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Abstract

Single neurons are bioelectrical transformers that continuously convert input spike trains

encoding sensory perception alongside internal states of the brain into output spike series.

The essence of this computational transformation is nonlinearity, realized by a cascade of

nonlinear components within the neuronal circuits: dendrite, spine, synapse and synaptic

plasticity. A deeper understanding is required of how a single neuron utilizes its nonlinear

subcellular computational devices at different neuroanatomical scales to generate complex

neuronal dynamics. The results presented in this thesis focus on single neuron computation.

In particular, compartmental models of cortex and striatum are accurately formulated and

firmly grounded in the experimental reality of electrophysiology to address two questions:

i) how striatal projection neurons implement location-dependent dendritic integration to

carry out association-based computation. A newmulti-compartmental model is introduced

to replicate the regenerative characteristics of distal dendrites observed in the experiment.

By applying the model to a new set of stimulation protocols, I find that single neuron’s rich-

ness in associative information processing comes from the interplay between proximal and

distal dendrites. This behavior is governed by two cellular anatomical ingredients which are

the delicate tapering of single dendritic branch and the length of spine neck;

ii) how cortical pyramidal neurons strategically exploit the type and location of synaptic

contacts to enrich its computational capacities. A new model is validated by the glutamate

uncaging experiment that reveals the difference between evoked EPSPs by axo-spinous and

axo-shaft synapses. The model prediction demonstrates that distal axo-shaft synapses can

gate nonlinear dendritic computing with higher threshold and drive somatic potential with

higher gain. The results shade light on the preserved functional role of subcellular compo-

nents on neuronal computation across different brain regions.

In another separate investigative pursuit, the emphasis is on addressing the question: how

point neuron models respond to converging presynaptic inputs to form synaptic patterns,

given diverse configurations of input statistics and various kinds of learning rules which are

known as spike-timing-dependent plasticity (STDP)? I characterize the potential effects of

action potential (AP) dynamics on STDP by exploring a new phenomenological model that

incorporates an AP-dependent learning window. The simulation indicates that AP duration

is another key factor for insensitizing the postsynaptic neural firing and for controlling the

shape of synaptic weight distribution.



Abstract

The models developed in this thesis are not designed to accomplish good performance in

model parameter estimation or either modeling formalism, but to predict particular aspects

of single neuron computation that involves re-assembling nonlinear fundamental units of

neuronal information processing. The results provide strong and testable predictions, which

if experimentally validated, could offer new insights into the functional roles of elementary

computational units of the brain such as shaft synapses that have not yet been investigated.



Zusammenfassung

Neuronale Zellen transformieren kontinuierliche Signale in diskrete Zeitserien von Ak-

tionspotentialen und kodieren damit Perzeptionen und interne Zustände. Diese Transfor-

mationen sind inhärent nicht-linear und werden durch eine Verkettung der Berechnung von

einzelnen nicht-linearen Elementen realisiert: Dendriten, Spines und Synapsen. Ein tief-

eres Verständnis dieser nichtlinearen Prozesse ist notwendig, um die komplexe dynamische

Prozesse zu verstehen. In dieser Arbeit ist der Fokus auf den Berechnungen durch einzelne

Nervenzellen.

Im Speziellen, werden Kompartiment-Modelle formuliert von Nervenzellen im Kortex und

Striatum, die elektrophysiologisch fundiert sind, um spezifische Fragen zu adressieren:

i) Inwiefern implementieren Projektionen vom Striatum ortsabhängige dendritische Inte-

gration, um Assoziationens-basierte Berechnungen zu realisieren? Dazu wird ein neues de-

tailliertes Kompartiment-Modell eingeführt, das experimentelle Ergebnisse reproduziert.

Das Modell wird dann verwendet, um die Antworten zu bisher noch nicht experimentell

verwendeten Stimulationsprotokollen vorherzusagen. In diesen Studien wurde herausgear-

beitet, dass die Interaktion zwischen – bezogen auf den Zellkörper – nahen und fernen Stim-

ulationsorten ausschlaggebend ist. Geometrische Eigenschaften wie die Länge der Spines

sind hier zentrale Einflussgrößen;

ii) Inwiefern nutzen kortikale Zellen den Typ und den Ort, um die durch sie realisierten

Berechnungen zu optimieren? Ein neues Modell wurde erarbeitet und dann durch neue

Experimente validiert. Das Modell sagt vorher, dass vom Zellkörper entferne Stimulatio-

nen nichtlineare Summationsprozesse mit einem höheren „Gain“ aktivieren können. Diese

Simulationsergebnisse legen nahe, dass sub-zelluläre Prozesse einen signifikanten Einfluss

auf neuronale Berechnungen haben.

In einer weiteren Studie, die Neuronenmodellen ohne räumliche Ausdehnung beschreiben,

wurde untersucht, inwiefern die durch Spike-timing abhängige Plastizität induzierten Än-

derungen an den synaptischen „Gewichten“ durch die detaillierte Dynamik des postsynap-

tischen Aktionspotentials beeinfluss werden. Hier wurde ein neues phänomenologisches

Modell exploriert. Es konnte gezeigt werden, dass diese Dynamik einen vermutlich bisher

ungeahnt großen Einfluss auf die Ensemblestatistik der synaptischen Gewichte der Nerven-

zellen hat.



Abstract

Alle in dieser Arbeit entwickelten Modelle haben nicht das Ziel, experimentelle Ergebnisse

im Detail zu reproduzieren, indem Modellparameter anhand von Daten gefittet werden.

Ziel war es, bestimmte Aspekte von experimentellen Daten zu reproduzieren, um Vorher-

sagen für Experimente abzuleiten und somit Einsichten in die funktionalen (nicht-linearen)

Elemente der Verarbeitungsketten zu gewinnen.



Contents

1 Introduction 1

1.1 Motivation and Addressed Questions . . . . . . . . . . . . . . . . . . . 1

1.2 Background from Neuroanatomy and Neurophysiology . . . . . . . . . . 2

1.3 Road-map of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . 9

2 Modeling Methods for Neuronal and Synaptic Dynamics 10

2.1 Models of Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Models of Synaptic Kinetics . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Models of Bidirectional Synaptic Plasticity . . . . . . . . . . . . . . . . . 20

2.4 Models of Dendritic Spines . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Extrapolating the Predictions of STDP Models to Disease States 37

3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Bayesian Network and STDP models . . . . . . . . . . . . . . . . . . . 40

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Inference with proposed Bayesian Network . . . . . . . . . . . . . . . . 45

3.5 Discussion and Future Vision . . . . . . . . . . . . . . . . . . . . . . . 48

4 Adapting the Ensemble of Synaptic Weights via STDP by Changing the Action

Potential Shape 49

4.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Formulation of dSTDP model . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Exploring the Consequences of State Transition in Striatal Principal Neurons by

Detailed and Reduced Approaches 70

5.1 State Transitions in Striatal Principal Neurons . . . . . . . . . . . . . . . 71

5.2 The Detailed Compartmental Model . . . . . . . . . . . . . . . . . . . 72

5.3 The Reduced Compartmental Model . . . . . . . . . . . . . . . . . . . 85

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Differential Spine and Shaft Computations in a Pyramidal Neuron Model 94

6.1 Experimental Background and Modeling Motivation . . . . . . . . . . . 95



xii CONTENTS

6.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Concluding Remarks 106

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Towards a Versatile Model of SPN . . . . . . . . . . . . . . . . . . . . . 108

7.3 Synaptic Plasticity and Dendritic Plateau Potentials . . . . . . . . . . . . 114

7.4 Cellular Implementation of Bayesian Computation . . . . . . . . . . . . 116

Bibliography 118



Chapter 1

Introduction

1.1 Motivation and Addressed Questions

Computational neuroscience is a branch of brain science that uses mathematical modeling

to provide either an account or a prediction of the behaviors observed in the corresponding

neurobiological system. In this dissertation, the system of interest is individual neurons of

different types and the motivation is to better understand how a single neuron utilizes its five

born-with nonlinear computational devices at different cellular levels and neuroanatomical

scales to integrate presynaptic input sequences and generate complex patterns of postsynap-

tic output spikes. A simulation approach using particular sets of the methods developed by

the community of computational neuroscience is adopted throughout to tackle the scien-

tific questions of interest, with the theme of the thesis diverging into two major parts:

In one of the parts, I am interested in studying the cellular mechanisms of two neuro-

physiological phenomena, building models that can provide reasonable accounts for the

experimental observations, and exploring by performing simulations the potential con-

sequences of the modeled mechanistic underpinnings. The model predictions not only

provide deeper insights into the inner-working of the studied systems, but also serve as

precursors that can offer much clear directions or expectations on the further experiment

designs that are of relevance. In order to achieve such a goal, a compartmental model-

ing approach is exploited, because it permits realistic simulation exploration by taking into

account sufficient neuroanatomical and neurobiophysical details together with the desired

experimental protocols. For the particular scientific questions in this part, I selected two

experimental observations that have been recently published: i) synaptically-evoked plateau

potential seen in the principal neurons of a brain region called striatum (SPN: Striatal Prin-

cipal Neuron) [Plotkin et al., 2011]; ii) the differences found in the evoked EPSPs by the

axo-spinous and the axo-shaft synapse in the Layer II pyramidal neurons of another brain

region named cortex (CL2PN: Cortical Layer 2 Pyramidal Neuron) [Araya et al., 2006a].

I utilize the built-models then to address two questions that relate to single neuron compu-

tation: i) how regenerative characteristics of distal dendrites can potentially enable SPNs to

efficiently carry out context-dependent information processing in the striatum; ii) how the
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axo-spinous and axo-shaft synapse can enrich the computational power of CL2PNs by ex-

erting complementary contributions in the cortex. The developed compartmental models

are validated by experimental data and aim at better capturing how the neuronal dendrites,

dendritic spines and synaptic components can implement elementary computations within

a single neuron.

In the other part, I am intrigued to investigate the emergent properties and functional con-

sequences of single neuron computation given a model neuron receives thousands of presy-

naptic inputs which is experimentally infeasible. For this purpose, a detailed compartmental

approach would be computationally too demanding, therefore I adopted a framework devel-

oped by [Song et al., 2000] using simplified phenomenological models that neglect in large

the biophysical details of a real neuron. The particular neuroscientific questions addressed

in this part are: i) how the alteration in the neuronal output dynamics is attributable to

the change of the input statistics given spike-timing dependent synaptic plasticity (STDP)

[Abbott and Nelson, 2000]; ii) how the outcome of STDP learning can be shaped by an in-

trinsic neuronal attribute: the duration of action potential. The linkage of the phenomeno-

logical models studied in this part to the compartmental models in the other one will be

discussed in the final chapter to showcase how these two seemingly diverged approaches

converge to a few common contributions to acquiring a deeper comprehension about sin-

gle neuron computation across different brain regions.

1.2 Background from Neuroanatomy and Neurophysiology

1.2.1 Primer on Neuroanatomy

Brain circuits integrate sensory information, control motor behavior and realize high-level

cognitive performance. These functions are implemented by three primary brain divisions:

cerebral cortex, basal ganglia and thalamus. The cerebral cortex (the upper portion of cere-

brum) is themain integration center whichmakes sense of particularly all the environmental

data that comes into the brain (green-line circled area in Fig. 1.1). For example, the sub-

region called somatosensory cortex, located in the parietal lobe, primarily processes neural

information sent from the receptors via sensory nerves. The thalamus, an egg-shaped struc-

ture sitting right in the middle of the brain, serves as a router that sorts all kinds of senses

and distribute them to the designated brain regions (blue-line circled area in Fig. 1.1). The

basal ganglia (the base portion of cerebrum) is located below the cerebral cortex, which

comprises multiple subcortical nuclei (pinked area in Fig. 1.1), involves complex interac-

tion between inhibitory and excitatory nuclei and controls a wide range of motor functions

through the connectivity between cortex and thalamus (see the next section for more de-

tails). The striatum, the major focus of this thesis, serves as the principal recipient of input

reaching the basal ganglia and thus provides the key substrate for parallel neural integra-

tion of information across corticostriatal and thalamostriatal circuits. Besides, striatum is

as well the major recipient of dense dopaminergic innervation and therefore responsible
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for integrating glutamatergic inputs from cortex and thalamus in tandem with dopaminer-

gic modulation. Its normal neuronal function of discharging action potentials and synaptic

function of responding to glutamatergic afferents is crucial for evolutionarily conversed pro-

cedural learning and motor planning. In this dissertation, simulation studies are carried out

to investigate the profound anatomically-related functional consequences of the location-

dependent synaptic integration of corticostriatal contacts (proximal vs. distal dendrite) and

the type-dependent of thalamostriatal connections (axo-spinous vs. axo-shaft).

Figure 1.1: Brain mapping and connectivity between cortex, thalamus and striatum.

The figure presents an illustrative painting of anatomical connectivity between three brain

regions. The excitatory presynaptic terminals from the cortex (green-circled) typically arrive

on the striatal spines, of both proximal and distal dendritic locations (left panel). In contrast,

the thalamic (blue-circled) postsynaptic axons target the striatal dendrites with the synaptic

contacts established, on both dendritic spines and shafts (right panel). The annotation is

drawn upon the original background picture, taken from [Kumar and Kotaleski, 2014].

1.2.2 The Importance of Striatum

To undertake both glutamatergic and dopaminergic integrative tasks, the striatum evolu-

tionarily developed a specific type of GABAergic neuron: the striatal projection neuron

(SPN), which comprises 95% of the total striatal cell population. Striatum is of paramount

importance for the basal ganglia, because it organizes the two gateways to the downstream

effectors. SPNs that straightforwardly innervate the GPi/SNr complex (two major output-

nuclei of the basal ganglia: internal globus pallidus and substantia nigra reticulata, as de-

picted in Fig. 1.2), establish the gateway to the “direct” pathway (dSPN) and those innervat-

ing the external globus pallidus (GPe) open the gateway to the “indirect” pathway (iSPN).

The prevailing model illustrated that these two pathways separately control the outgoing

information of the basal ganglia: dPSNs gate thalamocortical circuits by flashing a “go”

signal whereas iSPNs flash a “no-go” signal by dis-inhibiting the output nuclei. This model

is recently enhanced by a piece of in vivo evidence from [Cui et al., 2013], which showed
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beautifully that dSPNs and iSPNs are concurrently active at movement initiation.

Figure 1.2: The complex interaction between the nuclei within the basal ganglia.

The internal loop of the basal ganglia illustrates three pathways that are of symbolic im-

portance to the striatum-related functions. The striatum connects to SNr (substantia nigra

pars reticulata) and GPi (internal globus pallidus) via direct pathway (solid yellow), to ex-

ternal globus pallidus (GPe) establishing one piece of indirect pathway (dashed yellow) and

receives dopaminergic innervation (solid white) from SNc (substantia nigra pars compacta).

The importance of the striatum is also highlighted by various neurological diseases of basal

ganglia in which the striatum is obviously involved, including Parkinson’s, Huntington’s

and schizophrenia. The neurological pathology of those diseases often manifest themselves

as an alteration in dopaminergic afferents to the striatum. In Parkinson’s disease, for in-

stance, the alteration leads to a depletion of striatal dopamine and hence results in an im-

balance of the combined output by the direct and indirect pathways. More specifically, two

neuronal integrative properties of SPNs are impaired: i) the loss of dopaminergic innerva-

tion leads to hyper-activity in iSPNs and hypo-activity in dSPNs so that indirect pathway

becomes too strong and direct pathway is not strong enough. As a consequence, movement

is suppressed by a strong net “no-go” signal delivered by the indirect pathway which dis-

inhibits the output of GPi/SNr complex; ii) dopaminergic dysfunction is associated with

the impairment in synaptic integration across corticostriatal and thalamostriatal circuits. It

has been shown that hypo-activity in dSPNs is partly caused by the inability to undergo

long-term depression (LTD), which is designed to balance the excitatory drive onto iSPNs

[Lerner and Kreitzer, 2012]. Taken together, modeling of the electrical property of SPNs

are desperately needed not only for having computational models to test experimental hy-

pothesis but also for exploring the possible consequences of disease-induced and pathway-

specific physiological alterations.
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1.2.3 The Nonlinear Building Blocks of Computation in the Brain

If say our brain is a computer, the question “what is the elemental computational block of

the brain” is poorly-formulated compared to a digital one nowadays, and the answer to that

question is still rigorously under exploration and hotly open to debate. For over the past six

decades since the enunciation by [McCulloch and Pitts, 1943] that the single neuron rep-

resents the elementary computational unit of the brain, the principles of neurocomputing

have been characterized mainly at the level of individual neurons or neural networks formed

by single neurons. The reason for that notion to have prevailed over almost half of the cen-

tury was simple: First, the noble prize awarded discovery by [Hodgkin and Huxley, 1952]

demonstrated the essence of computation: nonlinearity through the interaction between

sodium and potassium channels; Second, the invention of the first transformative resistor

in the end of 1947 not only has been revolutionizing our fashion of living and our way of

using the biological brain until today, but also reinforced the central idea that the com-

plex brain function has to be a result of a cascade or a network of nonlinear elements with

naturally-adaptive dynamic nonlinear thresholds: the neuron, an electrically excitable nerve

cell that can generate action potentials and transmitt nervous information through electrical

and chemical signals (Fig. 1.3, upper center).

Two neurons mostly communicate via a chemical synapse that comprises a terminal of the

presynaptic axon which releases the neurotransmitter, a synaptic cleft and a postsynaptic col-

lection of receptors which receive the transmitted molecule. One single neuron integrates

thousands of synaptic inputs from the presynaptic counterpart and then processes this con-

verged information to generate output spikes. Early models of neurons implemented such

integration by assuming that each synaptic input represents a linear and passive weight. In-

deed, one of themajor synaptic receptors, amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor (AMPAR), generates nearly instantaneous and passive response depending on

the input strength of the presynaptic host. However, it didn’t take long for experimentalists

to recognize that a synapse is not merely a passive weight-holder, but as well a nonlinear de-

vice which is capable of encoding the current state of the neuron by another type of receptor,

known as N-methyl-D-aspartate receptor (NMDAR) [Nowak et al., 1984]. The dynamics

of NMDAR channels are both input-sensitive, depending on the amount of the neurotrans-

mitter released from the presynaptic terminal, and voltage-dependent, gated jointly by the

extracellular concentration of magnesium and the level of membrane potential at the synap-

tic site [Jahr and Stevens, 1990]. In addition, the biological synapse changes the “weight”

nonlinearly on a short timescale depending upon the past history of the spike trains deliv-

ered to the synaptic site, thereby constantly redistributing the synaptic efficacy between two

neurons [Markram and Tsodyks, 1996] and reading out differently an identical presynaptic

neural code [Gerstner et al., 1997]. In contrast to the static synapse, the inherent dynamics

of the nonlinear synapse enriches neural networks with a very diverse class of computa-

tions on spatiotemporal patterns [Maass and Sontag, 2000] or even dominates synaptic re-

sponses to behaviorally relevant natural stimulation patterns [Dobrunz and Stevens, 1999].

In this context, another computational layer of the brain [Zador, 2000] can be indepen-
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dently added by the nonlinear synaptic device: the synapse, a biophysical conjunction that

is specialized to pass electrical and chemical signals between neurons (Fig. 1.3, lower center).

Neurons are distinct from other sphere-shaped or disk-shaped cells, they have a main body

(soma), a long slender nerve fibre extended from the soma (axon) and branched protoplas-

mic protrusions that extrude from the soma (dendrites). Interestingly, most of the synaptic

potentials arise not from the main body but from dendritic trees, and then journey along

to the soma and the axon. Despite long-held suspicions, the dendrite had a very dull image

and was once thought to work in the neural metropolis merely as the bean counter who

adds passively the total amount of synaptic beans delivered, until the very beginning of the

new era in dendritic biology [Barinaga, 1995]. First, Nobel laureate Bert Sakmann and

his postdocs listened carefully to the dendrites through multiple patch clamps and showed

that the finely tapered dendritic network is not an Einbahnstraße conveying only synap-

tic messages to the cell body but a two-way Autobahn that also back-propagates the signal

from soma to the dendritic tip [Stuart and Sakmann, 1994] and elevates dendritic intra-

cellular calcium concentration [Spruston et al., 1995]. Second, active sodium and calcium

channels can be recruited to engage in the dendritic integration of synaptic events and par-

ticipate to boost the diminished impact of many distant synapses on the neuronal output

[Magee and Johnston, 1995]. Third, thin dendrite can explode in the local dynamic spike-

initiation zone and spike, amplifying the somatic voltage in a significantly nonlinear fashion

[Schiller et al., 2000]. Fourth, the spatiotemporal sequence of the presynaptic input dot-

ted on the dendritic trunk can underlie our sensory detection of moving objects, such as

near or far and left or right etc. Single dendrite can carry out such processing by synap-

tic sequencing and dendritic discrimination [Branco et al., 2010], thereby serving as the

computational primitive for encoding and manipulating sequences. Those findings all had

remarkable consequences on the subsequent experimental explorations of dendritic non-

linearity. Importantly, the recent empirical evidence had let the dendrite shed its historical

character as a dull linear counter and become a favorite candidate of computational subunits

within the single neuron [Polsky et al., 2004]. If the essence of computation is symbolized

by the S-shaped sigmoidal function, the single neuron was then fortunate to possess a chain

of bidirectional sigmoidal computational primitives: the dendrite, the surrounding cyto-

plasm branched from the soma in complex patterns that serve to receive electrical signals

from other neurons and propagate them actively back to the soma (Fig. 1.3, lower left).

The fundamental electronic unit of any modern digital device is the transistor. The neu-

ron cannot be a transistor as it is not having just “three” antennas but connected with too

many nerve fibers from all parts of the brain. Likewise is the dendrite. The synapse could

base a current induced by the conductive pores of biochemical ion channels and emit a

sizable dendritic postsynaptic potential, however, individual synapse cannot efficiently col-

lect the electric energy and function as a voltage-divider even in a simplest serial circuit

of dendritic branch. Early in 1888, the great Ramón y Cajal had discovered that the site

of synaptic contact from the presynaptic cell is not directly located onto the surface of
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the dendrite but onto a tiny membrane protrusion that sticks out from the dendritic shaft

[Yuste, 2015]. The discovery of the dendritic spine has since fascinated the physicist, the

electrical engineer and the neuroscientist, because: First, the electrical model of a spine re-

alizes the most rudimentary functionality expected from a voltage-separator, by which the

levels of membrane potential in the spine head and the dendritic shaft can be relatively in-

dependently regulated by the neck in a purely current-based system [Gulledge et al., 2012].

Second, the high degree of spine compartmentalization guarantees a restricted biochemical

signaling that permits stimuli-specific pattern recognition and learning [Lee et al., 2009].

Third, the spine is a variable resistor, which can transform its neck resistance to operate

with a wide range of impedance levels, thereby providing a structural basis for synaptic effi-

cacy [Matsuzaki et al., 2004] and underlying receptor expression [Matsuzaki et al., 2001].

Fourth, the transformative variable resistor of spine neck could indeed function theoreti-

cally as a voltage-divider in the neuronal circuit and such divisive process may be optimized

for generating maximal amplification either locally in the spine head or globally in the soma

[Segev and Rall, 1988]. Nowadays, as the elementary building block, thousands of transis-

tors are assembled onto one single board of integrated circuits and it might be no wonder

that our brain is ubiquitously presented with such neuronal “transistor”: the spine, a small

membranous protrusion from the dendrite that act to receive single or multiple axonal ter-

minals from other neurons and provide a dendritic neuronal substrate for synaptic strength

storage (Fig. 1.3D, upper left).

Synaptic transmission is not linear and the short-term plasticity dominates the neural code

used in the signaling between two neurons on short time scales due to for example, uncer-

tainty in the neurotransmitter release [Tsodyks and Markram, 1997]. If neurons, synapses

and dendrites can all accomplish their assigned batches of brain computation, how is then

the computed result saved and retrieved the next time with less neural effort? “the persistence

or repetition of a reverberatory activity tends to induce lasting cellular changes that add to its

stability. In 1949, Donald Hebb conjectured that repetitive interexchange of neural activ-

ity leaves and consolidates a trace at the synaptic location where the computation occurs

[Hebb, 1949]. The first shred of evidence of such speculated synaptic modification was af-

ter 25 years obtained by [Bliss and Lømo, 1973] who demonstrated for the first time that

synapses do modify, in a long-term manner. Later, the work from another Nobel laureate

Eric Kandel on one of the simplest brain but the largest neuron in the animal kingdom

revealed that it was indeed the modified synaptic connection between the sensory and mo-

tor neurons that were responsible for long-term memory storage and long-term differential

behaviors of Aplysia [Bailey and Kandel, 2008]. Moreover, Hebbian notion of synaptically-

controlled association “firing together wire together” was confirmed by experimental pairing

of synaptic input and action potential output signals [Magee and Johnston, 1997]. Further-

more, suggested by network simulations, the nonrandom connectivity map formed by the

evolved synaptic weight may reflect sensory coding. Unidirectional strong connections can

store input patterns presented in the temporal scheme and bidirectional stable associations

are established to memorize the rate-coded stimuli [Clopath et al., 2010]. If the biological
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neural network implements in part the biologically-inspired back-propagation algorithm

used in the artificial neural network, the error correction is computed with diverse compu-

tational parameters ofmultiple dimensions [Markram et al., 2011]. None of them appeared

to be fit-able into linear models and this complicated nonlinear function of learning rate

that awaits theoreticians to formulate its general principles is: synaptic plasticity, a plastic

attribute of a synapse that can either increase or decrease its response to the incoming elec-

trical and chemical signals (Fig. 1.3, right panel).

