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Abstract

Promoted by advanced experimental techniques for obtaining high-quality
data and the steadily accumulating knowledge about the complexity of life,
modeling biological systems at multiple interrelated levels of organization at-
tracts more and more attention recently. Current approaches for modeling
multilevel systems typically lack an accessible formal modeling language or
have major limitations with respect to expressiveness. The aim of this thesis
is to provide a comprehensive discussion on associated problems and needs and
to propose a concrete solution addressing them.

At first, several formal modeling approaches are examined regarding their
suitability for describing biological models at multiple organizational levels.
Thereby, diverse aspects are taken into account, such as the ability to de-
scribe dynamically changing hierarchical model structures and how upward
and downward causation between different levels can be expressed. Based on
the results of this study, a domain-specific language concept is developed to
facilitate multilevel modeling in systems biology. The presented approach com-
bines a rule-based modeling paradigm with dynamically nested model struc-
tures, attributed entities, and flexibly constrained reaction rates. Its expressive
power, accessibility, and general usefulness for describing biological multilevel

models are illustrated with the help of two exemplary case studies.

Keywords: modeling methodology, systems biology, hierarchical multilevel

modeling, rule-based modeling






Zusammenfassung

Durch Verbesserungen in der experimentellen Datenerhebung sowie durch die
stetig wachsenden Erkenntnisse zur Komplexitat biologischer Vorgénge ist seit
einiger Zeit ein verstérktes Interesse an der Modellierung biologischer Systeme
auf mehreren in Wechselbeziehung stehenden Ebenen zu verzeichnen. Gegen-
wartige Ansétze fiir die Beschreibung solcher Mehrebenenmodelle lassen haufig
eine leicht zu erlernende formale Modellierungssprache vermissen oder sind in
ihrer Ausdruckskraft stark limitiert. Das Ziel dieser Arbeit ist Probleme und
Anforderungen der Mehrebenenmodellierung zu diskutieren und diesen mit
einem konkreten Losungsvorschlag zu begegnen.

Zunachst werden verschiedene formale Modellierungsansétze hinsichtlich ih-
rer Eignung fiir die Mehrebenenmodellierung biologischer Systeme ausgiebig
untersucht. Dabei werden diverse Aspekte beleuchtet, wie die Moglichkeit, sich
dynamisch verdndernde hierarchische Modellstrukturen und Kausalzusammen-
hénge zwischen unterschiedlichen Ebenen zu beschreiben. Aufbauend auf den
Ergebnissen dieser Untersuchung wird ein doméanenspezifisches Sprachenkon-
zept fiir die Mehrebenenmodellierung in der Systembiologie entwickelt, welches
ein regelbasiertes Modellierungsparadigma mit dynamisch verschachtelten Mo-
dellstrukturen, attributierten Entitdten sowie flexibel steuerbaren Reaktionsra-
ten kombiniert. Ausdruckskraft und Zugénglichkeit des présentierten Ansatzes
werden durch zwei exemplarische Fallstudien biologischer Mehrebenenmodelle

verdeutlicht.

Schlagworter: Modellierungsmethodik, Systembiologie, hierarchische Mehr-

ebenenmodellierung, regelbasierte Modellierung
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Chapter 1
Introduction

Systems biology aims at analyzing the complex interrelationships within bi-
ological systems in order to understand their functional behavior (Kitano,
2002b). Though often claimed to rely on a fairly new methodology (Ideker
et al., 2001), perceiving life in terms of complex systemic interactions among
various components has in fact a long tradition (Wolkenhauer, 2001), dating
back to rather abstract ideas of ancient philosophers and — more specifically —
to concepts developed by the founders of general systems theory like Norbert
Wiener (1948) and Ludwig von Bertalanffy (1968). Anyways, promoted by
the recent progress in obtaining large amounts of high-quality data, systems
biology has nowadays become a well-established field of research and can be
considered to be the main scientific paradigm in modern life sciences for study-
ing complex biological systems at various organizational levels, such as genetic,
molecular, cellular, and even at the level of whole organisms (Butcher et al.,
2004). Thereby, research projects often run through an iterative workflow
process (Kitano, 2002b), starting with experimental data acquisition in the
“wet-lab”, followed by data analysis and the development of hypotheses how
the experimental observations could be explained. To deal with the complexity
of biological systems, these hypotheses are in a next step typically transformed
into formal representations (models) allowing to be analyzed computationally,
e.g., by performing simulation studies. Results of these “dry” experiments can
thereafter be used to design new “wet-lab” experiments, by which the cycle

becomes completed and may start again from the beginning.



1. Introduction

The research described in this thesis concerns the modeling part of this sys-
tems biology workflow, i.e., the transformation of a certain hypothesis from
an informal mental into a computationally analyzable formal model represen-
tation. The focus thereby lies on the accessibility and expressive power of
modeling methods for describing so called multilevel models, aiming at the

integration of processes at multiple levels of organization.

1.1 Motivation and Problem Statement

The process of modeling always means to abstract from what we consider to be
the real world, or as Olaf Wolkenhauer states: “/... [ understanding arises from
transforming, abstracting one reality into another—through modeling.” (Casini,
2011, p. 143). Finding the right abstraction level, i.e., deciding on which pieces
of information shall be part of the model, denotes a challenge of its own and
has — due to its creative aspects — much in common with art. Once ‘“having
determined what kind of knowledge will be contained in the model, the next
task is to choose how best to represent it” (Leitch et al., 1999, p. 436f), which,
however, is no trivial task either in many cases. The difficulty lies in a trade-off

between two contradictory goals:

1. Finding an appropriate representation format that allows for expressing

all relevant information.

2. Keeping the formal model description as simple as possible, e.g., to min-
imize the chance of introducing errors and to communicate hypotheses

and results to people that are not familiar with all details.

Other aspects like simulation performance issues may play an additional role
when deciding for a particular model representation.

A plethora of different modeling formalisms has emerged during the past
decades, many of which have been successfully applied to modeling diverse
biological systems (de Jong, 2002; Machado et al., 2011). Also, various user-
friendly software tools have been developed to aid modelers in their task and

thereby increase the accessibility of modeling, e.g., COPASI (Hoops et al.,
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2006) and Snoopy (Heiner et al., 2008b). Thereby, most of the existing for-
malisms and tools focus on describing dynamic systems at a single organi-
zational level, which is not surprising, as according Occam’s razor modeling
projects typically start simple — in particular if only little is known about the
system of interest — and yet the relationships between components at a sin-
gle level may become rather complex. Thus, in the past there has been often

simply no need for alternative model representations.

In recent years, however, accumulated knowledge and increasing amounts
of available data progressively indicate that examining a single level in isola-
tion may not suffice to explain certain observations (Noble, 2006). Therefore, a
shift of the needs toward so called multilevel or multiscale modeling techniques
can be observed (Degenring et al., 2003, 2004; Uhrmacher et al., 2005; Derosa
and Cagin, 2010), to support the description of interrelated dynamic processes
across different levels of organization, such as a multicellular system that con-
sists not only of multiple interacting cells, but in which each individual cell has
also its own internal dynamics and processes at both the subcellular as well
as cellular level may influence each other. Increasing importance of multilevel
modeling in systems biology is particularly demonstrated by the quantity of
according models that have recently been published. Also special sessions at
major systems biology conferences like the annual International Conference
on Systems Biology (ICSB) indicate a growing interest in this topic. However,
conventional formal modeling approaches applied in systems biology are typ-
ically not well-suited for describing such models and thus usually alternative

modeling methods are employed.

So far, many multilevel models as well as respective simulation algorithms
are implemented more or less from scratch by directly using higher program-
ming languages like C or Java (e.g., Ribba et al., 2006; van Leeuwen et al.,
2009; Dexter et al., 2009). While being extremely flexible, this modeling ap-
proach is error-prone, time-consuming, requires profound knowledge in soft-
ware programming, and can be generally considered to be inaccessible to most
biologists. Moreover, such models are typically strongly intertwined with their
simulators as well as other code required for performing simulation experi-

ments — e.g., to observe simulation results — and therefore do not comply with
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the principle of separating concerns in modeling and simulation (Ewald et al.,
2010).

Others employ agent-based modeling toolkits like MASON (Luke et al.,
2005), NetLogo (Tisue and Wilensky, 2004), or FLAME (Holcombe et al.,
2012), e.g., Zhang et al. (2007) and Sun et al. (2009), or special-purpose multi-
scale modeling and simulation frameworks like CompuCell3D (Cickovski et al.,
2007), Simmune (Angermann et al., 2012), OpenAlea (Pradal et al., 2008), or
CellSys (Hoehme and Drasdo, 2010) to encode their models. These approaches,
however, are often rather rigid in a sense that they restrict users to describ-
ing particular kinds of phenomena and model structures. For example, to
represent spatial dynamics at the tissue level, the CompuCell3D framework
implements a parameterizable cellular Potts model, which is basically a gener-
alized cellular automaton; describing other kinds of models is not supported.
In general, even if the structure and dynamics of models can be modeled more
freely, such tools typically lack a universal language for describing dynamic
processes at each level of the model similarly. Instead, dynamics at different
levels need to be formalized differently by using different editors or different
syntactical elements of a model specification language. In this context also fre-
quently found, advanced programming skills may still be required to combine
or integrate different levels, although the actual dynamics at each level might
be formulated in a more simple way. Other approaches, which adapt general
hierarchical modeling formalisms for multilevel modeling in systems biology,
like Degenring et al. (2003, 2004), suffer from lacking explicit support for in-
terrelating the different levels and from conveniently representing biochemical

reactions.

Taken all together, the aforementioned approaches for multilevel modeling
of biological systems have major limitations either (or even both) with respect
to expressivity, i.e., the kind of systems and processes that can be described,
or with respect to accessibility, i.e., the ease of use and succinctness of repre-

senting multilevel models formally.

The aim of this thesis is therefore to contribute new insights and concepts to
the field of modeling methodology and thereby facilitate multilevel modeling

in systems biology.
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1.2 Contribution

According to the aim of this thesis to facilitate multilevel modeling of biological

systems, the work concentrates on the following two major aspects:

1. Comparing diverse existing modeling approaches with respect to their
suitability for describing biological systems at multiple levels and thereby

identifying useful constructs and features for this task.

2. Based on these findings, developing a tailor-made language concept for

accessible multilevel modeling in systems biology.

Therefore, at first a simple toy model is defined serving as a running exam-
ple throughout this thesis and denoting the basis for a comparison of different
modeling approaches. The example model describes a simple Notch signal-
ing system (Baron et al., 2002; Schweisguth, 2004) at different organizational
levels. It consists of multiple proliferating and interacting cells, ordered in a
one-dimensional spatial neighborhood. Each cell thereby consists of different
subcellular compartments, which in turn contain different molecular species,
i.e., Notch receptors and Delta ligands. At the molecular level, dynamic pro-
cesses are dedicated to the turnover of Notch and Delta, their translocation
from one compartment into another, as well as interactions between both
species, constrained to only take place if Notch and Delta are located within
different but adjacent cells. Processes at higher organizational levels are dy-
namically increasing compartment volumes and the traversal through different
cell cycle phases, eventually resulting in the division of the cell, by which the
total number of cells and their spatial neighborhood is changing. Causation
between different organizational levels includes the effect of growing compart-
ment volumes on the rate of bimolecular reactions taking place within these
compartments (downward causation) as well as cell cycle phase transitions in
dependence on the amounts of intracellular proteins (upward causation).

In the next step, this informal multilevel model is transformed — as far
as possible — into several formal model representations. Thereby, modeling
formalisms with a clearly defined syntax and semantics are considered only,

among those diverse flat formalisms, such as ODEs, Petri nets (Petri and
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Reisig, 2008), and the w-calculus (Milner, 1999), but also modeling languages
that have an explicit notion of hierarchy, such as BioAmbients (Regev et al.,
2004), DEVS (Zeigler, 1976), and Bigraphs (Milner, 2009). On the basis of the
exemplary model encodings, general properties of these different formalisms
and their suitability for multilevel modeling of biological systems are thor-
oughly discussed. Diverse aspects are thereby taken into account, such as
a formalism’s support for describing dynamic model structures and how up-
ward and downward causation can be realized. This extensive examination of

different modeling formalisms is partially based on the following publications:

Ewald, R., Maus, C., Rolfs, A., and Uhrmacher, A. (2007). Dis-
crete event modelling and simulation in systems biology. Journal
of Simulation, 1(2):81-96.

Maus, C., John, M., Rohl, M., and Uhrmacher, A.M. (2008). Hier-
archical Modeling for Computational Biology. In Bernardo, M.,
Degano, P., and Zavattaro, G., editors, Formal Methods for Computa-
tional Systems Biology, volume 5016 of LNCS, pages 81-124. Springer.

As one main result of this comparative study it turns out that attributed
model entities and flexible reaction constraints are not only essential for mo-
deling spatial cell biological processes in the m-calculus, as has been shown by
John (2010), but they are also key features for representing dynamic behavior
at different organizational levels as well as describing interlevel causation. In
addition, the support for explicit representations of hierarchically nested model
structures denotes an essential aspect to diminish redundancy and particularly
to capture important characteristics of a multilevel system without further ex-
planation. Other valuable language features refer to describing dynamically
changing structures (Uhrmacher and Zeigler, 1996; Uhrmacher, 2001) and the
compositionality of model descriptions. Last but not least, diverse examples
indicate that reaction-centric modeling paradigms — as employed, e.g., by rule-
based approaches (Hlavacek et al., 2006) and Petri nets — seem to be more
accessible and generally more practical for describing biological systems at

multiple levels than object-centered approaches, like DEVS or the 7-calculus.
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This is mainly due to the straightforwardness of describing biochemical pro-
cesses, but also taking certain side-effects into account to model interlevel
causation can typically more straightforwardly and succinctly be realized by
using a reactions metaphor.

Based on the above findings, ML-Rules, a general-purpose modeling concept
for describing biological models at multiple interrelated levels is presented. The
developed concept employs a novel rule-based modeling approach, where each
entity (called species) may contain a set of further entities to represent hierar-
chically nested structures. Rule schemata help reducing the size of models and
equally important, add the required flexibility to express dynamics at different
levels in a general manner. In addition, species may have assigned attributes
to describe different states of species at any level, including those denoting the
containers of hierarchical model structures, e.g., to represent membrane-bound
compartments with dynamically changing properties like an increasing volume.
Arbitrary rate laws and reaction constraints allow for flexibly describing up-
ward and downward causation as well as certain behavioral abstractions like
approximated enzyme kinetics. Moreover, describing simple spatial dynamics
beyond compartmentalized structures becomes also possible. The discussed

approach has been published in the article below.!

Maus, C., Rybacki, S., and Uhrmacher, A.M. (2011). Rule-based
multi-level modeling of cell biological systems. BMC Systems Bio-
logy, 5:166.

By introducing additional syntactic layers, the accessibility of ML-Rules
may be further increased compared to its basic syntax. A graphical represen-
tation inspired by Milner’s Bigraphical Reactive Systems (Milner, 2001) may
increase the readability of rules consisting of nested species patterns. Inde-
pendent from a graphical or textual notation, identifying species attributes by
name instead of position may additionally improve the readability. Moreover,
this allows for a “don’t care, don’t write” approach, by which rules may become

more succinct and their generality can be increased. The same holds true for

!Oury and Plotkin (2011) have published a rather similar approach at nearly the same
time. Differences between ML-Rules and their approach are briefly discussed in the conclu-

sions at the end of this thesis.
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generic species, where wildcards instead of defined species names are used in
order to reduce the number of rules needed. Another meaningful extension
of the basic ML-Rules concept is the introduction of functions on solutions
(multisets of species), in particular to count certain species being part of a
solution and to decompose a given solution into multiple sub-solutions, e.g.,
to describe processes like cell division. Unlike the previously described exten-
sions, functions on solutions cannot be introduced as purely syntactic sugar.
However, they do not conflict with the basic concepts of ML-Rules and can
thus straightforwardly be incorporated.

The final contribution of this thesis is a demonstration of the usefulness of
the presented language concept for multilevel modeling of biological systems.
Therefore, at first the encoding of the running Notch signaling example is
being discussed. The second case study describes a model of fission yeast cell
proliferation at multiple interrelated levels of organization, from a subcellular
biochemical control circuit up to a spatially discretized environment in which
diffusible pheromone molecules and cells may move in space. This second
example is published as part of the aforementioned article in BMC Systems

Biology, but has been slightly adapted for this thesis.

1.3 Structure of the Thesis

The structure of this thesis follows the previously outlined contributions. Hence,
after introducing some general principles and concepts of hierarchical multi-
level modeling in Chapter 2, the subsequent Chapter 3 provides an informal
description of the recurring Notch signaling model. Thereafter, Chapters 4
and 5 discuss the applicability of diverse flat respectively hierarchical model-
ing approaches for describing multilevel models in systems biology. Chapter 6
presents the basic rule-based multilevel modeling concept of ML-Rules, which
becomes extended and syntactically refined in Chapter 7. Two case studies in
Chapter 8 demonstrate the usefulness of the presented approach. In the final
Chapter 9, a short summary of this thesis is given and worthwhile directions

for future work are discussed.



Chapter 2
Multilevel Systems Modeling

In this chapter, first a general introduction to complex systems and levels will
be given. This part is intended to be as general as possible. Thus, to illus-
trate the theories, examples will be presented that do not exclusively belong
to the biological realm. Important basic concepts of multilevel modeling are
briefly discussed in Chapter 2.2. Finally, by relating these concepts to the con-
crete application of systems biology, Chapter 2.3 underlines the importance of

multilevel modeling approaches in this particular field of research.

2.1 Systems, Complexity and Multiple Levels

2.1.1 Emergence of Complex Systems Behavior

Definition “A system is a set of interacting units with relationships among
them.” (Miller, 1978, p. 16). Together, they form an integrated ensemble that

is somehow separated and distinguishable from its environment.

In reality, most systems are complex, and they are ubiquitous. A living
organism is a complex system, just like climatic, ecological, economical, or
social systems are. Although complex systems typically coincide with a large
number of involved components (also called elements, objects, units, entities
or parts), complexity is only improperly defined by the sheer size of a sys-
tem. The dynamic interactions among its components makes a system being

complex. In this context, related and commonly found keywords are, for in-
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stance, nonlinearity, dynamic networks, pattern formation, adaptation, and
self-organization. However, an exact and universal definition of complexity

does not exist.

A universal but rather unspecific feature is the manifestation of system
properties that are not obvious from studying the component properties, or
to say it in the words of Gallagher and Appenzeller (1999), a complex system
is “one whose properties are not fully explained by an understanding of its
component parts”. Complex system states and dynamics arise or emerge out
of the rather incomplex interactions among the system’s components (see, e.g.,
Weaver, 1948; Polanyi, 1968; Anderson, 1972). Consequently, the illustrative

term “emergence” has become established for such phenomena.

Early concepts of emergence date back to descriptions made by the Greek
philosopher Aristotle (M’Mahon, 1857, book VIII), commonly reproduced by
the popular simplified quotation: “The whole is greater than the sum of its
parts.” For instance, the observed phenomenon of liquid water at room tem-
perature is an emergent property of the whole (the system ‘water droplet’),
while its parts or components (the individual H,O molecules) do not show
liquid properties on their own nor can the emergent property be easily de-
rived from the physicochemical interactions between those. Another example
of emergence is the blood pumping heart. None of its various components (like
muscle and valve cells) shows properties of a pump itself, but the complex and
concerted interplay between electrical stimuli, biochemical interactions and
physical forces leads to the emergent behavior of blood transportation due to

regular contractions.

Two different notions of emergence can be distinguished from each other,
typically designated to be weak or strong. Weak emergent properties are — at
least in principle — predictable from the behavior of system components. It
does not imply that a prediction is easy to achieve nor that it is practically
attainable anyhow. However, weak emergence goes along with the ideas of
reductionism, i.e., any behavior can be deduced from fundamental behavior of
the smallest constituents of a system. In contrast, an emergent phenomenon
is considered to be strong if it is irreducible as a matter of principle, not just

in practice. It thus denotes a totally new essence and peculiarity. As complex
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system behaviors easily seem to be irreducible, although in fact they may
not (as they may be the result of weak emergence), the ongoing controversy
between those who refuse the existence of strong emergence (e.g., Bedau, 1997)
and those who advocate for it (e.g., Chalmers, 2006; Kauffman, 2008), is a
rather philosophical debate and therefore of only limited relevance for this

thesis.

2.1.2 Structural Organization

Resulting from emergence, another “key property of complex systems is their
self-structuring in conditioning levels” (Iordache, 2011, p.1), such that a hi-
erarchy of levels is formed (see also Simon, 1962; Salthe, 1989; Salthe and
Matsuno, 1995). Thereby, each level may consist of different components and
interaction laws. Moreover, as levels emerge from complex interactions within
systems, entities at one level appear to be formed by interactions among en-
tirely different entities, i.e., by individual complex systems at another level.
Hence, the world (and probably everything beyond) seems to be made of sys-
tems of systems.

Let us consider an illustrative example: Animals in a complex ecosystem
are interacting with each other according to certain laws, e.g., a food chain
in which wolves feed on sheep with a certain probability. However, the indi-
vidual animals seem to be also complex systems on their own, where various
components like organs, bones and other structures are interacting with each
other, resulting in emergent phenomena that are characteristic for a sheep or
a wolf respectively. Each organ of each individual animal, in turn, looks like
the emergent property of billions of interacting cells, each cell like the product
of interacting molecules, and so forth.

In the middle of the last century, scientists like Paul A. Weiss (1969, 1971)
and Ludwig von Bertalanffy (1950) identified the ubiquity of such hierarchies
within complex systems. Thus, the principle of hierarchical organization be-
came a fundamental aspect of the general systems theory (von Bertalanffy,
1968).

In an abstract sense, a hierarchy describes an arrangement of certain el-

ements, such that one element is below or above another one (see, e.g., von

11
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Bertalanffy, 1950; Webster, 1979; Salthe, 1985). To be more concrete, an or-
ganizational hierarchy is often formally defined by a partially ordered set, i.e.,
a set of elements ordered by binary relations that are reflexive, antisymmetric
and transitive (cf. Bunge, 1969; Simon, 1973). However, while such ordered
sets provide clear arrangements of distinct elements, the above definition alone
is insufficient for describing the complex structural organizations of multilevel
systems, as it lacks any qualitative property of relations. Not explicitly ad-
dressing, this simple and rather universal definition says little about what the

actual hierarchical levels are. Hence, further aspects need to be considered.

Let us make a small step back for that. In hierarchy theory, it is widely
acknowledged that hierarchical organization is ubiquitous but primarily a con-
ceptual construct of human cognition: “Whether Nature is truly organized hi-
erarchically is moot. Man’s perception of nature is hierarchical.” (Webster,
1979, p. 120). Timpf (1999, p. 128) points out that “‘hierarchization’ is one of

the major conceptual mechanism to model the world.”

Two different general forms of hierarchies are known: classification (also tax-
onomic or subsumptive) and composition hierarchies (see, e.g., Grene, 1969;
Uhrmacher, 1992; Zylstra, 1992; Pumain, 2006; Maus et al., 2008). The syn-
onymous terms “specification hierarchies” and “scalar hierarchies” are used by
Stanley N. Salthe (1991, 1993). He argues that “any natural system can be an-
alyzed from the point of view of the scalar hierarchy [...| or from that of the
specification hierarchy” (Salthe, 1993, p. 93), meaning that hierarchies are con-
ceptual tools for analyzing systems rather than compulsory actualities. From
this point of view, we are free to chose the most appropriate one. However,

both general hierarchy concepts follow quite different perceptions.

A classification or specification hierarchy follows the concept of categoriza-
tion and specification (Lakoff, 1987). Its focus lies on marking the “qualitative
differences of different realms of being” (Salthe, 2001). Different levels are
determined by different descriptive views, and their ordering emerges from
refinement and abstraction relations among these different views. Hence, a
classification hierarchy is ontological and the ordering of elements follows a
path from the general to the most highly specific description (see also the

section on abstraction levels on page 23ff). A famous example is the taxon-
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Figure 2.1: Comparison of classification and composition hierarchies. In a clas-
sification hierarchy, the superior denotes a general class of its subordinate types or
instances. A composition hierarchy relates elements according to wholes comprising

parts.

omy of biological classification with its numerous taxonomic ranks: domain —
kingdom — --- — genus — species.

In a classification hierarchy, the relationship between a superordinate ele-
ment and its subordinates is that of a generic class of something and specific
types or instances of it. For example, both mouse and whale are different
types of the class called mammal. Subordinates inherit the properties of their
superordinate, e.g., a whale has characteristic properties of a mammal. At
one level, all elements are thus of the same natural kind and each lower level
in the hierarchy denotes a refinement of its superior level. Accordingly, rela-
tions between different elements (from lower to higher level) follow an “is-a”
scheme: a mouse is ¢ mammal and a whale is ¢ mammal too. Although
biological taxonomies today typically rely on cladistic methods such as phy-
logenetic classifications based on genome sequence similarities, a classification
or specification hierarchy often ‘“labels itself as human discourse, an obvious
social construction” (Salthe, 1993, p. 93).

In comparison, an alternative composition or scalar hierarchy “s often taken

13
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to be a mecessary, ‘objective’ datum” (Salthe, 1993, p.93). Such hierarchy
“is one of parts nested within wholes” (Salthe, 2001), i.e., it relates elements
according to the parts that build up a system. For example, organs like the
brain, skin, and heart are parts of a human body. That means, the ordering of
elements of a composition is determined by “is-part-of” relations (or “consists-
of” when starting from the superior) among different components (Webster,
1979; Uhrmacher, 1992). Consequently, when dealing with physical objects,
a compositional hierarchy implies an ordering of levels according to spatial
scales, i.e., the composition of elements is constrained in a way such that
small parts may be enclosed by larger ones only. This kind of composition
is called “nesting” and implies that each element has one superordinate at
most. However, a compositional hierarchy may comprise also nonmaterial
components like a song that consists of vocals and instrumental sounds. In
this case, a composition may be also of a non-nested form, where elements
may be part of more than one superordinate, e.g., a person that is a member
of different equally ranked organizations.

Figure 2.1 provides some further examples and illustrates the disparity be-
tween composition and classification hierarchies. If not specified differently,

hierarchies in this thesis are of a compositional form and defined as follows:

Definition A hierarchy is a nested set of components in which subordinates
are being part of their superior. It complies mathematically with an acyclic
directed and rooted tree in graph theory, i.e., a partial ordering that is anti-
symmetric, reflexive, and transitive. A hierarchical level is a set of components

that share the same distance to the hierarch, i.e., the root node of the tree.

The last sentence of the above definition needs maybe some further ex-
planation: As has been described by Simon (1973), a partial ordering allows
for hierarchies not only in the sense of Matryoshka dolls and Chinese boxes,
where each level consists of only one further box. Instead, the above definition
of hierarchy and level allows to arbitrarily enclose multiple subsets, i.e., to
build Chinese boxes where each box may enclose a whole set of multiple small
boxes, each may consist of another set, and so forth. This in turn implies that

a level is defined by its distance to the highest element of the hierarchy and
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Figure 2.2: Hierarchical organization of an ecosystem, i.e., a lake, in which the same
level may consist of elements of different kinds. Legend: (E) ecosystem, (O) organ-
ism, (C) cell, (M) molecule.

that certain elements at the same level may be part of different subsets of the
hierarchy. Thereby, different subsets (subtrees) are separated from each other.
A tree-like hierarchy thus constitutes “both a vertical separation that isolates
each level from levels above and below, and a horizontal separation that segre-
gates the components of any level into groups” (Webster, 1979, p. 122). Unlike
in classification hierarchies, a single level may then also consist of elements of

totally different kind.

Let us consider an example of an ecosystem organized into different levels,
as shown in Figure 2.2. While in this example higher organisms like fishes are
hierarchically organized into cells and molecules (e.g., proteins), simple uni-
cellular organisms like bacteria lack the intermediate cellular level — or to be
more precisely, the organism level and the cellular level of a bacterium coincide.
Also, molecules are not solely found within cells, but are also contained by the
ecosystem directly, i.e., nutrients (or water molecules) within the lake. Con-
sequently, the arrangement (or ordering) of levels may depend on the nested
system structure, such that, for instance, bacterial proteins act on the same

level as cells within a fish.
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2.1.3 Inter-Level Causalities

Causality (or causation) is commonly understood as the relation between two
events, where one event (an effect) is the consequence of another one (the
cause). Similarly to the question whether nature is truly organized hierar-
chically (cf. previous section), the philosophical discussion whether causality
does really exist (see, e.g., Hume, 1739; Bunge, 1959; Schlegel, 1961) is con-
sidered to be rather irrelevant for this thesis, as nature and hence the models
of our world are understood by laws of causation. Therefore, the question is
not whether but how different levels are causally interrelated.

As already mentioned, properties of different levels emerge from complex
system dynamics. Webster (1979, p. 127) remarks: “Behaviour at any level is
explained in terms of the level below, and its significance is found in the level
above.”. Therefore, “in any organisation the higher level depends upon the
lower” (Feibleman, 1954, p.60), i.e., complex interactions among components
of lower levels tend to result in emergent properties that manifest themselves
as higher levels of organization. Dynamics at these higher levels may then
cause once superior level properties, and so forth. Consequently, a strong
bottom-up causal chain can be observed within hierarchically organized sys-
tems. For example, molecules interact with each other according to certain
laws. Thereby, the organizational structure and characteristic bahavior of a
functional living cell may emerge. Many of those cells may now interact with
each other and thereby cause the emergent property of an organ and finally
of higher organisms. Hence, complex hierarchically structured systems involve

“upward causation”.

Definition Upward causation describes a process by which parts of a system
influence states and behavior of the system as a whole, i.e., states and behavior

at higher levels of organization.

Upward causation complies with the typical reductionistic systems view,
where the whole is reducible to and fully determined by the behavior of the
small parts of lower levels. That is why hierarchy definitions that are entailing
unidirectional domination of higher levels over lower ones are problematic for

describing hierarchies in nature, as has been observed by Bunge (1969). How-
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ever, if the whole is controlled by small parts, who will control the controllers,
or “sed quis custodient ipsos custodes?” (Glanville, 1990). The prevalent exis-
tence of upward causation does not imply absolute nonexistence of conversely
directed causality, i.e., causation in a top-down manner. According to Don-
ald T. Campbell (1974, p. 180ff), quite the opposite is true: “all processes at
the lower level of a hierarchy are restrained by and act in conformity to the
laws of the higher level” and “the higher level laws are necessary for a complete
specification of phenomena both at that higher level and also for lower levels”.
Hence, besides upward causation, complex hierarchically organized systems

also include “downward causation”.

Definition Downward causation is a process by which the system as a whole
influences states and behavior of its parts, i.e., states and behavior at lower

levels of organization.

For example, think over the situation of an animal which is suddenly over-
taken by death due to an external cause, e.g., due to drowning in a river or get-
ting eaten by a predator. Such high-level processes have serious consequences
for the whole organism and many of its levels below. Although the sudden
death does not result from processes at lower levels, many of the enclosed
structures (like organs, tissues, cells, etc.) will get disrupted as a consequence.
Even low-level molecules like proteins and lipids will finally get digested and
thereby broken down into smaller parts. The system as a whole (ecosystem)
strongly influences how its parts (the animal and its enclosed components at
lower levels) behave.

So, in addition to intra-level causality, complex behavior of hierarchical
systems is also determined by both kinds of inter-level causality, i.e., causation
in an upward as well as downward direction (Corning, 2002). All processes at
all levels are more or less interrelated (Simon, 1962), by which “the whole is to
some degree constrained by the parts (upward causation), but at the same time
the parts are to some degree constrained by the whole (downward causation)”
(Heylighen, 1995). Therefore, “the GS [i.e., general systems| approach, and the
theories prompted by it, are neither atomistic nor holistic” (Bunge, 1977, p. 89).

In other words, it is the duality of upward causation and downward causation
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that makes the systems approach being different from the antonymous ideas

of pure reductionism or holism.

2.2 Multilevel Modeling — Brief Overview of Re-

lated Terms and Concepts

In the previous section, a brief introduction to complex systems and their
structuring into distinct levels has been presented. Multilevel modeling deals
with specifying system models at multiple levels, i.e., in such models different
levels can be distinguished. However, before we start going into detail, some

further essential terms and general concepts need to be discussed.

2.2.1 Modeling and Simulation

When speaking about “modeling”, the signification of “model” should be clari-
fied at first, as modeling describes the process of model building. In the most
abstract and general meaning, a model is some kind of representation or image
of something else. A model’s objective is to answer questions about what it
is representing: “To an observer B, an object A* is a model of an object A
to the extent that B can use A* to answer questions that interest him about
A.” (Minsky, 1965). Another definition — according to Cellier (1991) also at-
tributed to Minsky — emphasizes the relationships between system, model, and

experiment:

Definition “A model (M) for a system (S) and an experiment (E) is anything

to which E can be applied in order to answer questions about S.” (Cellier, 1991,

p.b).

Please note, the above definition is highly universal, i.e., a model does not
necessarily require to be formally specified and also the term “experiment”
remains rather vague. It could be, for instance, the exerted thinking about
a completely mental or informal pen-and-paper model. An experiment per-

formed on a model is called “simulation” (Cellier, 1991).
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Definition “Simulation is experimentation with models.” (Korn and Wait,
1978).

Computational simulation implies that the model must be somehow for-
mally specified, so that a certain simulation algorithm can be performed on it.
A formal model specification is typically realized either in the form of math-
ematical equations, in a special-purpose modeling language, or encoded in a
highly versatile programming language.

In addition, for reliable modeling and simulation studies, a separation of
concerns is desired, so that, for instance, a modeler can concentrate on his or
her primary concern of building a model (see Zeigler et al., 2000). A model
specification that is independent from a concrete implementation of the sim-
ulation algorithm, i.e., the simulator, also allows to study the model from
different perspectives, e.g., by defining a modeling language with alternative
semantics for the same syntax. Lastly, separation of concerns may enhance
trust in the validity of certain experiments, as one may interchange different

independently developed models and simulators and compare the results.

2.2.2 Multilevel vs. Multiscale

Discussions on hierarchical systems modeling sometimes become quite compli-
cated or confusing due to varied naming of respective methodologies. In partic-
ular, “multilevel” and “multiscale” are oftentimes synonymously used (see, e.g.,
E and Engquist, 2003; van der Hoef et al., 2006; Stamatakos, 2010). However,
although often describing the same concepts, in recent years a rather distinct
usage of both terms can be observed.

Methods for modeling and simulation of hierarchical systems are typically
denoted “multiscale” (e.g., Fish, 2009; Engquist et al., 2009; Derosa and Cagin,
2010; E, 2011; Dada and Mendes, 2011), whereas the term “multilevel” is more
frequently used to describe statistical analysis methods like covariance analysis
and linear regression models applied to multilevel data, i.e., empirical data
that have been obtained from different organizational levels like school grades
at the levels of classes, schools, and districts (see, e.g., Kreft and de Leeuw,
1998; Snijders and Bosker, 1999). On the other hand, also oftentimes the
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boundaries between such classifications and methods are blurred and thus a

clear and common definition is missing (see also Bittig and Uhrmacher, 2010).

Although the motivation mostly seems to originate in the study of interlevel
correlations, using the multiscale terminology for certain approaches might
became rather popular as it inherently reflects the fact that different levels
often coincide with different temporal and spatial scales. For instance, while
the diameter of a typical bio-molecule is about 107 m and the according time
scales of molecular processes range from nanoseconds to milliseconds, scales are
orders of magnitudes higher when looking at the organism or ecosystem level
(meters and years). For the same reason, Salthe introduced the term “scalar
hierarchy” to define nested compositions: “Entities existing at different scalar
levels have characteristically different time scales” (Salthe, 1991, p.252) and
in a scalar hierarchy, “classes are rankings by scale, so that the more inclusive

classes have as members objects of larger scale” (Salthe, 1993, p. 93).

The integration of dynamic processes that are operating at highly diverg-
ing spatiotemporal scales requires special attention with respect to simulation
methods (Dada and Mendes, 2011). Otherwise, computational resources like
simulation time and memory may easily exceed reasonable amounts. The rea-
son for that can be best made clear with an illustrative example. For instance,
compared to the lifespan of an entire living organism, molecular events taking
place at lower levels of organization are several orders of magnitudes faster.
Thus, although low-level states are changing frequently, from the point of view
of a high-level observer the dynamic molecular system may appear to be in a
quasi-steady state, i.e., the concentrations of molecules may seem to be con-
stant. Similarly, what is a water droplet for a human is like a whole universe for
a unicellular organism. Hence, for a low-level observer, dynamics at a higher
level may be out of scope. Simulating a model comprising rates of different
scale entails the same problems. For example, in a certain range of time, an
enormous number of low-level events may happen, while nothing is changing at
higher levels due to significantly slower dynamic processes. Therefore, special
simulation methods like stiff system equation solvers (Cohen and Hindmarsh,
1996; Shampine and Thompson, 2007) or hybrid simulation approaches (Taka-
hashi et al., 2004; MacNamara et al., 2008) may be needed.
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Even though dealing with modeling nested compositions in the sense of
scalar hierarchies (cf. Chapter 2.1.2), in this thesis “multilevel modeling” is
the terminology of choice as it concentrates on modeling the hierarchical level
structure of biological systems rather than on simulation issues arising from
the combination of highly varying temporal and spatial scales. Also, although
multilevel modeling often implies to describe dynamics at different scales, one
can definitely think of hierarchically nested systems where processes at different
levels do not significantly differ in space and time, e.g., molecular processes
within different nested compartments of a cell, like the nucleus, cytosol, or
vesicles (see also Chapter 2.3.1). Thus, “multiscale” should be reserved for

naming approaches in which linking different scales is the subject of interest.

2.2.3 Hierarchical Model Structures

Even when agreeing on a basic vocabulary with respect to levels and scales, a
consensus about a general definition of “multilevel modeling” does not exist.
The question is, what makes a model being multilevel?

Although describing entities and dynamic processes at multiple levels is
typically considered to be an essential characteristic of multilevel modeling,
in some work, the distinction between different levels becomes not necessarily
apparent from the model description. For example, Lai et al. (2009) present a
multilevel model of subcellular and cellular processes by using a set of differen-
tial equations, i.e., certain equations describe the subcellular dynamics while
others describe the dynamics at the cellular level. In this case, the structure
of the model description does not differ from a single-level model in princi-
ple and thus perceiving different levels is difficult without profound knowledge
about the modeled system. The multilevelness is described implicitly only (see
Chapter 4 for more details and illustrative examples).

Others highlight the importance of hierarchical model structures as an es-
sential and salient feature of multilevel models: “composition and interaction
determine the overall structure of a model in general and of a multi-level model
in particular.” (Uhrmacher et al., 2005, p.80). A distinction between different
hierarchical levels can be achieved through specific model elements supported

by according modeling languages (Zurcher and Randell, 1968; Mesarovi¢ et al.,
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Figure 2.3: Difference between flat and nested model structure. In a flat model,
all elements reside equally side by side and thus the model is more or less unstruc-
tured. Hierarchical relations of the conceptual model can be described implicitly
only through according annotations. A nested model structure makes hierarchical

relations explicit, i.e., both A and B enclose one entity C, while B is part of A.

1970; Zeigler, 1984). In comparison to “flat” (non-hierarchical) approaches, a
hierarchical modeling approach includes means for describing hierarchical re-
lations between model entities, e.g., by embedding certain elements within
others. This allows for translating the actual hierarchy of a conceptual model
in an explicit way (see Figure 2.3 and Chapter 5). Thereby, understanding as
well as accessibility of models may increase (Luna, 1993; Chwif et al., 2000), as
crucial knowledge about a modeled system may be mimicked more appropri-
ately. Also, by following a divide and conquer strategy, modeling large systems
may be facilitated: “Partitioning models into hierarchical subcomponents can
be crucial for the manageability of complex models.” (Daum and Sargent, 1999,
p. 1471).

A prominent example of a hierarchical modeling formalism is the Discrete
Event System Specification (DEVS) by Zeigler (1976, 1984). In DEVS, model
components may be freely placed into coupled models to form nested com-

positions, thereby allowing for the specification of generalized hierarchically
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structured models. Model components can be seen as timed automata, which
might be connected with each other for interaction via communication inter-
faces (for more details, see Zeigler et al. (2000) and Chapter 5.2.2).

Along with hierarchical structuring, a frequently found concept is object-
orientation (see, e.g., Zeigler, 1987; Uhrmacher, 1995; Takahara and Shiba,
1996; Mohring, 1996). Different (parameterized) instances of a rather gener-
ally specified component class may be created. Thereby, model complexity in
terms of size, lines of code, or number of components, may be significantly
reduced compared to model specifications without such object instantiation.
Zeigler’s System Entity Structure (SES) (Zeigler, 1984) is a formal tool for
describing the structure of hierarchically nested models in an object-oriented
manner. An SES includes characteristics of both, classification as well as
composition hierarchies, as it is a “structural knowledge representation scheme
that systematically organizes a family of possible structures of a system. Such
a family characterizes decomposition, coupling, and taxonomic relationships
amonyg entities.” (Zeigler and Sarjoughian, 1999). In combination with com-
ponent repositories (e.g., consisting of DEVS models), an SES can be used to
automatically generate concrete hierarchical model instances.

Last not least, another important aspect in hierarchical systems modeling is
the dynamic change of model structures (Zeigler and Praehofer, 1990; Uhrma-
cher, 1993; Uhrmacher and Zeigler, 1996; Uhrmacher, 2001). Dynamic variable
model structures are particularly relevant for reflecting compositional change
of hierarchies, e.g., by adding or removing certain entities, but also by moving
entities to other levels. In Chapter 5, different concepts of variable structure

modeling are discussed in more detail.

2.2.4 Multiple Abstraction Levels

Tightly coupled to hierarchical systems modeling is the integrated description
of processes at different levels of abstraction.

In general, “an abstraction of some system is a model of that system in which
certain details are deliberately omitted” (Smith and Smith, 1977, p.105), and
“the level of abstraction of a model determines the amount of information that

is contained in the model.” (Benjamin et al., 1998, p.391). Abstraction is a
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relative measure and its level decreases with a larger quantity of information,
i.e., a low-level abstraction shows more details than a high-level abstraction
(Timpf, 1999). Originated and applied in various fields of application, a multi-
tude of more or less generic abstraction mechanisms do exist (see, e.g., Frantz,
1995; Fishwick and Lee, 1996; Timpf, 1999; Holte and Choueiry, 2003). How-
ever, due to their close relationship to the two general hierarchy concepts (cf.
Chapter 2.1.2), generalization and aggregation are usually considered being

the most important methods of abstraction.

“Generalization refers to an abstraction in which a set of similar objects
is regarded as a generic object.” (Smith and Smith, 1977, p.106). Gener-
alization and the converse process of specialization are those processes that
produce a classification hierarchy, i.e., elements are hierarchically ordered by
“is-a” relations. On the contrary, “aggregation is an abstraction which turns a
relationship between objects into an aggregate object.” (Smith and Smith, 1977,
p. 105). The utilization of this kind of abstraction yields a composition hierar-
chy with “part-of” relations among different levels. Hence, the converse process
of aggregation is called decomposition. Both major kinds of abstraction, i.e.,
aggregation and generalization, form a hierarchy of levels. Therefore, orga-
nizational and abstraction levels typically coexist within the same hierarchy
and that is why abstraction plays an important role in hierarchical multilevel

modeling.

A need for multiple abstraction levels often emerges automatically due to
observations made at different levels. To appropriately reflect such different
observations, parts of the model may have to be specified differently with re-
spect to the grade of abstraction, i.e., the level of detail. For example, in
ecology and sociology, the study of the behavior of individuals (micro level)
is increasingly important (Hogeweg and Hesper, 1990; Troitzsch et al., 1996).
However, implications for the whole population (macro level) might be of in-
terest as well, which are determined by collected behavior of many individual
entities. Also, by conducting empirical studies, statistically valid observations
can oftentimes be obtained at population level only. Hence, certain dynamic
processes might be better modeled at the macro level of abstraction. In this

case, a combination of micro and macro level dynamics might be desired, where
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both levels influence each other via upward and downward causation. However,
a micro-macro model does not only include different levels in terms of struc-
tural relations within a composition hierarchy, but they include also different
abstraction levels, as populations denote an aggregation of individuals and
thus a more abstract representation. Therefore, modeling at multiple abstrac-
tion levels is widely applied in social sciences and ecology (Schillo et al., 2001;
Tilly, 1998; Hogeweg, 2007), and field-specific solutions have been developed
to facilitate this endeavor, e.g., the MIMOSE modeling language (Mohring,
1996) and EMSY (Uhrmacher, 1995).

Besides such structural abstraction, another commonly applied approach in
complex systems modeling is behavioral abstraction (Fishwick and Lee, 1996;
Lee and Fishwick, 1996), where certain dynamic processes are replaced by an
approximative description. “Behavioral abstraction is one where a system s
abstracted by its behavior—that is, we replace a system component [here, com-
ponent refers to a set of dynamic processes| [.. .| with something more generic
which produces similar behavior.” (Fishwick and Lee, 1996, p.257). Thereby,
in contrast to structural abstraction, no entirely different kinds of entities and
additional hierarchical levels are introduced (see Figure 2.4). Behavioral ab-
straction may, for example, eliminate certain intermediate steps of a dynamic
process. Also, approximating the kinetic laws of certain dynamic processes

and steady-state assumptions fall into the approach of behavioral abstraction.

