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The cover picture is the truncated icosahedron by Luca Pacioli, De divina proportione,

1509, on page XXIIII. The truncated icosahedron is the geometric structure underlying

the stressosome protein complex, and which provides the basis of the cellular automata

developed in Chapter 3 and Chapter 4.



Ich wollte ihn auf die Probe stellen: “und was ist Zwei mal Zwei?” Er: “Der Lügner
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würde sich äußern: Logarithmus 10 000 oder so.”

“Wie wäre es mit 4”, schlug ich verächtlich vor.

“Das sind die ausgesprochenen Fanatiker. Klavki! Rationalismus ist: Wahrheitskonsum.”

Der Wolkenhändler, Klavki
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Abstract

The bacterium Bacillus subtilis lives in the environmentally diverse soil habitat. Various

stresses challenge B. subtilis, and its stressosome is one of the sensors for physical and

chemical insults. This pseudo-icosahedral complex is composed of three protein classes:

1) the sensor RsbR, 2) the scaffold RsbS, and 3) the kinase RsbT. Stimulation of the

stressosome modifies its phosphorylation patterns and protein interactions, and results in

the dissociation of RsbT. Cytoplasmic RsbT activates an additional cascade, ultimately

releasing the general stress response transcription factor σB. Biochemical and molecu-

lar biological experiments have identified the reactions and interactions of the proteins,

but these techniques are currently unable to identify structure-related functions. By con-

trast, computational models can consider the geometry of the stressosome, but despite

this advantage, no such model exists for the stressosome. Using cellular automata, I

introduce here the first computational models for the stressosome. Futhermore, the icosa-

hedral structure enables the construction of a geometric model by modular origami folding

that highlights motions within icosahedral structures. The conditions associated with the

release of σB are amenable to ordinary differential equation models, which I used to re-

produce the dynamics of a reporter protein. My analysis shows that different stimuli are

processed identically, suggesting their identical perception. Theoretical reproduction of

the dynamics of a reporter protein show that the proteolytic decay of the reporter protein

is part of the σB-mediated general stress response, which was confirmed by subsequent

experiments. The thesis confirms the activation effect of RsbR-P on the kinase activity

of RsbT and the preferential dephosphorylation of RsbS-P over RsbR-P by RsbX. The

Collapse Hypothesis suggested in this thesis, concerns information transmission between

RsbR and RsbT and suggests a coordinated motion of three dimers. The modelling pro-

cess emphasizes an activation loop for RsbT that disconnects the duration of response

from that of the stimulus. Overall, the new insights enhance our understanding of the σB-

mediated general stress response and raise our awareness of the environmental integration

of B. subtilis.





Zusammenfassung

Das Bakterium Bacillus subtilis lebt im Boden und ist dort verschiedenen Umweltreizen

ausgesetzt. Ein Teil dieser Reize wird durch das Stressosom aufgenommen. Diese komplexe

Struktur von pseudo-ikosahedraler Geometrie besteht aus drei Proteinklassen: 1) dem Sen-

sor RsbR, 2) dem Gerüstprotein RsbS und 3) der Kinase RsbT. Durch Stimulation des

Stressosoms verändert sich sein Phosphorylierungsmuster, was die Interaktionen der Pro-

teine verändert und zur Dissoziation von RsbT führt. Das frei-werdende, cytoplasmatische

RsbT aktiviert eine weitere Signalkaskade, die schließlich zur Freisetzung des Transkrip-

tionsfaktors σB und zur allgemeinen Stressantwort führt. Durch biochemische und mo-

lekularbiologische Ansätze konnten die Reaktionen und Interaktionen aufgeklärt werden,

jedoch sind diese Techniken ungeeignet, Informationen zu strukturbezogenen Funktionen

zu liefern. Obwohl im Gegensatz mathematische Modelle die Geometrie des Stressosoms

berücksichtigen können, gab es bisher noch kein Modell zum Stressosom. In dieser Ar-

beit stelle ich die ersten rechnerbasierten Modelle zum Stressosom auf Basis zellulärer

Automaten vor. Zusätzlich kann dessen ikosahedrale Struktur durch ein geometrisches

Model auf Basis von Origammi-Falttechniken reproduziert werden, was Informationen zu

Domänenbewegungen liefert. Die Bedingungen der Freisetzung von σB erlauben die An-

wendung von Differentialgleichungen, mit denen ich die Dynamik eines Reporterproteins

nachvollziehe. Meine Analysen zeigen, dass unterschiedliche Signale identisch verarbeitet

werden, was nahelegt, dass diese Signale auch identisch aufgenommen werden. Die theore-

tische Reproduktion einer Reporterproteindynamik zeigt, dass der proteolytische Abbau

des Reporterproteins Teil der σB induzierten allgemeinen Stressantwort ist, was durch

nachfolgende Experimente bestätigt wurde. Die vorgestellte Kollapshypothese beschreibt

den Informationstransfer zwischen RsbR und RsbT, und legt eine koordinierte Bewegung

von drei Proteindimeren nahe. Die Modellierungsarbeiten verdeutlichen eine Aktivierungs-

schleife von RsbT, die eine Trennung der Dauer der Stressantwort von der Signaldau-

er bewirkt. Damit stellt diese Arbeit neue Erkenntnisse zur σB-induzierten allgemeinen

Stressantwort vor und vertieft unser Verständnis der Umweltanpassung von B. subtilis.





Theses

Ulf W. Liebal, Regulation of the general stress response of Bacillus subtilis

Major new insights

1. Different stressors activate the stressosome signalling protein complex identically.

Thus, according to the stressosome, a stress of 3% ethanol is as stressfull as

488mM of NaCl.

2. Structures of truncated icosahedra (vertices as proteins) allow a characteristic

collapse of three dimers. This collapse hypothesis of stressosome activation

explains the information transfer from the stress sensor to the output protein.

3. Discrimination of differential equation models of the general stress response

suggests a protease that degrades the reporter protein. This protease model

reproduces the stimulus-independent transient activation of the stress response.

Independent confirmation of knowledge

1. Geometric models show that truncated icosahedra are optimally constructed from

dimers. In these models, sixty tetrahedra coincide in their structural arrangement

with the arrangements of proteins in the stressosome.

2. A cellular automaton confirms the stimulating effect of phosphorylated RsbR on

the kinase activity of RsbT by reproducing different experimental data sets.

3. The fit of the cellular automaton of the stressosome to experimental data is

optimal, if the phosphatase RsbX is specific for RsbS-P during low and medium

stress, and dephosphorylation of RsbR-P is magnitudes lower.

4. Stress reception of the stressosome leads to structural changes and the activation of

a signalling molecule. The slow deactivation of the stressosome repeatedly activates

the signalling molecule and decouples the reponse from the signal duration.
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AbrB ambiactive repressor

AprE alkaline protease

B. subtilis Bacillus subtilis

Bpr bacillopeptidase

CCMV cowpea chlorotic mottle virus
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Clp(C/P) caseinolytic protease
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cryo-EM cryo electro-microscopy
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Fts(W/Z) filamentous temperature sensitive

Hpr histidine containing protein

IPTG isopropyl β-D-1-thiogalactopyranoside

Kin(A/B/C/D/E) sensor histidine kinase

lacZ β-galactosidase mRNA

LOV domain light-oxygen-voltage

MCP methyl accepting chemotaxis protein
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ODE ordinary differential equation
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Rap(A/C) receptor aspartyl phosphatase
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Chapter 1
Introduction

Knowledge of bacteria equals knowledge of life. The eminent microbiologist

Moselio Schaechter muses in his research blog on the effect of the extermination of multi-

cellular life by an asteroid [Schaechter 2012]. The community (presumably microbiologists)

agrees that prokaryotes would experience comparably minor effects, and over time, a

multi-cellular biosphere, as we witness today, would eventually re-evolve. Life on earth is

predominantly prokaryotic (bacteria and archaea) in terms of biomass and environmental

distribution [Whitman et al. 1998]. Bacteria are virtually everywhere: they have colonized

the hydrothermal vents in the deep sea [Hugenholtz et al. 1998], the dry and frigid valleys in

Antarctica [D’Amico et al. 2006], and even the metazoan bodies, where they are pursued

by the immune system [Willing et al. 2011]. Indeed, given this wide distribution and

environmental tolerance, an asteroid impact would have little effect on the bacterial world.

What is the source of the bacterial success? Among the characteristics of bacteria is the

ability to survive in harsh environments, as well as the capacity to respawn rapidly in

favorable conditions. This thesis focuses on the bacterial stress response, particularly the

molecular mechanisms that allow them to adapt to environmental challenges. Of course,

the number of bacterial species is innumerable and all are subjected to different challenges

so that any choice might appear arbitrary. However, only a few species are accessible

to lab experiments and are therefore characterised well enough to provide the requisite

knowledge for mathematical modelling.

1.1. The model organism Bacillus subtilis

One of the outstanding bacterial species in terms of knowledge and experi-

mental accessibility is Bacillus subtilis. This organism belongs to the Firmicute phy-

lum with positive Gram staining and low G-C, and is a member of the subtilis-licheniformis

group in the Bacillus genus [Barbe et al. 2009; Rey et al. 2004]. Members of this group

1



1. Introduction

are heterotrophic and can be found in diverse environments such as the soil, plant roots,

leaves, bird feathers, and the gastro-intestinal tract of animals [Barbe et al. 2009; Earl

et al. 2008; Rey et al. 2004]. The ubiquitous presence of this bacterium is due to its ability

to form spores, highly resistant dormant cells [Earl et al. 2008]. Another distinguishing

phenotype of B. subtilis is competence that enables the organism to assimilate and inte-

grate the DNA of closely related Bacillus strains. In addition to enabling the exchange of

mutational innovation in a colony during stress, competence has been particularly useful

for the genetic manipulation of B. subtilis. The ease of cultivation, genetic accessibility,

and non-pathogenic nature of B. subtilis combined with its agricultural applicability makes

it one of the best-studied model organisms, second only to Escherichia coli. Indeed, the

complete genomes of both these outstanding model organisms were published in 1997 after

10 years of sequencing [Blattner et al. 1997; Kunst et al. 1997]. This wealth of genomic

information spurred the identification of transcriptional and regulatory networks [Fadda

et al. 2009; Goelzer et al. 2008]. In Chapter 2, I provide a review of how mathematical

modelling has been used to harvest this knowledge and how computational approaches

have contributed to our understanding of signalling.

1.2. Phenotypes for environmental adaptation

B. subtilis is equipped with several behavioural strategies, most notably

motility, matrix production, competence, sporulation, and the general stress

response [López et al. 2008]. This diversity of response strategies reflects the diversity

of the environmental changes experienced by the organism. B. subtilis is subjected to rela-

tively abrupt temperature variations of up to 20 ◦C during the day-to-night shifts, and the

summer/winter seasons impose an enormous temperature difference of 40 ◦C. When rain

showers flood the surroundings, the osmotic gradient between cell and soil can increase

perilously, leading to osmotic-driven water inflow, swelling, and eventually cell disruption.

To maximise survival during these challenges, a B. subtilis colony becomes phenotypically

heterogeneous, with the organism beting on the best response [Dubnau and Losick 2006;

Veening et al. 2008a,c]. This phenotypic diversity was visualised for colonies in Petri dish

micro-environments, and the illustration in Figure 1.1 summarizes the findings [López and

Kolter 2009; Vlamakis et al. 2008]. This illustration represents the locations of the four

major phenotypes of growth of B. subtilis after about 70 h of incubation.

The motility phenotype is characterised by cells that are loosely integrated into an

extracellular matrix. These cells produce flagella and can move to locations with better

conditions. Movement is energy intensive and thus sufficient food sources must be available

[López et al. 2008; Shioi et al. 1980]. Figure 1.1 simplifies the findings of Vlamakis et al.

[2008] who found motility predominantly at locations rich in food, such as the colony-

2



1.2. Phenotypes for environmental adaptation

Figure 1.1.: Location-dependent phenotypes of a B. subtilis biofilm in a Petri dish. The
photo at the top depicts a biofilm after 72 h of incubation (adapted from [Vlamakis
et al. 2008]; black scalebar: 1 cm). The spatial location of the phenotypes is taken
from López and Kolter [2009] with the exception of the σB, which is hypothetical. The
microscopic images of motility, matrix, and sporulation are extracted from López et al.
[2008], whereas that of σB is adapted from Locke et al. [2011].

medium interface. By contrast, matrix producing cells are immobile, they excrete polymers

to provide the colony with integrity [Vlamakis et al. 2008]. The illustration in Figure 1.1

indicates that the matrix producers are predominantly distributed in the colony center

[Vlamakis et al. 2008]. In the colony, matrix production is a requisite for the development

of sporulation [Aguilar et al. 2010]. Sporulation is induced following severe starvation and

high cell densities [Sonenshein 2000]. The resulting endospores are small dormant cells

surrounded by a mother cell, as shown by the microscopic images from López et al. [2008]

in Figure 1.1. The fourth phenotype shown in Figure 1.1 is the general stress response

mediated by the transcription factor σB. Strictly, it is not a separate phenotype, as cells

with activated σB are difficult to distinguish from those with silenced σB. However, σB

inhibits other phenotypes like sporulation [Reder et al. 2011] and there are as many genes

activated by σB as for chemotaxis or matrix producers [Helmann et al. 2001; Nannapaneni

et al. 2012; Petersohn et al. 2001; Price et al. 2001]. σB is activated by various non-fatal

stresses like ethanol, salt, or UV- and infrared light [Hecker et al. 2007; van der Horst et al.

2007]. While there are no studies regarding the localisation of σB expression in a colony, I

added putative locations based on the available knowledge regarding σB activation. The

upmost region appears likely, as the light intensity and oxygen concentration is highest

there, and the food source is far, but the cells are not as stressed as in the center of the

colony where sporulation dominates.

3



1. Introduction

Figure 1.2.: B. subtilis (blue rods) is abundant in the soil and needs to adapt to a variety
of challenges. The stressosome (pink icosahedron) is sensitive to light, ethanol, and
salt stresses, among others, and activates the transcription factor σB (green star). σB

induces expression of stress-protective genes (red, stripe-filled oval) with an eventual
adaptation to the challenge.

1.3. The σB-induced general stress response

Environmental changes usually trigger alterations in the proteome and changes

in the phenotype to ensure the optimal subsistence of an organism (Figure 1.2)

[Buescher et al. 2012; Nicolas et al. 2012]. The σB response is activated in response

to non-life-threatening conditions. Two proteins, RsbU and RsbP, feed either environmen-

tal or energy stress signals to the σB network [Völker et al. 1995b]. This thesis focuses on

σB activation by environmental stresses via RsbU. In this context σB activation can be

summarized by the following four steps [Hecker et al. 2007]:

1. Activation of the stressosome,

2. Release of an enhancement protein,

3. Release of the transcription factor σB,

4. Adaptation of the organism.

The stressosome of Step 1 is a signalling hub, targeted by different stimuli [Marles-Wright

and Lewis 2007]. However, with the exception of light, the environmental stimuli are

believed to activate intermediary sensors, which then transmit the signal to the stressosome

[Marles-Wright et al. 2008]. These sensors stimulate phosphorylation reactions on the

stressosome [Gaidenko et al. 1999], causing the enhancer protein RsbT to dissociate from

the stressosome and become available in the cytoplasm (Figure 1.3) [Marles-Wright and

Lewis 2007]. The stressosome is a highly symmetric protein complex with proteins in static
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1.3. The σB-induced general stress response

Figure 1.3.: Scheme of the investigated signalling pathway of the σB-induced general
stress response. Light and ethanol (EtOH) induce the dissociation of the enhancement
protein RsbT (star) from the stressosome (icosahedron). Cytoplasmic RsbT activates
RsbU which in turn dephosphorylates RsbV. Desphosphorylated RsbV induces the re-
lease of the transcription factor σB from RsbW. Subsequently, σB stimulates the expres-
sion of several proteins, among them RsbX, a phosphatase that resets the stressosome
to its pre-stimulus level, β-galactosidase, a protein used to monitor σB activity, and
PaseX, an unidentified protease of β-galactosidase found in the context of this thesis.

positions. Cellular automata are ideal to represent these properties, as they can include the

spatial information. Kinetic modelling is inferior for the stressosome, because is requires

more complex partial differential equations to represent space, and each protein interacts

with a limited number of proteins that may or may not be phosphorylated; therefore, the

phosphorylation status cannot be approximated by a real number. Current experimental

techniques are ill-suited to characterise the effect of interactions in a given geometric

structure. This hinders the process of formulating and testing mechanistic hypotheses.

An alternative way is to generate hypotheses via computational modelling and to probe

their effects in silico. In Chapter 3, I introduce a model of stressosome activation that is

based on the dynamics of single proteins in the stressosome. Although the proteins form

dimers, their treatment as monomers in the simulation allows for a broad reproduction

of published experimental data. In a second model, introduced in Chapter 4, I assume

triangles of dimers as the basic functional unit because this structure appears to be an

important geometric property of truncated icosahedra. These models integrate the current

knowledge of reactions in the stressosome and allow the testing of new hypotheses.

σB, and the related SpoIIA network, are regulated by a characteristic mechanism called

‘partner switching’ [Hecker and Völker 2001; Hecker et al. 2007; Price 2002]. The partner

switching occurs twice during signal transduction in σB activation: first, RsbT switches
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1. Introduction

between its partners RsbS in the stressosome and RsbU; second, RsbW switches between

its partners RsbV and σB. Indeed, both partner switching modules are related; RsbT is

homologous to RsbW, and RsbS is homologous to RsbV [Yang et al. 1996]. Figure 1.3

reflects the reactions of the general stress response in greater detail. During stress-free

conditions, the enhancement protein RsbT (star) is inhibited by its partner RsbS in the

stressosome (icosahedral icon), and the transcription factor σB is inhibited by its partner

RsbW. Upon stress stimulation, e.g. by light or ethanol, RsbT dissociates from RsbS into

the cytoplasm and associates with its second partner, the phosphatase RsbU. RsbU is

activated by RsbT, resulting in the increased dephosphorylation of RsbV. Because non-

phosphorylated RsbV binds very efficiently to RsbW, RsbW switches σB for RsbV. This

partner switch releases σB and enables the re-organisation of the proteome.

A change in the environment is usually accompanied by a change in cellular consti-

tution [Gottesman 2003]. New proteins are transcribed and replace previous ones. The

transcriptional activity of σB is measured using a reporter gene with a promoter contain-

ing a σB binding sequence. One of the most common reporter genes is lacZ, encoding

the β-galactosidase protein. However, the B. subtilis β-galactosidase is not σB dependent.

To enable its use, the promoter of the σB-dependent gene ctc was cloned upstream of a

heterologous lacZ [Benson et al. 1989]. The antagonistic process to transcription is pro-

teolysis, an essential ingredient to adjust the cellular proteome, especially during stress.

Price et al. [2001] detected the up-regulation of five proteases following the stimulation of

the general stress response by ethanol and salt. Later, ClpP was added to the list of σB

affected proteases [Reeves et al. 2007]. Analyses of experimental data become problematic

if the reporter protein is subjected to both synthesis and proteolysis.

However, the joint effects of synthesis and proteolysis on σB-induced β-galactosidase

expression is the ultimate conclusion in a series of experiments described in Chapter 5.

These experiments were performed in a strain in which the expression of σB can be ex-

ternally controlled by the addition of isopropyl β-D-1-thiogalactopyranoside (IPTG, a

non-metabolizable sugar derivative). Because IPTG is a stable chemical compound, a

continuous expression of the σB-dependent β-galactosidase reporter gene was expected.

Strikingly, β-galactosidase activity decreases at a time during which IPTG is still avail-

able. The timing and rate of the decline both depend upon the ambient IPTG concentra-

tion. After formulating different hypotheses and testing them in silico, it was found that

only a model representing the degradation of β-galactosidase by a σB-dependent protease

could conclusively reproduce the data. Subsequent experiments confirmed this σB-related

instability, though the protease remains unidentified.
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1.4. The truth of numbers

B. subtilis is well-studied, and has stimulated the application of mathematical modelling;

I discuss the diversity of mathematical studies related to signalling in Chapter 2. The in-

triguing environment-specific phenotypes of B. subtilis are difficult to explain by reducing

the arguments to only a few molecular players; therefore mathematical modelling and

simulation played an important role early on. Sporulation, competence, and also chemo-

taxis are prominent examples of remarkable developmental and signalling processes apart

from which the general stress response appears unspectacular. This moderate phenotype

change is probably the reason for the late discovery of the σB-mediated general stress

response in the early 90’s of the past century [Benson and Haldenwang 1992; Kalman

et al. 1990], with major insights into the mechanism being achieved only in the first years

of the 21st century [Hecker and Völker 2001; Price 2002]. Mathematical modelling of σB

began in 2007 [Igoshin et al. 2007], with a second model published in 2011 [Locke et al.

2011]. The stressosome is a fascinating complex; however, details of its construction and

function remained vague even longer, until 2008, when its structure was eventually solved

[Marles-Wright et al. 2008].

1.4. The truth of numbers

In the opening quote of this thesis the writer Klavki asks: “what is two

times two?” His friend replies, “the liar would claim it to be five - the neutral one would

say neither two nor five - the cautious esoteric would offer something like the logarithm

of 10 000.” Klavki then suggests ‘4’, but the friend reacts with a scornful remark. What

happened? Imagine that ‘4’ is our observation and we want to explain its origin. We start

to prepare a model, for example, ‘2 + 3’, and simulate it using the ‘=’ sign. The result

for that model is ‘5’, which is false, as also stated in the quote. We improve our model

to ‘2 + 2’, which gives us ‘4’. Although this is correct, it does not truly explain our data.

Presumably, we get new insights, and perhaps we can better predict experimental results,

but, just like any model, ‘2 + 2’ is a simplification, and an abstraction. We can identify

an infinite number of mathematical expressions/models, such as ‘log10 10 000’, that suit

our observation(s), but mathematics is just the tailor to coat reality [Leach 2011]. The

quote implies that anyone who is content with a correct result will miss the fantastic part.

An opposing but equally esoteric view purports the mathematical universe hypothesis:

every piece of reality is math and we are getting increasingly better in approximating it

[Tegmark 2008]. Whichever claim approximates reality closer, ‘mathematics is biology’s

next microscope, only better’ [Cohen 2004].

Like many interdisciplinary sciences, systems biology was not invented but instead it

developed over a long period. Systems biology draws heavily on enzyme kinetics; thus,

the mathematical interpretations of enzyme catalysed reactions can be regarded as its
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first step. One of the most celebrated enzyme equations is the Henri-Michaelis-Menten

equation, formulated in its most general representation by Briggs and Haldane in 1925

[Briggs and Haldane 1925]. The theory of enzyme activity expanded to include inhibition

and activation effects and also the description of multi-enzyme complexes and allostery

using the Monod-Whyman-Changeaux (Concerted) or the Koshland-Nemethy-Filmer (Se-

quential) models [Bisswanger 2002; Segel 1993]. The term ‘systems biology’ was coined

in 1968 by Mesarović [1968]. Both enzyme kinetics and systems biology study temporal

changes in variables of interest. In contrast to specific enzyme kinetics, systems biology

considers a network of interacting variables [Wolkenhauer and Mesarović 2005]. These

different interactions can be combined in different motifs and associated with different

dynamic effects [Tyson et al. 2003], but they critically depend on the supplied parameter

values [Adiwijaya et al. 2006].

Prokaryotes feature some of the most successful applications of systems biology in terms

of methodology and experimental reproduction. A prime example is E. coli, very likely

the best studied organism. Our knowledge of transcriptional regulation dates back to

Jacob and Monod [1961] and their study of the lacZ operon in E. coli. This system is

so well known that it is routinely used as a reporter protein to monitor promoter or

transcription factor activity [Serebriiskii and Golemis 2000], as in the case of the general

stress response used throughout this thesis. The lacZ system remains a source of wonder

due to, for example, its ability to display bistability [Santillán and Mackey 2008], the

effects of noise and its role in population heterogeneity [Roberts et al. 2011], and the un-

anticipated degradation of β-galactosidase that I report in Chapter 5. Knowledge of the

metabolism of E. coli was central in the development of flux balance- and constraint-based

model approaches [Reed and Palsson 2003; Varma and Palsson 1994], culminating in the

development of the E. coli genome-scale metabolic network [Edwards and Palsson 2000]

and eventually that of B. subtilis [Oh et al. 2007]. Signalling was investigated early on

in bacteria because the topologies appear simpler. A good example is chemotaxis, the

directed movement of flagellated bacteria in gradients of substrates or repellents. The

signalling for this process is based on sensors arranged as hexamers on the cell membrane,

and involves phosphorylation/dephosphorylation cycles and allosteric interactions. Tindall

et al. [2008] wrote a thorough review on mathematical approaches to chemotaxis, and in

Chapter 2, I survey the applications of these approaches to B. subtilis. The structural

complexity of chemotaxis is similar to that of the stressosome. Both contain hexameric

structures, and allosteric interactions are likely to play important roles in both, as I

discuss in Chapters 3 and 4. The signalling in chemotaxis is based on two-component

systems (TCS). TCS are long been known as bacterial signalling mechanisms connecting

the environment to gene expression [Mitrophanov and Groisman 2008]. A good amount of

knowledge about dynamic properties of the TCS was generated by mathematical analysis
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[Alves and Savageau 2003; Igoshin et al. 2008; Kierzek et al. 2010; Mitrophanov et al.

2010]. In this thesis, I focus on the lesser known partner-switching mechanism for gene

expression control.

