. Werder, and H. Zettler. Systemtheorie in der analytik. Fresenius’ Journal of

Analytical Chemistry, 256(4):257–270, JAN 1971. ISSN 0016-1152. doi: 10.1007/

BF00537890.

T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowl-

edge Acquisition, 2(5):199–220, June 1993.

N. Guarino. Understanding, building and using ontologies. International Journal of

Human-Computer Studies, 46(2-3):293–310, 1997. ISSN 1071-5819. doi: 10.1006/

ijhc.1996.0091.

N. Guarino. Formal ontology in information systems. In Proceedings of the 1st

International Conference June 6-8, 1998, Trento, Italy. IOS Press, 1998. ISBN

9051993994.

A. Guyton, B. Abernathy, J. Langston, B. Kaufmann, and H. Fairchild. Relative

importance of venous and arterial resistances in controlling venous return and

246

cardiac output. American Journal of Physiology, 196(5):1008, 1959. ISSN 0002-

9513.

R. Hälke. Annotation extraction from Computational Biology Models. Study thesis,

Rostock University, 2009. Supervised by Dagmar Waltemath and Ron Henkel.

R. Hälke. Versioning Concepts and Technologies for Biochemical Simulation Mod-

els. Master’s thesis, Rostock University, October 2010. Supervised by Dagmar

Waltemath, Ron Henkel, Olaf Wolkenhauer, and Meike Klettke.

R. Hälke, R. Henkel, M. Klettke, D. Waltemath, and O. Wolkenhauer. The Bio-

chemical Model Versioning System BiVeS. in preparation, 2011.

E. Hatcher and O. Gospodnetic. Lucene in action. Manning Publications, 2004.

S. Helmer, C. C. Kanne, and G. Moerkotte. XML-Datenbanksysteme und ihre An-

wendung (XML Database Systems and their Application). it–Information Tech-

nology (vormals it+ ti)/Methoden und innovative Anwendungen der Informatik

und Informationstechnik, 45(3/2003):137–142, 2003.

R. Henkel. Determining model similarities through ranking functions using the ex-

ample of biological computational models. Master’s thesis, University of Rostock,

September 2009. supervised by Dagmar Köhn, Andre Peters, Andreas Heuer, and

Adelinde Uhrmacher.

R. Henkel, L. Endler, A. Peters, N. Le Novère, and D. Waltemath. Ranked retrieval

of computational biology models. BMC Bioinformatics, 11(1):423+, August 2010.

ISSN 1471-2105. doi: 10.1186/1471-2105-11-423.

R. Henkel, D. Waltemath, A. Peters, and A. Heuer. Retrieving and ranking compu-

tational biology models using distributed semantic knowledge. In in preparation,

2011.

J. Himmelspach, R. Ewald, and A. M. Uhrmacher. A flexible and scalable experi-

mentation layer. In Proceedings of the 2008 Winter Simulation Conference, pages

827–835, December 2008. doi: 10.1109/WSC.2008.4736146.

M. L. Hines, T. Morse, M. Migliore, N. T. Carnevale, and G. M. Shepherd. ModelDB:

A Database to Support Computational Neuroscience. Journal of Computational

Neuroscience, 17(1):7–11–11, July 2004. ISSN 0929-5313. doi: 10.1023/B:JCNS.

0000023869.22017.2e.

247

S. Hoops, S. Sahle, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and

U. Kummer. COPASI a COmplex PAthway SImulator. Bioinformatics, 22(24):

3067–3074, December 2006. ISSN 1367-4803. doi: 10.1093/bioinformatics/btl485.

D. Hottinger and F. Meyer. XML-Diff-Algorithmen. Technischer Report, ETH

Zürich, july 2005.

M. Hucka, F. Bergmann, S. Hoops, S. Keating, S. Sahle, D. Wilkinson, M. Hucka,

F. Bergmann, S. Hoops, S. M. Keating, S. Sahle, and D. J. Wilkinson. The systems

biology markup language (sbml): Language specification for level 3 version 1 core

(release 1 candidate). Nature Precedings, January 2010. ISSN 1756-0357. doi:

10.1038/npre.2010.4123.1. Release Candidate 1.

ISO 5807. Information processing – Documentation symbols and conventions; pro-

gram and system flowcharts. International Organisation for Standardisation, 1985.

M. John, R. Ewald, and A. M. Uhrmacher. A spatial extension to the π calcu-

lus. In Proceedings of the First Workshop ”From Biology To Concurrency and

back” (FBTC), volume 194 (3), pages 133–148. Elsevier Science Publishers B. V.,

January 2008a. doi: 10.1016/j.entcs.2007.12.010.

M. John, C. Lhoussaine, J. Niehren, and A. M. Uhrmacher. The attributed pi

calculus. In Computational Methods in Systems Biology, pages 83–102, 2008b.

S.-H. Jung, T.-S. Jung, T.-K. Kim, K.-R. Kim, J.-S. Yoo, and W.-S. Cho. An

Efficient Storage Model for the SBML Documents Using Object Databases. In

M. Dalkilic, S. Kim, and J. Yang, editors, Data mining and bioinformatics: first

international workshop, VDMB 2006, Seoul, Korea, September 11, 2006: revised

selected papers, volume 4316 of Lecture Notes in Computer Science, chapter 9,

pages 94–105. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-68970-6. doi:

10.1007/11960669 9.

