
Device Cooperation in Ad-hoc
Multimedia Ensembles

Dissertation
to Obtain the Academic Degree of

Doktor-Ingenieur (Dr.-Ing.)
of the Faculty of Computer Science and Electrical Engineering

at the University of Rostock

Submitted by

Christiane Plociennik

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2011-0161-5

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

Reviewers:

Prof. Dr. Thomas Kirste, University of Rostock

Prof. Dr. Adelinde Uhrmacher, University of Rostock

Prof. Dr. Hartmut Wandke, Humboldt University Berlin

Date of Submission: January 12, 2011

Date of Defense: October 11, 2011

Device Cooperation in Ad-hoc Multimedia Ensembles

Abstract: Today’s environments are often equipped with a complex device

infrastructure. People that use such environments can be overwhelmed by the

abundance of functionality such device ensembles offer. Therefore, it is beneficial

to assist users in operating the devices. This is what smart environments do. A

special kind of smart environments are so-called ad-hoc environments. Here, the

device infrastructure is not static. Instead, it includes mobile devices like PDAs or

notebooks that may join and leave the device ensemble at run-time. Nevertheless,

users expect the devices to act as one coherent ensemble. The focus of this thesis

lies in the question how assistance in such smart ad-hoc environments can be

realized. By analyzing a set of smart environment scenarios, we elicit a number

of requirements that the assistance should meet; the most important requirement

being distributedness. We then present an approach that fulfills these requirements:

Under the assumption that the user’s goals are known to the ensemble, it enables

the devices in an ad-hoc environment to cooperatively generate and execute an

action sequence to fulfill these goals. This approach is based on declarative

descriptions of the devices’ actions and is completely distributed. Because it uses

only local knowledge, suboptimal action sequences can occur. In a quantitative

user study, we show that users accept such suboptimal assistance if they perceive

that it offers them sufficient benefit over manual control of the devices.

Keywords: Strategy Synthesis, Action Selection, User Acceptance, Ubiq-

uitous Computing

Spontane Kooperation von Multimedia-Geräten

Zusammenfassung: Moderne Umgebungen sind oft mit einer komplexen

Infrastruktur an technischen Geräten ausgestattet. Menschen, die solche Umge-

bungen benutzen, sind zunehmend überwältigt von der Fülle an Funktionalität,

die solche Geräteensembles bieten. Deshalb ist es sinnvoll, Nutzern solcher

Umgebungen bei der Bedienung der Geräte zu assistieren. Umgebungen, die

solche Unterstützung anbieten, heißen Smart Environments. Eine Spezialform der

Smart Environments sind die so genannten Ad-hoc-Umgebungen. Sie zeichnen

sich dadurch aus, dass die Geräteinfrastruktur nicht statisch ist: Neben fest

installierten Geräten gibt es hier auch mobile Geräte wie PDAs oder Notebooks,

die dem Ensemble zur Laufzeit hinzugefügt oder auch wieder entfernt werden

können. Trotz dessen erwartet der Nutzer, dass alle Geräte als ein kohärentes

Ensemble zusammenarbeiten. Der Fokus dieser Arbeit liegt auf der Frage, wie die

Assistenz in solchen intelligenten Ad-hoc-Umgebungen realisiert werden kann.

Mithilfe von Smart-Environment-Szenarien identifizieren wir Herausforderungen,

die von der Assistenz erfüllt werden sollten. Die wichtigste Herausforderung ist

hierbei die Verteiltheit. Wir präsentieren einen Ansatz, der die Herausforderungen

erfüllt: Unter der Annahme, dass die Ziele des Nutzers bekannt sind, versetzt

dieser Ansatz das Geräteensemble in die Lage, gemeinsam eine Aktionssequenz

zu finden und auszuführen, die die Nutzerziele erfüllt. Der Ansatz basiert auf

deklarativen Beschreibungen der möglichen Geräteaktionen und arbeitet komplett

verteilt. Da er nur lokales Wissen verwendet, können suboptimale Aktionssequen-

zen auftreten. In einer quantitativen Nutzerstudie weisen wir nach, dass Nutzer

auch solche suboptimale Assistenz akzeptieren, wenn sie der Meinung sind, dass

die Assistenz genügend Vorteile gegenüber der manuellen Bedienung der Geräte

bietet.

Schlagworte: Strategiesynthese, Aktionsauswahl, Nutzerakzeptanz, Ubiqui-

tous Computing

Contents

1 Introduction 1
1.1 What Are Smart Environments? 1

1.2 What Is User Assistance? . 4

1.3 Which Assistance Does The User Want? 6

1.4 Outline and Contributions of this Thesis 11

2 Smart Environments – A Domain Analysis 15
2.1 Survey of Smart Environment Scenarios 16

2.1.1 The Ozone Project [Issarny et al. 2005] 17

2.1.2 The Intelligent Room [Coen 1997] 17

2.1.3 The Amigo project [Mokhtar et al. 2005] 18

2.1.4 Amigoni et al. [Amigoni et al. 2005] 18

2.1.5 MavHome [Das et al. 2002] 19

2.1.6 Adaptive Home [Mozer 2005] 20

2.1.7 Misker et al. [Misker et al. 2005] 20

2.1.8 Connelly and Khalil [Connelly & Khalil 2004] 21

2.1.9 Just Play [Paluska et al. 2006] 21

2.1.10 IHome [Lesser et al. 1999] 22

2.1.11 Intelligent Classroom [Franklin 1998] 23

2.1.12 The EMBASSI project [Kirste 2000] 23

2.1.13 Fujii and Suda [Fujii & Suda 2004] 24

2.1.14 Aura [Garlan et al. 2002] 24

2.1.15 Project Daidalos [Yang et al. 2006] 25

2.2 Requirements on the Strategy Synthesis 26

2.3 Which Kind of Assistance in Terms of Wandke’s Framework? . . 29

2.4 The Device Ensemble – A Multi-Agent System 32

2.5 Chapter Summary . 33

3 Related Work 35
3.1 Deliberative Control . 37

3.1.1 Theorem Proving . 37

vi Contents

3.1.2 Planning . 38

3.1.3 Matchmaking . 43

3.1.4 ContractNet . 44

3.1.5 Benefits and Shortcomings of Deliberative Control 45

3.2 Reactive Control . 46

3.2.1 Swarm Intelligence . 46

3.2.2 Embodied Computation 46

3.2.3 Field-based Task Assignment 47

3.2.4 Condition-Action Rules 47

3.2.5 Subsumption Architecture 48

3.2.6 Pattern Matching . 49

3.2.7 Artificial Neural Networks 50

3.2.8 Maes’ Spreading Activation Networks 51

3.2.9 Benefits and Shortcomings of Reactive Control 53

3.3 Hybrid Approaches . 54

3.3.1 Horizontally Layered Architectures 55

3.3.2 Vertically Layered Architectures 56

3.4 Chapter Summary . 58

4 The AdDCo Algorithm 61
4.1 Preliminaries: Operators – Syntax and Meaning 64

4.1.1 Syntax . 64

4.1.2 Operations on Expressions 65

4.1.3 Worlds; Semantics . 66

4.1.4 Operators . 67

4.2 Maes’ Action Selection Algorithm 68

4.2.1 The PM Algorithm . 72

4.3 Maes’ Algorithm in Smart Environments 75

4.4 The AdDCo Algorithm . 77

4.4.1 The Overall System Architecture 78

4.4.2 The Architecture of a CompMod 80

4.4.3 The Message Vectors . 84

4.4.4 Parsing the Message Vectors 86

4.4.5 Operator Schemes and Instantiation 88

Contents vii

4.4.6 Link Schemes and Linked Operators 90

4.4.7 Building up the World Model 92

4.4.8 Adding CompModInsts to the Reduced Network 93

4.4.9 Deleting CompModInsts from the Reduced Network . . . 95

4.4.10 Executability of CompModInsts 96

4.4.11 The Action Selection Algorithm 98

4.4.12 Differences to the PM Algorithm 101

4.5 Evaluation of the AdDCo Algorithm 103

4.5.1 Scenario 1: Adjusting the Light Level 105

4.5.2 Scenario 2: Projector Scenario I 105

4.5.3 Scenario 3: Tracking the Speaker with a Movable Camera 106

4.5.4 Scenario 4: Projector Scenario II 107

4.5.5 Results . 107

4.5.6 Discussion . 109

4.6 Classification of the AdDCo architecture 112

4.6.1 On the Single-Agent Level: A Temporally Layered Archi-

tecture . 112

4.6.2 On the Multi-Agent-Level: Different Phases in

Wooldridge’s and Jennings’ CDPS model 113

4.7 Chapter Summary . 115

5 Enhancing the AdDCo Algorithm 119
5.1 Enhancing Flexibility: Supporting Universally Quantified Effects . 120

5.2 The Persistent Action Problem 123

5.2.1 Solving the Persistent Action Problem Using Planning:

The Locks Approach . 127

5.2.2 Solving the Persistent Action Problem with the AdDCo Al-

gorithm: The Guarding Approach 132

5.2.3 Comparing the Two Paradigms 134

5.3 Enhancing Design-time Modularization: Hiding CompMods and

CompModInsts . 136

5.4 Chapter Summary . 139

6 User Study 141
6.1 Related Work . 143

viii Contents

6.1.1 Proactive Assistance Systems 143

6.1.2 Research on the Effects of Automation 145

6.1.3 Models for Evaluating Ubiquitous Computing Applications 147

6.2 The Assistance System Used for the Study 150

6.3 Conducting the User Study . 153

6.3.1 The Design of the Study 153

6.3.2 Experimental Procedure 160

6.3.3 Hypotheses . 163

6.4 Results of the User Study . 164

6.4.1 Manipulation Checks . 167

6.4.2 Quantitative Findings of the User Study 168

6.4.3 Comments Given by the Participants 173

6.5 Scheme of User Acceptance and Performance 176

6.6 Ad-hoc Assistance Systems and Wandke’s Framework 177

6.7 Implications for User Interface Design of Ubiquitous Computing

Systems . 178

6.8 Limitations of the Study . 180

6.9 Chapter Summary . 181

7 Providing Declarative Action Descriptions 183
7.1 Related Work . 184

7.2 Semantic Web Services . 185

7.2.1 OWL-S . 187

7.2.2 WSMO . 189

7.2.3 DSD . 190

7.2.4 WSDL-S and SAWSDL 192

7.2.5 Benefits and shortcomings 193

7.3 Embracing the Semantic Web . 193

7.4 Chapter Summary . 194

8 Conclusion and Outlook 197
8.1 Key Results . 198

8.2 Outlook . 200

Contents ix

9 Appendix 203
9.1 Notational Conventions . 203

9.2 Example: Instantiating an Operator Scheme Containing a Univer-

sally Quantified Effect . 204

Bibliography 213

List of Figures

1.1 A typical usage situation in a smart environment. 2

1.2 An ad-hoc ensemble in a smart meeting room. 3

1.3 User assistance in two stages. 4

1.4 User assistance in ad-hoc environments. 5

3.1 The continuum of reactive and deliberative control. 37

3.2 A Maes spreading activation network. 51

3.3 Layered architectures. 55

4.1 The activation flow in the PM algorithm in Scenario 4. 77

4.2 The activation flow in the AdDCo algorithm in Scenario 4. 78

4.3 The overall system architecture. 79

4.4 Four CompModInsts connected by links. 81

4.5 The architecture of a CompMod. 82

4.6 Action selection messages parsed and distributed by the Commu-

nication Component. 86

4.7 Network maintenance messages parsed and distributed by the

Communication Component. 87

4.8 Building up the reduced network. 94

4.9 Calculation of the activation level of CompMods x and z at time

t + 1. The information flow depicted as dotted red lines is realized

via messages between CompMods. 101

4.10 The total number of messages sent during the initial phase. 111

4.11 The average number of messages per action selection cycle. 111

4.12 The total number of messages sent during action selection. 111

4.13 The AdDCo algorithm: a temporally layered architecture. 113

4.14 The AdDCo algorithm in terms of Wooldridge’s CDPS model. . . 114

5.1 One chain locks the resources it occupies... 130

5.2 ... so another chain cannot use them. 130

5.3 The ShowDoc action guards its preconditions... 133

5.4 ... and notices when one of them is not fulfilled anymore. 133

List of Figures xi

5.5 Linking CompModInsts via a “secretary”. 138

6.1 The user interface of the assistance system. 151

6.2 The user interface for manual configuration. 152

6.3 The technical infrastructure used in the experiments. 153

6.4 A participant in Scenario 3. 156

6.5 The study design in a matrix. 159

6.6 Characteristics of the sample. 161

6.7 Influence of scenario on perceived reliability; influence of the num-

ber of tasks on participants’ perceived task load level. 162

6.8 Influence of technophilia on perceived competence; relation be-

tween subject and technophilia. 163

6.9 Influence of participants’ sex on technophilia; relation between sex

and subject. 164

6.10 Influence of training on perceived ease of use (PE); influence of the

number of tasks on perceived usefulness (PU). 165

6.11 Relation between PU and switching to manual configuration; influ-

ence of scenario on PU. 166

6.12 Influence of scenario on satisfaction; influence of technophilia on

PU. 167

6.13 Influence of scenario on switching to manual control. 169

6.14 Scenario 1: Influence of switching to manual control on time and

number of interactions. 170

6.15 Scenario 2: Influence of switching to manual control on time and

number of interactions. 171

6.16 Scenario 3: Influence of switching to manual control on time and

number of interactions. 172

6.17 The proposed scheme of user acceptance and performance. 176

7.1 Mapping of a PDDL operator to OWL-S. 188

7.2 Service description in WSMO. 191

List of Abbreviations

AdDCo algorithm . . . Ad-hoc Device Cooperation algorithm

AGV automatic guided vehicle

ANN artificial neural network

ANOVA analysis of variance

ASMsg action selection message

BBL behavior-based layer

BPEL4WS Business Process Execution Language for Web Services

CDPS Cooperative Distributed Problem Solving

CMI CompModInst

CPL cooperative planning layer

DAML-S DARPA agent markup language for services

DSD DIANE Service Description

ECo Ensemble Communication Framework

EIB European Installation Bus

HTN hierarchical task network

LPL local planning layer

NMMsg network maintenance message

OPOSSum Online Portal for Semantic Services

OWL-S Web Ontology Language for Services

PDDL Planning Domain Definition Language

PE perceived ease of use

List of Abbreviations xiii

PM algorithm Pattie Maes’ algorithm

PTAM Technology Acceptance Model for Pervasive Computing

PU perceived usefulness

SAWSDL Semantic Annotations for WSDL

SWRL Semantic Web Rule Language

TA-EG Technikaffinität Elektronische Geräte; english:

technophilia with respect to electronic devices

TAM Technology Acceptance Model

UC-AM Ubiquitous Computing Acceptance Model

UPnP Universal Plug and Play

UTAUT Unified Theory of Acceptance and Use of Technology

WSDL Web Services Description Language

WSDL-S Web Service Semantics

WSMO Web Service Modeling Ontology

XML Extensible Markup Language

Chapter 1

Introduction

Contents
1.1 What Are Smart Environments? 1

1.2 What Is User Assistance? . 4

1.3 Which Assistance Does The User Want? 6

1.4 Outline and Contributions of this Thesis 11

1.1 What Are Smart Environments?

The world we live in is becoming increasingly complex. It is becoming ever more

common for us to use technical devices in different parts of our everyday lives. To-

day many people own a desktop computer, a laptop, a cell phone and a PDA. Meet-

ing rooms often contain computers, projectors, motor canvasses, and sun blinds.

People use navigation systems in their cars and entertainment systems in their

homes.

With the increasing number and diversity of devices the question how to control

all those devices becomes more and more important. We often want to do things

that involve a combination of devices. To watch a DVD movie, for example, we

have to turn on the DVD player, turn on the TV screen, switch to the video channel,

insert the DVD into the player and press Play. Many people are confused by the

abundance of functionality modern devices offer and wonder how to control all

those devices.

It is therefore necessary that computer scientists investigate how to assist people

in such technology-rich environments. The branch of computer science concerned

with this question is called Ubiquitous Computing, Pervasive Computing, Smart

Environments, Intelligent Environments or Calm Computing. Especially in Europe

2 Chapter 1. Introduction

it is also referred to by the term Ambient Intelligence. Ubiquitous Computing re-

search is centered around Weiser’s vision [Weiser 1991]:

“The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguish-

able from it.”

Figure 1.1: A typical usage situation in a smart environment.

But why is it desirable that technology disappears? To answer this question,

let us look at the way this kind of technology is used. It differs in many aspects

from the way people have used technology – and especially computing devices

– a few decades ago. Twenty years ago, people used to sit in front of a desktop

computer and devoted all their attention to this computer. Today, most people own a

number of smaller, mobile computing devices like laptops, mobile phones or PDAs.

Computers are embedded in everyday devices like DVD players. This has changed

the circumstances under which people use technology: Users are often situated in

“real life” and have a primary task other than operating the devices. For example,

if a speaker is about to give a presentation in a meeting or at a conference in front

1.1. What Are Smart Environments? 3

of a huge audience, s/he will have other things on her/his mind (i.e. the upcoming

presentation) than figuring out how to control the equipment in the conference room

(see Figure 1.1). For this reason, it is beneficial that technology assists the user

unobtrusively and does not demand the user’s full attention.

It is a huge challenge to make Weiser’s vision come true for environments with

a fixed device infrastructure. Yet it is an even bigger challenge to achieve the

same in so-called ad-hoc environments which we examine in this thesis. Ad-hoc

environments do not consist of a fixed device ensemble. Consider an example smart

meeting room: It contains several projectors, several canvasses, some sunblinds,

and a set of dimmable lights. In addition, users bring their own mobile devices

like laptops or PDAs into the environment. Those mobile devices should integrate

with the fixed devices to form an ad-hoc ensemble (see Figure 1.2). The most

radical form of an ad-hoc ensemble is the so-called white room scenario: Such a

room contains no fixed devices apart from a network infrastructure; all devices are

brought by the users.

Figure 1.2: An ad-hoc ensemble in a smart meeting room.

4 Chapter 1. Introduction

1.2 What Is User Assistance?

Figure 1.3: User assis-
tance in two stages.

User assistance can be divided into two stages: the

intention analysis and the strategy synthesis (see Fig-

ure 1.3). The intention analysis tries to find out what

the user wants the ensemble to do for her/him. Typ-

ically, machine learning approaches are used for infer-

ring such user goals from sensor data and a priori knowl-

edge about the user’s behavior. In our group, we ex-

periment with inferring the goals of a team of users

based on a dynamic Bayesian model of team behavior

[Giersich & Kirste 2007]. The inferred goals can then

serve as the basis for the strategy synthesis, which tries

to help the human achieve her/his goals. Often, this in-

volves composing a sequence of device actions which,

when executed, will fulfill the goals. The main topic of

this thesis is to investigate which kind of strategy syn-

thesis mechanism is appropriate for smart ad-hoc envi-

ronments. Hence, we assume that the intention analysis works correctly and pro-

vides the user goals.

To exemplify the process of user assistance, we take a look at a very simple

scenario from the smart meeting room domain:1 Alice and Bob meet to discuss

the next steps for a project they are both involved in. The meeting takes place in

a room instrumented with four projectors and four canvasses. Alice and Bob each

bring a notebook (see Figure 1.4a). They have both prepared a set of slides they

want to show, which they now open and maximize on their notebook screens (see

Figure 1.4b). We call this the initial state. It can be sensed by the environment by

a number of hardware and software sensors. In our example, the sensors might be

software daemons that run on Bob’s and Alice’s notebooks and that notify the smart

environment when a powerpoint presentation is started. Bob wants to show his

presentation on the upper left canvas; Alice wants to show hers on the lower right

canvas (see Figure 1.4c). These goals must be inferred by the intention analysis.

Once the intention analysis has informed the strategy synthesis about the goals, the

1More scenarios follow in Chapter 2.

1.2. What Is User Assistance? 5

strategy synthesis can find the following action sequence that fulfills them: Bob’s

notebook sends Bob’s presentation to one of the projectors, which then projects it

onto the upper left canvas. Alice’s notebook sends Alice’s presentation to another

projector, which projects it onto the lower right canvas. Depending on the level of

automation an assistance system exhibits, the strategy synthesis can be performed

entirely by the human, partly by the human and partly by the system, or entirely by

the system. This is discussed in the following section.

(a) Alice and Bob enter the room. (b) The initial state.

(c) The goal state. (d) The action sequence generated.

Figure 1.4: User assistance in ad-hoc environments.

6 Chapter 1. Introduction

1.3 Which Assistance Does The User Want?

The focus of this thesis is on the technical side of strategy synthesis. However,

one cannot investigate which mechanisms are suited for assisting people without

understanding how much and which kind of assistance people want and accept.

This question is related to the question how much automation an operator of a

machine wants, which has been investigated in the field of automation science. We

therefore take some time to introduce different frameworks of user involvement.

Sheridan proposes an eight-level scale of automation (cf. [Sheridan 2002]) –

from no assistance at all where the human selects and executes the method to do

the task without any help by the computer to full automation where the computer

selects and executes the method to do the task autonomously, without any human

involvement:

1. The computer provides no assistance; the human must do the task completely

her-/himself.

2. The computer offers a selection of alternatives to do the task.

3. The computer chooses how to do the task and

4. executes the task in this way if the human approves, or

5. allows the human to veto within a fixed timespan before executing the task

automatically, or

6. executes the task automatically, then informs the human, or

7. executes the task automatically, then informs the human only if asked.

8. The computer chooses the method, executes the task, and ignores the human.

In fact, several revisions of this scale with different numbers of stages exist.

This is the most recent version. Sheridan’s model has gained wide acceptance in the

research community (see e.g. [Proud et al. 2003], [Cummings et al. 2007]). How-

ever, Wandke makes the following remarks about Sheridan’s scale [Wandke 2005]:

• Sheridan’s taxonomy refers only to decision-making and action implementa-

tion and does not consider different action stages.

• There are simpler kinds of assistance that do not require a decision to be

taken. For such cases, Sheridan’s eight stages might be too sophisticated.

• Sheridan’s model is tailored to assistance in operating situations, where spe-

1.3. Which Assistance Does The User Want? 7

cialized operators control machines and intervene in case an error occurs.

When it comes to using interactive devices rather than autonomous pro-

cesses, the model must be extended.

As a result of this discussion, Wandke proposes a conceptual framework for

assistance systems [Wandke 2005]. From his point of view, assistance systems

strive to make functions of a system accessible to the user which would otherwise

be inaccessible. Wandke gives the following possible reasons for inaccessibility of

functions:

• The user is unaware that the function exists.

• The user does not know how to apply the function.

• The user finds that applying the function her-/himself is too difficult because

it requires too much sensory, cognitive, or motor effort.

All of these reasons may lead to the user not using the system at all, or using

it ineffectively. Thus, Wandke sees assistance as a bridge between the human’s

capabilities and system functionality. We adopt his framework for our own work

as it is more comprehensive than Sheridan’s model. Furthermore, while Sheridan

developed his model with operational contexts in mind, Wandke’s framework is

tailored to assistance systems. Assistance systems can be found in such diverse

fields as driving assistance in cars, smart homes, or speech output systems for blind

users. Yet they all have in common that their users are usually non-experts in day-

to-day situations. This framework is thus better suited for the domain of Ubiquitous

Computing than Sheridan’s model. Wandke classifies assistance according to three

dimensions:

• the stages of human-machine interactions that can be assisted

• adjustment

• initiative

In the following, we explain these three dimensions. We start with the stages of

human-machine interactions that can be assisted by technical components. Wandke

distinguishes six of them. For the sake of brevity, we introduce them here in a

concise fashion. The examples are also taken from [Wandke 2005]:

1. Motivation, activation, and goal setting: A machine helps the user estab-

lish the right goals, or it motivates or activates the human. For instance, an

8 Chapter 1. Introduction

assistance system can help reinforce the user’s motive or cause the user to

continue with an ongoing activity. An example is the message “Please hold

the line” which users hear on busy phone lines.

2. Perception: In this stage, the machine helps the user perceive sensor data

by e.g. amplifying signals or transforming them into a different mode. An

example is displaying traffic signs on the car dashboard.

3. Information integration, generating situation awareness: Here, the ma-

chine helps the user interpret information. An example is a tool-tip that ex-

plains the function of a button in a program when the user moves the mouse

onto the button.

4. Decision making, action selection: The machine helps the user select and

possibly execute the appropriate actions. An example is a wizard that guides

a user through the installation process of a program.

5. Action execution: A machine helps the user or operator execute actions, e.g.

because the human is physically too weak. The user is, however, always in

control. An example is the brake assistance in driving.

6. Processing feedback of action results: In this stage, a machine helps the

user realize or interpret the results of her/his actions. An example is a park-

ing assistant that emits a sound sequence depending on the distance to a

neighboring car.

Assistance systems usually assist the user in one or a few, but seldom in all of

these stages. Our research is concerned with the decision making/action selection

step, hence we now examine this stage in more depth. Wandke proposes a seven-

level taxonomy for decision making and action selection which is influenced by

Sheridan’s eight levels:

• Supply assistance: The system presents all currently available action op-

tions to the user, without any filtering. An example is a handbook that offers

a description of the user’s action options depending on the current state. The

problem with this level is that the user may be overwhelmed by the abun-

dance of options.

• Filter assistance: Of all currently available action options, the system selects

some and presents them to the user. Actions are selected according to some

filter mechanism, e.g. the likelihood of success if the user chooses to execute

1.3. Which Assistance Does The User Want? 9

this action. An example is a wizard that guides a user through the installation

process of a program.

• Adviser assistance: The system presents only one action option to the user,

who may or may not follow the recommendation. An example is a navigation

system in a car which presents only one possible route to the destination.

The problem with this level is that it may not be accepted in open situations

because users perceive it as annoying.

• Delegation assistance: The system presents one action option to the user and

executes this action automatically if the user agrees. In case the user rejects

the proposal, the system may recommend another action or wait for more

information. An example is a car entertainment system that recommends

music to the user and starts replaying it if the user agrees.

• Take-over assistance: The system proposes an action to the user and exe-

cutes it automatically if the user does not refuse the action within a limited

amount of time. An example are systems that detect when the user is not

monitoring: If the operator does not respond to a signal, a security function

is executed.

• Informative execution assistance: All actions are executed by the system

automatically. The user supervises the system and can switch off the assis-

tance in case of failure. An example is the autopilot.

• Silent execution assistance: The system executes all actions automatically

without informing the user. An example is automatic gear changing. If the

system is highly reliable, this kind of assistance can be very convenient.

However, if this is not the case, the user may have to take over suddenly

in case of failure without being prepared.

Next, we describe the possibilities for adjustment. This refers to the question

how the appropriate type of assistance should be selected. Wandke’s framework

distinguishes four possibilities for adjustment:

• Fixed assistance: The same assistance system is used by all users in all

situations. An example is the electronic brake assistant in a car.

• Customized assistance: Such systems are custom-tailored to the needs of

specific groups, or customized for specific tasks, or tailored to specific con-

texts. Customization takes place during the design phase of the system.

10 Chapter 1. Introduction

• Adaptable assistance: The user can adjust the system to fit her/his needs,

tasks, or the context. An example is the gearbox of a car: One driver may

select automatic gears, another driver may choose a Tiptronic function.

• Adaptive assistance: The system itself adapts the type of assistance it pro-

vides according to the current context or stored features. An example is a

driving assistant that presents instructions to the user via textual output or

speech, depending on whether the user is looking at a screen or elsewhere.

The last dimension to look at is initiative. Wandke’s framework distinguishes

two types of initiative:

• Passive assistance: Assistance is initiated by the user. This has the advan-

tage that the user is always the master of the situation. However, the user

must know that s/he is in need of assistance, that there is an assistance system

capable of this task, and how to get the system to provide the right assistance

in the current context. Furthermore, s/he must have enough free time and

cognitive resources to initiate assistance.

• Active assistance: This type of assistance is sometimes also called proac-

tive. Assistance is initiated by the system based on the user’s preferences or

certain features of the current context. Active assistance is preferable if the

prerequisites for passive assistance are not met, or if fast task completion is

necessary (e.g. in safety-critical situations). However, active assistance runs

the risk that users may feel patronized.

The question is now, of course, where in this framework the perfect assistance

system for smart environments fits in. Each of the three dimensions we just intro-

duced has to be taken into account: Which level of decision making/action selection

is appropriate for our domain? What kind of adjustment is preferable? And in terms

of initiative, does the user prefer passive or active assistance? In order to answer

these questions, we perform an analysis of the domain of smart environments in

Chapter 2: We look at a variety of scenarios other researchers have published. This

literature review will guide us in forming a hypothesis which kind of assistance the

user in our domain wants. The hypothesis is then tested in a user study in Chapter 6.

1.4. Outline and Contributions of this Thesis 11

1.4 Outline and Contributions of this Thesis

Having settled the necessary preliminaries, we can now present the structure of this

thesis and elaborate on its contributions.

In Chapter 2 we perform a comprehensive analysis of the domain of smart en-

vironments with the help of scenarios from the literature. Our goal is to identify

requirements a strategy synthesis mechanism in smart environments has to fulfill.

Furthermore, this domain analysis will enable us to form a hypothesis which kind

of assistance in terms of Wandke’s assistance framework users in smart environ-

ments prefer.

In Chapter 3, a review of the state of the art in several fields relevant to smart

environments is given. We believe that the question whether deliberative or reactive

control is more appropriate for the strategy synthesis in smart environments is a

fundamental one. To be more precise, a key to finding a successful mechanism

for strategy synthesis lies in determining the appropriate point in the continuum

of deliberative and reactive control. Therefore, the research projects introduced in

Section 3 are all classified with respect to this dichotomy.

In Chapter 4, an appropriate mechanism for strategy synthesis is selected based

on the requirements identified in Chapter 2 and on the discussion in Chapter 3. We

chose to distribute and adapt an approach proposed by Maes [Maes 1990b]. The

resulting algorithm, called the AdDCo algorithm, is described in Chapter 4. The

last section of Chapter 4 classifies the AdDCo architecture with respect to two agent

models. In this context, a new kind of architecture is introduced: the temporally

layered architecture.

Chapter 5 introduces some more enhancements that cause the AdDCo algo-

rithm to better fulfill the requirements introduced in Section 2.2: We describe

why extending the expressivity of effects to incorporate universal quantification

improves flexibility. We furthermore elaborate on the question how persistent ac-

tions can be accounted for by the strategy synthesis in ad-hoc environments. We

compare the approach one can take when using planning as a strategy synthesis

mechanism to the approach possible when using the AdDCo algorithm. Moreover,

we describe how the AdDCo algorithm can be easily extended to further enhance

design-time modularization.

The AdDCo algorithm is a distributed algorithm; there is no component that has

12 Chapter 1. Introduction

global knowledge. Due to this, the action sequences generated by the algorithm are

often suboptimal. An interesting question is how users react to such sequences.

In Chapter 6, we therefore investigate whether users accept suboptimal assistance

and under which circumstances they accept it. The assistance system used in this

study is based on the AdDCo algorithm. We investigate how three factors influence

user acceptance: task load, experience, and system behavior. In this user study

we furthermore investigate whether the hypothesis regarding Wandke’s assistance

framework from Chapter 2 is correct.

The AdDCo algorithm generates strategies at run-time based on declarative de-

scriptions of the actions of the devices in the ensemble. These descriptions reside

directly on the devices. As the devices are likely to stem from different vendors,

their descriptions are likely to stem from different developers, too. For the de-

vices to be able to form one coherent ensemble, the descriptions must nevertheless

be written in one common language. Otherwise, it would not be possible for the

devices to communicate about their actions. An interesting question is which lan-

guages can be used for this purpose. We investigate this in Section 7, focusing on

semantic web service languages.

In Section 8 we conclude this thesis and give an outlook.

In a nutshell, this thesis makes the following contributions:

• We identify requirements that must be met by a successful strategy synthesis

mechanism in smart environments (Chapter 2).

• We discuss how an assistance system for smart environments should fit into

Wandke’s assistance framework (Chapters 2, 6).

• We review state-of-the-art research (Chapter 3) and classify the research

projects with respect to the continuum of deliberative and reactive control.

Part of this work has been published in [Reisse et al. 2007].

• We describe a distributed strategy synthesis mechanism for smart ad-hoc en-

vironments which we call the AdDCo algorithm (Chapters 4, 5). This work

has been published in [Reisse & Kirste 2008b, Reisse & Kirste 2008a].

• We introduce a new kind of layered architecture: the temporally layered ar-

chitecture (Chapter 4). The AdDCo algorithm is based on this architecture.

• We describe why supporting universally quantified effects changes the mod-

elling of actions in smart environments such that flexibility is improved. This

1.4. Outline and Contributions of this Thesis 13

work has been published in [Reisse & Kirste 2008b, Reisse & Kirste 2008a].

• We discuss how the persistent action problem can be solved. This has been

published in [Plociennik et al. 2009].

• We present the results of a quantitative user study that investigates whether

users accept suboptimal assistance, and which contextual factors influ-

ence this acceptance (Chapter 6). The factors considered are task load,

experience, and system behavior. This work has been published in

[Plociennik et al. 2010].

• We investigate which semantic web service languages are suited for describ-

ing device actions declaratively, which is needed for distributed strategy syn-

thesis mechanisms like the AdDCo algorithm (Chapter 7). This work has

been published in [Reisse et al. 2008a, Reisse et al. 2008b].

Chapter 2

Smart Environments – A Domain
Analysis

Contents
2.1 Survey of Smart Environment Scenarios 16

2.1.1 The Ozone Project [Issarny et al. 2005] 17

2.1.2 The Intelligent Room [Coen 1997] 17

2.1.3 The Amigo project [Mokhtar et al. 2005] 18

2.1.4 Amigoni et al. [Amigoni et al. 2005] 18

2.1.5 MavHome [Das et al. 2002] 19

2.1.6 Adaptive Home [Mozer 2005] 20

2.1.7 Misker et al. [Misker et al. 2005] 20

2.1.8 Connelly and Khalil [Connelly & Khalil 2004] 21

2.1.9 Just Play [Paluska et al. 2006] 21

2.1.10 IHome [Lesser et al. 1999] 22

2.1.11 Intelligent Classroom [Franklin 1998] 23

2.1.12 The EMBASSI project [Kirste 2000] 23

2.1.13 Fujii and Suda [Fujii & Suda 2004] 24

2.1.14 Aura [Garlan et al. 2002] 24

2.1.15 Project Daidalos [Yang et al. 2006] 25

2.2 Requirements on the Strategy Synthesis 26

2.3 Which Kind of Assistance in Terms of Wandke’s Framework? . 29

2.4 The Device Ensemble – A Multi-Agent System 32

2.5 Chapter Summary . 33

16 Chapter 2. Smart Environments – A Domain Analysis

Before starting to look for a suitable strategy synthesis mechanism, one must

elicit a set of requirements this strategy synthesis mechanism has to meet. To

identify the requirements, it is essential to have a good understanding of possible

use cases of assistance systems in our domain. The problem is that few “real” smart

environments exist today. Most are prototypes in research institutes. Therefore, it

is not possible to observe users while they are using such environments. Another

way to pinpoint a wide variety of different use cases is to look at smart environment

scenarios from the literature, which we do in Section 2.1. This enables us to elicit a

set of requirements on strategy synthesis in Section 2.2, and to develop a hypothesis

which kind of assistance in terms of Wandke’s assistance framework is appropriate

in smart environments in Section 2.3. In Section 2.4, we explain why such an

assistance system can be regarded as a multi-agent system.

2.1 Survey of Smart Environment Scenarios

In the following, we analyze 15 smart environment scenarios published in the last

ten years.1 We briefly describe each scenario. As some of the original scenarios

are quite long we take the liberty to shorten them in an appropriate way. Each

scenario description is followed by a classification of the assistance provided in the

scenario according to Wandke’s assistance framework. We then state whether it is

an ad-hoc scenario and if an action sequence is generated by the system. What this

means is explained in Section 2.2. If this is the case, we present an example action

sequence.2 We also state each action sequence’s length. This is important to get

an idea of the complexity of the problems that need to be solved in typical smart

environments. We furthermore present any special requirements this scenario poses

on an assistance system.

1The analysis of the last three scenarios (Fujii and Suda, Aura, and Daidalos) is based on
[Marquardt & Uhrmacher 2009].

2We wrote most of the example action sequences ourselves because many authors do not include
such examples in their scenario descriptions.

2.1. Survey of Smart Environment Scenarios 17

2.1.1 The Ozone Project [Issarny et al. 2005]

• Scenario: Four friends meet in the city of Rocquencourt for a tennis match

which they have scheduled in advance using their individual agendas. Two

of them, John and Paul, arrive by train from Paris. Having arrived at Roc-

quencourt train station, they reserve seats in an automated vehicle called a

CyberCar which takes them to the tennis court. On the way they call their

friend Michel via John’s PDA and ask him if he can recommend a movie for

the evening. Michel sends a trailer via his PDA which John and Paul watch.

There is a lot of noise in the street and thus the audio content is not audible.

Thus, textual output is presented to John and Paul. They agree on a movie

and ask Sylvie, their other friend. Afterwards, they purchase the tickets.

They organize the rest of the day (dinner, transport) in the same fashion.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Supply assistance.

– Adjustment: Adaptive assistance.

– Initiative: Passive assistance.

• Is it an ad-hoc scenario? Yes.

• Must an action sequence be generated? No. The system just provides

seamless integration of services on different devices. The services are in-

voked by the user.

• Example action sequence: –

• Number of actions in this sequence: –

• Special requirements of this scenario: –

2.1.2 The Intelligent Room [Coen 1997]

• Scenario: A user stands in front of a scalable map of the Carribean. S/he

points at Puerto Rico and requests the computer to zoom in by uttering the

command “Computer, zoom in”. S/he then points at San Juan and once again

orders the computer via speech to zoom in. Finally, s/he asks the computer

via speech about the weather there.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Supply assistance.

– Adjustment: Fixed assistance.

18 Chapter 2. Smart Environments – A Domain Analysis

– Initiative: Passive assistance.

• Is it an ad-hoc scenario? No.

• Must an action sequence be generated? No, all actions are invoked by the

user by uttering commands preceded by the word “computer”.

• Example action sequence: –

• Number of actions in this sequence: –

• Special requirements of this scenario: –

2.1.3 The Amigo project [Mokhtar et al. 2005]

• Scenario: Two boys, Robert and his friend, meet at Robert’s house and want

to watch a movie from the home movie database using the portable DVD

player Robert’s friend brought with him. The DVD player checks the ac-

cess rights, adjusts the luminosity and sound volume according to the user

preferences, and then plays the movie.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? Yes.

• Must an action sequence be generated? Yes.

• Example action sequence: (getFilm film) → (checkAccessRights film

Robert) → (setLuminosity Robert) → (setVolume Robert) → (playFilm film

Robert)

• Number of actions in this sequence: 5

• Special requirements of this scenario: playFilm is a persistent action,

which is explained in Section 2.2. Any strategy synthesis mechanism suited

for this scenario must be able to cope with persistent actions.

2.1.4 Amigoni et al. [Amigoni et al. 2005]

• Scenario: The assistance system checks whether insulin is available in a

medical store. If no insulin is left, it makes a request to pharmacies to provide

insulin. It has various modalities for this request: It can make a phone call,

send an SMS, an e-mail or a fax. Each of those possibilities is annotated

2.1. Survey of Smart Environment Scenarios 19

with numerical values for the parameters performance, cost, and probability

of success. These parameters can be used to select the optimal modality with

respect to the specific problem instance.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? Yes.

• Must an action sequence be generated? Yes.

• Example action sequence: (CreateRequestText insulin text) →

(SearchEmailAddress insulin address)→ (SendEmail text address)

• Number of actions in this sequence: 3

• Special requirements of this scenario: Involves optimization. Further-

more, the scenario requires to decompose tasks into subtasks. Thus, informa-

tion about possible decompositions (in other words, hierarchical knowledge)

must be available, and a central component must decide which decomposi-

tions to apply.

2.1.5 MavHome [Das et al. 2002]

• Scenario: Bob, the inhabitant of the MavHome smart home, usually gets up

at 7 am. From past experience the house has learned this fact and turns on

the heating at 6:45 am. Bob’s alarm clock signals the bedroom light and the

coffee maker to go on. Bob walks into the bathroom and turns on the light,

which signals MavHome to display morning news on the bathroom video

screen and to turn on the shower.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? No.

• Must an action sequence be generated? Yes, but each sequence consists of

only one action.

• Example action sequence: (turnOnHeating)

• Number of actions in this sequence: 1

20 Chapter 2. Smart Environments – A Domain Analysis

• Special requirements of this scenario: –

2.1.6 Adaptive Home [Mozer 2005]

• Scenario: The inhabitant of a smart home leaves the house at 8 am. The

home predicts s/he will return by 6:30 pm because s/he had returned by that

time on the previous days. Thus, the house runs the furnace to achieve the

appropriate temperature by the time the inhabitant returns. When the inhab-

itant returns, s/he prepares dinner. The home switches on the lights to full

intensity in the kitchen and great room. The inhabitant then relaxes on the

couch. The house dims the lights. On a weekend the house predicts that the

inhabitant will not return home before midnight and that only the master-

bedroom needs to be heated then. Hence, it uses the electric space heaters in

the bedroom instead of the whole-house furnace. When the inhabitant climbs

out of bed at 4 am, the home predicts that the bathroom will be used. Thus,

it turns on bathroom lights with low intensity.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? No.

• Must an action sequence be generated? Yes, but each sequence consists of

only one action.

• Example action sequence: (turnOnFurnace)

• Number of actions in this sequence: 1

• Special requirements of this scenario: –

2.1.7 Misker et al. [Misker et al. 2005]

• Scenario: Eric wants to show pictures from his mobile phone to Fiona on

a larger screen in a café. He connects the tabletop screen, his mobile phone

and his photo database at home and controls the slideshow with his phone.

While showing the photos, he adds voice comments to the photos using his

phone.

– Decision making/action selection: Supply assistance.

2.1. Survey of Smart Environment Scenarios 21

– Adjustment: Fixed assistance.

– Initiative: Passive assistance.

• Is it an ad-hoc scenario? Yes.

• Must an action sequence be generated? No. The system’s purpose is to

provide seamless integration of services on different devices. The services

are invoked by the user.

• Example action sequence: –

• Number of actions in this sequence: –

• Special requirements of this scenario: –

2.1.8 Connelly and Khalil [Connelly & Khalil 2004]

• Scenario: When a user walks into an office, her/his mp3 player turns off

automatically. Likewise, when the user attends a meeting, the cell phone

ringer is turned off.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? Yes.

• Must an action sequence be generated? Yes, but each sequence consists of

only one action.

• Example action sequence: (turnOffMP3Player)

• Number of actions in this sequence: 1

• Special requirements of this scenario: –

2.1.9 Just Play [Paluska et al. 2006]

• Scenario: A user wants to play a video from her/his laptop computer on the

TV and the home entertainment system.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? Yes.

22 Chapter 2. Smart Environments – A Domain Analysis

• Must an action sequence be generated? Yes.

• Example action sequence: (setVideoOutput laptop TV)→ (setAudioOutput

laptop homeEntertainmentSystem)→ (playVideoOnTV laptop file TV)

• Number of actions in this sequence: 3

• Special requirements of this scenario: playVideoOnTV is a persistent ac-

tion. This is explained in Section 2.2.

2.1.10 IHome [Lesser et al. 1999]

• Scenario: Lesser et al. present a very detailed coffee maker scenario: A

coffee maker agent is described by its actions or tasks, e.g. Acquire-Beans,

Brew-Coffee. These tasks are arranged in a hierarchy called a TÆMS task

structure that shows how actions can be decomposed into subactions. For

example, Make-Coffee can be decomposed into Acquire-Ingredients and Hot-

Coffee. The TÆMS task structure may also contain different alternatives to

perform a task. The task Acquire-Beans, for example, can be decomposed

into either one of Use-Frozen-Beans or Buy-Beans-From-Starbucks. These

alternatives are annotated with the parameters cost, quality, and duration.

This way, the coffee maker agent can optimize the process of making coffee

according to its current situation.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? No, the agents are hard-wired.

• Must an action sequence be generated? Yes.

• Example action sequence: (Get-Hot-Water) → (Use-Frozen-Beans) →

(Grind-Beans)→ (Mix-And-Filter)→ (Brew-Coffee)

• Number of actions in this sequence: 5

• Special requirements of this scenario: Involves optimization. Further-

more, the scenario requires to decompose tasks into subtasks. Thus, informa-

tion about possible decompositions (in other words, hierarchical knowledge)

must be available, and a central component must decide which decomposi-

tions to apply.

2.1. Survey of Smart Environment Scenarios 23

2.1.11 Intelligent Classroom [Franklin 1998]

• Scenario: A speaker in an intelligent classroom is filmed by a camera. As

s/he walks from the podium over to the chalkboard, the camera zooms out

to follow the speaker. When the speaker has arrived at the chalkboard, the

lights are adjusted and the camera is set to show the chalkboard.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? No, the room is prewired.

• Must an action sequence be generated? Yes.

• Example action sequence: (moveCamera podium) → (zoomInCamera

speaker podium) → (trackPerson speaker podium) → (zoomOutCamera)

→ (moveCamera chalkboard) → (zoomInCamera speaker chalkboard) →

(trackChalkboard speaker chalkboard)

• Number of actions in this sequence: 7

• Special requirements of this scenario: As the speaker moves from the

podium to the chalkboard, the sensor data changes from (At speaker podium)

to (At speaker chalkboard), and the goal changes from (Tracked speaker) to

(Tracked chalkboard). Furthermore, trackPerson and trackChalkboard are

persistent actions, which is explained in Section 2.2. Thus, a strategy syn-

thesis mechanism that is suited for this scenario must be able to account for

changing sensor data and changing goals as well as persistent actions.

2.1.12 The EMBASSI project [Kirste 2000]

• Scenario: A user wants light in the room while minimizing energy con-

sumption. Currently three lights are on and the shutter is closed. The system

realizes that it is light outside. It therefore turns off the three lights and opens

the shutter.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

24 Chapter 2. Smart Environments – A Domain Analysis

• Is it an ad-hoc scenario? No.

• Must an action sequence be generated? Yes.

• Example action sequence: (open-shutter shutter) → (turn-off lamp3) →

(turn-off lamp2)→ (turn-off lamp1)→ (light-on)

• Number of actions in this sequence: 5

• Special requirements of this scenario: –

2.1.13 Fujii and Suda [Fujii & Suda 2004]

• Scenario: Tom has found a new restaurant on the internet. Now he wants to

print out the route from his home to this restaurant without having to bother

about details like fetching the restaurant’s address from the website or ac-

cessing a route planner.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? Yes.

• Must an action sequence be generated? Yes.

• Example action sequence: (getAddress restaurantAddress) → (switchOn

printer) → (getRoute homeAddress restaurantAddress document) → (print-

Document document printer)

• Number of actions in this sequence: 4

• Special requirements of this scenario: –

2.1.14 Aura [Garlan et al. 2002]

• Scenario: Jane is at the airport and waits for her flight at gate 23. Before

boarding the plane, she wants to send some e-mails. Unfortunately, the wi-fi

at gate 23 is overloaded, hence she would not be able to finish the upload

before her flight. However, the wi-fi connection at gate 15 is better, and Jane

has some time left. The Aura system notices that and suggests Jane to go to

gate 15. There, Aura connects to the wi-fi and uploads Jane’s e-mails. Jane

then walks back to gate 23 and boards her plane.

• Which kind of assistance in Wandke’s framework?

2.1. Survey of Smart Environment Scenarios 25

– Decision making/action selection: Informative execution assis-

tance/Adviser assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? Yes.

• Must an action sequence be generated? Yes.

• Example action sequence: (move gate23 gate15 laptop) → (connectWiFi

laptop gate15 highBandwidth)→ (sendMail e-mails laptop highBandwidth)

→ (move gate15 gate23 laptop)→ (checkIn laptop gate23)

• Number of actions in this sequence: 5

• Special requirements of this scenario: The scenario involves actions of a

human. For the scenario to be applicable, Jane must move her laptop from

gate 23 to gate 15 and back. Hence, when the move action is executed, the

assistance system must wait until Jane has actually moved before the next ac-

tion is scheduled. Feedback about whether the move action is complete must

come from sensors, e.g. a positioning system. Furthermore, as Marquardt et

al. have remarked [Marquardt & Uhrmacher 2009], when human actions are

involved, the action sequence should be regarded as a suggestion for acting

rather than a plan. The human must have the possibility to opt out easily.

Therefore, the level of decision making and action selection in this scenario

can be regarded as a combination of informative execution assistance and

adviser assistance. Furthermore, connectWiFi is a persistent action, which is

explained in Section 2.2.

2.1.15 Project Daidalos [Yang et al. 2006]

• Scenario: Bart is watching the news on TV when his boss calls and asks him

to pick up a customer from the airport. As Bart enters his car, the TV starts

streaming the buffered news cast to Bart’s PDA. The PDA converts the news

to an audio stream, which is then accessed and played by the car radio.

• Which kind of assistance in Wandke’s framework?
– Decision making/action selection: Informative execution assistance.

