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Chapter 1

Introduction

The simulation of beam instabilities due to electron clouds is a highly active
field of research. These instabilities may generally occur in storage rings
operated with bunches of positively charged particles. The storage rings are
being build for different purposes as for instance a particle collider (e.g. the
Large Hadron Collider or LHC [Brüning 2004]), a high-brilliance synchrotron
radiation source (e.g. PETRA III [Balewski 2004]) or lower energy storage
rings for medical purposes etc.. Also, the present and the future terascale
accelerator projects as the International Linear Collider (ILC) have, apart
from the main accelerator, storage rings for preconditioning of the beam before
it enters the main accelerator. Regardless of the type or the purpose of the
storage ring the requirements for the beam quality are very strict.

If the storage ring is operated with bunch filling patterns which are
favourable to the growth of the electron cloud density, i.e. long bunch trains
with short intra-bunch distances, the density of electrons is rapidly growing
until a saturation density has been achieved. The electron cloud changes
its transverse centroid position very fast during the passage of even a single
bunch omly. This is due to the strong focusing transverse field of the highly
relativistic positively charged bunch. As the density of the electrons near the
beam axis grows, its impact on the beam becomes stronger. The interaction
of the electron cloud with the bunch could result in a fast beam loss if the
electron density is above a certain threshold value which triggers a fast coher-
ent beam instability. However, the beam could also become instable due to
the interaction with electron cloud densities below that threshold. Thereby
the particles in the bunch are differently affected by the electron cloud which
results in a spread of their betatron frequencies. This incoherent effect ap-
pears due to the perturbation of the electron cloud from the head parts of the
bunch and the subsequent transverse kick from the electron cloud on the tail
parts of the same bunch. The effect is known as the head-tail effect since the
transverse position of the head and the tail of the bunch are coupled through
the electron cloud. The head-tail effect is manifested through a relatively
slow but steady emittance growth and an incoherent tune shift of the single
bunches. Fortunately, the incoherent motion of the particles is damped by the
synchrotron motion of the particles in the bunch. However, in many modern
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synchrotron machines, the synchrotron period is relatively long so that the
incoherent instability may still lead to a significant deterioration of the beam
quality. Thus, the computational estimation of the beam stability over many
turns through the ring is very important, especially during the design phase
of an accelerator. The following work deals with this very challenging task to
estimate the single bunch instability due to the electron cloud.

The first chapter introduces the basic concepts of charged particle dynam-
ics in storage rings and gives a very short overview of the collective effects on
the beam with special focus on the electron cloud phenomena.

The second chapter introduces the particle tracking program MOEVE PIC

Tracking which can track a single bunch under the influence of its own and
external electromagnetic fields.

MOEVE PIC Tracking was created during this work to simulate the in-
teraction of the relativistic bunch and initially static electrons. For the in-
teraction simulations presented in the third chapter, the bunch and the cloud
are represented by a 3D distribution of macro-particles in an elliptical beam
pipe. The macro-particles are defined in the six-dimensional phase space
ψ(x, px, y, py, z, pz) and typical values of their number are of order 106 for
both species. The interaction is simulated during the bunch passage through
an electron cloud of certain length with or without the presence of external
magnetic field. The simulations give an in-depth knowledge of the behavior
of the bunch and the electrons during the interaction.

The last chapter starts with a numerical estimation of the coherent tune
shift of a positron bunch due to the interaction with an electron cloud of
certain density. Further, the simulations with transversally displaced parts of
the bunch illustrate the head-tail effect which resembles a short-range wake
field. In order to simulate the stability of a single bunch, the bunch particles
are tracked through the linear optics of the machine. Thereby the action of the
electron cloud on the bunch is approximated by a transverse wake kick which is
applied on each turn. The idea of K. Ohmi to slice the 3D bunch and compute
a wake function from every longitudinal slice of the bunch backwards, leads
to a triangular wake matrix. In order to apply the computed wake matrix
for the bunch tracking, properties of the wake field such as time invariance,
superposition and linearity are supposed. A MOEVE PIC Tracking simulation
of the interaction of the bunch with an electron cloud yields the wake kick on
the tail particles for an offset in the transverse centroid position of the head
parts. With such a pre-computed wake matrix, the stability of a single bunch
is investigated by tracking it through the linear optics of the ring while at
each turn applying the kick from the electron cloud. The simulation results
for KEKB-Low Energy Ring beam and for the PETRAIII beam scrubbing
runs in 2012 are in a good agreement with the measurements.
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Chapter 2. Linear Beam Dynamics in Storage Rings and

Collective Effects due to Electron Clouds

2.1 Charged Particle Dynamics in Electromag-

netic Fields

2.1.1 Non-relativistic Charged Particles

In this work the term particle will be used to describe a charged particle
without spatial extension which is situated at position r= (x, y, z) at a certain
time t. The attributes of each particle are the mass m, the charge q and its
velocity v= (vx, vy, vz). An external electromagnetic force F has to be applied
in order to affect the motion of the charged particle. The force expressed by
the Lorentz equation depends on the applied external electric and magnetic
field:

F = q (E + v ×B) . (2.1)

The term qE in equation (2.1) stands for that part of the force due to the
applied electric field E and the second part q (v ×B) is the force resulting
from the presence of an external magnetic field, represented by the magnetic
flux density B . An important conclusion from the Lorentz equation is that
the rise of the particles energy depends on the electric field E applied in the
direction of motion. The force from the applied magnetic field B changes the
direction of the particle’s motion, as this part of the force acts perpendicularly
to the direction of motion (v × B). An immediate consequence is that the
acceleration with resonating electromagnetic fields is only possible with modes
where the E-field has a strong component in the direction of motion and the
B-field is zero or very small at the position of the accelerated particles.

Any description of charged particle dynamics starts with the second New-
ton’s law of motion. Applied to a particle (not necessarily a charged one)
it provides a relation between the rate of change of the particle’s velocity v ,
its mass m and the force F applied to the particle. Introducing the momen-
tum p= (px, py, pz) as a variable proportional to the mass m and the velocity
v=dr/dt,

p = mv or
p

m
=

dr
dt
, (2.2)

Newton’s equation can be written as

F =
dp
dt

=
d(mv)

dt
. (2.3)

For non-relativistic particles, the mass m appears as constant coefficient
of proportionality m0 which represents the rest mass, hence Newton equation
reads as:

F = m0
d2r

dt2
. (2.4)
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From the computational point of view, (2.3) expresses the following: If the
force F acting on the particle is known, by integrating over the time t we
obtain the new momentum p which integrated again over time yields the new
spatial position of the particle r . The vector space spanned by the position r

and the momentum p is called phase space. In the following chapters the phase
space representation will be used to show the dynamics of charged particles.

2.1.2 Lorentz Transformation

Prior of considering the dynamics of relativistic charged particles it is neces-
sary to define some terms and facts emerging from the fundamental postulates
of Einstein’s special theory of relativity which are described in detail in clas-
sical textbooks as [Jackson 1999], [Feynman 2006]. First, we picture the
difference between the Galilean transformation and the Lorentz transforma-
tion between the coordinates of two reference systems. For that purpose we
imagine the reference frames K (laboratory frame) and K′ (rest frame) with
parallel coordinate axes as displayed in Figure 2.1. The spatial and temporal
coordinates of a single point in both frames are given as (x, y, z, t) for K and
(x′, y′, z′, t′) for K′. In order to simplify the expressions it is assumed that
at the moment t = t′ = 0 both reference frames had their coordinate origin
matched at the same point. From that point in time on, the frame K′ moves
only in the positive z-direction with uniform velocity v relative to reference
frame K.

Figure 2.1: Reference frame K′ moving in the positive z−direction with uni-
form velocity v relative to the reference frame K.

The Galilean transformation, which is intuitive and a good approximation
in the classical kinematics (for velocities v = |v| much smaller than the speed
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of light in vacuum c (v ≪ c)), assumes that the time in both frames is absolute
t = t′, i.e. it runs for all observers at the same rate. Therefore, the z′G-
coordinate (G stands for a Galilean transformed coordinate) in the reference
frame K′ is equal to the z-coordinate in K minus the relative displacement
of the frames which is proportional to the elapsed time t. Hence the relation
between the coordinates in K and K′ is linear:

z′G = z − vt, x′G = x, y′G = y and t′G = t. (2.5)

However, the Galilean transformation is not applicable anymore if the velocity
v of the reference frame K′ is approaching the velocity of light c.

Then, according to the Lorentz-FitzGerald hypothesis1, the length △z′ of
a body (which rests in the reference frame K′) , is contracted by a factor γ in
the direction of motion of K′ if observed from the reference frame K:

△z = △z′
γ
. (2.6)

The factor γ is known as the Lorentz factor and reads as:

γ =
1

√

1− v2

c2

. (2.7)

The Lorentz factor γ ≥ 1 gets larger as the velocity v approaches the velocity
of light c (γ ≫ 1), thus according to (2.6), the length △z appears for the
observer in the K (laboratory) frame γ−times shorter compared to the length
△z′ in the K′ (rest) frame.

Assuming a particle at rest in K′ (as shown in Fig. 2.1), its z′-coordinate
represents the distance to the origin in the z-direction △z′ = z′−0. Applying
expression (2.6), the length △z′ in the reference frame K will be contracted
to

△z = z′

γ
. (2.8)

On the other hand, the same distance as seen from the K frame is equal to
the Galilean transformed coordinate of K′:

△z = z′G = z − vt. (2.9)

Combining the last two expressions results in the Lorentz transformation
of the z-coordinate between the reference frames K and K′,

z′ = z′Gγ = (z − vt)γ. (2.10)

1Later it was proven by Lorentz that the contraction can also be applied to a movement

of charged particles.
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The x- and y-coordinates are not changing in this transformation

x′ = x and y′ = y, (2.11)

because we assumed a special case of relative movement between the frames
only in z-direction.

The Lorentz transformation of the time can be derived based on Einstein’s
second postulate which is the assumption that light always propagates through
vacuum at definite velocity c which is independent of the speed of the light
source or the one of the observer. Back to the setup with two reference frames
K and K′ we imagine that at time t = t′ = 0 (when the coordinate origins of
K and K′ were at the same point) a light source situated at the origin of K
emits a flash of light. The light front propagates with c from the source in
z-direction while the K′ frame moves in the same direction with v < c. By
comparing the distance of the light front to the origin of K′ as seen from the
observer in K and K′ and having in mind that the light velocity in K′ is also
c we get the expression for the time measured by the observer in K′

t′ =
(

t− vz

c2

)

γ (2.12)

Relation (2.12) expresses the fact that the time measured in the frame K is
larger than the time measured in the frame K′. Thus, we speak about time
dilatation in laboratory frame K.

2.1.3 Energy and Momentum of a Relativistic Particle

As a consequence of the special relativity theory, the mass m and the energy
E of a particle are equivalent. Einstein’s famous expression for the energy

E = mc2 = γm0c
2, (2.13)

includes the kinetic energy Ekin as well as the rest mass energy of a particle
m0c

2:
E = Ekin +m0c

2. (2.14)

From the definition of the relativistic mass, the relativistic momentum
reads as:

p = mv = γm0v = m0
v

√

1− v2

c2

. (2.15)

Multiplying (2.15) by the speed of light c yields an expression of the momen-
tum p = |p| through the energy of the particle:

pc =
√

E2 −m2
0c

4 = m0c
2
√

γ2 − 1. (2.16)
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In particle accelerator physics it is common to use the unit of energy eV
(electron-Volt) to express the momentum in eV/c. For highly relativistic par-
ticles where the total energy E ≫ m0c

2 (i. e. γ ≫ 1), the magnitude of the
momentum is approximated very well by:

p ≈ E

c
. (2.17)

2.1.4 Lorentz-Transformed Electric and Magnetic Field

In a high energy particle accelerator, a large number2 of relativistic particles
form a bunch. All the particles in the bunch are packed in a very small
portion of the (x, px), (y, py) and (z, pz) phase-space. Since all the particles in
the bunch are accelerated approximately to the same velocity v, one could say
that they are resting in the (center of mass) reference frame K′. On the other
hand the magnets which are focusing or stirring the bunch on its way through
the accelerator are at rest in the laboratory frame K. Hence, assuming a bunch
motion in the z-direction of the laboratory frame K, the relative motion of
the bunch rest frame K′ is along the z-direction with the same velocity as the
bunch.

In order to compute the dynamics of charged particles in a certain ref-
erence frame under the influence of its own and/or external electromagnetic
fields (EM), it is necessary to know the field vectors (E ,B) in the respective
reference frame. Thus, if E and B are known or computed in one frame,
e.g. in the center of mass frame K′, it is necessary to transform them into
the laboratory frame K. The transformation of the E and B field strength
between two inertial systems, is a consequence of the Lorentz-transformation.
The derivation and a detailed explanation are given in the lectures of R. Feyn-
man [Feynman 2006]. For the special case of relativistic motion in the z di-
rection only, the Lorentz-transformation for the components of E and B is
written as:

E|| = E ′
|| B|| = B′

|| (2.18)

E ′
⊥ =

(E + v ×B)⊥
√

1− v2

c2

B′
⊥ =

(B − v×E
c2

)⊥
√

1− v2

c2

. (2.19)

The longitudinal or the z-components of the field in (2.18) are denoted as E‖
and B‖ because they are parallel with the direction of the relative motion be-
tween K and K′. The transverse components of the field in x and y direction
are denoted as E⊥ and B⊥ because they reside in a plane which is perpen-
dicular to the relative motion. From (2.18) and (2.19) it is obvious that only

2in the order of 1010 and higher
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the transverse components of the field (E x,E y,Bx,By) are being transformed
while the longitudinal ones are invariant.

Since the main goal of this work is the investigation of the interaction
between a relativistic bunch and non-relativistic electrons, the Lorentz trans-
formation of the space charge fields of such a bunch should be specified: As
previously mentioned, it is assumed that the particles of the bunch are at rest
in the K′ frame which moves with relativistic velocity v in the longitudinal
z-direction relative to the laboratory frame K. Since the particles do not move
in the bunch rest frame K′ exists only their own space charge field E ′ whereas
the magnetic field in the K′ frame B ′=0. Plugging E ′ and B ′ into the right
hand side of expressions (2.18) and (2.19) yields E and B in the frame K.
In expressions (2.18) and (2.19) the velocity v is taken with the opposite sign
since the frame K moves with velocity v in the negative z-direction relative
to the frame K′. Finally the expressions for the transformation of the space
charge field in the laboratory frame can be written as:

E|| = E ′
|| B|| = 0 (2.20)

E⊥ = γE ′
⊥ B⊥ =

γ

c2
(v ×E′)⊥. (2.21)

Thus, according to (2.21), in the laboratory frame K there is also a transversal
magnetic field B⊥ besides the electric field E . Another fact emerging from the
transformation is that the transversal component of the field in the laboratory
frame K is γ times stronger than the transversal component computed in the
center of mass frame. On the other hand, the longitudinal field computed in
K′ is equal to the longitudinal component in K.

Figure 2.2: (z′,y′) plane in the rest frame K′ of a point charge q moving with
relativistic velocity (from left to right in the picture).

To illustrate this fact we transform the field of a single charged particle
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q, moving with uniform relativistic velocity v in z-direction, shown in its rest
frame K′ in Figure 2.2. The particle is situated at the origin of the K′ frame.
The magnitude of the E ′ field at any point r ′ = (x′, y′, z′) in the K′ frame is
given by Coulomb’s law

E ′ =
q

4πε0r′2
=
kq

r′2
with k =

1

4πε0
. (2.22)

The electrostatic field lines extend radially from the particle as shown in the
left part of Figure 2.3. Because of the rotational symmetry of the E field,
we can simplify the expressions and evaluate the field in points of the (y′, z′)
plane r′ = (0, y′, z′) as shown in Figure 2.2. The components of the E ′ field
in a point with relative distance to the particle defined by the vector r ′ can
be written as a function of the angle θ′:

E ′
z = E ′ z

′

r′
= E ′ cos(θ′) E ′

y = E ′y
′

r′
= E ′ sin(θ′). (2.23)

The Lorentz transformation of the coordinates provides for z′ and y′:

z′ = γz = γr cos(θ) y′ = y = r sin(θ). (2.24)

Since r′ equals
r′ =

√

y′2 + z′2, (2.25)

we could write r′ in dependence of the coordinates (y,z) in K:

r′ =
√

γ2z2 + y2. (2.26)

According to (2.20) and (2.21) the corresponding transversal and longitu-
dinal components of the field in the laboratory frame K are:

Ez = E|| = E ′
|| = E ′

z and Ey = E⊥ = γE ′
⊥ = γE ′

y. (2.27)

Expressing E ′
z and E ′

y from (2.23) by the coordinates y and z in K we finally
obtain through (2.27) the expressions for the E field in K as a function of the
point coordinates in K:

Ez =
kqzγ

(γ2z2 + y2)
3

2

(2.28)

Ey =
kqyγ

(γ2z2 + y2)
3

2

. (2.29)

Finally, the E field in K is given as:

E =
kqrγ

(γ2z2 + y2 + x2)
3

2

. (2.30)
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E´ E

Figure 2.3: Electric field of a point charge moving with relativistic velocity
(from left to right) as seen from its rest frame K’ (left) and in the laboratory
frame K (right).

Figure 2.3 shows the field of a single particle moving with relativistic ve-
locity. The field lines are shown in a profile plane where the bunch moves
from left to right. On the left part of the figure, the E ′ field of the particle in
its rest frame K′ is given. The field is radial starting from the actual position
of the particle. The right part of the same figure depicts the qualitative repre-
sentation of the electric field of the same particle as seen from the laboratory
frame K. In a 3D representation the field lines with same field strength build
a cone with the tip on the position of the particle. In this case, the magnetic
field lines are concentric around the perimeter of the cone’s surface. If the
velocity of the particle is very high γ ≫ 1 the cones of the E field and the
concentric B field in the laboratory frame will be pushed together in a flat
disk around the charge with the direction of motion as symmetry axis.

2.1.5 Relativistic Equation of Motion

After computing the electric and magnetic field in the appropriate inertial
frame, the aim is to see how they affect the dynamics of the relativistic par-
ticles. In contrast to the classical Newtonian kinematics, the mass of the rel-
ativistic particles m = m0γ is not constant. Since the Lorentz factor γ (2.7)
depends on the particle velocity v(t) it means that also the Lorentz factor is
a time-dependent quantity γ(t). Hence, the force F from (2.3) which equals
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the time derivative of the momentum (p = m0γv) reads as:

F =
dp
dt

= m0
d(γv)

dt
. (2.31)

Consequently, putting expression (2.31) for the force F into the Lorentz
equation (2.1) yields the equation of motion for relativistic particles:

F = m0
d(γv)

dt
= m0

d(γ dr
dt
)

dt
= q (E + v ×B) . (2.32)
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2.2 Linear Transverse Beam Dynamics and

Beam Size Parameters

2.2.1 Common Definition of a Bunch in a Storage Ring

While circulating in a storage ring, the particles loose some of their energy
(e.g. via synchrotron radiation). The losses over each turn are compensated
by the energy of the radio frequency (RF) E field in the accelerating cavities.
The fundamental resonating mode TM01

1 (Figure 2.4) provides a strong lon-
gitudinal electric field Ez on the beam axis which in turn changes the particle
momentum p = |p|

dp
dt

= m0
d(γv)

dt
= qEz. (2.33)

Figure 2.4: Accelerating RF E field in a rotationally symmetric supercon-
ducting cavity.

The acceleration with RF cavities requires that the motion of the particles
must be synchronized with the RF field in the cavity i.e. the particles should
arrive in the middle of the cavity at the moment when the accelerating field
reaches its maximum. Hence the particle beam has to be bunched. A bunch
is an densely populated ensemble of particles in the six-dimensional phase

1TM modes (Transverse Magnetic) - no magnetic field in the direction of propagation.
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space ψ(x, px, y, py, z, pz) around the synchronous particle which is a reference
particle moving in exact synchronism with the accelerating field.

The synchronous particle has always constant RF phase which enables it
to gain the maximum energy from the RF field which in turn provides it with
a nominal energy while orbiting the ring. In the approximation of a constant
bending field, the synchronous particle would have an ideal circular orbit and
all other particles which have some spatial or energy deviation would oscillate
in both transversal and longitudinal direction around the synchronous particle,
as principally shown in Figure 2.5.

Figure 2.5: Ideal circular orbit and the possible trajectory of a real particle
(red) in a storage ring with radius R.

As shown in Figure 2.7, the particles of the bunch are defined in a Cartesian
coordinate system which is attached to the synchronous particle and follows
its bending in the horizontal plane. Thus the longitudinal coordinate z of a
particle in the bunch is always given relative to the longitudinal position of
the ideal synchronous particle of the bunch. Since the synchronous particle
follows the ideal orbit with the velocity v ≈ c corresponding to the nominal
momentum p, its absolute position s along the circumference of the ring is
known at any given time t as s = vt.

For highly relativistic particles the transverse components of the momen-
tum px and py are very small compared to the longitudinal one pz, so that
the amplitude of the momentum |p| nearly equals the longitudinal component
|p| ≈ pz. The beam in a storage ring is comprised of many bunches which
circulate with the same velocity v ≈ c. The position of the bunches along
the circumference of the storage ring is dependent on the RF-frequency with
the RF-period TRF defining the shortest possible distance of two bunches in
a train.

The longitudinal charge density of a bunch of Np particles is usually given
by a Gaussian distribution around the synchronous particle with local co-
ordinate z = 0. The length of the bunch in longitudinal direction is defined
through the standard deviation value σz, hence the longitudinal charge density
along the bunch length is given by λ(z) = Np/

√
2πσz exp(−z2/2σ2

z).
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Figure 2.6: Principal representation of the longitudinal charge distribution
within a bunch.

2.2.2 Equations of Transverse Motion

Apart from being accelerated in the electrical field provided by RF cavities
the particles are guided around the ideal orbit, as principally shown in Fig-
ure 2.5, by applying a magnetic field. The transverse motion of the particles is
determined by the forces from the magnetic field which should only act on the
particles in the transversal (x, y) plane. The force on each individual particle
is a function of the magnetic field strength at the particle position and of its
energy. Several types of magnets are used for guiding the beam, of which the
dipole field (defined by the magnetic flux density By0) is used for bending
the beam in the horizontal direction x. By simply equalizing the centrifugal

x

y z

x

z

y
R

R

s0

s

Figure 2.7: Local Cartesian system used to follow the bends in the axial "s"
coordinate.

force with the dipole Lorentz force for a particle with a designed momentum
p and charge q, the necessary dipole field strength By0 to keep the particle
circulating on the ideal orbit with radius R can be easily computed as:

By0 =
1

R

p

q
. (2.34)
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As a rule of thumb, if the radius of the storage ring R and the required beam
energy are fixed the necessary magnetic flux density B in Tesla could be
computed by the following expression:

By0 ≈ 0.3
p[GeV/c]

R[m]
. (2.35)

As previously mentioned, because of the longitudinal spatial deviation of
the particles in the bunch (relative to the synchronous one) most particles
do not experience the accelerating E field with an optimal RF phase which
eventually leads to a dispersion of the particle energy in the bunch △p re-
presented by the relative momentum deviation of a particle δ = △p/p. Thus in
the dipole magnets according to (2.34) the particles with momentum deviation
are either bent to much if △p < 0 (the momentum is less than the nominal
p) or bent less than the synchronous particle if △p > 0. In other words the
particles with momentum deviation would have different radius of curvature

ρ =
1

By0

p

q
, (2.36)

which is either ρ > R if △p < 0 or ρ < R if △p > 0. The change of the
bending radius in the dipoles represents a particle motion in the transversal
plane as a consequence of which some of the particles will have shorter and
some longer orbits than the ideal orbit. In turn, even a slightly changed orbit
of a particle results in a change of its longitudinal position and with it in a
change of the particle’s RF-phase which again yields a change in the energy
of the particle.

