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Abstract
Quantum physics itself is a fascinating theory. When multiple degrees of freedom are
considered, a manifold of quantum correlations between the individual subsystem can be
observed. The aim of the present cumulative habilitation thesis is a state of the art report
on the characterization techniques and measurement strategies to verify such quantum
phenomena. I will mainly focus on my research which has been performed in the sur-
rounding of the theoretical quantum optics group at the University of Rostock (head:
Prof. W. Vogel) during the last couple of years.
The presented results include theoretical and – in collaboration with our experimental

partners – experimental studies of complexly structured radiation fields. In this context,
we study the verification of quantum properties, such as entanglement in multipartite
systems and nonclassical correlations of multiple harmonic oscillators – both being crucial
for the classification of quantum light fields. Beside the discussion of quantumness criteria,
we also perform a quantification of these quantum effects. Furthermore, we describe a
method to characterize novel quantum optical detector systems.

Zusammenfassung
Die Quantenphysik ist bereits für sich eine faszinierende Theorie. Wenn mehrere Frei-
heitsgrade betrachtet werden, kann eine Vielzahl von Quantenkorrelationen zwischen den
Teilsystemen beobachtet werden. Das Ziel der vorliegenden, kumulativen Habitilations-
schrift ist es eine Übersicht zum aktuellen Stand der Charakterisierungsmethoden und
Messstrategien zu geben, um solche Quantenphänomene nachzuweisen. Ich werde mich
dabei im Wesentlichen auf meine Forschung beschränken, die im Umfeld der AG Theo-
retische Quantenoptik an der Universität Rostock (Leiter: Prof. Dr. W. Vogel) in den
letzten Jahren durchgeführt wurde.
Die präsentierten Resultate beinhalten theoretische und – in Zusammenarbeit mit un-

seren experimentellen Partnern – experimentelle Untersuchungen von komplex strukturi-
erten Strahlungsfeldern. In diesem Zusammenhang studieren wir den Nachweis von Quan-
teneigenschaften, beispielsweise der Verschränkung in Vielparteiensystemen und nichtklas-
sische Korrelationen einer Vielzahl von harmonischen Oszillatoren – beides ist entscheidend
für die Klassifizierung von Quantenlichtfeldern. Neben der Diskussion von Nachweiskri-
terien des Quantencharakters, führen wir auch eine Quantifizierung dieser Effekte durch.
Darüber hinaus beschreiben wir eine Methode die es erlaubt neuartige, quantenoptische
Detektorsyteme zu charakterisieren.

13





1. Introduction and methods

Equation (5) in Quantisierung als Eigenwertproblem,
E. Schrödinger, Ann. Phys. 384, 273 (1926).

One aim of theoretical physics is the description of nature in terms of mathematical
relations. An interplay between experimental and theoretical physics, mathematics, and
philosophy helps us to construct models as a way towards understanding the principles
of nature. At the beginning of the last century a new debate on the true paradigms
of physics started that was due to the upcoming of quantum theory; see, e.g., [1–3].
Nowadays, physicist are used to this theory. Still, there is a need for a rigorous framework
to identify aspects of nature which are incompatible with some classical models. Whenever
an observations of quantum systems is beyond a classical expectation, our curiosity for
understanding these effects awakes.
The evolution of a quantum physical system is formulated in terms of the Schrödinger

equation. A separation of the time dependent part yields the time-independent Schrödinger
equation, which is an eigenvalue equation of the Hamiltonian that describes the free dy-
namics of individual degrees of freedom together with interactions between them. The
mathematical background of such eigenvalue problems is well understood employing meth-
ods from linear functional analysis and linear algebra. This foundation allows physicist to
study properties of quantum systems or to predict experimental observations.
If nonlinear equations are involved, then the mathematical toolbox of linear methods

is, in parts, no longer applicable. However, a lot of physical systems are characterized by
nonlinear equations. Prominent example are the Navier–Stokes equations for the dynamic
of fluids, Einstein’s field equations for gravitation, or the propagation of light in nonlinear
optical fibers being described by the so-called nonlinear Schrödinger equation. In the first
part of this thesis we show that, in addition, certain quantum correlations can be described
in terms of nonlinear eigenvalue equations. A number of solutions and propositions for
the nonlinear eigenvalue problems have been elaborated which subsequently lead to new
applicable criteria for characterizing the quantumness of complex physical systems. Those
are further generalized in the second part of this document. There the topic of quantifying
quantum correlations, i.e. the strength of a quantum effect, is explored. The presented
approach of quantification is based on the idea of counting quantum superposition that
represent one origin of quantum interferences.
The Schrödinger equation itself, has the form of a wave equation. Beside the thereby

described evolution, the measurement principle in quantum mechanics is quite unique
which is typically emphasized by the phrase of a spontaneous collapse of the wave function.
Closely related is the well-known wave-particle duality. Hence, a rigorous description of
a particular detection system is indispensable for a correct interpretation of the results
of a measurement process. In the third part of this thesis we will formulate the theory
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1. Introduction and methods

of quantum optical measurement schemes which are based on very simple detectors – so-
called click detectors. Despite the plain structure of such devices, it is demonstrated that
they are still able to successfully detect quantum properties of radiation fields.
In summary, the distinction “classical/quantum” shall motivate the present cumulative

habilitation thesis. In this first chapter we briefly review the state of the art and describe
the utilized methods. The remainder of the thesis summarizes the results of my recent
research in this direction.1 As outlined above, this includes the three main items: the
verification of quantum properties, the quantification of quantum correlations, and the
click detection theory.

1.1. State of the art

Maxwell’s theory of radiation describes optical phenomena in terms of a propagating
electromagnetic waves. Hence, the electromagnetic field can exhibit interference effects.
In quantum physics, the Schrödinger equation has the form of a wave equation. Thus,
interferences may be observed as well. As a consequence for quantum optics, different types
of interferences occur which can originate from the classical and/or quantum description
of the quantized electromagnetic field. Hence, the question about the quantum character
of a given state of light is a cumbersome problem to be addressed. An introduction to the
theory of quantum optics can be found in the book [4].
The emerging particle of the quantized field is the photon. For quantum communi-

cations, photons play an important role as one carrier of quantum information. Hence,
devices using single photons serve as one approach to implement quantum information pro-
tocols. Since quantum physics allows operations which cannot be achieved with a classical
computer, the unambiguous identification of quantum correlated systems is indispensable.
We refer to the book [5] for an introduction to quantum information and communications.
Two approaches to distinguish between classical correlations and quantum correlations

have been formulated in the 1960s. These are the seminal works by Bell [6] and by Kochen
and Specker [7]. Both address hidden variable models which are a key element of the so-
called Einstein-Podolsky-Rosen paradox [3]. The two interpretations – given by Bell or
Kochen and Specker – led to the notions non-locality and contextuality, respectively; see,
e.g., [8–11] for recent results. In simple words both approaches are related to the question
whether or not there exists a model in classical probability theory which can describe the
outcome of a performed correlation measurement [12,13].
While the approaches of Bell, Kochen and Specker start with considerations of classi-

cal statistics and show the violation in quantum physics, other methods define classical
references in quantum systems. For example coherent states are the quantum analogue
to the classical pendulum which yields the Glauber-Sudarshan representation [14,15] and
the notion of nonclassicality of harmonic oscillators [16, 17]. Another example involves
correlations between different quantum systems [18]. Whenever the compound state of
at least two degrees of freedom cannot be interpreted as a classical statistical mixture
of quantum states of the individual subsystems, then the joint state is referred to as an
entangled one; see [19] for a review on entanglement.
The traditional way to identify nonclassical features – e.g. nonclassicality of the har-

1 The references in this cumulative thesis are numbered as follows:
• References (general): Arabic numbering, [1]–[228].
• Author’s references in PhD: small Roman numbering, [i]–[vi].
• Author’s references as post-doc: capital Roman numbering, [I]–[XXV].
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1.1. State of the art

monic oscillator or multipartite entanglement – is done via inequalities [20, 21]. For a
correlation G under study, a lower bound for classical systems is derived: G ≥ Gmin cl..
A measured correlation of the form G < Gmin cl. is, therefore, a clear signature for the
quantum correlations in the realized system.2 In the following we will briefly review the
identification of oscillator’s nonclassicality and multipartite entanglement in terms of in-
equalities and discuss standard measurement scenarios to infer the needed correlations.

1.1.1. Nonclassicality of harmonic oscillators

The starting point of quantum optics itself may be dated back to the year 1905 when
Einstein proposed an explanation for the photoelectric effect [22]. During the following
decades the development in this field led to a better understanding of optical phenomena
in the quantum physical framework; see [23,24] for recent reviews and [4,20,25] for intro-
ductions. Coherent states have been identified as the only pure states which follow the
classical motion of a harmonic oscillator and which have a classical Glauber-Sudarshan
representation [26–28]. Thus, coherent states define the classical representatives in this
quantum system. A mixture of coherent states can be fully interpreted in a semi-classical
picture utilizing classical representatives and classical statistics. However, a photon is
one example which demonstrates that such a semi-classical interpretation of the Glauber-
Sudarshan representation is not always possible.
One of the early approaches to characterize the wave-particle duality of an electromag-

netic field is given by the Hong-Ou-Mandel interference experiment [29] or the photon-
antibunching [30–32]. The photon antibunching is related, but not identical to the no-
tion of sub-Poisson light [34]. The latter is characterized in terms of fluctuations of
the photoelectric counting statistics being below the classical shot-noise limit of this
statistics [33]. Another frequently considered example of a nonclassical radiation field
is squeezed light [35–38]. In case of pure states, squeezed light exhibits a minimal uncer-
tainty between the quadrature and the corresponding momentum (a recent study can be
found in [40]). The notion squeezing itself means that – similarly to sub-Poisson light –
field (or quadrature) fluctuations are below the vacuum fluctuation which limits the mea-
surement precision of classical states. Thus, squeezed light is a versatile resource for, e.g.,
gravitational wave detection [41, 42], which has been recently implemented by the LIGO
collaboration [43,44].
Directly accessible nonclassicality probes are based on second- or higher-order correla-

tion functions which may be given in terms of moments. This includes moments of the
field intensity, of the quadrature distribution, and of powers of annihilation and creation
operators [45–50]. An experiment summarizing and applying a number of those non-
classicality criteria can be found in [51]. Remarkably, a complete moment based test of
nonclassical correlations, including multi-time correlations and entanglement verification,
has been discussed in a unified form in Ref. [52].
The definition of the notion nonclassicality is based on the Glauber-Sudarshan represen-

tation, which is a phase-space representation in terms of a quasiprobability distribution
referred to as P function. The P function depends on the complex coherent amplitudes of
a single or multiple field components. The reconstruction of a nonclassical P function is
performed in [53] for the single-photon-added thermal state [47]. However, the P function
turns out to exhibit, in general, singularities in terms of non-regular distributions, e.g.,
infinite orders of derivatives of the Dirac delta distribution.
Beside the P function, other phase-space distribution have been known, such as the