The motivation for integrating multiple abstraction levels may be based
on different aspects. Besides on the availability of data, the chosen level of
abstraction depends also largely on the objective of the model: “different levels
of abstraction can provide for a more natural way of modeling and help to focus
on different degrees of detail when using a model” (Daum and Sargent, 1999,
p. 1476). The central question is: how much detail is needed and what are
the basic entities of interest? Depending on the answer, a need for different

abstraction levels might then automatically come up.

In addition to the model’s objective and the availability of data, there is
another common reason for introducing multiple abstraction levels, namely
to simply reduce model complexity in terms of computing performance (Holte

and Choueiry, 2003). Regarding the above sociological example, a model might
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Figure 2.4: Difference between structural and behavioral abstraction. A structural
abstraction process forms a hierarchy consisting of different kinds of entities at each
level. Behavioral abstraction is an approximation of behavior among certain model

entities.

become easily too complex to be simulated in reasonable time, when modeling
large populations at the detailed micro level only. Thus, to enhance simula-
tion speed, one might want to abstract from certain processes. It might be
sufficient to describe only few processes at the detailed micro level, while the
majority is appropriately modeled at the coarse-grained macro level, which
is typically much more efficiently to simulate. Choosing an appropriate level
of abstraction may help to reduce model complexity and thereby enhancing
the performance of simulations (Chwif et al., 2000), but without the ability
to combine different abstraction levels, finding an appropriate level of detail
can be a hard task and may easily lead to oversimplification and thus to an
invalid model. By combining different abstraction levels within a single model,
the risk for oversimplification can be reduced as processes can be described at

different levels of detail.
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2.3 Why Systems Biology Calls for Multilevel
Modeling

The major goal of systems biology is to understand functional characteristics
and design principles of biological systems (Kitano, 2002b; Kirschner, 2005;
Ferrell, 2009). In the past decades — from one of the first computational simu-
lation studies in the mid-twentieth century by Hodgkin and Huxley (1952) until
today — systems biology research has lead to the development of an uncountable
number of models. Most of them are employing a flat modeling approach and
thus questions regarding the requirement for multilevel techniques in systems
biology might arise. In the following, a discussion on the benefits of multilevel
modeling and on reasons for an increasing need for according approaches tries

to answer those questions.

2.3.1 Organization of Biological Systems

Most systems biology research is focusing on the intracellular aspects of me-
tabolic and signaling networks, where certain system properties are emerging
from complex molecular interactions. Emergent properties one might be in-
terested in comprise steady state concentrations of involved proteins or the
emergence of oscillatory gene expression patterns, for instance. Although sys-
tems biology is — due to the analysis of complex dynamics among wvarious
components — typically considered being different from classical reductionistic
research, many existing models benefit from and are to a large extent in the
line with a reductionistic approach. Their objective is the understanding of
emergent systems behavior, e.g., the differentiation of a stem cell, while the
focus lies on properties of small interacting constituents, e.g., proteins. Hence,
“systems biology stands to gain a lot from reductionism, and in this sense sys-
tems biology is anything but the antithesis of reductionism” (Ferrell, 2009).
On the other hand, however, several examples previously given in this chap-
ter indicate that biological systems are hierarchically organized and that higher
level behavior may influence dynamics at lower levels. Indeed, “the principle
of hierarchic order in living nature reveals itself as a demonstrable descrip-

tiwe fact” (Weiss, 1969, p.4) and both directions of causalities, i.e., upward
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Figure 2.5: Hierarchical composition of a skeletal muscle.!

causation as well as downward causation, are intrinsic properties of biological
systems (Campbell, 1974; Noble, 2006).

For example, highly-developed living systems like vertebrates and similarly
advanced animals are hierarchically organized into organs, tissues, and cells:
each organ is made of functional tissues, which in turn are composed of inter-
acting cells, i.e., the basic biological building blocks. As this is just a coarse and
rather general organization scheme, many further levels can be distinguished
when looking at concrete systems in more detail. For instance, muscles are
composed of several interconnected bundles (fascicles) of muscle fibers. Each
fiber contains several myofibrils and each of them is composed of myofilaments
of actin and myosin in turn (Figure 2.5). Anyway, the hierarchical composition
of biological systems seems to be an obvious actuality, but how about different
levels influencing each other as stated above?

Let us consider the muscle example in more detail. The contraction of a
muscle is the result from hundreds of millions or even billions of individual
movements of actin against myosin. The physical forces of these low-level
protein micro-movements are propagating along the hierarchy, i.e., many very
small movements at the nanometer scale are summing-up through connected
myofibrils, muscle fibers, and multiple bundles of fibers, so that the entire

muscle finally makes a rather large contraction at the macroscopic scale of

Modified illustration by the U.S. National Cancer Institute at the National Institutes of

Health (http://training.seer.cancer.gov/anatomy/muscular/structure.html)
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centimeters. In this case, causation between levels is clearly directed upward.

But what has initially caused this process?

At the level of myofilaments, i.e., actin and myosin proteins, a crucial event
for causing micro-movements is the release of calcium ions from the sarcoplas-
mic reticulum. However, the calcium release results from propagating action
potentials along the axons of motoneurons. Such neuronal signals originate
at once higher levels of the central nervous system, oftentimes due to certain
processes in the brain that have been initiated by environmental stimuli, e.g.,
certain cognitive processes caused by the visual perception of a dangerous sit-
uation. Hence, the initial cause for low-level calcium release within muscle
fibers can be found at higher levels of organization and thus the causal chain

is directed downwards the hierarchy.

However, the entire dynamic process — i.e., muscle-driven actions after per-
ceiving a danger, like defending against an attacker or taking refuge — involves
both, downward and upward causation. At first, high-level processes of the
central nervous system trigger low-level calcium release via downward causa-
tion. The resulting low-level movements of proteins then initiate a cascade of
upward causations which finally leads to the high-level contraction of skele-
tal muscles. Therefore, considering bidirectional relations between multiple
levels may be necessary for understanding the full story, i.e., flat single-level
models seem to be unsuitable to get deeper insights into general principles
of life or the functioning of certain biological systems, as they do not take
context appropriately into account. “The biological systems are, in general,
multi-level [...] systems and the attempt to represent them as a single-level
(even if multi-variable) system [...| might lead to a model which is valid only

over particularly narrow sets of conditions.” (Mesarovi¢, 1968, p. 69f).

Although there is no doubt about the hierarchical nature of biological sys-
tems, at first view, modeling systems like the above example, i.e., truly large
hierarchies with four and more organizational levels that are spanning sev-
eral magnitudes of scale, may seem to be too complex and thus impossible to
be integrated within a single model. Also, one might argue that multilevel
modeling has only limited relevance for systems biology in general, as most

research in this field mainly focuses on molecular level processes, which are
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still barely understood and sufficiently complex on their own. Introducing fur-
ther levels would make the whole story even more complicated and would be
therefore typically not helpful nor desired, if the subject of interest is bounded

to molecular processes. However, both skepticisms can be easily refuted.

The first argument against multilevel modeling can be confronted by al-
ready existing models, which demonstrate the successful integration of numer-
ous hierarchical levels with highly varying scales in space and time. For in-
stance, probably the most prominent example and among the first large-scale
multilevel modeling projects is a series of models describing a virtual heart
from genome level up to the entire organ (Noble, 2002; Hunter et al., 2003,
2008; Lee et al., 2009). Other advanced examples comprising multiple inte-
grated levels of organization are dedicated to modeling tumor growth (Zhang
et al., 2007; Hirsch et al., 2010; Cristini and Lowengrub, 2010), epithelial tissue
renewal (van Leeuwen et al., 2009; Adra et al., 2010), or complex plant pro-
cesses (Pradal et al., 2008; Band and King, 2012). So, multilevel modeling has
proven to be valuable and applicable for diverse biological system. Thereby,
the intention for introducing multiple levels typically originates in a combi-
nation of dynamic processes operating at highly varying spatial and temporal
scales. However, this does not mean that multilevel approaches are useless

when modeling systems at the molecular level only.

Hierarchical organization can be found at any scale and biological sys-
tems show a rather fine-grained variable structuring at the level of cells and
molecules. For example, besides the cytoplasm, especially eukaryotic cells con-
tain various distinct organelles and nested membrane-bound compartments like
the nucleus, the endoplasmic reticulum, the Golgi apparatus, lysosomes, and
numerous other membrane-bound vesicles (Figure 2.6). Thereby, for proteins
and other molecules, a cell is partitioned into multiple hierarchically nested
reaction compartments, each of them denoting possibly different conditions.
Also one level down the hierarchy, i.e., at the level of molecules, multiple levels
might help to structure the model. Many proteins, for instance, are composed
of different functional subunits that are interacting with each other and multi-
ple proteins may collectively form large protein complexes that show entirely

new behavior compared to the solitary molecules.
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through the endomembrane system.?

Therefore, although systems biology research is still mostly dedicated to
investigating the dynamics at a single level of molecules or cells rather than
to the big whole, i.e., the complex interplay between a multitude of different
levels from molecules up to entire organs and organisms, multilevel techniques
might already be useful for rather small models focusing on a relatively narrow

band around the molecular scale.

We can conclude: Various hierarchical levels can be distinguished within
biological systems. Thereby, feedback loops and other interactions do not
only exist between components at the same level, but also across different
levels. Thus, to appropriately reflect the complex hierarchical nature of life,
models of such systems may need to include multiple levels as well. “There
is [...] no alternative to copying nature and computing these interactions to
determine the logic of healthy and diseased states.” (Noble, 2002, p.1678).

Accordingly, multilevelness has been identified to be an important principle of

2Modified illustration by Mariana Ruiz Villarreal (LadyofHats), public domain, via Wiki-
media Commons (http://commons.wikimedia.org/wiki/File:Endomembrane_system_

diagram_en.svg).
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systems biology, compactly summarized by Denis Noble (2008, p.17) with a
few strong words: “Biological functionality is multilevel.” Hence, the models

should be multilevel too.

2.3.2 Availability of Heterogenous Data

The employment of multilevel modeling methods might be motivated by dif-
ferent aspects. Besides the general and most important incentive, i.e., the
hierarchical perception of biology and the need to incorporate dynamics at
multiple levels into models in order to understand certain system behavior,
another motivation might originate from the availability of experimental data.

Depending on the applied experimental technique, different kinds of ob-
servations can be made, i.e., data from different hierarchical levels can be
obtained: “Historically, some molecular biologists have preferred to work at
the level of atomic-resolution structure and others at the level of whole-animal
physiology. Both are equally valid and there is no reason to believe that this
divergence of interest will disappear.” (Sorger, 2005, p.10). Driven by the
ideas of general systems theory, soon the perception evolved that each level
has its own being and thus can yield a useful model of the according dynamic
processes: “Most biological phenomena can be examined at many different mag-
nifications. At each magnification interesting and even useful observations can
be made and often prediction of future behavior or even correction of malfunc-
tions can also be made.” (Bradley, 1968, p. 39).

Intense progress in the development of new experimental techniques during
the past decades strongly promoted the advance in systems biology (Kitano,
2002a,b). Today, experimental biologists have a large set of wet-lab and imag-
ing techniques at hand to collect data from diverse levels of organization. For
example, at the level of single molecules, methods like X-ray crystallography
and nuclear magnetic resonance (NMR) spectroscopy can be used to determine
the three-dimensional structure of proteins. Important techniques for the iden-
tification of protein-protein interactions and the according binding rates are
immunoprecipitation (IP), yeast two-hybrid screening (Y2H), and surface plas-
mon resonance (SPR). Numerous methodologies of functional genomics and

proteomics, like microarray analysis, immunoblotting, 2-D gel electrophoresis,
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Figure 2.7: Relationships between biological levels and wet-lab techniques.?

and mass spectrometry, help to determine the structure and dynamics of in-
tracellular reaction networks. Flow cytometry is an important method for the
high-throughput quantification of whole cell populations, and at even higher
levels of organization clinical chemistry and certain imaging techniques come
into play, which comprise diverse radiological methods, magnetic resonance
imaging (MRI), and microscopy (Kherlopian et al., 2008). The latter can be
also used to observe spatial structures and dynamics at cell and subcellular lev-
els, down to the nanometer scale with stimulated emission depletion (STED)
microscopy. Figure 2.7 illustrates the diversity of experimental approaches
and their usage for obtaining data from certain hierarchical levels of biologi-
cal organization. For a broad and more comprehensive overview of important

experimental techniques see also Klipp et al. (2005, Chapt. 4).

3Modified scheme from Meier-Schellersheim et al. (2009).
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The more data are available, the more complex the process of modeling may
become, as ignoring certain experimental data may lead to an invalid model.
Thus, there is a strong relation between data and model: “The model must be
‘appropriate’ to the available data. It must contain variables that connect to
all the available observations on genes, proteins, metabolites, etc. If the model
is too simple, it will not be able to account for the available data. If it is too
complex, there will be insufficient experimental observations to constrain the
model.” (Sauro et al., 2006, p.1725).

Multilevel modeling may help at that point, as it involves the integra-
tion of heterogenous data from different levels of organization, potentially
comprising processes of different scales and abstraction levels. A frequently
found approach is, for example, the combination of phenomenological observa-
tions at cell level and detailed mechanistic processes of biochemical reactions
(Meier-Schellersheim et al., 2009). However, “almost any biological experiment
will produce data that can potentially be incorporated into a multiscale model”
(Meier-Schellersheim et al., 2009, p.11), or more generally, into a multilevel
model. Therefore, the increasing availability of high-quality data due to the
steadily growing and improving repertoire of wet-lab techniques, especially for
high-throughput experiments and for observing spatial structures and tempo-
ral processes in high resolution, is clearly one of the main driving forces for an

increasing interest in multilevel modeling.

2.3.3 Complexity and Accessibility of Models

Another motivation for multilevel modeling in systems biology is to enhance
the accessibility of models by reducing their complexity.

Model complexity has many facets, to those belong the complexity of the
underlying data, the level of detail, and the accuracy of predicting certain
system behavior (Wallace, 1987; Edmonds, 1999, 2000; Chwif et al., 2000).
Defining exact measures of complexity is difficult as most aspects of model
complexity are part of the so called “psychological complexity” (Curtis, 1980;
Wallace, 1987), i.e., complexity depends on the human being who is working
with a particular model. Thus, the complexity of a model is strongly related

to the language with which the model is described.
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Definition “Complexity is that property of a model which makes it difficult to
formulate its overall behaviour in a given language, even when given reasonably

complete information about its atomic components and their inter-relations.”
(Edmonds, 1999, p. 72).

The language of representation should hence be carefully chosen both with
respect to its appropriateness for describing the modeled system but also its
understandability for people who work with the model.

As systems biology is a highly interdisciplinary field of research lying at
the edge between experimental wet-lab biology and computer science (Kitano,
2002b,a), the design of modeling languages here needs special attention. The
technical qualification for describing a certain system may only be half the
battle. A carefully designed modeling language may help experimentalists
to understand what has been formally described by modelers and thus may
improve communication between the different disciplines. Furthermore, as bi-
ologists are typically not familiar with the technical details of computational
modeling, an accessible formal language is crucial for a broader usage of mo-
deling and simulation methods by biologists themselves (Keane, 2003; Faeder,
2011). Hlavacek et al. (2006, p.15) point out that “there is a clear need for
making the modeling process more accessible to nonspecialists”.

The ease of use of a particular modeling language depends on many different
cognitive dimensions (Green and Petre, 1996). “Closeness of mapping” is one of
them and refers to the straightforwardness of transforming an informal mental
or conceptual model into a formal representation. Multilevel modeling helps to
structure the knowledge about hierarchical systems by providing explicit means
for hierarchies and dynamic relations between different levels (Luna, 1993;
Chwif et al., 2000). Biology is hierarchically organized (see Chapter 2.3.1)
and biologist are used to think this way. Therefore, an easily understandable
multilevel language may reduce the psychological complexity of modeling in
systems biology and thereby enhance its accessibility.

As has been already said, due to the psychological aspects, the overall com-
plexity of a given model is hard to determine: “psychological complexity can
neither be conclusively defined nor precisely measured. What is measurable

are the properties of a model representation that are believed to reflect psy-

35



2. Multilevel Systems Modeling

T T T
—e— Species r///.
150 —m— Relations |

100

Mean component number
Ut
(an)

| | | |
2006 2008 2010 2012

Year

Figure 2.8: Increasing average size of models in the BioModels Database.? Relations
include different kinds of dynamic relationships like reactions, rate rules, events, and

assignment rules.

chological complexity” (Wallace, 1987), like the size of a model description.
Characteristics like lines of code or, in the case of biochemical models, the
number of species and reactions, are considered to affect the manageability
and understandability of a model (Sauro et al., 2006; Hlavacek et al., 2006).
In recent years, increasingly large biological models can be observed. For
example, the BioModels Database (Le Novére et al., 2006; Li et al., 2010) — a
popular model repository for systems biology — shows an increase of the average
number of species and reactions per model by roughly a factor of ten within
the last six years (Figure 2.8). The largest models consist of thousands of
species and reactions, e.g., a reconstruction of the human hepatocyte metabolic
network® (Gille et al., 2010), and already much smaller model descriptions
challenge their manageability. In Sauro et al. (2006), for instance, Shaffer
and Tyson made a statement on a model comprising 30 differential equations
(each representing a molecular species) and 140 rate constants: “This level of
complexity stretches the ability of experienced and dedicated modelers to build,

analyze, simulate, verify, and test their models by hand.” (Sauro et al., 2006,

421st release from February 2012. Source of statistical data: http://www.ebi.ac.uk/

biomodels-main/static-pages.do?page=release_20120208.
®BioModels entry: http://www.ebi.ac.uk/biomodels-main/MODEL1009150000.
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p. 1725). The question is, how does hierarchical multilevel modeling help to

reduce complexity in terms of size of model descriptions?

One way to reduce the complexity of models is to employ a divide and
conquer approach, i.e., modularization and composition: “ultimately models
will be too complex to understand without some form of structuring into units.
Model composition, where models are decomposed into structural parts, will be
required. Such parts must be understood in terms of their interfaces to other
parts.” (Sauro et al., 2006, p.1726). Although the entire composed model is
typically larger than an equivalent monolithic description, individual modules
or components may be much more compact and thus more easy to understand
(Daum and Sargent, 1999). However, such component-based modeling is only
loosely coupled to multilevel modeling as has been introduced in Chapter 2.2,
i.e., model composition may be facilitated by hierarchically nested model struc-
tures but component-based modeling does not necessarily denote a prerequisite
for multilevel modeling nor imply a support for upward and downward cau-
sation (Maus et al., 2008). Furthermore, model composition needs to face its
own challenging problems, e.g., regarding model validity and viable interface
descriptions (Rohl, 2008; Himmelspach et al., 2010).

Already discussed earlier (cf. Chapter 2.2.4), choosing the level of abstrac-
tion differently for different subsystems may lead to a less complex model, as
parts of it omit a detailed description (see also Uhrmacher et al., 2005). The
level of detail determines the atomic entities and has therefore a strong impact
on the complexity of a model (Edmonds, 1999). The less abstract parts of a
model are, the more detailed entities and according dynamic processes need
to be specified and thus typically result in larger (i.e., more complex) formal

model descriptions.

Another approach for keeping model descriptions small and manageable is
to eliminate redundancy. In particular at the cellular and subcellular scale of
biological systems, different hierarchical levels may contain similar parts, as
has been shown in Chapters 2.1.2 and 2.3.1. For example, although different
compartments within a cell like the cytosol, the nucleus, and endosomes, are
hierarchically nested and thus reside at different levels of organization, they

all enclose partly identical protein molecules taking part in the same kinds
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of reactions. According multilevel models therefore need to describe different
hierarchical levels at the same level of detail and consisting of similar entities.
Many of the very large models in the BioModels Database are models of such
kind, i.e., they consist of various reaction compartments with partly similar
species and reactions and thus a lot of redundant information. Also modeling
multicellular systems at the tissue level tends to result in large redundancy, as
all cells may share the same potential cellular states, constituents, and dynamic

processes.

To reduce redundancy within model descriptions, different strategies can
be employed. One frequently applied approach is an object-centered model
design (also known as the concept of process interaction; see, e.g., Hooper
(1986) and Balci (1988)). Focusing on objects is widely used in the context of
hierarchical systems modeling, e.g., in DEVS (Zeigler, 1987). By constituting
this world view, “a modeler describes the life cycle of an object which moves
through and interacts with the processes of the system under study” (Balci,
1988, p.293). Concrete objects are characterized by different attributes. By
defining general classes of model components and instantiating multiple similar
objects from the same class, the size of model descriptions may be effectively
reduced compared to languages that lack such capability (Hooper, 1986). “The
use of objects therefore improves the reliability and maintainability of system
code.” (Derrick et al., 1989, p.713).

In systems biology, by contrast, the alternative strategy of rule-based mo-
deling attracts more and more attention recently (Hlavacek et al., 2006; Blinov
and Moraru, 2012). Here the focus lies on reactions rather than objects, which
particularly permits to describe biochemical systems in a straightforward man-
ner. A rule-based model design follows the activity scanning world view of con-
ceptual modeling and simulation strategies (Hayes-Roth, 1985; Hooper, 1986;
Balci, 1988), which “produces a simulation program composed of independent
modules waiting to be executed” (Balci, 1988, p.291). A model based on the
activity scanning paradigm therefore “consists of components which engage in
activities, subject to specified conditions” (Hooper, 1986, p.154). By employ-
ing a schematic rule-based approach, where those conditions are described in

terms of conditional patterns, redundancy may be effectively reduced, as activ-
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ities may be instantiated within different contexts. Furthermore, the activity
scanning approach is typically considered to be user-friendly, as models tend
to be modular, modifiable, and easy to understand (Balci, 1988).

To summarize, models of biological systems become increasingly complex,
which may seriously hamper their implementation and maintainability. Pro-
viding accessible modeling languages and making models more understandable
may help to significantly diminish some of the problems induced by increasing
complexity. One important point for achieving this goal is to reduce psycho-
logical complexity according to diverse cognitive dimensions, e.g., by providing
means for structuring models similar to our perception of hierarchical relation-
ships in nature. Another point is to reduce complexity in terms of size of model
representations, in particular by combining different levels of abstraction and
by applying different methodological paradigms, i.e., object-centered and rule-
based approaches, to eliminate redundancy within model descriptions. Several
different approaches and their capability to reduce model complexity will be
discussed in detail in Chapters 4, 5, 6, and 7.
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Chapter 3

Recurring Example Model

In this chapter, a rather simplistic toy system is presented serving as a running
example throughout the thesis to illustrate strengths and limitations of differ-
ent modeling approaches in describing certain phenomena. Before discussing
different concrete formal descriptions in subsequent chapters, here an informal

conceptual model description will be given at first.

The example comprises dynamic processes at the levels of molecules, cells,
and cell populations and is intended to incorporate different aspects that are
considered to be representative for multilevel models at these levels of organi-
zation. Just like the novel approach proposed later in this thesis (Chapter 6),
the example does not give attention to levels beyond, since most systems bio-
logy research is dedicated to biochemical and cellular processes and at least
for them it needs to be investigated, which methods facilitate the endeavor of

modeling at multiple integrated levels.

The chapter is structured as follows: In Chapter 3.1, biochemical dynam-
ics of the example model will be explained along with a brief introduction
to the modeled system. Dynamic processes at the cellular level are subject
of Chapter 3.2 and in Chapter 3.3 the example model will be extended by
dynamic relationships between different levels, i.e., between certain subcellu-
lar biochemical processes and processes at the cellular level. Finally, a short

summary of the model’s multilevel aspects will be given.



3. Recurring Example Model

3.1 Inter- and Intracellular Processes

3.1.1 Cell-Cell Communication via Notch Signaling

Notch signaling describes a family of highly conserved signaling pathways tak-
ing part in local cell communication. Due to its role for regulating gene ex-
pression in numerous different kinds of developmental differentiation processes
and adult cell fate decisions, Notch signaling denotes one of the most impor-
tant and widespread mechanisms of direct cell-to-cell interaction (Artavanis-
Tsakonas et al., 1999; Lai, 2004). At higher organizational levels like tissues,
Notch signaling causes complex pattern formation (Meinhardt and Gierer,
2000; Pourquié, 2003) and regulates the proliferation of cells, e.g., in regen-
erative processes like wound healing (Chigurupati et al., 2007). Thus, Notch
signaling qualifies well for an exemplary multilevel model, as the pathway is
involved in complex mechanisms that are regulated by interacting processes
at different levels of organization. However, before describing how different
levels are interconnected and influence each other, at first an introduction of
the essential molecular components and processes will be given.

Central components of each Notch signaling pathway are a Notch-type re-
ceptor and a Delta-type ligand. Both molecules are transmembrane proteins
with an extracellular domain consisting of epidermal growth factor (EGF)
repeats (Lai, 2004). The initial process and one of the key events of Notch sig-
naling is an activation of the Notch receptor by binding a ligand molecule via
specific EGF repeats. Due to the direct interaction and membrane-anchoring
of both the receptor as well as ligand proteins, signal transduction is medi-
ated between adjacent cells only, i.e., Notch signaling is a variant of juxtacrine
intercellular communication (see Figure 3.1). Thereby, cells that are express-
ing Delta act as signal senders, while Notch expressing cells receive the signal
(Schweisguth, 2004). Simplified one could say, through its Notch receptors, a

cell may sense the amount of Delta protein of a neighboring cell.

3.1.2 Compartmentalized Subcellular Dynamics

Once Notch has been activated by binding Delta ligand, a cascade of intracellu-

lar processes transmits the signal from the extracellular space into the nucleus,
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Signal sending cell

Delta
Activated receptor complex

Notch

Signal receiving cell

Figure 3.1: Receptor activation in the Notch signaling pathway. A membrane-
anchored ligand (Delta) binds to the extracellular domain of an adjacent cell’s trans-

membrane receptor Notch.

where it regulates the transcription of certain target genes. Thereby, different
involved proteins and processes are spatially separated by three distinct nested

compartments: the plasma membrane, the cytoplasm, and the nucleus.

At the beginning of the signal-transmitting cascade, different protease en-
zymes are catalyzing the cleavage of activated Notch receptors within the cel-
lular membrane. Proteolytic cleavage releases the extracellular (Necd) and
intracellular (Nicd) domains of Notch from its intermediate transmembrane
domain. While Necd is bound to Delta and will be degraded subsequently, the
intracellular domain Nicd may translocate via the cytoplasmic compartment

to its final destination, i.e., the nucleus.

Inside the nucleus, Nicd binds to a transcription factor of the CSL family
and acts as a transcriptional co-activator of certain target genes. In the ab-
sence of Nicd, CSL binds a co-repression complex, thereby actively inhibiting
the expression of Notch target genes. Displacement of the CSL co-repressor
by Nicd therefore switches the expression of certain genes from off to on. In
addition to such target gene activation, nuclear Nicd may also regulate the
Notch signaling pathway itself by positive and negative feedback mechanisms
(Artavanis-Tsakonas et al., 1999; Lai, 2004). During C. elegans gonadal devel-
opment, for example, Notch signaling is regulated such that a signal receiving
cell up-regulates receptor expression while the expression of Delta ligand is
inhibited by Notch activation (Wilkinson et al., 1994). This kind of feedback
mechanism leads to lateral inhibition, i.e., neighboring cells will become dis-

parately differentiated, where one cell is predominantly expressing Notch and
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Figure 3.2: Notch signaling model — diagrammatic overview of inter- and intracel-

lular biochemical dynamics.

the other expresses predominantly Delta protein.

Further complex regulatory mechanisms of Notch signaling are controlled
by posttranslational modifications, like cleavage and glycosylation of Notch
within the Golgi apparatus (Baron et al., 2002). Also, receptors and ligands
may be recycled after endocytosis (Schweisguth, 2004; Bray, 2006).

3.1.3 Biochemical Processes

Based on the previously introduced general characteristics of Notch signaling,
the example model in this thesis shall include multiple individual cells that
may communicate with each other. However, each cell has its own intracel-
lular dynamics in the form of a feedback mechanism, which is schematically
illustrated in Figure 3.2 and described in terms of chemical reaction equations
in Table 3.1. Dynamic processes at the cellular level and the actual spatial

relationships between distinct cells are subject to Chapter 3.2.
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Table 3.1: Inter- and intracellular biochemical reaction equations of the Notch
signaling model. Molecular species that belong to an adjacent cell are underlined.
An asterisk (*) denotes protein degradation, and mass action, Hill-type, or Michaelis-

Menten kinetics are denoted by (MA), (H), or (MM) respectively.

No. Reaction equation Kinetic law
1) GeneN —— GeneN + Notch, (H)
2) GeneD ——> GeneD + Delta, (H)
3) Notch, —— Notch,, (MA)
4) Delta, ——> Delta,, (MA)
5) Notch,, + Delta,, ——> Notch-Delta (MA)
6) Notch-Delta —— Nicd, + Delta-Necd (MM)
7) Nicd, —> Nicd, (MA)
8) Delta-Necd —— Delta, (MA)
9) Notch,, —> x MA
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At the biochemical (or molecular) level, the basic model entities are Notch
and Delta. In each cell, both proteins are genetically encoded and thus may be
constitutively expressed. Since posttranslational modifications are neglected
in this example model, newly synthesized Delta and Notch molecules first re-
side in the cytoplasm (reaction equations 1 and 2), wrapped by small vesicles
preventing from protein interactions within this compartment and leading to
subsequent fusion with the plasma membrane, whereby receptor and ligand
molecules will become part of the membrane compartment (3-4). To indicate
different cellular locations of a protein, in the biochemical reaction equations
subscripts m, ¢, and n are used for denoting the intracellular compartments
membrane, cytoplasm, and nucleus respectively. We assume a spatially homo-
geneous chemical solution within each compartment.

Intercellular signaling and the proteolytic cleavage of activated Notch (Notch-
Delta complex) are described by reactions 5 and 6 respectively. Thereby, two
different membrane compartments are involved, i.e., Notch and Delta belong
to different but adjacent cells, which is indicated by the underlined molecular
species in Table 3.1. Instead of multiple sequential proteolytic reactions, the
cleavage of activated Notch is described by a single process here and is thus
strongly simplified. Products of the proteolysis are cytoplasmic Nicd and the
Delta-Necd complex. While reaction 8 describes endocytosis of Delta-Necd for
subsequent ligand recycling, Nicd,. may translocate into the nucleus (7). The
remaining reactions 9-15 in Table 3.1 describe degradation of Notch and Delta
within different compartments.

With translocation of Nicd into the nucleus, the pathway’s feedback loop
is almost completed. Nicd,, regulates gene expression of Delta and Notch,
such that Notch expression is activated and expression of Delta is inhibited by
nuclear Nicd. Thereby, the model shall abstract from detailed gene regulatory
processes, like cooperative binding of Nicd and CSL transcription factor to
a promoter sequence. The activating and inhibitory effect of nuclear Nicd is
therefore described as part of the kinetic rates of according reactions. The
kinetic rate of reaction 1 follows a sigmoidal saturation, which is described by
the Hill equation

[Nicd,,]"

~ K" + [Nicd,|? (3:1)
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where 6 denotes the fraction of activated transcription factors, [Nicd,] is the
amount of nuclear Nicd, K is the amount of Nicd, that activates half of the
transcription factors, and h is the Hill coefficient describing the grade of coop-
erativity. The rate (or speed) of reaction 1 is then described by k] + k16, where
K} is the basal gene expression rate (in the absence of Nicd activation) and k;
a characteristic reaction rate constant for activated Notch gene expression. As
expression of Delta is inhibited by Nicd,, rather than activated, the rate of
reaction 2 is ko(1 — @), i.e., the higher the amount of Nicd,, the lower is the
rate of synthesis of Delta ligand.

Similar to the gene expression processes, reaction 6 is another example of
behavioral abstraction. In enzyme theory, a catalytic process like the proteol-
ysis of activated Notch is typically considered to be a two-step process with an
intermediate enzyme-substrate complex (Berg et al., 2002, Chapt. 8). There-
fore, the entire proteolytic process involves at least three biochemical reactions:

the formation and breakage of an unstable enzyme-substrate complex

ko
Protease + Notch-Delta == Protease-Notch-Delta
kq

as well as the final catalytic reaction, i.e., the cleavage of activated Notch

kcat
Protease-Notch-Delta ——— Protease + Nicd, + Delta-Necd

where k,, k4, and k. denote the according reaction rate constants. Please
note, like in Table 3.1, the underlined molecular species belong to an adjacent
cell. Under certain assumptions, however, the enzymatic process may be ap-
proximated and described in a single step, like reaction 6 does. If we assume a
constant total amount of enzyme (Proteasetot, enzyme conservation law) and
also no significant change of the intermediate enzyme-substrate complex due to
very fast association and dissociation reactions in comparison to the product
formation rate k. (quasi-steady-state assumption), the overall reaction rate

v may then be appropriately described by the Michaelis-Menten equation

Umaz|[Notch-Delta]
— 2
YT Kt [Notch-Deltal (3:2)

where vy,4, = keat|Proteasey,] and K, is the Michaelis constant. The Michaelis-

Menten equation is a classic example of approximation in biochemistry. For a
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more comprehensive explanation on enzyme kinetics see, for example, Gutfre-
und (1995) or Sauro (2011).

The rates of the remaining biochemical reactions (3-5 and 7-15) follow the
more detailed kinetic law of mass action. That means, the reaction rate is
directly proportional to the amount of reactants. For example, the rate of
reaction 3 is k3[Notch.|, where k3 is the rate constant and [Notch,] the amount
of cytosolic Notch. In the case of protein degradation processes (reactions

9-15), we assume the same rate constant kg, for all reactions.

3.2 Cellular and Cell Population Dynamics

3.2.1 Cell Proliferation

The example model in this thesis shall describe the regulation of cell pro-
liferation via Notch signaling. Therefore, besides the previously described
intracellular processes of the signaling pathway, the model consists of multi-
ple individual cells that may not only communicate with each other, but also
proliferate.

Proliferation is a combination of cell growth in size and number, i.e., cells
become larger and after a while they divide into two daughter cells. Therefore,
each individual cell of the model has its own size, which may change over time.
However, as a cell consists of different compartments, each of them needs to
be described separately. Cells and their enclosed compartments are regarded
as three-dimensional objects. Hence, size is described in terms of volume.

For the sake of simplicity, the volume of a nucleus is assumed to be constant,
i.e., it does not change over time. A cytoplasmic compartment, by contrast, is
assumed to increase exponentially with rate k, until a volume twice of that at
time of birth is reached. Similarly, the size of a membrane compartment is also
growing exponentially. However, although assumed to be a three-dimensional
compartment like others, the plasma membrane defines the cell’s surface and
is thus rather thin compared to a cytoplasmic or nuclear compartment. As
we assume a spherical cell shape, the volume of the membrane compartment
therefore increases more slowly during cell growth compared to the cytoplasm,

i.e., its exponential growth rate is assumed to be k,/2.
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A cell divides at the point where its cytoplasmic compartment volume has
doubled. Thereby, the cellular compartments of both daughter cells are as-
sumed to shrink to the initial volume size of the mother cell, i.e., from one

generation to another, cell size homeostasis is ensured.

3.2.2 Spatial Relationships

As Notch signaling involves intercellular communication between adjacent cells,
according models often rely on an explicit description of the cellular neighbor-
hood, which is typically realized by modeling discrete spatial positions in either
one, two, or three dimensions (see, e.g., Collier et al., 1996; Owen and Sherratt,
1998). To observe the formation of complex patterns due to Notch signaling,
a two-dimensional hexagonal lattice has been used by Collier et al. (1996) and
Ghosh and Tomlin (2001) for representing cellular tissue structures. However,
regularly structured lattices may also comprise other spatial relationships for
describing cellular tissues, e.g., a two-dimensional lattice of rectangular shaped
cells within a von Neumann neighborhood (Figure 3.3). More detailed multi-
cellular spatial settings are lattice-free representations with continuous coor-
dinates in space (e.g., Meineke et al., 2001; van Leeuwen et al., 2009).

To keep the example model simple, a rather abstract linear (one-dimensional)
adjacency of non-migrating cells is assumed. That means, each cell has two
neighboring cells at most and once inserted, the position of a cell is fixed. New
cells are inserted after cell division. Thereby, one daughter cell remains at the
position of the dividing mother cell, while the second daughter is randomly

placed at an adjacent position that is not already occupied by another cell.

Figure 3.3: Different spatial schemes for modeling lattice-based neighborhoods.
From left to right: linear (1D), von Neumann (2D), hexagonal (2D).
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3.3 Linking Cellular and Subcellular Processes

The Notch signaling example model includes dynamic processes at different
organizational levels, i.e., at the molecular, cellular, and cell population lev-
els. The cellular and cell population levels are interrelated by the process of
inserting new cells due to cell division. However, cellular and subcellular pro-
cesses are totally independent from each other so far. The following section
describes two common examples of interlevel causations from subcellular to

cellular processes and vice versa.

3.3.1 Upward Causation

In the case of biological multilevel modeling, an exemplary process of upward
causation is one where a certain subcellular biochemical condition is influencing
certain dynamics at the cellular level. For instance, critical amounts of a
certain protein may change the global behavior of a reaction network, e.g., by
switching a bistable subsystem on or off respectively. Such emergent behavior
may be a marker for crucial cellular states, e.g., different cell fates during
stem cell differentiation, which then may influence dynamic processes at other
levels of organization. Therefore, in systems biology, multilevel modeling with
structural abstraction typically requires to detect certain low-level states for
triggering dynamics at higher levels.

It has been shown that Notch receptor activation may cause an arrest of the
cell cycle and thereby represses cell proliferation (Johnston and Edgar, 1998;
Sriuranpong et al., 2001). From one cell division event to the next one, a cell
is not just simply growing in size, but it also traverses through different phases
of its cell cycle. Thereby, certain checkpoints have to be passed in order to
ensure that everything is properly prepared for the next phase. Notch signaling
may lead to lateral inhibition, where large amounts of activated Notch cause
an arrest in the first (G;) phase of the cell cycle. The arrested cell may still
grow up to a certain volume, but it will not replicate its DNA and therefore no
division will take place, i.e., cell proliferation is paused or ultimately stopped.

The example model abstracts from a detailed representation of the cell cycle.

We distinguish only between the two growth phases G; and Gs, i.e., the DNA
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Figure 3.4: Cell cycle dynamics in dependence on cytoplasmic Notch amount. The
G1 checkpoint and cell division are assumed to be at 150% and 200% of the initial

cytoplasmic compartment volume respectively.

synthesis phase (S) and mitosis (M) are neglected (Figure 3.4). Also, cell cycle
control is assumed to be rather simplistic. We assume the G; checkpoint at
a cytoplasmic compartment volume Vol. = 1.5V,, where V. denotes the initial
volume of the cytoplasm. The cell may pass this checkpoint and proceed with
phase G, if the amount of cytoplasmic Notch is low. Otherwise, i.e., if the
amount of Notch, exceeds a threshold value ¢y, the cell switches from the
normal Gi phase to an arrested state (Gg) at that point, which will prevent

cell division when its volume has doubled.

3.3.2 Downward Causation

An omnipresent example of downward causation in biological systems is the
impact of the volume of a compartment on certain enclosed molecular pro-
cesses. Membrane-bound cellular compartments are rather elastic objects that
may permanently alter their shape and volume. Cells, for instance, are growing
and dividing or may change their volume due to osmotic processes.

As the reaction rate of bimolecular and higher order reactions depends on
the probability of a collision between randomly moving reactant particles, a
larger environmental volume may lower the speed of biochemical reactions.
Similarly, a shrinking compartment volume enhances the probability of en-

closed particles to collide. In this case, the speed of bimolecular and higher

51



3. Recurring Example Model

order reactions increases.

Although compartment volumes are changing in the example model, most
of the biochemical processes are not affected by this kind of downward causa-
tion, as they are first order reactions depending on a single molecular species
only. In this case, particles do not need to collide and the speed of a first order
reaction is therefore volume-independent. However, reaction 5 in Table 3.1 de-
scribes a volume-dependent bimolecular reaction between Notch receptor and
Delta ligand. The rate with which both bind together depends on the collision
probability. Thus, the according membrane volumes and their alteration may
seriously influence the formation rate of activated Notch complexes.

Besides biochemical reactions, translocation processes of molecules from one
compartment into another might also depend on the environmental volume,
as the mean distance to move increases with larger volumes. However, we
assume protein diffusion being very fast compared to the process of passing a
membrane barrier. Hence, random movement is not the limiting step in the
translocation processes, which are therefore not affected by changing compart-

ment volumes.

3.4 Summary of Multilevel Aspects

The presented example model comprises different aspects that are dedicated
to dynamic processes at multiple levels. To a greater or lesser extent, these as-
pects can be similarly found in many other multilevel models and are therefore

considered to be representative for multilevel modeling in systems biology.

Nested hierarchies: The example model comprises of entities (or objects)
that are hierarchically arranged in a nested manner. Thereby, identical
or similar kinds of entities reside at different locations that are both ver-
tically as well as horizontally separated from each other. For instance,
different variants of Notch may reside within different nested compart-
ments of a cell, i.e., at different organizational levels (vertical separation).
In addition, the model consists of multiple cells, by which certain entities
are separated from each other despite their belonging to the same nesting

level (horizontal separation).
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Dynamic structures: The structure of the model is changing over time, i.e.,
structural relationships between entities — like the hierarchically nested
composition or bonds between molecules — are not fixed. For example,
certain proteins bind and unbind together, they translocate from one
compartment into another, and the process of cell division leads to the

instantiation of entirely new cells.

State and behavior at different levels: Any level of the hierarchy has a
state and behavior of its own. That means, dynamic processes can be
found not only at the level of atomic entities that do not enclose further
parts, e.g., proteins, but also at higher levels of organization. For in-
stance, the cytoplasm and membrane compartments have a volume state
that is changing over time and the entire cell traverses through different
phases of the cell cycle. States at different levels may also require to be
represented quite differently, e.g., by discrete integers, real numbers, or

Boolean values.

Arbitrary rate laws and constraints: Multilevel models often include dif-
ferent rate laws to describe dynamic behavior at different levels of or-
ganization. This may also include conditional constraints, such as the
restriction that a cytoplasmic compartment in the example model may
grow in size by a factor of two at most. Arbitrary rate laws are also useful
to make certain behavioral abstractions, like Michaelis-Menten and Hill

kinetics instead of the detailed law of mass action.

Upward and downward causation: To describe interlevel causation, a dy-
namic process at a defined level needs to take information from another
level into account, i.e., processes are influenced by certain side-effects
that are based on certain states at lower or higher levels of organiza-
tion. In the case of upward causation, side-effects typically denote an
aggregate of states at a lower level, e.g., the total amount of cytoplasmic
Notch constrains the cell cycle phase transition in the example model.
Conversely, downward causation typically requires to access contextual
high-level information, such as the volume of a compartment a process

is taking place in.
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Space beyond compartmentalization: Besides the compositional hierar-
chy of entities, multilevel models also often include more detailed spatial
aspects. In the example, the topmost level represents a population of
cells linearly arranged in a one-dimensional environment, which is a pre-

requisite to restrict intercellular communication to adjacent cells.



Chapter 4

Flat Model, Multiple Levels?

The following chapter provides a brief and non-exhaustive overview of flat mo-
deling approaches and figures out how certain aspects of biological multilevel-
ness can be described despite the lack of nested model structures. Concrete
formal descriptions of the example model presented in the previous Chapter 3
illustrate the suitability of different non-hierarchical formalisms with respect
to modeling biological multilevel systems.

The chapter starts with classical popular approaches applied in systems bio-
logy, namely differential equations, Petri nets, and process calculi. Chapter 4.2
forges ahead with attributed modeling languages like colored Petri nets and
approaches based on rule schemata. The role of constraining model dynam-
ics in a flexible manner will be also discussed in this part. Finally, a short

summary of the chapter will be given.

4.1 Classical Approaches

4.1.1 Differential Equations

Traditionally, most dynamic models in systems biology are published in math-
ematical formulations of ordinary differential equations (ODEs). Nonlinear
ODEs are well suited for formally describing biochemical reactions of metabo-
lic and signaling pathways in which molecular substances occur in abundance
(Klipp et al., 2005; Ellner and Guckenheimer, 2006). Thereby, different state

variables represent the concentrations of distinct molecular species and differ-
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ential equations describe their dynamic change over time.
For example, the concentration change of cytoplasmic Notch can be de-

scribed by the following ordinary differential equation (cf. Chapter 3):

translocation to membrane

d|Notch
dINoteh] 1 | 10 Tha[Noteh —huey[Notch (4.1)
dt N—— SN———
gene expression degradation

where 6 denotes the Hill type gene expression kinetics (cf. Equation 3.1 on
page 46) and ki, ki, k3, ks, are reaction rate constants of the respective
biochemical processes.

