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ABSTRACT

The strong field approximation (SFA) is a widely used theoretical tool
in the field of strong field physics and has been applied to various
non-perturbative ionization processes. In particular, the SFA provides
an intuitive semi-classical interpretation of strong field phenomena
in terms of “quantum orbits”. However, recent experimental results
and ab initio simulations revealed deviations from the predictions of
the SFA. We have developed a systematical extension of the SFA,
the trajectory-based Coulomb-corrected strong field approximation
(TCSFA), to explore Coulomb effects on strong field processes.

We apply the TCSFA to the ionization of hydrogen-like systems
in long-wavelength, linearly polarized laser fields. Photoelectron mo-
mentum spectra are explored by comparing results from the SFA,
the TCSFA and solutions of the ab initio time-dependent Schrodinger
equation (TDSE). It is shown that the TCSFA yields good agreement
with exact TDSE results.

The TCSFA provides unprecedentedly intuitive insights into the
ionization dynamics. All spectral features can be interpreted in terms
of trajectories. With the aid of the TCSFA, we successfully identify
new types of quantum trajectories induced by the Coulomb potential
and explain the origin of the recently discovered “low-energy struc-
ture” (LES). In addition, the interferences between different types of
trajectories are explored to account for diverse complex interference
patterns in spectra. Within the TCSFA, it is possible to distinguish
the influences on interferences from real-space and under-barrier
Coulomb corrections in classically forbidden regions.

ZUSAMMENFASSUNG

Die Starkfeldndherung (engl. “strong field approximation” (SFA))
ist ein weit verbreitetes theoretisches Hilfsmittel auf dem Gebiet
der Starkfeldphysik und wurde auf verschiedene nichtstérungstheo-
retische Ionisationsprozesse angewandt. Die SFA ermoglicht eine
intuitive, semi-klassische Interpretation von Starkfeldphdnomenen
mittels “Quantenbahnen”. Neuere experimentelle Resultate und ab
initio-Simulationen haben allerdings Abweichungen von den SFA-
Vorhersagen aufgezeigt. Wir haben eine systematische Erweiterung
der SFA entwickelt, die trajektorien-basierte Coulomb-korrigierte
Starkfeldndherung (engl. “trajectory-based Coulomb-corrected strong
field approximation” (TCSFA)), um Coulomb-Effekte in Starkfeldpro-
zessen zu untersuchen.
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Wir wenden die TCSFA auf die Ionisation von wasserstoffartigen
Systemen in langwelligen, linearpolarisierten Laserfeldern an. Pho-
toelektronenimpulsspektren werden untersucht, in dem Resultate
der SFA, der TCSFA und Losungen der ab initio zeitabhdngigen
Schrodinger-Gleichung (engl. “time-dependent Schrodinger equa-
tion” (TDSE)) verglichen werden. Es wird gezeigt, dass die TCSFA
gute Ubereinstimmung mit den exakten TDSE-Resultaten erzielt.

Die TCSFA ermoglicht bisher unerreichte, intuitive Einsichten in
die Ionisationsdynamik. Alle spektralen Eigenschaften konnen mit-
tels Trajektorien interpretiert werden. Mit Hilfe der TCSFA kon-
nen wir erfolgreich neue Typen von Quantentrajektorien, die durch
das Coulomb-Potential induziert werden, identifizieren und den
Ursprung der kiirzlich entdeckten “low-energy structure” (LES)
erkldaren. Dariiberhinaus werden die Interferenzen zwischen ver-
schiedenen Typen von Trajektorien untersucht, um die vielféltigen,
komplexen Interferenzmuster in den Spektren zu erfassen. Mittels
der TCSFA ist es moglich, den Einfluss der Realraum- und den der
Sub-Barrieren-Coulomb-Korrekturen in klassisch verbotenen Berei-
chen auf Interferenzen zu unterscheiden.
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INTRODUCTION

In this work we introduce a semi-classical method, the trajectory-
based Coulomb-corrected strong field approximation (TCSFA), to ac-
count for the influence of Coulomb interaction between the photo-
electron and the parent ion for atomic ionization in a strong field.
Closely related to contemporary experiments, Coulomb effects on the
photoelectron momentum distribution are explored, particularly for
an atom in a long wavelength, intense laser field.

A thorough understanding of atomic ionization in strong fields is
essential for further explorations and diverse applications—imaging
of atomic structure, devising new light sources, investigating more
complicated processes such as dynamics of molecule- or cluster-
interactions with radiation fields.

In the early days of quantum mechanics, single-photon ionization
has been successfully explained by Einstein’s photoelectric effect. As
an atom of the ionization potential I, is subjected to a radiation field,
the atom is single-ionized when the photon energy E = hiw > I,. As
early as in 1931, Maria Goppert-Mayer predicted two-photon transi-
tions using time-dependent perturbation theory [3]. However, multi-
photon transitions could not be experimentally confirmed due to the
lack of intense radiation sources until the 1950s (for a historical re-
view, see, e.g. [4]). Such transitions from a bound state to the
continuum by absorbing multiple photons is called MULTI-PHOTON
IONIZATION (MPI), which was first observed by Voronov [5] and Agos-
tini [6]. The N-photon ionization rate satisfies a power law with re-
spect to the laser intensity I and the number of absorbed photons
N, w = onIN, where oy is the N -photon ionization cross section. In
1979 MPI peaks in photoelectron spectra were observed [7]. Later, ex-
perimental results showed the peaks for higher-order multi-photon
absorption are even stronger than lower order peaks [8], suggesting
that time-dependent perturbation theory is inapplicable and an non-
perturbative theoretical treatment of nonlinear ionization is required.

Theoretically, the numerical solution of the time-dependent
Schrodinger equation (TDSE) would give the exact result as long as
relativistic effects need not be considered. However, even in the most
simple case of a single active electron, the computational effort of
solving the TDSE grows dramatically with increasing wavelength and
laser intensity. The large excursions in strong fields require a suffi-
ciently large grid to adopt the motion and the spreading of an elec-
tronic wave packet. For a many-body system the situation deterio-
rates due to the notorious “exponential wall” in the computational
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effort [9]. Moreover, the information obtained by the TDSE often does
not provide insight into the mechanisms that are responsible for cer-
tain observable phenomena.

The strong field approximation (SFA) is the most widely used the-
oretical tool in strong field physics, and the majority of strong field
effects can be qualitatively understood within the SFA. In the SFA,
the continuum state is approximated by plane-wave Gordon-Volkov
states describing the oscillatory motion of an electron in a laser field
but neglecting the interaction with the binding potential. The SFA
transition amplitude can be reduced to a coherent superposition of
semi-classical trajectories by means of the saddle point approximation
(SPA). In this way, strong field ionization can be analyzed intuitively
in terms of (interfering) "quantum orbits" [10, 11].

Unfortunately, the SFA is quantitatively inaccurate in many cases
due to the neglect of the interaction between the photoelectron and
the parent ion after the emission process. Experiments even show
qualitative deviations from the predictions of the SFA. Such exam-
ples include the Coulomb-induced enhancement of the ionization
rate [12, 13, 14, 15], four-fold symmetry violation of angle-resolved
photoelectron distributions in elliptically polarized fields [16, 17],
forward-backward symmetry violation of momentum distributions
in few-cycle linearly polarized fields [18], a central minimum with
a double “horn-like” structure in parallel momentum distributions
[19, 20, 21, 22, 23, 24] (though its mechanism is still in debate, see,
e.g., [25, 26]), a cusp-like peak at zero transverse momentum distri-
bution [19, 27], radial fanning-out structures in the near-threshold
regime [28, 29, 30, 31], the low energy structure (LES) [32, 33], and the
below-threshold high-harmonic generation due to the binding poten-
tial [34, 35].

Several approaches to “patch” the SFA for Coulomb effects have
been developed. The Coulomb-Volkov approximation (CVA) [36, 37]
is a method applicable for a continuum electron in a “fast” ioniza-
tion process using the sudden approximation. The method has been
used to study photoelectron spectra [38, 39, 40]. The imaginary
time method (ITM) [12] is another widely used approach to study
the influence of the binding potential on tunneling processes, par-
ticularly when the quasi-classical condition is satistied. The ITM in-
corporates the Coulomb interaction into the quasi-classical action
along the electron trajectories in the classically forbidden region
(sub-barrier region), as the electron is moving under the barrier
formed by the laser field and the ionic potential. The concept of
ITM, as an important element in our work, is discussed in Chapter
3. The Eikonal-Volkov approximation (EVA) is a theory with the
aim of retaining the applicability to both fast and slow ionization
[41, 42, 43, 44]. The classical-trajectory Monte-Carlo method [45] in
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combination with semi-classical tunneling rates is also used to study
long-range Coulomb effects on continuum electrons [46, 18, 33, 47].

In this work, we present a unified semi-classical approach to tackle
atomic ionization in strong fields of near- or mid-infrared wave-
lengths. In particular we focus on the analysis of two-dimensional
photoelectron momentum distributions which allows for straightfor-
ward comparisons with contemporary experimental or ab initio re-
sults. The work is organized as follows.

In Chapter 2, the general concept of strong field physics and the
SFA transition amplitude is introduced. We use the method of asymp-
totic expansions to reduce the transition amplitude in integral form
to a summation over “quantum trajectories”. The intuitive picture of
quantum orbits in this chapter lays the cornerstone for the develop-
ment of the TCSFA.

In Chapter 3, we give a brief review of the ITM. The ITM is used
to account for the tunneling process in the TCSFA and to describe
the sub-barrier trajectories before the electron enters the continuum.
Choosing proper boundary conditions, a unified view of strong field
ionization in terms of trajectories becomes available.

In Chapter 4, we introduce the TCSFA by incorporating Coulomb in-
teraction into trajectories. Both trajectories and actions are modified.
Details of the numerical implementation are also discussed. We apply
the TCSFA method to the study of the interaction between hydrogen-
like atoms and monochromatic laser fields. Doubly-differential mo-
mentum distributions obtained with the TCSFA are presented. The
spectral features are analyzed with a trajectory analysis. In addition,
the recently revealed “ionization surprise” [48]—the LES [32, 33] in
mid-infrared laser fields is investigated using the TCSFA. The TCSFA
results reveal a similar ionization enhancement in the low energy
regime of momentum spectra. By analyzing trajectories, the root of
the ionization enhancement is found being related to classical bound-
aries (caustics).

In Chapter 5, interference patterns in momentum spectra are in-
vestigated, and a systematical analysis based on phase differences is
performed.

Finally, a conclusion is given in Chapter 6.






STRONG FIELD APPROXIMATION

The strong field approximation (SFA) is a widely used theoretical ap-
proach to tackle field-atom or field-molecule interaction in the non-
perturbative regime, as well as high-order harmonic generation (also
known as the Lewenstein model) [49], and non-sequential double ion-
ization [50, 51, 52, 53, 54, 55]. In this Chapter, we provide a consis-
tent introduction to basic concepts of strong field physics and the
SFA. Atomic units are used unless noted otherwise, ie.,, i = m, = 1,
e = —1, m, being the electron mass.

2.1 INTENSE LASER-MATTER INTERACTION
2.1.1  Choice of Gauge

Let us consider an electron coupled to an electromagnetic field de-
scribed by the Hamiltonian,

A Lia | 22017 N

At =3 [F+AF 0] —e@ D,
where ¢ is the scalar potential and A(7, t) is the vector potential.

In terms of ¢(7,t) and A(7,t), the electric and magnetic fields are
given by
. IA

E() =-5;— V¢, B(t) = V x A. (1)

The way to choose A(F,t), ¢(7,t), and the wave function ¥ is not
unique. They are left invariant under the gauge transform
P=p-%K H=Arvy g =y, )

with the arbitrary x = x(7,t) being the generating function of the
gauge (¢, A) to (¢, A'). Gauge transformations do not affect observ-
ables and offer possibility to choose the most suitable gauge for the
problem to solve. However, gauge invariance may be violated if ap-
proximations are applied.

Velocity gauge and length gauge (also called Goppert-Mayer gauge
[3]) are commonly used for problems of field-matter interaction. In
the velocity gauge,

pV(7,t) =0, AV(Ft) = A(%1). (3)
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and the instantaneous (physical) momentum is given by 7 = f+ A(t).
In our work, the dipole approximation is used. We assume that the
wavelength of the laser is large compared to the interaction region,
i.e., the spatial dependence of the light field is negligible, A (r,t) ~
A(t). The transformation from velocity gauge to length gauge can be
conducted with the generating function

x=—-AV(t) 7 (5)

Substituting (5) into (2), we obtain ¢ and A in length gauge,

¢- = —E(t)-7, A1) =0, (6)
and the Hamiltonian
A 14 R
HY(t) = 5p° +7-E(t). 7)

2.1.2 Gordon-Volkov state

The motion of a free electron in an external electromagnetic field is
quantum mechanically described by Gordon-Volkov states. In the
non-relativistic limit, the Gordon-Volkov wave function in velocity
gauge reads

(GVV) /= o 1 X _,._,_1/15 e - 2
Py (r,t)—7(27_[>3/2 exp {z {p =35, dt <p+A(t )) ,

8)
or in Dirac’s notation
iV (1) = ) exp [~iSy(1)], (9)

where |p) is the plane wave state of momentum 7, and
1t . o 2
S5(t) = E/0 dt [p+A(7)] .

In the length gauge, applying the gauge transform (2), the Gordon-
Volkov state is given by

GV, — e .
Wi () = [P+ A(r) exp [—iS(1)] - (10)
2.2 STRONG FIELD APPROXIMATION

Let us consider the ionization process of an atom in a strong laser
field of the electric field component E(t) in the dipole approxima-
tion. Initially, the atom is in the bound state |¢(t)) = |go)e'#! of the
binding potential V(7). I, is the ionization potential. The Hamilto-
nian of an atom coupled to a time-dependent external field, which is
described by an operator W(t), is given by

At = —%vz + V@) + W), (11)



2.2 STRONG FIELD APPROXIMATION

The laser-induced ionization corresponds to the transition from the
initial state |¢po(t)) to the continuum state |;(t)) of the asymptotic
momentum p. The transition amplitude reads

Mj(ts t) = (Pp(tr) [U(tg 1) o (t:), (12)

where U(t f,ti) is the exact time-evolution operator for the Hamilto-
nian (11) from the initial time ¢; to the final time t;. The simultaneous
presence of the external light field and the atomic potential restrains
one from finding analytical solutions to the TDSE. Let us consider
separately

ot) = —5V2+0(), (13)
AG() = —%V2+W(t). (1)

Hy(t) and HGV)(t) describe a bound electron in an unperturbed
atom, and a free electron in an external field, respectively. Corre-
spondingly, the time evolution operators are denoted by Uy (t,t') and
UGV)(t,¢'). The eigenstate of Hy(t) is |4(t)), while the eigenstates
of HGV)(t) are Gordon-Volkov states (10), as discussed in Sec. 2.1.2.
With this decomposition we are able to utilize the integral forms ex-
panded in Uy and U(GY),

t A A
At ) = Uo(tt) —i / atl(t, W) Uo(T,#)  (15)
t/
t A A
= Uy(t,t')—i [ dtlp(t,T)W(T)U(T, 1) (16)
t/
and

t
ety = aS¢Y)—i | dtl,n)yv@EaS )  (1y)
t/

A

't
— U ) —i / dti (¢, T)V(#H)U(T, '), (18)
t/

respectively.
Substituting (15) into (12) and wusing the orthogonality
(5(tr)[Po(ti)) = O, the transition matrix element reads

[t - .
Mty t) = =i [ ar(ps(t) [0, YWD go(x). (19)
Substituting (18) into (19), we have Mﬁ(t £,t;) split in two terms,
[ . .
My(tts) = =i [ deiys(tn) 0§ (8, W () [go(0)

£

- /t_tj dT/:f dt(p;(t)| AV (, HV(H) U (L, D)W (7)o (7)).  (20)
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The first part of (20), as the transition amplitude of the zeroth-order,
is denoted by

t N
MP (1) = =i [ ar ()| (DR @Igo(0). @)

s h

Using the relation

t t t t
/fdr fdt:/fdt/fdrcat—r /dt/dr
t; T

1

where O(t — 7) is the Heaviside function, we recast the second part
of (20) in the form
t t
MP (7, t) = = [ a0ty 1) [ eV @ DW )0 (o))
| | (22)
Both (21) and (22) are still exact. Further expansion of the full propa-
gator U(t,T) may lead to transition matrix elements of higher orders.
In the SFA, the substitution of the final state, (5(ts)| — (¢ (GV)( te)l,
is made. The interpretation of the substitution is that the electron is
free from the influence of the binding potential after it transits into
the continuum. Using

Aty = [ dky ) @) 23)

and the orthogonality < ( )WL ( £))=06(p— k), we find from
(21) that

t A
MY (b, 1) = —i [ "ty ()W (D) o (1)), (24)

i

and from (22) that

t t N ~ ~
MO (k1) = — /t "y (1)) /t drV (F)U(t, T)W(1) o (7). (25)

Equations (24) and (25) account for the so-called “direct” ionization
and the rescattering process, respectively.