Finally, in the longitudinal direction the particles exhibit an oscillatory
motion around the synchronous particle (by which the bunch remains in an
average synchronism with the RF field) - the so-called synchrotron motion.
In transversal direction the particles also oscillate around the ideal orbit, not
only in horizontal (due to the energy dispersion) but also in a vertical direction
as well.

Thus quadruple magnets (e.g. Figure 2.8) are used to focus the particles
such that they stay in the proximity of the ideal orbit in both transversal
directions x and y.

By linearizing the components of the quadrupole field with a certain gra-
dient g, the total guiding field in the horizontal plane of both dipole and
quadrupole magnets reads as:

By(x) = By0 +
∂By

∂y
x = By0 + gx. (2.37)

Normalizing the By field with the momentum by dividing (2.37) by p/q

qBy(x)

p
=
qBy0

p
+
qg

p
x, (2.38)
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Figure 2.8: Cross-section of a quadruple magnet (photo made at DESY).

Figure 2.9: Principle view of the magnetic field lines of a quadrupole magnet.
The particles are focused in the horizontal plane and defocused in the vertical
plane.

replacing By0 from (2.34) and wrapping qg/p as a constant k yields the fol-
lowing expression for the normalized linear vertical guiding field acting on the
particles in the horizontal plane:

qBy(x)

p
=

1

R
+ kx. (2.39)

Finally the equations of motion of a particle in a transversal plane could be
derived from the equation of non-relativistic motion2 (2.3). In general, for
the horizontal direction the second derivative of the particle’s radial position
ρ = R + x with respect to time equals the sum of the Lorentz force and the

2The oscillatory movement of the particles in the transversal plane isn’t relativistic.
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centrifugal force

m
d2(x+R)

dt2
= qByv +

v2m

x+R
. (2.40)

As described in detail in [Holzer 2006] inserting By from (2.39) in (2.40) and
replacing the independent variable t by s so that

dx
dt

=
dx
ds

ds
dt

=
dx
ds
v = x′v,

the equation of horizontal motion along the coordinate s reads as:

x
′′

(s) +

(

1

R2
− k(s)

)

x(s) = 0. (2.41)

Following the argumentation from above that the particles with spatial de-
viation x in the horizontal direction also have a small momentum deviation
△p yields the following inhomogeneous equation (Hill’s equation) of particle
motion

x
′′

(s) +

(

1

ρ2(s)
− k(s)

)

x(s) =
△p
p

1

ρ(s)
, (2.42)

whereas the motion in vertical direction only depends on the quadrupole field
strength

y
′′

(s) + k(s)y(s) = 0. (2.43)

Depending on the presence of dipole or quadrupole fields along the particle
trajectory s the coefficients 1/ρ(s) or k(s) in (2.42) and (2.43) will take non-
zero values.

2.2.3 Solution of the Equations of Motion and Linear

Beam Optics with Transport Matrices

The general form of the equations of transverse motion (2.42) and (2.43) for
a particle with nominal momentum △p = 0 could be written as homogeneous
differential equation:

u
′′

(s)−K(s)u(s) = 0, (2.44)

which is also known as Hill’s equation. The variable K(s) characterizes the
magnets in both transverse directions:

u(s) =

{

x(s) K(s) = 1
ρ2(s)

− k(s),

y(s) K(s) = −k(s).



2.2. Linear Transverse Beam Dynamics and Beam Size

Parameters 19

Assuming a constant bending or focusing strength (K = const) along the
length l of the element 3 the general solution of equation (2.44) is given by:

u(s) = a1 cos(
√
Ks) + a2 sin(

√
Ks). (2.45)

The coefficients a1 and a2 are computed from the initial conditions, i.e. for
s = 0 where the position u(0) = u0 and the velocity u

′

(0) = u
′

0 are known.
Hence the coefficients write as a1 = u0 and a2 = u

′

0/
√
K. Accordingly in a

horizontally focusing quadrupole (K > 0) without any bending (1/R = 0),
the motion in the horizontal plane is given by the following expressions:

x(s) = x0 cos(
√
Ks) +

x
′

0√
K

sin(
√
Ks), (2.46)

x
′

(s) = −x0
√
K sin(

√
Ks) + x

′

0 cos(
√
Ks). (2.47)

The above equations (2.46) and (2.47) could elegantly be "wrapped" in a
matrix form

(

x(s)

x
′

(s)

)

= MQF

(

x(s0)

x
′

(s0)

)

,

which describes the change of x and x
′

along the coordinate s in a focusing
quadrupole characterized byK and represented by the transformation matrix4

MQF =

(

cos(
√
Ks) 1√

K
sin(

√
Ks)

−
√
K sin(

√
Ks) cos(

√
Ks)

)

.

Similarly a quadrupole which is defocusing in the horizontal plane (K < 0) is
represented by the following transformation matrix:

MQD =

(

cosh(
√
Ks) 1√

K
sinh(

√
Ks)

−
√
K sinh(

√
Ks) cosh(

√
Ks)

)

.

In a drift part of the storage ring where no external guiding fields are present
(K = 0) the transformation matrix is given by

MDrift =

(

1 s

0 1

)

.

Finally the transformation matrix of a dipole sector magnet with a constant
bending radius R writes as:

MDipole =

(

cos( s
R
) R sin( s

R
)

− 1
R
sin( s

R
) cos( s

R
)

)

.

3A real magnet does not have a constant field along its length, especially not at the

edges, thus this is a so-called hard edge model approximation.
4Determinants of the transformation matrices of the linear beam optics are always equal

to one i. e. det M = 1.
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Similarly the transformation matrices can be derived as well for the particle
motion in y−direction. Since the particles generally move simultaneously in
both transverse directions, in order to completely describe their motion in
the transversal plane the trajectory vector U = (x, x′, y, y′)T is transformed
by multiplying it with the (4 × 4) transformation matrices comprised of two
(2 × 2) blocks on the diagonal representing the transformation in x− and
y−direction. Thus, for a horizontally focusing quadrupole (K > 0,k < 0) the
transformation matrix is given by:

MQF =













cos(
√
Ks) sin(

√
Ks)√
K

0 0

−
√
K sin(

√
Ks) cos(

√
Ks) 0 0

0 0 cosh(
√
Ks) sinh(

√
Ks)√

K

0 0 −
√
K sinh(

√
Ks) cosh(

√
Ks)













.

Inserting the length l of the individual beam transport line components in
the matrices above (s = l) they would describe the transport of the particles
through the individual element. Hence, if the matrices of individual elements
are multiplied in their physical order along the beam line (the so-called beam
magnetic lattice), the particles could numerically be transported from the
initial point s1 to some point s2 down the beam line:

U(s2) = M(s2,s1)U(s1).

The matrix M(s2,s1) represents the result of the multiplication of the indi-
vidual transport matrices of the elements between s1 and s2. The transport
matrices are therefore perfectly suitable, during the design phase of a parti-
cle accelerator machine, to make a fast tracking of the particles through the
designed magnetic lattice.

For particles with momentum deviation △p the general solution of (2.42)
is a sum of the solution x(s) of the homogeneous part as given in (2.44) and
the particular solution xi of the inhomogeneous equation

x
′′

i (s)−K(s)xi(s) =
△p
p

1

ρ(s)
. (2.48)

The particular solution xi(s) is taken to be equal to xi = D(s)△p
p

where D(s)

is the dispersion function. The dispersion function D(s) and the bending
radius ρ(s) give the lengthening of the orbit δl for a particle with momentum
deviation △p:

δl△p =
△p
p

∮

D(s)

ρ(s)
ds. (2.49)
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Thus, in matrix form, the equations of motion for particles with momen-
tum deviation △p read as

(

x(s)

x
′

(s)

)

= MQF

(

x(s0)

x
′

(s0)

)

+
△p
p

(

D(s)

D
′

(s)

)

. (2.50)

The matrix expression (2.50) could be written in a (3 × 3)-matrix form for
both directions each, hence the emerging transformation matrix M for both
transverse directions is a (5× 5)-matrix:















x(s)

x
′

(s)

y(s)

y
′

(s)
△p
p















= M















x(s0)

x
′

(s0)

y(s0)

y
′

(s0)
△p
p















. (2.51)

The transformation of the particle trajectory by multiplying the position vec-
tor with the matrix from (2.51) includes the approximation that the particle
focussing is independent of its momentum deviation △p.

2.2.4 Transverse Tune

The previous section 2.2.3 briefly described how single particle trajectories
could be tracked through the linearized magnet optics. Equation (2.44) is
also used to describe the behavior in the transverse plane of a bunched beam
of many particles of same nominal momentum p. Because of the alternating
focussing along the ring the bunch particles perform an oscillatory motion in
the transverse plane. These oscillations are known as betatron oscillations
and are regarded in both, the vertical y and the horizontal x direction. In the
horizontal direction the solution ansatz for Hill’s equation is given as

x(s) = Af(s) cos(Ψ(s) + φ), (2.52)

where the constant A and the phase φ are integration constants. Furthermore
the constant A and the amplitude function f(s) are defined to be equal to

√
ε

and
√

β(s) correspondingly so that (2.52) can be written as

x(s) =
√
ε
√

β(s) cos(Ψ(s) + φ). (2.53)

Expression (2.53) describes the betatron oscillation of the particles. Their
trajectories lie within an envelope of the amplitude defined by

√

εβ(s) as
shown in Figure 2.10. The local value of the so-called beta function β(s)

depends on the local focussing K(s) whereas the emittance value ε is invariant



22

Chapter 2. Linear Beam Dynamics in Storage Rings and

Collective Effects due to Electron Clouds

Öâ(s)å
x

s

Figure 2.10: Beam envelope with an exemplary particle trajectory.

along the orbit. Inserting (2.53) in (2.44) yields the relation between the
change of the oscillation phase Ψ(s) and the so-called beta function β(s):

Ψ(s) =

∫ s

0

ds

β(s)
(2.54)

The beta function represents the local wavelength of the betatron oscillation
λ(s) = 2πβ(s). In circular machines the beam optics is periodic and repeats
after each turn so that K(s) = K(s + L), where L is the length of the ideal
orbit per turn. The phase change △Ψ(s) of the betatron oscillation over a
complete turn reads as

△Ψ =

∫ L

0

ds

β(s)
. (2.55)

Thus the total number of oscillations over one turn defines the betatron tune:

Q =
△Ψ

2π
. (2.56)

In order to avoid resonances of the betatron oscillation due to imperfection in
the magnet optics, the tune Q has to avoid integer as well as half-integer val-
ues. Hence for the beam stability only the fractional part of the corresponding
tune is of significance.

The motion of the synchronous particle, unperturbed by the so-called col-
lective effects (i.e. space charge forces etc.) and with the idealization of con-
stant focusing, is modelled by the equation of a harmonic oscillator. In such
a case the beta function becomes a constant value βx0 or βy0. Then, assuming
no coupling of the motion in horizontal and vertical plane, the equations of
motion are given by:
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x
′′

+

(

1

βx0

)2

x = 0 (2.57)

for the horizontal direction and

y
′′

+

(

1

βy0

)2

y = 0 (2.58)

for the vertical direction. The equations of motion of an unperturbed particle
in the transversal plane (2.57) and (2.58) can also be written in terms of the
corresponding unperturbed tunes and the ring radius R:

x
′′

+

(

Qx0

R

)2

x = 0, (2.59)

y
′′

+

(

Qy0

R

)2

y = 0. (2.60)

As previously explained, over a longer period of many revolutions the
particle performs oscillatory motion in the longitudinal direction with respect
to the position of the synchronous particle, also called synchrotron motion.
Similarly to the definition of the betatron tune, a tune for the unperturbed
synchrotron motion of the particles Qz0 can be defined.

Finally, the tunes are dimension-free numbers which represent the number
of oscillations of a particle in x-, y- or z-direction during one revolution. While
the transversal tunes are Qx0 ≫ 1 and Qy0 ≫ 1 in the longitudinal plane the
particle needs much more time to perform an oscillation around the reference
particle. Depending on the machine, the period of the synchrotron oscillation
can take some thousands of revolutions so that Qz0 ≪ 1.

2.2.5 Phase-Space Ellipse and Particle Emittance

With the defined envelope of the transverse motion as shown in Figure 2.10 it
is possible to evaluate the beam size in the corresponding transverse direction
at a certain position s. However, to fully describe the beam state at the
position s it is necessary to know the phase, i.e., x′ or y′, as well. Computing
the first derivative of the position with respect to time from equation (2.53)
yields for the x-direction:

x′(s) = −
√
ε

√

β(s)

(

α(s) cos(Ψ(s) + φ) + sin(Ψ(s) + φ)
)

, (2.61)

where α(s) is another optical function derived from β(s) as α(s) = β′(s)/2.
Eliminating the trigonometric terms cos and sin by expressing cos(Ψ(s) + φ)
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Figure 2.11: Ellipse in the phase space plane (x, x′) accommodating the pos-
sible phase-space values of a single particle at a certain position in the storage
ring.

through (2.53) and introducing another optical function γ(s) = 1+α2(s)
β(s)

leads
to the following expression for the single particle emittance ε:

γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = ε. (2.62)

The optical functions α(s), β(s) and γ(s) are denoted as twiss-parameter.
As described in [Wille 1992], the expression (2.62) represents an ellipse in the
phase space plane (x, x′). Generally, as shown in Figure 2.11, the ellipse is
tilted. Yet, if α(s) is zero, the half axes of the phase-space ellipse are parallel
with the coordinates x and x′ and are equal to

√
εβ and

√

ε/β, correspond-
ingly. Consequently, the area of the phase ellipse is A = πε, which gives a
physical meaning to the single particle emittance ε. Furthermore, no matter
of the ellipse form, which changes along the ring with the local β function, its
area remains constant if the motion of the particle is not perturbed. Because
of the non-integer tune Q, at each turn, at a certain position s in the ring,
a single particle has a new set of position and phase values within the phase
space ellipse.

2.2.6 Beam Emittance

Under the assumption of a linear guiding optics in a storage ring, according
to Liouville’s theorem [Holzer 2006], the phase space volume of the particles
comprising the bunch remains preserved and it is determined only by the char-
acteristics of the beam injector system. Instead of the phase space volume, for
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Figure 2.12: Phase space ellipse of an undistorted beam.

practical reasons its projection areas on the three orthogonal planes are con-
sidered5. Regardless of the application, for the beam quality it always applies:
the smaller the effective phase space area occupied by the beam, the better
the quality of the beam. However, practically the nonlinear or fringed fields of
the magnets as well as a number of collective effects, here of particular inter-
est the interaction with electron clouds, could irreversibly distort the particle
distribution and with it blow up the effective phase space area/volume of the
bunch. The beam emittance quantifies the ability to focus the bunch parti-
cles. In order to quantify and compare the quality of the beam as an ensemble
of particles it is necessary to define the beam emittance through the smallest
ellipse enclosing a certain number of bunch particles in the phase space plane.
Figure 2.12 qualitatively shows the phase space ellipse of a beam which is not
distorted. Figure 2.13 shows the ellipse enclosing the phase space distribution
of a distorted beam. In both figures, the phase space area of the particle
distribution is equal, however the envelope ellipse from Figure 2.13 takes a
larger area than the one in Figure 2.12 which means that the effective phase
space area of the distorted bunch is larger. Hence the emittance is an empiri-
cal quantity that characterizes the effective phase volume (or area) of a beam
distribution, including the effects of irreversible processes. If the movement of
the particles in the bunch is taken to be uncoupled in different directions then
the emittance could be defined separately for each direction. Practically the
emittance εx is defined as the area of the ellipse containing certain percentage
of all the particles in its interior. Hence the emittance is computed as a statis-
tical quantity in form of the rms emittance. This is especially convenient for
the particle tracking programs where particle distributions are defined as an

5for emittance definition the phase space is considered as (x, x′) and not the canonical

(x, px) space
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Figure 2.13: Phase space ellipse of a distorted beam.

array holding the six-dimensional phase space coordinates for each particle.
Having that record, the statistical transverse emittance can be computed as:

εx =

√

x2 · x′2 − (xx′)2. (2.63)

Here

x2 =
1

N

N
∑

i=1

(xi − x)2, (2.64)

x′2 =
1

N

N
∑

i=1

(x
′

i − x
′

)2 (2.65)

and

xx′ =
1

N

N
∑

i=1

(xi − x)(x
′

i − x
′

) (2.66)

are the second order momenta of the particle distribution with respect to the
barycenter of the distribution given by:

x =
1

N

N
∑

i=1

xi, x′ =
1

N

N
∑

i=1

x
′

i. (2.67)

Finally the beam size at a position s can be computed as:

σb,x(s) =
√

εb,xβ(s). (2.68)



2.3. Collective Effects 27

2.3 Collective Effects

Main challenges in accelerator design and operation are the stability of the
beam coherent motion and the preservation of the designed emittance of the
particle distribution. In the first design stage, the beam optics is set up for
a bunch which is reduced to a single particle without any interaction with its
environment. The issues of the beam stability and quality are considered in a
later phase of the vacuum chamber design by treating the beam as ensemble
of many particles with the corresponding collective effects. These are rather
difficult tasks considering the number of effects on the beam particles arising
from the interaction of the beam with its self-field and its environment.

The beam environment of modern storage rings is the vacuum chamber
with normal conducting or superconducting beam pipes and all the necessary
beam-conditioning and diagnostic equipment inside.

In a broader sense the beam environment, which affects its stability, could
also be vacuum impurities. Those impurities could result in trapped ions for
electron beams, or electron clouds in a vacuum chamber of positively charged
beams i.e. a positron-, proton- or ion-beams.

The number of effects which could harm the beam appearing as a result of
the presence of many particles of same or opposite charge are called collective
effects. For different beam parameters certain collective effects are more pro-
nounced than others but nevertheless these effects always appear if the beam
bears attributes like high current, high intensity or high brightness.

Independent of the type of a collective effect the additional force perturbs
the motion of a bunch particle. Adding the electromagnetic perturbation
force Fperturb. e.g. in the force equation (2.40) modifies equation (2.60) of the
unperturbed motion in vertical direction:

y
′′

+

(

Qy0

R

)2

y =
Fperturb.

mv2
=

q

γm0β2
relc

2
(Eperturb. + v × Bperturb.)y. (2.69)

Hence the perturbation force changes the betatron tune Qy0 of the particles
with velocity v = βrelc charge q and total mass m = γm0.

2.3.1 Direct Space Charge

The most prominent force acting on a particle distribution packed in a bunch
with a very small phase space volume is the own direct space charge force.
Because of the Coulomb forces the charges of the same sign repel each other.
Naturally, the space charge force acting on the bunch particles will be larger
as the charge per bunch grows.
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Figure 2.14: Direct space charge force on the bunch particles is in equilibrium
with the force due to the own magnetic field for highly relativistic bunches.

This collective effect is usually of concern if the bunches are at low energies,
i.e. at the beginning of acceleration with still low values of the Lorentz factor
γ. The space charge force acts on the bunch particles in both transverse and
longitudinal direction.

If the bunch is accelerated to a relativistic energy the repulsive force of
the electric field in transverse direction is diminished by the force of the own
magnetic field B⊥ which focuses the particles as shown in Figure 2.14. Since
the transversal magnetic field B⊥ as shown in (2.21) depends on the own
transverse electric field (E⊥ = γE ′

⊥) the Lorentz force on a bunch particle in
radial direction reads as:

F⊥ = γE ′
⊥ − v2

γE ′
⊥

c2
= γE ′

⊥(1−
v2

c2
) = γE ′

⊥
1

γ2
=
E ′

⊥
γ
. (2.70)

Hence the total Lorentz force due to the own space charge6 of the bunch
decays with 1/γ so that the increase of the bunch energy leads to a reduction
of the direct space charge force in the transverse plane. For ultra-relativistic
energies where γ is of the order of several thousands, the direct space charge
forces are practically not an issue for the stability of the bunch in a storage
ring.

It is worth mentioning that for bunched beams which are in the focus of
this work the direct space charge force perturbs the transverse oscillation of
the particles depending on their longitudinal position in the bunch and on the

6Please remind that E
′ is the space charge field of the bunch in its rest frame.
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charge profile of the bunch λ(z). Thus the betatron oscillation frequencies of
the particles inside the bunch are shifted and moreover there is a spread of
the betatron frequencies of the incoherent motion of the particles. However
the direct space charge force of the bunch is an internal force which is not
affecting the coherent oscillation of the bunch i.e. does not change the center
of mass motion. As for the beam quality in a synchrotron ring the change of
the betatron tune of the incoherent motion of the particles could result in a
slow emittance growth of the beam.

2.3.2 Wake Fields and Impedances

Another type of unwanted effects on the beam occurs due to the electromag-
netic interactions of the self-field of the bunch with the surrounding surfaces of
the vacuum chamber. The term vacuum chamber will be used in the following
as a general term describing the whole beam vacuum environment including
the accelerating cavities. The surface of the vacuum chamber is made of nor-
mal conducting or superconducting material which modifies the field of the
bunch. Assuming a Perfect Electric Conducting (PEC) surface of the vacuum
chamber the electrical boundary conditions impose a perpendicular electric
field on the surface. Thus, the field distribution inside the vacuum chamber
depends on the geometry of the vacuum chamber (Fig. 2.15 and Fig. 2.16).
If the bunch velocity is approximated by the velocity of light c then its self-
field could only exist from the head of the bunch backwards and is usually
referred to as a wake field. In the resonant structures of the beam chamber as
the RF-cavities, the wake field excited by the bunch remains oscillating for a
relatively long time period compared to the bunch length. This is principally
shown in Fig. 2.17.

Hence, for subsequent bunches the wake field represents an unwanted elec-
tromagnetic force which leads to a loss of energy. Moreover this multi-bunch
effect produces a kick in the transverse direction which shifts the betatron
tune of the bunch coherent motion accelerating the beam instability and in
extreme cases it could even lead to a beam loss.

The electromagnetic (EM) interaction of the beam and its environment
is described by wake-functions or impedances. The two-particle model as
described e. g. in [Chao 1993] gives an intuitive picture of the wake function
W (z). As principally displayed in Fig. 2.18 the wake function W (z) is a
function of the relative distance z between the charge q which excites the
wake fields and the charge e which receives the action from the wake field.
The wake function in one transverse direction W (z)⊥ is defined through the
total accumulated change of the momentum △p⊥ of the charge e which is an
integral of the acting force F⊥(s, z) along some path length L. For the vertical
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Figure 2.15: The electric field of the bunch satisfies the boundary conditions
of the beam pipe.

Figure 2.16: The electric field of the bunch is being distorted by satisfying the
PEC boundary conditions in the RF cavity.

Figure 2.17: After the passage of the bunch its wake field remains oscillating
in the resonating structure. The resonance time depends on the quality factor
Q of the resonant structure.

direction the relation is given by

△ py =

∫ L

0

Fy(s, z)ds = eWy(z)△ y q. (2.71)
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Figure 2.18: The wake function W (z) experienced by the second particle with
charge e is a function of the distance z to the preceding charge (q) which
excites the wake field.

The transverse wake force on the charge e is proportional to the transverse
offset △y of the exciting charge q. If the beam pipe could be approximated
as PEC then the wake function W (z) entirely depends on the geometry of the
vacuum chamber. The wake functions are used to evaluate the effect of the
wake fields on the beam dynamics in time domain. In the frequency domain
the corresponding quantity is the impedance which is a Fourier transform of
the wake function W⊥(z)

Z⊥(ω) = i

∫ +∞

−∞

dz

c
e−iωz/cW⊥(z). (2.72)

The impedance defined as such is a line impedance since its unit is Ω/m.
However, for practical evaluation the impedance is defined by the resonator
model:

Z⊥(ω) =
c

ω

Rs

1 + iQ(ωR

ω
− ω

ωR
)
, (2.73)

used in the RF cavity design along with the terms as resonant frequency ωR,
quality factor Q (defined by the relation of the stored energy and the power
loss):

Q =
ωWs

Pv

=
frequency × stored energy

wall losses

and the shunt impedance Rs (the ratio of the squared accelerating voltage and
the wall losses of the resonant cavity) [van Rienen 2001]:

Rs =
V 2

Pv

=
voltage2

wall losses
.