2 Note that one could similarly study the upper bound.
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1. Introduction and methods

Wigner function [54] or the Husimi function [55], which are regular. These distributions
can be described as a P function convolved with a certain amount of Gaussian noise,
which subsequently led to the notion of s-parametrized quasiprobabilities [56–58]. The
parameter s addresses the amount of Gaussian noise convolution or – in terms of observ-
ables – a particular ordering of annihilation and creation operators. Most of these notions
have in common that they violate the non-negativity constraint, P ≥ 0, of classical prob-
ability theory [59, 60]. Typical reconstruction schemes for measuring these phase-space
distributions are based on tomographic principles [61,62].
If temporal correlations are taken into account then on has to extend the P func-

tion significantly [63] for including effects such as antibunching. Other approaches to
identify quantumness are given by the Fourier transform of the P function which is ex-
perimentally accessible and nonclassical correlations may be unrevealed by the Bochner
criterion [64–67]. Despite the fact that regular phase-space functions exists [68], the non-
classical features of highly singular P functions remained an open problem for some time.
For example the previously discussed squeezed state is described by either a singular or
a purely classical distribution for different s parametrized quasiprobabilities. A way for a
consistent and universal regularization of the P function was introduced in [69] and the
practical application was, for example, demonstrated for a squeezed state of light [70] (see
also [71–75] for further reading).

1.1.2. Entanglement characterization

Let us now discuss the detection of entanglement; see [19, 21] for an introduction. En-
tanglement in many-body systems can be almost arbitrarily complex [76]. This is due
to the manifold of individual degrees of freedom which might be quantum correlated.
However, a systematic classification is feasible [77]. For quantum information processing,
graph-representations of quantum states turn out be very efficient way to characterize
entanglement [78–81]. A first approach to identify entanglement is based on violation
of a criteria addressing local hidden-variable models, which was proposed by Clauser,
Horne, Shimony, and Holt in 1969 [82]. The experimental demonstration was realized in
1981 [83]. Such criteria have been further developed to study the fundamental relation
between non-locality and entanglement, cf. [84, 85].
Nowadays, the most popular technique to determine entanglement is based on so-called

entanglement witnesses, which are capable to certify bipartite and multipartite entangle-
ment [86–88]. Different methods have been proposed to enhance the range of application of
this approach, such as higher mode extensions [89,90] or device independent witnesses [91].
Moreover, the notion of optimal witnesses has been introduced to further characterize such
entanglement probes [92–94]. The success of the method of entanglement witnesses can
be directly seen from its vast number of experimental application; see, e.g., [95–103].
In [86] it has been also shown that the entanglement witness approach is equivalent to

the characterization via positive but not completely positive (PNCP) maps. It is worth
mentioning that a technique has been formulated recently which can also identify multi-
partite entanglement with positive maps [104]. The most prominent example of a PNCP
map based entanglement probe is the partial transposition criterion [105]. It is a neces-
sary and sufficient criterion for low dimensional bipartite Hilbert spaces [86] and bipartite
Gaussian states [106,107]. Closely related are moment based approaches [108–110]. Such
higher-oder moment criteria have a non-linear structure and include correlations of local
observables or local uncertainty relations as studied in [111–115].
Moments of second order are particularly suited to identify entanglement of multimode

Gaussian states [116–118]. One proper classification of multimode Gaussian entangled
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1.1. State of the art

states is given in [119] and the influence of attenuation to this class of entangled states
has been studied, e.g., in [120]. An particularly interesting example of a Gaussian state is
a four-mode one [121], which has been experimentally realized [122]. This state cannot be
identified to be entangled using the partial transposition criterion and, therefore, belongs
to the class of so-called bound entangled states; see also [123] for a bipartite, non-Gaussian
continuous variable example which has been additionally studied in [124]. Another four-
mode state in discrete variables, which shares such a bound type of entanglement between
its subsystems, is the so-called Smolin state [125–127].
Beyond the briefly mentioned types of entanglement there exists other forms and de-

tection methods of entanglement in physical systems. For example, systems of indistin-
guishable particles require a careful study regarding their quantum correlations, because
the spin statistic theorem requires a symmetrization of quantum states [128]. The an-
tisymmetry or symmetry under the exchange of the subsystems has an influence on the
entanglement properties in compound Fermion or Boson systems [129–131]. Moreover, if
the underlying algebra of complex numbers of the Hilbert spaces is modified then some
interesting forms of entanglement can arise [132–134].
For standard complex tensor product Hilbert spaces, the Schmidt decomposition is an

elegant way to characterize pure states in bipartite systems, cf. [5]. Namely, the rank of
this decomposition is one if and only if the state is separable. This notion of the Schmidt
rank is simply the minimal number of pure product states which have to be superimposed
to describe the full state. An extension of this notion to mixed states led to the notion
of Schmidt number states [135]. The Schmidt number additionally quantifies the amount
of entanglement and may be extended to multipartite systems [136]. An axiomatic way
to quantify entanglement in general has been introduced in [137–139]. In particular an
entanglement measure of pure states can always be extended to the set of mixed states
using a convex roof construction [140]. Note that it has been also shown, that different
measures can yield contradicting orderings of the amount of entanglement [141,142].

1.1.3. Measurements in quantum optics

The quantum measurement process has been rigorously studied by von Neuman for the
first time [143]. Let us briefly describe the concluded implications. Say a quantum state
yields a certain measurement outcome m(0) with a certain probability. If we repeat the
same measure after some time τ , we would get an outcome m(τ) with some probability. In
the limit of a vanishing delay time τ , we expect a unit probability to get the same outcome
for both measurements, i.e. limτ→0m(τ) = m(0), since the system has no time to evolve
into another state. Hence, this continuity requirement yields a collapse of the quantum
state onto the eigenspace of the measured value m(0) and, therefore, other measurement
outcomes have a zero probability for τ → 0.
In quantum optics the description of the photoelectric detection process is well estab-

lished, cf. [144–146]. The resulting photoelectric counting statistics, including non-unit
efficiencies, can be interpreted as a quantum version of a Poisson statistics for coherent
light; cf. also [147,148]. Other states, for example photons, might exhibit a photoelectric
counting statistics which has a variance below the classical shot-noise limit of the Poisson
distribution [33]. Hence, nonclassical intensity correlation of a quantum light sources can
be studied. However, a full characterization of the quantum state of light also requires
phase-sensitive measurement.
For the characterization of field correlations, a number of phase-sensitive detection

schemes have been exploited [4]. They are typically performed in terms of interfero-
metric setups, such as homodyne detection (HD). These measurement configurations are
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1. Introduction and methods

based on unitary transformations of radiation fields [149] followed by photoelectric detec-
tion. In the limit of a strong reference signal (local oscillator), the discrete photoelectric
counting within balanced HD converges to the continuous quadrature distribution of the
field [150, 151]. Other detection schemes are based on unbalanced HD and weak local
oscillators [152, 153], or they employ methods being suited to directly infer higher-order
correlations [154,155].
Beside a study of the measured quadrature distribution itself [156], tomographic meth-

ods allow the reconstruction of the prepared quantum state [157]. Similarly, other features
of the radiation field, such as the phase-space representations or correlation functions, may
be retrieved via sampling methods [158–163]. State reconstruction techniques in combina-
tion with HD setups are standard tools for inferring classical and quantum properties of
light; see [164,165] for introductions and [61,166] for pioneering experimental realizations.
As an alternative to conventional detectors, which are described via photoelectric de-

tection theory, novel photon counters have been realized which are designed to operate
in the single photon regime; cf. the reviews [167, 168]. Some of those single-photon-
resolving detectors are based on superconducting materials and, thus, require cryogenic
cooling [169–171]. Charge-coupled devices – being an array of pixels – present another
approach for single photon detection, which additionally allow a spatial resolution to infer
correlations between individual pixels [172–180].
A third example of single-photon detectors consists of a number of avalanche photodi-

odes, which operate in Geiger mode. This yields a binary information denoted as “no click”
or “click” event stating that no photons or at least one photon has been absorbed, respec-
tively. If a light field is split into parts of equal intensities and each of the resulting beams
is measured with such a diode, we get a certain probability distribution for the number of
coincident clicks. Realizations of such detector configurations are, for example, so-called
fiber-loop (or time-bin) detectors, spatial-multiplexing detectors, or equally illuminated
array detectors. Since those detectors operate in the few photon regime, they are nowa-
days frequently used to study properties of quantum light or for the implementation of
quantum information protocols [181–194].
Finally, it is worth mentioning that methods from single-photon detection on the one

hand and homodyne detection on the other have been jointly applied to experimentally
verify fundamental commutation relations [195].

1.2. Methods

In this section we address some of the applied methods which led to the results which are
presented in these thesis. This includes the general definition of classical (mixed) reference
states, the construction of quantumness witnesses, a brief discussion on statistical signifi-
cances (applied in joint works with experimental collaborators), and the quantification in
terms of quantum superpositions. References to my publications, where these techniques
have been elaborated, are given.