N. Juty, N. Le Novère, D. Waltemath, and C. Knüpfer. Ontologies for use in systems

biology: SBO, KiSAO and TEDDY. International Conference on Systems Biology

(ISCB), OCT 2010. Poster presentation.

M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic

Acids Research, 28:27.30, 2000.

V. Kashyap and A. Sheth. Semantic and schematic similarities between database

objects: a context-based approach. The VLDB Journal The International Journal

on Very Large Data Bases, 5(4):276–304, December 1996. ISSN 1066-8888. doi:

10.1007/s007780050029.

248

D. B. Kell and P. Mendes. The markup is the model: Reasoning about systems

biology models in the Semantic Web era. Journal of Theoretical Biology, 252(3):

538–543, June 2008. ISSN 00225193. doi: 10.1016/j.jtbi.2007.10.023.

D. W. Kelton and R. D. Barton. Experimental design for simulation. In S. Chick,

P. J. Sánchez, D. Ferrin, and D. J. Morrice, editors, Proceedings of the 2003 Winter

Simulation Conference, pages 60–65, 2003.

H. Kitano. Systems Biology: Toward System-level Understanding of Biological Sys-

tems, chapter 1. MIT Press: Cambridge, MA, 2001.

H. Kitano. Systems biology: A brief overview. Science, 295(5560):1662–1664, March

2002a. ISSN 1095-9203. doi: 10.1126/science.1069492.

H. Kitano. Computational systems biology. Nature, 420(6912):206–210, November

2002b. ISSN 0028-0836. doi: 10.1038/nature01254.

A. Klaus and W. Birchmeier. Wnt signalling and its impact on development and

cancer. Nature Reviews Cancer, 8(5):387–398, May 2008. ISSN 1474-175X. doi:

10.1038/nrc2389.

M. Klettke and H. Meyer. XML und Datenbanken, volume 1. dunkt.verlag, 2003a.

M. Klettke and H. Meyer. Speicherung von XML-Dokumenten - eine Klassifikation.

Datenbank-Spektrum, 5:40–50, 2003b.

E. Klipp and W. Liebermeister. Mathematical modeling of intracellular signaling

pathways. BMC Neuroscience, 7(Suppl 1):S10+, 2006. ISSN 1471-2202. doi:

10.1186/1471-2202-7-S1-S10.

E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems Biology

in Practice. Concepts, Implementation and Appplication. WILEY-VCH Verlag

GmbH & Co. KGaA, 3rd reprint edition, 2007a.

E. Klipp, W. Liebermeister, A. Helbig, A. Kowald, and J. Schaber. Systems biology

standards - the community speaks. Nature Biotechnology, 25(4):390–391, April

2007b. ISSN 1087-0156. doi: 10.1038/nbt0407-390.

E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, H. Lehrach, and R. Herwig.

Systems Biology: A Textbook. Wiley-VCH, 2009.

C. Knüpfer, C. Beckstein, and P. Dittrich. Towards a semantic description of

biomodels: Meaning facets – a case study. In Proceedings of the Second Inter-

national Symposium on Semantic Mining in Biomedicine (SMBM 2006), Jena,

April 9th-12th. CEUR-WS, 2006.

249

D. Köhn. Enhancing model reuse in systems biology using an integrative storage and

retrieval system. In Proceedings of the 2009 Joint EDBT/ICDT Ph.D. workshop.

ACM, March 2009.

D. Köhn and M. John. Making the π calculus exchangable – the Pi Markup Lan-

guage (PiML), 2007. Conference on Computational Methods in Systems Biology,

Edinburgh (poster presentation).

D. Köhn and N. Le Novère. SED-ML – An XML Format for the Implementation of

the MIASE Guidelines. In M. Heiner and A. M. Uhrmacher, editors, Computa-

tional Methods in Systems Biology, volume 5307/2008 of Lecture Notes in Systems

Biology, pages 176–190. Springer-Verlag Berlin Heidelberg, October 2008. doi:

10.1007/978-3-540-88562-7 15.

D. Köhn and L. Strömbäck. A method for semi-automatic integration of standards

in systems biology. In 19th International Conference on Database and Expert

Systems Aplications (DEXA), volume 5181 (0745) of Lecture Notes in Computer

Science, pages 745–752. Springer, 2008.

D. Köhn, C. Maus, R. Henkel, and M. Kolbe. Towards enhanced retrieval of bi-

ological models through annotation-based ranking. In N. W. Paton, P. Missier,

and C. Hedeler, editors, Data Integration in the Life Sciences, 6th International

Workshop, DILS, volume 5647 of Lecture Notes in Bioinformatics, pages 204–219,

Manchester, UK, 2009. Springer.

M. Kolbe. MIRIAM based storage and query of biological simulation models. Mas-

ter’s thesis, University of Rostock, June 2009. Supervised by Dagmar Köhn,

Carsten Maus, Andreas Heuer and Adelinde Uhrmacher.

F. Krause, J. Uhlendorf, T. Lubitz, M. Schulz, E. Klipp, and W. Liebermeister.

Annotation and merging of SBML models with semanticSBML. Bioinformatics,

pages btp642+, November 2009. doi: 10.1093/bioinformatics/btp642.