Figure 1.3: The five nonlinear elementary elements of brain computation.

This figure illustrates an inventory of the cellular components that function cooperatively

to realize single neuron computation and their relations to the two parts of the thesis.
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1.3 Road-map of this Dissertation

The following chapters are adapted from the papers that were published during the comple-

tion of the thesis. Each chapter starts with a preamble together with the particular domain

knowledge and the modeling motivation by the time the research was initiated, and then

lays out the major results. The last chapter summarizes the main contributions of each study

and discusses the openings for future works.

Chapter 3: Extrapolating the Predictions of STDP Models to Disease States

This chapter features a workflow that extracts qualitative findings from simulation results

and an attempt to represent new knowledge using Bayesian inference. The particular exam-

ple considered here is the potential effects of various phenomenological STDP models on a

single model neuron in the condition of paroxysmal brain activity such as epileptic seizures.

The content is adapted from [Zheng and Schwabe, 2011a].

Chapter 4: Adapting the Ensemble of Synaptic Weights via STDP by Changing the Ac-

tion Potential Shape

This chapter proposes a novel phenomenological STDP model that depresses the synapse

using an AP duration dependent LTD window and induces the potentiation of synaptic

strength when presynaptic spikes arrive before and during a postsynaptic AP (dSTDP). The

model produces a unimodal distribution of synaptic weights and regulates the postsynaptic

spiking in a way that the neuronal response is sensitive to the signal but resistant to the noise.

The content is adapted from [Zheng and Schwabe, 2013b] and [Zheng and Schwabe, 2014].

Chapter 5: Exploring the Consequences of State Transition in Striatal Principal Neurons

by Detailed and Reduced Modeling Approaches

This chapter aims at realistic implementations of single neuron computing in a striatal neu-

ron. Compartmental models are built to validate in-vitro experimental data and then used

to simulate the functional consequences of the spatiotemporal synaptic signals impinging

on the proximal and distal dendrites.

The content is adapted from [Zheng and Schwabe, 2013a] and [Zheng et al., 2014].

Chapter 6: Differential Spine and Shaft Computations in a Pyramidal Neuron Model

This chapter presents a pyramidal neuronmodel that accurately replicates the type-dependent

synaptic integration observed in [Araya et al., 2006a], axo-dendritic vs. axo-spinous synapses.

The results demonstrate that distal axo-dendritic synapses can gate nonlinear dendritic com-

puting with higher threshold and drive somatic potential with higher gain.

The content is adapted from an accepted manuscript [Zheng and Schwabe, 2015].

Chapter 7: Concluding Remarks



Chapter 2

Modeling Methods for Neuronal and

Synaptic Dynamics

2.1 Models of Neurons

The core of modeling the basic electrical dynamics of individual neurons is anchored in the

models of passive membrane. The complex interplay of diverse ion mechanisms results in

a voltage difference across the membrane, with the inside potential conventionally denoted

being negative relative to the outside. The neuronal membrane that separates the intercel-

lular material from the extracellular environment is a lipid bilayer, which can be modeled as

a capacitor, that usually has a constant capacitance C
m
. In addition, this bilayer functions

in part as a resistor whose passive component usually has a resistance R
m
. Thus, based on

the conceptualization of a lipid bilayer, the simplest model of a passive membrane is a linear

electrical circuit with a capacitor and a resistor connected in parallel (Fig. 2.1). Injecting

a time-dependent current I
inj
into this RC circuit causes a voltage change inside the mem-

brane, that is attributable to the respective resistive and capacitive currents. The resulting

membrane potential u can be mathematically described by Eq. 2.1:

Cm
du

dt
+

u− urest

Rm

= Iinj (2.1)

where urest

represents the resting potential of the membrane. By re-arranging the term and

using the membrane time constant τ
m
as the production of resistance R

m
and capacitance

C
m
, Eq. 2.2 is obtained, which is the form more commonly used in the simulation studies.

τm
du

dt
= −(u− urest) +RmIinj (2.2)

2.1.1 Point Models

Models that describe the dynamics of membrane potential using a single variable u for de-

noting the membrane potential, are called point models. Often, those models involve no

spatial variables, and thus are also referred to as isopotential models. In what follows, I reca-

pitulate three major formalisms that are widely used in modeling individual point neurons.
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Figure 2.1: Simple RC circuit model of neuronal membrane.

The left panel illustrates a biological neuronal membrane and the right presents the simple

RC circuit that models the essential voltage dynamics across the membrane.

Integrate-and-Fire (IaF) Formalism

A model, that takes IaF formalism, does not incorporate the biophysical mechanisms that

contribute to the formation of an action potential and its corresponding shape (e.g., the

amplitude and the duration). In an IaF model, individual action potential is only described

as an electrical pulse. Each pulse arriving onto the postsynaptic neuron from a presynaptic

one, causes an electrical response which can either be excitatory or inhibitory postsynaptic

potential (EPSP or IPSP), depending on the nature of presynaptic signaling neuron. The

“faked” action potential is triggered in an IaF model when the membrane potential reaches

a threshold value. Therefore, an IaF model can be understood intuitively as a passive mem-

brane model (Eq. 2.2) combined with an artificial spiking threshold. For a constant input

current, it can be expected that an IaF model would spike linearly and regularly with a fixed

inter-spike interval as plotted in Fig. 2.2A.

Everything in an IaF model described above is linear except at the threshold. However, its

linear nature can’t account for a large body of nonlinear subthreshold responses. For this

purpose, a more generalized idea of IaF formalism was proposed to describe the dynamics of

membrane potential um by introducing nonlinear terms in the differential equation, such

as F (um) in Eq. 2.3:

τm
du

dt
= F (u) +Rmiinj (2.3)

One of the best-studied functions in the field of computational neuroscience is the exponen-

tial function. For example, an Adaptive Exponential Integrate-and-Fire Model (aEIF) was

shown to reliably predict in-vitro recorded neuronal activity [Brette and Gerstner, 2005].

The nonlinear function F (u) can be then formulated with an abstract form as described in

Eq. 2.4 which has a linear part that is identical to the term used in an IaF, and a nonlinear

component by which the curve bends rapidly near the spiking threshold:

F (u) = −(u− urest) + c0 exp(u− Vth) (2.4)
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where c0 is some coefficient and Vth is the threshold. As a consequence, given an identical

input current, aEIF model elicits spikes with an adaptive mechanism, extending the inter-

spike interval (Fig. 2.2B). It is worth mentioning that the championship model of the in-

ternational competition launched by International Neuroinformatics Coordinating Facility

that predicted correctly 59.6% and 81.6% of the spike times of two neuronal recordings,

was implemented by adopting a very similar modeling strategy with a moving threshold

[Kobayashi et al., 2009].
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Figure 2.2: Differential spiking behaviors given identical current injection.

A.The IaF model generates regular spiking.

B. In contrast, the aEIF model elicits spikes that are adapting to the injected current.

The neuron model is adapted from [Brette and Gerstner, 2005] and the simulation is per-

formed using the Brian Simulator [Goodman and Brette, 2008].

Izhikevich Formalism

The classic one-dimensional IaF model is one of the most widely used formalism in the

community of computational neuroscience. It works as a simple integrator and can exhibit

tonic spikes with constant firing frequency as shown in Fig. 2.2A. However, it is probably

the worst model to use in simulations because it cannot replicate many prominent features

of spiking neurons. Adding another dimension to it, the adaptive IaF does endow the model

with spike-frequency adaption as shown in Fig. 2.2B. Nevertheless, aEIF model still lacks a

number of fundamental properties of spiking neurons. Real biological neurons feature rich

firing patterns and complex spiking dynamics as reviewed in [Izhikevich, 2004], including

regular tonic spiking, burst spiking, spike frequency adaptation, inhibition-induced spiking

and etc. It is desirable to have a “versatile” spiking model to explore the temporal structure

of spike trains and how a neural networkmight process information using both spike timing

and frequency. For this purpose, a model that can replicate more than 20 important neuro-

computational features was developed by Izhikevich using bifurcation theory and normal
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form reduction [Izhikevich, 2003]. The formalism can be described by Eq. 2.5:

du

dt
= 0.04u2 + 5u+ 140− θ + I

dθ

dt
= a(bu− θ)

(2.5)

with an after-spike resetting:

ifu ≥ 30mV, then

u← c

θ ← θ + d
(2.6)

where variable u represents the membrane potential and θ represents a membrane recovery

variable that simulates the potassium activation current and sodium inactivation current.

The model can obtain a variety of firing patterns of all known types of cortical neurons with

differentially tuned parameters a, b, c, d which are dimensionless.

Hodgkin-and-Huxley Formalism

Theoreticians favor the classic IaF or Izhikevich simple neuron models with few parameters

that are amenable to analytical analysis. In contrast, electrophysiologists typically prefer bio-

physical models that are implemented with the notion of opening and closing ion channels.

It is not only because this notion shapes our current understanding of how action poten-

tials are generated but also because the model parameters are biophysically meaningful and

measurable directly from experimental procedures. The classic formalism of modeling ion

channel is the famousHodgkin-and-Huxley (HH) equations [Hodgkin and Huxley, 1952].

The HH-formalism extended the RC circuit of a passive membrane (Fig. 2.1) to an equiva-

lent circuit (Fig. 2.3) in which three types of ion currents flow in and out of the membrane:

sodium current (Na

+

), potassium current (K

+

) and a leak current (L) which represents a

phenomenological current that summarizes all other channels that might give their minor

ionic contributions. Eq. 2.7 describes how the membrane potential u changes in response

to the three currents multiplied by their respective voltage-dependent resistors which are

g
Na
(u), g

K
(u) and g

L
(u). The potential differences between the membrane potential and

respective ion battery potential are denoted as E
Na
, E

K
and E

L
.

C
du

dt
= −gNa(u)(u− ENa)− gK(u)(u− EK)− gL(u)(u− EL) + Iext (2.7)

The opening and closing dynamics of ionic resistors are modeled by a gate variable x (m, n

and h in HH equations) with a rate function as Eq. 2.8:

dx

dt
= αx(u)(1− x)− βx(u)x (2.8)

where x is a dimensionless value between zero and one, denoting the probability of the cor-

responding gate is open. αx(u) and βx(u) are dynamic rate “constants”, depending on the

membrane potential u.
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gNa
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ENa

u

outside the membrane

inside the membrane

gK
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Figure 2.3: The conceptual model of HH equations. See text for details.

In the process of parameter fitting, Hodgkin and Huxley found that the K

+

activation curve

was best fitted by 4 activating gates n with the form n4
and the Na

+

was best fitted by 3

activating gates m and 1 inactivating gate h with the form m3h. Fig. 2.4 illustrates the

numerical solutions of HH equations listed in Eq. 2.9. In contrary to the artificial spike

generated in an IaF model, the action potential simulated by HH equations is a smooth

curve that possesses realistic shape and duration with no strictly-defined threshold defined.

C
du

dt
= −ḡNam

3h(u− ENa)− ḡKn
4(u− EK)− ḡL(u− EL) + Iext

dm

dt
= αm(u)(1−m)− βm(u)m

dn

dt
= αn(u)(1− n)− βn(u)n

dh

dt
= αh(u)(1− h)− βh(u)h

(2.9)

The HH formalism provides for every electrophysiologist a framework to mathematically

express the dynamics of individual ion channel. The key step in this framework is to figure

out each rate “constant” x. Eq. 2.8 can be expressed in a different manner as in Eq. 2.10:

dx

dt
=

1

τx
(x∞ − x) (2.10)

whose analytical solution x(t) with an initial value x = x0 is Eq. 2.11:

x(t) = x∞ + exp(t/τx)(x0 − x∞) (2.11)

and the voltage-dependent rate “constants” αx and βx can be expressed by the time constant

τx and the finite conductance x∞ which are also sensitive to the voltage, by Eq. 2.12:

αx = x∞/τx

βx = (1− x∞)/τx
(2.12)
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Equipped with HH equations, modeling ion channels is for a electrophysiologist equivalent

to determining experimentally the time constant and finite conductance of a specific one.

In the simulation of an ion channel, a common strategy is to fit the finite conductances using

Boltzmann equationwith the form of Eq. 2.13 and directly use the tabulated experimentally-

measured time constants. The lower panels of Fig. 2.4 plot the analytical expressions of x∞

and τx for n,m, h with original HH parameters.

x∞(u) =
1

1 + exp[(−1)θ(u− u1/2)/us]
(2.13)

where θ determines whether it is activation (θ = 1) or inactivation (θ = 2).
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Figure 2.4: Simulation of the original Hodgkin-Huxley model.

A & B.The voltage and dynamics of gating variables of a single action potential.

C & D. x∞
and τx plotted with HH parameters.

The simulation was performed by solving Eq. 2.9 withNSolve in Mathematica. The param-

eters and the dynamics of rate constants are directly taken from [Doi et al., 2010].

In summary, the remarkable contribution of Hodgkin and Huxley formalism is that it told

us for each possible ion channel that might exist in a biological neuron, we could write down

a set of coupled differential equations to describe its voltage dynamics and then simulate its

behaviors in an integrated neuronal system. This classic modeling formalism is not just a

reference, but is still widely in use today.
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2.1.2 Compartmental Models

The RC circuit and HH framework provide the rudimentary methods to map a concep-

tual neuron model to its computational representation. However, the aforedescribed point

neuron method can only capture the neuronal process with continuous variables in time

and a biological neuron does not live in an abstract point-space, but rather in an extremely

complex 3D construction with delicate morphology and geometry. Such intricate spatial

arrangement anchors every aspect of the neuronal integration and a spatial parameter has

to be introduced in the model to capture the spread of electrical signals from one point to

another in the branched dendritic architecture (the modeling of axonal structure is omitted

in this thesis). For this purpose, the cable theory, first applied to the transatlantic telegraph

cable, was then used to study the electrical conducting core of dendrites. In addition to the

transversal current that flows across the membrane (Fig. 2.1), the cable theory incorporates

the longitudinal current into the model of the ionic current flow in the neuronal conductor,

where the space parameter is usually denoted as x with a unit of µm.

In the cable theory, the current flow through each discretized node inside a neuronal space

is illustrated in Fig. 2.5. According to the Kirchhoff’s current law (KCL), the algebraic sum

of the external,longitudinal and transversal currents at each node shall be zero:

Iext(t, x) +
u(t, x+ dx)− u(t, x)

RL

− IT (t, x)−
u(t, x)− u(t, x− dx)

RL

= 0 (2.14)

where the transversal current represents the sum of all the ionic currents “trans-across” the

membrane:

IT (t, x) = C
u(t, x)

RL

+
∑

Iion(t, x) (2.15)

Further derivation and simplification lead to the textbook form of cable equation [Rall, 1977].

When it comes to the simulation of cable equation, the numerical details are often taken care

of by domain-specific simulation tools such as NEURON [Carnevale and Hines, 2006].

2.2 Models of Synaptic Kinetics

Conductance-based current equation

The synaptic current Isyn(t) can be described by the product of a time-dependent channel

conductance gsyn(t) and an electrical drive originated from the difference between momen-

tary membrane potential u(t) and synaptic reversal potential Esyn:

Isyn(t) = gsyn(t)(u(t)− Esyn) (2.16)

Instantaneous Rise and Exponential Decay

The simplest choice for a time-varying conductance is an exponential decay as in Eq. 2.17:

gsyn(t) = ḡsyn exp[−(t− t0)/τd]H(t− t0) (2.17)
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Figure 2.5: The circuit for a neuronal cable. See text for details.

with τd as the decay time constant and ḡsyn as finite synaptic conductance. The arrival time

of the presynaptic action potential is denoted by t0 andH(t) is the Heaviside step function.

The conductance gsyn(t) peaks instantaneously at t0.

Alpha Function

However, for real synapses, the rising phase of synaptic conductance is not instantaneous

but has a finite duration, which could have strong effects on network dynamics. The Alpha

function can describe such a conductive change with a non-instantaneous rise as in Eq. 2.18:

gsyn(t) = ḡsyn((t− t0)/τ) exp[1− ((t− t0)/τ)]H(t− t0) (2.18)

with a time constant τ and gsyn(t) peaks when t− t0 = τ .

Separating Rising and Decay Phases

One drawback of the Alpha function is that it has only a single time constant τ , and thus

the time courses of the rise and decay phase of gsyn(t) cannot be modeled independently.

Often a postsynaptic current is made up of at least two different components, a fast rising

phase with a much slower decay phase. Therefore, a more general description of synaptic

conductance can be written using the double-exponential function as Eq. 2.19, which allows

two time constants τrise and τdelay to be set independently .

gsyn(t) = ḡsynNf(t)

tpeak = t0 +
τriseτdelay

τdelay − τrise
log(

τdelay
τrise

)

f(t) = exp(−t− t0
τd

)− exp(−t− t0
τr

)

N = f(tpeak)

(2.19)
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where the conductance peaks at tpeak and N is a normalization factor to ensure that the

peak conductance equals to ḡsyn.

Voltage Dependence

The NMDAR-mediated conductance depends on the postsynaptic membrane potential u

due to a blockade of positively charged magnesium. It is almost completely closed at the

resting membrane potential, and the fraction of the channel that is not blocked can be

modeled as Eq. 2.20:

B(u) =
1

1 + exp(−au)[Mg]/b
(2.20)

where [Mg] is the extracellular magnesium concentration, usually 1 mM. a and b are the

model parameters that need to be fit to the specific experimental data. Thus, the net synaptic

current of such voltage-dependent NMDAR channel is given by Eq. 2.21:

Inmda(t) = gnmda(t)B(u)(u− Enmda) (2.21)

The resulting synaptic integration is nonlinear, which has wide implications for the dendritic

plateau potentials in the striatal neuron (Chapter 5) and the dendritic supralinear summa-

tion in the neocortical neuron (Chapter 6). The nonlinear feature produced by Eq. 2.21 is

illustrated in Fig. 2.6.
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Figure 2.6: Nonlinear feature of NMDAR conductance.

A.The fraction curve plotted using Eq. 2.20, where the parameters a = 0.08 and b = 0.69

are taken from [Grunditz et al., 2008].

B.The NMDAR conductances under a range of voltage levels are simulated by Eq. 2.21.

Markov Models

The aforementionedmodels are simplified phenomenological models of synapses, they don’t

tell us much about the underlying mechanism of synaptic transmission. Besides, another

major drawback of those models is that there is no criteria for the natural saturation of the

conductance. Ideally, a model of synaptic transmission shall incorporate all the three major

activities of transmitter: release, diffuse and binding.
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Detailed models for the release and diffusion are desirable, but they are usually very expen-

sive computationally. Moreover, the transmitter dynamics is several magnitudes faster than

the receptor dynamics. For this reason, it often suffices, when it comes tomodeling the post-

synaptic effect of synaptic transmission, to assume that the concentration change of neuro-

transmitter occurs as a pulse [Destexhe et al., 1994a], and theMarkov formalism of synaptic

model then focuses exclusively on the process of receptor binding [Destexhe et al., 1994b].

The binding process follows a first-order kinetics:

R + T
kb←→
kf

o (2.22)

where R and T are respectively the closed receptor and unbound neurotransmitter.

kf and kb are forward and backward rate constants, and o represents the fraction of opening

receptors. The kinetics and corresponding postsynaptic current are described by Eq. 2.23:

o′(t) = kf [T ](1− o(t))− kbo(t)

Isyn(t) = ḡsyno(t)[usyn(t)− Esyn]
(2.23)

where [T ] is the concentration of neurotransmitter.

Fig. 2.7 illustrates the simulation results of Eq. 2.23: the transmitter concentration dynam-

ics (black), the opening ratio of the channel (red) and the evoked postsynaptic membrane

potential (green). In this thesis, a detailed 10-state Markov model was taken to simulate the

dynamics of NMDAR channels, which was validated by the opening responses with both

brief and sustained applications of glutamate [Kampa et al., 2004].
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Figure 2.7: The normalized variable dynamics of a simplified Markov model for synaptic

transmission. See text for details.
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2.3 Models of Bidirectional Synaptic Plasticity

Bidirectional long-term changes in synaptic strength have been reported and described for

many neural systems and it is currently believed that synaptic plasticity is essential for the

organization and function of neural circuits and provides an activity-dependent mecha-

nism that underlies learning and memory. Rate-based computational models of synaptic

plasticity have been intensively studied during the 1980s and 1990s. Numerous attempts

have been made to build models that explore the rules of long-term synaptic modification,

respectively long-term potentiation (LTP) and long-term depression (LTD). One of the

most successful formulations of rate models has been the BCM model which explained

an abundance of experimental evidences obtained in preparations of hippocampus and

visual cortex [Bienenstock et al., 1982]. Other forms of plasticity such as meta-plasticity

[Abraham, 2008] or homeostatic synaptic scaling [Turrigiano, 2008] play also important

roles in adjusting synaptic strength, regulating spiking rate and organizing neural circuits.

Recently, experimental works from many laboratories across the world have confirmed that

the precise timing of spikes in the pre- and postsynaptic neurons is another critical deter-

minant of long-term synaptic plasticity in various brain areas, since the “first” publication

[Markram et al., 1997]. Themathematical modeling of this new form of synaptic modifica-

tion, termed as spike-timing-dependent plasticity (STDP), has been hot in the past decade

[Caporale and Dan, 2008]. In the following text of the section, I review 3 types of major

frameworks modeling bidirectional synaptic plasticity.

2.3.1 Timing Model

One of the simplest models is based on a framework in which the amount of synaptic mod-

ification is determined solely by the time interval between each pair of pre- and postsynaptic

spikes using a phenomenological STDP curve which is extracted directly from the experi-

ments. A typical spike timing model of this kind can be best exemplified by the Song model

[Song et al., 2000]. Synaptic modification is induced in the model using a so-called STDP

learning window function F (∆t) as in Eq. 2.24, which is illustrated in Fig. 2.8:

F (∆t) =

A+ exp(∆t/τ+), ∆t < 0

−A− exp(∆t/τ−), ∆t ≥ 0
(2.24)

where ∆t is the time difference between each single pair of spikes. A+ and A− determine

the maximum amount of synaptic modification per pair for potentiation and depression.

The presynaptic spikes in this framework are usually input by some statistical models and

the plasticity function is then coupled and simulated together with a neuron model which

provides the postsynaptic spikes. The Song model demonstrated that the dependence of

synaptic plasticity on spike timing can induce competition between synapses in evoking

postsynaptic action potentials and thus lead to competitive Hebbian learning without re-

quiring additional global mechanisms. Moreover, this STDP rule stabilizes the firing rate of

the postsynaptic neuron while equilibrating the distribution of synaptic strengths. Further-

more, one of the consequences of the induced learning is to strengthen correlated presynap-
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tic neural groups with short latencies in firing the postsynaptic neuron and weaken those

with long latencies. Fig. 2.9 illustrates that the effect of correlation-based synaptic modifi-

cation accompanied by STDP learning is a quicker and stronger postsynaptic response. In

summary, the timing model provides a novel and straightforward framework to study the

effect of synaptic plasticity that is attributable to the pre- and post-synaptic timings. Be-

cause of its simplicity, it is compatible with both current-based [Babadi and Abbott, 2010]

and conductance-based [Billings and van Rossum, 2009] neuron models. In addition, it

can be easily implemented in a neural network model to explore, for instance, cortical de-

velopment and remapping through STDP [Song and Abbott, 2001].
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Figure 2.8: The STDP modification function.

F represents a percentage of the conductive change at one synapse given each ∆t which is

the time difference between pre- and postsynaptic spikes, adapted from [Song et al., 2000].

2.3.2 Voltage Model

The timing model described above takes explicitly the dependence of synaptic modifica-

tion upon the difference in timing between pre- and postsynaptic spikes into account by a

straightforward STDP learning function with one phase for potentiation and another phase

for depression. However, many other aspects of the bidirectional plasticity can not be taken

into account in such a framework, most importantly, the dependence of postsynaptic volt-

age before action potential [Sjöström et al., 2001]. Indeed, long-term synaptic changes is

voltage-dependent [Artola et al., 1990] and the level of postsynaptic membrane potential

provides a dynamic threshold for bidirectional plasticity [Ngezahayo et al., 2000], indepen-

dent of spike timing. To account for a large body of experimental observation on bidirec-

tional plasticity induced by various protocols, the postsynaptic voltage is a crucial variable to

be incorporated into amathematical model in addition to the spike timing. A typical voltage
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Figure 2.9: The effect of remodeling correlated synaptic groups through STDP.

A1. The initial peak synaptic conductance as a function of assigned latency in firing presy-

naptic spikes during a burst.

A2. The initial postsynaptic response to presynaptic inputs before STDP learning.

B1. The steady-state peak synaptic conductance as in A1 after STDP learning.

B2. The response of postsynaptic neuron with modified synaptic conductance in B1.
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model can be then best exemplified by the Clopath model [Clopath and Gerstner, 2010].