In turn, the Fourier transformation of the impedance from (2.73) gives a
wake function W (z) exponentially decaying as a function of the longitudinal
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distance z. In the extreme case of a very good resonator featuring very high Q
the unwanted wake function W (z) oscillates in the longitudinal direction with
frequency ωR, without decaying. The corresponding impedance is called a
narrow band impedance. Since it acts on the beam not only locally where the
wake field is excited but rather travels backwards in the longitudinal direction
it is very unfavorable for the beam stability.

Depending on the range of action of the wake fields they could excite a
single or a multi-bunch instability. The single bunch instability is usually
caused by short range wake fields while the multi-bunch instability is due to
long range wake fields/narrow-band impedances from the preceding bunches.

2.4 Electron Clouds and Induced Instabilities

Apart from the self-fields, the beam experiences another type of collective
effects from the interaction with other parasitic species of particles which are
not belonging to the beam. The interaction of an electron beam with ionized
rest gas in the vacuum chamber is such an effect. This study is concentrated
on the effects of the interaction of positively charged beams with parasitic
electrons gathered in the vacuum chamber.

2.4.1 Generation of Electron Clouds

Initially the electrons appear in the beam pipe partly because of vacuum
impurity and the ionization of the residual gas but mostly because of the
synchrotron radiation of the beam hitting the walls of the vacuum chamber
where it causes emission of electrons. The number of photoelectrons produced
by each new bunch (Figure 2.19) is a function of the bunch parameters but

Figure 2.19: Bending the beam by dipole magnets results in synchrotron
radiation in the horizontal plane. The radiation directly emits electrons within
a 1/γ angle from the point where it impinges.
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also a function of the material properties, the conditioning and the geometry
of the chamber. Therefore the dipole regions of a storage ring, where most
of the photoelectrons emerge, have a special design in order to reduce the
number of photoelectrons (see Figure 2.20). After an initial photoelectron

Figure 2.20: Principal view of a cross section of the vacuum chamber with an
antechamber, in a dipole (right) and in a wiggler magnet (left). The red spot
in the middle of the vacuum chamber represents the beam.

Figure 2.21: Principle of the generation of true secondary electrons from the
vacuum chamber walls.

concentration is in place it is attracted in the transversal direction by the
passing high-energetic beam. Accelerated by the transverse electric force of
the passing beam the electrons reach energies which enable them to produce
new electrons when hitting the conducting wall of the vacuum chamber. Those
electrons are called secondary electrons. The process is principally shown in
Figure 2.21. One incident electron could emit several secondary electrons if
the surface property "secondary emission yield" (SEY) is bigger than one.
The SEY δSE(E) is a material property which is also a function of the energy
E of the incident electron analytically modelled by M. Furman [Furman 1998]
as:

δSE(E) = δmax
s(E/Emax)

s− 1 + (E/Emax)s
. (2.74)

The material parameters δmax, Emax and s also depend on the angle at which
the incident electron hits the wall of the vacuum chamber. The number of
secondary electrons after a very short while prevails in the overall electron
concentration as the secondary electrons, accelerated by the passing bunch,
produce again new secondaries. In a very unfavorable case where the time
which the electrons need to reach the surface of the chamber in transverse
direction is equal to the intra-bunch time spacing it may come to a resonant
behavior and an exponential growth of the number of electrons. By such
a mechanism the electron concentration in the beam chamber grows until
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Figure 2.22: Saturation of the electron density in the vacuum chamber. Sim-
ulation with the e-cloud build-up code ECLOUD 2.3, courtesy of R. Wanzen-
berg.

a certain dynamical saturation density has been established. The electron
density saturates due to the own repelling space charge forces of the elec-
trons in the cloud. Figure 2.22 results from the simulation of the electron
cloud (e-cloud) build-up with the ECLOUD 2.3 code [Zimmermann 2003] by
R. Wanzenberg [Wanzenberg 2004]. It represents the development of the num-
ber of electrons in the vacuum chamber while a train of many bunches with
total current of 200 mA and a small bunch spacing of only 4 ns is passing
through. Since the beam is bunched, the attractive force for the electrons
is of periodical appearance and the next bunch produces additional primary
electrons which explains the ripple of the curve in Figure 2.22. After a passage
of one bunch the number of electrons in the proximity of the beam trajectory
starts to decay until the next bunch arrives. The dynamic equilibrium density
is reached after some 100 bunches passed through the e-cloud. Hence the to-
tal number of electrons forming the e-cloud depends on surface properties - as
the source of electrons, and on the beam parameters - as the beam provides a
strong focusing force acting on the electrons. Therefore the time gap between
the bunches in the train is a very important parameter for the e-cloud density.
Finally, the e-cloud density in the vacuum chamber is an interplay of many
elements: vacuum pressure, geometry and size of the vacuum chamber, the
material and the conditioning of the vacuum chamber walls and the cor-
responding SEY, bunch intensity and dimensions, the beam filling scheme
but also the beam loss rate and the photoelectron yield. Typical e-cloud
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densities are between 1010 and 1013 electrons/m3. Two computer programs
are mainly used for the simulation of the build-up and evolution of the e-
clouds: POSINST [Furman 2002] and ECLOUD [Zimmermann 2003]. Re-
cently analytical approaches ([Demma 2007], [Petracca 2011]) to parameter-
ize the bunch-to-bunch evolution of the e-cloud line density were presented as
an alternative to the simulation codes.

2.4.2 Electron Cloud Effects

The beam and the e-cloud interact through electromagnetic forces originating
from both charge distributions enclosed in a conducting beam pipe. The inter-
action with electron clouds affects the beam quality, the stability and finally
its life-time. Further, the presence of e-clouds in the vacuum chamber is also
affecting the beam diagnostic systems, the cryogenic system and certainly the
vacuum quality. The radiation from the beam-gas scattering could even give
some undesirable background to the experiments in collider machines. The

Figure 2.23: Principle sketch of pickup electrodes of a beam positioning mon-
itor.

beam positioning monitors (BPM) in an arc of a synchrotron ring are affected
by the synchrotron light. As shown in Figure 2.23, one of the electrodes of the
BPM may become a source of photoelectrons whereas the other three elec-
trodes register the electron current. Those electron currents, which may be
amplified if the beam induces multipacting, represent a noise for the beam di-
agnostics and need to be treated by further electronic processing of the BPM
pickup signals.

Another big concern for the accelerator operation is the heat load from
the electrons deposited by hitting the beam screen, as shown for the Large
Hadron Collider (LHC) in Figure 2.24. The beam screen shields the cold su-
perconducting parts from the synchrotron radiation of the beam and for that
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purpose needs to be cooled with a complex and expensive cryogenic system.
Hence the cooling capacity needs to accommodate the thermal energy from
the e-cloud as well. Thereby the additional cooling rapidly raises the cost of
the accelerator operation. Moreover in an extreme case, due to constructive
limitations, the capacity of the cryogenic system may not be enough to dissi-
pate the extra heat load in the vacuum chamber originating from the e-cloud.
The consequence of this might be a quenching of the superconducting magnets
and a stop of the storage ring operation.

Figure 2.24: Cross-section of LHC prototype beam pipes showing the beam
screens, Source: CERN Document Server [Loïez 1997].

2.4.2.1 Beam Instabilities due to Electron Clouds

Generally the collective effects on a bunched beam can be described as co-
herent or incoherent effects. The coherent effects affect all the particles of
the bunch more or less equally. If all the particles of the bunch receive an
equal transversal kick, due to the interaction with the e-cloud, their betatron
oscillation frequency changes or shifts in the same manner so that the effect
on the beam is referred to as a coherent transverse tune shift. Observations
([Ohmi 1995], [Ohmi 2000a], [Ohmi 2001c]) show that above a certain thresh-
old value of the e-cloud density, the beam starts to behave resonantly due
to the excitation from the cloud and it becomes coherently instable. Such a
coherent instability usually leads to a very fast beam loss. The instability is
registered by monitoring the centroid bunch motion in the transverse plane,
characterized by fast growing amplitudes and a coherent tune shift in the same
transverse direction. However, the beam could also become instable due to
the interaction with e-cloud densities below the threshold which triggers fast
coherent beam instability. Thereby the particles in the bunch are differently
affected by the e-cloud which results in a spread of their betatron frequencies.
Hence the effect is called incoherent. The diffusion of the particles in space
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and in phase is manifested through a relatively slow but steady emittance
growth and an incoherent tune shift of the single bunches. Eventually a slow
beam loss could be registered by measuring the number of the particles in
each bunch of the train. The bunches in the back of the train loose more
particles than the ones in the beginning of the train which is reasonable since
the density of the e-cloud rises along the train as shown in Figure 2.22. For-
tunately, the incoherent motion of the particles is damped by the synchrotron
radiation of the particles in the bunch. However, in many modern synchrotron
machines, the synchrotron period is relatively long so that the incoherent in-
stability may still lead to a significant deterioration of the beam quality. In
turn, loosing the parameters needed for the respective experiments shortens
the beam life time in the machine.

Both, the coherent and the incoherent effects can be either transverse or
longitudinal. The collective effects arising from the interaction of a positively
charged bunched beam with an e-cloud are affecting the beam mainly in the
transverse plane. Depending on the beam parameter the effects on the beam
due to the interaction with the e-cloud could be of a single- and/or multi-
bunch nature.

Figure 2.25: The displaced bunch perturbs the electron distribution.

Suppose a bunch with some transverse displacement (respective to the
other bunches in the train) is progressing through an initially homogeneous
electron cloud as principally shown in Figure 2.25. The electron distribution
will be perturbed in such a manner that it is imposing a dipole force on
the following bunches. If the electron distribution cannot recover from the
distortion after the interaction with the preceding bunch and since it acts
back on the successive bunch (see Figure 2.26) it consequently represents a
case of multi-bunch effect. Such a multi-bunch instability depends on the
accelerator operation mode, i.e. the charge and the time spacing between the
consecutive bunches but also on the number of bunches in a train and the
time spacing between them. The multi-bunch instability due to an e-cloud is
analogous to a narrow band resonator response on the wakefield of a bunch.

A single bunch effect occurs due to the interaction of the bunch with the
e-cloud whereby the head part of the bunch perturbs the e-cloud which then
acts on the rear parts of the bunch. The head and the tail motion of a single
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Figure 2.26: The following bunches (2 and 3) receive a dipole kick from the
perturbed electron cloud - a mechanism of multi-bunch instability.

bunch are coupled by the induced distortion of the electron cloud distribution.
Figures 2.27 and 2.28 qualitatively explain the mechanism of the head-tail
instability where the transverse beam size is blown up due to the deflection of
the tail part of the bunch. The rate of the head-tail instability depends on the
charge per bunch and its length, but most of all on the electron cloud density
which again is dependent on the beam filling pattern i.e. the intra-bunch
spacing.

Figure 2.27: Head-tail instability: the head of the bunch changes the electron
cloud centroid position in the transverse plane.

Figure 2.28: The kick on the tail parts of the bunch results in a beam size
growth and sidebands in the betatron frequency as the effect is incoherent.

Storage rings built for very high luminosity or brightness are characterized
by large aspect ratios in the transverse emittances. Thus the bunches are
usually very flat which results in higher electrical fields of the bunch in ver-
tical direction. These strong vertical fields accelerate the electrons in vertical
direction so that the electron cloud effect is more pronounced in the verti-
cal than in the horizontal bunch motion. A cure for trapping the electrons
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and slowing down the rate of the head-tail instability is the application of
solenoidal fields. Also the single bunch instability due to e-clouds is analo-
gous to a broadband response of a resonating structure on the excitation of
a bunch. A broadband impedance model for the electron cloud was proposed
in [Ohmi 2001c]. However, the analogy is restricted only on the broadband
type of response. The computation and the prediction of which is much more
difficult for the interaction of beam and e-cloud. The e-cloud as a environment
of the beam changes rapidly during the bunch passage whereas the vacuum
chamber geometry is a rigid environment which does not change over time.
The goal of this work is to simulate in detail the interaction of a single bunch
with an electron cloud and with it to help the estimation of the effects on the
bunch due to the interaction with e-clouds.

2.5 Summary of the Chapter

As briefly described in this chapter apart from the guiding magnetic fields a
number of collective effects act on the beam particles in a storage ring. Some
collective effects as the beam’s own wake fields, due to the vacuum cham-
ber geometry and the resistive walls, can be described by wake functions or
impedances. Hence their influence on the bunch could be evaluated by track-
ing the bunch through the beam optics while at each turn a kick proportional
to the pre-computed wake function is applied on the bunch. From a compu-
tational point of view this is a very cheap and fast simulation. On the other
hand, the influence of other collective effects, as the own space charge fields or
the influence of other parasitic charged particles in the vacuum chamber, can
not be adequately described in terms of the classical wake functions as briefly
introduced in 2.3.2 ([Rumolo 2002] and [Ohmi 2001c]). The interaction of the
bunch particles with their own or the space charge fields of other parasitic
particle species as ions or electron clouds has to be simulated over a certain
time to evaluate the influence of those collective effects on the bunch mo-
tion. Such a simulation requires a computation of the space charge fields and
is much more expensive in terms of computational time, compared with the
bunch tracking through the linear optics and thereby applying a pre-computed
wake-kick.
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The program MOEVE PIC Tracking was initially created during this work
to simulate the interaction between the particles of a relativistic bunch and
electron clouds. The particle tracking routines evolved around the Multi-
grid based 3D Poisson solver MOEVE [Pöplau 2005] originally developed by
Gisela Pöplau. For the purposes of this work the 3D Poisson solver MOEVE
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was complemented with space-charge routines which implement PEC bound-
aries describing a vacuum chamber with elliptical cross section. In MOEVE
PIC Tracking the particle distribution is discretized in space and its evolu-
tion under the influence of the guiding and collective fields is simulated in
time. The source of those collective fields are the bunch particles themselves
or other parasitic particles. Thereby the space charge fields of the particle
distribution are computed and then the resulting forces are applied back on
each particle. Thus the particle distribution evolves over time under the influ-
ence of the collective field forces. The time discretization for the simulation is
determined by the mobility of the particles involved. Finally the parameters
for the interaction simulation depend on the type of effects on the beam to
be examined (the collective fields of the e-cloud and the ions are changing
on different time scale simply because of the different particle mass which
determines the dynamics of the distribution).

In any case, the computation of the space charge force for each particle is
based on a superposition of the forces from all other particles. Considering
the fact that a typical bunch can be represented by several millions of parti-
cles the direct particle-particle method would be computationally inefficient
since it scales by N2, where N is the number of particles. Therefore, a three
dimensional (3D) mesh is defined over the particle distribution in the so-called
"particle-mesh" or "particle-in-cell" (PIC) model for iterative computation of
the forces. The method is well established for the low pressure plasma simula-
tions and in depth described in the book of Birdsall [Birdsall 1991]. Thereby
the charge densities are deposited at the grid points by weighting the charges
from the particles positioned in the proximity of each grid point. Next, for
example in the PIC electrostatic observation, the discretized Poisson equation
is solved on the grid using the finite difference method. Once the electric field
between the grid points is computed it is interpolated at the position of the
particles. The new position of the particles is then obtained by the time in-
tegration of the Lorentz equation of motion with all the fields acting on the
particle taken into account. The external magnetic forces are modelled by
mapping or by an analytical describtion as functions in space and time.

3.1 Electrostatic Macro-Particle Model

The number of particles in a bunch, which dynamics should be simulated, is
very large i.e. in the order of 1010 − 1012 unit particles. The storage require-
ment and the successive update of the position of such a number of particles
limits the performance of the simulation even with the present computational
resources. Therefore, in the numerical model their number is reduced typi-
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cally to the order of 106 − 107 particles also known as macro-particles. They
represent multiple unit particles bearing the multiple of the unit charge and
weight. Since the ratio between the charge Q and the mass M of the macro-
particle remains the same as for the elementary particle ( Q

M
= q

m0
), their

dynamic behavior in electromagnetic fields will be the same as that of the
elementary particle. The approximation made by placing de facto many

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

number of mesh points

er
ro

r 
of

 th
e 

el
ec

tr
ic

 f
ie

ld

 50,000 particles
100,000 particles
150,000 particles

Figure 3.1: Relative error of the electric field from uniformly distributed
macro-particles in a sphere with constant charge. Comparison of different
number of macro-particles on an equidistant mesh [Pöplau 2005].

unit particles on the same spot does not have considerable influence on the
accuracy of the space charge fields computed later. Numerical experiments
with even a smaller number of macro-particles (order of magnitude 105) show
that for uniform (Figure 3.1) and Gaussian (Figure 3.2) particle distributions
the deviation of the field from the analytically computed values for different
number of macro-particles are insignificant. Figures 3.1 and 3.2 reveal one
important parameter of the PIC space charge field computation namely that
the accuracy of the computed field from the particle distribution depends on
the number of mesh cells discretizing the space. Generally, the accuracy is
improved by increasing the number of mesh cells. In MOEVE PIC Tracking
the particles and the vacuum chamber are defined in a 3D Cartesian mesh. Its
resolution should be fine enough to resolve the particle distribution in a rea-
sonable number of grid cells, thus for practical computations a non-equidistant
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Figure 3.2: Relative error of the electric field from Gaussian distributed macro-
particles in a sphere with constant charge. Comparison of different number of
macro-particles on a non-equidistant mesh [Pöplau 2005].

is indispensable.
Since in storage rings of our interest the particles of the bunch are highly

relativistic (i.e. > 1GeV) it could be assumed that they don’t change their
relative position to each other in the direction of acceleration (longitudinal).
Thus, those point charges moving in the laboratory frame with constant veloc-
ity (approaching the velocity of light) are seen as stationary in the bunch rest
frame. In the rest frame, the electric field of each particle expands radially
from the point charge, the Coulomb law holds and the own space charge field
can be solved as an electrostatic problem.

3.2 Tracking Cycle

The tracking cycle for plasma simulations described in [Birdsall 1991] is
slightly modified for the simulation of the dynamics of relativistic bunched
particles. The definition of the initial macro-particle distribution is written in
an ASCII file which holds the space coordinates of each particle as well as their
impulse components and their mass-charge ratio (x, y, z, pz, py, pz, Q/M). The
bunch is usually represented by a Gaussian distribution of particles in space
but the program is able to process any other given distribution of particles.
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Figure 3.3: Cycle of the tracking algorithm implemented in MOEVE PIC
Tracking.

The position of the particles is defined relative to one leading particle with
space coordinates (0, 0, 0). The leading particle bears also the defined impulse
of the bunch thus it is defined by (0, 0, 0, 0, 0, pz, Q/M). The momenta of the
other bunch particles are distributed around the momentum of the leading
particle according to the defined energy spread of the bunch.

The primary goal of MOEVE PIC Tracking is to simulate the interaction
of the bunch with electron clouds. In such a case the distribution of the elec-
trons written in the same format as the bunch distribution has to be loaded
as well. Typically the initial distribution of the electrons in a drift section
is homogeneously filling the beam tube. Currently the distribution is gener-
ated by a routine called "generator.exe" from the program package ASTRA
[Flöttmann 2000] written at DESY mainly for Free Electron Laser (FEL) ma-
chine simulations. The generated particle distributions are bound in a vacuum
space by a certain geometry of Perfect Electrical Conducting (PEC) beam
pipe. In MOEVE PIC Tracking we offer the possibility to define a beam pipe
with rectangular or elliptical transverse cross-section. The elliptical cross-
section is defined by the lengths of the ellipse half-axes a and b as shown in
Figure 3.4. The beam pipe modelled as PEC implicitly incorporates the in-
fluence of the mirror charges on the bunch. After the beam pipe dimensions
are defined and the particle distribution is read from the program, the volume
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Figure 3.4: Elliptical cross-section of a beam pipe.

has to be discretized. MOEVE PIC Tracking uses a 3D Cartesian grid as
defined in the input file presented in the Appendix B. The user could define
the grid lines in each direction arbitrarily and non-equidistantly in order to
allow denser meshing at the position of the particle distribution and a coarser
meshing elsewhere.

In order to compute the space charge fields of the particles scattered be-
tween the grid1 lines it is necessary to deposit the charge of the particles on
the grid points. Consequently the discrete charge density ̺j is computed from
the charge on the grid points. This is done by a charge weighting routine at
the beginning of the simulation and after each time step in which the particles
change their position.

The particle tracking simulation starts at a time t = 0 and is performed
until the defined end time tend is reached. The time step dt in which the equa-
tions of motion of the particles are integrated is also predefined according to
the particle mass and charge ratio. Usually for positron bunches and electron
clouds the time step dt is of picosecond range.

The computation of the space charge forces from the spatially distributed
charges succeeds by computing first the electrical scalar potential ϕ from the
Poisson equation [van Rienen 2001, Page 23]:

−∆ϕ =
̺

ε0
. (3.1)

Since we assume a vacuum in the beam pipe, ε0 is the dielectric constant of
vacuum and ̺ the charge density. The Poisson equation is discretized and
solved for the nodes of the grid.

Applying the gradient operator on the computed discrete scalar potential
values ϕ, yields the field components E′ for each grid point m. After the
relativistic transformation from the bunch rest frame back into the laboratory
frame the program yields the components of Em but also components of the

1In the further text the terms grid or mesh are used as synonym and describe the spatial

discretization set upon the particle distribution and the beam pipe.
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magnetic flux density Bm produced by the beam at a discrete grid point m.
The discrete field components are then interpolated on the position of each
particle and the particle trajectories are integrated with the time step dt. The
single steps of the tracking cycle are explained in detail in following sections.

3.3 Charge Weighting

In order to solve the discretized Poisson equation, the charge of the spatially
distributed particles should be allocated on the grid nodes. The allocation of
the charge on the grid points could be of arbitrary complexity. In MOEVE
PIC Tracking we use the first order weighting for the particle charge in the
three dimensional space. Figure 3.5 clarifies the charge weighting for two
dimensions (2D). It shows a part of a 2D grid and a single particle (colored

1 2

3 4

xi xi+1

xk

yj

yj+1

yk

q1 q2

q4q3

Figure 3.5: 1st order charge weighting in 2D.

red) inside one cell. The charge of the k-th particle with coordinates (xk, yk)

is distributed among the nodes of the grid cell according to its position inside
the cell. The cell is defined by the horizontal yj and yj+1 and the vertical
xi and xi+1 grid lines. Naturally, since the grid node belonging to subsection
1 of the grid cell in which the particle is located, is the nearest node to the
particle it receives the largest portion q1 of the charge q. The smallest part of
the charge q should receive the node belonging to subsection 4. The part q4
of the charge q is computed by weighting the charge q with the ratio of the
area of the opposite section 1 and the total area of the grid cell. Hence, the
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total charge q of the particle is distributed among the nodes as:

q1 = q
(xi+1 − xk)(yk − yj)

(xi+1 − xi)(yj+1 − yj)
,

q2 = q
(xk − xi)(yk − yj)

(xi+1 − xi)(yj+1 − yj)
,

q3 = q
(xi+1 − xk)(yj+1 − yk)

(xi+1 − xi)(yj+1 − yj)
,

q4 = q
(xk − xi)(yj+1 − yk)

(xi+1 − xi)(yj+1 − yj)
.

(3.2)

Higher-order weighting by using smooth shape functions with quadratic or
cubic splines further reduces the noise of the weighted particle density, however
at the cost of much higher computational effort. Depending on the grid density

qm

Figure 3.6: All the particles in the eight neighboring cells are contributing to
the charge of the node in the center.

and the particle distribution, a number of grid cells contain more than one
particle inside, so that the charge qm in the node m is a sum of the partial
charges of all the particles in the eight adjacent cells as shown in Figure 3.6.

