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Abstract 

Abstract 

 

MicroRNAs (miRNAs) are potent effectors of post-transcriptional gene regulation. They 

exert functions that affect cellular processes, and dysregulated miRNAs may cause 

pathologies such as cancer. Distinct interactions between miRNAs and their target genes 

are designed to implement particular functions within cells. Experimental approaches are 

used to study individual interactions between miRNAs and their targets, but these 

approaches cannot lead to a system-level understanding of the regulatory role of 

miRNAs. Therefore, the introduction of a systematic and complementary approach to 

investigate the function of miRNAs is needed. 

The systems biology approach, combining biological data with mathematical 

modelling, provides the means to elucidate the functional role of miRNAs in signalling 

pathways and gene regulatory networks. The approach is characterised by a cyclic 

process, including biological network construction, mathematical modelling, simulation 

and experimental validation. In the process, biochemical networks are translated into 

kinetic models using nonlinear ordinary differential equations. Model parameter values 

are characterised using biological information from the literature, databases and/or 

esimated from experimental data using optimisation methods. Analytical tools, like 

sensitvity and birfucation analysis, together with model predictions are adopted to 

unravel dynamic properties of kinetic models.  

In this thesis, I first present a case study in which I investigate the regulatory role of 

miR-34a in a signalling pathway using a systems biology approach. The signalling 

pathway consists of the interactions among tumour protein 53 (p53), sirtuin 1 (SIRT1) 

and miR-34a. Kinetic modelling of the p53/SIRT1 signalling pathway identifies the 

mechanism by which miR-34a represses SIRT1 and shows the ability of miR-34a to 

recover the loss of active p53, which is caused by upregulation of SIRT1. 

Second, the investigation of the regulation of a miRNA target hub by multiple and 

cooperative miRNAs is presented. Using targeting prediction algorithms and 

experimental evidence, the putatively cooperating miRNA pairs for cyclin-dependent 

kinase inhibitor 1 (p21) are identified, and a comprehensive regulatory map of p21 is 

constructed. Subsequently, experimental results verify the method for identifying 

cooperative miRNA pairs, and a kinetic model is developed on the basis of the p21 

regulatory map. The characterised and validated model is further used to decipher the 

regulation of p21 by multiple and cooperative miRNAs in different biological scenarios. 
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Zusammenfassung 

Zusammenfassung 

 

MicroRNAs (miRNAs) sind potente Effektoren posttranskriptioneller Genregulation. Sie 

beeinflussen zelluläre Prozesse und können bei Fehlregulation Krebs und andere 

Krankheiten auslösen. Die Prozessregulation erfolgt über individuelle Interaktionen 

zwischen miRNAs und ihren Zielgenen (Targets). Diese Interaktionen wurden für 

verschiedene miRNAs und deren Targets mit Hilfe experimenteller Methoden 

aufgeklärt, ungeklärt jedoch bleibt dabei die regulatorische Rolle von miRNAs auf 

Systemebene. Daher ist die Einführung eines systematischen und komplementären 

Ansatzes zur Erforschung der Funktionen von miRNAs erforderlich.  

Der systembiologische Ansatz integriert die mathematische Modellierung mit 

biologischen Daten und erlaubt somit die Aufklärung der Funktion von miRNAs in 

Signalwegen und genregulatorischen Netzwerken. Charakteristisch für diesen Ansatz ist 

ein zyklischer Prozess, welcher die Konstruktion biologischer Netzwerke, die 

mathematische Modellierung, Simulation sowie die experimentelle Validierung vereint. 

Dabei werden die biochemischen Netzwerke mittels gewöhnlicher 

Differentialgleichungen in kinetische Modelle umformuliert. Die Modellparameter 

werden aus der Literatur und biologischen Datenbanken extrahiert oder durch 

Optimierungsmethoden geschätzt. Analytische Werkzeuge, wie zum Beispiel die 

Sensitivitäts- und die Bifurkationsanalyse, zusammen mit Modelvorhersagen werden 

dazu genutzt, die dynamischen Eigenschaften des kinetischen Modells zu ermitteln. 

In der vorliegenden Arbeit stelle ich zunächst eine Fallstudie vor, in der ich, mit 

Hilfe eines systembiologischen Ansatzes, die regulatorische Rolle von miR-34a in einem 

Signalweg untersuche. Dieser Signalweg beinhaltet die Interaktion zwischen dem 

Tumorprotein 53 (p53), Sirtuin 1 (SIRT1) und miR-34a. Die kinetische Modellierung 

des p53/SIRT1 Signalweges identifiziert die Mechanismen, mit denen miR-34a das 

Protein SIRT1 reprimiert. Dadurch kompensiert die miR-34a Aktivität in den 

Simulationen den Verlust an aktiven p53 durch ein hohes SIT1 Level.  

Danach analysiere ich die Regulation eines miRNA-Targethubs durch vielfache und 

kooperativ wirkende miRNAs. Unter Zurhilfenahme von Zielvorhersagealgorithmen und 

experimenteller Daten, identifiziere ich putativ kooperierende miRNA Paare für den 

CDK-Inhibitor 1 (p21) und konstruiere daraus eine umfassende Übersichtskarte zur p21 

Regulation. Anschließend, wird die Methode zu Identifizierung kooperierender miRNAs 

mit experimentellen Ergebnissen validiert. Schließlich entwickele ich ein kinetisches 

Modell auf Basis der Übersichtskarte zur p21 Regulation. Das parametrisierte und 

validierte Modell erlaubt die Entschlüsselung der p21 Regulation durch multiple und 

kooperierende miRNAs in verschiedenen biologischen Szenarien.  
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1. Introduction 

Chapter 1 

Introduction 

1.1 Systems biology 

Systems biology is an emerging research field, which aims at understanding of the 

dynamics interactions between components of a living system (Kitano, 2002a and 

2002b). Systems biology focuses on studying complex biological systems as networks of 

interconnected components rather than their individual properties, and it covers a broad 

range of areas from modelling cellular signalling pathways to the development of novel 

therapeutic strategies. For example, data-driven multiscale models have been developed 

to understand the mechanisms of how altered signalling pathways induced by mutations 

in ErbB-1 leads to the onset of oncogenic transformations (Liu et al., 2007; Purvis et al., 

2008). Based on model-based computational analyses a drug for cancer treatment by 

targeting ErbB-3 has been developed (Schoeberl et al., 2009). 

With the development of new experimental techniques, large amounts of 

quantitative experimental data are being generated. However, with the ever increasing 

flood of information simply collecting and classifying cellular components (e.g. genes, 

RNAs and proteins) and their molecular properties prevent us from improving our 

understanding of how they interact to bring about cellular structure and functions 

(Wolkenhauer et al., 2005). Thus, it is becoming increasingly evident that certain aspects 

of biology can only be understood at the system-level (Kitano, 2002a). The systems 

biology approach, integrating experiments in interactive cycles with computational 

modelling, simulation and theory, provides us with a promising way to address 

biological questions (Pastori et al., 2008). 

To investigate a biological system, a cyclic process including four key steps is 

needed (Figure 1.1). (I) Biological network construction: for the system under 

investigation, a biological network can be constructed by establishing the interactions 

among molecular entities (such as genes, proteins and metabolites) from experimental 
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evidence, which can be obtained from published literature and databases. (II) Model 

construction: depending on the biological problem and available experimental data, the 

biological network together with hypotheses can be translated into a particular 

mathematical model, which can be constructed using a particular modelling framework 

(e.g. deterministic or stochastic models). Model parameter values can be characterised 

using biological information from the literature, databases and/or esimated from 

experimental data using optimisation methods. (III) Computational analysis and 

simulation: after the determination of model structure and the characterisation of model 

parameter values, analytical tools (e.g. sensitivity and bifurcation analysis) and model 

simulations help us to unravel and study complex properties and behaviour of the 

biological system. (IV) Experimental validation: in this step model predictions together 

with biological explanations are integrated to guide and design new experiments, which 

in turn validate or falsify the model. If the model predictions are in line with the 

experiments, the model justifies biological hypotheses behind the model, and these 

hypotheses, which provide reasonable explanations for biological phenomenon, lead to a 

novel understanding of the biological system. Otherwise, the model has to be modified 

accordingly until it is validated. 

 

Figure 1.1: Scheme of the systems biology approach. Biological systems are investigated in an iterative 

systematic approach. With the help of advanced experimental techniques and computational methods, the 

approach provides a systemic and comprehensive way to study complex biological systems (Kitano, 

2002a). 
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The subject of systems biology encompasses biological systems, the characteristics 

of which can be quantitatively measured, and for which mathematical models can be 

constructed to study their behaviour (Demin and Goryanin, 2009). Biological systems 

are composed by intricate interconnections among components within cells. These 

interconnections, which can be described by biochemical reactions and biophysical 

interactions, are the foundation of biological networks such as cellular signalling 

pathways and gene regulatory networks. Signalling pathways are important for cellular 

communication where the cell receives (and responds to) external stimuli from other 

cells and from the environment (Gomperts et al., 2009); gene regulation controls the 

expression of genes and, consequently, all cellular functions (Machado et al., 2011). As 

a result, complexity of biological networks emerges, and thus the systems biology 

approach is needed to unravel the kinetic mechanisms underlying biological systems. 

Despite the fact that systems biology is still in its infancy, many studies have proved 

its success in basic (understanding complex mechanisms) and applied (e.g. prediction of 

drug targets) biological problems. Through the continuous collaboration between 

experimental and computational research, hybrid modelling linking the molecular scale 

to the cellular scale provides quantitative insights into the connections between 

phenotype and tumour morphology (Sanga et al., 2007). Analysing cancer network 

motifs such as feedback loops in a systematic manner has increased our understanding of 

their mechanistic and practical implications in cancer (Cloutier and Wang, 2011). 

Schoeberl et al. (2009) constructed a kinetic model of the cancer-related signalling 

pathway induced by ErbB and analysis of the model has made valuable contributions to 

find effective prediction of novel and non-intuitive cancer therapeutic drug targets. 

Systemic analysis of biological problems provides an efficient way to understand 

complex mechanisms that are difficult to be dissected by purely experimental methods, 

and to generate hypotheses that push forward our comprehension of complicated 

interactions and their functionality (Hübner et al., 2011). Although systems biology is 

still far from its ultimate goal, which is to provide insights into the processes of 

organelles, cells, organs and even whole organisms, its potential benefits are 

considerable in both basic and applied research. In the near future, as systems biology 

matures, it will revolutionise our understanding of biology and medicine.  
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In this thesis, I adopt a systems biology approach, whose framework is briefly 

described in Figure 1.1, to study two aspects of miRNA functions: the regulatory role of 

an individual miRNA in a cancer-specific signalling pathway and the regulation of a 

cancer-related gene by multiple and cooperative miRNAs. 

1.2 MicroRNAs 

miRNAs are a class of small endogenous non-coding RNAs with a length of around 

22 nucleotides (nt). miRNAs are evolutionarily conserved regulatory molecules that, in 

most cases, modulate the stability and/or translation of target mRNAs through direct 

binding to the 3' UTR of their target mRNAs (Bartel, 2004). Recently, over 1000 

miRNA sequences have been identified in the human genome and have been registered 

in the miRbase database (Kozomara and Griffiths-Jones, 2011). The identified miRNAs 

are estimated to regulate more than 30% of all protein-coding genes (Friedman et al., 

2009). This indicates their pervasive roles in the regulation of cellular processes, like 

proliferation, differentiation and apoptosis. In addition to exerting critical functions 

during normal development and cellular homeostasis, miRNA dysregulation has been 

found in many human diseases, like cancer (Hwang and Mendell, 2006). Thus, 

understanding the function of miRNAs in gene regulation is crucial for assisting us to 

unravel the mechanisms underlying human pathogenesis and to improve therapeutic 

approaches in human diseases. In this section, I give a comprehensive introduction to the 

biological background of miRNAs, ranging from their basic functions to their relations 

with human diseases. This knowledge is important and indispensable, and it is the basis 

of the research presented in this thesis. 

1.2.1 MicroRNA biogenesis and function 

The miRNA biogenesis pathway is a complex process (Berezikov, 2011; Filipowicz et 

al., 2008; Kim, 2005; Krol et al., 2010). The process is composed of multiple steps 

(Figure 1.2). At first, long primary transcripts known as pri-miRNAs are transcribed 

from miRNA genes by RNA polymerase II (Pol II). The composition of pri-miRNAs 

begins with a 5′-terminal 7-methylguanosine (m
7
G) cap, which is extended by a hairpin 

structure with a terminal loop and a ~32 nt long imperfectly base-paired stem, and ends 
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with a 3' poly(A) tail. Depending on the features of miRNA genes, pri-miRNAs can 

contain single (solo) or multiple (clustered) miRNA sequences that appear in pairs to 

form a hairpin structure. Next, with the help of the complex, which includes Drosha and 

its binding partner DGCR8, pri-miRNAs are processed into precursor miRNAs (pre-

miRNAs) of ~70 nt hairpin structures with a characteristic 2 nt 3' overhang. Then, 

through the recognition of the 2 nt overhang, exportin 5 in conjunction with the cofactor 

Ran-GTP exports pre-miRNAs from the nucleus into the cytoplasm. After that, 

cytoplasmic processing by another complex, which is composed of Dicer, an Argonaute 

protein (Ago) and a TAR RNA binding protein (TRBP), cleaves a pre-miRNA into a 

~22 nt double-stranded miRNA duplex (also known as mature miRNAs). Finally, one 

strand of the miRNA duplex known as the active strand is loaded into an Ago-containing 

miRNA-induced silencing complex (miRISC) which will further target mRNAs for 

subsequent cleavage or translation repression. The complementary strand known as the 

passenger strand will be degraded.  

Except for the canonical miRNA biogenesis pathway described above, mature and 

functional miRNAs can also be produced in other alternative pathways. These pathways 

can be classified into Drosha- and Dicer-independent pathways (Figure 1.2; Miyoshi et 

al., 2010). In the Drosha-independent pathway a class of miRNA genes, which 

originates from pre-miRNA-sized short introns (termed as mirtrons), can be directly 

processed into pre-miRNA hairpins without the participation of Drosha. These pre-

miRNAs are further cleaved by Dicer in the cytoplasm to produce mature miRNAs 

(Ruby et al., 2007). In the Dicer-independent pathway, although the process in the 

nucleus proceeds normally, the step in which a pre-miRNA is diced into a miRNA 

duplex by Dicer is skipped, for example, miR-415 is produced through an Ago-

dependent pathway for maturation (Miyoshi et al., 2010). 
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Figure 1.2: miRNA biogenesis pathways. 

A miRNA can be processed either from a 

pri-miRNA or a mirtron. The pri-miRNA, 

containing a 5' terminal m
7
G cap and a 3' 

poly(A) tail (AAAAA), is transcribed from 

miRNA genes by Pol II and is subsequently 

cropped (red arrowheads) by Drosha with 

the cofactor DGCR8 and becomes a pre-

miRNA. The mirtron situated between two 

exons is spliced and becomes a pre-miRNA 

without the requirement of Drosha-DGCR8 

complex. The pre-miRNA is transported 

from the nucleus to the cytoplasm by 

exportin 5 with Ran-GTP. In the cytoplasm, 

most pre-miRNAs are processed into 

double-stranded miRNA duplexes with the 

help of Dicer and TRBP. One strand of the 

duplexes is loaded into the Ago containing 

miRISCs, whereas the other strand is 

degraded. When a miRNA is perfectly or 

near-perfectly pairing to its target mRNA, it 

can result in the cleavage of the mRNA. 

Otherwise, non-perfect base pairing between 

a miRNA and its target mRNA leads to 

translation repression or target mRNA 

deadenylation. Both processes are 

implemented through the interaction of 

miRICSs with GW182 and PABP. It is 

important to note that although most 

miRNAs are generated through a Dicer-

dependent pathway, there also exist some 

exceptions. For example, pre-miR-451 is 

processed by Ago in a Dicer-independent 

pathway. Nevertheless, miR-451 exerts the 

same repressive function like other miRNAs. 

The figure is modified from Krol et al. 

(2010). 
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After the maturation of miRNAs, in most cases the active strands act as guides and 

direct miRISCs to bind to the 3' UTR of target mRNAs, resulting in the repression of the 

target genes at the post-transcriptional level (Figure 1.2). Some miRNAs are able to 

exert repressive function on target genes when their binding sites are placed in the 5' 

UTR or the coding regions of target mRNAs (Lytle et al., 2007). In addition, a few 

miRNAs can bind to the 5' UTR of its target mRNA and activate gene expression (Ørom 

et al., 2008). The mechanism by which target mRNAs are regulated is determined by the 

degree of complementarity between miRNAs and their target mRNAs. When a miRNA 

perfectly or near-perfectly pairs with its target mRNA, mostly occurring in plants, the 

target mRNA cleavage is triggered. Imperfect base pairing between a miRNA and its 

target, predominating in animals, leads to translation repression or destabilization of the 

target mRNA (Bartel, 2004). Based on experimental and bioinformatics analyses, in 

animals several miRNA binding motifs have been identified such as 8-mer, 7-mer and 6-

mer (Bartel, 2009). These miRNA binding motifs are defined by the number of 

continuous base pairings in the seed region of miRNAs; for example, 7-mer means that 

in the seed region of a miRNA there are continuous 7 base pairings between the miRNA 

and its target mRNA (Bartel, 2009). The repressive efficacies of these binding motifs 

identified in animals are determined by the content of regional base pairing between the 

miRNA and its target, which follows a set of rules (Figure 1.3; Filipowicz et al., 2008):  

 The seed region (miRNA nucleotides from position 2 to 8) base pairing 

between a miRNA and its target mRNA. A continuous seed region base 

pairing is crucial for assuring target repression, if there are G-U pairs 

(guanine-uracil) or mismatches in this region, the target repression will be 

greatly affected. However, the appearance of an A (adenine) at position 1 of 

the miRNA and an A or U appearing at position 9 can improve the 

repressive efficiency, although they are not required to base pair with the 

target mRNA.  

 The central region (miRNA nucleotides from position 10 to 12) of the 

miRNA-mRNA duplex. In this region, bulges or mismatches must be 

present.  
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 The complementary region (miRNA nucleotides from position 13 to the last 

one). The base pairing between the miRNA and its target mRNA is typically 

quite loose in this region. Thus, good complementarity, particularly for 

miRNA nucleotides from position 13 to 16, becomes important when 

mismatches or bulges appear in the seed region.  

In addition to the binding motifs, other factors can also affect miRNA repression 

efficacy. For example, multiple miRNA binding sites in close proximity on the 3' UTR 

of a single mRNA can enhance the repression of the target (Doench and Sharp, 2004; 

Saetrom et al., 2007); RNA-binding proteins (RBPs), which can interact with miRISCs 

on the 3' UTR of target mRNAs, can either facilitate or counteract miRNA-mediated 

repression (Krol et al., 2010). 

 

Figure 1.3: Base pairing principles between miRNAs and their target mRNAs in animals. In the seed 

region, continuous Watson-Crick pairing (vertical solid lines) is crucial for determining the efficacy of 

miRNA-mediated repression. When a mismatch (vertical dashed lines) or a bulge appears in the seed 

region, Watson-Crick pairing centring on miRNA nucleotides 13-16 of the 3' complementarity region can 

compensate and thereby construct a functional miRNA binding site. The figure is modified from 

Filipowicz et al. (2008). 
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In mammalian cells most of the binding motifs between miRNAs and target mRNAs 

are non-perfect base pairing, which can result in two main mechanisms by which 

miRNAs reduce protein production. The two mechanisms are translation repression and 

destabilisation of the target mRNAs. More particularly, miRNAs can inhibit translation 

of target mRNAs by affecting the initiation or post-initiation stage of mRNA translation 

(Fabian et al., 2010). At the initiation stage, the miRISC can inhibit translation by 

interfering with eIF4E-cap recognition and 40S small ribosomal subunit recruitment or 

by antagonizing 60S subunit joining and preventing 80S ribosomal complex formation 

(Figure 1.4a). At the post-initiation stage, the miRISC can inhibit translation by 

inhibiting ribosome elongation, inducing ribosome drop-off, or facilitating proteolysis of 

the nascent polypeptides (Figure 1.4b). For miRNA-mediated mRNA degradation, with 

the participation of GW182 and PABP the miRISC facilitates deadenylation of the poly 

(A) tail by interacting with the CCR4-NOT deadenylase complex. Then, the 5' terminal 

m
7
G cap is removed by the decapping DCP1-DCP2 complex, resulting in the 

degradation of the target mRNA (Figure 1.4c). 

1.2.2 MicroRNAs and human diseases 

Although miRNAs are physically small, they play a major role in regulating numerous 

cellular processes including proliferation, differentiation and apoptosis (Bartel, 2004). 

Thus, aberrantly expressed miRNAs are associated with a wide variety of human 

diseases such as cancer, cardiovascular disorders and inflammatory lung diseases 

(Shenouda and Alahari, 2009; Ono et al., 2011; Oglesby et al., 2010). In addition, due to 

the vast and important miRNA-mediated post-transcriptional regulation of gene 

expression, miRNAs are gradually becoming potential therapeutic targets for treating 

human diseases.  

Recently, in vitro and in vivo studies have shown that abnormal expression of 

specific miRNAs can lead to different cardiovascular disorders like cardiac fibrosis and 

arrhythmia. For example, several individual studies have demonstrated that the 

upregulation of miR-21 expression during cardiac fibrosis contributes to cardiac 

dysfunction in diverse pathological conditions (Ono et al., 2011). Furthermore, a firm link 

between inflammatory lung diseases and unique miRNA expression profiles has been 
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established. Aberrantly expressed miRNAs can lead to several inflammatory lung 

diseases, like cystic fibrosis, chronic obstructive pulmonary disease, asthma and 

idiopathic pulmonary fibrosis (Ha, 2011). For instance, miR-155 is an important 

regulator involved in the Toll-like receptor signalling pathways, which are often 

underlying lung inflammatory responses. An in vivo mice study has shown that loss of 

miR-155 can lead to immunodeficiency and increased lung airway remodelling (Oglesby 

et al., 2010). Moreover, aberrant miRNA expression profiles impinge upon the normal 

regulation of cellular processes, and thus dysregulated miRNA expression has key 

functions in tumourigenesis. Depending on targets, miRNAs can act as oncogenes or 

tumour suppressors. As an example, after induction through twist-related protein miR-

10b shows oncogenic property by targeting HOXD10. The repression of HOXDO10 by 

miR-10b results in increased cell migration and invasion (Shenouda and Alahari, 2009). 

In contrast, miR-101, whose expression is downregulated in prostate and breast cancer, 

has been demonstrated to be a tumour suppressor by repressing EZH2, an enzyme that 

can promote oncogenic and metastatic activity (Shenouda and Alahari, 2009). 

With a growing number of miRNAs being associated with the development of 

human cancers, using them as therapeutic targets provides new hope for treating 

different cancers (Kasinski and Slack, 2011). miR-21 has been reported to be one of the 

most prominent miRNAs involved in the biogenesis and progression of human cancers 

such as breast and liver cancer. Repression of miR-21 expression can lead to decreased 

tumour cell proliferation, migration and invasion. This suggests miR-21 knockdown as a 

novel therapeutic approach for the treatment of human cancers (Feng et al., 2010). 