R. Kühn. Kopplung von XML-Schema Komponenten am Beispiel von πML. Study

thesis, Rostock Unversity, 2008. Supervised by Dagmar Köhn, Mathias John and

Andreas Heuer.

D. Kuropka. Modelle zur Repräsentation natürlichsprachlicher Dokumente.

Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Daten-

banken. Logos Verlag, 2004. ISBN 978-3-8325-0514-1.

250

C. Laibe and N. Le Novère. MIRIAM Resources: tools to generate and resolve robust

cross-references in Systems Biology. BMC Systems Biology, 1(1), December 2007.

doi: 10.1186/1752-0509-1-58.

P. Lambrix. Towards a Semantic Web for Bioinformatics using Ontology-based

Annotation. In Proceedings oof the 14th IEEE International Workshop on En-

abling Technologies: Infrastructure of Collaborative Enterprises, Linköping, Swe-

den, January 2005. IEEE.

P. Lambrix, L. Strömbäck, and H. Tan. Semantic Techniques for the Web, chapter 8

- Information Integration in Bioinformatics with Ontologies and Standards, pages

343–376. Springer-Verlag Berlin Heidelberg, LNCS 5500 edition, 2009.

N. Le Novère. Model storage, exchange and integration. BMC Neuroscience, 7

(Suppl 1), 2006. doi: 10.1186/1471-2202-7-S1-S11.

N. Le Novère. Principled annotation of quantitative models in systems biology.

Presentation slides, 2008. Genomes to Systems, Manchester, UK. Available at

http://www.ebi.ac.uk/~lenov/LECTURES/G2S-LeNovere.pdf.

N. Le Novère. MIBBI, MIASE and all that. Presentation slides, April

2009. URL http://www.cellml.org/community/events/workshop/2009/

presentations/nicolas_mibbi.pdf. The combined CellML-SBGN-SBO-

BioPAX-MIASE 2009 workshop. Auckland, New Zealand.

N. Le Novère and A. Finney. A simple scheme for annotating SBML with references

to controlled vocabularies and database entries. December 2005. URL http:

//www.ebi.ac.uk/compneur-srv/sbml/proposals/AnnotationURI.pdf.

N. Le Novère, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne, J. Collado-Vides,

E. J. Crampin, M. Halstead, E. Klipp, P. Mendes, P. Nielsen, H. Sauro, B. Shapiro,

J. L. Snoep, H. D. Spence, and B. L. Wanner. Minimum Information Requested

In the Annotation of biochemical Models (MIRIAM). Nature Biotechnology, 23

(12):1509–1515, December 2005. ISSN 1087-0156. doi: 10.1038/nbt1156.

N. Le Novère, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri,

L. Li, H. Sauro, M. Schilstra, B. Shapiro, J. L. Snoep, and M. Hucka. Biomodels

database: a free, centralized database of curated, published, quantitative kinetic

models of biochemical and cellular systems. Nucleic Acids Research, 34(Database

issue), January 2006. ISSN 1362-4962.

251

http://www.ebi.ac.uk/~lenov/LECTURES/G2S-LeNovere.pdf
http://www.cellml.org/community/events/workshop/2009/presentations/nicolas_mibbi.pdf
http://www.cellml.org/community/events/workshop/2009/presentations/nicolas_mibbi.pdf
http://www.ebi.ac.uk/compneur-srv/sbml/proposals/AnnotationURI.pdf
http://www.ebi.ac.uk/compneur-srv/sbml/proposals/AnnotationURI.pdf

N. Le Novère, M. Courtot, and C. Laibe. Adding semantics in kinetics models of

biochemical pathways. In Proceedings of the 2nd International Symposium on

Experimental Standard Conditions of Enzyme Characterizations (ESEC 2006),

Beilstein Institute, Frankfurt am Main, Germany, 2007.

N. Le Novère, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir,

K. Wegner, M. I. Aladjem, S. M. Wimalaratne, F. T. Bergman, R. Gauges,

P. Ghazal, H. Kawaji, L. Li, Y. Matsuoka, A. Villeger, S. E. Boyd, L. Calzone,

M. Courtot, U. Dogrusoz, T. C. Freeman, A. Funahashi, S. Ghosh, A. Jouraku,

S. Kim, F. Kolpakov, A. Luna, S. Sahle, E. Schmidt, S. Watterson, G. Wu,

I. Goryanin, D. B. Kell, C. Sander, H. Sauro, J. L. Snoep, K. Kohn, and H. Kitano.

The Systems Biology Graphical Notation. Nature Biotechnology, 27(8):735–741,

August 2009. ISSN 1087-0156. doi: 10.1038/nbt.1558.

C. Lehner. Beitrag zu einer holistischen Theorie für die Informationswissenschaften.

Fortschritte der Wissensorganisation ISKO/Hamburg, 1999.

Simplex3: EDL Referenzbuch. Lehrstuhl für Operations Research und Systemthe-

orie der Universität Passau, 2008. URL http://wwwisg.cs.ovgu.de/sim/its/

ws0405/simplex/edl.pdf.

