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Abstract

The presented work covers a broad spectrum of investigations, where methods and
approaches from the fields of bioinformatics, biostatistics, animal breeding, genetics and
systems biology were used regarding the question of improved genetic value prediction
for cattle considering molecular data in addition to SNP-genotypes from cattle.
In modern breeding it is common since 2010 to record genetic information based on
genome-wide SNP marker data and performance traits in each generation. These kinds
of data are used to estimate the genetic effects of each SNP-genotype within the pop-
ulation (parental generation). The estimated genetic effects are used in combination
with the recorded SNP-genotypes of the offspring generation to estimate their genetic
values (breeding values), which represent the basis for the selection of the next parental
generation. The estimation of genetic effects is based on a linear model, which can be
termed the classical model of the genotype-phenotype map (GP map). Various estimation
methods in the field of genomic selection are based on the classical model. To improve
and to optimize such estimation methods, it is common to simulate data based on this
classical model.
The main objective of this thesis was to investigate if an improved genetic value prediction
can be obtained when an intermediate level of the GP map, in our case the metabolome,
is considered. For this purpose, the different levels (genotype, metabolome, phenotype)
were first simulated. In particular, these simulations were based on the data structure
of the corresponding experimental data (from around 1,300 Holstein Friesian cows),
which were collected. This allowed later a purely conceptual comparison between the
simulated data and the experimental data regarding the observed prediction results. The
experimental data collection based on different designs developed in this work and was
supported by a specially created relational database. To realize the simulation of the
metabolome a parameterized metabolic network for erythrocytes (SMBL model) was
used. In this metabolic network some of the enzyme parameters were modeled as a
function of varying SNP-genotypes, i.e., the simulated metabolite profiles depend on the
SNP-genotypes. This systems biology approach enabled us to simulate genetic effects
implicitly defined by the metabolic network. The phenotypes were simulated by adding
up the obtained metabolic concentrations and adding a random error. The simulated
three levels also allowed investigation of the expected degree of improvement of the
genetic value prediction when the whole simulated metabolome or just a part of it is used.
For this purpose an integrative bioinformatics approach was developed and implemented.
This approach is divided into three steps: metabolome-phenotype, genotype-metabolome,
genotype-phenotype. For the first step, methods from the field of statistical learning (e.g.,
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random forest) were used, in order to enable variable selection, i.e., to obtain a measure of
importance for each metabolite relating to the prediction of the phenotype. In the second
step, the importance of each metabolite was used to weight corresponding SNP-genotypes,
resulting in weighting of some genome regions. Finally, the weighted SNP-genotypes were
used to predict the genetic value using a genomic selection method (Bayes approach, fast-
BayesB). Results from the simulation study revealed that an improvement of the genetic
value prediction is possible, especially if the whole simulated metabolome was used. The
proposed integrative bioinformatics approach was also applied on the experimental data,
wherein in the second step a Bayes approach (SVS) was used, which contains a variable
selection method. Milk metabolites are selected which show high variable importances in
the prediction of the milk trait. SNP-genotypes were selected which show a significant
impact on these selected milk metabolites. The integrative bioinformatics approach
resulted in a strongly reduced number of SNP-genotypes, which were used for the genetic
value prediction (SVS). The respective results were compared with the classical approach,
which revealed that comparable prediction precisions were obtained for the milk trait fat
content for both approaches. Significance and relevance of selected SNP-genotypes using
the new integrative bioinformatics approach were investigated in detail. In particular,
milk metabolites and milk traits as well as the relationship between them were deeper
investigated using univariate and multivariate analysis methods, wherein new associations
between milk metabolites and milk traits were revealed. Considering the additional level
of the GP map the metabolome allows further investigation of the relationship between
the various levels, whose exploitation can lead to improved prediction of the genetic
value.
The presented results in this thesis are of importance from a methodological and biosta-
tistical point of view. In addition, they are of relevance from a zootechnical-biological
perspective.







Zusammenfassung

Die vorliegende Arbeit umfasst ein breites Spektrum an Untersuchungen, wobei Methoden
und Ansätze aus den Bereichen der Bioinformatik, Biostatistik, Tierzucht, Genetik und
Systembiologie angewendet wurden mit dem Ziel die genetische Wertvorhersage beim
Rind zu verbessern durch zusätzlich zu SNP-Genotypen mit einbezogene molekularbiolo-
gische Daten.
In der Rinderzucht ist es seit 2010 üblich, genetische Informationen in Form von
genomweiten SNP Markerdaten und Leistungsmerkmale von jeder Generation aufzuze-
ichnen. Anhand dieser Daten können innerhalb einer Population (Elterngeneration)
die genetischen Effektgrößen für jeden SNP-Genotyp geschätzt werden. Diese werden
zusammen mit den ermittelten SNP-Genotypen der Nachkommen genutzt, um deren
genetischen Wert (Zuchtwert) zu schätzen, der die Grundlage für die Selektion der näch-
sten Elterntiere bildet. Die Schätzung der genetischen Effektgrößen basiert auf einem
linearen Modell welches als klassisches Modell der Genotyp-Phänotyp (GP) Abbildung
bezeichnet werden kann. In dem Gebiet der genomischen Selektion existieren verschiedene
Schätzmethoden, die auf dem klassischen Modell beruhen. Um Schätzmethoden zu opti-
mieren und zu entwickeln werden Daten basierend auf diesem Modell simuliert.
Das zentrale Ziel der vorliegenden Arbeit ist zu untersuchen, ob eine verbesserte Vorher-
sage des genetischen Wertes erzielt werden kann, wenn eine weitere Zwischenebene der
GP Abbildung, in diesem Fall das Metabolom, berücksichtigt wird.
Dazu wurden die Daten der verschiedenen Ebenen (Genotyp, Metabolom, Phänotyp)
zunächst in Anlehnung an die Datenstruktur der entsprechenden experimentell erhobenen
Daten (von rund 1.300 Holstein Friesian Kühen) simuliert, um später einen rein konzep-
tionellen Vergleich zwischen den Vorhersageergebnissen basierend auf den simulierten
und experimentellen Daten zu ermöglichen. Die experimentelle Datenerhebung basiert
auf verschiedenen in dieser Arbeit entwickelten Designs und wurde unterstützt durch eine
eigens erstellte relationale Datenbank. Für die Simulierung des Metaboloms wurde ein
parametrisiertes metabolisches Netzwerk für Erythrozyten (SBML Modell) verwendet,
wobei einige Enzymeigenschaften als Funktion variierender SNP-Genotypen modelliert
wurden, d.h. Metabolitprofile wurden in Abhängigkeit der SNP-Genotypen simuliert.
Dieser systembiologische Ansatz ermöglicht es, die verschiedenen genetischen Effektgrößen
implizit mittels des Netzwerkes zu simulieren. Die Phänotypen wurden simuliert, indem
die entsprechenden Metabolitkonzentrationen aufsummiert und mit einem zufälligen
Fehler versehen wurden. Die drei simulierten Ebenen erlaubten es zu untersuchen, in-
wieweit eine Verbesserung der Vorhersage des genetischen Wertes erzielt werden kann,
wenn das gesamte oder nur ein Teil des simulierten Metaboloms berücksichtigt wird.
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Hierzu wurde ein integrativ bioinformatischer Ansatz entwickelt, der in drei Schritte
unterteilt ist: Metabolom-Phänotyp, Genotyp-Metabolom, Genotyp-Phänotyp. Im ersten
Schritt wurden Methoden aus dem Gebiet des statistischen Lernens (z.B. Random Forest)
angewendet, um per Variablenselektion ein Wichtigkeitmaß für jeden Metaboliten im
Bezug auf die Vorhersage eines Phänotyps zu erhalten. Im zweitem Schritt wurden die
Metabolit-Wichtigkeitsmaße zu den entsprechenden SNP-Genotypen zugeordnet, um
bestimmte Genomregionen stärker zu gewichten. Die Vorhersage des genetischen Wertes
erfolgte mit den gewichteten SNP-Genotypen unter Verwendung einer genomischen
Selektionsmethode (Bayes Verfahren, fastBayesB). Die Ergebnisse zeigten, dass eine
Verbesserung der Vorhersage des genetischen Wertes möglich ist, insbesondere wenn das
gesamte simulierte Metabolom verwendet wird. Der integrativ bioinformatische Ansatz
wurde auch auf die experimentellen Daten angewendet, wobei im zweiten Schritt ein
Bayes Verfahren (SVS) angewandt wurde, das ebenfalls Variablenselektion ermöglichte.
Dadurch konnten SNP-Genotypen selektiert werden, die einen signifikanten Einfluss
auf bedeutsame Metaboliten für das untersuchte Milchmerkmal besitzen. Die stark
reduzierte Anzahl an SNP-Genotypen wurde schließlich zur Vorhersage des genetischen
Wertes benutzt und mit dem klassischen Auswertungsansatz verglichen. Hierbei zeigte
sich, dass vergleichbare Präzisionen für das Milchmerkmal Fettgehalt für beide Ansätze
erhalten wurden. Die mit dem neuem integrativ bioinformatischen Ansatz selektierten
SNP-Genotypen wurden im Einzelnen auf ihre Signifikanz und Relevanz getestet. Ins-
besondere die Milchmetaboliten und die Milchmerkmale, sowie die Beziehung zwischen
diesen beiden Ebenen wurden mittels univariater und multivariater Analysemethoden
genauer untersucht, wobei neue Assoziationen zwischen Milchmetaboliten und Milch-
merkmalen detektiert wurden. Die Berücksichtigung des Metaboloms im Modell der
GP Abbildung ermöglicht weiterführende Untersuchungen der Beziehung zwischen ihren
einzelnen Ebenen, deren Ausnutzung wiederum zu einer verbesserten Vorhersage des
genetischen Wertes führen kann.
Die präsentierten Ergebnissen in dieser Arbeit sind dabei vorwiegend aus methodisch-
biostatistischer Sicht von Bedeutung, aber auch aus tierzüchterisch-biologischer Sicht von
Relevanz.
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1 Introduction

1.1 General objective

This thesis investigates if additional information of the metabolome level can improve
the genetic value prediction in dairy cattle. To address this issue, different methods and
knowledge from several research fields were applied, e.g., bioinformatics and biostatistics.
In the field of dairy cattle science, since the year 2010, it is common to record the geno-
typic and phenotypic information of an animal. Information on traditional milk traits
(quantitative traits, e.g., milk fat, somatic cell count (SCC)) are important phenotypes
collected routinely from cows. These milk traits are accessed via the standard milk
performance test (MPT), which is carried out monthly for each dairy cow. The MPT
is used to monitor the quantity and quality of milk. In this context, it is also of great
interest to improve the detection and prevention of diseases (e.g., mastitis) and to monitor
specific traits related to the state of health and management. The traditional milk traits
used as biomarkers for the state of health are, however, not sufficiently sensitive in view
of diagnostic efficiency.
The genetic information of an animal is assessed by using genome-wide marker data, which
consist mostly of single nucleotide polymorphism (SNP) markers. Based on genotypic
and phenotypic information, it is possible to estimate the genetic effects of the markers
within a population (parental generation). The estimated genetic effects combined with
the genetic information of the offspring generation are used to estimate the genetic values
(considering additive and non-additive genetic effects) or breeding values (considering
additive genetic effects). In general, the breeding value of an animal is estimated because
it serves as a basis to decide whether the animal is used for breeding relating to a specific
breeding goal. The use of genotypes and phenotypes for the estimation of genetic values
is also referred to as the classical genotype-phenotype map (GP map), which excludes
the consideration of further known intermediate levels (e.g., proteome, metabolome). To
estimate the genetic effects within a population, various estimation methods exist in the
field of genomic selection (GS). In this field, it is also common to use simulated data to
compare different methods of genetic evaluation and to optimize methods, whereby a
simple linear function is typically applied to the classical GP map of simulated data. In
this thesis the approach based on the classical GP map for simulating data is termed
conventional approach and the analysis based on the classical GP map is termed classical
approach.
It is, however, not clear if the conventional approach is an appropriate basis to optimize
such estimation methods in regard to experimental data. At the start of this thesis,

1
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the question of whether including an intermediate level of the GP map, for example the
milk metabolome, as an additional information source for the genetic value prediction
might be beneficial had not yet been scientifically examined. Apart from the mentioned
MPT, performed for many years (since the early 1950s), it is now possible to analyze
milk metabolites in a high throughput manner and to identify functionally important
metabolites, which can serve as biomarker candidates. In this context, only few publica-
tions can be found in the recent literature in which milk metabolites were investigated
(discussed in Chapter 4). In these studies, mostly the correlation between single or groups
of metabolites and single milk traits of interest were investigated. Out of these studies
only few milk metabolites are proposed to be used as biomarkers. Analyses regarding
multivariate correlations between sets of metabolites and milk traits from the MPT are
still missing.
The main objective of this thesis was to investigate if an improvement can be achieved
when the intermediate level of the GP map, in this thesis the metabolome is additionally
considered for the genetic value prediction in Holstein Friesian cows. To allow investiga-
tions of the above mentioned issues, each system-level (genotype, metabolome, phenotype)
was simulated on the one hand, and experimental data of these system-levels from about
1,300 Holstein Friesian cows were collected on the other hand. In total, 11 milk traits
were measured in the standard MPT and 190 milk metabolites could be determined. The
main topic of this thesis can be divided into three sub-topics, in which different aspects
are investigated.

• The first task was to investigate the prediction ability of a GS method in regard to
data simulated with the conventional approach in comparison to our alternative
approach, in which the metabolome level is additionally considered. To realize the
metabolome level in the alternative approach, a curated metabolic network was
used, which allowed the change of kinetic parameters of enzymes of the metabolic
network according to the genetic information. This systems biology approach
enabled in the alternative approach that genetic effects were implicitly simulated,
whereas in the conventional approach genetic effects were explicitly simulated.

• The second task was to investigate the different relationships between milk metabo-
lites and milk traits and to gain a deeper understanding within each system-level. For
this purpose, various methods from the field of bioinformatics (e.g., machine learn-
ing methods) as well as biostatistical methods (e.g., variance analysis (ANOVA))
were applied. Sets of milk metabolites eligible to predict milk traits were also inves-
tigated in order to enable the analysis of milk traits from a metabolic perspective
and to shed light on a possible functional background for some of the detected
associations.

• The third task was to investigate if an improvement in genetic value prediction can
be achieved when the additional intermediate level is used. Hence, an integrative



1.2 Basics of dairy cattle breeding 3

bioinformatics approach is proposed, which is termed metabolite approach. The
metabolite approach consists of three steps:

(a) First, identify the metabolites with the highest impact on an investigated
phenotype.

(b) Second, use identified metabolites to select SNPs or to weight SNPs.

(c) Third, use selected or weighted SNPs for the genetic value prediction.

This metabolite approach was used twice, once on simulated data and once on
experimental data, to investigate if and how much the prediction power could
be improved if only a part of the metabolome is considered. In this context, in
the simulation study was also analyzed using the whole simulated metabolome.
Studying different relationships between the three system-levels enabled a deeper
understanding of the associations of these system-levels. It is also possible to reveal
new relevant biological information if the experimental data are investigated.

This thesis is highly interdisciplinary, since different approaches from several research
fields were combined; especially bioinformatics, dairy cattle science and an approach of
systems biology, working with both simulated and own experimental data, and conducting
biostatistical analyses. Hence, in the remainder of this introduction the current state
and fundamental knowledge of main research fields are presented, especially regarding
their role for this thesis. The introduction is structured as follows: First, basic terms
of quantitative genetics and population genetics are defined, which represent the basis
for the field of dairy cattle science. Afterwards, the background of dairy cattle breeding
will be explained, followed by GS methods. This section is followed by a brief outline of
information on the bovine genome, i.e., marker maps, quantitative trait loci (QTL) and
the important role of cow’s milk, including definitions of some important terms. Finally,
the fields of bioinformatics and systems biology, including the used metabolic network,
are explained and their roles for this thesis are specified.

1.2 Basics of dairy cattle breeding

In this chapter important definitions and specific terms are introduced that are relevant
for the understanding of animal husbandry and which also play an important role for
the simulation of data in Chapter 3. Further relevant definitions are explained in the
corresponding chapters. All analyses presented in this thesis are based on quantitative
genetics as well as population genetics. First, the concept of the population is introduced.

Population: “A population, in genetic sense, is not just a group of individuals, but a
breeding group; and the genetics in a population is concerned not only with the genetic
constitution of the individuals but also with the transmission of the genes from one
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generation to the next generation” (Falconer and Mackay, 1996, p. 2).

Different specific population parameters can be estimated. Hereafter, specific population
parameters are presented, which are important for the genetic value prediction as well as
for the data simulation in this thesis.

Genotype-phenotype map (GP map) and the genetic variability: In general, “ob-
served phenotypes (P) of a trait of interest can be partitioned, according to biologically
plausible nature-nurture models, into a statistical model representing the contribution of
the unobserved genotype (G) and unobserved environmental factors (E)” (Visscher et al.,
2008). The GP map can symbolically be modeled as:

P = G+ E. (1.1)

The genotype can be differentiated into the following three genetic effect types (Visscher
et al., 2008):

• Additive genetic effects (a): each allele (locus) has an impact on the investigated
trait;

• Dominance genetic effects (d): intra-locus effects are interactions between alleles at
the same locus;

• Epistatic genetic effects (i): inter-locus effects arise from the interaction of several
loci, for example, the following inter-locus effects are possible if two loci are
considered: aa, dd, ad, da;

and thus the genotype (in Eq. 1.1) can symbolically be modeled as:

G = a+ d+ i. (1.2)

In a population the amount of variation of a component (P, G, E) can be measured and is
termed variance, whereby the variance is defined “as deviations from the population mean”
(Falconer and Mackay, 1996, p. 122). The phenotypic variance σ2

p (or total variance) is
the variance of the phenotypic values (the observed values) of a trait in a population,
and can be expressed as:

σ2
p = σ2

g + σ2
e

= σ2
a + σ2

d + σ2
i + σ2

e ,
(1.3)

where σ2
g is the genetic variance and σ2

e the residual variance (or non-genetic variance or
environmental variance), and it is assumed that both components are independent. Also,
σ2
g can be partitioned into σ2

a, the variance of additive genetic effects, σ2
d, the variance of
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dominance genetic effects, and σ2
i , the variance of epistatic genetic effects (Visscher et al.,

2008; Falconer and Mackay, 1996, pp. 122-123). More information about the different
values can be found in Falconer and Mackay (1996).
In general, dairy cattle breeding distinguishes between breeding value and genetic value
or genotypic value which depends on what genetic effect types are considered. The term
“breeding value” is used when only the additive component of the genetic variance is
considered. If in addition non-additive genetic effects (dominance and/or epistatic genetic
effects) are also considered, then it is called genetic or genotypic value. In this thesis, it
will be consistently termed genetic value, except of Section 1.3, whereby the investigated
genetic effect types will be specified.

Heritability: The heritability of a trait gives the proportion between the genetic and
the phenotypic variation. As an example, if a trait has a σ2

g = 0.1, this would mean
that 10% of the variance in the trait phenotype is explained by genetic variation and
90% by environmental influences (σ2

e = 0.9). The heritability is differentiated; if only the
additive genetic variation of a population is considered then it is termed narrow-sense
heritability (h2) and can be expressed as (Visscher et al., 2008):

h2 = σ2
a

σ2
a + σ2

e

. (1.4)

If, in addition, non-additive genetic effects are considered, it is termed as broad-sense
heritability (H2) and can be expressed as:

H2 = σ2
a + σ2

d + σ2
i

σ2
a + σ2

d + σ2
i + σ2

e

. (1.5)

The heritability can be divided as follows (according to Weiß et al., 2011, p. 99): values
from 0 to 0.2 are considered low heritabilities (e.g., fertility in cattle), values from 0.2
to 0.4 are considered medium (e.g., annual quantity of milk the cow), and values larger
than 0.4 are considered high heritabilities (e.g., fat content of milk).

Hereafter, necessary population parameters for the genotype level are introduced which
play a role for the pre-processing steps in Chapter 2 as well as for data simulation in
Chapter 3. A small example is introduced that is intended to facilitate the understanding
of the following definitions. The example population consists of five animals and only
one locus A with allele A1 and the complement allele A2 is considered. The following
genotypes are observed: A1A2, A1A1, A2A2, A2A2, A2A1.
In this context, the gene frequencies is the “proportions of the different alleles at each
locus” (Falconer and Mackay, 1996, p. 2). Based on the presented example, this means
that A1 is an allele at locus A, from this follows that “the gene frequency of A1, is the
proportion [...] of all genes at this locus that are the A1 allele” (Falconer and Mackay,
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1996, p. 2).

Minor allele frequency (MAF): Describes the frequency of the occurrence of the minor
allele in a population. In the presented example, we would observe the following allele
frequencies: p = 4

10 is the frequency for allele A1 and q = 6
10 is the frequency for allele

A2 on locus A, whereby ten is the sum of all alleles at locus A. In this case, allele A1

represents the minor allele. In addition, the sum of the frequencies must result in unity
(p+ q = 1) at any locus (Falconer and Mackay, 1996, pp. 1-2).

Polymorphism: A locus is defined as polymorphic if the minor allele occurs with a
frequency of more than or equal to 1% in a population. To quantify the amount
of the genetic variation at polymorphic loci, the measure of heterozygosity is used.
Heterozygosity is the frequency of the heterozygous animals (Falconer and Mackay, 1996,
pp. 42-45), in the example population the heterozygosity is 2

5 .

Quantitative trait locus (QTL): A QTL is a segment of a chromosome that has an
impact on a quantitative trait such as milk fat content. This DNA segment contains
important genes or is linked to genes underlying the investigated quantitative trait
(Geldermann, 1975).

Hardy-Weinberg equilibrium (HWE): “A population with constant gene and genotype
frequencies is said to be in Hardy-Weinberg equilibrium” (Falconer and Mackay, 1996,
p. 5), which based on assumptions of an idealized population (see page 8). This rela-
tionship between gene frequencies and genotype frequencies plays an important role in
population genetics and quantitative genetics (Falconer and Mackay, 1996). In such a
population it is possible to determine the expected frequencies of genotypes based on the
allele frequencies as follows:

p2 + 2pq + q2 = 1, (1.6)

with

p2 = E(A1A1),
2pq = E(A1A2),
q2 = E(A2A2),

where p is the relative frequency of allele A1 and q is the relative allele frequency of the
complement allele A2 at locus A. E(A1A1) represents the expected frequency of genotype
A1A1 at locus A, respectively for E(A1A2) and E(A2A2). It is also possible to determine
the allele frequencies based on the gene frequencies. Every deviation means that the
locus is not in HWE (Falconer and Mackay, 1996, pp. 5-19).
Implementation using the example, the allele frequencies are the following p = 4

10 for allele
A1 and q = 6

10 for allele A2 and thus p2 = 0.16 = E(A1A1), 2 · pq = 0.48 = E(A1A2) and
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q2 = 0.36 = E(A2A2). The obtained expected genotype frequencies are then multiplied
with the number of the observed individuals, in our example five, to calculate the expected
number of individuals for each genotype, resulting in E(A1A1) · 5 = 1, E(A1A2) · 5 = 2
and E(A2A2) · 5 = 2. In this example, the observed and expected genotypes agree, which
means that the locus is in HWE.
In experimental SNP data, this relationship is used as a quality control measure of
the determined SNPs, because deviations from the HWE are an indicator for quality
problems in the SNP-genotyping procedure or for other deviations (cf. Ziegler et al.,
2008). It is typical to determine the expected number of genotypes and then compare
them with the observed genotypes using a statistical test to prove for a deviation from
the HWE, whereby the observed P -value must be smaller than the predefined HWE
P -value (usually 10−4; e.g., Samani et al., 2007; Ziegler et al., 2008).

Linkage disequilibrium (LD): The term was introduced by Lewontin and Kojima (1960)
describing the non-random association of the alleles between two or more loci (Slatkin,
2008). The random association is termed linkage equilibrium (LE). Different definitions
exist for the measurement of linkage disequilibrium (LD) (Slatkin, 2008). In this thesis,
the definition following Hill and Robertson (1968) for a two-locus model was applied,
which can be calculated as follows:

r2 = (pA1B1 · pA2B2 − pA1B2 · pA2B1)2

pA1 · pA2 · pB1 · pB2
, (1.7)

where pA1B1 is the frequency of the haplotype with allele 1 at marker locus A and allele
1 at marker locus B. pA1B2 is the frequency of the haplotype with allele 1 at marker
locus A and allele 2 at marker locus B, and according definitions for pA2B2 and pA2B1.
pA1 is the frequency of allele 1 at the marker locus A, accordingly for pB1. pA2 is the
frequency of allele 2 at the marker locus A, accordingly for pB2. The degree of the LD in
a population depends on different factors (e.g., Slatkin, 2008) :

• Recombination: is the rearrangement of the genetic material leading to new combi-
nations of alleles and possibly to new characteristics (e.g., Charlesworth, 2009).

• Mutation: is the change of the genetic material. Different kinds of mutations
exist, whereby in this thesis only point mutations are considered which are changes
of a single alleles or nucleotides. The latter is used in Chapter 3 for simulating
populations. In addition, a locus is defined as mutated if the minor allele occurs
less than 1% (Falconer and Mackay, 1996, p. 42).

• Genetic drift: is “the process of evolutionary change involving the random sampling
of genes from the parental generation to produce the offspring generation, causing
the composition of the offspring and parental generations differ”, or in short, is the
random change of genetic variants in a finite population (Charlesworth, 2009).
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• Selection: can be differentiated in natural selection and artificial selection. Natural
selection means that animals with a higher fitness or a longer life have a higher
chance to reproduce than animals with a low fitness or inadequate survival strategies.
Artificial selection means that animals were selected by the breeder according to a
desired phenotype (Falconer and Mackay, 1996, pp. 184-185).

The presented factors have an influence on the development or loss of genetic variation
within a population over time, i.e., generations, and can be measured as LD. In this
context, different population genetic models exist to investigate these factors within a
population over time. In the field of GS it is common to use a mutation-drift model
(see below; e.g., Meuwissen et al., 2001) to simulate a population, until, for example, an
appropriate LD is obtained, as can be found in real cattle populations. In this thesis,
two population genetic models (i.e., drift model and mutation-drift model) were used to
simulate appropriate populations regarding LD in Chapter 3. Hence, the concept of an
idealized population as well as the effective population size is introduced next.

Concepts of idealized population and the effective population size: A population is
defined as an idealized population if it complies with the following conditions (according
to Falconer and Mackay, 1996, pp. 49-50):

1. A huge population size (N →∞) is considered.

2. Random mating only within the population (including self-fertilization) is allowed
and thus migration is excluded. Random mating describes the mating system
within a population; each individual has an equal chance to mate with another
individual in the population (Falconer and Mackay, 1996, p. 5).

3. The generations are distinct, meaning new generations do not mate with individuals
from a previous generation.

4. The number of breeding individuals are constant over all generations.

5. No selection, and

6. No mutation is allowed.

The idealized population does not reflect the reality of a real population and some of
the conditions cannot be met in a real population. If such an idealized population is
considered over time, the HWE law comes into play, which states that in this case the
gene frequencies and the genotypes are constant from one generation to the next. In
addition, the genetic drift has also no impact on the genetic composition.
To describe the effect of genetic drift on the genetic composition within a population,
the term effective population size (Neff ) was introduced by Wright (1931). This term
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represents the rate of change in the genetic composition within a population, i.e., it repre-
sents the “[...] random sampling of genetic variants in a finite population” (Charlesworth,
2009) and can be determined as follows:

1
Neff

≈ 1
4Ns

+ 1
4Nd

, (1.8)

where Ns is the number of sires and Nd the number of dams. If Ns and Nd have equal
size, the same properties can be observed as in the Wright-Fisher model. In the Wright-
Fisher model, conditions two and three from the definition of an idealized population are
assumed (Charlesworth, 2009). In a Wright-Fisher model the genetic composition within
a population can change over time. Furthermore, the impact of genetic drift depends
on the population size (N). Large populations, for which mutation or selection are not
considered, show a behavior similar to that of an idealized population, whereas in small
populations the genetic drift has a strong impact (Charlesworth, 2009). In dairy cattle
breeding, finite populations typically contain more dams than sires, so Neff is significantly
smaller than the population size (cf. Eq. 1.8), because half of the genetic material of the
offspring generations comes from few males. In this context, in Holstein populations the
Neff is estimated around 100 (e.g., Qanbari et al., 2010). Neff is small due to selection
over many years. It is common, as mentioned earlier, to use a mutation-drift model in
the field of GS to simulate populations with a finite size over time, for example until an
appropriate LD is reached. The mutation-drift model considers mutation and genetic
drift using for example an Neff of 100 animals with Ns = 50 and Nd = 50 and conditions
two and three of the idealized population are assumed, excluding self-fertilization. In
general, the mutation-drift model is based on a Wright-Fisher model with mutation.
Afterwards, some generations are generated to simulate the typical half-sib structure as
can be found in real cattle populations. In these generations, mutation is excluded and
Neff is set for example Neff = 1,000 with Ns = 50 and Nd = 950.

1.3 Background of cattle breeding

This part provides a brief overview of the historical development of dairy cattle breeding,
especially the importance of GS.
“Selective breeding has been going on for thousands of years and with increasing intensity
during the recent centuries. Such selection, over many generations and in large popula-
tions, has driven the accumulation of new mutation with favorable phenotypic effects,
as well as the development of alleles and haplotypes that differ by multiple functionally
significant substitutions” (Andersson, 2001). In the field of dairy cattle science selection
is done to reach specifically defined breeding objectives. The breeding objective is the
goal which should be achieved by selection (also termed breeding). In general, breeding
is the systematic selection and mating of domestic animals. Among the animals (at
the reproductive age) are those animals selected that correspond “best” to the breeding
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objective. The breeding objective is set on the one hand by breed associations (union of
breeders) and on the other hand by breeding companies. Additionally, each breeder can
have further individual breeding objectives (Weiß et al., 2011, p. 102). It is typical that
such breeding objectives are mostly designed in respect to several traits (e.g., Dekkers
and Gibson, 1998) and also that they depend on several factors; for example, on breed
purpose, such as beef or dairy production. The objective of each breeding program is to
gain the highest possible genetic progress per unit of time, whereby breeders have three
possibilities to influence the genetic gain (Seefried et al., 2010):

1. Accuracy of selection is based on estimated genetic value or breeding value (since
only additive genetic effects are considered), which is provided by the artificial
insemination. In the 1950’s the use of artificial insemination was established
(Meyn, 2005). At current state, about 80% of dairy cows and heifers are artificially
inseminated in Germany (Weiß et al., 2011, p. 130).

2. Generation interval, which depends on how fast the required information can be
collected to estimate the breeding value, e.g., the milk quantity of daughters.

3. Intensity of selection, which depends on the breeding stock and how many breeding
animals are necessary to keep the stock. This means that the more offspring of
a breeding animal can be expected, the better (Weiß et al., 2011, p. 107). As an
example, if we have a breeding stock of 100 animals and only five bulls are needed
to keep the stock, that is much better than if 50 bulls are needed. In dairy cattle
science, it is common to select strongly for bulls and weakly for cows (Weiß et al.,
2011, p. 107), which can also clearly be seen in the conventional progeny testing
program, see Figure 1.1.

Selection intensity alone is not decisive for a successful breeding program, accuracy of
breeding value estimation also plays a large role (Weiß et al., 2011, p. 108). Furthermore,
highly heritable traits are more accurately estimated than those with lower heritability.
To estimate the milk performance it is common to fit a linear mixed model, which has
the general form (e.g., Kruuk and Hadfield, 2007):

y = Xβ + Zaa+
∑
k

Zkuk + e, (1.9)

where y is a vector which contains the observations of a trait of interest, X is the
design matrix and β contains one or more fixed effects; for example, milk test-day (more
information for fixed effects is presented in Section 1.5.3). Za represents the incidence
matrix and a the additive genetic effects. Other random effects (e.g., dominance effects)
can be included in uk with the corresponding incidence matrix Zk, and e represents the
vector of residual effects. The fixed effects include all effects that are not of interest, and
correcting for these effects is recommended if they are known. The random effects are
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1 year

100 bull dams selected via 
estimated breeding value, 
phenotypic performance and 
pedigree information

50 bull calves

50 young bulls 

5 proven sires for cows are 
selected 

65,000 registered 
herdbook cows

35,000 
production 
cows

Milk production data are 
available from daughters 
of the bulls and thus the 
estimated breeding value 
of the bull can be 
calculated.

4 years

Random mating

Figure 1.1: Scheme of a conventional progeny testing program for the final selection
of 5 cow sires per year. The scheme was created based on König et al. (2009).

those of interest. Different estimation methods are proposed in the literature and a brief
historical summary of the development of these estimation methods is presented in the
following.

From traditional breeding to genomic selection: Henderson (1949) developed the
method which is called best linear unbiased prediction (BLUP). This method allows the
simultaneous estimation of fixed effects and breeding values using a mixed model. BLUP
is commonly used for domestic animals and it is still used today. Over the years, this
method has been further developed. In the first years simple models were used (e.g., sire
model), while in recent years more complex models (e.g., animal model considering sires
and dams) were applied (Mrode, 2005, p. 39), as the computing power increased over the
years. The traditional estimation of breeding values is based on pedigree information
and phenotypic data (e.g., Hayes and Goddard, 2010). The accuracy of the traditional
estimation of breeding values increases with increasing age of the animals and its relatives
as more phenotypic information is acquired.

The development of genetic markers started in the 1980s (e.g., Collard et al., 2005), which
provided the basis for using the genome level as third level besides pedigree information
and phenotypes for the estimation of breeding values. The genetic markers are used
to build linkage maps or genetic maps and physical maps (see Section 1.5.1 for more
information). These maps can be used to identify locations on the genome which contain
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genes and QTL related to the trait of interest. In general two main strategies exist to
detect QTL: association test use candidate genes and genome scans based on linkage
mapping with anonymous marker (Andersson, 2001; Mackay, 2001; Ron and Weller,
2007). More information about QTL in Holstein are presented in Section 1.5.2. In general,
the 1980’s and 1990’s can be summarized as the time of linkage maps and QTL hunting
(van der Beek, 2007).

Since the early 1990’s genetic marker information has been used in dairy cattle breeding
schemes (Spelman et al., 2007). Meuwissen and Van Arendonk (1992) presented a
framework how the important genome region can be integrated for breeding:

1. Search for the genetic markers within breed and species.

2. Determine the LD between markers.

3. Determine the association between marker and QTL.

4. Embedded the marker information for the breeding program.

The use of informative genetic markers, which are linked or close to known QTL, for
breeding programs is termed marker assisted selection (MAS). Three different kinds of
genetic marker exist, which are in different relation to QTL and can be used for MAS
(Dekkers, 2004). In this thesis only the LD markers, especially SNP-markers, are of
interest, whereby LD markers are defined as “[...] loci that are in population-wide linkage
disequilibrium with the functional mutation” or “[...] with the QTL” (Dekkers, 2004).
The main advantages of MAS in breeding programs were summarized in Mackinnon and
Georges (1998). From my point of view the main advantage of MAS is that the genetic
information from an animal can be obtained at any time point of its life. This allows
breeders to select animals at an earlier state and thus shortened the generation interval.
The duration of the generation interval for traditional selection and GS based selection
is shown in Figure 1.2 for sire selection. The first estimation method that includes all
three kinds of data (phenotype, pedigree and marker information) was proposed by
Fernando and Grossman (1989). They proposed an extended version of the traditional
BLUP, termed MA-BLUP (MA stands for marker assisted), in which additional genetic
marker information is used. In 2003, MAS was introduced in Germany (Bennewitz et al.,
2003), and since 2005 MA-BLUP is regularly used for milk performance traits (Reents
and Reinhardt, 2007). In this time only few markers were applied for the prediction of
breeding values.

Since 2008, SNP panels with around 50,000 SNP markers have been available (e.g.,
Bovine SNP chip 50K and today SNP panels with 777k are available; Illumina, 2012).
Since this time, MAS has been divided into a two-step process (Hayes and Goddard,
2010):
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1. The genome-wide SNP markers and trait of interest are analyzed in a genome wide
association studies (GWAS).