2.2.1  “Direct” Ionization

The transition amplitude (26) is also called the Keldysh-Faisal-Reiss
(KFR) amplitude [56, 57, 58]. Substituting the Gordon-Volkov state
(10) and the interaction W = 7 - E(t) [see Eq. (6)] into (24), the transi-
tion matrix element in the length gauge is given by

o . . .
MO (b5, 1) = —i [ de(p+ A@)[F-E(@) o)™ 7@ (26)
pos P 4
t.

1
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with
t —
SIp,ﬁ(t)ESﬁ(t)-f—Ipt:/o B (ﬁ+A(r))2+1p] dr.  (27)

MSO) accounts for the direct ionization, which implies an electron
lifted into the continuum is driven towards the detector by external
light fields without further interactions with the core.

In the following we present the calculation of the transition ampli-
tude (26). In principle, the S-matrix theory requires the initial time
t; — —oo, and the final time tf — oo represents the time when the
photoelectron arrives at the detector in experiments. Practically, we
use t; = 0 and tr = Ty, where T, is the time when the laser pulse
is switched off. Expressing (26) in the position 7-representation, we
obtain

T L L
MO = / " dt [ / d?el(“A(T))'rl,bo(?)] 7-E(1)e"wr(D,  (28)
0

where (7) = (F|p). With § = 7 + A(t), we have

T i Pr— — .
MY =—i [ ar / d??ew'ﬁpo(?)] E(7)elSwi
0 L
T P _ .
— i [ dr z/d?’; (e_””) 1,00(?)] E(T)elslnrﬁ(f)
0
T d Eiﬂ . (29)
= At— /drelqupg(?')] E(1)eSw®
0 dq

where y(7) is the Fourier transform of y(7). Details of y(7) for
different states are listed in Sec. A.1. Taking the ground state of
atomic hydrogen for instance, we have

5/4 TpdT i-E(1) oi517(0)

0) _ ~7/2
MY =2 21
' b gy

(30)

Since the Gordon-Volkov state describes a free electron in an exter-
nal light field, the SFA in the form of M%O) neglects the influence of
binding potential after the emission.

The direct ionization predicted by (26) is within the energy range
E < 2U,, in agreement with the 2U, cut-off derived from the classical
model without re-scattering processes (see Sec. 2.4). However, actual
photoelectron spectra extend beyond 2U,, though the corresponding
ionization probability is usually much lower. In order to correctly
account for the spectral distribution for E > 2U,, it is necessary to
include the high-order matrix element (25).
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2.2.2  High-Order lonization

Analogous to direct ionization, it is straightforward to interpret the
high-order transition amplitude (25) in terms of a multiple-step pro-
cess. The first step in (25) depicts an electron interacting with an ex-
ternal field W where the atom is ionized at time 7. Subsequently, the
photoelectron propagates within the time interval [t, 7], as described
by U(t, 7). At time t, the interaction with the binding potential V (7)
occurs, that is, rescattering takes place. In the study of strong field
ionization, the above process accounts for photoelectrons with en-
ergies beyond 2U,, which is known as high-order above-threshold
ionization (HATI).

In the following the first-order transition amplitude within the
SFA in length gauge is presented. One should note that the full
propagator U(t,T) in (25) is unknown. Making the assumption
U(t,7) — UGY)(t,7) and using (23) for UV (t, ), we obtain

t t N A
MP (k) == [ ar [ e [aku 01004 0)

) g (31)
x (7 (D)W (T) [ (7))
Substituting (10) into (31), we find
t . . . I ) .
MO () = — / " at / dR(F + AV (F) [k + A(t))eS5(DeiSe(0)
ti
t = 1 T
x tdT<k+A(T)|?-E(T)]lpo)es’zﬂk )
t
= — [ dteSpr®) / dtl(t,7) (32)
t; t;

(33)

Analogous to the practical evaluation of the zeroth-order transition
amplitude, we consider the upper limit {; = T, since numerical cal-
culations have shown that the contribution of the amplitude from
[Tp, co] is small. The reason is that, according to the classical theory,
the electron energy does not change after the elastic rescattering be-
cause the field is off for t > T),.

2.3 SADDLE POINT APPROXIMATION AND QUANTUM ORBITS

We assume that N photons, each having the energy fiw, are required
to overcome the ionization potential I,. If N = I,/hw > 1, we resort
to the SPA to simplify the transition amplitudes (26) and (32). The
SPA can significantly alleviate computational burdens. Moreover, it is
endowed with an intuitive picture of quantum orbits.



2.3 SADDLE POINT APPROXIMATION AND QUANTUM ORBITS

2.3.1 Zeroth-Order Transition Amplitude

Since the action S Ip,ﬁ(t), as an exponent, is a rapidly oscillating func-
tion of ¢, we can use the SPA by deforming the contour integral in the
complex plane and passing near a saddle point, to approximate the
integral (26) (see, e.g., [59], about techniques for asymptotic expan-
sions of integrals). The integration over T in (26) is thus recast in the

form of a sum over saddle points {tg“) }

0) K eislﬂﬁ(tglx))

© _
MY =2y (34)
7 Lk sy 5(K)

where k¥ = \/2Tp is the characteristic momentum of a bound electron,
and S” denotes the second-order time derivative of S; 5(t). The ath

saddle point tg“) satisfies the saddle point equation (SPE),

—

[ AW =, 65)

The solution tga) of (35) is complex if I, > 0, which is the case for

atomic bound-states. Not all tg“) fulfilling (35) for a given p are phys-
ical. Therefore we impose two restrictions for valid saddle points.

Firstly, the real part of tg“), t, = Rets, is required to be within the
time interval when the laser is present, i.e., 0 < t, < T}. In the picture
of the tunneling ionization, ¢, is the time when an electron reaches the
outer turning point of the potential barrier and enters the continuum.
The first condition guarantees that, only when a light field is present
can an atom be ionized.

Secondly, the imaginary part of t;, t; = Imt;, should satisfy Imt; >
0. According to the general theory of adiabatic transitions [60, 61], the
final-state energy is higher than the initial-state energy. Only when f;
stays in the positive-half complex time plane can we find a sensible
tunneling ionization probability, which is closely related to t;. Given
()

a momentum p, t;

;. determines the weight of the ath trajectory in

(@)

the final spectra. Generally, a small ;" assigns a large weight to

(@)

the ath term in (34), and conceivably the smallest ¢;

tg“) when the absolute amplitude of an electric field is near the local
maximum.

Besides the benefit from substantially reduced efforts at numer-
ical integrations, by virtue of “quantum orbits” [10, 11], the sum
(34) offers deeper insights than the integral form (26). The con-
cept of quantum orbits helps analyze complicated ionization dynam-
ics by “sewing quantum mechanical flesh onto classical bones” [62].
Classical properties with regard to trajectories are quite intuitive.
Quantum-mechanically, on one hand, the coherent summation over
different trajectories with the same asymptotic momentum manifests

corresponds to

11
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the “multi-slit-in-time” nature in ionization processes [63, 64]. On the
other hand, the quantum tunneling is naturally depicted with quasi-
classical methods by incorporating complex trajectories extending to
classically forbidden regions. The analysis using complex trajectories
is generally known as ITM [65] (see Chapter 3). Both complex and
classical trajectories are determined by solving Newton’s equation of
motion. However, we leave details about how trajectories are evalu-
ated to the unified treatment together with the TCSFA in Chapter 4.

2.3.2 High-Order Transition Amplitude

The SPA is also applicable to evaluating the HATI transition amplitude
(32). Applying the SPA to the integral (33) over the intermediate mo-
mentum k, we solve the SPE

d
4 [t =5,0]
and find the saddle point

- a(t) —a(t
ORI

where @(t) is the excursion of the electron,

t —
i(t) = [ At (36)
0
Hence the integral (33) is reduced to
Y= ie—1) 7 ks s Yo 37

with the matrix element for the rescattering potential

Vir(t) = (F+ AWMV [k + A1) (38)

and the action
ASIp,k(t/ T) = SIP,E(T) — Slp,%(ﬂ.

With the short-range interaction modeled by Yukawa’s potential
V(r) = — (b+a/r)exp (—Ar), the matrix element (38) is given by
2bA +aC

- =\ 2 2

2.4 CLASSICAL DESCRIPTION: SIMPLE MAN’S MODEL
The simple man’s model (SMM) describes the classical limit of quan-

tum orbits, and we can use the SMM to estimate the cutoff in above-
threshold ionization (ATI) [66], HATI, [67, 68] and high-order harmonic



2.4 CLASSICAL DESCRIPTION: SIMPLE MAN’S MODEL

generation (HHG) spectra [45]. In the SMM, the assumption [, = 0
leads to ts € R, and hence quantum orbits become classical trajec-
tories. Still, the Coulomb field is neglected throughout the electron
propagation. The SMM describes the oscillation of an electron in the
laser field abiding by Newton’s equation of motion, and hence it can
predict the maximum kinetic energy of an electron acquired from the
oscillating electric field. In this work, the estimate of the cutoff with
the SMM can help determine the spectral range in momentum spectra.

Firstly, we show the maximum kinetic energy acquired by a photo-
electron in the “direct” ionization, i. e., the cutoff of ATI spectra. Given
an electron “born” at t,, the velocity of the electron is given by

Z—)»(before)(t) —— /t E(t/)dt/ = A(t) — A(tr) (39)
tr

Here we assume the initial velocity g(before) (ty) = 0, where the super-
script “(before)” denotes the status before any “hard” interaction be-
tween the photoelectron and its parent ion. As t — oo, the light field
vanishes, A(co) — 0. Hence the asymptotic velocity F(c0) = —A(t,).
The maximum momentum is |Tmax| = |A(tr)\ = Ey/w, correspond-
ing to the maximum kinetic energy

1
2

_ B

Ernax - - m

S 2
‘vmax’ — zuP. (40)

If rescattering processes are allowed, HATI may take place. By in-
tegrating (39), the trajectory before the rescattering is given by (we
assume the tunnel exit, where the electron enters the continuum, is

close to the origin, 7(t,) ~ 0)
plbetore) (1) — (1) — (1) — A(t) (t— 1),

where @(t) is the excursion of the electron as defined in (36). When

the electron rescatters with its parent ion at tresc, (before) (tresc)| = 0,

i.e.,

‘Ez(tresc) - I_X‘(tr> - A(h) (tresc - tr) ~ 0. (41)

Assuming a head-on collision with maximum momentum-transfer,
from (39) the velocity instantly after the collision reads

Z—]»(after)(tresc) - - [A(tresc) - A(tV):| 4 (42)

where the reversed sign is due to the backward reflection. The subse-
quent velocity of the electron is obtained by solving the equation of
motion with the initial condition (42),

t -
Z—)»(after)(t> — / E(t/)dtl + 5(after)<tresc)

tresc

= A(t) — 24 (tresc) + A(t).

13
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As t — o0, A(t) — 0, we have 7@%) (00) = —2A(tresc) + A(t,). The
maximum kinetic energy after the recollision cannot be determined
analytically. Numerical evaluations indicate the photoelectron has
the maximum kinetic energy [67],

1 . - 2
E =5 |~2A(tese) + A(tr)| < 10.007Up. (43)

In order to acquire the maximal return energy or backscattering en-
ergy, the electron has to start its orbit shortly after a maximum of the
electric field strength. As a consequence, it returns or rescatters near
a zero of the field.



IMAGINARY-TIME METHOD

When the intensity of the laser is sufficiently high, the light field sub-
stantially suppresses the binding potential and the bound electron
can be emitted by tunneling through the distorted potential barrier.
A narrow bundle of extremal trajectories that minimize the action
functional can be used to account for the tunneling ionization in the
semi-classical limit. Since the trajectories, as the most probable paths
of electron tunneling, extend into the classical forbidden region, the
time parameter is necessarily complex. In this chapter, the ITM tech-
nique concerning the non-relativistic strong field ionization is intro-
duced (see [65] for a comprehensive review about the development
of the ITM and more applications).

3.1 IMAGINARY TIME METHOD

The Hamiltonian for an atom in an external electric field E(t) is given
by (11). In the length gauge, W(t) = 7- E(t), the TDSE reads
0 1_, I
i [p(t)) = | =5 Vo + V() +7-E()| [$(t)). (44)

The integral form of (44) in the momentum space is [65]

t -
£ = —i / dt'eils! / PEKF, 67,V ) po@).  (45)

By applying the SPA, the coordinate representation of the kernel in
the semi-classical limit is given by

—t iC(7p
K(FL7Y) = ; ®((f It)))3/2 ASFTH) (46)
mi(t —t

Transforming (46) into the mixed representation using the Fourier
transform, we find

K(ﬁ, t: 1—;/’ t/) -z [K(?t,’ F/t/)] ~ (27.()73/281'[5(;7,#?/,,5/),;7.4‘ (47)

Substituting (47) into the wave function (45) and evaluating the action
along the classical trajectory, (7, t) reads

zIp
lp(ﬁ/ 2717 s / dt//d?)—»/ iW(ptP 1) (1—;/)([)0(7/), (48)
with the action

t
WE P, ) = [ (L)~ 1) dr—F-F. (49)

15
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Neglecting the binding potential, the Lagrangian £(7) is given by

N3

Lo(t) = 5 —7- E(7). (50)

Thus, the action (49) becomes
t = .
Wo :/ dt [U;T)—?-E(T) —Ip] _F7
t/
with —p -7 the upper boundary term for the integral

—ftf dtil (3(t) -7#(t)) as long as F(#) = 0 is assumed. With
this substitution, the action

Y I L

=2
= — /t/t dt {v éT) + Ip] = — t/t dt [Ho(t) + L) (51)

is obtained, where H; is the Hamiltonian for an electron in an exter-
nal field. If the SPA is applied to the integral in Eq. (48), dW/dt =0
leads to the SPA for the SFA in Eq. (35).

The major purpose of the ITM is to study the tunneling probability
through a time-dependent potential barrier. In this chapter, we refer
to the action W as the one in the sub-barrier region, W = wsub,

The minimized functional of the action determines that the trajec-
tory of an electron satisfies the Euler-Lagrange equation, which are
equivalent to Newton’s equation of motion. In the following we in-
troduce the complex trajectories used in this work.

3.2 COMPLEX TRAJECTORIES

The integration path t = t, +i7 (t, € R and T € R with the emission
time ¢, a constant) for the equations of motion in the complex-time
plane, may be chose parallel to the imaginary-time axis. We assume
t, being a constant on the basis of the experimental evidence that,
virtually, the measured tunneling delay time is zero [69].

Moreover, the following boundary conditions are imposed in accor-
dance with the variation of W:

A. Spatially, the bound-state electron is located at the origin before
the tunneling, Re?(tg'x)) = 0.

B. The initial kinetic energy equals the energy of the bound state,

%5(1?9"))2 = —I,, in agreement with the SPE (35).

c. All dynamical variables are real after the electron has tun-
neled through the time-dependent potential barrier, Im?(tﬁ'x)) =
Imﬁ(tﬁ“)) =0. Att=t, ?(tg“)) is the tunnel exit.



