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Chapter 1

Introduction

Large-scale sound reinforcement (LS-SR) [Ols36, Wol36, Sch50, Ear04] is an
engineering discipline for engineering and setting up electric devices (power
amplifiers, signal processors) and electro-acoustic devices (loudspeakers, mi-
crophones) in order to transmit audio signals as sound waves to be received
by a large audience in a large venue, contrary to rather small-sized home en-
tertainment. Another established term for LS-SR is public address (PA), that
is typically only used when considering electro-acoustic transmission of speech
signals. However, PA system is a common term for sound reinforcement sys-
tems of any description.

In search of optimized LS-SR using loudspeaker arrays, especially for im-
proved concert sound, this thesis is concerned with uniting two technologies
that found their first practical implementations in acoustics in the early 1990s.
These approaches are known as Wave Field Synthesis (WFS) [Ber88, Ber92b]
and Wavefront Sculpture Technology (WST)1 [Hei92b, Urb03]. From the van-
tage point of the present it is interesting that the publications [Ber92b, Hei92b]
– presented at the 92nd Convention of the Audio Engineering Society in 1992
– essentially determined much of the audio engineering research and devel-
opment for the following decades. WFS constitutes a holographic method to
synthesize wavefronts based on the Helmholtz integral equation and several
approximations of it. WST was introduced for further improvement of LS-SR
by reducing disturbing interferences between multiple loudspeakers that build

1Wavefront Sculpture Technology R⃝ is a registered trademark of L-ACOUSTICS US,
LLC. The explicit labeling is omitted in the remainder of the thesis and only the relevant
research results are discussed.

1
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an array and is based on fundamental array processing. In principle, WFS
and WST follow the same idea being based on the same acoustic signal pro-
cessing framework to produce homogeneous sound fields – or rather coherent
wavefronts – for large audiences. These links shall be elaborated in detail
throughout this work.

1.1 History of Large-Scale Sound Reinforcement
After the advent of electro-acoustics in the late 19th century, engineers be-
came concerned with LS-SR for large audiences in the beginning of the 20th
century. In the first instance, PA was used for large demonstrations and ral-
lies, for which some thousand listeners being at the same location could be
addressed for the first time [Gre23, Ear04]. With the advent of electrically
amplified music performances in the mid 20th century, concerts demanded the
usage of LS-SR, which – nowadays termed as concert sound or touring sound
– constitutes an essential part of the entertainment industry.

Since LS-SR cannot be realized with a single loudspeaker for large audi-
ences and large venues due to power limitations, rather many of them must
be deployed – as line or clustered loudspeaker arrays – to ensure appropriate
audience coverage. Several hundred loudspeaker cabinets are typically utilized
for large stadium concerts [Esk86, p.138], [Kü15, p.26]. Hence, interference of
waves emanated from multiple sources becomes a problem that LS-SR has to
deal with. In acoustics, this is especially demanding, since a large signal band-
width of about 8 octaves (40 Hz - 10 kHz) is to be reproduced. For LS-SR,
the loudspeaker array dimension is smaller, equally sized or larger than radi-
ated wave lengths; the loudspeaker spacing may be larger than the radiated
wave length; the dimension of the audience area is typically much larger than
the size of the used loudspeaker arrays; the number of attendees (receivers)
is much larger than the number of used loudspeakers (transmitters) and the
audience may be situated in the nearfield of the array. This initial situation
is in contrast to optics and electromagnetics, where e.g. the considered signal
bandwidth is typically narrow, the transceivers are typically larger than the
considered wave lengths and mostly farfield conditions can be assumed. For
this reason, LS-SR research and development is still after the best compromise
for required applications.
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However, the "...chief factors which are a measure of the performance of
loud speakers or combinations of loud speakers..." being:

"1. Frequency range.
2. Unisformity [sic] of response.
3. Directional characteristics.
4. Efficiency.
5. Power handling capacity." [Wol30, p.201] remain today as in the past.

Stenzel and Wolff/Malter

Two outstanding articles [Ste27, Ste29] were published in the 1920s by Sten-
zel. Later on, a monograph [Ste58] revisits and collects several findings in
acoustic array processing. Although Stenzel was not concerned with PA or
LS-SR, but rather dealt with acoustic and electromagnetic signal transmission
and reception for ship transport, the articles provide important fundamen-
tals on array processing that later became well known textbook knowledge
[Ols40, Sku54, Ber54]. The articles discuss the radiation characteristics of
continuous and discretized linear arrays built from spherical monopoles – a re-
sult that is already well known in antenna design that time e.g. [Fos26] – and
also of baffled circular and rectangular pistons using the Neumann Rayleigh
integral. The two product theorems of array processing [Van02, Ch. 2.8] are
introduced. Electronic beam steering for single frequencies, i.e. the phased
array approach is described. The anti-aliasing condition ("Eindeutigkeit" in
[Ste27, Ch. 2c]), i.e. the avoidance of propagating grating lobes is given for
the uniformly driven ("natürliche Charakteristik" ibid.) and phased driven
("künstliche Charakteristik", ibid.) linear array. This is a remarkable result
since it anticipates the sampling condition – firstly given and proved for time
signal sampling and reconstruction by Kotelnikov in 1933 [Kot33] (English
reprint e.g. [Kot06]) – by some years. Although, the interpolation/reconstruc-
tion process constitutes a different problem in time signal baseband sampling
and sound radiation from discretized linear arrays, the equivalent sampling
conditions

fmax ă
fs
2

temporal sampling theorem (1.1)

λmin ą 2 ds spatial sampling theorem, general (1.2)
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to avoid prealiasing (and in acoustics propagating postaliasing) hold, where
fmax is the maximum allowed frequency in a temporal baseband signal, to be
sampled with sampling frequency fs and λmin the smallest wave length allow-
ing grating lobe free sound fields using an linear array of spherical monopoles
with sampling distance ds.

In 1930 the yet cited fundamental article [Wol30] revisited the results of
Stenzel amongst others, with own enhancements on non-uniformly driven ar-
rays and curved line sources. The authors realized that curving a linear array
reduces the level of lobes and broadens the lobes for wave lengths smaller than
the array size. Furthermore, they discussed the influence of directed horn
speakers that can be used for shaping and smoothing (i.e. reducing grating
lobes) the arrays farfield directivity to a desired characteristic.

Actually, all important fundamentals on the interaction of acoustic sources
were theoretically known by the end of the 1930s. They were of course refined
by improved mathematical treatments and in the following decades different
lines for realizing LS-SR were pursued that came along with the technological
progress.

Line Arrays for Public Address

Rather short line arrays were early adopted for pure speech-based LS-SR,
i.e. PA. The problems of a uniformly driven line array (ULA) (strongly fre-
quency dependent directivity, large side lobe level, frequency response variation
both on and off-axis, strong frequency dependent near- to farfield transition)
were circumvented by curving, by simple frequency independent tapering (i.e.
spatial windowing), by frequency dependent tapering (gain shading) and/or
so called nested arrays or logarithmically spaced transducers [Dav52, Pri53,
Paw61, Kle63, Tay64, Aug70, Hix70, Smi71, Sal72, vdW96]. In his dissertation
[Hil51], Hills introduces a concise mathematical framework for the synthesis of
farfield radiation patterns using linear arrays. Similar to [Sch43] the link of the
array weights and its spatial z- and Fourier transform is given and discussed
for different normalized wave number variables. Design methods for farfield
radiation patterns with equal minor lobes and maximum directivity are intro-
duced, that resemble the Dolph-Chebyshev and Slepian windows.

Ideally, all approaches above try to keep the ratio of radiated wave length
and array length constant to obtain a frequency independent, constant farfield
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directivity and thereby a frequency independent near- to farfield transition. In
other words: with increasing the frequency the effective length of the line ar-
ray is to be decreased (however also the maximum achievable SPL decreases),
and ultimately this should be a continuous function. With the first digital de-
lay units available [Ble71] digitally beam steered line arrays could be realized
[Wor77, Kid79].

Frequency independent farfield characteristics, i.e. line arrays with con-
stant beamwidth are also achieved with so called allpass arrays, introduced to
acoustics in e.g. [Kut78, Kut82, Mö88, Goo93, Aar00, Goo05b, Goo06, Goo08].
The well known Bessel array [Fra83, Kit83, Kee90] constitutes a special case
of an allpass array as was revisited by [Aar00, Goo08]. Allpass array designs
are based on the fact that the discrete-space Fourier transform of the array
weights constitutes the farfield radiation pattern of the linear array. Hence, a
constant magnitude of the Fourier spectrum (i.e. the autocorrelation of the
weights constitutes a weighted Dirac impulse) is the ideal design goal, giving
the approach its designation.

Another approach known as constant beamwidth transducer (CBT) initially
derived for a spherical cap array [Rog78, Van83] is based on the observation
that the frequency independent farfield beam pattern with a desired main lobe
beamwidth and very low side lobe level is equal to the normal particle velocity
when deploying Legendre polynomials as array weights. In [Kee00] this was
realized for acoustic arc arrays and later extended to work with linear arrays
by applying digital delays [Kee02, Kee03, Fin08]. The temporal characteris-
tics of a CBT array was discussed in [Kee15]. A multiple CBT array using
overlapped directivities to obtain the final desired directivity is discussed in
[Fen15].