2. The detected significant SNP markers from the first step are incorporated into the
breeding value prediction.

GWAS tests each SNP for a possible association with the trait of interest, which results
in a multiple testing problem (Hastie et al., 2009, pp. 683-693). From this follows
that SNPs may receive an appropriate error term lower than the predetermined level
of significance (also termed false-positives) and thus they are falsely included for the
second step, i.e., SNPs are possibly biased for the breeding value prediction (Hayes and
Goddard, 2010). GWAS is based on the assumption that a significant association between
SNP and trait exists when the SNP is close or linked to a QTL. The dense SNP chips
also allow the use of all SNP markers for the breeding value prediction, because it is
expected that each QTL is in LD within at least one SNP. This assumption is made in
GS. The difference between MAS and GS is: MAS uses only the significant SNPs from
GWAS, whereas in GS all available SNPs are used. This implies that in GS there is no
need to know QTL positions. GS has also the advantage that the first SNP filtering
step is not necessary compared to MAS and thus SNPs are unbiased when they are
used for the genetic value prediction (Hayes and Goddard, 2010). The term GS was
introduced in 1998 by Visscher and Haley at the 6th World Congress on Genetics Applied
to Livestock Production (WCGALP in Armidale; van der Beek, 2007; Meuwissen, 2007).
The corresponding analytical framework for GS was presented in 2001 by Meuwissen et al.
(2001). In general, the same advantages as in MAS are expected. Since August 2010
the GS breeding values are confirmed and validated by ICAR (International Committee
for Animal Recording)/Interbull (sub-committee of ICAR) and determined by the vit
Verden in Germany (Reinhardt et al., 2011). In addition, GS also allows the estimation
of breeding values without pedigree information, which means phenotypes and marker
data are adequate and sufficient for the genetic value prediction (Hayes and Goddard,
2010).

GS can be seen as an independent way to determine breeding values and it complements
the traditional breeding. The officially estimated breeding value should include all
available information, which includes that the traditional and GS should be done in
parallel to reach high accuracy (Seefried et al., 2010). Also a change in breeding programs
is expected based on GS. In this context, in near future it will be standard to genotype
bull dams and to select them based on the observed genomic breeding value, which can
lead to further selection improvements (König et al., 2009).
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Duration
(in month)

Traditional selection Genomic selection

0 ↑ →Bull is born. ↑ →Bull is born and selected based on
determined genomic breeding value.

12

| | Bull has reached his sexual matu-
rity and is used to produce male
offspring (sons).

15 Bull is progeny tested.

21 ←Birth of the sons

24 Progeny of the bull are born (daugh-
ters).

48 Daughters of the bull starting with
their first lactation.

54 Milk production data are available
from daughters of the bull and thus
the breeding value of the bull can
be calculated.
If the bull has an appropriate breed-
ing value then he is used to produce
male offspring (sons).

70 ←Birth of the sons.

Figure 1.2: Comparison of the duration of artificial insemination breeding programs.
On the left hand the traditional breeding program and on the right an aggressive
breeding program with the use of genomic bulls. The figure was created following
Schefers and Weigl (2012).

1.4 Genomic selection methods

In the field of GS several estimation methods are proposed, for example Bayesian methods,
non-parametric and semi-parametric methods (e.g., Dekkers, 2012; Meuwissen et al.,
2013). All these methods have the following underlying prediction process in common:
Genotypes and phenotypes of the ancestral generation are used to estimate the genetic
effects. The estimated genetic effects are used in combination with the genotypes of
the offspring generation to predict genetic values. The accuracy of the genetic value
prediction can be measured as the correlation between estimated and observed genetic
values, which is possible in simulation studies in which the simulated genetic values are
known. In experimental data the correlation between estimated genetic values and the
observed phenotype values is used.
The main objective of this thesis is to investigate if genetic value prediction can be
improved by considering the additional system level of the metabolome; no new estimation
methods are proposed, compared or optimized. Two estimation methods were used, both
of which in a Bayesian framework. In general, a Bayesian framework allows the inclusion
of prior knowledge; prior assumptions mirror the distribution of the genetic effect sizes
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of QTL. As the true QTL are typically unknown, priors are defined for SNPs which
are in strong LD with the QTL (Hayes and Goddard, 2010). Exemplary settings can
be that all SNP effects have an equal impact on the investigated trait, which means all
SNPs have small genetic effect sizes (similar to the infinitesimal model of quantitative
genetics; Dekkers, 2012; Falconer and Mackay, 1996, p. 438), or that only few SNPs have
a moderate genetic impact on the investigated trait and all other SNPs have a genetic
effect of zero. To realize the assumption for the underlying genetic architecture, different
prior distributions have been proposed in recent literature, e.g., Meuwissen et al. (2001);
Verbyla et al. (2010) and for review see Meuwissen et al. (2013). Different approaches
for setting the prior are possible (Sorensen and Gianola, 2002); for example, choosing a
prior in such a way that the posterior distribution can be solved analytically, or using
a simulation to obtain an approximation for the posterior distribution. The latter is
mostly done with Markov-Chain Monte-Carlo (MCMC) simulations, for example via
a Gibbs sampling algorithm. The Bayesian method BayesB (Meuwissen et al., 2001)
can be seen as an appropriate method for our purpose as the literature mostly shows
that BayesB delivered high accuracy in genetic value prediction compared to other
estimation methods (e.g., Meuwissen et al., 2001; Daetwyler et al., 2010; Habier et al.,
2011). BayesB assumes that a large number of SNPs have a genetic effect of zero and a
small proportion of SNPs have a moderate genetic effect. Further, the prior distribution
of variance, which represents a measure of uncertainty on genetic effects, is a mixture
distribution of point mass at zero and an inverse χ2 distribution. The MCMC technique
commonly used is known to be time-consuming. This method estimates all SNP effects
simultaneously. Meuwissen et al. (2009) proposed a fast algorithm which makes similar
assumptions as BayesB. This algorithm solves the problem analytically and thus avoids
the time-consuming MCMC technique. The prior distribution of variances is in this case
a mixture distribution with point mass at zero and an exponential distribution. This
method is an iterative approach, where the genetic effects are successively estimated
for each SNP. Both methods, the fast BayesB as well as BayesB, have been extended
to non-additive genetic effects (Wittenburg et al., 2010). The difference in computing
time were compared between both methods based on a data set with 2,000 animals in
the parent (training) generation as well as in the offspring (test) generation, considering
5,227 SNPs including 23 SNPs that were selected as QTL (Wittenburg et al., 2010). For
both estimation methods the used analysis model considers additive as well as dominance
genetic effects. The obtained computational time was one second for fast BayesB and
four hours using the original BayesB method for one data set using a 2.93 GHz multi-user
system (Wittenburg et al., 2011). If pairwise epistatic effects were additionally considered
the computational time was seven hours for one data set using fast BayesB. Although
fast BayesB requires essentially less computing time than BayesB, it has similar accuracy
of genetic value prediction. In this thesis the fast algorithm of the BayesB method was
applied as numerous analyses had to be performed using varying numbers of QTL and
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SNPs. For analyses a linear model was used, considering the additive and dominance
genetic effects (cf. Chapter 3).
In the field of GS it is also of interest to design low-density SNP panels based on the
high-density SNP panels, which can be used for a broader screening. Currently, it is
common to genotype only elite animals, especially bulls (cf. Section 1.3). To determine
such a suitable SNP subset from a high-density SNP panel, different strategies were
proposed in recent literature (e.g., Weigel et al., 2009; Verbyla et al., 2009; Moser et al.,
2010, more details are presented in Chapter 4). By using such methods, it is possible to
select important SNPs that have a genetic impact on the investigated trait of interest.
Ishwaran and Rao (2005) proposed a spike and slab variable selection (SVS), which
was adopted and validated by Wittenburg and Reinsch (2011) for the genome-wide
estimation of SNP effects. SVS is also based on a Bayesian framework. It has similar
prior assumptions as BayesB, but it assumes a mixture of two inverse gamma distributions
for the variance of uncertainty for each SNP effect, leading to either a very small (but
not zero) or reasonably large genetic effect. Further it infers the proportion of non-zero
genetic effects which is involved in determining those SNPs with significant genetic effects.
SVS was implemented by a Gibbs sampler. This method is used in Chapter 4 once to
select SNPs, resulting in an SNP subset, for the classical approach and the metabolite
approach. On the other hand, this method is used for the genetic value prediction.

1.5 Basic information on the bovine genome, QTL and cow’s milk

1.5.1 Bovine marker maps

The bovine genome has 30 chromosome pairs, consisting of 29 autosomal chromosome
pairs and one allosome (sex specific chromosome) pair. The genome consists of around
3 · 109 basepair (bp), which is the physical unit, it has a length of around 30 Morgan (M)
or 3,000 centiMorgan (cM), which is the genetic unit (e.g., Kappes et al., 1997).
Two kinds of marker maps exist, which can be distinguished into the genetic marker
map and the physical marker map. The genetic marker map uses cM as measure and
provides the positions and relative genetic distances between genetic markers along the
chromosomes. Distances between two genetic markers are measured in terms of the
frequency of recombination (Collard et al., 2005). In this context, if two genetic markers
are far away from each other then the probability for a recombination event is high,
otherwise the probability is small. Note, the frequency of recombination can not be
linearly converted into the frequency of crossing-over events (Collard et al., 2005). To
enable conversion between the two kinds of marker maps mapping functions are used. The
most common mapping functions are the Haldane mapping function (Haldane, 1919) and
the Kosambi mapping function (Kosambi, 1944). The difference between both functions
is that the Haldane mapping function assumes no interference between crossing-over
events (meaning no crossing-over event is influenced from another), whereas the Kosambi
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mapping function assumes interference (Collard et al., 2005). In general, this kind of
marker map can be used to determine the possibility of a crossing-over event occurring
between two loci. The recombination rate, θ, gives the probability of a crossing-over
event in meiosis, where 100 cM corresponds to one crossing-over event (Sturtevant, 1913).
The physical map is given in the unit bp, and here the distance between two genetic
markers can be exactly determined. Thus, a complete physical map can only be obtained
if the whole genome sequence is known (Morton, 2005). In April 2009 the sequence of the
bovine genome was completed (The Bovine Genome Sequencing and Analysis Consortium
et al., 2009). Both kinds of marker maps cannot be transformed 1:1, because genetic
distances and physical distances are not equal and can differ along the chromosomes.
The chromosomes contain regions with high recombination frequency, termed “hot spots”,
and those with low recombination frequency, termed “cold spots” (Collard et al., 2005).
Further information about the relationship between the two marker maps can be found
in Morton (2005). Both kinds of marker maps are relevant in all chapters of this thesis.

1.5.2 Quantitative trait loci in Holstein dairy cattle

The focus of this section is to roughly explain methods used to detect QTL and quan-
titative trait nucleotides (QTNs), since this kind of information is used in Chapter 4.
The principle of QTL mapping is as follows: “If a QTL is linked to a marker locus,
there will be a difference in mean values of the quantitative trait among individuals with
different genotypes at the marker locus” (Mackay, 2001). The idea of QTL is not new
as it has already been described by Sax (1923). Basically, QTL show different strength
of genetic effects or impact on the investigated trait. A QTL with high genetic effects
can be detected easier than a QTL with low genetic effects. In general, the smaller the
genetic effect size of the QTL the more animals are required to enable its detection.
Different designs were proposed in the literature to detect QTL, where the optimal designs
regarding maximal statistical power are backcross or F2 generation of a cross-population
between inbreed lines (Ron and Weller, 2007). Since 1995 it is common to use daughter
and granddaughter designs to detect QTL in dairy cattle science using linkage mapping.
“In these designs, QTL-marker linkage phase varies across families, and all analyses are
performed within half-sib families” (Ron and Weller, 2007). With the aid of genetic
markers it is possible to determine the most likely location of a QTL by interval mapping
and the corresponding confidence interval can be determined by the non-parametric
bootstrap (Ron and Weller, 2007). The typical confidence interval for the QTL location
spans often tens of genetic map units, resulting in several genes being contained in a
QTL (Ron and Weller, 2007). In such studies only few animals are used for genotyping
(sires) and only QTL with large genetic effect sizes will be detected (Ron and Weller,
2007). Such a detected QTL cannot be well established in breeding programs, because
several markers are contained in a large confidence interval whereby not all of them will
be informative for the investigated trait. Hence, it is necessary to identify the specific
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polymorphism that is the cause of the observed trait deviations. Such polymorphism is
termed QTN (Mackay, 2001; Ron and Weller, 2007). In this context, Ron and Weller
(2007) proposed a strategy of how to determine and validate a QTN. As mentioned
earlier, high density SNP chips have been available since 2008, allowing new strategies
such as GWAS. In this context, Weller and Ron (2011) noted that more significant SNPs
with a genetic impact on the investigated trait were detected using SNP chips than using
the traditional designs (daughter and granddaughter design). This review further shows
that in the study of VanRaden et al. (2009) the observed results from GWAS correspond
to results observed from traditional designs. Finally, it was mentioned that to this date
only two QTN affecting milk production traits were identified:

1. DGAT1 is known to have an impact on milk fat and milk protein (Grisart et al.,
2004; Weller and Ron, 2011), and

2. ABCG2 is known to have an impact on milk protein (Cohen-Zinder et al., 2005).

Detected QTL can be found in databases; for example, in the AnimalGenome database
(“http://www.animalgenome.org/cgi-bin/QTLdb/BT/index”, Hu et al. (2007)).

1.5.3 Cow’s milk properties

In the history of animal husbandry, milk plays an important role. For a long time, desired
milk properties (milk production traits), e.g., to yield a high quantity of milk, and high
levels of milk fat and milk protein, and morphological traits were the main breeding
objective (up to the mid 1990s; Oltenacu and Broom, 2010). The role of cow’s milk is
manifold today. Besides the importance as nutrition for newborns (immune response),
it also plays a central role as staple food for the population, breeding and animal feed
in animal production, and it is used as natural resource in the industry (Töpel, 2004,
pp. 1-2).
Milk is secreted by the mammary gland of cows and the milk composition depends on
several influencing factors. The latter are presented in Figure 1.3.

influencing factors
↙ ↓ ↘

genetic influences physiological influences external influences
| | |

breeding, stage of lactation, feeding,
breed age and health housing and stress,

status of the cow technique of milking

Figure 1.3: Factors influencing milk (adopted from Töpel, 2004, p. 7).

This Figure shows that three main groups of influencing factors exist: genetic, physiolog-
ical, and external influences. The last two groups are also known as systematic effects.
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The various influencing factors imply that it is useful to control the milk quality and
quantity in a standard procedure. Quality and quantity of milk is measured once a month
in a standardized MPT (Töpel, 2004), which determines milk ingredients quantitatively
that are important for the quality of milk and helps monitor animal health. The milk
ingredients are usually measured via infrared spectroscopy (ADR, 2008). To enable
comparability between cows regarding the obtained milk traits it is necessary to correct
for known influencing factors. Such correction is also necessary to allow further statistical
tests to obtain, for example, an unbiased estimation of the genetic effects in GS. In
the literature different kinds of models (e.g., test-day model, Ptak and Schaeffer, 1993)
are proposed to correct for influencing factors (fixed effects). In the field of GS it is
common to use mixed models (cf. Eq. 1.9 on page 10) for the estimation of genetic
effects within a population. In these models known influencing factors are corrected (e.g.,
day of lactation and farm). The impact of influencing factors plays a role in Chapter 2,
where the specific randomized design is presented, which takes these influencing factors
into account for measuring the milk metabolite spectra via gas chromatography-mass
spectrometry (GC-MS). The influencing factors also play a role in Chapter 4, where milk
metabolites and milk traits are corrected to enable unbiased analyses.
In the following, two terms are introduced which are important in Chapter 4.

Duration of lactation: The duration of lactation is defined as the following time period:
one day after calving till cow goes dry. A standardized size in this context is the 305 day
milk yield, whereby here the time period is defined between one day after calving until
at least day 250th and maximum until day 305th (ADR, 2008). Further, in the first six
days the milk is termed colostrum, whereby the milk composition clearly differs from
that of the mature milk which follows, and in the last weeks the milk is termed “old
milking“ milk (Töpel, 2004, p. 8). An idealized general course of the lactation based on
the 305 day milk yield is presented in Figure 1.4. In the first period an increase of the
milk yield can be observed followed by a slow decrease. Finally a strong drop in milk
yield is observed.
Beside milk performance, the energy balance (EB) of the cow is an important term.

Energy balance (EB): The EB can be determined as the difference between consumed
energy (feed consumption) and required energy of a cow (Grummer and Rastani, 2003).
If a negative EB occurs, the cow utilizes the energy from its fat depot. Otherwise, the
cow stores the energy as fat (Grummer and Rastani, 2003). In this context, it is also
known that a high producing cow goes through the following phases during lactation
(Kirchgessner, 1992, p. 297):

1. In the first third of lactation a negative EB is observed that cannot be completely
compensated with concentrated feed.

2. In the second stage of lactation the EB is balanced.
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Figure 1.4: Idealized schematic representation of the general course of lactation.
The figure was created based on Figure 7.1-7 in Kirchgessner (1992) on page 293.

3. In the last third of lactation a positive EB is observed.

1.6 Bioinformatics and Systems Biology

In this section the relevance of bioinformatics and systems biology to this work is presented.
Bioinformatics, as well as systems biology, are interdisciplinary research areas and evolved
out of various areas (e.g., Hagen, 2000; Westerhoff and Palsson, 2004). Both have a
global view of the system-level information of the GP map. System-level information
is provided by different omics data; for example genomics, proteomics, metabolomics.
Integration of different omics data allows users to investigate specific associations between
different levels as well as to study their interplay to get more insight into the complexity
of a biological system (Ge et al., 2003; Westerhoff and Palsson, 2004; Choi and Pavelka,
2012). Both research areas have in common that various definitions exist, whereby some
of them are more restrictive than others. Before bioinformatics and systems biology are
defined, the term omics is introduced.

1.6.1 Omics

The suffix “omics” is usually used for large-scale data or information in biology. The
prefix clarifies which part of biology is considered, such as genomics for the genome,
proteomics for the proteome, and metabolomics for the metabolome (Yadav, 2007). In
this thesis two different omics levels, i.e., genomics and metabolomics, are considered
and will be briefly explained in the following.

Genomics Genomics is termed the research field, where the whole genome, i.e., all
genes of an organism are analyzed. The access is gained via DNA sequencing (e.g., Joyce
and Palsson, 2006). In Chapter 2 the access of the genetic information of the Holstein
Friesian cows is described, which is used in Chapter 4.
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Metabolomics Metabolomics is the research field that investigates all metabolites
of a biological system. The aim of metabolomics is to identify and quantify the
metabolome (e.g., Fiehn, 2002; Krastanov, 2010). Different techniques exist to de-
termine the metabolome and each has advantages and disadvantages (e.g., Roessner and
Bowne, 2009; Lei et al., 2011), especially no technique is able to measure all low-molecular
substances in a sample (e.g., Roessner and Bowne, 2009; Lei et al., 2011). Mostly a
small (biased) fraction of all metabolites is measured experimentally (e.g., Weckwerth,
2003). The most common techniques in metabolomics are nuclear magnetic resonance
spectroscopy, liquid chromatography-mass spectroscopy, and gas chromatography-mass
spectrometry (e.g., Roessner and Bowne, 2009; Lei et al., 2011). After measuring parts of
the metabolome, it is common to apply classical statistical analysis methods, for example
ANOVA, and bioinformatics tools, e.g., clustering, for investigating the measured part of
the metabolome (Krastanov, 2010). In the field of dairy science, principal component
analysis is primarily applied as a first unsupervised analysis method. In other fields, e.g.,
plant science, different multivariate analysis methods are typically used to explore the
data (Sugimoto et al., 2012).
Metabolic data can be used for statistical analyses, for data mining, and for model-
ing metabolic networks (Fiehn, 2002). In this work, the milk metabolite spectra were
measured via GC-MS (cf. Chapter 2). After pre- and post-processing steps, different
analysis methods (e.g., multivariate methods) were applied to investigate, for example,
the relationship between milk metabolites and milk traits more deeply. All analyses and
results for the experimental data are presented in Chapter 4.

1.6.2 Bioinformatics

Numerous definitions for bioinformatics are present in the literature. The most relevant
definitions for this thesis is the following. ”Bioinformatics [...] is the research field of
quantitative analysis of information relating to biological macromolecules with the aid of
computers“ (Xiong, 2006, p. 3). More explicitly, ”bioinformatics is conceptualizing biology
in terms of molecules (in the sense of Physical chemistry) and applying ’informatics
techniques’ (derived from disciplines such as applied maths, computer science and
statistics) to understand and organize the information associated with these molecules, on
a large scale. In short, bioinformatics is a management information system for molecular
biology and has many practical applications“ (Luscombe et al., 2001). Summarizing, ”the
ultimate goal of bioinformatics is to better understand a living cell and how it functions
at the molecular level“ (Xiong, 2006, p. 5).
Bioinformatics can be distinguished into two main fields, the first of which is developing
software tools and the construction, maintenance, and curation of databases. The second
field involves the application of software tools, where the application can be divided into
three application areas: structural (e.g., protein structure prediction), sequence (e.g.,
genome comparison, sequence database searching), and functional analysis (e.g., metabolic
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pathway modeling, protein interaction prediction) to generate biological knowledge. This
division does not mean that these kinds of application areas are always considered
separately, but rather different areas are integrated to obtain results or find specific
connections (Xiong, 2006).
Bioinformatics plays a central role in this thesis and different tools and methods from
the field were applied. For example, software tools to create and manage a database were
used as well as tools that allow the extraction of desired information from the database
(see Chapter 2 for more information) or different bioinformatics techniques, e.g., machine
learning approaches and clustering, are applied in Chapter 4 to investigate the milk
metabolites and milk traits as well as the relationship between them. In this context,
the proposed metabolite approach in this thesis represents an integrative bioinformatics
approach, because two different kinds of omics data, i.e., genomics and metabolomics,
were integrated. These kinds of data were differently combined in connection with
an observed phenotype and analyzed. The following relationships were investigated:
metabolome-phenotype, genotype-metabolome, and genotype-phenotype. This integrative
bioinformatics approach is used in Chapter 3 and Chapter 4.

1.6.3 Systems Biology

The general focus of systems biology is to understand the underlying components (or
structures) and the dynamic behavior of biological systems (Kitano, 2002). The main
point of systems biology is to investigate “the behavior and relationships between all
of the elements in a particular biological system while it is functioning” (Ideker et al.,
2001). In general, large data sets are obtained, whereby a large number of variables
(e.g., metabolites) and nonlinear relationships have to be elucidated (e.g., Wolkenhauer
et al., 2005). To gain a deeper understanding of the underlying mechanism in the
behavior of the complex system it is necessary to make assumptions (abstraction) and use
mathematical models from systems theory to describe the structure and the dynamics of
a biological system (Wolkenhauer, 2001; Ideker et al., 2001; Wolkenhauer, 2007). In this
context, one goal of systems biology is ”to turn [...] static maps into dynamic models
which can provide insight into the temporal evolution of biochemical reaction networks“
(Wolkenhauer et al., 2005). Wolkenhauer et al. (2012) reviewed in this context that till
today the main focus in systems biology lies on the reconstruction of biological networks,
i.e., gene regulatory networks, signaling networks, and metabolic networks. In general
such models are used to get a deeper understanding of the mechanism of the underlying
cell function after the models are validated with experimental data (Wolkenhauer et al.,
2012). For the design of such biochemical networks (e.g., metabolic network) several types
of modeling (or mathematical formalism) are proposed in the literature, for example,
qualitative, semi-quantitative, and quantitative models (e.g., De Jong, 2002; Kærn et al.,
2003). The latter kind of model is of interest in this thesis, not in respect to design
or to optimize an existing model, but rather to use a curated metabolic network (see
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below). Inspired by Mendes et al. (2003) the metabolic network is used, where the
metabolome level of the classical GP map is additionally considered (Chapter 3), to
realize the genotype-metabolome step in our proposed alternative approach to simulate
more realistic data. Mendes et al. (2003) simulated different gene expression data
sets based on artificial gene regulatory networks. These network models are composed
of coupled ordinary differential equations (ODEs), where each equation describes the
production and degradation dynamics of a specified gene product. In this context, mostly
ODEs are used for quantitative modeling of intracellular dynamic processes to express
temporal changes in concentrations (quantities; e.g., Edwards et al., 2002; Wolkenhauer
et al., 2005; Polynikis et al., 2009). Further, Mendes et al. (2003) realized biological
variation by adding random values to the kinetic parameters. Liu et al. (2008) adopted
this approach and followed Mendes et al. (2003) by incorporating QTL variation to
influence the kinetic parameters in their gene regulatory network. Based on these two
approaches, we make use of an existing curated and parameterized metabolic network
model, i.e., SBML model (SBML: Systems Biology Markup Language; Hucka et al., 2003)
to obtain different metabolic outcomes in dependency of the genetic information (more
information for the used metabolic network is presented in Section 1.6.4.2). Such models
can be found in databases for example, in the BioModels Database (“www.biomodels.org”,
Le Novère et al., 2006).

1.6.4 Metabolic networks

In this section only a brief overview of the wide field of metabolic network modeling is
presented. It has been a long tradition to try to understand the cellular regulation of
metabolism (Heinrich and Schuster, 1998; Fiehn, 2002). The field of modeling metabolic
networks can be distinguished in several sub-fields. An overview of the sub-fields and the
different advantages as well as disadvantages can be found in a review from Wiechert
(2002). In this thesis only the type of constraint-based modeling of metabolic networks
is of interest (Terzer et al., 2009; Ruppin et al., 2010). In particular, the flux-balance
analysis (FBA), which is explained in the next section, as the used curated metabolic
network is based on FBA.

1.6.4.1 Flux balance analysis of metabolic networks

Usually, not all details of kinetic information are available to reconstruct a cellular
metabolism in mathematical detail for a single cell (Bailey, 2001; Edwards et al., 2002;
Ruppin et al., 2010). An exception in this context is represented by the human red blood
cell where an advanced level of mathematical modeling exists (Schuster and Holzhütter,
1995; Edwards et al., 2002). The core of constraint-based models and thus also for FBA is
the stoichiometric matrix (S) of size metabolites x reactions, which is the mathematical
representation of the reactions of a metabolic network; elements of such matrix are termed
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stoichiometric coefficients. Rows correspond to the metabolites and columns represent
the chemical transformation of each catalyzing enzyme (reactions), which indicates how
many molecules of each metabolite are transformed. The stoichiometric matrix represents
the metabolic reactions: consumed (negative sign), produced (positive sign), and zero for
each metabolite that does not participate in the corresponding metabolic reaction (Orth
et al., 2010). Based on this concept the balance equations or mass reactions, v, using
ODEs for participating metabolites of the metabolic network can be formulated. “These
balances simply state that the concentration change of a metabolite over time is equal
to the difference between the rates at which the metabolite is produced and consumed”
(Edwards et al., 2002). It is assumed that the metabolic network has reached steady-state
(Sv = 0; also termed as quasi or pseudo-steady-state, Orth et al., 2010), meaning that
the metabolite concentrations do not change (results in metabolite balancing equations).
“It requires that each metabolite is consumed in the same quantity as it is produced,
and this is the basis for further analysis of metabolic fluxes based on the stoichiometric
matrix” (Orth et al., 2010). In realistic large-scale metabolic models, more reactions exist
than compounds (metabolites), which results in no unique solution to the ODE system
(Orth et al., 2010). To reduce the possibilities of solutions, constraints can be used,
which can be formulated mathematically, for example, thermodynamics for the reaction
direction and the enzyme kinetic maximum reaction velocity (V max) for enzyme kinetics
(Palsson, 2000; Edwards et al., 2002; Terzer et al., 2009). In general, each constraint
has an influence on the solution space and narrows the solution space in which the
metabolic network must perform (Palsson, 2000). The core of FBA is to identify such an
optimal solution within a constraint space via linear optimization (Palsson, 2000). In
the easiest case only a single flux is either maximized or minimized. For FBA different
optimization criteria are proposed in the literature; for example, to optimize biomass. It
is also possible to integrate experimental measurements as constraints to support the
calculation of the entire metabolic flux distribution (Edwards et al., 2002). In general,
“FBA can be used to calculate, interpret and predict metabolic flux distributions and
to analyze the capabilities of a metabolic network based on the systemic stoichiometric,
thermodynamic and reaction capacity constraints” (Edwards et al., 2002).
This overview was presented to give a little insight of FBA, because the metabolic network
model used in this thesis is based on FBA.

1.6.4.2 Usage of the curated metabolic network

In Chapter 3 the curated SBML model 70 (Holzhütter, 2004), which was downloaded from
“http://biomodels.org/” (Le Novère et al., 2006), was applied to realize the genotype-
metabolome step in our alternative simulation approach. This model was curated such
that the model simulated the same flux values as given for the “kinetic model” as presented
in Table 1 of the original paper from Holzhütter (2004) (adopted from the corresponding
SBML model report). In this context, it is mentioned that there is a discrepancy between
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the original paper and the SBML model available online. The original model in the
published paper is based on 30 reactions and 29 metabolites, whereas the official SBML
model is based on 38 reactions and 45 metabolites.
The SBML model belongs to the category of FBA, where minimization of all fluxes
is used as optimization criterion (Holzhütter, 2004). Holzhütter (2004) proposed this
criterion, because he mentioned that maximization of the biomass is appropriate for
primitive cells like bacteria, but a more general criterion for optimization is necessary
for cells with ”more sophisticated ambitions“. The model is based on ODEs, whereby
each ODE describes the temporal behavior of metabolite concentrations. The model was
designed based on the erythrocyte cycle in human red blood cells. The model comprises
the pentose phosphate pathway and glycolysis. In this paper, the author shows that
the FBA method with the used optimization criterion provided results which were in
a good agreement with those found in the corresponding kinetic model (Schuster and
Holzhütter, 1995), even when an enzyme parameter, i.e., V max, was varied. In this
paper, four different fluxes were influenced by varying V max, in a range between 50%
and 500% of the normal values of V max. The corresponding kinetic model was published
earlier by Schuster and Holzhütter (1995), where the metabolic change was investigated
for 23 enzymes and the enzyme kinetic parameter V max was varied in a range between
0% and 5,000% of the normal values of V max. In both studies only one enzyme per
analysis was investigated. The theoretical predictions were compared with observations
from experimental data for several enzyme deficiencies, where good agreements between
theoretical and experimental results depicted from the literature were observed.
The SMBL model was selected and considered to be adequate, because among the few
existing curated metabolic network models for mammals it belongs to the few larger
alternatives, and no curated metabolic SBML model existed for bovids at the time where
it was processed (2008/2009).

1.7 Thesis objectives and structure

In the following the objectives and the structure of this thesis is presented. For each
chapter the relevant issues of the work are discussed.

In Chapter 2 the experimental data acquisition and the corresponding pre- and post-
processing steps are presented to obtain complete and ready prepared data for the desired
three system-levels: genotype, metabolome, and phenotype, for at least 1,300 Holstein
Friesian cows. The latter implicates that a huge amount of data had to be obtained
during the data collection period, involving several co-operation partners as well as own
lab-work. The diverse information had to be obtained at different time points, making a
sophisticated experimental design necessary. In this context, the main question was:

2.1 How to organize and ensure data validity and integrity for all the different informa-
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tion of the data collection?

It is known that several influencing factors (e.g., milk test-day) have an effect on the
investigated milk traits (cf. Section 1.5.3). A similar effect of the influencing factors was
expected for the obtained milk metabolites via GC-MS. Hence, milk metabolites should
be also corrected for these influencing factors as well as for the expected experimental
error, since it is known that over time the column (GC-step) wears out, to enable later
unbiased analyses of milk metabolites. This resulted in the following question:

2.2 How to account for known influencing factors of the GC-MS metabolite profiling?

In general Chapter 2 focuses on the realization of storing and digitally archiving the
experimental data and the specially created relational database is presented. The devel-
oped randomized design is presented, which enables to correct for the influencing factors
on milk metabolites after GC-MS measuring and preparation. This part of the work was
published in Melzer et al. (2010a).

Chapter 3 contains all information for data simulation and analyses of simulated
data. This chapter is consistently divided into three parts.
In general, we wanted to simulate more realistic data using a more complex model of
the GP map than it is realized currently in the field of GS (conventional approach). The
first part focuses on how to obtain more realistic data with respect to the experimental
data. In our approach SNP-genotypes were simulated based on SNP positions from
a commercially available SNP chip, which was used for our experimental data. As
mentioned earlier an appropriate LD is important for the genetic value prediction to
ensure an adequate prediction precision. Therefore a preliminary study was implemented
(Melzer et al., 2010b) and in this context the question was:

3.1 Which population genetic parameter settings must be used to achieve a suitable
LD in our data sets with respect to experimental data?

In the second part, our alternative simulation approach is presented to simulate more
realistic data, using a more complex model of the GP map, i.e., the metabolome level
is additionally considered. The simulated data designed to be more realistic data were
compared with data simulated using the conventional approach regarding prediction
precisions and estimated variance components. Here, the focus was especially on the
following questions:

3.2 Is the conventional approach an appropriate basis to simulate data (for method-
ological development) with similar structure as experimental data?

3.3 If data are simulated using more complex models, is it possible to detect the genetic
effects adequately using a linear model?
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3.4 How much complexity in the GP map is required for simulated data as a basis to
develop methods that are applicable more generally?

Possible deviations from linearity were also characterized in the alternative approach.
This part of the chapter was published in Melzer et al. (2013b).
The simulated data of the genotype, metabolome and phenotype level via the alternative
approach enabled us to investigate if and to which degree an improvement can be observed
if the metabolome is additionally used for the genetic value prediction (Melzer et al.,
2011). This is the focus of the third part of this chapter. Our developed integrative
bioinformatics approach (metabolite approach) is presented, which is used to analyze the
three system-levels. The emphasis of this study was on the following two questions:

3.5 How much gain in prediction precision can be expected if only a part of the
metabolome is considered?

3.6 Which measure of weighting is appropriate for important SNPs?

Thus, Chapter 3 focuses on the realization of an alternative simulation approach, including
the simulation of data based on the experimental set-up, and the methodological devel-
opment of an integrative bioinformatics approach to use information of the metabolome
for the genetic value prediction.

Chapter 4 contains all analyses involving the experimental data. In this chapter
three different investigations are presented and hence it is consistently divided into three
parts.
First, a conceptual comparison between simulated data and experimental data was
realized to investigate the following question:

4.1 Is the conventional approach an appropriate basis to develop or to optimize estima-
tion methods in the field of GS with respect to the experimental data?

Second, the milk metabolites and milk traits as well as the relationship between both
levels were studied in more detail using various analysis methods, e.g., machine learning
methods, to enable a deeper insight of these relationships. Furthermore, the effect of the
influencing factors on milk metabolites and milk traits were studied. The focus in this
part of the work was especially on the following questions:

4.2 Do milk metabolite profiles change during lactation (do they show a lactation
curve)?

4.3 How to determine the importance of the measured part of the milk metabolome for
the investigated milk traits?

4.4 Do milk metabolites determined to be important play a biological role for an
investigated milk trait?
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This comprehensive study was published in Melzer et al. (2013a).
Third, the proposed metabolite approach was implemented for the use on the experimental
data to investigate the following questions:

4.5 Do SNPs selected for important milk metabolites, which show a high importance
for the milk trait prediction, have a relevance for the milk trait?

4.6 How much gain in the genetic value prediction can be observed if the metabolite
approach is used compared to the classical approach?

4.7 Does genetic variation on important SNPs (e.g., DGAT1), where it is known that
they have a genetic impact on a milk trait, have a similar genetic impact on
important metabolites for the investigated milk trait?

Concluding, the third part focuses on the comparison between our metabolite approach
and the classical approach based on our experimental data, where especially the impor-
tant SNPs selected from both approaches were compared with respect to their biological
relevance using known QTL as well as QTNs. This study was under review for publication
at thesis submission (Melzer et al., 2013c). Summarizing, this chapter contains extensive
investigations of the different relationships of the three system-levels of the experimental
data.

In Chapter 5 the conclusions are presented.

Finally, the complete overview of publications resulting from this work is presented
and my own contributions are stated.
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This chapter deals with the collection of experimental data and the pre- and post-
processing steps necessary to obtain the desired system-level data of genotype, metabolome,
and phenotype, which are used in Chapter 4. The structure of these data also forms the
basis for the data simulation in Chapter 3. The extensive use of the infrastructure of
different collaboration partners, different data formats, integrity checks and run-time
monitoring of the different levels of data collection was achieved using a relational MySQL
database. The GC-MS milk metabolite profiling needs an elaborate experimental design
in order to account for influencing factors. The database scheme and GC-MS design
presented here may have exemplary character for similar studies. Parts of this chapter
were published in Melzer et al. (2010a).

