
Task-based Adaptation

of Graphical Content

in Smart Visual Interfaces

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik
der Universität Rostock

vorgelegt von

Dipl.-Inf. Georg Fuchs

aus Bad Oldesloe

Bad Oldesloe, 11. April 2011

zef007
Schreibmaschinentext
 urn:nbn:de:gbv:28-diss2011-0171-1

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

Principal Advisor: Prof. Dr.-Ing. habil. Heidrun Schumann
University of Rostock, Germany

External Reviewers: Prof. Dr.-Ing. habil. Peter Forbrig
University of Rostock, Germany

Prof. Mag. Dr. Silvia Miksch
Vienna University of Technology, Austria

Date of Defense: June 16th, 2011

Abstract

Visual representation has always been an important communication medium to convey
complex facts. In order to be e�ective, a visual representation must be adapted to its
respective context of use. This is a crucial aspect especially in smart visual interfaces
� context-sensitive user interfaces that present to the user as speci�cally as possible
those information and with the level of detail required for her current situation. Of the
in�uencing factors contributing to this context of use, the characteristics of the content
from which the representation is generated and the user's task at hand are the most
important ones.
The goal of this thesis is to provide a basic approach to the task-based adaptation

of visual representations from graphical content in smart visual interfaces, and to detail
concrete solution approaches to associated challenges. The objective of the approach
thereby is to adapt the graphical content associated with the task at hand automatically
in such a way that the content's visual representation provides a good initial view with
respect to information relevant to the current working step.
In this thesis, two core concepts are introduced that facilitate the automatic genera-

tion of task-speci�c visual representations from di�erent types of graphical content based
on a suitable task description. Starting point of the approach is a task model represent-
ing a hierarchical decomposition of the task at hand into interrelated subtasks. The
page/feature concept represents a method to enrich this model with the speci�cation
of graphical content associated with individual working steps as well as relevant repre-
sentation aspects. An adaptation pipeline provides the bridge between the conceptual
task context speci�cation in the enriched task model and concrete display techniques
comprising the functional building blocks of smart visual interfaces.
It is discussed how these concepts are applied to graphical content of each of the

four principal visual data types raster images, 2D vector and 3D graphics as well as
data visualizations. This includes a review on how existing display techniques can be
integrated into the adaptation pipeline approach.
Moreover, several novel display techniques are introduced that address previously open

challenges with respect to task-driven adaptation of visual representations in smart vi-
sual interface. The developed concepts and techniques have been practically employed
in the scope of a joint industry-academia research project underlining their utility for
smart visual interface design.

Keywords: smart visual interface, task-driven, visual representation, adaptation, scal-
able graphics, scalability, task model, smart graphics

CR Classi�cation: H.5.2, I.3.3, I.3.6

i

Zusammenfassung

Visuelle Repräsentationen sind schon immer ein wichtiges Medium zur Kommunikation
komplexer Fakten gewesen. Um dies e�ektiv zu gewährleisten, muss eine Repräsenta-
tion an ihren jeweiligen Nutzungskontext angepasst werden. Ein wichtiger Aspekt ist
dies insbesondere im Umfeld sog. Smart Visual Interfaces � kontextsensitive Nutzungs-
schnittstellen, die dem Anwender möglichst genau die Informationen in dem Detailgrad
darbietet, wie es seine momentane Situation erfordert. Von den Ein�ussfaktoren, welche
diesen Nutzungskontext de�nieren, sind Eigenschaften des darzustellenden Inhalts sowie
der aktuellen Nutzeraufgabe am wichtigsten.
Die vorliegende Arbeit hat zum Ziel, einen grundlegenden Ansatz zur aufgabenbasier-

ten Anpassung der visuellen Repräsentation gra�scher Inhalte innerhalb Smart Visual
Interfaces zu entwerfen, sowie konkrete Lösungen zugehöriger Herausforderungen im De-
tail zu betrachten. Der vorgestellte Ansatz zielt dabei darauf ab, eine automatische
Anpassung des graphischen Inhalts durchzuführen dergestalt, dass die Inhaltsrepräsen-
tation eine gute initiale Ansicht in Bezug auf die für die aktuelle Aufgabe benötigten
Informationen darstellt.
In dieser Arbeit werden dazu zwei grundlegende Konzepte vorgestellt, die eine sol-

che Anpassung verschiedener Inhaltstypen auf Grundlage geeigneter Aufgabenbeschrei-
bungen ermöglichen. Ausgangspunkt ist ein Aufgabenmodell, welches eine hierarchische
Dekomposition der aktuellen Aufgabe in zueinander in Beziehung stehende Teilaufga-
ben darstellt. Das page/feature-Konzept ist eine Methode, dieses Ausgangsmodell
um entsprechende Informationen zu einzelnen Arbeitsschritten zugeordneten gra�schen
Inhalten sowie darstellungsrelevanter Aspekte anzureichern. Eine Anpassungspipeline
stellt dabei eine Verbindung zwischen der Spezi�kation des Aufgabenkontextes auf der
konzeptionellen Ebene des erweiterten Aufgabenmodells einerseits und konkreten Dar-
stellungstechniken als funktionale Bausteine Smart Visual Interfaces anderseits dar.
Es wird weiterhin erörtert, wie diese Konzepte auf graphische Inhalte der vier prin-

zipiellen visuellen Datentypen Rastergra�ken, 2D Vektor- und 3D-Gra�ken sowie Da-
tenvisualisierung anwendbar sind. Dies schlieÿt eine Diskussion darüber ein, wie bereits
bestehende Darstellungstechniken in die Anpassungspipeline integriert werden können.
Weiterhin werden mehrere neue Darstellungstechniken vorgestellt, welche bislang of-

fene Herausforderungen in Bezug auf die aufgabenbasierte Anpassung visueller Reprä-
sentationen innerhalb Smart Visual Interfaces adressieren. Die hier entwickelten Ansätze
und Techniken wurden im Rahmen eines industriell-universitärem Verbundprojekt ver-
wendet, was ihre praktische Anwendbarkeit für den Entwurf von Smart Visual Interfaces
belegt.

iii

Acknowledgments

My sincerest thanks go to all the people who advised and encouraged me while con-
ducting, and especially, writing up this thesis. First and foremost, special thanks go to
my supervisor Heidi Schumann. Her constructive criticism of my work and her ability
to put thinks in perspective have been very helpful along the long way from my �rst
ideas to the completion of this thesis. I also want to thank Peter Forbrig from Univer-
sity of Rostock and and Silvia Miksch from Vienna University of Technology for their
acceptance to review my thesis. In addition to my advisors and reviewers, I want to
express my gratitude to my colleagues and friends from the Computer Graphics and
Visual Computing Group. Not only have they been very enjoyable and inspiring com-
pany, they also gave me uncounted opportunities for fruitful discussion and helped in
scrutinizing my work. Here I would like to mention by name Hans-Jörg Schulz, Conrad
Thiede, Christian Tominski and Daniel Reichart with whom I shared many ideas. Fur-
thermore, I thank all my students that contributed bringing several ideas to life through
their research projects and master theses, and my student assistants Ste� Biederstädt,
Daniela Stüwe and Mathias Schröder that helped create many of the software artifacts.

Lastly, and most importantly, I want to thank my beloved Gabi, my family and all
friends for their mental and logistical support. This thesis could not have been written
without you.

v

Contents

1 Introduction 1

2 Basics 5

2.1 De�nition of Terms . 5

2.1.1 Smart Visual Interface . 5

2.1.2 The '5Ws': Context of Use . 6

2.1.3 Scalability . 7

2.1.4 Adaptation . 9

2.1.5 Visual data type . 9

2.1.6 Task . 10

2.2 Application Background . 11

2.2.1 Mobile Maintenance Support . 11

2.2.2 Smart Environments: Smart Meeting Room 14

2.3 Related Work . 16

2.3.1 Task Modeling in UI Design . 16

2.3.2 Scalable Visual Representations 20

2.4 Summary . 31

3 Basic Approach 33

3.1 Scope and Objective of the Approach . 33

3.2 Problem Statement . 36

3.2.1 Requirements for Task Descriptions 37

3.2.2 Adaptation Control . 39

3.2.3 Open Research Questions . 39

3.3 Page-Feature Concept . 40

3.3.1 Concept Overview . 40

3.3.2 What-oriented aspect � Pages 41

3.3.3 Why-oriented aspect � Features 43

3.3.4 How� Generation of Initial Views 48

3.3.5 Manipulation of Initial Views . 54

3.4 Summary . 56

4 Smart Raster Images 61

4.1 Content Preparation: Concepts & Tools 61

4.1.1 De�nition of Pages . 61

4.1.2 De�nition of Features . 62

4.1.3 Feature Relevance Values . 66

vii

Contents

4.2 Adaptation Control . 69

4.2.1 View selection . 70

4.2.2 Geometry adaptation . 71

4.2.3 Visual Attribute Adaptation . 73

4.2.4 Image Space Manipulation . 74

4.2.5 Labeling . 77

4.3 Smart Raster Image Techniques . 78

4.3.1 Belt-based Focus & Context . 79

4.3.2 Space-e�cient Remote Labeling 82

4.4 Summary . 88

5 Smart Vector Graphics 89

5.1 Content Preparation: Concepts & Tools 90

5.1.1 De�nition of Pages . 90

5.1.2 De�nition of Features . 94

5.1.3 Feature Relevance Values . 99

5.2 Adaptation Control . 101

5.2.1 View selection . 102

5.2.2 Geometry adaptation . 103

5.2.3 Visual attribute modi�cation . 107

5.2.4 View Space Manipulation . 109

5.2.5 Labeling . 109

5.3 Smart Vector Graphic Techniques . 111

5.3.1 Smart Exploded View Diagrams 111

5.3.2 Smart Technical Diagrams . 113

5.4 Summary . 119

6 Smart Meshes 123

6.1 Content Preparation: Concepts & Tools 123

6.1.1 De�nition of Pages . 123

6.1.2 De�nition of Features . 124

6.1.3 Feature Relevance Values . 127

6.2 Adaptation Control . 130

6.2.1 View selection . 130

6.2.2 Geometry adaptation . 131

6.2.3 Visual attribute modi�cation . 131

6.2.4 View Space Manipulation . 132

6.2.5 Labeling . 132

6.3 Smart Mesh Exploration Viewer . 133

6.4 Summary . 134

7 Smart Visualization 135

7.1 Preliminary Considerations . 135

7.2 Abstract Data Preparation . 138

7.2.1 De�nition of Pages . 140

viii

Contents

7.2.2 De�nition of Features . 141
7.2.3 Feature Relevance Values . 142

7.3 Adaptation Control . 143
7.3.1 View selection . 144
7.3.2 Geometry adaptation . 144
7.3.3 Visual attribute modi�cation . 145
7.3.4 View Space Manipulation . 145
7.3.5 Labeling . 145

7.4 Smart Visualization Techniques . 146
7.4.1 Smart Lenses . 146
7.4.2 Smart Color Coding . 151

7.5 Summary . 160

8 Implementations 163
8.1 E-manual demonstrator . 163
8.2 Smart Document displays in Smart Meeting Rooms 169
8.3 Summary . 173

9 Conclusion and Future Work 175
9.1 Summary . 175
9.2 Open Questions for Future Research . 177

A XML Schema 181

B Enriched Task Model Example 187

Bibliography 193

List of Abbreviations 213

ix

List of Figures

2.1 High-level categorization of the Context of Use 7
2.2 E-manuals and mobile maintenance scenarios . 12
2.3 Principal components of an e-manual . 13
2.4 Smart Meeting Room example . 15
2.5 Schematic view of the Model-based User Interface Development process 18
2.6 CTT example for a small maintenance task . 19
2.7 Seam carving image re-targeting method . 22
2.8 Rectangular Fisheye View example . 22
2.9 Constraint Scalable vector Graphics (CSVG) . 24
2.10 SVG �oor plan adaptation using an external RDF 25
2.11 3D illustration examples . 26
2.12 Segmentation and semantic annotation of triangle meshes 27
2.13 Visualization design assistance incorporating low-level analysis tasks 30

3.1 Scope of the presented approach . 35
3.2 Illustration of the task model � page annotation strategy 43
3.3 Distribution of page, feature and feature relevance annotations in the hier-

archical task model . 47
3.4 Schematic view of the adaptation pipeline. 50
3.5 Illustration of the necessity for dynamic labeling 51
3.6 Example for the e�ect of interactive feature relevance manipulation 56

4.1 De�nition of raster graphics pages . 62
4.2 Examples of raster image feature regions with respect to maintenance tasks . . 64
4.3 Hierarchical structure of feature annotations for raster images 67
4.4 MaTE authoring tool for raster image page preparation 68
4.5 Automatic relevance-based view selection . 71
4.6 E�ect of a horizontal seam cutting a horizontal line 73
4.7 Extended Seam Carving applied to a raster image of a circuit schematic 74
4.8 Mapping of feature relevance r to color adjustment factors a 75
4.9 Examples for adapted visual representation of raster images 76
4.10 Relevance interval nesting by feature boundary projection 80
4.11 Belt-based distortion of raster images . 81
4.12 ID-bu�er creation procedure . 84
4.13 Distance bu�ers for fast determination of free image space 85
4.14 Comparison between space-e�cient adaptive labeling and Left-and-Right layout . 86
4.15 Schematic illustration of the remote labeling process 87

5.1 Anatomy of an SVG vector graphics page . 92
5.2 SVG content layers . 93
5.3 Feature sub-fragmentation concept . 96
5.4 Hierarchical organization of feature fragments 97
5.5 Example of a fully speci�ed SVG page . 98

xi

List of Figures

5.6 MaTE-SVG authoring tool for vector graphics page preparation 100
5.7 Mapping of feature relevance to SVG scale parameter values 104
5.8 Adjustment of feature positions in reaction to feature scaling 105
5.9 SVG visual attribute adaptation examples . 108
5.10 Example for a combination of discussed adaptation operations 110
5.11 Relevance-driven generation of 'exploded views' 112
5.12 Feature-based exploded view diagram using two nested explosion axes 114
5.13 Typical PDA screen size vs. circuit schematic resolution 114
5.14 Adaptation strategies for diagrammatic representations 115
5.15 Circuit element abstraction using hierarchical features 116
5.16 Simple authoring tool for creating small electric circuit representations 118
5.17 Mapping function to derive the connectivity graph state from feature relevance 118
5.18 Screenshots from the prototypical implementation of Smart diagram layout . . . 120

6.1 Basic idea behind the feature point & core extraction algorithm 126
6.2 MaTE�Mesh authoring tool for 3D graphics pages 128
6.3 Manual mesh segmentation using 3D RoI . 129
6.4 Application of di�erent rendering styles for mesh segment accentuation 132
6.5 Applying a 3D lens to manipulate the LoD in selected object regions. 134

7.1 Visualization Pipeline . 136
7.2 Data State Reference Model . 138
7.3 Task-speci�c association of di�erent visualizations to a data set 141
7.4 Examples of lens declaration scripts . 151
7.5 Examples for Smart Lens visualization adaptation 152
7.6 Task typology for task-driven color coding . 153
7.7 Unsegmented and segmented color scales for identi�cation and localization tasks. 155
7.8 Color scale adaptation . 157
7.9 Visualization of quantitative data on a map . 157
7.10 Color scale for comparison tasks . 158
7.11 Visual comparison of three attributes . 158
7.12 The task-color-cube . 159

8.1 Architecture of the LFS e-manual demonstrator 164
8.2 E-manual application task and dialog models, login dialog 166
8.3 Class diagram of the e-manual demonstrator's visualization component 167
8.4 Initial visual representations for an example maintenance task 168
8.5 Smart View Management Framework proposed by Radlo� et al. 170
8.6 Task-driven adaptive document layout . 171

xii

1 Introduction

Visual representation has always been an important communication medium to convey
complex facts. A visual representation can convey particular information by stressing
its message subject over the faithful representation of reality. This does not only apply
to arts e.g., drawings, paintings and photographs, but even more so to technical and
scienti�c applications, such as technical drawings or schematics, and visualization.
With the continuing pervasion of networked computer devices, the use of computer-

generated visual representations for communication is also increasing. At the same time,
today's computer-aided collecting, processing, and presenting of information results in
ever larger data sets and more complex models. As a consequence, it is often no longer
su�cient to generate a static �one-size-�ts-all� visual representation for communication
of these information. Rather, a visual representation must be adapted to its respective
context of use.
For this reason, the �eld of so-called Smart Graphics has drawn increasing research

interest over recent years. The aim of Smart Graphics is

�the interdisciplinary approach to the design, generation, presentation and
interaction with 2D and 3D graphical interfaces in a manner that is sensi-
tive to technological, computational and cognitive constraints. [...] Smart
Graphics aims to move beyond the current requirement that designers antic-
ipate every data, task and technological scenario, and instead facilitate the
dynamic generation and presentation of content� [BKO00].

Besides an improved visualization of large data, a key goal of Smart Graphics is
the development of e�cient graphical interfaces i.e., Smart Visual Interfaces. A Smart
Visual Interface thus is a context-sensitive user interface that presents to the user exactly
those information and with the level of detail required for her current situation. It must
therefore be determined what content (which information) must be presented why
(which task) to whom (user), when (in the context of composite work�ows)and where
(which output device). Based on these questions a visual representation is generated,
and as the context changes, the representation adapts accordingly.
These '5Ws' can be considered an informal, high-level categorization of the in�uencing

factors de�ning the Smart Visual Interface's Context of Use. Their adequate consider-
ation determines whether the intended communicative goal associated with a visual
representation can be attained. However, the multitude of in�uencing factors usually
does not permit a complete solution. For this reason, contemporary approaches for the
systematic generation of visual representations focus on some aspects while neglecting
others.
It is generally accepted that the what and why are by far the most important factors

to be addressed. This is also well re�ected in related literature. Most approaches do

1

1 Introduction

indeed consider the characteristics of the data to be displayed (cf. e.g., [Mac86, Shn96,
FFIT00]). Surprisingly few, however, contemplate the goal a user pursues with a visual
representation, and even those that do incorporate only tasks on a relatively low level
like locating and comparing values (e.g., [Shn96, FFIT00, ZCF02]). This is despite the
fact that the why aspect has a crucial impact on whether a given visual representation is
in fact expressive and e�ective. A recent publication [Mun09] on a conceptual model for
design and evaluation of visualizations even goes as far as stating that without adequate
consideration of the user's task (as the outermost of four nested abstraction layers), a
visual representation is bound to fail is communicative goal.

In the same paper, the authors note that the term task is deeply overloaded in litera-
ture as a catch-all phrase for widely di�erent why aspects. They argue that user tasks
can be understood on four di�erent levels of granularity: high- and low-level domain, as
well as high- and low-level abstract tasks. The relevant distinction here is that domain
levels capture the semantics of a process (e.g. '�nd a cure for a disease' as a high-level
goal in the medical domain), whereas abstract tasks describe a work �ow decomposition
on a purely functional level (e.g. 'compare values' or 'correlate data points').

However, almost all approaches from literature either provide a concrete solution to
a speci�c domain problem or, if attempting to provide a generic framework for visual
representation design, contend themselves with task descriptions at the granularity of
low-level abstract tasks. As a result, task decompositions are often strongly data-driven
and do not capture the overall structure of a domain-speci�c work �ow � like temporal or
causal relationships between individual sub-tasks � well, if at all. This, too, is an accepted
problem in the context of designing adequate visual representations. The improved
consideration of �semantics of the visualization process� has consequently been identi�ed
as one of the top ten challenges in the �eld of Visual Analytics [TC05, Kei05, TC06].

Approach Outline and Thesis Contributions

In this thesis several contributions to this challenge are presented. Speci�cally, it in-
vestigates the dynamic adaptation of visual representations to a given task as a vital
aspect of Smart Visual Interfaces. A focus is on applications where visual representations
are consumed as a source of supplemental information in the course of complex work
�ows, like in so-called e-Manuals described in [FRSF06], rather than being the result of
a deliberate user e�ort as in typical data analysis (exploratory visualization) scenarios.
In the former, both the structure of the work �ow and the data associated with it are
largely predetermined. In the scope of Smart Visual Interfaces as de�ned above it is still
important, though, to provide the user with a good initial view for her task at hand to
minimize navigation workload. The main challenges, therefore, are:

• What is an adequate task description that can express both the high-level structure
of a work �ow as well as the data-driven, low-level aspects required to actually
generate the visual representation accordingly?

• How is the adaptation process controlled by the task description? This is strongly
in�uenced by the �visual data type� of the representation associated with the task
at hand.

2

To address the �rst issue, task modeling approaches from other disciplines are utilized
in the generation process. In the �eld of software design it is commonly accepted that
software development has to start with an analysis of the problem domain users work in
[FBD+05]. To describe this problem domain in the �eld of human computer interaction,
task models are widely used [Con03]. They form the foundation of several proposals for
User Interface (UI) design that utilize task models to formalize the speci�cation, and
automate generation of an application's user interface [Sta00]. In these model-driven
software design (MDD) processes �rst a model of the task at hand is developed, from
which an (abstract) dialog model is derived through model transformation. The latter
may then be used to generate concrete dialogs based on platform-speci�c widgets [PS02].

However, almost all approaches in this �eld relate to modeling of so-called Windows,
Icons, Menus, Pointing Device (WIMP) interfaces, and corresponding interaction through
them. Although the need for �post-WIMP� UI speci�cally for graphic-intense applica-
tions such as Computer-Aided Design (CAD) is well recognized [Dam97], so far only few
task modeling approaches tackle the dynamic adaptation of predominantly graphical
data (as opposed to e.g., UIs for manipulating spreadsheets or data tables).

Therefore, concepts to bridge this �modeling gap� are presented here. The core idea
is to use hierarchical task models that capture the structure and composition of do-
main tasks on di�erent abstraction levels as a starting point. These models are then
enriched with appropriate descriptions of the task context with respect to graphical
content to support the adaptation of visual representations associated with the task
at hand [FRSF06, FS06]. In this thesis in particular, the Concur Task Tree (CTT)
notation [PMM97] is used, which is wide-spread in software engineering. This allows
embedding the task-driven adaptation of visual representations in established MDD tool
chains as a contribution towards creating Smart Visual Interfaces. These concepts have
been practically employed in the scope of a joint industry-academia research project
[LFSa, LFSb].

Further, the amount of control over the adaptation process depends on the �visual
data type�. In this thesis, the visual data type is a broad categorization of the input
data for the adaptation process. This has a direct impact on what operations are sup-
ported for the adaptation of the visual representation, and what types of annotations
are feasible in the CTT model. It is divided into raster graphics (only imaging opera-
tions) [FS06, FLH+06], vector graphics (manipulation of vector primitives) [FSS07], 3D
graphics (added control over the rendering process) [FRSF06, FHS08], and information
visualizations (control over the entire image generation process including data �ltering
and visual mapping) [TFS08b, TFS08a].

Thesis Structure

In the following Chapter 2, relevant basics will be discussed including a clari�cation of
important terms and concepts which have overloaded meanings in literature. It also
proposes a categorizations of both the in�uencing factors that constitute a visual rep-
resentation's context of use, and of the four principal �visual data types� of graphical
content according to their inherent scalability and thus, adaptability. Chapter 2 further
re�ects on related work regarding both task modeling approaches in interfaces design,

3

1 Introduction

as well as on visual representations that are scalable with respect to their context of use
according to the proposed categorization, the task at hand in particular.

Based on this review Chapter 3 derives a detailed problem analysis that identi�es rele-
vant challenges and open research questions in creating smart visual interfaces based on
task models. As the main contribution, Chapter 3 then presents the basic approach to
task-driven adaptation of visual representations that has been developed in this thesis.
It is based on two core concepts, a scheme for enriching general task models to describe
the task context, and an adaptation pipeline to e�ect adaptation of graphical content.
This basic approach provides a framework for the design of smart visual interfaces utiliz-
ing di�erent concrete display technique suitable for the four principal visual data types
of the interface's graphical content.

To this end, building on the basic approach Chapters 4�7 examine how adaptation
control is e�ected for the four visual data types raster images, vector graphics, 3D graph-
ics and abstract data visualization, respectively. Each chapter includes a discussion on
how the respective data type is prepared to provide the necessary scalability, and reviews
corresponding authoring tools that have been developed in the course of this thesis to
support content preparation. Each chapter further proposes novel �Smart-X� display
techniques that have been designed speci�cally to provide task-driven adapted represen-
tations within smart visual interfaces.

Chapter 8 brie�y reviews several prototypical implementations of the proposed basic
approach for use cases that have been addressed in the scope of two industry-academia
research projects that framed the work presented in this thesis.

Chapter 9 concludes with a summary of the developed concepts and gives an outlook
on future research directions and possible subsequent developments.

4

2 Basics

In this chapter, �rst relevant terms that are used throughout the thesis are introduced
and disambiguated where necessary. Then, two principal application scenarios are in-
troduced that illustrate both the need for, and requirements to, scalable visual rep-
resentations. Based on these, related work in the problem domain of task modeling
and task-driven development of user interfaces is reviewed. Strengths and weaknesses of
existing approaches with respect to the handling of visual representations are discussed.

2.1 De�nition of Terms

As the title implies, the work presented here is concerned with the task-driven adaptation
of graphical content of a particular visual data type within Smart Visual Interfaces .
This means to provide visual representations that exhibit scalability with respect to
their Context of Use, the task at hand in particular. In the scope of this thesis, these
key terms are understood as follows.

2.1.1 Smart Visual Interface

The term Smart Graphics was coined when the �rst symposium of the same name was
held in March 2000 [KB09]. It is de�ned as �the interdisciplinary approach to the genera-
tion, presentation and interaction with 2D and 3D graphical interfaces in a manner that
is sensitive to technological, computational and cognitive constraints. Such interfaces
aim to move beyond the current requirement that designers anticipate every data, task
and technological scenario, and instead allow the dynamic generation and presentation
of content in such a manner that: (1) engages the user and is aesthetically satisfying; (2)
takes account of cognitive insights as to the use of external representations thereby mini-
mizing potential for imprecision and ambiguity; (3) is sensitive to the real-time demands
of the task in the context of the available computational resources; and (4) adapts the
form of the output according to constraints placed on the presentation by the nature of
the target media and available interaction devices� [BKO00].
In line with this de�nition, a Smart Visual Interface is understood here as a (software)

system component that handles the presentation of, interaction with, and manipulation
of graphical content within the given Context of Use. To emphasize this focus of the
present thesis, �visual interface� is used here over the more general �graphical user in-
terface� (GUI). The latter is in widespread use to denote software user interfaces that
are not solely using text input and output but also graphical interaction facilities (called
widgets), such as mouse-clickable buttons or menu commands. Graphical user interfaces
employing this principle are often referred to under the acronym WIMP (Windows,
Icons, Menus, Pointing Device) [Dam97]. Contrary to this, a visual interface emphasizes

5

2 Basics

the direct interaction with graphical content, although it may still make use of classic
GUI elements where it is more appropriate. Where this distinction is not relevant, the
terms Visual Interface (VI), User Interface (UI) and Graphical User Interface (GUI) will
be used synonymously.

2.1.2 The '5Ws': Context of Use

The Context of Use (CoU) is a phrase designating the sum of all relevant in�uenc-
ing factors that a�ect the generation and presentation of content within Smart Vi-
sual Interfaces [AASRS03]. Thereby what constitutes a particular factor as relevant
depends, at the very least, on the content/data and the communicative and design
goals [CMS99, Mun09]. Butz et al. [BKO00] for example state not only technological
and computational aspects, but also cognitive constraints and aesthetic considerations
as in�uencing factors. These can, however, conceptually be grouped according to higher-
level aspects of the Context of Use.

In particular, we here propose a categorization of in�uencing factors speci�cally for
Smart Visual Interfaces, characterized as follows:

What are the characteristics and structure of the content from which the visual rep-
resentation is generated, how is it (technically) organized and encoded? This also
determines what visual encodings should be used and what tasks are meaningful
to perform on the underlying data (see e.g., [Mac86, RM90, Shn96]).

Why is the visual representation being generated, i.e., what is the communicative goal
of the representation so that the user can extract the information she requires
to complete her task? Diverse tasks will require emphasis on di�erent aspects of
the data at varying levels of abstraction by applying di�ering visual encodings to
the respective content elements or regions in the visual representation (cf. e.g.,
[WL90, Shn96, ZF98, Mun09]).

When is the representation shown? During composite work �ows comprising multiple
interdependent sub-tasks (with varying sub-goals), di�erent visual representations
may be appropriate at di�erent points of time. Causal and temporal relations
between tasks should therefore be considered to preserve what is referred to as the
users �mental map� of the problem domain [ELMS91], and to best possibly match
expectations regarding the system's behavior [HK07a].

Where is the visual representation rendered? This may impose limits on the resources
available to create and interact with visual representations. For example, mobile
devices di�er signi�cantly from typical workstations in terms of computational
power as well as graphics and interaction capabilities [MKS02, KMS04, Ros06].

For Whom is the visual representation intended? Di�erent users will have e.g. dif-
ferent preferences, (cognitive) abilities, and levels of expertise that should be taken
into account (cf. [AD67, HR98]).

6

2.1 De�nition of Terms

We will refer to this categorization as the '5Ws' de�ning the Context of Use of visual
representations within Smart Visual Interfaces. Our chosen partition of the in�uencing
factors is not arbitrary: it relates to the di�erent dimensions of visual representation
scalability [TC05] that is required to actually accommodate for changes to the Context
of Use (see Section 2.1.3 and Figure 2.1).

The multitude of possible in�uencing factors make a generic, holistic description of
the Context of Use infeasible. Most contemporary approaches address only selected
aspects, as exempli�ed by the cited approaches in the above list. A decomposition into
several sub-components is typically used to capture those context aspects relevant to the
application domain (cf. e.g., [Pue96, AASRS03, WFRS07]).

Speci�cally, the approach presented in this thesis addresseswhy and thewhat aspects
of the Context of Use because these are generally accepted to be the most important
to consider [FFIT00]. They also can not be contemplated in isolation: while the task
at hand a�ects what graphical content (data) is called for at which level of abstrac-
tion, characteristics of the underlying graphical content a�ect how this can be visually
represented.

Figure 2.1: High-level categorization ('5Ws') of in�uencing factors de�ning the Context of Use
(CoU) of visual representations. Di�erent forms of scalability must be provided to accommodate for
changes in in�uencing factors from the respective category to arrive at an e�cient visual representa-
tion (how).

2.1.3 Scalability

This general capability of visualization methods to generate e�ective visual representa-
tions in di�erent situations is commonly referred to as scalability [KLS00, Kei05, TC05].
Thomas and Cook [TC05] relate the need for scalability speci�cally to the challenges

7

2 Basics

that arise from massive, multi-dimensional and time-varying data sources � where it be-
comes imperative to �nd a suitable level of abstraction, or scale, for collecting, analyzing
and especially, displaying such data. It is, however, also a suitable term to describe the
desired ability to adapt visual representations to their Context of Use within Smart Vi-
sual Interfaces, as outlined in Section 2.1.1. When referring to user interfaces in general,
plasticity is commonly used instead of scalability to circumscribe these properties (e.g.,
[SC01, CCT01, MSK03]) with the same intended meaning.

Thomas and Cook [TC05] identify �ve major scale issues that must be addressed:
information scalability, visual scalability, display scalability, human scalability, and soft-
ware scalability. These correspond to the ability of visual representations to accommo-
date for changes in one of the high-level categories (why, what, where, for whom, when)
comprising a visual representation's Context of Use (cf. Figure 2.1):

Information scalability implies the capability to extract relevant information from raw
data. This includes both a purely functional reduction (e.g., through �ltering)
to manageable data sizes, as well as the ability to generate appropriate levels of
abstraction for a given analytic or communicative goal.

Visual Scalability is de�ned as the capability of e�ectively creating visual representa-
tions supporting a speci�c communicative goal. Factors a�ecting visual scalability
include the visual metaphors used to represent information and the techniques used
to interact with the visual representations. It is also linked to display and human
scalability.

Display scalability denotes the ability to adapt a visual representation to a variety of
display form factors, i.e., to make e�ective use of everything from a wall-sized dis-
play to PDA- or phone-sized screens. Thomas and Cook [TC05] observe that one
major challenge is to develop not only visual representations, but also related in-
teraction techniques so that they are display scale-independent. Display scalability
is directly related to the where aspects of the Context of Use.

Human Scalability, probably somewhat inaptly named, is not so much about �scaling�
the human user in terms of her cognitive or analytic abilities, but rather relates
to the number of concurrent users [TC05]. That is, visual analysis tools, and by
extension, their visual interfaces, should be able accommodate for single-user up
to multi-user collaborative work settings e�ectively. Human scalability addresses
challenges arising from for whom and when aspects of the Context of Use.

As indicated in Figure 2.1 requirements to these scalability aspects are determined pri-
marily by the respective Context of Use categories, but there also exist interrelations
between in�uence categories. In particular, information and visual scalability of Smart
Visual Interfaces are both linked to the mutually dependent what and why (cf. Sec-
tion 2.1.2). Temporal and causal relation of the task at hand to previous working
steps (when) a�ect what levels of abstraction are appropriate for presented informa-
tion (what and why), likewise in�uencing information and visual scales. Where also
a�ects why� the set of tasks performed at a given work location � as well as the display

8

2.1 De�nition of Terms

scale dictated by the output device. Constraints on the display scale, in turn, have an
impact on the viable levels of detail (information scale). The user's preferences and
expertise (for whom) in�uence what constitutes appropriate abstractions and visual
encodings of the representation, thus a�ecting information and visual scales.

Software scalability summarizes the desired properties that software tools should be
capable of digesting heterogeneous data of arbitrary size, be of modular design
to ease adoption of new analysis, visualization and interaction methods, and are
capable to utilize di�erent platforms. This is a cross-cutting concern that a�ects
a software system's overall ability to accommodate changes in all �ve in�uencing
factors of the Context of Use.

2.1.4 Adaptation

Adaptation as well as adaptable are two terms closely related to scalability that ap-
pear frequently in literature. The latter is often used synonymously in referring to
di�erent scalability aspects, especially visual/display scalability (e.g., [KMS04, MMS04,
KJDG+06]) and software scalability (e.g., [PZB02, SKKM+05]).

On the other hand, adaptation is used consistently to refer to the actual process of
modifying, respectively, the (graphical) content (e.g., [Kli09]) or the system con�guration
(e.g., [TTS09]) to the given Context of Use. Both terms are used here in line with these
established meanings.

The task-driven adaptation of visual representations as discussed in this thesis pri-
marily relates to issues of visual and information scalability. Depending on the output
device, however, constraints with regard to the display scalability may also require con-
sideration.

2.1.5 Visual data type

We thus use here a categorization of the graphical content handled by a visual interface
into four classes, depending on the amount of control possible on the generation process
of context-speci�c content representations. These four visual data types are:

Raster images (bitmaps) are given by a data structure representing a (generally rectan-
gular) grid of pixels, or points of color. Only image space operations that modify
pixel (color) values are possible as usually, semantic or structural information on
the image content is not available1 (Chapter 4).

2D vector graphics de�ne the image content by a structured set of graphical primitives
(rectangles, circles, etc.) with associated geometric transformations and graphical
attributes (e.g., �ll color, line stroke). Adaptation of the visual representation can
thus be applied at the granularity of graphical primitives. Some formats, especially
the XML-based Scalable Vector Graphics (SVG) W3C standard [FFJ03], allow to

1Note there are means for encoding meta data for raster images, e.g., using the generic MPEG-7
(ISO/IEC 15938) standard [MKP02] or through direct embedding [RFS08]. But these meta data are
often not available for a given raster image and application context (see Section 2.2.1).

9

2 Basics

embed additional, application-speci�c information in custom primitive attributes
(Chapter 5).

3D models describe virtual objects, typically as triangle meshes. Geometry and surface
attributes are adaptable during the rendering process similar to vector graphics;
in addition control of scene composition (i.e., lighting and view frustum setup)
becomes possible (Chapter 6).

Abstract data has no inherent visual representation, rather it must be transformed
into an image by a suitable visual mapping as part of the so-called visualization
pipeline (see e.g., [HM90]). This enables operations in data space, such as �ltering
of values, as well as modi�cation of the subsequent visual mapping and rendering
stages (Chapter 7).

Adaptation strategies speci�c to these four content types of Smart Visual Interfaces will
be discussed in detail in the Chapters indicated.

2.1.6 Task

The term task has a fairly large range of speci�c meanings across di�erent disciplines.
In colloquial language, it is used to describe �a piece of work to be done. Task implies
work imposed by a person in authority or an employer or by circumstance� [DeV90],
often in a de�nite quantity or amount. This further implies that the work is performed
in order to attain a speci�c result, or task goal. Task is a synonym for activity although
the latter carries a connotation of being possibly longer duration.

In this thesis a task is understood as a single, conceptually distinguishable but not
necessarily atomic step within a composite activity or work �ow. In particular, a task
may be the root of a hierarchical decomposition into sub-tasks with subordinate (par-
tial) goals. A partial order may be de�ned on sub-tasks in the form of precondi-
tions (e.g., completed subordinate goals) and/or temporal dependencies (A 'happens-
before' B) between sub-tasks. This hierarchical decomposition of high-level composite
tasks and corresponding goals into subsequently more concrete sub-units is a common
tenet in virtually all disciplines involved in task analysis and modeling, see for example
[AD67, LV03, WFRS07, HR98, WVE98].

At the lowest level of decomposition are basic tasks, i.e., leafs of the task hierarchy
according to the granularity at which tasks are speci�ed on a conceptual level. Some task
modeling approaches further specify actions of basic tasks, thus describing functional
properties beyond the conceptual task decomposition [LV03]: an action is an atomic
operation that is executed upon an artifact, by an entity that is involved in the com-
pletion of the task (user, computer, . . .). In this thesis, we adopt this distinction. In
particular, actions comprise user interaction with a task-speci�c visual representation as
the respective basic task's artifact.

There is no agreement on an exact de�nition of task goal. Intuitively, a task's goal is
the state of a�airs the task is intended to produce, i.e., post conditions that hold after
the task has been completed. In particular, within smart visual interfaces task-speci�c
visual representations are employed to support the user in completing her tasks. This

10

2.2 Application Background

requires the user to be able to extract required information from the representation.
This property � conveying particular information by stressing its message subject over
a faithful representation of reality � corresponds to the communicative goal of a visual
representation.

Another term with contradicting meaning across disciplines is abstract task. In task
analysis and modeling it is used as synonym to composite task, denoting a high-level
conceptual speci�cation of a domain task that must be further decomposed to arrive
at basic tasks with concrete actions (e.g., [PMM97]). Contrary to this, in visualization
abstract task usually designates low-level, generic data analysis tasks, i.e., tasks such as
�compare values� that are applicable to (abstract from) di�erent types of data [Mun09].
We here use composite task when referring to high-level (domain) tasks, and abstract
task when referring to low-level data analysis tasks.

Moreover, references to the �task at hand� or �the user's current task� can be found
in several publications (see e.g. [MPS02, TC05]). However, it is often not made explicit
if this refers to a high-level composite task or to a leaf-level basic task (i.e., the current
one in a sequence of working steps being performed). Here, we use task at hand to refer
to both in general, and current working step when referring speci�cally to a leaf-level
task.

Also note that the used de�nition of task is not exclusively user-centric � an activity
can comprise tasks carried out by both human and the (computer) system the user is
working with.

2.2 Application Background

The contributions of this thesis have been developed against the background of an ap-
plied research project �Landesforschungsschwerpunkt� (federal state research focus, LFS)
as well as in cooperation with the research training school �Multimodal Smart Appli-
ance ensembles for Mobile Applications� (MuSAMA) [MuS09]. The LFS comprised two
funding periods with slightly di�erent research focus, namely �Multimediales Content-
Management in Mobilen Umgebungen mit Multimodalen Nutzungsschnittstellen� (Mul-
timedia Content Management in Mobile environments with Multi-Modal user interfaces,
M6C) [LFSa] and �Mobile Assistenz� (mobile assistance, LFS-MA) [LFSb], respectively.
Both projects dealt with use cases that underline the utility of smart visual interface.
These use cases are presented below with a discussion of the resulting challenges with
respect to smart visual interfaces.

2.2.1 Mobile Information Systems: Maintenance Support

With the ongoing pervasion of mobile devices and wireless networks, applications such as
location-based services and mobile information systems are also on the advance (e.g., see
[NPF+04, Sie06, Kli09]). Their purpose is to provide a user with information speci�c
to her current situation, task, and location on mobile devices such as Smartphones,
Personal Digital Assistants (PDAs) or TabletPCs.

One use case of mobile information systems is mobile maintenance support, or so
called �e-manuals� [FRSF06] (Figure 2.2). The design of such a system and correspond-

11

2 Basics

ing challenges were addressed in both the M6C [LFSa] and the LFS-MA [LFSb] sub-
project Maxima [MAX] for the concrete application scenario of HVAC2 maintenance.
HVAC units have a comparatively long operational life, and therefore often receive mid-
life upgrades, for example to meet the latest energy e�ciency standards. This poses
a challenge for technicians to gain su�cient knowledge of all peculiarities of di�erent
units. Thus a technician requires on-site access to up-to-date schematics, operational
and safety procedures as well as assembly instructions. Constantly amending printed
(paper) manuals quickly becomes impractical in these situations. This is not only due to
the required e�ort and expenses, but also simply due to the physical medium's increasing
bulk [WKM+09].

Figure 2.2: E-manual applications are useful in maintenance scenarios where machinery- and task-
speci�c knowledge is required (left). Small handheld devices are preferable as these can be carried
along easily (center). The vast range of capabilities in this device class presents a challenge in
designing the (visual) interface, though (right).

Presenting manuals as interactive content on a mobile device does overcome these
limitations and principally o�ers greater versatility than paper. As wireless network ac-
cess is becoming more and more widespread in enterprises as part of their LAN/WLAN
infrastructure, providing the manual content from a centrally maintained repository on-
demand is often feasible [Kli09]. This mitigates the problems of keeping any parts of
the manual up to date. More importantly, using digital media makes available features
such as keyword searches for speci�c content, context-based �lters, as well as dynamic
and interactive 2D or even 3D representations. The latter is especially bene�cial for
manual applications, as dynamic, interactive representations generally are more com-
prehensive than static illustrations. To this end, the content of an e-manual comprises
three principal components: maintenance procedure (work�ows, tasks) descriptions, vi-
sual (illustrations, schematics) and non-visual (text, tables) information, see Figure 2.3.

Because complex facts are communicated best using visual means, task-speci�c visual
representations constitute the primary component of an e-manual's smart visual inter-
face. A key aspect in this regard is the ability to adjust the presentation of information
according to the user's task at hand as well as his pro�ciency, e.g., the chief engineer
compared to a subcontractor's employee [WKM+09]. This requires suitable means for
providing visual and information scalability of the manual contents, as discussed in Sec-

2Heating, Ventilation, Air Conditioning

12

2.2 Application Background

tion 2.1.3. The main challenge here is graphical content from sources that do not provide
a structured description of, and/or lack semantic information about, the depicted ob-
ject(s). Common examples are raster images extracted from PDF �les, and scanned
illustrations from paper manuals. Since these acquisition methods often represent the
primary sources for the e-manual's content, methods and tools have to be developed to
enrich unstructured content to a�ord proper information and visual scalability [FRSF06].

Figure 2.3: Principal components of an e-manual's contents are a description of the procedures
involved, working step-speci�c illustrations plus auxiliary information (often presented via text-to-
speech). Their extraction from printed media is largely a manual task necessitating tool sup-
port [FRSF06].

The challenges in creating e�ective task-speci�c visual representations are further com-
pounded by the high variability in capabilities of mobile devices that might be used as
clients (e.g., ranging from Smartphones to laptops) in terms of connectivity, process-
ing power, graphical capabilities, and interaction facilities. This does not only call for
e�cient means to design and deploy so-called Multiple User Interface (MUI) to accom-
modate the di�erent device classes. It also places a strong emphasis on the display
scalability aspect of generated task-speci�c visual representations on top of the informa-
tion and visual scalability requirements.

Since presenting graphical content on mobile devices means to cope primarily with the
limited screen space [RTS06] some powerful approaches for display-scalable representa-
tions have been developed, e.g., for mobile web browsing [BMPW00, KRS03], museum
guides [SW07] or maintenance support [HBP+07]. These approaches, however, generally
do not address task-related requirements to visual representations.

Another approach to address limited screen space is to provide alternate interaction
modes to augment the primary visual interface. To this end, e-manuals often make use
of speech as an alternate input/output (I/O) mode [FRSF06, FS06] for non-graphical,
auxiliary information, cf. Figure 2.3. The bene�t of these so-called multi-modal interfaces
is two-fold. First, using non-graphical means (e.g., speech) for output reduces the amount

13

2 Basics

of information that has to be encoded into the visual representation. Likewise, providing
voice commands as an input method yields more screen space for visual representations as
the corresponding GUI components (e.g., buttons, scroll bars) can be omitted. Second,
multi-modal interfaces allow to adjust communication of relevant information to the
user according to the work environment conditions. For example, high ambient light
levels increase the utility of an alternate speech I/O mode as the screen becomes more
di�cult to read; whereas high ambient noise obviously favors visual communication of
information. Such environmental conditions are quite common for mobile maintenance
scenarios, for example during outdoor operations in direct sunlight or at noisy work
spaces such as factory �oors. The challenge here is to �nd an appropriate utilization
of the primary visual and auxiliary modes to ensure the e�cient communication of
information for a given context of use (including the user's task at hand, the output
device, and environmental conditions).

Of the challenges described above, the primary research question addressed in this
thesis is how to enrich graphical content to a�ord information and visual scalability,
and how to further associate the enriched content with the description of maintenance
procedures to arrive at task-speci�c visual representations, as illustrated in Figure 2.3.

2.2.2 Smart Environments: Smart Meeting Room

Cook and Das [CD05] de�ne a smart environment as �one that is able to acquire and
apply knowledge about an environment and also to adapt to its inhabitants in order to
improve their experience in that environment.� Smart homes, smart class rooms, and
smart meetings rooms (as shown in Figure 2.4) are speci�c examples of smart environ-
ments [EK05, AE06]. To this end, smart environments employ an ensemble of inter-
connected devices including computing devices (e.g., desktop computers, servers), out-
put devices (e.g., projectors, monitors, �at panels), environmental devices (e.g., lights,
blinds, air conditioning), and sensor devices (e.g., motion trackers, infrared beacons,
light sensors) [HK05]. Some installations also strive to dynamically integrate mobile
devices such as laptops, PDAs or smartphones that enter and leave the environment
as they are carried along by the users [TTS09]. Device interconnection is driven by
various technologies, including Bluetooth, wireless or hard-wired LAN, allowing for the
necessary communication to accomplish tasks in a coordinated fashion [AE06].

A smart environment further implements software utilizing the device ensemble to
provide �smart� support to users. This requires to constantly assess the current situ-
ation of the environment and that of its inhabitants. Based on an analysis of sensor
measurements, user intentions and tasks are predicted [HK07b]. Preferably, the predic-
tions would be accurate enough to allow fully automatic user support. In cases where
this ideal can not be attained, users always have the possibility to revise the decisions
made by the environment or to �ne-tune the environment to their needs [HK07a].

Thus, how to accomplish �smart� support as a joint e�ort of several distributed soft-
ware components in the face of uncertain, often incomplete and ambiguous situational
knowledge is a challenging and actively investigated research question. Among others,
two projects that address these issues are Multimodal Smart Appliance ensembles for

14

2.2 Application Background

Figure 2.4: Typical example of a Smart Meeting Room with several output devices (displays, pro-
jectors) to support collaborative work.

Mobile Applications (MuSAMA) [MuS09] and Maike3 [MAI], concentrating on funda-
mental and applied research, respectively.

Of particular interest in the scope of this thesis are those aspects that relate to the
use of smart visual interfaces in smart environments. Multi-user collaboration in these
environments is explicitly not limited to simply showing a single visual representation
on more than one output device simultaneously [FTSS09]. Instead, available output
devices need to be assigned to visual representations according to the users' current
situation and task requirements. Visual representations must therefore be scalable to
allow the support of di�erent user goals and data sources, using displays of various sizes
and resolutions.

There are some approaches to this end that adapt visual representations to the avail-
able resources on di�erent target devices (e.g., [PZB02, SKKM+05, ZHHM07]). Most,
however, emphasize technical and infrastructural issues, such as the utilization of mul-
tiple client platforms [SKKM+05] or the use of web services as the output distribution
mechanism [ZHHM07]. In [TTS09], the authors propose a more general approach for
distributed visualization. It uses a service-oriented architecture (SOA) to generate visual
representations in a distributed fashion, including mobile devices that can dynamically
enter or leave the smart room's ensemble. Most information visualization approaches,
however, typically provide data- or task-speci�c solutions that are computed on a sin-
gle machine for a �xed output device and a single user, as observed for example in
[WPF04, TC05, Mun09]. They hence are ill-suited for information presentation in smart
meeting rooms.

To summarize, in both scenarios outlined above smart visual interfaces can help to
improve the respective system's utility. Thereby scalability of visual representations with

3
Mobile Assistenzsysteme für Intelligente Kooperierende Räume und Ensembles, a sub-project in the
scope of the joint academia-industry project �Landesforschungsschwerpunkt LFS-MA� [LFSb].

15

2 Basics

respect to the task at hand is one of the most important aspects: in mobile maintenance
scenarios, to present from the multitude of technical documentation only the immediately
relevant information; and in smart environments, to enable (pro-)active support for the
users' situation and requirements. Consideration of the user's task must therefore be
integrated into the design process of the visual interface. To this end, the following
section reviews task description and modeling approaches used in Human�Computer
Interaction (HCI) and UI design, as well as contemporary approaches to scalable visual
representations.

2.3 Related Work

Modeling is understood as abstraction of a real system by removing the irrelevant details
in the current level of abstraction [WVE98]. As such, task models are a means to the
systematic analysis of the problem domain users work in. They are used as tools in
several di�erent disciplines like project management, training [AD67, HR98], cognitive
psychology, and software engineering.
Numerous task models have been proposed in the literature (see e.g. [Ben00] for a

good overview). Limbourg and Vanderdonckt [LV03] alone list and compare 11 di�er-
ent models each representing a principal discipline involved with task analysis. As a
result, the proposed concepts exhibit both di�erences in vocabulary as well as concep-
tual variations in terms of presentation, level of formality, complexity and expressiveness
according to their intended use and objectives. All of them, however, are based on a
common tenet: that tasks are performed to achieve a certain goal, and that complex
tasks are decomposed into more basic units until the level of atomic tasks has been
reached [LV03].
Prevalent examples include the pioneering Hierarchical Task Analysis (HTA) method

[AD67]; the Goals, Operators, Methods, and Selection rules (Goms) [CMN83, JK96] as
an engineering model for human performance in cognitive psychology; as well as the User
Action Notation (UAN) [HSH90], Concur Task Tree (CTT) [PMM97, Pat00], Uni�ed
Modeling Language (UML) activities [BJR00] and 'Yet Another Work�ow Language'
(YAWL) [HA05] in software engineering.
Task analysis and task modeling is a well-established research �eld in HCI and software

engineering. From the perspective of this thesis, task models play an important role in
contemporary user interface design methodology in particular.

2.3.1 Task Modeling in UI Design

Model-based User Interface Development (MBUID), as an important component of the
Model-driven Design (MDD) approach [Alm06], has gained much attention by various
researchers (see e.g., [SE96, MPS02, Luy04, GSSF04]) due to its ability to foster the
integration of di�erent viewpoints into the development process already in its early
stages [Con03] and helps software designers to manage complexity by abstracting from
low-level implementation details. It facilitates the development of e�cient UIs by using
di�erent declarative models and the relationships between these models to describe the
various facets of the UI at di�erent development stages [Pue97, EVP01]. Thereby the

16

2.3 Related Work

model-driven UI design process can be divided into four phases: (domain) task analysis,
system design, implementation, and system evaluation (see e.g. [HR98, Sta00]).
During task analysis it is determined what tasks and goals are to be accomplished with

the help of the software being designed, as well as how individual tasks are organized
into an overall work�ow. Therefore task models, as an explicit description of the overall
work�ow, are a commonly accepted starting point for the model-based UI development
process [HR98, Kie04, Alm06]. These models de�ne a decomposition of the task at
hand into subtasks down to the level of conceptually atomic basic tasks at a granularity
appropriate for the application domain. Typically this decomposition is represented
as a hierarchical structure of nodes with parent-child relationships. Nodes within this
structure represent individual tasks. Child nodes describe sub-tasks that have to be
performed in order to complete the task of the parent node. Most task model formalisms
also map temporal and causal relations in the form of preconditions, postconditions, or
information transfer (e.g., the current selection from a list of items) between task nodes.
A path traversing this structure therefore describes a sequence of basic tasks that are
performed to complete the overall composite task represented by the hierarchy root node.
During the subsequent design phase, further information may be included to describe

the Context of Use (CoU), i.e., an abstraction of the environmental circumstances of the
task execution [Pue96]. To this end, most approaches specify a subset of user, domain
(application), platform, dialog, layout and/or presentation models [SE96, Træ02]. Some
approaches explicitly consider usability issues as part of their model [LJMM+05] to
further promote user-centered interface design.
These information can then be utilized during the implementation phase. For this,

�rst a dialog model is derived from the task model that describes the logical interface
composition [LCCV03]. This includes grouping of related or simultaneously enabled
tasks into dialogs, the de�nition of appropriate interaction objects to carry out the indi-
vidual task actions, as well as deriving task goals and conditions that trigger transitions
between dialogs. This dialog model is then used to generate concrete dialogs based on
platform-speci�c widgets [PS02].
Model-based UI development can thus be seen as a series of model transformations

[Sta00, Luy04], where abstract models (e.g., task, user, domain model) gradually evolve
into more concrete models (e.g., dialog, layout, presentation model) which �nally result
in the actual implementation of the UI [Pue96, SWF+07], see Figure 2.5.
In fact, a key factor driving the proliferation of MBUID approaches is the ability to

maintain platform independence (cf. [Luy04, Alm06]): A platform-independent model
(PIM) can be used as input to transformation activities that lead to di�erent alternative
UI realizations that are implemented using di�erent platform technologies [CCT+03,
LVM+04]. The design process from platform-independent models to platform-speci�c
realizations often entails the use of intermediate platform-speci�c models (PSM) [Alm06,
WFRS07], cf. Figure 2.5. This is especially advantageous for creating mobile and multi-
device UI for applications with very heterogeneous platform technologies and device
capabilities like those outlined in Section 2.2. Model-based UI generation thus even
allows to dynamically create and distribute user interfaces for services o�ered in such
environments on demand [CCT01, RF05].
Since the design of task models is complex and error prone, tool support is needed

17

2 Basics

Figure 2.5: Schematic view of the Model-based User Interface Development (MBUID)) process for
multiple UI using intermediate platform-independent and platform-speci�c models.

to carry out model-based UI development e�ciently [Sch96, Pue97]. Especially tedious
tasks can be supported or automated. Furthermore tool support is able to hide technical
details of the used technologies, as the design should be made at a conceptual level.

Within the domain of user interface design, the ConcurTaskTree notation (CTT)
developed by Paternò [PMM97] is one of the most popular [WPF04, Wur09]. This has
been attributed to the fact that it contains the richest set of operators [SWF+07] and
that tool support was available early-on through CTTE [MPS02], a graphical tool which
facilitates the creation, visualization and sharing of CTT models. A comprehensive
overview on CTT can be found in [Pat00].

In a nutshell, CTT are a graphical notation based on �ve concepts: tasks, objects,
actions, operators, and roles. An activity is represented by a hierarchical, tree-like
decomposition of a tasks into subtasks (cf. Figure 2.6). Each node in the decomposition
tree represents a task. Compound tasks (called abstract tasks) are further decomposed
up to the level of basic tasks, which are de�ned as tasks that could not be further
decomposed conceptually (i.e., leafs of the hierarchy). Basic tasks are categorized based
on whether a task is executed by the user, by the application, or by an interaction
between user and application.

Moreover, objects as well as input/output actions modifying these objects are speci-
�ed for each basic task. Task objects can be perceivable objects or internal (application
data) objects. Application objects must be mapped onto perceivable objects in order to
be presented to the user. This mapping is mainly directed toward the speci�cation of
on-screen interaction objects (interactors), e.g., labels, icons, buttons and menu entries;
although [PMM97] also brie�y mentions sound. Examples from [PS02] do consider im-
ages, but explicitly as static resources: images of di�erent resolutions/quality must be
provided and associated with the respective platform manually, thus completely forgoing
scalability issues.

So-called operators link sibling tasks on the same level of decomposition by temporal
and/or causal constraints. In this respect, CTT di�ers from most other hierarchical
models like HTA [AD67], where operators are de�ned for parent-children relationships.

18

2.3 Related Work

Set fuel value

Exchange reducing ringInterupt power
and gas supply

Toggle Master
Switch to 'OFF'

Remove
feeder hose

Reconnect gas
and gower supply

Unfasten screws Remove blower Pull off
feed pipe

Dismantle
fuel nozzle

Insert new
reduction ring

Reassemble
fuel nozzle

Reassemble blower/
feed pipe assembly

Abstract (composite) task

Application (system) task

Interactive task

User task

Task Types

Determine requied
reduction ring size

[]

Determine
gas quality

Look up corresponding
reduction ring size

[]

[]

enabling (sequential execution)

enabling with information passing

Operator Types

Figure 2.6: Example of a graphical CTT notation of a small maintenance task (from [FRSF06]).
The task type is indicated by the node icon. Temporal operators are represented by horizontal links
between sibling tasks adorned with the operator symbol.

CTT uses a formal de�nition for its temporal operators based on Lotos (Language
of Temporal Ordering Speci�cation [BB87]). Paternò de�nes the temporal operators
choice [], independent concurrency |||, concurrency with information exchange |[]|, order
independence |= |, disabling [>, enabling (sequential) >>, enabling with information
exchange []> and suspend/resume |>.
In addition, CTT provides the means to describe cooperative tasks. To describe such

a task, the task model is composed of di�erent task trees, one for the cooperative part
and one for each role that is involved in the task.

Several extensions to the original notation have been proposed since to better facili-
tate speci�c requirements of di�erent MDD aspects, foremost automatic UI generation
[LCCV03] and multiple UI for di�erent mobile devices [PS02]. For this purpose, CTT
are annotated with additional information, e.g., with abstract UI descriptions in the
case of the Dygimes framework [LCCV03], meta operators to ensure model equivalence
across model transformations [WSF08], or additional variables to capture the context of
use resulting in di�erent PSM during subsequent re�nement [WFRS07].

In summary, using task modeling as integral part of UI design methodology o�ers
opportunities to arrive at a better overall UI design, as well as to partially automate the
development process, by explicitly capturing relevant in�uencing factors that comprise
its context of use. These traits are equally desirable for the design of smart visual
interfaces. In fact, the necessity to address scalability issues compounds even further
the need to adequately consider the task at hand. Therefore, smart visual interface
design can not do without integration of suitable task modeling approaches for visual
representations. However, the vast majority of MBUID methods is geared towards the
speci�cation, creation and evaluation of WIMP interfaces. Graphical content is usually
considered as a static resource that is displayed by virtue of a GUI widget, navigated by
simple means like zooming and panning [RTS06]. As a result, these approaches do not

19

2 Basics

usually capture scalability aspects of visual representations corresponding to the '5Ws'
(cf. Section 2.1.2) categorizing the context of use. Thus from the perspective of task-
driven Smart Visual Interfaces according to this thesis' objective, at least the what and
why aspects must be incorporated (Chapter 3) for visual content of the four visual data
types raster images (Chapter 4), vector graphics (Chapter 5), 3D graphics (Chapter 6),
and visualization of abstract data (Chapter 7).

2.3.2 Scalable Visual Representations

In this thesis we distinguish these four visual data types according to their degree of scal-
ability (Section 2.1.3). We will review previous work regarding task-driven adaptation,
and the scalability issues thereby addressed, for each data type in the following.

Raster Graphics do not contain any structural or semantic information about the de-
picted content in the pixel grid itself. Unless a raster image is augmented by external
meta data like MPEG-7 [MKP02], task-driven adaptation is therefore restricted to ex-
ploit visual and display scalability, but not information scalability.