One of the key modeling concept of this voltage model that it makes a distinction between

the membrane potential u and two auxiliary voltage variables ū+(t) & ū−(t) which repre-

sent temporal averages of the membrane potential traces with two different time constants

and two different thresholds [Cormier et al., 2001]. In addition, the model uses a variable

r(t) to track the presynaptic spike trace. When a presynaptic spike arrives and ū−(t) is

greater than a threshold θ−, LTD is triggered (Fig. 2.10A). When the membrane potential

u(t) is greater than another threshold θ+ and ū−(t) is also greater than a threshold θ+,

LTP occurs if presynaptic spike already leaves a trace, e.g. r(t) > 0 (Fig. 2.10B). The total

synaptic change is a combined effect of the potentiation term w+
and the depression term

w−
as in Eq. 2.25:

w′ = w′+ − w′−
(2.25)

where w′+
and w′−

depend on the dynamics of the voltage variables and the variable of

presynaptic spike trace, as formulated by Eq. 2.26:

ū′
−(t) = [−ū−(t) + u(t)]/τ−

ū′
+(t) = [−ū+(t) + u(t)]/τ+

r′(t) = [−r(t) + x(t)]/τr

w′+ = ALTP r(t)[u(t)− θ+]+[ū+(t)− θ−]+, ifw < wmax

w′− = ALTDx(t)[ū−(t)− θ−]+, ifw > 0

(2.26)

where x(t) represents the binary presynaptic events with either 0 or 1 and the notation [Ω]+
equals Ω if Ω is positive and equals 0 otherwise. A full set of parameters are listed in Ta-

ble. 2.1. TheClopathmodel replicates the voltage dependence of synapticmodification as in

Fig. 2.11A. In addition, it also reproduces the observations found in the STDP experiments

with the pairing protocol (Fig. 2.11B) and the frequency protocol (Fig. 2.11C). Compared

to the Song model, the Clopath model represents a more general framework for bidirec-

tional synaptic plasticity, as not only does it provide a reasonable account about STDP but

also it demonstrates that with a proper plasticity learning rule, unidirectional and bidirec-

tional strong connections can be formed with differentially conditioned spatio-temporal

input correlations in a recurrent network of spiking neurons [Clopath et al., 2010].

Table 2.1: Parameters of Clopath model

ALTP ALTD θ+ τ+ θ− τ− τr

(1/mV

2
) (1/mV) (mV) (ms) (mV) (ms) (ms)

0.00008 0.00014 -45.3 7 -70.6 10 15
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Figure 2.10: The key modeling concept of Clopath model.

A. LTD occurs at the time of presynaptic spike arrival when the postsynaptic neuron is

depolarized.

B. LTP occurs at a combination of multiple conditions: 1. the depolarization is big, e.g.

above θ+; 2. the voltage trace ū+(t) is above θ−; 3. there exists a presynaptic spike, e.g.

r(t) > 0.



Models of Bidirectional Synaptic Plasticity 25

-80 -75 -70 -65 -60 -55 -50 -45 -40

90

100

110

120

130

140

150

Clamped Postynaptic Membrane Potential (mV)

N
o
rm
al
iz
ed
w
ei
g
h
t
(%

)

A.

-20 -10 10 20

60

80

100

120

140

Normalized weight (%)

Δt (ms)

B.

0 10 20 30 40 50

60

80

100

120

140

160

180

ρ (Hz)

N
o
rm
al
iz
ed
w
ei
g
h
t
(%

)

C.

Figure 2.11: Simulated voltage and timing experiments by Clopath model.

A.The voltage-dependent induction curve, using weak presynaptic stimulation of clamped

membrane potential with 50 spikes at 1 Hz at the synapse.

B. Spike-timing-dependent learning window as in Fig. 2.8, using 60 pre-post pairs at 20Hz.

C. Synaptic weight change as a function of pairing frequency using a ∆t of 10 ms for pre-

post pairing (blue) and -10 ms for post-pre pairing (red).
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2.3.3 Signaling Transduction Model

Spiking timing gives rise to bidirectional change of synaptic strength in the Song model and

a combination of postsynaptic voltage and filtered spiking traces brings about bidirectional

modification of synaptic weight in the Clopathmodel. However, they are both phenomeno-

logical types of plasticity model, and therefore none of the frameworks provide any insight

into the molecular basis for synaptic modification involving, for example, the changes in

the number of specific receptors. Moreover, synaptic modifications are highly regulated by

the interplay between networks of biochemical processes and electrical activities, molecular

model of synaptic plasticity provides a more realistic description in the integration of bio-

chemical and electrical signals in a multi-scale model [Mattioni and Le Novere, 2013] to

investigate the brain’s bioelectric properties.

The insertion and removal of AMPAR channels [Malinow and Malenka, 2002] into and

out of the postsynaptic membrane alongside the regulation of the phosphorylation of their

subunits have been shown to be the key events among the diverse mechanisms in modu-

lating synaptic efficacy. CaMKII plays an important role in driving AMPAR channels into

synapses, thereby promoting long-term potentiation [Hayashi et al., 2000]. Its accumu-

lation in the individual spines was shown to be selective and necessary to induce synaptic

strengthening [Zhang et al., 2008]. Another LTP player PKA phosphorylates AMPARs and

controls directly the synaptic trafficking of the channels into synapses, thereby also in favor

of increasing the synaptic strength [Esteban et al., 2003]. In contrast, long-term depression

is associated with activity of PP1 which leads to a reduction of the surface expression of AM-

PAR subunits [Morishita et al., 2001]. Many signaling transduction models have been pro-

posed to identify the role of individual molecules in biochemical networks to gain an under-

standing of the complex interactions of betweenmolecules [Kotaleski and Blackwell, 2010],

but the size of those models is often formidable.

In such context, a typical simplified signaling transduction model can be best exemplified,

for example, by the Castellani model [Castellani et al., 2009], which involves only a small

number of variables. The model describes a simple 2-step chain of enzymatic reactions with

2 phosphorylation processes of AMPAR by CaMKII and PKA, and 2 dephosphorylation

processes by PP1, as illustrated in Fig. 2.12. The conceptual modeling diagram was trans-

lated into a rule-based language [Faeder et al., 2009] and simulated to display the behavior

of bidirectional synaptic change with an optimized software package called RuleBender

[Smith et al., 2012] (Fig. 2.13). The model demonstrated that CaMKII, which is thought

to function as a molecular switch of the signaling cascade in the induction of synaptic plas-

ticity, can bidirectionally regulates the number of double-phosphorylated AMPAR channels

(Fig. 2.14A). In addition, it displays a switching behavior of the effective conductance of

AMPAR channels with CaMKII acting as a dynamic threshold (Fig. 2.14B). Furthermore,

as the calcium entry constantly fluctuates in an in vivo situation, the model shows that only

when the level of such fluctuation reaches certain amplitude, the channel will transit from

the nonphosphorylated equilibrium to the double-phosphorylated state (Fig. 2.14C).
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The model itself is not complete, because it would certainly require some other linkage

models to connect CaMKII to the calcium signaling and the direct effector of calcium such

calmodulin [Keller et al., 2008]. It reflects a promising progress towards a self-contained

molecular plasticity model and provides the minimal substrate to study the dynamic nature

of bidirectional plasticity at the molecular level that is certainly beyond the phenomenolog-

ical modeling of timing and spiking [Cooper, 2010].

Figure 2.12: Kinetic description of a transduction model of AMPAR phosphorylation.

Figure 2.13: Source code of the Castellani model in BioNetGen.
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Figure 2.14: Part of simulation results from Castellani model.

A.The concentration of CaMKII determines the direction of synaptic plasticity.

B.The phosphorylated state of AMPAR channel is bistable, regulated by CaMKII.

C.The fluctuation of CaMKII is modeled as CaMKII(t) = CaMKII

0 +∆(1− cos(Ωt)).

∆ represents the amplitude of fluctuation and Ωt is set to 0.02π. It affects plasticity when

the average concentration though remains identical.



Models of Dendritic Spines 29

2.4 Models of Dendritic Spines

2.4.1 Biochemical Background

The discovery of dendritic spines by Ramón y Cajal has spurred intense study of their po-

tential functions over the past hundred years. The spines protrude from the dendrites, each

consisting a head that is connected to the dendritic shaft by a thin neck (Fig. 2.15A). They

are very small, typically with a length less than 3 µm and a diameter not greater than 1.5

µm. As a consequence, a spine head is of tiny volume and isolated from the larger dendrite

by the spine neck, providing a restricted space for biochemical reactions (see details below).

The distribution of spines on the dendrites of a neuron changes constantly depending on

neuronal activity. Moreover, the morphological structure of individual spine is very plastic,

reconstructable within a few seconds. Attributable to such dynamic structural plasticity, the

spine plays a critical role in the regulation of synaptic strength and has been long thought

to be the elementary units of memory.

Almost every spine forms a single synaptic contact, either excitatory or inhibitory, with a

presynaptic axon terminal. Each spine head typically contains a complex protein network

termed the “postsynaptic density” (PSD). Most proteins in the PSD network are implicated

in governing the communication between neurons and the regulation of synaptic strength.

Of those proteins, the glutamate receptor of the AMPA-type (AMPAR) [Lu et al., 2009] is

of particular importance in the processing of synaptic signals, as it gives rise to rapid depo-

larization that triggers the downstream activity of other proteins in the network and thus the

onset and maintenance of synaptic plasticity. Glutamate uncaging experiments have shown

that the PSD of a potentiated spine becomes enlarged asmore AMPARs are inserted through

trafficking process. Another important glutamate receptor is the NMDA-type (NMDAR),

which is involved in the bidirectional regulation of synaptic plasticity attributable to its

high calcium permeability. Besides the biochemical channels, the morphological changes

in the dendritic spines have been long implicated to be associated with long-term synaptic

changes [Yuste and Bonhoeffer, 2001]. It is particularly worth noting that the geometrical

properties (e.g., the length and the diameter) of spine neck control the NMDAR-mediated

synaptic calcium influx [Bloodgood et al., 2009] and interestingly small spines are found

to display a larger calcium increase in the spine head as a result of a bottlenecked calcium

efflux through the neck [Noguchi et al., 2005].

Taken together, the spine head can be biochemically viewed as a fierce nano-reactor to oper-

ate all the reactions inside a tiny space and the spine neck isolates the head from its neighbor-

ing synaptic contacts to ensure that the biochemical signaling cascades activated in one spine

do not disturb chemical processing in the others [Wiegert and Oertner, 2011]. Adding to

the strong experimental evidence, computer simulations also suggested that morphological

parameters of spine neck could result in a 10-fold difference in the calcium concentration

inside a spine head [Gold and Bear, 1994].
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2.4.2 Electrical Compartmentalization

The computational models of spines have been ahead of the experimental measurements

and used as an exploration tool to understand their functional importance [Yuste, 2013].

The electrical compartment of a spine head can be modeled as an electrical circuit which

consists of a head capacitance C
head

, a head conductance g
head

and a synaptic conductance

g
syn

as illustrated in Fig.2.15B. The synaptic conductance is often contributed by the dy-

namics of both AMPAR and NMDAR channels. The head conductance g
head

corresponds

to a summed conductive change of various postsynaptic active channels, such as calcium

channels [Bloodgood and Sabatini, 2007], sodium channels [Araya et al., 2007] and potas-

sium channels [Higley and Sabatini, 2008]. The head resistance 1/g
head

is often so large that

it can be assumed to be infinite because of a very small spine membrane area. A spine neck,

which carries a neck resistance R
neck

, then attaches the spine head to the dendritic shaft.

Based on this circuit diagram of the electrical compartments of a spine, theoretical studies

have suggested that the local depolarization of spine head V
head

must be different from the

dendritic potential evoked on the shaft V
shaft

attributable to the effect of R
neck

, which can

be described by Eq. 2.27:

V
head

= I
head

(R
dend

+R
neck

)

V
shaft

= I
head

R
dend

(2.27)

where I
head

represents the total current evoked from channels in the spine head.

Figure 2.15: Electrical circuits of a single dendritic spine.

A.The diagram of a connection between a spine head and dendritic shaft by a spine neck.

B.Modeling an individual spine as a series of electrical compartments.

Recent experimental studies have demonstrated that spine neck is capable of regulating local

depolarization inside the spine head [Tønnesen et al., 2014] and the estimated value of spine

neck resistance based on cable theory could be incorrect [Svoboda et al., 1996]. Detailed

biophysical modeling and simulation can be used to study the consequences of the change
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of neck resistance and dissect the relative contribution of the individual glutamatergic recep-

tors and voltage-dependent calcium channels to the depolarization [Grunditz et al., 2008].

A model spine equipped with AMPAR, NMDAR and R-type calcium channels, and con-

nected with a thin neck to a passive CA1 pyramidal neuron is simulated using NEURON

[Hines and Carnevale, 2001]. This model is taken from ModelDB (a public database for

computational neuroscience [Hines et al., 2004]) and the parameters are adapted to repro-

duce the experimentally measured fluorescence transients. In the following paragraphs, I

replicate the major predictions of this model to illustrate the interplay between biochemical

receptors in the spine head and the neuroanatomical structure of spine neck in affecting the

essential electrical properties possessed by a spine.

Given two different spine neck length values with one neck 10 times longer than the other,

the long-necked spine produces a larger local depolarization in the spine head compartment

(Fig. 2.16B, blue) due to a larger neck resistance value and this 10mV higher local potential

results in almost 10 times higher local calcium activity (Fig. 2.18, blue). However, despite

a larger local voltage generation,the long-necked spine depolarizes the neuron with a slight

reduction of somatic EPSP (Fig. 2.16A, blue). The underlying mechanism of such short-

necked spine generating smaller depolarization in the head but larger global potential in

the soma, can in part illuminated by the equations developed by [Koch and Zador, 1993].

As the postsynaptic effect of neurotransmitter binding during the synaptic transmission

can be thought as injecting a current directly into the spine head and this current would

then propagate through spine neck to the parent dendritic shaft. In the course of this

propagation, almost none of the injected current will leak out through the neck and the

head because of a very small head membrane area which makes the head resistance infinite.

Hence, almost all the current would arrive upon the parent dendrite without attenuation.

Since AMPAR channel is modeled as a double exponential function with a rise and a decay

time constants, the injected current contributed by AMPAR can be represented by Eq. 2.28:

iampa(t) = gampa(t)(Esyn − Vlocal(t)), Esyn = 0mV (2.28)

where the unitary change of gampa(t) is always identical by each triggered event. Thus, the

amplitude of current inversely depends on the dynamics, in particular the peak amplitude

of local depolarization Vlocal(t) as its rapid rise decreases the driving force of ion flow which

could be termed mathematically as the difference between Vlocal and synaptic reversal po-

tential Esyn.

Fig. 2.16B illustrates that the short-necked spine induces a local depolarization up to -

20mV, which is double in the amplitude of the potential evoked by the long-neck’s -10 mV.

By subtracting Esyn, this leads to a doubled AMPAR-injected current as depicted by the

solid green line (long-necked) and the dashed green line (short-necked) in Fig. 2.17A. This

larger current then results in a larger depolarization in the parent dendritic shaft (Fig. 2.17B).
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Figure 2.16: The local and global depolarization by differential spine neck resistances.

A.The long-necked spine (blue) evokes smaller somatic EPSP than the short-necked (red).

B.The long-necked spine (blue) evokes larger local EPSP in the spine head than the short-

necked (red).
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Figure 2.17: The synaptic currents in the spine head and the resulting depolarization

on the dendritic shaft. A. The short-necked spine generates much larger AMPAR cur-

rent than the long-necked (green), but much smaller NMDAR (black) and R-type currents

(magenta). B. The larger net current evoked by the short-necked spine results in a larger

depolarization in the dendritic shaft.
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2.4.3 Implications for Synaptic Plasticity

Fig. 2.17A shows that AMPAR channels contribute the most among three channels to the

evoked synaptic current, with NMDARs the second and R-type calcium channels the third.

Here one could relate this observation to a working model of STDP and argue that a mech-

anistic explanation for narrow t-LTP window is incomplete [Holbro et al., 2010]. Due to

the fact that the voltage in the spine head is the central variable governing synaptic plasticity,

a strong contribution from AMPAR channels is required to provide sufficient postsynaptic

depolarization [Fuenzalida et al., 2010] and gate calcium transients in the spine head, which

are both critical for the very narrow time window in spike-timing-dependent potentiation.

Emerging evidences [Hao and Oertner, 2012] have put spine in the center of coincidence

detection as active conductances like AMPAR and NMDAR channels in the spine head

combined with the electrical resistance of the spine neck synergically regulating the de-

polarization of the spine head (Fig. 2.16) and the NMDAR-mediated calcium-dependent

synaptic plasticity (Fig. 2.18).
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Figure 2.18: The calcium elevation by differential spine neck resistances. The long-necked

spine (blue) produces nearly 10 times higher calcium elevation in amplitude than the short-

necked spine (red).
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A diagrammatic picture of how a spine could act as a coincidence detector and how its crew

interact to regulate synaptic plasticity can be illustrated in Fig. 2.19: 1) using a single-cell

genetic approach, most AMPARs inCA1 pyramidal neurons contains calcium-impermeable

subunits that gate the calcium-permeable and voltage-sensitiveNMDARs primarily through

local depolarization [Lu et al., 2009]. Themodeling result shows that AMPAR block signif-

icantly reduces NMDAR current amplitude (Fig. 2.20A); 2) blockade of NMDARs doesn’t

affect the somatic EPSP but significantly depress evoked calcium currents (Fig. 2.20B); 3)

spine neck mediates the process of local depolarization with its variable morphology and

resultant input resistance, and determines NMDAR-dependent calcium signaling in both

the spine head and the parent dendrite [Noguchi et al., 2005].

Figure 2.19: A synergic model of spine as the major site regulating synaptic plasticity. See

details in the text.
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Figure 2.20: Effects of AMPAR channels in regulating the activity of NMDAR channels

and calcium. A. The activity of NMDAR channels is significantly reduced when AMPAR

channels are blocked in the spine head. B. The calcium elevation is reduced to only 20%

of the control level with AMPAR blockade in the spine head.



Chapter 3

Extrapolating the Predictions of STDP

Models to Disease States

In this chapter, I present a framework to address a general problem that occurs very fre-

quently in neuroscience: Often a scientist is interested in inferring the underlying micro-

scopic mechanisms of phenomenons at a macroscopic or even behavioral level. This can be

done using systematic simulation studies, but very often the structure and parameterization

of these models are unknown, or only poorly constrained. Systems Biology and Neuro-

science initiatives to “rebuild the brain in silicon” pursue this approach, but the involved

complexity is often hard to control, and simulations may call for supercomputers. An al-

ternative approach is to embrace the uncertainty and then deal with it in a systematic way.

This is the domain of reasoning with and under uncertainty. Artificial Intelligence has de-

veloped methods for this, which are in practical use, for example, in medical expert systems.

In the first section, I lay out the background domain knowledge and the particular motiva-

tion that connect our approach to a medical specific problem. In the second, I propose to

employ the formalism of Bayesian networks and the inference method of Belief Propaga-

tion applied to Bayesian networks, which are parameterized using simulations of biophysical

models. As a use case I select a very challenging problem, namely to infer i) the still dis-

puted phenomenological mechanisms of STDP and ii) the nature of certain pathological

brain states in terms of the multivariate statistics of neuronal population activity from “ob-

servables” that are - at least in principle - accessible at the macroscopic and behavioral level.

I formulate the Bayesian network, describe two phenomenological STDP models and draw

connections between simulation and knowledge inference. The next following two sections

illustrate simulation results and demonstrate how one could exploit them for reasoning

within the proposed Bayesian network. In the final section, I discuss the findings and what

we can learn about the potential disruptive roles of STDP during epileptic seizures using

this approach.
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3.1 Background and Motivation

Recent years have seen an enormous interest in data and model sharing in neuroscience,

which now also extends towards sharing formal models in machine-readable formats, such

as NeuroML (neuroml.org), NineML (nineml.org), or yet to be developed model descrip-

tions [Ansorg and Schwabe, 2010]. These efforts are ongoing and meet many challenges

in practice, for example, convincing researchers to share their data, where major funding

agencies and publishers certainly have to establish more rigid measures in the future. While

standards for model exchange in systems biology and cellular computational neuroscience

have been established [Le Novere, 2006], the sharing of network models in neuroscience

is currently hindered by the lack of widely accepted standards for describing these models.

However, even if both data and model sharing would be in place and supported by proper

platforms like web-portals, here I ask: in which way would such platforms support research in

neuro-theory and modeling?

Data and model sharing is desperately needed as the data provides the yardstick for any

model, and accurate quantitative models are needed for proper predictions as required in,

for example, personalized medicine. Having both data and models available in machine-

readable formats is also beneficial for computer-aided or fully automatic model generation

from data using statistical and machine learning approaches. However, despite the inherent

complexity of neuronal systems, I still believe that their understanding in terms of theories

embodying simple principles is possible. Researchers in neuro-theory, who work out such

principles, will make use of such platforms as a source of inspiration to validate their theo-

ries which are usually developed without much informatics support and are largely informed

by the available scientific literature. I hypothesize that even the development of theories,

which go beyond plain model fitting, can be performed in a computer-aided or fully auto-

matic manner [Langley et al., 1987] as demonstrated recently by so-called “robot scientists”

[Sparkes et al., 2010].

I envision annotations of scientific publications using formal statements of the empirical

findings (see Fig. 3.1). This is similar to the semantic web, which is still only a vision, be-

cause it depends on the authors of web pages to annotate their content. For the majority

of content on the web, this may not even be worth the effort. However, from scientists,

one shall expect the motivation and skills to formulate such annotations. Once such an-

notations are available, including references to proper domain ontologies, they could enter

inference engines for automated knowledge discovery, which is a well-studied topic in clas-

sical artificial intelligence.

As the specific simulation problem, I investigate howmemories are affected by the combina-

tion of synaptic plasticity and paroxysmal brain activity observed during seizures. This is a

challenge for multiple reasons. First, despite decades of investigations on the mechanisms of

synaptic plasticity and memory, we still have only a partial understanding of how the former

underlies the network phenomena of encoding, maintenance, recall, and loss of memories.
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Figure 3.1: An illustration of how to exploit semantic annotations of publications.

Scientific publications will be annotated using formal statements of the empirical findings,

similar to the semantic web and with reference to domain ontologies. Then, new knowledge

could be inferred based on these qualitative findings, which are already interpreted by the

experimentalists. Shared data can be used to validate existing and inferred theories.
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Second, after more than a decade of theoretical investigations of spike-timing form of synap-

tic plasticity (STDP), the modeling of STDP remains controversial, i.e. there is not even a

census yet regarding phenomenological STDPmodels. Third, long-termmemory retention

via STDP has been studied only recently [Billings and van Rossum, 2009]. Consequently,

to the best of my knowledge, the possibly perturbing role of STDP during paroxysmal brain

activity as observed during epileptic seizures has not been studied.

3.2 Bayesian Network and STDP models

3.2.1 From Data-Model Comparison to Knowledge Representation

The integration of data and models has a long tradition in neuroscience, and the Bayesian

approach is emerging as the de facto standard for that [O’Reilly et al., 2012]. Here, prior as-

sumptions and a generative model for the data are combined with new observations in order

to arrive at the posterior distribution over candidate models. It is widely used when the sig-

nal to noise ratio is low such as in, for example, functional brain imaging. Fig. 3.2a shows

a graphical model for Bayesian model comparison and selection, where different models

M can be parameterized with a parameter vector θ. Once prior distributions P (θ|M) are

specified, observed dataD can be used in order to compare different modelsM1 andM2 us-

ing the posterior odds P (M1|D) /P (M2|D). This is certainly the method of choice once

the raw data is available, even though such a comparison is technically demanding because

defining the prior distributions P (θ|M) and estimating the Bayes factor is non-trivial.

Here I focus on comparing models when only qualitative observations are available. I sug-

gest to set up Bayesian networks for a particular domain and then perform inference given

new experimental evidence. Fig. 3.2b shows the Bayesian network I set up for this study,

in which all the nodes are binary. Paroxysmal brain activity such as seizures can be identi-

fied clearly using local field potentials and electroencephalography, but until today it is not

clear if the individual neurons are synchronizing their discharges, or if the high-frequency

population spikes are only a property at the level of neuronal populations without syn-

chronicity of individual spikes. Therefore, I define two modes of paroxysmal activity, which

correspond to two extreme scenarios in the population of neurons, namely changes in the

mean firing rate and changes in the synchronicity with an unchanged mean firing rate,

i.e. Act ∈ {rate, sync}. Another unknown is the nature of STDP, where I consider the

“additive” and “mixed” rules, i.e. StdpMech ∈ {add, mix}. As observables, I first con-
sider changes in the postsynaptic firing rate of a neuron, which is driven by the paroxysmal

activity via plastic synapses. The firing rate of this neuron could be transiently increased

and then decay during the intra-ictal period, or be elevated throughout entire intra-ictal

period, i.e. RateIntra ∈ {transient, elevated}. Interestingly, recent experimental evi-

dence suggests heterogeneous changes [Truccolo et al., 2011]; I return to this in the Dis-

cussion. Second, I consider activity in this neuron during the post-ictal period, where the

firing rate can be lowered but recovers to the pre-ictal level, or be unchanged relative to

the pre-ictal period, i.e. RatePost ∈ {recovering, unchanged}. Third, I consider mem-
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ory retention after a seizure, where I distinguish between mild and severe memory loss, i.e.