Among several miRNAs, the expression of miR-26 has been identified to be most 

downregulated in Myc-induced hepatocellular carcinoma, and therefore restoration of 

miR-26 expression using a virus vector suggests a miRNA-based therapy for liver cancer 

(Rossi, 2009). Downregulation of some tissue-specific miRNAs (e.g. miR-1 and miR-

206 in muscle cells or miR-124 in brain cells) have been reported to favour the 

formation of tumour cells in different tissues. Thus, re-expression of these miRNAs in 

cancerous cells could be used to treat cancer (Mishra and Merlino, 2009). 
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Figure 1.4: miRNA-mediated translation repression mechanisms. With the help of GW182 and PABP, 

miRISCs can repress translation at the initiation and post-initiation stage, or induce the deadenylation and 

decay of target mRNAs. (a) At the initial stage, binding of the miRISC complexed with GW182 and 

PABP to the target mRNA can repress translation by either interfering with the cap recognition or by 

repressing the 60S subunit joining. (b) The miRISC can inhibit translation at the post-initiation step by 

blocking translation elongation, causing ribosome drop-off or proteolytic cleavage of the nascent 

polypeptides. (c) Deadenylation of the target mRNA is facilitated by the interaction of the miRISC with 

CCR4-NOT. Subsequently, the decay of the target mRNA happens after the remove of 5'-terminal m
7
G 

cap by the decapping DCP1-DCP2 complex. The figure is reproduced from Fabian et al. (2008). 
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1.3 Using a systems biology approach to study microRNA-mediated 

regulation  

Due to the fast development of systems biology, data-driven models have been widely 

applied in the studies of miRNA-mediated regulation. In this section, the most relevant 

publications using such an approach to investigate the regulatory roles of miRNAs in 

different biological contexts are reviewed and discussed, and the findings concerning the 

underlying principles on miRNA target regulation are highlighted. 

1.3.1 MicroRNA regulation of gene expression 

To investigate the mechanism by which gene expression is regulated by miRNAs, the 

mathematical models concerning miRNA-mediated gene regulation were developed. 

Levine et al. (2007) set up a quantitative model to show how local and global properties 

of the gene repression mechanism mediated by miRNAs can affect the mRNA and 

protein levels of target genes. Through analysing the model, the authors suggested that 

the number of miRNA binding sites on target mRNAs (local property) can result in 

different repressive effects on the targets. On the other hand, under different cellular 

conditions (global property) the same miRNA-target pairing can exhibit different 

behaviours. Whichard et al. (2011) constructed a mechanistic model that accounts for 

miRNA-mRNA complex formation and subsequent transcript sequestration or 

degradation. By applying sensitivity analysis to the model steady state solution, the 

results indicated that miRNA synthesis commonly acts to fine-tune target protein 

concentrations; however, for a small subset of miRNA-mRNA pairs characterised by 

slowly produced miRNAs, the miRNA synthesis is the dominant control element. 

Vohradsky et al. (2010) developed a model based on a set of microarray data, which 

shows the temporal gene expression after the treatment with miR-124a mimics. The 

data-driven model revealed a novel mechanism by which miR-124a can organize its 

target mRNA response in a switch-like manner, i.e. the miRNA has an enormous 

influence on the mRNA decay and the influence drops to zero transiently. 

In addition, to investigate the effects of miRNAs on target gene expression in single 

cells, Mukherji et al. (2011) adopted a two-colour fluorescent reporter system which 

allows them to measure the change of gene expression when miRNA binding sites are 
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present or absent within reporters. Through their single-cell analysis, two intriguing 

features were found: 1) although the average level of protein repression by miRNAs is 

modest, which is in agreement with previous population-based measurements, the 

repression among individual cells varies dramatically (the maximum difference can 

reach 40-fold); 2) regulation by miRNAs establishes a threshold level of the target 

mRNA, which determines the degree of the repression of protein production. Below the 

threshold the protein production is highly repressed, however, slightly above this 

threshold the protein expression responds sensitively to the target mRNA. This result is 

consistent with the model simulations, which described the effect of molecular titration 

on the sensitive response of transcription above a threshold. The model showed that with 

the increasing abundance of the mRNA targets, the availability of the miRNA for 

repression is diluted; the strength of the interaction between the miRNA and its target 

and their relative abundance decide the sharpness of the switch from full repression to 

escaping from miRNA repression. 

In conclusion, the publications mentioned above focus on gene regulation by 

individual miRNAs. However, recent experiments suggest the possibility that the 

regulation of gene expression can be simultaneously mediated by multiple miRNAs 

(Doench and Sharp, 2004; Saetrom et al., 2007). In this thesis, the chapter about the 

regulation of a target hub gene by multiple and cooperative miRNAs not only 

complements the research field of miRNA-mediated regulation of gene expression, but 

also provides guidance for studying other miRNA target hubs. 

1.3.2 MicroRNA inhibition at translation initiation 

mRNA translation consists of three steps: initiation, elongation and termination. To 

investigate how protein production is affected by possible miRNA-mediated inhibition at 

the translation initiation step, Nissan and Parker (2008) developed a mathematical model 

accounting for miRNA repression on a variety of target genes whose translation could be 

cap-dependent (the target mRNA contains a functional m
7
G cap or a non-functional 

ApppN cap structure) or cap-independent (the target mRNA contains a IRES). Through 

their analysis, they found that miRNAs are affecting a late stage in the translation 

initiation such as AUG recognition or 60S subunit entry. Furthermore, their results 
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suggested that different rate-limiting steps in the translation initiation can explain the 

divergent results in literature. For example, the mRNA containing IRES may be resistant 

to miRNA inhibition because the translation initiation is not a rate-limiting step for such 

mRNA. Moreover, they demonstrated that the effect of miRNAs on translation can not 

be observed if a miRNA is acting on a step which is not rate-limiting. In case of ApppN-

capped mRNAs, if miRNAs affect a step downstream of the inefficient cap recognition 

process of these mRNAs, their effect could be masked since the upstream step is rate-

limiting. 

1.3.3 MicroRNA-mediated feedback and feedforward loops 

miRNAs are important components embedded in gene regulatory networks and are 

found to establish different kinds of network motifs with their TFs and targets. The most 

common miRNA-mediated network motifs are feedback and feedforward loops. These 

loops can be further differentiated into subtypes. The feedback loops can be either 

positive or negative if a miRNA and its TF are positively or negatively coregulated by 

each other. The feedforward loops can either be coherent or incoherent, if a miRNA and 

its TF consistently or oppositely regulate their common target (Figure 1.5). 

 

Figure 1.5: miRNA-mediated feedback and feedforward loops. Left: Feedback loops are classified into 

positive and negative loops. In positive loops, both the miRNA and the TF have the same overall effect on 

each other, and this effect can be direct or indirect. In negative loops, the overall effect of the miRNA and 

the TF on each other is opposite. Right: Feedforward loops are classified into coherent and incoherent 

loops. In coherent feedforward loops, the miRNA and the TF have the same effect on their common target. 

In incoherent feedforward loops, the miRNA and the TF have opposite effect on their common target. 
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In order to detect miRNA-mediated motifs contained in gene regulatory networks, 

analysing large-scale biological data using network biology tools is a powerful and 

popular approach. By using this approach, Tsang et al. (2007) detected that the miRNA-

mediated motifs are conserved among different species. Particularly, the coherent 

feedforward and negative feedback loops mediated by miRNAs unregulated in neuronal 

cells were identified to be prevalent in mature neurons. The recurrences of these 

miRNA-mediated motifs suggest important biological functions of miRNAs in 

mammals, which are related to the robustness of gene regulation in mammalian 

genomes. Similarly, Re et al. (2009) identified a total of 638 putative miRNA-mediated 

feedforward loops in human gene regulatory networks and further filtered these 

feedforward loops using cancer relevant features. Their analyses showed that some 

miRNA-mediated feedforward loops are not only computationally identified but also 

experimentally verified to be involved in various aspects of organism development and 

differentiation, suggesting a crucial role of miRNA-mediated feedforward loops in gene 

regulatory networks. In addition, some researchers focused on searching for gene-

specific network motifs containing miRNAs. For example, feedback and feedforward 

loops containing p53 and miRNAs were identified and studied by Sinha et al. (2008). 

The authors revealed the miRNA-mediated network motifs underlying p53 regulatory 

networks. This result suggested the important contribution of miRNAs regulating p53 

signalling pathways, which are involved in tumour suppression. Martinez and Walhout 

(2009) compiled multiple experimentally verified feedback and feedforward loops, 

which are composed of miRNAs and their TFs. Their analysis showed that the existence 

of these miRNA-mediated network motifs reveals not only the reciprocal regulation by 

the miRNAs and the TFs but also their coordination in regulating shared target genes at 

the genome-scale level.  

In addition to identifying the miRNA-mediated network motifs using computational 

methods, the employment of mathematical models focuses on unravelling the dynamic 

properties, which are thought to be essential for maintaining the operation of gene 

regulatory networks. Some in silico models showed that the existence of miRNA-

mediated network motifs can lead to more effective noise buffering in gene expression. 

In support of this, Xu et al. (2009) studied miRNA-mediated network motifs by using 
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deterministic and stochastic models. The properties of the network motifs were further 

analysed for four types of external input signals: 1) the same signal acts on a miRNA 

and its target gene, 2) two different signals act on the miRNA and the target gene 

respectively, 3) the signal acts only on the target gene and 4) the signal acts only on the 

miRNA. Their numerical simulations indicated that for these signals the miRNA-

mediated network motifs exhibit strong robustness to external stochastic perturbations in 

target gene expression. Similarly, Osella et al. (2011) investigated the role of miRNA-

mediated feedforward loops in buffering noise in the target gene expression by using a 

mathematical model. They demonstrated that compared to the simple gene activation by 

a TF, the system containing miRNA-mediated repression shows a greater ability to 

dampen fluctuations in the target gene expression. Furthermore, mathematical modelling 

of miRNA-mediated network motifs embedded in specific networks revealed 

particularly intriguing properties of specific miRNAs. For example, Aguda and 

colleagues (2008) derived a mathematical model for a specific cancer network which 

includes feedback loops formed by Myc, the E2F protein family and the miR-17-92 

cluster. By analysing the consequence of coupling the miRNA-mediated negative 

feedback loop with the E2F/Myc positive feedback loop, they showed the critical role of 

the miRNA cluster in shaping bistable behaviour in E2F/Myc protein levels and 

demonstrated the oncogenic and tumour suppression properties of the miRNA cluster. 

Moreover, the oscillatory behaviour of genes was mathematically proved to be affected 

by miRNAs. Xie et al. (2007) incorporated a miRNA into a gene regulatory network, in 

which the miRNA is involved in a negative feedback loop. They showed that the effect 

of the miRNA on mRNA stability can determine whether the expression of the 

corresponding gene oscillates or not.  

In this thesis, I present a novel approach that combines miRNA and TF target 

prediction algorithms with experimental evidence to identify miRNA-mediated network 

motifs for p21. Compared to those purely predictive approaches, this approach provides 

more accurate and refined results. Furthermore, I construct a data-driven kinetic model 

to investigate the regulatory role of a feedback loop mediated by miR-34a in the 

p53/SIRT1 signalling pathway. 
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1.4 Objectives of this thesis 

The involvement of miRNAs in gene regulatory networks and signalling pathways 

increase the complexity of biological systems. Thus, the systems biology approach, 

which combines mathematical modelling with experimental data, is required to address 

various roles played by miRNAs within cells. For advancing our understanding of the 

principles (mechanisms) by which miRNAs and other cellular molecules interact to 

realize their functions, I consider the following objectives: 

 p53 is well known for its tumour suppression function and has been recently 

experimentally verified to upregulate the expression of miR-34a. In turn, 

miR-34a enhances the activation of p53 through repressing SIRT1. The 

involvement of miR-34a increases the complexity of the p53/SIRT1 

signalling pathway composed by biochemical reactions. Thus, the objective 

is to investigate the regulatory role of miR-34 using a systems biology 

approach. To do so, a kinetic model of the p53/SIRT1 signalling pathway is 

constructed, and it is characterised and validated by quantitative 

experimental data. The model is further used to distinguish the different 

possible designs of the repression mechanism by which miR-34a represses 

SIRT1 and to generate experimentally verifiable predictions concerning the 

activation of p53 mediated by miR-34a. 

 A miRNA target gene can be simultaneously repressed by multiple miRNAs, 

and such a gene is defined as a miRNA target hub. p21 is a miRNA target 

hub, which is experimentally verified to be targeted by more than 15 

miRNAs. In addition to the repression of p21 by individual miRNAs, 

synergistic repression exerted by multiple targeting miRNAs is also 

experimentally proved to be possible. Therefore, the objective is to construct 

a kinetic model that can represent the comprehensive regulation of p21 by its 

targeting miRNAs. To do so, a novel approach is developed to construct the 

regulatory map of p21. The kinetic model, which is constructed based on the 

map, is further used to show the regulation of p21 by multiple and 

cooperative miRNAs for different biological scenarios. 
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1.5 Outline of this thesis 

The remaining chapters of this thesis are structured as follows: 

Chapter 2 presents the process of kinetic modelling using ordinary differential 

equations (ODEs), and this process includes model construction, model calibration, 

model validation and model analysis. I discuss the basic principles of the kinetic model 

construction using ODEs. In addition, various analytical tools used to study ODE-based 

models are introduced. 

Chapter 3 shows the use of a systems biology approach for the analysis of the 

regulatory role of miR-34a in the p53/SIRT1 signalling pathway. First, the construction 

and validation of a kinetic model using quantitative experimental data are presented. 

Next, the discrimination of hypothetical mechanisms by which miR-34a represses SIRT1 

is demonstrated with the help of the model. Finally, the investigation of the ability of 

miR-34a to compensate the loss of active p53 is shown. 

Chapter 4 focuses on studying the mechanism by which a miRNA target hub is 

repressed by multiple miRNAs. A novel approach, combining target prediction 

algorithms with experimental data to generate a regulatory map for the miRNA target 

hub p21, is presented. This is followed by the utilisation of a kinetic model to show the 

regulation of p21 by its targeting miRNAs, which can function independently and 

cooperatively. 

Chapter 5 concludes this work by discussing the main results.  
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2. In silico modelling using ODEs 

Chapter 2 

In Silico Modelling Using ODEs 

 

A major challenge in systems biology is to choose an appropriate modelling approach 

for studying the dynamics of biological systems. This chapter focuses on the ODE 

approach, which is most frequently used to study the dynamics of biochemical systems 

over time. Systematically studying a biochemical system using the ODE approach 

requires four steps: model construction, model calibration, model validation and model 

analysis. Therefore, I first introduce the common kinetic laws used in ODEs, which 

ensure the accurate translation from biochemical reactions into mathematical 

representations. Next, characterisation of model parameter values using mathematical 

optimisation methods and identification of estimated parameter values are presented. 

Then, I show the process of model validation and introduce a series of analytical tools 

used for detecting the properties of dynamical systems. Finally, I briefly summarise 

some of my published research works, where the ODE modelling approach was used to 

study different biochemical systems. 

2.1 Model construction 

Biochemical systems are composed of biochemical reaction processes, in which 

substrates are converted into specific products through single or multiple steps within 

cells. ODEs can describe the temporal concentration profile of biochemical systems, 

which is affected by production, consumption and degradation of biochemical species 

(e.g. proteins, RNAs and metabolites). An ODE model can be constructed using 

appropriate kinetic laws such as the law of mass-action, which states that the rate of a 

chemical reaction is proportional to the probability that the reacting species collide. This 

collision probability is in turn proportional to the concentration of the reactants (Voit, 

2000). The general representation of ODE-based models using mass-action kinetics can 

be determined by the following equation (Crampin et al., 2004)  
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where xi represents the molar concentration of the i
th

 biochemical specie. Every 

biochemical reaction  is described as a product of a rate constant (k) and biochemical 

species (xj, j   {1,2,...n}) that are involved in the reaction. ci, the so-called 

stoichiometric coefficients, relates the number of reactant molecules consumed to the 

number of product molecules generated in the reaction . gj denotes kinetic orders 

which are equal to the number of species of xi involved in the biochemical reaction  

To illustrate how biochemical systems can be formulated in ODEs, I construct a 

model accounting for several basic processes within cells. These processes include gene 

expression, molecule degradation and protein phosphorylation (Figure 2.1). The model is 

used to explain the principles underlying the construction of ODE-based models. The 

process of gene expression is composed of two steps: the transcription of a gene into 

mRNA and the translation of the mRNA into a protein. By applying mass-action 

kinetics, I obtain the following equations 
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where the rate constants     
     and     

       
 represent the synthesis of mRNA (M) and 

the translation of a protein (P), respectively. The rate constants     
     and     

       
 

stand for the degradations of the mRNA and the protein. The production of the protein is 

termed by a product of the kinetic constant and the mRNA, which means that its 

production is proportional to the concentration of the mRNA. However, for the 

simplicity the production of the mRNA is only termed by a rate constant, meaning that 

the transcription of the gene into the mRNA is not affected by other molecules. The 

degradations of the mRNA and the protein are proportional to their concentrations. In 

this established ODE model, P and M are defined as model state variables, which 

describe the dynamics of the concentrations of the protein and the mRNA over time (t); 

the rate constants and the initial concentrations (i.e. concentrations at t = 0) of the protein 

(P(0)) and the mRNA (M(0))  are model parameters. 
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Figure 2.1: Scheme of the gene expression process. In the model, the basic biological processes 

considered are: gene transcription mediated by TFs (➀), mRNA translation (➁), miRNA-mediated 

degradation of mRNA (➂) and protein phosphorylation (➃). Each process is used as a separate example 

to explain the most common kinetic laws used in ODE-based models. The scheme is drawn using 

CellDesigner, which is a structured diagram editor for constructing biochemical schemes (Funahashi et al., 

2008).  

 

Besides mass-action kinetics, other kinetic rate laws such as Michaelis-Menten 

kinetics and the Hill equation are also frequently used in ODE models. Michaelis-

Menten kinetics is often used as an approximation of mass-action kinetics to model 

enzyme catalysed reactions such as protein phosphorylation. Michaelis-Menten kinetics 

not only simplifies the model in mass-action kinetics but also can be used to generate 

saturation kinetics of enzymatic equations (Aldridge et al., 2006). For example, the 

protein (P) described above can further form a temporary complex (C) with a kinase (E), 

which is a type of enzyme and can facilitate the protein phosphorylation process to 

produce phosphoprotein (P
*
; Figure 2.1). If the kinase is not consumed and degraded 

during this process (Etotal=C+E) and is in much lower initial concentration compared to 

the initial concentration of the protein (P(0)>>E(0)), the quasi-steady-state 

approximation which assumes rapid equilibrium of the intermediate complex (
  

  
  ) 

can be applied in the original ODEs. After the approximation, the model is simplified 

resulting in the Michaelis-Menten equation. The biochemical reactions are shown below 

and the simplification of the original ODEs using Michaelis-Menten kinetics are 

formulated in Equation (2.4) and (2.5). 
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Biochemical reactions 

           

Mass-action kinetics 
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Michaelis-Menten kinetics 
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where     
       

 and     
       

 are the association and the disassociation rate constants of 

the complex respectively, and     
       

 is the phosphorylation rate constant of the 

protein. Vmax is the maximum phosphorylation rate catalysed by the kinase, and Km, 

known as the Michaelis constant, is the protein concentration at which its 

phosphorylation rate is half of Vmax. Etotal represents the total amount the kinase. P(0) and 

E(0) represent the initial concentrations of the protein and the kinase, respectively. 

The Hill equation was first introduced by Hill and can be used for describing the 

cooperative interactions between the same or different molecules (Hill, 1910; Yagil and 

Yagil, 1971). For example, the mRNA (M) mentioned above may have multiple binding 

sites for a miRNA (S), which can target the mRNA and mediate its degradation (Figure 

2.1). The multiple miRNA binding sites may have cooperative effect to enhance the 

degradation of the target mRNA. In other words, the already bound miRNAs can 

significantly increase the affinity of other binding sites targeted by subsequent miRNAs. 
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This phenomenon can result in quicker degradation of the target mRNA and be 

described using the equation below 

  

  
     

         
         

                               
  

     
 

(2.6)  

where the degradation rate of the mRNA is represented by R, which is a function of the 

maximum mRNA degradation rate (    ) and the Hill function (h). In the Hill function, 

the Hill constant corresponds to the concentration of miRNA (S) at which R reaches 

half-maximal degradation rate (
    

 
). Different values of the Hill coefficient n account 

for different miRNA-mediated effects on the mRNA degradation. If n=1, there is no 

cooperative effect for the miRNAs. Bigger values of n (n>1) account for miRNA 

cooperative effect, which can produce steep sigmoid shape for R (Figure 2.2). 

 

Figure 2.2: Using the Hill equation to describe miRNA-mediated degradation of the mRNA. With the 

low concentration of miRNA, the mRNA degradation rate is slow and stable (n=4 and 6). Until the 

miRNA concentration reaches , the mRNA degradation rate is 
    

 
. The bigger the Hill coefficient n is, 

the steeper the transition from slow to Dmax is. 

 

The power-law formalism was originally presented by Savageau and is an 

alternative approach for modelling biochemical reactions (Savageau, 1969a and 1969b; 

Rui et al., 2008). Compared to conventional kinetic models represented by Equation 

(2.1) in which kinetic orders are positive integers, power-law models allow non-integer 

values for the kinetic orders. Based on available structural information used to construct 

biochemical systems, two types of power-law models can be formulated: detailed and 

simplified power-law models. In detailed power-law models, due to the well-known 



Chapter 2 In Silico Modelling Using ODEs 

 24 

structural information of biochemical systems, kinetic orders have positive real values, 

which are related to the effects of molecular crowding and inhomogeneity in 

intracellular compartments (Savageau, 1992); however, incomplete information of 

biochemical systems and the need for simplification and aggregation lead to simplified 

power-law models, in which both positive and negative real values are applied for 

kinetic orders (Vera et al., 2007). Positive values represent activation, translocation and 

degradation, while negative values are an intuitive representation for inhibition (Vera et 

al., 2007). For example, the transcription of a gene can be regulated by several TFs (T), 

and TFs can play different roles through interacting with different regions of the gene 

(Figure 2.1). If a TF promotes the transcription of the gene, a positive number is 

assigned to the kinetic order (g). Otherwise, a negative kinetic order should be used for 

characterising the process in which a TF inhibits the gene transcription. The ODE 

formulated in power-law and the possible roles of TFs represented by different values of 

g are shown in Equation (2.7) and Figure 2.3. 

  

  
     

       
 (2.7)  

       

Figure 2.3: Using the power-law formalism to describe the TF-mediated gene transcription. When 

g=-2, the TF inhibits the synthesis of the mRNA (black line). When g=0, the TF is involved in the 

synthesis of the mRNA but not affects the transcription of the gene (red line). For positive values of g, the 

TF can activate the gene transcription in different manners: saturated (blue line), linear (green line) and 

cooperative activation (yellow line).  

2.2 Model calibration 

Once a biochemical system has been converted into a preliminary ODE model, the next 

step is model calibration, a process by which parameter values are adjusted in order to 

make model simulations match experimental observations as good as possible. To do so, 
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there are two possible means: characterisation of parameter values using available 

biological information or estimation of parameter values using optimisation methods. 

Some parameter values can be directly measured or obtained from the literature or 

databases. For example, the half-life (t1/2) of some molecules (e.g. protein) can be 

measured in vitro via western blot data, and this information can be used to characterise 

their degradation rate constants through the equation      
   

    
 (e.g. if the half-life of a 

protein P is 10 hr, its corresponding     
  0.07 hr

-1
). The database SABIO-RK provides 

a platform for modellers of biochemical networks to assemble information about 

reactions and kinetic constants (Wittig et al., 2012). However, for most model 

parameters, whose values cannot be measured in laboratories or be accessed from the 

literature or databases, a process named as parameter estimation is adopted to 

characterise their values. Before running parameter estimation, initial parameter values 

and boundaries should be set within physically plausible ranges. To do so, the database 

BioNumbers provides modellers with key numbers in molecular and cell biology, 

ranging from cell sizes to metabolite concentrations, from reaction rates to generation 

times, from genome sizes to the number of mitochondria in a cell (Milo et al., 2010). 