In the 1990s digitally controlled line arrays for speech reinforcement were
further developed, above all [Sch92]. In [vdW94] a large column speaker for
speech PA in highly reverberant environments is discussed using frequency de-
pendent tapering and beam tilting/steering by digital delays. This was taken
up by [dV94b] with a developed digital array control unit and led to what
the company Duran Audio introduced as Digital Directivity Control (DDC), a
term that was already used in [Mey85b, Mey85a] for a similar approach of beam
steering. A comparable treatment based on digital infinite impulse response
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(IIR) filters and delays was given in [Lee98]. The design of a logarithmically
spaced linear array is discussed in [vdW96], which is a special version of a
nested array and ensures frequency independent directivity. This concept was
used e.g. by Duran Audio for line columns that aim at speech-based PA. The
company later introduced Digital Directivity Synthesis (DDS) [vB00, Sta01]
for beam shaping using finite impulse response (FIR) filters. This technique
solves an optimization problem numerically for a desired sound field towards
the loudspeaker filters.

Line and Cluster Arrays for Concert Sound

All the approaches above rely on fulfilling the spatial sampling condition (1.2)
to work well behaved, i.e. avoid grating lobes. For the limited bandwidth of
speech signals this may be easier accomplished than for the whole audio spec-
trum, that is typically required for concert sound. Thus, the latter was rather
realized with clustered arrays deploying directed horn loudspeakers [Ear04], cf.
Fig. 1.1a for a typical setup of a cluster array. The ’point and shoot’-principle,
mostly performed by overlapping splayed horns at their -6 dB coverage angles
within the audience space, was dominantly used until the end of the 1990s,
due to the high SPL and full audio bandwidth requirements, by concurrently
accepting spatial aliasing and grating lobes that corrupt the sound field. The
radiation characteristics of clustered horn arrays were studied by means of
measurements and theoretical predictions in many publications such as [Sin78,
Fid89, Gan90, Mey90b, Ure94, Smi95, Ure95b, Ure95a, Ure96, Ahn96, Smi97].
Virtually all conclude that horn driven arrays suffer from grating lobes. Fur-
thermore it is observed that array curving broadens the lobes, while simul-
taneously the achievable sound pressure level (SPL) decreases. This yields
smoother farfield radiation patterns except for the case when grating lobes
smear into the main lobe. The limited capability of electronic beam steering
and/or wavefront shaping using digital delays is observed, therefore pursuing
array curving towards proper audience coverage.

A touring sound system used for the band Grateful Dead – also known as
wall of sound – is a notable application of line arrays in concert sound rein-
forcement [Dav75]. The system consisted of several line, planar and arc arrays
and was setup onto the stage behind the band. Hence, the system worked as
the PA for the audience and simultaneously as a monitor system for the band.
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(a) Cluster array, image courtesy of Clayton
Call and Bob McCarthy.

(b) Line source array, own picture, taken on
2012-05-30 in Berlin Olympic Stadium.

Figure 1.1: Array types for large-scale sound reinforcement.

One of the specialties of this approach was the individual PA of the different
instruments, i.e. each source had its own dedicated cluster or line array sec-
tion.

A method termed Phased Point Source Technology (PPST) is introduced
in [Gun98], that led to the development of the EAW KF900 system [EAW98].
The papers discuss several issues for large LS-SR. Individual cabinets (dif-
ferent types for long/mid/short throw and nearfills) with a well defined wide
horizontal and narrow vertical farfield directivity are considered for setting up
a clustered-type array in the horizontal and a line-type array in the vertical
dimension. The horizontal directivity of the whole array is shaped by geomet-
rical means, while the vertical one is electronically controlled via frequency
dependent shading and beam steering [Gun03a, Gun03b, Gun03c]. A strategy
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of ’manually’ measuring acoustic transfer functions (ATFs) from individual ar-
ray sources to desired audience/evaluation points is proposed. Based on these
ATFs, filters (i.e. magnitude, phase and delay) for an optimum superposition
of all sources can be derived that should provide a homogeneous audience cov-
erage. Although the KF900 system was rarely used for the touring business,
but rather for fixed LS-SR installations due to its sophisticated and demand-
ing setup process, its development forms the basis for EAWs most recent line
source arrays Anya [But14] and Anna.

Different approaches for the prediction of sound fields by superimposed
ATFs of single sources are discussed in [Jac90], such as a simple spherical
monopole superposition, and the piston source – as a reasonable approxima-
tion of actual measurements already anticipated by [Mey84a] – as well the
phasor sum technique. The so called hybrid technique considers measured
farfield radiation pattern balloons of loudspeakers for prediction. The ap-
proach is nowadays used by many sound field prediction software, such as
MAPP Online Pro, MAPP XT, EASE and EASE Focus, cf. [Ahn00, Bai01,
Mey03, Fei05a, Fei05b, Fei07a, Fei07b]. The latter publications introduced
the Generic Loudspeaker Library (GLL) format. The requirements and prac-
tical limitations for GLL based simulation of LSAs were then discussed in
[Fei09a, Fei09b, Goe10, Fei14]. The measurement of full 3D loudspeaker di-
rectivities was also concerned in [Gun90]. In [Gun99, Gun00b, Gun00c] an
improved method for the prediction of horn radiating loudspeakers is intro-
duced with a tessellation model. A comparable approach is [Glo03]. [Sei96] is
a follow up research of [Mey90b] by Meyer Sound, concerning the angular res-
olution of measured loudspeaker balloons, similar to [Gun90]. They conclude,
that even 2˝ resolution may not be sufficient for exact sound field prediction
of loudspeaker arrays. Based upon this research, the decision for data reso-
lution of 1/48th octave and 1˝ in MAPP Online – released in the beginning
of the 2000s – was presumably made. An interesting contribution regarding
the measurement of loudspeaker balloons is found in [Ang98]. The ATFs are
decomposed into eigenvalues of the spherical surface functions using spheri-
cal Nearfield Acoustic Holography (NAH) [Wu08]. The topic was reissued by
[Faz08, Bel15] recently.

The transient radiation of ideally baffled pistons is given in [Ste71] based
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on the Rayleigh integral’s formulation in the time domain. This is taken up
in [Lee94] where the transient fields of baffled rectangular and circular pistons
are addressed. The approach is based on the efficient numerical evaluation
of the time-domain representation of the Neumann Rayleigh integral and can
be used for arbitrarily shaped radiators for given limits. [Har75] discusses the
on-axis pressure characteristic and nearfield behavior of line arrays (i.e. the
Fresnel/Fraunhofer transition) and addresses the high frequency attenuation
in air. Other thorough treatments of the radiation of line sources are given in
[Lip86, Lip90, Lip95]. [Och89] discusses the directivity and on-axis pressure of
baffled rectangular sources. An efficient numerical evaluation method by split-
ting the Neumann Rayleigh integral into small individual rectangular pistons
and using their farfield directivities is given. The approach is very related to
the piston source method of [Mey84a, Jac90].

David G. Meyer

In the 1980s, David G. Meyer published several proceedings and articles that
include fundamental ideas being used nowadays. Retrospectively, these pio-
neering contributions were much ahead of time, since the presented approaches
were only commercially realized or reinvented some years or even decades later.

In [Mey82, Mey84a] proposes a model and introduces a software for the nu-
merical prediction of sound fields and polar plots from multi-source arrays
of arbitrary shape. This model introduces the approach of the later referred
sound field prediction (1.3) and already includes loudspeaker farfield directiv-
ities, although due to memory limitations only vertical and horizontal farfield
radiation patterns were measured and stored, from which the three-dimensional
directivity is obtained by extrapolation. A very important observation is made
upon the validity of the model: assuming that the spatial evaluation point is
in the farfield of all individual sources, the near- and the farfield of the array
can be predicted accurately.

The follow-up contributions [Mey83, Mey84b] discuss the full digital control
of a planar loudspeaker array (9x5 drivers), which deploys a combination of
tapering, frequency dependent tapering and allpass array techniques. Band-
pass filter banks and tapped delay lines were realized to control the driving
function (i.e. the magnitude, the phase and the group delay per filter bank) of
the array by means of digital signal processing (DSP). The term Digital Direc-
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tivity Control (DDC) is established, for which Meyer consequently presented
an VLSI DSP-design in [Mey85a, Mey85b].

In [Mey89, Mey90a] he further proceeds with a multiple line array setup,
that is digitally controlled for short-, mid- and long-throw beam tilting. The
array was setup into the ceiling. A discussion of steering angle resolution vs.
sampling frequency for integer sample delay steps is given. The coverage of
the array is discussed with ASCII-character visualized sound maps, indicating
homogeneous PA by usage of Hamming window tapering. This is followed
up by [Sch92], where the DFT/DTFT based design of optimum frequency de-
pendent tapering is discussed. The usage of the Slepian window, that can be
approximated by the Kaiser-Bessel window is proposed. It is also suggested
to tilt the individual loudspeakers into direction of the beam steering angle to
avoid or minimize grating lobes.