Speci�cally, without knowledge on the depicted content, scalability is achieved by
using Region of Interest (RoI) [RS99, LG05] based schemes: depending on the commu-
nicative goal, some image regions are more relevant than others. This relevance is usually
expressed by a Degree of Interest (DoI) function that signi�es the relative importances
of regions [Kea98]. There are a number of RoI-based approaches that can be related to
both visual and display scalability which we will review in the following.

The RoI-driven display of raster images has primarily been fueled by the requirements
of image communication4 in mobile environments [RS98, Ros06]. The limited bandwidth,
comparatively high transmission costs, and small screen size of the typical output device
mean that important image content should be prioritized both during transmission and
display.

To address transmission e�ciency, scalable image compression schemes have been
devised that allow compressing the data once and then decompressing it at multiple
data rates, spatial resolutions, and/or visual quality [LPKD01, JPE00] (also see [Ros06],
pages 12 �. for a good overview). Especially, progressive transmission and decoding
enables visual scalability of raster images, by displaying the current RoI in detail �rst and
only then increasing detail in the remainder of the image without incurring redundant
transmission of data [NC98, Ros06]. Usually, the RoI used to prioritize this transmission
order is speci�ed interactively by the user (e.g., [RS99]). To this end, means for the
e�cient speci�cation of arbitrary overlapping RoIs have been proposed [RRS01]. Some
approaches use static RoI, i.e., a predetermined scheme of quality and/or resolution
progression, to emphasize selected details chosen by an image author [JPE01a].

Moreover, the size of large images often exceeds the display area of the user's output
device [RTS06], necessitating display scalability of raster images. This situation can

4Image communication is a collective term for the di�erent operations performed from the supply
of the image data at server side until its application at client side. A reasonable communication
channel consists of at least three basic components � encoding, transmission and restoration (decod-
ing) [Ros06].

20

2.3 Related Work

be addressed in three principal ways: zooming and panning, multiple consecutive views
(i.e., trading time for space by displaying multiple RoIs in sequence [LXMZ03]), and
RoI-based distortion schemes (e.g., [HF01, RT03, GF04]).
The �rst two approaches achieve display scalability through resizing (a sub-region

of) an image to a desired target size using cropping and scaling operations. This does
not consider visual scalability, however: cropping tends to work well only for images
containing single objects of importance since it can only remove pixels from the image
periphery. Scaling the entire image reduces the size of important regions or even distorts
them in the face of mismatching aspect ratios. More importantly, both approaches
sacri�ce the ability to see both the detailed RoI and an overview of the surrounding
image context simultaneously.
This drawback is addressed by RoI-based distortion schemes. Here, one can distin-

guish two classes of techniques: automatic image re-targeting and (interactive) Focus &
Context representations.
A compromise between image resizing and image cropping is to introduce a non-linear,

data dependent scaling [LG05]. So-called content-aware, or automatic image re-targeting
techniques [STR+05, AS07] aim to preserve important image features during resizing.
These features can be detected either top-down or bottom-up to build a saliency map
that determines what image regions to retain or discard [MZ03]. Top-down approaches
attempt to identify complex features such as faces [VJ01], whereas bottom-up methods
use measures of the low-level visual salience to identify aspects of the image that the
eye may be drawn to [LG05]. The best known salience method is the framework of Itti
et al. [IKN98] based on a detailed model of the human visual system, which however
is computationally demanding and di�cult to tune. Ma and Zhang [MZ03] argue that
heuristic methods that are computationally more e�cient and simpler to implement but
still are e�ective for practical re-targeting problems. For example, Setlur et al. [STR+05]
use a combination of a simple image segmentation algorithm and saliency heuristics to
decompose an image into foreground features and background. The background is re-
newed (holes are �lled) and scaled to target size, then the foreground segments are pasted
onto the new background. Similarly, the Seam Carving approach presented by Avidan
and Shamir [AS07] combines several low-level 'pixel energy' metrics with manually de-
�ned RoI of very high or very low importance, allowing the author to override what
high-level image content to retain or discard, respectively, by the re-targeting algorithm
(Figure 2.7).
These approaches enable a combination of display and visual scalability with respect

to a communicative goal, depending on the feature detection algorithm used. However,
related approaches from literature generally do not include an explicit task speci�cation
for parametrization.

Interactive Focus & Context representations [Kea98] have shown to be superior for a
large range of image-related tasks [GF04] because they provide both overview and detail
in the same view. They can be easily integrated into RoI-based display schemes whereby
the RoI constitute the focus while the rest of the image represents the context [RS99].
Unlike re-targeting approaches, Focus & Context techniques typically specify the RoI
explicitly [RRS01], rather than deriving it automatically from the image contents.

21

2 Basics

Figure 2.7: Seam carving is an image re-targeting method that successively removes or duplicates
connected 'seams' of pixels (far left, shown in red) with the lowest total energy as determined by an
energy map (second left). RoIs can be de�ned manually to either protect or prioritize image regions
during seam removal (right two columns). (Figure from [AS07]).

So-called �sheye views are a speci�c type of Focus & Context representation that
combine an undistorted, probably magni�ed focus region in full detail within a distorted
context. Fisheye views have originally been introduced by Furnas [Fur86] to display
large structures e�ciently, but have been widely adapted to the display of raster im-
ages [RT03]. Rectangular Fisheye Views were introduced by Rauschenbach [Rau99] that
use discrete Level of Detail (LoD) for distortion (see Figure 2.8). They are especially
well-suited in mobile image communication scenarios as they allow e�cient transmission
of data and o�er continuous transition between regions of varying distortion. Rauschen-
bach's general approach was later extended [Ros06] to make direct use of built-in features
of the modern JPEG2000 image encoding standard [JPE00, JPE01a].

Figure 2.8: Example for the Rectangular Fisheye View [Rau99] RoI-based distortion technique using
belts of constant LoD (i.e., magni�cation factors). Shown here is an implementation using built-in
features of the JPEG200 encoding standard to achieve this e�ect (from [Ros06]).

22

2.3 Related Work

In conclusion, scalable compression schemes and RoI-driven distortion techniques like
Fisheye Views and image re-targeting a�ord both visual and display scalability of raster
images. Most approaches, however, have been derived primarily to satisfy the needs of
interactive mobile image communication, rather than the support of task-driven adap-
tation of raster images.

Vector Graphics are described by a set of graphical primitives with geometry de�ned in
R2. As such, vector graphics are inherently resolution-independent as they are rendered
prior to display at the desired target resolution. Vector graphics thus exhibit excellent
display scalability that is the reason why they see increasing use especially in mobile
application scenarios [Rei03, Kli09] with their wide range of display sizes.

Moreover, the content description by a set of individual primitives, usually organized
hierarchically, and the conceptual separation of geometric information and its visual
attributes (e.g., colors, strokes, �ll patterns) is exploited by several approaches from
literature to also address visual and information scalability.

In cartography, a large fraction of geographic data has long been stored as vector data
such as the XML-based Geographic Markup Language (GML) format [Por07]. Trans-
formation into a map representation would, at the least, include a selection of a subset
of geographic objects [McE94, HG94] and rendering styles corresponding to the the-
matic setting of the map [McE94, Lup07]. Using XML transformation schemes like
XSLT [Cla99], these two steps can be combined to generate several SVG representations
from a single GML �le holding the contents of a base map. Reichenbacher [Rei03] uses
this general concept to provide adaptive map representations for location-based services
on mobile devices. Notable of his approach is that it explicitly considers the context of
use to support visual and even basic information scalability (i.e., the selection of pre-
determined map layers from the backing GML �le). This includes the output device,
location, but also a limited set of user goals and associated activities related to map use.

Contemporary vector graphic formats, while having some notion of content structure,
nonetheless lack semantic information such as functional dependencies or topological
constraints [FFJ03]. This poses a challenge during adaptation when content elements
are resized or moved individually, or when several related elements should be replaced by
a more complex aggregate representation to achieve visual scalability (often referred to
as semantic zooming, see e.g. [BTM+01, MMT02, KHS04], Figure 2.9). Consequently,
there have been several proposals to augment vector graphic formats with additional
semantic information.

Among the �rst were Constraint Scalable Vector Graphics (CSVG) for simple �g-
ures [TMM00] and its extension [BTM+01] to more complex network diagrams (cf. Fig-
ure 2.9). CSVG uses a set of rules to constrain sizes, absolute and relative position
as well as alternative visual representations ('switchgroups') of diagram elements. The
rule de�nitions are embedded in the SVG �le by making use of SVG's extension mech-
anism [FFJ03]. CSVG thereby functions as a container format; rules are evaluated on
the client at runtime using the Cassowary system [BB98], creating adapted SVG doc-
uments in reaction to user interactions. Further research suggested a more restricted
set of rules, called one-way constraints, is nonetheless su�cient for most applications

23

2 Basics

Figure 2.9: Layout and topological constraints added to CSVG vector graphics a�ord visual scala-
bility or semantic zooming whereby parts of a diagram are replaced by simpli�ed aggregate repre-
sentations selected from a special 'switchnode' storing several alternatives (�gure from [BTM+01]).

while computationally less expensive to resolve [MMM04]. All these approaches strive
to directly embed the additional information within the vector graphics (SVG) �le. Here
again, a primary motivation for this often was the ability to perform purely client-side
adaptation for mobile applications, to avoid server round trips [MMT02].

Klima et al. [KHS04] use a slightly di�erent approach to additionally provide informa-
tion scalability that uses an external �semantic tree� to select related content elements
and their desired level of abstraction from a base XML data set. While this reduces
the �exibility of client-side adaptation, it has the bene�t that it allows to even swap a
2D SVG with a 3D Virtual Reality Markup Language (VRML) representation based on
situation and device capabilities. Likewise, the GraSSML system [FD06] for accessibil-
ity adaptation of diagrams distinguishes three distinct levels of abstraction � structure,
domain semantics, and presentation � that each reside in a separate �le.

More recently, Marriott et al. [MMS04] proposed to combine constraint-enriched SVG
with a Resource Description Framework (RDF) and a domain ontology description using
the Web Ontology Language (OWL) [MH04] to generate adaptive diagrams in a larger
context of collaborative work with multimedia documents. A very similar but more
comprehensive approach has been presented by Klima [Kli09] for the adaptation of 2D
and 3D graphical data in collaborative and mobile environments. It, too, uses an RDF
and OWL to describe application-level semantics, but also includes abstract data types
as an additional abstraction level on top. This reduces the required complexity of the
ontology as well as the number of adaptation rules (i.e., constraints) that must be eval-
uated. Adaptation itself is driven by user queries (RoI de�nitions) and several di�erent
DoI functions [Kli09], but does not include task-based selection for either of both (see
Figure 2.10).

In conclusion, vector graphics exhibit inherent device scalability that can be readily
utilized for task-driven adaptation. Several approaches have been proposed that enable

24

2.3 Related Work

Figure 2.10: [Kli09]: An external RDF allows for structure- and/or semantic-based DoI propagation
across elements of an SVG �oor plan (left); resulting in di�erent adapted representations of the same
RoI for di�erent users (right).

visual and even basic information scalability for vector graphics as well. Most of these
target the XML-based SVG format, either by using SVG's extension mechanism, or by
providing external meta data. With few exceptions, however, these approaches do not
incorporate task speci�cations into their adaptation process.

3D Models, or objects in a virtual scene, describe graphical content by its geometry in
R3 (usually as polygonal or triangle meshes) and associated visual attributes (�material�).
Similar to 2D vector graphics, 3D models exhibit inherent display and visual scalability
by virtue of the wide range of parameters that can be adjusted during rendering.
Display scalability is achieved by adjusting the pixel resolution of the scene's rendition

to the screen. This may result in very small triangle sizes in image space (< 1 pixel) and
it is often more necessary to achieve interactive framerates than showing �ne details.
Thus, Level of Detail techniques are an important part of many rendering techniques
for large scenes and highly detailed objects [HS06]. To this end, various algorithms to
simplify the surface mesh of polygonal 3D objects have been proposed. The majority of
approaches can be distinguished by if they generate continuous LoD (e.g., [GWH01a])
or select from a pre-calculated set of discrete ones; and if they use view-independent or
view-dependent measures (e.g., screen-space error [GH97]) to determine the appropriate
LoD (see [LRC+02] for an overview). Others swap geometry with 2D impostors [Jes05]
or surface samples (surfels) [HS07, Hol07] that require less memory. Common to all
approaches, however, is that they try to maintain the perceived appearance of objects
so as to minimize the visual impact of simpli�cation.
Aside from basic display scalability to generally improve rendering e�ciency, visual

and information scalability are essential for a number of applications where 3D models
are used to produce (interactive) representations with a de�ned communicative goal.
Here, the photo-realistic depiction of a real object is not paramount, rather the task
at hand requires to extract speci�c information from the 3D representation (cf. Fig-

25

2 Basics

ure 2.11). Examples include interactive illustration systems that provide interactive
versions of educational graphics similar to that found in medical textbooks [BG05] or
step-by-step assembly instructions [APH+03]. Augmented Reality (AR) and Virtual
Reality (VR) approaches are employed to reduce time, cost and risks of specialist task
training, like virtual trainer models for machine operators [MVL09, LM09] or virtual
operation theaters for medical personnel [TIP05]. Such interactive tutoring systems
need to communicate speci�c aspects of a complex model [PR02]. A primary question
therefore is how to accentuate relevant object features while minimizing the visual im-
pact of irrelevant or occluding components by a combination of visual and information
scalability.

Figure 2.11: 3D illustrations with a speci�c communicative goal necessitate both visual and infor-
mation scalability in order to adapt what aspects of a model are presented how, e.g during subsequent
steps of assembly (left, from [APH+03]) or when highlighting speci�c organs in a medical illustration
while subduing surrounding tissue (right, from VolumeShop [BG05]).

Straightforward visual scalability utilizes the scene setup (virtual camera, lighting) to
alter both the perspective and the object's appearance. This can include local alteration
of the selected LoD (see above), lighting and/or material properties (e.g., color) to ac-
centuate object features [Hop99, PR02]. Some systems automatically determine optimal
views which minimize occlusions [V�03, Vio05, GHS06] or plan camera movements to
guide the interactive exploration [BRS01].
To complement this basic adaptation, a large number of more sophisticated rendering

techniques has been developed over recent years. Non-photorealistic Rendering (NPR)
styles [SS02] are a good way to highlight important object features. Specialized shad-
ing functions such as Gooch shading [GGSC98] may be applied to improved perception
of shape and depth. Local transparency (ghost views) [DWE02, BG05] and cutaway
views [BG05, DWE03] are very e�cient methods to remove or subdue irrelevant occlud-
ing geometry, mimicking their long-established illustration technique counterparts from
print media. Dynamic labeling is a method to further establish co-referential relations
between textual information and visual elements [AHS05, LSC08].
All aforementioned approaches that enable visual scalability require additional in-

formation about the semantic composition of the 3D object e.g., to selectively apply
NPR styles and ghosting. Such decomposition information further a�ords information
scalability: components can be presented at a lower LoD or even removed from the
representation entirely. To this end, external meta data formats are often used. For
example, in [KLK03] an extension to the MPEG-21 DIA (Digital Item Adaptation)
standard [Pat03] is presented for 3D content.

26

2.3 Related Work

However, such meta data may not be available due to limitations of the data format,
intellectual property protection considerations, or simply because no meta data was gen-
erated for the model components in the �rst place (cf. Section 2.2.1). Decomposing a
model into meaningful components [ARSF07a] (Figure 2.12, left) and enhancing raw
geometry with additional high-level shape information [ABF+06] (Figure 2.12, right)
thus are important topics in both industry and academia. To this end, several segmen-
tation methods have been devised [ABF+06]. Good recent overviews can be found in
[AKM+06] and [Sha08].

Figure 2.12: Without external meta data, mesh segmentation is necessary to extract meaningful
components from the raw geometry (left). The segmented object can then be enriched with semantic
information on individual segments and (topological, functional) relations between them to enable
information scalability (from [ARSF07a]).

The segmentation of a surface mesh can be carried out either according to purely
geometric aspects e.g., [MW99, GWH01b, AFS06]; or semantic-oriented e.g., [LZ04,
MPS+04, KLT05]. In the former case the mesh is decomposed into patches that are
equal with respect to a certain property (curvature, distance to reference plane) whereas
latter methods try to identify object parts that correspond to relevant features of the
object's shape. Geometry-based approaches are sometimes used as a pre-process to the
detection of relevant features. Semantic-oriented approaches have enjoyed increasing
attention in recent research because they support morphing, 3D surface reconstruction
and skeleton extraction, which however cater primarily to the needs for e�cient mesh
storage and -retrieval rather than their visual representation.
Generally, di�erent algorithm perform better for certain types of model features. For

this reason, Attene et al. [ARSF07b] propose what they call multi-segmentationi.e., to
use several segmentation algorithms in parallel and to mix-and-match their individual
segmentation results.

There are some approaches that employ a combination of the general-purpose algo-
rithms and techniques listed above to generate adapted 3D representations for a spe-
ci�c communicative intent. Selligmann and Feiner [SF91] propose IBIS (Intent-Based
Illustration System) that treats the design of an illustration as a goal-driven process

27

2 Basics

within a system of constraints. The goal is to achieve the communicative intent; the
constraints are the illustrative techniques an illustrator can apply. Later, IBIS was inte-
grated into KARMA [FMS93], one of the �rst systems to utilize head-mounted displays
for AR support of maintenance tasks. Krüger proposed a knowledge-based system called
ARP [Krü98] for automating graphical abstractions of 3D models according to a pre-
sentation context. It, too, uses sets of attention and abstraction rules to support the
human illustrator. More recently, Viola [Vio05, VFSG06] proposed an importance-driven
scheme to generate expressive illustrations from volume data that is able to seamlessly
compose di�erent rendering styles and illustrative techniques for individual features.

In conclusion, there exist a wide variety of techniques that provide display and visual
scalability for complex 3D models, as well as methods to enrich such models to enable
information scalability. There also exists a number of approaches that integrate these
into illustration generation systems that have the notion of a communicative goal; how-
ever, these usually provide rule-based systems that formalize illustration knowledge to
support authors in creating static illustrations, rather than aiming at the automated
adaptation of visual representations in the face of changes to the task at hand.

Abstract Data have no intrinsic visual representation, but rather must be transformed
into an image through a visualization process. As such, visual representations of abstract
data are, on principle, always scalable with respect to all �ve scalability issues as outlined
in Section 2.1.3. Rather, contemporary visualization approaches can be distinguished in
terms of the in�uencing factor categories ('5Ws', cf. Section 2.1.2) that are contemplated
for the visualization process. Particularly relevant to this thesis are di�erences in how
approaches consider data characteristics (what) and visualization goals or user tasks
(why). A review of the current state of the art yields the observation that approaches
can be grouped into two categories in this regard.

In the �rst group are particular tools for a speci�c application/problem domain with
a de�ned set of visualization and interaction techniques, e.g., meteorology [Tre99], elec-
trical power system surveillance [OW00], stock market [MSK+06] and computer security
analysis [Suo09]. Associated domain tasks and user requirements are typically derived
through user interviews and evaluation/re�nement cycles [Mun09] but often do not in-
clude a formal task speci�cation on di�erent granularities [WPF04].

Another group comprises approaches that are founded on a systematical description
of data classes and analysis tasks in order to arrive at an appropriate visualization
design. The early works concentrated on the automatic design and generation of presen-
tation graphics. Systems like APT [Mac86], BOZ [Cas91], SAGE [RKMG94], and VIS-
AGE [RLS+96] were tools for generating 2D static diagrams, e.g., scatter plots and bar
charts, taking relational data from arbitrary applications as input. Therefore, research
e�ort was directed at �nding suitable descriptions of data domains and their intrinsic
relations to encode that input (i.e., selected what aspects), as well as formalisms to
specify visual encoding rules used to build appropriate visualizations.

There are also a variety of approaches to formalize why aspects in visualization sys-
tems and to relate them to data types and characteristics. A pioneering approach to

28

2.3 Related Work

consider the task that should be supported by the visual representations was introduced
by Casner [Cas91] for his BOZ tool. The main idea can be summarized as follows: The
user speci�es his task at hand by a sequence of prede�ned primitive logical operators
(e.g., a query for a property of an object). This sequence of operators serves as the
input to BOZ. Here, the logical operators are replaced by so-called perceptual operators
(e.g., the lookup for a property of an object). Finally, appropriate visual attributes are
automatically selected to realize the perceptual operators.
Roth and Mattis [RM90] introduced low-level information seeking goals like value

look up, value comparison, or �nding correlations. They use these goals together with
meta data for relational data (e.g., scale type, cardinality of data records) as the dimen-
sions of a taxonomy to characterize visualization expressiveness. Similarly, Wehrend
and Lewis [WL90] separate goals into objects (e.g., scalars, positions) and operations.
They de�ne 11 operations (tasks) that might be performed on visualizations (e.g., iden-
tify, locate, distinguish or cluster). This separation allows specifying arbitrary targets
(what) independently from the type of action the user would like to perform (why).
The paper also compares their task taxonomy with that of [RM90]. Keller and Keller
[KK93] present a collection of visualization examples for various combinations of anal-
ysis goals and data types. Shneiderman [Shn96] has introduced his Task-by-Data type
Taxonomy specifying seven generic tasks (e.g., overview, zoom, �lter) and seven data
types (e.g., 1D, 2D, Network). Notable of his approach is that the four tasks overview,
zoom, �lter and details on demand (the �information seeking mantra� [Shn96]) imply a
hierarchical decomposition of both task scope and level of abstraction in the associated
data. Fujishiro et al. [FFIT00] also describe analysis targets and explicitly di�erentiate
them from analysis actions for their Gadget/IV system. They derive their taxonomy of
visualization goals from an enriched Wehrend and Lewis matrix [WL90]. Furthermore,
they combine these two categories with Shneiderman's tasks [Shn96]. Gadget/IV uses
this information to propose and initialize a suitable visualization technique from a set of
available ones, cf. Figure 2.13a, b. Nocke [NS04, Noc07] provides a systematic review of
previous approaches to develop an analysis goal speci�cation based on four main aspects
(data-driven, user-driven, context and complexity, cf. Figure 2.13c) that incorporates
many of the previous works. The intent of his approach, however, is more to o�er a guide
for semi-automatic visualization design rather than to provide concrete methods for au-
tomatic generation of visual representations. In a similar fashion, Amar et al.[AES05]
argue for a speci�cation of analysis goals as compound tasks, i.e., a combination of low-
level analysis tasks, but do not address in detail how these should be applied to concrete
visualization techniques. Andrienko and Andrienko [AA05] have developed a formal ty-
pology of visualization tasks at di�erent levels of data granularity, but it, too, does not
describe how to create concrete visualizations.
The aforementioned approaches consider a combination of what and why aspects,

but either specify tasks at a low level only, or specify higher-order goals only informally,
generally as verbal lists. This makes it di�cult to make reliable design choices satisfying
all requirements for more complex task settings [Pla04]. For this reason, evaluation of
visualization techniques and systems regarding their expressiveness and e�ectiveness has
also garnered attention from the visualization community (e.g., [AS04, BC06, Mun09]).
There is, however, some dispute as to the value of current evaluation methodologies,

29

2 Basics

(a) (b) (c)

Figure 2.13: Like many similar approaches, the Gadget/IV system [FFIT00] provides a predeter-
mined set of visualization techniques (a), from which the most suitable one is selected based on
low-level analysis goals and/or analysis actions (b). Similarly, the visualization design assistant in
SimEnvVis [Noc07] allows to specify analysis goals by combining several low-level task aspects (c).

considering most are based on informal test cases with small samples [Pla04, Nor06].
The general trend therefore is towards a more formalized approach to both design and
subsequent evaluation of visualizations [AS04, BC06], not unlike methodologies employed
in model-based UI design processes (cf. Section 2.3.1). An interesting work in this regard
has been presented by Winckler et al. [WPF04] who use the CTT formalism [PMM97]
to build task models based on the Wehrend and Lewis matrix [WL90] for structured
testing and evaluation of interactive visualization techniques. A recent publication by
Munzner [Mun09] proposes a nested model for visualization design and validation that
puts thewhy and thewhat aspects (user tasks and data, respectively) on the outermost
� i.e., most important � layer.

In the same publication, Munzner further conceptually distinguishes four di�erent lev-
els of task granularity: high- and low-level domain as well as high- and low-level abstract
tasks. Domain levels capture the semantics of a process (e.g., '�nd a cure for a disease'
as a high-level goal in the medical domain), whereas abstract tasks describe a work �ow
decomposition on a purely functional level as for example de�ned by Roth and Mat-
tis [RM90] ('compare values', 'correlate data points'. . .). This important distinction is
rarely explicitly made for the contemporary approaches reviewed above. This underlines
the observation made here that their majority is either purpose-designed for a single to
very few speci�c domain-level tasks with informally derived functional requirements, or
concentrate on generic analysis tasks neglecting the application context.

In conclusion, virtually all visualization approaches address the characteristics of the
data (what). And although some approaches for visualization of abstract data consider
isolated aspects of the task at hand (why), the adequate integration of the task at hand
into the visualization process on multiple levels of abstraction and granularity (i.e., from
high-level domain to low-level functional) is still a largely open research question. Most
approaches are purpose-designed for a speci�c problem domain with an associated set of
domain-level tasks. Those that address issues of systematic visualization design do, for
the largest part, provide taxonomies for matching standard visualization techniques to

30

2.4 Summary

the fundamental data types (e.g., [RM90, WL90, Shn96]), or to comparatively low-level
analysis tasks (e.g., [RM90, Cas91, AES05, Noc07]). One notable exception is the work
presented in [AA05] that presents a visualization task typology based on a formal model,
which however does not describe concrete means for how the actual visual representation
should be generated.

2.4 Summary

In this chapter relevant terms and concepts that are used throughout the thesis have
been introduced and disambiguated where necessary. Two application scenarios have
been presented that illustrate both the need for, and requirements to, scalable visual
representations: mobile maintenance support and smart meeting rooms. These two sce-
narios represent use cases from two academia-industry research projects providing the
practical background to the contributions of this thesis. It has been shown that scal-
ability of visual representations with respect to the representations context of use, in
particular the task at hand, is one of the most important aspects in both scenarios.
Consideration of the user's task must therefore be integrated into the design process of
the visual interface.

To this end, as a �rst contribution we proposed in Section 2.1.2 a categorization
of in�uencing factors into �ve high-level aspect categories. These '5Ws' � what,
why, when, where and for whom� de�ne the context of use of visual representations
within Smart Visual Interfaces. This partition of the in�uencing factors is not arbitrary:
it relates to the di�erent dimensions of visual representation scalability (Section 2.1.3)
that is required to actually accommodate for changes to the context of use.

This categorization is used to derive a classi�cation of the graphical content that
constitutes the basis for task-speci�c visual representation within smart visual inter-
faces. In this thesis, for the purpose of task-driven adaptation we propose a distinction
into four principal visual data types depending on their degree of inherent scalabil-
ity: raster graphics (only imaging operations), vector graphics (manipulation of vector
primitives), 3D graphics (added control over the rendering process), and information vi-
sualizations (control over the entire image generation process including visual mapping
and data �ltering).

Further, this chapter reviewed related work to the approach presented here. Related
works thereby comprises two main areas. On the one hand, design methodologies based
on formal models derived from (domain) task analysis are currently state of the art in
the �eld of software engineering, UI design in particular. These approaches can poten-
tially form the basis for the overall design process of smart visual interfaces. However,
the vast majority of corresponding model-based UI design methods is geared towards
the speci�cation, creation and evaluation of so-called WIMP (Windows, Icons, Menus,
Pointing Device) interfaces. Graphical content is usually considered as a static resource
that is displayed by virtue of a GUI widget. As a result, model-based UI design method-
ologies do not usually capture the what and why aspects pertaining to visual content

31

2 Basics

in su�cient detail to enable task-driven scalability of embedded visual representations.
On the other hand, there exists an large number of approaches to visual representa-

tions that are scalable with respect to their context of use according to the proposed
categorization. Many of the reviewed contemporary approaches deal with scalable rep-
resentation of graphical content of the visual data types raster images, vector graphics
including maps, and 3D models. Only very few, however, include an explicit speci�ca-
tion of the user's task at hand, relying instead either on interactive manipulation by the
user, or on an implicit consideration by the content author. Similarly, although some ap-
proaches for visualization of abstract data consider isolated aspects of the task at hand,
its adequate integration into the visualization process is still an open research ques-
tion. Most approaches are either purpose-designed for a speci�c problem domain with
an associated set of domain-level tasks, provide taxonomies for matching standard visu-
alization techniques to the fundamental data types, or rely solely on low-level abstract
analysis tasks detached from higher-level tasks and work �ows in the application domain.

It is the aim of this thesis to propose �rst steps toward closing this �modeling gap�
as a contribution to the design of task-driven Smart Visual Interfaces. To this end, the
following chapter provides a detailed problem and requirement analysis for the dynamic
adaptation of visual representations to the task at hand.

32

3 Basic Approach

to Task-driven Adaptation

of Visual Representations

Smart Visual Interfaces aim at the dynamic generation and presentation of visual content
for a given context of use. The previous chapter discussed how the in�uencing factors
constituting the context of use can be broken down into �ve higher-level categories
('5Ws', Section 2.1.2). This categorization is not arbitrary. It relates to di�erent aspects
of scalability that must be provided by the visual interface to accommodate for changes
to the context of use, as illustrated by Figure 2.1 in Section 2.1.3.

The multitude of possible in�uencing factors in most problem domains make a holistic
solution unfeasible. Rather, the following Section 3.1 explicates the objectives of our
approach in particular, and which in�uencing factors thus to be considered. Section 3.2
analyses challenges and open research questions arising from resulting requirements. Sec-
tion 3.3 then presents the basic concepts underlying the approach for task-based adaption
of visual representation developed in the present thesis to address these challenges.

3.1 Scope and Objective of the Approach

Following the interpretation of Smart Graphics as �intelligently made graphics, which
[. . .] enable humans to make much better sense of them� [KB09], in this thesis we con-
sider task-based adaptation of graphical content according to the user's current task at
hand as the most important function of smart visual interfaces. In other words, by visu-
ally presenting content and information in a way that is immediately useful to the user
in the context of her current task, �smart� user support can be realized. With regards to
this focus the di�erent aspect categories of the '5Ws' that must be contemplated during
the adaptation process vary in signi�cance.

Clearly, the graphical content associated with the task at hand is the subject matter
of adaptation. Its type and data format determines how it can be visually represented to
the user. This is captured by the what aspect. It must therefore always be considered
for the adaptation process.

Depending on the task goal, the user needs to extract speci�c information from the
visual representation associated with the task at hand. Thus, di�erent aspects of the
graphical content/data are relevant. The content's visual representation must not only
show all relevant information at an appropriate level of abstraction (i.e., at an appropriate

33

3 Basic Approach

information scale), but also visually emphasize them over contextual aspects to e�ectively
convey this information (i.e., at an appropriate visual scale).
However, graphical content often was not created with the same communicative goal

as that appropriate for the task at hand. This is especially the case where available
'raw' content (e.g., digitized illustrations, schematics, cf. Section 2.2.1) is associated
with several di�erent tasks. Therefore, to ensure relevant aspects of the data are suit-
ably represented, adaptation of the raw graphical content is required according to why
aspects.

Furthermore, the relevance of speci�c content aspects and information is not deter-
mined by the current working step alone. Rather, the task at hand is also de�ned
through the current position in the superordinate composite work�ow: information com-
municated through visual representations for previous tasks in�uence what information
is currently required in what detail, and the context in which they are perceived. Thus,
the when aspects of the task at hand de�ne an important portion of a visual represen-
tation's context of use.

Output device capabilities and work environment conditions further introduce con-
straints for this adaptation process. Device-speci�c properties such as available display
space and color resolution directly a�ect the visual representation. The device's interac-
tion facilities as well as environmental conditions, such as light or noise levels, in�uence
the utility of visual communication compared to alternate interface modes; this in turn
in�uences what information should be presented visually (see Section 2.2.1).
While constraints imposed by where aspects must be regarded in choosing appropri-

ate adaptation methods and techniques in terms of display scalability for a particular
target device, a primarily device-driven adaptation of visual representations is not in
the focus of this thesis. Note that this problem aspect has indeed been addressed in the
scope of project MuSAMA. Refer to the PhD thesis of Thiede [Thi10] for a primarily
device-driven adaptation approach as well as an extensive discussion of related where
aspects.

Incorporating the �rst four aspect categories for task-based adaptation also addresses
several user-related issues (for whom). Considering content- (what) and task-related
(why) aspects results in visual representations that e�ectively communicates all required
information without requiring the user to manually select and navigate the content. In
addition, considering each task in the context of its superordinate work�ow (when)
makes it more likely that adapted representations match the user's mental map of the
problem domain across subsequent working steps. This cannot be ensured if adaptation
is based solely on properties of isolated working steps. This increases the e�ectiveness of
the adapted representations. Therefore, while we do not explicitly consider user-related
aspects such as cognitive capabilities or domain expertise, several advantages in terms
of user support are nonetheless provided implicitly.

The above set of in�uencing factors de�nes the context of use considered for the adap-
tation of visual representations in our approach. Figure 3.1 illustrates this scope with

34

3.1 Scope and Objective of the Approach

respect to the overarching categorization of the context of use proposed in Section 2.1.2
(cf. Figure 2.1 on page 7) of visual representation within smart visual interfaces.

Figure 3.1: Scope of the approach presented in this thesis: provided visual content (what) is
adapted according to task requirements (why + when). This primarily necessitates the provision of
information and visual scalability. The output device (where) imposes constraints on the adaptation
process. User-related aspects (for whom) are only addressed implicitly.

Given this scope, the primary objective of the adaptation process in our approach is
to provide an initial representation for each basic task that is e�ective and as e�cient
as possible. This means that all relevant information in the context of the task at hand
are communicated to the user without necessitating active involvement. Automatic task-
based adaptation of visual representations thus constitutes �smart� user support through
the visual interface.
However the aim is not to restrict the user to that, and only that, automatically gen-

erated representation. Rather, task-based adaptation is to provide a good initial view on
the information required for the task at hand. While striving to minimize the need for
manual navigation, the user should always retain the ability to override the adaptation
process in cases it does not meet her speci�c preferences and requirements. Thus, the
user can always change and modify the current view interactively.

Besides the primary objective to provide task-based adaptation of visual representa-
tions as the smart visual interface's most important functionality, a secondary aspect
is the integration of such methods into the design process of the overall system. The
two application scenarios that stimulated the research presented here both put a strong
emphasis on multiple user interface design to accommodate the large variety of devices
typically encountered (compare Section 2.2). In this area Model-based User Interface
Development (MBUID) approaches play out their particular strengths [Luy04]. In corre-

35

3 Basic Approach

spondence, the further development of MBUID processes to e�ciently support multiple,
multi-modal user interfaces has been one of the main project areas (see for example
[RF05, BDF+06]).
To e�ectively utilize visual communication through smart visual interfaces � as a

speci�c type of user interface � in these application scenarios, their development has
to be integrated into the superordinate model-based design process. The utility of this
integration is two-fold:

• Model-based UI design processes use as their starting point a task model that
describes a hierarchical decomposition of the work�ow into sub-tasks and their
interrelation. These models, as the result of a prior domain task analysis,1 thereby
provide a description of the when aspect for each basic task. The main idea is
to also use this model as the basis for the speci�cation of adapted visual repre-
sentations presented through the smart visual interface, rather than e�ecting the
adaptation of graphical content solely on an unstructured set of low-level tasks.
• Task-based adaptation of di�erent types of graphical content is but one aspect of
complex information systems. As such smart visual interfaces augment, but do not
replace, traditional GUI (WIMP interfaces). The task model provides the basis
for a common MBUID process integrating multi-modal and smart visual interfaces
development (cf. [BDF+06, FS06]).

For the two application scenarios outlined in Section 2.2 in particular, the Concur Task
Tree (CTT) notation [PMM97] had been chosen as the task model formalism.

To summarize, the objective of task-based adaptation within the scope of this thesis
is to adapt the graphical content (what) associated with the task at hand (why +
when) in such a way that the content's visual representation (how) provides a good
initial view with respect to the information relevant for the current working step. In
doing so, the adaptation process is subject to output device constraints (where). The
automatic adaptation process signi�cantly reduces exigency of manual navigation. In
combination with suitable interaction functionality an even larger degree of user support
can be attained by providing means to �ne-tune the visual representation according to
her expertise, preferences, and situational requirements. As a secondary aspect, the task-
based adaptation and corresponding description of the in�uencing factors what, why
and when should facilitate integration into an overall model-based UI design process.
In light of the project background of this thesis in particular, for the underlying task
model the CTT notation was predetermined.

3.2 Problem Statement

The scope outlined above can be succinctly summarized as �from task to visual repre-
sentation.� This can be distinguished into two challenges:

• The need to provide an adequate task description, and

1Task analysis is a complex �eld in its own (e.g., see [HR98]) and thus is well outside the scope of this
thesis.

36

3.2 Problem Statement

• providing means for an adequate adaptation control on the basis of this description.

3.2.1 Requirements for Task Descriptions

An adequate task description to this end further comprises two major aspects:

• the description of the graphical content associated with the task (what), and
• the speci�cation of the task-related aspects of the visual representation's context
of use (why and when), or task context for short, that provides the basis for
adaptation.

The graphical content is the subject matter of task-based adaptation. Its task-speci�c
visual representation is based on choosing appropriate information and visual scales of
the graphical content with respect to the requirements of the task at hand. Therefore,
requirements to the content description extend beyond that of a mere graphics storage
format. Rather, it is necessary to provide a scalable description of graphical content
independent of the underlying visual data type. This is a challenge because the four
visual data types exhibit varying degrees of inherent scalability due to di�erences in
their expressiveness, i.e., the amount of semantic and structural information available
on depicted content. From the perspective of the adaptation process, it is therefore nec-
essary to introduce an abstraction with respect to these type-speci�c variances so that
the association of tasks with (self-contained units of) graphical content can be handled
uniformly regardless of its type.

The scalability facilitated by such a suitable content description must then be utilized
during the adaptation process. In particular, the speci�cation of the task context must
allow to determine the following characteristics of the visual representation with respect
to the task's communicative goal:

• What information from the graphical content are required

• on what level of abstraction (i.e., the content's information scale), and

• how it should be visually encoded for communication (i.e., the content's visual
scale).

The selection of relevant portions of the graphical content, i.e., what information are
required for the task at hand, is determined primarily by the requirements for the current
working step (why). This can be understood as the local task context.

However, the appropriate abstraction level of the presented information as well as
its visual encoding can not be determined solely by contemplating individual low-level
working steps in isolation. Instead, the task context also includes the position of the
current working step in the composite work�ow (when). In particular, temporal and
causal relations to other subtasks of the task at hand in�uence the relevance of particular
information. This can be understood as the extended task context. For example, facts
that have been previously communicated to the user potentially require less detail in
subsequent steps. On the other hand, generating visual representations for a series of

37

3 Basic Approach

successional working steps often involves the progressive re�nement of an initial repre-
sentation, i.e., by successively adding more detail information. Thus generally, visual
representations supporting isolated low-level tasks are subject to di�erent criteria than
those for composite tasks comprising multiple working steps.
This claim has been substantiated in a user experiment [Son07]. Three di�erent set-

tings for the combination of a 3D visualization with di�erent labeling styles were tested
for three di�erent tasks: two low-level tasks with the goal of locating a labeled object
in 3D, and one more complex 3D scene exploration task. The latter task comprised two
working steps, requiring participants to �rst identify an object by textual information
before it had to be located in the 3D scene. The relative e�ectiveness of each setting
was determined by comparing the time it took the participants to �nish the task and
the error rates in locating the objects. Participants were also asked to rate each setting
according to the relative degree of support it o�ered for the respective task. In all cases,
completion time, error rate and user acceptance matched. While the third visualiza-
tion setting was rated to be the worst by half of the participants when performing the
low-level tasks, a majority of 64 percent favored that very third setting for the com-
plex exploration task. By contrast, the second setting, which was a close second-rated
for the simple 'locate' tasks, was rated worst almost unanimously by 97 percent of the
participants for the exploration task.
The majority of methods reviewed in Section 2.3.2 aimed primarily at providing scal-

able representations of graphical content without considering the task at hand at all.
Integration of user tasks into the visualization process for abstract data has been inves-
tigated more extensively, nonetheless contemporary approaches are based on taxonomies
of low-level analysis tasks only. This means that even those approaches contemplate only
the local task context.
Therefore, it can be stated that the methods outlined in Section 2.3.2 do not, in and of

themselves, provide an adequate basis for adaptation of graphical content within smart
visual interfaces.

Instead, for the speci�cation of the extended task context that is suitable for task-
based adaptation, the further integration of the local task context with a description
of the superordinate work�ow is required. In particular, this work�ow description must
provide a decomposition of the task at hand into working steps that are each associated
with a visual representations capturing causal and temporal dependencies between them
(when).
Corresponding task models developed for model-based user interface design provide

a description of the work�ow which the designed system is intended to support as a
tool. These models � including the CTT formalism predetermined by the application
background � describe the decomposition of the task at hand as a hierarchical structure
of task nodes with parent-child as well as temporal and causal relationships between task
nodes (cf. Section 2.3.1). Thus a path through this structure up to the basic task node
of the current working step comprises the extended task context for that working step.
What these modeling approaches do not provide, however, are means to describe

scalable graphical content. Although several models include the concept of 'task objects'
at the level of basic tasks, and some further distinguish these into 'application objects'

38

3.2 Problem Statement

from the application data model and 'perceivable objects' as their representation in
the UI, contemporary approaches are geared towards the speci�cation of user-machine
interaction using typical WIMP GUI. In particular, perceivable objects (interactors)
are assumed to be commonly available controls such as text �elds, buttons or menu
entries. Graphical content is limited to static 2D images, whereby scalability requires
the speci�cation of multiple predetermined versions of the image, of which one is selected
during subsequent transformation of the task model into the presentation model (i.e.,
the abstract UI).

Thus, task models used for general model-based UI can be used as the basis for
task-based adaptation of visual representations within smart visual interfaces. They
already provide a suitable description of the superordinate work�ow that de�nes the
extended task context for adaptation. However, in order to incorporate scalable graphical
content of the di�erent visual data types � as the subject matter of adaptation � these
task models must be extended. Since task models are speci�ed at the conceptual level,
these extensions must maintain abstraction from technical peculiarities of the visual data
types.

3.2.2 Adaptation Control

Based on a suitable description of the graphical content (what) and the task context
(why, when) the adaptation process must be steered so that a good initial view (how)
for the current working step can be tailored automatically. Ideally, the adaptation
process can utilize existing presentation techniques to this end. Although there is a
variety of presentation techniques available to generate scalable visual representations
based on the four visual data types, these generally have no concept of an explicit
communicative goal which could be utilized to e�ect task-based adaptation. Instead,
most approaches rely on the interactive manipulation of presentation parameters by the
user.

For the task-based adaptation is therefore necessary to map the task context onto
a suitable parameterization of individual presentation techniques. The extended task
model then must be enriched in a suitable place with these adaptation control informa-
tion. The challenge in doing so is to abstract from each speci�c techniques and their
respective parameter space so that the enriched task model can still be described on a
conceptual level, i.e., without introducing data type- or presentation technique-speci�c
implementation details.

3.2.3 Open Research Questions

The above-identi�ed challenges can be summarized as that there currently exists a 'mod-
eling gap' between scalable display techniques on the one hand, and task modeling
approaches for model-based UI design on the other hand. The former insu�ciently con-
template task-related in�uencing factors of the context of use for visual representations.
The latter by contrast widely neglect the integration of scalable graphical content that
is the foundation of task-speci�c visual representations. Thus, closing this modeling gap
requires to address three elementary questions:

39

3 Basic Approach

• What is a suitable description of scalable graphical content in a way that it can
be integrated into a high-level (domain) task model? In particular, the description
should accommodate graphical content of all for visual data type while abstracting
from implementation and data format details at the task modeling level.

• This model must further be extended (enriched) to capture the information and
visual scale requirements to task-speci�c visual representations. What is a suitable
model-level abstraction of why aspects speci�c to graphical content and its visual
representation that is applicable to all visual data types?

• Finally, the information from the extended task model is employed to e�ect the
adaptation process so that a good initial view is automatically generated for the
current working step. To utilize existing display techniques for scalable representa-
tions to this end, a bridge must be provided between the model-level abstractions
of the what and why aspects, and concrete implementations for the particular
visual data type. What is a suitable framework to facilitate this catenation for
arbitrary display techniques?

3.3 Page-Feature Concept

In this section, we present our basic approach to address the three challenges outlined
above as an essential step towards closing this 'modeling gap'. In doing so, our approach
provides a means for the model-based development of smart visual interfaces and their
integration into a superordinate MBUID process.

3.3.1 Concept Overview

Starting point is the general task model resulting from the domain task analysis phase
(cf. Figure 2.5). Conceptually, this model is a hierarchy of distinct task nodes describing
the extended task context (when) for each basic task (leaf task nodes). Subsequent
examples will use the CTT notation as a representative of this type of models.

The extension of this general task model required to accommodate task-speci�c visual
representations occurs as part of the model-based smart visual interface design process.
This comprises two steps:

• De�nition of units of graphical content (what) and their association with tasks,
and

• further detailing of the task context (why) for each basic task with respect to
task-based adaption of visual representations.

To support these two steps on the conceptual level of task models, in this thesis the
concept of pages and features has been developed. These are introduced to provide
the necessary abstraction from implementation-related aspects of the four visual data
types. Pages encapsulate the description of scalable content, while features are used
as a means to designate relevant aspects of the content with respect to the task context.

40

3.3 Page-Feature Concept

Thereby, pages and features constitute the basic building blocks for the extension of
the general task model towards task-speci�c visual representations.

Extending the task model is done by annotating task nodes with these building blocks.
This is in line with several approaches that require extensions to the original notation,
cf. Section 2.3.1 on page 19. In the following two subsections we will introduce both
concepts.

3.3.2 What-oriented aspect � Pages

The purpose of a page is to provide a conceptually self-contained unit of graphical
content that abstracts from the intricacies of the underlying visual data type. This
abstraction barrier o�ers two advantages:

• It facilitates the association of multiple tasks with the same graphical content.
Multiple working steps of a composite tasks often require adapted representations
derived from the same graphical content. In these cases, a single page de�nition
can be associated with the corresponding basic tasks, rather than requiring to
specify a data format-speci�c description for each task individually.

• It decouples the creation or acquisition (e.g., scanning printed documentation) of
graphical content from the design activities to create the extended task model.
In particular, without using a suitable abstraction on the conceptual level, subse-
quent task model transformations (e.g., into a presentation/dialog model) would
otherwise need to be aware of the intricacies of di�erent data formats. This would
severely hinder the integration of smart visual interface components into the overall
UI design process.

The designation for units of content as pages was chosen because it re�ects the nav-
igation metaphor Scrolling and Paging nicely. During a single working step the page
is �scrolled,� i.e., interacted with, and between tasks pages are �ipped over to show the
next initial representation.

Thus, pages are an abstract container for graphical content of di�erent visual data
types. In addition, we stipulate a page contains all supplemental information required
to generate a default representation for the contained data.

The raison d'être for this stipulation is that this allows to associate the graphical
content encapsulated by the page with any task without the need to specify further
details of the task context. In doing so, the task context must be enriched with additional
information only for those tasks where it is appropriate from the work�ow to further
deviate from the default representation.

Concrete instances of pages di�er depending on the underlying visual data type.
Besides technical aspects like the internal data formats, this primarily regards what
additional information must be provided to generate a default visual representation of
the encapsulated data.

To give an example, a raster image �le is in itself su�cient to describe a page, as
the image can be directly used as default representation. On the other hand, content

41

3 Basic Approach

comprising 3D graphics requires additional parameters beyond the plain triangle mesh
data to derive its visual representation. This includes a default view point de�nition and
lighting information.
However, these intricacies are irrelevant for the purpose of extending the general task

model. Details of page internals will thus be discussed only in the respective chapter 4�7
for each of the four data types.

The next question is how pages are used to extend the task model. Generally, graphi-
cal content is associated with tasks by annotating (linking) the corresponding task nodes
in the model with the page de�nition. In doing so, di�erent strategies are viable regard-
ing the position of the page annotation in the task node hierarchy:

• only at the level of basic tasks, i.e., each leaf node is annotated individually, or

• also at di�erent levels of composite tasks, i.e., the page is annotated once at the
root of a sub-hierarchy comprising multiple sub-tasks.

The �rst strategy amounts to associating the graphical content of a given page with
every working step that references it by individually annotating all corresponding basic
task nodes. The task model is thus extended locally with regards to the what aspects of
the task context. This strategy therefore is equivalent to an approach based on low-level
(basic) tasks only: it allows to contemplate basic tasks in isolation (i.e., detached from
the task model) because all what-related information are speci�ed in the local task
context. This does, however, introduce redundancies in the extended task model as the
page annotation must be explicitly speci�ed for all corresponding basic task nodes.
The second strategy utilizes the hierarchical relationships between task nodes in the

task model. Here, instead of associating graphical content with multiple working steps
individually, it is associated with the higher-level composite tasks that comprises these
working steps. Thus, the page is annotated only once in the task model, at the task
node that is the root of the sub-hierarchy representing the composite task. To access
the page de�nition from a basic task node, the chain of ancestor nodes is traversed until
the node containing the actual annotation is found.
This second strategy allows to take advantage of the extended task context (when)

provided by the task model. The page annotation in the root node of the composite
task de�nes the default representation that is inherited by all of the composite task's
working steps. Sub-tasks then specialize the task context, and thus, that task's visual
representation, at a lower decomposition level only as needed according to task-speci�c
requirements (i.e., why, cf. next subsection 3.3.3). In addition, annotating a page only
once, in the lowest common ancestor of all basic task nodes that reference it, avoids
redundancies in the extended task model. Figure 3.2 illustrates how the extended task
context with page annotations is utilized to provide default representations for several
working steps.
The approach discussed here uses the second strategy. It therefore presents an im-

provement compared to contemporary approaches based on the speci�cation of individual
low-level tasks. The latter necessitate that the content to be adapted is speci�ed for each
task repeatedly.

42

3.3 Page-Feature Concept

Set fuel value

Exchange reducing ringInterupt power
and gas supply

Toggle Master
Switch to 'OFF'

Remove
feeder hose

Reconnect gas
and gower supply

Unfasten screws Remove blower Pull off
feed pipe

Dismantle
fuel nozzle

Insert new
reduction ring

Reassemble
fuel nozzle

Reassemble blower/
feed pipe assembly

Determine requied
reduction ring size

[]Page 1: Overview

Page 3: Close-up View

Page 2: Detail View

Node annotation (Page-Task association)

Inheritance (Extended task context)

Figure 3.2: Illustration of our annotation strategy that utilizes the extended task context. Pages
shared between multiple working steps are annotated at the least common ancestor node. Child nodes
inherit the page's default representation. Only for working steps where the default representation is
insu�cient, additional task context information is provided for adaptation in the form of features.

3.3.3 Why-oriented aspect � Features

Pages provide a description of the graphical content, constituting the what aspect of
the task context, as well as a default visual representation of that content. However, to
be able to e�ect task-speci�c visual representations, the task context must be further
detailed to include information regarding two categorical issues:

• Which aspects or elements of the page contents are actually of general relevance
in the context of the task at hand?

• How relevant are these elements with respect to each other as well as the task's
communicative goal?

To this end, we employ the concept of features as a means to specify this information
in the extended task model.

The main idea behind features is to organize the graphical content of a page into
conceptually distinguishable content elements, i.e., separate objects whose appearance
in the content's visual representation can be adapted individually, according to task
requirements. To be useful for the adaptation of a page's visual representation, this
information must be provided at a �ner granularity than pages. The term feature
is borrowed from the image processing domain where it is typically used to describe
abstractions of image information relevant to a certain application.
Moreover, features allow to express relationships between content elements on a

semantic level regardless of the way the visual data type is organized internally. What
relations between content elements are meaningful depends on the application domain.
These are typically speci�ed using a domain ontology description like OWL, see for

43

3 Basic Approach

example [MMS04, Kli09]. Examples from the maintenance scenario include hierarchies
of assembly parts and connectivity (topology) information of electrical circuit schematics.

Feature relationships can be utilized for the generation of initial views, and espe-
cially for providing feature-based interaction with the adapted visual representation,
as discussed in Section 3.3.5. In this thesis in particular, we discuss how is-attached-to
relations are utilized to create so-called �exploded views� of assembly drawings (Sec-
tion 5.3.1), as well as how to utilize topology information (is-connected-to relations) for
the adaptive layout of circuit schematics (Section 5.3.2).

The purpose of feature de�nitions thus is to introduce a notion of distinguishable,
structured content elements of a page on a semantic level. This allows to utilize per-
element adaptation of pages even if the underlying visual data type itself

• does not provide any information on content structure at all (e.g., raster images),
or,

• although it does have a notion of content elements (e.g., vector graphics), elements
are structured at a granularity unsuited for adaptation.

Features as de�ned here therefore are content elements with a semantic meaning in
the context of the (domain) task at hand, rather than artifacts of the technical organi-
zation of the graphical content.

In doing so, features abstract from the way content elements are actually described
and organized in the data format of underlying visual data type. Such an abstraction
can be provided for any type of graphical content. In particular, de�ning features for
unstructured content can be e�ected by means of external meta-data.

For example, raster images are but a 'pixel soup' with no notion of content structure.
Here, de�ning features entails de�ning regions in image space. To this end, regions
can be speci�ed e.g., by a boundary representation. Vector graphics are comprised
of graphical primitives as their basic content elements. However for the purpose of
adaptation, usually several primitives are grouped together into a single feature that
describes some more complex object with a semantic meaning in the application domain.

Because the type-speci�c details of what comprises feature are irrelevant for the
discussion of our basic adaptation approach, these will be discussed in more depth in
Chapters 4�7, respectively, for each of the four types of graphical content.

Irregardless of the type-speci�c realization, from the perspective of the adaptation
process each feature is treated as an object with de�ned properties:

• Geometry, which determines the region the content element occupies in the visual
representation, i.e., in image space. Feature geometry is either de�ned directly
in image space (e.g., regions of interest in a raster image) or derived from higher-
order geometry (e.g., the projection to view space of a triangle mesh with size and
position given in R3).

• Visual attributes, which determine the appearance of the element in the visual
representation. Examples include line and �ll colors (2D graphics), lighting and
material properties (3D renderings), and color scales (abstract data visualization).

44

3.3 Page-Feature Concept

• Supplemental information, such as human-readable names used as labels (cf. Sec-
tion 3.3.4) or textual information for text-to-speech output mode, as well as rela-
tionships to other features.

These properties can be adapted independently from each other to obtain a visual rep-
resentation that adequately re�ects the feature's relevance with respect to the task at
hand. This will be discussed in Section 3.3.4.

Features are associated with tasks to detail what elements or aspects of the content
are of relevance in the context of the task at hand. Features are associated with tasks
by annotating the corresponding task model node with the feature de�nition.

In doing so, we employ the same annotation strategy for features as for pages, for
the same reasons. A features may be of relevance in the context of multiple working
steps. In this case, the common ancestor node is annotated.

This allows to utilize the task hierarchy of the extended task context (when). Con-
ceptually, content features common to multiple tasks are de�ned on the broader scope
of their superordinate composite task. Features speci�c to a sub-task of that super-
ordinate task (i.e., a sub-hierarchy) are de�ned on a correspondingly narrower scope
of that sub-hierarchy's root. Features speci�c to an individual working step, �nally,
are associated with the corresponding basic task2. Because features are de�ned on
the basis of the content described by a page, no feature is reasonably annotated at
a task node that is an ancestor of the task node associated with the corresponding page.

With the annotation of features, the task model now contains information on what
content elements are of general relevance in the context of the task at hand. As stated at
the outset of this section, this constitutes the �rst half of the task context's why aspect.

Section 3.1 argued how task-driven adaptation relates to the selection of appropriate
information and visual scales of these content elements as appropriate for the task's
communicative goal. Therefore, it is necessary to further augment the description of the
task context's why aspect with a means to derive appropriate scales for the associated
content's visual representation.

In the same way that pages and features provide an abstracted description of
the graphical content and its semantically relevant elements, the data type-dependent
realization of di�erent visual and information scales is not relevant at the conceptual
level of the task model. Therefore, relevance values are used in our approach as an
abstracted measure for the feature's scale requirements for the task at hand. Only
during the adaptation process are the relevance values evaluated to control the visual
representation of features in a data type-speci�c way, see Section 3.3.4.

To this end, features φi are associated with a numerical value ri ∈ R from a speci�c
range of possible relevance values R = [rmin, rmax]. Using such a mapping of features
to relevance values allows to capture the following information in the task context:

2In an actual implementation, it will often be more e�cient to coalesce all features into a single set of
de�nitions that is an integral part of the page annotation. This can be easily automated, however,
so that in designing the smart visual interface one would still follow the concept of hierarchical
speci�cation on di�erent task scopes.

45

3 Basic Approach

• The relative importance of features φ1, φ2, . . . , φn with respect to each other
and to the task's communicative goal, according to the relative magnitude of their
relevances rmin ≤ r1 ≤ r2 ≤ . . . ≤ rn ≤ rmax. This can be utilized during adapta-
tion to select an appropriate level of detail and visual style in a way so that more
relevant features are visually emphasized over less relevant ones. In particu-
lar, it allows to map from the range of relevance values to the (usually bounded)
parameter domain of concrete display techniques, as discussed in Section 3.3.4.

• A feature φi with relevance ri = rmin is de�ned to not contribute any information
to the task at hand's communicative goal. In particular, this de�nition provides an
expedient default value for feature relevance: unless a relevance value ri > rmin

is explicitly speci�ed in the task context, a feature is implied to be irrelevant for
the task at hand, and thus should retain its default visual representation de�ned
by the page. Therefore, task contexts need to specify feature relevance values as
part of their respective why aspect only if that task's communicative goal requires
to locally deviate from the page's default visual representation.

In this thesis in particular, the speci�cation of feature relevance is based on the
normalized continuous value range rmin = 0, rmax = 1.
In doing so, there are several approaches to arrive at concrete relevance values for a

particular task at hand. Depending on the visual data type and application context,
algorithmic methods are often viable to automatically derive features and their cor-
responding relevance values, i.e., by automatic content analysis. For example, in 3D
graphics relevance values can be based on the distance to the viewer; in the case of
raster images relevance can be based for example on a pixel energy or entropy measure
calculated by an image analysis algortihm (cf. Section 2.3.2).
Lacking suitable automatic methods, it is always possible to rely on the manual spec-

i�cation of features and their relevance values by a content author. This necessitates
tool support, as discussed in Chapters 4�7. From the perspective of the enriching the
task model, however, it is irrelevant if relevance values are derived automatically or if
they are de�ned manually.

Based on the de�nition of relevance values, the task model is enriched further. In
the same way as pages and features are associated with tasks by annotating the
corresponding task nodes in the model, features are assigned relevance values by an-
notating task nodes with the corresponding value mappings φi → R. Similar to page
and feature annotations, our approach allows to e�ect this assignment not only at
the granularity of individual basic tasks (i.e., , annotating leaf task nodes), but also at
di�erent levels of composite tasks.
In doing so, the extended task context provided by the task hierarchy is utilized.

A Feature that is equally relevant in the context of multiple sub-tasks is assigned a
relevance value at the scope of the superordinate composite tasks by annotating the
common ancestor node. This relevance value is inherited down the task hierarchy to the
level of basic tasks, unless a task node at a lower decomposition level explicitly re-assigns
a relevance value. This allows to locally increase or decrease the respective feature's
relevance if it deviates from the inherited value.

46

3.3 Page-Feature Concept

Features

Relevance

Pages

Inheritance / Relevance Override

Node Annotation

Figure 3.3: Schematic illustration of the distribution of page, feature and feature relevance
annotations in the hierarchical task model in our approach. The extended task context given by
the task model is thereby utilized to provide more detailed information only where required by the
speci�c task requirements.

