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Abstract

Context-aware systems are becoming an important part of our everyday life and their ability
to accurately recognise the user needs plays a crucial role in their performance. Assistive
software would be greatly impaired, were it unable to recognise the current user state, as it
would result in inability to correctly assist her. A typical approach in such situations is the
employment of probabilistic models that describe the possible states and the probabilities for
going from one state to another. Usually these models are handcrafted by the system engineer
and the transition probabilities are learned to fit the specific problem. However, in order to
build and learn the model, a training dataset has to be collected and annotated which in itself
implies finding subjects to conduct an experiment, spending time for repeatedly conducting the
experiment, and even more time for annotating it. This makes the building of such models
not only expensive but also leads to generalisation problems, as the model is not guided by a
domain structure but rather by the underlying sensor readings, which could cause suboptimal
solutions.

A different approach is to generate the probabilistic model from prior knowledge instead
of learning it. One approach to generating probabilistic models could be the usage of human
behaviour models that are later mapped onto a probabilistic model and an inference engine is
used for estimating the user state. It exploits the additional advantage that the natural way of
human thinking is based on causes and effects instead of probabilities. There are corresponding
theories that it would be much easier for a system engineer to build a non-probabilistic model.

Based on the above assumption, this work investigates the ability of symbolic models to
encode context information that is later used for generating probabilistic models. It also analy-
ses the problems arising from such approach and the need of a structured development process
for model based activity recognition. As a consequence, the contributions of the work are as
follows: (1) it shows that it is possible to successfully use symbolic models for activity recog-
nition in the field of activities of daily living; (2) it provides a modelling toolkit that contains
patterns for reducing the model complexity; (3) it proposes a structured development process
for building and evaluating computational causal behaviour models. In general, the thesis pro-
vides a practical guide to implementing and using symbolic models for activity recognition and
proposes a structured process for doing it — something that is often overlooked in the field of
activity recognition.

Keywords: human behaviour models, activity recognition, symbolic models, daily activi-
ties, probabilistic models.






Zusammenfassung

Kontext-sensitive Systeme werden ein immer wichtigerer Bestandteil unseres tédglichen
Lebens. Ihre Fahigkeit die aktuellen Bediirfnisse des Benutzers zu erkennen spielt eine entschei-
dende Rolle ihrer Leistungsfahigkeit. Ein Assistenzsystem wiirde stark beeintrachtigt werden,
wire es nicht in der Lage den aktuellen Zustand des Benutzers zu erkennen und ihn folglich
nicht korrekt zu unterstiitzen. Eine typische Vorgehensweise in solchen Situationen ist die
Verwendung von probabilistischen Modellen, die die moglichen Zustinde und die Wahrschein-
lichkeiten fiir den Ubergang von einem Zustand zum anderen beschreiben. Normalerweise wer-
den diese Modelle und Ubergangswahrscheinlichkeiten gelernt und vom System-Ingenieur per
Hand abgestimmt, um bestmogliche Ergebnisse zu erzielen. Um das Modell zu bauen und zu
lernen muss man jedoch ein Experiment durchfiihren, Trainingsdaten sammeln und die Daten
miissen annotiert werden. Dies macht den Bau solcher Modelle nicht nur teuer, sondern er-
schwert auch eine universelle Einsetzbarkeit, da das Modell nicht auf Doménenwissen basiert,
sondern stark von den Sensoren abhingt und folglich zu suboptimalen Ergebnissen fiihrt.

Eine Alternative ist, das probabilistische Modell auf Basis von vorhandenem Wissen zu
generieren. Ein Ansatz zum Erzeugen von probabilistischen Modellen kann die Verwendung
von menschlichen Verhaltensmodellen sein, die auf ein probabilistisches Modell abgebildet
und mit Hilfe von Inferenztechniken zum Schitzen des Benutzerzustands verwendet werden
konnen. Das reflektiert auch die Tatsache, dass menschliches Denken eher auf Ursachen und
Wirkungen basiert, statt auf Wahrscheinlichkeiten. Es gibt Theorien, dass es fiir einen System-
Ingenieur viel einfacher ist ein nicht-probabilistisches Modell zu bauen.

Basierend auf der obigen Annahme untersucht diese Arbeit die Fahigkeit der symbolischen
Modelle Kontextinformationen, die spéter zum Erzeugen von probabilistischen Modellen ver-
wendet werden, zu beschreiben. Zusitzlich werden die Probleme, die mit solche Ansétzen
verbunden sind, analysiert und die Notwendigkeit eines strukturierten Entwicklungsprozess fiir
die modellbasierte Aktivititserkennung diskutiert. Als Folge davon sind die Beitrige der Arbeit
wie folgt: (1) es wird gezeigt, dass es moglich ist symbolische Modelle fiir Aktivititserkennung
im Bereich der Aktivititen des tiglichen Lebens zu benutzen, (2) es wird ein Modellierungstool-
kit vorgeschlagen, dass verschiedene Entwicklungsmuster fiir die Reduzierung der Modellkom-
plexitit unterstiitzt, (3) es wird ein strukturierter Entwicklungsprozess fiir die Erstellung und
Bewertung von Computational Causal Behaviour Models vorgestellt. Allgemein liefert die
Arbeit einen praktischen Leitfaden und strukturierten Prozess fiir die Implementierung und
Verwendung symbolischer Modelle fiir Aktivitdtserkennung - etwas, das im Bereich der Ak-
tivitdtserkennung oft iibersehen wird.

Keywords: Modelle fiir menschliches Verhalten, Aktivitdtserkennung, symbolische Mod-
elle, probabilistische Modelle.
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Chapter 1

Introduction and Motivation

“Suit the action to the world, the world to the action; with
this special observance, that you o’erstep not the modesty
of nature.”

William Shakespeare

Chapter Summary: This chapter introduces the concept of activity recognition and human be-
haviour models and explains the motivation behind using human behaviour models for activity
recognition. Additionally, it describes the challenges in using such approaches, gives the goal of
the thesis and the problems to be discussed throughout the thesis.

Chapter Sources: This chapter is partly based on the technical report “Toward a Unified Human
Behaviour Modelling Approach” [160] and the journal paper “Towards Creating Assistive Soft-
ware by Employing Human Behavior Models” [79].

Questions to be answered in the chapter:
What are assistive systems? (In Section 1.2)
What is context awareness? (In Section 1.2)
What are activity and intention recognition? (In Section 1.3)
What is human behaviour modelling? (In Section 1.4)
What is prior knowledge? (In Section 1.5)
What types of human behaviour models do exist? (In Section 1.6)

What challenges are there in the field of human behaviour modelling for activity recognition? (In
Section 1.7)

What is the goal of the thesis? (In Section 1.8)
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1.1 Introduction

With the development of new context-aware technologies and applications, activity and
context recognition is a process we might not be aware of, but one we heavily depend on every
time we use some application, the aim of which is to provide us with information based on our
current location, or surroundings, or activities [69, 46, 27]. And, of course, one would expect
such application to perform accurately and to be able to provide the “right” information!. To
be able to do that, beneath the “’shiny surface” we usually see, the application should possess an
activity recognition component that can correctly recognise the current user actions, and even
more — to be able to reason about the user situation [79].

Building such system could be a challenging task as it should be able to reason about the
user’s whereabouts and intentions based on imperfect user and environment observations and /
or the available context knowledge associated with the given problem [80, 112, 92, 162]. Even
more, gathering and including the context information into a successful activity recognition
system is a challenge in itself [82]. This work deals exactly with the problem of incorporating
prior knowledge in the form of symbolic Human Behaviour Models (HBM) for activity recog-
nition. It answers the question of how to build successful HBM for activity recognition, and
discusses the problems associated with developing such models. Even more, it discusses the
need of a structured development process that could improve the models, automate the model
implementation, and solve different problems emerging during the intuitive model develop-
ment.

This chapter presents the basic concepts associated with context-aware activity recognition.
It discusses the challenges related to developing activity recognition systems able to infer the
user actions and to provide additional information about the context of those activities. For that
reason, we” look at context awareness from the viewpoint of assistive systems and its relation to
activity recognition. Later we discuss how context information can be incorporated into activity
recognition models, what challenges are there and which contributions this work brings.

1.2 Assistive systems and context awareness

In a world where mobile devices are everywhere around us, where new technologies and
applications constantly emerge, develop and evolve, context awareness plays a central role in
every system that strives to assist the human being in a way. Such systems could be a public
transportation app that shows the nearby bus stops [109], or such that strives at improving
the routes one takes while driving [83]. It could also be a system that monitors people with
cognitive or physical restrictions and strives to provide them with appropriate assistance that
would make their lives more independent of caretakers [109]. Another variation of such system
would be the different kinds of smart environments — smart meeting rooms, lecture halls and
classrooms [46, 47], homes [27, 30], learning environments [69] — that aim at providing the
appropriate help for the users within the environment.

In general, an assistive system is any system that provides some sort of help for the user in-
teracting with it. The assistance can be offered in different forms and degree of interaction and
automation. In fact, there are different taxonomies proposed for classifying assistive systems.
For example Sheridan proposes an eight level scale of automation which starts from systems

"Here by “right” information, the information satisfying the user needs is meant. Such information should be
accurate and clear.

>Throughout the thesis, the personal pronoun “we” is used for simplicity in the sentence structure as opposed
to the passive structure, and not as an indication that the work was completed by multiple persons.



1.2. ASSISTIVE SYSTEMS AND CONTEXT AWARENESS 3

that provide no assistance at all, to systems that provide full automation [132]. Wandke pro-
poses a more complex classification system as he argues that Sheridan’s taxonomy is incom-
plete and does not refer to all action stages or types of assistive systems. Thus he classifies
assistance according to three dimensions: the stages of human-machine interaction that could
be achieved, the adjustment (or how the assistive system adjusts to the user needs), and initiative
(or who has the initiative for assistance — the user or the system) [124].

Regardless of the kind of assistive system, to be able to assist the user, it needs to possess
context awareness, as it is the component allowing the system to help its users in a meaningful
and adequate way [70]. Without information about the context of the user actions, it would be
impossible for the system to discover the correct kind of solutions that could further the user
actions toward achieving her’ goals.

Dey [33] defines the notion of context in the following way.

Context is any information that can be used to characterise the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user
and an application, including the user and applications themselves.

On the other hand, Indulska et al. [70] try to define context without the meaning of “’situation
of an entity” and express it in a more concise form.

The context of a computing application is a set of circumstances surrounding it that are po-
tentially relevant to its execution.

Additionally, Dey [33] defines the concept of a system being context-aware as

A system is context-aware if it uses context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task.

It is obvious that context plays an essential role in a system that provides assistive services
to a user, hence the appropriate incorporation of the relevant context information will be equally
important for the system’s performance.

Indulska et al. [70] discuss the importance of context awareness in assistive systems and
introduce several requirements for context modelling in context aware applications. Defining
such requirements is of importance for any assistive system that strives to achieve maximum
performance and user satisfiability. Kriiger et al. [79] summarise these requirements and extend
them on their own with some additional requirements a successful assistive system should
possess. Below these requirements are presented.

Imperfect context information: Context-aware applications have the common problem of im-
perfect context information that could be due to noise in the sensor data, or sensor mal-
function, or even inaccurate algorithms for extracting context information from the sen-
sors. It could also be caused by incorrect information provided by the users, such as
incomplete or wrong agenda. Thus, when modelling context, it should be able to rep-
resent information that is incomplete, imprecise or ambiguous. Additionally, it should
have some sort of quality indicators, so that when a sensor is malfunctioning, it can be
traced back and repaired.

3Throughout the thesis the personal pronoun “she” is used as a substitution of “she / he”, and not as an
indication that the person in question was a female.
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Context histories: Often the information about the current state is not enough for the proper
functioning of assistive software. It could also require information about past and future
contexts. Therefore, a context modelling approach should be able not only to represent
histories but also to be able to reason about them. This information is essential in assistive
applications where behaviour patterns are to be detected or where the intention of a user
is to be inferred.

Software engineering: A context model benefits the software development when it is intro-
duced in the early stages of the software engineering lifecycle. Then it can be refined
incrementally, thus introducing the types of context information required by the applica-
tion and the data constraints. Additionally, it can be used to evaluate the suitability of
the context sensing infrastructure that is already developed, and to present more software
or hardware requirements. Furthermore, the context model can be used for producing
different use cases for software testing of the context-aware functionality.

Runtime querying and reasoning: One of the context models forms is the runtime model, that
is queried by the context-aware applications. The runtime model deals with problems
such as how to represent the information at runtime so that it can be reasoned upon in
order the system to provide decision making. The model should contain information
about the existing context types and their characteristics, as well as concrete context
information. It should also be easily extendable so that it can cope with the reasoning in
evolving environment.

Interoperability: One of the characteristics of smart environments is that the context-aware
applications could be faced with the problem of communicating with components that
were unknown to the software designer. Such components could be new applications,
or a new device, or new sensing hardware. Thus the context-aware applications should
be able to exchange information with them even when the component was previously
unknown. This requires either transforming the information in different representations,
using a shared context modelling approach, or supporting transformation between differ-
ent modelling approaches.

Recognition of semantic goals: A common practice in activity recognition is the detection
of labels, i.e. a name that is associated with specific data pattern without any further
meaning. However, in order a system to be able to perform strategy synthesis for assisting
the user, semantic goals should be recognised. Namely, not only an activity, but also the
plan (or path) that leads to achieving the goal. That way the system can generate a plan
based on the user’s semantic goal and assist her while achieving this goal.

It can be seen that a good context-aware assistive system should be able to cope with im-
perfect context information, thus it should be able to reason about imperfect knowledge about
the world and the problem. It should also be able to make track not only of the current state
but also of already visited states, so that it can avoid situations that are impossible based on
the context histories. Furthermore it should be able to reason about the user state and actions
during the model runtime and to be able to recognise not only an action label, but also semantic
goals that describe the path taken from the initial to the goal state. These requirements imply
that the given assistive system needs a component that is able to make use of the context infor-
mation and the observations coming from the environment in order to be able to reason about
the user actions, their causes and the goals she is following. This should be done in a way that
is flexible enough to cope with imperfect knowledge and observations. This component is the
activity recognition component that aims at satisfying exactly these requirements.
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1.3 The concepts of activity and intention recognition

The previous section already introduced the general idea behind Activity Recognition (AR)
— to accurately recognise the user activities so that the assistive system is able to provide ade-
quate help for the user. However, one more general question is What is actually an activity? Is it
the movement of the body? Or is it an intentional act or manipulation aiming at achieving some
goal? Is it the user behaviour or just a small part of that behaviour? Another question resulting
from that is Are the concepts “action”, "activity”, "task”, and ”behaviour” interchangeable?

The fact is that in the field of activity recognition the words action, activity, task, and be-
haviour are rather loosely used and depending on the community, they could mean the same or
different things*. To avoid ambiguity, here we attempt to define these concepts before proceed-
ing to the concept of activity recognition.

According to the Oxford Dictionary of English, the word action has the following meanings
[105]:

(1) the fact or process of doing something, typically to achieve an aim

(2) a gesture or movement

The second definition suggests unconscious or unintentional execution of a low-level move-
ment like suggested by Sukthankar [142]. On the other hand, the first definition implies that
the executed process is intentional and executed with a certain purpose. The latter complies
with action theory that describes actions as processes causing intentional body movement that
are based on certain beliefs and desires [31]. In the course of this work when using the term
action, we refer to definition (1) and consider any lower body movement that does not have an
explicit intentional cause, to be just that — a body movement and not an action.

Definition 1. (Action) Action is an intentional process executed by the user that has a certain
cause that triggers it, and that aims at achieving a certain goal.

Furthermore, actions can be divided into two groups — atomic or composite actions.

Definition 2. (Atomic action) Atomic action is an action that cannot be divided into more
fine-grained intentional actions.

Notice that here we do not consider as intentional actions body movements that build up a
certain action, but that separately do not lead to a goal. Rather, atomic action is the smallest
intentional building block of a user behaviour that cannot be decomposed into any more finer
actions.

On the other hand, composite actions are built up out of atomic actions or out of other more
fine-grained composite actions.

Definition 3. (Composite action) Composite action is an action that consists of at least two
actions that are either finer-grained composite actions, or atomic. These actions are causally or
temporally related with each other in order to build a more complex structure. Here composite
action is used as equivalent to the terms activity and task.

“For example, van Kasteren distinguishes between action primitives and activities that are built of action prim-
itives [151]. On the other hand Subramanya et al. [141] do not make use of the term action and instead refer to
the user actions as activities. Alternatively, Sukthankar defines activities as higher level-descriptions composed of
low-level movement data [142]. On the other hand, Trafton et al. [146] do not speak of activities but rather refer
to tasks that build up user behaviour.
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Based on that definition, one can then define behaviour as:

Definition 4. (Behaviour) Behaviour is a set of atomic actions and activities that through their
execution lead from the initial state of the world to the goal that the user is pursuing.

Here, what is meant by initial state of the world is the state in which the environment and
the user were when the latter first started pursuing her goal.

Finally, one additional concept that has to be defined is that of intention. According to the
Oxford Dictionary of English [106], intention is explained as:

(1) a thing intended; an aim or plan.

Or in the context of multi-agent systems and the Belief Desire Intention (BDI) architecture,
intentions are commitments to the desires the agent has and to the plans that will achieve them
[54]. Based on the above, in this work we refer to intention as:

Definition S. (Intention) Intention is a commitment to achieving a certain goal by executing a
set of causally related actions that lead to that goal.

Now we are ready to finally explore what exactly the field of activity recognition does.
According to Sukthankar the term activity recognition is used to describe the problem of seg-
menting and classifying low-level movement data into a higher-level description of the activity
performed [142]. He argues that in difference with plan recognition where the algorithms deal
with symbolic data and atomic actions, activity recognition algorithms trace the human po-
sition over time in order to recognise the activity being performed. This definition however
contradicts with other approaches that use symbolic action representation together with sensor
data as observations for reasoning about the user activities [66, 80]. Furthermore, probabilistic
approaches like some Dynamic Bayesian Network (DBN) do not make use of the time relation
between the observations, but rather take each observation as independent of the previous and
related only to the hidden model state [153, 133, 99]. For that reason here we give a more
general definition of the term activity recognition.

Definition 6. (Activity recognition) Activity recognition is the task of recognising user’s atomic
actions and activities based on a set of observations.

Slightly different is the concept of Intention Recognition (IR). Sadri [125] defines intention
recognition in the following way.

Intention recognition (...) is the task of recognizing the intentions of an agent by analyzing
some or all of their actions and/or analyzing the changes in the state (environment) re-
sulting from their actions.

As in the context of the thesis, the actions have to first be recognised, in order to analyse
them, we refer to intention recognition as:

Definition 7. (Intention recognition) Intention recognition is the task of reasoning about the
goals of a user based on the actions she is executing.