1.5. Aims and outline

A sizeable number of bacteria organise the stress response using σB [de Been

et al. 2011; Hecker et al. 2007; Pane-Farre et al. 2005]. Among them are human

pathogens such as Listeriamonocytogenes, in which the expression of virulence genes is re-

ported to be controlled by σB [Shin et al. 2010; Stavru et al. 2011]. A better understanding

of σB will also shed light on the activation of sporulation because 1) a central mechanism of

sporulation (SpoIIA) functions via a σB-like partner switching mechanism [Kalman et al.

1990], and 2) the activation of σB inhibits sporulation [Reder et al. 2011]. It is clinically im-

portant to control sporulation, as the virulence of many pathogens, e.g. Bacillus anthracis,

is spore-associated.

Two limitations challenge the full understanding of the σB network: 1) the sensitivity

of reactions of the stressosome with respect to the structure, and 2) the almost com-

plete reliance on lacZ reporter fusions. Relationships between structure and reaction

dynamics are hard to elucidate using biochemical, molecular, or microbial experimental

techniques; therefore, knowledge is also limited. Systems biology is a suitable way to

complement deficiencies in experimental approaches because it enables us to formulate

hypotheses about interactions and to predict their measurable differences. The reliance

on the β-galactosidase reporter system is understandable, given its experimental ease. If

the reporter system used is itself regulated by the transcription factor under study, then

care must be taken in the analysis of results. The results presented in this thesis are listed

in detail below.

• Chapter 2, entitled ‘Models for B. subtilis’, offers a survey of mathematical mod-

els dealing with environmental signalling, in order to enable the integration of my

research into the field. The overview illustrates the routine use of B. subtilis for

modelling, but also indicates the low coverage of the σB module and the absence of

models for the stressosome. This work is adapted from the publication Liebal et al.

[2010].

• Chapter 3, entitled ‘Stressosome simulation I: Monomer interactions’, focuses on the

impact of the stressosome structure on the initial activation of the general stress

response. No reliable information is available about the interactions of monomers in

the stressosome. I modelled different hypotheses concerning monomer interactions
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computationally, and one of these hypotheses reproduces a large number of published

experiments. This work is being published as Liebal et al. [2013].

• Chapter 4, entitled ‘Stressosome simulation II: Shape transitions’, introduces the

hypothesis that molecular movements within the structure play key roles in the

activation of the signalling events. Different model types (geometric-paper, particle-

dynamics, and cellular-automaton) highlight preferred domain-movements and their

effects on the activation dynamics of the stressosome.

• Chapter 5, entitled ‘σB-induced proteome reorganisation’, presents a successful model-

experiment-cycle. Three models, based on ordinary differential equations, are com-

pared regarding their consistency with the experimental observations. The conclu-

sions of the simulations were confirmed by subsequent experiments. This work has

been published in Liebal et al. [2012], and reproduced by permission of the Royal

Society of Chemistry.

• Chapter 6, entitled ‘Final remarks’, briefly summarizes my results and places them

in the context of research into the general stress response, and discusses their con-

tribution in our understanding of signalling and environmental responses.

Figures and Matlab files are included in a separate CD, and available for download in the

Resource section of www.sbi.uni-rostock.de, named ‘Liebal thesis-data.zip’
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Chapter 2
Mathematical models for Bacillus subtilis

In this chapter, I summarise recent results and trends in the modelling

of environmental signalling systems in B. subtilis. My objective is to show how

mathematical modelling was used to provide a better understanding of cellular responses.

B. subtilis is a well characterized prokaryote and serves as a model organism for Gram-

positive bacteria. Substantial information has been gained from studies with B. subtilis

regarding the organisation of bacterial life cycles. The knowledge gained in these studies

enabled attempts of mathematical modelling of cellular processes. I have summarized this

progress recently and this chapter is modified from this publication [Liebal et al. 2010].

Particularly during the last decade, there has been increased interest in systems biology,

a discipline at the interface of experimental approaches, mathematical modelling, and

computer simulations [Wolkenhauer et al. 2003]. However, Bacilli have been investigated

in theoretical biology for a long time. In the 1970s, Sargent compared different models

for the control of cell length [Sargent 1975], which have since then been further refined

(e.g. Grover et al. [2004]; Koch [1992]). Espinosa et al. [1977] examined the acquisition

of competence in cultures, while Jeong et al. [1990] presented a mathematical model for

growth processes including sporulation and central metabolism.

2.1. Regulation of chemotaxis

The chemotactic behaviour of various organisms has been studied inten-

sively and Tindall et al. [2008] gave a thorough overview of the mathematical

approaches to simulate chemotaxis. Chemotaxis was first studied in E. coli, and the

proteins involved in this process are conserved in B. subtilis, too [Garrity and Ordal 1995].

However, the mechanisms of chemotaxis are fundamentally different between the two or-

ganisms [Bischoff and Ordal 1991; Rao and Ordal 2009]. Figure 2.1 outlines a simplified

mechanism of chemotactic signalling in B. subtilis. Signalling is based on methylation and
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2. Mathematical models for B. subtilis

phosphorylation reactions and includes the proteins CheR, CheB, CheA, and CheY. Lig-

and binding to the receptor, the methyl-accepting chemotaxis protein (MCP), stimulates

methylation of MCP by CheR. This reaction is antagonised by CheB. Methylation leads

to the activation of CheA which in turn phosphorylates CheY (CheY-P). CheY-P binds

to the flagellar motor protein FliM and reverses the spin of the flagellum from a clockwise

to a counter-clockwise rotation [Garrity and Ordal 1995]. The switching of the flagellar

rotation is associated with a transition from an erratic tumbling, to the directed movement

along the concentration gradient of the extracellular ligand. E. coli, by contrast, performs

tumbling for the counter-clockwise flagellar rotation, but smooth runs during clockwise

rotation [Garrity and Ordal 1995]. The main phosphatase of CheY-P is FliY, which is

located at the base of the flagellum. A competing phosphatase is the CheC subunit of the

CheCD heterodimer [Kristich and Ordal 2002]. The CheD subunit in the dimer deami-

nates a glutamine residue of MCP and thereby increases CheA-MCP affinity [Kristich and

Ordal 2002]. An interesting property from the modelling perspective is the adaptivity of

the chemotactic response, by which the tumbling frequency will resume its pre-stimulus

activity when the ligand level stays constant.

Rao et al. [2004] presented a mathematical model that includes the signalling mecha-

nisms of the sensor based CheY phosphorylation and the motor-based CheY-P dephos-

phorylation. The authors assumed a mechanism by which CheY-P enhances the transition

of an active to an inactive receptor conformation to explain adaptivity in B. subtilis. Rao

et al. [2004] used published data on cheBCDR quadruple mutants to evaluate the model.

These mutants display a characteristic but unexpected oscillation of the rotational pheno-

type. Rao et al. [2004] argue that the oscillation might be caused by a positive feedback

between the stimulation of CheA phophorylation by CheV and a negative feedback by

the inhibition of CheA by CheY-P. Furthermore, the authors explain the population het-

erogeneity with the sensitivity of the system to CheV. Variations in the concentration of

CheV by just a factor of two can already lead to oscillations. Rao et al. [2004] concluded

that the B. subtilis system is more robust than the E. coli system, since CheY-P steady-

state levels and the adaptation time have a higher resilience to concentration changes of

CheB and CheR. Although the regulation of the chemotactic systems of B. subtilis and

E. coli differ, the motility of both organisms is similar in effectiveness over five orders of

magnitude of stimulus concentration [Rao et al. 2004].

Interestingly, the chemotactic receptors are located at the poles, while the flagella are

evenly distributed on the cell surface. The signalling molecule CheY-P has to bridge the

distance from the poles to the flagellum motor [Szurmant et al. 2003]. Although the switch-

ing decision at a given time is stochastic, the frequency of switching is a crucial parameter

in controlling motility and is ultrasensitive to the concentration of CheY-P [Rao et al.
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2005]. Potential spatial gradients of CheY-P concentration could interfere with chemotaxis

because motors receive conflicting signals. Rao et al. [2005] compared protein localisation

in B. subtilis and E. coli using reaction-diffusion equations. The E. coli phosphatase of

CheY-P is located at the chemosensing receptor, while the B. subtilis phosphatases are

located at the receptor (CheC) as well as the flagellum motor (FliY) [Szurmant et al.

2003]. The model showed that E. coli establishes a homogeneous CheY-P concentration

throughout the cell, because kinase and phosphatase are located close to each other. By

contrast, the model predicted a linear decrease of B. subtilis CheY-P concentration with

increasing distance to the receptor. Moreover, simulations for B. subtilis indicated the

presence of circular concentration gradients at each motor base. The authors speculated

that the phosphatase network of B. subtilis optimises signal processing of both membrane-

ous and soluble receptors, similar to what has been shown for aerotaxis [Hou et al. 2000;

Rao et al. 2005].

2.2. The Spo0-phosphorelay phenotype hub

The Spo0 phosphorelay is the molecular basis for various phenotypic adap-

tation reactions such as competence, motility, biofilm formation, and canni-

balism or the return to vegetative growth [Fawcett et al. 2000; Fujita et al.

2005; López et al. 2008]. The five histidine kinases, KinA, -B, -C, -D, -E, are the

sensor proteins that activate the Spo0 phosphorelay. Various signals, such as nutritional

stress, cell density, Krebs cycle (TCC), DNA damage, and presence of extracellular ma-

trix in biofilms [Aguilar et al. 2010; Claverys and H̊avarstein 2007] trigger the transfer

of a phosphate group from the kinases to the Spo0F protein [Errington 2003; Piggot and

Hilbert 2004; Sonenshein 2000]. The phosphate group on Spo0F is then relayed to Spo0B

and Spo0A. Phosphorylated Spo0A (Spo0A-P) is the response regulator that directly or

indirectly controls the expression of over 500 genes [Fawcett et al. 2000]. The Spo0A-

P regulated genes can be classified according to the affinity of their promoter region to

Spo0A-P [Fujita et al. 2005]. Promoters with high affinity are activated at early stages of

phosphorelay activation, among them genes associated with competence, cannibalism and

biofilm formation, while promoters with low affinity are only activated, once sufficiently

high levels of Spo0A-P accumulate, among them sporulation genes like the spoIIA operon

[Fujita et al. 2005].

Various groups attempted to model the processes outlined above because of the well-

characterized protein interaction network and the large body of mostly qualitative ex-

perimental data. Due to the complexity of the phosphorelay network, a prediction of its

behaviour is difficult without the help of computational analysis. While Jabbari et al.

[2010] focused on the effects of population size, nutrient availability, and DNA integrity to
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Figure 2.1.: Reaction diagram for the main signalling cascades in B. subtilis. The figure
shows the signal transduction that leads to switching of flagella rotation after binding
of a ligand (Lig) (green) [Rao and Ordal 2009], regulation of competence development
(yellow) [Hamoen et al. 2003], the switch of the response regulator DegU to DegU-P
(dark blue) [Murray et al. 2009], activation of σB-mediated general stress response (grey)
[Hecker et al. 2007], phosphorylation of Spo0A via the Spo0 phosphorelay (dark red)
[Piggot and Hilbert 2004] and the reactions in the SpoIIA network towards commitment
to sporulation (pink) [Errington 2003]. The upper part shows only interactions in the
cytoplasm while the lower part indicates the genomic interconnections of the transcrip-
tion factors (derived from DBTBS at http://dbtbs.hgc.jp). The environmental signals
that lead to the activation of KinA-E, DegS and RsbU-P are mostly unknown.
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the phosphorelay activity, de Jong et al. [2003] investigated the protein dynamics follow-

ing Spo0A-P regulation during activation. Morohashi et al. [2007] performed a stability

analysis of a simplified phosphorelay model that was extended by Bischofs et al. [2009] to

include different environmental signals and phosphatase activities. Within a given pop-

ulation the output of the phosphorelay is highly heterogeneous, enabling the population

to follow several distinct phenotypes, a finding of investigations by de Jong et al. [2010]

and Chastanet et al. [2010]. Schultz et al. [2009] also took competence into considera-

tion, which is connected to the phosphorelay reactions [López and Kolter 2009]. As an

alternative to the phosphorelay dynamics for their studies on extracytoplasmic protease

dynamics, Veening et al. [2008b] used the Spo0A regulated AbrB repressor as the input

signal.

The work by Jabbari et al. [2010] concentrated on modelling the environmental and

cellular conditions that accumulate Spo0A-P and thereby allow activation of sporulation.

Their model consists of several modules, which are the regulations of KinAB activity, the

phosphorelay, the expression of SinIR proteins, and the activity of RapA by PhrA. En-

vironmental factors stimulate KinA/B and increase the phosphorylation of Spo0A by the

phosphorelay [Sonenshein 2000]. Spo0A-P inhibits the transcription factor abrB, result-

ing in 1) an elevated expression of σH, and a subsequent increase in Spo0F and Spo0A

concentrations, 2) higher concentrations of KinB, 3) lower levels of AbrB with the subse-

quent reduction in the concentration of the transcription factor Hpr and increased SinIR

expression, and 4) a reduced level of Hpr and subsequent de-repression of opp-genes thus

increasing the role of quorum sensing by Phr proteins. The environmental signals and

cellular states that Jabbari et al. [2010] investigated are:

• population density sensed via PhrA,

• cellular nutrient and energy availability sensed via CodY-GTP,

• competence decision sensed via the level of ComA,

• condition of the DNA sensed via Sda.

The authors transformed these four cellular states into yes/no decisions and assigned a

priori whether sporulation is desirable or not. While reproducing biological knowledge at

large, the simulations contradicted with the expected response for a cell with a combi-

nation of conditions of a large population (high PhrA level), no nutrients available (no

CodY-GTP), no competence (no ComA), and damaged DNA (high Sda level). The model

predicted a delayed sporulation in the presence of damaged DNA. This delay is caused in

the model by the PhrA sporulation signal that neighbouring cells emitted. The increas-

ing PhrA signal and the nutrient limitation grew stronger in the model than inhibition
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of KinA by Sda, eventually activating sporulation. Thus, PhrA does not only act as a

quorum-sensing molecule [Bischofs et al. 2009], but also as a timer for sporulation. Jab-

bari et al. [2010] conclude that phrA and rapA transcription activation by ComA serves

to heighten the sensitivity of the phosphorelay for the input signals. Presumably, this in-

crease in phosphorelay sensitivity may cause the heterogeneity in the phosphorelay output

[Chastanet et al. 2010; de Jong et al. 2010].

Jabbari et al. [2010] tested their sporulation model for the efficiency of various environ-

mental factors to stimulate sporulation. By contrast, de Jong et al. [2003] tested their

model with the experimental data obtained from a dozen sporulation mutants. This al-

lowed the validation of the current understanding of the internal structure of the initial

sporulation network. Furthermore, the model of de Jong et al. [2003] is based on a different

modelling framework as it uses discrete time and protein concentration steps that allows

predictions about relative steady-state concentrations. The differences in simulation be-

tween de Jong et al. [2003] and Jabbari et al. [2010] make the two models incomparable.

One outcome of the simulations by de Jong et al. [2003] is that phosphorelay activation

may result in two steady-state solutions independently of the Spo0A-P levels because of

a competition of activating KinA and inhibiting Spo0E activity in the sporulation net-

work. The system is extremely sensitive with respect to environmental variation and noise

in gene transcription, providing an explanation for the observed phenotypic variations in

experiments. These findings were further corroborated by Morohashi et al. [2007] with

a stability analysis of a simple model of the phosphorelay. This model only considers

phosphorylation of Spo0A-P by the phosphorelay and its dephosphorylation by Spo0E.

They conclude that the feedback of Spo0E influences the distribution of sporulating to

nonsporulating cells.

A more detailed model of the phosphorelay mechanism is examined by Bischofs et al.

[2009]. The authors focused particularly on the integration of quorum-sensing related

starvation signals involving Rap and Phr proteins. They examined the steady-state levels

of Spo0A-P in response to varying ratios of kinase activity (the environmental signal) to

phosphatase activity by the Raps (the population signal). Four different phenotypes are

possible: 1) Spo0A-P is not affected by changes in kinase and phosphatase activity; Spo0A-

P is either sensitive to changes in 2) kinase-, or 3) phosphatase activity; 4) Spo0A-P is

sensitive to changes of both kinase and phosphatase activity. Only mechanisms underlying

the fourth phenotype can properly integrate the different signals termed by the authors

‘signal integration regime’. Interestingly, Spo0B, the second phosphotransferase of the

phosphorelay, is devoid of feedback regulations by Spo0A-P. Bischofs et al. [2009] showed

that if a positive feedback from Spo0A-P to Spo0B would be present, the cell would not

be able to properly integrate nutrient level and population density and it would thus be
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unable to measure the ‘food per cell’.

Most models discussed in this review focused on supposedly separate and simplified

functional modules of signal transduction. However, we can only understand B. subtilis

in greater detail if we gain more insight in the interplay and cross-talk of the different

environmental response strategies. A step towards dealing with this challenge is made by

Schultz et al. [2009]. Schultz et al. [2009] investigate interactions between the processes

of sporulation, competence and quorum sensing and find that small noise levels in the

input are amplified into different phenotypes in an otherwise isogenic population. The

examined signals are environmental and community related. They are transmitted by

Phrs and Raps and the key for variability is the concentration of Spo0A-P. The authors

related the mutual inhibition of Spo0A-P by AbrB and Spo0E to the ‘repressilator’, a

synthetic genetic regulatory network with an oscillation phenotype designed by Elowitz

and Leibler [2000]. It leaves us with the intriguing question of whether the early phase of

sporulation should be composed of a regulatory network that could generate oscillations

and how those detrimental oscillations could be suppressed.

Variability in the Spo0A-P output is an overarching conclusion of most of the articles

investigating the phosphorelay and discussed here. Jabbari et al. [2010] as well as Schultz

et al. [2009] observed that Phr and Rap proteins sensitize the output to the input. de Jong

et al. [2003] and Morohashi et al. [2007] detected the competition between Spo0E and

KinA as a source for variability and bistability. Further information comes from studies

by de Jong et al. [2010] and Chastanet et al. [2010] who examined the heterogeneity in gene

expression after activation of Spo0A. Because of the experimental classification of cells in

sporulators and non-sporulators as well as the positive and negative feedback regulations

with respect to phosphorylation and dephosphorylation of Spo0A it was tempting to view

the phosphorelay as a bistable switch. Bistability is a property that describes the switching

of the system between an activated and de-activated state [Millat et al. 2008]. Under such

a regime, the system can be sensitive to a signal, leading to a switch-like transition into a

new steady state. Once it is activated, the system can resist deactivation, see Figure 2.2.

Bistability is particularly interesting for biological systems as it provides the cell a way for

fast yes/no decisions as well as enabling a heterogeneous population with only some cells

being activated [Veening et al. 2008c].

Bistability is implicated with several of the B. subtilis signalling networks, including

competence (ComK) [Maamar and Dubnau 2005], production of exoproteases (DegU)

[Veening et al. 2008b] or biofilm formation (SinR) [Chai et al. 2007]. However, the data

by de Jong et al. [2010] and Chastanet et al. [2010] show that there is no bistability in

Spo0A-P, instead Spo0A-P induced expression is highly heterogeneous. Neither is σH, pro-
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Figure 2.2.: Hysteretic signal-response curve that can give rise to bistability. In the study
of Igoshin et al. [2006], the authors tested dynamical properties of the availability of σF

(response) as a function of the dephosphorylation rate of AAP (signal). For particular
parameter region of the dephosphorylation, the system becomes bistable. Under such
conditions, the inactive state can easily switch to the active state characterized by a
high σF availability, at latest at a signal strength Son (AAP dephosphorylation rate
threshold). However, the active state is robust against deactivation (decrease in AAP
dephosphorylation), since the signal strength Soff is reached at lower value compared
with Son. In the transition zone, the response is highly sensitive to changes in the
signal, with a sufficient perturbation the system can switch easily from the inactive to
the active state.

viding the positive feedback via KinA, necessary for establishing a heterogeneous Spo0A-P

signal. To reproduce a sufficient accumulation in Spo0A-P using a computational model

Chastanet et al. [2010] had to increase the concentration of all Spo0-phophorelay proteins.

This modelling outcome is surprising since Spo0B concentration remains constant during

stationary phase [de Jong et al. 2010] and since the modelling of Bischofs et al. [2009]

showed that Spo0A-P driven spo0B expression violates the signal integration of nutrients

and community density. Sporulation is an all-or-nothing process and surely has to be

controlled with switch-like dynamics. However, the phosphorelay is not the sporulation

switch but prepares the cell for a variety of phenotypic responses [López et al. 2008].

2.3. Signalling mechanisms in sporulation

One of the most conspicuous phenotypes of B. subtilis is sporulation. The final

commitment to this developmental process is established by σF dependent gene expression

[Dworkin and Losick 2005]. Spo0A-P mediated expression of sigF is crucial for establishing

compartment-specific gene expression during sporulation. Two studies thoroughly investi-

gated the regulation of σF activity using ordinary differential equation models. One study

focused on molecular processes that lead to asymmetrical differentiation [Iber 2006] while

the other primarily aimed to uncover the principles of irreversibility of the σF activation

[Igoshin et al. 2006]. A simplified graphical description of the regulation of σF activity is
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shown in Figure 2.1. Its activity is negatively regulated by the formation of a heterodimer

with SpoIIAB (AB), upon which the binding of the sigma factor to its target DNA is pre-

vented. SpoIIAA (AA) is able to competitively bind to AB and release σF. However, in

non-sporulating conditions AA is predominantly phosphorylated by the kinase activity of

AB. Thus, the steady-state ratio of phosphorylated to non-phosphorylated AA determines

the level of free σF. This level is additionally regulated by the rate of dephosphorylation

via the phosphatase SpoIIE (IIE).

Iber [2006] modelled in detail the different states which exist for AB: i) its basic form of

a homodimer, ii) bound with σF, and iii) bound with one or two molecules of AA (phos-

phorylated or non-phosphorylated). Each of these configurations harbours combinations

of ATP and ADP in the nucleotide binding pockets of the dimer. Finally, the number of

states doubles since a central aspect of the model is the allosteric functionality of AB. In

any configuration AB is either in a relaxed or in a tense conformation that affects its enzy-

matic activity [Iber 2006]. Ultimately, the authors determined 50 states connected by 150

reactions and 25 rate constants. The model was successful in approximating qualitative re-

sults of a number of published experiments. A quantitative demand of the model regarding

the reaction rate constant of IIE phosphatase was that it is 75 to 150 times lower compared

with in vitro rates. In order to resolve this paradox, IIE activity was measured by the

authors in an assay with supposedly more in vivo like conditions (switching from man-

ganese to magnesium dominated solutions) and indeed the phosphatase activity matched

the model predictions. Iber [2006] modelled the higher activity of σF in the forespore by

assuming that the IIE phosphatase associates with FtsZ homogeneously over the septum.

The forespore volume is about four times smaller than that of the mother cell, thus the

concentration of phosphatase facing the forespore is four times larger compared to the

mother cell [Iber 2006]. This concentration difference leads to an effective increase in the

ratio of IIE to the substrate AA in the forespore and is the primary developmental trigger.

The model did not include alternative triggers for the activation of σF like effectors with

a compartment specific expression due to the genetic asymmetry [Feucht et al. 2002] and

thus cannot judge these effects. The allostery of the AB kinase activity further amplifies

the different AA-P dephosphorylation dynamics in the two compartments. Furthermore,

the result implies that the allosteric system is optimised to reduce the need of ATP [Iber

2006].

A similar study is published by Igoshin et al. [2006], who examined the same regulation

system with more or less the same intermediate complexes. However, instead of the

allosteric nature of AB their model focused on the so-called ‘dead-end complex’ of AA-

P/AB-ADP. The dead-end complex serves to buffer the concentration of AB such that

AB is unable to titrate σF. Igoshin et al. [2006] constructed a model with 27 states, 55
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reactions and 12 independent parameters. Analyses of the steady-state concentrations of

σF under various conditions revealed that for certain physiologically feasible circumstances

the system shows a hysteretic response, i.e. activation of the system is more easily achieved

than deactivation. The hysteretic behaviour necessitates a higher concentration of AA over

AB (considering monomers) in the model, a situation that could arguably take place in the

forespore since AB is much more unstable than AA [Dworkin 2003]. Igoshin et al. [2006]

suggest that the dead-end complex of AA-P/AB-ADP is effectively causing increased σF

activity in the forespore and that the stability of the complex serves to conserve ATP. A

saving of ATP was also implicated by Iber [2006] with respect to the allosteric forms of AB.

However, how the submicromolar concentrations of the AB/AA complex may contribute

to the conservation of ATP present in millimolar concentrations is not discussed. Whereas

the two studies by Iber [2006] and Igoshin et al. [2006] both explain the compartment

specific developments during sporulation, they assume different mechanisms: Iber [2006]

focuses on AB allostery while Igoshin et al. [2006] focus on the AB-AA dead-end complex.

2.4. The consequences of excitability in competence

Besides sporulation, the development of competence is one of the best stud-

ied phenotypic adaptations of B. subtilis and is a widely used example for

stochasticity in survival strategies [Leisner et al. 2008; Raj and van Oudenaar-

den 2008]. During late exponential growth when nutrient availability decreases and the

population density increases, about 10% of the individuals in a B. subtilis population be-

come competent [Hamoen et al. 2003]. Competence development is governed by ComK,

a transcriptional factor that regulates the expression of more than 100 genes including

those required for DNA binding and uptake [Berka et al. 2002; Hamoen et al. 2002; Ogura

et al. 2002]. As shown in Figure 2.1, comK expression is controlled by a positive feedback

loop, since ComK binds to its own promoter, and by a negative feedback loop via ComS.