In conclusion, Meyer gave a lot of ideas for solving the forward problem
of sound reinforcement using optimized beam steering and -forming. Just to
indicate the coincidence, [Sch92] was also presented at the 92nd Convention of
the Audio Engineering Society such as the initial paper [Hei92b] on WST and
one of the very first publications on WFS [Ber92b].

First Generation of Line Source Arrays in Concert Sound

By the end of the 1980s and beginning of the 1990s researchers reconsidered
further improving LS-SR, since clustered arrays with horn speakers suffer from
high grating lobe levels. Furthermore, the setup of these clustered arrays is
very time consuming. This appears not feasible for a fast-paced working envi-
ronment such as touring sound.

[Hei92b] addresses the problem of avoiding or at least reducing grating lobes
when arraying loudspeakers. Grating lobe free sound fields in general require
a very small speaker spacing for the highest audio frequencies according to
(1.2), which was not considered feasible by the time of publication. Instead
of deploying conventional horns, the usage of waveguides – i.e. specially de-
signed horns, where the horn exit resembles a very thin rectangular slot that
ideally emanates an equal-phase cylindrical like wave front [Hei92a] and can
be modeled as an ideal line source – is motivated. From this originates the ter-
minology line source array (LSA) contrary to the line array (LA), that refers
to a linear array built from conventional (e.g. point or horn) sources [LA01].
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By ideally allowing no gaps between the individual ideal waveguides, grat-
ing lobes are completely suppressed for a uniformly driven LSA, which triv-
ially models a quasi-continuous linear array. With the Active Radiating Factor
(ARF) theorem the grating lobe level in the farfield radiation pattern can be
linked and predicted w.r.t. the gap size of adjacent waveguides. This is ini-
tially setup in order that grating lobes should not exceed the largest sidelobe
level of a uniformly driven LSA. The ARF theorem was recently readdressed
in [Fen14] and is rigorously treated in the spatio-temporal spectrum domain
in this thesis in Ch. 3. Since the waveguide’s height is rather large for the
first practically designed systems, there is very limited capability for grating
lobe free electronic beam steering [Mey02]. Thus, directivity control has to
be realized by geometrically shaping the array and pure gain shading. The
approach is designated as Wavefront Sculpture Technology (WST), for which
[Urb01, Urb03] define five criteria for proper LSA operation. One of them
is the sampling condition (1.2), another one the ARF theorem, both initially
derived in [Hei92b]. The other criteria define a maximum allowed wavefront
curvature at the waveguide’s exit, the maximum allowed splaying angle be-
tween the LSA cabinets for a given waveguide height and an optimal array
curvature to provide a homogeneous and frequency independent SPL loss over
the audience [Urb01, Urb03]. The latter is also addressed as divergence shad-
ing in [Gun00a] and a similar approach was simulated and measured in [Sta04].
The introduced Array Morphing [LA13] – basically a prefilter equally applied
to all LSA cabinets – is of great help to shape the overall skewness of the
ATFs.

The WST criteria were confirmed in [Ure01b], following a discussion of
on-axis pressure responses and the near/farfield transition of geometrically
shaped arrays [Ure02]. Feasible geometric shapes for LS-SR, such as the arc,
J-shaped and spiral array where initially discussed in [Ure01a] in terms of
their farfield directivities for continuous sources. These approaches were dif-
ferently patented, e.g. [Leh00, Eng09]. In [Kee10] a performance comparison
for straight and curved line arrays is given including J-shaped, spirally shaped
and CBT curved and driven arrays. These arrays are modeled as continu-
ous radiators. Hence, no statements on their grating lobe characteristics can
be made. The collected results of Ureda are published as a journal article
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[Ure04] and can be seen as one of the fundamental works besides [Urb03].
The contributions were accompanied by further JBL-based research such as
[Eng01, Sch02, But02, Bai03] that discusses practical aspects of LSA designs.
The problem of front/rear hinge splaying vs. grating lobe level, the impact
of insufficient wavefront curvature for large splay angles and HF absorption
compensation by band-zoning [Tho11] are discussed in [Web03].

After introducing the first WST-compliant LSA (L-ACOUSTICS V-DOSC )
in 1992, virtually all large loudspeaker companies designed their first WST-
alike LSAs within the next ten years. Thus, by beginning of the 2000s, large
companies like Adamson, Alcons, Clair Brothers, d&b audiotechnik, EAW,
Electro-Voice, JBL, Martin Audio, Meyer Sound and Nexo had products to
compete with. A fundamental change of approaching LS-SR – the transition
from using LSAs instead of clustered arrays – was observable.

LSA designs that rely only on curving and limited gain shading to obtain a
homogeneous audience coverage could be assigned to the first generation of line
source arrays used for LS-SR, cf. Fig. 1.1b for a typical LSA setup. Optimized
curving for an intended audience coverage was developed [Glo02, Tho06].

Second Generation of Line Source Arrays in Concert Sound

Duran Audio released an LSA family termed AXYS Target also in the early
2000s [Dur07]. The most innovative part of this design that time is the active
amplification and an internal DSP controller per LSA cabinet, that enabled
the control of all individual drivers with IIR and/or FIR filters. These fil-
ters could be obtained by the previously introduced and already mentioned
technologies Digital Directivity Control (DDC) [vB00] and Digital Directiv-
ity Synthesis (DDS) [vB00, Sta01]. DDS is a numerical optimization scheme,
that solves the inverse problem, i.e. finding optimized FIR filters for each
LSA driver from a desired pre-definable target sound field. Although, AXYS
seemed to be not competitive against other products, it established what could
be termed the second generation of line source arrays. These LSAs rely not
only on curving but also on full electronic control of the individual LSA drivers.

The optimization approach (cf. [vB00, Fig. 17] vs. [Tho09, Fig. 1]) was –
amongst others [Glo02, Ter10] – taken up by Martin Audio [Tho08, Tho09,
Tho11, Tho13] resulting in the Multi-cellular Loudspeaker Array (MLA) and
the OmniLine array. The MLA is controlled with FIR filters and uses three
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individually controllable HF drivers per LSA cabinet. The OmniLine system
uses IIR filters and exhibits a 21 mm driver spacing for the high audio frequen-
cies, not following the waveguide paradigm. Similar optimization algorithms
[Fei13] are realized with AFMG’s FIRmaker software for LSA designs that
can handle FIR filters. FIRmaker can also be utilized with first generation
LSAs, albeit with limited optimization success due to the limited capability
for electronic beam steering using delays.

While the mentioned Martin Audio LSAs still deploy curving, the first LSA
that is exclusively straightly fixed was introduced by EAW with the Anya
system [But14], utilizing 14 individually controllable high frequency drivers
mounted to horns with 1 inch exit size per LSA cabinet. According to (1.2)
and assuming no gaps between the waveguides this allows grating lobe free
beam steering up to 6.7 kHz for all possible beam angles and up to 10 kHz, if
only angles ă ˘20˝ are allowed.

Mid of 2015 d&b audiotechnik introduced so called array processing to their
large LSAs. Above the spatial aliasing frequency these LSAs are controlled
by optimized frequency dependent gain shading rather than using delays and
gains. This approach still requires an optimum array curving towards the au-
dience in favor of using a coarser spatial sampling of individual controllable
waveguides.

Line Source Array Related Research

Researchers became concerned with optimal designs of waveguides for vertical
as well as horizontal directivity [Col01, Sch06b, Sch06a, Col09, Hay12, Hay13,
Niz13, Lec13, Hug15, Lec15, Mus16]. The acoustic transfer functions and im-
pulse responses for a straight array modeled with line pistons are given in
[Jia04, She07a, She07b]. [An09] shows the reduction of grating lobes with a
staggered waveguides, which effectively increases the ARF. A rigorous treat-
ment of the radiation characteristics of linear arrays modeled with line and
circular pistons can be found in [Bei02]. With so called digital and geometric
radiation controlled (DGRC) arrays [Mey06], also introduced as a so called
mixed mechanical/digital approach [Per10a] and further developed to an LSA
in [Col15], the initial ideas of [Sch92] are reconsidered.

A treatise on the history of LS-SR was recently given in [Sch15a, Sch15b].
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Wave Field Synthesis

In the 1990s Audio-DSP technology became affordable to practically syn-
thesize virtual acoustic fields for the first time. In 1988 Berkhout proposed
the usage of holography for acoustic signals using loudspeaker arrays [Ber88].
This technique was introduced as Wave Field Synthesis (WFS) [Ber92b], tem-
porarily also designated as Wave Front Synthesis [Ber92a]. Initially developed
and realized at the Delft University of Technology for more than one decade
[Ber93, Vog93, dV94b, Boo95, Sta95, dV96, Sta97, Ver97, Son00, Hul04], the
publications [dV94a, Sta96, vB00, vB01, Sta01] of their researchers address
the LS-SR community directly with the invention of DDC and DDS, as well
as utilizing curved, electronically controlled loudspeaker arrays, and thus pio-
neering the second generation of touring sound LSAs.