2.1 Introduction

To enable a comparison between the classical approach and the metabolite approach on
an experimental level, it is necessary to collect and preprocess the respective data. The
design of the experimental data has an effect on the data simulation (in Chapter 3). The
data simulation should be conducted in a more realistic way compared to the conventional
approach used in the field of GS, where the involved classical GP map for simulating
data is based on a simple linear function. In general, we aimed to obtain a complete
experimental data set for all three system-levels of genotype, metabolome and phenotype
for about 1,300 cows. We collected blood and milk samples. With a sample of blood it is
possible to access the genotype after the extraction of the desoxyribonucleic acid (DNA)
and determination of the SNP-genotypes. The milk samples were used on the one hand
for the MPT, during which different milk traits were measured, e.g., fat content, protein
content, and quantity of milk. On the other hand, the milk samples were used to access
the metabolome level by using a GC-MS approach (Lisec et al., 2006). The experimental
set-up itself generates massive amounts of data. In addition, various information from
several co-operating partners had to be stored. As a consequence, different information
was obtained at several time points, which makes keeping track of the data during the
time of sampling a challenge. Hence, it is necessary to have one central management
system and an infrastructure able to handle and organize all this diverse information.
For handling and organizing as well as to secure data integrity and validity, a database
was built. The database also provides an overview of the collected data at any time point
of the collection period.
As post-processing step, it is necessary to correct for influencing factors (e.g., test-day)

29
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for milk traits as mentioned earlier (cf. Section 1.5.3 on page 18) to obtain an unbiased
estimation of the genetic effects. To enable the best possible correction for such known
influencing factors for the obtained milk metabolites after GC-MS metabolite profiling,
a randomized design was created based on the randomized block design (Sachs, 2004,
p. 680).

2.2 Data collection

To obtain the information of the genotype, metabolome, and phenotype from the desired
1,300 cows (number of cows based on an advice from the breeding committee at the
Fugato status meeting in Potsdam, Germany, in 2008; originally only 500 cows were
planned), blood and milk samples from each cow were required. Each cow had to meet
the following requirements:

1. The cow had to be in its first lactation period to enable comparability between ob-
tained milk samples, because significant differences exist between different lactation
periods (cf. Section 1.5.3 on page 18).

2. The milk sample had to be taken between the 21st and the 120th day of lactation.
The time period was chosen for the following reasons: First, in the initial stage of
lactation the milk has a significantly different composition (cf. Section 1.5.3 on
page 18). To make sure that no cow was still at this initial stage, the earliest time
point for taking the milk samples was the 21st day after calving. Second, the time
period was limited to ensure a similar status between the cows and avoid significant
differences that exist between different stages of lactation. We had to ensure that
the interval was not chosen too narrow to collect a sufficient number of samples,
but that it was chosen broad enough to keep the desired number of cows.

In total, 1,843 cows from 18 farms within Mecklenburg-Western Pomerania (in the North-
east of Germany) were selected that met the mentioned requirements. Arrangements with
farms and the regional institute for standard milk performance testing (Landeskontrollver-
band für Leistungs- und Qualitätsprüfung, LKV Güstrow, Germany) were made. From
each farm we received the ear tag number of the cows that were in their first lactation
during the collection year. These ear tag numbers were sent to the Computing Center -
IT-solutions for animals (vit Verden, Germany). From the vit Verden we received the
corresponding pedigree information (e.g., sires) and the date of calving for each cow.
Afterwards, we could start with the sampling of blood (period: January-February and
October-November 2009) and milk (March-November 2009). During the period of milk
sampling we received weekly an updated list from the vit Verden for all selected cows,
e.g, which cows had calved and the day of calving. This list was used to generate a list
of cows for every farm for milk sampling. The different lists were provided to the LKV
Güstrow via regular updates. The LKV Güstrow forwarded the respective list of the
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farm that should be audited within the normal MPT to a milk performance inspector. In
addition to normal milk samples, the milk performance inspector also delivered the list
of cows and the milk samples specifically taken for our project in a separate box to the
LKV Güstrow where the milk samples were analyzed. During the collection period, we
received monthly information from the LKV Güstrow regarding the measured values of
the MPT for our selected cows as well as from their herd mates. In addition, we had to
evaluate the lists of cows returned after being used by the milk performance inspectors.
These lists contained information about cows that were sold, medical treatments, or
disease status. In this context, I would like to mention that March 2009 constitutes a
special case, because for this month we obtained only measured values from the normal
MPT of our cows. After March, the milk traits were measured using the extended MPT,
which means three additional milk traits were recorded (see Section 2.2.2 on page 34),
and we also obtained the measured milk traits information of the herd mates. From this
follows that March was more or less a test-month, and we tried to get milk samples from
the same cows in the following test-month again whenever possible. Note that MPT
compasses the extended MPT in this thesis.
During the period of data collection, we had to cope with processing various types
of information, changing data formats, handling missing values, detecting errors data,
and react to unforeseeable events. The data collection was conducted during standard
business in commercial herds.
The collected samples were further processed to obtain the SNP-genotypes using blood
samples and metabolite profiles based on the milk samples. The corresponding processing
steps for each system-level are presented in Figure 2.1 and are explained in more detail
in the following sections. Note that not all losses of samples are described in detail, as
this would go beyond the scope of this work. Nevertheless, some specific numbers are
presented to illustrate the dimension.

2.2.1 From blood sample to genotype

The blood samples of all selected cows were collected on a multiple-day tour together with
a veterinarian. Afterwards, each sample of blood was divided into four aliquots which
were stored at -80◦C. To obtain purified DNA-samples from each cow, the blood samples
were processed in several steps (cf. Figure 2.1). First, the extraction of the DNA from
the blood samples was conducted using the commercially available NucleoSpin BloodL
toolkit (Machery-Nagel, Düren, Germany). Before the toolkit was applied to our blood
samples, the effectiveness of the toolkit on previously frozen blood samples was verified.
For this, the standard protocol of the toolkit was tested on five random blood samples
in collaboration with a technician. These were also used for the necessary quality and
quantity tests, requested by the Helmholtz Zentrum Munich, which later prepared the
SNP-genotypes based on the extracted DNA samples. In this context, the following was
requested by the Helmholtz Zentrum Munich: The DNA concentration in a sample should
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Figure 2.1: Overview of the experimental data preparation to obtain the desired
three system-levels.

be in the range of 50-100 ng/µl and the quality of a sample should be high enough to
enable SNP chip preparation. To ensure these conditions, two standard techniques were
applied. On the one hand, the content and the purity of the DNA samples was measured
with the NanoDrop 1000 Spectrophotometer (using default setting: DNA-50; Thermo
Fisher Scientific, 2008), which measures the concentration of DNA in the unit ng/µl
and the purity via the ratio of sample absorbance at 260nm and 280nm. The results
obtained by the NanoDrop 1000 Spectrophotometer can be saved as csv files; an example
graphical output is presented in Figure 2.2 A. The second commonly used technique is
the gel electrophoresis, for which the DNA samples, which are charged negatively, and a
corresponding DNA marker were loaded on a 1% agarose gel. Then the gel electrophoresis
was performed at 100 Volt, whereby the DNA passes from the negatively to the positively
charged side. After around 15 minutes, the gel electrophoresis was finished. The gel was
photographed under ultra violet light, which makes the DNA visible in the gel, to see
how far each DNA sample has run and to compare it to the loaded DNA marker. The
gel pictures were used as proof for the Helmholtz Zentrum Munich. An example picture
is shown in Figure 2.2 B. After the pre-test was successfully completed, we processed
the blood samples of the cows following the standard protocol. First, the quality and
quantity check was performed via the NanoDrop 1000 Spectrophotometer. Since the
DNA concentration of many samples was higher than the given range, they had to be
diluted and then measured again. Afterwards, the gel electrophoresis was conducted.
In addition, we knew that 1,344 DNA samples (corresponds to 14 96-well-plates) were
possible for the SNP-genotypes preparation. Out of the initially 1,843 selected cows were
the DNA extracted from 1,670 cows (without double treatment). For the remaining 173
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cows either no blood sample was taken, the sample was incorrectly labeled or no milk
sample exist in the desired period of lactation. Further, 326 of 1,670 DNA samples were
not included due to either too little extracted DNA or extraction failure, resulting in
1,344 DNA samples. Some of the 326 blood samples were extracted as reserve.

A B

DNA 
marker

DNA 
marker

Samples

DNA 
marker

DNA 
marker

Samples

Figure 2.2: An example for each quality and quantity test for DNA. A graphical
output from the NanoDrop 1000 Spectrophotometer (A). A picture taken after the
gel electrophoresis (B).

After the DNA extraction was completed, the prepared DNA samples (in total 1,344) and
the corresponding results from the quantity and quality checks were sent to a laboratory
at the Helmholtz Zentrum Munich, where the SNP-genotypes were assessed, using the
Illumina® SNP chip 50K (which includes 54,001 SNP positions in total; Illumina, 2008).
The obtained SNP-genotypes were further verified using the following steps:

1. The SNPs were identified via BLAST analysis (Altschul et al., 1990) based on the
SNP annotation from a physical bovine marker map. The SNP marker map was
created by A. Rief. The following steps were realized by Dr. D. Wittenburg.

2. Cows with more than 10% missing SNP-genotypes were excluded.

3. SNP positions which could not be assigned to the corresponding known SNP
position of the investigated bovine marker map were skipped.

4. Standard quality checks were applied on the SNP data set (Ziegler et al., 2008):
SNPs were excluded if minor allele frequency (MAF) was less than 1%, if HWE
was not fulfilled (HWE P -value was set to < 10−4; Samani et al., 2007), or if a
SNP locus had more than 10% missing values over all cows.

5. The rarely missing SNP-genotypes were imputed using Beagle v3.2 (Browning and
Browning, 2007).

During the time of the project the current bovine marker map Btau4.0 has been updated
to Btau4.2. To enable analyses based on the latest available bovine marker map, the



34 2 Experimental data acquisition

presented verification steps of SNP-genotypes were repeated for the new map. In
Chapter 3 the simulation studies are presented based on the Btau4.0 map. In Chapter 4,
the conceptual comparison between simulated and experimental data is presented based
on the Btau4.0 map. For all other experimental analyses in this chapter, the Btau4.2
map was used.
After performing the verification steps, a total of 43,079 SNPs and 1,314 cows were
retained using Btau4.0, and 40,317 SNPs and 1,317 cows using Btau4.2.

2.2.2 From milk sample to milk phenotype

The milk samples (one milk sample per cow, the volume per milk sample ranged between
30 and 40 ml) were collected during the standard MPT by a milk performance inspector
and delivered to the LKV Güstrow as mentioned earlier. To preserve the milk samples,
150 µl of a 5% sodium azide solution were added per milk sample. Milk samples were
analyzed via infrared spectroscopy (Kombi-FOSS, FT6000-FC, FOSS, Hillerød, Denmark).
The following traditional milk traits were recorded, whereby the additionally measured
milk traits of the extented MPT are presented in bold:

• Acetone (%)
• Casein (%)
• Fat (%)
• Lactose (%)
• pH value
• Protein (%)
• Quantity of milk (kg)
• Somatic cell count (SCC) (1000/ml)
• Saturated fatty acids (SFA)
• Unsaturated fatty acids (UFA)
• Urea (%)

After a milk sample was measured, it was split into four 2 ml tubes (Eppendorf, Germany)
and one collection tube with 15 ml (neoCulture-Zentrifugenröhrchen PP, konisch (C8017),
neoLab, Rischerstr. 7-9, 69123 Heidelberg) and stored in liquid nitrogen.
After finishing the DNA extraction (without verification steps) and milk traits assessment,
we had data regarding the genotype and corresponding milk traits from 1,344 cows in
total. In addition, a test run via GC-MS with some of our milk samples had been
conducted, from which two milk samples were excluded because they were acidic. On
this basis the randomized block design was created for the GC-MS metabolite profiling
of 1,342 milk samples. The randomized block design is described in Section 2.3. In the
following section, the GC-MS metabolite profiling of milk samples is explained, which
was mainly adopted from Melzer et al. (2013a).
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2.2.3 From milk sample to milk metabolite profile

After the collection of the milk samples was finished, the samples (one tube per cow)
were sent to the Max Planck Institute of Molecular Plant Physiology (Postsdam-Golm,
Germany) where the milk metabolite spectra were obtained using GC-MS of the water-
soluble phase of each milk sample. For this 100 µl of each milk sample were used (Lisec
et al., 2006). The milk samples of 1,342 cows were tested as far as possible according to the
predetermined schedule (see Section 2.3 for more information). During the preparation
of milk metabolite profiles the predetermined schedule was slightly changed due to
laboratory restrictions, resulting in 47 GC-MS batches, not 34 as planned. Most of the
predetermined schedule was maintained. For each milk sample the following terms were
recorded using the GC-MS: the molecule retention time (GC step) and the mass to
charge ratios and the corresponding intensities of molecule fragments (MS step). The
obtained molecule spectra were further processed using the R package TargetSearch
(Cuadros-Inostroza et al., 2009; R Development Core Team, 2011). The retention time of
each type of molecule in a milk sample was converted into a retention index based on the
retention time standards of fatty acid methyl esters (FAMEs), which were added to each
sample during the GC step. In Figure 2.3 the mass to charge ratios of molecule fragments
for the FAMEs are presented over all measured milk samples. In addition it can be seen
that the used GC-MS column wears out over the GC-MS batches. Groups of correlating
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Figure 2.3: The mass to charge ratios (m/z) of molecule fragments for the FAMEs
presented over all measured milk samples.

molecule peaks were determined in order to build a metabolite spectrum. For each
metabolite spectrum, the median over all samples was determined at every peak. The
spectrum of median peaks was compared to reference spectra from the Golm Metabolome
Database (GMD; Kopka et al., 2005, http://gmd.mpimp-golm.mpg.de/search.aspx). A
metabolite spectrum was accepted or labeled if the similarity index between median
metabolite spectrum and reference spectrum was larger than 500 (possible range 0 to
1,000; Cuadros-Inostroza et al., 2009), an example for a metabolite spectrum and the
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corresponding reference spectrum is presented in Figure 2.4. If that was not the case,
the metabolite was labeled as “unknown” with a specific number. A metabolite was
considered for further analyses, if it occurred in more than 80% of the samples, and the
log2 intensity at the largest peak was recorded as an individual observation. This resulted
in 187 metabolites for which a reference was found in the GMD, and three unknown
metabolites, for which no reference could be assigned. Finally, the nearest neighbor
imputation as implemented in the R package pcaMethods was applied to impute missing
observations, 7% in total (Stacklies et al., 2007). The obtained data matrix was used for
a variety of statistical analyses (in Chapter 4) as recommended by Schwender (2009).
The processing of the molecule spectra resulted in 190 milk metabolites for 1,338 cows.
All obtained milk metabolites can be found in the Appendix B.1 on page 143. The milk
metabolites were further classified into specific active ingredients, for example alcohol and
sugar, using the GMD. In Table 2.1 the different classified groups and the corresponding
number of metabolites are listed.

2.2.4 Results of experimental data preparation

After all preparation and verification steps were successfully completed for the three
system-levels, the different kinds of data were merged together with regard to the cows,
whereby a final check was conducted to obtain a complete data set. This was done twice,
once for each of the two different bovine marker maps used. As a result, we obtained
the complete information for genotype, metabolome, and phenotype for 1,307 Holstein
Frisian cows using the Btau4.0 map and for 1,305 Holstein Frisian cows using the Btau4.2
map. Both data sets have in common: 11 milk traits and 190 milk metabolites. More
than 2,000 metabolites are expected to exist in cow’s milk (Töpel, 2004, p. 3), whereby
the 190 milk metabolites represent around 10% of the expected metabolites in milk. The
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Figure 2.4: An example metabolite spectrum (1,6-anhydro-beta-Glucose); the
metabolite spectrum above the null line represents the median of peak intensities
from all cows along the mass to charge ratio (m/z) of molecule fragments, and the
corresponding GMD reference spectrum below the null line was obtained from a
reference substance. The similarity score between metabolite and reference spectrum
is in this case 639 from 1,000 possible.
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Table 2.1: Overview of the substance classification of the obtained metabolites.

Substance classification Number of metabolites
Alcohol 5
Aldehyde 1
Amine 3
Amino acid 18
Carboxylic acid 19
Conjugate 2
Indole 1
Lactam 3
Nucleoside 3
Nucleotide 2
Other acid 16
Polyol 5
Purine 2
Pyrimidine 4
Sugar 18
Terpenoid 1
Unspecified 87

genome is covered by 43,079 SNPs using Btau4.0 map and 40,317 SNPs using Btau4.2
map.

2.3 Randomization design for milk metabolite profiling

The randomization design for GC-MS metabolite profiling was created to allow later
the correction of influencing factors. Before the realization of our randomized design is
presented, the general meaning of a randomized block design will be briefly described. A
randomized block design enables the following (based on Sachs, 2004, p. 680):

1. The unbiased estimations of the influencing factor of interest.
2. The unbiased estimations of the experimental errors.
3. An improved normality of the data.

Undesired and unknown correlations are destroyed and thus independent experimental
errors are obtained, enabling the application of standard significance tests (Sachs, 2004,
p. 680).
At the time point of data collection and preparation, we had 1,342 labeled milk samples
as well as corresponding DNA samples. For each milk sample the following influencing
factors were known: sire, test-day (milk sampling day), corresponding test-month (in
total seven months), and farm. It is possible to measure 40 milk samples per day via
GC-MS, thus we had to plan for milk metabolite profiling on 34 days, i.e., 34 GC-MS
batches. The GC column, which is used in the GC step of the GC-MS to separate
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the substances of a milk sample, wears out over time, and represents an example of
an experimental error. This fact implies that influencing factors should be measured
on consecutive days, because this allows to distinguish between influencing factors and
experimental errors. Based on this knowledge, it was possible to decide which conditions
should be fulfilled in the randomization design. The following conditions were used:

1. Each farm occurs at each GC-MS batch.

2. Two test-months at each GC-MS batch.

3. Half-sibs (sires) should be measured during consecutive GC-MS batches.

The order of conditions also represent their importance for the randomization design.
This was necessary, because the experimental data are strongly unbalanced as shown
in the following. In total, we have seven test-months (May to November 2009) of milk
sampling. The quantity of milk samples is imbalanced over the months, on average 192
milk samples per month (range between 9 and 505), and varies strongly as shown in
Figure 2.5 A. The frequency of sires also varies strongly, in total 215 different sires were
observed, whereby on average each sire had six daughters (range between 1 and 116).
The number of cows per farm is unbalanced as well, whereby on average each farm had
75 cows (range between 38 and 138).
To obtain a better result for condition two, the seven milk sampling test-months were
grouped into four time points as follows:

• time-point 1: May and June,

• time-point 2: July and August,

• time-point 3: September and October and

• time-point 4: November.
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Figure 2.5: Overview of the number of collected milk samples per test-month (A)
and number of milk samples after grouping the test-months (B).
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The result of grouping is presented in Figure 2.5 B, which shows that an average of 335.50
milk samples per time point were obtained (in a range between 215 and 575 samples).
To obtain a design in which all conditions are considered as best as possible we tried
to create a randomized GC-MS design which is as balanced as possible regarding the
mentioned conditions. In Figure 2.6 the schematic realization of the randomized GC-MS
design is presented. Finally, a part of the GC-MS design is presented in Table 2.2. For
the realization of the randomized GC-MS design an R-script was written.

Table 2.2: Part of the milk metabolite measuring design. Sires are colored to show
that half-sibs were measured on consecutive GC-MS batches.

GC-MS batch 1 GC-MS batch 2 GC-MS batch 3
Farm Farm Time-point Sire Farm Time-point Sire Farm Time-point Sire

7 7 1 34 7 3 34 7 1 81
7 7 2 3 7 4 3 7 3 94
8 8 1 4 8 3 21 8 1 161
8 8 2 107 8 4 188 8 3 3
9 9 1 5 9 3 5 9 1 78
9 1 2 109 7 1 3 7 3 3

10 10 1 12 10 2 3 10 1 25
10 10 2 160 1 2 109 7 3 116

2.4 BovIBI database

During data collection a MySQL database (open source relational database management
system), named after the title of the project (BovIBI - Bovine Integrative BioInformatics
for genomic selection) was built and expanded according to the additional incoming
information. Furthermore, phpMyAdmin (a free software tool; The phpMyAdmin Project,
2006) was used to handle the administration of MySQL in a graphical user interface,
which allows users an easy creation of tables, the import and export of tables in various
formats (e.g., csv format), and queries to the database. The database is an instrument
to monitor, allow common access, i.e., to share all information within the working group,
and facilitate handling and checking of the available information. Likewise, it simplifies
the processing of data, and it is possible to connect it to databases of other programming
and analysis softwares such as R (R Development Core Team, 2008).
As mentioned earlier, we obtained various information at different time points during the
data collection. Before new information was uploaded to the database, all information was
preprocessed and checked. For example, we received a zip-file with all milk measurements
for all cows (selected and herd mates) of the corresponding farms from the LKV Güstrow
every test-month. In total four different lists were included for each farm. These lists
were merged together in a special order to obtain the desired milk measurements and
to extract additional included information. In addition, all measurements with the
NanoDrop 1000 Spectrophotometer were stored in the database (cf. Section 2.2.1 on
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page 31). To validate or to check all the available information in the database, we used
the R package RMySQL (James and DebRoy, 2006), which allows us to extract the
desired information from the database via structured query language (SQL, database
language) statements. The obtained database results were converted into R variables,
which enabled further analyses, e.g., the determination of the dilution of DNA samples.
The lists of cows for milk sampling were also prepared in this way and then uploaded,
using the R package R2HTML (Lecoutre, 2003) and made available online for the LKV
Güstrow and its milk performance inspectors, so that they knew which animals had to
be sampled additionally.
In Figure 2.7 the schematic representation of the final BovIBI database is shown. In
general the database is based on 19 tables and mainly structured into four parts. The
first part contains all information about farms (green), the second part contains all
information about the cows (e.g., sold, calving) obtained by the vit Verden (yellow), the
third part covers the DNA extraction and SNP chip preparation (red), and the last part
contains all information about milk samples and milk metabolite profiles (purple).
Throughout the whole data collection it was necessary to know which data in each
part of the database were complete or erroneous and for how many cows all desired
information had been obtained. This was necessary to reach the desired number of 1,300
cows, because during data collection we realized that further cows should be selected to
obtain the desired target. This resulted in a further collection period of blood samples
(October and November 2009) as well as milk samples. Without a database it would be
a difficult task to keep the overview over the different kinds of data, to find errors, or
make plausibility checks.

2.5 Summary

In this chapter our data sampling procedure and the designed database in which we store
the collected data were described, as well as the sophisticated milk randomization design
was presented.
Our experiences and the experimental data obtained after the collecting phase show that
it is necessary to always have an overview of the data during collection. A database is
a helpful instrument to handle and organize data in various ways. Also, the database
simplifies access to the data and makes it easy to obtain various information during
ongoing data collection. In this context a further aspect which can be summarized
regarding the design for an experiment involving large data collection procedures: in our
case we could obtain all the desired information for around 71% of the originally 1,834
selected cows. In general, the number of individuals that has to be selected in order to
obtain the desired complete data set of an experiment depends on the duration and the
type of experiment conducted.



2.5 Summary 41

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1
1 1 1
2 2 2
2 2 2
3 3 3
3 3 3
4 4 4
4 4 4
5 5 5
5 5 5
6 6 6
6 6 6
7 7 7
7 7 7
L L L
L L L

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1
1 1 1
2 2 2
2 2 2
3 3 3
3 3 3
4 4 4
4 4 4
5 5 5
5 5 5
6 6 6
6 6 6
7 7 7
7 7 7
L L L
L L L

1 2 3 4 5 6 7 8 9 10 11 12
1
1
2
2 Legend:
3
3
4
4
5
5
6
6 Farm
7
7
L
L

GC-MS batch GC-MS batch GC-MS batch

Fa
rm

 

Fa
rm

 

Fa
rm

 

Step 1 Step 2 Step 3

GC-MS batch GC-MS batch GC-MS batch

Fa
rm

 

Fa
rm

 

Fa
rm

 

Step 5
Step 4 a Step 4 b

GC-MS batch

Fa
rm

 

Farm, Test-month and Sire

 Farm and Test-month

Test-month and Sire

Test-month

Random

Movement direction

Step 6

Figure 2.6: Schematic representation of the milk randomization design.
Example assumptions: seven farms, 12 GC-MS batches and 190 milk samples for which the
corresponding influencing factors are strongly unbalanced. ’L’ are rows which are filled at
the end with the leftovers and only used in Step 6.
Step 1: First column and corresponding odd rows are filled depending on farm and test-
month, whereby each sire occurs once in this column.
Step 2: The following columns and respective odd rows are filled as follows: For the current
column a) fill with samples for which all three conditions are fulfilled depending on the sires
from the previous column, whereby each sire is observed once. b) in the other case, samples
are used which fulfill conditions one and two.
Step 3: Columns for uneven rows are filled similarly to the second step, whereby now the
previous and the following column are used to prove condition three.
Step 4: If a farm has no entry on a GC-MS batch: a) check if samples are available which
fulfill condition one and two, and b) check if samples are available which fulfill condition one,
whereby only one entry is added to the respective GC-MS batch.
Step 5: For still empty entries prove: a) is a sample available which fulfills only condition 2
and b) random fill.
Step 6: For the last two rows: prove if samples are available which fulfill a) condition two
and three, b) condition two, c) condition three and d) fill randomly.



42 2 Experimental data acquisition

BloodCollection

IntFarmNr
FarmNr
BloodSampleDate
DateOfFilling
NrBloodSamplesPlanned
NrBloodSamplesUtilize
TimePoint
Comment

MetaboliteInfo

MilkSampleNr
MeasuringDay
LabLabel
Filename
MeasurementNr
MeasurementDate

MilkInfo

LKVFarmNr
LabNr
LabKey

Sale

EarNr
Sale

Month

SamplingNr
Month

Milking

LKVFarmNr
Producer
Equipment

MilkSamplesMar

MilkSamplingKey
Pos
SeqNr
Barcode
Fat-B
Protein
Lactose
SCC
Urea
Casein
pH
Comment
H-index
Z-value
LabTemp

Pedigree

EarNrAnimal
BovIDAnimal
BirthyearAnimal
Breed
Sex
Sire
BovIDSire
BirthyearSire
Dam
BovIDDam
BirthyearDam
ExtraID1
ExtraID2

LKVEarNrMilk

MilkKey
LabKey
EarNr
LKVboxNr
LKVboxPos
QuantityOfMilk
State
StableNr
SamplingNr

DNAExtraction

BloodSampleNr
ng_ul
A260
269/280
260/230
Constant
Comment
ConsecutiveNr

BloodSamples

EarNr
IntFarmNr
BloodSampleNr
MonovettenNr
EarNrList
TimePoint
Comment

LabInfo

LabKey
SampleIdent
Folder
LKVboxNr
Operator
MilkSampleDate
LabDate
Date

MilkCollection

MilkSamplingKey
EarNr
MilkSampleNr
BoxNr
BoxPos
LabNr
Comment
SamplingNr

DNAqualityMunich

BloodSampleNr
ng_ul
A260
260/280
260/230
Constant

DNAinfo

WellplateNr
WellplatePos
BloodSampleNr
LabLabelMunich

Farm

FarmNr
LKVFarmNr
Farmname

CalvingLeaving

EarNr
CalvingDate
LeavingDate

eMPT

BarKey
Pos
Barcode
Fat
Protein
Lactose
SCC
Z-value
Urea
Casein
pH
Acetone
FFS
UFS
Note
H-index
Remark
Type
SubType

MPT

MilkKey
BarKey
Pos
SeqNr
Barcode
Fat-B
Protein
Lactose
SCC
Urea
Casein
pH
Comment
H-index
Z-value
LabTemp

Figure 2.7: Schematic representation of the BovIBI database.

An approach of how to design a GC-MS metabolite profiling taking into account a number
of influencing factors for our complex study was presented. The resulting advantage
of using the randomized design regarding the statistical modeling to correct known
influencing factors after GC-MS metabolite profiling is presented in Chapter 4.
To summarize, we obtained experimental data for genotype, metabolome, and phenotype
for 1,305 and 1,307 cows. In the following I do not distinguish between the two bovine
marker maps used. Each genome is covered by more than 40,000 SNPs. In total, 190
milk metabolites are available, three of which were unknown. These 190 milk metabolites
represent around 10% of the expected metabolites in milk. For the phenotype level, 11
milk traits were measured and the following influencing factors are known: sire, test-day,
lactation day, farm, and GC-MS batch.



3 Analyses of simulated SNP-,
metabolome-, and phenotype data

The chapter is consistently structured in three parts, whereby different aspects of data
simulation are in focus and three different kinds of analyses are presented.
First, in contrast to earlier studies, we wanted to simulate more realistic data sets based
on the used experimental SNP chip annotation (cf. Chapter 2). Hence, we conducted a
preliminary study to find appropriate population genetic parameters to obtain a more
or less realistic LD between SNPs within our simulated populations. On this basis,
populations were generated for our alternative approach and the conventional approach.
Second, our alternative approach is presented, striving to simulate more realistic data
based on a GP map which includes a simulated metabolome level. The metabolome level
was used to simulate genetic values, implicitly including additive and non-additive genetic
effects, whereas in a conventional approach additive and dominance effects were explicitly
simulated and assembled to genetic values. For both simulation approaches, different
scenarios regarding numbers of QTL and SNPs were analyzed using the fast algorithm of
BayesB as prediction method. Our analyses revealed that our alternative map showed a
smaller prediction precisions (at least 3.75%) compared to the conventional approach in
all investigated scenarios. We also observed that the degree of linearity in data simulated
with the alternative approach was less (at least 5.88%) compared to the conventional
approach. Parts of this chapter have been published in Melzer et al. (2013b).
Third, the alternative approach offers the opportunity to study the influence on the
genetic value prediction if the metabolome level is additionally considered. To enable the
analysis of the three system-levels an integrative bioinformatics approach, i.e., metabolite
approach, was developed with respect to the experimental data (Chapter 4). Different
scenarios were investigated regarding using the whole simulated metabolome or just a part
of it for the genetic value prediction. Our results revealed, that it is possible to improve
the genetic value prediction when the metabolome level is additionally considered.

3.1 Introduction

The introduction is structured in two parts. The first part contains further relevant
background information, especially on the state of the art of data simulation in the field
of GS. Furthermore the difference of simulating statistical and biological epistasis is
illuminated. The second part focuses on our realization of data simulation.

43
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3.1.1 State of the art of data simulation

In the field of GS, data are frequently simulated to compare different methods of genetic
evaluation and to optimize methods. These studies have in common that the involved
GP map is based on a simple linear function. Generally, it is not known to which degree
simulated data following the conventional approach realistically mirror the biology of
real traits and if they are sufficient for the development of methods for genetic value
prediction. In GS, it is common to simulate SNP-genotypes involving several hundreds
or thousands of generations using a mutation-drift model, which leads to a more or less
realistic LD between the simulated marker loci. This is usually applied to equally sized
chromosomes (e.g., Meuwissen et al., 2001; Calus and Veerkamp, 2007; Habier et al.,
2007). Calus et al. (2008) have shown that different spacing of markers has an influence
on LD, which in turn has an impact on the precision of genetic value prediction. From the
literature it can be concluded that an LD of at least 0.2 is needed to obtain an adequate
accuracy in single marker analyses in dairy cattle (Calus et al., 2008). After the initial
generations, some populations are generated to obtain the common half-sib structure
on which GS methods (cf. Section 1.4 on page 14) then are applied. In this context,
various types of genetic effects are discussed to simulate a genetic value considering an
additive and/or non-additive (dominance and/or epistasis) mode of gene action (Long
et al., 2010; Ober et al., 2011). Note, epistasis is considered in a statistical sense in
these contributions, based on the definition of Fisher (1918). In this context, Hill et al.
(2008) reviewed that findings based on experimental data seem to point to prevailing
importance of additive genetic variance, explaining more than 50% and in most cases
close to 100% of the genetic variance. Molecular biology, however, proved that gene action
is organized in interactive pathways, regulatory networks, which imply non-additive gene
interactions, and, probably, non-additive GP mapping (Moore, 2005). Here, epistasis is
considered in the biological sense (Cordell, 2002). In general, the importance of epistasis
for mechanisms that underlie the GP map is not yet known (Moore, 2005; Carlborg et al.,
2006). It is suspected, however, that epistatic mechanisms may account for much of the
causal genetic determination currently unexplained (e.g., Zuk et al., 2012).
In the research field of systems biology, in particularly in its subareas, e.g., for research on
gene regulatory networks or metabolic networks (cf. Section 1.6.3 on page 22), epistasis is
modeled in a biological manner. As an example, Mendes et al. (2003) simulated different
gene expression data sets based on artificial gene regulatory networks. These network
models are composed of coupled ODEs, where each equation describes the production
and degradation dynamics of a specified gene product. Biological variation is realized by
adding random values to the kinetic parameters.

Regarding the choice of model for the genetic value prediction, methods known from the
field of GS include genetic effects modeled with a purely additive model, e.g., Meuwissen
et al. (2001); Daetwyler et al. (2010); Zhang et al. (2010). However, Lee et al. (2008)
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as well as Toro and Varona (2010) have shown that the prediction precision of genetic
values increased if an additive-dominance model is used compared to a purely additive
model. It has become more and more common to extend existing GS methods to include
non-additive genetic effects or to use non-parametric methods (e.g., Long et al., 2010;
Ober et al., 2011).

3.1.2 Implementation of data simulation

For our studies, we wanted to obtain a more realistic data set in simulations, which
also holds to a conceptual comparison to the experimental data. Thus, we implemented
actual lengths of chromosomes and used SNP marker positions from the experimental
SNP chip annotation of the bovine genome (cf. Section 2.2.1 on page 31). To obtain an
appropriate LD for the initial generation, different simulation scenarios were evaluated
in a preliminary study. Subsequently, the populations were generated with the typical
half-sib structure, which represent the basis for data simulation.
We drafted an alternative simulation approach designed to be more realistic with respect
to the complexity of the GP map: a simulated metabolome level is integrated on top of
the classical GP map, whereby the simulation of the genetic effects should also be more
realistic, i.e., to model epistasis in a biological manner. Towards this objective, we adopt
an approach from the field of systems biology. Mendes et al. (2003) inspired us to model
a metabolite level, determining enzyme parameters by marker status at specified marker
positions. Liu et al. (2008) followed Mendes et al. (2003) by incorporating QTL variation
to influence kinetic parameters in their gene regulatory network (cf. Section 1.6.3 on
page 22). Based on these two approaches, we make use of a curated and already param-
eterized SBML model of the central carbohydrate metabolism (cf. Section 1.6.4.2 on
page 24, Holzhütter, 2004), which contains enzymes also found in Bos taurus, to realize
our simulated metabolome level (download from “http://biomodels.org/”, Le Novère
et al., 2006), in the following termed SBML approach. Our SBML approach allows us to
investigate a more complex GP map, considering an additional level of gene expression
in a broader sense. Additive and non-additive genetic effects were implicitly simulated.
That means that varying one parameter of an enzyme had an effect on the interactions
within the simulated system, which in turn affected diverse metabolite concentrations
and not only those catalyzed by the respective enzyme. This offers the opportunity to
investigate to which extent a change on the genotypic level leads to a different outcome
in the metabolic level. We compare our SBML approach with the conventional approach,
where the additive and dominance genetic effects were explicitly simulated. Analyses
were realized using the extended fast algorithm of BayesB (fastBayesB; Wittenburg et al.,
2011, cf. Section 1.4 on page 14), which models additive and dominance genetic effects.
The simulated data using the SBML approach enabled us further to study if an im-
provement in the genetic value prediction can be achieved when the metabolome level is
additionally considered. Hence, we propose an integrative bioinformatics approach, i.e.,
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metabolite approach, which allows an analysis of all three systems-levels. The metabolite
approach is divided in three steps. First, the metabolite profiles are used to predict a
phenotype by applying regression methods from the field of machine learning. Several
methods (e.g., random forest, Breiman, 2001) exist which can be used in combination
with OMICs profiles (Zhang et al., 2010). From the trained model of the machine
learning step it is possible to extract the importance of each variable (metabolite) on
the phenotype. Second, the obtained importance values for variables (metabolites) can
be used as weights for the simulated QTL, as it is possible to assign the catalyzed
metabolites to corresponding enzymes and in turn to assign enzymes to the corresponding
QTL. Third, weights and SNP data are jointly used to predict the genetic value using
fastBayesB. This resulted in a further study, in which we tested if and to what degree the
metabolite approach led to an improvement of the genetic value prediction. Furthermore
the influence on the genetic value prediction was investigated when only a part of the
simulated metabolome is considered, especially in view of our experimental data set (10%
of the expected milk metabolome measured; cf. Section 2.2.4 on page 36).