2.2.1 Parameter estimation 

Parameter estimation is a process, by which parameter values are determined using 

optimisation methods, to minimise the distance between model simulations and 

experimental data. To illustrate how this process is implemented, major steps in 

parameter estimation are described below. 

Model definition 

Given that there is an ODE-based model containing N state variables (x), which can be 

mapped to a set of M observables (y) through an observation function   as follows (Raue 

et al., 2009) 

     

  
            (2.8)  

            (2.9)  

                  (2.10)  
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where x(t) is a vector for all state variables, k is a vector for rate constants, x(0) is the 

vector for all initial concentrations of the state variables, s is a vector comprising scaling 

or additional offset parameters of the observation function  ,   is a vector of 

measurement errors or noises. Both functions      and      are required to be 

continuously differentiable, and for partially observed models the dimension of 

observations is smaller than the dimensions of model state variables (M<N).  

Rate constants k, initial concentrations x(0) together with the parameters of the 

observation function s are defined as the set of problem specific parameters (p) of the 

model 

  {        }  {          }  (2.11)  

In biochemical systems the parameter values must be biologically meaningful, and 

therefore rate constants and initial concentrations should not be negative real numbers.   

Cost function 

Intuitively, a good fitting model should minimise the deviation between model 

simulations and experimental data (Figure 2.4). The cost function is used to evaluate the 

agreement between model simulations and measured experimental data and is commonly 

defined as the weighted sum of squared residuals (Rij(p)) using the following equation 

      ∑∑(      )
 

 

 

   

 

   

 (2.12)  

        
  

    (  )    (    )

   
      (2.13)  

where   
         denotes the number of H data points for each observable i, which is 

measured at time point tj.    
     represents the corresponding noise or the standard 

deviation of the experimental data, and          is the i
th

 observable predicted by the 

model that is configured with the parameter set p for time point tj. The optimal parameter 

set (p
*
) can be estimated numerically by 

      
 

 [     ]  (2.14)  

Equation (2.14) is a standard least square minimisation problem. Because of the 

nonlinear and constrained nature of this problem, in the next step of parameter 

estimation I will introduce some optimisation methods which are used to solve it. 
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Given that the measurement noises are normally distributed           , the 

deviations between measurements and model simulations are also normally distributed. 

In this case, maximum likelihood estimation is equivalent to standard least-squares 

minimisation (Raue et al., 2009). An optimal parameter set (p
*
) can be obtained by 

maximizing the likelihood of the data y
data

 with respect to the parameter set p 
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                (       |  )  (2.17)  

where L(y
data

|p) is the likelihood.    will be used as the placeholder for the likelihood in 

the next section. 

 

Figure 2.4: Illustration of Parameter estimation. Optimisation methods are used to tune the parameter 

values to minimise the distance between the initial model simulations (    )) and the experimental data 

(  
    ; the bars crossing the circles represent standard deviations of the experimental data). After 

parameter estimation, the optimal model simulation (    
  ) is obtained. a.u.: arbitrary unit. 

Minimisation of the cost function   

The minimisation of the cost function (i.e. to find the optimal parameter set p
*
) measures 

the goodness of fit of the model with respect to given experimental data sets. Towards 

this end, local and global optimisation methods are usually adopted. The easiest and 

simplest local optimisation methods are gradient-based, such as the Gauss-Newton 

method, which minimise the cost function through an iterative procedure (Burke and 

Ferris, 1995). In each step of the procedure, the gradient of the residuals is used to 
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calculate a parameter update until the convergence criterion is fulfilled (e.g. the cost 

function does not decrease from one iteration to the next). However, local optimisation 

methods usually do not work for realistic problems, because they always converge to 

local solutions (local minimums; Figure 2.5). To prevent the search process being 

trapped in local minimums, researchers developed global optimisation methods, which 

are more efficient and robust to find the global solution (global minimum). Based on the 

algorithms adopted, global optimisation can be further differentiated into deterministic 

(e.g. DIRECT algorithm; Jones et al., 1993) and stochastic methods (e.g. particle swarm 

pattern search algorithm; Vaz and Vicent, 2007). Compared to stochastic methods, 

which rely on probability approaches, deterministic methods show better convergence to 

global solutions, however, easy implementation and less time consuming properties of 

stochastic methods compensate their relative weak ability to guarantee global optimums 

(Ashyraliyev et al., 2009).  

 

Figure 2.5: Gradient-based local optimisation methods. Due to the local nature of gradient-based 

methods, their search processes from the starting points are often trapped into local minimums. An 

intuitive way to overcome this problem is to apply different starting points (i.e. initial parameter sets 

within constrains) to improve the possibilities to find the global minimum.  

2.2.2 Parameter identifiability 

After parameter estimation, one major concern of modellers is uncertainties of estimated 

parameters values. Usually, the uncertainties represented as confidence intervals are 

determined by model structure and the quality of experimental data used in the 
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parameter estimation. A confidence interval [  
   

 ] of a parameter estimate   ̂  with a 

significance level α signifies that the true value
   

  is located within this interval with 

probability 1-α (Raue et al., 2009). 

The confidence interval of a parameter estimate (  ) can be obtained by using a 

threshold (  ) in the likelihood 

{  | 
           ̂    }                     (2.18)  

where the threshold   is the α quantile of the   -distribution with df degrees of 

freedom. df=1 gives point-wise confidence intervals that hold individually for each 

parameter, df=#p, being the number of parameters, gives simultaneous confidence 

intervals that hold jointly for all parameters. 

For complex ODE-based models, optimisation methods can yield more than one set 

of parameter estimates that make the cost function show the same minimal value. In this 

case, the parameter estimates are non-identifiable. More specifically, if the parameter 

estimate   ̂  cannot lead to a unique minimum of the cost function, the parameter pi is 

structurally non-identifiable (Figure 2.6; Raue et al., 2009). This problem arises from the 

model structure only and is independent from the experimental data. However, the 

structurally identifiable parameter pi may be practically non-identifiable. This can arise 

due to insufficiency and low quality of experimental data or the chosen measurement 

time points. A parameter is practically non-identifiable if the likelihood-based 

confidence interval (Equation 2.18) is infinitely extended in the direction of pi indicated 

by the likelihood staying below a desired    (Figure 2.6; Raue et al., 2009). By 

increasing the amount and quality of the measured data and/or choosing different time 

point tj, more rigorous conditions on the parameter estimation are imposed. This leads to 

a tightening of confidence intervals that ultimately will remediate a practical non-

identifiability, yielding finite confidence intervals (Figure 2.6; Raue et al., 2009; Balsa-

Canto et al., 2010). Moreover, it is noteworthy that non-identifiability of parameters 

does not imply a poor fit to the experimental data, but that parameters cannot be 

constrained to unique values given the current model structure and experimental data. As 

a result of non-identifiability, the predictive ability of the model will be undetermined, 

and this can lead to uncertainties in model predictions. 
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Figure 2.6: Illustration of parameter identifiability analysis. The identifiability of parameter pi are 

accessed from the profile likelihood       . The red solid line illustrates a structural non-identifiable pi 

meaning the alternation of pi can lead to more than one optimal solution; the blue solid line illustrates 

practical non-identifiable pi, meaning the alteration of pi leads to a unique optimal parameter set but one 

direction of its confidence interval is infinite below the threshold   ; and the green solid illustrates 

identifiable pi meaning its alteration can lead to a unique solution and the corresponding confidence 

interval is finite below the threshold   . The dashed line indicates    which is utilised to assess 

likelihood-based confidence intervals of pi and the light blue star corresponds to the minimum        at 

the optimal parameter   
 .  

2.3 Model validation and analysis 

After model calibration, the next step is to run predictive simulations, which are helpful 

to study the dynamic properties of biochemical systems and guide the future experiments 

in the laboratory. Usually, the model simulations are compared with the experimental 

data which are used during the parameter estimation. However, just a good agreement 

between the model simulations and those experimental data is not enough to prove its 

predictive ability, and therefore it is necessary to validate the model with other 

experimental data that is not used during the parameter estimation. This process is called 

model validation and can ensure more reliable and accurate model predictions. To do so, 

the data generated from new experiments or extracted from the literature are compared 

with new model simulations, which are usually obtained by configuring the model 

according to new experimental settings. Once a model is validated, it is appropriate for 

making predictions. In addition, analytical tools such as sensitivity and bifurcation 

analysis can be used to study complex properties and behaviour of the model. In the 

following sections, I will introduce these analytical tools with some concrete examples. 
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2.3.1 Sensitivity analysis 

The most common way to carry out model predictions is through perturbing parameter 

values (i.e. model inputs) which are responsible for controlling model outputs. In 

contrast to model inputs, model outputs are defined as model behaviours (e.g. steady 

states). In a complex biochemical network, the behaviour of a component could be 

affected by most or all reactions in the network. Thus, it is needed to develop a tool, 

which can systematically identify the influence of reactions on the component 

behaviour. Sensitivity analysis is such a tool, which can evaluate the influence of model 

parameters (e.g. initial concentrations of the state variables and rate constants) on model 

outputs. Depending on strategies used for perturbing model parameters, sensitivity 

analysis can be classified into two types: local and global sensitivity analysis. Local 

sensitivity analysis provides a description of the behaviour near a specified operating 

condition, whereas global sensitivity analysis uses wide ranges of parameter spaces and 

addresses global behaviour of model parameters using statistical methods (Saltelli et al., 

2000). Based on these results, valuable information can be extracted for choosing right 

experimental targets, and thus with the help of sensitivity analysis the time and expenses 

used for designing new experiments can be reduced (Saltelli et al., 2000). 

Local sensitivity analysis 

Local sensitivity analysis investigates sensitivities of model outputs with respect to 

particular points in parameter space. Mathematically, at a time point t, a local sensitivity 

coefficient     is the first order derivative of a model variable (xi) with respect to a model 

parameter (pj; Ingalls, 2008) 

    
      

   

 
  (        )    (    )

   

  (2.19)  

where     is computed at a point       
    

     
      

   where all the parameters are 

fixed to their nominal values. In other words,     implies the variation of the model 

variables (xi) due to the variation of the parameter (pj) around the nominal value   at the 

time point t. For example, if at the time point t, xi reaches its steady state (denoted by 

  
  ) then     

   
     

   
 is obtained; if      , it indicates that an increase of   in pj can 

lead to   increase of   
  , for values of pj near its nominal value   

 .     can be computed 
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by the finite difference approximation, and the accuracy of the approximation depends 

on the parameter perturbation size (   ). Alternatively, Equation (2.19) can be written as 

follows (Ingalls, 2008)  

    
  

     

      

   

   (2.20)  

where     is scaled with 
  

     
 to generate a relative sensitivity coefficient, which implies 

the relative change of the model variable (xi) due to the relative variation of the 

parameter (pj) at the time point t. After the scaling     becomes dimensionless, which 

allows direct comparison of     with other sensitivity coefficients and gives a more 

intuitive understanding of the sensitivity coefficients. By applying Equation (2.20) to the 

previous example,     
  

  
  

   
  

   
 is obtained and       indicates that an increase of    

in pj can lead to    increase of   
   for values of pj near its nominal value   

 . The 

relative sensitivity coefficient is also referred to as logarithmic sensitivities or 

logarithmic gains since (Ingalls, 2008) 
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     ⁄
 

           

        
  (2.21)  

The use of local sensitivity analysis has a long tradition in biochemistry in work on 

Metabolic Control Analysis (MCA). Within MCA, sensitivity coefficients are referred to 

as flux control coefficients, which describe the dependence of pathway flux on 

individual reaction rates (Fell, 1997). As the local sensitivity analysis allows only a 

small perturbation of each model parameter value, it is a measure of local behaviour, i.e. 

it describes the behaviour for parameters close to their nominal values. The use of local 

sensitivity analysis is inherently restricted to small regions of parameter space, and thus 

global sensitivity analysis is proposed to address global behaviour over a wide range of 

parameter values. 

Global sensitivity analysis  

Global sensitivity analysis investigates the parametric influence on model outputs by 

simultaneously perturbing model parameter values over large ranges, and thus nonlinear 

effects and interactions among parameters can be examined. The parameter ranges are 

based on parameter estimates and are constrained by upper and lower bounds or 
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probability densities (Ingalls, 2008). Statistical methods are often used to guide sampling 

of parameter values within the specified domains of parameter ranges. The global 

sensitivity analysis methods are usually implemented by using sampling-based methods, 

thus an efficient sampling method is important for determining its efficacy. Latin 

hypercube sampling is such a method, which not only samples random parameter values 

but also guarantees a uniformed distribution of parameter values in their defined ranges 

(Figure 2.7; Tang, 1993). Most of current global sensitivity analysis methods adopt the 

Latin hypercube sampling method to generate parameter vectors, and for each vector 

there exists a corresponding model output. By visualizing parameter values and model 

outputs in scatter plots, their relationships such as non-linearities and non-monotonicities 

can be revealed. Depending on these relationships, modellers should choose an 

appropriate global sensitivity analysis method (Frey and Patil, 2002; Saltelli et al., 

2000). More specifically, for nonlinear but monotonic models, sensitivity coefficients 

calculated based on rank transforms like Partial Rank Regression Coefficient (PRRC) 

will perform well. For nonlinear nonmonotonic models, sensitivity coefficients 

calculated based on decomposing the variance like the Fourier Amplitude Sensitivity 

Test (FAST) and Sobol's method are the best choice. For the detailed implementation of 

these methods, the interested reader is referred to Saltelli et al.(2000). 

   

Figure 2.7: Latin hypercube sampling method. Compared to the simple random sampling method (red 

squares), Latin hypercube sampling (black dots) generates uniformly distributed samples for the parameter 

vector [pi pj] within predefined boundaries. The vectors obtained using simple random sampling may fall 

into the same small intervals indicated by grids; however, Latin hypercube sampling ensures that the 

samples are evenly distributed over the whole range and do not overlap in rows and columns.  
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2.3.2 Bifurcation analysis 

As discussed in the previous section, sensitivity analysis identifies the most influential 

parameters which can affect model behaviour. Besides, another analytical tool called 

bifurcation analysis is employed to detect control parameters (also known as bifurcation 

parameters) whose variations are able to change the stability of fixed points (or 

equilibrium points) of ODE-based models (Strogatz, 2000). In other words, bifurcation 

analysis can explain how a change in dynamics of biochemical systems, from one stable 

steady state to another or from resting state to oscillations, happens. A coarse 

classification of bifurcations distinguishes local and global bifurcations. The local 

bifurcations describe local phenomena which occur near fixed points. Particularly, 

important local bifurcation behaviours in ODE models include transcritical bifurcations, 

saddle-node bifurcations and Hopf bifurcations. The former two generate bistability 

when a system switches from one stable steady state to another, while the latter gives 

rise to oscillations (Strogatz, 2000).  

Bistablility  

A system, which can exhibit two stable steady states, is defined as a bistable system. 

Such a system toggles between two discrete, alternative stable steady states, in contrast 

to a monostable system, which always shows one steady state (Angeli et al., 2004). This 

interesting system-level property can be produced even in relative simple biochemical 

networks such as a two-component positive feedback loop. The existence of bistability 

in biochemical systems is quite common, and it is crucial for modellers to understand its 

influence on basic cellular functioning, such as decision-making processes in cell cycle 

progression, cell differentiation and apoptosis (Ferrell and Machleder 1998; Gardner et 

al., 2000).  

Here, I use concrete examples to illustrate how bistability is trigged in two-component 

positive feedback loops by the alteration of bifurcation parameters. Based on the 

interaction types between the components, positive feedback loops can be classified into 

mutual activation and mutual inhibition systems (Tyson et al., 2003; Figure 2.8). Both 

systems are able to produce switch-like behaviour. The behaviour appears when the 

bifurcation parameter passes its critical value (bifurcation point) resulting an unstable 
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steady state for the system, and therefore the system jumps to a new steady state. 

Mathematically, an unstable steady state is equal to an unstable fixed point. In terms of 

linear stability analysis, if a small perturbation away from a fixed point grows, the fixed 

point is unstable; if a small perturbation away from a fixed point decays, the fixed point 

is stable (Strogatz, 2000). As shown in Figure 2.8 left, the mutual activation positive 

feedback loop can produce one-way switch behaviour. In this case, the steady states of 

non-active protein (X) remain in the lower branch for weak stimulus signals (S), and the 

levels of the steady states are linearly dependent on the signal strength until the strength 

reaches a saddle node bifurcation point (Figure 2.8 left ➀). At this point, the stable 

lower branch collides with the unstable middle branch. As two types of the steady states 

collide at the bifurcation point, a further increase in the signal strength results in a switch 

to the stable upper branch (Figure 2.8 left ➁). In the upper branch, when the signal 

strength increases, the system follows the same behaviour as in the lower branch 

(stronger stimulus signals lead to higher steady state levels of X). However, when the 

signal strength decreases, the steady state levels of X are trapped in the upper branch and 

cannot go back to the lower one (Figure 2.8 left ➂) . This is due to the fact that the other 

bifurcation point, which should appear in the upper branch, lies outside of the physically 

reasonable interval for the signal strength (e.g., the value of the bifurcation point is 

negative). This one-way switch behaviour was demonstrated in a cancer-related network 

composed of the miR-17-92 cluster and the E2F family including E2F1, E2F2 and E2F3 

(Aguda et al., 2008). In contrast to the one-way switch behaviour, the toggle switch 

behaviour can be produced by the mutual inhibition feedback loop (Figure 2.8 right). In 

such a system two saddle-nodes bifurcation points exist in the physically reasonable 

interval, and therefore the alternation of the bifurcation parameter makes the switch from 

the lower branch to the upper branch reversible (Figure 2.8 right ➀, ➁, ➂ and ➃). 

Such phenomenon is referred to as hysteresis, which means that the equilibrium that the 

system attains for a given signal strength depends on the history of the system (Tyson et 

al., 2003). In biology, hysteresis behaviour has been found to be important for governing 

cell fate decisions (Xiong and Ferrell, 2003) and driving cell cycle transitions (Sha et al., 

2003). 
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Figure 2.8: Illustration of bistability analysis. Top: The mutual activation and inhibition positive 

feedback loops are characterised by mutual activation or inhibition between the non-active protein X and 

active protein X
*
, respectively. Here, the strength of the stimulus signal (S) is a bifurcation parameter 

whose alteration controls the behaviour of the system. Middle: Bifurcation diagrams are employed to 

analyse how the level of the steady states of X changes depending on the alteration of S. In these plots, the 

blue solid and dashed lines represent the S-dependent stable and unstable steady states of X, respectively. 

The black solid lines with arrow heads represent the switch of the steady state of X after S crosses the 

saddle-node bifurcation point (SN), which has the corresponding value Scrit indicated by the grey dashed 

line. Bottom: The plots show the response of X (red solid line) for different S (green dashed line) over 

time. The symbols ➀, ➁, ➂ and ➃ in these plots are corresponding to the ones in the bifurcation 

diagrams. 
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Oscillation 

From an analytical point of view, the emergence of oscillations generally relates to a 

transition through a Hopf bifurcation point (Andronov et al., 1966). This local 

bifurcation is the simplest and most common mechanism, in which a stable solution 

arises beyond the bifurcation point in the form of a periodic solution (corresponds to a 

closed curve or limit cycle) surrounding an unstable solution (Goldbeter, 2007). A Hopf 

bifurcation point may be subcritical or supercritical. In the supercritical case, a stable 

solution (or fixed point) becomes unstable, while a stable periodic solution is born. 

Mathematically, a periodic solution is stable if solutions that begin close to the limit 

cycle remain close to the limit cycle for all positive time; in other words, a periodic 

solution can attract other nearby solutions (Strogatz, 2000). In the subcritical case, an 

unstable fixed point becomes stable, while an unstable periodic solution is born. 

Similarly, a periodic solution is unstable if its nearby solutions spiral away from the limit 

cycle (Strogatz, 2000). 

Here, I focus only on the supercritical Hopf bifurcation, which describes how 

sustained oscillations arise when a fixed point loses its stability. In biochemical systems, 

the negative feedback oscillator is a network motif that can trigger oscillatory behaviour 

in protein synthesis and circadian rhythms (Tyson et al., 2003; Figure 2.9). As shown in 

Figure 2.9, the strength of stimulus signal (S) is the bifurcation parameter, which 

controls the overall behaviour of the system. When the signal strength is weak, protein 

X3 shows dampened oscillation that converges towards a stable steady state (Figure 2.9 

➀ and ➁). With the increase of the signal strength, X3 starts to show sustained 

oscillation once the strength of the signal crosses the first Hopf bifurcation point (Figure 

2.9 ➂). In mathematical terms, the emergence of the oscillatory solution in the system is 

caused by the change of the eigenvalues of the Jacobian matrix via the variation of the 

bifurcation parameter. More specifically, with the alternation of the bifurcation 

parameter if the complex conjugate eigenvalues of the system cross the imaginary axis 

of the complex plane and show positive real numbers, the system will show oscillation 

(Strogatz, 2000). After entering the unstable solution area, the limited cycle becomes a 

new attractor for X3 and its amplitude is dependent on the signal strength. As the signal 
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strength is increased further to pass the second Hopf bifurcation point, the oscillation of 

X3 again dampens and converges towards the stable steady state (Figure 2.9 ➃). 

 

 

 

Figure 2.9: Illustration of Hopf bifurcation analysis. The negative feedback oscillator (top panel) is 

characterised by three-component interactions, in which protein X1 activates X3 through an intermediate 

protein X2. In turn, X3 inhibits X1 directly. The Bifurcation diagram (bottom left panel) is employed to 

illustrate how the oscillation of X3 emerges and disappears depending on the alteration of the bifurcation 

parameter S, which represents the strength of the stimulus signal. In this plot, the blue solid and dashed 

line represents the stable and unstable steady states of X3, respectively. The curve represents the limited 

cycle that connects the two Hopf bifurcation points (H1 and H2), whose corresponding values for S are 

Scrit1 and Scrit2. The bottom right plot shows the response of X3 (red solid line) for different S (green 

dashed line) over time. The symbols ➀, ➁, ➂ and ➃ in this plot are corresponding to the ones in the 

bifurcation diagram. 

2.4 Summary 

In systems biology, the utilisation of ODE-based models is a very popular and powerful 

method for investigating biochemical systems. Using the ODE modelling approach 

together with numerical simulations and relevant analytical tools provides a useful and 

efficient means to gain insights into biochemical networks. This not only saves the 

experimental efforts but also makes in silico experiments possible. By using this 

approach, I together with some colleagues have published several research works 

regarding different biochemical systems. Some of these studies are briefly summarised 

below and the others are to be presented in the subsequent two chapters. 
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For example, we set up a multi-level model using the power-law formalism, which 

accounts for the JAK2-STAT5 signalling pathway in erythropoiesis (Lai et al., 2009). 