ComS protects ComK from degradation by the MecA/ClpC/ClpP proteolytic complex.

Nevertheless, ComK inhibits expression of comS [Maamar and Dubnau 2005; Süel et al.

2006]. Development of competence is tightly connected with the activation of the phos-

phorelay [López et al. 2008]. The expression of comK is inhibited by AbrB and thus comK

expression can only be effectively activated if the concentration level of AbrB is sufficiently

reduced by inhibition via Spo0A-P [Hamoen et al. 2003]. However, further increase in the

concentration of Spo0A-P induce rok, an inhibitor of comK expression, and thus again

development of competence is blocked [Hamoen et al. 2003]. Development of competence

is additionally regulated via pheromones and quorum sensing [López et al. 2008]. The

pheromone ComX activates autophosphorylation of ComP which activates the transcrip-

tion factor ComA by transfer of the phosphate group [Hamoen et al. 2003]. A second
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pheromone PhrC (also: competence stimulating factor, CSF) promotes competence by

inhibition of RapC, the ComA-P phosphatase [López and Kolter 2009]. ComA-P induces

the expression of comS, thus stabilizing ComK, and also induces expression of phrA-rapA

[López et al. 2008]. ComA-P as an input to the phosphorelay was examined by Jabbari

et al. [2010] while Schultz et al. [2009] simulated the dynamic sequential activation of

competence and sporulation respectively.

The competence system is an example for excitability: a small perturbation induces a

significant developmental response which however is only transient and the cell eventually

returns to vegetative growth [Lindner et al. 2004; Süel et al. 2007]. Positive autoregulation

of ComK was found to be the most important factor for the transition to competence

[Maamar and Dubnau 2005; Smits et al. 2005]. Süel et al. [2006] developed a model to

investigate the importance of ComS for switching to competence. They added a noise term

to the equation of ComS generation and simulated the concentrations of ComK and ComS.

Their model predicted that if ComK positively affects the transcription of comS then the

competence state becomes much more stable without affecting the probability to enter

this stress pathway. Experiments with mutants, in which ComS is positively regulated by

ComK, revealed that 4.2% of the mutant cells entered competence, similar to wild type

cells with a percentage of 3.6%. In accordance to the simulations, 88% of the mutant cells

were locked in the competent state compared to 39% of wild type cells. Next, Süel et al.

[2007] have examined the factors controlling entry to competence and the duration of that

state. They found that the higher the comK expression rate, the higher the probability

to enter competence. These findings apply until an oscillation-like regime with successive

enter and exit cycles is reached. ComS in turn determines the duration of competence

that finally leads to a bimodal distribution of competent cells. Additionally, they showed

that after sensitisation of the cell by environmental signals, it is noise that stimulates

activation of competence. They used an ftsW mutant which develops long filamentous

cells that are connected via a common cytoplasm. In this mutant noise is reduced due to

the averaging affect implied by diffusion while the physiological mean concentrations are

not affected. Indeed it turned out that the probability to develop competence becomes

lower with decreasing noise.

Maamar et al. [2007] employed a stochastic simulation approach, using the Gillespie

algorithm [Gillespie 1977], to address the question whether the noise is of transcriptional

or translational origin. They performed experiments in which transcription is improved

and translation of comK is reduced, resulting in conditions with relatively constant ComK

levels. The analysis revealed that fewer cells became competent in the engineered strains,

showing that increased levels of transcription result in less competence. The authors

argue that the initiation of competence is determined by noise, and that the source of
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the noise can be attributed to irregularities in transcription. An interesting condition of

competence is that the phenotype can only be developed within a certain time window in

culture conditions [Leisner et al. 2007; Maamar et al. 2007]. This idea requires that the

system is robust most of the time and becomes sensitive and excitable to gene expression

noise only for specific conditions.

Leisner et al. [2009] examined the system from a different perspective by addressing

the question under which condition bistability arises. They excluded the negative feed-

back loop of comS transcriptional regulation by ComK and used ComS as an external

parameter that represents quorum sensing signals. Their results imply that during expo-

nential growth, when ComS levels are low and ComK degradation is high, the system is

monostable which indicates that variation in the protein concentrations are not sufficient

to activate competence. Only if ComK levels increase due to the reduced degradation the

system can enter the transition state leading to bistability as result of gene expression

noise [Leisner et al. 2009].

2.5. Production of extracytoplasmic proteases

One of the alternative responses following Spo0A activation is the increase

in expression of the extracellular protease AprE (subtilisin) and Bpr (bacil-

lopeptidase) [López and Kolter 2009; López et al. 2008; Murray et al. 2009].

Initiation of sporulation can be delayed by the production of extracellular proteases, which

break down proteins in the environment to supply the cells with additional nutrients. The

pivotal regulator is DegU. In its phosphorylated form as DegU-P the expression of exo-

proteases, among them AprE, is stimulated while competence is suppressed [Murray et al.

2009]. DegS-P phosphorylates DegU, and activation of DegS via autophosphorylation

is regulated by as yet unknown environmental signals. The kinase activity of DegS-P

is further stimulated by DegQ [Kobayashi 2007]. DegQ is itself connected to ComA-P

and thus activated at high cell densities via ComX [Murray et al. 2009]. In Veening

et al. [2008b], the authors conduct several experiments and used mathematical modelling

to detect the original signals and the mechanisms that regulate the dynamics of AprE

expression. Transcription of the proteases is additionally inhibited by AbrB. This inhi-

bition is compensated upon phosphorylation of Spo0A at early stages in the preparation

of sporulation [Veening et al. 2008b]. Veening et al. [2008b] built a mechanistic model

of the DegSU two-component system which calculates protease expression based on ex-

perimentally measured sporulation-related AbrB levels. Deterministic analysis uncoveres

bistability of DegU depending on the ratio of phosphorylated/non-phosphorylated pro-

tein. The model predicts an increase in AprE levels until 20 hours of growth. Indeed, this

prediction was subsequently verified by the authors in microculture experiments [Veening
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et al. 2008b].

2.6. Operon organisation of stress responses

Operon organization can improve the performance of stress response strate-

gies. This was examined by Iber [2006] for the spoIIA network and by Voigt et al. [2005]

for the phosphorelay with respect to the SinI/R dynamics. The implications of the co-

regulation hypothesis of the operon theory by Jacob and Monod [1961] were tested by

Iber [2006] based on her model of the dynamics of the spoIIA network during sporulation.

The central question addressed with the existing and validated model was how sporulation

efficiency is affected if noise in protein expression is either coupled or uncoupled among

the proteins of the spoIIA operon (compare Figure 2.1). This coupling can, to a certain

degree, be justified by the assumption that ribosomes can continue protein synthesis on

one mRNA to a following protein coding region without dissociation and re-association

rounds. These conditions are met for the mRNA of spoIIAA and spoIIAB, which have an

overlap of four bases. Simulations of sporulation efficiency showed that the detrimental

effects of expression noise are more pronounced if protein expression is uncoupled. An

operon organisation therefore reduces noise by means of co-expression [Iber 2006; Tabor

et al. 2008]. This implies that operon organisation would be disadvantageous for regulation

of competence, in which noise plays a purposeful role [Süel et al. 2006].

Voigt et al. [2005] published a conceptually related study by investigating possible dy-

namics regarding the co-regulation of sinI and sinR with a special focus on evolutionary

implications. As described earlier and shown in Figure 2.1, SinR is a sporulation inhibitor

and controls biofilm formation, and SinI is the antagonist that deactivates SinR [Bai et al.

1993]. A σA-dependent internal promoter upstream of sinR (P3) establishes an excess of

SinR over SinI during vegetative growth. In the model SinR represses activation of the

promoter upstream of sinI (P1/2) that transcribes the whole operon (sinI+sinR). These

mutual negative feedback relations can generate a variety of dynamics in SinI, ranging

from a graded response to bistability, oscillation, and pulse response. The dynamics are

most sensitive to the production rate of SinR and indeed a sequence comparison of sev-

eral Bacillus genera shows a pronounced conservation of the P3 promoter region. The

sporulation probability is determined by the efficiency of the P1 promoter as well as the

SinI-R protein-protein interaction. Since different Bacilli are adapted to distinct environ-

ments it seems likely that their tendency to enter sporulation evolve differently. Sequence

comparison reflects this drift since the P1 promoter is very diverse and SinI accumulated

mutations that could potentially affect the dimerisation rate of SinI and SinR while still

allowing for dimerization [Voigt et al. 2005]. However, new experimental findings chal-

lenge two model assumptions, namely that SinR inhibits sinI [Chu et al. 2005] and the
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spo0A promoter [Kearns et al. 2004]. These inhibitions are necessary for the development

of bistability, thus, either the SinIR network is not intrinsically bistable or there are as of

yet unknown negative feedbacks. Nonetheless, the article by Voigt et al. [2005] expands

our understanding of sigma-factor anti-sigma-factor interactions and depicts the potential

to understand evolutionary tendencies that take place over years based on the dynamic

events of protein concentrations occuring within minutes at most.

2.7. Partner switching mechanism and general stress response

The partner switching mechanism, including proteins on the spoIIA operon,

is based on exclusive mutual interactions of an anti-sigma factor with both a

sigma factor and an anti-anti-sigma factor [Hecker and Völker 2001; Hecker

et al. 2007; Price 2002]. In addition to the irreversible initiation of sporulation, the

principle of partner switching mechanism observed for σF is also seen in other adaptation

responses. One of them is the general stress response, which is mediated by σB and

activated by a whole collection of environmental challenges including the transition from

exponential to stationary phase [Hecker et al. 2007; Price 2002]. Although both share

a similar regulation scheme, they display critical mechanistic differences which reflect

the different physiological needs [Price 2002]. The anti-anti-sigma factor RsbV (V) is

homologous to SpoIIAA and the anti-sigma factor RsbW (W) is related to SpoIIAB.

Comparable to the spoIIA interaction network the phosphorylation status of V regulates

the available pool of free σB. However, while there is only one phosphatase of SpoIIAA,

namely SpoIIE, two phosphatases dephosphorylate V-P (phosphorylated RsbV) in a stress

dependent manner [Hecker et al. 2007]. RsbU (U) reacts largely to physical stress while

RsbP reacts to nutritional stress [Hecker et al. 2007; Price 2002]. The main difference

in the structures of the sporulation and general stress response is the dead-end complex

of AA-P/AB-ADP, which does not exist for V-P/W-ADP because the latter complex

can quickly exchange nucleotides [Price 2002]. Since the dead-end complex is missing,

the general stress response is readily reversible. This reversibility is necessary since the

physiological task of σB is to respond to temporary cues from the environment. The

second difference is the transcriptional feedback loop since the three proteins V, W, σB

are arranged in an autoregulated operon [Price 2002]. Following σB activation by energy

stress, the increased expression of σB and V provides the potential for further amplification

of σB activity. By contrast, σB driven W expression on the operon counteracts the positive

feedback loop since W deactivates σB by dimerisation.

Based on the analysis of the spoIIA operon, Igoshin et al. [2007] compared the differences

of σF and σB. Simulations showed that this negative feedback by W results in a two

stage response, i.e. the full activity of σB is delayed whereas in the absence of W σB is
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immediately fully active. The positive transcriptional feedback increases the capacity for

regulation, i.e. it maximises the differences in free σB before and after stress activation

[Igoshin et al. 2007]. While Igoshin et al. [2007] included RsbX, which is involved in

negative regulation in response to environmental challenges [Hecker et al. 2007], they did

not include the partner switch that controls the activity of the phospatase RsbU which is

responsible for environmental stress response activation of σB.

The modelling approach of Igoshin et al. [2007] focused on the activation of σB be-

cause in contrast to experimental findings simulated long term σB activities are too high.

A representative study to elucidate the σB network uses a culture of B. subtilis with β-

galactosidase as the reporter for σB activity. The stress is measured either by the transition

of the culture from exponential to stationary phase, caused by starvation, or by the addi-

tion of ethanol during exponential phase (reference is any publication between 1995 and

2010 by the major σB groups headed by e.g. Völker, Price or Haldenwang). The timescale

of sampling is typical until σB response reaches pre-stimulus level. By contrast, Locke

et al. [2011] examined the expression of σB-dependent yellow fluorescent protein (YFP) in

single cells using time-lapse microscopy. Surprisingly, even stress-free cells with abundant

resources activated σB with the same intensity although lower frequency than stressed

cells [Locke et al. 2011]. These stochastic bursts of σB activation strikingly resemble the

activation of competence and were discussed before in the context of a study by Süel et al.

[2007]. In both cases the question arises whether the pulses are either ‘truly’ stochastic,

meaning there is a stochastic availability of σB, or originating from a perturbed limit cycle

oscillator, i.e. the pulsing is a system inherent property with randomised appearance. Just

like in the competence study Locke et al. [2011] used an ftsW mutant and found reduced

σB activation burst. Therefore, a random release of σB causes the pulse like behaviour,

just like in competence.

Whereas the network organisation of σB response and competence is completely dif-

ferent, the functional outcome is highly similar. In competence the transcription factor

ComK induces its own expression, just like the positive feedback of σB, though σB has an

additional positive feedback by expression of the anti-anti-sigma factor RsbV (repression

of a repressor). On the other hand there is a negative feedback by which ComK inhibits

ComS, and this results in increased proteolysis of ComK. The negative feedback in σB

is the expression of the anti-sigma factor RsbW. Amplification of noise is realised in σB

by ultrasensitivity towards phosphatase levels (RsbP, RsbU) [Locke et al. 2011], whereas

competence initiation is highly sensitive to the expression of ComK [Süel et al. 2007]. Like

competence, σB is excitable. Small perturbations can trigger large excursions of the phase

space, beginning with a positive feedback that is overwhelmed eventually by a negative

feedback, and finally the system reverts back to prestimulus. Competence is costly and
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the time spent in this state must be reduced. General stress response is regarded as a

preparation for future stresses [Hecker et al. 2007; Price 2002], a short σB activity burst

might be sufficient to produce enough protective proteins for a given time.

2.8. Conclusions

The complexity of signalling in B. subtilis has motivated numerous studies

that used mathematical modelling to elucidate principles and mechanisms of

the cellular response to changing environmental conditions. Despite the apparent

gap between the complexity of cell signalling networks and the simplicity of their models,

many positive examples exist in which mathematical modelling has offered additional

insights and in which the models provided guidance for the design of experiments. For

example, analysis of the phosphorelay by Bischofs et al. [2009] convincingly shows how

the regulation is organised to optimise the information of available nutrient per cell. The

combination of model and experiments by Maamar et al. [2007] could elegantly explain that

temporal regulation of transcription controls the frequency of transition to the competent

state.

The partner switch mechanism of the σB mediated general stress response has, so far,

stimulated two mathematical models [Igoshin et al. 2007; Locke et al. 2011]. These studies

confirmed that our current knowledge is sufficient enough for a detailed understanding of

the dynamics of the general stress response. The given network design of the σB partner

switching maximises the differences of inhibited σB during stress-free and activated σB dur-

ing stressed conditions, as the mathematical analysis explains [Igoshin et al. 2007]. Locke

et al. [2011] additionally showed that the combination of positive genetic feedback and

negative feedback by anti-sigma factor RsbW causes a pulse like behaviour, reminiscent of

the competence system. These two studies of the general stress response focused on the

energy stress activation of σB, and ignored the stressosome mediated environmental acti-

vation of the stressosome. In the following two chapters, I fill this gap by introducing two

different computational approaches of the dynamics of the stressosome. Chapter 5 then

introduces an alternative mechanism of pulse-generation via the expression of proteases

that are at work in the general stress response.
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Chapter 3
Stressosome simulation I: Monomer

interactions

The stressosome signalling complex of B. subtilis is activated in response

to diverse environmental stresses, including ethanol, temperature, UV light

and osmolarity [Hecker and Völker 2001; Hecker et al. 2007; Price 2002]. The

stressosome initiates a protein partner switching cascade that leads to the release of the

alternative transcription factor σB [Hecker and Völker 2001; Hecker et al. 2007; Price 2002].

The complex is the most upstream component so far characterised of the environmental

arm of the general stress response in B. subtilis [Hecker and Völker 2001; Marles-Wright

and Lewis 2007]. Its activation results in the upregulation of nearly 200 genes, including

proteins which provide protective adaption to environmental change [Helmann et al. 2001;

Nannapaneni et al. 2012; Petersohn et al. 2001; Price et al. 2001].

The stressosome has a supra-molecular structure of a truncated icosahedron [Delumeau

et al. 2006; Marles-Wright et al. 2008] and consists of the presumed sensor protein, RsbR,

and the scaffold protein, RsbS [Akbar et al. 1997, 2001; Yang et al. 1996]. The cryo

electro-microscopy (cryo-EM) of the stressosome revealed its molecular organisation with

40 copies of RsbR associated with 20 RsbS molecules (arranged in homodimers) (Figure

3.1) [Marles-Wright et al. 2008]. In the stress-free state, 20 RsbT molecules are bound by

20 molecules of RsbS [Marles-Wright et al. 2008]; RsbT dissociates from the stressosome

following activation by environmental stress [Yang et al. 1996]. Five paralogues of RsbR

are present in B. subtilis: RsbRA, -B, -C and -D (formerly RsbR, YkoB, YojH, YqhA)

[Akbar et al. 2001; Kim et al. 2004b] all of which retain the ability to form functional

stressosomes with RsbS [Delumeau et al. 2006; Kim et al. 2004b; Reeves et al. 2010].

The fifth paralogue, YtvA, mediates the stress response to UV light [Avila-Perez et al.

2006; Gaidenko et al. 2006] and is also capable of forming stressosome complexes, at
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Figure 3.1.: Molecular composition of the stressosome. (A) The atomic model of the
stressosome [Marles-Wright et al. 2008] is coloured by domain; C-terminal, RsbR-STAS
domain is blue, N-terminal RsbR domain is yellow, RsbS is red, and RsbT is not shown
for clarity. (B) The stressosome as a two-dimensional network, with RsbR monomers
(blue circles) connected by blue lines to display the distribution of RsbR dimers. Sim-
ilarly, RsbS monomers (red stars) are connected by red lines to form dimers. Close
contact between neighbouring proteins is represented by thin-black lines. The numbers
indicate the scheme I used to identify individual proteins in the structure. (C) The four
different neighbourhoods will experience different protein cooperativity effects on the
phosphorylation reaction and thus different phosphorylation rates of the central pro-
tein. In the description of the neighbourhood composition, I always start by naming
the unpaired protein, these are circled in the figure.

least in vitro (Marles-Wright and Lewis, personal communication). This ability to form

complexes appears to stem from the high sequence conservation of the common C-terminal,

STAS domains possessed by these proteins [Pane-Farre et al. 2005]. By contrast, the N-

terminal domains of the paralogues are highly variable, suggesting differences in either

stress perception, or the interactions with RsbT [Delumeau et al. 2006; Reeves et al.

2010].

3.1. Known facts of stressosome activation

The role of the stressosome is the binding and the controlled release of

RsbT in response to stress signals. Both RsbR and RsbS are necessary for the

association of RsbT in the stressosome [Chen et al. 2003; Kim et al. 2004b]. In stress-free

conditions, a significant proportion of RsbR molecules are phosphorylated, whereas RsbS

remains non-phosphorylated [Eymann et al. 2011; Kim et al. 2004a]. The imposition of

stress leads to an increase in the phosphorylation levels of RsbR (Figure 3.2) [Chen et al.

2003; Eymann et al. 2011; Kim et al. 2004a,b], which is a requirement for the subsequent

phosphorylation of RsbS by RsbT [Chen et al. 2003, 2004; Gaidenko et al. 1999]. As the

level of phosphorylated RsbS increases, the affinity of RsbT for the stressosome decreases

(Figure 3.2) [Kang et al. 1996; Kim et al. 2004a], resulting in the dissociation of RsbT.
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3.1. Known facts of stressosome activation

Figure 3.2.: Schematic of the reactions of the stressosome. The reactions take place on
the icosahedral stressosome structure, except for RsbT*, which is cytoplasmic RsbT.
RsbT* initiates the general stress response by binding to RsbU and releasing σB by
the partner switching mechanism. Stim represents stimulation of the stressosome by a
stressor. I tested three models of interactions between RsbR and RsbT: no interactions;
RsbR as an activator of RsbT (A); RsbR-P as an activator of RsbT (B). The reaction
parameters correspond to those of Table 3.2. Arrows represent reactions and lines with
circles denote activation.

The released RsbT activates the protein phosphatase RsbU [Kang et al. 1996] and the

activation of the partner switching cascade which ultimately leads to the release of σB

from its quiescent complex with anti-sigma factor, RsbW [Hecker and Völker 2001; Hecker

et al. 2007; Price 2002]. Once released, σB directs RNA polymerase to the promoters of

genes of the general stress regulon to stimulate their expression [Yang et al. 1996]. To reset

this switch, the phosphorylation statuses of both RsbS and RsbR must be returned to pre-

stress levels to allow RsbT to re-associate with the stressosome. The dephosphorylation of

RsbS and/or RsbR appears to be catalysed by the phosphatase, RsbX [Völker et al. 1997;

Yang et al. 1996]. The properties of the stimuli that activate the general stress response

can be summarised in two categories, 1) environmental stress, and 2) energy stress [Boylan

et al. 1993; Völker et al. 1995b], both of which activate a phosphatase for RsbV-P [Völker

et al. 1997; Yang et al. 1996]. The environmental stress (ethanol, UV light) is transmitted

via the stressosome and the activation of phosphatase RsbU whereas energy stress (glucose

limitation) leads to the stressosme-independent activation of phosphatase RsbP [Vijay

et al. 2000]. However, there is insufficient knowledge of the phosphorylation dynamics

of the stressosome because of the limitations of the experimental methods applied thus

far. For instance, it is not known how the perception of an environmental signal causes

the increase in RsbR and RsbS phosphorylation levels. Functional explanations for the

existence and the mechanisms of the four RsbR paralogues are also missing; the paralogues

have broad and overlapping sensitivities regarding stress stimuli [Reeves et al. 2010].
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3. Stressosome simulation I: Monomer interactions

Microbiological, molecular, and biochemical techniques have provided general knowl-

edge of protein interactions and chemical reactions of the stressosome, but they are in-

sufficient to understand the molecular events taking place in the complex. Here, I use

computational modelling of the cryo-EM stressosome structure to test three hypotheses

about protein interactions within it, to gain insight on the spatial events associated with

RsbR phosphorylation and their regulatory capacities, published in Liebal et al. [2013]. I

compared three models: 1) ‘no cooperativity’, where the phosphorylation reactions in the

stressosome are independent of neighbouring proteins; 2) ‘substrate activation’, in which

non-phosphorylated protein neighbours stimulate phosphorylation; and 3) ‘product acti-

vation’, where phosphorylation is increased by the presence of phosphorylated neighbours.

I evaluated the simulation results by comparing them with published data and found the

‘product activation’ model provided the best fit to the experimental data. A comparison

of the simulation results with the signal-response data of Marles-Wright et al. [2008] re-

vealed identical sigmoidal stressosome activation patterns for salt and ethanol treatment;

indicating that the activation dynamics of the stressosome are independent of any specific

stressor.

3.2. A geometric model of the stressosome

The experimental information used to construct the models, including a

description of the geometric properties that may affect allosteric behaviour, is

summarised by the following. The basic units of the stressosome are twenty dimers

of RsbR and ten dimers of RsbS. Each protein interacts with a homodimer partner, but

the icosahedral structure requires two additional interaction partners for each protein.

The stressosome structure is constructed in such a way that while RsbR homodimers can

interact with each other, RsbS homodimers never directly interact with each other. These

rules, along with the observed stoichiometry of the complex, yield a single, unique assembly

(Figure 3.1(A)). The truncated icosahedron of the stressosome core can be visualized as a

two-dimensional network, as in Figure 3.1(B). Each protein is in the centre of a triangle

whose corners are defined by its neighbouring proteins (Figure 3.1(C)). Because the edges

in a geometric icosahedron are all equidistant, I adopted the simplifying assumption that

all positions in the neighbourhood have the same interaction strength with the central

protein. The identification of single proteins is based on a numbering scheme of the

elements in the icosahedral network representation, starting from ‘1’ in the lower left and

finishing with ‘60’ at the top-right (Figure 3.1(B)). A second list associated each protein

with its interaction partners, e.g. protein ‘1’ (RsbR) is neighboured by (‘5’, ‘2’, ‘6’), (RsbS,

RsbR, RsbR; listing starts with the solitary protein type, the circled protein neighbour

in Figure 3.1(C)). If a protein is phosphorylated then a ‘1’ is assigned to it, otherwise its
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3.2. A geometric model of the stressosome

Table 3.1.: Allosteric parameters, pa, for the different models. The first column repre-
sents the neighbourhood composition (compare to Figure 3.2(C)) and columns two to
six represent different phosphorylation states of the models and their allosteric parame-
ter. The table labelled ‘General’ contains the model independent allosteric parameters,
whereas the three tables below show the parameters for ‘No cooperation’, ‘Substrate
activation’, and ‘Product activation’.

Triangle 000 010 011 100 110 111

General

R3 0.7 0.7 0.7 = {010} = {011} 0.7

S1 0 0 1 0 0 0

No cooperation

R1 1 1 1 1 1 1

R2 1 1 1 1 1 1

Substrate activation

R1 0.7 0.7 0 0.5 0.5 0

R2 1 0.7 0.5 0 0 0

Product activation

R1 0 1 0 1 1 0

R2 0 1 1 0 0 0

state is ‘0’.