3.3 IONIZATION PROBABILITY

In the absence of the Coulomb field (denoted by the subscript “0”),
we choose the following complex trajectory which fulfills all the above
assumptions,

@)

[N s =
Fo(t) = / A()dt + Fot — Re / At + ﬁotg“)] . (52)
0 0

Accordingly, the velocity is given by

Bo(t) = po + A(t). (53)
33 JONIZATION PROBABILITY

The probability for a single trajectory to tunnel out of the potential
barrier is given by

ei(ReW+iImW) 2 — o 2mW

w = |y~ e -

(54)

3.3.1 Static Light Field

As a first example, we use the ITM to derive the tunneling formula for
the atomic ionization in a static field

E(t) =Eo,  A(t) = —Eot. (55)

Assuming that the z-axis is in the polarization direction, from Eq. (53)

the sub-barrier velocity of the electron with the asymptotic momen-
tum g = (pz, px) is given by

v,(t) = v, (ty +it) = (pz— Eoty) —iEpT (56)

Ox(t) = vyt +1T) = py, (57)

where 7 is along the complex time path. At t; = t, + it;, the boundary

condition in Sec. 3.2 fulfills the SPE. Substituting (56) and (57) into
(35) we find the components of £,

P, \/ P2+ 21,
= =, tl = -,

Eo Eo
Substituting (56) and (57) into the action (51) and using (58), the ac-
tion reads

t, (58)

W = —/:{; [02(t) + 0% (1)] +1p}dt

= i/oti {; [(—iEoT)z + pﬂ + Ip} dt

1 E3
= i[5 03 van) - 2]

i 3/2
= TEO(PiJFZIp) :

17
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Using (54), we find the tunneling formula [60]

2 3/2
w ~ exp {—350(P§+21p) }

~ 2 (23
~ exp{ 3E (K +2]9x>] (59)

with ¥ = |/21,. The formula can be used to estimate the probability
of ionization as a function of Ey and the transverse momentum p,.

3.3.2  Arbitrary Light Field

Let us consider an atom in a linearly polarized electric field E(t),
which can be decomposed into monochromatic components of fre-
quencies kw with k € IN,

E(t) = Ey ), frcos(kwt), Y fi=1
k=1 k=1
The vector potential reads
A(t) = —% ) j;ksin(kwt)

Eo v fx
v, (t) = p. — — ) = sin(kwt),
w k; k (60)
0x(t) = pa.
Inserting (60) into (51), we obtain the action for the sub-barrier prop-
agation
Wsub — |: :|
= —t) EOPZ Z (cos kwts — cos kwt,)
= r w2 s r (61)
frfi [sin[(k—K') wt] sin[(k+K') wt] s
e ;; kK k=K ke |

The imaginary part of (61) is found as

1 E
TmWsub — <P2 + Ip) t— (?)FZJZ Z{Iésinkwtr sinh kwt;
k

fxfi [ cos[(k+ k") wt,]sinh [(k+ k") wt;]

_ cos [(k — k') wt,] sinh [(k — k) wt;] }

k—k



3.4 COULOMB CORRECTION TO THE IONIZATION PROBABILITY

By decomposing the third term into two parts for indices k = k” and
k > k', respectively,

U, cos 2kwt, sinh 2kwt; N\ 24U
CWEL= T (BBl ) Zhy Y

K k>k

we are able to recover Egs. (7) and (8) in Ref. [12],

1 f2 EOPZ fk
MW = [ -p? + I, + U, Y 25 | t; — =52 Y 25 sinkwt, sinh kawt;
2 k k w k k

u 2
— 2—p Z {’; cos 2kwt, sinh 2kwt;

ZUp Y Y [fkfk’ cos (k + k") wt,sinh (k+ k') w
= L kK k+ k'
_cos (k — k') wtysinh (k — k') wt;
k—K

and derive the ionization probability using Eq. (54). The formulas in
[12] were derived under the assumption that the electron enters the
continuum at the peak of the electric field, t, = 0, and the correspond-
ing momentum 7 = 0. In the above derivation, however, trajectories
are allowed to take any asymptotic momentum g, and saddle points ¢,
are p-dependent. This extension allows for the full range of classical
trajectories of all possible . Therefore the ITM is not restricted to the
evaluation of the ionization probability from just one extremal trajec-
tory. Instead, it may be extended to account for all trajectories with
arbitrary sampling momenta and provides the possibility to study
problems which require more than on trajectory, such as interference
phenomena.

3.4 COULOMB CORRECTION TO THE IONIZATION PROBABILITY

In a neutral atomic system, the asymptotic wave function is given by
(see Sec. A.1)

lpat(r) — (Kr)n*efxr — en*ln(Kr)fKr = eiSat/

where n, = Z/x is often referred to as the effective principle quantum
number, and the atomic action is defined as

Sat = ixr — in, In (k7). (62)

If the Coulomb potential is present, the action due to the Coulomb
interaction is perturbatively given by

oty
S, = /t V [ro(t)] dt, 63)
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where the Coulomb effect is evaluated along the unperturbed trajec-
tory ro(t). For convenience sake, defining the complex phase ¢ = wt,
the action (63) reads

L[ Z ) Z o dp
S= ), [ m(tﬂdt‘ @ Jo. To(9)’ (64)

Evaluating the integral along the complex path ¢ = ¢, + i with the
variable of integration ¢, Eq. (64) becomes

VAN de _ ¢ de
Se=i— | ———==in, | —, 6
@b i~ b Gl )
with ¢; = Im¢s, and &o(¢) = (w/x) ro(t(¢)) the dimensionless trajec-

tory.

3.4.1 Sub-Barrier Trajectory
With the boundary condition 7y(ts) = 0, the trajectory is given by
- p 1 ¢
() =L 9 - )+ [ Alg)ag. (66)
¢s

Near the saddle point, ¢ — ¢s, we expand

@) = L)+ LA 909
= [+ Aw)] 0 -9). (67)

S 2
Substituting the relation from the SPE (35), [ﬁ + A((ps)] = —«2, into
(67), we obtain the sub-barrier trajectory,
K
n(g) = += (4 —9),
or the dimensionless trajectory (o,

o) = %70((1)) =+ (pi—9). (68)

3.4.2 Matching Procedure

The integrand in Eq. (65) is divergent at ¢ = ¢;. The difficulty due
to the singularity can be circumvented using the matching procedure.
Let ¢ be a point adjacent to the singularity;,

lim P _de = " _dy .

p-=¢iJo Co(@)  Jo Gole)
If a matching point ¢; which is close to ¢, and satisfies the conditions
$1 < ¢« and ¢, — ¢ < 1 exists, the trajectory for ¢; < ¢ < ¢, can be
approximated by Eq. (68). Thus, Eq. (65) is split into two parts,

_ ¢ de ¢ de }
Se = iy [ o o) - o Co(e)]’ (69)
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and by using Eq. (68) the integrand of the second term is given by
| ) ¢ d )

g1 Go(@) o Pi— @ (0= @)

=In(¢i = ¢1) —In(¢pi — ¢.).

Applying the approximation ¢; — ¢« ~ “ro(¢«) near ¢; to the last
term, the action (69) becomes

[0
1

. node Y
S = [0 Eo(g) TP 0) I“K’O("’*)}

. ¢ de w ]
= 1IN, +In (¢; — —In—= —Inkrg(¢s)| . (70
[ @)~ ()] Go
Though the last term is divergent as ¢. — ¢;, it matches the second
term of the asymptotic wave function (62). Thus, the regularized
action SER), i.e., the part of the action corresponding to the long-range
Coulomb potential, is given by

SR = 5.+ Inxro(¢y)

. [ de ]
¢*1_n>r(1pizn o Fole) nxro(Ps)

[ 9= 2 Px
= lim in, il +an——/ dg +ln<,bz-]
p=¢i [Jo Qolg)  w Jo pi—e¢

B . ) [ K2¢i P+ 1 B 1
= Jm i _ln< w >+/o {é‘o(qv) 4%—47] dq)]

() [l o

Similarly, the Coulomb correction to the ionization rate is obtained
by substituting (71) into (54). For a constant field in the form of (55),
the correction to the ionization probability induced by the sub-barrier

Coulomb interaction is given by a prefactor Q = (2x°/ Eo)zn* [12].
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TRAJECTORY-BASED COULOMB CORRECTED
STRONG FIELD APPROXIMATION

Although the SFA facilitates the study of non-perturbative ionization
processes in strong field physics, considerable deviations are found
between the SFA and ab initio results. The disagreements are largely
due to the lack of proper descriptions of the Coulomb interaction
between the emitted electron and its parent ion. In this chapter,
the TCSFA method is presented on the basis of the SFA. The aim of
the TCSFA is to cure inherent shortcomings in the SFA by taking the
Coulomb interaction into consideration, while retaining the advan-
tage of the SFA being simple and intuitive using the concept of quan-
tum orbits.

4.1 TRAJECTORY-BASED COULOMB CORRECTION

In order to distinguish physical quantities before and after applying
the Coulomb-correction, we use the subscript “0” to indicate “unper-
turbed” variables in the absence of the Coulomb potential, such as
trajectories in the plain SFA.

Given a final momentum p, the action (27) as a function of the ath

saddle point tg“) = tga)(fa') is recast into [70]

Slp,ﬁ(tgg)) =C(p) - /t w Bﬁ%(t) +1p] dt, (72)
s0

where %y (t) = + A(t) is the velocity of an electron subjected to the
light field of the vector potential A(t). C(p) = I [33(t) + 1] dt,
varies with different asymptotic momenta p, while it does not de-
pend on the saddle point tgg) . Hence, C() can be factored-out of the
summation (34) and thus does not affect the ionization probability.
The integrand in (72), Hy(t) = 17(t), is the Hamiltonian of a free
electron in an electromagnetic field. The action (72) reads

[e0]

Slprﬁ(tgg)) = C(ﬁ) - /(a) [Ho(t) + IP] dt. (73)

tsO
Switching-on the binding potential, since the motion of the electron
is influenced by the Coulomb force, the trajectory is distorted,

o — 7, Ty — 7. (74)

Moreover, the potential in the Hamiltonian of the action (73) includes
the Coulomb interaction between the electron and the parent ion [71],

Z
Ho — H = Ho + Ucouiomb = Ho — W (75)

23



24

TRAJECTORY-BASED COULOMB CORRECTED STRONG FIELD APPROXIMATION

Using (74) and (75) to reformulate the transition amplitude (73), the
TCSFA transition amplitude thus reads

exp [ [ (3P(1) = by + 1) dt]
’ 0 §"(#") (76)

where 1

p(H) = [s"()]
= P(H)exp [iW(H")]

exp [iW(tg“) )} o)

is the single-trajectory transition amplitude for ionization, and
W(tg“)) is the action,

© 1 4

WEWt("‘):—/ SR(H) — 2+ 1| dt. 8

The above derivation is rigorous for the H(1s) state, while the prefac-

tor P(ts(“)) may vary if excited states are involved.
The action (78) can be split into two parts,

W = Wsub + Wre, (79)

where
ne)

r 1 Z
wsub:—/ () — =+
£ [2 ) 2

S

dt (80)

is the action for the sub-barrier propagation (here we write on pur-
pose Z/+/72(t) instead of the non-analytic Z/|7(t)|), and

wre — —/0o [152(0 LY } dt (81)
i 12 O

is the action for the real-time propagation. The incorporation of

Coulomb interaction into W™ and WS introduces different influ-

ences on photoelectron momentum distributions.

The evaluation of W™ with the Coulomb interaction is straight-
forward, since we only need to solve ordinary differential equations
(ODEs) for real trajectories. However, the incorporation of Coulomb
effects into the sub-barrier action Wy, is usually nontrivial because
of the extra dimensions involved for complex variables. For practical
convenience, we split the sub-barrier Coulomb action

Wsub — Wsub,O 4 Wsubcc’ (82)

into the sub-barrier part for the plain SFA

t 11
sub0 — _ /t [zﬁz(t) + Ip} dt (83)



4.2 NUMERICAL IMPLEMENTATION

and the action for the sub-barrier Coulomb correction (sub-CC)

t 7
= dt. 8
-Try (84)

Wsubcc

For simplicity’s sake, the distortion of trajectories due to the
Coulomb interaction is neglected for the sub-barrier propagation,
thus 7(t) = 7(t) and F(t) = y(t). The influence of W< is not
considered in the following discussions except in Sec. 5.2 where we
explicitly study sub-CC effects.

4.2 NUMERICAL IMPLEMENTATION

The transition amplitude (76) of the TCSFA resembles (34) of the SFA
except for an extra term describing the Coulomb interaction. Never-
theless, the TCSFA requires explicit evaluations of trajectories. In the
following the implementation of the TCSFA is introduced.

We focus on the atomic ionization in a linearly polarized laser field
and investigate photoelectron momentum spectra. Because of the
azimuthal symmetry about the polarization axis, it is sufficient to
consider the motion of the photoelectron in a two-dimensional space
parallel and perpendicular to the polarization direction. We study
the doubly-differential momentum distribution ‘Mﬁ‘z as a function
of f = (p|,pL), thatis, for example, along p| = p: and p, = py,
respectively.

Our implementation of the TCSFA consists of two stages. In the first
stage, we calculate millions of independent trajectories and record
their information in a database. In the second stage, we post-process
the database and calculate the momentum spectra.

In the first stage, the steps to evaluate the transition matrix element
(77) for a single trajectory are as follows:

A. Generate a random seed pp = (pz0, Px0) as an initial momen-
tum within [—pZ2®™, p2*] x [0, p%¥]. The seeds are uniformly
distributed. Note we have neglected py of pxo < 0, because tra-
jectories starting with initial momenta (p.o, px0) and (pz0, —pxo)
are always symmetrical due to the axial symmetry along the po-
larization direction, whether the Coulomb potential is included
or not.

B. Given the initial momentum py, we solve the SPE (35)

1. - 2
> [fo+ A = -1, (85)
to acquire the ath solution #) using a complex root-finding

routine [72]. Most numerical root-finding routines need a seed
tg(;ﬁ)ess to begin with. We need to choose téﬁ)ess with care, since
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generally there are several solutions to the SPE (85). We need a
set of estimated values {téﬁ)ess} for all valid solutions, at least
the most important ones, and each element of {tgfl)ess} should
correspond uniquely to an exact solution. In practice, we use

a graphical method to find the set {t(gﬁ)ess}- Given the initial
momentum Py, we calculate a target function f(i,j) on the
two-dimensional grid representing the discrete complex time
tguess<i/j) = Retguess(i) + Z'h’ntguess (])1

.. 1. - 12
f(Z/]) = ’2 |:pO+A(tguess(1/]>)} + Ip . (86)

By finding the local minima of f(i,j), whose indices are de-
noted by (7, "), we obtain {(i’,j') }, and the set for the estimated

saddle points is thus given by {tgfl)ess} = {tguess(i, /)| (i,]) €

{71}

c. Calculate trajectories for the sub-barrier propagation and the
action W' in (82). Details are presented in Sec. 4.2.1. At

t = tﬁ“), the complex trajectories become real and the values
specify the initial conditions ?(tﬁ“)) and d7(t)/dt|,_,w for the
real-time propagation of the next step.

D. We integrate along the real-time axis by solving the ODEs of
motion from the tunnel exit (defined in Sec. 3.2), in the pres-
ence of both the laser and Coulomb fields, until the laser is
switched off at t = T),. Details of the numerical implementation
are presented in Sec. 4.2.2. At each time step, the action W™
(81) is evaluated simultaneously. At t = T, variables 7(T,) and
d7(t)/dt|;=1, are recorded to calculate the asymptotic momen-
tum in the next step.

E. After the laser is switched off, we calculate the asymptotic mo-
mentum 7 using Kepler’s formula [28] as shown in Sec. 4.2.3.