Finally, after allocating the charge of all the particles on the grid nodes,
the spatial charge density ̺ could be computed by dividing the charge on
each node with the corresponding cell volume. Thus, the right hand side of
the discretized Poisson equation at grid node m reads as:

̺m
ε0

=
qm

(xi+1 − xi)(yj+1 − yj)(zk+1 − zk)ε0
. (3.3)
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3.4 Computation of 3D Space Charge Fields of

Charged Particle Distributions

The electrostatic field is defined as a gradient of the electric scalar potential:

E = − gradϕ. (3.4)

As previously mentioned, the scalar potential has to be computed from Pois-
son’s equation (3.1), which for a numerical solution has to be discretized on a
predefined Cartesian grid. Figure 3.7 shows an example of three dimensional

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

40
60

x

y z

Figure 3.7: Cartesian grid with Nx = 4, Ny = 5 and Nz = 3.

Cartesian grid. The grid is defined by a number of grid planes Nx, Ny and Nz

in each coordinate direction x, y and z, respectively. The Nx planes for exam-
ple in x-direction are defined by the coordinate value xi where i = 1, . . . , Nx.
Planes in y- and z-direction are defined by yj and zk correspondingly, where
j = 1, . . . , Ny and k = 1, . . . , Nz. The grid nodes are defined at the inter-
section points of three grid planes, hence each node is clearly defined by the
indexing of the intersecting planes (i, j, k), which give the coordinates of the
node (xi, yj, zk). However, for practical reasons the enumeration of the grid
nodes is in lexicographic order, i.e. the (i, j, k) node is numbered as

m = i+ (j − 1)Nx + (k − 1)NxNy.

As shown in Figure 3.7 the node m = 1 is given by (1, 1, 1) and the total
number of grid nodes is Np = NxNyNz = 4 ·5 ·3 = 60 in the depicted example.
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Np is also the maximal possible number of unknowns which determines the
size of the system of linear equations. The system of linear equations emerges
from the discretization of the Poisson equation for each grid point.

3.4.1 Discretization of the Poisson Equation

Currently, in MOEVE PIC Tracking the Poisson equation is numerically
solved in two different types of domains. One is a rectangular box domain
Γ = [x1, xN ]× [y1, yN ]× [z1, zN ] bounded in transverse direction on ∂Γ1 with
Dirichlet boundary conditions (b.c.) and open boundary conditions in axial
direction on ∂Γ2:

−∆ϕ =
̺

ε0
in Γ ⊂ R

3,

ϕ = g on ∂Γ1,
∂ϕ

∂n
+

1

r
ϕ = 0 on ∂Γ2,

(3.5)

where the boundary ∂Γ of the domain is ∂Γ = ∂Γ1

⋃

∂Γ2. In practise the
Dirichlet b.c. are applied by assigning a certain value for the electric scalar
potential ϕ = g on the boundary ∂Γ1. Evenmore the transverse boundary ∂Γ1

could be sub-divided in parts with different potentials assigned, for example
if some clearing electrodes with constant potential need to be placed in the
beam pipe.

The second type of domain Ω is a cylindrical structure with an elliptical
cross-section as shown in Figure 3.4 and a certain length in axial direction
L = zN − z1. The Poisson equation (3.1) is considered with the following
boundary conditions:

−∆ϕ =
̺

ε0
in Ω ⊂ R

3,

ϕ = 0 on ∂Ω1,
∂ϕ

∂n
+

1

r
ϕ = 0 on ∂Ω2,

(3.6)

where ∂Ω1 is the side surface area of the elliptic cylinder whose shape is given
by

x2

a2
+
y2

b2
= 1

and ∂Ω2 designates the two elliptical bases of the cylinder satisfying

x2

a2
+
y2

b2
≤ 1.

The elliptical bases are perpendicular to the z-axis positioned at z = z1 and
z = zN . The boundary condition ϕ = 0 on ∂Ω1 means that the surface of the
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beam pipe is approximated as an ideal electrical conductor. The open bound-
ary conditions in z-direction approximate an indefinitely long cylinder within
the finite computational domain. The cylindrical computational domain Ω

as shown in Figure 3.8 is embedded in the discretized rectangular volume Γ

defined in (3.5).

                           
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3.8: Elliptic cross-section of the domain Ω embedded in the discretized
domain Γ.

Following the notations for the Cartesian grid given in Figure 3.7 the
box Γ is discretized along the x-, y- and z-axis in Nx − 1, Ny − 1 and Nz − 1

subintervals, respectively. The subintervals are defined by the discrete grid
points in the respective direction, in x-direction the subintervals are defined
as:

hx,1 = x2 − x1, hx,2 = x3 − x2, . . . , hx,Nx−1 = xN − xN−1,

and the length of the domain in x-direction is xN − x1 =
∑Nx−1

i=1 hx,i. Analo-
gously, the y- and z-coordinate are discretized by Ny − 1 and Nz − 1 subin-
tervals.

Further we define the subintervals:

h̃x,i =























hx,i−1 + hx,i
2

, i = 2, . . . , Nx − 1

hx,i
2
, i = 1

hx,i−1

2
, i = Nx

(3.7)
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Figure 3.9: Grid subintervals hx,i−1, hx,i and the corresponding dual grid
subinterval h̃x,i.

(h̃y,j, j = 1, . . . , Ny and h̃z,k, k = 1, . . . , Nz in the same way) which in Finite
Integration Technique (FIT) [Weiland 1977] are known as mesh spacing on
the dual grid as show in Figure 3.9.

The sum of ϕ(xi+1, yj, zk) = ϕ(xi + hx,i, yj , zk) and ϕ(xi−1) = ϕ(xi −
hx,i−1, yj , zk) developed as a Taylor series, up to the second order, yields the
discretization of the second order derivative with second order finite differ-
ences. In the general case of a non-equidistant mesh in x-direction the finite
differences equation reads as:

∂2ϕ(xi, yj , zk)

∂x2
≈ ϕ(xi−1, yj, zk)

h̃x,ihx,i−1

− 2ϕ(xi, yj , zk)

hx,ihx,i−1

+
ϕ(xi+1, yj , zk)

hx,ih̃x,i
. (3.8)

By adopting the following notation for the grid scalar potential
ϕi,j,k=ϕ(xi, yj , zk), the discretization of the Poisson equation with second or-
der finite differences on the above described non-equidistant Cartesian mesh
in all three directions leads to the following equation:

h̃y,jh̃z,k

(

− 1
hx,i−1

ϕi−1,j,k +
(

1
hx,i−1

+ 1
hx,i

)

ϕi,j,k − 1
hx,i

ϕi+1,j,k

)

+ h̃x,ih̃z,k

(

− 1
hy,j−1

ϕi,j−1,k +
(

1
hy,j−1

+ 1
hy,j

)

ϕi,j,k − 1
hy,i

ϕi,j+1,k

)

+ h̃x,ih̃y,j

(

− 1
hz,k−1

ϕi,j,k−1 +
(

1
hz,k−1

+ 1
hz,k

)

ϕi,j,k − 1
hz,k

ϕi,j,k+1

)

= h̃x,ih̃y,jh̃z,kfi,j,k

(3.9)

for any grid point defined by the indices i, j and k. On the right-hand side
fi,j,k, as given in (3.3), is a function of the charge qi,j,k deposited on the
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(i, j, k)−node and the dielectric permittivity εi,j,k defined for that node. In
fact, writing the discretization star equation (3.9) for all the points in the
computational domain Γ or Ω yields a system of linear equations with the
electric scalar potential ϕ as unknown vector. The same system of equations
is obtained with the application of the Finite Integration Technique.

By using the Kronecker product ’⊗’ (see e.g. [van Loan 1992]) the system
of linear equations for the grid points in the domain Γ can be written in a
compact matrix vector notation as:

Aϕ = H̃z ⊗ H̃y ⊗ H̃xf. (3.10)

For Dirichlet boundary conditions applied in transversal direction on ∂Γ = Γ1

the H̃x=H̃x,D is defined as

H̃x,D := Diag(h̃x,2, h̃x,3 . . . , h̃x,Nx−1).

The system matrix A is defined as

A = H̃z ⊗ H̃y ⊗ Ax + H̃z ⊗ Ay ⊗ H̃x + Az ⊗ H̃y ⊗ H̃x. (3.11)

where again for Dirichlet boundary conditions Ax=Ax,D where

Ax,D :=

















(

1
hx,1

+ 1
hx,2

)

− 1
hx,2

− 1
hx,2

(

1
hx,2

+ 1
hx,3

)

− 1
hx,3

. . .

− 1
hx,Nx−2

(

1
hx,Nx−2

+ 1
hx,Nx−1

)

















.

The diagonal matrices H̃y and H̃z are defined analogously to H̃x and the
finite difference matrices Ay and Az analogously to Ax. Note the differ-
ent dimensions of the matrices corresponding to the number of mesh lines
in every coordinate direction. The vectors f = (fi,j,k)

Nx−1,Ny−1,Nz−1
i=2,j=2,k=2 and

ϕ = (ϕi,j,k)
Nx−1,Ny−1,Nz−1
i=2,j=2,k=2 represent the values of the right hand side and

the potential on the mesh points, respectively. The right hand side entries for
the points next to the boundary contain also the explicit value of the potential
on the boundary defined as a Dirichlet boundary condition.

3.4.2 Discrete Poisson Equation in a Domain with Ellip-

tical Cross-Section

The elliptical cross-section domain Ω, as shown in Figure 3.10, is inscribed
into the rectangular domain Γ. Applying Dirichlet boundary conditions on
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Figure 3.10: Two-dimensional representation of the elliptic shape of the
boundary.

the curved boundary ∂Ω = Ω1 the discrete Poisson equation (3.9) needs only
to be written for the grid points which are inside Ω. Hence, compared with
the rectangular domain Γ, the number of unknowns is considerably smaller
since in each (x, y)-plane all grid points which are outside the ellipse are
omitted from the computation. The matrix A remains block structured but
the blocks will have different dimensions (see Figure 3.13). In order to ap-
proximate the geometry of the boundary as accurately as possible the finite
difference equation (3.9) for each grid point near the boundary needs to take
into account the distances to the intersection points of the grid lines and the
curved boundary ∂Ω1. Thus, for each point immediately near the boundary
∂Ω1 the coefficients in equation (3.9) and so the corresponding entries in A are
not only determined by the grid spacing but also by the neighboring bound-
ary points. Figure 3.11 shows a grid point Z which in both directions of the
transverse plane neighbors the intersection points N and E. By computing
the respective distances hn and he from point Z the distances for the appro-
priate finite difference equation (3.9) hx,i ≡ he, hy,j ≡ hn as well as h̃x,i and
h̃y,j are also determined. If Dirichlet b. c. are defined, the potential of the
boundary points is constant and known so that the terms of equation (3.9)
containing those potentials move to the right hand side of the equation. In
case of a PEC boundary the potential of those boundary points is zero and
those terms are completely omitted from the equation. Figure 3.11 displays
the non-symmetric discretization star for grid points near the boundary where
some of the lengths hn, hs, hw, he are shortened due to the intersection with
the boundary curve. Thus it is also clear that even for an equidistant grid
spacing the discretization stars of neighboring grid points inside Ω are not
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E(x+ he, y)W (x− hw, y)

Figure 3.11: Non-symmetric 2-D Shortley-Weller Star.

equal, e.g. the points m and m+ 1 in Figure 3.12. This implies that the dis-
cretization matrix A for the elliptical domain Ω will be non-symmetric. On
the other hand the non-equidistant discretization of the rectangular domain
Γ would still result in a symmetric system matrix A.

To illustrate this we consider only the first row of equation (3.9) which
gives the entries next to the main diagonal and contributes to the diagonal
entries of the matrix A. For the two consecutive points m and m+1 as shown
in Figure 3.12 we obtain for h̃y,j:

h̃my,j =
hn,m + hs,m

2
, h̃m+1

y,j =
hn,m+1 + hs,m+1

2
,

where m and m+1 in the superscript means h̃y,j for the m−th and (m+1)−th
point, respectively. The first row of equation (3.9) for the point m reads as

h̃my,jh̃
m
z,k

(

− 1
hx,i−1

ϕi−1,j,k +
(

1
hx,i−1

+ 1
hx,i

)

ϕi,j,k − 1
hx,i

ϕi+1,j,k

)

, (3.12)

and for m+ 1 as

h̃m+1
y,j h̃m+1

z,k

(

− 1
hx,i

ϕi,j,k +
(

1
hx,i

+ 1
hx,i+1

)

ϕi+1,j,k − 1
hx,i+1

ϕi+2,j,k

)

. (3.13)

In order A to be symmetric the coefficient multiplying ϕi+1,j,k in (3.12) has to
be equal with the coefficient multiplying ϕi,j,k in (3.13). From Figure 3.12 it
is obvious that in the case of a rectangular domain Γ, the distances hs,m and
hs,m+1 are equal and so are hn,m and hn,m+1. Thus h̃my,j=h̃

m+1
y,j which means
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Figure 3.12: Two points m and m + 1 determining two consecutive rows in
the system matrix A.

that the respective matrix entries will have the same value (h̃my,jh̃
m
z,k/hx,i =

h̃m+1
y,j h̃m+1

z,k /hx,i) and the matrix A will be symmetric regardless of the non-
equidistant mesh. In case of the cylindrical domain Ω from Figure 3.12, hs,m 6=
hs,m+1 and with it the coefficients h̃my,j 6= h̃m+1

y,j so that the entries in the two
consecutive rows of matrix A, above and below the main diagonal, would
not be equal which makes the system matrix A non-symmetric. However
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Figure 3.13: Band structure of matrix A (nz = non-zero elements).
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the band structure of matrix A will remain symmetric with respect to the
main diagonal as shown in Figure 3.13. Furthermore the matrix will remain
weak diagonally dominant which eventually makes it also non-singular as in
detail shown in [Markoviḱ 2005]. The properties of the system matrix A are
important for the choice of the algorithm for a numerical solution of the system
of linear equations which is treated in detail in [Markoviḱ 2005]. Although
the system matrix A is nonsymmetric one it turns out that A is positive
definite and therefore BiCGSTAB(i.e. [van Rienen 2001]) is an appropriate
algorithm to solve the system. The numerical solution of the linear system
(3.10) directly yields the electrostatic potential ϕi,j,k of each discrete point
inside the computational domain Ω.

3.4.3 Space Charge Field Computation for Different

Boundary Conditions

A precise simulation of charged particle dynamics inside a vacuum chamber
due to the own or the space charge fields from other particle species, i.e.
the e-clouds, requires a precise computation of the electrical field. As shown
in the previous sections MOEVE PIC Tracking exploits the finite difference
method for the solution of the Poisson equation. The solution depends on the
realistic modelling of the material properties and the shape of the boundary.
Since the vacuum chamber of particle accelerators is made of copper or a
superconducting material, the boundary of the computational domain could
be assumed to be a Perfect Electric Conductor (PEC). Practically, a ground
potential of ϕb = 0V is applied on the boundary.

From electromagnetic theory it is well known that in the presence of a
conducting surface the electric field of a space charge is distorted because it
has to fulfill the boundary condition(b. c.) to be perpendicular to the surface.
Hence the computed space charge field distribution inside the vacuum chamber
depends also on the boundary shape of the computational domain. Especially
for simulations of transversal bunch instabilities a precise discretization of the
transverse boundary shape is very important in order to get more accurate
field distribution inside the beam pipe. A possible error of the field leads
immediately to an error of the space charge force which individual particles
experience. Since a PIC tracking program (which models the interactions of a
single bunch and electron clouds) requires a computation of the space charge
fields at each discrete time step, the perpetual error of the field distribution
might lead to incorrect simulation of the particle dynamics.

Many simulation tools used in particle accelerator design use conducting
b.c. applied on a rectangular cross section of the computational domain or ap-
ply a so called open b.c. by letting the potential decline with 1/r rate from the
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centroid position of the distribution. However the rectangular cross section is
not the best approximation of the true geometry of the beam pipe. Currently
in MOEVE PIC Tracking the beam pipe cross section can be additionally
approximated by an arbitrary elliptical shape on which PEC boundary con-
ditions are applied.

Figure 3.14: Rectangular and elliptic domain for space charge field computa-
tion bounded with perfect electric conductor.

In order to illustrate the difference in the computed fields in the following
section we present 3D space charge field computation results for open (free
space) and conducting b.c.. Conducting b.c. are applied on the transverse
walls of rectangular and elliptic domains shown in Fig.3.14.

3.4.3.1 Conducting boundary conditions on beam pipes with ellip-

tical cross section

To compare the computed fields with open and conducting b.c. on a rectan-
gular and elliptic pipe we choose a spherical bunch with uniformly distributed
charge of −1 nC, situated in the center of the beam pipe without any veloc-
ity. The bunch radius r is 10 mm. The domain represents a beam pipe of
certain length with different cross sections. In the axial z direction the do-
main is bounded by open boundary condition. The rectangular cross section
is quadratic with a = 100 mm or rectangular with sides a = 150 mm and
b = 100 mm. The elliptical domain cross section is inscribed in the rectangu-
lar domain so that the ellipse half axes are a = b = 100 mm or a = 150 mm
and b = 100 mm.

Figures 3.15 and 3.16 plot the x component of the electrical field Ex

along the x axis (y = 0). The Ex component is perpendicular on the do-
main boundary for any of the domains. Since the boundary is far from the
bunch (rb ≪ a, b) the Ex field values are almost equal for the open b.c. and
the conducting b.c. in both the circular/quadratic (Fig.3.15) and the ellip-
tic/rectangular (Fig.3.16) cross sections.

However plotting Ex along y = b/2 line reveals the differences in the
electrical field for different boundary conditions and shapes. Both Fig. 3.17
and Fig. 3.18 show that the Ex field component far from the boundaries
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Figure 3.15: Electric field Ex along x-axis of a square a = b, computed with
open (w/o.b.c.) and conducting b.c. on a rectangular (w.b.c.) and elliptic (el-
liptic b.c.) pipe.

matches fairly good for all types of boundary conditions and shapes. Yet
Ex becomes significantly different approaching the boundary of the domain.
The maximum of Ex along y = b/2 for the elliptic domain differs at position
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Figure 3.16: Electric field Ex along x-axis of a rectangular box a = 1.5b,
computed with open (w/o.b.c.) and conducting b.c. on a rectangular (w.b.c.)
and elliptic (elliptic b.c.) pipe.
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Figure 3.17: Electric field Ex along y = ±b/2 of a square a = b computed with
open (w/o.b.c.) and conducting b.c. on a rectangular (w.b.c.) and elliptic
(elliptic b.c.) pipe.

and in its value from the extreme values for the rectangular domain with PEC
and open b.c.. Since the rectangular domain is large compared to the bunch
size the field distribution in the rectangular domain with PEC and open b.c.

Figure 3.18: Electric field Ex along y = ±b/2 of a square a = b computed with
open (w/o.b.c.) and conducting b.c. on a rectangular (w.b.c.) and elliptic
(elliptic b.c.) pipe.
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Figure 3.19: Electric field Ey along y = ±b/2 of a square a = b box computed
with open (w/o.b.c.) and conducting b.c. on a rectangular (w.b.c.) and
elliptic (elliptic b.c.) pipe.

doesn’t differ much. Comparing Ex at the boundary of the rectangular domain
with PEC and open b.c. in 3.17 and 3.18 it is evident that the smaller the
domain is the stronger will be the field on the PEC boundary. Since the total
energy of the field has to be equal for all the domains the smaller the domain
is the higher the electric field will be inside. Thus in Fig.3.19 the Ey along
y = b/2 for the circular domain with PEC b.c. has the highest amplitude.

A general observation from the field computation is that the difference
between the electric field computed in the rectangular domain with PEC and
open b.c. and the PEC bounded elliptical cylinder becomes more significant
towards the boundary of the beam pipe. Furthermore the space charge fields
compared here are computed for a resting bunch. However in practical appli-
cations the bunches are ultra-relativistic with γ of several thousands. Their
transverse field in the laboratory frame (as shown in section 2.1.4) is γ times
stronger than the computed transverse field in the rest frame. Finally it means
that the absolute difference of the fields compared here is also γ times stronger
in the laboratory frame. That is a very important perception for the simu-
lation of the interaction between the bunch and the electron cloud since the
electrons fill the whole beam pipe. Regarding the simulation of electron cloud
build-up the discrepancy in the field near the boundary influences the number
and the energy of the produced secondary electrons from the beam pipe. The
results stress the necessity of an accurate description of the computational
domain.
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3.4.4 Computation of the electric field for relativistic

bunches

As previously described the charge of the macro-particles is deposited on the
grid nodes in the laboratory frame of the bunch. Since the bunch has a
relativistic velocity in one particular direction, before the Poisson Equation is
solved, the setup is transformed in the bunch center of mass frame. Practically

Figure 3.20: Cartesian gird in the laboratory frame (up) and in the bunch
rest frame (down).

the distance of the grid nodes in direction of the bunch motion is multiplied
by the Lorentz factor γ, whereas the transverse grid spacing remains as in
the laboratory frame. In the bunch rest frame the Poisson equation will be
solved as previously described and the result is an electrostatic potential ϕm

for each grid node m (m = i+(j−1)Nx+(k−1)NxNy.) of the domain. With
the computed grid electrostatic potential ϕm back in the laboratory frame the
field components on the edges of the Cartesian grid cells are computed as:

Ex(xi, yj, zk) = −γ(ϕ(xi+1, yj , zk)− ϕ(xi, yj , zk))/hx,i,

Ey(xi, yj, zk) = −γ(ϕ(xi, yj+1, zk)− ϕ(xi, yj , zk))/hy,j,

Ez(xi, yj, zk) = −(ϕ(xi, yj , zk+1)− ϕ(xi, yj , zk))/hz,k.

(3.14)

Where hx,i, hy,j and hz,k are the corresponding grid subintervals in x, y and
z direction of the grid in the bunch laboratory frame.