There is no experimental evidence about the effect of the stressosome phosphorylation

status on the dephosphorylation rate and consequently I assumed that the dephospho-

rylation rates are constant and are not affected by the state of neighbouring proteins.

Therefore, the transition from state ‘1’ to ‘0’ (equivalent to RsbR-P/RsbS-P dephospho-

rylation) in the model takes place with a predefined probability identical for each of the

three models and which is independent of any neighbours. By contrast, I modelled the

transition from state ‘0’ to ‘1’ (RsbR/RsbS phosphorylation by RsbT) to be dependent

upon the phosphorylation status of neighbouring proteins (Table 3.1), consistent with

the biochemical data [Chen et al. 2003]. The phosphorylation probability is determined

based on a pre-defined maximum phosphorylation probability, kphr. The value is cho-

sen to best reproduce the phosphorylation magnitude and time-scale for experimentally

measured data on the stress response (Table 3.2) [Eymann et al. 2011; Kim et al. 2004a].

In the stressosome, four different neighbourhood configurations (triangles) exist, which

are summarised in Figure 3.1(C). Of the four combinations, three place RsbR in the

centre, and one places RsbS in the middle. Each neighbourhood has a different number

of RsbT molecules associated with it and thus the activation of RsbT by RsbR and RsbS

within these regions is presumed to differ. To account for this triangle-specific activation,
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3. Stressosome simulation I: Monomer interactions

I have introduced the ‘allosteric parameter’, pa, which represents the ability of a triangle

to stimulate RsbT to maximum activity. The allosteric parameter can take any value

between 0 and 1, and is multiplied by the maximum phosphorylation probability. In

addition, the phosphorylation state of the three neighbours affects RsbT activity in each

triangle. By permutation, there are thus 22 possible phosphorylation states for the four

triangles: three triangles have six phosphorylation states (see R1, R2, and S1 in Table 3.1)

and one triangle has four phosphorylation states (see R3 in Table 3.1). The resulting 22

free allosteric parameters represent a challenge for reasonable quantification, but by using

biological insight it is possible to reduce their number.

An increase in RsbS phosphorylation has been measured as a function of increased

levels of RsbR phosphorylation [Chen et al. 2003, 2004]. Therefore, the kinase activity

for the triangle with RsbS in its centre (S1) is at maximum if all RsbR neighbours are

phosphorylated. Moreover, neighbouring RsbS molecules must be non-phosphorylated

because otherwise the kinase dissociates. Hence, only S1 with neighbourhood (0, 1, 1) has

an allosteric parameter of 1, all other five states are inactive (pa = 0).

RsbR with three RsbR neighbours (R3) lacks a nearby RsbT kinase, because in the

structure of the stressosome RsbT is always immediately adjacent to RsbS [Marles-Wright

et al. 2008]. A value for the allosteric parameter of 0.7 for all models allowed the optimal

reproduction of the data of Kim et al. [2004a] and of Marles-Wright et al. [2008]. The

phosphorylation of RsbR in R3 is independent of the status of the neighbours because

it is isolated from direct phosphorylation by RsbT due to its neighbourhood composi-

tion, and the influence of its neighbours on its phosphorylation is therefore minimal. Two

triangle combinations with a central RsbR remain: R1 with arrangement (RsbR, RsbS,

RsbS) and R2, arranged (RsbS, RsbR, RsbR) (Figure 3.1(C)). The neighbourhood R2

has six different phosphorylation combinations: either none, one, or both of the RsbR

molecules in the triangle are phosphorylated. These three states can occur in combination

with phosphorylated and non-phosphorylated RsbS. The central RsbR cannot be phos-

phorylated if the neighbouring RsbS is already phosphorylated, because the cognate RsbT

would have dissociated. Similarly, R1 has six phosphorylation combinations and the next

section shows how I use the phosphorylation combinations to model different hypotheses

of protein interactions in the stressosome.

I developed three computational models to test their capacity to reproduce experimental

data, and they differ in the way that RsbR activates the RsbT. The possible circumstances

are that RsbR 1) activates, 2) inhibits, or 3) has no effect on RsbT. Instead of assum-

ing an inhibition of RsbT by RsbR, I investigate the activation of RsbR by RsbR-P, the

two processes being indistinguishable within the modelling setup. The interactions of
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3.2. A geometric model of the stressosome

RsbR and RsbT are reflected in different allosteric parameter values for phosphorylation

in the triangles R1 and R2. In the no cooperation model, I assumed that RsbT activation

is independent of its neighbours, which corresponds in the presented framework to set-

ting to 1 (constant maximum kinase activity) all the allosteric parameters in the triangle

configurations (Table 3.1). In the substrate activation model, non-phosphorylated RsbR

stimulated RsbT and the allosteric parameter values increased from 0 to 1 with a decrease

in the phosphorylation of RsbR. By contrast, the allosteric parameter increased from 0

to 1 along with an increase in the number of phosphorylated RsbR neighbours for the

product activation model. The specific values for the allosteric parameters were optimized

empirically for the best reproduction of experimental data (Table 3.1).

The stressosome reactions were split into regular steps for the following rationale. Con-

sider the two time periods, the time between two reactions of a given protein, referred

to as the ‘waiting-time’, and the time during which all proteins in the stressosome react

once, referred to as the ‘process-time’. If the process-time is smaller than the waiting-

time, then a step-wise update rule is appropriate to approximate stressosome dynamics

because the system appears step-wise regarding waiting times. Long waiting-times are

a central assumption of the stochastic simulation algorithm used to simulate stochastic

systems with low copy numbers comparable to the 60 proteins of a stressosome [Gillespie

1977]. Second, a longer waiting-time than process-time for the stressosome is valid because

after phosphorylation, the kinase has to exchange ADP for ATP in its active site and the

phosphatase has to diffuse to the stressosome complex to catalyse its dephosphorylation.

In the simulation the initial phosphorylation state of RsbR and RsbS was randomly

assigned with a probability of 50% for each to allow rapid equilibration of the system.

The equilibrium was independent of the exact initial state which affects the relaxation

time only. During a simulation step, the occurence of a phosphorylation reaction was

determined for all 60 proteins in random order. For instance, the triangle R2 has neigh-

bours (RsbS, RsbR, RsbR) with a phosphorylation status (0, 1, 1) and the central RsbR is

non-phosphorylated. From Table 3.1, it follows that the allosteric parameter for the ‘no-

cooperation’ model is pa = 1, for ‘substrate activation’ pa = 0.5, and ‘product activation’

pa = 1. To calculate the reaction probability, the allosteric parameter was multiplied by the

maximum phosphorylation probability, kphr, which is 0.1 for stress-free and 1 for stress-

ful conditions. Whether a reaction actually occurs was determined using a Monte-Carlo

approach: the reaction probability was compared with a number drawn from a uniform

distribution in the interval [0,1]. Only if the phosphorylation probability was smaller than

the random number was phosphorylation deemed to have occurred. Dephosphorylation

was determined similarly using the dephosphorylation parameter. Simulations were re-

peated 50 times while assuring that statistical properties did not change significantly. The
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3. Stressosome simulation I: Monomer interactions

Table 3.2.: Parameter values for the probabilities of reactions in the stressosome. The
parameter kphr, the phosphorylation probability, has two values, the first for stress-free,
the second for stress-response conditions. To consider the effects of neighbours, kphr is
multiplied by the allosteric parameters of Table 3.1.

Parameter Meaning Value

kphr Phosphorylation of RsbR 0.1/1

kdpr Dephosphorylation of RsbR-P 0.06

kphs Phosphorylation of RsbS 0.4

kdps Dephosphorylation of RsbS-P 1

model was implemented in Matlab R⃝ (7.11.0) and is included in the attached CD in folder

‘3rd-Chapter monomer-interactions’, and available for download in the Resource section

of www.sbi.uni-rostock.de, named ‘Liebal thesis-data.zip’.

3.3. Normalisation of signal-response data

The experimental data by Marles-Wright et al. [2008] and the simulation

results differ in their input and read-out variables and therefore, for compar-

ison, they were normalised. The experimental data followed a sigmoidal shape and I

used a hyperbolic tangent to characterise it,

f(x) =
a

2


tanh


b

x− c


+ 1


. (3.1)

In this formula, a represents the maximum response, the β-galactosidase activity in the

experiments (a = 85 Miller units for ethanol stress, and a = 60 Miller units for NaCl stress)

and RsbS phosphorylation in the simulation (a = 0.2 for product activation). Parameter b

encodes the sigmoidality, i.e. how fast the system switches between on and off (b = 8 ·10−1

and b = 6 ·10−3 for ethanol/NaCl and b = 12 for product activation). Parameter c encodes

the inflection point; in the experiments this is the concentration of stressor producing half

maximal β-galactosidase activity (c = 3% for ethanol, and c = 488mM for NaCl), in the

simulation this is the RsbR phosphorylation probability resulting in half maximal RsbS

level (c = 0.14 for product activation). The response (β-galactosidase and RsbS fractional

phosphorylation) were divided by their associated estimated a-parameter in the hyperbolic

tangent formula. For the experiment both signals, i.e. NaCl and ethanol concentrations,

were divided by their respective c parameter. For the simulation the signal parameter,

kphr (equivalent to RsbR phosphorylation), was divided by its associated c parameter.

Thus, all data in the response range from zero to approximately one, and the response of

0.5, correlates to a signal strength of 1.
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3.4. Experimental reproduction of stressosome simulations

Figure 3.3.: Fractional phosphorylation of RsbR and RsbS during stress. Comparison of
mean and variance of RsbR (triangles) and RsbS (squares) phosphorylation level during
NaCl or ethanol induction of stress response. The experimental data were extracted
from Kim et al. [2004a]. The three different models for simulation are: the product
activation model (red line), the substrate activation model (green line), and the no
cooperativity model (blue line). Stress is simulated assuming an increase in the phos-
phatase probability of RsbR, kphr, to 1. In the simulation stress is stopped at 5min by
reversion of kphr to the according stress-free value of 0.1.

3.4. Experimental reproduction of stressosome simulations

I compared the simulation results with the experimental data from Kim

et al. [2004a] (similar results were obtained by Eymann et al. [2011]). Kim

et al. [2004a] measured the fractional phosphorylation of stressosome components RsbR

and RsbS during exposure to NaCl and ethanol. The parameter settings used for fitting

the observations are given in Table 3.2 and observations (markers) and simulations (lines)

are shown in Figure 3.3. Activation of the stressosome is simulated with an increase in

RsbR phosphorylation probability, kphr, from 0.1 to 1. In the experiment, the fractional

phosphorylation of RsbR decreased after 5min, while levels for RsbS decreased after only

1min. To simulate this apparent stress adaptation, I reset kphr from 1 to 0.1 after 5min

and therefore the stress is only active in the simulation between 0 and 5min.

In the Kim et al. [2004a] study, the fractional phosphorylation of RsbR pre-stress is

around 0.7, and is thus similar to the simulation results of 0.6. The peak phosphorylation

levels are also comparable, although shifted to later times for RsbS in the simulation.

In the experiments of Kim et al. [2004a], the RsbS fractional phosphorylation level in-

creased rapidly following stress induction, whereas in the model RsbS phosphorylation

increased only after the phosphorylation of RsbR. The RsbR fractional phosphorylation
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3. Stressosome simulation I: Monomer interactions

decayed faster in the simulation in comparison to the experiment, but both experiment

and simulation arrived at comparable values of 0.6 towards their respective conclusions.

I did not attempt to model the long-term regulation of stressosome activation because

that requires the additional consideration of gene expression. Therefore, while the ranges

of RsbS and RsbR phosphorylation are captured, the dynamics of the RsbS deactivation

process are not reproducible in the presented framework. A notable difference between the

models was the faster activation of RsbR and RsbS in the ‘No-cooperation’ model in Figure

3.2. This faster response is caused by an increase in the phosphorylation probability for all

RsbR molecules, because, unlike in the other models, the phosphorylation probability is

not restricted to neighbouring molecules. All three models perform comparably in relation

to the activation profiles in Kim et al. [2004a], indicating that another parameter must

determine the biological significance of one model over the others.

To determine the crucial parameter that separates the three models, and to under-

stand the phosphorylation dynamics of the structure of the stressosome, stress activation

was modelled as a function of the increase in RsbR phosphorylation probability. Marles-

Wright et al. [2008] measured σB dependent β-galactosidase activity in response to different

concentrations of the stressors NaCl and ethanol. A sigmoidal signal-response curve for

both these environmental stressors was observed [Marles-Wright et al. 2008]. The sig-

moidal signal-response was not observed during the stressosome-independent activation

of σB by energy stress, suggesting strongly that the sigmoidal environmental stress re-

sponse is stressosome-specific. I evaluated the simulation using these data because the

direct outcome of the simulation is the RsbS fractional phosphorylation, which correlates

directly to the release of RsbT from the stressosome and to the activation of σB. To com-

pare experiments and simulations, the experimental data were normalised as described

in Section 3.3. Strikingly, the experimental data for the stressosome response generated

for ethanol (triangles) and NaCl (squares) coincide almost perfectly after normalisation

(Figure 3.4). Consequently, the stressosome response is identical for these two different

signals. Among the three models generated, only the product-activation model resulted

in a signal-response curve with a comparable sigmoidal character (pro-act curve in Figure

3.4), where the deviations from the experimental data are probably rooted in the model

simplifications.

I also evaluated the product activation model using experimental data from Völker et al.

[1997]. Here, the cellular concentration of the phosphatase RsbX was controlled by cloning

it downstream of an IPTG inducible promoter. The ethanol stress response was tested

by titrating the cellular levels of RsbX with IPTG. Yet again, the experimental outputs

were measured using a σB dependent β-galactosidase reporter gene fusion, whereas the
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3.4. Experimental reproduction of stressosome simulations

Figure 3.4.: Stimulus-response characteristics of the stressosome. The different stimuli
used in experiments by Marles-Wright et al. [2008] are ethanol (EtOH, triangles) and
NaCl (circles). The simulations according to the three models tested are: product acti-
vation (red line), substrate activation (green line), and no cooperation (blue line). As
experiment and simulation use different stimuli (NaCl, ethanol and kphr, respectively),
and response definitions (β-galactosidase and RsbS phosphorylation) the stimuli and
responses were normalised according to Equation 3.1. Ethanol and NaCl activate the
stressosome in an identical manner, leading to identical stimulus-response character-
istics. Only the product activation model approximates the experimentally observed
sigmoidal character of this response. The parameters are identical to the reproduction
of the Kim et al. [2004a] data and are shown in Tables 3.1 and 3.2.

simulations produced fractional phosphorylation levels of RsbS. As described above, these

two measures correlate directly because RsbS phosphorylation leads directly to σB acti-

vation. I normalised the two data sets internally with their highest unperturbed output,

i.e. wild type β-galactosidase activity and RsbS phosphorylation. Stress was applied at

20min by the addition of ethanol in the experiment and by increasing the phosphorylation

parameter of RsbR, kphr, from 0.1 to 1 in the simulation. Since RsbX is a phosphatase,

the probability of dephosphorylation of RsbS (kdps) and RsbR (kdpr) need to be adapted

in the model. In conclusion, modification of only kdps reproduced the data by Völker

et al. [1997]: kdps = 1 (wild type, red line), kdps = 0.6 (RsbX reduced, green line), and

kdps = 0.3 (RsbX low, blue line). In the simulation, a reduction in the dephosphorylation

of RsbR failed to reproduce the experimental data, because the response after activation

remained constant at the level of the wild type response (not shown). The response in

the simulations was faster than the experimental data, because the additional time delay

caused by the expression of the reporter gene is omitted when examining directly the RsbS

phosphorylation as output. The time delay between maximum RsbS phosphorylation and

maximum reporter protein signal is about 15 to 25min [Kim et al. 2004a], which is only
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3. Stressosome simulation I: Monomer interactions

Figure 3.5.: Effect of reduced levels of RsbX on stress activation of σB. Three data-sets
from Völker et al. [1997] were digitized in which the level of RsbX is controlled by the
addition of IPTG (BSA46, [wild type], squares, BSA337+1mM IPTG [RsbX reduced],
diamonds; BSA337+0.1mM IPTG [RsbX low], triangles). The simulation was per-
formed with the product activation model. The responses of experiment and simulation
are normalised to the maximum response of the wild type. The lines represent simu-
lations with parameters as listed in Table 3.1 and 3.2 but with appropriately adapted
dephosphorylation probabilities (kdps), wt with kdps = 1 (red line); reduced RsbX with
kdps = 0.6 (green line); low RsbX with kdps = 0.1 (blue line). The activation of the
stressosome by ethanol (experiment) or by increase in kphr (simulation) both took place
at 20min.

slightly smaller compared to the approximate 30min delay of simulation and measure-

ments in Figure 3.5. The experimental results of Völker et al. [1997] are explained in the

model by assuming that the stressosome and thus the environmental stress response is

reset by the unique dephosphorylating of RsbS-P by RsbX.

By relating experimentally measured σB activities to the fractional phosphorylation of

RsbS (the model output), it is possible to compare the simulations with a number of pub-

lished experiments (see Table 3.3). First, Akbar et al. [2001] measured stress responses

for strains with mutations in both RsbRA and RsbRB, and in either RsbRC or RsbRD or

both (see Table 3.3). The major outcome is that RsbRC and RsbRD increase the pre- and

post-stimulus β-galactosidase levels. In the experiment of Martinez et al. [2010], stress was

induced by the transition to stationary phase (energy stress), and it was thus reported by

these authors that RsbRC and RsbRD can sense energy stress. The unbiased simulations

support this notion and provide clues about the kinetic implications of these findings. The

most direct way to replicate this finding in the simulation is to increase the phosphoryla-

tion likelihood for RsbS, kphs. Thus, RsbRC and RsbRD are more efficient than RsbRA
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3.5. Consequences of the assumptions and limits of prediction

and RsbRB in inducing the RsbT kinase activity towards RsbS during energy stress stim-

ulation. The mixture of RsbRC and RsbRD, with stress-insensitive RsbRA and RsbRB,

lowers the apparent activation of RsbS (Appendix A) [Martinez et al. 2010]. Second, Kim

et al. [2004b] detected a hyperbolic β-galactosidase stress response for RsbRD instead of

the sigmoidal response seen for RsbRA and RsbRB. As shown in Figure 3.4, the models

of ‘Substrate activation’ and ‘No cooperation’ produce hyperbolic responses while the sig-

moidal response generated by the ‘Product activation’ model is caused by the allosteric

behaviour of RsbR interactions (see Table 3.1). Although the data of Kim et al. [2004a] are

in form of a time course and the sigmoidal property is derived from a dose-response curve,

a time course can be controlled by the dose-response if the stressosome adapts faster to

the stimulus than the stimulus changes itself. On the basis of this assumption, the model

predicts that RsbRD is less allosteric than RsbRA. Finally, the cellular automaton enables

qualitative analysis of RsbR mutations. Amino-acid substitutions on certain positions of

RsbRA result either in elevated or reduced pre-stress output while maintaining a wild

type stress response (Table 3.3) [Gaidenko et al. 2011, 2012]. Since the stress response

is unaffected, the protein interactions of the stressosome are not involved and thus table

3.1 remains unchanged. Based on the assumption that stress stimulation increases RsbR

phosphorylation by RsbT, the substitutions either activate or inhibit RsbT without stress

stimulation if the mutations increase or decrease the pre-stimulus response, respectively.

However, the stimulation of RsbT after stress perception is undisturbed.

3.5. Consequences of the assumptions and limits of prediction

I presented the first computational model of the stressosome based on a

Boolean representation of phosphorylation. The consequences of the unique neigh-

bourhood compositions in a truncated icosahedron were simulated in a cellular automaton-

like computational environment wherein the future state of a protein is based upon the

phosphorylation status of its neighbouring proteins. I analysed simulated time course data

of RsbR and RsbS phosphorylation, as well as steady state phosphorylations at different

stress inputs and compared them to data from the literature. For simplicity, I disregarded

any effects that may originate from the interactions between dimers of RsbR and RsbS

as there are no experimental data available about such effects. Moreover, I also ignored

the potential for the RsbR paralogues to display a localisation bias within the stresso-

some (e.g. the R3 neighbourhood). This is, because, to date, there is no information

available on the localisation patterns of RsbR and its paralogues within the stressosome.

Although four RsbR paralogues contain two threonine residues as potential phosphory-

lation sites [Gaidenko et al. 1999], the model considers only single phosphorylations of

RsbR. The double phosphorylation of RsbR occurs only in response to the imposition
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3. Stressosome simulation I: Monomer interactions

Table 3.3.: Comparison of experimental observations with simulation. The phosphoryla-
tion of RsbS is correlated to the β-galactosidase response because phosphorylated RsbS
releases RsbT, the activator of σB.

Experiment Phenotype Reference Model adaptation Simulation

Reduced RsbX increase in β-
galactosidase
response

Völker
et al. [1997]

decrease in kdps increase in
post-stress
RsbS-P

∆RsbR(AB),
∆RsbR(ABC),
∆RsbR(ABD)

alteration in pre-
and post-stress β-
galactosidase re-
sponse

Akbar et al.
[2001]

increase in kphs increase in
RsbS-P

∆RsbR(ABC),
RsbRD stres-
sosome

hyperbolic re-
sponse

Kim et al.
[2004b]

increase in back-
ground phospho-
rylation (Table
3.1), decrease of
cooperativity

hyperbolic
response

RsbR, RsbS
phosphory-
lation after
stimulus

transient increase
in phosphoryla-
tion

Kim et al.
[2004a]

increase in kphr increase of
RsbR-P

Stimulation
with different
stress level

sigmoidal dose-
response curve

Marles-
Wright
et al. [2008]

adaptation of the
allosteric parame-
ter for R1 and R2
neighbours

allosteric
activation
of RsbT by
RsbR-P

RsbRA T86A,
N129A,
Q142A

elevated basal
β-galactosidase
level but wild
type stress re-
sponse

Gaidenko
et al.
[2011] and
Gaidenko
et al. [2012]

increase of pre-
stress kphr

increase of
pre-stress
RsbR-P

RsbRA
L141A,
Q147A, L149R

reduced basal
β-galactosidase
level but wild
type stress re-
sponse

Gaidenko
et al. [2012]

decrease of pre-
stress kphr

decrease of
pre-stress
RsbR-P
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3.6. Integration of the results to current knowledge

of strong stresses and the double phosphorylation actually limits stressosome activation

[Eymann et al. 2011]. I have avoided the double phosphorylation phenomenon in order to

keep the model simple, whilst maintaining a model that is applicable for all but the most

extreme of stressful incidents. The fitting of the model to the experimental data required

a high phosphorylation status for RsbR molecules in a neighbourhood with only RsbR

neighbours (R3-neighbourhood).

Whereas the majority of bacterial sensory systems consist of monomers or dimers, some

systems, including the stressosome and chemotaxis arrays, form large complexes. Amongst

the possible reasons for this phenomenon is an increase of the regulatory space; a sensor

that interacts with its neighbours expands its input signal range. An adaptation of the

interactions can thus affect the response. In terms of cellular automata, these interactions

correspond to the update tables. What is the knowledge we can expect from such an

abstraction? A cellular automaton is first and foremost a spatial model; it reproduces

patterns like the distribution of black and white squares on a lattice. A different up-

date table yields a different pattern, fitting an observation better, or worse. The best

test of the cellular automaton of the stressosome is the direct observation of phosphory-

lation patterns. For example, the model predicts hyper-phosphorylation of RsbR in the

neighbourhood of R3. This, however, is technically impossible to measure and probably

biologically irrelevant. The purpose of the stressosome is the release of RsbT from phos-

phorylated RsbS, and thus no particular pattern but the total phosphorylation matters.

The cellular automaton of the stressosome allows the examination of different interactions

by adapting Table 3.1, and the effect of external inputs, as represented by the parameters

of phosphorylation and dephosphorylation of Table 3.2. In this context, predictions are

hard to formulate because the output of an altered RsbS phosphorylation can be repro-

duced by a number of patterns generated by different update tables and input parameters.

Consequently, I evaluated the model on existing data that enables association of model

parameters with biological functions.

3.6. Integration of the results to current knowledge

The phosphorylation of RsbR is a requirement for the activation of the stres-

sosome, because inhibition of the threonine residue targeted for phosphoryla-

tion in RsbRA (T171A) blocks stress response [Kim et al. 2004b]. Furthermore,

the phosphorylated form of RsbR was found to stimulate the kinase activity of RsbT

[Chen et al. 2003]. The simulations in this chapter reproduce these findings. Only the

model of RsbT stimulation by RsbR-P simultaneously fitted the two experiments of 1)

RsbR and RsbS phosphorylation frequencies, and 2) stress signal-transcriptional response

data. This RsbR phosphorylation requirement also explains why RsbR is phosphorylated
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3. Stressosome simulation I: Monomer interactions

to high levels in stress-free conditions [Eymann et al. 2011; Kim et al. 2004a].