3.2 Material and Methods

3.2.1 Simulation approaches to obtain a suitable LD

In this section, a strategy for testing the influence of known factors (e.g., mutation or
recombination) on the extent of LD in a finite population is presented. In this set-up,
the genome is constructed based on available SNP chip annotations.

3.2.1.1 Construction of the simulated genome

A bovine genome-wide SNP data set was modeled in the style of Illumina® Bovine 50K
SNP chip (as it was used for the experimental data, cf. Section 2.2.1 on page 31), which
was also realized to keep the framework conditions as similar as possible to enable later
a purely conceptual comparison between simulated and experimental data (cf. Chapter 4
for more information). From the SNP chip, we used all SNPs with annotated position (bp)
according to Btau4.0 resulting in 52,276 SNPs. Chromosome lengths were retrieved from
the database Ensembl cow (Ensembl, 2008) to check the plausibility of SNP positions.
Three SNPs were omitted because they were outside the corresponding chromosome.
SNP positions were linearly converted from the physical map (bp) to the genetic map
(cM) using a chromosome-wise scaling factor based on chromosome lengths in cM from
the database “marc-USDA cattle” (United States Department of Agriculture, 2008).
In Table 3.1 the used lengths of the chromosomes are listed. The conversion from the
physical into the genetic map is necessary, because on the basis of genetic distances it
is possible to determine the recombination rate (θ) between two adjacent SNPs. The
recombination rate gives the probability of a crossover in meiosis (100 cM corresponds
to one crossover; Sturtevant, 1913). The recombination rate between two SNPs was
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determined using the Haldane mapping function (Haldane, 1919), which is often used in
the field of GS (e.g., Meuwissen et al., 2001; Habier et al., 2009):

θ = 1
2(1− e−2·dist) θ ∈ [0,0.5], (3.1)

where dist represents the distance between two adjacent SNPs in cM.

3.2.1.2 The investigated population genetic models

In this thesis, two population genetic models were applied using different settings to
study the influence of known factors (e.g., mutation, genetic drift) on the development of

Table 3.1: Used chromosome lengths for the simulation study for all 30 chromosomes
of Bos taurus.

Chromosome Length in bp Length in cM
1 161,106,243 154
2 140,800,416 128
3 127,923,604 128
4 124,454,208 119
5 125,847,759 135
6 122,561,022 134
7 112,078,216 135
8 116,942,821 128
9 108,145,351 116
10 106,383,598 118
11 110,171,769 130
12 85,358,539 109
13 84,419,198 105
14 81,345,643 103
15 84,633,453 109
16 77,906,053 94
17 76,506,943 95
18 66,141,439 84
19 65,312,493 109
20 75,796,353 82
21 69,173,390 83
22 61,848,140 88
23 53,376,148 80
24 65,020,233 78
25 44,060,403 68
26 51,750,746 79
27 48,749,334 67
28 46,084,206 61
29 51,998,940 69
30 88,516,663 146
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the LD within a finite population over time. In total 2,000 generations were simulated
using an effective population size of Neff = 100, where the effective population size,
consisting of Ns = 50 sires and Nd = 50 dams, was kept constant over generations and
random mating was applied. The latter includes that each animal was allowed to mate
twice. This was realized for each tested population genetic model (see below).
The genome of an offspring is typically created based on the genomes of the offspring’s
parents, whereby each parent has a maternal and a paternal strand inherited from its
parents. The underlying mechanism are briefly described in the following. For each
parent the following steps were applied to obtain a maternal or paternal strand for an
offspring:

1. For each chromosome it was chosen with equal chance to start on the maternal or
paternal strand.

2. The recombination rates between adjacent SNPs were calculated based on the
genetic map.

3. To realize recombination events, the calculated recombination rates were compared
with random values x drawn between zero and one. The following two cases were
possible:
x < θ: a crossing over occurred and thus the strand changed from the paternal to
the maternal, or vice versa.
x ≥ θ: no crossing-over took place and thus no strand change occurred.

First, a population genetic model was applied without mutation and selection, which
means that only genetic drift and recombination had an influence on the extent of the LD
within the population over time. Second, a population genetic model was applied with
mutation and without selection. It is common in such studies to disregard the influence
of selection for simplification (e.g., Meuwissen et al., 2001).

Settings for population genetic model without mutation (drift model): To build the
founder generation the SNP alleles were drawn by chance and the allele frequencies were
p = q = 0.5.

Settings for population genetic model with mutation (mutation-drift model): In the
founder generation all SNP alleles were set to zero, i.e., starting with a homozygous
founder generation. During the simulation of generations the alleles get the chance to
mutate to one, whereby two different scenarios were investigated:

• Mutation scenario 1: Each SNP has the chance to mutate once per generation, but
no back-mutation is allowed, i.e., 0 to 1, but not 1 to 0.
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• Mutation scenario 2: Each SNP has the chance to mutate once per generation,
wherein, when a SNP position is drawn again in the following generations then it
is allowed to mutate back, i.e., 0 to 1 and 1 to 0

Different mutation rates m ∈ {0.0025,0.00125,0.001,0.00025} were applied for both sce-
narios, whereby m = 0.0025 and m = 0.00025 were chosen similar to Meuwissen et al.
(2001).

For all settings of the population genetic models, the LD was calculated following Eq. 1.7
on page 7. After each generation the LD was recorded to study its behavior over time.
Each population genetic model was replicated ten times for each setting. For this
simulation study and for the simulation of genetic values and phenotypes in the next
section different Fortran-77 programs were developed.

3.2.2 The alternative (SBML) approach for simulation

In this section, the realization of the SBML approach as well as the analysis set-up for
the comparison between the conventional approach and the SBML approach is described.
The following sections are adopted from Melzer et al. (2013b).

3.2.2.1 Population genetic model: mutation-drift model

Four hundred generations of a mutation-drift model (cf. mutation scenario 1, see above)
with a constant effective population size of Neff = 100 (Ns = 50 , Nd = 50) were
simulated employing random mating, whereby the mutation rate was set to m = 0.0025.
Following the 400 initial generations, four additional generations were simulated without
mutation and the population size was increased from 100 to 1,000 animals, which is
common in the field of GS (e.g., Meuwissen et al., 2001). Here, a 50 half-sib mating
design was applied (one sire mated with 20 dams), which corresponds to a mating design
as it can be observed in the Holstein population (cf. Figure 1.1 on page 11). Generations
401 and 402 were used as training set (first offspring generation), generations 403 and
404 as test set (second offspring generation).

3.2.2.2 Simulation and analysis set-up for simulation approaches

The following simulation steps were applied. The number of QTL (nQTL) was determined
based on the used metabolome level model (Holzhütter, 2004). It is an erythrocyte
metabolism non-linear ODE system model for human, which includes the glycolysis
and pentose phosphate pathway (cf. Section 1.6.4.2 on page 24). The presence of all
involved enzymes in Bos taurus was verified using the databases KEGG cow (Kanehisa
and Goto, 2000) and Ensembl cow (Ensembl, 2008). While all 38 enzymes of this
metabolome level were simulated numerically, only 23 enzymes, which cover parts of the
glycolysis, gluthathione and pentose phosphate pathways in Bos taurus, were selected
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to be influenced by 23 QTL. In addition, to work with larger numbers of QTL, we
used the 10-fold quantity of QTL (nQTL = 230, see details below). QTL positions were
chosen randomly from all simulated SNPs with an MAF of at least 0.02 in generation
400. Furthermore, a reduced SNP data set was created from the complete SNP data set
(nSNP = 52,273), where every 10th SNP was included, but QTL positions were retained
(nSNP = 5,227). Combining the different numbers of SNPs and QTL resulted in four
simulation scenarios:

Scenario 1: nQTL = 23 and nSNP = 5,227,

Scenario 2: nQTL = 230 and nSNP = 5,227,

Scenario 3: nQTL = 23 and nSNP = 52,273,

Scenario 4: nQTL = 230 and nSNP = 52,273.

Phenotypes were simulated based on different choices for broad-sense heritability H2 ∈
{0.1,0.3,0.5}. For each scenario and heritability the set-up was replicated 100 times.
The prediction precision, ρ, is defined as the correlation between simulated genetic values,
g, from the test set, and predicted genetic values, ĝ. The following equation shows the
prediction precision more formally:

ρ = cor(ĝ,g). (3.2)

We also investigated the impact of all 23 QTL on each metabolic outcome via regression
analysis. In addition, the goodness of fit for this model was evaluated for all training
data sets, scenarios and heritabilities, where the correlation between fitted values and
residuals was determined using the function cor.test (Pearson’s correlation coefficient) in
R.

Simulating genetic value and phenotype - conventional approach: Following the
conventional approach, the phenotype (yconvi ) for an animal is simulated as:

yconvi =
nQT L∑
j=1

(Xijaj +Dijdj) + ei, (3.3)

where i ∈ {1,...,n} is the animal index. Xij represents the design matrix for the additive
effect aj (allele substitutions effect), and Dij is the design matrix for the dominance ef-
fect dj . Entries in the design matrices depend on the observed marker genotypes at QTL j:

Xij =


−1 genotype 11

0 genotype 12

1 genotype 22

Dij =


0 genotype 11

1 genotype 12,

0 genotype 22

(3.4)
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whereby Xij = 1 means homozygous for the mutated alleles. The simulated additive
genetic effect was drawn from a gamma distribution with shape parameter α = 0.42 and
scale parameter β = 2.619 in case of 23 QTL, and β = 8.282 in case of 230 QTL, following
Meuwissen et al. (2001). The sign of the additive genetic effect was randomly drawn with
equal chance. The dominance genetic effect was calculated as product of the additive
genetic effect and the degree of dominance, which was drawn from a normal distribution
with mean m∗ = 0.193 and variance τ2 = 0.097 (Bennewitz and Meuwissen, 2010). The
genetic value for an animal was composed as the sum of locus-specific genotypic effects as
given in Eq. 3.3. Furthermore, genetic values of the training set and for the test set were
separately standardized to obtain a simulated genetic variance σ2

g = 1. The phenotype for
an animal was obtained by adding an error ei to the genetic value. The error was drawn
from a normal distribution N(0,σ2

e), for which the variance was determined according to
the chosen H2 ∈ {0.1,0.3,0.5}. In more detail, the residual variance σ2

e can be determined
as follows (cf. Eq. 1.5 on page 5):

σ2
e =

σ2
g

H2 − σ
2
g . (3.5)

For example, assume H2 = 0.3 and σ2
g = 1, then the obtained residual variance is

σ2
e = 2.33.

Simulating genetic value and phenotype - SBML approach: For our alternative SBML
approach, we simulated a metabolome level between genotype and phenotype. A schematic
representation of the conventional approach (A) and the SBML approach (B) is presented
in Figure 3.1. The transition from the genotype to the metabolome level was realized
as follows: a QTL influences a specific kinetic parameter kij , in our case mostly the
Vmax value of a specific enzyme. This means that the kinetic parameter changes depending
on the genotype of the QTL coded in Xij (cf. Eq. 3.4). In detail, kij ∈ {Ψ − 50%,Ψ, Ψ +
50%}, following Holzhütter (2004), correspondes to Xij ∈ {−1,0,1} if the sign of the
additive genetic effect was positive in the conventional approach. Otherwise, the order
of the values of the kinetic parameter was reversed, i.e., kij ∈ {Ψ + 50%, Ψ, Ψ − 50%}.
Ψ was the default value of the kinetic parameter in the originally parameterized SBML
model. The enzyme kinetics, and corresponding metabolites (in total 27 metabolites)
that were affected are listed in Table 3.2. All other parameters remained unaffected in
the SBML model.

The SBML model was implemented as a numeric simulation of the ODE system for
the respective kinetic parameter settings using Matlab R2009b and the Matlab toolbox
SimBiology R2009b (MATLAB, 2009). The SBML model was simulated until the
metabolite concentrations reached the steady-state. After test runs, the maximum
number of iterations (time) was set to 500. On the basis of the standardized equilibrium
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Figure 3.1: Schematic representation of the conventional approach (A) and the
SBML approach (B).

metabolite concentrations, we simulated the phenotype (ysbmli ) for an animal as:

ysbmli =
q∑
l=1

(Pil) + ẽi. (3.6)

Pil depicts the matrix of equilibrium metabolite concentrations, where i ∈ {1,...,n} is the
animal index, and l ∈ {1,...,q} denotes the index for equilibrium metabolite concentrations
belonging to specific enzymes influenced by simulated QTL. All equilibrium metabolite
concentrations belonging to those metabolites (cf. Table 3.2) catalyzed by a specific
enzyme were summed up, resulting in the specific metabolic outcome for simulated
QTL. Further, q represents the total number of corresponding equilibrium metabolite
concentrations; in some cases two metabolite concentrations were influenced by one
enzyme. Furthermore, in some cases more than one column of P belongs to the same
metabolite, i.e., the metabolite is catalyzed by more than one of the investigated enzymes.
In our arbitrary mapping, the sum over all equilibrium metabolite concentrations, i.e.,
the sum of all 23 metabolic outcomes, results in the genetic value for an animal. Note
that for this simulation approach of a GP map, the step from genotype to the metabolite
concentrations is non-additive, whereas from the metabolite concentrations to the genetic
value a purely additive step is implemented. Similar to the conventional approach,
the genetic values for the training set and the test set were standardized separately.
The phenotype was obtained by adding an error ẽi, which was drawn from a normal
distribution with mean zero and residual variance σ2

ẽ . The residual variance was again
determined according to the chosen H2 ∈ {0.1,0.3,0.5}.
Two sizes of SBML models were implemented, a 23-QTL model and a 230-QTL model. For



3.2 Material and Methods 53

Table 3.2: The enzyme characteristics which were changed in the used SBML model.
All other parameters were unaffected in this model. In addition, the corresponding
number of the influenced metabolites based on the position of the obtained output
of this model.
EC nr Enzyme Ψ − 50% Ψ* Ψ + 50% Metabolite

characteristic*

EC 5.1.3.1 vRibPepi_Vmaxv21 2317 4634 6951 27
EC 2.7.1.40 vPK_Vmaxv12 285 570 855 2 + 17
EC 2.7.1.2 vHEX_Vmax1v1 7.9 15.8 23.7 3 + 4
EC 5.4.2.4 vBPGM_kDPGMv8 38000 76000 114000 14
EC 5.3.1.1 vTPI_Vmaxv5 2728.3 5456.6 8184.9 7
EC 1.2.1.12 vGAPDH_Vmaxv6 2150 4300 6450 11 + 12
EC 2.7.1.11 vPFK_Vmaxv3 119.5 239 358.5 4 + 6
EC 1.1.1.27 vLDHNADH_Vmaxv13 1400000 2800000 4200000 10 + 18
EC 2.2.1.1 vTrKet2_Vmaxv26 11.75 23.5 35.25 5 + 7
EC 2.7.6.1 vPPRPPS_Vmaxv25 0.55 1.1 1.65 31
EC 5.3.1.6 vRibPiso_Vmaxv22 365 730 1095 28
EC 2.7.4.3 vAK_Vmaxv16 690 1380 2070 4 + 22
EC 4.2.1.11 vENO_Vmaxv11 750 1500 2250 16
EC 5.3.1.9 vGPI_Vmaxv2 467.5 935 1402.5 5
EC 4.1.2.13 vALD_Vmaxv4 49.46 98.91 148.37 7 + 8
EC 3.1.3.13 vBPGP_Vmaxv9 0.27 0.53 0.8 9 + 13
EC 2.7.2.3 vPGK_Vmaxv7 2500 5000 7500 2 + 13
EC 3.6.1.5 vATPase_kATPasev15 0.84 1.68 2.52 4 + 9
EC 5.4.2.1 vPGM_Vmaxv10 1000 2000 3000 15
EC 1.8.1.7 vGSSGRD_Vmaxv19 45 90 135 20 + 26
EC 2.2.1.2 vTrAld_Vmaxv24 13.6 27.2 40.8 5 + 30
EC 2.2.1.1 vTrKet1_Vmaxv23 11.75 23.5 35.25 7 +29
EC 1.1.1.49 vG6PDH_Vmaxv17 81 162 243 19 + 23
Ψ - default value of the enzyme kinetic parameter;
* enzyme kinetic parameter values were adopted from Holzhütter (2004)

the 230-QTL model, the original model was replicated 10 times, yielding 230 independent
QTL. For each replicate, the 23 enzymes available in cows were simulated as QTL as
outlined above.

3.2.2.3 Predicting genetic values using fastBayesB

Prediction of genetic values was based on using the genotypes and phenotypes from the
training set to estimate the genetic effect sizes. These genetic effect sizes were combined
with the genotype from the test set to estimate the genetic value. We considered the
fastBayesB method an appropriate choice for our studies (Meuwissen et al., 2009), which
is an iterative fast Bayesian approach to estimate additive genetic effects. An extended
version of this method including non-additive genetic effects is described in Wittenburg
et al. (2011). We implemented a fastBayesB analysis considering additive and dominance
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genetic effects for simulated animals i = 1,...,n. The mixed model can be expressed as
follows:

y = Xa+Dd+ ε, (3.7)

with

y = vector of phenotypes [y = (y1,...,yn)′],
X = (n x nSNP )-design matrix of the additive genetic effects a = (a1,...,anSNP )′,
D = (n x nSNP )-design matrix of the dominance genetic effects d = (d1,...,dnSNP )′,
ε = residuals.

The residuals were assumed to be independently and normally distributed εi ∼ N(0,σ2
ε ).

Entries of the design matrices are random variables and depends on the observed SNP-
genotypes. SNP-genotypes are coded as presented in Eq. 3.4 on page 50, where the
homozygous with the more frequent allele is coded as one. It is also assumed that there
is LE between the SNPs and that genetic effects at different loci are independently
distributed. The additive and dominance genetic effects were re-parameterized as follows
(notation was adopted from Wittenburg et al., 2011):

Xa→ X̃aga,

Dd→ X̃dgd,
(3.8)

to prevent the estimation of covariances between them. For this, we applied the orthogonal
decomposition of the genetic values gs, s ∈ {a,d}, the method of Álvarez Castro and
Carlborg (2007), according to Wittenburg et al. (2011). The fastBayesB algorithm
involves prior assumptions for genetic effects. The prior distribution of a genetic effect
gs,j at locus j ∈ {1,...,nSNP } is a mixture of the double exponential distribution (i.e.,
Laplace distribution) with zero expectation and the point mass at zero. The probability
of having a zero genetic effect at some locus is gs,j = 1 − γ. Hence, γ represents the
proportion of QTL to SNPs, and the algorithm requires a specification of this parameter.
Another parameter, which can be set by the user, is λ. This parameter mirrored the
prior uncertainty of a genetic effect and was fixed (λ =

√
2 · nSNP · γ).

As the true number of QTL for a given trait is generally unknown, the following set
of plausible values for γ ∈ {0.1,0.05,0.025,0.01,0.005,0.001,10−4,10−5} was tested for
each run of fastBayesB. The resulting variation of prediction precision in the sets was
evaluated to mirror the sensitivity of the algorithm to different choices of γ. The optimal
γ was determined over the corresponding replicates, resulting in largest mean prediction
precisions (cf. Eq. 3.2). The genetic variance σ2

g was determined as additive genetic
variance σ2

a plus dominance genetic variance σ2
d.

The maximum number of fastBayesB iterations was set to 1,000. Also, SNP alleles with
MAF < 0.01 were excluded from the analysis, but SNP alleles that were not in HWE
were kept.
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3.2.3 The metabolite approach for prediction

In this section, the workflow of the metabolite approach is presented. The approach was
based on assigning weights to the SNPs according to importance of the metabolites to
their impact on the phenotype. The most suitable measure for weighting SNPs is also
shown. The analysis set-up also allows us to study the behavior of the prediction if only
a part of the metabolome is measured, especially regarding our experimental data.

3.2.3.1 Data sets

For this study, the data sets were simulated based on the SBML approach as described in
Section 3.2.2.2, whereby the following settings were chosen: nSNP = 52,273, nQTL = 230
and H2 ∈ {0.1,0.3,0.5}. Here, the 230-QTL model was used, which has an influence on
230 enzymes and catalyzes 270 metabolites in total. In this case, the equilibrium levels
of these metabolites were used without standardization to simulate a genetic value (cf.
Section 3.4.3 for more information) and no additional noise was added to the simulated
metabolite profiles.

3.2.3.2 Workflow

To achieve a weighting scheme for predicting the genetic values, three steps were necessary
as shown in Figure 3.2. The first step is to use the metabolite profiles to predict the phe-
notype. We used a random forest (RF) regression method, which contains a technique of
variable selection, i.e., we applied Random Jungle (version 0.7.2), a fast C-Implementation
by Schwarz et al. (2010), using default settings. The variable importance is a measure
that quantifies how much of the investigated phenotype is explained from each metabolite.
The obtained variable importances (based on the Gini-index) of the metabolites were
used for the next step.
Second, in the simulation case, we knew which enzymes catalyze the reactions involving
the important metabolites. At this point, it was possible that one or two metabolites
were catalyzed by the same enzyme. If two metabolites were catalyzed from the same
enzyme, then the maximum value of the observed variable importances was used. For
simulated SNPs we used the “real” positions on the genome and created a vector of
weights for 52,273 SNPs, where the obtained variable importances were assigned to the
QTL positions. The latter was possible because we knew which QTL had affected which
enzyme. All other SNPs were weighted with the neutral weight value of one.
In the third step, we estimated the genetic effect sizes for each SNP using fastBayesB
including additive and dominance genetic effects (as described in Section 3.2.2.3), whereby
γ was set to 0.0001. The vector of weights was incorporated in the style of a weighted
regression approach. The last step was also applied for the SBML approach without
weighting the specific QTL, which resulted in a classical analysis and thus served as
reference value.
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Figure 3.2: Schematic representation of the weighting approach.

3.2.3.3 Weighting approaches

Four different scenarios were evaluated to find an appropriate setting for weighting SNPs
as well as to investigate the importance of the measured part of the metabolome.

Weighting scenario 1: All 230 QTL positions were weighted with a constant weight,
and all other SNPs were neutrally weighted with 1. Weights (w) were elements of
w ∈ {1, 2, . . . , 10}. This scenario was mainly used to determine a suitable weight range to
enable a transformation of the observed variable importances for the following scenarios.

Weighting scenario 2: The 270 simulated metabolites were considered “measured” and
termed identifiable metabolites. In this scenario all metabolites were used to predict the
phenotype. The resulting variable importances from RF were used as weights for the
known 230 QTL; all other SNPs got the neutral weight.
Investigations of the observed variable importances of this scenario revealed that metabo-
lite 14 (cf. Table 3.2) had the highest impact on the investigated phenotype for all used
heritabilities and over all replicates. In addition, metabolite 14 was included ten times
and at least one of these occurrences had the highest variable importance.

Weighting scenario 3: Only 20% of the 270 identifiable metabolites were selected
randomly. In this scenario, metabolite 14 was always included. The other 80% of the
metabolites were non-identifiable and were simulated at random.

Weighting scenario 4: Analogous to scenario three, whereby metabolite 14 was always
excluded.
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For each weighting scenario, including the case without weights for QTL, and broad-sense
heritability, the set-up was replicated ten times.

3.3 Results for simulation studies

3.3.1 Analysis of the simulation approaches regarding a suitable LD

In this section, suitable levels of LD for a genome simulated using the experimental SNP
chip annotation are presented. Different settings were applied for the tested population
genetic models (cf. Section 3.2.1.2 on page 47). Figure 3.3 shows the results for the
population genetic models using different settings, whereby the same mutation rate (m =
0.0025) was used for both scenarios with mutation. This Figure shows clearly that the
population genetic model without mutation produces a considerably larger LD compared
to both other scenarios where mutation was applied. This holds also true for other
investigated mutation rates (cf. Figure 3.4). The observed curve for mutation scenario 1
shows similar behavior to the obtained curve without mutation. Neither case results in an
increase-decrease equilibrium. In comparison, mutation scenario 2 with mutation resulted
in an increase-decrease equilibrium, which means an equilibrium between genetic drift,
mutation, and recombination. The highest observed mean value of LD was r2 = 0.201
without mutation, r2 = 0.119 for mutation scenario 1 (m ∈ {0.0025, 0.00125}) and
r2 = 0.105 for mutation scenario 2 (m = 0.00125). The mean LD values for the different
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Figure 3.3: The mean LD values (r2) over 2,000 generations of ten replicates for the
settings without mutation and for both scenarios with mutation using the mutation
rate m = 0.0025 are presented.

mutation rates for mutation scenario 1 in Figure 3.4 A and for mutation scenario 2 in
Figure 3.4 B are presented. In both Figures can be seen that the chosen mutation rate
has an impact on the extent of the LD.

3.3.2 Conventional versus SBML simulation approaches

In this section the analysis results are presented for the comparison of data simulated
with the conventional and SBML approach, where a more complex GP map was used.
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Figure 3.4: The mean LD values (r2) over 2,000 generations of the ten replicates
for mutation scenario 1 (A) and mutation scenario 2 (B) using different mutation
rates.

The presented analyses based on the population genetic model with mutation (m = 0.0025)
resulted in a mutation-drift model. This was chosen although it does not deliver the
highest LD and does not correspond well to the desired LD of 0.2, but this scenario is
more realistic than the drift model without mutation.
A comparison of observed LD between adjacent SNPs over the whole genome for the
experimental and simulated SNP-genotypes is presented in Figure 3.5. In this Figure the
observed LD for the experimental data set (including 43,079 SNPs; cf. Section 2.2.1 on
page 31) and an example set of the simulated data after filtering the SNPs (around 46,500
SNPs) is shown. Comparative investigations of simulations regarding LD in training sets,
excluding SNPs with MAF less than 1% (on average 5,688 SNPs), showed an average
r2 = 0.14. The average LD in the test sets was r2 = 0.15 after discarding SNPs with
MAF less than 1% (in average 5,826 SNPs). Additionally, in training sets as well as in
test sets, only one SNP was not in HWE on average. In comparison, an LD of r2 = 0.21
was obtained in our experimental data.

To obtain an optimal choice for the parameter γ, which was required for the fastBayesB
estimation algorithm, different γ-values were implemented to analyze the four simulation
scenarios and for three values of H2. In general, it was observed that not every γ-value
is appropriate for each scenario and heritability in the conventional approach and the
SBML approach. For extreme choices of data or parameters, the fastBayesB algorithm
aborts; for example, for nSNP = 52,273 and nQTL = 23, each value of H2 and γ = 0.1,
more than 74% of the 100 replicate runs aborted for both simulation approaches. A
detailed list is presented in Appendix A.1 on page 141.
In Table 3.3, prediction precisions, simulated and estimated variance components, and
corresponding standard deviations are listed for all tested scenarios and heritabilities
regarding the optimal γ-value for both approaches. In general, nSNP = 5,227 showed
a larger prediction precision than nSNP = 52,273. In addition, nQTL = 23 showed a
larger prediction precision than nQTL = 230. The quantity of QTL had more influence
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Figure 3.5: Comparison of linkage disequilibria between experimental and simulated
data. The graphic shows the distribution of LD as correlations between adjacent
SNPs for (A) experimental data set; (B) example simulated data set.

on the prediction precision than the quantity of SNPs. In more detail, in all investigated
scenarios it was observed that the mean prediction precision was at least 3.75% lower for
the SBML approach compared to the conventional approach. Estimated genetic variance
components approached the true values for increasing values of simulated heritability. The
estimated proportions of additive genetic variance to total genetic variance, σ2

a/σ
2
g , were

high compared to the proportion of dominance to total genetic variance. The estimated
additive genetic variance σ2

a can be used to evaluate the degree of linearity of both
simulation approaches, which is at least 5.88% lower for the SBML approach compared
to the conventional approach for all investigated scenarios. Figures 3.6 A-B show the
simulated and estimated additive and dominance genetic effects for an example data set
using the conventional approach based on H2 = 0.3, nQTL = 23 and nSNP = 52,273.
It was observed that large simulated genetic effects were better detected than small
genetic effects by the fastBayesB method. In comparison, Figures 3.6 C-D show the
estimated additive and dominance genetic effects for the comparable SBML approach.
Here, sizes of the simulated genetic effects were unknown. Hence, in an additional
analysis involving only the 23 simulated QTL and genetic values of the simulated trait,
we obtained estimates for the implicitly simulated genetic effects for the SBML approach.
To characterize possible deviations from linearity in the SBML approach, we estimated
the genetic effect sizes of all 23 simulated QTL on the observed metabolic outcome of
each single QTL influenced enzymatic reaction. For an example data set, which was also
the basis for Figures 3.6 C-D, the impact of all QTL on different metabolic outcomes is
presented in Figure 3.7. Analyzing all 100 data sets, two different kinds of GP mapping
were observed on the level on metabolite concentrations:

• First, the QTL had no clear impact on the metabolic outcome, whereas other QTL
positions did. As an example, QTL1 had no specific impact on the corresponding
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Figure 3.6: The estimated main genetic effect sizes for the conventional approach
(left) and the SBML approach (right). All figures are based on an example data
set with nSNP = 52,273, nQTL = 23, H2 = 0.3 and the optimal γ-value. Estimated
additive genetic effects (A) and dominance genetic effects (B) in the conventional
approach. A filled circle was plotted for each genetic effect > 10−4. In comparison,
estimated additive genetic effects (C) and dominance genetic effects (D) in the SBML
approach. Here, the implicitly simulated main genetic effect sizes were estimated
using the 23 QTL to predict the corresponding genetic values. The observed estimated
genetic effect sizes were plotted in red.

metabolic outcome, whereas, for example, QTL18, QTL22, clearly had an impact
on the metabolic outcome belonging to the enzymatic reaction parameterized by
QTL1.

• Second, the QTL had a clear impact on the metabolic outcome as well as other
QTL positions; for example, this is the case for QTL18 and QTL23.

For all 100 training data sets, all scenarios, heritabilities and for the corresponding
optimal γ-values, we investigated how good the linear model fitted the simulated data for
both simulation approaches. Results are presented in the Appendix A.2 on page 142. We
observed, except in one case, that the linear model fitted all simulated data sets similarly,
and no significant difference in the simulation approaches was found.
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Figure 3.7: The estimated main genetic effect sizes for all QTL for each metabolic
outcome. Each QTL is numbered and its specific metabolic outcome is presented.
The metabolic outcome is split into the participating metabolites (Met). QTL
positions which share the same metabolite for their belonging enzymes are marked
in green and the corresponding QTL position is marked in red.
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3.3.3 Analysis of the metabolite approach for prediction

In this section the results are presented, whether an improvement can be obtained, when
the whole or only a part of the metabolome is used for the genetic value prediction and
which range of weights is suitable for weighting SNPs. Therefore different scenarios for
weighting SNPs were proposed (cf. Section 3.2.3.3 on page 56). First, it was investigated
which range of weight measures is suitable to obtain a high accuracy in the genetic
value prediction. This investigation is based on weighting scenario 1. Hence, different
weights were tested, whereby all known QTL were assigned the same weight measure.
The observed mean prediction precisions for the different applied weight measures and
H2 are presented in Figure 3.8 A. This Figure shows that a weight measure of two and
three are suitable weight measures to obtain a high mean prediction precision for all
investigated H2. In addition, the corresponding reference values for each heritability, i.e.,
QTL were neutrally weighted, are presented using the weight measure of one. In this
context, the highest gain in prediction precision with respect to the observed prediction
precision for the reference values was obtained for H2 = 0.1. Based on the result of the
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Figure 3.8: The observed precisions of genetic value prediction are shown us-
ing different weights. (A) The obtained mean prediction precisions for weighting
scenario 1. (B) The observed prediction precisions (mean ± standard error) for
weighting scenarios 2 to 4 depending on the proportion of identifiable metabolites:
all means all identifiable metabolites of all 270 metabolites and part the best 10% of
all 270 metabolites. In addition in weighting scenario 3 and 4 only the identifiable
metabolites were used.

weighting scenario 1, the obtained variable importance values, viv, were scaled as follows
for weighting scenario 2 to 4:

vivscale = exp
viv

max(viv) , (3.9)

where exp is the exponential function. After this transformation the weights lie in a
range between 1 to 2.718. Two strategies were implemented to obtain a vector of weights
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for weighting scenarios 2 to 4:

1. all identifiable metabolites were used; or

2. the top 10% of all metabolites were taken.

In addition, only the identifiable metabolites were further used in weighting scenarios 3
and 4. The observed prediction precisions are presented in Figure 3.8 B for weighting
scenarios 2 to 4. In this Figure is obvious, that in weighting scenario 2, where all
identifiable metabolites (2 all) were used, i.e., the whole metabolome was known, the
best prediction precisions were obtained for all used H2 as well as in comparison to the
other tested scenarios in that case. Whereas, when only the best identifiable metabolites
were selected in scenario 2 (2 part), the prediction precisions decreased significantly.
Also, clear differences can be seen between weighting scenario 3 and 4 for both cases.
Weighting scenario 3, which includes the known important metabolite 14, resulted in
higher prediction precisions than weighting scenario 4 where metabolite 14 was completely
excluded. The observed mean prediction precisions without using weights, i.e., reference
values, are also presented in Figure 3.8 B (lines) for each H2. We observed that in most
tested weighting scenarios the prediction precisions are higher than for unweighted QTL.