MemoryLoss ∈ {mild, severe}.

θ

M

D

a)

P(M)
Prior for models

P( θ | M )
Prior for model parameters

P( D | θ, M )
Generative model for data

Act Stdp
Mech

Rate
Intra

Rate
Post

Memory
Loss

b)

Figure 3.2: The Bayesian approach to inference in neuroscience.

A.The graphical model for Bayesian model comparison and selection.

B.The Bayesian network as an example for knowledge representation, which requires quali-

tative simulation observations (lower three nodes) to make inference about unknownmodel

properties (upper two nodes).

3.2.2 Leaky Integrate-and-Fire Neuron and Synapse Model

I simulate a conductance-based leaky integrate-and-fire neuron with membrane potential

dynamics given by Eq. 3.1 (see also Fig. 3.3a):

τm
dVm

dt
= (Vrest − Vm) +

Gexc(t)

GL

(Eexc − Vm) +
Ginh(t)

GL

(Einh − Vm) (3.1)

where τm = 20ms is the membrane time constant and GL = 10 nS is the membrane leak-

conductance. Eexc = 0mV and Einh = −70mV are the excitatory and inhibitory reversal

potentials, respectively. The neuron fires an action potential when the membrane poten-

tial Vm reaches the threshold value −54mV, and then Vm is reset to −60mV. The model

neuron has 1000 excitatory and 200 inhibitory synapses. Synaptic strengths of individual

synapses are also conductance-based. The total strengths Gexc(t) and Ginh(t) in Eq. 3.1

represent the summed contribution from excitatory and inhibitory synapses. On arrival of

a presynaptic spike at the i-th excitatory synapse, the overall excitatory synaptic strength is

increased instantaneously by giexc, i.e. Gexc(t) ← Gexc(t) + giexc and then decays with a
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time constant τsyn = 20ms. The same applies to inhibitory synapses, where the synaptic

strength giinh = 500 pS is kept fix (no learning occurs at inhibitory synapses). All simula-

tions were performed using Matlab with a forward Euler integration of 0.1ms resolution.

a) b)
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Figure 3.3: Model setup and examples of synchronicity events.

A. Conductance-based single compartment leaky integrate-and-fire model neuron.

The presynaptic activity for 1000 excitatory and 200 inhibitory neurons is sampled using

statistical models and the learning occurs only at excitatory, not inhibitory synapses.

B. Example raster-plot of presynaptic activity with three synchronicity events (see arrows),

where for each synchronicity 200 excitatory neurons are randomly selected. Dots indicate

presynaptic spiking times for excitatory (1 ... 1000) and inhibitory (1001 ... 1200) neurons.

3.2.3 Spike-Timing Dependent Plasticity Models

Themodification of synaptic strength of individual synapses depends on the relative timing

of paired spikes [Markram et al., 1997]. As a consequence, the strengths of modeled exci-

tatory synapses, giexc = giexc + ∆g, are subject to learning via STDP learning rules which

encompass both synaptic potentiation and depression. More specifically, I use “additive”

and “mixed” learning rules [Kepecs et al., 2002]. The change of synaptic strength ∆g un-

der additive rule is independent of the current strength but constrained by a maximum

boundary (gmax = 150 pS), which can be described by Eq. 3.2:

∆g =

gmax · A+ · exp (−∆t/τ+) if∆t < 0

−gmax · A− · exp (∆t/τ−) if∆t > 0
(3.2)

where∆t = tpost− tpre is the time difference between pre and postsynaptic spikes on each

individual synapse. A+ = 0.005 and A− = αA+ are scaling factors with α = 1.05. The

mixed rule incorporates a dependence of the magnitude of synaptic depression on the initial

synaptic strength [Bi and Poo, 1998]. Such a dependence can be modeled by Eq. 3.3 with

Ã− = 0.0114 where through all τ+ = τ− = 20ms.

∆g =

gmax · A+ · exp (−∆t/τ+) if∆t < 0

−giexc · Ã− · exp (∆t/τ−) if∆t > 0
(3.3)



Bayesian Network and STDP models 43

3.2.4 Modeling presynaptic Population Activity

All the presynaptic spike trains are generated via Poisson processes with the rate for both

excitatory and inhibitory inputs set to 10 sp/s, during the initial phase of learning. In order

to mimic paroxysmal brain activity of an epileptic seizure, two different transient modifica-

tion schemes are employed. First, the rate is increased from 10 sp/s to 12 sp/s. Second, the

synchronicity is increased while the rate remains unaltered. This is achieved as follows. One

synchronized “spike train” is sampled to determine a synchronicity event with Poisson rate

of 10Hz. Triggered by such an event, 5% of randomly selected presynaptic excitatory neu-

rons synchronize their discharges. Compared to the first scenario, the average activity could

be regarded unchanged, but synchronous discharges of a subset of presynaptic neurons at

each synchronicity event strongly drive the postsynaptic neuron to fire action potentials.

Fig. 3.3b shows a raster-plot for the second scenario with 20% synchronicity.

3.2.5 Quantification of Memory Loss and Retention

The change in the firing rate of postsynaptic model neuron is an observable which can be

easily measured. Nevertheless, the “memory loss” is not straightforward to quantify using

single neuron models. It is widely accepted that the pattern of synaptic strengths is one im-

portant form of memory storage. Here I calculate the correlation between strength vectors

of all excitatory synaptic connections at two different times as the interpretation of memory

retention by using the Pearson correlation coefficient [Lee Rodgers and Nicewander, 1988].

A reference time t0 is set before the simulated paroxysmal activity at which the distribution

of synaptic weights reaches its equilibrium (see Fig. 3.4a). The strength vector at t0 is de-

noted as w0. Afterwards I let the model neuron continue to experience presynaptic activity

and learn to adapt its synaptic strengths according to the STDP rules. Then, the correlation

coefficient r(t0, t) between two strength vectors w0 and wt, is calculated by Eq.3.4 where

it is assumed that t0 < t:

r(t0, t) =

n∑
i=1

(wi
t − wt)(w

i
0 − w0)√

n∑
i=1

(wi
t − wt)2

n∑
i=1

(wi
0 − w0)2

(3.4)

wherewi
represents the synaptic strength of i-th synapse andw is the average of the strength

vector at a specific time. The coefficient r(t0, t) quantifies how much memory is retained.

High values correspond to good memory retention whereas low values to poor. Note that

even though the synaptic pattern may have reached equilibrium, individual synapses are

still undergoing changes and this is most prominent for “additive” STDP rule (see Fig. 3.4b

for an example). The ongoing changes of synaptic strengths are the main cause of memory

fading, and this course of inevitable memory fading is the baseline for our quantification

of additional memory loss due to the paroxysmal activity. The baselines are shown for two

STDP rules in Fig. 3.4c in terms of the coefficient r(t0, t), where no paroxysmal activity is

simulated.
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Figure 3.4: Dynamics of synaptic strengths.

A. Evolving distribution (in terms of absolute numbers) of excitatory synaptic strengths giexc
for “additive” (upper panel) and “mixed” (lower panel) STDP rules.

B. Example synaptic strength traces of two selected excitatory synapses under “additive”

STDP rule, where individual synapses are undergoing changes. For example, a weak synapse

gets stronger and a strong synapse gets weaker. Note that such dynamics take place after

the distribution reaches equilibrium.

C. Baseline dynamics of memory retention in terms of r(t0, t) for both STDP rules where

no paroxysmal activity is employed (t
ref
here is equivalent to t0 in the text).

3.3 Results

I perform a systematic simulation study of how transient paroxysmal activity may affect

memories via STDP. I explicitly consider alternatives for the currently unknown STDP

mechanisms and the nature of the paroxysmal activity. For different choices of these un-

knowns, the simulations make different predictions and I demonstrate how Bayesian net-

works, which are a prominent method for representing knowledge with uncertainty in ex-

pert systems, could be used in order to combine the simulation results with prior assump-

tions and new empirical evidence. The structure of the Bayesian network shown in Fig. 3.2b

needs to be accompanied with the definition of conditional probability tables (CPTs), which

embody the expert knowledge. This is where the simulation and analysis of the models en-

ter. Thus, let me first interpret the simulation results, and then in the next section, I show

how these results can be translated into a CPT and perform inference.

Fig. 3.5 shows the results for all combinations of Act ∈ {rate, sync} and StdpMech ∈
{add,mix}. The top four panels show predicted postsynaptic firing rate before (pre-ictal),

during (intra-ictal) and after (post-ictal) a simulated seizure and the four lower panels

show the memory retention during intra-ictal period in terms of the correlation coeffi-

cient (Fig. 3.5, thick red lines) in comparison with the memory retention predicted when

no seizure is simulated (dashed blue lines). Interestingly, the firing rate remains elevated in

three out of four scenarios. Only under “additive” STDP, an increase of presynaptic mean

firing rate results in a transient increase of postsynaptic rate, which decays afterwards be-
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cause the STDP rule weakens many strong synapses (see also Fig. 3.4b). The postsynaptic

rate for the “additive” STDP with increased synchronicity remains elevated, because many

previously weak synapses are strengthened. The firing rates for the “mixed” STDP (Fig. 3.5,

right column) during pre-ictal and post-ictal periods are low (≈ 1 sp/s) and an increase in

presynaptic firing rate is directly reflected in the postsynaptic response.

[Billings and van Rossum, 2009] has reported that “mixed” STDP leads to very poor mem-

ory retention. Here I demonstrate that the memory loss due to perturbing presynaptic ac-

tivity is even more severe for the “mixed” than the “additive” rule. In contrast, the memory

fading for the “additive” STDP during intra-ictal period is obviously bigger caused by per-

turbing presynaptic activity than non-perturbing one, but much less pronounced than for

the “mixed” STDP. It is particularly worth noting that synchronicity perturbation is more

disruptive than rate perturbation, due to the fact that many previously weak synapses are

strengthened, reshaping the distribution of synaptic strengths.

3.4 Inference with proposed Bayesian Network

The simulation results above have given valuable insights into the consequences of STDP

for regulating neuronal responses and how paroxysmal activity may cause harm beyond the

actual seizure, namely changing the network connectivity and hence disrupting long-term

memory. Based on these results, a human expert could resort to the scientific literature or

laboratory in order to reason about the actual mechanisms. However, as I have considered

only a small set of possible alternatives, it is likely that mechanisms I have not included

are operating as well during a seizure, for example, an increase in both firing rate and syn-

chronicity. In addition, the experimental literature shows that the changes in firing rates

before, during, and after a seizure are diverse [Truccolo et al., 2011]. Thus, simply reading

off the most likely combination of the unobserved model properties by having a human ex-

pert comparing the simulation results with the experimental literature is not even beneficial

in our very simple example.

Therefore, I have to first translate the simulation readouts from Fig. 3.5 into a CPT of the

Bayesian network shown in Fig. 3.2b. This CPT is shown in Fig. 3.6a, where for all four

combinations of the latent variables Act and StdpMech, the probability of the values at

the evidence nodes RateIntra, RatePost, and MemLoss is given. Even though some

results are crisp in the sense that they are only observed for a certain combination values

of the latent variables, such as RateIntr = transient for rate increases under “additive”

STDP, I decide to express this via probabilities 0.9 vs. 0.1 instead of 1.0 vs. 0.0. The prior

probabilities for each of the latent variables are set to 0.5. Now I determine how new evi-

dence changes the prior beliefs by setting evidence nodes to certain values and apply Pearl’s

belief propagation algorithm to update the marginal probabilities over the latent variables. I

perform this crucial inference step by using the Bayes Net Toolbox forMatlab [BNT, 2007].

The updated posteriors for all combination of evidence are shown in Fig. 3.6b. Obviously,

when the three observations correspond exactly to the simulation results, the corresponding
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Figure 3.5: Simulation results for all four combinations of paroxysmal activities and

STDP rules. The four upper panels depict the postsynaptic firing rates under various com-

binations and the four lower panels draw the memory retention with the dashed blue lines

indicting the normal conditions without the perturbation of input spike trains and the solid

red lines with perturbation.
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latent variables have high posterior probabilities. For example, for observed transient decay

of postsynaptic activity during the seizure (RateIntra = transient), a “recovering” post-

ictal firing rate (RatePost = recovering) and “mild” memory loss (MemLoss = mild)

are predictable only by “additive” STDP. However, it is conceivable that experimental evi-

dence may yield results not compatible with any of the four combinations of latent variables

such as RateIntra = elevated, RatePost = recovering, andMemLoss = severe, which

leads to almost equal posterior probabilities for Act (second row, fourth column).

I argue that such a systematic comparison of different mechanisms, even without a full data-

driven Bayesian model comparison, will yield valuable insights into the actually employed

mechanisms. Most importantly, however, I believe that this approach of comparing alter-

native mechanisms is ideally suited as a basis for further refinement of the models and the

domain knowledge expressed in terms of a Bayesian network.
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Figure 3.6: Conditional probabilities for the Bayesian network and inferred posteriors.

A. CPTs set up based on the simulation results. B. Inferred posterior distributions over the

latent variables for all combinations of observable evidence at the three evidence nodes (leaf

nodes in Fig. 3.2b).
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3.5 Discussion and Future Vision

I propose that data andmodel sharing in neuroscience shall be accompanied with the sharing

of knowledge via annotating scientific publications with formal statements of the qualitative

empirical findings, similar to the semantic web. In this work, one particular knowledge rep-

resentation is demonstrated where inferences generated from qualitative observations could

easily be translated to machine-readably annotations. I have shown how to translate simu-

lation results into a Bayesian network and how to perform such inferences using qualitative

observations from the literature even without access to the raw quantitive data. Certainly,

the annotation of scientific publications using semantic knowledge is desirable. But this,

of course, leaves open the problem of how to get these annotations in the first place. Ide-

ally, for new publications, the authors themselves formulate the findings and hypotheses in

a machine-readable format. A prerequisite for that is the availability of proper ontologies

and markup languages. Efforts for standardized ontologies in neuro- and brain science are

under way, and research in semantic web technologies has produced methods and tools for

formalizing knowledge. However, for already published works such annotations need to

be made post hoc. I envision a web site with curated annotations, which would then be

applicable for both new and older publications, where standards are enforced as part of the

curation procedure.

The particular example I considered here is challenging, because as of now, it is not known

in which way paroxysmal brain activity may affect memory via STDP. Directly measuring

this will remain beyond the technical possibilities for the foreseeable future. Thus, mak-

ing use of a variety of experimental observations both from animal and human studies will

be most promising. The experimental literature shows a diverse picture: for example, the

intra-ictal activity of some granule cells in the rat hippocampus was observed to be elevated

while others remained unchanged [Bower and Buckmaster, 2008]. In addition, the firing

of some cells became more regular approx. 1 min before seizure onset, and some other

cells showed a firing rate reduction for the seizure. Recent observations from human spike

activity during seizures revealed that the single neuron activity is indeed “highly hetero-

geneous, not hyper-synchronous” and showed clear termination of activity after a seizure

[Truccolo et al., 2011]. Within the class of the mutually exclusive alternatives I considered,

the latter findings are most compatible with an “additive” STDP rule, and an increased fir-

ing rate of the presynaptic neurons. Taken the poor performance of the “mixed” STDP in

terms of memory retention, however, one could even rule it out as a candidate mechanism.

Future work will have to: i) derive formal statements of these experimental findings using,

for example, temporal logic expressions; ii) extend the space of models to more alternatives

for the presynaptic spike activity to allow for increased rates, increased synchronicity and

changes in the regularity of firing; iii) introduce more observables such as the Fano factor

for the postsynaptic response; iv) link all descriptions to neuro-ontologies.



Chapter 4

Adapting the Ensemble of Synaptic

Weights via STDP by Changing the

Action Potential Shape

The models of synaptic plasticity explored in the previous chapter are phenomenological

models that treat the occurrence of both pre- and postsynaptic spikes as all-or-none events.

However, even though the biophysics of action potentials are well characterized, they may

differ significantly between individual cells. Most recent studies have not taken the detailed

dynamics of action potentials into account when exploring the consequences of plasticity

rules for the ensemble of “synaptic weights”, or even the connections in (recurrent) net-

works. Moreover, the experimental literature has not yet characterized the potential effects

of the action potential dynamics (the “shape” of an action potential in the time vs. voltage

plane) on synaptic plasticity (see Sec 4.1 for details).

In this chapter, I develop a new model within the Song framework that incorporates an AP-

dependent STDPwindow. I then explore the impact of AP duration on i) synaptic plasticity

in terms of how the ensemble of synaptic “weights” of a single postsynaptic neuron is af-

fected by the AP duration and ii) neuronal dynamics in terms of how the average firing rate

of the model neuron is regulated by the adapting ensemble. This model is rooted in a bio-

physically more realistic model [Clopath and Gerstner, 2010], but it retains the simplicity

of the Song framework, which eases simulation studies and may allow for theoretical inves-

tigations. In Sec 4.2, I present the modeling results from [Clopath and Gerstner, 2010] and

[Shouval et al., 2002] that motivate my simplified dSTDP model formulated in the ensu-

ing section. The main simulation observations are illustrated in Sec 4.3, and I summarize

the chapter and derive experimentally-testable model predictions in Sec 4.4.
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4.1 Background and Motivation

Synaptic plasticity is sensitive to the timing of pre- and postsynaptic firings. Ever since the

first experiments demonstrating that Hebbian synapse exists [Kelso et al., 1986] and first

recordings revealing that the coincidence of postsynaptic action potentials (APs) and exci-

tatory postsynaptic potentials (EPSPs) was sufficient to induce long-term changes in synap-

tic efficacy [Markram et al., 1997], many experimentalists and theoreticians believed that

“timing is everything”. For the past decade, these findings led to a generally accepted phe-

nomenon known as spike timing-dependent plasticity (STDP) [Caporale and Dan, 2008],

even though its generality has been questioned [Lisman and Spruston, 2010] as STDP-

induced modification is contingent uponmany other factors [Lisman and Spruston, 2005].

Despite ongoing debates over spike timing as the most critical parameter within the multi-

factor plasticity rule of STDP [Feldman, 2012], the key principle of the Hebbian learning

is still thought to be the spike-pair causality [Sejnowski, 2003].

APs, or the back-propagating signals triggered by APs, are believed to play the most crucial

role in STDP. However, theoretical studies usually treated spikes as all-or-none events, with

the duration and magnitude of which not being taken into consideration. Thus, it is no

surprise that the functional role of AP duration or magnitude on STDP has never been in-

vestigated, neither experimentally nor theoretically. It is worth noting that AP duration dif-

fers between cell types. GABAergic interneurons often [McCormick et al., 1985], but not

always [Kawaguchi and Kubota, 1993] or exclusively [Gray and McCormick, 1996], have

shorter AP durations than pyramidal neurons. In addition, AP duration is widely used to

identify dopamine (DA) neurons and it was shown that the projection targets of DA neu-

rons correlate with their AP durations, for instance, nucleus accumbens-projecting neurons

may have a duration of 5ms, which is almost twice as long as for amygdala-projecting ones

[Margolis et al., 2008]. Even within the same neuron type, what’s more worth noting is

that AP duration, which is generally accepted as a stereotypic property, can be modulated

via BK channels [Deng et al., 2013]. All the evidences above led us to the hypothesis that

such differences are not accidental but may play a role in information processing, learning,

memory and even in certain disease models. Besides, since AP broadening may exert a sig-

nificant impact on various types of calcium channels that can lead to an increase of calcium

entry and thus favor a strengthening of synaptic conductance [Wheeler et al., 1996], AP

duration may have an impact on synaptic plasticity that is not negligible. From the biologi-

cal perspective, elucidating this impact will shade light on the mechanisms underlying how

synaptic plasticity shapes cortical networks of excitatory and inhibitory neurons, and how

various pathways of DA and non-DA neurons differ, e.g., given identical protocols.

In addition to the biological standpoint, some mathematical models have also attested that

the change of the duration of action potential could have remarkable consequences on the

elevation of calcium concentration and synaptic modification. For example, a biophysical

model proposed by [Shouval et al., 2002] demonstrated that a post-stimulus with a wider

postsynaptic spike results in a much larger increase of calcium concentration (Fig. 4.1B).
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Figure 4.1: The shape of postsynaptic spike contributes to calcium elevation.

A. Examples of two action potentials with different shapes (lengths).

B.The calcium elevations induced by the action potentials of different lengths as in A.
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For another example, a recently proposed phenomenological model accounts for a variety

of experimental findings of STDP [Clopath et al., 2010]. This model is voltage dependent

and does not treat spikes as all-or-none phenomena, from which the predicted synaptic

modifications depend not only on the plasticity model but also on the neuron model. I

first replicated the simulation results from [Clopath et al., 2010] and then experimented

with the model by varying AP duration. Two typical STDP experimental protocols were

simulated: an inter-spike interval (ISI) protocol and an inter-spike frequency (ISF) protocol,

respectively with a set of AP durations. Fig. 4.2A shows the STDP curves obtained from the

ISI protocols with 20 pairs per second and different inter-spike intervals∆t. I observe that

the longer the AP duration the more the predicted STDPwindow is stretched. In particular,

a synapse is potentiated for long APs even when presynaptic spikes arrive within, which

resembles the curves reported in [Nevian and Sakmann, 2006]. The peak potentiation is

higher for long AP durations, because at pre-post pairings they keep themembrane potential

at higher voltage, which in the model translates into more potentiation. Moreover, I find

that AP duration affects as well the predicted synaptic modifications under the ISF protocol.

Potentiation is predicted to increase with higher frequencies of pre-post pairs,∆t = 10ms,

for longer but not for short APs (Fig. 4.2B & C). Altogether I confirm that AP duration of

2.0 ms produced the model predictions, that are in agreement with previous experiments

[Sjöström et al., 2001].

These modeling results emphasize the importance of the postsynaptic AP duration in synap-

tic plasticity from a modeling & theoretical point of view. The important predictions I then

include below into my new model are: i) presynaptic spikes strengthen a synapse when they

arrive before and during an AP, but they weaken a synapse when arriving afterwards; ii) the

magnitudes of these modifications depend on AP duration. In support of these model pre-

dictions, one of the original STDP papers did show some data points, illustrating positive

synaptic weight changes given negative ∆t [Bi and Poo, 1998].
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Figure 4.2: Synaptic modification by a voltage-dependent STDP model.

A. STDP windows generated by stimulating Clopath model [Clopath et al., 2010] with 75

pairs (20 pairs per second) of pre- and postsynaptic spikes with 5 different pairing intervals

∆t (1.0 to 5.0ms). B & C.The relative peak modification of synaptic weight simulated by

different pairing frequency ρ with ∆t = +10 ms (pre-post) and ∆t = −10 ms (post-pre).
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4.2 Formulation of dSTDP model

One could focus on one out of two aspects when modeling synaptic plasticity, namely the

detailed biophysical/biochemical dynamics or the emergent functional properties of learn-

ing rules. In this study, my emphasis is on the latter and I define a phenomenological model

to study howAP durationmay shape the pattern of synaptic weights. In themodel, the indi-

vidual synapses do not interact directly with each other, but their synaptic strengths become

interdependent via the spiking of the postsynaptic neuron. For instance, [Song et al., 2000]

have demonstrated in their study how competition could arise in this way. This already

shows that even apparently simplistic phenomenological models can lead to surprising non-

linear emergent effects at the level of a single neuron that shall be understood before the

biophysical/biochemical dynamics at a single synapses are investigated. The new model is

based on three assumptions: First, a synapse is potentiated when a presynaptic spike arrives

before and during a postsynaptic AP; Second, a synapse with a presynaptic spike arriving

after the postsynaptic AP is depressed with a magnitude depending on AP duration in or-

der to control the overall LTP/LTD ratio; Third, the effect of AP duration is uniformly

distributed through the length, modeled via a plateau in the STDP window. I construct

the model in such a way that it could be simulated in both additive [Song et al., 2000] and

mixedmodes (additive update for potentiation andmultiplicative update for depression, see

details in [Kepecs et al., 2002]). For AP duration is explicitly included within the model, I

name it dSTDP.

More specifically, given a presynaptic spike at i-th excitatory synapse and a postsynaptic

spike elicited by an interval ∆t, the corresponding change of the synaptic weight wi
exc is

illustrated in Fig. 4.3A and defined as:

∆wi
exc =


wmax · A+ · exp (−∆t/τ+) if∆t > 0

wmax · A+ if − dAP ⩽ ∆t ⩽ 0

wLTD · A+ exp ((∆t+ dAP ) /τ−) if∆t < −dAP

(4.1)

where wLTD = −wmax ·β(α, dAP ) and wLTD = −wi ·β(α̃, dAP ) in are used respectively

in the additive and mixed modes. The AP duration dependent term β(α, d) = α · e
2d
τ+

is introduced to keep the ratio of positive integral to negative integral equal to constant

α (Fig. 4.3B). This procedure is intended to eliminate significant changes in the ratio of

LTP/LTD areas induced by AP duration, which could be a potential confounding factor

[Song et al., 2000]. An all-to-all pairing scheme is implemented to update synaptic modi-

fications [Izhikevich and Desai, 2003].

As described in the previous chapter, a phenomenological STDP model has to be simulated

in tandem with a neuron model that serves to receive presynaptic spikes and generate post-

synaptic APs. The model neuron receivesNexc excitatory andNinh inhibitory poisson spike

trains similar as the way implemented in [Song et al., 2000] and [Van Rossum et al., 2000].