Thus the combined annotations of features and feature relevance values allows a
hierarchical speci�cation of the task context'swhy aspect: the information what content
elements are generally of relevance, and on the relative importance of these elements re-
garding the task's communicative goal are both speci�ed on a broad scope of composite
tasks. Only for tasks with diverging requirements to the visual representation the task
contexts is further detailed locally. Figure 3.3 summarizes the inheritance strategy that
facilitates this hierarchical task context speci�cation.

To recap brie�y, the starting point for our approach is the general task model result-
ing from a domain task analysis. Its hierarchical decomposition of the task at hand
describes the when aspect of extended task context for visual representations. The
page/feature concept introduced here provides the basic building blocks for the nec-
essary extension of this general task model through task node annotations. Pages
describe self-contained units of graphical content of arbitrary data type, thus consti-
tuting the what aspect of the task context. Features de�ne, on the level of domain
semantics, distinguishable content elements of pages. In addition, features are associ-
ated on a per-task basis with relevance values as an abstraction of the information scale
required for the task at hand. The combination of features and feature relevances
constitutes the why aspect of the task context. The task model is thereby annotated in
a way to utilized the task hierarchy so that the speci�cation of the task context becomes
more detailed with reduced task scope, i.e., from the root task down towards basic tasks.
Figure 3.3 schematically summarizes this concept.

The following section will explicate how the concrete task-driven adaptation of vi-
sual representations is e�ected on the basis of the conceptual task model enriched with
page/feature annotations.

47

3 Basic Approach

3.3.4 How� Generation of Initial Views

The �rst step in generating the task-speci�c adapted visual representation for the task at
hand is to determine what comprises the basis for the adaptation process. Two principal
modes of adaptation can be distinguished to this end:

• exhaustive adaptation with respect to the task at hand, as well as

• incremental adaptation across multiple basic tasks.

The di�erence between these two modes is in the way relations between sub-tasks of
the task at hand are accounted for.

In what we termed exhaustive adaptation, causal or temporal dependencies between
task nodes are not considered. Information from the extended task context are used
to determine the page that provides the graphical content associated with the current
working step. The page's default visual representation comprises the starting point for
the adaptation process, regardless of the visual representation displayed for the previous
working step. Thereby relations to previous working steps are regarded only implicitly,
by virtue of shared features and feature relevance values de�ned in the task context
of common ancestor task nodes.

On the other hand, utilizing the explicit information on dependencies between tasks
from the task model allows to perform incremental adaptation. Often, a sequence of
multiple working steps refers to the same depicted object(s). Two examples are step-
by-step assembly instructions, which are common in maintenance task [APH+03], or
�tour-through-the-data� presentations that support incremental buildup of knowledge
about visualized data by showing a series of progressive previews [RS09].

In these cases, instead of deriving the adapted visual representation for the current
working step from the associated page's default representation, the adaptation process
incrementally adds detail to the representation of each previous working step. Formally,
this condition is speci�ed in the extended task model by the 'enabling with information
exchange' operator (A []> B in CTT notation) de�ned on two consecutive basic tasks
A,B. Completing task A will automatically start task B, whereby the information
passed from A to B comprises A's visual representation in its current state, including
interactive manipulation of the initial view by the user.

Thus for exhaustive adaptation features and relevance values comprehensively de�ne
the levels of detail of the default visual representation speci�ed by the page; whereas
during incremental adaptation, features de�ned in the current working step's task
context de�ne additional detail to the current visual representation.

In subsequent steps of the adaptation process, the base visual representation deter-
mined in the �rst step is further modi�ed according to the features and feature
relevance values that are de�ned in the current task context. In doing so, each fea-
ture is considered as a distinct object whose properties are manipulated according to its
relevance value.

48

3.3 Page-Feature Concept

Adaptation pipeline

To this end, we here introduce the concept of an adaptation pipeline. This pipeline is
composed of �ve subsequent stages. On each stage, operators are applied to the result
of the previous stage. The adaptation pipeline therefore de�nes a conceptual framework
for the integration of di�erent adaptation operations. The di�erent pipeline stages are,
in order of traversal:

View selection determines what portion of the page is visible. The result of view selec-
tion is a two-dimensional region on screen that comprises the visual representation
of the selected graphical content. The actual operation to carry out this selection
depends on the visual data type. For example, view selection on 2D raster and
vector graphics is limited to the spatial domain. For 3D graphics, it constitutes
the set-up of the virtual camera's view frustum. In particular, view selection may
be an explicit operation (e.g., according to predetermined region boundaries), or
implicit depending on de�ned features and relevances (e.g., such that the most
relevant features are initially visible).

Geometry adaptation follows the general idea of the Focus & Context approach [Kea98]
to reserve more screen space for more important features at the expense of
less important ones. This comprises two operations: relevance-dependent scaling
of feature geometry, and selecting an appropriate geometric level of detail to
account for the feature's presentation size. At the extreme end is information
hiding, where irrelevant features are removed entirely from the adapted output.

Visual attribute adaptation manipulates the visual appearance of content elements such
as colors, �ll patterns/textures and stroke styles. In doing so, this pipeline stage
o�ers support for two principal operations to support the task's communicative
goal: visual accentuation of important information (i.e., features), and an ap-
propriate de-accentuation (subduing) of less relevant information. This creates a
visual hierarchy [Den99] of features according to their relevance to the task at
hand. As a consequence, the viewers' attention is automatically guided to the most
important parts of the adapted visual representation.

Image space manipulation involves �lter operations that modify color values the pixel
matrix of the task's visual representation, such as color saturation or contrast
adjustments. This pipeline stage thus comprises post-processing operators on the
output of previous stages, and as such includes the manipulation of contextual
information provided by the visual representation's non-feature periphery. In
doing so, feature accentuation (on the previous pipeline stage) and context de-
accentuation are complementary operations, as reducing the visual saliency of the
image background causes the relevant foreground objects stand out at the same
time.

Labeling further augments a task's visual representation by inserting additional infor-
mation for important features, such as textual labels, icon overlays, or additional

49

3 Basic Approach

View
Selection

Geometry
Adaptation

Attribute
Adaptation

Image
Manipulation

Page
(Default View)

Visible Portion
(Page Section)

F&C-distorted
Page View

Accentuated
Features

Adapted Visual
Representation

Object (Feature) Space Image Space

Labeling

De-accentuated
Image Context

Figure 3.4: Schematic view of the adaptation pipeline.

visual elements like guides. Why this is a distinct and important adaptation step
is discussed below.

The �rst three pipeline stages are dependent on the visual data type of the input
page. This means the realization of the respective adaptation operations depends on
concrete display techniques developed for the particular visual data type.

By contrast the fourth stage � image space manipulation � operates on the output
image of the previous stage, and is therefore independent from the actual display tech-
nique that generated that image. Thus, this stage is independent from the underlying
visual data type.

From the perspective of the adaptation pipeline's �fth stage, labeling approaches can
be distinguished in object-space approaches (i.e., those that determine label positions
based on object geometry) and image-based approaches that operate on the pixel matrix
of the image being labeled. For our approach we have deliberately chosen to integrate
an image-based approach.3 This choice provides a visual data type-independent solution
for the labeling stage of the adaptation pipeline as well, since it allows to operate on the
result from the image manipulation stage.

The adaptation pipeline thereby provides two levels of adaptation: on the level of con-
tent object described by features (geometry and visual attribute adaptation), as well
as on the image level (image space manipulation and labeling). Figure 3.4 summarized
the conceptual set-up of our proposed adaptation pipeline.

For the concrete realization of the di�erent pipeline operations a large number of
display techniques has already been proposed for the di�erent visual data types, see
Section 2.3.2. However, it was also shown that the majority of these approaches supports
only a limited set of adaptation operations each. Distinguishing the adaptation process
into �ve subsequent principal pipeline stages � that are equally applicable to all of the
four visual data types � makes it possible to selectively apply a combination of concrete
techniques as appropriate for the underlying data type, adaptation operation, and task
requirements at the granularity of individual content elements de�ned as features.
This greatly increases �exibility of the page-/feature-based adaptation.

3Note that any graphical content can be labeled in image space, not just raster images � labeling is
then performed on the framebu�er that holds the rasterized result of the rendering process.

50

3.3 Page-Feature Concept

Brazen Reduction Ring
Compressor Feed Pipe

O-Ring

O-Ring Seal

CompressorGas Burner

Brazen Reduction Ring
Compressor Feed Pipe

O-Ring

O-Ring Seal

CompressorGas Burner

(a)

(b)

Figure 3.5: Static labels are negatively a�ected by distortions introduced during geometry adapta-
tion that enlarges important features. Pre-labeled raster images su�er from scaling artifacts (a),
whereas SVG text elements are no longer positioned correctly (b).

Labeling as a distinct adaptation step. A smart visual interface primarily relies on
visual representations. However, domain-speci�c concepts or technical terms may require
explicit textual annotations in an image. Therefore, labels are an important element of
e�ective illustrations. However, these labels must be placed dynamically during the
adaptation process of the visual representation. Static labels, i.e., text as integral, �xed
image content, would be subjected to distortions introduced by the previous geometry
adaptation step, which is unsatisfactory both from an aesthetic point of view and for
legibility issues (cf. Figure 3.5).
Furthermore, labels serve two additional purposes in multi-modal interfaces in partic-

ular:

Coordination of the visual and audio modes. Textual annotations link elements of the
visual representation with information conveyed via speech, e.g., by providing cor-
responding keywords or captions. If speech input is available, the presentation of
keyword labels further establishes an intuitive access/control mechanism for voice
commands [BDF+06].

Redundant information on the visual and auditive channels. Labels convey additional
information in situations when the ambient noise level e.g., at the maintenance
site, overpowers the speakers. Moreover, labels may remain on the interface per-
manently without introducing a comparative �auditive clutter� by constant speech
repetitions.

Thus, labels are an integral part of e�ective, adequate visual representations in multi-
modal interfaces.

With regards to dynamic labeling, a large number of approaches has been proposed
in literature. For a good recent overview, see [LSC08] and [Ali09]. Common to these
approaches are two questions that need to be answered:

• what objects should be labeled (assuming that not all labels can be placed due to
space constraints), and

51

3 Basic Approach

• where to place them (i.e., as close as possible to the labeled object without intro-
ducing overlaps). In case of image-based labeling approaches, this step requires to
�rst segment the image into foreground objects which are being labeled and empty
background regions that are available for placing labels [Ali09].

Our page/feature-based adaptation approach readily provides the information that
is needed to address both these aspects of the labeling problem:

• On the one hand, the feature relevance values de�ne what labels should be
placed in order of priority. Relevance is also applicable to in�uence stylistic la-
bel attributes like font size and weight to visually accentuate labels of important
features. Task node annotations are further amended with a label text for each
feature (e.g., its name) to provide all necessary data for the labeling process.

• On the other hand, features de�ne a region in image space (cf. Section 3.3.3).
Features therefore allow to dynamically generate a description of the size and
position of objects to be labeled. Moreover, because our general strategy for the
geometric adaptation is to reserve more image space for important features,
generally more space is available for label placement in their immediate vicinity.

This makes our page/feature-based adaptation approach compatible with a wide
range of existing approaches. Selection of a speci�c labeling technique thus is primarily a
matter of application requirements, i.e., with respect to an appropriate trade-o� between
labeling quality and computational complexity. This choice will also be driven based on
which required features are supported by the various labeling algorithms, e.g., internal
vs. external (peripheral) labels [AHS05] or speci�c aesthetic aspects such as label layout
styles [GHS06].
However, the choice of a particular labeling approach is not independent of the the

target device, i.e., the where aspect. Labeling is a notoriously di�cult problem as even
the simplest form � �nding an optimal layout for the point-feature labeling problem �
has been proven to be NP-hard [MS91]. Approaches like Simulated Annealing [KGJV83]
or particle-based labeling [LSC08] therefore employ di�erent strategies and heuristics to
achieve acceptable solutions in interactive times. Still, dynamic labeling at interac-
tive rates may still be too computationally demanding for small mobile devices despite
heuristic solutions. To address this issue, we have developed a client-/server-based re-
mote labeling approach utilizing the content information provided by features.
For the sake of brevity in discussing our general adaptation approach, details regarding

the integration of a general-purpose image-based labeling approach [LSC08] as well as
our own solution to feature-based remote labeling are deferred until Section 4.2.5 and
Section 4.3.2, respectively.

Adaptation control

In the course of the general model-based UI design process the initial task model is at
some point mapped onto a presentation model (e.g., a dialog model, cf. Section 2.3.1).
The latter describes the abstract user interface for the modeled domain work�ow, i.e.,

52

3.3 Page-Feature Concept

the mapping of basic tasks from the task model onto di�erent GUI elements, without
however stipulating a speci�c implementation platform.

Our approach proceeds in an analogous manner: the task contexts (de�ning the what
and the why aspects) of basic tasks from the enriched task model are associated with
suitable display techniques to arrive at the speci�cation of a smart visual interface that
supports the task at hand by providing good initial views for each working step (basic
tasks). In doing so, the adaptation pipeline provides the framework for this association.

Thus in order to obtain these initial adapted representations, operations in the concep-
tual adaptation pipeline must be mapped onto concrete, data-type dependent techniques
that comprise the interface components of the smart visual interface. We collectively
refer to these display techniques as �Smart-X� techniques because they constitute the
building blocks of smart visual interfaces.

For this purpose, a mapping must be determined per feature that assigns the rel-
evance values to concrete parameter values. The thereby generated parametrization of
the corresponding �Smart-X� techniques then controls the resulting appearance of the
visual representation. In doing so, feature relevance values can be mapped either to a
continuous range of parameter values, or to a set of discrete parameter settings.

To give an example for the �rst mapping type, the belt-based distortion technique
discussed in Section 4.3.1 takes as an input parameter a magni�cation factor s for each
feature that controls the amount of image distortion in and around that feature
region. A mapping M : r ∈ [0.0, 1.0] → s ∈ [0.5, 2.0] would thus result in regions of
irrelevant features (r = 0) being scaled to half of the original size, whereas the most
important features being scaled up to twice their original size.

An example of the second mapping type is the assignment of distinct rendering styles
to parts of a 3D model according to

M : r ∈


[0.0, 0.5[→ ′always cull′

[0.5, 0.8[→ ′translucent′

[0.8, 1.0] → ′textured′

This results in an initial representation of the 3D model where the least relevant fea-
tures (r < 0.5) are removed entirely and important ones (r ≥ 0.8) are shown in full
detail. All features in between are rendered half-transparent (so as to not occlude or
distract from the important ones, cf. Section 6.2). Note that in this example, the do-
main of parameter values comprises labels instead of numerical values. These are used
to select speci�c functionality/parameter presents of the �Smart-X� display technique
for the rendering process.

Clearly, the �Smart-X� technique used for adaptation must, on principle, be suited for
the visual data type in question. For example, applying di�erent 3D rendering styles
to regions of a raster image simply is not viable. In consequence, as illustrated by the
two examples above, the set of parameters and their respective domains depend on the
speci�c display technique.

The following type-speci�c Chapters 4�5 will discuss several novel �Smart-X�-techniques
developed speci�cally for task-driven adaptation in smart visual interfaces. This discus-
sion includes details on how these techniques are integrated into the general adaptation

53

3 Basic Approach

pipeline and how feature relevance values are mapped to their input parameters. More-
over, Chapter 8 will review the implementation of an e-manual prototype, whose smart
visual interface incorporates several existing techniques for adaptation.

To recap, our approach for the generation of adapted visual representations from
an enriched task model is based on two concepts: partition of the adaptation process
into an general adaptation pipeline that is independent of the visual data type, and
integration of di�erent type-dependent �Smart-X� display techniques for the concrete
generation of adapted visual representations on the basis of this pipeline. Therefore, the
adaptation pipeline provides the link between the enriched task model that captures a
visual representation's context of use on a conceptual level on the one hand, and the
concrete smart visual interface providing the corresponding adapted initial view to the
user.

3.3.5 Manipulation of Initial Views

As argued in Section 3.1, the primary objective of the adaptation process is to provide a
good initial view that supports the user in her task at hand. Ideally, the automatically
generated visual representation is immediately useful to the user by communicating all
required information without necessitating further user interaction.

However, attaining this ideal through an automatic adaptation process can not be
guaranteed in every case. Nor is it desirable to strictly stipulate one single visual repre-
sentation as the 'ideal' view, lest the smart visual interface patronizes the user. Actual
requirements to a task-speci�c visual representation di�er depending on e.g., the user's
momentary situation, as well as her speci�c preferences and levels of expertise regarding
the task at hand. It is thus necessary that the smart visual interface allows the user to
interactively manipulate the automatically generated initial views to �ne-tune the visual
representation to her requirements.

In particular, the user will interact with visual representations by means of the �Smart-
X� display technique that comprise the interface components of the smart visual inter-
face. Concrete realizations of �Smart-X� techniques o�er di�erent ways to manipulate
views and to adjust parameters, depending primarily on what manipulations or oper-
ations are viable on the visual data type. Di�erent realizations will also vary in their
general design and the interaction facilities provided by the target platform.

These variances, however, all pertain to details how a particular display technique is
used as a tool in accomplishing the task at hand. These details are not relevant to the
speci�cation of domain tasks. Rather, these comprise functional properties (of a concrete
�Smart-X� technique) below the conceptual level of basic domain tasks.

As such, in the approach presented here the extended task model does not specify as
distinct basic tasks what manipulations of the initial visual representation are available,
or how these would be carried out using concrete �Smart-X� display techniques.

Rather, we here incorporate the concept of task actions similar to several other task
modeling approaches (cf. Section 2.1.6): an action is an atomic operation that is executed

54

3.3 Page-Feature Concept

upon an artifact by an entity that is involved in the completion of the task (e.g., the user
or computer), but represents activities on a level below basic (domain) tasks. Translated
to our approach, the associated page marks the corresponding task's artifact or task
object, whereas interactive manipulations constitute task actions de�ned on this task
object's visual representation.
For the same reason it is not feasible to model possible interactions of a particular

�Smart-X� display technique as explicit tasks in the task model, it is not expedient nor
necessary to comprehensively capture this set of technique- and data type-dependent
interactions as task actions.
On the other hand, our approach provides a common denominator for actions executed

on any visual representation regardless of the visual data type of the associated page:
manipulation of features. To this end, one fundamental task action that can be
reasonably executed on every visual representation is the interactive manipulation of
feature relevance values. By interactively selecting a particular feature, the user
can express her particular interest in the respective content element.
Designating a feature of interest (FoI) φi causes a change of its relevance value to

the maximum relevance value ri = rmax, thereby re�ecting the user's request to locally
deviate from the information and visual scales predetermined by the task context. More-
over, the increased relevance for a feature of interest φi may be recursively propagated
to further features φj of the page according to a suitable Degree-of-Interest (DoI)
function. This DoI function thereby either

• operates in view space, i.e., the degree of interest for a feature φj is a function
of the distance in view space between the representations of features φi and φj ,
or

• utilizes the feature relations, i.e., the degree of interest is propagated according
to semantic criteria, cf. Section 3.3.3.

Inversely, deselecting a feature will revert its relevance to the predetermined value
speci�ed in the task context. The adaptation pipeline is then traversed again with the
modi�ed relevance values. This results in a visual representation showing more detail for
the feature of interest, and possibly other features depending on the DoI function.
Because this change in representation is e�ected based on the abstract relevance value

rather than speci�c parameters of a particular display technique, all adaptation opera-
tions de�ned in the corresponding adaptation pipeline will adequately re�ect the user's
focus of interest. In particular, the re-adaptation may entail a change in view selection
(�rst pipeline stage) as well as the display of additional detail information for the fea-
ture of interest during labeling (�fth stage). Figure 3.6 shows an example for the visual
representation of a 3D model. Note how in this particular example the DoI function is
de�ned to assign all features that are not selected as FoI the lowest relevance value,
regardless of the relevance value speci�ed in the task model.

The strategy described here thus provides a general means to implement Shneider-
man's well-known information seeking mantra �Overview �rst, zoom and �lter, details
on demand� [Shn96] � regardless of both the page's visual data type and the �Smart-X�

55

3 Basic Approach

(a) (b)

Figure 3.6: Example for the e�ect of interactive feature relevance manipulation. Di�erent ren-
dering styles are used for feature accentuation. (a) The valves are de�ned as the most important
component for the current task, other components are visually subdued. (b) shows the result of man-
ually selecting another feature (the camshafts) as the focus, temporarily overriding the importance
values from the task model for all features.

techniques employed for its representation. The initial view thereby provides an overview
on the information relevant to the task at hand. Then, the user can interactively select
feature(s) of interest (zoom and �lter) that result in a re-adapted visual representa-
tion that adequately re�ects the manual updates to information relevance (details on
demand).

Furthermore, individual �Smart-X� realizations may supply additional possibilities for
interaction with the page's visual representation, such as �ne-grained view control and
manipulation of parameter settings speci�c to the display technique, to further support
the general feature/relevance-driven interaction.

3.4 Summary

In this chapter we presented our basic approach to the task-driven adaptation of scalable
visual representations within smart visual interfaces. The primary objective is to present
good initial views with regard to the task at hand, thereby providing �smart� user support
by reducing the need for manual selection and navigation of content.

Section 3.1 detailed the scope of the task context that must be considered to this end.
Any task-driven approach will require to address aspects pertaining to the underlying
graphical content (what) and the information requirements with respect to the task's
communicative goal (why).

However we argue that in order to be e�ective, task-speci�c representations addition-
ally require to contemplate the extended task context (when) of the task's superordinate
work�ow. In particular, utilizing a hierarchical work�ow description allows to propagate
information from higher-level tasks down to basic tasks, which are therefore also utiliz-
able for subsequent steps. This requires the integration of a task model � as a hierarchical

56

3.4 Summary

description of the domain-level work�ow � with means to describe scalable visual repre-
sentations with respect to the what and why aspects.
A review of related work reveals that there currently is a �modeling gap� regarding

this important requirement to the design of smart visual interface. On the one hand,
model-based UI design approaches do not adequately consider the integration of scalable
graphical content that is the foundation of task-speci�c visual representations. On the
other hand, existing display techniques that provide scalable and interactive representa-
tions for the di�erent visual data type insu�ciently contemplate task-related in�uencing
factors of the visual representations' context of use.

The approach presented here addresses this modeling gap. It comprises two concepts.
The main contribution is the page/feature concept that represents a general, data
type-independent description of the graphical content as well as its task-related aspects. It
allows to enrich the general task model with a description of the task context with respect
to scalable visual representations. Furthermore, the proposed concept of an adaptation
pipeline provides the bridge between the conceptual task context speci�cation in the
model and concrete display techniques used to generate the adapted representations
accordingly.
Pages represent self-contained units of graphical content, thereby abstracting from

the technical peculiarities of the underlying visual data type. Each page de�nes a default
representation of the graphical content it represents.
Features describe content elements of a page on a semantic level, i.e., represents a

piece of information that is of relevance to a task's communicative goal, while abstracting
from the technical structure/organization of the di�erent visual data type. Features
thus facilitate better scalability of graphical content as the information and visual scale
of adapted visual representations can be selected at the granularity of features, rather
than entire pages.
Further, we introduce the notion of feature relevance. Relevance is an abstract

measure to express the information and visual scale that is appropriate for the given fea-
ture in the context of the task at hand. Feature relevance values therefore constitute
the basis on which the adaptation of the graphical content is e�ected.
Together, pages, features and feature relevance values are used as the building

blocks for enriching the domain task model with a description of the task context
for visual representations. To this end, speci�c task nodes in the model are annotated
with corresponding de�nitions of pages, features and relevance values.
In doing so, our approach is to specify aspects of the task context hierarchically on

di�erent task scopes, i.e., on di�erent levels of the task decomposition. Context infor-
mation relevant to multiple basic tasks is speci�ed at the scope of their superordinate
composite task, by annotating the common ancestor task node with the corresponding
page, feature, or feature relevance value. The task context becomes more detailed
as additional information is speci�ed on the subsequent levels of sub-task, until the task
context is fully speci�ed on the level of individual basic tasks (leaf nodes). This strategy
of a hierarchical de�nition of a visual representations task context thereby facilitates to
specify additional context detail only for those sub-tasks that exhibit diverging infor-
mation requirements with respect to their communicative goal. This sets our approach

57

3 Basic Approach

apart from contemporary solutions that are based solely on low-level tasks. The latter
require the full task context be speci�ed for each working step (basic task) individually
and thus provide no means to exploit causal or temporal relations between sub-tasks of
a composite task.

The task model enriched with pages, features and feature relevances describes
the task contexts for each basic task of a composite domain task on a conceptual level.
At runtime, the smart visual interface uses this context information to generate the
initial visual representations for the current working step. For this purpose, we propose a
general adaptation pipeline that facilitates the integration of several concrete display
techniques.
The adaptation pipeline comprises �ve stages. The �rst stage selects a view of the

page, i.e., performs selection operations on its content. The result of view selection in a
two-dimensional region that comprises the visual representation. The second and third
stages operate on individual features. In doing so, features are treated as objects
with geometric properties and visual attributes. Adaptation operations on geometry thus
manipulate the size and position of a feature, operations on attributes its appearance.
The forth stage operates on the entire visual representation in image space, whereas the
�fth stage adds additional elements (labels) using an image-based labeling approach.
The adaptation process can thus be conceptually distinguished into a visual data type-
speci�c part (stages 1�3) as well as a type-independent part (stages 4�5).
Adaptation operators on the pipeline stages are realized by suitable display techniques.

To this end, feature relevance values are mapped onto the parameter domains of the
respective technique. This mapping is thereby done as part of the design process of the
smart visual interface. Therefore, the adaptation pipeline serves as a framework for
the integration of existing display techniques for the di�erent visual data types.
Because these display techniques thus de�ne the functional building blocks of the smart
visual interface, we refer to them as �Smart-X�-techniques.

The page-/feature abstraction concept and the adaptation pipeline represent a
general approach to the generation of task-speci�c adapted visual representations for all
visual data types. However, the principles and means by which the page and feature
abstraction are derived from graphical content are, on principle, speci�c to the respective
visual data type. Similarly, the adaptation parameters on which the feature relevance
values are mapped varies with both the data type and the concrete display technique
employed.
Therefore, we will discuss the three conceptual aspects page de�nition, feature

speci�cation, and adaptation control (i.e., , integration of concrete �Smart-X� techniques)
for each of the four visual data types in the following chapters. In addition, each chapter
will review authoring tools for the preparation of graphical content to provide manual
means to de�ne pages and features for the respective visual data type.
And even though the page/feature annotation concept proposed here allows to

incorporate a wide range of existing techniques into the design process of smart visual
interfaces without signi�cant modi�cation, some task-speci�c aspects of representation
scalability were found to be still open research questions. Thus as a further contribution

58

3.4 Summary

of this thesis, a number of novel �Smart-X� techniques covering several di�erent aspects
of task-driven adaptation for the four visual data types will be described in detail in the
corresponding chapters as well.
To this end, Chapter 4 discusses raster graphics �rst, which is the most limited of

the four visual data type. Chapter 5 details solutions for vector graphics, speci�cally
the Scalable Vector Graphics (SVG) format [FFJ03]. 3D graphics are dealt with in
Chapter 6. Finally, Chapter 7 discusses representations of abstract data, which is the
most general but also most �exible visual data type regarding adaptation.

59

4 Smart Raster Images �

Adaptation of Raster Graphics

Raster images are common graphical content in visual interfaces. In this thesis in par-
ticular, adaptation of raster images plays an important role in the maintenance scenario.
Often, graphical content associated with maintenance tasks such as two-dimensional
technical illustrations and schematics are available only as plain raster images. This is
because typical content sources are the extraction of raster images from PDF �les, or by
digitalization (scanning) of printed manuals.
However, raster images are also the most constrained visual data type. The primary

challenge from the viewpoint of task-based adaptation is the absence of any structure or
semantic information about the depicted content: the image is but a 'pixel soup'. Only
image space operations that modify the pixel matrix are possible.

4.1 Raster Image Content Preparation:

Concepts and Authoring Tools

Thus plain raster images must be enriched with supplemental information to facilitate
scalable, task-specif visual representations. To this end, raster image content preparation
yields the de�nition of raster pages with associated features.

4.1.1 De�nition of Pages

Section 3.3.2 de�ned two properties of pages with respect to task-based adaptation of
visual representations:

• A page de�nition encapsulates a self-contained unit of graphical content, whereby
it abstracts from the internal data format.

• In addition, the page includes all information required to generate a default visual
representation so it can be used as the visual representation for a given task without
stipulating further details in the task context.

Thus conceptually, a raster graphics page is the source for a pixel matrix that de�nes
a two-dimensional view of the depicted content. There are two principal sources for this
kind of content:

Static image �les. Both page properties are immediately supported by a wide variety
of raster image formats such as PNG [Mia00] or JPEG2000 [TM01]. Here, a single
image �le completely describes the pixel matrix comprising the image. A raster

61

4 Smart Raster Images

(a) (b)

Figure 4.1: XML de�nition of raster graphics pages. (a) Static image implicitly de�ne a default
representation. (b) Multi-frame images provide a sequence of views over time so the default repre-
sentation is de�ned by selecting a point in time, or frame number.

image �le therefore is in itself su�cient to describe a page, as the image also
describes its default representation.

Multi-frame images and video streams. Some image formats, such as Animated GIF
or Motion-JPEG [JPE01b], as well as video streams provide a sequence of images
with a temporal dependency. Each individual frame comprises a pixel matrix that
represents a two-dimensional view for a speci�c point of time. The page content is
therefore described by a single �le encoding a multi-frame image or video stream.
The page's default representation is de�ned by selecting a speci�c point of time
(i.e., a particular frame).

Note that in the scope of this thesis adaptation is deliberately limited to single frames
rather than image sequences in their entirety. For this reason, for sources of the latter
type a single frame for a particular point of time is assumed as the default representation.
This notwithstanding a speci�c video may be played for a given task which however is not
adapted further.1 Adaptation of time-variable image sequences is a possible extension
to the basic approach discussed in Section 3.3 but presents challenges of its own beyond
the scope of this thesis, see Chapter 9.

Figure 4.1 illustrates how both types of sources for pixel matrices are encapsulated
as a page to obtain a self-contained description of graphical content with a default
representation.

4.1.2 De�nition of Features

Because raster images by themselves have no notion of content structure beyond individ-
ual pixels, content elements can only be de�ned with respect to regions in image space.

1This, by extension, also applies to animated 2D vector (Chapter 5) and 3D graphics (Chapter 6).

62

4.1 Content Preparation: Concepts & Tools

Therefore for raster graphics pages, features are equivalent to Region of Interest (RoI)
within the image. Their de�nition involves two aspects:

• determining what image regions comprise features, and
• means to encode the location and shape of these regions to facilitate the annotation
of task nodes with feature de�nitions.

Determining feature regions

On a conceptual level, features represent content elements with a semantic meaning
within the application domain. Thus the location, size and shape of corresponding
image regions representing these objects will vary signi�cantly depending on the depicted
image contents. Therefore, RoI de�nitions over raster images must satisfy the following
properties to support arbitrary features:

• the RoI boundaries of features are of arbitrary shape,
• feature regions can overlap, i.e., pixels can contribute to more than one feature,
• complex features may include several related content elements, i.e., be composed
of sub-features de�ning disjunct regions, and
• and feature regions can contain holes, i.e., pixels within the outer boundary that
are not considered part of the feature's RoI.

Figure 4.2 exempli�es these requirements for a technical illustration from the main-
tenance scenario. The features representing connected machinery components can
partially (dark blue and red polygons) or completely overlap (orange rectangle in blue
polygon). In addition, a feature may comprise of several elements depicted in non-
connected image regions (e.g., yellow rectangles marking a pair of fastening screws).
Certain illustrative techniques like cutaway views result in feature regions that have
holes with respect to their representation in the raster image.
On a technical level, determining feature RoIs is e�ectively an image segmentation

problem: the goal is to classify each pixel according to whether it contributes to par-
ticular feature region(s), or no to RoI at all (i.e., is a background pixel providing
contextual information). In doing so, a given raster image can be segmented in two
ways: automatic segmentation using algorithmic image segmentation approaches, and
an interactive speci�cation of segments by a content author.

Automatic image segmentation. A number of segmentation algorithms for raster
graphics have been developed that partition raster images into foreground objects and
background regions, cf. Section 2.3.2. Using an algorithm-based approach to feature
detection o�ers two advantages:

• Because image segmentation classi�es individual pixels, very accurate feature
regions are de�ned at the granularity of pixels.

• Using a segmentation algorithm allows to perform feature detection automati-
cally. This reduces the amount of manual labor required to prepare raster graphics-
based scalable content for the use in smart visual interface.

63

4 Smart Raster Images

(a) (b)

Figure 4.2: Division of exemplary raster image pages for maintenance tasks into feature regions
with domain-level semantics. (a) Region boundaries can partially overlap or contain other regions,
features may comprise several disjunct sub-regions (colored polygons). (b) Cutaway views result
in feature regions (red polygon) with holes (orange polygons) (Image source: [She09]).

However, automatic image segmentation also faces several problems with regard to
detecting features that are relevant to the speci�c task at hand. Contemporary seg-
mentation approaches work either bottom-up or top-down.

• Bottom-up approaches use saliency maps based on visual attention models to de-
termine �visually interesting� image regions. Visually salient regions, however,
often will not correspond to features with a semantic meaning in the context
of the task at hand. In these cases detected low-level image features still need
manual re�nement by a human content author. This severely limits the utility of
bottom-up approaches as an automatic content preparation tool.

• Top-down approaches try to segment an image into high-level features (e.g., hu-
man faces) and background pixels. For top-down approaches to be useful, classi-
�ers for semantic features of the particular application domain must be available.
While this is principally feasible for highly formalized drawings like technical cir-
cuit schematics, it is not viable to support arbitrary illustrations with di�erent
(artistic) styles, perspectives etc.

• Moreover, almost all of the automatic approaches assume a disjunctive segmenta-
tion, i.e., each pixel belongs to at most one segment. As a result, features detected
by automatic segmentation may at most be adjacent to each other. Specifying
features with overlapping regions thus requires multiple segmentation passes
and merging their results, which is di�cult to automate.

For these reasons, the speci�cation of feature regions in raster images that are
relevant in the context of a task in the application domain is a largely manual task.

64

4.1 Content Preparation: Concepts & Tools

Automatic segmentation algorithms can support, but not replace, interactive de�nition
of the location and shape of feature regions by a content author. In particular, image
segmentation algorithms can be used to arrive at a provisional segmentation, which is
then re�ned manually to represent the desired image regions of domain-level features.

Interactive speci�cation of feature regions. Here, a human content author manu-
ally de�nes regions in the page's raster image and associates them with features. For
this purpose the author views the image in a suitable software tool that allows her to
trace feature regions depending on the depicted contents. The principal advantage of
interactive speci�cation is thus that it is applicable to arbitrary images regardless of the
application context.
In doing so, there are two principal ways how feature regions are designated. These

represent di�erent trade-o�s between the accuracy at which regions are de�ned, and the
e�ort required in doing so.

Regions are traced with pixel accuracy. The procedure is equivalent to the method
employed by most raster image manipulation programs. A region is interactively
manipulating by iteratively adding or removing pixels to the current selection of
pixels. When the author is satis�ed with the shape of the region, the current
selection is designated as feature region.

Thus designating all feature regions results in an ID bu�er with the same pixel
resolution as the page's image, whereby each ID bu�er 'pixel' holds a tuple of
feature IDs indicating that pixel's contribution to the regions of the respective
features.

The advantage of pixel-accurate tracing is that a high accuracy up to pixel granu-
larity is achieved. The drawback is that it requires comparatively elaborate inter-
action, although this level of region accuracy is usually unnecessary for task-based
adaptation.

Regions are de�ned by their boundaries. To this end, a content author de�nes polyg-
onal shapes in image space to demarcate feature regions. Simple features
RoIs are quickly de�ned by simple geometric shapes, e.g., rectangles and circles.
More complex regions are de�ned by tracing a polygon around the outline of the
depicted objects.

This allows to interactively strike a balance between authoring e�ort and the accu-
racy of feature regions that is appropriate for the given application domain. This
is illustrated by Figure 4.2: small details like the fastening screws (yellow rectan-
gles) in sub-�gure (a) are designated by an approximate bounding shape, whereas
large and complex shaped objects like the cut-away engine casing in sub-�gure (b)
are traced by polygons.

Therefore, in this thesis the author-controlled, polygonal representation-based ap-
proach to the speci�cation of feature regions has been pursued. This necessitates
proper tool support for the preparation of raster graphics content, as discussed in Sec-
tion 4.1.3.

65

4 Smart Raster Images

Encoding raster graphics features for task model annotation

The de�ned feature regions represent an external description of distinct content ele-
ments of the page, thereby augmenting the unstructured pixel matrix provided by the
page's raster image. To facilitate task-based adaptation of the raster image's repre-
sentation, the task model must be enriched with these descriptions by annotating the
corresponding task nodes (cf. Section 3.3.3). To this end, the region boundary de�nitions
and their association to features must be encoded.
According to the requirements to raster graphics features as de�ned on page 63, the

following feature properties must be encoded:

• A feature may comprise of multiple distinct content elements, each de�ned by a
disjunct Region of Interest. To express this is-part-of relation between high-level
features and content elements, features are hierarchically organized. Thus,
a feature has either two or more sub-features as children, or a single region
de�nition as its only child. Feature boundary de�nitions thereby represent the
leaf level of a feature hierarchy. Figure 4.3a shows this hierarchical organization
schematically.

• The boundaries of feature regions are de�ned as geometric shapes in the pixel
coordinate system of the raster image (Figure 4.3b). Polygon boundaries are rep-
resented compactly by listing polygon vertices as pixel coordinate pairs. Simple
shapes like rectangles are de�ned by a corner vertex and the width and height di-
mensions in pixels. Every feature region boundary comprises exactly one shape
de�ning its outer ring.

To further allow for feature regions with holes, a feature's boundary descrip-
tion optionally includes a number of inner rings.2 Inner rings are themselves
geometric shapes that specify the boundary of local areas excluded from the fea-
ture region. Thus, a pixel is considered inside a region if it is inside (or on) the
region's outer ring, but outside all inner rings (cf. Figure 4.2b).

Appendix A lists the XML Schema that formally speci�es the encoding of raster image
features used in this thesis.

4.1.3 Feature Relevance Values

To e�ect task-speci�c adaptation of features that have been annotated in the task
model, their relevance values have to be speci�ed. While there exist approaches to
automatically derive image regions corresponding to features themselves, in contrast
task-speci�c feature relevances can only be determined manually; just as establishing
a suitable breakdown of a speci�c domain work �ow (the task model) is a manual design
task by necessity. For this reason, appropriate authoring tools are required that allow a
human content author to interactively de�ne task-speci�c feature relevance and further
properties per task, and to annotate the task model accordingly.

2This nomenclature follows the naming convention used by the Geographic Markup Language (GML)
to describe boundaries of complex area (map) features [Por07]. It is not to be confused with the
mathematical term for an algebraic structure.

66

4.1 Content Preparation: Concepts & Tools

Compound Feature:
Component Assembly

Compound Feature:
Component Part

Atomic Feature:
Assembly Unit/Group

Atomic Feature:
Assembly Unit/Group

Atomic Feature:
Assembly Unit/Group

Atomic Feature:
Assembly Unit/Group

Page

(a) (b)

Figure 4.3: (a) Schematic view of the hierarchical structure of feature annotations for raster
images to e.g., re�ect the composition of machinery assemblies. (b) Corresponding XML notation
for some of the features de�ned in Figure 4.2a: the boundary of feature regions is described by
a geometric shape in pixel coordinates.

Raster Authoring Tool

For raster graphics, in this thesis an authoring solution was pursued that supports all
steps of content preparation within a single tool. This facilitates seamless and interactive
enrichment of the task model by avoiding the need to switch between several di�erent
software tools. In particular, the following authoring steps are covered:

• Creation and editing of page de�nitions,
• interactive de�nition of Regions of Interest and their association with features
of the given page,
• annotation of nodes from the CTT task model with page/feature de�nitions,
and
• interactive speci�cation of task-speci�c feature relevance values as well as addi-
tional feature attributes utilized during adaption (see Section 4.2).

Because the primary functionality is the interactive de�nition of feature regions �
or �masking� the raster image � as well as the enrichment of task nodes with visual
representation-related annotations, the authoring tool has been dubbed �Mask and Task
Editor�, or MaTE for short. Figure 4.4 shows a screen shot of this authoring tool.

Creating and editing of page de�nitions. To create a new page, the software auto-
matically edi�es a new page manifest. A page manifest is an XML-encoded structure
that associates a raster image with adaptation-related information, cf. Appendix A. In
particular, the page manifest for raster image pages includes:

67

4 Smart Raster Images

Figure 4.4: MaTE authoring tool used to prepare raster image pages. The author can interactively
outline feature regions in the image (center pane). Features can be associated with task nodes,
assigned task-speci�c relevance values and attributes for the adaptation process (tabbed pane on
right). Previews allow to check the e�ect of these task-speci�c settings (tabbed pane on lower left).

• A page identi�er. The identi�er is used to reference a particular page manifest
from the annotated task model.
• A human-readable title, that is e.g., displayed as the window title within the smart
visual interface.
• The reference to a raster image �le storing the image that constitutes the content
of this page.
• The list of features de�ned on this page.3

All these properties can be edited for existing pages, including the image �le reference.
The latter is useful in cases where the initial raster image has been replaced by an
enhanced version, e.g., by the removal of noise, moire and similar digitalization artifacts.

3Conceptually, features are de�ned at the scope of the task that they are generally relevant to,
which may be at a narrower scope (lower task hierarchy level) than that of the page de�nition, cf.
Section 3.3.2. However, for practical reasons of data consistency all feature de�nitions are coalesced
into the page manifest.

68

4.2 Adaptation Control

Interactive de�nition of Regions of Interest. The basic procedure involved in the
interactive de�nition of feature regions has already been described in Section 4.1.2. A
new feature is created by placing a boundary shape over the image and associating it
with an identi�er. The current implementation of the authoring tool to this end supports
the boundary shapes polygon, axis-aligned rectangle, and ellipses. The identi�er is used
to reference the corresponding feature RoI from task node annotations. Newly created
features are automatically added to the page manifest.

Already de�ned region boundaries can be selected and manipulated by moving and
resizing the boundary shape in its entirety, see Figure 4.4. Polygon boundaries can
further be manipulated by dragging individual vertices, thus allowing to incrementally
re�ne the tracing of object outlines.

Moreover, de�ned boundaries and features can be grouped to form composite fea-
tures. By repeatedly grouping a hierarchical composition of features (image regions)
can be obtained to express an is-part-of relation, cf. Section 3.3.3.

Page/feature association with tasks. While the content authoring tool itself is not
designed to create or structurally modify CTT task models, it can read existing models
stored in XML format.4 This results in a list of tasks that can then be associated
with appropriate page manifests. Because features are an integral part of the page
manifest, feature-task association is e�ected by selecting the subset of principally
relevant features for the task at hand. Figure 4.4 shows the corresponding check
boxes in the list of page features (right window pane).

Speci�cation of task-speci�c feature properties. This working step primarily com-
prises the interactive de�nition of feature relevance values. In addition, the authoring
tool currently supports the addition of two types of auxiliary feature attributes: a
short text that is used for labeling, as well as a speci�c highlighting color that is used
during the visual attribute adaptation phase (cf. Section 4.2).

After the task nodes of the imported CTT model have been annotated with these data,
it can be saved back in XML format. This enriched task model is then further processed
in the course of the superordinate UI design process, see e.g., [BDF+06, FRW08].

4.2 Adaptation Control

After the graphical content preparation using the authoring tool has been concluded, the
task model enriched with page/feature/relevance annotations contains all information
necessary to control the adaptation process.

In order to tailor task-speci�c initial representations, adaptation operations of the
general adaptation pipeline are mapped onto concrete, data-type dependent techniques.
In this section, we discuss what concrete operations are viable on the di�erent pipeline

4The MaTE authoring tool is implemented as a plug-in for the Eclipse Rich Client Platform (RCP).
The model editing suite developed in the LFS project (cf. Sect. 2.2) is likewise based on Eclipse RCP
(see [FWDR06, RDFW08]). Therefore, MaTE can interoperate with other CTT editing tools within
a single RCP application.

69

4 Smart Raster Images

stages speci�cally for raster graphics, and what information must be annotated to the
leaf task nodes of the enriched task model to e�ect these operations.

4.2.1 View selection

The goal of view selection is to determine a rectangular section of the raster image that
constitutes the visible portion of the page for the task at hand. By default, this section
is identical to the entire image. However, precisely because a page is associated with a
subtree representing a composite task, the visible portion of the page must be adjusted
for each basic task (leaf node) individually. In particular, the visible section may be
smaller than the size of the original image, e.g., if the current working step requires a
zoomed-in detail view. The page's visible portion thus becomes the basis for adaptation
in subsequent pipeline stages. To this end, two principal questions need to be answered:

• What portion of the page is to be displayed for the task at hand? This means
the position and size of a source region with respect to the original raster image
constituting the page needs to be selected.

• How is this source region �tted into the target viewport, i.e., the display area that
is available for the visual representation on screen?

With regard to the �rst question there are two principal approaches: the source region
can either be derived automatically, or speci�ed explicitly.
Our strategy to automatic derivation utilizes the feature de�nitions. On the basis

of a relevance threshold t all feature regions with relevance r ≥ t are selected that
contribute relevant information to the task at hand. Then, the bounding rectangle that
contains the regions of all thusly selected features regions determines the source region
of the page for the given task at hand. In particular, using a threshold of t = 0 the
source region is de�ned so as to select all feature content while discarding the image's
non-feature periphery, see Figure 4.5a.
This automatic determination of the task-speci�c source region is deployed as the

standard view selection operation on raster image pages. However, some tasks may re-
quire initial views that show additional image context that extends beyond the bounding
rectangle of relevant features. In these cases, we allow to manually override the view
selection by the content author. This necessitates an explicit speci�cation of the source
region by a rectangle (x0, y0, width, height) given in pixel coordinates, with (x0, y0) the
upper left corner and width and height the source region's extend to the right and down,
respectively.
The second question is directly related to thewhere aspect (display scalability) of the

visual representation's context of use. Depending on the output device the sizes (pixel
resolution) and aspect ratios of source region and target viewport may not match. Here,
it must be decided on how the source region contents are scaled to �t into the target
viewport. In some cases it is desirable that the graphics stretch to �t non-uniformly to
take up the entire viewport (in other words, �ll the entire available display area). In
other cases, it is desirable that uniform scaling be used for the purposes of preserving
the aspect ratio of the graphics.

70

4.2 Adaptation Control

scale-to-fit
(non-uniform scaling)

preserve-aspect,
center-X, centerY

preserve-aspect, centerX, topY(a) (b)

Figure 4.5: (a) The automatic relevance-based view selection (orange) crops the source image to
contain all feature regions above a threshold t (solid lines), discarding features of lesser relevance
(dashed) and image periphery. (b) Target viewport �tting is necessary if mismatching the source
region's aspect ratio.

To this end, di�erent �tting strategies can be expressed by a combination of two
parameters (cf Figure 4.5b):

• A �ag indicating whether or not non-uniform scaling of the source region is allowed,
and

• an alignment parameter that determines how the source region is placed inside the
target viewport.

If non-uniform scaling is allowed, the graphic content of the source region is scaled such
that its bounding box exactly matches the viewport rectangle. The alignment parameter
is ignored in this case.
If uniform scaling is enforced, the source region is scaled such that it completely �ts in

the target viewport. The alignment parameter then is a tuple (alignhorizontal, alignvertical)
that determines, respectively , if the source region is left-aligned, centered or right-aligned
horizontally, and top-aligned, centered, or bottom-aligned vertically. See Figure 4.5b for
an illustration. Note that unused space in the target viewport is �lled with image con-
tent from outside the speci�ed source region in order to utilize as much of the available
display space as possible.

4.2.2 Geometry adaptation

The core idea behind geometry adaptation is to enlarge important features at the
expense of less relevant ones. With regards to raster images, this amounts to adjusting

71

4 Smart Raster Images

the size of individual image regions according to feature relevance. In our adaptation
approach two strategies are employed to attain this goal:

Utilizing Focus & Context distortion. The general approach to Focus & Context-
based distortion of raster images is to enlarge a focus Region of Interest in such a way
that a continuous transition to the downscaled image context is achieved. To this end, a
Degree of Interest (DoI) function is used that de�nes how scaling factors are propagated
from the focus to the context regions.

However, the majority of Focus & Context distortion approaches assume but a single
focus point or region with maximum DoI and a uniform DoI distribution across the
image. For raster images, the DoI function is typically based on distance to the focus
(region) in image space.

Contrary to this, the approach pursued in this thesis is to allow for multiple focus
regions with varying DoI (i.e., relevance values), and a non-uniform DoI distribution
which is determined by the size and distribution of focus regions in image space. For
this purpose, the feature information provided by the extended task model are utilized.
The feature regions constitute the focus Regions of Interest. The feature relevance
values are the input parameter to the DoI function that determines the distortion of
feature and non-feature regions accordingly.

In doing so the where aspect must be considered as well. Evaluating complex dis-
tortion functions per-pixel is computation-intensive. On compact mobile devices this
will negatively impact both response times and battery life. Therefore, a good trade-o�
between computational complexity and visual quality must be found.

To meet these requirements, a novel image distortion technique called belt-based Focus
& Context has been developed that can handle multiple feature-based RoI with varying
relevance values. It was initially published in [FRSF06]; a detailed discussion of the
proposed approach is given in Section 4.3.1.

Adoption of the Seam Carving approach is our second strategy to achieve feature-
based distortion of raster images. The Seam Carving technique developed by Avidan
and Shamir [AS07] introduce a non-linear, content-dependent scaling of raster images.
It works by removing (for downscaling) or duplicating (for upscaling) 8-connected seams
of low-energy pixels based on an energy map of the image, until the desired image
size is reached. Its primary application is image size reduction by removing pixels in
�uninteresting� (low-energy) background regions of photo images such as Figure 2.7 on
page 22.

Pixel energies can be locally biased within author-de�ned regions to a�ect the routing
of seams. Regions biased towards lower energy attract more seams, thus removing com-
paratively more content from those regions. Conversely, regions biased towards higher
energy levels will not be a�ected by seam cutting until most low-energy background
regions have already been reduced.

Utilizing Seam Carving as a means for adaptation has been reviewed in parallel with
Thiede [Thi10]. There, the base approach has been extended regarding two perspectives:
multiple heterogeneous output devices, and its application to not only photographies

72

4.2 Adaptation Control

Figure 4.6: E�ect of a horizontal seam cutting a horizontal line. The seam pixels (orange) are
removed while pixels below the seam are shifted up, resulting in a disrupted line.

but also information visualizations. That means [Thi10] examined the evaluation of the
energy function with respect to concrete representations (how) and devices (where
aspect), rather than adapting pixel energy determination itself. By contrast, the idea
pursued in the present thesis is to further incorporate the why aspect to in�uence de-
termination of image energy in a task-speci�c way.

The basic Seam Carving approach thereby interfaces with our feature-based dis-
tortion strategy in that task-speci�c features provide regions of pixel energy bias.
Feature relevance values determine the magnitude of energy bias: the higher the rele-
vance value, the stronger the energy bias. The bias value range that relevance is mapped
to depends on the concrete pixel energy metric used.5 Generally, the minimum relevance
r = 0 is mapped to zero bias, whereby the most important feature regions (r = 1) are
biased with the maximum possible pixel energy value. The e�ect of applying Seam Carv-
ing to the raster image of a page therefore is a non-linear down-scaling of non-feature
context regions while important features retain their original size.

One challenge to the application of Seam Carving are technical illustrations with
vertical and horizontal edges between features (e.g., connecting lines between elements
of an electrical circuit). These might become disrupted as connected seams of pixels are
removed from the image (Figure 4.6).

This problem has been addressed in our adaptation approach by extending the basic
seam carving approach. Unlike the the original technique, our extended solution uses
separate energy maps for horizontal and vertical seams. For horizontal seams, the energy
of horizontal lines is increased by applying a corresponding edge detection �lter, thereby
preventing seams from cutting these lines at acute angles. Analogous, the energy of
vertical edges is increased in the energy maps for vertical seams. Figure 4.7 gives an
example for the results obtained with the extended Seam Carving approach: circuit
elements constitute features of the page; seams are removed only in background regions
in between, cutting connecting lines only at right angles.

4.2.3 Visual Attribute Adaptation

For raster images, adaptation of features' visual attribute equates to a manipulation
of feature regions in image space. For this reason, the visual attribute adaptation and
image space manipulation stages of the adaptation pipeline comprise the same operations
� those that modify values in the pixel matrix by applying image �lter operations.

5See [AS07] for a detailed discussion of viable pixel energy metrics.

73

4 Smart Raster Images

Figure 4.7: Extended Seam Carving applied to a raster image of a circuit schematic to obtain a visual
representation of reduced size. Feature bounds (overlaid in red) de�ne protected regions (positive
energy bias). Using separate energy maps for horizontal and vertical seams prevents disruption of
connecting lines.

The distinction between both stages is that conceptually, feature attribute adapta-
tion modi�es the pixel matrix in an image section constrained to the feature region,
whereas the subsequent pipeline stage also includes modi�cation of non-feature image
regions. We therefore review viable operations for both pipeline stages together in the
following section.

4.2.4 Image Space Manipulation

The purpose of pixel matrix manipulation is to visually accentuate relevant features
and to visually de-emphasize less relevant context regions, thus creating a visual hierar-
chy of features according to their relevance to the task at hand (cf. Section 3.3.4). The
objective is to guide the viewers' attention to the most important parts of the adapted
visual representation. There are two primary ways to create the desired visual hierarchy
of features regions on raster images considered for our approach in particular:

• the local modi�cation of color saturation, brightness, or image contrast [Den99] to
alter the visual saliency of image regions, and
• blurring (unsharpen) the image in regions with lesser relevance to achieve a Depth
of Field (DOF) e�ect [KMH01].

Color adjustment is the principal and most frequently used method for raster image
manipulation. It is applicable for both the accentuation of relevant features as well
as for de-emphasizing less relevant picture context.

74

4.2 Adaptation Control

Increasing contrast and/or brightness cause accentuation of features, whereas re-
ducing contrast and darkening are employed to de-accentuate image regions, cf. [Hop99].
These adjustments are applicable to any raster image regardless of whether the pixel
raster contains color information or brightness values only (i.e., it is a gray-scale image).
To this end, feature relevance values ri ∈ [0, 1] are mapped to an adjustment factor
a ∈ [−100%,+100%] for the respective color parameter. Brightness and contrast can be
adjusted independently by mapping to two independent adjustment factors abrightness,
acontrast. Di�erent mapping functions are possible, such as linear, exponential or discrete
(stepwise) adjustment, see Figure 4.8. Using these functions image space adaptation can
be parameterized in two ways:

• the relevance threshold value rt that determines what feature regions are visually
accentuated (ri > rt) and which are de-accentuated (ri < rt). Thus, feature
regions with relevance ri = rt are left unmodi�ed.

• The cut-o� limits for the maximum and the minimum adjustment factors. Espe-
cially when reducing contrast and brightness, the minimum relevance value r = 0
is usually mapped to an adjustment factor well above −100% lest image details
become indistinguishable.

r

a

(c) stepwise-constant adjustment
(discrete adjustment levels)

rt = 0.4

0 0.5 1
-100%

0%

+100%

r

a

(d) asymetic adjustment

rt = 0.6

0 0.5 1
-100%

0%

+100%

0 0.5 1
r-100%

0%

+100%

a

rt = 0.5

(a) linear adjustment
(b) exponential adjustment

a
b

Figure 4.8: Examples for di�erent mappings of feature relevance r to color adjustment factors a.

On the other hand, adjusting the color saturation as a means for accentuation obvi-
ously requires color information. Therefore in this thesis, we distinguish between color
images versus gray-scale images, including binary black-and-white illustrations. We here
propose two di�erent strategies that allow to employ color saturation adaptation to both
image classes regardless:

• Color images are adapted by de-emphasizing non-feature regions, i.e., by de-
saturating colors in regions of the image context according to the mapping function
assigning feature relevance values to an adjustment factor asaturation. Here again,
non-feature regions are assigned the minimum relevance r = 0.

• Gray-scale images, by contrast, are adapted by visually accentuating feature
regions. Because gray-scale images lack color information, an e�ective means for

75

4 Smart Raster Images

(a) (b)

Figure 4.9: Examples for adapted visual representation of raster images. (a) Irrelevant regions in
color images are de-accentuated to visually promote important features that retain the full color
saturation. (b) Features in black-and-white/gray-scale images (cf. Fig. 4.5) are accentuated by
applying a tinting e�ect with a feature-speci�c color. Blurring background regions to simulate
Depth-of-Field is applicable to both image classes.

accentuation is to apply a tinting e�ect. This e�ect is achieved by compositing
the feature's boundary polygon �lled with a �highlight� color over the source
image according to Porter-Du�'s source-over composition rule [PD84]. This color
thereby constitutes a visual attribute of the corresponding feature. Here, the
adjustment factor asaturation ∈ [0%, 100%] is used as the alpha value in the blending
equations.

Figure 4.9 illustrates the visual e�ects that are achieved by applying relevance-driven
color adjustment to examples for both image classes. The most relevant features are
accentuated the strongest, whereas irrelevant features and the image background are
visually subdued.

Semantic Depth of Field (SDOF) is another method for guiding the user's attention.
Less relevant parts of the display are de-emphasized by blurring, while the relevant
information is displayed sharply [KMH+02b, Hau06]. This method has long been used
in photography, where the camera lens' depth of �eld (DOF) determines which depth
range of a captured scene is depicted sharply.
The main idea behind the semantic Depth of Field approach proposed by Kosara

et al.[KMH01] is to control the sharpness of objects by their current relevance rather
than their distance. The original SDOF approach has been developed as a Focus &
Context technique in computer graphics, visualization applications in particular. As
such, it takes as input the spatial arrangement (in 2D or 3D) of distinct objects and a
relevance criterion for each object. Object relevance is mapped by a blur function onto
a blur diameter that emulates the so-called Circle of Confusion of a real lens camera
and thus, the amount of blur. From the desired blur diameter a Z-coordinate (depth
values) is derived, whereby objects are placed further away from the focal plane as their

76

4.2 Adaptation Control

relevance diminishes. Based on these values a blurred representation of the objects is
rendered using a photo-realistic camera model.

The general approach to apply SDOF to raster image pages is as follows. The fea-
ture regions (de�ned by their boundary shapes) constitute the objects subjected to
SDOF blurring. Feature relevance values directly provide the input to the blur func-
tion. Most important features (relevance r = 1) are placed directly in the focal plane,
i.e., they are depicted perfectly sharp. Regions of features with lower relevance values
are subjected to progressively stronger blur depending on the blur function used. See
[KMH01] for a list of suggested functions mapping relevance to blur factors. Image back-
ground (non-feature regions) is assigned a relevance r = 0 resulting in the maximum
blur diameter.

However, when using SDOF as a means to de-emphasize less relevant page regions the
output device (where aspect) also must be considered. The camera models for blurred
rendering proposed in [KMH01] are not viable on most compact mobile devices lacking
hardware-accelerated graphics [KMH02a]. Therefore on low-end mobile devices, instead
of rendering a blurred representation of feature regions with a complex camera model,
we use simple Gaussian blur �lters.6 Filters are applied constrained to the regions of
individual features. Here, the feature relevance is used to select the �lter's kernel size
and thus, the amount of blur applied to the respective feature's region. This provides
an acceptable approximation of a �real� DOF e�ect that is computationally less complex,
see Figure 4.9.

4.2.5 Labeling

The �nal stage of the adaptation pipeline comprises dynamic labeling of the adapted vi-
sual representation. Section 3.3.4 argued why labeling is an important step of the adap-
tation process and how dynamic labeling is e�ected as a visual data type-independent
adaptation step in image space.