F. Calculate W in Eq. (79). From Eq. (77), evaluate the single-
trajectory transition amplitude Mﬁ(tg'x)).

The above procedure describes how a single trajectory is evaluated
in the first stage. In order to attain momentum spectra with good
statistics we need a large number of initial momenta py and perform
the above procedure repeatedly. The method is straightforward for
parallelization thanks to the independence of trajectories in the cur-
rent single-electron system. In practice, we partition the set of py,
which are randomly and uniformly generated, and distribute subdi-
vided sets onto multiple computational nodes. Each py corresponds
to several tg“) after solving the SPE, and each té"‘) determines a single
trajectory of the asymptotic momentum 7 (in SFA, p = po; in TCSFA,
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generally 7 # po) and the transition matrix element Mﬁ(tga)). All
information of trajectories can be stored in a dataset for the further
analysis.

In the second stage, we post-process the dataset and calculate the
doubly-differential momentum distribution on a grid representing
the final momentum. Looping over all trajectories, the ionization
probability for the bin of a certain momentum 7 is given by

2

M| = , (87

> MY ()

where i is the index of the trajectory whose 7 falls into the bin cen-

tered at p with the transition amplitude Mg) (tg“)).

4.2.1  Complex Trajectories for Sub-Barrier Propagation

With the complex trajectories introduced in Sec. 3.2 on the basis of
the ITM for the tunneling process, we calculate the action W™ by
substituting (52) and (53) into (82), (83) and (84). The integrals in
Wst are evaluated by numerical integrations.

Though we have introduced W< in Eq. (84), the term is ne-
glected in the following discussions except for the explicit investiga-
tion into the sub-CC effect in Sec. 5.2. Note (84) may diverge if the
complex trajectory 7(t) = 0. However, thanks to the negligible oc-
currence of such trajectories, we rarely encounter singularities in the
numerical implementation of the sub-CC, and spectra are not influ-
enced.

4.2.2  Numerical Evaluation of Trajectories for Real-Time Propagation

The motion of the electron in the real-time propagation is determined
by systems of ODEs. In this work, we use the classical fourth-order
Runge-Kutta method (RK4) to solve ODEs (see Sec. A.3). In order to
retain a high computational efficiency, the RK4 routine dynamically
adjusts the time step h. Most of the time the electron is far away
from the parent ion, hence the trajectories are usually smooth and a
relatively large h is adequate to achieve the desired numerical preci-
sion. However, when the electron approaches the ion, /1 decreases and
the computational efficiency drops dramatically, because systems of
ODEs are highly singular near the Coulomb center. In order to avoid
such an efficiency loss, we can either discard trajectories which are
excessively close to the parent ion, or treat trajectories with the recipe
as shown in Sec. 4.2.4.
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Figure 1: The Kepler orbit of a photoelectron in the Coulomb field for ¢ > T),.
At t = Tj, the photoelectron is indicated by the red point with the
initial position 7, = 7(T) and the initial velocity 7, = 7(T,). The
default coordinate system F (black solid frame), the new coordi-
nate system F’ (purple dashed frame) in which the formula of Ke-
pler’s orbits applies, and the direction of the asymptotic momen-
tum (red dotted line) are shown. Parameters are 7, = (2.03, —2.70),
Uy = (—0.8259,0.3312) and the charge Z = 1.

4.2.3 DPropagation after Switching-Off the Laser Pulse

If the light field is switched off at t = T}, the asymptotic momentum
of the free electron, pj(c0), equals the kinetic momentum p(T,). In
the TCSFA, since the long-range Coulomb force acts on the electron,
the acceleration continues changing and hence (o) # p(T,). The
distortion of trajectories also influences the action (81) for the interval
t > T, of the integration.

The system without the laser field can be studied as a classical
two-body problem (see Sec. A.4) without numerical evaluations of
trajectories. Given the position 7, = 7(T,) and the velocity 7, = 7(T})
at t = T,, we can analytically derive p(c0) and (81) for the interval
[Ty, o0] using Kepler’s formula.

4.2.3.1  Coordinate Transformation

If the electron arrives at the detector, |F(c0)| — oo, the trajectory re-
quires to be an open orbit with a positive total energy. In a two-body
system, the open orbit is described by a branch of hyperbola with its
focus located at the Coulomb center. Before determining the hyper-
bola, we should first ensure that the total energy of the photoelectron
E= *%, /2 =27/ |Fy| > 0. Otherwise the trajectory does not contribute
to the photoelectron spectrum.

In Sec. A.4, Eq. (171) describes the Kepler orbit in a specified
reference coordinate system F’. In Eq. (171), r is the distance between
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the Coulomb center and the electron, and 6 is the angle with the
vertex at the core from the perigee. In order to use Eq. (171), we
need to transform between F’ and the coordinate system F we use in
the simulation. As is illustrated in Fig. 1, in the coordinate system
F, the origin is the location of the Coulomb center, and the z-axis is
determined by the polarization direction. In the coordinate system
F’, the hyperbola has the standard form, that is, the Coulomb center
is one focus of the hyperbola, and the major axis of the hyperbola is
along the z’-axis.

The relation between coordinate systems F and F’ depends on 7,

and ¥,. Substituting r, = |7,| into Eq. (171), we have the angle
0, =0(T,),
K z
—r
cosb, = P 2 / (88)
€ €

where the angular momentum / and the eccentricity € are introduced
in Sec. A.4. Taking the sign of 6, i.e., the rotation direction, into
account, we have

k—r
2kt + arccos(—2), (? -7 ) 1>0,
6, = el R (89)

2krt —arccos(—2), (7p-7,)1 <0,

i’pE

as shown in Fig. 1 (red angle). Now let us define ¢, as the angle with
the vertex at the Coulomb center from the z-axis in F (green angle in
Fig. 1). From Fig. 1, the angle of rotation from the z-axis to the z’-axis
is given by

T =¢p— 0. (90)
4.2.3.2  Field-Free Asymptotic Momentum

Substituting » — oo into the Kepler orbit (171), the asymptotic angle
(indicated by a bold arc in Fig. 1) in F’ is given by

0o = arccos (—i) . (91)

With the aid of the energy conservation law (170), the asymptotic
momentum in F is derived by the rotation,

P = (pz,px) = (pcos (0 +7) , psin (6 + 7)), (92)

where p = |po| is the total momentum.

4.2.4 Near-Nucleus Trajectory

When the electron enters the defined circle centered at the core with
the small radius ry,esn, the interaction between the electron and the
Coulomb center dominates. We can either neglect these trajectories

29
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5
1

~.._ 'l __.-~"Tthresh

Figure 2: Neglecting the external light field, the Kepler orbit of a near-core
photoelectron in the Coulomb field. Att = T}, the photoelectron is
indicated by the orange point with the initial position 7, = 7(tin)
and the initial velocity @i, = 7(tin). The default coordinate system
F (black solid frame), the new coordinate system F’ (purple dashed
frame) in which the formula of Kepler’s orbits applies.

because of their small weights, or analytically connect trajectories by
neglecting the influence of the external light field during such close
encounters. The latter method uses Kepler’s theory as described
above. As is demonstrated in Fig. 2, at t = tj, when the electron

enters the circle at the initial position 7in (|#in] = Tthreshold) and the
velocity @i, the angle in F’ for (171) is 6, = 6. When the electron
moves out of the circle at t = t,u, the angle is 6,4t = —6p, and the

“exit” 7out is calculated by the coordinates transformation.

4.2.4.1 Time at “Exit”: tout

We can find the relation between the angle 6 and the time ¢ from
the angular momentum ! = 20, where [ is conserved. Applying the

integration on both sides of dt = (r>/1)d6 and substituting r with the
Kepler orbit (171),

k2 [~ de
1 Jo, (1+4e€cosh)?’

tout —tin =

the time when the electron moves out of the defined region reads

1 0,
o o2 (2arctanh (\/662—71 tan 70) B € sin O )
out =tin + = (2 1) (€2—1) (1 +ecosby)

The above formula is applicable for any type of Kepler orbitals. For a
hyperbola,

Ve2—1+(e—1) tan(6y/2) ]

tout = tin + % log [\/62—1—(6—1)tan(90/2) €sin bp

! (€2 —1)3/2 (€2 —1)(1+ecosh)
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4.2.4.2 Position at “Exit”: Fout

When the electron exits the circle at t = t,, the boundary conditions,

|70ut| = Tthresh/ Qout = _90/

are satisfied. Correspondingly, in the coordinate system F for our
calculation, the “exit” on the defined circle is found by the transfor-
mation,

7= Tthresh (COS (7 - 90) ,sin ('Y - 90)) ’

where the angle between the major-axis for the Kepler formula and
the z-axis of the our coordinate system is given by v = ¢ — 0p, similar

to Eq. (90).
4.2.4.3 Velocity at “Exit”: Toyt

Because of the symmetry |Uout| = |Uin| in the coordinate system F/,
the particle enters with the angle 6, and exits with = — 6,. In the
two-dimensional system, we need to use the rotation matrix

A cosy —sinvy
R(y) =
( siny cosvy )
for the transformation from F to F’. The velocity of incidence in F’ is
(vl,0%) = R(—)(vz,vy). Therefore the angle of incidence is given by

/

v
arccos 2 vy >0
o — Vo2+o2’ =
in — ,
v
—arccos —=—=—— Uy < 0.
U +0%

Correspondingly, thanks to the symmetry, we have the angle for the
“exit” in F', 6], = m — 0},. Transforming back to the coordinate
system F, the angle of the velocity vector reads oyt = 6, + ¥, and
the velocity is Tout = |Tin|(c0S Oout, SIN Oout )-

4.2.4.4 Action within the Circle: Weircle

The action for the propagation in the circle can be evaluated analyti-
cally,

. fout ]_ _ Z
Wclrcle — /t <202 — W + IP) dt. (93)

First, we calculate 7 in the integrand of (93). The radial velocity is
given by

_dr_d k __ €ksinf (01)
dt — dt \14+ecos®)  (14+ecosh)?” 94

Substituting the angular velocity
in:i(lﬁ—ecose)z (95)

2K
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into (94), the radial velocity reads

. elsinf
F=—— (96)

Since the vector of the velocity is given by & = ¥ = &, + r0¢,, together
with (95) and (96), we obtain the kinetic energy in (94)
1z7z—ﬁ(62+1+2€cos(9) (97)
2° T2k ‘ 77
Defining the integrand in (93) as g(6), we rewrite Weirlce,

. tout fout —6
pyeirlee _ g@m:/ gmgw:/o%ﬁw. (98)

tin tin bo
Using (97), the new integrand of (98) is given by
g0) _1/1, Z
o a\” Tt

k? 12 Z (1
] |: (€2+1—|—2€C059) _(—f—k€COSG)+IP:| .
I (1+ €ecosb)

2k?

Integrating (98) analytically, we obtain

- ok2 (2 [a+ I, —ae* + b (e —1)] arctanh { el _tan %}
weircle {

Va1
l (ez _ 1)3/2

€I, +a(e?—1)]sinby
"~ (e2—1)(1+ecosfy) }

(99)

where a = 12/2k? and b = Z /k.

4.3 RESULTS AND DISCUSSIONS

The TCSFA is a versatile method to account for diverse phenomena of
strong field ionization in the semi-classical limit. In the last part of
this chapter we apply the TCSFA to two case studies, which are an-
alyzed from the quantum- and classical-mechanical aspects, respec-
tively.

In Sec. 4.3.1, the dependence of the quantum interference on the
number of laser cycles is presented. In order to facilitate a systematic
analysis, we provide a pragmatical categorization of trajectories. Fur-
ther detailed analysis of quantum interference, e.g., the intra-cycle
interference including the sub-CC, is presented in Chapter 5.

In Sec. 4.3.2, the “ionization surprise” [48]—the LES [32, 33] is
investigated [1]. The explanation of the LES has triggered consider-
able theoretical effort in several research groups [47, 1, 73, 74, 75, 24].
Analogous to the dynamics of a quantum wave packet, the collec-
tive behavior of trajectories explain the focusing of trajectories due to
Coulomb effects.
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4.3.1  Temporal Analysis of Spectra: Cycle-Number Dependence

In this section, we analyze how the number of laser cycles N, affects
the doubly-differential momentum spectra. The spectral features are
progressively revealed by increasing the number of pulse cycles and
hence the formation of spectra can be traced. Let us consider the
photo-ionization of a hydrogen atom in a linearly polarized laser field
of the frequency w. In the polarization direction the laser field has
the electric field component E(t) and the vector potential A(f),

E(t) = Egcoswt, A(t) = —Apsinwt, (100)

where Ag = Eo/w. The duration of the laser is T, = 2rN./w, and
N, is the number of laser cycles. The laser frequency w = 0.0228 (the
wavelength 2 ym), the peak electric amplitude Ey = 0.0534 (the inten-
sity 1 x 10'* W/cm?) and I, = 0.5 are used. All results in this section
(including the SFA) are numerically obtained with the trajectory-based
implementation as described above. We set the charge Z = 1 for the
TCSFA and Z = 0 for the SFA. Comparisons between results of the
TCSFA and the SFA for different N, are shown as follows.

4.3.1.1  Strong Field Approximation (Z = 0)

By appending increasing half-cycles, Fig. 3 shows the momentum
distribution of the SFA for different N, from N, = 0.5 to N, = 1.5.
Since spectra are obtained by the coherent superposition of trajecto-
ries from different half-cycles, we can infer the origin of all interfer-
ence patterns in terms of trajectories from the N.-dependence. The
temporal profile of trajectories corresponding to Fig. 3(a)-(c), respec-
tively, is shown in Fig. 4. In Fig. 4(a)-(c), we plot the distribution of
trajectories in the two-dimensional histogram as a function of ¢ and
pz, where ¢ = wt, is the tunneling phase. In Fig. 4(d), the same
histogram as a function of ¢ and p, is shown for N, = 1.5. Note we
have (pz, px) = (P20, pxo) in the SFA.

In the SFA, trajectories are “short” if z(f,) and po, have the same
sign, otherwise they are “long”. A photoelectron of the short trajec-
tory type drifts directly from the tunnel exit to the detector, whereas
a photoelectron of the long trajectory type starts off into the “wrong”
direction before its longitudinal momentum is reversed by the laser
field.

Figure 3(a) shows the momentum distribution for N, = 0.5. Ac-
cording to Eq. (156) for the monochromatic laser field, a trajectory
whose tunneling time ¢, fulfills A(t,) < 0 has p, > 0. In Fig. 4(a),
two symmetrical branches of ¢ emerge as a function of p,. One is
“born” in the first quarter-cycle (the long trajectory) and the other in
the second quarter-cycle (the short trajectory). The interference be-
tween trajectories of these two branches yields the fringes in Fig. 3(a).
The interference is known as the “intra-cycle interference” [76] (more
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Figure 3: Photoelectron momentum distributions using different numbers
of cycles of the laser pulse for the SFA (Z = 0). (a) N. = 0.5, (b)
N; =1.0and (c) N, = 1.5.
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precisely, “intra-half-cycle interference”). Figure 4(a) shows a tilting
¢-p- distribution. Trajectories born at the extrema of the electric field
(¢ = 0 and 7 for long and short trajectories, respectively) have rela-
tively large weights, but end up with small |p,|. In contrast, electrons
“born” at t, with |E(t,)| ~ 0 gain the maximum kinetic energy near
2U, in agreement with the prediction of the SMM.

Figure 3(b) shows a symmetric forward-backward momentum dis-
tribution for N. = 1. The half momentum-plane for p, > 0 remains
the same as the one in Fig. 3(a) for N, = 0.5, and the relevant trajec-
tories have the tunneling phase 0 < ¢ < 71/2. The other half plane
for p < 0 records photoelectrons of 77/2 < ¢ < 7. In the SFA, tra-
jectories whose t, are within the same single-cycle but in different
half-cycles contribute to the distributions in forward- and backward-
half momentum-planes separately.

In Fig. 3(c) for N, = 1.5, electrons born in the third half-cycle of the
laser field (7 < ¢ < 37/2) contribute to the half momentum-plane
p. > 0 again, while the distribution for p, < 0 remains the same as
shown in Fig. 3(b). For p, > 0, the interference between trajectories
born in the first and the third half-cycles, known as the “inter-cycle
interference”, results in ring-like structures. Each ring corresponds to
an ATI peak in energy spectra. In Fig. 4(c), the ¢-p, distribution for
T < ¢ < 37/2 resembles the one for 0 < ¢ < 77/2 in the half-plane of
p= > 0. The two patterns, fringes and rings, overlap for p, > 0 due to
the occurrence of both the intra-half-cycle interference and inter-cycle
interference.