The first Delft dissertation on WFS [Vog93] is a comprehensive collection
of the early state of research, while at the same time authors became in-
terested in numerical optimization schemes to synthesize desired sound fields
[Kir93, Kir96]. Two important WFS contributions [Sta95, Sta96] for LSA ap-
plications were published by Evert W. Start. In [Sta95] the signal processing
framework of sound field synthesis using planar and linear arrays is intro-
duced, that is also capable to explain radiation synthesis with straight LSAs.
The concept of spatial filtering and the physical meaning and role of the re-
quired spatial anti-aliasing and reconstruction filters is explained. This was
later on readdressed in [Ahr10c, Fir12]. In [Sta96] the advantages of curved
arrays for improved audience coverage and reduced grating lobe level is dis-
cussed. [Ver97] continues the research on the signal processing framework and
especially discusses the involved loudspeakers, that act as spatial reconstruc-
tion filters.

In [dV09] the WFS research state so far is documented including a com-
prehensive bibliography on the topic. Besides optimizing and adapting driv-
ing functions for different applications [Ape04, Cor06, Mel08, Kol09, Sal10,
Per10b, Vö11, Lee12, Lee13], WFS with directed virtual sources was studied
[Jac05, Cor07, Baa08, Rom08, Per08, Fra12, Rom15].

Initiated by revisiting the WFS theory [Rab06, Rab08, Spo08b] and consid-
ering WFS as a single layer potential method for SFS, spatial aliasing artifacts
[Spo06b, Spo09] and nearfield effects [Spo07b] were discussed that extend the
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initial derivations from Delft. At about that time researchers were also strongly
concerned with the connections of sound field synthesis approaches in different
array geometries [Nic99, Spo08c, Ahr10a, Faz10a, Koy13]. Typically, geome-
tries are chosen for which an orthogonal/orthonormal basis function expan-
sion of the wave equation is well known, such as planar/linear, cylindrical and
spherical/circular arrays. For that the simple source formulation, the single
layer potential and the equivalent scattering approach yield the same ana-
lytic solutions for the unknown driving function, which was firstly shown in
[Faz07a, Faz07c, Faz07b, Faz09, Faz13] for Ambisonics, a so called SFS method
that is restricted to spherical/circular arrays. Solving the inverse problem of
the single layer potential from a virtual plane wave sound field towards the
driving functions by means of an analytic deconvolution was performed for pla-
nar/linear and spherical/circular arrays in [Ahr08c, Ahr08b]. The first method
– both methods are not restricted to virtual plane waves – became well known
as Spectral Division Method [Ahr10d], whereas the latter one constitutes a
mathematical formulation of what is known as Nearfield-Compensated Higher-
Order Ambisonics (NFC-HOA) [Dan03, Pol05, Ahr08a, Zot09, Faz12]. Both
approaches are explicit solutions of the SFS problem in appropriately chosen
coordinate systems [Ahr10b, Ahr12b], whereas WFS constitutes the implicit
solution.

By introducing the so called secondary source selection criterion [Nic99,
Spo07a, Spo08b] WFS could be adapted to also work with spherical/circu-
lar arrays. This consequently allowed a comparison of WFS and NFC-HOA
in terms of spatial aliasing, modal bandwidth and their temporal and tem-
poral spectrum characteristics [Spo06c, Spo08a, Ahr09, Ahr10e]. It could be
concluded that WFS – as a spatially fullband synthesis – is a high-frequency
/ farfield approximation of Nearfield-Compensated Infinite-Order Ambisonics
[Ahr12a, p.135], thus linking the explicit and implicit SFS solution.

The SDM solution for a virtual point source [Spo10] reveals that WFS –
using a linear array – is a high-frequency / farfield approximation of spatially
fullband SDM, again linking the explicit and implicit SFS solution in the co-
ordinate system under discussion. Furthermore, the equivalence of SDM and
the Neumann Rayleigh integral was observed in [Ahr10d]. WFS was recently
linked to the so called high frequency boundary element method [Zot13], which
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is strongly linked to well known diffraction principles. These aspects are fur-
ther formalized in the present thesis.

[Spo11, Spo13, Wie14] are extensive reviews of the recent state of research
on analytic SFS and its perception.

Numerical Solutions for Sound Field Synthesis

The numerical solution of the spatially discretized inverse SFS problem us-
ing regularization [Nel01, Kim04, Bai13a] and optimization with different cost
functions is discussed in e.g. [Kir93, Kir96, Nel01, War01, Cho02, Pol05, Wu09,
Kam10, Ell10, Lil10, Shi10, Bet12, Ell12, Rad13, Rob13, Zha13, Bai14, Cai14,
Col14a, Col14b, Oka14, G1́4, G1́5] and is extensively studied for so called per-
sonal audio systems or multi-zone SFS at the moment. It aims at synthesizing
independently (rather small) spatial regions for individual sound reinforcement
using (rather small) loudspeaker arrays.

1.2 Research Motivation
Whenever multiple acoustic sources interact interference phenomena are ob-
servable. Whether and how these interferences can be exploited for a homo-
geneous coverage of an large audience is the key question of LS-SR in general
[McC10] and also of this thesis. Naturally, optimized LS-SR must deal with
compromises and no all-round solution exists. In essence, dealing with LSAs
for LS-SR is not fundamentally different than using other array types. The
approaches merely lead to different interference phenomena and differ in the
capabilities of exploiting them for improved audience coverage.

Setting up and controlling LSAs towards appropriate LS-SR was originally
seen as a radiation synthesis problem, i.e. controlling the farfield radiation
pattern of the LSA. With the introduction of the WST the mindset changed
towards adapting the radiated wavefront for the audience. In its initial form
this was controlled with geometrically curved LSAs and nowadays either by
exclusive electronic control of straight LSAs or by combining geometric and
electronic control.

It is elaborated in this thesis and could be understood as the key message,
that the LS-SR problem can be also interpreted as the sound field synthesis
of a virtual source rather than a radiation synthesis problem. This alternative
viewpoint of course does not change the underlying physics but might be more
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convenient explaining and interpreting occurring phenomena. Incidentally, the
strong connections of WST and WFS can be revealed.

A well known approach for numerical sound field prediction of a finite LSA
is based on the complex summation of N driven LSA cabinets at the positions
x0rns [Mey84a, (52)], [Mey03, (2)], [Fei09b, (11)]

P px, ωq “

N
ÿ

n“1

Dpx0rns, ωq ¨ Hnpx,x0rns, ωq
e´j ω

c
|x´x0rns|

4π |x ´ x0rns|
looooooooooooooooooomooooooooooooooooooon

HCDPSpx,x0rns,ωq

(1.3)

using the so called complex-directivity point source (CDPS) model [Fei09b].
This models the LSA cabinets by their individual farfield radiation patterns
Hnpx,x0rns, ωq Ø Hnpϕ, ϑ, ωq. Each LSA cabinet is filtered with a driving
function Dpx0rns, ωq.

The key goal of homogeneous LS-SR does not differ from electric transmis-
sion technology. The acoustic impulse response (AIR) of the transmission path
from the LSA to an evaluation point should resemble a Dirac delta function
as close as possible. This is synonymous with requiring a flat temporal mag-
nitude spectrum for the acoustic transfer function (ATF). This should ideally
hold for the whole audience to be covered. Due to the wave propagation time
and the SPL loss over distance – which can be highly varied using LSAs –
the AIRs/ATFs include an additional delay τ and amplitude loss term Alpxq.
Then, ideally follows

pAIRpx, tq 9Apxq
δ pt ´ τpxqq

Alpxq
, PATFpx, ωq 9Apxq

e´jω τpxq

Alpxq
. (1.4)

With the additional amplitude Apxq audience and non-audience zones (such as
room boundaries that should be avoided to cover) can be differently weighted.
Ideally, τpxq, Alpxq and Apxq should be smooth functions of space. From (1.3)
it can be seen that the ATF is obtained by superposition of weighted sources.
Thus, interferences between these source must be controlled such that the AIRs
in the audience approach the ideal pAIRpx, tq. How well this works is a matter
of (i) the LSA design and curving, which assigns HCDPSpx,x0rns, ωq and of (ii)
the electronic control, which assigns Dpx0rns, ωq. This is discussed in detail
throughout the thesis.
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1.3 Objective of this Thesis
As mentioned above it is the aim of this thesis approaching optimized LS-SR
as a forward sound field synthesis problem and to unite WFS and WST. This
requires careful revision of WFS and WST in the first instance before merging
them. Hence, the thesis is organized as follows:

In Ch. 2 WFS is revisited. For that (1.3) is recast towards a continuous prob-
lem formulation using ideal point sources. The chapter follows the structure
of [Sta97, Ch. 2&3] and provides an in-depth discussion on the high-frequency
boundary element method, that is linked to well known diffraction principles
and to WFS as shown. The implicit and explicit solutions of the sound field
synthesis problem for a virtual plane wave and a spherical one are collected,
providing missing links in existing literature.