An ODE model implicitly assumes each molecular species being located
within the same well-mixed reaction compartment and is therefore a prototyp-
ical example of a flat modeling approach. Thus, multiple compartments and
hierarchical relationships need to be described in an implicit way by annotat-
ing according variables and equations. That means, to discriminate between
different localities of the same molecular species, each protein within each
compartment requires the definition of an own state variable and an accord-
ing differential equation. For instance, in our example model, Notch receptor
molecules reside within the cytoplasm as well as the membrane. Therefore,
two different state variables [Not,] and [Not,,]' are required to represent the
concentration within different compartments. Similarly, Delta protein (cyto-
plasm and membrane) and the Notch intracellular domain Nicd (cytoplasm
and nucleus) also occur within different localities of a cell. Thereby, subscripts
n, ¢, and m denote the nucleus, cytoplasm, and membrane compartments re-
spectively.

Moreover, as the model shall include multiple interacting cells, each of them
requires the definition of an own set of ODEs in which different state variables
are dedicated to different cells, e.g., via consecutive numbering. As can be
easily seen, the number of differential equations for each molecular species
increases linearly with the number of different locations the species may reside
in. This does not mean to be a problem for relatively small models comprising

of just a few compartments, but it may become prohibitive when modeling

IFor the sake of simplicity and due to spatial constraints, protein names may be freely

abbreviated throughout the thesis, e.g., Notch and Delta by ‘Not’ and ‘Del’ respectively.
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multiple cells or more complex intracellular compartmentalization. However,
in the case of modeling simple (spatial) relationships showing regular patterns,
like the cellular neighborhood in our example model, the number of ODEs
may be reduced by formulating corresponding mathematical expressions. For
example, the dynamic change of Notch and Delta concentrations within the

membrane compartment of a cell can be described as follows:

———— = k3|Not.;| — kgeg| N0t
dt 3[ 0 7] dg[ 0 :] (42)

— k‘5 [NOtm7i][D€lm7i_1] — k’5[NOtm7i] [Delm,i—i-l]

d|Dely, ;
% = ky[Dele;] — kaeg[Dely ;] (4.3)

— ks[Noty, i 1]|[Delyi| — ks[Noty, iy1][Dely, i]

where ¢ € N denotes a numerical index position. Assuming consecutive indices
of adjacent cells, the subterms comprising of expressions ¢ —1 and ¢+ 1 properly
describe Delta-Notch binding between neighboring cells. However, numerical
simulation requires that the tool supports an automated instantiation of con-
crete ODEs from such schematic descriptions. Alternatively, non-schematic
ODEs need to be generated by the user in advance by using high-level or
special-purpose programming languages like MATLAB (Lynch, 2004). Hence,
the proposed method is a viable solution for compactly representing such kinds
of models — e.g., for publication — rather than for actually working with them.

The set of nonlinear ODEs listed in Table 4.1 describes the intra- and in-
tercellular biochemical dynamics within a one-dimensional cellular adjacency,
as has been informally described in Chapter 3. In addition, Equations 4.4 and
4.5 describe exponential volume growth of different compartments. Thereby,
variables Vol.; and Vol,; denote the cytoplasm and membrane volumes of
cell ¢ respectively. The volume Vol,; of nucleus compartments is assumed to
do not change in size, i.e., dVol,;/dt = 0.

Besides conventional descriptions of biochemical reactions, the remaining
differential equations also include additional expressions to reflect downward
causation by altering compartment volumes. However, unlike what might be

understood by reading Section 3.3.2, thereby each differential equation is af-
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4.1. Classical Approaches

fected, including those describing first-order reactions only. ODEs describe
the amounts of molecular species in terms of real-valued concentrations rather
than discrete particle numbers. As concentration is defined by particle num-
ber per volume, the value of according state variables always depends on the
surrounding compartment volume and therefore needs to be adapted in the
case where this volume is dynamically changing.

In the example model, changing volumes influence the concentration of
molecular species differently. First of all, concentrations become diluted by
increasing compartment volumes. According to the method proposed by Bar-
beris et al. (2007), such volume-dependent concentration changes can be de-
scribed by mathematical terms like in the following differential equation in the
absence of any further dynamics:

diX]  [X]dVol

dt Vol dt

where [X| denotes the concentration of a molecular species X that is enclosed

(4.15)

by a compartment with volume Vol, and d Vol/dt is the dynamic change of Vol
over time. In the case of cytoplasmic molecules of the Notch signaling example
we can write
[Xc 1] dVOZCi [Xc 1]
’ = = —k,Vol., = k,|X.; 4.16
Vol,, dt Vol v Vole = Kol Xei] (4.16)

where [X,.;] is a placeholder for [Not.,], [Del.;], and [Nic.;]. In the same way,

a dilution of membrane-residing molecules can be described (see according
equations in Table 4.1).

The second type of adjusting molecular concentrations in dependence on
compartment volumes refers to translocation processes from one compartment
into another. As the volume of the former compartment may be different
to that of the destination, translocation process terms therefore need to be
adjusted by a volume ratio factor, e.g., Vol, ;/ Vol.; in the case of translocation
from the nucleus into the cytoplasm.

Let us take a complete example. Equation 4.1 — which describes the change
of cytoplasmic Notch within a static compartment volume — needs to be ex-
tended as follows in order to include all volume-dependent processes, i.e., adap-

tations referring to dilution (due to growing compartment volume) as well as
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translocation (as part of the gene expression process):

activated gene expression

d[Not,,] Vol Vol,

Olei ) VOln g Oln g

— - = ’ =~ —ks|Not,,;| — Not. ;| =k, Not.; .

p k! Vol + k0 Vol ks[Noto] — kaeg[ Noty;] —kg[Note;] (4.17)
N—_—— dilution

basal gene expression

Modeling biological systems by formulating differential equations provides
a rather large degree of flexibility in describing the model’s dynamics. Besides
the diverse volume-dependent adaptations and the schematic description of
cellular neighborhoods as shown in Table 4.1, Equations 4.6 and 4.7 as well as
4.10-4.13 also include formulations of alternative biochemical reaction kinetics,
i.e., Hill-type and Michaelis-Menten kinetics.

Moreover, mathematical formulations allow for integrating processes at high-
ly diverse levels of abstraction, as the modeler may utilize the whole repertoire
of mathematics. For example, partial differential equations (PDEs) can be
used to model reactions in dependence on concentration gradients (Neves and
Iyengar, 2009; Wittmann et al., 2009), and delay differential equations (DDEs)
to describe abstract dynamic processes of gene expression (Lewis, 2003) as
well as at the cellular level, like cell differentiation (Lai et al., 2009) or run-
ning through the different phases of the cell cycle (Bocharov and Rihan, 2000;
Villasana and Radunskaya, 2003). Thereby, linking of differently abstract pro-
cesses is facilitated due to the inherent global scope of variables, which allows
accessing each variable anywhere.

However, the other side of the coin is a combinatorial explosion, if certain
model components show multiple distinct states or binding partners and reside
at different compartmental locations. Also, as explicit structures are missing,
it is difficult to make a distinction between different parts of the model with
respect to their organizational or abstraction levels. The lack of structuring
elements thus may lead to rather large and cluttered model descriptions of
limited accessibility.

Impossible to describe with ODEs are discrete events like the cell division
process of the Notch signaling example (see Chapter 3.2). Modeling the abrupt
resetting of compartment volumes and adding new cells dynamically would re-

quire a hybrid mathematical approach, where parts of the model are described
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4.1. Classical Approaches

continuously while others are discrete (see, e.g., Anderson, 2005). The same
holds true for the upward causation dynamics, which involve the discrete tran-
sition of the cell from G; phase to either Gy phase or to an arrested state of

the cell cycle (Gy phase) depending on certain conditions.

4.1.2 Petri Nets

Another classical modeling approach in systems biology is to specify models
in the formal graphical notation of Petri nets (also termed place/transition
nets or P/T nets). Petri nets are directed bipartite graphs, where place nodes
(circles) represent states or conditions and transition nodes (bars or squares)
the conversion from one condition into another. Directed arcs connect place
nodes with transitions, such that certain places define pre- and postconditions
for each transition.

The Petri net formalism has been developed in the field of theoretical com-
puter science and qualifies for modeling concurrent systems in diverse appli-
cation fields. However, as Carl Adam Petri states himself, his original moti-
vation for inventing the P /T net notation was to describe reaction networks
of chemical processes and their competition for molecular resources (Petri and
Reisig, 2008). In this case, place nodes represent molecules or molecular com-
pounds and reactions are described by according transitions (see Figure 4.1 for
a simple example net of a bimolecular reaction). Due to the straightforward
mapping from a set of (bio)chemical reaction equations to Petri nets and vice
versa (Marwan et al., 2009), the place/transition notation has become rather
popular for representing models in systems biology.

In the original Petri net formalism, places may be marked by a discrete

number of tokens, which will be consumed from places denoting preconditions

3 Notch-Delta
Notch + Delta — Notch-Delta : —>

Figure 4.1: Petri net representation of a bimolecular reaction.
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(input arcs) and placed at postconditions (output arcs) when a transition fires.
However, as an original Petri net has a timeless and non-deterministic execu-
tion semantics, its applicability is limited to qualitative modeling and analyses,
e.g., analyzing reachability properties or the liveness of the network given a

certain marking (Reddy et al., 1993).

To perform quantitative simulation studies, timed Petri nets have been in-
vented, in which the firing of transitions takes a certain amount of time (Wang,
1998). For systems biology, two kinds of timed Petri nets are of particular im-
portance, namely stochastic and continuous Petri nets (Goss and Peccoud,
1998; Chaouiya, 2007; Gilbert et al., 2007; Heiner et al., 2008a).

The firing of transitions in a stochastic Petri net is chosen randomly ac-
cording to a stochastic firing rate each transition is assigned with (Goss and
Peccoud, 1998). Although stochasticity must not necessarily be restricted to
a certain distribution, describing (bio)chemical reaction systems typically im-
plies exponentially distributed transition probabilities, hence the reachability
graph of the net is nothing else than a continuous time Markov chain (CTMC).
In this case, the stochastic simulation algorithm (SSA) by Daniel T. Gillespie
(1977) can be applied to determine which transition fires next and to calculate
the time point of this event. Modeling stochastic processes takes the intrinsic
noise into account that can be found in many biological systems. For further
reading, Wilkinson (2006) provides a comprehensive overview of stochastic

modeling and simulation in the context of systems biology.

Similar to stochastic variants, a continuous Petri net has also a timed execu-
tion semantics. However, unlike to the original non-deterministic and stochas-
tic Petri nets, places do no longer contain discrete numbers of tokens but rep-
resent real-valued variables. Also, transitions of a continuous Petri net do not
fire at discrete points in time. Instead, variables are changed simultaneously
and constantly, i.e., in a continuous manner. The execution semantics of a con-
tinuous Petri net is therefore mathematically defined by ordinary differential

equations (Heiner et al., 2008a).

However, in any case and similar to ODE models (cf. previous section),
Petri nets require to explicitly define an own state variable, i.e., place node,

for each combination of molecular state and location. For example, mature
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Notch protein may be located within the cytoplasm and the membrane of a
cell. In addition, its intracellular domain Nicd may be located within the cy-
toplasm and the nucleus. Representing three interacting cells by a Petri net
graph therefore requires twelve distinct place nodes for the different variants
and locations of the unbound Notch receptor. Similarly, multiple variables
are needed to describe the different locations of Delta ligand and complexes
comprising Delta and Notch (cf. Figure 4.2). Hence, a Petri net model may
contain large amounts of redundancy, as different subnets may describe identi-
cal or similar behavior. When modeling multi-compartmental or multi-cellular
models, the combinatorial explosion may therefore easily lead to very large

graphs consisting of hundreds of nodes (see, e.g., Janowski et al., 2010).

At the cost of burdening nodes with additional information, modeling reac-
tion kinetics beyond standard mass-action biochemistry is supported by spec-
ifying arbitrary transition rate functions (Heiner et al., 2008b; Rohr et al.,
2010). Thereby, the scope of retrievable information for each transition is typ-
ically restricted to the set of pre-places and thus needs to be explicitly specified

by connecting defined place nodes.

Howsoever, the expressiveness of elementary (timed) Petri nets seems to be
insufficient to describe complex dynamic processes depending on diverse side-
conditions, like certain cellular processes or upward and downward causation
as described in Chapter 3. For example, a cell may only grow in size as long as
the cytoplasmic volume did not reach twice the initial value. Also, at the point
of cell division, volumes of both the cytoplasm and membrane compartments
shall be reset to their initial size. Another example is the cell cycle transition
from G; to G, phase, which may only fire under the condition that cytoplasmic
Notch did not exceed a certain threshold ¢y, while reaching the arrested Gy
state requires the opposite way round, i.e., its amount needs to be larger than
tn. To describe such functionalities, Petri net formalisms have been extended
by additional syntactical and semantical means, like capacities of places, test
arcs (also called read arcs), inhibitor arcs, and reset arcs (see Figure 4.3, see
also Marsan et al., 1995; Heiner et al., 2009).

Parts of an extended stochastic Petri net of the Notch signaling example

are shown in Figure 4.4. Numerous special arcs (i.e., test, inhibitor, and reset
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Cell no.1
L]

Cell no.2 Cell no.3

L]

Delc,1 If Del;-Noto If Noto-Delg Delc,3
L] L]

% Nec-Dels
[l

Dely,1 Delp,3

Nec-Dely

i ?M,ZD i

T
I
I
I

NOtm71 : NOtm,3

I

I

I

I

I

I

Dely, 2

O O

O

Figure 4.2: Petri net of biochemical Notch signaling processes within a model of

three interacting cells. Transition labels and arc multiplicities are omitted.
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Figure 4.3: Different means of an extended Petri net. Transition T; is connected
with place Py via an inhibitor arc that has a multiplicity of 2. Therefore, T1 may
only fire if Py contains less than two tokens. If T fires, no tokens will be consumed
from Py and three tokens will be placed at Po. However, due to the capacity of Py, Ty
may only fire if P does not contain more than seven tokens afterwards. Transition
Ty is connected with place P via a test arc and with Py via a reset arc. T9 may
only fire if P; contains at least two tokens. Firing of T does not change the amount

of tokens of place P, but all tokens of P9 will be consumed.

arcs) are thereby used to describe different cellular processes and interrelations
between cellular and subcellular levels. For example, upward causation is
described via guarding the amount of cytoplasmic Notch, i.e., a token number
> ty inhibits or enables the firing of two transitions that are denoting the cell
cycle’s Gy checkpoint.

A limitation of the stochastic Petri net description is the containment of
merely discrete (integer) numbers of tokens. While this denotes an appropri-
ate representation of the amounts of molecular substances as well as different
phases of the cell cycle, compartment volumes are typically more properly de-
scribed by real-valued variables. Therefore, to correctly describe the according
processes in a stochastic Petri net, all quantities of the model, like rate con-
stants and molecular amounts, need to be normalized to the smallest volume
unit of 1 token. To overcome this limitation, another extension of the formal-
ism has been developed, where different kinds of places and transitions, i.e.,
discrete and continuous ones, may be part of the same hybrid Petri net model
(Matsuno et al., 2000, 2003; Profs and Bachmann, 2011).

Another limitation of all of the introduced Petri net variants is the static
structure of models. Therefore, none of them allows describing the dynamic

creation of new cells after division.
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G2 VOlm

Vol,,

(of adj. cell)

0g/2

GO

tN
Vol,,
L] (of adj. cell)
= o0 ()
Not,.
.

Figure 4.4: Extended stochastic Petri net of upward and downward causation pro-

cesses within a single cell. Cell indices and transition labels are omitted. Place Vol,

has assigned a capacity of 2).. Only arc weights larger than 1 are given explicitly.
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4.1.3 mw-Calculus

The 7-calculus by Milner et al. (1992) has been developed for formally de-
scribing the changing structure of concurrent communicating systems (see also
Milner, 1999). Similar to other process algebras, e.g., CCS (Milner, 1980) or
PEPA (Hillston, 1996), its focus lies on the parallel composition and contin-
uation of communicating processes (Baeten, 2005). In the past decade, the
m-calculus gained considerable attention in formal computational systems bio-
logy since Priami et al. (2001) have suggested its usage and demonstrated the
general applicability for modeling biochemical systems.

Just like colliding and reacting molecular particles, the m-calculus denotes
an object-centered approach, where certain individual processes interact with
each other synchronously and in parallel. Interaction is restricted to pair-
wise communication via compatible channels, which is a well-fitting analogy
to molecular processes relying on complementary structures. Unlike many
other process calculi, the w-calculus allows to transmit channel names from
one process to another when they are interacting. Such message sending can
be used to model molecular modification: “Chemical interaction and subse-
quent modification coincide with communication and channel transmission.”
(Regev et al., 2001).

Similar to Petri nets, the original 7-calculus does not provide a quantitative
interpretation. However, the formalism has been extended by a stochastic
execution semantics in terms of CTMCs (Priami, 1995). Interactions in the
stochastic 7-calculus have assigned an exponentially distributed delay, so that
the non-deterministic choice of interaction in the original semantics becomes

a stochastic race.

The basic rule of action in the w-calculus is the communication of two pro-
cesses by using a name of which both processes share the knowledge of. This
name denotes a channel. Afterwards, both processes continue with process-
ing their internal “program”, finally proceeding with other processes or simply
terminating the current ones. A usual abstraction is to describe biochemical
species or active molecular motifs (e.g., molecular binding sites) as communi-
cating processes and reactions by pairwise communication over channels (see

Priami et al., 2001; Regev et al., 2001; Regev, 2002). For example, the following
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two processes can describe binding of Notch and Delta proteins:

Del bind!.0
Not = bind?.Not-Del

Here, processes Del and Not represent the Delta ligand and Notch recep-
tor respectively, and bind is the name of the channel over which both pro-
cesses communicate. Thereby, process Del initiates the interaction as a sender
(bind!) and Not is the receiving process (bind?). The stochastic firing rate
of the globally defined communication channel may be specified as bind@Qks.
Terms following the succession symbol (.) define what will be processed after
an interaction occurs. In the case of Del, the process will simply terminate
(denoted by the idle process 0), and process Not will proceed with another
process (Not-Del).

Although the paradigm of interacting processes provides a suitable metaphor
for describing biochemical reactions, modeling complex biological multilevel
systems is hampered due to certain formalism-specific restrictions. To those
belongs the fact that actions in the m-calculus are relying on the interaction of
exactly two processes. Modeling of unimolecular reactions like protein degra-
dation (Reactions 9-15 in Table 3.1) therefore requires the definition of “timer”

or “dummy” co-processes (Regev, 2002) acting as communication partners:

Not == degradation?.0
Not., == degradation!.Not.,

To avoid this artifact, some variants of the stochastic w-calculus, e.g., the
Stochastic Pi-Machine (SPiM) by Phillips and Cardelli (2004), use syntac-
tic sugar that allows for activating processes after exponentially distributed
stochastic time delays 7, i.e., internal transitions without communication over
a channel. A first-order degradation reaction of Notch can therefore also be

described by a single process comprising a stochastic delay at rate kgeq:
Not = T7Qk4,.0

However, while the above approach facilitates the description of unimolec-

ular reactions, modeling interactions that depend on more than two entities
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remains to be impossible in the m-calculus. From a theoretical point of view this
might be reasonable, since “termolecular reactions, involving three molecules in
the transition state, are very rarely encountered. Bimolecular reactions have to
take place in the very brief time that two molecules collide, before they bounce
apart again. The chance that a third molecule will collide at exactly the same
time, in a suitable orientation for reaction, is extremely improbable.” (Jack-
son, 2004, p. 12). However, this applies to elementary chemical reactions only.
Since modeling means to abstract from certain details, a combination of mul-
tiple elementary reaction steps to one abstract process is common practice in
systems biology. Moreover, as has been demonstrated by Kuttler et al. (2010),
higher-order reactions “allow to incorporate global control into models”, such
as defined global conditions or side effects that are also indispensable for mul-

tilevel modeling.

Another major limitation of the m-calculus is the restriction to mass-action
kinetics. Without the ability to define alternative kinetic laws, modeling bi-
ological systems in general and multilevel relationships in particular is ham-
pered due to the inflexibility in specifying a model’s dynamics. For example,
the catalyzed cleavage of activated Notch (Notch-Delta complex) as well as
the gene expression processes of the example model need to be described in
more detail than it is desired in order to capture the observed behavior, i.e.,
multiple intermediate reaction steps instead of abstract Michaelis-Menten or
Hill-type kinetics respectively (Kuttler and Niehren (2006) and Regev (2002)
present several illustrative examples). Furthermore, the inherent mass-action
restriction has a strong impact on the qualification for modeling multilevel
dynamics, since incorporating dynamic processes depending on high-level in-
formation, like the volume-dependence of certain reaction rates, seems to be

very difficult if not impossible to describe.

However, on the other hand the m-calculus provides capabilities to reduce
the problem of combinatorial complexity. The formalism allows for restricting
the scope of communicating processes, e.g., to model different compartments
(Regev et al., 2001). This way, the number of process definitions may be
reduced. The communication scope can be restricted by introducing private

channels that are not globally known, i.e., of which only a subset of all processes
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shares the knowledge of. Private channels can be dynamically generated by
using the v operator. The awareness of private channels can be propagated
afterwards by transmitting their names between communicating processes and
by process parameterization.

For example, the Init process in Table 4.2 starts with creating two private
channels id; and idy, which are then used to parameterize two parallel (...]|...)
processes Cell(pre,this). The channels are later used for an interaction be-
tween Notch and Delta, such that communication is restricted to adjacent cells
(Figure 4.5a illustrates the general principle). That is why both initial cells
are parameterized with the same private channels, but in a converse order.
Thereby, the first parameter pre denotes an identifier of the predecessor of a
cell and the second parameter this an identifier of the cell itself. By generat-
ing another private channel suc (denoting its successor), the one-dimensional
adjacency of a cell is complete. Due to parameterizing further processes with
these private channel names, subsequently instantiated processes of a cell share
the same restricted communication scope to control process interaction.

Besides the parameterization of newly instantiated processes, a restricted
communication scope can be also achieved by transmitting private channels
between communicating processes. This can be used, e.g., to model bindings
between individual Notch and Delta processes, as shown in Table 4.2 (see also
the illustration in Figure 4.5b). Therefore, parameterized processes Not,, and
Del,, may interact via private channels that have once been created by a Cell
or Init process and are locally denoted by t, p, and s respectively. Del,, acts
as a sender process and transmits a newly generated private channel cleavage

to a receiving process Not,,:

Notpy(t,...) == t?{cleavage} ...
Del,,(p,s) == (v cleavageQkg) (p!{cleavage} + s!{cleavage})...

As each cell in the one-dimensional environment has potentially two neigh-
boring cells, both interactions with the predecessor (p!) and successor (s!)
compete with each other in a stochastic race (choice operator +). After an
interaction has occurred, the Del,, process waits for an interaction via the
private cleavage channel, which is triggered by the previously receiving pro-

cess. Afterwards, the Not,, process will proceed with a Nic,. process and Del,,
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Table 4.2: Stochastic w-calculus model of the Notch signaling example including dynamic creation of cells. Please notice, as the focus
of interest lies at the parameterization and restricted scope of processes, the catalytic cleavage of Notch as well as gene expression
processes are highly simplified and thus do not fully capture the dynamics described in Chapter 3. Likewise, cell division — which is

assumed to occur only once for each cell — is also described by a rather simple process.

Init == (v id1Qks,id2@Qks) (Cell(idy,ids) | Cell(ids,idy))
Cell(pre,this) == (v sucQks,dbsQk,) (GenN (this,dbs) | GenD(pre, suc, dbs) | Div(this, suc))
Div(this, suc) == 7Qkg;,.Cell(this, suc)
GenN(t,d) == (7Qk|.(GenN(t,d)|Not.(t,d))) + (d?{unbind}.unbind!.(GenN(t,d)|Not.(t,d)))
GenD(p,s,d) == (7Qks.(GenD(p,s,d)|Del.(p,s))) + (d?{unbind}.unbind!.GenD(p,s,d))
Not.(t,d) == (TQk3.Not,,(t,d)) + (TQkgeq.0)
Del.(p,s) == (7Qky.Dely,(p,s)) + (7Qkgeq.0)
Notp(t,d) == (t?{cleavage}.cleavage!.Nic.(d)) + (T7Qkgeq.0)
Dely,(p,s) == (v cleavageQkg) ((p'{cleavage} + s!{cleavage}).cleavage?.((TQkgeq4.0) + (1Qkg.Del.(p, s)))) + (7Qkgeq.0)
Nic.(d) == (7Qk7.Nic,(d)) + (7Qkgeq.0)

Nicy(d) == (v unbindQkgy) (d'{unbind}.unbind? Nic,(d)) + (7Qkgeq.0)
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3 Del,, T4

N

Q Delm Y Y Notm,
Ve Ve Ve

Figure 4.5: Restricted communication scope in the m-calculus. Different commu-

nication channels are denoted by different names z, y. (a) Specific parameterization
with private channel names x; guarantees that Delta and Notch processes may com-
municate with processes of an adjacent cell only. (b) Del,, transmits a newly created
name y to the receiving process Not,,. Afterwards, both processes share knowledge

of this private channel.

has the choice between degradation (7@kg.,.0) and recycling to the cytoplasm
(1Qkg.Del.(p, s)).

To summarize, the m-calculus provides means for restricting the commu-
nication scope of processes. Thereby, the size of model descriptions may be
effectively reduced compared to models with global communication channels
only, as one generic set of processes may describe dynamics in different con-
texts. For example, the set of process definitions in Table 4.2 describes the
dynamics between arbitrarily large numbers of cells. However, as has been
outlined above, certain important aspects of multilevel modeling are difficult
if not impossible to describe, e.g., influencing the rate of reactions dynamically

via downward causation.

4.2 Attributed Languages

Although the previously introduced approaches follow rather diverse model-
ing paradigms with different support for describing multilevel phenomena, a
common problem they share is combinatorial explosion. Different states of
molecules or different locations they reside in typically require the definition
of distinct state variables with appropriate names. By contrast, attributed (or

colored) languages equip entities with different states and may thereby help
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to reduce the problem of combinatorial complexity. In the previous section of
the m-calculus, the parameterization of processes with different private channel
names has already given a first impression of the potentiality for reducing com-
plexity by assigning different parameters (or states) to model entities. How-
ever, attributed languages typically go further by allowing to define flexible

constraints based on concrete attribute values, as we will see in the following.

4.2.1 Colored Petri Nets

Colored Petri nets (Jensen, 1998; Jensen and Kristensen, 2009) are extensions
of classical P/T nets, where token types (i.e., attributed tokens) replace con-
ventional tokens. Therefore, each place is assigned a defined data type, e.g.,
integers N, of which it can hold a discrete number of tokens. Data types may
also be Cartesian products of multiple elementary types to represent more
than one attribute per token, e.g., N x R. Due to different values, tokens in
the same place node thus may become distinguishable from each other, rather
than just being existent or not. Like for conventional Petri nets, timed variants
of colored Petri nets allow for modeling quantitative dynamics.

Conditions assigned to incoming edges of transitions allow constraining their
firing based on the color of tokens, i.e., on token attribute values. A transition
is enabled if a set of tokens exists that fulfills all conditions of the respective
transition. Thereby, conditions can also reference values from other pre-places
of the same transition, for instance, to constrain the transition to be enabled
only if two tokens from different places have the same values. This way, condi-
tions can be also used to describe binding of Notch and Delta between adjacent
cells, as is shown in Figure 4.6. Also more complex spatial relationships can be
described by using colored Petri nets, for example, a two-dimensional hexago-
nal cellular lattice presented by Gao et al. (2011).

Conditions may also rely on more than one attribute per token. For exam-
ple, place nodes in Figure 4.7 that are representing diffusible protein species
are assigned the data type N x {m, c,n}, which describes the index position
of the cell and the cellular compartment the protein resides in, i.e., either the
membrane (m), cytoplasm (c), or nucleus (n) respectively. For example, condi-

tions (i,m) and (j =7+ 1 or j =i — 1,m), which are assigned to the incoming
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< (4,5) 04 (4,9) I

Not-Del (N x N)

j=t+lorj=i—-1

Figure 4.6: Colored Petri net of biochemical Notch signaling processes. Transition

labels are omitted.
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Figure 4.7: Colored Petri net of upward and downward causation processes. Place nodes Not, Nic, and Del are of type Nx{m, c,n},

Not-Del of type Nx N, Vol. and Vol,, of type NxR, and the remaining places are of type N. Transition labels are omitted.
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edges of the transition that describes Delta/Notch binding, then require the
existence of tokens not only having adjacent index values but also showing
the same cellular location of the membrane compartment in order to enable
the transition. This way, the number of place nodes can be further reduced
compared to Figure 4.6. To describe downward causation, the binding transi-
tion is connected a further pre-place, i.e. the membrane volume Vol,,. Unlike
the extended Petri net model described in Chapter 4.1.2, here compartment
volumes are represented by real-valued variables (tokens of type N x R). The
values of cells 7 and j are bound to the variables v; and v; respectively, which
can then be used to dynamically adjust the firing rate of the transition (not
shown in Figure 4.7).

Variables in a colored Petri net can also be used within expressions assigned
to outgoing edges of a transition. Thereby, attribute values of produced tokens
may depend on previously bound values of pre-place tokens. For example, the
cell growth transition in Figure 4.7 computes the new values of the membrane
and cytoplasm volumes based on the variables v,, and v. that have been pre-
viously bound. Please notice the place node labeled with “IDs”, whose initial

marking determines the potential index values j of newly created cells.

4.2.2 Attributed w-Calculus

John et al. (2008, 2010) have introduced an attributed language as an extension
of the m-calculus. The attributed m-calculus allows for defining attributed pro-
cesses in order to describe different states or properties of biological processes,
e.g., that are taking place within different cellular compartments. Moreover,
by using functional A-calculus expressions, the synchronization of processes
may depend on their attribute values, which permits to describe complex rate
laws and to constrain reactions flexibly. A stochastic semantics in terms of
CTMCs allows for an application in systems biology.

To show the general idea of attributes and constraints in the realm of the
m-calculus, Table 4.3 provides a set of process definitions that are describing
compartmental translocation as well as binding processes of Delta and Notch.
Each process is attributed by an id € N, which denotes a cell’s index position

in one-dimensional space. In addition, Not, Del, and Nic processes are also
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Table 4.3: Attributed m-calculus model of Delta/Notch complexation and translo-
cation. Expressions e; = eo are syntactic sugar to describe conditions of type: if eg
then e else 0. Similar to the simplification shown in Section 4.1.3, the 7[e] notation

is used to avoid the definition of “dummy” co-processes for describing unimolecular

reactions.
Not(id,loc) == bind[Ai.N.loc = ‘mem’ Al = ‘mem’ A ((id=i+ 1)V (id=1i—1)) = ks
1?(cleavage).cleavage[kg)!. Nic(id, ‘cyt?’) +

Tlloc = ‘cyt’ = ks].Not(id, ‘mem”’)

Del(id,loc) == (v cleavage) bind[id loc]!(cleavage).cleavage[\k.k]?. NecDel(id) +
Tlloc = ‘cyt?’ = kq].Del(id, ‘mem?)

Nic(id,loc) == T[loc = ‘cyt’ = ky].Nic(id, ‘nuc”’)

NecDel(id) == 7ks].Del(id, ‘cyt?)

attributed by a location loc € {‘mem’, ‘cyt’, ‘nuc’} describing the cellular

compartment within which the process is operating.

The major difference to the original m-calculus is that the synchronization
of processes in the attributed m-calculus not only depends on the names of
communication channels, but also on functional expressions that may operate
on attribute values and — in the stochastic semantics — evaluate to positive
real numbers, denoting the stochastic rates of interactions. For example, for
successful communication between two individual Del and Not processes, the
former process first needs to provide the values of its attributes id and loc,
which is specified by bind[id loc]!. A process Not receives these values and
checks for the correct compartmental location (i.e., the membrane, denoted
by ‘mem’) and whether both processes have adjacent cell indices (i.e., (id =
i+ 1)V (id = i — 1), where id denotes the index of Not and ¢ the index of
Del). Consequently, binding between both processes with rate kj is permitted
only if these constraints are fulfilled. The expression of type e; = e thereby
is syntactic sugar replacing the frequently applied conditional expression if e;
then ey else 0, where expression e; needs to evaluate to the Boolean value
“true” as a prerequisite for communication. Once the expression evaluates

successfully to a positive real number, i.e., parameter k5, communication is
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enabled and Del transmits the private channel cleavage to the receiving process
Not, over which a subsequent interaction of both processes occurs with rate kg.
Finally, Not will proceed with a process Nic(id, ‘cyt’) and Del with a process
NecDel(id). Unimolecular translocations from one compartment into another
are described by 7[...], which is again syntactic sugar preventing from defining
“dummy” co-processes. For example, the process Nic(id,loc) in Table 4.3 can

be replaced by the following two processes:

Nic(id,loc) == transloc[Mi.\l.if i =id Al =loc Aloc = ‘cyt’ then k; else 0
]?.Nic(id, ‘nuc?)

Niceo(id,loc) == transloclid loc]!. Nic.,(id, loc)

As complex, attribute-dependent expressions may determine the rate of
communication, the attributed m-calculus permits the description of dynamic
processes with rather flexible kinetic laws. For example, the processes GenN(id)
and GenD(id) in Table 4.4 describe dynamically regulated gene expression of
Delta and Notch in compliance with the description in Chapter 3.1.3. How-
ever, this requires information about the total amount of Nicd within the nu-
cleus of a given cell. Therefore, GenN(id) and GenD(id) communicate via the
genexpr channel with a process TotalNic,(id, count), which is attributed with
the nuclear Nicd count of a cell with index id. As the total count may change
due to individual translocation and degradation processes of Nic(id, loc), the
population-based process TotalNic,(id, count) needs to be immediately up-
dated once an according event takes place. This is achieved by prioritized
communication steps with infinitely large rates, which are performed before
any normal (i.e., non-prioritized) interaction will be selected. For example,
the total amount of nuclear Nicd may change either due to translocation from
the cytoplasm to the nucleus or due to degradation. Therefore, synchro-
nization between Nic(id,loc) and TotalNic,(id, count) processes via channel
updnic is defined in order to update the population-based count attribute of
TotalNic, (id, count):

TotalNicy,(id, count) == wupdnic[Xi.i = id = 00]?(9). TotalNic, (id, count + ) + ...

Nic(id,loc) == Tlloc = ‘cyt’ = kr|.updniclid]!(4+1).Nic(id, ‘nuc’) +
Tlloc = ‘nuc’ = kgeg).updniclid]!(—1).0 + ...
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Table 4.4: Attributed m-calculus model of the Notch signaling example. A detailed explanation of the dynamic processes is given in

the text. Cells are assumed to divide into one direction only, i.e., the id of a newly instantiated daughter cells is incremented by 1.

Also, like in previous examples, newly instantiated cells are assumed to not containing any Notch nor Delta molecules.

Cell(id, voly,, vol., ph)

TotalNot,.(id, count)
TotalNicy, (id, count)
GenN(id)
GenD(id)

Not(id, loc)

Del(id, loc)

Nic(id, loc)

NecDel(id)

Tvol. < 2V, = kg - vol.]. Cell(id, vol,, + W“ vole + 0y, ph) +
chkpt[Ni.dn.id = i Aph = ‘gl’ Avol. > 1.5V, An <ty = oo]?.Cell(id, vol,,,vol., ‘g2’) +
chkpt[\idn.id =i A ph = ‘g1’ Avol. > 1.5V, An >ty = oo|?.Cell(id, vol,,,vol., ‘g0’) +
Tlph = ‘g2’ Awol. > 2V, = oo].(Cell(id, Vin, Ve, ‘gl?) | Cell(id + 1,Vpm, Ve, ‘g1?) | TotalNot.(id + 1,0) |
TotalNic,(id + 1,0) | GenN(id + 1) | GenD(id + 1))
updnot[Xi.i = id = 00]?(9). TotalNot.(id, count + §) + chkptlid count]!. TotalNot.(id, count)
updnic[i.i = id = 00]?(9). TotalNicy, (id, count + &) + genexpr[id count]!. TotalNic, (id, count)
(T[K] + genexpr[AiAc.i=id= k; N%‘M%?Y:@&BQ%&_TLV.AQmiﬁ?@ | Not(id, ‘cyt?))
h

genexprXi.Ac.i = id = ka(1 — )] ?.(GenD(id) | Del(id, cyt?))

bind[Ai.Ml.loc = ‘mem’ Al = ‘mem’ A ((i =id+ 1) V (i =id — 1)) = ks]?(cleavage).cleavagelks]!. Nic(id, ‘cyt?’) +
Tlloc = ‘cyt’ = ks].updnot[id]!(—1).Not(id, ‘mem’) +

T[loc = ‘cyt’ = kgegl.updnot[id]!(—1).0 + 7[loc = ‘mem’ = kgeq).0

(v cleavage) bind[id loc]!(cleavage).cleavage[Ak.k]?. NecDel(id) +

Tlloc = ‘cyt’ = kq].Del(id, ‘mem’) + T[kgey].0

Tlloc = ‘cyt’ = k7|.updniclid]!(+1).Nic(id, ‘nuc’) +

Tlloc = ‘nuc’ = kgeg].updniclid]!(—1).0 + T[loc = ‘cyt’ = kgeq).0

7[ks]. Del(id, “cyt?) + T[kdeg)-0

D
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Synchronization via the updnic channel evaluates to an oo rate, if both
processes have the same id. The Nic process then transmits the change in
the amount of nuclear Nicd, i.e., +1 in the case of a translocation from the
cytoplasm into the nucleus and —1 in the case of degradation. TotalNic,
receives this value and proceeds with an attributed process storing the updated
information about the total count. This information is then used to determine

gene expression rates with Hill-type kinetics, as has been explained above.

In principle, a combination of individual-based and population-based pro-
cesses would make it also possible to describe catalyzed cleavage of activated
Notch with Michaelis-Menten kinetics. However, here we need to distinguish
between two different total count variables per cell, as each cell may have two
neighbors and thus also two different variants of Notch-Delta complexes may
exist. To keep the model simple, Table 4.4 therefore does not include these
dynamics, but shows another population-based process, namely the amount of
cytoplasmic Notch. This information is used to describe the upward causation
at the G; checkpoint of the cell cycle, where the excess of a threshold value
tn leads to cell cycle arrest in phase Gy rather than the continuation with cell

cycle phase Ga.

Although the attributed m-calculus allows to model the dynamic change of
compartment volumes (cf. the Cell process in Table 4.4) and we have seen
how to integrate such global information with individual process dynamics,
describing volume-dependent rates of bimolecular binding reactions is difficult
if not impossible for the Notch signaling example, which has different reasons.
Taking global information into account similar to the previously described
gene expression processes is not possible due to the restriction to binary in-
teractions. Even without taking the volume as a side-condition into account
in order to describe downward causation, binding between Delta and Notch
requires already an interaction between two processes. Providing information
about the volume of the membrane compartments of both adjacent cells would
therefore require to define a synchronous interaction between four rather than
two processes, which is impossible in 7-calculus-based languages. One could
circumvent this problem by additionally attributing Notch and Delta processes

with the volume of the compartment they reside in. However, unlike using pri-
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oritized interactions to aggregate individual state changes in a many-to-one
manner, this would require to instantaneously and simultaneously update all
individual processes of a cell once its compartment volume changes, i.e., one-
to-many, which can hardly be achieved.

The imperative m-calculus (John et al., 2009; John, 2010) — a formal lan-
guage that is obtained from and thus shares many features with the attributed
m-calculus — offers a solution for modeling such processes in dependence on
global side-conditions. The imperative 7-calculus allows defining global vari-
ables that can be accessed by individual processes (no example shown). This
way, global stores can be used to describe reactions with Michaelis-Menten
kinetics (Mazemondet et al., 2009) or dynamic compartment volumes (John
et al., 2009). However, in the case of our multicellular example model this
method does not denote a viable solution, as it would require the definition
of a global variable for the volume of each distinct cell, which is impossi-
ble due to the dynamic instantiation of new cells during runtime. Therefore,
the only potential alternative for describing the volume-dependent binding
between Delta and Notch in the attributed m-calculus seems to be a predomi-
nantly population-based model, where each molecular species is described by
an attribute of a few high-level processes (cf. John et al., 2010). However,
this in turn counteracts the complexity reduction, as it prevents from using

features like private channel names for restricting the communication scope.

4.2.3 Rule-based Approaches

Rule-based modeling denotes the usage of a specific class of modeling lan-
guages, in which dynamics are described by a set of rules whose execution
(also application or firing) determine state changes of the model. Thereby,
each rule comprises certain conditions that need to be fulfilled in order to be
executed (Hayes-Roth, 1985). From a conceptual simulation strategy point of
view, rule-based modeling focuses on reactions rather than objects and follows
the activity scanning approach (cf. page 38f).

Rule-based models may be specified by rather narrative descriptions, like
the qualitative ecological models by Starfield (1990), for instance. However,

in the context of quantitative systems biology, the syntax of rule-based lan-
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guages typically follows the notation of chemical reaction equations or rather
similar representations, i.e., the left-hand side of a rule defines the condition for
rule application while the right-hand side specifies the action to be performed
once the rule fires. Just to mention some examples, BioNetGen Language
(Faeder et al., 2005, 2009), k-calculus (Danos et al., 2007a, 2009), BIOCHAM
(Chabrier-Rivier et al., 2005; Fages and Soliman, 2008), and LBS (Pedersen
and Plotkin, 2010) are rule-based languages that fall into this category. These
languages — like many other rule-based approaches — can be also classified as at-
tributed languages, since rules are applied to structured (i.e., attributed) model
entities (sometimes termed agents) with possibly various states. By employing
conditional patterns, rules become rule schemata, which may be instantiated
in different contexts. Therefore, rule-based modeling has been found to be a
powerful tool for managing combinatorial explosion and it enables a concise
and compact description of biochemical and cell biological models (Hlavacek
et al., 2006; Blinov and Moraru, 2012).

Let us take an example in the BioNetGen Language (BNGL). The basic
model entities in BNGL are molecules that may be attributed by so called
components. The BNGL model in Figure 4.8 comprises a “Not” and a “Del”
molecule type, both consisting of multiple components that need to be spec-
ified by a name and a set of potential values (states) of each component.
Consequently, the restriction to a finite value set hampers the description of
newly generated cells, for instance, as the identifier (“ID”) of each potentially
appearing cell needs to be specified in advance. However, on the other hand,
only a limited number of intracellular compartmental locations (“LOC”) exist
where Notch and Delta may reside in, namely the membrane (“mem”), cyto-
plasm (“cyt”), and the nucleus (“nuc”). Please note, the “memnecd” location
of “Del” denotes a Delta ligand molecule within the membrane compartment
right after the cleavage of a bound Notch receptor. To distinguish between the
mature Notch receptor (consisting of both the extracellular as well as intra-
cellular domain) and Nicd, “Not” molecules have a component “D” with either
state “ei” or “i”. In addition, “Not” and “Del” molecules both have another
component “BS” having no defined state but denoting the binding site between

Delta ligand and Notch receptor. Binding between molecules can be described
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begin molecule types
GenN (ID"172)
GenD (ID~172)
Not (ID~172,LOC~cyt “mem~nuc ,D~ei~i,BS)
Del(ID~172,L0C~cyt " mem~memnecd ,BS)
Trash ()

end molecule types

begin observables
Molecules Nic_nl1 Not(ID"1,LOC~nuc) # amount of nuclear Nicd in celll
Molecules Nic_n2 Not(ID"2,LO0C~nuc) # amount of nuclear Nicd in cell2

end observables

begin functions
Thetal () = (Nic_n1-h) / (K~h + Nic_n1-h)
Theta2() = (Nic_n2-h) / (K~h + Nic_n2-"h)

end functions

begin reaction rules

# gene expression

GenN(ID~1) -> GenN(ID"1) + Not(ID"1,LOC~cyt,D"ei,BS) kilprime + kl1*Thetal()
GenN(ID"2) -> GenN(ID"2) + Not(ID"2,LOC cyt,D~ei,BS) klprime + kl*Theta2()
GenD (ID"1) -> GenD(ID~1) + Del(ID~1,LOC~cyt,BS) k2 * (1 - Thetal())
GenD(ID~2) -> GenD(ID~2) + Del(ID~2,LOC~cyt,BS) k2 * (1 - Theta2())

# protein translocation

Not (LOC~cyt,D~ei) -> Not(LOC"mem,D~ei) k3

Del (LOC~cyt) -> Del (LOC"mem) k4
Not (LOC~cyt ,D~i) -> Not (LOC~nuc,D"i) k7
Del (LOC"memnecd) -> Del(LOC~cyt) k8

# binding between Delta and Notch
Not (ID~1,LO0C " mem,BS) + Del(ID~2,L0C~mem,BS) -> \
Not (ID~1,L0C mem,BS!1) .Del (ID~2,L0C " memnecd ,BS!1) k5
Del(ID~1,L0OC mem,BS) + Not(ID~2,LO0C~mem,BS) -> \
Del(ID~1,L0C " memnecd ,BS!1) .Not (ID~2,L0C " mem,BS!1) k5

# catalyzed cleavage of Notch
Not (LOC~mem,D~ei,BS!1) .Del(BS!1) -> \
Not (LOC~cyt ,D~i,BS) + Delta(BS) MM(kcat ,Km)

# protein degradation
Not (BS) -> Trash() kdeg
Del(BS) -> Trash() kdeg

end reaction rules

Figure 4.8: BNGL model of the Notch signaling example. The model describes
biochemical dynamics within and between two cells only. Parameters, seed species,

and actions blocks are omitted.
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by using bond labels (“!1”) and the “.” symbol to indicate a molecular com-

plex:
Not(BS) + Del(BS) -> Not(BS!1).Del(BS!'1) k5

In Figure 4.8, a binding reaction is further constrained to molecules that are lo-
cated within the membrane compartment (“LOC mem”) of adjacent cells (“ID~1”
and “ID~2"):

Not (ID~1,L0C mem,BS) + Del(ID~2,L0C"mem,BS) -> ...
and
Del(ID~1,L0C mem,BS) + Not(ID~2,LOC"mem,BS) -> ...