The constructed model was calibrated using quantitative data, which were measured at 

molecular (e.g. protein expression) and physiological (e.g. hematocrit) levels. We used 

the model to investigate the effects of dysregulation of key proteins involved in the 

JAK2-STAT5 signalling pathway during erythropoiesis. The simulation results 

suggested that downregulation in any of the three components (Epo, STAT5 and 

EpoR/JAK2 has considerable effects on the hematocrit level. In addition, the model 

predicted that the traditional therapy, using exogenous Epo injection, can compensate the 

effect of the downregulation of Epo, STAT5 or EpoR/JAK2 expression levels 

individually. However, it is insufficient to counteract the combined downregulation of 

any two of Epo, STAT5 and EpoR/JAK2. We further developed a methodology by 

integrating sensitivity and bifurcation analysis, aiming for designing more informative 

predictive simulations in ODE models through finding critical parameters (Nikolov et 

al., 2010). Particularly, under defined biological scenarios we first evaluated the 

influence of parameters on the model outputs, like steady state and oscillation amplitude; 

then, the parameters with high sensitivities to the model outputs were investigated to 

determine their bifurcation points and stability regions in the system’s phase space. To 

test our methodology, we applied it in the multi-level model of the JAK2-STAT5 

signalling pathway in erythropoiesis. Our analysis revealed that in contrast to the time 

delays related to intracellular signalling and hypoxia-controlled physiological dynamics, 

the physiological time delays caused by the differentiation process of the red blood cells 

are critical to induce pathological sustained oscillation. Moreover, the simulation results 

suggested that the system is able to recover from partial impairment of intracellular 

signalling processes, but it cannot survive from failure of the physiologically critical 

processes that can provoke the emergence of pathological oscillation.  

In another publication (Vera et al., 2011), we set up an ODE-based model to 

investigate the propagation of p53 oscillation to its transcriptional targets. The model 

showed that the turnover rates of the targets are key factors to determine whether they 

can successfully inherit the oscillation from p53. More particularly, the model suggested 

that the oscillation of p53 is only able to propagate to its transcriptional targets, when the 
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mRNA and protein of the targets show fast turnover rates (i.e. short half-lives). 

Furthermore, we investigated the effect of p53 oscillation on its targets when p53 is 

simultaneously involved in an additional negative feedback loop mediated by 14-3-3 

The Hopf bifurcation analysis and numerical simulations suggested that the regulation 

via 14-3-3 can induce quick cessation of p53 oscillation. Moreover, by analysing the 

interplay between upstream stimuli of p53 (e.g. stress signals that can cause DNA 

damage) and the regulation by 14-3-3, we found that p53 can show bistability with 

sustained oscillation. 
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3. MicoRNA-34a regulation of the p53/SIRT1 signalling pathway 

Chapter 3 

MicroRNA-34a Regulation of the p53/SIRT1 Signalling 

Pathway 

 

miRNAs are a family of small regulatory RNAs that post-transcriptionally regulate gene 

expression. The complexity of signalling pathways increases with the consideration of 

miRNA-mediated regulation. Due to the regulation by miRNAs, a variety of feedback 

loops is formed by miRNAs and other components in signalling pathways. miRNA-

mediated feedback loops have great potential to influence the dynamic properties of 

signalling pathways. 

In this chapter, I present a study investigating the regulatory role of miR-34a in the 

p53/SIRT1 signalling pathway, which has been published in Lai et al. (2012a). Using a 

systems biology approach, which integrates biological data into a kinetic model, we 

identify the mechanism by which miR-34a represses SIRT1. Moreover, the model 

simulations show the function of miR-34a under a cancerous condition caused by 

abnormal upregulation of SIRT1. 

3.1 The p53/SIRT1 signalling pathway 

Any attempt to update the paradigm of the genetic information flow represented by the 

central dogma of molecular biology (DNA→mRNA→protein) should include TFs and 

miRNAs. Both are involved in transcriptional and post-transcriptional regulation, 

respectively (Figure 3.1). Key elements in gene regulation are TFs, a class of proteins 

able to promote and regulate the expression of genes. Experimental evidence suggests 

that TFs are involved in a variety of feedback loop signalling systems, ensuring the 

processing of genetic information in reliable, robust and responsive manners in response 

to internal and external signals (Nelson et al., 2003). 

In the last decade, it has been shown that miRNAs, whose main function is to 

regulate the activity and stability of target genes through interacting with their target 
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mRNAs, are involved in post-transcriptional regulatory mechanisms (Chendrimada et 

al., 2007). Usually, a miRNA can target multiple mRNAs and this property increases the 

challenge to attribute distinct functions to different miRNAs (Zhao et al., 2008). The 

identified miRNAs are estimated to regulate more than 30% of all protein-coding genes, 

making them one of the most abundant gene regulators (Friedman et al., 2009; Bueno et 

al., 2008; Khanin and Vinciotti, 2008). Moreover, miRNAs are involved in tumour 

progression of several cancer types by targeting different genes such as CDKs, Ras, and 

Myc, which play key roles in tumour development and progression (Chan et al., 2005; 

Schultz et al., 2008). Depending on the identified role of their targets, miRNAs can act 

as tumour suppressors downregulating oncogenes (Takamizawa et al., 2004; Johnson et 

al., 2005; Akao et al., 2006), or as oncogenic miRNAs negatively regulating the 

expression of tumour suppressor genes (Chan et al., 2005; Iorio et al., 2005). 

    

Figure 3.1: Sketch of genetic information flow. The discovery of miRNAs expands the central dogma of 

molecular biology. Most miRNAs can downregulate gene expression through interacting with mRNAs: 

promote mRNA degradation or repressing translation. The transcription process is controlled by TFs that 

can work as activators or inhibitors. TFs and miRNAs are themselves encoded by genes and subject to 

regulation. 

 

In signalling pathways, a number of network motifs composed of miRNAs, TFs and 

other signalling proteins have been identified (Shalgi et al., 2007). Among these motifs, 

there are positive or negative feedback loops (Figure 3.2), in which given TFs activate 
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the syntheses of miRNAs, and the miRNAs in turn inhibit the TFs through up- or 

downregulating the upstream regulators of the TFs. These kinds of feedback loops are 

linked with complex dynamic properties of biochemical systems (Shalgi et al., 2007; 

Aguda et al., 2008; Brosh et al., 2008). When one or more of these network motifs 

appear in a signalling pathway, purely experimental methods are not enough to dissect 

dynamic properties of the complex biochemical system. Thus, to gain full insights into 

the system, a systems biology approach combining experimental data with mathematical 

modelling becomes necessary (Vera and Wolkenhauer, 2008).   

  

Figure 3.2: miRNA-mediated feedback loops. In biochemical systems, the complex interactions among 

TFs, miRNAs and signalling proteins make the generation of network motifs such as positive (left) and 

negative (right) feedback loops possible. 

 

A recent study has proved that p53, the well-studied tumour suppressor protein, is 

involved in a positive feedback loop mediated by miR-34a (Figure 3.3). In this loop, 

miR-34a whose expression is transcriptionally promoted by p53 represses the production 

of SIRT1. SIRT1 can regulate apoptosis in response to oxidative and genotoxic stress by 

deacetylating p53 (Longo and Kennedy, 2006). Other than miR-34a, DBC1 has been 

found to be another negative regulator of SIRT1. DBC1 directly interacts with SIRT1 

and inhibits SIRT1 deacetylation in vitro and in vivo, and therefore it can activate p53 

and subsequently upregulate p53-mediated pathways (Kim et al., 2008). Another key 

player in regulation of p53 is Mdm2, which forms a negative feedback loop with p53 

(Freedman et al., 1999; Juven-Gershon and Oren, 1999). On one hand, Mdm2 binding to 

p53 can repress the transcriptional function of p53 and lead to complete elimination of 

p53 through proteolytic degradation. On the other hand, p53 upregulates the expression 

of Mdm2 through transcriptional activation. p53 plays a key role in preventing the 
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development of cancer through tight regulation of the cell cycle arrest and/or apoptosis 

in response to genotoxic stress. Mutations that perturb p53 function, often observed in its 

DNA binding domain or disruptions to the upstream or downstream regulatory networks 

of p53, have been found in approximately half of human cancers (Rodier et al., 2007; 

Riley et al., 2008). Because of the central role of p53 in coordinating the cellular 

responses to a broad range of cellular stress factors, it is interesting to systematically 

investigate the dynamic properties of the p53/SIRT1 signalling pathway, which includes 

the newfound miR-34a mediated feedback loop. 
  

 

Figure 3.3: The positive feedback loop formed by active p53, SIRT1 and miR-34a. In response to 

DNA damage, the upregulation of active p53 promotes the synthesis of miR-34a. miR-34a can 

downregulate the expression of SIRT1 through interacting with the mRNA of SIRT1. SIRT1 can decrease 

the production of active p53 through deacetylation. These interactions make a positive feedback loop in 

the p53/SIRT1 signalling pathway. 

3.2 Materials and methods 

3.2.1 Model construction 

For the investigation of the regulatory role of miR-34a in the p53/SIRT1 signalling 

pathway, we set up an ODE-based model using the power-law formalism. The model 

was composed of four parts (Figure 3.4): 1) the activation (acetylation) of p53 in 

response to a stress signal that can cause DNA damage and the deactivation 

(deacetylation) of p53 regulated by SIRT1 (Appella and Anderson, 2001; Vaziri et al., 

2001; Yamakuchi and Lowenstein, 2009), 2) the positive feedback loop integrated by 

p53, SIRT1 and miR-34a (Fujita et al., 2008; Yamakuchi et al., 2008; Kato et al., 2009), 

3) the upregulation of DBC1 induced by DNA damage and its inhibitory effect on 

SIRT1 (Kim et al., 2008; Kwon and Ott, 2008; Zhao et al., 2008; Cha et al., 2009; Li et 
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al., 2009), and 4) the inconsistent regulation between Mdm2 and active p53 

(Ramalingam et al., 2007; Vera et al., 2010). 

The formulated differential equations accounted for the change of the concentrations 

of the signalling pathway components over time: Mdm2 (Mdm2; Equation (3.1)), non-

active (deacetylated) p53 (p53; Equation (3.2)), active (acetylated) p53 (p53
*
; Equation 

(3.3)), miR-34a (miR34a; Equation (3.4)), SIRT1 (Sirt1; Equation (3.5)), DBC1 (DBC1; 

Equation (3.6)). Additionally, an algebraic equation was formulated to account for the 

total amount of p53 (p53total; Equation (3.7)).  
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For p53, the model contained equations accounting for the basal synthesis of p53, 

the extra synthesis of p53 induced by DNA damage (DD), p53 activation (acetylation) 

mediated by DD, p53 deactivation (deacetylation) mediated by SIRT1 and its 

degradation mediated by Mdm2. For Mdm2, the equations that describe the basal 

synthesis of Mdm2, the extra synthesis of Mdm2 induced by active p53 (p53
*
) and the 

degradation of Mdm2 were formulated. In case of miR-34a, the equations considered its 

basal synthesis, degradation and extra synthesis induced by p53
*
. For SIRT1, the model 

accounted for its basal synthesis that is repressed by miR-34a and its degradation. For 

DBC1, the model included the equations that describe its basal synthesis and extra 

synthesis induced by DD as well as its degradation. The total amount of p53 is the sum 

of its non-active and active fractions. According to the definition of power-law model in 

Chapter 2.1, we assigned -1 to the kinetic orders g1 and g2 which were used to describe 

the DBC1-mediated inhibition of SIRT1 deacetylase activity and the repression of 
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SIRT1 by miR-34a, respectively. Besides, we introduced three biologically possible time 

delays: the time delay caused by the p53
*
-induced of Mdm2 (1), the time delay 

attributed to the p53
*
-induced synthesis of miR-34a (2) and the time delay associated 

with the repression of SIRT1 by miR-34a (3). 

 

Figure 3.4: Scheme of the p53/Sirt signalling pathway. In the reaction processes, the molecules are 

converted from one form to another (e.g. p53→Ac-p53). In the activation or inhibition processes, the 

molecules activate or inhibit the corresponding processes but they are not consumed or converted to 

another form (e.g. DBC1⊣SIRT1). 

3.2.2 Model calibration 

We calibrated the model with the following procedures: 1) the biological information 

concerning protein half-lives were used to characterise the degradation rate constants of 

some molecules (    
    ,     

      ,     
      and     

    ), 2) the measured exogenous DNA 

damage response was used to shape the dynamics of the input signal (DD) by using the 

MATLAB's build-in interpolation function (Figure 3.5A), and 3) the quantitative data 

published in Yamakuchi et al. (2008) were retrieved and normalised to estimate the 

InhibitionActivationReaction process
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values of other unknown parameters (for the detailed process of parameter estimation, 

see Chapter 2.2.1). The data showed the dynamics of p53total, p53
*
, Sirt1 and miR34a 

after treatment with doxorubicin, a genotoxic-stress inducing agent. Before running the 

parameter estimation, the initial parameter values and boundaries were defined within 

physically plausible ranges. The estimated parameter values as well as the initial 

concentrations of the state variables are summarised in Table 3.1.  As shown in Figure 

3.5B, there is a good agreement between the model simulations and the experimental 

data. More specifically, in response to DNA damage the concentrations of p53total and 

p53
*
 increase and reach their peaks several hours after the stimulation. Upon 

accumulation of p53
*
, upregulation of miR-34a is observed with several hours of delay 

due to the time (2) that is needed for transcriptional induction by p53
*
. Subsequently, 

with increasing level of miR-34a, concentration of SIRT1 starts to decline with a delay 

(3). Because of the persistent inhibitory effect of miR-34a, the concentration of SIRT1 

stays at low level until end of the simulation. 

3.2.3 Model validation 

To validate the model, we compared the model simulations with another independent 

experimental data set published by Yamakuchi et al. (2008). Within the work, the 

authors carried out experiments to measure active p53 (p53
*
) expression levels in wild-

type and p53-mutated human colorectal carcinoma cells (HCT116). Both types of cells 

were transfected with antisense oligonucleotides (AS-miR34a) that knockdown 

endogenous expression of miR-34 or scrambled oligonucleotide controls (AS-miRscr) 

that cannot affect endogenous miRNA expression at all. As shown in Figure 3.6, the 

model simulations are in a good agreement with these experimental data, which were not 

used for parameter estimation. Thus, we can conclude that the model is capable of 

making reliable predictions for the defined biochemical system. 
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Figure 3.5: Comparison of model simulations and time-series data. A: The change of the exogenous 

DNA damage response in the defined time frame. B: The change of selected molecule concentrations, 

including total amount of p53 (p53total), active p53 (p53
*
), miR-34a (miR34a) and SIRT1 (Sirt1), in the 

defined time frame. The solid lines and square markers represent model simulation results (Sim) and 

experimental data (Exp) in normalised unit (n.u.), respectively. 
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Table 3.1: The model variables and parameters. The initial concentrations of model variables were 

assumed to 1, meaning the basal levels for the model variables are 1. Such an assumption was made based 

on experimental results such as western and northern blot, in which measured expression of proteins and 

RNAs are normalised to the initial (or control) measurement, to show down- (<1) and upregulation (>1) of 

the corresponding molecules. The parameter values were either fixed using available information from the 

literature (blue font) or estimated by using the experimental data. The time delays were all assumed to be 1 

hr. 

Variables Description 
Initial concentration 

(unit) 

     Mdm2 1 (n.u.) 

    Deacetylated (non-active) p53 1 (n.u.) 

     Acetylated (active) p53 1 (n.u.) 

       MicroRNA-34a 1 (n.u.) 

      SIRT1 1 (n.u.) 

     DBC1 1 (n.u.) 

Parameter Description Value (unit) 

     
     Basal synthesis rate constant of Mdm2 1.317 (n.u.· hr-1) 

     
     Extra synthesis rate constant of Mdm2 induced by active p53 0.068 (hr-1) 

    
     Degradation rate constant of Mdm2 1.386 (hr-1) 

    
   

 Basal synthesis rate constant of non-active p53 2.136 (n.u.· hr-1) 

     
   

 Extra synthesis rate constant of non-active p53 induced by DNA damage 0.957 (hr-1) 

    
   

 Acetylating (activation) rate constant of non-active p53 0.282 (n.u.-1· hr-1) 

    
   

 Degradation rate constant of non-active p53 2.079 (n.u.-1· hr-1) 

    
    

 Deacetylating (deactivation) rate constant of active p53 0.282 (hr-1) 

    
    

 Degradation rate constant of active p53 0.078 (n.u.-1· hr-1) 

     
       Basal synthesis rate constant of miR-34a 0.010 (n.u.· hr-1) 

     
       Extra synthesis rate constant of miR-34a induced by active p53 0.018 (hr-1) 

    
       Degradation rate constant of miR-34a 0.028 (hr-1) 

    
      Basal synthesis rate constant of SIRT1 0.582 (n.u.2· hr-1) 

    
      Degradation rate constant of SIRT1 0.577 (hr-1) 

     
     Basal synthesis rate constant of DBC1 0.023 (n.u.· hr-1) 

     
     Extra synthesis rate constant of DBC1 induced by DNA damage  0.003 (hr-1) 

    
     Degradation rate constant of DBC1 0.023 (hr-1) 

   Kinetic order -1 

   Kinetic order -1 

   Time delay 1 (hr) 

   Time delay 1 (hr) 

   Time delay 1 (hr) 



Chapter 3 MicroRNA-34a Regulation of the p53/SIRT1 Signalling Pathway 

 50 

 

Figure 3.6: Effects of endogenous miR-34a knockdown on the concentration of active p53. The black 

bars represent the experimental data (Expp53*) and the white bars denote the model simulations (Simp53*). 

In Yamakuchi et al. (2008), the expression of active (acetylated) p53 was measured at 16 hr after 

treatment with 5-Fluorouracil (5-FU, a genotoxic stress-inducing agent) that can induce the activation of 

p53 in two different cells: wild type HCT116 (WT) and p53-mutated HCT116 (MU). The cells were 

further transfected with AS-miR34a or AS-miRscr, respectively. 

3.3 Results 

After model validation, we performed two groups of predictive simulations. First, we 

simulated and analysed different hypotheses concerning the mechanisms by which miR-

34a represses SIRT1. Second, we used the model to investigate the dynamic features of 

the p53/SIRT1 signalling pathway. 

3.3.1 The post-transcriptional repression of SIRT1 by miR-34a 

As introduced in Chapter 1.2.1, there exist several mechanisms by which miRNAs can 

repress gene expression. A miRNA can induce mRNA cleavage if the mRNA target site 

exhibits extensive base complementarity to the miRNA, or it can cause destabilisation of 

the target mRNA by partially complementary binding. The destabilisation of the target 

mRNA can be implemented either through deadenylation of the target mRNA followed 

by degradation or through sequestration of the target mRNA into processing bodies (P-

bodies) followed by degradation (Bartel, 2004; Filipowicz et al., 2008).  

Here, we combined the available quantitative data and model simulation to identify 

the mechanism by which miR-34a represses SIRT1. We formulated four hypotheses 

accounting for miR-34a repression mechanisms: 1) miR-34a enhances the degradation of 

the SIRT1 mRNA (Figure 3.7 mode 1), 2) miR-34a sequesters the SIRT1 mRNA into P-

bodies which is followed by quicker degradation of the mRNA (Figure 3.7 mode 2), 3) 
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miR-34a represses SIRT1 translation (Figure 3.7 mode 3), and 4) miR-34a indirectly 

inhibits the synthesis of the SIRT1 mRNA (Figure 3.7 mode 4). 

       Mode-1 

 

Mode-2 

 

     Mode-3 

 

Mode-4 

 

 

 

Figure 3.7: The hypothetical repression mechanisms of miR-34a. Top: The schemes of the four 

hypothetical repression mechanisms mediated by miR-34a. The dashed lines with arrow or blunted heads 

represent activation or inhibition. The solid lines represent synthesis when starting with  and degradation 

when finishing at . Mode-1: the enhanced SIRT1 mRNA degradation mediated by miR-34a. Mode-2: 

the SIRT1 mRNA translocation followed by degradation in P-bodies. Mode-3: translation repression. 

Mode-4: indirect repression of the SIRT1 mRNA synthesis by miR-34a. Bottom: The predicted steady-

state levels of active p53 (p53
*
), miR-34a (miR-34a), SIRT1 (Sirt1) and its mRNA (mRNA) for different 

experimental conditions: 1) wild-type (WT), 2) downregulation of p53 and miR-34a (-/-), 3) upregulation 

of p53 and downregulation of miR-34a (+/-), 4) downregulation of p53 and upregulation of miR-34a (-/+) 

and 5) upregulation of p53 and miR-34a (+/+). 
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We expanded our model according to these hypotheses accounting for the different 

mechanisms by which miR-34a represses SIRT1 (see Appendix 6.1) and simulated the 

steady-state levels of the selected molecules for five different experimental conditions 

(Figure 3.7 bottom): wild-type (WT), downregulation of p53 and miR-34a (-/-), 

upregulation of p53 and downregulation of miR-34a (+/-), downregulation of p53 and 

upregulation of miR-34a (-/+) and upregulation of both p53 and miR-34a (+/+). The aim 

of the simulations was to predict whether the experiments with such design can 

differentiate the different miR-34a repression mechanisms. For comparison, we 

converted the steady-state levels of the molecules into logarithmic scale and normalised 

them with the results obtained in the experiment of WT. Interestingly, we found that for 

all the mechanisms, the steady-state levels of p53 and miR-34a were the same; however, 

the steady state levels for SIRT1 and its mRNA were different. These results suggest that 

the proposed experimental design allows for differentiating modes 1/4 and modes 2/3; in 

modes 1/4 the steady-state levels of the SIRT1 mRNA were affected by the varied 

expression of p53 and miR-34a but such change were not observed in modes 2/3. Thus, 

such an experimental design will fail to differentiate modes 2/3, suggesting that 

additional experiments concerning the dynamics of the molecules are required for fully 

differentiating the hypothetical mechanisms. 

To computationally identify the mechanism by which miR-34a represses SIRT1, we 

used time-series data of SIRT1 and its mRNA in wild-type and p53-mutated cell lines 

and compared the data with model predictions (Ford et al., 2008). We found that the 

mechanisms encoded in modes 1/4 were not able to reproduce the dynamics of SIRT1. 

As shown in the Figure 6.1 (see Appendix 6.1), the expression of SIRT1 predicted by 

the model declined too slow compared to the experimental data, which were measured 

after the stimulation with 5-FU in wild-type cells (WT). Furthermore, the time-series 

data measured in p53-mutated cells (MU) could only be fitted by mode 3, which is the 

unique mechanism able to illustrate the stable expression level of SIRT1 after the p53-

mutated cells were treated with 5-FU for 48 hr (Figure 3.8). Taken together, our analyses 

suggest that in the studied model miR-34a inhibits the expression of SIRT1 through 

translational repression (mode 3), the most common miRNA repression mechanism in 

animals (Bartel, 2004). Furthermore, this result is also in agreement with the conclusion 
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made by Yamakuchi et al. (2008), in which the authors conducted the experiments under 

similar conditions and proved that the repression of SIRT1 by miR-34a is achieved by 

translation repression. 

  

 

Figure 3.8: Identification of the mechanism by which miR-34a represses SIRT1. The plots of modes 

2/3 are shown, and the plots of modes 1/4 can be found in Appendix 6.1. The square markers represent the 

time-series data of SIRT1 (ExpSirt1) and its mRNA (ExpmRNA). The data were measured in wild-type (WT) 

and p53-mutated cells (MU) after the treatment with 5-FU for 48 hr. The solid lines represent the 

continuous concentrations of SIRT1 (SimSirt1) and its mRNA (SimmRNA) predicted by the model. 