Environmental stresses lead to an increase in RsbT kinase activity against RsbR and

RsbS, either by direct interactions of RsbT with RsbR paralogues, or through some, as

yet, undetermined secondary interactions [Gaidenko et al. 1999]. Reanalysis of the data

presented in Marles-Wright et al. [2008] shows that the levels of the activation of RsbT

in response to stress is independent of the nature of the stress (Figure 3.4). How is

this achieved? The N-terminal domains of RsbR, presumed sensors (in part because this

domain of YtvA is blue light sensitive), may interact with a secondary messenger molecule,

or with a protein that integrates the initial stress signal. A candidate for this possibility

is Obg, a ribosome-interacting protein with unclear roles in sporulation and σB activation

[Kuo 2007]. Ethanol and NaCl have similar physiological effects by inducing secondary

oxidative stress (reactive oxygen species) in the electron transport chain [Mols and Abee

2011], potentially linking these stressors with the stressosome. Whether RsbT activation

requires the involvement of a small molecule, or a protein integrator, are aspects of the

stress response that remain to be determined experimentally.

In vitro, RsbX can dephosphorylate RsbS-P and RsbR-P, but the latter only at residue

T205 [Chen et al. 2004]. The dephosphorylation reactions have also been studied in vivo

[Eymann et al. 2011], and the two approaches provide broadly consistent results. The inef-

ficient dephosphorylation of RsbR T171-P by RsbX probably explains the slow decrease in

RsbR phosphorylation observed by Kim et al. [2004a] (summarised in Figure 3.3), whereas

RsbS was dephosphorylated rapidly. In the simulations, the dephosphorylation probability

for RsbR is nearly two orders of magnitude lower than that for the dephosphorylation of

RsbS-P (0.06 and 1, respectively, see Table 3.2). The stress response of strains expressing

different levels of RsbX following a challenge with 4% ethanol has been tested [Völker

et al. 1997] and such a challenge should lead to only a single phosphorylation in RsbRA

at residue T171 [Eymann et al. 2011]. Indeed, the data of Völker et al. [1997] could be

reproduced in the model by assuming that RsbX was active as a phosphatase only towards

RsbS-P. A functional stressosome also requires a balanced phosphorylation status of RsbR.

Experiments and simulation do not support the prior assumption that RsbX mediated the

dephosphorylation of RsbR-P, though it is still formally possible at a low, but significant

level.

3.7. Conclusions

In reproducing numerous published experiments, the stressosome simula-

tions add weight to a model in which RsbT is activated allosterically by phos-

phorylated RsbR. The simulation results also suggest that RsbX is only required to
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3.7. Conclusions

dephosphorylate RsbS to reset the stressosome to a pre-stress state. Furthermore, the

normalization of the data of Marles-Wright et al. [2008] shows that stressosome activation

and thus phosphorylation dynamics are identical for different stressors. This model ap-

proach forms the foundation for future computational experiments to explore the effects of

phenomena for which the mechanism of their action is currently unknown. These experi-

ments could explore the impact of RsbR T205 phosphorylation on stressosome activation,

the impact on localisation constraints of RsbR paralogues in the stressosome, or the neg-

ative feedback exerted on the system via σB mediated control of RsbX expression. The

model I introduced in the passing chapter provides a proof of the utility of using Boolean

network simulations to model stressosome activation, as demonstrated by the modelling

of the activation dynamics of the stressosome for moderate stresses. For a complex and

fascinating molecule like the stressosome, many questions remain to be answered despite

two decades of intensive research on the regulation of σB. The limitations of biological

experimentations in this system can be overcome by computational modelling, which is

proving to be a valuable tool to shed light on the function of not only this system [Igoshin

et al. 2007; Liebal et al. 2012; Locke et al. 2011], but other signalling networks too [Liebal

et al. 2010]. Consequently, the application of Boolean network simulations is likely to

provide insight to other, highly symmetric molecules that are poorly understood, for in-

stance, the co-ordinated assembly and disassembly of bacteriophage, viruses, and bacterial

micro-compartments and the communication of enzymatic active centres in pyruvate dehy-

drogenase complex [Milne et al. 2002] and the dynamic effects of pore opening and closing

on iron uptake in ferritins [Liu et al. 2003; Weeratunga et al. 2010].

In the passing chapter, I modeled the stressosome based on the view of protein monomers

with identical interactions among all their nearest neighbours. However, these identical

interactions are only a simplification, although apparently efficient, because the stresso-

some is composed of dimers of RsbR and RsbS. This simplification is appropriate because

the nature of the interaction of proteins and the transmission of information among the

proteins of the stressosome is still a matter of debate. In the following chapter, I abandon

the simplification of identical interactions and assume that dimers form the basic units of

the stressosome. It is also a contribution to the debate of information transfer among the

proteins because a geometric model examined in the next chapter makes strict predictions

about structural motions within the stressosme for the purpose of information transfer.
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Chapter 4
Stressosome simulation II: Shape

transitions

The stressosome has been introduced in the previous chapters as an envi-

ronmental sensor responsible for the activation of the general stress response.

The stimulation of the stressosome induces structural and functional modifications that

cause the release of the protein kinase, RsbT, and converts the original signal into a con-

centration of free RsbT. Since the regulation of the stressosome has already been covered

in the previous chapter, in this chapter, I focus on the stressosome’s structural properties.

In B. subtilis, RsbT activates a ‘partner switching’ signalling cascade that involves RsbV,

RsbW and the alternative sigma factor σB, and ultimately leads to the induction of the

general stress response [Hecker and Völker 2001; Hecker et al. 2007; Price 2002]. Marles-

Wright et al. [2008] used cryo electro-microscopy (cryo-EM) to determine the atomic struc-

ture of the stressosome, which adopts a truncated icosahedral geometry and is composed

of 20 dimers of RsbR and 10 dimers of RsbS. A simplified illustration of the stressosome

is visualised in Figure 4.1, together with a trimer of dimers of RsbR and RsbS and their

domains, that jointly form a triangle. RsbS belongs to the STAS-domain superfamily,

with other STAS members in B. subtilis including RsbR, RsbV and SpoIIAA [Aravind

and Koonin 2000; Mittenhuber 2002; Pane-Farre et al. 2005]. The multiple RsbR par-

alogues of B. subtilis possess a conserved C-terminal STAS domain [Murray et al. 2005],

but they differ in their N-terminal, globin-like domains [Akbar et al. 2001; Pane-Farre

et al. 2005]. The STAS domain of RsbR paralogues and RsbS are jointly responsible for

the construction of the icosahedron [Marles-Wright et al. 2008]. The variable N-terminal

domain is proposed to act as a sensor, or enables interactions with RsbT [Delumeau et al.

2006; Reeves et al. 2010]. One of the RsbR paralogues, YtvA, carries a UV light sensi-

tive, N-terminal LOV domain (light-oxygen-voltage) instead of a globin-like fold [Akbar

et al. 2001; Losi et al. 2002]. UV light induces the formation of a covalent bond between
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4. Stressosome simulation II: Shape transitions

Figure 4.1.: Interaction and domain structure of stressosome proteins and their organi-
sation as trimer of dimers, a triangle structure. A triangle of dimers in the stressosome
contains two RsbR dimer and one RsbS dimer with an associated RsbT. The STAS
domains are structural elements, whereas the RsbR-N terminus is implicated in the
sensing of the signal. RsbX is the phosphatase for the RsbT mediated phosphorylation
of RsbS.

Cys62 and a flavin nucleotide cofactor of the YtvA LOV domain [Losi et al. 2002]. By

contrast, the molecular details of signal transduction in the other RsbR paralogues remain

unknown.

The next step in the signal processing cascade involves transmitting the signal from the

N-terminal domain to the C-terminal STAS domain of the RsbR paralogues (Figure 4.1).

Both RsbR and YtvA possess a flexible linker region between their two domains, the so-

called Jα linker [Buttani et al. 2007], which undergoes conformational changes upon signal

perception [Möglich and Moffat 2007]. The structural changes are presumably transmitted

to the STAS domain [Herrou and Crosson 2011], and stimulate the kinase activity of RsbT

[Avila-Perez et al. 2009; Chen et al. 2003]. The ensuing increase in RsbS phosphorylation

releases RsbT, and thus activates the general stress response [Kang et al. 1996; Yang

et al. 1996]. On the other hand, the dephosphorylation of RsbS-P is performed by the

phosphatase, RsbX (Figure 4.1), thereby resetting the system to the resting state [Chen

et al. 2004; Völker et al. 1995a].

The STAS domains are implicated in both the signal transmission and the construction

of the icosahedron. Thus, it is possible that changes in the conformation of the STAS
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domains change the global structure of the stressosome in order to facilitate the infor-

mation transfer. The stressosome is an icosahedron, and this structure alone allows us

to derive rules for the motions of the stressosome’s domains. This approach is possible

because geometric constraints remain valid over different orders of magnitude [Whitesides

and Boncheva 2002]. Cuccia et al. [1994] studied the structure of carbon allotropes by

using paper-folding techniques that reproduce the sp2-carbon bond properties. Combin-

ing the carbon-bond models in different ways allowed Cuccia et al. [1994] to construct

the allotropes of carbon, like ring molecules, fullerenes, etc. Geometric models can not

only represent static protein structures, but also the processes of protein folding and

self-assembly. Burnley and Cox [2004] constructed chains of paper to study folding pro-

cesses related to protein folding which were agitated and folded spontaneously into defined

shapes. This approach can also be applied to the assembly of viral capsids [Burnley and

Cox 2005; Gracias et al. 2002]. Caspar and Klug [1962] studied properties arising from

the geometry of icosahedral viral capsids. From paper models they learned that arrange-

ments of structure units consisting of pentamers and hexamers are a geometric necessity.

The particular organisation of pentamers and hexamers maximises the contacts between

the units [Caspar and Klug 1962]. It is a frequent approach to simplify the structure of

proteins using spherical or elliptical bodies to study geometric and thermodynamic con-

straints [Bruinsma et al. 2003; Feng et al. 2008; Zandi et al. 2004]. Similarly, I devised

a particle-dynamics simulation where the RsbR and RsbS proteins are approximated by

tetrahedral constructs. This procedure allowed us to generalise results obtained by the

geometric model. These results inspired the construction of a cellular automaton. This

cellular automaton is based on the automaton-model of Chapter 3 with appropriate mod-

ifications. While the geometric models have a very limited capacity to study stressosome

dynamics, a cellular automaton enables an analysis of the effect of different parameters

on the activation profile.

Though much is known about the consequences of stressosome activation, several ques-

tions remain unanswered: 1) What is the stressor activation mode for RsbR? 2) How does

RsbR activate RsbT by phosphorylation? 3) How is the activation signal transferred from

the stressosome-integral STAS domain to the RsbS associated RsbT? 4) What are the

advantages of an icosahedral structure in this system? Here, I have combined independent

modelling approaches for the stressosome, including a geometric model, particle dynam-

ics simulation, and a cellular-automaton model to answer these questions. The resulting

model of the stressosome activation suggests a method of communication between RsbR

and RsbT, the basis of which is an orchestrated collapse of three dimers in a triangle.

This collapse is caused directly by the environmental conditions that affect the RsbR

and YtvA N-terminal domains; no intermediary signal transducers are necessary, explain-

ing why none have been found thus far. The structural interactions between RsbR and
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4. Stressosome simulation II: Shape transitions

RsbT after the collapse stimulate RsbT. Finally, the ability of the icosahedral geometry

to support the collapse is an inherent property of this type of geometry. I expand my

original ‘Collapse Hypothesis’ by the assumption that one collapse stimulates the collapse

of nearby structures. Simulations using cellular automata lead to the conclusion that

the cooperative collapse propagation expands the regulatory power of the stressosome.

Furthermore, a single signal event of the RsbR paralogues is amplified by multiple phos-

phorylation/dephosphorylation events on RsbS, as revealed by the rigorous sequencing of

intramolecular events in the stressosome.

4.1. Construction of geometric models for the stressosome

The stressosome is a truncated icosahedron and these geometric structures

are popular origami folding models. I constructed a paper-based, geometric model of

the stressosome based on a folding sequence visualised in Figure 4.2. For this construction,

90 quadratic paper units were folded and assembled as indicated by steps 1-7 in Figure

4.2(A).

In collaboration with Peter Raasch, a particle-dynamics simulation of the stressosome

was developed to experimentally verify the observations obtained from the geometric paper

model. In the simulation, the proteins of the stressosome were represented by particles with

a three dimensional position and velocity. Interactions and connections between proteins

were modelled by two types of forces, connective and interactive, acting between those

particles. The particles are distributed in space like the vertices of an icosahedron and a

connective force acts between the particles. The force is similar to a the the force produced

by a linear spring, flexible within a certain range but stiff beyond it. The interaction force

was used to model repulsion and attraction between proteins at the tips of the structure,

which have a certain degree of freedom to move. It acts in repulsion when two proteins are

too close to one another and in attraction when the proteins are within a certain distance.

Phosphorylation of proteins resulting in either stronger or weaker attraction was modelled

per protein by changing the interaction force. External disturbance by proteins in the

cytoplasm was simulated by a short random impulse on all proteins in the structure.

The code is written with Visual Basic R⃝ and available on the attached CD in the folder

‘4th-Chapter shape-transitions’ and subfolder ‘Particle-Dynamics’.

The stressosome is assembled from dimers of RsbR and RsbS (Figure 4.2(B)) [Chen et al.

2003]. Three dimers form a triangle at the molecular 3-fold axis, equivalent to a hexamer in

terms of monomers (Figure 4.2(B)). Overall, the structure is composed of twenty triangles

and these form the basic agents in the cellular automaton. The neighbours were organised

such that an icosahedral geometry is generated comparable to the icosahedral cellular
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4.1. Construction of geometric models for the stressosome

Figure 4.2.: Modular origami approach (A) and network diagram of the stressosome (B).
Six steps to fold a single square paper unit, sketch 7 indicates how three monomers are
connected to form a three-dimensional construction unit of which the view from above
is shown in sketch 8 (A). Icosahedral surface organization that guides the assembly
of the paper model (B). Each protein is formed by three paper monomers that form
one construction unit. Dimers in the stressosome are connected with continuous bars.
The simulation of the cellular automaton is based on trimers of dimers in the form
of triangles. Each triangle is identifiable according to the numbering scheme. RsbR
is depicted with blue circles, RsbS as green stars. Each protein is represented by one
tetrahedron of sketch 8 in (A).

automaton of Kiester and Sahr [2008]. In the cellular automaton of the stressosome, three

states were deemed possible for each triangle: 1) ‘relaxed condition’, where all dimers

protrude out of the stressosome; 2) ‘collapsed condition’, where all dimers in a triangle are

physically close to each other, or 3) ‘inhibited triangle’, this is a partially collapsed triangle,

some dimers have collapsed onto a neighbouring triangle, thus an inhibited triangle cannot

be in the collapsed state. Physiologically a triangle collapse corresponds to the reception

of a stress signal by the stressosome, and a relaxation of a triangle corresponds to the

reversion to a pre-stimulus stressosome. Each triangle was numbered from the lower

left to upper right (Figure 4.2(B)) and its state was stored in a list, the ‘Position-list’.

Thus, the Position-list represents the output of the model. A second list, the ‘neighbour-

list’, associated each triangle to its three neighbouring triangles and documents their

state. This neighbour-list was essential for determining collapse probability in the collapse

cooperativity model.
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4. Stressosome simulation II: Shape transitions

Table 4.1.: The three parameters used for simulation of the stressosome cellular-
automaton model. The numerical values are empirically chosen to establish a low
collapse frequency of the stressosome in stress-free conditions. An increase of the co-
operation of collapse to a value of 0.5 leads to a nearly 2.5-fold increase in the collapse
fraction.

Parameter Meaning Value

rcol Probability of collapse 1 · 10−3

rrlx Probability of relaxation 0.25
coop Cooperation of collapse 1 · 10−2 (0.5 stress-induced)

In the following section, I introduce the different components and processes specific

to the simulation and give an example of how the simulation was implemented. At the

beginning of each simulation with the cellular automaton all triangles in the stressosome

were relaxed. The dynamics of the stressosome were independent of the initial stressosome

state because a simulation can, in principle, realise every possible stressosome configura-

tion in a limited number of update steps. During a simulation the stressosome adopts

many different possible configurations and each can be regarded as an initial start. Fur-

thermore, it is not possible to assign completely random initial conditions; there are more

forbidden configurations than allowed ones because each collapsed triangle must have all

neighbours inhibited. The simulations reached a steady state typically before 140 update

steps, using the parameter values in Table 4.1. For optimal reproducibility the simula-

tions were repeated 50 times; more simulations did not reduce the standard deviation

further. The code is written with Matlab R⃝ and available on the attached CD in folder

‘4th-Chapter shape-transitions’, and available for download in the Resource section of

www.sbi.uni-rostock.de, named ‘Liebal thesis-data.zip’.

In one simulation step each triangle was evaluated once in a random order. Only relaxed

triangles (no direct triangle neighbour is collapsed) can collapse, i.e. the Position-list is 1

for the triangle. A collapse at position A took place if the following condition held:

Nrand < rcol +
AF. (4.1)

This is a standard Monte-Carlo evaluation of chemical reactions as used for example in

the Gillespie-algorithm [Gillespie 1977]. In Equation 4.1, Nrand is a random number in

the interval [0,1], and rcol is the probability parameter for the collapse (Table 4.1). The

parameter AF quantifies the effect of neighbours on the collapse according to the equation:

AF = coop(1− rcol)

3
i=1

AIi
3

. (4.2)
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4.1. Construction of geometric models for the stressosome

The middle term (1 − rcol) ensures that the sum of rcol and
AF in equation (4.1) has a

maximum value of one. This term corresponds to the potential by which collapse efficiency

can be increased. The cooperation parameter coop quantifies how effective the neighbours

can use this potential and ranges from zero (neighbours cannot increase collapse, no col-

lapse cooperation) to one (neighbours can make collapse a certainty, collapse cooperation).

The results of the particle-swarm simulations implied that triangles inhibited for collapse

(triangles with collapsed neighbours) stimulated collapse reactions of their neighbours. In

equation (4.2), the parameter AIi represents inhibited neighbours and is derived from the

neighbour-list; AIi is one if the i-th neighbour of A was inhibited, the neighbour-list is ‘3’,

and zero otherwise. Each triangle has three neighbours (Figure 4.2(B)), and an increase in

the number of inhibited neighbours increases the probability of collapse of triangle A. The

relaxation reactions are determined similar to equation (4.1), by exchanging the collapse

probability with the relaxation probability (rrlx) and without the neighbour effect, AF .

The parameter coop allows the testing of different levels of cooperation for collapse as

observed during the particle-dynamics simulations. Here, cooperation describes a spatial

activation process, in which collapsed second order neighbours (the neighbours of neigh-

bours) activated the collapse of triangles. This second order neighbour interaction was

observed in the particles-dynamics simulation and is coded in the cellular-automaton for-

mulation by using collapse inhibited triangles. A collapse inhibited neighbour informs a

triangle that the neighbour of this neighbour is collapsed.

For example, the collapse of triangle no. 1 in Figure 4.2(B) is evaluated. Triangle 1

is relaxed (represented in a state table by ‘0’), therefore it is not collapsed (state table

value of ‘1’), and it is also not inhibited for collapse (state table value ‘2’). First, we

examine the neighbours of triangle 1, these are the triangles 2, 5 and 6. None of these

can be collapsed, because otherwise triangle 1 would be inhibited. But if the triangles 2,

5 and 6 are inhibited themselves, then these triangles can stimulate the phosphorylation

of triangle 1. For example, triangle 2 has neighbours 1, 3 and 7, and of those triangle 3 is

collapsed. Consequently, triangle 2 is inhibited and stimulates collapse of triangle 1, via

the parameter 1I2 = 1 in equation (4.2). Similarly, triangles 5 and 6 might exert positive

effects. If a collapse of triangle 1 occurs, then the state table of triangle 1 is changed to ‘1’

and the states of triangles 2, 5 and 6 are changed to ‘2’, representing the inhibited state.

The effect of different combinations of parameter values was studied using an orthogonal

sampling method. For two parameters under investigation the sampling space in the

interval of [0,1] was divided into 15 squares. For each parameter two random numbers were

generated in each square, resulting in 450 samples. Each sample of parameter combinations

was simulated independently 50 times for statistical confidence. Every simulation was

performed for 300 update steps, to ensure the steady state was achieved. The mean fraction
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of collapsed triangles was calculated for steps 200 to 300 for each triangle position to get

statistics only for the steady state. Note that the maximum number of simultaneously

collapsed triangles is 0.4 (8/20), because collapsed triangles inhibit neighbour collapse.

4.2. Structure and motions of icosahedra

Modular origami techniques are able to reproduce the truncated icosahedron

structure of the stressosome; a paper based geometric model of the stresso-

some is illustrated in Figure 4.3(B). By comparison, the molecular structure of the

stressosome, solved by cryo-EM by Marles-Wright et al. [2008], is illustrated in Figure

4.3(A). In the geometric model, RsbR and RsbS proteins were represented by tetrahe-

dra, and each tetrahedron had three nearest neighbours. However, the distances between

the neighbours were unequal; each tetrahedron was closer to one neighbour than to the

other two, thus forming a tetrahedron-dimer. The tetrahedron-dimers of the geometric

model have the same distribution as the RsbR and RsbS dimers in the stressosome. A

particle-dynamics simulation was employed to assess whether the structure of the modu-

lar origami model was independent of the construction method used and ensure that the

origami model obeyed general geometric principles. Indeed, the minimum energy config-

uration of the particle-dynamics simulation was identical to that of the geometric model,

and both were similar to the cryo-EM-reconstruction of the stressosome (Figure 4.3). The

surface of the stressosome comprises trimers of dimers (two RsbR dimers and one RsbS

dimer) and pentamers formed at the intersection of these; in Figure 4.3(B) a trimer of

dimers points toward the observer, and three pentamers are adjacent to it.

The geometric model is flexible in the movements of the tetrahedral protrusions. Two

dimers can approach one another when pressed together, indeed the force needed for the

dimers to approach one another appears lower if all the dimers in a triangle are pushed

together, a process here designated as triangle collapse. The triangle collapse was visualized

for the three stressosome representations in Figure 4.3(D-F). If each dimer was a member

of two triangle structures, it could only collapse into one of these triangles. If a dimer was

collapsed into the first triangle, then the second triangle could not collapse (inhibited),

and vice versa. A physical separation of the dimers was also possible in the geometric

model when the pentamers were pushed together. This, however, required substantially

more force in comparison to a triangle collapse. Given the strong interaction between

dimers of RsbR and RsbS seen in vivo [Marles-Wright et al. 2008; Murray et al. 2005] this

collapse is excluded on a molecular level.

In collaboration with Peter Raasch, a particle-dynamics simulation was constructed to

verify the generality of the geometric model results. In the simulation, tetrahedral struc-
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Figure 4.3.: Summary of the structural models of the stressosome. Subfigure (A) shows
the surface model of the stressosome at atomic resolution determined by Marles-Wright
et al. [2008], with RsbR coloured in blue; RsbS, yellow; and RsbT, red. Subfigure
(B) shows the result of a modular origami geometric paper approach, and (C) shows a
particle dynamics simulation of a truncated icosahedron model in which the tetrahedra
are only attached by the edges of their triangular base. A-C show the stress-free,
relaxed condition, whereas D-F shows the stress-induced, collapsed state. Triangles of
dimers (hexamers) lead to a ‘triangle collapse’. Isolated dimers are dimers that are
not collapsed but for which all their neighbouring dimers collapsed, thus inhibiting the
further collapse of isolated dimers. Both the geometric model and particle dynamics
reproduce the dimer construction of the stressosome.
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tures were used to represent the proteins (Figure 4.3(C)). The connections between the

vertices were spring-like, with a restricted capacity for shrinking and elongation. In the

non-excited state, no force acted between the tips of the tetrahedra, whereas the excited

state was simulated by an increase in the attractive force between the tips. Excitation

rendered the relaxed dimer configuration meta-stable. Slight imbalances in the force dis-

tribution resulted in the triangle collapse (Figure 4.3(F)), thus reproducing the findings

of the paper-based geometric model.

4.3. Efficient stressosome activation via cooperation

Triangle collapse was the common result obtained for both the geometric

model and the particle-dynamics simulation. Furthermore, the particle-dynamics

simulation indicated that the collapse of one triangle redistributed the forces within the

icosahedron such that the collapse of neighbouring triangles became more likely. Could

the cooperation of triangle collapse be used in the regulation of stressosome activation?

To answer this question, a cellular-automaton model was developed that combined the

icosahedral structural [Liebal et al. 2013] with the dynamic information of triangle col-

lapse and cooperation. Simulation results of cellular automata are inherently spatial and

a graphical representation of two different simulation results of the cellular automaton of

the stressosome is illustrated in Figure 4.4. The evolving patterns of collapse are unique

for every simulation, but some general properties can be observed. Figure 4.5(A) rep-

resents a typical outcome regarding the frequency of collapse. In this simulation, many

triangles collapsed with a frequency between 0.2 and 0.5, while there are a few triangles

with a high (> 0.5) and low activity (< 0.1). Figure 4.4(B) shows a simulation with ex-

actly 8 frequently and 12 rarely collapsing triangles. Only a minority of simulations follow

this pattern, because the collapse of one triangle inhibits the collapse in the neighbouring

triangles and this requires an optimal positioning of collapse to maximise collapse. The

spatial representations of the cellular automaton simulations of the stressosome are in-

cluded to exemplify direct simulation results. The patterns produced as direct outcome

of the cellular automaton are, just like those of Chapter 3, of no practical use because

they are experimentally inaccessible. Instead of examining the activity of each and every

triangle we have to focus on all triangles of the stressosome over time.

Figure 4.5 shows the collapse activity over 600 update steps (corresponding to time) for

a single stressosome (A) and for an ensemble of 50 simulations (B) using the parameter

values of Table 4.1. At steady state about 15% (3 of 20) of the triangles were collapsed.