As BNGL — unlike the attributed m-calculus or colored Petri nets — does
not support the specification of attribute patterns by utilizing mathematical
expressions, we need to encode the neighborhood by explicitly inserting defined
cell “ID’s of each reactant molecule. Hence, two distinct rules need to be
defined in order to model Delta/Notch binding in a system comprising of two
cells, which does not denote any complexity reduction compared to ODEs or
conventional Petri net models, for instance. However, the employment of more
expressive reaction constraints in a rule-based formalism is also possible, as has
been successfully shown by Kuttler et al. (2010) and John et al. (2011). Also,
even without such capability the combinatorial complexity can be reduced. As
the “ID” of “Not” and “Del” will remain unchanged — so that the molecule’s
cellular locality is preserved during the bound state — and BNGL follows the
“don’t care, don’t write” mantra, the subsequent cleavage of activated Notch
requires only a single rule schema, no matter how many cells do exist.

Similarly, the two protein degradation rules “Not (BS) -> Trash() kdeg”
and “Del(BS) -> Trash() kdeg’ encode for the degradation of any “Not”
and “Del” molecule as long as having an unbound binding site “BS”. Therefore,
together both degradation rules encode for a set of 14 elementary reactions (7
per cell, cf. Table 3.1 on page 45) in the two-cell model of Figure 4.8. Please
notice, “Trash” denotes a dummy molecule, which is necessary since BNGL

requires one product species on the right-hand side of each rule at least.

84



4.2. Attributed Languages

begin observables
Molecules Vol_ml Vol (ID~1,L0OC mem) #
Molecules Vol_m2 Vol(ID~2,L0C mem) #
Molecules Vol_cl Vol(ID"1,L0C~cyt) # cytoplasm volume of celll
Molecules Not_cl Not(ID™1,L0C~cyt,D~ei) #

membrane volume of celll

membrane volume of cellZ2

cytoplasmic Notch amount in celll

end observables

begin reaction rules
# binding between Delta and Notch
Not (ID~1,LO0C mem,BS) + Del(ID~2,L0C~mem,BS) -> \
Not (ID~1,L0C " mem,BS!1) .Del (ID~2,L0C " memnecd ,BS!1) k5 / (Vol_ml + Vol_m2)

# cell cycle phase transition from G1 to (G2
Cell (ID~1,PHASE~G1) -> Cell(ID~1,PHASE~G2) \
if (Vol_c1l >= 1.5%Vc, if(Not_cl < tN, kG2, 0), 0)

# cell cycle arrest (transition from G1 to GO0)
Cell(ID"1,PHASE~G1) -> Cell(ID~1,PHASE~GO) \
if (Vol_c1l >= 1.5x%Vc, if(Not_cl >= tN, kGO, 0), 0)

end reaction rules

Figure 4.9: BNGL rules describing upward and downward causation. Conditional

expressions are defined as if (boolean condition, true clause, false clause).

The recent BNGL specification? also supports arbitrary rate kinetics (in past
versions, reactions were restricted to follow the law of mass action, Michaelis-
Menten kinetics, or a saturation rate law). Arbitrary kinetics can be specified
by user-defined functions, which may depend on global observables (Sneddon
et al., 2011). For example, in order to model the Hill-type gene expression
rates, two observables “Nicd_nuc1” and “Nicd_nuc2” are defined in Figure 4.8,
which hold the current amounts of nuclear Nicd in each of both cells and deter-
mine the functional values of “Thetal” and “Theta2” that are used to describe
the rate law of according gene expression rules. In the same way, volume-
dependent downward causation can be described (Figure 4.9). However, simi-
lar to the Petri net in Figure 4.4, compartment volumes need to be described

by the same kind of model entity like other state variables, i.e., volume size can

2see http://bionetgen.org/index.php/Release_Notes#version_2.2.0_stable

85



http://bionetgen.org/index.php/Release_Notes#version_2.2.0_stable

4. Flat Model, Multiple Levels?

be described in terms of molecule count only. As a consequence, the quantities
of compartment volumes are represented by discrete integers rather than real
numbers and therefore require a recalculation and normalization of certain
parameters. Moreover, this also hampers the description of abrupt volume
changes, e.g., due to cell division.

Global observables can be also used to describe cell cycle phase transi-
tions of the example model that are constrained by upward causation (second
and third rule in Figure 4.9). Conditional expressions evaluate the according
time-dependent variables such that, e.g., a transition from G; to Gy phase is
prevented (O-rate) if the volume of the cytoplasm is lower than 150% of the
initial value (“1.5%Vc”) or the amount of cytoplasmic Notch exceeds a certain
threshold value (“tN”). Due to the need for global observables to access the
total amounts of certain molecular species, it is not possible to describe the
cell cycle transition rules in terms of rule schemata, i.e., to ignore the “ID”

attribute of “Cell”.

4.3 Concluding Remarks

In this chapter, an overview of diverse flat modeling approaches has been given
and their support or suitability for describing different multilevel aspects has
been discussed with the help of the Notch signaling example from Chapter 3.
Table 4.5 tries to summarize the results, however, please notice that the as-
sessment may be rather imprecise and subjective.

By definition, flat approaches do not support any hierarchical structuring
of models. Therefore, multiple (nested) levels can be described only implicitly,
which is typically realized by an appropriate naming of different state variables,
e.g., Prot.,: and Prot,,. to distinguish between the cytoplasmic and nuclear
location of a certain kind of protein. The size of model descriptions, e.g., the
number of species, equations, or graph nodes, may thereby easily outreach
manageable dimensions (cf. the Petri net in Figure 4.2 that describes a rather
simple reaction network within and between merely three cells).

Private channel names in the m-calculus can be used to describe compart-

mentalized dynamics by restricting the communication scope of processes.
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Table 4.5: Summary of the expressivity of diverse flat modeling approaches with

respect to describing certain multilevel aspects. Good and moderate support is

[44

denoted by “+” and “o” respectively, while “—” denotes no or only poor support for

modeling the according aspects.
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Ordinary differential equations — — — o o o
Extended stochastic Petri nets — — - + o —
Stochastic m-calculus — o — — — o

Colored stochastic Petri nets — — o + o

Attributed m-calculus — o o o o
BioNetGen Language — o o + o —

Thereby, the number of process definitions may be effectively reduced. An-
other approach for describing compartmentalized dynamics more conveniently
is to use attributes like in colored Petri nets or most rule-based approaches,
where different locations may be modeled by assigning according attribute val-
ues to model entities. This way, molecules within different compartments can
be clearly distinguished from each other, while models can be kept small due
to generalized transitions or rule schemata. However, structural relationships
between different compartments still remain implicit. In other words, there is
no way to explicitly describe hierarchical nesting, possibly having a negative

effect on the understandability of multilevel models.

Describing phenomena like cell division requires adding state variables dy-
namically, which is not supported by ODEs and Petri nets. Adding new cells

dynamically is also difficult or even impossible to describe in the m-calculus and
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BNGL, however, these languages allow for describing dynamic model struc-
tures originating from molecular bindings. Please note, although colored Petri
nets do not allow for changing model structures dynamically, the process of
cell division can be mimicked to some degree by its colored token sets, similar

to the approach employed by the attributed m-calculus.

Equally important, diverse examples indicate that supporting dynamic pro-
cesses to be flexibly constrained facilitates the description of certain multi-
level aspects. Thereby, constraints may often be based on individual (local)
attributes, e.g., the translocation of a molecule from one compartment into
another is constrained by its current location and mathematical expressions
facilitate the description of spatial relationships based on corresponding at-
tributes. In addition, also information of an extended scope may be of impor-
tance to model approximate reaction kinetics beyond the usual law of mass
action and particularly to describe interlevel causation. For instance, the ag-
gregated amount of cytoplasmic Notch constrains cell cycle phase transitions
(upward causation) and a bimolecular reaction rate depends on the surround-

ing compartment volume (downward causation).

Due to the lack of structuring elements, state variables denoting such high-
level information are oftentimes described in the same way like any other model
entity and therefore may misleadingly appear to be qualitatively equivalent,
e.g., molecules and compartment volumes in a Petri net that are described
by the same kind of place nodes. Also, in this case the constraining informa-
tion denotes an additional side-condition that increases the number of entities
taking part in a dynamic process. Therefore, termolecular reactions (or reac-
tions comprising of even higher molecularities) may need to be defined, which
is impossible in some formalisms, e.g., the w-calculus is restricted to binary

Interactions.

In an attributed language, such high-level information may be assigned to
defined “high-level” entities. For example, in the attributed m-calculus model
in Table 4.4 the membrane and cytoplasm volumes as well as the phase of
the cell cycle are attributes of the Cell process rather than described by own
distinct processes. This way, not only a basic structuring of the model has

been realized (compartment volumes and the cell cycle phase are properties of
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the same entity), but also multiple side-conditions can be taken into account
without increasing the number of interacting entities. Different types of at-
tributes thereby facilitate an appropriate representation of different kinds of
information, e.g, real numbers or strings of characters.

Besides attributing certain model entities, another approach for constraining
dynamic processes based on high-level information is to define according global
variables that can be accessed everywhere, as it can be done in the imperative
m-calculus and BNGL, for instance. In a single-level model this seems to
be an effective approach, however, modeling multilevel systems comprising
of many compartments and cells requires the definition of numerous global
variables denoting similar information in different contexts. The number of
global variables to be defined may therefore become rather large. Moreover,
adding global variables dynamically is typically not supported, which again

hampers the description of dynamic structure models.
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Chapter 5
Hierarchically Structured Models

In the previous chapter, an overview of diverse flat modeling approaches has
been given. It has been shown that certain formalisms are better suited for
describing multilevel behavior than others. However, a common limitation is
that — by definition — each flat modeling approach allows to describe nested
hierarchies only implicitly. Different modeling approaches with an explicit
support for hierarchies and their suitability for describing biological systems
at multiple levels are therefore discussed in this chapter. Thereby, the Notch
signaling model presented in Chapter 3 again serves as a running example to
illustrate how different aspects of biological multilevelness can be expressed.
At first, different hierarchical extensions of originally flat formalisms are
discussed, i.e., hierarchical Petri nets, BioAmbients as an extension of the
m-calculus, and an extension of the rule-based BioNetGen Language support-
ing nested compartments. Subsequently, inherently hierarchical modeling ap-
proaches like Statecharts and DEVS are in the focus of Chapter 5.2. At the

end of this chapter, a short summary of the different approaches will be given.

5.1 Hierarchical Extensions of Flat Formalisms

5.1.1 Hierarchical Petri Nets

To facilitate the construction of large Petri nets, Huber et al. (1991) proposed
to structure P/T nets hierarchically by means of interrelated subnets. The

proposed constructs thereby do not extend the expressive power of Petri nets,
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a) subnet CYT b) subnet NUC

O Notm, O Dely,
2

:

I% Not. Del.

K 7
GenN I% Nicp, GenD
6 Not-Del 5 Nice

Figure 5.1: Subnets of a hierarchical colored Petri net of the Notch signaling

example. (a) Subnet CYT representing the dynamic processes taking place within
the cytoplasm. (b) Subnet NUC of nuclear processes. All place nodes in both subnets

are of type N. Transition labels are omitted.

but provide a formal framework for composition and explicit structuring of
Petri nets in a hierarchical manner. The main concepts that distinguish hier-
archical from conventional (non-hierarchical) Petri nets are substitution nodes
and fusion sets.

Substitution allows replacing entire subnets consisting of numerous places
and transitions by so-called macro nodes. Thereby, a system may be described
in a component-based manner and in terms of different levels of detail. For
example, the macro transition NUC in Figure 5.1a denotes a rather abstract
representation of the nuclear dynamics of our Notch signaling example model,
namely the consumption of cytoplasmic Nicd (Nic,) and the production of
Notch receptors (Not.) as well as Delta ligands (Del.) by the nucleus. The
actual detailed dynamics, like the translocation of Nicd from the cytoplasm
into the nucleus and the synthesis of Notch and Delta in dependence on the
nuclear amount of Nicd, are described by a distinct subnet Nuc (Figure 5.1b)
substituting the macro transition in subnet CyT (Figure 5.1a). Thereby, the

interfaces for composition are denoted by identically named place nodes in
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CyT and Nuc (i.e., Nic., Not., and Del..) that are semantically merged. Sub-
net CYT, in turn, denotes merely a component of a larger Petri net shown in
Figure 5.2. This high-level Petri net looks pretty much similar and is com-
pletely equivalent to the colored Petri net depicted in Figure 4.7 on page 75.
However, besides the substitution transition (CYT), it makes additionally use

of another concept of hierarchical Petri nets, i.e., fusion sets.

A fusion set defines a set of nodes that are functionally identical. That
means, each action at one of the nodes instantaneously also takes place at all
other nodes of the set and thus the nodes of a fusion set can be considered
to be copies of each other. Three different sets of fusion places are defined in
Figure 5.2 to describe certain interlevel dynamics influenced by or influenc-
ing the markings of place nodes within subnets CYT and NUC respectively.
Without the capability to define fusion places it would be impossible to de-
scribe the multilevel model in terms of distinct subnets, as, e.g., the amount
of cytoplasmic Notch (Not.) needs to be taken into account for modeling cer-
tain high-level processes of the cell cycle but its own dynamics is described
at a lower hierarchy level, i.e., within subnet CyT. Therefore, fusion sets al-
low for describing upward and downward causation across different levels of

organization.

Although subnets may be called more than once within a hierarchical Petri
net, a dynamic instantiation during runtime is not possible and thus the struc-
ture of such a model is fixed. This is different in object-oriented Petri nets
such as Mobile Nets (Busi, 1999) or Reference Nets (Kummer, 2001), which
also address the need for describing systems at multiple levels by following a
“nets-within-nets” paradigm, i.e., they support to have nets as tokens of other
nets (see also Lomazova, 2000, 2001; Valk, 2004; Miyamoto and Kumagali,
2005; Kohler-Bufsmeier, 2009). Thereby, migration of entire subnets within
high-level structures becomes possible, facilitating the description of dynamic

variable structure models.

Communication between different levels of an object-oriented Petri net is
typically realized by synchronous channels that enable a synchronized firing
of two transitions assigned with the same channel name (Christensen and

Damgaard Hansen, 1994). However, since this method relies on binary interac-
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j=i+lorj=i—1

Figure 5.2: Hierarchical colored Petri net of the Notch signaling example. Place
node Not-Del is of type NxN, Vol. and Vol,, are of type NxR, and the remaining

places are of type N. Transition labels are omitted.
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tions and is therefore quite similar to process communication in the m-calculus,
it may be difficult to take additional side effects into account. Also, object-
oriented Petri nets are typically executed in equidistant time steps rather than
discrete events in continuous time, which hampers modeling of biochemical

systems.

5.1.2 BioAmbients

In flat formalisms, the representation of different locations like different cells or
cellular compartments often requires to define different “variants” of an entity
by introducing distinct entity names, one for each location. By contrast, the
m-calculus allows to describe different compartments also by restricting com-
munication scopes achieved by private channel names and according process
parameterization, as has been shown in Chapter 4.1.3 (see also Regev, 2002).
However, both methods — i.e., defining distinct entity names as well as using
private communication channels — are often impractical as they allow, for ex-
ample, to describe model structures only implicitly. Moreover, the number
of entities to be defined may be prohibitive and modeling dynamic structures
like compartment fusion or migration is impossible or requires complicated
workarounds for propagating private channel names. Therefore, Regev et al.
(2004) have presented BioAmbients as a solution to overcome these problems.

BioAmbients extends the m-calculus by additional means for structuring
models explicitly and thereby restricting the communication scopes of pro-
cesses. Based on the calculus of mobile ambients (Cardelli and Gordon, 1998),
the extension allows for wrapping processes P by so-called ambients, which is
written as [P]. Ambients may have an optional name for annotation purposes
and they may be arbitrarily nested, which is of importance to appropriately
reflect the hierarchical nature of biological compartments. For instance, the
intracellular compartmentalization of the Notch example, where each com-
partment may contain different kinds of protein molecules, can be described
by nesting and parallel composition of different sub-ambients (membrane,

cytoplasm, nucleus) and protein-representing processes (Del, Not, Nic):

membrane[ Del | Not | ... | cytoplasm[ Del | Not | Nic| ... | nucleus[ Nic| ...]]]
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Figure 5.3: Restricted communication scope within nested ambients. Processes

that may interact with each other are connected by dashed arrows.

The nesting of ambients may be dynamically changed by applying so called
capabilities, for which pairwise synchronization via identical channel names and
direct adjacency of ambients is required. Different capability pairs thereby de-
scribe different variable structure operations: enter/accept allows an ambient
to enter another ambient at the same hierarchy level, exit/expel describes the
opposite mechanism, and merge+/merge— allows two ambients located at the
same level to merge. In all cases, the content of ambients will be entirely
moved or merged in conjunction, e.g., merging two ambients [ merge+ m.A]|

and [ merge— m.A| B] by synchronizing via channel m results in a single am-

bient [A| A | B].

Besides capabilities for changing the nested structure, the ambient hierar-
chy also restricts communication between processes, i.e., two processes may
communicate with each other only if they are in proximity. Similar to dif-
ferent capability pairs, process communication is additionally constrained by
pairs of compatible communication directions: local/local for process commu-
nication within the same ambient, p2c¢/c2p for communication from a parent
to its child ambient, ¢2p/p2c for the opposite direction, and s2s/s2s describes
communication between two processes residing within different ambients that
are direct siblings. Figure 5.3 illustrates such restricted communication scope
of processes within hierarchically nested ambients. A structured model of the
biochemical processes of the Notch signaling example that makes use of all

different communication directions is shown in Table 5.1.
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Table 5.1: BioAmbients model of biochemical Notch signaling processes. The model

describes signaling between two cells. Synchronization rates are omitted.

Init = membrane[ Mem | cytoplasm| Cyt | nucleus| Nuc | GenN | GenD]]] |
membrane[ Mem | cytoplasm[ Cyt | nucleus[ Nuc | GenN | GenD ] ]

Mem == p2c mnot?.(Mem | Not) + p2c mdel?.(Mem | Del) + local deg!.Mem

Cyt == p2c mnot?.(Cyt| Not) + p2c mdel?.(Cyt| Del) +
c2p mnic?.(Cyt | Nic) + c2p mdel?.(Cyt| Del) + local deg!.Cyt

Nuc = ¢2p mnic?.(Nuc| Nic) + local basal?. Nuc + local deg!.Nuc
GenN == local basall.c2p mnot!.GenN + local act?{b}.local bl.c2p mnot!.GenN
GenD == local basall.c2p mdell.GenD + local rep?{b}.local bl.GenD

Nic == (v b) local act!{b}.local b?.Nic + local rep!{b}.local b?.Nic +

p2c mnicl.0 + local deg?.0
Not == s2s bind?{b}.s2s bl.p2c mnic!.0 + c2p mnot!.0 + local deg?.0

Del == (v b) s2s bind!{b}.s2s b?.(local deg?.0 + p2c mdel!.0) +
c2p mdell.0 + local deg?.0

In this model, compartments are described as ambients (with names mem-
brane, cytoplasm, and nucleus) and proteins as processes (Nic, Not, Del).
Since capabilities like enter and ezit can be used for changing the nested
structure of entire ambients only, the translocation of protein molecules from
one compartment into another is described by restricted interaction between
protein processes and additional processes (Mem, Cyt, and Nuc) defined as
communication partners within the respective compartment ambients. For ex-
ample, translocation of cytoplasmic Notch to the membrane is described by
an interaction between a Not and the Mem process over channel mnot, where
due to the “child-to-parent” (¢2p/p2c) relation communication is restricted to
processes Not that are one level down the hierarchy compared to process Mem,

i.e., to those that reside within the cytoplasm ambient:

Not == ¢2p mnot!.0 + ...
Mem = p2c mnot?.(Mem | Not) + ...
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Please note, synchronization rates are omitted in the model for the sake of
simplicity, although stochastic execution semantics for BioAmbients have been
defined (Brodo et al., 2007; Phillips, 2009). These semantics, however, allow for
standard mass-action kinetics only and therefore it is not possible to describe
the dynamics of gene expression and cleavage of activated Notch as has been
introduced in Chapter 3.1.3. Since ambients do not have a state and behavior
of their own and the formalism supports only binary interactions like in the
original m-calculus, it is also still impossible to model dynamic compartment
volumes and according downward causation effects on Delta/Notch binding.
The same holds true for cell cycle dynamics constrained by upward causation.
Furthermore, BioAmbients also lacks the expressive power to constrain process
communication based on more elaborate spatial relationships like the linear
organization of multiple cells.

However, the BioAmbients calculus — like other related membrane-inspired
languages such as Brane Calculi (Cardelli, 2005) and P systems (Paun and
Rozenberg, 2002; Ardelean and Cavaliere, 2003; Spicher et al., 2008) — still
denotes a significant step toward accessible multilevel modeling as it allows to
describe nested model structures explicitly, restricts the communication scope
of entities in dependence on these structures, and moreover also allows to

change a model’s structure dynamically.

5.1.3 Compartmental BNGL

The need for structuring models hierarchically has been also addressed in the
realm of rule-based modeling, e.g., the biok-calculus (Laneve and Tarissan,
2008) that combines ideas of Brane Calculi (Cardelli, 2005) and the x-calculus
(Danos et al., 2007a), or the Calculus of Wrapped Compartments (Coppo
et al., 2010b) as a variant of the Calculus of Looping Sequences (Barbuti
et al., 2006, 2007). Another rule-based approach by Harris et al. (2009) — i.e.,
compartmental BNGL — shall be discussed in more detail here.
Compartmental BNGL (¢cBNGL) extends the originally flat BioNetGen Lan-
guage by means of reaction compartments and membranes to explicitly de-
scribe the hierarchical topology of a cell and to take effects on reaction rates

into account in dependence on the location of biochemical species. That means,
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in cBNGL bimolecular and higher-order reaction rates are automatically ad-
justed according to the compartment volume the reaction is taking place in.
Thereby, the generality of rules for encoding different reactions may be in-
creased. The localization of molecules also restricts the scope of rule applica-
tion such that molecules in the same or adjacent compartments may interact

with each other only.

A model’s compartment topology is specified within the compartments block
of a ¢cBNGL model specification (see left panel on the top of Figure 5.4).
Thereby, compartments may be defined either as three-dimensional or two-
dimensional (i.e., membrane-like surfaces) compartments and each compart-
ment has assigned a volume as well as surrounding parent compartment (ex-
cept of the top-most compartment, which has no parent). Each molecule is
localized within one of the specified compartments. Therefore, no additional
component (i.e., attribute) needs to be defined in order to describe different
locations of a molecule (cf. non-compartmental BNGL model in Figure 4.8,
page 83). Different parts of a molecular complex may be localized within dif-
ferent compartments, which facilitates modeling of transmembrane and other
membrane-anchored proteins consisting of multiple subdomains. This allows,
for example, describing the Notch receptor in terms of three distinct parts,
i.e., the intracellular domain Nicd, the extracellular domain Necd, and an in-
termediate transmembrane domain Nmd, each of which may be localized within
a different compartment. Unfortunately, cBNGL does not support molecular
species spanning multiple surface (i.e., membrane) compartments (Harris et al.,
2009, Sect. 4.4), which hampers the description of intercellular Notch signal-
ing. Therefore, the example model in Figure 5.4 describes the biochemical

dynamics of Notch signaling within a single cell only.

By explicitly specifying the compartment name in postfix or prefix nota-
tion, transport rules may change the location of individual molecules and en-
tire molecular complexes respectively. However, the compartment topology
of a model is fixed, i.e., cBNGL does not provide means for dynamic struc-
tures. Also, besides the volume, it is not possible to equip compartments
with an own state. Moreover, the volume of a compartment denotes merely a

constant model parameter rather than a state variable that may change over
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begin compartments begin species

EXT 3 V_e # exztracellular space DNA (gene~N)@NUC 1
MEM 2 V_m EXT # cell membrane DNA (gene~D) @NUC 1
CYT 3 V_c MEM # cytoplasm end species

NUM 2 V_O CYT # nuclear membrane

NUC 3 V_n NUM # nuclear compartment

end compartments begin observables

# amount of nuclear Nicd

begin molecule types Molecules Nicd_n Nicd(m)@NUC
DNA (gene~N~D) end observables

Nicd (m)

Nmd (i,e)

Necd (m,d) begin functions

Delta(e) Theta () =

Trash () (Nicd_n~h) / (K~h + Nicd_n~h)
end molecule types end functions

begin reaction rules
# gene expression
DNA (gene~N) -> DNA(gene~N) + @CYT:Nicd(m!1l).Nmd(i!l,e!2).Necd(m!2,d) \
kiprime + ki1*Theta()
DNA(gene~D) -> DNA(gene~D) + @CYT:Delta(e) k2 * (1 - Theta())

# protein translocation and recycling

Nmd (e!1) @CYT.Necd(m!1) @CYT -> Nmd(e!1) @MEM.Necd(m!1) @EXT k3
Delta(e)@CYT -> Delta(e)@MEM k4

Nicd (m) @CYT -> Nicd(m)@NUC k7

Delta(e!1) @MEM.Necd(d!'!1,m) -> Delta(e)@CYT k8

# receptor-ligand binding (misleadingly described by Notch and Delta
# molecules being part of the same cell)

Necd(m!+,d) @EXT + Delta(e)@MEM -> Necd(m!'+,d!1)@EXT.Delta(e!1)@MEM k5

# catalyzed cleavage of Notch
Nicd(m'!1) .Nmd(i!l1,e!2) .Necd(m!2,d!3) .Delta(e!3) -> \
Nicd(m) + Necd(m,d!3).Delta(e!3) MM(kcat ,hKm)

# protein degradation
Nicd(m) -> Trash() kdeg
Necd(m!+,d) -> Trash() kdeg
Delta(e) -> Trash() kdeg

end reaction rules

Figure 5.4: Compartmental BNGL model of biochemical Notch signaling processes

within a single cell. Parameters and actions blocks are omitted.
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time. Therefore, modeling of downward causation and certain high-level as-
pects of the Notch signaling example is hampered, e.g., cell cycle dynamics
in dependence on the cytoplasmic compartment volume. Upward causation in
dependence on the cytoplasmic amount of Notch receptors could be described
like in standard BNGL, i.e. by defining and accessing an according observable
(cf. Figure 4.8). However, this would still require the definition of an own

global observable as well as reaction rule for each modeled cell.

5.2 Inherently Hierarchical Approaches

5.2.1 Statecharts

The visual Statecharts formalism by David Harel (1987) has been developed to
facilitate the description of reactive systems, i.e., of systems that react to ex-
ternal stimuli (Harel and Pnueli, 1985). A reactive system is characterized by
different states reflecting different situations in the life of this system, during
which it performs some action or waits for some event. Therefore, the seman-
tics of Statecharts follows a discrete event-based approach, meaning that “the
behavior of a reactive system is described as a sequence of discrete events that
cause abrupt changes (taking no time) in the state of the system, separated by
intervals in which the system’s state remains unchanged.” (Kesten and Pnueli,
1991, p.592). Due to their clearly defined graphical representation and the
discrete events semantics, Statecharts are prominent in the domain of model-
based software engineering and have become an essential part of the standard-
ized Unified Modeling Language (UML; Fowler, 2004). However, Statecharts
have been also repeatedly applied to modeling biological systems, especially
with a focus on multicellular models (see, e.g., Kam et al., 2001; Efroni et al.,
2003; Amir-Kroll et al., 2008; Kugler et al., 2010; Fisher and Harel, 2010).
Statecharts are strongly inspired by conventional finite state machines, how-
ever, in addition they support hierarchical nesting and orthogonal (concurrent)
states to structure a model in different ways. While hierarchy allows describ-
ing a system at different abstraction levels, i.e., refinements and generaliza-
tions, orthogonality helps to reduce combinatorial complexity by structuring

the state of components into multiple concurrent sub-states. Transitions be-
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tween different states are labeled as follows: “trigger|condition|/action”, where
each part of this labeling scheme is optional. Applications of transitions are
triggered by the passage of time or by events generated as an action by other
state transitions, which allows letting different parts of a model communicate
with each other. In addition, conditions may constrain state transition firings

based on other states.

Let us consider an example. The Statecharts model depicted in Figure 5.5
describes different states and state transitions of both Notch as well as Delta
protein molecules in accordance with our recurring example model. Thereby,
both proteins may either exist (large boxes on the left side) or may be degraded.
In the case of Notch, the “existent” super-state consists of three concurrent
states “domains”, “location”, and “ligand binding site”, indicated by dashed
lines. Each of these parallel sub-states has its own (interrelated) dynamics.
For example, initially! the Notch receptor molecule is located in the “cyto-
plasm”. From this state, a transition may occur either to state “membrane” or
to state “nucleus”. Both transitions depend on exponentially distributed ran-
dom waiting times, however, the transition from “cytoplasm” to “membrane”
may only fire in case of a mature Notch molecule consisting of both (intra-
cellular as well as extracellular) receptor domains, i.e., only if “domains” is
in the “mature” state. Conversely, only the intracellular domain (Nicd) may

translocate from the cytoplasm to the nucleus.

A transition from state “membrane” back to “cytoplasm” is triggered by
an event “cleavage”, which is caused by another state transition describing
the cleavage of activated Notch (“bound” state) leading to a loss of its lig-
and binding site. Please note, events in the original Statecharts formalism are
broadcasted. Therefore, the “cleavage” event not only triggers a state change
from “membrane” to “cytoplasm”, but also from “mature” to “Nicd” and more-
over also leads to a change of the receptor binding site of Delta protein from
state “bound” to “Necd”. Besides facilitating the description of various effects
caused by a single event, the asynchronous broadcast communication approach
of Statecharts hampers modeling of biochemical reactions like the binding of

two proteins, as the sender of an event may change its state although no bind-

Tnitial states are indicated by small black circles.
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Figure 5.5: Individual-based Statecharts model of reactive Notch and Delta

molecules.
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ing partner is reacting on it. Also, since numerous receivers may react on
the event of one sender, some kind of resource managing component may be
required that keeps track of the states of each molecule and is responsible for
triggering bimolecular reactions (Kam et al. (2001), see also next section on
Discrete Event System Specification). In the model of Figure 5.5, by con-
trast, this is not the case, as in this toy example merely one Notch and one
Delta molecule exist which may interact with each other. Binding between
both molecules then simply requires to check their “location” states, i.e., the
transition from Delta’s state “free” to state “bound” may only fire under the

condition that both molecules are located within the membrane.

Such an unrealistic example is given here, as the original Statecharts formal-
ism does not support object instantiation and thus would require to describe
each individual molecule by a distinct chart. Needless to explain that this
approach is highly impractical for modeling biochemical and other systems
consisting of large quantities of similar entities. Therefore, object-oriented
frameworks like Rhapsody (Harel and Kugler, 2004), GemCell (Amir-Kroll
et al., 2008), and Biocharts (Kugler et al., 2010) have been developed enabling
an instantiation of multiple objects from classes described as Statecharts. How-
ever, this approach requires additional syntactical and semantical means for
inter-object communication as well as instantiation and termination of objects
(Harel and Gery, 1996), which is typically realized differently by each tool and
thereby diminishes the generality and simplicity of according model descrip-

tions.

Alternatively, to remain with the original Statecharts formalism and to
avoid the aforementioned artifacts caused by asynchronous broadcast com-
munication, biochemical processes may be described in a more abstract way,
in which reactions are represented by concurrent states and pools of distinct
molecular species are represented by according global variables (see Figure 5.6).
Please notice, initial values of these variables will be set by entry actions tak-
ing effect when the “cell” state is being entered and dynamic changes will be
triggered either by an incoming event message or by the flow of time. Thereby,
it is possible to specify arbitrary kinetic rates (see, e.g., the update transition

of state R6) and interlevel causation is realized by taking the values of certain
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Figure 5.6: Abstract Statecharts model of the Notch signaling example. All time-
triggered state changes are assumed to be exponentially distributed waiting times.

State names representing biochemical reactions correspond to Table 3.1.
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variables into account (e.g., conditional cell cycle phase transitions that are
checking compartment volumes and the cytoplasmic Notch amount).

The presented abstract description of biochemical reactions permits to model
large quantities of molecular species, however, at the same time we lose the
capability of reducing combinatorial complexity, as all variables are globally
visible and different conditions of a molecule can no longer be described in
terms of concurrent states. Also, since the original Statecharts formalism does
not support modeling of variable structures, each potentially appearing cell
needs to be described in advance, as it is depicted on top of Figure 5.6. Hier-
archical nesting of statecharts is used here to describe the model’s structure
explicitly, e.g., to make clear that certain reactions are taking place within
particular compartments only. However, due to the global scope of generated
events in Statecharts, no further functionality is added by the hierarchical
structuring, unlike the restricted communication scopes in BioAmbients and
c¢cBNGL, for instance. On the other hand, these approaches do not allow to
equip structural elements with a state and dynamics of their own, which, by
contrast, is supported by Statecharts as there is no distinction between struc-

tural and behavioral elements.

5.2.2 Discrete Event System Specification

First introduced by Bernard P. Zeigler (1976), the Discrete Event System Spec-
ification (DEVS) denotes a classical discrete event formalism with a continuous
time base, where events like state changes are taking place at discrete points
in time. DEVS shares many similarities with Statecharts (see, e.g., Uhrmacher
and Kuttler, 2006; Ewald et al., 2007), such as employing a reactive systems
metaphor by focusing on states and state transitions based on incoming events.
Rooted in systems theory, the formalism also allows specifying models in a
modular and nested fashion yielding a composition hierarchy (Zeigler, 1984,
1987). Therefore, Statecharts or Statechart-like notations are frequently ap-
plied to visualize the dynamics of DEVS models (Borland and Vangheluwe,
2003; Risco-Martin et al., 2007).

In DEVS two different kinds of model components exist: atomic and coupled

submodels. Atomic models are the active components, i.e., they describe the
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model’s dynamic behavior. Coupled models, by contrast, serve as passive
containers for other coupled as well as atomic model components and define
how these components are interconnected with each other, i.e., they define the

model’s structure. Formally?, an atomic DEVS model is defined by a tuple
MA = <X7 va Su ta, 5ext7 6int7 5c0n7 >\>

where X is the set of inputs, Y is the set of outputs, S is the structured
set of states, ta : S — R2% U {oo} is the time advance function determining
the duration of states, ey : @ X X — S is the external transition function
determining how inputs change the state of the model, with state set ) =
{(s,e)|s € S,0 < e < ta(s)} including the time interval that has been elapsed
since the last event, d; : S — S is the internal transition function determining
how the state of the model changes when the specific time interval associated
with state s € S, i.e., ta(s), has been elapsed, d¢on : S X X — S is the confluent
transition function determining state changes for situations in which internal
and external events coincide, and A : S — Y is the output function determining
which outputs are generated when an internal state transition occurs.

So, similar to Statecharts, state transitions in DEVS can be either triggered
by external events or by the flow of time and likewise both deterministic as
well as stochastic time intervals with arbitrary kinetics are possible. How-
ever, unlike Statecharts, output events may be generated only in case of an
internal — i.e., time-triggered — state transition, leading to artifacts if a model
requires to describe an instantaneous response to an incoming message. The
interactions themselves are timeless and they are constrained at the superior
organizational level, i.e., which messages may reach which component is spec-
ified by coupling sets being part of the enclosing coupled model component.

Therefore, a coupled DEVS model is formally defined by a tuple

Mc = {X,Y,D, M, EIC, EOC, IC )

where X and Y are again sets of inputs and outputs respectively, D is the
name set of enclosed components, M; with ¢ € D is the structured set of sub-

components consisting of atomic and /or coupled DEVS models, EIC C X x X;

2The P-DEVS variant is presented here, which includes minor additional features com-
pared to the original DEVS formalism (see Chow and Zeigler, 1994; Zeigler et al., 2000).
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with ¢ € D is the set of external input couplings, FOC C Y; x Y with ¢ € D is
the set of external output couplings, and IC' C X; x Y; with ¢ € D is the set of
internal couplings, i.e., couplings that do not connect to the coupled model’s
environment but define communication links between sub-components M; only.
Please note, in general the input and output sets of DEVS models are plain
sets of messages. In practice, however, X and Y are typically structured into
typed ports (Zeigler et al., 2000), e.g., X may formally be structured into a
set of pairs {(i,v)|i € InputPorts,v € X}, where InputPorts is the set of
input ports and each X; is the set of allowed values for all i € InputPorts (see

example in Figure 5.7).

Output messages in DEVS are sent to all model components connected to
the respective output port, which resembles the broadcast communication of
Statecharts. Likewise, the original DEV'S formalism also does not support vari-
able structures, so that the initial model composition and couplings between
submodels are fixed. Therefore, similar to Statecharts, modeling biochemical
processes with DEVS typically implies to describe the system from a macro
perspective, where the molecular species amounts are represented by distinct
state variables and their dynamic changes are described by an ad hoc im-
plementation of a numerical integration or Gillespie’s stochastic simulation
algorithm, like it is indicated by Figure 5.8 (see also Uhrmacher et al., 2005;
Uhrmacher and Priami, 2005; Uhrmacher and Kuttler, 2006; Ewald et al.,
2007; Maus et al., 2008). Thereby, however, we might easily run into problems
due to combinatorial complexity and one of the main strengths of DEVS —
namely to describe a system in a modular and hierarchically structured man-
ner — seems to be reserved for describing dynamic processes in which only few
entities are involved, such as gene-regulatory processes or processes at higher
organizational levels like entire cells. However, even there the missing support
for variable structures denotes a major limitation for modeling biological sys-
tems, as, for example, each cell of a multicellular system and each potential
interaction between different cells need to be explicitly described in advance

and thus modeling of phenomena like cell proliferation is hampered.

To overcome such restrictions, diverse variants of the DEVS formalism have

been developed that support the description of variable structure models, e.g.,
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(bulksol.! ToClyt, cytoplasm.? FromMem),
(cytoplasm.! ToMem, bulksol.? FromCyt) }

Figure 5.7: DEVS model of the Notch signaling example. (Top) Schematic of
model composition and couplings. Lower-level components enclosed by “cytoplasm”
are not shown. (Bottom) Specification of the coupled “membrane” model. Please

(13 '77

note, input and output ports are indicated by prefixes “7” and respectively.
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bulksol X,Y, S, ta, dext, Oints Ocon, A )

?LVoly,,R), (?RVol,,,R), (? Vol,, R), (? FromCyt, { ‘Notch’, ‘Delta’}),
?LNoty,, NU {‘bind’, ‘unbind’}), (?RNot,,, NU {‘bind’, ‘unbind’}) }

(
X = {

(
(
Y := {(!LNot,,,NU{‘bind’, ‘unbind’}), (!RNot,,,NU {‘bind’, ‘unbind’}),
(1ToCyt,{‘Delta’, ‘Nicd’}) }
(

S = {(Vol, VolL, VolR, Del, Not, NotL, NotR, NotDelL, NotDelR, DelNec),
NextReaction, TimeToNextReaction |
Vol, VolL, VolR € R,
Del, Not, NotL, NotR, NotDelL, NotDelR, DelNec € N;
NextReaction € {DegNot, DegDel, BindingL, BindingR,
CleavageL, CleavageR, DegDelNec, RecycleDel };
TimeToNextReaction € R=° U {oo} }

ta(s, NextReaction, TimeToNextReaction) := TimeToNextReaction

dext (s, NextReaction, TimeToNextReaction),e,x) =
switch(z)
case ?LVol,,: newstate := s with VolL := getValue(?LVol,,);
case TFromCyt: if getValue(? FromCyt) = ‘Notch’
then newstate := s with Not++

else newstate := s with Del++;

end switch

(newstate, nextReact(newstate), nextReact Time(newstate))

Oint (s, NextReaction, TimeToNextReaction) :=
switch(NextReaction)
case DegNot: newstate := s with Not--;
case BindingL: newstate := s with Not--, Del--, NotDelL++;

end switch

A(s, NexztReaction, TimeToNextReaction) :=
switch(NextReaction)
case DegNot: (ILNot,,, Not — 1),(!RNot,,, Not — 1);
case BindingL: (!LNot,,, ‘bind’);

end switch

Figure 5.8: Atomic DEVS model of the bulk solution component. Please note,
the confluent transition function §co, is omitted, as it describes nothing else than
the simple successive execution of dint and dext. The partial state set s is defined as

s := S\{NeztReaction, TimeToNextReaction}.
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dynDEVS (Uhrmacher, 2001) and p-DEVS (Uhrmacher et al., 2006). Model
components in dynDEVS represent a set of models that may generate them-
selves by according transitions. Each element of the set thereby represents an
individual instance of the model, which may also dynamically change its indi-
vidual couplings to other components, i.e., its interaction capability. p-DEVS
goes even further and extends dynDEVS by variable interfaces (port sets) and
multi-couplings, by which the communication structures between components
are automatically changed depending on the availability of ports. The idea is
to let variable interfaces signalize significant state changes to a model’s envi-
ronment and thereby change its interaction capabilities, which can be straight-
forwardly used, e.g., to model protein-protein interactions that become only
possible due to certain intramolecular modifications like the phosphorylation

of specific amino acid residues.

While variable structure approaches generally facilitate the description of
models at a detailed (micro) level of abstraction, their modular composition
capacity similar to that of regular DEVS can be also used for combining micro
and macro perspectives within the same model, as has been done by Degen-
ring et al. (2003, 2004), for instance. However, none of the aforementioned
approaches eliminates another major limitation for multilevel modeling with
DEVS, namely that coupled models do not have a state and behavior of their
own. Unlike hierarchical Statecharts but similar to ambients in BioAmbients
and compartments in ¢cBNGL, coupled DEVS models are simple containers
and their behavior is thus completely determined by their enclosed entities
and the way these entities are coupled with each other. In case of describing
processes that depend on the overall state of the system, this passive fate of
coupled models contradicts an intuitive structural organization of the model,
as high-level properties need to be described by atomic model components re-
siding at the same level like those components that are influenced by them
via downward causation. Hence, the model’s composition hierarchy and the
natural perception of the system disagree. Also, downward and upward causa-
tion between the respective components have to be realized by sending events
asynchronously, which is an inappropriate approach for taking side-effects into

account and burdens the modeling significantly. Therefore, aiming at explicit
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1
i membrane , volume F-------- ]

cytoplasm E

Figure 5.9: Abstract structure of a coupled ML-DEVS model describing the cellular

membrane compartment. Unlike other DEVS variants, ML-DEVS allows describing
high-level properties like the dynamic compartment volume as part of the coupled
model (dashed elements). Sub-components like Notch and Delta molecules signalize
crucial state changes to the coupled model via adding or removing certain ports

(small grayish squares).

multilevel modeling in a DEVS regime, another extension has been developed
called ML-DEVS.

With ML-DEVS (Uhrmacher et al., 2007; Steiniger et al., 2012), coupled
models are equipped with an own state and behavior, so that high-level proper-
ties of a system can be described at the right place. For instance, the volume
of a compartment and its dynamic change can now be part of the coupled
model description (cf. Figure 5.9) rather than described by a separate sub-
component. ML-DEVS also introduces explicit means for interlevel causation
via information propagation and activating events®. Inherited from p-DEVS,
model components in ML-DEVS may change their ports and thereby signalize
crucial state changes to the outside world. Upward causation is supported, as
the coupled model has an overview of the number of enclosed components being
in a particular state — i.e., exhibiting a particular set of ports — and to take this
into account when updating its state. An invocation of the coupled model’s
state transition function can be triggered by activation constraints, e.g., if the

number of components being in a certain state surpasses a certain threshold.

3See Uhrmacher et al. (2007) and Maus et al. (2008, Sec. 3.4) for detailed formal defini-

tions and concrete examples.
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In the downward direction, causation can be realized by accessing global state
variables via value couplings. Therefore, global information is mapped to spe-
cific port names and each enclosed model component may directly access the
according variables by defining input ports with corresponding names. In ad-
dition, the coupled model may also activate its sub-components by sending
them events. Thereby, it becomes possible to let several components interact
synchronously, which is a more natural way of describing biochemical reac-
tions compared to the conventional asynchronous communication. However,
like other DEVS variants, ML-DEVS model encodings still tend to be large
and difficult to comprehend, which clearly has a negative effect on the formal-
ism’s accessibility. Therefore, although highly expressive, no DEVS variant
seems overly suited for modeling ordinary biochemical reactions. Only if enti-
ties show rich internal dynamics, the reactive systems view of DEVS appears
fitting (Maus et al., 2008).