1.2.1. Classical references in quantum systems

Before we start with some prominent examples of notions of quantumness, let us consider
a quite general and abstract approach. Let us assume we have a particular set of pure
states, |c〉 ∈ Cpure, which are classical with respect to a given property. Then, classical
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1.2. Methods

statistical mixing would yield a mixed classical state,

ρ̂cl. =
∫
Cpure

dPcl.(c) |c〉〈c|, (1.1)

with Pcl. being a classical probability distribution. This means that the correlations with
respect to the property under study are described by classical statistics only. Whenever
a quantum state %̂ cannot be written in the form (1.1), we refer to it as an quantum
correlated state. All classical states of the structure in Eq. (1.1) define the convex set C of
pure – for point-like classical distributions Pcl.(c) = δ(c− c0) – and mixed classical states.
Quantum states which cannot be represented in this way (%̂ /∈ C) are quantum correlated.
A first example is defined by N -mode coherent states of harmonic oscillators, |α〉 =
|α1〉 ⊗ · · · ⊗ |αN 〉, which gives rise to the Glauber-Sudarshan representation [14,15],

ρ̂ =
∫

d2NαP (α)|α〉〈α|, (1.2)

together with the definition of a classical state as P = Pcl. [16, 17]. A second example
is given in terms of fully separable states, |a1, . . . , aN 〉 = |a1〉 ⊗ · · · ⊗ |aN 〉, which yields
mixed separable states [18] as3

ρ̂ =
∫

dPcl.(a1, . . . , aN ) |a1, . . . , aN 〉〈a1, . . . , aN |. (1.3)

If a state cannot be written in this form, this refers to as an (at least partially) entangled
state.
Note that in both examples it is possible to formally write any state in terms of clas-

sical pure states, if we allow P to be a pseudo-distribution. For entanglement this has
been demonstrated in [196, 197] and further optimized in [ii]. This means that P might
be a signed and normalized measure including some negativities in the sense of distribu-
tions. The advantage is that a distribution which cannot be considered as a classical one,
P 6= Pcl., directly identifies nonclassical states in terms of negativities. However, such
a quasiprobability distribution not necessarily exists for other quantum properties which
could be studied.
The application of quasiprobabilities in terms of nonclassicality filtering (being intro-

duced in [69]) for quantum correlated light field can be found in [VII, XXI]. Optimized
entanglement quasiprobabilities of dephased two-mode squeezed state are studied in [II].

1.2.2. Witnessing and nonlinear eigenvalue problems
A typical approach to certify the quantumness of a certain state is given in terms of
measurable witness operators Ŵ . These kinds of observables have a non-negative expec-
tation value for classical states, 〈Ŵ 〉 = tr(Ŵ ρ̂cl.) ≥ 0 for all ρ̂cl. ∈ C. Additionally, they
may exhibit a negative mean value for nonclassical states, i.e. there exists %̂ /∈ C with
〈Ŵ 〉 = tr(Ŵ %̂) < 0. The existence of such witnesses is mathematically guaranteed, which
is mainly due to the convexity of C and the Hahn-Banach separation theorem; cf. [198]
(6th ed., pp. 102). Moreover, the construction of such observables from general Hermitian
operators L̂ can be always expressed as

Ŵ = λmax1̂− L̂ or Ŵ = L̂− λmin1̂, (1.4)
3 Note that in finite dimensional systems a sum, instead of the integral, in Eq. (1.3) is sufficient due to
Carathéodory’s theorem, see also [iii] in this context.
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1. Introduction and methods

using the least upper bound, λmax, or the largest lower bound, λmin, of classical expectation
values,

λmax = sup
06=|c〉∈Cpure

〈c|L̂|c〉
〈c|c〉

or λmin = inf
06=|c〉∈Cpure

〈c|L̂|c〉
〈c|c〉

, (1.5)

respectively.4 It is also worth mentioning that the definition of C as the convex span of
elements |c〉〈c| with |c〉 ∈ Cpure ensures that the defined bounds λmin /max are also the
bounds to mixed classical states.
The bounds (1.5) can be obtained from the optimization of the Rayleigh quotient,

g(c) = 〈c|L̂|c〉
〈c|c〉 → optimum. (1.6)

If the set Cpure is continuous in some sense – e.g., it has a smooth parametrization –
this optimization problem may be rewritten as ∇cg(c) = 0. After some straight forward
algebra, this optimality condition may be further remodeled as a generalized, nonlinear
eigenvalue problem:

L(c)x(c) = g(c)1(c)x(c), (1.7)

using the notion ∇c〈c|M̂ |c〉 = M(c)x(c). In order to understand this very formal process-
ing, let us study one example.
One application of this technique was performed in [i] to construct bipartite entangle-

ment witnesses. In this scenario, the classical pure states are |c〉 = |a〉 ⊗ |b〉. Since this is
already a proper parametrization the derivative has been decomposed as ∇c = (∇a,∇b).
Finally, Eq. (1.7) in this scenario is given by the two components

L̂b|a〉 = g|a〉 and L̂a|b〉 = g|b〉, (1.8)

with L̂a = trA(L̂[|a〉〈a| ⊗ 1̂B]) and L̂b = trB(L̂[1̂A ⊗ |b〉〈b|]) for normalized vectors 〈a|a〉 =
〈b|b〉 = 1. The Eqs. (1.8) refer to as (bipartite) separability eigenvalue equations. The
bounds λmin /max are consequently identical to the minimal/maximal separability eigen-
value g.
Example. Let us consider an operator that is related to the Clauser-Horne-Shimony-Holt

inequality [82] being the quantum interpretation of the Bell inequality [6]. Say σ̂x = ( 0 1
1 0 )

and σ̂y =
( 0 −i

i 0
)
. We define

L̂ = 1
2 (σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (1.9)

The non-zero (standard) eigenvalues to this operator are ±1, i.e. −1 ≤ 〈L̂〉 ≤ 1 for
arbitrary states. The bounds are attained for |ψ±〉 = 2−1/2(0, 1,±1, 0).
In order to find the bounds for separable states, we compute the reduced operator with

an arbitrary state of the first subsystem |a〉 = (a0, a1)T, with |a0|2 + |a1|2 = 1. That is

L̂a = 1
2〈a|σ̂x|a〉σ̂x + 1

2〈a|σ̂y|a〉σ̂y =
(

0 a0a
∗
1

a∗0a1 0

)
. (1.10)

4 The denominator 〈c|c〉 in (1.5) is one, if all classical pure states are normalized.
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1.2. Methods

A trivial separability eigenvalue g = 0 results from a∗0a1 = 0. If a∗0a1 6= 0, we find the
eigenvectors |b〉 = 2−1/2(1,± a∗0a1

|a∗0a1|)
T to the eigenvalues g = ±|a∗0a1|. Computing now the

reduced operator for this solution,

L̂b = ±1
2|a∗0a1|

(
0 a0a

∗
1

a∗0a1 0

)
, (1.11)

we get the eigenvectors 2−1/2(1,±′ a
∗
0a1
|a∗0a1|)

T, which is supposed to be identical to |a〉 for
fulfilling the separability eigenvalue equations (1.8). Equating coefficients yield |a0| =
|a1| = 2−1/2. Thus, we get the nontrivial separability eigenvalues g = ±|a∗0a1| = ±1/2.
Finally, we conclude that for all separable states holds −1/2 ≤ 〈L̂〉sep. ≤ 1/2, or

|〈L̂〉sep.| ≤ 1/2. (1.12)

For the operator (1.9) we solve the coupled set of separability eigenvalue equations (1.8)
for the operator. Whenever the absolute of the expectation value of this observable exceeds
the bound 1/2, entanglement is verified.
The general approach in form of Eq. (1.7) allows the construction of necessary and

sufficient conditions to identify the quantumness of any state. Beside this fact, there
are also some deficiencies which should be addressed. First, the Eq. (1.7) is hard to
solve. For non-trivial sets Cpure, it has at least the same computational complexity as
the standard eigenvalue problem [199]. Second, there exists and uncountable number of
possible observables L̂. Up to a certain point, it is not clear which witness is best suited for
detecting the nonclassicality of a particular state. However, this approach turned out to
be very fruitful to construct novel probes of different notions of quantumness in complex
systems.
The systematic treatment in the discussed form is elaborated for entanglement and

nonclassicality of harmonic oscillators in my references [i, v, VIII, XI, XVI, XVIII, XIX,
XXIV].

1.2.3. Treatment of error bars

Figure 1.1.: Separation of states ρ̂i
(i = 1, 2, 3) from a con-
vex set C.

So far we studied the theoretical modeling of classi-
cal reference states in quantum mechanical systems
in terms of a convex set C. An analysis followed
which aimed at the construction of witnesses for cer-
tifying quantum correlations using nonlinear eigen-
value equations. If such methods are applied to ex-
perimental data, then a treatment of error bars is
indispensable.
In order to outline the influence of experimental

errors, let us study the oversimplified example in
Fig. 1.1. The blue area corresponds to the closed
convex set of pure and mixed classical states C.
The gray area (excluding the blue one) is popu-
lated by the remaining class of quantum correlated
states. The experimentally reconstructed states ρ̂i
(i = 1, 2, 3) are represented by the black bullets.
The yellow circles around the states depicts the er-
ror – one standard deviation – which is supposed to
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1. Introduction and methods

represent the experimental uncertainty. The dashed tangential lines depict some optimal
witnesses Ŵi which separate the classical set, 〈Ŵi〉 ≥ 0, from a subset of the nonclassical
domain, 〈Ŵi〉 < 0. In our case the normal vector of the separating hyperplanes 〈Ŵi〉 = 0
yields the minimal distance of ρ̂i to the boundary of C in units of standard deviations.
The states ρ̂1 and ρ̂3 are significantly nonclassical and classical, respectively. The state ρ̂2
lies on the boundary of the set of classical states C. Therefore, it cannot be assigned with
certainty to either set.

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

Figure 1.2.: Gaussian error distribution.
Classical domain blue;
quantum domain gray.

The experimentally obtained value of a wit-
ness may be given as 〈Ŵ 〉 = W ± σ(W ), where
σ(W ) corresponds to the standard error of the
mean value W . Thus the significance,

Σ = W

σ(W ) , (1.13)

quantifies the experimentally verified quantum-
ness. For a witness Ŵ , the classical expectation
is Σ ≥ 0 for all elements of C, i.e., the classical
bound is Σ = 0. Hence, Σ < 0 is not consis-
tent with a classical description. It implies the
quantumness of the measured system which is
determined with a significance |Σ|.
In Fig. 1.2 an example is shown forW = −2 and σ(W ) = 1. Here, the confidence (yellow

area) is 97.7% to be in the quantum domain – assuming a Gaussian error distribution with
the mean W and the variance σ(W ). More generally we get the confidence C(Σ) to have
a quantum correlated state, %̂ /∈ C, for a Gaussian error distribution as

C(Σ) =
∫ 0

−∞
dw

exp
[
−(w−W)2

2σ(W )2

]
√

2πσ(W )2 = 1
2

(
1 + erf

[−Σ√
2

])
, (1.14)

using the error function erf(x) = 2√
π

∫ x
0 dz exp[−z2]. For example, we have C(−3) =

99.865% for W = −3σ(W ), and C(−5) = 99.99997% for W = −5σ(W ). Again, a state at
the classical bound, W = 0, cannot be experimentally assigned to either class of states,
C(0) = 50%.
For an introduction to more general sampling error analysis we refer to Ref. [200]. The

presented significance analysis has been applied in [XVII,XIX,XXI,XXIII].