In Ch. 3 WST is revisited for straight arrays. For that the continuous SFS
problem formulation is discretized by consequent application of the acoustic
signal processing framework and explaining radiation phenomena within the
spatio-temporal Fourier spectrum domain and with its inverse spatial Fourier
transform, here termed angular spectrum synthesis. This chapter roughly fol-
lows the structure of [Sta97, Ch. 4&5] here as a matter of priority discussing
a special case of wave propagation perpendicular to the array, i.e. a broad-
band array. It is extensively discussed how the addressed WST criteria are
embedded within the fundamentals of sound field synthesis and array process-
ing. The WST criteria that are related to linear arrays can be consistently
classified and reinterpreted with the proposed framework. Two approaches for
the interpretation of diffraction and spatial aliasing effects give new insights
into the radiation characteristics of straight line arrays modeled with directed
speakers.

In Ch. 4 the problem of optimum audience coverage as a forward sound
field synthesis problem is treated. At first the difference between a straight
and arc array is discussed in terms of their farfield radiation patterns and on-
axis characteristics. The chapter then introduces an approach for WFS of a
virtual, directed source. This yields audience adapted wavefront shaping and
thus optimum audience coverage. The approach is compared to other forward
solutions, such as the CBT-like array or pure geometric WST-like control.



Chapter 2

Fundamentals of Sound Field

Synthesis

This chapter1 reconsiders the fundamentals of sound field synthesis (SFS) and
diffraction theory. Since the multi-dimensional acoustic signal processing is
treated with different conventions in the literature, it appears meaningful to
give a consistent review of the most important concepts and equations.

In general, linear acoustics in a dissipationless medium with a constant
speed of sound c and a constant density of air ϱ0 is considered, assuming free-
field conditions besides the radiating sources under discussion. The Fourier
transform conventions for the temporal and spatial domain of App. C are
used.

2.1 Differential Notation of the Wave Equation

Linear acoustics phenomena are described by the partial differential wave equa-
tion. The linearized, inhomogeneous wave equation for a three-dimensional
sound pressure field using the Laplace operator △ reads [Bla00, (10.D-10)]

ˆ

△ ´
1

c2
B2

Bt2

˙

ppx, tq “ ´qpx, tq, (2.1)

1[Sch14c, Sch16] is partly reissued herein.
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for which a Fourier transform with respect to time (C.2) yields [Mor86, (7.1.16)]

ˆ

△ `

´ω

c

¯2
˙

P px, ωq “ ´Qpx, ωq. (2.2)

Using the Dirac delta function δp¨q and imaginary unit j, the three-dimensional
free-field Green’s function [DeS92, Ch.2], [Wat15, Ch.2]

g0,3Dpx,x0, tq “
δpt ´

|x´x0|

c
q

4π |x ´ x0|
for c t ą |x ´ x0|, (2.3)

G0,3Dpx,x0, ωq “
e´j ω

c
|x´x0|

4 π |x ´ x0|
(2.4)

solves the three-dimensional wave equation to a Dirac inhomogeneity

ˆ

△ ´
1

c2
B2

Bt2

˙

g0,3Dpx,x0, tq “ ´δpx ´ x0q δptq (2.5)
ˆ

△ `

´ω

c

¯2
˙

G0,3Dpx,x0, ωq “ ´δpx ´ x0q. (2.6)

The two-dimensional free-field Green’s function [DeS92, Ch.2], [Wat15, Ch.2]

g0,2Dpx,x0, tq “

$

’

&

’

%

0 c t ă |x ´ x0|

c

2π
?

pc tq2´|x´x0|2
c t ą |x ´ x0|.

(2.7)

G0,2Dpx,x0, ωq “ ´
j

4
H

p2q

0

´ω

c
|x ´ x0|

¯

(2.8)

solves the two-dimensional wave equation to a Dirac inhomogeneity

ˆ

△ ´
1

c2
B2

Bt2

˙

g0,2Dpx,x0, tq “ ´δpx ´ x0q δptq (2.9)
ˆ

△ `

´ω

c

¯2
˙

G0,2Dpx,x0, ωq “ ´δpx ´ x0q. (2.10)

The linearized, homogeneous wave equation for a three-dimensional pressure
field reads [Mor86, (6.2.8)]

ˆ

△ ´
1

c2
B2

Bt2

˙

ppx, tq “ 0, (2.11)
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for which a Fourier transform with respect to time (C.2) yields the Helmholtz
equation

ˆ

△ `

´ω

c

¯2
˙

P px, ωq “ 0. (2.12)

2.2 Integral Notation of the Wave Equation
With the closed volume V , its smooth surface A “ BV , the vector x0 P BV ,
the position vector x P BV Y V , the inward unit normal vector n and the 3D
freefield Green’s function G0,3Dpx,x0, ωq (2.4), the integral representation of
(2.2) is with the normal derivative Bp¨q

Bn
given as [Wun96, (2.82d)]

P px, ωq “

¡

V

Qpx0, ωqG0,3Dpx,x0, ωq dV ` (2.13)

¿

BV

„

´
BP px0, ωq

Bn
G0,3Dpx,x0, ωq `

BG0,3Dpx,x0, ωq

Bn
P px0, ωq



dApx0q,

originating from the 4th Green’s identity for scalar fields [Wun96, 2.2.3]. For
homogeneous boundary conditions the surface integral vanishes, thus obtaining

P px, ωq “

¡

V

Qpx0, ωqG0,3Dpx,x0, ωq dV. (2.14)

2.2.1 Helmholtz Integral Equation (HIE)

For Qpx0, ωq “ 0 (i.e. the Helmholtz equation), however imposing inhomoge-
neous boundary conditions (2.13) reduces to [Col13, (2.5)], [Wil99, (8.15)]

¿

BV

„

´
BP px0, ωq

Bn
G0,3Dpx,x0, ωq `

BG0,3Dpx,x0, ωq

Bn
P px0, ωq



dApx0q (2.15)

“

$

’

’

’

&

’

’

’

%

`P px, ωq @x P V

`1{2P px, ωq @x P BV

0 @x R V

under the assumption that P px, ωq is continuously differentiable at x “ x0. See
Fig. 2.1 for a sketch of the geometry. The surface integral (2.15) is referred to
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as the Helmholtz-Integral Equation (HIE) and in German to as the Kirchhoff-
Helmholtz Integral (KHI).

The normal derivative BP px0,ωq

Bn
takes the gradient of P px, ωq with respect to

the field variable x, evaluates it at x “ x0 and specifies the dot product x¨, ¨y

of the resulting vector and the inward unit normal n at the respective position
x0, hence can be written as

BP px0, ωq

Bn
“ xgrad xP px, ωq

ˇ

ˇ

x“x0
, npx0qy. (2.16)

The term BG0,3Dpx,x0,ωq

Bn
in (2.15) takes the gradient of G0,3Dpx,x0, ωq with re-

spect to the variable x0 and determines the dot product with n at the relevant
position x0, written as

BG0,3Dpx,x0, ωq

Bn
“ xgrad x0G0,3Dpx,x0, ωq , npx0qy. (2.17)

The normal derivative with r “ |x ´ x0| is given as

BG0,3Dpx,x0, ωq

Bn
“ `

1

r
p1 ` j

ω

c
rq cosϕr G0,3Dpx,x0, ωq, (2.18)

BG0,3Dpx,x0, ωq

Bn
« `j

ω

c
cosϕr G0,3Dpx,x0, ωq for

ω

c
r " 1, (2.19)

npx0q

x

x0

x´x0
P px, ωq

V BV

0

ϕr

ϕs

xPS

x0´xPS

r “ |x ´ x0|

s “ |x0 ´ xPS|

Figure 2.1: Geometry for the Helmholtz-Integral Equation (HIE) according
to (2.15). Exemplarily shown is a virtual (primary) spherical monopole at
position xPS that is to be synthesized within V by the secondary source dis-
tribution (SSD) on BV .
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where ϕr is the angle between npx0q and x ´ x0 and thus [Olv10, (1.6.2)]

cosϕr “
xx ´ x0,npx0qy

|x ´ x0|
. (2.20)

BG0,3Dpx,x0,ωq

Bn
exhibits ideal spherical dipole characteristic in the farfield, whereas

G0,3Dpx,x0, ωq is an ideal spherical monopole source. The HIE thus postulates
the superposition of a single and a double layer potential and is the funda-
mental solution of the SFS problem for a source-free volume. Ideally, SFS
treated as an interior problem aims at reproducing the pressure field Spx, ωq

of a virtual, so called primary source located outside of V for which BSpx0,ωq

Bn

and Spx0, ωq have to be known in order to physically realize the HIE, that is
P px, ωq “ Spx, ωq @x P V and P px, ωq “ 0 @x R V . Analytic solutions may
not exist for a given problem or may not be feasible. Therefore, very often only
the single layer potential (SLP) using a secondary source distribution (SSD)
of monopoles

P px, ωq “

¿

BV

Dpx0, ωqG0,3Dpx,x0, ωq dApx0q (2.21)

is considered for SFS aiming at synthesizing only P pxq “ Spxq for x P V ,
i.e. only V is controllable. In practice the SLP is approximated with densely
packed loudspeaker arrays by exploiting the fact that the radiation character-
istics of many real loudspeakers for low audio frequencies are similar to that of
a spherical monopole. It appears useful to give a consistent review and provide
links of SFS approaches and different diffraction theories. For that two simple
primary sources are considered next.