– Adjustment: Fixed assistance.

– Initiative: Active assistance.

• Is it an ad-hoc scenario? Yes.

26 Chapter 2. Smart Environments – A Domain Analysis

• Must an action sequence be generated? Yes.

• Example action sequence: (connect PDA carRadio) → (stopStream TV

recordedNews video) → (connect TV PDA) → (startStream TV recorded-

News video) → (accessStream TV PDA recordedNews video) → (convert-

Data recordedNews video audio PDA) → (accessStream PDA carRadio

recordedNews audio)

• Number of actions in this sequence: 7

• Special requirements of this scenario: connect, startStream, and ac-

cessStream are persistent actions. This is explained in Section 2.2.

2.2 Requirements on the Strategy Synthesis

Based on the survey in the previous section, we now discuss the requirements that

must be met by the strategy synthesis in smart environments:

• Spontaneity: 9 of the 15 scenarios presented in the previous section are ad-

hoc scenarios: Users expect the strategy synthesis to function as soon as they

have built up the ad-hoc ensemble; they do not have the time or the will to

wait for a training phase to end before they can use the system. Thus, devices

must be able to form an ensemble even if they have never been used together,

and this ensemble must function right away. This implies that any approach

that relies on learning is not suited for the majority of the scenarios.

• Action sequences: 12 of the 15 scenarios require the strategy synthesis to

generate sequences of actions. However, these are usually rather short. In all

the scenarios we looked at, the longest action sequence that had to be created

had 7 actions. Of course, this does not mean that longer sequences will never

occur. However, it allows us to conclude that in the average scenario that can

be found in the literature today the strategy synthesis mechanism of choice

need not be able to find long, complicated action sequences (as e.g. in the

planning problems from the ICAPS planning competition [IPC 2008]). Of

course, the number of actions needed to fulfill a goal depends on the gran-

ularity used to model the actions. However, in order to keep the strategy

synthesis process as simple as possible, it is beneficial to model actions in

a coarse-grained fashion. To this end, we regard all actions that can be ex-

ecuted in a bulk by a single device as atomic. Such actions may well be

2.2. Requirements on the Strategy Synthesis 27

split into subactions by the respective device when executed, but as no de-

pendencies exist between those subactions and actions of other devices, it is

not necessary to consider them as separate actions during the strategy syn-

thesis. Therefore, the lengths of the action sequences in the scenarios can be

regarded as representative.

• Rationality: This requirement is tightly coupled to the requirement action

sequences. In all scenarios that require the strategy synthesis to generate

action sequences, which applies to 12 of our 15 scenarios, users expect the

system to exhibit rational behavior: Of all the possible actions that the system

is capable of, the user expects the system to select and execute those that

fulfill her/his goals. Any action executed by the system that has nothing to

do with the goals may irritate or even annoy the user. Hence, rationality is

an implicit requirement. As an example, consider the scenario in Section

2.1.11: If the speaker begins her/his talk on the podium and the camera turns

to the audience instead of tracking the speaker, this can lead to confusion.

We refine the notion of (rational) system behavior in Chapter 6, where we

introduce the four levels of imperfection.

• Flexibility: The strategy synthesis must be able to account for dynamic en-

semble structures. In ad-hoc ensembles, which account for 9 of the 15 sce-

narios, devices join or leave at run-time. Consider for example the scenario

in Section 2.1.3: Robert’s friend brings along a DVD player which inte-

grates with the device ensemble already present in the home. Thus, any

strategy synthesis mechanism that relies on action sequences precompiled

by the system designer is not feasible for the majority of the scenarios. Ac-

tion sequences must be generated at run-time, taking into account the devices

currently in the ensemble and their capabilities.

• Robustness: Ad-hoc ensembles consist of loosely coupled elements. The

devices and their functionality have not been carefully designed to work to-

gether. Furthermore, they are possibly connected through a wireless net-

work (see e.g. the scenario in Section 2.1.14). This implies that failures

occur more often than in environments with a fixed concerted device infra-

structure. Thus, occasionally devices may leave the ensemble unexpectedly,

e.g. because network connectivity has decreased immediately. This must not

cause a failure of the entire system. The rest of the ensemble must be able to

28 Chapter 2. Smart Environments – A Domain Analysis

recover.

• Support for persistent actions: Another characteristic of the domain are

persistent actions. These occur in 5 of the 15 scenarios. Persistent actions

are actions that persist over a longer timespan, in contrast to very short ac-

tions. An example for a persistent action is the project action of a projector:

Once started, it persists until someone terminates it, e.g. by turning off the

projector. In contrast, an example for a short action is turning on a light.3

This has practical implications as e.g. a resource such as a projector is occu-

pied as long as it is projecting. Thus, the strategy synthesis mechanism must

be able to account for this.

• Distributedness: We consider distributedness the most important require-

ment for the following reasons: As can be seen in the scenarios discussed

above, ad-hoc ensembles consist of several loosely coupled nodes. Thus,

their hardware is already distributed, and the software that controls this hard-

ware lends itself to a distributed approach, too: Any new device that en-

ters the ensemble can contribute new information and new capabilities to

the strategy synthesis. For instance, each device can contribute declarative

descriptions of its possible actions, as has been suggested in [Heider 2010].

Furthermore, avoiding a centralized controlling component means avoiding

a single point of failure. Plus, as ad-hoc ensembles may consist entirely

of resource-constrained devices like PDAs or mobile phones (consider, for

example, the scenario in Section 2.1.15), there might not be a device with

enough computational power to perform strategy synthesis for the entire en-

semble. Thus, a decentralized approach where no component has complete

control over the other components is desirable. One could call this run-time

modularization. Yet there is another aspect to distributedness: Consider that

the devices are likely to be produced by different vendors. Thus, if there is

a central controlling component, its manufacturer will have a lot of power:

This company can control whether, when, and how all devices, even those

of other manufacturers, are used. The company could then, for example, fa-

vor its own devices in a certain situation even though the devices of another

3Notice that in linguistics, persistent actions are referred to as durative, while short actions are called
perfective. However, we do not borrow from this terminology because in AI planning – which we
will introduce in Chapter 3 – durative actions are those attributed with a fixed timespan.

2.3. Which Kind of Assistance in Terms of Wandke’s Framework? 29

vendor are better suited for the task to be carried out. This is not desirable –

neither for the vendors, nor for the users. Instead, vendors should be able to

develop devices’ hardware and software with as little information about other

vendors’ devices as possible. We call this requirement, which can be consid-

ered more of a political than a technical challenge, design-time modulariza-

tion. As a side-effect, design-time modularization improves maintainability

and reusability of software that controls the devices.4

We now present the two key research questions that will guide us throughout

this thesis:

1. Is it possible to engineer a system for ad-hoc device cooperation in smart

environments in a fully distributed fashion?

2. Do users accept the assistance such a system can provide?

The first question directly follows from the set of requirements discussed above:

Because we identified distributedness as the most important requirement, we con-

centrate our efforts on developing a distributed control system for smart ad-hoc

environments. To the best of our knowledge, this is the first attempt to control

devices in smart environments in a completely distributed fashion. Of course, the

approach we take should fulfill the other requirements as well. The second ques-

tion is also fundamental because in our approach, each component has only partial

knowledge of the world. This sometimes results in suboptimal system behavior.

Whether users accept such suboptimal assistance and under which circumstances

they accept it has not been investigated for smart ad-hoc environments so far.

2.3 Which Kind of Assistance in Terms of Wandke’s
Framework?

Recall Wandke’s assistance framework which we introduced in Section 1.3. Based

on our survey of scenarios, we form a hypothesis which kind of assistance in terms

of this framework is most appropriate for smart environments. Three dimensions

must be taken into account: the level of decision making/action selection, adjust-

4A similar design principle is loose coupling in the service-oriented paradigm [Erl 2007]. However,
loose coupling is a precisely defined term that emphasizes concepts such as service contracts, which
we do not regard here. Hence, design-time modularization can be viewed as a more general term.

30 Chapter 2. Smart Environments – A Domain Analysis

ment, and initiative.

Before we form our hypothesis with the help of the 15 scenarios analyzed, we

take a look at Bellotti and Edwards’ statement regarding which kind of assistance

is preferable in our domain [Bellotti & Edwards 2001]:

“In short, systems cannot just do things based on context awareness;

rather, we argue that they are going to have to involve users in action

outcomes if they are to be acceptable.”

Here, Bellotti and Edwards suggest that the user should be in control to initi-

ate system actions. In other words, regarding initiative they believe that passive

assistance is preferable over active assistance, and regarding the level of decision

making and action selection they argue that delegation assistance or a lower level

is preferable to levels that give the system more autonomy, such as informative ex-

ecution assistance. Keeping this in mind, we now form our hypothesis based on

the scenarios we analyzed.

Which level of decision making and action selection? Although 3 of the 15

scenarios analyzed in Section 2.1 belong to the level supply assistance, we believe

this level offers too little assistance in an environment equipped with lots of techni-

cal infrastructure. Indeed, one could call such a system context-sensitive because

it only presents those actions that are currently executable instead of presenting all

actions, but there is nothing “smart” about it. The user will still be overwhelmed

by the options s/he has. Silent execution assistance, on the other hand, is definitely

too much automation: Many studies have shown that the user must always be in

control to intervene if a system does not behave according to her/his expectations

[Muir 1994, Röcker et al. 2005]. Thus, for smart environments, the levels in be-

tween should be considered.

Recall Weiser’s vision which we introduced in Section 1.1. If devices in smart

environments really are to “weave themselves into the fabric of everyday life un-

til they are indistinguishable from it”, as Weiser said in [Weiser 1991], filter as-

sistance, adviser assistance, and delegation assistance are not appropriate. The

reason is simple: These levels force the human to pay attention to the system all

the time. Such a system will not execute any actions itself, it just makes sugges-

tions that the human can follow or decline. In any case, an action by the human is

required. This is not the calm, unobtrusive technology Weiser had in mind.

2.3. Which Kind of Assistance in Terms of Wandke’s Framework? 31

Take-over assistance does not require the human to take action. The human

need only intervene if s/he thinks the suggestions the system made are not correct.

The problem here is that the system must always give the human time to intervene

before executing an action. This will introduce a certain delay before every action

which may frustrate the user. The vast majority of the scenarios analyzed in Section

2.1, 12 out of 15, belong to the level informative execution assistance. This leads

us to the hypothesis that for smart environments, informative execution assistance

is appropriate: The user always receives adequate feedback about the system state,

which is important if the user is to accept the system [Parasuraman 1997]. Actions

are executed without delay while at the same time leaving the user in control to

intervene if necessary.

Which kind of adjustment? 14 of the 15 scenarios analyzed in Section 2.1 be-

long to the category of fixed assistance. This probably has the reason that fixed

assistance is easier to implement than the other forms of adjustment – in fact no

adjustment takes place. Hence, this solution is obviously driven by the preferences

of the system designers. Whether it is also preferred by the users is a question

we will try to answer in Chapter 6. For now, we form the hypothesis that fixed

assistance is appropriate for our domain.

Which kind of initiative? 12 of the 15 scenarios analyzed in Section 2.1 belong

to the category of active assistance. This is not surprising, since in smart ad-hoc

environments the typical situation is that the user walks into a room with her/his

mobile devices and immediately wants to start using the device ensemble. S/he may

not know how to get the system to do what s/he wants it to do or, in some cases,

may not even be aware of the assistance system. Furthermore, the user may not

always have spare time or cognitive resources to devote to the assistance system.

Thus, our hypothesis is that active assistance is preferred by users in smart ad-hoc

environments.

To summarize, we hypothesize that informative execution assistance is the best

level of assistance in smart environments, that fixed assistance is appropriate and

that users prefer active assistance. Notice that this hypothesis is not in line with

Bellotti and Edwards’ statement introduced above. It is, however, in accordance

with Weiser’s vision of unobtrusive assistance. The results of the analysis in this

32 Chapter 2. Smart Environments – A Domain Analysis

chapter have shown how the term unobtrusive should be understood in the context

of smart environments: Unobtrusive does not imply that the user should be unaware

that s/he is being assisted. The key fact is that s/he should not have to know how

s/he is assisted. This comprises the following criteria:

• The user should neither have to care about the technical details which are

necessary to get the devices in the environment to fulfill her/his goals nor

how the assistance works.

• The user should able to attend to the task s/he actually wants to perform, such

as giving a talk.

Whether our hypothesis is correct will be investigated in the user study in Chap-

ter 6.

2.4 The Device Ensemble – A Multi-Agent System

A system that conforms to our hypothesis, i.e. that provides informative execution

assistance and that initiates assistance itself rather than leaving this task to the user,

can be regarded as a multi-agent system. Taking this viewpoint has two benefits:

First, it allows us to embed our own research efforts into a well-established con-

ceptual framework. Second, we can build on prior work in this field. Wooldridge

gives the following definition of multi-agent systems [Wooldridge 2001]:

“Multiagent systems are systems composed of multiple interacting

computing elements, known as agents. Agents are computer systems

with two important capabilities. First, they are at least to some extent

capable of autonomous action – of deciding for themselves what they

need to do in order to satisfy their design objectives. Second, they are

capable of interacting with other agents – not simply by exchanging

data, but by engaging in analogues of the kind of social activity that

we all engage in every day of our lives: cooperation, coordination,

negotiation, and the like.”

Devices in smart ad-hoc environments must be capable of autonomous action,

too. As explained in Section 2.2, the system designer cannot precompile devices’

action sequences due to the dynamic ensemble structure. Furthermore, the user

may not be able or willing to tell the devices what to do. This means that the

2.5. Chapter Summary 33

devices themselves must generate a strategy at run-time. This strategy cannot be

found by one agent alone. Instead, the device ensemble as a whole must strive

to fulfill the user’s goals. To do this, the devices must communicate with other

devices and cooperatively decide which actions to take. There are many ways to

do this – we introduce the most common in Chapter 3. Thus, the devices fulfill all

requirements according to Wooldridge’s definition and can be regarded as agents.

The device ensemble as a whole can be seen as a multi-agent system.

This discussion leads us to the technical requirements the devices have to fulfill:

The ability to act autonomously and to interact with other agents requires that each

device in the ensemble, even a canvas, is equipped with at least a tiny processor

and some memory to be able to perform elementary computation. Furthermore, all

devices must be connected to a common network. These assumptions may sound

somewhat daring, but they are in line with the trend in other fields such as home

automation and vehicle telematics: The idea in home automation is to connect

all major appliances in the house (including tiny devices like lights and switches)

via a bus system such as EIB (European Installation Bus) or its successor KNX

[KNX 2009] that facilitates controlling and reprogramming them. One application

in vehicle telematics is to connect cars on the road via ad-hoc networks to enable

their drivers to share safety information. With the ongoing miniaturization of com-

puting devices this will become more common in other areas, too.

2.5 Chapter Summary

In this chapter, we have analyzed 15 smart environment scenarios from the liter-

ature in order to develop a set of requirements that a suitable strategy synthesis

mechanism for smart environments should meet. As a result of this analysis, we

identified the requirements spontaneity, action sequences, rationality, flexibility,

robustness, support for persistent actions, and distributedness, which we consider

the most important requirement. With the help of the 15 scenarios, we have fur-

thermore investigated which kind of assistance in terms of Wandke’s framework is

feasible in our domain. We have formed the hypothesis that informative execution

assistance is a good level of decision making and action selection. Concerning

adjustment, fixed assistance is likely to be appropriate. Concerning initiative, ac-

tive assistance is preferable over passive assistance. Finally, we have argued that a

34 Chapter 2. Smart Environments – A Domain Analysis

system that fulfills the criteria just mentioned can be seen as a multi-agent system,

while the devices that constitute this system can be seen as agents. This enables

us to draw on previous work in the field of multi-agent systems. In the following

chapters, we develop a fully distributed system for user assistance in ad-hoc en-

vironments based on the requirements identified in this chapter. We furthermore

investigate whether users accept such a system, and under which circumstances

they accept it. We start off with a review of related work in the next section.

Chapter 3

Related Work

Contents
3.1 Deliberative Control . 37

3.1.1 Theorem Proving . 37

3.1.2 Planning . 38

3.1.3 Matchmaking . 43

3.1.4 ContractNet . 44

3.1.5 Benefits and Shortcomings of Deliberative Control 45

3.2 Reactive Control . 46

3.2.1 Swarm Intelligence . 46

3.2.2 Embodied Computation 46

3.2.3 Field-based Task Assignment 47

3.2.4 Condition-Action Rules 47

3.2.5 Subsumption Architecture 48

3.2.6 Pattern Matching . 49

3.2.7 Artificial Neural Networks 50

3.2.8 Maes’ Spreading Activation Networks 51

3.2.9 Benefits and Shortcomings of Reactive Control 53

3.3 Hybrid Approaches . 54

3.3.1 Horizontally Layered Architectures 55

3.3.2 Vertically Layered Architectures 56

3.4 Chapter Summary . 58

36 Chapter 3. Related Work

This chapter presents existing control strategies from various fields in order to

discuss which of them are suited for the strategy synthesis in smart environments.

A well-known distinction in the field of multi-agent systems is that of reactive vs.

deliberative control [Ferguson 1992, Wooldridge 2001]. It is used to categorize

different approaches to agents’ decision-making. Weiss gives the following defini-

tions [Weiss 1999]:

“Deliberative – Based on or requiring the manipulation of symbols.

Usually contrasted with [...] reactive.”

“Reactive – (Of agent behaviour) Capable of maintaining an on-

going interaction with the environment, and responding in a timely

fashion to changes that occur in it. (Of agent architectures.) An archi-

tecture that includes no symbolic representations and does no symbolic

reasoning.”

Deliberative control is occasionally referred to as representational, and reactive

control is also called behavioral [Küngas 2002] or tropistic [Wooldridge 2001]. In

Section 2.4, we have argued that device ensembles in smart environments can be

regarded as multi-agent systems. We will thus use the deliberative/reactive distinc-

tion to categorize related work in this section. This allows us to classify approaches

used in the domains of multi-agent systems and smart environments in a common,

well-known categorization which is relevant to our field.

Deliberative and reactive approaches have different features: Deliberative ap-

proaches can find solutions to complicated problems, while reactive approaches are

able to respond to unforeseen situations quickly. For many smart environment sce-

narios both of these features are beneficial. Fortunately, a number of approaches

exist that combine the benefits of the reactive and the deliberative paradigm. They

are called hybrid. Hence, deliberative and reactive control can be seen as two end

points of a continuum, and the search for an appropriate strategy synthesis mecha-

nism for smart ad-hoc environments can be seen as the search for the optimal point

in this continuum.

In the following section, we introduce different reactive and deliberative ap-

proaches and describe state-of-the art research projects that have used them. If an

3.1. Deliberative Control 37

reactive hybrid deliberative

Figure 3.1: The continuum of reactive and deliberative control.

approach has been successfully used in smart environments projects, we describe

those rather than applications in other domains as they are especially relevant for

the work in this thesis. However, there are also some approaches that have not been

used in smart environments so far but deserve a closer look. Most of them are from

the field of multi-agent systems. We discuss them in this section, too. We then

elaborate on the benefits and shortcomings of deliberative and reactive control. Af-

terwards, we introduce hybrid approaches that are able to overcome some of the

shortcomings and are thus suited better for smart environments. This discussion

will motivate our choice of control strategy for smart environments in Chapter 4.

Figure 3.1 gives an overview of the projects discussed in this section and classifies

them with respect to the continuum of deliberative and reactive control.

3.1 Deliberative Control

3.1.1 Theorem Proving

An example for deliberative control is theorem proving. In this approach, an agent’s

world model is represented as a knowledge base of logical formulas. Selecting an

action for the agent to perform corresponds to applying a set of deduction rules to

38 Chapter 3. Related Work

this knowledge base. If the proof succeeds, the agent can derive a formula which

states that a certain action should be executed.

Waldinger [Waldinger 2001] has used theorem proving for service composition.

Agents consist of services, and each agent’s capabilities (i.e., the services it offers)

are formulated as axioms. All axioms together constitute the application-domain

theory. A query for a composite service is now formulated as a theorem, and a

theorem prover proves that the theorem follows from the axioms in the application-

domain theory. Certain symbols in this theory are linked to agents, and whenever

one of those symbols is used in the proof, its agent becomes active. This happens

for example if information that can be provided by the agent is needed during the

proof. The answer to the query is then extracted from the proof.

A similar approach is that of Rao et al. [Rao et al. 2006]. They use Linear

Logic (LL) to compose semantic web services in DAML-S (DARPA agent markup

language for services) [Paolucci & Sycara 2003]. To this end, the semantic de-

scription of the existing web services (DAML-S service profile) is translated into

extralogical axioms of LL. The user can now request a composite service in the

form of an LL sequent that must be proven. The LL Theorem Prover then tries to

answer the request by composing existing services using theorem proving. During

this process, a semantic reasoner can be queried that performs subtyping inference

using an ontology. If the proof can be completed successfully, a process calculus

presentation is extracted from the proof, which can then be translated to a DAML-S

service model or BPEL4WS (Business Process Execution Language for Web Ser-

vices) [Juric 2006].

3.1.2 Planning

Another means of deliberative control is planning, also known as means-end rea-

soning [Wooldridge 2001]. The key elements in planning are operators. These

operators are actions that are described in terms of preconditions and effects. Pre-

conditions and effects are conjunctions of literals. A literal is a positive or negated

atom.1 For the action to be executed, its preconditions must hold. After the execu-

tion of the action, its effects hold. Consider the simple planning operator Canvas-

Down:

1We describe these terms formally in Section 4.1.1.

3.1. Deliberative Control 39

(:action CanvasDown

:parameters (?c - Canvas)

:precondition (not (CanvasDown ?c))

:effect (CanvasDown ?c))

This operator is described in PDDL [Ghallab et al. 1998], a language widely

used for planning problems. It describes the action of lowering a canvas. It has a

single precondition which states that the canvas must not be lowered for the action

to be executed. After its execution the world state will have changed: now the

canvas is lowered.

A planning problem consists of a domain description, a set of objects, a set of

true literals specifying the initial world state (all literals not mentioned are assumed

to be false) and a set of literals specifying the goals of the planning process. The

domain description is a set of operators. Objects are used to instantiate planning

operators: All variables in operator descriptions are bound to an object. The vari-

able ?c in the operator description of CanvasDown is instantiated with all objects

of type Canvas defined in the problem description. Thus, for each Canvas object

one instance of the CanvasDown operator is generated. To solve a planning prob-

lem means to find a sequence of instantiated operators (a plan) which transforms

the initial world state into the goal state.2

The possible actions of devices in smart environments can be modelled as plan-

ning operators. This has the advantage that user assistance can be very flexible.

Whenever a new user goal becomes apparent, a planner can consider all possible

actions of all devices in the ensemble and search for a sequence that fulfills the

goal. The action sequences need not be precompiled by a domain expert. Every

device can carry descriptions of all its possible actions. Upon entering a new en-

vironment, it can provide these descriptions to the devices already present. This

way, the device ensemble is constructed of modular pieces and can be dynami-

cally extended. In principle, this way of modelling is not confined to centralized

strategy generation like classical planning: It can also be used with a decentralized

strategy synthesis mechanism. Modelling device actions as planning operators thus

supports run-time modularization. Furthermore, a planning operator is defined in

terms of its interfaces, i.e. its preconditions and effects. The actual implementation

2A comprehensive introduction to planning is beyond the scope of this thesis, but can be found
in [Russell & Norvig 2010].

40 Chapter 3. Related Work

of the action is hidden. Thus, authors of planning operators do not need to know

the internals of actions written by different developers. To create actions that are

interoperable, they just need to make sure that the interfaces, i.e. the preconditions

and effects, are compatible. Thus, modelling device actions as planning operators

also supports design-time modularization. This way of modelling thus fulfills both

parts of the requirement distributedness identified in Section 2.2. Unfortunately, as

will become clear in the following, there is currently no planning mechanism that

fully supports this requirement.

Planning as a control strategy has been successfully employed in a num-

ber of smart environments projects. One of them is the EMBASSI project

[Heider & Kirste 2002] which consisted of several sub-projects. For example, the

aim of the private household sub-project was to assist users in a home entertain-

ment scenario. All devices carry declarative descriptions (precondition/effect rules)

of the actions they can perform and upload them to a central controlling compo-

nent. For strategy synthesis, EMBASSI introduced the concept of goal-based in-

teraction, which makes controlling a device-rich environment much easier for the

user. An example: In order to start a movie, the user no longer has to figure out

which buttons to press on the remote control, but can state the goal I want to see

Terminator now! declaratively. That means the user only has to know what s/he

wants, but no longer has to care how to achieve this goal – a shift from the func-

tional to the goal-based paradigm. When the user utters a goal, the controlling

component tries to generate an action sequence for the devices to fulfill this goal.

To this end, partial-order planning techniques are used. Once an action sequence

has been found, it can be executed autonomously by the device ensemble, without

user intervention.

A similar approach to the one pursued in EMBASSI is that of Amigoni et al.

[Amigoni et al. 2005]. Unlike EMBASSI, it is not based on partial-order plan-

ning, but on a distributed version of hierarchical task networks called D-HTN

(Distributed Hierarchical Task Network). But as in EMBASSI, the devices them-

selves provide descriptions of the actions they are able to perform. In D-HTN,

these descriptions are given in the form of HTNs. These are decompositions of

higher-level tasks which can be used by a central planning component in order to

construct a plan for the whole ensemble. When constructing a plan, the planner can

query the available devices for suitable decompositions. Should there be more than

3.1. Deliberative Control 41

one decomposition, it can choose the most appropriate one according to values set

by the system designer. For example, the task Request can be decomposed by a

phone agent into CreateRequestMessage, SearchPhoneNumber, MakeCall or by a

fax agent into CreateRequestMessage, SearchPhoneNumber, SendFax. MakeCall

has a value of 800 and SendFax has a value of 200. Thus, the planner will decide

to make a phone call rather than send a fax because it is more effective.

Another very similar approach is that of Saif et al. [Saif et al. 2003], called

O2S. Again, user goals are represented explicitly. A goal can be viewed as a higher-

level function which is to be decomposed into a set of lower-level actions (similar

to the HTN approach). There might be several ways to fulfill a goal, and all of those

candidates are represented in a goal tree. Choosing the best action sequence to ful-

fill a goal then corresponds to selecting a path through the goal tree. As in D-HTN,

this choice is made according to values specified by the programmer. Furthermore,

O2S’ architecture spans across a network of interconnected devices. This way, one

device can query other devices for suitable decompositions if it cannot fulfill a goal

itself.

Roadie [Lieberman & Espinosa 2006] is a system that aims at assisting the user

in a home entertainment scenario. All devices in the home are connected to a cen-

tral component, supplying descriptions of the actions they are able to perform. As

the approaches above, Roadie is based on explicit user goals. Roadie has a user

interface where users can enter what they would like to do, e.g. “I want to watch a

movie”. Another means of input is the actual user interface of a device (e.g. but-

tons). This input is sent to a plan recognizer called EventNet, which transforms it

into a goal. To this end, it matches the input sequence against a knowledge base of

natural language sentences. This way it can find possible antecedent or subsequent

actions that might occur, which serve as user goals. An example: If the user turns

on the DVD player, the system finds several events that might follow in its knowl-

edge base, e.g. leave the room or hit play. Matching these possibilities against the

devices’ capabilities yields watch a movie on DVD, record a DVD movie and listen

to a music CD. The system now asks the user to pick one of those alternatives and

the user chooses the second one. Roadie now generates a plan consisting of sev-

eral steps such as Open the DVD player door, Select the DVD player output that

connects to the speaker and Insert the movie DVD using the Graphplan planner

[Blum & Furst 1995]. Some of these actions it can perform on its own, while it

42 Chapter 3. Related Work

instructs the user on how to accomplish the rest. Notice that in Roadie the possi-

ble goals are not defined in advance but generated using a knowledge base, which

makes this approach very flexible.

The problem with those approaches is that the planning process is centralized.

There is one component that needs to have complete knowledge of the planning

domain: the goals, the complete world state and the other components’ planning

operators. This conflicts with our requirement run-time modularization. There

are approaches in other fields than smart environments that have tried to distribute

planning, but all of them rely on either of two assumptions:

1. Agents all have their own goals. I.e., they have no common goals that can

only be achieved by working together. Specifically, no action sequences need

to be generated cooperatively as in our domain. Cooperation mainly takes

place to schedule actions of different agents in order to avoid conflicts, as

in [Georgeff 1988]. Another motivation for cooperation is that agents can

perform tasks better if they cooperate (e.g. they can avoid redundant execu-

tion of the same action by different agents). An approach that accounts for

this is Partial Global Planning (PGP) [Durfee & Lesser 1991]. In either case,

agents can in principle reach their goals on their own, thus cooperation is not

essential for their success.

2. Agents do work together on a common goal, yet the planning problem is

hierarchically structured. In other words, there must be information available

on how abstract tasks can be decomposed into more concrete subtasks, and

one or more agents must have knowledge about this hierarchical structure.

These agents can then distribute subtasks to other agents and collect and

assemble the results the agents pass back. An example is D-NOAH which

supports distributing planning control across several agents [Corkill 1979].

Both assumptions do not hold in our case: Neither do agents have their own,

largely independent goals, nor is the planning problem hierarchically structured.

Thus, the existing distributed planning approaches are not suited for the domain of

smart ad-hoc environments.

3.1. Deliberative Control 43

3.1.3 Matchmaking

The matchmaking approach requires a library of abstract plans the designer has

to specify. At run time, these are matched against the descriptions of services

available in the environment.

The approach of the Amigo project [Vallée et al. 2005] is to automatically com-

pose device services, so that users can benefit from higher level services in a smart

environment. In the composition process, context information such as the user’s lo-

cation, current needs and preferences is used. The architecture is centered around a

service infrastructure which keeps track of available devices and manages the ser-

vices they offer. To fulfill a user’s goal, they use a predefined abstract plan (task)

description and perform a task matching between the task description and the ser-

vice description model. The context information is included through a composition

algorithm based on a constraint problem solver.

The Ozone project [Issarny et al. 2005] developed a framework which is quite

similar to the approach of the Amigo project. This framework is called WSAMI

(Web Services for AMbient Intelligence) and comprises a declarative language for

the description of web services and a middleware that enables service composition

depending on the context. For this to work, the developer of a composite service

must specify abstract interfaces of atomic services the composite service must call

when executed. Through the WSAMI middleware these interfaces can then be

matched against the interfaces of existing services at run-time in order to instanti-

ate the service. Interfaces match if the documents they relate to are syntactically

equal. To keep processing costs low, the Ozone team even goes a step further: The

documents even have to be identical, that is, have the same URI. This solution is,

of course, not very flexible and not suitable for dynamic environments.

In DIANE [Küster et al. 2007], services are described in the service descrip-

tion language DSD (Diane Service Description). At the heart of DIANE’s architec-

ture is a central broker consisting of several agents. These agents manage and dis-

tribute services to clients in the following way: A client can ask a request agent for

a service, which in turn calls other agents to search for available services, chooses

a suitable service and invokes it. Services can be either atomic or composed of sev-

eral atomic services. For the latter case DIANE pursues an approach that integrates

service composition, discovery and matchmaking. Service requests are described

via the effects they should fulfill. Then a suitable composite service is built in three

44 Chapter 3. Related Work

steps:

1. All available service offers that fulfill some of the effects are picked. Vari-

ables are not yet instantiated.

2. All possible compositions of these offers are computed. The ranges of the

variables are lowered by computing the cuts on the parameters if services

depend on one another.

3. The variables are filled in such a way that the service composition yields the

best possible results.

3.1.4 ContractNet

The ContractNet protocol [Smith 1980] specifies how a group of agents can work

together to solve a task they could not solve alone. Upon reception of a new task,

an agent generates a task announcement and sends it to other agents. If one of those

agents can help to solve the task, it sends back a bid stating which capabilities it has

to solve the task. The agent that sent the announcement may receive several bids

and will then choose the most suitable one. The “winning agent” is then contracted,

i.e. chosen to fulfill the task. It can now either solve the task alone or split it into

subtasks and contract other agents. The problem with this protocol is that it can not

easily be distributed. Suppose a task is formulated as the goal of a planning prob-

lem and the agents’ capabilities are formulated as planning operators using precon-

ditions and effects. In order to find good results, hierarchical knowledge must be

available. I.e., operators must be decomposable into finer-grained operators, and

those decompositions must be known to an agent so it can award the subtasks to

other agents. However, in very dynamic environments, such decompositions will

often not be available. Usually, agents will only know about their own capabilities,

not the capabilities of other agents. If no hierarchical knowledge is available (i.e.,

all tasks are elementary and cannot be split into subtasks), the planning horizon

is 1, which is very small. An agent which can perform an action with an effect that

corresponds to a goal must award tasks that can fulfill its preconditions to other

agents. These in turn will award tasks that can fulfill their preconditions to other

agents and so on. In this case, ContractNet is a purely local mechanism as every

agent considers only its direct predecessors. Thus, the resulting action sequence

will likely be very suboptimal.

3.1. Deliberative Control 45

3.1.5 Benefits and Shortcomings of Deliberative Control

As stated in the definition above, deliberative approaches are based on the manipu-

lation of symbols. The human brain also manipulates symbols. Thus, deliberative

approaches resemble processes which take place in the human mind when we think

or plan what to do [Wooldridge 2001]. Like the human brain, they can encode com-

plex information in symbols and perform complex manipulations on those symbols,

which enables them to solve sophisticated problems.

Yet they also have a number of shortcomings. The first is computational com-

plexity. Deliberation can take a long time (in fact, it may not even terminate), and

the world may change in the meantime, rendering the plan just generated useless.

In [Maes 1990b], Maes remarks the following:

“Although the deliberative thinking approach has proven success-

ful for certain other tasks, only poor results have been obtained with

planning, in particular, when applied in real autonomous agents oper-

ating in complex, dynamic environments. The few systems built show

major deficiencies such as brittleness, inflexibility, and slow response

times. They also spawned a number of theoretical problems such as the

frame problem and the problem of non-monotonic reasoning which so

far remain unsolved in satisfactory ways [...]. More recently, some re-

searchers have been viewing this as evidence that it is unrealistic to

hope that action-oriented tasks can be successfully implemented by a

deliberative machine in real-time.”

Furthermore, due to their computational complexity, deliberative approaches

do not scale well. Wooldridge pointed out another problem: For many environ-

ments, it is not clear how the environment should be mapped to the agent’s internal

world model [Wooldridge 2001]. Thus, it is hard for the system designer to decide

what should be modelled and how. An optimal modelling would imply that the de-

veloper can foresee every problem that might occur. This is, of course, impossible.

Moreover, the component that does the deliberation, be it a theorem prover, a plan-

ner, or a matchmaker, must have a lot of knowledge about the domain, including

the capabilities of other agents. In fact, complete domain knowledge is preferable.

This makes it hard to distribute deliberative approaches.

46 Chapter 3. Related Work

What are the implications of this discussion for smart environments? Let us

reconsider the requirements introduced in Section 2.2: Action sequences need to

be generated, but these are rather short (about seven actions). In other words, de-

liberative control mechanisms can solve more complex problems than required for

smart environments. On the other hand, in smart environments, robust systems are

required. Yet deliberative approaches typically suffer from brittleness. The most

important requirement introduced in Section 2.2 is distributedness, and distributing

deliberative approaches is not easy. This leads us to the assumption that delibera-

tive approaches are not the optimal control strategy for smart environments. Thus,

it is beneficial to look at reactive approaches.

3.2 Reactive Control

3.2.1 Swarm Intelligence

The concept of swarm intelligence was introduced by Beni and Wang

[Beni & Wang 1989]. According to them, intelligent swarms are groups of sim-

ilar or equal robots each behaving in such a way that intelligent behavior emerges

as a result of the local interactions of the group’s members with one another and

with the environment. Important features are decentral control and asynchronic-

ity. This concept resembles the behavior of flocks of birds, schools of fish, insect

swarms and ant colonies. It has various applications, e.g. in optimization. An ex-

ample is the Ant System, an algorithm which computes near-optimal solutions to

the Traveling Salesman problem [Dorigo et al. 1996].

3.2.2 Embodied Computation

A concept very similar to swarm intelligence is embodied computation, a term

coined by Hamann and Wörn [Hamann & Wörn 2007]. The main difference is that

swarm intelligence is only interested in the swarm as a whole which constitutes

one huge computing device. In contrast, embodied computation regards the swarm

on the microscopic level (the individual robots) as well as on the macroscopic level

(the swarm as a whole). Embodied computation has been used to approximate

a solution to the Steiner Tree problem: A given set of points is to be connected

3.2. Reactive Control 47

by lines of minimal length. This is very similar to the Minimum Spanning Tree

problem. The difference is that it is allowed to add extra points.

3.2.3 Field-based Task Assignment

Field-based task assignment (FiTA) by Weyns et al. is another similar approach

[Weyns et al. 2008]. It has been applied in a transportation scenario: Several AGVs

(automatic guided vehicles) capable of picking up, carrying and dropping a load,

are distributed in a warehouse. In addition, several loads are distributed which must

be carried to certain drop locations by the AGVs. The assignment of an AGV to a

load is carried out using a field-based approach: AGVs and loads emit fields. An

AGV is attracted by a load and rejected by another AGV. AGVs combine the fields

they perceive and follow the gradient of the combined fields. This strategy leads

to loads being picked up while at the same time preventing several AGVs from

driving to the same load.

Swarm Intelligence, Embodied Computation and FiTA all exhibit the following

features:

• Failure of a single or a few agents does not cause the system to break down.

It is thus very robust.

• As agents’ interactions are purely local, the solutions are suboptimal.

• Because these approaches are local, the algorithms scale very well.

• The physical world is an important part of the problem to be solved. The

positions of the agents in the environment can be viewed as approximate

solutions to the overall problem. On the other hand, this means that these

approaches can only solve geometrical problems, i.e. problems with an in-

herent spatial layout.

• Agents are not specialized to certain tasks, each task can be solved by any

agent. Thus, the approaches cannot solve complex tasks that require distri-

bution among several agents.

3.2.4 Condition-Action Rules

Condition-action rules are a very simple way of controlling agents and smart envi-

ronments. This approach is based on a set of rules each consisting of a condition

48 Chapter 3. Related Work

and an action: Whenever the condition holds in the world model, the rule fires and

the action is executed. These rules can either be fixed, i.e. specified by the system

designer, or learned by observing the user. Fixed rules have the advantage of being

very simple and intuitive, yet this approach also very inflexible: Whenever the sys-

tem is extended by new devices or services, new rules have to be added manually

by the developer. Learning the rules from the user is more flexible, but it takes a

significant amount of time before the system functions properly because it has to

learn. Another drawback of the rule approach is that it is fully centralized.

Condition-action rules are essentially the core of the situated automata

paradigm introduced by Rosenschein and Kaelbling [Kaelbling 1991]. An agent

is seen as a function mapping a stream of inputs from the environment to a stream

of actions. The agent is modelled as a finite state machine which is expressed as

a fixed sequential circuit. This circuit can be decomposed into two components: a

perception and an action component. The perception component maps an input and

the internal state of the agent to a new internal state. The action component maps

the input and the old state of the agent to an action output. The rules that make up

these two components can be specified in two high-level languages – Ruler for the

perception component and Gapps for the action component. Those rules are then

compiled into a sequential circuit at design time. Thus, the rules are not represented

explicitly in the agent, but implicitly in the agent’s circuitry.

The EasyLiving project [Brumitt et al. 2000] used fixed behavior rules that

cause things to happen automatically in a smart home when their condition is ful-

filled. For example, when a user moves from the PC to the couch, the content of

the PC screen will automatically be transferred to a big wall screen because two

conditions are fulfilled: The wall screen is available and it is in the user’s field of

view.

3.2.5 Subsumption Architecture

The subsumption architecture [Brooks 1990] was developed by Brooks for robot

control. It is based on the assumption that robot control should be organized in a

hierarchy of different behaviors such as “avoid objects”, “wander“ and “explore”.

All layers in this hierarchy react to stimuli and produce output (i.e. actions the robot

should perform) simultaneously. Each layer can be seen as an agent that acts au-

tonomously. Lower layers represent more elementary behaviors and can suppress

3.2. Reactive Control 49

the output of higher layers which represent more abstract behaviors. This ensures

that the robot can perform complex behavior while still being able to react to un-

foreseen situations very quickly. For example, the output of the “avoid objects”

layer will suppress the output of any higher layer such as “explore” because the

most important action of a robot is to avoid obstacles. Brooks implemented each

layer as a finite-state machine. Thus, the control architecture is purely reactive and

works without any symbolic reasoning.

The Intelligent Room project [Coen 1997] used an architecture to control a

smart room that was inspired by the subsumption architecture. This architecture

consists of a number of agents controlling the devices in the room. The agents are

organized in a layered architecture with different levels of abstraction. The agents

in the lowest layer (which is called the Scatterbrain) are called SodaBot agents.

They control and interconnect the devices in the environment. Agents in higher

layers can use a combination of agents in a lower layer in order to perform more

sophisticated tasks. These combinations are hard-wired by the system designer.

For example, the SodaBot Netscape agent communicates with the SodaBot Display

agent to make sure that web pages are displayed in an area in the room that is visible

for the users. These two agents are in the lowest layer. Any agents on subsequent

layers that use the Netscape agent need not worry about information being visible

to the users as the lower-level agents deal with this task autonomously. The agents

on the highest level are invoked by the user, for example via speech.

3.2.6 Pattern Matching

Patterns observed in past interactions of user activities in a smart environment can

be used to automate the user’s interactions with the devices in the environment.

User activities as well as the user’s device interactions are constantly recorded. This

is called the history. If a sequence of activities is detected that equals a sequence in

the history (i.e. it has been observed once or several times before), this is called a

match. The history may contain several device interactions that followed the match

in the past. The device interaction that directly followed the match most frequently

is the most likely to occur at this point. Thus, it can be automated.

Pattern matching has been used in the MavHome project [Das et al. 2002],

the smart home project related to the scenario in Section 2.1.5. However, the

MavHome researchers refrained from automating the device interactions most

50 Chapter 3. Related Work

likely to occur because a wrong prediction can be very annoying for a user. In-

stead, the input stream is searched for significant episodes. A significant episode is

an ordered, partially ordered or unordered set of device events that reoccurs peri-

odically, such as the episode CoffeeMakerOff, KitchenLightOff, KitchenScreenOff

occurring daily. Significant episodes are extracted from the input stream of events

using the minimum description length (MDL) principle: Significant episodes are

patterns that minimize the description length of the history if each occurrence of the

pattern is replaced with a pointer to this pattern. Thus, the frequency of occurrence

in the history and the pattern length are the two important parameters when deter-

mining significant episodes. They are then automated as this significantly reduces

the number of device interactions for the user.

3.2.7 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models that resemble natu-

ral (biological) neural networks in their architecture and function. They consist of

a number of interconnected computational units called neurons and can be used to

approximate complex, usually unknown functions. ANNs are organized in layers

– an input layer, an output layer, and possibly a number of hidden layers. The

strength of the connections between the neurons and the thresholds for a neuron to

become active may vary – and this property is used for training the ANN, i.e. ap-

proximating the target function. In supervised learning, the ANN is trained using

a set of training data consisting of an input and an expected output. The inputs are

fed into the ANN. The weights and thresholds are then adjusted in order to min-

imize the ANN’s prediction error – the discrepancy between the expected output

and the network’s actual output.

An ANN has been used to automate the inhabitants’ device interactions in the

Adaptive Home [Mozer 2005], the smart home related to the scenario in Section

2.1.6. It has been employed for lighting control. The house was partitioned into

several zones and the aim was to optimize lighting and heating conditions in each

zone. Two conflicting objectives had to be taken into account: maximizing the

inhabitants’ comfort level and minimizing energy consumption. The ANN was

trained to predict the inhabitants’ transitions from one zone to another in order to

anticipate which zones would be occupied in the next few seconds. A device con-

troller could then draw on this information to adjust the lights and heating through-

3.2. Reactive Control 51

competence
module

competence
module

competence
module

percept:

goal:

predecessor link
successor link
conflicter link
energy from percept
energy from goal

percept:

Figure 3.2: A Maes spreading activation network. The light blue shapes at the top
of the competence modules represent preconditions, those at the bottom represent
effects.

out the house. In order to determine which actuators should be switched on when

certain zones are occupied, a reinforcement learning algorithm was used. When-

ever the inhabitants showed discomfort with the decision of the device controller

(e.g. manually switched on a light the device controller had not switched on), the

learning algorithm would incorporate this decision into the device controller.

3.2.8 Maes’ Spreading Activation Networks

Maes developed an action selection mechanism based on a spreading activation

network for robot control [Maes 1990b]. Each action is described declaratively in

terms of preconditions and effects, like operators in planning. These action descrip-

tions are called competence modules. These competence modules are connected

into a network by virtual links. There are three types of links. All of them connect

equal or opposite literals and are depicted in Figure 3.2.

If a precondition of one competence module equals the effect of another com-

petence module, a predecessor link connects the effect to the precondition. A suc-

52 Chapter 3. Related Work

cessor link connects the same literals, but in the opposite direction. The third type

of link, the conflicter link, connects a precondition to an opposite effect. The mod-

ules containing the respective literals are called predecessors, successors, and con-

flicters of a competence module. The semantics are the following: A predecessor

of a competence module can fulfill one of its preconditions. It can thus “help” the

module to become active. A successor of a competence module can benefit from

the module’s execution because it “uses” one of the literals the module makes true

when it becomes active. A conflicter is an opponent of a competence module as it

can “destroy” a literal the module needs for becoming active.

Once the modules have been linked to one another, the network can be used to

generate a sequence of actions that fulfills a goal. This is done via an energy distri-

bution mechanism (see Figure 3.2). Here, energy is a numerical value that indicates

how likely it is that a given competence module can help to achieve a goal given

the current world state. In the following, we call a literal that is part of the current

world state a percept. In the beginning, competence modules that have a precon-

dition corresponding to a percept receive a certain amount of energy because these

modules may be executed right away. Thus, if executed, such a module would be

the beginning of an action sequence. Then modules that have an effect correspond-

ing to a goal receive energy because they may fulfill the goal. Thus, if executed,

they would be the end of an action sequence. Afterwards the modules distribute en-

ergy to other modules along the links: A module sends a certain fraction of its own

energy level to a predecessor. A different fraction is sent to a successor. Further-

more, a certain negative fraction is sent to a conflicter – a conflicter loses energy

as it may “harm” the module. Afterwards, each module sums up the energy it has

received to calculate its new energy level. If this level is above a certain threshold

(the activation threshold), all its preconditions are fulfilled and no other module

has a higher energy level, the module is executed. Its effects become true and an-

other selection round starts. If no module can be executed, the activation threshold

is lowered for the next round. The process stops when all goals have been fulfilled.

Maes’ action selection algorithm has been used for a number of purposes. Dorer

[Dorer 1999] described a version of Maes’ algorithm that uses real-valued instead

of binary literals and used it for controlling simulated RoboCup soccer agents.

In smart environments, however, real-valued literals would lead to state explo-

sion. Singleton [Singleton 2002] used a genetic algorithm to tune the parameters of

3.2. Reactive Control 53

Maes’ algorithm, Decugis and Ferber [Decugis & Ferber 1998] proposed a system

that learns the links between the components of Maes’ algorithm at run-time. Both

extensions cannot be used in ad-hoc environments as they require a training phase.

3.2.9 Benefits and Shortcomings of Reactive Control

Wooldridge [Wooldridge 2001] identifies the following advantages of reactive ap-

proaches:

• simplicity

• economy

• computational tractability

• robustness against failure

• elegance

However, they also have major shortcomings:

• Because reactive agents have no internal models of the environment, the en-

vironment itself must contain enough information to select suitable actions

for the agent.

• Reactive agents base their decision-making on local information. It is dif-

ficult to incorporate non-local information. Hence, the planning horizon is

necessarily narrow.

• It is difficult to build reactive agents that learn from their experience.

• A big advantage of reactive agents is that their behavior emerges from the

interactions of the components’ behaviors with one another and with the en-

vironment. Yet emerges also means that the relationship between those com-

ponents cannot be fully understood. Thus, it is hard to engineer agents for

specific tasks. This is necessarily a process of trial and error.

• Agents with a small number of behaviors can be built easily. Yet building

agents with many behaviors is much more difficult because the dynamics of

the interactions between a high number of behaviors are usually too complex

to understand.

What are the implications for smart environments? In this domain, robustness

is very important. This requirement can be fulfilled by reactive systems. How-

ever, as Hamann and Wörn have remarked, the quality of a system’s solutions is

54 Chapter 3. Related Work

lower the more robust this system is [Hamann & Wörn 2007]. This means that

reactive systems likely produce suboptimal solutions. They are thus not able to

completely fulfill the requirement rationality. An advantage, however, is that they

do not perform complex computation, which is beneficial in smart environments

where devices are often resource-poor. The challenge is, then, to increase the so-

lution quality of reactive systems without sacrificing too much of their robustness.

Moreover, the narrow planning horizon of the approaches introduced in this section

is problematic. In smart environments, action sequences consisting of several ac-

tions have to be generated. This cannot be accomplished by an approach that puts

all information into the environment and that relies on purely local information.