1.2.4. Quantification in terms of superpositions
Once a quantum correlation is verified, it might occur the question: How strong is this
quantum effect? For this reason entanglement measures [137–139] and nonclassicality
quantifiers [67, 201–207] have been introduced. The typically considered measures are
based on topological distances, having a clear geometric interpretation, or entropic quan-
tities, such as mutual information or relative entropies; see [19] for a review.
However, we studied an algebraic approach for the quantification of quantum correla-

tions, since the convexity of the set of classical states C is an algebraic notion. Therefore
our approach is formulated in terms of convex ordering [XXV]. We have shown that the
number r of superposition of classical pure states,

|ψr〉 =
r∑

k=1
λk|ck〉, with |ck〉 ∈ Cpure, (1.15)

24



1.2. Methods

is a proper quantifier of the quantumness under study in this algebraic respect. Here r
is supposed to be the minimal number which allows this expansion. Note that this also
requires that the closure of the linear span of Cpure is the full Hilbert space, so that the
representation in (1.15) is possible for any state. This is fulfilled for coherent states and
separable ones. A convex roof construction allows the extension of this quantification of
pure states to mixed states. This yields convex nested sets,

Cr ⊂ Cr+1, (1.16)

which are mixtures of the pure states |ψr〉 and |ψr+1〉, respectively; cf. Eq. (1.15). In
case of separability, the number r in Eq. (1.15) is generalized to the Schmidt number of
bipartite or multipartite mixed states [5, 135,136].
Moreover the convexity of Cr allows a witnessing approach as it was studied before

for C = C1. This, additionally, makes the algebraic approach a measurable one. That
this further generalizes the nonlinear eigenvalue problem will be outlined in the following.
Here, we use a spinor notion to represent superpositions of classical states.
From Dirac or Pauli equation, the notion of spinors is known. A pure quantum state
|ψ〉 is described by a complex vector of states:

|φ〉 =

|φ1〉
...
|φr〉

 =
r∑

k=1
|φk〉 ⊗ ek ∈ H × · · · × H︸ ︷︷ ︸

r-times

= Hr = H⊗ Cr, (1.17)

where {ek}rk=1 is supposed to be the standard basis of Cr. Say s = r−1/2∑r
k=1 ek. We

can define a projector, P̂ = P̂
2, as

P̂ = 1̂⊗ ss† : H⊗ Cr → H⊗ Cr, with P̂ |φ〉 = 1√
r

(
r∑

k=1
|φk〉

)
⊗ s. (1.18)

Applying this projection to a “classical” spinor, i.e. |φk〉 = λk|ck〉, we get P̂ |ψ〉 =
r−1/2|ψr〉 ⊗ s with the superposition state in Eq. (1.15). Moreover the normalization
of |ψr〉 can be rewritten as 〈ψr|ψr〉 = r〈φ|P̂ |φ〉. Finally the bounds – leading to nonlinear
eigenvalue equations – in Eq. (1.5), can be obtained from the optimization:

〈ψr|L̂|ψr〉
〈ψr|ψr〉

= 〈φ|L̂|φ〉
〈φ|P̂ |φ〉

,→ min/max, with L̂ = L̂⊗ ss†. (1.19)

This rewriting of superpositions into a spinor notion allows us to derive nonlinear eigen-
value equations in the exactly same way as it has been done for r = 1. Consequently,
the maximal or minimal nonlinear eigenvalues are the lower and upper bounds of the
expectation value of an observable L̂ for states in the set Cr.
The algebraic quantification approach together with the construction of witnesses can

be found in my publications [VI,XIV,XVI] for the nonclassicality of harmonic oscillators
and, for entanglement, in [vi,XXV,XIV,XVIII].

1.2.5. Click counting and binomial distributions
It has been shown that detectors, which are based on click counting are described by a
quantum version of the binomial statistics [I]. Hence, a brief reminder of some techniques
employing such distributions is reasonable. A binomial statistics is given by

ck =
(
N

k

)
bk(1− b)N−k, with 0 ≤ k ≤ N and 0 ≤ b ≤ 1. (1.20)
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The parameter b might be a random variable as well which is represented by a classical
probability distribution Pcl.. This yields the convolved binomial statistics,

ck =
∫ 1

0
dPcl.(b)

(
N

k

)
bk(1− b)N−k =

〈(
N

k

)
bk(1− b)N−k

〉
. (1.21)

The mean value of this statistics is k =
∑N
k=0 kck = N 〈b〉. The variance may be expressed

in two ways together with the variance of Pcl.. That is

σ2(k)=k2 − k2=N 〈b(1− b)〉+N2
〈

(∆b)2
〉

=N 〈b〉 〈1− b〉+N(N − 1)
〈

(∆b)2
〉
, (1.22)

where ∆b = b− 〈b〉. Note that the case
〈
(∆b)2〉 = 0 results in the well-known expression

for the binomial statistics without any extra convolution. A useful tool to infer general
moments is employing the generating function,

g(z) =
N∑
k=0

ckz
k =

〈
(bz + [1− b])N

〉
. (1.23)

This is due to the fact that the mth derivative of the generating function, ∂mz g(z) =∑N
k=m ck

k!
(k−m)!z

k−m =
〈

N !
(N−m)!b

m (bz + [1− b])N−m
〉
for 0 ≤ m ≤ N , leads to

∂mz g(z)|z=0 =m!cm = N !
(N −m)!

〈
bm(1− b)N−m

〉
∂mz g(z)|z=1 =k(k − 1) · · · (k −m+ 1) = N !

(N −m)! 〈b
m〉 ,

(1.24)

being – up to a scaling – the statistics itself and the moments of the random variable b.
The presented techniques have been applied in my references [I, III,X,XIII,XX,XXIII]

to study click counting detectors in optical measurement setups.

1.3. Outline
In the remainder of this cumulative habilitation thesis, I will elucidate my research from
July 2011 (PhD) until today. The so far discussed techniques represent the general frame-
work how the individual results have been obtained. Therefore, only the conclusions of
the publications will be discussed. The three main sections focus on the topics:

• characterization and verification of quantum correlations, chapter 2;

• the quantification of nonclassicality and entanglement, chapter 3;

• and measurement strategies using so-called click counters, chapter 4.

Beside specific summaries and outlooks at the end of each chapter, final concluding remarks
are given in chapter 5. Copies of the published articles and available preprints – for the
period under consideration – can be found in the appendix part (pp. 61).
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2. Verification of correlations

In this chapter we will review several methods to certify quantum correlations in multipar-
tite systems. This includes the detection on entanglement and nonclassicality of harmonic
oscillators. The application to experiments is presented.

2.1. Witnessing multipartite entanglement
Let us discuss in more details a publication which I consider to be one of my key pub-
lications: Witnessing multipartite entanglement [VIII]. This will be done in combination
with the experimental application of the method in Ref. [XIX], which has been performed
in collaboration with the group of N. Treps and C. Fabre (École Normale Supérieure).
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(b) bipartition
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(c) tripartition
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(d) four-partition

Figure 2.1.: Some of the possible spectral mode decompositions of a given four-partite
system. See also [XIX].

For this reason, we briefly recall the notion entanglement for a multimode system.
We assume for simplicity a N -partite system given by the labels I = {1, · · · , N}. A
K-partition I1: · · · :IK is a disjoint decomposition of the index set I into K non-empty
subsets Ik. In Fig. 2.1, an example is outlined for N = 4 spectral modes.1 A pure state
is separable with respect to a given K-partition, if it can be written as a tensor product
of K states, each being defined in the subsystem Ik with k = 1, · · · ,K, i.e.:

|a1, · · · , aK〉 is separable with respect to the partition I1: · · · :IK . (2.1)
1 Special thanks to S. Gerke (Universität Rostock) and J. Roslund (Université Pierre & Marie Curie) for
the figures.

27
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If a state cannot be written as a classical mixture of these product states, then this
state is referred to as entangled with respect to the given partition I1: · · · :IK . The quite
frequently discussed notion of a K-entangled system means that a state cannot be written
as a statistical mixture of product states in all possible K partitions; see [18, 19]. Let us
additionally mention that the trivial partition, I1 = I, implies that all states could be
formally considered as “separable” ones regarding this trivial partitioning.
As we outlined earlier, see also [88], an optimal witness for a given partition I1: · · · :IK

can be written as

Ŵ =
[

sup
|a1,··· ,aK〉6=0

〈a1, · · · , aK |L̂|a1, · · · , aK〉
〈a1, · · · , aK |a1, · · · , aK〉

]
︸ ︷︷ ︸

=gmax
I1:···:IK

1̂− L̂, (2.2)

or, similarly, as

Ŵ = L̂−
[

inf
|a1,··· ,aK〉6=0

〈a1, · · · , aK |L̂|a1, · · · , aK〉
〈a1, · · · , aK |a1, · · · , aK〉

]
︸ ︷︷ ︸

=gmin
I1:···:IK

1̂, (2.3)

using a general Hermitian operator L̂. As derived in [VIII], the optimization procedure
for obtaining the bounds gmax/min

I1:···:IK yields the separability eigenvalue equations

L̂a2,··· ,aK |a1〉=g|a1〉
...

L̂a1,··· ,aK−1 |aK〉=g|aK〉,

(2.4)

with the reduced operators L̂a1,··· ,ak−1,ak+1,··· ,aK being defined through

〈uk|L̂a1,··· ,ak−1,ak+1,··· ,aK |vk〉
=〈a1, · · · , ak−1, uk, ak+1, · · · , aK |L̂|a1, · · · , ak−1, vk, ak+1, · · · , aK〉,

(2.5)

for any |uk〉, |vk〉 in the subsystem which is represented by Ik. The solution of the coupled
system of eigenvalue equations (2.4) is given by product vectors |a1, · · · , aK〉 and the real
value g being the separability eigenvector and the separability eigenvalue, respectively. The
bounds gmax/min

I1:···:IK for the witness construction are finally described as the maximal/minimal
separability eigenvalue g. It is also worth mentioning that the standard eigenvalue problem
is retrieved for the trivial partition I1 = I. Interesting features of these equations are
studied in [VIII].
The application of this approach to witness multimode Gaussian states has been demon-

strated in [XIX]. In particular, multimode frequency comb states have been experimen-
tally realized. The analytical solution gmin

I1:···:IK of the separability eigenvalue equations for
covariance based operators,

L̂ =
N∑

i,j=1

(
M ji
xxx̂ix̂j +M ji

pxp̂ix̂j +M ji
xpx̂ip̂j +M ji

ppp̂ip̂j
)
, (2.6)

has been derived. A numerical optimization over all the resulting witnesses, Ŵ = L̂ −
gmin
I1:···:IK 1̂, has been performed to get the most significant signature of entanglement.
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Figure 2.2.: Entanglement verification of a
ten-mode frequency comb Gaus-
sian state [XIX].