Point Source

For a point source at position xPS R V and the temporal spectrum P pωq

PPSpx, ωq “ P pωq
e´j ω

c
|x´xPS|

4π |x ´ xPS|
(2.22)

the normal derivative (2.16) with s “ |x0 ´ xPS| and

cosϕs “
xx0 ´ xPS,npx0qy

|x0 ´ xPS|
(2.23)
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is given as

BPPSpx0, ωq

Bn
“ ´

1

s
p1 ` j

ω

c
sq cosϕs PPSpx0, ωq, (2.24)

BPPSpx0, ωq

Bn
« ´j

ω

c
cosϕs PPSpx0, ωq for

ω

c
s " 1. (2.25)

Plane Wave

For a plane wave with propagating direction indicated by the unit vector nPW

PPWpx, ωq “ P pωq e´j ω
c

xnPW,xy (2.26)

the normal derivative (2.16) is given as

BPPWpx0, ωq

Bn
“ ´j

ω

c
cosϕp PPWpx0, ωq (2.27)

using the angle ϕp between the vectors nPW and npx0q and thus

cosϕp “ xnPW,npx0qy. (2.28)

2.2.2 High Frequency Boundary Element Method

Different approximations, known as High Frequency Boundary Element Method
(HF-BEM) are given in literature to reduce the complexity of the HIE. It is
shown here that these approaches are related to Fresnel-Kirchhoff and Rayleigh-
Sommerfeld diffraction, that are typically given for point source wave propa-
gation in more detail. As a first step, (2.18) inserted into (2.15) leads to

P px, ωq “

¿

BV

„

´
BP px0, ωq

Bn
`

1

r
p1 ` j

ω

c
rq cosϕr P px0, ωq



G0,3Dpx,x0, ωq dApx0q

(2.29)

for x P V .
(i) HF-BEM Kernel : The assumption that the impedance of the boundary

surface is approximately equivalent to the medium’s impedance, i.e. Z0 “ ϱ0 c

is made. This holds for virtual sources that are sufficiently far away in order
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that at the boundary

Z0 “ ϱ0 c “
P px0, ωq

Vnpx0, ωq
Ñ P px0, ωq “ ϱ0 c Vnpx0, ωq (2.30)

can be written. Furthermore, the normal derivative BP px0,ωq

Bn
corresponds to

the temporal Fourier spectrum of the normal velocity Vnpx0, ωq by the Euler
equation [Sku71, Ch. 13.5]

BP px0, ωq

Bn
“ ´jω ϱ0 Vnpx0, ωq. (2.31)

Inserting BP px0,ωq

Bn
(2.31) and P px0, ωq (2.30) into (2.29) leads to [Her03, (11)]

P px, ωq “

¿

BV

jω ϱ0 Vnpx0, ωq

ˆ

1 ` cosϕr p1 `
1

j ω
c
r

q

˙

G0,3Dpx,x0, ωq dApx0q,

(2.32)

which is known as the kernel of the HF-BEM [Her03]. Under the assumption
ω
c
r " 1 (2.19), the kernel reduces to

P px, ωq “

¿

BV

jω ϱ0 Vnpx0, ωq p1 ` cosϕrqG0,3Dpx,x0, ωq dApx0q. (2.33)

This equation is used in [Hei92b, (1)] for the prediction of sound fields that
are radiated from straight and curved loudspeaker arrays. The equation holds
only if the wave length is much smaller than the dimension of the secondary
source distribution (SSD).

(ii) WFS as HF-BEM : A differently written HF-BEM equation in context
of a Wave Field Synthesis (WFS) derivation was introduced in [Zot13]. Again,
under the assumption that ω

c
r " 1, (2.29) reduces to

P px, ωq “

¿

BV

„

´
BP px0, ωq

Bn
` j

ω

c
cosϕr P px0, ωq



G0,3Dpx,x0, ωq dApx0q.

(2.34)

By furthermore assuming that all evaluation points x are similarly very far
away from all x0, i.e. ϕr « 0 and thus cosϕr « 1 holds. With that (2.34)
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reduces to the SLP [Zot13, (19)]

P px, ωq “

¿

BV

„

´
BP px0, ωq

Bn
` j

ω

c
P px0, ωq



G0,3Dpx,x0, ωq dApx0q, (2.35)

from which a WFS driving function for a point source is derived in [Zot13,
Sec. 6], as will be revisited below.

HF-BEM for a Point Source

For a virtual point source (2.22) the HF-BEM kernel (2.32) and the WFS HF-
BEM kernel (2.35) are given in further detail.

(i) HF-BEM Kernel : At first, inserting (2.4), (2.18), (2.22) and (2.24) into
the HIE (2.15) yields for x P V

P px, ωq “

¿

BV

„

1 ` j ω
c
s

s
cosϕs `

1 ` j ω
c
r

r
cosϕr



PPSpx0, ωqG0,3Dpx,x0, ωq dApx0q.

(2.36)

Under the usual HF-BEM assumptions ω
c
r " 1 (2.19) and ω

c
s " 1 (2.25) the

HIE for a point source approximates to

P px, ωq “

¿

BV

j
ω

c
pcosϕs ` cosϕrqPPSpx0, ωq G0,3Dpx,x0, ωq dApx0q. (2.37)

This equation is similar to the later referred Fresnel-Kirchhoff diffraction for-
mula (2.91). By introducing the source velocity under the assumption (2.30)

P px, ωq “

¿

BV

j
ω

c
ϱ0 c pcosϕs ` cosϕrqVPS,npx0, ωqG0,3Dpx,x0, ωqdApx0q,

(2.38)

(2.33) is recovered for a virtual point source

P px, ωq “

¿

BV

jω ϱ0 p1 ` cosϕrqVPS,npx0, ωqG0,3Dpx,x0, ωq dApx0q (2.39)
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if cosϕs “ 1 holds.
(ii) WFS as HF-BEM : Inserting (2.22) and (2.24) into the SLP (2.35)

P px, ωq “

¿

BV

„

1 ` j ω
c
s

s
cosϕs ` j

ω

c



PPSpx0, ωqG0,3Dpx,x0, ωq dApx0q.

(2.40)

Again, assuming ω
c
s " 1 (2.25) yields

P px, ωq “

¿

BV

j
ω

c
p1 ` cosϕsqPPSpx0, ωqG0,3Dpx,x0, ωq dApx0q. (2.41)

Only secondary sources on the surface A that can directly ’see’ the point
source should contribute to the integral in order to obtain a more accurate
result [Her03]. This holds for cosϕs ą 0. [Zot13] reformulated the required
secondary source selection criterion of [Spo07a, (8, 12)], cf. (2.115) – in HF-
BEM known as determining the visible elements [Her03] – to

1 ` cosϕs « 2maxtcosϕs, 0u. (2.42)

The 3D WFS driving function is then with (2.22) and (2.23) given as

Dpx0, ωq “

$

&

%

2 j ω
c
cosϕs PPSpx0, ωq for cosϕs ą 0

0 else
. (2.43)

This result is identical with (2.88), i.e. the Sommerfeld-Rayleigh diffraction
under the Neumann Green’ function boundary condition, which actually holds
for planar secondary source distributions in its initial derivation. Here the as-
sumption is made that a potentially curved surface is locally plane, cf. [Ahr12a,
p.96].

HF-BEM for a Plane Wave

A similar HF-BEM based 3D WFS driving function can be derived for a virtual
plane wave. Inserting (2.27) and (2.26) into (2.35) yields the SLP

P px, ωq “

¿

BV

j
ω

c
p1 ` cosϕpqPPWpx0, ωqG0,3Dpx,x0, ωq dApx0q, (2.44)
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and reveals the driving function

Dpx0, ωq “ j
ω

c
p1 ` cosϕpqPPWpx0, ωq. (2.45)

The secondary source selection criterion is again formulated as

1 ` cosϕp « 2maxtcosϕp, 0u. (2.46)

The 3D WFS driving function is then with (2.26), (2.28) given as

Dpx0, ωq “

$

&

%

2 j ω
c
cosϕp PPWpx0, ωq for cosϕp ą 0

0 else
(2.47)

and thus equivalent to the later derived 3D Neumann Rayleigh integral driving
function (2.148).

2.2.3 Rayleigh Diffraction Integrals

The HIE can be exactly simplified by imposing homogeneous boundary condi-
tions on the Green’s function to be fulfilled at x0, i.e. the Neumann

BGNpx,x0, ωq

Bn
“ 0 (2.48)

and Dirichlet boundary condition

GDpx,x0, ωq “ 0. (2.49)

However, only for simple geometries these required Green’s functions are an-
alytically known, e.g. for planar, spherical [Wil99, Ch. 6.7.5] and cylindrical
[Wil99, Ch. 4.5] shaped surfaces, yielding the Rayleigh and Rayleigh-like in-
tegrals. The Rayleigh integrals for planar and linear arrays are of importance
here and deserve advanced summary. Their first textbook appearance is ob-
served in [rBR96, p. 104 ff.].