J. Leloup and A. Goldbeter. Chaos and birhythmicity in a model for circadian

oscillations of the PER and TIM proteins in Drosophila. Journal of theoretical

biology, 198(3):445–459, 1999.

J. Leloup, D. Gonze, and A. Goldbeter. Limit cycle models for circadian rhythms

based on transcriptional regulation in Drosophila and Neurospora. Journal of

Biological Rhythms, 14(6):433, 1999.

C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He,

A. Henry, M. Stefan, J. Snoep, M. Hucka, N. Le Novère, and C. Laibe. Biomodels

database: An enhanced, curated and annotated resource for published quantita-

tive kinetic models. BMC Systems Biology, 4(1):92+, June 2010. ISSN 1752-0509.

doi: 10.1186/1752-0509-4-92.

W. Liebermeister. Validity and combination of biochemical models. In Proceedings

of 3rd International ESCEC Workshop on Experimental Standard Conditions on

Enzyme Characterizations, september 2007.

D. Lin. An information-theoretic definition of similarity. In Proceedings of the 15th

International Conference on Machine Learning, July 1998.

252

http://wwwisg.cs.ovgu.de/sim/its/ws0405/simplex/edl.pdf
http://wwwisg.cs.ovgu.de/sim/its/ws0405/simplex/edl.pdf

A. L. Lister, M. Pocock, M. Taschuk, and A. Wipat. Saint: a lightweight integration

environment for model annotation. Bioinformatics, 25(22):3026–3027, November

2009. ISSN 1367-4811. doi: 10.1093/bioinformatics/btp523.

C. M. Lloyd, M. D. B. Halstead, and P. F. Nielsen. CellML: its future, present and

past. Progress in Biophysics and Molecular Biology, 85:433–450, february 2004.

C. M. Lloyd, J. R. Lawson, P. J. Hunter, and P. F. Nielsen. The CellML Model

Repository. Bioinformatics, 24(18):2122–2123, September 2008. ISSN 1460-2059.

doi: 10.1093/bioinformatics/btn390.

R. Magjarevic, T. Yu, J. R. Lawson, and R. D. Britten. A Distributed Revision

Control System for Collaborative Development of Quantitative Biological Models.

In C. T. Lim and J. Goh Cho Hong, editors, 13th International Conference on

Biomedical Engineering, volume 23 of IFMBE Proceedings, chapter 473, pages

1908–1911. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi: 10.1007/

978-3-540-92841-6 473.

L. Marenco, N. Tosches, C. Crasto, G. Shepherd, P. L. Miller, and P. M. Nadkarni.

Achieving Evolvable Web-Database Bioscience Applications Using the EAV/CR

Framework: Recent Advances. Journal of the American Medical Informatics As-

sociation, 10(5):444–453, SEP 2003. doi: 10.1197/jamia.M1303.

W. Materi and D. S. Wishart. Computational systems biology in drug discovery and

development: methods and applications. Drug Discovery Today, 12(7-8):295–303,

April 2007. ISSN 13596446. doi: 10.1016/j.drudis.2007.02.013.

D. L. McGuinness and F. van Harmelen. OWL web ontology language overview.

W3C recommendation, W3C, Feb. 2004. http://www.w3.org/TR/2004/REC-owl-

features-20040210/.

A. D. McNaught and A. Wilkinson. IUPAC Compendium of Chemical Terminology.

WileyBlackwell, 2nd revised edition edition, August 1997. ISBN 0865426848.

A. Miller. Simulation Metadata Specification. Online publication. Accessed 16

February 2011, April 2009. URL http://www.cellml.org/specifications/

metadata.

E. Miller and F. Manola. RDF primer. W3C recommendation, W3C, Feb. 2004.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

253

http://www.cellml.org/specifications/metadata
http://www.cellml.org/specifications/metadata

J. A. Miller, G. T. Baramidze, A. P. Sheth, and P. A. Fishwick. Investigating

ontologies for simulation modeling. In Proceedings of the 37th Annual Simulation

Symposium (ANSS04). IEEE, 2004.

R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, H. C. T. Ho, R. Fagin, and

L. Popa. The Clio project: managing heterogeneity. SIGMOD Rec., 30(1):78–83,

March 2001. ISSN 0163-5808. doi: 10.1145/373626.373713.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, June 1999. ISBN 0521658691.

M. Minsky. Models, minds, machines. In Proceedings of the IFIP Congress, pages

45–49, 1965.

J. Montani, T. Adair, R. Summers, T. Coleman, and A. Guyton. A simulation

support system for solving large physiological models on microcomputers. Inter-

national journal of bio-medical computing, 24(1):41, 1989. ISSN 0020-7101.

I. I. Moraru, J. C. Schaff, B. M. Slepchenko, M. L. Blinov, F. Morgan, A. Lakshmi-

narayana, F. Gao, Y. Li, and L. M. Loew. Virtual Cell modelling and simulation

software environment. IET Systems Biology, 2(5):352–362, September 2008. ISSN

17518849. doi: 10.1049/iet-syb:20080102.

Nature. In Pursuit of Systems. Nature, 435(1), 2005. Editorial.

D. P. Nickerson and M. L. Buist. A physiome standards-based model publication

paradigm. Physical and Engineering Sciences, 367(1895):1823–1844, May 2009.

doi: 10.1098/rsta.2008.0296.