A standard single-compartment conductance-based leaky integrate-and-fire neuron with a
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A B

Figure 4.3: dSTDP window function. A.The relative modification of synaptic weight∆w

varies as a function of inter-spike interval∆t (dAP = 2.0ms). B.The update for depression

is modeled with an AP-duration-dependent term β(α, d) = α · e
2d
τ+
.

spike-triggered adaptation current [Delgado et al., 2010] is used to simulate the dynamics

of membrane potential Vm with membrane capacity Cm and leak conductance GL:

Cm
dVm

dt
= GL (Vr − Vm)+Gexc(t) (Eexc − Vm)+Ginh(t) (Einh − Vm)+gadpt(t) (Eadpt − Vm)

(4.2)

The model neuron spikes an AP when the membrane potential reaches the threshold Vth.

To cooperate with the dSTDP model I introduce dAP as the new parameter, denoting AP

duration, such that when the membrane potential reaches the threshold from below at time

tspike, I assign Vm (t) = Vpeak for tspike ≤ t < tspike + dAP and then reset Vm (t) = Vreset

at t = t + dAP . This is certainly a gross simplification for modeling the effects of AP

duration, but I introduce this simplistic parameterization in order to obtain a first quali-

tative characterization of its impact on synaptic conductances via synaptic learning. The

adaptation conductance gadpt(t) increments by 1 nS after each postsynaptic spike, namely

at the time of threshold crossing tspike, and then decays with a time constant τadpt. It mod-

els spike-frequency adaptation due to, for example, calcium-dependent potassium currents.

The total synaptic conductancesGexc(t) andGinh(t) represent summed contributions from

all excitatory and inhibitory synapses. The corresponding total conductance is increased

instantaneously by wi
whenever a presynaptic spike arrives at the i-th synapse, and then

decays with a time constant τsyn. All inhibitory synapses have an unmodifiable strength

winh, whereas w
i
exc is updated by STDP learning. Important parameters for both neuron

and plasticity model are listed in Table. 4.1.
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Table 4.1: Neuronal, synaptic and plasticity parameters

Parameter Symbol Default value

Membrane capacity Cm 200 pF

Leak conductance GL 10 nS

Membrane time constant τm 20 ms

Spiking threshold Vth −54 mV

Resting membrane potential Vr −70 mV

Reset membrane potential Vreset −60 mV

Adaptive reversal potential Eadap −70 mV

Adaptation time constant τadap 100 ms

Action potential duration dAP 2.0 ms

Synaptic time constant τsyn 5 ms

Potentiation time constant τ+ 20 ms

Depression time constant τ− 20 ms

Inhibitory synaptic strength winh 500 pS

Number of excitatory synapses Nexc 1000

Number of inhibitory synapses Ninh 200

Excitatory input rate rexc 10 Hz

Inhibitory input rate rinh 10 Hz

Maximum potentiation amplitude A+ 0.005

Learning ratio in additive mode α 1.05

Learning ratio in mixed mode α̃ 2
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4.3 Results

4.3.1 Comparison of equilibrium weight distributions

I first study one of the functional consequences of STDP: the shape of synaptic weight

distribution. The dSTDP model is simulated together with an integrate-and-fire model

neuron whose activity is driven by both excitatory and inhibitory poisson spike trains. The

equilibrium synaptic weight distributions are first re-examined for short AP duration 0.1

ms (equivalent to the model with a canonical STDP window, e.g. [Song et al., 2000]) in

both modes. The additive mode produces a U-shaped bimodal distribution with synap-

tic weights tamed by an upper-bound (Fig. 4.4A), well matching the results reported in

[Song et al., 2000]. The weight-dependent mixed mode generates a centered unimodal dis-

tribution (Fig. 4.4B) in which the synaptic weights are very narrowly distributed, consistent

with a previous simulation study [Billings and van Rossum, 2009]. As previously contem-

plated, when simulated without imposing an upper-bound, the additive mode has an in-

herent instability in that a few synapses get boundlessly stronger due to a destabilizing force,

while the others become weaker (Fig. 4.4C). By contrast, the mixed mode has an intrinsic

stability and produces the very same distribution, independent of the existence of an upper-

bound (Fig. 4.4D), because the effect of the destabilizing force is relatively small as the stabi-

lizing force dominates, which then constrains the weight growth [Van Rossum et al., 2000].

For simulations of dSTDP models I chose an AP duration of 2.0ms. Interestingly, dSTDP

in the additive mode predicts a wide unimodal distribution (Fig. 4.4E), which clearly dif-

fers from the U-shaped as in Fig. 4.4A. This difference can be understood as follows: the

additional potentiation force introduced by the AP duration counters the extra depression

induced by the β-term. As a consequence, independent of the initial synaptic weights, most

of the synapses tend to stay in the middle range of the weight spectrum (Fig. 4.5). Note that

the distribution remains stable without an upper-bound (Fig. 4.4G), indicating an intrinsic

stability property possessed by the model. The dSTDPmodel simulated in the mixed mode

predicts a similar narrow unimodal distribution, but slightly skewed(Fig. 4.4F & H).

4.3.2 AP duration determines the shape of synaptic weight distribution

The results shown in Fig. 4.4 suggest to me that the equilibrium synaptic weight distribu-

tion could be largely attributable to the length of AP duration in dSTDP models. I decide

to simulate dSTDP model in the additive mode with an upper-bound wmax for various

AP durations, ranging from 0.1 to 5.0 ms, and observe the resultant distributions which

is illustrated in Fig. 4.6E. The weight distribution loses its bimodal shape as AP duration

increases and transforms to a complete unimodal for durations that are larger than approxi-

mately 1.0ms, and it becomes narrower for larger ones. Accompanied with the reshaping of

weight distribution, the average and the standard deviation of synaptic weights decrease for

longer AP durations (Fig. 4.6A & B), which are computed from the histograms shown in

Fig. 4.6E and they illustrate one experimentally-testable prediction of dSTDP model: the

postsynaptic AP duration is predicted to be inversely correlated with the average synaptic

strength as well as its variability.
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Figure 4.4: Equilibrium synaptic weight distributions for dSTDP models.

(For A,B,C,D: dAP = 0.1 ms.)

A: A U-shaped bimodal distribution generated by additive mode, with an upper-bound.

B: A centered unimodal distribution generated by mixed mode, with an upper-bound.

C: Similar to A, without an upper-bound. The distribution doesn’t equilibrate as in A and

the data is taken at t = 3000 sec.

D: Similar to B, without an upper-bound. (For E,F,G,H: dAP = 2.0 ms.)

E:The wide unimodal distribution by additive mode, with an upper-bound.

F:The slightly-skewed unimodal distribution by mixed mode, with an upper-bound.

G: Similar to E, without an upper-bound.

H: Similar to F, without an upper-bound.
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Figure 4.5: The developments of synaptic weights under different AP durations.

By short AP duration, the additive mode drives most of the synapses either to a potentiated

state (green) or a depressed state (blue), thereby resulting in a bimodal distribution.

In contrast, most synapses tend to stay in the middle (red) by long AP duration.

Note that even though the distribution reaches an equilibrium state, individual weights keep

fluctuating as the simulation goes along. The fluctuation is around one order of magnitude

larger than for short AP durations (Fig. 4.6C & D). This reflects the difference between the

bimodal and unimodal weight distributions as for instance in the former, strong synapses

can become weak and vice versa, which results in large temporal fluctuations. In compari-

son, the mixed mode exhibits fairly small variations in both statistical properties and hence

doesn’t result in significant AP duration dependent changes in equilibrium synaptic weight

distribution (Fig. 4.7).

4.3.3 Postsynaptic response to signal and noise inputs

Next, I study another functional consequence of STDP: the regulation of postsynaptic spik-

ing rate [Abbott and Nelson, 2000]. In this modeling study, most of the presynaptic inputs

were modeled as poisson spike trains, similar as what was conducted also in some previous

works in the literature. It is currently not clear if in the real brain such poisson spikes carry

relevant information or should rather be considered as a source of background noise, how-

ever, recent evidences suggested that correlated synchronous neural activity is informative

about the features of stimulus in the early sensory processing [Stanley et al., 2012] as well

as about behavioral states [Salinas and Sejnowski, 2001]. Therefore, I decide to explore the

role of AP duration in dSTDP for processing inputs that are composed of both synchronous

spikes as the signal and poisson spikes as the noise.
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Figure 4.6: AP duration determines the shape of equilibrium synaptic weight distribution

(additive mode).

A:The average of excitatory synaptic weights given various AP durations.

B:The standard deviation of excitatory synaptic weights given various AP durations.

C: The standard deviation of each individual synaptic weight for an 1000-sec post-

equilibrium simulation run (dAP = 0.1 ms).

D: Same as in C, dAP = 2.0 ms.

E: The horizontal axis is AP duration, the vertical axis is synaptic weight and color bar

indicates the probability density.
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Figure 4.7: AP duration has little effect on shaping synaptic weight distribution in the

mixed mode. Similar as what is illustrated in Fig. 4.6, but simulated with mixed mode.
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As done above for investigating the synaptic weight distributions, I first explore the effect of

AP duration on regulating the postsynaptic response to the noise. The fluctuation analysis

suggests that the dynamics of the postsynaptic neuron must also undergo a big change. It

has been discovered that given poisson noise, STDP rules have remarkable effects on regu-

lating the long-term average spiking rate of the postsynaptic neuron [Kempter et al., 2001]

as the synaptic weight distribution converges to an equilibrated state. I find that dSTDP

models also possess such a regulation of the postsynaptic spiking: 1) the rate simulated with

the additive mode dSTDP decreases quickly as AP duration extends (normalized ratio in

Fig. 4.8A, red); 2) such effect is as prominent with the mixed mode, the rate drops almost

by 60% when varying AP duration from 0.1 ms to 2.0 ms (Fig. 4.8A, green), despite the

fact that the weight distribution has only a small shift to the left (Fig. 4.4F).

Figure 4.8: Regulation of postsynaptic spiking rate by AP duration (noise).

A.The normalized postsynaptic rates for various AP durations.

B.The normalized postsynaptic rates for various excitatory input rates (additive mode).

C. Similar as B, but the rates are not normalized (mixed mode).

Analyzing a selected simulation run shows that the absolute asymptotic postsynaptic spiking

rate for a long AP duration is much lower compared to a short one (0.1 vs 7.5 Hz, see traces

in Fig. 4.9). The simulations reveal that AP duration exerts a significant effect on the steady-

state spiking rate, making the model neuron much insensitive to the noise (Fig. 4.8A & B).

Such regulation is expected as the weight distribution narrows (Fig. 4.6E) and total weight

of synapses decreases when AP duration is elevated (Fig. 4.6A).
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Figure 4.9: Postsynaptic spiking rate traces. The rates are calculated by simulating dAP =

0.1 ms (blue) and dAP = 2.0 ms (red).

A recent model showed an interesting regulation of the postsynaptic spiking, by which the

rate has a nonlinear dependence with the level of excitatory noise [Babadi and Abbott, 2010].

Such feature is also present by dSTDP models, which is affected by the length of AP dura-

tion. I find that in the additive mode: 1) when AP duration is short, the postsynaptic rate

rises from 7.5 Hz to about 13 Hz as the excitatory input rate is elevated from 10 Hz to 50

Hz (Fig. 4.8B, green). This result is consistent with the previous study, as each 5 Hz increase

causes an elevation of the output rate roughly by 1 Hz [Song et al., 2000]; 2) when AP du-

ration is long, however, an exponential-decreasing dependence is observed (Fig. 4.8B, red),

which can be understood intuitively as the postsynaptic neuron shifts most of the synapses

to weaker strengths for higher presynaptic activities (Fig. 4.10). Such ”buffering” effect is

much weaker in the mixed mode (Fig. 4.8C) and the rate undergoes a more than 60-fold

increase from 5 Hz to 300 Hz for just a 5-fold increase of the input rate, but still, the

increase is less pronounced for longer AP durations (Fig. 4.8C, red). Then I simulated a

scenario where the model neuron is first driven by the noise alone and let weight distribu-

tion converges towards an equilibrium. Afterwards, a signal modeled as synchronous events

generated in a poisson manner is applied for 200 seconds to drive the neuron model. More

specifically, I define a rate r and a fraction f of the presynaptic spikes being synchronized,

then within each simulation time bin ∆t, the probability of a synchronous event to occur

is r∆t, and on every occurrence of such synchrony, f · Nexc presynaptic excitatory spikes

are synchronized. After removing the signal the weight distribution re-equilibrated again

(Fig. 4.11). Interestingly, I observe that postsynaptic spiking remains equally sensitive to

the signal (plateau phase), while the noise is much more effectively filtered (decay phase) by

a long AP duration than a short one (Fig. 4.12).
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Figure 4.10: The effect of elevated excitatory noise input on synaptic weight distribution

and postsynaptic rate (additive mode). The synaptic distributions (upper) and postsynaptic

firing rates (lower) are depicted for rexc = 10 (left panels) and rexc = 50 (right panels).
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Figure 4.11: The effect of signal input on synaptic distribution (additive mode).

A1: All the excitatory synapses have an initial weight of 100 pS.

A2: The equilibrium synaptic weight distribution converges to a bimodal shape after re-

ceiving noise only.

A3: Most of the synapses are strengthened towards wmax when afterwards receiving both

noise and signal.

A4: The removal of the signal re-equilibrates the distribution back to a bimodal shape.

B: A raster plot represents the presynaptic spike trains, aligned with the different stages that

cause the change of synaptic weight distribution.

C: All panels are similar to A, but simulated with AP duration 2.0 ms.
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Figure 4.12: Sensitivity of postsynaptic spiking rate to synchronized spikes.

A. The actual postsynaptic rates are shown for two different AP durations, driven by the

presynaptic spike activity as illustrated in B.

B. A raster plot of the poisson spike trains (noise) and the synchronized spikes (signal).

The blue dots represent the excitatory inputs (10 Hz) and the black dots indicate the in-

hibitory ones (10Hz). The synchronous spikes are represented by the red dots which occur

on excitatory synapses only (r = 10 Hz and f = 0.1).
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4.3.4 Simulations of unbounded dSTDP

The hard boundary imposed in the simulations with short AP duration is very artificial,

essentially lacking a biological underpinning for its usage in the simulation study. I have

shown that without an upper-bound, short AP duration leads in the additive mode to a

development in which a number of very strong synapses continue to grow their strengths

way beyond wmax (Fig. 4.4C). Taking a snapshot at time 1500 sec in the simulations, I

observe that on average only 72% of the excitatory synapses have weights smaller than or

equal to wmax. Nevertheless, long AP duration intrinsically stabilizes the synaptic strength

without bounds (Fig. 4.4G). Therefore, I am very keen to know whether varying the AP

duration may systematically alter the below-bound ratio of synaptic population, the ratio of

the synaptic weights below wmax. I find that this below-bound ratio increases as AP dura-

tion is extended (Fig. 4.13A), for instance, all synaptic weights are constrained below wmax

once AP duration is larger than 2.0ms. Moreover, I also picked out the maximum synaptic

weights for various AP durations from simulations (each ran for 3000 sec). The maximum

decreases when AP duration is prolonged and no single weight exceeds wmax when APs are

longer than 2.0 ms (Fig. 4.13B). These results confirm from a different perspective that AP

duration has an inherently stabilizing effects which should motivate further studies.

Figure 4.13: dSTDP models unbounded.

A:The ratio of synaptic weights below wmax.

B:The maximum synaptic weight obtained throughout each simulation run (3000 sec).
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4.4 Discussion

The main contribution of the study described in this chapter is to emphasize that AP du-

ration is an important and so far poorly investigated feature of STDP. Here I particularly

refer to the emergent properties of AP duration in a model neuron driven by a number

of excitatory and inhibitory poisson noisy spike trains as well as the synchronized on the

synapses, not its effects in microscopic models of synaptic plasticity [Shouval et al., 2002] or

signal transduction pathway models of a postsynaptic spine [Manninen et al., 2010]. In my

simulation study I used a recently proposed unified model [Clopath and Gerstner, 2010] as

the basis for my novel simplified linear dSTDP model, which includes AP duration directly

into a STDP window function.

This dSTDP model in the additive mode makes several unique and testable predictions:

i) the synaptic weight distribution depends on AP duration with a bimodal shape for short

ones and a unimodal for the longer (Fig. 4.6E).This prediction can be experimentally tested

by e.g., ensemble statistics of spontaneous miniature or evoked EPSPs; ii) the mean and

standard deviation of this distribution decrease for elevated APs (Fig. 4.6A & B). It is worth

noting that this prediction is in good consistency with the data reported by a few previous

experimental works. For instance the duration of bAP typically increases on the dendrites

with the distance from soma [Kampa and Stuart, 2006] whichmay account for a decremen-

tal average response observed in the distal compartments [Froemke et al., 2005]. Besides,

the results are also in agreement with another simulation work that modeled the effect of

AP duration as axonal delay [Knoblauch et al., 2012], this work showed also a decrease in

summed synaptic strengths after STDP training; iii) the fluctuations of individual synaptic

weights over time depend on AP duration with stronger fluctuations for the short (Fig. 4.6C

& D); iv) the model neuron with long APs is able to filter out most of the poisson noise

input while remains very sensitive to the modeled signal (Fig. 4.12).

One could question the validity of our simulation study, given that one of my starting

points was a phenomenological model itself [Clopath et al., 2010]. However, I used this

model as our starting point, because it is a model from which the plasticity outcome is

directly determined by the duration and magnitude of the postsynaptic AP, whereas the

prediction from more complex models may be indirect, for instance, depending on the

modeling of calcium concentration [Shouval et al., 2002] or kinetics of NMDA receptors

[Urakubo et al., 2008]. Moreover, the dSTDP window I postulate here is consistent with

the published experimental data, which is itself rather noisy and does not fully constrain

the window function at the transition between potentiation and depression.

One could argue that neither a narrow unimodal [Billings and van Rossum, 2009] nor a

bimodal weight distribution are of functional interests, and a stable Gaussian distribution

should be the goal of modeling studies [Babadi and Abbott, 2010]. This contradicts the ex-

perimental observation which reported a unimodal weight distribution with long tail (a few

strong connections immersed in a sea of weaker ones’ [Song et al., 2005]). Interestingly, I
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do obtain such a distribution as plotted in Fig. 4.14 from another version of dSTDP model

which does not have the control for the ratio of integrated LTP/LTD windows, or in other

words the β(α, d) term in the model.
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Figure 4.14: Model prediction of dSTDP without constraint on the ratio of integrated

LTP/LTD windows. A slightly skewed unimodal distribution in the mixed mode with an

upper-bound.

Conclusively, studying how AP duration affects the emergent properties of synaptic plas-

ticity in a single neuron or neural networks, is certainly a field of interest for both theoreti-

cians and experimentalists. More than half a century after Hodgkin and Huxley’s original

publication, the action potential (its shape and duration) should get renewed attention in

particular from the field of synaptic plasticity and this simulation work may qualify as yet

another candidate model in the spectrum of STDP modeling to be further explored, ana-

lytically and experimentally.



Chapter 5

Exploring the Consequences of State

Transition in Striatal Principal Neurons

by Detailed and Reduced Approaches

Striatal projection neurons (SPNs) integrate diverse cortical and thalamic inputs, and then

relay the processed information to output nuclei of the basal ganglia. SPNs in vivo fire ac-

tion potentials only from depolarized “upstates”, which appear for certain spatiotemporal

patterns of multiple excitatory synaptic inputs. Such synaptically-driven state transitions

from hyperpolarized “downstates” are believed to endow SPNs with the capacity to asso-

ciate contextual, sensory and motor cues to control the striatal output.

In this chapter, I first introduce in Sec 5.1 the upstate phenomenon and a revised in vitro ex-

perimental model of how it might be produced [Plotkin et al., 2011]. In Sec 5.2, I present

a detailed compartmental neuron model of a SPN with a full set of parameter values. This

model is validated by replicating experimental observations of both distal upstate given

glutamate uncaging and somatic spiking given current injection. I then use the model to

explore how another factor may govern the state transition and its restriction to distal (but

not proximal) dendrites: dendritic anatomy. Moreover, I propose a model in which the in-

terplay between proximal and distal dendrites of a SPN can realize associative computation.

Both experimental observation and compartmental modeling support the notion that active

channels in dendrites are indispensable for single neuron computation of SPNs. However,

I show that this is not necessarily the case as models with only passive dendrites without

active channels can predict key characteristics of the upstate. Rall’s work is the basis for in-

vestigating dendritic computations [Segev et al., 1994], particularly neuronal information

processing with passive dendrites [Rall, 1964]. In Sec 5.3, I first recapitulate the modeling

background of passive dendrites and then present a passive neuron model of a SPN with a

reduced compartmental approach inspired by one of the original works from Wilfred Rall.

Afterwards, I investigate under which conditions of synaptic drive, a passive dendrite is able

to integrate specific stimuli and realize an association-based information processing.
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5.1 State Transitions in Striatal Principal Neurons

As for many other neuron types, people have been studying SPNs for more than several

decades, with ever-innovating tools and new technologies. It has been long discovered

and known that SPNs in vivo operate in two different modes with two distinct levels of

subthreshold membrane potential. One is the downstate around -86 mV and the other is

around -55mV, the upstate where action potential generation occurs. It is worth noting that

the upstate phenomenon was indeed first found in SPNs [Wilson and Kawaguchi, 1996].

Over the years, the manifestation of downstate has been very well understood but the mech-

anisms for the upstate generation are still not as clear. Surmeier Lab therefore asked the

question: from where the upstate originates in SPNs? His colleagues worked out the first

in-vitro experiment that produced the upstate by using 2-photon microscopy and uncaging

techniques [Plotkin et al., 2011]. They demonstrated that dendritic regenerative plateau

potentials which resemble upstates can be reliably evoked by high-frequency uncaging pro-

tocols onto about ten adjacent spines in the distal region of a dendritic branch (Fig. 5.1, left

panel). The generated plateau potentials can last for tens or even hundreds of milliseconds

long and only the distal dendrites but not the proximal ones are capable of evoking such

state transitions (Fig. 5.1, right panel).

Figure 5.1: The physiological evidence of synaptically-driven state transitions in SPNs.

taken from [Plotkin et al., 2011] and see texts for details.
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5.2 The Detailed Compartmental Model

5.2.1 Spiny SPN Model

Neuronal Anatomy

The anatomy of this multi-compartmental SPN model is adapted from the one presented

in [Wolf et al., 2005] and all the anatomical parameters are specified in the hoc files using

the frameworks provided by NEURON. This model possesses one soma and four primary

dendritic branches. Each primary branch bifurcates twice, extending to 8 secondary den-

drites and 16 tertiary dendrites. Previous studies of SPNs have focused on either single-

compartment models [Biddell and Johnson, 2013] or multi-compartmental models with a

compensation for the additional membrane area attributable to spines [Wolf et al., 2005].

In contrast, I taper two of the tertiary dendrites and put onto them explicitly 349 dendritic

spines each (Fig. 5.5A). The anatomical parameters are listed in Table. 5.1 and the den-

sity used to distribute spines along the two branches are plotted in Fig. 5.2, which accord

quantitively with the statistics inferred from [Wilson, 1992]. To ensure a sufficient spatial

accuracy of numerical solution, an overall spatial grid for each section is specified using a

d-lambda value of 0.15 [Hines and Carnevale, 2001].

Table 5.1: The anatomical parameters of SPN model

number of sections length diameter

soma 1 16 16

primary dendrites 4 20 2.25

secondary dendrites 8 24.23 1.1

tertiary dendrites without spines 14 395.2 0.72

tertiary dendrites with spines 2 180 0:0.85 = 1.1:0.7

0.85:1 = 0.7:0.3

Ion Channels

To implement a diverse range of neuronal functions, SPNs have evolved a broad array of ion

channels [Kreitzer, 2009], in particular, the voltage-dependent potassium channels which

govern virtually every aspect of neuronal processes as diverse as synaptic integration, mem-

brane potential stabilization and repetitive spiking. For this model, four calcium-insensitive

voltage-dependent potassium channels are invested in the somatic and dendritic sections,

which are modeled on the basis of the published data from Surmeier Lab:

1) Inward Rectifier: One of the striatal principal potassium channels is an inwardly-rectifying

channel, known as KIR [Mermelstein et al., 1998]. The channel kinetics, however, have not

been experimentally characterized by Surmeier Lab and have to be matched using data from

Aplysia as done in [Wolf et al., 2005]. The signature characteristic of inward rectification

is an increase of potassium conductance under hyperpolarization and a decrease of channel

conductance under depolarization. This feature plays a crucial role in setting the resting po-

tential as well as the input resistance of the downstate. The channel dominates the neuronal
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Figure 5.2: The distribution density of spines on the tapered dendritic branches.

conductance profile in the downstate and stabilizes the membrane potential close to Ek.

Hence, it is this channel that makes SPNs difficult to be excited at rest. As the membrane

potential becomes more positive, the channel rectifies due to the blockade of intracellular

magnesium [Matsuda, 1991], thereby gradually reducing the intensity of excitatory stimuli

required to produce state transitions;

2) A-type Fast: A-type potassium current is evident in striatal spiny neurons and a major fast

component of this current is contributed byKv4.2 subunits (termed as Kv4 channels below).