Figure 4(d) shows the distribution of trajectories in the ¢-p, plane
for N; = 1.5. In the SFA, py is invariant throughout the propagation
in a linearly polarized field. Since trajectories start at initial momenta
pxo > 0, the ¢-p, distribution is confined rigorously in the upper-
half momentum-plane p, > 0. The distribution along the ¢-axis is
periodic with the maxima at peaks of the electric field. The distribu-
tion along the py-axis is roughly described by a Gaussian profile as
expected from the adiabatic approximation [77].

4.3.1.2  Coulomb Interaction (Z = 1)

In order to investigate Coulomb effects, momentum distributions are
calculated including the Coulomb interaction with Z = 1. Comparing
with the SFA results, spectra for different N. are shown in Fig. 5.
Figure 5(a) shows the TCSFA counterpart of Fig. 3(a) with N, = 0.5.
Even for the half-cycle laser field, the spectrum is significantly al-
tered due to the Coulomb interaction. Firstly, instead of the rigorous
one-to-one mapping in the SFA from the initial momentum py to the
asymptotic momentum, g = po, the momentum distribution spreads
into the momentum-plane of the opposite direction p, < 0 and the
higher energy region p, > 2.0. Moreover, the scattering between the
electron and the Coulomb center leads to classical boundaries near
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Figure 4: The dependence of the longitudinal momentum p, on the initial
tunneling phase ¢ = wt, for different numbers of cycles in plain
SFA with Z = 0.

the upper-right corner of the spectrum. In addition, interference pat-
terns are modified. Fringes in the SFA are modulated by horizontally
aligned side-lobes, which suggests a new type of interference plays a
role. Correspondingly, the ¢-p, distribution in Fig. 6(a) deviates from
the regular distribution for the plain SFA in Fig. 4(a). Given a tunnel-
ing phase ¢, the distribution in the bottom branch corresponding to
0 < ¢ < 7t/2 (long trajectories) is scattered along the p,-direction.
The upper limit of p, in the bottom branch is higher than in the
SFA, since the Coulomb field can accelerate the photoelectron after
its longitudinal direction of motion is reversed by the subsequent
pulse cycle. The lower limit extends to the half-plane p, < 0, which
implies that backward scattering occurs. Within a single half-cycle,
a scattered photoelectron can acquire a momentum in the opposite
direction as high as p, = —1.8. On the other hand, the distribu-
tion for short trajectories with 7/2 < ¢ < 7 is less influenced by
the Coulomb potential, since the electron of a short trajectory keeps
moving away from the core throughout the propagation and feels a
relatively weak force exerted by the Coulomb center. However, short
trajectories may end up with p, < 0if p,g is so small that the Coulomb
force can drag the photoelectron into the opposite longitudinal direc-
tion permanently.

When N, = 1, the half-plane p, < 0 in Fig. 5(b) records photoelec-
trons of T < ¢ < 2m. Instead of the forward-backward symmetric



4.3 RESULTS AND DISCUSSIONS

| | |2
R W= OO
oot uvio

p. (a.u.)

S e

OO =00 O

U950 =16 —1.0 —05 0.0 05 1.0 1.5 2.0

3
S
N
e
|

| [
R WWNN OO
oo oo

p: (@.u.)
coocoorm
|

DN = O 00O

U950 =15 —1.0 —05 0.0 05 1.0 1.5 2.0
p. (a.u.)

| RS
e LN = OO0
QIO IO T 1O Ut

p: (@.U.)
coocoor
|

OO = O 00O

U0 =15 —1.0 =05 0.0 05
p. (a.u.)

.0 15 2.0

Figure 5: Photoelectron momentum distribution for different numbers of cy-
cles with Z = 1: (a) N, = 0.5, (b) N. = 1.0 and (c¢) N, = 1.5.

distribution in Fig. 3(b) for the SFA, the symmetry in 5(b) breaks
down when the Coulomb field is present. In Fig. 5(c) for N, = 1.5,
ring-like structures due to the inter-cycle interference are found in the
low-energy domain of the half-plane p, > 0.

Figure 6(b) shows the ¢-p, distribution for N, = 1.0. The distribu-
tion from the new half-cycle m < ¢ < 271 resembles the one in Fig.
6(a) except it is reversed in the p,-direction. Moreover, the distribu-
tion of electrons born in the first half cycle 0 < ¢ < 7 (the bottom
branch) extends to p, >~ —5.2, corresponding to the 10U,-cutoff pre-
dicted by the sSMM [Eq. (43)]. When N, = 1.5, Fig. 6(c) shows that
photoelectrons of 7 < ¢ < 27 also have the maximum momentum
p. ~ 5.2 due to the rescattering, while the distribution of photoelec-
trons with 0 < ¢ < 71 remains unchanged, which suggests the rescat-
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Figure 6: The dependence of the longitudinal momentum p, on the initial
tunneling phase ¢ = wt, for different numbers of cycles with Z =
1.

tering in a linearly polarized field can occur only within a single cycle.
In Fig. 6(d), the ¢-p, distribution for N, = 1.5 is still similar to the
SFA result [Fig. 4(d)] but loses the symmetry with respect to ¢.

4.3.1.3 Trajectory analysis for N, = 0.5

Though the pulse of N; = 0.5 has the simplest temporal form, rich
spectral features have already been revealed in Fig. 5(a). It is con-
venient to study this simplest case to understand how the classical
boundaries and diverse interference patterns are formed. We choose
15 points related to typical spectral features, as indicated by labels
in Fig. 7, and analyze the corresponding trajectories. Samples 1 to
12 and samples 13 to 15 have increasing p, for p, = 0.165 and 0.55,
respectively. Let us define a circular bin whose center is located at
the sample point i (i = 1,...,15) with a radius 0.02. We record all
trajectories whose asymptotic momenta p fall into the defined bin.
The corresponding trajectories for the ith sample are shown in the
sub-figures of Fig. 8.

Samples 1-5 and 13 show trajectories (backward) scattering at the
Coulomb center and ending up with p, < 0. Trajectories for sample
1 in Fig. 8 have the largest scattering angle as the motion is almost
along the p,-axis. Decreasing |p.| in Fig. 7, trajectories depart from
the polarization axis, while the number of trajectories in Fig. 8 and
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the ionization probabilities in Fig. 7 increase. In addition, the excur-
sion between the tunneling and the scattering events increases with
the decreasing |p:|.

Samples 6, 7 and 14 show trajectories near the small |p| region. In
Fig. 7, sample 6 is on the classical boundary which starts from the
origin and spreads upwards. In Fig. 8, the corresponding trajectories
start with initial momentum p,o ~ 0 and p,o > 0, and then move up-
ward. Since the Coulomb potential bends trajectories towards p, < 0,
in Fig. 6 we have distribution for p, < 0 from trajectories which are
expected to have p, > 0 in the plain SFA. Since we have p,o ~ 0 for
trajectories of sample 6, the classical boundary in Fig. 7 indicates the
lower limit of p, for an electron born at the tunnel exit z(¢,) > 0. For
pz0 < 0, the tunneling exit moves to the other side z(t,) < 0. Increas-
ing p, and moving away from the boundary, short trajectories which
are also influenced by the Coulomb field contribute to the samples 7
and 14 in Fig. 7.

Sample 8 is positioned on a ring-like interference pattern. All trajec-
tories for this sampling point analyzed above share similar dynamical
properties, i.e., we observe just one branch of trajectories. However,
there are two branches in Fig. 8. One branch represents short trajec-
tories with the tunnel exits to the right side of the origin. The other
branch is new to the SFA—the transverse component of the initial mo-
mentum pyy < 0. The photoelectrons for this branch are supposed
to move with p, < 0, but intriguingly, their transverse momenta are
reversed in the Coulomb field and these photoelectrons end up with
the same asymptotic momentum with p, > 0. In the following sub-
section 4.3.1.4 this new type of trajectories is referred to as T3. The
superposition of transition amplitudes from T3 with short trajectories
forms the ring-like interference pattern.

Samples 9 and 15 are located in another classical layer with richer
interference features. The layer is formed by the emergence of long
trajectories with their tunneling exits z(¢,) < 0. The analysis in Fig. 8
shows the pattern caused by the interference between short and long
trajectories.

The spectral patterns around samples 10, 11 and 12 contain interfer-
ence patterns including both fringes and side-lobes. Correspondingly,
three groups of trajectories are clearly identified.

4.3.1.4 Categorization of Trajectories

7

For convenience sake, we extend the concept of “short” and “long’
trajectories in the SFA and categorize types of trajectories as follows:

T1: “Short” trajectories, similar to the definition in the SFA, are born
at the tunnel exits in the same direction of the longitudinal
asymptotic momentum p,. A trajectory is defined as Tz if it
satisfies p,z, > 0, and pypxo > 0.
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il

p. (a.u)

Figure 7: Sampling points for analysis. The crosses with labels indicate the
momenta of samples which are referred to in the main text and in
Fig. 8.

T2: “Long” trajectories, similar to the definition in the SFA, are born
at the tunnel exits in the opposite direction of the longitudinal
asymptotic momentum p,. A trajectory is defined as T2 if it
satisfies p,z, < 0 and pxpxo > 0.

T3: The trajectories are like the long trajectories T2 but has the
transverse momentum p, in the opposite direction. The trans-
verse momentum of trajectories T3 is reversed later due to the
Coulomb attraction and crosses the polarization axis. A trajec-
tory is defined as T3 if it satisfies p,z, < 0 and pypxo < 0.

T4: A trajectory is defined as T4 if it satisfies p,z, > 0, and pxpxo < 0.

Only when the Coulomb interaction is included can trajectories T3
and T4 exist, because in the SFA the transverse momentum is con-
served (py = pxo) in a linearly polarized field. However, when we
take the Coulomb force into consideration, p, changes. Note that the
definitions of the types of trajectories in the form of formulas only
specify boundary conditions but do not rigorously capture entire tra-
jectories. If the whole dynamics are considered, the situation is more
complicated, e. g., a trajectory may orbit the core for more than once.
Nevertheless, the probability of the occurrence of such complicated
orbits is usually low for the current parameters where a semi-classical
treatment is valid.

4.3.1.5 Partial Spectra

Not only can we extract trajectories corresponding to a certain spec-
tral feature, but also we are able to reproduce the spectrum from a
given set of trajectories. With the categorization of trajectories in Sec.
4.3.1.4, we can select certain types of trajectories to calculate partial
spectra. If certain spectral patterns can be reconstructed from a par-
tial spectrum, we successfully identified the types of trajectories that
are "responsible” for this spectral feature. Taking the interference pat-
tern of the plain SFA for instance, the vertically aligned fringes are
essentially reflected by the partial spectra constructed with trajecto-
ries T1+T2.
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Figure 8: Trajectories for the samples labeled in Fig. 7. In each sub-figure,

the asymptotic momenta of all trajectories are identical.

The

Coulomb center is located at the origin. The diamond symbols
along the polarization direction represent tunnel exits of photo-

electrons.
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Figure g: Partial spectra constructed with combinations of different types of
trajectories: T1+T3 (a) and T2+T3 (b).

Figure g9(a) and (b) show partial spectra of trajectories T1+T3 and
T2+T3, respectively. The interference between trajectories T1+T3 re-
sults in ring-like structures in the central part of Fig. 5(a). The super-
position of T2+T3 forms side-lobes, which were discovered in a recent
experiment and used for atomic holography in long wavelength laser
radiation [78, 79, 80].

4.3.2  Low-Energy Structure [1]

As is discussed in Chapter 3, the Coulomb potential increases the
ionization probability due to the tunneling enhancement, in particu-
lar, along the polarization direction. The mapping in the momentum
space, from the initial momentum to the asymptotic momentum dur-
ing the real-time propagation, may be modified. Especially in the
low energy regime, the motion of electrons is strongly modified by
the Coulomb interaction. The LES is such an example.

Let us consider an atom which is subjected to the light field de-
scribed by the vector potential of a sin’-envelope,

_ Ep o122 < wt > : 2N 1t
sin” ( 7% | sinwt, 0<t< ,
A(t) = { « 2N ©“ (101)

0, otherwise,
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with the laser frequency w = 0.0228 (wavelength A = 2 ym), the peak
field amplitude Ey = 0.0534 (intensity I = 100 TW/cm?) and the
number of cycles N; = 3. Motivated by the experiments [32, 33, 81],
the argon atom is initially in the 1s state with the ionization potential
I, = 0.576. In the TDSE calculation, the binding potential is modeled
by V(r) = —1/r —17.0e7174¥ /r. In the TCSFA, up to 107 trajecto-
ries are launched to obtain the corresponding transition amplitudes,
which are binned into a 400 x 100 grid for post-processing and calcu-
lation of the momentum spectra. The results are tested for numerical
convergence by increasing the number of time steps for the calcula-
tion of the trajectories. Increasing the number of trajectories enhances
the resolution of the spectra.

Figure 10 presents the SFA, TCSFA and TDSE photoelectron momen-
tum spectra. Several discrepancies between the TDSE and the SFA re-
sults are found: (i) the SFA predicts a symmetric momentum distribu-
tion while the TDSE spectrum is strongly asymmetric [18]. (ii) The ra-
dial structures [40, 64] around 7 = 0 present in the TDSE spectrum are
absent in the SFA result. (iii) Several side-lobes in the TDSE result are
clearly visible for p, < 0 but completely absent in the SFA. In 10(b) we
anticipate the spectrum obtained with our TCSFA method, which is—
as regards points (i)—(iii) above—in excellent agreement with the TDSE
result. Only the probability along a line from 7 = (pz, px) ~ (—0.3,0)
to (—0.1,0.25) is overestimated. However, it turns out that this feature
is related to the LES, as will be shown below.

The TDSE momentum spectrum in Fig. 10(c) does not allow a clear
identification of the LES. In order to compare the TDSE results with
Refs. [32, 81] angle-resolved energy spectra dw(&,0)/ sin0d0dE =
;9|M,;,|2 were calculated. Figure 10(d) clearly shows the LES for the di-
rectional energy spectrum anti-parallel (6 = 180°) to the polarization
axis. Because of the short pulse duration, no LES is visible for 6 = 0°
(not shown), which helps to identify unambiguously the origin of the
LES in the following. Despite the short pulse in our simulations Fig.
10(d) compares well with the experimental result in Fig. 3(b) of [81].

The TCSFA result in 10(b) shows the above introduced Coulomb fea-
tures (i)—(iii) of the TDSE calculation. In addition there is a structure
formed by an overestimated yield of photoelectrons with a maximum
at e = (Pez, pex) = (—0.22,0.1). We have checked that for a fixed
number of cycles in the pulse this maximum moves closer towards
the polarization axis as the wavelength is increased. For shorter
wavelengths it fades away while becoming more ringlike. With an
increasing number of laser cycles (keeping A = 2 um fixed) the struc-
ture also appears in the opposite direction, as expected. Moreover,
with an increasing pulse duration the structure narrows and moves
more and more on axis. This is a strong indication that the struc-
ture formed by the overestimated photoelectron yield we observe in
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Figure 10: Logarithmically scaled photoelectron momentum distributions in
the p;-px plane calculated using (a) plain SFA, (b) TCSFA and (c) nu-
merical solution of the TDSE. Panel (d) shows the linearly scaled,
angle-resolved energy spectra in backward direction (p, < 0)
with the LES around 1 eV clearly visible. Each spectrum was nor-
malized to its maximum value. (e)-(h) are partial spectra due to
trajectories of types T1-T4.

the semi-classical TCSFA approach is the LES seen in the full quantum
TDSE simulations and measured in the experiments.

It was argued already in the accompanying article [48] that the LES
is due to low-energy forward scattering at the Coulomb potential.
Certainly, only electrons emitted with high probability, i. e., when the
absolute value of the electric field is high, can contribute to such a
pronounced spectral feature as the LES. The quantum trajectories of
the TCSFA responsible for the yield around p, illustrate and confirm
this viewpoint.