For example, the highest number of
modes was N = 10. For this case we
have 115,975 partitions. The previously de-
scribed method has been applied to probe
entanglement for each – except the trivial –
partition. It can be seen in figure 2.2 that
entanglement is certified for all non-trivial
partitions, Σ < 0. To my best knowledge,
such an analysis of a full multipartite en-
tanglement has never been performed be-
fore. For the particular example only en-
tanglement of all 511 bipartitions has been
demonstrated before [208].
The method of separability eigenvalues

rendered it possible to investigate the en-
tanglement correlation properties in such a highly complex system. Although this method
itself is a necessary and sufficient one, the solutions to the coupled system of separability
eigenvalue equations are in general unknown. Presently we are studying a numerical itera-
tion to find the separability eigenvalues for the construction of general – i.e. non-Gaussian
– entanglement witnesses.

2.2. Multipartite Quasiprobabilities

Earlier, we discussed the regularized P function approach [69], which has been formulated
for a single radiation mode and applied to experimentally realized quantum states of light,
e.g., [70,71]. This method allows to apply certain filters to remove all kinds of singularities
in the Glauber-Sudarshan P function without affecting the (non)classical character of the
state. In [VII], we showed that this approach is also possible for multimode radiation
fields. Surprisingly this can be done with a product of regularizing single-mode filters,
and we can still verify quantum correlations between subsystems.
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Figure 2.3.: Regularized, quantum correlated
PΩ(αA, αB) function [VII].

In order to prove this, we considered a
state of the class introduced in [209],

ρ̂ =
∞∑
n=0

(1− p)pn|n, n〉〈n, n|, (2.7)

with 0 < p < 1 which can be pre-
pared in labs. Nonclassical correlations
of this fully phase-randomized two-mode
squeezed-vacuum state can be directly
inferred from the two-mode regularized
phase-space distribution PΩ, see Fig. 2.3.
This is remarkable, because the state is
classical with respect to the following no-
tions: ρ̂ is separable; ρ̂ has a non-negative

(classical) Wigner function; ρ̂ has classical marginal states, i.e. trA(ρ̂) and trB(ρ̂) are clas-
sical, thermal states; and ρ̂ is a zero-discord state – see [210,211] for the definition of this
notion of correlation. Hence the multimode regularization is helpful to identify quantum
correlations which would remain undetected otherwise.
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2. Verification of correlations

In collaboration with the experimental group of B. Hage (Universität Rostock), we de-
veloped a proper multimode sampling method together with a continuous phase measure-
ment [XXI]. Such a continuous phase measurement allows extrapolations of phase-space
representation beyond the discrete phase-lock configuration, cf. 2.4. As a proof of principle
we demonstrated the application to a single-mode squeezed-vacuum state, which already
proves the application in multimode systems due to the product regularization approach
mentioned above. The singularities of the squeezed state’s P function disappeared and
regular negative contributions of this phase-space representation certify the nonclassical
character of such a prepared light field; see Fig. 2.4.
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-
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w = 1.0

Figure 2.4.: The extrapolation of phase-space points (assuming Gaussian error model) for
phase-locked (left) and random phase (center) measurements – both for 300
simulated data points. The lighter the color the better the quality of the
performed extrapolation. It can be seen that the black areas of a poor ex-
trapolation are directed in case of a phase-lock setup. Nonclassical features in
this region cannot be properly reconstructed. Right: The realized continuous-
phase measurement (top) and the reconstructed filtered quasiprobability (bot-
tom) are shown for different filter parameters w, cf. [XXI].

2.3. Applications and other correlations

Beyond the multimode characterizations of entanglement and nonclassicality of radiation
fields, we also applied our methods to other systems and notions of nonclassicality. Let
us briefly discuss the work in this direction. A summarizing proceeding can be also found
in [XV].
In collaboration with H. Fehske (Ernst-Moritz-Arndt-Universität Greifswald), the con-

struction of entanglement witnesses has been also used to identify multipartite entangled
light emitted from microcavities [IX]. The entanglement within this semiconductor struc-
ture is in a multipartite W -type configuration [213]. The emitted photons translate the
information about the internal entangled polaritons into entanglement of a multimode
radiation field. Hence, the characterization of the outgoing light field can be used as a
probe for internal quantum correlations.
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Figure 2.5.: Quantum properties of a N00N
state mixed with vacuum [XIX].

Other entanglement aspects of prop-
agating light fields were demonstrated
in [XXII]. Here, the influence of atmo-
spheric turbulences [214–216] to the entan-
glement of so-called N00N states [217]

|N00N〉 = |0, N〉+ |N, 0〉√
2

, (2.8)

has been investigated. This is done in con-
nection with super phase-resolution [218,
219], which is a quantum feature that al-
lows the estimation of a parameter (here,
the phase ϕ) beyond classical noise limita-

tions. In Fig. 2.5, the phase resolution (red) is plotted together with the derived entan-
glement criteria (blue) for a mixture of a N00N state with vacuum (p is the probability
to be in the vacuum state). As long as the expectation value of an observable Â is above
the blue dashed line entanglement is certified. Similarly, a phase estimate ∆ϕmin below
the red dashed line implies super phase resolution.
Combining the quasiprobability approach with the notion of entanglement, optimized

entanglement quasiprobabilities have been introduced in [ii]. Such a quasiprobability dis-
tribution is strictly non-negative for separable states and has negative contributions for
entangled ones. In the article [II], we studied the entanglement properties in this form for
the example of a two-mode squeezed state undergoing a dephasing process; cf. [51,212] for
related experiments. Our optimized entanglement quasiprobabilities could identify entan-
glement of this state even for a significant dephasing. Note that a full dephasing yields
the separable state in Eq. (2.7).
In a recent work, we also studied entanglement probes for systems of indistinguishable

particles [129, 130]. This is of a fundamental interest, because the symmetrization re-
quirements for systems of Boson and Fermion has formally the same structure as implied
by entanglement of distinguishable degrees of freedom [128]. For this reason separability
eigenvalue equations for indistinguishable particles have been derived and spin-statistics
independent entanglement witnesses have been formulated. In Fig 2.6, we compare the
entanglement of distinguishable particles and indistinguishable ones.2

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

d

p

distinguishable, SR>1

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

d

p

indistinguishable, Bosons

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

d

p

indistinguishable, Fermions

Figure 2.6.: Entanglement of mixed states, ρ̂ = p|ψ〉〈ψ|+ (1− p)Î/trÎ is verified (gray ar-
eas) for different Hilbert space dimension d. Here, Î differentiates between
two distinguishable particles (|ψ〉 = d−1/2∑d

n=1 |n〉 ⊗ |n〉; plot “SR>1”),
two Bosons, (|ψ〉 = d−1/2∑d

n=1 |n〉 ∨ |n〉), and two Fermions (|ψ〉 =
(bd/2c)−1/2∑bd/2c

n=1 |2n〉 ∧ |2n+ 1〉).

2 We us in Fig. 2.6 the standard notions for the symmetric tensor product, |a〉 ∨ |b〉 ∼= |a〉⊗ |b〉+ |b〉⊗ |a〉,
and the skew-symmetric tensor product, |a〉 ∧ |b〉 ∼= |a〉 ⊗ |b〉 − |b〉 ⊗ |a〉.
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2. Verification of correlations

The last two items in this section are devoted to the identification of bound entangle-
ment [XII] and quantum discord [IV]. The latter one is a collaboration with A. Miranowicz
(AdamMickiewicz University) and P. Horodecki (Technical University of Gdańsk; National
Quantum Information Centre of Gdańsk). We could derive new methods to infer bounds
to the quantum discord [210,211] in two qubit systems. In the joint theoretical work [XII]
with M. C. de Oliveira (Universidade Estadual de Campinas), we constructed a new type
of bipartite bound entangled states which can be generated with state of the art optical
devices and processes. The realization of the earlier known states was an unsolved problem
for the bipartite case [123], or it required multimode scenarios [121,122,125,127].

2.4. Summary and Outlook
In summary, we studied a number of methods to infer quantum correlations within mul-
tipartite systems. In particular the novel technique of separability eigenvalue equations
has been studied including its application to experiments. We demonstrated that complex
entanglement correlations can be identified in many physical systems, such as semiconduc-
tor structures, atmospheric channels, multiple Bosons or Fermions, and frequency comb
laser systems. We also observed that multimode nonclassicality of harmonic oscillators
are visualized in terms of negative probabilities being regularized phase-space distribu-
tions. Even types of correlations which cannot be observed with some other methods had
been successfully identified. Continuous phase sampling allow the reconstruction of such
quasiprobabilities without additional extrapolation methods as required for phase-locked
measurements.
As we mentioned earlier, we are currently implementing an algorithm which can provide

numerical solutions of the separability eigenvalue problem. This might yield a way to
infer non-Gaussian types of multipartite entanglement. Moreover, a regularization of
generalized P distributions for space-time-dependent correlations is planned; cf. [63]. In
this context, we also aim at regularizing a joint system of one radiation mode coupled
to a discrete variable system. Such an approach corresponds the Wigner function matrix
representation in [220]. Currently this work – in collaboration with M. Bellini (Istituto
Nazionale di Ottica, Firenze) – is in preparation.
This chapter has been devoted to the identification of quantum correlations. In the next

chapter, we will study the quantification of such correlations.
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3. Unified and universal quantification

The generation and application of quantum correlated systems also requires the determi-
nation of the strength of a quantum feature. From the information science point of view,
information based quantifiers are useful, e.g., distance based measures are preferable. It
was shown that such approaches can yield an ambiguous quantification [XXV, 141, 142].
Therefore we studied algebraic measures which are based on the quantum superposition
principle. In this chapter a summary of this direction of research is given.

3.1. Degrees of nonclassicality and entanglement
The two notions of quantumness, entanglement and nonclassicality of harmonic oscillators,
will be quantified in terms of Schmidt number and the degree of nonclassicality, respec-
tively. The algebraic quantification also leads to a method relating both quantum aspects
on an unified basis [XIV].