This section discusses in detail how the particle-based labeling approach by Luboschik
et al.[LSC08] is integrated with our feature-based adaptation approach. This particu-
lar approach has been chosen as an example for the integration of external image-space
labeling algorithms because it is one of most e�cient solution for labeling point features
to date [SMA+09, Che10].

Being an operation in (raster) image space the labeling procedure is identical for all
four visual data type contemplated in this thesis. The discussion in this section therefore
equally applies to the last adaptation pipeline stage for the data types reviewed in the
following Chapters 5�7.

Integration of particle-based labeling. The approach by Luboschik et al.[LSC08] is
based on two core concepts: a labeling pipeline as well as con�ict particles.

The basic idea of the labeling pipeline is to label as many point-features as possible
within a fast labeling step, to save CPU power and processing time for subsequently
more sophisticated approaches applied to fewer remaining points in later pipeline stages.

6For very low-end devices, an even simpler average �lter (box �lter) might be substituted.

77

4 Smart Raster Images

Labels placed during early stages also tend to be placed in better positions (i.e., closer
to the labeled feature) than those placed later, when close-by positions are no longer
available.

To this end, the approach relies on a de�ned labeling order based on label importance.
In their paper, the authors assume importance values are given, but do not address
how these values might be derived. In combination with our feature-based adaptation
approach, this ordering is readily available: the feature relevance values de�ne a task-
speci�c labeling order of feature labels.

The approach's second core concept is that of con�ict particles. These represent
a method of dynamically discretizing the search space for label-label and label-object
overlaps � that both render a potential label position invalid � by placing particles in
the 2D search space (image space). Particles are distributed according to requirements
derived from the size of the labels as well as the size, shape and distribution of the
labeled objects. In particular, Luboschik et al.propose a method to derive con�ict par-
ticle con�gurations for arbitrarily shaped object based on the discretization of object
boundaries in vector format.

Exactly this information is provided by the boundary shapes of features in our
approach. Since the boundary shapes have been subjected to the relevance-driven ge-
ometry adaptation on the second pipeline stage (cf. Section 3.3.4), labels placed with
respect to feature boundaries adequately re�ect task-speci�c distortions of the page's
visual representation.

Thus, the task context described by the extended task model provides all necessary
information to apply particle-based labeling as the �fth adaptation pipeline stage in-
dependent of the visual data type: (i) the shape and position of labeled objects in
(distorted) image space by means of feature boundaries, (ii) a list of labels to place by
means of the corresponding feature attribute, and (iii) a task-speci�c labeling order
by means of feature relevance values.

However, the approach presented in [LSC08] also has one drawback. It is optimized
toward placing as many labels as fast as possible. Options to control the style and layout
of labels are very limited. In Section 4.3.2 we therefore discuss our own approach to
image-based labeling that precedes the particle-based approach, published in [FLH+06].
Here, the focus has been on two aspects: the integration of space-e�cient labeling styles
with the basic feature-based adaptation approach particularly for small screens; as
well as support for remote labeling to provide dynamic labeling even on low-end mobile
devices.

4.3 Smart Raster Image Techniques

Up to this point, the general procedure for task-based adaptation of raster image pages
has been discussed. On this basis two concrete techniques are proposed in this section
that address some of the speci�c challenges that have been outlined in Sections 4.2.2�
4.2.5.

78

4.3 Smart Raster Image Techniques

4.3.1 Belt-based Focus & Context

Section 4.2 discussed the general idea of using feature regions as Regions of Interest
and relevance values to control the geometric distortion of raster images. However, this
poses several challenges:

• There is more than one feature region, and each feature is associated with a
distinct relevance value that represents this region's Degree of Interest (DoI). It is
therefore insu�cient to contemplate only a single focus region.

• Multiple features may overlap in image space. This a�ects the shape and posi-
tion of both the resulting focus as well as context regions. It must also be considered
when calculating the propagation of scaling factors for image regions, which are
derived from relevance (DoI) values, across image space.

Our belt-based Focus & Context approach that is proposed in the following7 addresses
these issues. The basic idea is to use piecewise-constant scaling of adjacent, rectangular
image regions (tiles) to achieve image distortion. This avoids computationally intensive
continuous, non-linear distortion functions that must be evaluated per pixel, as it is for
example done in [CCF95].
The scaling factors for the image regions are determined as a function of feature

relevance values. In order to ensure that tiles always maintain adjacency, i.e., no gaps
or overlaps between neighboring tiles occur, all tiles on the same row must always be
scaled uniformly in height (vertical dimension). Likewise, a column of tiles must always
be scaled uniformly in width (horizontal dimension). These rows and columns of image
tiles with a uniform scaling factor in vertical, respectively horizontal dimension are called
magni�cation belts. In particular, each image tile is the intersection of a vertical and a
horizontal belt. To this end, our belt-based distortion approach comprises two steps:

1. Calculation of a the grid of adjacent tiles in image space comprising the horizontal
and vertical magni�cation belts. Distribution and width of belts in both horizontal
and vertical direction is determined by the intersections of all feature regions.

2. Size adjustment of individual tiles in horizontal and vertical direction according to
the relevance values of features contained in the corresponding belts.

Calculation of belts is done by examining the distribution of feature regions along
the X- and Y-coordinates of image space separately. In the following, the procedure is
explained for the horizontal projection onto the X-axis. The vertical belt boundaries are
obtained analogous by projecting feature boundaries onto the Y-axis.
First, the boundary for each feature φi is projected onto the X-axis to obtain a

minimum coordinate ximin and a maximum coordinate ximax (cf. Figure 4.10a). These
coordinates represent interval bounds in which φi is said to in�uence scaling along the
X-axis. Then, the projected intervals of all features are nested according to the order
of feature relevance, so that the higher relevance value prevails. This comprises a
change to the set of intervals in the following cases (cf. Figure 4.10b):

7It has �rst been published in [FRSF06].

79

4 Smart Raster Images

0.0 (image background)

0.5

0.5

0.3 1.0 0.5

0.7

0.5 0.3 0.7 0.71.00.00.0

X

0.5

0.5

0.3

1.0

0.7

0.5

(a)

(b)

Figure 4.10: (a) Horizontal interval nesting according to maximum feature relevance by projecting
the features' boundaries onto the X-axis. (b) In cases where the projected bounding boxes of
multiple features overlap, the highest relevance feature prevails.

• Intervals of equal relevance are adjacent, overlap partially or completely: both
intervals are merged.
• An interval of higher relevance partially overlaps an interval of lesser relevance:
the lower-relevance interval is truncated so it is adjacent to the higher-relevance
interval.
• An interval of higher relevance is embedded in an interval of lesser relevance:
the lower-relevance interval is split into two neighboring intervals adjacent to the
higher-relevance interval.
• An interval of lesser relevance is embedded in an interval of higher relevance: the
lower-relevance interval is removed from the set.

The result of the interval nesting step is a representation of belts of maximum relevance
in both horizontal (intervals along the Y-axis) and vertical (along the X-axis) direction.
Intersecting horizontal and vertical tiles yields the partition of the raster image into tiles,
cf. Figure 4.11a, b.

Size adjustment of tiles is then controlled by mapping the relevance values associated
with belts onto magni�cation factors. This is a two-step process:

1. Relevance values r are mapped onto scaling factors s ∈ R ≥ 0 according to a
scaling function S. These scaling factors determine the initial distortion of tiles in
both X- and Y-direction.

2. To match the size of the target viewport determined during the view selection step
of the adaptation pipeline (cf. Section 4.2.1) scaling factors are further multiplied
by a correction factor kx, ky for the respective axis to arrive at the �nal distortion.

The scaling function S : r → s can be any monotonous function that maps the nor-
malized range of relevance values r ∈ [0, 1] to a range of scaling factors s ∈ [smin, smax],
e.g., by a linear, exponential, or stepwise-constant function. Thereby scaling factors s
determine the relative size of feature regions depending on the values of smin, smax.

80

4.3 Smart Raster Image Techniques

(a) (b) (c)

Figure 4.11: Intersection of the horizontal and vertical belts of maximum relevance (a) yields the
boundaries of image tiles (b). Tiles of one belt (horizontal or vertical) are uniformly scaled along the
corresponding axis to obtain a piecewise-constant distortion of the image without gaps (c).

For example, mapping relevance values r to the range of scaling factors [0.5, 2.0] results
in the most important feature regions (r = 1) to be magni�ed to quadruple the size of
context regions (r = 0). The smallest possible value for smin = 0, e�ectively removing
belts of relevance r = 0 from the image.
The initial distortion results in an image with X- and Y-extents determined by the

distribution and relevance of features as well as the selected range smin, smax of scal-
ing factors. Therefore to obtain the �nal distorted image, correction factors kx, ky are
applied. This per-axis correction factor is the ratio between the desired target viewport
size and the total extent of all initially distorted tiles along the respective axis. Thus
for a viewport width of wvp pixels and nx belts (tiles) along the X-axis with undistorted
pixel widths wi, scaling factors si the horizontal scale correction

kx =
wvp∑nx
i=1wisi

.

The vertical scale correction factor ky is determined from the desired viewport height
hvp accordingly.
The �nal distorted size of tiles is thus obtained by scaling the undistorted belts by

sikx horizontally and sjky vertically. The �nal distorted visual representation is then
constructed by assembling the resized tiles into the target image (Figure 4.11c). This
approach generates satisfactory results on low-end devices like PDAs.
Due to the nature of interval nesting in the �rst step, so-called ghost foci can be

produced: Features that are enclosed in a belt with higher relevance will be over-
magni�ed because each belt is scaled according to the maximum relevance of all features
contained therein. However, the impact of such ghost foci is signi�cantly mitigated by the
subsequent relevance-based adaptation of visual attributes, as discussed in Section 4.2.3,
cf. Figure 4.11c.

81

4 Smart Raster Images

4.3.2 Space-e�cient Remote Labeling

An e�ective and aesthetic label layout must meet various constraints: the layout must
guarantee that the viewer can extract the correct co-referential relations between graph-
ical and textual elements (unambiguity), and labels should be laid out so as to ease their
readability. For interactive applications, the computation further has to be e�cient.
Note that these requirements might con�ict with one another. Therefore, most labeling
approaches seek a layout that balances these requirements, cf. [FLH+06, Ali09].

Mobile applications such as the mobile maintenance scenario contemplated here pose
two additional challenges. The restricted display size of compact mobile devices requires
the layout to be space-e�cient to �t within the limited available space while compro-
mising neither the number of labels placed nor the overall layout quality too much.

Moreover, despite heuristic solutions dynamic labeling at interactive rates might still
be too computationally demanding for compact mobile devices due to the inherent prob-
lem complexity [MS91]. This means either the quality and number of placed labels must
be reduced signi�cantly, or the computational burden must be o�-loaded from the mobile
device to a more potent remote machine.

To address these particular challenges, we propose a novel space-e�cient labeling ap-
proach that is employable as a remote service in client/server environments, as published
in [FLH+06].

Our approach is based on an existing labeling algorithm originally proposed in [AHS05].
Before discussing the extensions that have been developed to facilitate task-speci�c and
remote labeling of visual representations, the principles of the underlying annotation
module are brie�y recapped here. For a description in acute detail refer to [Ali09].

Underlying Approach

The base algorithm supports di�erent layout styles for both internal and external labels.
Objects with a large enough area can accommodate internal labels that overlay their
reference objects. External labels are placed in the empty space which is not covered
by primary elements (objects). While internal labels tightly integrate textual and visual
elements, connecting lines have to link labeled objects and their annotations, whereby
anchor points ease the identi�cation of the visual reference object. The approach is based
on a set of three bu�ers that store at each pixel, color information (frame-bu�er), seg-
mentation information (ID-bu�er) and distance-to-objects information (distance-bu�er).
The frame-bu�er is simply the rasterized visual representation as displayed on screen.
The ID-bu�er, also known as color-coded image, represents a segmented view of all visible
graphical objects, assigning each pixel a unique color-ID value according to the object
that pixel contributes to. Moreover, negative space8 that is available for placing labels is
assigned a unique background color in the ID-bu�er. The distance-bu�er stores for every
pixel a value corresponding to the minimum distance to the nearest boundary pixel in the
ID-bu�er, which either marks the boundary of a feature object, or the edge of the image.

8Negative space, in graphic design [Whi02], is all space that is not primary subject. For 2D images in
particular, it comprises the background regions not occupied by the depicted object(s).

82

4.3 Smart Raster Image Techniques

This distance-bu�er is calculated using a fast and e�cient Pseudo-Euclidean metric. It is
derived by applying to the ID-bu�er a two-pass distance transform algorithm that prop-
agates minimum distances of pixels to the boundary of segments [SW04]. By analyzing
the ID- and distance-bu�ers, the annotation module decides for each object whether to
use internal or external annotation for it and then computes the placement of internal
labels, respectively external labels and associated anchor points, in the frame-bu�er. To
this end an annotation table links color-IDs in the ID-bu�er to label texts.

Proposed Extensions

For our space-e�cient remote labeling approach the following extensions to the basic
annotation framework were developed:

• A procedure to dynamically generate the ID-bu�er for adapted visual representa-
tions of arbitrary visual data type,

• a space-e�cient label layout particularly suited for small display sizes, and

• client-server communication based on feature properties to facilitate remote la-
beling.

ID-bu�er Generation. In theory, the use of rasterized bu�ers (frame-, ID- and distance-
bu�er) to describe the representation being labeled removes the distinction between
annotating 2D raster or vector images and 3D graphics � the annotation module always
operates in 2D image space. However, the catch is the required segmentation of the
ID-bu�er. If the ID-bu�er is rendered from a segmented 3D model (cf. Section 6.2.5),
it is easily obtained by �at-shading model components using unique color-ID values.
However, in [Ali09] it is stipulated that each input 2D image that needs to be annotated
comes bundled with the corresponding, manually pre-segmented ID-bu�er. This poses
a signi�cant limitation if visual representations are subjected to geometric adaptation
(i.e., Focus & Context distortion) prior to being annotated.
Instead, with our extended approach the ID-bu�er is derived dynamically from the

adapted visual representation after geometric adaptation has been performed. This
comprises three steps (see Figure 4.12):

1. Binary segmentation of the visual representation into empty image background
(negative space) and foreground pixels to obtain a content mask.

2. Assignment of feature to color-IDs and generation of an ID mask.
3. Composition of the content mask and the ID mask to obtain the �nal ID-bu�er.

Binary segmentation: Background pixels are determined by the speci�cation of a back-
ground color in the page de�nition. For typical schematics and other technical
illustration, this will for example be pure white (cf. Figure 4.2) or fully transparent
pixels for image formats that support transparency e.g., PNG. Empty pixels are
assigned full black color in the content mask, while non-empty pixels are assigned
full white (cf. Figure 4.12a). The result is a binary map that indicates empty
background vs. non-empty pixels. Note that non-empty pixels do not necessarily

83

4 Smart Raster Images

belong to a feature region � all pixels not having the designated background
color are considered non-empty.

ID mask generation: First, each feature is assigned a unique color-ID. Typically, the
highlight color (cf. Section 4.2.4) can be reused for this purpose. The features'
boundaries are then rendered to the ID mask as �lled polygons (Figure 4.12b)
whereby the polygon vertices are transformed as to match the representation's
current Focus & Context distortion (cf. Section 4.3.1). The ID mask is initialized
with full white color. If two features overlap, the smaller one is rendered on top
of the larger, as determined by the areas of their respective (distorted) boundary
polygons. This prevents large feature from blanketing out smaller ones that
could potentially be completely contained with the former's boundaries.

Mask composition: The �nal ID-bu�er is obtained by multiplicative blending of the
content and the ID mask. That is, each pixel component's (red, green, blue)
intensity from the content mask is multiplied with the corresponding component's
intensity in the ID mask. Multiplying any color with a black pixel (intensity value
0.0 for all components) thus results in a black pixel. White pixels (intensity 1.0)
have no e�ect and are thus e�ectively transparent. After composition, the ID-
bu�er contains a pixel-accurate view of the distorted representation with three
types of pixels: empty (i.e., �t for placing labels), non-empty non-feature pixels
(i.e., contextual information that should not be occluded by labels), and color-
coded feature pixels. Note that unlike the rendition of the feature polygons
(Figure 4.12b), the ID-bu�er captures every empty space even within feature
regions at pixel granularity (Figure 4.12c).

(a) (b) (c)

Figure 4.12: Creation of the ID-bu�er for arbitrary page content. A binary segmentation �rst
distinguishes between all background pixels of a de�ned color and foreground (a). This mask is
composed with a distorted color-coded rendition of the feature polygons (b) to obtain the �nal
ID-bu�er (c).

84

4.3 Smart Raster Image Techniques

Space-e�cient Label Layout. The basic idea behind the space-e�cient layout is to use
the distance transform encoded in the distance-bu�er not only to compute anchor points
and internal labels, but also to locate label positions the empty regions in the negative
(free) space as close as possible to the labeled feature regions. Labels are placed in a
greedy manner, immediately updating the distance-bu�er after each placement to re�ect
the consumption of free space. The labeling procedure thus comprises the following
steps:

1. Select the most important task-related label not yet placed, in order of feature
relevance.

2. Determine the anchor point within the feature region.
3. Find a rectangular region of free space closest to the anchor point that can accom-

modate the label.
4. Render the label into both the frame-bu�er and the ID-bu�er.
5. Update the distance information in the distance-bu�er from the ID-bu�er.
6. Repeat until all task-related labels have been placed (or the current label can not

be placed due to space constraints).

For the �rst step, contrary to the original approach the static annotation table is
replaced by a task-speci�c table that is dynamically generated from the task context
information provided by the enriched task model. The set of task-related labels, their
respective texts and importance (relevance) ordering may vary between basic tasks. In
particular, the stop criterion (step 6) is determined by a relevance threshold t. Labels
of features with r < t are omitted from the annotation table.

A key factor of this approach is to e�ciently update the distance information after
each label has been placed. To facilitate this, the standard distance transformation
algorithm is modi�ed to use two distance-bu�ers, one for horizontal boundary-label
distances (DX -bu�er) and one for vertical distances (DY -bu�er), see Figure 4.13. Both
�elds are initialized from the ID-bu�er (cf. Figure 4.12c).

(a) (b) (c)

Figure 4.13: Two distance bu�ers are used for fast determination of space availability in (a) vertical
and (b) horizontal direction. After each label placement, the distance bu�ers are updated to re�ect
the reduction of free space in the vicinity of placed labels (c � DX after �rst three labels).

85

4 Smart Raster Images

The bene�t of this approach is two-fold. First, the search for a rectangular region of
empty space that can accommodate a label with a bounding box of width w and height
h can be separated into lookups for the closest region of empty space that is wide enough
(using DX) and high enough (using DY). Second, updating the distance information
after a label has been placed can use smaller, thus faster kernels for distance propagation
in the respective distance-bu�er.

Figure 4.14 compares the labeling result form our proposed approach to a layout done
using the Left-and-Right layout style proposed by [AHS05]. The latter relied on �rst
placing the labeling strictly on the left and right sides of the graphical object and then
bringing them close to the silhouette boundaries without taking into account the space
that is available in the vicinity. Our new approach explicitly looks for locations closest
to the objects where the corresponding labels could be placed. It thus makes e�cient
use of existing image space without increasing the illustration size, even if empty space
is separated into small and irregular regions.

(b)(a)

Figure 4.14: Comparison between space-e�cient adaptive labeling (a) and the Left-and-Right layout
from [AHS05] (b).

Remote Labeling. To support remote labeling for adapted visual representations using
the extended labeling module, the concept of layers was adopted. The client �rst creates
an adapted representation that does not contain any labels, by executing the adaptation
pipeline up to and including the forth stage (image space manipulation). In particular,
the resulting image includes relevance-driven distortion of feature geometry that af-
fects the amount of image space available within and in the vicinity of feature regions.
This image constitutes the base layer for the annotated visual representation.

The remote labeling service then generates a matching annotation layer that is com-

86

4.3 Smart Raster Image Techniques

F&C-distorted,
accentuated
Page View

Page Adaptation
(Pipeline Stages 1-4)

Task Model
Task-specific
Annotation

Table (XML)

ID-Buffer
(dynamic)

Request Data

Labeling Request

Labeling
Module

XML-encoded
Annotation

Layer

Final
adapted visual
representation

+ Labeling
Response

Base Layer

Figure 4.15: Schematic illustration of the remote labeling process.

posited over the base layer to obtain the �nal, annotated representation. To this end, the
mobile client generates a labeling request that contains all information required to per-
form space-e�cient labeling at server-side. The response comprises a description of the
annotation layer containing all labels, their positions, as well as the layout of secondary
elements (i.e., connecting lines). Figure 4.15 illustrates the general procedure.

Labeling Request: To generate a remote labeling request, the client �rst creates an ID-
bu�er as described above. In addition, it generates an annotation table from the
information provided by the task context. The annotation table is an ordered list of
features, whereas each list entry associates a feature with its color-ID and the
label text. List entries are ordered by feature relevance values. In addition, the
relevance value is used during labeling to adjust label attributes such as font face,
size and weight to further emphasize the most important labels. This annotation
table is encoded in XML format and transmitted to the labeling service together
with the generated ID-bu�er. Note the base layer is not transmitted as part of
the request � since the labeling service is generating a separate annotation layer,
it does not require a frame-bu�er to actually render labels into.

Labeling Response: Rather, while placing labels using the space-e�cient layout algo-
rithm, only the distance bu�ers DX , DY are updated. Instead of writing placed
labels directly to the frame-bu�er, the selected position for the label's bounding
rectangle is recorded. After all labels have been placed the service returns an
XML-encoded description of the label layout to the client. It contains positions
of all label bounding boxes, label font information and the coordinates of anchor
points and connecting lines This information is su�cient for the client to render
an annotation layer that is superimposed over the adapted visual representation's
base layer.

87

4 Smart Raster Images

4.4 Summary

This chapter proposed several general methods for the task-based adaptation of raster
images based on the general adaptation pipeline introduced in Section 3.3.4. It has
been shown that the page/feature approach facilitates a wide range of automatic,
relevance-driven adaptation operations even though the source raster image in
itself does not contain enough information on content structure for �ne-grained infor-
mation or visual scalability. In particular, it has been shown how existing display
techniques can be integrated to generate task-speci�c adapted representations uti-
lizing the geometry information a�orded by feature boundaries.
Because the de�nition of features over raster images is highly dependent on the

image contents, as well as the parametrization of techniques to achieve a speci�c com-
municative goal, the process of content preparation can be automated only partially.
Thus the approach proposed here is to take the route of manual content prepa-
ration, augmented by automatisms where these are viable. To this end, suitable
authoring tools are required. In this chapter, we brie�y reviewed the authoring tool for
raster image preparation that has been developed in the scope of this thesis. Once
content preparation has been completed, however, task-speci�c initial views within the
smart visual interface are generated automatically by Smart Raster Image techniques,
as motivated in Chapter 3.

In addition, two novel �Smart-X� display techniques have been proposed that speci�-
cally address challenges related to compact mobile devices encountered e.g., in the main-
tenance scenario: a belt-based Focus & Context scheme for relevance-driven dis-
tortion of feature regions [FRSF06], as well as a space-e�cient remote labeling
approach [FLH+06].

Since the general adaptation pipeline on its forth and �fth stage operates in image
space regardless of the visual data type of the page being adapted, the majority of
approaches and techniques contemplated here for raster graphics are equally applicable
to the fourth adaptation pipeline stage of the further data types discussed in the following
chapters.

88

5 Smart Vector Graphics �

Adaptation of Vector Graphics

Unlike raster images examined in the previous chapter, vector graphics build on 2D geo-
metric primitives to represent image contents. Therefore vector formats do exhibit some
inherent notion of content structure that can be utilized for adaptation. As primitives
are de�ned by means of geometric coordinates that are independent of actual pixel reso-
lutions, vector graphics can be scaled without loss of quality. This makes vector graphics
especially attractive in mobile applications where display scalability is a primary concern
(cf. Section 2.2).

Scalable Vector Graphics (SVG) is a modularized language for describing 2D vector
graphics in XML by the WWW consortium [FFJ03]. SVG uses three types of graphic
objects or primitives: geometric shapes (e.g., rectangles, circles, or paths), raster im-
ages, and text. Graphic primitives can be transformed, logically grouped, and styled by
assigning presentation attributes like �ll and stroke colors. SVG has a well-de�ned ren-
dering model, which is mandatory for compliant user agents (UAs). To this end, groups
and individual objects are organized in an object hierarchy controlling what styling at-
tributes are applied and how graphical elements are transformed and composed during
rendering.

SVG drawings can be interactive and dynamic. Animations can be de�ned and trig-
gered either declaratively, i.e., by embedding SVG animation elements in SVG content,
or via scripting. A rich set of event handlers can be assigned to any SVG graphic prim-
itive. A supplemental scripting language further allows to modify the SVG Document
Object Model (DOM),1 which provides complete access to all elements, attributes and
properties. This facilitates sophisticated applications based on SVG.

SVG has been explicitly designed to o�er broad interoperability with other web tech-
nologies and standards. For example, Cascading Stylesheets (CSS) can be used to en-
code styling information. In particular, it o�ers extensive support for integration with
domain-speci�c languages (DSLs) through XML namespaces [BHLT06] and linked re-
sources, like stylesheets or embedded images (raster or SVG), based on the XML Linking
Language (XLink) [DMO01].

Speci�cally in this thesis, the SVG standard is used exclusively. Therefore, in the
following 'vector graphics' is used synonymously with SVG-encoded vector graphics.

1The Document Object Model of an XML �le (like SVG) represents the XML markup elements as
a hierarchical structure of element nodes. For SVG documents in particular, the DOM node tree
re�ects the SVG object hierarchy. For the purpose of the following discussion, the two terms are
used synonymously.

89

5 Smart Vector Graphics

5.1 Vector Graphics Content Preparation:

Concepts and Authoring Tools

Despite its capabilities, SVG still is primarily a presentation format for (interactive)
graphical content that o�ers good display scalability. As such, SVG groups are used
to organize primitives that are subjected to the same transformations (e.g., moved to-
gether during animation) or that share visual attributes. Hierarchical grouping is rarely
used to express containment with respect to application semantics e.g., is-part-of re-
lations between depicted objects. This is due to the fact that containment is far less
relevant in graphical design than composition and superposition of visual elements such
as backgrounds, shadows and highlights.

An SVG graphics typically does not, therefore, describe semantic properties of the
depicted content in a way useful for task-driven adaptation of the SVG's visual repre-
sentation. For this reason, preparation of vector graphics is necessary to obtain pages
with de�ned features that are relevant to the task at hand.

5.1.1 De�nition of Pages

Starting point for the de�nition of vector graphics pages is an SVG �le describing a 2D
image. The contained object hierarchy comprising graphical primitives and primitive
groups is organized according to graphical criteria e.g., all background gradients or all
lines with the same style.

The aim of page preparation based on a given input �le is then to re-organize the
SVG object hierarchy to facilitate the de�nition of features in a way that

• allows to individually modify features both in terms of their geometry and their
visual attributes � corresponding to the second and third stage of the adaptation
pipeline (cf. Section 3.3.4) � and

• that the re-organized hierarchy results in a correct default visual representation
(cf. Section 3.3.2) of the page.

In the approach proposed here, the �rst aspect is addressed by comprising groups
of primitives according to semantic rather than graphical criteria. This is discussed in
detail in the following Section 5.1.2.

The second aspect must be considered because a hierarchy node's child order does
carry semantics under the SVG �painter's model� of rendering. Paint2 is applied to
the output device in successive drawing operations. When the currently drawn area
overlaps a previously painted area the new paint partially or completely obscures the old,
depending on the paint's opacity (alpha value). The order in which drawing operations
within child nodes are applied is de�ned implicitly by the order of the corresponding
XML elements in the SVG DOM. In particular, if a node is itself a group, its child nodes

2A paint represents a way of putting color values onto the 'canvas' (i.e., the screen). A paint consists
of both color values and associated alpha values which control the blending of colors against already
existing color values on the canvas.

90

5.1 Content Preparation: Concepts & Tools

are recursively rendered onto a temporary canvas, which is then composed on top of
previously painted elements.

In e�ect, this introduces an implicit Z-ordering (depth ordering) of graphic primitives
depending on their position in the SVG hierarchy. This means that re-structuring the
object hierarchy of the input SVG �le must consider alterations of the implicit drawing
order of primitives that can potentially introduce visual artifacts in the SVG's render-
ing. This constraint may con�ict with a grouping of primitives solely according to their
containment within features.

To address these issues, this thesis proposes a speci�c decomposition scheme for the
SVG object hierarchy as follows. The main idea is to decompose the SVG content into
content fragments according to adaptation requirements that provide the building blocks
to de�ne SVG-based pages. Furthermore, by composing fragments in a speci�c order
de�ned by content layers, con�icting requirements regarding semantic and rendering
aspects of the primitive hierarchy organization are resolved.

SVG Content Fragmentation distinguishes SVG elements according to their function
and contribution to the page's visual representation.

We here make a distinction between SVG groups and fragments. Groups are a means
to logically organize graphic primitives for purposes of visual element composition, as
detailed above. SVG fragments, on the other hand, are sub-trees of the DOM hierar-
chy constituting an SVG's internal structure. Just like groups can contain sub-groups,
fragments can be composed of sub-fragments. In particular, a sub-fragment can also
comprise another, self-contained SVG �le that is referenced from the enclosing fragment
(e.g., the primary SVG �le) as an external resource. Fragments therefore represent a
means to structurally organize graphic content for purposes of feature-based adapta-
tion.

To this end, the approach discussed here distinguishes SVG elements into three prin-
cipal fragment types:

• The basic sca�olding that describes the structure of a minimal valid SVG �le. This
minimal base �le is referred to as the SVG skeleton.

• Content elements that describe the image background, i.e., parts of the object
hierarchy that does not contribute to any task-speci�c feature.

• Content elements that constitute features.

The SVG skeleton forms the core of the page de�nition. Each page comprises a
single fragment of this type. It includes the XML header, the <svg> element presenting
the object hierarchy root, SVG meta-data elements as well as the root element of the
section for �le-global de�nitions (see [FFJ03] for details). All other content fragments
are embedded into the skeleton to form the SVG object hierarchy. Thus in itself, the
SVG skeleton simply describes an empty image without further graphical content.

Background content fragments comprise of graphic primitives that describe con-
textual or auxiliary visual elements such as image backdrops or reference grid lines.

91

5 Smart Vector Graphics

Background fragments do not contribute to any task-relevant features. Thus concep-
tually, all non-feature primitives constitute a single background fragment per page.
However, because of rendering order issues stated above, background primitives might
be split into multiple fragments that are distributed across several content layers, as
explained in the following paragraph.
Feature fragments are the last type of content fragment comprising those prim-

itives that describe graphical content associated with task-speci�c features. Each
feature thereby corresponds to a content fragment that assorts primitives according
to semantic criteria of the application domain. Within feature fragments, graphic
objects are further organized to facilitate task-speci�c adaptation of the respective fea-
ture. This is reviewed in more detail in Section 5.1.2.
Figure 5.1 gives an illustrative example of how an SVG �le is broken down into the

principal content fragments constituting a vector graphics page.

1

2

3

3

Figure 5.1: An input SVG �le is conceptually distinguished into three principal fragment types ac-
cording to their function/contribution to image contents: the basic sca�olding or skeleton (1),
contextual background information (2), and features (3). Shown here is the SVG DOM for the
example page shown in Fig. 5.2.

Content Layers are used in the approach proposed here to address the necessity of
maintaining the rendering order of graphical primitives for their correct composition.
Layers are simply regular SVG group elements <g> that are inserted as direct child
nodes of the SVG's hierarchy root (the <svg> element, cf. Figure 5.1). Because child
nodes are rendered in the order they are de�ned in the XML DOM, an implicit depth
ordering of content elements that are children of these top-level layer nodes is achieved.
Thus, content fragments are not added directly to the hierarchy root, but instead

under the group element representing the respective layer the content is assigned to.

92

5.1 Content Preparation: Concepts & Tools

Figure 5.2 illustrates this concept. Layer nodes are rendered in reading order (i.e., from
top to bottom row), therefore, the background layer is rendered �rst whereas subsequent
layers (features) are composed on top of background elements. Labels are rendered
last.

Figure 5.2a also shows our proposal for a general partition of content fragments into
layers. The lowermost layer comprises background content. Features are distinguished
into 'opaque' and 'transparent' elements. A feature is considered opaque if it con-
tains area primitives that have a �ll attribute (e.g., a solid color or pattern) assigned.
When these primitives are composed on top of previously rendered elements they occlude
parts of the current image and thus should be draw �rst. Contrary to this, transparent
features contain only primitives with an assigned stroke style (line color, thickness).
Composing these features over others does not incur noteworthy occlusion of content
(cf. Figure 5.2b). Finally, a top-most labeling layer ensures that labels placed during the
last adaptation pipeline stage are always composed over any other image content.

Within each layer, implicit depth ordering of features is controlled by adjusting the
child order of feature fragments. In particular, because layers are ordinary SVG group
elements, the basic layer concept is trivially extended to include sub-layers, in case the
layout of overlapping features requires it.

Primitive Hierarchy Root

Background Layer - non-Feature primitives

Feature Layer 1 - opaque Features

Feature 1.1 Root

Feature 1.n Root

Feature Layer 2 - transparent Features

Feature 2.1 Root

Feature 2.m Root

Label Layer

Text Element

Text Element

(a) (b)

Label

Figure 5.2: To avoid rendering order issues, SVG's hierarchical structure is utilized to de�ne a layered
description of image content by inserting top-level group elements (a). Background and feature
fragments are then assigned (inserted as child nodes) to corresponding layers (b).

The vector page's SVG skeleton, extended to contain the top-level content layer
groups, provides the basis for the integration of the content fragments de�ning indi-
vidual features.

93

5 Smart Vector Graphics

5.1.2 De�nition of Features

Since vector graphics do have the notion of distinct graphic primitives, feature de�-
nition can be carried out in object space. The previous section already stated the basic
idea underlying feature speci�cation of this thesis' approach in particular: conceptu-
ally, each feature comprises of a self-contained content fragment that is treated as a
single coherent object for purposes of adaptation. De�ning features on (SVG) vector
graphics pages therefore comprises the following aspects:

• Identi�cation of what parts of the SVG object hierarchy contribute to what fea-
tures, i.e., how the object hierarchy of the input SVG �le is partitioned into
content fragments.
• Organization of graphic primitives within an identi�ed feature fragment.
• Determination how feature fragments are integrated into the SVG skeleton.
• Annotation of task nodes in the task model with corresponding feature associa-
tions.

Fragment Identi�cation

It has been reasoned in Section 3.3.3 that features represent content elements of a page
that have an application-speci�c semantic meaning in the context of the task at hand.
Therefore, what primitives in a vector graphic constitute a given feature is dependent
on the application domain, the task at hand and the image contents. The question thus
is how the a�liation of SVG elements to feature fragments is determined.
The identi�cation of fragments is rarely automatable. It might be feasible in case the

input SVG �le has been created according to application-related criteria. For example,
some CAD/CAM programs allow to export technical drawings in SVG format. Assum-
ing the SVG's object hierarchy represents an application-speci�c breakdown of vector
primitives into depicted objects, feature fragments can be automatically identi�ed by
matching SVG group node identi�ers with known object names used in the generating
program. However, this presupposes that both the list of object names is available, as
well as that matching identi�ers are created in the exported SVG �le.
Therefore, the normal case requires a manual organization of graphic primitives into

hierarchical groups that represent feature fragments. This necessitates tool support
allowing a content author to interactively re-arrange (groups of) primitives in the SVG
DOM tree, and to manually designate speci�c group nodes as the root of feature
fragments. An authoring tool that has been developed to this end in this thesis is
introduced in Section 5.1.3.

Organization of feature fragments

The central point of feature de�nition on vector graphics pages is the organization
of graphic primitives in such a way that these represent application- and task-speci�c
features. Besides the proper fragment identi�cation, this comprises a secondary as-
pect: how the primitives are organized within the feature fragment, i.e., the structure
of the object sub-hierarchy below the fragment's root node. In this regard there are two
principal approaches:

94

5.1 Content Preparation: Concepts & Tools

• the existing element structure of the input SVG �le is retained, i.e., sub-hierarchies
are adopted without modi�cation as feature fragments, or

• below the fragment root a further re-organization of the primitive hierarchy is
conducted.

The latter can in particular be used to support additional feature-speci�c adaptation
operations. To this end, in the present thesis the concept of sub-fragmentation has been
developed. The basic concept is discussed in the following. Section 5.2 presents how this
approach is utilized during the geometry and visual attribute stages of the adaptation
pipeline.

Feature sub-fragmentation. Core idea of sub-fragmentation is to further sub-divide
the object hierarchy within a feature fragment according to the function of objects
with respect to the description of a vector graphics. To this end, the following principal
types of sub-fragments can be distinguished:

• Geometry, i.e., SVG elements that de�ne graphic primitives,
• visual attributes, i.e., SVG elements describing styling information that are applied
to geometry, and
• additional elements that de�ne the dynamic and interaction behavior of the vector
graphics.

Individual graphic primitives (geometric shapes, raster images and text) and object
groups � composed of multiple primitives, subgroups and transformations � make up the
�rst type of sub-fragments de�ning a feature's geometry data.

Visual attributes such as �ll colors, line strokes and colors gradients constitute the
second sub-fragment type. The approach presented here allows for two sub-fragments of
visual attributes: styling properties such as line strokes and solid colors that are encoded
in CSS notation, as well as complex SVG paints (i.e., gradient and �ll pattern de�nitions)
that must be speci�ed using SVG syntax.

The last fragment type comprises all scripts that enhance the SVG image with inter-
action functionality (e.g., in reaction to mouse input) and dynamic animations. Because
these elements are executed by the SVG user agent (rendering agent), they are not
considered during adaptation.

This conceptual primary fragment decomposition is illustrated in Figure 5.3, left. Its
purpose is to facilitate the adaptation of features in two separate steps � geometry
as well as visual attributes � according to the general adaptation pipeline introduced in
Section 3.3.4. This primary decomposition into sub-fragments is e�ected solely according
to the element types de�ned by SVG. It can therefore be performed automatically.

In addition, the approach presented here utilizes a further, �ne-granular decomposition
of a feature fragment into multiple sub-fragments per fragment type. This secondary
decomposition allows to select between di�erent Levels of Detail (LoD) during the geom-
etry adaptation stage of the pipeline, respectively of di�erent quality levels of texturing
(visual appearance) during the visual attribute adaptation stage, cf. center column of
Figure 5.3

95

5 Smart Vector Graphics

<JS>

Primary
Decomposition

LoD 1

LoD 2

LoD 3

LoD 4

Example

SVG

Feature
Fragment

CSS

SVG

Primitives

Presentation
Attributes

Scripts

SVG

CSS

Large Primitives

Small Primitives

Secondary
Decomposition

SVG

...

Fill & Stroke Styles

Gradient Definitions

SVG

+

+

+

Geometry

Visual Attributes

Animations,
Interactivity

Figure 5.3: General scheme for the division of a feature fragment into sub-fragments to facilitate
LoD on features. The right column shows an example of a jet engine compressor divided into four
sub-fragments: two geometry LoD, two texturing levels.

The right column in Figure 5.3 illustrates this for a technical illustration where two
geometric LoD have been de�ned: shapes de�ning the outlines of major components were
grouped into a sub-fragment constituting the lowest LoD; smaller primitives in a second
geometry sub-fragment provide structural detail as the next LoD. For other pages and
tasks a breakdown into even more fragments for a corresponding number of geometry
LoD may be appropriate.

The proposed two-way splitting of styling information then provides three further
quality levels regarding visual appearance: no visual styling at all for unimportant or
background objects; �at colors and line width for a basic accentuation of relevant fea-
tures; as well as supplemental �ll gradients and patterns which provide additional
information on the depicted object. Especially gradients are often used to create a
'pseudo-3D' appearance of objects e.g., curvature, and as a means to hint at surface
material (Figure 5.3, bottom right).

The secondary decomposition of geometry data into sub-fragments can be performed
automatically according to preassigned criteria. The strategy employed in the present
thesis in particular is to �rst sort primitives according to their size. The ordered list
is then partitioned evenly into a number of sub-fragments corresponding to the desired
number of geometry LoD. The reasoning behind this is that primitives with a smaller
extend usually contribute local details compared to large primitives constituting major
image features.

96

5.1 Content Preparation: Concepts & Tools

This notwithstanding, it is nonetheless expedient to provide content authors a means
to manually perform the partition of graphic primitives into LoD with the help of a
suitable tool. This ensures appropriate detail levels can be de�ned corresponding to the
communicative requirements of the task at hand, which may not always be obtained by
automatic means.

How the concept of sub-fragmentation of features introduced here is utilized during
the adaptation process is subject of Section 5.2.

Skeleton-Fragment Integration

The SVG skeleton provides the base node hierarchy into which the identi�ed feature
fragments are embedded. More speci�cally, features are integrated by appending the
corresponding content fragment's root node as either

• a child of the group node corresponding to a content layer, thus de�ning a top-level
feature (cf. Figure 5.2), or

• as the child of another feature fragment, thereby creating a hierarchy of sub-
features. This can be utilized to express is-part-of relations between features
that are common e.g., in technical applications such as machinery assemblies, cf.
Figure 5.4.

Plant
ComponentPlant /

Facility

Equipment
Group

Equipment /
Unit

Component
Assembly

Component
Part

Plant
Component

Equipment
Group

Equipment /
Unit

Component
Assembly

Component
Part

Figure 5.4: Within each content layer (cf. Fig. 5.2) a hierarchical organization of feature frag-
ments can be used to express is-part-of relations e.g., between components of a mechanical assembly.

To this end, SVG provides two ways to append a feature fragment (i.e., a sub-
hierarchy of nodes) as a child node:

• directly, i.e., the feature root node is a regular group node (with sub-nodes) in
the object tree of the SVG skeleton, as well as

• indirectly as a reference to a linked resource.

97

5 Smart Vector Graphics

Externalized Fragments - Features.svg

Figure 5.5: Example of a fully speci�ed page with one background fragment and two features
based on the SVG �le shown in Figs. 5.1, 5.2. Note the addition of top-level groups functioning as
content layers. Feature fragments are identi�ed by a special attribute. Moreover, fragments may
be externalized to facilitate task-driven exchange of feature representations.

Direct embedding is the standard approach in order to obtain a self-contained description
of a page that comprises only a single SVG �le.

For the purpose of indirect embedding of content fragments, SVG provides a reference
element (<use>) that contains an XLink pointer [DMO01] to the target resource. There
are two types of linked resources: so-called symbols and external resources. Symbols
are object groups that are de�ned at at global scope in the SVG �le (speci�cally, the
de�nition section in the skeleton, cf. Figure 5.5). External resources reference content
fragments in external �les.

Using indirect embedding of feature fragments o�ers a distinct advantage that the
target of the reference element may be modi�ed as part of the adaptation process. In par-
ticular, it facilitates task-speci�c switching between independent visual representations
of the same feature, for example, a detailed versus an abstracted symbolic represen-
tation. Section 5.2 discusses how this mechanism is utilized in combination with the
sub-fragmentation concept for a Level of Detail approach on vector graphics features.
Furthermore, Section 5.3.2 introduces a novel �Smart-X� technique that exploits this
mechanism for the task-driven adaptation of circuit schematics.

Task Node Annotation

A page provides a structured description of the image content by means of the SVG
object hierarchy. To associate features with speci�c tasks the respective feature
fragment in the SVG object tree must be linked with the corresponding task node.

98

5.1 Content Preparation: Concepts & Tools

SVG mandates that every DOM element has an element identi�er, including primitives
and group nodes. This ID attribute is a string value that must be unique across the SVG
DOM tree, but is not constrained otherwise with respect to how it is formated. This
allows for application-dependent formating schemes conveying auxiliary information.
In this thesis' approach in particular, the element identi�er of the feature fragment's

root node is used to identify the respective feature. For this purpose, feature root
elements are assigned an identi�er attribute according to a speci�c pattern � here, by
prepending the pre�x �feature:<ID>�, cf. Figure 5.5. Then, the feature association
with a task node is established by referring to <ID> from the task node annotation as
<feature id='<ID>'/>.

5.1.3 Feature Relevance Values

The features that have been de�ned and associated with task model nodes in the
previous content preparation step are then assigned relevance values for each relevant
basic task. This, too, is by necessity a manual authoring step: as argued in Section 4.1.3,
task-speci�c feature relevances can only be determined manually for the same reasons
that establishing the domain-speci�c task model itself is a manual design task.

SVG Authoring Tool

Thus, similar to the MaTE authoring tool developed for raster image pages (cf. p. 68)
a corresponding tool MaTE-SVG has been developed to aid the creation of SVG-based
vector graphics pages. It shares many common functionality with its raster counterpart.
In particular, MaTE-SVG allows a human content author to interactively

• create and edit page de�nitions,
• interactively de�ne content fragments that constitute features of the given page,
• annotation of CTT task model nodes with created page/feature de�nitions, and
• interactive speci�cation of task-speci�c feature relevance values as well as addi-
tional feature attributes utilized during adaption (see Section 5.2).

Note that MaTE-SVG is not a fully-�edged design tool for vector graphics. There are
several comprehensive SVG design software suites already available, such as Inkscape.3

Duplicating the functional range of such programs would neither have been reasonable
nor feasible within the scope of this thesis. Instead, the aim of our vector authoring
tool concentrates on two aspects: (i) to enrich existing SVG �les with the necessary
information for feature-based adaptation, and (ii) to provide means for enriching the
general task model with SVG-based page de�nitions. Sophisticated editing of SVG
content beyond simple re-ordering of DOM nodes to de�ne feature fragments (see
below) is carried out using one of the available design suites.
Like its raster image counterpart, the SVG authoring tool is an Eclipse RCP plug-

in, which facilitates interoperability with other tools from the model-driven design tool
chain, the CTT editing tool in particular. Figure 5.6 shows a screen shot of the MaTE-
SVG authoring tool.

3www.inkscape.org

99

www.inkscape.org

5 Smart Vector Graphics

Figure 5.6: The MaTE authoring tool for vector graphics page preparation. The author can inter-
actively select (center pane) and re-arrange (left pane) primitive groups in the hierarchy to create
content fragments that de�ne individual features, associate them with task nodes and assigned
task-speci�c relevance values and attributes for the adaptation process with previews (right panes).

Creating and editing of page de�nitions. Creation of page de�nitions utilizes the
inherent extensibility of the SVG format. A new page is created simply by opening an
SVG �le. Page meta-data is then embedded directly into the SVG skeleton as custom
XML elements.4 In particular, SVG already allows to specify an ID attribute � which
is used as the page identi�er �, a human-readable title, as well as a short description of
the depicted graphics. These properties are utilized directly.

Because additional information pertaining to individual features is appended di-
rectly to the corresponding SVG element that constitutes the feature root (cf. Sec-
tion 5.1.2), a page de�nition itself does not require to provide further information.

Interactive de�nition of features. As described in Section 5.1.2, the concept behind
features in SVG pages is to re-structure content elements into content according to
semantic criteria. The authoring tool supports this in the following ways:

4XML � and therefore, SVG � uses the concept of namespaces [BHLT06] (i.e., unique name quali�ers)
to identify XML elements. Extension works by de�ning extra elements in an own namespace, which
are simply ignored by SVG user agents that do not know how to interpret them.

100

5.2 Adaptation Control

• New SVG group nodes can be created in the object hierarchy. This allows to de�ne
new top-level groups i.e., layers (cf. Section 5.1.1) as well as groups that form the
root element of a feature fragment.

• Speci�c elements can be designated as the root of a feature fragment. To this
end, it is selected from either the node hierarchy or by selecting a contained prim-
itive from the visual representation. Internally, a designated group element is
identi�ed as feature root by a custom element attribute (cf. . Figure 5.5). Des-
ignating a feature root automatically adds it to the list of features available
for the page.

• Nodes in the SVG object hierarchy can be interactively re-organized. For this,
MaTE allows to assign nodes to a new parent by drag-and-drop gestures (see
Figure 5.6, left). In particular, this enables an author to assign primitives and
primitive groups to feature roots, and to assign features to the appropriate
layers. Moreover, composite features can be created by assigning sub-features.
This allows to express hierarchical is-part-of relations, cf. Section 3.3.3.

Page/feature association with tasks. Like its raster image counterpart, the SVG
content authoring tool itself is not designed to create or structurally modify CTT task
models. Instead, it is used to import existing models stored in XML format to obtain a
a list of tasks that can then be associated with SVG pages.

Thus to annotate a task node with a page de�nition, it is su�cient to provide a link
to the enriched SVG �le. Association of feature fragments with task nodes utilizes the
fact that every SVG element has a mandatory, unique identi�er attribute: a feature is
associated with a task node by referring to the identi�er of the fragment root element.

Speci�cation of task-speci�c feature properties. This working step primarily com-
prises the interactive de�nition of feature relevance values. In addition, for each fea-
ture two auxiliary attributes are currently supported. The �rst is a short text used
during labeling. A speci�c highlighting color can also be assigned that is used during the
visual attribute adaptation phase (cf. Section 5.2). In addition, Section 5.2 discusses how
features can further be associated with transformation data to facilitate task-speci�c
complex geometric adaption.

After annotation of task nodes of the imported CTT model with these data, it is saved
back in XML format for further processing in the course of the superordinate UI design
process.

5.2 Adaptation Control

The graphical content preparation results in an enriched task model that contains all
information necessary to control the adaptation process of vector graphics pages. In
order to tailor task-speci�c initial representations, adaptation operations of the general
adaptation pipeline are mapped onto concrete techniques for vector graphics.

101

5 Smart Vector Graphics

Because SVG vector graphics are a declarative language for describing visual represen-
tations, the fundamental approach to adaptation of vector graphics is to directly modify
the graphic elements declarations (i.e., the SVG DOM, its elements and attributes) ac-
cordingly. The interpretation of the modi�ed SVG by the rendering agent then results
in a partially adapted visual representation. The subsequent image space pipeline stages
then operate on the raster image that results from the SVG rendering process, cf. Fig-
ure 3.4 on p. 50.

This section discusses the operations that are thus viable on the di�erent pipeline
stages speci�cally for SVG. This includes a review of additional information that is
annotated to leaf task nodes of the enriched task model to e�ect these operations.

5.2.1 View selection

The goal of view selection is to determine a rectangular section of of the vector graphics
image that represents the portion of the page initially visible. This selection defaults
to the entire image. As reasoned in Section 4.2.1, this section has to be adjusted: a
page associated with a compound task (i.e., the root of task node subtree) is shown as
the initial view of several working steps, each with di�erent view requirements. Thus,
adaptation for the respective working step's visual representation must be based on an
appropriate sub-region of the vector graphics.

To this end, the exact same considerations apply to two-dimensional vector graphics
as do to two-dimensional raster images. To recap brie�y, the task is to (i) determine
the visible rectangular source region from the page's base graphics, and (ii) to specify
a strategy for �tting the source region into the target viewport that is de�ned by the
available display space on the output device. The latter is of importance when the aspect
ratios of the source region and target viewport do not match. For a detailed discussion
on both aspects of the view selection problem refer to Section 4.2.1.

The only di�erence between raster images and vector graphics is the coordinate system
used for the speci�cation of the source region. For raster images, it is always speci�ed in
pixel coordinates in image space. Contrary to this, vector graphics specify image content
by geometric primitives with coordinates in R2. Therefore, source region selection is
relative to the SVG skeleton's coordinate system.5

SVG directly supports the selection of a rectangular source region by means of the
viewBox attribute that can be speci�ed on the <svg> root element element. The at-
tribute value is a quadruple xmin, ymin, width, height given in user coordinate space, with
(xmin, ymin) the upper left corner and width and height the source region's extend to the
right and down, respectively. In addition, the preserveAspectRatio attribute controls
how this source region is scaled to �t the target viewport � in particular, whether or not
non-uniform scaling is permissible, and how to align the source region in the viewport.
See [FFJ03] for a list of supported �tting strategies.

Therefore to e�ect view selection on SVG vector graphics pages, the corresponding
information from the task node annotation, as introduced in Section 4.2.1, are applied as

5SVG supports a number of unit identi�ers for its coordinate systems, such as absolute �user units�
(dimensionless), pixels (px), centimeters (cm) and points (pt); as well as relative units such as percent
(%) and font size-relative (em).

102

5.2 Adaptation Control

the attribute values of the viewBox and preserveAspectRatio attribute, respectively.
It is worth mentioning that this attribute pair is also supported on the <use> ele-

ment that allows to indirectly (via XLink) reference child fragments. In particular, this
facilitates the selection of a source region on feature fragments that are embedded
indirectly via <use>.

5.2.2 Geometry adaptation

With regards to the adaptation of vector graphics, the geometry adaptation step serves
addresses three aspects:

• (I) The main purpose is to enlarge important features at the expense of less
relevant ones that are scaled down, as reasoned in Section 3.3.4.

Furthermore, because vector graphics are comprised of distinct primitive objects that
can be individually transformed geometrically, two additional adaptation operations are
feasible:

• (II) features are repositioned (translated) from their original coordinates, and

• (III) the selection of a geometric level of detail (LoD) to match the feature's
modi�ed presentation size.

(I) Relevance-driven Size Adjustment

Adjusting feature sizes amounts to uniformly scaling all graphic primitives contained
in the feature fragment. This is e�ected by providing a corresponding transformation
attribute on the root element of the fragment hierarchy that describes a transformation
matrix

(
s 0
0 s

)
. In doing so, the scaling operation is parameterized by the feature's

relevance value according to a mapping function ri → s. See Figure 5.7a for examples of
mapping functions that are typically useful. Thus for s < 1 a given feature is enlarged,
and scaled down for s < 1. At the extreme end is assigning a scaling factor of s = 0,
e�ectively removing the feature from the adapted representation altogether. Thereby
information hiding of irrelevant features is achieved.

(II) Feature Repositioning

Translation of features serves two purposes as a geometry adaptation operation. It is
either

• employed to displace adjacent features to maintain relative positions of fea-
tures after resizing � especially, enlargement � operations, or

• an explicit translation used to spatially separate important features from sur-
rounding objects.

Maintaining relative positions. Resizing individual features according to their
respective relevance values may necessitate to simultaneously alter their relative posi-
tions. Enlarging features may cause overlaps, while downsizing may result in gaps

103

5 Smart Vector Graphics

r

s

(c) stepwise-constant adjustment
(discrete adjustment levels)

0 0.5 1
(d) application of (c) to small

detail feature w/ high relevance

0 0.5 1
r0.0

1.0

smax

s

rt = 0.5

(a) piecewise linear w/ cutoff,
(b) exponential adjustment

a
b

0.0

1.0

smax

Figure 5.7: Examples for continuous mapping functions that assign SVG scale parameter values
according to feature relevance (a). Speci�c features are assigned stepwise functions (b). This
is especially useful to highlight important but very small details that require large scaling factors (c).

between primitives that were adjacent in the undistorted image. This may be accept-
able e.g., if the enlargement is employed to generate some form of inset detail view (cf.
Figure 5.7c). Usually, however, these e�ect are undesirable since they distort the original
spatial relations between depicted object(s). Thus to avoid or at least mitigate these
artifacts, in the face of size changes adjacent feature geometry must also be trans-
lated. Speci�cally, enlarging an important feature necessitates displacing ('pushing
outwards') other objects in its immediate neighborhood. To this end, two cases can be
distinguished:

Resizing Features comprising sub-features: SVG content fragments are de�ned in
the coordinate system of their parent node. This means that if a composite fea-
ture is geometrically transformed, the local coordinate systems of contained sub-
features are implicitly transformed accordingly. Therefore, sub-features utilize
the feature hierarchy to automatically retain their correct relative positions and
sizes.

Resizing features with siblings on the same hierarchy level: here, the SVG render-
ing model makes no assumptions on the spatial relationship of SVG fragments.
This means when resizing a particular feature, the relative positioning of sibling
features on the same hierarchy level must be considered explicitly.

Because the direction and magnitude of the required translations in the second case
depends on the relative position, relevance values and mapped scaling factors of the
a�ected features, their manual speci�cation is only feasible for simple vector graphics.
Instead, the present approach derives the appropriate transformation automatically by
utilizing connectivity information between (groups of) primitives.
To this end, task nodes are annotated with a set of point constraints (called anchor

points) that re�ect which features and primitive groups should maintain their relative
positions.6 Here, a point constraint is a one-way constraint comprising an originating

6Typically, these constraints de�ned once in the same scope (task node) as the page itself and inherited
to all sub-tasks. On principle, however, a task-speci�c set of constraints may be de�ned for any task
node.

104

5.2 Adaptation Control

and destination feature as well as the shared anchor point in the coordinate system
of the originating feature. The shared point can be arbitrarily chosen e.g., a shared
primitive vertex, a point on a shared line, or a corner of the feature's bounding box
(Figure 5.8a).

The set of constraints de�ne a directed graph that determines how scaling and transla-
tions of one feature transitively a�ects connected objects (Figure 5.8b): as the originat-
ing feature is scaled and translated by a compound transformation T , the coordinates
of the shared point p =

(x
y

)
is transformed to p′ = T ·p. The resulting displacement vec-

tor d = p′−p thus determines the translation that has to be applied to the destination
feature (Figure 5.8c).

1

4
2

3

1

4
2

31

4

2

3

a b c

Figure 5.8: Illustration of transitive adjustment of feature positions in reaction to scaling. One-
way point constraints (a) de�ne a connectivity graph (b). Enlarging a feature implicitly translates
connected features, whereby con�icting constraints may need to be removed (c).

Two constraints may contradict each other if the connectivity graph contains cycles.
To resolve these, graph edges are weighted with the minimum relevance of the two fea-
tures it connects. This allows to remove edges from the connectivity graph (i.e., ignore
con�icting constraints) in order of increasing feature relevance starting from the least
relevant one. Figure 5.8c shows an example where two constraints (indicated as dashed
in sub-�gures b, c) have been ignored to achieve con�ict-free translations of features
transitively connected to an enlarged feature.
The approach presented here is similar in objective to Constraint SVG (CSVG) [BTM+01]
that provides a set of layout constraints for SVG-encoded diagrams using the Cassowary
constraint solver [BB98]. CSVG is however designed primarily towards the dynamic
presentation layout of diagram representations on di�erent networked client output de-
vices, i.e., primarily addresses the where aspect. This is re�ected in the set of available
constraint rules (see [BTM+01]). By contrast, the constraints of the present approach
capture semantic aspects of the task at hand based on feature relevance; i.e., according
to why aspects which are not represented in CSVG. Thus, the approach discussed here
can be understood as a task-driven extension on top of CSVG as a potential concrete
�Smart-X� technique.

105

5 Smart Vector Graphics

Explicit translations. The above approach to automatically maintain relative fea-
ture positions during relevance-based resizing covers a wide range of situations. How-
ever, some tasks may require deliberate positioning of speci�c features as an integral
part of their visual representation's message subject. It is therefore reasonable to allow
content authors to manually specify the translation or position of features explicitly.

For this purpose, task nodes are annotated with an absolute displacement vector
di =

(dx
dy

)
that is applied as a transform operation to the root element of the respective

feature φi. Thereby an explicit translation takes precedence over automatic reposi-
tioning. That is, an explicitly moved feature a�ects constraints where it is the source
(i.e., outgoing constraints), but itself ignores constraints where it is the target.

The de�nition of explicit feature translation vectors o�ers a simple means to alter
the composition of depicted objects in the visual representation for individual working
steps. This can be used to spatially separate speci�c features as a means of emphasis.

Spatial separation is also commonly used in so-called 'exploded view diagrams' to
communicate structural relationships between object components (e.g., mechanical as-
semblies). To this end, in Section 5.3.1 a novel approach to the semi-automatic gener-
ation of task-speci�c exploded view diagrams that utilizes hierarchical features and
relevance information from the task model.

(III) Selection of Geometric LoD

The core idea of relevance-driven scaling of features is to assign more display space to
important features than to less relevant ones. To fully utilize this change in presen-
tation size (i.e., the visual scale) the level of detail of the respective feature must also
be adjusted (i.e., its information scale).