However, it should be noted that a maximum of 40% (=8) of the possible triangles can

collapse simultaneously because of steric collapse inhibition. Figure 4.5(A) shows the tra-

jectory for a single simulation, and which also reveals the high noise level: the system
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Figure 4.4.: Triangle specific collapse average over time. A simulation was performed for
200 update steps with the parameters listed in Table 4.1 with the high coop parameter
and the average number of collapse events was calculated for each triangle. The visu-
alization of triangles corresponds to the stressosome net of Figure 4.2(B). (A) shows a
representative result with a majority of triangles activated with a frequency between
0.2 and 0.5 and a few high and low active triangles. (B) Represents a rare result for
which the triangles have assumed a particular arrangement that allows for the maximal
number of 8 simultaneous collapses. Highly collapsed triangles always have low active
neighbours, because a collapsed triangle inhibits its neighbours.

varies between no collapsed triangles and 25% (=5) of collapsed triangles. Therefore, the

standard deviation of 7% was high. After 400 update steps (dashed line), the parameter

for the cooperativity of collapse (coop) was increased from 0.1 to 0.5 according to the hy-

pothesis that stressosome activation is based on an increase of cooperation of collapse. The

fraction of collapsed triangles immediately increased to 33% (=6.6). This is concomitant

with a decrease in the standard deviation to 5%. Overall, the results show that stresso-

some activation can be regulated by an activation of the cooperation of collapse, but the

outcomes in Figure 4.5 are limited to a particular combination of parameters. To justify

the validity of our results, and to compare the response sensitivity if the stressosome is

activated either by probability of collapse or by cooperation of collapse, I analysed a wide

range of parameter values.

4.4. Parameter scan for stressosome activation

With the cellular-automaton modelling approach it is possible to study how

different collapse probabilities (rcol) and an altered cooperation of collapse

(coop) affect the fraction of collapsed triangles in the stressosome. An efficient

stress response requires a strong increase in the amount of collapsed triangles. This can

either take place by increasing the (i) collapse probability, (ii) collapse cooperation, or (iii)
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4. Stressosome simulation II: Shape transitions

Figure 4.5.: Dynamics of triangle collapse of the cellular automaton (time). The data are
collected from a single simulation (A) and the mean (circles) and standard deviation
(dotted line) of 50 simulations (B). From simulation steps 0-400 (thick line) collapse
cooperation was low, at coop = 0.01, whereas from 400-600 was increased to coop = 0.5.
During stress-free condition on average 14% of triangles are collapsed whereas during
stress the collapsed fraction increases by nearly 2.5-fold to 33%.

by decreasing the collapse relaxation (rrlx). Figure 4.6 shows the change of the collapse

fraction for parameter changes in the pairs rcol − rrlx (A) and rrlx − coop (B). By evalu-

ating Figure 4.6, I derived parameter combinations with a high collapse ratio between an

active/non-active stressosome. The collapse probability needed to be below rcol < 0.05

to result in a high activation ratio. By contrast, the value of the relaxation probability

had limited effect on the activation ratio (Table 4.1). Strikingly, the relaxation reaction

became more effective for the collapse cooperation mechanism (Figure 4.6(B)). In this

condition the fraction of collapsed triangles decreased with increasing relaxation proba-

bility. Moreover, the relaxation probability had a larger effect on the collapse fraction,

particularly at high rrlx values. This capacity of the cooperation of collapse to enable reg-

ulation via a relaxation pathway allows for more regulatory control. The collapse is closely

related to phosphorylations of the RsbR and RsbS proteins and thus dephosphorylation is

necessary for relaxation to occur. Stressosome activation leads to the expression of RsbX,

a phosphatase, and conceivably to an increase in the relaxation. The increase of collapse

by the way of increasing cooperativity thus enables negative feedback regulation.

4.5. A new review of events during stressosome activation

The model of the stressosome activation proposed here is a variation of the

stressosome model introduced in Chapter 3. Although the previous model also con-

sidered the stressosome structure and related the future state of a protein with its closest
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4.5. A new review of events during stressosome activation

Figure 4.6.: Parameter scan of collapse frequency for collapse (rcol), relaxation (rrlx),
and cooperation (coop). (A) Probability distribution if partially collapsed triangles do
not stimulate collapse of neighbouring triangles (coop = 0). (B) The average collapse
fraction for different values of coop. If no cooperation exists then the collapse frac-
tion is independent of the relaxation reaction and increases rapidly with the collapse
probability. By contrast, if collapse becomes cooperative (increase in coop) then the
relaxation reaction becomes influential. The parameter combination of cooperation and
collapse probability shows an increase in collapse for both parameters but contains no
new information and is given in Appendix B.

Table 4.2.: Comparison of two cellular-automaton models for stressosome activation.
The model of the previous chapter focuses on phosphorylation reactions on protein
monomers, whereas the model of the current chapter has explanatory power for struc-
tural events.

Property Monomer model Triangle model

Model basis cellular automaton cellular automaton
Simulated structure trunctated icosahedron regular icosahedron
Agent interpretation protein monomers triangles (3 dimers)
Number of agents 60 20
Different agent states 2 (phosphorylation) 3 (conformation)
Truth table size 22 (4 neighbourhoods with

3 · 6 + 1 · 4 combinations)
41

Number of parameters 4 3
Simulation output fractional phosphorylation fractional collapse

1The truth table is not explicitely modelled, but can be interpreted as such
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4. Stressosome simulation II: Shape transitions

neighbours, there are noteworthy differences (listed in Table 4.2). The model proposed

here is tailored to investigate the observed structural rearrangements of icosahedra; it has

been developed specifically with the stressosome in mind, but the model could be adapted

to suit other icosahedra that undergo conformational change, such as the disassembly of

many viruses on infecting their host’s cells. In this study I have shown that the dimers

in an icosahedron can physically approach each other, and this movement additionally

induces the approach of two neighbouring dimers, ultimately leading to a collapse of a

triangle of dimers (Figure 4.3(D-F)). The collapse of one triangle also induced the collapse

of neighbouring triangles in a particle-dynamics simulation. This process was named co-

operativity of collapse and it increases the influence of the parameter for the relaxation of

triangles (the inverse of collapse) on the collapse occurrence. Whilst it is convenient to de-

scribe the conformational changes that occur during stressosome activation as the collapse

of a triangle composed of protein dimers, this does not imply that the stressosome compo-

nents undergo drastic collapse or structural rearrangement. Rather, any conformational

change that occurs on activation in one protomer is transmitted through its neighbours

within a triangle and propagated throughout the entire structure. Whether this conforma-

tional change takes place coincident with a stressosome intramolecular symmetry axis, or

orthogonally to the axis, is irrelevant, the geometric principles surrounding neighbouring

triangle collapse remain constant.

Overall, the modelling process suggests the following sequence of events for stressosome

activation (Figure 4.7):

1. Stressors activate the sensory domain causing a conformational change [Jurk et al.

2011; Möglich and Moffat 2007];

2. The Jα linker transmits the signal to the STAS domain [Gaidenko et al. 2012; Möglich

and Moffat 2007; Tang et al. 2010];

3. The Collapse Hypothesis explains the communication between RsbR and RsbS;

4. Phosphorylation of RsbR (catalysed by RsbT) [Chen et al. 2003; Gaidenko et al.

1999], and/or FMN-induced conformational changes in YtvA [Avila-Perez et al.

2009] stimulate phosphorylation of RsbS by RsbT;

5. Phosphorylation of RsbS triggers dissociation of RsbT [Chen et al. 2003];

6. RsbX dephosphorylates RsbS-P [Yang et al. 1996],

7. RsbT re-association and phosphorylation of RsbS;

8. RsbT re-association and slow recovery of pre-stimulus conformation of the sensors

[Losi et al. 2003].
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4.5. A new review of events during stressosome activation

Figure 4.7.: Process diagram for the environmental stimulation of a triangle. An ac-
tivation/deactivation process proceeds as follows: (1) signal perception; (2) conforma-
tional change transmitted to the STAS domain of RsbR/YtvA; (3) triangle collapse;
(4) stimulation RsbT kinase activity; (5) RsbT dissociation; (6) RsbX mediated RsbS
dephosphorylation; (7) RsbT re-association and stimulation; (8) RsbT re-association
and recovery of pre-stimulus state.

This general stressosome activation model embodies the Collapse Hypothesis to explain

the intermolecular communication between RsbR and RsbS. The graphical representation

of the events leading to the stressosome activation in Figure 4.7 emphasizes an impor-

tant regulatory function of the stressosome, generated by an auto-activation loop. After

dephosphorylation of RsbS-P, the activated and collapsed triangle can participate in two

reactions: 1) conformational change to re-activate the sensor and cessation of RsbT stim-

ulation; or 2) re-association of cytoplasmic RsbT to the activated triangle, including the

repeated phosphorylation of RsbS. The conformational changes associated with the reac-

tivation of the sensor are in the order of 1 h for the LOV domain of YtvA [Losi et al.

2003], and also the dephosphorylation of the RsbR-P paralogues is considerably slower

than RsbS-P dephosphorylation (Chapter 3 and Chen et al. [2004]). Since reaction (7) is

faster than reaction (8), the stressosome activation cycle is more likely closed via reaction

(7), which decouples the stressosome response duration from the activation by the stimulus

duration of reaction (1) (Figure 4.7). The rate of reaction (8) controls the length of the

response and an adaptation of this reaction rate enables modification of stress response

duration, independently of the stimulus duration. This feature is not associated with the

Collapse Hypothesis, and thus is generic to the stressosome.
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4.6. Relation of the results to experimental observations

RsbR and RsbS are the minimal combination of proteins required to form

a stressosome in vitro, but as many as five paralogues of RsbR are also com-

ponent parts of the stressosome in vivo [Akbar et al. 2001]. RsbS appears to act

as a scaffold for the assembly of the stressosome, but it also plays a central role in the

recruitment and regulated dissociation of the signalling protein, RsbT [Chen et al. 2003].

Of the RsbR paralogues involved in the environmental signalling pathway, the stimulus,

UV light, is known only for one of the paralogues, YtvA [Avila-Perez et al. 2006; Gaidenko

et al. 2006; Losi et al. 2002]. Moreover, the structure of YtvA before and after light re-

ception has been determined. The LOV domain of YtvA appears to perform a scissor-like

rearrangement following stimulation, with a distinct movement of the Jα helix linking the

signalling and STAS domains [Möglich and Moffat 2007]. Solution studies of full length

YtvA suggest that its overall shape is maintained in response to stimulus, but that re-

arrangements within the YtvA dimer, and particularly within the stressosome-anchored

C-terminal STAS domain, may change the way YtvA interacts with its partners in the

stressosome [Jurk et al. 2011]. To involve the stressosome-anchored STAS domain in the

signalling pathway requires information transduction from the N-terminal LOV sensor.

The two domains are connected by a flexible linker, called the (Jα) helix. Whereas Jurk

et al. [2011] did not find that the Jα is involved in intramolecular interactions, Möglich

and Moffat [2007] did detect molecular motions of Jα between dark and light state. The

importance of the Jα linker has also been confirmed for RsbR [Gaidenko et al. 2012]; sub-

stitution of conserved residues increased stressosome activation, whereas substitution of

non-conserved residues reduced it. These results fit the Collapse Hypothesis by allowing

the linker to modulate the probability of a collapse of dimers, and subsequently triangles.

The observations of the geometric model, and the results of the particle-dynamics simu-

lation, suggest a global structural reorganisation of the icosahedral structure of the stres-

sosome. van Vlijmen and Karplus [2001] used normal mode analysis to study the motions

of an icosahedron composed of 60 dialanine peptides in silico. The peptides can per-

form several motions, but the most prominent is ‘breathing’, a process during which the

peptides depart from each other. The capsids of icosahedral viruses are well studied: a pH-

dependent global shape transition has been observed for the cowpea chlorotic mottle virus

(CCMV) [Bancroft et al. 1967; Speir et al. 1995]. Tama and Brooks III [2002] described a

mechanism for the swelling of the CCMV particles using normal mode analysis. Strikingly,

the motions of hexamers during swelling-induced expansion are more prominent compared

to those of pentamers, and furthermore, dimers in the capsid stay close to one another.

Hexamer expansion is the inverse of the triangle collapse proposed here. Computational

investigations by normal mode analysis have also been applied to other icosahedral [Tama
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and Brooks 2005], and non-icosahedral viruses [Nguyen et al. 2005]. Thus, shape transi-

tions in icosahedral structures are common and well studied phenomena in the discipline

of mathematical virology [Indelicato et al. 2011; Twarock 2006].

4.7. Model predictions and tests

Shape transitions of viral capsids are environment sensitive, an increase in

pH, or a decrease in metal ion concentration leads to swelling of CCMV [Ban-

croft et al. 1967; Speir et al. 1995]. Probably, the triangle collapse is environmental

sensitive, too. This enables the stressosome to monitor directly the constitution of the cy-

toplasm. For example, there is no knowledge how osmotic stress activates the stressosome.

The suspicious absence of an osmotic signalling pathway could be elegantly explained by

an induction of triangle collapse in response to the ionic strength.

In Figure 4.6(A) the increase in the probability of collapse (rcol) dominated over the

probability of relaxation (rrlx). The probability of collapse may correspond to the phos-

phorylation rate, and relaxation may correlate with RsbX mediated dephosphorylation.

During stress response RsbX is expressed so as to reduce stressosome activation by in-

creasing the relaxation rate, as shown in Figure 4.6(B). If also the probability of collapse

would be increased, for example by a higher RsbT kinase activity, then the RsbX mediated

negative feedback would fail to limit stressosome activation.

The release of RsbT from the stressosome allows the transmission of the perception of a

stress signal to the downstream σB partner switching cascade [Kang et al. 1996]. Motions

of the stressosome components following its excitation with specific stress signals have been

found previously in several studies [Jurk et al. 2011; Marles-Wright et al. 2008; Möglich

and Moffat 2007], and here we propose a radical structural hypothesis that links the

release of RsbT with a shape transition in the stressosome. The hypothesis can be tested

by computational elastic network models or normal mode analysis of the stressosome.

Experimentally, cryo-EM or NMR studies of the activated stressosome could shed light on

the magnitude of motions.

4.8. Conclusions

If icosahedra enable triangle collapse, then the stressosome can in principle

use this mechanism for regulation. The chain of arguments is deductive and a direct

proof needs to be established. It is impossible to estimate the magnitude of the collapse

in the stressosome, though by keeping close to the results from the icosahedra, they can

be substantial. The scientific achievements of this analysis includes a close association of
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the structure and the function of the stressosome. The communication of the N-terminal

RsbR/YtvA residues to the RsbT molecules is facilitated via a purely icosahedral and

mechanical property. Cellular automata are idealy suited to deal with two dimensional

system with spatial inhomogeneities. These conditions apply to chemotaxis. A chemotaxis

array is located at the poles [Briegel et al. 2009] composed of two trimers of Tar-sensor

dimers, a CheA dimer and two CheW monomers as basic unit (Chapter 2 for details

on chemotaxis) [Li and Hazelbauer 2011]. Cellular automata have already been applied

to chemotaxis [Bornhorst and Falke 2003; Shimizu et al. 2003]. Lattice models have

also been used to study signalling of Ras nanoclusters in the membrane of eukaryotes

[Gurry et al. 2009]. The study of spatial implications of signalling is still developing

[Kholodenko et al. 2010], and advancing technologies have only recently provided glimpses

into the structure of signalling complexes [Cebecauer et al. 2010]. Geometric organised

structures are increasingly observed, like the inflammasome [Davis et al. 2011], or the

apoptosome [Acehan et al. 2002], and the principles I determined in this study will find

utility in virology and other aspects of the systems biology of symmetrical macromolecular

assemblies.

The previous two chapters focused on computational models for signalling events in the

stressosome. The subsequent step in the general stress response signalling cascade is the

partner switch of RsbW between RsbV and σB, modelled by Igoshin et al. [2007] and

Locke et al. [2011]. Among the outstanding results of these computational models is their

explanation for the positive feedback regulation of the σB operon. The positive activation

provides a high activation capacity [Igoshin et al. 2007], whereas the negative feedback

including RsbW equips the system with pulse-like dynamics [Locke et al. 2011]. In the

next chapter, mathematical modelling of the dynamics of a β-galactosidase reporter of the

general stress response unveils a protease activity that can also participate to generate

pulse like dynamics of σB-dependent β-galactosidase expression.
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Chapter 5
σB induced proteome reorganisation

1Bacteria adapt to environmental challenges by altering their gene expres-

sion program. These gene expression adjustments involve sensory networks, signal in-

tegrators of the environmental and cellular states, eventually regulating the activity of

transcription factors. An important transcription factor of B. subtilis is σB, which is ac-

tivated by a variety of environmental factors including acids, ethanol, heat, and salt, as

well as oxidative stress, low temperature growth, desiccation, energy depletion, and light

[Hecker et al. 2007; Price 2002; van der Horst et al. 2007]. σB regulates about 200 genes

[Helmann et al. 2001; Petersohn et al. 2001; Price et al. 2001], encoding proteins involved

in functions like multidrug efflux, non-specific oxidative stress resistance, acid stress resis-

tance, membrane integrity, and transport [Hecker and Völker 2001; Price 2002].

The processes activating the σB-dependent general stress response have been studied

in great detail [Haldenwang 1995; Hecker et al. 2007; Price 2002]. σB is activated via

the ‘partner switching’ mechanism [Yang et al. 1996], illustrated in Figure 5.1. The anti-

sigma factor RsbW binds and hence reduces the free sigma-factor concentration [Benson

and Haldenwang 1993a]. Release of σB from RsbW, and thus activation of general stress

response, is initiated if RsbW binds the anti-anti-sigma factor RsbV. RsbV and σB have

overlapping binding sites on RsbW resulting in binding competition. Since RsbV has a

higher affinity to RsbW, an increase in RsbV leads to a release of σB constituting the part-

ner switch [Dufour and Haldenwang 1994]. During non-stress conditions, phosphorylation

of RsbV results in a reduced affinity to RsbW, and most RsbW is associated with σB

[Benson and Haldenwang 1993b; Dufour and Haldenwang 1994; Völker et al. 1996]. En-

ergy limitation and environmental stress induce the activation of the two phosphatases of

RsbV: RsbP and RsbU, respectively, thus initiating the partner switch [Vijay et al. 2000;

Völker et al. 1995b, 1996; Yang et al. 1996]. Homologous mechanisms of σB activation can

1The original work of Liebal et al. (2012) is reproduced by permission of the Royal Society of Chemistry.
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Figure 5.1.: Graphical thesis context of Chapter 5. The network shows the investigated
signalling effect of σB to the expression of β-galactosidase and the hypothetical protease
PaseX. In BSA115 upstream regulation of σB is disabled due to the absence of RsbW.

also be found in related bacteria although RsbP is confined to B. subtilis [Hecker et al.

2007; Pane-Farre et al. 2005; Price 2002]. Moreover, this control mechanism seems to have

been analogously developed for general stress response in Methylobacterium extorquens

[Francez-Charlot et al. 2009] and is used during activation of sporulation [Igoshin et al.

2007; Liebal et al. 2010].

5.1. Open questions in the general stress response

Despite the long years of research is our picture of σB activation via partner

switching still incomplete. For example B. subtilis mutants lacking the anti-anti-sigma

factor RsbV should normally be insensitive to stress activation, yet if B. subtilis grows

continuously at low temperature strong induction of σB-dependent transcription was still

observed in a rsbV mutant [Brigulla et al. 2003]. Also the mechanisms restricting σB ac-

tivity and accomplishing the transient nature of the σB response are not fully understood.

σB-activity tests commonly rely on the use of ctc::lacZ reporter gene fusions which

use the activity of β-galactosidase as an approximation of σB activity. β-galactosidase

has a long history as a reporter enzyme and provides valuable insights into many cellular

processes [Serebriiskii and Golemis 2000; Silhavy and Beckwith 1985]. E. coli and many

other organisms tolerate extremely high protein levels of β-galactosidase, up to 20% of

total protein while still displaying robust and reliable activities [Santillán and Mackey 2008;

Serebriiskii and Golemis 2000]. However, amount of protein and enzymatic activity do
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not strictly correlate, e.g. after cessation of protein synthesis the enzyme-specific activity

might still increase [Cazorla et al. 2001]. In B. subtilis heat-shock results in a quick drop

in β-galactosidase activity, most probably caused by proteases like Lon and ClpCP that

recognize the E. coli β-galactosidase as foreign [Mogk et al. 1996; Zuber and Schumann

1994].

In the following, I present a collaborative effort with the Functional Genomics Lab at

the Ernst-Moritz-Arndt University in Greifswald and published as Liebal et al. [2012]. In

this study an rsbW mutant (BSA115), in which expression of σB is solely controlled by

the IPTG inducible promoter PSPAC was used to learn more about the function of the

autoregulatory loop of wild-type B. subtilis strains. The wild-type regulation is based on

the σB driven expression of rsbV, rsbW, sigB, and rsbX (Figure 5.1). In strain BSA115,

due to the lack of RsbW, all σB produced from PSPAC in the presence of IPTG should be

active and allow constitutive expression of a ctc::lacZ fusion. To render the rsbW mutant

viable, the autoregulatory loop of σB expression upstream of rsbV was disrupted by dele-

tion of the σB-dependent promoter. This strain is well suited to test the consistency of a

σB model that I constructed based on a model by Igoshin et al. [2007]. Surprisingly, the

BSA115 mutant displays similar transient induction patterns of β-galactosidase activity

compared to a wild-type strain with an intact autoregulatory loop. Mathematical mod-

elling suggested increased protease or RNase activities as the most likely explanation for

the observations. Subsequent Northern- and Western-blot experiments then proved that

β-galactosidase protein degradation was responsible for the transient σB response pattern

observed in BSA115.

5.2. The reporter protein has transient activity in BSA115

The experiments were performed with three IPTG concentrations (low:

0.1mM, medium: 0.2mM, and high: 1mM). Addition of IPTG activates de novo

expression of σB, which then induces the transcription of lacZ of the σB-dependent

ctc::lacZ fusion. Employing a ctc::lacZ fusion as a reporter, the induction of σB activity

with high IPTG levels was approximately six times stronger compared with an induction

in the wild type following the addition of ethanol (Praveen K. Sappa, personal communica-

tion). This course of events implies that different IPTG concentrations will cause different

maximum β-galactosidase activities. Maximal β-galactosidase activity should be main-

tained depending on the stimulus level. However, a transient pattern of β-galactosidase

activity is apparent (Figure 5.2(B)). Activity increased to reach a maximum, with higher

IPTG concentrations causing a faster accumulation of β-galactosidase. After the peak, β-

galactosidase activity declined rapidly and all experiments displayed a similar low activity

275min after addition of IPTG.
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Figure 5.2.: Shake flask culture experiments of BSA115. Shown are the OD600 (a) and
the activity of β-galactosidase per cell (b). Induction of expression of σB occurs at the
time indicated when cells reached an OD600 of approximately 0.3.

5.3. Modelling of transient responses

Since the a priori assumption about the dynamics of the β-galactosidase

activity differed with the observations, I hypothesized three mechanisms to

explain the data. All hypotheses assume the expression of a σB-dependent regulatory

protein. The decrease in the observed β-galactosidase activity seems to be independent

of the growth phase because two cultures with identical growth characteristics (Figure

5.2(a)) had distinct β-galactosidase peaks (0.1 and 0.2mM IPTG) (Figure 5.2(b)). Ad-

dition of high IPTG levels (1mM) slightly retarded growth and transition to stationary

phase but maximum β-galactosidase activity occurred still within the exponential phase

of growth. These observations indicate that the decrease in β-galactosidase activity is

not concurrent with the transition to stationary phase and is therefore not caused by the

changing availability of RNA-polymerase or ribosomes during stationary phase. Addition-

ally, I generated a model for proteolytic β-galactosidase degradation independent of σB

but dependent on the optical density. In this model, the time of protease synthesis was

chosen to correlate with the transition to stationary phase. The σB-independent model

is not consistent with the experimental data (Appendix C). The stability of the IPTG

induction system was tested by adding IPTG at regular intervals (Appendix C). These

results indicate that the transient induction of β-galactosidase activity relies on a member

of the sigB regulon. Three different mechanisms and the respective models that might

account for the observations are shown in Figure 5.3, and can be biologically interpreted

as follows:

1. Transcription inhibition model: The expression of a hypothetical protein, de-

noted with X, is induced by σB. X can be interpreted as a hypothetical transcription

factor that inhibits the activity of σB. Therefore, following induction of σB activity
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with IPTG, higher levels of X are generated and protein synthesis is subsequently in-

hibited. In this scenario, I assume X to be an unspecific protein expression inhibitor,

but I also tested specific inhibition of lacZ expression which gives comparable results

(not shown). This hypothesis resembles findings related to Spx, a protein involved

in the regulation of disulfide stress response. Spx binds to the α-subunit of RNA-

polymerase, thereby regulating expression rates for genes related to disulfide stress

[Nakano et al. 2003; Newberry et al. 2005]. MgsR (YqgZ) is a Spx paralogue in

B. subtilis implicated in the regulation of general stress response [Reder et al. 2008].

2. σB proteolysis model: In this model the hypothetical protein X is assumed to be a

protease involved in σB degradation. This mechanism is biologically inspired by the

regulation of the general stress response sigma factor σS in E. coli by RssB (SprE).

RssB binds to σS and delivers it to the ClpXP proteolytic complex for degradation

[Mitrophanov and Groisman 2008].