3.1.1. Entanglement quantification
One quantifier of bipartite entanglement is the Schmidt number (SN) [5, 135, 221]. This
quantifier is shown to be universal, i.e., it has some more involved properties than other
entanglement metrics [vi]. The construction of SN witnesses using generalized eigenvalue
equations has been introduced in [v]. In a spinor representation, they read as

L̂b1;b1 · · · L̂b1;br
... . . . ...

L̂br;b1 · · · L̂br;br


|a1〉

...
|ar〉

 = g


1̂b1;b1 · · · 1̂b1;br
... . . . ...

1̂br;b1 · · · 1̂br;br


|a1〉

...
|ar〉



and


L̂a1;a1 · · · L̂a1;ar

... . . . ...
L̂ar;a1 · · · L̂ar;ar


|b1〉...
|br〉

 = g


1̂a1;a1 · · · 1̂a1;ar

... . . . ...
1̂ar;a1 · · · 1̂ar;ar


|b1〉...
|br〉

 ,
(3.1)

with X̂ak;al = trA(L̂[|al〉〈ak| ⊗ 1̂B]) and X̂bk;bl = trB(L̂[1̂A ⊗ |bl〉〈bk|]) for X̂ = L̂, 1̂.

Figure 3.1.: Light from semiconductor
systems [V].

In order to study the amount of entangle-
ment from planar microcavities, this approach
has been applied in collaboration with the the-
ory group of H. Fehske (Ernst-Moritz-Arndt-
Universität), see [V] and Fig. 3.1. Here, this
semiconductor structure is driven with 3 pump
beams resulting in emitted light which is en-
tangled. The light may propagates in different
media yielding a delay time ∆t due to different
optical path lengths. This dephasing induces a
decay of the strength of quantum correlations,
that can be directly observed in Fig. 3.1 for dif-
ferent system parameters.
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3. Unified and universal quantification

type I

SPDC

Figure 3.2.: Measurement of path
entangled light [XVII].

SN witnesses allow an identification of the num-
ber of nonlocal superpositions, which has been done
in collaboration with the group of S. Pádua (Uni-
versidade Federal de Minas Gerais) [XVII]. See also
Fig. 3.2 for the experimental implementation. Here
correlated photon pairs are produced by a spon-
taneous parametric down conversion (SPDC) and
coincidences of such path entangled light fields are
recorded. The path can be inferred using a slit aper-
ture and spatial light modulator (SLM). The charac-
terization of the generated states’ SN has been done
by using witnesses.
Parallel to the determination of the SN for dis-

crete variable systems, entanglement in continuous
variables has been quantified. For this reason co-
variance based SN criteria have been established
to quantify entanglement of Gaussian states [XI].
Other successfully applied Gaussian entanglement
probes [106, 107] could only identify the presence of entanglement itself. We also consid-
ered the influence of attenuations to the amount of Gaussian entanglement.
Beyond the bipartite case, the multipartite SN is the natural extension of the bipartite

one [136]. Together with the partitioning of modes this yields the notion of a structural
quantifier of entanglement [XVIII]. Let us briefly outline the meaning of this notion.
We may consider an example of an N -partite quantum system for N = 4. Two possible
partitionings are

P 2 = {1} : {2, 3, 4} and P 3 = {1} : {2, 3} : {4}, (3.2)

where P n is a n-partition. Since P 3 can be considered as further splitting of P 2, this 3-
partition refers to as a refinement of the given 2-partition. With respect to each partition,
one can characterize the multipartite SN r. This yields convex, nested sets SPn,r. The
pure states in this set are quantum states which are a superposition of not more than r
separable states with respect to the n-partition P n.

Figure 3.3.: Inclusion of struc-
tures of entangled
states [XVIII].

Mixed states may be obtained by a convex roof
construction of those pure ones. In Fig. 3.3 the in-
clusion of such sets for r > r′ and refinements P ′n′ of
P n are shown. The formulation of witnesses, which
are capable of detecting whether a studied state is
within SPn,r or not, has been derived in [XVIII]. In
this case the construction yields a quite involved set
of separability eigenvalue equations; cf. Eq. (3.1)
for the bipartite case. However, it has been demon-
strated for some examples how they can be solved.
With this method, we have been able to formulate
novel entanglement criteria which allow the simulta-
neous determination of the entanglement structure
– given by the partitioning – together with the quan-
tification of the identified entanglement – in terms of superpositions (multipartite SN).
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3.1. Degrees of nonclassicality and entanglement

3.1.2. Nonclassicality quantification

In the article [VI], we introduced in a first step operational measures for the nonclassicality
of harmonic oscillators. These quantifiers are related to certain measurement setups. In
particular, the role of noise-free measurements has been outlined. Consequently, this
quantification approach characterizes a subset of nonclassical states which are useful in a
specific experimental configuration.
In a second step we studied the algebraic quantification of nonclassicality. For this

purpose we introduced an axiomatic approach for defining such measures. This is mainly
adapted from the entanglement approach [137–139] to systems of harmonic oscillators
whose classical reference are coherent states rather than separable ones. The axiomatic
approach also requires an analysis of classical operations. Those maps – e.g. beam split-
ters, phase shifts, and displacement operations – cannot generate nonclassical light from
any coherent input field. Examples of a nonclassical processes are squeezing transforma-
tions – e.g. in an optical parametric oscillator – or the photon addition protocol. The
latter one renders it possible to generate nonclassical light from a classical thermal input
state [74].
One example of such an algebraic measure, which fulfills the established axioms is the

degree of nonclassicality, which counts the number r of superposition of coherent states.
The witnessing approach has been investigated together with the group of B. Hage (Uni-
versität Rostock). The construction of such witnesses from Hermitian operators K̂ has
been done in the same way as it was performed in the case of the SN for entanglement
quantification. The solution of the corresponding nonlinear eigenvalue equations led to up-
per bounds br. They limit the expectation value of K̂ for r-classical states Cr, cf. Fig. 3.4.
Whenever this bound is exceeded, the state under study has a degree of nonclassicality
larger than r – i.e. more than r superpositions of coherent states are required. The right
part of Fig. 3.4 shows the example of a squeezed state projector,

K̂ = |ξ〉〈ξ|, with |ξ〉 = (cosh[ξ])−1/2e−
1
2 tanh[ξ]â†2 |0〉. (3.3)

If the fidelity 〈ξ|ρ̂|ξ〉 is larger than br, then the state ρ̂ has a nonclassicality larger than r.
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Figure 3.4.: Left: Embedded sets Cr of states with a degree of nonclassicality of r are
shown. A separating hyperplane (witness) are depicted by the individual
bounds br. Right: The dependence of these bound br for a squeezed state
projection test, K̂ = |ξ〉〈ξ|, is plotted in dependence of the squeezing parame-
ter ξ ∈ [0,∞[. The solid(dashed,dotted) curves correspond to bounds for the
degree of nonclassicality r = 1(2, 3). See also [XVI].
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3. Unified and universal quantification

3.2. Relation between the quantification of nonclassicality and
entanglement

As we discussed above, both approaches – the quantification of nonclassicality and the
quantification of entanglement – can be done via counting quantum superpositions. Nat-
urally the question arises whether there is a connection of both. An early attempt in this
direction has been done in [222]. There, it has been shown that a nonclassical input state
is required as the input of a beam splitter, cf. Fig. 3.5, in order to obtain entanglement
at the output.

Figure 3.5.: Setup in [XIV].

In our work [XIV], we showed that there is a
deeper connection between the nonclassicality of the
signal (SI) input state and the two-mode entangled
output. Namely, the degree of nonclassicality of the
input state is identical to the SN of the output state.
As an example, let us consider an input state in the
form of an even coherent state [223],

|ψ〉in = |α〉+ | − α〉√
2(1 + exp[−2|α|2])

⊗ |0〉. (3.4)

Hence the output state of the configuration in
Fig. 3.5 is

|ψ〉out = |α
′〉 ⊗ |α′〉+ | − α′〉 ⊗ | − α′〉√

2(1 + exp[−4|α′|2])
, for α′ = α√

2
, (3.5)

which has a SN of two since |α′〉 and | − α′〉 are linearly independent. A similar relation
is shown to be valid for the multipartite case [XIV].
Hence, a nonclassical single mode light source can be used to generate entanglement

of the same amount as the degree of nonclassicality of the input field. This shows the
connection between nonclassical light and entangled radiation fields through the quantum
superposition principle. Here, it is also worth mentioning that localized emitters have
similar properties [224]. Whenever the emitted light is nonclassical in one direction, then
there always exists entanglement between emitted light modes propagating in different
directions.

3.3. Summary and Outlook
In this chapter we studied the universal quantification of quantum correlations in terms
of superpositions of classical states. For the notion of nonclassicality of harmonic oscil-
lators, we introduced the degree of nonclassicality which corresponds to the number of
superimposed coherent states. For multipartite entanglement this gave rise to the struc-
tural quantification of entanglement in terms of mode decompositions and the multipartite
Schmidt number. A relation between these two notions has been derived using only linear
optical elements – such as beam splitters. Witnesses to detect certain number of quantum
superpositions have been constructed for both cases – nonclassicality and entanglement.
Applications to path-entangled light and entangled light, which is emitted from semicon-
ductor systems, outlined the general applicability of our technique.
For future applications, it would be also interesting to investigate the quantification of

quantum processes. This means a determination of the amount of nonclassicality, that
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3.3. Summary and Outlook

can be obtained in a given setup, has to be quantified. For example, the nonclassicality of
protocols such as photon-addition should be inferred; cf. [74] for a related implementation.
This information about the strength of quantumness of such an operation would be crucial
for application of quantum effects and studies of noisy environments.
Moreover, there is a fundamental mathematical relation between the SN of multipartite

pure states and the rank of multi-linear maps. From the fundamental point of view, an
analysis of this relations has to be performed which might be done by using nonlinear
eigenvalue problems. Any insight in this direction – e.g. a spectral theorem for multi-
linear maps – would automatically increase the knowledge about entanglement.
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4. Click measurement of radiation fields

Measurement theory is a cornerstone of quantum optics. A comprehensive understanding
of a performed measurement is indispensable for uncovering quantum properties of gener-
ated light fields. Typical setups employ detectors which are described by the photoelectric
detection theory. In the single photon domain, however, avalanche photodiodes (APDs) in
Geiger mode play a crucial role. Such diodes produce a “click” whenever light is detected
and remain silent otherwise, i.e. “no-click”. If an incident light field is split into multiple
fields with equal intensities then coincidences of multiple APDs may be recorded, see fig-
ure 4.1. Examples of such detection schemes are array detectors being equally illuminated
or (time-bin) multiplexing detectors; see, e.g., [181,182,184–190].