One could then ask the reasonable question How can one reason about the user intentions
based only on recognised activities? Where does the knowledge about the meaning of these
activities come from? Exactly here comes the role of models describing user behaviour. Such
models make use of the available context information and incorporate this prior knowledge in
the form of rules so that the system can later reason about the nature of the observed activities.
Below the concept of human behaviour models is discussed in detail.
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1.4 The concept of human behaviour modelling

Before discussing the different ways of modelling human behaviour, we have to answer one
important question: Why do we need to describe human behaviour at all?

Objectively speaking, it is possible to recognise user activities without using human be-
haviour models. There is an increasing number of works in the field of activity recognition that
are based only on the observed sensor data, and which try to recognise human activities with
the help of different statistical methods [5, 1, 117]. Many of these works give promising results
that encourage the development in this field of research.

However, there are several reasons for describing human behaviour, that make developing
behaviour models important. From psychological point of view, human behaviour modelling
is essential for the better understanding of human actions. Questions such as: What does an
action consist of ?; What does this action imply?; What are the reasons and consequences of an
action? arise. Their answers could be found exactly in human behaviour models that describe
not only the actions, but also whether they are composed of more fine-grained actions, what
are the relations between the different actions in the context of the composed activities and the
user behaviour, how these relations influence the user(s) and the environment [4, 75, 29, 144].

Another reason for modelling human behaviour is to detect the user behaviour based on a
given activity. This aspect of HBM is important in systems that deal with human monitoring
and rise questions such as: If an activity is recognised, what kind of behaviour does it imply?
[114]; Is the behaviour normal or abnormal?; Should the activity be reported as deviation
from the expected? [128, 146]. These systems could be in the sphere of health care where the
condition of patients is monitored, or in the sphere of security where abnormal behaviour could
imply intrusion.

Yet another reason for describing human behaviour is to provide assistance. In this case
HBM is essential for systems that try to assist their users in accomplishing a goal. Here when
an action is detected and recognised, it is important to discover not only what the action implies,
but also why it is executed, what is the final goal of the user. In that way the system will be
able to assist the user in reaching her goal [146, 79, 119].

The questions above imply that human behaviour models could provide invaluable infor-
mation for the needs of users from different backgrounds — from helping medical doctors un-
derstand patients with cognitive restrictions, through monitoring and assisting elderly people,
to providing proactive assistance in smart environments.

1.4.1 Purpose of human behaviour models

It is apparent that although all of them explain the user behaviour, human behaviour models
can serve different purposes. Many of them are used just for simulation of human behaviour
where a particular behaviour path is constructed independently of its occurrence probability.
With the rapid development of more and more realistic human-centred games, simulation of
human behaviour is thoroughly investigated and different models striving to improve the simu-
lation realism and to better explain the agents actions are developed [44, 156].

If we go even further beyond simulation, models are used for inference. If the purpose
is inference, the model not only tries to predict the most probable human behaviour, but also
to infer the reasons behind this behaviour, and if possible, to discover the long term human
behaviour [66, 114, 80].

For example, one could use human behaviour models to detect a specific behaviour. This
is called prediction and the idea behind it is to find the most probable behaviour from a set
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of behaviours. In difference with simulation, models dealing with prediction usually assign a
probability function to all possible behaviours, instead of just giving one solution. For example,
to predict the behaviour of a user, one should look over all of the available behaviours and
predict how probable they are [81].

From the above examples two main purposes for human behaviour modelling can be dis-
tinguished — simulation and inference. Furthermore, we adopt the inference types presented by
Giersich [57, p. 113] and divide them into filtering, smoothing, and prediction.

X: behaviour e

Y: observations © - - - O
Simulation >
Prediction  f5——————————— 5 >
Filtering T >0
Smoothing &————— . . o 0]
t=0 t trs T

Figure 1.1: Purposes of human behaviour models. Here the estimated behaviour is represented by a
solid line while the observations with a dashed line.

Simulation: Simulation is the process of imitating a real world situation or behaviour. Simu-
lation does not take into account how probable the execution sequence is, it just gives a
sample of a future trajectory. In simulation it is not possible to judge which is the best
course of action, because the different samples are equally probable. Fig. 1.1 graphi-
cally shows the difference between the different behaviour purposes, where simulation
is presented simply by a state sequence X1.;4s which is not affected by the probability
distribution of the observed states”.

Inference: Beyond simulation there is inference where we go one step further and try not only
to simulate behaviour, but also to predict it and find the reasons behind this behaviour.
When talking about inference, we distinguish 4 different approaches of interest.

e filtering: Filtering performs a transformation of the original data to approximated
copy of it that is reduced of noise. In filtering an online learning is performed
and the smoothing is done over only parts of observations. In Fig. 1.1 filtering is
described as the process of estimating the state X; at time t, taking into account
only the observations Y; up to time t, namely P(X¢|Y}).

e smoothing: Often the sensor datasets contain not only useful information but also a
lot of noise. To avoid the redundant data, smoothing is employed. Smoothing is the
process where an approximation of the original data is obtained, that tries to catch
the information patterns but to leave out the noise or other fine-scale structures. Fig.
1.1 shows smoothing as the process where the state X; at time t is estimated, taking
into account all observations Y7 up to time T, or in other words P(X|Y7).

SHere simulation refers to the simulation process in statistical inference and Bayesian filters, where simulating
from a distribution means to draw a sample from this distribution [101, p. 3]. It is not to be confused with the
notion of simulation from the field of modelling and simulation, where it is possible to determine the probability
of an observation by applying e.g. statistical model checking [87].
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e prediction: In difference with simulation, prediction defines a probability distribu-
tion across an action space. Here we not only have a sample of a future trajectory,
but also the probability of this action sequence happening. Prediction is extremely
helpful for making decision about which action to support and which to discard. In
Fig. 1.1 prediction is described as the probability of having the state X;,, given
the observations Y7.;, or shortly P(X;4|Y}).

In this work we are interested in human behaviour models for inference that can allow us
to recognise the user actions and to further be able to reason about causes that influence those
actions and parameters that are influenced by the actions. To do that, first we have to be able to
identify the context information that can be incorporated in these models.

1.5 Employing prior knowledge

Prior knowledge, or context information, is the knowledge about the environment, the users
and the relations between them we have prior to the present moment. In the context of activity
recognition, this is the knowledge about the user activities and their relations to the environment
or other users that is available prior to receiving the sensor data from which the actions have
to be inferred. Additionally, it contains the information about the problem domain®. When
creating a human behaviour model, this knowledge is incorporated into the model in order to
improve the process of activity recognition and / or to provide additional information about the
nature of the user actions.

As mentioned in the previous section, in the recent years there is increasing interest in using
statistical methods for activity recognition. Thus the question of prior knowledge’s importance
arises. Do we really need it or can we rely only on the sensor data?

If we consider situation where the sensor data describes human behaviour in a particular
domain and is collected with the same type of sensors, then a pattern extraction methods could
be sufficient for learning the system to recognise future human activities. Especially, when as-
suming that humans are creatures of habit and exhibit certain behaviour patterns [22]. However,
even changing the sensors type could be a problem for recognising the activity patterns. Even
worse, a change in the domain would make activity recognition more difficult if not hardly pos-
sible. The reason for this is that by using only sensor data, a learned model is highly dependent
on the observed data, so it will be difficult to use it in a different from the observed situation.

On the other hand, a human behaviour model making use of the prior knowledge could be
more abstract and flexible, so that it can be used in various situations’ and domains by utilising
different types of domain knowledge. Another problem that the use of prior knowledge solves,
is arriving at suboptimal solution. Geisler gives the following example with a first person
shooter in Quake: when relying only on observation data to learn, it is possible that there is
shooting only in 5% of the observations. Relying only on observations, the shooter learns not
to shoot, thus arriving at an undesirable problem solution [53]. Of course, that also could be
solved with selecting the appropriate type of training data, but as a whole it shows that one could
rely on the model to cope only with situations it has already seen in the data. This problem too
can be solved with obtaining more training data that however is expensive in terms of resources

%Here the meaning of domain complies with that of domain in knowledge representation where it is just some
part of the world about which we wish to express some knowledge [123, p. 300].

"Here situation complies with the definition given by Russell and Norvig, where situation is the initial state of
the world in a given domain before the agents begin performing their actions in order to achieve a goal [123, p.
388].
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and time. Applying prior knowledge, on the other hand, could ensure that the model is doing
whatever it is specified to do and without the additional costs for training data®.

As hinted above, another issue with statistical methods is the expensive training data. In
the recent years the sensor data to be analysed is increasing until we have come to the point
where we have huge amount of observations and the process of analysing it becomes tedious
and slow or sometimes even impossible [65]. A way to avoid this problem could be to employ
prior knowledge that will replace the needed data with the expert knowledge of the model
designer. This does not necessarily mean that the time needed for creating successful model
will be shortened, but it will reduce the need of involving additional manpower for obtaining
the needed amount of training data and the additional storage needed for this data.

In general, prior knowledge can be avoided in specific situations and only the sensor data
can be used for model learning [5, 1, 117]. However, for applying such model on a broader
spectrum of activity situations without the need of additional training data, as well as avoiding
arriving at a suboptimal solutions because of insufficient training data, the incorporation of
prior knowledge could be preferred.

1.5.1 Types of prior knowledge

Prior knowledge can come in different forms and from different sources. Here we propose
a categorisation of prior knowledge into three groups based on the knowledge incorporated in
different models.

Prior knowledge based on cognitive psychology: Cognitive psychology is the study of how
people perceive, learn, remember, and think about information [139, p. 2]. Prior knowl-
edge based on cognitive psychology consists of all the internal human states such as
stress, emotions, perceptions etc. Such type of knowledge is important because cog-
nition greatly affects human behaviour, and it is important to understand and take into
account its influence on the user actions. Works that apply this kind of prior knowledge
are such based on Adaptive Control of Thought — Rational (ACT-R) [128, 146]; such ap-
plying the BDI agent model [85]; even some Petri Nets approaches modelling emotional
agents [43, 44].

Environmental knowledge: Environment is everything that surrounds a system and that ex-
changes different properties with it. In the context of human behaviour modelling, prior
knowledge based on the environment is the knowledge about the state of the world out-
side the user. It includes information about the elements in the environment but also
about the user interactions with it, and how this interaction changes the environment.
Such knowledge is important, because it can be essential for determining different situ-
ation that may affect the way an activity is executed but still refer to the same activity.
For example, environmental knowledge will describe the initial state of the user and
the environment, such as what objects are there, where is the user, what has she al-
ready done etc. Approaches that employ environmental knowledge are Planning Domain
Definition Language (PDDL) [114], Computational Causal Behaviour Models (CCBM)
[80], Collaborative Task Modeling Language (CTML) [159].

$Here it should be noted that incorrectly incorporating prior knowledge or incorporating the wrong” kind of
prior knowledge could also lead to suboptimal solutions.

9By wrong we mean knowledge that does not contribute to solving the problem or that incorrectly solves the
problem.
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Prior knowledge based on ergonomics: Ergonomics is the study that concerns the understand-
ing of the interaction between human and other elements of a system and that strives
to optimise human well-being and overall performance. Such type of prior knowledge
is important, because it may contain important behavioural patterns that will make the
recognition of a human activity easier. Approaches employing such kind of prior knowl-
edge are Goals, Operators, Methods, and Selection rules (GOMS) [144] and Concurrent
Task Trees (CTT) [58].

1.6 Types of human behaviour modelling approaches in the
context of activity recognition

It was already explained that there are various types of activity recognition approaches that
can basically be divided into data-driven which rely on training data in order to learn the human
behaviour. Such examples are approaches that use Dynamic Bayesian Networks combined
with clustering to learn the model [99], Markov models that rely on training data [133], and
Hidden Markov Models [153]. The second type of approaches are model-driven which rely
on underlying behaviour model in order to recognise the user activities. Examples of such are
ACT-R where the user behaviour is encoded in terms of production system [66], PDDL that
relies on precondition-effect rules to build the user behaviour [114], and CCBM that relies to
similar rules [80]. As this work centres on symbolic models for activity recognition, here we
discuss the different types of HBM formalisms that can potentially be applied to model-driven
activity recognition systems.

1.6.1 Process-oriented modelling

When thinking of a process, one usually understands the act of executing a set of routine
procedures in order to achieve a goal. Beaten [10] describes a process as

behaviour of a system. A system is anything showing behaviour, in particular the execution
of a software system, the actions of a machine or even the actions of a human being.
Behaviour is the total of events or actions that a system can perform, the order in which
they can be executed and maybe other aspects of this execution such as timing or prob-
abilities. Always, we describe certain aspects of behaviour, disregarding other aspects,
so we are considering an abstraction or idealization of the real behaviour. Rather, we
can say that we have an observation of behaviour, and an action is the chosen unit of
observation.

The above indicates that a process is nothing more than description of the system dynam-
ics, the actions it can execute, the order in which they can be executed, and any additional
constraints or aspects that may influence these dynamics. In this context, process-oriented
modelling describes behaviour through a set of actions that are temporally related.

In other words, process-oriented models answer the question what is a user doing?. There
are two different model approaches concerning the process-oriented modelling. These are
grammar-based models, where the human behaviour is described in the form of grammar and
rules; and process calculi which represents a diverse family of related approaches for modelling
of concurrent systems.
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1.6.1.1 Grammar-based models

The human behaviour in a grammar-based model is described by a grammar that explains
the behaviour. Russell and Norvig [122] define a grammar as

a finite set of rules that specifies a language. Formal languages always have an official gram-
mar, specified in manuals or books. Natural languages have no official grammar, but
linguists strive to discover properties of the language by a process of scientific inquiry
and then to codify their discoveries in a grammar.

Bernard Meyer [96] gives another definition by explaining that a grammar defines the syntax
of a language as a set of productions. Each production specifies one construct by describing
the structure of specimens of the construct.

In the context of human behaviour modelling, a grammar-based model describes behaviour
in the sense of constructions of rules that define the dynamics of the activities constituting a
behaviour. Examples of such modelling formalisms are GOMS [144, 86] that strives to model
human-computer interaction, CTT that expresses hierarchical task models [58], and natural
language modelling approaches to describing human behaviour [78].

1.6.1.2 Process calculus

Process calculi are various approaches for modelling concurrent systems. They provide a
tool for describing high-level interactions, communication and synchronisation between differ-
ent agents or processes. Another usage is for comparing and analysing independent processes.
Although there are different types of process calculus, all of them share the same features.
Namely, they represent interaction between independent processes as communication; they use
a set of primitives and operators combining these primitives to describe the processes; they de-
fine algebraic laws for the process operators; they use equation reasoning to manipulate process
expressions.

Beaten [10] describes process algebra as

the study of the behaviour of parallel or distributed systems by algebraic means. It offers
means to describe or specify such systems, and thus it has means to talk about parallel
composition. Besides this, it can usually also talk about alternative composition (choice)
and sequential composition (sequencing). Moreover, we can reason about such systems
using algebra, i.e. equational reasoning. By means of this equational reasoning, we can
do verification, i.e. we can establish that a system satisfies a certain property.

Examples of formalisms employing process calculus is Petri Nets [59] that among other appli-
cations are also used for simulation of social behaviour [44].

1.6.2 Causal modelling

Another perspective of human behaviour is the causal view or as Pearl explains — our aware-
ness of what causes what in the world and why it matters [110]. Causality is the relationship
between two events — the first being the cause, and the second — the effect that resulted from
the first. In his book “Natural Philosophy of Cause and Chance” Born [16, p. 9] explains that
Causality postulates that there are laws by which the occurrence of an entity B of a certain
class depends on the occurrence of an entity A of another class, where the word ’entity’ means
any physical object, phenomenon, situation, or event. A is called the cause, B the effect.
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In the context of Born’s definition, causal models do not specify a set of actions with which
a goal can be achieved, but rather define the preconditions for reaching it, and the effects after
the goal has been reached, thus creating a structure of causally related states that lead from the
initial to the goal state. In difference with process-based models which answer the question
what, causal models deal with the problem of why a user is doing something, thus investigating
the cause and effects of a given action sequence.

We should point out that when talking about causal models we do not consider those pro-
posed by Perl where they are thought of as causal graphs with assigned probability values.

Pearl gives the following formal definition of a causal model.

A causal model is a pair M =< D,0©p > consisting of a causal structure D and a set of
parameters © p compatible with D. The parameters © p assign a function x; = f;(pa;,u;)
to each X; € V and a probability measure P(u;) to each u;, where PA; are the parents
of X; in D and where each U; is a random disturbance distributed according to P(u;),
independently of all other u. [111]

In difference to this definition, we call causal models such that comply with Born’s def-
inition. Here, when talking about causal models, we consider two different types: forward
rule-based models and backward rule-based models.

1.6.2.1 Forward rule-based models

Forward rule-based models deal with rules and facts. First rules and facts are defined and
when the facts are true, they can make a certain rule applicable. When a rule becomes appli-
cable, it is asserted. In difference with the process-based models, where an explicit process
describes the system behaviour, the rule-based models continuously apply a collection of rules
to a collection of facts. Rules can modify the collection of facts.

For example, a production system, which is a forward rule-based system, consists of two
steps: the first is the prediction step or IF statement; and the second is the action step or THEN
statement. This means that if the production’s prediction matches the current state of the world,
the production is triggered and a production’s action is executed. Examples of forward rule-
based models are ACT-R [128, 146], PDDL [114], and CCBM [80].

1.6.2.2 Backward rule-based models

In difference with the forward rule-based systems, where an action is triggered only if a fact
is true, the backward rule-based systems use an approach called backtracking. As described in
[126] backtracking systematically searches for a solution to a problem among all available
options. It does so by assuming that the solutions are represented by vectors (v1,...,Um) of
values and by traversing, in a depth first manner, the domains of the vectors until the solutions
are found.

In the context of backward rule-based models, this means that given a problem, the algo-
rithm goes through the present states and their relations and tries to find a solution. If any
goal fails in the course of executing the algorithm, all state bindings that were made since the
most recent choice-point are undone and the execution continues with the next alternative of
the choice point. The most well known example of a backward rule-based formalism is Prolog
[122, p. 339]. Among other applications it is used for implementing agents with advanced
reasoning capabilities [118].
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1.6.3 Probabilistic reasoning

So far we considered logic based approaches for human behaviour modelling that given
a fully observable system would yield good results at inferring the user actions. However
what happens when the user cannot be fully observed and there is some uncertainty about the
observations’ reliability? In such cases usually probabilistic reasoning is employed, which
allows combining the capacity of probability theory to cope with uncertainty with the capacity
of logic to exploit reasoning about the system structure and relations [111].