The parameters of channel kinetics are directly taken from [Tkatch et al., 2000] (activation

from Fig.2 and inactivation from Fig.3). However, the functional role of Kv4 channels in

term of regulating dendritic excitability of striatal neurons is not as well-understood. In the

dendrites of pyramidal neurons, Kv4 channels have very high density which increases with

distance from the soma. This could also be the case for SPNs. Previous experimental and

computational studies discovered that the Kv4 channel regulates the propagation of den-

dritic current in both orthograde and retrograde directions [Hoffman et al., 1997], e.g., it

inactivation induced by synaptic activity could result in a remarkable increase in amplitude

of back-propagating action potentials [Migliore et al., 1999], which is a feature that is very

critical for not only dendritic integration but also the induction of associative synaptic plas-

ticity. Recently, Surmeier Lab published new empirical results that suggested a potential

regulatory role of Kv4 channels in the striatal neurons [Day et al., 2008], similar to what

has been observed in the pyramidal neurons. Part of the results make an claim that action

potential back-propagates into very distal dendritic regions in both D1 and D2 neurons,

and this invasion is modulated by Kv4 channels. This finding is consistent with what has

been reported in other cell types, stating that the Kv4 channel depresses the amplitude of
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bAPs in the distal dendrite (see Fig.4 in [Day et al., 2008]). Another worth-investigating

issue I find is that unlike in the pyramidal cells, there is so far no evidence for sodium in-

vestment in the distal dendrites of SPNs (see Fig.2 in [Day et al., 2008]). The only possible

way to boost calcium signal in the distal dendrite given bAPs may indeed be the mechanism

through the inactivation of Kv4 channels caused by clustered synaptic inputs as proposed

by [Migliore et al., 1999]. Nevertheless it is not clear whether the Kv4 channel possesses a

similar functionality as shown in pyramidal neurons or may be involved in other forms of

dendritic information processing that is unique to SPNs. The functional consequences of

such attributes are discussed in the last chapter;

3) A-type Slow: Kv4 channels, as described above, inactivate very rapidly with a time con-

stant of about 10milliseconds, making them ineffective in the regulation of sustained synap-

tic activity. In contrast, another A-type potassium channel composed of Kv1.2 subunits, is

evolved relatively later in development to compensate for such inefficiency (termed as Kv1

channels below). This channel is often referred to as slow-inactivating potassium channel.

The biophysical properties of Kv1 channels enable them to possess a comparably fast acti-

vation rate but a much slower deactivation, and therefore ensure their contribution to reg-

ulate dendritic excitability during sustained upstate firing [Shen et al., 2004], from which

the original modeling parameters are extracted. For example, the channel can induce a use-

dependent short-term (2 seconds) increase of membrane excitability attributable to a slow

inactivation of the gating variable (Fig. 5.3). Besides, nearly half of the total potassium cur-

rent is constituted by Kv1 channels at upstate potentials from -60mV to -55mV, making

them play critical roles in regulating state transitions and repetitive discharge. Furthermore,

in spite of the relatively less contribution (10-20%) at very depolarized membrane poten-

tials, their strategic location in the spike generation zone [Day et al., 2008] still endows the

channel with a major impact on modulating spiking frequency and first spike latency;

4) 4-AP Resistant Persistent: Except Kv1 and Kv4 channels which inactivate, the potassium

current recorded from striatal principal neurons indicats that there exists a third compo-

nent that is rather persistent and 4-aminopyridine (4-AP) resistant (termed as KRP chan-

nels below). The kinetic parameters of the channel are taken from [Nisenbaum et al., 1996]

(activation kinetics from Fig.6; activation and deactivation time constants from Fig.8; inac-

tivation kinetics and time constants in Fig.9). Because of the relatively slow activation rate,

the current of KRP channels makes a distinctive contribution at subthreshold membrane

potential by having a very minimal influence on the voltage transition from the hyperpolar-

ized state to the depolarized but enabling SPNs to constrain the amplitude and duration of

membrane depolarization, e.g., regulating the maintenance of dendritic regenerative events.

Three characteristics of the channel kinetics are: slow activation rate with time constant at

about 100 ms near −45 mV; only about 20% of the current is inactivated near the resting

potential; and the time constant of inactivation is 3 times slower than that of Kv1 channels.
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Figure 5.3: The slow inactivating Kv1 channel facilitates short-term excitability of SPNs.

The blue trace is the membrane potential evoked by the injected current (black curve). The

red curve is re-scaled to illustrate the effect of inactivation variable h
Kv1

on the reduction of

first spike latency and interspike interval due to its partial recovery before the second ramp.

Sodium channels of both fast (NaF) and persistent (NaP) types are distributed throughout

the model with differential finite conductances. As the gating kinetics of sodium channels

are not available in the striatal literature, the parameters are taken from the studies of other

brain areas. For the fast type, the kinetic parameters are extracted from principal neurons

of rat hippocampus [Martina and Jonas, 1997]. The persistent type is different from the

fast type in a number of kinetic aspects. It possesses a lower threshold and fast kinetics

for activation (Fig. 5.4A). In addition, the most prominent difference is that its kinetics

of inactivation is several thousand times slower (Fig. 5.4B). Besides, the conductance has

a lower amplitude which represents only less than 2% of the total sodium conductance.

Most of the parameters of the persistent type are taken from principal neurons of rat cortex

[Magistretti and Alonso, 1999], except for the kinetics for activation τ [Traub et al., 2003].

In order to generate realistic spiking behavior and avoid doublets of action potentials, it is

necessary to set the conductances in the soma to be 10 times the ones in the dendrites.

Calcium channels are of particular interest to the study of dopaminergic modulation of stri-

atal function, and two subtypes have been implicated to modulate the initiation and dura-

tion of state transitions [Plotkin et al., 2011]: T-type and R-type. Surmeier Lab has charac-

terized the R-type and the kinetic parameters are all extracted from [Foehring et al., 2000]

(activation from Fig.6 and inactivation from Fig.7). The T-type channel is distinguished

from the R-type in several aspects: more hyperpolarized voltage threshold for activation,

much slower deactivation and voltage-dependent kinetics of inactivation. However, the

kinetics of T-type channel has not been characterized in the neostriatal and the model-
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Figure 5.4: The kinetics of sodium channels in the SPN model.

A.The kinetics of voltage-dependent gating variables. B.The inactivation time constants.

ing parameters if necessary must be taken from other cell types, e.g., [Wang et al., 1991].

These two calcium channels are excluded from the somatic and dendritic compartments

(not spines) for the reason that the sodium and potassium channels listed in Table 5.2 are

sufficient to generate reasonable behaviors in response to the current injection.

Using a modified version of HH formalism [Hodgkin and Huxley, 1952], the channels are

individually modeled by following Eq. 5.1, with the gating variablesm and h defined using

Eq. 5.2 and Eq. 5.3 respectively.

Iz = gzm
x(ahy + (1− a))(V − Ez) (5.1)

m
′
=

m∞ −m

τm
with m∞(V ) =

1

1 + exp(−V−V1/2

Vs
)

(5.2)

h
′
=

h∞ − h

τh
with h∞(V ) =

1

1 + exp(
V−V1/2

Vs
)

(5.3)

where m and h are gating variables for activation and inactivation. m∞ and h∞ represent

steady-state activation and inactivation curves. τm and τh are time constants for variablem

and h at voltage V . The half-activation and inactivation voltage constants are represented

by V1/2 and Vs is the slope of the Boltzmann fit to m∞ and h∞ curves. gz is the maximal

conductance of a specific channel z. The ionic channels are all implemented as separate

mod files and then loaded to work together with the hoc files using the interfaces provided

within NEURON. The parameter values are listed in Table. 5.2.
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Table 5.2: Parameter values of ion channels implemented in SPN model

gz (S/cm
2
) HH form V1/2 (mV) Vs (mV) τ (ms)

NaF 1.5, soma x=3, y=1 m -23.9 11.8 Tabulated

0.0195, dendrites a=1 h -62.9 10.7 Tabulated

NaP 4e-5, soma x=1, y=1 m -52.6 4.6 Tabulated

1.38e-7, dendrites a=1 h -48.8 10.0 Tabulated

Kv4 0.225, soma and proximal x=2, y=1 m -10.0 17.7 Tabulated

0.02, middle and distal a=1 h -75.6 10.0 4.67

Kv1 0.0104, soma and proximal x=2, y=1 m -27.0 16 Tabulated

9.51e-4, middle and distal a=0.996 h -33.5 21.5 Tabulated

K
IR

1.4e-4, all x=1, y=0 m -82.0 13 Tabulated

K
RP

0.001, all x=1, y=1 m -13.5 11.8 Tabulated

a=0.7 h -54.7 18.6 Tabulated

Dendritic spines

Spines are modeled using the electrical circuits described in Sec 2.4, by having spine heads

connected to spine necks attached to their parent dendritic shafts. The spine necks are pas-

sive but spine heads are modeled with fast-activating AMPA and NMDA receptors, and

various voltage-sensitive calcium channels, such as T-type and R-type.

5.2.2 Simulation Results

The somatic response to current injection and location independence of evoked EPSPs

I illustrate a part of the SPN model in Fig. 5.5A which shows a soma, one full dendritic

branch and spines that receive proximal and distal inputs. Somatic current injection proto-

cols are conducted to verify the model to the reported somatic recordings. One of the sig-

nature characteristics of a SPN is an extended depolarizing ramp in response to the current

injection before firing the first spike. This behavior is manifest in the model in response to

supra-threshold current injection (Fig. 5.5B, red). An injected current of larger amplitude

leads to a repetitive firing (Fig. 5.5B, black). In addition, the experiment using glutamate

uncaging has shown that the amplitudes of somatic EPSPs evoked by activating glutamate

receptors of single spines are independent of their dendritic locations (see Supplementary

Fig.3 in [Plotkin et al., 2011]). The model replicates such independence by synaptically

activating one proximal and one distal spine, with each possessing an identical glutamate

receptor composition. The resulting EPSPs have similar amplitudes when triggered by either

distal or proximal stimulation (Fig. 5.6A). The rise times of proximally-triggered somatic

EPSPs are faster, as expected.

The upstate replication and potential role of spine neck

SPN state transitions can be evoked experimentally by spatially and temporally coordinated

activation of about a dozen distal dendritic spines. The model reproduces this phenomenon
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with an activation of 12 spines in rapid succession (500HZ) on a distal dendrite (> 120µm

from soma). The resulting membrane potential trajectory at the soma demonstrates at least

3 features of an experimentally observed distal upstate (Fig. 5.6B, solid red):

1) the depolarization peaks tens of milliseconds after the termination of stimulus;

2) the depolarization is sustained as a plateau potential;

3) the depolarization decays to the baseline voltage rapidly when the plateau potential falls.

Unlike distal dendrites, proximal dendrites are not capable of sustaining regenerative events

[Plotkin et al., 2011]. Consistent with this observation, activating 12 proximal spines (>

60µm from soma) in rapid succession (500 Hz) produces a somatic response that reaches

the same peak as the distally-evoked response and decays almost immediately after the proto-

col ends (Fig. 5.6B, solid black). Moreover, the dendritically-evoked upstate requires an en-

gagement of NMDA receptors (NMDARs) and voltage-gated calcium channels (VGCCs).

The model confirms the contribution of these channels to EPSPs evoked by rapid activation

of 12 distal or proximal spines. Removal of these channels reduces both the amplitude and

duration of distally-evoked EPSPs (dashed red), but has little effect on proximally-evoked

responses (Fig. 5.6B, dashed black). These results confirm the previous demonstration that

not only do NMDARs and VGCCs contribute to dendritic plateau potentials, but they are

more efficiently engaged in distal dendrites. Furthermore, the lengths of distal spine necks

are parameter-scanned, which is something not tangible in a real experiment. The result

illustrates that the neck length can alter the dynamics of evoked state transitions with long

necks extending the duration and short necks elevating the amplitude (Fig. 5.6C).

The contribution of thin dendrites for upstate generation

Plateau potentials in the distal SPN dendrites require current flow through NMDARs and

VGCCs. It was suggested by [Plotkin et al., 2011] that the ability of distal, but not proxi-

mal, SPN dendrites to support regenerative events is a consequence of a distance-dependent

increase in the input resistance caused by dendritic tapering. Thus, I examine the role of

dendritic tapering in the origin of plateau potentials and distance-dependent responses to

synaptic stimulation. I hypothesize that if dendritic shaft tapering enhances distal synaptic

responses by increasing input resistance and restricting the current flow away from the site of

stimulation, then local dendritic depolarization induced by a single synaptic stimulus should

be greater in distal dendritic shafts (see also discussion for details in [Plotkin et al., 2011]).

To test this hypothesis, single spines are activated at proximal and distal locations within the

tertiary dendritic segment. Although the local peak EPSP amplitude in spine heads is inde-

pendent of the distance from the soma, the local peak EPSP amplitude in distal dendritic

shafts is 2-fold larger than their proximal counterparts (Fig. 5.7A, CTRL). Blocking ac-

tive channels in spine heads results in no significant difference in peak EPSP amplitudes of

spines (Fig. 5.7A, -NMDAR & VGCCs). However, the peak EPSP amplitude of dendritic

shafts is greatly attenuated (dist/prox=2 vs. dist/prox=1.2 in Fig. 5.7A).
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Figure 5.5: Somatic responses of SPN model to injected currents.

A: Schematic representation of SPN geometry with the spines labeled as matchsticks.

B: Somatic membrane potential traces in response to depolarizing current injections.
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Figure 5.6: The roles of voltage-dependent channels and spine neck in the distal upstate.

A: Somatic EPSPs evoked by stimulating either a proximal (prox) or distal (dist) spine.

B: Somatic voltage traces in response to stimulation of 12 proximal (black, solid) or distal

(red, solid) spines. The dashed traces simulate the model without NMDAR and VGCCs.

C: Spine neck modulates the amplitude and duration of evoked distal upstate.
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These results can be interpreted with the aid of previously published theoretical analysis

[Koch and Zador, 1993]. The total spine input impedance (Rsp) is assumed to be the

summed impedance (Eq. 5.4) of spine neck (Rn) and parent dendritic shaft (Rsh):

Rsp = Rn +Rsh (5.4)

I can express the amplitude of the EPSP evoked at the dendritic shaft as Eq. 5.5:

Vsh = gheadEhead
Rsh

1 + gheadRsp

(5.5)

where ghead is the total input conductance of ion channels at the spine head andEhead is the

reversal potential. Given that in the model ghead is much smaller than Rsp, I can simplify

Eq. 5.5 to Eq. 5.6:

Vsh ≈ gheadEheadRsh (5.6)

From Eq. 5.6, I see that Vsh depends on two variables: ghead andRsh, as the reversal poten-

tial is always constant. The calculation of Rprox
sh and Rdist

sh is performed using the compute

function provided by NEURON Impedance class (data not plotted). In the control condi-

tion, tapering of the tertiary dendrite produces a static Rsh that is twice as high distally vs

proximally (Rdist
sh = 2*Rprox

sh ). The attenuated distance-dependence of dendritic shaft EPSP

amplitude in the absence of NMDAR and VGCCs likely reflects a reduction in absolute

shaft depolarization due to a decrease in ghead.

As the activation of a single spine depolarized distal dendritic shafts more robustly than

proximal ones, it stands to reason that rapid activation of multiple neighboring spines will

induce a larger depolarization in distal shafts, supporting their ability to sustain regenera-

tive events. Indeed, sequential activation of 12 neighboring spines induce a depolarization

on distal dendritic shafts (Fig. 5.7B, solid red lines), whose amplitude is twice as high as

in the proximal dendrites (Fig. 5.7B, vertical double arrows). Such ample distal dendritic

depolarization in turn boosts the activation of NMDAR and VGCCs in the stimulated

spines. Although this boost only modestly enhances the peak EPSP amplitude at individ-

ual distal spines, it sustains the membrane potential of distal spine heads at a high voltage

(above -30 mV) well after the stimulus, in contrast to the fast decay in proximal spines

(Fig. 5.7B). The resulting plateau potential generated in distal dendrites then transfers, via

cable properties of the dendrite to the soma where it is expressed as a long-lasting upstate

(Fig. 5.7B, dashed green lines). These simulations expand the previous work to offer amodel

by which dendritic tapering slows the decay of synaptically-induced dendritic depolariza-

tions by amplifying interspine cooperativity, consistent with studies in pyramidal neurons

[Harnett et al., 2012].
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Figure 5.7: Thin distal dendrite can support state transition.

A: The EPSP amplitudes in the control conditions (left panel) and in the absence of NM-

DAR and VGCCs (right panel). The red rectangles highlight the ratio of distal to proximal

shaft depolarization.

B:Membrane potential traces from soma (green), shaft (red) and spine heads (blue) of the

modeled SPN in response to stimulation of 12 neighboring distal (top) or proximal (bot-

tom) spines.
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Association-based Dendritic Computation

Active dendrites are able to generate regenerative events and therefore serve as elementary

computational units of information processing in the brain. Here I conceptualize this ac-

tive SPN model as an association-based information processing unit capable of integrating

distally-encoded regenerative events with temporally restricted proximally encoded cues. To

begin testing this, the dendritic length stimulated to evoke a plateau potential is reduced by

half (from 12 to 6 spines, stimulated twice each, maintaining 12 total stimuli), sharpening

the spatial parameter. Just as in Fig. 5.5, this modification induces robust plateau potentials

when delivered distally but not proximally (Fig. 5.7, blue vs. green). Neither stimulation

pattern induces a somatic action potential. Integration of distal and proximal cues is then

examined by distributing the 12 stimuli among distal and proximal spines. Stimulation of

6 neighboring proximal spines immediately followed by stimulation of 6 neighboring distal

spines produces a long somatic plateau potential (Fig. 5.7, dashed red). Stimulation of 6

distal spines before 6 proximal spines, however, induces a plateau potential and initiated

a somatic action potential (Fig. 5.7, solid red). These simulations raise the possibility that

SPNs can associate discrete clusters of excitatory inputs based on the timed innervation of

specific portions of their dendritic tree.
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Figure 5.8: Synaptically driven distal plateau potential facilitates the generation of action

potentials by proximal inputs. Somatic responses evoked by stimulating: 6 neighboring

proximal spines twice each (green); 6 neighboring distal spines twice each (blue); 6 proximal

spines followed by 6 distal spines (dashed red); 6 distal spines followed by 6 proximal spines

(solid red). All spines are stimulated at 500 Hz.

The next obvious step is to perform the full permutation of protocol sequence of synaptic

inputs distributed along the dendrite. The total number of input spine is still 12, but the

proximal and distal input density are redistributed as color-tabled in Fig. 5.9 (left side) with

different permutations of the sum of twelve. I observe that only when distal inputs come

before the proximal inputs and the density is well-balanced, an action potential is observed,

but not the other way around. It has been proposed that distal inputs encode an internal
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representation of an object or a concept and proximal inputs represent the external sensory

information. The model prediction shows that when the sensory input comes without any

previous internal representation, there is absolutely no output spiking no matter how the

limited neural resources are distributed. On the other hand, when the internal representa-

tion exists, then most of the input reshuffles can lead to an action.
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Figure 5.9: Synaptically driven distal plateau potential facilitates the generation of action

potentials followed by proximal inputs. See text for details.
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5.3 The Reduced Compartmental Model

5.3.1 Modeling Background and Motivation

The pioneering exploration of the computational capabilities of dendrites by Wilfred Rall

has provided the theoretical framework for computational neuroscience. Many of his works

are classics, from modeling the complex branching structures of dendritic trees to studying

their contributions to the signal processing in the nervous system. One outstanding paper

[Rall, 1964] is: eoretical significance of dendritic trees for neuronal input-output relations.

It was the first theoretical paper to demonstrate neurons as computational units, that are able

to detect the spatiotemporal direction of synaptic activation on the dendrites. Rall showed

in the simulation that the farther the locations of stimulation are away from the soma, the

lower and later the voltage peaks are observed at the soma. However, at the level of unitary

somatic EPSP, this prediction is not compatible with our current knowledge on dendritic

location-independence [Magee and Cook, 2000]. Moreover, at the level of evoked EPSPs

by the activation of a group of adjacent neighboring spines in a rapid succession, Rall’s pre-

diction can also not hold true as the peak somatic voltages do not bear location-dependent

differences [Plotkin et al., 2011].

Motivated by Rall’s work [Rall, 1964], which demonstrated rich computational capabilities

of dendrites such as the direction selectivity without assuming voltage-dependent channels,

I set up the simulation study below to examine the conditions under which a reduced passive

model can predict striatal upstate and direction sensitivity.

5.3.2 Model Description

The main equations of the model are described as follows:

1) the dynamics of the membrane potential Vm are calculated using an equivalent electrical

circuit model which can be described as:

Cm
dVm

dt
= −Gr(Vm − Er)−Ge(Ee − Er)−Gi(Ei − Er) (5.7)

where Cm is membrane capacitance. Ge and Gi are synaptic conductances with reversal

potentials Ee and Ei. The conductance Gr and reversal potential Er model leak currents.

2) two new variables E and I are introduced, along with the new normalized time constant

τm, to abstract a unit-less representation excitatory and inhibitory synaptic inputs:

E =
Ge

Gr

, I =
Gi

Gr

, τm =
Cm

Gr

(5.8)

where E i and I i are designated inputs to the i-th dendritic section (see below).

3) built upon the circuit model (Eq. 5.7), this reduced model has 1 somatic compartment

and 9 dendritic compartments on a single tree, as illustrated in Fig. 5.10. The membrane
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potential of each numbered (i-th) compartment (V i
m) is calculated using Eq. 5.9:

τm
dV i

m

dt
= −(1 + E i + I i +∆Z2)V i

m +∆Z2(V i−1
m + V i+1

m ) + E i (5.9)

where the compartmental electronic distance∆Z is set to 0.2 and the membrane time con-

stant is. Boundary conditions are V i=0
m = V i=11

m = 0.

1 2 3 4 5 6 7 8 9 10

soma

proximal distal

output action selection inputs context inputs

Figure 5.10: The reduced compartmental model.

Each circle represents a neuronal compartment and the model comprises 10 compartments,

with one somatic compartment (noted as No.1), 4 proximal compartments which provide

action cues and 4 distal compartments that encode context inputs.

I first validate the model by stimulating pairs of compartments along the dendrite with

∆E = 1.0 and ∆t/τ = 0.25. Fig. 5.11 shows that the effect of dendritic location given

identical excitatory E-pulse stimulation is that the peak somatic depolarization decreases

with the increasing distance of stimulated dendritic compartment to the soma, consistent

with Rall’s original observation [Rall, 1964].

(2,3)

(4,5)

(6,7)

(8,9)

Figure 5.11: The somatic responses to the pairs of excitatory stimulation.
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5.3.3 Simulation Results

Strong distal activation evokes up states

[Plotkin et al., 2011] used the technique of laser uncaging of glutamate to stimulate den-

drites at different locations with varying distances from the soma. They investigated under

which conditions such dendritic stimulation, which mimics synaptic stimulation, gives rise

to state transitions as observed from intracellular recording [Wilson and Kawaguchi, 1996].

From their study, I extract four important observations:

i) the somatically recorded membrane potentials triggered by both proximal and distal stim-

ulation are similar in terms of the peak amplitude;

ii) the peak somatic potential triggered by distal uncaging is delayed by approx. 50ms com-

pared to the peak triggered by proximal uncaging;

iii) the membrane potential at the soma decays back to the resting voltage at almost the same

time after both proximal and distal stimulation;

iv) the duration of upstate is longer when triggered by distal compared to proximal stimu-

lation (the time between the end of uncaging and a 50% voltage fall.

I first consider observation: i) how can somatic membrane potential rise to the same peak

amplitude for both proximal and distal stimulation? I find that a location-dependence of

excitatory stimulation strength E is necessary to achieve this. Fig. 5.12a shows the somatic

voltage in response to a proximal (dashed line) and distal excitatory stimulation (solid line).

The strength of proximal stimulation is set to match experimental findings. An amplitude

of 20mV is shown to be achieved by stimulating on average 25 spines, but the threshold for

evoking a sustained somatic depolarization is only about 11 spines from the distal region

[Plotkin et al., 2011]. Therefore, I select 9 mV depolarization as the reference amplitude

in this study, which is consistent with the threshold phenomenon in the striatal neurons

(Joshua Plotkin, personal correspondence). As expected from themodel, the distal compart-

ments require a stronger stimulation than the proximal. In Fig. 5.12a, a distal stimulation

of approx. 10× the strength of the proximal is used to reach the same peak amplitude at

the soma (2.0 vs. 19.0).