Some non-local information is needed. For this, it is beneficial to have a (however

rudimentary) world model. Another problem is that reactive systems with a high

number of behaviors are too complex to be understood. In smart environments,

each device in the ensemble has one or more behaviors (the actions it can execute).

Thus, if the ensemble contains more than a few devices, there can be a large num-

ber of such behaviors. Yet usually only a fraction of them is required to form an

action sequence to fulfill an open goal. Thus, it would be beneficial if we could

rule out those that are not relevant in the current context, i.e. that cannot be part of

an action sequence which is able to fulfill the goal.

As both deliberative and reactive control have severe shortcomings with respect

to smart environments, the optimal control strategy for this domain is probably

somewhere in the middle of the continuum. This is where hybrid approaches are

situated.

3.3 Hybrid Approaches

To combine the advantages of deliberative and reactive approaches, layered archi-

tectures were introduced. These are capable of reactive behavior for immediate,

reflex-like response to certain stimuli as well as deliberative control for achieving

more complex goals. According to Müller et al. [Müller et al. 1994], two types are

common: vertically and horizontally layered architectures (see Figure 3.3). Both

types consist of several control layers, and each layer is responsible for producing

a certain kind of behavior. In its simplest form, a layered architecture consists

of two layers: one for deliberative and one for reactive behavior. Some scholars

3.3. Hybrid Approaches 55

Layer n
...

Layer 2
Layer 1

A
ct

io
ns

P
er

ce
pt

io
n Layer n

...
Layer 2
Layer 1

Perception

Actions

Layer n
...

Layer 2
Layer 1

Perception Actions

Figure 3.3: Layered architectures (cf. [Müller et al. 1994]): Horizontally layered
(left), vertically layered with one-way control (middle) and vertically layered with
two-way control (right).

even view Brooks’ subsumption architecture as a hybrid approach. However, in

Brooks’ implementation, each layer is a finite-state machine. Thus, all behaviors

are hard-wired; there is no deliberative layer.

3.3.1 Horizontally Layered Architectures

In horizontally layered architectures each layer is coupled to the perception and

action components (see Figure 3.3, left). Usually all layers work concurrently and

produce output, i.e. candidate instructions for the action components. Therefore,

there must be a mechanism that decides which layer’s output is actually sent to

the actuators. This may be a controlling component or simple rules. Müller et al.

[Müller et al. 1994] identify this as the major drawback of horizontally layered ar-

chitectures: Each layer may interact with each other layer, thus if we only consider

bilateral interactions, the controlling mechanism must potentially arbitrate among

n∗(n−1)/2 interactions, which makes the system very complex and hard to control.

An example of a horizontally layered architecture are Ferguson’s TouringMa-

chines [Ferguson 1992]. A TouringMachine consists of three layers: The reactive

layer R provides a fast response to events the higher layers have not been pro-

grammed to deal with. The planning layer P generates and executes hierarchical

partial plans. The modelling layer M models the agent and its environment. This

knowledge base can then be used to predict future behaviors. All three layers have

access to the perception as well as the action subsystem and concurrently produce

outputs. As the outputs from different layers may conflict with each other, a control

framework arbitrates between them. This control framework consists of domain-

56 Chapter 3. Related Work

specific condition-action rules the system designer has to specify. There are two

types of control rules: Censor rules prevent certain layers from receiving input an-

other layer is suited better for. Likewise, suppressor rules suppress the output of

certain layers because another layer is capable of dealing with the situation. Sup-

pressor rules must be written by the system developer in such a fashion that they

do not interfere with each other (i.e., at most one suppressor rule fires in a given

situation) and that only one instruction per time slice is sent to the actuators. Thus,

writing control rules is a very complex task for the developer.

Küngas also presents an architecture for robot control that consists of a

behavioral and a representational subsystem which are horizontally layered

[Küngas 2002]. The behavioral subsystem consists of a number of reactive entities

called behaviors. The representational subsystem is based on planning. Unfortu-

nately, the author gives no detailed explanation how the system arbitrates between

the two subsystems. It seems that a component called the Action Executor performs

this arbitration. What kind of control mechanisms the action executor employs is

not explained. The paper only states that the default for the action executor is to

execute plans coming from the representational subsystem. Plan execution can

be interrupted by emergent behavior, presumably originating from the behavioral

subsystem.

3.3.2 Vertically Layered Architectures

In vertically layered architectures, only one layer communicates with the percep-

tion components, and only one layer communicates with the action components.

There are two variations: In the first, the lowest layer gets the perceptions. Con-

trol is then propagated up the layer hierarchy. The highest layer eventually sends

instructions to the actuators. This is depicted in the middle of Figure 3.3. The sec-

ond possibility is to couple both perception and action to the lowest layer. Upon

reception of a percept, the lowest layer propagates control to the next layer etc.

Decisions of the higher layers are then sent back down the hierarchy to the lowest

layer, which sends instructions to the actuators, as shown in the right of Figure 3.3.

In a vertically layered architecture with n layers, there are n− 1 interfaces between

the layers. Thus, it is much less complex than a horizontally layered architecture.

The drawback is that the lowest layer must be very carefully designed because any-

thing the agent perceives or does must pass the lowest layer. Thus, it is critical that

3.3. Hybrid Approaches 57

this layer does not fail.

The Autonomous Robot Architecture (AuRA) [Arkin & Mackenzie 1994] can

be seen as a variation of the vertically layered architecture in the middle of Figure

3.3. It consists of three layers. Control flows from the highest layer to the low-

est. The three layers are: the mission planner, the navigator and the pilot. The

mission planner is concerned with very high-level mission planning. The navi-

gator takes the specification generated by the mission planner and uses a map of

the robot’s environment to choose a point-to-point route that satisfies the speci-

fication. This route is then fed into the pilot segment-wise. For every segment,

the pilot selects motor schemas such as move-to-goal or avoid-static-obstacle and

parametrizes them so they function in the actual environment. The pilot can react

to unforeseen events. It sends the respective commands to the actuators and moni-

tors their progress in reaching the desired goal. If a failure occurs, the pilot replans,

taking into account the changed conditions. Upon success the next segment of the

route can be executed.

The InteRRaP agent architecture [Müller 1996] consists of three vertical layers:

the behavior-based layer (BBL), the local planning layer (LPL), and the cooperative

planning layer (CPL). These work concurrently and are arranged in a hierarchy –

the BBL takes care of reactive behavior, the LPL performs single-agent planning,

and the CPL is able to generate joint plans together with other agents. Only the

lowest layer, the BBL, communicates with the sensors and actuators. Thus, the

InteRRaP architecture is of the type depicted in Figure 3.3 on the right. The control

flow in InteRRaP is determined by two mechanisms: If a layer is not competent to

deal with a situation, it sends an activation request to the layer directly above it in

the hierarchy. If a higher layer has made a decision, it sends a commitment posting

to the layer below it. This layer in turn processes these commitments into lower-

level plans. The commitments made by lowest layer, the BBL, are instructions

sent to the actuators. Thus, activation requests flow from the bottom to the top

of the hierarchy, while commitments flow back down. Each layer is associated a

knowledge base which contains a world model tailored to that layer: The BBL’s

knowledge base contains a very primitive world model, i.e. data coming directly

from the sensors. The LPL’s knowledge base contains a mental model of the agent’s

capabilities, while the CPL contains a social model, i.e. a model of other agents’s

capabilities.

58 Chapter 3. Related Work

3.4 Chapter Summary

In this chapter, we have introduced deliberative and reactive control mechanisms

and have shown that both paradigms have severe shortcomings which make them

unsuitable as control strategies for smart ad-hoc environments. Shortcomings of

deliberative control include brittleness, inflexibility, slow response times, and com-

putational complexity. Furthermore, they are based on sophisticated models of the

environment, which require in-depth knowledge of the domain. This makes it hard

to distribute such approaches. Reactive systems, on the other hand, require an envi-

ronment that contains enough information for the agent to select actions and suffer

from a narrow planning horizon. Furthermore, they are difficult to fully understand

because behavior emerges from the interactions of their components. This also

makes engineering agents with many different behaviors difficult.

Subsequently, we have shown that by combining deliberative and reactive prin-

ciples, some of the shortcomings of both paradigms can be overcome. The inter-

esting question that remains to be answered is which hybrid approach is best suited

for our domain. Hybrid approaches have traditionally been used for robot control.

In this domain, enabling different behaviors is extremely important: A quick, reac-

tive response is crucial for an agent to be able to react to unforeseen situations, e.g.

to avoid an obstacle that appears unexpectedly in front of a robot. A deliberative

layer, on the other hand, is important to decide what the robot is going to do in the

future, e.g. for path planning.

In smart environments, we have different requirements. Obstacles that suddenly

appear in front of a notebook or a projector and must be avoided are very rare. And

we do not have to plan paths. In other words, there are no two fundamentally

different situations, one of which requires a fast response and the other longer-term

planning. If we look at the scenarios analyzed in Section 2.1, it becomes clear

that we have relatively uniform planning problems that require to compose action

sequences of moderate length (about 7 actions).

The main benefits of the reactive paradigm in smart environments are that it is

able to find a solution without complex computations and that it is architecturally

simple, which allows to assemble dynamic ensembles from a number of small com-

ponents at run-time. However, a high number of behaviors may result from such

an architectural design, which may deter a reactive system from finding a solution.

3.4. Chapter Summary 59

The challenge is thus to prune irrelevant actions in advance to restrict the search

space for the reactive system. This could be achieved by a deliberative component.

However, horizontally and vertically layered architectures are not suited for this

because their layers are arranged in parallel, not sequentially. Thus, in Chapter 4,

we introduce a different kind of layered architecture which is better suited for smart

ad-hoc environments: the temporally layered architecture.

Chapter 4

The AdDCo Algorithm

Contents
4.1 Preliminaries: Operators – Syntax and Meaning 64

4.1.1 Syntax . 64

4.1.2 Operations on Expressions 65

4.1.3 Worlds; Semantics . 66

4.1.4 Operators . 67

4.2 Maes’ Action Selection Algorithm 68

4.2.1 The PM Algorithm . 72

4.3 Maes’ Algorithm in Smart Environments 75

4.4 The AdDCo Algorithm . 77

4.4.1 The Overall System Architecture 78

4.4.2 The Architecture of a CompMod 80

4.4.3 The Message Vectors . 84

4.4.4 Parsing the Message Vectors 86

4.4.5 Operator Schemes and Instantiation 88

4.4.6 Link Schemes and Linked Operators 90

4.4.7 Building up the World Model 92

4.4.8 Adding CompModInsts to the Reduced Network 93

4.4.9 Deleting CompModInsts from the Reduced Network 95

4.4.10 Executability of CompModInsts 96

4.4.11 The Action Selection Algorithm 98

4.4.12 Differences to the PM Algorithm 101

4.5 Evaluation of the AdDCo Algorithm 103

62 Chapter 4. The AdDCo Algorithm

4.5.1 Scenario 1: Adjusting the Light Level 105

4.5.2 Scenario 2: Projector Scenario I 105

4.5.3 Scenario 3: Tracking the Speaker with a Movable Camera . 106

4.5.4 Scenario 4: Projector Scenario II 107

4.5.5 Results . 107

4.5.6 Discussion . 109

4.6 Classification of the AdDCo architecture 112

4.6.1 On the Single-Agent Level: A Temporally Layered Archi-

tecture . 112

4.6.2 On the Multi-Agent-Level: Different Phases in

Wooldridge’s and Jennings’ CDPS model 113

4.7 Chapter Summary . 115

In this chapter, we describe a strategy synthesis mechanism which is suited for

smart ad-hoc environments based on the requirements identified in Chapter 2 and

on the discussion of related work in Chapter 3.

As stated in Section 3.1.2, modelling the actions of devices in smart environ-

ments as planning operators is beneficial because it supports both parts of the re-

quirement distributedness identified in Section 2.2:

• Run-time modularization: Each device can provide descriptions of the ac-

tions it can perform. This way, the domain description can be adapted as

the ensemble itself is adapted: When a new device joins the ensemble, new

operators are added to the domain. When a device leaves, the operators corre-

sponding to its actions are deleted from the domain. In principle, the control

strategy utilizing this kind of modeling can be implemented in a distributed

fashion.

• Design-time modularization: Authors of planning operators need no knowl-

edge about the actual implementations behind other planning operators. It is

sufficient to ensure that the interfaces (i.e. the preconditions and effects of

the planning operators) are compatible. Thus, planning operators written by

different authors can be used together.

63

One strategy synthesis mechanism that allows modelling device actions as plan-

ning operators is that of Pattie Maes introduced in Section 3.2.8. It is an action

selection mechanism: Provided that the current world state and the user goals are

known, it selects and executes an action which leads to a new world state. Based

on this new world state, another action is selected and executed. This process is

repeated until the goals have been fulfilled. It is important to note that Maes’ algo-

rithm enables goal-based interaction, which we introduced in Section 3.1.2. This

is a favorable paradigm for smart environments because the user only has to know

what s/he wants, but not how to achieve it.

However, Maes’ algorithm has some drawbacks: First, it is a reactive approach.

In Chapter 3, we have argued that for smart ad-hoc environments, a hybrid ap-

proach is better suited than a purely reactive or a purely deliberative approach.

Second, it is centralized. In its original form, it thus does not satisfy the require-

ment distributedness. Third, actions need to be “hand-wired” at design time, hence

the algorithm does not fulfill the requirement flexibility.1

In order to adapt Maes’ algorithm for the domain of smart ad-hoc environ-

ments, two things must be done: First, we must combine it with a deliberative step.

This will move it from the reactive endpoint of the control continuum towards the

middle where the hybrid approaches are situated. Second, we must distribute the

algorithm, which also makes it more flexible. These two adaptations are described

in this chapter. We start with the preliminaries needed to describe the algorithms in

this chapter. We then present Maes’ original algorithm before giving a detailed de-

scription of the necessary adaptations for smart ad-hoc environments. The resulting

algorithm is called the AdDCo algorithm. Furthermore, we evaluate this algorithm

against Maes’ algorithm with the help of four smart environment scenarios. We

then classify the AdDCo algorithm with respect to two existing agent models: On

the single-agent level, it constitutes a new kind of hybrid architecture: a tempo-

rally layered architecture. On the multi-agent level, it can be viewed in terms of

Wooldridge’s and Jennings’ four-stage Cooperative Distributed Problem Solving

(CDPS) model [Wooldridge 2001]. Details follow in Section 4.6.2. Finally, we

discuss how the AdDCo algorithm is able to fulfill the requirements identified in

Section 2.2.

1What this means in detail will be explained later.

64 Chapter 4. The AdDCo Algorithm

4.1 Preliminaries: Operators – Syntax and Meaning

We describe the algorithms in this chapter in a style similar to the descriptions com-

mon in the planning community. The syntax we use is based on Z [Spivey 1992],

a notation commonly used for formally specifying software systems and modules.

4.1.1 Syntax

The basic building blocks of our descriptions are the following four sets:

• constant symbols, c ∈ Const, e.g. ~Projector1�, ~Canvas3�

• variable symbols, v ∈ Var, written as e.g. ~?p�, ~?c�

• predicate symbols, p ∈ Predicate, for instance ~CanvasUp�, ~DocShown�

(where we exclude the reserved names ~not�, ~and�, ~forall�)

Basically, we wish to represent the fact that preconditions and effects in operator

schemes (which are introduced in Section 4.4.5) are conjunctions of function-free

first-order literals. Both positive and negative literals are supported in effects and

preconditions. Later, we will extend effects to also contain universally quantified

literals. Function-free literals are literals that contain only function-free terms;

terms denote objects in the universe of discourse, thus we only allow constants and

variables as terms.2

Term ::= c | v, where c ∈ Const, v ∈ Var (4.1)

Atom ::= ~(p t1 . . . tn)� where ti ∈ Term, p ∈ Predicate (4.2)

Literal ::= a | ~(not a)� where a ∈ Atom (4.3)

A positive literal is just an atom, a negative literal is an atom preceded by the

negation sign.

Formula ::= ~(and l1 . . . ln)� where li ∈ Literal (4.4)

2This renders the Herbrand universe [Flach 1994] finite (as long as only finite sets of finite terms are
allowed).

4.1. Preliminaries: Operators – Syntax and Meaning 65

We will use Formula to represent conjunctions; an individual li is called a conjunct.

Expression ::= Term | Atom | Literal | Formula (4.5)

When discussing aspects of this first order language, such as semantics, we will

use notational conventions of [Stoy 1977], where ~·� is used to denote the abstract

syntax tree of some object language string, see Appendix 9.1 for the details.

Par abus de langage, we write a ∈ f or ~(not a)� ∈ f or l ∈ f to denote the idea

that a certain positive, negative, or arbitrary literal is one of the conjuncts in a for-

mula f ≡ ~(and l1 . . . ln)�. We write f � l to represent the formula that we get by

removing the literal l from f , so that for instance ~(and a b (not c))� � b =

~(and a (not b))�. Also, we write f � l to denote the extension of a for-

mula by another literal, so that ~(and a b)� � c = ~(and a b c)�. Like-

wise, a � ~(and b c)� = ~(and a b c)�, and ~(and a b)� � ~(and c d)� =

~(and a b c d)� Finally, we write ~()� (≡ ~(and)�) to denote the concept of

an empty formula (a formula without conjuncts).

4.1.2 Operations on Expressions

The function vars : Expression " �Var gives the set of variables used in an

expression. It is easily given by:

vars c = � (4.6)

vars v = {v} (4.7)

vars~(p t1 . . . tn)� =

n⋃
i=1

vars ti (4.8)

vars~(not a)� = vars a (4.9)

vars~(and l1 . . . ln)� =

n⋃
i=1

vars li (4.10)

An expression is a ground expression if it contains no variables.

GroundExpression = { e : Expression | vars e = � } (4.11)

66 Chapter 4. The AdDCo Algorithm

The corresponding definitions for ground terms, atoms, literals, and formulas fol-

low immediately.

A binding β : Binding, where Binding = Var " Const, is a (finite) mapping

from variable names to constants. The function subst : Binding" Expression"

Expression describes the substitution of variables in an expression using a given

binding:

substβ v =

β v if v ∈ dom β

v otherwise
(4.12)

substβ c = c (4.13)

substβ~(p t1 . . . tn)� = ~(p (substβt1) . . . (substβtn))� (4.14)

substβ~(not a)� = ~(not (substβa))� (4.15)

substβ~(and l1 . . . ln)� = ~(and (substβl1) . . . (substβln))� (4.16)

where dom R denotes the domain of a relation R, or, more formally,

dom R = {x : X | ∃ y : Y • xRy}

4.1.3 Worlds; Semantics

A world W : World is a set of ground atoms: the facts that are true in this world. A

formula f is valid in a world W, written as W |= f , if all positive literals in f hold

and none of its negative literals. Formally:

W |= f ⇔ ((a ∈ f ⇒ a ∈ W) ∧ (~(not a)� ∈ f ⇒ a < W)) (4.17)

Note that we make use of the closed world assumption, a very economical way of

modelling the world: All literals mentioned in W are true in the world, all literals

not mentioned in W are false.

4.1. Preliminaries: Operators – Syntax and Meaning 67

4.1.4 Operators

An operator ω : Operator is a pair of two ground formulas, the pre-

condition formula p and the effect formula e.3 We write this as ω =

(:precondition p :effect e). We use pre(ω) and eff (ω) to refer to the pre-

conditions and effects of a given operator ω. An example is the following operator

CanvasUp:4

CanvasUp = ~(:precondition (CanvasDown Canvas1)

:effect (not (CanvasDown Canvas1)))�

An operator ω is executable in a world W if its precondition formula holds. We

write this as Poss(ω,W). Formally:

Poss(ω,W)⇔ W |= pre(ω) (4.18)

The result of executing an operator ω in a world W is a world W ′ where the effect

formula of the operator is valid and nothing else has been changed.

There is a certain problem with effects: An effect such as ~(and a (not a))�

has no model and therefore can not be executed. We simply could abolish such

contradictory effect formulas (and this would be certainly a good point from the

declarative viewpoint) – however, with respect to the procedural semantics, we

could argue that effects are executed sequentially, so the later effect should win.

Such a procedural interpretation is specifically helpful when we consider a simple

integration of first order effects in Section 5.1.

In order to capture this behavior, we define a function cff : GroundFormula"

3We will use the terms precondition formula and preconditions synonymously in the following. The
same applies for effect formula and effects.

4Readers familiar with PDDL [Ghallab et al. 1998] will notice that our syntax is very similar to
PDDL. Thus, they are in line with other descriptions in this thesis, which are often given in PDDL.
However, here we use a simplified version rather than standard PDDL. For example, we usually
omit the :action declaration in operators. This is to keep operator descriptions as concise as
possible.

68 Chapter 4. The AdDCo Algorithm

GroundFormula that gives the equivalent contradiction-free version of a formula:

cff ~()� = ~()� (4.19)

cff (f � a) = (cff f � ~(not a)�) � a (4.20)

cff (f � ~(not a)�) = (cff f � a) � ~(not a)� (4.21)

Now the effect of an operator can be described by the function Do : Operator ×

World"World defined by

Poss(ω,W)⇒Do(ω,W) |= ceff ω (4.22)

∧ ∀ a : W |= a ∧ ~(not a)� < ceff ω⇒ Do(ω,W) |= a (4.23)

∧ ∀ a : W 6|= a ∧ a < ceff ω⇒ Do(ω,W) 6|= a (4.24)

where

ceff ω = cff (eff ω) (4.25)

This is basically the definition used by the situation calculus in planning

[Russell & Norvig 2010].

Alternatively, the operation of Do can be described by its procedural semantics:

Poss(ω,W)⇒ Do(ω,W) = DoSeq(eff ω,W) (4.26)

where

DoSeq(~()�,W) = W (4.27)

DoSeq(a � f ,W) = DoSeq(f ,W ∪ {a}) (4.28)

DoSeq(~(not a)� � f ,W) = DoSeq(f ,W \ {a}) (4.29)

4.2 Maes’ Action Selection Algorithm

Having settled the necessary preliminaries, we are now in position to describe

Maes’ algorithm. We have given an informal description in Section 3.2.8. Here,

we describe the algorithm more formally.

4.2. Maes’ Action Selection Algorithm 69

The key elements in Maes’ algorithm are competence modules. Competence

modules represent the actions of an intelligent agent. Formally, a competence mod-

ule x is a tuple (ω, α) where ω is an operator as defined in Section 4.1.4. Further-

more, α denotes the competence module’s activation level, which is a float value.

In the following, we will often use ωx and αx to refer to a competence module x’s

operator and activation level.

The activation level αx describes how likely competence module x is to become

active. For competence module x to become active means that ωx is executed.

Thus, x can only become active if ωx is executable, i.e. its precondition formula

holds. More formally: Poss(ωx,W). For reasons of simplicity, we will often speak

about a competence module x’s precondition formula when we actually mean ωx’s

precondition formula. The same holds for effect formulas.

The competence modules are linked to one another in a network via three kinds

of links: predecessor links pl, successor links sl, and conflicter links cl. There is a

predecessor link from a competence module x to a competence module y for each

of x’s preconditions that equals one of y’s effects. More formally:

pl(i, j)⇔ i ∈ pre(x) ∧ j ∈ eff (y) ∧ i = j

If there is at least one predecessor link from x to y, we say that y is a predecessor

of x or, more formally, y ∈ Pred(x). Intuitively, y can “help” x to become active:

When y becomes active, it fulfills one or more preconditions for x.

There is a successor link from a competence module x to a competence module

y for every predecessor link from y to x. More formally:

sl(i, j)⇔ pl(j, i)

If there is at least one successor link from x to y, we say that y is a successor of

x or, more formally, y ∈ Succ(x). Intuitively, y can “make use” of one or more

propositions x has fulfilled.

Furthermore, there is a conflicter link from x to y for each of x’s preconditions

that is the opposite of one of y’s effects. More formally:

cl(i, j)⇔ i ∈ pre(x) ∧ j ∈ eff (y) ∧ i = ¬j

70 Chapter 4. The AdDCo Algorithm

If there is at least one conflicter link from x to y, we say that y is a conflicter of

x or, more formally, y ∈ Conf (x). Intuitively, y “destroys” at least one precondition

of x when executed.5

G is the set of open goals, i.e. the set of ground atoms the user wants the system

to fulfill. R is the set of protected subgoals, i.e. goals that have been fulfilled by

the algorithm. More formally, an open goal is an atom g ∈ G with g < R ∧W 6|= g.

Note that both G and R can contain positive as well as negative literals (in contrast

to W, which contains only positive literals).

Maes’ algorithm runs in cycles: It successively selects competence modules

which become active one after another in order to fulfill the goals. Whenever a goal

has been fulfilled, it is transferred from the set of open goals to the set of protected

subgoals. The algorithm stops when all goals are fulfilled. More formally: Assume

that the algorithm starts at timestep 0. At timestep t, all goals are fulfilled and

the algorithm stops. Hence, G(0) denotes the set of open goals when the algorithm

starts. At timestep t, we then have the following state:

G(t) = �

R(t) = G(0)

∀ g ∈ G(0) : W (t) |= g

Which competence module actually becomes active in a specific cycle is deter-

mined by spreading activation energy among the competence modules. How much

energy a competence module x sends to a competence module y is determined by

x’s activation level and the links from x to y. Intuitively, the competence modules

use their links to activate and inhibit each other, so that after a while energy accu-

mulates in the modules that are most useful given the current situation and the open

goals. Then the module with the highest activation level becomes active, provided

that all of its preconditions are fulfilled and its activation level is above a certain

threshold θ which can change in the course of the algorithm. In the beginning, θ

5Links in Maes’ algorithm as well the AdDCo algorithm should not be confused with causal links
in classical planning [Russell & Norvig 2003]. A causal link denotes that an action achieves a
precondition for a subsequent action in a plan. In contrast, the links we introduce here do not
connect actions in a plan, but nodes in the network that is used to generate the plan. Another
difference are the relationships between nodes that the links express: While causal links in planning
express a predecessor relation, links here can express the predecessor relation and two additional
relations: the successor and the conflicter relation.

4.2. Maes’ Action Selection Algorithm 71

has the value of θ0, the initial activation threshold. θ0 is a global parameter the sys-

tem designer has to specify. If no module becomes active, θ is lowered by a certain

percentage – Maes suggests ten per cent here6 – for the next cycle. If a module

becomes active, θ is reset to θ0.

Activation energy is injected into the network according to the current situation

and the user’s goals. The amount of energy injected is determined by a number

of global parameters: In every cycle, each competence module receives energy

for each fulfilled precondition. The intuitive idea is the following: The more ful-

filled preconditions a competence module has, the closer it is to being executable,

and hence, the more useful it is in the current situation. The amount of energy it

receives for each fulfilled precondition is determined by the parameter φ. What

“determined by” means in this context will be explained later. Furthermore, in ev-

ery cycle, each competence module receives energy for each open goal that equals

one of its effects. The intuitive idea is the following: The more open goals a com-

petence module can fulfill, the quicker will all goals be fulfilled, and hence, the

more desirable is it that this competence module becomes active. The amount of

energy it receives for each open goal that equals one of its effects is determined

by the parameter γ. Moreover, in every cycle, each competence module loses en-

ergy for each effect that is the opposite of a protected subgoal. The intuitive idea

is the following: When becoming active, the competence module would undo one

or more goals already achieved. Therefore it is not desirable that this competence

module becomes active. The amount of energy it loses for each effect that is the

opposite of a protected subgoal is determined by the parameter δ.

Another parameter is π, the mean level of activation for the competence mod-

ules in the network. After each cycle, a decay function is applied to each compe-

tence module’s activation level in order to keep π constant. The parameters θ0, π,

φ, γ, and δ must be specified by the system designer. Example values are θ0 = 45,

π = 20, φ = 20, γ = 50, and δ = 40.

These parameters also determine which amount of energy the competence mod-

ules receive according to their links. Each competence module that is not exe-

cutable sends energy to each of its predecessors for every unfulfilled precondition.

The amount of energy sent is determined by α, the competence module’s activation

level. Furthermore, each competence module that is executable sends energy to

6We have evaluated different percentages and found that ten per cent is indeed a good choice.

72 Chapter 4. The AdDCo Algorithm

each of its successors for every effect that is not part of the current world state. The

amount of energy sent is determined by α(φ/γ). Furthermore, each competence

module takes away energy from each of its conflicters for every fulfilled precondi-

tion. The amount of energy taken away is determined by α(δ/γ).

We now describe what is meant by “determined by”. Each input or removal of

activation energy from competence module x is divided by two factors:

1. | pre(x) |, the number of literals in the precondition formula of x (in case x

receives energy through a precondition, i.e. in case it receives energy from a

predecessor or from the current situation due to a fulfilled precondition), or

| eff (x) |, the number of literals in the effect formula of x (in case x receives

energy through an effect, i.e. input coming from an open goal, or from a

successor, or in case energy is taken away by a conflicter or by a protected

subgoal), and

2. either one of mi or ai, where

• mi is the number of modules in the network that have literal i in their

precondition formula (in case the module receives energy from a pre-

decessor or from the current situation due to a fulfilled precondition),

• ai is the number of modules in the network that have literal i in their

effect formula (in case the module receives energy from a successor or

from an open goal, or in case the module loses energy due to a conflicter

or due to a protected subgoal)

The intuitive idea of the first factor is to prevent competence modules with lots of

preconditions/effects from being preferred over those with few, because they have

more sources of activation energy. The intuitive idea of the second factor is to

divide energy among those modules that have the same precondition fulfilled, that

achieve the same goal or that can undo the same literal, in order to make them

compete with one another to become active.

In the next section, we present Maes’ action selection algorithm, which we call

the PM algorithm (Pattie Maes’ algorithm) in the following.

4.2.1 The PM Algorithm

The algorithm performs a loop. At every timestep, the following computation takes

place for all competence modules. We describe it for timestep t + 1 and compe-

tence module x. Here, C denotes the set of competence modules in the network.

4.2. Maes’ Action Selection Algorithm 73

Furthermore, Ξ(t) denotes the set of executable competence modules at timestep t,

or, more formally, x ∈ Ξ(t) ⇔ Poss(ωx,W (t)).

1. Compute new activation level of competence module x:

α̃(t+1)
x = α(t)

x

+
∑

i∈pre(x)|W(t) |=i

φ

mi|pre(x)|
(activation for world state)

+
∑

i∈eff (x)∩G(t)

γ

ai|eff (x)|
(activation for open goals)

−
∑

i∈eff (x)|¬ i∈R(t)

δ

ai|eff (x)|
(inhibition for protected subgoals)

+
∑

z∈Pred(x)∩Ξ(t)

∑
i∈(pre(x)∩eff (z))|W(t) 6|=i

α(t)
z φ

γmi|pre(x)|
(activation by predecessors)

+
∑

z∈Succ(x)∩Ξ̄(t)

∑
i∈(pre(z)∩eff (x))|W(t) 6|=i

α(t)
z

ai|eff (x)|
(activation by successors)

−
∑

z∈Conf (x)

∑
¬ i∈pre(z)|i∈eff (x)|W(t) |=¬ i

α(t)
z δ

γai|eff (x)|
(inhibition by conflicters)

2. Compute overall activation energy in the network:

α̃(t+1) =
∑
y∈C

α̃(t+1)
y

3. Normalize activation level for module x to keep total activation π|C| constant:

α(t+1)
x =

α̃(t+1)
x

α̃(t+1)π|C|

4. Compute set of execution candidates:

E(t+1) = { x ∈ Ξ(t+1) | α(t+1)
x = max

z∈Ξ(t+1)
α(t+1)

z ∧ α(t+1)
x > θ }

74 Chapter 4. The AdDCo Algorithm

5.a If E(t+1) = {x0}, so we have a unique execution candidate: Execute operator:

W (t+1) = Do(ωx0 ,W
(t)) (new world state)

G(t+1) = G(0) \ {i | W (t+1) |= i} (open goals: goals that are not true now)

R(t+1) = G(0) ∩ {i | W (t+1) |= i} (protected subgoals: goals that are true now)

θ = θ0

5.b Else

θ = θ ∗ 0.9

Table 4.1: Scenario 4

initial state Notebook1 hosts Document1
Notebook2 hosts Document2

goal state Document1 shown on Canvas3
Document2 shown on Canvas1

optimal Notebook1 maximizes Document1
action Notebook2 maximizes Document2
sequence Canvas3 is lowered

Canvas1 is lowered
Crossbar connects Notebook1 to Projector3
Crossbar connects Notebook2 to Projector1
Projector3 shows Document1 on Canvas3
Projector1 shows Document2 on Canvas1

Table 4.2: Results

Scenario 4
parameters π = 80

θ = 45
φ = 20
γ = 50
δ = 40

number of competence modules 154
number of cycles 22
length of action sequence 22

4.3. Maes’ Algorithm in Smart Environments 75

4.3 Maes’ Algorithm in Smart Environments

The PM algorithm in its original form has two major drawbacks which make it

unsuitable for the domain of smart ad-hoc environments:

• The first problem refers to the way the PM algorithm is implemented. The

algorithm was designed for arbitrating between multiple behaviors of a sin-

gle agent. Hence, the designer of such an agent develops a set of competence

modules that represent the different behaviors of the agent. These behaviors

could for instance be different arm movements of a robot. The modules are

designed to reside and run on a single agent, and the PM algorithm does

not provide for adding or removing competence modules at run-time. Fur-

thermore, the interfaces of the competence modules, i.e. the preconditions

and effects of their operators, must match exactly. Thus, one could say that

the modules must be “hand-wired” by the designer. This implies that the

PM algorithm cannot be applied for arbitrating between behaviors of multi-

ple agents in distributed and dynamic settings, which may join and leave at

run-time.

• The second problem refers to the action selection process itself. Maes tested

the algorithm in rather small domains with few operators. A large number of

operators can cause the algorithm to exhibit unpredictable behavior and the

action selection process may produce several unnecessary actions. Consider

Scenario 4 in Table 4.1.7 This is a smart environment scenario we devel-

oped in accordance with the domain analysis in Chapter 2. It comprises 18

devices: eight canvasses, two notebooks, two documents, a video crossbar,

four fixed projectors (Projector1 to Projector4) and a movable projector (Pro-

jector5). There are two goals: Document1 should be shown on Canvas3, and

Document2 should be shown on Canvas1. The optimal action sequence con-

sists of 8 actions. Table 4.2 lists the results obtained with the PM algorithm.

The parameters were carefully hand-tuned: The results presented here are the

best we obtained by running the algorithm with various different parameter

settings.8 The PM algorithm finds an action sequence consisting of 22 ac-

7The scenario in Table 4.1 is one of four scenarios we use for the evaluation of the AdDCo algorithm
in Section 4.5. We describe these scenarios in a notation that is close to human language for reasons
of clarity and understandability.

8Notice that hand-tuning the parameters is only necessary for the PM algorithm. For the AdDCo

76 Chapter 4. The AdDCo Algorithm

tions. In other words, this sequence contains 13 unnecessary actions. Figure

4.1 depicts the corresponding activation levels of relevant competence mod-

ules throughout the run of the algorithm.9 The thick red line at y = 45 depicts

the activation threshold. Peaks with activation levels falling to 0 in the next

cycle correspond to competence modules being selected and executed. One

can see that the activation levels are always much higher than the activation

threshold, and the activation threshold remains constant throughout the run

of the algorithm. This indicates that the activation threshold has no influ-

ence on the action selection process. In every cycle, a competence module is

chosen without much arbitration – the algorithm does not exhibit reasonable

behavior. The problem here is that 154 competence modules are necessary to

model this scenario.10 Most of those 154 competence modules are not able

to contribute to the goals, but nevertheless receive activation energy through

their links. This results in the shown behavior.

In order to make Maes’ algorithm applicable in smart ad-hoc environments,

those two problems must be solved. In the following sections, we introduce the

following adaptations:

1. We distribute the algorithm over the devices in a smart environment. This

comprises the following changes:

• We let the modules communicate via a network.

• We let each module build up a partial world model containing represen-

tations of other devices and modules in the environment.

• Instead of prewiring operators, we introduce templates (so-called oper-

ator schemes). These contain variables that correspond to device types.

At run-time, these can be used to create operators by binding the vari-

ables to names of actual devices. Thus, the network need not be hand-

wired anymore, but can be built up entirely at run-time.

• We let the modules handle all synchronization issues themselves.

2. We reduce the network of modules at run-time to those that can actually

algorithm, a robust parameter setting exists that is feasible for a wide variety of scenarios. We
discuss this issue further in Section 4.5.

9To prevent the figure from becoming too cluttered, only the activation levels of competence modules
that are executed at some point are shown in this plot.

10In Section 4.5.6 we explain why Maes’ algorithm requires this kind of modelling.

4.4. The AdDCo Algorithm 77

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20

ac
tiv

at
io

n
le

ve
l

cycle

Figure 4.1: The activation flow in the PM algorithm in Scenario 4.

contribute to a goal.

We call our modified algorithm the AdDCo (Ad-hoc Device Cooperation) al-

gorithm. With the changes described above, we are able to improve the behavior

of the algorithm significantly. Scenario 4, for example, can now be modeled with

only 32 operators, and the AdDCo algorithm finds an action sequence consisting

of 9 actions. The resulting activation pattern is shown in Figure 4.2.11 A detailed

comparison of the PM algorithm and the AdDCo algorithm follows in Section 4.5.

In the following, we describe the modifications in detail.

4.4 The AdDCo Algorithm

In this section, the AdDCo algorithm is described. We first settle the preliminaries,

i.e. we explain the overall system architecture and describe the assumptions that

11Again, only the activation levels of competence modules that are executed at some point are shown
in this plot.

78 Chapter 4. The AdDCo Algorithm

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

ac
tiv

at
io

n
le

ve
l

cycle

Figure 4.2: The activation flow in the AdDCo algorithm in Scenario 4.

are necessary for the algorithm to work. We then describe the algorithm in detail.

This description comprises two parts: network maintenance and action selection.

4.4.1 The Overall System Architecture

The overall system architecture is depicted in Figure 4.3. We assume that all de-

vices are connected to a common network and have elementary computing capa-

bilities and some memory. For reasons of simplicity we regard entities in a broader

sense as devices, too, e.g. documents. Of course a document does not have a pro-

cessor, nor does it have memory or network access. Thus, we assume that for such

devices a surrogate computer will provide the required functionality. In the case of

a document, this could for instance be the notebook that hosts the document. Two

types of software components run on each device: CompMods and ECo services.

In Figure 4.3, CompMods are depicted as white rectangles with a black border,

while ECo services are depicted as red rectangles.

CompMods are the core components of the AdDCo algorithm. There is a

4.4. The AdDCo Algorithm 79

CompModInst

CanvasDown

CompModInst

LightOn

CompModInst

ShowDoc

LightService
Light1

SurfaceService
Canvas1

DisplayService
Projector1

CompMods

ECo
Middleware

Devices

CompModInst

CompModInst

CanvasUp

CompModInst

LightOff

Figure 4.3: The overall system architecture.

CompMod for each action a device can perform. Each CompMod carries a declar-

ative description of its assigned action, called an operator scheme. Operator

schemes are described in terms of preconditions and effects. These may contain

variables, each of which stands for a device type. At run-time, these variables are

bound to names of devices of that type which are present in the ensemble. With

each such binding, an operator is generated. This process is described in a detailed

and formal way in Section 4.4.5. An operator plus some additional data structures

forms a CompModInst (CMI). In Figure 4.3, CompModInsts are depicted as green

rectangles. In the AdDCo algorithm, CompModInsts are the equivalent to the com-

petence modules in the PM algorithm.

The purpose of the CompMods is to collectively decide which action should be

executed when. To this end, each CompMod can perform simple calculations, has

memory and communicates with the other CompMods via the network. The Comp-

ModInsts are connected by links according to their preconditions and effects, just as

the competence modules in the PM algorithm.12 Figure 4.4 depicts four CompMod-

12Note that we often speak about a CompModInst’s preconditions and effects although, strictly speak-
ing, we mean the preconditions and effects of its operator.

80 Chapter 4. The AdDCo Algorithm

Insts with preconditions and effects described in PDDL [Ghallab et al. 1998]. The

black, blue and red dotted arrows represent predecessor, successor and conflicter

links. The yellow ellipsoids above the CompModInsts represent the percepts13 –

the literals that are part of the current world state, while the yellow ellipsoids below

the CompModInsts represent the open goals. The yellow dotted arrows show the

energy the CompModInsts receive from percepts and goals. The process of action

selection is described in detail in Section 4.4.11. Whenever there is an open goal,

the CompMods communicate with one another to select CompModInsts for exe-

cution in order to fulfill this goal. This selection is based on energy distribution

according to the links, similar to the PM algorithm. When a CompModInst has

been chosen, its CompMod sends a command to the ECo middleware.

The ECo middleware, developed by Heider and Giersich [Heider 2010,

Giersich 2010], consists of ECo services. ECo stands for Ensemble Communi-

cation Framework. The ECo services are distributed across the devices: There is

an ECo service on each device. Communication among the ECo services is based

on multicast. The purpose of an ECo service is to translate the high-level com-

mands coming from the CompMods into a low-level command that directly drives

the device. Then, the action chosen by the ensemble of CompMods is executed in

the environment.

4.4.2 The Architecture of a CompMod

As said before, CompMods form the core of the AdDCo algorithm. This section

gives an overview of the algorithms carried out within a CompMod and the data

structures each CompMod stores. These components are also depicted in Figure

4.5. Details follow in the forthcoming sections.

A CompMod consists of four components:

• a world model that contains information about the CompMod itself and the

rest of the ensemble

• a communication component that sends messages to the rest of the ensemble

and handles incoming messages

• a component for network maintenance that builds up and maintains the world

13Note that according to (4.17), the world state does not contain any negative literals due
to the closed world assumption. However, in Figure 4.4 we include the negative literal
(not (CanvasDown Canvas1)) to show its relation to CanvasDown’s precondition.

4.4. The AdDCo Algorithm 81

(S
en

t2
D

is
p

D
oc

um
en

t1

P
ro

je
ct

or
1)

(C
an

va
sD

ow
n

C
an

va
s1

)

(D
oc

Sh
ow

n
D

oc
um

en
t1

 C
an

va
s1

)
...

(C
an

va
sD

ow
n

C
an

va
s1

)

(n
ot

 (C
an

va
sD

ow
n

C
an

va
s1

))

(n
ot

 (C
an

va
sD

ow
n

C
an

va
s1

))

(C
an

va
sD

ow
n

C
an

va
s1

)

pe
rc

ep
t:

(n
ot

 (C
an

va
sD

ow
n

C
an

va
s1

))

go
al

:
(D

oc
S

ho
w

n
D

oc
um

en
t1

 C
an

va
s1

)

(O
pe

n
D

oc
um

en
t1

N

ot
eb

oo
k1

)

(S
en

t2
D

is
p

D
oc

um
en

t1

P
ro

je
ct

or
1)

...

pe
rc

ep
t:

(O
pe

n
D

oc
um

en
t1

 N
ot

eb
oo

k1
)

pr
ed

ec
es

so
r l

in
k

su
cc

es
so

r l
in

k
co

nf
lic

te
r l

in
k

en
er

gy
 fr

om
 p

er
ce

pt
en

er
gy

 fr
om

 g
oa

l

Fi
gu

re
4.

4:
Fo

ur
C

om
pM

od
In

st
s

co
nn

ec
te

d
by

lin
ks

.
A

dd
iti

on
al

ly
,t

he
flo

w
of

en
er

gy
fr

om
pe

rc
ep

ts
an

d
go

al
s

to
C

om
pM

od
In

st
s

is
de

pi
ct

ed
.

82 Chapter 4. The AdDCo Algorithm

Network

CompMod
Communication Component

NMMsg Parser ASMsg Parser

Action SelectionNetwork Maintenance

Maintenance of World
State, Goals, Protected

Subgoals

Instantiation and Deletion
of Operators and Linked

Operators

Adaptation of Reduced
Network

World State
Goals

Protected Subgoals
Domain

Operator Scheme
CompModInsts/Operators

Link Schemes
Linked Operators
Reduced Network

World Model

Accumulation of Activation

Distribution of Activation

Computation of New
Activation Level

Identification of Execution
Candidates

Execution

CompMod CompMod

Figure 4.5: The architecture of a CompMod.

model

• a component for action selection that enables the CompMod to take part in

the distributed decision-making process

The world model is not a complete model of the CompMod’s surroundings, but

contains only the information necessary for the respective CompMod. The world

model comprises the following information:

• The current world state: It consists of literals that we call percepts. These

literals are delivered to the CompMods by hardware or software sensors. An

example is the literal (Open Document1 Notebook1).

• The open goals: These are literals that are not yet true in the environment,

but which are to be fulfilled by the CompMods. For the AdDCo algorithm

to work, we assume that the goals are correctly provided by the intention

analysis, as described in Section 1.2.

• The protected subgoals: These are literals that originally were open goals,

but have been fulfilled by the CompMods in the course of the algorithm.

4.4. The AdDCo Algorithm 83

Hence they are now part of the current world state.

• The domain: The domain describes all devices currently in the ensemble. It

maps device types to their names. We introduce it formally in Section 4.4.5.

• The CompMod’s operator scheme: This is a description of the action as-

signed to the CompMod. It consists of a precondition formula and an effect

formula. We introduce it formally in Section 4.4.5. The operator scheme is

the only element of the world model that cannot be changed in the course of

the AdDCo algorithm.

• The CompMod’s CompModInsts: A CompModInst consists of an operator

which represents a fully specified action that can be executed in the envi-

ronment. In addition, the CompModInst stores data required for the action

selection algorithm, e.g. its activation level.

• Link Schemes: Link schemes are operator schemes of other CompMods in

the ensemble the CompMod is linked to. This is detailed in Section 4.4.6.

• Linked operators: These are operators that are linked to the operators of the

CompMod. The CompMod instantiates link schemes into linked operators

using the domain. Details follow in Section 4.4.6.

• The reduced network: The reduced network contains those CompModInsts

that can contribute to the fulfillment of an open goal. Each CompMod stores

which of its CompModInsts is part of the reduced network. This is described

in detail in Section 4.4.8.

The communication component handles all communication between the Comp-

Mod and the rest of the ensemble by sending and receiving messages. Each mes-

sage is either a network maintenance message (denoted by NMMsg in Figure 4.5)

or an action selection message (denoted by ASMsg in Figure 4.5). Both are in the

format of a message vector. We explain this in Section 4.4.3. Incoming messages

are parsed and distributed to the network maintenance component and the action

selection component. There is a separate parser for network maintenance messages

and action selection messages. Details follow in Section 4.4.4.

When the CompMod enters the ensemble, the component for network mainte-

nance builds up the world model. Afterwards, it ensures that the world model is

always up to date. To this end, the network maintenance component is called by the

Communication Component whenever a network maintenance message (NMMsg)

is received. Network maintenance is described in detail in Sections 4.4.5, 4.4.6,

84 Chapter 4. The AdDCo Algorithm

4.4.7, 4.4.8, and 4.4.9.

All CompMods in the ensemble collectively search for an action sequence that

fulfills the user’s goals. To this end, each of them executes an action selection algo-

rithm that runs in cycles. At the end of each cycle, an action can be executed. Each

cycle consists of a series of computation and communication steps. In each step,

the CompMods compute small partial solutions, then exchange these solutions via

sending and receiving messages. Using the information received, each CompMod

then computes the information needed for the next step and so on. The action se-

lection algorithm is described in Section 4.4.11. The computation part is similar to

the PM algorithm, albeit there are some important differences which we discuss in

Sections 4.4.10 and 4.4.12. The communication part, however, has no equivalent

in the PM algorithm. It is due to the fact that the AdDCo algorithm is a distributed

algorithm.

4.4.3 The Message Vectors

As the AdDCo algorithm is a distributed algorithm, the CompMods communicate

to build up their world model, keep it up to date and cooperatively manage the

process of action selection. All communication can be described by two message

vectors that are broadcast by a CompMod for the purpose of sharing information

with other CompMods: the network maintenance vector and the action selection

vector. Furthermore, the network maintenance vector is also used by the intention

analysis and sensors to announce a new goal or a percept and by a device announc-

ing its joining or leaving the ensemble. The action selection vector has 7 elements

and is depicted in Table 4.3; the network maintenance vector has 13 elements and

is depicted in Table 4.4.

1 ωx(r) operator of a CMI x that is the receiver of 2, 3, and 4
2 α(t+1)

zx (pred) activation sent to 1 by a successor
3 α(t+1)

zx (succ) activation sent to 1 by a predecessor
4 α(t+1)

zx (conf) inhibition sent to 1 by a conflicter
5 ωx(s) operator of a CMI x that is the sender of 6 or 7
6 α(t+1)

x (a) 5’s preliminary activation level
7 ε̃x 5’s executability

Table 4.3: The action selection message vector.