As Pearl explains, while causality connotes lawlike necessity, probabilities connote excep-
tionality, doubt, and lack of regularity. Still, there are two compelling reasons for starting with,
and in fact stressing, probabilistic analysis of causality... [111, p. 1]. According to Pearl, the
first reason is that even when using causal expressions to describe a given situation, it is usu-
ally the case that the situation contains uncertainty. The second reason he gives is that causal
expressions are a subject to exceptions which may cause major difficulties when processed by
standard rules.

This indicates that the combination of logic and probabilities should improve the model
performance and increase its robustness in situations where the observations are unreliable. To
develop such model one could take two different approaches — the first is using discriminative
models where the relation between the model state and the observation is explicitly provided,
or one could choose generative models where the Bayes rule is used to compute the probability
of the state based on the observation.

More formally, if we assume we have two correlated random variables X and Y, where
P(X,Y)# P(X)P(Y) and where Y is observable while X is hidden, then we can use the
observed value y € Y to infer the density P(X|y).

The generative approach provides models for P(Y|X) and P(X), then the Bayes rule is
used to compute P(X|y) = %P(yp()p(){).

On the other hand the discriminative approach assumes that a model P(X|Y") is directly
provided.

Examples of generative approaches are CCBM that provide causal models that are com-
piled into probabilistic runtime models [80], an extension of PDDL that allows probabilistic
reasoning based on observations [114], and an extension of ACT-R that allows computing the
probabilities for each execution trace [66].

Discriminative approaches on the other hand are many ontology based approaches where
the observations are matched against a library of actions or plans [104, 119]. Another approach
making use of libraries of actions is proposed by Maier et al. [93] where probabilistic hierar-
chical constraint automata is translated into Bayesian logic network. However such approaches
are inherently unable to solve the problem of the libraries completeness as it would be an im-
possible task for the model designer to manually model all possible execution sequences. This
problem is solved by the generative approaches which based on their specification are able to
automatically generate all valid plans and map them to the corresponding observations in a
probabilistic manner.
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1.7 Challenges with human behaviour models for activity
recognition

As it could be seen from the sections above, human behaviour models are often used for
activity recognition. Regardless of the variety of human behaviour modelling approaches and
formalisms, there are still some challenges associated with creating successful models for ac-
tivity recognition. Here these challenges are summarised and discussed.

Challenges with the training data: Many approaches for activity recognition rely on train-
ing data in order to fit the model for recognising the user actions or in order to extend the initial
model [140, 104, 8]. These approaches show promising results, still there is the drawback of
collecting and annotating training data. In order for the model to be able to recognise a broader
spectrum of behaviour variations, it has to have been trained with training data that contains
those variations. This in itself includes preparing the experiment from which the data will be
collected, finding participants, conducting the experiment, and finally annotating the data. This
is expensive and time consuming task in terms of manpower and time needed from the begin-
ning of the planning to obtaining the training data. Even more, it is often the case that the
data contains errors or the sensors were not working and the experiment has to be repeated.
Additionally, one can rely that the system will be able to recognise only activities that occurred
in the training dataset. One solution to this problem is substituting training data with prior
knowledge.

Challenges with the behaviour variability: As mentioned above, the model should be
able to cope with the behaviour variability, which in the case of trained models leads to the
problem described above. In the case with manually encoded behaviour [94, 158], unless the
problem is trivial and restricted, it is almost always the case that the model designer is unable
to encode all behaviour variations. In such cases what is usually done, is that the most often
occurring behaviour is modelled and improbable actions’ combinations are omitted. This ap-
proach works in situations where the environment and the user actions are carefully controlled
and there is no danger of unexpected behaviour. However, what happens when the user de-
cided to complete the task in a way not encoded in the model? One solution to such problems
could be the employment of generative approaches that allow based on their precondition-effect
specifications to generate all possible behaviours without the need of explicitly encoding them.

Challenges with the model reusability: Often a model is developed solely for a specific
scenario and it is later impossible to reuse it, or parts of it, in another model [158]. From
a performance point of view this is not a problem, however developing a model from scratch
means that the model designer needs more time for implementing it than if she had components
that can be reused. This problem can be solved in different ways — one option would be to
apply reusable action templates that are later parameterised with problem specific parameters,
as proposed by Hein et al. [64]. Another option would be introducing design patterns of
commonly occurring problems similar to those in software engineering [52].

Challenges with model traceability: In the field of software engineering there are already
well established development methods that provide the information needed for easy tracking of
software solutions that could cause problems [135]. In the field of context-aware systems and
activity recognition however, that is not a common practice. As Helal et al. [70] explain, con-
text aware applications centre more on the runtime model and not on the model development
process. This could cause a variety of problems especially if the designer is dealing with a com-
plex model. In that case it becomes almost impossible to trace the reason behind using a given
modelling solution, and from that to discover design problems in the model implementation.

Challenges with results reproducibility: A problem that is often not mentioned in works



16 CHAPTER 1. INTRODUCTION AND MOTIVATION

about activity recognition, is the ability to reproduce the obtained results. As Gordon et al. [62]
explain, one of the major issues which we see in this field is the reproducibility of results. While
methodologies and algorithms may be well defined and formalized, re-implementation is time
consuming and effort intensive. It is often the case that change in the model parameters, the
evaluation procedure, or even the tool used for obtaining the results will produce different out-
come. Even more, results obtained without documentation about the involved process elements
(in terms of models, scripts, parameters, etc.) usually render the results unreproducible [82].

1.8 Goal of the thesis

In the previous sections we introduced the concepts related to model based activity recogni-
tion and the challenges associated with this kind of activity recognition. Based on them here we
present the goal of this work and the contributions it makes to the field of model-based activity
recognition.

The work aims at (1) empirically showing that activity recognition based on symbolic hu-
man behaviour models is applicable to the domain of daily activities; and (2) introduces a
structured development process for developing such models that produces well documented
and reproducible models.

To achieve (1), the work introduces three modelling problems from our daily life and iden-
tifies the requirements a modelling formalism needs to possess in order to successfully model
the problems. Based on them a suitable modelling formalism is selected and the problems’
solutions are presented and analysed in terms of model parameters and model performance.

To achieve (2), the work analyses the developed models and introduces a modelling toolkit
that contains solution patterns to frequent problems in the models. Additionally, the toolkit’s
applicability is evaluated by applying the solutions for the three models from (1). Furthermore,
based on the models’ analysis and the analysis of existing development processes, a structured
development process is proposed.

1.9 Outlook

The thesis is structured as follows.

Chapter 2 introduces the three modelling problems that are discussed throughout the thesis.
Based on them, the requirements for human behaviour modelling are identified and candidate
formalisms are evaluated.

Chapter 3 gives an introduction to the selected modelling formalism. Later it introduces the
intuitive models for the three ADL problems and analyses their parameters and performance in
order to identify successful modelling solutions and problems during modelling.

Based on the model analysis in Chapter 3, Chapter 4 introduces the modelling toolkit that
contains solution patterns to frequent problems. The patterns are evaluated based on their
influence on the model performance and parameters.

Chapter 5 introduces a structured development process based on the modelling experience
made in Chapter 3. It also discusses how this development process differs from existing de-
velopment processes and provides a practical guide to developing successful human behaviour
models for activity recognition.

Finally, the work concludes in Chapter 6 where the process of modelling human behaviour
is discussed, its advantages and drawbacks, as well as the challenges it poses for the field of
activity recognition.



Chapter 2

Modelling Preliminaries

“No sensible decision can be made any longer without taking into
account not only the world as it is, but the world as it will be.”

Isaac Asimov

Chapter Summary: This chapter describes the problems that are to be modelled throughout the
thesis. It also discusses the choice of the use cases, and additionally provides domain analysis of
the problems to be modelled. Moreover, it discusses the requirements a modelling formalism should
satisfy in order to be able to model the three use cases. Furthermore, it provides an insight into the
state of the art of relevant modelling formalisms and discusses their suitability for the problems at
hand.

Chapter Sources: This chapter is partly based on the technical report “Toward a Unified Human
Behaviour Modelling Approach” [160], and the journal paper “Towards Creating Assistive Soft-
ware by Employing Human Behavior Models” [79].

Questions to be answered in the chapter:
What types of behaviour dynamics are there? (In Section 2.2)
What are the problems to be modelled? (In Section 2.3)
What are the requirements for modelling these problems? (In Section 2.4)
What are the candidate modelling formalisms? (In Section 2.5)

How to choose the appropriate modelling formalism? (In Section 2.6)

2.1 Introduction

Capturing the complete diversity of human behaviour in the everyday life is probably an
impossible task, as the user behaviour is dependent not only on the available actions, but also on

17
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personal preferences, the environment, the concrete situation or any number of other unforeseen
factors that could influence the user decision making [34]. However, a human behaviour model
is a simplified and abstracted representation of reality, thus it should be possible for one to
define the purpose of the model and based on that to isolate the most relevant factors affecting
the resulting behaviour. This should result in a representation of the real world that contains
sufficient knowledge about the problem domain and the user in order to provide rich context
information.

To represent different aspects of human behaviour that are common for the activities from
our daily life, three use cases are selected that represent three common types of user behaviour
correlations. The use cases are then analysed for features and factors that have to be included in
the problems’ solutions. Based on the analysis, the requirements a modelling formalism should
possess were identified. Finally based on the requirements, a modelling formalism was chosen
that is to be used for implementing the problems’ solutions.

2.2 Behaviour dynamics and their dependencies

In the context of this thesis, two types of user behaviour are considered — the first is a single
agent behaviour whereas the second is a multi-agent' behaviour.

In multi-agent systems, different types of agent behaviour and their dependencies on other
agents are observed. In such system, each agent is not only interacting with the environment
where she is situated but also with one or more other agents residing in the same environment.
This creates a complex system where the agent state and those of the environment depend on
multiple entities all of them having the ability to influence the given situation. According to
Wooldridge there are various types of interaction in a multi-agent system which create four
types of dependencies between the agents [155, p. 125].

Independence: There is no dependence between the agents and their actions.
Unilateral dependence: One agent depends on the other, but not vice versa.

Reciprocal dependence: The first agent depends on the other for achieving some goal, while
the second depends on the first for some other goal, where the goals are not necessarily
the same.

Mutual dependence: Both agents depend on each other when following the same goal. Note
that mutual dependence implies reciprocal dependence.

Based on the types of dependencies, here we introduce a categorisation of human behaviour
in multi-agent systems. It presents three main groups of behaviour correlations.

Uncorrelated: The uncorrelated behaviours of two or more entities have neither physical nor
intentional interactions between them. This group also comprises the behaviour of single
agents where there is no one else to interact with in the environment. Such correlation
has the property of independence described above.

Physical correlation: The physical relation between the behaviours of two or more entities
is based on physical interactions with the environment and or the rest of the entities,
causally affecting the physical world in which all agents are located. This type of relation
has the properties of unilateral dependence and / or reciprocal dependence.

IThroughout the thesis the terms user, person and agent are used interchangeably.
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Intentional correlation: The intentional correlation between the behaviours of two or more
entities is represented not only by physical correlation between them, but also by the
conscious decision of these entities to follow a common goal or goals. This type of
correlation has the properties of reciprocal dependence and mutual dependence.

Based on the types of behaviour correlation, throughout the thesis three types of problems
are considered, each of them represented by a concrete use case.

Problem describing uncorrelated behaviour: The uncorrelated behaviour problem aims
at describing behaviour where a single person is interacting with the environment while exe-
cuting a goal oriented task. The user behaviour is independent of any other agents’ actions but
still depends on the environment and the person’s capabilities to interact with it.

Problem describing physical correlation: During physical behaviour correlation the users
do not coordinate their actions with each other and do not follow a common goal. Each user is
acting independently of the rest of the agents or interacting with them in a competitive manner.
The actions of the user either do not affect the rest of the users, or when they affect them, it is
only to further the agent’s own goal. Thus her actions either influence the rest of the users in
a negative manner, or when in positive — it is an unconscious side effect of reaching her own
goal and in the process affecting the physical world.

Problem describing intentional correlation: During intentional behaviour correlation the
users coordinate their actions with each other while pursuing a common goal. The actions
of each single user have effect on the actions of the rest of the users, and each user aims at
contributing to the achievement of the common goal that is intentionally chosen by all involved
parties.

2.3 Use cases — analysis

This section describes the three scenarios from the daily life domain and analyses the prob-
lem domains. The use cases are a 3-person meeting, illustrating intentional correlation; a cook-
ing task, describing an uncorrelated behaviour and a multi-user office scenario, that represents
both uncorrelated behaviour and physical correlation (see Fig. 2.1). The analysis of each use
case is structured so that it gives the problem motivation and later describes the problem do-
main with enough details for the designer to be able to identify the elements to be modelled
and the model objectives. Additionally the detailed problem description is used for deriving
the requirements a modelling formalism needs to possess in order to be able to model the prob-
lems. Furthermore, the choice of sensor infrastructure is based on the problem elements that
were identified to be modelled, so that a test dataset can be recorded for evaluating the model
performance.

For each use case, the section is divided in 4 parts — the first is the motivation behind using
exactly that problem for illustrating the given behaviour relation; the second is the problem
description, where the users behaviour, objectives and the environment are described; based
on that, the third section identifies the elements that are to be modelled and the objectives the
given model has; the following part discusses the sensors needed to capture the desired user
behaviour and the resulting dataset with which the future model is to be tested and evaluated.

The final result of this analysis is a detailed specification of all elements involved in the
model implementation and evaluation — these are the model components, the sensors infras-
tructure and datasets and the objectives the models have.
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cooking task

3-person meeting

Figure 2.1: The three use cases illustrating the modelling problems. Clockwise from right to left: the
three person meeting, the office scenario, and the cooking task. All experiments were conducted in the
SmartLab of the Mobile Multimedia Information Systems Chair, University of Rostock [9].

2.3.1 3-person meeting

The first scenario is a three person meeting that aims at describing the behaviour of a team
of users trying to achieve a common goal.

2.3.1.1 Motivation

The 3-person meeting is a typical problem from the smart environments domain where as-
sistive software needs to know the user’s current state and intentions in order to be able to
proactively assist her in achieving her objectives. It is also a typical example of an intentional
behaviour correlation where the three users coordinate their actions in order to achieve a com-
mon goal — namely the completing of the meeting and leaving the room. Thus, on a more
coarse-grained level the users exhibit a team behaviour that is supported by the actions of the
separate team members. As the users all have the same team level objective, they also do not
interfere or contradict the actions of the remaining team members. However, on a more fine-
grained level it is a typical multi-agent behaviour problem, where each of the users acts as a
separate autonomous agent that contributes to achieving the common goal.

The reason for choosing this particular use case as an example of an intentional correlation,
is that it is relatively simple in terms of environment elements and number of users, yet it
contains the basic features making up an intentional correlation — multiple users, common goal,
and synchronisation between the actions of the different users in order to achieve this goal.
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Table 2.1: Elements of the meeting team behaviour and environment. Here the number of users, actions,
objects and locations, as well as the initial and the goal state are described.

Types of elements  Instances

Users one abstract user representing the team

Actions enter; move; presentA; presentB, presentC, discuss; leave

Objects none

Locations door, stage, seat

Initial state the team is outside the meeting room

Goal state the team is outside the room after having presented 3 times and discussed the presentations
Execution length at least 9 actions that need to be executed in order to reach the goal

2.3.1.2 Problem description

A meeting takes place in a meeting room (see Fig. 2.1, right). There are 3 participants that
are in the room during the meeting, each of them is supposed to make a presentation with the
option of a discussion after the end of the third presentation. At the beginning of the meeting the
3 participants enter the room, two of them go to their respective seats and one goes to the stage
area in order to prepare her presentation. After the first presentation is over, the presenter goes
to her respective seat, while the second presenter starts her presentation. The same procedure is
repeated for the third participant and after the last presentation, the participants have the option
to make a short discussion regarding the presentations. The order in which the presentations
are made is arbitrary and could be performed in any order, namely if the presentation of the
first user is denoted by A, of the second by B, and of the third by C, then

(ABC) or (ACB) or (BAC) or (BCA) or (CAB) or (CBA).

After the last presentation, or after the discussion respectively, the participants get up from
their seats and leave the room. The goal of the participants is that all of them have presented,
optionally discussed the presentations, and finally left the room.

There are several locations defined in the room: three seats, three stages, and a door area.
The objective of the system is to recognise the users’ current actions and to discover if they
have reached their team goal at the end of the meeting.

2.3.1.3 What is to be modelled?

As the problem could be considered both as a single team behaviour, or as a multi-agent
behaviour, its solution could also have two representations: one describing the coarse-grained
team actions, and the other, being able to explain the single users’ behaviours behind the team
actions.

Table 2.1 shows the elements that are to be modelled in the case of team behaviour. It can be
seen that a lot of abstractions are made: the three users are represented as a single team agent,
the move action is represented by a single action that could consist of any or all of the users
moving; also the locations are simplified and represented by just one single sitting area, and
one presenting area. Such model elements oversimplify the problem, but on the other hand are
more than enough to represent the team behaviour, especially when each of the agents’ actions
is governed by a common goal that defines their choices.

In difference with the team behaviour, the multi-agent behaviour should be able to also
represent the actions of the single users in the context of the common goal. Table 2.2 shows
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Table 2.2: Elements of the meeting multi-agent behaviour and environment. Here the number of users,
actions, objects and locations, as well as the initial and the goal state are described.

Types of elements  Instances

Users userA; userB; userC

Actions enterA, enterB; enterC; moveA; moveB; moveC; presentA; presentB; presentC;
discussA; discussB; discussC; leaveA; leaveB; leaveC

Objects none

Locations door, stagel, stage2, stage3, seatl, seat2, seat3

Initial state the three users are outside the meeting room

Goal state the three users are outside the room after each having presented and discussed the presentations
Execution length about 20 actions that need to be executed in order to reach the goal

the elements that need to be modelled in such case. It can be seen that now the actions that
have to be tracked are not for the team as a whole, but for the separate users. Of course, their
actions are still synchronised or dependent on each other but their cooperation is based on the
agents’ nondeterminism?. Also now the goal consists of the separate goals of the three users
and in order the overall team goal to be achieved, each of the agents has to have achieved her
own goals.

2.3.1.4 Sensor infrastructure and datasets

As the application of the models is activity recognition, the final step is the decision about
the sensor infrastructure which is to capture the modelled behaviour. The choice of the sensors
could depend on different factors, such as the sensors affordance (or can we get the sensors
based on our budget, the sensors availability, experimental infrastructure, or other external
factors that could limit our choice); the model objective (or what exactly we want to observe
and recognise); sensors accuracy (or within what limit the sensors can deviate from reality)
etc.