3.3.2 The regulatory effect of miR-34a on the activation of p53 

Within the p53/SIRT1 signalling pathway, there are two inhibitors for SIRT1, namely 

DBC1 and miR-34a. Both molecules can promote the activation (acetylation) of p53 but 

through different mechanisms: DBC1 can inhibit the decetylation function exerted by 

SIRT1 on p53 and miR-34a can repress the expression of SIRT1. Thus, it is interesting 

to compare their regulatory effects on the activation of p53. To do so, we modulated the 

parameters accounting for the concentrations of DBC1 and miR-34a in the interval [10
-1

, 

10
1
] and computed the steady-state levels of active p53 (p53

*
). As shown in Figure 3.9, 
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the simulations indicated that repression of DBC1 and miR-34a strongly affects the 

steady-state levels of p53
*
, reducing them to 15% of its basal level when both of DBC1 

and miR-34a are extremely downregulated. Conversely, extreme upregulation of DBC1 

and miR-34a increases the steady-state levels of p53
*
 by nearly two-fold, showing their 

positive roles in the activation of p53. Interestingly, the simulations showed that 

although the concentration of DBC1 and miR-34a were modulated in the same 

normalised interval, changes in the concentration of DBC1 can induce bigger variations 

in the steady-state levels of p53
*
 than the modulation of miR-34a, suggesting DBC1 is a 

stronger positive regulator for the activation of p53 than miR-34a. 

 

Figure 3.9: Regulatory effects of DBC1 and miR-34a on the activation of p53. Every point in the plot 

represents a steady-state level of p53
*
 for given concentrations of miR-34a and DBC1 (10

0 
accounts for the 

basal level), ranging from extreme downregulation (10
-1

) to extreme upregulation (10
1
). 

 

Moreover, we investigated the ability of DBC1 and miR-34a to compensate the loss 

of p53
*
 caused by aberrantly expressed of SIRT1. Such upregulation of SIRT1 can be 

observed in cancerous cells (Kwon and Ott, 2008). The simulation results showed that in 

case of an intermediate upregulation (~10
0.5

) of SIRT1 the loss of p53
*
 can be 

compensated by upregulating either DBC1 or miR-34a (Figure 3.10). However, only the 

extreme upregulation (10
1
) of DBC1 is able to compensate the loss of p53

* 
due to the 

abnormal upregulation of SIRT1 (Figure 3.10 left). Taken together, the simulation 
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results predicted different regulatory effects on the activation of p53 by DBC1 and miR-

34a. This could be caused not only by their different interactions with SIRT1 but also by 

their different regulatory routes in the signalling pathway; DBC1, which enhances the 

activation of p53 through a simple regulation (DBC1⊣SIRT1⊣p53
*
), shows stronger 

regulatory effect than miR-34a, which enhances the activation of p53 through a positive 

feedback loop (p53
*
→miR-34a⊣SIRT1⊣p53

*
). 

        

Figure 3.10: miR-34a and DBC1 can compensate the loss of active p53 induced by the abnormal 

upregulation of SIRT1. Dark coloured area: The steady-state levels of active p53 are not able to recover 

to the basal level by the upregulation of DBC1 (left) or miR-34a (right). Light coloured area: The steady-

state levels of active p53 are able to recover to the basal level by the upregulation of DBC1 (left) or miR-

34a (right). 

3.4 Conclusion 

We discussed and illustrated the utilisation of a systems biology approach for the 

analysis of the regulatory effect of miR-34a in the p53/SIRT1 signalling pathway. The 

rationale behind is that in complex biochemical systems involving feedback loops the 

integration of biological hypotheses and quantitative data through mathematical 

modelling becomes appealing to acquire a system-level understanding of the system.  

The signalling system, which consists of the SIRT1-mediated deacetylation of p53, 

some other p53 regulators such as DBC1 and Mdm2 as well as its post-transcriptional 

regulator miR-34a, was constructed. Although the system does not consider all possible 

interactions associated with p53 (Vera et al., 2010; Vera et al., 2011), it is a good 

example of a complex regulatory system containing positive and negative feedback 
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loops. The system was translated into a power-law model, and the model was calibrated 

and validated by quantitative data.  

The well-characterised model was used to investigate two main features of the 

system. We tested whether the model allows for identifying the mechanism by which 

miR-34a represses SIRT1. To do so, the model was expanded to account for the 

hypotheses about the mechanisms. Our analyses revealed that the basic experimental 

design, which measures the steady-state levels of the selected molecules in the model, 

can help us partially differentiate the hypothetical mechanisms; however, to completely 

differentiate them, more complicated experiments are needed. Thus, we further 

simulated the model to regenerate the experimental data, which shows the temporal 

dynamics of SIRT1 and its mRNA in distinctive p53 expression conditions. After 

comparing the model simulations with the data, only the candidate model, in which we 

hypothesized that miR-34a represses SIRT1 translation, can reproduce the experimental 

data. Thus, we excluded the possibility of the other miR-34a repression mechanisms in 

the defined system. In addition, a number of predictive simulations showed the different 

regulatory effects of DBC1 and miR-34a on the activation of p53. 

Above all, our results concerning the p53/SIRT1 signalling pathway are far from 

giving a realistic and complete picture of the biochemical system related to p53. The 

primary goal, however, is to illustrate the application of the systems biology approach to 

investigate the regulatory roles of miRNAs in signalling pathways. Additionally, the 

function of miRNA is proved to be very often exerted together with a set of different 

miRNAs rather than isolated or unique ones. Thus, additional analysis can be carried out 

to investigate whether other miRNAs can intensify (in a summative or synergistic 

manner) the regulatory effect of miR-34a. 
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4. Target hub gene repression by multiple and cooperative microRNAs 

Chapter 4 

Target Hub Gene Repression by Multiple and Cooperative 

MicroRNAs 

 

miRNA target hubs are genes that can be simultaneously targeted by a comparatively 

large number of miRNAs. Although the details of target hub regulation remain poorly 

understood, recent experiments suggests that pairs of miRNAs can cooperate if their 

binding sites reside in close proximity. To test this and other hypotheses, I present a 

novel approach, which has been published in Lai et al. (2012b), to investigate 

mechanisms of collective miRNA repression. The approach combines TF and miRNA 

target prediction algorithms with data from the literature and databases to generate a 

regulatory map for a chosen target hub. By using this approach, a comprehensive 

regulatory map for p21 is constructed. Through analysing the map, the network motifs 

mediated by p21-targeting miRNAs are identified and discussed.  

Furthermore, a kinetic model is derived from the p21 regulatory map. The model, 

validated by experimental data, is further used to investigate the mechanism by which 

p21 expression is regulated by a pair of cooperative miRNAs. Moreover, the model is 

used to study the effect of different miRNAs expression profiles in combination with 

their cooperativity on determining the p21 expression levels for different biological 

contexts. 

4.1 Target hub gene regulation 

Genes, combining several TFs in their promoter regions, are referred to as target hubs 

(Borneman et al., 2006). Shalgi et al. (2007) defined the notion of miRNA target hub for 

genes that are regulated by at least 15 different miRNAs. Such kinds of genes are usually 

involved complicated regulatory networks, which are composed of TFs, miRNAs and 

interacting proteins (Figure 4.1). The complexity of these networks implies important 

roles of target hub genes in determining cell responses and fates. 
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Figure 4.1: A miRNA target hub regulatory network. In such a network, TFs, miRNAs and interacting 

proteins are involved. TFs can either promote (TFA) or inhibit (TFI) the synthesis of the miRNAs and the 

target hub mRNA. Once transcribed, the target hub mRNA can be post-transcriptionally regulated by 

multiple miRNAs. These miRNAs can repress target gene expression through translational repression or 

mRNA deadenylation followed by degradation. Besides, the target hub is highly interconnected with other 

proteins. Due to the complex interactions among different regulators, such a target hub centred network 

may have many network motifs like feedback and feedforward loops. 

 

In recent years, at least two groups experimentally proved that pairs of miRNAs, 

whose binding sites reside in close proximity or partially overlap, show cooperative 

effect on their targets (Doench and Sharp, 2004; Sætrom et al., 2007). This property 

adds to the complexity of miRNA target regulation. Sætrom et al. (2007) proposed a 

limited range of 13-35 nt for the distance between the binding start sites for which the 

phenomenon appears. According to this experimental evidence, we assumed this kind of 

interaction as plausible and applied it in a kinetic model of the regulation of a miRNA 

target hub to investigate the dynamic and regulatory consequences of this feature.  

p21 (also known as CDKN1A or Cip1/Waf1) is a well-known cell cycle regulator 

and tumour suppressor (Harper et al., 1993). Specifically, p21 is involved in the G1 

phase cell cycle arrest in response to DNA damage provoked by stress signals. The 

expression of p21 is dependent on environmental conditions and is transcriptionally 

regulated through p53-dependent and -independent mechanisms (Gartel and Tyner, 

1999). Recently, numerous miRNAs have been identified to regulate the expression of 
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p21. From 266 predicted miRNAs, Wu et al. (2010) validated the ability of a subset of 

28 miRNAs to target p21 using a high-throughput luciferase reporter screen. Thus, p21, 

to our knowledge, is one of the first experimentally verified miRNA target hubs.  

In this chapter, I present the research in which we investigate the structure and 

dynamics of p21-centred network including concerted miRNA-mediated repression of 

p21 by using a kinetic model. To do so, we make use of target prediction algorithms and 

data from the literature and databases to construct the regulatory map of p21. Using this 

map, we find potential 'housekeeping' miRNAs that are promoted by a few TFs but are 

associated with many distinct cellular functions and identify the feedback and 

feedforward loops underlying p21 regulation. Based on this map, we derive a 

quantitative data-driven model to test hypotheses about mechanisms of collective 

miRNA repression. We computationally detect several pairs of miRNAs that may 

cooperate in the repression of p21 and experimentally validate the cooperativity between 

miR-572 and miR-93. We further use these two miRNAs as an example to investigate 

three hypothetical target regulation mechanisms by multiple miRNAs. We find that one 

miRNA is sufficient to completely repress a target when highly expressed. However, the 

same effect can be achieved by two cooperating miRNAs, both of which are only 

expressed at an intermediate level. In addition, by using the model we predict p21 

expression for nine cellular functions for which different miRNA profiles are 

configured. The model predicts high levels of p21 expression during DNA damage, 

DNA repair, senescence and migration, and low levels of p21 expression for cell 

proliferation and apoptosis. 

4.2 Materials and methods 

The aim of our analysis is to unravel the complex mechanisms by which gene regulatory 

networks are regulated by multiple miRNAs. We iteratively integrate data from the 

biomedical literature, high-throughput experiments and biological databases into a 

kinetic model of miRNA target hub regulation. The kinetic model is then used to 

formulate and test hypotheses about mechanisms of target regulation and cellular 

function-related variability. In short, the adopted methodology includes three modules 

(Figure 4.2): 1) data retrieval; 2) construction and analysis of the regulatory map; 3) 
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kinetic modelling and simulation of the regulatory map. These modules are discussed in 

the following sections. 

 

Figure 4.2: Overview of the methodology. Biological knowledge and quantitative data are collected and 

converted into a mathematical model which can describe the regulatory roles of miRNAs in gene 

regulatory networks. The adopted methodology considers data retrieval, iterative cycles of model 

construction, model calibration and simulations. 

4.2.1 Data retrieval  

Information about protein interactions was extracted from the Human Protein Reference 

Database (HPRD, release 9.0; Keshava Prasad et al., 2009) and the database STRING 

(release 9.0; Szklarczyk et al., 2011). A list of experimentally verified TFs for the 

considered target hub was generated from the literature. This list was complemented by 

putative TFs that are associated with conserved TF-binding sites (human, mouse and rat) 

residing in the 5 kilobase (kb) upstream region of the target gene. This information was 

extracted from the table of TFs with conserved binding sites in the genome browser 

developed by the University of Santa Cruz (UCSC; Karolchik et al., 2003). Information 

about miRNA:target interactions can be extracted either from databases of validated 

interactions, e.g. miRecords (Xiao et al., 2009), Tarbase (Sethupathy et al., 2006) and 



Chapter 4 Target Hub Gene Repression by Multiple and Cooperative MicroRNAs 

 61 

miRTarBase (Hsu et al., 2011), or from predicted ones, which can be found in databases 

like miRWalk (Dweep et al., 2011) and miRGen 2.0 (Alexiou et al., 2010). In the case 

of p21, we used the information in Wu et al. (2010) where a list of predicted p21-

regulating miRNAs was subjected to experimental validation. It is noteworthy that there 

exist other miRNAs than those included in our network that were experimentally 

confirmed as regulators of p21 expression (Wu et al., 2010; Borgodoff et al., 2010); 

however, in order to construct a kinetic model focusing on the regulation of p21 by its 

targeting miRNAs, we considered only those miRNAs for which there are consistent 

quantitative data describing their repression abilities on p21. A list of TFs controlling the 

expression of the miRNAs was constructed using information of experimentally proved 

TFs of miRNAs contained in TransmiR (release 1.0; Wang et al., 2010). In addition, we 

generated a list of putative TFs of miRNAs with binding sites in the 10 kb upstream 

region of the miRNA genes using the information from the databases PuTmiR (release 

1.0) and MIR@NT@N (version 1.2.1), and from the table of TFs with conserved 

binding sites in the UCSC genome browser (hg18; Bandyopadhyay and Bhattacharyya, 

2010; Le Béchec et al., 2011; Karolchik et al., 2003;). We selected this region following 

the method in Shalgi et al. (2007), where the 10 kb upstream region is indicated as 

'putative regulatory region of miRNAs'. For further investigation, we considered only the 

miRNA TFs that were experimentally verified or predicted in two out of three resources. 

4.2.2 Construction and analysis of the p21 regulatory map  

We first converted the information described in the previous section into a regulatory 

network map, which was implemented in SBGN-compliant notation in CellDesigner 

(Kitano et al., 2005; Funahashi et al., 2008). For assessing the reliability of the network 

structure, we computed a confidence score for each interaction included in the p21 

regulatory map, similar to the procedure used in several interaction databases like 

STRING, iRefWeb or IntAct. The computed scores ranged between 0 (totally uncertain 

interaction) and 1 (most reliable interaction), and were established by integrating 

weighted scores for publications reporting an interaction, experimental method(s) used, 

interaction type and computational predictions. The scoring system was inspired by the 

one used in IntAct (Kerrien et al., 2012). A detailed description of how the scores were 
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calculated is provided in Appendix 6.2.1. All the interactions (p21-protein, TF-p21, TF-

miRNA and miRNA-p21) displayed in the map and their corresponding scores can be 

found in Appendix Table 6.6. 

In our map, the network motifs including a TF that regulates p21 and a p21-

targeting miRNA are considered as feedforward loops. Those, in which p21 is repressed 

by a TF and a miRNA, were classified as coherent feedforward loops. Those, in which 

p21 is activated by a TF and repressed by a miRNA, were classified as incoherent 

feedforward loops. Meanwhile, the network motifs including a TF that promotes a 

targeting miRNA and interacts with p21 were classified as feedback loops. Based on 

Gene Ontology (GO) terms, we derived tailored TF lists of p21 and its targeting 

miRNAs for different cellular functions including cell proliferation, apoptosis, immune 

response, inflammatory response, cell cycle control, DNA damage, cell senescence, 

DNA repair, cell motility and migration. 

For identifying binding sites for the p21-targeting miRNAs we used results of two 

established target prediction algorithms, miRanda and RNA22 (John et al., 2004; 

Miranda et al., 2006). The results were filtered for binding sites with at least 7mer seed 

pairing (wobble pairs were allowed). Target sites are presented in Appendix Table 6.5 

along with their detailed binding motifs. 

4.2.3 Model construction and calibration 

Based on the regulatory map, a kinetic model was constructed using ODEs. Precisely, 

the kinetic model considered the mRNA (mp21; Equation (4.1)) and protein (p21; 

Equation (4.2)) of the miRNA target hub p21, the p21-targeting miRNAs considered 

(miRi;            ; Equation (4.3)), and the complexes formed by targeted mRNA and 

miRNA, [mp21│miRi] (Equation (4.4)). Altogether, the model is constituted by 32 state 

variables and 64 parameters 
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For mp21, processes considered in the model were its synthesis (    
    

) mediated 

by its TF (    (      )), its degradation (    
    

), and its association with a miRNA 

(    
        ). For each miRi, processes considered were its synthesis (    

    ) mediated by 

its TF (    (      
)), its degradation (    

    ) and its association with the p21 mRNA 

target (    
        ). For each [mp21│miRi], processes considered were its formation by a 

miRi and the p21 mRNA (    
        ) and its degradation (    

        ). For p21, processes 

considered were its synthesis (    
     and degradation (    

   
). An additional algebraic 

equation accounting for the total measurable amount of p21 mRNA (mp21Total) was also 

included. 

For calibrating the model, the parameter values and initial concentrations of the 

state variables were set and characterised using the following strategy. The initial 

concentrations of mp21 and p21 were set to 1, and this value was their basal expression 

level, meaning their expression levels stay at 1 when no miRNA repression occurs. The 

half-lives of the p21 protein and mRNA were used to characterise the values of their 

degradation rate constants (    
    

 and     
   

), and their synthesis rate constants values 

(    
    

 and     
   

) were fixed using the same value to ensure mp21 and p21 show their 

basal expression levels when no miRNAs are expressed. Recent reports indicated that 

miRNAs' half-lives vary under different cellular contexts (Bhattacharyya et al., 2006; 

Hwang et al., 2007; Krol et al., 2010); however, due to the lack of experimental data 

measuring individual miRNA half-lives in different cellular contexts, we assumed the 

same degradation rate constant (    
                 i.e. t1/2=24 hr) for all the miRNAs 

considered in the model,. This assumption is supported by the evidence that miRNAs are 

rather stable molecules with half-lives of more than 24 hr (Kai and Pasquinelli, 2010).  

As explained in Chapter 1.2.1 miRNAs can repress gene expression through two 

main mechanisms in animals. During the modelling process, we made different 

assumptions that are specific for each mechanism. In case of translation repression, the 
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degradation rate constant of the mRNA of p21 is not affected by miRNA, and thus we 

assumed     
             

    
. In case of mRNA deadenylation followed by degradation, 

as in this mechanism miRNAs can promote the degradation of target mRNAs, we 

assumed     
             

    
. We extracted quantitative data from Wu et al. (2010), in 

which the p21 mRNA and protein levels were measured 48 hr after transfection of 

individual p21-targeting miRNAs into human embryonic kidney 293 cells. Depending 

on the repression mechanism of the transfected miRNA, we used these data to estimate 

    
         or     

        and     
         for each [mp21│miRi]. Because of the large amount 

of transfected miRNAs, we assumed that the endogenous production of these miRNAs is 

negligible (    
      ) during parameter estimation. The parameters were estimated by 

using an iterative method combining global (particle swarm pattern search algorithm; 

Vaz and Vicent, 2007) and local (downhill simplex method in multidimensions; Press et 

al., 2007) optimisation algorithms. For each miRi considered in the model, the method 

minimises the distance between model simulations and experimental data using the 

following cost function 
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where         
        and        

        represent the simulated p21 mRNA and protein 

expression levels for each miRi at time point t.       
        and       

        represent the 

measured value for each miRi at time point t, and their standard deviations are   
    

and 

  
   

. Here, t is equal to 48 hr, at which the expression levels of the p21 protein and 

mRNA were measured after overexpression of the individual miRNAs in embryonic 

kidney 293 cells (Wu et al., 2010). Furthermore, by using the profile likelihood analysis 

as introduced in Chapter 2.2.2, we calculated the 95% confidence interval for the 

estimated parameter values. As shown in Appendix Table 6.2, for most estimated 

parameters, their values have finite confidence intervals, meaning that they are 

identifiable. Only a few parameters show infinite upper bounds for their estimated 

values, meaning that they are practically unidentifiable. This could be caused by 

insufficiency or low quality of experimental data, which are used parameter estimation; 
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reducing the standard deviation or error of the experimental data can efficiently improve 

the identifiability of these parameters.  

 As shown in Figure 4.3, after model calibration the simulation results can correctly 

reproduce most of experimental data; however, in case of some miRNAs, namely miR-

298, miR-208a, miR-132 and miR-28-5p, the agreements between model simulations 

and data are not as good as the other miRNAs. In these cases, the measured p21 mRNA 

expression after transfection of large amount of the corresponding miRNAs is higher 

than the control case, in which the p21 mRNA expression was measured without 

transfection of extra individual miRNAs. Given its structure, the model cannot capture 

this behaviour, which may be caused by experimental noise or unknown regulatory 

mechanisms. The characterised parameter values and the initial concentrations of the 

model variables can be found in Appendix 6.2.2. 

 

Figure 4.3: Fitting the model to the experimental data. The model parameters were numerically 

calculated using optimisation algorithms that minimise the distance between model simulations (Sim) and 

experimental data (Exp). The measured expression levels of the p21 mRNA (left) and protein (right) after 

overexpression of the indicated miRNAs was compared with the model simulations. The values were 

normalised to the scenario (Control) in which the expression levels of p21 protein and mRNA were 

measured when all the miRNAs were normally expressed (n.u.: normalised unit).  

4.2.4 Experimental verification for microRNA cooperativity  

For validating the kinetic model, we performed additional experiments. Precisely, SK-

Mel-147 cells were transfected with mature miRNA mimics of miR-572 and miR-93. 

The miRNA mimics were transfected either individually at a concentration of 100 nM or 

in combination at 50 nM concentration. Cells were pulse-treated with 250 nM of the 

genotoxic substance doxorubicin and protein lysates were collected at 0, 2, 4, 6, 8, and 
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24 hr after treatment. Expression levels of p21 were measured using immunoblotting as 

explained in Appendix 6.3. 

4.3 Results 

4.3.1 Analysis of the p21 regulatory map 

According to the approach described in the previous section, biomedical knowledge 

about p21 regulation retrieved from the literature and databases was integrated into a 

regulatory map (Figure 4.4; the high resolution map is available at www.sbi.uni-

rostock.de/resources/software/target-hub). The map constructed in the software 

CellDesigner provides an up-to-date summary of information concerning the 

transcriptional and post-transcriptional regulation of p21. Using CellDesigner, the 

regulatory map is compliant with the Systems Biology Graphical Notation (SBGN; Le 

Novère et al., 2009). In addition, the confidence score for each interaction in the map 

was calculated. These confidence measures were established integrating weighted scores 

for publications reporting an interaction, experimental method(s) used, interaction types 

and computational predictions (Appendix Table 6.6). 

Overall, the map suggests a complex regulation of the miRNA target hub p21 at the 

transcriptional and post-transcriptional levels. According to our analysis, certain TFs, 

including EGR1 and SP1, promote the expression of groups of miRNAs regulating p21. 

This supports the hypothesis that miRNA cooperativity plays a role in the repression of 

p21. Further GO analysis shows that some of the cellular functions, in particular cell 

proliferation, apoptosis, immune response and cell cycle, are prominent in the regulation 

of the p21-targeting miRNAs by TFs (Table 4.1). We found that some miRNAs (e.g. 

miR-345) are regulated by a large number of TFs and associated with a small number of 

cellular functions, while others (e.g. miR-93) are regulated by a small number of TFs 

and associated with a large number of cellular functions.. This finding implies that 

miRNAs like miR-345 can be considered as 'housekeeping' miRNA and miRNAs like 

miR-93 can be considered as cellular function-specific miRNAs (Table 4.1). Moreover, 

distinctive regulation of p21 is implemented by the TFs associated with certain cellular 

functions such as inflammatory response or cell cycle. This suggests different degrees of 

p21 repression by miRNAs for different cellular functions (Table 4.1). 
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Figure 4.4: The p21 regulatory map. The map is composed of several big size blocks, and each of them represents a kind of 

molecules involved in the interactions (solid lines) derived from the literature and databases. In the big blocks, small blocks 

represent individual components. miRNAs were classified into two groups according to the mechanisms by which p21 is 

repressed: target mRNA deadenylation followed by degradation (dark blue box) and translation repression (green box). TFs were 

divided into three groups: p21's TFs (red), the p21-targeting miRNAs' TFs (yellow) and their common TFs (light blue). The TFs 

of p21 were further classified into two types: promoters and inhibitors (dark blue). The interacting proteins of p21 appear in grey 

boxes, and among them two small green boxes account for putative feedback loops (e.g. p21→AKT1→miR-132⊣p21). The 

purple boxes account for cellular functions, and the corresponding functions for TFs are specified by indexes above TF boxes. 