D. P. Nickerson, A. Corrias, and M. L. Buist. Reference descriptions of cellular

electrophysiology models. Bioinformatics, 24(8):1112–1114, March 2008. doi:

10.1093/bioinformatics/btn080.

E. Nordlie, M.-O. Gewaltig, and H. E. Plesser. Towards Reproducible Descriptions

of Neuronal Network Models. PLoS Comput Biol, 5(8):e1000456+, August 2009.

ISSN 1553-7358. doi: 10.1371/journal.pcbi.1000456.

B. Novak and J. J. Tyson. Numerical analysis of a comprehensive model of M-

phase control in Xenopus oocyte extracts and intact embryos. Journal of Cell

Science, 106(4):1153–1168, December 1993. URL http://jcs.biologists.org/

content/106/4/1153.abstract.

254

http://jcs.biologists.org/content/106/4/1153.abstract
http://jcs.biologists.org/content/106/4/1153.abstract

R. Nusse. Wnt signaling and stem cell control. Cell research, 18(5):523–527, May

2008. ISSN 1748-7838. doi: 10.1038/cr.2008.47.

Y. Oertel. ExML – ein Austauschformat für valide Experimentbeschreibungen zum

Austausch zwischen verschiedenen Simulationssystemen. Master’s thesis, Rostock

University, Fakultät für Informatik und Elektrotechnik, April 2009. Supervised by

Dagmar Köhn, Jan Himmelspach, Adelinde M Uhrmacher and Olaf Wolkenhauer.

B. G. Olivier and J. L. Snoep. Web-based kinetic modelling using JWS online.

Bioinformatics (Oxford, England), 20(13):2143–2144, September 2004. ISSN 1367-

4803. doi: 10.1093/bioinformatics/bth200.

C. Osgood, G. Suci, and P. Tannenbaum. The measurement of meaning. University

of Illinois Press, 1971.

H. Ou. Speicherung Komplexer XML-Modelle am Beispiel von SBML. Study thesis,

Rostock University, April 2009. Supervised by Dagmar Köhn.

C. Overstreet, R. Nance, and O. Balci. Issues in enhancing model reuse. In In-

ternational Conference on Grand Challenges for Modeling and Simulation, pages

27–31, 2002.

G. Pastori, V. Simons, and M. van Bogaert. Systems biology in the european research

area. ERASysBio Partners, strategy paper, March 2008.

K. Pawlikowski, H. D. J. Jeong, and J. R. Lee. On credibility of simulation studies

of telecommunication networks. IEEE Communications Magazine, 40:132–139,

2002.

H. A. Piwowar, R. S. Day, and D. B. Fridsma. Sharing Detailed Research Data Is

Associated with Increased Citation Rate. PLoS ONE, 2(3):e308+, 2007. ISSN

1932-6203. doi: 10.1371/journal.pone.0000308.

N. Poppelier, R. Miner, P. Ion, and D. Carlisle. Mathematical markup language

(MathML) version 2.0 (second edition). W3C recommendation, W3C, Oct. 2003.

http://www.w3.org/TR/2003/REC-MathML2-20031021/.

M. Porter. An algorithm for suffix stripping. Program, 14:130–137, 1980.

C. Priami. Stochastic π-calculus. The Computer Journal, 38(7):578, 1995. ISSN

0010-4620.

255

C. Priami and P. Quaglia. Modelling the dynamics of biosystems. Briefings in

Bioinformatics, 5(3):259–269, 2004. doi: 10.1093/bib/5.3.259. URL http://bib.

oxfordjournals.org/content/5/3/259.abstract.

J. Quackenbush. Standardizing the standards. Molecular systems biology, 2:1–3,

February 2006. ISSN 1744-4292. doi: 10.1038/msb4100052.

R. Reese and D. L. Wyatt. Software reuse and simulation. In WSC ’87: Proceedings

of the 19th conference on Winter simulation, pages 185–192, New York, NY, USA,

1987. ACM. ISBN 0-911801-32-4. doi: 10.1145/318371.318404.

S. Robinson, R. Nance, R. Paul, M. Pidd, and S. Taylor. Simulation model reuse:

definitions, benefits and obstacles. Simulation Modelling Practice and Theory, 12

(7-8):479–494, November 2004. ISSN 1569190X. doi: 10.1016/j.simpat.2003.11.

006.

M. Röhl. Definition und Realisierung einer Plattform zur modellbasierten Kompo-

sition von Simulationsmodellen. PhD thesis, Rostock University, 2008.

M. Röhl and A. M. Uhrmacher. Flexible integration of XML into modeling and

simulation systems. In Proceedings of the 38th Winter simulation Conference,

pages 1813–1820, December 2005. doi: 10.1145/1013329.1013349.

S. Rönnau, J. Scheffczyk, and U. M. Borghoff. Towards xml version control of office

documents. In Proceedings of the 2005 ACM symposium on Document engineering,

DocEng ’05, pages 10–19, New York, NY, USA, 2005. ACM. ISBN 1-59593-240-2.

doi: http://doi.acm.org/10.1145/1096601.1096606.