5.2.3 Bigraphical Reactive Systems

A bigraph combines two different kinds of graphs — a set of trees (i.e., a forest)
and a hypergraph — to form a mathematical structure that represents both nest-
ing as well as linkage of nodes at the same time (Figure 5.10). Both subgraphs
of a bigraph therefore consist of the same set of nodes, however, these nodes
may be linked differently to represent different relationships among the nodes,
such as locality and interaction. Developed by Robin Milner (2009), a com-
prehensive mathematical theory behind bigraphs allows to study mobile and
concurrently communicating systems within a well-defined formal framework.

Each node of a bigraph has assigned a control determining the number
of ports to which links can be attached. Bigraphs can be built in a modular
manner by composition of several smaller graphs. Interfaces thereby determine
how and which distinct bigraphs can be composed. The outer face of a bigraph
is defined by a set of outer names and a set of root nodes (regions, while the
inner face is defined by a set of inner names and a set of sites. Two bigraphs
may be composed if the outer face of one graph equals the inner face of the
other, i.e., inner and outer names as well as regions and sites must coincide.

Composition can be used to specify graph rewriting rules for modeling the
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Figure 5.10: The bigraphical structure of bigraphs.?

dynamic change of a bigraph in terms of rule schemata, so that only small
parts applicable to various concrete structures need to be described. Although
strongly different from reactive systems approaches like Statecharts and DEV'S,
this graphical rule-based modeling approach is commonly termed Bigraphical
Reactive System or BRS (Milner, 2001, 2002, 2006). A stochastic semantics
has been defined to study the evolution of BRS models quantitatively (Krivine
et al., 2008).

Let us consider an example. To model the compartmentalized biochemical

Notch signaling processes presented in Chapter 3, first a set of controls
KC = {Cell:3,Nucleus:0, Nicd: 1, Necd: 2, Delta:2 }

is specified defining names and linkage arities of the model’s entities, i.e., the

graph nodes. Made up of controls “Cell” and “Nucleus”, the initial bigraph

Cell Cell Cell

serves as a starting point on which the set of graph rewriting rules shown in
Figure 5.11 can be applied.
An application of a certain rule requires instantiation by composing the

left-hand side bigraph of the rule (redex) with context and parameter graphs

“Modified illustration from Milner (2009).

114



5.2. Inherently Hierarchical Approaches

|||||||||| ~ e mmmmm——————
( N _ | [ _
1 = ! ! 1 H
1 © H i | '
IR N ! ! X
“ T_H_l_ 1 8 D “ Q1
1 (OF] o !
1 . H ! =
1 0 — ! 1
! 2 S N il . ! “
H =0 \ 1 \ 1
o N 1 1
1 51 | N T____ J O H 1 |
“ Z = 1 e ____ J
\ SR
! 1 o« 000 | eaemeemacaaaaa -~
| S U o | 7\—/
hS ! =
1
@H |||||||||||||||| ~ 1
“ 1 ymm—m—mm—————— ~
1 1
.......... . | _ i 3
( _ < | _ L HoE 1
! w1 =1 ' ! ' ©
“ 5 a ol — 1 “ wn ! ©
| 2L O — o | S
| M 1 — ! = O | (ol
1 1 \ =
1 Q 1 o !
1 Zo “ oy 1 1 =
! 1 1
_, ! J 1 “ Z 1
|||||||||| - ST mT T mmmm e 1 | 1
|||||||||||||||| ’ Nmm e e m e ? [
n BH
< <
|||||||||||||||| N T TT T T EEETESN
||||||||||||||||||||||||||| - ] i
1 1 ] 1
L3 _ _ Ny ! _
1 M ! 1 = ! 1 _
1 ! S ! i)
el 1 O ! L
“ TOlO = = ! o ! ' ©
[}
i Gl g ol © i |
! 1
1 0 “ —~ “ “ !
| : ! : | _ i
=1 1 1 1 —
“ 3 | “ - LE
1 2 e ‘ H 1
1 ! |
1 ! = ! 6% o]
1 g 1 o}
(SR J Lm% a3 S - | mNc
1
H ) ! (T S !
st 1 mmmmmmemmm—m—m—— == ~ 1 N e
=z \ | A s
| , 1 m 1
|||||||||||||||||||||||||| 1 1
{ K = ' 1 o | 1
! 12} “ = ! “ % “
1 N 1
= 3]
“ < “ © O “ _IIIINI IIIIII \_
Sr | ~A_3 N SN /S 0 e
] — - -~
= O ! \
' Z “ _— OM 1
M 1 1 ! Z i
N __ N ______ ’ N 7 U
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that produce exactly the current state of the model. Regions are thereby
represented by dashed rectangles around defined controls and sites are repre-
sented by small grayish rectangles. For example, the redex of the first rule of

Figure 5.11 inserted into a context graph

Cell Cell Cell

with a single site s would match the initial state and may thus be applied. The
result would be a produced Notch molecule within the first cell represented
by linked nodes “Nicd” and “Necd”, as shown on the right-hand side of the
first rule. Please note, the rule may be instantiated in three different ways,
since composition with three different context graphs would produce the initial
graph consisting of three cells. The remaining rules of Figure 5.11 — some of
which comprising link names on top outside of regions expanding the interface
by outer names — are instantiated similarly. Unlike Statecharts and DEVS,
Bigraphical Reactive Systems thus pursue an alternative hierarchical modeling
approach, where the dynamics, i.e., the reaction rules, are specified more or
less independently from the concrete model structure similar to conventional
flat rule-based approaches like BNGL.

Due to its inherent support for nesting and visual graph rewriting rules,
a BRS allows for intuitively modeling hierarchically organized systems with
dynamic structures like the movement and merging of complex sub-graphs.
Thereby, each hierarchical level may has its own state and its own behavior,
however, unlike entities in attributed languages like colored Petri nets and
BNGL, the states of nodes in a bigraph are determined by their linkage to
other nodes only. Arbitrary (numerical) attributes are not supported. Con-
sequently, describing high-level dynamics like changing compartment volumes
and thus also the description of interlevel causation is hampered. Moreover,
the stochastic Bigraphs formalism relies on the law of mass action (Krivine
et al., 2008) and does not support to constrain reaction rates flexibly, which

additionally limits the formalism’s applicability for systems biology in general
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and multilevel modeling in particular.

5.3 Concluding Remarks

An overview of diverse hierarchical modeling approaches has been given in
this chapter. Thereby, the Notch signaling model introduced in Chapter 3
served again as a running example to discuss their support or suitability for
describing diverse aspects of biological multilevel systems. A brief synopsis
and comparison between the different approaches is given in Table 5.2.

All modeling languages presented in this chapter allow for structuring mod-
els in a hierarchically nested manner. However, different strategies are em-
ployed to achieve this feature. In the case of hierarchical Petri nets, BioAm-
bients, and cBNGL, existing flat languages have been extended by means of
hierarchical structures. This strategy seems to be reasonable, as these lan-
guages have already proven their value for describing diverse flat models. On
the other hand, the newly introduced structural elements often appear to be
rather synthetic constructs with limited functionality. Other hierarchical mo-
deling approaches have hierarchical structure included from the onset. Con-
sequently, the support for describing hierarchically structured models is an
inherent property of these languages and thus they typically put the focus on
nesting and composition.

Whether a particular language supports hierarchies inherently or whether it
is an extension of a pre-existing flat approach says nothing about its capabil-
ity to describe dynamic model structures. Both BioAmbients and BRS allow
for describing dynamic structures by creating, deleting, moving, and merging
structural model entities. By contrast, neither the original Statecharts formal-
ism nor DEVS and hierarchical Petri nets support dynamic structure modeling
(although this may be mimicked to some degree by complex events or colored
tokens, for instance). Compartments in cBNGL are also fixed, however, in-
herited from the original BioNetGen language, the approach still allows for
modeling dynamically changing molecular bonds.

An appropriate representation of states and behavior at different levels is

another aspect that must not necessarily be enabled by supporting hierar-
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Table 5.2: Summary of the expressivity of diverse hierarchical modeling approaches

with respect to describing certain multilevel aspects. Good and moderate support is

44

denoted by “+” and “o” respectively, while “—” denotes no or only poor support for

modeling the according aspects.
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Hierarchical colored Petri nets + — o + o +
BioAmbients + + — — — o
Compartmental BNGL + o o o —
Statecharts + — + + o

Discrete Event System Specif. + — o o

Stochastic Bigraphs (BRS) + + — - —

chies. While the majority of languages presented here allow for assigning
arbitrary attributes to a model’s components and thus for representing states
quite differently depending on the dynamic processes to be described, only with
Statecharts and Bigraphs it is possible to equip the containing structural ele-
ments with a state and behavior of their own. The latter formalism, however,
puts the focus on the linkage between components (other attributes are not
supported), which hampers multilevel modeling seriously, as, e.g., describing

dynamic compartment volumes is impossible.

Similarly serious limitations for multilevel modeling arise by the missing
support for arbitrary rate kinetics and reaction constraints in BioAmbients
and BRS. As a consequence — and due to the limited capabilities for represent-
ing different states — these two formalisms also support interlevel causation

only poorly. In Statecharts, by contrast, side-conditions can be easily taken
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into account due to constraining transitions flexibly and by accessing diverse
states from other organizational levels via broadcast messaging and globally
visible variables. Thereby, however, other aspects become affected, like the
succinctness of model descriptions.

Spatial structures beyond nested compartmentalization, i.e., the discrete
neighborhood of different cells in our example, are well-supported by either
constraining reactions based on attributes and according mathematical ex-
pressions (colored Petri nets) or by defining the neighborhood explicitly by
connecting the respective components via links (DEVS and Bigraphs).

Apart from the discussed multilevel aspects, the examples in this chapter
also indicate diverse suitability of the different approaches for modeling dy-
namic processes at different levels. A reactive systems metaphor — as pursued
by Statecharts and DEVS — is well suited for describing dynamics at cellular
and cell population levels, such as the proliferation of a cell influenced by in-
ternal and external events. However, due to its asynchronous communication
pattern and the lack of an inherent macro view on the model’s component
states for determining correct reaction rates, the approach requires consider-
able extra efforts for modeling biochemical reactions. Hence, a reaction-centric
modeling approach, such as Petri nets, BNGL, or BRS, seems to be the better

choice for describing such processes.
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Chapter 6

A Language Concept for
Accessible Multilevel Modeling

In the previous two chapters we have seen different modeling approaches and
how they can be applied in order to describe biological systems at multiple
levels. Thereby, each approach has its advantages and disadvantages with
respect to modeling biological systems and different organizational levels in
general and multilevel behavior in particular.

In this chapter, the concept of a novel modeling approach is presented,
which aims at facilitating multilevel modeling in systems biology. Therefore,
first a set of useful requirements is identified, which is based to a large ex-
tent on the previously discussed aspects and strategies for modeling biological
multilevel systems. Subsequently, in Chapter 6.2, a tailor-made multilevel mo-
deling concept is introduced step by step and finally a concrete realization of

this concept is presented.

6.1 Requirements

6.1.1 General Modeling Paradigm

The design of a domain specific modeling language should be strongly influ-
enced by its intended application, i.e., the chosen modeling paradigm should
map on the kinds of systems to be modeled in a straightforward and suitable

manner. Thereby, among other criteria, finding the right balance between



6. A Language Concept for Accessible Multilevel Modeling

straightforwardness and expressive power is crucial for achieving a satisfying
accessibility degree. In case of designing a multilevel modeling language, this
may be a challenging task due to the possibly highly diverse nature of dif-
ferent organizational levels, ranging from low-level molecular dynamics, over
brochemical reaction networks, cells, and tissue dynamics, up to whole organ-

ism’s physiology in the application field of systems biology.

However, multilevel models typically do not consider the entire hierarchy of
an organism but focus on just a few organizational levels. Thereby, a muddle-
out strategy has proven to be a pragmatic approach (Kohl et al., 2010). Denis
Noble explains the approach as follows: “Biological function happens at dif-
ferent levels. We can gather quantitative data at any level. Once we have
enough of it to feed into a simulation, we can start a systems analysis at that
level. [...] Then, when we have established sufficient understanding and suc-
cess at our chosen level, we can reach out [... [ to other levels.” (Noble, 2006,
p.79f). Hence, the decision for a specific paradigm or modeling metaphor
should clearly depend on the most prevalent levels of interest, assuming that
they typically denote the starting points of multilevel modeling projects. How-
ever, since multilevel modeling can start at any level, the question is which are

the most important levels of interest?

Taking the number of published articles and models in publicly available
repositories — like the BioModels Database — as a measure for the relevance of
certain levels in systems biology, some levels appear to be more often in the
focus of investigation than others. In particular the level of biochemical inter-
actions seems to be the most important level under study, but also processes at
cellular and cell population levels are frequently found subjects of investigation.
Hence, a general purpose modeling approach for describing biological multi-
level models should particularly aim for handily expressing dynamic processes
at these intermediate levels of organization. The examples from the previous
chapters indicate that two different general approaches are notably qualified
to map on these levels of interest and therefore come into consideration: the
object-centered reactive systems metaphor (e.g., DEVS and Statecharts) and

a reaction-centric perception of a model (e.g., Petri nets and BNGL).

As Fisher et al. (2011, p.72) point out, “a living cell [...] is not only
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reactive in nature, but is the ultimate example of a reactive system, and so
are collections thereof”. Reactive systems are thus well qualified to represent
processes at the cellular and cell population levels, such as the traversal through
the cell cycle or communication between individual cells. On the other hand,
we have learned that it is less straightforward to describe biochemical processes
by using the reactive systems metaphor (see, e.g., Ewald et al. (2007) and
Chapter 5, pages 102-113 of this thesis).

A suitable and straightforward approach for the formal description of bio-
chemical dynamics in turn is to apply a reaction-centric modeling paradigm
(Vass et al., 2006; Danos, 2009; Heiner and Gilbert, 2011). Unlike the 7-
calculus and other process algebras, which have also demonstrated their suit-
ability for modeling biochemical reactions (Priami et al., 2001; Calder et al.,
2006a; Cardelli, 2007; John, 2010), here the objects of interest are entire re-
actions rather than individually interacting processes. Compared to the pro-
cess interaction view, the reaction-centric paradigm is not only closer to the
textbook notation of chemical reactions and thus probably more intuitive, in
Chapter 4 it has also been shown that the approach facilitates an abstraction
from elementary reactions and the description of interlevel causation by taking

certain side effects into account.

Beyond biochemistry, the reactions metaphor suits also various dynamics at
other organizational levels. In a 2005 bulletin board discussion® on encoding
non-biochemical models in the Systems Biology Markup Language (SBML;
Hucka et al., 2003) — which is a widely-used reaction-centric model exchange
format — Nicolas Le Novére put it in a nutshell: “As far as the same rate-
law can describe the behaviour of a population of molecules, a population of
cells, or a population of individuals, I don’t see the problem. Lotka-Volterra is
a good example.” Moreover, as also shown by the activity scanning approach
(Hooper, 1986), reactions may serve as a metaphor for state transition systems
in general. Figure 4.9 on page 85, for example, shows how to describe discrete

cell cycle phase transitions by using the reaction-centric BioNetGen Language.

Hence, a reaction-centric modeling paradigm seems to qualify as a suitable

starting point for accessible multilevel modeling in systems biology, as it is

'http://sbml.org/Forums/index.php?t=tree&goto=1757 (accessed Sept. 25th, 2012)
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well-suited for describing biochemical reactions and in addition also permits
to appropriately describe certain dynamic state changes at other organizational
levels. However, it remains to be investigated whether this metaphor applies
well to processes at every level of organization, since, e.g., “...many cell bio-
logical phenomena require calculation of structural dynamics, deformation of
elastic bodies, spring-mass models and other physical processes” (Kitano, 2002a,
p.209) that might be difficult to describe by applying the reactions metaphor.
Therefore, an integration of such complex physico-mechanical dynamics into
the operational semantics of a language might be required to model respective
phenomena (see, e.g., Michel et al., 2009; Bittig et al., 2011).

6.1.2 Model Structure

As has been shown in Chapter 4, a lack of structuring elements allows describ-
ing hierarchical relationships only implicitly, making it difficult to capture
the essential characteristics of a multilevel model without further explanation.
According to Bruce Edmonds (1999, p.34), “a good modelling language will
not only be expressive enough to clearly specify the required possibility spaces,
but also it will have explicitly defined relations that systematically reflect the
corresponding relations between the possibility spaces”. Accessible multilevel
modeling therefore requires to make the hierarchical structure of biological
systems explicit.

To appropriately reflect our natural perception of composition hierarchies,
the modeling language should support nested model structures, i.e., parts
nested within wholes, allowing for both a vertical as well as horizontal sep-
aration of entities. Moreover, a support for modeling dynamic structures is
strongly desired, as the hierarchical composition of biological systems is chang-
ing frequently due to phenomena like fusion of compartmental membranes,
molecular translocation and cellular migration, or cell division and death, for
example.

Since dynamic behavior can be found at any level, it is also important to
allow for modeling entities at any organizational level that have a state and
behavior on their own. That means, unlike many formalisms supporting hier-

archical model structures, e.g., DEVS and ¢cBNGL, in which upper hierarchies
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are simple containers, dynamic multilevel behavior must not be restricted to
atomic entities, i.e., entities that denote the leaf nodes of a tree graph that is
representing the model’s hierarchy and therefore do not enclose further com-
ponents. The multilevel modeling language should rather also allow to equip
coupled entities consisting of a set of other entities with an own state that may
be dynamically changed according to certain rules.

These states furthermore need to be accessible from other levels in order to
describe interlevel causation. Thereby, context-dependent availability should
be favored over globally visible states, as otherwise according variables need
to be defined from the beginning — in order to avoid name collisions — and this
may significantly decrease the succinctness (see also Section 6.1.4) of model

descriptions and hampers modeling of structural changes (cf. Chapter 4.2).

6.1.3 Other Expressiveness Requirements

Besides the need for explicitly representing dynamically changing nested hi-
erarchies, modeling complex multilevel systems in a straightforward manner
imposes other special requirements in respect of the expressive power of the

language the model shall be described with.

Different representations of states

Informally, the expressive power (or the expressiveness) of a particular lan-
guage can be seen as the theoretical or practically feasible ability to express a
certain set of ideas or facts in that language (Edmonds, 1999). In the case of
multilevel modeling, due to the diverse nature of observed data and the need
to make different abstractions at different organizational levels, the applied
language should allow for expressing states or conditions also quite differently.
For example, the amounts of molecular species may be described best by dis-
crete integer values, while other state variables, e.g., the volume or the pH
of a cellular compartment, may be represented more appropriately by real
numbers. Also representing certain states by Boolean values or arbitrary char-
acter strings may be useful for an appropriate description and to enhance the

accessibility.
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Arbitrarily constrained transitions

Pertaining to dynamic state changes, the multilevel modeling language needs to
be sufficiently expressive to allow for making various (behavioral) abstractions
— like combining multiple elementary reactions in one step — and in particular
for describing interlevel causation. Therefore, supporting dynamic processes
with arbitrary rate kinetics is required, but also constraining processes flex-
ibly and based on diverse state variables — like it is supported, e.g., by the
attributed m-calculus and colored Petri nets — is an essential feature for model-
ing multilevel systems. Thereby, states at the same level of organization may
need to be taken into account, just like states at lower or higher levels. Also, for
taking such side effects into account, it is often necessary to define n-ary reac-
tions comprising of more than two reactants, i.e., indispensable entities taking
part in the dynamic process. Hence, the language must not be restricted to

binary interactions, like it is the case in the m-calculus, for instance.

Spatial dynamics

Aside from nested model structures, different kinds of state representations,
arbitrary rate kinetics, and flexible reaction constraints, the language should
also — at least rudimentary — support the representation of space, since spatial
aspects beyond simple compartmentalization play an important role in many

multilevel modeling studies.

Howsoever, despite the clear requirement for expressing the above multilevel
aspects, all in all we need to also carefully consider the inevitable trade-off
between the expressive power of a language and its ability to be analyzed.
The computational complexity for simulating a model typically increases with
the formalism’s expressiveness. Therefore, simulation in a reasonable amount

of time may become impractical if the language is “too” expressive.

6.1.4 Succinctness and Compositionality

Other language requirements stem from the tendency of multilevel models to
become rather large and difficult to comprehend. That means, by applying

conventional approaches, many lines of code or a large number of reactions
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as well as intricate definitions of dynamic processes may be needed in order
to describe the according multilevel behavior. Therefore, to keep multilevel
models small and manageable, the language needs to be succinct and should

allow for extending a model incrementally by composing smaller parts.

The succinctness or conciseness of a language determines how compact a
description of a certain set of ideas or facts in that language might become.
Hence, it strongly influences the psychological complexity and thereby its ac-
cessibility. A formal analysis of the succinctness is typically done in comparison
to other languages, i.e., succinctness is a relative measure (Hartmanis, 1979)
in dependence on the expressiveness: “Of two equally expressive languages, one
may be more succinct than the other.” (Henzinger et al., 2009, p. 14). Studying
the expressivity of diverse languages has also led to a “conciseness conjecture”,
stating that “programs in more expressive programming languages that use the
additional facilities in a sensible manner contain fewer programming patterns

than equivalent programs in less expressive languages.” (Felleisen, 1991, p. 70).

In general, an effective approach for achieving succinct and concise model
descriptions is to avoid redundancy, e.g., by instantiating concrete objects from
a generalized class. In the realm of reaction-centric modeling languages, redun-
dancy may be effectively reduced by applying reaction patterns or schemata.
For example, applying a rule-based approach like the x-calculus or BNGL may
yield rather compact and concise models compared to classical (non-schematic)

reaction networks, as has been demonstrated by Danos (2009), for instance.

Another approach that helps keeping large models to be manageable is
composition. A modeling language that supports a “notion of compositionality
[-..] allows the user to incrementally define the whole set of systems of in-
terest by adding information to the part already developed.” (Uhrmacher and
Priami, 2005, p. 323). Compositional languages like the m-calculus, BNGL,
and DEVS thus allow for a divide and conquer strategy, by which a system
may be described in terms of small modules that can be combined afterwards.
Small parts are considered to be more easy to understand and also to main-
tain than large ones. Hence, composition is considered to facilitate modeling
of highly complex systems and therefore the multilevel language should also

support some notion of compositionality.
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6.2 Concept

As has been discussed in detail above, the concept for an accessible multilevel
modeling language presented in this chapter needs to fulfill or implement the

following requirements:

e Reaction-centric modeling paradigm

e Dynamic nested model structure with states and behavior at any level
e Diverse representations of states and conditions

e N-ary reactions with arbitrary rate kinetics and flexible constraints

e Simple spatial dynamics

e Succinctness

e Compositionality

These requirements have led to the development of ML-Rules (Maus et al.,
2011) — a rule-based approach for quantitative modeling of biological systems at
different integrated levels of an organizational hierarchy. The language concept
is presented in terms of an informal description of the syntax and semantics
with the help of several simple examples. At first some general properties of the
language will be discussed before it comes to presenting more detailed aspects.
Thereby, we start with flat examples and aspects that are not directly related
to hierarchical systems modeling to successively approach concepts that are
obviously related to describing multilevelness, i.e., hierarchical nesting, states
and behavior at any level, as well as upward and downward causation between

different levels.

6.2.1 General Semantics

The general semantics of ML-Rules, i.e., its underlying formal mathematical
model, is based on continuous-time Markov chains (CTMCs). That means,
like in several of the previously mentioned approaches, e.g., stochastic Petri

nets and different variants of the stochastic m-calculus, we have a possibly
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infinite number of states of our modeled system, where each transition from
one state to another follows an exponentially distributed random waiting time
(Wilkinson, 2006). Model states are represented by multisets of species (distin-
guishable model entities), i.e., the semantics of states in ML-Rules is discrete
population-based, which means that the amounts of species are represented by
natural copy numbers rather than real-valued concentrations.

Describing biochemical reaction networks stochastically in terms of CTMCs
is a widely applied methodology in systems biology (Wilkinson, 2006; Ullah
and Wolkenhauer, 2011). The reason for choosing a stochastic semantics for
our multilevel modeling language lies in the observation that at higher levels
of organization (like cells) no longer abundant numbers will be able to balance
fluctuations, as can be often observed at lower organizational levels, for in-
stance, proteins and other molecules that are involved in metabolic pathways.
But also in the case of intercellular as well as intracellular signal transduction
pathways (Bhalla, 2004; Calder et al., 2006b) or when describing dynamic pro-
cesses at levels further down in the hierarchy, e.g., gene regulatory processes
(de Jong, 2002), stochastic events may play crucial roles due to low copy num-
bers of involved species. Hence, “it should be noted that stochastic effects are
not only important on the molecular scale” (Meier-Schellersheim et al., 2009,
p.8) and therefore stochasticity is often an essential feature for multilevel mo-
deling of biological systems (Brook and Waters, 2008; Lavelle et al., 2008;
Twycross et al., 2010; MacNamara and Burrage, 2011). However, it should
be also noted that stochasticity is not necessarily constrained to CTMCs, as
sometimes at higher levels other than exponential time delays are required,
e.g., normal distributions in the case of modeling cell cycle dynamics (Walker
et al., 2004). For such settings, a viable solution might be the definition of an
alternative operational semantics supporting generally distributed firing rates,

as has been proposed by Mura et al. (2009).

6.2.2 Rule-based Modeling Approach

ML-Rules is not the first rule-based modeling approach designed for systems
biology. Therefore, instead of completely reinventing the wheel, the language

employs proven concepts and thus shares several similarities with existing so-
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lutions, in particular with React(C) (John et al., 2011). However, before we
go into detail by presenting the modeling concept and thereby also discussing
related approaches, here at first the general decision for selecting a rule-based

modeling strategy will be motivated.

Diverse reasons are underlying this decision. Firstly, rule-based approaches
employ a reaction-centric modeling paradigm, which complies with our first
requirement (see page 121ff) and allows for a notation along the lines of well-
known chemical reaction equations, making the language generally accessible
to domain experts in the field of systems biology. Moreover, the effectiveness
of modeling complex biological systems with rule-based approaches has been
repeatedly demonstrated, in particular in cases of modeling signal transduction
pathways (Hlavacek et al., 2006) and metabolic reaction networks (Cohen and
Bergman, 1994; Faeder et al., 2009) at the molecular level. This effectiveness
primarily relies on the succinctness of models, achieved by attributed entities
and the general conceptual modeling and simulation strategy — or “world view”
(Hooper, 1986) — into which rule-based approaches can be categorized, namely

activity scanning.

An activity scanning approach comprises a set of independent “waiting”
modules and uses condition testing to decide which of the modules may be
executed next (Balci, 1988). In a rule-based approach, these modules are rep-
resented by rules, each of which consists of a condition that needs to be fulfilled
to perform a certain action, e.g., the creation, modification, or removal of cer-
tain model entities. According instructions are also part of the rule. In most
rule-based languages, entities may be equipped with different attributes or
states. Thereby, conditions may be specified in terms of conditional patterns,
so that a single rule may encode for various contexts and thus becomes a rule
schema. This way, rule-based modeling allows for describing models rather
succinctly. In addition, due to the modular approach with rules as indepen-
dent components, the compositionality requirement is inherently enabled and
also modeling of variable structures is facilitated, as the approach permits to

dynamically reconfigure a model’s composition.

Furthermore, although not exclusively found in rule-based settings, (colored

Petri nets and the attributed m-calculus, for instance, are examples from other
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classes of modeling languages), a rule-based language design permits to flex-
ibly constrain reactions and thereby to increase its expressivity, as has been
shown by John et al. (2011). For this purpose, condition testing may not be
limited to ordinarily checking the presence of certain entities, but may also
rely on complex mathematical expressions — possibly based on attributes of
entities — to describe certain spatial phenomena or arbitrary reaction rates,
for instance. The general usefulness of such constraints and implications for
the expressiveness of w-calculus-based languages has been demonstrated by
John (2010). Moreover, the combination of flexible constraints with an ac-
tivity scanning approach seems to constitute a distinguished applicability for
modeling biochemical systems.

Henzinger et al. (2009) have compared diverse formalisms for specifying
Markovian population models — i.e., models that are following a similar math-
ematical semantics as ML-Rules does — with respect to different properties,
such as succinctness, compositionality, and expressive power. Thereby, all
investigated languages are relatively simple formalisms lacking the concept
of attributes. The study reveals that in comparison to matrix descriptions,
stochastic Petri nets, stoichiometric equations, and stochastic process algebras,
the language of guarded commands (Dijkstra, 1975) — a formalism exhibiting
all characteristics of the activity scanning paradigm and allowing for arbitrary
constraints — provides the most appropriate choice for describing such models.
In a talk? in 2011, Tom Henzinger summarized the results of this comparative

“ ..and the winner is: Guarded Commands!”

study as follows:

Taken all together, rule-based modeling does not seem to conflict with any
of the identified requirements for accessible multilevel modeling. Quite the
contrary: a rule-based approach inherently enables a language design that
meets many of them, namely a reaction-centric modeling paradigm, composi-
tionality, succinctness, variable structures, and n-ary reactions. Moreover, the
approach permits to support arbitrary rate kinetics and flexible constraints on

reactions. Last but not least, the approach is generally considered to be user-

2Tom Henzinger. Syntax Matters. Toward Systems Biology, Workshop, May 30 - June 1,
2011, Grenoble, France.
Abstract: http://www-tsb-workshop.imag.fr/abstract_henzinger.html
Slides: http://www-tsb-workshop.imag.fr/slides/TSB_2011_Henzinger.ppt
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friendly, since respective models are “modular, maintainable, easy to modify,
easy to implement, and easy to understand.” (Balci, 1988, p.291). Although
especially the maintainability property might not always hold true, as main-
tenance of truly large models might require additional means for black-box
composition based on clearly defined interface descriptions (Rohl, 2008), a
rule-based language design nonetheless seems to denote a suitable starting

point toward accessible multilevel modeling.

6.2.3 Multisets of Attributed Entities

Like many other rule-based approaches, e.g., BNGL (Faeder et al., 2005, 2009),
the k-calculus (Danos et al., 2007a, 2009), BIOCHAM (Chabrier-Rivier et al.,
2005; Fages and Soliman, 2008), LBS (Pedersen and Plotkin, 2010), or Re-
act(C) (John et al., 2011), ML-Rules employs also an attributed language de-
sign. That means, model entities are described in terms of structured objects
that may be equipped with different states (see also Chapter 4.2). In ML-
Rules, entities are called species and denote the basic building blocks of a
model. As we will see later, a species may represent any object of interest,
such as a small chemical, a protein, a membrane-bound compartment, or even
an entire cell.

Each species has a name X € Names, where Names is the set of all names.
A name X has a fixed arity ar(X) € Ny that specifies the number of attributes
of respective species. For the sake of simplicity of the language, attributes are
not typed. Furthermore, they are not restricted to a predefined (i.e., finite) set
of values and may thus be of any kind of numerical value or string of character
symbols. By convention throughout the thesis, the name of a species is given in
a bold font and attributes are written in a monospaced typeface embraced by a
pair of parentheses behind the species name. Multiple attributes are separated
by a comma and parentheses are omitted if ar(X) = 0, i.e., if species X has
assigned no attributes.

For example, A(cyt,F) describes a protein species A that has assigned
two attributes, the first describing the molecule’s compartmental location (the
cytoplasm in this case) and the second one the state of a binding site, i.e.,

whether the protein is free or has bound another molecule at this site. Sim-
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ilarly, Cell(1.38,G1) describes also a species with an arity of 2. In this case
however, the species represents a cell entity whose attributes are representing
its size and the cell cycle phase. B and C(nuc) are examples for species with
ar = 0 and 1 respectively. Please notice, since the arity of a species name is
fixed and may therefore not vary between species with identical names, the
usage of A(cyt,F) and A(cyt) within the same model would be invalid. Also,
each defined combination of species name and attribute values denotes a dis-
tinct species, which means that although A(cyt,F) and A(nuc,F) share the
same name, they represent two different kinds of species.

Multiple species of the same as well as different kinds can be subsumed
into multisets. According to homogeneous mixtures in chemistry, a multiset of
species is called solution. A solution S can be either a single species, a com-
position of multiple sub-solutions, or an empty set (). The ‘+’ is the delimiter
symbol for composing multiple solutions. We write n X with n € N to refer to
a solution which is composed of n identical copies of X, however, n is omitted

if n = 1. For example,
S =2A(cyt,F) + 4 A(nuc, F) + C(nuc)

describes a solution consisting of three different kinds of species with an amount

of 2, 4, and 1 respectively.

6.2.4 Rule Schema Instantiation and Pattern Matching

Dynamic state changes of an ML-Rules model are described by reaction rules.
Given a defined solution, a rule determines how this solution will change when
the rule fires, i.e., a rule specifies the removal and addition of certain species
from and to a given solution respectively. In other words, when firing, a rule

substitutes a reactant solution S by a product solution S’:
S—S".

This way, ML-Rules employs a classical reaction-centric modeling percep-
tion and the general rule syntax — which follows the notation of chemical

reaction equations — can be similarly found in other rule-based approaches,
e.g., BNGL and BIOCHAM. For simplicity reasons, ML-Rules only allows for
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specifying unidirectional rules. Thus, in order to model a reversible reaction,
two complementary rules need to be defined. However, it would be straight-

forward to extend the syntax to reversible reaction rules like it is supported
by BNGL, for instance.

A standard feature of rule-based languages is to specify rules in terms of rule
schemata. That means, a rule may consist of schematic patterns to encode for
various contexts and this is why rule-based languages are typically considered
to facilitate succinct model descriptions. In the application field of systems
biology, rule-based languages allow for specifying schematic rules typically by
defining reactant patterns, such that certain attributes of entities taking part
in a reaction are left unspecified if they are of no interest for this particular
reaction. Therefore, a “don’t care, don’t write” approach is utilized by many
languages, e.g., BNGL and the k-calculus, where attributes of entities can
simply be left away, while others — i.e., those attributes that are of relevance
for this particular reaction — can be precisely specified by referencing attribute
names in combination with a defined state or value. Attributes in ML-Rules, by
contrast, are identified by their position rather than a name, which is similar to
React(C) (John et al., 2011), for instance. Although this requires to enumerate
each attribute of species, we do not need to define attribute names in this case
while it is still possible to specify reactant patterns and thereby rule schemata,

since attributes can be bound to variables serving as wildcards.

Let us take an example. Free molecules of protein A may degrade, however,
the degradation reaction may take place within different cellular compart-
ments. Let us assume that ar(A) = 2, where the first attribute describes the
compartmental location and the attribute at position two the state of a protein
binding site. Without schematic rules, we would need to specify one distinct
rule for each possible location of A, which can be tedious and error-prone if
we have many different compartments. Moreover, as the model’s state space
might be infinite due to not restricting attributes to a predefined set of poten-
tial values, it might be impossible to define each potential reaction in advance.
Therefore, instead of specifying multiple rules with defined reactant species,
of which each comprises a different value at attribute position one, we define a

reactant pattern by inserting a variable [ for the location attribute (F denotes
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a “free” binding site):
A(l,F) = 0.

A mapping of this rule schema to the above solution S would then evaluate to

the following two rule instantiations
A(cyt,F) — 0

A(nuc,F) — 0

where [ has been bound to values cyt and nuc respectively.

Please notice, the name of such a variable is only locally known, i.e., vari-
ables are private such that they are restricted to the scope of a single rule
schema. However, by using a variable name repeatedly within the same rule
schema it is possible to constrain bindings of multiple species having identical
attribute values, e.g., to describe n-ary reactions that require each reactant
species to be located within the same compartment. In addition, besides such
basic examples, rule schemata can be also specified by using expressions based

on already bound variables. For instance, a reactant pattern
A(z)+A(2z) — ...

matches every solution where at least two species with name A exist, one of
which attribute’s value is exactly twice the attribute’s value of the other one.
Similarly, expressions based on bound variables can be also used to specify

attribute values assigned to product species, e.g., the rule
A(x) — B(22)

applied to a solution S = A(2) + B(3) would lead to a product solution
S"=B(3) + B(4).

Please note, in principle the language concept of ML-Rules allows for any
kind of expression. However, in practice the set of valid operators and functions
depends on the concrete implementation of the language, as will be also ex-
plained in Chapter 6.3. However, we consider a small set of frequently applied
operators and functions being essential. Therefore, each realization should

support at least the four basic arithmetic operations (addition, subtraction,
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multiplication, division), square roots, exponentiation, binomial coefficients,
exponential function, logarithmic functions, conditional expressions (if-then-
else), equality and inequality relations (equal, less than, greater than, less than
or equal, greater than or equal), and the three basic Boolean operations (and,

or, not).

6.2.5 Species Bonding

Besides the general approach of rule schema instantiation, another common
method for reducing the size of a model is to support some notion of link-
age between entities, e.g., to represent noncovalent bonds within protein com-
plexes. By doing so, individual subunits of a protein complex with possibly
many different modifications can be preserved instead of specifying numerous
species names, each of which would reflect a different combination of subunit
states and bindings.

In ML-Rules, links between species are represented by attributes, i.e., unique
names or identifiers the bound species are assigned with. Entirely new values

can be created with the help of an operator v. For example, rule
A(F)+ B(F) — (vz) A(x) + B(x)

describes the binding between two species A and B, where the attribute F
denotes a free binding site and vx creates a fingerprint-like unique value which
does not already occur in the current model state. It is assigned to the products
on the right-hand side of the rule via variable z, i.e., in an instantiation of the
rule schema, x is replaced by a newly created unique value which serves as an
identifier for this particular binding.

This method for representing linkage of species is identical to private channel
names in the m-calculus and allows to model molecular complexes similar as
can be done with established rule-based languages that have explicit notions of
complexation, e.g., BNGL or the x-calculus. Moreover, once created, unique
values can be used in a highly flexible manner, e.g., to describe bonds across
the boundaries of hierarchical levels (the concept of multiple levels will be
introduced below) or that are shared by more than two binding partners (i.e.,

hypergraphs), like it is also supported by Bigraphs and React(C). In addition,
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certain species may be also marked with unique identifiers to observe or track
the dynamics of individual entities.

However, it should be noted that the approach has also some drawbacks
compared to explicit notions of molecular bindings. First of all, without pro-
found knowledge or decent annotation of the model, it might be difficult to
find out whether certain attributes of species represent binding sites or not.
The approach would also allow resetting just one species to its unbound state
while its former binding partner remains unchanged. Therefore, the modeler

carries the responsibility for a correct model.

6.2.6 Kinetic Rates and Dynamic Constraints

As the general mathematical semantics of ML-Rules is based on continuous-
time Markov chains (CTMCs), each rule consists not only of a reactant and a

product solution, but is also assigned a stochastic kinetic rate r € Ry :
SL S,

That means, given a certain model state, a rule schema does not only define in
which way the state of the model changes when firing but also how frequently
this will happen. Thereby, like in any other CTMC-based approach, the pro-
cess of firing is stochastic and the waiting time for firing follows a negative
exponential distribution. In other words, the higher the rate of a concrete rule
instantiation (propensity), the more likely its firing will be at a point in time
that is also calculated according to this rate.

The kinetic rate of a rule can be a constant numerical value, for example,
to describe a chemical reaction with constant speed, i.e., a zero-order reaction
whose speed does not depend on the amount of any species. However, reaction
rates of biochemical systems typically vary over time, as they depend on the
varying amounts of one or more reactant species. Therefore, the rates or
propensities of reaction rules need to be dynamically adjusted according to
the current state of the model.

Many languages and tools for modeling biochemical systems, e.g., simple
stoichiometric equations, the stochastic w-calculus, and the x-calculus, implic-

itly assume that the kinetics of each reaction follows the law of mass action.
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The firing rate is thus automatically adjusted and the according mathemat-
ical formula does not need to be specified by hand. This way, modeling is
less error-prone and models become also more succinct, as solely the specific
reaction rate constant k (also known as rate coefficient) needs to be specified.
However, in this case, modeling is limited to elementary reactions. Abstrac-
tions like the Michaelis-Menten approximation for enzymatic reactions or Hill
kinetics for describing cooperativity are not possible, although we have already
learned earlier that such abstractions are often required due to missing data
or to reduce the complexity of models. Supporting arbitrary rate kinetics thus
often denotes an important feature for modeling in systems biology and that
is why there is an increasingly large number of modeling approaches that do
not necessarily rely on the law of mass action.

A support for arbitrary kinetics is also one of the essential requirements we
have identified for multilevel modeling of biological systems in general. The
kinetic laws in ML-Rules are therefore explicitly specified by using mathemat-
ical expressions as reaction constraints. Thereby, similar to the attributed
m-calculus, any kind of expression is allowed as long as evaluating to a non-
negative numerical value.

Species identifiers are used to refer to the amounts of certain species in a
given solution. The notation A(...)* assigns a species identifier a to reactant
A(...) and we write #a to access the amount of a particular species that
has been bound during rule instantiation. For example, assuming mass-action
kinetics, the rate of a first-order reaction A(x) — B with rate coefficient k is

correctly described as follows:
A(z)* 224 B

A mapping to solution S = 2A(1) + 4A(2) then evaluates to two different

rule instantiations

A1) 5B

k-4

A(2) — B

each with a different propensity due to the different amounts of species A(1)
and A(2) in solution S.
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Besides such basic kinetics, expressions can be also used to control the dy-
namics of models more flexibly. The idea is basically the same like in colored
Petri nets, the attributed m-calculus, or React(C), where mathematical expres-
sions allow for specifying rates based on attributes. For example, the rate of

the following rule decreases with increasing values of attribute x:
Alz) 25 B

Moreover, conditional expressions are also supported, e.g., the preceding rule
can be constrained to only fire if the amount of A (z) exceeds a certain threshold

value thres:
if #a>thres then k-#a else 0

A(x)® > B .

If the amount of A(z) does not exceed thres, the conditional “if-then-else”
expression evaluates to a zero kinetic rate, which means that the rule will not
fire at all as long as the condition (#a > thres) remains unfulfilled.

As such conditional reaction constraints easily result in longish rate ex-
pressions and — as shown later — are frequently applied constructs for model-
ing interlevel causation, an extra notation is used to improve the readability.
Therefore, instead of a complex rate definition consisting of an expression
“if e then r else 07, we write the conditional expression e below the arrow that

is assigned the basic kinetic rate r:

S;S, A g if e then r else 0 S/
= —_— .

e

The preceding example now looks as follows:

Az 2, B

#a>thres

6.2.7 Nested Species Multisets

The above features such as attributed species, rule schemata, arbitrary rate
laws, and flexible constraints, are neither new nor sufficient for accessible mul-
tilevel modeling, but all together they play important roles in supporting mul-
tilevel modeling of biological systems, as has been extensively discussed earlier

in this thesis.
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However, a truly salient feature of multilevel modeling are hierarchies, i.e.,
the capability to structure models in a hierarchically nested manner. Hierarch-
ical structuring facilitates modeling of complex biological systems by defining
them in terms of their components and the interactions that exist between
them. Thereby, hierarchies may help to structure the knowledge about a given
system, e.g., by explicitly describing the multiple nested reaction compart-
ments that can be found in biological systems, such as cells, organelles, and
vesicles.

To address the need for hierarchical model structures, the concept of nested
species is incorporated into ML-Rules. That means, species may not only
be characterized by names and their attributes, but also by the context (or
environment) and a potentially enclosed sub-solution of further species. The
approach is pretty much inspired by other hierarchical modeling approaches,
such as BioAmbients, DEVS, or Bigraphs, where entities may have one unique
superior entity and possibly several constituents. The model structure can
thus be represented graphically by a disjoint union of rooted trees, i.e., a
forest. In addition, since ML-Rules pursues a population-based approach,
identical species that are indistinguishable from each other are aggregated
to populations of certain species. However, both the parent (context) as well
as children (content or sub-solution) are thereby taken into account. Let us

take an example: Solution

SA
—N—
S=A[B+4B[C]] + B[3C] + B[C]
~— —— ~—~
Sp, SB, Sk,

consists of three species, one A and two B, each of which contains a solution
with further species on its own. The square bracket syntax for representing
nested structures thereby follows the BioAmbients notation. Species A consists
of a sub-solution Sy = B + 4 B[C], i.e., two species B: an atomic one that is
lacking an own sub-solution and a species B comprising a sub-solution Sg, =
C. Species A encloses four identical copies of this nested species so that they
are aggregated to a population of the respective amount. The other two species
B residing at the same level like A contain both a sub-solution consisting of
an atomic species C. However, sub-solution S, consists of a population with

an amount of 3 C species, while Sp, consists of only one C. Both species B
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thus denote different kinds of nested species and are therefore not aggregated.