The delayed peak of somatic potential which follows naturally from the model, is not com-

patible with observation iii). The potential decays later to the resting level for distal stimula-

tion (Fig. 5.12a). I find that the inhibitory stimulation is necessary for achieving a somatic

voltage-decay back for distal stimulation at the same time as for the proximal one. Fig. 5.12b

shows the result when applying a strong distal inhibitory stimulation after the somatic po-

tential peaked. So far, I have demonstrated that key characteristics of striatal upstate can be

produced with the model and my proposal is therefore an alternative to voltage-dependent

channels in dendrites, but it requires a properly matched inhibition at distal sites.
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a b

Figure 5.12: Themodel with strong distal stimulation, captures key features of state tran-

sitions observed in SPNs.

a) Somatic response evoked by placing on compartment 3 an E-pulse with magnitude

∆Ep = 2.0 (dashed line), and on compartment 10 an E-pulse with magnitude∆Ed = 19.0

(solid line). The latter value was chosen such that the two peak responses are the same (here:

approx. −71mV). However, these simulations are only consistent with observations i) and

ii) but not with the observation iii).

b) Same as in a), but with additional delayed distal inhibition, which makes the model

prediction consistent with all four observations.
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Revisiting directional sensitivity

I argue that Rall’s most significant contribution in his 1964 paper was the discovery that

a model neuron is sensitive to the temporal sequence of synaptic inputs and can act as a

device computing the direction of motion [Rall, 1964]. This phenomenon was afterwards

explored by [Torre and Poggio, 1978] and very recently supported by the experiment from

[Branco et al., 2010], in which they used so-called IN and OUT protocols. These two ex-

perimental protocols represent respectively the sequential synaptic stimulation from distal

location towards the soma (IN) and from proximal location to the distal (OUT) dendritic

branch. In this paper, the notion of “directional sensitivity” was re-ignited and two distinct

neuronal outputs under the protocols were communicated:

v) IN protocol produces a larger somatic peak potential than the OUT by about 35%;

vi) OUT protocol evokes a higher somatic potential trace than the IN during the decay.

(The numbering is continued from the observations i-iv).

I first simulate IN and OUT sequences using Rall’s default parametrization (e.g., replicating

his Fig.7 in [Rall, 1964]), shown in Fig. 5.13a. Here, the excitatory strength at each node

is identical. I observe that the peak voltage in the IN protocol is higher than in the OUT

protocol, which constitutes the direction-selectivity of Rall’s model, but the value is almost

twice as high for the OUT sequence and not around 35%. Besides, the somatic membrane

potential during the decay phase is not higher in the OUT protocol as observed experimen-

tally by [Branco et al., 2010].

I then simulate the model with the excitatory strengths that make somatic peak amplitudes

identical for all dendritic compartments (Fig. 5.13a). I find that now the model predictions

are in much better agreement with observations v) and vi). More specifically, the IN pro-

tocol produces a larger response at the soma peaking at −58.5 mV, which is 5.5 mV above

the peak potential obtained by the OUT protocol (−64mV), well matching a 35% increase

(Fig. 5.13b). Furthermore, the OUT sequence now produces a larger potential during the

decay phase than the IN sequence, which is due to the overall stronger excitatory activa-

tion in our parametrization. Note that I have derived the location-dependence of excitatory

strength to evoke the same peak amplitude at soma (Fig. 5.12a), and not to match at the

first place the direction-selectivity reported in [Branco et al., 2010].

Background depolarization set by distal inputs

It was suggested that context-dependent pattern recognition can be realized by distally-

driven state transitions by which associative information processing of the proximal input

can be performed [Plotkin et al., 2011]. Here I explore if such a computation can be per-

formed in this reduced model, when the distal activation is strong (Fig. 5.12a).

I simulate three scenarios (see Fig. 5.14): First, using the exact parameters as in [Rall, 1964],

two distal E-pulses are delivered before one proximal E-pulse (thin solid line). The strengths

of all pulses are the same as in Rall’s original work. The resulting somatic potential is slightly
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a b

Figure 5.13: The direction selectivity evoked by different strengths of distal stimulation.

a) Stimulation protocol as used in Rall’s original paper (Fig.7 in [Rall, 1964]).

The computed direction selectivity is not consistent with the observations v-vi.

b) Simulations of IN and OUT protocols, with excitatory strengths at each node evoking

the same somatic peak response when applied alone.

above−70mV (thin grey line), which is far from the voltage threshold for state transitions

around −60 mV. Second, three consecutive proximal E-pulses are applied, all of them with

the same strength as in the first scenario (dashed line). Interestingly, the peak potential at

the soma is only a few millivolts higher than in the first case. ird, similar to the first sce-

nario, I simulate two distal compartments followed by a proximal stimulation (thick solid

line). Now, however, I use the stimulation strengths I determined, namely with stronger

activation for distal sites. This gives rise to a much larger depolarization than in the previous

two cases. The soma is depolarized by 20 mV, close to the spike threshold −60 mV.
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dist dist prox

proxproxprox

dist dist prox (Rall protocol)

Figure 5.14: Effects of sequential distal/proximal depolarization on somatic response

prox + dist: first strong distal, then weak proximal stimulation (solid black line)

prox only: only weak proximal stimulation (dashed black line)

Rall protocol: first weak distal, then weak proximal stimulation (solid grey line)
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5.4 Discussion

In this chapter, I demonstrate using a detailed compartmental SPN model that highly-

tapered distal dendrites of SPNs can support local regenerative events while the proximal

dendrites of larger diameters can not. The simulation results expand upon this, suggesting

that the small diameter of distal dendrites only modestly affects the peak EPSP amplitude of

stimulated spines, but robustly increases the amount of time neighboring stimulated spines

reside above a possible “threshold” depolarization. The nature of this cooperativity indicates

that the temporal fidelity of clustered excitatory inputs may be more faithfully preserved in

the proximal than distal dendritic regions. It is thought that a major task of the striatum is

to govern action selection. Part of this likely involves SPNs making meaningful associations

between diverse inputs. Moreover, I discover that input patterns are indeed recognized only

in the upstate while in the downstate the neuron as an associative classifier is to great extents

switched off. Such simulation evidence reinforces the idea that synaptic inputs at distal den-

dritic locations could set the context for recognizing synaptic activation patterns of synapses

proximal to the soma and such context-dependent information processing is fundamental

to our brain, e.g., basal ganglia, for implementing algorithms like action selection and deci-

sion making. Furthermore, experimental studies can readily identify the active contributors

of an observed phenomenon by advanced pharmacological methods, although the role of

passive dendrites and their contributions to the striatal state transitions are yet not clear.

To clarify the contributions of intrinsic dendritic anatomy, I then investigate dendritic com-

putations in a reduced compartmental model with passive dendrites. Extending Rall’s orig-

inal work I consider the location-dependence of synaptic activations as free parameters,

which are determined to match recorded somatic membrane potentials in striatal neurons

undergoing synaptically driven transitions to upstates. I observe that when the distal activa-

tion is stronger than the proximal, the Rall model predicts key features of the upstate, which

so far have been attested to involve voltage-dependent channels in dendrites. Assuming an

additional delayed and strong distal inhibition further improves the model replication, in

which the decay to resting voltage occurs with identical trajectories, independent of stimu-

lation location. Besides accounting for key features of the upstate and thereby providing the

substrate for context-dependent pattern recognition, the strong distal activations also make

the Rall model’s predictions very similar to recent experimental findings on the synaptic

direction selectivity as reported [Branco et al., 2010].

To summarize, the simulation results from bothmodels demonstrate that: 1) the association-

based dendritic computations, previously thought to require active dendrites, can be realized

with passive dendrites. As a consequence, future experimental studies have to determine on

a case-by-case basis the actual implementation of dendritic computations and distinguish

between the single-cell model with active channels, properly matched location-dependent

synaptic strengths, or a mixture of both; 2) this shall, however, not rule out or even replace

models with voltage-dependent dendritic channels. The simulations presented in Fig. 5.9

describe a mechanism by which SPN distal dendrites may gate the generation of action
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potentials triggered by proximally-synapsing inputs. This active property has several impli-

cations for striatal computations: i) only inputs converging in time and space (in sufficient

numbers) on distal dendrites will lead to the generation of somatic upstates; ii) once an

upstate is established, only sufficiently strong and appropriately timed proximal inputs will

lead to action potential generation, ultimately gating information flow out of the striatum

and inhibition or disinhibition of the basal ganglia output nuclei controlling action. Such

property is very likely to be possessed also by other neuron subtypes that manifest the up-

state phenomenon [Oikonomou et al., 2014], in particular, the cortical pyramidal neurons

[Major et al., 2008] which is the focus of the next chapter.



Chapter 6

Differential Spine and Shaft

Computations in a Pyramidal Neuron

Model

In the previous chapter, I report that a detailed SPN model replicates striatal upstate phe-

nomenon in the condition that the synaptic input arrives directly on the spine head and

the length of spine neck regulates the upstate duration (Fig. 5.6). In other interpretations

of this result, it is very likely that presynaptic terminals which directly target the dendritic

shaft of SPNs (axo-dendritic synapses without spine neck) may result in functionally very

segregated consequences in terms of neuronal integration from those which make contact to

the spine head (axo-spinous synapses). Although experimental evidence for striatal synapses

on this issue still awaits future investigation, cortical electrophysiology works have revealed

some basic anatomical and functional characteristics of the differentiated axo-projections

[Araya et al., 2006a]. However, a more integrative view of functional differences caused by

the axo-dendritic and axo-spinous synapses of the cortical pyramidal neuron is currently

missing.

In this chapter, I first parameterize a cortical pyramidal neuron model by putting spine

and shaft synapses next to one another, carefully calibrated and validated the model in Sec

6.2. Then I investigate the model to understand the underlying mechanisms in the ensuing

section. Finally, I present the simulation results from the model and derive the main pre-

dictions that are of immediate interest to the current experiment designs of studying both

thalamocortical and thalamostriatal system.
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6.1 Experimental Background and Modeling Motivation

Although an overwhelmingmajority of synaptic contacts aremade directly onto axo-spinous

(spine) synapses after a developmental transition, axo-shaft synapses persistently co-exist

adjacent to either existing spines or newly-born ones, redistributing contacting boutons

but not transforming themselves into spine synapses [Reilly et al., 2011]. It has become

prevailing textbook-knowledge that most synaptic contacts occur on the spines in both cor-

tical and subcortical areas of the brain. However, the ratio of shaft synapses to spines can

be highly variable, depending on specific brain areas [Aoto et al., 2007]. In addition, latest

studies on the organization of neural circuitry have discovered differential patterns of synap-

tic connectivity with either axo-shaft or axo-spinous synapses. For example there exists a

predominant axo-shaft targeting of CM/Pf (Center Median/Parafascicular) synapses in the

thalamostriatal connections [Smith et al., 2014], which is indicative of unknown functional

roles played by shaft synapses. As the goal-directed movements can completely depend on

the basal ganglia with the input from thalamus in the absence of cerebral cortex, such pref-

erential connectivity formed exclusively by the axo-dendritic Cm/Pf synapses may play a

bigger role than we thought before in carrying out independently a variety of evolutionarily

conversed motor functions commanded by thalamus [Grillner and Robertson, 2015].

Recently, [Araya et al., 2006a] demonstrated that glutamate uncaging targeted directly onto

dendritic shaft reliably evoked EPSPs that are comparable to those evoked by spines, suggest-

ing that pyramidal dendrites could be abundant with axo-dendritic contacting sites located

between spines. Furthermore, they investigated the integrative behaviors of the EPSPs gen-

erated by spine and shaft synapses, and found that the combined responses of spines sum

linearly (about 100% of the expected arithmetic sum) and those of the shaft sum sublinearly

(about 80%). However, the underlying mechanisms are not clear.

It is noteworthy that Araya et al. [Araya et al., 2006a] didn’t interrogate distal dendrites,

nevertheless subsequent studies on the same cell type have made remarkable advances and

demonstrated that distal spines can take advantage of dendritic impedance gradients to

overcome the relatively larger electrotonic distance, thereby implementing a rate coding

[Branco and Häusser, 2011]. In such context, the integrative property of distal shaft synapses

remains largely unknown. Besides, a raison d’être for shaft synapses, especially the po-

tential functional implication of their dendritic integration, has not yet been identified.

Moreover, both the role of distal shaft synapses in the control of action potential output

[Williams and Stuart, 2003] and back-propagation [Tsay and Yuste, 2002] also awaits fur-

ther explorations.
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6.2 Model Description

Simulations are performed with NEURON [Hines and Carnevale, 1997] using a recon-

structed layer 2/3 pyramidal neuron taken from [Branco and Häusser, 2011]. The focused

dendritic branch (marked red in Fig. 6.1A) has a total length of about 100µmwith the prox-

imal tip 40 µm and the distal tip 140 µm away from soma. 51 spines are put on the branch

with an interspinal distance of 2 µm and 50 shaft inputs are inserted respectively between

every two spines. It has been observed that synaptic strengths along a dendritic branch are

inversely correlated with spine neck length [Araya et al., 2006b], an important morpholog-

ical variable regulated in an activity-dependent manner [Araya et al., 2014]. This feature,

nevertheless, was rarely incorporated into the neuronal simulations studying synaptic inte-

gration. Based on the convincing evidence from Yuste Lab, individual spine-evoked EPSPs

in this model are parameterized by a function of neck length (nl) derived from the plotted

data in [Araya et al., 2006b] which can be described simply by an inverse linear function

Eq. 6.1, plotted with the blue line and blue dots in Fig. 6.1B:

vspepsp(nl) = 1.14222− 0.461111nl (6.1)

Although the natural variability of spine morphologies in the cortical pyramidal neuron

is ideally best characterized by a skewed distribution [Arellano et al., 2007], it is acknowl-

edged that the synaptic strengths follow also a normal distribution [Forti et al., 1997]. Thus

by parametrizing the peak conductances of glutamatergic receptors I distribute individual

spine-evoked EPSP using Eq. 6.1 together with a Gaussian probability of 1.0 µm mean

and 0.2 µm standard deviation of neck length (marked blue shadow in Fig. 6.1B) and neck

diameter is fixed in all simulations. For the reason that this study is designed to explore the

impact of dendritic impedance gradient on synaptic integration, the location dependence of

EPSP Efficacy on synapse location is intentionally eliminated [Williams and Stuart, 2002].

As a consequence, spines don’t represent any correlation of dendritic location with evoked

EPSPs and the same principle was applied to distribute shaft-evoked EPSPs as plotted with

red dots and circles in Fig. 6.1B.

6.3 Results

6.3.1 Replication of Integrative Behaviors by Spine and Shaft Synapses

I simulate exact same experimental protocols used in [Araya et al., 2006a] to validate the

model. In the dendritic region of a distance to soma between 20 and 80 µm, 1-5 spine

and shaft synapses are selected and stimulated with an inter-uncaging interval of 5 ms. The

peak amplitudes of combined spine-evoked EPSPs are nearly all identical to the expected

arithmetic sums of individual EPSPs (green dashed line and points in Fig. 6.2A), matching

a strictly linear input-output relation (black dashed line in Fig. 6.2A). In contrast, the peak

amplitudes generated by the combined shaft-evoked EPSPs (red dashed line and points in

Fig. 6.2A) are all located below the linear line. Consistent with the experimental findings,

spine-evoked EPSPs sum linearly with nearly 100% linearity percentage (the ratio of the

predicted value to the expected sum of individuals) and shaft-evoked ones integrate with
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Figure 6.1: Model construction and distribution of evoked EPSPs by spine and shaft

synapses.

A. Morphology of a reconstructed pyramidal neuron model. The marked big red point is

the somatic compartment and the marked red thin line is the focused dendritic branch on

which synaptic inputs are put.

B. The blue dots represent spine-evoked EPSPs using a linear regression model estimated

from Fig.2C in [Araya et al., 2006b]. The light blue shadow is a normal distribution with

a mean of 0.5 µm and a standard deviation of 0.2 µm in “Spine neck length”. The red dots

are the same dataset used for plotting blue dots but plotted versus “Distance to soma”. The

red circles are shaft-evoked EPSPs plotted versus “Distance to soma”.
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80% (Fig. 6.2B, left bars). The only inconsistency between the model prediction and the

data from [Araya et al., 2006a] lies in the calibration of the linearity percentage in area. The

shaft area does not bear any reductive behavior for the tested input numbers ranging from

2 to 5. Based on the illustration of Fig. 6.2C, the integral areas taken from the actual com-

bined EPSPs are bigger than the arithmetic sums of both shaft-evoked and spine-evoked

EPSPs (Fig. 6.2B, right bars). Taken together, this model faithfully replicates the main

findings in [Araya et al., 2006a] given identical spatiotemporal protocols, thereby qualify-

ing for being further utilized to explore plausible mechanism underlying differential modes

of synaptic integration by spine and shaft synapses.

6.3.2 Underlying Mechanism of Linear and Sublinear Summation

[Araya, 2014] stated in this latest review that the precise mechanisms which promote the

subthreshold linear summation of spine synapses remain unknown, which calls for both

future experimental examination and theoretical exploration. NMDARs are well known to

boost synaptic responses, thus I examine whether they are as well essential to maintain spine

linearity. When NMDAR activity is completely inhibited in the shaft, the linearity percent-

age of 60% is significantly below the experimentally-reported value 80% (Fig. 6.3A, dashed

magenta line and dots), suggesting that the sublinearity is due in part to the progressively

diminishing ionic driving force of shaft synapses and NMDAR investment compensates to

some extent for such intrinsic property of passive filtering of dendrites. Then I reduce NM-

DAR density to 50% in the spine head mimicking a partial blockade or down-regulation

of such compensatory effect provided by NMDAR conductance. The results show that

linear summation of spines is disrupted by such biophysical alteration and the synaptic re-

sponses integrated sublinearly similar to their shaft counterparts (Fig. 6.3A, dashed blue

line and dots). In addition, Fig. 6.3C shows that NMDAR activity almost drops to the

same level in the spine as what’s in the shaft after five synaptic events (marked by a cyan

rectangle), thereby not being able to sustain linear summation. Furthermore, I also find

that despite larger peak amplitude and summed area of NMDAR activity in the spine head

(NMDAR-50%) than in the shaft (Fig. 6.3B), the resulting linearity percentage is similar.

Taken together, such NMDAR-dependent mechanism is consistent with the observation

that application of APV produced a sublinearity of the combined EPSPs in cultured pyra-

midal neurons [Cash and Yuste, 1998] and the summary of NMDAR data suggests that

aside from intrinsic dendritic filtering, a low-level activity in the shaft and a reducing activ-

ity in the spine, insufficient for counterbalancing dendritic filtering, could explain for the

sublinear integrative behaviors of their evoked responses (Fig. 6.3D). Such phenomenon

reminisces the notion that it is definitely required for NMDAR-mediated spines to work

cooperatively to not only generate synaptic amplification [Harnett et al., 2012], but also to

produce linear summation.

6.3.3 Dependence of Synaptic Integration upon Three Variables

Recent experimental work in a pyramidal model [Branco and Häusser, 2011] demonstrated

that a single dendrite shifts its computational strategies from temporal integration to rating

coding, empowered by an impedance gradient along the branch. Part of their data illus-
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Figure 6.2: Replication of spine linear and shaft sublinear summation reported in

[Araya et al., 2006a]. A. Plot of the actual vs. the expected peak amplitudes of combined

EPSPs, scaled to have a unitary EPSP of 1mV. B. Plot of the percentage linearity, calculated

by taking the ratio of the peak amplitude or area of combined EPSPs to the expected values

given 5 synaptic events. C. Plot of two somatic membrane potential trajectories given 5

synaptic events of shaft synapses: blue curve represents the arithmetic sum of individual

EPSPs and red curve represents the combined sum.
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Figure 6.3: NMDAR-dependent mechanism for sublinear integration.

A. Spine responses sum sublinearly given a 50%NMDAR blockade and the shaft sum even

more sublinearly without NMDARs.

B.Differential NMDAR activities with a single synaptic event: spine control (green), spine

50% NMDAR (blue) and shaft control (red).

C. Same as in B, but given five synaptic events.

D. Summary of normalized NMDAR activities in area.
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trated that stimulating two adjacent spines at relatively distal locations resulted in a linear

percentage of the combined EPSPs significantly above 100%. Therefore, in contract to this

observation, the claim made in [Araya et al., 2006a] apparently requires a re-evaluation,

stating that spine linear summation is not affect by the dendritic location. Thus I use the

validated model to simulate the protocols used in the Fig.3 of [Araya et al., 2006a] and ex-

plore how the three experimental variables namely interspinal distance, distance to soma

and neck length could influence synaptic summation of both spine and shaft synapses.

In all sets of simulation, 3 inputs are selected based on different variable profiles. First, in-

terspinal distance is varied from 2 µm to 20 µm, the summation over this variable range lies

all in the zone where linearity percentage is between 97% and 103% (Fig. 6.4A). Likewise,

spine neck length also doesn’t seem to significantly alter the linear profile of integration

(Fig. 6.4B). Nevertheless, as expected, the impedance gradient in the stimulated branch

results in a linearized summation of shaft-evoked EPSPs from the proximal tip to the dis-

tal (Fig. 6.4C) and a supralinear integration of spines in the distal region (Fig. 6.4D). I

argue that the examination of the inputs located 100 µm away from soma was lacking in

[Araya et al., 2006a] and this missing piece of knowledge may explain the differential con-

clusions drawn from the respective studies.

6.3.4 Synaptic Amplification by Shaft Synapses

[Branco and Häusser, 2011] also demonstrated that stimulating less than 8 spines is suf-

ficient to reveal the differential coding schemes implemented by the proximal and distal

dendrites. What remains unknown is how shaft synapses may also transform information

differently in such context. I select respectively 8 to 12 inputs between 20-80 µm (proximal

sites) and beyond 100 µm (distal sites). At the proximal region, spines perform linear inte-

gration and the shaft sublinear (Fig. 6.5A). At the distal region, spine synapses bring about

nonlinear computing with a very low supralinear threshold. More precisely, just two spines

could generate a linearity percentage of 250%. Interestingly, shaft synapses are also capable

of producing supralinear summation but with a much higher threshold, namely 5 inputs

are required to excite the dendrite to spike (Fig. 6.5B). Moreover, unlike by the proximal

situation in which the peak amplitude of the combined EPSPs resulted by the shaft is always

lower than by the spine due to the sublinear summation, once certain threshold is crossed,

shaft synapses amplify somatic membrane potential more effectively than spines.

In Fig. 6.5B, two interesting characteristics are illustrated of combined distal shaft EPSPs:

i) higher amplification after crossing the threshold - given convergent distal inputs, membrane

potentials on the spine head and on the shaft can reach a comparable level of saturated

depolarization, in this case, up to 60 mV (Fig. 6.6A). However, the depolarization in the

individual spine head saturates rapidly due to the high impedance provided by the neck. In

addition, spine neck functions as a voltage divider, resulting in a relatively lower dendritic

depolarization than the shaft evoked voltage which transfers directly to the soma without

such divisive effect. Worth noting that the absolute higher distal shaft amplification is not
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Figure 6.4: Effects of three experimental variables on synaptic integrations.

A. Synaptic summation is not affected by the distance between synaptic sites.

B. Spine neck length does not significantly alter the linear property of spine summation.

C.The summation of shaft-evoked EPSPs is dependent of distance between the stimulated

sites and soma. At more distal region, the summation becomes linear.

D.The integration of spine-evoked becomes supralinear at more distal region.
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Figure 6.5: Functional implication of an impedance-gradient mediated integration of

spine and shaft synapses. A. At proximal sites (60 um), synaptic inputs sum linearly in

spines and sublinearly in shafts. B. At distal sites (120 um), spines integrate supralinearly

(green) with a low input-number threshold (2 inputs) and shaft synapses (red) sum as well

supralinearly with a higher input-number threshold (5 inputs).
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ascribed to a larger average EPSP, in fact the average spine EPSP is even 20% higher than

the shaft in the current model (Fig. 6.1B). ii) higher threshold for supralinear integration -

the impedance of distal dendrite is larger than the proximal enabling local compartment

to gradually engage more voltage-gated channels such as calcium and NMDAR. Our ob-

servation shows that the calcium current in the distal dendrite does not accumulate in a

supralinear fashion (data not plotted). It is the nonlinear nature of NMDAR that gives rise

to the spiking behavior, allowing for detecting more salient synaptic events and regulating

the shaft spiking threshold (Fig. 6.6B).
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Figure 6.6: Mechanisms of distal shaft amplification.

A.The voltage trajectories in the spine head and distal dendritic shaft.

B. The voltage trajectories in distal dendritic shaft, simulated with 4 different percentages

of NMDAR density.
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6.4 Discussion

Due to technical limitations, it is experimentally challenging to accurately identify synaptic

contacts located on the shaft, and then investigate the integrative properties of the evoked

EPSPs using electrophysiology methods. Thus it is not surprising that the relevant literature

is scarce, in which individual synapses were precisely uncaged along a dendrite and activated

in a variety of spatiotemporal patterns.

In this study, I take advantage of numerical simulation and explored potential computa-

tional modes of shaft synapses. The model faithfully replicates 100% linearized summa-

tion of spines and 80% sublinearized summation of shaft terminals[Araya et al., 2006a].

Expanding upon this, the results reveal a presence of synaptic amplification initiated dis-

tally by axo-dendritic synapses, a phenomenon previously thought only achievable with the

spine [Harnett et al., 2012]. The modeled location-dependent shaft synaptic integration

enriches a single neuron with additional computational capacities: i) sublinear integration

underlies information processing of pyramidal neurons [Longordo et al., 2013], a cluster of

proximal shaft synapses can independently perform such computation without a balanced

recruitment of inhibition; ii) unlike in other cell types [Plotkin et al., 2011], supralinear

integration of distal regenerative synaptic responses is achieved by spines without a proper

threshold-detecting mechanism [Branco and Häusser, 2011]. The distal shaft synapse can

improve this by linearizing the combined output of sparsely scattered synaptic events.