3.4 Discussion

Methodological developments for algorithms in the field of GS are typically based on
simulated data. In our contribution, as an alternative to the state of the art simplistic
simulation approach, we investigated consequences of using a more complex, partly
non-additive GP map, in comparison to a conventional GP map. In this context, the
simulated genome was also created more realistically, as it was constructed based on
the experimental SNP chip and thus investigations were necessary to obtain a more
or less realistic LD. The presented comparisons between the conventional approach
and the SBML approach revealed that the SBML approach produced lower prediction
precisions and had a lower linear additivity compared to the conventional approach. The
simulation of data using our SBML approach has an important advantage, as it allows
further investigations that are not possible with the conventional approach. Using the
metabolite approach on data simulated with the SBML approach, we observed that
weighting QTL according to the importance of metabolites, which depend on their impact
on the phenotype, can lead to an improvement in the genetic value prediction. The
degree of improvement if only a part of the metabolome is considered for the genetic
value prediction depends on the importance or relevance of the part for the investigated
phenotype.
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3.4.1 Simulation approaches to obtain an appropriate LD

The first aim of the simulation study was to obtain an appropriate LD to simulate a more
realistic data set. For this setting we compared different parameters with those found in
the literature. In general, when comparing linkage equilibria with and without mutation
(Figure 3.3) we observed what we expected: a higher LD for simulated data without
mutation. The reason is, that recombination and genetic drift are the only two influences
on the LD in the drift model. In this model, we started with genetic variation in the
founder generation. In the first generations, the genetic drift has a positive influence on
LD, but over time the genetic variability gets lost, since favored alleles become fixed by
the genetic drift. Recombination reduces LD and supports the genetic variation, but in
this case the variation of alleles gets lost over time and no new genetic variation can
be obtained by recombination. Recombination is weaker than genetic drift in the used
settings, which is further favored by the small Neff (cf. Section 1.2 on page 8). The
latter holds also true for both mutation scenarios.
Compared to the scenario without mutation, the tested mutation scenarios started with
no genetic variation within the population. The genetic variation was created in both
mutation scenarios during the simulated generations. The behavior of LD over time in
mutation scenario 1 (without allowing alleles to mutate back) showed similar behavior
to the LD over time for the scenario without mutation. The added mutations in each
generation lead to genetic variation, but the alleles become fixed over time and thus
the genetic variation gets lost, because no new genetic variation can be obtained by
mutation. The extent of LD in mutation scenario 1 depends on the used mutation rate
(m), which also holds true for mutation scenario 2. In comparison to mutation scenario 1
in mutation scenario 2 the genetic variation is renewed by the fact that it is allowed to
mutate back, which leads to an equilibrium of decrease and increase of LD over time.
Summarizing, it was observed that small changes in simulation parameters (cf. Figure 3.4)
had an enormous influence on the LD, its establishment, decay, maximum LD value, and
development over time. Further, we were not able to reach the LD of 0.2 with a method
of the mutation-drift model as found in literature. The reason for that may lie in the
different ways to construct the genome. In the literature, typically chromosomes with
equal length were simulated. In our study the genome was built in accordance to the
bovine genome, which led to different sizes of chromosomes. Additionally, we used only
52,273 SNPs distributed over the bovine genome (about 30 M), whereas, for example,
Calus et al. (2008) used 350,000 loci for a genome size of 3 M to get a high density of
SNPs.
In conclusion, our experiences with mutation-drift simulations of genome-wide marker
data showed that simulation parameters such as mutation rate, density of SNPs, and
number of generations have to be chosen appropriately to result in LD values as found
for experimental data.
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3.4.2 Conventional approach versus SBML approach for simulation

In the conventional approach, the contributions of additive and dominance genetic effects
were explicitly modeled and thus known. In contrast, for the SBML approach the
influences of additive and non-additive genetic effects and their specific impacts on the
total genetic variance were unknown and genetic effects were estimated based on the
simulated genetic values.
Our comparison of fastBayesB results showed that the conventional and SBML approach
were not similar regarding prediction precision and mostly show clear differences in
estimated variance components (cf. Table 3.3). In general, however, the choice of
heritability and simulated quantity of QTL and/or SNPs had a similar influence on the
prediction precision for both simulation approaches. The prediction precision decreased
with increasing quantity of SNPs, because the larger SNP set only included additional
non-informative SNPs, without impact on the phenotypic variation. The estimated
genetic effect of all these additional SNPs should be zero. The fastBayesB method
estimated an effect size for each locus (iteratively) under the assumption of linkage
equilibrium. Additionally, the LD (mean value of r2 = 0.15 for neighboring SNPs)
between our simulated SNPs was weak, such that we did not expect linkage influences
on estimated genetic effects. Hence, estimation errors accumulated with an increasing
number of SNPs. The quantity of simulated QTL had a major influence on the prediction
precision, which is in agreement with the observation of Daetwyler et al. (2010) and
Zhang et al. (2010). As the same amount of genetic variation in the simulation was now
spread over more loci, most QTL had small effect sizes. Smaller genetic effect sizes were
more difficult to detect by fastBayesB. The details of results depend on the value of H2.
The SBML approach enables further research opportunities regarding the inner structure
of the simulated GP map compared to the conventional approach. We found that some
genetic effects were negligible if the sum was taken over all specific QTL outcomes
(Figure 3.7). In our case, investigations of the specific QTL outcomes revealed two
different mappings:

• The first type, involving QTL variation, showed no impact on the metabolic
outcome of the enzymatic reaction parameterized by the QTL. This indicates that
changes at the corresponding QTL position had no direct influence on this metabolic
outcome. For example, QTL1 position appears to have a negligible effect on the
specific investigated metabolic outcome of all 23 investigated enzymatic reactions
(Figure 3.7) consistently over all data sets. A genetic variation at QTL1, however, is
not without importance for the main trait: If mutations or diseases affect either the
metabolome network model or the weights for the summation of single metabolites
to yield the phenotype, variation at QTL1 may become measurable.

• In the second type of observed mapping, the corresponding QTL position affects
its specific metabolic outcome as well as that of other QTL positions. In this case,
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some of the QTL positions interact.

Comparing estimated genetic effects for an example data set for the genetic value
prediction based on the 23 QTL in the SBML approach (Figure 3.6 C-D) with those for
the single metabolites (Figure 3.7) that are summed up to build these genetic values, it
can be concluded that some genetic effect sizes, which exist on the metabolome level, are
negligible with respect to genetic value.
For the conventional and SBML approach, the goodness of model fit was evaluated; the
used linear model explained both simulated data sets similar in almost all cases. Hence,
the observation that the simulated data of the SBML approach can be well analyzed with
a classical linear model, including additive and dominance genetic effects, can be traced
back to the arbitrary simple GP mapping from the metabolome level to the genetic
value in the SBML approach. We conclude that for our chosen simulation approach, the
SBML approach involves both a non-additive GP mapping as well as an additive part
(metabolome to genetic value). In this context, we hypothesize that the genetic effects of
the non-additive part possible lead to small deviations from a clear additive GP map
for the phenotype. To decipher the details of these interwoven influences is certainly a
rewarding field for future study.

3.4.2.1 The more realistic simulation approach

Our set-up of the SNP data sets was based on annotated SNP positions, and we used
the actual lengths of the bovine chromosomes. This is different from most approaches
recently chosen, where chromosomes have equal size, and mostly 3 to 10 chromosomes
were simulated as discussed earlier. Our set-up generated a distribution of LD values for
adjacent SNPs similar to the experimental data (Figure 3.5).
To simulate more realistic genetic values, several further opportunities exist (see below).
We decided to integrate the level of the metabolome between genotype and phenotype
and kept the construction of the genetic value as simple as possible: each QTL directly
influences only one kinetic parameter per enzyme. However, there were a lot of indirect
influences detectable (implicitly simulated biological epistasis). Further, taking the sum
of equilibrium enzyme products is a simple strategy to simulate genetic values of a
“complex trait”, such as for example milk fat. The following alternative approaches might
be conceived:

1. Genetic variation at a specific QTL may influence more than one enzyme parameter
at a time. This would allow for concrete pleiotropy. Also explicit epistasis could be
a possible extension, as proposed by Long et al. (2010) or Ober et al. (2011), but
these authors employed statistical epistasis.

2. Genetic values could be directly constructed from multiple metabolite concentrations
in various other ways, e.g., take all metabolic outcomes (use once), eliminate the
second linear step or find a better transformation.
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3. The most advanced possibility of simulating phenotypes would certainly be to
implement a systems biology model including cell, organ, and physiology levels,
which could lead to more realistic, implicit GP mappings (e.g., Nomura, 2010).

In addition, Pinna et al. (2011) proposed another alternative of simulating phenotypes as
single gene expression values, embedded within the non-linear ODEs network similar to
other gene expression values. This approach represents the other extreme of phenotype
simulation, compared to our proposed SBML approach. Our choice of integrating over
a larger number of metabolite concentrations could be interpreted as an approach to
simulate complex phenotypes.

3.4.2.2 Sensitivity of fastBayesB

The parameter γ of the fastBayesB method often has a significant influence on the results
of analyses, especially on the prediction precision. Therefore, different γ-values were
tested to study the influence on the performance of the fastBayesB method with respect
to different simulation approaches. The optimal γ-value was determined by using the
γ-value with the largest prediction precision covering a certain set of γ-values. For the
conventional and the SBML approach, it can be summarized that the optimal γ-value
was mostly lower than the simulated proportion of QTL to SNPs. The range of γ-values,
which was appropriate for nSNP = 5,227, was in the interval [0.0001; 0.05], and for
nSNP = 52,273 the range was [0.00001; 0.001]. In other cases, the fastBayesB algorithm
did not converge or it aborted (cf. Appendix A.1). If the algorithm did not converge,
the optimum was not reached within the 1,000 iteration steps. There are several possible
reasons for abortion, that will not be discussed in this thesis because the fastBayesB
was only applied and no methodological improvement or optimization was realized. In
addition, possible reasons were discussed in Wittenburg et al. (2011).

3.4.3 The benefit of using the metabolite approach for prediction

In general, the results demonstrate the feasibility of an integrative bioinformatics approach
to enhance genetic value prediction based on SNP data by incorporating information
about the metabolome level, based on a weighting approach as a matter of principle.
The choice of simulation parameters is, on the one hand, designed to meet experimental
data structures (e.g., SNP distribution, number of metabolites). On the other hand,
many simulated details of the GP map remain artificial choices (as mentioned above),
and, hence, a proof of principle using experimental data is necessary and is realized in
Chapter 4.
In contrast to the comparative study of the conventional approach and the SBML
approach, here the obtained metabolite steady-state concentrations were not standardized
before they were summed up to the genetic value. If metabolites are not standardized,
the variance of each metabolite plays a role for the prediction of the investigated
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phenotype using a regression method. In this context, in weighting scenario 2 it was
observed that the variances of the metabolites differ strongly, whereby most metabolites
show small variances except for metabolite 14. Similar behavior was observed for the
replicates as well as for the different heritabilities in this weighting scenario. Otherwise,
if metabolites are standardized, they have equal weights regarding their variances and
thus the variable importance depends on the correlation between metabolites and the
investigated phenotype. The latter is used in experimental data where it is of interest
to find biological relevance, e.g., between metabolites and phenotypes or other OMICs
relationships. However, in the presented simulation study, it was not of interest to
find “biological relevance”, but rather to investigate what happens if QTL are weighted
according to the considered part of the metabolome, which depend on the impact of the
corresponding metabolites on the phenotype. Hence, it was decided to use the approach
without standardization of metabolites for all tested scenarios, because this enables us to
include or exclude metabolites that have high variable importances for the investigated
phenotype in a simple way for all replicates and heritabilities.
In weighting scenario 1, where QTL were weighted with equal weights we could observe
that with increasing weight measures the prediction precision first increased to an
optimum, before starting to decrease again (cf. Figure 3.8 A). These investigations were
necessary to obtain a range of suitable weight measures. Further, clear differences in
prediction precisions were observed depending on the part of the measured metabolome
as expected. It was expected that the highest prediction precision is obtained for using
the whole metabolome (weighting scenario 2), because all known information are used. It
was also expected that if a part of the simulated metabolome is used that is not primarily
important for the investigated phenotype (weighting scenario 4) then it is possible to
see only small or no improvements regarding the prediction precision, whereas if the
metabolome part contains important metabolites for the phenotype then an improvement
can be expected (cf. Figure 3.8 B).
In general, the obtained results of our simulation study are encouraging, and we envision
testing further possibilities of optimization, e.g., regarding the actual rescaling of the
variable importances to yield an appropriate weighting vector, using experimental data.

3.5 Summary

Our experience simulating more realistic data with respect to the experimental data
revealed that simulation parameters such as mutation rate, distribution of SNPs, size of
chromosomes, and population genetic parameters (e.g., mutation-drift model, number
of generations) have to be chosen appropriately to result in LD values as found for
experimental data.
Furthermore, our alternative SBML approach was presented to simulate data based
on a GP map, designed to be more realistic, including additional information on the
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metabolome level and compared to data simulated using the conventional approach.
Different scenarios were investigated: smaller prediction precisions (at least 3.75%) were
observed for the SBML approach compared to the conventional approach. Also the
degree of linearity (σ2

a) was less (at least 5.88%) for the SBML approach compared to the
conventional approach. To summarize, simulating a more complex GP map including
a molecular level allows us to study the processing of variation from the genetic to
the phenotype level in more detail and may prepare the basis for the development of
modern methods of GS. Data simulated with the proposed SBML approach offers further
investigation opportunities as exemplified by our proposed metabolite approach, and can
be used for methodological development. Compared to the conventional approach, these
additional possibilities make simulation approaches like the proposed SBML approach
eligible for improving the genetic value prediction for experimental data. Furthermore,
the non-additive genetic effects may be exploited by modern methods in the field of GS
using this type of strategy.
Finally, the additional use of the simulated metabolome level revealed that it is possible to
improve genetic value prediction, and that the degree of improvement mainly depends on
the considered part of the metabolome. Based on these findings, we applied the metabolite
approach in a similar manner for our experimental data in Chapter 4. Summarizing, such
kinds of simulation studies could help to understand, to interpret or to estimate the extent
of an improvement that can be possibly expected, especially in view of the experimental
data, where all three kinds of system-levels are available (genotype, molecular level,
phenotype).
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This chapter contains all investigations regarding the experimental data and is consistently
structured in three parts.
The first part focuses on the purely conceptual comparison between the experimental
data set and two simulated data sets (conventional approach and SBML approach) from
Chapter 3 regarding analysis results obtained by fastBayesB. For this comparison, three
milk traits were chosen. Parts of this chapter has been published in Melzer et al. (2013b).
The second part focuses on different relations between milk metabolites and milk traits
as well as within each level. To enable a deeper understanding of these relations
various statistical analysis (uni- and multivariate) methods were applied. In particular,
the relations between milk metabolites and milk traits were of interest to find sets of
metabolites eligible to predict the investigated milk traits. The latter was also realized
in order to enable analysis of milk traits from a metabolic perspective and to shed
light on a possible functional background for some of the detected associations. Such
functionally important metabolites can serve as biomarker candidates. The identification
of biomarkers also plays an important role in the field of dairy science, where it is of
great interest to improve, for example, the detection and prevention of diseases. For
this purpose two machine learning methods were applied. Our intensive investigations
on both levels revealed new associations. Parts of this chapter have been published in
Melzer et al. (2013a).
In the third part the metabolite approach is applied on three selected milk traits. The
metabolite approach was used in a similar way as presented in Chapter 3. In contrast
to Chapter 3 where important SNPs were weighted, here, SNPs are selected with a
genetic impact on important metabolites (show a high importance for the milk trait
prediction), resulting in a SNP subset which is used for the genetic value prediction. The
metabolite approach was compared to the classical approach (all SNPs) and the reduced
classical approach (selected SNPs), using a special invariable analysis design to enable
comparability between SNP subsets for the genetic value prediction. We observed that
the metabolite approach resulted in a more similar prediction precision to the classical
approach as the reduced classical approach for our analyzed milk traits. Moreover, SNPs
close to or within known QTL regions were determined resulting in a QTL-SNP subset.
This QTL-SNP subset enabled us to determine if SNPs selected by the reduced classical
approach and the metabolite approach were enriched in these genome regions. This
represents a possible measure for the relevance of selected SNPs. The corresponding
analysis revealed that more selected SNPs were located in these genome regions when the
metabolite approach was used. This part has been published in Melzer et al. (2013c).
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4.1 Introduction

In this section, first additional relevant background information regarding investigations
of milk metabolites and milk traits in the field of dairy science are presented before we
proceed to describe the current state of the art to select important SNPs in the field of
GS belonging to MAS. This section relates mainly to the second and third part of this
chapter. The main focus in this chapter is on part two and three, whereas in part one
another perspective is proposed to compare experimental and simulated data regarding
their composition of genetic effects detected by fastBayesB.

4.1.1 Background information for the analysis of the three system-levels

In the last years, metabolomics (e.g., Fiehn, 2002; Krastanov, 2010) have played an
increasingly important role in several research fields, e.g., plant research (Weckwerth,
2003; Saito and Matsuda, 2010) or clinical research such as oncology (Spratlin et al.,
2009), and received steadily more interest, also in dairy cattle research. In this context
a Biomarker is defined as “A characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” (Atkinson et al., 2001). In the field of dairy
cattle science, biomarkers for diseases, e.g., mastitis and ketosis, or for the state of health
and management remain to be found. In this context, an increased milk yield is assumed
to cause undesirable side effects, such as an increase in health problems (e.g., Rauw
et al., 1998). Diseases often reduce milk yield and also lead to additional costs, e.g., drug
treatment or veterinarian costs (Ingvartsen et al., 2003).
The standard MPT, which is carried out regularly for each dairy cow in a monthly rhythm,
is used to monitor the quality and quantity of specific milk traits (cf. Section 1.5.3 on
page 18). Milk traits are also used as biomarkers for nutrition management and state of
health. For instance, high values of SCC are a biomarker for mastitis (Dohoo and Meek,
1982; Schukken et al., 2003). However, the traditional milk traits used as biomarkers for
the state of health are not sufficiently sensitive in view of diagnostic efficiency (e.g., SCC;
Viguier et al., 2009). Even if for example acetone is an accepted biomarker for ketosis
(Geishauser et al., 2000; Enjalbert et al., 2001), it is increased only if the disease is already
acute. Klein et al. (2012) reported that no biomarker was available that shows long-term
prognostic potential for ketosis, which will possibly hold true for other diseases. They
proposed that the milk glycerolphosphocholine to phosphocholine ratio can be used to
indicate a risk of ketosis. For mastitis, lactic acid was proposed as a potential biomarker
(Farr et al., 2002; Davis et al., 2004). Also, it would be desirable to replace invasive
diagnostics such as monitoring of rumen functions (Fievez et al., 2003; Vlaeminck et al.,
2005) with noninvasive tests, such as a milk metabolome assay. Cabrita et al. (2003)
found that levels of odd-chain fatty acids in milk have the potential to noninvasively
monitor rumen function, and it was shown that heptadecanoic acid is a possible biomarker
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candidate for protein deficiency in the feed. Prognostic markers or biomarker candidates
are also sought for other diseases and management problems. Hence, it seems promising
to find metabolites which can be used as biomarkers to improve diagnostic tools. However,
to our knowledge, only few studies have been published regarding the association between
milk metabolite profiles and milk traits obtained by MPT or the correlations among
metabolites, e.g., Klein et al. (2010). Mostly, the correlation between single or groups of
metabolites and single milk traits of interest were investigated in recent literature. In the
field of dairy science, principal component analysis is often applied as a first unsupervised
analysis approach (Sugimoto et al., 2012). In other fields, e.g., plant science, different
multivariate analysis methods are typically used to explore the data. Sugimoto et al.
(2012) give an overview of the current state of the art regarding such methods. To our
knowledge analyses regarding multivariate correlations between sets of milk metabolites
and milk traits from the MPT, as well as between metabolites, are lacking.
In general, a metabolite can be considered a new molecular milk trait, and genetic effects
on it may be analyzed with estimation methods from the field of GS (e.g., Meuwissen et al.,
2001; Goddard and Hayes, 2007). In a recent study, milk metabolites were considered
new molecular traits and their genetic variability was investigated (Wittenburg et al.,
2013).
Today it is common to genotype only elite animals, mostly bulls, because of the cost of a
high-density panel e.g., Illumina® SNP Chip 777K. Hence, it is also of interest to design
low-density SNP panels (3K - 6K), based on SNPs selected from the high density SNP
panel, which can be used for a broader screening. A low density SNP panel should cover
as many traits associated with breeding goals (cf. Section 1.3 on page 9) as possible
in order to obtain an appropriate prediction precision for several traits (Vazquez et al.,
2010). To determine an appropriate SNP subset from a high-density SNP panel, different
strategies were proposed in recent literature. For instance, Habier et al. (2009) proposed
to use equally spaced SNPs to obtain a SNP subset for several traits. Weigel et al.
(2009) used Bayesian Lasso to find an optimal SNP subset for one trait, in which SNPs
were ranked based on their genetic effects. A similar study is presented by Moser et al.
(2010) who used ridge regression and partial least squares regression (PLS) to find an
appropriate SNP subset for several production traits. In the study of VanRaden et al.
(2009), GWAS was applied to detect important SNPs. In this context, Weller and Ron
(2011) reviewed that more significant SNPs with a genetic impact on the investigated
trait were detected using GWAS as with traditional designs (cf. Section 1.5.2 on page 17).
This will probably also hold true for the above mentioned approaches, except for using
equally spaced SNPs. These kinds of investigations belong to the field of MAS, because
only a (filtered) SNP subset of all SNPs is applied for the genetic value prediction.
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4.1.2 Analysis of the three system-levels

In the second part of this chapter, the intense investigations of the 190 milk metabolites
and 14 milk traits of 1,305 Holstein Friesian cows are presented. Here, three additional
ratios based on the 11 measured milk traits (cf. Section 2.2.2 on page 34) were additionally
investigated to cover the status of EB, which is known to depend on the stage of lactation
(cf. Section 1.5.3 on page 18). We investigated the impact of influencing factors on
metabolite levels as well as on milk traits using univariate analysis methods. Especially
the influencing factors of farm and day of lactation were analyzed in greater detail using
multivariate analysis methods, since both influencing factors have an impact on the
metabolic state of the cow (cf. Section 1.5.3). The main focus of our analyses was on
the relations between milk metabolites and milk traits. These relations were analyzed
taking a univariate analysis approach on the one hand, using the Pearson’s correlation
coefficient (e.g., Klein et al., 2010). On the other hand, different multivariate analysis
methods, e.g., clustering and two machine learning methods, were applied (Sugimoto
et al., 2012). Correlation structures within and between milk metabolites and milk traits
are also reported and detailed results are presented in this thesis. The detected milk
metabolites or groups of metabolites that have a significant impact on an investigated
milk trait can serve as possible candidates for biomarkers or biosignatures. However,
to propose concrete biomarker candidates, a suitable study would also have to include
the traits of interest, for instance disease data. This kind of data were not part of this
thesis. Instead, we used the obtained milk traits as surrogates for interesting health
or management traits. In the corresponding discussion we present possible functional
backgrounds for some of the associations found for specific important milk metabolites.
In the third part, our proposed metabolite approach is applied on three selected milk
traits and compared to three other approaches. The proposed approaches to select
important SNP subsets for the genetic value prediction in recent literature (see above)
is based on the classical GP map. In contrast, we propose that prediction precision
may increase if SNP subsets determined for milk metabolites, which have a significant
impact on the milk trait of interest, are used for the genetic value prediction. It is likely
that an important milk metabolite is explained by a smaller number of QTL, i.e., has
a less complex underlying genetic architecture, than a complex milk trait. Hence, it
is possible that important SNPs, which have little genetic effect on a milk trait, may
have stronger genetic effects on the corresponding important milk metabolites. It is
expected that SNPs with a strong genetic effect on a milk trait (e.g., the SNP in the
region of DGAT1 has a known large impact on fat; Weller and Ron, 2011; Grisart et al.,
2004) also show a strong genetic effect on at least one of the determined important
metabolites. To address these presumptions, our metabolite approach employs different
sub-steps, in which the metabolome level was considered for the genetic value prediction
in addition to the SNP information (similar to Chapter 3). In contrast to Chapter 3,
where important SNPs were weighted, here, SNPs are selected with a genetic impact
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on important metabolites, resulting in a SNP subset which is used for the genetic value
prediction. Prediction precisions are compared for the following SNP subsets: metabolite
SNPs, all SNPs (classical approach), reduced SNPs (reduced classical approach) and
QTL-SNPs. QTL-SNPs are SNPs which were within or close to known QTL regions,
including the two known QTN. Enabling a direct and fair comparison between the
different approaches, a special evaluation design was applied, i.e., an invariable double
10-fold cross-validation design. The main focus in this part was to compare the observed
prediction precisions of the different approaches. A second objective was to compare
positions of selected important SNPs from the metabolite approach as well as from the
reduced classical approach with known QTL positions using enrichment analysis as a
possible way to prove their relevance for the investigated milk trait.

4.2 Material and Methods

4.2.1 Conceptual comparison between simulated and experimental data

In this section the settings for the purely conceptual comparison between experimental
data set (based on Btau4.0) and a simulated data set for the conventional approach as
well as the SBML approach is presented. For this comparison, the analysis framework
conditions were designed to be as similar as possible for the analysis of the experimental
data set and the simulated data sets. The underlying construction of the genome of
the simulated data was based on the experimental data (cf. Section 3.2.1.1 on page 46).
Hence, similarity was observed for the obtained LD between SNPs over the whole genome
for simulated and experimental data (cf. Figure 3.5 on page 59). The main difference
between the experimental data and simulated data is that the underlying numbers of
QTL (i.e., the underlying genetic) are unknown in experimental data and well known
in simulated data. At this point, however, we don’t want to make statements about
which approach for simulation of data is more appropriate in view of the experimental
data, rather the objective is to compare the genetic architecture between simulated and
experimental data. A more direct comparison between simulated and experimental data
seems to be not possible at this stage.
For the conceptual comparison we used the experimental data set based on the Btau4.0
map (cf. Section 2.2.1 on page 31), which comprises 1,307 Holstein Friesian cows and
nSNP = 43,079. The following milk traits were chosen: fat content, casein content and
pH value. Milk traits were standardized and the following linear model was fitted (similar
to a test-day model, Ptak and Schaeffer, 1993):

ymilk traitijk = ahi × stpj + b1 · ltp+ b2 · ltp2 + εijk, (4.1)
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with

ymilk trait
ijk = vector of observed milk trait [ymilk traitijk = (ymilk traitijk, 1 ,...,ymilk traitijk, n )′],
ahi = farm (i = 1,...,18),
stpj = test-day (j = 1,...,39),
ltp = day of lactation (ltp ∈ {21,...,120}),
εijk = residuals (k = 1,2,...).

As fixed effects we considered the interaction of farm and test-day (63 levels), and the
linear and quadratic regression on day of lactation in order to account for variations
in the composition of milk in different stages of lactation, where b1 and b2 are the
regression coefficients. Residuals were considered as independent and normally distributed
εijk ∼ N(0,σ2

ε ). The obtained residuals (εijk=ycorrectedijk ) were used for further analyses.
For comparative purposes, the narrow-sense heritability (h2) was estimated based on the
sire model (mixed model), using the R package nlme (Pinheiro et al., 2009; R Development
Core Team, 2010). The sire model included the same fixed effects as modeled in Eq. 4.1
plus a random effect for sires (sel, l = 1,...,214) to account for similarities among half-sibs.
The use of the sire model enables the estimation of the sire variance (σ̂2

s) as well as the
variance of residuals. In this context, the following relation between additive genetic
variance (σ2

a) and variance of sire exists (Falconer and Mackay, 1996, pp. 167-169):

σ2
s = 1

4σ
2
a, (4.2)

which means within a half-sib family all progenies share on average 25% of their genes of
the sire. Thus h2 can be estimated as follows (cf. Section 1.2 on page 5; Falconer and
Mackay, 1996, pp. 167-169):

ĥ2 = 4σ̂2
s

σ̂2
s + σ̂2

e

. (4.3)

For our selected milk traits we obtained: ĥ2 = 0.234 for fat content, ĥ2 = 0.238 for casein
content, and ĥ2 = 0.392 for pH value.
To allow a conceptual comparison between milk traits and simulated data sets, we chose
a simulated training data set (created as described in Section 3.2.2.2 on page 49) wherein
1,307 animals were randomly selected for the conventional approach as well as for the
SMBL approach. The following settings were chosen for simulated data sets: H2 = 0.3,
nSNP = 52,273 and nQTL ∈ {23, 230}. Investigations were limited to H2 = 0.3, because
the chosen milk traits had similar values of ĥ2. All analyses were realized using the
fastBayesB method (as described in Section 3.2.2.3 on page 53), in which additive and
dominance genetic effects are considered (cf. Eq. 3.7 on page 54). The following set
of plausible values for γ ∈ {0.1,0.05,0.025,0.01,0.005,0.001,10−4,10−5} was tested for
each phenotype (simulated and experimental). The prediction precision was obtained by
using a 10-fold cross-validation (Hastie et al., 2009, pp. 241-249), for which the whole



4.2 Material and Methods 77

data set was divided into 10 equally sized training sets and corresponding test sets
(see Section 4.2.2). In addition, the experimental data set was divided assuring equal
proportions of half-sib families. This implementation of a cross-validation approach was
followed for the sake of comparability, because no separate experimental test set was
available. In this context, for a simulated phenotype (ρsimulated) the prediction precision
is defined as the correlation between estimated genetic values ( ĝsimulated) and simulated
phenotype (ysimulated), and can be expressed as:

ρsimulated = cor(ĝsimulated, ysimulated), ysimulated ∈ {yconv, ysbml}. (4.4)

For an investigated milk trait (ρexperimental) the prediction precision is defined as the corre-
lation between estimated genetic values (ĝexperimental) and obtained residuals (ycorrectedijk ),
and can be expressed as:

ρexperimental = cor(ĝexperimental, ycorrectedijk ). (4.5)

In addition, the square root of the estimated heritability (ĥ2) for a trait can be used
as a possible upper bound for the prediction precision which can be obtained for the
investigated phenotype, since the following relation is known: h = ρ (Falconer and
Mackay, 1996, pp. 160-161). Also, the goodness of model fit was evaluated visually for
the whole data set involving all investigated phenotypes (simulated and experimental).
In the next section, the 10-fold cross-validation will be explained in more detail and also
the resulting double 10-fold cross-validation design which is used in Section 4.2.3 and
Section 4.2.4.

4.2.2 Cross-validation designs

For all presented analyses in this chapter, either a 10-fold cross-validation (Hastie et al.,
2009) or a double 10-fold cross-validation design was applied. Which kind of cross-
validation design was used is specified in the corresponding sections. In general, a
cross-validation approach was necessary, because we did not have a separate experimental
data set as test set available, and thus to enable investigations on the experimental
data set it was divided as described in the following. Figure 4.1 illustrates a schematic
representation of the applied double 10-fold cross-validation design.

10-fold cross-validation design: The whole data set was divided into 10 equal parts
with equal proportions of half-sib families. To create a corresponding training set for a
test set, the remaining outer test sets were merged. In detail, to create training set No.1
for test set No.1, the following test sets were combined: test set No.2 (Part2) to test set
No.10 (Part10). This was realized for each test set and thus each cow appeared exactly
once in each test set.
This design allows to estimate genetic effect sizes or metabolite importances for a milk
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trait in the training set which are then applied to the corresponding test set to obtain
the prediction precision.

Double 10-fold cross-validation: First, to obtain the outer 10-fold cross-validation, the
data set was divided as described for 10-fold cross-validation design. Here the test sets
are termed outer test sets and training sets are termed outer training sets. The inner
10-fold cross-validation was obtained by dividing each outer training set into 10 equal
parts representing the inner test sets, and the corresponding inner training sets were
assembled as explained above for the outer training sets.
The inner cross-validation of the design was used for example for parameter optimization
or find important metabolites for an investigated milk trait for the proposed metabolite
approach, whereby the outer cross-validation was only applied to obtain the prediction
precision.

New classification
of the training set

Outer training set
1174 cows per set

Outer test set
131 cows per set

    Part1      Part2      Part3      Part4      Part5   Part6      Part7      Part8      Part9      Part10  

...

  Part  Part  Part  Part  Part  Part  Part  Part  Part  Part
  1.1   1.2   1.3    1.4   1.5   1.6    1.7   1.8   1.9    1.10

Outer 10-fold
cross-validation

Inner 10-fold
cross-validation

Inner training set
1057 cows per set

Inner test set
117 cows per set

New classification
of the training set

  Part  Part  Part  Part  Part  Part Part  Part  Part  Part
  10.1 10.2 10.3 10.4  10.5 10.6 10.7 10.8 10.9 10.10

Figure 4.1: Scheme of the invariable double 10-fold cross-validation design.

4.2.3 Investigations of milk metabolites and milk traits

In this section, the different statistical analysis methods to investigate the milk metabolites
and milk traits as well as the relationship between metabolites and milk traits are
presented for the analysis of the experimental data set. These analyses were based on
the marker map Btau4.2. Before the analyses are presented, further information for the
experimental data set are provided. The data set comprises 1,305 Holstein Friesian cows,
where on average, each sire had 6 daughters (range between 1 and 112 cows), each farm
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had 73 cows (range between 36 and 135 cows) and each lactation day had 13 cows (range
between 1 and 27). The values of day of lactation were grouped into 10-day intervals,
termed lactation interval, resulting in the following intervals: lactation days 21-30 =
lactation interval 1, lactation days 31-40 = lactation interval 2, and so on, up to lactation
days 111-120 = lactation interval 10. On average, 131 milk samples (ranging from 55 to
183) were analyzed per lactation interval.

4.2.3.1 Statistical model for metabolites and milk traits

The following statistical mixed model was fitted to milk traits:

ymilkijkl = (ahi × stpj + b1 · ltp+ b2 · ltp2) + sek + εijkl, (4.6)

with

ymilkijkl = vector of observed trait [ymilkijkl = (ymilkijkl 1,...,y
milk
ijkl n)′],

ahi = farm (i=1,...,18),
stpj = test-day (j = 1,...,39),
ltp = day of lactation (ltp ∈ {21,...,120}),
sek = sire (k = 1,...,214),
εijkl = residuals (l = 1,2,...)

and the following statistical mixed model was fitted to metabolites:

ymetijklm = (ahi × stpj + b1 · ltp+ b2 · ltp2 + gldm) + sek + ε̃ijkml, (4.7)

with

gldm = GC-MS batch (m = 1,...,47),
ε̃ijkml = residuals (l = 1,2,...),

and all other parameters are defined as in Eq. 4.6.
In both presented statistical models, the interaction (ah × stp) farm and test-day (63
levels) was considered as a fixed effect (in parentheses), additionally GC-MS batch for
metabolite levels. Linear and quadratic regression on day of lactation (cf. Section 4.2.1)
was considered to model changes during lactation, where b1 and b2 were the regression
coefficients. As a random effect the sire effect was considered with sek ∼ N(0,σ2

s) and
accounted for the half-sib structure in both statistical models (note both models represent
a sire model). Based on the pedigree data received from vit Verden, 192 sires could be
assigned to the cows, and 22 cows had unknown sires. Residuals were assumed to be
independently and normally distributed εijkl ∼ N(0,σ2

ε) and ε̃ijkml ∼ N(0,σ2
ε̃).

Depending on the analysis the standardized residuals (ymilkcorrected) of the milk traits were
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used, and determined as follows:

ymilkcorrected = ymilkijl − δ, (4.8)

and the standardized residuals (ymetcorrected) for metabolites were determined as follows:

ymetcorrected = ymetijml − δ̃, (4.9)

where δ represents the obtained fitted fixed effects for milk traits from Eq. 4.6 and δ̃ for
milk metabolites from Eq. 4.7. From this follows that the sire effect was only used to
improve the estimation of the fixed effects for correction.

4.2.3.2 The impact of influencing factors on investigated traits

The impact of an influencing factor on metabolite profiles or on milk traits was studied
with the following statistical tests: For the fixed effects, an F-test (ANOVA) was applied
in sequence to all traits. For the random effect, a one-sided likelihood ratio test (LRT)
was applied. The testing problem was H0: σ2

s = 0 versus the alternative hypothesis HA:
σ2
s > 0. The distribution of the LRT statistic under the null hypothesis approximately

followed a mixture of χ2-distributions according to Self and Liang (1987). To investigate
a specific influencing factor, metabolite measurements were corrected over all animals
for all influencing factors except for the one of interest following Eq. 4.6 for milk traits
and Eq. 4.7 for metabolites. The observed P -values were corrected, because of multiple
testing, using the false discovery rate (FDR) controlling method by Benjamini and
Hochberg (1995), and fixing the estimated FDR at 5%. We applied the FDR correction
as implemented in the R package multtest (Pollard et al., 2010). This correction method
was applied to all tests (e.g., for each influencing factor).
To investigate if metabolite intensities significantly differed between levels of an influ-
encing factor of interest, standardized residuals (cf. Eq 4.9) were used. To compare
means pairwise for levels of categorical factors for a metabolite, we applied the Tukey
test (Kramer, 1956), using the R package DTK (Lau, 2011). Also, for day of lactation it
was possible to visually prove if an increase or decrease trend existed for metabolites over
lactation days, based on the ANOVA test. For this, the estimated regression coefficients
b̂1 and b̂2 from the full statistical model (cf. Eq. 4.7) were applied to estimate the
metabolite, ŷ∗met, as follows:

ŷ∗met = b̂1 · ltp+ b̂2 · ltp2. (4.10)

All analyses were implemented using R (R Development Core Team, 2010).
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4.2.3.3 Multivariate analyses investigating specific influencing factors on milk
metabolites

To investigate a specific influencing factor, metabolite measurements for all animals were
corrected for all influencing factors except for the one of interest according to the mixed
model in Eq. 4.7, and the standardized residuals (ymetcorrected) were used. The following
analyses were applied on the influencing factor farm and day of lactation, since both
have an impact on the metabolic state of the cow.

Clustering of metabolite profiles regarding influencing factors: For this purpose, the
mean over all samples on a specific level of the influencing factor under investigation was
taken for each metabolite. The Euclidean distance between vectors of mean metabolite
measurements was used to determine similarities between metabolite profiles for the
levels of the investigated influencing factor. Hierarchical clustering using the method of
average linkage was applied. Two validation criteria were used to evaluate the number
of clusters which had to be determined in advance. The silhouette width criterion
(Rousseeuw, 1987; Vendramin et al., 2009) provided information about compactness and
separation of clusters. The stability of clusters (Hennig, 2007) was calculated using
the function clusterboot (R package FPC; Hennig, 2010). This function assesses the
clusterwise stability of clustering resampled data; the number of bootstrap rounds was
1,000. Therein, the Jaccard coefficient (Jaccard, 1901; Vendramin et al., 2009) was used
as a similarity measure.