4.4. The AdDCo Algorithm 85

1 W current world state
2 w new literal (percept) to be included in the world state
3 G currently open goals
4 g new open goal
5 R set of current protected subgoals
6 σa operator scheme of a new CompMod a
7 σo operator scheme of a CompMod o that is not new
8 σl operator scheme of a CompMod l leaving the ensemble
9 τa description of a device joining the ensemble
10 τ current domain (descriptions of all devices in the ensemble)
11 τl description of a device leaving the ensemble
12 ωx(a) operator of a CMI x that is added to reduced network
13 ωx(l) operator of a CMI x that is deleted from reduced network

Table 4.4: The network maintenance message vector.

Here, we will not explain the meaning of each of the elements. This will be-

come clear in the next sections, when we introduce operator schemes, link schemes

etc. For now, it is only important to know that each element triggers a certain re-

action in the CompMods that receive the message. This, too, is later described in

detail. In an actual message vector usually only a subset of the 13 elements of the

network maintenance vector or of the 7 elements of the action selection vector actu-

ally contains information, while the other elements are set to NULL. For example,

when a new CompMod a joins the ensemble, it informs the other CompMods about

its presence by sending its operator scheme σa in a network maintenance message

of the form NMMsg(NULL, NULL, NULL, NULL, NULL, σa, NULL, NULL,

NULL, NULL, NULL, NULL, NULL). Network maintenance messages start with

NMMsg, while action selection messages start with ASMsg. For better readabil-

ity, we will often write messages in a form that includes only the non-NULL ele-

ments preceded by their position in the vector. Thus, our example message reads

as NMMsg(6: σa).

When a CompMod receives a network maintenance message, it must adapt its

world model according to the message. This may cause inconsistencies if action

selection continues during adaptation. Therefore, action selection is automatically

stopped when a network maintenance message is recognized. When the world

model has been adapted, action selection is restarted.

86 Chapter 4. The AdDCo Algorithm

Receive ASMsg(ωx(r), α(t+1)
zx (pred), α(t+1)

zx (succ), α(t+1)
zx (conf), ωx(s), α(t+1)

x (a), ε̃x)

CompMod y joins

ωx(r) , NULL? α(t+1)
zx (pred) ,
NULL?

α(t+1)
zx (succ) ,
NULL?

α(t+1)
zx (conf) ,
NULL?

∃ c ∈ C with c = x?

Add α(t+1)
zx (pred), α(t+1)

zx (succ),
and α(t+1)

zx (conf) to α(t+1)
x (s)

(see Section 4.4.11)

ωx(s) , NULL? α(t+1)
x (a) ,
NULL?

ε̃x ,
NULL?

Store ωx(s), α(t+1)
x (a) and

ε̃x for the computation
of α(t+1) and E(t+1)

(see Section 4.4.11)

yes yes yes

yes

yesno
no no no

no

yes yes yes

no no no

Figure 4.6: Action selection messages parsed and distributed by the Communica-
tion Component.

4.4.4 Parsing the Message Vectors

Both the network maintenance vector and the action selection vector are parsed by

the Communication Component. According to the elements the vectors contain,

certain actions are triggered. This is depicted in the flowchart in Figure 4.6 for the

action selection vector and in the flowchart in Figure 4.7 for the network mainte-

nance vector. The flowcharts are intended to give the reader the overall picture of

inter-CompMod communication while the details will be explained in the forth-

coming sections. Hence, the flowcharts are best skimmed at first reading and later

viewed again when the details have been explained.

As the AdDCo algorithm is a distributed algorithm, each CompMod has a Com-

munication Component and hence, each CompMod parses network maintenance

messages and action selection messages. The flowcharts describe this for Comp-

Mod y. CompMod y’s variables are marked by the index y – for example, σy de-

notes y’s operator scheme. Furthermore, C denotes the set of y’s CompModInsts.

In the following sections, we describe network maintenance and action selec-

4.4. The AdDCo Algorithm 87

Send NMMsg(6: σy)CompMod y joins

Receive NMMsg(W, w, G, g, R, σa, σo, σl, τa, τ, τl, ωx(a), ωx(l))Pause action selection

Set Wy = WIs y new?W ,NULL?

w ,NULL?
Update world state

Wy such that Wy |= w

G ,NULL? Is y new? Set Gy = G

g ,NULL? Set Gy = Gy ∪ g

∃ c ∈ C with
g ∈ eff (c)?

Send NMMsg(12: ωc(a))

Add c to RI (see Section 4.4.8)

R ,NULL? Is y new?
Set Ry = R

σa ,NULL
and a , y?

Send NMMsg(1: W, 3:
G, 5: R, 7: σy, 10: τ) linked(a, y)? Use σa to instantiate linked

operators (see Section 4.4.6)

σo ,NULL? Is y new? linked(o, y)?
Use σo to instantiate linked
operators (see Section 4.4.6)

σl ,NULL? linked(l, y)?

Delete all linked
operators in inst σl τ

(see Section 4.4.6)

For all c ∈ C
that have no more
informers: Delete

c from RI and send
NMMsg(13: ωc(l))
(see Section 4.4.9)

τa ,NULL? Extend τ by τa and instantiate new
operators and linked operators us-
ing τa (see Sections 4.4.5, 4.4.6)

τ ,NULL? Is y new?
Set τy = τ

τl ,NULL?
Reduce τy by τl and delete all operators and
linked operators with τl in precondition or
effect formulas (see Sections 4.4.5, 4.4.6)

ωx(a) ,NULL?
∃ c ∈ C with
before(c, x)?

Add c to RI , inf (x, c) and send
NMMsg(12: ωc(a)) (see Section 4.4.8)

ωx(l) ,NULL? ∃ c ∈ C for which x
is the only informer?

Delete c from RI and
send NMMsg(13: ωc(l))

Continue action selection

yes yes

no
no

yes
no

yes

yes

no

yes

no yes

nono

yes
yes

no no

yes
yes

no no

yes

yes yes

no no no

yes yes

no
no

yes
no

yes
yes

no
no

yes
no

no

yes yes
no

yes yes

no
no

Figure 4.7: Network maintenance messages parsed and distributed by the Commu-
nication Component.

88 Chapter 4. The AdDCo Algorithm

tion in detail.

4.4.5 Operator Schemes and Instantiation

In this section, we introduce operator schemes. Operator schemes do not exist in

the PM algorithm. They bring the flexibility that enables the AdDCo algorithm

to perform distributed run-time strategy synthesis. Informally, one can say that

operator schemes are templates that can be instantiated into operators at run-time.

A more formal definition follows.

In addition to the sets Const, Var, and Predicate defined in Section 4.1.1, we

now introduce the set of type names, d ∈ Type, e.g. Projector, Canvas. Type

names occur in declarations:

A declaration δ : Decl where Decl = Var" Type is a finite map from variable

names to type names. A domain τ : Dom where Dom = Type " �Const is a

finite map from type names to sets of constants. The function bindings : Decl"

Dom"�Binding gives all possible bindings for a given variable declaration and

a domain

bindings δ τ = { β : Binding | dom β = dom δ ∧ ∀ v ∈ dom δ : β v ∈ τ(δ v) }

(4.30)

An operator scheme σ : OpScheme where OpScheme = Decl ×

Formula × Formula is a triple consisting of a declaration δ, a pre-

condition formula p and an effect formula e. We write this σ =

~(:parameters δ :precondition p :effect e)�; we write decl(σ) to de-

note the declaration of a given operator scheme σ, and we use pre(σ) and eff (σ)

to refer to σ’s precondition and effect formula, respectively. An example for an

operator scheme is the following:

σ = CanvasUp = ~(:parameters (?c - Canvas) (4.31)

:precondition (CanvasDown ?c) (4.32)

:effect (not (CanvasDown ?c)))� (4.33)

4.4. The AdDCo Algorithm 89

so that

decl(σ) = {~?c� 7→ ~Canvas�} (4.34)

pre(σ) = ~(CanvasDown ?c)� (4.35)

eff (σ) = ~(not (CanvasDown ?c))� (4.36)

Instantiating an operator scheme σ with respect to a given domain τ amounts

to computing all possible bindings for σ’s declarations using all possible objects in

τ and then creating all operators by substituting the binding in σ’s precondition and

effect formulas. It is given by the function inst : OpScheme"Dom"�Operator,

defined as follows:

inst σ τ = { ~(:precondition p :effect e)� | ∃β ∈ bindings (decl(σ)) τ :

p = substβ(pre(σ))

∧ e = substβ(eff (σ)) }
(4.37)

As an example, suppose we have the domain τ = {Canvas 7→

{Canvas1,Canvas2}}. Instantiating the operator scheme CanvasUp described above

with respect to this domain yields the following two operators:

CanvasUpCanvas1 = ~(:precondition (CanvasDown Canvas1)

:effect (not (CanvasDown Canvas1)))�

CanvasUpCanvas2 = ~(:precondition (CanvasDown Canvas2)

:effect (not (CanvasDown Canvas2)))�

A more comprehensive example of instantiating an operator scheme can be

found in Section 9.2 in the Appendix. Note that for every new operator that is

instantiated, a CompModInst is generated. As said before, such a CompModInst

stores not only the operator, but also additional data structures which are essential

for the action selection algorithm.

Please also note that in the AdDCo algorithm, domains can change at run-

90 Chapter 4. The AdDCo Algorithm

time. This is due to the fact that semantically, a domain is a mapping from

device types to device names. Thus, when a new device enters the ensemble,

the domain τ is extended by a mapping τa. The new device announces its join-

ing to the ensemble by sending a message NMMsg(9: τa). All CompMods

receive this message and extend their domains accordingly. Consider adding

τa = {Canvas 7→ {Canvas3}} to the above example domain. This yields the ex-

tended domain {Canvas 7→ {Canvas1,Canvas2,Canvas3}}. When a device joins,

new operators are instantiated according to the definition above, and for each new

operator a new CompModInst is generated. Likewise, τl denotes a device that

leaves the ensemble, announced by a message NMMsg(11: τl). This causes the do-

main τ to be reduced by τl. Furthermore, it causes each CompModInst to be deleted

whose operator contains the device name in its precondition or effect formula.

4.4.6 Link Schemes and Linked Operators

In Section 4.2, we have defined links for the competence modules in the PM al-

gorithm. In analogy, we now define links for CompMods and CompModInsts in

the AdDCo algorithm. The following definitions are valid if x and y are either both

CompMods or if they are both CompModInsts. Notice that for reasons of simplicity

we write pre(x) and eff (x) although, strictly speaking, this is not correct: We ob-

viously do not mean x’s precondition or effect formula, but the precondition/effect

formula in x’s operator (in case x is a CompModInst) or operator scheme (in case x

is a CompMod), respectively.

We say that x is linked to y if y is a predecessor, successor, or conflicter of x:

linked(x, y)⇔ y ∈ Pred(x) ∨ y ∈ Succ(x) ∨ y ∈ Conf (x)

We say that y is a predecessor of x (or y ∈ Pred(x)) if there is at least one

predecessor link from x to y. There is a predecessor link from x to y for each of x’s

preconditions that equals one of y’s effects. More formally:

pl(i, j)⇔ i ∈ pre(x) ∧ j ∈ eff (y) ∧ i = j

We say that y is a successor of x (or y ∈ Succ(x)) if there is at least one successor

4.4. The AdDCo Algorithm 91

link from x to y. There is a successor link from x to y for every predecessor link

from y to x. More formally:

sl(i, j)⇔ pl(j, i)

We say that y is a conflicter of x (or y ∈ Conf (x)) if there is at least one conflicter

link from x to y. There is a conflicter link from x to y for each of x’s preconditions

that is the opposite of one of y’s effects. More formally:

cl(i, j)⇔ i ∈ pre(x) ∧ j ∈ eff (y) ∧ i = ¬j

Via the links, the CompModInsts form a network. This network is stored in a

distributed fashion: Whenever a new CompMod enters the ensemble, it broadcasts

its operator scheme in a message NMMsg(6: σa). Each CompMod then checks

whether it is linked to the new CompMod. If yes, it stores the new CompMod’s

operator scheme, which we now call a link scheme. The CompMod now checks

if it can instantiate the link scheme into linked operators using the domain τ. A

CompMod instantiates linked operators in the same way as instantiating its own

operators. We have described this process in Section 4.4.5. Furthermore, each of

the other CompMods answers the new CompMod’s request by sending its operator

scheme along with some more information, which is detailed in the next section.

This way, the new CompMod can build up an internal model of the CompMods

it is linked to by instantiating linked operators. Instantiation of linked operators

is repeated everytime a new device enters, i.e. whenever τ is extended by a new

mapping τa. Hence, each CompMod stores exactly the part of the network relevant

for itself: its own operators and the operators that are its predecessors, successors,

and conflicters.

The reason why we let each CompMod instantiate all its linked operators it-

self instead of sending complete operators over the network is to reduce the num-

ber of messages that have to be sent. In Section 4.4.5 we have seen how oper-

ators are created for an operator scheme σ and a domain τ: For each binding

β ∈ bindings (decl(σ)) τ, an operator is created. Each of those operators is, of

course, potentially a linked operator to some other CompMod in the ensemble. This

implies that if CompMods did not instantiate their linked operators themselves, for

each β a message would have to be broadcast over the network, announcing the in-

92 Chapter 4. The AdDCo Algorithm

stantiation of a potential linked operator. This would lead to an increased message

load. Of course, one could argue that when joining the ensemble, each Comp-

Mod could send all its operators in a bulk in a single message. But even then the

message load would be significantly increased. This is due to the fact that the en-

semble structure may change at any time. Consider that each CompMod needs to

instantiate operators when a device joins and delete operators when a device leaves.

In each of those cases, it would have to send an update message telling the other

CompMods which operators have just been instantiated or deleted. Hence, it is

more economical in terms of message load to just let each CompMod send its op-

erator scheme σ and have the CompMods that are linked to it instantiate and delete

their linked operators themselves.

When a CompMod leaves the network, it sends a message NMMsg(8: σl).

Each CompMod now checks whether it is linked to the CompMod that leaves. In

this case, it deletes the link scheme σl and all linked operators it has instantiated

using σl. A similar process takes place whenever τ is reduced by τl because a

device leaves: Then each CompMod deletes all linked operators that contain τl in

their precondition or effect formula.

4.4.7 Building up the World Model

When a CompMod enters the ensemble, its world model is empty. It is built up

via communication in the following way: Each new CompMod broadcasts its op-

erator scheme in a message NMMsg(6: σa). This message serves two purposes:

First, it tells the other CompMods that there is a new member in the ensemble that

they must incorporate into their own world models, as described in Section 4.4.6.

Second, it serves as a request to the other CompMods to send the new CompMod

all relevant information about the current context. Each CompMod answers the

request message with a message NMMsg(1: W, 3: G, 5: R, 7: σo, 10: τ). This is

depicted in Figure 4.7. In detail, this message contains the following information:

• W, the current world state,

• G, the goals currently open,

• R, the current protected subgoals,

• σo, the sender’s operator scheme,

• τ, the current domain (i.e. descriptions of all devices currently in the ensem-

ble).

4.4. The AdDCo Algorithm 93

This information is then received by the new CompMod and used to build up

its world model. Although all other CompMods receive the same message, it is

only relevant for a new CompMod because existing CompMods have already built

up their world model. Hence, the positions 1, 3, 5, 7, and 10 in the network main-

tenance vector are only parsed by new CompMods.

4.4.8 Adding CompModInsts to the Reduced Network

In a typical smart environment scenario we developed based on the domain anal-

ysis in Chapter 2, the network contains 138 CompModInsts. This is quite a high

number, considering that each of those CompModInsts has to be processed in ev-

ery action selection cycle. In an environment like ours the CompModInsts are dis-

tributed among the devices, so this is not as bad as it would be on a single processor

machine. But if several of the CompModInsts run on a single device, computation

can become very slow. During each cycle, a CompMod performs some basic arith-

metic operations for each of its CompModInsts. Thus, to reduce computational

complexity, it is beneficial to reduce the number of CompModInsts in the network.

One way to reduce the size of the network of CompModInsts is to include

only those CompModInsts into the action selection process that can – directly or

indirectly – contribute to the fulfillment of at least one open goal. In other words,

if we view the network of CompModInsts, current percepts and goals as a directed

graph, the reduced network consists of those connected components of the graph

that include at least one goal (see Figure 4.8 for illustration). This can be achieved

in the following way:

In the beginning, the reduced network is empty. Whenever a new goal is an-

nounced, new CompModInsts are added to the reduced network. Let us now as-

sume that at time t + 1 the new goal g is announced. R(t+1)
I denotes the set of

CompModInsts that constitute the reduced network at time t + 1.

The reduction of the network now takes place in two phases. In the first phase,

all CompModInsts that have at least one effect which equals g are added to the

reduced network:

R(t+1)
I = R(t)

I ∪ {x | {g} ∩ eff (x) , �}

94 Chapter 4. The AdDCo Algorithm

(Sent2Disp Document1
Projector1)

(CanvasDown
Canvas1)

(DocShown
Document1 Canvas1) ...

(CanvasDown
Canvas1)

(not (CanvasDown
Canvas1))

(not (CanvasDown
Canvas1))

(CanvasDown
Canvas1)

goal:
(DocShown Document1 Canvas1)

(Open Document1
Notebook1)

(Sent2Disp Document1
Projector1) ...

(LightOn Light1)

(not (LightOn Light1))

Figure 4.8: Building up the reduced network.

In the second phase, each CompModInst that is a predecessor or conflicter of

at least one CompModInst in the reduced network is added, provided that it is not

already part of the reduced network. For the sake of conciseness, we subsume

the predecessors and conflicters of a CompModInst as those that come before the

CompModInst:

before(x, y)⇔ x ∈ Pred(y) ∨ x ∈ Conf (y)

Hence, in the second phase, those CompModInsts are added to the reduced

4.4. The AdDCo Algorithm 95

network:

R(t+2)
I = R(t+1)

I ∪ {x | ∃ x′ ∈ R(t+1)
I ∧ before(x, x′)}

The second phase is then repeated until no more CompModInsts can be added

to the reduced network. Conceptually, the reduction of the network amounts to

computing the transitive closure of the before relation.

As an example, consider the network in Figure 4.8. The consecutive steps of

the reduction are denoted by the red arrows with numbers. The reduction starts

when the goal (DocShown Document1 Canvas1) is announced. The CompMod-

Inst ShowDoc has this goal as an effect. Hence, in step 1, ShowDoc becomes part

of the reduced network. In step 2, ShowDoc informs its predecessors Send2Disp

and CanvasDown and its conflicter CanvasUp that they are part of the reduced

network, too. In step 3, CanvasDown informs its predecessor CanvasUp, and Can-

vasUp informs its predecessor CanvasDown. However, both have been informed

by ShowDoc in step 2 and are thus already part of the reduced network. Now no

CompModInst has any predecessors or conflicters that have not yet been informed,

hence the reduced network is complete. Since LightOff is not a predecessor or

conflicter of any CompModInst in the reduced network, it is not part of the reduced

network. This essentially means that LightOff is excluded from the action selection

process.

The adding of CompModInsts in the second phase is implemented via mes-

sages: Each CompModInst x′ that is added to the reduced network broadcasts this

fact in a message NMMsg(12: ωx(a)) (see Table 4.4). All other CompModInsts

receive this message. Then each CompModInst x with before(x, x′) is added to the

reduced network if it is not already part of the reduced network and broadcasts this

fact, too. We say that x′ is an informer for x: inf (x′, x). This will become important

in case x′ leaves the reduced network. An explanation follows in the next section.

The reduced network RI is stored in a distributed fashion: Each CompMod only

stores information about which of its own CompModInsts are part of RI .

4.4.9 Deleting CompModInsts from the Reduced Network

CompModInsts are deleted from the reduced network in two cases:

96 Chapter 4. The AdDCo Algorithm

• Whenever a goal is fulfilled, CompModInsts are deleted in two phases. In

Phase 1, each CompModInst is deleted from the reduced network that could

contribute to the fulfilled goal, has no other other goal in its effects and has

no informers. In Phase 2, each CompModInst is deleted from the reduced

network that has no more informers because they were all deleted in Phase 1,

provided that it can contribute to no other goals. This is then repeated until

no more CompModInsts can be deleted from the reduced network.

• Whenever a CompModInst leaves the ensemble (e.g. because the device

that carries it leaves), it also leaves the reduced network. Furthermore, each

CompModInst leaves the reduced network that has no other informers than

the one that has left the ensemble, provided that it has no open goal in its

effects. Again, this is repeated until no more CompModInsts can be deleted

from the reduced network.

Consider the situation that at time t+1, a goal is fulfilled or a CompModInst has

left the ensemble. In both cases, the reduced network is adapted in the following

way:

R(t+1)
I = R(t)

I \ {x | G
(t+1) ∩ eff (x) = � ∧ @x′ with inf (x′, x)}

This process is then repeated until no more CompModInsts can be deleted from

the reduced network. Like adding CompModInsts, deleting them is implemented

via messages. Each CompModInst x that is deleted from the reduced network

broadcasts this fact in a message NMMsg(13: ωx(l)) (see Table 4.4). Each Comp-

ModInst x′ with inf (x, x′) is then deleted from the reduced network if it has no other

informers and no goal in its effects. It then broadcasts that it has left the reduced

network, and the process continues.

4.4.10 Executability of CompModInsts

Remember that in Section 4.1.4, we defined an operator ω to be executable in a

world W if its precondition formula holds, which is written as Poss(ω,W). For-

mally:

Poss(ω,W)⇔ W |= pre(ω) (4.38)

4.4. The AdDCo Algorithm 97

This is exactly the definition of executable used by the PM algorithm. However,

there are two problems with this.

First, loops can occur. This has been remarked by Maes herself [Maes 1990a].

Suppose that we have two competence modules that have an equal link structure,

and each destroys an effect of the other when executed. In this case a situation

is possible in which both are executed alternately. This results in an “oscillating”

behavior, where no other competence module has the chance to become active. To

prevent this in the AdDCo algorithm, we adopt the solution suggested by Maes

herself: We decrease a CompModInst’s probability to become active again each

time it is executed.

Second, useless actions may be executed. Consider the situation when one

competence module receives a lot of activation energy due to fulfilled preconditions

in every cycle. It can become active again and again, even if its effects are already

fulfilled after executing it once. In the AdDCo algorithm, we therefore introduce

an additional restriction: Only those CompModInsts that have at least one effect

that is not already fulfilled can become active.

To account for those two changes in the AdDCo algorithm, we redefine the term

executable. To determine an operator ωx’s executability, its competence module x

is assigned a probability εx that changes over x’s lifetime: It is set to 1.0 whenever a

new goal is announced. Whenever ωx is executed, εx is multiplied by λ.14 Then, in

each cycle of the action selection algorithm a random number κ ∈ [0, 1] (uniformly

distributed) is chosen and compared to εx. We say that an operator ωx is executable

in that cycle if:

• its preconditions hold

• not all of its effects are valid

• κ ≤ εx

Executability is denoted by the variable ε̃x:

ε̃x =

true if ωx is executable

false otherwise.
(4.39)

14A good value for λ that we found empirically is 1/2.

98 Chapter 4. The AdDCo Algorithm

4.4.11 The Action Selection Algorithm

Having settled the necessary preliminaries, we are now in position to present the

action selection algorithm. The algorithm performs a loop. At every timestep, the

following computation takes place in each CompMod. We describe it for timestep

t + 1 and CompMod c. Here, C denotes the set of CompMods in the network, X

is the set of c’s CompModInsts, and ε is a random number in [0.0, 1.0]. Further-

more, Ξ(t) denotes the set of CompModInsts in the network whose preconditions

are fulfilled at timestep t, or, more formally, x ∈ Ξ(t) ⇔ Poss(ωx,W (t)).

Note that at some points in the algorithm, all CompMods in the ensemble have

to synchronize themselves to ensure that each has correct and complete informa-

tion. This is the case when the CompMods broadcast information that other Comp-

Mods need for the next step. Specifically, synchronization takes place at the end of

Steps 2 and 4 in the forthcoming algorithm. It is realized in a straightforward man-

ner: Upon completing Step 2 (or 4, respectively), each CompMod sends a message

saying that it is ready to proceed to the next step. When all CompMods have sent

this message, each of them knows that it is safe to proceed.

We now present the algorithm. More detailed explanations follow.

1. For each CompModInst x ∈ X ∩ R(t+1)
I , compute new activation due to current

situation:

α(t+1)
x (w) =

∑
i∈pre(x)|W(t) |=i

φ (activation for world state)

+
∑

i∈eff (x)∩G(t)

γ (activation for open goals)

−
∑

i∈eff (x)|¬ i∈R(t)

δ (inhibition for protected subgoals)

2. For each CompModInst x ∈ X ∩ R(t+1)
I , compute and send activation to x’s

predecessors, successors, and conflicters:

α(t+1)
xz (pred) =

∑
i∈(pre(x)∩eff (z))|W(t) 6|=i|x∈Ξ̄(t)

α(t)
x (compute activation sent to predecessor)

4.4. The AdDCo Algorithm 99

α(t+1)
xz (succ) =

∑
i∈(pre(z)∩eff (x))|W(t) 6|=i|x∈Ξ(t)

α(t)
x φ

γ
(compute activation sent to successor)

α(t+1)
xz (conf) =

∑
¬ i∈pre(x)|i∈eff (z)|W(t) |=¬ i

α(t)
x δ

γ
(compute inhibition sent to conflicter)

Send ASMsg(1: ωz(r), 2: α(t+1)
xz (pred), 3: α(t+1)

xz (succ), 4: α(t+1)
xz (conf)) and synchro-

nize

3. For each CompModInst x ∈ X ∩ R(t+1)
I , compute new activation sent to x by

successors, predecessors, and conflicters via messages:

α(t+1)
x (s) =

∑
x∈Pred(z)∩Ξ̄(t)

α(t+1)
zx (pred) (activation by successors)

+
∑

x∈Succ(z)∩Ξ(t)

α(t+1)
zx (succ) (activation by predecessors)

−
∑

x∈Conf (z)

α(t+1)
zx (conf) (inhibition by conflicters)

4. For each CompModInst x ∈ X∩R(t+1)
I , computeωx’s executability ε̃x according to

(4.39) as well as preliminary activation level α(t+1)
x (a) and send them in a message:

α(t+1)
x (a) = α(t)

x + α(t+1)
x (w) + α(t+1)

x (s)

Send ASMsg(5: ωx(s), 6: α(t+1)
x (a), 7: ε̃x) and synchronize

5. Compute overall activation level in the network:

α(t+1) =
∑

y∈R(t+1)
I

α(t+1)
y (a)

100 Chapter 4. The AdDCo Algorithm

6. For each CompModInst x ∈ X ∩ R(t+1)
I , normalize activation level to keep total

activation π|R(t+1)
I | constant:

α(t+1)
x =

α(t+1)
x (a) π |R(t+1)

I |

α(t+1)

7. Compute set of execution candidates:

E(t+1) = { x ∈ R(t+1)
I | α(t+1)

x = max
z∈R(t+1)

I ,ε̃z=true
α(t+1)

z ∧ α(t+1)
x > θ }

8.a If E(t+1) = {x0}, so we have a unique execution candidate: Execute operator:

W (t+1) = Do(ωx0 ,W
(t)) (new world state)

G(t+1) = (G(t) \ {i | W (t+1) |= i}) ∪ (R(t) ∩ {i | W (t+1) 6|= i}) (open goals)

R(t+1) = (R(t) \ {i | W (t+1) 6|= i}) ∪ (G(t) ∩ {i | W (t+1) |= i}) (protected subgoals)

θ = θ0 (reset activation threshold)

If x0 ∈ X

εx0 = εx0 ∗ λ (decrease x’s probability for becoming executable)

8.b Else

θ = θ ∗ 0.9

For each x ∈ E(t+1) ∩ X:

α(t+1)
x = α(t+1)

x + ε (break activation level ties)

Figure 4.9 depicts which variables are involved in the calculation of the acti-

vation levels α(t+1)
x and α(t+1)

z of two CompMods x and z at time t + 1. To preserve

readability, just the results of the calculations at time t, namely α(t)
x and α(t)

z are de-

picted, not the calculations themselves. Note that this figure is only correct if x and

4.4. The AdDCo Algorithm 101

α t
x

)(

xz

t+1

α t)1(+

)()1(aα t
z
+)()1(aα t

x
+

)()1(wα t
z
+)()1(wα t

x
+

α t
z

)1(+

)()1(sα t
z
+)()1(sα t

x
+

)()1(predα t
zx
+

)()1(succα t
zx
+

)()1(confα t
zx
+

)()1(predα t
xz
+

)()1(succα t
xz
+

)()1(confα t
xz
+

t

α t
z

)(

z x

α t
x

)1(+

Figure 4.9: Calculation of the activation level of CompMods x and z at time t + 1.
The information flow depicted as dotted red lines is realized via messages between
CompMods.

y are the only CompModInsts in the reduced network. If there are more CompMod-

Insts, more nodes and arrows must be included. As described above, some parts

of the calculation require inter-CompMod communication, which is realized via

messages. In Figure 4.9, this is depicted as red dotted lines. Furthermore, the cal-

culation of the overall activation level α(t+1) deserves a more detailed explanation.

All CompModInsts broadcast their preliminary activation level α(t+1)(a), which is

depicted as the red dotted lines leading towards α(t+1). Each CompMod receives

those messages from all other CompMods. In the following, each CompMod com-

putes α(t+1) individually.

4.4.12 Differences to the PM Algorithm

Although the action selection part of the AdDCo algorithm is similar to the PM

algorithm, there are important differences between the two algorithms. In this sec-

tion, we describe these differences. We start with a short recapitulation of dif-

ferences introduced earlier in this chapter. Afterwards, some differences not yet

102 Chapter 4. The AdDCo Algorithm

mentioned are explained in detail.

As said before, the PM algorithm and the AdDCo algorithm differ in the fol-

lowing aspects:

• Whereas the PM algorithm runs on a single machine, the AdDCo algorithm

is designed to be distributed across the devices in the ensemble and can adapt

to changing ensemble structures. This makes it applicable in dynamic envi-

ronments.

• The AdCo algorithm is more goal-oriented than the PM algorithm: Only

those operators take part in action selection that can contribute to the fulfill-

ment of at least one open goal. This results in more predictable behavior and

shorter action sequences, which is shown in the next section.

• To be executable, an operator’s preconditions must be fulfilled in the PM

algorithm. In the AdDCo algorithm, additional conditions must be met: Not

all effects must be fulfilled before execution, and each operator can only

be executed with a certain probability that falls with every execution of the

operator. This is to prevent oscillating behavior.

There are two more important differences between the two algorithms:

• Both the PM algorithm and the AdDCo algorithm allow at most one action

to be executed per cycle. The reason for this is simple. Consider the case that

two actions A and B have the same activation level, and that their activation

level is above the activation threshold. Let us assume further that A has literal

x as an effect, and B has literal y = ¬x as an effect. If we allowed both to

be executed, the world state would become inconsistent, because obviously

a literal and its complement cannot hold at the same time. Thus, both in the

PM algorithm and in the AdDCo algorithm no action is executed if there is

more than one candidate, all of which have the same activation level. The

question that arises here is how to further proceed in the next cycle. The PM

algorithm proceeds as normal. However, this may cause problems: If all the

candidates have the same link structure (which is not unlikely if they have

the same activation level), they receive an equal amount of energy in the next

cycle, and so on. In other words, the same tie reoccurs again and again, and

as long as there is no other action with more activation energy, no action

can be executed. To overcome this problem, the AdDCo algorithm breaks

ties arbitrarily: We add a random number in [0.0, 1.0] to each candidate’s

4.5. Evaluation of the AdDCo Algorithm 103

activation level. This ensures that they have different activation levels in the

next cycle, so that there is only one action with the highest activation level.

At the same time, the random number is sufficiently small to give another

action the chance of having the highest activation level and to be executed.

Another solution would be to introduce an additional negotiation phase at

the end of each cycle. Here, ties could be broken if they occur. However, the

benefit of avoiding an extra cycle in the rare cases where ties occur does not

justify the overhead introduced by a negotiation phase.

• The number of preconditions and effects a module has affects the amount of

energy it receives. In Maes’ opinion, this favors modules with many precon-

ditions/effects over modules with few. Therefore, in the PM algorithm the en-

ergy an action receives is divided by the number of its preconditions/effects.

Furthermore, Maes wants modules that have the same preconditions to com-

pete with one another. The same holds for modules that have the same effects.

Hence, in the PM algorithm the amount of energy a module receives for a

precondition/effect is divided by the number of modules that share this pre-

condition/effect. After careful consideration and experimentation, we chose

not to perform any of those divisions in the AdDCo algorithm. The reason is

that we, like Toby Tyrrell before us [Tyrrell 1993], found that those divisions

do not improve the network’s action selection behavior. Omitting them saves

us computational effort without impairing the solution quality.

4.5 Evaluation of the AdDCo Algorithm

Having presented the AdDCo algorithm in detail, we now evaluate its performance

empirically with the help of four scenarios from the domain of smart meeting

rooms.15 All four scenarios consist of the following steps:

1. All CompMods enter the ensemble, introduce themselves and build up their

part of the network of CompModInsts.

2. All literals describing the current state of the world and the goals to be ful-

filled are provided to the CompMods by the intention analysis. Literals that

15In [Maes 1990b], Maes evaluates the performance of her algorithm with the help of some simple
toy problems. We chose not to use them for the evaluation in this chapter as they offer little insight
into how the algorithms perform in real-world settings.

104 Chapter 4. The AdDCo Algorithm

are not mentioned are assumed to be false (closed world assumption).

3. The CompMods build up the reduced network according to the goals issued

in step 2.

4. The CompMods perform the action selection process until all goals have

been fulfilled.

For comparison, we have reimplemented the PM algorithm. We compare the

performance of the PM algorithm to the performance of the AdDCo algorithm. It

is important to remember that, in contrast to the PM algorithm, the AdDCo algo-

rithm can handle dynamically changing ensemble structures. In every scenario, the

AdDCo algorithm generates CompModInsts and links dynamically according to

the devices and CompMods present in the ensemble, whereas the PM algorithm re-

quires that the competence modules are “hand-wired”. Thus, this benchmark is not

fully realistic as the PM algorithm cannot be applied in smart ad-hoc environments.

It is therefore run as a simulation. For reasons of simplicity, the AdDCo algorithm,

too, runs on one machine, but the CompMods are not “aware” of this fact. The

AdDCo algorithm is exactly the way it would be if the CompMods were physi-

cally distributed among several devices, i.e. the CompMods communicate over the

network via multicast. However, for this benchmark the CompMods do not send

action commands to the ECo services, i.e. they do not drive any real devices as this

is not required for the benchmark.

For all four scenarios, we compare:

• the results of both algorithms in terms of the number of competence mod-

ules/CompMods required to model the scenario

• the number of cycles each algorithm takes during action selection (step 4 in

the above list)

• the length (= number of actions) of the solution found16

For the AdDCo algorithm, we furthermore analyze:

• the number of CompModInsts in the full and the reduced network

• the number of messages sent by the CompMods for network maintenance

(i.e. messages concerning the world state) and action selection17

16Note that the competence modules in the PM algorithm do not perform step 1 and step 3 as the
network of competence modules is fixed at design time.

17Note that in the PM algorithm, there are no CompModInsts and the modules do not communicate
via a network, hence we cannot analyze these parameters for the PM algorithm.

4.5. Evaluation of the AdDCo Algorithm 105

At first, we describe the four different scenarios in detail. After that, we present the

results of the runs of both algorithms with the scenarios.

Note that a formal complexity analysis of both algorithms is a non-trivial task

and remains an open research question. We pick up on this issue in Section 8.2.

4.5.1 Scenario 1: Adjusting the Light Level

The ensemble in this scenario consists of 14 devices: six lights and eight canvasses,

two of which are in front of the windows so they also act as sunblinds (Canvas7 and

Canvas8). The initial world state, the user goals and an optimal action sequence

are displayed in Table 4.5.

Table 4.5: Scenario 1

initial state –
goal state Light1 on

Light2 on
Canvas7 down

optimal turn on Light1
action turn on Light2
sequence lower Canvas7

The initial world state is empty. Recall that we make use of the closed world

assumption: Any literal not mentioned is assumed to be false. In this scenario,

this means that all lights are switched off and all canvasses are up. The scenario

resembles a situation where a speaker walks into a room and finds that the light

conditions are not appropriate for her/his upcoming talk: The sun is too bright;

therefore Canvas7 must be lowered. Furthermore, in the back of the room where

the audience is sitting, the ambient light is too low to take notes during the talk.

Thus, Light1 and Light2 should be turned on.

4.5.2 Scenario 2: Projector Scenario I

In this scenario (see Table 4.6), we have 16 devices: eight canvasses, a notebook,

two documents, four fixed projectors (Projector1 to Projector4) and a movable pro-

jector (Projector5) which is mounted on a moving head and can show a docu-

ment on any of the eight canvasses. This scenario resembles a situation in which

106 Chapter 4. The AdDCo Algorithm

Table 4.6: Scenario 2

initial state Document1 opened on Notebook1
Document2 opened on Notebook1

goal state Document1 shown on Canvas3
Document2 shown on Canvas1

optimal Notebook1 sends Document1 to Projector3
action Notebook1 sends Document2 to Projector1
sequence Canvas3 is lowered

Canvas1 is lowered
Projector1 shows Document1 on Canvas3
Projector3 shows Document2 on Canvas1

a speaker wants to show two different presentations at a time because each con-

tains a figure s/he wants to compare to the figure in the other presentation. In this

scenario, a high-level service is available on each projector that can fetch the pre-

sentation from the speaker’s notebook, open and display it. Because one cannot

rely on such services being available in every environment, Scenario 4 is a more

complex and fine-grained version of this scenario. Scenario 4 contains a video

crossbar instead of the high-level services in this scenario.

Table 4.7: Scenario 3

initial state Camera1 points to Canvas1
speaker is in front of Canvas3

goal state speaker tracked
optimal switch on Camera1
action Camera1 turns to Canvas3
sequence Camera1 tracks speaker

after 20 seconds: speaker moves to Canvas2
Camera1 turns to Canvas2
Camera1 tracks speaker
after 40 seconds: speaker moves to Canvas4
Camera1 turns to Canvas4
Camera1 tracks speaker

4.5.3 Scenario 3: Tracking the Speaker with a Movable Camera

This scenario comprises nine devices: eight canvasses and a movable camera which

can capture any of the eight canvasses. This is a scenario with changing sensor

data: In the beginning, the speaker stands in front of Canvas3. After 20 seconds,

4.5. Evaluation of the AdDCo Algorithm 107

s/he moves towards Canvas2 and after 40 seconds s/he moves to Canvas4 (see Ta-

ble 4.7). This resembles a situation where a speaker walks around a meeting room

equipped with several canvasses, briefly stopping in front of every canvas and ex-

plaining what is depicted on this canvas. The goal is to track the speaker with the

camera while s/he is moving from canvas to canvas.

Table 4.8: Scenario 4

initial state Notebook1 hosts Document1
Notebook2 hosts Document2

goal state Document1 shown on Canvas3
Document2 shown on Canvas1

optimal Notebook1 maximizes Document1
action Notebook2 maximizes Document2
sequence Canvas3 is lowered

Canvas1 is lowered
Crossbar connects Notebook1 to Projector3
Crossbar connects Notebook2 to Projector1
Projector3 shows Document1 on Canvas3
Projector1 shows Document2 on Canvas1

4.5.4 Scenario 4: Projector Scenario II

This scenario was our introducing example in Section 4.3. In fact, it is a more

complex version of Scenario 2. We have two notebooks instead of one, each hosting

a document that is to be shown on a dedicated canvas. Furthermore, there is a

video crossbar that has the notebooks as inputs and the projectors as outputs. This

crossbar can connect any of its inputs to any output. Overall, this scenario (see

Table 4.8) comprises 18 devices: eight canvasses, two notebooks, two documents,

a video crossbar, four fixed projectors (Projector1 to Projector4) and a movable

projector (Projector5). The goal is to show both documents on dedicated canvasses.

4.5.5 Results

Table 4.9 shows the results of the runs of the four scenarios for the PM and the

AdDCo algorithm. For the PM algorithm, we just did one run for every scenario as

the results do not vary from run to run. For the AdDCo algorithm, we did 20 test

runs for every scenario. This is due to the fact that the results can vary slightly from

108 Chapter 4. The AdDCo Algorithm

Table 4.9: Results

Scenario 1
algorithm PM AdDCo
parameters π = 20 π = 5

θ = 45 θ = 45
φ = 20 φ = 20
γ = 50 γ = 50
δ = 40 δ = 40

number of competence modules/CompMods 28 28
number of CompModInsts in full/reduced network –/– 28/6
number of cycles 3 10
length of action sequence 3 3

Scenario 2
algorithm PM AdDCo
parameters π = 3 π = 5

θ = 45 θ = 45
φ = 20 φ = 20
γ = 50 γ = 50
δ = 40 δ = 40

number of competence modules/CompMods 212 23
number of CompModInsts in full/reduced network –/– 58/12
number of cycles 7 20/23
length of action sequence 6 6/7

Scenario 3
algorithm PM AdDCo
parameters π = 15 π = 5

θ = 45 θ = 45
φ = 1 φ = 20
γ = 300 γ = 50
δ = 0 δ = 40

number of competence modules/CompMods 74 4
number of CompModInsts in full/reduced network –/– 18/18
number of cycles ∞ 64/65
length of action sequence ∞ 7

Scenario 4
algorithm PM AdDCo
parameters π = 80 π = 5

θ = 45 θ = 45
φ = 20 φ = 20
γ = 50 γ = 50
δ = 40 δ = 40

number of competence modules/CompMods 154 32
number of CompModInsts in full/reduced network –/– 102/52
number of cycles 22 35
length of action sequence 22 9

4.5. Evaluation of the AdDCo Algorithm 109

run to run: As the algorithm breaks ties arbitrarily if two CompModInsts have the

same activation level, the number of cycles and/or the action sequence generated

varies in Scenarios 2 and 3.

Maes remarked that finding a good parameter setting for the PM algorithm is

nontrivial. This is a drawback of the algorithm. Maes herself tuned the parameters

by hand in a trial-and-error fashion [Maes 1989]. This is what we have done here

for the PM algorithm, too. We found that a different parameter setting is required

for the PM algorithm for each scenario (see Table 4.9). This is a problem in ad-hoc

environments, where neither the time nor the means for hand-tuning the parameters

are available. For the AdDCo algorithm, we have also tried a variety of parameter

settings. As a result, we found a parameter setting that works well with the AdDCo

algorithm for all scenarios we evaluated. Thus, it seems to be quite robust. Whether

the same parameters are suitable for all possible scenarios is, however, an open

question. We did not answer this question because our focus lies on the question

whether it is in principle possible to use a decentralized algorithm for controlling

smart environments.

4.5.6 Discussion

We now relate the results of the PM algorithm to those of the AdDCo algorithm

with the help of Table 4.9. The PM algorithm performs slightly better in terms

of the number of cycles for Scenarios 1 and 2 and even in terms of the length of

the generated action sequence for Scenario 2. Here the AdDCo algorithm does in

some cases not generate an optimal action sequence. In some runs, it includes one

useless action: The document is sent to the movable projector (Projector5) first,

then the system ”realizes“ that using the fixed projectors is easier as they point to

the correct canvasses and thus need not be turned.

In Scenarios 3 and 4, the AdDCo algorithm outperforms the PM algorithm.

In Scenario 3, the PM algorithm does not terminate but the camera keeps turning

around. In contrast, the AdDCo algorithm finds the optimal action sequence and

manages to track the speaker wherever s/he goes. In Scenario 4, the PM algorithm

performs better in terms of the number of cycles, but the action sequence gener-

ated contains 22 actions, where 8 is the optimum. The AdDCo algorithm takes 33

cycles, but generates an action sequence consisting of 9 actions, which is almost

optimal.

110 Chapter 4. The AdDCo Algorithm

Another issue is the number of CompMods needed to model a scenario. Con-

sider that preconditions and effects in the PM algorithm are conjunctions of negated

and non-negated symbols. Hence, variables are not allowed. This means that each

combination of devices that can occur in the preconditions and effects of an action

description must be hard-coded in a different competence module. This typically

results in a high number of competence modules. However, if variables were the

only difference between the two algorithms, the number of competence modules

in the PM algorithm would equal the number of CompModInsts in the AdDCo

algorithm because the instantiation process in the AdDCo algorithm would lead

to the same number of operators. For Scenario 1, this is the case: The num-

ber of competence modules in the PM algorithm equals the number of Comp-

Mods/CompModInsts in the AdDCo algorithm. For Scenarios 2, 3, and 4, however,

the number of competence modules in the PM algorithm is considerably higher

than the number of CompMods and also higher than the number of CompModInsts

in the AdDCo algorithm. This is due to the fact that these scenarios include per-

sistent actions, and that the two algorithms have different means of dealing with

persistent actions. The details are explained in Section 5.2. For now, it is sufficient

to note that in the AdDCo algorithm, the modelling effort for persistent actions is

lower than in the PM algorithm, which also leads to a smaller number of operators.

Now consider that in the AdDCo algorithm only the operators/CompModInsts

in the reduced network actually take part in the action selection process. Usually,

their number is even much smaller: In Scenarios 1, 2, and 4 it is only a fraction of

the number of CompModInsts in the full network. Hence, both the effort needed to

model a scenario and the computation effort per action selection cycle are typically

considerably lower for the AdDCo algorithm than for the PM algorithm.

One can also analyze the network traffic caused by the AdDCo algorithm in the

different scenarios. We depict the messages sent in the initial phase (Figure 4.10),

the average number of messages sent during one cycle of the action selection pro-

cess (Figure 4.11), and the total number of messages sent during action selection

(Figure 4.12) in 20 runs of the AdDCo algorithm in Box-Whisker plots. The box

represents the interquartile range, the horizontal line in the box represents the me-

dian, and the ends of the whiskers represent the minimum/maximum. By “initial

phase” we mean the beginning of each scenario, when the CompMods enter the

ensemble and build up the network.

4.5. Evaluation of the AdDCo Algorithm 111

Figure 4.10: The total number of mes-
sages sent during the initial phase.

Figure 4.11: The average number of
messages per action selection cycle.

Figure 4.12: The total number of mes-
sages sent during action selection.

Variation from run to run in the num-

ber of messages is usually due to the

randomness introduced by the network

connection. For example, if by chance

many CompMods enter the ensemble at

the same time, they all send out the mes-

sage NMMsg(6: σy) at once. The Comp-

Mods that are already present in the en-

semble each answer by sending the mes-

sage NMMsg(1: W, 3: G, 5: R, 7: σy, 10:

τ). In this case, the number of messages

sent is smaller than if all CompMods en-

ter the ensemble one after the other. The

reason is that in this case with every new CompMod the number of messages of the

form NMMsg(1: W, 3: G, 5: R, 7: σy, 10: τ) increases.

One thing is obvious: The more CompMods and CompModInsts in a scenario,

the more messages are sent in the initial phase and the higher the average number

of messages sent during each cycle of the action selection mechanism (see Figures

4.10 and 4.11). This correlation can explained with the “bookkeeping costs” of

generating and maintaining the world model as well as distributed synchroniza-

tion: It rises with each single CompMod and with each single CompModInst. This

112 Chapter 4. The AdDCo Algorithm

leads us to the conclusion that, in order to reduce network traffic, it is beneficial

to model domains with as few CompMods/CompModInsts as possible. On the

other hand, the total number of messages sent during action selection depends

on the length of the action sequence generated as well as the number of Comp-

Mods/CompModInsts (see Figure 4.12). The length of action sequences is hard to

anticipate for the authors of action descriptions, especially in distributed settings

where action descriptions are written by different authors. However, to reduce the

total number of messages sent, once again it is beneficial to model domains with as

few CompMods/CompModInsts as possible.

4.6 Classification of the AdDCo architecture

In the following, we discuss how the AdDCo architecture can be classified with

respect to two models. The architecture can be seen from different viewpoints.

Here, we consider it on the single-agent level and on the multi-agent level.

4.6.1 On the Single-Agent Level: A Temporally Layered Archi-
tecture

On the single-agent level it can be seen as a new kind of hybrid architecture. Recall

that in Section 3.3 we introduced two kinds of hybrid architectures: vertically lay-

ered and horizontally layered. Like the approaches discussed there, the AdDCo ar-

chitecture consists of separate subsystems that can be viewed as layers: The reduc-

tion of the network according to the current open goals (described in Section 4.4.8)

can be viewed as a deliberative subsystem, while action selection (described in Sec-

tion 4.4.11) can be seen as a reactive subsystem. Yet the AdDCo architecture is nei-

ther vertically nor horizontally layered. In both vertically and horizontally layered

architectures, the different subsystems produce some output (actions to be executed

by the actuators). There is either a component that arbitrates between the outputs

of the different subsystems (as in Ferguson’s TouringMachines [Ferguson 1992])

or the output of one layer is fed into another layer, which splits it into smaller,

executable parts (as in the AuRA architecture [Arkin & Mackenzie 1994]). In the

AdDCo architecture, however, only the reactive subsystem (i.e. action selection)

actually produces output. The deliberative subsystem performs a preprocessing

4.6. Classification of the AdDCo architecture 113

step for the reactive subsystem. It changes the world model according to the cur-

rent goals by pruning operators that are not relevant in the current context. It thus

eases the reactive subsystem’s work. One could also interpret the deliberative layer

as a compilation layer: Upon the disclosure of every new goal, the deliberative sub-

system compiles a custom-made world model for the reactive subsystem to work

with. Thus, as the different layers correspond to consecutive phases in the algo-

rithm, we call this type of hybrid architecture a temporally layered architecture

(see Figure 4.13).