With respect to vector graphics, this adjustment can be e�ected on the level of geo-
metric detail. In particular, important features can be rendered with full geometric
detail including primitives with small extend that contribute local detail. Less relevant
features, on the other hand, are represented by few large primitives i.e., those con-
stituting the feature's outline and general shape, and omitting small detail elements.
This can be achieved in one of two ways:

• selection of an appropriate feature representations from a set of alternate content
fragments, or

• composing the feature's geometry from a number of progressive sub-fragments.

The �rst approach works as follows: for a given feature, several independent rep-
resentations are generated at di�erent levels of (geometric) abstraction. For example,
curved paths may be replaced by simpler polylines in a simpli�ed version. Then during
adaptation, the default feature fragment is swapped in its entirety with an alternative
instance depending on the current feature relevance. Swapping thereby works by mod-
ifying the target attribute of the reference element constituting the feature root, as
explained in Section 5.1.2. To this end, a stepwise-constant relevance mapping function
is de�ned that maps relevance values to labels that identify the respective alternative
fragment.

106

5.2 Adaptation Control

A considerable drawback to this approach is that it requires to have available or to
create a suitable number of alternate representations for each feature. It is thus feasi-
ble mainly for applications that use highly formalized visual encodings based on a �xed
set of symbols, such as technical diagrams (cf. Section 5.3.2). This requirement does,
however, signi�cantly increase the amount of manual labor necessary during vector con-
tent preparation for general illustrations of any complexity.

For this reason, the present thesis pursues a novel approach to compose a feature's
geometric LoD from a combination of progressive sub-fragments instead. The key com-
ponent to this approach has already been introduced in Section 5.1.2: a feature's
primitive hierarchy is partitioned into multiple primitive groups according to their rel-
ative sizes. The sub-fragment containing the largest primitives constitutes the lowest
LoD and is always rendered. Including subsequent sub-fragments progressively amends
this coarse base representation with further geometric detail (see Figure 5.3).

To this end, a stepwise-constant mapping function is de�ned that maps relevance
values r to discrete LoD nlod. Sub-fragments are assigned an attribute value contriblod
that identi�es the LoD the respective sub-fragments contributes to. Then, depending on
the e�ective detail level nlod all sub-fragments that contribute to LoD contriblod > nlod
are removed7 from the page's visual representation.

Because the sub-fragmentation of feature fragments is automatable as explained in
Section 5.1.2, the geometric LoD proposed here can be applied to arbitrary illustrations
with minimal content preparation overhead.

5.2.3 Visual attribute modi�cation

The aim of this pipeline stage is to accentuate relevant aspects of the visual representa-
tion by creating a visual hierarchy of features. To this end, the following adaptation
operations are feasible on vector graphics:

• Adjustment of line width and stroke styles (e.g., solid vs. dashed lines), to indicate
the relevance of objects (Figure 5.9a).

• Changing the color hue of strokes (outlines) and �lls (internal areas) of primitives
to speci�cally highlight the respective feature (Figure 5.9b).

• Modi�cation of color saturation or brightness of either stroke and �ll of primitives
to alter the general visual saliency of objects (Figure 5.9b).

• Modi�cation of primitive transparency to both alter its visual saliency as well as a
means to create 'ghosted views' [Vio05] that expose occluded feature geometry
(Figure 5.9c).

To parameterize these operations, feature relevance values ri a mapped to corre-
sponding adjustment factors for the respective visual attribute aattribute using a suitable

7This can be e�ected by means of setting the fragment root node's visible attribute to 'hidden'. This
will prompt the SVG user agent to skip rendering the respective fragment.

107

5 Smart Vector Graphics

mapping function. Depending on the attribute type functions either map relevance val-
ues to a range of values e.g., saturation, brightness, and line width; or assign labels
corresponding to a discrete parameter setting e.g., stoke styles. See Section 4.2.4 (Fig-
ure 4.8) for a discussion of suitable mapping function for di�erent attributes.

a b c

Figure 5.9: Illustrative examples of visual attribute adaptations: stroke style and thickness (a) as
well as �ll and line color adjustment (b) to accentuate features; transparency to expose occluded
geometry (c).

These attribute modi�cations are e�ected by adjusting the corresponding presenta-
tion parameters of the corresponding SVG elements in the DOM. In particular, because
presentation parameters are inherited to nested child nodes unless de�ned locally, visual
attributes of features are de�ned and modi�ed in the feature's root element.

Besides these general attribute modi�cations, the present adaptation approach further
utilizes the concept of feature sub-fragments for visual attribute modi�cation. Recall
from Section 5.1.2 that SVG presentation information for each feature fragment are
cumulated into two sub-fragments: simple styles, as well as gradients and patterns. This
allows to select from three distinct 'texturing quality' levels for each feature according
to its current relevance value:

• The lowest level is to apply no styling at all i.e., the feature geometry is rendered
only as outlines with a default color, usually black.

• On the second level, speci�cations of solid stroke and �ll colors as well as line styles
and thickness are associated with feature primitives.

• On the last level, additional gradient and pattern de�nitions (e.g., hatching) are
associated with feature geometry.

Thereby these quality levels successively build on top of each other. The are selected
in the same way as described for the geometric LoD selection above: feature relevance
is mapped to a desired quality level that determines which styling sub-fragments need
to be assigned to the feature root.
The presented approach to distinct texturing quality levels can on principle be com-

bined with the general visual attribute modi�cation operations: the selected quality

108

5.2 Adaptation Control

level determines what styling information is available, whereas further style parameter
adjustment �ne-tunes the applied styles according to feature relevance.

A point to note is that following the conceptual anatomy of a vector graphics page, im-
age background constitutes a content fragment on its own (cf. Section 5.1.1). Therefore,
visual attributes of background objects can be modi�ed following the same procedures
just outlined for feature fragments. In particular, visually accentuating features
while simultaneously de-emphasizing contextual background objects are complementary
operations, as reducing the visual saliency of the latter causes foreground objects stand
out at the same time.

5.2.4 View Space Manipulation

This stage of the adaptation pipeline is the �rst that operates in image space (cf. Fig-
ure 3.4 on p. 50). As such, it is conceptually independent of the underlying page's visual
data type.

For SVG vector graphics, this stage thus operates on the raster graphics image that is
the result of the SVG rendering process. Therefore, the discussion on view space manipu-
lation of raster image pages from Section 4.2.4 equally applies to vector graphics pages.
In particular, operations on this stage may be applied to Regions of Interest de�ned by
task node annotations in image space independently of vector graphic primitives.

A point to note in this regard is that SVG itself provides facilities for so-called �lter
e�ects that operate on the rasterized result of SVG rendering. In particular, it o�ers
a Gaussian blur �lter that can be employed to emulate the semantic Depth-of-Field
(sDoF) de-accentuation operation, cf. Section 4.2.4. Under the SVG render model each
fragments is rendered in isolation on a temporary canvas, then de�ned �lter e�ects are
applied. Only then is the rasterized rendering result composed over previously rendered
content (see [FFJ03]). This restricts �lter in�uence on primitives of the given fragment.
Therefore, applying the SVG blur �lter to individual features according to relevance
values o�ers an e�cient way to emulate per-feature sDoF on vector graphics pages.

5.2.5 Labeling

The �nal stage of the adaptation pipeline comprises dynamic labeling of the adapted
visual representation. To this end, Section 4.2.5 discussed the integration of particle-
based labeling [LSC08] as a general-purpose labeling approach. Being an image-based
algorithm, its application to 2D vector graphics is completely analogous to the proce-
dure described in Section 4.2.5. The only minor di�erence is that instead of annotated
feature boundary polygons (cf. Section 4.1.2), the primitive geometry is used directly
to derive the con�ict particle con�guration as described in citeLuboschikEtAl2008. The
algorithm then places labels on the raster image that is the result of the SVG rendering
process in exactly the same way as for raster pages.

The space-e�cient remote labeling approach introduced in Section 4.3.2 also applies
to vector graphics pages in a similar way as it does to raster images but for two minor

109

5 Smart Vector Graphics

adjustments. These adjustments utilize advantages inherent to the SVG format that
increase the e�ciency of (i) the creation of the required ID-bu�ers, and (ii) of labeling
response handling.

For raster images, the ID-bu�er generation required the creation of two intermediate
bu�ers: the binary segmentation as well as the color-coded feature mask, cf. Fig-
ure 4.12. These intermediate bu�ers are composed to obtain the �nal ID-bu�er that
classi�es the image space into negative space, non-empty and foreground (feature)
pixels. For SVG images, the ID-bu�er can be created in a single rendering pass. To this
end, the canvas is initialized with the color code for negative space. Then, primitives
from the background content layer are rendered with the non-empty color code assigned.
Finally, all features are rendered in order using their respective ID color.

Furthermore the returned labeling layer is an XML representation that comprises a
geometric description of the labeling result, in particular the position of labels and the
geometry of label-object guides. Therefore, the logical approach is to integrate the la-
beling module's response directly into the SVG DOM as corresponding <text> child
elements of the top-most labeling layer (cf. Section 5.1.1). This way, labels are rendered
automatically by the SVG user agent. Note this still makes remote labeling of SVG
pages an image-based approach: the labeling module itself operates on the rasterized
ID- and Distance-Bu�ers (cf. Section 4.3.2).

Finally, the general content layer concept proposed in Section 5.1.1 facilitates to add
additional auxiliary geometry to the adapted visual representation. To this end, task
nodes are annotated with references to SVG content fragments describing the auxiliary
geometry. During labeling, the corresponding fragments are embedded (via <use>)
under the label layer, ensuring that they are painted on top of any image content.

4x M6

Figure 5.10: Example for the combined application of the adaptation operations discussed in this
Section. Shown are the initial visual representations for three consecutive working steps of assembly
instructions.

Figure 5.10 shows a comprehensive example how individual adaptation operations
introduced above are concerted to achieve complex task-speci�c adaptations of the base
page. Shown here are the resulting visual representations for three consecutive working
steps that employ a combination of information hiding (removal of irrelevant features),

110

5.3 Smart Vector Graphic Techniques

accentuation through adaptation of visual attributes (assigning a highlight �ll color),
explicit feature translation, as well as the use of auxiliary geometry (guiding lines
and inset detail views). This results in three visually consecutive illustrations, i.e., one
initial view for each basic task node, for (partial) assembly instructions of the depicted
cupboard.

5.3 Smart Vector Graphic Techniques

So far this chapter described the present thesis' fundamental concept how to structure
and organize vector graphics pages in a way that facilitates feature-based, relevance-
driven adaptation of task-speci�c visualizations. Further, it has been discussed how this
conceptual page structure is utilized on the di�erent stages of the general adaptation
pipeline introduced in Chapter 3. In the following, two novel display techniques are
introduced that build on these adaptation operations.
First, a method is described for the semi-automatic generation of so-called exploded

view diagrams that is commonly used to convey information on complex assemblies.
The second technique has been developed speci�cally to address the challenges arising

from displaying large diagrammatic representations on compact mobile devices, such as
electric circuit diagrams.

5.3.1 Smart Exploded View Diagrams

A speci�c application of feature translation (cf. Section 5.2.2) is a presentation tech-
nique referred to as 'exploded view diagrams.' These are an established method to
elucidate the structure of complex objects that are composed of many subparts, such
as mechanical assemblies, architectural environments and biological organisms [LAS04].
Exploded view diagrams simultaneously convey the global structure of the depicted ob-
ject, the details of individual components, and the local relationships among them.
In particular, we here propose an approach that follows an idea presented by Li

et al. [LAS04]. Unlike the vast majority of exploded view algorithms that rely on de-
tailed 3D models of the objects to explode, Li et al.use a '2.5D' solution based on two
core concepts: (i) a stack of (raster) image fragments that is sorted according to the
depth order of the fully collapsed ('assembled') object, as well as an explosion axis along
which object fragments are translated ('exploded') in 2D image space. To this end,
their approach requires several preparatory, semi-automatic working steps to create the
depth-ordered stack raster fragments representing object parts [LAS04].

We here present an alternative approach that utilizes the hierarchy of SVG feature
fragments instead. As a second contribution, it is discussed how exploded views can be
generated from the page description automatically based on feature relevances. We
initially published this idea in [FSS07].
With our approach, a given feature constitutes the object subjected to 'explosion',

whereas its sub-features represent the individual components that comprise the object
(see also Figure 5.4). The child order of the respective fragment root nodes implicitly
de�nes the required depth ordering of fragments. This child order thus also implicitly

111

5 Smart Vector Graphics

determines the stacking order of fragments, in other words, the 'previous' and 'next
neighbor' relations between sub-features along the explosion axis (see Figure 5.11a).
Therefore, the only additional information that must be provided as task node annota-
tion is the direction of the explosion axis in image space, which can be speci�ed simply
as a direction vector d =

(dx
dy

)
.

fe=0 fe=1 fe=1.2

32

1

Figure 5.11: Illustration of feature-based, relevance-driven 'exploded view' generation. The im-
plicit depth order (child order) of sub-features (numbered) de�nes the stacking order in the initial,
collapsed con�guration (a). De-con�icting of bounding boxes (red) along a speci�ed explosion axis
(blue) yields the fully exposed con�guration (b). Over-exposing further separates components (c).

With the approach described in [LAS04], the 'explosion magnitude' � i.e., the amount
by which individual fragments are displaced along the explosion axis � is interactively
controlled to vary between zero (fully collapsed object) and a predetermined maximum
value. Contrary to this, we here propose to control the 'explosion magnitude' automat-
ically according to the relevance values of the sub-features of the exploded feature
as follows.

The core idea is to map each sub-feature's relevance value ri to an exposition factor
ei ∈ [0, emax] that represents the degree of exposition for that sub-feature φi; whereby
emax is a pre-de�ned upper limit. In the simplest case, this is a linear mapping so that
a relevance of ri = 0 → ei = 0 and ri = 1 → ei = emax = 1. However, other mapping
function are viable, for example exponential or stepwise-constant functions similar to
those shown in Figure 5.7.

The second aspect to consider is then how exposition factors correspond to translation
distances along the speci�ed explosion axis.

• An exposition factor ei = 0 represents a completely collapsed representation, i.e.,
the component is placed in the original, 'assembled' position relative to its neigh-
boring sub-features. This corresponds to zero translation distance.

• At the degree of exposition ei = 1, the component is exposed so that no overlap
occurs between itself and its previous and next neighbor along the explosion axis.
This corresponds to a translation distance su�ciently large to resolve overlaps
between the respective features' geometries or suitable proxy geometry, such as
the features bounding rectangle shown in Figure 5.11.

112

5.3 Smart Vector Graphic Techniques

• Separating exploded components even further (i.e., introducing gaps between them)
thus corresponds to exposition factors e > 1.

Figure 5.11b illustrates this concept. Obviously, if two subsequent sub-features
φi, φj on the explosion stack are assigned di�ering relevance values ri, rj , the translation
distance between them will correspond to the exposition factor mapped to max(ri, rj).
Figure 5.11c shows the resulting visual representation for the cupboard example used

throughout this chapter. The shelves and the sides have been arranged on a slanted ex-
plosion axis with an exposition factor of e = 1.2, introducing visual separation between
components. To further emphasize the spatial relations, (manually) prede�ned auxiliary
guides have been superimposed during the labeling step (cf. Section 5.2.5).

Because the translation distances are determined exclusively from feature relevance
values, the general approach presented here also facilitates interactive exploded view
diagrams beyond the initial visual representation for the task at hand. Recall from Sec-
tion 3.3.5 that our concept for the interactive manipulation of initial views is based on
user selection of Feature(s) of Interest (FoI). In particular, selected FoI are assigned
the maximum relevance value rmax = 1, whereas non-FoI features are assigned lower
values according to some Degree-of-Interest (DoI) function (often, the minimum rele-
vance rmin = 0). After a change to the set of selected FoI, the adaptation pipeline is
re-executed to re�ect the change to the user's focus of interest. Thus, by selecting fea-
ture(s) in the exploded view diagram, the user can interactively control which object
components are exposed (by selecting them) and which are reverted to the fully assem-
bled representation (deselected, r = 0→ fe = 0). More complex DoI functions can take
into account the neighbor relations de�ned by the stacking order to e.g., achieve a grad-
ual drop-o� in feature relevance (and thus, degree of exposition) in an n-neighborhood
around a selected feature. This e�ectively creates an 'explosion �sheye view' Focus &
Context display of the exploded feature.

Moreover, the general concept of hierarchical features introduced in Section 5.1.2 fa-
cilitates the creation of complex exploded view diagrams along multiple nested explosion
axes: an explosion axis can be de�ned for each decomposition level of a hierarchically
composed feature. This allows to 'explode' sub-features along one axis, while its
nested sub-sub-features are translated along a second axis. Figure 5.12 gives an exam-
ple: here, components of the top-level feature (the jet engine) are exploded vertically;
one of the contained sub-feature (the compressor-turbine assembly) is exploded hori-
zontally.

5.3.2 Smart Technical Diagrams

The discussion so far in this chapter concentrated on task-relatedwhy andwhat aspects
of adapted visual representations. However, especially in mobile application scenarios,
the where aspect of a smart visual interface's context of use must not be neglected.
Here, due to the small size of typical handhelds available screen space is very limited.
This is a challenge in particular when presenting diagrammatic representations of

complex (technical) structures like electric circuit diagrams or process �ows. Such rep-

113

5 Smart Vector Graphics

Figure 5.12: Example for a complex feature-based exploded view diagram using two nested explo-
sion axes on two di�erent levels of the feature hierarchy: �rst, the top-level feature is exploded
vertically (left), then one contained sub-feature is exploded horizontally in the gained space (right).

resentations usually focus upon displaying the functional dependencies between di�erent
parts or modules. While the individual parts themselves can be adapted using the oper-
ations described in Section 5.2, the depiction of their relationships to one another adds
to the di�culty of bringing such structure representations to the limited screen of a
handheld device. Figure 5.13 illustrates this by comparing the resolution of a typical
PDA to that of a rasterized representation of a medium-sized circuit schematic.

Figure 5.13: Comparison of the screen resolution of a typical PDA (320x240 pixels) to the resolution
of a medium-sized circuit schematic (rendered at 1742x1275 pixels).

Even though encoding the shown circuit's representation as vector graphics allows to
render it at arbitrary resolutions, this naïve approach to display scalability of downscal-
ing to the size of the PDA screen would lead to indiscernible tiny or cluttered details.
Therefore, the adaptation must also a�ect the information and visual scales of the tech-
nical drawing by selecting a subset of information to be displayed. With regard to
structure schematics there are two principal strategies to this (cf. Figure 5.14):

114

5.3 Smart Vector Graphic Techniques

Segmentation: the visual representation is limited to show only a certain part of the en-
tire technical drawing that �ts the output device, thus sacri�cing the completeness
of the representation but preserving its local levels of detail.

Depth reduction: Groups of diagram elements are merged into aggregate representa-
tions that take up less screen space, thus sacri�cing the in-depth-depiction of all
objects but preserving the completeness of the overall structure.

Com-
pound

Com-
pound

Com-
pound

Com-
pound

Com-
pound

Com-
pound

Com-
pound

Com-
pound

Figure 5.14: Conceptual view of adaptation strategies for diagrammatic representations to small
displays: segmentation (show element subset at full local detail, left) versus aggregation (composite
element representation with reduced detail).

A fundamental approach to e�ect information scalability of circuit representations is
to model them as a graph (see e.g., [HO95, WKM+09]): circuit elements represent
graph nodes, while line interconnections constitute edges between nodes. In particu-
lar, an electric network diagram de�nes a hierarchical graph:8 circuit elements in the
wiring diagram (the lowest-level graph) are aggregated into compound circuitry, which
are further abstracted into electric components in the schematic (function block) dia-
gram [WKM+09]. This connectivity graph thus facilitates local changes to the informa-
tion scale on a structural level by pruning subgraphs (i.e., segmentation) or collapsing
node groups into meta-nodes (depth reduction). The diagram's visual representation
is then tailored to match the graph state. To this end, contemporary approaches (e.g.,
[LAS04, FD06, WKM+09]) rely almost exclusively on interactive manipulation of the
graph state through its visual representation.

Contrary to these, in this section an approach to the task-driven adaptation of schematic
diagrams is proposed that utilizes the general de�nition of vector graphics pages with
hierarchical feature as its basis. The core idea is to derive the connectivity graph's
state for the task at hand from relevance values in the enriched task model, which is then
re�ected by the adaptation of corresponding features. As with all other approaches
presented in this thesis, the primary goal is to provide good initial views of schematic
diagrams to the task at hand, which can then be interactively re�ned further. A �rst
version of this approach was published in [FSS07].

8A hierarchical graph is a graph where groups of nodes on one hierarchy level are aggregated (clustered)
into a single meta-node on the next higher level, see e.g., [Sch10].

115

5 Smart Vector Graphics

Starting point is the page de�nition of the diagram representation. Its features
describe the diagram elements at di�erent levels of abstraction. To this end, the hierar-
chical organization of features described in Section 5.1.2 is utilized as follows:

• Top-level features represent diagram elements at the highest level of abstrac-
tion. It therefore comprises an aggregation of several elements at the next lower
abstraction level of the diagram.

• At each feature hierarchy level but the leaf level two sub-fragments are de-
�ned: one describing the abstracted representation (i.e., geometry) for that level
of abstraction, and a sub-feature that describes an optional decomposition into
sub-elements on the next lower level.

• The leaf level of the feature hierarchy describes the most detailed representation
of the diagram. Features on this level constitute nodes in the connectivity graph.

e

Diagram Component (Top-level Feature)

Block Representation (Geom.)

Circuitry (Sub-Feature)

NOR-Gate (Geom.)

Circuitry (Sub-Feature)

NOR-Gate (Geom.)

Switch.Elements (Sub-Feat.)

...

Switch.Elements (Sub-Feat.)

Transistor (Geom.)

Capacitor (Geom.)

...

NOR 4 NOR 3 a

1

23

4
5

6

7
8 9

10

1

23

4

5

6

7

8

9

10

Figure 5.15: A hierarchical feature describes a group of diagram elements at di�erent levels of
detail. Each feature hierarchy level contains two content fragments: the geometry describing
an abstracted visual representation for that level, as well as a sub-feature describing its optional

decomposition into further sub-elements.

Figure 5.15 illustrates this for a section of an electrical circuit with three levels of ab-
straction: On the lowest level of abstraction (the leaf level) are features that de�ne
individual switching elements e.g., capacitors and transistors. These are represented by
standardized symbols.9

The next higher level of abstraction models the circuit as a number of circuitry (in this
case, NOR gates) that are wired together via connecting pins. These are represented
by rectangles indicating the pin layout. The top-most level groups gates into functional
units (e.g., registers). These are represented by simpli�ed block representations (not
shown in Figure 5.15).

9This facilitates the re-use by reference of symbol geometry de�ned once (cf. Section 5.1.2). In fact,
SVG's <symbol> element has been introduced with this type of application in mind [FFJ03].

116

5.3 Smart Vector Graphic Techniques

This hierarchical encoding of diagram elements into features already captures two
aspects of adapted diagram representation:

• It readily describes groups of diagram elements (nodes) that are aggregated into
meta-nodes on the next higher level of abstraction.

• On each level, two alternative visual representations are encoded: an abstracted
representation appropriate for the respective level of abstraction, as well as a fea-
ture that itself de�nes an optional, further sub-divided and thus more detailed
representation.

At this point the page description misses, however, the connectivity information (e.g.,
wiring) between features/nodes (diagram elements).10 To this end, the basic page
is further associated with a corresponding graph structure. This graph may be directly
available e.g., as export data from dedicated CAD programs like EAGLE.11 For smaller
circuits, a manual creation of the connectivity graph is also a viable option. For ex-
ample, Figure 5.16 shows a screenshot of a simple tool [Woy06] used during prototype
development in the LFS project (cf. Section 8.1).
Using an XML encoding for the connectivity graph facilitates direct integration with

the SVG �le storing the page skeleton. GraphXML [HM01] is especially well-suited
because it explicitly supports the distinction of graph structure (nodes and edges) and
their visual representations (features and line connection geometry, respectively). In
particular, this allows to account for the spatial extend of feature geometry during
graph layout (see below).

Based on this extended page description, the task-speci�c adaptation of the diagram
representation is e�ected. This comprises the following steps:

1. Determine a graph state representing which diagram elements are visible at which
level of abstraction. This amounts to a selection of a sub-section of the complete
diagram. Thus conceptually, this step represents the view selection stage of the
adaptation pipeline.

2. Selection of a suitable visual representation for each diagram element (feature)
corresponding to the abstraction level and feature relevance. This is a geom-
etry adaptation operation, in particular, a combination of display size and LoD
selection.

3. Layout of the diagram elements and their line interconnections using a graph layout
algorithm. This is also an operation on the geometry adaptation stage and amounts
to an explicit re-positioning of features.

4. Further adaptation of visual attributes is applied according to feature relevance
on the subsequent pipeline stage.

10The feature hierarchy in itself only expresses containment e.g., 'transistor A is contained in (is-part-
of) circuitry C'. It does not express connectivity such as 'transistor A is connected (by a wire) to
resistor B'.

11http://www.cadsoft.de

117

http://www.cadsoft.de

5 Smart Vector Graphics

Figure 5.16: Simple authoring tool for creating small electric circuit representations including the
connectivity graph by tracing a circuit template (from [Woy06]).

Determine a task-speci�c graph state. The present approach utilizes the feature
relevance values annotated in the task node to determine what features (diagram
elements) should be displayed at which level of abstraction. To this end, feature
relevance ri is mapped to an integer value da ∈ [0..dmax], with dmax the maximum
number of node aggregations into meta-nodes. Figure 5.17 shows this mapping function
schematically. In particular, feature relevance below a certain threshold rt is mapped
to da = 0 signifying the corresponding sub-tree is pruned i.e., the respective diagram
element is removed from the representation.

In the example from Figure 5.15 dmax = 3, i.e., the leaf nodes (switching elements) and
two subsequent levels of aggregation (into circuitry and functional units) are available
as abstraction levels.

In doing so, rt is either de�ned statically in the task node; or it is employed as a
dynamic �lter operation that successively includes additional elements by expanding
sub-trees in order of feature relevance. Expanding continues until a �presentation
budget� is reached with respect to the number of diagram elements displayable on the
output device.

r

da

0 0.5 1

0

dmax

rt = 0.4

Figure 5.17: Mapping function to derive the connectivity graph state from feature relevance
values: meta-nodes are expanded with increasing relevance up to the leaf decomposition level dmax.
Nodes representing irrelevant features below a given threshold rt are pruned (da = 0).

118

5.4 Summary

Selection of visual representations. The selected aggregation level also determines
which level of the feature hierarchy is used as the visual representation. In the ex-
ample provided in Figure 5.15, for da = 1 the top-level geometry is used, at da = 2 the
second-level NOR gate representation, and individual switch elements for da = 3. Select-
ing a feature fragment according to da thus selects the geometry that is used for the
diagram element's visual representation. This selection is e�ected using the mechanism
of alternative content fragments selection that has been introduced in Section 5.2.2 (III)
as a means for geometric LoD control.

Graph Layout. The previous two steps resulted in the selection of a subset of di-
agram elements (nodes) and the geometry to represent them. In order to utilize this
segmentation and depth-reduction of the diagram structure for size reduction of the vi-
sual representation, the describing graph must be laid out. This entails (i) positioning
the graph nodes (diagram elements) and (ii) routing of the graph edges (line connec-
tions). This is a problem in the graph drawing domain, which is not in the focus of this
thesis. Refer to [Sch10] for an exhaustive discussion on this topic.

There exist, however, a number of software libraries that do provide graph layout
functionality, such a jGraph12. The latter in particular supports styled layouts e.g., an
orthogonal layout where edges are routed at right angles to maintain the illustrative
conventions of electric circuit schematics.

The graph layout module takes as input the pruned and folded connectivity graph
created in step 1 as well as information on available display space (the target viewport,
cf. Section 5.2.1). From these data, it calculates a layout of the circuit elements (i.e.,
feature positions), and generates the polyline geometry representing routed edges.
The layout thereby accommodates for di�erent sizes of node representations (feature
geometry). The result of the graph layout step thus represents a representation of the
diagram geometry that has been adapted to the task at hand by way of feature rele-
vances.

Visual attribute adaptation. Since diagram elements are regular features with
respect to their visual attributes, operations that modify the visual appearance of ele-
ments are e�ected based on feature (element) relevance as explained in Section 5.2.3.
This also applies to polyline geometry generated during the graph layout phase. Visual
attribute adaptation is employed, for example, to highlight the most relevant circuit
elements and their interconnections (see Figure 5.18).
A prototypical implementation of the proposed approach has been presented in [FSS07],
see Figure 5.18.

5.4 Summary

This chapter discussed how the proposed concept of a general adaptation pipeline is
applied to the task-based adaptation of vector graphics. A particular focus in this thesis

12http://www.jgraph.com/jgraph.html

119

http://www.jgraph.com/jgraph.html

5 Smart Vector Graphics

a b

Figure 5.18: Screenshot examples from the prototypical implementation of Smart diagram layout.
Irrelevant parts of the circuit are pruned (a). Important features such as testing contacts are accen-
tuated (b). Yellow markers in (a) indicate 'articulation points' were sub-graphs can be interactively
folded/expanded to manipulate the view.

has been on vector graphics encoded in the declarative XML-based SVG standard format.

As the core of vector graphics adaption Section 5.1 proposed a concept for the partition
of pages into speci�c content fragments on multiple layers. Fragmentation utilizes
SVG's object hierarchy to de�ne features according to semantic criteria, as determined
by the application and task at hand. The described approach allows to create nested
features (expressing is-part-of relations). This concept moreover enables to de�ne
several alternative visual representations for individual features that can be
referenced from di�erent tasks.

While several aspects of vector graphics content preparation can be carried out auto-
matically, the identi�cation of relevant features is highly dependent on the application
task at hand and the depicted image contents, as is the parametrization of techniques
to achieve a speci�c communicative goal. SVG content preparation is therefore, on prin-
ciple, a predominantly manual task necessitating tool support. For this, an authoring
tool has been described that augments vector graphic design tools by functionality re-
lated to page/feature speci�cation and task model annotation.

After content preparation is concluded, the enriched task model provides all informa-
tion necessary to conduct an automatic task-driven adaptation of vector graphic content.
To this end, Section 5.2 discussed viable operations on the di�erent stages of the adapta-
tion pipeline based on the proposed page/feature concept. The conceptual separation
between content geometry and its visual attribute thereby o�ers great �exibility during
the �rst three pipeline stages. In particular, sub-fragmentation is employed to facil-
itate selection of di�erent geometric Levels of Detail as well as texturing quality levels
according to feature relevance values.

120

5.4 Summary

Furthermore, Section 5.3 discussed two novel �Smart-X� techniques that exploit the
semantically structured description of content a�orded by the general page/feature
concept for vector graphics: an approach to the feature-relevance driven genera-
tion of exploded view diagrams [FSS07, FS09]; as well as a display technique for
complex diagrammatic representations on compact mobile devices [FSS07] based
on the task-speci�c relevance of individual diagram elements (i.e., features).

As a �nal remark it shall be pointed out that the concept of features, feature
sub-fragmentation proposed here is not only applicable to task-driven adaptation of 2D
representations. Rather, the �ne-grained control over content elements make it gainful
for other applications as well.
In particular, we showed in a recent publication [FRS11] how the idea of content

partitioning into feature fragments and sub-fragments can be applied to cover the
requirements for progressive vector imagery in mobile image communication scenarios
(see [RS09]). Speci�cally, the geometric LoD and texturing quality levels a�orded by
our approach are utilized for progressive re�nement of image content in user-selected
Region of Interest: (sub-) fragments are linked in the SVG skeleton as external resources;
these are then transmitted to the output device in progression order (lowest LoD →
highest LoD → texture quality levels), whereby fragments intersecting the user RoI are
prioritized. Transmission stops after either the entire SVG image has been transmitted,
or a user-de�ned re�nement level has been reached.
Note that progressive imagery also bears relation to the topic of adaptation: In [Thi10]

the idea of adaptive progressive visualization as a means for device-driven adaptation
(where-aspect) has been proposed. Therefore, because it enables progressive SVG im-
agery the feature, sub-fragmentation concept proposed here allows to combine task-
based adaptation with this particular form of device-driven adaptation.

121

6 Smart Meshes �

Adaptation of 3D Meshes

3D models are a content type that is becoming increasingly abundant: today, more
and more processes related to product development, production and servicing are imple-
mented almost exclusively by means of CAD/CAM software. This has resulted in a fast
growth of both the number as well as the complexity and �delity of digital 3D models
that are used for a variety of purposes, such as system simulation, product presentations,
or specialist training.
This trend results in a number of research challenges [May07, ABF+06]. Besides

questions of how to create and (re-)use models or how to preserve semantics across the
entire modeling process, the e�cient presentation of, and interaction with, such complex
models is essential.
In particular, this chapter discusses how 3D polygonal models are integrated with our

basic approach to facilitate the adaptation of task-speci�c visual representations. This
includes support of Mesh Exploration through the smart visual interface, i.e., supporting
the user in the process of understanding or verifying the structure and functionality of
an object (modeled as a polygonal mesh) within the context of the task at hand. We
have previously published the ideas and concepts described in this chapter in [FHS08].

6.1 3D Content Preparation:

Concepts and Authoring Tools

This imposes two additional requirements to the modeling process: (i) enriching the 3D
content with information necessary to de�ne a page; and (ii) identify distinct compo-
nents of the model with semantic meaning in the application domain, so that these can
be associated as features with the task at hand.

6.1.1 De�nition of Pages

Starting point in the creation of a 3D graphics page is a description of the contained mesh
geometry and its visual appearance i.e., its surface material. There exist a number of data
representations that facilitate rendering of 3D graphics such as polygonal meshes, surface
point sampling methods (so-called surfels, cf. e.g. [Hol07]) or volumetric representations
(voxel, [KCY93]).
In the present thesis in particular, triangle meshes � as the most common representa-

tion form of 3D graphics � are considered. Thus, a page's content is provided by ways
of a surface description (vertices and faces de�ning triangle meshes) of the depicted
object(s) with attributed surface material properties.

123

6 Smart Meshes

As explained in Section 3.3.2 each page additionally includes all information to derive
a default visual representation from the graphical content without requiring further spec-
i�cation in the enriched task model. The rationale behind this is that the task context
only needs to be re�ned where necessary. In particular, graphical content comprising 3D
graphics requires additional parameters beyond the plain triangle mesh data to derive a
default visual representation:

• A view point de�nition i.e., parametrization of the virtual camera, as well as
• lighting information that determines the resulting colors of surfaces in the rendering
which allows to ultimately discern shape and characteristics of the virtual object(s).

This additional information is either integral to the model description format e.g., X3D
[X3D04] that describes complete virtual scenes; otherwise it is speci�ed as part of the
page�task node annotation.

As a further content preparation step, a number of distinct Levels of Detail (LoD) for
each of the page's object meshes is built. This later allows a relevance-driven selection
of di�erent LoD per feature to adapt the visual representation. Here, we use the
multi-resolution hierarchy approach proposed by Holst [HS06], which is an extension of
Floriani et al.'s MT-Hierarchy approach [FMP97].
The core idea is to iteratively build a hierarchy of simpli�ed mesh representations

bottom-up from the original mesh by a series of edge collapse operations [HDD+93],
whereas all possible edge-collapse operations are ordered in a priority queue according
to their simpli�cation error. The resulting hierarchy is a directed acyclic graph. Its nodes
represent local simpli�cation operations, hierarchy arcs1 are labeled by triangle sets or
triangle patches. A speci�c LoD of the mesh is selected by a cut through the hierarchy,
crossing a number of arcs and thus selecting a set of simpli�ed triangle patches. Thereby
the set of arcs is selected as to ensure no overlaps or holes between patches occur. See
[HS06] and [Hol07] for a more exhaustive discussion of the used approach.
In particular, the approach allows a mesh representation with locally adapted LoD for

de�ned triangle patches. This facilitates interfacing with our feature-based adaptation
approach, whereby triangle patches are associated with task-speci�c features.

6.1.2 De�nition of Features

To further associate speci�c aspects of the page's content with the task at hand mean-
ingful object components have to be identi�ed. These components are then further
attributed with representation information to comprise task-speci�c features of the
3D page.
In the ideal case, an object model is already decomposed into appropriate sub-meshes

e.g., a piece of machinery where attachment parts are each represented by individual
meshes. To this end, 3D modeling software usually employ hierarchical structures (so-
called scene graphs) that represent how the composite object is composed from its indi-
vidual parts.

1The term hierarchy arc is used by the authors instead of hierarchy/graph edge since the latter already
has a meaning with respect to the triangle mesh.

124

6.1 Content Preparation: Concepts & Tools

However, such hierarchies and associated data may not be available due to limitations
of the data format, intellectual property protection considerations, or simply because
no meta data was generated for the model components in the �rst place. Analogous to
raster graphics, such 3D models are but a set of triangles without semantics, a 'triangle
soup'. In this case de�ning features becomes a task of �rst segmenting the triangle
mesh into triangle patches representing meaningful object components.

Section 2.3.2 already reviewed several approaches to mesh segmentation, cf. p. 27. To
recap brie�y, mesh segmentation is carried out either according to geometric aspects � it
is decomposed into patches that are equal with respect to a certain property (curvature,
distance to reference plane) � or semantic-oriented aspects whereas object parts are iden-
ti�ed that correspond to relevant features of the object's shape. As further pointed out
in Section 2.3.2, the performance of automatic algorithms generally depends strongly on
the model geometry and its prevalent features. Using multi-segmentation [ARSF07b] is
one way to ensure meaningful results.

However, the approach taken in the present thesis is that of a semi-automatic content
authoring process. In doing so, the feature de�nition is broken down into two phases
as follows:

1. Perform an automatic mesh segmentation to arrive at an coarse pre-segmentation
of the input mesh, then

2. interactively re�ne the automatic segmentation result in a model inspection step
supported by an authoring tool.

This semi-automatic approach to content authoring of 3D graphics pages allows to ob-
tain the desired features of arbitrary objects (meshes) while balancing feature ac-
curacy and required manual e�ort. This ensures that besides geometric also application-
speci�c features can be taken into account. An technical domain example are weld
seams in the concavities between object components that would hardly be detected as
independent segments by automatic methods.

Our approach to the automatic mesh (pre-)segmentation as well as the subsequent
interactive model inspection step are detailed in the next two paragraphs, respectively.

Automatic Mesh Segmentation. The choice of an automatic segmentation algorithm
will largely be determined by the type of models encountered in a given application
domain. For example, Plumber [MPS+04] is a specialized shape classi�cation method for
detecting tubular features of 3D objects that are either body parts or elongated, handle-
or protrusion-like features. Hierarchical �tting primitives [AFS06] is a hierarchical face
clustering algorithm for triangle meshes based on �tting primitives from an arbitrary set
e.g., boxes and cylinders.

For our prototypical implementation (see [Goe07]) in the scope of the LFS project
in particular (cf. Section 2.2), we opted to use a slightly modi�ed feature point & core
extraction algorithm [KLT05]. The basic idea is to classify mesh vertices according to
if they belong to the object's core or to a protruding feature. This makes the method

125

6 Smart Meshes

suitable for a wide range of both natural and technical models with a pronounced core;
e.g., bodies with attached limbs and machinery with attachment parts, respectively.

a b c

Figure 6.1: Basic idea behind the feature point & core extraction algorithm: mirroring vertices on
the object's bounding sphere (a) allows their classi�cation into core and protruding 'limb' vertices
(b). Classi�cation example for a complex model (c). (Image source: [Goe07])

In the original approach [KLT05], the object core was extracted by mirroring the mesh
vertices on the object's bounding sphere. Any vertex that maps to the convex hull of
the mirrored vertex set is classi�ed as belonging to the core. All other vertices belong to
protruding features or 'limbs'. This is illustrated in Figure 6.1. In order to improve the
segmentation results for arbitrary objects that may exhibit bumpy surfaces or scanning
artifacts, we introduced an additional parameter to classify vertices with a maximal hull
distance d ≥ 0 as core vertices as well. Also, unlike proposed in [KLT05], we do not apply
a multi-dimensional scaling (MDS) transformation of the mesh vertices before feature
point detection. This transformation was applied in the original approach to achieve
pose-invariant segmentation results. However, for rigid technical models that are not
posed the results are quite acceptable without MDS transform.

Interactive Segmentation Re�nement. During subsequent model inspection, the au-
thor can verify whether the automatically detected segments match the desired result.
To this end, the model is rendered in the authoring tool, where the author can manipu-
late the 3D view (zoom, rotate) to inspect each segment patch. Segmentation re�nement
thereby comprises these operations:

• recursive sub-segmentation of mesh segments using the segmentation algorithm,

• merging of small segments into larger ones, and

• fully manual speci�cation of new segments without algorithmic pre-segmentation.

Details on how these operations are supported by the authoring tool are given in Sec-
tion 6.1.3 when reviewing the particular tool that has been developed to support smart
visual interface design for 3D mesh content.
Finally, after the segmentation of the object mesh into features has been completed,

the result is mapped onto all other levels of the LoD hierarchy. The surface mesh can
therefore be presented with variable LoD for each feature in the smart visual interface.

126

6.1 Content Preparation: Concepts & Tools

6.1.3 Feature Relevance Values

After mesh segments have been identi�ed as features, the last step of task model
enrichment is to associated mesh features with the appropriate task nodes, as well as
to assign task-speci�c relevance values to e�ect the adaptation process for each basic
task.

For the same reasons already articulated in Sections 4.1.3 and 5.1.3, this constitutes
a manual authoring step. Because relevance values depend on the communicative goal
for the task at hand, it would be di�cult if not impossible to derive these automatically
for domain tasks in arbitrary application domains.

Therefore, the following section reviews the functional requirements to a suitable au-
thoring tool that allows a human content author to manually execute portions of the
content preparation and visual interface design which can not be automated.

Mesh Authoring Tool

Authoring support must thus include the following operations:

• Creation and editing of page de�nitions,
• feature designation: automatic pre-segmentation, as well as support for interac-
tive model inspection and manual segmentation re�nement,
• annotation of CTT task model nodes with the created page/feature de�nitions,
and
• the speci�cation of feature relevance values per basic task node as well as an
interactive design of the corresponding parametrization of the page's adapted
visual representation.

A screenshot of a prototypical implementation of a corresponding authoring tool is shown
in Figure 6.2.

Creating and editing of page de�nitions. A 3D mesh page comprises to parts, the
mesh data itself, as well as the page manifest. A new page is created by loading a
triangle mesh from �le, which is then automatically transformed into a LoD hierarchy
representation [Goe07, Hol07].

The associated page manifest is an XML-encoded structure that associates the mesh
data with adaptation-related information. In particular, the manifest for 3D mesh pages
comprises:

• A page identi�er. The identi�er is used to reference a particular page from the
annotated task model.
• A human-readable title, that is e.g., displayed as the window title within the smart
visual interface.
• The reference to the �le that stores the LoD hierarchy representation constituting
this page's the contents.
• The list of feature fragments de�ned on this page.

127

6 Smart Meshes

a

b

Figure 6.2: Screenshot of the authoring tool prototype. The 3D inspection view shows the current
segmentation of the model (a). The control panel on the left is used to set the feature (segment)
relevance value and other task-speci�c properties. (b) shows panel for automatic segmentation and
explicit LoD selection.

All these properties can be edited for existing pages, including the mesh data reference.
The latter is useful if the initial 3D model has been replaced by an updated version.

Feature designation. This core step of the content preparation process comprises the
automatic (pre-)segmentation of the page mesh, followed by the interactive inspection
with manual segmentation re�nement.

To this end, the authoring tool provides means to execute a selected segmentation
algorithm. To facilitate the integration of di�erent algorithms an implementations, these
are integrated as self-contained plug-ins (cf. [Goe07]). The prototype implementation
presented here currently supports the modi�ed feature point & core extraction algorithm
described in Section 6.1.2.

During subsequent interactive model inspection, the author can verify whether the
automatically detected segments match the desired result. To this end, the model is
rendered in the authoring tool with the segment patches assigned unique colors. The
author can manipulate the 3D view (zoom, rotate) to inspect each segment patch. In-
dividual segments can be selected, either by picking them in the 3D view or from a list
control (cf. Figure 6.2), and sub-segmented further by iteratively applying the segmen-
tation algorithm to the associated triangle patch.

128

6.1 Content Preparation: Concepts & Tools

Another option during the inspection phase is fully manual segmentation of model
parts. Manual segmentation o�ers great �exibility to overcome algorithm limitations as
it does not rely on its suitability for a given geometry. By interactively placing simple
shapes, such as spheres or cubes, in the 3D scene the author can quickly de�ne Regions
of Interest (Figure 6.3a). Parts of the mesh intersecting these volumes can be assigned
to a new segment, or added to an existing one.

(a) (b) (c)

Figure 6.3: De�nition of 3D RoIs to obtain a �rst coarse segmentation (a). It is re�ned by selecting
and further subdividing segments, or by merging multiple segments (b, c).

The resulting segmentation of the current inspection iteration can be re�ned even
further by three additional operations:

• expanding a segment by adding a triangle strip at its boundary,
• shrinking a segment by removing a triangle strip from its boundary,
• merging two segments into one (Figure 6.3b-c).

Expanding and shrinking segments can also be applied to obtain a disjunctive, exhaus-
tive segmentation of the entire model, if so desired. This is done by expanding patches
into mesh areas yet unassigned to any segment, and shrinking overlapping segments in
the respective areas. Note that the �nal segmentation does neither need to be disjunctive
� triangles may be associated to more than one overlapping feature� nor exhaustive if
some regions of the surface do not belong to any feature.

Page/feature association with tasks. Similar to the authoring tools created for
raster and vector graphics, the 3D mesh authoring tool itself is not designed to create
or structurally modify CTT task models. Rather, it operates on existing models stored
in XML format. This results in a list of tasks that can then be associated with appro-
priate page manifests. Because features are an integral part of the page manifest,
feature-task association is e�ected via relevance values � recall from Section 3.3.3 that
the default relevance value r = 0 indicates the given feature is irrelevant to the task
at hand.

Speci�cation of task-speci�c feature properties. This working step primarily
comprises the interactive de�nition of feature relevance values. In addition, the au-

129

6 Smart Meshes

thoring tool currently supports the addition of the following types of auxiliary feature
attributes to tailor the visual representation:

• De�nition of a good initial viewpoint on the model (by saving the current viewpoint
in the authoring tool),
• an explicit LoD selection in case relevance-driven LoD selection should not be used
on the geometry adaptation stage,
• an explicit rendering style (hidden, wire frame, translucent, normal),
• a speci�c highlighting color that are used during the visual attribute adaptation
phase, as well as
• a short text used as label during the last adaptation pipeline stage.

Fig. 6.2b shows a screenshot of the task pane for explicit setting of task-speci�c parame-
ters. How these options are generally e�ected in an automatic fashion based on feature
relevance is discussed in the following Section 6.2.

6.2 Adaptation Control

The visual representation of 3D models is generated by a rendering process of the de-
scribing triangle mesh. For this reason the task model enriched with the description of
semantic features and task-speci�c feature relevance values allows extensive auto-
matic adaptation of the page's initial view based on relevance values alone. The follow-
ing subsections will discuss the operations viable on each adaptation pipeline stage to
thusly e�ect smart adaptation of 3D graphical content.

6.2.1 View selection

For a good initial view on the 3D model for a given task, the virtual camera must be
positioned so that as many relevant model features as possible � at the very least, the
most relevant one � are initially visible. Unless the content author explicitly provided a
viewpoint selection as a task node annotation, the initial viewpoint must be calculated
automatically. For this, the relevance values from the task model can be used to control
automatic view�nding algorithms.

We here adopt the idea presented by Götzelmann et al. [GHS06] that itself is based on
the viewpoint entropy developed by Vázquez [V�03]: from a set of view candidates, the
best-rated view is selected. View candidates are for example the eight canonical views
(top, front, side etc.) or the eight corners of the 3D model's bounding box, and looking
at its center.

Each view candidate is evaluated by calculating the weighted sum of the features'
projected areas' visible sizes. This evaluation is carried out on a color-coded projection
of the 3D scene. Thus, for each feature we determine the number of visible pixels,
weighted by its relevance value. The color-coded projection is thereby identical to the
scene's ID-bu�er used for labeling (cf. Section 4.3.2). See the 'Labeling' subsection below
for an explanation on how the ID-bu�er is generated for 3D scenes.

130

6.2 Adaptation Control

6.2.2 Geometry adaptation

When applied to a 3D model there are two options for the relevance-driven adaptation
of geometry: (i) a change in relative sizes of model features so that more relevant
objects are represented larger, and (ii) adjusting the respective meshes' LoD.

With respect to size adjustment two cases need to be distinguished. If a model fea-
ture is described by an isolated mesh it is simply resized by speci�cation of a corre-
sponding scaling transform during rendering. The corresponding transformation matrix
is parameterized according to feature relevance. See Section 5.2.2 on p. 103 for a
discussion on mapping of relevance values to scaling factors.

However, if a feature comprises a triangle patch that is part of a closed object sur-
face (e.g., the wingtips in Figure 6.2) resizing is most often not feasible as it will result in
'cracks' and discontinuities in the model surface. Patch-based features are therefore
not resized by default in our approach.

Normally, a mesh's LoD is selected according to surface-viewpoint distance. This
results in the visual representation of objects farther away omitting details which would
be imperceivable anyway. By contrast, for the task-driven adaptation the LoD selection
is utilized as a means to de-emphasize less relevant features. For this, feature
relevance is mapped onto discrete Levels of Detail using a stepwise-constant mapping
function (cf. Figure 5.17, p. 118). The mapped detail level designates the maximum LoD
that the respective feature is rendered at. Thus, highly relevant features' LoD are
determined by the view distance, whereas less important ones are rendered at low detail
even if close to the viewpoint. Irrelevant features (r = 0) are rendered at the lowest
LoD, or are even not rendered at all.

This basic approach can be combined with more sophisticated techniques for the cre-
ation of cutaway views [DWE03]. Here, geometry is removed to reveal otherwise occluded
features above a certain threshold. Viola [Vio05] has developed a corresponding il-
lustration framework using object relevances without however addressing the origin of
illustration-speci�c values. The contribution of our approach is therefore to deliver task-
speci�c relevance values in the extended task context of a composite work�ow (why and
when aspects), making presentation techniques like [Vio05] �Smart-X� techniques.

6.2.3 Visual attribute modi�cation

To e�ciently convey the important aspects of the task at hand, the attention of the user
should be further guided to the relevant features by means beyond initial viewpoint
selection. This is achieved by accentuating important model components and visually
subduing (de-accentuating) unimportant ones according to the relevance values from the
task model.

There is a vast number of methods for accentuation that can be e�ected automati-
cally based on feature relevance, cf. Sect. 2.3.2. Simple adjustments include a change
in surface material color (i.e., saturation, brightness) and properties (e.g., shininess,
transparency). In particular, this includes the assignment of speci�c highlight colors as
material color.

131

6 Smart Meshes

Figure 6.4: Example for the application of di�erent rendering styles for segment accentuation. The
valves are de�ned as the most important component for the current task, other components are
visually subdued.

Alternatively, relevance is used to select a distinct rendering style. To this end, a
de�ned set of styles is ordered according to their visual saliency, for example 'hidden
(invisible) � wire frame � translucent � normal (colored/ textured)'. Each style is a
label for a particular set of rendering parameters (e.g., a corresponding shader program).
Feature relevance is then mapped onto these labels in order of increasing visual saliency
to facilitate automatic style selection. Figure 6.4 shows an example.

This basic approach is easily extended to include more complex rendering styles, in
particular non-photorealistic (NPR) techniques [SS02] such as Gooch shading [GGSC98].

6.2.4 View Space Manipulation

This pipeline stage is applied to the rasterized result of the rendering process i.e., the
graphics frame-bu�er. Conceptually, it is therefore completely independent of the ren-
dering process and the underlying 3D model description. Viable operations on this stage
have already been discussed in Section 4.2.4.

6.2.5 Labeling

Likewise, since we use an image-based labeling approach (cf. Section 3.3.4), the visual
representation of 3D model pages is labeled using the exact same techniques detailed in
Chapter 4 for the integration of particle-based labeling (4.2.5) and space-e�cient remote
labeling (4.3.2), respectively.

Image-based labeling techniques rely on segmentation information about the labeled
raster image in the form of a color-coded ID-bu�er (cf. Section 4.3.2). For the visual
representation of 3D models in particular, this ID-bu�er is generated by the following
steps:

1. Assign each feature segment a new material with an unique emissive color. Non-
feature mesh segments are assigned a material color identifying them as 'context
object',

132

6.3 Smart Mesh Exploration Viewer

2. disable lighting calculations and activate �at shading in the rendering process (i.e.,
objects are rendered as �at shapes with constant color),

3. render the 3D scene to the frame-bu�er, and

4. read back the frame-bu�er and store as the ID-bu�er.

Because the rendering step uses the exact same settings with regard to feature geom-
etry adaptation � in particular, size adjustment and feature removal � the generated
ID-bu�er matches the visual representation of the 3D model rendered regularly. This
ensures label position found by the labeling algorithm in the ID-bu�er integrate with
the visual representation.

6.3 Smart Mesh Exploration Viewer

The adaptation operations de�ned in the previous section allow to generate task-speci�c
adapted visual representations of 3D models from the enriched task model. Their ren-
dering within the smart visual interface requires a suitable viewer that can interpret
the information provided by the task model in order to display these initial views. To
this end, we here propose a mesh exploration viewer as a 3D mesh-related �Smart-X�
technique. A demonstrator implementation has been realized as a 'user mode' inside the
authoring tool, see Figure 6.2.

However, while the above measures generate appropriate initial views, it is not appro-
priate to restrict the user to this predetermined view only. Rather, she should be able
to adjust the visual representation to her personal preferences and requirements with
regards to the task at hand. Therefore, the ability to interactively explore the model via
the smart visual interface is nonetheless important.

The exploration viewer supports mesh exploration in a number of ways. Besides the
obvious view manipulation, it is always possible to select and thus focus on an arbitrary
model component. This overrides the importance value for the associated feature and
the visual representation is updated accordingly, as discussed in Section 3.3.5. Compo-
nent selection is realized either through picking in the 3D view or through selecting the
associated list entry. Figure 3.6 on p. 56 already illustrated how this looks for the engine
example shown in Figure 6.4.

Another tool for exploring the model in a �exible way is the use of interactive 3D lenses
that can be positioned freely in 3D space. In doing so, the user de�nes a dynamic RoI in
which rendering parameters are changed independently of feature segment boundaries.
In our prototype, we so far employ only a single lens that changes the geometric LoD
of the mesh, see Figure 6.5. This allows a user to view those parts of the model in full
�delity even if their prede�ned relevance for the task at hand is minimal. However, other
lens functions such as switching the rendering style or an 'X-ray' e�ect [VCWP96] to
interactively reduce occlusion could be realized as well.

133

6 Smart Meshes

Figure 6.5: Applying a 3D lens to manipulate the Level of Detail in selected object regions. (a)
Lens volume, (b) resulting hybrid LoD mesh, (c) visual result.

6.4 Summary

This chapter discussed how the proposed concept of a general adaptation pipeline is
applied to the task-based adaptation of 3D models described as triangle meshes.
Pages are comprised of a LoD hierarchy that describes the triangle mesh as a hierarchy

of progressively simpli�ed triangle patches. A page further provides a default viewpoint
de�nition.
Features of a 3D page are de�ned by segmenting the triangle mesh into triangle

patches representing meaningful object components. Depending on the type of modeled
object, application domain and task at hand this operation usually can not be fully
automated. For this reason, a semi-automatic approach has been discussed here that
combines algorithmic pre-segmentation with an interactive mesh inspection and segmen-
tation re�nement step. A corresponding authoring tool has been introduced. This tool
also facilitates the enrichment of the task model with page/feature annotations as
well as task-speci�c feature relevance values, which is usually a manual task too (cf.
Section 3.3.3).
The task model thus enriched with 3D content information then allows diverse adap-

tation operations for a fully automatic generation of task-speci�c initial views. This
includes an automatic determination of a good viewpoint, mesh LoD, and composition
of rendering styles based solely on feature relevance values. A large variety of so-
phisticated 3D rendering techniques have been developed over the last years to e�ect
such visual representations. Sometimes these already have the notion of object impor-
tance (e.g., [Vio05]). Thus by integrating these techniques with our proposed enriched
task model providing task-speci�c feature relevance, they become �Smart-X� display
techniques.
This notwithstanding it is still important to enable the user to �ne-tune the initial

view to her personal requirements. A smart mesh exploration viewer thus allows the
user to select individual features to override predetermined relevance values, and to
interactively manipulate the visual representation locally by employing 3D lenses. A
demonstrator implementation of such a viewer has been introduced in this chapter as
well.

134

7 Smart Visualization �

Adaptation of Abstract Data

The previously examined visual data type are immediate descriptions of graphical con-
tent: adaptation is e�ected on the level of graphic primitives in view space. By contrast,
abstract data has no inherent visual representation, rather it must be transformed into an
image through a visualization process. This makes abstract data the most �exible type
with respect to adaptation � it additionally enables operations on the input data, as well
as modi�cation of the subsequent visual encoding of data values in graphic primitives
and their visual attributes.
At the same time, this �exibility presents signi�cant challenges with respect to task-

driven adaptation of data visualizations. There exist innumerable visualization tech-
niques in di�erent implementations for a broad range of data sets and associated data
analysis problems. Visualizations are used for the visual communication of known facts,
but even more often as tool for the interactive exploration of unknown data sets (ex-
ploratory visualization). Here, subsequent analysis steps depend on �ndings made by
the user up to that point, as well as her mental map of the problem domain built up so
far. This makes it very di�cult to provide an adequate work�ow description capturing
the task context for adaptation. For this reason, as examined in Section 2.3.2 the vast
majority of visualization techniques do not incorporate task-speci�c (why) aspects of
the context of use beyond the level of isolated low-level analytic activities, if at all.
In this chapter, we present �rst ideas on how to integrate our basic adaptation ap-

proach with the visualization process of abstract data. Key contributions thereby are
mainly in the sense of a problem analysis as well as a systematic view on the di�er-
ent levels at which task-driven adaptation can be e�ected, in line with the adaptation
pipeline concept proposed in Section 3.3.4. However, this chapter also discusses two
concrete examples regarding implementation of several aspects thus addressed.

7.1 Preliminary Considerations

At the core of the approach proposed in this thesis are pages with features as the
building blocks of adapted visual representations. A page functions as a graphical
content container providing a default representation that is associated with a � possibly
composite � task described by the general task model. Pages for the visual data type
previously examined are presentation�oriented. Features over these pages are de�ned
in presentation space, with adaptation e�ected based on their relevance with respect to
the visual representation's communicative goal. This orientation is expedient: the visual
data types considered so far are presentation formats, comprising graphic primitives (2D
vector and 3D graphics) or even only an unstructured pixel raster (raster images). These

135

7 Smart Visualization

formats thus provide little or no structural and semantic information on the depicted
content.
By contrast, for abstract data content as considered in this chapter a visual represen-

tation must be created from the input data in the �rst place. Thereby all visualization
techniques can be seen as realizations of a common conceptual model of this image gener-
ation process: the visualization pipeline, a data �ow model that describes how input data
is transformed into a visual representation, see e.g. [HM90, CM97]. Its quintessential
steps can be summarized as data preparation (Filtering), generation of a geometry model
comprising graphic primitives from prepared data (visual encoding or Mapping) and �-
nally, image generation from the geometry model (Rendering), cf. [SM00], Figure 7.1.

Data Space Presentation Space

Figure 7.1: Schematic view of the principal visualization pipeline for abstract data (top, cf. [SM00]).
Conceptually, pages are the result of the �ltering and mapping steps. This a�ords both pre-page
and page-based adaptation of visual representations (bottom).

For the bene�t of subsequent discussion a brief de�nition of what comprises the data
space indicated in Figure 7.1 shall be given. See e.g., [SM00] for an exhaustive discussion
on this topic. The data space is comprised of data elements. Data elements correspond
to concrete points of measurements in the domain under observation.1 The dimensions
that span the observation domain are also known as independent variables. Each data
element is de�ned by concrete values for the set of data attributes. Collected attributes
are also referred to as dependent variables. Attributes and values further determine data
characteristics such as data type, spatial frequency, and distribution of data values.