Classifying levels of influencing factors: The linear discriminant analysis (LDA) (Fisher,
1936; Hastie et al., 2009, pp. 106-112), using the R package MASS (Venables and Ripley,
2002), was used to investigate multivariate relations of standardized metabolite profiles to
the influencing factor of interest. On the one hand, the estimated discriminant function
was used to determine important metabolites for specific factors as follows. A 10-fold
cross-validation was implemented (cf. Section 4.2.2 on page 77). In each cross-validation
run, the coefficients of the first linear discriminant function, which explains most of the
between-group variance, were recorded for all metabolites. The coefficients were used as
a measure of association between each milk metabolite and the investigated influencing
factor. We defined a metabolite to be important if its coefficient was larger than the 90%
quantile of the absolute coefficients for all metabolites in each cross-validation run.
On the other hand, the estimated discriminant function was also used to classify new
data taking the 10-fold cross-validation approach, to quantify the strength of association
and its significance. The precision of prediction was determined as the proportion of
correctly classified samples reporting the mean, based on ten cross-validation runs. To
quantify significance of the observed prediction ability, we applied a resampling approach
to randomly destruct the possible association between factor levels and metabolite profiles.
The number of resampling rounds was 1,000, and in each resampling round again a
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10-fold cross-validation was applied (cf. Section 4.2.2). The resampling P -value of the
observed prediction precision was determined as usual for a permutation test (Good,
2005) as the relative proportion of resampling rounds with a prediction precision as large
or larger than the observed precision of prediction for the original data.

4.2.3.4 Analyses of milk traits related to metabolites

In total 14 milk traits were investigated, where 11 milk traits were measured in the MPT,
and three additional milk traits characterizing the status of EB: ratio fat:protein, ratio
fat:lactose and energy content of milk. Energy content of milk (MJ/kg) was determined
as follows (Kirchgessner, 1992, p. 284):

Energy = 0.39 · fat % + 0.24 · protein % + 0.17 · lactose %. (4.11)

SCC was transformed to somatic cell score (SCS) following Ali and Shook (1980):

SCS = log2
SCC

1000 + 3. (4.12)

All investigated milk traits as well as the corresponding estimated heritabilities using the
full statistical mixed model (cf. Eq. 4.6) are listed in Table 4.1. Milk metabolites and
milk traits were corrected for the influencing factors as modeled in Eq. 4.6 and Eq. 4.7 on
page 79. The observed residuals were standardized and used in the subsequent analyses
presented here.
The R function cor.test was applied, using Pearson’s correlation coefficient, to test
correlations between paired samples (ρt1t2) of milk metabolites and milk traits, between

Table 4.1: Estimated heritabilities for investigated milk traits.

Milk trait ĥ2

Acetone (%) 0.207
Casein (%) 0.240
Fat (%) 0.233
Lactose (%) 0.082
pH value 0.387
Protein (%) 0.240
SCS 0.087
SFA 0.216
Quantity of milk (kg) 0.151
UFS 0.121
Urea (%) 0.163
Fat:protein 0.168
Fat:lactose 0.238
Energy (MJ/kg) 0.252
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milk traits and between milk metabolites.
The regression methods RF (Breiman, 2001) and partial least squares (PLS; Wold, 1975;
Hastie et al., 2009, pp. 80-82) were used to predict a milk trait from all corrected metabolite
profiles. The procedures were used as implemented in the R packages randomForest
(Liaw and Wiener, 2002) and mixOmics (Dejean et al., 2011) for PLS. Further, a 10-fold
cross-validation was implemented to determine the precision of prediction (ρmilk), which
is defined as the correlation between predicted and observed values of a milk trait, and
can be expressed as:

ρmilk = cor(ymilkcorrected, ŷ
milk
corrected). (4.13)

Additionally, for PLS it is necessary to determine the number of latent components to
achieve a minimal prediction error, which was measured as the mean squared error of
prediction. To determine an optimal number of latent components for prediction in
each (outer) cross-validation run, an inner 10-fold cross-validation was implemented (cf.
Section 4.2.2). The vip function of the R package mixOmics was used to extract the
metabolite importance for PLS. In RF, after finishing the (outer) 10-fold cross-validation
runs, a resulting mean decrease in accuracy was used as a measure of importance of
metabolites. To determine the metabolites important for predicting a milk trait for
each prediction method, we used the 90% quantile of the importance measurements of
all metabolites in each cross-validation run, and defined a metabolite to be important
if its importance measurement was larger than the 90% quantile in each of the ten
cross-validation runs.

4.2.4 The metabolite approach for experimental data

In this section the realization of the metabolite approach, classical approach, reduced
classical approach and QTL approach are presented, resulting in different SNP subsets
used for the genetic value prediction. The different approaches are compared for the
following milk traits: fat content, protein content and pH value.
The experimental data set based on the marker map Btau4.2 was used for this comparison.
We used the following information from 1,305 Holstein Friesian cows: 40,317 SNPs, 190
milk metabolites and 11 milk traits (cf. Section 2.2.4 on page 36). In the next section
the filtering steps to obtain the SNP subset for the QTL approach are presented.

4.2.4.1 Known QTL regions for fat and protein

For the implementation of the QTL approach, the cattle QTL database (cattleQTLdb;
http://www.animalgenome.org/cgi-bin/QTLdb/BT/index; Hu et al. (2007)) was searched
to determine known QTL regions of the bovine genome based on the given cattle-
QTLdb markers for fat and protein. Entries of the cattleQTLdb were filtered for:
trait milk fat percentage and milk protein percentage, analysis type equal to QTL,
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breed equal to Holstein, and chromosome number, flanking markers (of the confi-
dence interval of the QTL) or peak markers had to be specified. The location of
selected cattleQTLdb markers is given in the genetic unit cM. Then, these markers
were assigned to Btau4.2 (as used for the experimental data), using the corresponding
marker information from the National Center for Biotechnology Information (NCBI,
ftp://ftp.ncbi.nih.gov//genomes/MapView/Bos_taurus/sequence/BUILD.5.2/initial_
release/, Btau_4.2-Primary Assembly), to obtain marker positions in the physical unit
bp. In total, 34 QTL regions were associated with fat, and 50 QTL regions with protein.
The QTL marker positions used for both milk traits are listed in the Appendix B.2 on
page 151. Additionally, the known QTN DGAT1 (Grisart et al., 2004) was considered
a QTL for fat and protein. The position of another known QTN for protein, ABCG2
(Cohen-Zinder et al., 2005), was already covered by a QTL. Based on the filtered QTL
marker positions (bp) it was possible to select SNPs close to a QTL peak marker or
between two flanking markers of a QTL region:

(a) QTL region: all SNPs between left (end bp) and right (start bp) flanking marker
of the QTL interval.

(b) QTL peak: left and right SNP next to the peak position.

(c) DGAT1: a SNP directly in the DGAT1 region (DGAT1: chromosome 14, position
411,147-446,810 bp, NCBI accessed Feb. 2011). The SNP is located on 443,937 bp
and termed DGAT1-SNP.

The joint set of SNPs (a)-(c) were termed QTL-SNPs in the following analyses.

4.2.4.2 Analysis design to investigate the different approaches

The following three-step analysis design was performed to investigate associations between
three levels of data: SNP-genotypes, milk metabolites and milk traits. Figure 4.2
illustrates the different approaches: metabolite, classical, reduced classical and QTL
approach. Realization based on a double 10-fold cross-validation.

Step 1: The standardized residuals of milk traits (cf. Eq. 4.8 on page 80) and metabolites
(cf. Eq. 4.9 on page 80) were used for the regression of milk traits on metabolite profiles
with RF and PLS as described in Section 4.2.3.4. Here, a metabolite was defined as
important for a specific milk trait if its measure of importance was larger than the 90%
quantile of all metabolite importances in each inner cross-validation run and for each
regression method. In this step, the prediction precision (ρmilk) was defined as correlation
between predicted and observed milk trait values (cf. Eq. 4.13 on page 83). Analyses
were implemented in R (R Development Core Team, 2010). This step was only realized
for the metabolite approach.
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metabolites
            1     2     3     4       5      6     7    8
Cow 1  0.1  0.2  0.1  0.02  1.2   5.2  0.7  0.03

Cow 2  0.1  0.4  0.2  0.01  1.0   4.8  0.5  0.12

Cow 3  0.1  0.4  0.1  0.06  1.4   5.3  0.6  0.06

Cow 4  0.1  0.3  0.4  0.01  1.1   4.9  0.4  0.09  

metabolite 1

metabolite 4

metabolite 7

Metabolome Workflow

Step 1: 
Determination of 
important metabolites 
for an investigated milk 
trait. 

Step 2: 
Determination of 
important SNPs for a 
trait.

Step 3:  
Using the obtained 
SNP subset to predict 
the investigated milk 
trait.

Genome - 50K 
Illumina SNP chip

step 2. 

step 2. 

step 3. 

Metabolite 
approach

Classical
approach

Reduced 
classical
approach

Milk trait

step 1. 

QTL 
approach

step 3. 

step 3. 

step 3. 

Figure 4.2: Analysis design: schematic representation of the workflow. In the
classical approach all SNPs were used to predict the genetic values, whereas only the
thick marked SNPs were used for the genetic value prediction in all other approaches.

Step 2: The impact of each SNP on either the important metabolites or the milk traits
was estimated using the outer training set. An SVS method similar to Ishwaran and Rao
(2005) was applied (Wittenburg and Reinsch, 2011), including the estimation of the fixed
effects and additive genetic effects covered by SNPs. Thus milk metabolites and milk
traits were only standardized before they were used.
The used model for milk traits:

ymilkcorrected = Ff +Xã+ ε̃, (4.14)

with

ymilkcorrected = vector of investigated milk trait [ymilkcorrected = (ymilkcorrected 1,...,y
milk
corrected n)′],

F = (n x f)-design matrix for fixed effects,
f = fixed effects as modeled in Eq. 4.6 presented in parentheses f = (f1,...,f66)′),
Xã = (n x nSNP )-design matrix for additive genetic effects ã = (ã1,...,ã

′
nSNP

) ,
ε̃ = residuals,

and for milk metabolites:

ymetcorrected = F ∗f∗ +Xa∗ + ε∗, (4.15)
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with

ymetcorrected = vector of investigated milk metabolite [ymetcorrected = (ymetcorrected 1,...,y
met
corrected n)′],

F ∗ = (n x f∗)-design matrix for fixed effects,
f∗ = fixed effects as modeled in Eq. 4.7 presented in parentheses f∗ = (f∗1 ,...,f∗113)′,
Xa∗ = (n x nSNP )-design matrix for additive genetic effects a∗ = (a∗1,...,a∗nSNP

)′,
ε∗ = residuals.

The residuals were assumed to be independently and normally distributed ε̃i ∼ N(0,σ2
ε̃)

or ε∗i ∼ N(0,σ2
ε∗). Entries of the design matrices are random variables and depends on

the observed SNP-genotypes. SNP-genotypes in the design matrices F and F ∗ are coded
as presented in Section 3.4 on page 50, whereby the homozygous with the most frequent
allele is coded as one. It is assumed that genetic effects are independently distributed
at different loci. Here LE is not explicitly required. The following assumptions of prior
distributions were used (following Wittenburg and Reinsch, 2011) and the additive genetic
effects were standardized:

ỹ|gs,σ2
res ∼ N(X̃gs, Iσres), ỹ ∈ {ymilkcorrected,y

met
corrected}, gs ∈ {ã,a∗}, res ∈ {ε̃,ε∗}

X̃ ∈ {F,F ∗}, I = identity matrix,
σ−2
res|β1,β2 ∼ Γ (β1,β2),
gs,j |σ2

s,j ∼ N(0,σ2
s,j), j ∈ {1,...,nSNP },

where σ2
s,j is drawn from a mixture of inverse Γ -distributions. The mixture depends

on the complexity parameter ω, which gives the proportion of effects different to zero.
The following settings of parameters were used (following the notation of Wittenburg
and Reinsch (2011)): β1 = β2 = 0.00001, α1 = 5, α2 = 0.01 and υo = 0.001 for SVS
(for more information see Wittenburg and Reinsch, 2011; Ishwaran and Rao, 2005).
SVS was run using Gibbs sampling with the following settings: 100,000 iterations were
used, the first 40,000 of which were disregarded as burn-in phase. Example trace plots
for selected SNPs and for each milk trait are presented in Appendix B.3 on page 156.
Three chains were produced for each trait. To enable the determination of significant
SNPs, a conditional test was used similar to that used in Wittenburg and Reinsch
(2011). The testing problem was H0: gs,j = 0 versus the alternative hypothesis HA:
gs,j 6= 0. Therefore, an empirical selection method was applied. In each chain was
counted (after the burn phase) how often a marker has non-zero effect. The mean
value of estimated marker effects was used in combination with the mean estimated
complexity parameter ω to select important SNPs. The additive genetic effect sizes as
mean of estimates were used for the prediction of the specific investigated trait (in Step 3).

After this step was completed, the important SNPs were rated related to the known
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QTL using the QTL-SNPs. For this, we used the over-representation analysis which is a
type of enrichment analysis (Ackermann and Strimmer, 2009). The aim of this analysis
was to determine if a list of genes, representing the gene set, is over-represented (more
genes than expected by chance) with regard to another gene list, representing the target
set. A specific reference set is applied to quantify how likely the over-representation is,
which is calculated following the hypergeometric distribution (Drǎghici et al., 2003). In
our case, the entirety of SNPs represent the reference set. The target set corresponds
to the QTL-SNPs, and we investigated its enrichment with regard to the SNP subsets
detected in the metabolite approach and the reduced classical approach. The analysis
was performed in R (R Development Core Team, 2010), using the function phyper to
calculate the P-values based on the hypergeometric distribution. The significance level α
was set to 0.05.

Step 3: Different SNP subsets were used to estimate genetic effects on milk traits using
SVS (same settings as in Step 2):

(a) metabolite SNPs,

(b) reduced SNPs,

(c) all SNPs and

(d) QTL-SNPs.

Here, additive genetic effects as mean of estimates (in the outer training set) were used
to predict the genetic values in the outer test set. In this step, the prediction precision
(ρmilksvs ) was defined as the correlation between the estimated genetic values (ĝmilksvs ) and
the observed characteristics of a milk trait (ymilk), and can be expressed as:

ρmilksvs = cor(ĝmilksvs , y
milk). (4.16)

Finally, the prediction precisions (ρmilksvs ) of the four different approaches were rated using
Wilcoxon signed-rank test for paired samples. The analysis was performed in R (R
Development Core Team, 2010), using the function wilcox.test (α was set to 0.05). The
rating allows us to determine if the obtained prediction precisions differed significantly
among the various investigated SNP subsets for SVS.
This was possible due to the invariability of the used double 10-fold cross-validation
scheme (cf. Section 4.2.2) and also the use of the same seeds for the random number
generator in the analyses, which ensured the comparability of the different approaches.

To evaluate the significance of the prediction results for the reduced classical approach
and the metabolite approach, it was tested if SNP subsets determined for a milk trait
were superior to random subsets. To quantify the significance of the observed prediction
ability for the original design, we applied a resampling approach for which SNP subsets
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were chosen randomly for each investigated milk trait. For each of the 10 outer cross-
validation runs 100 SNP subsets were drawn at random corresponding to the observed
average quantity of SNPs in the respective approach and step 3 was processed. Thus, the
evaluation was based on 1,000 resampling rounds, resulting in an empirical distribution
of prediction precisions (ρR). The resampling P -value of the prediction precision was
determined in the same way as described in Section 4.2.3.3 (on page 81) as the relative
proportion of resampling rounds with a prediction precision ρR as large or larger than
the original prediction precision (ρmilksvs ; α was set to 0.05).

4.3 Results of investigations of the experimental data set

4.3.1 Analysis of experimental and simulated data

Two different approaches to simulate data were conceptually compared to experimental
data by comparing the results of fastBayesB analyses. We observed that the optimal
γ-value disagreed for the different investigated experimental data sets, e.g., pH value
γ = 0.001, fat content γ = 10−4 and casein content γ = 10−5. The estimated variance
components and prediction precisions for the optimal γ-value can be found in Table 4.2. In
general, H2 was underestimated by fastBayesB compared to estimated h2 obtained with
the sire model (cf. with page 75) for all investigated milk traits; for example, ĥ2 = 0.234
with the sire model and Ĥ2 = 0.105 with fastBayesB for fat content. Furthermore,
the observed mean prediction precisions can be found in this Table (cf. Eq. 4.4 on
page 77) which was scaled to 100% to ease conceptual comparison between simulated
and experimental data sets. Therefore, the prediction precisions were divided by the
square root of the estimated or simulated heritability (cf. Section 4.2.1 on page 75). In
Figure 4.3 the estimated genetic effect sizes are presented for the different milk traits
observed using the whole data set. In this figure, it is shown that casein content revealed

Table 4.2: Estimated variance components and prediction precisions for simulated
data sets and milk traits with fastBayesB. For comparison, an example training data
set was selected including 1,307 animals (settings: nSNP = 52,273 and H2 = 0.3)
for each kind of simulated data set. The experimental data set included 1,307
animals, and three milk traits were studied. 10-fold cross-validation was applied to
determine prediction precision. The average variance components and in brackets
the corresponding standard deviation are given as well as the prediction precisions
are presented for the optimal γ-value.
Data Approach σ̂2

g σ̂2
a σ̂2

d σ̂2
e Ĥ2 ρ scaled ρ

nQT L=23 conventional 0.714 (0.07) 0.627 (0.06) 0.087 (0.02) 2.561 (0.03) 0.218 0.454 (0.07) 82.36%
SBML 0.756 (0.09) 0.756 (0.09) 0.001 (0.00) 2.481 (0.06) 0.233 0.475 (0.09) 86.36%

nQT L=230conventional 0.734 (0.08) 0.640 (0.05) 0.094 (0.05) 1.839 (0.07) 0.285 0.380 (0.08) 69.09%
SBML 0.556 (0.09) 0.554 (0.09) 0.002 (0.00) 2.676 (0.05) 0.172 0.263 (0.08) 47.82%

Experi- Fat (%) 0.085 (0.01) 0.081 (0.01) 0.004 (0.01) 0.722 (0.02) 0.105 0.292 (0.07) 60.83%
mental Casein (%) 0.023 (0.00) 0.023 (0.00) 0.000 (0.00) 0.674 (0.01) 0.034 0.186 (0.07) 37.96%

pH value 0.191 (0.03) 0.143 (0.02) 0.048 (0.02) 0.345 (0.02) 0.356 0.255 (0.10) 41.12%



4.3 Results of investigations of the experimental data set 89

only one intermediate additive effect. In comparison, besides one major additive genetic
effect, fat content showed three intermediate additive and one dominance genetic effects.
Analyses for pH value revealed equally large genetic effects for additive and dominance
effects. For simulated data sets the observed main genetic effect sizes were close to those
observed using the corresponding whole training sets (see Figure 3.6 on page 60). The
visual inspection of the observed fitted values and residuals using the whole data set
revealed that the model explains the simulated as well as the experimental data well.
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Figure 4.3: Estimated main genetic effects for different milk traits. Estimated
additive (A) and dominance genetic effects (B) for fat content; additive (C) and
dominance genetic effects (D) for casein content; additive (E) and dominance genetic
effects (F) for pH value. The figures based on the whole data set and analyzed with
fastBayesB for the optimal γ-value.

4.3.2 Analysis of milk metabolites and milk traits

In this section all analyses of the investigations of milk metabolites and milk traits are
presented. Here, the focus was on the investigation of the influence of known influencing
factors on milk metabolites and milk traits, as well as to study in more detail the
relationships within and between milk metabolites and milk traits.

4.3.2.1 Univariate analyses of the impact of influencing factors on traits

Numbers and percentages of milk metabolites and milk traits, for which the analyzed
influencing factors were significant based on ANOVA and LRT (as described in Sec-
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tion 4.2.3.2 on page 80), are listed in Table 4.3. The factors showed a higher percentage
of significance for milk traits than for metabolites, e.g., day of lactation had a significant
influence on 45.79% of the metabolites and on 85.71% of the milk traits. More than 85%
of all traditional milk traits were significantly influenced by all influencing factors. A

Table 4.3: The number of metabolites and milk traits, on which influencing factors
impact significantly. Relative proportions are in parentheses.

Influencing factor Milk metabolites Milk traits
Sire 34 (17.80) 13 (92.86)
Day of lactation 87 (45.79) 12 (85.71)
Farm 145 (76.32) 13 (92.86)
Test-day 105 (55.62) 12 (85.71)
Farm × test-day 159 (83.68) 14 (100.00)
GC-MS batch 190 (100.00) - -

detailed list of the observed corrected P -values is available online and can be found on the
website of the Journal of Dairy Science (Melzer et al., 2013a). In addition, it was visually
inspected if an increase or decrease trend existed for metabolites over lactation days (cf.
Eq. 4.10 on page 80). We could observe that some metabolites showed an increased or
decreased trend over lactation days. In Figure 4.4 A-B an example metabolite for an
increased as well as a decreased trend is presented.
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Figure 4.4: An example for an increased trend over lactation days represents
Glucose-, 2-amino-2-desoxy (A) and for a decreased trend Kynureine (B).

4.3.2.2 Multivariate analyses of the impact of influencing factors on milk traits

Clustering of average metabolite profiles: In Figure 4.5, the dendrogram for the
influencing factor lactation interval is presented. The lactation intervals can be split
into three clusters: cluster 1 comprises lactation intervals 1− 3 (days 21-50), cluster 2
intervals 4− 8 (days 51-100) and cluster 3 intervals 9− 10 (days 101-120). The number
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of clusters was evaluated using the silhouette width criterion, for which the maximum
average silhouette width (asw) was determined at 0.30. For the analysis involving three
clusters, the cluster stability criterion was applied, and we observed a Jaccard coefficient
higher than 0.68 for all three clusters, indicating intermediate stability. The dendrogram
presented reproduced the lactation time line.

1 2 3 9 104 5 6 7 8
Interval of lactation

H
ei

gh
t

0
1

2
3

4

Figure 4.5: The dendrogram resulting from hierarchical clustering of average
metabolite profiles for the influencing factor lactation interval. The metabolite
profiles were pre-corrected using the linear model (Eq. 4.7 on page 79) except for the
linear and quadratic regression on lactation day.

For the influencing factor farm the dendrogram is shown in Figure 4.6 A. The chosen
number of clusters was three, which was proven by the silhouette width criterion (asw =
0.37) and the Jaccard coefficient, which was higher than 0.85 for all three clusters
indicating high cluster stability.

Pairwise statistical tests: We tested how many metabolites showed a significant dif-
ference between levels of an investigated influencing factor. For the influencing factor
lactation interval, all 45 pairwise comparisons were analyzed and the largest number of
differences was found between lactation intervals 1 and 7 or 8. Metabolites with the
highest numbers of significant differences for all pairwise comparisons of lactation intervals
are listed in Table 4.4. For the influencing factor farm, 153 pairwise comparisons were
investigated, of which 66 showed significant differences between metabolites. The number
of significant differences for each farm compared to all other farms is graphically presented
in Figure 4.6 B. The largest number of significant differences was found between farms
10 and 15 (16 metabolites in total). Whereas no significant metabolite was detected, e.g.,
between farms 6 and 12. The observed number and corresponding relative percentage
of significant differences are reported for the metabolites with the highest counts in
Table 4.4.
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Figure 4.6: (A) The dendrogram resulting from hierarchical clustering of average
metabolite profiles for the influencing factor farm. (B) Numbers of metabolites with
significant differences between farms. Nodes are farms; thickness of connecting lines
depends on number of metabolites with significant difference. For both graphics the
metabolite profiles were pre-corrected using the full linear model (Eq. 4.7 on page 79)
except for farm.

Classifying levels of specific influencing factors: We used LDA to determine important
metabolites for the prediction of an influencing factor. Important metabolites were
derived from the first linear discriminant function using obtained coefficients. For
lactation interval, we observed 10 important metabolites, and for farm we found eight
important metabolites. The most important metabolites are listed in Table 4.5 for both
influencing factors. Moreover, we applied LDA to predict the influencing factor of interest
from metabolite profiles. The observed precision of prediction for the original data was
significant (resampling P -value ≤ 0.001) for both investigated influencing factors.

4.3.2.3 Results of investigations on relation between traits

Testing correlation: Investigating correlations between milk metabolites, we observed
that in total 80% of all pairwise correlations were significant after FDR correction at a
significance level of 5%. The highest correlations were found between: ethanolaminephos-
phate and orotic acid, and 2-methyl-fumaric acid and itaconic acid (ρt1t2 > 0.9 for these
pairs), respectively. Most metabolites were positively correlated. A detailed correlation
matrix is available online and can be found on the website of the Journal of Dairy Science
(Melzer et al., 2013a).
The significant correlations between metabolites and milk traits are presented in Fig-
ure 4.7. In total, 75 metabolites showed no significant correlations to any milk trait.
We observed that for casein content and protein content, metabolites mostly coincided
regarding significance and degree of correlation. This finding is further illustrated in
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Table 4.4: The number of metabolites with the most significant differences between
levels of an investigated factor of interest. The total number of possible pairwise
comparisons per metabolite for each influencing factor is given in brackets. Relative
proportions are in parentheses.

Influencing Factor Milk metabolites Number of observation
Lactation interval [45] Glucopyranoside, 1-O-methyl-, alpha- 26 (57.78)

Glucosamine, N-acetyl 26 (57.78)
Ribulose-5-phosphate 26 (57.78)
Gluconic acid-6-phosphate 25 (55.56)
Fructose-6-phosphate 24 (53.33)
Phosphoenolpyruvic acid 21 (46.67)
Sarcosine 20 (44.44)
Galactosamine, N-acetyl- 18 (40.00)
Arabitol 17 (37.78)
Gluconic acid 17 (37.78)

Farm [153] Benzoic acid 35 (22.88)
Kynurenine 17 (11.11)
1,3-Dihydroxyaceton 11 (7.19)
Butanoic acid, 2-amino- 10 (6.54)
Pyridoxal 10 (6.54)
Thiazole, 4-methyl-5-hydroxyethyl- 10 (6.54)
Arabitol 8 (5.23)
Phenylalanine 8 (5.23)
Pyruvic acid 8 (5.23)

Figure 4.7, where parts 2 and 5 of the correlation structure also show that these two
traits mainly correlate with the same metabolites. Whereas Figure 4.7 part 3 shows
that less congruence exists between both milk traits. Also, we observed that metabolites
which were clearly positively correlated to SCS, were clearly negatively correlated to
lactose content (Figure 4.7 part 3).
Investigating the correlation structure between milk traits, we found that in 81% of all
pairwise correlations were significant but with very different levels of correlation, see
Figure 4.8. Casein content and protein content, energy and fat content, energy and
fat:lactose, fat content and fat:lactose were highly correlated (ρt1t2 > 0.9). A positive
correlation was observed, e.g., between fat content and protein content, and a negative
correlation was observed, e.g., between fat content and lactose content as well as between
urea content and casein content or protein content, respectively. The corresponding
Pearson correlation matrix for investigations between metabolites and milk traits, and
among milk traits can be found in Appendix B.1 (see page 143).
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Figure 4.7: Cor-
relations between
milk metabolites and
milk traits; white
squares represent
non significant corre-
lations. Seventy-five
metabolites had no
significant correlation
to any investigated
milk trait and were
excluded. Milk traits
and metabolites were
clustered using hier-
archical clustering
with Euclidean dis-
tance and complete
linkage.
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Threonic acid
Glucose, 2−amino−2−deoxy−
Lyxose
Alanine
Pyridoxal
Thymine, 5,6−dihydro−
Sphingosine
Ethylenediaminetetraacetic acid
Itaconic acid
Glutaric acid, 2−oxo−
Estradiol, 17alpha−
Sarcosine
Creatinine
Benzylamine
Isocitric acid
Isobutanoic acid, 3−amino−
Lactitol
Maltotriose
4−Hydroxyphenyl−beta−glucopyranoside
Uridine−5−monophosphate
Sophorose
Isomaltose
Nicotinamide
Glucopyranoside, 1−O−methyl−, alpha−
Butanoic acid, 4−methylthio−2−oxo−
unknown_315800
Orotic acid
Ethanolaminephosphate
Fumaric acid
Ribulose
Citrulline
1,3−Dihydroxyaceton
Lactic acid, DL−
Uracil
4−(Methylamino)benzoic acid
Tyrosine
Methionine
Histidine
Thymine
Pyruvic acid, 4−hydroxyphenyl−
Butanoic acid, 4−hydroxy−
Isoleucine
Butanoic acid, 2−hydroxy−
Butanoic acid, 4−acetamido−
Tryptophan
Leucine
Phenylalanine
Spermidine
Arabitol
Thiazole, 4−methyl−5−hydroxyethyl−
myo−Inositol−1−phosphate
Pyruvic acid
Muramic acid, N−acetyl−
Gluconic acid
Hippuric acid, 2−hydroxy−
Galactitol
Glucaric acid−1,4−lactone
Sedoheptulose, 2,7−anhydro−, beta−
Glycerol−2−phosphate
Glycerol−3−phosphate
Cinnamic acid, 3,4,5−trimethoxy−, trans−
Phosphoenolpyruvic acid
Glyceric acid−3−phosphate
beta−D−Galactopyranoside, 1−isopropyl−, 1−thio−
Citric acid, 2−methyl−
Phenylacetic acid
beta−Alanyl−histidine
Glyceric acid−2−phosphate
Kynurenine
Homoserine lactone, N−2−oxocaproyl−
Coniferylaldehyde, trans−
Tryptamine, 1−methyl−
Adipamide
Fructose−1−phosphate
Pyridoxamine
Putrescine, N−acetyl−
Benzoic acid,
Galacturonic acid
Glutaric acid, 2−hydroxy−
Adenosine, 2'−deoxy−
Tropic acid
Jasmonic acid methyl ester, 2−trans−
Inosine−5'−monophosphate
Cystine
Piceatannol
Loganin
Ribulose−5−phosphate
Fructose−6−phosphate
Gluconic acid−6−phosphate
Cinnamic acid, 4−hydroxy−, trans−
Androst−5−en−17−one, 3beta−hydroxy−
Mannosamine, N−acetyl−
Pantothenic acid, D−
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Table 4.5: Important metabolites detected for the factors lactation interval and
farm, using a 10-fold cross-validation in a linear discriminant analysis. The coefficient
of the first linear discriminant function was used as a measure of association between
metabolites and investigated influencing factor. A metabolite was declared important
if the corresponding coefficient exceeded the 90% quantile in each cross-validation
run. Metabolites typed in bold were also detected in the univariate analysis (pairwise
statistical test).

Lactation interval Farm
Adipic acid, 2-amino- 2-Piperidinecarboxylic acid
Arabitol Adipic acid, 2-amino-
Arginine [-NH3] Aspartic acid
Asparagine Butyric acid, 2,4-diamino-, DL-
Gluconic acid Galactosamine, N-acetyl-
Glycerol Glycerol-2-phosphate
Orotic acid Ribulose-5-phosphate
Phenylalanine Unknown_315800
Pyridoxal
Unknown_315800
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Figure 4.8: Correlations between milk traits; white squares represents non-
significant correlation.
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Important metabolites with multivariate relations to milk traits: The observed pre-
cisions (ρmilk; Eq. 4.13) for predicting the investigated milk traits from metabolites using
RF and PLS are presented in Figure 4.9. Both methods resulted in very similar precisions
for the prediction of most milk traits. The highest mean value of prediction precision was
observed for SCS (ρmilk = 78%, RF). Casein content and protein content had similar
mean prediction precisions above 60%. For all other milk traits, mean prediction precision
was observed between 17% and 41%. SFA had the lowest prediction precision.
For predicting SCS using RF or PLS, a very large importance was observed for one
metabolite (uracil), a few metabolites showed small importance and most had nearly
zero importance for this milk trait. This behavior was stable over the cross-validation
runs. For fat content, more metabolites showed larger importance for both prediction
methods. The results of metabolite importance measurements varied strongly over the
cross-validation runs. This finding was also observed for the remaining milk traits.
The most important metabolites for each milk trait which coincided in both prediction
methods are listed in Table 4.6. Comparing the detected important metabolites via RF
and PLS (Table 4.6) to metabolites which show significantly large correlation values for
the investigated milk traits (Figure 4.7) using the univariate evaluation resulted in good
congruence.
Further, the important metabolites are presented separately for each prediction method
and also with respect to their importance for the investigated milk traits in Appendix B.4
(on page 157). Comparing both statistical learning methods, more important metabolites
were observed with PLS than RF for most milk traits. For casein content and protein
content, we found almost the same set of important metabolites with both prediction
methods. In total, we found 14 important metabolites which were detected by both
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Figure 4.9: Boxplots of observed precisions for the prediction of milk traits (ρmilk;
Eq. 4.13) from metabolite profiles using RF and PLS based on a 10-fold cross-
validation.
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Table 4.6: For each milk trait, the observed important metabolites are listed in
alphabetical order. The important metabolites exceeded the 90% quantile for both
prediction methods (RF and PLS) in all 10-fold cross-validation runs.
Milk trait Important metabolites
Acetone (%) Ethanolaminephosphate; Glucaric acid-1,4-lacton; Orotic acid

Casein (%) 2-Piperidinecarboxylic acid; Adipic acid, 2-amino-; Alanine;
Arabitol; Asparagine; Aspartic acid; Butanoic acid, 2-amino-;
Cinnamic acid, 3,4,5-trimethoxy-, trans-; Glycerol-3-phosphate;
myo-Inositol-1-phosphate; Phosphoenolpyruvic acid;
Pyroglutamic acid; Spermidine; Thiazole, 4-methyl-5-hydroxyethyl-

Fat (%) 1,3-Dihydroxyaceton; Arabitol; Aspartic acid; Galactitol;
Glucaric acid-1,4-lactone; myo-Inositol-1-phosphate;
Pyroglutamic acid

Lactose (%) 1,3-Dihydroxyaceton; Glucaric acid-1,4-lactone; Leucine;
Methionine; Phenylalanine; Tyrosine

pH value Alanine, beta-; Glycerol-2-phosphate; Glycerol-3-phosphate; Glycine

Protein (%) 2-Piperidinecarboxylic acid; Adipic acid, 2-amino-; Arabitol;
Asparagine; Aspartic acid; Butanoic acid, 2-amino-; Cinnamic acid,
Glyceric acid-3-phosphate; Glycerol-3-phosphate; myo-Inositol-1-
phosphate;
3,4,5-trimethoxy-, trans-; Phosphoenolpyruvic acid; Pyroglutamic acid;
Spermidine; Thiazole, 4-methyl-5-hydroxyethyl-

Quantity Arabitol; Butanoic acid, 2-amino-; Butanoic acid, 4-methylthio-2-oxo-;
of milk (kg) 2-Piperidinecarboxylic acid

SFA 1,3-Dihydroxyaceton; Glycerol

SCS 1,3-Dihydroxyaceton; Butanoic acid, 2-hydroxy-; Lactic acid, DL;
Leucine;
Methionine; Phenylalanine; Tryptophan; Tyrosine; Uracil

UFA Galactitol; Serine, cyclo-

Urea (%) Adipic acid, 2-amino-; Aspartic acid

Energy 1,3-Dihydroxyaceton; Arabitol; Aspartic acid;
(MJ/kg) myo-Inositol-1-phosphate; Pyroglutamic acid

Fat/protein 1,3-Dihydroxyaceton; Butanoic acid, 3-hydroxy-; Galactitol;
Glycerol-2-phosphate; Glycerol-3-phosphate; Glucaric acid-1,4-lactone;
Sedoheptulose, 2,7-anhydro-, beta-

Fat/lactose 1,3-Dihydroxyaceton; Arabitol; Galactitol;
Glucaric acid-1,4-lactone; Pyruvic acid; Pyroglutamic acid
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prediction methods for casein content and protein content. In addition, 13 important
metabolites also coincided between casein content and protein content, e.g., arabitol,
2-amino adipic acid, pyroglutamic acid. Urea content is an example of disagreement
between RF and PLS, for which five metabolites were identified as important by each
method, but only aspartic acid and 2-amino-adipic acid coincided between them. In
the following, we only consider metabolites detected as important by both prediction
methods. For SCS, the most important metabolites were uracil and lactic acid. A positive
correlation existed between uracil and SCS (ρt1t2 = 0.70), between lactic acid and SCS
(ρt1t2 = 0.58), and between both these metabolites (ρt1t2 = 0.62). Comparing important
metabolites for the prediction of lactose and SCS, five important metabolites coincided,
i.e., 1,3-dihydroxyaceton, leucine, methionine, phenylalanine and tyrosine. Between SCS
and lactose content a negative correlation (ρt1t2 = −0.28) was observed, which was also
mirrored in the observed correlation structure between metabolites and milk traits (see
also Appendix B.1 on page 143). In detail, SCS (lactose content) showed the following
correlation values for 1,3-dihydroxyaceton = 0.37 (−0.21), leucine = 0.41 (−0.20),
methionine = 0.43 (−0.25), phenylalanine = 0.43 (−0.26) and tyrosine = 0.49 (−0.27).
The correlation structures of these metabolites were clustered together (cf. Figure 4.7
part 3). Furthermore, for fat content, energy, and fat:lactose the same three important
metabolites were found; arabitol, 1,3-dihydroxyaceton and pyroglutamic acid. We
observed that most of the metabolites show similar correlation values regarding these
milk traits (cf. Figure 4.7, for further information see Appendix B.1). In this context,
we found the best coinciding correlation values for casein content and protein content.
Additionally, 1,3-dihydroxyaceton was observed as important for fat content, energy,
fat:protein, fat:lactose and SFA. Finally, we did not observe any coinciding important
metabolites for fat content, UFA and SFA.