3.4.5 Comparison of the transverse field with analytical

Bassetti-Erskine expression

Many simulation programs which simulate beam-e-cloud interaction
(i.e. [Furman 1997], [Rumolo 2001], [Ohmi 2000b]) use the analytical Bassetti-
Erskine (BE) expression [Bassetti 1980] for the electromagnetic field of a two-
dimensional Gaussian charge distribution. Thereby the three-dimensional
bunch is sliced in a series of consecutive two-dimensional charge distributions
perpendicular to the direction of motion as shown in Fig. 3.21. The expression
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in terms of the complex error function w(z) assumes that the two-dimensional
charge distribution is Gaussian with dimensions described by the standard
deviations of the distribution σx and σy and the total charge of the 2D bunch
is Q. The field components Ex and Ey according to the BE formula read as

Ex = Q
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(3.15)
where the complex error function w(z) read as:

w(z) = e−z2



1 +
2i√
π

z
∫

0

eζ
2

dζ



 . (3.16)

Regarding the application of the BE formula for the interaction simulation
it is interesting to see if the transverse electric fields computed by the BE
formula are matching with the transverse electric fields computed by our 3D
MOEVE Poisson solver. Here the field components Ex and Ey are compared
in an infinitesimal thin transversal plane at a certain longitudinal position z

in the bunch. As previously shown the bunch is defined in the laboratory
frame with a macro-particle distribution in the six-dimensional phase space
Ψ(x, px, y, py, z, pz). Each macro-particle is located inside a grid cell and its
charge, correspondingly to its position in the cell, is weighted on the eight grid
nodes defining that 3D grid cell, where four of the eight cell nodes belong to
one discrete transversal plane. For an appropriate comparison of the fields in a
transversal plane at position z, the input chargeQ in the BE formula should be
equal to the corresponding line charge density λb(z) of the bunch at z. The Ex

and Ey components are compared on one of the discrete transversal grid planes
of the 3D discretization domain. The amount of charge Qm deposited on that
transversal plane can be considered as the total amount of charge between
two neighboring transversal planes of the 3D Cartesian grid and therefore
should be divided by the distance between the planes h′z. Since MOEVE
computes the fields in the rest frame of the relativistic bunch, the length hz
(defined in the laboratory frame) is multiplied by the relativistic factor γ.
Hence the distance between transversal planes in the rest frame is h′z = γhz
and the input charge for the BE formula is λb(z) = Qm/h

′
z. It follows

a comparison of the computed transversal fields Ex and Ey in the middle
transversal plane (as principally shown in Fig. 3.21) of two positron bunches
defined in Table A.3. The positron bunch in the damping ring of the planned
International Lienar Collider (ILC) [Committee 2003] is defined as Gaussian
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Figure 3.21: In order to compute the fields of the bunch with the BE formula
(for simulation interaction with e-clouds) the bunch charge is represented as
a series of two dimensional charge distributions.

distribution with σx = 0.6 mm, σy = 0.006 mm and σz = 6 mm and its charge
(Q = 3.22 nC) discretized in the longitudinal direction as shown in Figure
3.22. Similarly the charge (Q = 5.28 nC) of the KEKB Low Energy Ring
(KEKB LER) [Funakoshi 2001] bunch (σx = 0.42 mm, σy = 0.06 mm and
σz = 6 mm) is discretized in the longitudinal direction as shown in Figure
3.23. The maximum in Figure 3.22 (Qm = 4.118 · 10−10C) and Figure 3.23
(Qm = 6.7525·10−10C) is the charge at the middle transversal plane of the ILC
and the KEKB positron bunch, respectively. This value can be considered
as the total charge between two transversal planes. The longitudinal grid
discretization in the laboratory frame provides hz = 2 mm. Since the bunch
is highly relativistic (5 GeV energy for the ILC positron bunch in the damping
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Figure 3.22: Discretized longitudinal charge distribution of the ILC bunch.
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Figure 3.23: Discretized longitudinal charge distribution of the KEKB bunch.

ring and 3.5 GeV for the KEKB LER positron bunch), in the rest frame hz
multiplies by γ (γ = 9765.7 and γ = 6836) and yields h′z = γhz. Thus the
obtained line density is λb = Qm/h

′
z = 2.1084 · 10−11 C/m for the ILC and

λb = Qm/h
′
z = 4.9389 · 10−11 C/m for the KEKB LER as input charge for the

BE formula. The field components computed by means of the BE formula
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Figure 3.24: ILC bunch: BE (solid) and 3D MOEVE (dashed lines).

are compared to the results computed by the 3D Poisson solver MOEVE on the
middle transversal plane. The 3D Poisson solver assumed perfect electrical
conductor boundary condition (PEC b.c.) on a circular beam pipe with a
radius of r = 5 mm. It should be pointed out that the fields compared
here are the fields in the rest frame of the bunch. The fields that the e-cloud
experience in the laboratory frame are multiplied by the corresponding γ. The
plots of Ex at y=0 and Ey at x=0, are presented in Figure 3.24 for the ILC
and in Figure 3.25 for the KEKB bunch. The discretization is non-equidistant
in y-direction with an aspect ratio of 2. Figures 3.26 and 3.27 show Ex and
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Figure 3.25: KEKB LER bunch: BE (solid) and 3D MOEVE (dashed lines).
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Figure 3.26: ILC bunch: BE (solid) and 3D MOEVE (dashed lines).
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Figure 3.27: KEKB bunch: BE (solid) and 3D MOEVE (dashed lines).

Ey at y = r
2

for the ILC and the KEKB bunch, respectively. Figures 3.24-
3.27 show a very good match of the fields computed with BE (solid lines) and
MOEVE PIC Tracking (dashed lines).
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Figure 3.28: Transversal profile of the ILC flat beam, Gaussian distribution
in every direction with σx = 0.6 mm, σy = 0.006 mm, σz = 6 mm.

Regarding the simulation of bunch - e-cloud interaction, the results pre-
sented here justify the approach used in many programs of the so-called 2+1/2
dimensional modelling of the bunch. Thereby the bunch is represented as a
sequence of particle distributions in transversal planes as principally shown in
Fig. 3.21. The e-cloud interacting with the bunch is also defined as a particle
distribution in a single transversal plane at a certain position in the storage
ring. The interaction simulation is a sequence of two dimensional interac-
tions of the bunch transverse planes with the e-cloud plane. The fields of the
bunch are computed using the analytical BE formula which takes as input
the corresponding line charge density λb(z) and the slice dimensions (σx and
σy). Generally the more transversal slices the bunch is divided into the better
dynamic simulation is achieved. On the other hand the fields from the fast
changing transversal distribution of the electrons in the cloud, during the in-
teraction with the beam, can not be approximated well by the BE formula
since the e-cloud distribution in the transversal plane is far from being Gaus-
sian. Therefore the interaction of the bunch with the e-cloud can be more
precisely computed by approximating the fields with the Poisson solver MO-
EVE. Furthermore it allows a full 3D beam - e-cloud interaction simulation.

3.5 Interpolation of the Electrical Field

After computing the E field on the grid in the laboratory frame each field
component needs to be interpolated to the position of each macro-particle.
A macro-particle with coordinates (x, y, z) can be situated anywhere inside a
grid cell defined by grid line pairs: (xi, xi+1), (yj, yj+1) and (zk, zk+1). Hence
particle coordinates satisfy: xi < x < xi+1, yj < y < yj+1 and zk < z < zk+1.
In MOEVE PIC Tracking the field components at the macro-particles position
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are approximated with a trilinear interpolation method which is explained in
the following. For reasons of clarity and comprehensibility the explanation
is given only for one direction (Ex). The interpolation for the two other
components Ey, Ey is identical. Figure 3.29 displays the grid electrical fields

Figure 3.29: The horizontal components of the electrical field in the transverse
plane zk.

Figure 3.30: Linear interpolation between the neighboring grid fields yields
the field values in the corner nodes of the cell the particle belongs to.

computed straight from the potential ϕ and the grid distances hx. Figure 3.29
shows part of the transverse ((x, y)) plane at the lower axial value zk. A linear
interpolation between the neighboring grid fields yields the field values in the
corner nodes of the cell the particle belongs to. For the four grid nodes on the
transverse plane at zk shown in Fig. 3.30) the field is given as:

EI,j+1,k = (Ex,i−1,j+1,khx,i + Ex,i,j+1,khx,i−1)/(hx,i−1 + hx,i),

EII,j+1,k = (Ex,i,j+1,khx,i+1 + Ex,i+1,j+1,khx,i)/(hx,i + hx,i+1),

EI,j,k = (Ex,i−1,j,khx,i + Ex,i,j,khx,i−1)/(hx,i−1 + hx,i),
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EII,j,k = (Ex,i,j,khx,i+1 + Ex,i+1,j,khx,i)/(hx,i + hx,i+1).

Interpolating the field along the grid lines in x direction at the particles posi-
tion x leads to the field components Ej,k, Ej+1,k as displayed in 3.31:

Ej+1,k = (EI,j+1,k(xi+1 − x)) + EII,j+1,k(x− xi)))/hx,i,

Ej,k = (EI,j,k(xi+1 − x)) + EII,j,k(x− xi)))/hx,i,

The Ej,k, Ej+1,k belong to the transverse plane at zk. Similarly the fields
Ej,k+1, Ej+1,k+1 at the the transverse plane zk+1 are also interpolated. Figure
3.32 displays the field components Ej,k, Ej+1,k, Ej,k+1 and Ej+1,k+1 along the
horizontal grid lines at the particles position x.

Figure 3.31: Interpolation of the field along the grid lines in x direction at the
particles position x.

Finally the Ex component acting on the particle at the position (x, y, z) is
interpolation of Ej,k, Ej+1,k, Ej,k+1 and Ej+1,k+1 in the (z,y) plane:

Ex =
Ej,k △ z2 △ y2 + Ej+1,k △ z2 △ y1 + Ej+1,k+1 △ z1 △ y1 + Ej,k+1 △ z1 △ y2

(hz,k+1 − hz,k)(hy,j+1 − hy,j)
.
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Figure 3.32: Field components on the horizontal grid lines at the particles
position x. Ej,k and Ej+1,k at zk and Ej,k+1 and Ej+1,k+1 at zk+1.

3.6 Integration of the Equations of Motion

From equation (2.32) emerges a system of two ordinary differential equations
(3.17) describing the motion of each macro-particle. For the i-th macro-
particle at position ri with charge Qi, rest mass Mi and velocity vi the equa-
tions of motion read as follows:

d(γivi)

dt
=

Qi

Mi

(Ei + vi ×Bi),

dri

dt
= vi, i = 1, . . . , Np.

(3.17)

The magnitude of the particle velocity vi, in Cartesian coordinates

|vi| =
√

v2x,i + v2y,i + v2z,i, defines the Lorenz factor of the i-th macro-particle:

γi = (1− |vi|2/c2)−1/2.

The relativistic mass of the macro-particle is the product of the rest mass
Mi and the Lorenz factor γi, whereas its relativistic momentum is pi = γiMivi.
Since the rest mass Mi is a constant, it pairs with the charge of the macro-
particle Qi on the right hand side of equation (3.17) whereas γivi represents a
time variable which in MOEVE PIC Tracking is denoted as ui = γivi. Hence
the equation of motion (3.17) can be written as:

dui

dt
=
Qi

Mi

(Ei +
ui

γi
×Bi) (3.18)

The electric field Ei and the magnetic flux density Bi responsible for the
particle acceleration are the superposition of external and self-induced fields
at the position of the i-th macro-particle in the bunch laboratory frame. Since
the variable ui appears also on the rhs, the time integration of equation (3.18)
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is not straight forward. Hence a numerical time integration must be applied.
Widely spread is the Runge-Kutta Method of different order (RK2, RK4),
however the higher the order of the method the higher the memory demand
of the integration scheme will be. In MOEVE PIC Tracking the well known
Leap-Frog time integration scheme (Fig. 3.33) has been applied. Thereby the
time axis is discretized and the computation of the space charge fields and the
computation of the particle velocity are staggered by half a time step (△t/2).

Figure 3.33: Leap-Frog time integration scheme.

The numerical integration method is stable for discrete time steps smaller
than ∆tmax computed by the Courant-Levy stability condition:

∆tmax =
1

c

1
√

( 1
∆xmin

)2 + ( 1
∆ymin

)2 + ( 1
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)2
.

Finally the discrete equation of motion for the relativistic particles writes as:
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For the computation of un+ 1

2 from equation 3.19 an algorithm is implemented
which is known as the Boris pusher and is described in detail in [Birdsall 1991].
It has been successfully implemented in several plasma simulation programs
and the penalty for its parallelization is relative low. The computation of
u
n+ 1

2 from u
n− 1

2 takes place in several steps. First a half of the momentum
change due to the electric field is added to u

n− 1

2 .

u
−
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(3.20)

A central point in the algorithm is the rotation due to the magnetic field
to get u

+
i .

u
+
i − u

−
i

∆t
=

Qi

2γni Mi

(u+
i − u

−
i )×B

n
i (3.21)

Since a direct solution for the implicit equation 3.21 is complicated and com-
putationally expensive an approximate solution for the rotation of the particle
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is used. Due to the B field the particles momentum u rotates around an axis
which is parallel to the B field vector and the angle of rotation θ is approxi-
mated by θ = −2 arctan(QiB△t/2γni Mi). Thereby B is the amplitude of the
B

n
i field and △t the discrete time step between tn−1/2 and tn+1/2. γni represents

the mean value between the time steps: γni = 1
2
(γ

n−1/2
i + γ

n+1/2
i ) and since

during the rotation of the particle γni does not change it can be computed as
γni =

√

1 + (u−i /c)
2. The error made by using the mean value of γni in the

Leap-Frog scheme is proportional to △t3. For arbitrary directions of ui and
Bi the rotation is realized with the help of two vectors parallel with Bi:

ti =
Qi△t
2γni Mi

Bi si = ti
2

1 + t2i
(3.22)

As described in [Birdsall 1991] an intermediate vector u′
i:

u
′
i = u

−
i + u

−
i × ti, (3.23)

is needed in order to accomplish the rotation of the momentum with

u
+
i = u

−
i + u

′
i × si. (3.24)

At last the second half of the momentum change due to the electric field is

added to u
+
i to obtain u

n+ 1
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i :
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The velocity of the particle can be easily obtained from v
n+ 1

2

i = u
n+ 1

2

i /γ
n+ 1

2

i

where γ
n+ 1

2

i =

√

1 + (u
n+ 1

2

i /c)2. Finally the new position of the particle in the
discrete time tn+1 can be easily received as:

r
n+1
i = r

n
i + v

n+ 1

2

i ∆t. (3.26)

The implementation of the algorithm for the time integration of the particle
motion as well as the Poisson solver in MOEVE PIC Tracking are paral-
lelized for shared memory architecture according to the Open MP specifica-
tions [Chapman 2007].

3.6.1 Tracking of Relativistic Particles

Tracking of a bunch under the influence of its own field additionally to any
external fields requires very fine discretization of the bunch in order to achieve
satisfying accuracy for the Poisson Solver. However, having in mind that
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the tracking distances have an order of magnitude in meters while the bunch
rms. lengths are in millimeters and the time stepping has to be in picoseconds,
it is obvious that a single stationary grid can not be utilized without having a
huge number of grid nodes (hundreds of millions). Computing the appropriate
linear system of equations at each time step for such a big number of grid
nodes is even for a highly parallelized computation very expensive. On the
other hand during the tracking of the bunch with its own space charge forces
the focus of interest are only the bunch properties. Hence there is no interest
in discretizing the whole path of the bunch at ones.

Figure 3.34: The grid moves in longitudinal direction with the bunch.

In MOEVE PIC Tracking, as principally shown in Fig.3.34, the grid can be
defined as a moving frame of the bunch which moves in longitudinal direction
with the same speed as the bunch. The frame can be defined arbitrarily.
Usually it is defined to start two absolute bunch lengths before and ends two
absolute bunch lengths after the bunch. During the simulation MOEVE PIC
Tracking writes result files containing the position of each macro-particle in
the six-dimensional phase space at designated time point. The result files
enable the computation of beam parameters such as emmitances, energies,
reconstructing trajectories of individual particles etc..

In the following an example is given of a bunch tracking with MOEVE
PIC Tracking. A bunch of 1nC charge with Gaussian distribution in all three
directions with rms. lengths σx = σy = σz = 1mm is tracked in a drift
of 1m length. The kinetic energy at the beginning of the drift is Ekin =

5 MeV without any dispersion i.e. all the particles of the bunch have the
same longitudinal momentum whereas the transversal momentum is defined
as px = py = 0. Figure 3.35 (left) shows the initial particle distribution of 105

macro-particles in the z−y plane and the value of the Lorentz factor γ of each
macro-particle. The initial distribution is generated by the generator program
of the package Astra [Flöttmann 2000]. The bunch is tracked in circular beam
pipe with radius r=10 mm. A non-equidistant grid of the moving frame is
defined with Nx = Ny = Nz = 81 grid lines. The tracking time is tend = 3.5 ns

and a time stepping for the trajectory integration is △t = 10 ps whereas
a results file has been written every 100 ps. Figure 3.35 (right) shows the
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Figure 3.35: Left: Initial particle distribution of the bunch with Ekin = 5 MeV

and Lorentz factor γ = 10.7384.Right: Particle and γ distribution after 500 ps
drift.

Figure 3.36: Particle and γ distribution after drift of the bunch for 1 ns (left)
and 1.5 ns (right).

dispersion of the energy after 500 ps as result of the own space charge forces
in the longitudinal direction. The energy dispersion grows along the drift as
shown in Figures 3.36, 3.37 and 3.38. At the same time the particles gain
transversal velocity due to the repulsive force F⊥ of the own E⊥ field which is
γ times stronger than the transverse field in the rest frame. Equation (2.70)
shows that the transverse repulsive force is γ times smaller than the repulsive
force in the rest frame of the bunch. However since for the kinetic energy
of 5 MeV γ has a value around 10 there will be still transversal motion of
the bunch particles due to the own space charge force. Figures 3.39 and 3.40
show the development of the vertical particle velocity along the drift. Since
the bunch and beam pipe are cylindrically symmetric the same values of the
velocity are achieved in the horizontal direction.
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Figure 3.37: Particle and γ distribution after drift of the bunch for 2 ns (left)
and 2.5 ns (right).

Figure 3.38: Particle and γ distribution after drift of the bunch for 3 ns (left)
and 3.5 ns (right).

After the bunch expanded in transverse direction (Fig. 3.38) the own space
charge force becomes weaker. Hence the transversal velocity growth saturates
as it could be seen by comparing the vy velocity plots in Figure 3.39 and 3.40
made in time steps of 1 ns.

The same bunch was also tracked in a circular beam pipe with radius of
only 5 mm. As expected during the drift of 3.5 ns the particles of the bunch
expending in the transverse plane reached the wall where they were reflected
with the same incidence angle as shown in Fig. 3.41 (left). If no other forces
act on a particle after the reflection it retains its momentum and changes only
its direction of motion as shown at the sketch in Fig. 3.41 (right).
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Figure 3.39: Vertical velocity vy distribution after drift of the bunch for 500 ps
(left) and 1.5 ns (right).
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Figure 3.40: Vertical velocity vy distribution after drift of the bunch for 2.5 ns
(left) and 3.5 ns (right).

3.6.2 Comparison of MOEVE PIC Tracking with other

PIC Programs

In order to verify the results from MOEVE PIC Tracking an exten-
sive comparison of the results was made with the tracking program As-
tra [Flöttmann 2000] (used at DESY for simulations for the European
XFEL [DES 2012a] and the free-electron laser facility FLASH [DES 2012b]) as
well as with the widely used commercial program "General Particle Tracer"-
GPT [van der Geer ] from Pulsar Physics. Here the drift simulation described
in the previous section is used to compare certain simulation results of the
three programs. The computation of the own space charge field with Astra
and GPT is done with open, whereas MOEVE PIC Tracking uses a PEC beam
pipe boundary conditions. Hence the difference in the boundary conditions
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Figure 3.41: The color bar represents the vertical velocity vy distribution after
drift of the bunch of 3.5 ns in a beam pipe of 5 mm radius (left). Principle
sketch of the particle reflection from the wall in the transversal plane (right).

Figure 3.42: Transverse charge distribution of the bunch after the drift of
3.5 ns computed with MOEVE PIC Tracking.

explains the differences in the bunch transverse size shown in Fig. 3.42 and
3.43. The comparison in Fig. 3.19 shows that the own transverse field of the
bunch computed in a beam pipe is generally higher than the one computed
with open b.c.. As a consequence the bunch transverse size as a result of
MOEVE PIC Tracking (Fig. 3.42) is larger compared with the transverse size
computed with Astra or GPT (3.43).

Figures 3.45 and 3.45 plot the corresponding vertical phase space distri-
bution of the bunch. The comparison with GPT of the vertical velocity (as a
fraction of the light velocity)Fig. 3.45 and with Astra (eV/c) Fig. 3.45.
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Figure 3.43: Transverse charge distribution of the bunch after the drift of
3.5 ns computed with GPT (left) and Astra (right).
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Figure 3.44: Vertical momentum distribution after a drift of 3.5 ns computed
with GPT (left) and MOEVE PIC Tracking (right).
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Figure 3.45: Vertical momentum distribution after a drift of 3.5 ns computed
with Astra (left) and MOEVE PIC Tracking (right).
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Figure 3.46: Lorentz factor distribution of the bunch after the drift of 3.5 ns
computed with GPT (left) and MOEVE PIC Tracking (right).
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Figure 3.47: Distribution of the longitudinal momentum of the particles af-
ter the drift of 3.5 ns computed with Astra (left) and MOEVE PIC Track-
ing (right).

The longitudinal energy spread due to the own space charge forces in the
bunch is given through the Lorentz factor distribution in Fig. 3.46. The results
of GPT and MOEVE PIC Tracking simulation show a very good agreement.
Fig. 3.47 gives a comparison of the longitudinal momentum in eV/c computed
by Astra and MOEVE PIC Tracking. Also these results are qualitatively as
well as in the spread in a very good agreement.
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The particle in cell program MOEVE PIC Tracking was introduced in
the previous chapter. An example of a single bunch tracking with an initial
momentum of 5 MeV under the influence of the own space charge forces was
discussed and compared with other PIC programs. Beyond that, the program
is designed to simulate the interaction of two particle species i.e. a relativistic
bunch and a non-relativistic particle cloud. This chapter treats the simulation
of the interaction in function of the estimation of single bunch instability
due to the presence of electron clouds in a storage ring accelerator machine.
The results of the simulations presented here are referring to positron beams,
however the program can also be used for simulating the interaction of proton
beams with electron clouds.

4.1 3D self-consistent PIC Simulation of the

Interaction

In MOEVE PIC Tracking the bunch and the cloud are each represented by
a 3D distribution of macro-particles in a vacuum bounded by a PEC beam
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pipe with elliptical cross-section. The macro-particles are defined in the six-
dimensional phase space Ψ(x, px, y, py, z, pz) and typical values of their number
are of order 106 for both species. Usually the bunch particles have a Gaussian
spatial distribution. The cloud particles are assumed to be homogeneously
spread in 3D space with a certain length in longitudinal direction and bound
by the beam pipe in the transverse plane. The interaction is simulated during
the bunch passage through the e-cloud. Figure 4.1 shows the longitudinal
profile of the bunch (blue) during it’s passage through the 3D electron distri-
bution (red).

Figure 4.1: Longitudinal profile of a bunch and the e-cloud, during the passage
of the bunch through the cloud.

In a drift section, only the self fields of the beam and the e-cloud act
on both particle species. Beside the strong transversal electrical field Eb,
the beam, being highly relativistic vb ≈ c, evokes also a strong transversal
magnetic field Bb = (vb × Eb)/c

2 whereas the e-cloud provides only its own
space-charge field Ee. Consequently, in order to integrate the trajectory of
both species it is necessary to compute the electrical fields of the beam Eb and
of the e-cloud Ee. The time integration of the particle trajectory is computed
for a discrete time step with typical values of dt = 1 ps. Before the particles
are pushed, following algorithmic steps are performed at every time step of
the simulation:

• Definition of the 3D laboratory frame grids for the distributions of the
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bunch and the cloud which is followed by weighting the particle charge
on the grid nodes as an input for the discretized Poisson equation.

• The computation of the Poisson equation for the ultra-relativistic bunch
takes place at its center-of-mass system. Practically, the defined labo-
ratory frame grid is stretched in longitudinal direction by the Lorentz
factor γ. The grid Poisson equation for the e-cloud is solved at the labo-
ratory frame grid. Hence, two separate computations of the grid Poisson
equation for both species are performed in parallel.

• Back at the laboratory frame, the grid fields Eb and Ee are interpo-
lated on each particle position in space and optionally superposed with
external fields, if present.

Once the forces are computed for every macro-particle of the bunch and
of the cloud, their trajectories will all be pushed by the leap-frog method for
one time step dt. The total simulated time equals the time which the bunch
needs to cross the thickness of the defined e-cloud.

4.1.1 Interaction Forces

In order to additionally speed up the time integration in a drift space, for
both species, the equation of motion could be rationalized as follows:

• For beam energies of GeV order, according to equation (2.70), the own
magnetic and electric forces (displayed in Figure 2.14) cancel each other.
Hence the only force that affects the bunch particles Fb is the space-
charge force of the e-cloud:

Fb = q(✚✚Eb + Ee +✘✘✘✘✘✘✘✘
vb × vb × Eb

c2
).

• The electrons experience their own and the space-charge forces of the
beam. Due to the attractive force of the bunch the electrons are accel-
erated in the transversal plane. However, the velocities which most of
the electrons reach, relative to the velocity of light, are small enough
(approximately |ve| ≈ 0.01c) so that the part of the Lorentz force due
to the magnetic field of the beam could be neglected:

Fe = q(Eb + Ee +✘✘✘✘✘✘✘✘
ve ×

vb × Eb

c2
).