In young animals, the percentage of shaft contacts is relatively high. How the spatiotempo-

rally structured axo-dendritic input patterns are transformed into axonal spike generation

remains largely elusive as the related research is currently limited to anatomical and molec-

ular analysis. The presented results discovers a novel form of shaft-governed synaptic am-

plification that could motivate further study on the functional properties of axo-dendritic

synapses.



Chapter 7

Concluding Remarks

The six papers presented in this thesis aim for better comprehension of single neuron com-

putation under various modeling conditions. The two parts seem very irrelevant to one

another at first glance, in that not only different modeling approaches are adopted but also

different combinations of nonlinear elements are taken to address specific questions. How-

ever, with a closer look, such decision is made based upon how the particular scientific

question can be best addressed and both parts converge on the central theme of the thesis

and contribute to an advanced understanding of how the variations in the observed neu-

ronal responses are attributable to either intrinsic features in the cellular property(duration

of action potential) using phenomenological models or anatomical characteristics in the

cellular structure (type and location of synaptic contacts on the dendrite) using compart-

mental models with the respective configuration of presynaptic input protocols.

In this chapter, I summarize again the major findings of the individual chapters, outline

future works towards building a versatile model of the striatal principal neuron, link the de-

tailed cellular modeling with synaptic plasticity and demonstrate a cellular implementation

of bayesian computation.
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7.1 Summary

One theme of the presented research is to make use of the most simplified nonlinear mod-

els of neuronal dynamics (e.g. Integrate-and-Fire model) and phenomenological models of

synaptic plasticity empowered by simplistic STDP windows to address the question: how

a model neuron responds to converging presynaptic inputs with a considerable amount of

quantity given various kinds of learning rules and diverse configurations of input statistics?

The first publication [Zheng and Schwabe, 2011a] is dedicated to characterize the differen-

tial rate coding of a single neuron that learns with STDP rules given perturbative presynaptic

statistics of spike trains, to adapt the postsynaptic spiking activity and adjust the synaptic

pattern (interpreted as synaptic memory). The nonlinear subcellular devices utilized by the

model neuron are synaptic plasticity and artificial spiking threshold which are then simu-

lated under the Song framework [Song et al., 2000]. The results show that even with such

minimal combination of nonlinearity, model neurons can operate in different dynamical

regimes (elevated or transient rate increase) and display distinct behaviors of memory con-

servations (mild or severe memory loss). In addition, I relate the abnormal presynaptic ac-

tivity to what has been observed in seizures and study the effect of an increased GABAergic

reversal potential reported in epilepsy [Barmashenko et al., 2011]. Surprisingly, increased

reversal potentials can benefit the robustness of memory, which may provide an additional

previously unknown homeostatic mechanism for protecting memory from perturbations

[Zheng and Schwabe, 2011b]. The simulation results contribute to the prediction that in

model neurons, paroxysmal activity could easily override memories without other home-

ostatic mechanisms, therefore pathological brain states may be even more disruptive than

previously thought when learning mechanisms are also taken into account.

The results from the study of the phenomenological STDP models, particularly the re-

sulting synaptic weight distribution shaped by the learning rules, motivated me then to

investigate a previously-overlooked question in the field of spike-timing dependent plas-

ticity: How the detailed shape of STDP window near the transition from potentiation to

depression could affect neuronal dynamics of the identical neuron model? Distinct from

the study which proposed a positive shift inspired by either slow kinetics of NMDA re-

ceptors [Babadi and Abbott, 2010] or axonal delay [Morrison et al., 2007], I argue that the

window shall be negatively shifted due to the variability of durations of action potential

[Zheng and Schwabe, 2013b] and such justification is indeed supported by various pub-

lished experimental observations. The equilibration of synaptic weight patterns and the

regulation of postsynaptic spiking displayed via model neurons are then characterized in

greater detail, in the publication [Zheng and Schwabe, 2014]. When driven by noise in-

puts, the effect of long AP durations in down-regulating the postsynaptic firing rate is very

evident by both additive and mixed modes (much prominent in the additive mode). As ev-

ery single action potential is extremely costly in terms of its natural metabolical process, this

behavior is desired to reduce unnecessary biological cost and preserve physiological energy.

Meanwhile, when driven by salient signal inputs, model neurons respond quickly and stay

in an active spiking state while the induction of competition between synapses is preserved.
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This dSTDP model provides yet an alternative solution to the dilemma that strong com-

petition between synapses cannot co-exist with the stability of synaptic weight dynamics

[Gilson and Fukai, 2011].

The other theme of this thesis takes a completely different approach by focusing on the ex-

ploration of the information processing of single model neurons with a much richer combi-

nation of nonlinear units, incorporating active dendrites, spines and natural spiking behav-

iors. The modeled striatal principal neuron is validated by somatic current clamp and den-

dritic glutamate uncaging protocols, which is the first model published [Zheng et al., 2014]

in the striatal modeling literature that can replicate both the response to current injections

and the distally-evoked state transitions. The results emphasize the role of functional com-

partmentalization in thin dendrites in support of generating dendritic plateau potentials

through an enhancement of the cooperativity among the neighboring spines. In another pa-

per, [Zheng and Schwabe, 2013a] demonstrates a similar characteristic through exploring

the contribution of dendritic anatomy to upstate generation from a purely passive perspec-

tive. The main discovery made by the active spiny SPN model is that although dendritic

plateau potentials do not themselves cause action potentials which may interrupt the ba-

sic information processing in SPNs, nevertheless they provide conditions for reliable signal

transformation from cortex or thalamus. In other words, it sets the probability threshold to

transform proximal inputs into postsynaptic spikes (see details in Sec 7.4). Aside frommod-

eling SPNs, using the same compartmental modeling approach, the potential functional dif-

ferences of axo-dendritic and axo-spinous synapses in gating the dendritic information flow

is studied in a pyramidal neuron in an accepted manuscript [Zheng and Schwabe, 2015],

which provides a number of instructive results in relation to the stratal function, by rais-

ing the possibility that axo-dendritic synapses of SPNs from thalamic innervations are very

likely to entail the generation of state transitions.

7.2 Towards a Versatile Model of SPN

The SPNmodel presented in [Zheng et al., 2014] has made a sizable progress towards a ver-

satile model of striatal output neuron by relating the synaptically and dendritically evoked

local regenerative events to its influence on the somatic readout of action potential genera-

tion. Nevertheless, future interactions between experimentalists and modelers are required

to further address and investigate a wide array of fundamental neurophysiological questions

concerning the striatal function.

First, sodium channels can contribute to the differential regulation of bAP-evoked excita-

tory potentials in the dendrites (Fig.2 in [Day et al., 2008]). This observation is not mani-

fest in the current model, as each individual channel is uniformly distributed along the den-

dritic compartments with equal density. In addition, the study in CA1 pyramidal neurons

revealed a cell-to-cell or branch-to-branch dichotomy in action-potential back-propagation

and such difference is thought to be partly attributed to a delicately-differentiated invest-
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ment of sodium channels [Golding et al., 2001]. This observed dichotomy is worth an in-

vestigation in the SPNmodel because it might strongly influence the local read-out of synap-

tic and dendritic coincidence detection. Moreover, one of the notable features of sodium

channel-dominated strong dendritic excitability is that it changes the number of synaptic

inputs necessary for dendritic spikes, thereby controlling the conditional probability of rele-

vant nonlinear events [Jarsky et al., 2005]. Such hypothesis is already testable in the model

of current version. Furthermore, sodium channels amplify spine-evoked excitatory poten-

tials and this effect is postsynaptic [Araya et al., 2007]. Although [Plotkin et al., 2011] has

shown that TTX do not modulate the dynamics of state transition, its role in shifting the

amplitude distribution of unitary synaptic events is yet to be examined.

Second, the four voltage-dependent potassium channels invested in the compartments have

their respective contributions to the membrane potential dynamics of the modeled SPN.

KIR channels determine the level of resting potential and globally constrain the neuronal

excitability. Even a tiny bit of increase of the channel density could lower the downstate

voltage thereby effectively down-regulating the neuronal response to any form of excitatory

drives. For the reason that it is of such symbolic importance, the channel kinetics shall be

investigated in the striatal cells using the transitional ramp protocol, although the current

implementation works “fine” by inferring model parameters from other animal models.

Kv4 channels respond very alertly to the excitatory synaptic inputs and modulate the ex-

tent of invasion of back-propagating action potentials. Besides, they also determines the

onset of the first spike under current clamp protocol and shape the hyper-polarization after

each somatic firing. High-magnification images of protein labeling revealed a clear ex-

pression of Kv4.2-channel in both dendrites and spines. However, in the current spine

model, Kv4 is not included in the channel pool and its regulatory effect in the enhance-

ment of calcium signaling is not present in my model, although being clearly demonstrated

in [Day et al., 2008]. It seems to me that the density needs to be set to a fairly large value to

see some dampening effect in lowering the local depolarization in the spine head. Kv1 chan-

nels regulate somatic, but not dendritic, excitability in SPNs [Shen et al., 2004]. Strategi-

cally placing the channel non-uniformly in the somatic and dendritic compartments is an

immediate next step for the modeling study. I hypothesize that re-balanced Kv1 and Kv4

channels in the dendrites can extend the duration of state transitions once initiated. KRP

channels are only placed in the soma and the parameters are tuned to provide a reasonable

inter-spike interval during somatic spiking. Currently, there is no evidence about how it

might influence the properties of dendritic computation. SK channels (calcium-sensitive

potassium channels) are excluded from the model for simplicity and as well due to the

reality that the related experimental evidence in the striatal neurons is fuzzy, mainly in re-

spect of synaptic plasticity, not dendritic integration [Nazzaro et al., 2012]. Nevertheless,

it is evident that SK-type channels participate in a local feedback loop within a spinous

compartmentalization [Higley and Sabatini, 2008]. From my own modeling, I did once

witness the effect of SK channels in regulating the duration of distally-evoked upstate from

a model in which R-type calcium channel is the dominant factor, not NMDAR channel.
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More specifically, without SK channels placed in the spine head, synaptically-evoked distal

upstates could have biologically unrealistic lengths up to several seconds. This observation

reinforces the notion that the regulatory channels like SK-type may probably not be a part

of the basic computational toolkit, but yet an important member of fundamental regula-

tory toolkit to keep a normal biological functionality of the spine head, e.g. in this case, to

prevent excessive calcium entry into a spine that could lead to an impairment of the normal

intra-spine molecular signaling.

Third, if say sodium and potassium channels equip the SPNs to perform elementary non-

linear dendritic integration, somatic pulse generation and regulation of synaptic plasticity

[Johnston et al., 2003], calcium channels could have even more profound implications for

all these functions. High-threshold voltage-dependent calcium channels have been identi-

fied in the previous SPN studies: N-type, Q-type, R-type and L-type (particularly Cav1.2)

[Churchill and Macvicar, 1998]. For the reason that N-type and Q-type are primarily ex-

pressed in the presynaptic axonal terminal (personal communication with Joshua Plotkin),

these two channels are not incorporated into the model. Analogously, no significant change

of state transitions to uncaging glutamate was observed by applying bath application of L-

type blockers [Plotkin et al., 2011], thus L-type was also excluded from the model. T-type

(low-threshold) and R-type channels were reported to co-regulate with NMDAR chan-

nels, the onset and duration of distal upstates. One aspect inconsistent with the original

modeling in [Plotkin et al., 2011] is that placing T-type in the spine head, not the dendrite,

modulates the amplitude and duration of distally-evoked regenerative events. There are two

mechanisms in the current model that could help account for this discrepancy: 1) the main

contribution of T-type is hypothesized to provide additional depolarization occurring in

the dendritic shaft. However, this effect could readily be achieved with the parametrization

of distal tapering of dendritic diameter; 2) the unitary synaptic amplitude in the current

model is too large, making T-type less influential in the dendrites (see next paragraph for

discussion). Nevertheless, placing T-type channels in the dendrites does increase the ex-

citability of neuronal response to current injection. Fig. 7.1A illustrates that T-type elevates

the responsiveness of SPN model to the identical injected current. Interestingly, such ele-

vation can be subject to the existence of SK channels. The elevated level of SK density can

diminish the contribution from calcium currents, thereby making the neuron less excitable

(Fig. 7.1B). Besides, T-type channel has also been recently reported to interact with the

voltage-dependent potassium channel. More specifically, the signaling complex formed by

T-type and Kv4 channels efficiently couples calcium influx to K

+
channel–interacting pro-

teins (KChIP3) and adapts the kinetic dynamics of Kv4 [Anderson et al., 2010]. In compar-

ison, the contribution of R-type is relatively minimal (Fig. 7.1C), probably due to its rapid

deactivation with time constants of a few hundredmicroseconds [Foehring et al., 2000]. Fig-

uring out an appropriate parameter space that reflects the complex interaction between cal-

cium and calcium-sensitive potassium channels, can definitely add another dimension to

the model fidelity, it is, however, out of the scope of this thesis.



Towards a Versatile Model of SPN 111

A

n
o
n
-
S
K

T-type

C

R-type

B

S
K

D

Figure 7.1: Simple illustration of an interaction between calcium and SK channels.

A. Given that the density of SK channel in the model is zero, the investment of T-type cal-

cium channels increases the neuronal excitability by advancing the first spike under current

injection protocol (blue curve) in contrast to the control condition in which the density of

T-type is also set to zero (black curve).

B. Same as in A, the density of SK channel is a non-zero value and the current induced by

SK delays the first spike (red curve).

C. Same as in A, instead R-type calcium channels are place in the model with the same

density, this does not affect the somatic spiking.

D. Same as in C, adding SK channels delays the first spike (red curve).
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Fourth, the evoked individual EPSP generated by the model is between 2.0mV and 2.5mV

(Fig. 5.6A), which is larger than the evoked excitatory potential of 1mV by a single pulse

of glutamate uncaging used in [Plotkin et al., 2011]. The larger somatic EPSP amplitude

in the current model does create undesirable artifacts, although it does a pretty good job in

replicating the upstate phenomenon and providing a reasonable account for the underlying

dendritic passive mechanism. One of the artifacts is that the amplitude and duration of

state transition depend “linearly” on the number of activated synaptic inputs as shown in

Fig.7.2A. It is not in agreement with the observation, in which about 10 spines are required

to be activated in rapid succession to reach a threshold for evoking the somatic plateau

potential [Plotkin et al., 2011]. Therefore, attempts were made to find a better solution for

this issue. By tuning the somatic response of a single synaptic input to 1mV, the current

model can perfectly reproduce the threshold-gated initiation of plateau potential at the distal

dendrite as in Fig.7.2B. It will be very interesting to see how this 1mV-model responds to

the prox-dist protocols studied in [Zheng et al., 2014].
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Figure 7.2: The threshold behavior of distal upstate is achieved in a 1mV model.

A.The somatic plateau potential generated by the SPN model presented in Sec 5.2.1.

B. Same as in A, but by simulated the model that produces 1mV somatic EPSPs.

Finally, the ultimate goal of modeling single striatal spiny projection neurons is to exploit the

simulation as an important computational means to assist in studying the circuit-specific

deficits of related diseases and to put together the fragmentary advances made in animal

models in our quest to understand the consequences of the mechanisms that drive pathol-

ogy at the cellular level. The progress towards achieving this goal could be accelerated by

differentiating the two types of SPNs into separated modeling collections. The use of bac-

terial artificial chromosome (BAC) transgenic mice has made it apparent that the two types

of neurons, dSPNs and iSPNs, differ significantly in their intrinsic excitability, especially

the size and morphological properties [Surmeier et al., 2014]. Thanks to the generosity of



Towards a Versatile Model of SPN 113

Surmeier Lab, the morphological and geometrical data that are indispensable for the model

separation has been made available to me. I am excited to further work on the parameter-

ization of a balanced expression of synaptic channels in the spines and distance-dependent

ion-channel distribution [Ashhad and Narayanan, 2013] that enable the models with capa-

bility to replicate the dendritically-evoked state transitions and differences in the membrane

properties.

Besides, SPNdendrites are too thin to yield to traditional electrode-based recording. Emerg-

ing advanced tools such as optogenetics and uncaging have made it possible to directly in-

terrogate dendritic territories, but so far still mostly limited to ‘one sub-dendritic scan at

a time’ (personal communication with Joshua Plotkin). The accurate quantitative models,

as exemplified in Fig. 5.9, provide necessary computational techniques to incorporate new

experimental findings and help unravel the enigmatic characteristics of dendrites in shaping

the adaptive striatal input-output transformation [Segev and London, 2000]. Moreover, in

addition to the excitatory synaptic input, local GABAergic input to SPNs also change in the

disease states. Recent theoretical work has provided new and testable insights into the prin-

ciple of how the synaptic inhibition by GABAergic inputs impinging directly on the den-

drites. In contrary to the “proximal on-path theory”, distal “off-path” inhibition could more

effectively control the neuronal output by cooling down the proximal excitable hotspots

[Gidon and Segev, 2012]. The structural complexity from neighboring SPNs and network

heterogeneity from diverse groups of interneurons, complicates the effects of GABAergic

alteration in SPNs [Plotkin and Surmeier, 2015] and thus the compartmental models may

give hope, for example, to examine the effects of the aforementioned distal “off-path” inhi-

bition in cooling off the nonlinear feature of state transitions. Furthermore, small network

models may also gain additional insights from detailed compartmental modeling. Only a

few percent of dSPNs (presumably equivalent a small network of dSPNs) can completely

inhibit the downstream output from SNr and a small group of bursting iSPNs can promi-

nently elevate the activity of SNr [Lindahl et al., 2013]. The simulated IaF models might

offer qualitatively correct predictions about how the basal ganglia output nuclei is controlled

by the direct and indirect pathways. However, if the timing matters for properly controlled

discharge of self-pacing GP neurons [Chan et al., 2005] and dendritic plateau potentials is

critical for spike time control in the presence of inhibitory input [Shai et al., 2014], then

separated collections of detailed SPN models can be desirable.

Conclusively, dSPNs and iSPNs are not just simple connectors between thalamocortical re-

gions and basal ganglia, they receive dopaminergic modulatory inputs that have completely

opposite effects on every aspect of their neuronal integrative dynamics. The future workout

that divides the striatal neurons into clean dSPN and iSPN versions, investigates the im-

pact of inhomogeneous channel distribution on the dendrite and explores the interaction

between calcium and calcium-activated channels, could anticipate improvements on the

existing attempts conducted in [Gertler et al., 2008], study the dopaminergic modulation

on the respective type [Moyer et al., 2007] and guide future experiments that are expensive.
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7.3 Synaptic Plasticity and Dendritic Plateau Potentials

The longstanding paradox, that SPNsmust have unidirectional synaptic plasticity due to the

distinct expressions of dopamine receptors, has been elegantly resolved by [Shen et al., 2008],

which demonstrated nicely that bidirectional changes of synaptic strength can be induced in

SPNs given standard STDP protocols. In this dissertation, I didn’t have sufficient amount

of time to undertake projects that address either how synaptic plasticity can potentially ex-

ert a wide range of effects on the information transformation of a single SPN or how den-

dritic plateau potentials can mediate synaptic plasticity in conjunction with the voltage-

dependent synaptic learning [Gambino et al., 2014]. Nevertheless, the paradigm used in

[Zheng and Schwabe, 2014] to study the emergent properties of STDP and the NEURON

framework presented in [Zheng et al., 2014] to investigate the computational function of

a single dendritic branch, has equipped us to simulate various behaviors of local cellular

input processing, affected by synaptic changes. It seems that nonlinear short-term neu-

ronal dynamics typically arise from activation of sufficiently clustered synapses in space and

time [Branco and Häusser, 2010]. Thus, one of the intriguing questions is then how the

induction of synaptic plasticity on an existing local circuitry can bring about a conditional

alteration of dendritic processing? In Fig. 7.2, I illustrated that only 10 distal spines, not

9, are able to reach the threshold for the plateau potential. Simulated with the identical

parameterization, the number of the synaptic input for reaching such threshold can be re-

duced to 9 spines with an increase of the synaptic weight by 30%, as in Fig.7.2. Moreover,

[Plotkin and Surmeier, 2015] stressed that the plasticity of neuronal excitability is far from

entirely being synaptic. The input threshold for distally-evoked plateau potential may be

comparably lower in iSPNs than in dSPNs, which requires both experimental and compu-

tational examinations in the future. Given that directly testing the consequences of STDP-

induced clustered potentiation or depression remains challenging, adding synaptic learning

to SPN models can offer a glimpse into the unexplored areas of striatal physiology.
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Figure 7.3: Synaptic potentiation of converged distal inputs reduces the threshold for the

dendritic plateau potential. 9 unpotentiated distal spines are not capable of generating an

upstate (black). When potentiated by 30%, the same amount of input ensemble evokes an

upstate (red).
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7.4 Cellular Implementation of Bayesian Computation

In the beginning of the thesis, a Bayesian Belief Network was applied to calculate the dis-

crete posteriors about unknown mechanisms of synaptic plasticity. Besides its broad ap-

plications, the bayesian idea has also been profoundly re-shaping our understanding about

the neural underpinning of behaviors, that our brain is itself probabilistic, forms internal

belief distributions of practically every possible given variable and performs bayesian-like

neural computation with uncertainty and probability [Ma and Jazayeri, 2014]. Much in-

fluenced by the doctrine that one can study the nature of a cell and understand the nature

of a human because in the biological reality a human is merely a fractal image of the cell, I

speculate that a single neuron must also have at its disposal a representation of conditional

and non-conditional probability associated with any specific variable in the living world.
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Figure 7.4: SPN dendritic compartments represent bayesian substrates for inferences.

The response of distal dendrites to the synaptic activation is highly nonlinear, which makes

them good candidates to represent the significance of internal signals generated by local and

global neural networks. In contrast, the response of proximal dendrites is linear and suitable

to transform faithfully the external stimuli from the environment.

I find that the SPNmodel could provide exactly the substrate for that kind of computation.

Hypothetically, the conditional distribution of activation of the internal knowledge I given

an input variable s that relates to a sensory cue, can be denoted as p(I|s), and the prior

distribution of s that represents all the possible values of this sensory cue, can be denoted as

p(s). The posterior distribution p(s|I) which is the response probability of s given I can

be then computed simply by the Bayes’ theorem:

p(s|I) = p(I|s)p(s)
p(I)

(7.1)
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where the denominator p(I) operates as a normalization factor.

As the response of local dendritic activation is not direction-dependent [Plotkin et al., 2011],

the distal and proximal compartments can exploit the membrane potential trace (left y-axis)

to create the statistical models (right y-axis), respectively for p(I|s) and p(s) as illustrated in
Fig.7.4. Such hypothetical probabilistic approach reflects that the dendritic compartments

of a SPN may derive explicit probability functions to combine evidences from the sensory

input and the internal state of the brain to calculate the neural readout of p(s|I).

How a single neuron integrates feed-forward sensory signals from the external world with

the internally-organized neural activity is not yet well-understood [Peyrache et al., 2015].

The ubiquity of dendritic plateau potentials found in diverse cell types is thought to under-

pin a prominent source of internal signals [Major et al., 2008] and provide the underlying

mechanism of enhancing the stimulus selectivity of input signals [Smith et al., 2013]. The

probabilistic brain constantly carries out tasks like cognitive reasoning and decision-making

process involving knows or unknowns with the Bayesian approach [Pouget et al., 2013], in-

dividual nerve cells must somehow contribute to such process using their nonlinear comput-

ing devices. Fig.7.4 indicates that a large intrinsic part of such single neuron computation

may exploit distal dendrites to represent the probabilistic distributions of internal neural

states which heavily depend on the cell type, the type of synapse and the dendritic location

of synaptic innervation [Zheng and Schwabe, 2015].
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Theses

1. Single neurons transform input spike trains into output spike sequences. The under-

lying neuronal computation relies on the cooperation between an array of nonlinear

subcellular computational units: dendrite, spine, synapse and synaptic plasticity.

2. The cable equation and compartmental modeling provide an accurate approach to

investigating the functional roles of these units in single neuron computation.

3. A compartmental model of striatal principal neuron (SPN) is validated by replicating

the experiment of synaptically-driven state transitions.

4. The SPN model predicts that the interaction between dendritic sub-branches imple-

ments associative computation, depending on two cellular anatomical ingredients.

5. A compartmental model of cortical pyramidal neuron is built to study the integrative

properties of two classes of excitatory synapses (axo -spinous and axo- shaft synapses)

and replicate in-vitro findings to a reasonable level.

6. The cortical model unifies two contradictory statements in the literature and predicts

that distal shaft synapses can achieve higher amplification than spine synapses.

7. The phenomenological approach is taken to study the emergent properties of single

neuron computation given a neuron learns to adapt its spiking dynamics and shape

weight distribution with spike-timing dependent plasticity (STDP) window.

8. A new phenomenological model that incorporates an AP-dependent learning window

simulates the potential effects of action potential (AP) dynamics on STDP. The results

suggest that AP duration is another key factor for insensitizing the postsynaptic neural

firing and for controlling the shape of synaptic weight distribution.

9. The results described in this thesis provide strong and testable predictions, which if

experimentally validated, could offer new insights into the functional consequences

of the fundamental computational units of the brain such as shaft synapses that have

not yet been investigated.
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