Chapter 4 Target Hub Gene Repression by Multiple and Cooperative MicroRNAs 

 68 

 

 

 

'Housekeeping' and cellular function-specific miRNAs 

 

Cellular function-specific regulation of p21 by different miRNAs 

     

Table 4.1: GO analysis of the p21 regulatory map. Top: The cellular functions associated with the p21-

targeting miRNAs were extracted from the GO terms of their corresponding TFs. For example, RELA was 

predicted to be a TF of miR-345 and its GO terms contained several cellular functions (e.g. cell proliferation, 

apoptosis, immune response and inflammatory response). Accordingly, miR-345 was considered to be associated 

with these cellular functions as well. The size of slices is scaled by the number times that the cellular functions 

appear in the TFs' GO terms. The number of the miRNAs' TFs was indicated in the brackets. Bottom: For 

different cellular functions such as inflammatory response (left) and cell cycle (right), different TFs regulate p21 

directly and indirectly through different miRNAs. 
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4.3.2 Identification of network motifs 

Different network motifs involving miRNAs, TFs and other signalling proteins were 

described in the literature (Shalgi et al., 2007; Osella et al., 2011; Tsang et al., 2007). 

These motifs contain feedback loops, e.g. direct miRNA inhibition of its own TFs, and 

feedforward loops, e.g. a common target gene shared by a miRNA and its TF (Mangan 

and Alon, 2003). Our map reveals 30 network motifs in total. This includes 27 

feedforward loops integrated by TFs that regulate the expression of p21 and its targeting 

miRNAs, which are summarised in Table 4.2. The feedforward loops were further 

categorised into 24 incoherent and 3 coherent feedforward loops. In a coherent 

feedforward loop, p21 is consistently regulated by a TF, which directly inhibits p21 and 

indirectly represses p21 by activating a p21-targeting miRNA (Table 4.2). This 

particular feedforward loop, where two inhibitors independently repress the target, is 

associated with a delay or extension in the target repression termination for transient 

stimuli (Mangan and Alon, 2003). Conversely, in an incoherent feedforward loop, p21 is 

oppositely regulated, e.g. when a TF directly activates p21 and indirectly represses it by 

activating its targeting miRNA (Table 4.2). This network motif can provoke acceleration 

in the target repression initiation; for the case of a step-like TF activation the system can 

generate a pulse response in p21 mRNA and protein levels (Mangan and Alon, 2003).  

p21 has dual roles during the cell cycle process: under a non-stressed condition, p21 

is expressed low and promotes cell cycle progression; under a stressful condition, like 

DNA damage is happening, p21 expression is increased through p53-dependent 

pathways and it becomes a cell cycle inhibitor (Jung et al., 2010). Our results predict 

that the tumour suppressor p53 together with miR-125a could regulate p21 through an 

incoherent feedforward loop (Table 4.2). Besides, miR-125a-5p is downregulated in 

non-small lung cancer cells (Jiang et al., 2010). This suggests that for some cancer-

associated phenotypes the feedforward loop formed by p53, p21 and miR-125a-5p is 

deactivated. The model simulations suggest that the suppression of the feedforward loop 

can favour cancer progression by delaying the initiation of p21-triggered cell cycle arrest 

after responding to DNA damage (Table 4.2). 
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TFs Target miRNAs Illustration 

RUNX1 

JUN 

 

 

miR-299-5p, miR-93 

miR-28-5p 

 

 

E2F1 

TP53 

EGR1 

STAT1 

SP1 

RELA 

SRF 

NFB1 

TFAP2A 

miR-363, miR-93 

miR-125a-5p 

miR-125a-5p, miR-132, miR-208a, miR-657 

miR-93, miR-423-3p 

miR-345, miR-657, miR-93 

miR-132, miR-345, miR-657 

miR-28-5p, miR-299, miR-423 

miR-654-3p 

 miR-125a-5p, miR-657, miR-93 

 

 

The effect of a feedforward loop on the response of p21 to DNA damage 

  

Table 4.2: Identification and analysis of miRNA-mediated network motifs. Top: Feedforward loops 

formed by p21, p21-targeting miRNAs and their common TFs. The TFs are either experimentally verified 

(blue) or predicted (black) to promote p21 expression. The miRNAs experimentally verified to be 

promoted by the TFs were coloured in blue, whereas coloured in black if predicted. The plots describe the 

dynamic characteristics of p21 in a feedforward loop (blue solid lines) and a simple regulation (dashed 

lines). In the simple regulation, only the interaction between the TF and p21 is reserved. Bottom left: 

Illustration of the dual roles of p21 during cell cycle. In response to DNA damage, the expression p53 is 

upregulated, and it promotes the expression of p21 and miR-125a-5p. The increasing expression of p21 

makes it become an inhibitor from an activator for cell cycle. The different expression of miR-125a-5p can 

lead to different responses of p21 to DNA damage. In wild type cells miR-125a-5p is normally expressed, 

so the interactions among p53, p21 and miR-125a-5p form a feedforward loop (FFL). However, in non-

small lung cancer cells, the feedforward loop cannot be formed due to the downregulation of miR-125a 

(No FFL). Bottom right: Model simulations for the response of p21 to DNA damage for FFL and No 

FFL. We used a step-like function to characterise the DNA damage response (DD). Compared to No FFL, 

the response of p21 to DNA damage was quicker and stronger for FFL. 
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4.3.3 Kinetic modelling of p21 regulation by multiple miRNAs  

We derived a kinetic model with a structure suitable to investigate the hypothesis of 

enhanced miRNA repressive ability associated with miRNA binding sites in close 

proximity on the 3' UTR of the target mRNA. Enhanced repression in this context 

originates from a cooperative interaction between two miRNAs whose binding sites are 

in the optimal proximity range (13-35 nt; Saetrom et al., 2007). To test the consequences 

of this hypothesis, we first predicted the binding sites of the p21-targeting miRNAs on 

the 3' UTR of the p21 mRNA; then, we derived a kinetic model to analyse mechanisms 

for pairs of miRNAs repressing p21. Figure 4.5 shows the matrix of potentially 

cooperating and non-cooperating miRNA pairs targeting p21. Our results indicate that 

several pairs of miRNAs targeting p21 meet the criteria as described in previous studies 

(Doench and Sharp2004; Sætrom et al., 2007), and thus can cause enhanced target 

repression. The only exception is miR-639 with a single binding site that does neither 

overlap nor is in close proximity to any other miRNA binding site. 

Using the approach previously described in section 4.2.3 and based on the 

regulatory map, we derived a kinetic model using ODEs, which accounts for the 

dynamics of p21, mp21, miRi and [mp21│miRi] over time. To substantiate the 

cooperative effect associated with the proximity of miRNA binding sites, we defined a 

group of new state variables ([mp21|miRi|miRj]), which account for the ternary 

complexes composed by the p21 mRNA and two putatively cooperating miRNAs (miRi 

and miRj). For these new variables, processes considered are the association of p21 

mRNA with miRi and miRj into the complex (    

             
) and their degradation 

(    

             
). The corresponding ODEs, which complement the already established 

equations for the particular cases of miRNA cooperativity, are listed below 
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Experimental results showed that a stronger repression of the target gene can happen 

when two miRNA binding sites on the target mRNA are in close proximity (Doench and 

Sharp, 2004; Saetrom et al., 2007). Thus, we assumed a stronger association rate 

constant for the complex [mp21|miRi|miRj] which is equal to the aggregation of their 

individual association rate constants (    

                  
             

        
). Similarly, 

the degradation rate of the complex [mp21|miRi|miRj] was assumed to be the aggregation 

of degradation rate constants of single miRNA binding complexes (    

              

    
             

        
). The corresponding parameter values for the putative miRNA 

cooperativity can be found in Appendix Table 6.2. 

For validating the model and verifying the method used to predict miRNA 

cooperativity, we picked out a pair of putative cooperative miRNA namely miR-572 and 

miR-93 and carried out some experiments. These two miRNAs may cooperate to 

regulate p21 according to our analysis (the distance of their binding sites in p21 3' UTR 

is 24 nt). We transfected melanoma cells with the mature miRNA mimics of the two 

miRNAs either individually (100 nM) or in combination (50 nM each) and further 

treated the cells with doxorubicin, a genotoxic-stress inducing agent. The expression 

levels of p21 were measured by immunoblotting at different time points (0, 2, 4, 6, 8, 24 

hr) after doxorubicin treatment. By doing so, we obtained the p21 response after 

genotoxic stress in four scenarios: 1. endogenous miRNA expression; 2. only miR-572 

overexpressed (100 nM); 3. only miR-93 overexpressed (100 nM); and 4. both miRNAs 

partially overexpressed (50 nM for each miRNA). Finally, we simulated the model of 

seven ODEs by configuring it to the designed experiments and compared the model 

simulations with the experimental data (the set of ODEs and parameter values can be 

found in Appendix 6.2.2).  
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Figure 4.5: Identification of cooperative miRNA pairs for p21. Top: Matrix of putative cooperating 

miRNAs. The intersections of pairs of miRNAs denote their potential for cooperation. Gray cells 

indicate a non-interacting pair, blue cells denote potentially cooperating pairs based on binding site 

proximity range (13-35 nt) defined by Saetrom et al. (2007). Red cells, however, indicate that 

cooperation cannot be established due to binding sites with extensive overlap or miRNA pairs that 

share the same binding site. The figures inside the cells specify the fraction of binding sites interacting 

with the respective partner (the number of cooperative binding sites/the number of total binding sites). 

The figures outside and inside the brackets corresponds to the miRNAs on the y- and x-axis, 

respectively. Bottom: Binding sites of the miRNAs in the 3′ UTR of the p21 mRNA. The detailed 

binding motifs for the p21-targeting miRNAs can be found in Appendix Table 6.5. 
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As shown in Figure 4.6 top, the model simulations are in good agreement with the 

experimental observations for p21 response after genotoxic stress. Overall, the 

overexpression of miR-572 or miR-93 is able to reduce the upregulation of p21 by 

genotoxic stress. The differences in p21 responses are due to the different repression 

efficiencies of the two miRNAs. Furthermore, the data indicates that the combined 

partial overexpression of both miRNAs induces stronger downregulation of the p21 

response. These results verify the hypothesis of cooperativity for this pair of miRNAs. 

This not only validates the model but also proves the ability of our method to detect and 

characterise miRNA cooperativity. 

To further test the predictive ability of the model, we used it to predict miRNA-

mediated p21 expression patterns in different tissues. First, we extracted and normalised 

the tissue-specific miRNA expression profiles from the database miRNAmap (release 

2.0; Hsu et al., 2008). Second, for each miRNA expression profile obtained, we 

computed the steady-state levels of p21 by changing accordingly the initial 

concentrations of the corresponding miRNAs in our model. Finally, we retrieved the 

qualitative information about the p21 expression levels in different tissues from the 

database ArrayExpress (version as of January 2012; Brazma et al., 2006). To make the 

simulation results and experimental data comparable, the tissue-specific p21 expression 

levels were discretised in two categories: low and high (see Appendix 6.2.2 for detailed 

explanation). Assuming that epigenetic regulation exerted by miRNAs plays an 

important role for tissue-specific protein expressions, our model is able to correctly 

predict the relative p21 expression levels in 9 of 12 tissues (75%; Figure 4.6 bottom). 

4.3.4 Computational analysis of miRNA cooperativity 

Using the calibrated and validated model, we hypothesized three mechanisms for the 

target regulation conducted by pairs of miRNAs: i) independent target regulation, in 

this case the target site proximity does not produce an enhanced repression (represented 

by setting     

               ); ii) interdependent target regulation, in which the 

combined binding of both miRNAs is required to repress the target (    
         

      

           and     

               ); and iii) synergistic target regulation, which 

is a combination of the previous two target regulation mechanisms (     
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           and     

               ). By using the cooperative miRNA pair miR-93 

and miR-572 whose corresponding variables are miR8 and miR14 in the model, we 

investigated the consequences of the three mechanisms for target repression. Figure 4.7 

shows the course of the p21 protein expression levels for the three mechanisms upon 

different initial concentrations of the two miRNAs, miR8(0) and miR14(0)   [10
-1

, 10
2
].  

 

 

Figure 4.6: Model validation. Top: Reduction of the genotoxic-induced upregulation of p21 by miR-

572 and miR-93. The experimental data of p21 protein expression levels in response to genotoxic stress 

(Exp) were compared with the model simulations (Sim) in four biological scenarios: 1) both miRNAs are 

normally expressed (NTC); 2) miR-572 is over expressed (miR-572); 3) miR-93 is over expressed (miR-

93); 4) both miRNAs are over expressed (miR-572+93). Bottom: Tissue-specific p21 expression levels 

mediated by its targeting miRNAs. The model simulations (p21(Sim)) correctly predicted the p21 

expression levels in 9 of 12 tissues as compared to the experimental data (p21(Exp)). 
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In case of independent target regulation (Figure 4.7 left), the model predicts that 

sufficient upregulation of one of the two miRNAs is able to induce the complete 

repression of p21. In combination with the upregulation of a second miRNA a reduced 

overall level of the miRNAs is required to silence p21 (p21 = 0 n.u.). In contrast, the 

simulations for interdependent target regulation suggest that effective gene silencing is 

possible only when both miRNAs are sufficiently upregulated. In other words, the 

overexpression of a single miRNA is not able to induce gene silencing, but rather results 

in a low miRNA-specific gene downregulation (Figure 4.7 middle). This mechanism 

may explain the relatively poor repression ability of some miRNAs when they are 

experimentally overexpressed alone (Selbach, 2008). Finally, in synergistic target 

regulation gene silencing can be achieved in two ways (Figure 4.7 right): i) high 

overexpression of any of the two miRNAs (at least 10
2
 fold upregulation); or ii) 

combined modest upregulation of the two cooperative miRNAs, which reduces the 

amount of the miRNAs required for achieving gene silencing by at least one order of 

magnitude. Besides, through this mechanism, the system becomes more sensitive to 

miRNA expression changes both for individual as well as combined miRNA down- and 

upregulation. 

Based on the previous results (Figure 4.6 top), we can say that synergistic target 

regulation is most likely the mechanism by which miR-572 and miR-93 regulate the 

expression of p21. Therefore, we further investigated this mechanism for different 

strengths of their cooperativity (named as K) and simulated four scenarios with different 

initial miRNA concentrations ([miR8(0), miR14(0)];): 1) both miRNAs are normally 

expressed ([1,1]); 2) miR-93 is normally expressed, miR-572 is overexpressed ([1,10]); 

3) miR-93 is overexpressed, miR-572 is normally expressed ([10,1]); 4) both miRNAs 

are overexpressed ([10,10]). For each scenario, we defined an interval accounting for the 

strength of the miRNA cooperativity (       
                [        ] ). We 

simulated the model, assigning values to K in steps of 10
0.25

; and for every round of 

simulation, we computed the expression levels of p21 at 48 hr (Figure 4.8 top). 

According to the value of K, we divided the emerging simulation results into three 

regions: region I, in which the cooperative target repression induced by the pair of 

miRNAs is negligible when compared with the p21 repression by the independent 
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miRNAs; region III, in which the repression of p21 is mainly driven by the cooperative 

effect of the two miRNAs; and region II, in which independent and cooperative target 

regulation contribute equally.  

When the value of K is very small (i.e. the miRNA cooperativity is weak; Figure 4.8 

top, region I), miR-572 and miR-93 repress p21 gene expression independently; the 

strongest p21 repression is achieved when both miRNAs are overexpressed (purple 

triangles); overexpression of one of the two miRNAs leads to different levels of target 

repression due to their different repressive abilities; here, miR-572 induces stronger 

repression (red diamonds) compared to miR-93. For very big values of K (i.e. the 

miRNA cooperativity is strong; Figure 4.8 top, region III), the p21 repression saturates 

and enters into the interdependent target regulation mechanism in which the cooperative 

interaction overcomes the repression by individual miRNAs; p21 silencing is achieved 

when both miRNAs are overexpressed (purple triangles). For normal values of K (i.e. the 

miRNA cooperativity is moderate; Figure 4.8 top, region II), the performance of the 

target repression increases gradually; the most remarkable and steep decrease in p21 

expression levels can be observed when both miRNAs are overexpressed (purple 

triangles). The results in region II suggest that active modulation of miRNA 

cooperativity can play an important role in determining the efficacy of target repression. 

In line with this, some RBPs like FMRP or PUF have been experimentally proved to 

enhance target repression by interacting with the miRISCs, while others (e.g. DND1 and 

HuR) have been reported to counteract miRNA-mediated repression (Krol et al., 2010). 

Taken together, we hypothesized that the activity of those RBPs in combination with the 

repression by multiple miRNAs can induce a tunable-like target repression. According to 

this, the mechanism of synergistic target regulation could induce a sophisticated 

regulation of miRNA targets, in which the regulation by RBPs shifts the performance of 

target repression from one region to another (Figure 4.8 bottom). 
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Figure 4.8: Computational analysis of miRNA cooperativity. Top: The p21 expression levels at 

different strengths of cooperativity (K) between miR-93 and miR-572. The dashed vertical lines 

represent the thresholds of K, for which the repression of p21 by the two miRNAs displays different 

behaviours. The different symbols correspond to different miRNA initial concentration scenarios: both 

miRNAs are normally expressed ([1, 1], ▼); miR-572 is overexpressed ([1, 10], ♦); miR-93 is 

overexpressed ([10, 1], ●); both miRNAs are overexpressed ([10, 10], ▲). The small plot zooms in on 

the first scenario (denoted by ▼) to illustrate the sigmoid shape of the expression levels of p21 at 

different K. Bottom: The role of RBPs in multiple miRNA-mediated target repression. Our analysis 

suggests the activity of RBPs in combination with the repression by multiple miRNAs can induce a 

tunable-like target repression. 
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4.3.5 The response of p21 to stimulus signals 

We further investigated whether the combination of changes in miRNA abundance and 

the cooperativity between miRNAs can affect the features of p21 response (p21) to 

transient stimulations. In case of p21 such a stimulus signal could be a p53-mediated 

activation signal in response to DNA damage (Vera et al., 2010). Subsequently, we 

defined a transient stimulus signal activating the synthesis of p21 mRNA (mp21) as a 

function of  and , which represent the amplitude and duration of the signal, 

respectively (Figure 4.9 A). The stimulus signal (S(,)) was included into the model 

     

  
                   

    

 ∑    
              ∑    

             
          

   

 

 

             
(4.9)  

In a series of simulations, we first modulated  and  and computed the peak of the 

p21 response (Figure 4.9A). Second, we simulated the p21 response for five different 

miRNA abundance scenarios: 1) no miRNA is expressed (off); 2) normal expression of 

all the miRNAs (on); 3) normal expression plus miRNA cooperativity (on + C); 4) 

overexpression of all the miRNAs (on(x10)); and 5) overexpression with miRNA 

cooperativity (on(x10) + C). Third, we computed the peaks of the p21 response to 

transient stimulation for different settings of stimulus signals (Figure 4.9B). Finally, we 

compared the dynamics of the p21 response when the synthesis of p21 mRNA is 

activated by long-lasting stimulus signals with low or high amplitude (Figure 4.9C). The 

detailed modelling process is described in Appendix 6.2.2. 

For short stimulation (Figure 4.9B, = 1hr) the peak of p21 response is positively 

correlated with the amplitude of the stimulus signal, i.e. the stronger the stimulus signal 

the higher the peak. For the complete range ([10
-2

, 10
1
]) of the signal amplitude, the p21 

response peak is negatively correlated with miRNA abundance. That means the p21 

response peak is highest if miRNAs are not expressed, whereas p21 peak is gradually 

reduced with the increase of miRNA abundance (off > on > on(x10)). In addition, 

miRNA cooperativity further lowers the p21 response peak (on > on + C, on(x10) > 

on(x10) + C); however, with an increasing duration of the stimulus signal (Figure 4.9B, 

=10 and 24 hr), the p21 response peak pattern is distorted. For signals with low 

amplitude (< 1) the p21 response peak maintains the same pattern (off > on > on + C 
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> on(x10) > on(x10) + C). In contrast, for higher amplitude (> 1) the p21 response 

peaks in scenarios with miRNA expression and cooperativity gradually converge 

towards the situation in which the miRNAs are not expressed (off). This behaviour is 

caused by the consumption of the entire amount of available miRNAs. Interesting 

enough, higher peaks of p21 response are reached for on(x10) + C than for on(x10) 

when the amplitude and duration of the stimulus signal is intense and long (> 8 and 

=10 hr or > 2 and =24 hr). This result seems contradictory to our expectation of 

stronger p21 repression caused by miRNA cooperativity. However, simulations of 

miRNA consumptions over time indicate that under the condition of identical miRNA 

abundance, the model that considers miRNA cooperativity (on(x10) + C) shows quicker 

exhaustion of free miRNAs which in turn leads to higher peaks of p21 response (see 

Appendix Figure 6.3).  

In addition, we defined a hypothetical threshold (10% of the basal p21 expression 

level) above which the p21 response peak is considered as significant. As shown in 

Figure 4.9B, the position in which the peak crosses the threshold accounts for the 

minimum signal amplitude required to obtain significant p21 response. The increasing 

miRNA abundance shifts the cross-point towards higher signal amplitudes required 

(Figure 4.9B, =1hr). The inclusion of miRNA cooperativity further enhances this 

effect. On the other hand, the increasing duration of the signal reduces the amplitude 

required (Figure 4.9B, =10 and 24 hr). These results suggest that higher abundance of 

miRNAs as well as the phenomenon of cooperativity can enhance noise buffering by 

increasing the minimum TF activity level required to trigger significant target expression 

(Herranz and Cohen, 2010). 

For long stimulus duration increasing abundance of the miRNAs and their 

cooperativity not only lower the p21 response peak, but also change the shape of the p21 

temporal pattern (Figure 4.9C). For low stimulus amplitude (= 0.1), the p21 response 

exhibits a rather flat activation, with values of p21 in the same interval for many hours, 

while for high signal amplitude (= 10) the activation of p21 is delayed. 
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A 

 

B 

 

C 

 

Figure 4.9: p21 responses to stimulus signals. A: The sketch of the stimulus signal computed (left) and the p21 response (right). 