3. Post-transcriptional instability model: The decrease in the β-galactosidase ac-

tivity can also be caused by degradation events acting directly on β-galactosidase

either at the mRNA or protein level. The hypothetical protein X then represents an

RNase or a protease. Within our modelling framework, I cannot distinguish between

RNase and protease because I combine mRNA and protein production into a single

step, assuming a quasi-steady-state approximation for mRNA. Thus, the correspond-

ing variable in the equations can either represent mRNA or protein. However, I focus

on protein instability as recombinant β-galactosidase has been indicated to be sub-

jected to degradation in response to heat shock [Krüger et al. 1994; Mogk et al. 1996;

Schrögel and Allmansberger 1997].

Although I assume in our models a direct control of σB regarding the regulator, this control

might as well be indirect. There may be one or more intermediary σB-dependent factors

activating the regulator. Direct versus indirect regulation are indistinguishable within our

modelling framework.

5.4. Model setup and parameter estimation

Model details of the applied ODE-systems and the respective network dia-

grams are given in Figure 5.3. The parameter values that represent the best fit to the

experiments and that are used to generate the time courses are given in Table 5.1. For the

construction and the analysis of the models, the Systems Biology Toolbox2 for Matlab R⃝

was used [Schmidt and Jirstrand 2006]. SBML files of the model are uploaded to the JWS-

model database and accessible with the following accession numbers: transcription inhibi-

tion (bsa trscrinhib20122131995), SigmaB proteolysis (bsa sigbprlysis201221319839), and
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5. σB induced proteome reorganisation

Figure 5.3.: Comparison of the tested models showing their process diagrams, their
mathematical representation and their experimental fit. Only the ‘post-transcriptional
instability’ model can reproduce the observations sufficiently. Northern-blot experi-
ments of lacZ -mRNA and Western-blot experiments with β-galactosidase (Figure 5.4)
narrow the instability down to proteolytic degradation of the β-galactosidase protein.
Lines finishing with a bar denote inhibition of the associated reaction. Induction by
IPTG is assigned to time 0 in the concentration-time plots.

post-transcriptional instability (bsa ptinst201221319512). The model and the experimen-

tal data is available on CD in folder ‘5th-Chapter protease-expression’, and available for

download in the Resource section of www.sbi.uni-rostock.de, named ‘Liebal thesis-

data.zip’.

The parameters of σB synthesis (kbs) and σB degradation/dilution (kbd) are highly cor-

related, because they describe the dynamics of a variable for which no experimental infor-

mation is available. To be able to estimate kbd, I constrained kbs arbitrarily to 100min−1.

This procedure is possible since only the ratio of synthesis and degradation determines the

β-galactosidase dynamics. Parameter estimation was performed in the SBToolbox2 with

the particle swarm algorithm that was applied to the model until no fitness improvement

could be achieved [Schmidt and Jirstrand 2006; Vaz and Vicente 2007]. Measurements took

place with three different experimental conditions. Different levels of σB were induced via

three different medium concentrations of IPTG, namely low, medium and high (0.1, 0.2

and 1mM). The data obtained with low and medium IPTG concentration were used as

training set for parameter estimation, while the data for high IPTG addition served as test
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5.5. Simulation and experiment cycles prove proteolysis

Table 5.1.: Parameter values for the three competing models used to fit the experiments
as shown in Figure 5.3. The dimension for IPTG concentration is µM and reaction rate
constants are in Miller units per minute (MU min−1). The adapted parameter values for
fitting the post-transcriptional instability model to experimental data in BSG56 in Fig-
ure 5.6 are shown in brackets. Parameter fitting analyses indicate that the parameters
can be estimated independently and have in general a low cross-correlation (Appendix
C).

Parameter Meaning Transcription
Inhibition

σB Proteolysis Post-
transcriptional
Instability

IPTG IPTG conc. for σB

activation
100, 200, 1000 (28.9)

kbs σB synthesis 100 100 100

kbd σB degradation 4.4 · 10−2 5.8 · 10−9 1.7 · 10−2

kbx regulator mediated
σB degr.

– 8.4 · 10−5 –

kzs lacZ/β-
galactosidase synth.

4 · 10−4 1.7 · 10−6 9 · 10−7 (8.2 ·
10−6)

kzd lacZ/β-
galactosidase degr.

4.1 · 10−2 5.2 · 10−2 1.3 · 10−7

kzx regulator mediated
β-galactosidase degr.

– – 3.2 · 10−3

kxs regulator synth. 7.6 · 10−1 2 · 10−6 9.3 · 10−8

kxd regulator degr. 9 1.2 · 10−13 1.1 · 10−9

set to evaluate how well the parameters can predict this experiment. I adapted the model

of σB by Igoshin et al. [2007] to reproduce the σB dependent expression of β-galactosidase

during the transition from exponential to stationary growth phase in BSG56, Table 5.1.

The parameter estimation was conducted as explained above. Parameter estimation of the

‘Post-transcriptional Instability’ model with this data took place using only the measure-

ments after 5 hours of cultivation since only then σB expression was induced. That time

therefore represents the addition of IPTG in the BSA115 strain experiments. Only the

two parameters IPTG and kzs were allowed to vary during estimation with particle swarm

algorithm. The numerical results of the parameter estimation are shown in brackets in

Table 5.1 and the fit is shown in Figure 5.6. In the following section the three models are

compared and verified with the experimental observations.

5.5. Simulation and experiment cycles prove proteolysis

The process diagrams (Figure 5.3, top) were used to formulate systems of

coupled ordinary differential equations. I then estimated parameter values of the
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5. σB induced proteome reorganisation

models to reproduce our experimental results. The resulting fits are shown in Figure 5.3.

The ‘transcription inhibition’ model fails to explain the observed β-galactosidase dynam-

ics, because the model prediction differs qualitatively from the observations (Figure 5.3).

I also tested a model for inhibition of translation. Its results are similar to the ‘transcrip-

tion inhibition’ model (not shown). The ‘σB proteolysis’ model is able to capture some

characteristics of the measured dynamics, notably the transient, adaptive nature of the

response. However, this model fails to reproduce the observation at 275minutes after in-

duction, where the different IPTG additions approaching a comparable low β-galactosidase

activity. High IPTG stimulation results in a disproportional high β-galactosidase activ-

ity in the ‘σB proteolysis’ model. Therefore, also the ‘σB proteolysis’ model does not

provide a plausible explanation for our experimental observations. By contrast, the ‘post-

transcriptional instability’ model successfully reproduces all aspects of the experimental

observations, i.e. transience of the dynamics and comparable β-galactosidase activity at

the end of the experiment. The model is even able to reproduce the inverted activity

results for the three IPTG concentrations at 245min. At that time, low IPTG addition

causes highest activity while high IPTG addition results in the lowest signal. The following

sections provide a more detailed analysis of the ‘post-transcriptional instability’ model.

Model simulations and their analysis allowed us to identify instability of either mRNA

or β-galactosidase protein as an explanation for the observed transient dynamics of β-

galactosidase activity in BSA115. However, mRNA and protein instability is indistin-

guishable within the model because I assumed a rapid and direct correlation between

mRNA and protein level to limit the number of unknown parameters. In effect, we

arrive at a variable that combines information about mRNA and protein. To distin-

guish between mRNA and protein level, my collaboration partners at the University of

Greifwald performed Northern- andWestern-blot experiments to measure lacZ -mRNA and

β-galactosidase-protein levels. mRNA levels during IPTG activation are shown in Figure

5.4A and display persistent high lacZ -mRNA levels. The smear besides the detected main

transcript is explained by specific hybridization of the probe to exo- and endonucleolyti-

cally truncated degradation intermediates of the full-length mRNA as well as still nascent

lacZ -mRNA molecules. The Western-Blot experiments mimicked the transient nature of

the β-galactosidase activity. Remarkably, in the absence of IPTG, and hence at low basal

level of σB activity, β-galactosidase remained stable (Figure 5.4(B) lower panel). The faint

bands of β-galactosidase detected in the absense of IPTG induction are likely a reflection

of low basal level expression from the leaky PSPAC promoter.

One of the primary suspects responsible for degradation of β-galactosidase was the

ClpCP protease [Krüger et al. 1994]. This complex is activated by stress and is also σB

sensitive. In the collaboration with Uwe Völker at the University of Greifswald, we used
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5.6. Proteolysis as part of transient wild-type responses

Figure 5.4.: (A) Northern-blot results for lacZ mRNA. Induction of σB expression and
activity of BSA115 with 1mM IPTG started at 0min. Induction took place in early
exponential phase as indicated in Figure 5.2(a). The blot was exposed for 30min. (B)
Western-blot results for the β-galactosidase protein which was detected at 120 kDa with
respect to the marker (lane-M) used in this experiment. The upper panel reflects β-
galactosidase levels after induction of σB by the addition of IPTG to a final concentration
of 1mM at 0min. After 120min the protein level declines, while the negative control
without IPTG induction (lower panel) displays a continued low β-galactosidase. The
blot was exposed for 30 s. The experiment was performed by P.K. Sappa at the Ernst-
Moritz-Arndt Unversität Greifswald.

the clpP -deletion strain BSG115 and followed the stability of β-galactosidase. The reporter

protein signal was still transient, comparable to the signals in the clpCP wild-type strain

indicating that the ClpCP protease is not responsible for the observed β-galactosidase

instability (Figure 5.5).

5.6. Proteolysis as part of transient wild-type responses

In experiments with BSG56, a wild-type strain with respect to σB regula-

tion, σB-dependent gene expression first increases during transition into sta-

tionary phase, subsequently followed by a decrease in the level of the σB-

dependent reporter protein, often a β-galactosidase-reporter system, close to

pre-stimulus activity (compare β-galactosidase measurements in for example

Brigulla et al. [2003]; Delumeau et al. [2004]; Kim et al. [2004b]; Scott et al.

[2000]; Zhang et al. [2005]). Our presumption for the rsbW mutant strain BSA115

was to observe an initial increase in the β-galactosidase activity, with a sustained high

and IPTG specific β-galactosidase activity. Negative feedback control mechanisms can

explain transient responses and Igoshin et al. [2007] and Locke et al. [2011] proposed an

RsbW-mediated negative feedback. Indeed, the model of σB regulation presented there

can reproduce the adaptive β-galactosidase response shown in Figure 5.6, where I fitted

71



5. σB induced proteome reorganisation

Figure 5.5.: β-galactosidase expression in a clpP knock-out strain. The filled triangles
show the β-galactosidase activity following addition of IPTG at 100min to a final con-
centration of 1mM. Similarly to the dynamics in the wild type, the reporter activity
increases and drops in the isogenic clpP deletion mutant approximately 80min after in-
duction with IPTG. The negative control without addition of IPTG is shown with open
triangles. Optical densities are represented as filled squares for IPTG and open squares
for +IPTG. The experiment was performed by P.K. Sappa at the Ernst-Moritz-Arndt
Unversität Greifswald.

the model σB-feedback (‘sigB fbck.’ model) to an experimental course of general stress

induction in a culture experiment with strain BSG56 (blue-dashed line). There is no on-

going β-galactosidase expression in our experiments with BSA115 (Figure 5.2), instead

the response was similar to the transient response known from an rsbW wild type. The

σB-dependent proteolytic activity that explains our observations in BSA115 was probably

also present in previous experiments using BSG56. Thus, I sought to test how much of the

transient nature of σB activation in BSG56 could be attributed to proteolytic degradation

of β-galactosidase. The continuous red line in Figure 5.6 represents a fit of the proteolysis

model (‘post-translational instability’ model in Figure 5.3) using experimental data from

BSG56. Only two parameters, IPTG and kzs, both not associated with the properties of

the hypothetical protease, were used for parameter estimation. For the reproduction of

the wild type, IPTG corresponds to the cellular energy level (approximated by medium

glucose concentration). The synthesis rate of β-galactosidasekzs was estimated to allow

for fitting of the different absolute Miller unit maxima in the two experiments. While

not necessarily being the only explanation for the transient dynamics, the mathemati-

cal proteolysis model (prot. model) in Figure 5.6 suggests an involvement of proteolytic

degradation of β-galactosidase.
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5.7. Implications of reporter protein instability

Figure 5.6.: Reproduction of general stress response during starvation in BSG56. The
activity of the general stress response transcription factor σB was measured with a
ctc::lacZ fusion. Black points represent experimental data. The blue-dashed line repre-
sents a fit of a σB model that includes the regulation of σB activity by the Rsb-proteins.
The red-continuous line represents the fit of the ‘post-translational instability’ model
for the transient activation of the general stress response.

5.7. Implications of reporter protein instability

The results show an activation of proteolytic degradation of β-galactosidase following

IPTG induction of σB. I adapted the model of σB response by Igoshin et al. [2007] by in-

cluding glucose starvation as a trigger for activation and fitting it to existing experiments.

This model can reproduce experimental observations of σB activation and deactivation as

represented by the blue-dashed line in Figure 5.6. In the collaboration with Uwe Völker

at the University in Greifswald, we then performed an experiment in which we used the

B. subtilis strain BSA115, characterized by stable IPTG-mediated induction of σB ex-

pression and lack of negative regulation of σB activity, due to a frameshift mutation in

rsbW (see Material and Methods section). Unexpectedly, an induction of σB with IPTG

resulted in a transient activity of β-galactosidase as indicated in Figure 5.2. Using mathe-

matical modelling to compare different hypotheses lead to the conclusion of an instability

of either mRNA or protein as potential causes for the transient activity as demonstrated

in Figure 5.3. Subsequent Northern and Western-blot experiments confirmed proteolytic

decay as the cause for the decrease in β-galactosidase signal (Figure 5.4). The transient

activity in BSA115 resembles the transient activity observed in experiments in a wild-type

B. subtilis strain (BSG56) containing an intact σB regulation. I tested whether proteolytic

decay is at least partially responsible for transient β-galactosidase dynamics in the wild

type by adapting the ‘post-transcriptional instability’ model to experimental observations

in BSG56. Indeed, the results indicate that σB-induced β-galactosidase instability is a

process with potential contributions to the adaptive behavior of β-galactosidase in the
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5. σB induced proteome reorganisation

wild-type. Two questions remain open: i) Is the increase in β-galactosidase proteolysis

specific to the recombinant β-galactosidase? and ii) How can the different stresses that

activate the σB-related general stress response diversify the expression of σB-dependent

genes?

Results by Reeves et al. [2007] point to the importance of the ClpP protease for the

regulation of σB activity. A clpP mutant strain results in lasting σB activation measured

with β-galactosidase activity from a ctc::lacZ fusion [Reeves et al. 2007]. This leads to

the assumption that ClpP could be associated with the turnover of σB dependent compo-

nents that result in a deactivation of σB in the wild type [Reeves et al. 2007]. However,

further experiments performed by us revealed that ClpP did not affect the stability of

β-galactosidase. Hence, different proteolytic mechanisms may lead to a reduction in σB

dependent β-galactosidase activity in our experimental setup. Similarly, our results stress

the importance of induced proteolysis, albeit now it is the reporter protein β-galactosidase

being targeted for degradation. In our experiments, transcriptional activity of σB is not

diminished while the reporter signal still decreased. The previous list of possible mech-

anisms that could explain the transient nature of the σB response is neither complete

nor are those mechanisms mutually exclusive. Further work is required to quantify and

discriminate each contribution and to uncover new modes of regulation.

5.8. A wider context of transient responses

The mechanisms I study to explain the experimentally observed transient

adaptive-like dynamics are derived from established biological processes asso-

ciated with bacterial stress response. An analysis about all possible topologies that

can result in adaptive dynamics was performed by Ma et al. [2009]. The authors found only

two configurations for robust adaptation given suitable parameter combinations: integral

feedback (buffered negative feedback), and incoherent feedforward. The ‘transcription in-

hibition’ and the ‘σB proteolysis’ models are examples for integral feedbacks, while the

‘post-transcriptional instability’ model is an example for an incoherent feedforward loop.

According to Ma et al. [2009], there are few biological cases where incoherent feedforward

loops are used to achieve adaptation. Although I do find such a motif explaining our

observations, the wild-type regulation of σB-mediated general stress response is better

known for its use of integral feedback regulation via anti-sigma factor RsbW [Benson and

Haldenwang 1993a] and phosphatase RsbX [Völker et al. 1995a]. Thus, the observation

by Ma et al. [2009] remains valid: adaptation generated by incoherent feedforward loops

is rare.
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5.9. Conclusions

5.9. Conclusions

The research focus with respect to σB-mediated general stress response has

been on its activation whereas less information is available about mechanisms

of the shut-off of σB activity. Using β-galactosidase to investigate σB deactivation

is complicated since this protein is prone to degradation particularly in the context of

overproduction (this study) and heat shock [Mogk et al. 1996]. Several mechanisms can

contribute to the transient response of σB-dependent transcription: 1) silencing of σB

by subsequent response strategies, 2) adaptivity caused by negative feedbacks, and 3)

increased proteolytic instability after σB activation. Silencing of σB by subsequent re-

sponse strategies could be an inevitable event of differentiation and adaptation processes

of B. subtilis following deteriorating environmental conditions. Activation of processes,

like sporulation or biofilm formation, could inhibit activity of σB much like they modulate

activity of competence and chemotaxis [Liebal et al. 2010; Msadek 1999]. Subsequently,

transcriptional activity of σB declines. Several studies have promoted the hypothesis that

negative feedbacks within the partner switch regulation of σB result in its adaptive behav-

ior [Igoshin et al. 2007; Scott et al. 2000; Völker et al. 1995a]. Activation of σB leads to

increased expression of the anti-sigma factor RsbW and the phosphatase RsbX resulting

in an increase in RsbV phosphorylation. This in turn releases RsbW to sequester and

mute σB. This mechanism can result in a decline of σB-dependent transcriptional activity

as well. Locke et al. [2011] studied how the σB system uses noise in combination with

a kinase-phosphatase pair (RsbW-RsbP) to adjust stress response activation frequency.

These authors are able to explain the transient dynamics they observe, only with the

RsbW negative feedback and they disregard changes in YFP stability. Transient dynam-

ics are generated in our β-galactosidase system via increased degradation following σB

activation, and this offers an additional mechanism to generate or exaggerate transients.
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Chapter 6
Final remarks

How does an organism perceive its environment? How do bacteria process information and

regulate gene expression? The general stress response, and particularly the stressosome,

enables us to learn about the organism-environment interface. The stressosome is a sen-

sor of environmental information in the cytoplasm and processes information to regulate

an appropriate response. The original stimuli are varying in their nature: stressosome

responses have been observed upon exposure to stresses such as heat, osmolytes (NaCl),

ethanol, and UV light [de Been et al. 2011; Hecker et al. 2007]. However, only for UV light

was the mechanism of signal perception identified [Möglich and Moffat 2007]. This raises

the question of how the other, seemingly non-related, stressors activate the stressosome.

There is increasing evidence that ethanol, heat, and NaCl have a common physiological

effect on B. subtilis: the generation of reactive oxygen species (ROS) [Höper et al. 2004;

Mols and Abee 2011; Reder et al. 2012]. These results directly lead to the question whether

ROS participate in an intermediary signalling step between environmental stresses and the

stimulation of the stressosome.

ROS are generated by the premature leakage of electrons to oxygen during electron

transport in aerobic respiration, which is particularly caused by the stressosome stressors

ethanol, heat, and NaCl [Mols and Abee 2011]. Not only are ROS a common consequence

of different stresses, but my results additionally reveal an identical activation profile in

the signal-response behaviour for ethanol and NaCl [Liebal et al. 2013]. The cellular

response to 3% ethanol is as pronounced as that to 488mM NaCl, presumably because

these stresses produce the same amount of secondary oxidative stress and ROS. How ROS

activate the stressosome is still unknown. B. subtilis specific peptides are believed to be

involved, because the transplantation of the σB operon from B. subtilis to E. coli fails to

conserve stressosome activation following ethanol or heat shock [Scott et al. 1999].
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Although it is still a matter of debate whether the different stressors ethanol, heat, and

NaCl act on a common intermediate, the Collapse Hypothesis of Chapter 4 and all ensuing

events are stressor-independent. These events are derived from the general properties of

the geometric structure of the stressosome being either a truncated icosahedron (vertices

as proteins), a pentakis dodecahedron (faces as proteins), or a regular icosahedron (edges

as protein dimers), depending on the viewpoint. Common to these geometries is their

property to allow three protein dimers (triangles) to perform motions - the collapse - that

conserve the dimensions and distances of the geometry. The application of the Collapse

Hypothesis to the stressosome provides an explanation for the communication between the

signal perception by the N-terminus of RsbR to the RsbS-associated protein RsbT. These

structural rearrangements prime RsbT to phosphorylate its target RsbR and subsequently

RsbS, ultimately causing RsbT to dissociate. In order to switch the stressosome to its

pre-stimulus condition, RsbS-P and RsbR-P need to be dephosphorylated to allow RsbT

reassociation, and to cease RsbT kinase stimulation [Hecker and Völker 2001; Hecker et al.

2007; Price 2002]. During the resetting of the stressosome, a faster dephosphorylation of

RsbS is observed compared to that of RsbR, thus allowing the reassociation of RsbT

to a stressosome containing a still-phosphorylated RsbR. Slow RsbR dephosphorylation

is reproduced in the monomer-stressosome model described in Chapter 3, where I also

show that the phosphatase RsbX does not dephosphorylate RsbR for mild and medium

stress insults. As a consequence, reassociated RsbT is stimulated by RsbR-P, causing the

repeated phosphorylation of RsbS. The RsbR-P dephosphorylation is the slowest event in

the signalling pathway, and by regulating its rate, the cell modulates the response duration.

In conclusion, the stressosome output is independent of the quality and duration of the

original signal.

With ROS being a shared consequence of ethanol, heat, and NaCl stress, it is not

surprising that the transcriptomic responses are highly similar. I use the word ’highly’,

because the transcriptomic profiles of heat, ethanol, and salt are more comparable than

the profiles of 266 other widely differing environmental conditions tested by Nicolas et al.

[2012]. The physiological effects of ROS include the perturbation of the NAD+/NADH

balance, the redox-system, and disulfide bridges [Mols and Abee 2011]. Among the many

stress responses activated by σB is the expression of proteases for the degradation of

chemically altered proteins [Gottesman 2003]. Several σB-dependent proteases have been

identified already [Price et al. 2001; Reeves et al. 2007], and the results of Chapter 5

provide evidence that a protease is responsible for the degradation of the heterologous

protein β-galactosidase. These results confirm the importance of proteases during the

stress response, but they also caution against the use of the heterologous reporter protein

β-galactosidase.
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Computational models of the different signal processes in B. subtilis have helped to

answer unresolved questions and to state new ones [Liebal et al. 2010]. Models that

integrate the complete environmentally activated σB-dependent general stress response

are within reach. In Chapters 3 and 4 of this thesis, I provide the first computational

models for stressosome activation by environmental factors. By reproducing a wide range

of experimental data, these models faithfully capture stimulation by ethanol, heat, and

NaCl, although they omit the partner-switching cascade of direct σB release. This partner-

switching mechanism and its activation during energy stress was modelled independently

by Igoshin et al. [2007] and Locke et al. [2011]. A full reproduction of σB-dependent stress

response requires a combination of the stressosome and partner-switch models. However,

hybrid modelling approaches are necessary, because although differential equations are

beneficial for modelling the partner-switch, they are incapable of capturing the structural

properties of the stressosome.

The models I present for the stressosome add to the foundation of models to come

that integrate the σB response into the global environmental signalling landscape. This is

possible for B. subtilis because it has only slightly more than 30 two-component systems per

cell [Kunst et al. 1997], which are the primary means of bacteria to sense the environment

[Mitrophanov and Groisman 2008]. As a soil generalist, how much does B. subtilis need

to know about its environment, and how much information can be gathered in soil at all?

Answering these questions will help classify bacteria, and enable us to determine lifestyles

based on genomic information. However, this information extends beyond bacteria: we

learn about our environment. Life means sensation, and bacteria are the most widely

distributed sensors. By uncovering bacterial adaptation strategies, we learn more about

the challenges and diversity in niches like hydrothermal vents in oceans, the valleys of

Antarctica, or even our metazoan bodies that happen to be substrates for a bacterial

success story.
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Appendix A
Simulations of RsbR-paralogue dynamics

Five paralogues of RsbR (RsbRA, -B, -C, -D, and YtvA) are present in B. subtilis. RsbR

sense environmental signals, however, the paralogues RsbRC and RsbRD are also receptive

to energy stress [Martinez et al. 2010]. For further characterisation, Akbar et al. [2001]

studied the response of stressosomes composed only of RsbRC and RsbRD, of both of

them (RsbRC+RD), and the wild-type (RsbRA+RB+RC+RD), during onset of station-

ary phase, Figure A1(A). In conclusion, each RsbR paralogue shows a different pre- and

post-stimulus excitation. This phenotype was reproduced in the model (Figure A1(B))

by increasing the phosphorylation parameter of RsbS, kphs. The white circles represent

the wild type, kphs = 0.6. The black circles in Figure A1(A) represent RsbD stresso-

somes, with a higher β-galactosidase activity. This is reproduced in the model by setting

kphs = 0.75. The highest β-galactosidase activity was measured for RsbRC (squares, (A)).

This was simulated by setting kphs = 0.9 (square, (B)). The mixture of RsbRC and RsbRD

with energy insensitive RsbRA and RsbRB lowers the overall stressosome sensitivity. In

the model this corresponds to a reduction of the RsbS phopshorylation rate from 0.9 to 0.6.