Perception Actions

World Model

Agent

Deliberative
Subsystem

Reactive
Subsystem

Layer 1 Layer 2

Figure 4.13: The AdDCo algorithm: a temporally layered architecture.

4.6.2 On the Multi-Agent-Level: Different Phases in
Wooldridge’s and Jennings’ CDPS model

On the multi-agent level we can classify the AdDCo architecture in terms of

Wooldridge’s and Jennings’ four-stage Cooperative Distributed Problem Solving

(CDPS) model [Wooldridge 2001]. This is illustrated in Figure 4.14.

Wooldridge’s and Jennings’ CDPS model consists of the following four stages:

1. Recognition: During this stage, an agent has a goal and realizes that it is

beneficial to ask other agents to cooperate for achieving the goal. A possible

reason is that the agent is not able to fulfill the goal alone, e.g. because this

requires information that another agent has. Another reason is that the agent

could fulfill the goal alone, but is not willing to, for example because a bet-

ter solution can be found by cooperating with another agent. In the AdDCo

algorithm, the recognition phase corresponds to the phase where a goal is

issued to all CompMods. The CompMods add this new goal to their world

model. Those CompMods that have CompModInsts that can fulfill the goal

(i.e. that have the goal as one of their effects) realize that they are part of the

reduced network. The members of the reduced network will communicate in

114 Chapter 4. The AdDCo Algorithm

Deliberative
Subsystem

Reactive
Subsystem

World Model

Perception Actions

Agent 1

World Model

Agent 2

Deliberative
Subsystem

Reactive
Subsystem

World Model

Agent n

Deliberative
Subsystem

Reactive
Subsystem

recognition phase
team formation phase
plan formation phase
team action phase

Figure 4.14: The AdDCo algorithm in terms of Wooldridge’s CDPS model
[Wooldridge 2001].

the next phases in order to fulfill the goal. The CompMods always commu-

nicate to find a solution – even if an individual CompModInst could fulfill

the goal alone. The problem is that there might be other CompModInsts that

could also fulfill the goal, but at most one at a time must be executed. Hence,

it has to be decided which of them will be executed.

2. Team formation: In this stage, the agent seeks other agents to cooperate in

order to fulfill the goal. Upon success, there will be a group of agents that

has some kind of nominal commitment to act cooperatively. Wooldridge and

Jennings point out that at the end of this stage, this group of agents will agree

on the ends they want to achieve (i.e. to act cooperatively). However, they

do not agree on the means (i.e. which actions should be taken by the group

to fulfill the goal) at this stage. It is important to note that the agents will

not form a team if they do not believe that they can achieve the goal. In

the AdDCo algorithm, the team formation phase corresponds to the deliber-

ative phase, i.e. the process of network reduction. All CompMods that have

CompModInsts which can fulfill the goal, i.e. those that have joined the re-

duced network in the recognition phase, tell their predecessors and conflicters

that they are part of the network, too. These in turn inform their predecessors

and conflicters and so on. In the end, the reduced network contains exactly

those CompModInsts that can be part of an action sequence that fulfills the

4.7. Chapter Summary 115

goal. This network can be regarded as a team of agents. The agents’ only

forming a team if they think they can fulfill the goal is achieved implicitly: If

no CompModInst has the goal as its effect, then no CompModInst can start

building up the network by informing its predecessors and conflicters. Thus,

the network will contain 0 CompModInsts.

3. Plan formation: In this stage, the agents negotiate and argue which course

of action to take to reach the desired goal. They might have to decide which

sequence of actions should be performed if different agents know of different

alternatives. Some agents might have objections to some actions, etc. Thus,

the group of agents must reach an agreement in this stage. In the AdDCo

algorithm, this phase corresponds to the reactive phase, i.e. the action selec-

tion process. The spreading activation algorithm is carried out in order to se-

lect actions that lead towards the goal. Every CompModInst receives energy

from other CompModInsts which view it as beneficial and loses energy due

to CompModInsts that view it as disadvantageous. At every point in time,

the activation level of a CompModInst can be interpreted as the group’s col-

lective degree of belief in the ability of this CompModInst to bring the group

closer to the goal.

4. Team action: In this stage, the plan the agents have agreed on is executed. In

the AdDCo algorithm, this stage corresponds to a CompModInst “winning”

a cycle of the action selection algorithm and its action being executed. This

means that it sends a command to an actuator (i.e. the ECo service that drives

the respective device) for execution. Notice that in the AdDCo algorithm, the

plan formation phase and the team action phase are interleaved: Once a plan

step has been chosen, it is executed right away. Afterwards, the changed

world state is taken into account to select the next plan step and so on.

4.7 Chapter Summary

In this chapter, we have described the AdDCo algorithm, an algorithm for device

cooperation that is based on Maes’ action selection mechanism. It allows for goal-

based interaction, which we introduced in Section 3.1.2. Furthermore, the algo-

rithm as we have described it until now fulfills the following requirements intro-

duced in Section 2.2:

116 Chapter 4. The AdDCo Algorithm

• Spontaneity: Our approach does not rely on learning: Devices form an ad-

hoc ensemble at run-time. They build up a network of CompModInsts which

is able to perform action selection right away, without a training phase.

• Action sequences: The AdDCo algorithm is an action selection algorithm

and is able to generate action sequences of moderate length. As emphasized

in Section 2.2, this is sufficient for typical smart environment scenarios.

• Robustness: If a device leaves, its CompMods and CompModInsts leave,

too. Should this happen unexpectedly, the rest of the ensemble notices this

after a few seconds because the CompMods of the leaving device do not send

any synchronization messages anymore. They and their CompModInsts are

then excluded from the network. The rest of the ensemble still works as

before. If there are other CompModInsts that have the same effects as the

CompModInsts that have left, the functionality of the network is not even

hampered. Note that we did not include this detection mechanism into our

description of the algorithm in this chapter for reasons of simplicity. We

believe that it is sufficiently straightforward to be reproducible.

However, the following requirements are only partially fulfilled by the algo-

rithm yet:

• Rationality: The algorithm is based on small software components (the

CompMods), each of which has only partial knowledge of the world. This

sometimes results in suboptimal behavior of the algorithm. We have seen

this in Section 4.5: Unnecessary actions can be chosen and executed. Thus,

the requirement rationality is only partially fulfilled. This problem can not

be solved completely. The question is whether users accept a system based

on the AdDCo algorithm although it sometimes shows non-optimal behavior.

We will try to answer this question with the help of a user study in Chapter 6.

• Flexibility: The AdDCo algorithm as we have described it until now sup-

ports flexibility to a certain extent: The network of devices is built up at

run-time, and action sequences are generated at run-time, too. However, one

problem remains: Until now, preconditions and effects in operator schemes

must be function-free first order literals. Quantifiers are not allowed. In

smart environments, however, authors of action descriptions often need to

express that some effect holds for all devices of a certain type except one

4.7. Chapter Summary 117

single dedicated device. Without quantifiers, this requires that authors know

which devices of a certain type will be part of the ensemble at the time of

writing. This contrasts with the requirement flexibility. In the next chapter,

we discuss this problem in detail and show how effects can be extended to

contain universally quantified literals.

• Distributedness: Recall that we divided the requirement distributedness into

run-time modularization and design-time modularization. As there is no cen-

tral controlling component in the AdDCo algorithm, it perfectly supports

run-time modularization. Furthermore, as authors of action descriptions only

need to know about the actions they want to describe (and possibly prece-

dent and antecedent actions), device manufacturers can develop their devices

and the descriptions of the device actions with little information about other

vendors’ devices. Thus, design-time modularization is already supported by

the AdDCo algorithm. However, it can be enhanced even further by hiding

CompMods and CompModInsts inside the devices. In the next chapter, we

show how this can be achieved.

Furthermore, the AdDCo algorithm does not fulfill the requirement support for

persistent actions yet. In the next chapter, we therefore introduce another enhance-

ment to the algorithm which adds support for persistent actions.

Chapter 5

Enhancing the AdDCo Algorithm

Contents
5.1 Enhancing Flexibility: Supporting Universally Quantified Effects 120

5.2 The Persistent Action Problem 123

5.2.1 Solving the Persistent Action Problem Using Planning: The

Locks Approach . 127

5.2.2 Solving the Persistent Action Problem with the AdDCo Al-

gorithm: The Guarding Approach 132

5.2.3 Comparing the Two Paradigms 134

5.3 Enhancing Design-time Modularization: Hiding CompMods
and CompModInsts . 136

5.4 Chapter Summary . 139

In the previous chapter, we have discussed how the AdDCo algorithm fulfills

the requirements identified in Section 2.2. We have come to the conclusion that it

could be improved by enhancing flexibility, supporting persistent actions and en-

hancing design-time modularization. In this chapter, we therefore introduce three

additional extensions to the AdDCo algorithm: In Section 5.1, we argue why it

is useful to support universally quantified effects: It improves flexibility. We then

describe how we implemented this in the AdDCo algorithm. In Section 5.2, we

describe the persistent action problem in detail. We then discuss how this prob-

lem can be solved in ad-hoc environments using planning and how it can be solved

more elegantly using the AdDCo algorithm. In Section 5.3, we propose to hide

CompMods and CompModInsts inside the devices to improve design-time modu-

larization. In contrast to the other two extensions, this enhancement has not actu-

ally been realized in our implementation. Therefore we point out how the AdDCo

algorithm must be altered if one decides to implement this extension.

120 Chapter 5. Enhancing the AdDCo Algorithm

5.1 Enhancing Flexibility: Supporting Universally
Quantified Effects

Until now, we have assumed that preconditions and effects are function-free first

order literals with no quantifiers. However, in smart environments, situations occur

where we need to express that an effect holds for a certain set of devices. Let us

look at an example: We have an ensemble with seven documents (Doc1 – Doc7)

and one notebook (NB1). The notebook carries a CompMod called Maximize that

can open and maximize documents on the notebook screen. Consider that the note-

book screen is an exclusive resource. In other words, only one document can be

maximized at a time. This must be reflected in the operator description. Here is the

Maximize operator for maximizing Doc1 in PDDL:

(:action Maximize

:parameters ()

:precondition (Hosts Doc1 NB1)

:effect (and (isMax Doc1 NB1)

(not (isMax Doc2 NB1))(not (isMax Doc3 NB1))

(not (isMax Doc4 NB1))(not (isMax Doc5 NB1))

(not (isMax Doc6 NB1))(not (isMax Doc7 NB1)))

Notice that we need seven literals as effects – one for each document. First of

all, we have to express that Doc1 is maximized after the action has been executed.

Therefore, we need the literal (isMax Doc1 NB1). The other six literals may

seem redundant at a first glance because – as explained in the last chapter – we

make use of the closed world assumption. Hence, any literal that is not mentioned

is assumed to be false. Why do we need the six extra literals then? In fact, the

closed world assumption can only be used for the current world state because it

describes how the world is. In contrast, an action description like our example

Maximize describes how the world changes when the action is executed. Hence,

we have to include the six literals because the action can change each literal’s truth

value.

This can best be described via example: Consider the situation that before ex-

ecuting the Maximize action, Doc2 is maximized on NB1. In this case, the world

5.1. Enhancing Flexibility 121

state at this time would include the literal (isMax Doc2 NB1). If we did not in-

clude the effect (not (isMax Doc2 NB1)) in the action description, the world

state after the execution of Maximize would include both the fact that Doc1 is max-

imized and the fact that Doc2 is maximized on the same notebook screen. Obvi-

ously, this would be inconsistent with the laws of the real world. The same holds

for all other documents in the ensemble, in the above case Doc3, Doc4, Doc5,

Doc6, and Doc7. Hence, without universal quantification, we have to include one

effect per document.

Obviously, this is a large modelling overhead. Yet there is another problem:

The action description above is only correct in environments with seven documents.

Hence, in order to write such an action description, one must know at design-time

how many documents will be in the ensemble at run-time. In dynamic ensembles

where devices can join and leave anytime, such prior knowledge is not available.

Hence, it is not possible to model the Maximize action for dynamic environments

without universal quantification. In other words: This kind of modelling does not

fulfill the requirement flexibility we introduced in Section 2.2.

It would be beneficial if we could express things like “All devices of a certain

type other than device x”. This requires that our effects support universal quantifi-

cation. Here is the respective operator in PDDL:

(:action Maximize

:parameters ()

:precondition (Hosts Doc1 NB1)

:effect (and (isMax Doc1 NB1)

(forall (?x - Document)

(when (not (= ?x Doc1))

(not (isMax ?x NB1)))))) (5.1)

Now the effects can be read as “Doc1 is maximized on NB1. All documents

that do not equal Doc1 are not maximized on NB1”.

To be able to express this kind of effect in the AdDCo algorithm, we extend the

language presented in Chapter 4: We introduce an additional construct called the

122 Chapter 5. Enhancing the AdDCo Algorithm

uniquant. Furthermore, we redefine the construct formula, which can now contain

literals as well as uniquants:

Uniquant ::= (forall δ l) where δ ∈ Decl, l ∈ Literal (5.2)

Formula ::= (and j1 . . . jn) where ji ∈ Literal ∪ Uniquant (5.3)

The functions vars and subst are defined for uniquants as follows:

vars~(forall δ l)� = vars l \ dom δ (5.4)

substβ~(forall δ l)� = ~(forall δ (substβ′l))� where β′ = (dom δ)� β

(5.5)

Here, A� R denotes a domain anti-restriction, or, more formally,

A� R = {x : X, y : Y | xRy ∧ x < A • x" y}

The semantics of a forall-term directly follows from its expansion into unquan-

tified terms.

expand : Dom" Uniquant" Formula (5.6)

expandτ~(forall δ l)� = ~(and (substβ1 l) (substβ2 l) . . . (substβn l))� (5.7)

where {β1, . . . , βn} = bindings δ τ (5.8)

Based on this, dqτ translates a formula to an equivalent quantifier-free formula:

dqτ~(and l1 . . . ln)� = ~(and (dqτ l1) . . . (dqτ ln))� (5.9)

dqτl = l where l ∈ Literal

(5.10)

dqτq = expandτq where q ∈ Uniquant

(5.11)

so that we arrive at the following modified definition for the effective effect term:

ceff : Dom" Operator" Formula (5.12)

ceffτω = cff (dqτ(eff ω)) (5.13)

5.2. The Persistent Action Problem 123

A detailed example of instantiating an operator scheme with a universally quan-

tified effect is given in Section 9.2 in the Appendix.

Note that the notation we defined for use with the AdDCo algorithm in the pre-

vious chapter and in this chapter is very similar to PDDL. It does, however, not have

the full expressivity of PDDL. Our notation allows conjunctions of function-free

first-order literals in preconditions, while PDDL supports any first-order logical

sentence as a precondition. This does, for example, include disjunctive precondi-

tions, which are not supported by our notation. Furthermore, PDDL effects can be

universally quantified and conditional. In contrast, our effects can be universally

quantified and conditional only if the condition describes an equality (such as the

= term in the example in (5.1)).

5.2 The Persistent Action Problem

Recall that in Section 2.2 we identified the occurrence of persistent actions as a

characteristic of the smart environments domain. Persistent actions are actions

that prevail over a longer timespan, such as the project action of a projector. In

this section, we show that persistent actions can be modeled elegantly using the

AdDCo algorithm. We start with a simple domain description that does not take

into account persistent actions. We then show how this description must be altered

to model persistent actions correctly if we use planning as a strategy synthesis

mechanism. Afterwards, we describe how persistent actions can be modeled if we

use the AdDCo algorithm. We finally compare both methods.

A naive way of modelling a smart environment is the following domain

smartenvironment-naive, described in PDDL [Ghallab et al. 1998]:

(define (domain smartenvironment-naive)

(:requirements :strips :equality :typing)

(:predicates (Pointing ?c - Canvas ?p - Projector)

(CrossbarIn ?n - Notebook)

(CrossbarOut ?p - Projector)

(DocShown ?d - Document ?c - Canvas)

(isDown ?c - Canvas)

(Hosts ?d - Document ?n - Notebook)

124 Chapter 5. Enhancing the AdDCo Algorithm

(isMax ?d - Document ?n - Notebook)

(Connected ?n - Notebook ?p - Projector))

(:action CanvasUp

:parameters (?c - Canvas)

:precondition (isDown ?c)

:effect (not (isDown ?c)))

(:action CanvasDown

:parameters (?c - Canvas)

:precondition (not (isDown ?c))

:effect (isDown ?c))

(:action MoveProjector

:parameters (?c1 - Canvas ?c2 - Canvas)

:precondition (and (Pointing ?c1 NEC-MT1065)

(not (Pointing ?c2 NEC-MT1065)))

:effect (and (not (Pointing ?c1 NEC-MT1065))

(Pointing ?c2 NEC-MT1065)))

(:action SwitchCrossbar

:parameters (?n - Notebook ?p - Projector)

:precondition (and (CrossbarIn ?n)(CrossbarOut ?p))

:effect (and (Connected ?n ?p)

(forall (?x - Notebook)

(when (not (= ?x ?n))

(not (Connected ?x ?p))))))

(:action Maximize

:parameters (?n - Notebook ?d - Document)

:precondition (Hosts ?d ?n)

:effect (and (isMax ?d ?n)

(forall (?x - Document)

(when (not (= ?x ?d))

5.2. The Persistent Action Problem 125

(not (isMax ?x ?n))))))

(:action ShowDoc

:parameters (?n - Notebook ?p - Projector ?d - Document

?c - Canvas)

:precondition (and (Connected ?n ?p)(Pointing ?c ?p)

(isMax ?d ?n)(isDown ?c))

:effect (and (DocShown ?d ?c)

(forall (?x - Document)

(when (not (= ?x ?d))

(not (DocShown ?x ?c))))))

The domain smartenvironment-naive models a smart meeting room containing

two notebooks (NB1, NB2), two documents (Doc1, Doc2), eight canvasses (LW1,

LW2, LW3, LW4, LW5, LW6, VD1, VD2), three fixed projectors that can each point

to one fixed canvas (EPS3, EPS6, Panasonic), and one steerable projector (NEC-

MT1065) which can point to any of the eight canvasses. This domain can be used

for solving the planning problem presentation:

(define (problem presentation)

(:domain smartenvironment-naive)

(:objects NB1 NB2 - Notebook

Doc1 Doc2 - Document

LW1 LW2 LW3 LW4 LW5 LW6 VD1 VD2 - Canvas

EPS3 EPS6 Panasonic NEC-MT1065 - Projector)

(:init (Hosts NB1 Doc1)

(Hosts NB2 Doc2)

(CrossbarIn NB1)

(CrossbarIn NB2)

(CrossbarOut EPS3)

(CrossbarOut EPS6)

(CrossbarOut Panasonic)

(CrossbarOut NEC-MT1065)

(Pointing LW4 NEC-MT1065)

(Pointing LW3 EPS3)

126 Chapter 5. Enhancing the AdDCo Algorithm

(Pointing LW6 EPS6)

(Pointing VD2 Panasonic))

(:goal (and (DocShown Doc1 LW3)(DocShown Doc2 LW1))))

The goals of the planning problem presentation are to show document Doc1

on canvas LW3 and document Doc2 on canvas LW1. Using the domain description

smartenvironment-naive, a planner could generate the following plan:

(CanvasDown LW1)

(CanvasDown LW3)

(Maximize NB1 Doc1)

(Maximize NB2 Doc2)

(SwitchCrossbar NB1 NEC-MT1065)

(MoveProjector LW4 LW3)

(ShowDoc NB1 Doc1 NEC-MT1065 LW3)

(SwitchCrossbar NB2 NEC-MT1065)

(MoveProjector LW3 LW1)

(ShowDoc NB2 Doc2 NEC-MT1065 LW1)

This plan contains an error. Let us look at the two ShowDoc actions: The steer-

able projector (NEC-MT1065) is used to show both Doc1 on LW3 and Doc2 on

LW1. In the real world, this is not possible, of course. A single projector cannot be

used to show two documents on two canvasses simultaneously. Hence, the mod-

elling of the domain is inadequate: Showing a document is a persistent action.1 To

be precise, it persists as long as no other action is carried out on the resources it

uses. We need to express somehow that if a projector shows a document, it is oc-

cupied. As soon as we maximize another document on the same notebook screen,

connect the projector to a different computer via the video crossbar, or move the

projector to another canvas, the first document is not visible anymore. Hence, the

effects of the first ShowDoc action are not valid anymore. Thus, there is a depen-

dency between the actions. We call this the persistent action problem. It is a key

problem in smart environments where persistent actions frequently occur: 5 of the

15 scenarios we analyzed in Chapter 2 contain persistent actions. Furthermore, of
1Note that the concept of durative actions is very similar, but in the planning community this term is
used to denote a feature of PDDL 2.1: It refers to actions which are temporally annotated with an
explicit duration, e.g. 5 steps [Fox & Long 2003].

5.2. The Persistent Action Problem 127

the four scenarios we looked at in Section 4.5.6, three contain persistent actions as

well.

The challenge that must be met in smart ad-hoc environments is that the domain

description must be assembled at run-time from actions of different origin. Hence,

we need to solve the persistent action problem with as little global information as

possible. In the following two sections, we describe how to solve the persistent

action problem using planning (Section 5.2.1) and using the AdDCo algorithm

(Section 5.2.2).

5.2.1 Solving the Persistent Action Problem Using Planning:
The Locks Approach

One possibility to solve the persistent action problem in classical planning is to

introduce certain literals which we call locks. During the planning process, locks

prevent chains of actions from being “destroyed” by conflicting actions that use the

same resources. Consider the following domain smartenvironment-locks:

(define (domain smartenvironment-locks)

(:requirements :strips :typing)

(:types Notebook Document Projector Canvas - Device)

(:predicates (isLocked ?d - Device)

(isActive ?d1 ?2 - Device)

(isConnected ?d1 ?d2 - Device)

(Hosts ?d - Document ?n - Notebook)

(isDown ?c - Canvas)

(CrossbarIn ?n - Notebook)

(CrossbarOut ?p - Projector)

(Pointing ?c - Canvas ?p - Projector))

(:action CanvasUp

:parameters (?c - Canvas)

:precondition (and (not (isLocked ?c))(isDown ?c))

:effect (not (isDown ?c)))

(:action CanvasDown

128 Chapter 5. Enhancing the AdDCo Algorithm

:parameters (?c - Canvas)

:precondition (and (not (isLocked ?c))(not (isDown ?c)))

:effect (isDown ?c))

(:action Maximize

:parameters (?d - Document ?n - Notebook)

:precondition (and (Hosts ?d ?n)(not (isLocked ?n)))

:effect (and (isLocked ?n)(isActive ?d ?n)

(isConnected ?d ?n)))

(:action Unlock-Maximize

:parameters (?d - Document ?n - Notebook)

:precondition (and (isActive ?d ?n)(isLocked ?n))

:effect (and (not (isActive ?d ?n))(not (isLocked ?n))

(not (isConnected ?d ?n))))

(:action MoveProjector

:parameters (?c1 - Canvas ?c2 - Canvas)

:precondition (and (Pointing ?c1 NEC-MT1065)

(not (Pointing ?c2 NEC-MT1065))

(not (isLocked ?c1)))

:effect (and (not (Pointing ?c1 NEC-MT1065))

(Pointing ?c2 NEC-MT1065)))

(:action SwitchCrossbar

:parameters (?n - Notebook ?p - Projector ?d - Document)

:precondition (and (not (isLocked ?p))(isActive ?d ?n)

(CrossbarIn ?n)(CrossbarOut ?p))

:effect (and (isLocked ?p)(not (isActive ?d ?n))

(isActive ?d ?p)(isConnected ?n ?p)))

(:action Unlock-SwitchCrossbar

:parameters (?n - Notebook ?p - Projector ?d - Document)

:precondition (and (isLocked ?p)(isActive ?d ?p)

5.2. The Persistent Action Problem 129

(isConnected ?n ?p))

:effect (and (not (isLocked ?p))(isActive ?d ?n)

(not (isActive ?d ?p))

(not (isConnected ?n ?p))))

(:action ShowDoc

:parameters (?p - Projector ?c - Canvas ?d - Document)

:precondition (and (not (isLocked ?c))(isActive ?d ?p)

(isDown ?c)(Pointing ?c ?p))

:effect (and (isLocked ?c)(not (isActive ?d ?p))

(isActive ?d ?c)(isConnected ?p ?c)))

(:action Unlock-ShowDoc

:parameters (?p - Projector ?c - Canvas ?d - Document)

:precondition (and (isLocked ?c)(isActive ?d ?c)

(isConnected ?p ?c))

:effect (and (not (isLocked ?c))(isActive ?d ?p)

(not (isActive ?d ?c))

(not (isConnected ?p ?c)))))

We omit the problem description here as it is the same as in the problem pre-

sentation described earlier in this section, except for the goal statement, which is

now (:goal (and (isActive Doc1 LW3)(isActive Doc2 LW1))).

Three locks are required for every persistent action (see Figure 5.1): The first

lock (isLocked ?d) locks the resource in question such that no other action can

use this resource. In Figure 5.1, this is depicted as a small yellow lock attached to

a resource. Thus, the set of locked resources states which resources are currently

parts of chains of persistent actions. The second lock (isConnected ?d1 ?d2)

states which two resources are used consecutively in a chain of actions. In Figure

5.1, this is depicted as a blue ellipse with a little yellow lock attached to it. This

lock is important if a new goal is to be fulfilled and this requires that an action se-

quence previously generated must be unlocked. We will get back to this in Section

5.2.3. The third lock (isActive ?d1 ?d2) always denotes the beginning and the

current end of a chain (the tail). In Figure 5.1, this is depicted as a purple ellipse

with a little yellow lock attached to it. During the planning process, this lock is

130 Chapter 5. Enhancing the AdDCo Algorithm

Christiane Plociennik (Graduate School MuSAMA, University of Rostock, Germany) 18

Planning: The Locks Approach

(:action SwitchCrossbar
:parameters ()
:precondition (and (not (isLocked NEC-MT1065))(isActive Doc1 NB1)

(CrossbarIn NB1)(CrossbarOut NEC-MT1065))
:effect (and (isLocked NEC-MT1065)(not (isActive Doc1 NB1))

(isActive Doc1 NEC-MT1065)(isConnected NB1 NEC-MT1065)))

(CanvasDown LW3)
(CanvasDown LW1)
(Maximize NB1 Doc1)
(Maximize NB2 Doc2)
(SwitchCrossbar NB1 NEC-MT1065)
(MoveProjector LW4 LW3)
(ShowDoc NB1 Doc1 NEC-MT1065 LW3)
(SwitchCrossbar NB2 NEC-MT1065)
(MoveProjector LW3 LW1)
(ShowDoc NB2 Doc2 NEC-MT1065 LW1)

Figure 5.1: One chain locks the resources it occupies...

Christiane Plociennik (Graduate School MuSAMA, University of Rostock, Germany) 19

Planning: The Locks Approach

(:action SwitchCrossbar
:parameters ()
:precondition (and (not (isLocked NEC-MT1065))(isActive Doc2 NB2)

(CrossbarIn NB2)(CrossbarOut NEC-MT1065))
:effect (and (isLocked NEC-MT1065)(not (isActive Doc2 NB2))

(isActive Doc2 NEC-MT1065)(isConnected NB2 NEC-MT1065)))

(CanvasDown LW3)
(CanvasDown LW1)
(Maximize NB1 Doc1)
(Maximize NB2 Doc2)
(SwitchCrossbar NB1 NEC-MT1065)
(MoveProjector LW4 LW3)
(ShowDoc NB1 Doc1 NEC-MT1065 LW3)
(SwitchCrossbar NB2 NEC-MT1065)
(MoveProjector LW3 LW1)
(ShowDoc NB2 Doc2 NEC-MT1065 LW1)

Figure 5.2: ... so another chain cannot use them.

5.2. The Persistent Action Problem 131

propagated through the action sequence.

Consider the SwitchCrossbar action in Figure 5.1: It has

(isActive Doc1 NB1) as a precondition. This can be read as “The

chain beginning at Doc1 currently ends at NB1”. Its effects include

(not (isActive Doc1 NB1)) and (isActive Doc1 NEC-MT1065). I.e.,

when SwitchCrossbar is executed, the tail moves from NB1 to NEC-MT1065.

Because every persistent action (apart from Maximize which is at the head of

the chain) has such a lock as a precondition, the chain beginning with Doc1 can

only be manipulated at its tail. This in conjunction with the (isLocked ?d)

locks ensures that the chain of actions cannot unintentionally be “destroyed” by a

conflicting action. Consider the other SwitchCrossbar action in Figure 5.2, which

is executed after the first one. This action is part of a second chain beginning

with Doc2. However, because the (isLocked NEC-MT1065) lock is already

active, this conflicting action cannot be executed – one of its preconditions is not

fulfilled. Hence, the chain beginning with Doc1 is not broken – the erroneous

action sequence in Figure 5.2 cannot be generated. Instead, the locks “force” the

algorithm to generate the following correct action sequence:

(CanvasDown LW1)

(Maximize Doc2 NB2)

(MoveProjector LW4 LW1)

(CanvasDown LW3)

(Maximize Doc1 NB1)

(SwitchCrossbar NB2 NEC-MT1065 Doc2)

(SwitchCrossbar NB1 EPS3 Doc1)

(ShowDoc NEC-MT1065 LW1 Doc2)

(ShowDoc EPS3 LW3 Doc1)

Note that we added a corresponding unlock operator for every operator that

locks a resource. This enables the planner to unlock the chain starting at its end if

new goals are to be fulfilled.

132 Chapter 5. Enhancing the AdDCo Algorithm

5.2.2 Solving the Persistent Action Problem with the AdDCo
Algorithm: The Guarding Approach

The persistent action problem can be solved in a much more elegant way with the

AdDCo algorithm. The reason for this is that the AdDCo algorithm is an action se-

lection mechanism. It interleaves planning with execution: Every action selection

step is followed by an execution step which changes the world state. This makes

it possible to solve the persistent action problem in a fundamentally different way:

One can employ the agent (or CompMod) of a persistent action A as a “guard” for

that action. Guarding means that as long as A is active, A’s agent monitors whether

any effect of a subsequent action B that is executed is the opposite of one of A’s

preconditions. In this case, it sends a message to all other agents stating that A

is not executed anymore and its effects become false. Should one of A’s effects

be a precondition of another persistent action C which is currently executed, this

process continues: C’s agent will notice that C is not executed anymore, etc.

As an example, reconsider the erroneous action sequence generated by the

planner on page 126. This action sequence cannot be generated if we use the

guarding approach: Consider the point in the action sequence when the action

(ShowDoc NB1 Doc1 NEC-MT1065 LW3) is executed (see Figure 5.3). It is a

persistent action and requires the literal (Connected NB1 NEC-MT1065) to be

true. When the action is executed, its agent therefore starts to guard its own pre-

conditions. In Figure 5.3, this is depicted as a small glasses icon above the red

dashed line. Now (SwitchCrossbar NB2 NEC-MT1065) is executed (see Fig-

ure 5.4). This renders the literal (Connected NB1 NEC-MT1065) false. The

action (ShowDoc NB1 Doc1 NEC-MT1065 LW3)’s agent now notices that one

of its preconditions is not fulfilled anymore. It notifies the rest of the ensem-

ble that the action is not active anymore and its effects become false. The goal

(DocShown Doc1 LW3) is now open again and can be fulfilled once more. Hence,

the action selection algorithm cannot generate an action sequence that uses the

steerable projector NEC-MT1065 to show Doc1 on LW3 and Doc2 on LW1 simul-

taneously. This means the world state in the model of the world does not become

inconsistent to the actual world state in the real world. Instead, the correct action

sequence depicted in Figure 5.4 is generated. Thus, the guarding approach enables

us to model the domain as on page 123.

5.2. The Persistent Action Problem 133

Christiane Plociennik (Graduate School MuSAMA, University of Rostock, Germany) 29

Action Selection: The Guarding Approach

Goals:
(DocShown Doc1 LW3)
(DocShown Doc2 LW1)
(CanvasDown LW3)
(CanvasDown LW1)
(Maximize NB1 Doc1)
(Maximize NB2 Doc2)
(SwitchCrossbar NB1 NEC-MT1065)
(MoveProjector LW1 LW3)
(ShowDoc NB1 Doc1 NEC-MT1065 LW3)
(SwitchCrossbar NB2 NEC-MT1065)
(MoveProjector LW3 LW1)
(ShowDoc NB2 Doc2 NEC-MT1065 LW1)
(SwitchCrossbar NB1 EPS3)
(ShowDoc NB1 Doc1 EPS3 LW3)

Figure 5.3: The ShowDoc action guards its preconditions...

Christiane Plociennik (Graduate School MuSAMA, University of Rostock, Germany) 30

Action Selection: The Guarding Approach

Goals:
(DocShown Doc1 LW3)
(DocShown Doc2 LW1)
(CanvasDown LW3)
(CanvasDown LW1)
(Maximize NB1 Doc1)
(Maximize NB2 Doc2)
(SwitchCrossbar NB1 NEC-MT1065)
(MoveProjector LW1 LW3)
(ShowDoc NB1 Doc1 NEC-MT1065 LW3)
(SwitchCrossbar NB2 NEC-MT1065)
(MoveProjector LW3 LW1)
(ShowDoc NB2 Doc2 NEC-MT1065 LW1)
(SwitchCrossbar NB1 EPS3)
(ShowDoc NB1 Doc1 EPS3 LW3)

Figure 5.4: ... and notices when one of them is not fulfilled anymore.

134 Chapter 5. Enhancing the AdDCo Algorithm

Note that without further precautions, the guarding approach can lead to

loops where two actions alternately destroy each other’s preconditions. In

the above example, the actions (SwitchCrossbar NB1 NEC-MT1065) and

(SwitchCrossbar NB2 NEC-MT1065) could be executed alternately again and

again. In Section 4.4.10, we have described the mechanism we use in the AdDCo

algorithm to prevent such loops: We decrease a CompModInst’s probability to be-

come active again each time it is executed.

5.2.3 Comparing the Two Paradigms

In Sections 5.2.1 and 5.2.2 we introduced two paradigms which both solve the

persistent action problem. In this section, we elaborate in more detail on the sim-

ilarities and conceptual differences between the two paradigms. We also point out

some of the implications those differences have on modelling and execution of de-

vice actions in smart environments.

Both paradigms have in common that actions can be modelled without global

knowledge. Each action description can be written using only knowledge about

literals that must be fulfilled before the action can be executed and literals that will

be true after the action is executed. Of course, it is preferable that the developer of

an action description has an idea e.g. which other actions might rely on the effects

of the action. This guides the developer’s decision which effects to consider for in-

clusion in the action description. However, the developer need not have knowledge

about the complete domain.

One difference between the two paradigms is the cognitive model they resem-

ble: The locks paradigm can be described with the concept of data flow. In the

example action sequence shown in Section 5.2.1, the following isActive locks be-

come active one after another:

(isActive Doc2 NB2)

(isActive Doc1 NB1)

(isActive Doc2 NEC-MT1065)

(isActive Doc1 EPS3)

(isActive Doc2 LW1)

(isActive Doc1 LW3)

5.2. The Persistent Action Problem 135

Doc1 can be seen as data flowing from a source (notebook NB1) over an inter-

mediate station (projector EPS3) to a sink (canvas LW3). Likewise for Doc2. In

contrast, the agents in the guarding approach resemble the concept of guards that

are positioned along a line to the goal, each monitoring whether its assigned persis-

tent action is still being executed. This comes along with a fundamental difference

in the approach to solving the persistent action problem: In the locks approach,

we prevent conflicting actions from being executed. Thus, the developer has to be

careful to add the appropriate locks to the action descriptions of persistent actions.

Furthermore, for every operator describing a persistent action, a corresponding un-

lock operator must be added. This also implies that the overall number of operators

is higher. In the guarding approach, on the other hand, we do not prevent conflict-

ing actions from being selected. Instead, for every action A, we monitor whether

a conflicting action B terminates A’s execution. The developer of an operator for a

persistent action must only mark the action as a persistent action. The rest can then

be managed by the action selection mechanism.2

Another difference manifests itself if an action sequence has been generated

and a new goal is to be fulfilled. Consider the point where the action sequence

in Section 5.2.1 has been generated and the following new goal arises (the former

goals are now not valid anymore): (:goal (isActive Doc1 LW1))

This requires the locks approach to execute a number of unlock actions before

the new goal can be fulfilled. A planner generates an action sequence such as:

(Unlock-ShowDoc NEC-MT1065 LW1 Doc2)

(Unlock-ShowDoc EPS3 LW3 Doc1)

(Unlock-SwitchCrossbar NB2 NEC-MT1065 Doc2)

(Unlock-SwitchCrossbar NB1 EPS3 Doc1)

(SwitchCrossbar NB1 NEC-MT1065 Doc1)

(ShowDoc NEC-MT1065 LW1 Doc1)

The existing chain of actions has to be unlocked backwards to the point where

necessary actions to fulfill the new goal (SwitchCrossbar, ShowDoc) can be exe-

cuted. This is the kind of scenario we need the (isConnected ?d1 ?d2) lock

for: without it, the planner could not figure out which predecessor an action has
2Note that for reasons of simplicity we omitted the handling of persistent actions from the description
of our action selection algorithm in Chapter 4. We believe that it is sufficiently straightforward to
be reproducible.

136 Chapter 5. Enhancing the AdDCo Algorithm

and would thus not be able to unlock an existing sequence correctly. The guarding

approach does not perform any unlock action in order to fulfill the new goal, it just

executes SwitchCrossbar and ShowDoc. This is both a blessing and a curse. On the

one hand, of course, less actions have to be executed. On the other hand, existing

action sequences can unintentionally be “destroyed” by conflicting actions because

there is no mechanism to protect them.

5.3 Enhancing Design-time Modularization: Hiding
CompMods and CompModInsts

Recall that we introduced distributedness as a requirement for strategy synthesis

in smart ad-hoc environments in Section 2.2. One reason is that devices in one

ensemble are likely to stem from different vendors. If there is a central control-

ling component, the manufacturer of this component can control how devices of

other vendors are being used in the ensemble. Thus, distributing control means

distributing the power of vendors. We have called this design-time modularization.

Due to its fully distributed nature, the AdDCo algorithm as we introduced it in

Section 4.4 already supports design-time modularization to a certain extent. How-

ever, it is possible to distribute vendor power even further. With a small change

in the AdDCo algorithm, devices can hide any information about the CompMods

and CompModInsts they carry from the rest of the ensemble. To realize this,

two changes can be performed: First, CompMods do not broadcast their opera-

tor schemes as in the original version of the AdDCo algorithm. Instead, they send

complete operators over the network. This implies that CompMods do not have

to instantiate linked operators as suggested in Section 4.4.6. Second, the operators

are sent in a bulk. In other words, each device only broadcasts which preconditions

and effects all its operators/CompModInsts have as a whole. The benefit is that

CompMods and CompModInsts can be completely hidden by the devices: Other

devices in the ensemble never get to know which and how many CompMods and

CompModInsts a device has.

As an example, consider the device Canvas1 in Figure 5.5. Upon entering the

ensemble, it introduces itself to the other ensemble members with the following

5.3. Enhancing Design-time Modularization 137

description3:

(:device Canvas1

:precondition (and (not (CanvasDown Canvas1))

(CanvasDown Canvas1))

:effect (and (CanvasDown Canvas1)

(not (CanvasDown Canvas1)))

Links do not connect CompModInsts to other CompModInsts anymore, but

CompModInsts to devices. Thus, CompModInsts address messages to another

CompModInst not to the CompModInst itself, but to the device carrying it. In

fact, a message now has the format <Device name> Precondition|Effect <Precon-

dition>|<Effect> <Message>. Each device has a secretary component that dis-

tributes all incoming messages to the respective CompModInsts, just like a real

secretary distributes incoming calls, faxes and letters to employees (see Figure

5.5). The receivers of a message are those CompModInsts that match the address

description, i.e. that have the respective precondition or effect. Consider the fol-

lowing example: CompModInst Send2Disp in Figure 5.5 wants to send the amount

of energy of 50.23 to its successors. It does not know that ShowDoc is its successor.

It does not even know how many successors it has. All it knows is that there must

be one or more successors on the device Projector1 because Projector1’s device

description contains the precondition (Sent2Disp Document1 Projector1)

which Send2Disp has as an effect. Thus, it sends the following message: Pro-

jector1 Precondition (Sent2Disp Document1 Projector1) Energy 50.23. This can

be understood as “I am sending 50.23 energy units to each CompModInst on device

Projector1 that has the precondition (Sent2Disp Document1 Projector1)”.

Projector1’s secretary can now distribute the message to all CompModInsts that

match this description. In this case, there is one, namely ShowDoc.

Hiding CompMods and CompModInsts clearly has the benefit of enhancing

design-time modularization. However, there are some problems with this: Con-

sider the fact that all preconditions and effects of all CompModInsts/operators on

a device can now be sent in a single message. However, this device description

has to be updated whenever one of the device’s CompMods instantiates or deletes

3Note that this is not correct PDDL syntax – if this is to be implemented, one has to define an
extension to PDDL.

138 Chapter 5. Enhancing the AdDCo Algorithm

S
ecretary

(S
ent2D

isp D
ocum

ent1
P

rojector1)
(C

anvasD
ow

n
C

anvas1)

(D
ocS

how
n

D
ocum

ent1 C
anvas1)

...

(C
anvasD

ow
n

C
anvas1)

(not (C
anvasD

ow
n

C
anvas1))

(not (C
anvasD

ow
n

C
anvas1))

(C
anvasD

ow
n

C
anvas1)

percept:
(not (C

anvasD
ow

n C
anvas1))

goal:
(D

ocS
how

n D
ocum

ent1 C
anvas1)

(O
pen D

ocum
ent1

N
otebook1)

(S
ent2D

isp D
ocum

ent1
P

rojector1)
...

percept:
(O

pen D
ocum

ent1 N
otebook1)

predecessor link
successor link
conflicter link
energy from

 percept
energy from

 goal

S
ecretary

Secretary

D
evice N

otebook1

D
evice P

rojector1

D
evice C

anvas1

Figure
5.5:L

inking
C

om
pM

odInsts
via

a
“secretary”.

5.4. Chapter Summary 139

CompModInsts, which happens when devices join or leave at run-time. The reason

is that instantiating or deleting CompModInsts also creates or deletes preconditions

and effects. This creates two problems: First, a device may “guess” some of the

internal structures of another device from the adding or removing of preconditions

and effects from that device’s description. Hence, design-time modularization can

be hampered. Second, depending on how many devices join and leave dynamically

at run-time, the communication overhead can become bigger than in the original

version of the AdDCo algorithm: When hiding CompModInsts, each CompMod

has to send a message each time it instantiates or deletes CompModInsts due to the

joining or leaving of a device. In the original AdDCo algorithm, only one message

per CompMod has to be sent. This message includes the CompMod’s operator

scheme, which is used by the other CompMods to assemble their linked operators

themselves.

5.4 Chapter Summary

In this chapter, we have described three enhancements to the AdDCo algorithm.

With those enhancements, the AdDCo algorithm fulfills the following three re-

quirements identified in Section 2.2:

• Flexibility: By introducing universally quantified effects as described in Sec-

tion 5.1, we can express that an effect holds for “All devices of a certain type

other than device x”. Using this construct, authors of action descriptions do

not have to know which and how many devices of this type there are in the

ensemble. This construct remains the same even when devices join and leave

the ensemble. Thus, the AdDCo algorithm now supports dynamic ensemble

structures.

• Support for persistent actions: Persistent actions are actions that are car-

ried out until they are terminated by another action. In Chapter 2, we have

shown that persistent actions occur frequently in smart environments. In Sec-

tion 5.2, we have shown how persistent actions can be supported in ad-hoc

environments: When using planning, the locks approach is feasible. For the

AdDCo algorithm, the guarding approach can be used. Both resemble differ-

ent paradigms, yet both solve the persistent action problem.

140 Chapter 5. Enhancing the AdDCo Algorithm

• Distributedness: The enhancement we introduced in Section 5.3 concerns

one part of the requirement distributedness, namely design-time modulariza-

tion. The idea is to hide CompMods and CompModInsts inside the devices so

that they become “invisible” to the rest of the ensemble. This distributes ven-

dor power as a device manufacturer discloses less information about her/his

devices.

Recall that the requirements spontaneity and robustness were already fulfilled

in the last chapter. Now, all requirements from Section 2.2 but one are fulfilled

by the AdDCo algorithm: The requirement rationality is only partially fulfilled.

In the next section, we therefore present a user study that evaluates whether users

nevertheless accept an assistance system based on the AdDCo algorithm, and under

which circumstances they accept it.

Chapter 6

User Study

Contents
6.1 Related Work . 143

6.1.1 Proactive Assistance Systems 143

6.1.2 Research on the Effects of Automation 145

6.1.3 Models for Evaluating Ubiquitous Computing Applications 147

6.2 The Assistance System Used for the Study 150

6.3 Conducting the User Study . 153

6.3.1 The Design of the Study 153

6.3.2 Experimental Procedure 160

6.3.3 Hypotheses . 163

6.4 Results of the User Study . 164

6.4.1 Manipulation Checks . 167

6.4.2 Quantitative Findings of the User Study 168

6.4.3 Comments Given by the Participants 173

6.5 Scheme of User Acceptance and Performance 176

6.6 Ad-hoc Assistance Systems and Wandke’s Framework 177

6.7 Implications for User Interface Design of Ubiquitous Comput-
ing Systems . 178

6.8 Limitations of the Study . 180

6.9 Chapter Summary . 181

In the past chapters, we have introduced the AdDCo algorithm. It is a strategy

synthesis mechanism that fulfills all requirements from Section 2.2, apart from the

requirement rationality. This requirement is not completely fulfilled because the

142 Chapter 6. User Study

algorithm tends to produce suboptimal solutions. The question is whether users

accept such a system. In this chapter, we present a user study that investigates

this issue: We strive to find out how different kinds of system behavior influence

user acceptance of an exemplary assistance system which is based on the AdDCo

algorithm.

Instead of user acceptance, we could evaluate whether the assistance system im-

proves the users’ performance in carrying out a certain task. However, we wanted

to find out whether people actually intend to use the system, and performance is

not a good indicator for this. It is a well-established fact that users may choose

not to use a system even if it improves their performance [Davis et al. 1989]. We

therefore put our emphasis on user acceptance and only look at user performance

on the side.

There are two distinct research areas that we draw upon for this study.

The first is concerned with people’s acceptance of computing systems. Here,

scales that measure user acceptance are developed and tested on real systems

[Davis et al. 1989]. The second is automation science, a field that investigates the

effects of automation on human beings, e.g. in domains like flight control or man-

ufacturing plants [Parasuraman 1997, Lee & See 2004, Muir & Moray 1996]. In

automation science, systems are “usually large, complex, capital-intensive, and po-

tentially dangerous, and so it is critical they run safely and effectively” [Muir 1994].

Usually, the human operator’s task is to monitor the system while it is running and

to intervene when necessary in order to maximize safety or productivity. Operators

are experts who receive extensive training before starting to work with the machine,

and collaboration between the human and the machine takes place in very limited

contexts, usually in work settings.

In contrast, assistance systems in Ubiquitous Computing are usually neither

capital-intensive nor potentially dangerous, and users are non-experts. Further-

more, the user is most important, while the system is designed to assist her/him.

People use such systems not just in one specific setting, but in various contexts.

Users are typically not seated in front of a desktop or a display and control panel,

but situated in “real life”, and typically the user walks into an environment and

expects her/his mobile devices to integrate seamlessly with the existing infrastruc-

ture. Thus, user acceptance of an assistance system probably depends not only on

the system itself, but is likely to be influenced by various contextual factors. It is

6.1. Related Work 143

therefore not clear whether the results from automation research apply to the field

of Ubiquitous Computing.

Consequently, we do not only investigate how system behavior influences user

acceptance, but take two additional contextual factors into account: whether the

user has a low or high task load and whether s/he has experience using the system.

The assistance system we use in the study is an instance of a class of systems which

is described in Section 6.1.1. As will be shown in Section 6.1.1, our results do not

only apply to the particular system we use in the study, but generalize to this class.

The structure of this chapter is as follows: We first review related work and

describe the assistance system used in the study. We then present the design of

the user study in which 56 participants evaluate the assistance system, describe

how we conducted the study and report the results. Using these results, we de-

velop a scheme of user acceptance and performance. We then elaborate on the

question which kind of assistance with respect to Wandke’s assistance framework

[Wandke 2005], which we introduced in Chapter 1, is acceptable for users of Ubi-

quitous Computing applications. We furthermore discuss some of our findings

concerning user interfaces for Ubiquitous Computing assistance systems.

6.1 Related Work

We cover three areas of related work. To motivate that the results of the study

generalize to a particular group of applications, we discuss the similarities between

the assistance system we use in the study and a specific class of proactive assis-

tance systems. We then present prior research from the field of automation science

as a base for the study. Furthermore, we review work on models for evaluating

Ubiquitous Computing applications and explain our choice.