The parameters μ and τ account for the amplitude and duration of the stimulus signal, respectively. B: The plots of p21 response 

peaks for different μ and τ for five defined miRNA abundance scenarios. The grey dashed lines represent the threshold, which is 

equal to 0.1. C: The time-series plots of the p21 response stimulated by stimulus signals with long duration (= 10 hr) but 

different magnitude (= 0.1 or 10 n.u.). 
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4.3.6 Cooperative miRNA regulation of p21 expression  

To further analyse how miRNA cooperativity affects p21 expression levels in different 

cellular functions, we extracted a list of nine cellular functions which were obtained 

from the GO terms associated with the TFs of the miRNAs. The nine cellular functions 

include cell proliferation, cell apoptosis, immune response, inflammatory response, cell 

cycle control, DNA damage, cell senescence, DNA repair and cell migration. For each 

cellular function, we assumed that a miRNA is expressed when at least one of its TFs 

was associated with this cellular function, otherwise it is non-expressed. By doing so, we 

obtained the predicted expression profiles for the p21-targeting miRNAs for the nine 

cellular functions (Figure 4.10 left). In addition, we computed the p21 steady-state levels 

for two different conditions: considering the putative cooperative effect by the p21-

targeting miRNAs versus regulation by multiple non-cooperative miRNAs (Figure 4.10 

right). The detailed model description can be found in Appendix 6.2.2. The model 

predicts high levels of p21 expression during DNA damage, DNA repair, senescence and 

migration, while low levels are associated with cell proliferation, apoptosis and cell 

cycle. In some of the cellular functions the p21 steady-state levels are identical no matter 

miRNA cooperativity is considered or not. This can be explained by the fact that the 

miRNAs expressed under these scenarios do not have their binding sites in close 

proximity and therefore do not effectively cooperate (Figure 4.10; DNA repair, cell 

migration and DNA damage). In contrast, cooperating miRNAs are expressed in other 

scenarios, and thus differences appear in the p21 steady-state levels for the two 

conditions (Figure 4.10; senescence and immune response). Taken together, these results 

suggest that cooperating miRNAs can be selectively expressed for specific cellular 

functions. 
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Figure 4.10: Cooperative miRNA regulation of p21 expression in different cellular functions. Left: 

The p21-targeting miRNAs expression profiles for the cellular functions as indicated. The states 'On' or 

'Off' denote whether a miRNA is expressed or not in a cellular function. Right: The corresponding p21 

steady-state levels were computed for each cellular function appearing in the left plot under two 

conditions: the putative cooperative effect by the p21-targeting miRNAs (C) versus regulation by multiple 

non-cooperative miRNAs (no C). 

4.4 Conclusion 

We integrated biological hypotheses and quantitative data through mathematical 

modelling to elucidate the mechanisms involved in the regulation of the miRNA target 

hub p21. Using the novel approach which combines TF and miRNA target prediction 

algorithms with data from the literature and databases, we constructed a map to depict 

the transcriptional and post-transcriptional regulation of p21. Given that the existence of 

up to 834 target hubs in Homo sapiens (Shalgi et al., 2007), the novel approach 

developed for constructing the p21 regulatory map could provide guidance for 

constructing other miRNA target hub networks. 

Based on the regulatory map of p21, we derived a kinetic model to test hypotheses 

concerning the mechanisms of collective miRNA repression. Using a distance of 13-35 

nt between two miRNA binding site positions and the miRNA binding motifs as the 

criteria for allowing enhanced repression (Saetrom et al., 2007), we computationally 

detected several pairs of miRNAs that may cooperate and experimentally verified the 
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cooperativity between miR-572 and miR-93. Our results suggested that these two 

miRNAs can induce cooperative effect to repress the expression of p21 via the 

mechanism of synergistic target regulation. In addition, by linking cellular functions to 

the activities of the p21-targeting miRNAs, we investigated tissue- and development-

dependent patterns of p21 regulation. Our model predicted high levels of p21 expression 

during DNA damage, DNA repair, cell senescence and migration, while low levels of 

p21 were predicted to be associated with cell proliferation, apoptosis and cell cycle. 

Some of these predictions are also supported by the experiments describing p21 

expression in the considered cellular functions. Borgdorff et al. (2010) identified a 

number of miRNAs targeting p21, whose endogenous upregulation can rescue cells from 

p21-mediated senescence. This finding is in line with the model predictions that the 

miRNA-mediated p21 repression is poor during senescence, but becomes strong when 

cells re-enter cell proliferation. In addition, it is known that one possible event triggering 

the initiation of apoptosis is the failure of mitosis, i.e. cells fail to properly arrest cell 

cycle (Vitale et al., 2011). This phenomenon could result from insufficient expression of 

cell cycle arresters such as p21 and 14-3-3 (Chan et al., 2000; Schultz et al., 2009). Our 

simulation predicted the lower expression of p21 during apoptosis than in cell cycle, 

which is caused by the multiple and cooperative miRNAs, suggesting the potential role 

of the miRNAs in triggering the mitotic catastrophe. Taken together, the systems biology 

approach provides us with an efficient and systematic way to understand the regulation 

of target hub p21 that is accomplished by its targeting miRNAs, which can function 

independently and cooperatively. 
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5. Conclusion and discussion 

Chapter 5 

Conclusion and Discussion 

 

Although miRNAs are physically small, they have been shown to play an important role 

in gene regulation. Currently, more and more studies are being carried out to advance the 

understanding of miRNA functions. However, purely experimental approaches have 

their limitations when dealing with complex biological systems composed of multiple 

layers of regulation such as the transcriptional and post-transcriptional regulation by TFs 

and miRNAs. Most experiments focus on the investigation of physiological 

consequences when perturbing miRNA expressions but are unsuitable to provide us with 

a system-level interpretation for observed phenomena. Therefore, the introduction of a 

systematic approach that can unravel the underlying mechanisms, by which miRNAs 

exert their functions, becomes increasingly appealing. 

Within this thesis, a systems biology approach, combining biological data with 

mathematical modelling, is presented to investigate the cellular function of miRNAs. 

Such an approach provides a systematic and comprehensive understanding of the 

regulatory roles of miRNAs in signalling pathways and gene regulatory networks. The 

ODE-based models, which are calibrated and validated by means of experimental data 

relevant for the investigated biological problems, are accurate for predicting the time-

series dynamics of molecule concentrations that are involved in biochemical systems. 

The model predictions can be used to uncover the dynamic behaviours of biochemical 

systems but also to obtain new insights into the systems and to formulate new biological 

hypotheses. The hypotheses can guide further experiments, and thus lead to the 

expansion of our current knowledge in the field of biology. 

By using this systems biology approach, we constructed a kinetic model of the 

p53/SIRT1 signalling pathway. In the pathway, a newly identified regulator miR-34a 

was considered. After the translation of the signalling pathway into an ODE model, we 

calibrated and validated the model by using the quantitative data relevant to the defined 
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biochemical system. The data-driven model successfully reproduced the dynamics of the 

system which were experimentally measured. Furthermore, the model helped us to 

identify the mechanism by which miR-34a represses SIRT1. The model predicted 

different positive regulatory effects on p53 by DBC1 and miR-34a, which are caused by 

their distinct means of inhibition on SIRT1. Finally, the model showed the different 

ability of miR-34a and DBC1 to recover the loss of active p53 induced by the 

overexpression of SIRT1 usually found in cancerous cells. These results provided new 

insights into the p53 regulation by miR-34a for further experimentation. 

Based on the experimental finding that miRNA target sites in close proximity can 

result in stronger repression of miRNA targets, we expanded this idea and applied it to 

the first experimentally verified miRNA target hub gene p21. We developed a novel 

approach, combining target prediction algorithms and experimental evidence, to 

construct the p21-centred regulatory map, which was composed by its TFs, targeting 

miRNAs and interacting proteins. For each interaction in the map, we assigned a 

confidence score which was calculated using a well-established approach applied in the 

published database, and such scores provided estimates for the reliability of the 

individual interactions. Analysis of the p21 regulatory map allowed the identification of 

miRNA-mediated feedback and feedforward loops and unravelled the miRNA-mediated 

regulation of p21 in a cell function-specific manner. Furthermore, we developed a 

kinetic model on the basis of the map to reproduce the experimental data which showed 

individual abilities of the p21-targeting miRNAs to repress p21. The model was 

validated by the quantitative immunoblotting data which confirmed the proposed 

cooperative effect on p21 by miR-572 and miR-93. The model also correctly predicted 

p21 expression based on the profiles of its targeting miRNAs in 9 of 12 tissues. With the 

help of the validated model, we showed the sophisticated mechanisms by which miR-

572 and miR-93 co-regulate p21 expression independently and cooperatively. Further 

investigation of the p21 response to stimulus signals, e.g. the transcriptional activation 

from p53 after response to DNA damage, showed different responses of p21 when 

considering the putative cooperativity by the p21-targeting miRNAs versus regulation by 

multiple non-cooperative miRNAs. In addition, the predictive simulations regarding the 

p21 expression determined by the multiple and cooperative miRNAs provided a 
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plausible explanation for the distinct p21 expression levels for different cellular 

functions. 

Although in this thesis I focused on the utilisation of ODE-based models, there exist 

other data-driven modelling frameworks that can be used for investigating biological 

problems. The right selection for specific biological problems depends largely on the 

mechanistic details desired in the model and the available experimental data 

(Kholodenko et al., 2012). In comparison to ODE-based models, other modelling 

frameworks such as Bayesian and Boolean models provide less detailed descriptions of 

mechanisms of biological systems. For example, Bayesian models are helpful in the 

construction of connections in signalling networks and can reveal the most likely 

underlying structure of the network in a probabilistic manner; Boolean models use two 

discrete values (0 and 1) and logical gates (AND, NOT, and OR) to describe activities of 

network components and the information flow among them. After choosing the right 

modelling framework for the defined biological system, parameter estimation is the next 

crucial step to be considered. In some cases, insufficiency and low quality of 

experimental data can cause overfitting in parameter estimation. Such an issue usually 

results from too many estimated parameters and insufficient experimental data, and thus 

it can cause uncertainties in model predictions. With the development of molecular 

biology techniques, the generation of quantitative and sufficiently rich biological data 

becomes feasible and affordable. Therefore, the generation of large data sets in addition 

to making use of relevant qualitative data to improve the quality of a model can provide 

more reliable and accurate conclusions. As introduced in this thesis, local and global 

optimisation methods are widely used for estimating parameter values in systems 

biology. Each method has its pros and cons, and the most intuitive way to look for the 

global solution for a defined problem is the combination of both types of methods. This 

strategy not only increases the possibility to obtain the global solution but also improves 

the efficiency of the estimation process. It is noteworthy that given the difficulties in 

identifying the uniqueness of estimated parameters, models may remain limited 

concerning the mechanistic insight they provide and in their capability to predict system 

dynamics under unforeseen conditions. Thus, in order to better convert experiments into 

predictive models, the systems biology community needs to harmonise the experimental 
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and theoretical tools for data generation and analysis. Furthermore, hundreds of 

biological models have been published in online databases, but the reuse of these models 

is quite low due to the lack of the minimum information required for model annotation 

(Waltemath et al., 2011). Moreover, using independent and incompatible software to 

construct and analyse a quantitative model increases the time and difficulties for 

researchers to communicate. Therefore, developing an integrated platform, which 

enables users to access data and knowledge from any stage in the systems biology 

workflow, would significantly improve the productivity and reduce errors in handling 

and analysis of complex data and models (Ghosh et al., 2011).  

In conclusion, although systems biology is still young, many studies have proved its 

ability to provide us with a better understanding how molecular mechanisms give rise to 

complex biological phenomena. With the continuous collaboration of researchers from 

different disciplines, I believe that systems biology will reach its full potential in 

revolutionising traditional experimental research, in establishing a better understanding 

of human diseases, and thus in accelerating the implementation of new medicine. 
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6. Appendix 

Appendix 

6.1 Modelling SIRT1 repression by microRNA-34a 

To characterise the hypothetical mechanistic processes of SIRT1 repression by miR-34a, 

we modified the model accordingly and obtained four candidate models (Table 6.1). The 

simulation results for mode 1/4 can be found in Figure 6.1. 

Table 6.1: The expanded model equations of the four hypothetical miR-34a repression mechanisms. 

The model was accordingly modified to represent the hypothetical mechanisms shown in Figure 3.7. 

Mode-1 

miR-34a enhances the degradation of the SIRT1 mRNA  

          
      

  
     

     
     

     
            

                          

      

  
     

                
            

Mode-2 

the translocation of the SIRT1 mRNA into P-bodies followed by quicker degradation  

      

  
     

     
     

     
              

     
                          

          

     

  
       

     
                        

                
          

      

  
     

                
            

                     

Mode-3 

miR-34a represses SIRT1 translation 

          
      

  
     

     
     

     
       

      

  
 

    
     

            
     

            

Mode-4 

miR-34a indirectly represses the synthesis of the SIRT1 mRNA 
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Figure 6.1: The hypothetical mechanisms (mode 1 and mode 4) by which miR-34a represses SIRT1. 

The solid lines represent the time courses of the concentrations (n.u.: normalised unit) of SIRT1 (SimSirt1) 

and its mRNA (SimmRNA). The square markers represent the experimental data of SIRT1 (ExpSirt1) and its 

mRNA (ExpmRNA). 

6.2 MicroRNA target hub network analysis and model simulations 

6.2.1 Confidence scores 

For deriving confidence scores for the proposed interactions in the p21 regulatory map, 

we adopted the approach used by the database IntAct that is used to score molecular 

interactions (also known as MIscore; Kerrien et al., 2012). 

To assign appropriate weights for the features that were used to score interactions in 

the p21 regulatory map (k<p,t,bs,r,cons,pred,m>) we carried out a survey. The survey was 

conducted within a small group of experts in network biology and gene regulation by 

miRNAs, experimentalists and modellers. Through the same survey we defined 

confidence scores for different methods applied in the validation of miRNA-target 
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interactions (Sm). We used these weights and scores in formulas to score different types 

of interactions (p21-protein, TF-p21, miRNA-p21, TF-miRNA). Confidence scores 

ranged between 0 and 1, where values towards 1 indicate higher confidence, whereas 

values towards 0 indicate lower confidence in a given interaction. The confidence score 

for each interaction of the regulatory map can be found in Table 6.6. 

Protein-protein interactions 

Experimentally validated interactions between p21 and other proteins were extracted 

from the databases HPRD (release 9.0; Keshava Prasad et al., 2009) and STRING 

(release 9.0; Szklarczyk et al., 2011). The union of the results obtained in the two 

databases were considered for further analysis. We scored these protein-protein 

interactions based on two criteria: the number of publications confirming these 

interactions (Sp) and their interaction types (St). The confidence scores for protein-

protein interactions were calculated using the equation below 

     
              

     

   (6.1)  

where k<p,t> denote the weights assigned to the scores for publications and interaction 

types (kp = 0.7, kt = 0.9).  

Publication score. Values for the publication score were calculated as follows 

                   (6.2)  

where n denotes the number of publications reporting an interaction and b is a cut-off 

that represents the number of publications required for obtaining the maximum score of 

1 (in this case b = 6). 

Interaction type score. The score for the interaction type is a mean to favour direct 

interactions over indirect interactions or complexes. As we considered only direct 

interactions in the regulatory map, interaction type scores were all set to 1 (St = 1). 

Transcriptional regulation of p21 expression (TF-p21 interactions) 

Information about the transcriptional regulation of p21 by TFs was extracted from the 

literature. Similarly, we used the number of publications confirming this regulatory 

interaction as one criterion for the confidence score (see publication score, Equation 

(6.2)). The second criterion takes into account the way transcriptional regulation is 
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introduced. The third criterion is denoted by the number of binding sites reported for the 

individual TFs. The overall score for a putative p21 TF was derived by using the 

following equation 

    
   

                         

         

  (6.3)  

In the equation for the TF regulation confidence score the values for k<p,r,bs> denote 

the weights assigned to the scores for the number of publications, regulation types and 

the number of binding sites (kp = 0.7, kr = 0.9 and kbs = 0.9). Similarly, the variables 

S<p,r,bs> represent individual scores for the three criteria. 

We extended the list of p21 transcriptional regulators by five putative TFs that have 

conserved binding sites in the 5 kb upstream region of p21. This information was 

extracted using the table of conserved transcription factor binding sites (TFBSs) of the 

UCSC table browser (hg18; Karolchik et al., 2003). These TFs were scored based on the 

normalised conservation score from UCSC and the number of predicted TFBSs (kpred = 

0.3 and kbs = 0.9) 

    
   

                      

         

  (6.4)  

Binding sites score. Values for the binding sites score were calculated as follows 

                    (6.5)  

where Sbs is the score for the number of binding sites (denoted by m) that a TF has in the 

upstream region of p21. For       the score Sbs equals 1.  

Regulation type score. We differentiated the transcriptional regulations by TFs into three 

types: regulation through direct 'DNA binding' (Sr = 1), regulation realized by 'complex' 

formation (Sr = 0.5) and indirect regulation through a cofactor, namely 'mediated' (Sr = 

0.5). 

Conservation score. Values for the conservation score are determined by the criterion of 

whether the binding site is conserved (Scons = 1) or not (Scons = 0).  

Post-transcriptional regulation of p21 expression (miRNA-p21 interactions) 

The post-transcriptional regulation of p21 is realized by a set of miRNAs. The 

confidence score for miRNA-mediated p21 regulation incorporates three different 

criteria: the number of publications (n), the methods used to confirm this interaction and 
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the number of predicted binding sites. The score was calculated by the following 

equation 

     
                                 

         

  (6.6)  

where k<p,m,bs> denote the weights that were assigned to the scores S<p,m,bs> which account 

for the number of publications (see publication score, Equation (6.2)), detection 

method(s) and the number of predicted binding sites, respectively (kp = 0.7, km = 1, kbs = 

0.3). The predicted binding sites score (Sbs) was calculated using modified Equation 

(6.5) in which b = 3, meaning Sbs = 1 when three or more binding sites were predicted. 

Method score. The detection methods were scored with respect to their capability to 

detect true miRNA:target interactions. The values of this score were determined by our 

survey in the following table. 

Method Reporter assay Western blot QRT-PCR Microarray 

Sm 0.8 0.7 0.4 0.3 

Transcriptional regulation of miRNA expression (TF-miRNA interactions)  

For the confidence scores of TF-miRNA regulations we adopted the method used to 

score TF-p21 regulations. Since there is lack of experimental support for identifying TF-

miRNA interactions, we used the help of predictions from diverse resources. In this 

manner, the score is composed of one term accounting for the number of publications 

which verify TF-miRNA regulations and the other term that considers the number of 

predictive binding sites. Thus, the TF-miRNA confidence score was calculated using the 

equation as follows 

        
                          

        

  (6.7)  

where k<p,pred> are the weights for the publication and the prediction scores S<p,pred> 

respectively (kp = 0.8 and kpred = 0.5). Validated miRNA TFs were extracted from the 

database TransmiR (release 1.0) and the corresponding socres (Sp) were calculated using 

Equation (6.2). Predictive TFs were obtained from the resources MIR@NT@N (version 

1.2.1; Béchec et al., 2011), PuTmiR (release 1.0; Bandyopadhyay and Bhattacharyya, 

2010) and the table of conserved TFBSs in the UCSC table browser (hg18; Karolchik et 

al., 2003). The equation used to calculate prediction scores is as follows 
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  (6.8)  

where kn and kbs denote the number of algorithms predicting TF-miRNA interactions and 

the number of predictive binding sites respectively (kn = 1 and kbs = 0.7). 

6.2.2 Model simulations 

Modelling cooperative repression of p21 by miR-572 and miR-93 

According to the experiments designed for verifying the cooperative effect on p21 

repression by miR-572 and miR-93, we derived a corresponding model of seven ODEs. 
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      (6.15)  

To mimic the four experimental settings (Figure 6.2 top), we configured the 

corresponding parameter values as follows 

 
1) Non-targeting control: miR8(0) = miR14(0) = 1,     

         
    ,     

          
     ; 

2) miR-572: miR8(0) = miR14(0) = 1,     
         

    ,     
              

     ; 

3) miR-93: miR8(0) = miR14(0) = 1,     
             

    ,     
          

     ; 

4) miR-572+93: miR8(0) = miR14(0) = 1,     
            

    ,     
             

     ,  

and the other parameters were set as described in Table 6.2. 

Subsequently, we characterised the function for the transcriptional activation of p21 

(fact(TFmp21)) by using the experimental data that describe the response of p53 after 

genotoxic stress induction (Figure 6.2 bottom). p53 is typically upregulated in response 
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to DNA damage and is known as a transcriptional activator of p21 (El-Deiry et al., 1994; 

Sax and EI-Deiry, 2003).  

 

       

Figure 6.2: Regulation of p21 expression by miR-572 and miR-93. Top: The Western blots for p21 

expression levels. p21 was measured after treatment with doxorubicin at the indicated time points for four 

scenarios: 1) endogenous miRNA expression (Non-targeting control); 2) miR-572 overexpressed (miR-

572); 3) miR-93 overexpressed (miR-93); and 4) both miRNAs partially overexpressed (miR-572+93). 

Bottom: The Western blot for p53 expression levels. p53 was measured at the indicated time points (left). 

The data were used to characterise the transcriptional activation function of the p21 mRNA (fact(TFmp21); 

right). 

 Simulation of tissue-specific p21 expression in different tissues  

We first extracted the miRNA expression levels in different tissues from the database 

miRNAmap (realease 2.0; Hsu et al., 2008) and normalised them according to the most 

abundant miRNA observed in each tissue. For example, in adipose the most abundant 

miRNA is miR-125a-5p. The expression of miR-125a-5p is normalised to 1 (miR5(0) = 
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1), and accordingly other miRNA expression levels were rescaled. If a miRNA does not 

appear in a tissue expression profile its expression level is considered as 0 (Table 6.3). 

Next, for each tissue we computed the steady-state levels of p21 by changing the initial 

concentrations of the miRNAs according to their tissue-specific expression profiles, 

while other parameters were configured as described in Table 6.2. Then, we obtained the 

experimental data of p21 expression levels in different tissues from the ArrayExpress 

database (version as of January 2012; Brazma et al., 2006). The tissue-specific p21 

expression levels were categorised as low or high according to the experimental 

evidence from the database. For example, in adipose and kidney the p21 expression 

levels were observed to be over- and underexpressed respectively, so we can conclude 

that the p21 expression level in kidney is lower than in adipose. From 12 tissues, p21 

was underexpressed in kidney and liver only. Thus, in kidney and liver the p21 

expression levels were categorised as low while for the other tissues their p21 expression 

levels were categorised as high (Table 6.3). Similarly, the computed p21 expression 

levels were also categorised as low or high. To do so, we used the p21 expression level 

in kidney as a threshold. If the computed p21 expression level is smaller than this 

threshold, it was categorised as low; if not it was categorised as high. Finally, we 

compared the model simulations with the experimental data obtained from the database. 

Simulation of the response of p21 to stimulus signals 

We first defined a new term S for p21 stimulation by a transient stimulus signal. S is a 

function of the amplitude () and duration () of the stimulus signal. In our simulations, 

this term was added to the differential equation accounting for the p21 mRNA (mp21). 

Next, we further assumed non-basal synthesis for the p21 mRNA (    
      ) and set 

initial concentrations mp21(0) = 0 and p21(0) = 0. In this manner, the p21 response 

(p21) was totally induced by the transient stimulus signal. Subsequently, in order to keep 

consistent with the experimental conditions of Wu et al. (2010) we assumed non-basal 

synthesis for each miRNA (    
           ). Then, we defined five miRNA abundance 

scenarios by setting the initial concentrations for the miRNAs and corresponding 

parameters accordingly 

1) off: miRi=1…15(0) = 0,     

                  

               ;  
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2) on: miRi=1…15(0) = 1,     

                  

               ;  

3) on + C: miRi=1…15(0) = 1, see Table 6.2 for     

             
 and     

             
; 

4) on(x10): miRi=1…15(0) = 10,     

                  

               ;  

5) on(x10) + C: miRi=1…15(0) = 10, see Table 6.2 for     

             
 and     

             
. 

We also ran simulations to illustrate the consumption of the miRNAs for the 

scenario on(x10) and on(x10) + C when the stimulus signal is strong and long-lasting 

(μ=10 n.u and τ=10 hr; Figure 6.3). 

 

Figure 6.3: The response of p21 in different scenarios for specified signals. The plots describe the 

time-series of p21 responses and the p21-targeting miRNAs in two defined scenarios (left: on (x10); right: 

on (x10) + C) for the stimulus signal with μ=10 n.u. and τ=10 hr. 