By considering an infinite plane A8 centered at the origin and a hemisphere
C with radius r Ñ 8 to enclose the volume V and n pointing into V , the HIE
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consists of integration over two boundaries

»

–

ij

A8

`

ij

C

fi

fl

"

´
BP px0, ωq

Bn
G0,3Dpx,x0, ωq `

BG0,3Dpx,x0, ωq

Bn
P px0, ωq

*

dA “ P px, ωq

(2.50)

to describe the sound pressure within V . The integral over C vanishes if the
Sommerfeld radiation condition [Sku71, Ch. 23.2.3], [Wil99, (8.28)]

lim
|x0| Ñ8

|x0|

ˆ

´
BP px0, ωq

Bn
` j

ω

c
P px0, ωq

˙

“ 0 (2.51)

is fulfilled.

Implicit Derivation

For an infinite plane – here the yz-plane x0 “ p0, y0, z0q
T with n “ p1, 0, 0qT is

considered without loss of generality – the homogeneous Neumann boundary
condition (2.48) leads to the simplification of the HIE (2.15) with the image
source method [Mor86, Ch. 7.4], [Wil99, Ch. 8.8.3]

PNG,8px, ωq “

`8
ij

´8

´
BP px0, ωq

Bn
2G0,3Dpx,x0, ωq
loooooooomoooooooon

GNpx,x0,ωq

dy0 dz0, (2.52)

by requiring only the integration over A8 and assuming that the Sommer-
feld radiation condition is fulfilled. This implies that the considered V is
the infinitely large hemisphere for x ą 0, which is called target half-space
x “ px ą 0, y, zqT. As a consequence of the reduction, the other half-space can-
not be controlled to P px, ωq “ 0 but rather is P p´x, y, z, ωq “ P p`x, y, z, ωq

for the planar source [Bor06, Ch. 8.11.1]. For the here chosen geometry the
normal derivative reduces to

BP px0, ωq

Bn
“

BP px, ωq

Bx

ˇ

ˇ

ˇ

ˇ

x“x0

“
BP px, ωq

Bx

ˇ

ˇ

ˇ

ˇ

y“y0,z“z0

. (2.53)

The homogeneous Dirichlet boundary condition (2.49) leads to the simpli-
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fication of the HIE (2.15)

PDG,8px, ωq “

`8
ij

´8

B

Bn

»

—

–

2G0,3Dpx,x0, ωq
loooooooomoooooooon

GDpx,x0,ωq

fi

ffi

fl

P px0, ωq dy0 dz0, (2.54)

following the same assumptions. With r “ |x´x0| “
a

x2 ` py ´ y0q2 ` pz ´ z0q2

the normal derivative reduces to, cf. (2.18), (2.20)

BG0,3Dpx,x0, ωq

Bn
“
1

r
p1 ` j

ω

c
rq cosϕr G0,3Dpx,x0, ωq “

BG0,3Dpx,x0, ωq

Bx0

“
1

r
p1 ` j

ω

c
rq

x

r
G0,3Dpx,x0, ωq. (2.55)

The integrals are very well known as Rayleigh diffraction integrals, often re-
ferred to as first and second one, although this numbering differs in literature
on optics and acoustics, cf. [Bor72, Goo05a, NV06] vs. [Vog93, Wil99]. It is
recommended to state the deployed boundary condition explicitly, rather than
referring to an inconsistent numbering.

It is worth realizing that this Rayleigh diffraction integrals provide a unique
solution to the SFS problem in three dimensions for the imposed boundary con-
ditions on the Green’s function. No assumptions, other than the Sommerfeld
radiation condition, have been made.

The initial derivation of 3D Wave Field Synthesis originated from the Dirich-
let Rayleigh integral (2.54), cf. [Ber88, (7a)],[Ber92a, (1)] by taking (2.19),
(2.20) into account, requiring a plane of dipole loudspeakers and using the
pressure as the driving function for the secondary sources. Another formu-
lation of 3D WFS originated from the Neumann Rayleigh integral (2.52), cf.
[Vog93, Sta97, Ver97, Rab06, Spo08b] requiring a plane of monopole loud-
speakers and using the pressure gradient as the driving function. Thus, WFS
can be seen as an implicit solution of SFS. The latter 3D WFS approach is
equivalent to the spatio-temporal spectrum representation of the Neumann
Rayleigh integral, that leads to Spectral Division Method in three-dimensions
as an explicit deconvolution solution for a planar SSD, cf. [Ahr10d, Sch14c].
Typically, analytic solutions for SFS in Cartesian coordinates are derived by
the assumption of an infinite linear or planar SSD, cf. Ch. 2.3, Ch. 2.4.



2.2. INTEGRAL NOTATION OF THE WAVE EQUATION 31

Spatio-Temporal Spectrum Derivation

In the 1960s the connection between the Rayleigh integrals and their spatio-
temporal Fourier spectrum representations due to the convolution/multipli-
cation duality was observed [Wol64, She67a, She67b, Lal68b, Lal68a, Sch68],
which is nowadays covered in textbooks [Wil99, Ch. 2.10], [NV06, Ch. 6.5],
[Mö09, Ch. 13.5.4]. Without loss of generality, let’s assume planes parallel
to the yz-plane with x ą x0 and x “ px “ const, y, zqT and x0 “ px0 “

const, y0, z0qT. Let’s furthermore assume that the spatial Fourier transform of
the pressure for the plane at x0

P px0, ky, kz, ωq “

`8
ij

´8

P px0, y0, z0, ωq e`j pky y0`kz z0q dy0 dz0 (2.56)

and the spatial Fourier transform of the normal velocity w.r.t. x-direction for
the plane at x0

Vnpx0, ky, kz, ωq “

`8
ij

´8

Vnpx0, y0, z0, ωq e`j pky y0`kz z0q dy0 dz0 (2.57)

exist. The dispersion relation pω
c
q2 “ k2

x ` k2
y ` k2

z requires physical valid wave
numbers for propagating and decaying evanescent waves by taking [NV06, Ch.
2.2], [Wil99, Ch. 2.6]

kx “

$

&

%

`

b

pω
c
q2 ´ pk2

y ` k2
zq for pω

c
q2 ą pk2

y ` k2
zq

´j
b

pk2
y ` k2

zq ´ pω
c
q2 for pk2

y ` k2
zq ą pω

c
q2

(2.58)

into account.
Furthermore, the link of the 3D freefield Green’s function (2.4) with its

spatio-temporal spectrum – this expansion is well known as Weyl representa-
tion [DeS92, (2.9.10)] or Weyl integral [Lal68b, (B2)],[Wil99, (2.64)] – reads

G0,3Dpx,x0, ωq “
1

4 π2

`8
ij

´8

e´j kx|x´x0|

2 j kx
e`jpky y0`kz z0q e´jpky y`kz zq dky dkz.

(2.59)
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The Rayleigh integrals are convolution integrals (here w.r.t. y and z)

P px, ωq “ fpx0, y, zq ˚y ˚z hpx ´ x0, y, zq, (2.60)

where fpx0, y0, z0q is defined as a function of the pressure or the pressure
gradient on the plane at x0 and hpx´x0, y, zq a wavefield propagator function
that extrapolates towards the SFS sound pressure at the plane at x. It can
be shown that the convolution/multiplication of the Fourier transform duality
leads to

P px, ωq “

`8
ij

´8

fpx0, y0, z0qhpx ´ x0, y ´ y0, z ´ z0q dy0 dz0 (2.61)

“F´1
y F´1

z tj ϱ0 ω Vnpx0, ky, kz, ωqu
looooooooooooooooooomooooooooooooooooooon

fpx0,y,zq

˚y ˚z F´1
y F´1

z

"

e´j kx px´x0q

j kx

*

looooooooooooomooooooooooooon

hpx´x0,y,zq

,

P px, ky, kz, ωq “ rj ϱ0 ω Vnpx0, ky, kz, ωqs ¨

„

2
e´j kx px´x0q

2 j kx



(2.62)

for extrapolation of the pressure gradient function

fpx0, y0, z0q “ ´
P px, ωq

Bx

ˇ

ˇ

ˇ

ˇ

x“x0

, (2.63)

that is linked to the normal velocity by the Euler equation (2.31). Comparing
the spatio-temporal spectrum of hpx´x0, y, zq – or rather hpx´x0, y´y0, z´z0q

using the shift theorem – with (2.59) yields

hpx ´ x0, y ´ y0, z ´ z0q “ 2G0,3Dpx,x0, ωq, (2.64)

revealing the equivalence with the Neumann Rayleigh integral (2.52) for the
chosen geometry. Eq. (2.62) can also be given as

P px, ky, kz, ωq “ Vnpx0, ky, kz, ωq ¨

„

j ϱ0 ω
e´j kx px´x0q

j kx



, (2.65)