For abstract data, independent and dependent variables do not immediately de�ne the
presentation space (i.e., 2D or 3D geometry). Hence both data �ltering and mapping
steps of the image generation process are necessary to arrive at a default representation
that can be encapsulated as a page for association with domain tasks from the general
task model.
It is of course viable to in�uence this process in a task-related manner. Thus for

abstract data there are two forms of task-driven adaptation:

• towards the page i.e., pre-page modi�cation of the image generation process in
data space, and
• based on the page's default view i.e., modi�cation of the image generation process
in presentation space.

1Note this notion includes both actual measurements in the physical world as well as parameter values
obtained e.g., through simulation.

136

7.1 Preliminary Considerations

The interrelation between the principal visualization pipeline stages and both forms of
adaptation is illustrated by Figure 7.1.
Both �ltering and visual mapping in the visualization pipeline operate on data char-

acteristics. This in turn raises two main questions with respect to pre-page adaptation:

• What and why is adapted in data space?
• How is this adaptation e�ected in data space?

What and why
The �rst questions primarily relates to the relation between data characteristics and
the de�nition of features in presentation space. Generally, pages and features
provide a presentation-oriented perspective on task-driven adaptation according to the
communicative goal. By contrast, data value manipulation a�ords data-driven aspects2

of task-driven adaptation. In particular, the visual representation's information scale is
in�uenced by a selection of relevant data elements and characteristics. Manipulation of
mapping from data characteristics to graphical attributes in�uences its visual scale.
There are three principal approaches how to relate data-oriented pre-page adaptation

with features of that page:

Aligned Adaptation: Only those data characteristics mapped to features and their
properties are contemplated. Thus, �ltering and mapping are e�ected to create
task-speci�c features. Examples for the former include task-speci�c value thresh-
olds to �lter irrelevant data elements, the selection of the number of clusters for
k-means clustering; and task-speci�c color codings for the latter (see Section 7.4.2).

Separate Adaptation: Data characteristics are adapted independently from the task at
hand. Pre-page adaptation is carried out primarily based on data-driven consid-
erations.2 Presentation-space features are thus only in�uenced indirectly, by
changing data characteristics that serve as input to visual mapping operations.
Examples include the selection of a cluster algorithm suitable for the given data,
and the selection of default color codings according to established conventions in
the application domain.

A combination of both: Data-space adaptation addresses both data-driven and task-
driven aspects as outlined in the previous two headwords. This approach is prefer-
able as it not only allows task-driven adaptation of visual representations but also
to incorporate further data space manipulations that nonetheless a�ect feature-
based adaptation in presentation space.

For this reason in the present thesis the combination of (data space) pre-page and
presentation space feature-based adaptation is pursued. In the following Section 7.2,
we propose a concept how to integrate pre-page adaptation with the basic adaptation
approach introduced in Chapter 3.

2We here deliberately neglect further aspects of the Context of Use that are not in the context of this
thesis. In particular, data space adaptation may also include user-related aspects (for whom) e.g.,
visual mappings according to personal preferences; and device-driven aspects (where) e.g., data size
reduction, see [Thi10].

137

7 Smart Visualization

How

The second question relates to how this adaptation is e�ected in data space within con-
crete smart visual interfaces. In previous chapters, it has been discussed how adaptation
control is achieved using the enriched task model to parameterized an adaptation pipeline
operating on content elements. This corresponds to the second half of the visualization
pipeline. For pre-page adaptation of abstract data visualizations it must therefore be
extended to allow input data �ltering and mapping operations as well. This is discussed
in Section 7.3.
Section 7.4 further presents two examples for �Smart-X� techniques utilizing this con-

cept. These examples have been intentionally chosen to highlight combined adaptation.

7.2 Abstract Data Preparation

Chi's Data State Reference Model (DSRM) [CR98] is one variant of the general visualiza-
tion pipeline model. The idea behind the DSRM is to describe the visualization process
as a pipeline of four stages � representing data states � and operators that manipulate
and transform data between states (Figure 7.2).

Figure 7.2: Schematic of the Data State Reference Model of the visualization pipeline, adopted from
[CR98, Chi00]. Arrows indicate operators, yellow boxes represent stages.

The DSRM thereby comprises four data states or stages. These are, in order of traversal:

Data state represents the given input data elements for which a visual representation
shall be generated. To emphasize this state comprises unprocessed data, it is
sometimes referred to as raw data.

Analytical abstractions are derived from the input data through �ltering. Data ele-
ments in this state constitute meta data or calculated properties of the visualized
data. Examples are statistical moments (average, minimum, maximum, . . .), and
cluster properties like representative objects or means.

Visual Abstractions are created from the previous stages through mapping operations.
This state comprises graphic primitives that encode information in geometric prop-
erties such as shape, orientation and size, as well as visual attributes like color and
texture [Ber82].

Image data �nally is the result of the rendering process i.e., a matrix of pixel values.
This data state represents the data's visual representation.

138

7.2 Abstract Data Preparation

As indicated in Figure 7.2 data states are understood to de�ne both a data space (data
and analytical abstraction stages) as well as the presentation or view space (visual ab-
straction and image stages). By comparison, visual data types discussed in previous
Chapters 4�6 are de�ned exclusively in view space.

Data is transformed and propagated through the pipeline by operators of two di�erent
types, stage operators and transformation operators (cf. Figure 7.2):

Stage operators work within a single data stage, thus manipulating data of a given
state � data, analytical and visual abstraction, image data.

Transformation operators convert data from one state to the next. Operators of this
type thus comprise the principal transitions between visualization pipeline stages:
�ltering, mapping, and rendering.

The original design goal behind DSRM has been to integrate a description of the vi-
sualization pipeline's data �ow with speci�cations of operators that actually realize an
interactive display technique [Chi00].

Its basic concept, however, does make the DSRM well-suited as basis for task-driven
adaptation of visual representations as well: both the DSRM and our adaptation pipeline
approach incorporate the notion of data elements and (graphical) content elements,
respectively, that are manipulated through a pipeline comprising distinct operators. In
particular, describing the visualization process by a series of operators on individual
data elements yields su�ciently �ne-grained control of the image generation process to
facilitate per-feature adaptation of visual representations.

We �rst proposed the core idea of utilizing �ne-grained operators as a means for
adaptation based on a data state model in [FTS07], with a substantiated discussion
published in [TFS08a]. This core idea has subsequently been further developed into
a conceptual framework in a joint e�ort with Thiede [Thi10] within the MuSAMA
project [MuS09]. It was designed to address two interrelated aspects of the context
of use of visualizations within smart environments (cf. Section 2.2.2): the task-driven
adaptation of the visual representation, which is the focus of the present thesis; as well
as the device-driven adaptation with in the environments heterogeneous, dynamic device
ensemble, which is the focus of [Thi10].

In the latter thesis, the modularity a�orded by the DSRM has been utilized for the
distributed generation of visual representations on available devices in the ensemble.
For this, pipeline operators are executed as independent software services (service layer)
marshaled by a control layer. Service composition is thereby speci�ed on the function-
ality/interface level by so-called pipeline templates describing the visualization process.
Depending on available resources and output device capabilities, appropriate service
implementations are selected. For details, see [TTS09, Thi10].

However, Thiede discussed only challenges arising on the service and control layers.
While he acknowledged the need for a superordinate model layer to provide context-
speci�c � in particular, task-speci�c � pipeline templates (see [Thi10], p. 100�103), his
thesis deliberately excluded this layer.

139

7 Smart Visualization

To this end, the following Sections detail how the DSRM-based approach is utilized
for the speci�cation of what and why aspects (pages and features, respectively) of
task-speci�c visual representations of abstract data.

7.2.1 De�nition of Pages

A page functions as a container for graphical content that provides a default repre-
sentation. This allows to associate pages with task nodes in the general task model
without strictly requiring further speci�cation of its task context (cf. Section 3.3). Thus
for abstract data, a page de�nition comprises two main parts:

• the input ('raw') data source, e.g., a binary or character data �le or a database

• information on how this input data is transformed into graphic primitives, in other
words, which visualization technique is employed for the data and task at hand.

The �rst part is pre-determined by the problem domain � it is the data the user is
currently working with through the smart visual interface. On the other hand, the
choice of a suitable visualization technique is either

• made explicitly by a visualization expert during the design of the smart visual
interface, or
• e�ected automatically based on the data type and the current (low-level) abstract
task. Section 2.3.2 reviewed several task-by-data type taxonomies that are utilized
for this purpose.

The disadvantage in using low-level task taxonomies exclusively is that it does not allow
to utilize the extended task context provided by the task model: visual encoding are
selected based on the visualization task type of the current working step in isolation.
Therefore, we propose to combine a default visualization speci�ed as page on the level of
the domain task model with automatic, task-driven adaptation within the smart visual
interface instead. De�nition of pages is part of the interface design performed by a vi-
sualization expert (author). Adaptation of particular aspects of the default visualization
for individual working steps is then automatized based on the low-level task type.
For purposes of page de�nition, the chosen visualization technique's default represen-

tation comprises at least the operators on �rst three data stages of the DSRM (i.e., up to
visual abstractions) as well as the �ltering and visual mapping transformation operators
(cf. Figure 7.2).
Since the visual abstraction stage comprise graphic primitives, the page de�nition may

additionally require an initial viewpoint de�nition. In this regard, 2D visualizations
are akin to 2D vector graphics where graphic primitives are given as geometry in R2

(see Section 5.2). 3D visualizations are comparable to 3D graphics, where rendering of
3D geometry further requires set-up of a virtual camera and lighting information (see
Section 6.1.1). From the perspective of the DSRM, these information are parameters of
rendering transformation operators.
Operator con�guration and their default parametrization constitute a DSRM pipeline

template in much the same way as proposed by Thiede [Thi10]. Pipeline templates

140

7.2 Abstract Data Preparation

therefore assume the role of the page manifest employed for the previous visual data
type.

In line with the approach taken for the previous visual data type, these information
are associated with the task by annotating task model nodes. Recall from Section 3.3.2
the main idea behind the annotation strategy is to annotate the least common ancestor
node of basic tasks that share the same graphical content to minimize the amount of
additional information that needs to be provided for each of the respective working steps.
Because the page of a data visualization comprises not just plain graphical content

but two parts, this strategy is extended for abstract data content:

• The page's data source is associated with the common ancestor node of all com-
posite tasks that work with that data set. If the entire modeled work�ow operates
on the same data, this will be the task decomposition's root node.

• Several composite task may operate on the same data set but require di�erent
visualization techniques (i.e., visual mappings of data characteristics). Thus, the
second part of the page manifest � the speci�cation of operators transforming
input data elements into graphic primitives � is annotated at the corresponding
composite task's root node.

• Individual working steps of the composite task then de�ne features that adapt
speci�c aspects of the base visualization (see next Section).

Figure 7.3 illustrates this concept for a hypothetical analysis scenario where a given data
set (a credit card transaction database) is analyzed for cases of fraud. Di�erent visual-
ization techniques (DSRM templates) are associated with speci�c sub-tasks depending
on the task goal.

Credit Card Account Analysis

Fraud Analysis

Find Outliers
(Irregular transactions)

Analyse trends
(transaction volumes)

Timeline plot
(time vs. balance)

Scatterplot
(recipient vs. amount)

[]

Transaction DB

Figure 7.3: Annotation of di�erent visualizations (DSRM templates) per sub-task applied to the
same data set. This extends the general annotation strategy outlined in Section 3.3.2: the data set
itself is associated with a high-level node in the work�ow decomposition; re�ned by information on
more speci�c sub-task nodes.

7.2.2 De�nition of Features

The purpose of features is to designate speci�c aspects of the page's content that are
relevant in the context of the task at hand. For the previous graphical content types,

141

7 Smart Visualization

features are de�ned by a RoI in presentation space (2D vector and 3D graphics) or
even directly in image space (raster images). This made de�nition of features a largely
manual task due to missing semantics about the depicted content; support through au-
tomatic methods is only punctually viable.

By contrast, de�ning features over the visual representation of abstract data can
utilize information inherent in the input data itself, as well as derived meta data i.e.,
analytical abstractions in the DSRM. By �rst identifying data characteristics of interest,
a subset of data elements with matching attribute values is selected. This e�ectively
creates a RoI in data space. Visual mapping transforms data elements into graphic
primitives; a feature thus comprises the graphic primitive(s) that a data elements
from the data-space RoI is mapped to.

There are numerous methods to designate data characteristics of interest depending on
the data and problem domain. Examples include user-speci�ed value ranges for data at-
tributes; derived or explicit thresholds that select any data elements with attribute values
exceeding that threshold; and the application of hierarchical or density-based cluster-
ing algorithms to identify outliers (see e.g., [BEPW00, HK00]). Analytical abstractions
such as clustering further in�uence potential features e.g., by changing the number of
clusters formed whereby each cluster is mapped to a visual abstraction corresponding to
a feature.

An interesting approach in this regard is presented by Tominski [Tom06] that is based
on the notion of data events that identify data elements of interest by predicate logic
expressions. It has primarily been incepted as a tool for visualization of dynamic (time
variable) data sets. However the general concept is well applicable to task-driven adap-
tation as well. Here, di�erent sets of event are associated with di�erent tasks.

The preceding discussion notwithstanding, it is of course also viable for a content
author to manually de�ne feature regions in presentation space directly i.e., a selection
at the level of graphic primitives. Depending on the type of visualization � 2D or 3D
� these explicit de�nitions follow the procedures outlined in Sections 5.1.2 and 6.1.2,
respectively.

In Section 7.4.1 we present our own �Smart Lenses� approach that allows arbitrary
combinations of implicit, data-driven feature speci�cation with presentation space-
only de�nition of feature RoIs.

7.2.3 Feature Relevance Values

Even more so than the de�nition of presentation-space features themselves, speci�-
cation of task-speci�c relevance values is, by necessity, a strictly manual task; this has
been argued in Section 4.1.3.

This is less strict for features de�ned over abstract data visualizations. The same
mechanisms to de�ne features implicitly by �rst identifying data characteristics of
interest are useful to derive their task-speci�c relevance (semi-)automatically. This is
achieved in the following ways.

142

7.3 Adaptation Control

Relevance is derived as a function of attribute values and a reference value.
Examples include element distance to reference objects (e.g., cluster representatives);
or proportional to the magnitude a data element's attribute value departs from a given
threshold. The threshold is a task-speci�c value that is typically speci�ed explicitly
by the content author. In some cases reference values are even pre-determined by the
application domain e.g., allowable limits for temperature, pressure etc. In these cases,
feature relevance could be derived fully automatic.

Relevance is derived based on a scoring mechanism. If multiple data attributes
are mapped to a feature, relevance is proportional to the number of mapped attributes
that match data characteristics of interest (e.g., the number of data events [Tom06] joined
on the feature). Relevance therefore conveys the general notion that graphic prim-
itives that encode a greater number of relevant data characteristics are more relevant
than those representing only a single characteristic of interest.

Both approaches can be combined: reference value functions are applied for each
mapped attribute individually; the resulting feature relevance is then e.g., the maxi-
mum (or average) relevance score over all mapped attributes.

Of course, as with feature de�nition itself, a content author can always provide an
explicit relevance value independently of the encoded data values through a correspond-
ing task node annotation.

7.3 Adaptation Control

The DSRM introduced in Section 7.2 represents the framework for task-based adaptation
of data visualizations as follows:

• Operators in the base data state model (describe by the page) determine how the
unadapted visual representation is generated.

• Operators on di�erent stages of the adaptation pipeline correspond to stage and
transformation operators in the DSRM.

• The feature information provided by the enriched task model determines what
operators and their parameterizations describe a task-speci�c visual representation
of the data set. Thus, adaptation entails adding, replacing, or re-parameterizing
DSRM operators.

The central aspects of how pages and features relate to the DSRM and the data
states it comprises were covered in the previous Section. In the following, we will explain
how di�erent data states and DSRM operator types relate to the conceptional adaptation
pipeline introduced in Section 3.3.4. Section 7.4.1 describes our �Smart Lenses� approach
used to realize this DSRM-based adaptation.

143

7 Smart Visualization

7.3.1 View selection

For the visual data type contemplated so far view selection has been limited to the view
space because these only comprised view space data (raster images) or visual primitives
in presentation space. Information hiding on these types is thus e�ected by selectively
removing feature geometry from the visual representation.
By contrast, during abstract data visualization the generation of visual primitives

comprises explicit mapping operations from analytical abstractions to graphic primitives.
Therefore, view selection selection is e�ected by either of two ways:

• by specifying a two-dimensional region in view space, or
• by a selection of value ranges on variables.

The �rst methods works identical to view selection for 2D vector and 3D graphics for
2D and 3D visualization techniques, respectively. It corresponds to a graphical zoom of
the representation.
On the other hand, selecting value ranges on variables de�ne a section of the ob-

servation domain. Rendering the corresponding subset of visual abstractions to a given
display area thus results in a zoomed-in view. This method of of view selection is usually
far more e�ective for data visualizations.
Consider for example a 2D scatterplot that maps data elements to points in a plane

where point positions are determined by two attribute values corresponding to one axis
each. Selecting a 2D rectangle in view space and stretching it to the available display area
will result in a zoomed-in view, but will also cut o� the axis representations indicating
attribute values encoded in the visible points. By contrast, selecting a reduced value
range for both axes allows to keep the axis representations on screen while altering
what region of the data space is rendered to the available display area. Therefore, view
selection performs semantic zooming. In addition, because data elements are �ltered
out before being mapped and rendered, generation of the visual representation likely is
computationally more e�cient.

7.3.2 Geometry adaptation

Geometry data is generated as a result of the visual mapping transformation operation.
As such, geometry adaptation comprises three options:

• Existing DSRM operators are re-parameterized. This results in a change of po-
sition, shape, and size of graphical primitives depending on how data values are
mapped to these geometric properties.
• Additional geometry is added by introducing additional operators that map pre-
viously non-shown variables to new graphic primitives. This allows to adjust the
information and visual scales of the visual representation for zoomed-in detail
views [Shn96]. In particular, it allows to encode additional information (variable
values) of important features.
• Existing DSRM mapping operators are removed from the pipeline. This removes
the visual encoding of the corresponding variables, thus implementing information
hiding.

144

7.3 Adaptation Control

By applying these modi�cations to the DSRM only within a feature region, local
adaptation according to feature relevance is e�ected. This is detailed in Section 7.4.1.

7.3.3 Visual attribute modi�cation

Visual attributes are determined in parallel to feature geometry3 as the result of
visual mapping transformation operations by mapping attribute values to �ll and line
colors, stroke width etc. Therefore, visual attribute modi�cation is e�ected by the re-
parametrization of existing DSRM mapping operators. Note that it is rarely useful to
add or remove mapping operators on visual attributes: adding operators will con�ict
with existing visual mappings (each primitive can have only one stroke color), while
removing visual mappings leave aspects of the data's visual representation unde�ned (a
primitive with neither stroke nor �ll color is not visible).

7.3.4 View Space Manipulation

By de�nition, this adaptation pipeline stage operates on the result of the image genera-
tion process in 2D view space (cf. Section 3.3.4). This corresponds to DSRM operators
on the �nal image data state. Manipulations are e�ected by adding respective image
operations to the DSRM pipeline on this stage. See Section 4.2.4 for a discussion of
viable image-space adaptation operations.

7.3.5 Labeling

Our approach uses image-based labeling. Conceptually, labeling can thus be seen as an
operator on the image data state of the DSRM as well. It is therefore subject to the
exact same requirements and procedures as those outlined in Section 4.2.5 for raster
images using particle-based labeling [LSC08].

However, to facilitate task-speci�c label sets and labeling styles our space-e�cient
labeling approach 4.3.2 is a viable alternative for abstract data visualizations as well.
The only variance is in the way the required ID-bu�er is generated from the geometric
primitives. For 2D visualizations, the method described in Section 5.2.5 for 2D vector
graphics is appropriate; whereas for 3D visualizations, the generation method outlined
in Section 6.2.5 for 3D mesh representations is more suitable.

Note that because the ID-bu�er is e�ectively another raster image, its generation can
be seen as a rendering transformation operator in the DSRM that transforms visual
abstractions (primitives) into a color-coded image.

3Note that the well-known graphics semiology by Bertin [Ber82], instead of distinguishing geometric
properties (position, shape, size and orientation) and visual attributes, treats these uniformly as
visual variables. This classi�cation focuses on possible visual encodings of data values to perceivable
graphical properties. By contrast, we here maintain the distinction driven by the presentation-
oriented visual data type that comprise graphic primitives i.e., geometry with styling attributes.

145

7 Smart Visualization

7.4 Smart Visualization Techniques

In this section, we provide details on two �Smart-X� techniques for the basic adaptation
approach of abstract data proposed in this chapter. Both techniques constitute examples
for the combination of data- and task-driven aspects of adaptation.

In Section 7.4.1 we present a concept for adaptation of data visualizations within
feature regions based on the the DSRM. The core idea is to utilize so-called lenses
to specify feature-based adaptations in both data and presentation space. We pro-
posed the core idea of DSRM-based lenses in [FTS07], with further details discussed in
[TFS08a].

Color coding is a fundamental visualization method for representing scalar values,
and is therefore widely used in a large variety of application scenarios. To generate
expressive and e�ective visual representations, it is extremely important to carefully
design the mapping from data to color. Section 7.4.2 describes a color coding approach
that accounts for the di�erent tasks users might pursue when analyzing data. It has
initially been published in [TFS08b].

7.4.1 Smart Lenses

So-called lenses are �lters that are placed � usually interactively by the user � over the
presentation, thus altering the visualization in a locally con�ned RoI [BSP+93]. Multi-
ple lenses can also be 'stacked' to combine �lter e�ects [BSP+93, FTS07]. This makes
lenses a suitable tool for adaptation in task-speci�c feature regions as well. Smart
in this context thus means that rather than depending on the user to select and place
lenses manually, the lens' initial placement is derived automatically, corresponding to
features relevant to the task at hand. Of course, the user can also re-position, remove
or replace lenses interactively to manipulate this initial view.

A lens is generally de�ned by two parameters: its region of e�ect and the lens function.

The region of e�ect determines which data elements are considered inside (are af-
fected by) a particular lens and which elements are outside or una�ected by it. Typically,
this region is determined in presentation space by a boundary shape and its position in
the view. For this, often simple shapes such as rectangles, circles are used for 2D repre-
sentations [BSF+94, BSP97], as well as spheres or cubes comprised of clipping planes in
the 3D case [VCWP96].

In our approach, a lens' region of e�ect is given by the feature region. In Section 7.2.2
it has been argued how feature regions are de�ned in one of two ways: directly in
presentation space, which is identical to the usual de�nition above; or implicitly by
selection of a data space RoI (data elements of interest) which are subsequently mapped
to graphical primitives.

In the latter case, the feature (and thus, lens) region is therefore determined by the
resulting set of primitives. This facilitates data-driven changes to its shape. An example
is given in Figure 7.5 where features over a map visualization are de�ned via selection
of administrative districts as elements of interest in data space; the resulting lens region
in presentation space corresponds to the respective area's geographic boundaries.

146

7.4 Smart Visualization Techniques

The lens function determines what operations are applied to elements in the lens'
region of e�ect. In the context of the DSRM, a lens can therefore be understood as an
operator within this framework. Depending on the data state(s) the lens operates on,
lenses can be broadly classi�ed as semantic and graphical lenses that modify elements in
data space and presentation space, respectively. In [GFS05] we proposed a more complex
classi�cation scheme for general lenses.

The relevant distinction here is that graphical lenses operate only on graphical prim-
itives and/or image data i.e., on the �nal two data stages of DSRM pipeline. Graphical
lenses are therefore capable of realizing all adaptation operations discussed in Chap-
ters 4�6 for raster images as well as 2D vector and 3D graphics, respectively.

On the other hand, semantic lenses operate on the input data and analytical ab-
straction data states. This allows data-space adaptation not available in the previous
visual data types. In particular, it facilitates adjustment of the information scale in the
feature region by adding, removing or altering analytical abstractions; as well as the
corresponding visual scale by altering how the set of analytical abstractions is mapped
onto visual abstractions (primitives).

Stacking multiple lenses with di�erent lens functions further allows to apply multiple
adaptation operations to features. In particular, by stacking semantic and graphical
lenses combined adaptation in both data and presentation space as proposed in Sec-
tion 7.1 is achieved.

The versatility of this operator-based concept for lens de�nitions is illustrated by the
following examples.

• Lenses as stage operators on data values can control the ratio of visualized values
in the lens region to avoid clutter (sampling e.g., [ED06, ED07]), remove errors or
interpolate new data.

• Lenses as operators on analytical abstractions can be used to sample the corre-
sponding data elements on this stage, as well as to show additional informations
about the data e.g., cluster properties.

• Lenses as operators on visual abstractions can for example change the LoD of a
given surface mesh [Kea98, FHS08] or generalize (simplify, aggregate) shapes in
the lens region [IDE].

• Lenses as operators on image data realize standard per-pixel image modi�cations
like hue or contrast adjustment, which e.g. can be used to overcome color vision
de�ciencies, or pixel-based distortions [Kea99].

• Lenses as �lter operators o�er the possibility to calculate additional data charac-
teristics on demand, like node metrics in a large graph [LH94], and vice versa, to
�lter out unimportant information like crossing edges to reduce clutter [TAHS06].
• Lens as mapping operators modify the mapping process and thereby decide about
the feature's visual representation. This can be used to visualize additional
or di�erent parameters, cf. e.g., [Kea98, BSP+93, BSP97]; or to adjust existing
mappings in a task-speci�c way. Section 7.4.2 discussed task-driven color coding
as one of the most important aspects.

147

7 Smart Visualization

• Lenses as rendering operators realize graphical lenses, for example distortion lenses
like Rase's Cartographic Lens [Ras97, LA94].

Furthermore there are lens functions that consist of more than one operator on multiple
pipeline stages, if for example rendering is modi�ed according to semantic information
from the data domain. A representative for this kind of functions is the Semantic Depth-
of-Field approach by Kosara et al. [KMH01], cf. Section 4.2.4.

As the examples show, lenses as feature adaptation operators can be applied on
every stage of the model in a useful way. In doing so, there are two principal ways to
integrate lenses into the visualization process [ED06]:

• Two separate pipelines are used, one for creating the unadapted visualization and
a second one for the lens region. The result of lens manipulation is composed over
the base visual representation in image space.
• The entire visual representation including feature/lens regions is produced using
a single pipeline. The operators constituting the lens function alter data elements
on the di�erent stages directly.

Although with the �rst approach is easier to modularize � each additional lens spawns an
new visualization pipeline � it can not be used for stacking lenses, as each processes the
data independently. In the present thesis therefore the approach of a single integrated
visualization pipeline has been pursued, cf. [FTS07, TFS08a].

This integration poses the following aspects must be addressed in an implementation
of the proposed framework:

• A means to ensure consistency between feature/lens regions in data and presen-
tation space.

• Handling of overlapping features. In these cases, lenses operate on the same
set of data elements that contribute to the intersection region. This may cause
con�icts between operators regarding data element access. This also applies if
multiple lenses are applied to a single feature.

• A means to describe lens de�nitions and parametrization of its operators suitable
for task model enrichment. This description should abstract from speci�c data
source formats and implementation speci�cs so it can be de�ned on the conceptual
level of the task model (cf. Section 3.2).

Lens region Consistency
The challenge is to map feature/lens regions from one pipeline stage onto the other
and vice versa. If the RoI has been speci�ed at the �rst stage (raw data) this is not a
problem. The transformation operators between data states map the lens region onto
the following stages.
However, this becomes an issue when the feature region is de�ned in presentation

space (i.e., as a shape in image space, or by a selection of primitives) but the lens

148

7.4 Smart Visualization Techniques

function operates in data space. In this case we additionally need an inverse mechanism,
or back-projection, to collect the data elements associated with this region on the earlier
stages.

There are two approaches to the inverse mapping required for the second case:

• If an inverse operator to the lens function exists, it can be used to back-project
the feature region on earlier stages of the DSRM. Sometimes, however, inverse
operators are not viable or its results would be ambiguous. Finding an inverse
operator (automatically) is often also not trivial.

• Another approach is to use multiple passes of pipeline execution. During the �rst
pipeline pass, lookup tables are generated. These contain, for each data element on
a given stage, the associated input elements for the transformation operators from
the respective previous stage. During the second pass, data elements contributing
to the lens regions on the di�erent stages are processed according to the lens
function.

A disadvantage of the second approach is the potential memory requirements for
the lookup tables, especially for large data sets. Two passes also increase the amount
of computational resources required. However, we still consider it the better choice
because we can not assume that all inverse operators are given for arbitrary data sets
and visualization techniques.

Lens con�ict detection and resolution

Combining operators of multiple lens functions contributing to a single feature's region
yields three types of potential con�icts (cf. [TFS08a]):

• The results of two lenses overwrite attributes of the same data elements on the
same data stage, referred to as a write con�ict.

• One lens L1 operates on data elements which attributes are modi�ed by another
lens L2's output. In this case lens L1 depends on L2.

• If there are two or more lenses which have a potential write con�ict between their
results and a third lens uses these contested data elements as input, a read con�ict
occurs i.e., an ambiguity about which of the two possible result sets the third lens
operator should use.

Based on the assumption that the non-adapted visualization pipeline itself (i.e., with-
out applied lenses) is void of con�icts, a single lens will never result in a con�ict as
lens functions on principle always take precedence over regular pipeline operators. Fur-
thermore, read con�icts can only occur if there are unresolved write con�icts. Solving
the triggering write con�ict automatically cancels the read con�ict as well. Dependency
con�icts between operators on di�erent pipeline stages are trivially avoided by executing
lens operator in stage order; for operators on the same stage the operator that writes
to a contested attribute must execute before the one reading it (see below). Only write
con�icts can not be solved by intrinsic means.

149

7 Smart Visualization

Before they can be resolved con�icts need to be detected �rst. To this end, formal de-
scription of the output elements of the lens operators is required. We use a mathematical
set notation as follows (cf. [FTS07, TFS08a]).
Each of the four stages in the DSRM is represented by a set Ai of attributes aik;

1 ≤ i ≤ 4; 1 ≤ k ≤ |Ai| that describe data elements at the corresponding stage i.e., A1

correspond to Raw data attributes, whereas elements from A2 represent attributes of
analytical abstractions, and so on.
A lens operator f transforms data elements with associated attributes from a source

set Sf
n (nth stage) to a target set T f

m (mth stage):

Sf
n ⊆

⋃
1≤i≤n

Ai, T f
m ⊆

⋃
m≤i≤4

Ai

This formalism allows us to detect, and in some cases to automatically resolve, the
aforementioned con�ict types. Let

f : Sf
n → T f

m; 1 ≤ n ≤ m ≤ 4, and

g : Sg
p → T g

q ; 1 ≤ p ≤ q ≤ 4.

A potential dependency con�ict occurs if T f
m ∩ Sg

p 6= ∅. In this case g depends on f � f
writes attribute values that are used as input to g � and therefore to avoid dependency
con�icts f must be executed before g. This guarantees attributes Sg

p are only processed
by g set after all modifying operations have completed by execution of f .
A write con�ict, on the other hand, occurs if T f

m ∩ T g
q 6= ∅ i.e., f and g both modify

one or more contested attributes. As mentioned above, although this type of con�ict
can be detected, it does not lend itself to an inherent solution.
However, smart lenses must have the ability to resolve write con�icts automatically.

We here addressed this problem by using the corresponding features relevance values
to determine which lens operator takes precedence.

Lens Description for Task Model Enrichment
To describe the parametrization of smart lenses in a form suitable for task node annota-
tion we employ declarative lens scripts. A lens declaration thus comprises the following
information (cf. Figure 7.4):

• the feature/lens region, as well as
• the operators comprising lens function for feature adaptation.

The lens region is either a �xed geometric shape de�ned in view space (Figure 7.4a);
or a RoI in data space, cf. Section 7.2.2. In the latter case the actual feature region in
presentation space is data-driven. For this, data characteristics of interest are speci�ed.
This can be expressed by means of suitable �lter conditions. We here use a notation
inspired by the OGC Filter Speci�cation [Ope05]. Its XML syntax allows to express
complex nested conditions including spatial (presentation space), arithmetic and logic
constraints, cf. Figure 7.4b.
The lens function can be selected from a list of prede�ned functions (i.e., available

as plug-in classes within the concrete smart visual interface implementation. Depending

150

7.4 Smart Visualization Techniques

Figure 7.4: Examples of lens declaration scripts used for task node annotation. On the left is the
de�nition of the lens from Fig. 7.5c. The script on the right de�nes the Texture lens from Fig. 7.5d,
including a composite �lter de�ning a RoI in data space.

on the type of operator o�ered by a plug-in, the declaration may be further attributed
with parameter settings, see Figure 7.4a.

Thus our Smart Lenses approach to feature-based adaptation can be summarized
as follows: on the conceptual level of the task model features/lenses are speci�ed by
annotating corresponding task nodes with declarative scripts. Scripts therefore abstract
from the actual implementation of the visualization process, and can be reused or modi-
�ed for other data sets and visualization settings. At runtime of a concrete smart visual
interface corresponding DSRM operators are provided as plug-ins. Subsequently, the
adapted visual representation is generated By processing the operator pipeline of the
DSRM augmented with task-speci�c smart lenses, an adapted initial visual representa-
tion is generated for the task at hand.

Figure 7.5 shows smart lens examples from our prototypical implementation of a vi-
sualization system LandVis-Lens for health care data based on the DSRM operator
framework [FTS07, TFS08a]. The base visualization shows a map divided into areas
correlating to administrative districts on various levels (federal states, districts, ZIP
code areas). Di�erent choropleth representations and icon techniques are available for
the incident analysis of several diseases (e.g., �u or respiratory problems). The images
show di�erent combinations of lens regions with feature adaptations on di�erent stages
of the DSRM.

7.4.2 Smart Color Coding

Designing appropriate color scales is an intricate step that in�uences the expressive-
ness and e�ectiveness of visual representations signi�cantly. Appropriate in this context
means that the color-coded visualization really supports analysts in deriving valid state-
ments about the underlying data. Appropriateness can only be achieved if characteristics

151

7 Smart Visualization

Figure 7.5: Examples for Smart Lens adaptation. (a) Lens modifying the �ll color of map areas
according to a variable of task-speci�c interest, lens shape set to speci�c geometric shape in view
space; (b) same lens, but data-driven shape derived from map area boundary. (c) geometric distortion
of primitives to locally explore a task-speci�c map region of interest. (d) generation of additional
graphic primitives (oriented icon texture similar to [PG88] encoding extreme values).

of the data and the task at hand are taken into account. Therefore, it is necessary to
provide �exible color schemes that can be adapted to the data and task at hand.
Generally, a color coding scheme can be characterized by a color mapping function

f : D → C that maps data values D to colors from the color scale C.
From literature we know several approaches that address adequate de�nition of the

color mapping function, or give guidelines for the use of color scales. In this context,
Brewer's ColorBrewer has to be mentioned as a pioneer work [Bre94, Bre99, HB03]. In
Schulze-Wollgast [SWTS05], the in�uence of data characteristics (e.g., the distribution
of data values) on color coding is investigated in more detail. General overviews on the
color coding problem are given in [Sto03] and [Sto07], including aspects of basic vision
and psychophysics, color reproduction, and color design. For a more in-depth discussion
of related work refer to our publication [TFS08b].
In this Section, we will discuss color coding with regard to the task at hand. Previous

publications, like [BRT95] or [SWTS05], only address the design of color scales for speci�c
tasks (e.g., isomorphic, segmentation, comparison) while others, like [Rhe99] or [Tel07],
just point out that the goal of the user has to be considered when using color coding.

Requirements for Color Coding
A fundamental requirement for e�ective color coding is that the color mapping function
f has to be invertible. This means that every data value (or every well-de�ned group of
data values) is associated with exactly one color, and vice versa, every color represents a
�xed range of data values. In other words, colors encoded from two di�erent data values
should be visually distinguishable. On the other hand, visually similar colors imply that
they represent data values that are close to each other.
Besides these basic requirements, further aspects decide about e�ectiveness of color

coding. Telea identi�es the following factors to be relevant for color coding [Tel07]:4

Characteristics of the data: Statistical features, overall distribution of data values,
as well as data variation speeds and domain sampling frequencies are data characteristics
should be considered when designing color coding schemes.

4For a more detailed description including illustrative examples for each aspect see [TFS08b].

152

7.4 Smart Visualization Techniques

Characteristics of tasks: Di�erent tasks require di�erent color coding schemes. A
main distinction here is whether the task requires the comparison of exact values (i.e.,
quantitative analysis) or the judgment of qualitative di�erences. Furthermore, task-
speci�c RoIs in the data domain should be accentuated, for instance by using bright,
warm, and fully saturated colors.

Characteristics of the user: Individual color perception varies from user to user
due to capabilities and the cultural as well as professional background. This obviously
includes color blindness but also application domain conventions such as placing colors
in spectrum scales in order of increasing wavelength vs. increasing frequency.

Characteristics of the output device: Di�erent output devices use di�erent sys-
tems to de�ne and display colors. Thus, a color coding scheme being appropriate for
displaying data on a computer display might be inappropriate to show the same data on
printed materials.

This is in line with our categorization of context of use (cf. Section 2.1.2) and addresses
four aspects: what is visualized (data), why and for whom is it visualized (task
respectively user), and where is the output displayed (device). True to the focus of the
present thesis, we here investigate the why aspect in more detail in particular.

Typi�cation of the Task at Hand

Task-driven color coding requires the speci�cation of type and goal of the task at hand
as a basis. Most early task descriptions are given as verbal lists of visualization goals,
including identi�cation, correlation, comparison, and others (cf. Section 2.3.2). These
descriptions lack formal description, and hence, concrete understanding of the tasks can
vary. Recently, Andrienko & Andrienko proposed a task model that is based on formal
de�nitions [AA05]. This allows for a precise typi�cation of visualization tasks.

Visualization tasksVisualization tasks

Elementary tasks
(on values)

Elementary tasks
(on values)

Synoptic tasks
(on sets)

Synoptic tasks
(on sets)

LookupLookup ComparisonComparison Relation SeekingRelation Seeking Connectional tasksConnectional tasksDescriptive tasksDescriptive tasks

Direct Inverse

Homogeneous
behavior

Heterogeneous
behavior

LookupLookup ComparisonComparison Relation SeekingRelation Seeking

Direct Inverse

Figure 7.6: Task typology used for our task-driven color coding approach (adapted from [AA05]).

The formalism behind the typology of Andrienko & Andrienko uses two basic notions:
references, the space where data values have been collected, and characteristics, the
space of variables that were collected (cf. Section 7.1).

On its �rst level, two classes of tasks are distinguished: elementary and synoptic tasks.
Elementary tasks address individual data elements. This may include groups of data,

153

7 Smart Visualization

but the main point is that data values are taken into account separately and are not
considered as a whole. Synoptic tasks, on the other hand, involve a general view and
consider sets of values in their entirety.
Elementary tasks are further divided into lookup, comparison, and relation seeking.

The lookup task de�nes a search for data characteristics. This includes both direct
and inverse lookup, depending on if references are given and corresponding data values
are sought (also referred to as identi�cation), or data values are given and associated
references are of interest (also called localization). Relation seeking tasks search for
occurrences of relations speci�ed between data characteristics or references. In a broader
sense, comparison can also be seen as relation seeking, but the relations to be determined
are not speci�ed beforehand. Direct comparison tasks relate characteristics, whereas
inverse comparison tasks search for relations between references.
Synoptic tasks are divided into descriptive and connectional tasks. Descriptive tasks

specify the properties of either a set of references or a set of characteristics. The �rst
case belongs to the group of identi�cation tasks. Here, a set of references is given, and
the task is to �nd a pattern that describes the behavior of the given reference points.
The second case belongs to the group of localization tasks. Here, a concrete pattern is
given, and the task is to search for those reference points that exhibit the pattern. Be-
sides specifying the properties of a set of characteristics or references, the comparison of
those sets is of high relevance. As in the case of elementary tasks, we have to distinguish
between direct and inverse comparison tasks, depending on whether a set of references or
a set of characteristics is compared. Moreover, the synoptic task relation seeking consid-
ers two sets of characteristics or references to come up with relationships between these
sets. In contrast to descriptive tasks, connectional tasks establish connections between
at least two sets taking into account the relational behavior of two or more variables.
Depending on the set of underlying references � either variables are considered over the
same set or over di�erent sets of references � homogeneous and heterogeneous behavior
tasks are distinguished.

To achieve task-driven color coding based on this typology, we have to identify color
maps that are appropriate for the di�erent tasks. The �rst-level categorization of tasks
draws a distinction between individual data values and sets of data values. This can
be re�ected by applying either continuous/discrete color scales, where each data value
is encoded by a separate color, or segmented color scales, where each color stands for
a set of data values. At the second level, the tasks lookup and comparison are of par-
ticular interest with regard to the color coding problem (see [SWTS05]). The lookup
task requires color scales that support di�erentiation of sought data values. In order
to accomplish comparison tasks, all variables involved in the comparison must be repre-
sented by a uni�ed color coding scheme; perceptual separation of colors for the individual
variables is not the primary goal here. Usually, the same holds true for relation seeking
and connectional tasks. The third level addresses identi�cation and localization tasks.
Both problems demand for di�erent color scales: identi�cation (direct lookup or direct
comparison) requires recognizing characteristics as precisely as possible, whereas local-
ization (inverse lookup or inverse comparison) requires easy recognition of those spatial
references that exhibit certain characteristics of interest. In the latter case, color coding

154

7.4 Smart Visualization Techniques

schemes that support accentuation and de-accentuation are suitable. The bottom line
is that we have to consider three alternatives to come up with an initial approach to
task-driven color coding:

• Individual values vs. sets of values,
• Lookup vs. comparison, and
• Identi�cation vs. localization.

In the following section, we will discuss color coding schemes for these alternatives in
more detail.

Color Coding for Speci�c Tasks

Color coding individual data values requires unsegmented color scales, i.e., every color c ∈
C represents exactly one value in d ∈ D. Contrary to that, segmented color scales should
be used to encode groups of data values, i.e., every color in c ∈ C represents a subsetD′ ⊂
D. The speci�cation of both of these types of color scales is a well investigated problem
[BRT95, HB03, SMS07]. Figure 7.7 shows examples of unsegmented and segmented
color scales for the identi�cation and the localization tasks. The segmented color scale
for identi�cation represents �ve di�erent value sets. The color scales for localization
are designed in such a way that they support pre-attentive recognition of reference areas
(i.e., features) of interest. The segmented color scale for localization supports a binary
decision: Areas drawn yellowish match the selection criteria, other areas do not. The
unsegmented color scale communicates a smooth selection of reference areas comparable
to smooth brushing [DH02].

Identification

Segmented

Unsegmented

Localization

Figure 7.7: Unsegmented and segmented color scales for identi�cation and localization tasks.

Designing appropriate color coding for lookup and comparison tasks requires addi-
tional e�ort. We will introduce two new concepts for this purpose next.

Color Scales for the Lookup Task
Lookup tasks are basically a search for concrete characteristics or references. This search
can be facilitated by applying appropriate color coding schemes. While the inverse
lookup task is relatively easy to handle, the design of adequate color scales for direct
lookup is intricate. Schulze-Wolgast et al. propose the extraction of statistical meta data
to adapt a given color scale accordingly [SWTS05]. The adaptation process includes three
steps: (i) Expansion of the value range to be mapped onto the color scale such that the
lower and upper bounds are intuitive to interpret, (ii) adjustment of control points of the
color mapping function to improve the color coding for data-dependent segmentation or
highlighting, and (iii) skewing of the color mapping function (e.g., applying logarithmic

155

7 Smart Visualization

or exponential mapping functions, rather than linear ones) to handle data ranges with
special value distributions.

Here, we use two approaches to improve color coding for the lookup task: histogram
equalization and Box-Whisker plot adaptation. Both methods address the problem that
certain value distributions can lead to situations where the majority of data values is
represented by only a narrow range of colors. This is unfavorable for lookup tasks. By
histogram equalization and Box-Whisker plot adaptation, we spread the colors according
to the data's value distribution and achieve that more colors are distinguishable in dense
parts of the data.

Histogram equalization: Histogram equalization was originally introduced to im-
prove the contrast of gray-scale images. The same concept can be used to adapt a given
color scale according to the value distribution of the data at hand, and thus, to improve
the perceptibility of the color-coded visualization. The procedure can be described as
follows. First, the value range is subdivided into uniform bins, and the number of data
values falling into the bins is computed. Second, the color scale is sampled according
to the same uniform subdivision. The corresponding sample points, which represent
speci�c colors, are then shifted based on the computed cumulative frequencies. Finally,
a linear color mapping function is applied to establish a continuous color scale. As a
result, more colors are provided for those segments that contain a higher number of data
values, making values in high density regions easier to distinguish.

Box-Whisker plot adaptation: An alternative procedure to adapt the color coding to
the characteristics of the value distribution is to utilize Box-Whisker plots. Box-Whisker-
Plot adaptation subdivides the data range based on quartiles and inter quartile range
(IQR), which are commonly accepted features to describe value distribution. Quartiles
and IQR are more robust against outliers than other statistical indicators. The Box-
Whisker plot segmentation re�ects the underlying data distribution closely, and hence,
also leads to improved color coding.

Figure 7.8 compares the segmentation strategies of histogram equalization and Box-
Whisker plot adaptation. Visualization examples generated without and with the pro-
posed methods are given in Figure 7.9. It can be seen that colors are hard to distinguish
in dense parts of the data (a). By applying the proposed adaptation methods, more
colors are assigned to these dense parts, and hence, colors can be discerned more easily
(b) + (c). It is important to mention that we deliberately relinquish linearity of the
color scale in favor of separability of colors in dense regions.

Color Scales for the Comparison Task

The comparison of two or more attributes requires a global color coding scheme that
guarantees that equal colors stand for equal values. This leads to problems, in particular,
if the value ranges of the attributes to be compared are quite di�erent. In such cases, an
attribute with a smaller value range would be represented by only a very small region of
the global color scale. The goal now is to improve the di�erentiability of colors for these
small value ranges.

We handle this problem by merging overlapping value ranges. The result of this

156

7.4 Smart Visualization Techniques

1,0

0,75

0,5

0,25

0,0

q5

q4

q3
q2

q1
(a) (b)

Figure 7.8: Color scale adaptation. (a) Histogram equalization; (b) Box-Whisker plot adaptation;
Complementary Box-Whisker plots visualize data distribution.

(a) (c)(b)

Figure 7.9: Visualization of quantitative data on a map. (a) Classic linear color coding; (b)
histogram-equalized color coding; (c) color coding adapted based on Box-Whisker plot.

process are fewer distinct value ranges that do not share common intervals. Now, for
each distinct value range a separate color scale is designed. Since the newly de�ned
ranges do not overlap, it is possible to assign a separate hue to each, while varying only
brightness and saturation to de�ne the color coding. These separately speci�ed color
scales are integrated into one global scale (see Figure 7.10(a)). To avoid inconsistencies,
it must be guaranteed that the brightness and saturation values of the boundary of one
color scale correspond to the respective values of the neighboring scale. In other words,
for one value range the hue is constant while brightness and saturation vary, whereas
at the boundary from one value range to the next the hue varies while brightness and
saturation are equal (see Figure 7.10(b)). This way, even small value intervals will be
represented by their own brightness-varying subrange of the global color scale and the
di�erentiation of data values is improved.

Figure 7.11 shows how di�erent color coding schemes in�uence the task of compar-
ing three attributes of a data set. Figure 7.11(a) uses individual color scales for each
attribute. Visual comparison is hardly possible because one and the same color rep-
resents three di�erent data values (one in each value range). A global color scale as
shown in Figure 7.11(b) allows for visual comparison, but data values of the �rst and
third attribute are no longer distinguishable because their value ranges are rather small
compared to the one of the second attribute. Applying Box-Whisker plot adaptation
helps to improve perception, but the results presented in Figure7.11(c) are not really

157

7 Smart Visualization

0 10 15 60 1000 1500

Hue

Saturation

Brightness(b)

(a)

Figure 7.10: Color scale for comparison tasks. The �ve value ranges [0,10], [20,50], [15,30], [40,60],
and [1000,1500] were merged resulting in the three distinct ranges [0,10], [15,60], and [1000,1500].
Each distinct ranges is assigned with a distinct hue blue, green, and red, respectively. (a) Color scale
for comparison; (b) its de�nition in the HSB color space.

convincing. The novel concept we propsed in the previous paragraph delivers better re-
sults (see Figure 7.11(d)). Values of the �rst and second attribute are easier to identify
and to compare. However, the third variable is still hard to perceive.

(b)(a)

(c) (d)

Figure 7.11: Visual comparison of three attributes. (a) Individual color scales; (b) one global color
scale; (c) adapted color scale based on Box-Whisker plot; (d) optimized color scale for comparison
tasks (also see Figure 7.10). (Images from prototype software [Sch06].)

Figure 7.11 shows the potential, but also the limits of our poposed approach to support
comparison tasks. The problem is that we cannot yet guarantee that adequate color
scales will be generated in all cases. In particular, if the merging process generates too
many or too few distinct value ranges, the problem becomes apparent. In the former
case, it would be di�cult to assign distinguishable hues for each value range. In the
latter case, it could be possible that small value ranges are merged into huge ranges
nonetheless, and thus are still represented by only a few colors.
We conclude that achieving appropriate color coding for comparison tasks is a chal-

lenging problem and requires further investigation. Our approach can be seen as a �rst
step towards a general solution.

158

7.4 Smart Visualization Techniques

The Task-Color-Cube

As a summary of the previous discussions, Figure 7.12 shows the task-color-cube. The
three task alternatives introduced at the end of Section 7.4.2 span a three-dimensional
space with eight discrete points. Each of these points represents a speci�c task and
requires a speci�c color coding scheme to achieve expressive visualization. We assigned
color coding schemes to each corner of the task-color-cube based on the following guide-
lines:

1. Individual data values vs. sets of values: unsegmented vs. segmented color scales.
2. Lookup vs. comparison: several separate color scales vs. one global color scale.
3. Identi�cation vs. localization: color scale that match data characteristics vs. color

scale that accentuates ranges of interest.

Comparison

Unsegmented
Lookup

Segmented

Localization

Identification

Figure 7.12: The task-color-cube. The cube spans along the axes segmented vs. unsegmented,
identi�cation vs. localization, and lookup vs. comparison. Each corner of the task-color-cube
represents a speci�c task instance and is associated with a particular color coding scheme.

Since color perception is always dependent on the user, all our methods are subject
to interactive re�nement. Interactively adjusting the color coding is particularly useful
when exploring unknown data.

159

7 Smart Visualization

7.5 Summary

Abstract data lacks an intrinsic visual representation and must be transformed into an
image through a visualization process. With respect to task-driven adaptation, this
o�ers signi�cant �exibility � it principally allows to e�ect adaptation not only based
on features in presentation space, but also pre-page adaptation in data space. It
also poses challenges due to the vast variety of visualization techniques, data sets, and
associated data analysis problems.

In this chapter, we presented �rst ideas on how to integrate our basic adaptation
approach with a suitable model of the visualization process. The main idea is to use Chi's
Data State Reference Model comprised of operators on data elements on di�erent
data states as a general framework for this purpose.

Data elements (graphics primitives) on the DSRM's visual abstraction stage provide
the basis for the speci�cation of pages. Features over such a page can then be de�ned
in one of two ways: as RoIs in presentation space similar to previously discussed visual
data types; or by de�ning data characteristic of interest in data space to select a subset
of data elements that contribute to feature geometry.

The information a�orded by access to the input data as well as derived meta data
(analytical abstractions) allows to incorporate data- and task-driven automatisms
in the process of determining task-related features and feature relevance values.
Section 7.2 suggested several possibilities to this end.

Task-driven adaptation within concrete smart visual interfaces is e�ected on the level
of individual DSRM operators. We here proposed the concept of Smart Lenses as a
general �Smart-X� technique for abstract data visualizations. The core idea is to utilize
so-called lenses to specify feature-based adaptations in both data and presentation
space. Single lenses represent operators in the DSRM and are employed to adapt spe-
ci�c aspects of the visualization within feature/lens regions. Combination of
multiple lenses allows to adapt di�erent aspects of each feature depending on the data
states lenses operate on. Using declarative scripts further allows to specify lenses on
the conceptual level of the task model while abstracting from concrete operator
implementations in speci�c smart visual interfaces.

Color coding is a fundamental and widely used visualization method. Numerous stud-
ies on this subject identi�ed key aspects of color scale design and provided guidelines
for developers to make appropriate choices of color scales for expressive and e�ective
visualizations. However, even though it is commonly accepted that di�erent tasks re-
quire di�erent visualizations, so far no systematic approach to task-driven color coding
had been developed. For this reason, we presented here task-driven color coding
concepts that address di�erent visualization tasks derived from a formal task typology.
Our concepts are to choose from di�erent color scales and adapt color mapping functions
according to tasks and data characteristics.

The key contribution of this chapter should be understood mainly as a problem anal-
ysis as well as a systematic view on the di�erent levels at which task-driven adaptation

160

7.5 Summary

can be e�ected. Although some open questions remain as indicated in the text, im-
plementations of Smart Lenses and Smart Color coding substantiate the feasibility of
our proposed approaches. A further investigation into the remaining issues is de�nitely
worthwhile as necessary steps towards for smart, task-driven visualizations.

161

8 Implementations

Chapters 4�7 examined how task-based adaptation of the di�erent visual data types
is e�ected based on the adaptation pipeline approach proposed in Chapter 3. This
included a discussion on how existing and several novel �Smart-X� display techniques
� as components of concrete smart visual interfaces� are utilized and parameterized by
means of an enriched task model.
These concepts and �Smart-X� techniques have been developed against the background

of the applied research project Landesforschungsschwerpunkt (federal state research fo-
cus, LFS) and research training school Multimodal Smart Appliance ensembles for Mo-
bile Applications (MuSAMA). These provided two use cases exposing challenges and
research questions with regard to system design in general and smart visual interface
design in particular: mobile maintenance support and Smart Meeting Room scenarios.
They have been introduced in Sections 2.2.1 and 2.2.2, respectively.
In this Chapter both application scenarios are revisited with respect to the contribu-

tions presented in this thesis as well as software implementations supporting them.

8.1 E-manual demonstrator

The scenario that has been considered in the LFS project [LFSa, LFSb] for a demon-
strator implementation is as follows. A public utility provider (i.e., gas, electricity and
water services) administers and monitors its assets using a centralized technical facility
management software. The mobile e-manual application serves as an interface to this
centralized system for maintenance technicians in the �eld. A fault report is submitted
to the provider, which triggers the generation of a corresponding job assignment (work
package). Job assignments comprise relevant information on the a�ected unit (type, sta-
tus, service records etc.) as well as navigational information to the work site itself and
the location of the unit at the site. The technician downloads the job assignment to his
mobile device (e.g., a PDA). Using the navigational data he navigates to the work site
and locates the defective unit on site. To support the actual repair or maintenance task,
the mobile e-manual application provides corresponding instructions in di�erent formats
e.g., step-by-step illustrated assembly instructions or short tutorial videos. After the
repair/maintenance has been completed, the technician uses the e-manual application to
�le a job report. This report is uploaded to the central management software updating
the respective unit's service record.

This scenario was chosen for two reasons. First, because the maintenance of machinery
and facilities is a requirement faced by many enterprises e.g., public utility companies.
Second, the design of an interactive, mobile maintenance support software that can
interoperate with existing management systems is interdisciplinary nature. It involves

163

8 Implementations

aspects from database and wireless networking technologies, software and user interface
design, as well as visualization and natural language interfaces. It therefore caters to
many of the challenges and research topics relevant to the groups involved.
With regard to smart visual interfaces and task-speci�c visual representations in par-

ticular, this scenario calls for a wide variety of representations from di�erent sources and
of di�erent visual data types: navigational maps in raster or vector format e.g., provided
by a GIS; technical illustrations and schematics as the crucial part of repair instructions;
as well as images helping technicians to identify and troubleshoot a�ected units.

General architecture
The demonstrator's software architecture is shown in Figure 8.1. It is based around a
central Content and Knowledge Management (CKM) system that serves as the interface
to the existing facility management software and its databases. With regard to task-
speci�c visual representations in particular, it is responsible for locating and serving
graphical content and task information to mobile clients according to the task at hand.
CKM also provides communication interfaces with back-end services that are required
by the user interface but that are too computationally intensive to run on the client
device itself, such as the remote labeling module (see Section 4.3.2). Prototypes of the
demonstrator have been shown on the 2005�2007 CeBIT yearly international IT fairs,
among others.

Figure 8.1: Schematic view of the principal software components comprising the e-manual demon-
strator implementation for the LFS use case �mobile maintenance support� (cf. Section 2.2.1).

This section concentrates on the mobile client software since it incorporates smart
visual interfaces. For information on the CKM component, see Bruder et al. [BZM+04].
The client has been implemented using Microsoft's .NET Compact Framework on PDAs

164

8.1 E-manual demonstrator

running Windows Mobile operating systems. The .NET framework was chosen because
of portability issues, and because its runtime can be operated royalty-free on any com-
patible hardware. This was a important argument because of the declared goal of multi-
platform support. Native (i.e., WinCE-API) libraries are used where the managed .NET
environment is too restricting.

The client software comprises three main components (Figure 8.1): the Multiple User
Interface (MUI) generator, the visualization component (VIS), and an optional natural
language interface component (NAT) depending on hardware capabilities. This corre-
sponds to the three principal components of a smart multi-modal UI as discussed in
Section 2.2.1, cf. Figure 2.3 on page 13.

The MUI component is responsible for creating the client user interface dynamically
according to the device's screen resolution. This includes dialogs handling login to the
central management system, reviewing, selecting and downloading job assignments. It
further provides means to navigate information contained in job assignments. These
functionality is o�ered via conventional WIMP interfaces, see Figure 8.2. The MUI
component thereby uses a general application task model, from which a corresponding
dialog model is derived. This dialog model is encoded in XML-based XUL descriptions
and instantiated at runtime using a XUL interpreter.

Most importantly, the MUI component allows the user to select and execute instruc-
tions for maintenance procedures (i.e., a composite task) that are supported through a
smart visual interface. This functionality is provided by the visualization component,
which is described in more detail below.

Both the MUI and VIS components are optionally supported through a natural lan-
guage interface by means of voice commands (e.g., �next step�, �back�) and text-to-speech
output of non-visual information. For the sake of brevity this component is not discussed
further here, for details refer to [FRSF06, BDF+06].

Visualization component

The visualization component has been developed in the scope of the present thesis.
It is used by the MUI component to provide task-speci�c visual representations for the
selected composite (maintenance) task. Maintenance task are described by enriched task
models in CTT format. Recall from Section 3.3 that the enriched task model captures
both the graphical content associated with tasks (what, via page annotations) as well as
the why aspects (features and relevance value annotations). Furthermore, adaptation
(how) is controlled on the level of basic tasks through adaptation parameter annotations.

The design thereby utilizes that CTT models may be composed by linking several
smaller task trees. This was primarily intended for modeling of collaborative work �ows
comprising of cooperative as well as role-exclusive parts which are quite common in smart
environments. Here, it facilitates modularization of the application task model: activities
supported through smart visual interfaces (which are in the focus of this thesis) reside
in individual, succinct CTT models. The maintenance task from Figure 2.6 (page 19)
is an example: all its basic tasks are associated with visual representations, whereas the
UI allowing the user to bring up this particular maintenance procedure is derived from
the superordinate application task model.

165

8 Implementations

Figure 8.2: The demonstrators interface (a) is generated dynamically from an abstract UI description
(b) depending on the client device. The UI description itself is derived from the application task
model (c) that is transformed into a dialog model (d) as an UI design step.

To this end, communication between the MUI and VIS components comprises provi-
sion of the enriched task model as well as signaling which task node corresponds to the
current working step. That is, task navigation is handled by the dynamic UI (or the NAT
component, via voice commands); whereby the VIS component evaluates the extended
task context information provided by the enriched task model to automatically generate
an initial view for the respective task at hand. Moreover, the VIS component reports
high-level user interactions (i.e., feature selection) back to the MUI component. These
may trigger application state changes not related to the visual representation itself, as
well as task transitions. An example for the latter is the request for a speci�c detail view
depending on the overview feature selected.