4.3.3 Comparison of the metabolite approach to other approaches

In this section, the results of our proposed metabolite approach versus classical approach,
reduced classical approach and QTL approach are presented (cf. Section 4.2.4 on page 83).

4.3.3.1 Determining milk metabolites important for milk traits

Two regression methods (RF and PLS) were applied to determine metabolites important
for the investigated milk traits. The observed mean prediction precisions were similar
for both regression methods, e.g., ρmilk = 0.63 RF and ρmilk = 0.64 PLS for protein
content (cf. Section 4.3.2.3). The results were based on the inner 10-fold cross-validation.
Protein content showed the highest mean prediction precision, whereas the observed mean
prediction precisions for fat content and pH value were about 0.35 for both regression
methods. The observed important metabolites and their frequency over the 10 inner
cross-validation sets are listed in Table 4.7. For fat content, 11 different metabolites
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were found to be important, e.g., 1-3-dihydroxyaceton, aspartic acid and galactitol. Six
metabolites were found in each inner cross-validation run. In total, ten different important
metabolites were found for pH value, of which only glycerol-2-phosphate and glycine
were found to be in each inner cross-validation run. For protein content, 16 metabolites
were detected as important, and 11 of them were observed in all inner cross-validation
runs. Arabitol, aspartic acid and pyroglutamic acid were important for both fat content
as well as protein content and they were observed in all inner cross-validation runs.
These findings are mainly in congruence with the important detected metabolites in
Section 4.3.2.3 where the outer cross-validation was used (cf. Table 4.6).

4.3.3.2 Selecting important SNPs via SVS

The average number of important SNPs for each important metabolite is listed in
Table 4.7. In Table 4.8 the average number of important SNPs selected by SVS is listed
for the metabolite approach and the reduced classical approach. In general, the average
number of important SNPs was larger for the metabolite approach than for the classical
approach; at least 42.5% more SNPs were selected. Table 4.8 also presents the number
of SNPs in known QTL regions, termed QTL-SNPs, for fat content and protein content.
For the QTL approach, at least 12 times as many SNPs were declared important as in the
reduced classical approach or metabolite approach. In most cases, the average number
of important SNPs was clearly smaller for important metabolites compared to milk
traits (reduced classical approach; cf. with Table 4.7). Moreover we observed that the
DGAT1-SNP was detected for all three investigated milk traits. Hence it was evaluated
how often the DGAT1-SNP was detected over all inner cross-validation sets for important
metabolites. The DGAT1-SNP was identified for the following metabolites in all inner
cross-validation sets: arabitol, aspartic acid, and pyroglutamic acid, for fat content and
protein content. Additionally, the DGAT1-SNP had an impact on 2-amino-butanoic acid
and asparagine when studying protein content. For pH value, the DGAT1-SNP was
identified nine times based on the metabolite glycine.

4.3.3.3 Enrichment analysis of important SNP subsets with respect to known QTL

For fat content and protein content, it was investigated if sets of metabolite SNPs or
reduced SNPs were enriched in the set of QTL-SNPs for all 10 cross-validation sets.
In Table 4.9, the observed P -values as well as the number of expected and observed
important SNPs located in QTL-SNPs are listed. For both milk traits investigated, the
observed P -values were not significant on the significance level α = 0.05, except in one
case for the reduced classical approach (e.g., P -values were in the range of [0.048; 0.930]
for fat content). For the metabolite approach, however, the observed P -values were small
and in almost all cases significant (e.g., P -values were in the range of [0.001; 0.032] for
fat content). The important SNP positions for each milk trait which were selected in
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Table 4.7: Information about important milk metabolites.

Milk trait Milk metabolite Frequency in 10 Average number
cross-validation of important

runs SNPs
Fat (%) 1,3-Dihydroxyaceton 10 5.30

Arabitol 10 16.90
Aspartic acid 10 29.00
Butanoic acid, 4-amino- 1 4.00
Galactitol 10 18.10
Glucaric acid-1,4-lactone 10 7.40
Muramic acid, N-acetyl- 1 6.00
myo-Inositol-1-phosphate 8 6.88
Pyroglutamic acid 10 41.50
Pyruvic acid 4 10.75
Sedoheptulose, 2,7-anhydro-, beta 1 4.00

pH value Alanine, beta- 8 10.00
Arabitol 3 18.00
Glutaric acid, 2-hydroxy- 4 33.25
Glycerol-2-phosphate 10 25.60
Glycerol-3-phosphate 7 53.57
Glycine 10 20.60
Phenylalanine 1 8.00
Threonic acid 1 4.00
Tryptophan 1 10.00
Tyrosine 1 15.00

Protein (%) 2-Piperidinecarboxylic acid 10 23.50
Adipic acid, 2-amino- 10 24.60
Alanine 3 9.00
Arabitol 10 16.30
Asparagine 10 12.30
Aspartic acid 10 28.40
Butanoic acid, 2-amino- 10 29.10
Cinnamic acid, 3,4,5-trimethoxy-, trans- 10 4.90
Glyceric acid-3-phosphate 4 23.50
Glycerol-2-phosphate 1 29.00
Glycerol-3-phosphate 10 55.10
myo-Inositol-1-phosphate 10 6.50
Phosphoenolpyruvic acid 7 36.29
Pyroglutamic acid 10 41.80
Spermidine 10 11.20
Thiazole, 4-methyl-5-hydroxyethyl- 7 11.43



4.3 Results of investigations of the experimental data set 101

Table 4.8: The average number of selected important SNPs.

Approach Fat (%) Protein (%) pH value
Reduced classical approach 30 88 80
Metabolite approach 129 302 114
QTL approach 3,034 3,593 -

more than seven cross-validation runs with the metabolite approach are presented in
Appendix B.6 (on page 162). There it is also marked if a SNP position lies in a known
QTL. The SNP positions were specified, and aside from important SNPs in known QTL,
further SNP positions were several times detected, indicating their importance for the
investigated milk trait.

4.3.3.4 Comparison of prediction results obtained by different approaches using
SVS

For all investigated milk traits, boxplots of the observed prediction precisions for each
SNP subset approach are presented in Figure 4.10. A significant difference between
two approaches regarding the observed prediction precisions is marked with a black
dashed line (α = 0.05); the corresponding observed P -value is also given. For fat
content (Figure 4.10 A), the reduced classical approach (ρmilksvs = 0.221) was surpassed
by the other three approaches, but no significant differences between the classical ap-
proach (ρmilksvs = 0.299) and the metabolite approach (ρmilksvs = 0.290) and QTL approach
(ρmilksvs = 0.293) were observed. Compared to the classical approach and the QTL ap-
proach, less than 1% of the total amount of (40,317) SNPs were used for the prediction via
the metabolite approach. Further, the highest single prediction precision of ρmilksvs = 0.450
was observed for the metabolite approach, whereas for the classical approach the highest
prediction precision was ρmilksvs = 0.377 and ρmilksvs = 0.430 for the QTL approach.
For protein content (Figure 4.10 B), the classical approach (ρmilksvs = 0.237) outperformed
all three other approaches in terms of prediction precision, but no significant difference
between the reduced classical approach (ρmilksvs = 0.147) and the metabolite approach
(ρmilksvs = 0.126) or QTL approach (ρmilksvs = 0.188) was observed. For pH value (Fig-
ure 4.10 C), the observed P -value for the comparison of the classical approach and the
metabolite approach is 0.049 which is close to the bound of α = 0.05, whereas between
the classical approach and the reduced classical approach a clearly significant difference
was observed (P -value = 0.002) regarding prediction precisions.
To validate that the mean prediction precisions observed for the metabolite SNP subsets
and the reduced SNP subsets were significantly different compared to those of random
subsets, we implemented a resampling analysis (cf. Section 4.2.4.2 on page 84). For
fat content, a significant difference regarding prediction precision was observed for both
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Table 4.9: The P -values from rating the important metabolites for the reduced
classical approach and the metabolite approach for each of the 10 cross-validation
runs (α = 0.05).

Reduced classical approach Metabolite approach
Trait (%) P -value Expected Observed P -value Expected Observed
Fat 0.737 2.56 2 0.010∗ 7.75 15

0.588 3.01 3 0.001∗ 7.30 17
0.930 2.56 1 0.032∗ 8.13 14
0.048∗ 2.03 5 0.001∗ 9.26 20
0.897 2.18 1 0.005∗ 7.90 16
0.395 2.26 3 0.003∗ 9.56 19
0.904 2.26 1 0.006∗ 9.48 18
0.395 2.26 3 0.014∗ 6.62 13
0.613 2.03 2 0.008∗ 8.28 16
0.807 1.58 1 0.001∗ 6.77 16

Protein 0.270 7.04 9 0.002∗ 20.76 35
0.400 8.91 10 0.073 20.14 27
0.488 8.56 9 0.017∗ 23.35 34
0.921 6.86 4 0.011∗ 24.24 36
0.815 7.93 6 0.025∗ 18.98 28
0.717 7.04 6 0.004∗ 27.36 42
0.690 7.93 7 0.069 28.79 37
0.268 7.93 10 0.025∗ 23.97 34
0.307 7.31 9 0.013∗ 20.41 31
0.688 9.00 8 0.050∗ 18.54 26

approaches, whereas no significant difference occurred for protein content. For pH value,
the observed resampling P -value was 0.051 for the metabolite approach and 0.055 for the
reduced classical approach. In addition the corresponding residual plots are presented in
Appendix B.5 on page 161.

4.4 Discussion

In this chapter, three different investigations to analyze the three system-levels were
presented, with the main focus being on the benefit of integrating the metabolome in
the GP map. In the first part of this chapter, a purely conceptual comparison of two
simulated data sets (conventional approach and SBML approach) and an experimental
data set containing information on three milk traits was presented. This comparison
represents an alternative way to compare simulated data with experimental data, where
the structure of the obtained fastBayesB results were used as the basis. Such a comparison
is realized, since, it is of interest to simulate data as realistic as possible which enable
methodological development and optimization of estimation methods.
The aim of the second part was to investigate the relationships within and between



4.4 Discussion 103

A

SNP subsets

C
or

re
la

tio
n

h

P=0.002

P=0.004

P=0.02

all red met QTL

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

B

SNP subsets

C
or

re
la

tio
n

●

h

all red met QTL

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

P=0.01

P=0.002

P=0.049

P=0.002

C

SNP subsets

C
or

re
la

tio
n

●

all red met

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

P=0.002
P=0.049

Figure 4.10: Boxplots of the genetic value prediction of ten outer cross-validation
runs for the classical approach (all), the reduced classical approach (red), the
metabolite approach (met), and the QTL approach (QTL). The following milk traits
were investigated: fat content (A), protein content (B) and pH value (C). If two
approaches differ significantly (α = 0.05), this is marked with a black dashed line
and the observed P -value is given. The gray line represents an upper bound for
the accuracy of prediction given as the square root of the estimated narrow-sense
heritability based on the sire model.

190 milk metabolites and 14 milk traits in more detail. These 190 milk metabolites
(representing 10% of the expected milk metabolome) considered only a small part of the
metabolic pathways and metabolites important for milk production. The measured milk
metabolites represent only a snapshot of the current metabolic state of cows. On the one
hand, the impact of influencing factors on milk metabolites as well as milk traits was
investigated and reported in greater detail. It could be shown that influencing factors
had generally less impact on milk metabolites than on traditional milk traits. On the
other hand, significant associations between milk metabolites and milk traits as well
as within each level could be characterized, using univariate and multivariate analysis
methods. In particular, the application of statistical learning methods (RF and PLS)
revealed new relationships between milk metabolites and milk traits.
The third part explored the usefulness of our proposed metabolite approach on experi-
mental data. Three milk traits were analyzed using the metabolite approach and results
were compared to three other approaches (classical, reduced classical, QTL approach). To
enable fair comparison between the different approaches an invariable analysis design was
used. Our analysis show that the prediction precisions using the metabolite approach was
more similar to the classical approach than to the reduced classical approach. Moreover
a similar mean prediction precision was observed between the classical approach (40,317
SNPs) and the metabolite approach (129 SNPs) for fat content, wherein the metabolite
approach required only less than 1% of the total amount of SNPs. An over-representation



104 4 Analyses of experimental data

analysis revealed that significantly more important SNPs in known QTL regions were
selected using the metabolite approach compared to the reduced classical approach.

4.4.1 Experimental data versus simulated data

Our conceptual approach to compare milk traits and different simulated data sets is not
meant as direct comparison, as we do not fit any kind of simulation model parameters using
our experimental data. The comparison is rather on a conceptual level via comparing the
structure of fastBayesB results, because of the unknown underlying number of QTL, i.e.,
underlying genetic architecture, for the milk traits. The comparison of the composition
of the genetic effects for simulated and experimental data offers another perspective to
compare experimental data and different alternatives of simulation. Different estimated
genetic effect compositions were observed for simulated data sets (Figure 3.6 on page 60)
and also for the investigated milk traits (Figure 4.3 on page 89). It was observed that
casein content and fat content mainly depend on one major additive effect (which is
known from the literature as DGAT1, Grisart et al., 2004), whereas pH value depend on
additive as well as dominance genetic effects. Thus, the underlying GP map seems to be
more linear in combination with observed σ2

a (measure for the degree of linearity) for fat
content and protein content than for pH value (cf. Table 4.2 on page 88).
The model used in this analysis seems to be suitable for the experimental data and
simulated data, as was judged by visual residual analysis.
In this thesis, only three milk traits of the 11 recorded milk traits were investigated,
because the used milk traits had the highest estimated heritability (range=[0.233,0.389];
cf. Table 4.1 on page 82) and were more or less similar to our simulated data sets. The
traits were chosen depending on the heritability, since it is known that traits which have
a low heritability require a larger sample size than traits with a higher heritability to
obtain an acceptable prediction precision in the genetic value prediction and thus to
obtain suitable estimates for the genetic variance components (e.g., Daetwyler et al.,
2008; Visscher et al., 2008; Daetwyler et al., 2010). Daetwyler et al. (2010) presented a
formula which allows an estimation of the expected prediction precision (E(ρ)) based
on the number of independent chromosomes segments (Me), number of animals in the
parental or training generation (Np) and the heritability of the trait:

E(ρ) =
√

Np · h2

Np · h2 +Me
, (4.17)

and Me can be approximated as follows:

Me = 2 ·Neff · L, (4.18)

where Neff represents the effective population size and L the number of chromosomes. If
we assume an Neff = 100, h2 = 0.3 and Np = 1,170 (based on the cross-validation design
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cf. Section 4.2.2 on page 77) for our experimental data, we would obtain E(ρ) = 0.235
and E(ρ) = 0.138 for h2 = 0.1 in the same setting. The figures show that it is very likely
that no meaningful results may be gained for traits with a low heritability. If we want
to obtain a prediction value of E(ρ) ≥ 0.5 then at least 6,665 animals are necessary for
h2 = 0.3 or 20,000 for h2 = 0.1, which would surpass this project.

4.4.2 Investigations of relations of milk metabolites and milk traits

In this section the results of the intense investigations of milk metabolites and milk traits
are discussed regarding their meaning and possible importance for dairy cattle science.

4.4.2.1 Impact of influencing factors on traits

Studying the impact of influencing factors on traits revealed further insights and associa-
tions which will be discussed in the following paragraphs.

Univariate analysis on milk metabolites and milk traits in relation to influencing
factors: Influencing factors considered in this thesis were farm, sire effect, (GC-MS
batch), day of lactation and test-day, which had significant impact on parts of the 14
milk traits and 190 milk metabolites. Influencing factors were significant for a larger
percentage of milk traits compared to metabolites (cf. Table 4.3). Single metabolite
profiles seem to be only partly affected by influencing factors in our study, whereas
complex traits, such as the investigated milk traits, showed larger dependencies. A
possible explanation is that complex traits are composed out of several molecular traits,
so that at least some of these are likely to be affected by the considered influencing
factor. On the other hand, metabolites as molecular traits are highly interconnected
(and correlated) making it difficult to find simple explanations for the observed selective
impact of the influencing factors.

Influence of day of lactation on milk metabolites: A lactation curve was expected
to exist for some metabolites, such as for the complex milk trait quantity of milk (cf.
Figure 1.4 on page 20). Therefore, we used ANOVA to investigate if metabolites showed
a significant trend over the lactation days. In general, we found 78 metabolites which
had such a trend (cf. Figure 4.4 on page 90 for two examples). As we collected milk
samples between the 21st and 120th day of lactation, only a part of the possible lactation
curve was observed. The lactation curves for metabolites are probably blurred because
all measurements originated from different individuals (1 sample per cow). The cluster
analysis (Figure 4.5) also mirrored a clear change of metabolite profiles during the
observed part of lactation. Comparing the lactation intervals for metabolites, we found
that the first lactation interval showed the most significant differences to other lactation
intervals. This finding could be related to the known course of negative EB which can be
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observed in the early phase of lactation (cf. Section 1.5.3 on page 18; e.g., Bauman and
Currie, 1980; Collard et al., 2000). In Table 4.4, we present those metabolites which had
the most significant differences over all pairwise comparisons. These metabolites showed
the highest variation over the investigated lactation intervals. A clearer statement of
changes and compositions of metabolites could be given if multiple samples from the
same cows were taken over the whole lactation period.

Influence of farm on milk metabolites: We detected significant differences in metabolite
levels between farms (cf. Figure 4.6 B). It is known from the literature that, among other
factors (e.g., keeping conditions, milking, and management), feeding has an important
influence on milk composition (Sutton and Morant, 1989; Töpel, 2004). Furthermore
odd-chain fatty acids in milk have a high potential to discriminate between different
diets, for a recent study see e.g., Cabrita et al. (2003). In this context, we observed two
metabolites, i.e., arabitol and 1,3-dihydroxyacetone (Table 4.4), as being important for
discriminating between farms in our data. Both examples are carbohydrates, implicating
their role as a precursor of fat.
Considering these findings together with the results of our metabolite clustering of farms
(Figure 4.6 A), we assume that feeding is the most discriminating aspect in this part of
investigation. In addition, some farms show very distinct metabolite profiles, and thus
form separate clusters. However, to give a more differentiated and stronger statement, it
is necessary to consider different feeding managements and other influencing aspects for
the factor farm in greater detail, and to investigate possible relations to the presented
results in this thesis.

Univariate versus multivariate analysis of influencing factors: The multivariate anal-
ysis (LDA) revealed additional important metabolites compared to univariate analyses for
the investigated influencing factors day of lactation and farm (cf. Table 4.5). Important
metabolites detected by univariate analysis as well as by multivariate analysis are marked
in bold in Table 4.5 for both influencing factors. Multivariate analyses also consider
interactions between metabolite profiles and, hence, can detect additional related features
compared to the univariate approach (Scheubert et al., 2012). The latter holds also true
for the investigations of the relations between milk metabolites and milk traits.

4.4.2.2 Important milk metabolites with multivariate relations to milk traits

To examine the eligibility of milk metabolites as possible biomarker candidates, we
analyzed how well traditional milk traits could be predicted based on milk metabolites.
To find out which combinations of milk metabolites explain variation in traditional milk
traits best, we applied two statistical learning approaches (RF and PLS). Figure 4.9
shows that the milk traits SCS, casein content and protein content could be predicted
confidently from metabolite profiles in contrast to the other 11 milk traits. This finding
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indicates that the metabolites in the measured data pool include more metabolites
relevant for these three milk traits. This conclusion is further supported by the fact that
a large number of important metabolites was detected for these milk traits with both
prediction methods (cf. Appendix B.4 on page 157). For casein content and protein
content, we observed 14 important metabolites, which coincided between both methods
(Table 4.6). Furthermore, 13 of these important metabolites also coincided between casein
content and protein content. It was expected that nearly the same metabolites would
be detected for both milk traits, because casein is a main component of milk protein,
constituting over 80% of its mass (Madureira et al., 2007; Töpel, 2004, p. 226). The
similarity of both milk traits is also mirrored in Figure 4.7. For casein content and protein
content, the amino acids asparagine and aspartic acid, among others, were detected
as important. It is known that amino acids are involved in the protein metabolism.
It was surprising that only these two amino acids were detected as important for the
prediction of both milk traits, taking into account that the measured metabolites include
12 proteinogenic amino acids in total. Alanine was also found to be important for casein
content, but only detected as important by one prediction method for protein content.
Further investigations revealed that these three metabolites were reproducibly found in
contrast to other metabolites. The remaining nine amino acids also showed correlations,
but other metabolites showed stronger correlations and, therefore, were included in the
presented list instead (cf. Table 4.6 on page 97).
Spermidine, which is a polyamine, was also detected to be important for protein content. It
is known that spermidine is involved in the production of protein content (Sanguansermsri
et al., 1974; Bolander Jr. and Topper, 1979; Löser, 2000). However, the correlation
detected for spermidine and protein content was rather low (ρt1t2 = 0.28), indicating a
possible large variation either during the course of lactation and/or between individuals,
as proposed by Motyl et al. (1995). Likewise, it is possible that spermidine underlies
specific technical measurement difficulties as is known for certain metabolites.
SCC is a measure to monitor udder health and is performed as a specific test for mastitis
(Schukken et al., 2003; Koivula et al., 2005). We found uracil as the most important
metabolite for predicting SCS, which makes it interesting to investigate this relation
further because elevated levels of uracil were already proposed to originate from damaged
cells (Bi et al., 2000). It is conceivable that such damage would occur during infection.
The second important metabolite in our study was lactic acid. Farr et al. (2002) and
Davis et al. (2004) proposed that lactic acid can be used as a biomarker for mastitis at
an early stage. Furthermore, we detected the following amino acids as related to SCS:
tyrosine, methionine, phenylalanine, leucine and tryptophan. Tryptophan has an impact
on T-cell proliferation (Frumento et al., 2002; Denis et al., 2007) and, hence, plays a role
in the immune system. Additionally, these amino acids, except tryptophan, were also
detected as being important for the prediction of lactose content. Between lactose content
and SCS, a significant negative correlation was observed. This observation is in line with
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results found in the literature, e.g, Klein et al. (2010); Miglior et al. (2007). It is also
known that an increased SCC is associated with an increase in lactose (Harmon, 1994).
Corresponding to these findings, correlations between common important metabolites
and these traits were negative (cf. first and last column of the heatmap in Figure 4.7 on
page 94).
To predict levels of SFA in our data set, 1,3-dihydroxyacetone and glycerol were detected
as important. Glycerol is important to build milk fat (long chains) in the mammary
glands (Luick, 1961).

4.4.2.3 Benefits and constraints of methods

In general, multiple measurements per individual cow would be desirable for future
investigations, to enable the dissection of different sources of variance. Promising
candidates for biomarkers, however, should also show high correlations between trait
and biomarker even without multiple measurements per individual, as we have found for
some cases of the investigated milk traits.
In investigations concerning the influence of factors on metabolite profiles, the metabolite
measurements were always corrected for all factors except of the one, for which the
influence was explored. We could apply a classical LDA because our experimental
data set involved sufficiently more samples than features (metabolites). LDA is also
appropriate for unbalanced data (Xue and Titterington, 2008). To reveal groupings of the
farms regarding mean metabolite profiles, we applied a classical hierarchical clustering
involving average linkage. Clustering methods always come along with the uncertainty
regarding the number of clusters. Therefore, it is recommended to apply two kinds of
criteria, a relative validity criterion and an external criterion (Vendramin et al., 2009).
For the influencing factors investigated in our case, these criteria were silhouette score
and Jaccard index. Both criteria concordantly indicated three stable clusters for all 18
farms. The clustering results (Figure 4.6 A) were also concordant with obtained results
for all pairwise comparisons (Figure 4.6 B). This means that, depending on the similarity
between farms in the cluster structure, we observed an increasing number of significant
differences between milk metabolites as the similarity between farms decreased. The
same was observed for the influencing factor lactation interval. Based on our results
for predicting milk traits from metabolites, we could observe similar sets of important
metabolites using two different regression methods (RF and PLS). A general threshold
for measurements of milk metabolite importance (in this work the 90% quantile was
used) cannot be given, because it depends on the investigated trait and measured part of
the metabolome. For example, regarding the milk trait protein content, a large number
of metabolites showed a high correlation with this milk trait, whereas for urea content a
much smaller number of relevant metabolites was found. To search for probable links
to known biological functions in further analyses, we used the intersection of sets of
important metabolites of both RF and PLS. In most cases, we were able to relate
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information about biological functions of the important metabolites to the respective
investigated milk trait (cf. Section 4.4.2.2). One of the detected important metabolites
(lactic acid) was already proposed as a potential biomarker in recent literature. Thus,
metabolite profiles seem eligible as new molecular traits and can be investigated as
candidate biomarkers. In this thesis, GC-MS analyses measure only a part of the milk
metabolome because short-chain water-soluble metabolites of the energy metabolism are
predominantly detected. Other techniques that also explicitly monitor fatty acids and
other fat-soluble metabolites could result in valuable complements.

4.4.3 The metabolite approach compared to three other approaches

The presented metabolite approach allows to select SNPs from important metabolites
regarding an investigated milk trait, and it represents a new strategy compared to
proposed SNP subset selection strategies found in recent literature, e.g., Habier et al.
(2009) and Moser et al. (2010). The metabolite approach enables investigations in two
different directions. On the one hand, using metabolite profiles to predict milk traits
enables the detection of important milk metabolites for an investigated milk trait (Step 1
“Analysis design”) and can be further investigated as discussed in Section 4.4.2.2. On the
other hand the important milk metabolites were used to determine associated SNPs (Step
2 “Analysis design”) which were involved in the milk trait prediction (Step 3 “Analysis
design”). Both steps were also performed for the reduced classical approach. Our findings
regarding the metabolite approach and the reduced classical approach are discussed in
more detail in the following.

4.4.3.1 Metabolite approach versus reduced classical approach

The genetic architecture may be less complex for a metabolite than for a complex
milk trait: Significantly more SNPs located in known QTL (under the restriction that
not all QTL are known) were detected using the metabolite approach compared to
the reduced classical approach (Table 4.9) for fat content and protein content, which
was surprising. A possible reason could be that if the complex milk trait itself is
investigated that some of the important genetic effects for this milk trait are overlaid.
It is imaginable that such important genetic effects are revealed if a less complex trait
(possibly a metabolite), which is highly associated with the investigated milk trait, is
studied. Moreover it was observed that in most cases, the investigated milk metabolites
showed a significantly smaller number of selected important SNPs (Table 4.7) compared
to the complex milk traits (Table 4.8), which indicates a less complex underlying genetic
architecture.

An SNP with an important impact on a milk trait may also have an impact on at
least one important metabolite: We observed, that DGAT1-SNP was detected as
important in all cross-validations runs for all three investigated milk traits using the
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reduced classical approach. The investigations of protein content and fat content using
the metabolite approach revealed that DGAT1-SNP had an impact on at least one
metabolite in each cross-validation run. In contrast, DGAT1-SNP was nine times selected
for the metabolite glycine via the metabolite approach (Table 4.7). In general, it is not
surprising that the DGAT1-SNP position was not detected in all cross-validation runs
using the metabolite approach, due to the smaller number of important metabolites for
pH value (Table 4.7), but it might be observed if more relevant metabolites are measured
for pH value. These observations support our expectation that an SNP with a significant
genetic effect on a milk trait also shows a significant genetic effect on at least one of the
important metabolites. In this context, I would like to mention that DGAT1 represents
a special case because it has a known relevant genetic effect on milk fat and milk protein
and its position is validated (cf. Section 1.5.2 on page 17; Weller and Ron, 2011). Hence,
this investigations can be seen as a small first evidence, which needs further validation.
Our results also indicates that DGAT1 has also an impact on pH value. In an additional
analysis, it was quantified how important the DGAT1-SNP position as well as a defined
DGAT1-region for each milk trait is. The analysis results are presented in Appendix B.7
on page 164.

Rating important SNP subsets in respect to their role for the investigated milk trait:
An over-representation analysis was realized to investigate the relevance of important
SNPs selected by the metabolite approach and the reduced classical approach. Signifi-
cantly more selected important SNPs located in known QTL were detected using the
metabolite approach, showing the relevance of most of the selected important SNPs for the
investigated milk traits (cf. Table 4.9 on page 102). This possibly indicates that the other
selected important SNPs (cf. Appendix B.6 on page 162) could be relevant or are possibly
located in unknown QTL for the investigated milk traits which need further analysis. The
latter holds true for selected SNPs using the reduced classical approach. The analysis
of relevance comes clearly with the restriction that not all QTL are known for a milk trait.

A resampling analysis was applied to quantify the prediction ability of the obtained SNP-
subsets of the metabolite approach and the reduced classical approach. The resampling
results confirms indirectly that the obtained SNP subsets for the metabolite approach
as well as the reduced classical approach are important for fat content and pH value.
Findings also indicate that the SNP subsets selected by the metabolite approach are
more suitable for the prediction of the investigated milk traits than using the reduced
classical approach (cf. Figure 4.10) for fat content and pH value, which needs further
analyses and also other milk traits should be compared. In this context, the SNP-subset
returned by the metabolite approach might be superior compared the ones returned
by reduced classical approach, if more relevant metabolites are measured and analyzed
for the investigated trait. Recall that only a part of the milk metabolome (10%) was
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measured and investigated.
The resampling approach can also be seen as an indirect measure (indicator) to study
the underlying genetic architecture of traits, since for protein content it was observed
that no SNP-subset has suitable prediction ability. The latter indicates that protein
content probably depends on more loci than fat content and pH value, which needs
further investigations.

In the following the obtained prediction precisions (Step 3 “Analysis design”) using the
metabolite, classical, reduced classical and QTL approach are discussed.

4.4.3.2 SNP subsets in respect to milk trait prediction

For fat content, the observed mean prediction precision was significantly higher for the
metabolite approach (ρmilksvs = 0.290) than for the reduced classical approach (ρmilksvs =
0.221; cf. Figure 4.10). In this case, no significant difference was observed between
the classical approach and the metabolite approach, however the metabolite approach
required less than 1% of the total amount of 40,317 SNPs. For pH value, the difference
regarding the observed prediction precisions between the classical approach and the
metabolite approach was very small. In this context, it is expected that no significant
difference will be observed if for example a more suitable part of the metabolome is
measured for pH value. For protein content it seems difficult to find a suitable SNP
subset to obtain an appropriate prediction precision. The reason for this result might
be the underlying genetic architecture of this milk trait, since protein content probably
depends on many QTL. This assumption is supported by the finding of the resampling
analysis, which yielded no significant difference between the metabolite approach and
the reduced classical approach with regard to prediction precision.
In general, the QTL approach has two disadvantages:

• First, not all QTL for a trait are known.

• Second, most of the QTL regions comprise a long segment of the corresponding
chromosome (Appendix B.2, p. 151). Some of the selected SNPs in these regions
are not necessarily important for the investigated milk trait (cf. Section 1.5.2
on page 17), because most QTL regions have a QTL peak location, which is the
position with the highest or lowest value depending on the used test statistic. A
higher prediction precision might be observed if only the peak locus is considered
instead of the whole QTL region, or if different window widths based on the QTL
peaks are used for the genetic value prediction.

In general, we were not able to improve the genetic value prediction in the sense of a
higher prediction precision, but further interesting relations could be revealed. In this
context, it is expected that more than 2,000 metabolites exist in cow’s milk (Töpel, 2004).
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In this thesis, about 10% of them were analyzed, originating primarily from the central
carbon and energy metabolism. We suppose that the prediction precision will increase if
more relevant metabolites are measured for the investigated milk trait, which will become
possible in the near future as GC-MS databases increase, and with them the possibility
to correctly annotate GC-MS profiles.

4.4.3.3 Benefits and constraints of methods

To determine important metabolites for an investigated milk trait the regression methods
RF and PLS were applied. Both regression methods were selected based on our findings
in Section 4.3.2.3 on page 92 (discussed in Section 4.4.2.3 on page 108) where the same
settings were used and reliable results were obtained.
The important SNP subsets for the metabolite approach and the reduced classical
approach were analyzed in various tests to determine their relevance and significance for
the investigated milk trait more precisely. For this, other data in the form of known QTL
were used to enable a first confirmation of some of the important SNPs for the respective
investigated milk trait. A resampling approach was realized to quantify the significance
of the observed prediction ability for the metabolite approach as well as for the reduced
classical approach. In addition, the 95% quantile of the observed ρR values (termed
ρR95) was considered to be a suitable measure of the prediction precision which should be
obtained at least for the corresponding observed prediction precision (ρ). Furthermore,
important SNP subsets of the metabolite approach as well as of the reduced classical
approach were tested for their relevance regarding the investigated milk trait using an
over-representation analysis. This approach comes truly under the restriction that not
all QTL are known for the milk trait, but it can be used as a first indicator.
In the recent literature (e.g., Daetwyler et al. (2008); Visscher et al. (2008)), it is often
mentioned, that traits with a low heritability require a larger sample size than traits with
moderate or high heritability to obtain an acceptable prediction precision. This implies
that more false-positive SNPs would be detected when SNPs are selected for traits with
low heritability if the sample size is not adequate (as discussed earlier in cf. Section 4.4.1
on page 104). It is also possible to determine the heritability for each metabolite (i.e., new
trait) in order to get an approximation of the expected prediction precision using Eq. 4.17
on page 104. The proposed resampling approach (see above) can also be used to prove
the quality of the observed prediction precision for each metabolite. This would allow a
deeper insight into the genetic architecture of a metabolite. This kind of information
could be also used to improve our proposed metabolite approach, i.e., metabolites could
be excluded from analyses which are not eligible for the genetic value prediction. In
this context, the ranges of the estimated narrow-sense heritability for our important
metabolites were observed in the interval of [0.076; 0.368] for fat content, [0.110; 0.441]
for protein content, and [0.032; 0.492] for pH value. The ĥ2 values were taken from
Wittenburg et al. (2013), where it was found that the observed prediction precision
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was lower compared to the expected prediction precision using Eq. 4.17. However, our
findings show that, even if the heritability of the metabolite was not taken into account,
an appropriate mean prediction precision was achieved for fat content (e.g., ρ = 0.29 and
ρR95 = 0.23 for the metabolite approach) but not for protein content (e.g., ρ = 0.13 and
ρR95 = 0.21 for the metabolite approach). In general, further investigations are necessary
to give a recommendation when traits should be excluded due to low heritability.
Three milk traits were chosen based on the following reasons. On the one hand, not for
all recorded milk traits (in fact only few) QTL positions can be found in QTL databases.
This was, however, a requirement to enable rating of the detected important SNPs. On
the other hand to allow a more or less precise detection of SNP (cf. Section 4.4.1 on
page 104) we decided to use milk traits which had in our case the highest estimated
narrow-sense heritability. The latter was the reason to choose pH value (had highest ĥ2),
although probably it is not a commonly investigated milk trait in dairy cattle science.
In this thesis, each analysis step of the proposed metabolite approach was evaluated
separately, based on the observed results of the previous step. We suppose that an
embedded approach optimizing our three step approach in a one-step cross-validation
design could be superior. Also, conceivable alternatives would be to use other data from
the metabolome or genome level to optimize filter criteria or to use such information for
weighting SNPs.
Finally, it is recommended to evaluate our approach for the inclusion of non-additive
effects (Lee et al., 2008; Toro and Varona, 2010). In this work, only the additive genetic
effects were considered, due to the large number of analyses. On a 2.93 GHz multi-user
system, a Gibbs-sampler round using a purely additive model needs approximately 18
hours and an additive-dominance model needs approximately about 28 hours (personal
communication with Dr. D. Wittenburg).