Neglecting the rotation of the particles due to the magnetic field of the beam
speeds up the simulation in a drift space whereas the interaction simulation
in a beam guiding magnet still requires to take into account the rotation due
to the external magnetic force.
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4.2 Simulation Studies

Detailed simulations of the interaction between the beam and the electrons
give the possibility to evaluate their behavior and thus to understand the
dynamics and the nature of the e-cloud effect on the beam. In the follow-
ing, simulation results are presented of a symmetrical passage of a positron
bunch through a homogeneous e-cloud in a beam pipe of a circular cross sec-
tion. The total time simulated is 250 ps with a time step of dt = 1 ps. The
bunch corresponds to the beam parameters of the KEKB low energy positron
ring (KEKB-LER [Funakoshi 2001]) given in Table A.2. The e-cloud density
is ρe = 1012 Ne/m3. The bunch is represented by 106 macro-particles and
there are 0.4 · 106 single electrons in the 10 mm thick e-cloud slab. Here

Figure 4.2: Transversal profile of the KEKB bunch. The rms beam sizes ratio
is σx/σy = 7.

it should be pointed out that in modern high energy particle accelerators,
regardless of their use, the transversal beam profile is flat1(Figure 4.2), typ-
ically characterized by a ratio of the rms beam sizes σx/σy > 5. As a result
the transverse field of the beam in the vertical direction is stronger which also
means a stronger interaction with the e-cloud in that direction. Thus, in the
following the properties of the bunch and the e-cloud are discussed for the
vertical direction since the effects which may lead to a beam instability are
more pronounced in that direction.

4.2.1 Bunch Particles

The initial transversal velocity (vx,vy) of the bunch particles at the beginning
of the interaction has been set to zero. Figures 4.3, 4.4, 4.5, 4.6 plot the
vertical velocity vy of the bunch particles as the bunch passes through the e-
cloud. The e-cloud extends longitudinally between the vertical lines depicted

1In a collider machine to increase the luminosity and in a synchrotron light sources to

achieve higher brilliance.



4.2. Simulation Studies 85

in Figures 4.3–4.6. Due to the symmetry of the setup bunch–e-cloud, in
the transversal plane the distribution of the transversal momentum of the
bunch particles during the interaction is also symmetrical. The median value
of vy along the bunch length is practically zero at any moment during the
interaction. Thus, the overall transverse effect which may lead to a single
bunch instability due to the interaction with the e-cloud is zero. However this
symmetrical setup is a rather idealized representation of the interaction, in
reality the longitudinal parts of the bunch are not aligned symmetrically in the
transverse plane. The related effects will be treated in the following chapter.
Figure 4.3 left shows that at the beginning of the interaction the particles from

Figure 4.3: Transversal velocity (vy) of the bunch particles during the passage
through the e-cloud, after 50 ps (left) and 70 ps (right).

the head of the bunch receive a linear increase of the absolute vertical velocity.
This is due to the radial attraction from the more or less still homogenously
spread electrons starting to gain transversal velocity towards the beam axis.
As the bunch passes through, the electron density in the vicinity of the beam
axis starts growing and so the dispersion of the transversal velocity reduces as
shown in Figure 4.3 right and Figure 4.4 especially in the right plot at 110 ps.

Figure 4.4: Transversal velocity (vy) of the bunch particles during the passage
through the e-cloud, after 90 ps (left) and 110 ps (right).

However, even though still in the strong attracting field of the bunch Eb the
electron density near the beam axis starts decaying due to the own repulsive
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Figure 4.5: Transversal velocity (vy) of the bunch particles during the passage
through the e-cloud, after 130 ps (left) and 150 ps (right).

Figure 4.6: Transversal velocity (vy) of the bunch particles during the passage
through the e-cloud, after 170 ps (left) and 190 ps (right).

space charge field Ee. Even more, the electron density starts oscillating due
to the still present potential of the bunch and the newly arriving electrons
initially positioned at higher radii in the transverse plane. These oscillations
are evident in the beam’s vertical velocity spread along the length of the bunch
shown in Figures 4.5 and 4.6.

4.2.2 Electron Cloud Particles

During the bunch passage, the single electrons, depending on their initial
position, could perform an aperiodic or a periodic motion:

• Figures 4.7–4.10 represent the vertical phase space of the initially static
electrons during the bunch passage. The electrons from the periphery
are attracted to the bunch centroid position. As it can be seen from
the contour of the distribution in Figures 4.7, 4.8 and 4.9 the more they
approach the beam axis the more energy they win due to the non-linear
bunch potential. Those electrons accumulated enough energy to cross
the beam axis at y = 0 despite the bunch potential which may be also
weaker as the bunch passes in longitudinal direction. Nevertheless, as
shown in Figures 4.8 and 4.9, if those electrons are still in the attracting
field of the bunch they will loose some of their velocity on their way
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to hit the chamber wall on the opposite side. Figure 4.10 shows the
development of the e-cloud shortly after the bunch passage. Basically
the electrons continue their motion with the momentum which they
received from the bunch. Since there are still electrons heading towards
the beam axis, the e-cloud density near the beam axis slowly decreases
which on the other hand decelerates those electrons elastically reflected
from the vacuum chamber wall as shown in the right plot of Figure 4.10.

Figure 4.7: Phase space distribution of the electrons in vertical direction after
50 ps (left) and 70 ps (right)

Figure 4.8: Phase space distribution of the electrons in vertical direction after
90 ps (left) and 110 ps (right).
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Figure 4.9: Phase space distribution of the electrons in vertical direction after
130 ps (left) and 150 ps(right).

Figure 4.10: Phase space distribution of the electrons in vertical direction
after 170 ps (left) and 190 ps (right).

• On the other hand, the fine resolution of the time discretization allows to
monitor the oscillations of the electrons near the beam axis. Figure 4.11
displays the transversal trajectories of several electrons during the bunch
passage. The electrons are initially positioned in the same transversal
plane on different locations around the beam. The transversal profile
of the beam is plotted in Figure 4.11 as well. Except for the electron
placed exactly on the beam axis at (0,0) (straight blue line) the electrons
oscillate around the beam axis. The amplitude and the frequency of the
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Figure 4.11: Electrons oscillating in the potential of a short positron bunch
whose transversal profile is displayed in the (x, y) plane.

oscillation both depend on the longitudinal charge profile of the bunch
but also on the initial position of the electrons. Figure 4.12 shows the os-
cillation of a particle initially positioned at (0, σy) (green line) and of two
other particles below and above the beam axis at positions (0,±7.5σy).
The particle starting at (0, σy) inside the beam profile performs oscilla-
tions with a period of T = 28 ps (Figure 4.13). The angular frequency
ω = 2.244 1011rad · s−1 is comparable with ωe,y = 2.2008 1011rad · s−1 -
the value computed with the expression given in [Ohmi 2001c] for elec-
tron oscillations in a potential of a coasting beam2:

ωe,x(y) =

(

2λbrec
2

σx(y)(σx + σy)

)1/2

. (4.1)

Thereby the line density of the bunch with Nb positrons is given by
λb = Nb/2σz, σx(y) is the horizontal (vertical) beam size (corresponding
values in Table A.2), re is the classical electron radius and c the speed
of light. However, expression (4.1) is an idealization not only because
of the fact that the longitudinal charge profile of the bunch has a rather
Gaussian distribution but also because it does not take into account
the own space charge force of the electrons. Namely, while the electron
concentration in a very small space grows, the repelling own space-charge

2The charge distribution of the beam is taken to be uniform in the longitudinal direction.
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Figure 4.12: Oscillations of electrons in the potential of the beam. The elec-
trons are initially positioned at (0, σy) (green line) and (0,±7.5σy)(blue and
turquoise line).
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Figure 4.13: Oscillation in the vertical plane during the passage of the
bunch (left). The electron is initially placed at (0, σy). Vertical phase-space
plot of the same oscillation (right).

force prevails over the beam attractive force and the electrons start to
disintegrate. Hence the oscillations of the particles are also influenced
by the electron density near the beam axis which changes during the
bunch passage.

On the other hand, the overall e-cloud density near the beam axis is made up
of the oscillatory electrons and the faster aperiodic electrons which constantly
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Figure 4.14: Electron density during the bunch passage (left) in a cuboid with
transverse sides 2σx and 2σy of the bunch and length of 0.6 mm as designated
between the red lines on the right.

arrive on the beam axis. Figure 4.14 (left) displays the overall density of the
electrons during the bunch passage in a cuboid with transverse sides 2σx and
2σy of the bunch and a length of 0.6 mm as designated between the red lines
in the right plot of the figure. The peak of the electron density at 100 ps
corresponds to the bunch position shown on the right part of Figure 4.14.
Hence, the peak of the e-cloud density matches with the maximum of the
bunch’s longitudinal charge profile. Later, as the longitudinal charge density
of the bunch and with it its transverse potential decline, the e-cloud density
starts to decline as well. However, due to the arrival of electrons attracted
from more distant transverse positions and due to the electron oscillations the
decline of the electron density ρ in the volume is not steady.

Figure 4.15: Electron density during the bunch passage in a cuboid with
transverse sides σx and 2σy of the bunch and length of 0.6 mm as designated
between the red lines in Figure 4.14 (right).
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Figure 4.15 shows the electron density ρ in a similar cuboid with smaller
horizontal width of σx ([−σx/2, σx/2]). The two peaks in Figure 4.15 are
evidence of the oscillation of the electrons near the beam axis. An indication
of these e-cloud density peaks around the beam axis can be also observed in
Figures 4.4 and 4.5, where the spread of the transversal momentum of the
bunch particles at 110 ps and 130 ps at z=0.03 m is minimal. Since the
electron dynamics in a drift space is almost entirely in a transverse plane the
longitudinal parts of the bunch see the same electron density along their way
across the e-cloud. Thus, after interacting with the whole length of the e-cloud
the bunch features those two waists in the vertical velocity distribution (as
shown in Figure 4.5 at 150 ps and later) that correspond to the maxima in
the e-cloud density near the beam axis.

4.2.3 Interaction in a Dipole Field

The interaction can be simulated in a drift section or in a section with an ex-
ternal magnetic field which models the guiding magnets (dipoles, quadrupoles
etc.). Here the particular interest is in the interaction within a dipole mag-
net. Due to the attractive force of the positron bunch, the electrons receive
a transverse velocity towards the beam axis. The scatter plots in Figure 4.16
show the transverse components of the electron velocity at t=100 ps of the
interaction inside of a drift section. In a dipole field of By0 = 1 T, the elec-

Figure 4.16: Vertical (left) and horizontal (right) component of the electron
velocity in [m/s] at t=100 ps from the interaction inside a drift section.

trons with transverse velocity v, due to the v×By0 part of the Lorentz force,
additionally receive a longitudinal component of the velocity vz. In return, the
horizontal component becomes weaker as shown in Figure 4.17 right. Figure
4.18 displays vz of the particles along the x direction during the interaction
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Figure 4.17: Vertical (left) and horizontal (right) component of the electron
velocity in [m/s] at t=100 ps from the interaction in a dipole field By0 = 1T.

in the dipole field. At t=70 ps the vx component of the electrons left and
right of the beam axis is directed to y = 0 which results in the longitudinal
vz distribution as presented in the left plot of Figure 4.18. At t=170 ps many
electrons already crossed the y = 0 line while others are still heading towards
the beam axis which results with vz distribution as shown on the right plot of
Figure 4.18.

Figure 4.18: Longitudinal velocity of the electrons along the x-axis during the
bunch passage in z-direction at t=70 ps (left) and t=170 ps (right).

The actual longitudinal motion of the electrons from one slice of the e-cloud
during the interaction is shown in Figure 4.19. In a drift space, the electrons
perform practically no longitudinal motion (Figure 4.19, left) whereas in the
dipole field the longitudinal motion is strongest on both sides of the beam
in x direction (Figure 4.19, right). That clearly indicates the build up of
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Figure 4.19: Distribution of electrons after a bunch passage in z-direction: in
a drift section (left) and in a dipole field along y-direction (right).

two vertical stripes of higher electron density in the transverse plane during
the bunch passage through the initially homogeneous e-cloud. Indeed, the
electron distribution in a transversal plane immediately after interacting with
the bunch in the dipole (Figure 4.20) shows that development.

Figure 4.20: Electron distribution in a transversal plane after interacting with
the bunch in a dipole field.

While the maximum density of the e-cloud during the interaction inside
a drift is always located at the beam axis (Figure 4.21) the e-cloud density
at the beam axis during the interaction in a dipole field is very moderate as
shown in Figure 4.22.

The e-cloud concentration in vertical stripes left and right of the beam
axis in a dipole magnet could lead to coupling of the vertical betatron motion
with the synchrotron motion of the bunch particles. Having in mind that due
to the energy dispersion the bunch particles in a dipole field have different
radius of curvature it is obvious that the particles with less energy could
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Figure 4.21: Electron distribution in a transversal plane after interacting with
the bunch in a drift space.

Figure 4.22: Electron density during the bunch passage inside a dipole magnet.
The density is computed for a cuboid with transverse sides of 2σx and 2σy of
the bunch and length of 0.6 mm (as defined in Figure 4.14).

interact with the electrons from the inner stripe, whereas the particles with
higher energy have a larger radius and so they may interact with the outer
vertical stripe of electrons. In the KEKB-LER a synchro-betatron sideband
signal was measured due to electron clouds [Flanagan 2005].
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In storage rings operated with high positron or proton currents the number
of electrons rises until a certain saturation density has been achieved. The
estimated averaged density of an unperturbed e-cloud in the cross-section of
a beam pipe is many orders of magnitude smaller than the positron density in
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the bunch. However the results of the interaction simulations in the previous
chapter demonstrated that the electron cloud, which is initially presumed
as a homogeneous distribution of static electrons, changes its density in the
transverse plane very fast during the passage of even a single bunch only. The
rapid growth of the e-cloud density in the transversal plain around and on
the beam axes depends on the parts of the bunch already passed through the
specific transverse plane in longitudinal direction. In addition to the electron
density growth also the centroid position of the e-cloud in the transverse plane
could change very fast which may impose a dipole kick on the bunch caused
by the e-cloud. This chapter presents computational studies which estimate
the dipole kick from the e-cloud for different scenarios and its implications on
the stability of the bunch.

5.1 Coherent Tune Shift due to an Electron

Cloud

Measurements in positron storage rings operated with long bunch trains with
short inter-bunch distances (very fertile mode to grow a considerable amount
of electrons), show a betatron tune shift of the coherent dipole motion of a
beam. As shown in the previous chapter, the symmetrical passage of a bunch
through an initially homogeneous e-cloud leads to a symmetrical distribution
of the vertical kick on the bunch particles. However, if the passage of the bunch
is not symmetrical with respect to the e-cloud distribution then the vertical
kick on the bunch particles will also be asymmetric. Hence the interaction
of the electron cloud with the bunch results in a shift of the betatron tune
of the coherent dipole motion of the beam. As the density of the electrons
near the beam axis grows, its impact on the beam becomes stronger. This
section presents a numerical estimation of the dipole tune shift of the beam
interacting with electron clouds of different transverse size in a drift space.

5.1.1 Betatron Tune

The transversal tune, also called the betatron tune, represents a number of
pseudo-harmonic oscillations of a particle in a transverse direction over the
period of a single turn in the storage ring. As defined in the introductory
chapter for the vertical direction it writes as:

Qy =
1

2π

∮

ds

βy(s)
, (5.1)

where βy(s) is the beta function which is representing the local wavelength
(at position s) of the transverse oscillation. In the smooth focusing approx-
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imation the unperturbed single particle motion is modelled as an undamped
harmonic oscillator with constant wavelength given by the constant beta func-
tion βy(s) = βy:

y
′′

+

(

1

βy

)2

y = 0. (5.2)

Thus the betatron tune for unperturbed motion Qy0 can be obtained by divid-
ing the circumference of the storage ring with radius R (2πR) by the constant
wavelength (2πβy):

Qy0 =
R

βy
. (5.3)

Figure 5.1: Bunch with offset △y in the transversal plane.

In the presence of the e-cloud the motion of the beam particles will be
perturbed especially if the center of mass of the beam and the e-cloud don’t
match in the transversal plane. Considering an initially homogeneous distri-
bution of the e-cloud inside the beam pipe, a bunch with certain △y offset
from the symmetry axis would be perturbed by the e-cloud. The equation of
vertical motion of the bunch particles perturbed by the force of the electron
cloud Fe,y writes:

m
d2y

dt2
= −qBxv + Fe,y, (5.4)

where v is the longitudinal velocity of the bunch v = βrelc and Bx = gy is the
horizontal component of the quadrupole field with gradient g. Writing the
previous equation as function of the position s instead of the time t yields:

mv2y
′′

(s) = −qgvy + Fe,y. (5.5)

Dividing by mv2 and introducing the focusing coefficient k(s) = (qg)/p leads
to the equation of vertical motion of a particle perturbed by the e-cloud:

y
′′

(s) +
qg

p
y = y

′′

(s) + k(s)y =
Fe,y

mv2
. (5.6)
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Without the e-cloud force Fe,y the equation (5.6) is valid for unperturbed
motion which for constant focusing k(s) = k gives the relation between the
focusing coefficient k and the unperturbed tune Qy0:

k =

(

Qy0

R

)2

. (5.7)

By linearizing the perturbation force Fe,y acting on the particles of the bunch
with △y offset in the vertical centroid position, equation (5.6) could be written
as:

y
′′

(s) + ky =
Fe,y

mv2
y

△y . (5.8)

Equation (5.8) is still describing an oscillatory motion of a simple harmonic
oscillator

y
′′

(s) +

(

k − Fe,y

mv2△y

)

y = 0, (5.9)

although now with different betatron tune Qy given by

(

Qy

R

)2

= k − Fe,y

mv2△y =

(

Qy0

R

)2

− Fe,y

mv2△y . (5.10)

Since the tune shift is very small compared with the unperturbed tune
△Qy ≪ Qy0 it applies Qy ≈ Qy0 and so the tune shift △Qy = Qy − Qy0 due
to the interaction with the e-cloud could be computed as:

△Qy ≈ − R2

2Qy0

Fe,y

mv2△y = −Rβy
2

Fe,y

pβrelc△y
. (5.11)

For practical computation of △Qy from (5.11), βy is the average beta function
and p the momentum of the beam.

5.1.2 Numerical Computation of the Tune Shift

In order to compute the tune shift caused by the e-cloud (5.11) it is necessary
to evaluate the vertical force acting on the bunch particles:

Fe,y =
dpy
dt

≈ △py
△t . (5.12)

Hence the change of the vertical impulse △py of the bunch particles has to be
computed after interaction with the e-cloud during the time interval △t. The
time span △t corresponds to a longitudinal section △s of the ring where the
interaction takes place:

△t = △s
v

=
△s
βrelc

.
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Finally the vertical tune shift can be evaluated from:

△Qy ≈ −Rβy0
2

△py
p

1

△s△y . (5.13)

Consequently it is sufficient to perform a numerical simulation with MOEVE
PIC Tracking where a given bunch with momentum p and certain vertical
offset △y progresses through an e-cloud with length △s (as principally shown
in Figure 5.1). After passing through the interaction section △s, the resulting
△py of the bunch particles gives the contribution to the △Qy of the e-cloud
concentrated in the section △s. Approximating a constant e-cloud density
of ρe throughout the storage ring allows the results for the tune shift to be
extrapolated for a single turn of the bunch.

5.1.2.1 Computational Studies

Interaction simulations were performed for a positron bunch of KEKB-LER
defined in Table A.2 (σx = 0.42 mm, σy = 0.06 mm, σz = 6.00 mm,
N+

e = 3.3 1010, Ekin = 3.5 GeV) and an e-cloud with homogeneous density
ρe = 1012 m−3. The interaction was simulated with e-clouds with different
transversal sizes as shown in Figure 5.2. The bunch was represented by 1
million macro-particles whereas the e-cloud was represented by 0.5 million
macro-particles and its elongation was taken to be △s = 1 cm. The bunch

Figure 5.2: Different transverse e-cloud size and the offset beam.

was set to enter the e-cloud with an offset △y = σy = 0.06 mm. The travers-
ing of the whole bunch length (from 3σz to -3σz) through the e-cloud was
simulated which corresponds to a time of t = 200 ps with discretization steps



102

Chapter 5. Numerical Estimation of Electron Cloud Effects on a

Single Bunch

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
−15

−10

−5

0

5x 10
−8

z[m]

△
p

y
/
p

 

 

r=1mm
r=2mm
r=3mm
r=4mm
r=5mm

Figure 5.3: Vertical kick on the bunch particles along its length (the head of
the bunch is at larger z values).

of dt = 1 ps. For the beam pipe a circular cross-section with PEC boundary
was assumed.

Figure 5.3 shows the average of the relative change of the vertical impulse
△py
p

along the bunch length after the interaction with different transverse sizes
of the e-cloud. The uninterrupted line in Figure 5.3 corresponds to the smallest
e-cloud with r = 1 mm from Figure 5.2 which in horizontal direction is even
smaller than the bunch itself. The same △py

p
line in Figure 5.3 indicates that

while the bunch particles in the head of the bunch receive a negative vertical
kick, the center of mass of the electrons is shifted in the positive y-direction
above the bunch axis. Hence the second part of the positron bunch receives a
kick from the electrons in the positive y-direction. The kick from the second
e-cloud (r = 2 mm) starts lower simply because the forces of the more distant
electrons sum up and give a stronger base force that pulls the offset bunch
down. After half of the bunch passed through the cloud, the center of mass
of the e-cloud moved up almost matching with the one of the bunch so that
the overall vertical kick becomes weak (the maximum of the curve). However,
this is only temporarily as the electrons repel each other and at the same time
the number of electrons still approaching the bunch from below is higher than
the ones from above the bunch so that again the tail of the bunch receives a
negative vertical kick.

The same explanation could be applied to the kick curve from the cloud
with r = 3 mm with the notice that, because of the bigger number of elec-
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trons, the forces from the distant electrons are stronger and those forces are
reinforced with the slowly approaching electrons from higher radii. Again
the electrons start repelling as their concentration on the beam axis starts to
grow.

For the e-clouds with r = 4 and 5 mm the kick on the bunch particles
is nearly constant over the whole bunch length and a saturation of the kick
amplitude can be observed. The last conclusions coincide with those from
[Ohmi 2001b] except that the computed kicks with the PIC simulation are one
order of magnitude lower than the ones in [Ohmi 2001b]. Presumably this is
due to the fact that in the PIC simulation the own space charge forces of the
electrons are taken into account so that the electrons are not just attracted
on the beam axis but as their concentration grows they will also repel and
lower the number of electrons on the beam axis.

The simulations show a characteristic increase of the vertical tune due to
the interaction with e-clouds observed in the measurements at several storage
rings with a positively charged beam [Crittenden 2010].