The VIS component itself comprises several sub-components, as shown in Figure 8.3.
The VisualizationDialogue constitutes the interface to the MUI component � it pro-
vides a generic container that can be placed on a GUI dialog by the interface gen-
erator/XUL interpreter. Within this container, the VisualizationControl manages

166

8.1 E-manual demonstrator

display of initial visual representations as well as re-adaptation in reaction to user inter-
action (feature selection, cf. Section 3.3.5).
Processing and adaptation of graphical content is handled by image providers. This

allows to maintain independence of the VisualizationControl from peculiarities of the
di�erent visual data types. Currently, image provider implementations for raster and
2D vector graphics have been incorporated into the demonstrator. An abstract base
class ImageProvider provides commonly required functionality, in particular, loading
and parsing of XML-encoded CTT task nodes and annotations.

Figure 8.3: (Simpli�ed) class diagram of the e-manual demonstrator's visualization component sup-
porting task-driven adaptation of raster images and SVG vector graphics. A modular design of visual
data type-speci�c image providers allows easy extension of the prototype to other content formats.

Concrete image provider implementations in turn make use of specialized handler
classes and libraries that realize concrete, visual data type-speci�c �Smart-X� display
techniques. Indicated in Figure 8.3 are:

• A combined implementation of the Belt-based Focus & Context technique and
visual attribute manipulation (ImageRegionScaler, cf. Sections 4.3.1 and 4.2.4,
respectively).

• Integration of image-based labeling including remote labeling (LabelHandler, cf.
Section 4.3.2).

• Geometry adaptation of SVG 2D vector graphics (SVGFishEyeView, Section 5.2.2).

• Visual attribute manipulation of SVG graphics (SVGViewer, cf. Section 5.2.3).

167

8 Implementations

The visual output generated by these implementations have been presented by �gures
in the indicated sections already.

Example maintenance task
In order to illustrate the aspects of the e-manual design, a routine maintenance task has
been �eshed out as an example for the demonstrator. It was taken from the printed
reference manual of an LPG/natural gas burner that is part of the actual HVAC system
installed in one of the faculty's buildings. The case study comprises a routine mainte-
nance task, which is setting the fuel value of the burn chamber according to local gas
quality. To accomplish this, the technician has to perform the following steps:

1. Shut down the unit
2. Disconnect electronic power, water and gas supply
3. Unfasten and remove the blower unit
4. Pull o� the short feed pipe to the blower
5. Dismantle the fuel nozzle and remove the old reducing ring
6. Set the burn value by inserting a new reducing ring into the nozzle, depending on

gas quality
7. Re-assemble and re-connect unit in reverse order
8. Start up unit and perform function tests

The graphical CTT notation of this maintenance task is depicted in Figure 2.6 (page 19).
Some of these steps require the lookup of values in tables (e.g., the selection of the
correct reducing ring), while others should provide the user with assembly drawings
or schematics to illustrate the task at hand (e.g., what electric contacts have to be
disconnected). Thus, this brief example is well-suited to illustrate the requirements to
the client application.

Figure 8.4: Initial visual representations for two working steps of an example maintenance task. On
the right an excerpt of the enriched task model is shown that provides the task context information
for the left view.

Figure 8.4 shows the initial visual representation for working steps 2. and 5. of the
above maintenance task, as well as an excerpt of the enriched task model providing
the corresponding task context information. Note how page/feature de�nitions are
annotated by reference; feature relevance values as well as adaptation parameters are

168

8.2 Smart Document displays in Smart Meeting Rooms

annotated directly. In this example, several consecutive tasks share the same default
representation. Some of these also refer to common subsets of depicted assembly parts
(i.e., features), albeit with di�erent emphasis (i.e., feature relevance). Here, the least
common ancestor node is annotated with the information accordingly, thus utilizing the
when aspect captured by the hierarchical task model. Appendix B lists the complete
XML-encoded CTT model as well as a selected page manifest for this maintenance task.

8.2 Smart Document displays in Smart Meeting Rooms

Like in the LFS project, in MuSAMA [MuS09] the principal challenges encountered
within smart environments (cf. Section 2.2.2) have been exposed by an example sce-
nario. Here, the use case comprised a group of domain experts utilizing a smart meeting
room to jointly explore and analyze data with visual means to arrive at a solution for
a speci�c problem. This includes individual activities (e.g., an expert exploring data on
his personal machine), work group scenarios (e.g., a small sub-group discussing interme-
diate results) as well as presentation scenarios (a single presenter imparts information
or �ndings to an audience). As stated in Section 2.2.2 this primarily requires adapta-
tion of visual representations acoording to each user's task at hand. However, a major
additional challenge in regard to smart visual interface utilization in such environments
is how to take advantage of available display areas.

In [RLS11], Radlo� et al. propose a Smart View Management that addresses these
challenges. Instead of attempting to directly integrate di�erent software systems em-
ployed by the users on the device ensemble, their approach focuses on the visual output
of these systems i.e., the views. Their concept comprises a three-tier architecture to dy-
namically distribute views on the available displays in the smart meeting room according
to the users' current work situation:

In a �rst step, views are grouped into so-called view packages. View packages repre-
sent semantically related visual output that should be shown on a single display or at
least close-by displays. Radlo� et al. propose an interactive view package generation
according to three semantic aspects: mode of view usage (presentation to many view-
ers vs. comparison with other views by a single user), robustness of view content (i.e.,
whether the view may be subjected to distortion), as well as viewer stance (all looking
at a single presenter, or towards their own displays). For typical combinations of these
three aspects, their approach provides customizable presets.

The second tier is smart display mapping that comprises the automatic assignment
of view packages to display surfaces. This is realized by the display mapper, a software
component that picks up the basic idea of display mapping presented in [Hei09] but
improves upon the approach described therein in regard to spatial and temporal quality
of the obtained mapping solution. This is achieved by an extended geometric model of
the environment as well as optimized quality tests that incorporate the semantic view
relations implied by the view packages.

The �nal tier is smart view layout. Dynamic mapping of multiple views onto available
displays inevitably a�ects presentation sizes and aspect ratios of individual views as

169

8 Implementations

well. Therefore, view contents need to be laid out dynamically to accommodate for
changes in display area. Radlo� et al. describe a simple force-based approach that is
able to arrange multiple views on a single display according to constraints. This includes
objects or persons occluding parts of the display, presuming they are recognized by the
environment's sensors. It does not, however, address adaptation of contributing visual
representations within the aggregate view temselves.

The proposed framework for smart view management is summarized in Figure 8.5.
For details on operations on each tier, refer to [RLS11].

Figure 8.5: Smart view management as proposed by Radlo� et al. Views from applications (A) and
view grabbers (G) are grouped interactively into view packages to encode semantic relations. View
package con�guration and current environment state are considered in mapping views to display
surfaces. If several views are aggregated on one display (by a meta-renderer), the views are laid out
according to semantics and display characteristics. (Image from [RLS11])

In the following, we will discuss how concepts and techniques developed in the present
thesis contribute to this Smart View Management framework. As of this writing, the
framework design description [RLS11] represents submitted work. Likewise, integration
of concepts and techniques into the framework as proposed here represents ongoing and
planned work.

Task-driven (smart) document layout

On the third tier the smart view management framework only addresses arrangement
of multiple individual views into aggregate views. Contrary to this, we previously pub-
lished an approach to dynamically layout individual content elements within compound,
interactive documents [AHFS08]. The basic idea can be summarized as follows.

A generic document layout is provided by a document template. A template governs
what content element types (text, 2D images, 3D graphics, and video) are part of the
document, and how elements are arranged with respect to each other. Thus a template
captures semantic (selection of content elements and their relations) as well as aesthetic

170

8.2 Smart Document displays in Smart Meeting Rooms

aspects. Document templates are created by a designer/content author and collected
into a template library.

At runtime, documents are laid out depending on available display space and user
interactions. For this, �rst an initial layout is created using constraint-based layout
techniques. Constraints are derived from the document template. The layout engine
matches the template items to the given content and computes how well this content
�ts within the template. If display space is insu�cient, some content elements may
be removed from the document. In a second phase, the initial layout is re�ned using a
force-based approach. Attractive and repulsive forces arrange content elements, whereby
internal and external pressure regulate how content elements are enlarged or shrunk
depending on their relevance.

Details on template design as well as constraint- and force-based layout phases are sub-
ject of Ali's thesis [Ali09]. With respect to contributions of the present thesis, [AHFS08]
discussed an extension to the basic layout approach � task-driven document layout.

Task-driven document layout is a speci�c realization of the basic page/feature con-
cept proposed in Section 3.3: document templates specify a default representation (lay-
out) of a dynamic document. A page annotation thus provides a template selection.
Features determine what concrete content elements should be used to populate the
template during the initial layout. Feature relevance values then serve as parame-
ters to the layout engine to determine (i) what content elements to drop, assuming not
all can be placed due to space constraints; and (ii) the inner pressures of content ele-
ments, a�ecting their relative sizes in the �nal document layout. Figure 8.6 illustrates
the relations between the enriched task model, document layout engine and template
library.

Figure 8.6: Task-driven adaptive document layout. The enriched task model provides a document
template (page) and content elements (features) selection for initial layout. Features relevance
values in�uence the �nal, force-based layout.

171

8 Implementations

In addition to facilitating task-speci�c document layouts, task-based adaptation can
further be applied to individual content elements to account for their relevance and �nal
display size. To this end, adaptation methods are applied according to the elements'
visual data type, cf. Chapters 4�7.

To summarize, our proposed approach to task-driven Smart Document Layout is based
on author-de�ned layout templates and a provision of document content hierarchically
organized according to the enriched task model, cf. blocks �information content� and
�template libraries� in Figure 8.6. The base approach is based on the works of Ali [Ali09],
for which we integrated a task-based extension, see [AHFS08].

Task-driven Document Layout as supplement to Smart View Management

Radlo� et al. [RLS11] in their concept so far deliberately abstain from using templates
and hierarchical content management because these can not be assumed universally
available in ad-hoc environments like Smart Meeting Rooms (cf. Section 2.2.2).

Thus, the core idea here is to use the Smart Document Layout approach to present
a preliminary layout as an initial view, and to iteratively re�ne it whereby dynamic
changes are incorporated. Here, the 'document' is an aggregate view produced by a
meta-renderer. Individual contributing views represent content elements. In particular,
views generated by task-driven applications such as LandVis-Lens (see Section 7.4.1) can
further contribute task-speci�c view properties de�ned by the extended task context.
Dynamic changes then comprise both changes of the user's task at hand as well as
updates to the environment's con�guration e.g., the set of available displays in the device
ensemble and users moving about the room.

In order to contribute to Smart View Management in this manner, our present ap-
proach needs to be modi�ed. This a�ects the following aspects of Smart View Manage-
ment as proposed in [RLS11]:

Task-based grouping of of views: This relates to the �rst tier of Smart View Manage-
ment, view package de�nition, which is currently a manual step. Categorizing
the task at hand (cf. Section 7.4.2) a given view is associated with allows to infer
the overall mode of view (presentation vs. comparison, see above). Information
from the extended task context can here be utilized to (partially) automate se-
lection and customization of view package presents: views associated with tasks
executed in parallel should be grouped into the same package, whereas consecutive
working steps indicate a view currently displayed should be replaced (rather than
juxtaposed) with its successor.

Task-based view layout (I): This relates to the third tier of view management. So far,
Radlo� et al. use a simple force-based layout of views that does not account
for semantics of the view contents. By contrast, information provided by the
task context from which a particular view was generated can be used to in�uence
positioning of individual views on the display area. To this end, the spring-force
models applied for element layout are extended to initially position views with high
task relevance values closer to the center of the display.

172

8.3 Summary

Task-based view layout (II): This, too, relates to the third view management tier.
Available display space can be utilized more e�ectively by adjusting individual
view sizes according to their importance. Here, an approach similar to the pro-
posed for belt-based image distortion (see Section 4.3.1) is applicable: The total
size of the assigned display area as well as the (rectangular) views that must be
positioned and displayed within are given. Based on the relevance values asso-
ciated with views their relative sizes are evaluated. This can be combined with
relevance-driven selection of initial view positions.

Task-based adaptation of view contents: Each view displayed in the smart environ-
ment constitutes a visual representation. Depending on the visual data type of the
underlying content, this representation in and of itself may be adapted in a task-
speci�c way according to the methods and techniques outlined in Chapters 4�7.
For data visualizations � as the most common type of content in the Smart Meeting
Room scenario � in particular, task-driven adaptation can be e�ected using our
proposed DSRM-based framework introduced in Section 7.4.1.

Concrete realizations of these proposed extensions are currently the subject of active
investigation.

8.3 Summary

This chapter brie�y discussed how the concepts and techniques for the task-driven adap-
tation of graphical content have been integrated into concrete software prototypes.
The majority of development e�ort went into a concept demonstrator implementation

for the �e-manual� mobile maintenance support scenario within the LFS project. It
incorporates adaptation methods and �Smart-X� techniques for raster images and SVG
2D vector graphics as introduced in Chapters 4 and 5, respectively.
By contrast, with regard to the MuSAMA project stand-alone proof-of-concept im-

plementations have been developed, in particular, LandVis-Lens as a realization of the
DSRM-based adaptation framework (cf. Section 7.4.1) and a task-based extension to
Smart Document layout. Nonetheless, we here discussed ideas and current works on
the integration of these implementations with a smart view management framework
facilitating smart visual interfaces in smart environments.

173

9 Conclusion and Future Work

9.1 Summary

In the face of today's ever larger data sets and more complex models, the research in
the �eld of Smart Graphics � seeking means to e�ectively and e�ciently communicate
these information � is becoming increasingly important. Development of appropriate,
context-sensitive smart visual interfaces to access and explore graphical content plays
an important role in these e�orts.
The aim of this thesis has been the development of concepts for the automatic gen-

eration of good initial views with respect to the user's task at hand, thereby providing
�smart� user support by reducing the need for manual selection and navigation of con-
tent. A focus has been on applications where visual representations are consumed as a
source of supplemental information in the course of complex work �ows. This requires
the adequate consideration of the visual representation's Context of Use (CoU) as well
as scalable description of graphical content so that adaptation can be suitably e�ected.
A secondary goal of this thesis has been to provide �rst steps toward closing the model-
ing gap between Model-based User Interface Development methods and scalable display
techniques as a contribution to the model-based design of smart visual interfaces.
The results of the present thesis are an basic approach and supporting techniques for

the task-driven adaptation of graphical content within smart visual interfaces. These
shall be brie�y summarized in the following.

As a �rst contribution we proposed a general categorizations of in�uencing fac-
tors into �ve high-level aspect categories. These '5Ws' � what, why, when, where
and for whom� de�ne the context of use of visual representations within Smart Visual
Interfaces.
This categorization is used to derive a classi�cation of graphical content that consti-

tutes the basis for task-speci�c visual representation within smart visual interfaces. In
this thesis, a distinction into four principal visual data types has been proposed
according to the degree of inherent scalability: raster graphics, 2D vector graphics, 3D
graphics, and information visualizations.

The main contribution of this thesis is the development of an approach for automatic
generation of task-speci�c visual representations based on an enriched general (domain)
task model. It comprises two concepts.
The page/feature concept represents a general, data type-independent description

of graphical content as well as task-related aspects of the CoU. It allows to enrich the
general task model with a description of relevant task context information with respect to
scalable visual representations. Pages represent self-contained units of graphical content,

175

9 Conclusion and Future Work

thereby abstracting from the technical peculiarities of the underlying visual data type.
Features describe content elements of a page on a semantic level i.e., represent units
of information that are relevant to a task's communicative goal, while abstracting from
the technical structure/organization of the di�erent visual data type. Feature relevance
is an abstract measure to express the information and visual scale that is appropriate
for the given feature in the context of the task at hand. Relevance values therefore
constitute the basis on which the adaptation of the graphical content is e�ected.
Together, pages, features and feature relevance values are used as the build-

ing blocks for enriching the domain task model with a description of the task
context for visual representations. To this end, speci�c task nodes in the model are
annotated with corresponding de�nitions of pages, features and relevance values. In
doing so, our approach is to specify aspects of the task context hierarchically on di�erent
task scopes, i.e., on di�erent levels of the task decomposition. This sets the approach
presented in this thesis apart from contemporary solutions that are based solely on low-
level tasks. The latter require the full task context be speci�ed for each working step
individually and thus provide no means to exploit causal or temporal relations between
sub-tasks of a composite task.
The second proposed concept of an adaptation pipeline provides the bridge between

the conceptual task context speci�cation in the model and concrete display techniques
used to generate adapted visual representations accordingly. The adaptation pipeline
comprises �ve stages � view selection, geometry, visual attributes, view space and anno-
tations � that allow to e�ect di�erent aspects of visual representations by corresponding
adaption operations. The adaptation process can thus be conceptually distinguished into
a visual data type-speci�c part (stages 1�3) as well as a type-independent part (stages
4�5). Adaptation operators on the pipeline stages are realized by suitable display tech-
niques. To this end, feature relevance values are mapped onto the parameter domains
of the respective technique. Therefore, the adaptation pipeline serves as a general
framework for the integration of existing display techniques for the di�erent
visual data types. Because these display techniques thus de�ne the functional building
blocks of the smart visual interface, we refer to them as �Smart-X�-techniques.

The page-/feature abstraction concept and the adaptation pipeline represent a
general approach to the generation of task-speci�c adapted visual representations for all
visual data types. However, the principles and means by which the page and feature
abstraction are derived from graphical content are, on principle, speci�c to the respective
visual data type. Similarly, how feature relevance values are mapped to adaptation
parameters varies with the concrete display technique employed.
It has been shown in Chapters 4 to 7, however, that the three conceptual aspects page

de�nition, feature speci�cation, and adaptation control (i.e., integration of concrete
�Smart-X� techniques) is indeed feasible for each of the four visual data types. To this
end, adaptation examples were given for each type on every pipeline stage. It has also
been shown how powerful existing display techniques � image-based labeling, di�erent
forms of Focus & Context distortions and importance-driven NPR rendering, to name
but a few � can be integrated into the framework provided by the adaptation pipeline.
In the same way that the speci�cation of the general task model (as a result of domain

176

9.2 Open Questions for Future Research

task analysis) is by necessity a manual task, some aspects of graphical content prepara-
tion and smart visual interface (adaptation) design must be speci�ed manually as well.
It has been argued for each visual data type how this process is supported by suitable
authoring tools and which aspects can be supported by automatic methods. Moreover,
the respective chapters reviewed concrete implementations of authoring tools that have
been developed in the course of this thesis.

Although the proposed page/feature annotation concept in combination with the
adaptation pipeline framework allow to incorporate a wide range of existing display
techniques into the design process of smart visual interfaces without signi�cant mod-
i�cation, some task-speci�c aspects of representation scalability were found to be still
open research questions. Thus as further contributions of this thesis, a number of novel
�Smart-X� techniques covering several di�erent aspects of task-driven adaptation for
the four visual data types have been developed. All are based on features and task-
speci�c feature relevance in line with the proposed page/feature concept. These
are:

• a belt-based raster image distortion technique,
• an image-based space-e�cient remote labeling approach,
• a method to generate exploded view diagrams from vector graphics pages,
• an initial approach to smart circuit schematic representation,
• a general smart lens-based approach to the adaptation of information visualiza-
tions, and

• a systematic approach to task-driven color coding in information visualizations.

Finally, it has been discussed how the works presented here relate to further approaches
pursued in the LFS project [LFSa, LFSb] and MuSAMA research training school �anking
this thesis. In the former a joint e-manual demonstrator has been developed, to which
this thesis contributes the central component of its smart visual interface.

Regarding Smart Environments as the subject of MuSAMA a number of publications
[FTS07, AHFS08, TFS08a, FTSS09] co-authored with school members substantiate the
principal utility of the concepts proposed here. However, there still remain several open
research questions with regard to smart visual interfaces in these environments which are
actively investigated. As of this writing, some continuative concepts and initial results
of this ongoing e�ort have for example been submitted to the Smart Graphics 2011
symposium [RLS11].

Conclusion: The concepts and techniques discussed in this thesis constitute a �rst,
extensible solution for task-driven adaptation of graphical content in smart visual inter-
faces. Using the presented page/feature approach and adaptation pipeline framework
as a basis, several research directions can be pursued from hereon.

9.2 Open Questions for Future Research

One of the most interesting aspects is to consider time-variable content as visual data
types. This includes video streams, dynamic and animated 2D vector and 3D graphics

177

9 Conclusion and Future Work

as well as visualizations of dynamic data sets. So far, videos are used only as source for
2D (still) images.
Integration of time-variable content thus requires extension of the page/feature

concept. It needs to be determined what temporal range of a video stream or scripted
animation comprises the page's content. The default representation of the page then
comprises not only a spatial but also a selection in the temporal domain. The latter is
either a �xed point in time or a speci�c time interval. Similarly, so far features have
been considered primarily as regions of interest in presentation space. It would thus be
interesting to integrate concepts that allow a speci�cation of features in the temporal
domain as well. For example, event-based visualization proposed by Tominski [Tom06]
represents a means to specify time-dependent data characteristics of interest in dynami-
cally changing data sets. Finally, an interesting extension to the basic approach proposed
here would be integrate task-speci�c modi�cation of scripting elements itself in order to
provide temporal adaptation i.e., means to generate task-speci�c animations.
This discussion shows that although temporal dynamics of graphical content has not

been at the focus of the present thesis, corresponding extensions can nonetheless be in-
corporated in line with the proposed approach to hierarchical task context speci�cation
outlined in Chapter 3.

Another idea worth pursuing is a corollary to integration of temporal adaptation. So
far, it has been implied that the correspondence between pages and features is 1 : n,
i.e., multiple features may be de�ned per page for di�erent tasks. This could be ex-
tended to allow for m : 1 correspondence, i.e., one feature is shared between multiple
pages assigned to di�erent tasks. An example is video analysis where one could have
multiple video feeds but a single semantic region of interest (e.g., doorways observed by
surveillance cameras).

Another question that arises is how to track the progress as the user follows the work
�ow. This relates to a traversal of the task nodes in the CTT hierarchy, which must
be detected at runtime. Work so far concentrated mainly on the maintenance scenario
where prescribed procedures with tasks comprising largely sequential working steps are
prevalent. Task navigation in these types of work�ows is easily supported in the smart
visual interface by 'wizzard'-style interaction i.e., providing means to select the previous
or next task, cf. Section 8.1.
In typical exploratory visualization scenarios � as an important use case in Smart

Meeting Rooms � this no longer su�ces. This is due to the vastly increased degrees of
freedom with respect to the set of enabled tasks (i.e., available for starting execution)
as well as the number of possible permutations in which order various analytic tasks are
carried out by the user(s). Instead, it must detected which task from the enabled task
set the user has actually chosen. This challenge is further compounded by the fact that
in ad-hoc environments like Smart Meeting Rooms hierarchical work�ow descriptions
are often not available in the �rst place.
This closely correlates to the problem of user intention analysis, a problem known from

the domain of pro-active assistance systems. A solution thus requires methods to link
the enriched task model with methods used for user intention tracking and inference.

178

9.2 Open Questions for Future Research

First ideas in this regard have been published in cooperation with co-researchers from
the MuSAMA project, see [GFF+07]. However, approaches to address these challenges
in combination with requirements to task-driven adaptation of visual representations are
far from being conclusive and certainly warrant further research.

Currently, preparation of graphical content as well as selection and parametrization
of adaptation operations is a largely manual task. For complex work�ows and intricate
visual representations, specifying large numbers of features, task-speci�c relevance
values and relevance�parameter mappings manually would be a tedious task. Although
Chapters 4�7 pointed out aspects that can bene�t from algorithmic solutions, it would be
useful to include yet further automatisms for both content preparation and speci�cation
of adaptation operations. Interesting aspects for future research in this regard are:

• Providing means for the derivation of the (extended) task context from a high-level
speci�cation of communicative goals. In particular, this includes algorithmic and
rule-based approaches to determine features of a page that exhibit domain-level
semantics, as well as their task-speci�c relevance.

• Support for automatic selection of suitable adaptation operations (e.g., color ad-
justment, rendering styles) according to perceptional and aesthetic considerations.
This requires integration of rule-based expert systems like e.g., [SF91, Krü98].

• Addition of algorithmic methods to adjust task-speci�c feature attributes based
on feature relevance e.g., replacing full feature labels by abbreviations below
a certain relevance using automated text summarization methods [MM99].

• Consideration of in�uencing factors from further CoU aspect categories, character-
istics of the user (for whom) and output devices (where) in particular. The for-
mer aspect is at the focus of current research e�orts within the MuSAMA project
e.g., [LRS10]. Although punctual consideration of where-related aspects has
been done in the present thesis, a far more detailed examination is the focus of
Thiede [Thi10]. We published �rst ideas on the integration of task- and device-
driven adaptation of visualizations in [FTSS09].

In conclusion, it can be stated that Smart Graphics in general and smart visual in-
terface design in particular is an active but also very broad �eld of research. It requires
cooperation between several disciplines including visualization, graphics design, software
engineering and psychology. Due to this broad scope of the problem domain future work
will inevitably identify and address new research questions beyond the scope of the
present thesis. The concepts and techniques proposed in the present thesis constitute a
basis for these future works, as well as providing �rst concrete steps towards dynamic and
smart generation of task-speci�c visual representations, which represents a key aspect of
smart visual interface design.

179

A XML Schema

Listing I � Basic XML data types

These XML data types are used across all solutions developed in the course of this thesis,
including page manifest de�nition, communication between the VisualizationControl
smart visual interface component and the superordinate dynamic UI generator (see Sec-
tion 8.1) and client�labeling component communication, among others.

<?xml ve r s i on=" 1 .0 "?>
<xsd:schema xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema"

targetNamespace=" ht tp : //www.m6c . de"
xmlns=" ht tp : //www.m6c . de"
elementFormDefault=" q u a l i f i e d "
attr ibuteFormDefau l t=" unqua l i f i e d ">

<xsd:annotation>
<xsd:documentation>

This i s the schema d e f i n i t i o n f o r a l l f a c e t t ed , ba s i c and abs t r a c t base
types that are used throughout the HCI components f o r i n t e r−component
communication as we l l as f o r r e s ou r c e metadata d e s c r i p t i o n s .

Created : 2005−11−15 Georg Fuchs

Last e d i t e d : 2011−01−31 Georg Fuchs

</xsd:documentation>
</xsd:annotation>

<!−− ========== Res t r i c t ed / f a c e t t e d numeric types ===================== −−>

<xsd:simpleType name="nonNegativeDouble ">
<xsd:restriction base=" xsd :doub le ">

<xsd:minInclusive value=" 0 .0 "/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="normalizedWeightType">
<xsd:restriction base=" xsd :dec ima l ">

<xsd:minInclusive value=" 0 .0 "/>
<xsd:maxInclusive value=" 1 .0 "/>

</xsd:restriction>
</xsd:simpleType>

<!−−− ========= Enumeration/ l i s t t ypes ================================ −−>

<xsd:simpleType name="doubleListType ">
<xsd : l i s t itemType=" xsd :doub le "/>

</xsd:simpleType>

<xsd:simpleType name="pageContentFormat">
<xsd:restriction base=" x s d : s t r i n g ">

<xsd:enumeration value="RASTER"/>
<xsd:enumeration value="SVG"/>
<xsd:enumeration value="X3D"/>

</xsd:restriction>

181

A XML Schema

</xsd:simpleType>

<!−−− ========= Color−r e l a t e d types =================================== −−>

<xsd:simpleType name="ColorCodeType">
<xsd:restriction base=" x s d : s t r i n g ">

<xsd:pattern value=" (0x) ?[0−9A−F]{6} "/>
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="RGBAColorType">
<xsd:simpleContent>

<xsd:extension base="ColorCodeType">
<xsd:attribute name="alpha " type="normalizedWeightType" use=" opt i ona l "

d e f au l t=" 1 .0 "/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

<!−−− ========= Font system types ===================================== −−>

<xsd:simpleType name="FontAlignEnumType">
<xsd:restriction base=" x s d : s t r i n g ">

<xsd:enumeration value=" l e f t "/>
<xsd:enumeration value=" r i gh t "/>
<xsd:enumeration value=" cente r "/>
<xsd:enumeration value=" l ead ing "/>
<xsd:enumeration value=" t r a i l i n g "/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="FontDefType">
<xsd:attribute name=" type" type=" x s d : s t r i n g " use=" requ i r ed "/>
<xsd:attribute name=" s i z e " type=" xsd :nonNegat ive Integer " use=" opt i ona l "

d e f au l t="10"/>
<xsd:attribute name=" a l i g n " type="FontAlignEnumType" use=" opt i ona l "

d e f au l t=" l e f t "/>
<xsd:attribute name="bold " type=" xsd :boo l ean "

use=" opt i ona l " d e f au l t=" f a l s e "/>
<xsd:attribute name=" i t a l i c " type=" xsd :boo l ean "

use=" opt i ona l " d e f au l t=" f a l s e "/>
</xsd:complexType>

<!−−− ========= 2D/3D geometry types & common elements ================ −−>

<xsd:element name="_AbstractGeometry" abs t r a c t=" true "/>

<xsd:element name="_PointGeometry"
abs t r a c t=" true " subst i tut ionGroup="_AbstractGeometry"/>

<xsd:element name="_LineGeometry"
abs t r a c t=" true " subst i tut ionGroup="_AbstractGeometry"/>

<xsd:element name="_AreaGeometry"
abs t r a c t=" true " subst i tut ionGroup="_AbstractGeometry"/>

<xsd:complexType name=" IntegerPointType ">
<xsd:attribute name="x" type=" x sd : i n t " use=" requ i r ed "/>
<xsd:attribute name="y" type=" x sd : i n t " use=" requ i r ed "/>
<xsd:attribute name="z" type=" x sd : i n t " use=" opt i ona l " d e f au l t="0"/>

</xsd:complexType>

<xsd:simpleType name="DecimalPointType">
<xsd:restriction base="doubleListType ">
<xsd:minLength value="2"/>

182

<xsd:maxLength value="3"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:element name="point " type=" IntegerPointType "
subst i tut ionGroup="_PointGeometry"/>

<xsd:element name=" coo rd ina t e s " type="DecimalPointType"
subst i tut ionGroup="_PointGeometry"/>

<xsd:element name=" ver tex " type="DecimalPointType"
subst i tut ionGroup="_PointGeometry"/>

<xsd:complexType name="LineGeometryType">
<xsd:sequence>

<xsd:element r e f="_PointGeometry"/>
<xsd:element r e f="_PointGeometry"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="PolylineGeometryType">
<xsd:sequence>

<xsd:element r e f="_PointGeometry" minOccurs="2" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:element name=" l i n e " type="LineGeometryType"
subst i tut ionGroup="_LineGeometry"/>

<xsd:element name=" po l y l i n e " type="PolylineGeometryType"
subst i tut ionGroup="_LineGeometry"/>

<xsd:complexType name="RectangleGeometryType">
<xsd:attribute name="x" type=" x sd : i n t " use=" requ i r ed "/>
<xsd:attribute name="y" type=" x sd : i n t " use=" requ i r ed "/>
<xsd:attribute name="width" type=" xsd :nonNegat ive Integer "

use=" opt i ona l " d e f au l t="1"/>
<xsd:attribute name=" he ight " type=" xsd :nonNegat ive Intege r "

use=" opt i ona l " d e f au l t="1"/>
</xsd:complexType>

<xsd:complexType name="Rectangle2ptGeometryType">
<xsd:sequence>

<xsd:element r e f="_PointGeometry"/>
<xsd:element r e f="_PointGeometry"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="TriangleGeometryType">
<xsd:sequence>

<xsd:element r e f="_PointGeometry" minOccurs="3" maxOccurs="3"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PolygonGeometryType">
<xsd:sequence>

<xsd:element r e f="_PointGeometry" minOccurs="3" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ComplexPolygonGeometryType">
<xsd:sequence>

<xsd:element name="outerRing " type="PolygonGeometryType"/>
<xsd:element name=" innerRing " type="PolygonGeometryType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

183

A XML Schema

</xsd:complexType>

<xsd:complexType name="CircleGeometryType">
<xsd:sequence>

<xsd:element r e f="_PointGeometry"/>
</xsd:sequence>
<xsd:attribute name=" rad iu s " type="nonNegativeDouble "/>

</xsd:complexType>

<xsd:complexType name="Ell ipseGeometryType">
<xsd:sequence>

<xsd:element r e f="_PointGeometry"/>
<xsd:element name=" radiusX" type="nonNegativeDouble "/>
<xsd:element name=" radiusY" type="nonNegativeDouble "/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Listing II � XML Schema for raster page manifests

<?xml ve r s i on=" 1 .0 "?>
<xsd:schema xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema"

targetNamespace=" ht tp : //www.m6c . de"
xmlns=" ht tp : //www.m6c . de"
elementFormDefault=" q u a l i f i e d "
attr ibuteFormDefau l t=" unqua l i f i e d ">

<!−− Bring in the components from the ba s i c d e f i n i t i o n schema −−>
<xsd:include schemaLocation="BasicDatatypes . xsd"/>

<!−− ===
The f ea tu r e mask d e f i n i t i o n
=== −−>

<xsd:element name=" f e a tu r e ">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="polygon" type="ComplexPolygonGeometryType"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name=" r e c t ang l e " type="RectangleGeometryType"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name=" t r i a n g l e " type="TriangleGeometryType"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name=" c i r c l e " type="CircleGeometryType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

<xsd:attribute name=" id " type="xsd:ID"/>
<xsd:attribute name=" l a b e l " type=" x s d : s t r i n g "/>
<xsd:attribute name=" co l o r " type="ColorCodeType"/>

</xsd:complexType>
</xsd:element>

<xsd:element name=" f e a t u r eL i s t ">
<xsd:complexType>

<xsd:sequence>
<xsd:element r e f=" f e a tu r e " minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="background" type="ColorCodeType"

use=" opt i ona l " d e f au l t="0x000000"/>
<xsd:attribute name="nonFeature " type="ColorCodeType"

184

use=" opt i ona l " d e f au l t="0xFFFFFF"/>
</xsd:complexType>

</xsd:element>

<!−− ===
The page mani fes t i s a combination o f the re f e r ence content resource
(e . g . , a r a s t e r image) , a d e f a u l t v iewport (r ec tangu la r image reg ion)
s e l e c t i on , a l i s t o f f e a t u r e d e f i n i t i o n s
=== −−>

<xsd:element name="pageMetadata">
<xsd:complexType>

<xsd:sequence>
<xsd:element name=" contentResource " type=" xsd :no rma l i z edSt r ing "/>
<xsd:element name=" defau l tViewport " type="RectangleGeometryType"

minOccurs="0" maxOccurs="1"/>
<xsd:element r e f=" f e a t u r eL i s t "/>
<xsd:element r e f=" t a s kL i s t " minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="symbolicName" type=" xsd : token " use=" requ i r ed "/>
<xsd:attribute name=" type" type="pageContentFormat"

use=" opt i ona l " d e f au l t="RASTER"/>
</xsd:complexType>

</xsd:element>
</xsd:schema>

185

B Enriched Task Model Example

Listing I � Enriched task model

<?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
<tm:TaskModel id=" id11096072294040 " xmi :ve r s i on=" 2 .0 "

xmlns:xmi=" ht tp : //www. omg . org /XMI"
xmlns:tm=" ht tp : //wwwswt . in f o rmat ik . uni−ro s tock . de/ u r i s /m6c/ taskmodel "
xmlns:m6c=" ht tp : //www.m6c . de">

<tm:root id=" id11096072327322 " name=" Le i s t ung sk l a s s e e i n s t e l l e n "
ch i l d o rd e r="1>>2>>3">

<!−− Optional d e f a u l t adapta t ion opera t ions . Beware t ha t t h i s causes a l l
VisPages with at l e a s t a c t i v e f e a t u r e to be modi f ied accord ing l y ! −−>

<m6c:DefaultEffects>
<m6c:Effect type="Di s to r t ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 5 1 . 0 , 2 . 0</m6c:Mapping>
</m6c:Effect>
<m6c:Effect type="Tint ing ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 0 1 . 0 , 0 . 5</m6c:Mapping>
</m6c:Effect>

</m6c:DefaultEffects>
<tm:subtask id=" id1109607464129281 " name=" Sch r i t t 1"

desc="Gas−Odor ie ran lage aus s cha l t en " ch i l d o rd e r="1>>2">
<tm:subtask id=" id114975231258247 "

name=" Sch r i t t 1 . 1 "
desc="Strom− und Gasversorgung des He i z k e s s e l s unterbrechen ">

<xmi:property key="keyword" value=" aus s cha l t en "/>
<m6c:VisualizationPage resourcename="Abb07"/>
<m6c:ActiveFeature id=" feature_3 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_4 " importance=" 0 .7 "/>
<m6c:ActiveFeature id=" feature_5 " importance=" 0 .3 "/>
<m6c:Effect type="Di s to r t ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 5 1 . 0 , 2 . 0</m6c:Mapping>
</m6c:Effect>
<m6c:Effect type="ColorSaturat ion ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 5 1 . 0 , 1 . 0</m6c:Mapping>
</m6c:Effect>

</tm:subtask>

<tm:subtask id=" id114975231923851 " name=" Sch r i t t 1 . 2 "
desc="Wasseranschluss unterbrechen , an s ch l i e s s end Schlauch
abschrauben">

<xmi:property key="keyword" value="Bedienschrank "/>
<m6c:VisualizationPage resourcename="Abb03"/>
<m6c:ActiveFeature id=" feature_1 " importance=" 0 .7 "/>
<m6c:ActiveFeature id=" feature_2 " importance=" 0 .7 "/>
<m6c:ActiveFeature id=" feature_3 " importance=" 1 .0 "/>
<m6c:ViewSelection x="170" y="140" width="120" he ight="125"/>
<m6c:Effect type="Tint ing ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 0 1 . 0 , 0 . 4</m6c:Mapping>
</m6c:Effect>

</tm:subtask>
</tm:subtask>

<tm:subtask id=" id1109607534528294 " name=" Sch r i t t 2"

187

B Enriched Task Model Example

desc="Messing−Reduz ie r r ing wechseln "
ch i l d o rd e r="1>>2>>3>>4>>5>>6>>7">

<m6c:VisualizationPage resourcename="Abb29L"/>

<tm:subtask id=" id1109607591424327 " name=" Sch r i t t 2 . 1 "
desc="Die zwei Kreuzsch l i t z s chrauben am Geblaeses tutzen

und d i e Sechskantschraube am Geb lae s eha l t e r l o e s en "
category=" i n t e r a c t i o n ">

<xmi:property key="keyword" value="Geblaeses tutzen "/>
<xmi:property key="keyword" value="Geb lae s eha l t e r "/>
<m6c:ActiveFeature id=" feature_1 " importance=" 0 .8 "/>
<m6c:ActiveFeature id=" feature_5 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_6 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_7 " importance=" 0 .2 "/>
<m6c:Effect type="Di s to r t ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 5 1 . 0 , 2 . 0</m6c:Mapping>
</m6c:Effect>
<m6c:Effect type="Tint ing ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 0 1 . 0 , 0 . 7 5</m6c:Mapping>
</m6c:Effect>

</tm:subtask>

<tm:subtask id=" id1109607626895342 " name=" Sch r i t t 2 . 2 "
desc="Geblaese abz iehen " category=" i n t e r a c t i o n ">

<xmi:property key="keyword" value="Geblaese "/>
<m6c:ActiveFeature id=" feature_1 " importance=" 0 .7 "/>
<m6c:ActiveFeature id=" feature_3 " importance=" 0 .6 "/>
<m6c:ActiveFeature id=" feature_5 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_6 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_7 " importance=" 0 .4 "/>
<m6c:ActiveFeature id=" feature_9 " importance=" 0 .5 "/>
<m6c:ActiveFeature id=" feature_11 " importance=" 1 .0 "/>
<m6c:Effect type="Di s to r t ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 5 1 . 0 , 2 . 0</m6c:Mapping>
</m6c:Effect>
<m6c:Effect type="Tint ing ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 0 1 . 0 , 0 . 7 5</m6c:Mapping>
</m6c:Effect>

</tm:subtask>

<tm:subtask id=" id1109607626895342 " name=" Sch r i t t 2 . 3 "
desc="Geblaeses tutzen abziehen " category=" i n t e r a c t i o n ">

<xmi:property key="keyword" value="Geblaeses tutzen "/>
<m6c:VisualizationPage resourcename="Abb29R">

<m6c:ActiveFeature id=" feature_1 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_3 " importance=" 0 .8 "/>

</m6c:VisualizationPage>
</tm:subtask>
<tm:subtask id=" id1109607626895342 " name=" Sch r i t t 2 . 4 "

desc="Messing−Reduz i e r r ing herausnehmen" category=" i n t e r a c t i o n ">
<xmi:property key="keyword" value="Messing−Reduz ie r r ing "/>
<m6c:VisualizationPage resourcename="Abb29R">

<m6c:ActiveFeature id=" feature_1 " importance=" 0 .5 ">
<m6c:Effect type="Di s to r t ">

<m6c:Mapping type=" s tepwi s e ">
0 . 0 , 1 . 0 0 . 5 , 1 . 5 0 . 7 5 , 2 . 0

</m6c:Mapping>
</m6c:Effect>
<m6c:Effect type="ColorSaturat ion ">

<m6c:Mapping type=" s tepwi s e ">
0 . 0 , 0 . 0 0 . 5 , 0 . 7 5 0 . 7 5 , 1 . 0

</m6c:Mapping>
</m6c:Effect>

188

</m6c:ActiveFeature>
<m6c:ActiveFeature id=" feature_2 " importance=" 1 .0 ">

<m6c:Effect type="ColorSaturat ion ">
<m6c:Mapping type=" s tepwi s e ">0 . 0 , 0 . 0 0 . 5 , 1 . 0</m6c:Mapping>

</m6c:Effect>
</m6c:ActiveFeature>

</m6c:VisualizationPage>
</tm:subtask>

<tm:subtask id=" id1109607626895342 " name=" Sch r i t t 2 . 5 "
desc="Neuen Messing−Reduz ie r r ing nach Tabe l l e auswaehlen und

mit O−Ring e i n s e t z en . Der O−Ring hat dabei ke ine
Dichtungs funkt ion . "

category=" i n t e r a c t i o n ">
<xmi:property key="keyword" value="O−Ring"/>
<xmi:property key="keyword" value="Messing−Reduz ie r r ing "/>
<m6c:VisualizationPage resourcename="Abb29R">

<m6c:ActiveFeature id=" feature_1 " importance=" 0 .5 "/>
<m6c:ActiveFeature id=" feature_2 " importance=" 0 .8 "/>
<m6c:ActiveFeature id=" feature_5 " importance=" 1 .0 "/>

</m6c:VisualizationPage>
</tm:subtask>

<tm:subtask id=" id1109607777164547 " name=" Sch r i t t 2 . 6 "
desc="Geblaeses tutzen wieder au f s e t z en und dabei auf

e inwandf re i en S i t z der Gummidichtung achten "
category=" i n t e r a c t i o n ">

<xmi:property key="keyword" value="Geblaeses tutzen "/>
<xmi:property key="keyword" value="Gummidichtung"/>
<m6c:VisualizationPage resourcename="Abb29R">

<m6c:ActiveFeature id=" feature_1 " importance=" 0 .9 "/>
<m6c:ActiveFeature id=" feature_3 " importance=" 0 .8 "/>
<m6c:ActiveFeature id=" feature_4 " importance=" 1 .0 "/>

</m6c:VisualizationPage>
</tm:subtask>

<tm:subtask id=" id1149754788082251 " name=" Sch r i t t 2 . 7 "
desc="Geblaese wieder au f s e t z en und mit den zwei

Kreuzsch l i t z s chrauben und der Sechskantschraube
verschrauben "

category=" i n t e r a c t i o n ">
<xmi:property key="keyword" value="Geblaese "/>
<m6c:ActiveFeature id=" feature_1 " importance=" 0 .7 "/>
<m6c:ActiveFeature id=" feature_3 " importance=" 0 .6 "/>
<m6c:ActiveFeature id=" feature_5 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_6 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_7 " importance=" 0 .4 "/>
<m6c:ActiveFeature id=" feature_9 " importance=" 0 .5 "/>
<m6c:ActiveFeature id=" feature_11 " importance=" 1 .0 "/>
<m6c:Effect type="Di s to r t ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 5 1 . 0 , 2 . 0</m6c:Mapping>
</m6c:Effect>
<m6c:Effect type="Tint ing ">

<m6c:Mapping type=" l i n e a r ">0 . 0 , 0 . 0 1 . 0 , 0 . 7 5</m6c:Mapping>
</m6c:Effect>

</tm:subtask>
</tm:subtask>

<tm:subtask id=" id1109607552639306 " name=" Sch r i t t 3"
desc="Strom− und Gasversorgung wieder e i n s cha l t e n "
category=" i n t e r a c t i o n ">

<xmi:property key="keyword" value=" Inbetriebnahme"/>
<xmi:property key="keyword" value="Reg l e ra r t "/>

189

B Enriched Task Model Example

<m6c:VisualizationPage resourcename="Abb07">
<m6c:ActiveFeature id=" feature_3 " importance=" 1 .0 "/>
<m6c:ActiveFeature id=" feature_4 " importance=" 0 .7 "/>
<m6c:ActiveFeature id=" feature_5 " importance=" 0 .3 "/>

</m6c:VisualizationPage>
</tm:subtask>

</tm:root>
</tm:TaskModel>

Listing II � Example raster page manifest

<?xml ve r s i on=" 1 .0 " encoding="utf−8"?>
<pageMetadata symbolicName="Abb29L_noLabels"

type="RASTER"
xmlns=" ht tp : //www.m6c . de">

<imageFilename>Abb29L_noLabels . png</imageFilename>
<featureList background="0x000000" nonFeature="0xFFFFFF">

<feature c o l o r="0xFFFF0000" id=" feature_1 " l a b e l="Blower">
<polygon>

<points>
338 ,199 312 ,199 307 ,204 307 ,419 312 ,424 339 ,424 346 ,419 346 ,203
341 ,199

</points>
</polygon>

</ feature>
<feature c o l o r="0xFF0000FF" id=" feature_2 " l a b e l="Short Feed Pipe">

<polygon>
<points>

306 ,211 270 ,210 249 ,215 217 ,215 200 ,219 192 ,226 193 ,235 201 ,243
216 ,247 227 ,248 249 ,247 270 ,250 307 ,251

</points>
</polygon>

</ feature>
<feature c o l o r="0xFFFF00FF" id=" feature_3 " l a b e l="Rubber Dampener">

<polygon>
<points>

300 ,383 299 ,434 351 ,433 352 ,383 347 ,383 346 ,427 306 ,427 305 ,383
</points>

</polygon>
</ feature>
<feature c o l o r="0xFFFF8040" id=" feature_4 " l a b e l="Reducing Ring">

<rectangle x="227" width="21" y="216" he ight="31"/>
</ feature>
<feature c o l o r="0xFF0080C0" id=" feature_5 " l a b e l=" Bo i l e r Body">

<rectangle x="262" width="38" y="373" he ight="135"/>
</ feature>
<feature c o l o r="0xFF808000" id=" feature_6 " l a b e l="Fastening Screws (upper) ">

<rectangle x="290" width="10" y="237" he ight="10"/>
<rectangle x="290" width="12" y="206" he ight="7"/>

</ feature>
<feature c o l o r="0xFF008000" id=" feature_7 " l a b e l="Fastening Screws (lower) ">

<rectangle x="302" width="9" y="461" he ight="17"/>
</ feature>
<feature c o l o r="0xFFDF9B03" id=" feature_8 " l a b e l="Burn Chamber">

<polygon>
<points>

210 ,202 137 ,202 138 ,301 200 ,301 200 ,292 260 ,291 257 ,284 251 ,282
227 ,281 220 ,278 217 ,272 218 ,212 215 ,206

</points>
</polygon>

</ feature>
<feature c o l o r="0xFF000080" id=" feature_9 " l a b e l="Blower Journal ">

<polygon>

190

<points>
306 ,290 297 ,297 298 ,332 307 ,336</points>

</polygon>
</ feature>
<feature c o l o r="0xFF800000" id=" feature_10 " l a b e l="Gas Feed Pipe">

<polygon>
<points>

310 ,182 311 ,68 308 ,55 299 ,42 284 ,34 274 ,31 138 ,31 128 ,22 279 ,23
292 ,27 303 ,34 311 ,43 317 ,54 318 ,67 319 ,182 321 ,183 322 ,199 313 ,200
308 ,202 308 ,183

</points>
</polygon>

</ feature>
<feature c o l o r="0xFFFF0001" id=" feature_11 " l a b e l="Blower Bracket ">

<polygon>
<points>

350 ,379 351 ,432 299 ,432 299 ,502 302 ,502 303 ,439 357 ,438 356 ,379
</points>

</polygon>
</ feature>

</ featureList>
</pageMetadata>

191

Bibliography

[AA05] Natalia Andrienko and Gennady Andrienko: Exploratory Analysis of Spatial and
Temporal Data � A Systematic Approach. Springer-Verlag, December 2005. ISBN
3-540-25994-5.

[AASRS03] R. Abi-Aad, D. Sinnig, T. Radhakrishnan and A. Se�ah: CoU: Context of Use
Model for User Interface Design. In Proceedings of HCI International 2003, vol-
ume 4, (pp. 8�12), 2003.

[ABF+06] Marco Attene, Silvia Biasotti, Bianca Falcidieno, Michela Mortara, Giuseppe
Patanè and Michela Spagnuolo: Topological, Geometric and Structural Approaches
to Enhance Shape Information. In Proceedings of Eurographics Italian Chapter,
(pp. 7�13). Catania (I), 22-24 Feb 2006.

[AD67] J. Annett and K.D. Duncan: Task Analysis and Training Design. Journal of
Occupational Psychology, volume 41:211�221, 1967.

[AE06] E.H.L. Aarts and J.L. Encarnação: True Visions: The Emergence of Ambient
Intelligence. Springer, 2006.

[AES05] R. Amar, J. Eagan and J. Stasko: Low-level components of analytic activity in
information visualization. In Proc. IEEE Symposium on Information Visualization
(InfoVis), (pp. 111�117), 2005.

[AFS06] Marco Attene, Bianca Falcidieno and Michela Spagnuolo: Hierarchical mesh seg-
mentation based on �tting primitives. Vis. Comput., volume 22(3):181�193, 2006.
ISSN 0178-2789.

[AHFS08] Kamran Ali, Knut Hartmann, Georg Fuchs and Heidrun Schumann: Adaptive
Layout for Interactive Documents. In Proc. 9th International Symposium on Smart
Graphics (SG 2008) (edited by Andreas Butz, Brian Fischer, Antonio Krüger,
Patrick Oliver and Marc Christie), volume LNCS 5166, (pp. 247�254). Springer
Verlag, Rennes, France, August 27th - 29th 2008. ISBN 978-3-540-85410-4. ISSN
0302-9743. Received Best Short Paper Award.

[AHS05] K. Ali, K. Hartmann and Th. Strothotte: Label Layout for Interactive 3D Illus-
trations. Journal of WSCG, volume 13(1�3):1�8, 2005.

[AKM+06] M. Attene, S. Katz, M. Mortara, G. Patanè, M. Spagnuolo and A. Tal: Mesh
Segmentation - A Comparative Study. IEEE International Conference on Shape
Modeling and Applications (SMI'06), volume 0:7, 2006.

[Ali09] Kamran Ali: Adaptive Layout for interactive Documents. PhD Thesis, University
of Rostock, 2009.

[Alm06] João Paulo Andrade Almeida: Model-Driven Design of Distributed Applications.
CTIT Ph.D.-Thesis Series, No. 06-85 Telematica Instituut Fundamental Research
Series , No. 018 (TI/FRS/018), Telematica Instituut, University of Twente, En-
schede, The Netherlands, 2006.

193

Bibliography

[APH+03] Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Je� Klingner,
Pat Hanrahan and Barbara Tversky: Designing E�ective Step-By-Step Assembly
Instructions. In SIGGRAPH 2003, (pp. 828�837), July 2003.

[ARSF07a] Marco Attene, Francesco Robbiano, Michela Spagnuolo and Bianca Falcidieno:
Part-based Annotation of Virtual 3D Shapes. In Proceedings of Cyberworlds '07,
spec. sess. on NASAGEM workshop, (pp. pp. 427�436). IEEE Computer Society
Press, 2007.

[ARSF07b] Marco Attene, Francesco Robbiano, Michela Spagnuolo and Bianca Falcidieno:
Semantic Annotation of 3D Surface Meshes based on Feature Characterization.
Lecture Notes in Computer Science, volume Vol. 4816 (SAMT'07 Procs.):pp. 126�
139, 2007.

[AS04] R. Amar and J. Stasko: A Knowledge Task-Based Framework for Design and
Evaluation of Information Visualizations. In IEEE Symposium onInformation Vi-
sualization (INFOVIS 2004), (pp. 143�150). IEEE, Austin, TX, 2004. ISBN 0-
7803-8779-3. ISSN 1522-404X. Best Paper.

[AS07] S. Avidan and A. Shamir: Seam carving for content-aware image resizing. In
International Conference on Computer Graphics and Interactive Techniques. ACM
Press New York, NY, USA, 2007.

[BB87] Tommaso Bolognesi and Ed Brinksma: Introduction to the ISO Speci�cation Lan-
guage LOTOS. Computer Networks and ISDN Systems, volume 14(1):25�59, 1987.
Appeared also in: P. H. J. van Eijk, C. A. Vissers and M. Diaz (Editors), The
Formal Description Technique LOTOS, Elsevier Science Publishers B. V., (North-
Holland), 1989.

[BB98] G. Badros and A. Borning: The Cassowary linear arithmetic constraint solving
algorithm: Interface and implementation. Technical Report UW-CSE-98-06-04,
University of Washington, Seattle, Washington, June 1998.

[BC06] Jeanette Bautista and Giuseppe Carenini: An Integrated TaskBased Framework
for the Design and Evaluation of Visualizations to Support Preferential Choice. In
Proceedings AVI'06, (pp. 217�224). ACM, Venezia, Italy, May 23�26 2006.

[BDF+06] Norman Biehl, Antje Düsterhöft, Peter Forbrig, Georg Fuchs, Daniel Reichart and
Heidrun Schumann: Advanced Multi-Modal User Interfaces for Mobile Devices -
Integration of Visualization, Speech Interaction and Task Modeling. In Proceedings
17th IRMA International Conference. Washington D.C., USA, May 21st-24th 2006.
(Short Paper).

[Ben00] Todd Bentley: Task Modelling Review of Methods, Tools, and Other. Techni-
cal Report CSIRO/MIS 2000/155, Swinburne University of Technology / CSIRO
Mathematical and Information Sciences, Melbourne, Australia, August 2000.

[BEPW00] Klaus Backhaus, Bernd Erichson, Wul� Plinke and Rolf Weiber: Multivariante
Analysemethoden: eine anwendungsorientierte Einführung. 9. "uberarbeitete und
erweiterte Au�age edition. Springer Verlag, Berlin, 2000.

[Ber82] Jacques Bertin: Graphische Darstellungen und die graphische Weiterverarbeitung
der Information. de Gruyter Berlin, 1982. Übersetzt und bearbeitet von Wolfgang
Scharfe.

[BG05] Stefan Bruckner and Eduard Gröller: VolumeShop: An Interactive System for
Direct Volume Illustration. In Proc. IEEE Visualization Conference, (p. 85). IEEE
Computer Society, Los Alamitos, CA, USA, 2005. ISBN 0-7803-9462-3.

194

Bibliography

[BHLT06] T. Bray, D. Hollander, A. Layman and R. Tobin: Namespaces in XML 1.0 (Second
Edition), 2006.
http://www.w3.org/TR/xml-names/

[BJR00] Grady Booch, Ivar Jacobson and Jim Rumbaugh: OMG Uni�ed Modeling Lan-
guage (UML) Speci�cation, March 2000.

[BKO00] Andreas Butz, Antonio Krüger and Patrick Olivier (editors): Proc. Smart Graphics
� Papers from the AAAI Spring Symposium (Technical Report SS-00-04), 2000.
ISBN 978-1-57735-110-8.

[BMPW00] O. Buyukkokten, H. G. Molina, A. Paepcke and T. Winograd: Power Browser:
E�cient Web Browsing for PDAs. In Proc. of the Conf. on Human Factors in
Computing Systems, CHI'00, (pp. 430�437), 2000.

[Bre94] C.A. Brewer: Color Use Guidelines for Mapping and Visualization. In Visualization
in Modern Cartography, (pp. 123�147). Elseview Science, Tarrytown, NY, 1994.

[Bre99] C.A. Brewer: Color Use Guidelines for Data Representation. In Proc. of the Section
on Statistical Graphics, (pp. 55�60). American Statistical Association, Alexandria,
VA, 1999.

[BRS01] S. Beckhaus, F. Ritter and T. Strothotte: Guided exploration with dynamic poten-
tial �elds: the CubicalPath System. Computer Graphics Forum, volume 20(4):201�
210, December 2001.

[BRT95] L. Bergman, B. E. Rogowitz and L. A. Treinish: A Rule-based Tool for Assisting
Colormap Selection. In Proc. of IEEE Visualization, (pp. 118�125), 1995.

[BSF+94] Eric A. Bier, Maureen C. Stone, Ken Fishkin, William Buxton and Thomas Baudel:
A Taxonomy of See-Through Tools. In Proceedings of CHI'94 conference, (pp. 358�
364). Addison-Wesley, April 1994.

[BSP+93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton and Tony D. DeRose:
Toolglass and Magic Lenses: The See-Through Interface. Computer Graphics,
volume 27(Annual Conference Series):73�80, 1993.

[BSP97] E. Bier, M. Stone and K. Pier: Enhanced Illustration Using Magic Lens Filters.
Computer Graphics and Applications, IEEE, volume 17(6):62�70, November/De-
cember 1997. ISSN 0272-1716.

[BTM+01] Greg J. Badros, Jojada J. Tirtowidjojo, Kim Marriott, Bernd Meyer, Will Portnoy
and Alan Borning: A constraint extension to scalable vector graphics. In WWW
'01: Proceedings of the 10th international conference on World Wide Web, (pp.
489�498). ACM, New York, NY, USA, 2001. ISBN 1-58113-348-0.

[BZM+04] I. Bruder, A. Zeitz, H. Meyer, B. Hänsel and A. Heuer: FlyingDoc: An Architecture
for Distributed, User-friendly, and Personalized Information Systems. In 20th Int.
Conf. on Data Engineering, (p. 849), 2004.

[Cas91] S. M. Casner: A Task-Analytic Approach to the Automated Design of Graph
Presentations. In ACM Transactions on Graphics, volume 10, (pp. 111�151), April
1991.

[CCF95] M. Sheelagh T. Carpendale, David J. Cowperthwaite and F. David Fracchia: 3-
Dimensional Pliable Surfaces: For the E�ective Presentation of Visual Information.
In ACM Symposium on User Interface Software and Technology, (pp. 217�226),
1995.

195

http://www.w3.org/TR/xml-names/

Bibliography

[CCT01] Gaëlle Calvary, Joëlle Coutaz and David Thevenin: A Unifying Reference Frame-
work for the Development of Plastic User Interfaces. In Engineering for Human-
Computer Interaction (edited by Murray Little and Laurence Nigay), Lecture Notes
in Computer Science, volume 2254, (pp. 173�192). Springer Berlin / Heidelberg,
2001. ISBN 978-3-540-43044-5.

[CCT+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouil-
lon and Jean Vanderdonckt: A Unifying Reference Framework for multi-target user
interfaces. Interacting with Computers, volume 15(3):289�308, June 2003. ISSN
0953-5438. Computer-Aided Design of User Interface.

[CD05] D. Cook and S.K. Das: Smart Environments. Wiley-Interscience, 2005.