The choice of sensors in this case was the UbiSense localisation system [147] that is an
ultra-wide band indoor location system that uses active RFID tags to detect the user location.
Fig. 2.2 shows an extract of the observations from the meeting dataset. Here flag indicates

flag-A x-A y-A flag-B x-B y-B flag-C x-C y-C

1 266.518 133.157 1 143.319 -170.781 1 212.95 -3.945
1 292.253 147.207 0 143.319 -170.781 0 212.95 -3.945
0 292.253 147.207 0 143.319 -170.781 1 205.842 2.184

Figure 2.2: Example observations from the 3-person meeting dataset. Here flag indicates whether there
is any change in the position, x is the x-axis and y is the y-axis that together give a 2D position of the
user in centimetres.

whether there is change in the user’s position (1), or not (0). After the flag, for each user there
are her UbiSense coordinates (in centimetres) in x and y direction.

Based on the use case and the chosen sensor infrastructure 21 experiments were conducted.
20 of them where staged® 3-person meetings with varying presentation order, and with a dis-
cussion at the end of the third presentation. Each of the meetings lasted about 3 minutes and
was conducted in a smart meeting room supplied with UbiSense sensors. Each dataset con-
tained between 2637 and 3176 samples. The last experiment was a real 3-person meeting that

ZHere by nondeterminism we mean the agent’s ability to make seemingly arbitrary choices.
3Here staged indicates that the experiment was conducted according to a predefined execution sequence.
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was not staged, and continued about 50 minutes and where the users decided not to have a
discussion at the end of the meeting. The meeting also took place in the same meeting room
and was recorded with the same sensors. It had 62 295 samples. Additionally, the experiment
was recorded with cameras so that the datasets could later be accurately annotated.

2.3.2 Cooking task

The second use case is a cooking problem where a single user is preparing a meal, having
lunch and then washing the dishes. The objective is for the user to successfully complete a
typical cooking task problem.

2.3.2.1 Motivation

The cooking problem is a Kitchen Task Assessment (KTA) problem [14], where the aim is
to detect whether the person is executing the task in the correct order, and if we stretch it further
to an assistive problem, the system would like to detect inaccuracies in the user behaviour and
assist her in correcting her mistakes and successfully achieving the task objective. This problem
is a typical Activities of Daily Living (ADL) problem and it has applications where the user
could suffer from Alzheimer or similar diseases but the disease is still in early stages and she
wants to preserve her independent lifestyle for as long as possible [128]. The solutions of such
kind of problem are extremely important in Europe where the elderly population is increasing
while the birth rate is decreasing [38, 13].

The cooking task is also a typical single user behaviour and thus uncorrelated, where the
agent’s actions do not depend on other users’ behaviour but where she interacts with the sur-
rounding environment, thus making her behaviour dependent on the environmental factors. It is
also a problem where there is a lot of interaction with different objects. This requires modelling
the problem on a more fine-grained level compared to the meeting scenario.

The reason for choosing this particular example is that it presents a simple cooking recipe,
with just a few ingredients, yet it possesses all basic interactions with the environment taking
place in a cooking situation (manipulating objects used in the everyday’s tasks in the kitchen,
using the cooking appliances, setting the table, eating, and cleaning). This allows us to explore
the complexity of a cooking task and a real world single user behaviour without running into
unnecessary details of complex meals.

2.3.2.2 Problem description

A person is cooking a carrot soup in a kitchen supplied with the necessary kitchen appli-
ances. The person starts by washing her hands, then cutting the carrot, putting it into the pot
and cooking it. Later after the meal is ready, she serves it in a plate, puts water in a glass, and
sits on the table to have a lunch. Finally, after the person has eaten and drunk water, she stands
up, goes to the sink and washes her utensils. There are generally the following experiment
stages that should be executed in the same order.

wash hands -> prepare to cook -> cook carrot soup -> serve meal
-> eat and drink -> clean up

On the other hand, the intermediate actions that take place (such as fill plate, fill glass,
move, etc.) can be executed in any causally correct order. The locations in the kitchen are sink,
counter and table, which are locations that could be reached only by walking from one place
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to another. Additionally, there are fixed locations, or places, which from a certain locations
can be reached only by moving the hand. The places are cupboard and oven, which could be
reached from the counter. Furthermore, different objects with varying functions and properties
are used: cutting board, pot, plate, glass, bottle, knife, spoon, sponge, and the additional water
and carrot.

2.3.2.3 What is to be modelled?

As the cooking task involves a lot of fine-grained activities, it is a more complex problem
than the 3-person meeting (regardless of the fact that in the latter we have people acting in
parallel). Thus also the behaviour and environment elements are much more than in the meeting
scenario.

Table 2.3: Elements of the cooking task behaviour and environment. Here the number of users, actions,
objects, locations, and places as well as the initial and the goal state are described.

Types of elements  Instances

Users one default user

Actions wash, wait, move, take, cut, put, turn on, cook, turn off, open, fill, close, sit down, eat, drink, stand up
Objects cutting board, pot, plate, glass, bottle, knife, spoon, sponge, water, carrot

Locations sink, counter, table

Places cupboard, stove

Initial state the user is at the sink

Goal state the user is at the sink after cooking, eating the meal and washing the dishes

Execution length about 80 actions that need to be executed in order to reach the goal

Table 2.3 shows the elements that are to be modelled. It can be seen that there are 16 actions
that can take place, and most of them (except for wait, move, sit down and stand up) involve
manipulating any of the given objects. Additionally, there are 10 objects in the environment
that are manipulated by the user that indicates the need of a mechanism to cope with a high
number of different choices the model will be faced with (See Fig. A.1 in Appendix A for the
locations of the objects throughout the task).

2.3.2.4 Sensor Infrastructure and Datasets

##locations###

sink moving counter table

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

##fixed places###

sink moving counter stove cupboard table

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

##objectsH##

carrot knife c_board pot w_spoon plate glass bottle spoon sponge
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 2.3: Example observations from the cooking task dataset. Here the observations are either 0 when
no sighting at this location / place / object was observed, and 1 when a sighting was observed. One can
observe the locations, the places and / or the objects.

Fig. 2.3 shows an extract of the observations from the cooking task dataset. The first row
shows the observations for the locations with 1.0 indicating that the person has been observed
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at the given location. The second row shows the observations for the fixed places. The last row
shows the observations for the objects being observed. Seven cooking tasks were recorded.
Each of the tasks lasted about 7 minutes and although the task at hand, namely cooking, was
staged, the behaviour of the participants while achieving their goal was left to themselves.
This resulted in different execution paths leading to the goal state and increased the model
variability needed to be able to recognise the correct behaviour. Additionally, the datasets
contained between 636 and 1207 samples.

2.3.3 Office Scenario

The last use case is an office scenario where one to three users act independently of each
other in order to achieve their separate goals.

2.3.3.1 Motivation

In the office scenario the users are acting in unsynchronised manner and each of them is
following her own goal. The use case could be an example of a smart office, where the system
has to support several different users who do not have a common team goal and who could act
in a competitive manner. The users either do not interact with each other, or when interacting it
could lead both to positive or negative effects on the separate user’s goals. Although in general
the office scenario is a multi-user scenario, in the scenario variations there are multi-user as
well as single user instances in the cases when only one person was present in the office.

The goal of the system is to recognise the user actions and identities (namely who executed
which action) based on coarse-grained information about a location being occupied. For that
reason, the model should be able to represent not only coarse-grained activities but also actions
that involve objects manipulation and user identification. It could be said that this use case
is the middle ground between the meeting scenario and the cooking task as there are objects
that the model has to reason about like in the kitchen task assessment, but on the other hand
here we have a multi- agent behaviour that is observed based on location information. How-
ever, in difference with the meeting scenario, here the users do not try to cooperate or act in a
synchronised manner.

2.3.3.2 Problem description

In the office scenario a varying number of users enter an office room that contains a printer
and a coffee machine. The objective is to print some documents and / or to get a cup of
coffee. The behaviour of the users is either uncorrelated or physically correlated and everyone is
independently choosing their actions. To make the problem more complicated, it is possible that
the water or the ground coffee in the coffee machine are not enough, and in such case the coffee
machine has to be refilled with ground coffee and water before making coffee. Additionally, it
is possible that there is no paper in the printer, or that paper is stuck inside and the printer has
to be repaired.

The goal of the users is to have their documents printed and to get coffee. The order in
which the actions are executed, or the persons who perform the different tasks is arbitrary.

2.3.3.3 What is to be modelled?

Table 2.4 contains the elements of the user behaviour and the environment. It can be seen
that the number of users varies. This is due to the fact that the behaviour is unsynchronised
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and any of the users could decide for herself to appear in the office or leave it at any time. Ad-
ditionally, the actions to be modelled are fine-grained actions that involve the manipulation of
different objects, and any of the actions can be executed by any of the agents. It is possible that
the agents incidentally help each other achieving the goal, or block each other, but otherwise
each of them makes her decisions based on her own goals.

Table 2.4: Elements of the office behaviour and environment. Here the number of users, actions, objects
and locations, as well as the initial and the goal state are described.

Types of elements | Instances

Users one, two, or three users

Actions move, take, put, refill ground coffee, refill water, repair printer

Objects paper for the printer, water, ground coffee

Locations door, printer, paper stack, coffee machine, water tap, coffee jar

Initial state the office is empty

Goal state the user(s) has (have) printed the documents, taken the coffee and left the room
Execution length 5 to 20 actions that need to be executed in order to reach the goal

2.3.3.4 Sensor Infrastructure and Datasets

The types of sensors used were the SensFloor sensors which uses radio modules and prox-
imity sensors to detect user presence without providing any additional identity information
[51, 138]. Using the SensFloor, it provided binary observations whenever someone was present
at the given locations (namely O for no presence, and 1 for presence). Fig. 2.3 shows an extract

Door Printer Coffee-Machine Paper-Stack Water-Tap Coffee-Jar

0 1 0 0 0 0
0 0 0 1 0 1
1 0 1 1 0 1

Figure 2.4: Example observations from the office scenario dataset. Here for each location O indicates
that there was no sighting, while 1 indicates that someone was at the given location.

of the observations from the office scenario dataset. It can be seen that there are multiple sight-
ings at the same time step but no information about the user identity at the given location. This
means that the model to be built should be able to reason not only about the users’ actions but
also about who is associated with which action and location.

Based on the problem domain and the sensor infrastructure 6 experiments were conducted
with varying number of participants: 4 one-person datasets, one two-person and one three-
person dataset. The duration of the different experiments was between 50 and 200 time steps.
The users acted autonomously and in unsynchronised manner without any verbal communica-
tion. This resulted in different action execution sequences as well as in different users perform-
ing different set of tasks in the two multi-user experiments.

2.4 Requirements for HBM

In order to choose an appropriate modelling formalism for the problems, we have to first
identify the dynamics and relationships between the elements that build up the given user be-
haviour. For that the modelling formalism should possess certain properties (or requirements)
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in order to be able to successfully capture the targeted behaviour. These requirements are simi-
lar to the software engineering requirements and could be considered as a special case. From a
software engineering perspective a requirement was formally defined in the IEEE 610.12-1990
standard [71] in the following way.

(1) A condition or capability needed by a user to solve a problem or achieve an objective.

(2) A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed documents.

(3) A documented representation of a condition or capability as in (1) or (2).

In our case a requirement is a condition or capability needed by a model designer to solve
a modelling problem or to achieve an objective. This capability should be possessed by the
modelling formalism used for solving the problem.

By analysing the problem domains and the modelling objectives, the set of properties can
be derived that represents the requirements needed for describing the users’ activities. This is
done by identifying all relations between the actions derived in Section 2.3. For example, in
the meeting scenario, the person enters the room and only after entering she is able to move to
the seats or the stage. This indicates the properties sequence and dependence of an action on
another action. Meanwhile, in the same scenario, there is another user acting in the environ-
ment, which indicates the requirement for modelling parallel actions. This process is repeated
for all actions and their relationships with the rest of the actions in the dataset, and then for
all three problems. Fig. 2.5 shows the process with which the requirements were identified. It

[new requirement
identif ed]

action 1
action 2

Identify the
relation
between action
i and actions
..... n}#i

Add
require-

List of
requirements

—_—

[ifi<n; [ifi<n] [ifi=n]
then increase i with 1]

action n

Figure 2.5: The algorithm shows the procedure for identification of requirements that are needed for
describing human behaviour dynamics.

can be seen that the relation between each action in a given problem and the rest of the actions
for this problem is identified; later if the relation was not previously identified for other pair
of actions, it is saved in a list containing all the requirements for all problems. The concrete
relations between the actions are defined in the next section.

This process resulted in 14 requirements that a formalism should possess in order to be able
to successfully describe the behaviour dynamics in the problems from Section 2.3. Addition-
ally, based on the model application, four more requirements were identified that are needed
for achieving the model purpose. They were derived based on the designer’s experience in the
field of activity recognition.

For that reason, the identified set of requirements for all three use cases is divided into two
main groups — behaviour based requirements and application-based requirements.

Behaviour-based requirements

e Requirements for procedural modelling: composition, sequence, repetition, inter-
leaving activities, choice, enabling, disabling, priority, independence, dependence;
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e Requirements for parallel execution modelling: parallelism, synchronisation, sus-
pend, resume;

Application-based requirements

e Requirements for probabilistic modelling: observation models, probable durations
of activities;

e Requirements for modelling purpose: activity recognition, unobserved actions;

In the following section, the requirements are explained in detail, as well as the need for
having them.

2.4.1 Behaviour-based requirements

To formally describe the requirements that represent the behavioural relations between the
different actions, the notation of Communicating Sequential Processes (CSP) introduced by
Hoare [67] is used. In it a process is described as a pattern of behaviour in which a given object
can be involved. Each process then consists of a set of events, or actions of interest which are
called the process’s alphabet [67, p. 23]. A detailed description of CSP and the corresponding
notation can be found in Appendix B. Here we make use of these notations and express the
requirements in terms of events and processes. To do that the notion of action as given in
Definition 2 (in Chapter 1, page 5) is considered to be equivalent to that of event in CSP, and
the notion of behaviour as given in Definition 4 (in Chapter 1, page 6) to be equivalent to
process in CSP (for more information see Appendix B).

Sequence: The first requirement for expressing user actions is the ability to execute actions
one after another. It is the most essential of the modelling requirements, as without being able
to execute actions sequentially, it would be impossible to represent any execution path leading
from the initial world state to the goal. For example if we first enter the room, then go to the
stage, we say that these two actions are executed sequentially. In terms of CSP we express
sequential action execution based on the definition of traces (see the explanation of traces in
Appendix B, page 204).

Definition 8. (Sequence) Given a process X with an alphabet a X, and events x and y such
that {x,y} € aX, then a sequence is represented by the trace (x,y) indicating that x was
executed before y.

Parallelism: The next requirement is that of parallelism which allows executing actions
concurrently. This requirement is essential in multi-agent situations where several users are
acting in the same environment or when several actions can be executed at the same time. For
example, if two persons are walking in the room, we say that they are executing the action
walk in parallel. To express parallelism in terms of CSP we use the notion of concurrency as
explained in Appendix B (page 205).

Definition 9. (Parallelism) Given two processes X and Y, we call them parallel if the events
of the first process are possible without the events of the second process and vice versa, and if
both processes are executed concurrently. We denote such process as X||Y .

Repetition: Repetition allows executing an action multiple times. This requirement is
necessary in cases where the user is doing the same action several times like for example eating
repeatedly, or washing the same utensil several times. Here we assume that the recursion is
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not terminated by an external factor but rather by some internal unobserved state. To define
repetition according to the CSP notation we use the concept of recursion explained in Appendix
B (page 204).

Definition 10. (Repetition) Given a process X with an alphabet o X, and an event x such that
x € aX, then we call repetition the process where uX : aX.(r — X).

Non-deterministic choice: Non-deterministic choice allows selecting between several ac-
tions when there are no external factors that can control the decision of which action to be
selected. This requirement could be interpreted as the user’s free will to perform a given action.
For example, if we enter the room and have the option either to sit down, or go to the stage,
but there is no other external factor that can influence our decision. To define the requirement
according to the CSP notation we use the concept of non-deterministic choice explained in
Appendix B (page 205).

Definition 11. (Non-deterministic choice) Given two processes X and Y, then we say that X
or'Y is chosen if the resulting process will either behave as X or as Y and the selection is done
arbitrarily. We denote non-deterministic choice as X MY

Enabling: Enabling represents the interaction between two actions, where the execution
of the first action allows the execution of the second that previously was not possible. This
requirement is especially important in any case where the person is following a given goal and
not just randomly executing actions, as well as in cases where there is an interaction between
different users in a multi-agent setting. For example, we enter the room and want to sit down,
but there is a book on the chair. We cannot sit down before the book is removed. We say that
removing the book enables us to sit down. To express the requirement according to the CSP
notation, we use the notion of traces as explained in Appendix B (page 204).

Definition 12. (Enabling) Given a process X with an alphabet a X = {x,y}, we say x enables
y if the trace (x,y) is a valid sequence and the trace (y,x) is not a valid one.

Disabling: Disabling represents the interaction between two actions, where the execution
of the first action forbids the execution of the second. Additionally, given the first action was
not executed, the second could still be executed. The requirement is the opposite of enabling
and its existence is important in the same situations as with its counterpart. Using the example
with the book, if we put a book on the chair, this will disable us from sitting down. To express
the requirement according to the CSP notation, we use the notion of traces as explained in
Appendix B (page 204).

Definition 13. (Disabling) Given a process X with an alphabet a X = {x,y, z}, we say that y
disables = if the trace (x,z) is a valid sequence, but the trace (x,y, z) is not.

Dependence: Dependence allows the execution of an action to be influenced by the effects
caused by other actions. The requirement is extremely important in any situation where the
actions are causally related or the user(s) is (are) following a common goal. It is strictly related
to the requirements enabling and disabling. Basically, any action that either enables or disables
other actions poses the property of dependence.

Definition 14. (Dependence) Given a process X with an alphabet a X = {x,y}, we say that
x is dependent on y or vice versa, only if one of the two requirements enabling, or disabling
holds for x and y.
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Interleaving: Interleaving allows expressing behaviours where actions from each of the
behaviours are executed sequentially until both behaviours are completed. Such requirement
is important in situations where a person cannot do two activities sequentially, but who is able
to execute parts of the first activity in between parts of the second activity. For example, while
we are cooking, the phone rings, so we seize our activity in order to answer the phone, then
return to cooking. To express the requirement in terms of the CSP notation we represent the
behaviour with a process and the actions it is composed of with events, then we use the notion
of interleaving processes described in Appendix B (page 205).

Definition 15. (Interleaving) Given two processes X and Y, we say that X interleaves Y, if
events from X are executed in between events from'Y . We denote this process with X|||Y".