C. Rosse and J. Mejino. A reference ontology for biomedical informatics: the Foun-

dational Model of Anatomy. Journal of biomedical informatics, 36(6):478–500,

2003. ISSN 1532-0464.

J. Rowley and R. Hartley. Organizing knowledge: an introduction to managing access

to information, chapter Knowledge, information, and their organisation. Ashgate

Publishng Limited, 2008.

P. Saffrey and R. Orton. Version control of pathway models using XML patches.

BMC Systems Biology, 3(1):34, 2009.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18:613–620, November 1975. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/361219.361220.

256

http://bib.oxfordjournals.org/content/5/3/259.abstract
http://bib.oxfordjournals.org/content/5/3/259.abstract

D. Sangiorgi and D. Walker. Pi-Calculus: A Theory of Mobile Processes. Cambridge

University Press, 2001. ISBN 0521781779.

H. M. Sauro, A. M. Uhrmacher, D. Harel, M. Hucka, M. Kwiatkowska, P. Mendes,

C. A. Shaffer, L. Strömbäck, and J. J. Tyson. Challenges for modeling and simu-

lation methods in systems biology. In L. F. Perrone, F. P. Wieland, J. Liu, B. G.

Lawson, D. M. Nicol, and R. M. Fujimoto, editors, Proceedings of the 2006 Winter

Simulation Conference, pages 1720–1730, December 2006.

I. Schmitt. Ähnlichkeitssuche in Multimedia-Datenbanken. Oldenbourg Wis-

sensch.Vlg, 2005.

M. Schulz, F. Krause, N. Le Novère, E. Klipp, and W. Liebermeister. Retrieval,

alignment, and clustering of computational models based on semantic annotations.

submitted, 2010.

D. J. Sherman. Minimum information requirements: Neither bandits in the attic

nor bats in the belfry. New Biotechnology, 25(4):173–174, April 2009.

A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Computing Surveys, 22:183–236,

1990.

G. A. Silver, O. A. H. Hassan, and J. A. Miller. From domain ontologies to modeling

ontologies to executable simulation models. In WSC ’07: Proceedings of the 39th

conference on Winter simulation, pages 1108–1117, Piscataway, NJ, USA, 2007.

IEEE Press. ISBN 1-4244-1306-0.

B. Smith. Ontology definitions. Online publication. Accessed 25 September 2010.,

2010. URL http://www.ehealthserver.com/ontology/index.php?option=

com_content&task=view&id=5&Itemid=6.

B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. J. Goldberg,

K. Eilbeck, A. Ireland, C. J. Mungall, N. Leontis, P. Rocca-Serra, A. Ruttenberg,

S.-A. Sansone, R. H. Scheuermann, N. Shah, P. L. Whetzel, and S. Lewis. The

OBO Foundry: coordinated evolution of ontologies to support biomedical data

integration. Nature Biotechnology, 25(11):1251–1255, November 2007. ISSN 1087-

0156. doi: 10.1038/nbt1346.

J. L. Snoep and B. G. Olivier. JWS Online Cellular Systems Modelling and

Microbiology. Microbiology, 149(11):3045–3047, November 2003. doi: http:

//dx.doi.org/10.1099/mic.0.C0124-0.

257

http://www.ehealthserver.com/ontology/index.php?option=com_content&task=view&id=5&Itemid=6
http://www.ehealthserver.com/ontology/index.php?option=com_content&task=view&id=5&Itemid=6

L. N. Soldatova and R. D. King. Are the current ontologies in biology good ontolo-

gies? Nature Biotechnology, 23(9):1095–1999, 2005.

M. Spiegel, P. F. Reynolds, and D. C. J. Brogan. A case study of model context

for simulation composability and reusability. In M. E. Kuhl, N. M. Steiger, F. B.

Armstrong, and J. A. Joines, editors, Proceedings of the 2005 Winter Simulation

Conference, 2005.

R. Stevens, A. Rector, and D. Hull. What is an ontology? Ontogenesis – On-

line Journal. Accessed 2 April 2010, January 2010. URL http://ontogenesis.

knowledgeblog.org/2010/01/22/what/.

L. Strömbäck, D. Hall, and P. Lambrix. A review of standards for data exchange

within systems biology. Proteomics, 7(6):857–867, March 2007. ISSN 1615-9853.

doi: 10.1002/pmic.200600438.

N. Swainston. SBML Browse. Poster presentation, SBML Hackathon 2010, March

2010. URL http://www.mcisb.org/SBMLBrowse/.

N. Swainston and P. Mendes. libAnnotationSBML: a library for exploiting SBML

annotations. Bioinformatics, 25(17):2292–2293, September 2009. ISSN 1460-2059.

doi: 10.1093/bioinformatics/btp392.

C. Taylor, D. Field, S. Sansone, J. Aerts, R. Apweiler, M. Ashburner, C. Ball,

P. Binz, M. Bogue, T. Booth, et al. Promoting coherent minimum reporting

guidelines for biological and biomedical investigations: the MIBBI project. Nature

Biotechnology, 26(8):889–896, 2008.

J. J. Tyson. Modeling the cell division cycle: cdc2 and cyclin interactions. Proceed-

ings of the National Academy of Sciences of the United States of America, 88(16):

7328–7332, August 1991. doi: 10.1073/pnas.88.16.7328.