In order to understand the origin of spectral features such as the
LES it is useful to study the partial contributions of each class of trajec-
tories (categorized in Subsection 4.3.1.4) to the total spectrum in Fig.
10(b). Sub-figures 10(e)-(h) show the partial spectra in which interfer-
ence patterns can only originate from the interference of trajectories
of the same type. Clearly, the LES at p. = (—0.22,0.1) is generated
by T3 trajectories. The LES is not due to interference of T3 trajectories.
This we checked by adding all T3 contributions incoherently, giving
the same LES structure. In fact, low-energy structures have also been
observed in classical ensemble calculations [33].

As we have identified the T3 electrons as being responsible for the
LES, we hereby confirm the conclusion in the recent work [47] that
the change of the electrons’ transverse momenta is the key for the un-
derstanding of the LES. This also explains why no LES was observed
in one-dimensional TDSE simulations. But why do particularly many
T3 quantum trajectories end up at p. in momentum space so that
the probability there is even overestimated as compared to the TDSE
results? It is known from the Coulomb-free SFA with rescattering in-
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t, (cycles)

Figure 11: Emission times of T3 trajectories contributing to final momenta
where the caustic structure is located. At p. the number of con-
tributing trajectories is particularly high (steep slope).

cluded [82] that semi-classical solutions merge or branch across classi-
cal boundaries (CBs) in the momentum plane [83]. When calculating
the photoelectron spectra at the CBs one encounters singularities be-
cause of vanishing Jacobians in the denominator that describe the
mapping from initial to final momentum {poz, pox} — {pz px}. Such
singularities form caustics in the photoelectron momentum spectra.
The LES is a caustic formed at the CB for T3 trajectories, giving rise
to the sharp structure visible in Fig. 10(g). This is shown explicitly
in Fig. 11 where the emission times t, of T3 trajectories contributing
to final momenta around the caustic structure are indicated. Partic-
ularly many T3 trajectories contribute to p.. In the numerical TCSFA
implementation singularities are smoothed out because of the finite
number of trajectories. In exact quantum treatments like our solu-
tion of the TDSE there are no singularities but only local maxima be-
cause of the low energy forward scattering at a Coulomb potential.
In improved semi-classical theories the singularities at CBs are also
removed [84, 85].
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TRAJECTORY ANALYSIS OF INTERFERENCE
PATTERNS

In Sec. 4.3.1, the formation of quantum interferences is intuitively in-
vestigated by calculating momentum distributions and studying their
dependence on increasing numbers of laser cycles. In this chapter, we
will analytically discuss quantum interferences and analyze the influ-
ences caused by the Coulomb interaction. Comparisons between ab
initio, SFA and TCSFA results are shown to survey Coulomb effects. In
fact, the SFA can describe general interference patterns in photoelec-
tron spectra with the advantage over classical models, e. g., the sSMM,
or the quasi-static method whose results lose all information about
quantum interferences. The explication of the quantum interference
with quantum orbits as the semi-classical approximation of the SFA is
straightforward. However, subtle features of these interferences pre-
dicted by the SFA usually deviate from ab initio and experimental re-
sults, particularly in the low-energy regime. Such deviations are usu-
ally intolerable if quantum interference is used to mine information
about ionization dynamics or atomic structure, since the granularity
of the interference in momentum distributions is usually fine and any
deviation would spoil the structure. Hence, it is necessary to refine
the theoretical method to better describe spectra obtained by nowa-
days state-of-art high-resolution experimental techniques. The TCSFA
shows that the incorporation of the Coulomb interaction can sub-
stantially improve results and help identify Coulomb-induced mod-
ifications to interference patterns. The modification induced by the
Coulomb interaction may come from either the real-space propaga-
tion or from the sub-barrier propagation. In general, the former is
due to the distortion of electronic trajectories under the influence of
the long-range Coulomb interaction. The latter is caused by the sub-
CC. With quantum orbits, we analyze the quantum interference by
studying the superposition of different types of trajectories. In the fol-
lowing, we categorize the hitherto observed phenomena of quantum
interferences in momentum distributions and present a systematic
method to facilitate the analysis.

Typical momentum spectra include several interference structures.
Taking the momentum distribution calculated with the ab initio TDSE
method [Fig. 14(a), laser parameters are listed in the caption] for in-
stance, interference patterns may contain ATI rings, fringes, side-lobes
and the bouquet-like radial structures near the ionization threshold

(17| = 0).
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e ATI rings. If the number of laser cycles is large enough, the ATI
rings are the most significant interference pattern with regular
ring-like structure.

e Fringes. The fringes are less significant. They align vertically
near the polarization axis but bend outwards to the higher-|p;|
direction as py increases. When fringes overlap with ATI rings,
nodal structures are formed along rings.

e Side-lobes. The pattern of side-lobes aligns almost horizontally
in momentum spectra, spreading from the low-|p;| to high-
|p-| regime. This pattern only appears when the long-range
Coulomb interaction is considered. Side-lobes are usually iden-
tifiable in light fields of long wavelengths and used for strong-
field photoelectron holography (SFPH) [78, 8o].

e Low-energy radial structure. The interference pattern near the
continuum threshold (|f| ~ 0) exhibits finger- or bouquet-like
structures. The near-threshold radial structure results from in-
terfering trajectories released at different times but reaching the
same Kepler asymptote [28].

In the context of quantum orbits, the quantum interference originates
from the superposition (76) associated with different trajectories lead-
ing to the same asymptotic momentum. The starting point of the
analysis is simply to find the relevant interfering trajectories. In the
following section, the analysis of the above mentioned interference
patterns in terms of quantum orbits is introduced.

5.1 INTERFERENCE PATTERNS FOR THE SFA

Let us consider an N-cycle linearly-polarized, monochromatic laser
tield given by (100). The polarization direction is along the z-axis and
the motion of the photoelectron is studied in the two-dimensional z-x
plane. In the following the subscripts “z” and “x” are used to indicate
components of vectors. Substituting the velocity & =  + A(t) into the
action (78) for a trajectory without the Coulomb interaction (Z = 0),
we obtain
} e}

b E 2
ts

The boundary at t — oo can be neglected, since W(c0), being a
real constant value, does not contribute to the ionization probabil-
ity. Moreover, it has no influence on the interference since the value
of W(o0) is a constant for all trajectories of the same asymptotic mo-
mentum 7. Neglecting all trivial t;-independent terms, we have

15 Eop: E% .
W(ts) = 5P + I, +Up | ts + 2 08 wts — 83 sin2wt;, (102)
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where U, = E}/(4w?) and p = /p? + p2. Substituting W(t,) into
the transition amplitude (76) and factoring the same prefactor out of
all terms, (76) becomes

M, — S//_l Zei(%szrIerUp)tg“)ei(uCOStha)*USiHZtha)) (103)
P — 7
4
where u = Egp,/w? and v = E2/(8w?). Following [58], using the
p 0 g 15 g
Jacobi-Anger identity [86],

[ee]

eiusin9+ivsin29 — 2 ein@]’ﬂ(ul U), (104)

n=—oo

where fn(u, v) is the generalized Bessel function which, expanded in
ordinary Bessel function J,(v), reads

Y Tn—ak(w)]k(0), (105)

k=—o0

we have .
eiucos@—ivsin29: Z ei”(9+%)]~n(u,v). (106)

Substituting (106) into the transition amplitude (103) yields

n-1 21 L4 U, )t S im(wt®+%); (Eop: E
=S Z (821U m;we ( 2)]m "2 83 )
- (Eop: E%\ ; E ()@
— g1 Ji < 0 z/o) ezmn/2 ezEp(m)ts ,
m;w "\ w? 8ws ;
(107)

where E,(m) = (3p2+ I, + U, + mw).

The sum over m in Eq. (107) describes the total contribution from
different numbers of absorbed photons m. The sum over a describes,
for a given m, the interference between different semi-classical trajec-

(a)

tories associated with their saddle points t;’. In a monochromatic

laser field, each cycle has a pair of saddle points ts(,l) and t§2) for a
given asymptotic momentum (Sec. A.2). All other saddle points are
simply periodic repetitions with the fixed temporal interval. Given a

pair of saddle points t§1'2> for the first cycle, the saddle points in the
kth cycle are given by
$0) = p(120) _ 4(12) | kzg. (108)

Therefore the sum over « in (107) reads

ZelEp ZZ o1Ep () (1574267

i=1k=0

5 N (109)
_ iEy(m)tl) N JiE,(m) 2T
= Zel P Ze p(m)=o

i=1 k=0

With the factorization (109) of the sum (107), two different interfer-
ence patterns are identified:
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e Inter-cycle interference. The second term Z,I(\];O does not rely
on saddle points. Instead, it describes the general interference
between all cycles. The series expansion with the exponential
function can be calculated with the Dirichlet kernel [87]

D,(x) = i kv = sin[{n+3)x] [(n+3) ] : (110)

: X
sin (3)
In consequence, the second term in (109) reads

sin [(n+ 1) Ep(m)22]

w

sin (E,(m)Z2)

N H 2
Z e KEp(m) 3 —
k

For long pulses as N; — oo,

The J-function reflects energy conservation for an ATI peak
which is related to the absorption of m photons.

e Intra-cycle interference. The terms of the sum Y ; depend for
a given asymptotic momentum on two trajectories within a sin-
gle cycle and is thus called intra-cycle interference. Using the

relation that t§2) =mn/w— Retgl) + iIrnts(l), we can rewrite 212:1
in terms of ts(,l),

2 O o @

Z:eﬂ:"p(m)tS _ ezEp(m)tS + ezEp(m)ts

i

_ i) {Ret§1)+ilmt§”] GEr(m) {n/wfRet£1)+iImt§1)]

_|_
— p—Ep(m)imtV [eiE,,(m)Retﬁl) +eiEp(m)n/we—z‘Ep(m)Retgl)] _
Choosing the momentum corresponding to ATI peaks in pho-
toelectron spectra, E,(m) = kw, the intra-cycle interference is
reduced to

2 - (i) E () meD (1)
Zez p(m)ts” — oo—Ep(m)Imts oo [Ep(m)Rets } .
i=1

In summary, inter-cycle and intra-cycle interferences can be identified
from Eq. (109) for the SFA, in agreement with the numerical results in
section 4.3.1. Accordingly, the interpretation of interference patterns
is feasible [88]. In the next section, we apply a similar analysis to
study intra-cycle interference.
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5.2 COULOMB EFFECTS ON INTRA-CYCLE INTERFERENCE [2]

Supposing two types of quantum orbits, () and (b), are dominant for
(a)
p

and M’(Eb), respectively, the ionization probability of the photoelectron
is

a certain momentum p, and each has the transition amplitude M

- b)| « b
o)< [0 [ )
with M%a/) ~ W (& = a,b). The action W) is of the form (78).
Interference with pronounced contrast requires the weights of M’(;)

and Mg’) being comparable, e~ MW" ~ o~ImW" f this is the case,

o 2 a
w(p) =), [e’lmw( )} 4 2p~ Im W+ W] cos ¢

a=a,b

~ D~ HmW (1+cos¢).

Hence, the interference is determined by the phase difference ¢ =
Re[W®) — W], For ¢ = mm with m even we have interference max-
ima, for m odd interference minima, provided prefactors P(tg“)) in
(77) do not introduce extra phase difference, which is true for the
tunneling ionization starting from the ground state.

From (79) and (82), the full form of the action is separable as W =
Wsub0 e  pysubee jncluding the sub-CC action WP, Accordingly,
we can split the phase difference ¢,

4) — (Psub,O + (Pre + (Psubcc (111)

which can be used to analyze the influence of Coulomb effects on the
interference pattern.

5.2.1  Model

In order to investigate the influence of the sub-CC on the interference
pattern in photoelectron momentum spectra we consider H(1s) (I, =
0.5) in a linearly polarized laser pulse. The vector potential of the
laser pulse of carrier frequency w is given by Eq. (101). A9 = Eo/w
is the vector potential amplitude.

Figure 12(a) shows the photoelectron momentum spectrum, calcu-
lated from the exact numerical solution of the TDSE using the Qrror
code [89]. The laser parameters are N, = 4, w = 0.0228, Ey = 0.0534
(corresponding to A = 2 um and an intensity of 10* W/cm?). Here
we focus on the almost vertically aligned interference fringes. These
fringes are discussed in Sec. 4.3.1 as a result of intra-half-cycle inter-

ference of two trajectories “born” at times tﬁl) and tgz). The electric
tield has opposite signs at tﬁl) and t£2)

point in opposite directions.

, meaning that the tunnel exits
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Figure 12: Logarithmically scaled photoelectron momentum distribution in
the p;-px plane calculated using (a) TDSE, (b) plain SFA, (c) TCSFA
without sub-CC, and (d) TCSFA with sub-CC. The calculation is
for H(1s) in a 4-cycle, sin’-envelope, near-infrared laser pulse of
wavelength A = 2 ym and intensity 10'* W/cm?. Four orders of
magnitude in probability are shown.



5.2 COULOMB EFFECTS ON INTRA-CYCLE INTERFERENCE [2]

The vertical fringes are also present in the SFA spectrum Fig. 12(b).
However, the positions are shifted relative to the TDSE results. When
there is constructive interference in the TDSE result, there is destruc-
tive interference in the SFA spectrum, and vice versa. This indicates
that there is an erroneous phase-shift of 77 between the long and the
short trajectory in the plain SFA as compared to the exact TDSE result.
It is expected that incorporating the Coulomb-attraction between the
outgoing electron and the parent ion should cure this disagreement.

Let us now “switch-on” the Coulomb-attraction for the propaga-
tion in the classically allowed region (from the tunnel exit to the detec-
tor). The result is shown in Fig. 12(c). As has been discovered recently
[78], side-lobes are reproduced by incorporating the Coulomb correc-
tion to real trajectories. However, the vertical interference fringes
still have the same position as in the plain-SFA result, meaning that
the erroneous phase-shift between the long and the short trajectory
of 7t is not cured by the Coulomb-correction out of the Coulomb-
barrier. Only if the sub-CC (84) is incorporated as well, do positions
of fringes coincide with the ab initio TDSE result, as is shown by Fig.
12(d). Hence, the sub-CC not only affects the statistical weight of a
quantum orbit via the imaginary part of W' but also the interfer-
ence pattern in photoelectron spectra via the real part of W', In
the following we show how the introduction of W< cures the erro-
neous phase shift and derive an analytical expression for ¢"° in the
long-wavelength limit.

5.2.2  Momentum Distribution in Polarization Direction with w — 0

In the long-wavelength limit (w — 0) it is possible to evaluate the
sub-CC phase difference ¢*“*° in the polarization direction analyti-
cally. We consider a monochromatic laser field (100) and assume
Ao > 0. We will prove that in the long wavelength limit we obtain a
momentum-independent sub-CC phase shift of

27

subcc| _ )
Pl = o

(112)

In particular, for the case of Fig. 12 where Z = 2, = 1 we have
|pUP¢| = 71, turning constructive interference maxima of the plain
SFA into destructive interference minima in the TCSFA with sub-CC and
vice visa. As we know already from the results in Fig. 12 that the
Coulomb correction of the propagation in real space is not responsi-

ble for the fringe shift, we ignore its effect on ﬁ(()l) and ﬁéz) (and thus

also on tgl) and téz)) in this section and assume

B =Py =P (113)

which we know is valid along the polarization axis in the long-
wavelength regime from numerical results. For a monochromatic
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laser field (100), = (px, pz), and t; = t, + it; the saddle point equa-
tion (35) yields

P
Ao’

\/ 21, + p?