The corresponding graph representation looks as follows:

SN LD

,,,,,,,,,,,,,, |

C

Please notice, nested species may still have assigned attributes. Attributes
and the enclosed solution are embraced by different kinds of brackets, e.g.,
A(0)[Sa] denotes the existence of an attribute 0 for the above species A. The
capability to assign attributes to nested species allows us to equip each hier-
archical level with an own state that is not solely determined by its enclosed
sub-solution (reductionistic view), but may rely on dynamics that is inde-
pendent from lower levels. Hence, in this respect the approach is similar to
hierarchical model structures in ML-DEVS (Uhrmacher et al., 2007) or EMSY
(Uhrmacher, 1995), for instance. Supporting states and behavior at any level
is of particular interest for multilevel modeling, as it allows for modeling dy-
namic behavior similar to observations made at different levels of organization.
Moreover, it denotes the basis for describing upward and downward causation
in a natural and straight manner.

Unlike the entities of modular and object-oriented reactive systems ap-
proaches, nested species in ML-Rules do not enclose the specification of a
model’s dynamics. In DEVS and EMSY, for instance, the behavioral rules are
part of the entities and clearly defined interfaces allow for an interaction with
the environment (Uhrmacher, 1993; Uhrmacher and Zeigler, 1996). ML-Rules —
by contrast — employs a different approach, since species contain nothing else
than other species and the nested hierarchy thus only describes the structure
of a model, but not its dynamics. The latter is globally specified by a set
of rule definitions. Therefore, in this respect ML-Rules is very similar to the
language of Reactive Bigraphs, which also separates entities and the nested

model structure from the definitions of dynamic behavior.
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6.2.8 Multilevel Rule Schemata

A nested hierarchical model structure enables to reduce model complexity not
only by specifying rule schemata as described above, i.e., by specifying reac-
tant patterns, in which attributes are bound to variables and thereby different
attribute values lead to different rule instantiations. The number of rules may
be also reduced by applying a single rule to multiple sub-solutions being part of
the hierarchical model structure, so that reactants can be matched within dif-
ferent solutions at different levels. Thereby, the reactants may be even enclosed
by different species types (cf. Figure 6.1), such that, for example, it is possible
to describe a reaction taking place within various cellular compartments by
specifying a single rule.

However, pattern matching within a population-based hierarchy of nested
species has an important consequence for the semantics. When applying rule
schemata to diverse matched solutions and calculating the propensity of ac-
cording rule instantiations, the context of each application needs to be taken
into account, which is given by the amount of species at higher levels. That
means, the propensity of a rule instantiation needs to be adjusted according
to the whole hierarchy above, as a reaction or state transition is more likely to
happen the more solutions exist it could potentially take place in. Figure 6.2
illustrates the general procedure with the help of a simple example.

What makes no sense in a hierarchical setting is to allow for an empty set of
reactant species, e.g., to describe a zero-order synthesis of certain molecules.
As rules like

05 A
do not require to fulfill any condition in order to fire, the process of pattern
matching would result in one rule instantiation per sub-solution. That means,
each newly synthesized species also serves as a potential location within which
the next reaction may take place. Consequently, after a few firings we would
get something like A[A[A[A]...]]]]. Hence, in order to describe meaningful
zero-order reactions, the specification of a context is mandatory.

Context means the specification of defined locations at which a certain reac-
tion may take place. Therefore, but also to let different levels of a hierarchical

model interact with each other to describe upward and downward causation,
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Figure 6.1: Reactant pattern matching within hierarchical model structure. One

rule schema may be applied to multiple sub-solutions.
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Figure 6.2: Multilevel rule schema instantiation. The actual propensity p of an
instantiation depends not only on the specified rate law and quantities of matched

reactants, but also on their context within the nested model structure.
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rule schemata in ML-Rules may involve nested reactant and product species.
Such multilevel rules look pretty much the same like rules that are independent
from a defined context and that are operating on a single level only, except of

the fact that multilevel rules comprise nested species. For example,
Cell[]° 275 Cell[A]

specifies a contextual rule schema that restricts the above zero-order reaction
to take place only within a Cell compartment.

Of course, specifying nested reactants and attributed species is also pos-
sible. Thereby, nested species with arbitrarily many levels are allowed, since
interlevel causation in biological systems is not necessarily limited to neigh-
boring levels, in particular when abstracting from certain detailed aspects.
For example, transcription of a gene, translocation of produced mRNA from
the nucleus into the cytoplasm compartment, translation of mRNA into pro-
tein, and finally the secretion of protein into the extracellular medium may
be described as one abstract process spanning multiple organizational levels.
The enumeration of according rule instantiations works, in principle, similar
to what has been explained earlier. The only difference is that the process
of instantiating multilevel rule schemata requires to take multiple levels and

solutions into account when matching reactants. For instance, the rule
A(0)[B] — A(1)[B]

describes a reaction from A(0) to A(1) under the condition that A encloses
at least one species B (the kinetic rate expression is omitted).

Please note, the reactant pattern A (0)[B] also matches species where A(0)
contains further species in addition to the explicitly mentioned B, no mat-
ter which and how many. That means, we do not need to specify the entire
content, as otherwise this would easily result in a very large number of clut-
tered rule definitions and in many situations it would even be impossible due
to dynamically changing sub-solutions. However, in the above example, the
remainder of the potentially existing sub-solution would get lost when the rule
fires, since the product species on the right-hand side contains just exactly

one B. The same holds true for a potential sub-solution of B: the reactant
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pattern matches every species where a B is part of a sub-solution of an A(0),
but it says nothing about a sub-solution of B. Hence, if the reactant species
B contains further species, they would get lost as well.

For understanding the general functionality here, it is important to bring
the concept to mind that ML-Rules does not assume any implicit insertion or
preservation of species within a product solution, i.e., the products that are
inserted into the system when a rule fires are exactly those that have been
specified on the right-hand side of the rule. To put it in other words, nested
product species contain only those sub-solutions that have been explicitly spec-
ified. The reason for this lies in the fact that — strictly speaking — ML-Rules
does not include a concept of species modification. Instead, the general rule
firing semantics directs a substitution of species, i.e., a removal of reactant
species while at the same time fresh products are put into the system. If cer-
tain unspecified attributes of reactants shall thereby be preserved, they need
to be bound to variables that can then be used to assign the according values
to product species (cf. Section 6.2.4). The preservation of sub-solutions works
rather similar.

To prevent from the loss of a potentially existing but unspecified multiset
of species in the above reaction, the remainder of the solution enclosed by A
needs to be bound to a special variable. We write x? for specifying such a
variable that binds a remainder-solution, where x denotes the variable name.
By reinserting this variable into the product species, the entire remainder-
solution bound on the left-hand side can be preserved without the need to

explicitly specify its exact content:
A(0)[B+z?] — A(1)[B + 7] .

By binding more than one remainder-solution it is also possible to preserve the

content of multiple species, e.g., firing of the rule
A(0)[B[zg?] +xa?] = A(1)[Blzp?] + zA7]

would preserve the entire content of both species A(0) and its enclosed B.
At first sight this approach for preserving unspecified content might seem

unnecessarily complicated, as one could alternatively also imagine to simply
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assume an implicit preservation (cf. the frame problem in artificial intelligence
formulated by McCarthy and Hayes, 1969). However, in this case additional
language constructs are needed to describe processes where the deletion of sub-
solutions is intended. Moreover, the presented approach of explicitly binding
remainder-solutions has the advantage of making the semantics generally more
clear and transparent without the need to cover various special cases. For ex-
ample, let us assume a reaction A + B — C + D, where two species are simul-
taneously converted into two other ones and both reactant species enclose an
own sub-solution. A semantics assuming implicit preservation of sub-solutions
would require an automated mapping from reactants to products, which would
be problematic in cases where the numbers of reactants and products differ,
e.g., two reactant and three product species. It would also imply that the order

of species matters, so that

would describe different reactions, where the product C encloses in the first
case the content of reactant A and in the second case that of reactant B.
The decision against implicit preservation, by contrast, ensures transparently
full control of what happens with bound solutions and thereby also facilitates
the description of multilevel phenomena like migration and fusion of compart-
ments.

In Chapter 8, practical examples from biology illustrate the capabilities of
the presented multilevel approach more deeply and also show how to describe

upward and downward causation in realistic case studies.

6.3 Realization

A prototypical implementation of the presented ML-Rules modeling concept
has been realized within the multi-purpose modeling and simulation frame-
work JAMES II (Himmelspach and Uhrmacher, 2007) and its source code
has been made available under http://www. jamesii.org/. The plugin-based

JAMES II framework consists of a core and a rich set of additional plugins,
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Figure 6.3: ML-Rules model editor and line chart visualization.

such as diverse alternatives for data storage, random number generation, and
event queues. The core defines a basic set of plugin types and plugins needed
to run in silico experiments. Also part of the core, the registry is respon-
sible for managing plugin types and plugins, and the experimentation layer
carries out repeatable and reusable simulation experiments, e.g., simple (par-
allel) simulation runs, parameter scans, optimizations, and sensitivity analyses
(Himmelspach et al., 2008; Ewald et al., 2010).

For ML-Rules, a set of additional plugins has been implemented: an editor
that allows to create and edit ML-Rules models and supports syntax high-
lighting based on syntactical and semantical consistency checks (Figure 6.3),
plugins for model reading and writing, and a simulator which is based on
the Direct Reaction Method of Gillespie (1977) and thus implements an ex-
act stochastic simulation algorithm (SSA). In addition, a solution based on
an SQL-like query language for flexible instrumentation and observation of
ML-Rules models has been developed (Helms et al., 2012).

JAMES II and the ML-Rules specific plugins are written in Java. There-

fore, based on Java reflection, functions provided by Java can be used within
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expressions, e.g., those defined by the class java.lang.Math?. A list of the most
important mathematical operators and functions for specifying expressions in
ML-Rules is given in Table 6.1. The integration of a library of user-defined
functions is not yet supported but may be realized in the future.

The syntax of the ML-Rules implementation has undergone slight adapta-
tions compared to the aforementioned abstract notations, so that models can
be specified by using the standard ASCII* character encoding scheme. In the
following, crucial aspects of the concrete syntax will be explained with the help
of syntax diagrams and grammar snippets (the complete grammar in EBNF®
notation can be found in Appendix A) as well as simple examples.

Finally, a brief description of the simulation algorithm will be presented.

6.3.1 Concrete Syntax of Model Specification

An ML-Rules model consists of four distinct parts to encode the different
types of essential information: An optional set of constants, a set of species

definitions, the initial solution, and a set of rules.

r constantsj species_definitions —{initial_solution|— rules |— EOF

definitions

::= constants? species_definitions initial_solution rules EOF

Names of species, constants, and variables may generally consist of the
following set of character symbols {A-Z, a-z, 0-9, _}. Values may be numerical
(INT and FLOAT), strings of arbitrary character symbols enclosed by single
quotes (STRING), or a Boolean (true/false). v-binders, i.e., entirely unique
values, are generated by “$n”, where n is a local name that allows to assign the
same value to more than one species at the same time (see example on page
152). Please note, the ML-Rules language concept does not include a type
system. However, in a concrete realization, distinguishing between different

types of data facilitates syntactical and semantical consistency checks.

3http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html
1ANSI X3.4-1968, http://tools.ietf.org/html/rfc20
SW3C Grammar Notation, http://www.w3.org/TR/xquery/#EBNFNotation
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Table 6.1: Basic set of operators and functions for specifying mathematical expres-

sions in ML-Rules. Restrictions regarding the data type of evaluated expressions e

are given in the right column.

Operation/Function Syntax Restrictions
Addition e + ey er,es € R
Subtraction €1 - €9 e1,e2 € R
Multiplication e1 * ey er,es € R
Division e1/ e e; € R,es € R\0
Exponentiation er " ey e1,e0 € R
Square root sqrt(e) ecR

Binomial coeflicient binom(e;,eq) e, es € N
Exponential function exp(e) ecR

Natural logarithm log(e) e€ R
Logarithm of base 10 log10(e) ecR
Conditional expression if e; then ey else e3 e; € {true, false}
Equal e1 == ey

Not equal e1 1= ey

Less than e1 < €9 e1,e2 € R
Greater than e1 > ey er,es € R

Less than or equal e1 <= ey er,es € R
Greater than or equal e1 >= es er,es € R
Logical AND e && eo ey, s € {true, false}
Logical OR er Il e ey, es € {true, false}
Logical NOT e e € {true, false}
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ML-Rules model specifications may be annotated by comments that will

not be analyzed after parsing:

// this is a comment on a single line
/* this is a rather large comment and may span multiple

lines *x/

Constants

Constants are defined at the beginning of a model specification and they serve
as globally accessible model parameters. Each constant definition starts with a

globally unique name followed by a colon and an expression to define its value.

pp— NAME 467 expression AO—T constants TN

constants ::= NAME ':' expression ';' constants?

Expressions may thereby also depend on other constants, as is shown in the

following example:

k1:0.027;

k2:10%xk1;
state_P:'phosphorylated';
ON:true;

OFF:!'0N;

Species definitions

In the set of species definitions the general properties of potentially occurring
species are defined. Therefore, names of species and their respective arity are
given, i.e., the attribute number of each species. The arity of species given
a certain name is defined by a following non-negative integer value within

parenthesis. An integer value may be omitted if the arity is zero.

o] @08

»»>

species_def ::= NAME '(' INT? ')' ';'
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The listing below shows diverse examples of species definitions, each com-

prising a different number of attributes.

Nucleus (1) ;
p530);
EGFreceptor (5);
protein_X(2);

Initial solution

The initial state of the model is defined by its initial solution, i.e., a possibly
nested multiset of species. Distinct elements are thereby separated from each
other by the “+” symbol. A keyword (>>INIT) and square brackets are used

to mark the beginning and end of its definition.

init_element

>>INIT [ 1

initial_solution

Roje}

»<

::= '>>INIT' '[' (init_element ( '+' init_element )*)7? ']' ';'

Arbitrarily nested species containing sub-solutions of other species may be
defined in the initial solution. Species quantities may be specified with the help
of mathematical expressions and the same holds true for attribute assignments.
For loop statements can be used to repeatedly define numerous similar species,

for instance, like it is shown in the following example of an initial solution:

>>INIT[
10000 protA(parameter) +
parameter /100 ProteinB +
Nucleus [
gene ('F') +
20 TF('F', 'unphos')
] +
for x:1 while (x<=100) with x+1 [ C(x) ]
1
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Rules

The next and final part of a model specification defines a set of rules, which
determines the model’s dynamics given a certain state. Each rule is thereby

generally structured as follows:

PpP— reactants products expression 407

2

rule ::= reactants '->' products? '@' expression ';'

A similar syntax like for the initial solution is used to specify the sets of
reactants and products of a rule. However, local variables may be inserted
for specifying species patterns and binding remainder-solutions. In addition,
reactants may have assigned a species identifier to retrieve a species’ quantity,
for instance. The set of products is optional. Like in KaSim® — a realization
of the k-calculus — the kinetic rate expression is specified at the end of a rule
and follows an “@” symbol.

Some syntactically correct example rules are given below.

A:a + B:b -> AB @ k * #a * #b;

C(0):c + D(0):d -> C($bond) + D($bond) @ k * #c * #d;
Nucleus[A:a + so0l?] -> Nucleus[sol?] + A @ #a * k_n2c;
2 A:a -> AA @ binom(#a,2);

#a A:a -> @ if (#a>100) then k_delete_all else O0;

6.3.2 Simulation Algorithm

A basic pseudocode description of the realized simulation algorithm is pre-
sented in Figure 6.4. Calculating the next simulation step requires three dif-
ferent sets of information: The invariable set of rule schemata given by Rules,
the current state of the model (State), and the set of constant model parame-
ters (Consts).

MatchReactants selects all matching reactants Ry of the selected rule sche-
ma s. To find all matching species and since reactants may be nested, an ex-

tensive search through the hierarchy of the model’s State is required. Coarsely

6k-calculus implementation KaSim: http://kappalanguage.org/
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Require: Rules, State, Consts

1: for all s € Rules do

2:  Rs < MatchReactants(s, State)

3:  Instances < Instances | CreateInstances(s, Rs, State, Consts)
4

: end for

for all i € Instances do
iprop < CalcPropensity(i)

Reactions < Reactions | CreateReactions(i, iprop)

end for

9: reaction < SSA(Reactions)
10: Reactants < CreateReactants(reaction)

11: Products < CreateProducts(reaction)

12: for all r € Reactants do
13:  RemoveReactant(r, State)
14: end for

15: for all p € Products do
16:  PutProduct(p, State)
17: end for

Figure 6.4: Basic simulation algorithm of the ML-Rules implementation.

50% of the overall simulation time goes into MatchReactants (data not shown).
However, giving a complexity measure is rather difficult, as the effort for match-
ing reactants strongly depends on the modeled system. A coarse estimate of the
complexity for matching one reactant is O(n-m*), where n denotes the overall
number of different species (i.e., nodes in the hierarchy graph), m denotes the
average number of different species in one sub-solution (i.e., the average child
node number of nodes having children), and & denotes the depth of nesting of
the reactant. That means, the time or computation steps required for match-
ing a non-nested reactant grows linearly with the total number of species n,
i.e., with the overall number of nodes. If the reactant is specified within a

context, however, the effort for matching this nested reactant is influenced
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by an additional factor depending on the size of sub-solutions and growing
exponentially with the depth of nesting of the reactant.

Let us consider an example to outline the procedure of MatchReactants.
Given a non-nested reactant pattern, e.g., B, requires to visit each node of the
hierarchy graph once only to find all species matching this pattern. Matching
the nested reactant pattern A[B+r7], by contrast, is solved by running through
the entire graph to find all species A first. Afterwards, the child nodes of all
matched As need to be visited again to find all species B that are enclosed by
a species A. In the example hierarchy below, for instance, the nodes marked
by an asterisk are visited twice to match the encircled reactants and therefore
matching nested reactants is computationally more expensive compared to
non-nested ones. However, some optimizations are employed to restrict the
search space for matching reactants, e.g., when matching the reactant pattern
C+ A[B +r?], sub-solutions that do not contain species C are not considered

for searching the second reactant A[B + r7].

!// A \\\
J2A* 2B* 3C

AN SA

D* 4B* A* 5C* 3B A

The second step after matching reactants is to instantiate the rule schema
s by calculating the set of rule Instances. Afterwards, the propensity is calcu-
lated for each instance i. With CalcPropensity the propensity of each generated
instance is calculated using the specified expression and taking the context of
the matched solution into account. This means that the propensity is adjusted
according to the amounts of possible contexts the matched solution is part of
(cf. Section 6.2.8 and Figure 6.2). Please note, as the number of reactants
that apply is part of the instance, calculating the propensity is only dependent
on i. Also, all information needed is directly available for each product in i,
such as bound attribute values or solutions that are used on the rule’s product

side. After calculating the set of potential Reactions, an SSA is invoked, e.g.,
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the Direct Reaction Method of Gillespie (1977), and thereby the next reaction
is determined.

The selected reaction is executed by removing reactants r and adding prod-
ucts p from respectively to the current State. Maintaining the consistency of
populations when executing RemoveReactant and PutProduct is a crucial part
during simulation and requires — given the nested species — special attention.
This means, whenever a species x is removed from or added to a sub-solution
Ssup from the overall solution S, the populations within S need to be updated
accordingly. Sometimes it might not be sufficient to just decrease or increase
the population value of x in Sy, because by removing or adding x the super-
ordinate species that encloses Sy, becomes a different species which means it
might need to be split from the previous population it was attached to and
needs to be merged with an already existing one. This actually has to be car-
ried on upward the hierarchy until no splitting and merging is needed anymore.

Let us take an example to illustrate this point. Given a solution
S=2A[2B]+2A[3B]

comprising of two different populations of a nested species Al...], removing
one B from A[3 B] would first lead to a split of the population of A[3B] and

result in the temporary solution
S*=2A[2B]+A[3B|+ A[2B],

where A[2B] has to be merged with the already existing population of 2 A[2 B|

to ensure consistency. So, the correct successional solution will be

S'=3A[2B|+A[3B] .
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Chapter 7

Syntactic Sugar and Meaningful

Extensions

In this chapter, different extensions and syntactical refinements of the approach
presented in Chapter 6 are discussed. Although the presented ideas have not
yet been implemented as part of the prototypical realization, it is shown that
they fit well into the general modeling concept of ML-Rules — e.g., by simple
transformations from additional syntactic notations to basic ones — and that
they denote valuable improvements of the language to further enhance its

applicability and accessibility for multilevel modeling in systems biology.

7.1 Graphical Syntax

7.1.1 Background

It is widely acknowledged that graphical and diagrammatic notations may
enhance the accessibility of modeling languages — in particular for non-experts
and novice users — and, compared to textual notations, diagrams may make it
more easy to comprehend the structure and interactions of a modeled system
(see, e.g., Green et al., 1991; Paige et al., 2000; Alves et al., 2006; Phillips
et al., 2006; Le Novére et al., 2009).

However, a graphical syntax is not necessarily of advantage, as has been
shown by diverse comparative user studies (Green et al., 1991; Green and Pe-

tre, 1992; Moher et al., 1993). One of the main reasons for this observation
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lies in the secondary notation of graphical languages, such as layout and ty-
pographic cues, which may cause serious confusion if not carefully designed.
Marian Petre (1995, p. 43) describes the problem as follows: “The giddy inter-
twining connections of a too-complex or poorly designed boxes-and-lines-style
representation makes vivid the notion of ‘spaghetti code’.” Also, the under-
standability of diagrams depends — similar to textual notations — on reader-
ship skills. That means, an accessible language should not call for exhaustively
studying the meanings of graphical notations beforehand but instead should be
rather intuitive by meeting as many as possible conventions the users expect,
e.g., an arrow is commonly understood to represent some kind of transition or
information flow in a certain direction and should thus be used accordingly. In
general, “‘Good’ graphics usually means linking perceptual cues to important
mformation, which means both identifying and capturing what is important,
and guiding the reader with appropriate cues.” (Petre, 1995, p.43). Therefore,
an appropriately designed graphical notation might significantly support users
in their tasks, but one needs to be also aware of the problems of overloading
diagrams with too much information and introducing unexpected meanings of

certain visual representations.

7.1.2 A Graphical Notation for ML-Rules

When we are looking at the textual syntax of ML-Rules as introduced in the
previous chapter, there is one notable point where a graphical notation might
be definitely useful to increase the readability: By using a textual notation,
the specification of nested species may involve multiple nested pairs of squared
brackets to distinguish the different sub-solutions being part of a hierarchy, i.e.,
which are both vertically as well as horizontally separated from each other.
Thereby, it might be difficult to perceive which opened bracket belongs to
which closed one and thus the hierarchical levels of certain species might be

unclear at first sight. The nested species below shall illustrate the problem.
AB[C +2DI[E]| + B[2C + 3E]|

Here, a graphical notation may help to avoid confusion by too many brack-

ets and to get a quick visual impression of the nested structure. Therefore,

158



7.1. Graphical Syntax

inspired by Harel’s Higraph notation (Harel, 1988) and thus similar to other
visual and hierarchical modeling approaches like Statecharts and Bigraphs, a
graphical representation of nested nodes can be used to facilitate the read-
ability of hierarchical relationships. By drawing rectangular boxes instead of
writing brackets, a transformation between the textual and graphical syntax

is straightforward and clear:

X

X[SX] = SX

where Sx denotes the sub-solution that is enclosed by species X. The more

complex example from the beginning then looks as follows:

A

B

Please notice, the stoichiometric factors at the edge of some of the boxes are
describing amounts of species populations greater than one.

In addition to the nested nodes representation, colors or grayish background
shadings can be used to further highlight different hierarchical levels. Thereby,
the intensity of shadings is proportional to the depth of the hierarchy, i.e., the
lower the level, the more intensive the shading will become. An illustration of

this can be found below.

@ g @ E
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Since assigning attributes to species is a central feature of ML-Rules, the
graphical syntax also allows for expressing the according aspects. However,
as there is no such obviously good visual alternative like in the case of nested
structures, the same notation like in the textual syntax is used here. This has
also the advantage of keeping burdens low when switching between textual and

graphical notations. Therefore, the syntax is as follows:

X(Ax)

X(AX)[SX] = SX

where Ax is the set of attribute values of species X. The representation of

attributed species within a nested hierarchy is straightforward:

B(0.5,p,2)

B(05,p,2)[C(0)+2D[E]] £ |7 | D

O ‘m

Please note, similar to the textual syntax, parentheses may be omitted if the
arity ar(X) = 0, i.e., if species of type X do not have assigned attributes. In
the above example, this is the case for species D and E, unlike species C and
B with one and three attributes respectively.

The presented graphical notation of nested species is used for both, speci-
fying the initial solution of a model as well as reactants and products of rules.
Unlike various other visual modeling languages, interactions between different
entities are not explicitly encoded by lines and arrows connecting the inter-
action partners; in Petri nets, for instance, interactions are visualized by arcs
connecting place nodes with transitions. Instead, here reaction rules are still
defined in terms of schematic and small modular units that may be applied
to various contexts. Hence, the employed approach is similar to Bigraphical
Reactive Systems in this point and therefore — apart from the specification
of reactants and products — the notation of a graphical rule is similar to the
previously introduced textual notation. This also implies that not only defined
values, but also variables and expressions can be inserted in a similar way, as

shown in the following example:

160



7.2. Names and Unspecified Attribute Sets

B(z,p,2)
C(z/3)|| =23 ||C(z—1)

B(0,u,2)

Compared to the description of initial solutions, specifying graphical rule
schemata may require some few additional notations: Species identifiers for
accessing the amounts of bound reactants are placed in the top-right corner
of boxes and in case of binding remainder-solutions to variables, boxes with
dashed borders are introduced to underline the semantical difference in com-

parison to regular boxes:

This graphical rule schema is equivalent to the textual representation of species
identifiers and bound remainder-solutions as has been presented in Chapter 6,
le.

B[C® + 57" XS BIE + 57 .

7.2 Names and Unspecified Attribute Sets

7.2.1 Attribute Names

So far, different attributes of a species are identified by their positions rather
than names. This has the advantage of keeping notations compact, as merely
expressions (like values and variables) need to be specified instead of expres-
sions and names. However, when it comes to realistic applications, this method
might have some drawbacks. Therefore, an alternative approach is presented
here, where each species name is assigned a set of attribute names rather than
just defining the number of attributes. For example, species X comprising
n € N attributes is no longer defined by its arity ar(X) = n but instead by
X(zg, ..., x,), where each z;,7 € {0,...,n} denotes a distinct attribute name
of species X. As part of the specification of the initial solution or within rules,

attributes can then be referenced by name®?”, where name is the attribute’s
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name and ezrpr an expression that may be also a defined value or a simple
variable, for instance.

In particular in case of having species with arities larger than one, identify-
ing attributes by name may be less error-prone, since with defined names the
order of specifying attributes does not matter. Models may also become more
easy to understand if appropriate attribute names are chosen and thereby a
model description consists of additional pieces of information. For example,
without the need for further annotation it becomes obvious that the following
species shall describe a certain protein A consisting of each a phosphorylation
as well as methylation site of which the first one is in an unphosphorylated

state and the second modification site is methylated:
Protein_ A (phosphorylated™'®®, methylated*™™°) .
By contrast, the nameless approach is clearly less verbose and informative:

Protein A(false, true) .

7.2.2 Don’t Care, Don’t Write

Besides its clear advantages, a drawback of identifying attributes by name is
that this method leads to larger model descriptions, as can be already seen
with this truly small example above. However, like it is done in BNGL, for
instance, the existence of attribute names allows for a “don’t care, don’t write”
approach, where attributes may be left unspecified if they are of no interest
in certain situations. Therefore, analogous to binding remainder-solutions (see
page 144f), we introduce the concept of binding remainder-attributes within
rule schemata.

The idea is to bind arbitrarily many attributes to a special variable, so that
certain attributes (i) do not need to be explicitly specified and (ii) the bound
values can nonetheless be reused for assignments to product species on the
rule’s right-hand side. Alternatively, one could consider here also an implicit
preservation of unspecified attributes without the need for binding them to a
special variable (cf. a similar discussion on alternative choices for preserving

sub-solutions on page 146). However, then in certain situations we would again
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loose full and transparent control about which defined attribute values shall

be preserved, e.g., when a rule like
A(x1°0)+A(JL’5O) —>A<$150)

is applied to solution S = A(z°, y*¢) + A (2% y™!¢). It would be unclear
whether attribute y of the resulting product species is assigned the value true
or false. Therefore, we prefer to make the binding of sets of remainder-
attributes explicit, similar to the concept of binding remainder-solutions.

The following example illustrates how the approach is intended to work. Let
us assume a species Cell(zpos, ypos, volume, phase), whose attributes denote
the two-dimensional spatial coordinates, the volume, and the phase of the
division cycle of a cell. An increase of the volume independently from other
attributes can then be described by either inserting an own variable for each

attribute, for example,
Cell(zpos®, ypos”, volume®, phase?) — Cell(zpos®, ypos?, volume" >, phase?)

or by leaving all attributes unspecified — except of the volume — and binding
the set of remainder-attributes to a special variable, remain? in the example
below:

+A

Cell(volume", remain?) — Cell(volume’™ =, remain?) .

Please note, specifying a kinetic rate and binding a possibly enclosed sub-
solution has been omitted for simplicity reasons.

The “don’t care, don’t write” approach not only enables more succinct model
descriptions, but makes it also more easy to extent models. For instance, if
the above Cell species shall be later modified by additional attributes, e.g.,
to represent its spatial location within three dimensions rather than just two,
the first rule schema would also require to be accordingly modified, while the

second rule schema comprising of the variable remain? may remain the same.

7.2.3 Transformation to Basic Syntax

We have seen that introducing attribute names and binding arbitrarily large

sets of unspecified attributes to a special variable facilitates modeling in various
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ways. The approach therefore denotes a meaningful extension of the basic ML-
Rules language concept. Fortunately, like the graphical syntax presented in
Section 7.1, the extension can be realized as purely syntactic sugar, i.e., a
syntax can be defined that translates to the basic syntax of Chapter 6 and
therefore does not require any change in the semantics of ML-Rules. The
syntax and translation process, which may be straightforwardly integrated

also into the graphical syntax, is defined as follows.

Specification of attribute names

Each attributed species name X is associated with an ordered set Ax of at-
tribute names x;,7 € {1,...,n}, where n € N is the total number of different
attributes of species X. Each attribute name in Ax is assumed to exists only
once, i.e., there are no two names z; and z; for which z; = z; holds true.
However, different species names may have assigned same attribute names.
We write X(x1,...,x,) to specify the set of attribute names of species X.

By contrast, identification of attributes by their position only requires a
specification of the arity ar(X) of species name X. A translation to the basic
syntax is therefore rather simple, as the number of different attribute names

of X, i.e., the number of elements of set Ay, translates to ar(X):

X(z1y..oyxy) = ar(X)=n

From names to positions (and back)

Within rules and specifications of initial solutions, two important differences
exist between attributed species (or species patterns) given in the extended
syntax and the basic nameless approach. First, while in the basic syntax only
a set of expressions e is given, the syntactical extension requires a set of tuples
(z,e), written as z¢, where = denotes an attribute name. The second difference
is that the order of elements matters in the basic syntax, while due to the
identification by names in the extended syntax an unordered set of elements
is given, i.e., the order of tuples (x,e) does not matter.

Therefore, the transformation process from the extended to the basic syntax
eliminates attribute names and requires an ordering of the respective expres-

sions. The order of the names of attributes is thereby defined by the previously
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specified set of attribute names of according species. That means, given the
specification of species X (1, x2) comprising two attributes with names x; and
To, 1.e., Ax = {x1,22}, a translation to the nameless syntax always yields
the same result, no matter in which defined order the attributes have been
referenced by name:

X(z5', 25?) = X(eq,e2)

X(z5?,x27) = X(eq,e2)

We thereby assume again that each attribute name appears only once, i.e.,
X1 # X9, that each x; is part of Ay, and that the number of specified attributes
equals the number of elements of Ax. Otherwise, the model description would
be invalid.

The presented transformation process needs to be done for each appearance
of attributed species, i.e., reactants and products within rules as well as species
being part of the initial solution. A transformation in the opposite direction —
from positions to names — would be straightforwardly achieved by generating
indexed attribute names z; and tuples (z;,¢;), where i denotes the position
of an expression e. Therefore, the above example transformation could be
inverted as follows:

X(er,e2) = X(2f', 25?)

Determining unspecified attributes

Attributes of reactant and product species within rules may be ignored by
explicitly referencing only a subset of attributes and binding the remainder —
i.e., the set of unspecified attributes — to a special variable in 7-suffix notation.
The translation of according patterns into the basic syntax therefore requires
two major steps: First the unspecified sets of attributes need to be determined
before subsequently a transformation from attribute names to positions can be
performed in a way that has been presented above. Thereby, in the first step
it is important to distinguish between reactant and product species.

To determine unspecified attributes of a reactant species X, first of all the
set Ag of explicitly specified attribute names is derived, e.g., the notation of
reactant species X (a7, z5?, remain?) with specified attribute names z; and x,

leads to Ag = {x1,22}. The next step is to compare the cardinality of set Ag
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with the total number of attributes of species X, i.e., |Ax|. Thereby, three

distinct cases need to be considered:

|As| > |Ax| : Invalid description, process aborts
|As| = |Ax| : No unspecified attributes

|Ag| < |Ax| : A set of unspecified attributes needs to be determined

Only in the last case an unspecified set of attributes has been detected and
thus needs to be determined. Here — due to the fixed arity — the notation of
bound remainder-attributes is obligatory. The first case is the result from an
invalid notation, since more attributes have been specified than species X con-
sists of. If |Ag| equals |Ax|, each attribute has been specified and thus neither
a set of unspecified attributes needs to be determined nor the definition of a
special variable for binding remainder-attributes is necessary. However, the
latter is still allowed and might be useful in case of extending the model by ad-
ditional attributes in the future, like it has been discussed on page 163. Again,
we always assume that Ag is a subset of Ay or that Ag = Ax. Otherwise, the
model specification is invalid.

If an unspecified set of attributes has been detected, we need to resolve it

appropriately by first identifying the names of attributes that are part of it:
Ay = Ax\Ag .

Then, for all x € Ay a tuple (z,v) — written as z¥ — is added to a set Rem,
where x is an unspecified attribute name and v a variable for binding the
attribute’s value. Finally, the special variable that binds the set of unspecified
remainder-attributes is replaced by Rem and a transformation from names to
positions is applied to the resulting reactant species. For instance, given the
specification of species X(z1,xs,23), three example translations of different

reactant patterns (including intermediate steps) are shown below.
X(z5', 22, remain?) = X(z{', 22, 25*) = X(eq, eq,v3)
X(z5?, remain?) = X(x$?, 27", 25*) = X(vy, eq,v3)
X(remain?) = X(z', 5%, 25°) = X(vy,v9,v3)

The transformation of product species is simpler compared to reactants,

as here sets of unspecified attributes rely on previously determined sets of

166



7.3. Generic Species

reactants. Therefore, a variable of bound remainder-attributes simply needs
to be replaced by the according set Rem and afterwards we only need to check
for consistency, such that Ag U Ay = Ax holds true, where Ay is the set of
unspecified attributes determined from one of the reactant species of the same
rule. Given the same specification of species X as in the previous example,
the transformation of an entire rule schema — in which only attribute x5 is of

interest — may thus look as follows:

X (x5, remain?) — X(z5 , remain?) = X(vy,e,v3) — X(vy, €, v3) .

7.3 Generic Species

The hierarchy-based pattern matching of ML-Rules (see Chapter 6.2.8, be-
ginning at page 142) allows a single rule schema to be applied to various
contexts, e.g., to concisely describe reactions that may take place within dif-
ferent compartments. If those reactions depend on contextual information,

7

however, the surrounding “compartment” species needs to be explicitly spec-
ified, which counteracts the goal of achieving succinct and easily extensible
models. Therefore, a generic or wildcard species name may be useful in such
situations, especially in combination with unspecified attributes.

Let us assume, for instance, a bimolecular reaction “A+B — C” taking place
within different compartments, e.g., the cytoplasm and the endosome. To cor-
rectly describe the volume-dependent kinetics of this reaction (cf. page 51f),
we need two distinct rules that either comprise different reaction rate coeffi-
cients (only applicable for describing compartments with constant volumes) or
that are taking certain attributes of the compartment species into account and

thereby also allow for dynamic volumes:

k
=#a#b

Cyto(vol”)[A% + B’ + rg?] “— Cyto(vol’)[C + rs7]
E#a#b

Endo(vol")[A® + B’ + rg?] “—— Endo(vol")[C + rs?] .

To avoid writing two nearly identical rules, we could replace both species
Cyto(vol) and Endo(vol) by a species Comp(name, vol), whose name at-

tribute denotes whether Comp represents the cytoplasm or an endosome com-
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partment. In this case, a single rule schema like the following example would

suffice:

Comp(name™, vol’)[A® + B + rg?] @) Comp(name”, vol”)[C + rg7] .
On the other hand, this does not denote a suitable approach if species Cyto
and Endo are possibly part of other rules as well, as then all these rules
would also require according modifications. Moreover, different compartments
might comprise different attributes, e.g., in addition to a volume, the endosome
compartment might also be characterized by a dynamically changing pH value.
That means, one universal set of attributes might be unsuitable to describe
diverse properties of different compartments. Therefore, another approach is
presented here that allows for specifying a generic species name. The idea is to
use wildcards instead of defined species names in order to reduce the number
of rules needed. Thereby, according to other language constructs in ML-Rules
which also encode for unspecified aspects, again a notation applying the “7”

symbol is chosen:

?(vol”,1a?)[A® + B® 4 rg?] ™ ﬂ comp(vol”,rs?)[C +rg?] .

The generic reactant ?(vol”,r47)[...] matches every species that has assigned
an attribute wvol, but in addition a set of unspecified attributes may exist.
Therefore, according species may comprise different sets of attribute names,
such as Cyto(vol) and Endo(vol, pH). Please notice, the assigned identifier
comp is used to determine the name of the product species. By doing so,
defined relations between reactants and products can be specified, which might
be of particular importance if a rule schema consists of more than one generic
species. The idea of generic species shares many similarities with the basic
principles of classification and subsumption from description logic (Baader
et al., 2003) to determine whether a certain object or concept is member of a
class of objects or concepts.

Generic species are not only useful for modeling dynamic processes with
contextual information, as has been exemplified above, but also the description
of reactions at a single level may profit from this approach. For example,

different proteins often consist of a conserved binding motif, i.e., a binding site
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that is highly similar among different molecular species. Thereby, different
proteins are able to bind the same ligand. An example for a highly conserved
and well-known binding motif is the guanosine triphosphate (GTP) binding
motif of a family of proteins called G proteins (Hamm, 1998). Instead of
explicitly specifying numerous of nearly identical reaction rules, of which each
describes the binding of GTP to one specific kind of G protein, a single rule

schema comprising a generic species may encode for the same dynamics, e.g.,
GTP? + ?(gtpfalse’ TA?)gprot k#g# gprot gp?”Ot(gtptrue7TA?) ]

To enrich ML-Rules with the presented functionality, again a transformation
to an alternative syntax denotes a viable option, in this case a transformation
to the extended syntax allowing for names and unspecified sets of attributes
presented in Chapter 7.2. Therefore, a rule comprising generic species trans-
lates to a set of rules, where the wildcard name on the left-hand side (i.e., the
“?” symbol) as well as reused identifiers on the product side are replaced by
defined species names. Each generated output rule thereby comprises different
replacements, and if attributes are specified, only those names from the set
of all species names are considered that match the according set of explicitly
specified attributes. That means, given the following specification of species

names and attributes:
A(), B(), C(), Cyto(vol), Endo(vol, pH),

the transformation process of a generic rule schema

k
= #a#b# com,
?(vol”,14?)[A" + BY 4 rg?]comr LT, comp(vol®,147)[C + rg7]

will replace the wildcard by names Cyto and Endo only. A, B, and C are not
considered, as these species lack an attribute vol. The transformation process

therefore yields the following set of rule schemata:

k
=#a#b#com;
Cyto(vol”, r4?)[A" + B + rg?]m? LT, Cyto(vol’,147)[C + rg?]

k
= Fa#b#com,
Endo(vol”, r4?7)[A® 4+ B + rg?]®m™ RN Endo(vol”,r47)[C + rg7]
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. . k
By contrast, a generic rule schema like ?(r47)* M2 encodes for a larger

set of rules comprising each defined species name:

A(ra?)® 5 g
B(rs?)® 5
C(ra?)* 2 ¢
Cyto(ra?)” s 0
Endo(rs?)* s 1]

This shows that the presented approach of generic species names is a powerful
tool, which should be handled with care — preferably in combination with

appropriate attributes — to narrow down its application.

7.4 Functions on Solutions

Whereas the language concept of ML-Rules so far allows the use of arbitrary
functions on attributes, the application of functions on solutions is not yet
supported. However, since such functions may facilitate the description of
multilevel dynamics (Maus et al., 2011), a discussion on relevant aspects and
needs is provided in the following. It is also examined how this feature could
be integrated into ML-Rules.

7.4.1 Problem Statement

Multilevel modeling requires that states at higher and lower levels are observ-
able in order to take effects for the behavior at certain other levels of organi-
zation. As has been explained before, such phenomena are called downward
and upward causation (see Sections 2.1.3 and 3.3, for instance).

In the case of downward causation, an observation of states at higher levels
can simply be achieved by expanding the context (or scope) of a rule toward
environmental species. Thereby, attributes representing high-level states be-
come accessible and can thus be taken into account for describing dynamic
behavior at lower levels. In the preceding Chapter 7.3, for example, the vol-

ume of a cellular compartment determines the rate of an enclosed bimolecular
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reaction. States at lower levels, by contrast, are typically not represented by
distinct attributes but are the result of collective behavior of many small parts,
i.e., the sum of individual states of species at a lower level. The question is,
how can we retrieve the according information in order to describe upward
causation?

A typical example for upward causation is the amount of a particular species
influencing behavior at a higher level of organization. Using species identifiers
in combination with the number sign operator (#) is a simple means for ac-
cessing the amounts of species in ML-Rules, which is — by the way — not only
important for modeling upward causation but also for generally specifying dy-
namic rate kinetics in ML-Rules, such as mass-action kinetics of elementary
biochemical reactions. However, this method requires each species — whose
amount we are interested in — to be defined as a reactant of the rule, no mat-
ter whether it will be consumed or modified when the rule fires. Consequently,
the rule is not allowed to fire in the absence of any of these reactants, as then
the firing condition is unfulfilled. In some situations this can be problematic,
e.g., for the specification of certain non-mass-action kinetics (see Chapter 8,
page 182). Also, by using species identifiers, it is difficult to aggregate the
amounts of different incarnations of attributed species, e.g., if we would be
interested in the total amount of a certain protein rather than in the amounts
of differently phosphorylated states of it. The reason for that lies in the in-

stantiation of rules, as, e.g., a reactant pattern Prot(xz)? applied to a solution
S = 5Prot(phos) + 2Prot(unphos)

yields two different rule instantiations with different kinds of species Prot(z)
bound and therefore — depending on the concrete instantiation — the expression
#p evaluates to values 5 or 2 rather than to the aggregated total amount of 7.

So, in some situations species identifiers are not suitable for retrieving cer-
tain information from a solution. To overcome this limitation, we could adopt
ideas of the imperative m-calculus or BNGL and introduce the concept of spe-
cial global observables keeping track of the amounts of certain species. How-
ever, as has been shown on pages 81 and 86f in Chapter 4.2, using global
variables for modeling multilevel systems may cause problems with respect to

combinatorial complexity and modeling dynamic structures. Hence, develop-

171



7. Syntactic Sugar and Meaningful Extensions

ing a method for integrating some kind of contextual or private observables
would be required, whose visibility is restricted to a given context. On the other
hand, ML-Rules already allows for binding sub-solutions that are enclosed by
defined species, i.e., in a context-dependent manner. Thus, extending the lan-
guage by specific functions for counting species in a given solution seems to
denote a more straightforward alternative (see Section 7.4.2).

Besides the need for retrieving information, functions on solutions may be
also of importance for describing certain variable structure dynamics. So far,
bound solutions can be freely reused on the product-side of a rule, which
facilitates the description of phenomena like migration, merging, and copying
of large sets of species. However, changing the composition of solutions flexibly
is another matter, for which additional operations would be required, e.g., to
split a solution equally into two new solutions or to remove or modify the
entire population of a certain species within a solution while the remainder
stays untouched. Such operations may be important to describe processes like
cell division, budding, and simultaneous behavior of a collective of species, for
instance.

Other functions might be useful for modeling rather specific systems. For ex-
ample, encoding an individual-based RNA structure folding model, where each
nucleotide of an RNA strand is represented by a distinct molecular species and
the dynamic process of RNA folding is described by continuing base-pair clos-
ing and reopening events among individual nucleotides, requires macro knowl-
edge about the current structure in order to determine which nucleotides may
pair and which not (Maus, 2008). A function that provides this information
by iterating over the elements of the RNA solution would clearly facilitate this
endeavor. However, supporting such model-specific functions would require an
integration of user-defined function libraries. Therefore, in the following only

more generally applicable functions are discussed.

