zum Inhalt

 

Krüger,  Marcel

Lösung des symmetrischen Eigenwertproblems mit algebraischen Mehrgitterverfahren

Rostock : Universität , 2011

https://doi.org/10.18453/rosdok_id00001052

http://purl.uni-rostock.de/rosdok/id00001052

Abstract:

Kern der Arbeit ist die Lösung verallgemeinerter Eigenwertprobleme für symmetrisch positiv definite Matrizen unter Verwendung vorkonditionierter Iterationen in Kombination mit Mehrgitterverfahren. Im Gegensatz zur etablierten Methode der geometrischen Mehrgitterverfahren wird hier eine algebraische Mehrgittervorkonditionierung vorgeschlagen. Zum Nachweis der Effizienz der resultierenden Eigenlöser wird ein breites Feld an Modellaufgaben, insbesondere auch anisotrope und geometriefreie Probleme, untersucht und bewertet.

Dissertation Open Access


Einrichtung :
Mathematisch-Naturwissenschaftliche Fakultät
Gutachter :
Neymeyr,  Klaus  (Prof. Dr.)
Langemann,  Dirk  (Prof. Dr.)
Jahr der Abgabe:
2011
Jahr der Verteidigung:
2012
Sprache(n) :
Deutsch
Schlagworte:
vorkonditionierte Iterationen, Eigenlöser, Krylov-Unterraumverfahren, AMG
DDC Klassifikation :
510 Mathematik
URN :
urn:nbn:de:gbv:28-diss2012-0091-5
Persistente URL:
http://purl.uni-rostock.de/rosdok/id00001052
erstellt am:
2012-10-26
zuletzt geändert am:
2018-06-30
Volltext