Figure 4.1.: An incident light field is split into N = 4 output fields with equal intensities.
The same number of APDs detect each of these fields yielding a joint number
of coincidence clicks k. The probability to measure k clicks is described by
the click counting statistics ck [I].

In close collaboration with G. S. Agarwal (Oklahoma State University), we have shown
that the photoelectric counting theory and measurements with multiple APDs are in-
compatible. Therefore, we derived the click counting theory which renders it possible to
describe the correct statistics of click counting devices. Based on this method, we have
been able to establish new criteria to verify quantum correlations [III,X,XIII,XX]. In this
chapter we aim at summarizing our research of click counting devices.

4.1. Photoelectric counting versus click counting

Firstly let us recapitulate the photoelectric detection theory, cf. [4]. The probability to
measure n photoelectric counts, likewise n photons for a perfect quantum efficiency η = 1,
is described by

pn =
〈

: (ηn̂)n

n! e−ηn̂:
〉
, (4.1)

with n̂ being the photon number operator and : · : being the normal ordering prescription;
cf., e.g., [145]. As an example let us consider a coherent state |α〉. In this case we get a
Poisson (shot noise) statistics,

pn = λn

n! e−λ, with λ = η|α|2. (4.2)
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4. Click measurement of radiation fields

To probe the Poissonian character of this statistics, the Mandel parameter [33] has been
introduced

QM = (∆n)2

n̄
− 1, (4.3)

with n̄ and (∆n)2 being the mean value and the variance of the pn statistics, respectively.
If pn describes a Poisson statistics, we have QM = 0 (e.g, for a coherent state). If classical
correlations broaden the shot noise statistics, we have a super-Poissonian radiation field,
QM > 0. Most interestingly, sub-Poissonian light, QM < 0, is a clear signature of the
quantum character of the measured system – in the notion of nonclassicality of harmonic
oscillators.
As mentioned earlier, Eq. (4.1) is not the kind of statistics which describes the mea-

surement in Fig. 4.1. In Ref. [I] the actual click counting statistics has been derived. We
get the probability ck for k clicks as

ck =
〈

:
(
N

k

)(
e−

η
N
n̂
)N−k (

1̂− e−
η
N
n̂
)k

:
〉
, (4.4)

where k is an integer between 0 and N and η is the efficiency of each APD. Again, the
example of a coherent state reveals that this is the quantum version of a binomial statistics,

ck =
(
N

k

)
(1− p)N−kpk, with p = 1− e−η|α|2/N . (4.5)

Analogously to the Mandel parameter, we introduced the binomial parameter [III]

QB = N
(∆k)2

k
(
N − k

) − 1, (4.6)

with k and (∆k)2 being the mean value and the variance of the ck statistics, respectively.
Here a binomial statistics yields QB = 0. A general classical state fulfills QB ≥ 0; whereas
sub-binomial light, QB < 0, certifies the quantum nature of the measured field. Shortly
after introducing the binomial parameter, Bartley et al. directly observed sub-binomial
light [225]; see also [226] for further studies.
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Figure 4.2.: The photoelectric and the click statistics of a coherent state with a mean
photon number |α|2 = 64 is shown for a quantum efficiency η = 60%. We
assume N = 100 APDs for the click statistics.

In Fig. 4.2, we compare the properties of photoelectric counting and click counting
measurements. Since a coherent field is depicted, we have QM = QB = 0. It can be
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4.2. Correlation measurements

seen that the click counting distribution is narrower than the Poisson one. If the Mandel
parameter (4.3) is applied to the click statistics (4.5), we would get a fake negativity
QM < 0. Therefore, it is very important to employ the correct measurement description
for determining quantum properties of states.
Moreover, let us comment that in the case of a diverging number of APDs, N →∞, the

click counting distribution converges to the Poissonian one. However this convergence is
quite slow, i.e., of the order ∼ 1/N [I]. On the other hand, for any finite number of APDs,
the number of clicks k is also finite, whereas the photoelectric detection is described by
n ∈ N. Thus, an inversion of the click counting statistics to the photon number distribution
is impossible. Therefore we derived a number of nonclassicality probes to directly employ
the click counting theory, which is additionally much more convenient for experimentalists.

4.2. Correlation measurements
So far we discussed the click counting statistics ck and the binomial parameter QB, cf.
Eqs. (4.4) and (4.6), respectively. The latter parameter is based on the mean value and
the variance of the click distribution, i.e., up to second order moments. In Ref. [X], we
considered more general nonclassicality criteria. We consequently studied higher order
correlations for the verification of quantum effects. Additionally, we formulated criteria
for identifying quantum correlations between multiple click detector systems and described
non-linear detection models of APDs.
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Figure 4.3.: Higher order click correlations of
a SPATS, cf. [X].

In Fig. 4.3, the application of higher or-
der moments is shown. A single photon
added thermal state (SPATS) [47], being
characterized by its mean thermal photon
number n̄, is measured with a click count-
ing device consisting of N = 8 diodes and
a quantum efficiency η = 90%. The matrix
of moments is defined as

M =(〈:π̂m+m′ :〉)m,m′ ,
with π̂ =1̂− :e−ηn̂/N :.

(4.7)

Whenever a minor is negative, detM < 0,
we have successfully identified the nonclas-

sicality of the state. The higher correlations in Fig. 4.3 are addressed through the deter-
minant of the matrix of moments up to second (solid), forth (dashed), sixth (dotted), and
eighth (dot-dashed) order.
It is equally interesting to study correlations between different click counters. In Fig. 4.4

a correlation measurement setup with two multiplexing detectors is outlined – for each
detection system holds N = 4 and η = 80%. The source is assumed to produce correlated
photon pairs, e.g., through a down-conversion of a (not shown) pump beam. The result-
ing state is a two-mode squeezed-vacuum state, which is characterized by the squeezing
parameter |ξ| ∈ [0, 1[. The matrix of bimodal moments is an adequate method to identify
correlations between them. For example, the second order moment condition for classical
light reads as

0≤det

〈:π̂0
1π̂

0
2:〉 〈:π̂1

1π̂
0
2:〉 〈:π̂0

1π̂
1
2:〉

〈:π̂1
1π̂

0
2:〉 〈:π̂2

1π̂
0
2:〉 〈:π̂1

1π̂
1
2:〉

〈:π̂0
1π̂

1
2:〉 〈:π̂1

1π̂
1
2:〉 〈:π̂0

1π̂
2
2:〉

=〈:(∆π̂1)2:〉〈:(∆π̂2)2:〉−〈:(∆π̂1)(∆π̂2):〉2, (4.8)
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Figure 4.4.: Left plot: Correlation measurement setup using two multiplexing detectors.
Right plot: Quantum correlations are shown as a function of the parameter ξ
for two-mode squeezed-vacuum state, |ξ〉 =

∑∞
n=0(1− |ξ|2)1/2ξn|n, n〉 [X].

with π̂1(2) being defined for the detector 1(2) as given in Eq. (4.7). The graph in Fig. 4.4
visualizes these cross correlations for the considered state. Again a negative value corre-
sponds to a verification of nonclassicality. Here it is important to note that the two-mode
squeezed-vacuum is classical if a single mode is considered only, i.e., tracing over the other
mode. Hence, if we only rely on the measurements of a single detector system, we can-
not observe the quantum character of the state. Therefore, the shown negativities are
authentic two-mode correlations.
Finally, let us study the detector responses beyond the linear regime. Here, this means

that the “no-click” event of a single APD is no longer given by the expectation value
〈: exp[−ηn̂]:〉; see also [227] in this context. In general the exponent could be an arbitrary
function Γ of the photon number n̂. We get for a single diode the probability pon(off) to
click (not to click) as

pon = 1− 〈: exp [−Γ(n̂)] :〉 and poff = 〈: exp [−Γ(n̂)] :〉 . (4.9)

Although the particular form in (4.4) in no longer valid, we showed that the binomial
character of the click statistics for multiple APDs is preserved [X]. Hence all the methods
are equally applicable. In Fig. 4.5, some examples are given.
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Figure 4.5.: The binomial statistics of a coherent state |α|2 = 4 for N = 16 APDs [X].
The response is (a) linear Γ(x) = x, (b) affine Γ(x) = x + 2, corresponding
to a dark count rate, (c) quadratic Γ(x) = x + x2/4, and (d) logarithmic
Γ(x) = x− ln[1 + x], corresponding to a two-photon absorption process [228].
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4.3. Phase sensitive measurements

So far the considered measurements schemes could not detect phase sensitive quantum
features. In order to overcome this deficiency, we formulated the theory of balanced
homodyne detection (BHD) using click counters [XX]. In Fig. 4.6, we outline this setup.
The difference click statistics is shown in figure 4.7 (left) for a coherent state signal with
a mean photon |α|2 = 4, which is also the local oscillator (LO) intensity r2.

Figure 4.6.: BHD setup with click
measurements [XX].

The most important modification in comparison
to the BHD employing photoelectric detection the-
ory is that the difference statistic does not yield the
quadrature distribution. Here, we have to consider
a nonlinear quadrature operator,

X̂(ϕ) = 2Ne−
ηr2
2N :e−

ηn̂
2N sinh

[
ηr

2N x̂(ϕ)
]

:, (4.10)

being a function of the true quadrature operator
x̂(ϕ) = â exp[−iϕ] + â† exp[iϕ]. Again, we can for-
mulate a matrix of normally ordered moments of the
click quadrature operator X̂(ϕ). The second order

minor of this matrix yields the corresponding nonlinear squeezing condition,

〈
:[∆X̂(ϕ)]2:

〉
<
〈

:[∆X̂(ϕ)]2:
〉

vac
= 0. (4.11)

The application to a squeezed signal field – given by the squeezing parameter ξ – is plotted
in Fig. 4.7 (right). It can be observed that the nonclassicality of the state is certified for
all squeezing parameters. Moreover, this is done for a relatively low quantum efficiency,
η = 50%, and only N = 4 APDs per detector.
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Figure 4.7.: Left: The phase sensitive difference click statistics of a coherent state is shown.
Here, ∆k is the difference of clicks from both detectors and ϕ is the LO phase,
cf. Fig. 4.6. Right: The squeezed and anti-squeezed variances of the squeezed
state |ξ〉 = (cosh ξ)−1/2 exp[− tanh ξâ†2/2]|vac〉 are shown in dependence of
the parameter ξ ∈ [0,∞[. See also [XX].