Priority: Priority represents the deterministic version of choice, or with other words the
selection of an action from several actions based on some external factor known to the environ-
ment. Taking the example for the requirement of choice, if we beforehand know that we are the
first to present, then we will prefer to go to the stage instead of sitting down. CSP defines such
interaction as deterministic choice (see Appendix B, page 205) between two processes where
the environment can control which of the two will be selected. This control is executed on the
first action being executed and represents exactly the notion of priority.

Definition 16. (Priority) Given two processes X and Y we say that one has priority over the
other, if the executed process behaves either as X or as Y and if the environment has control
over this choice. We denote priority with X[|Y.

Independence: Independence allows the execution of an action not to be influenced by
other actions. That means that given a set of actions, the independent action can be executed in
any order and there is no action that can influence the execution of this action. Such requirement
is important in cases where there are actions unrelated to the current goal, or when in multi-
agent settings the agents are acting without interacting with each other. For example, within
any scenario, we can stop for a moment and wait, and this action does not have any influence
on the rest of the actions. To express this requirement in terms of CSP, we use the notion of
traces (page 204).

Definition 17. (Independence) Given a process X with an alphabet o X = {x,y1,...,yn } where
n+ 1 is the number of distinct events, we say that the event x is independent if it can be executed
in any order (x,y1,...,Yn), (Y1,%,-..,Yn)s --r (Y1,--.,Yn,x). Furthermore, none of the y; events
has the requirement of dependence with respect to x.

Synchronisation: Synchronisation allows setting the execution of several actions or pro-
cesses in parallel only after a certain action is executed. The requirement is important for
synchronised multi-agent behaviour where several users work in parallel toward achieving a
common goal and where certain parallel actions can be executed only after a given activity was
successfully executed. For example, in order for a presentation to start, each of the users have
to sit down and prepare to listen. That means they have to synchronise their actions in order
to start the presentation. To define this requirement in terms of CSP we use the above defini-
tion of parallelism (page 205) and the definition of composite sequential processes (page 206)
explained in Appendix B.

Definition 18. (Synchronisation) Given processes X, Y and Z, we say that X synchronises Y
and Z, if Y||Z and if X has to be executed before that in order for (Y ||Z) to take place. We
denote this requirement as X; (Y||Z).
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Suspending: Suspending allows interrupting a behaviour with another action or behaviour.
The requirement is needed in multi-agent situations where the actions of one agent (or an
external factor) can interrupt that of another agent. For example, while we are presenting,
somebody is entering the room thus interrupting our presentation. To express suspending in
terms of CSP we use the notion of interruption described in Appendix B (page 206).

Definition 19. (Suspending) Given two processes X and Y, we say that X was suspended by

Y, if while X was in progress, an event from Y was executed thus interrupting X. We denote
this as XY .

Resuming: Resuming allows the continuing of an action after it was previously suspended.
The requirement is closely related to suspending and can be thought of as the second part of a
process that first interrupts a behaviour by executing another behaviour and after the execution
of the second behaviour, it resumes the first one from the state it was in before being interrupted.
For example, after being interrupted, we later continue our presentation from the point where
we were previously interrupted. To describe this interaction between processes, CSP uses the
notion of alternation described in Appendix B (page 206).

Definition 20. (Resuming) Given two processes X and Y, we say that X was resumed by Y,
if XY and if later X continued its execution from the state it was in before being suspended.
We denote that as X @Y .

Composition: The last property is that describing composite behaviour, or behaviour built
up of other behaviours. As such composite behaviour can consist not only of sequential com-
posite processes that are described in Appendix B, but also of parallel or interleaving processes,
we define the notion of composition based on that of parallelism (page 205), interleaving (page
205), and composite sequential processes (page 206).

Definition 21. (Composition) Given processes X, Y, and Z, we say that X is a composition,
fX=UIZ2),orX=(Y;Z),or X =(Y|||2).

2.4.2 Application-based requirements

After defining the behaviour-based requirements, below the application-based requirements
are presented. To define them along with the CSP notation we introduce the notion of observa-
tion.

Definition 22. (Observation) Given a process X with an alphabet a X = {x1,22,...,xy}, we
call Ox ={0z,,0z,,...,04,, } the set of physical sightings that capture this process. Such sight-
ings are produced by sensors that observe the environment.

Additionally, we use the notion of probability and conditional probability as described in
probability theory [6, p.1—43].

Probabilistic durations: Probabilistic durations allow expressing actions’ durations in
terms of probabilistic distribution, i.e. describe what the probability is of the action contin-
uing to be executed in the next time step.

Definition 23. (Probabilistic durations) Given an event x and a time interval ; that will elapse
between the begin and the end of x, we say that x has a probabilistic duration if it started at
time t, and it is being executed until a time interval §; ~ p(0¢|x) has elapsed.
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Observation model: An observation model allows expressing the connection between be-
haviour and observations, i.e. what sensor reading is associated with which actions in the
model.

Definition 24. (Observation model) Given a process X with an alphabet a X, an event x € a X,
and a set of observations Ox = {01,02,...,0,}, the observation model provides the probability
of a certain observation o; being true given x, or with other words P(0;|z).

Unobserved actions: Unobserved actions allow modelling actions that were executed by
the user but not observed by the sensors due to sensor granularity or unreliability.

Definition 25. (Unobserved actions) Given a process X with an alphabet o X, an event x €
aX, and a set of observations Ox = {01,029, ...,0n}, we call an action x unobserved, if there
exists no observation that gives the probability P(o;|z).

Activity recognition: To perform activity recognition the model allows inferring activities
based on a set of observations. With other words the model should be able to provide the
probability that a certain activity was executed, given the observations.

Definition 26. (Activity recognition) Given a process X with an alphabet a X, an event x €
aX, and an observation o at time t, we say that the model performs activity recognition, if it
provides the probability of P(x|oy).

2.4.3 Do the requirements represent the actual need? - A study

The requirements were identified using a specific process and based on the designer’s ex-
perience. Yet one obvious objection against their validity could be the possibility that they are
just the designer’s biased interpretation of what is needed for modelling the problems. Is it
possible that the requirements in their current form are needed only by the designer herself?
Would researchers from other fields of computer science understand the requirements and think
them necessary at all?

To answer these questions, a questionnaire was distributed among 18 participants with dif-
ferent academic degrees* and from different fields of computer science’ in order to identify
problems in the requirements specification. To do that, they were asked questions about the re-
quirements specification regarding the given problems; about a possible modelling formalism
that could be a solution for the modelling problems; and finally for each requirement, they had
to give an example from the problem domain in order for the evaluator to identify whether the
participant understood the requirement at all.

To answer the questions above, several hypotheses were assumed. They were then investi-
gated based on the answers provided by the study participants. To quantify the answers a Likert
scale was used with five items from 1 to 5 where one is the lowest quantity and five the highest.

These quantities are referred to as scores®.

Hypothesis 1: The majority of the requirements have a median’ score of above 3.

4The highest degree the participants have obtained was as follows: Abitur (2), Diplom (11), Master (4), and
Doctor degree (1).

The participants were from the fields of activity recognition (7), data analysis (2), electrical engineering (1),
modelling and simulation (2), networking (2), software engineering (2), and visual computing (2).

%For more information about Likert scales see Appendix C.

7As explained in Appendix C, the Likert scale is assumed to be ordinal, thus we use the median and not the
mean.
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Figure 2.6: Average scores per requirement. For each requirement there are 8 features that are plotted,
namely, verifiability, validity, clarity, completeness, feasibility, testability, traceability, and importance
(for more information on the properties, see Chapter 5). The varying grey and white colours enclose the
features for a given requirement. To calculate the average score for a given feature the median for all
answers concerning this feature was taken.

This hypothesis aims at showing that the requirements identified by the model designer are
understandable and clear for the majority of participants that took part in the study. Many of
them were not closely related to the field of activity recognition, and the opposite could also
be possible — the specifications could be not well understandable, misleading, or clashing with
terms from the participants’ filed of work. The results showed that the majority of the answers
were of score 4 which is the second strongest answer possible. Figure 2.6 shows the scores per
requirement, where the x-axis indicates the requirement with its different features, while the
y-axis indicates the score it was assigned. This shows that the requirements specifications were
acceptable for the participants.
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Figure 2.7: Number of people who understood a requirement and number of comments per requirement.
The left figure indicates the number of people who understood the requirement where with beige, the
requirements with score of 4 and above are shown, whereas with brown — those with score under 4. The
plot to the right indicates the number of comments per requirement. It has the same colour scheme and
legend.
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Hypothesis 2: The number of people who understood a requirement is higher compared to
those who did not understand it.

This hypothesis aims at showing that the requirements were clearly specified and most of
the participants were able to understand their meaning and to give an adequate requirement
example from one of the 3 problems. Fig. 2.7, left, shows the number of people who under-
stand a requirement. It could be seen that there is no requirement that was not understood by
at least half of the people (synchronisation having the lowest number of people that understood
it). It can even be seen that with small exceptions, the requirements were understood by at least
15 out of the 18 participants, which stands to show that the hypothesis is true for this study.
This indicates that the requirements the model designer identified are mostly meaningful for
researchers from different fields of computer science. It can also be seen that the requirement
synchronisation that was not well understood also got a lower score for its properties (with
brown). This is however not the case with the requirement for interleaving that was understood
by 14 out of the 18 participants, yet got a score under 4. This indicates the participants did not
give their evaluation based on how well they understood a requirement, but rather tried to give
an objective rating also of requirements that were well understood. Furthermore, Appendix
C.3 contains some more requirements’ evaluations® given by the participants. In them it can
be seen that each requirement got an average score of 3 and above for its verifiability, validity,
clarity, completeness, feasibility, testability, and traceability. These results further support the
hypothesis that the requirements were generally understood and accepted as valid.

Hypothesis 3: The requirement’s score is inversely proportional to the number of com-
ments for the given requirement.

This hypothesis indicates that the more comments were given per requirement, the less clear
it will be, thus the score will also be lower. Figure 2.7, right, shows that the assumption holds
for the gathered data and the requirements with scores under 4 (interleaving and synchroni-
sation) also got the most comments. It also shows that only two of the 19 requirements got
average scores under 4 and also more than 15 comments per requirement, indicating that the
requirements as a whole were well understood. Also the fact that there is no requirement with-
out a comment suggests that the participants put effort in understanding and even proposing
improvements for requirements that received high evaluation score.

The next hypothesis aims at identifying whether the field of work influences the scoring.

Hypothesis 4: The participants from the field of activity recognition and data analysis gave
higher scores for the requirements’ specifications.

This hypothesis is based on the assumption that participants from the fields of activity
recognition and data analysis will have better understanding of the concept of activity recogni-
tion and thus will more easily understand the requirements compared to those participants that
come from other filed of computer science. Figure 2.8(b) shows that the hypothesis holds for
all the participants except for user 17 who had an average score of 3. However if we assume

8The evaluation was based on the properties a requirement has to possess according to the software require-
ments specification (SRS) semantic properties described in [39] and the model requirements properties defined in
[11]. A detailed description of the properties is given in Chapter 5. Furthermore an excerpt of the questionnaire
can be seen in Appendix C
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(a) Modelling formalisms proposed by the participants (b) Average scores per user based on the user field of
work

Figure 2.8: Proposed formalisms (a) and scores for users from activity recognition and data mining (b).
In (b), the beige boxplots indicate participants from the field of activity recognition, while the brown
ones — from the field of data mining. The white boxplots represent participants from other field of
science.

that user 17 is an outlier?, the hypothesis could be considered as valid. This stands to show
that the requirements specification was well understood also by other scientists from the field
of activity recognition and data mining, and did not reflect only the personal interpretation of
the model designer. The fact that the requirements received better scores from people from
these two fields indicates that the specifications are clearly defined for the future users of these
requirements. These are exactly the designers of activity recognition systems. Based on this
result, in the next section the requirements were prioritised by a group of activity recognition
and data analysis experts.

From the above results, it can be concluded that the requirements for human behaviour
modelling for the three problems are accepted as understandable and necessary also by other
researchers from the field of activity recognition. Furthermore, participants from other fields of
computer science found them generally clear, indicating that the requirements reflect the needs
of the problems to be modelled even for persons who are not biased by previous experiences in
the field of activity recognition.

2.4.4 Prioritisation

The results supporting Hypothesis 4 from the previous section indicated that the researchers
from the field of activity recognition and data analysis have a clear understanding of the require-
ments. For that reason, 8 of the participants in the study from these two fields were asked to
discuss the requirements importance and priority. The reason for that is that when choosing

9This is suggested by the assumption that she is always choosing the middle ground. The assumption is made
based on the fact that participant 17, who also claimed to have an expert knowledge, almost always gave the same
score for every requirement. This could indicate that they did not really try to answer the questions, or that their
actual knowledge was not sufficient for answering adequately.
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an appropriate modelling formalism, if more than one formalisms cover the same number of
requirements, the one with an overall higher requirements priority can be selected. The re-
quirements’ priorities can also be used during the model design phase when the impact on
conflicting requirements to be implemented is taken into account. In order to be able to come
to convergence about the requirements importance, their prioritisation was restricted to only
three values: important, unimportant, and irrelevant.

Table 2.5: The table shows how the requirements are prioritised. The range of different priorities is
limited to three values: important, unimportant, and irrelevant.

Requirement 3-person meeting cooking task office scenario
sequences important important important
parallelism important unimportant important
composition important important important
interleaving irrelevant important unimportant

'E’(g repetition unimportant important unimportant

8 | choice important important important

5 [ enabling important important important

8 disabling important important important

< — - - -

£ | priority important important important

@ | independence important important important
dependence important important important
synchronisation important irrelevant irrelevant
suspending unimportant unimportant irrelevant
resuming unimportant unimportant irrelevant

§ | prob. durations important

'§ observation model important

= | unobserved actions irrelevant

2‘ activity recognition important

Table 2.5 shows the requirements prioritisation. It can be seen that some of the require-
ments have different priority depending on the use case with suspending and resuming being
either unimportant or irrelevant in each of the cases. This indicates that they can be mostly
ignored for the solution of the problems. Furthermore, in the application-based requirements,
the requirement for unobserved actions was deemed irrelevant, with the suggestion that such
requirement could be handled by the observation model instead of the human behaviour model.
For that reason, the latter will not be discussed further in this thesis.

Based on the requirements and their importance, in the next section several candidate mod-
elling formalisms are discussed.

2.5 Human behaviour models for activity recognition

To implement a solution for the three modelling problems, first a suitable modelling for-
malism has to be selected. The previous section already discussed the requirements such for-
malism should possess in order to be successful. Here, based on these requirements and their
importance, several candidate formalisms are discussed and finally the one satisfying the most
requirements is selected. Additionally, the discussion is restricted to formalisms that are able
to incorporate prior knowledge in order to support the decision making of the corresponding
activity recognition system.

Fig. 2.8(a) shows candidate formalisms proposed by the participants of the evaluation study.
It can be seen that many did not give any suggestions. On the other hand, those who proposed
solution formalisms gave as examples several rule-based approaches, some probabilistic ap-
proaches and some calculus approaches like Petri Nets and DEVS that are usually used for
testing the capabilities of a system. As we are interested in approaches for activity recognition
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that are able to incorporate prior knowledge from which probabilistic models can be generated,
we consider the rule-based approaches ACT-R, CCBM, and PDDL. Additionally, concurrent
task trees are considered together with CTML task models as it was already shown that one
can generate probabilistic models based on those behaviour models [58, 158]. Furthermore, we
regard some additional formalisms as suitable. The study participants might not be aware of
them, but it has already been shown that they are applicable in the field of activity recognition
and mostly comply with the requirements for context-aware systems described in Chapter 1.

2.5.1 Some formalisms that are not regarded

There are formalisms that may seem suitable for the three modelling problems, but that are
not considered in this work for a variety of reasons. The first big group of such formalisms
are the ontologies used for activity recognition [104, 119]. Although vastly applied to this field
of science, they are not regarded here because they do not represent causal relations between
actions, but rather hierarchical dependencies between classes. This, although giving a mecha-
nism for correctly classifying the activities, could pose a problem when trying to reason about
actions’ histories and their causes.

This leads to the second group of formalisms that are not considered, and where ontologies
also fall — these are approaches that assign just action labels but do not make use of semantic
goals. Such formalisms once again have the drawback that they are not able to reason about the
causes behind actions. They are also not able to provide rich context information related to the
action’s specific causes.

Finally, approaches that support semantic goals but were never applied to activity recogni-
tion, or which were never extended for this application, are also not regarded. Typical example
of such are planning formalisms that were never applied to activity recognition (e.g. Hierarchi-
cal Task Networks with Partial Order Planning [123, p. 406—415]). The reason for that is to find
a formalism that can be directly applied or needs minimum modifications in order to be able
to support activity recognition. This is to reduce the designer effort in producing a successful
human behaviour model for activity recognition. One could argue that many formalisms can
produce promising results, provided they are extended for the purpose of activity recognition.
However, the goal of this work is not to provide a new formalism for activity recognition, but
rather to show that models supporting semantic goals can be successfully applied to activity
recognition problems, and based on that to introduce a development process for such models
for activity recognition.

2.5.2 Adaptive Character of Thought - Rational

The Adaptive Character of Thought -Rational or ACT-R is a cognitive architecture dealing
with the process-level theory about human cognition. It has its roots in cognitive science and
is concerned with explaining how the human mind works, and how humans think, perceive and
act [2, 4]. ACT-R is a symbolic/subsymbolic production system and assumes that knowledge
forms the basics of cognition and that there are two kinds of knowledge — declarative (facts),
and procedural (skills and rules). Additionally, there is also the input from the outside world
that can be in the form of visual, aural etc. perception. The declarative knowledge is static and
is stored in the form of chunks which is one of the basic ACT-R elements and can be thought
of as pieces of static memory that we can retrieve from our knowledge base. The procedural
knowledge, on the other hand, is a set of production rules that explain how to use the declarative
knowledge and how to react in a given situation.
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ACT-R is composed of different elements — it has several different limited-capacity buffers
which together build up its context. The buffers are the goal buffer, the retrieval buffer, the
visual buffer, and the manual buffer. Each buffer is supported by one or more theoretically
motivated modules. Each of the modules represents a specific cognitive area and has been
shown to correspond to similar anatomical faculties in the brain [3]. The first module is the
declarative which is responsible for the storage and management of the factual knowledge, also
known as chunks. It is also responsible for the chunks’ activation values which are basically
functions of how recently and frequently a given chunk was retrieved. The second module is
the procedural which is similar to the declarative, only it stores the procedural knowledge, or
productions. The subsymbolic information about the productions is represented by an expected
utility, which is learned over time based on a temporally discounted reinforcement learning
function [50]. The procedural module provides algorithms for matching the contents of the
buffers to production rules where the best match is selected to fire (namely to be executed) and
later it handles the implementing of the actions’ results. The intentional and imaginal modules
cope with the task-oriented cognition. The goal buffer, associated with the intentional module is
responsible for identifying the model’s current goal, while the imaginal buffer provides support
for intermediate state representations. The visual module is responsible for the system to see
elements in the outside worlds, while the aural module recognises sounds in the environment.
The temporal module, on the other hand, is responsible for keeping track of the elapsed time.
Finally, the manual and speech modules are the model’s actuators, namely they are responsible
for the physical and audio interaction with the outside world.