Figure A1: Stressosome activation over time during transition to stationary phase [Akbar

et al. 2001], and increase of kphs in the model of the stressosome.
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A. Simulations of RsbR-paralogue dynamics

ii



Appendix B
Triangle collapse parameter scan

The inspection of the solution space whilst changing two parameters allows to determine

parameter combinations with biologically relevant or interesting dynamics. In Figure 4.6

of Chapter 4, I show parameter scans for the frequency of triangle collapse for different

parameter values of rcol and coop in combination with rrlx. Here, I show the remaining

parameter combination between rcol and coop with the parameter rrlx = 0.9. Following

intuitive expectation, the fraction of collapsed triangles is lowest for small values of both

rcol and coop, and an increase in their values raises the collapse fraction. The collapse

fraction is lower for small values of rcol, because coop cannot complement the high value

chosen for rrlx in this condition (Figure 4.6(B)).

Figure B1: Triangle collapse fraction with different parameter values of coop and rcol.
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B. Triangle collapse parameter scan

iv



Appendix C
Supporting information for σB protease

expression

IPTG remains an active inducer

The experimental results of the IPTG induction of BSA115 show a transient peak of

β-galactosidase activity (Figure 5.2 in Chapter 5). Among the possible explanations is

breakdown or deactivation of IPTG. The experimental partners at the Ernst-Moritz-Arndt

Universität in Greifswald tested the hypothesis by repeatedly adding IPTG to the reac-

tion. The induction of σB was started by addition of IPTG to 1 mM final concentration

at 100 min. Following, IPTG was added at regular time intervals to replenish any deac-

tivated IPTG. The increased IPTG concentrations neither increased the β-galactosidase

levels further nor did they prevent the activity drop at about 200 min.

Figure C1: β-galactosidase activity and optical density of the repeated σB stimulation by

IPTG.
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C. Supporting information for σB protease expression

Model for growth dependent β-galactosidase expression

In addition to the σB-dependent mechanisms I discuss in the main part (Figure 5.2, Chap-

ter 5), I tested a model of a σB-independent, i.e. growth rate dependent, model of the

activation of the protease Figure C1. The variable Sgn is an external signal for the ex-

pression of protease X. The growth rate dependent model is only plausible if the time

for the activation of the parameter Sgn coincides with the transition of the culture to

the stationary phase. However, this model fails to reproduce the data qualitatively for

the following four reasons: 1) for an optimal fit of 1mM IPTG, Sgn has to be active

after 5min of IPTG addition; 2) the final Miller Units differ according to the intensity of

IPTG stimulation; 3) the peak delay for 0.1mM IPTG is too low; and 4) the simulated

β-galactosidase activity of 1mM IPTG (cyan) is too high. In conclusion, growth transition

effects are unlikely because the time of protease activation in the model for high IPTG is

5min, whereas the experimental growth transitions is at about 60min.

Figure C2: Schematic view, ODEs, and experimental fit of a model of σB independent

β-galactosidase degradation.

Parameter Value in MU
min Parameter Value in MU

min optimal times for Sgn

activation

kbs 1 · 102 kzx 5 · 10−5 IPTG in mM time in min

kbd 1.6 · 10−2 kxs 6 0.1 95

kzs 9 · 10−7 kxd 1.1 · 10−9 0.2 90

kzd 1.3 · 10−7 Sgn 1MU 1 5
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Analysis of Parameter correlations

To ensure that the parameter estimation procedure is unique for each parameter, I per-

formed a parameter correlation analysis for the ‘transcription inhibition’ (A), ‘SigmaB

proteolysis’ (B) and ‘prost-transcriptional instability’ (C) models. Due to the small sys-

tem sizes most parameters are uniquely identifiable without linear dependence on other

parameters. Parameter correlations were determined on the basis of 500 parameter es-

timations for each model over all three IPTG-concentrations reproduced in Figure 5.2

in Chapter 5. Each estimation started with a randomized parameter set with a ten-fold

range around the parameters values of Table 5.1. The procedure was performed with the

SBToolbox2 [Schmidt and Jirstrand 2006], and the integrated particle swarm algorithm

[Vaz and Vicente 2007].

Figure C3: Absolute correlation of model parameters for (A) transcription inhibition, (B)

SigmaB proteolysis, and (C) post-transcriptional instability.
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ElucidatingElucidating UnexpectedUnexpected Reporter Signals 
for σB Activity in B. subtilis

Conclusions and Perspectives

Background

Surpise and Explanation

• The σB regulon confers B. subtilis with the ability to respond to various stress stimuli and adapts it for future stress incidents. Metabolic 
expenditures are reduced, in turn, expression of about 150 protective genes is activated.
• Starvation activates the anti-anti sigma factor RsbV that inhibits RsbW by complex formation. RsbW itself is the anti sigma factor of σB.
Hence, an inhibition of RsbW results in release of σB and consequently in global expression changes. RsbW can phosphorylate RsbV
thus inactivating it. The proteins RsbW and RsbV are transcribed by σB and it is assumed that increasing levels of RsbW lead to an 
inactivation of RsbV and to an adaptive σB response.
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• To monitor different levels of σB-dependent expression, we modulated σB expression in a rsbW mutant via IPTG induction of a Pspac promotor cloned
upstream of the σB. β-Gal activity of a ctc::lacZ fusion was used as reporter for σB dependent expression. Direct activation of σB in this strain (BSA115) is
thought to activate reporter protein synthesis and dysfunctional feedback regulation should result is lasting β-Gal activity.

• Addition of IPTG induces expression of β-Gal, but activity is transient.
• Maximal β-Gal signal is independent of growth rate
• β-Gal decrease starts before transition to stationary phase for 1mM IPTG.

• All β-Gal signals drop to uninduced signal strength
• High σB activation Strong β-Gal decrease
• Low σB activation Weak β-Gal decrease

Transcription Inhibition σB Proteolysis β-Gal Proteolysis
Models of the most simple three explanatory hypotheses are fitted to the experimental data to test how well each is able to reproduce the observations:

transient dynamics, adaptivity

comparable final state level

shifted peak positions

transient dynamics, adaptivity

comparable final state level

shifted peak positions

transient dynamics, adaptivity

comparable final state level

shifted peak positions

Adaptive σB behaviour
• B. subtilis BSA115 shows adaptive, transient dynamics of β-Gal following σB

activation by IPTG. Modelling and Northern blot experiments suggest σB

induced β-Gal proteolysis as the origin. 
• σB induced proteolysis of β-Gal in BSA115 was assumed to occur also in B. 
subtilis wild type cells, raising the possibility that β-Gal instabilities might 
contribute to the transient nature of the σB response – testing the ability of the 
β-Gal proteolysis model to reproduce wild type adaptivity confirmed this 
assumption.
• Therefore, part of the adaptive dynamics of β-Gal reporter signal is due to 
induced protein proteolysis, questioning the applicability of β-Gal reporters.
• Research focus on σB has been on its activation and the cause of the 
transient response is not well known. Our results add proteolysis to the 
possible mechanisms:

Hypothesis
Can β-Gal proteolysis contribute to the adaptive σB response in a wild type B. 

subtilis?:
1. Taking the β-Gal proteolysis model parameterized with BSA115 

experiment as starting point.
2. Use of a previous experimental data of β-Gal in wt B. subtilis. σB response 

is activated by starvation at the transition to stationary phase.
3. Two parameters (IPTG, kzs), that are independent of the putative protease 

dynamics, are allowed to vary during parameter estimation.

Result
The β-Gal proteolysis model (red) can fit 
a wt σB response with adaptive 
behaviour as well as a model that relies 
on negative feedback regulation 
including RsbW/V proteins (blue).
Conclusion
Therefore, the hypothesis can not be 
rejected and proteolysis of β-Gal can 
contribute to adaptivity in the wild type.

1.

Induced proteolysis
Negative feedback via 
anti and anti-anti sigma 
factors

Silencing of σB by stress 
response strategies like 
sporulation

3.2.
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Analysis of a Model of σB Activation
following Glucose Starvation

Conclusions and Perspectives
A model was developed that reproduces the available experimental data. However, the models are non-identifiable meaning that non-unique parameter sets can 
reproduce the data. To render the model identifiable, model reduction processes will be conducted to lump parameters and combine components. Additionally, 
we will gather more diverse data including concentrations of components in the regulation upstream of B-activation.

The fitness of parameter combinations shows high robustness of the system against changes in WV association rate. Considering pre-stress steady state fitness 
conditions will help to determine missing parameter values. Similar investigations will be conducted for possible steady state conditions during long lasting stress 
conditions.

Transcriptome results show that gene-specific sigma factor competition needs to be implemented in the models and that unknown post-transcriptional events 
modulate protein concentrations.

Parameter Fitness Correlations

Direct Parameter Estimation Approach
Simulation of Glucose Starvation:
• ctc::lacZ reporter gene construct provides information on the transcriptionally active B level.
• Glc concentration is derived from the OD with a fitted model shown in Fig. 3. 
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Goal:
determining parameter ranges that satisfy pre-defined
observations for the fitness of stress response.
Fitness: low level of free B, high level of WB complex.

Procedure:
1. select two parameters & corresponding boundaries
2. randomly combine the two parameter values
3. evaluate the model fitness for each combination

Results:
phosphorylation and dephosphorylation: Antagonistic reactions, only a 
narrow parameter region is physiological feasible. (Fig. 5 )
protein expression and degradation: Antagonistic reactions, but fitness is 
very sensitive on the balance of both reactions. (Fig. 6 )
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Transcriptomic Results for Regulon and Operon
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Transcriptome: 
• activation of expression of the σB regulon during entry into starvation (Fig. 7 ).
• expression of the operon fails to increase (Fig. 8 ) despite the positive trans-

criptional feedback loop of σB on its operon.

Possible reason: sigma factor competition on the operon.

Glc X

X

Ø

Glc

Glc X

X

Ø

Glc

Glc X

X

Ø

Glc3

Glucose(Glc)-Biomass(X) model

The σB regulon (Fig. 2 ) confers B. subtilis with the ability to respond to stress stimuli and adapts it for future stress incidents. 

The Bacell-SysMO project
The SysMO project is a European transnational funding and research initiative on "Systems Biology of Microorganisms". The goal 
pursued by SysMO is to record and describe the dynamic molecular processes going on in unicellular microorganisms in a 
comprehensive way and to present these processes in the form of computerized mathematical models.

The objective of this project is an integrated understanding of the metabolic and genetic network that controls the transition from
growth to glucose starvation, as shown in Fig. 1 . This transition is a fundamental ecophysiological response that serves as a 
scientific model for environmental signal integration and is pivotal for industrial fermentations of Bacillus that occur predominantly
under nutrient starvation. 

growth

vegetative proteins
(housekeeping)

proteome of 
growing cells

stationary phase
stress/starvation

stress proteins

proteome of
starving cells

Interpretation of Simulations:
Parameter estimation process (Fig. 4 ) using sequentially particle swarm and simulated annealing optimization still allows for 
large possible parameter realizations with good fitting. The model-experiment relationship is therefore non-identifiable.
The simulations agree with the principles of general stress response outlined in the introduction.
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• Anti-sigma factor W binds B thereby precluding formation of RNA-polymerase holoenzyme. (React.     )
• The affinity of V towards W (React.     ) is reduced by phosphorylation of V by W (React.      ).
• Following Glc-starvation VP dephosphorylation rate is increased resulting in V increase. (React.      )
• V associates with W thereby reducing free W level. (React.      )
• Reduced W level stimulates dissociation of WB complex. (React.      )
• Increased levels of B (σB) associates with RNA-polymerase to induce expression of genes. (React.     )
• Proteins and complexes are degraded with a first order mechanism (React.   )
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Enzyme activities are tightly regulated

Our goal is to uncover design principles of regulation of enzyme activity that optimize an objective function in a simple metabolic network. In metabolic networks enzyme activity is tightly 
regulated to adjust metabolite dynamics according to demands on the metabolism.

Enzyme activity is defined as a product of the enzyme catalytic 
rate constant and its total concentration. We examine the effect 
of the latter by transcriptional regulation. The basis is a simple 
metabolic network with three metabolites and three enzymes. 
Metabolites can activate (red line with circle) or inhibit (red line 
with bar) enzyme expression.

1

Rate equations for concentrations of meta- 
bolite M2 and enzyme E2 . Metabolic reac- 
tion rate constants (k1 to k3 ) are randomly 
distributed on integers in the interval [1,10] 
for 50 independent combinations (Metabo- 
lic Individuals). The constant kd is set to 1.
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The function P controls synthesis of  
enzymes. It is a sigmoidal function with input 
of regulation quality (Wj :activating: +1,  
inhibiting: -1) and the metabolite concen- 
tration j that regulates. The output is the  
expression rate in an interval [0,1]. In case of 
no regulation the expression rate is 0.5.

Quantification of effectiveness for all possible regulation strategies

4
Among biological significant fitness func- 
tions we implemented the reduction of  
variation. We set m1 to oscillate as a sinu- 
soidal and tested m3 of its capacity to  
reduce this oscillation. The first part of the 
fitness function penalizes an increase in 
variation. The second part in the function 
penalizes deviation from the m3 concen- 
tration in a non-regulated network ().

Different network dynamics cause different regulations distribution

Results/Conclusions

5 The number of non-zero elements in the regulation  
matrix W indicates the number of regulations. We  
examine conditions with one, two and three regulations 
(non-zero elements in W). Based on a fitness objective 
the effectiveness of every regulation is rated for any of 
the 50 Metabolic Individuals (cf. Box 2).

# of combinations 1 regulation:    18
# of combinations 2 regulations:  144
# of combinations 3 regulations:  672

6

Matrix W contains the regulation qualities of meta- 
bolites to enzymes. In the example above meta- 
bolite m2 inhibits its degradation via e2 while m3 
activates e1 and inhibits e3 , coded with the ordinal 
numbers 5, 7 and 9 (cf. network in Box. 1).

7 One regulation

We use the regulation roses to visualize two regula- 
tions. Lines connect the ordinal numbers of regula- 
tion whose thickness represents fitness.

The fitness for three regulation interactions is 
represented by the thickness of triangles. 

8 9

High m3 accumulation

Bar plot of the regulation ordinals (cf. Box 4) and their fitness based 
on the equation in Box 6.
Green line indicates the limit for beneficial regulations, representing 
the sum of mean and standard deviation (s.d.) of a non-regulated 
network.
Most regulations are beneficial, albeit with a high s.d. To reduce s.d. 
we sub-divided the population into 13 individuals with and without 
accumulation in m3 (cf. Box 1).
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Low m3 accumulation

• Reduced s.d.

• All regulations are 
highly beneficial

• Blue bars decrease in 
rows of three, red bars 
increase

• High s.d.

• Few regulations are 
beneficial

• No obvious symmetries 
of regulations

Two regulations

Low m3 accumulation High m3 accumulation

Low m3 accumulation networks have comparable  
fitness values for all regulations, but to clearly distin- 
guishable regulation strategies in m3 . For two regu- 
lations dynamic properties of the networks have  
higher impact on fitness than regulation quality.

- + + +

+ -- -

- + + +

+ -- -

Three regulations

Low m3 accumulation High m3 accumulation

Networks with high accumulation show that 
contrasting regulations also have contrasting 
effects on the fitness. Many triple negative 
regulations can be used, while no triple posi- 
tive regulation is >.25 of the highest fitness.
Regulation -5, +7, -9 (orange line, cf. Box 1, 
5) for high m3 is particularly beneficial.

+++ +-+

- - --+-

+++ +-+

- - --+-

We explored regulation distributions of simple metabolic networks (cf. Box 1) based on their capacity to reduce oscillation (cf. Box 6) and conclusions are restricted to this condition.
Dynamic properties and flow rate determine the distribution of optimal regulations:
• Networks that do not accumulate the tested metabolite m3 have a wide choice of optimal regulations. These networks are characterized by low k1 and high k3 values. Reducing the inflow of oscillating 
substrate to the system allows for more regulation.
Regulation interactions have different effects compared to the individual regulation effects:
• The triple regulation interaction coded by ordinal numbers [-5, +7, -9] is highly beneficial (cf. Box 9). Each regulation in solitude is detrimental for the fitness (cf. Box 7).
Contrasting regulation schemes must not have contrasting fitness effects:
• For networks that accumulate the tested metabolite m3 the interaction of two purely inhibitory regulations is beneficial, while the interaction of two activating regulations is detrimental (cf. Box 8). However, 
networks without m3 accumulation show no substantial differences in regulation efficiencies for positive and negative regulation interactions.

*E-mail: ulf.liebal@uni-rostock.de, ckh@kaist.ac.kr

1University of Rostock, Department of Computer Science, 18051 Rostock, Germany
http://www.sbi.uni-rostock.de
2Department of Bio and Brain Engineering,  Korea Advanced Institute of Science and Technology 
(KAIST), 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
http//:sbie.kaist.ac.kr



Sensitivity Analysis based 
Adaptive Search-Space Reduction 

for Parameter Estimation Applications
Ulf W. Liebal & Henning Schmidt

University of Rostock, Systems Biology and Bioinformatics group

Conclusions
■

 

Considerable reduction of search-space, identifying parameters important for un-fitted experiments
■

 

Assumption of linearity => only an approximation
■

 

Iterative use between different runs of parameter estimation
■

 

Manual and eye inspection at the moment but can easily be automized
■

 

Adaptable and improvable weight matrix
■

 

Can be useful to determine parameters important for obtaining a desired response shape – potential use for drug target identification
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The Model
30 Parameters

1st

 

experiment

2nd

 

experiment

measured state (t) model prediction (t) stacked residuals vector Taylor expansion for the error at p, 
assuming linear approximation and 
disregarding higher order terms.
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allows 
identification of (almost) linearly 
dependent parameter sensitivities. 
These have to be eliminated to in- 
crease the information content of .

Re-writing Taylor expansion for 
reduced sensitivity matrix and 
parameter vector.

setting l.h.s to zero and solving 
the equation for pred .

W, the weighting matrix, is user defined generated by choosing 
a threshold below which the significance of a residual increases 
the lower its value. This guarantees the conservation of already 
fitted experiments by raising their influence. The first 15 indices 
correspond to the  well fitted experiment. 1 2 3 4 5 6 7 8 9 10 11 12
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The RSiSR ranking for weighted i in log scale shows four 
parameters that strongly determine the discrepancy of 
model and observation. Among those four identified 
parameters are the two parameters that are perturbed.

In a following 
parameter esti- 
mation the four 
top-scoring para- 
meters would be 
estimated. This 
speeds up the 
parameter deter- 
mination process 
and renders it more 
precise.

residual 

i is a measure that reflects the 
relative parameter change that is 
required to minimize the residual 

error.  i forms the basis for a 
ranking for parameter estimation.
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Modelling of biological systems is an iterative process. A common scenario is:

1. A model is built that reflects available experimental data.
2. New experimental data generated 

 

the model is not able to explain the data.
3. Re-estimation of all parameters based on the new data?

Problems: ■

 

many parameters
■

 

different experiments and measurement data
■

 

parameter unidentifiability
Current solutions use sensitivity based approaches for parameter selection:

■

 

local SA, e.g. Dash et al.
■

 

global SA, e.g. Jin et al.
■

 

using SA with specific objective functions, e.g. Yue et al.

Goal: Experiment specific adaptive identification of parameters responsible for divergent model-experiment behaviour!
Residual and Sensitivity aided iterative Search space Reduction:  RSiSR

Background

Method soon available in the SBTOOLBOX2

Method + Example
We consider a model of Thiamine uptake in S. cerevisiae (Ericson et al.).
The example serves as a well known system; for the sake of 
demonstration of the method, simulated data is used with deviations 
in two parameters affecting Thiamine uptake. 

Two exp. settings are investigated:
■

 

1st experiment: null-mutant for the Thiamine uptake
Experiment 1 - parameter estimation

■

 

2nd experiment: uptake of Thiamine is functional

RSiSR procedure:





Warum betrunkene Bakterien

Wissenschaftlern viel über molekulare

Prozesse in der Zelle verraten

Erschienen unter anderem in Profile-Magazin der Universität Rostock, 2/2012, 12-13

und der Ostseezeitung am 03.04.2012. Text erstellt in Zusammenarbeit mit Wolfgang

Thiel, Olaf Wolkenhauer und Ulrich Vetter.

‘Es ist mein Wunsch, das Leben von Bakterien, so gut es eben geht, zu erklären’, sagt

Ulf Liebal. Der 30-jährige Biochemiker der Universität Rostock hat in Halle studiert und

seine Diplomarbeit, über die Wirkstoffproduktion in Bakterien, in Finnland geschrieben.

Die Forschung im Labor sagt dem jungen Mann, der im Studentenorchester Fagott spielt,

allerdings nicht so zu. Seiner Faszination, zu erfassen, wie aus kleinsten Molekülen ein

komplexer Organismus entsteht, tut das aber keinen Abbruch. Deshalb ist sein Metier

die noch junge Disziplin der Systembiologie der ‘Biochemie am Computer’ wie er sagt.

Hier kombiniert er Methoden der experimentellen Biologie und der Bioinformatik mit

mathematischen Modellierungsansätzen. So entsteht am Rechner ein Bild der Vorgänge

innerhalb einer Zelle, der kleinsten biologischen Einheit, die sich selbst vermehren kann.

Konkret erforscht Ulf Liebal, wie das im Boden lebende Bakterium Bazillus subtilis auf

Stress reagiert, in diesem Falle, wenn es mit Alkohol in Berührung kommt. ‘Ich unter-

suche also betrunkene Bakterien’, beschreibt der junge Wissenschaftler seine Arbeit. Zwar

wird im Laborversuch Alkohol bewusst eingesetzt, in der Natur allerdings gibt es mehrere

Quellen, aus denen Alkohol entsteht und in den Boden sickert: beispielsweise faulende

Früchte.

‘Viele denken bei Bakterien an Krankheitserreger, die wir mit anti-bakteriellen Reini-

gungsmitteln aus unseren Häusern vertreiben’, sagt Ulf Liebal. Das Bakterium, das er



untersucht, ist überall in der Umwelt anzutreffen. Es lebt im Boden und hilft den Pflanzen

beimWachstum, ist also kein Krankheitserreger. Wie gedeiht es im Boden und wie reagiert

es auf die Umwelt? Das will der junge Forscher herausfinden. Es ist bekannt, dass ein

Bakterium nach einem Stresserlebnis seine Zusammensetzung ändert. Die Untersuchun-

gen mit Alkohol nutzt der 30-Jährige, um mehr über die Verknüpfung von Stresserlebnis

und Zusammensetzung des Bakterium erfahren. So gibt es einen Einblick, welche Prozesse

Bakterien im Menschen auslösen knnen, womit sich auch neue Möglichkeiten zum Beispiel

zur Behandlung von Lebensmittelvergiftungen ergeben.

Alkohol stresst Bakterien, weil er wichtige Proteine beschädigt. Deshalb hat sich das

Bakterium einen eigenen Alkoholtest entwickelt. Dieser Testsensor besteht aus 60 Pro-

teinen, die geometrisch und symmetrisch aufgebaut sind. ‘Das muss man sich in etwa

wie einen Weihnachtsstern vorstellen’, sagt der Forscher. Er hat mit einem einfachen

Papiermodell diesen Sensor nachgebaut. ‘Ich bin jetzt in der Lage, die Bewegungen des

Proteins auf Tischmodellgröße nachzuempfinden’. So zeigt sich, dass es allgemeine Regeln

für Bewegungen von geometrischen Strukturen gibt. Die sind vermutlich auch für den

mikroskopisch kleinen Sensor in der Zelle gültig. Ulf Liebal gewinnt durch sein Modell

einen besseren Einblick, wie das Bakterium auf Alkohol reagiert. Spürt eines von den 60

Proteinen Alkohol, dann bewegt sich das Protein und aktiviert damit andere in der Nach-

barschaft. ‘So kann wenig Alkohol schon eine große Reaktion in der Zelle auslösen. Ein

kleines Geheimnis ist damit gelüftet’, ist der junge Mann stolz. Für ihn sind Papier und

Kreativität wichtiger geworden als teure Labore. Dennoch benutzt er Daten von Partner-

Laboratorien, um seine Modelle an die Wirklichkeit anzupassen. Diese sind unentbehrlich,

um die komplexen molekularen Anpassungsvorgänge vollständig zu erfassen.

Um die biologischen Organismen in ihrer Gesamtheit jedoch besser verstehen zu können,

arbeiten Wissenschaftler verschiedener Fachrichtungen interdisziplinär eng zusammen. Die

experimentellen Untersuchungen erfordern zudem so komplexe, aufwendige und teure La-



boreinrichtungen, dass ein einzelnes Labor dazu nicht in der Lage wäre. Die Gruppe um

Professor Olaf Wolkenhauer in Rostock, zu der auch Ulf Liebal gehört, ist Teil einer großen

internationalen Initiative, der sogenannten BaCell-SysMO, die sich zum Ziel gesetzt hat,

das Bakterium nicht nur besser zu verstehen, sondern auch besser nutzen zu können.

In Deutschland unterstützt das Bundesministerium für Bildung und Forschung (BMBF)

neben den Wissenschaftlern in Rostock auch Forschergruppen in Greifswald, Göttingen,

Erlangen, Braunschweig und Marburg. Im Ausland arbeiten Universitäten in Gronin-

gen, Manchester und Newcastle an den gleichen Zielen. ‘Vernetzung, um Vernetzung

aufzuklären. Das ist Systembiologie’, sagt Professor Olaf Wolkenhauer.
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