7.4.2 Counting Function

The need for flexibly counting the elements of a solution has been identified
and accordingly addressed by others as well. In the React(C) language, for

instance, arbitrary functions on solutions can be defined with the help of -
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calculus terms and some additional terms for handling molecules and solutions
(John et al., 2011). This allows, e.g., to define a function that receives an
attributed molecule and a solution to count the occurrence of this molecule
within the respective solution. This general idea of counting is adopted here
by extending ML-Rules by an according parameterizable function.

Such a special function for counting certain species within a given solution
is relatively easy to integrate into the general language concept of ML-Rules.
This is due to the fact that applying the function does not change the solution
but only retrieves information from it and can thus be treated and used like
other functions within mathematical expressions.

The parameterizable counting function takes two arguments: a species pat-
tern pat as well as a solution sol (the latter must not be explicitly specified
by the user; hence, it is typically passed in the form of a bound variable).
An evaluation of the function always yields a non-negative integer value. The

function’s notation is defined as

Zpat € sol

where the syntax of pat is the same like that for specifying reactant patterns.

By iterating over the elements of sol, this function aggregates the amounts of
all species matching the specified pattern. Thereby, however, in contrast to the
process of rule instantiation, no deep pattern matching is done, i.e., although
the passed solution may consist of a nested hierarchy, here the species pattern
is compared with the topmost level only (cf. Section 6.2.8). For example, let

us assume a solution
sol? = 3A(0) + 10A(1) + 2A(0)[6B] + C[3A(0)] .

In this case, an expression Y A(z) € sol? evaluates to a species count of 15,
since the pattern A(z) does not specify a defined attribute value and thus
each incarnation of species A is matched, if found at the topmost level; not
considered is the amount of species A(0) that is enclosed by C.

Expression > A(1) € sol?, by contrast, which counts all species A that
have assigned an attribute 1, evaluates to a species count of 10. Please notice,
the pattern pat may also describe a nested species. Accordingly, the evaluation

of expression > A(x)[B] € sol? returns the value 2.
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7.4.3 Splitting of Solutions

To split or decompose a given solution into smaller ones, a special function
“split(sol, pct)” could be introduced, which takes a solution sol and a percent-
age pct as arguments and returns a new solution consisting of pct% of the
elements of sol. This way, we could describe a cell division process, where

both daughter cells consist of half of the original solution:
Cell[sol?] — Cell[split(sol?,50)] + Cell[split(sol?, 50)]

However, in this case, undesired effects may appear due to multiple indepen-
dent invocations of the function, e.g., species with low copy numbers in the
solution may easily vanish. The content of a dividing cell in reality, by con-
trast, becomes completely partitioned, such that the sum of the content of both
daughter cells equals the original content. Therefore, although requiring slight
adaptations of the syntax and semantics of ML.-Rules, a flexible decomposition

method where nothing gets implicitly lost seems to be a better approach.

Universal decomposition approach

By using the “+” symbol, product solutions in ML-Rules can be arbitrarily
composed from smaller sub-solutions. Thereby, it is also possible to freely
combine explicitly specified parts (defined species) with arbitrarily many un-
specified parts (bound remainder-solutions). The idea is to use a similar no-
tation for the decomposition of solutions on the left-hand side of a rule.

To some degree, decomposition of solutions is already supported in ML-
Rules, however, the approach so far is limited to one unspecified part at most,
i.e., the entire unspecified remainder-solution, besides possibly multiple explicit
specifications of defined reactants. This method is now extended in a way
that allows for decomposing the remainder-solution by specifying multiple “?-
variables” on the rule’s left-hand side and thereby binding multiple unspecified

sub-solutions. For example, the following rule
Cell[sol;? + soly?] — Cell[sol;?] + Cell[soly?]

describes the splitting of a Cell species including its enclosed solution. Thereby,

the content is split equally and both parts are bound to two distinct variables
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sol;? and soly?, which are used to assign each product Cell with one half of the
original solution. Similarly, a rule’s left-hand side “Cell[sol; ? + sols? + sol3?]”

would split the content of Cell equally into three distinct sub-solutions.

Splitting equally means to partition a solution with the intention that each
resulting sub-solution consists of the same multiset of species, each of which
with an amount of n/m, where n is the species’ amount in the original solu-
tion and m the number of sub-solutions into which the solution is decomposed.
Please notice, it might be possible that the resulting sub-solutions are not to-
tally equal. This is always the case if — for at least one species — the Euclidean
division of n by m leaves a remainder. If it is not possible to split the solu-
tion into entirely equal sub-solutions, the surplus will be randomly distributed
among the set of sub-solutions, but the total amounts of top-level species

among all sub-solutions will become as equal as possible.

However, in any case, the union of all sub-solutions equals the original so-
lution, i.e., the sum of the partial amounts of any species equals the amount
of the according species in the original solution. For example, if we apply the
above rule of a dividing cell to a reactant species “Cell[12 A+3 A[B|+CI[7 A]]”,

its enclosed solution may decompose in two different ways:

sol;?7=6A +2A[B] sol;7=6A+ A[B|+ C[TA]

or

sol,?7=6A + A[B|+ C[TA] sol? =6 A +2A[B]|

Please note, although different concrete decompositions may be possible,
it does not yield different instantiations of the rule. That means, semanti-
cally, first the specified reactants of a rule are matched like it is explained in
Chapter 6.2. Depending on this matching process, different rule instantiations
may be generated, each of which has bound implicitly an according remainder-
solution. Thereafter, this unspecified remainder will be decomposed and bound
to according variables, so that the resulting sub-solutions can be used to spec-
ify the rule’s product species, for instance. The random split of remaining

parts may thereby denote an additional source for stochastic variability.
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Directed decomposition

Above, a universal decomposition approach has be presented that splits a
solution into arbitrarily many equal parts. However, sometimes it might be
desired to direct or control the decomposition, such that, e.g., one resulting
sub-solution is larger than another one or a particular sub-solution consists of
species of a certain kind of species only. Therefore, an additional operator “<”
is introduced.

The fraction size of different parts of a decomposed solution can be con-
trolled by an optional term “< f” with f € R | 0 < f < 1 behind the names
of variables binding the according sub-solutions. Thereby, the sum of all frac-
tions f must be 1. For example, the following rule splits the content of a Cell
species into two sub-solutions, of which “sol,?” contains only 10% of the total

amounts of species enclosed by the Cell:
Cell[sol;7 < 0.9 + sol,? < 0.1] — Cell[sol;?] + Cell[sols?] .

Such inhomogeneous splitting may be of importance to describe a budding
process, for instance, where a cell is reproduced by a small outgrowth on its
surface rather than a centered division.

Besides controlling the fraction size of sub-solutions, the “<” operator can be
also used to constrain the composition of a sub-solution to a particular species
pattern. A combined control of species patterns and fraction sizes within the
same rule is thereby not allowed. Also, at least one decomposition part must be
unconstrained, to ensure that the union of all sub-solutions equals the original
solution. For example, the following reactant pattern splits the content of a
Cell species into three sub-solutions, of which one comprises all species A and

the remainder is split equally into two other sub-solutions “sol; ?” and “sol, 7"
Cell[sols? <A(x) + sol;? + sols?] — ...

More specific as well as nested species patterns are also possible. For example,
“s0la7<A(1)[B]” yields a solution “sol,?” consisting only of those species A(1)

that enclose at least one species B.
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Chapter 8

Case Studies

After introducing the multilevel modeling concept of ML-Rules, now it is time
to see how well this rule-based language applies to describing realistic models
of biological multilevel systems. Therefore, in Chapter 8.1, the Notch signaling
example from Chapter 3 will be revisited at first. After that, an example of
the fission yeast cell cycle regulation and mating type switching at multiple
organizational levels will be given. Although both case studies rely on models
developed for demonstration purposes rather than providing new biological
findings, they can be nevertheless considered as exemplary representatives of
biological multilevel models comprising of upward and downward causation
within hierarchically nested multi-compartment structures.

The models in this chapter are generally specified in the extended syntax
presented in Chapter 7, i.e., including attribute names and mostly in a graph-
ical manner. However, the according basic textual notations are also given (if
not in this chapter, they can be found in Appendix B). Wherever functions on
solutions are used, possible alternative specifications excluding this language

extension will be additionally discussed.

8.1 Notch Signaling Example

8.1.1 General Structure of the Model

As has been described in detail in Chapter 3, the Notch signaling model consists

of multiple interacting cells, each of which has its own state and its own com-
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Table 8.1: Species definitions of the ML-Rules Notch signaling model.

Biological structure / entity Species name Attribute names
Entire cell Cell (id, phase)
Membrane Mem (vol)

Cytoplasm Cyt (vol)

Nucleus Nuc ()

Notch receptor N (state)

Delta ligand D (state)

Free space FS (id)

partmentalized intracellular dynamics of Notch receptors and Delta ligands.
Therefore, besides “molecular” species representing Notch and Delta proteins,
also different “compartment” species are defined to appropriately reflect the
crucial structural elements of the system (Table 8.1). Both the membrane
(Mem) and cytoplasm (Cyt) species thereby consist of a volume attribute
vol, while the nucleus species (Nuc) does not have attributes. Cell species
are characterized by two different attributes representing a cell’s discrete one-
dimensional spatial coordinate (id) and its cell cycle phase respectively. Delta
(D) and Notch (N) species both have a state attribute that is intended to
represent ligand-receptor binding or an unbound state. In the case of un-
bound Notch, the state attribute additionally denotes whether the molecule
is a mature receptor molecule consisting of both the intracellular as well as
extracellular domain or whether it has been cleaved and therefore consists of
merely the intracellular domain (Nicd). Finally, a species FS(id) is defined to
represent “free” spatial locations. Its usage for the process of cell division will

be explained in Section 8.1.3.

The model may be differently initialized, however, a valid initial solution,
i.e., the model’s initial state, is shown in Figure 8.1. It consists of several
individual FS species and at least one Cell species. The id attributes of
FS and Cell species are thereby assumed to be assigned with unique integer
values, so that each concrete species appears only once. The initial phase of

the cell has assigned the value G1. In addition, the Cell species encloses one
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Cell(id°, phase®)

Mem(vol"™)

Cyt(vol™*)

) || FS(id™®) || FS(id™") FS(id') || FS(id?) || 1

Figure 8.1: Initial solution of the ML-Rules Notch signaling model.

species Mem(vol”™), which consists of a species Cyt(vol**), which in turn
consists of a species Nuc. Notch and Delta species are not part of this initial

solution. They are dynamically produced by according rules.

8.1.2 Biochemical Processes

Most dynamics of the Notch signaling model can be classified as biochemical
processes. To those belong classical elementary reactions, abstract processes
like gene expression, and the translocation of molecules from one compartment
into another. These processes are described in terms of rule schemata, so that
each rule may be instantiated in various contexts such as different cells or dif-
ferent compartments with varying size and content. The set of rules correlates
more or less with the list of intercellular and intracellular biochemical reaction
equations from page 45 (Table 3.1). However, the rules here account for the
explicitly nested model structure and causalities between different levels.

Let us begin with the translocation of Delta and Notch proteins from the

cytoplasmic compartment to the membrane, which is described as follows:

Cyt(’Uolv) hs Cyt(’uol”)
Tr—--1 3HN | -, F
N(stateF) || s? /| = 7| g7 N(stateF)

Cyt(vol“) b Cyt(’UOlv)
N 4 D =
D(stateF) || s? | = | g7 D(stateF)

The attribute value F thereby represents a free receptor or ligand molecule

respectively. We could additionally draw a box | Mem(vol"™) | around the re-

actant and product solutions to specify the membrane compartment explicitly.
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However, this is not needed here, since the hierarchy of compartment species
within each cell is assumed to be fixed and thus is at any time as has been
initially defined (see Figure 8.1). Please note, as the Cyt compartment species
within each cell — like the other compartments — is assumed to exist only once,
there is no need for binding a species identifier and taking its amount into
account within the rate expressions. As both above translocation rules look
rather similar, it would be also possible to reduce the number of rules to a

single generic rule schema, whose actual rate depends on the bound species p:

Cyt(vol")
o if p=N(stateF) then ks#p else k4#p\
\ S? ‘

L]

Cyt(vol”)

p F
?(stateF) sl

The next step is to specify rules for receptor-ligand binding and subsequent
cleavage of activated Notch. Since binding of Delta ligands by Notch receptors
is restricted to membrane-residing molecules of adjacent cells, the according
rule schema consists of species with an extended context, i.e., the surrounding
species Mem and Cell are also part of the rule. This way, the id attributes of
two Cell species can be compared to constrain the binding reaction to Notch
and Delta within neighboring cells. In addition, the volume-dependent rate of
this bimolecular reaction needs to take the wvol attributes of both membranes
into account. On the right-hand side of the rule, values F representing unbound
Thereby, N(state’)
within Cell(id’, a;?) is assigned the id of the other (adjacent) cell and vice

proteins are replaced by variables j and ¢ respectively.

versa:

Cell(id', a;?)

Cell(id, a;?)

Cell(id', a;?)

Cell(id’, a;?)

Mem (vol”) Mem(vol®) Mem(vol”) Mem(vol*)
—n ——d “H‘”J A 3 ;
N (stateF) ‘ D(stateF) ‘ il v i1 N(state’) D(state")
7, m?, ;7! 7,

Please notice, the above rule assumes that nothing but a nested Mem species

is enclosed by species Cell. Otherwise, preserving the unspecified content of

both cells would require a binding of according remainder-solutions.
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The subsequent cleavage of activated receptors, i.e., of Notch molecules that
bind a Delta ligand, again requires an extended context comprising the ac-
cording Cell species. In addition, the cytoplasmic compartment (Cyt) of the
Notch-containing cell is explicitly specified, as this is the location of the intra-
cellular domain (Nicd) of the cleaved Notch receptor represented by N(state®).
Accordingly, the Delta ligand has still bound the Notch extracellular domain
(Necd), which is represented by species D(state®):

Cell(id?, a;?) Cell(id’, a;?) Cell(id?, a;?) Cell(id’, a;?)
Mem (vol”) Mem(vol®) Mem(vol") Mem(vol®)
—n
N(state’) D(state?) Smaadin Cyt(vol") D(stateE)
! Km+#n -
e ||(| || |||
;7 iy

Please notice the rule’s rate, which reflects the catalytic process by following
Michaelis-Menten kinetics.

Both products of the previous rule may subsequently migrate to a lower
level of the composition hierarchy, i.e., cytoplasmic Nicd may translocate into
the nucleus and the membrane-anchored Delta ligand that is bound to Necd
may be recycled, which means that the ligand is engulfed into the cytoplasm

and Necd is removed. The respective rules are as follows:

N @ —— — |~ 5 L]
N(state®) e N(state) || s? !
—— Cyt(vol) -y Cyt(vol")

_____ — =, =]
D(stateF) vy D(stateF) || 57 !

As the rate coefficient for protein degradation (kge,) is assumed to be the
same, no matter which protein is degraded and within which compartment, a

single rule schema comprising a generic reactant species is sufficient to describe
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degradation of unbound Delta and Notch in different states and within different

locations:

—p K
?(state”) —;—i%? 0

The intercellular signaling process is completed with the synthesis of Notch
and Delta described by abstract gene expression processes. As has been intro-
duced in Chapter 3.1.3, both proteins are therefore assumed to be synthesized

in dependence on the nuclear amount of Nicd and inserted into the cytoplasmic

compartment:
Nuc , Nuc
e —W --=- | | N(stateF)
| 8? | | S? !
Nuc Nuc
o M ---- | | D(stateF)
| S? I | 5? |

. Nicd]” .
with 6 = W and [Nicd] = > N(state!) € s?.

To avoid an application of the counting function on the bound solution (s7)
for determining the amount of nuclear Nicd, the easiest way would be to specify
N(state®) as a reactant within Nuc, which allows to access its current amount

via species identifier n, like it is done in the following rule, for instance:

Nuc k2 (k%) Nuc
Nty | Y Nty 5 | | D(stateR)
N(state®) || s? | N(statel) || s? |

However, this naive approach does not work here, since if the amount of
N(state®) equals zero, the reactant pattern does not match and therefore the
rule would not be allowed to fire, although nuclear Nicd denotes merely a side-
condition and its absence does not affect the validity of the rule. Therefore,
as an alternative, species Nuc is assigned an attribute nicd that holds the

current amount of nuclear Nicd:

Nuc(nicd™) kz(l—Kh"—:nh) Nuc(nicd™)
| —_— | D(state®)
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Please note, in this case, the rule for Nicd translocation into the nucleus needs
to be adapted accordingly and also an additional rule for the degradation of

nuclear Nicd is needed.

n| Nuc(nicd®) Nuc(nicd*™)
I e N
N(state®) ey -/ o
SO ST

o B . -1

Nu?,(fl,z,cd ) . Nucﬁ,n}?flx )
87 #n>0 L 87

Hence, the above example emphasizes the importance of counting species

within solutions.

8.1.3 High-Level Processes

Beyond various biochemical processes, the Notch signaling example model in
this thesis includes three dynamic processes at higher organizational levels:
The volume increase of membrane and cytoplasm compartments, a G; check-
point determining whether the cell cycle proceeds with phase Go or will be
arrested in phase Gy, and finally the process of cell division, which leads to an
increasing number of cells in the model.

According to the informal description in Chapter 3.2, the cell is assumed
to grow exponentially in size; hence the volumes of different cellular compart-
ments are increasing over time. However, compared to the cytoplasm, the
membrane compartment is assumed to increase only half as fast and the nu-
clear volume is assumed to remain constant. The growth of both compartment
volumes can be described best by a single rule schema, since both processes
rely on the same dynamics including a constraint restricting volumes to be

doubled at most (twice the initial cytoplasmic volume V,):

Mem(vol’™) Mem (vol’™*09/2)
Cyt(vol™) . Cyt(vol™ ")
r——=-1 gvc _____
el Ve <2V el
m?, m?!
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The next high-level rule is also constrained by the cytoplasmic compartment
volume, as in our example model the G; checkpoint is assumed to not take

place before the volume has increased by at least 50%:

Cell(id’, phase®™) Cell(id’, phase®)
Mem(vol’™) Mem(vol"™)
Cyt(vol™) ke Cyt(vol®)
- 0o >1.5V -

m?] 7!

with expression e :=if (D> N(stateF) € ¢?) < ty then G2 else GO.

A conditional expression on the right-hand side of the rule checks whether
the cytoplasmic amount of mature Notch receptors is lower or greater than a
certain value ty. If the amount equals or exceeds the threshold ¢y, the cell’s
phase attribute is assigned the value GO, otherwise value G2 is assigned. An
alternative rule without using the capability of counting species in a solution

is given below:

Cell(id", phase®) Cell(id’, phase®)
Mem(vol"™) Mem(vol’™)
Cyt(vol®™) ke Cyt(vol"™)
—

e | |
'm?| m?!

with expression e := if #n < ty then G2 else GO.

Please note, with the above rule the aforementioned problem of zero-amounts
might arise again, i.e., in the absence of cytoplasmic Notch the rule is not al-
lowed to fire, although merely denoting a side-condition. However, since Notch
is continuously synthesized and the rate kq; is assumed to be rather high, the
described situation should rarely occur and thus the problem can be neglected

in this case. However, alternatively it would still be possible to equip the Cyt
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species with an additional attribute to store the amount of enclosed Notch,
similar to what has been done with the Nuc species in order to describe gene
expression correctly.

The final rule is dedicated to the process of cell division, which leads to
the dynamic instantiation of additional cells in the model and thus denotes
an illustrative example for the need of supporting variable model structures.
Cells in the example model are considered to be linearly arranged in a one-
dimensional space. Therefore, to represent different location and for modeling
spatial dynamics like receptor-ligand binding between adjacent cells, species
Cell is equipped with an id attribute. Each id is assumed to be an integer
value appearing only once, by which the model’s space becomes discretized.
Hence, for modeling the process of cell division and thereby introducing a
new cell instance, we need to determine whether a certain cell has already a
direct neighbor or whether the space next to its own location is still “free”.
Therefore, the model is initialized with numerous FS(id) species representing
different locations of free space (cf. Figure 8.1) and the process of cell division
then requires an F'S species whose id is adjacent to that of the dividing cell. If
this is the case and all other conditions are also fulfilled, e.g., the dividing cell
needs to be in phase Gg, reactant FS will be replaced by a newly created Cell

species. The process of cell division is therefore generally described as follows:

Cell(id", phase®) Cell(id’, phase®) || Cell(id’, phase®)
FS(id?) | ——<2

j=i1V j=i—1

However, since cell division is assumed to take place after the cytoplasmic
compartment volume has doubled, we need to explicitly include the accord-
ing subcellular species Cyt in order to constrain firing based on its volume
attribute vol. A specification of both the Mem and the Cyt species of a di-
viding cell is also required, as compartment volumes are assumed to be reset
to their initial values V,, and V, respectively. However, the question is how to
deal with the enclosed sub-solutions? In the following, two alternative methods
are presented.

A simple method would be to instantiate the “new” cell like it is done in
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the initial solution, i.e., without containing any Notch nor Delta. The dividing
cell persists as it is, except of its cell cycle phase and compartment volumes

that are reset to initial values:

Cell(id’, phase®?) Cell(id’, phase®) | |Cell(id”, phase®)
Mem(vol’™) Mem(vol¥™) Mem(volV™)
Cyt(vol®) ks Cyt(vol¥*) Cyt(vol¥*)

- FS(idj) —W . . -

(G=i+1V j=i—1)

im? im?)
[ — L- -

Alternatively, to split the content of a dividing cell equally and distribute
it among both daughter cells, the universal decomposition approach presented

in Chapter 7.4.3 can be used:

Cell(id", phase®)
Mem(vol’™)

Cell(id’, phase®)| |Cell(id’, phase®)
Mem (vol¥™) Mem (vol¥™)

Cyt(vol*) Cyt(vol¥*)

Cyt(vol’)

ka2
V22V A
(G=i+1lV j=i—1)

FS(id?)

Therefore, multiple special variables for binding unspecified content are defined
within each compartment, e.g., n;? and n;? within compartment species Nuc.
By doing so, the unspecified remainder-solution of the compartment will be
split equally during rule instantiation and the resulting sub-solutions will be
bound to the according variables. These variables are reused on the right-
hand side of the rule to distribute the split content among both daughter cells.
Please notice, the solution that is enclosed by species Mem is decomposed into
three parts m;?, m;? and m;?. Thereby, decomposition is constrained, such
that sub-solution m;? consists of all species ?(state®”F), i.e., of all non-free

Notch and Delta molecules. The remaining part is split equally again and the
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resulting sub-solutions are bound to variables m;? and m;?. This constrained
decomposition prevents from inserting receptors and ligand molecules into the
newly created cell, which are in fact tightly connected to the dividing cell due

to intercellular bonds.

The entire Notch signaling model encoded in the basic textual syntax of
ML-Rules can be found in Figure 8.2, which describes the dynamics within
and between arbitrarily many cells and thereby demonstrates the succinctness
of the developed modeling approach. A typical simulation study with this
model could investigate under which conditions cell proliferation will stop due
to lateral inhibition. For instance, we would expect that cells with only one
other cell in their adjacency consist of fewer activated Notch receptors than
cells with two neighbors. Larger amounts of activated Notch, in turn, might
lead to an increased translocation of Nicd into the nucleus, resulting in a
higher expression level of newly synthesized Notch and subsequently also in
more receptor molecules attached to the cell membrane. Receptor activation
may thus initiate a positive feedback loop, such that a cell becomes more and
more activated by increasing amounts of Notch. In addition, larger amounts
of cytoplasmic Notch are assumed to cause an inhibition of cell proliferation,
i.e., the cell will not divide as it becomes arrested in the quiescent cell cycle
phase Gg. As this process of lateral inhibition plays an important role in many
systems, e.g., in epidermal regeneration during wound healing, an investigation
of different subcellular, cellular, or cell population conditions regarding their

effects on expected or abnormal behavior might reveal new insights.

However, the purpose of this toy example is to demonstrate — within a single
model — diverse aspects that are relevant for multilevel modeling in systems
biology. Therefore, some artificial assumptions have been introduced, e.g., it is
not clear whether the growing membrane volume really plays an important role
for the rate of receptor activation. Other important regulatory dynamics have
been left away to keep the model simple, e.g., the processes of transcriptional
activation and inhibition are highly simplified. For this reasons, simulation re-
sults of the Notch signaling model are not presented here. However, in addition
to model encodings, the second case study on fission yeast cell proliferation

involves also some simulation experiments.
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// species definitions
Cell(2);

Mem (1) ;

Cyt(1);

Nuc (1) ;

N(1);

D(1);

FS(1);

// initial solution
>>INIT[ for i:min while (i<0) with i+1 [ FS(i) 1 +
Cell(0,'G1l') [Mem(VmO) [Cyt (VcO) [Nuc(0)11] +
for i:0 while (i<=max) with i+1 [ FS(i) 1]
1;

// synthesis of Notch and Delta
Nuc(n) [s?] -> Nuc(n)[s?] + N('F') @ kiprime+(k1*((n~h)/(K~h + n~h)));
Nuc(n) [s?] -> Nuc(n)[s?] + D('F') @ k2x(1-((n~h)/(K~h + n~h)));

// protein translocation to membrane
Cyt(v)IN('F'):n + s7] -> Cyt(v)[s?] + N('F') @ k3x#n;
Cyt(v)[D('F'):d + s?] -> Cyt(v)[s?] + D('F') @ kdx#d;

// receptor-ligand binding
Cell(i,pi) [Mem(vi)[N('F'):n + mi?]] + Cell(j,pj)[Mem(vj)ID('F'):d + mj?]] -> Cell(i,pi)[Mem(vi)[N(j) +
mi?]] + Cell(j,pj) [Mem(vj)[D(i) + mj?]] @ if (j==i+1) || (j==i-1) then (k5/(vi+vj))*#n*#d else O0;

// catalyzed cleavage of activated Notch

Cell(i,pi) [Mem(vmi) [Cyt(vci)[ci?] + N(j):n + mi?]] + Cell(j,pj)[Mem(vmj)[D(i) + mj?]1] ->
Cell(i,pi) [Mem(vmi) [Cyt(vci)[N('I') + ci?] + mi?]] + Cell(j,pj)[Mem(vmj)I[D('E') + mj?]] @
(vmax*#n) / (Km+#n) ;

// translocation of Nicd into the nucleus

Nuc(n)[s?] + N('I'):c -> Nuc(n+1) [s?] @ k7x#c;

// recycling of Delta ligand
Cyt(v)[s?] + D('E'):d -> Cyt(v)I[D('F') + s?7] @ k8x#d;

// protein degradation

N(state):n -> @ if (state=='F') || (state=='I') then kdegx#n else 0;
D(state):d -> @ if (state=='F') || (state=='E') then kdeg*#d else O0;
Nuc(n) [s?] -> Nuc(n-1)[s?] @ if (n>0) then kdeg#*n else 0;

// cell growth
Mem (vm) [Cyt (vc) [c?] + m?] -> Mem(vm+(dg/2)) [Cyt(vc+dg) [c?] + m?] @ if (vc<(2%Vc0)) then kgxvc else 0;

// cell cycle phase transition (61 checkpoint)
Cell(i,'G1') [Mem(vm) [Cyt(ve)[N('F'):n + c?] + m?]] -> Cell(i,if (#n<tN) then 'G2' else
'GO ') [Mem (vm) [Cyt (ve) [N('F') + c?] + m?]] @ if (vc>=(1.5%Vc0)) then kGl else O0;

// cell division
Cell(i,'G2') [Mem(vm) [Cyt(vc) [c?] + m?]] + FS(j) -> Cell(i,'G1l') [Mem(VmO) [Cyt(VcO)[c?] + m?]] +
Cell(j,'G1') [Mem(VmO) [Cyt(VcO) [Nuc(0)1]] @ if (vc>=2%VcO0) && ((j==i+1)||(j==i-1)) then kG2 else O0;

Figure 8.2: ML-Rules model of the Notch signaling example. Parameter definitions

are omitted.
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8.2 Fission Yeast Cell Proliferation Model

8.2.1 Main Properties and Structure of the Model

The second case study is a multilevel model of the fission yeast (Schizo-
saccharomyces pombe) cell proliferation in dependence on an intracellular con-
trol circuit. The dynamics of this intracellular regulatory network of inter-
acting proteins in turn depends on the cell’s size and the concentration of
specific pheromone molecules within its environment that play an important
role in sexual reproduction. To prepare for mating, fission yeast secretes these
pheromones, which subsequently may cause an arrest of the division cycle of
cells with an opposite mating type. Different cells may thereby communicate
with each other over rather long distances due to pheromone diffusion. Hence,
the model’s dynamics operate at multiple levels of organization and the differ-
ent parts are highly interconnected and influence each other in various ways.
In the following sections, a rather simple single-cell model of the fission yeast
cell cycle regulation will be successively extended to a hierarchically organized
multicellular model. An overview of this model’s structure and dynamics is de-
picted in Figure 8.3. The model comprises three distinct hierarchical levels. At
the bottom level, interacting proteins describe the intracellular dynamics of a
fission yeast cell. The intermediate level describes dynamics at the level of en-
tire cells, i.e., cell growth, cell cycle phase transitions, and cell division includ-
ing mating type switching. Also at this hierarchy level, pheromone molecules
are secreted into the extracellular medium. Various interlevel causalities be-
tween the intermediate and the bottom level influence dynamic processes both
in an upward causation (processes 7-9) as well as downward causation manner
(4,11-12). In addition, the top level discretizes the environment of cells into
multiple fictive compartments to cover diffusion of pheromones and excluded
volume effects leading to the displacement of cells from crowded to more empty

areas.

8.2.2 Downward Causation in Cell Cycle Regulation

As has been already outlined in Chapter 3, the eukaryotic cell cycle consists

of four phases: Gy, S, Gy, and M. During the first three phases, the cell is
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increasing in size and its DNA is replicated. At the end of the cycle, the cell
enters the M phase (mitosis) and finally divides into two daughter (or sibling)
cells. These major events of the cell division cycle are controlled by certain
proteins (primarily cyclins and cyclin-dependent kinases) and the underlying
processes in fission yeast have been extensively studied in the past decades
(Kim and Huberman, 2001; Tyson and Novak, 2001; Tyson et al., 2002; Kar
et al., 2009; Moseley et al., 2009; Sawin, 2009).

The low-level regulating processes in our case study are based on an early
model by John Tyson (1991). This model consists of two proteins (cyclin
and cdc2) that form a complex called maturation promoting factor (MPF),
which in turn may be activated by an autocatalytic process and disassembles
afterwards. Thereby, the varying amounts of inactive and activated MPF are
assumed to control passing through the cell cycle, e.g., entering the M phase
requires large amounts of active MPF. The according biochemical reaction
network is illustrated by green colored entities at the bottom of Figure 8.3.
Although today much more detailed models of cell cycle regulation exist (e.g.,
Novak and Tyson, 1997; Sveiczer et al., 2001; Qu et al., 2003; Kar et al.,
2009), the Tyson model denotes a suitable starting point for studying cell
cycle regulation, as it is simple but at the same time captures the essential
dynamics. Moreover, the model comprises some implicit notion of downward

causation and is therefore well qualified for our use case.

Tyson identified specific regions in the parameter space — in particular for
the rate coefficients of autocatalytic MPF activation and its disassembly —
where regular cycle oscillations with bursts of the amounts of inactive and
activated MPF can be observed. However, with constant rate coefficients, the
period of roughly 30 minutes between two peaks is significantly shorter than
the mean mass-doubling time of wild type fission yeast of 116 minutes (Miyata
et al., 1978). Therefore, to achieve longer oscillation periods, Tyson assumes
with increasing cell size a dilution of an enzyme catalyzing the breakage of
MPF into cdc2 and cyclin-P and the according rate coefficient is thus de-
creased during the cycle. Hence, implicitly, the Tyson model already includes
dynamics at different organizational levels as well as downward causation from

the cellular level to a process at the subcellular level. These multiple levels
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Table 8.2: Species definitions of a simple cell cycle regulation model.

Biological structure / entity Species name Attribute names
Fission yeast cell Cell (wol)

Cdc2 Cdc2 ()

Cyclin Cyclin ()
Phosphorylated cyclin CyclinP ()

Inactive MPF complex MPFi ()

Active MPF complex MPFa ()

and their interrelation shall be made explicit now. Therefore, in addition to
different protein species, also an attributed species Cell(vol) is specified to
describe the cell compartment and its size in terms of volume (see Table 8.2).
By doing so, the rate of MPF disassembly inside the cell can be dynamically

adjusted by taking the current volume of the cell into account.

Please notice, unlike it is done for cyclin, we do not distinguish between
phosphorylated and unphosphorylated cdc2. This is a simplification in ac-
cordance with the original model, as the phosphorylation and dephosphory-
lation reactions of cdc2 are very fast compared to the others and can thus
be neglected. Also, although the different states of cyclin and MPF may be
straightforwardly represented by according attribute values rather than dis-
tinct species names, here the species have not been equipped with attributes
since each of them may have two different states only and in this case the
specification of rules becomes more compact than it would be possible by us-

ing attributes.

The initial solution of the model consists of only one Cell species, as here
the interplay between cell growth and intracellular biochemical reactions shall
be investigated. An extension of the model describing the behavior of multiple
cells will be discussed later. Enclosed by the Cell — whose volume attribute
vol is assigned the value 1 —is a number of cdc2;. species Cdc2. Other species

are not part of the initial solution:
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Cell(vol")
—
cdc2ior Cdc2

The first reaction rule describes the zero-order synthesis of cyclin, added to

the solution enclosed be the cell:

Cell(vol")

4 A
L s? Cyclin || 5?7 |

[A— L]

Please note, since the model does not comprise more than one Cell species
so far, there is no need to consider its amount in the firing rate of the rule.
Hence, there is also no need for a species identifier of the Cell reactant, like
it is done in the following rule, which describes the formation of the inactive

MPF complex by an association of cyclin and cdc2.

Y d
Cyclin || Ccde2 | 2™ [ MPFi

As has been stated earlier, activation of inactive MPF — i.e., dephosphory-
lation of its cdc2 subunit — is assumed to be an autocatalytic process. That
means, the higher the amount of activated MPF, the higher is the activation
rate. Therefore, we need to access the amount of MPFa, which is done by

using a counting function on the bound solution s?:

Cell(vol” acs? 2 Cell(vol”
e (vno%i)”‘ ké+k3(%f:;”) m e (Uo,f)”,

MPFi | s? | * || MPFa | s?

Alternatively, to avoid an application of the counting function, one could in-
troduce an additional cell attribute denoting the current amount of enclosed
MPFa, similar to what has been done for accessing the amount of nuclear
Nicd in the Notch signaling model (cf. page 182f). However, due to the spe-
cific rate law of the MPF activation process, here it would be sufficient to split
it up into a basal and a catalyzed activation process. The according rules are

as follows:
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MPFi | — " [ MPFa
a m k3(cdf2amt)2#m —
MPFa \ MPFi \ > 2 MPFa

The rule schema below describes the MPF disassembly process, whose rate
is assumed to decrease with growing cell size. Therefore, the rate of the rule
is dynamically adjusted in a downward causation manner by taking the cell’s

current compartment volume into account:

(ko o) Cell(vol")

- - |

MPFa | s? . CyclinP || Cdc2 | s?

Subsequent degradation of phosphorylated cyclin is described by an ordinary

first-order reaction with mass-action kinetics:

——————Y
CyclinP | =2, ¢

The rules so far describe the intracellular dynamics of the cell cycle regula-

tion model. What is still missing are the rules for cell growth, i.e., an increase
of the volume over time, and the abrupt reduction of the volume that mimics
cell division. Therefore, the growth process is discretized such that the vol-
ume attribute of the Cell species is increased by 1/T,; with a rate constant

ks = 1 min~! and the mean doubling time 7} given in minutes:

Cell(vol”) .| Cell(vol" /™)
r— — =1 6 > *****
o v<2 .

The cell volume in this model is represented by relative rather than absolute
values, where 1 and 2 are the volumes at birth and division respectively. That
is why the above rule for cell growth is constrained to only fire as long as the
volume is lower than 2. Consequently, the cell division process — where the

cell’s volume gets halved — happens after the volume is greater or equal 2:

Cell(vol”) b Cell(volv/Z)
7 | >3 N
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Please notice that a firing of this rule does not increase the number of cells
in the model, although this could be easily expressed by putting two cells on
the right-hand side of the rule. Later, the model will be extended this way.
However, at this stage the model shall describe only the single-cell interplay
between subcellular processes and dynamics at the cellular level. Therefore,
the cell number and its enclosed content are kept constant and the above rule
merely mimics cell division by reducing the cell’s volume.

Unlike the continuous deterministic analysis by Tyson (1991), the stochastic
simulation of the presented ML-Rules model (see Figure 8.4) reveals highly
variable oscillation periods as well as nonconformity between the time points
of active MPA bursts and cell division events, i.e., an abrupt decrease of the
cell’s volume. Hence, to get more lifelike oscillatory behavior in the presence of
stochastic effects and to achieve better accordance between protein peaks and
division times, the presented model needs some modifications. Let us in the
next section therefore take a look on how low-level states influence dynamics
at the cell level, i.e., how intracellular dynamics trigger high-level events so

that the cell traverses through the different phases of the cell cycle.

8.2.3 Controlling Cell Proliferation via Bidirectional In-

terlevel Causation

The accumulation of inactive MPF, i.e., the protein complex where both sub-
units cyclin and cdc2 are phosphorylated, denotes the initiation of DNA syn-
thesis. Hence, inactive MPF controls the transition from G; to S phase of
the cell cycle. Similarly, the transition from Gy to M phase and the final di-
vision process are controlled by the rapid increase and subsequent depletion
of the amount of active MPF. Therefore, cell cycle phase transitions and thus
also the duration of the cycle are influenced by dynamics at a lower level of
organization.

To describe these upward causalities, the Cell species is equipped with an
additional attribute (phase) that denotes the current phase of the cell cycle.
In the initial solution, it is assigned the value G1. As DNA replication — i.e.,
the S phase — takes a rather constant amount of time and here the interest lies

in the control of G; and G checkpoints, the S and Gy phases of the cell cycle
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// parameters // species definitions
cdc2tot: 1000; Cell (1)
Td: 116 Cdc2();
k1: 0.015*cdc2tot; Cyclin();
k2: 200; CyclinP ()
k3: 180; MPFi () ;
k3prime: 0.018; MPFa () ;
k4 : 4.5;
k5: 0.6; // initial solution
k6: 1.0; >>INIT[ Cell(1)[cdc2tot Cdc2] 1;
k9: 1e6;
// rule schemata
Cell(v) [s?] -> Cell(v)[Cyclin + s7] Q ki;
Cyclin:y + Cdc2:d -> MPFi Q@ k2x#yx*#d;
MPFi:m -> MPFa @ k3primex*#m;
MPFa:a + MPFi:m -> 2 MPFa @ k3x((#a/cdc2tot) ~2) *x#m;
Cell(v) [MPFa:m + s?] -> Cell(v)[CyclinP + Cdc2 + s?] @ (k4/v)*#m;
Q
Q@
Q

Cell(v) [s7] -> Cell(v/2)[s?]

if (v>=2) then k9 else 0;

Figure 8.4: ML-Rules variant of the Tyson (1991) model of yeast cell cycle regula-

tion. The model includes downward causation by dynamic adjustment of the MPF

disassembly rate due to an increase of the cell’s volume. (Top) Stochastic simulation

results. (Bottom) Model encoding in the basic textual ML-Rules syntax.
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are combined to a single phase S/Gs. The transition from phase G; to phase
S/Gg is described as follows:

Cell(vol”, phase®) "

————Mn
MPFi | | s?7 | #m>ty MPFi | | s?7

where t; denotes a certain threshold value of inactive MPF that needs to be
exceeded in order to pass the G; checkpoint. Similarly, the transition from
S/Gs to M phase is guarded by a threshold tg in the amount of active MPF":

ks

MPFa | | s? . #m>tg MPFa | | s? .

The last cell cycle phase transition from M back to G; denotes the division into
two daughter cells. However, we are still interested in the interplay between
high-level and low-level states only. Thus, the number of cells is kept constant
and only the volume of the “dividing” cell gets reduced, like is has been done
in the previous section. Cell division occurs after the amount of active MPF

falls below a second threshold value tg, which is significantly lower than tg:

ko
D | % D |

MPFa | | s? . #m<tg MPFa | | s? .

Please note, in all three phase transition rules the amount of an enclosed
species needs to be accessed in order to determine whether the rule may fire
or not. This is achieved here by explicitly specifying the respective species
on the left-hand side of the rule (to prevent from consumption also on the
right-hand side), which allows for assigning a species identifier and thereby
for retrieving its current amount. However, alternatively one could also use a
counting function on the bound solution s?, e.g., >~ MPFa € s?.

Now that the model comprises defined states for the different phases of the
division cycle, the cell must no longer be restricted to grow in size until its
volume has doubled. Instead, the volume is allowed to increase at any time

but not during the M phase:

197



8. Case Studies

o) ‘ Volume
§ 2L / : ! ! R . ] G1 phase
= S/G2 ph
2 Wt /// / [ N
600 7
g 500
S
© 400 Inactive MPF
8 200 Active MPF
<
= 200
100

400 600 800

Time [minutes|

Figure 8.5: Yeast cell cycle regulation model comprising downward and upward
causation. MPF disassembly depends on the cell’s volume and at the same time, the
cell cycle duration depends on the intracellular amounts of active and inactive MPF.

The concrete model encoding (including parameters) can be found in Appendix B.1.

" Cell(vol”fl_/:fd, phase?)

Y pe{61,562} 87

Compared to the original model with downward causation only, simulating
the extended multilevel model — that comprises also upward causation — shows
rather stable oscillation periods in accordance with the mean mass-doubling
time T, of 116 minutes (Figure 8.5). Cell division may happen at volumes
larger than 2 and consequently the cell cycle may take more time than Ty, but
if this is the case, this has implications for the next cycle: Due to the unusually
large volume at birth, MPA activation then occurs relatively fast and thus the
following cycle tends to be shorter than normal. In this way, the combination
of upward causation and downward causation regulates both, the cell cycle
duration and cell size homeostasis.

The results emphasize the role of multiple levels and their inter-relation in
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studying phenomena like cell division. They also show the necessity for flexibly
constraining dynamic processes to describe interlevel causalities. Therefore,
ML-Rules provides nesting of species and rates with arbitrary kinetics based
on constraints. So far, the model appears still to be manageable in other — less
expressive — modeling languages. However, the next step, i.e., moving from a
single-cell model to multicellular dynamics, illuminates the importance to be
able to express multiple levels and interlevel causation explicitly, succinctly,

and in a flexible manner.

8.2.4 Cell Division and Mating Type Switching

Besides asexual cell division, the unicellular fission yeast may also undergo sex-
ual reproduction when environmental conditions are getting poor, e.g., when
cells are starving. Different mating types (P and M) exist enforcing fusion
of cells of opposite types only (Leupold, 1958). The product of fusion is a
diploid zygote rapidly entering a sporulation process. Later, when the envi-
ronmental conditions improve, spores germinate to spawn haploid cells, which
then undergo normal asexual proliferation again. The mating type of prolif-
erating cells switches sporadically when a cell divides. This phenomenon is
regulated by rather complex gene-regulatory mechanisms (Beach, 1983; Beach
and Klar, 1984; Egel, 1984a,b; Klar et al., 1991; Yamada-Inagawa et al., 2007).
However, rather robust phenomenological switching patterns can be observed
(Klar, 1992). One important characteristic is that cells do not only show one
of the two different mating types, i.e., P or M, but can be also categorized into
cells that are able to switch their type and those that are not (Figure 8.6).
Although comprising multiple levels, the cell proliferation model so far de-
scribes the dynamics of a single cell only. In order to describe a multicellular
system, we extend the previous cell division rule —i.e., the cell cycle transition
from phase M to phase G; — such that the dividing Cell species is replaced by
two Cell species on the product-side of the rule. At the same time, instead
of modeling detailed processes at the genetic level, simple phenomenological
alterations of the cell’s mating type are assigned according to the regularities
depicted in Figure 8.6. Therefore, the Cell species is equipped with two addi-

tional attributes: type for representing the cell’s mating type and sw to denote
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Figure 8.6: Switching of mating types in a fission yeast cell lineage. Cells of type M
are marked by dark shadings, light gray stands for mating type P. The unswitchable
and switchable states are denoted by U and S respectively. Reproduced figure from
Klar (1992).

whether the cell is able to switch its type or not. This leads to the following

rule schema describing the division of an unswitchable cell:

Cell(vol"/?, phase®, type’, swt=)

c e
v alse MPFa  §T |
Cell(vol ,phaset;ltygﬁe_t_, swtatse) o e I
i #m<t
MPFa | .7, = Cell(vol"’?, phase®!, type!, swtatse)

I |

MPFa | | s? .

L]

The complementary schema for the division of switchable cells looks pretty

much similar:

Cell(vol"/?, phase®*, type’, swt=®)

I |

C I I
| ? |
Cell(vol”, phase", typet, sw™He) i Wl | 57 |
—m c---s o#c ,
L 87 #m<t
MPFa | . 57, = Cell(vol"/?, phase®, type®, swt?=e)

I |

MPFa | | s? .