H. Ueda, M. Hagiwara, and H. Kitano. Robust oscillations within the interlocked

feedback model of Drosophila circadian rhythm. Journal of Theoretical Biology,

210(4):401–406, 2001.

A. M. Uhrmacher, M. John, O. Mazemondet, A. Unger, T. Rharass, B. Bader, and

A. Rolfs. Computer Science Meets Cell Biology – GRK dIEM oSiRiS. Technical

report, Rostock University, 2009. Rostocker Informatikberichte.

A. Unger. Visual Support for the Modeling and Simulation of Cell Biological Pro-

cesses. PhD thesis, University of Rostock, 2010.

258

http://ontogenesis.knowledgeblog.org/2010/01/22/what/
http://ontogenesis.knowledgeblog.org/2010/01/22/what/
http://www.mcisb.org/SBMLBrowse/

A. Unger and H. Schumann. Visual support for the understanding of simulation

processes. Visualization Symposium, IEEE Pacific, 0:57–64, 2009. doi: 10.1109/

PACIFICVIS.2009.4906838.

A. Unger, S. Biermann, M. John, A. Uhrmacher, and H. Schumann. Visual support

for modeling and simulation of cell biological systems. Poster, Washington, D.C.,

USA, Winter Simulation Conference, December 2007.

C. J. Van Rijsbergen. Information Retrieval. London: Butterworths, 2nd edition,

1979. URL http://www.dcs.gla.ac.uk/Keith/Preface.html.

K. Verspoor, D. Dvorkin, B. B. Cohen, and L. Hunter. Ontology quality assurance

through analysis of term transformations. Bioinformatics (Oxford, England), 25

(12):i77–84, June 2009. ISSN 1367-4811. doi: 10.1093/bioinformatics/btp195.

A. C. Villéger, S. R. Pettifer, and D. B. Kell. Arcadia: a visualization tool for

metabolic pathways. Bioinformatics (Oxford, England), 26(11):1470–1471, June

2010. ISSN 1367-4811. doi: 10.1093/bioinformatics/btq154.

W3C. XML Schema Structures, October 2004. URL http://www.w3.org/TR/

xmlschema-1/. http://www.w3.org/TR/xmlschema-1/.

D. Waltemath, R. Adams, D. A. Beard, F. T. Bergmann, U. S. Bhalla, R. Brit-

ten, V. Chelliah, M. T. Cooling, J. Cooper, E. Crampin, A. Garny, S. Hoops,

M. Hucka, P. Hunter, E. Klipp, C. Laibe, A. Miller, I. Moraru, D. Nickerson,

P. Nielsen, M. Nikolski, S. Sahle, H. Sauro, H. Schmidt, J. L. Snoep, D. Tolle,

O. Wolkenhauer, and N. Le Novère. Minimum Information About a Simulation

Experiment (MIASE). PLoS Computational Biology (in the press), 2011a.

D. Waltemath, F. Bergmann, R. Adams, and N. Le Novère. Simulation Experiment

Description Markup Language (SED-ML): Level 1 Version 1, 2011b. URL http:

//dx.doi.org/10.1038/npre.2011.5846.1. Available from Nature Precedings.

D. Waltemath, R. Henkel, H. Meyer, and A. Heuer. Das Sombi-Framework zum Er-

mitteln geeigneter Suchfunktionen für biologische Modelldatenbasen. Datenbank-

Spektrum, pages 1–10, 2011c. ISSN 1618-2162. doi: http://dx.doi.org/10.1007/

s13222-011-0050-x.

D. Waltemath, N. Swainston, A. Lister, F. Bergmann, R. Henkel, S. Hoops,

M. Hucka, N. Juty, S. Keating, C. Knüpfer, F. Krause, C. Laibe, W. Lieber-

meister, C. Lloyd, G. Misirli, M. Schulz, M. Taschuk, and N. Le Novère. SBML

Level 3 Package Proposal: Annotation. Nature Precedings, 2011d.

259

http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://dx.doi.org/10.1038/npre.2011.5846.1
http://dx.doi.org/10.1038/npre.2011.5846.1

M. Weitzel. Adapting Knowledge Management Solutions to Computational Systems

Biology: Introducing a Systems Biology Portal Server. Study thesis, Rostock Uni-

versity, 2011 (to appear). Supervised by Ron Henkel, Holger Meyer and Dagmar

Waltemath.

S. White. Introduction to BPMN. IBM Cooperation, pages 2008–029, 2004.

S. M. Wimalaratne, M. D. B. Halstead, C. M. Lloyd, M. T. Cooling, E. J. Crampin,

and P. F. Nielsen. A method for visualizing CellML models. Bioinformatics, 25

(22):3012–3019, November 2009a. doi: 10.1093/bioinformatics/btp495.

S. M. Wimalaratne, M. D. B. Halstead, C. M. Lloyd, E. J. Crampin, and P. F.

Nielsen. Biophysical annotation and representation of CellML models. Bioin-

formatics, 25(17):2263–2270, September 2009b. ISSN 1460-2059. doi: 10.1093/

bioinformatics/btp391.

D. Wolf and A. P. Arkin. Motifs, modules and games in bacteria. Current Opin-

ion in Microbiology, 6(2):125–134, April 2003. ISSN 13695274. doi: 10.1016/

S1369-5274(03)00033-X.