5.2 Incoherent Effects of Electron Clouds

As previously mentioned, a fast instability of the positively charged beam oc-
curs for e-cloud densities above a certain threshold ρth. The expression for
ρth introduced in [Ohmi 2005a] is derived by estimating the short range wake
force due to the interaction of a coasting beam with a uniform electron dis-
tribution. However, even for e-cloud densities lower than the computed ρth
the beam quality could deteriorate and become useless for the users. The
reason for that is an incoherent head–tail effect on the bunch due to the in-
teraction with the e-cloud. The head–tail effect is especially pronounced if
the synchrotron damping period is relatively long [Benedetto 2007]. Hence
this incoherent effects could lead to a significant long-term emittance growth.
The following work follows an approach to study the long term beam sta-
bility by tracking the beam through the linear optics of the storage ring
and at each turn to apply the transversal kick due to the interaction with
the e-cloud. The results presented in the following are published as contri-
butions on several international conferences on Particle Accelerator Physics
([Markoviḱ 2010], [Markoviḱ 2011] and [Markoviḱ 2012a]) and Computational
Accelerator Physics ([Markovik 2009] and [Markovik 2012b]).
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5.2.1 Head - Tail Simulation with Vertically Displaced

Parts of the Bunch

Because of the nature of the beam - e-cloud interaction there will be a dipole
kick on the bunch only if a part of the bunch perturbs the cloud, typically
if a part of the bunch has a slight transversal offset at the entrance into the
cloud of homogeneously distributed electrons (Figure 5.4). As shown in the

Figure 5.4: Profile of the bunch with an △y offset slab in the leading part of
the bunch.

previous chapter, the e-cloud is not going to be asymmetrically perturbed if
the bunch traverses through without any transversely displaced parts. During
its passage, it only destroys the homogeneous distribution of the electrons
because it attracts them towards the beam axis. As a result, the concentration
of electrons near the beam axis grows very fast during the bunch passage.
As a matter of fact, the electrons near the beam axis start oscillating in
the beam potential while the electrons from higher radii are approaching the
beam axis and increase the number of electrons near the beam axis. Thus, if
a transversal offset in the bunch occurs in the middle or the raer parts of the
bunch, the number of electrons on the beam axis which will be perturbed by
the displaced part is very high. Consequently the kick from the cloud on the
following bunch slices would be expected to be stronger. On the contrary, if
the transversal offset occurs in the head part of the bunch then the number
of electrons that will be perturbed is not going to be that large and so the
expected transverse kick on the following bunch slices would not be as strong
as if the electron perturbation happens later during the bunch passage. To
underline this simple consideration a series of interaction simulations are done
with a bunch which for each simulation has a different 3D slab shifted in
the transversal plane as principally shown in Figure 5.4. For the examples
presented here the offset in the y-plane is equal to △y = σy of the bunch.
The bunch parameters are given in Table A.1. Figures 5.5–5.9 display the
vertical velocity vy of the bunch particles after the passage through an initially



5.2. Incoherent Effects of Electron Clouds 105

homogeneous e-cloud, corresponding to different offset slabs starting from the
head of the bunch backwards. The red line is the average value of the vertical
velocity of the particles over the bunch length. Figures 5.5 and 5.6 result

Figure 5.5: Transversal velocity (vy) of the bunch particles after the passage
through the e-cloud (right). The offset slab is at the beginning of the bunch
as shown in the profile plot (left).

Figure 5.6: ransversal velocity (vy) of the bunch particles after the passage
through the e-cloud (right). The offset slab is at the beginning of the bunch
as shown in the profile plot (left).

from the displaced head parts of the bunch (as shown on the left plot of the
corresponding figure). It can be observed that the particles of the offset part
got a vertical kick towards a higher radius of the pipe. This is due to the fact
that the electrons from the higher radii started moving towards the beam axis
being attracted by the previous head parts of the bunch. Thus, the offset part
has been attracted towards those electrons approaching from the higher radii.
In Figure 5.5 the number of electrons on the beam axis is relatively small at the
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moment when the displaced part of the bunch arrives so that the perturbation
by the displaced part of the bunch does not considerably affect the following
parts. However if the displaced part is 10 ps later as shown in Figure 5.6 (left)
then the number of electrons on the beam axis which are perturbed by the
displaced part is higher. Thus the perturbed electrons exhibit a stronger
dipole kick on the rest of the bunch as shown in Figure 5.6 (right). The

Figure 5.7: Transversal velocity (vy) of the bunch particles after the passage
through the e-cloud (right). The offset slab is shown in the profile plot (left).

Figure 5.8: Transversal velocity (vy) of the bunch particles after the pas-
sage through the e-cloud (right). The offset slab is before the middle of the
bunch (left).

results of simulations at which the displaced part of the bunch is still in the
front part of the bunch but more towards the center of the bunch are plotted
in Figure 5.7 and 5.8. The average vertical kick from the e-cloud is stronger
than one in 5.6 and oscillates along the bunch length due to the oscillation of
the centroid position of the perturbed electrons. Thereby, the perturbation
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of the electrons is strong not only because the number of electrons near the
beam axis is higher but also because the number of particles in the displaced
part of the bunch is higher due to the Gaussian longitudinal charge profile.

On the other hand, Figure 5.9 (right) displays the vertical velocity of
the bunch for the case that its offset part is in its middle as shown in Fig-
ure 5.9 (left). Here, due to the focusing from the previous parts of the bunch
the electron concentration on the beam axis will be very high by the time at
which the offset part arrives in the e-cloud. Hence, the electrons on the beam
axis pull the offset part down towards the beam axis. The offset particles
receive an impulse in the negative direction as it can be seen from the trend
of the red line at the longitudinal position of the offset part. At the same time
the electrons on the beam axis will be perturbed and shifted towards the cen-
troid position of the offset part of the bunch. Thus, the following bunch parts
will receive a transversal kick in the positive direction (towards the centroid
position of the previous offset part).

Figure 5.9: Transversal velocity (vy) of the bunch particles after the pas-
sage through the e-cloud (right). The offset slab is after the middle of the
bunch (right).

This sort of a head-tail coupling between the bunch part perturbing the
cloud and the following bunch parts happens on a very short time scale, due
to a very rapid movement of the electrons in the transversal plane around the
beam axis. The transversal movement of the beam particles is comparatively
slow.

5.2.2 Wake Field induced by Electron Cloud

The excitation of the electron cloud by a single bunch progressing through
it and the reaction of the cloud on the same bunch resemble a short-range
wake field. The wake field drives a single-bunch instability of head-tail type
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which is manifested by a strong transverse emittance growth. The head-tail
instability is damped by the synchrotron motion of the particles where they
change their relative longitudinal position in the bunch. Hence, in order to
evaluate the stability of a bunch interacting with electron clouds, the bunch
movement should be followed until the synchrotron period of the beam has
been resolved. As earlier mentioned, the synchrotron period compared to the
period of the betatron motion is much longer and may correspond to several
thousands of turns of the bunch in the storage ring. At each turn through
the storage ring the bunch interacts with the e-cloud. The interaction is
more pronounced in sections of the storage ring where a considerable amount
of electrons may accumulate. As previously shown for the dipole magnet,
the electrons are trapped in the magnetic field. Similarly the electrons are
trapped along the field lines of quadruple or sextuple magnets. In addition,
in the dipole magnets the synchrotron radiation of the beam produces new
primary electrons.

The approach to simulate the single bunch instability consists of tracking
the bunch particles by multiplying the phase space vector of each particle
ψ(x, px, y, py, z, pz) with the transformation matrices describing the storage
ring lattice. Thereby the action of the e-cloud on the bunch is applied at each
turn on one or more interaction points in the lattice. A fully self-consistent
PIC beam – electron cloud interaction simulation at every turn, even with only
one interaction point per turn, would inevitably lead to high computational
costs. An idea to speed up the single bunch instability simulation would be
to pre-compute the transverse kick of the e-cloud on the bunch. Such a pre-
computed wake field will be later applied on the bunch at each turn during
the tracking of the bunch with the appropriate transport matrices.

In [Ohmi 2001c] the wake field is approximated by a resonator, whose
parameters (RS/Q, ωR, and Q) are determined by using both analytical and
simulation approaches. The analytic approach gives the resonator parameters
for a rigid Gaussian beam in the transverse plane and an electron cloud of
equal rms size. In this early analytical approach Q was infinite, because the
wake field had a unique frequency and did not decay. The frequency of the
wake field corresponds to the frequency of electrons in the beam potential ωe

as given in 4.1.
Since the oscillation of the electrons is damped due to the nonlinear force

of the beam, in [Ohmi 2005b] the vertical wake field Wy(z) is expressed as
damped oscillator:

Wy(z) = c
Rs

Q
e−ωez/2cQ sin

(ωe

c
z
)

(5.14)

where Wy 6= 0 for z < 0.
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The resonator parameter cRs

Q
is computed from:

c
Rs

Q
= K

λe
λb

L

σy(σx + σy)

ωe

c
, (5.15)

where Nb is the number of particles in the bunch. λe is the local density of
the electron cloud near the beam axis and can be computed from the electron
volume density ρe and the transverse size of the e-cloud as λe = 4πρeσx,eσy,e.
The enhancement factor K is due to the number of electrons contributing to
the instability and L is the circumference of the storage ring.

The simulation approach to compute the wake field from [Ohmi 2001c]
includes the nonlinearity of the beam–cloud interaction as well as the effect
of the cloud size. On the other hand, the wake field computation did not take
into account the nonuniform longitudinal charge distribution inside a bunch,
and the own space charge forces of the electrons. Nevertheless, by computing
the amplitude and the rough frequency range of the wake field from these
conventional wake field models it is possible to estimate the threshold of the
e-cloud density.

The estimation of the bunch stability requires the change of the vertical
momentum of a particle ∆py at a longitudinal position z in the bunch due to
the e-cloud perturbations induced by the preceding part of the bunch at z′.
With the pre-computed wake field (W (z−z′) 6= 0 for z < z′) the change of the
vertical momentum of a particle with overall momentum pb can be computed
as:

∆py
pb

=
Nbre
γ

∫

Wy(z − z′)λy(z
′)dz′, (5.16)

where Nb is the number of particles in the bunch. Furthermore, λy(z′) denotes
the dipole moment at z′ in the bunch, which is expressed by

λy(z
′) =

∫

y ψ(x, px, y, py, z, pz) dx dpx dy dpy dpz (5.17)

with the distribution function of the beam in the phase space (ψ) normalized
by 1:

∫

ψ dx dpx dy dpy dz dpz = 1. (5.18)

Yet the bunch tracking with such a computed wake field could not predict
aspects of the instability such as the synchro-betatron sideband Qy+kQs(1 <

k < 2) of the vertical tune observed in experiments at several machines.
The reason is that the wake field from the perturbed cloud cannot be

treated as the wake field from a broadband resonator which is computed for
constant geometries and material parameters of the beam pipe. The e-cloud
as a beam environment evolves during the bunch-passage and the computation
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of the vertical force on the bunch particles has to take into account the e-cloud
density near the beam axis when the perturbation happens.

Hence, the wake field due to the beam – e-cloud interaction cannot be
treated as a function of the distance between the excitation (at z′) and the
part of the bunch receiving the kick (at z) W (z − z′). Instead, the wake field
modelling the beam – e-cloud interaction should be a two-variable function of
both positions W (z, z′).

5.3 Two-Variable Wake Field induced by an

Electron Cloud

From the previous considerations it is obvious that the numerically pre-
computed transverse wake due to the interaction with the e-cloud has to be a
wake matrix which can be extracted from detailed beam - e-cloud interaction
simulations with MOEVE PIC Tracking. Thereby, following the idea of K.
Ohmi [Ohmi 2008], the 3D bunch is longitudinally divided into M slices. A
slice which has a transverse displacement respective to the other slices, e. g.
the slice i in Figure 5.10, induces a transverse kick from the e-cloud on the
following slices. Hence it is necessary to perform M MOEVE PIC Tracking

i
j

W(z ,z )i j
y

zij

Figure 5.10: Slicing the 3D bunch into M longitudinal slices and introducing
an offset △y in the transversal plane for each slice at the time.

simulations of the interaction in which each of the slices i = 1, . . . ,M has an
offset (△x/△ y) at the time which is responsible for inducing a dipole kick
△px/y on the following j = i, . . . ,M slices (zi > zj). The resulting M ×M

matrix of average transverse kicks is a triangular matrix with non-zero entries
△px/y(i, j) for i = 1 · · ·M and j = i . . .M . The e-cloud is modelled as a uni-
form distribution of electrons in a beam pipe and is assumed to be generated
by the preceding bunches. For flat beams as the KEKB-LER beam (Ta-
ble A.2), the flat i. e. the vertical plane is critical for the stability. Thus the
simulations feature a vertical slice displacement (as shown in Figure 5.10),
typically ∆y = σy.
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According to equation (2.71) the wake Wy from the slice i which contains
Ni positrons displaced by ∆y can be expressed as:

Wy =
∆py

e2Ni∆y
, (5.19)

where e is the electric charge of an electron and ∆py is the change of the
vertical momentum of a trailing bunch particle. By multiplying both sides of
(5.19) with the relativistic energy γmec

2 of the bunch particles and introducing
the relativistic electron radius re, the wake induced from slice i on a particle
in slice j reads as:

Wy(zj, zi) =
γ∆py(j, i)

pbre∆yiNi

[1/m2], (5.20)

where pb is the relativistic energy of the bunch and γ is the Lorentz factor.
Such a computed wake field can be converted in [V/Cm] by multiplying it
with 1/4πε0.

5.3.0.1 Two-Variable Wake Field induced by an Electron Cloud in

KEKB-LER and ILC e+ DR

The idea of K.Ohmi to slice the 3D bunch and compute a wake function
from every longitudinal slice of the bunch (Figure 5.10) backwards leads to a
triangular wake matrix. Thereby the wake matrix is computed for a constant
displacement of each slice, typically ∆yi = σy. In order to compute the kick
from a transversally slided slab i on the trailing bunch slabs j (zi > zj), both
positron bunches ILC-DR1 (Table A.3) and KEKB-LER (Table A.2) were
longitudinally divided into M = 30 slabs. Thus, a series of M interaction
simulations were performed. For each simulation a single slab i (i = 1 . . .M)
of the bunch was shifted by ∆yi = σy and the whole bunch was sent through
an initially homogeneous e-cloud with 1012 electrons/m3. The interaction was
simulated until the whole bunch traversed the length of the e-cloud of 1 cm.
The time step of the interaction simulation dt=1 ps. The non-equidistant
gird for the interaction simulations was adapted individually for each of the
positron bunches due to the different bunch sizes and aspect ratios in the
transverse dimensions.

The computed kick ∆py(j, i) was extrapolated for the length of the inter-
action region which in the case of only one interaction point per turn would
be the circumference L of the corresponding ring.

Each bunch slice has equal longitudinal width (dz) and contains Ni =

Npλ(zi)dz number of positrons, where λ(z) = Np/
√
2πσz exp(−z2/2σ2

z).

1corresponding to one of the designs for the positron damping ring (DR) of the Interna-

tional Linear Collider (ILC)
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Figure 5.11: Two-variable wake field W1(zj, zi) for the ILC damping ring,
M = 30 slabs. Both z axes represent the length of the bunch, the higher
value corresponds with the beginning of the bunch and the lower the end of
the bunch in longitudinal direction.

Figure 5.12: Two-variable wake field W1(zj, zi) for the KEKB-LER,
M = 30 slabs. Both z axes represent the length of the bunch, the higher
value corresponds with the beginning of the bunch and the lower the end of
the bunch in longitudinal direction.

Thereby the number of positrons in each slice Ni (i = 1 . . .M) varies consid-
erably due to the Gaussian profile of the particle distribution in longitudinal
direction λ(z). Finally the wake matrix was computed for both rings as shown
in Figure 5.11 and 5.12.
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5.4 Tracking with a Pre-Computed Wake Ma-

trix

Subsequently the wake matrix is used to track the sliced bunch through the
linear optics of the storage ring while at each turn applying the corresponding
transversal kick from the pre-computed wake. The applied transversal kick on
a particle in a slice j is scaled with the actual offset value ∆yi of the preceding
slice i (j > i). During the tracking, the total vertical kick on a particle in
the slice j represents a superposition of the corresponding kicks from all the
preceding slices i = 1 . . . j. Hence, in order to apply the computed wake
matrix for the bunch tracking it is necessary to assume properties of the wake
field such as linearity, superposition and time invariance.

5.4.1 Properties of the Two-Variable Wake Field

The linearity of the wake kick is proven with a study of the scalability of
the wake kick depending on the displacement ∆yi of the perturbing slice i.
Additionally the wake field values and their scalability are examined for dif-
ferent realistic electron densities. The series of simulations is performed for

Figure 5.13: The bunch is represented by 106 macro-particles. In longitudinal
direction the bunch is sliced into M = 20 slices. The fifth slice from the head
of the bunch is displaced by ∆y5 = σy.

the KEKB bunch as illustrated in Figure 5.13. The beam pipe has a small
radius of 5 mm and a uniform electron distribution fills a length of 10 mm.
The positron bunch is represented by 106 macro-particles whereas the cloud,
at least for lower densities, is represented by unit charges. In each direction
the bunch particles have a Gaussian distribution. Longitudinally the bunch
spreads from −4σz to +4σz and is virtually sliced in M = 20 slices. The time
step used for the interaction simulation is 1 ps.
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5.4.1.1 Wake Function vs. Displacement

The wake field is computed for various displacements ∆y of the fifth
slice (∆y = (0.1 : 0.1 : 1) σy). In (5.20) the wake field is expressed as a lin-
ear coefficient of the dipole kick ∆py(i, j) and the dipole perturbation ∆yiNi.
Figure 5.14 shows a linear growth of the dipole kick with the displacement.
The wake field in Figure 5.15 shows opposite ordering of the lines due to the
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Figure 5.14: Average vertical dipole kick ∆py(5, j) on the bunch slices j =

6, . . . ,M , simulated for displacements of the fifth slice from 0.1σy to σy.

growing denominator in expression (5.20) with the displacement.
The conclusion is that the transverse kick from the e-cloud scales linearly

with the offset ∆yi and saturates for displacement amplitudes ∆y ≈ σy. Also,
the observations in [Ohmi 2001c] indicate the same characteristics of the wake
kick. Therefore, the kicks induced by slices with smaller offset ∆yi < σy are
linearly scaled according to the their actual offset ∆yi.

5.4.1.2 Wake Function vs. Electron Density

In the simulations, the density of the electron cloud was varied below and
above the computed threshold value for incoherent single bunch instability
(ca. 1012 electrons/m3 at KEKB-LER). Figure 5.17 shows that the amplitude
of the wake forces grows with the growing density of the e-cloud. The blue
line from Figure 5.17 for ρe = 1011 electrons/m3 is plotted once again in
Figure 5.16. Figure 5.16 also shows the presence of the characteristic dipole
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Figure 5.15: Average vertical wake field W1(5, j) on the bunch particles of
slices j = 6, . . . ,M , computed for displacements of the fifth slice from 0.1σy
to σy.

wake kick (from the electrons perturbed by the fifth slice) for lower electron
densities below the instability threshold. The oscillations of the wake kick are
closely correlated to the oscillations of the electrons near the beam axis.
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Figure 5.16: Average vertical wake field W1(5, j) on the bunch particles of
slices j = 6, . . . ,M , computed for an e-cloud density of ρe = 1011 electrons/m3.
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Figure 5.17: Average vertical wake field W1(5, j) on the bunch particles of
slices j = 6, . . . ,M , computed for e-cloud densities ρe = 1.0·1011, 5.0·1011, 1.0·
1012, 1.5 · 1012 and 2.0 · 1012 electrons /m3.

5.4.1.3 Superposition of the Wake Kicks

Another equally important aspect for realizing the single bunch stability track-
ing with the wake matrix is the applicability of the superposition principle for
the kicks from the preceding slices of the bunch. Certainly a more realistic
scenario of the interaction bunch – e-cloud is shown in Figure 5.18 where
more than one slice has a certain vertical displacement. Thus, the question is
whether the pre-computed wake, where only one slice at the time excites the
perturbation of the cloud, could be applied and superposed with the other
pre-computed kicks. Numerical experiments show that the overall density
of the electrons in the proximity of the beam axes is not varying for small
slice displacements |∆y| < σy. Hence the vertical displacements along the
bunch length do not influence the number of electrons interacting with the
slices of the bunch. However, the e-cloud centroid position changes due to the
transverse displacements of the bunch slices. Note that during the PIC com-
putation of the wake kick, the centroid position of the e-cloud is at the beam
axis until the interaction with the displaced slice. The vertically displaced
slice attracts the electrons towards its own centroid position. Thus, in order
to superpose the kicks from consecutive displaced slices it should be ensured
that the electrons near the beam have enough time to change their vertical
centroid position towards the centroid position of the next displaced slice.
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Figure 5.18: Realistic scenario of the interaction bunch – e-cloud where more
than one slice has a certain vertical displacement.

To fulfill this condition for the superposition of the kicks, it is clear that
the number of bunch slices M , i.e. their thickness in longitudinal direction,
has to be controlled. A numerical study of the thickness dz of the slices
in conjunction with the mobility of the electrons around the beam axis (the
vertical velocity of the electrons near the beam axis) leads to a conclusion
regarding the optimal slice thickness dz. Analyzing the vertical electron ve-
locities oscillating in the potential of the bunch during the interaction it is
possible to compute an average centroid velocity vye of those electrons in the
transversal range of ±2σy and ±2σx. Hence, the slice thickness dz in the lab
frame corresponds to the time tye which the electrons need to change their
vertical position for one σy in the proximity of the beam axis:

dz = tyec =
σy
vye

c. (5.21)

Since the Lorentz factor γ has typical values of several thousands for a storage
ring beam, the bunch velocity is approximated by the speed of light c. The
approximated time tye should equal the transition time of the e-cloud from
one slice to the next so that the kick of each slice could be approximated by
the pre-computed one. An integer division of the total bunch length 8σz by
dz yields the number of the slices:

M = 8σz/dz.

As an example, the average centroid velocity of the respective electrons in-
teracting with the KEKB-LER bunch (σz = 6 mm and σy = 0.06 mm) is
vye = 7.5 · 106 m/s. The values plugged into (5.21) yield dz=2.4 mm which
corresponds to M = 20 slices. If the number of longitudinal slices is much
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higher than the superposition of the dipole kicks from the previous slices can
not be expected.

5.5 Single Bunch Instability

Simulations of the bunch – e-cloud interaction demonstrated the head-tail ef-
fect on the bunch. The transverse kick of the e-cloud on the tail particles of
the bunch lead to an incoherent transverse motion of the bunch and corre-
sponding emittance growth. Fortunately, due to the synchrotron motion of
the particles within the bunch, where the particles from the tail of the bunch
move towards the head and vice-versa, the transversal kick is not always af-
fecting the same particles. Thereby, the head-tail effect smears out which
prolongs the emittance growth. Hence, in order to estimate the stability of
a single bunch it usually needs to be tracked over the time of at least one
synchrotron period. The synchrotron period lasts over many bunch turns (up
to several thousands) in the storage ring. Thus, obviously the numerical sim-
ulation of the bunch stability interacting with the e-cloud is very challenging
regarding computational recourses and time. It is clear that a PIC tracking
of the bunch through the whole machine (while interacting with the e-cloud)
for many turns is computationally impossible. Therefore, in the present sim-
ulations [Benedetto 2007] the bunch interacts with the cloud only at several
interaction points (IP’s) along the circumference of the ring and elsewhere it
undergoes a transformation by the matrices describing the linear beam op-
tics. The interaction on the IP’s is usually simulated as PIC interaction in
two or three dimensions computing the space charge forces with FFT rou-
tines [Vay 2009] or approximating the forces with the Basseti-Erskine formula
in a transversal plane [Demma 2009]. However, even this approach with the
IP’s is relatively time and resource demanding which can be a limiting factor
if many scenarios need to be simulated.

By following the approach of K. Ohmi, each turn to apply a wake kick on
the bunch particles from the pre-computed wake matrix we hope to achieve
a relatively fast estimation of the single bunch stability. Hence, at each turn
with the tracking program PEWKT [Ohmi 2001a] of K. Ohmi the M slices
of the bunch receive a kick according to the wake matrix by pre-computed
MOEVE PIC Tracking. Thereby the kick at slice j is a superposition of the
kicks induced by all the slices i = 1, . . . , j − 1 ahead of slice j (zi > zj).

The tracking program PEWKT, courtesy of K. Ohmi, uses a lowest order
integrator, which is a combination of a thin lens kick and a drift in free space
(or a lattice linear transformation), to integrate the motion of the particles.

In PEWKT the bunch is represented by a number of macro-particles dis-
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tributed into M slices. Each slice includes about 10,000 macro-particles. After
the application of the lumped kick of the electron cloud at the slices of the
bunch, the bunch is transferred by the revolution matrix and the electron
cloud is initialized again for the next interaction. The program considers
the synchrotron oscillation i.e. the particles migrate in longitudinal direction
among the slices.