L]

with conditional expression e := if ¢t = P then M else P.
Please notice, since the former single-cell model has now been extended
to describe multicellular dynamics and therefore populations may exist that

comprise multiple identical Cell species, here also the cell amount needs to be
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taken into account in the kinetic rate expression. The multicellular model, in
which each cell may have its own state and behavior, also underlines the ne-
cessity for specifying rule schemata. Otherwise, modeling such systems would
be highly impractical if not impossible, as each defined combination of cellular

attributes and enclosed content would require the specification of an own rule.

The above rule schemata also illustrate the importance for binding unspec-
ified solutions to variables, so that arbitrary content of species can not only
be preserved but also copied and flexibly inserted into multiple species on the
right-hand side of a rule. Like in the previous single-cell model, the solution
here also remains unsplit and is thus not distributed among both daughter
cells. The contained solution will be entirely copied instead, as in accordance
to the original Tyson model the total amount of cdc2 protein, i.e., the sum of
the amounts of species Cdc2, MPFi, and MPFa, is assumed to be constant
in each cell. However, by applying the universal decomposition approach intro-
duced in Chapter 7.4.3, it would be also possible to split the solution according
to certain constraints. For instance, the rule below describes an equal splitting
of the solution. In addition, this rule also shows an application of the counting

function that aggregates the amounts of MPFa within different solutions:

Cell(vol”, phase™, type’, sw™®)[s1? + s57]°
ko#c
(Z MPFacsi?7+ 82?)<t9

Cell(vol”/2, phase®, type', sw*™*®)[s1?] + Cell(vol”ﬂ, phase®, type', sw5°)[s57]

As shown by the simulation results in Figure 8.7, mating type switching
ensures that — in the long run — both types P and M are equally distributed
in a population of fission yeast cells. The initial population consisting of only
one type of cells reveals distinct time points of the first appearance of cells
comprising other combinations of mating type and the ability to switch. Also
an equilibration of the different mating types after just a few division cycles
can be observed. However, at this stage, different cells in the model are not
interacting with each other, as the dynamics of a cell only depends on its own
state and on the state of its enclosed solution. In the next step, this model

will be extended once again to also describe intercellular communication.
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Figure 8.7: Multicellular model of yeast proliferation and mating type switching.
Trajectories of different cell types from a stochastic simulation run with an initial
population of 100 unswitchable cells of mating type P. The concrete model encoding

(including all parameters) can be found in Appendix B.2.

8.2.5 Intercellular Communication Through Pheromones

Conjugation of two fission yeast cells is restricted to poor environmental con-
ditions and to cells of opposite mating types. To only prepare for mating
in the presence of compatible partners, fission yeast cells communicate with
each other through diffusible pheromone molecules (Nielsen and Davey, 1995).
The fission yeast pheromone secretion and response is therefore an exam-
ple of paracrine signaling. When growing in a nitrogen-poor environment,
for instance, cells are starving and begin to synthesize mating type specific
pheromones that are getting secreted to the extracellular medium. Thereby,
the pheromone that is secreted by cells of mating type P is called P-factor
and M-type cells produce the M-factor pheromone. Sensing of pheromone
molecules released by the opposite type causes several regulation processes
that prepare the cells for mating. One of the main effects is an arrest of the
cell division cycle in the G; phase (Stern and Nurse, 1997). In this section,
the yeast proliferation model will be extended by adding certain species and
rules to describe communication via pheromone molecules and the respective
response leading to a G; arrest. Thereby, intercellular communication relies

not on direct cell-to-cell interaction (juxtacrine signaling) like in the previous
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example of Notch signaling, but on diffusible molecules.

Therefore, at first additional rules for pheromone secretion and degrada-
tion are specified, where Phe(type) denotes an additionally defined attributed
species name that — depending on the attribute’s value — represents P-factor

and M-factor pheromone respectively:

C

Cell(type', a?) o Cell(typet, a?)
r——=1 10 C> iiiii t
87 P87 Phe(fype’)
" R kis#p
Phe(type’) | —— ()

Please note, the pheromone secretion rule takes advantage of identifying at-
tributes by name, as this method allows to leave certain attributes unspecified
if they are of no interest — here the vol, phase, and sw attributes of species
Cell - and thereby notations become more succinct.

Once secreted, M-factor molecules, i.e., species Phe(type"), may influence
dynamics of P-type cells. Conversely, cells of mating type P may communicate
with M-type cells via P-factor molecules, i.e., via Phe(type?). In addition to
M-factor, cells of type M also produce and release a P-factor-specific protease
(Sxa2), which catalyzes the degradation of P-factor and thereby lowers the
effect that P-type cells have on M cells (Imai and Yamamoto, 1992; Nielsen
and Davey, 1995):

c

Cell(type", a?) Cell(type", a?)
o 0.1k10#c o
) ! oL i ' Sxa?2
I S? : I S? :
k x
Sxa2 i 0

kis#p#
Sxa2 RELLELALN Sxa2

|

Phe(type®)

For the sake of simplicity, instead of modeling a detailed pheromone re-
sponse signaling cascade including receptor binding, here the amount of extra-

cellular pheromone is simply taken into account for influencing the dynamics
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Figure 8.8: Abstract model of MPF repression in dependence on extracellular
pheromone. M-factor molecules (black circles) have an effect on cells of mating P,
while P-factor (gray diamonds) only influences the dynamics of M-type cells. P-
factor pheromone is catalytically degraded by Sxa2, which is secreted by cells of
mating type M only.

of the intracellular control circuit. As already mentioned, the presence of
pheromone may cause a G arrest of the cell cycle. It has been shown that
inhibition of the cyclin-cde2 complex is crucial for this process (Stern and
Nurse, 1997). Therefore, a new species name MPFr denoting a repressed
MPF complex is introduced that prevents inactive MPF from being activated.
However, a repressed MPF complex may spontaneously recover to its normal
inactive state (see also Figure 8.8). The reaction rate of MPF repression is
assumed to depend on the amount of environmental pheromone. Since ex-
tracellular pheromone resides at a higher nesting level than the intracellular
MPF complex, the repression process is constrained by downward causation.
However, different from previous examples, here the interlevel causation acts
across the boundaries of a nested species, i.e., the Cell, and not just between
an attributed species and its enclosed solution:

———P
Phe(type') Phe(type')

¢ ( ki #p®

Cell(type®, a?) Wﬁ)#m#c Cell(type®, a?)

T e ——— CaEamas)
I I

MPFi 1L s? | MPFr 1L s?

with conditional expression e := if ¢ = P then M else P.
In fact the above rule of pheromone-induced MPF inhibition includes two

different downward causalities at the same time. The first is the amount of
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extracellular pheromone, which is included in the rate factor that describes a
Hill type sigmoidal response curve for MPF repression. The second downward
causation is a volume-dependence again. This reflects the observation that
inhibition of MPF activity is partly lost due to increasing cell size Stern and
Nurse (1997), which could be, for instance, again the consequence from a dilu-
tion of involved but here not explicitly considered enzymes. Finally, recovery

of inactive MPF from its repressed state is described as follows:

——m
kio#m .
MPFr | —— | MPFi

The simulation results given in Figure 8.9 show how the additional reac-

tion rules influence the intracellular processes and by that have an effect on
the dynamics at cell level, i.e., progression through the cell cycle phases. As
pheromone secretion and mating takes place when nutrition is poor, the pa-
rameter 7T; denoting the cell’s mass-doubling time has been increased to 232
minutes in these simulation experiments. In the absence of pheromone, the
cell cycle length then increases to roughly 200 minutes (Figure 8.9a). Simi-
lar dynamics can be observed in the presence of a low amount of extracellular
pheromone, as the pheromone’s effect on MPF activation through repression is
too low (Figure 8.9b). This is different with a higher pheromone concentration:
Figure 8.9c indicates a strong suppression of inactive MPF by the repressed
variant. However, repression gets partly lost over time, i.e., the cell adapts
while it grows in size and completes the cell cycle finally after more than 600
minutes. Please notice the dramatically increased duration of the G; phase,
while both the S/Gs and M phase take only slightly more time than without
pheromone signaling.

Compared with an exponential population growth unaffected by any phe-
romones, the simulation of a multicellular model comprising intercellular com-
munication shows significantly reduced cell numbers due to an arrest in the G,
phase and thus an increased mean cell cycle duration (Figure 8.10). With an
increasing cell number, the pheromone amounts increase as well and thereby
larger fractions of cells being in the G; phase can be observed at later time
points. After 1000 minutes simulation time, nearly half the population is

arrested in the G; phase. At this point, the amounts of pheromones lie be-
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Figure 8.9: Pheromone-dependent cell cycle dynamics of a single fission yeast cell.

MPF trajectories and cell cycle phase durations with pheromone different amounts:

(a) in the absence of pheromone, (b) with an extracellular pheromone amount of 200

molecules, and (c) in the presence of 600 molecules. The model encoding can be

found in Appendix B.3.
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tween 400 (P-factor) and 800 (M-factor) molecules. However, although the
P-factor-specific protease Sxa2 lowers the amount of P-factor pheromone and
thus lowers the signaling effects on M cells, mating type switching still ensures
equal distributions of the different mating types P and M.

The presented extension of the previous proliferation model of non-comm-
unicating cells to a model comprising intercellular communication through
paracrine signaling illustrates the usefulness of compositionality, as this allowed
us to simply add a few new species and rules while leaving the remaining model
parts completely unmodified. The model also underlines again the importance
of constraining reactions flexibly.

The model so far assumes all cells and secreted pheromones residing in
the same well-mixed solution, i.e., there is no spatial information included.
However, since pheromone molecules may diffuse within the medium after
secretion and also individual cells of a population may be inhomogeneously
distributed in space, the investigation of spatial dynamics might be desired.
Therefore, in the next section the model will be extended once more time to

also cover pheromone diffusion and different locations of cells.

8.2.6 Spatial Layer

To investigate the relation between signaling, pheromone diffusion, and the
location of cells, we adopt the idea of Elf and Ehrenberg (2004) and dis-
cretize the model’s space into multiple subvolumes. Therefore, an additional
attributed species SV(x,y) is defined to represent virtual reaction compart-
ments. Attributes z and y thereby represent the spatial coordinates of a sub-
volume within a two-dimensional lattice. Hence, the initial solution comprises
Tmaz X Ymaz Species SV each with a unique combination of attribute values
zand y with z € {1,...,Zme} and y € {1,..., Yma} (see also Figure 8.11).
Each subvolume may then enclose a solution consisting of cells and pheromone
molecules. Like before, all species within such a solution are assumed to
be homogeneously distributed, however, since species may migrate to adja-
cent subvolumes according certain rules, different spatial locations of cells and
pheromones can be distinguished from each other in a coarse-grained manner.

Diffusion of molecules can be described by a simple movement from one
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Figure 8.10: Cell population growth and intercellular communication. Simula-
tion results of the multicellular model that combines cell division with mating type
switching and pheromone response. (a) Exponential population growth in the ab-
sence of pheromone secretion and response. (b) Pheromone secretion and response
leads to Gp arrest and reduced population growth rate. The model encoding in-

cluding parameters for both simulation experiments can be found in Appendix B.4.
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SV (2, %)

SV (2% y?)

SV (2% y?)

SV (2%, %)

SV (z*, y*)

SV (z?,y*)

SV (2% y")

SV (2%, y')

Figure 8.11: Initial solution of a 4 x 2 lattice of discrete subvolumes.

subvolume to an adjacent one. By comparing the coordinates of two species
SV, the diffusion can be constrained to take place only between neighboring
locations. Hence, the rule schema for pheromone diffusion in a von Neumann

neighborhood is described as follows:

SV (z%, y¥) SV (z%, y¥%) SV (z%, y¥) SV (z%, y¥%)
- .. P
¢ N 1 N ¢
Phe(type’) 7 Tki3#p ey Phe(type’)
-- = Ll €ij Lo _ o
L 87| 87

with expression e;; == (v; =2; AN (yi =y; +1Vyi=y; — 1)) V(i = y; A (x; =
z;+ 1V x; = z; — 1)) constraining the diffusion to adjacent subvolumes.

The former pheromone degradation rule is replaced here by rules describing
diffusion out of the system, i.e., for diffusing particles the lattice is assumed
to be an open system. Therefore, the following rules check whether a certain
subvolume is located at the boundary of the lattice. If this is the case, a

pheromone molecule is simply removed with a certain probability.

SV(a®, ) SV (e 9)
P
Phe(type?) Thia#tp -
e T=1Vr=Tmazx ‘L 787?7 :
87
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SV (z*, %) SV (z*,y¥)
———————D L
Phe(typet> ZkIS#p r— ==

Fm——1 Y=1Vy=yYmazx

Unlike the diffusing pheromone molecules, in this model cells are not as-
sumed to move randomly in space. Instead, we describe some kind of ezcluded
volume effect to avoid that too many cells occupy one subvolume. There-
fore, if a location gets crowded, cells may be “pushed” to an adjacent and less
crowded subvolume. The rule for such a displacement from crowded areas
looks quite similar to the rule that describes diffusion. Certain constraints
restrict the movement to neighboring subvolumes and the kinetic rate depends
on the number of cells within the subvolumes to specify the probability with
which a cell may move to an adjacent location. The rate of the following rule,
for instance, makes migration to empty locations more likely than those to

crowded ones:

SV (z® y¥) | ISV (2%, y¥) SV (z®, y¥) | ISV (z%, y¥7)
—————————— 475 Colles.2\2 r-— = r—— =
T 57! 1+(ECe1168]7)2> 5,7 5.7
[ Lo— ei; A3 Celles;?)>4 [ [
57! 57!

with expression e;; ;== (v; =2; AN (yi =y; +1Vyi=y; — 1)) V(i = y; A (x; =
xj+ 1V x; = x; — 1)) constraining the migration to an adjacent subvolume.
Please notice, since the cells in our model typically denote distinct species
with different combinations of attribute values and enclosed content, it is not
possible to use species identifiers to get the total number of cells within a
solution. Instead, the above rule employs a counting function on the bound
solutions s;7 and s;?. Alternatively, the SV species may be equipped with
an additional attribute that holds the current total number of cells in each
subvolume. However, in this case, any rule that creates or removes a Cell
species, e.g., a cell division rule, then needs to be extended such that its context

includes the high-level SV species for updating the according attribute. This
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Figure 8.12: Simulation results of the spatial yeast cell proliferation model. The
model encoding (including parameters) can be found in Appendix B.5. (a) Trajecto-
ries of the overall cell population and pheromone molecules. (b) Scatter plots of the
spatial distribution of cells at six distinct time points. The different mating types
P and M are depicted by gray and black circles respectively. (c) Scatter plots of
spatial pheromone distribution. Gray and black dots denote P-factor and M-factor

molecules respectively.

denotes an undesired artifact and emphasizes the importance of supporting

functions on solutions again.

Simulating yeast cell proliferation within the described spatial setting re-
veals that although local differences in the amounts of P and M type cells can
be observed, the overall ratio between the different mating types remains nearly

constant over time (Figure 8.12). Secreted pheromones cause large fractions
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8. Case Studies

of cells to be arrested in the G; phase. However, the overall cell population
is growing faster compared to simulations of non-discretized space (cf. Fig-
ure 8.10b), which indicates a reduced signaling strength due to pheromone
diffusion.

The presented spatial extension of the model describes particle diffusion and
excluded volume effects and shows that although ML-Rules has been developed
without explicit notions of space, the language concept is sufficiently expressive
to describe diverse discrete spatial dynamics in an ad hoc way. Even the
description of dynamic processes in continuous space seems to be possible due
to the ability to specify arbitrary constraints and to assign attributes with
infinitely many concrete values. However, approaches, which are aimed at
spatial rule-based modeling, explicitly deal with such problems and may thus
allow for modeling such systems more straightforwardly and succinctly (see,
e.g., Bittig and Uhrmacher, 2010; Bittig et al., 2011).
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Chapter 9
Conclusion

In this thesis, a novel rule-based language concept was proposed to facilitate
multilevel modeling in systems biology. Therefore, as a starting point, vari-
ous existing formal modeling approaches were investigated for their suitability
to describing biological models at multiple interrelated levels of organization.
Hereby identified beneficial modeling concepts and methods were then taken as
a basis to develop ML-Rules, an accessible general-purpose modeling approach

for describing multilevel models of biological systems.

Language features and general modeling concepts that were shown to be
beneficial for this purpose are as multifaceted as the different aspects of bio-
logical multilevel models are. First of all, reaction-centric modeling approaches
were shown to be generally well-suited for modeling biochemical systems, but
also for describing dynamics at other organizational levels, as the reactions
metaphor can be considered as an appropriate paradigm for state transitions
in general. Rule-based approaches employ such a reaction-centric modeling
paradigm and, moreover, they allow for effectively reducing the size of mod-
els due to rule schemata. Therefore, ML.-Rules was designed as a rule-based

modeling language.

Obviously substantial for the accessibility of multilevel modeling is a sup-
port for explicitly nested model structures, allowing for straightforwardly rep-
resenting the hierarchical organization of biological systems, where different
entities may be both vertically as well as horizontally separated from each

other. However, supporting nestedness is only half way there. To appro-



9. Conclusion

priately reflect the variability of biological structures, i.e., their potential for
dynamic rearrangements, another critical feature is to also support describing
dynamically changing structures, which was realized in ML-Rules by allowing
for differently nested species on the reactants and products sides of a rule and
by binding unspecified content to variables that can be freely reused when
specifying the rule’s products, e.g., to describe migration or merging of com-
partments. It was also shown that by applying a decomposition function on
bound solutions, the description of cell division or budding becomes possi-
ble. In any case, the nested structure of model entities describes merely their

arrangement rather their behavior, for which additional constructs are needed.

For describing dynamic behavior at different organizational levels, it was
shown that in the first instance it is important to allow for representing states
and dynamics at any hierarchy level, so that not only atomic entities may have
a state and behavior, but also the containing structures. Therefore, species in
ML-Rules may have assigned arbitrarily many attributes, no matter whether
they contain other species or not. These attributes are neither restricted to
certain numerical values nor to any predefined (finite) value set, thereby facil-
itating a natural representation of rather diverse states at different levels, as
was exemplified by two case studies in which the volumes of different compart-

ments were described explicitly, for example.

By applying rule schemata and assigning new values to respective species,
such high-level states may be altered dynamically, similar to any other dy-
namic process in ML-Rules. Thereby, with the help of arbitrary expressions,
rates of rule applications can be flexibly specified and constrained, which was
shown to be essential for (i) making various behavioral abstractions, (ii) ap-
propriately representing the diversity of dynamic processes at different organi-
zational levels, as well as (iii) modeling of interlevel causation between those.
The latter was realized in ML-Rules by accessing contextual information ei-
ther from a species’ environment (downward causation) or its enclosed content
(upward causation), for which the reaction-centric modeling paradigm proved
its effectiveness again, as taking such side-effects into account can be easily
achieved by expanding the set of reactants. Last but not least, it was shown

by means of case studies that attributes and flexibly constrained reaction rates
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are sufficiently expressive to describe simple discretized spatial dynamics be-
yond compartmentalization, which often play an important role in multilevel
modeling of biological systems, e.g., particle diffusion or other spatially con-

strained processes at the level of cellular tissues.

Taken all together, the proposed modeling concept can be considered as a
significant step toward accessible multilevel modeling in systems biology, since
it denotes a succinct and user-friendly general-purpose modeling approach ad-
dressing a wide range of different aspects that were shown to be relevant for
describing such kinds of models. With Coloured Stochastic Multilevel Multiset
Rewriting (CSMMR), Oury and Plotkin (2011) have proposed a formal lan-
guage sharing many similarities with ML-Rules, e.g., rule schemata applied
to nested and attributed model entities, supporting variable structures, and
rate functions depending on attributes. However, CSMMR does not support
links between distinct entities and, more importantly, rates rely on the law
of mass action and may merely depend on attributes of reactants, but not on
properties of the multiset the rule is applied to, such as the total amount of
some of its constituents. Hence, describing certain behavioral abstractions and
particularly upward causation may be significantly hampered. Although some
of these issues have already been identified by the authors as useful extensions,
it remains an open question whether they can be seamlessly integrated into
their formalism. Howsoever, the approach presented in this thesis leaves some

space for future research as well.

First of all, having defined a formal semantics of ML.-Rules would allow for
studying its expressiveness in a formal manner by proving certain theorems,
e.g., that ML-Rules can encode other languages — like the m-calculus, React(C),
Bigraphs, or CSMMR - or vice versa, i.e., that ML-Rules can be mapped
to them, which may then lead to additional facilities for model analysis, for

mstance.

From the modeling point of view, a type system for attributes might further
enhance the accessibility by reducing the chance to assign “incorrect” values.
Different types of attributes could also help introducing an explicit notion of
linkage between species, like it is supported by BNGL, for instance. Thereby,

bindings may become more obvious to the modeler and explicit links may also

215



9. Conclusion

reduce the user’s responsibility for keeping things biologically relevant.

To support describing more sophisticated spatial dynamics, e.g., to model
complex spatial processes at the tissue level, it would be also interesting to
investigate whether some ideas of MGS (Giavitto and Michel, 2001; Michel
et al., 2009) could be integrated into the modeling concept presented in this
work. MGS combines rule-based modeling with so called topological collec-
tions, to specify which and how model entities may interact with each other.
Different topological collections across various spatial scales can thereby de-
fine different local relationships of individual entities, e.g., ordinary multisets

(compartments) and Delaunay triangulation.

Another useful extension of ML-Rules would be dedicated to supporting
delays and general distributions, since biological phenomena — especially at
higher (abstraction) levels — are not necessarily exponentially distributed. For
example, cell cycle dynamics may follow a Gaussian distribution (Walker et al.,
2004) and the numerous sequential reaction steps of a gene transcription and
translation process may be approximated best by a simple temporal delay
(Lewis, 2003). The current simulator of ML-Rules proceeds basically as a
discrete event simulator, making an integration of non-exponential waiting
times relatively easy in principle. However, non-Markovian processes are not
memoryless, which leads to the problem of tracking the time consumed by
each individual reaction (Mura et al., 2009) and thus might require substantial

adaptations of its implementation.

Future research needs also to be done for speeding up simulations. Although
the JAMES II framework — within which MIL-Rules was realized — offers a
coarse-grained parallel execution of multiple simulation runs (Himmelspach
et al., 2008), due to the expressiveness of ML-Rules, already the single run
execution of a more complex model — like the case studies presented in this
thesis — takes a fairly large amount of time in the current implementation.
However, the following diverse methods may help to make simulation of ML-

Rules models significantly faster.

Since simulation algorithms in JAMES II are designed in a plug-in-based
manner and thus not in terms of monolithic blocks, alternative sub-algorithms

can be easily exploited and combined. It has been shown that the perfor-
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mance and suitability of algorithms depend to a large degree on the concrete
model, that details (of sub-algorithms) matter, and that a suitable config-
uration can significantly speed up the simulation (Jeschke et al., 2011). In
combination with methods that help to automatically select and configure sim-
ulators on demand (Ewald et al., 2010; Ewald, 2010), this type of simulation
design supports a high flexibility for executing multilevel models efficiently.
Another approach for speeding up the simulation would be to avoid the time-
consuming instantiation of all possible reactions by exploiting an alternative
kinetic Monte Carlo simulation approach (Danos et al., 2007b; Colvin et al.,
2009; Sneddon et al., 2011) based on individual particles rather than popula-
tions of identical species. It might be also worth to explore the potentials of
a fine-grained parallel execution. The challenge here is to reduce the synchro-
nization overhead between different computational nodes as much as possible,
e.g., by partitioning the system appropriately, for which the nested structure of
a multilevel model might denote a suitable indicator, as “the relations inside a
subsystem are [typically] stronger than the interrelations between subsystems”
(Timpf, 1999, p. 129). Lastly, since multilevel models often operate at different
temporal scales, the calculation efforts for simulating such models in a pure
discrete event manner might — despite the above optimizations — easily be-
come prohibitive. Therefore, hybrid simulation approaches (Takahashi et al.,
2004; MacNamara and Burrage, 2010; Coppo et al., 2010a) could be exploited
in the future, which allow certain processes involving abundant species to be

interpreted continuously by numerically solving according ODEs.

To get back to the actual topic of this thesis, it was shown once again that
the syntax of a language strongly influences its accessibility (Henzinger et al.,
2009), i.e., the syntax is that part of a language that really matters. This
was shown by minor syntactical improvements of the basic ML-Rules nota-
tion, however, it becomes much more obvious when comparing the proposed
multilevel modeling concept with diverse other modeling approaches discussed
in this thesis, most of them employing the same basic mathematical CTMC
semantics like ML-Rules, e.g., stochastic Petri nets, the stochastic m-calculus,
BioAmbients, and Stochastic Bigraphs — to name just a few. Although it

should theoretically be possible to describe the same dynamics with each of
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these languages, it was shown that in practice this is not the case. Hence, for
the transformation process from an informal mental model to a formal model
representation, it is less the quest to find a formalism that is somehow able to

express certain phenomena, but one with which this can be done easily.
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Appendix A

Concrete Syntax of ML-Rules

A.1 EBNF Grammar (W3C notation)

definitions
::= constants? species_definitions initial_solution rules EOF
constants

::= NAME ':' expression constants?

species_definitions

::= species_def+
species_def

::= NAME '(' INT? ')' ';'
initial_solution

c:= '">>INIT' '[' (init_element ( '+' init_element )*)? ']' ';'
init_element

::= expression NAME '(' assignments ')' ( '[' init_element ( '+' init_element )* ']' )?
NAME '(' assignments ')' ( '[' init_element ( '+' init_element )* ']' )7
expression NAME ( '(' ')' )? '[' init_element ( '+' init_element )* ']’
NAME ( '(' ')' )? '[' init_element ( '+' init_element )* ']’
NAME ( '(' )" )7
expression NAME ( '(' ')' )7

for_loop_init

assignments
::= expression ( ',' assignments )?
rules ::= rule+
rule ::= reactants '->' products? '@' expression ';'
reactants
::= NAME '?'
| reactant ( '+' reactants )7
reactant
::= NAME '(' pattern_matching ')' '[' reactants ']' ( ':' NAME )7
| NAME ( '(" ')'" )? '[' reactants ']' ( ':' NAME )?
| NAME '(' pattern_matching ')' ( ':' NAME )7
| NAME ( '(* ')' )7 ( ':' NAME )7
|

expression NAME '(' pattern_matching ')' '[' reactants ']' ( ':' NAME )?



A. Concrete Syntax of ML-Rules

| expression NAME ( '(' ')' )? '[' reactants ']' ( ':' NAME )7
| expression NAME '(' pattern_matching ')' ( ':' NAME )?
| expression NAME ( '(' ')' )7 ( ':' NAME )7

pattern_matching

::= expression ( ',' pattern_matching )7

products
::= product ( '+' products )7
product
::= expression NAME '?'
| NAME '?'
| NAME '(' assignments ')' '[' products ']’
| NAME ( '(* ')' )7 '[' products ']’
| NAME '(' assignments ')
| NAME C '(C' ") )7
| expression NAME '(' assignments ')' '[' products ']’
| expression NAME ( '(' ')' )? '[' products ']'
| expression NAME '(' assignments ')'
| expression NAME ( '(' ')' )?
expressions
::= expression ( ',' expressions )7
expression
ci=term ( ( '+' | '-' ) term )*
| NU
term ::= term_power ( ( 'x' | '/' ) term_power )*

term_power

::= unary_op ( unary_op )*
unary_op

::= factor

| '-' factor

factor ::= INT
FLOAT
STRING
COUNT
function
NAME
boolean_expression

'(' expression ')’

'if' boolean_expression 'then' expression 'else' expression

function

NAME '(' expressions? ')'
boolean_expression

::= andexpression ( '||' andexpression )*
andexpression

::= notexpression ( '&&' notexpression )*

notexpression
;= '"1' atom
| atom
atom ::= condition

| '(' boolean_expression ')'
condition

::= '(' expression '<' expression ')'
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A.1. EBNF Grammar (W3C notation)

'(' expression '>' expression ')'
'(' expression '>=' expression ')'

'(' expression '<=' expression ')'

'(' expression '==' expression ')'
'(' expression '!=' expression ')'
'true’

'false'

NAME

for_loop_init

'for' NAME ':' expression 'while' boolean_expression 'with' expression

for_loop_init_body ';'?

for_loop_init_body

EXPONENT

STRING ::=
HEX_DIGIT

ESC_SEQ

OCTAL_ESC

init_element

'"[' init_element ( '+' init_element )* ']’

'#' NAME

'$' NAME

( [a-z] | [A-Z2] | '_" ) ( [a-z] | [A-Z] | [0-9] | '_' )*
[0-9]+

INT

[0-9]+ '.' [0-9]* EXPONENT?

'.' [0-9]+ EXPONENT?
[0-9]+ EXPONENT

( 'e! | 'E! ) ( (e} | [ )? [0_9]+
i (CESC_SEQ | [~\'] )x v

[0-9]
[a-f]
[A-F]

l\l ( lbl | ltl I |n| I |f| | lrl nrn T I l\l )
UNICODE_ESC
OCTAL_ESC

'"\' [0-3] [0-7] [0-7]
"\' [0-7]1 [0-7]
"\' [0-7]

UNICODE_ESC

IGNORED

COMMENT?

wS 1=

EOF HEES

'\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT

COMMENT
WS

'//" [#xA#xD]* ( #xD? #xA )?
Yk % Tk /!

#x9

#xD

#xA

$
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Appendix B

Yeast Cell Proliferation Models
Encoded in the Concrete Textual

Syntax

B.1 Cell Cycle Control by Both Downward and

Upward Causation

cdc2tot: 1000;
Td: 116;
ki: 0.015*cdc2tot;
k2: 200;
k3: 180;
k3prime: 0.018;
k4 : 4.5;
kb5: 0.6;
k6 : 1.0;
k7: 1e6;
k8: 1e6;
k9: 1e6;
t7: 250;
8 703
t9: 20;

sp definit
Cell(2);
Cdc2();
Cyclin();
CyclinP () ;
MPFi () ;
MPFa () ;

// initial solution

>>INIT[ Cell(1l,'G1l')[cdc2tot Cdc2] 1;

// rule sche
Cell(v,p)[s?] -> Cell(v,p)[Cyclin + s7] @ ki;




B. Yeast Cell Proliferation Models Encoded in the Concrete Textual Syntax

Cyclin:y + Cdc2:d -> MPFi Q@ k2x#yx*x#d;

MPFi:m -> MPFa @ k3primex*#m;

MPFa:a + MPFi:m -> 2 MPFa @ k3x((#a/cdc2tot) "2) *x#m;

Cell(v,p) [MPFa:m + s7] -> Cell(v,p) [CyclinP + Cdc2 + s?7] @ (k4/v)x*#m;

CyclinP:y -> Q@ kb5x#y;

Cell(v,p)[s?] -> Cell(v+(1/Td),p)[s?] @ if (p=='G1') || (p=='SG2') then k6 else 0;

Cell(v,'G1') [MPFi:m + s?] -> Cell(v,'SG2') [MPFi + s7]

Cell(v,'SG2') [MPFa:m + s?] -> Cell(v,'M')[MPFa + s7]

@ if (#m>t7) then k7 else O0;
@ if (#m>t8) then k8 else O0;

Cell(v,'M') [MPFa:m + s7] -> Cell(v/2,'G1') [MPFa + s7?7] @ if (#m<t9) then k9 else O0;

B.2 Multicellular Proliferation and Mating Type

Switching

// parameters

cdc2tot: 1000;

Td: 116;
kl: 0.015*cdc2tot;
k2: 200;
k3: 180;
k3prime: 0.018;
k4 : 4.5;
k5: 0.6;
k6 : 1.0;
k7 : 1e6;
k8: 1e6;
k9: 1e6;
t7: 250;
t8: 70;
t9: 20;
kdeath: 0.006;

// species definitions
Cell(4);

Cdc2();

Cyclin();

CyclinP();

MPFi () ;

MPFa () ;

// initial solution

>>INIT[ 100 Cell(1,'G1l','P','U') [cdc2tot Cdc2] 1;

// rule schemata

Cell(v,p,t,w)[s?]l:c -> Cell(v,p,t,w)[Cyclin + s?] @ klx#c;

Cyclin:y + Cdc2:d -> MPFi @ k2x*#yx*#d;

MPFi:m -> MPFa @ k3prime*#m;

MPFa:a + MPFi:m -> 2 MPFa @ k3*((#a/cdc2tot)"2)*#m;

CyclinP:y -> @ kb5x#y;

Cell(v,p,t,w)[s?]:c -> Cell(v+(1/Td),p,t,w)[s?] @ if (p=='G1') || (p=='SG2') then k6*#c else O0;

Cell(v,p,t,w)[s?]l:c -> @ kdeathx#c;

Cell(v,p,t,w)[MPFa:m + s?]:c -> Cell(v,p,t,w)[CyclinP + Cdc2 + s?7] @ (k4/v)*#m*#c;

Cell(v,'Gl',t,w)[MPFi:m + s?]:c -> Cell(v,'SG2',t,w)[MPFi + s?] @ if (#m>t7) then k7*#c else O0;

Cell(v,'SG2',t,w)[MPFa:m + s?]:c -> Cell(v,'M',t,w)[MPFa + s?] @ if (#m>t8) then k8%*#c else 0;
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B.3. Pheromone-dependent Cell Cycle Dynamics in a Single Cell

Cell(v,'M',t,'U')[MPFa:m + s?]:c -> Cell(v/2,'G1',t,'S')[MPFa + s?] + Cell(v/2,'Gl',t,'U')[MPFa + s7?7] @
if (#m<t9) then k9*#c else 0;

Cell(v,'M',t,'S')[MPFa:m + s?]:c -> Cell(v/2,'Gl',t,'S')[MPFa + s?] + Cell(v/2,'Gl',if (t=='P') then
'M' else 'P','U')[MPFa + s?] @ if (#m<t9) then k9x*#c else O0;

B.3 Pheromone-dependent Cell Cycle Dynam-

ics in a Single Cell

// parameters
cdc2tot: 1000;

Td: 2323

kl: 0.015*cdc2tot;
k2: 200;

k3: 180;

k3prime: 0.018;

k4 : 4.5;

kb5: 0.6;

k6 : 1.0;

k7: 1e6;

k8: 1e6;

k9: 1e6;

t7: 250;

t8: 70;

t9: 20;

k10: 1.0;

ki1: 1.5;

Ki1: 800;

k12: 0.02;

PheInit: 0; // set to 200/600 for studying effect of pheromone response

// species definitions
Cell(2);

Cdc2();

Cyclin();

CyclinP () ;

MPFi () ;

MPFa () ;

MPFr () ;

Phe () ;

// initial solution

>>INIT[ PheInit Phe + Cell(1,'G1l') [cdc2tot Cdc2] 1;

// rule schemata

Cell(v,p)[s?] -> Cell(v,p)[Cyclin + s?] @ ki;

Cyclin:y + Cdc2:d -> MPFi @ k2x#yx#d;

MPFi:m -> MPFa @ k3prime*#m;

MPFa:a + MPFi:m -> 2 MPFa @ k3*((#a/cdc2tot) "2)*#m;

Cell(v,p) [MPFa:m + s?] -> Cell(v,p)[CyclinP + Cdc2 + s?7] @ (k4/v)*#mn;

CyclinP:y -> @ kb5x#y;

Cell(v,p)[s?] -> Cell(v+(1/Td),p)[s?] @ if (p=='G1') || (p=='SG2') then k6 else 0;

Cell(v,'Gl') [MPFi:m + s?] -> Cell(v,'SG2')[MPFi + s?] @ if (#m>t7) then k7 else 0;
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Cell(v,'SG2') [MPFa:m + s?] -> Cell(v,'M')[MPFa + s?7] @ if (#m>t8) then k8 else 0;

Cell(v,'M') [MPFa:m + s?] -> Cell(v/2,'Gl')[MPFa + s?] @ if (#m<t9) then k9 else O0;

Phe:p + Cell(v,ph) [MPFi:m + s?]:c -> Phe + Cell(v,ph)[MPFr + s?7] @
(((k11*(#p~3)) /((K1173) +(#p~3)))*(1/(v~2))) *#mx*#c;

MPFr:m -> MPFi @ k12x#m;

B.4 Multicellular Model of Yeast Cell Prolifer-

ation and Intercellular Communication

// parameters

cdc2tot: 1000;

Td: 232;
kl: 0.015*cdc2tot;
k2: 200;
k3: 180;
k3prime: 0.018;
k4: 4.5;
k5: 0.6;
k6: 1.0;
k7 : 1e6;
t7: 250;
k8: 1e6;
t8: 70;
k9: 1le6;
t9: 20;
k10: 1.0; // set to 0 for turning off pheromone secretion
ki1l: 1.5;
Ki1: 800;
k12: 0.02;
k13: 0.005;
ki4: 1.0;
k15: le-4;

// species
Cell(4);
Cdc2();
Cyclin();
CyclinP () ;
MPFi () ;
MPFa () ;
MPFr () ;
Phe (1) ;
Sxa2();

// initial solution

>>INIT[ Cell(1,'G1','P','U') [cdc2tot Cdc2] + Cell(1,'G1','M','U') [cdc2tot Cdc2] J;

// rule schemata
Cell(v,p,t,w)[s?]:c -> Cell(v,p,t,w)[Cyclin + s?] @ klx#c;

Cyclin:y + Cdc2:d -> MPFi @ k2x*#yx#d;

MPFi:m -> MPFa @ k3prime*#m;

MPFa:a + MPFi:m -> 2 MPFa @ k3*((#a/cdc2tot) ~2)*#m;

Cell(v,p,t,w) [MPFa:m + s?]:c -> Cell(v,p,t,w)[CyclinP + Cdc2 + s?7] @ (k4/v)*#mx*#c;

CyclinP:y -> @ kb5x#y;
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Cell(v,p,t,w)[s?]l:c -> Cell(v+(1/Td),p,t,w)[s?] @ if (p=='G1') ||
Cell(v,'Gl',t,w)[MPFi:m + s?]:c
Cell(v,'SG2',t,w)[MPFa:m + s?]:c

-> Cell(v,'M',t,w)[MPFa + s?] @ if (#m>t8) then k8*#c else 0;

Cell(v,'M',t,'U') [MPFa:m + sc?]:c
sc?] @ if (#m<t9) then k9*#c else O0;

Cell(v,'M',t,'S')[MPFa:m + sc?]:c -> Cell(v/2,'G1',t,'S')[MPFa + sc?] + Cell(v/2,'G1l',if
M 'P','U') [MPFa + sc?] @ if (#m<t9) then k9*#c else 0;

else
Cell(v,p,t,w)[s?]:c -> Cell(v,p,t,w)[s?] + Phe(t) @ k1lOx#c;
Cell(v,p,'M',w)[s?]:c -> Cell(v,p,'M',w)[s?] + Sxa2 @ 0.1%k10x*#c;
Sxa2:x -> @ k13x*#x;

Sxa2:x + Phe('P'):p -> Sxa2 @ k15x#x*#p;

Phe (tp):p + Cell(v,p,tc,w) [MPFi:m + s?]l:c -> Phe(tp) + Cell(v,p,tc,w)[MPFr + s?] @ if (tp!=tc)
(((k11*(#p~3))/((K11-3) +(#p~3)))*(1/(v~2))) *#m*#c else 0;

MPFr:m -> MPFi @ k12*#m;

Phe(t):p -> @ k13*#p;

(p=='8G2"') then k6*#c else O0;

-> Cell(v,'SG2',t,w) [MPFi + s?] @ if (#m>t7) then k7*#c else 0;

-> Cell(v/2,'G1',t,'S"') [MPFa + sc?] + Cell(v/2,'Gl',t,'U') [MPFa +

(t=='P') then

then

B.5 Proliferating and Communicating Cells in

Space

// parameters

cdc2tot: 1000;
Td: 232;
kl: 0.015*cdc2tot;
k2: 200;
k3: 180;
k3prime: 0.018;
k4 : 4.5;
k5: 0.6;
k6 : 1.0;
K7 : 1e6;
t7: 250;
k8: 1e6;
t8: 70;
k9: 1e6;
t9: 20;
k10: 1.0;
ki1l: 1.5;
Ki1: 800;
k12: 0.02;
k13: 0.005;
ki14: 1.0;
k15: le-4;
Xmax: 5;
ymax: 5;

// species

Cell (4);
Cdc2();
Cyclin();
CyclinP () ;
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MPFi ()
MPFa () ;
MPFr () ;
Phe (1) ;
Sxa2();
SV(3);

// initial solution
>>INIT[
for y:1 while (y<=2) with y+1 [
for x:1 while (x<=xmax) with x+1 [SV(x,y,0)]
]

¥
for x:1 while (x<=2) with x+1 [SV(x,3,0)]
+
Sv(3,3,2) [
Cell(1,'G1','P','U') [cdc2tot Cdc2] +
Cell(1,'G1','M','U') [cdc2tot Cdc2]
]

+

for x:4 while (x<=xmax) with x+1 [SV(x,3,0)]
¥

for y:4 while (y<=ymax) with y+1 [

for x:1 while (x<=xmax) with x+1 [SV(x,y,0)]
]
15

// rule schemata

Cell(v,p,t,w)[s?]:c -> Cell(v,p,t,w)[Cyclin + s?] @ kilx#c;

Cyclin:y + Cdc2:d -> MPFi @ k2x*#yx*#d;

MPFi:m -> MPFa @ k3primex#m;

MPFa:a + MPFi:m -> 2 MPFa @ k3x*((#a/cdc2tot) ~2) *#m;

Cell(v,p,t,w)[MPFa:m + s?]l:c -> Cell(v,p,t,w)[CyclinP + Cdc2 + s?7] @ (k4/v)*#mx*#c;

CyclinP:y -> @ kb5x#y;

Cell(v,p,t,w)[s?]:c -> Cell(v+(1/Td),p,t,w)[s?] @ if (p=='G1') || (p=='SG2') then k6*#c else O0;
Cell(v,'Gl',t,w)[MPFi:m + s?]:c -> Cell(v,'SG2',t,w)[MPFi + s?] @ if (#m>t7) then k7*#c else 0;
Cell(v,'SG2',t,w) [MPFa:m + s?]:c -> Cell(v,'M',t,w)[MPFa + s?] @ if (#m>t8) then k8%*#c else 0;

SV(x,y,n) [Cell(v,'M',t,'U"') [MPFa:m + sc?]:c + sv?] -> SV(x,y,n+1) [Cell(v/2,'G1l',t,'S') [MPFa + sc?] +
Cell(v/2,'Gl',t,'U') [MPFa + sc?] + sv?] @ if (#m<t9) then k9*#c else 0;

SV(x,y,n)[Cell(v,'M',t,'S') [MPFa:m + sc?]l:c + sv?] -> SV(x,y,n+1)[Cell(v/2,'G1l"',t,'S"')[MPFa + sc?] +
Cell(v/2,'G1l',if (t=='P') then 'M' else 'P','U')[MPFa + sc?] + sv?] @ if (#m<t9) then k9*#c else
0;

Cell(v,p,t,w)[s?l:c -> Cell(v,p,t,w)[s?] + Phe(t) @ klO*#c;

Cell(v,p,'M',w)[s?]:c -> Cell(v,p,'M',w)[s?] + Sxa2 @ 0.1*k10*#c;

Sxa2:x -> @ k13x*#x;

Sxa2:x + Phe('P'):p -> Sxa2 @ k15*#x*#p;

Phe (tp):p + Cell(v,p,tc,w)[MPFi:m + s?]:c -> Phe(tp) + Cell(v,p,tc,w)[MPFr + s?] @ if (tp!=tc) then
(((k11*(#p~3)) /((K11-3) +(#p~3)))*(1/(v~2))) *#m*#c else 0;

MPFr:m -> MPFi @ ki12x#m;
SV(xi,yi,ni)[Phe(t):p + si?] + SV(xj,yj,nj)[sj?] -> SV(xi,yi,ni)[si?] + SV(xj,yj,nj)[Phe(t) + sj?] @ if

(((xi==xj) && ((yi==yj+1) || (yi==yj-1))) Il ((yi==yj) && ((xi==xj+1) || (xi==xj-1)))) then
(k13/4) x#p else 0;
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SV(x,y,n) [Phe(t):p + s?] -> SV(x,y,n)[s?] @ if (x==1) || (x==xmax) then (k13/4)x*#p else O0;
SV(x,y,n) [Phe(t):p + s?] -> SV(x,y,n)[s?] @ if (y==1) || (y==ymax) then (k13/4)x*#p else 0;
SV(xi,yi,ni)[Cell(v,p,t,w)[sc?] + si?] + SV(xj,yj,nj)[sj?] -> SV(xi,yi,ni-1)[si?] +

SV(xj,yj,nj+1) [Cell(v,p,t,w)[sc?] + sj?] @ if (((xi==xj) && ((yi==yj+1) || (yi==yj-1))) ||
((yi==yj) && ((xi==xj+1) || (xi==xj-1)))) && (ni>4) then k14*((ni~2)/(1+(nj~2))) else 0;
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