6.1.1 Proactive Assistance Systems

In Chapter 3, we have introduced some research projects that have developed as-

sistance systems for smart environments. Of particular interest are those that are

flexible enough to generate strategies at run-time. These are typically based on

explicit declarative representations of the user’s goals. The assistance systems can

use these goals to develop a strategy to assist the user. This strategy is not just

144 Chapter 6. User Study

a mere instantiation of a predefined scheme, but is generated completely at run-

time. Here, we briefly recapitulate the projects based on planning we introduced in

Section 3.1.2.

In the private household sub-project of the EMBASSI project

[Heider & Kirste 2002], the devices carry declarative descriptions (precondi-

tion/effect rules) of the actions they can perform and upload them to a central

controlling component. When the user utters a goal, the controlling component

tries to generate an action sequence for the devices to fulfill this goal. To this end,

partial-order planning is used. Once an action sequence has been found, it can be

executed autonomously by the device ensemble, without user intervention.

The approach of Amigoni et al. [Amigoni et al. 2005] is based on a distributed

version of hierarchical task networks called D-HTN (Distributed Hierarchical Task

Network). The devices provide descriptions of the actions they are able to perform

in the form of HTNs. These are decompositions of higher-level tasks which can

be used by a central planning component in order to construct a plan for the whole

ensemble. When constructing a plan, the planner can query the available devices

for suitable decompositions. In case there is more than one decomposition, the

most appropriate one is chosen according to values set by the system designer.

In the O2S approach by Saif et al. [Saif et al. 2003], a goal can be viewed as

a higher-level function which is to be decomposed into a set of lower-level actions

(similar to the HTN approach). There might be several ways to fulfill a goal, and

all of those candidates are represented in a goal tree. Choosing the best action

sequence to fulfill a goal then corresponds to selecting a path through the goal tree.

As in D-HTN, this choice is made according to values specified by the programmer.

In Roadie [Lieberman & Espinosa 2006], a system for assisting the user in a

home entertainment scenario, all devices in the home are connected to a central

component, supplying descriptions of the actions they are able to perform. As

the approaches above, Roadie is based on explicit user goals. Using these goals,

Roadie can generate a plan using the Graphplan planner [Blum & Furst 1995].

Some of these actions it can perform on its own, while it instructs the user on

how to accomplish the rest.

All of these systems share the following features with the assistance system we

use in the study, which is based on the AdDCo algorithm introduced in Chapter 4:

• They are based on explicit declarative user goals. Hence, they abandon the

6.1. Related Work 145

functional paradigm in favor of the goal-based paradigm, which is much

more user-friendly. We have introduced goal-based interaction in Section

3.1.2.

• They generate strategies at run-time, which makes them suitable for environ-

ments with a dynamic device infrastructure.

• They are inherently imperfect. This is due to the run-time strategy synthesis

techniques they employ: Planning can yield suboptimal solutions for all but

the most trivial problems, and the same applies for the AdDCo algorithm.

Due to these commonalities, we argue that the results of the user study generalize

to the class of systems discussed above.

6.1.2 Research on the Effects of Automation

The papers we discuss in this section are from the area of automation science. Here,

trust is a commonly used concept to characterize user acceptance. This is due to

the fact that system failures can be expensive or even dangerous to the operator. To

give the reader an understanding of the concept of trust in this particular context,

we therefore present two definitions before discussing the papers. Lee and See give

a rather general definition [Lee & See 2004]:

“Trust can be defined as the attitude that an agent will help achieve

an individual’s goals in a situation characterized by uncertainty and

vulnerability.”

Muir and Moray present a more sophisticated model of trust that is tailored to

automation [Muir & Moray 1996]:

“[Trust] in automation is a composite expectation of (1) the operator’s

general expectation of the persistence of the natural physical order,

the natural biological order and the moral social order, (2) a specific

expectation of the technical competence of the automation and (3) a

specific expectation of the fiduciary responsibility of the automation.”

Parasuraman and Riley review automation science papers to find out what in-

fluences people’s decision to use or not use automation [Parasuraman 1997]. They

find that the user’s attitude towards a machine depends strongly on the reliability

146 Chapter 6. User Study

of the machine in some cases, in other cases no such dependence could be found.

This issue has not been fully explored yet. Whether a higher workload leads to

greater automation use is also unclear. It seems to depend on the person and on the

task and must be studied separately for each domain. If the user does not perceive

the advantage automation offers as being sufficient to overcome the overhead asso-

ciated with setting it up, s/he may not use the automation. Occasional automation

failures do not necessarily lead to less automation usage in the future. This depends

on:

• whether the automation is usually reliable,

• whether system behavior and system state are transparent to the user,

• the overhead involved in turning the automation on or off, or

• the complexity of the task.

When speaking about reliability, one has to bear in mind that people’s expecta-

tions of reliability depend strongly on the domain. As an example, consider differ-

ent modes of transport: Obviously, people expect a much higher reliability when

they fly by plane than when they go by car. To the author’s knowledge, it has not yet

been investigated which level of reliability people expect from assistance systems

in ubiquitous computing. However, consider the fact that these systems are usually

not safety-critical. Therefore, we can assume that people’s reliability expectations

are lower here than for planes or trains. A reasonable guess is that people expect

such systems to be about as reliable as traditional computing applications.

Itoh et al. investigate how trust and use of automation depend on occurrence

patterns of malfunctions [Itoh et al. 1999]. They find that if a series of malfunctions

occurs, trust is affected more than if malfunctions occur occasionally. If operators

are experienced, trust recovers more quickly after three successive malfunctions

than for unexperienced operators. Experienced operators also tend to rely on au-

tomation if they perceive a small error, while less experienced operators tend to

switch to manual control in such situations.

According to Lee and See, people’s reliance on automation depends on trust if

the system is too complex to be fully understood or if the situation demands for

some creativity [Lee & See 2004]. If a person understands the algorithms behind

a system or believes that the system can fulfill her/his goals, s/he tends to trust the

system. New users base their trust on the available information about the system’s

purpose, while later on users develop a feeling for the system’s reliability and pre-

6.1. Related Work 147

dictability. If a user believes that a system functions correctly and is disappointed,

s/he may choose not to use the system in the future. Self-confident users who do

not trust a system very much tend to manual control. The opposite is also true:

People with little self-confidence tend to rely on automation more often. A small

error with non-predictable results influences trust more than a constant larger error.

People tend to rely on faulty automation if they know in advance which faults can

occur. On the other hand, if information about the functionality of a system is not

available or displayed improperly, trust can not develop appropriately. Lee and See

also point out that system designers should not try to evoke maximum trust in a

system, but a level of trust that is appropriate for the system’s capabilities.

Muir and Moray investigate how trust relates to human intervention in a process

control simulation [Muir & Moray 1996]. They find that trust in a machine depends

strongly on how competent people perceive this machine to be, and that trust is

strongly correlated with automation usage. They furthermore find that control and

display errors of a simulated pump affect trust in an additive fashion. A small

variable error has a similar effect as a relatively large constant error. If a system

has an automatic and a manual mode, people use the automatic mode more often

the more they trust the machine. The less an operator trusts a machine, the more

will s/he monitor it. However, Moray and Muir also find that trust does not go

down to 0 if small errors are encountered.

As said before, in contrast to the systems under research in automation science,

Ubiquitous Computing systems are usually not large, expensive, and safety-critical,

and users are no trained experts. Therefore, we believe that trust should not be the

primary concept to capture user acceptance in this field. Questions like “Does

the user think that the assistance system is useful?” or “Does the user find the

assistance system easy to use?” are more likely to be related to user acceptance

of assistance systems in Ubiquitous Computing. We therefore discuss different

models that capture such concepts in the next section.

6.1.3 Models for Evaluating Ubiquitous Computing Applica-
tions

To develop a test for user acceptance is a research project of its own. We there-

fore decided to look at existing models, identify the most suitable model for our

148 Chapter 6. User Study

purpose, and use the scales from that model.

Scholtz and Consolvo present a framework for evaluating Ubiquitous Com-

puting applications according to nine dimensions: attention, adoption, trust, con-

ceptual models, interaction, invisibility, impact and side effects, appeal, and ap-

plication robustness [Scholtz & Consolvo 2004]. This framework provides a good

understanding for what the important issues in evaluating Ubiquitous Computing

applications are. However, it is rather intended as a concept to guide Ubiquitous

Computing researchers in developing the design of user studies than as an actual

test for user acceptance. It does not include any concrete items that could be used

in a questionnaire.

The scales from the Technology Acceptance Model (TAM) [Davis 1989]

proposed by Davis have been applied in many domains, e.g. knowl-

edge management systems [Money & Turner 2004] and code inspection systems

[Laitenberger & Dreyer 1998]. TAM has been referenced in 450 publications. It

consists of two constructs: perceived usefulness (PU) and perceived ease of use

(PE). Both are measured using six-item scales. TAM is a predictor of people’s ac-

tual usage behavior, i.e. an application with a high PU and PE value is likely to be

used.

Several researchers have adapted TAM for Ubiquitous Computing. Connelly

proposes a version of TAM for pervasive computing called PTAM [Connelly 2007].

It includes more constructs than TAM: In addition to the constructs PU and PE from

Davis’ TAM, PTAM comprises Social Influence, Trust, and Integration. According

to Connelly, the three additional constructs are important in Ubiquitous Comput-

ing. Connelly does not propose concrete items to measure the five constructs, but

states that six items are necessary for each construct to obtain sufficient reliability

of the scales. Thus, 30 items are required to assess the complete PTAM. For logis-

tic reasons, we could not use PTAM: In our study, each participant was presented

three scenarios and had to fill out a questionnaire after each scenario. Had we in-

cluded 30 items into the questionnaire, each participant would have rated 90 items

altogether. This would have overburdened the participants. For the same reason

we did not use UTAUT, the Unified Theory of Acceptance and Use of Technology

[Venkatesh et al. 2003]. It is newer and more comprehensive than TAM, but, like

PTAM, has too many items.

Spiekermann proposes UC-AM, the Ubiquitous Computing Acceptance Model

6.1. Related Work 149

[Spiekermann 2008]. It comprises six constructs: Perceived Usefulness, Perceived

Ease of Use, Intention to Use, Intention to Buy, Affective Attitude, and Perceived

Control. The validation of the model consists of scenarios of future applications

that were rated by participants in on-line and paper surveys. Thus, it is not sure

whether UC-AM is also applicable when evaluating existing Ubiquitous Comput-

ing applications.

Besides its compactness, the most convincing argument in favor of TAM is

the following: The studies cited in this section have found PU and PE to be the

main determinants of user acceptance. Other factors have minor influence. This

indicates that TAM is a good choice. We therefore decided to use the PU and PE

scales from the original TAM in a slightly adapted version: We omit references to

jobs as Ubiquitous Computing applications are not only present in work contexts,

but in many areas of daily living. Table 6.1 lists the resulting PU and PE scales.

To ensure that they are sufficiently reliable, we calculated Cronbach’s α using the

answers from the questionnaires the participants had to fill out during the user

study.1 Cronbach’s α is 0.88 for the modified PU scale and 0.76 for the modified

PE scale. Both values are above 0.7 which indicates that the scales are reliable.

Perceived Usefulness (PU)
Using the assistance system enables me to accomplish tasks more quickly.
Using the assistance system improves my performance.
Using the assistance system increases my productivity.
Using the assistance system enhances my effectiveness.
Using the assistance system makes it easier to complete my tasks.
I find the assistance system useful.
Perceived Ease of Use (PE)
Learning to operate the assistance system is easy for me.
I find it easy to get the assistance system to do what I want it to do.
My interaction with the assistance system is clear and understandable.
My interaction with the assistance system is flexible.
It is easy for me to become skillful at using the assistance system.
I find the assistance system easy to use.

Table 6.1: The modified PU and PE scales from TAM. All 12 items are to be ranked
on a five-point Likert scale2, where 4 corresponds to “I totally agree” and 0 to “I
do not agree at all”.

1Cronbach’s α is a measure that indicates how reliable a scale consisting of multiple items is, i.e.
to which degree those items measure a common construct. More information can be found in
[Bortz & Döring 2006].

2A Likert scale is a scale commonly used in questionnaires. It often consists of five or seven points

150 Chapter 6. User Study

6.2 The Assistance System Used for the Study

The assistance system we used for the study is based on the two-stage approach

to user assistance we introduced in Section 1.2: It conceptually consists of the

intention analysis and the strategy synthesis. Finding out which goals the user has

and fulfilling those goals can both cause errors. In the user study, however, we

wanted to concentrate on the errors that can arise when trying to fulfill the goals.

Therefore, the assistance system contains only the strategy synthesis; we omit the

intention analysis and specify the user’s goals in advance instead.

The strategy synthesis mechanism employs the AdDCo algorithm for action se-

lection. It takes user goals as an input and generates an action sequence that fulfills

the goals. As soon as an action has been chosen, it is executed by the devices.

As the algorithm operates without global knowledge and employs no predefined

schemes, the action sequences generated can be suboptimal. Apart from the fact

that it is fully distributed, this system exhibits similar properties to those of the

proactive assistance systems described in Section 6.1.1.

As discussed in Section 4.4.12, the AdDCo algorithm breaks ties randomly.

Thus, different runs of the algorithm may yield different action sequences for the

same input. For the study, however, we needed to make sure that all participants

would be presented the same action sequences. Therefore, we used a mockup sys-

tem that behaved exactly like the real system. It replayed a typical action sequence

generated by the AdDCo algorithm during a run prior to the study. Furthermore,

the mockup system took exactly as long as the real system to find this sequence, so

that participants did not notice it was a mockup.

According to Parasuraman and Riley, people tend to accept suboptimal automa-

tion if they receive adequate feedback about the system state [Parasuraman 1997].

We therefore created a graphical user interface that allows participants to control

and monitor the assistance system (see Figure 6.1). It displays the goals the system

is currently trying to fulfill and descriptions of the actions that have been executed

so far. According to Muir, people accept a system better if they have the possibil-

ity to override decisions of the system [Muir 1994]. We thus included a manual

mode of operation which participants could invoke if they were not satisfied with

the behavior of the automatic assistance (see Figure 6.2). The manual mode is a

(or levels) and assesses to which degree the participant agrees to a statement. More information can
be found in [Bortz & Döring 2006].

6.2. The Assistance System Used for the Study 151

Figure 6.1: The user interface of the assistance system.

user interface where all devices in the room are represented as icons and can be

controlled via point-and-click interaction. It is an easy to use version of the kind of

room control panel installed in many of today’s lecture rooms. Both user interfaces

ran on a notebook the participants were given for the study.

We have just argued that for a system to be accepted, it is crucial that users can

monitor its execution and override its actions. This implies that users are aware of

the assistance. Note that this does not conflict with the assistance being unobtru-

sive. Remember that in Section 2.3, we discussed that unobtrusiveness does not

imply that the user is unaware that s/he is being assisted, but that s/he should not

have to know how s/he is being assisted.

Recall Wandke’s assistance framework [Wandke 2005] which we introduced in

Section 1.3. The assistance system we used in this study can be classified according

to the three dimensions as follows:

• The stages of human-machine interactions that can be assisted: This sys-

tem supports the stage decision making/action selection, where it provides

informative execution assistance. All actions are executed by the system au-

tomatically.

• Adjustment: This system provides fixed assistance. The same assistance

system is used by all users in all situations.

• Initiative: This system provides active assistance. Assistance is initiated by

the system.

152 Chapter 6. User Study

Figure 6.2: The user interface for manual configuration.

Our hypothesis in Section 2.3 was that users accept a system with these properties.

Thus, by investigating whether our assistance system is acceptable to the users and

under which circumstances it is acceptable, we will be able to draw some general

conclusions whether our hypothesis holds.

As mentioned before, one of those circumstances we have in mind is system

behavior. It all boils down to the question “Will users accept an assistance system

even if it exhibits suboptimal behavior?”, or, in other words, “Does an assistance

system have to act fully rational to be accepted?” This is of particular interest. To

see why, let us look at two quotes from the literature:

“If the assistance of the system is violating the expectations of the user

and forcing him to correct the system manually, he will dislike the

system.” [Heider 2010]

“[A] context-aware artifact may fail annoyingly as soon as a context-

aware system’s (wrong) choices become significant.” [Lueg 2002]

Two things are apparent from the quotes: First, Ubiquitous Computing research

often treats system behavior simply as a binary variable with the outcomes success

or failure. We think this is not an adequate characterization and will thus offer a re-

finement of the notion of system behavior in the next section: We introduce the four

levels of imperfection. Second, Ubiquitous Computing research is largely guided

6.3. Conducting the User Study 153

Lamp 2

Lamp 1

presenter’s notebook

Lamp 3

Canvas 1

Canvas 2

Canvas 3

LumEnActive projector

EPS1 projector steerable
projector

EPS3 projector

EPS6 projector Lamp 6

Lamp 5

Lamp 4

video crossbar

Panasonic
projector

colleague’s notebook

Canvas 4

Canvas 5

Canvas 6

Blind 1 Blind 2

Figure 6.3: The technical infrastructure used in the experiments: All devices de-
picted here could be operated by the automatic assistance or manually by the users.

by the assumption that assistance systems should always behave sensibly if users

are to accept them, and that users will be annoyed if an assistance system exhibits

suboptimal behavior. In contrast, our hypothesis is that users accept suboptimal

system behavior, provided that they can easily correct this behavior if required.

6.3 Conducting the User Study

6.3.1 The Design of the Study

The experiments were conducted in a smart environment containing the following

devices: six lamps, six canvasses which can be lowered and raised, two blinds in

front of the windows which also serve as canvasses, six projectors (one of which is

steerable and can project onto all canvasses), and a video crossbar. For the experi-

ments, we added two notebooks as mobile devices. The room layout is depicted in

Figure 6.3.

In the study, we measured the influence of three factors on user acceptance of

154 Chapter 6. User Study

the assistance system. As discussed in the last section, one possible determinant

of user acceptance is system behavior, which has also been investigated e.g. by

Muir and Moray [Muir & Moray 1996] in automation science. We thus included

system behavior as a factor. However, for Ubiquitous Computing systems one also

has to take the context into account: The situation the user is in may influence user

acceptance. To measure the influence of the user’s current situation, we included

task load as a factor, while situation in a longer-term sense is captured by the factor

experience. We now discuss the three factors in detail.

System Behavior Any system that assists a user can behave more or less imper-

fect or, in other words, can act more or less rationally. To be able to classify such

behavior, we introduce the following four levels of imperfection:

• Level 1 – Directly achieving the user goals: The system provides perfect

assistance.

• Level 2 – Eventually achieving the user goals: The system behaves in an

unexpected way, but nevertheless fulfills the user’s goals. This may irritate a

user.

• Level 3 – Doing nothing: The system does not perform any action. The user

must configure the devices manually and loses time.

• Level 4 – Doing the wrong thing: The system behaves in an unexpected way

and does not manage to fulfill the user’s goals. Thus, the system hinders

the user as s/he must undo any unwanted actions and configure the devices

her-/himself.

We developed the categorization into these four levels of imperfection while

assessing different mechanisms for user assistance in our lab over several years.

We found that these four levels of behavior are reoccuring patterns which are not

specific for a single assistance system. Therefore, we believe that they are suited

for characterizing different kinds of desired and undesired system behavior.

While experiencing Level 2 assistance, users can usually not tell whether it is

Level 2 or Level 4 behavior until the goals have been fulfilled. The assistance sys-

tem we use for the study exhibits behaviors belonging to Level 1, 2, and potentially

even 4, depending on the complexity of the scenario. In this study, we wanted to

find out how participants accept Level 1 and Level 2 behavior in an assistance sys-

tem. We thus created one scenario with Level 1 behavior and two scenarios with

6.3. Conducting the User Study 155

Level 2 behavior. The reason why we chose these scenarios is that they reflect

typical usage situations we experienced in our lab. From all potential usage situ-

ations, we selected those for the study that represent different yet typical kinds of

system behavior. The differences in system behavior stem from different levels of

difficulties of the tasks (i.e. the goals to be fulfilled). Here it must be remarked that

“difficult” from the perspective of a human does not necessarily mean “difficult”

for the system and vice versa.

In all scenarios, the participants assume the role of a presenter who walks into

a meeting room equipped with a high number of devices and has to configure this

room for a talk using her/his notebook. All three scenarios start in the automatic

mode, but participants can switch to manual mode at any time.

Scenario 1 (Level 1 behavior): The presenter’s goals are to switch on Lamp 1

and Lamp 2, lower Blind 2, and show her/his presentation, Presentation 1 (which

is in PDF format), on Canvas 4. In the automatic mode, the assistance system finds

the optimal (shortest) action sequence consisting of eight actions to fulfill the goals.

The participant need only wait for the system to finish configuring the devices in the

room, which takes 54 seconds. Thus, these goals are easy to fulfill for the system;

it exhibits Level 1 behavior. If the subject switches to manual control, s/he has to

turn on Lamp 1 and Lamp 2, lower Blind 2 and Canvas 4, turn on the steerable

projector, steer it to Canvas 4, and connect the video signal from the notebook to

the steerable projector via the video crossbar. All of this is to be done using the

manual interface (see Figure 6.2). Then s/he has to open the presentation in a PDF

viewer on her/his notebook and maximize it.

Scenario 2 (Level 2 behavior): This scenario is similar to Scenario 1, but the

presentation is in PPT format. The participant’s notebook has a PDF viewer, but no

PPT viewer installed. However, a colleague has a PPT to PDF conversion service

running on her notebook and offers to use it. In the automatic mode, the assistance

system manages to send the PPT file to the colleague’s notebook automatically,

converts it using the conversion service and sends back the generated PDF file to

the participant’s notebook, which can then display it. In this scenario, the goals are

more difficult to fulfill for the system, hence the Level 2 behavior: The assistance

system takes 74 seconds to find an action sequence consisting of twelve actions,

where the optimum is eleven. Thus, the automatic assistance performs one unnec-

essary action: It opens the converted PDF document on the colleague’s notebook.

156 Chapter 6. User Study

Figure 6.4: A participant in Scenario 3.

If the participant switches to manual control, s/he must perform the same actions

as in the first scenario. S/he must also transfer the PPT file to the colleague’s note-

book using a USB stick, open the PPT file in the PPT viewer, export it to PDF and

copy the PDF file to her/his notebook, once again using the USB stick. Then s/he

can display the PDF presentation on her/his notebook using the PDF viewer.

Scenario 3 (Level 2 behavior): The presenter’s initial goals are the same as in

Scenario 1. When they have been fulfilled, someone from the audience (played by

the experimenter) asks a question. The answer can be given by showing a diagram

from a another presentation, Presentation 2, which is on the presenter’s notebook.

Thus, Presentation 2 should be shown on Blind 2, while Presentation 1 should re-

main visible on Canvas 4. A colleague offers to use his notebook for displaying one

of the two presentations. In the automatic mode, the assistance system manages to

show both presentations, but takes 119 seconds and performs 30 actions until all

goals are fulfilled, where twelve is the optimum. From the fact that the system

exhibits Level 2 behavior with 18 unnecessary actions, one can see that the goals

in this scenario are rather hard to fulfill for the system. The system takes 30 ac-

tions because the layout of the devices in the room is such that the fixed Panasonic

projector is pointing to Blind 2, but no fixed projector points to Canvas 4, so the

steerable projector must be used to display something on Canvas 4. The automatic

assistance first displays Presentation 2 on Blind 2 via the steerable projector. Then

6.3. Conducting the User Study 157

it “realizes” that no projector is left to display Presentation 1 on Canvas 4. It then

turns the steerable projector to Canvas 4 and displays Presentation 1, but now of

course Presentation 2 is not visible anymore, so the steerable projector is turned

back onto Blind 2. After a while the assistance system “realizes” that it must use

the fixed Panasonic projector to display Presentation 2 on Blind 2 and the steerable

projector to display Presentation 1 on Canvas 4 (see Figure 6.4).3 If the subject

switches to manual mode, s/he must perform the same actions as in the first sce-

nario. S/he must then copy one presentation to the colleague’s notebook via the

USB stick and display it in the PDF viewer. Finally, s/he must connect the video

signals from the two notebooks to two projectors via the video crossbar using the

manual interface.

Task Load Ubiquitous Computing systems are designed for a variety of situa-

tions, e.g. to help people configure environments within a limited amount of time,

possibly in front of other people. For example, when configuring a meeting room

s/he has never used before for a talk, the user may not know the devices in the

room. S/he may have secondary tasks such as configuring the headset, and may be

nervous due to the upcoming talk. In other words, the user may use such a system

when experiencing a high level of task load. In many situations, this can lead to

stress. However, stress is a much broader concept than task load. To determine

a person’s stress level, it is necessary to measure physiological parameters such

as blood pressure or skin resistance. We could not do this in the study. In the

following, we will therefore speak about task load rather than stress.

To assess how task load influences user acceptance, we gave half of the par-

ticipants a secondary task. We call these these participants the dual task group

in the following, while we call the other half the single task group. Next to

configuring the room, the dual task group had to solve simple arithmetic tasks,

e.g. 668 − 356 or 124 : 3. This is a widely used method to increase task load

[Van Gemmert & Van Galen 1997, Castro et al. 2009]. To give participants a mo-

tivation to solve the arithmetic tasks on the one hand and to finish configuration

of the room quickly on the other hand, the amount of compensation the dual task

3During the experiments it turned out that people have similar problems here as the automatic as-
sistance. Four of the participants that switched to manual mode in Scenario 3 tried the steerable
projector with Blind 2 before realizing they must use the fixed Panasonic projector for Blind 2 and
the steerable projector for Canvas 4.

158 Chapter 6. User Study

group received for taking part in the study depended on how they acquitted them-

selves. Initially, their balance was 9 Euros. For every arithmetic task they solved

incorrectly or not at all, 20 Cents were deducted. For every minute the experiments

took, 50 Cents were deducted. These values were chosen so that most people from

the dual task group would receive between 5 and 6 Euros. Each participant from

the single task group received a fixed amount of 5 Euros.

Experience Acceptance of an assistance system is not static, but evolves with

the experience the user gains when using the system. We propose to describe this

process with three phases:

• Phase 1: First impression of the system.

• Phase 2: Some experience using the system.

• Phase 3: Long-term experience using the system.

In this study, we were interested to find out how Phase 1 and Phase 2 influence

user acceptance of an ad-hoc assistance system because these are the typical usage

situations for this kind of application. Phase 1 corresponds to a situation where

the user walks into a smart environment and is confronted with a completely new

situation, e.g. s/he has never been to this meeting room before and has to configure

it using the assistance system. Phase 2 corresponds to a situation where the user

has some time to get acquainted with the assistance system, e.g. s/he is the first

speaker in a conference session, the audience has not yet arrived and the user has

some time to try out the infrastructure in the room. It would also be interesting

to investigate how Phase 3 influences user acceptance, but we refrain from it for

two reasons: First, a longitudinal study would have to be carried out, which would

require considerably more time and resources, especially with the number of par-

ticipants we were aiming at. Second and most important, systems like ours are

walk-up-and-use systems. In practice, the device configuration in the environment

and thus the assistance system itself will most likely have changed before Phase 3

is reached.

To assess how experience influences user acceptance, half of the participants

were allowed to familiarize themselves with the system in a training phase (Phase

2), the other half were not (Phase 1). To keep the training phase short, the experi-

menter would first demonstrate the automatic and the manual mode before allowing

the participant to try out the system her-/himself. The participant could operate a

6.3. Conducting the User Study 159

few devices her-/himself via the manual interface until s/he felt confident using the

system. The training phase usually took five to seven minutes.

14
experiments

si
ng

le
 ta

sk

scenario 1 scenario 2 scenario 3

si
ng

le
 ta

sk
du

al
 ta

sk
du

al
 ta

sk

w
ith

 tr
ai

ni
ng

w
ith

ou
t t

ra
in

in
g

14
experiments

14 participants

14
experiments

14
experiments

14
experiments

14 participants

14
experiments

14
experiments

14
experiments

14 participants

14
experiments

14
experiments

14
experiments

14 participants

14
experiments

Figure 6.5: The study design in a matrix.

Summary of the Study Design In

summary, we have three factors: sys-

tem behavior (three levels), task load

(two levels), and experience (two lev-

els) in a fully crossed 3x2x2 design

with twelve cells (see Figure 6.5). To

have a good chance of getting sig-

nificant results in the statistical tests

we were planning, we needed at least

14 samples for each cell, which is

168 samples altogether.4. We treated

task load and experience as between-

subjects factors: Each participant was

put either in the single task group or in

the dual task group, and would either

receive training or no training. In con-

trast, we treated system behavior as a within-subjects factor: Each participant was

presented all three scenarios. Thus, we needed 2x2x14 = 56 participants.

To check whether manipulation of the factors system behavior, task load, and

experience had an influence on the results, we included one manipulation check

for each factor. After each trial, people were asked to rate how reliable they found

the assistance system on a five-point Likert scale. This was to check if the quality

of the action sequence found by the system had any effect on how reliable people

perceived the assistance system. After the last trial, we asked people to rate the

level of task load they experienced for each trial and how competent they felt in

using the assistance system, again on a five-point Likert scale. The former was to

check whether the arithmetic tasks had a significant effect on people’s task load

level, while the latter was to find out if people in the training group felt that they

had more experience than those that were not trained.

4For details on calculating the sample size, see [Bortz & Döring 2006], p. 627ff.

160 Chapter 6. User Study

6.3.2 Experimental Procedure

The user study was conducted in eight days and consisted of 56 sessions – one for

each participant. Each session took about 30 minutes and consisted of three trials

corresponding to the three scenarios. Thus, we conducted 168 individual trials.

As each participant was presented all three scenarios, we conducted 56 trials for

each scenario. As half of the participants were trained, we conducted 84 trials

with training and 84 without. As half of the participants had a secondary task, we

conducted 84 dual task and 84 single task trials (see Figure 6.5).

In the beginning of the session, each subject completed a questionnaire that as-

sessed the control variables: demographic data and the TA-EG scale for measuring

technophilia [Karrer et al. 2009]. This scale consists of 19 items to be rated on a

five-point Likert scale and is depicted in Table 6.2. The technophilia value of a

person was calculated by summing up the participants’ ratings for each item and

normalizing this sum to a range of 0 (technophobic) to 4 (technophilic).

I stay informed about electronic devices even if I do not intend to buy any.
I love possessing new electronic devices.
I am thrilled if a new electronic device is released.
I like browsing shops for electronic devices.
I enjoy trying out electronic devices.
I know most of the features of the electronic devices I own.
I (would) have problems understanding magazines about electronics/computers.
I find it easy to learn to operate an electronic device.
I know a lot about electronic devices.
Electronic devices help to gather information.
Electronic devices allow for a high standard of living.
Electronic devices enhance safety.
Electronic devices make me independent.
Electronic devices facilitate my daily life.
Electronic devices reduce personal contact between people.
Electronic devices cause stress.
Electronic devices make people sick.
Electronic devices make many things more complicated.
Electronic devices lead to mental impoverishment.

Table 6.2: The TA-EG scale for assessing technophilia. All 19 items are to be
ranked on a five-point Likert scale. For the first 14 items 4 corresponds to “I totally
agree” and 0 to “I do not agree at all”, while for the last five items 4 corresponds to
“I do not agree at all” and 0 to to “I totally agree”.

The demographic characteristics of the sample are the following: All 56 partic-

ipants are students (undergraduate or postgraduate/PhD) at the University of Ros-

6.3. Conducting the User Study 161

tock. Most of them were recruited during lectures or seminars they attended. This

ensured that we had participants from various departments of the university. We

classified the subjects they study according to four groups. 14.3 % study Arts and

Humanities, 51.8 % Science and Technology, 5.4 % Health and Life Sciences and

28.6 % Social Sciences (see Figure 6.6a). 54.6 % are male, 46.4 % are female.

Technophilia values ranged from 2 to 4 among participants: 14.3 % had a value of

2, 46.4 % had 3, and 39.3 % had 4 (see Figure 6.6b).

(a) The distribution of participants across subject
groups.

(b) The distribution of technophilia values
across participants.

Figure 6.6: Characteristics of the sample.

After filling out the first questionnaire, each subject took part in the three trials

(see Figure 6.4). The sequence of the trials was varied among subjects to avoid

order effects. If the subject was in the training group, s/he was trained prior to the

first trial. During the experiments, each click in the user interface of the assistance

system and each action of the automatic assistance was logged.

Before each trial, the subject read the scenario description. If the subject was

in the dual task group s/he was given the arithmetic tasks to solve during the trial.

The participant would then carry out the trial. Each trial was followed by a ques-

tionnaire to assess perceived usefulness (PU), perceived ease of use (PE), and the

perceived reliability of the assistance system (manipulation check). All of those

constructs were assessed using five-point Likert scales (0 to 4). The PU and PE

values were calculated by summing up the six items of each scale. Thus, the range

162 Chapter 6. User Study

perceived reliability
Scenario N µ σ

1 56 4.20 0.80
2 56 4.18 0.88
3 56 3.63 0.98
overall 168 4.00 0.92
F(2, 165) = 7.49, p ≤ .001
f = 0.30 (medium effect size)

(a) Perceived reliability depends on the sce-
nario.

task load
task N µ σ

single 28 2.29 1.12
dual 28 2.96 1.17
overall 56 2.63 1.18
t(54) = −2.22, p ≤ .031
d = 0.59 (medium effect size)

(b) The participants’ perceived task load
level depends on the number of tasks.

Figure 6.7: Influence of scenario on perceived reliability; influence of the number
of tasks on participants’ perceived task load level.

of both PU and PE was 0 to 24. If people switched to manual control during the

trial, they were also asked for their reasons for switching. Possible answers were,

“The automatic configuration took too long”, “The automatic assistance carried

out too many useless actions”, and “I thought I could solve the task better manu-

ally”. There was also an option labeled “Other”, where people could write down

any other reasons they had.

Having completed all three trials, subjects filled out another questionnaire con-

taining the statements “I experienced a certain task load during the trials” (ma-

nipulation check to find out whether the dual task group felt a higher task load than

the single task group) and “I feel competent using the assistance system” (manip-

ulation check for the effects of training, i.e. experience), both to be rated on a

five-point Likert scale. Furthermore, subjects were asked to rank order the three

scenarios according to their perceived satisfaction with the assistance system. In

addition, the questionnaire included the open question, “Do you have any more

6.3. Conducting the User Study 163

perceived competence
technophilia N µ σ

2 8 2.88 0.99
3 26 3.69 0.68
4 22 3.86 0.64
overall 56 3.64 0.77
F(2, 53) = 5.74, p ≤ .006
f = 0.47 (large effect size)

(a) The participants’ perceived competence
in operating the assistance system depends
on technophilia.

technophilia
subject N µ σ

Arts 8 2.50 0.54
Soc 16 3.25 0.78
Tech 29 3.52 0.51
Life 3 2.67 0.58
overall 56 3.25 0.69
F(3, 52) = 6.96, p ≤ .001
f = 0.63 (large effect size)

(b) The subject a participant studies is corre-
lated with technophilia.

Figure 6.8: Influence of technophilia on perceived competence; relation between
subject and technophilia.

comments?” We discuss the answers people gave in Section 6.4.3.

In the end, the participant received the money and was dismissed. In many

sessions, a discussion about the assistance system developed at this point. The

experimenter wrote down any interesting comments or suggestions given during

such discussions immediately after the participant had left.

6.3.3 Hypotheses

The hypotheses we want to test in the study are the following:

• Task load influences user acceptance of the assistance system.

• Experience influences user acceptance of the assistance system.

• The behavior of the automatic assistance influences user acceptance of the

assistance system.

164 Chapter 6. User Study

technophilia
sex N µ σ

male 30 3.67 0.48
female 26 2.77 0.59
overall 56 3.25 0.69
t(54) = 6.30, p ≤ .001
d = 1.67 (large effect size)

(a) Technophilia depends on participants’
sex.

subject
sex N Arts Life Soc Tech
male 30 0 0 6 24
female 26 8 3 10 5
χ2(3,N = 56) = 24.29, p ≤ .001
φ = 0.66 (large effect size)

(b) The subject a person studies is correlated with
her/his sex.

Figure 6.9: Influence of participants’ sex on technophilia; relation between sex and
subject.

• Technophilia influences user acceptance of the assistance system.

6.4 Results of the User Study

In the following subsections, the results of the user study are presented in text,

plots and tables. To check for statistical significance, we use two-sided t-tests (or

Welch tests if the equal variances assumption is violated), analyses of variance

(ANOVAs) and χ2-tests. Furthermore, we use an α level of .05 for all statistical

tests. In other words, a result is considered statistically significant if its p value is

< .05. If a result has a p value of .05, there is a probability of 5 % that this result is

due to chance. In the tables, we always specify the p value of the respective result.

Consider for example Figure 6.7a. Here, p ≤ .001, which reads as “The probability

that perceived reliability does not depend on the scenario is at most 0.001.”

For decades, there has been a debate among researchers about the value of

6.4. Results of the User Study 165

PE
training N µ σ

without 84 17.95 2.98
with 84 19.26 3.07
overall 168 18.61 3.09
t(166) = −2.81, p ≤ .006
d = 0.43 (medium effect size)

(a) Perceived ease of use (PE) of the assis-
tance system depends on whether a partici-
pant was trained or not.

PU
task N µ σ

single 84 19.00 3.96
dual 84 20.80 3.63
overall 168 19.90 3.89
t(166) = −3.07, p ≤ .003
d = 0.47 (medium effect size)

(b) Perceived usefulness (PU) depends on
whether a participant has to solve a sec-
ondary task.

Figure 6.10: Influence of training on perceived ease of use (PE); influence of the
number of tasks on perceived usefulness (PU).

statistical significance tests. Ziliak and McCloskey point out that these tests can

cause false hypotheses to be accepted and correct hypotheses to be rejected and

should therefore be abandoned [Ziliak & McCloskey 2004]. Another problem is

that statistical significance does not say anything about the size of an effect, i.e.

the strength of the relationship between two variables. Thus, a small effect may be

statistically significant, even though it has little practical relevance. Furthermore,

the widely used α level of .05 is quite arbitrary.

On the other hand, many researchers think statistical significance tests have

their place [Frick 1996]. We, too, think they are useful if we keep in mind two

things:

1. If we find that a result is not statistically significant, this does not mean there

is no effect. Maybe there is one, but we were just not able to prove it in this

study.

166 Chapter 6. User Study

PU
switched N µ σ

no 141 20.28 3.55
yes 27 17.93 4.95
overall 168 19.90 3.89
t(31.33) = 2.36, p ≤ .025
d = 0.54 (medium effect size)

(a) PU is correlated with switching to man-
ual configuration.

PU
Scenario N µ σ

1 56 20.43 3.53
2 56 20.59 3.50
3 56 18.68 4.35
overall 168 19.90 3.89
F(2, 165) = 4.32, p ≤ .015
f = 0.23 (medium effect size)

(b) PU depends on the scenario.

Figure 6.11: Relation between PU and switching to manual configuration; influ-
ence of scenario on PU.

2. Even if we find a statistically significant result, there is a chance (in our case,

at most 5 %) that there is no effect and we obtained this result by chance.

To assess whether an effect is large enough to be practically relevant, we consider

the effect size in addition to statistical significance. Different effect size measures

exist for different statistical tests. We use Cohen’s d for the t-tests, Cramer’s φ

for the χ2-tests and Cohen’s f for the ANOVAs [Bortz & Döring 2006]. Table 6.3

lists which values correspond to a small, medium, and large effect for those three

measures.

classification of effect sizes
effect size small medium large
Cohen’s d 0.20 0.50 0.80
Cramer’s φ 0.10 0.30 0.50
Cohen’s f 0.10 0.25 0.40

Table 6.3: Classification of effect sizes.

6.4. Results of the User Study 167

rank
Scenario N 1 2 3
1 56 24 26 6
2 56 30 21 5
3 56 2 9 45
χ2(4,N = 168) = 87.21, p ≤ .001
φ = 0.51 (large effect size)

(a) People were most satisfied in Scenario 2 and least
in Scenario 3.

PU
technophilia N µ σ

2 24 20.67 3.13
3 78 19.05 3.66
4 66 20.62 4.23
overall 168 19.90 3.89
F(2, 165) = 3.56, p ≤ .031
f = 0.21 (medium effect size)

(b) PU depends on technophilia.

Figure 6.12: Influence of scenario on satisfaction; influence of technophilia on PU.

In Box-Whisker plots (see e.g. Figure 6.12b) the box represents the interquar-

tile range, the horizontal line in the box represents the median, the ends of the

whiskers represent the minimum/maximum, ◦ represents an outlier (between 1.5

times and 3 times the interquartile range above/below the quartile) and * repre-

sents an extreme value (more than 3 times the interquartile range above/below the

quartile).

6.4.1 Manipulation Checks

An analysis of variance showed that system behavior had a significant influ-

ence on perceived reliability (see Figure 6.7a). The Scheffé post hoc test

[Maxwell & Delaney 2003] revealed that participants found the system signifi-

cantly more reliable in Scenarios 1 and 2 than in Scenario 3, but that there is no

significant difference between Scenarios 1 and 2. This is because several people did

not perceive the useless action of the system (opening the converted PDF document

168 Chapter 6. User Study

on the colleague’s notebook) in Scenario 2 as disturbing because they did not even

know that it was caused by the assistance system: One participant commented that

many conversion tools open the converted document so he did not know whether

to attribute this action to the assistance system or the conversion tool used. These

results indicate that the manipulation with respect to system behavior was partially

successful.

A two-tailed t-test showed that participants in the dual task group felt a signif-

icantly higher task load than those in the single task group (see Figure 6.7b). This

indicates that the manipulation with respect to task load was successful.

A two-tailed t-test did not show that participants that were trained feel signif-

icantly more competent than those that were not trained, t(54) = −1.40, p ≤ .17.

This is probably due to the fact that perceived competence rather depends on a par-

ticipant’s level of technophilia than on training: An analysis of variance showed

that the more technophilic a participant is, the more competent s/he feels operat-

ing the assistance system (see Figure 6.8a for details). However, perceived ease

of use among participants that were trained was significantly higher than among

participants that were not trained (see Figure 6.10a for details). This indicates

that participants developed some routine after training. We can conclude that the

manipulation with respect to training was successful.

6.4.2 Quantitative Findings of the User Study

Demographic Data Before discussing the results concerning the assistance sys-

tem, we present a few results regarding the demographic data of the sample. These

results are not directly relevant for answering our research questions, but may help

the reader to get an understanding of the participants. An analysis of variance

showed a relation between the subject a participant studies and technophilia (see

Figure 6.8b for details). Social Sciences (Soc) and Science and Technology (Tech)

students are more technophilic than Arts and Humanities (Arts) and Health and

Life Sciences (Life) students. Furthermore, a t-test showed that technophilia de-

pends strongly on the sex of a participant, with male participants being significantly

more technophilic than female participants (see Figure 6.9a). Furthermore, a χ2-

test showed that the subject a person studies depends on her/his sex (see Figure

6.9b for details). In t-tests, we checked if technophilia values vary between the

training/no training groups or the single/dual task groups. We found no significant

6.4. Results of the User Study 169

switched
Scenario N no yes
1 56 50 6
2 56 51 5
3 56 40 16
overall 168 141 27
χ2(2,N = 168) = 9.80, p ≤ .007
φ = 0.24 (medium effect size)

(a) Whether or not participants switched to manual
configuration depended on the scenario.

Figure 6.13: Influence of scenario on switching to manual control.

difference. Thus, we can conclude that subjects with similar technophilia values

were not accidentally assigned to the same groups.

Perceived Usefulness and Perceived Ease of Use In the following, we present

the results regarding user acceptance of the assistance system. As already men-

tioned in Section 6.4.1, experience using the system influences PE: People that

were trained perceived the system as significantly easier to use than those that were

not (see Figure 6.10a). Apparently, people developed some routine after training.

This indicates they proceeded from Level 1 to Level 2.

PU depends on a number of factors. A two-tailed t-test showed that task load

had a significant effect on PU: Subjects from the dual task group rated the assistance

system higher in terms of PU than subjects from the single task group (see Figure

6.10b). We can conclude that people that experience a higher level of task load

due to some secondary task value automatic assistance more than people with a

low task load. One explanation is that the assistance system relieves people of

cognitive load, giving them more time to attend to their secondary task.

A two-tailed t-test showed that switching from automatic to manual configura-

tion is correlated with a lower PU value (see Figure 6.11a). As both are dependent

170 Chapter 6. User Study

time in seconds
switched N µ σ

no 50 85.08 7.89
yes 6 124.33 23.15
overall 56 89.29 15.95
t(5.14) = −4.13, p ≤ .009
d = 2.27 (large effect size)

(a) Switching to manual control had a strong
influence on the time taken to configure the
room – Scenario 1.

number of interactions
switched N µ σ

no 50 3.00 0.00
yes 6 15.50 4.97
overall 56 4.34 4.18
t(5.00) = −6.16, p ≤ .002
d = 3.56 (large effect size)

(b) Switching to manual control influenced
the number of interactions with the assis-
tance system – Scenario 1.

Figure 6.14: Scenario 1: Influence of switching to manual control on time and
number of interactions.

variables, it is not clear whether people switch because they perceive the system

as not useful enough or vice versa. However, PU is notably high even among

subjects that switched (µ = 17.93). Comments given by participants explain this

finding: Several people said they preferred a system that occasionally fails to pure

manual control because in most cases the automatic assistance system works fine

and then it relieves them of work and saves time. This result is consistent with

the findings of Parasuraman and Riley [Parasuraman 1997] and Muir and Moray

[Muir & Moray 1996] that occasional system failures do not deter people from us-

ing the system in the future. Apparently, people accept assistance systems even if

they are imperfect (i.e. exhibit Level 2 behavior).

An analysis of variance showed that PU depends on system behavior. PU is

lower for Scenario 3 than for Scenarios 1 and 2 (see Figure 6.11b). Furthermore, a

χ2-test confirmed that there is a relation between system behavior and switching to

manual mode: People switched more often in Scenario 3 than in Scenarios 1 and

6.4. Results of the User Study 171

time in seconds
switched N µ σ

no 51 112.75 15.57
yes 5 285.60 105.00
overall 56 128.18 59.13
t(4.02) = −3.68, p ≤ .021
d = 2.30 (large effect size)

(a) Switching to manual control had a strong
influence on the time taken to configure the
room – Scenario 2.

number of interactions
switched N µ σ

no 51 3.00 0.00
yes 5 14.20 3.27
overall 56 4.00 3.34
t(4.00) = −7.66, p ≤ .002
d = 4.84 (large effect size)

(b) Switching to manual control influenced
the number of interactions with the assis-
tance system – Scenario 2.

Figure 6.15: Scenario 2: Influence of switching to manual control on time and
number of interactions.

2 where the action sequence produced by the assistance system was more optimal

(see Figure 6.13a). Furthermore, this finding corresponds with another result: One

question in the final questionnaire asked people to rank the scenarios according to

satisfaction (ties were not allowed). A χ2-test showed that the results are signifi-

cant (see Figure 6.12a). It surprised us a little that Scenario 2 was ranked higher

than Scenario 1, although the system took longer to find a solution and produced

one useless action. Comments given by users after the trials suggest two reasons:

First, several people did not perceive the useless action as a useless action. Thus,

they thought it was Level 1 behavior when it was actually Level 2 behavior. Sec-

ond, people felt that the benefit was higher in Scenario 2 because the automatic

assistance saved more configuration work than in Scenario 1.

An analysis of variance also showed that PU depends on one of the control vari-

ables – how technophilic a person is. Surprisingly, participants with a technophilia

value of 2 or 4 rated the assistance system more useful than those with 3 (see Fig-

172 Chapter 6. User Study

time in seconds
switched N µ σ

no 40 185.73 28.56
yes 16 275.25 83.40
overall 56 211.30 64.35
t(16.43) = −4.20, p ≤ .001
d = 1.44 (large effect size)

(a) Switching to manual control had a strong
influence on the time taken to configure the
room – Scenario 3.

number of interactions
switched N µ σ

no 40 6.00 0.00
yes 16 18.19 9.67
overall 56 9.48 7.51
t(15.00) = −5.04, p ≤ .000
d = 1.78 (large effect size)

(b) Switching to manual control influenced
the number of interactions with the assis-
tance system – Scenario 3.

Figure 6.16: Scenario 3: Influence of switching to manual control on time and
number of interactions.

ure 6.12b). A possible reason is that less technology-savvy people are glad because

the automatic assistance system relieves them of cumbersome configuration tasks

and very technophilic people like it because of a certain “coolness” factor, while

averagely technophilic people are happy with automatic or manual configuration,

so it does not make such a big difference to them.

User Performance Although our emphasis is on user acceptance, we now

present some interesting results regarding user performance. Figures 6.14a, 6.15a,

and 6.16a show how much time participants took for their tasks in Scenarios 1, 2,

and 3. The t-tests reveal that people that switched to manual control took signifi-

cantly more time than those that did not switch. Figures 6.14b, 6.15b, and 6.16b

show that they also had significantly more interactions with the assistance system

in each scenario. These are interesting results. Several people commented they

switched to manual control because they felt the automatic assistance was slow

6.4. Results of the User Study 173

and they could configure the room quicker when doing it manually. The figures

show that this was not the case. However, some participants’ comments indicate

that it gave them greater satisfaction to switch to manual control than to wait for

the automatic assistance to finish.