4.4.4 Additional aspects of modeling

4.4.4.1 Correction for known influencing factors

As mentioned earlier (cf. Section 1.5.3 and on page 18) it is necessary to correct for known
influencing factors for milk traits. Based on this knowledge the milk metabolites were
corrected. To enable the correction a randomized design for measuring the metabolite
spectra was created (cf. Chapter 2). Here, we decided to correct for the influencing
factors similar to a test-day model (Ptak and Schaeffer, 1993) for both, milk metabolites
and milk traits. The large amount of data (more than 1,300 cows) allows us to consider
the influencing factors of farm and test-day as cross-classified. As all cows of a farm
were fed with the same feed, an effect of diet was also considered by the effect of farm x
test-day. The linear and quadratic regression on lactation day were involved to account
for a variable state of composition of milk or to account for metabolic changes between
21st and 120th day of lactation. In general it is expected that outside of our investigated
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lactation period a stronger deviation of milk composition as well as changes in milk
metabolites might be observed among the animals, which would require a higher order
regression.

4.4.4.2 Using the sire model

For the estimation of the heritability several opportunities exist, for example, the imple-
mentation of an animal model with consideration of the complete pedigree information
or without. The most commonly used model in the field of dairy cattle science is the
animal model (Visscher et al., 2008). This model is more accurate in some cases than
the sire model, because if the sire model is used the correction is realized only for bulls
but not for dams which lead to a bias. The advantage of the sire model is that it needs
clearly less equations (Mrode, 2005, p. 52-55), i.e., the covariance matrix does not need
to be created, and thus can be estimated without much effort. In our case the sire model
was suitable, since the heritability was mainly estimated to obtain an upper bound for
the precision of the genetic value prediction for the investigated milk trait. The sire
model was also adequate to account for the half-sib structure in the data and allowed a
better correction for the fixed effects for the investigations of relationships between milk
metabolites and milk traits. In this thesis all analyses regarding genetic value prediction
were realized without considering the pedigree information, since phenotypes and marker
data are adequate and sufficient for the genetic value prediction (Hayes and Goddard,
2010). In addition, the narrow-sense heritability of our milk traits was also estimated
based on an animal model by Dr. D. Wittenburg, including additionally the pedigree
information. The estimated heritabilities of the animal model as well as of the sire model
were similar.

4.5 Summary

In this chapter a purely conceptual comparison between experimental data and different
simulated data was presented to represent another perspective to compare such data
regarding to their composition of genetic effect sizes and – finally – with regard to the
eligibility of simulated data for methodological development and optimization.
In the second part of this chapter deeper investigations of the relationship between milk
metabolites and milk traits were presented as well as the degree of impact of the influencing
factors on milk traits and milk metabolites. In general, we could observe that the degree
of the impact of the influencing factors was less pronounced for milk metabolites compared
to milk traits. Two influencing factors (farm and lactation interval) were investigated
more intensely regarding milk metabolites, for which significant differences were detected.
Studying the relationships between milk metabolites and milk traits as well as within each
level revealed significant associations. Deeper investigations of the relationship between
metabolites and milk traits revealed some known biological relations, for example lactic
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acid for SCS as well as new relationships, which need further analyses and in particular
for their use as possible biomarker candidates for traits of interest.
Finally, in this chapter the proposed metabolite approach was tested and compared
to the classical as well as reduced classical approach. In addition, the QTL approach
could be applied only for two of the investigated milk traits, since not all QTL positions
affecting milk traits are known or can be found in databases. An invariable analysis
(double ten fold cross-validation) design was used to enable comparability between the
different approaches. In this design it was also considered to account for the known
half-sib structure in the experimental data. Our analyses revealed that the metabolite
approach resulted in a more similar precision for the genetic value prediction to the
classical approach as the reduced classical approach for our analyzed milk traits. In this
context a relevant observation is that less than one percent of the total amount of SNPs
were necessary for the metabolite approach to obtain a prediction precision similar to
the classical approach using all SNPs for fat content. Another interesting observation
was that significantly more important SNPs detected via the metabolite approach were
located in known QTL than using the reduced classical approach. This fact supports our
assumption that metabolites may have a less complex underlying genetic architecture
compared to complex milk traits. Finally, a resampling approach was proposed to validate
the quality of selected SNPs for a milk trait regarding prediction ability, which revealed
further information of the underlying genetic architecture.





5 Conclusions

The objective of this thesis was to investigate if it is possible to improve genetic value
prediction by considering additional information about the metabolome level. To address
this objective, the corresponding data (genotype, metabolome, phenotype) were simulated
as well as experimental data collected. Both kinds of data were analyzed using the newly
developed integrative bioinformatics approach.

Conclusions for the experimental data collection:

• Through the entire data collection it is necessary to know which kind of data
are complete, missing or erroneous to obtain the desired information complete for
a specific number of animals. From our experiences during data collection, we
recommend to use a database, which represents a useful and helpful instrument, and
to write corresponding analysis scripts, that can then be easily and reproducibly
applied for validation during the whole collection time.

• In this thesis it was necessary to include 1,834 animals in the study to arrive at
1,305 complete records. General advice, however, on how much animals should be
selected to achieve the desired number of complete animal records cannot be given,
since it depends on the duration as well as on the kind of experiment.

• Known influencing factors should be taken into account if milk metabolites are
measured via GC-MS as realized in this thesis. This will probably also hold true
if another technique for extracting the metabolites is used, to enable an unbiased
analysis.

Conclusions for the data simulation:

• The SBML approach is proposed to simulate more realistic data as in the con-
ventional approach, based on a more complex model of the GP map. The SBML
approach makes use of a metabolic network as additional level of the GP map.

• As the conventional approach, our proposed SBML approach is also artificial,
especially the second step to build genetic values as discussed in Chapter 3. A
main difference between both simulation approaches lies in simulating the genetic
effects. In the SBML approach, these genetic effects were implicitly simulated by
the interactions of the metabolic network model, wherein some enzyme kinetic pa-
rameters of the model were varied in dependency of QTL. This approach represents
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a more biological realization to simulate genetic effects, whereas genetic effects are
simulated in a statistical sense in the conventional approach.

• A deeper investigation of the simulated genetic effects for the SBML approach
revealed that some of the genetic effect sizes were negligible, i.e., some simulated
QTL are not important for the phenotype because their impact on the metabolic
outcome is already very low. However, such QTL positions in real data could
be important or become measurable if the network architecture of regulatory
interactions changes, for example, in case of a disease.

• Based on the last two statements, it can be recommended to simulate a GP map
including a molecular level to explore the importance of the genetic variation on
this intermediate level and its transformation through molecular networks.

• A main advantage of the SBML approach is to have three kinds of data from
different system-levels. These kinds of data allow various further methodological
investigations and optimizations as well as to test different analysis possibilities. In
this context, an integrative bioinformatics approach, i.e., the metabolite approach,
was proposed to verify on simulated data, if and to which degree it is possible to
improve the genetic value prediction when considering the metabolome or just a part
of it. Also, these kinds of data can be used for finding suitable measures, for example,
finding appropriate weights for SNPs to improve genetic value prediction. Such
weights could be developed depending on the importance of simulated metabolites
for phenotype prediction as it was realized in this thesis.

• The classical analysis of the GP map using a linear model (considering additive
and dominance genetic effects) was realized for data simulated by the conventional
approach and by the SBML appraoch. Results revealed that data simulated with
the SBML approach show a smaller degree of linearity (σ2

a), and lower prediction
precisions for the different investigated scenarios, compared to the conventional
approach. In particular, for the conventional approach the genetic effects (without
simulating epistatic genetic effects) were simulated in a specified range and can be
explicitly partitioned by the researcher (e.g., into additive and dominance genetic
effects). In contrast, the size of the different kinds of genetic effects of the SBML
model were unknown.

• Our purely conceptual comparison between simulated and experimental data re-
vealed that similarities can be found regarding genetic architecture, with trait
specific details. In general, it will depend on the genetic architecture of the ex-
perimental trait (nQTL is unknown), which of the simulation approaches are more
appropriate. From this follows that no general statement can be made whether the
alternative SBML approach is more realistic than the conventional approach for
data simulation.
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Conclusions of intense investigations of the relationship between the metabolome
and phenotypes using the experimental data:

• Based on our results of the intense investigations on milk metabolites and milk traits
also in view of influencing factors, we also recommend to use uni- and multivariate
analysis methods to analyze such kinds of data in more detail as usual in other
fields. Using multivariate analysis, where also the interactions between metabolites
are considered, allows to find further relevant relationships.

• Metabolite profiles proved to be promising new molecular traits eligible to be inves-
tigated as candidate biomarkers or to be used in groups of important metabolites
(biosignatures). In this context, it is necessary to further elucidate metabolites’
physiological role, and also to validate the important metabolites revealed in our
work with another data set. Another aspect to be considered is that many of the
measured metabolites are used for synthesis of milk components by the alveolar
epithelial cells or are involved in the intracellular metabolism. This leads to the
question: why were they measured in milk?
In order to prove the suitability of metabolites as biomarker candidates, it is
also necessary to investigate to which degree they change during the course of
individual lactations. Taking multiple samples per cow during lactation would help
to discriminate technical as well as biological sources of variation.

• As far as, for example, mastitis is concerned, it could be conceived that SCS
compared to a traditional biomarker can monitor a different aspect of the disease
as a related metabolite (set), as is already known for lactic acid, which specifically
shows a relation to the early onset of mastitis. It could also be beneficial to further
investigate the correlation structure (e.g., partial correlations or mutual correlations)
of the metabolite profiles to reveal possible associations or functional grouping
structures. Such structures could be further related to a-priori functional knowledge,
for example metabolite pathways or flux modes. Findings from such investigations
could further illuminate the functional basis of candidate biosignatures and may
help improve learning algorithms exploiting biosignatures which are able to use
such a-priori information.

• Based on clustering results for metabolite profiles regarding influencing factor farm
in this thesis, it could be conceived that deeper investigations of this factor would
allow for a comparison of the different management systems and feeding regimes
and help to find out how these are mirrored in the differences of the metabolite
profiles, probably revealing other important factors. The resulting consequences
could lead to improvements in the field of farming.

Conclusions from implementing the integrative bioinformatics approach (metabo-
lite approach) for the analysis of experimental data as compared to the classical
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approach:

• The proposed metabolite approach was used and compared to three different
approaches, resulting in various SNP subsets, regarding the prediction precision for
three selected milk traits. It was observed that using the metabolite approach led
to a similar prediction precision compared to the classical approach, but required
less than 1% of the total amount of (40,317) SNPs. In most cases, the metabolite
approach performed better than the reduced classical approach.

• The number of selected important SNPs were mostly lower for milk metabolites
than for milk traits. This result indicates that most of milk metabolites have a less
complex underlying genetic architecture compared to milk traits. In this context it
was expected that SNPs with a significant impact on milk traits should also show
a genetic impact at least on one milk metabolite, which can also be seen as an
additionally indicator for the relevance of the metabolite for the investigated milk
trait. In this thesis DGAT1 was used as an example. In this context the relevance of
selected SNPs via the metabolite approach and reduced classical approach was also
investigated in a very small framework in this thesis. The relevance of some of the
selected SNPs for an investigated milk trait was confirmed using enrichment analysis
based on known QTL for a milk trait (under the restriction that not all QTL are
known), which revealed that significantly more important SNPs were located on
known QTL detected by the metabolite approach. Thus it is recommended to
further validate the detected important SNP positions regarding their relevance for
the investigated milk trait in more detail.

• We recommend to assess the significance of the number of selected important SNPs
for the genetic value prediction. In this thesis it was realized using a resampling
approach. This offers a further possibility to learn more about the underlying
genetic architecture of an investigated trait.

• The success of the metabolite approach regarding prediction precision depends,
among other things, on the underlying genetic architecture of the investigated milk
trait, and presumably on the measured part of the milk metabolome.

Final conclusions which can be drawn from this thesis, regarding a further interme-
diate level of the classical GP map: More realistic simulation of all levels of data is
recommended and should preferably be based on experimental data collected, especially
if new unknown relationships will be investigated or different kinds of data are combined
for investigations. It is recommend to apply different analysis techniques to enable insight
from different perspectives, which allows discovery of new interesting associations or iden-
tification of concordances from different applied methods (univariate and multivariate).
All these investigations can lead to a deeper understanding of underlying associations
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of the complex system. The proposed metabolite approach in this thesis allows deeper
insight into the associations between the different system-levels of the more complex
GP map and enables similar genetic value prediction performance as state-of-the-art
methods, but based on a significantly smaller subset of SNP markers.
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Appendix A

Additional information for fastBayesB

A.1 γ-values which were not suitable for fastBayesB

Table A.1: The table items represent the number of replicates leading to non-
convergence and aborting rates over 100 replicates for each tested scenario (S) where
they occurred for the conventional approach (Conv) and the SBML approach. The
following scenarios were tested: (1) nSNP = 5,227 and nQTL = 23; (2) nSNP = 5,227
and nQTL = 230; (3) nSNP = 52,273 and nQTL = 23; (4) nSNP = 52,273 and
nQTL = 230. In addition zero means that fastBayesB converged for all 100 replicates.

Not converged Abort
Approach S γ H2 = 0.1 H2 = 0.3 H2 = 0.5 H2 = 0.1 H2 = 0.3 H2 = 0.5
Conv 1 0.1 1 0 34 0 0 0
Conv 1 1e-05 0 0 0 9 0 0
Conv 2 0.1 0 6 24 0 0 0
Conv 2 1e-05 0 0 0 18 0 0
Conv 3 0.1 0 6 4 100 79 79
Conv 3 0.05 100 1 0 0 26 65
Conv 3 0.025 41 0 0 0 0 0
Conv 3 0.01 1 0 0 0 0 0
Conv 4 0.1 0 2 2 100 89 82
Conv 4 0.05 100 0 0 0 34 74
Conv 4 0.025 50 0 0 0 0 0
Conv 4 0.005 0 3 0 0 0 0
SBML 1 0.1 0 1 32 0 0 0
SBML 1 1e-05 0 0 0 13 1 0
SBML 2 0.1 0 3 26 0 0 0
SBML 2 1e-05 0 0 0 25 0 0
SBML 3 0.1 0 4 9 99 82 74
SBML 3 0.05 100 0 0 0 16 49
SBML 3 0.025 38 0 0 0 0 0
SBML 3 0.01 1 0 0 0 0 0
SBML 3 0.005 0 0 1 0 0 0
SBML 4 0.1 0 3 2 100 82 85
SBML 4 0.05 100 0 1 0 34 77
SBML 4 0.025 60 0 0 0 0 0
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A.2 Goodness of model fit for simulated data

Table A.2: For the optimal γ-value, the mean correlation between fitted values
and residuals is listed for all tested scenarios for the conventional approach and
SBML approach. In parentheses the corresponding standard deviations are presented
for 100 replicates. The following scenarios were tested: (1) nSNP = 5,227 and
nQTL = 23; (2) nSNP = 5,227 and nQTL = 230; (3) nSNP = 52,273 and nQTL = 23;
(4) nSNP = 52,273 and nQTL = 230.

Scenario Conventional approach SBML approach
H2 = 0.1

1 0.054 (0.013) 0.056 (0.010)
2 0.520 (0.051) 0.557 (0.039)
3 0.069 (0.018) 0.069 (0.016)
4 0.693 (0.049) 0.730 (0.030)

H2 = 0.3
1 0.022 (0.005) 0.025 (0.005)
2 0.087 (0.022) 0.137 (0.024)
3 0.028 (0.007) 0.031 (0.006)
4 0.060 (0.010) 0.198 (0.015)

H2 = 0.5
1 0.013 (0.003) 0.047 (0.005)
2 0.073 (0.019) 0.051 (0.021)
3 0.017 (0.004) 0.019 (0.004)
4 0.115 (0.008) 0.129 (0.010)

In general a correlation of zero means that the genetic variance and the residual variance
is perfectly separated, i.e., the model assumptions match the truth sufficiently (genetic
effects and residuals were assumed independent). As an example, the model explains the
data in case of scenario 1 and H2=0.3 well, and in case of scenario 2 and H2=0.1 not
sufficiently for both simulation approaches.



Appendix B

Additional information about experimental
data analyses

B.1 Correlation between milk metabolites and milk traits

The following table shows the Pearson’s correlation coefficients between milk metabolites
and milk traits and among milk traits themselves. The columns show the milk traits.
The first rows of Table B.1 show the milk traits as well, while the latter rows show the
milk metabolites.
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B.2 Known QTL regions determined by use of the cattleQTL database

In the following table the genome regions, which were used for the realization of the QTL
approach, are specified in detail.
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B.3 Trace plots for selected SNPs using SVS for three investigated milk
traits.

Figure B.1: Trace plots: DGAT1-SNP (A), left SNP position next to DGAT1-SNP
(B), right SNP position next to DGAT1-SNP for fat content (C); DGAT1-SNP (D),
left SNP position next to DGAT1-SNP (E), right SNP position next to DGAT1-SNP
(F) for protein content; DGAT1-SNP (G), left SNP position next to DGAT1-SNP
(H), right SNP position next to DGAT1-SNP (I) for pH value. The red line represents
the end of the burn-in phase. Figures are based on using the whole data set.

In general a trace plot is a simple graphical tool to study the convergence visually and is
commonly used (e.g., Sorensen and Gianola, 2002, pp. 541-550).
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B.4 Important milk metabolites detected using RF and PLS

Table B.3: For each milk trait, the observed metabolite importance measurements
from a 10-fold cross-validation for the random forest analysis and the partial least
squares analysis are listed. The important metabolites fulfilled the condition to have
an importance measurement larger than the 90% quantile in each cross-validation
run. The order of metabolites implies their importances (descending order), and
metabolites typed in bold were detected with both regression methods.

Milk trait Random forest Partial least squares
Acetone (%) Ethanolaminephosphate Ethanolaminephosphate

Orotic acid Orotic acid
Galactitol Glucaric acid-1,4-lactone
Glucaric acid-1,4-lactone Sedoheptulose, 2,7-anhydro-, beta-

Lyxose

Casein (%) Arabitol Arabitol
Adipic acid, 2-amino- Adipic acid, 2-amino-
Cinnamic acid, 3,4,5-trimethoxy-, trans- Cinnamic acid, 3,4,5-trimethoxy-, trans-
Asparagine Glycerol-3-phosphate
Glycerol-3-phosphate Asparagine
Aspartic acid Butanoic acid, 2-amino-
Pyroglutamic acid Aspartic acid
Butanoic acid, 2-amino- Spermidine
2-Piperidinecarboxylic acid Phosphoenolpyruvic acid
myo-Inositol-1-phosphate 2-Piperidinecarboxylic acid
Alanine Glyceric acid-3-phosphate
Spermidine myo-Inositol-1-phosphate
Thiazole, 4-methyl-5-hydroxyethyl- Pyroglutamic acid
Phosphoenolpyruvic acid Alanine

Glycine
Thiazole, 4-methyl-5-hydroxyethyl-

Fat (%) Arabitol Arabitol
Galactitol 1,3-Dihydroxyaceton
Pyroglutamic acid Galactitol
1,3-Dihydroxyaceton Aspartic acid
Aspartic acid Pyroglutamic acid
Glucaric acid-1,4-lactone myo-Inositol-1-phosphate
myo-Inositol-1-phosphate Glucaric acid-1,4-lactone
Isobutanoic acid, 3-amino- Muramic acid, N-acetyl-
Butanoic acid, 4-amino- Pyruvic acid
Mannosamine, N-acetyl- Sedoheptulose, 2,7-anhydro-, beta-
Fumaric acid

Lactose (%) Tyrosine Tyrosine
Phenylalanine Phenylalanine
Methionine Methionine
Leucine Butanoic acid, 4-acetamido-
1,3-Dihydroxyaceton Lactic acid, DL-
Glycine 4-(Methylamino)benzoic acid
Glucaric acid-1,4-lactone Leucine

Glucaric acid-1,4-lactone
Tryptophan
1,3-Dihydroxyaceton
Isoleucine
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Milk trait Random forest Partial least squares
Arginine [-NH3]
Butanoic acid, 4-hydroxy-
Uracil
Histidine

pH value Glycerol-3-phosphate Glycerol-2-phosphate
Glycerol-2-phosphate Glycerol-3-phosphate
Glycine Alanine, beta-
Arabitol Glycine
Alanine, beta- Phenylalanine
Glucosamine, N-acetyl- Leucine
Pantothenic acid, D- Methionine

Tyrosine
Isoleucine

Protein (%) Arabitol Arabitol
Adipic acid, 2-amino- Adipic acid, 2-amino-
Glycerol-3-phosphate Glycerol-3-phosphate
Cinnamic acid, 3,4,5-trimethoxy-, trans- Butanoic acid, 2-amino-
Asparagine Cinnamic acid, 3,4,5-trimethoxy-, trans-
myo-Inositol-1-phosphate Asparagine
Pyroglutamic acid Spermidine
Butanoic acid, 2-amino- Aspartic acid
Aspartic acid 2-Piperidinecarboxylic acid
2-Piperidinecarboxylic acid Phosphoenolpyruvic acid
Spermidine myo-Inositol-1-phosphate
Thiazole, 4-methyl-5-hydroxyethyl- Glyceric acid-3-phosphate
Phosphoenolpyruvic acid Pyroglutamic acid
Glyceric acid-3-phosphate Thiazole, 4-methyl-5-hydroxyethyl-

Alanine
Glycerol-2-phosphate
Glycine
Butanoic acid, 3-hydroxy-

Quantity Arabitol Butanoic acid, 2-amino-
of
milk (kg)

Butanoic acid, 4-methylthio-2-oxo- Spermidine

Butanoic acid, 2-amino- Arabitol
2-Piperidinecarboxylic acid 2-Piperidinecarboxylic acid
Thymine, 5,6-dihydro- Butanoic acid, 4-methylthio-2-oxo-
Thiazole, 4-methyl-5-hydroxyethyl- Cinnamic acid, 3,4,5-trimethoxy-, trans-

Methionine
Muramic acid, N-acetyl-
Pyroglutamic acid
myo-Inositol-1-phosphate
Glycine
Pyridoxal
Aspartic acid

SFA Glycerol 1,3-Dihydroxyaceton
1,3-Dihydroxyaceton Glycerol
Spermidine Uracil
Glutaric acid, 2-oxo- 4-(Methylamino)benzoic acid

SCS Uracil Uracil
Lactic acid, DL- Lactic acid, DL-
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Milk trait Random forest Partial least squares
Butanoic acid, 2-hydroxy- Phenylalanine
Tyrosine Tyrosine
Methionine Methionine
1,3-Dihydroxyaceton Butanoic acid, 2-hydroxy-
Cytosine Leucine
Tryptophan 4-(Methylamino)benzoic acid
Phenylalanine Tryptophan
Leucine 1,3-Dihydroxyaceton
Thymine Butanoic acid, 4-acetamido-
Sedoheptulose, 2,7-anhydro-, beta- Isoleucine

Butanoic acid, 4-hydroxy-
Histidine
Spermidine
Tryptamine, 1-methyl-
Alanine

UFS Serine, cyclo- Serine, cyclo-
Galactitol Butanoic acid, 3-hydroxy-
Glycerol-3-phosphate Citric acid, 2-methyl-
Aconitic acid, cis- Glycine

Benzylamine
Butanoic acid, 2-amino-
Galactitol
Asparagine
Thymine, 5,6-dihydro-
Isoleucine
Arabitol

Urea (%) Aspartic acid Phenylacetic acid
Glucaric acid-1,4-lactone Aspartic acid
Tryptophan Ribulose
Adipic acid, 2-amino- Fumaric acid
Sedoheptulose, 2,7-anhydro-, beta- Adipic acid, 2-amino-

Energy Arabitol Arabitol
(MJ/kg) Pyroglutamic acid 1,3-Dihydroxyaceton

Aspartic acid Aspartic acid
myo-Inositol-1-phosphate myo-Inositol-1-phosphate
1,3-Dihydroxyaceton Pyroglutamic acid
Galactitol Adipic acid, 2-amino-
Thiazole, 4-methyl-5-hydroxyethyl- Muramic acid, N-acetyl-
Isobutanoic acid, 3-amino- Phosphoenolpyruvic acid
Butanoic acid, 4-amino- Pyruvic acid
Glucaric acid-1,4-lactone Asparagine

Glyceric acid-3-phosphate
Hippuric acid, 2-hydroxy-

Fat/protein Glycerol-3-phosphate Glycerol-3-phosphate
Galactitol Butanoic acid, 3-hydroxy-
Glycerol-2-phosphate Galactitol
Butanoic acid, 3-hydroxy- Glycerol-2-phosphate
1,3-Dihydroxyaceton Cinnamic acid, 3,4,5-trimethoxy-, trans-
Glucaric acid-1,4-lactone Fumaric acid
Sedoheptulose, 2,7-anhydro-, beta- Serine, cyclo-

1,3-Dihydroxyaceton
Arabitol
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Milk trait Random forest Partial least squares
Glucaric acid-1,4-lactone
Sedoheptulose, 2,7-anhydro-, beta-
Butanoic acid, 2-amino-

Fat/lactose Arabitol 1,3-Dihydroxyaceton
1,3-Dihydroxyaceton Arabitol
Galactitol Galactitol
Pyroglutamic acid Glucaric acid-1,4-lactone
Glucaric acid-1,4-lactone Methionine
myo-Inositol-1-phosphate Fumaric acid
Aspartic acid Phenylalanine
Isobutanoic acid, 3-amino- Tyrosine
Pyruvic acid Pyroglutamic acid
Thiazole, 4-methyl-5-hydroxyethyl- 4-(Methylamino)benzoic acid

Pyruvic acid
Butanoic acid, 4-acetamido-



B.5 Goodness of model fit for experimental data 161

B.5 Goodness of model fit for experimental data

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

● ●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
● ●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

● ●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●●

●
● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

A

Fitted values

R
es

id
ua

ls

Correlation = 0.264

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

B

Fitted values

R
es

id
ua

ls

Correlation = 0.353

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●

●
● ●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

C

Fitted values

R
es

id
ua

ls

Correlation = 0.324

Figure B.2: Residual plots for fat content (A), protein content (B) and pH value
(C) using SVS. The obtained correlation between fitted values and residuals is also
stated on top of each figure. The red line represents the lowess-smooth of fitted
values and residuals. Figures are based on using the whole data set.

In addition, to get an impression of the nature of the relationship between the fitted
values and residuals, non-parametric regression can be used. In our case, we used the
lowess-smooth (Cleveland, 1979) as implemented in the R (R Development Core Team,
2010) function lowess. Figure B.2 shows that the used linear model considering additive
genetic effects does not explain the data completely. It is expected that a linear model,
which considers additive and non-additive genetic effect sizes, possibly better fits the
data. Another possibility is that the linear model is not adequate, as further unknown
influencing factors are contained.
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B.6 Important SNP positions detected using the metabolite approach

Table B.4: Important SNP markers, occurring in more than seven cross-validation
(CV) runs, for each milk trait obtained via the metabolite approach.

SNP marker Chromosome Position QTL Frequency
in bp region peak

Fat (%)
Hapmap42518-BTA-34464 2 11,5611,887 8
Hapmap50895-BTA-122111 4 24,553,482 10
ARS-BFGL-NGS-64882 7 81,392,639 8
ARS-BFGL-NGS-17358 8 102,312,736 9
BTA-63354-no-rs 10 33,150,420 9
Hapmap58072-rs29010006 12 63,149,779 8
BTB-01123944 13 6,281,252 8
ARS-BFGL-BAC-11928 13 29,191,010 9
ARS-BFGL-NGS-57820 14 236,532 8
ARS-BFGL-NGS-4939 14 443,937 X 10
ARS-BFGL-NGS-107379 14 679,600 10
BFGL-NGS-113453 14 30,002,363 X 9
Hapmap48989-BTA-101611 14 34,879,141 9
BTB-01157350 17 1,384,889 9
BTB-01951543 20 49,918,496 8
Hapmap39714-BTA-111678 21 18,811,723 8
ARS-BFGL-NGS-69616 21 22,250,027 9

Protein (%)
Hapmap39813-BTA-21834 1 53,621,500 8
BTB-01978832 2 135,640,997 8
Hapmap42708-BTA-86534 3 50,850,297 X 9
Hapmap50895-BTA-122111 4 24,553,482 10
BTB-00234759 5 94,104,074 8
BTB-01534149 6 66,230,967 X 9
ARS-BFGL-NGS-29273 7 5,652,920 8
BTA-87610-no-rs 7 57,673,607 9
ARS-BFGL-NGS-64882 7 81,392,639 10
Hapmap49034-BTA-115720 8 88,958,729 8
Hapmap39516-BTA-82096 8 90,551,290 8
ARS-BFGL-NGS-17358 8 102,312,736 9
ARS-BFGL-NGS-100341 9 52,911,776 X 8
BTA-63354-no-rs 10 33,150,420 9
BTB-01972463 11 16,078,669 9
BTA-93103-no-rs 11 33,330,852 8
ARS-BFGL-NGS-32722 11 95,942,521 10
Hapmap58072-rs29010006 12 63,149,779 9
BTB-01123944 13 6,281,252 8
ARS-BFGL-BAC-11928 13 29,191,010 8
BTA-32552-no-rs 13 42,633,511 9
ARS-BFGL-NGS-38064 13 54,700,987 8
ARS-BFGL-NGS-104967 13 55,847,196 9
ARS-BFGL-NGS-5166 13 56,045,155 9
ARS-BFGL-NGS-57820 14 236,532 10
ARS-BFGL-NGS-4939 14 443,937 X 10
ARS-BFGL-NGS-107379 14 679,600 10
Hapmap30086-BTC-002066 14 1,490,178 9
BFGL-NGS-113453 14 30,002,363 9
Hapmap41433-BTA-114994 14 33,550,219 9
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SNP marker Chromosome Position QTL Frequency
in bp region peak

Hapmap48989-BTA-101611 14 34,879,141 X 9
BTB-00642563 16 43,274,808 9
BTA-40059-no-rs 16 694,769,20 9
BTB-01157350 17 1,384,889 9
Hapmap49611-BTA-44077 17 26,304,955 8
Hapmap42359-BTA-90829 18 20,737,022 9
Hapmap49176-BTA-43744 18 49,761,247 10
ARS-BFGL-NGS-34276 18 49,839,669 9
Hapmap34814-
BES8_Contig361_961

19 20,361,224 8

ARS-BFGL-NGS-11174 19 43,331,499 8
ARS-BFGL-NGS-69616 21 22,250,027 9
Hapmap49032-BTA-115439 22 54,473,771 9
BTA-54892-no-rs 22 54,503,230 8
BTA-112061-no-rs 23 38,207,532 8
ARS-BFGL-NGS-22050 25 27,843,968 10
ARS-BFGL-BAC-42500 25 28,002,712 10
ARS-BFGL-NGS-41056 26 20,364,191 9
BTB-00624015 27 20,648,605 10
ARS-BFGL-NGS-18177 29 4,598,272 10
ARS-BFGL-NGS-20615 29 5,294,603 8

pH value
ARS-BFGL-NGS-103495 8 9,605,960 9
BTA-63354-no-rs 10 33,150,420 10
BTA-98790-no-rs 13 25,929,330 9
ARS-BFGL-BAC-12549 13 54,601,927 9
ARS-BFGL-NGS-57820 14 236,532 8
ARS-BFGL-NGS-4939 14 443,937 9
ARS-BFGL-NGS-107379 14 679,600 10
ARS-BFGL-NGS-107810 15 66,121,820 8
ARS-BFGL-NGS-40131 17 10,374,164 8
Hapmap49611-BTA-44077 17 26,304,955 9
Hapmap49176-BTA-43744 18 49,761,247 10
BTA-23545-no-rs 18 50,063,553 8
ARS-BFGL-NGS-22050 25 27,843,968 10
ARS-BFGL-BAC-42500 25 28,002,712 10
ARS-BFGL-NGS-100347 25 28,535,691 9
BTB-00624015 27 20,648,605 10
Hapmap42281-BTA-63982 28 29,215,768 8
ARS-BFGL-NGS-18177 29 4,598,272 8
X- SNP is located in a QTL
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B.7 Investigations of the importance of DGAT1 on three selected milk
traits.

In an additional study the impact of DGAT1 was investigated on fat content, protein
content and pH value. For this study the following settings were used:

1. All SNPs were used.

2. DGAT1-SNP (SNP marker: ARS-BFGL-NGS-4939) was excluded from the SNP
set.

3. DGAT1-region was excluded from the SNP set, wherein the DGAT1-region was
defined from 0 to 3,940,998 bp on chromosome 14 (85 SNPs were excluded in total).
The end position was chosen based on the right marker position of the QTL with
ID 3172 (CSSM066; cf. Appendix B.3.)

The analyses were realized using SVS (settings as in Section 4.2.4 on page 83) and based
on the 10-fold cross-validation design (cf. Section 4.2.2 on page 77).
In addition, the DGAT1-region was also analyzed, since it is known that neighboring
SNPs can even capture the genetic effect if the main SNP in this region is not available.
In Table B.5 the results of the genetic value prediction of this study are presented. In
this table can be seen that if only the DAGT1-SNP is excluded then the mean prediction
precisions are similar to the results containing the DAGT1-SNP. In contrast, if the
DAGT1-region is excluded then we observed that the prediction precision significantly
decreases for all investigated milk traits: 47.16% for fat content, 29.96% for protein
content and 22.15% for pH value.

Table B.5: The mean prediction precisions are listed for all SNPs, without DGAT1-
SNP and without DGAT1-region for all three investigated milk traits. In parentheses
the corresponding standard deviations are presented.

without without
Milk trait All SNPs DGAT1-SNP DGAT1-region
Fat (%) 0.299 (0.077) 0.278 (0.077) 0.158 (0.077)
Protein (%) 0.237 (0.056) 0.231 (0.057) 0.166 (0.069)
pH value 0.307 (0.090) 0.302 (0.088) 0.239 (0.087)
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Theses
Nina Melzer, Investigating possibilities to predict milk phenotypes in Holstein Friesian cows
based on a more complex model of the genotype-phenotype map

An alternative (SBML) approach is proposed to simulate more realistic data, in respect to collected
experimental data, including the simulation of genotype, phenotype (as in the conventional
approach) and metabolome data. To enable analysis of these system-levels an integrative
bioinformatics approach (metabolite approach) is proposed, which contains the following steps:
metabolome-phenotype, genotype-metabolome and genotype-phenotype:

1. The SBML approach used a systems biology approach, i.e., metabolic network model, to
simulate metabolome data depending on the genotype. A simple additive step was used to
simulate phenotypes based on the metabolome. In contrast to the conventional approach,
the SBML approach enables to simulate genetic effects implicitly by the interactions of the
used metabolic network model.

2. Investigations of the implicitly simulated genetic effects revealed that some simulated QTL
had no impact on their metabolic outcomes (thus on the phenotype) within the used
metabolic network.

3. Data simulated with the SBML approach enable various further methodological investiga-
tions as well as to test different analysis possibilities, in contrast to data simulated with
the conventional approach.

4. The metabolite approach was applied on simulated data to investigate the gain of using
the metabolome level as an additional information source for the genetic value prediction.
Our results revealed that it is possible to improve the genetic value prediction using the
additional information. The success of improving depends on the used simulated part of
the metabolome.

5. The prediction of milk fat content (1.300 cows) revealed comparable prediction precisions
obtained with the metabolite approach (129 SNPs) and the classical approach (40,317
SNPs), wherein the metabolite approach required only fraction of the total amount of
SNPs.

6. Significantly more selected SNPs, using a variable selection method, were found on known
QTL via the metabolite approach than for using the classical approach, for fat content and
protein content. New important genome regions can possibly be revealed for an investigated
milk trait.

7. Results regarding the number of selected SNPs, point towards less complexity of the
underlying genetic structure of most of milk metabolites compared to milk traits.

8. The milk metabolome-phenotype map was investigated in greater detail using uni- and
multivariate methods, where new relations were revealed.
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