Recently, we also studied an unbalanced homodyne detection scheme, cf. [152, 153],
using click counters. This theoretical analysis was done in collaboration with A. Luis
(University Complutense) [XXIII]. In such a case, generalized phase-space functions can
be established, which are regular and can become negative for non-classical states.
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4.4. Summary and Outlook
We have seen that click counters are a versatile detection system to infer quantum proper-
ties of radiation fields. The collaboration with G. S. Agarwal (Oklahoma State University)
on this topic started in 2012. So far five papers have been published or submitted on dif-
ferent topics where click counters can be applied. Beside the above discussed approaches,
we considered more applications, such as: verification of time dependent correlations [X]
and state engineering protocols employing click counters [XIII].
Additionally we started a number of collaborations with experimental groups for apply-

ing our theory. This includes the groups

• H. Stolz and B. Hage (Universität Rostock, Rostock, Germany) using array detectors;

• I. A. Walmsley (University of Oxford, Oxford, UK) using multiplexing detectors;

• A. Szameit (Friedrich Schiller Universität, Jena, Germany) using waveguide based
detectors;

• and Ch. Silberhorn (Universität Paderborn, Paderborn, Germany) using fiber loop
detectors.

Here, the Oxford group already applied the QB parameter, for the first experimental
demonstration of sub-binomial light [225]. Our click counting method is quite appealing
to experimentalist, because directly accessible sampling formulas have been provided and
a manifold of experimental imperfection have been taken into account.
Beyond a number of other straight forward extensions of the so-far conducted theoretical

analysis, a main aim we have in mind is the detection of entanglement. This should be
possible by employing our method of separability eigenvalue equations to phase sensitive
click counting. Applications of such an approach would verify that our techniques are
useful tools for quantum information technology.
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5.1. Summary

We have shown how to infer quantum correlations, how they can be quantified, and how
novel measurement schemes can be used to observe them. In the introduction, we reported
on the state of the art and discussed the elaborated method in a general framework. The
following chapters have been mainly concentrated on two aspects of quantumness: the
nonclassicality of harmonic oscillators and entanglement between subsystems of compound
quantum systems. Let us summarize the results we presented in this thesis.1
The definition of classical pure reference states led to the notion of classically corre-

lated states via convex mixtures of those pure ones. For entanglement and nonclassi-
cality of harmonic oscillators, this approach guided us to generalized quasiprobabilities
which cannot be interpreted in terms of classical probability theory. These distributions
allow the identification of quantum correlated states from negative values within these
pseudo-probabilities; cf. [ii, II] for optimized quasiprobabilities of entanglement in finite
dimensional subspaces [iii], and cf. E. Agudelo et al. [VII,XXI] for multimode regularized
nonclassicality quasiprobabilities. It has been also shown in A. Luis et al. [XXIII] that
nonclassical phase-space functions can be inferred from click counting measurements.
Witnesses – representing one form of linear correlation functions – are useful approach

to identify quantum correlations. In this document, the construction of such witnesses
has been formulated in terms of nonlinear eigenvalue equations. For entanglement, this
led to the so-called separability eigenvalue equations [i, VIII]. Similar approaches have
been discussed for witnessing the amount of bipartite entanglement [v], the amount of
multipartite partitions F. Shahandeh et al. [XVIII], or the amount of nonclassicality in
M. Mraz et al. [XVI]. In collaboration with G. S. Agarwal (Oklahoma State University)
we considered correlations in terms of moments of the click counting statistics to infer
nonclassical light [III, X, XX], which can be mapped to higher-order moment witnesses.
Other correlations can be used to formulate bounds to the property quantum discord, cf.
A. Miranowicz et al. [IV].
We have used the witnessing approaches to uncover quantum features in different phys-

ical systems or applications. For example, the theoretical study of entangled light, which
is emitted from a semiconductor system, has been characterized by D. Pagel et al. [V,IX].
Moreover, the entanglement transfer in turbulent atmospheric channels can be studied
on such a basis, cf. M. Bohmann et al. [XXII]. Covariance-based witnesses for detecting
the amount of entanglement in Gaussian states have been introduced, F. Shahandeh et
al. [XI]. In A. Reusch et al. [XXIV], entanglement within Boson and Fermion systems has
been studied through the construction of witnesses for particular exchange symmetries.
The quantification of quantum correlations has been connected to the quantum super-

position principle [XXV]. In this sense, the degree of nonclassicality has been introduced
for quantifying the nonclassicality of harmonic oscillators in C. Gehrke et al. [VI]. Such
a superposition based technique yields some universal properties of the corresponding en-

1 The given references solely represent the author’s contribution to the field. In chapter 1, the state of
the art is presented in more detail. See also the proceedings [iv,XV].
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tanglement measure [vi] – the Schmidt number. It also allows a unified quantification of
entanglement and nonclassicality [XIV]. Additionally, the usefulness of operational mea-
sures for certain quantum applications, such as noise-free measurements or distillation
protocols, has been outlined in [VI,vi].
The generation and measurement of quantum correlated states is another aspect which

has been addressed. For example in the theoretical work F. E. S. Steinhoff et al. [XII]
it has been shown how to generate bound entangled states. Path entangled states have
been experimentally realized and characterized in A. J. Gutiérrez-Esparza et al. [XVII].
Frequency comb lasers have been demonstrated to be a versatile source of multimode
entangled light, which has been analyzed in S. Gerke et al. [XIX] regarding all possible
mode partitions. Using the true click counting statistics [I], the possibility to engineer
new classes of nonclassical states has been exploited [XIII].
In summary, novel approaches have been presented which determine and classify en-

tanglement in quantum optics and beyond. Multipartite systems of harmonic oscillators
– such as multimode radiation fields – have been treated in terms of regular phase-space
representations and superposition based measures of quantumness. A theoretical model
for state of the art detector systems has been described and its capability to uncover
quantum features has been elaborated.
The two examples of nonclassicality – in the notion of nonclassical Glauber-Sudarshan

phase-space representations – and entanglement in multimode radiations fields already
include a vast variety of quantum phenomena. The inspiring collaborations with experi-
mental and theoretical partners led to a deeper understanding of these effects. Of course
the results would not have been possible without the enduring hard work of all members
of theoretical quantum optics groups in Rostock.

5.2. Concluding remarks

In this cumulative habilitation, I summarized my recent research in the field of theoretical
quantum optics. Measuring correlations is of particular interest for demonstrating the
general quantum character of nature. Multimode continuous variable systems being sub-
jected to attenuations represent cumbersome scenarios for uncovering quantum features.
I consider such realistic systems in my studies, because they serve as an optimal test bed
to estimate the usefulness of novel methods that characterize quantum states.
We aimed at formulating unified concepts for achieving a progress in physics. For exam-

ple, many aspects of the theory of entanglement have been unified in terms of separability
eigenvalue equations. This includes quasiprobability representations, the structural quan-
tification, and systems with different exchange symmetries. We were able to increased the
knowledge of a system by surpassing limitations. For instance, the click detection theory
describes an information incomplete measurement scenario. Still, a number of unknown
nonclassicality probes have been formulated using diodes that can only discriminate be-
tween the presence or absence of absorbed photons.
Let us outline some of the research which I want to pursue in the future. Of course

the mathematical framework of the nonlinear eigenvalue problems has to be increased in
general. Further, we know that there is a relation between the equations which identify a
property (e.g. entanglement through separability eigenvalue equations) and the equations
that quantify the amount of quantumness (e.g. the multipartite Schmidt number). Putting
this relation onto a firm foundation would lead to a deeper understanding of the quantum
superpositions principle as a measure of the quantumness of physical systems. Also the
question “which witness is the best for a given state” has to be addressed in the future.
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The click counting theory follows the idea “what you see is what you get”. This means
that our methods can be directly applied to the experimentally obtained click-counting
distribution without complex data processing. As mentioned earlier, we have some col-
laborations in progress applying the theory to different experimental setups. Additionally,
It would be important to have a direct accessible entanglement probe based on the click
statistics. This could be directly used by our experimental partners to observe entangle-
ment within the existing detection settings.
Beside the open issues mentioned so far, let us comment on other aspects that require

more attention in the future. The question of multi-time quantum effects is of great
importance from the fundamental point of view. Since the dynamical behavior of a physical
system characterizes or even defines many quantum effects, e.g. photon antibunching, a
more profound theoretical description is required. For example, the question of “temporal”
entanglement is, in parts, an unsolved problem. Although I am currently not able to
present a solution to this issue, it surprises me that entanglement between remote particles
is much better understood then entanglement of two nearby points in time. A second
aspect to work on is the application of quantum light in quantum metrology. Here the
classical limit for estimating a physical quantity from a measurement is the Cramér-Rao
bound. The application of click detectors would clearly lead to a modified limit.
There are the huge number of open problems which are interesting to me from the

fundamental or application point of view. I’m looking forward to work on at least a few
of them.
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(Ernst-Moritz-Arndt-Universität, Greifswald, Germany)
topic: theory of entangled light from microcavity systems

• Prof. A. Miranowicz and Prof. P. Horodecki
(Adam Mickiewicz University, Poznań, Poland; Technical University of Gdańsk,
Gdańsk, Poland; National Quantum Information Centre of Gdańsk, Sopot, Poland)
topic: theory of quantum discord

• F. E. S. Steinhoff and Prof. M. C. de Oliveira
(Universidade Estadual de Campinas, Campinas, São Paulo, Brazil)
topic: theory of bound entangled states

• A. J. Gutiérrez-Esparza and Prof. S. Pádua
(Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil)
topic: experiment on entanglement quantification

• M. Mraz, S. Köhnke, and Prof. B. Hage
(Universität Rostock, Rostock, Germany)
topic: theory of quantification of nonclassicality; experiment on verification of non-
classicality

• Y. Cai, J. Roslund, Prof. N. Treps, and Prof. C. Fabre
(Laboratoire Kastler Brossel; Sorbonne Universités - Université Pierre & Marie
Curie; École Normale Supérieure; Collège de France; CNRS, Paris, France)
topic: experiment on entanglement in complex structured light fields

• Prof. A. Luis
(Departamento de Óptica, Facultad de Ciencias Físicas, Universidad Complutense,
Madrid, Spain)
topic: development of unbalanced homodyne click counting detection
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B.3. Metrics
Records in Web of ScienceTM (core collection, date: January 17, 2015):

• 22 listed publication

• 170 citations

• h-index: 8

Left: Published items. Right: Citations. From Web of ScienceTM.
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