No Interaction Effects To conclude this section, one thing remains to be said:

We have reported only those results that are statistically significant at the .05 level

and omitted those that failed to meet this criterion. Specifically, we could not prove

any significant interaction effects of the factors we considered in the study. The

characteristic feature of an interaction is that the effect of one factor on a variable

depends on the value of another factor [Bortz & Döring 2006]. For example, in our

study, no significant interaction could be found between the factors task load and

experience with respect to PU.

6.4.3 Comments Given by the Participants

45 subjects answered the open question “Do you have any more comments?” and

gave a total of 87 comments. Using these comments, we performed a content

analysis according to Mayring [Mayring 2000]: We first analyzed the comments

to form categories inductively and then grouped the comments according to these

categories. In the following, the categories are presented. To give the reader some

ideas about the participants’ actual comments, we provide examples in each cate-

gory. We believe these qualitative results are just as important as the quantitative

results as they provide a feeling of what participants particularly liked and dis-

liked about the assistance system. Thus, they can help to interpret the quantitative

findings and to identify future research avenues.

Time matters Nine subjects commented that they found the automatic assistance

took long to fulfill the goals. For example, one participant wrote, “The assistance

system is useful for starting a presentation, but slow in deciding what to do.” How-

ever, two participants stated that although they found the automatic configuration

a bit slow, they did not think manual configuration would have been quicker. This

corresponds with our findings (see Figures 6.14a, 6.15a, and 6.16a).

174 Chapter 6. User Study

People think automatic assistance saves time and work Fourteen subjects said

the assistance system saved them time or work or both. One participant wrote, “The

assistance system is useful and saves a lot of time”. Another said, “The assistance

system reduces workload tremendously”. Several participants mentioned the assis-

tance system was especially suited for non-expert computer users. For example,

one participant stated “Especially for less competent users the tool makes giving

a talk a lot easier. It relieves the presenter of the whole stress of manually config-

uring the devices. However, if anything fails, it is easy to intervene and perform

configuration manually.”

People think the assistance system is easy to use Five people wrote they

thought the assistance system was easy to use, e.g. because it is self-explanatory

and easy to learn. For example, one subject said, “I am not that skilled when trying

new (technical) things, but I understood everything instantly and found the sys-

tem convenient to use”. Nobody found the assistance system cumbersome to use.

These comments suggest that the overall perceived ease of use value of 18.61 can

be interpreted as being quite high.

People accept even imperfect assistance Nine subjects commented that they

would use the automatic assistance if it does the right thing most of the time. They

said it was no big problem if the system occasionally failed, provided there was a

possibility to intervene and perform the configuration manually. With some expe-

rience they would know when it is time to switch to manual control because the

automatic assistance is likely to fail. People argued that a system that fails some-

times is better than having to perform all the configuration manually. This finding

is consistent with results of Muir and Moray that occasional system failure does

not cause people to lose trust in a system [Muir & Moray 1996].

People prefer the automatic mode Five participants wrote that they prefer the

automatic mode to the manual mode. One participant stated he generally preferred

manual configuration of electronic devices and gave the hi-fi system at his home

as an example. This results in 5:1 in favor of the automatic mode. Of course, this

finding should be taken with a grain of salt as it covers only the small percentage

of people that explicitly stated which mode they prefer. However, it is consistent

6.4. Results of the User Study 175

with other ideas previously identified, e.g. with the idea that automatic assistance

saves time and work.

People can get irritated by the automatic assistance Four people commented

that they found some actions of the automatic assistance confusing. This applies

in particular to Scenario 3. For example, one participant wrote, “If the system tries

out several actions it might irritate a user”. Irritating actions are an important issue.

As it is not possible to prevent them completely, research must address the question

how to enable users to cope with them.

System feedback must be improved Several subjects said the fact that the au-

tomatic assistance kept informing them about what it was doing was extremely

important and they would not have accepted it without this feedback. However,

only one participant stated that s/he was satisfied with the feedback the system

gave, while ten subjects said that this feedback could be improved. For example,

one participant said, “More pictures or small icons to visualize actions of the sys-

tem would be good”. Another requested to “present actions of the system more

clearly”.

People want to be able to explicitly specify goals Many people said they liked

the concept of goal-based interaction: It puts the focus on what should be accom-

plished rather than how to accomplish it. However, it struck us as a surprise that

many people were not very enthusiastic about the concept that the assistance system

infers their goals and automatically tries to fulfill them. We identified four differ-

ent objections people have against this concept: The major concern the participants

uttered was that they did not believe the intention analysis always adequately in-

fers their goals. Several people criticized that there is no possibility to manually

correct incorrectly inferred goals if the intention analysis fails. Some people also

commented they would like more interaction with the system. They would feel less

passive and more in control if they could explicitly enter their goals into the assis-

tance system. Some participants said they felt patronized by the assistance system

because it claimed to know their goals. People also thought the system would be

much more flexible if it gave them the possibility to explicitly enter goals. Partici-

pants uttered two different options for improvement. Nine people said they would

176 Chapter 6. User Study

prefer a user interface for entering their goals to the intention analysis. Two partic-

ipants said the intention analysis should present suggestions for goals, but should

include the possibility to alter incorrect goals via a user interface.

User Acceptance (TAM) Performance

Perceived
Usefulness

Perceived
Ease of Use TimeNumber of

Interactions

Experience

Imperfection of
Automatic Assistance

Task Load

Technophilia

Switching to
Manual Mode

Causes & Influences Identified by User Study

+
+

-

- + +

+/-

+

Figure 6.17: The proposed scheme of user acceptance and performance.

6.5 Scheme of User Acceptance and Performance

Using the results of the user study, we develop a unified scheme of user acceptance

and performance for Ubiquitous Computing assistance systems based on Davis’

Technology Acceptance Model [Davis 1989] (see Figure 6.17). The scheme shows

which factors directly or indirectly influence PU and PE (determinants of user ac-

ceptance) as well as the number of user interactions with the assistance system and

the time taken to fulfill the user’s goals (determinants of user performance). All

arrows in the scheme correspond to influences identified in the study. Each arrow

points from the determining factor to the variable influenced by that factor, with

the exception of the two-headed arrow between PU and switching to manual con-

trol: Due to the fact that both are dependent variables, we cannot say whether PU

determines if people switch to manual control or vice versa. A “+” sign next to an

arrow marks a positive correlation, while a “−” sign marks a negative correlation.

As an example, let us look at the leftmost arrow. It should be read in the fol-

lowing way: If a person has experience using the system, s/he is likely to perceive

it as easier to use than a person with no experience.

6.6. Ad-hoc Assistance Systems and Wandke’s Framework 177

One relation needs further explanation: The correlation between technophilia

and PU is not linear. Thus, there is a “+/−” sign next to the arrow. All other

relations should be easy to read as this scheme is in fact a summary of the results

presented above.

This scheme is necessarily incomplete as it comprises only those factors found

to be relevant in this study. However, we believe that it can help to understand what

influences user acceptance not only of this system, but of other proactive assistance

systems (e.g., those introduced in Section 6.1) as well. Furthermore, it can serve as

a basis for discussion among researchers wishing to further investigate the notion

of user acceptance of Ubiquitous Computing applications.

6.6 Ad-hoc Assistance Systems and Wandke’s
Framework

Based on the results of our study, we can now discuss the question which kind of

ad-hoc assistance system in terms of Wandke’s assistance framework is acceptable

to the users of Ubiquitous Computing applications.

• The stages of human-machine interactions that can be assisted: As the

system used for the study supports only the decision making/action selection

stage of human-machine interactions, we can only comment on which kind

of assistance is appropriate at this stage. Recall that our hypothesis was that

informative execution assistance is acceptable. In general, our results have

shown that this is the case. The system used in this study is an informative

execution assistance system, and user acceptance was fairly high. However,

our results also show that this is a simplification. Acceptance of Ubiquitous

Computing applications is context-dependent and varies according to the pa-

rameters task load, experience, system behavior, and technophilia. This in-

dicates that when users experience a certain task load, users are experienced,

the system finds a good solution quickly, or people have a technophilia value

of 2 or 4, they accept an informative execution assistance system. However,

if those conditions are not met, they might prefer another level that gives

them more control, such as take-over assistance or delegation assistance.

Thus, our hypothesis that informative execution assistance is acceptable for

178 Chapter 6. User Study

users of ad-hoc assistance system was only partially correct: Future ad-hoc

assistance systems should be capable of different levels for different contexts.

• Adjustment: Our hypothesis was that fixed assistance is appropriate. The as-

sistance system we used in the study provides fixed assistance. However, the

discussion above has shown that ad-hoc assistance systems must be capable

of different levels of assistance. Thus, our hypothesis regarding adjustment

was not correct: Fixed assistance is not the best solution in ad-hoc environ-

ments. The question is whether the user should adapt the level according

to her/his preferences, or if the system should adapt itself according to the

context. The former corresponds to adaptable assistance, while the latter

corresponds to adaptive assistance. We believe that in ad-hoc environments

adaptive assistance is more suitable: In an unknown situation and/ or a sit-

uation that imposes a certain task load on the user, s/he probably does not

have the time or cognitive resources to adapt the system her-/himself. In the

next section, we give some hints how adaptive assistance can be realized.

• Initiative: The assistance system used in the study provides active assis-

tance. A high number of participants did not switch from automatic to man-

ual mode, and users’ comments indicate that they are satisfied with the au-

tomatic assistance even if it occasionally fails. These results show that most

people are satisfied with active assistance, provided that they can easily take

over manually if anything goes wrong. This indicates that our hypothesis

regarding initiative was correct.

6.7 Implications for User Interface Design of Ubiqui-
tous Computing Systems

As discussed in the previous section, adaptive assistance is preferable over fixed

assistance in ad-hoc environments. A good starting point for making an assis-

tance system adaptive according to the current context is to make the user interface

adaptive. Research on context-aware user interfaces has focused mainly on ques-

tions such as how to adapt the user interface layout to output devices with different

properties, e.g. screen size or resolution [Butter et al. 2007], or the type of out-

put device (head-mounted display, handheld device, etc. [Witt et al. 2007]). Liu

6.7. Implications for User Interface Design 179

et al. propose a user interface that adapts according to patterns it has recognized

in the user’s interaction behavior [Liu et al. 2003]. While this is a good starting

point, the results of the study suggest that for the kind of application studied here,

more factors should be taken into account. We propose to broaden the notion of

context: Whether the user is technophilic or not, whether s/he is experienced or a

novice, whether s/he experiences a certain task load, and the behavior of the system

itself – whether it is able to fulfill her/his goals in an optimal way or is likely to

produce errors – as our study revealed, these parameters influence the user’s infor-

mation and interaction preferences with the system. We believe that this should

be reflected in the user interface. To be more precise, the user interface should

be adapted according to context in this broader sense. And by adapt we do not

just mean the appearance of single user interface elements, but the whole structure

of the user interface, including how many and which kinds of elements it contains.

Concerning the experienced vs. novice dichotomy, the need for adaptivity has been

recognized even in desktop computing: Many programs contain wizards that guide

novice users in performing the most common tasks, while expert users work with

a more advanced interface. Concerning the other parameters, we give some hints

which kind of adaptation is worth to be considered.

One possibility for adaptation has been suggested by the participants them-

selves: Some wanted to abandon the intention analysis in favor of the possibility to

enter their goals into the system themselves, while others requested the possibility

to correct goals that were incorrectly inferred by the intention analysis. We feel

that these preferences might be related to a person’s technophilia value. However,

due to the small number of people who gave these comments we have too little ev-

idence to determine whether this is indeed the case. Our study has also shown that

people experiencing a certain task load (due to a secondary task) want to be able to

grasp the current system state at a short glance. Furthermore, they do not want to be

alarmed immediately if the automatic assistance is likely to produce a suboptimal

solution. This is because they are occupied elsewhere and are thus likely to accept

suboptimal solutions. In contrast, relaxed people are more likely to closely monitor

the system and prefer more detailed information about the system state. They need

an indicator that shows how likely the system will find a good solution quickly.

This enables them to decide whether and when to intervene manually. Of course,

these ideas raise many issues. How to capture the required context adequately and

180 Chapter 6. User Study

how to transfer it into appropriate user interface elements at run-time are just two

of them. This deserves further investigation.

6.8 Limitations of the Study

Five limitations of our study need to be acknowledged:

• We used the PU and PE scales from the original version of TAM to assess

user acceptance. TAM was developed for desktop applications and has its

shortcomings when applied to Ubiquitous Computing. For example, it in-

cludes neither social acceptability nor trust, concepts deemed important in

Ubiquitous Computing [Connelly 2007]. However, it allows to measure per-

ceived usefulness and perceived ease of use with a small number of items.

• Our results do not apply to all Ubiquitous Computing systems. We only

measured people’s acceptance of one exemplary system. Nevertheless, we

believe that our results generalize to systems of the kind discussed in Section

6.1. Those systems and our system have in common that they a) proactively

assist the user and b) perform run-time strategy synthesis based on declar-

ative descriptions of user goals, which can yield suboptimal solutions. On

the other hand, we believe that our results – to some extent – generalize to

different applications that people use under the influence of similar factors as

in our study. Consider, for example, driving a car. Here, too, users have more

than one task at a time. The primary task is driving the car. The secondary

task is planning which route to take. People occasionally leave this task to a

navigation system, especially in areas they do not know well. The results of

our study suggest that here people tend to accept suboptimal routes.

• The characteristics of the sample were not optimal. All subjects were univer-

sity students that were moderately to very technophilic. Thus, we cannot say

whether our findings generalize to other demographic groups.

• We did not perform a longitudinal study and can thus not give any indication

how acceptance develops over a longer period of use (Phase 3).

• The fifth limitation concerns a problem common to all lab studies: Influences

like ethical questions or people’s motivation are generally hard to assess in

a lab study because a lab is necessarily to some extent an artificial environ-

ment. As an example, consider the question how the dual task group would

6.9. Chapter Summary 181

have acquitted themselves if they had lost their own money. Supposedly their

motivation to finish the trials quickly would have been higher. However, in

this case, we would probably not have been able to recruit enough partici-

pants for the study.

6.9 Chapter Summary

In this chapter, we have presented a user study that investigates whether users ac-

cept an assistance system based on the AdDCo algorithm. This algorithm does

not completely fulfill the requirement rationality. Hence, system behavior was one

factor in the study. The other two factors experience and task load refer to the con-

text of use. Participants had the task of configuring a room equipped with a variety

of electronic devices for a meeting. The assistance system helped them with this

task. It consisted of an automatic and a manual mode. The automatic mode was

the default, but participants could switch to manual control if they wanted to.

In summary, one can say that user acceptance was fairly high across all experi-

mental conditions, even when the assistance system produced suboptimal solutions.

We can thus conclude that an assistance system need not completely fulfill the re-

quirement rationality in order to be accepted by its users, provided that it offers the

users enough benefit. This is the most important result of the study. It refutes the

assumption that users will not accept an assistance systems if it exhibits suboptimal

behavior, which we discussed in Section 6.2.

A second result of the study is that user acceptance is significantly influenced

by:

• task load: Under the influence of an increased task load, people perceived the

automatic assistance as more useful than when relaxed, probably because it

relieved them of workload.

• experience: People that had some experience with the assistance system

(Phase 2) found the assistance system easier to use than those with no ex-

perience (Phase 1).

• the behavior of the automatic assistance: When experiencing Level 2 be-

havior, people perceived the system as less useful and were more likely to

switch to manual control than for Level 1 behavior. On the other hand, the

more benefit the automatic assistance offered over pure manual control, the

182 Chapter 6. User Study

more useful it was perceived and the more likely would people stick to the

automatic assistance even if it exhibited Level 2 behavior.

• technophilia: Moderately and very technophilic people perceived the assis-

tance system as more useful than averagely technophilic people.

We furthermore observed that people who switched to manual control took

more time and had more system interactions than those that used the automatic

assistance. Based on these results, we developed a unified scheme of user accep-

tance and performance for Ubiquitous Computing assistance systems. We could

furthermore draw some conclusions which kind of assistance in terms of Wandke’s

framework is preferable in smart ad-hoc environments: Informative execution as-

sistance is not always the best way to assist people in the decision making/action

selection stage. According to the context, take-over assistance or delegation assis-

tance may be preferable. Concerning adjustment, adaptive assistance is preferable

over fixed assistance. Concerning initiative, active assistance is preferable over

passive assistance. Our findings led us to discuss the need to make user interfaces

of Ubiquitous Computing assistance systems context-aware in the broad sense out-

lined in Section 6.7. Based on the observations during the study, we gave a few

ideas how this might be achieved.

Chapter 7

Providing Declarative Action
Descriptions

Contents
7.1 Related Work . 184

7.2 Semantic Web Services . 185

7.2.1 OWL-S . 187

7.2.2 WSMO . 189

7.2.3 DSD . 190

7.2.4 WSDL-S and SAWSDL 192

7.2.5 Benefits and shortcomings 193

7.3 Embracing the Semantic Web 193

7.4 Chapter Summary . 194

As has become clear in the previous chapters, the basic building blocks of our

strategy synthesis are declarative descriptions of the devices’ possible actions. An

important question that remains to be answered is how – i.e. in which form and by

whom – such descriptions should be provided. This question is key for all strategy

synthesis mechanisms that require action descriptions – the AdDCo algorithm as

well as e.g. EMBASSI [Heider & Kirste 2002] or D-HTN [Amigoni et al. 2005].

Semantic web languages have been developed to enable machines to “under-

stand” the content of the internet. This chapter investigates how to bring both

worlds together. We show that semantic web services can in principle provide an

appropriate formalism for generating action descriptions because they have several

advantages over special-purpose languages such as PDDL [Ghallab et al. 1998].

This chapter serves two purposes: On the one hand, we strive to investigate the

184 Chapter 7. Providing Declarative Action Descriptions

suitability of semantic web services for a whole class of approaches, including

those named above. On the other hand, we are particularly interested to find out

whether semantic web languages can be used with the AdDCo algorithm. Where

suitable and possible, we therefore make some remarks that specifically concern

the AdDCo algorithm.

This chapter is structured as follows: In Section 7.1 we briefly introduce previ-

ous attempts at using semantic web services with strategy synthesis mechanisms.

In Section 7.2 we explain why semantic web languages are useful for smart en-

vironments and how they can be employed to generate the action descriptions we

need for the strategy synthesis. We furthermore evaluate the benefits and short-

comings of existing semantic web languages with respect to our field of interest.

Another important issue is who should provide these declarative descriptions. We

suggest that large communities of stakeholders should generate and refine them

collaboratively. This is explained in Section 7.3.

7.1 Related Work

Combining semantic web services with planning or similar techniques for strat-

egy synthesis has been a topic of research in the past few years. One such

project is OWLS-Xplan [Gerber et al. 2005] in the medical health domain. It

combines Xplan, an AI planner based on Graphplan and HTN planning, with

OWL-S by translating OWL-S service descriptions into PDDXML operators for

planning. PDDXML is an XML dialect of PDDL. Unfortunately, Xplan is a

centralized offline planner and can therefore not be used in dynamic environ-

ments. Wu et al. composed DAML-S (a predecessor of OWL-S) services

[Wu et al. 2003] as well as OWL-S services [Sirin et al. 2004] with the HTN plan-

ner SHOP2. A similar approach is that of Qiu et al. [Qiu et al. 2006]. Shesha-

giri et al. used a simple backward-chaining mechanism to compose OWL-S ser-

vices [Sheshagiri et al. 2004]. Chen and Yang performed workflow planning using

OWL-S service descriptions [Chen & Yang 2005]. All of these approaches rely on

centralized architectures. To our knowledge semantic web services have not been

used in combination with any decentralized approach yet.

7.2. Semantic Web Services 185

7.2 Semantic Web Services

Generating the descriptions for the actions of devices in smart environments –

which we have also called operators or operator schemes in the previous chapters

– is a major challenge. At the moment they must be hand-coded for every device

as devices are not equipped with such action descriptions by their vendors. More-

over, a widely accepted standard for describing the actions has not yet emerged.

To make sure that operators of different origin are compatible, they must comply

to a common terminology. For instance, a fixed set of predicates has to be defined.

This could be done by means of common ontologies that all who write such oper-

ators agree upon. Approaches like the AdDCo algorithm will only have a chance

to gain wide acceptance if those challenges are met. A special-purpose language

like PDDL is well suited for describing actions, yet it provides no means to define

the elements of such a description (e.g. predicates) using ontologies. Semantic

web languages, on the other hand, allow to describe device actions with the help

of ontologies. The key question is if existing semantic web languages qualify for

describing the operators needed for our approach.

There are several languages that allow to either formulate ontologies or seman-

tic web services or both. In the next sections, we evaluate how well the following

languages are suited for describing device actions:

• OWL-S (Web Ontology Language for Services)

• WSMO (Web Service Modeling Ontology)

• DSD (DIANE Service Description)

• WSDL-S (Web Service Semantics)

• SAWSDL (Semantic Annotations for WSDL)

SAWSDL is based on WSDL-S, which itself is just a proposal. Nevertheless

both approaches differ in some interesting points, so they are both worth investi-

gating. We are especially interested in the possibilities of semantic annotation of

a service. Especially, we need the ability to express preconditions and effects as

they are the base for our approach as well as other approaches such as EMBASSI

[Heider & Kirste 2002]. In the AdDCo algorithm, preconditions and effects are

function-free first order literals. To be able to express that an effect holds for a

certain set of devices, we also need universally quantified effects (see Section 5.1

for details). Hence, if a semantic web language is to be used with the AdDCo

186 Chapter 7. Providing Declarative Action Descriptions

O
W

L
-S

W
SM

O
D

SD
W

SD
L

-S
SAW

SD
L

[M
artin

etal.2004]
[L

ausen
etal.2005]

[K
lein

2004]
[A

kkiraju
etal.2005]

[K
opecký

etal.2007]
sem

antic
resources

(apartfrom
allresources

allresources
supported,

supported,
annotation

preconditions/effects)
are

U
R

Is
(including

are
U

R
Is

(including
butno

form
at

butno
form

at
ofservices

are
nam

ed
w

ith
U

R
Is

preconditions
preconditions

specified
specified

and
effects)

and
effects)

preconditions
string

literals
included

in
included,but

supported,
notsupported

and
effects

(m
ustbe

processed
by

W
SM

O
standard

preconditions
are

not
butno

form
at

a
separate

parser)
expressive

enough
specified

service
notspecified

notspecified
included

in
standard

W
SD

L
W

SD
L

grounding
m

apping
needed

m
apping

needed
toolsupport

O
W

L
-S

editoras
a

W
SM

O
Studio

tem
plates

for
R

adiant
R

adiant
plugin

forProtégé
(setofE

clipse
plugins,

M
icrosoftV

isio,
annotation

tool
annotation

tool
[E

lenius
etal.2005]

quite
com

plex)
notpublicly

[G
om

adam
etal.2005]

[G
om

adam
etal.2005]

[D
im

itrov
etal.2007]

available

Table
7.1:C

om
parison

ofdifferentsem
antic

w
eb

languages.

7.2. Semantic Web Services 187

algorithm, it should support these constructs.

Additionally, the way the descriptions are grounded to a particular service is of

interest. A service grounding describes the linking between the syntactical and the

semantical description of a service. Finally, we take a look at the available tools

for editing service descriptions. Table 7.1 summarizes the main findings of our

comparison.

7.2.1 OWL-S (Web Ontology Language for Services)

OWL-S [Martin et al. 2004] services consist of three parts: the service profile that

describes the functionality of the service and is used for service advertising and

discovery, the process model which gives a more detailed description of the service,

and the service grounding which specifies how to interact with the service. For

our purposes, the profile and grounding are most relevant. The profile is the part

of the OWL-S description that can accommodate our action descriptions and the

grounding specifies how the service communicates with the outside world.

We now discuss how action descriptions can be expressed in OWL-S. OWL-

S can be mapped to PDDL, as shown in [Gerber et al. 2005]. Mapping PDDL to

OWL-S is also possible since OWL-S web service profiles include the properties

hasPrecondition and hasEffect. These can accomodate PDDL expressions as string

literals. Here is a ShowDoc operator in PDDL:

(:action ShowDoc

:parameters (?Doc - Document ?Canv - Canvas)

:precondition (and (SentToDisp ?Doc Projector1)

(CanvasDown ?Canv))

:effect (and (DocShown ?Doc ?Canv)

(forall (?OtherDoc - Document)

(when (not (= ?OtherDoc ?Doc))

(not (DocShown ?OtherDoc ?Canv))))))

The same operator is depicted as an OWL-S description in Figure 7.1.

In Section 5.1, we have argued that the notation we developed for the AdDCo

algorithm is very similar to PDDL, but less expressive. This implies that OWL-S

services can accomodate action descriptions for the AdDCo algorithm, provided

188 Chapter 7. Providing Declarative Action Descriptions

<process:AtomicProcess rdf:ID="ShowDoc">
<process:hasPrecondition rdf:resource="#precondition"/>
<process:hasEffect rdf:resource="#effect"/>

</process:AtomicProcess>

<process:Precondition rdf:ID="precondition">
<expr:PDDL-Expression>

<expr:expressionBody>
(and (SentToDisp ?Doc Projector1) (CanvasDown ?Canv))

</expr:expressionBody>
</expr:PDDL-Expression>

</process:Precondition>

<process:Effect rdf:ID="effect">
<expr:PDDL-Expression>

<expr:expressionBody>
(and (DocShown ?Doc ?Canv)

(forall (?OtherDoc)
(when (not (= ?Doc ?OtherDoc))

(not (DocShown ?OtherDoc ?Canv))))))
</expr:expressionBody>

</expr:PDDL-Expression>
</process:Effect>

Figure 7.1: Mapping of a PDDL operator to OWL-S.

that the PDDL expressions in the hasPrecondition and hasEffect properties are

restricted to the PDDL subset that can be understood by the AdDCo algorithm.

Hence, preconditions should be conjunctions of function-free first-order literals.

For effects, universal quantification is also allowed (see Section 5.1 for details).

Including PDDL expressions as string literals in OWL-S descriptions may seem

reasonable at a first glance. However, there is a huge disadvantage: Only the syn-

tax, but not the semantics of the PDDL expressions is mapped to OWL-S. To ensure

interoperability of different web services, the semantics have to be defined exter-

nally as this is not included in the OWL-S standard. Furthermore, an extra parser

is needed for the PDDL part of the service descriptions. Experiences in the EM-

BASSI project [Heider & Kirste 2002] have shown that this is a drawback. This

disadvantage of OWL-S was also identified by the consortium that developed the

OWL-S competitor WSMO [Fensel et al. 2006].

An OWL-S service is grounded by the process description. The inputs and

outputs in the process description are usually defined as OWL classes. In contrast,

7.2. Semantic Web Services 189

the most common language for syntactic service descriptions is WSDL, wherein

inputs and outputs are defined as XML schema data types. In order to reuse WSDL-

based services, the OWL-S process description must be mapped to WSDL and vice

versa. Due to its higher expressivity OWL classes are not compatible with primitive

XML schema data types. Therefore a special mapping must be implemented for

each ontology. A detailed overview of particular grounding approaches for OWL-S

is given in [Kopecký et al. 2006].

OWL-S services can be edited with the OWL-S Editor, a plugin for Protégé

[Elenius et al. 2005]. However, it is not very intuitive and development ceased

more than four years ago.

7.2.2 WSMO (Web Service Modeling Ontology)

WSMO [Lausen et al. 2005] consists of four modelling elements: ontologies,

goals, web services and mediators. We are especially interested in the web ser-

vices description and in the definition of goals as we need a mechanism to ex-

press user goals. Similar to OWL-S, the WSMO standard does not specify how

services should be grounded. This is a disadvantage as interoperability between

services with different groundings may be hampered. [Kopecký et al. 2006] gives

an overview of grounding approaches for WSMO.

Like OWL-S, WSMO allows to include preconditions and effects in service de-

scriptions. However, WSMO provides more detailed concepts here. The semantics

of a WSMO service are described as its capability which consists of four parts:

preconditions, assumptions, effects, and postconditions. We now explain those

parts using the example of a ticket booking service. This example is taken from

[Feier & Domingue 2005].

WSMO preconditions specify the information that must be available in order

to execute the service, e.g. the initial balance on the credit card used to book

the ticket. WSMO assumptions specify the literals that must hold in the world

state for the service to be executed. An example is a literal which specifies that

the credit card is valid. Our PDDL preconditions (which are consistent with the

naming convention in artificial intelligence) can thus be mapped to either WSMO

preconditions or WSMO assumptions. WSMO effects, on the other hand, specify

the world state after the execution of the service. In the ticket booking example,

an effect is that the balance on the credit card is lowered by the price of the ticket.

190 Chapter 7. Providing Declarative Action Descriptions

WSMO postconditions describe the information that is present after the execution

of the service. An example is the reservation for the trip as a result of booking

the ticket. “Our” effects can therefore be modeled as WSMO effects or WSMO

postconditions.

In contrast to OWL-S, WSMO explicitly encourages to define predicates and

variable types that occur in preconditions, assumptions, effects and postconditions

in ontologies. Names of predicates and variable types are URIs, i.e. links to these

ontologies. Therefore, WSMO not only allows to describe the syntax, but also the

semantics of operators. To align different ontologies, WSMO provides the con-

cept of mediators. They ensure that terminology mismatches between ontologies

can be resolved. Furthermore, WSMO has an extra concept for goals. This allows

to formulate the observed intentions of the users directly as goals. Of particular

importance for us is that WSMO is expressive enough to support the constructs

we need for the AdDCo algorithm: function-free first-order literals and universal

quantification. Therefore, WSMO seems to be better suited for describing opera-

tors than OWL-S. Our ShowDoc operator is shown as a WSMO service description

in Figure 7.2.

WSMO service descriptions can be edited using WSMO Studio

[Dimitrov et al. 2007]. It consists of a set of Eclipse plugins and is still in

prototype stage. There is no tutorial available yet, and the documentation does not

provide much help to a first-time user.

7.2.3 DSD (DIANE Service Description)

Like OWL-S and WSMO, DSD [Klein 2004] allows to describe the semantics of

web services via preconditions and effects. All concepts in these service descrip-

tions must be defined in DSD ontologies. Unlike effects, preconditions in DSD

are not conjunctions of literals, but lists of entities that must be present for the

service to be executed. To execute a service BuyBook, a customer must specify a

book to buy, an account at the book selling web site and a credit card. So DSD

preconditions rather specify information the service requires to be executed than

literals that must hold in the world state (very much like WSMO preconditions).

Thus, DSD preconditions are less expressive than the preconditions we need for

our action descriptions. Therefore, DSD is better suited for domains that require

matchmaking [Küster et al. 2007] than for ad-hoc ensembles that require run-time

7.2. Semantic Web Services 191

namespace {_"http://example.org/ShowDoc#",
dc _"http://purl.org/dc/elements/1.1#",
pr _"http://example.org/praedikate#",
dev _"http://example.org/devices#"}

webService _"http://example.org/ShowDocWebService"

importsOntology _"http://example.org/ShowDocOntology"

capability ShowDocCapability

sharedVariables {?Doc, ?Canv, ?OtherDoc}

assumption
nonFunctionalProperties

dc#description hasValue "For a projector to be able to project a
document, there must be a canvas that can be projected on.
This canvas must be lowered. In addition, there must be a
document to be projected."

endNonFunctionalProperties
definedBy

?Doc memberOf dev#Document
and
?Canv memberOf dev#Canvas
and
?OtherDoc memberOf dev#Document
and
?Doc != ?OtherDoc
and
pr#SentToDisp(?Doc, Projector1)
and
pr#CanvasDown(?Canv).

effect
nonFunctionalProperties

dc#description hasValue "If the action is executed, the following
conditions hold: The document is shown on the canvas. If the
projector has been projecting a different document onto the
canvas, this document is not visible anymore."

endNonFunctionalProperties
definedBy

pr#DocShown(?Doc, ?Canv)
and
forall ?OtherDoc (not pr#DocShown(?OtherDoc, ?Canv)).

Figure 7.2: Service description in WSMO.

192 Chapter 7. Providing Declarative Action Descriptions

strategy synthesis. In DSD the service grounding does not rely on any ”extern“

languages such as WSDL, but is included in the DSD standard. Thus, DSD allows

to specify ontologies, service descriptions and service grounding all in one coher-

ent formalism. This is a huge advantage over other languages such as OWL-S and

WSMO as it helps to make services of different origin interoperable. DSD is still in

an experimental state: It is hard to find complete examples of service descriptions

in DSD and there is no single easy-to-understand representation. Several represen-

tations for DSD descriptions exist in parallel, including a graphical notation called

g-dsd, a textual notation called f-dsd, and a Java representation called j-dsd. Some

of these representations can be translated into each other, some cannot. Further-

more, there is little tool support at the moment. G-dsd, for example, can be edited

via a set of Microsoft Visio templates which are not publicly available.

7.2.4 WSDL-S (Web Service Semantics) and SAWSDL (Seman-
tic Annotations for WSDL)

WSDL-S [Akkiraju et al. 2005] allows for semantic annotations, but does not spec-

ify a format for these annotations. It allows the user to annotate WSDL services

with ontologies in any language. This makes it hard, if not impossible, to foster

interoperability of services of different origin. Preconditions and effects can be de-

scribed in external languages such as SWRL [Horrocks et al. 2004]. This causes

the same problems as OWL-S preconditions and effects. Another drawback is that

WSDL-S allows just one precondition and one effect per service at maximum. To

describe conjunctions of preconditions and effects, one has to specify a high-level

precondition and resolve it using an ontology. SAWSDL [Kopecký et al. 2007] is

the successor of WSDL-S. Unlike WSDL-S, SAWSDL does not provide a means

to specify preconditions and effects which makes it unsuitable for our purposes.

Both SAWSDL and WSDL-S service descriptions can be edited using the Radiant

annotation tool [Gomadam et al. 2005] which provides an easy-to-use interface for

augmenting existing WSDL files with semantic annotations.

As WSDL-S and SAWSDL are extensions to standard WSDL, services de-

scribed in WSDL can be used straightforward. This is an advantage over OWL-S

and WSMO where the grounding must be realized by a special mapping.

7.3. Embracing the Semantic Web 193

7.2.5 Benefits and shortcomings

In summary, one can say that each semantic web language has its benefits and

shortcomings, but neither of them seems perfectly suitable for describing device

actions. The advantages of OWL-S and WSMO services are that they can acco-

modate preconditions and effects. For us it is especially important that OWL-S

and WSMO services allow for the expressivity required for the AdDCo algorithm.

However, there are a number of drawbacks: In OWL-S, preconditions and effects

are just represented as string literals. OWL-S as well as WSMO do not specify a

grounding. The other semantic web languages have even more shortcomings: Pre-

conditions in DSD are not literals that must be fulfilled in the world, but entities

that must be present for the service to be executed. WSDL-S and SAWSDL do not

specify a format for semantic annotations, and SAWSDL does not support precon-

ditions and effects. All lack sufficient tool support. Of all these languages, WSMO

seems the most promising as it provides a useful means of representing “our” pre-

conditions (which correspond to WSMO preconditions or assumptions) and effects

(which can be modeled as WSMO effects or postconditions). Furthermore, WSMO

allows to specify all concepts, including predicates and variable types, using on-

tologies. If a specification of service grounding was included in the standard, it

might be worth considering for our domain.

7.3 Embracing the Semantic Web

Having elaborated on the question in which form action descriptions can be pro-

vided, the next question is who could provide them. Descriptions of device actions

in the form of semantic web services might be written by device vendors and sup-

plied with devices, just like it is common today for syntactic service descriptions,

e.g. in UPnP [Jeronimo & Weast 2003]. This would enable the device cooperation

we are aiming for: Any device supplied with such descriptions would be ready for

ad-hoc cooperation.

One difficulty is that device vendors cannot foresee every possible context or

use case. An example: A projector has the primary effect of showing a document.

However, it has secondary effects that might not be apparent in the first place: It

lights and heats a room and consumes power. Whether these effects are significant

194 Chapter 7. Providing Declarative Action Descriptions

depends on the context of use. If the user wants to take into account power con-

sumption, s/he has to modify the action descriptions accordingly. Thus, it would be

useful to have several descriptions of a device action that could be used according

to the context.

Device vendors cannot provide all of these action descriptions, but the user

community could. Users can collaboratively create and refine service descriptions

[Braun et al. 2007] and share them on the web. They could also refine the descrip-

tions provided by the device vendors. The success of web 2.0 applications like

Flickr and Wikipedia shows that users collaborate on the internet to generate con-

tent. Another area where collaboration yields impressing results is open source

software.

Semantic web services have not yet gained acceptance by a broad user com-

munity. This is partly due to the fact that the languages for semantic web services

are hard to read and use. Furthermore, convenient tools for editing them are still

missing. Web 2.0 applications are successful among a large community because

they have easy-to-use and intuitive user interfaces. Semantic web services require

similar interfaces to become widespread. Of course, the community that is inter-

ested in Web 2.0 applications is undoubtedly much larger than the group of people

that would be interested in writing action descriptions for devices. However, we

believe that a new community of technophilic people that are both users and devel-

opers could arise here – similar to the open source community.

Another problem is the lack of large repositories of services that can

be collaboratively edited. However, there are advances in that direc-

tion [Ankolekar et al. 2007]. One such project is the OPOSSum web site

[Küster et al. 2008], a repository that allows the community to upload and collabo-

ratively refine semantic web services. It is still in a very early stage of development,

but already contains several test collections of service descriptions in OWL-S and

WSDL. Unfortunately, no WSMO service descriptions are available yet.

7.4 Chapter Summary

In the previous chapters, we have introduced the AdDCo algorithm, which is

a mechanism for run-time strategy synthesis. This kind of mechanism requires

declarative descriptions of device actions. “Traditional” planning languages like

7.4. Chapter Summary 195

PDDL are not suited for this kind of description because they do not allow to de-

fine concepts using ontologies. Thus, interoperability of descriptions of different

origin is not ensured. In this chapter, we have shown that semantic web services

are in principle a favorable formalism for such descriptions. We have furthermore

investigated which languages for semantic web services are currently available,

and how well each of them is suited for describing device actions. We have found

that several semantic web languages exist, namely OWL-S, WSMO, DSD, WSDL-

S, and SAWSDL. Yet adoption by a large community is hampered by significant

shortcomings of all of them, including weak or no means to specify preconditions

and effects, complex syntax, and missing tool support. However, WSMO seems the

most suitable of all semantic web languages with respect to smart environments.

If there were tools to easily edit service descriptions and a place on the internet

where device vendors and users could collaborate to produce them, the semantic

web could help to bring the vision of intelligent environments to life.

Chapter 8

Conclusion and Outlook

Contents
8.1 Key Results . 198

8.2 Outlook . 200

Users in environments with a high number of technical devices are often over-

whelmed – they wonder how to get those devices to do what they want. Therefore,

it is necessary to assist users in such environments. This is especially important

in ad-hoc environments, which consist of fixed devices as well as mobile devices.

One approach to building systems that assist users in such environments is to di-

vide them into an intention analysis part and a strategy synthesis part. The intention

analysis infers the goals of the user, and the strategy synthesis searches for an action

sequence the devices must carry out to fulfill those goals.

With this thesis, we have tried to investigate how successful strategy synthesis

in smart ad-hoc environments can be achieved. At first, we wanted to find out

which usage situations typically occur in such environments. We have therefore

performed a domain analysis with the help of typical scenarios from the literature.

This enabled us to extract a set of requirements for strategy synthesis. We have

furthermore formulated two main questions to guide our work:

1. Is it possible to engineer a system for ad-hoc device cooperation in smart

environments in a fully distributed fashion?

2. Do users accept the assistance such a system can provide?

An analysis of existing approaches for strategy synthesis has then shown that

none of them is suited for ad-hoc environments because none fulfills all require-

ments. Specifically, there is currently no distributed control strategy for smart en-

vironments. To show that distributed strategy synthesis in smart ad-hoc environ-

ments is in principle possible, we have developed the AdDCo algorithm. It fulfills

198 Chapter 8. Conclusion and Outlook

all our requirements apart from rationality: Because the algorithm is based on lo-

cal knowledge only, it sometimes generates suboptimal action sequences. Hence,

it only partially fulfills the requirement rationality. We have then carried out a

quantitative user study to answer two important questions:

• Do users accept an assistance system that sometimes shows suboptimal be-

havior?

• Which contextual factors affect user acceptance?

The latter is especially important because users in Ubiquitous Computing are sit-

uated in “real life” rather than sitting in front of a desktop computer. Therefore,

contextual factors can influence user acceptance. Furthermore, we have tried to

answer the question how and by whom the declarative action descriptions needed

for a distributed strategy synthesis mechanism can be provided.

8.1 Key Results

The main results of this thesis are:

1. In principle, it is possible to engineer a fully decentralized system for ad-hoc

device cooperation in smart environments.

2. Users accept such a system even if it provides suboptimal assistance. How-

ever, acceptance is influenced by several contextual factors.

In the following, we provide a more detailed account of these results. From our

scenario analysis, we have extracted the following set of requirements an appropri-

ate strategy synthesis mechanism should fulfill:

• spontaneity

• action sequences

• rationality

• flexibility

• robustness

• support for persistent actions

• distributedness (run-time modularization and design-time modularization)

With the help of the aforementioned scenarios, we have furthermore formed

the hypothesis that in terms of Wandke’s assistance framework informative exe-

8.1. Key Results 199

cution assistance is the best level of assistance in smart environments, that fixed

assistance is appropriate and that users prefer active assistance. However, our

quantitative user study has then shown that this hypothesis is only partially cor-

rect: Informative execution assistance is not always the best level of assistance.

In certain situations, users prefer another level that gives them more control. Our

conclusion is that future assistance systems should be able to adapt their level of

assistance. This also implies that, concerning adjustment, fixed assistance is not

preferable over adaptable or adaptive assistance. Because the user may not always

have the time and cognitive resources to adapt the system her-/himself, we argue

that adaptive assistance is most feasible. Concerning initiative, our hypothesis was

correct: Active assistance is preferable over passive assistance.

We have argued that neither purely deliberative nor purely reactive control

strategies are suited for smart ad-hoc environments. A strategy synthesis mech-

anism that fulfills the requirements discussed above must be hybrid. Currently,

two kinds of hybrid architectures exist: horizontally and vertically layered archi-

tectures. None of them is fully suited for the special usage situation in smart envi-

ronments. We have therefore introduced a third kind, the temporally layered archi-

tecture: A deliberative step that prunes irrelevant actions is followed by a reactive

step.

We have described the AdDCo algorithm, which is an implementation of the

temporally layered architecture. It is the first distributed strategy synthesis mech-

anism for smart environments and is based on Maes’ action selection mechanism,

which is a reactive mechanism. Like Maes’ approach, the AdDCo algorithm sup-

ports goal-based interaction, which is a favorable interaction paradigm for smart

environments. However, in contrast to Maes’ algorithm, our version can be dis-

tributed over the devices in a smart environment. Due to the deliberative step we

included, it is also more goal-oriented.

In this form, the algorithm fulfills the requirements spontaneity, action se-

quences, and robustness. To enhance flexibility, we have then added support for

universally quantified effects. We have furthermore added support for persistent

actions and have described how to hide information in order to enhance design-time

modularization, which is a part of the requirement distributedness. The AdDCo al-

gorithm now fulfills all requirements, apart from rationality, which is only partially

fulfilled. Due to the limited knowledge of the algorithm, this requirement cannot

200 Chapter 8. Conclusion and Outlook

be fulfilled completely: The algorithm can produce suboptimal action sequences.

In our quantitative user study we were able to show that:

• users in smart environments accept even suboptimal assistance,

• users experiencing a certain task load find imperfect assistance systems more

useful than users with a low task load,

• users with some experience in using such a system find it easier to use than

novices,

• if automatic assistance exhibits suboptimal behavior, users find it less useful

than when it exhibits optimal behavior. However, if it offers enough bene-

fit compared to manual control of an environment, people prefer automatic

assistance even if it is suboptimal.

Our investigations regarding the question how declarative action descriptions

should be provided have yielded the following results: Semantic web service lan-

guages are, in principle, suitable for such action descriptions. They could be pro-

vided by the device manufacturers and refined and extended by the user commu-

nity. However, in practice, all existing languages suffer from weak or no means

to represent preconditions and effects, complex syntax, and missing tool support.

However, of all currently available semantic web languages, WSMO seems the

most promising with respect to smart environments.

8.2 Outlook

This thesis has addressed the question how strategy synthesis in ad-hoc environ-

ments can be achieved in principle. We have focused on finding out which require-

ments a successful strategy synthesis mechanism should fulfill and on demonstrat-

ing that it is possible to engineer a system which meets those requirements and

which is accepted by the users. Hence, this thesis has a very explorative character.

There are several questions we could only marginally touch, but which are worth

to be studied more comprehensively in order to gain a deeper understanding of our

proposed approach.

The AdDCo algorithm has the property that action sequences emerge from the

interactions of its components. The drawback here is that the behavior of the sys-

tem can be hard to predict and understand. Therefore, it would be beneficial to

8.2. Outlook 201

develop a mathematical model of the AdDCo algorithm. As Maes has stated, her al-

gorithm can be modeled as a system of differential equations. However, Maes also

remarked that such a system is too complex to solve analytically. The same prob-

ably holds for the AdDCo algorithm. However, differential equations are only one

possibility to model the algorithm. Yet when deciding how to model the AdDCo

algorithm, one has to keep in mind that it is fully distributed and nodes in the net-

work may join and leave anytime. Therefore, any modelling paradigm that cannot

incorporate such dynamicity, such as for instance Petri nets, is not suited for the

AdDCo algorithm. Finding an appropriate modelling mechanism is thus not trivial

and can be considered as an open research question. However, with the help of a

mathematical model, we could answer fundamental questions such as:

• If there is a possible action sequence, does the AdDCo algorithm always find

it?

• If the algorithm finds an action sequence, how long is this sequence in com-

parison to the shortest possible sequence?

• How should the world be modeled (i.e., how should actions be described)

such that the algorithm finds a (short) action sequence?

Another issue is the complexity of the AdDCo algorithm. In the worst case, the

algorithm does not have polynomial running time. This follows from the fact that

it does not even terminate if no solution exists (i.e. if no action sequence can be

constructed that fulfills the goals). Hence, our algorithm does not guarantee to find

a solution, neither does it guarantee polynomial running time. However, consider

the fact that the AdDCo algorithm solves planning problems. Bylander has shown

that planning is PSPACE-complete [Bylander 1991]. Hence, under the assumption

that P ⊂ PSPACE (which most researchers believe to be the case), no polynomial

time algorithm can be constructed that always finds a solution if one exists. Never-

theless, our observations have shown that the AdDCo algorithm performs well on

the majority of scenarios. Hence, the worst-case view seems too pessimistic and

an average case analysis would be desirable. Yet this seems to be much harder. For

such an analysis, one would need a realistic model of random inputs.

Another interesting question is how much shorter the action sequences gener-

ated by the reduced network described in Section 4.4.8 are in comparison to those

generated by the full network. Our focus was on improving the algorithm, which

202 Chapter 8. Conclusion and Outlook

can clearly be achieved by reducing the network. We have seen this in the evalua-

tion in Section 4.5: The AdDCo algorithm performed better than the PM algorithm,

and a big part of this improvement is due to the reduction of the network. However,

it would be interesting to study in more depth how many operators the reduction

can exclude from the network on average.

Furthermore, we have introduced user assistance as a two-stage process con-

sisting of an intention analysis component and a strategy synthesis component, but

have not dealt with the intention analysis at all. Throughout the thesis, we have

assumed that the intention analysis correctly provides the goals the user actually

wants to be fulfilled. This is key for the success of the strategy synthesis. In

practice, however, this assumption does not yet hold: The intention analysis is a

separate field which is currently under active research. Much work is left to be

done until the intention analysis can actually provide user goals in the granularity

required by the strategy synthesis.

Obviously, with this thesis we could merely address a few of the challenges on

the way to Mark Weiser’s vision of calm, unobtrusive computing. We have been

able to show that spontaneous, decentralized device cooperation is indeed feasible.

We have found out that users do not expect perfect assistance, but are content with a

system that makes their lives a little easier. These are motivating results that future

researchers in the field of smart ad-hoc environments can build upon.

Chapter 9

Appendix

9.1 Notational Conventions

Let String denote the set of character strings. Typewriter font – abc – denotes

elements of String, literal text in the object language. Often, we will want to

use meta language variables in object language text – for instance (and a b),

where a, b : String are meta language variables representing object language text

strings. To explicitly delimit an object language text string containing meta lan-

guage variables, we use Quine quasi-quotes [van Orman Quine 2003] and write

this as p(and a b)q. Thus, if a = xy and b = pq then p(and a b)q is the text

string (and xy pq). The Quine quasi quotes always result in text object language

text strings.