Each of the modules described above is involved in complex interactions which compose
the ACT-R’s predictive power and the ability to explain the human thought processes. On the
other hand, the modelling of the perceptions and actions is limited to how the cognition utilises
them, thus some processes such as the actual execution of actions, are outside the architecture’s
scope.

2.5.2.1 Applications

ACT-R has variety of applications — from simulating human cognition in order to give better
understanding, to providing user assistance based on those cognitive models.

For example, in his work [75], Juergen Kiefer models individual human behaviour in human
multitasking by using ACT-R. He investigates individual cognitive strategies in dynamic mul-
titasking environments and the resulting theoretical consequences for modelling. He achieves
that by using a car driving simulator where the test participants executed a compound con-
tinuous task. The test results showed that under multitasking cognitive strategies are used to
optimally adapt to a given situation, thus the strategies were successfully transferred into ACT-
R and their usage was able to explain individual differences in dynamic task environment.

Another work based on ACT-R investigates the modelling of the progression of Alzheimer’s
disease with application in smart homes [128]. The authors present a way of modelling and sim-
ulating the progression of dementia and also evaluate the performance of executing an activity
of daily living. In difference with other works form this area of research, the paper focuses
on modelling and simulating erroneous behaviour and its progression parallel to the disease
progression, rather than the modelling of normal behaviour. The simulated behaviour of 100
people suffering from Alzheimer’s disease was compared with the results of 106 patients per-
forming an occupational assessment. The comparison showed that the modelled behaviour
closely resembles the behaviour of real patients and the authors concluded that the model is
able to capture not only the erroneous behaviour but also its progression in the different phases
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of the disease.

In the field of activity recognition and assistance, ACT-R was successfully used to model a
robot’s understanding about human actions in a human-robot team scenario [66]. In it, a model
of the available human actions is created and later different simulations run, each of which has
different initial state and prior knowledge. Additionally, all possible execution sequences in a
model are followed and the probability for these sequences is calculated. In that manner, when
the robot observes its teammate executing a given action, the robot is able to reason about the
cause of it and give advice, or if needed, explain to the human that she has made a mistake. This
work is extended in [146] where the authors attempt to give the robots a deeper understanding
of human cognition and fallibilities by applying cognitive models to tasks like gaze following,
hide and seek, interruption and resumption.

2.5.2.2 Requirements fulfilment

In the previous section, the requirements a formalism should satisfy were discussed. Here
we analyse which of them ACT-R satisfies.

Composition: ACT-R is able to express composition by defining actions in the form of
IF-THEN clauses which contain causal relations between different actions.

Sequence: Basically, every formalism should be able to express sequential actions. ACT-R
is no different. Actions executed in sequence can be defined using productions, in the following
way.

Production 1: IF the goal is to execute A, and B was not executed,
THEN execute A.

Production 2: IF the goal is to execute B, and A was executed,
THEN execute B.

Parallelism, Synchronisation, Suspending and Resuming: Executing parallel actions or
modelling users that act in parallel can be achieved by creating separate models for each agent,
and then running the models simultaneously. The synchronisation between the different models
is then done by a separate model that manages the interactions between the agents, similar to
the communication model proposed in [95]. The same applies for suspending and resuming a
composite action — this can be done by the execution of another action from the second agent
which effect is communicated to the first agent via the communication model, thus interrupting
the action the first agent is conducting.

Repetition: ACT-R does not have an explicit mechanism for modelling repeating actions.
However, using the production rules, one can easily implement such. Additionally, a counting
mechanism can be implemented in order to keep track of the number of times the action was
executed.

Production 1: IF the goal is to execute A, and A was executed, and the counter
is less than MAX_COUNT,
THEN execute A; increase counter.

Choice and Priority: The choice is modelled when two or more productions have the same
IF clause. Then, which action is executed can be controlled by the different types of heuristics
ACT-R provides. These are

Salience: An operator may be prioritised by applying a weight to it.
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Recency: The most recent operator may be prioritised.

Refractoriness: An operator that was applied once should not be applied again. This strategy
helps to avoid creating infinite loops.

Specificity: The operator that fulfils the most predicates of the goal state is preferred to other.

Dependence, Enabling and Disabling: Dependence in its two forms — enabling and dis-
abling, can be modelled by using the same production mechanism. Below Production 1 shows
an example of enabling, and Production 2 shows an example of disabling.

Production 1: IF the goal is to execute A, and B cannot be executed,
THEN execute A; B can be executed.

Production 2: IF the goal is to execute A, and B can be executed,
THEN execute A; B cannot be executed.

Interleaving: There is no explicit mechanism for modelling interleaving actions. However,
they can be modelled by allowing two composite actions to be executed in an interleaving way.

Production 1: IF the goal is to execute A and B,
THEN execute Al; execute Bl; execute A2; execute B2.

Independence: Independence can be easily achieved by just defining IF clause that does
not depend on any other action.

Production 1: TF the goal is to execute A,
THEN execute A.

Application-based requirements: In its standard form ACT-R is not able to cope with
probabilistic durations. Regarding an observation model, the standard ACT-R does not possess
such. Still it was shown in [66] that it is possible to reason about the user actions’ based on
observations perceived by ACT-R’s perception modules (like visual and audio module). Hiatt
et al. [66] also showed that it is possible to apply ACT-R for activity recognition.

2.5.3 ConcurTaskTree

CTT which stands for ConcurTaskTree is a notation that was first introduced by Paterno
[108] and which provides support for design and analysis of complex task models in multi-user
environments. With it a compound activity is represented as a task tree, where each tree node
represents a task which allows composite tasks to be decomposed into subtasks. Various tem-
poral operators are used for expressing the relations between the tasks in the tree. Each task is
associated with a specific type, a category, attributes, and objects it is able to manipulate. Ad-
ditionally, it provides a graphical syntax that allows easier interpretation of the logical structure
of a task.

Fig. 2.9 shows an example of a task model, where a simple composite task consisting of
four tasks (A, B, C, and D) is represented in a CTT notation. The tasks A, B, and C can be
executed in any order, which is specified by the temporal relation order independency (| = |).
Additionally, task D can be performed only after all the other tasks are executed, which is
specified by the relation enable (>>).

In that manner user behaviour and the interaction between different users can be expressed
in a tree-like manner.



2.5. HUMAN BEHAVIOUR MODELS FOR ACTIVITY RECOGNITION 41

Figure 2.9: CTT for a composite task with four tasks (A, B, C, D) (Figure adapted from [58]).

2.5.3.1 Applications

CTT is mostly used in human-computer interaction problems such as building successful
interface designs. For example, Li at al. [89] use CTT to generate interface model of a display/-
control system. Furthermore, Klug et al. [77] extend CTT to accommodate its execution during
runtime, allowing the generation of applications that adapt to the user actions and preferences.

It has also been shown that CTT can be applied in the field of activity recognition. In their
work [58], Giersich et al. use CTT to model tasks from the viewpoint of mobile and ubiquitous
computing. With the help of CTT they manage to derive the dialog structure of a mobile
human computer interface and then use probabilistic behaviour models to assign probability
distribution over the activities space in order to infer the activity of a user. More concretely,
they propose the usage of priority values assigned to each sibling in a node that are relative
to the priority of all the remaining siblings. Then based on the model and the priorities, the
probability of the transitions from the given state to the next is calculated. This is done based
on the model history allowing for probabilistic reasoning over the user actions.

2.5.3.2 Requirements fulfilment

Below the requirements that are satisfied are discussed and the manner in which they are
implemented.

Composition: CTT expresses composition in the form of a hierarchical structure where
each root task has as leaves the actions, or tasks, it is composed of. Fig. 2.9 shows an example
of such task where the composed action consists of the four actions A, B, C, and D.

Sequence: Sequences are represented by sibling nodes in a task tree with a relationship
operator assigned between them. The sequential actions can have different relations (e.g. en-
abling, disabling, order independence, etc.). In the example from Fig. 2.9, the actions A, B,
and C are executed sequentially and have order independence, while action D is sequential to
the last executed action and has the relation enabling.

Parallelism: Parallelism is achieved by the concurrency relation between two nodes (A||| B),
or by using the concurrency and information exchange operator (A|[]| B) where the nodes can
also exchange information while acting in parallel.

Repetition: CTT expresses an action repetition by simple assigning an asterisk sign to the
repeated action (Ax).

Choice and Priority: Choice in CTT is modelled by using the temporal operator for choice
(A[]B). This indicates that both actions are executable, but when one of them is executed, the
remaining one can no longer be executed. Priority in CTT is managed by the temporal operators
thus, it is not available in the standard CTT formalism. However, Giersich et al. [58] extended
the notation to use priority values based on which later the transition probability distribution
was calculated.
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Dependence, Enabling and Disabling: Enabling in CTT is handled by the enabling tem-
poral operator (A >> B), which indicates that B cannot start before A was executed. It is also
possible to use enabling with information passing with the temporal operator (A[] >> B) Sim-
ilarly, disabling is modelled by the corresponding operator (A[> B) which indicates that A is
disabled by B.

Interleaving: Interleaving in the sense described in the previous section cannot be mod-
elled in CTT as composite actions have to execute the actions of which they are composed
before another composite action is able to be executed. However, it is possible to use suspend-
ing and resuming of composite actions to achieve the effect of interleaving.

Suspend and Resume: Suspend and resume are modelled by the suspend/resume temporal
operator (A| > B), which indicates that A can be interrupted by B, and later when B is executed,
A can be resumed.

Synchronisation: In CTT synchronisation can be achieved by having an action enable the
execution of two concurrent actions.

Independence: Independence is modelled by the order independence operator (A| = | B)
which indicates that the actions can be executed in any order, but when one of them starts, it
had to be finished before the second can start.

Application-based requirements: The standard CTT notation does not support proba-
bilistic durations. The same applies for observation model. However, Giersich et al. [58] have
shown that it is possible to extend the model so that it can be used for generating probabilistic
models that support probabilistic durations and observations. Giersich et al. have also shown
that it is possible to apply CTT in its extended form to activity recognition problems.

2.5.4 Collaborative Task Modelling Language

The Collaborative Task Modelling Language or CTML is proposed by Maik Wurdel [157,
159] and is used as a specification framework for collaborative applications. It is designed
specifically for the needs of intelligent environments and satisfies the following requirements
for such collaborative applications: it has task driven methodology; it is able to model cooper-
ation; it is able to model the domain; and it has formal syntax and semantics. These features
make CTML a good solution for activities modelling especially when team cooperation is con-
sidered. A CTML model is a tuple consisting of a set of actors, a set of roles, a set of collabo-
rative task expressions and a set of domain objects defined by a domain model. A collaborative
task expression is just another variation of task trees and is modelled as a CTT-like tree that has
an identifier, precondition and effect.

2.54.1 Applications

In their work [159], Wurdel et al. give examples of CTML’s usage in a collaborative en-
vironment. They apply the modelling formalism to a simple meeting situation consisting of a
chairman, presenter and an audience. The chairman announces the talk topic, and while the
presenter presents it, the audience can access additional information concerning the presenta-
tion topic on their personal devices. Subsequent talks are given in the same manner, until at the
end the chairman encourages an open discussion, sums the session up and closes it. Using the
CTML editor they specify this scenario and show the language’s usability.

Additionally, Wurdel et al. [158] show that CTML, or its task models respectively, can be
used in the field of activity recognition. The specified models are used to define the probabilities
of the next possible action during activity execution. A probabilistic inference mechanism,
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having recognised the current state, then makes use of the task model in order to adjust the
probabilities of the next state. This approach also reduces the state space growth as it removes
all states that are unreachable form the current state.

2.5.4.2 Requirements fulfilment

Behaviour-based requirements: As CTML uses task trees to express the user behaviour,
it could be safely said that the requirements CTML covers are the same that CTT supports.
The difference between the two environments is that they have different tool support and that
CTML provides additional features for smart environments. Still, these features are not applied
to activity recognition problems.

Application-based requirements: Similarly to CTT, task models with CTML do not sup-
port probabilistic durations and observation model. They could, however, be extended to sup-
port probabilistic reasoning by transforming them into Hidden Markov Models [159]. For that
reason they are suitable for applying to activity recognition problems.

2.5.5 Planning Domain Definition Language

The Planning Domain Definition Language or PDDL is initially developed for solving plan-
ning problems in the International Planning Competition [56, 55]. It has a STRIPS'%-like syn-
tax and expresses the actions in precondition-effect pairs that contain causal relations between
the different actions. When expanded, they build an acyclic graph from the problem initial
state to its goal state. Later a planner explores that graph with a suitable search algorithm and
provides as an output a plan that is a possible solution to the problem.

PDDL is able to express the elements and dynamics of a domain, namely what kind of pred-
icates are there, what set of actions are possible, what is the structure of compound actions, and
what are the effects of these actions. The language supports the basic STRIPS-like actions, and
in addition it has conditional effects, universal quantification over dynamic universes, domain
axioms over stratified theories, specification of safety constraints, specification of hierarchi-
cal actions composed of subactions and subgoals, and management of multiple problems in
multiple domains [56].

Domain description Problem description
| name | | name |
| types | | objects |
| predicates | [ initial state |
| constants | | goal |
| actions |

Figure 2.10: A model structure with the PDDL formalism.

A PDDL model is divided into two parts (see Fig. 2.10) — the first is the domain description
that contains the action templates, the object types and description of the predicates used in the
action templates. The action templates in turn are described by a name, parameters, duration,
preconditions, and effects. The second part is the problem description that expresses the initial

10The STanford Research Institute Problem Solver (STRIPS) is an automated planner first introduced by Fikes
and Nilsson in 1971 [40]. It is the basis for many planning languages today.
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world state, the constants used in the problem, and the goal of the problem. That way the
first part provides an abstract description of the modelled domain, while the second gives the
problem-specific details needed for solving the problem. This division allows creating abstract
models that are later populated with the parameters of the specific problem, thus requiring the
change only of the problem description when new problem from the same domain is present.

2.5.5.1 Applications

Although PDDL is designed for planning problems, it has been shown that it can also be
applied to activity recognition problems. Burghardt et al. [18, 19] use PDDL for synthesising
probabilistic models for activity recognition, where the actions are represented by precondi-
tions and effects which allows the generation of different possible behaviours without explicitly
specifying every one of them. This is done by extending the PDDL operators and generating
a graph that contains all execution sequences leading from the initial to the goal state. The
model is then used as part of an inference mechanism for adjusting the probabilities for the
next possible action. It is also used for reducing the search space growth, as only states that are
part of valid plans are considered.

Another work that applies PDDL to a plan recognition problem is that by Ramirez and
Geffner [114]. In it they recognise the intentions of an agent that has an action library modelled
in a PDDL-like notation. The model is shared by the observer and the agent but the actions
of the agent are only partially observed. Then the policy for selecting the agent’s action is
based on the reward the agent will receive — thus, higher reward indicates higher probability for
selecting the action.

2.5.5.2 Requirements fulfilment

As PDDL is a causal approach, it satisfies a set of requirements similar to that ACT-R
satisfies.

Composition: Like ACT-R, PDDL can express composite actions by defining causal rela-
tions between actions. This is done by modelling abstract action operators that have the form
of precondition-effect pair.

Sequence: Sequences are modelled in a similar to ACT-R way.

Action I: Precondition: A 1s not executed, and B is not executed, and A can
be executed.
Effect: A is executed.

Action 2: Precondition: A 1s executed, and B can be executed.
Effect: B is executed.

Parallelism, Synchronisation, Suspending and Resuming: Whether actions are executed
in parallel in PDDL depend on the planner — if it is able to execute partially ordered plans, then
the actions can be executed in parallel. That means, if the preconditions for both actions are
satisfied and the planner allows them to be executed in parallel. For example, in their approach
Burghardt et al. [18] are able to execute multiple actions in parallel. The same applied for
actions synchronisation where in the case the planner allows concurrent actions, an action is
executed that synchronises two other actions that are then executed in parallel. Suspend and
resume are only applicable in the cases where composite actions are modelled, that can then be
interrupted by another action, or by another agent.
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Repetition: Like ACT-R, PDDL does not have an explicit mechanism for modelling re-
peating actions. Still, using appropriate predicates in the action description, allows an action to
be repeated.

Action 1: Precondition: A can be executed,
Effect: A is executed, and A can be executed.

Choice and Priority: The choice is modelled when the preconditions of two or more
actions are satisfied but parallel execution is not possible. Then, which action is executed can
be controlled by the different types of heuristics. For example, it could be the goal distance
[114], or the ACT-R heuristics saliency, refractoriness, recency, and specificity [79].

Dependence, Enabling and Disabling: Dependence can be modelled by using the same
mechanism as in ACT-R. Below Action I shows an example of enabling, and Action 2 shows
an example of disabling.

Action I: Precondition: A can be executed, and B cannot be executed.
Effect: A is executed, and B can be executed.

Action 2: Precondition: A can be executed, and B can be executed.
Effect: A is executed, and B cannot be executed.

Interleaving: There is no explicit mechanism for modelling interleaving actions. However,
they can be modelled by allowing two composite actions to be executed in an interleaving way.
In other words, if we have a composite action A = {A;, A2} and B = { By, B2}, then the effects
of A; will fulfil the preconditions of Bj, the effects of By will fulfil the preconditions of As
and so forth.

Independence: Independence can be easily achieved by defining action’s preconditions
that are not dependent on the effects of any other actions. For example, if an action is exe-
cutable, and there is no other applicable action able to change the fact that the action is exe-
cutable, then this action is independent.

Production I: Precondition: A is executable.l!
Effect: A is executed.

Application-based requirements: The standard PDDL notation is able to express durative
actions [134], and Kriiger et al. have shown that it is possible to model probabilistic durations
[79]. The standard PDDL does not support observation models but it was shown that the
notation can be extended to support such [114, 18]. It was also experimentally shown that
PDDL can be applied to activity and intention recognition problems [114, 18].