[Che10] Chaomei Chen: Information visualization. Wiley Interdisciplinary Reviews: Com-
putational Statistics, volume 2(4):387�403, 2010.

[Chi00] Ed H. Chi: A Taxonomy of Visualization Techniques using the Data State Refer-
ence Model. In INFOVIS, (pp. 69�76), 2000.

[Cla99] James Clark: XSL Transformations (XSLT), Version 1.0, W3C Recommendation.
http://www.w3.org/TR/xslt, 1999.

[CM97] Stuart K. Card and Josh Mackinlay: The structure of the information visualization
design space. Information Visualization, IEEE Symposium on, volume 0:92, 1997.

[CMN83] Stuart K. Card, T.P. Moran and A. Newell: The psychology of human-computer
interaction. Erlbaum, 1983.

[CMS99] Stuart K. Card, Jock D. Mackinlay and Ben Shneiderman: Readings in information
visualization: using vision to think. The Morgan Kaufmann series in interactive
technologies, Morgan Kaufmann, San Francisco, Calif., 1999.

[Con03] L. L. Constantine: Canonical Abstract Prototypes for Abstract Visual and Inter-
action Design. In Proceedings DSV-IS (edited by J. A. Jorge et al.), (pp. 1�15).
LNCS 2844, Springer Verlag, Berlin, 2003.

[CR98] Ed Huai-hsin Chi and John T. Riedl: An Operator Interaction Framework for Visu-
alization Systems. In Proceedings IEEE Symposium on Information Visualization
1998, (pp. 63�70), 1998.

[Dam97] Andries van Dam: Post-WIMP User Interfaces. Communications of the ACM,
volume 40(2):63�67, February 1997. ISSN 0001-0782.

[Den99] B. D. Dent: Cartography, Thematic Map Design. �fth edition. McGraw-Hill, 1999.

[DeV90] Pamela B. DeVinne (editor): The Tormont Webster's Illustrated Encyclopedic Dic-
tionary. Tormont Publications Inc, 1990. ISBN 2-921171-32-5.

[DH02] H. Doleisch and H. Hauser: Smooth Brushing for Focus and Context Visualization
of Simulation data in 3D. Journal of WSCG, volume Vol. 10:147�154, 2002.

[DMO01] S. DeRose, E. Maler and D. Orchard: XML Linking Language (XLink) Version
1.0, 2001.
http://www.w3.org/TR/xlink/

[DWE02] J. Diepstraten, D. Weiskopf and T. Ertl: Transparency in Interactive Technical
Illustrations. Computer Graphics Forum, volume 21(3):317�325, 2002.

[DWE03] J. Diepstraten, D. Weiskopf and T. Ertl: Interactive Cutaway Illustrations. Com-
puter Graphics Forum, volume 22(3):523�532, 2003.

196

http://www.w3.org/TR/xlink/

Bibliography

[ED06] Geo� Ellis and Alan Dix: Enabling Automatic Clutter Reduction in Parallel Co-
ordinate Plots. In IEEE Transactions on Visualization and Computer Graphics,
volume 12, (pp. 717�724). IEEE, Baltimore, Maryland, USA, Sept.-Oct. 2006.

[ED07] G. Ellis and A. Dix: A Taxonomy of Clutter Reduction for Information Vi-
sualisation. IEEE Transactions on Visualization and Computer Graphics, vol-
ume 13(6):1216�1223, 2007. ISSN 1077-2626.

[EK05] J.L. Encarnação and T. Kirste: Ambient Intelligence: Towards Smart Appliance
Ensembles. In From Integrated Publication and Informations Systems to Virtual
Information and Knowledge Environments, (pp. 261�270). Springer, 2005.

[ELMS91] P. Eades, W. Lai, K. Misue and K. Sugiyama: Preserving the mental map of a
diagram. In Proceedings of CompuGraphics, volume 91, (pp. 24�33), August 1991.

[EVP01] Jacob Eisenstein, Jean Vanderdonckt and Angel Puerta: Applying model-based
techniques to the development of UIs for mobile computers. In IUI '01: Proceedings
of the 6th international conference on Intelligent user interfaces, (pp. 69�76). ACM
Press, New York, NY, USA, 2001. ISBN 1-58113-325-1.

[FBD+05] Peter Forbrig, Gregor Buchholz, Anke Dittmar, Andreas Wol� and Daniel Re-
ichart: Model-Based Software Development and Usability Testing. In Workshop
proceedings INTERACT. Rome, September 2005.

[FD06] Z. Ben Fredj and D. A. Duce: GraSSML: Accessible Smart Schematic Diagrams
for All. In W4A'2006 International Cross-Disciplinary Conference on Web Acces-
sibility, ACM International Conference Proceeding Series, volume 134, (pp. 57�60).
ACM Press, Edinburgh, Scotland, UK, May 2006. ISBN 1-59593-281-X.

[FFIT00] I. Fujishiro, R. Furuhata, Y. Ichikawa and Y. Takeshima: GADGET/IV: A Taxo-
nomic Approach to Semi-Automatic Design of Information Visualization Applica-
tions Using Modular Visualization Environment. In Proceedings of IEEE Informa-
tion Visualization, (p. 77�.), 2000.

[FFJ03] Jon Ferraiolo, Jun. Fujisawa and Dean Jackson: Scalable Vector Graphics (SVG)
1.1 Speci�cation. http://www.w3.org/TR/SVG11/, January 2003.
http://www.w3.org/TR/SVG11/

[FHS08] Georg Fuchs, Mathias Holst and Heidrun Schumann: 3D Mesh Exploration for
Smart Visual Interfaces. In Proc. 10th Intl. Conference on Visual Information
Systems (edited by Monica Sebillo, Guiliana Vitiello and Gerald Schaefer), volume
LNCS 5188, (pp. 80�91). Springer Verlag, Salerno, Italy, 11-12 September 2008.

[FLH+06] G. Fuchs, M. Luboschik, K. Hartmann, K. Ali, Th. Strothotte and H. Schumann:
Adaptive Labeling for Interactive Mobile Information Systems. 10th International
Conference Information Visualisation (IV'06), volume 0:453�459, 2006. ISSN 1550-
6037.

[FMP97] L. D. Floriani, P. Magillo and E. Puppo: Building and traversing a surface at
variable resolution. In Proceedings of the 8th conference on Visualization '97, (p.
103��.). IEEE Computer Society Press, 1997.

[FMS93] Steven Feiner, Blair Macintyre and Dorée Seligmann: Knowledge-based augmented
reality. Communications of the ACM, volume 36(7):53�62, 1993. ISSN 0001-0782.

[FRS11] Georg Fuchs, René Rosenbaum and Heidrun Schumann: Progressive Imagery with
Scalable Vector Graphics. In IS&T/SPIE Electronic Imaging 2011 � Multimedia
on Mobile Devices. San Francisco, USA, January 23�27 2011.

197

http://www.w3.org/TR/SVG11/

Bibliography

[FRSF06] Georg Fuchs, Daniel Reichart, Heidrun Schumann and Peter Forbrig: Maintenance
Support � Case Study for a Multimodal Mobile User Interface. In Multimedia on
Mobile Devices II, Proceedings of SPIE, volume 6074. The International Society for
Optical Engineering, January 2006. ISBN 0-8194-6114-8.

[FRW08] Peter Forbrig, Daniel Reichart and Andreas Wol�: User Interfaces from Task Mod-
els. In MDSE. Berlin, 2008.

[FS06] Georg Fuchs and Heidrun Schumann: Visualization in Mulitmodal User Inter-
faces of Mobile Applications. In Proceedings 17th IRMA International Conference.
Washington D.C., USA, May 21st-24th 2006.

[FS09] Georg Fuchs and Heidrun Schumann: Smart Visual Interfaces: Adaptive Anzeige
graphischer Modelldaten. CAD-CAM Report, volume 1/2-09:50�53, Januar 2009.

[FSS07] Georg Fuchs, Hans-Jörg Schulz and Heidrun Schumann: Presenting Technical
Drawing on Mobile Handhelds. In Proceedings of 18th IRMA International Con-
ference. IRMA, Vancouver, Canada, May 2007.

[FTS07] Georg Fuchs, Conrad Thiede and Heidrun Schumann:: Pluggable Lenses for Inter-
active Visualizations. In Poster Compendium of InfoVis'07, October 2007.

[FTSS09] Georg Fuchs, Conrad Thiede, Mike Sips and Heidrun Schumann: Device-based
Adaptation of Visualizations in Smart Environments. In Workshop Collaborative
Visualization on Interactive Surfaces (CoVIS), IEEE VisWeek 2009. Atlantic City,
USA, 11th-16th October 2009.

[Fur86] G. W. Furnas: Generalized �sheye views. Human Factors in Computing Systems,
volume CHI '86:16�23, April 1986.

[FWDR06] Peter Forbrig, Andreas Wol�, Anke Dittmar and Daniel Reichart: Tool Support
for an Evolutionary Design Process using XML and User-Interface Patterns. In
Proc. CUSEC 2006. Montreal, January 2006.

[GF04] Carl Gutwin and Chris Fedak: Interacting with big interfaces on small screens: a
comparison of �sheye, zoom, and panning techniques. In Proceedings of Graphics
Interface (GI '04), (pp. 145�152). Canadian Human-Computer Communications
Society, School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2004. ISBN 1-56881-227-2.

[GFF+07] Martin Giersich, Peter Forbrig, Georg Fuchs, Thomas Kirste, Daniel Reichart and
Heidrun Schumann: Towards an Integrated Approach for Task Modeling and Hu-
man Behavior Recognition. In Proc. HCI International 2007: 12th International
Conference on Human-Computer Interaction, LNCS, volume 1, (pp. 1109�1118).
Springer, Beijing, China, July 22-27 2007.

[GFS05] Henning Griethe, Georg Fuchs and Heidrun Schumann: A Classi�cation Scheme
for Lens Techniques (Short Paper). In 13th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision (WSCG'2005).
Plzen, Czech Republic, January 31th - February 4th 2005.

[GGSC98] Amy Gooch, Bruce Gooch, Peter Shirley and Elaine Cohen: A non-photorealistic
lighting model for automatic technical illustration. In Proceedings of the 25th An-
nual Conference on Computer Graphics and Interactive Techniques, (pp. 447�452).
ACM, 1998.

198

Bibliography

[GH97] Michael Garland and Paul S. Heckbert: Surface simpli�cation using quadric er-
ror metrics. In SIGGRAPH '97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, (pp. 209�216). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1997. ISBN 0-89791-896-7.

[GHS06] T. Götzelmann, K. Hartmann and Th. Strothotte: Contextual Grouping of La-
bels. In 17th Conference on Simulation and Visualization (edited by T. Schulze,
G. Horton, B. Preim and S. Schlechtweg), (pp. 245�258). SCS Publishing House,
2006.

[Goe07] Daniel Goebel: Semantische Anreicherung polygonaler Netze zur Unterstützung
der interaktiven Exploration. Master Thesis (Diplomarbeit), University of Rostock,
April 29 2007.

[GSSF04] A. Ga�ar, D. Sinnig, A. Se�ah and P. Forbrig: Modeling patterns for task models.
In TAMODIA '04: Proceedings of the 3rd annual conference on Task models and
diagrams, (pp. 99�104). ACM, New York, NY, USA, 2004. ISBN 1-59593-000-0.

[GWH01a] Michael Garland, Andrew Willmott and Paul S. Heckbert: Hierarchical face clus-
tering on polygonal surfaces. In I3D '01: Proceedings of the 2001 symposium on
Interactive 3D graphics, (pp. 49�58). ACM, New York, NY, USA, 2001. ISBN
1-58113-292-1.

[GWH01b] Michael Garland, Andrew Willmott and Paul S. Heckbert: Hierarchical face clus-
tering on polygonal surfaces. In I3D '01: Proceedings of the 2001 symposium on
Interactive 3D graphics, (pp. 49�58). ACM, New York, NY, USA, 2001. ISBN
1-58113-292-1.

[HA05] Arthur H. ter Hofstede and Wil M. van der Aalst: YAWL: Yet Another Work�ow
Language. Information Systems, volume 30(4):245�275, 2005.

[Hau06] Helwig Hauser: Scienti�c Visualization: The Visual Extraction of Knowledge from
Data, chapter Generalizing Focus+Context Visualization, (pp. 305�327). Springer-
Verlag Berlin Heidelberg, 2006. ISBN 9783540307907.

[HB03] Mark A. Harrower and Cynthia A. Brewer: ColorBrewer.org: An Online Tool for
Selecting Color Schemes for Maps. The Cartographic Journal, volume 40(1):27�37,
2003.

[HBP+07] J. Huang, B. Bue, A. Pattath, D. Ebert and K. Thomas: Interactive Illustrative
Rendering for Mobile Devices. IEEE Computer Graphics and Applications, vol-
ume 27(3):48�56, 2007.

[HDD+93] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle: Mesh optimiza-
tion. In Proc. SIGGRAPH '93: 20th annual conference on Computer Graphics and
Interactive Techniques, (pp. 19�26). ACM Press, New York, NY, USA, 1993.

[Hei09] Thomas Heider: A Uni�ed Distributed System Architecture for Goal-based Inter-
action with Smart Environments. PhD Thesis, University of Rostock, 2009.

[HF01] Kasper Hornbaek and Erik Frokjaer: Reading of electronic documents: the usabil-
ity of linear, �sheye, and overview+detail interfaces. In Proceedings of the SIGCHI
conference on Human factors in computing systems, (pp. 293�300). ACM Press,
2001. ISBN 1-58113-327-8.

[HG94] G. Hake and D. Grünreich: Kartographie. 7th edition. deGruyter, Berlin, 1994.

199

Bibliography

[HK00] Jiawei Han and Micheline Kamber: Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, 2000.

[HK05] Thomas Heider and Thomas Kirste: Smart Environments and Self-Organizing Ap-
pliance Ensembles. In Mobile Computing and Ambient Intelligence: The Challenge
of Multimedia (edited by Nigel Davies, Thomas Kirste and Heidrun Schumann).
Number 05181 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany, 2005.

[HK07a] Thomas Heider and Thomas Kirste: Automatic vs. Manual Multi-Display Con-
�guration: A Study of User Performance in a Semi-Cooperative Task Setting. In
Proc. of BCS HCI Group Conference. Lancaster, UK, 2007.

[HK07b] Thomas Heider and Thomas Kirste: Minimizing Cognitive Load by Automatic
Display Management. In Proc. Ubicomp Workshop'07, 2007.

[HM90] R. B. Haber and D. A. McNabb: Visualization idioms: A conceptual model for
scienti�c Visualization Systems. In Visualization in Scienti�c Computing (edited
by B. Shriver, G. M. Nielson and L. Rosenblum), (pp. 74�93). IEEE Computer
Society Press, Los Alamitos, 1990.

[HM01] Ivan Herman and M. Scott Marshall: GraphXML - An XML-Based Graph Descrip-
tion Format. In Proceedings of the 8th International Symposium on Graph Drawing,
(pp. 52�62). GD '00, Springer-Verlag, London, UK, 2001. ISBN 3-540-41554-8.

[HO95] K.-T. Huang and D. Overhauser: A novel graph algorithm for circuit recognition.
IEEE International Symposium on Circuits and Systems, volume 3:1695�1698, 30
Apr-3 May 1995.

[Hol07] Mathias Holst: E�ziente au�ösungsvariable Ober�ächenbeschreibung mit hybriden
Modellen. PhD Thesis, University of Rostock, 2007.

[Hop99] Axel Hoppe: Validierung und Nachbearbeitung von gerenderten Bildern. PhD.
Thesis, Otto-von-Guericke Unversity of Magdeburg, 1999. Shaker Verlag, Aachen.

[HR98] JoAnn T. Hackos and Janice C. Redish: User and Task Analysis for Interface
Design. Wiley Computer Publishing, 1998. ISBN 0-471-17831-4.

[HS06] Mathias. Holst and Heidrun Schumann: E�cient Rendering of High-Detailed Ob-
jects Using A Reduced Multi-Resolution Hierarchy. In Proceedings of GRAPP
2006, (pp. 3�10), February 2006.

[HS07] M. Holst and H. Schumann: Surfel-Based Billboard Hierarchies for Fast Rendering
of 3D-Objects. In Proc. Eurographics Symposium on Point-based Graphics, (pp.
72�79). Praha, Sept. 2007.

[HSH90] H. Rex Hartson, Antonio C. Siochi and Deborah H. Hix: The UAN: a user-oriented
representation for direct manipulation interface designs. ACM Trans. Inf. Syst.,
volume 8(3):181�203, 1990. ISSN 1046-8188.

[IDE] IDELIX Software Inc.: Pliable Display Technology White Paper.
www.idelix.com

[IKN98] Laurent Itti, Christof Koch and Ernst Niebur: A Model of Saliency-Based Visual
Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 20(11):1254�1259, November 1998.

[Jes05] Stefan Jeschke: Accelerating the Rendering Process Using Impostors. PhD Thesis,
University of Rostock, 2005.

200

www.idelix.com

Bibliography

[JK96] Bonnie E. John and David E. Kieras: The GOMS family of user interface analysis
techniques: comparison and contrast. ACM Transactions on Computer-Human
Interaction, volume 3(4):320�351, 1996. ISSN 1073-0516.

[JPE00] ISO/IEC 15444-1: JPEG 2000 Core Coding System, December 2000.

[JPE01a] ISO/IEC 15444-2: JPEG 2000 Extensions, November 2001.

[JPE01b] ISO/IEC 15444-3: Motion JPEG 2000, November 2001.

[KB09] Antonio Krüger and Andreas Butz: Smart Graphics. it - Information Technology,
volume 51(3):129�130, 05 2009. ISSN 1611-2776.

[KCY93] Arie Kaufman, Daniel Cohen and Roni Yagel: Volume Graphics. IEEE Computer,
volume 26(7):51�64, July 1993.

[Kea98] T. Alan Keahey: The Generalized Detail-in-Context Problem. In Proceedings of the
IEEE Symposium on Information Visualization, (pp. 44�51). IEEE Visualization,
IEEE, Research Triangle Park, NC, October 19-20 1998.

[Kea99] T.A. Keahey: Area-normalized thematic views. In Proceedings of International
Cartography Assembly, 1999.

[Kei05] Daniel A. Keim: Scaling Visual Analytics to Very Large Data Sets. In Workshop
on Visual Analytics. University of Darmstadt, Germany, June 4th 2005.

[KGJV83] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi: Optimization by Simulated
Annealing. Science, volume 220(4598):671�680, May 1983.

[KHS04] M. Klima, P. Halabala and P. Slavik: Semantic information visualization. In Proc.
19th Intl. CODATA Conference, 2004.

[Kie04] David Kieras: The Computer Science and Engineering Handbook, chapter Task
Analysis and the Design of Functionality, (pp. 1�26). 2nd edition. CRC Inc., Boca
Raton, 2004.

[KJDG+06] H.S. Kim, C. Joslin, T. Di Giacomo, S. Garchery and N. Magnenat-Thalmann:
Device-based decision-making for adaptation of three-dimensional content. The
Visual Computer, volume 22(5):332�345, 2006.

[KK93] Peter R. Keller and Mary M. Keller: Practical Data Visualization. 1st edition.
IEEE Computer Society Press, Los Alamitos, 1993.

[Kli09] Martin Klima: Collaborative Work in Mobile Environment. PhD Thesis, Czech
Technical University in Prague, Faculty of Electrical Engineering, Department of
Computer Graphics and Interaction, February 2009.

[KLK03] Hae-Kwang Kim, Nam-Yeol Lee and Jin-Woong Kim: 3D Graphics Adaptation
System on the Basis of MPEG-21 DIA. In SG 2003: Procceedings Third Interna-
tional Symposium on Smart Graphics (edited by Andreas Butz, Antonio Krüger
and Patrick Olivier), Lecture Notes in Computer Science, volume LNCS 2733, (pp.
206�211). Springer-Verlag Berlin Heidelberg, Heidelberg, Germany, July 2-4 2003.

[KLS00] M. Kreuseler, N. López and H. Schumann: A Scalable Framework for Informa-
tion Visualization. In Proceedings IEEE Symposium on Information Visualization
(InfoVis 2000), (pp. 27�36). Salt Lake City, USA, October 2000.

[KLT05] Sagi Katz, George Leifman and Ayellet Tal: Mesh segmentation using feature point
and core extraction. The Visual Computer, volume 21(8�10):649�658, September
2005.

201

Bibliography

[KMH01] Robert Kosara, Silvia Miksch and Helwig Hauser: Semantic Depth of Field. In
Proceedings of the IEEE Symposium on Information Visualization 2001 (INFO-
VIS'01), (pp. 97�105). IEEE Computer Society, Washington, DC, USA, 2001. ISBN
0-7695-1342-5.

[KMH02a] Robert Kosara, Silvia Miksch and Helwig Hauser: Focus+Context Taken Literally.
IEEE Computer Graphics and Applications, volume 22:22�29, 2002. ISSN 0272-
1716.

[KMH+02b] Robert Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Verena Giller
and Manfred Tscheligi: Useful Properties of Semantic Depth of Field for Better
F+C Visualization. In Proceedings of the symposium on Data Visualisation 2002,
(pp. 205�210). VISSYM '02, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, May 27-29 2002. ISBN 1-58113-536-X.

[KMS04] M. Klima, Z. Mikovec and P. Slavik: Adaptation of Graphical Data in Collaborative
Environment. In Workshop User Interfaces for All, 2004.

[KRS03] B. Karstens, R. Rosenbaum and H. Schumann: Visual Interfaces for mobile hand-
helds. In Proceedings HCI International (HCII'03). Crete, Greece, June 2003.

[Krü98] Antonio Krüger: Automatic graphical abstraction in intent-based 3D-illustrations.
In AVI '98: Proceedings of the working conference on Advanced visual interfaces,
(pp. 47�56). ACM, New York, NY, USA, 1998.

[LA94] Y. K. Leung and M. D. Apperley: A Review and Taxonomy of Distortion-Oriented
Presentation Techniques. ACM Transactions on Human-Computer Interaction,
volume 1(2):126�160, June 1994.

[LAS04] W. Li, M. Agrawala and D. Salesin: Interactive image-based exploded view dia-
grams. In Proc. Graphics Interface (GI'04), (pp. 203�212), 2004.

[LCCV03] K. Luyten, T. Clerckx, K. Coninx and J. Vanderdonckt: Derivation of a dialog
model from a task model by activity chain extraction. In Proceedings of DSV-IS
(edited by J. Jorge, N.J. Nunes and J.F. e Cunha). LNCS 2844, Springer, 2003.

[LFSa] LFS � Landesforschungsschwerpunkt IuK: Multimediales Content-Management
in Mobilen Umgebungen mit Multimodalen Nutzungsschnittstellen (LFS-M6C) /
Proaktive verteilte Informationssysteme (LFS-ProVIS). http://www.m6c.de/ (last
accessed 2010-03-31).

[LFSb] LFS-MA � Landesforschungsschwerpunkt Mobile Assistenzsysteme.
http://www.lfs-ma.de/ (last accessed 2010-03-31).

[LG05] Feng Liu and Michael Gleicher: Automatic image retargeting with �sheye-view
warping. In UIST '05: Proceedings of the 18th annual ACM symposium on User
interface software and technology, (pp. 153�162). ACM Press, New York, NY, USA,
2005. ISBN 1-59593-271-2.

[LH94] M.M. Loughlin and J.F. Hughes: An Annotation System for 3D Fluid Flow Vi-
sualization. In Proceeding IEEE Conference on Visualization'94, (pp. 273�279),
October 17�21 1994.

[LJMM+05] Víctor López-Jaquero, Francisco Montero, José P. Molina, P. González and
A. Fernández-Caballero: A Seamless Development Process of Adaptive User Inter-
faces Explicitly Based on Usability Properties. In Engineering Human Computer
Interaction and Interactive Systems (edited by Rémi Bastide, Philippe Palanque
and Jörg Roth), Lecture Notes in Computer Science, volume 3425, (pp. 289�291).
Springer Berlin / Heidelberg, 2005.

202

Bibliography

[LM09] Uwe von Lukas and Benjamin Mesing: Virtual Engineering im Schi�bau. Economic
Engineering: Intelligente Methoden, Prozesse und Technologien, volume 6:62�65,
2009.

[LPKD01] E. Lin, C. Podilchuk, T. Kalker and E. Delp: Streaming video and rate scalable
compression: What are the challenges for watermarking? In Proceedings of SPIE
- Security and Watermarking of Multimedia Contents III, volume 4314, (pp. 116�
127), 2001.

[LRC+02] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson and R. Huebner: Level
of Detail for 3D Graphics. Morgan Kaufmann, 2002.

[LRS10] M. Luboschik, A. Radlo� and H. Schumann: A new weaving technique for handling
overlapping regions. In Proceedings AVI 2010 � Advanced Visual Interfaces, 2010.

[LSC08] Martin Luboschik, Heidrun Schumann and Hilko Cords: Particle-Based Labeling:
Fast Point-Feature Labeling without Obscuring Other Visual Features. IEEE
Transactions on Visualization and Computer Graphics (TVCG) / Proceedings of
IEEE Information Visualization (InfoVis'08), volume 14(6):1237�1244, November-
December 2008.

[Lup07] Markus Lupp: OpenGIS Styled Layer Descriptor Pro�le of the Web Map Service,
August 14th 2007.

[Luy04] Kris Luyten: Dynamic User Interfaces Generation for Mobile and Embedded Sys-
tems with Model-Based user Interface Development. Ph.D. thesis, Universiteit
Maastricht, Maastricht, 2004.

[LV03] Quentin Limbourg and Jean Vanderdonckt: The Handbook of Task Analysis for
Human-Computer Interaction, chapter Comparing Task Models for User Interface
Design, (pp. 135�154). Lavoisier, 2003.

[LVM+04] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon,
Murielle Florins and Daniela Trevisan: UsiXML: A User Interface Description Lan-
guage for Context-Sensitive User Interfaces. In Proceedings of the ACM AVI'2004
Workshop �Developing User Interfaces with XML: Advances on User Interface De-
scription Languages�, (pp. 55�62). Press, 2004.

[LXMZ03] Hao Liu, Xing Xie, Wei-Ying Ma and Hong-Jiang Zhang: Automatic browsing
of large pictures on mobile devices. In 11th ACM International Conference on
Multimedia. Berkeley, 2003.

[LZ04] Rong Liu and Hao Zhang: Segmentation of 3D Meshes through Spectral Clustering.
In PG '04: Proceedings of the Computer Graphics and Applications, 12th Paci�c
Conference, (pp. 298�305). IEEE Computer Society, Washington, DC, USA, 2004.
ISBN 0-7695-2234-3.

[Mac86] J. Mackinlay: Automating the Design of Graphical Presentations of Relational
Information. ACM Transactions on Graphics, volume 5(2):110�141, April 1986.

[MAI] MAIKE � Mobile Assistenzsysteme für Intelligente Kooperierende Räume und En-
sembles, http://maike.lfs-ma.de/. http://maike.lfs-ma.de/ (last accessed 2010-03-
31).

[MAX] MAXIMA � Mobile Assistenzsysteme für eXpertengestütztes Instandhaltungs-
MAnagement, http://maxima.lfs-ma.de/. http://maxima.lfs-ma.de/ (last accessed
2010-03-31).

203

Bibliography

[May07] Julia Mayer: The New Main Research Areas of Fraunhofer IGD. Computer Graph-
ics topics, volume 19(2):18�19, 2007.

[McE94] Alan M. McEachren: Some Truth With Maps: A Primer on Symbolization and
Design. Resource Publications in Geography, Assn of Amer Geographers, April
1994.

[MH04] Deborah L. McGuinness and Frank van Harmelen: OWL Web Ontology Language,
W3C Recommendation, 10 February 2004. http://www.w3.org/TR/owl-features/,
2004. Http://www.w3.org/TR/owl-features/.

[Mia00] John Miano: Compressed Image File Formats. Addison-Wesley, 2000. ISBN 0-201-
60443-4.

[MKP02] José P. Molina M. Martínez, Rob Koenen and Fernando Pereira: MPEG-7: The
Generic Multimedia Content Description Standard, Part 1. IEEE MultiMedia,
volume 9(2):Peiya Liu, April - June 2002. ISSN 1070-986X.

[MKS02] Z. Mikovec, M. Klima and P. Slavik: Manipulation of complex 2D/3D scenes on
mobile devices. In Proceedings of the Second IASTED International Conference
Visualization, Imaging, and Image Processing (edited by J.J. Villanueva), (pp.
161�166). IASTED/ACTA Press, Anaheim, 2002.

[MM99] I. Mani and M.T. Maybury: Advances in Automatic Text Summarization. The
MIT Press, 1999.

[MMM04] C. McCormack, K. Marriott and B. Meyer: Adaptive layout using one-way con-
straints in SVG. In Proceedings of third Annual Conference on Scalabe Vector
Graphics (SVG Open), 2004.

[MMS04] Kim Marriott, Bernd Meyer and Peter Stuckey: Towards Flexible Graphical Com-
munication Using Adaptive Diagrams. In Advances in Computer Science - ASIAN
2004, Lecture Notes in Computer Science (LNCS), volume 3321, (pp. 380�394).
Springer Berlin / Heidelberg, December 2004. ISBN 978-3-540-24087-7.

[MMT02] Kim Marriott, Bernd Meyer and Laurent Tardif: Fast and e�cient client-side
adaptivity for SVG. In Proceedings of the 11th international conference on World
Wide Web (WWW'02), (pp. 496�507). ACM, New York, NY, USA, 2002. ISBN
1-58113-449-5.

[MPS02] Giulio Mori, Fabio Paterno and Carmen Santoro: CTTE: Support for developing
and analyzing task models for interactive system design. IEEE Transanctions on
Software Engineering, volume 28(8):797�813, August 2002.

[MPS+04] M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno and J. Rossignac: Plumber:
a method for a multi-scale decomposition of 3D shapes into tubular primitives and
bodies. In SM '04: Proceedings of the 9th ACM symposium on Solid modeling and
applications, (pp. 339�344). Eurographics Association, Aire-la-Ville, Switzerland,
2004. ISBN 3-905673-55-X.

[MS91] J. Marks and S. Shieber: The Computational Complexity of Cartographic Label
Placement. Technical Report TR-05-91, Center for Research in Computing Tech-
nology, Harvard University, 1991.

[MSK03] Zdenek Mikovec, Pavel Slavik and Martin Klima: Human-Computer Communica-
tion in Special Environments. In Proceedings of the IADIS International Conference
WWW/Internet, (pp. 763�766), 2003.

204

Bibliography

[MSK+06] Carmen Sanz Merino, Mike Sips, Daniel A. Keim, Christian Panse and Robert
Spence: Task-at-hand interface for change detection in stock market data. In
AVI '06: Proceedings of the working conference on Advanced visual interfaces, (pp.
420�427). ACM, New York, NY, USA, 2006. ISBN 1-59593-353-0.

[Mun09] Tamara Munzner: A Nested Process Model for Visualization Design and Valida-
tion. IEEE Transactions on Visualization and Computer Graphics, volume 15:921�
928, 2009. ISSN 1077-2626.

[MuS09] MuSAMA Project Homepage. http://www.musama.de, 2009.

[MVL09] Benjamin Mesing, Matthias Vahl and Uwe von Lukas: Ein ganzheitlicher Ansatz
für den Einsatz von VR im schi�baulichen Sektor. In Augmented und Virtual Re-
ality in der Produktentstehung : Grundlagen, Methoden und Werkzeuge, (pp. 275�
288). HNI-Verlagsschriftenreihe 252, Gausemeier, Jürgen, Heinz Nixdorf Institut
Paderborn, 2009.

[MW99] Alan P. Mangan and Ross T. Whitaker: Partitioning 3D Surface Meshes Using Wa-
tershed Segmentation. IEEE Transactions on Visualization and Computer Graph-
ics, volume 5(4):308�321, 1999. ISSN 1077-2626.

[MZ03] Yu-Fei Ma and Hong-Jiang Zhang: Contrast-based image attention analysis by
using fuzzy growing. In MULTIMEDIA '03: Proceedings of the eleventh ACM
international conference on Multimedia, (pp. 374�381). ACM, New York, NY, USA,
2003. ISBN 1-58113-722-2.

[NC98] D. Nister and C. Christopoulos: Lossless region of interest with a naturally progres-
sive still image coding algorithm. In Proceedings of ICIP, volume 3, (pp. 856�859),
1998.

[Noc07] Thomas Nocke: Visuelles Data Mining und Visualisierungsdesign für die Kli-
maforschung (Visual Data Mining and Visualization Design for Climate Research).
Dissertation (PhD Thesis), University of Rostock, Faculty of Computer Science and
Electrical Engineering, 2007. (in German).

[Nor06] Chris North: Toward Measuring Visualization Insight. IEEE Computer Graphics
and Applications, volume 26(3):6�9, 2006.

[NPF+04] W. Narzt, G. Pomberger, A. Ferscha, D. Kolb, R. Müller, J. Wieghardt, R. Bidner,
H. Hörtner and C. Lindinger: PARIS - Personal Augmented Reality Information
System. In 2nd ACM International Conference on Mobile Systems, Applications
and Services, June 2004.

[NS04] Thomas Nocke and Heidrun Schumann: Goals of Analysis for Visualization and
Visual Data Mining Tasks. In Proceedings of CODATA Workshop "Information
Visualization, Presentation, and Design". Prague, Czech Republic, March 29th-
31st 2004.

[Ope05] Open Geospatial Consortium: OpenGIS Filter Encoding Implementation Speci�ca-
tion, Version 1.1.0 (�nal). Open Geospatial Consortium Inc., 2005.

[OW00] Thomas J. Overbye and Jamie D. Weber: New Methods for the Visualization of
Electric Power System Information. In IEEE Symposium on Information Visual-
ization (InfoVis'00), 2000.

[Pat00] Fabio Paternò: Model-based design and evaluation of interactive applications.
Springer Verlag, 2000.

205

Bibliography

[Pat03] Pattaya: MPEG-21 Digital Item Adaptation AM, 2003.

[PD84] Thomas Porter and Tom Du�: Compositing digital images. SIGGRAPH Computer
Graphics, volume 18:253�259, January 1984. ISSN 0097-8930.

[PG88] R.M. Pickett and G.G. Grinstein: Iconographic Displays For Visualizing Multidi-
mensional Data. In Proc. 1988 IEEE International Conference on Systems, Man,
and Cybernetics, (pp. 514 � 519), 8-12 Aug 1988.

[Pla04] Catherine Plaisant: The challenge of information visualization evaluation. In
AVI'04: Proceedings of the working conference on Advanced visual interfaces, (pp.
109�116). ACM, New York, NY, USA, 2004. ISBN 1-58113-867-9.

[PMM97] F. Paternò, C. Mancini and S. Meniconi: ConcurTaskTrees: A Diagrammatic
Notation for Specifying Task Models. In Proceedings of Interact'97, (pp. 362�369).
Chapman & Hall, Sydney, 1997.

[Por07] Clemens Portele: OpenGIS Geography Markup Language (GML) Encoding Stan-
dard, Oktober 5th 2007.

[PR02] B. Preim and F. Ritter: Techniken zur Hervorhebung von Objekten in medizinis-
chen 3d-Visualisierungen. In Simulation und Visualisierung, (pp. 187�200), 2002.

[PS02] F. Paternò and C. Santoro: One Model, Many Interfaces. In Proceedings of the
4th International Conference on Computer-Aided Design of User Interfaces, (pp.
143�154). Kluwer Academics Publishers, 2002.

[Pue96] Angel R. Puerta: The MECANO Project: Comprehensive and Integrated Support
for Model-Based Interface Development. In Proc. of CADUI'96: Computer-Aided
Design of User Interfaces, 1996.

[Pue97] A.R. Puerta: Model-Based Interface Development Environment. IEEE Software,
volume 14(4):40�47, July-Aug. 1997.

[PZB02] Thomas Phan, George Zorpas and Rajive Bagrodia: An Extensible and Scal-
able Content Adaptation Pipeline Architecture to Support Heterogeneous Clients.
In 22nd IEEE International Conference on Distributed Computing Systems
(ICDCS'02), (p. 507). IEEE Computer Society, Vienna, Austria, July 02-05 2002.
ISBN 0-7695-1585-1. ISSN 1063-6927.

[Ras97] Wolf-Dieter Rase: Fischauge-Projektionen als kartographische Lupen. Salzburger
Geographische Materialien, Angewandte Geographische Informationsverarbeitung,
volume IX(26):115�122, 1997.

[Rau99] Uwe Rauschenbach: The Rectangular Fish Eye View as an e�cient method for
the transmission and display of large images. In Proceedings IEEE International
Conference on Image Processing (ICIP99). Kobe, Japan, October 25-28 1999.

[RDFW08] Daniel Reichart, Anke Dittmar, Peter Forbrig and Maik Wurdel: Tool Support for
Representing Task Models, Dialog Models and User-Interface Speci�cations. In
Proc. DSV-IS 2008. Kingston, Canada, 2008.

[Rei03] T. Reichenbacher: Adaptive methods for mobile cartography. In Proceedings of the
21st International Cartographic Conference (ICC), (pp. 1311�1323). International
Cartographic Association (ICA), Durban, South Africa, 10�16 August 2003.

[RF05] Daniel Reichart and Peter Forbrig: Multiple-User Interfaces based on Task, User
and Object Models. In Dagstuhl Seminar Proceedings 05181 �Mobile Computing
and Ambient Intelligence: The Challenge of Multimedia�. Dagstuhl, May 2005.

206

Bibliography

[RFS08] René Rosenbaum, Georg Fuchs and Heidrun Schumann: Region-wise meta-data in
JPEG2000-encoded imagery. In VIE 2008. Xi'an/China, July 29th - August 01st
2008.

[Rhe99] Penny Rheingans: Task-based Color Scale Design. In Proc. of Applied Image and
Pattern Recognition, (pp. 35�43). SPIE, 1999.

[RKMG94] S. F. Roth, J. Kolojejchick, J. Mattis and J. Goldstein: Interactive graphic design
using automatic presentation knowledge. In CHI'94: Proceedings Human Factors
in Computing Systems, (pp. 112�117). ACM, April 1994.

[RLS+96] S.F. Roth, P. Lucas, J.A. Senn, C.C. Gomberg, M.B. Burks, P.J. Stro�olino, A.J.
Kolojechick and C. Dunmire: Visage: a user interface environment for exploring
information. Information Visualization, IEEE Symposium on, volume 0:3, 1996.

[RLS11] Axel Radlo�, Martin Luboschik and Heidrun Schumann: Smart Views in Smart
Environments. In Proceedings Smart graphics 2011, 2011. (submitted).

[RM90] Steven F. Roth and Joe Mattis: Data Characterization for Intelligent Graph-
ics Presentation. In Proceedings of the Computer-Human Interaction Conference
(CHI'90), 1990.

[Ros06] René Rosenbaum: Mobile Image Communication using JPEG2000. PhD Thesis,
University of Rostock, Rostock/Germany, December 11 2006.

[RRS01] Uwe Rauschenbach, René Rosenbaum and Heidrun Schumann: A �exible Polygon
Representation of Multiple Overlapping Regions of Interest for Wavelet-based Im-
age Coding. In Proceedings IEEE International Conference on Image Processing
(ICIP). Thessaloniki, Griechenland, Okt 2001.

[RS98] Uwe Rauschenbach and Heidrun Schumann: Flexible embedded image communi-
cation using levels of detail and regions of interest. In Proceedings of the workshop
on Interactive Applications of Mobile Computing. Rostock, Germany, November
24-25 1998.

[RS99] Uwe Rauschenbach and Heidrun Schumann: Demand-driven Image Transmission
with Levels of Detail and Regions of Interest. Computers and Graphics, vol-
ume 23(6):857�866, 1999.

[RS09] René Rosenbaum and Heidrun Schumann: Progressive re�nement � more than
a means to overcome limited bandwidth. In Proceedings of Electronic Imaging -
Visualization and Data Analysis 2009. San Jose/USA, January 18 - 22 2009.

[RT03] R. Rosenbaum and D. Taubman: Remote display of large raster images using
JPEG2000 and the rectangular FishEye-View. In IEEE-WSCG2003. Plzen/Czech
Republic, February 03-07 2003.

[RTS06] R. Rosenbaum, Ch. Tominski and H. Schumann: Encyclopedia of E-Commerce,
E-Government, and Mobile Commerce, chapter Graphical Contents on Mobile De-
vices. Idea Group Publishing, 2006.

[SC01] K. Schneider and J. Cordy: Abstract user interfaces: A Model and a Notation to
Support Plasticity in Interactive Systems. In Proceedings of DSV-IS, (pp. 40�58),
2001.

[Sch96] E. Schlungbaum: Model-based User Interface Software Tools � Current State of
Declarative Models. Technical Report GIT-GVU-96-30, Georgia Institute of Tech-
nology, Atlanta, GA 30332-0280, November 1996.

207

Bibliography

[Sch06] R. Schmitz: Ein Modell zur Beschreibung von Visualisierungszielen beim Einsatz
von Farbkodierung zur Darstellung multivariater Daten. Master thesis, University
of Rostock, 2006. (in German).

[Sch10] Hans-Jörg Schulz: Explorative Graph Visualization. PhD thesis, University of Ro-
stock, June 2010.

[SE96] E. Schlungbaum and T. Elwert: Automatic user interface generation from declar-
ative models. In Proc. CADUI'96, (pp. 3�18), 1996.

[SF91] Dorée Duncan Seligmann and Steven Feiner: Automated Generation of Intent-
based 3D Illustrations. In SIGGRAPH '91: Proceedings of the 18th annual confer-
ence on Computer graphics and interactive techniques, (pp. 123�132). ACM Press,
New York, NY, USA, 1991.

[Sha08] Ariel Shamir: A survey on Mesh Segmentation Techniques. Computer Graphics
forum, volume 27(6):1539�1556, 2008.

[She09] Don Sherman: Technology of the Year: GM's Two-Mode Hybrid System. Auto-
mobile Magazine, volume 2:1�2, February 2009.

[Shn96] Ben Shneiderman: The Eyes Have It: A Task by Data Type Taxonomy for Infor-
mation Visualization. In Proceedings of the IEEE Symposium on Visual Languages,
(pp. 336�343), Sep 1996.

[Sie06] Siemens AG: Advanced Augmented Reality Technologies for Industrial Service Ap-
plications (ARTESAS). http://www.artesas.de, 2006.

[SKKM+05] L. Skorin-Kapov, H. Komericki, M. Matijasevic, I. Pandzic and M. Mosmondor:
MUVA: a Flexible Visualization Architecture for Multiple Client Platforms. Jour-
nal of Mobile Multimedia, volume 1(1):3�17, 2005.

[SM00] Heidrun Schumann and Wolfgang Müller: Visualisierung � grundlagen und allge-
meine Methoden. Springer Verlag, 2000.

[SMA+09] Peter Shirley, Steve Marschner, Michael Ashikhmin, Michael Gleicher, Naty Ho�-
man, Garrett Johnson, Tamara Munzner, Erik Reinhard, Kelvin Sung, William B.
Thompson, Peter Willemsen and Brian Wyvill: Fundamentals of Computer Graph-
ics, chapter 27: Visualization, (pp. 675�707). Third edition edition. Taylor &
Francis Ltd, 2009.

[SMS07] Samuel Silva, Joaquim Madeira and Beatriz Sousa Santos: There is More to Color
Scales than Meets the Eye: A Review on the Use of Color in Visualization. In
Proc. of International Conference Information Visualisation (IV), 2007.

[Son07] Henry Sonnet: Embedding Metadata in Computer Graphics for Interaction. PhD
thesis, Otto-von-Guericke University Magdeburg, 2007.

[SS02] Th. Strothotte and S. Schlechtweg: Non-Photorealistic Computer Graphics: Mod-
eling, Rendering, and Animation. Morgan Kaufman Publisher, Los Altos, 2002.

[Sta00] C. Stary: TADEUS: Seamless Development of Task-Based and User-Oriented In-
terfaces. IEEE Transactions on Systems, Man and Cybernetics, volume 30(5):509�
525, 2000. ISSN 1083-4427.

[Sto03] M. C. Stone: A Field Guide to Digital Color. A.K. Peters, 2003.

[Sto07] M. C. Stone: Color in Information Display. In Tutorial, IEEE Visualization Con-
ference. Sacramento, USA, Oct. 2007.

208

Bibliography

[STR+05] Vidya Setlur, Saeko Takagi, Ramesh Raskar, Michael Gleicher and Bruce Gooch:
Automatic image retargeting. In MUM '05: Proceedings of the 4th international
conference on Mobile and ubiquitous multimedia, (pp. 59�68). ACM Press, New
York, NY, USA, 2005. ISBN 0-473-10658-2.

[Suo09] Xiaoyuan Suo: A Task-Centered Visualization Design Environment and a Method
for Measuring the Complexity of Visualization Designs. PhD thesis, Georgia State
University, 2009.

[SW04] F. Y. Shih and Y. Wu: Fast Euclidean Distance Transformation in Two Scans
Using a 3x3 Neighborhood. Computer Vision and Image Understanding, vol-
ume 93(2):195�205, 2004.

[SW07] Dieter Schmalstieg and Daniel Wagner: Experiences with Handheld Augmented
Reality. In The 6th IEEE and ACM International Symposium on Mixed and Aug-
mented Reality (ISMAR 2007), (pp. pp. 3�15). IEEE and ACM, November 2007.

[SWF+07] Daniel Sinnig, Maik Wurdel, Peter Forbrig, Patrice Chalin and Ferhat Khendek:
Practical Extensions for Task Models. In Task Models and Diagrams for User
Interface Design, Lecture Notes in Computer Science, volume 4849/2007, (pp. 42�
55). Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-77221-7. ISSN 0302-9743
(Print) 1611-3349 (Online).

[SWTS05] P. Schulze-Wollgast, Ch. Tominski and H. Schumann: Enhancing Visual Explo-
ration by appropriate Color Coding. In Proc. of International Conference in Cen-
tral Europe on Computer Graphics, Visualization and Computer Vision (WSCG).
Plzen, Czech Republic, Febr. 2005.

[TAHS06] Christian Tominski, James Abello, Frank van Ham and Heidrun Schumann: Fish-
eye Tree Views and Lenses for Graph Visualization. In Proceedings IV'06, (pp.
17�24). IEEE Computer Society, Los Alamitos, CA, USA, 2006. ISSN 1550-6037.

[TC05] James J. Thomas and Kristin A. Cook (editors): Illuminating the Path: The Re-
search and Development Agenda for Visual Analytics. IEEE Computer Society
Press, August 2005. ISBN 0-7695-2323-4.

[TC06] James J. Thomas and Kristin A. Cook: A Visual Analytics Agenda. In IEEE
Computer Graphics and Applications, volume 26, (pp. 10�13). IEEE Computer
Society, Los Alamitos, CA, USA, January 2006. ISSN 0272-1716.

[Tel07] Alexandru C. Telea: Data Visualization: Principles and Practice. A K Peters,
Ltd., 2007. ISBN 978-1-56881-306-6.

[TFS08a] Conrad Thiede, Georg Fuchs and Heidrun Schumann: Smart Lenses. In Proc. 9th
International Symposium on Smart Graphics (SG 2008) (edited by Andreas Butz,
Brian Fischer, Antonio Krüger, Patrick Oliver and Marc Christie), Lecture Notes
in Computer Science, volume LNCS 5166, (pp. 178�189). Springer Verlag, Rennes,
France, August 27th - 29th 2008. ISBN 978-3-540-85410-4. ISSN 0302-9743 (Print)
1611-3349 (Online).

[TFS08b] Christian Tominski, Georg Fuchs and Heidrun Schumann: Task-Driven Color Cod-
ing. In Proc. 12th International Conference Information Visualisation (IV'08).
IEEE Computer Society, London, 8 - 11 July 2008.

[Thi10] Conrad Thiede: Visuelle Informationsdarstellung in Smart Environments. PhD
Thesis, University of Rostock, Rostock, Germany, 2010.

209

Bibliography

[TIP05] Christian Tietjen, Tobias Isenberg and Bernhard Preim: Combining Silhouettes,
Surface, and Volume Rendering for Surgery Education and Planning. In EUROVIS
2005: Eurographics / IEEE VGTC Symposium on Visualization, (pp. 303�310),
2005.

[TM01] D. Taubman and M. Marcellin: JPEG2000: Image compression fundamentals,
standards and practice. Kluwer Academic Publishers, Boston, November 2001.
ISBN 978-0792375197.

[TMM00] J.J. Tirtowidjojo, K. Marriott and B. Meyer: Extending SVG with Constraints. In
Proceedings of the 6th Australian World Wide Web Conference, 2000.

[Tom06] Christian Tominski: Event-Based Visualization for User-Centered Visual Analysis.
PhD thesis, University of Rostock, Germany, 2006.

[Træ02] Hallvard Trætteberg: Model-based User Interface Design. PhD thesis, Institutt for
datateknikk og informasjonsvitenskap - Norges teknisk-naturvitenskapelige univer-
sitet, 2002.

[Tre99] Lloyd A. Treinish: Task-Speci�c Visualization Design. IEEE Computer Graphics
and Applications, volume 19(5):72�77, September/October 1999. ISSN 0272-1716.

[TTS09] Conrad Thiede, Christian Tominski and Heidrun Schumann: Service-Oriented In-
formation Visualization for Smart Environments. In Proc. International Conference
Information Visualisation (IV'09). Barcelona, Spain, 2009.

[V�03] Pere Pau Vázquez: On the Selection of Good Views and its Application to Computer
Graphics. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain,
April 2 2003.

[VCWP96] John Viega, Matthew J. Conway, George Williams and Randy Pausch: 3D magic
lenses. In UIST '96: Proceedings of the 9th annual ACM symposium on User
interface software and technology, (pp. 51�58). ACM, New York, NY, USA, 1996.
ISBN 0-89791-798-7.

[VFSG06] Ivan Viola, Miquel Feixas, Mateu Sbert and Eduard Gröller: Importance-Driven
Focus of Attention. IEEE Transactions on Visualization and Computer Graphics,
volume 12(5):933�940, October 2006.

[Vio05] Ivan Viola: Importance-Driven Expressive Visualization. PhD thesis, Institute of
Computer Graphics and Algorithms, Vienna University of Technology, Favoriten-
strasse 9-11/186, A-1040 Vienna, Austria, June 2005.

[VJ01] Paul Viola and Michael Jones: Rapid object detection using a boosted cascade of
simple features. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2001.

[WFRS07] Maik Wurdel, Peter Forbrig, T. Radhakrishnan and Daniel Sinnig: Patterns for
Task- and Dialog-Modeling. In Human-Computer Interaction. Interaction Design
and Usability, Lecture Notes in Computer Science, volume 4550/2007, (pp. 1226�
1235). Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-73104-7. ISSN 0302-
9743 (Print) 1611-3349 (Online).

[Whi02] A. W. White: The Elements of Graphic Design: Space, Unity, Page Architecture,
and Type. Allworth Press, 2002.

210

Bibliography

[WKM+09] I. Woo, S.Y. Kim, R. Maciejewski, D.S. Ebert, T.D. Ropp and K. Thomas: SDViz:
A Context-Preserving Interactive Visualization System for Technical Diagrams. In
Computer Graphics Forum, volume 28, (pp. 943�950). The Eurographics Associa-
tion, Blackwell Publishing, 2009.

[WL90] S. Wehrend and C. Lewis: A problem-oriented classi�cation of visualization tech-
niques. In Proceedings of IEEE Visualization, (pp. 139�143), 1990.

[Woy06] Sebastian Woyda: Darstellung technischer Strukturen und Diagramme auf PDA.
Diplomarbeit (Master thesis), University of Rostock, 2006.

[WPF04] Marco A. Winckler, Philippe Palanque and Carla M.D.S. Freitas: Tasks and
scenario-based evaluation of information visualization techniques. In TAMODIA
'04: Proceedings of the 3rd annual conference on Task models and diagrams, (pp.
165�172). ACM Press, New York, NY, USA, 2004. ISBN 1-59593-000-0.

[WSF08] Maik Wurdel, Daniel Sinnig and Peter Forbrig: Task Model Re�nement with Meta
Operators. In Interactive Systems. Design, Speci�cation, and Veri�cation, Lecture
Notes in Computer Science, volume 5136/2008, (pp. 300�305). Springer Berlin /
Heidelberg, 2008. ISBN 978-3-540-70568-0. ISSN 0302-9743 (Print) 1611-3349
(Online).

[Wur09] Maik Wurdel: Towards an Holistic Understanding of Tasks, Objects and Loca-
tion in Collaborative Environments. In Human Centered Design, Lecture Notes in
Computer Science, volume 5619/2009, (pp. 357�366). Springer Berlin / Heidelberg,
2009. ISBN 978-3-642-02805-2. ISSN 0302-9743 (Print) 1611-3349 (Online).

[WVE98] M. van Welie, G van der Veer and A. Eliëns: An Ontology for Task World Models.
In DSV-IS'98. Springer, Abingdon, 1998.

[X3D04] X3D: ISO/IEC 19775:2004 � Extensible 3D, 2004.

[ZCF02] Michelle X. Zhou, Min Chen and Ying Feng: Building a Visual Database for
Example-based Graphics Generation. In IEEE Symposium on Information Vi-
sualization (InfoVis 2002), (pp. 23�30), 2002.

[ZF98] Michelle X. Zhou and Steven K. Feiner: Visual task characterization for automated
visual discourse synthesis. In CHI '98: Proceedings of the SIGCHI conference on
Human factors in computing systems, (pp. 392�399). ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1998. ISBN 0-201-30987-4.

[ZHHM07] Yongwang Zhao, Chunyang Hu, Yonggang Huang and Dianfu Ma: Collaborative
Visualization of Large Scale Datasets Using Web Services. In Proc. of Intl. Conf.
on Internet and Web Applications and Services, 2007.

211

List of Abbreviations

2D two-dimensional
3D three-dimensional
AR Augmented Reality
CAD Computer-Aided Design
CoU Context of Use
CSS Cascading Stylesheets
CTT Concur Task Tree
CSVG Constraint Scalable Vector Graphics
CKM Content and Knowledge Management
DoI Degree of Interest
DOM Document Object Model
DSL domain-speci�c language
DSRM Data State Reference Model
GIF Graphics Interchange Format
GML Geographic Markup Language
GUI Graphical User Interface
HCI Human�Computer Interaction
HVAC Heating, Ventilation, Air Conditioning
I/O input/output
JPEG Joint Photographic Expert Group
LAN Local Area Network
WLAN Wireless Local Area Network
LFS Landesforschungsschwerpunkt
M6C Multimedia Content Management in Mobile environments with

Multi-Modal user interfaces
LoD Level of Detail
MaTE Mask and Task Editor
MBUID Model-based User Interface Development
MDD Model-driven Design
MUI Multiple User Interface
MuSAMA Multimodal Smart Appliance ensembles for Mobile Applications
NPR Non-photorealistic Rendering
OWL Web Ontology Language
PDA Personal Digital Assistant
PDF Portable Document Format
PIM platform-independent model
PNG Portable Network Graphics
PSM platform-speci�c model

213

List of Abbreviations

RCP Rich Client Platform
RDF Resource Description Framework
RoI Region of Interest
SOA service-oriented architecture
SVG Scalable Vector Graphics
UA user agent
UI User Interface
VI Visual Interface
UML Uni�ed Modeling Language
VR Virtual Reality
VRML Virtual Reality Markup Language
W3C World Wide Web Consortium
WIMP Windows, Icons, Menus, Pointing Device
WWW World Wide Web
XLink XML Linking Language
XML Extensible Markup Language
XSLT Extensible Stylesheet Language for Transformations

214

Thesis Statements

1. Visual representation has always been an important communication medium to
convey complex facts. In order to be e�ective, a visual representation must be
adapted to its respective context of use. Smart Graphics aim to move beyond the
current requirement that designers anticipate every data, task and technological
scenario, and instead facilitate the dynamic generation and presentation of content.
A key goal of Smart Graphics is the development of Smart Visual Interfaces.

2. A Smart Visual Interface is a context-sensitive user interface that strives to present
to the user those information and with the level of detail required for her current
situation as e�ectively as possible. It must therefore be determined what content
(which information) must be presented why (which task) to whom (user), when
(in the context of composite work�ows) and where (which output device). Based
on these questions a visual representation is generated, and as the context changes,
the content representation adapts accordingly. These '5Ws' thus comprise the
Context of Use (CoU) of visual representations within smart visual interfaces.

3. Adaptation of graphical content is linked to its scalability. Scalability corresponds
to the ability of content representations to accommodate for changes to the CoU.
Graphical content can be distinguished into four principal visual data types ac-
cording to the degree of inherent scalability: raster graphics, 2D vector graphics,
3D graphics, and information visualizations.

4. The objective of task-based adaptation is to adapt the graphical content (what)
associated with the task at hand (why + when) in such a way that the content's
visual representation (how) provides a good initial view with respect to informa-
tion relevant to the current working step. In doing so, the adaptation process
is subject to output device constraints (where). Initial views can always be in-
teractively manipulated allowing the user to �ne-tune the visual representation
according to her expertise, preferences, and situational requirements.

5. The two primary challenges in providing task-speci�c visual representations are to
provide a suitable task description, and to provide means for an adequate adaptation
control on the basis of this description.

6. As a starting point for the task description, a general task model is used. This
model is the result of prior domain task analysis and represents a hierarchical
decomposition of the task at hand into composite task with subtasks. It further
captures temporal and causal relations between subtasks.

7. The developed page/feature concept allows to enrich this general task model
with a description of relevant task context information with respect to scalable vi-
sual representations. Pages comprise a general, data type-independent description
of graphical content. Features represent a conceptual organization of graphical
content into distinct content elements for which the relevance with respect to the
task at hand is speci�ed. pages and features thus abstract from peculiarities
of the underlying visual data type. Based on these information, adaptation of
task-speci�c visual representations is e�ected in the smart visual interface.

8. The concept of an adaptation pipeline provides the bridge between the concep-
tual task context speci�cation in the enriched task model and concrete �Smart-X�
display techniques comprising the functional building blocks of smart visual inter-
faces. The adaptation pipeline comprises �ve stages � view selection, geometry,
visual attributes, view space and annotations � that allow to e�ect di�erent as-
pects of visual representations by corresponding adaption operations. To this end,
task-speci�c feature relevance is mapped onto the parameter domains of the re-
spective display technique. The adaptation pipeline therefore serves as a general
framework for the integration of display techniques for the di�erent visual data
types.

9. The feasibility of the page/feature and adaptation pipeline concepts has been
shown for all four of the contemplated visual data types. This included a discus-
sion of viable adaptation operations on every stage of the adaptation pipeline as
well as examples on how to integrate existing display techniques to utilize them
as �Smart-X� components in smart visual interfaces. Thereby certain aspects of
graphical content preparation and task context speci�cation are manual tasks by
necessity. Suitable authoring tools for each visual data type have been introduced
that support content authors during smart visual interface design.

10. Six novel �Smart-X� display techniques have been developed that address aspects
of task-speci�c visual representation generation that where found to be open re-
search questions: belt-based raster image distortion, image-based space-e�cient
remote labeling, smart exploded view diagrams from vector graphics, an approach
to smart circuit schematic representation, Smart Lenses for feature-based local
adaptation, and a systematic approach to task-driven color coding.

11. The research conducted in the scope of this thesis has been �anked by the Landes-
forschungsschwerpunkt (LFS) research project and the MuSAMA research training
school. The developed concepts and techniques have been integrated into a joint
e-manual application demonstrator for the LFS. Here, a smart visual interface
component has been implemented that shows the page/feature approach based
on enriched task models is suitable for integration into an overall model-driven
software/interface design process. Moreover several publications co-authored with
participants of the research training school substantiate the developed concepts'
applicability to Smart Meeting Room scenarios.

Erklärung

Ich, Georg Fuchs, erkläre, dass ich die vorgelegte Dissertationsschrift mit dem Thema:
Task-based Adaptation of Graphical Content in Smart Visual Interfaces selbst verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, ohne die (un-
zulässige) Hilfe Dritter verfasst und die den benutzten Werken wörtlich oder inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Bad Oldesloe, 11. April 2011