The object language string (not ?a) ∈ String is a sequence of eight characters,

starting with the character (and ending with the character) (the fifth character is

the space character). However, usually, we will want to discuss the object language

at the level of the abstract syntax tree, which we subsume in the set Expression.

Here, we will use the notation ~(not ?a)� to denote the abstract syntax tree for

the object language string (not ?a). One can think of ~·� : String → Expression

as a parser function that gives the abstract syntax tree for the argument string. In

abstract syntax trees we too will allow meta-language variables and expressions

such as ~(not a)�. For a start, the meta language expression a denotes an object

language character string, such that ~(not a)� is the abstract syntax tree we get

by parsing the object language string p(not a)q.

Let print : Expression → String be a function that gives a character string

representation for an abstract syntax tree such that for an abstract syntax tree t we

have the identity ~(print t)� = t. Then ~(not (print t))� is the abstract syntax

tree we get by parsing the string p(not a)q, where a : String and a = (print t). As

a slight inconsistency, we will simply write ~(not t)�, where ~(not (print t))�

204 Chapter 9. Appendix

would have been correct. (Conceptually, ~(not t)� describes an operation at the

level of abstract syntax trees rather than at the level of source language strings:

~(not t)� is the tree we get by taking the abstract syntax tree of ~(not ·)� and

replacing the tree for · by the tree t.)

Furthermore, we will often omit ~ and �. For example, we will write (not ?a)

instead of ~(not ?a)�. There are two reasons for this: First, it impropves read-

ability. Second, as object language is typeset in typewriter font, it can easily be

distinguished from meta language.

9.2 Example: Instantiating an Operator Scheme
Containing a Universally Quantified Effect

We have a domain τwith two types: Document and Notebook. Document has seven

objects, Notebook has one object:

τ = {Document 7→ {Doc1,Doc2,Doc3,Doc4,Doc5,Doc6,Doc7},

Notebook 7→ {NB1}} (9.1)

Furthermore, we have the following operator scheme:

σ = Maximize

= (:parameters (?x - Document ?n - Notebook)

:precondition (Hosts ?x ?n)

:effect (and (forall (?x - Document)(not (isMax ?x ?n)))

(isMax ?x ?n))) (9.2)

Note that for the binding β1 = {?x 7→ Doc1, ?n 7→ NB1}, which we will use

as an example in the following, this operator scheme semantically corresponds to

the Maximize operator described in (5.1). Syntactically, it is different because in

our notation we assume that effects are executed sequentially. Hence, we make

use of this fact. However, this behavior is not supported by standard PDDL, thus

the Maximize operator in (5.1) expresses the same semantics using a when con-

struct. Furthermore, note that the effect contains a first order term whose declara-

9.2. Example 205

tion (?x - Document) introduces a local variable ?x that shadows the parameter

variable ?x.

For instantiating the scheme σ according to (4.37), we first compute

bindings (decl(σ)) τ = bindings {?x 7→ Document, ?n 7→ Notebook}

{Document 7→ {Doc1,Doc2,Doc3,Doc4,

Doc5,Doc6,Doc7},

Notebook 7→ {NB1}} (9.3)

Employing (4.30):

={{?x 7→ Doc1, ?n 7→ NB1},

{?x 7→ Doc2, ?n 7→ NB1},

{?x 7→ Doc3, ?n 7→ NB1},

{?x 7→ Doc4, ?n 7→ NB1},

{?x 7→ Doc5, ?n 7→ NB1},

{?x 7→ Doc6, ?n 7→ NB1},

{?x 7→ Doc7, ?n 7→ NB1}} (9.4)

For each β ∈ bindings (decl(σ)) τ we then compute the corresponding instantiated

operator σβ as (:precondition substβ(pre(σ)) :effect substβ(eff (σ))). We

will do this explicitly for the first binding β1 = {?x 7→ Doc1, ?n 7→ NB1}:

σβ1 =(:precondition substβ1(pre(σ))

:effect substβ1(eff (σ))) (9.5)

Inserting terms:

=(:precondition substβ1(Hosts ?x ?n)

:effect substβ1(and

(forall (?x - Document)(not (isMax ?x ?n)))

(isMax ?x ?n))) (9.6)

206 Chapter 9. Appendix

By (4.14):

=(:precondition (Hosts (substβ1?x) (substβ1?n))

:effect substβ1(and

(forall (?x - Document)(not (isMax ?x ?n)))

(isMax ?x ?n))) (9.7)

By (4.12) and the fact that β1 = {?x 7→ Doc1, ?n 7→ NB1}:

=(:precondition (Hosts Doc1 NB1)

:effect substβ1(and

(forall (?x - Document)(not (isMax ?x ?n)))

(isMax ?x ?n))) (9.8)

By (4.16):

=(:precondition (Hosts Doc1 NB1)

:effect (and

(substβ1(forall (?x - Document)(not (isMax ?x ?n))))

(substβ1(isMax ?x ?n)))) (9.9)

Substituting in isMax using (4.14), (4.12) and the fact that β1 = {?x 7→ Doc1, ?n 7→

NB1} (just as we did for Hosts):

=(:precondition (Hosts Doc1 NB1)

:effect (and

(substβ1(forall (?x - Document)(not (isMax ?x ?n))))

(isMax Doc1 NB1))) (9.10)

Using (5.5):

=(:precondition (Hosts Doc1 NB1)

9.2. Example 207

:effect (and

(forall (?x - Document)(substβ′1(not (isMax ?x ?n))))

(isMax Doc1 NB1))) (9.11)

By (4.15) and (4.14):

=(:precondition (Hosts Doc1 NB1)

:effect (and

(forall (?x - Document)

(not (isMax (substβ′1?x) (substβ′1?n))))

(isMax Doc1 NB1))) (9.12)

Using β′1 = (dom{?x 7→ Doc1}) � β1 = {?x} � {?x 7→ Doc1, ?n 7→ NB1} = {?n 7→

NB1}

=(:precondition (Hosts Doc1 NB1)

:effect (and

(forall (?x - Document)

(not (isMax (subst{?n 7→NB1}?x) (subst{?n 7→NB1}?n))))

(isMax Doc1 NB1))) (9.13)

By (4.12), second case:

=(:precondition (Hosts Doc1 NB1)

:effect (and

(forall (?x - Document)

(not (isMax ?x (subst{?n 7→NB1}?n))))

(isMax Doc1 NB1))) (9.14)

By (4.12), first case:

=(:precondition (Hosts Doc1 NB1)

208 Chapter 9. Appendix

:effect (and

(forall (?x - Document)

(not (isMax ?x NB1))))

(isMax Doc1 NB1))) (9.15)

Note that an instantiated operator may still include variables in the first order effect

terms. Let us now compute the effective effect of σβ1 via (5.13):

ceffτ(σβ1) = cff (dqτ(eff (σβ1))) (9.16)

= cff (dqτ((and

(forall (?x - Document)

(not (isMax ?x NB1)))

(isMax Doc1 NB1)))) (9.17)

By (5.9):

= cff(and (dqτ(forall (?x - Document)

(not (isMax ?x NB1))))

(dqτ(isMax Doc1 NB1))) (9.18)

By (5.10):

= cff(and (dqτ(forall (?x - Document)

(not (isMax ?x NB1))))

(isMax Doc1 NB1)) (9.19)

By (5.11):

= cff(and (expandτ(forall (?x - Document)

(not (isMax ?x NB1))))

(isMax Doc1 NB1)) (9.20)

9.2. Example 209

By (5.7), we need to compute the bindings for the declaration {?x 7→ Document}

in τ, which gives β1 = {?x 7→ Doc1}, β2 = {?x 7→ Doc2}, ..., β7 = {?x 7→ Doc7}:

= cff(and

(substβ1(not (isMax ?x NB1)))

(substβ2(not (isMax ?x NB1)))

(substβ3(not (isMax ?x NB1)))

(substβ4(not (isMax ?x NB1)))

(substβ5(not (isMax ?x NB1)))

(substβ6(not (isMax ?x NB1)))

(substβ7(not (isMax ?x NB1)))

(isMax Doc1 NB1)) (9.21)

Performing the substitutions:

= cff(and

(not (isMax Doc1 NB1))

(not (isMax Doc2 NB1))

(not (isMax Doc3 NB1))

(not (isMax Doc4 NB1))

(not (isMax Doc5 NB1))

(not (isMax Doc6 NB1))

(not (isMax Doc7 NB1))

(isMax Doc1 NB1)) (9.22)

Now, the last step is to reduce this to a conflict-free formula by cff . By (4.20):

= cff ((and

(not (isMax Doc1 NB1))

(not (isMax Doc2 NB1))

(not (isMax Doc3 NB1))

210 Chapter 9. Appendix

(not (isMax Doc4 NB1))

(not (isMax Doc5 NB1))

(not (isMax Doc6 NB1))

(not (isMax Doc7 NB1))

� (not (isMax Doc1 NB1))))

� (isMax Doc1 NB1) (9.23)

After successively applying (4.20) and (4.19) and by effect of � we arrive at:

= (and (not (isMax Doc2 NB1))

(not (isMax Doc3 NB1))

(not (isMax Doc4 NB1))

(not (isMax Doc5 NB1))

(not (isMax Doc6 NB1))

(not (isMax Doc7 NB1)))

� (isMax Doc1 NB1) (9.24)

By effect of �:

= (and (not (isMax Doc2 NB1))

(not (isMax Doc3 NB1))

(not (isMax Doc4 NB1))

(not (isMax Doc5 NB1))

(not (isMax Doc6 NB1))

(not (isMax Doc7 NB1))

(isMax Doc1 NB1)) (9.25)

Hence, the complete instantiated operator is the following:

σβ1 =(:precondition (Hosts Doc1 NB1)

:effect (and (not (isMax Doc2 NB1))

9.2. Example 211

(not (isMax Doc3 NB1))

(not (isMax Doc4 NB1))

(not (isMax Doc5 NB1))

(not (isMax Doc6 NB1))

(not (isMax Doc7 NB1))

(isMax Doc1 NB1))) (9.26)

Bibliography

[Akkiraju et al. 2005] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt,

A. Sheth and K. Verma. Web Service Semantics – WSDL-S.

http://www.w3.org/Submission/WSDL-S/, 2005. 186, 192

[Amigoni et al. 2005] Francesco Amigoni, Nicola Gatti, C. Pinciroli and Manuel

Roveri. What planner for ambient intelligence applications? IEEE Trans-

actions on Systems, Man, and Cybernetics, Part A, vol. 35, no. 1, pages

7–21, 2005. v, 15, 18, 40, 144, 183

[Ankolekar et al. 2007] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran and

Denny Vrandecic. The two cultures: mashing up web 2.0 and the semantic

web. In WWW ’07: Proceedings of the 16th international conference on

World Wide Web, pages 825–834, New York, NY, USA, 2007. ACM. 194

[Arkin & Mackenzie 1994] Ronald C. Arkin and Douglas C. Mackenzie. Planning

to Behave: A Hybrid Deliberative/Reactive Robot Control Architecture for

Mobile Manipulation. In International Symposium on Robotics and Man-

ufacturing, pages 5–12, 1994. 57, 112

[Bellotti & Edwards 2001] Victoria Bellotti and Keith Edwards. Intelligibility and

accountability: Human considerations in context-aware systems. Hum.-

Comput. Interact., vol. 16, no. 2, pages 193–212, 2001. 30

[Beni & Wang 1989] Gerardo Beni and Jing Wang. Swarm Intelligence in Cellular

Robotic Systems. In NATO Advanced Workshop on Robots and Biological

Systems, pages 703–712, Tuscany, Italy, 1989. 46

[Blum & Furst 1995] Avrim Blum and Merrick Furst. Fast Planning Through

Planning Graph Analysis. In Proceedings of the 14th International Joint

Conference on Artificial Intelligence (IJCAI 95), pages 1636–1642, 1995.

41, 144

[Bortz & Döring 2006] Jürgen Bortz and Nicola Döring. Forschungsmethoden

und Evaluation für Human- und Sozialwissenschaftler. Springer, 2006.

149, 150, 159, 166, 173

214 Bibliography

[Braun et al. 2007] Simone Braun, Andreas Schmidt and Valentin Zacharias. On-

tology Maturing with Lightweight Collaborative Ontology Editing Tools. In

Proceedings of 4th Conference for Professional Knowledge - Experiences

and Visions, Potsdam, Germany, 2007. 194

[Brooks 1990] Rodney A. Brooks. A robust layered control system for a mobile

robot. Artificial intelligence at MIT: expanding frontiers, pages 2–27, 1990.

48

[Brumitt et al. 2000] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern

and Steven A. Shafer. EasyLiving: Technologies for Intelligent Environ-

ments. In Peter J. Thomas and Hans-Werner Gellersen, editors, HUC, vol-

ume 1927 of Lecture Notes in Computer Science, pages 12–29. Springer,

2000. 48

[Butter et al. 2007] Thomas Butter, Markus Aleksy, Philipp Bostan and Martin

Schader. Context-aware User Interface Framework for Mobile Applica-

tions. In Proceedings of the 27th International Conference on Distributed

Computing Systems Workshops (ICDCSW’07), page 39, Los Alamitos,

CA, USA, 2007. IEEE Computer Society. 178

[Bylander 1991] Tom Bylander. Complexity Results for Planning. In IJCAI, pages

274–279, 1991. 201

[Castro et al. 2009] Mariana N. Castro, Daniel E. Vigo, Elvina M. Chu,

Rodolfo D. Fahrer, Delfina D. de Achával, Elsa Y. Costanzo, Ramón C.

Leiguarda, Martín Nogués, Daniel P. Cardinali and Salvador M. Guinjoan.

Heart rate variability response to mental arithmetic stress is abnormal in

first-degree relatives of individuals with schizophrenia. Schizophrenia Re-

search, vol. 109, no. 1, pages 134–140, 2009. 157

[Chen & Yang 2005] Liming Chen and Xueqiang Yang. Applying AI Planning to

Semantic Web Services for Workflow Generation. In SKG ’05: Proceedings

of the First International Conference on Semantics, Knowledge and Grid,

page 65, Washington, DC, USA, 2005. IEEE Computer Society. 184

[Coen 1997] Michael H. Coen. Building Brains for Rooms: Designing Distributed

Software Agents. In AAAI/IAAI, pages 971–977, 1997. v, 15, 17, 49

Bibliography 215

[Connelly & Khalil 2004] Kay Connelly and Ashraf Khalil. On Negotiating Au-

tomatic Device Configuration in Smart Environments. Pervasive Comput-

ing and Communications Workshops, IEEE International Conference on,

vol. 0, page 213, 2004. v, 15, 21

[Connelly 2007] Kay Connelly. On Developing a Technology Acceptance Model

for Pervasive Computing. In Ubiquitous System Evaluation (USE) – a

workshop at the Ninth International Conference on Ubiquitous Computing,

September 2007. 148, 180

[Corkill 1979] Daniel D. Corkill. Hierarchical planning in a distributed environ-

ment. In IJCAI’79: Proceedings of the 6th international joint conference

on Artificial intelligence, pages 168–175, San Francisco, CA, USA, 1979.

Morgan Kaufmann Publishers Inc. 42

[Cummings et al. 2007] M.L. Cummings, S. Bruni, S. Mercier and P.J. Mitchell.

Automation Architecture for Single Operator, Multiple UAV Command and

Control. The International C2 Journal, vol. 1, no. 2, pages 1–24, 2007. 6

[Das et al. 2002] Sajal K. Das, Diane J. Cook, Amiya Bhattacharya, Edwin

O. Heierman III and Tze-Yun Lin. The Role of Prediction Algorithms in

the MavHome Smart Home Architecture. IEEE Wireless Communications,

vol. 9, no. 6, pages 77–84, December 2002. v, 15, 19, 49

[Davis et al. 1989] Fred D. Davis, Richard P. Bagozzi and Paul R. Warshaw. User

acceptance of computer technology: a comparison of two theoretical mod-

els. Manage. Sci., vol. 35, no. 8, pages 982–1003, 1989. 142

[Davis 1989] Fred D. Davis. Perceived Usefulness, Perceived Ease of Use, and

User Acceptance of Information Technology. MIS Quarterly, vol. 13, no. 3,

pages 319–339, 1989. 148, 176

[Decugis & Ferber 1998] Vincent Decugis and Jacques Ferber. An extension of

Maes’ Action Selection Mechanism for Animats. In SAB’98, pages 153–

158, Cambridge, MA, USA, 1998. MIT Press. 53

[Dimitrov et al. 2007] Marin Dimitrov, Alex Simov, Vassil Momtchev and Mihail

Konstantinov. WSMO Studio - A Semantic Web Services Modelling Envi-

ronment for WSMO. In Enrico Franconi, Michael Kifer and Wolfgang May,

216 Bibliography

editors, ESWC, volume 4519 of Lecture Notes in Computer Science, pages

749–758. Springer, 2007. 186, 190

[Dorer 1999] Klaus Dorer. Behavior Networks for Continuous Domains using

Situation-Dependent Motivations. In IJCAI, pages 1233–1238, 1999. 52

[Dorigo et al. 1996] Marco Dorigo, Vittorio Maniezzo and Alberto Colorni. The

Ant System: Optimization by a colony of cooperating agents. IEEE Trans-

actions on Systems, Man, and Cybernetics-Part B, vol. 26, pages 29–41,

1996. 46

[Durfee & Lesser 1991] E.H. Durfee and V.R. Lesser. Partial global planning:

a coordination framework for distributed hypothesis formation. Systems,

Man and Cybernetics, IEEE Transactions on, vol. 21, no. 5, pages 1167–

1183, Sep/Oct 1991. 42

[Elenius et al. 2005] Daniel Elenius, Grit Denker, David Martin, Fred Gilham,

John Khouri, Shahin Sadaati and Rukman Senanayake. The OWL-S Ed-

itor - A Development Tool for Semantic Web Services. In Proceedings of

the Second European Semantic Web Conference, pages 78–92, Heraklion,

Crete, Greece, 2005. 186, 189

[Erl 2007] Thomas Erl. SOA Principles of Service Design. Prentice Hall, Upper

Saddle River, NJ, USA, 2007. 29

[Feier & Domingue 2005] Cristina Feier and John Domingue. D3.1v0.1 WSMO

Primer. http://www.wsmo.org/TR/d3/d3.1/v0.1, April 2005. Accessed

April 26, 2010. 189

[Fensel et al. 2006] Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn,

Michael Stollberg, Dumitru Roman and John Domingue. Enabling Seman-

tic Web Services – The Web Service Modeling Ontology. Springer, 2006.

188

[Ferguson 1992] Innes A. Ferguson. Touring Machines: Autonomous Agents with

Attitudes. Computer, vol. 25, no. 5, pages 51–55, 1992. 36, 55, 112

[Flach 1994] Peter Flach. Simply Logical: Intelligent Reasoning by Example. John

Wiley & Sons, Inc., New York, NY, USA, 1994. 64

Bibliography 217

[Fox & Long 2003] Maria Fox and Derek Long. PDDL2.1: An Extension to

PDDL for Expressing Temporal Planning Domains. J. Artif. Intell. Res.

(JAIR), vol. 20, pages 61–124, 2003. 126

[Franklin 1998] David Franklin. Cooperating with people: the Intelligent Class-

room. In AAAI/IAAI, pages 555–560, 1998. v, 15, 23

[Frick 1996] Robert W. Frick. The appropriate use of null hypothesis testing. Psy-

chological Methods, vol. 1, no. 4, pages 379–390, 1996. 165

[Fujii & Suda 2004] Keita Fujii and Tatsuya Suda. Dynamic service composition

using semantic information. In ICSOC ’04: Proceedings of the 2nd in-

ternational conference on Service oriented computing, pages 39–48, New

York, NY, USA, 2004. ACM. v, 15, 24

[Garlan et al. 2002] David Garlan, Dan Siewiorek, Asim Smailagic and Peter

Steenkiste. Project Aura: Toward Distraction-Free Pervasive Computing.

IEEE Pervasive Computing, vol. 1, no. 2, pages 22–31, 2002. v, 15, 24

[Georgeff 1988] M. P. Georgeff. Communication and interaction in multi-agent

planning. pages 200–204, 1988. 42

[Gerber et al. 2005] Andreas Gerber, Matthias Klusch and Marcus Schmidt. Se-

mantic Web Service Composition Planning with OWLS-Xplan. In Proceed-

ings 1st International AAAI Fall Symposium on Agents and the Semantic

Web, Arlington VA, USA, 2005. 184, 187

[Ghallab et al. 1998] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDer-

mott, Ashwin Ram, Manuela Veloso, Daniel Weld and David Wilkins.

PDDL – The Planning Domain Definition Language. Technical report

CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and

Control, 1998. 39, 67, 80, 123, 183

[Giersich & Kirste 2007] Martin Giersich and Thomas Kirste. Effects of Agendas

on Model-based Intention Inference of Cooperative Teams. In Proceedings

of CollaborateCom, 2007. 4

218 Bibliography

[Giersich 2010] Martin Giersich. Real-time Intention Analysis in Teams: Concept

of a Robust and Training-free Probabilistic System for Real-time Inten-

tion Analysis in Teams. Suedwestdeutscher Verlag fuer Hochschulschriften,

2010. 80

[Gomadam et al. 2005] K. Gomadam, K. Verma, D. Brewer, A. Sheth and

J. Miller. Radiant: A tool for semantic annotation of Web Services. In

4th International Semantic Web Conference, 2005. 186, 192

[Hamann & Wörn 2007] Heiko Hamann and Heinz Wörn. Embodied Computa-

tion. Parallel Processing Letters, vol. 17, no. 3, pages 287–298, September

2007. 46, 54

[Heider & Kirste 2002] Thomas Heider and Thomas Kirste. Supporting Goal-

Based Interaction with Dynamic Intelligent Environments. In Proceedings

of ECAI’2002, pages 596–600, 2002. 40, 144, 183, 185, 188

[Heider 2010] Thomas Heider. Goal-based Interaction with Smart Environments:

A Unified Distributed System Architecture. Suedwestdeutscher Verlag fuer

Hochschulschriften, 2010. 28, 80, 152

[Horrocks et al. 2004] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said

Tabet, Benjamin Grosof and Mike Dean. SWRL: A Semantic Web Rule Lan-

guage Combining OWL and RuleML. W3C Member Submission, World

Wide Web Consortium, 2004. 192

[IPC 2008] IPC. Booklet of the competing planners in the sixth International Plan-

ning Competition (IPC-6). Sydney, Australia, 2008. 26

[Issarny et al. 2005] Valérie Issarny, Daniele Sacchetti, Ferda Tartanoglu,

Françoise Sailhan, Rafik Chibout, Nicole Levy and Angel Talamona. De-

veloping Ambient Intelligence Systems: A Solution based on Web Services.

Automated Software Engg., vol. 12, no. 1, pages 101–137, 2005. v, 15, 17,

43

[Itoh et al. 1999] M. Itoh, G. Abe and K. Tanaka. Trust in and Use of Automation:

Their Dependence on Occurrence Patterns of Malfunctions. In Proc. IEEE

Systems, Man, and Cybernetics Conference, pages 715–720, 1999. 146

Bibliography 219

[Jeronimo & Weast 2003] Michael Jeronimo and Jack Weast. UPnP Design by

Example: A Software Developer’s Guide to Universal Plug and Play. Intel

Press, 2003. 193

[Juric 2006] Matjaz B. Juric. Business Process Execution Language for Web Ser-

vices BPEL and BPEL4WS. Packt Publishing, 2nd edition, 2006. 38

[Kaelbling 1991] Leslie Pack Kaelbling. A situated-automata approach to the de-

sign of embedded agents. SIGART Bull., vol. 2, no. 4, pages 85–88, 1991.

48

[Karrer et al. 2009] Katja Karrer, Charlotte Glaser, Caroline Clemens and Carmen

Bruder. Technikaffinität erfassen - der Fragebogen TA-EG. In Der Men-

sch als Mittelpunkt technischer Systeme. 8. Berliner Werkstatt Mensch-

Maschine-Systeme (ZMMS Spektrum, Reihe 22, Nr. 29), pages 196–201,

2009. 160

[Kirste 2000] Thomas Kirste. Spezifikation des Planungsassistenten. Internal

Document of the EMBASSI project, 2000. v, 15, 23

[Klein 2004] Michael Klein. Handbuch zur DIANE Service Description. Technical

report 2004-17, Universität Karlsruhe, Faculty of Informatics, December

2004. 186, 190

[KNX 2009] KNX Association (Official Website), 2009. http://www.knx.org

(accessed November 19, 2009). 33

[Kopecký et al. 2006] Jacek Kopecký, Dumitru Roman, Matthew Moran and Di-

eter Fensel. Semantic Web Services Grounding. In AICT-ICIW ’06, page

127, Washington, DC, USA, 2006. IEEE Computer Society. 189

[Kopecký et al. 2007] Jacek Kopecký, Tomas Vitvar, Carine Bournez and Joel Far-

rell. SAWSDL: Semantic Annotations for WSDL and XML Schema. IEEE

Internet Computing, vol. 11, no. 6, pages 60–67, 2007. 186, 192

[Küngas 2002] Peep Küngas. Embedding Symbolic Reasoning to Reactive Con-

trol. In Proceedings of the Baltic Conference, BalticDB&IS 2002, pages

263–268. Institute of Cybernetics at Tallin Technical University, 2002. 36,

56

http://www.knx.org

220 Bibliography

[Küster et al. 2007] Ulrich Küster, Birgitta König-Ries, Mirco Stern and Michael

Klein. DIANE: an integrated approach to automated service discovery,

matchmaking and composition. In WWW ’07, pages 1033–1042, New

York, NY, USA, 2007. ACM Press. 43, 190

[Küster et al. 2008] Ulrich Küster, Birgitta König-Ries and Andreas Krug. OPOS-

Sum - An Online Portal to Collect and Share Semantic Service Descrip-

tions. In Proceedings of the 5th European Semantic Web Conference

(ESWC08), Poster Session, Tenerife, Canary Islands, Spain, June 2008.

194

[Laitenberger & Dreyer 1998] O. Laitenberger and H.M. Dreyer. Evaluating the

usefulness and the ease of use of a Web-based inspection data collection

tool. In Software Metrics Symposium, 1998. Metrics 1998. Proceedings.

Fifth International, pages 122–132, Nov 1998. 148

[Lausen et al. 2005] H. Lausen, A. Polleres and D. Roman. Web Service Modeling

Ontology (WSMO). W3C Member Submission, 2005. 186, 189

[Lee & See 2004] John D. Lee and Katrina A. See. Trust in automation: Design-

ing for appropriate reliance. Human Factors, vol. 46, pages 50–80, 2004.

142, 145, 146

[Lesser et al. 1999] Victor Lesser, Michael Atighetchi, Brett Benyo, Bryan Hor-

ling, Anita Raja, Regis Vincent, Thomas Wagner, Ping Xuan and

Shelly XQ Zhang. A Multi-Agent System for Intelligent Environment Con-

trol. Technical report, University of Massachusetts, January 1999. v, 15,

22

[Lieberman & Espinosa 2006] Henry Lieberman and José Espinosa. A goal-

oriented interface to consumer electronics using planning and common-

sense reasoning. In IUI ’06: Proceedings of the 11th international confer-

ence on Intelligent user interfaces, pages 226–233, New York, NY, USA,

2006. ACM Press. 41, 144

[Liu et al. 2003] Jiming Liu, Chi Kuen Wong and Ka Keung Hui. An Adaptive

User Interface Based On Personalized Learning. IEEE Intelligent Systems,

vol. 18, no. 2, pages 52–57, 2003. 179

Bibliography 221

[Lueg 2002] Christopher Lueg. On the Gap between Vision and Feasibility. In Per-

vasive ’02: Proceedings of the First International Conference on Pervasive

Computing, pages 45–57, London, UK, 2002. Springer-Verlag. 152

[Maes 1989] Pattie Maes. The Dynamics of Action Selection. In IJCAI, pages

991–997, 1989. 109

[Maes 1990a] Pattie Maes. How To Do The Right Thing. Connection Science

Journal, Special Issue on Hybrid Systems, vol. 1, pages 291–323, 1990. 97

[Maes 1990b] Pattie Maes. Situated Agents Can Have Goals. In Pattie Maes,

editor, Designing Autonomous Agents, pages 49–70. MIT Press, 1990. 11,

45, 51, 103

[Marquardt & Uhrmacher 2009] Florian Marquardt and Adelinde Uhrmacher.

Creating AI Planning Domains for Smart Environments Using PDDL.

In Intelligent Interactive Assistance and Mobile Multimedia Computing,

pages 263–274. Springer, 2009. 16, 25

[Martin et al. 2004] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,

S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, TR Payneet al. OWL-S:

Semantic Markup for Web Services. W3C Member Submission, 2004. 186,

187

[Maxwell & Delaney 2003] Scott E. Maxwell and Harold D. Delaney. Design-

ing Experiments and Analyzing Data: A Model Comparison Perspective.

Routledge Academic, 2nd edition, 2003. 167

[Mayring 2000] Philipp Mayring. Qualitative Content Analysis. FQS, vol. 1, no. 2,

2000. 173

[Misker et al. 2005] Jan M. V. Misker, Jasper Lindenberg and Mark A. Neerincx.

Users want simple control over device selection. In sOc-EUSAI ’05: Pro-

ceedings of the 2005 joint conference on Smart objects and ambient intel-

ligence, pages 129–134, New York, NY, USA, 2005. ACM. v, 15, 20

[Mokhtar et al. 2005] Sonia Ben Mokhtar, Nikolaos Georgantas and Valérie Is-

sarny. Ad Hoc Composition of User Tasks in Pervasive Computing Envi-

222 Bibliography

ronments. In Thomas Gschwind, Uwe Aßmann and Oscar Nierstrasz, ed-

itors, Software Composition, volume 3628 of Lecture Notes in Computer

Science, pages 31–46. Springer, 2005. v, 15, 18

[Money & Turner 2004] William Money and Arch Turner. Application of the

Technology Acceptance Model to a Knowledge Management System. In

HICSS ’04: Proceedings of the Proceedings of the 37th Annual Hawaii

International Conference on System Sciences (HICSS’04) - Track 8, page

80237.2, Washington, DC, USA, 2004. IEEE Computer Society. 148

[Mozer 2005] Michael C. Mozer. Lessons from an adaptive home. Smart Environ-

ments: Technology, Protocols, and Applications, pages 273–298, 2005. v,

15, 20, 50

[Muir & Moray 1996] Bonnie M. Muir and Neville Moray. Trust in automation.

Part II. Experimental studies of trust and human intervention in a process

control simulation. Ergonomics, vol. 39, no. 3, pages 429–460, 1996. 142,

145, 147, 154, 170, 174

[Muir 1994] Bonnie M. Muir. Trust in automation: Part I. Theoretical issues in the

study of trust and human intervention in automated systems. Ergonomics,

vol. 37, no. 11, pages 1905–1922, 1994. 30, 142, 150

[Müller et al. 1994] Jörg P. Müller, Markus Pischel and Michael Thiel. Modeling

Reactive Behaviour in Vertically Layered Agent Architectures. In Michael

Wooldridge and Nicholas R. Jennings, editors, ECAI Workshop on Agent

Theories, Architectures, and Languages, volume 890 of Lecture Notes in

Computer Science, pages 261–276. Springer, 1994. 54, 55

[Müller 1996] Jörg P. Müller. A Cooperation Model for Autonomous Agents. In

Jörg P. Müller, Michael Wooldridge and Nicholas R. Jennings, editors,

ATAL, volume 1193 of Lecture Notes in Computer Science, pages 245–

260. Springer, 1996. 57

[Paluska et al. 2006] Justin Mazzola Paluska, Hubert Pham, Umar Saif, Chris

Terman and Steve Ward. Reducing Configuration Overhead with Goal-

oriented Programming. Pervasive Computing and Communications Work-

Bibliography 223

shops, IEEE International Conference on, vol. 0, pages 596–599, 2006. v,

15, 21

[Paolucci & Sycara 2003] Massimo Paolucci and Katia P. Sycara. Autonomous

Semantic Web Services. IEEE Internet Computing, vol. 7, no. 5, pages

34–41, 2003. 38

[Parasuraman 1997] Raja Parasuraman. Humans and Automation: Use, Misuse,

Disuse, Abuse. Human Factors, vol. 39, no. 2, pages 230–253, 1997. 31,

142, 145, 150, 170

[Plociennik et al. 2009] Christiane Plociennik, Christoph Burghardt, Florian Mar-

quardt, Thomas Kirste and Adelinde Uhrmacher. Modelling Device Ac-

tions in Smart Environments. In Proceedings of International Conference

on Intelligent Interactive Assistance and Mobile Multimedia Computing,

Rostock, Germany, November 9-11 2009. 13

[Plociennik et al. 2010] Christiane Plociennik, Hartmut Wandke and Thomas

Kirste. What Influences User Acceptance of Ad-hoc Assistance Systems?

– A Quantitative Study. In Proceedings of MMS, Göttingen, Germany,

February 23-25 2010. 13

[Proud et al. 2003] Ryan W. Proud, Jeremy J. Hart, and Richard B. Mrozinski.

Methods for Determining the Level of Autonomy to Design into a Human

Spaceflight Vehicle: A Function Specific Approach. In Proceedings of the

2003 Conference on Performance Metric for Intelligent Systems, 2003. 6

[Qiu et al. 2006] Lirong Qiu, Fen Lin, Changlin Wan and Zhongzhi Shi. Semantic

Web Services Composition Using AI Planning of Description Logics. In

APSCC ’06, pages 340–347, Washington, DC, USA, 2006. IEEE Com-

puter Society. 184

[Rao et al. 2006] Jinghai Rao, Peep Küngas and Mihhail Matskin. Composition

of semantic web services using linear logic theorem proving. Inf. Syst.,

vol. 31, no. 4, pages 340–360, 2006. 38

[Reisse & Kirste 2008a] Christiane Reisse and Thomas Kirste. A Distributed Ac-

tion Selection Mechanism for Device Cooperation in Smart Environments.

224 Bibliography

In Proceedings of the 4th International Conference on Intelligent Environ-

ments, Seattle, USA, 2008. 12, 13

[Reisse & Kirste 2008b] Christiane Reisse and Thomas Kirste. A distributed

mechanism for device cooperation in Smart Environments. In Advances in

Pervasive Computing. Adjunct proceedings of the 6th International Confer-

ence on Pervasive Computing, pages 53–56, Sydney, Australia, May 19-22

2008. 12, 13

[Reisse et al. 2007] Christiane Reisse, Thomas Heider and Thomas Kirste. A sur-

vey of Ambient Intelligence projects regarding the generation of strategies

for coherent intelligent behavior. In Proceedings of KI’2007 Workshop:

Towards Ambient Intelligence: Methods for Cooperating Ensembles in

Ubiquitous Environments (AIM-CU), Osnabrueck, Germany, 2007. 12

[Reisse et al. 2008a] Christiane Reisse, Christoph Burghardt, Florian Marquardt

and Thomas Kirste. Intelligente Umgebungen und das Semantic Web. In-

formation Management & Consulting, vol. 23(2), pages 28–33, May 2008.

13

[Reisse et al. 2008b] Christiane Reisse, Christoph Burghardt, Florian Marquardt,

Thomas Kirste and Adelinde Uhrmacher. Smart Environments Meet the

Semantic Web. In Proceedings of the 7th International ACM Conference on

Mobile and Ubiquitous Multimedia, Umeå, Sweden, December 3-5 2008.

13

[Röcker et al. 2005] Carsten Röcker, Maddy D. Janse, Nathalie Portolan and Nor-

bert Streitz. User requirements for intelligent home environments: a

scenario-driven approach and empirical cross-cultural study. In sOc-

EUSAI ’05: Proceedings of the 2005 joint conference on Smart objects and

ambient intelligence, pages 111–116, New York, NY, USA, 2005. ACM. 30

[Russell & Norvig 2003] Stuart Russell and Peter Norvig. Artificial Intelligence:

A Modern Approach. Prentice-Hall, 2nd edition, 2003. 70

[Russell & Norvig 2010] Stuart Russell and Peter Norvig. Artificial Intelligence:

A Modern Approach. Prentice-Hall, 3rd edition, 2010. 39, 68

Bibliography 225

[Saif et al. 2003] Umar Saif, Hubert Pham, Justin Mazzola Paluska, Jason Water-

man, Chris Terman and Steve Ward. A Case for Goal-oriented Program-

ming Semantics. In Workshop on System Support for Ubiquitous Comput-

ing (UbiSys’03) at UbiComp 2003, Seattle, USA, Oct 2003. 41, 144

[Scholtz & Consolvo 2004] Jean Scholtz and Sunny Consolvo. Toward a Frame-

work for Evaluating Ubiquitous Computing Applications. IEEE Pervasive

Computing, vol. 3, no. 2, pages 82–88, 2004. 148

[Sheridan 2002] Thomas B. Sheridan. Humans and Automation: System Design

and Research Issues. John Wiley & Sons, Inc., New York, NY, USA, 2002.

6

[Sheshagiri et al. 2004] Mithun Sheshagiri, Norman M. Sadeh and Fabien Gan-

don. Using Semantic Web Services for Context-Aware Mobile Applica-

tions. In Proceedings of MobiSys2004 workshop on context awareness,

pages 782–796, Boston USA, 2004. 184

[Singleton 2002] Darran Singleton. An Evolvable Approach to the Maes Action

Selection Mechanism. citeseer.ist.psu.edu/536400.html, 2002. 52

[Sirin et al. 2004] E. Sirin, B. Parsia, D. Wu, J. Hendler and D. Nau. HTN planning

for web service composition using SHOP. Journal of Web Semantics, vol. 1

(4), pages 377–396, 2004. 184

[Smith 1980] Reid G. Smith. The Contract Net Protocol: High-Level Communica-

tion and Control in a Distributed Problem Solver. IEEE Trans. Computers,

vol. 29, no. 12, pages 1104–1113, 1980. 44

[Spiekermann 2008] Sarah Spiekermann. User Control in Ubiquitous Computing:

Design Alternatives and User Acceptance. Shaker, Aachen, 2008. 149

[Spivey 1992] J. Michael Spivey. The Z notation: a reference manual. 2nd edition,

1992. 64

[Stoy 1977] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-

proach to Programming Language Theory. MIT Press, 1977. First edition

published in 1940. 65

226 Bibliography

[Tyrrell 1993] Toby Tyrrell. Computational Mechanisms for Action Selection.

PhD thesis, University of Edinburgh, 1993. 103

[Vallée et al. 2005] M. Vallée, F. Ramparany and L. Vercouter. Flexible Compo-

sition of Smart Device Services. In The 2005 International Conference on

Pervasive Systems and Computing (PSC-05), Las Vegas, USA, Jun 27-30

2005. 43

[Van Gemmert & Van Galen 1997] Arend Van Gemmert and Gerard Van Galen.

Stress, neuromotor noise, and human performance: A theoretical perspec-

tive. Journal of Experimental Psychology: Human Perception and Perfor-

mance, vol. 23, no. 5, pages 1299–1313, 1997. 157

[van Orman Quine 2003] Willard van Orman Quine. Mathematical Logic. Har-

vard University Press, revised edition, 2003. First edition published in

1940. 203

[Venkatesh et al. 2003] Viswanath Venkatesh, Michael G. Morris, Gordon B.

Davis and Fred D. Davis. User Acceptance of Information Technology:

Toward a Unified View. MIS Quarterly, vol. 27, no. 3, 2003. 148

[Waldinger 2001] Richard J. Waldinger. Web Agents Cooperating Deductively.

In FAABS ’00: Proceedings of the First International Workshop on For-

mal Approaches to Agent-Based Systems-Revised Papers, pages 250–262,

London, UK, 2001. Springer-Verlag. 38

[Wandke 2005] Hartmut Wandke. Assistance in human-machine interaction: a

conceptual framework and a proposal for a taxonomy. Theoretical Issues

in Ergonomics Science, vol. 6, no. 2, pages 129–155, 2005. 6, 7, 143, 151

[Weiser 1991] Mark Weiser. The Computer for the 21st Century. Scientific Amer-

ican, vol. 265, no. 3, pages 66–75, September 1991. 2, 30

[Weiss 1999] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach

to Distributed Artificial Intelligence. MIT Press, Cambridge, MA, USA,

1999. 36

[Weyns et al. 2008] Danny Weyns, Nelis Boucké and Tom Holvoet. A field-based

versus a protocol-based approach for adaptive task assignment. Au-

tonomous Agents and Multi-Agent Systems, vol. 17, no. 2, pages 288–319,

2008. 47

[Witt et al. 2007] H. Witt, T. Nicolai and H. Kenn. The WUI-Toolkit: A Model-

Driven UI Development Framework for Wearable User Interfaces. In 27th

International Conference on Distributed Computing Systems Workshops

(ICDCSW’07), June 2007. 178

[Wooldridge 2001] Michael J. Wooldridge. Multi-agent systems : an introduction.

Wiley, Chichester, 2001. GBA1-Z6596 Michael Woolridge. 32, 36, 38, 45,

53, 63, 113, 114

[Wu et al. 2003] Dan Wu, Bijan Parsia, Evren Sirin, James A. Hendler and Dana S.

Nau. Automating DAML-S Web Services Composition Using SHOP2. In

Proceedings of the 2nd International Semantic Web Conference, pages

195–210, 2003. 184

[Yang et al. 2006] Yuping Yang, Fiona Mahon, M. Howard Williams and Tom

Pfeifer. Context-Aware Dynamic Personalised Service Re-composition in a

Pervasive Service Environment. In Jianhua Ma, Hai Jin, Laurence Tianruo

Yang and Jeffrey J. P. Tsai, editors, UIC, volume 4159 of Lecture Notes in

Computer Science, pages 724–735. Springer, 2006. v, 15, 25

[Ziliak & McCloskey 2004] Stephen T. Ziliak and Deirdre N. McCloskey. Size

Matters: The Standard Error of Regressions in the American Economic Re-

view. Journal of Socio-Economics, vol. 33, no. 5, pages 527–546, Novem-

ber 2004. 165

Theses

1. In environments with a complex device infrastructure it is beneficial to assist

the user proactively in operating this infrastructure. In other words, it is

beneficial to make such environments smart.

2. In smart environments, the device ensemble should generate and execute a

strategy that fulfills the user’s goals in the environment, while the user should

be given the possibility to override the decisions of the ensemble.

3. The strategy synthesis in smart environments should be able to generate se-

quences of actions of moderate length.

4. The strategy synthesis in smart environments should exhibit rational behav-

ior.

5. The strategy synthesis in smart environments should support persistent ac-

tions.

6. Smart ad-hoc smart environments do not contain a fixed device infrastruc-

ture: Devices may join and leave at run-time. Here, the strategy synthesis

should be carried out spontaneously.

7. In smart ad-hoc environments, the strategy synthesis should be robust.

8. In smart ad-hoc environments, the strategy synthesis should be flexible.

9. In smart ad-hoc environments, it is desirable that the strategy synthesis is

carried out in a distributed fashion.

10. If the goals of the user are known to the ensemble, it can generate an action

sequence that fulfills these goals in a completely distributed fashion.

11. Neither reactive nor deliberative approaches for the strategy synthesis are

optimal for smart ad-hoc environments. A hybrid approach that combines

both paradigms is suited better.

12. The strategy synthesis mechanism we propose in this thesis is hybrid: It

combines a reactive mechanism with a deliberative step. Hence, it profits

from the advantages of both paradigms: It is architecturally simple and can

be carried out completely distributed like reactive approaches, but is goal-

oriented like deliberative approaches.

13. The approach is based on the assumption that each device provides declar-

ative descriptions of its actions to the ensemble. Furthermore, all devices

carry out the same algorithm and select actions at run-time via communica-

tion. Hence, the approach is spontaneous, flexible, and robust, which is key

in ad-hoc environments.

14. The approach does not only allow for distribution at run-time, but also at

design-time: Developers can write action descriptions for devices without

knowing about other developers’ action descriptions.

15. As the approach is completely distributed and no device has global knowl-

edge, the resulting action sequences are often not optimal, or, in other words,

the assistance is not completely rational. Nevertheless, users accept such as-

sistance if they perceive that it offers them an advantage compared to manual

control of the environment.

16. Acceptance of an assistance system for smart ad-hoc environments depends

on:

(a) task load: Under the influence of an increased task load, people per-

ceive the assistance system as more useful than when relaxed.

(b) experience: Experienced users find the assistance system easier to use

than those with no experience.

(c) the behavior of the automatic assistance: When the assistance system

exhibits suboptimal behavior, people perceive it as less useful than

when it acts fully rational. On the other hand, the more benefit the

automatic assistance offers over manual control, the more useful it is

perceived even if it does not exhibit fully rational behavior.

(d) technophilia: Moderately and very technophilic people perceive the as-

sistance system as more useful than averagely technophilic people.

17. In smart environments, it is a challenge to make action descriptions of dif-

ferent devices compatible. To achieve this, the action descriptions must be

written in a common language. In principle, semantic web languages are

suited for this.

Note

Christiane Reiße is Christiane Plociennik’s birth name.

E-mail: chre@hrz.tu-chemnitz.de

	Introduction
	What Are Smart Environments?
	What Is User Assistance?
	Which Assistance Does The User Want?
	Outline and Contributions of this Thesis

	Smart Environments -- A Domain Analysis
	Survey of Smart Environment Scenarios
	The Ozone Project Issarny05Developing
	The Intelligent Room coen97building
	The Amigo project MokhtarGI05
	Amigoni et al. amigoni05What
	MavHome Das:2002lr
	Adaptive Home Mozer05
	Misker et al. Misker2005
	Connelly and Khalil Connelly2004
	Just Play Mazzola2006
	IHome Lesser1999
	Intelligent Classroom IntelligentClassroom98
	The EMBASSI project kirste2000
	Fujii and Suda Fujii2004
	Aura Garlan2002
	Project Daidalos Yang2006

	Requirements on the Strategy Synthesis
	Which Kind of Assistance in Terms of Wandke's Framework?
	The Device Ensemble -- A Multi-Agent System
	Chapter Summary

	Related Work
	Deliberative Control
	Theorem Proving
	Planning
	Matchmaking
	ContractNet
	Benefits and Shortcomings of Deliberative Control

	Reactive Control
	Swarm Intelligence
	Embodied Computation
	Field-based Task Assignment
	Condition-Action Rules
	Subsumption Architecture
	Pattern Matching
	Artificial Neural Networks
	Maes' Spreading Activation Networks
	Benefits and Shortcomings of Reactive Control

	Hybrid Approaches
	Horizontally Layered Architectures
	Vertically Layered Architectures

	Chapter Summary

	The AdDCo Algorithm
	Preliminaries: Operators -- Syntax and Meaning
	Syntax
	Operations on Expressions
	Worlds; Semantics
	Operators

	Maes' Action Selection Algorithm
	The PM Algorithm

	Maes' Algorithm in Smart Environments
	The AdDCo Algorithm
	The Overall System Architecture
	The Architecture of a CompMod
	The Message Vectors
	Parsing the Message Vectors
	Operator Schemes and Instantiation
	Link Schemes and Linked Operators
	Building up the World Model
	Adding CompModInsts to the Reduced Network
	Deleting CompModInsts from the Reduced Network
	Executability of CompModInsts
	The Action Selection Algorithm
	Differences to the PM Algorithm

	Evaluation of the AdDCo Algorithm
	Scenario 1: Adjusting the Light Level
	Scenario 2: Projector Scenario I
	Scenario 3: Tracking the Speaker with a Movable Camera
	Scenario 4: Projector Scenario II
	Results
	Discussion

	Classification of the AdDCo architecture
	On the Single-Agent Level: A Temporally Layered Architecture
	On the Multi-Agent-Level: Different Phases in Wooldridge's and Jennings' CDPS model

	Chapter Summary

	Enhancing the AdDCo Algorithm
	Enhancing Flexibility: Supporting Universally Quantified Effects
	The Persistent Action Problem
	Solving the Persistent Action Problem Using Planning: The Locks Approach
	Solving the Persistent Action Problem with the AdDCo Algorithm: The Guarding Approach
	Comparing the Two Paradigms

	Enhancing Design-time Modularization: Hiding CompMods and CompModInsts
	Chapter Summary

	User Study
	Related Work
	Proactive Assistance Systems
	Research on the Effects of Automation
	Models for Evaluating Ubiquitous Computing Applications

	The Assistance System Used for the Study
	Conducting the User Study
	The Design of the Study
	Experimental Procedure
	Hypotheses

	Results of the User Study
	Manipulation Checks
	Quantitative Findings of the User Study
	Comments Given by the Participants

	Scheme of User Acceptance and Performance
	Ad-hoc Assistance Systems and Wandke's Framework
	Implications for User Interface Design of Ubiquitous Computing Systems
	Limitations of the Study
	Chapter Summary

	Providing Declarative Action Descriptions
	Related Work
	Semantic Web Services
	OWL-S
	WSMO
	DSD
	WSDL-S and SAWSDL
	Benefits and shortcomings

	Embracing the Semantic Web
	Chapter Summary

	Conclusion and Outlook
	Key Results
	Outlook

	Appendix
	Notational Conventions
	Example: Instantiating an Operator Scheme Containing a Universally Quantified Effect

	Bibliography