2.5.6 Asbru

Asbru is a time-oriented machine readable language developed for implementing skeletal
plans in the Asgard project [74, 97]. The idea behind Asbru is to represent the domain knowl-
edge as a library of skeletal plans that have various levels of detail and capture the structure
of the modelled procedures but that allow parameterisation with different problem-specific el-
ements. The created plans are stored in a plan library where each plan consists of a set of
sub-plans that are necessary for successfully completing the plan objective. A plan that cannot
be decomposed in a more fine-grained plan is then called an action. The plan interpreter when
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Figure 2.11: A plan structure in the Asbru formalism (Figure adapted from Miksch et al. [97]).

fed with a general plan is then attempting to decompose it into sub-plan until the level of the
actions is reached. This plan consisting only of actions is then executed by the agent.

The structure of an Asbru plan can be seen in Fig. 2.11. It consists of a name, a set of
arguments, including a time annotation, plan preferences, intentions, conditions, effects, and a
plan body which describes the actions to be executed. A sub-plan of a plan then has the same
components. It can be seen that the sub-plans are composed of actions (from A to H) which
indicates that they cannot be decomposed any further.

2.5.6.1 Applications

Asbru is designed for the project Asgard that aims at supporting clinical guidelines by pro-
ducing a library of skeletal plans that can later be applied to specific situations [130]. The
project focuses on recognising the caretaker’s intentions from their actions, and providing cri-
tique of these actions given the guidelines and the patient’s medical record.

Another application of Asbru was proposed by Azam et al. [7] where they use skeletal
plans for inferring user plans based on recognised actions. To achieve that, wireless proximity
data is recorded and separated into tasks and subtasks using a task separator algorithm. The
detected tasks then are mapped to the high level Asbru plans and together they are fed to an
activity recogniser. The recogniser in turn matches the available wireless proximity data to that
available in the plan library tasks, and when such are recognised, it attempts to infer the user
plan.

2.5.6.2 Requirements fulfilment

Asbru consists of a library of temporally related plans and actions and can thus express
many of the requirements with the help of these temporal relations.

Composition: In Asbru a composite action is represented by a plan that either has other
plans in its body or consists of actions. Fig. 2.11 shows such plan structure where each plan is
considered to be equivalent to a composite action.

Sequence, Parallelism, and Synchronisation: Sequences are modelled by operators in the
plan body that indicate whether a plan is executed sequentially, or in parallel. The synchronisa-

Here we assume that no other action has as effect A is not executable.
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tion of two actions is also done with these operators, as the parallel operator expects the actions
to start at the same time. Below Plan I represents executing two actions sequentially, and Plan
2, the execution of the same actions in parallel that are also synchronised.

Plan 1: (DO-ALL-SEQUENTIALLY (action A) (action B))
Plan 2: (DO-ALL-TOGETHER (action A) (action B))

Suspending and Resuming: Suspending and resuming an action is modelled by defining
a suspend or resume point in the plan. It is expressed in the time annotation clause by defining
a time range in which the requirement should be executed, and the requirement itself together
with a pointer at the action of a plan where this should happen. Time annotation 1 gives an
example of a suspended plan, and Time annotation 2 — of such that is resumed.

Time annotation 1: ( (<time-range>) SUSPENDED (action A))
Time annotation 2: ( (<time-range>) RESTARTED (action A))

Repetition: Repetition of an action or a set of actions can be expressed by defining a
cyclical plan. That is done with the every clause that is defined in the plan’s body.

Plan I: (EVERY (START <start-time>) (END <end-time>) (do action A) END-EVERY)

Choice and Priority: The choice is modelled by an operator in the plan body that allows
executing the actions in any order. Priority, on the other hand is not modelled as it is handled
by the time constraints and the sequential actions ordering.

Plan 1: (DO-ALL-ANY-ORDER (action A) (action B))

Dependence, Enabling and Disabling: Dependence can be modelled by using the time
annotation which allows enabling a given plan or an action. Unless the plan has been already
enabled, it is otherwise disabled, so there is no explicit definition of disabling.

Time annotation 1: ( (<time-range>) ACTIVATED (action A))

Interleaving: Asbru does not support interleaving actions, as in order to continue from one
composite action (or plan) to another, all or part of the actions in the first have to executed, but
there is no explicit way of forcing the model to execute the remaining non executed actions,
after the second composite action is completed.

Independence: There is no mechanism for modelling independent actions as all specified
actions have temporal dependencies.

Application-based requirements: Asbru is not able to model probabilistic durations in
terms of probability distribution, but it can express uncertainty in the begin and end times of
the action by defining shift periods. It does not support observation model, but Azam et al.
[7] have shown that it is possible to map the actions to corresponding sensor readings. The
standard Asbru language is used for plans generation, but Azam et al. [7] have shown that it
can also be applied to intention recognition.
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Domain description Problem description Observation model
name name

types objects
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Figure 2.12: A model structure in the CCBM formalism.

2.5.7 Computational Causal Behaviour Models

CCBM are specifically designed for the purposes of activity and intention recognition [76].
The formalism combines causal models with probabilistic reasoning in order to be able to cope
with the observations uncertainty. A CCBM model consists of several parts — a causal model
divided in domain description and problem description, and an observation model describing
the relations between the observations and the states in the causal model. A compiled model
then produces a probabilistic model such as an HMM or a particle filter.

The causal model has a PDDL-like notation with several extensions providing the ability to
specify different number of agents that can act in parallel, various types of duration probability
distributions and different heuristics for action selection. Furthermore, an action is specified
through its name, parameters, agents, duration, preconditions, effects, and observations. The
observation model, on the other hand contains the information about which sensor readings and
in what range are mapped to which high level actions and states. The structure and elements of
a CCBM model can be seen in Fig. 2.12.

2.5.7.1 Applications

As already mentioned, CCBM and the corresponding tool, were specifically designed for
activity recognition applications. Kriiger et al. [80] showed that the modelling approach is
suitable for problems from the meeting domain. They modelled the activities performed during
a meeting in a smart environment and showed that the approach is suitable for such domains.
It was tested on 21 activity datasets containing variations of a 3-person meeting and compared
the results from those of a hand-crafted HMM. The comparison showed that the CCBM models
are performing comparably to a hand-crafted model.

2.5.7.2 Requirements fulfilment

The causal model in CCBM uses a PDDL-like notation, thus many of the requirements are
modelled in the same way.

Composition, Sequences, Synchronisation, Suspending, Resuming, Repetition, Choice,
Dependence, Interleaving, and Dependence: All these requirements are modelled in the same
fashion as in PDDL.

Parallelism: Parallelism is modelled by the additional :agent slot in the actions description.
This slot is optional and when it is included in the action, it indicates that all available agents
or objects of the given type are able to execute the action in parallel.
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Priority: Priority can be explicitly modelled with the :saliency slot in the actions descrip-
tion. It gives then the action’s priority relative to the priorities of the remaining actions. The
priority is also modelled by the action selection heuristics — these are the goal distance, where
the nearer to the goal the action is, the higher weight it has. Or it can be modelled by the
ACT-R heuristics for action selection — recency, refractoriness, and specificity, which values
are defined in the filter options.

Application-based requirements: CCBM is able to represent probabilistic durations with
distributions such as exponential distribution, and normal distribution [76]. It also supports the
modelling of an observation model that is separate from the observation model. The formalism
is specifically designed for activity recognition.

2.6 Discussion — choosing a suitable modelling formalism

The above section presented the candidate formalisms for modelling the three problems. It
also showed which requirements were satisfied and how (an overview of the satisfied require-
ments can be seen in Table 2.6). Now the only remaining question is how to select the most
appropriate modelling formalism? To answer this question, here we propose a selection method
based on the requirements satisfied by the formalisms and the importance of these requirements
for the different modelling problems based on Table 2.5.

Table 2.6: The table shows the candidate human behaviour models that can be used for modelling the
three problems. yes indicates the requirement is satisfied by the modelling formalism, no — that it is not.

Features ACT-R CTT CTML PDDL Asbru CCBM
sequences yes yes yes yes yes yes
parallelism yes yes yes yes yes yes
composition yes yes yes yes yes yes
interleaving yes yes yes yes no yes
B | repetition yes yes yes yes yes yes
_§ choice yes yes yes yes yes yes
% [ enabling yes yes yes yes yes yes
-§ disabling yes yes yes yes yes yes
% priority yes yes yes yes yes yes
m independence yes yes yes yes no yes
dependence yes yes yes yes yes yes
synchronisation yes yes yes yes yes yes
suspending yes yes yes yes yes yes
resuming yes yes yes yes yes yes
g prob. durations no yes yes yes no yes
S | observation model yes yes yes yes no yes
< activity recognition yes yes yes yes yes yes

Table 2.6 indicates whether a requirement was met by the formalism. As there is no concrete
mechanism for selecting a modelling formalism in the field of activity recognition, here we
propose the following criteria: the formalism that satisfies the most requirements is selected,
where each requirement is weighted according to its importance.

argmaxf(vmam) = {Umam’vv : f(v) < f(vmaa:)} (2.1)

Umax

Formula 2.1 indicates that the set of values of v where f(v) attains its largest value is chosen.
Here v is the value assigned to the formalism and f(v) is calculated according to Formula 2.2.
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where 7 indicates the index for the modelling problem, j the index of the behaviour-based re-
quirement, and 7 is a behaviour-based requirement that has a value of either 1 if the requirement
is met, or O if it is not met. The requirement’s value is then multiplied by the requirement’s
importance w which is obtained from Table 2.5 and where irrelevant requirements are assigned
a value of 0 so that they have no influence on the formalism selection, whereas important
requirements are assigned a value of 1which indicates that important requirements that are sat-
isfied produce a value of 1. In between these two values are the nice to have but unimportant
requirements, which are assigned a value of 0.5 so that they would have some influence on
the formalism selection but not as much as the important requirements. The weight of the
application-based requirements « is calculated in a similar manner, where £ is the index of the
requirement. In this case however, they are not summed up over the three problems as they are
all the same for the three cases. To normalise the result so that it is in the range [0, 1], it is then
divided to the number of considered requirements multiplied by the number of use cases.
Using this formula, the scores of the different formalisms are calculated and the resulting
values are shown in Table 2.7. The resulting scores show that CTT, CTML, PDDL, and CCBM

Table 2.7: The table shows the candidate human behaviour models that can be used for modelling the
three problems and the scores they received after summing up the requirements that were met.

Modelling formalisms ACT-R CTT CTML PDDL Asbru CCBM

f(v) 0.80 0.82 | 0.82 0.82 0.63 0.82

have the same values which is not surprising as they satisfy the same set of requirements regard-
less of the fact that depending on the formalism, they are implemented in a different manner.
Asbru, on the other hand has a slightly lower score which is due to the fact that it does not
support representation of interleaving actions. ACT-R has a score between Asbru and the re-
maining formalisms. This is due to the fact that it supports all requirements necessary to express
the user behaviour in the three problems, but to our knowledge is unable to represent durative
actions in probabilistic manner.

The results from the table also show that the requirements in question are not enough for se-
lecting appropriate formalism. All formalisms with the exception of Asbru are able to represent
the underlying behaviour and 4 of them also satisfy the full set of application-based require-
ments. For that reason, below we introduce several additional application-based requirements
that were previously not considered.

e Ability to support large state spaces: As human behaviour contains by default high
variability, this also results in large set of ways the same task can be executed. This in
turn results in large state spaces. A formalism should be able to cope with such large
state spaces.

e Ability to support long observation sequences: As real world activities usually take
more than just a few minutes, the modelling formalism should be able to support rea-
soning given a long sequence of observations (e.g. in the 3-person meeting we have one
meeting with 62 000 observations).
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e Factored action representation: As the user behaviour in all three problems is goal
oriented, reasonable heuristic for the correct selection of actions will be the goal distance
from the initial to the goal state. Formalisms that rely on variable-free representation
of the actions and the states run into the problem of being unable to find a path to the
goal when the problem is more complex. A representation that relies on a collection of
variables (namely factored representation), on the other hand is able to cope with that
even in large problems [123, p. 366].

Table 2.8: The table shows the additional requirements the candidate human behaviour models have to
satisfy in order to be used for modelling the three problems. yes indicates the requirement is satisfied by
the modelling formalism, no — that it is not.

Features ACT-R CTT CTML PDDL CCBM
large state-space no no no yes yes
long observations no no no no yes
factored representation no no no yes yes

Table 2.8 shows the additional requirements that the formalism support!'2. It can be seen
that large state spaces and factored action representation are supported by PDDL and CCBM
which is due to the fact that the actions are represented in terms of templates with variables
that can later be replaced by the corresponding constants. On the other hand ACT-R, CTT and
CTML rely on variable-free representations making them unpractical for complex problems
where many different variations of the user behaviour are involved. The last requirement —
long observation sequences — has been shown to be supported only by CCBM in [80] where it
was able to recognise the activities of a meeting that had 62 000 observations.

Table 2.9: The table shows the candidate human behaviour models — with the exception of Asbru as it
is not able to support all behaviour based requirements — and the scores they received after summing up
the initial and the additional requirements.

Modelling formalisms ACT-R CTT CTML PDDL CCBM

f(v) 0.75 077 | 077 081 | 083

Table 2.9 shows the score for the modelling formalisms given the additional requirements
and assuming that all three requirements are important. It reflects the fact that CCBM is the
only one of the formalisms that satisfies all requirements thus has the highest score. As CCBM
can be considered to be an extension of PDDL, we can conclude that for the given problems
and assuming behaviour variability and goal oriented behaviour, planning languages seem to
be the most suitable choice. This is due to the fact that they are able to express any logically
correct variation of behaviour just by using action templates. This also makes them suitable
for problems with large state spaces. The combination of planning language and probabilistic
mechanisms like the Particle Filter (PF) theoretically allows them to be applicable also to
infinite state-spaces as they do not need to expand the whole state graph in order to find a
solution.

As a conclusion, based on the use cases and the corresponding requirements, CCBM can
be considered as the preferred modelling choice. Thus it is the formalism that will be applied
throughout the rest of the thesis. Chapter 3 gives some more insight into modelling with CCBM
and presents the corresponding models that are intuitive solutions to the problems.

12 Asbru is left out because it does not support all behaviour-based requirements thus we assume it is unable to
represent the underlying user behaviour
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2.7 Outlook

The chapter presented the preliminaries necessary for modelling human behaviour for AR.
For that, the three modelling problems were introduced and the information that is to be in-
corporated into the models, was identified. Additionally, the corresponding test datasets were
described.

Based on the modelling problems, the requirements for modelling them were identified.
A formalism is then eligible for modelling the problems if all (or most) of the requirements
are satisfied. Depending on the modelling needs, several formalisms were regarded, and the
requirements they satisfy were discussed.

Later, a method for choosing the most appropriate formalism was introduced. Based on it,
CCBM was suggested as the most fitting formalism.

In general, the chapter described the preliminaries needed for selecting an implementation
language and technique for a given modelling problem for activity recognition. The output of
this chapter is used as a basis for the models to be developed in the next Chapter 3.



Chapter 3

Modelling Human Behaviour with
Computational Causal Behaviour Models

“The data is all over the place, the insight is yours, and now an
abacus is at your disposal, too. I hope the combination amplifies
each of these components.”

Judea Pearl

Chapter Summary: This chapter introduces the modelling with CCBM and presents the models
that were developed as solutions for the problems in Chapter 2. Later, the models are analysed for
identifying successful practices as well as modelling problems and the intuitive modelling approach
is discussed. These practices, or patterns, and the problems are the basis for the modelling toolkit
presented in Chapter 4. Furthermore, the intuitive modelling process is identified and analysed so
that it can be later used as a basis for the development process proposed in Chapter 5.

Chapter Sources: This chapter is partly based on the paper “Plan Synthesis for Probabilistic
Activity Recognition” [80]

Questions to be answered in the chapter:
What are CCBM models for activity recognition? (In Section 3.2)
How were the three problems modelled? (In Sections 3.3.1, 3.3.2, and 3.3.3)

What context information, dimensions and performance does the meeting model have? (In Section

3.3.1)

What context information, dimensions and performance does the cooking task model have? (In
Section 3.3.2)

What context information, dimensions and performance does the office model have? (In Section
3.3.3)

Is there a need for structured modelling process? (In Section 3.4)

What intuitive phases can be identified during modelling for activity recognition? (In Section 3.4)

53
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3.1 Introduction

The previous Chapter 2 concerned itself with the preliminaries for modelling the three daily
life problems. This chapter uses the preliminaries as a basis for implementing the problems’ so-
lutions. It provides some more details about Computational Causal Behaviour Models (Section
3.2) while a detailed introduction into modelling with CCBM is given in Appendix D. Later it
discusses the intuitive solutions of the modelling problems (Section 3.3). Furthermore, to dis-
cover model pitfalls as well as useful modelling practices, it analyses the resulting models and
discusses the different modelling problems. This information will later be used as the basis for
developing modelling patterns that can be applied to different problems. Finally, the intuitive
development process is analysed to be further extended in the following chapters (Section 3.4).

3.2 Computational Causal Behaviour Models

In the application domain of activity recognition we needed a modelling formalism that al-
lows encoding prior knowledge about the problem domain that can be used during the inference
phase to provide additional context information about the user’s current state and intentions.
Moreover, it had to be able to establish the bridge between causal modelling and probabilistic
inference allowing a way for coping with uncertainty and the sensors’ unreliability, and in the
same time providing a means for building rich user models. The modelling formalism we chose
is Computational Causal Behaviour Models because it satisfies all these requirements [76].

3.2.1 Causal Models

CCBM is a formalism that allows expressing human behaviour with a set of causally related
rules using a PDDL-like notation. Every action in the causal model is described in terms of
precondition-effect pair taking care that only actions which preconditions are satisfied could
be executable. The possible user actions are expressed as abstract templates that are later
parameterised with problem specific constants resulting in a set of grounded actions'. More
formally, given a set of predicates P := {p1,p2,...,pn}, states z and 2/, and an action a =
(V, Ppre; Pegr—, Perps), where V is a set of parameters used for parameterising the action’s
predicates, Py C P is a set of preconditions, P.rr— C P is a set of negative effects, and
P.rr4 C Pisaset of positive effects, an action a can then be specified as a mapping from state
x to z/. To be executable in z, the preconditions of a have to be true in =, namely Ppre C 1.
Furthermore, after a takes place, the negative effects of a are excluded from 2" and the positive
are part of z, namely 2’ N P.sf_ =) and P,y C 2’. In other words, every action in the
described problem domain is represented as a transition from a certain state of the world to
a new state of the world, thus allowing the reasoning about the current state’s history and the
actions that led from the initial state to it.