Ap

sin (wt,) cosh (wt;) = (114)

cos (wt,) sinh (wt;)) = F (115)

Equation (114) shows that the possible ¢, can be determined as the

. . 0 .
intersections between p,/ cosh wt; “~ p- and the negative vector

potential —A(t) = Apsinwt, as indicated in Fig. 13(b). The figure
shows that a pair of saddle points per cycle, e. g., tgH) and t£2+), exists
for a specified p, (dashed horizontal lines). The so-called intra-cycle

interference is thus due to two saddle-points for which

ﬁ(l) - ﬁ(Z) =7,

tﬁl) - tﬁ”, (116)
w

£ =@ —

are fulfilled. In the polarization direction, p, = 0, the sub-CC action is

subcc __ i Z — 0 Z _
W = A \/mdt = z/ti \/mdr (117)

with Z(t) = z(t, +i7) along the integration path t = t, +it, T €
[t;, 0], as shown in Fig. 13(a). The superscript («) is suppressed here.
For the sub-barrier trajectory in polarization direction calculated from

(52) )
z(t) = ;0 [cos wt — Re cos wts| + p; [t — Ret] (118)

results. Separating the real and imaginary parts of Z(7),
Z(t) = a(t) +ib(7), (119)
one finds

a(t) = Re[z(7)] _Ao cos wt, (cosh wt — cosh wt,;),
w A (120)
b(t) =Im[Z(7)] =p.T — ;0 sin wt, sinh wT.

In the long wavelength limit w — 0, the functions sinh and cosh in
a(7) and b(7) can be expanded about w = 0, leading to

A
a(1) =S wcoswhy (T° — 1) (121)

b(t) ~TA

with

A
A~ p, — Apsinwt, >~ —sztl2 sin wt,. (122)
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Let us consider emission times ¢, for positive p,. In this case
0 < wt, < mand thus A > 0. As T > 0 [60] as well, b(t) > 0.
Hence the integrand in Wsubee in (117) may be simplified by choos-
ing the positive root to Z[22(1)]~/? = Z/%(7) for a(t) > 0 and
Z[22(1)]7V? = —Z/%(7) for a(t) < 0 so that it is sufficient to con-
sider the simplified action

, 0
psubee ii/t. Z(Zr)dT' (123)

The real part of this action,

subcc
= 4+ -
/ a?(T +b2 (1) v

is relevant for interference patterns in the spectra. Inserting Eq. (120),
with (115) for py = 0and w — 0,

Apwt;coswty = F4 /21,

leads to
: 2127 T
ReWst = L+ / dt
« I, Jy v +2[(A%/1,) —1] 2124t}
N2 — 24 L2 ||
= +————arctan Pl T
\/ 21, — A2 12,/ =A% +2A21, | 1
A0 Z n (124)
T *
It follows from Eqs. (120) and (116) that, for a given p,, the two-
saddle point times Y and +? are such that aV (1) = —a@ (1) and

b (1) = b(1). The opposite signs of a() have been considered
already in our calculation of ReWs"P«’, Hence

27

~ , (125)

subcc| __ subcc’ subcc’
5| = |ReW®! ReW* -
14

as claimed in Eq. (112).

For a hydrogen-like ion in a state with principle quantum number
n =1,23,..., we have I, = Z2/(2n%) and thus [¢p>"*| = n7. In
particular, for ground states n = 1 we have independently of Z that
|psb¢| = 7. This is the required phase shift for bringing the intra-
cycle fringe pattern in agreement with the ab initio TDSE result [see
Fig. 12(d)].

We compared TDSE and TCSFA results for other parameters Z, Iy,
and n and find good agreement if the sub-CC is included, provided the
minimum number of photons required for ionization I,/w > 1 and

the Keldysh parameter ,/I,/(2U,) < 1. Moreover, as Z is smaller,
the approximation to use the zeroth-order, plain SFA trajectory for
the sub-CC is better. Excited states n > 1 may introduce extra phase

differences via the prefactors P(tg“)) in Eq. (77).
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(C) p/(z)péz) pél) (d) 2) (1) (e)

Py Py p» Pl

Figure 13: (a) Integration path in the complex time plane. Starting at t; we
integrate parallel to the imaginary time axis down to f, on the
real axis, and then along the real axis to infinity. The correspond-
ing situation in position space around the tunneling barrier are
illustrated: at t; the electron is inside the atom in front of the
barrier, at t, it leaves the barrier at the tunnel exit and subse-
quently moves in the classically allowed region. (b) Real parts of
the saddle point times for a monochromatic laser with the elec-
tric field E(t) = Eg cos wt and vector potential A(t) = —Apsinwt,
Eg = Agw. The superscripts of ¢, indicate the sign of the asymp-
totic momentum p; the numbers 1 and 2 indicate whether the
corresponding quantum trajectory is “long” or “short”, respec-
tively. The negative vector potential and the electric field in arbi-
trary units are indicated. Panel (c)-(e) illustrate the asymptotes
of real trajectories in perpendicular direction 6 = 7t/2 (c), for an
angle 0 < 8 < 7r/2 (d), and parallel to the polarization direction,
6 = 0 (e). The bold solid lines f)'(gl) and ﬁt()z) represent trajecto-
ries in plain SFA where initial and asymptotic momentum p are
equal. Thin solid lines represent the corresponding TCSFA trajec-
tories, which start off like the dashed trajectories with a modified
initial momentum but then get Coulomb-distorted such that the
asymptotic momentum is p.
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5.2.3 Momentum Distribution in Perpendicular Direction

In subsection 5.2.2, we show that the sub-CC in the polarization di-
rection contributes an extra phase shift ¢*", which approaches
7/ +/2I, in the long-wavelength limit. The analysis starts from the
conventional picture of interference between long-short trajectories
with the corresponding saddle points tél) and t§2) . We are also inter-
ested in effects from the sub-CC in the perpendicular direction p, = 0.
In the SFA, the short and long trajectories are asymptotically parallel,
as shown in Figs. 13(c-e). In the perpendicular direction [Fig. 13(c)],
the parallel asymptotes are vertical when two saddle points merge

)

merges with tng) and tﬁzﬂ merges with tﬁlf). Hence, in plain SFA the
momenta and the saddle point times of long and short trajectories
become degenerate in perpendicular direction [*(()1) and f)'((]z) in Fig.
13(c)]. However, with the long-range Coulomb interaction included,
this degeneracy is lifted. In order to have a common asymptotic mo-
mentum 7’ the initial momenta pj; must be different, as indicated in
Fig. 1(c).

In order to cancel the longitudinal shift induced by the long-range
Coulomb distortion, the two trajectories should satisfy

as p, — 0in Eq. (114). One easily verifies that in Fig. 13(b), tSH

1 2 1 2
Pi = —por s POl = Poe

The corresponding saddle points are easily found for these criteria
from Fig. 13(b). Taking, e.g., the saddle point (14) as the reference,
the other saddle point is (1—). Therefore, the initial condition for
these trajectories are

(1+) _ _ (=) (1+) (1-)

Po. = _pOzi + Pox Pox
t£1+) _ + tﬁl_), tlgl—) _ 0+
w

(126)

In the following, the phase contribution ¢*5°¢, $*1° and ¢'¢ are de-

duced, and the interference pattern in the perpendicular direction
is inferred. The subscript “c” indicates that the phase difference be-
tween the trajectories has been generalized to allow for the real-space
trajectory-distortion by the Coulomb force. The interference pattern
in perpendicular direction is determined by the symmetry properties
of the interfering trajectories, while it is independent of the detailed,
Coulomb-modified dynamics because both trajectories of a pair col-
lect equal phase distortions. This suggests that the SFA, TCSFA with
or without sub-CC result in the same interference structure in the per-
pendicular direction, as will be discussed in the following.
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5.2.3.1  Phase difference from sub-CC: ¢S10

We show first that the sub-CC phase difference ¢S4 does not con-
tribute in (111),

<P§ljbcc — Re Wj,_ubcc(l+) . WJs_ubcc(l—) 0. (127)
The real part of the sub-CC action can be written down with the com-

plex trajectory expressed by parallel and perpendicular components
z(t) and x(t)

tr dt
subcc  __
Rewsebee — [T T
o [z(8) + x(t)?]

[0 dt
= i), 202+ 2] (129

For a monochromatic laser pulse (100), the zeroth-order sub-barrier
trajectories (100) as a function of t = t, 4 iT can be cast into [see (120),

(121)]

E
(1) = w—g cos (wt,) (coshwt — cosh wt;)

E
+i <pZT — w—g sin wt, sinh aJT> (129)

and
%(1) = ip. (130)

Substituting 1% and pgli) into Z(7) (129), we find with the help of

the conditions (126) z(1*) (1) = —z(17) (). For %(7) (130) clearly fol-
lows x11) (1) = ¥(17)(1). As a consequence, the integrands in (128)
is identical for both trajectories. As the integration starts for both tra-
. . 1+) _ ,1-) _ . subce(14) subcc(1—)
jectories at ¢; =t = t; we obtain ReWC i = ReWC N ,
i.e., the sub-CC phase difference vanishes, and (127) is proved.

In passing, we would like to mention that caution has to be exer-
cised regarding which saddle-points are chosen for p, = 0 if zeroth-
order, plain SFA were used, for which the degeneracy of the saddle
points is not lifted. If the “usual” long and short trajectories (1+) and
(24) with 1) and 2" shown in Fig. 13(b) are chosen, 22+ (1) can
be expressed by variables of (1+) as

A
Z(2+)(T) = —;0 cos (thH)) (cosh wt — cosh wt;)

.+, Eo . 1)\
+i [pz t— o2 sin (wtr ) smhwt} . (131)
Compared to (129), this expression differs by a sign only in the first
term. Since #1*) (1) = %(2*)(1), the imaginary parts of z(t)? + x(t)2
in the denominator of (128) for (14) and (2+) are opposite in signs.
It seems a paradox occurs: in the exact perpendicular direction, the
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integrands are identical since the imaginary part in (131) is zero, and
thus no phase difference exists. But a tiny longitudinal momentum p,
would lead to the abrupt appearance of a finite phase difference due
to the multiplicity of the complex square-root function in the denom-
inator, which is unphysical. The problem does not arise in the above
employed sub-CC, thanks to the Coulomb distortion of the trajectories
in real-space, which enforces p((;r) = —p(()i_), thus determining the
relevant saddle-point times to be (1+) and (1—), not (1+) and (2+).

5.2.3.2 Phase difference from sub-barrier propagation without Coulomb in-

sub,0

teraction: ¢_

After having identified the relevant saddle-points (1+) and (1—) we
now show that

(Pstib,o — Re [Wsub,O(l—i-) _ Wsub,O(l—)} = 0. (132)
C
Substituting a monochromatic laser field (100) into (83), we obtain

1 E
wsub0  — ([p + §p2 + L[p) t— 2)—’32 [cos wt, — cos wis]

EZ
—1—8733 [sin 2wt, — sin 2wt;], (133)

where p = \/p2 + p2. The real part reads

bo _ Aopz Af 2
ReWs®or = coswt, (coshwt; — 1) — 20 sin 2wt, sinh? wt;.
w 4w
(134)
Inserting pgli) and tpi) we find
Rewsib’o(lf) = ReWCSIb’O(H), (135)

confirming Eq. (132). No information from the sub-barrier propaga-
tion is recorded in the perpendicular direction.

5.2.3.3 Phase difference from real propagation: ¢

The interference pattern in the perpendicular direction is entirely de-
termined by the real-time trajectories and the corresponding phase
difference

Ee — wrel+) _ pre(1-) (136)

Given real trajectories z(t), x(t), v;(t) and v,(t) for t € [t,, Tp], the
action due to the propagation in real time is

1
s+ I,|dt.  (137)

re __ o1 v ) _ S
we=- [ L(ze)u ) = e

59



60

TRAJECTORY ANALYSIS OF INTERFERENCE PATTERNS

The symmetry properties for two interfering trajectories in the per-
pendicular direction are illustrated in Fig. 13(c),

_ 7T — 7T
o) ==Y (14 2), ol () =0l (14 2),

27 === (14 2), <=1 (14 2.

(138)

(1-)

Moreover, tﬁlf) = t£1+) — t/w. Casting Wie in terms of the vari-

ables (1+4) one finds

re(1— Tp+m/w 1
Wit = [ (w2 o)
1
AGES s +%Ft
VA 2 4 2
Tp+7r/w
= = [ 1o (139)

1-)

The phase difference ¢ = WT(H) — Wie( is thus given by

re Ty Ty+m/w Tp+7'[/w
o5 = |- [+ o ra= [T 0a o

Ty

independent of the specific saddle-point pair under consideration. As
T, — oo the asymptotic position in polarization direction remains
finite, z(t)|t500 — Zoo, but x(t)|t50 — 00, leading to a vanishing
phase difference due to the Coulomb potential. In the kinetic energy
term of the integrand, v;(t) |t — A(t) and vx(t) |t — Px, SO that

Tpy+n/w /] 1
o= [ (G pawr ) a

4

o 1 ) 1 fTptn/w )

(141)

Using px = \/ 2 (nw — U, — I,) from the energy conservation for ATI
in the perpendicular direction with n the number of absorbed pho-

tons and U, = 357 0271/w A(t)%dt we find

o = nrt. (142)
This result agrees with the findings in Ref. [go] that every other ATI
ring is destructively “interfered away” in perpendicular direction. Be-
cause of the prefactor P(ty‘)) in (77) the interference is destructive for
odd 7 in the case of even-parity initial states and vice versa.

The interference concerning the ATI rings in perpendicular direc-
tion predicted by (142) is confirmed by the results for ionization of
H(1s) in a 9-cycle trapezoidal envelope laser pulse of 8oo nm wave-
length shown in Fig. 14. The other laser parameters are given in the
figure caption.
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Figure 14: Same as Fig. 12 but for a 9-cycle, trapezoidal-envelope laser (2,
5, and 2 cycles for up-ramping, constant-envelope, and down-
ramping, respectively). The wavelength is A = 800 nm, the inten-
sity is 10 W/cm?. In the spectrum calculated using the TCSFA
with sub-CC (d) only trajectories of types T1 and T2 have been
considered.
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5.2.4 On-Ring Nodal Structure

The ATI peaks appear as rings of radius

p= \/2 (nw —U, — 1) (143)

in the photoelectron momentum spectra. It is known from exper-
iments that the ionization probability along the ATI rings is not
isotropic but exhibits nodal structures. These structures, also visi-
ble in Fig. 14, have been analyzed recently within the SFA [9o0]. The
radius of the ATI rings is well reproduced already by the plain SFA,
which is verified by comparing Fig. 14(b) with the ab initio TDSE re-
sult Fig. 14(a). However, the positions of the nodes along low-order
ATI rings do not agree well. Not even the number of minima and
maxima agrees. Taking, e.g., the second ATI rings (p = 0.3939, ab-
sorption of 14 photons), for instance, the TDSE result in (a) shows g
maxima along the ring, the plain SFA result in (b) only 7. The real time
Coulomb corrected SFA in (¢) does not affect the number of maxima.
Instead, the sub-CC SFA in (d) does give the correct number. Along the
next ATI-rings (absorption of 15 photons) TDSE and plain SFA agree al-
ready (10 maxima), and TCSFA with or without sub-CC does not change
the nodal structures. Along the first ATI ring the TDSE shows 8 max-
ima, which is not properly reproduced, even with the sub-CC TCSFA,
probably because our sub-barrier Coulomb correction involving only
the zeroth-order plain SFA trajectories is insufficient.

Figure 15 shows the momentum distribution along the second ATI
ring for the ab initio TDSE, the SFA and the TCSFA with or without
sub-CC. TCSFA with sub-CC agrees well with the ab initio TCSFA result.
The result from the TCSFA without sub-CC and the plain SFA are similar.
They agree well with the TDSE around 6 = 71/2 but deviate for smaller
angles. As discussed above, there is one maximum less in the plain
SFA and the TCSFA without sub-CC, as compared to the TDSE and the
TCSFA with sub-CC. Hence we conclude that the nodal structure of
low-order ATI rings is affected by the sub-CC. Higher-order ATI rings
may be effected by the side-lobes (clearly visible in Fig. 14(a)) and
discussed in [78].

5.3 CONCLUSION

In this chapter, the applications of the TCSFA to complicated interfer-
ence patterns are discussed. We show that diverse spectral structures
essentially originate from interferences between different types of tra-
jectories, and the TCSFA provides a convenient tool for such explo-
ration with the aid of trajectories.