Cooperative miRNA regulation of p21 expression in different cellular functions 

We first extracted the list of GO terms associated with the miRNA TFs. For each cellular 

function, we assumed that a miRNA is expressed when at least one of its TFs is 

associated with the cellular function. For example, p53 is a TF for miR-125a-5p and it is 

associated with cell proliferation, so we assumed miR-125a-5p to be expressed (miR5(0) 

= 1) when cells are proliferating. In contrast, we assumed miR-125a-5p to be non-

expressed (miR5(0) = 0) in DNA repair because none of its TFs is associated with this 

cellular function. By following this strategy, the miRNA expression profiles for the nine 

cellular functions were obtained (Table 6.4).  

To compute the p21 steady-state levels for each cellular function, we set the 

following parameter values and initial concentrations for the model: 1) for each cellular 
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function, the corresponding initial concentrations of the miRNAs (miRi=1…15(0)) were 

derived from Table 6.4, 2) the initial concentrations for p21 protein and mRNA were set 

to 1 (p21(0) = 1 and mp21(0) = 1) and the synthesis rate constant of each miRNA was 

set to 0 (     
           ), and 3) when considering miRNA cooperativity, the 

corresponding parameters values (     

             
and     

             
) were assigned 

according to Table 6.2; for non-cooperative regulation by individual miRNAs these two 

parameters were set to 0. 

6.3 Experimental methods 

6.3.1 Small RNA transfection and doxorubicin treatment  

Sk-Mel-147 cells were seeded in a six well plate. Mature miRNA mimics (miR-572 #C-

300891-01-0005, miR-93 #C-300512-07-0005 or Mimic Negative Control #1-CN-

001000-01-05; Thermo Scientific, Dharmacon RNAi Technologies) were transfected 

individually at a concentration of 100 nM or in combination at 50nM each using 

lipofectamine RNAimax reagent (Invitrogen, Karlsruhe, Schwerte, Germany). After 48 

hr transfection, the cells were pulse treated with 250 nM doxorubicin-HCl (Sigma-

Aldrich, Munich, Germany) for 1 hour after which normal growth medium was 

replenished. The protein lysates were collected at 0, 2, 4, 6, 8 and 24 hr post-doxorubicin 

treatment. 

6.3.2 Immunoblotting  

At indicated time points the cells were harvested in radioimmunoprecipitation buffer [50 

mmol/l Tris-HCL (pH 7.4), 150 mmol/L NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1% 

SDS], supplemented with protease inhibitor mix (Roche Molecular Biochemicals, 

Mannheim, Germany). 20 μg of total protein extract was denatured in electrophoresis 

sample buffer for 5 min at 95
o
C, and subjected to SDS-polyacrylamide gel 

electrophoresis (PAGE). Gels were electroblotted onto nitrocellulose membranes 

(Highbond ECL
TM

, Amersham, Braunschweig, Germany). Immunodetection was 

performed using an anti-p21 mouse monoclonal Ab (sc-6246) and were re-probed with 

an anti-ß-actin mouse monoclonal Ab (sc-5274) to verify equal loading of proteins (both 

the antibodies purchased from Santa Cruz Biotechnologies, Santa Cruz, CA, USA). The 
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IRDye 800CW donkey anti-mouseIgG (926-32212) secondary antibody was used for 

immunodetection (LI-COR Biosciences, Bad Homburg, Germany). All the blots were 

processed in parallel and developed for 2 minutes. Immunodetection of p53 was 

performed using a mouse monoclonal antibody against p53 (#554293, BD Biosciences, 

Heidelberg, Germany) and the same secondary antibody as used for p21. The relative 

p21 protein expressions are represented as fold changes compared to the p21 expression 

in the non-targeting control at 0 hr time point. For detection and quantification of the 

band intensities we used LiCor Odyssey Western Blot detection system with integrated 

Image Studio software. 
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Table 6.2: Initial concentrations of model variables and model parameter values. Based on the experimental 

data, the p21-targeting miRNAs verified in Wu et al. (2010) were divided into two groups: the translation 

repression group (marked with asterisk) and the mRNA deadenylation group. A miRNA was classified into the 

mRNA deadenylation group if its overexpression can result in 20% or more downregualtion of the p21 mRNA 

level (i.e. p21 mRNA level ≤ 0.8; the basal level is 1), otherwise it was classified into the translation repression 

group. For the translation repression group, only     
         was estimated and     

         was fixed, so only one 

corresponding confidence interval was calculated. For the other group both     
        and     

         were 

estimated, and both of their corresponding confidence intervals were calculated. The initial concentrations of p21 

and mp21 were set to 1, and this value was used as their basal expression levels. During the parameter estimation, 

the initial concentrations of p21-targeting miRNAs were set to 100, because in Wu et al. (2010) the expression 

levels of p21 and mp21 were measured after the individual introduction of the p21-targeting miRNAs with amount 

of 100 nM. Due to the lack of biological information to characterise the transcriptional activation of p21 and its 

targeting miRNAs, the corresponding functions were assumed to 1 for simplicity. 

Initial concentration of variables and TF functions 

Variable Description Initial concentration (n.u.) 

p21 p21 protein 1 

mp21 p21 mRNA  1 

miRi=1…15 p21-targeting miRNAs 100 

[mp21│miRi=1…15] Complexes formed by miRi and mp21 0 

fact(TFmp21) p21's transcriptional activation function 1 

fact(TFmiRi (i=1…15)) The transcriptional activation function of miRi 1 

Fixed parameter values 

Parameter Description Value Comment 

    
    

 Synthesis rate constant of mp21 0.1155 hr-1 fixed 

    
    

 Degradation rate constant of mp21 0.1155 hr-1 Wang et al., 2000 

    
     (i=1…15) Synthesis rate constant of miRi 0.0289 hr-1 fixed 

    
    

 (i=1…15) Degradation rate constant of miRi 0.0289 hr-1 Kai and Pasquinelli, 2010 

    
   

 Synthesis rate constant of p21 1.3863 hr-1 fixed 

    
   

 Degradation rate constant of p21 1.3863 hr-1 Maki and Howley, 1997 

Estimated parameter values and their confidence intervals 

miRNA 

    
         

          

(hr-1) 

    
         

         

 (n.u. -1· hr-1) 

     
     

         

Confidence 

interval 

[lower upper] 

Experimental data of 

p21 

(Protein, mRNA±SD) 

miR-298 (miR1)
* 0.1155 0.0254 3.4e-004 [0.0243 0.0265] (0.16, 1.074±0.025) 

miR-208a (miR2)
* 0.1155 0.0041 2.0e-003 [0.0022 0.0076] (0.51, 1.192±0.022) 

miR-132 (miR3)
* 0.1155 0.0275 2.4e-003 [0.0222 0.0352] (0.15, 1.21±0.147) 

miR-28-5p (miR4)
* 0.1155 0.0119 5.9e-003 [0.0108 0.0132] (0.28, 1.35±0.06) 

miR-125-5p (miR5)
* 0.1155 0.0018 1.8e-003 [0.0013  0.0024] (0.69, 0.85±0.051) 

miR-299-5p (miR6)
* 0.1155 0.0080 1.8e-004 [0.0072 0.0088] (0.36, 0.95±0.038) 

miR-345 (miR7)
* 0.1155 0.0051 1.1e-004 [0.0045 0.0057] (0.46, 0.96±0.039) 
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Table 6.2: Continued. 

miR-93 (miR8) 0.1564 0.0235 4.1e-014 
[0.1434 1.7210] 

[0.0215 0.0259] 
(0.17, 0.7776±0.03) 

miR-423-3p (miR9) 0.9118 0.0055 2.8e-009 
[0.2136 Infinity] 

[0.0027 0.0131] 
(0.44, 0.5102±0.11) 

miR-515-3p (miR10) 0.2098 0.0253 1.2e-013 
[0.1457 0.3811] 

[0.0221 0.0295] 
(0.16, 0.616±0.037) 

miR-363(miR11) 0.2261 0.0399 2.2e-014 
[0.1384 0.6523] 

[0.0241 0.0900] 
(0.11, 0.56±0.15) 

mR-657 (miR12) 0.3465 0.0158 2.1e-014 
[0.1828 Infinity] 

[0.0088 0.0353] 
(0.23, 0.48±0.12) 

miR-639 (miR13) 0.4305 0.0327 1.8e-017 
[0.2540 1.6100] 

[0.0208 0.0634] 
(0.13, 0.36±0.084) 

miR-572 (miR14) 0.3039 0.0360 9.4e-023 
[0.2427 0.4082] 

[0.0294 0.0456] 
(0.12, 0.45±0.044) 

miR-654-3p (miR15) 9.7485 0.0024 3.0e-014 
[0.3491 Infinity] 

[0.0017 0.0036] 
(0.64, 0.63±0.053) 

The variables and parameters accounting for miRNA cooperativity 

Variable     

             
  

   

             
 

Initial concentration 

(n.u.) 

[mp21|miR1|miR2]     
             

             
             

         0 

[mp21|miR1|miR11]     
             

              
             

          0 

[mp21|miR3|miR4]     
             

        
     

             
        

 0 

[mp21|miR4|miR11]     
             

              
             

          0 

[mp21|miR5|miR6]     
             

             
             

         0 

[mp21|miR7|miR8]     
             

             
             

         0 

[mp21|miR8|miR9]     
             

             
             

         0 

[mp21|miR8|miR15]     
             

              
             

          0 

[mp21|miR8|miR14]     
             

              
             

          0 

[mp21|miR9|miR10]     
             

              
             

          0 

[mp21|miR9|miR12]     
             

              
             

          0 
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Table 6.3: Normalised tissue-specific miRNA expression profiles. The miRNA expression levels were 

extracted from the database miRNAmap and normalised to the most abundance miRNA in the tissues. The 

p21 expression levels were extracted from the database ArrayExpress (p21(Exp)). Under: 

underexpression; Over: overexpression. 

miRNA kidney liver adipose bladder 
s. 

intestine 
cervix heart lung ovary testis trachea brain 

miR1 0 0 0 0 0 0 0 0 0 0 0 0 

miR2 0 0 0 0 0 0 0 0 0 0 0 0 

miR3 0.0514 0.0333 0.0714 0.0533 0.0692 0.0177 0.04 0.0083 0.03 0.0333 0.07 0.1341 

miR4 0.0129 0.02 0.0214 0.05 0.0246 0.0082 0.015 0.0079 0.012 0.006 0.03 0.0022 

miR5 1 0.5 1 1 0.4615 1 1 1 1 1 0.9 1 

miR6 0.0005 0.0008 0.001 0.0007 0.0015 0.002 0.0005 0.0001 0.0023 0.0043 0.001 0.0017 

miR7 0.0051 0.005 0.0043 0.002 0.0038 0.0008 0.001 0.0008 0.0025 0.0027 0.007 0.001 

miR8 0.3142 0.4167 0.3571 0.4333 0.5769 0.1118 0.15 0.3021 0.275 0.1667 0.5 0.1037 

miR9 0 0 0 0 0 0 0 0 0 0 0 0 

miR10 0 0 0 0 0 0 0 0 0 0 0 0 

miR11 0.0049 0.0008 0.0014 0.001 0.0023 0.0006 0.0003 0.0008 0.0013 0.0013 0.0025 0.0013 

miR12 0.0002 0.0012 0.0009 0.0002 0.0007 0.0001 0.0003 0.0001 0.0002 0.0005 0.0012 0.0002 

miR13 0 0 0 0 0 0 0 0 0 0 0 0 

miR14 0.0011 0.005 0.0214 0.0063 0.0123 0.0017 0.001 0.0015 0.001 0.0027 0.011 0.0005 

miR15 0 0 0 0 0 0 0 0 0 0 0 0 

p21 (Exp) Under Under Over Over Over Over Over Over Over Over Over Over 

 

Table 6.4: p21-targeting miRNA expression profiles for the nine cellular functions. For each cellular 

function, according to the GO analysis as described in chapter if a miRNA expressed its expression level is 

set to 1 otherwise  its expression level is 0. 

miRNA 
Cell 

Proliferation 
Apoptosis 

Cell 

Cycle 

Immune 

Response 

Inflammatory 

Response 
Senescence 

DNA 

Damage 

Cell 

Migration 

miR1 1 0 1 0 0 0 0 0 

miR2 1 1 1 1 0 0 1 0 

miR3 1 1 1 1 1 0 0 0 

miR4 1 1 1 1 0 0 0 0 

miR5 1 1 1 1 0 1 1 0 

miR6 0 1 0 1 0 1 0 1 

miR7 1 1 1 1 1 0 1 0 

miR8 1 1 1 0 0 0 0 0 

miR9 1 1 1 1 1 1 0 1 

miR10 0 0 0 0 0 0 0 0 

miR11 1 1 1 0 0 0 0 0 

miR12 1 1 0 1 1 0 0 0 

miR13 0 0 0 0 0 0 0 0 

miR14 0 0 0 0 0 0 0 0 

miR15 1 1 0 1 1 0 1 0 
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Promovieren im Fach Biotechnologie  

Interview von Anke Wilde auf www.academics.de veröffentlicht 

Beide promovieren sie in der Krebsforschung - sie darüber, wie bestimmte Wirkstoffe 

sich per Impfung am besten in ein Tumorgewebe transportieren lassen, er darüber, wie 

man eben diese Wirkstoffe und ihre biochemischen Reaktionen über ein mathematisches 

Modell beschreiben kann. Sie wollte schon immer bei einem Pharmariesen 

unterkommen, er träumt davon, an seiner Heimatuniversität einen Fachbereich für 

Systembiologie zu gründen. Zwei Wege, in der Biotechnologie eine Promotion 

abzuschließen. 

 

Xin Lai, Promovend der Biotechnologie an der Uni Rostock, möchte an seiner Heimatuniversität einen 

Fachbereich für Systembiologie gründen. 

 

Xin Lai kann endlich ein wenig durchatmen. Gerade hat der 29-jährige Chinese an 

der Universität Rostock seine Doktorarbeit abgeschlossen. Es war schon mitten in der 

Nacht, als er die letzten Korrekturen vorgenommen, das Dokument gespeichert und in 

den Druck geschickt hatte. Jetzt kommt erst einmal ein Wochenendtrip mit der Ehefrau 

nach Kopenhagen, dann steht wieder die Forschung auf dem Plan.  

Anna Maria Städtler hat das alles noch vor sich. Die 26-Jährige hat vor einem Jahr mit 

ihrer Promotion bei der Bayer Pharma AG begonnen, die sie im Rahmen eines durch das 

BMBF geförderten Verbundprojektes absolviert. An die ersten Tage dort kann sie sich 

noch sehr gut erinnern - sehr straff durchorganisiert seien die gewesen, es sei ihr, der 

Neuen, sehr leicht gemacht worden, sich in die neue Arbeitsumgebung einzufinden. 

Dann sei eine längere Lektürephase gekommen, in der sie sich ausschließlich dem 

aktuellen Forschungsstand in ihrem Thema gewidmet hat. 
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Forschungsziel: Medikamente gegen den Krebs 

Ihr Thema umfasst die Evaluierung von Nanotransportsystemen für sogenannte 

small interfering RNAs, kurzkettige Ribonukleinsäure-Moleküle, die direkt in die 

Tumorzellen eingeschleust werden. Dort schalten sie - genregulierenden Prozessen sei 

Dank - gezielt die Gene ab, die dafür sorgen, dass die Zellen sich ungebremst teilen 

können und damit bösartige Wucherungen verursachen. Problematisch ist allerdings, 

diese Moleküle zielgerichtet dorthin zu transportieren, wo sie wirken sollen. An sich 

sind RNA-Moleküle in der freien Blutbahn nämlich nicht vorgesehen, sie werden 

abgebaut. Auch das Immunsystem erkennt sie als feindliche Eindringlinge und reagiert 

darauf. Deshalb braucht es eine Art schützendes Transportsystem, so Anna Maria 

Städtler. "Das sind in unserem Fall neue sehr verzweigte Moleküle, die die RNA binden 

und in die betroffenen Zellen einschleusen, wobei das Tumorwachstum zum Stillstand 

gebracht werden kann." 

Zwei Transportsysteme, die vom Verbundpartner, der Arbeitsgruppe Haag der Freien 

Universität Berlin synthetisiert worden sind, seien mittlerweile erfolgversprechend in 

vivo, das heißt im Mausorganismus getestet worden. Ein drittes, das in vitro, sprich im 

Reagenzglas, bereits gut funktioniert, soll nun ebenfalls in vivo untersucht werden. "Das 

ist alles sehr anwendungsbezogen", sagt Städtler begeistert. "Es geht eben darum, am 

Ende ein Medikament zu entwickeln, das einem Patienten neue, lebensverlängernde 

Therapieoptionen eröffnet." Diese Anwendungsbezogenheit beim Promovieren, der 

Transfer von Wissenschaft in eine medizinische Therapie, sei ihr sehr wichtig, und den 

finde man eher in einem Unternehmen als an der Universität. 

 

Forschungsziel: Modelle für das Verhalten von Molekülen 

Auch Xin Lai befasst sich mit kleinen RNA-Schnipseln, die Tumorzellen von ihrem 

bösartigen Treiben abbringen sollen. Sein Ansatz ist allerdings ein komplett anderer. In 

seiner Heimatstadt Chengdu in Zentralchina hatte er Informatik studiert, und in seiner 

Doktorarbeit ging es darum, ein mathematisches Modell zu schaffen, welches das 

Wirken der in die Zelle eingeschleusten RNA präzise beschreibt. Zu den Parametern, die 

in ein solches Modell einfließen, gehört beispielsweise die Reaktionsgeschwindigkeit, 

eben wie schnell ein Protein verarbeitet oder in ein anderes Molekül umgewandelt wird.  
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Ist ein solches Modell gut, dann kann man ganz ohne Tests im Reagenzglas oder auch an 

Mäusen vorhersagen, wie eine Zelle sich unter bestimmten Umständen verhalten wird. 

"So ein Modell muss dann natürlich auch auf seine Tragfähigkeit überprüft werden", 

sagt Xin Lai. In seinem Fall übernimmt das eine Arbeitsgruppe aus Leipzig, die in dem 

Forschungsprojekt mit der Universität Rostock zusammenarbeitet. "Man muss sich das 

so vorstellen: Aus der Literatur und aus den Experimenten der Kollegen holt man sich 

alle verfügbaren Daten. Die fügt man in das Modell ein, und dann wird wieder im 

Experiment untersucht, ob sich die Voraussagen des Modells auch wirklich erfüllen." 

Wenn nicht, wird das Modell korrigiert. 

 

Promovieren in der Industrie oder in der freien Forschung - ein Gegensatz? 

Eine Industriepromotion oder eine Doktorarbeit an der Universität oder einem 

Forschungsinstitut - beide Varianten haben ihre Verfechter und ihre Gegner. 

Doktoranden in der akademischen Forschung halten der Industrieforschung fehlende 

Freiheiten und eine zu große Ausrichtung auf lukrative Projekte vor. Umgekehrt besteht 

die Kritik, die öffentlich geförderten Forschungsinstitute seien schlechter ausgestattet 

und achteten zu wenig auf praktische Anwendbarkeit der Forschungsergebnisse.  

Anna Maria Städtler findet die Kritik an einer Promotion in einem forschenden 

Unternehmen unbegründet. Sie erfahre bei Bayer eine sehr gute fachliche Betreuung und 

werde ermutigt, ihre Forschungsergebnisse auch auf Konferenzen und in Publikationen 

der wissenschaftlichen Öffentlichkeit zu präsentieren. "Natürlich muss ich vorher 

absprechen, ob damit patentrelevante Themen angeschnitten werden", räumt sie ein. 

Aber das sei an den Universitäten nicht anders - wer sich an seinen neu entwickelten 

Technologien ein Patent sichern wolle, spreche vorher auch nicht öffentlich darüber.  

Auch Xin Lai ist mit den Rahmenbedingungen seiner Promotion zufrieden. Er konnte an 

vielen Konferenzen teilnehmen und musste seine Arbeit nicht durch endlose 

Verwaltungsakte unterbrechen, sagt er. Und auch wenn seine Arbeit zunächst die 

Grundlagenforschung voranbringe, so sei der Anwendungsbezug ja dennoch gegeben. 

"Schließlich können solche Modelle helfen, Therapien gegen bislang unheilbare 

Krankheiten zu entwickeln", gibt er zu bedenken. 
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Die fachliche Expertise gibt den Ausschlag 

Und was sagen die Personaler? Claudia Israel ist Recruiting Managerin bei der 

Firma Qiagen im nordrhein-westfälischen Hilden. Deutschlandweit sind in dem 

Biotechnologie-Unternehmen etwa 1.400 Mitarbeiter angestellt, weltweit sind es 4.000. 

Von den promovierten Bewerbern in ihrer Firma haben die meisten den Doktortitel an 

der Universität erworben, sagt sie. Inzwischen aber beobachtet sie, dass die 

Industriepromotion allmählich an Bedeutung gewinnt. "Das liegt einfach daran, dass die 

Unternehmen gut qualifizierten Nachwuchs möglichst frühzeitig entdecken und an sich 

binden wollen", meint sie. Aus ihrer Sicht ist es jedoch nicht so wichtig, ob der Titel an 

einer renommierten Universität oder bei einem führenden Unternehmen erworben wurde 

- das Worüber, die erworbenen Kompetenzen und fachlichen Methoden wögen deutlich 

schwerer. Studienabsolventen rät sie deshalb, sich genau zu überlegen, was ihr 

Karriereziel ist, und entsprechend den Weg dahin zu wählen. Anna Maria Städtler hatte 

schon lange mit einer Karriere bei dem international operierenden Pharmaunternehmen 

geliebäugelt, und darum hatte sie sich auch vor über einem Jahr bei Bayer beworben. 

Xin Lai dagegen will im akademischen Sektor forschen und am liebsten in seiner 

Heimatstadt Chengdu an der Universität ein eigenes Forschungslabor gründen oder eine 

Abteilung für Systembiologie. Gemessen an den Zielen, die sie erreichen wollen, haben 

wohl beide die richtige Sprosse auf ihrer persönlichen Karriereleiter erklommen. 
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Theses 

 The utilisation of a systems biology approach, which combines biological data 

with mathematical modelling, provides a promising way to understand the 

function of microRNAs in cellular systems. 

 Kinetic modelling, using nonlinear ordinary differential equations, is an 

appropriate method to simulate and predict temporal dynamics of interacting 

components in signalling pathways and gene regulatory networks. 

 A combination of local and global optimization methods provides an efficient 

means to estimate model parameter values. Sensitivity and bifurcation analysis 

are useful tools for unravelling dynamic properties of kinetic models. 

 Kinetic modelling of the p53/SIRT1 signalling pathway, which consists of the 

interactions among p53, SIRT1 and miR-34a, identifies the mechanism by which 

miR-34a represses SIRT1 and shows the ability of miR-34a to recover the loss of 

active p53 in certain cancerous condition, in which the expression of SIRT1 is 

aberrantly upregulated. 

 A novel approach, combining transcriptional factor and microRNA target 

prediction algorithms with data from the literature and databases, provides 

guidance to the construction of microRNA target hub networks. This is 

demonstrated with a comprehensive regulatory map of p21.  

 Identification of microRNA-mediated feedback and feedforward loops in the 

regulatory map of p21 shows their crucial role in maintaining the proper 

regulation of p21. For example, a feedforward loop mediated by miR-125a-5p is 

shown to be important for maintaining the proper regulation of p21 during cell 

cycle. 

 A data-driven kinetic model, derived on the basis of the p21 regulatory map 

deciphers the regulation of p21 by multiple and cooperative microRNAs in 

different biological scenarios. For example, the synergistic regulation of p21 is 

shown to be a consequence of a pair of experimentally verified cooperative 

microRNAs; the model can be also used to investigate response of p21 to 

different types of stimuli and the distinct p21 expression levels for different 

cellular functions. 
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