Of course, in order to be able to represent the available context information, the causal
model contains not only the actions’ templates, but is also populated with different problem-
specific parameters that describe aspects of the available prior knowledge. Furthermore, the
initial world state x;p;t := {P1_init, P2_init, -, Pn_init } 1S described, which is taken as the starting

'Throughout the thesis the terms grounded action and grounded predicate comply with the notion of a ground
term used in logic. Such term is one that contains no variables [123, p. 295]. For example, the action template
(move ?from ?to) contains two variables, namely the begin and end positions. When it is grounded (or instantiated),
the variables will be replaced by constants, resulting in e.g. (move sink table), (move stove sink), etc. The same
procedure is applied to the predicates.
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point for further causal reasoning. The simple representation of the abstract action templates,
combined with the problem-specific parameters allows the model designer to build a relatively
small description, that later is automatically grounded with the help of a planner, resulting in
the model state-space. Thus, by modelling just a few abstract actions, it is possible to create
models with state-spaces as large as several thousand to several million states [80].

3.2.2 Acting under uncertainty

Logic-based models alone could be good at inferring human behaviour, assuming that the
states of the world were fully observed and the observations completely reliable. However, in
reality that is hardly the case — usually, we are left with a set of observations taken from noisy
sensor readings. As we mentioned in Chapter 1, to cope with this problem, one could combine
causal models with probabilistic inference. This is done by grounding every feasible predicate
from the causal models with every applicable parameter. This results in a world state where one
possible occupancy of all predicates and the corresponding number of world states is defined
by the number of all grounded predicates together with the number of applicable operators.
Later, the state space is computed by the so called “reachability analysis” which is performed
by first computing ground operators, and then expanding the state graph from the initial state.
Every vertex of the state graph then represents a possible state in the Markov model, every
edge is a non-zero entry in the transition matrix. The prior state distribution is calculated from
the initial world state of the causal model together with the valid operators for this state. The
transition function is generated by a planner that expands all possible plans leading to the goal
and generates a directed acyclic graph with transition probabilities based on Formula 3.1 which
states that for an action a and states =, ' such that ' = a(z), the probability of selecting @ in
state x is then proportional to the influence of the revisiting factor (or was the action visited
before), the goal distance (or how many actions have to be executed until the goal is reached),
and the saliency (or what weight the action has in relation to all the remaining actions):

3
plalz) o exp( Y Afi(a,z)), (3.1)
k=1

where (f;(a,z)) is defined by

fl(avx) = 10g7(a($))7 (3.2)
fola,z) = logs(a), (3.3)
fa(a,x) = od(a(x)). (3.4)

Here ~y(a(x)) is the revisiting factor that by default is 0, if the resulting state of applying the
action a to the state = has already been visited. In other words, if the action was already
selected once, it cannot be selected again. The value of the revisiting factor can be increased
so that already visited states are allowed to be visited again. This factor is determined by
the history of each single running hypothesis. Furthermore, s(a) is the saliency of the action
a that is specified in the action template specification. It allows the assigning of weights to
the different actions, thus increasing their probability with respect to the rest of the available
actions. The third feature (a(z)) is the goal-distance of state 2’ = a(z) that will be reached
if action a is applied to state x. When using the goal distance as heuristic, the less actions
that have to be executed before the goal is reached, the more probable the current state will be.
In other words, assuming the agent is following some goal, she will try to reach the goal by
following the shortest execution path. For that reason any actions that deviate from that goal
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or increase the goal distance, will have lower probability. By using )\, each feature can be
weighted.

Furthermore, the formalism makes use of probabilistic action durations, which introduces
the option of encoding a priori knowledge about the action duration to its definition. To do that
a duration density function is assigned to each action. The probability of finishing the execution
of an action « in the state s in the time interval (a,b) is then given by Equation 3.5.

F(b) - F(a)

Pla<d<bld>a)= I~ F(a)

(3.5)

where F' denotes the cumulative density function p(d|«, s). This enables each hypothesis to
sample whether the action should continue or be aborted from [’ in each step.

This approach to combining causal models with probabilistic reasoning allows us to build
relatively small causal models that are compiled into huge probabilistic models without the
need of losing context information for the sake of simplicity. It also allows us to be able to
reason about actions, places and objects that were never observed but that were encoded in the
model and that are causally related to the observed world.

The resulting probabilistic model can have two forms — either a Hidden Markov Model
(HMM) or a PF. The HMM is a Markov model where the state is not directly visible, but the
observed output, that is dependent on the state, is visible. One can then infer the hidden states
based on the observed variables. HMMs are used in the case of a small causal model that
generates probabilistic model where the whole state graph can be extended. In that situation
an exact inference is performed as the probability of the states can be computed analytically.
In the case, the model is too big to do that, the particle filter is used where the model state is
approximated. The general probabilistic structure of the model can be seen in Fig. 3.1. In it

t—1 t

Figure 3.1: General probabilistic structure of Computational Causal Behaviour Models. In it C; is the
current observation time; G is the current goal; Y; is the current observation. The current state X; is
captured by four features: Dy is the flag indicating whether the action should terminate in the interval
between the current observation time and the previous observation time, A; is the current action; S; is
the starting time for the current action; R, indicates the new state for time stamp ¢.

we see two time slices ¢ — 1 and ¢. Each of them contains the following elements: Y; is the
observation data for time step ¢. CY is the current observation time with the requirement that
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Ci—1 < Cy. Dy is the flag indicating whether the action A;_; should terminate in the interval
(¢t—1,¢t). In case Dy = 1 new values are assigned to Ay, S;, and R;. Otherwise the random
variables carry the values from the previous state. S; captures the starting time for the action
Ay. Ry gives the new state for the time step ¢ either by applying the new action to the previous
state, or by carrying over the old state when the action has not changed. G represents the
current model goal. The variable is constant over time, allowing the computation of the goal
distance. The figures indicates that given the current goal G;_1, an action A;_; is executed
to follow this goal which results in the state 7;_;. Then depending on the flag ;1 which
is based on the time elapsed since the beginning of the action, the action will either terminate
resulting in a new action A; with a new state Ry, or it will be copied to the next observation
slice so that the action’s execution can continue until the flag D; indicates that the action has to
terminate. Then a new action is selected.

From the above we can summarise that CCBM provides the ability to model causally related
actions in terms of precondition-effect templates that are later automatically grounded with
problem specific parameters. This results in a state space graph that leads from the initial to
the goal state. To allow probabilistic inference, the prior states probability is calculated based
on the predicates that are true in the initial world state and the mechanism for selecting the
next action to be executed is calculated with Formula 3.1 which ensures that always the most
probable action will be selected until the goal state is reached. Finally, as each action has its
own probabilistic duration, the decision whether the action will terminate in the next time step,
or whether it will continue its execution, is defined by the decreasing action probability since
the action execution has started. The above indicates that there are three different factors that
play role when performing activity recognition with CCBM - these are the causal structure of
the model, the action selection heuristics, and the actions durations. They all play an important
role in the model’s ability to correctly recognise the user actions.

3.3 Modelling the problems with Computational Causal Be-
haviour Models

Appendix D provides detailed introduction into modelling with Computational Causal Be-
haviour Models, while in this section the modelling formalism is practically applied to the
three modelling problems described in Chapter 2. The provided models contain the intuitive
solutions of the model designer to the problem at hand, which are later discussed in order to
identify the modelling mechanisms used, the questions the model can answer, and the model
performance. Each of the three problems is divided into several parts — first the model with
its parameters is presented, then the model is analysed for problems and successful practices;
finally, the model is evaluated in terms of activity recognition performance.

3.3.1 Modelling the 3-person meeting problem

Based on the problems’ analysis performed in the previous chapter, here two different mod-
els are presented — a team model and a multi-agent one.
3.3.1.1 Model

Team model: The team model describes the single agents’ behaviour as resulting from the
team behaviour. Namely, the actions of the team define the behaviour of the single users, or with
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other words the effects of the team actions cause the separate user behaviour. It implements
the elements presented in Table 2.1 in Chapter 2. Table 3.1 gives information about the actions

Table 3.1: Actions in the team model with the corresponding predicates that define their preconditions
and effects, as well as the parameters that are used in the actions.

Action Parameters Predicates

move none (doing ?a - activity) — for all activities ?a; (at ?p - person ?1 - location) — for all persons and locations
present | ?p - person (has-presented ?p); (doing ?p) (at ?p stage); (at ?p seat)
discuss | none (have-discussed); (has-presented ?p - person) — for all persons; (doing discussing);
(at ?p - person seat) — for all persons
leave none (doing moving); (at ?p - person door) — for all persons

modelled in the team model and the parameters and predicates each of them has. It could be
seen that there are only five actions where only one of them has a parameter — that is the action
present and the presence of the parameter is to indicate that there are three presentation slots
each corresponding to one of the three participants. However, the parameter does not mean
there are three agents that can execute the action. It can be executed just by one (the default
agent) and simply indicates that there are three instances of the same action with a different
user as parameter. The remaining actions, on the other hand, apply their effects to all modelled
users, so that when the action is executed, it affects everyone in the environment. Thus it is
impossible to track the behaviour on a single-user level.

Table 3.2: Model parameters for the team and the multi-agent models.

Parameter Team model  Multiagent model Description

# operators 6 88 grounded actions after the model compilation

# predicates 19 72 grounded predicates after the model compilation

# object types 3 4 see Fig. 3.7

# persons 3 3 objects of type person

# locations 3 7 objects of type location

# activities 6 6 team + 10 single-user | activities to be estimated

# states 31 5568 state-space of the model

# valid plans 13 3515 valid plans leading from the initial to the goal state
# hierarchy level 2 3 levels of the type hierarchy

# goal distance 10 48 minimum distance from the initial to the goal state
# max. branching factor | 4 9 maximum number of possible actions at a given time

Furthermore, Table 3.2 contains some additional information about the model characteris-
tics. The first column describes the name of the given model parameter, the second the value
associated with it, and the third — the value for the multi-agent model. The considered char-
acteristics are the number of operators which represents the number of grounded actions; the
number of predicates that shows how many predicates are there after they were grounded with
the available objects; the number of object types, which presents in how many categories were
the objects divided; the number of persons, locations, and activities represents how many con-
stants were there from a given type; the number of states represents how many states are there
after the model graph was expanded; the number of valid plans represents all plans that lead
from the initial to the goal state; the hierarchy level describes the hierarchy of the object types
with the highest level being the default object type; the goal distance that shows how long is
the shortest path from the initial to the goal state; it is later used for action selection heuristic
(according to Formula 3.4); and finally, the maximum branching factor shows how many ac-
tions at most are executable from a given state. We consider these parameters as they give us
information about the model size and complexity.
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It can be seen that the model is comparatively small with only 6 grounded operators and
19 grounded predicates. It has only 3 object types that describe the persons that participate in
the meeting, the locations, and additionally one type for the actions to be estimated. It can also
be seen that there are only 3 objects of type location, which is due to the fact that the loca-
tions were simplified and instead of taking each seat or stage as a separate location, they were
combined in one seats location, one stages location and a door. After the model compilation
the abstract model definition resulted in 31 causally related states and 13 valid plans could lead
from the initial to the goal state?.

Multi-agent model: Table 3.3 shows the actions the model has. The model implements the
elements presented in Table 2.2 from Chapter 2. It can be seen that each of the actions has at
least one parameter of type person and additionally each of the actions could be executed by
any of the agents in parallel with the actions of the rest of the agents.

Table 3.3: Actions in the multi-agent model.

Action Parameters Predicates

start-enter ?p - person (entering ?p); (at ?p door); (entered ?p); (idle ?p)

finish-enter ?p - person (entering ?p); (idle ?p)

sit-down ?p - person ?s - seat (at ?7p ?s); (idle ?p); (seated ?p); (has-discussed ?p)

get-up ?p - person ?s - seat (at ?p ?s); (idle ?p); (seated ?p)

walk-to-seat ?p - person ?from - location ?to - seat (idle ?p); (entered ?p); (is-seat-for ?to ?p); (at ?p ?from); (walking ?p ?to)

walk-to-stage ?p - person ?from - location ?to - stage | (entered 7p); (is-stage-for ?to ?p); (has-presented ?p); (at ?p ?from);
(idle ?p); (walking ?p ?to)

walk-to-door ?p - person ?from - seat (idle ?p); (entered ?p); (at ?p ?from); (has-presented ?p1) — for all persons;
(walking ?p door)

arrive ?p - person ?from ?to - location (walking ?p ?to); (at ?p ?from); (at ?p ?to);

exit ?p - person (idle ?p); (at ?p door); (entered ?p); (has-presented ?p1) — for all persons

start-presentation ?p - person ?s - stage (has-presented ?p); (decided-to-present ?p); (idle ?); (at 7p ?s);
(is-presenting ?p)

finish-presentation | ?p - person (has-presented ?p); (decided-to-present ?p); (idle ?); (at ?p ?s);
(is-presenting ?p)

prepare-discussion | ?p - person (discussing ?p); (has-discussed ?p); (has-presented ?p1) — for all persons;
(prepared ?p)

start-discussion ?p - person (prepared ?p); (discussing ?p)

finish-discussion ?p - person (discussing ?p); (has-discussed ?p1) — for all persons

Additionally, Table 3.2 shows the model dimensions and characteristics. It could be seen
that the model is considerably larger than the team model. Whereas the team model has only 31
states in its state space, the multi-agent has 5568 which would be an impossible task to build by
hand. This is due to the fact that the model has much more functionality than the team model
and is able to explain the behaviour also on the single-agent level and to provide additional
context information.

3.3.1.2 Model analysis

In order to identify different modelling practices and their influence on the model, here we
analyse the two models. First the way in which the actions are modelled is discussed; later
it is explained what kind of context information the model can provide; and finally the model
parameters, presented in the previous section are analysed.

2Valid here indicates that it is causally possible, however that does not mean all of these plans correspond to
the actual actions execution or that they make sense from a human point of view.
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Modelling the user actions: In the team model just the team actions are defined at the
model level, the effects of which capture the joint effects of the different individual actions
(which are invisible at the modelling level). In other words, the action’s effects force the agents
to exhibit specific behaviour regardless of their individual desires. Furthermore, this approach
to modelling team behaviour does not allow unsynchronised actions between the agents. The
individual actions executed in parallel have the same duration, as well as the same begin and end
times. To illustrate this approach, Fig. 3.2 gives an example with the action present. Here the
model forces all team members to simultaneously take a seat no matter where they are located
at the given time and then start the presentation. This type of modelling is not very suitable
for multi-agent behaviour modelling as it lacks the flexibility needed to express the individual
dynamics. On the other hand, it is relatively simple approach that is able to successfully identify
the team actions in cases where the reasoning over the single agents’ behaviour is not needed.

(:action present
:parameters (?presenter - person)
:duration (gaussian (presentation-duration ?presenter))
:precondition (and (active-moving)
(not (has-presented ?presenter)))
:effect (and (not (active-moving))
(active-presentation)
(forall (?p - person)
(when (not (= ?p ?presenter))
(at ?p seat)))
(at ?presenter ?stage))

Figure 3.2: Present action template for the team meeting model.

In difference with the team model, the multi-agent model represents the team behaviour as
an effect of the single user behaviour, or in other words, the single agents decide for themselves
how to act and by their actions define the team behaviour. For example, consider starting a
presentation in the multi-agent model. The action is shown in Fig. 3.3.

IR RN NN NN NN

(:action start-presentation
:parameters (?presenter - person)
ragent ?presenter
:duration (gaussian (presentation-duration ?presenter))
:precondition (and (at ?presenter stage)
(forall (?p - person) (when (not (= ?p ?presenter))
(at ?p seat)))
:effect (active-presentation)

IR RN NN NN

(:action finish-presentation
:parameters (?presenter - person)
ragent ?presenter
:precondition (and (is-presenting ?presenter)
(forall (?pl - person) (not (may-walk ?pl))))
:effect (and (has-presented ?p)
(not (is-presenting ?p))
(may-walk ?p) (idle ?p))

Figure 3.3: Present action template for the multi-agent meeting model.

Here, the condition of all non-presenting persons being seated is not established as joint
effect of a team action, it is rather a precondition the presenter has to obey before she can
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(reasonably) start her presentation. In a multi-agent model, agents have to rely on other agents
to cooperate — on the other hand, this gives a single agent more degrees of freedom regarding her
individual behaviour. This comes as a disadvantage for the model designer: in a team model,
social protocols (e.g., not getting up in the middle of a presentation) can be enforced simply
by not considering such misbehaviour in the joint actions. In a multi-agent model, where each
agent has the choice to freely select any applicable action, explicit locking mechanisms have to
be provided that allow any agent to disable actions of other agents which are not appropriate in
the current situations.

Furthermore, the action present is divided into a begin-end action pair (or a macro) consist-
ing of start-presentation and finish-presentation which allows the definition of actions that do
not depend on other team actions for another activity to take place. This results in every agent
having the ability to choose her own action that is independent of the team behaviour. For ex-
ample, in start-presentation the presenter can start her presentation only after all the other users
are seated and she is at the stage, which allows the separate participants to decide on their own
to sit for the presentation. The presenter alone cannot force the present team activity on the
single agents like in the team model. After the preconditions for start-presentation are satisfied
and the action is executed, the agents are locked in the present phase for the duration of the
activity. Afterwards, the only possible action is finish-presentation that unlocks the users and
allows them to choose new actions independent of the team behaviour. This kind of modelling
allows a serious degree of freedom for choosing the next possible action for every single user
and could reduce the goal oriented team behaviour to nonexistent. To solve this problem we
introduce a lock mechanism that reduces the set of actions executable from a certain state. For
example, an agent arriving at a place, sets the lock flag (idle ?p) to true which allows her to
choose another action to perform. On the other hand the lock flag (may-walk ?p) is set to false
which stops her from moving to another location, thus forcing her to wait until the other agents
have made their choices and have been forced to arrive at a state of the world where only the
action start-presentation can be performed. Using such mechanisms for every action in the
model, allows us to capture the independent behaviour of the single agents and in the same
time still to be able to detect the team behaviour.

Available context information: As one of the goals of the models is to support context
information, each of them can provide more than just the actions that are being executed. The
team model is relatively simple and consists of only four actions. Three of the four actions
do not have parameters (move, discuss, leave) which indicates that they can give us only in-
formation about the actions themselves. This is caused by the need to model the team as a
single entity which does not allow pinpointing additional information about the single users.
The fourth action present has one parameter of type person which indicates that the model is
able to provide information about who of the users is the one currently presenting.

Furthermore, it can be seen from the model predicates, that there is not much more context
information that can be obtained from them — the only additional knowledge there is the user
position, but as it is forced on the whole team, the predicate cannot say whether the users
locations actually differed when the action was executed. For example, during the discuss
action, the predicate (at ?p seat) holds for all users and it is not clear who sits where exactly as
the seats are represented by one abstract seat object.

In difference with the team model, the multi-agent model is able to support much more con-
text knowledge. There are 14 actions modelled and each of them has at least one parameter (see
Table 3.3). Some of these actions are combined into begin-end action pai