B. Zhang, J. Shen, Q. Xiang, and Y. Wang. Compositemap: A novel framework for

music similarity measure. In Proceedings of the 32nd international ACM SIGIR

conference on Research and development in information retrieval, pages 403–410.

ACM, 2009.

260

Theses

1. The reuse of models supports research in systems biology, but it is hindered

by the difficulty in retrieving relevant models. This thesis argues that the

development of enhanced search techniques would improve model reuse.

2. Many tasks related to bio-models cannot solely rely upon model encoding, and

must also incorporate processable meta-information. A rich and unambiguous

annotation scheme is desirable. This work implements such a scheme for the

model representation format SBML.

3. Current model repositories are restricted to one particular model representa-

tion format. This situation necessitates the repeated development of model

management capabilities for each repository, in particular to realize model

versioning, display, and search. This work shows how a format-independent,

generic model database allows for integrative model maintenance.

4. Current search systems are format-specific, and the incorporation of model

meta-information is limited. The search system developed in this thesis ab-

stracts from the model encoding and evaluates available meta-information.

It enables search across different model representation formats, and leads to

richer and more complete search results.

5. The results of conventional model search are presented as simple sets of model

IDs. A ranked retrieval system, as developed in this work, supports users in

finding the best matching model for their question.

6. Models evolve as new details are unraveled, while previous versions of a model

must retain addressable. This work demonstrates how a versioning system for

bio-models tracks both, changes in the model and in its annotations.

7. Reproducibility of results is a basic requirement in systems biology, not only

for experiments in the wet lab, but also for models and simulation. Finding

a model in a database is not sufficient to fully comprehend the meaning of

a model. Hence the simulation experiments performed upon it must also be

made available. In this work, a standard format for the encoding of simulation

experiments is developed.

In desperation I asked Fermi whether he was not impressed by

the agreement between our calculated numbers and his

measured numbers. He replied, How many arbitrary

parameters did you use for your calculations? I thought for a

moment about our cut-off procedures and said, Four. He said,

I remember my friend Johnny von Neumann used to say, with

four parameters I can fit an elephant, and with five I can make

him wiggle his trunk. With that, the conversation was over.

(F. Dyson, [Dyson 2004])

Selbstständigkeitserklärung

Ich erkläre, dass ich die eingereichte Dissertation selbstständig und ohne fremde Hilfe

verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt

und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als

solche kenntlich gemacht habe.

Dagmar Waltemath

Rostock, 23. März 2011

	Introduction
	Context
	Problem definition
	Contribution
	Outline

	Background
	Modeling and simulation in computational biology
	Representation formats
	Systems Biology Markup Language
	CellML
	ML
	Further investigations

	 Meta-information
	Data – information – knowledge – meta-information
	The concept of Ontology
	MIBBI
	Resource Description Framework

	Storage of XML documents
	Retrieval
	The information retrieval process

	Summary

	State-of-the-art
	Meta-information for computational biology models
	The mosaic of standards
	Biology ontologies for model annotation
	Minimum Information Required In the Annotation of Models
	Further investigations: Meaning facets

	Meta-information encoding
	The MIRIAM reference standard
	Meta-information in SBML
	Meta-information in CellML
	Annotations in use

	Storage of computational biology XML-models
	Model repositories
	Model versioning

	Simulation description formats
	Summary

	SBML meta-information encoding
	Problem statement
	Enhanced SBML annotations: Annot package
	Package scope and integration into SBML
	Qualifier names
	Container and collection support
	Attribute annotations
	Annotations about annotations
	Person's meta-information

	Summary

	Exchange and reuse of simulation experiments
	Problem statement
	Minimum Information About a Simulation Experiment
	Scope
	Guidelines
	Example

	Kinetic Simulation Algorithm Ontology
	Simulation Experiment Description Markup Language
	URI scheme
	Language elements
	Conceptual design of a simulation experiment database

	Implementation
	Summary

	Format-independent model storage
	Problem statement
	Prerequisites
	Annotated bio-models
	The model information coordinate system
	Model parser
	Internal representation format

	Model storage
	Considered storage approaches
	Model database mDB
	Relation model

	Model versioning
	Aspects of bio-model versioning
	Model versioning approach

	Implementation
	Summary

	Meta-information-based ranked retrieval
	Problem statement
	Prerequisites
	Ranked retrieval of computational biology models
	Feature dimensions
	Features (conceptual)
	Structure information
	Conceptual architecture
	Sample query

	Test framework
	Implementation
	Summary

	Conclusions
	Appendices
	Qualifiers
	Biomodels.net qualifiers
	Proposed revised biomodels.net qualifiers

	Bio-Models
	Leloup Goldbeter 1999 (original and modified SBML encoding)
	Euglena movements (ML)

	Annotated bio-models
	Example
	ML annotations
	Goldbeter 1991 (CellML with MIRIAM annotations)

	SED-ML
	SED-ML language URNs
	The SED-ML XML Schema
	The SED-ML UML Schema
	Sample SED-ML experiment description

	mDB
	Internal Representation format (XML Schema)
	Representation format to IRF to mDB mapping
	Sample search on BioModels Database demo
	mDB to eDB to Mosan Object Model mapping

	Publications that have arisen from this work