The inputs of the program are the so-called twiss parameter, i.e. the mean
beta function, and the tune in both transverse and in longitudinal direction.
The input file contains the energy and the mass in electron volts, the number
of particles in the bunch and the emittances in all three directions. Further
inputs are the radiation damping in horizontal, vertical and longitudinal plane
in milliseconds. Additionally the number of macro-particles which should be
tracked with PEWKT and the number of turns through the machine have to
be introduced. Finally the number of bunch slices M and the file containing
the wake matrix are defined.

5.5.1 Tracking of a Positron Bunch in the KEKB-LER

with a pre-computed Wake Matrix

The KEKB Low Energy Ring (LER) is a 3.5 GeV positron storage ring which is
part of the electron-positron collider KEKB factory. Measurements reported
in [Flanagan 2005] during operation with four trains, each of 100 bunches
equally spaced at 8ns, showed a shift of the vertical betatron tune along the
bunch train. Moreover, they registered the appearance of an upper sideband
peak in the vertical tune spectra when the average bunch current was near the
beam blow-up threshold. Also, the upper side band shifted along the train
at the same amount as the betatron tune. This incoherent effect (observed
until then in proton machines but since then also reported in several positron
machines) is closely related to the incoherent head-tail effect of the e-cloud.
After an initial part of the bunch train (around 40 bunches) the shift of the
vertical tune and the side band stops and retains the values. This is probably
due to the saturation of the e-cloud density. An indication of an e-cloud
effect is the fact that when the solenoidal magnets which suppress the e-
cloud density on the beam axis are switched on, the sidebands in the tune
disappear, whereas when the solenoids are switched off, the sidebands appear
again. Further indication of a head–tail effect is that the side band peak does
not respond to dipole kicks from the bunch-by-bunch feedback system in the
experiments [Flanagan 2005].

Hence, the measurements described in [Flanagan 2005] offer the possibility
to verify the simulation technique for the single bunch stability. A computed
wake matrix for a KEKB-LER bunch with the parameters given in Table A.2
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and an e-cloud density of 1012 electrons/m3 is presented in Figure 5.12. For
the simulation, the bunch was sliced into M = 30 slices. Figure 5.19 shows a
plott of the FFT power spectrum of the vertical tune of a KEKB-LER beam
collected over 2048 turns. The results of the tracking with the wake matrix are

0.50 0.55 0.60 0.65 0.70

Figure 5.19: Fractional tune of the vertical betatron motion of a single bunch
in a train of 100 bunches, measurement (blue) vs. simulation (red) with
M = 30 slices.

encouraging since they reproduce the upper side peak of the measurements.
Since, the simulation (the red curve in Figure 5.19) also shows a sideband
below the betatron tune which is not pronounced in the measurements.

5.6 Study for the PETRA III Storage Ring op-

erated with Positron Beam

PETRA III at DESY, which started operation in 2009, is the most brilliant
storage-ring-based X-ray radiation source in the world [DES 2013]. Until early
2013 the synchrotron radiation facility was running in a top up operation
modus with positrons. The machine is characterized (Table A.1) by an ultra
low emittance and with an emittance ratio of 2% it features very flat bunches.
The design beam current of 100 mA was planned to be achieved with fill-
ings of 40 or 960 equally spaced bunches [Wanzenberg 2003], [Balewski 2004].
However, for the filling scheme with 960 bunches with only 8 ns bunch-to-
bunch distance a strong vertical emittance growth has been reported for cur-
rents of about 50 mA [Wanzenberg 2010]. The corresponding measurements
of the tune spectra (Figure 5.20) show sidebands in the vertical tune which
suggest incoherent effects. These effects are brought into connection with
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electron cloud effects, on the bunch. After a systematic study of the effect,

Figure 5.20: Vertical tune spectra of each of the 640 bunches with 8ns spac-
ing, measured on May 11, 2010 [Wanzenberg 2010]. The total beam current
was 62 mA. The red color represents the sidebands and the vertical betatron
frequency of 38kHz is green. (Courtesy of R. Wanzenberg.)

the designed beam current of 100mA has been achieved by filling patterns
with short bunch trains and longer gaps between them. The first two filling
schemes presented in Figure 5.21 with 40 and 60 trains each of four bunches
spaced at 16ns and 8ns respectively are used for user runs. The time spacing
of 144ns and 80ns, respectively, between the trains is apparently enough to
reduce the e-cloud density until the next train of four bunches arrives. On
the other hand, the third filling pattern of 80 trains with only 48ns distance
presented in Figure 5.21 features significant emittance growth. The e-cloud
build up simulations with ECLOUD 4.0 (reported in [Wanzenberg 2010]) for
a train with bunch-to-bunch spacing of 8ns and bunch population of 0.5 · 1010
positrons (secondary emission yield (SEY) δ= 2.5) show that after the first
four bunches the e-cloud density is still below 5 · 1011 m−3 which is below the
instability threshold ρth = 1.4 · 1012m−3 computed in [Wanzenberg 2012]. In
2011 and 2012 further 100 mA runs were performed with trains of 40, 60,
240 and 480 equidistantly spaced bunches with bunch-to-bunch distance of
192, 128, 32 and 16ns, respectively. Only during the run with 480 bunches
a significant emittance growth has been measured [Wanzenberg 2012]. The
filling pattern (Figure 5.22) was used for so-called "beam scrubbing runs"2 on

2An adequate dose of photoelectrons, accelerated by positron bunches and hitting the

the beam pipe wall will substantially reduce secondary emission and avoid the fast build-up

of an electron cloud [Bruning 1999].
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Figure 5.21: Bunch filling schemes with short bunch trains of 4 bunches.
(Courtesy of R. Wanzenberg.)

Figure 5.22: Top up operation with 480 bunches equidistantly spaced at 16ns.
The filling pattern was used for beam scrubbing runs on two consecutive
weekends in March 2012 (Courtesy of R. Wanzenberg.)

two consecutive weekends in March 2012 as a conditioning measure in order
to lower the secondary emission yield of the beam pipe. The emittance mea-
surements from the beam scrubbing runs are very valuable since they give the
opportunity to validate the simulations.

Hence, the goal was to track a single bunch of the beam scrubbing run with
a pre-computed wake matrix in order to see if the simulation could reproduce
the measurements. The corresponding bunch parameters are given in the
second part of Table A.1. The initial vertical emittance was taken to be
εy = 20 pm. The wake matrix was computed by vertically displacing each
slice of the bunch by ∆y = σy. The beam pipe has a small radius of 5 mm
and a uniform electron distribution fills a length of 10 mm. The positron
bunch is represented by 106 macro-particles whereas the e-cloud, at least for
lower densities, is represented by unit charges. In each direction, the bunch
particles have a Gaussian distribution. Longitudinally the bunch spreads from
−3σz to +3σz and it is virtually sliced into M = 35 slices. The thickness of
the slices in the lab frame corresponds to the time which the electrons on
the beam axis need to change their vertical position for one σy. The time
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Figure 5.23: Run: 480 x 1 Beam Scrubbing, March 3 / 4, 2012. Vertical
emittance 140 pm rad ( for 20 h), then dropping to 97 pmrad; Horizontal
emittance Starting at 1.0 nm rad increasing to 1.8 nm rad; Green: total current
(100 mA); Red: vertical emittance (scale 0-150 pm rad); Blue: Number of
bunches (480); Black: horizontal emittance (scale 0-6 nm rad); (Courtesy of
R. Wanzenberg.)
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Figure 5.24: Wake matrix for ρe = 5 · 1011 Ne/m3.

step used for the interaction simulation is 1 ps. The question the instability
simulation should be able to answer is, at which e-cloud density the instability
of a single bunch may occur. Therefore, the wake matrices were computed
for e-cloud densities below and above the analytically computed threshold
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Figure 5.25: Wake matrix for ρe = 5 · 1012 Ne /m3.

ρth = 1.4 · 1012m−3: ρe = 1 · 1011 Ne/m3, ρe = 5 · 1011 Ne/m3 (Figure 5.24),
ρe = 2 · 1012 Ne/m3 and ρe = 5 · 1012 Ne/m3 (Figure 5.25).

Plugging the wake matrices and the machine description in K. Ohmi’s
tracking program PETHS [Ohmi 2001a] the bunch was tracked for 2048 turns.

The simulation for ρe = 1· 1011 Ne/m3 and ρe = 5· 1011 Ne/m3, as shown in
Figure 5.26 for ρe = 5 · 1011 Ne/m3 doesn’t reveal any emittance growth over
the 2048 turns. The FFT of the vertical or horizontal centroid position of the
bunch during 2048 turns gives the corresponding vertical or horizontal tune
spectra. The vertical tune spectra for ρe = 5 · 1011 Ne/m3 (Figure 5.27) show
only the peak at the betatron frequency of 38kHz. However, for higher e-cloud
densities (ρe = 2 · 1012 Ne/m3 and ρe = 5 · 1012 Ne/m3) the vertical tune
spectra exhibit side bands (Figure 5.28) indicating incoherent effects on the
bunch. At the same time, the horizontal tune spectra for ρe = 2 · 1012 Ne/m3

in Figure 5.29 show only the peak at the horizontal betatron frequency. Fig-
ures 5.30 and 5.30 show the emittance growth for ρe = 2 · 1012 Ne/m3 and
ρe = 5 · 1012 Ne/m3 which is clearly more moderate for the lower e-cloud
density.
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Figure 5.26: Almost no emittance growth after 2048 turns with ρe =

5 · 1011 Ne/m3.
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Figure 5.27: Vertical tune spectra for ρe = 5 · 1011 Ne/m3.
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Figure 5.28: Sidebands in the vertical tune spectra for ρe = 5 · 1012 Ne/m3.
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Figure 5.29: Horizontal tune spectra for ρe = 2 · 1012 Ne/m3.
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Figure 5.30: Emittance growth after 2048 turns for ρe = 2 · 1012 Ne/m3.

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

x 10
−10

Turn Nr.

V
er

tic
al

 E
m

itt
an

ce
 ε

y [m
ra

d]

Figure 5.31: Emittance growth after 2048 turns for ρe = 5 · 1012 Ne/m3.
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The tracking simulation using the pre-computed wake matrix for the given
bunch was able to predict the instability. As in the measurements, the simula-
tion for e-cloud densities above threshold also shows sidebands in the betatron
tune spectra. The simulated emittance growth seems realistic, even more the
emittance from the simulation with ρe = 5 · 1012 Ne/m3 seems to match
the measured longtime emittance ( 140 pm) from the beam scrubbing run
with 480 bunches presented in Figure 5.22. Although further validation of
the procedure is needed, it seems that such a simulation may also be used to
numerically estimate the threshold e-cloud density.



Chapter 6

Summary

The main focus in this work was set to a development of a tool for simulation
of the interaction of relativistic bunches with non-relativistic parasitic charged
particles. The MOEVE PIC Tracking simulations of the interaction between
positron bunches and electron clouds in this work gave a detailed insight of the
behavior of both particle species during and after the interaction. Moreover
MOEVE PIC Tracking is already being successfully used to simulate the in-
teraction of electron beam with parasitic ion distributions under the influence
of ion-clearing electrodes ([Pöplau 2012], [Meseck 2012]).

The simulation of single bunch instability due to the interaction with elec-
tron clouds is very challenging since the bunch has to be tracked for many
turns in the storage ring. Thereby at each turn the influence of the e-clouds
in the storage ring should be applied. Usually the kick on the bunch particles
from the e-cloud is applied lumped on one or more positions (IP-Interaction
Point) in the ring, substituting the cumulative kick from e-clouds in different
parts of the storage ring i.e. dipoles, quadrupoles or drift sections. At the IPs
the interaction could be simulated for instance with MOEVE PIC Tracking or
the kick on the bunch particles could be applied according to a precomputed
wake matrix. After the IP the bunch is transferred through the linear optics
of the machine to the next IP. The simulation approach with the wake matrix
as explained in this work is a very fast way to estimate the bunch stability for
certain e-cloud density compared with PIC simulation at each IP for many
turns of the beam. The ultimate aim of the simulation procedure presented
in this work is investigation of the stability for different beam parameters (i.e.
filling schemes) and cloud densities.

The results from the simulations for two storage rings (KEKB-LER) and
PETRAIII are encouraging that the procedure can be applied for a fast esti-
mation of e-cloud effects on the beam for any current and future storage ring
machines with positively charged bunches.
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Machine Parameter

A.1 PETRAIII

Parameter Symbol PETRA III

Circumference L 2304 m
Beam energy Eb 6 GeV
Length (rms) σz 12 mm
Emittance εx 1nm

εy 0.01nm
Synchrotron tune νs 0.049

Betatron tune νx(y) 36.13/30.29

Radiation Damping horizontal 19.75 ms
vertical 19.75 ms

longitudinal 9.84 ms
Momentum α 1.2010−4

compaction factor
RF Frequency RF 499.564 MHz

Beam Current I 100 mA

Beam Charge Q 769 nC
Bunch Charge Qb 1.6 nC

Positrons per Bunch Nb 1010

Mean β function βx/y 15 m
Transverse σx 122.47 µm
beam size (rms) σy 17.321 µm

Table A.1: PETRA III machine parameters.
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A.2 KEKB-LER

Parameter Symbol KEKB-LER

Circumference L 3016 m
Beam energy Eb 3.5 GeV
Population Nb 3.3 · 1010
Charge Q 5.28 nC

Length (rms) σz 6 mm
Transverse σx 420 µm
beam size (rms) σy 60 µm
Synchrotron tune νs 0.024

Betatron tune νx(y) 45.51/43.57

Damping time τx(y) 4000 Turns

Table A.2: Bunch parameters of the low energy ring of the KEK B-factory
used for modelling the interaction with the e-cloud.

A.3 ILC damping ring

Parameter symbol ILC e+ DR
Circumference L 6695 m
Beam energy Eb 5 GeV
Population Nb 2.0 · 1010
Charge Q 3.22 nC

Length (rms) σz 9 mm

Beam size(rms)
σx 156µm
σy 7.8µm

Damping time τx(y) 1150 turns

Table A.3: Bunch parameters of the low energy ring of the ILC positron
damping ring.



Appendix B

Input file

Elipse_Half_Axis_a:

0.005
Elipse_Half_Axis_b:

0.005
Maximum_discretisation_points_in_each_coordinate_direction:

Nx_max

200
Ny_max

200
Nz_max

81
x_Axis

-0.005 s 31 -0.001 s 20 0.001 s31 0.005

y_Axis

-0.005 s 51 -0.0001 s 40 0.0001 s 51 0.005

BOUNDARY

Circlexy

Circlexy

Circlexy

Circlexy

Dirichlet

Dirichlet

SOLVER:_MG,_MGCG,_CG,_SOR,_BiCG,_BiCGSTAB,_PCBiCG

BiCGSTAB

DISCRETIZATION:_equi:0;non-equi:1

1
NUM_ERROR:

1.e-6
TESTEXAMPLE:

_1:sin,_2:exp(16..),_3:cos_4:sphere,_5:Analitic,_6:Interaction
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Theses

1. The incoherent (head-tail) effect on the bunch due to the interaction
with electron clouds (e-clouds) leads to a blow up of the transverse
beam size in storage rings operating with positively charged beams.
Even more the e-cloud effects are considered to be the main limiting
factor for high current, high-brightness or high-luminosity operation of
future machines.

2. MOEVE PIC Tracking is a Particle In Cell program created during this
work for tracking both relativistic and nonrelativistic charged particle
distributions under the influence of external electromagnetic fields and
their own space charge fields.

3. The space charge field of a particle distribution computed in a beam
pipe is strongly influenced by the shape of the boundary and the type
of boundary conditions applied in the numerical computation. MOEVE
PIC Tracking features the possibility to define an elliptical cross-section
of the conducting beam pipe which is approximated as perfect electrical
conductor (PEC).

4. The tracking results of the MOEVE PIC Tracking are in accordance with
the results of other established particle tracking programs (i.e. ASTRA
and GPT).

5. MOEVE PIC Tracking simulates the interaction of relativistic bunches
with nonrelativistic electron clouds in a beam pipe with or without an
external magnetic field of a dipole or quadruple magnets.

6. At each time step of the interaction simulation, the space charge fields
are computed in parallel, for the electron cloud in the laboratory frame
and for the relativistic bunch in its rest frame.

7. For beam energies of GeV order the own magnetic and the electric forces
cancel each other. Hence the only force that affects the bunch particles
during the interaction is the space-charge force of the e-cloud. During
the interaction the electrons experience the own and the space-charge
force from the beam.

8. During the interaction electrons near the beam axis oscillate in the trans-
verse plane due to the potential of the bunch and the repelling own



space-charge force. The oscillation depends on the longitudinal charge
profile of the bunch.

9. During the interaction in a drift space the e-cloud concentrates on the
beam axis. Inside a dipole magnet the e-cloud concentration forms verti-
cal stripes left and right of the beam axis which could lead to a coupling
of the vertical betatron motion with the synchrotron motion of the bunch
particles.

10. The simulations with MOEVE PIC Tracking show a characteristic in-
crease of the coherent vertical tune due to the interaction with e-clouds.

11. Simulations with transversally displaced longitudinal parts of the bunch
demonstrated the head-tail coupling between the bunch part perturbing
the cloud and the following bunch parts.

12. The wake field due to the beam - e-cloud interaction can not be treated
as a function of the distance between the excitation and the part of the
bunch receiving the kick. The wake field modelling the beam - e-cloud
interaction should be a two variable function of the position of both the
excitation and the part of the bunch receiving the kick.

13. The numerically pre-computed transverse wake due to the interaction
with the e-cloud has to be a wake matrix which can be extracted from a
series of detailed beam - e-cloud interaction simulations with MOEVE
PIC Tracking. Thereby, the 3D bunch is longitudinally divided into a
number of slices. At each interaction simulation a single slice which
has a transverse displacement respective to the other slices, induces a
transverse kick from the e-cloud on the following slices.

14. In order to apply the computed wake matrix for the bunch tracking
it is necessary to assume properties of the wake field such as linearity,
superposition and time invariance.

15. In order to estimate the stability of a single bunch interacting with e-
clouds it needs to be tracked over the time of at least one synchrotron
period. The wake kick from the e-cloud is applied lumped at each turn
of the bunch in the storage ring.

16. The tracking through the linear optics of the storage ring using the pre-
computed wake matrix for the given bunch, corresponding the beam
scrubbing run at PETRAIII, was able to predict the instability. As in
the measurements the simulation for e-cloud densities above threshold
show also sidebands in the betatron tune spectra.



Abstract

The incoherent (head-tail) effect on the bunch due to the interaction
with electron clouds (e-clouds) leads to a blow up of the transverse beam
size in storage rings operating with positively charged beams. Even more the
e-cloud effects are considered to be the main limiting factor for high current,
high-brightness or high-luminosity operation of future machines. Therefore
the simulation of e-cloud phenomena is a highly active field of research. The
main focus in this work was set to a development of a tool for simulation of
the interaction of relativistic bunches with non-relativistic parasitic charged
particles. The result is the Particle-In-Cell Program MOEVE PIC Tracking
which can track a 3D bunch under the influence of its own and external
electromagnetic fields but first and foremost it simulates the interaction
of relativistic positively charged bunches and initially static electrons. In
MOEVE PIC Tracking the conducting beam pipe can be modeled with an
arbitrary elliptical cross-section to achieve more accurate space charge field
computations for both the bunch and the e-cloud. The simulation of the
interaction between positron bunches and electron clouds in this work gave a
detailed insight of the behavior of both particle species during and after the
interaction. Further and ultimate goal of this work was a fast estimation of
the beam stability under the influence of e-clouds in the storage ring. The
standard approach to simulate the stability of a single bunch is to track the
bunch particles through the linear optics of the machine by multiplying the
6D vector of each particle with the transformation matrices describing the
lattice. Thereby the action of the e-cloud on the bunch is approximated by a
pre-computed wake kick which is applied on one or more points in the lattice.
Following the idea of K.Ohmi the wake kick was pre-computed as a two
variable function of the bunch part exiting the e-cloud and the subsequent
parts of a bunch which receive a transverse kick from the e-cloud. A series of
detailed interaction simulations with MOEVE PIC Tracking resulted with a
pre-computed wake matrix for the given bunch and e-cloud parameters which
was applied in the tracking through the linear optics of the storage ring.
The results from the simulations for the two storage rings (KEKB-LER) and
PETRAIII are encouraging that the new procedure can be applied for a fast
estimation of e-cloud effects on the beam for any current and future storage
ring machines with positively charged bunches.



Zusammenfassung

Der inkohärente (Head-Tail) Effekt auf den Bunch, der durch die Wech-
selwirkung mit Elektronen-Wolken (e-Clouds) hervorgerufen wird, führt
zu einer Vergrößerung der transversalen Strahlgröße in Speicherringen, die
mit positiv geladenem Strahl betrieben werden. Effekte durch e-Clouds
gelten als der bedeutendste limitierende Faktor für den Betrieb zukünftiger
Maschinen mit hohen Strömen, hoher Brightness oder hoher Luminosität.
Deshalb ist die Simulation von e-Cloud-Phänomenen ein sehr aktiver Bereich
der aktuellen Forschung. Der Schwerpunkt dieser Arbeit war die Entwick-
lung eines Werkzeugs zur Simulation der Wechselwirkung relativistischer
Teilchen-Bunche mit nicht-relativistischen geladenen parasitären Teilchen.
Das Ergebnis ist das Particle-In-Cell-Programm MOEVE PIC Tracking, das
prinzipiell einen 3D Bunch unter dem Einfluss von eigenen und externen
elektromagnetischen Feldern verfolgen kann. In erster Linie simuliert es
jedoch die Wechselwirkung relativistischer positiv geladener Bunche mit
zunächst statischen Elektronen. In MOEVE PIC Tracking wird das lei-
tende Strahlrohr mit beliebigem elliptischen Querschnitt modelliert, um
genauere Raumladungsfeldberechnungen sowohl für den Bunch als auch
für die e-cloud zu erreichen. Die Simulation der Wechselwirkung zwischen
Elektronen-Wolken und Positron-Bunchen in dieser Arbeit ermöglichte
einen detaillierten Einblick in das Verhalten von beiden Teilchen-Spezies
während und nach der Wechselwirkung. Weiteres und ultimatives Ziel dieser
Arbeit war eine schnelle Abschätzung der Strahlstabilität unter dem Einfluss
von e-clouds im Speicherring. Der Standard-Ansatz, um die Stabilität
eines einzelnen Bunches zu simulieren ist, die Teilchen-Bunche durch die
lineare Optik der Maschine zu verfolgen. Dazu wird der 6D Vektor jedes
Teilchens mit den Transformationsmatrizen, die das Lattice beschreiben,
multipliziert. Die Wirkung der e-Cloud auf den Bunch wird hierbei von
einem vor-berechneten Wake-Kick approximiert, der dann an einem oder
mehreren Punkten im Lattice angewendet wird. Einer Idee von K. Ohmi
folgend wurde der Wake-Kick als 2D Wake-Funktion des Bunch-Teils, der
die e-Cloud anregt und der nachfolgenden Teile des Bunches, die einen
transversalen Kick von der e-Cloud erhalten, vorberechnet. Eine Reihe von
detaillierten Wechselwirkungssimulationen mittels MOEVE PIC Tracking
resultierten in der vorberechneten Wake-Matrix für den gegeben Bunch und
gegebene e-Cloud-Parameter, die dann beim Tracking durch die lineare Optik
des Speicherrings angewendet wurde. Die Ergebnisse der Simulationen für
die zwei Speicherringe KEKB-LER und PETRAIII zeigen, dass das neu
entwickelte Verfahren für eine schnelle Abschätzung von e-Cloud-Effekten
auf den Strahl für alle aktuellen und zukünftigen Speicherringe mit positiv



geladenen Bunchen angewendet werden kann.