In order to account for the disagreement in spectra between the
plain SFA and ab initio TDSE results, we introduce the sub-CC and found
substantial improvement to precisely describe fringe structures. The
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Figure 15: The ionization probability along the second ATI ring with p =

0.3939 in Fig. 14 according to the ab initio TDSE, the (plain) SFA,
the TCSFA (without sub-CC), and the TCSFA with sub-CC result. The
polar angle 6 is in the range [0,77/2], & = 0 corresponding to
pxr = 0, and 8 = /2 corresponding to p, = 0. The plain SFA
result is as noisy as the TCSFA because it was calculated using the
same statistical sampling approach as for the TCSFA.

phase shift induced by the sub-CC takes a simple analytical form for
all hydrogen-like atom in the long-wavelength limit. In addition the
perpendicular distribution is found irrelevant with the sub-CC. Such
intra-cycle interference provides potential applications for experimen-
tal exploration of ionization dynamics using photoelectron momen-
tum spectra.
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CONCLUSION AND OUTLOOK

The SFA lacks the proper description of the long-range Coulomb in-
teraction between the electron and its parent ion. In this work, we
have systematically developed the TCSFA method to overcome this de-
ficiency. The TCSFA amounts to the trajectory-based SFA “patched” by
the Coulomb interaction. In the TCSFA, the Coulomb interaction is
incorporated by explicit evaluations of trajectories in combined fields,
and the ionization probability is obtained by the coherent superposi-
tion of transition amplitudes, which are calculated along trajectories
of the same asymptotic momentum. Using the TCSFA, we have ex-
plored the ionization dynamics of hydrogen-like atomic systems in
a linearly polarized, long wavelength laser field by analyzing photo-
electron momentum distributions. The SFA has an appealing inter-
pretation in terms of quantum trajectories. With the incorporation
of the Coulomb interaction, contributions from new types of trajec-
tories have been identified. We successfully identified the origin of
the so-called “ionization surprise”, the LES, as the caustics formed by
forward-scattering of trajectories at the Coulomb center in the laser
field. Quantum mechanically, the interferences between trajectories
account for recently observed interference patterns in experiments,
which cannot be explained by the plain SFA. TCSFA allows for each
quantum trajectory a splitting of the Coulomb correction into the part
in the classically allowed region beyond the "tunnel exit" and the part
"under the barrier" (sub-CC). We have analytically derived the phase
shift caused by the sub-CC and explained the disagreement between
positions of fringes for the plain SFA and the ab initio results. In brief,
the TCSFA offers insights into any spectral feature in terms of trajecto-
ries.

In principle, extensions of the TCSFA to more complex systems are
also feasible especially if a plain SFA has been already developed.
In the following we present several possible applications. The most
straightforward extension is towards two Coulomb centers, e. g., HQL ,
where the SFA for diatomic molecules, the molecular strong field ap-
proximation (MOSFA) [91, 92], has been established (see Sec. A.5).

The TCSFA may also be applied to the non-sequential double ion-
ization (NSDI) in an effective two-electron system [93], though the
computational burden would be heavy due to the sampling of trajec-
tories in higher dimensional initial momentum space.

The extension to elliptically polarized laser fields is straightforward
[94]. The influence of many-electron polarization effects could be in-
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vestigated by incorporating a polarization potential into the equations
of motion for the quantum trajectories [95, 96].



APPENDIX

A1 ASYMPTOTIC FORM OF WAVE FUNCTION

The asymptotic form of hydrogen-like wave functions is used in Sec.
2.2.1 to evaluate the transition amplitude (29). In this Appendix we
summarize the necessary prerequisites. The stationary Schrodinger
equation for a point particle of the energy E and the mass u in a
radially symmetric potential V (r) reads

2
[‘;VZ V()| p(7) = Ep(). (144)

Since the orbital angular momentum is a constant of motion, we sep-
arate the solution of (144) into the radial function f;(r) and the spher-
ical harmonics Y},

$(7) = fi(r)Yim (0,9). (145)
Substituting (145) into (144), fi(r) satisfies the equation

[ s (d2+2d)+l(l+1)h2+v(r)

“ou\an T rar 2 filr) = Efi(r).  (146)

Replacing fi(r) with ¢;(r), fi(r) = ¢:i(r)/r, Eq. (146) becomes the
stationary radial Schrodinger equation

n? d?
[_Z]/ldrz + Veff(”)] $i1(r) = E¢y(r), (147)
where )
I(I+1)h
Vest (1) = (2—:”,2) +V(r) (148)

is the effective potential with the first term I(I + 1)/ (2ur?) the cen-
trifugal potential. The three-dimensional equation (144) has been effec-
tively reduced to (147) for a particle in a one-dimensional potential
Veff(r)'

The analytical solutions to Eq. (147) take different forms for bound
states (E < 0) and the continuum (E > 0). The bound state in the
Coulomb potential, V(r) = —C/r, is given by the Whittaker function

b (1) =W, ,(2x7)
with v = uC/h*k and k = \/2u|E| /H*. v is the principal quantum

number. Note that the wave function in most textbooks is usually
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presented in the form of the associated Laguerre polynomial, which
can be transformed into the Whittaker function by the Rodrigues rep-
resentation,

(_1)11 p—(k+1)/2

L =11

2
"Wy 2 ni1/2472(7).

When r > 1, as we usually assume for the tunnel exit, the asymp-

totic behavior of the Whittaker function results in
(1) = (2kr)V e .

p-(1) = (xr)"e (149)

Substituting (149) and f;(r) = ¢;(r)/r into (145), the asymptotic wave

function for an arbitrary bound state of quantum numbers vim is

given by
Y(F7) = Ar' e Y, (7), (150)

where 7 is the unit vector of 7. For the ground state, the asymptotic
wave function is exact; for excited states, as long as the tunnel exit is
far away from the origin, the asymptotic form is applicable.

Next, the Fourier transform of the asymptotic wave function (150),

B0 = s [y (151

is shown. Using the partial wave expansion, the exponential function
in (151) in spherical coordinates is given by

Z 4 (21 +1)i i )]/](J;r)Yl’;,o(cosy) (152)

with < the angle between k (the unit vector of k) and 7, satisfying the
relation (the addition theorem for spherical harmonics)

47 I * 5 2
Y Y (k) Yir (7). (153)

Yy o(cosy) = W1
m=—1

Substituting the asymptotic wave function (150) and the exponential
function (152) into (151) and applying the orthogonality relation for
spherical harmonics which cancels the dependence on 7, (151) be-
comes

36 = 1 2y [ i [Arelan sy

Using [86] for the last integral in (154), the asymptotic wave function
in the momentum representation is given by

YT(v+1)

§(F) ~ 4mA(+1)Y, (i)((q v (155)

The mostly used expressions are listed in Table 1.
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’ State ‘ Fourier transform ‘
T 4A K
o _ 16A\/7K?
ZS ¢(Q) - ({72-}-1(2)3
(= T2
2 | §(7) = A5 (41) cost

Table 1: Fourier transforms of the asymptotic form, Eq. (155), for v =1, 2,
[=0,1,and m = 0.

A.2 SADDLE POINTS IN A MONOCHROMATIC LINEARLY POLAR-
IZED FIELD

In this section, the saddle points used for the monochromatic laser
field are derived. Substituting (100) into (35),

[Pz + A(tS)]Z + P?c = =21,

the SPE reduces to

E .
P, — ;‘) sinwts = +iy /21, + p2.

With the complex saddle time t; = t, +it;, t,, t; € R, the real and
imaginary components are separated,

wpz

sinwt, coshwt; = E, (156)
wy /21, + p2
coswt, sinhwt; = :FT- (157)

Solving (156) and (157), two groups of solutions are found,

(1)

1
; zaarccos(cz), tlm

= larccosh (c3),
pd (158)
£2)

1 1
y | = —arccos (—cz), tl@ = —arccosh (¢3),
w w

where

e = \/[E3 + w2 (21, + p2))* — 4E2w?p2,

_ 2 P2
= (1+/5)—LTP

VB-w @+ +a

- /T B+c,

; V2E, aviohre
Ei+w? (2L, +p?)+c1 1

C3:\/0 (2l = —/1+B+cy,

V2Eg

and E2 = w?(2I, + p?), B = E2/E.

>
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Electric field

/Vector potential

time

—p,/cosh (wt;), p.>0

Figure 16: lllustration of the real parts of saddle points in the linearly polar-
ized monochromatic laser field of the electric field (100).

The relation between two saddle points within one cycle is found

from (158),
) (150)

For a pair of trajectories of saddle points satisfying (159), same imag-
inary parts, which imply that the trajectories are of the same weight,
lead to the maximum contrast of interference fringes. Moreover,
Eq. (156) shows that #*) is determined by the intersections between
—p2/ cosh (wt;) and the vector potential A(t). We visualize this rela-
tion for real parts of saddle points in Fig. 16. tgl) and tgz) are assigned
with signs “+” and “—" in Eq. (157), corresponding to the long and
short trajectories, respectively.

By calculating %(t,) = fo + A(t,), the initial velocity when the elec-
tron emerges at the tunnel exit is also available,

v (ty) = —2A(if,)sir1h2 <w2tz>, (160)
vx(t;) = pa (161)

From Eq. (160), one sees that v,(t,) is small if the trajectory has a
large weight (wt; is small), which justifies the assumption in the SMM
that a photoelectron starts with v,(t,) = 0. Moreover one should note
that p.(f,) has the same sign as the sampling momentum p.



A3 FOURTH-ORDER RUNGE-KUTTA METHOD

A.3 FOURTH-ORDER RUNGE-KUTTA METHOD

Numerically, the classical fourth-order Runge-Kutta method (RK3) is
widely used to solve systems of ODEs. The the algorithm for the nth
time step is given by

El = hf(tn/gl’l)/

- 1. 1-

k2 - hf(tn + Eh/yn + Zkl)

k3 = hf(tn + Eh/gn + 2k2) (162)
Ky = hf(ty+h,n+Ks),

1 — —
%H1=%r+g@1+%a+2h+k4,

where 1/, is a vector containing components of discrete dynamical
variables (¥ and 7 in our work), t, is the time, and 7 is the time step.

A.4 KEPLER’S ORBIT

The Lagrangian of a particle in a central field of potential V() reads
L:T—V:%mﬁkw%ﬂ—vm. (163)

Substituting (163) into the Euler-Lagrange equation, the equations for
8 and r are given by

oL _doL . JL ddL _ (164)
30 dtog  or dtor +

respectively. The two equations in (164) imply the conservation of the
angular momentum [

dl d .
= (mr*0) =0 (165)

and the conservation of the energy
mr? — mi + f(r) =0, (166)

respectively. In (166), f(r) = —dV(r)/dr is the force of the central
field. Substituting (165), 6 = I/ (mr?), into (166), the radial equation
for r is given by

W—mr‘ﬂf() 0. (167)

We reformulate Eq. (167),

12 d 12
T mr +f) = [Zmﬂ

+ V(r)] . (168)
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Multiplying by dr/dt on both sides of (168),
A1\ AP
mit = <2mr > = [21111’2 + V(r)] ,

1mr’Z + .
2 2mr?

The constant is the total energy E of the system. Eliminating [ with
I = mr26, we find

we obtain

+ V(r) = const. (169)

Em(r’2 +7r%*) +V(r) = E. (170)

Next, the Kepler orbit is determined. Using Eqs. (169) and (170)

we can write
dr

VEE-V() =52

Eliminating dt by using the conservation of the angular momentum,
0 = 1/mr?, the relation between 6 and r is given by

dt =+

ldr
mi2\[2(E~ V(1) - 522)

By integrating from a radial distance ro when the angle is 6y to 7, we

do = +

have . i
Q:i/ ! + 6.
0 2 JRIE-V()] - b
Substituting the Coulomb potential V(r) = —Z/r, the relation be-

tween 0 and r reads

v
1’01,-2 E+
.y
2
vy (3 2y C%>+%%

0 — 0y =

:iﬁ_ymwﬂWM]

= Farccosu(r)y,,

u(r) = (1 - ”;Z) [(mlf)z N 271215] 71/2.

Choosing 6y = 0 for 7y = rmin (the perigee), we have 6 = arccosu(r),
or

where

mZ (mZ)>  2mE -
r= [12 z 2 cos@]



A5 SFA TRANSITION AMPLITUDE FOR H;_

In atomic units (m = 1), the equation for the conic section is given by

k

~ 1+ecosh’ (171)

where k = I?/Z and € = /1 + 2EI2/Z2. The sign of § determines the
direction of the motion, dr/dt « €lsinf/k = Zesin0/l, and hence
the sign of Idr/dt can be determined. The electron moves towards
the core as dr/dt > 0 and vice versa.

A.5 SFA TRANSITION AMPLITUDE FOR H;r

Let us consider a diatomic molecule having two Coulomb centers
A and B with the internuclear vector R. The nuclear wave packets
for the initial and final states (v; and vy) are defined as @apy f(R)
and @ap,, (R), respectively. The transition amplitude for the photo-
electron with the asymptotic momentum p in a diatomic molecule is

given by [92]

o AB]/,(E)
(£ ¢) —z/d Q’)ABuf )¢

D
\/ (1+8(R)) I=A®

with S(R) the overlap integral between the atomic orbitals for A and
B with regard to the linear combination of atomic orbitals (the LCAO-
MO method, see, e.g., Sec. 8.3 of [97]), and

Mﬁ](t,t’;fi), (172)

-

t - —
My (t, ¢ R) = /t dr/d?gbjﬁf(?,r) (7 + exR) - E(7)
% 4715(7_ C]R)eiAE(R)T

(173)

denotes the contribution to the transition amplitude from the
Coulomb center indexed by J, ] = A, B. Here ¢1,(7) is the ground
state atomic orbital for the ground state. The coefficients c; can be
found by the Rayleigh-Ritz method [97]. 7 is the position vector of
the electron. The reduced charges ¢,, eg and the effective potential
AE(R) for the molecular system are defined as (6a), (6b) and (42)
in [92]. The sum in (172) explicates the interference induced by the
two Coulomb centers, analogous to the interference in the double-
slit experiment. If the time scale of the ionization dynamics is much
smaller than that for the motion of the nuclear wave packets, we can
use the fixed nuclear configuration for a given inter-nuclear distance
R = ‘R" to simplify the problem. Hence we only consider the transi-
tion amplitude under the fixed nuclei approximation,
Mﬁ(t,t';l_é) = Z Mﬁ](t, t’;R) = Itdreis(r) Z D](T;I_é),
J=A,B t J=A,B
(174)
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where S(t) is the action defined in (175) and D;(t; R) defined in
(176) is the dipole matrix element corresponding to the Coulomb cen-
ter J. S(t) is similar to the action (27),

S(t) = /OT{l [ﬁ—e?&(r)r—kAE(R)}dT, (175)

2m

except the effective ionization potential AE(R) depends on R.

Approximating e,7 + egR by e7 thanks to the huge mass-difference
between the nuclei and the electron, the dipole matrix element
Dj(t; R) in (174) is given by

D(t;R) = eE(1) - / d7 (2m) 32 il A TRy (7 — ¢R). (176)
With the translational symmetry
1/115 (17 — C]E) — E_ICC]R A l/)ls(l’ — C]R)

for the laser dressed initial state (vector potential A(t)), the dipole
matrix element reads

D;(t;R) = ¢—iecrRA(T) /dr (2m) %2 e~ ilP-erA] g 1s(F — ¢/R)

(177)

is the Fourier transform of ¢15(7). Hence the total dipole matrix ele-
ment in (174) for the two Coulomb centers is given by

Y Dj(t) = eE(t)- [i;#/?ls(ﬁ) Y el PR 4 Ry (R) 5 C]eic,ﬁ-ﬁ].

J=AB J=AB J=AB

Substituting c4 = 1/2 and ¢ = —1/2 into (178) for H, we find the

dipole matrix element
B ﬁ _; dlpls (E)
Rsm( >¢1s( )+2cos< 5 ) p .

(179)

Y Dj(t) =ieE(t)

J=AB
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