2.2. INTEGRAL NOTATION OF THE WAVE EQUATION 33

for which [Mö09, (13.96)], [Wil99, (2.70)]

hvpx ´ x0, y, zq “ F´1
y F´1

z

"

j ϱ0 ω
e´j kx px´x0q

j kx

*

(2.66)

maybe be termed the velocity based forward wavefield propagator function, i.e.
[Mö09, (13.100)], [Wil99, (2.74)]

hvpx ´ x0, y ´ y0, z ´ z0q “ 2 j ϱ0 ωG0,3Dpx,x0, ωq (2.67)

that extrapolates the normal velocity of the plane at x0

fpx0, y0, z0q “ Vnpx0, ωq (2.68)

to the pressure P px, ωq at a plane x ą x0. Hence, the Neumann Rayleigh
integral (2.52) is written as

PNG,8px, ωq “

`8
ij

´8

`2 j ϱ0 ω Vnpx0, ωqG0,3Dpx,x0, ωq dy0 dz0. (2.69)

With the convolution/multiplication duality of the Fourier transform

P px, ωq “

`8
ij

´8

fpx0, y0, z0qhppx ´ x0, y ´ y0, z ´ z0q dy0 dz0 (2.70)

“F´1
y F´1

z tP px0, ky, kz, ωqu
looooooooooooooomooooooooooooooon

fpx0,y,zq

˚y ˚z F´1
y F´1

z

␣

e´j kx px´x0q
(

looooooooooooomooooooooooooon

hppx´x0,y,zq

,

P px, ky, kz, ωq “ rP px0, ky, kz, ωqs ¨
“

e´j kx px´x0q
‰

(2.71)

the pressure based forward wavefield propagator can be extracted to

hppx ´ x0, y ´ y0, z ´ z0q “ 2
BG0,3Dpx,x0, ωq

Bx0

(2.72)

for the pressure function fpx0, y0, z0q “ P px0, ωq, revealing the identity with
the Dirichlet Rayleigh integral (2.54).
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Fourier-NAH / Inverse Diffraction

Eq. (2.71), (2.62) and (2.65) constitute the basis for so called Planar Fourier
Transform-Based Near-Field Acoustical Holography (Fourier-NAH) [Ste82],
[Wil99, Ch. 3], [Wu08], [Bai13b, Ch. 5], also known as inverse diffraction in
optics [NV06, Ch. 9]. It aims at solving the inverse problem, i.e. performing
a deconvolution. Still considering x ą x0 and a half-space problem (imposing
the Neumann or Dirichlet boundary condition on the wavefield propagator),
(i) either the pressure of the (measurement) plane at x towards the pressure on
the plane at x0 can be extrapolated with the pressure based inverse wavefield
propagator

P px0, ky, kz, ωq “ P px, ky, kz, ωq ¨ e`j kx px´x0q, (2.73)

(ii) or the pressure of the (measurement) plane at x towards the normal velocity
on the plane at x0 can be extrapolated by (cf. (2.62), (2.65))

j ϱ0 ω Vnpx0, ky, kz, ωq “ P px, ky, kz, ωq ¨ j kx e
`j kx px´x0q (2.74)

Vnpx0, ky, kz, ωq “ P px, ky, kz, ωq ¨
j kx e

`j kx px´x0q

j ϱ0 ω
, (2.75)

referring (2.75) to as the velocity based inverse wavefield propagator. Hence,
for infinite planes or finite planar sources that are ideally baffled

P px0q “F´1
y F´1

z

␣

FyFz tP px, ωqu ¨ e`j kx px´x0q
(

(2.76)

Vnpx0q “F´1
y F´1

z

"

FyFz tP px, ωqu ¨
kx
ϱ0 ω

e`j kx px´x0q

*

(2.77)

constitute the fundamentals of planar NAH [Wu08, Table I].
The initial derivation of the so called Spectral Division Method (SDM)

[Ahr08c, Ahr10d] as an SFS deconvolution solution for planar and linear loud-
speaker arrays is performed without any boundary condition imposed on the
Green’s function, therefore deploying the single layer potential

P px, ωq “

`8
ij

´8

Dpx0, ωqG0,3Dpx,x0, ωq dy0 dz0. (2.78)



2.2. INTEGRAL NOTATION OF THE WAVE EQUATION 35

In terms of a planar NAH-like notation follows the deconvolution, i.e. the
inverse problem solution for the driving function (cf. (2.59))

Dpx0q “F´1
y F´1

z

␣

FyFz tP px, ωqu ¨ 2 j kx e
`j kx px´x0q

(

(2.79)

with Dpx0q “ F´1
y F´1

z tDpx0, ky, kzqu by observing from (2.74)

2 j ϱ0 ω Vnpx0, ky, kz, ωq
looooooooooooomooooooooooooon

Dpx0,ky ,kzq

“ P px, ky, kz, ωq ¨ 2 j kx e
`j kx px´x0q. (2.80)

This proves the identity of 3D SDM as an explicit SFS solution and 3D WFS
with the Neumann Rayleigh integral as an implicit SFS solution. For model
based wave types (for which propagating and evanescent ’modes’ could be
extrapolated analytically exact) and an infinite SSD plane, the spatio-temporal
spectrum of the pressure at plane x ą x0 can be used to find the explicit
solution for the driving function’s spatio-temporal spectrum [Sch14c, (50)]

Dpx0, ky, kzq “ P̌ pky, kz, ωq e´j kx x
loooooooooomoooooooooon

P px,ky ,kz ,ωq

¨ 2 j kx e
`j kx px´x0q (2.81)

“P̌ pky, kz, ωq ¨ 2 j kx e
´j kx x0 , (2.82)

with P̌ pky, kz, ωq denoting the so called angular spectrum [Ahr12a, Ch. 2.2.7].
Note, that this is identical with the proposed approach termed wave field
reconstruction (WFR) [Koy13, Ch. 5]. It is very important realizing that
Fourier-NAH (such as for planar, cylindrical and spherical geometries) is based
on the Rayleigh/Rayleigh-like integrals. Since the Neumann and Dirichlet
Green’s functions for planar problems are trivially connected to the freefield
Green’s function by factor 2 the deconvolution of the SLP, i.e. SDM can only be
connected to a Fourier-NAH-like approach for planar (and linear) geometries.
The deconvolution of the SLP for SFS with a spherical/cylindrical geometry
differs from their Fourier-NAH counterparts. However, the link for solving
the inverse problem in spherical coordinates was given in [Faz10b] and termed
Near-Field Acoustical Holography.
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2.2.4 Rayleigh-Sommerfeld Diffraction Integrals

The Rayleigh integrals are only valid for an infinite plane, however then they
are an exact solution of the Helmholtz equation (2.12) in the half-space x ą x0

[Pri04]. In optics the wave radiation through a finite, non-reflecting aperture A
enclosed by an opaque screen B is a well formulated problem, that also can be
deployed to acoustic problems. The opaque screen B is then interpreted either
as a sound-hard/rigid or as a sound-soft boundary surface and the aperture A
constitutes the secondary source distribution using either monopoles or dipoles.

The HIE must now be evaluated for three surfaces, i.e. the planar aperture
A, the planar opaque screen. i.e. the non-illuminated side of the screen B`

and the semi-sphere C
»

–

ij

A

`

ij

B`

`

ij

C

fi

fl

"

´
BP px0, ωq

Bn
G0,3Dpx,x0, ωq `

BG0,3Dpx,x0, ωq

Bn
P px0, ωq

*

dA “ P px, ωq

(2.83)

npx0q

x

x0

x´x0
P px, ωq

VV̄

BV

A

B`

B`

B´

B´

0

ϕr

ϕs

xPS

x0´xPS

r “ |x ´ x0|

s “ |x0 ´ xPS|

Figure 2.2: Geometry for the Rayleigh-Sommerfeld and the Fresnel-Kirchhoff
diffraction using a point source at xPS that illuminates an aperture A in an
otherwise infinite opaque screen B. The region B` is assumed to be dark in
the evaluation volume V .
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to describe the sound pressure within V . The initial Kirchhoff boundary con-
ditions [Bor06, (8.3.15)], [Som54, p.198], [Goo05a, p.44]

onA : P px0, ωq “ P px, ωq ;
BP px0, ωq

Bn
“

BP px, ωq

Bn

onB` : P px0, ωq “ 0 ;
BP px0, ωq

Bn
“ 0 (2.84)

and the Sommerfeld radiation condition (2.51) reduce the integration over the
finite aperture A, cf. Fig. 2.2 for a sketch of the geometry under discussion.

The Kirchhoff boundary conditions were initially established by Kirchhoff in
order to simplify the HIE for arbitrarily shaped surfaces. It is assumed that the
sound field P px0, ωq and its normal derivative within the aperture is the same
either with or without the opaque screen around it. Secondly, it is assumed
that – in terms of acoustics – the pressure and the velocity are zero in the
vicinity of the dark side B`. Obviously, these conditions do not represent the
physical reality in general. For the case of a planar screen, however only two
of the Kirchhoff boundary conditions have to be fulfilled, since the Neumann
or Dirichlet boundary condition imposed on the Green’s function already hold
with physical validity. Thus, only the boundary condition imposed on BP px0q

Bn

is required to simplify (2.52) to

PNG,Apx, ωq “

ij

A

´
BP px0, ωq

Bn
r2G0,3Dpx,x0, ωqs dy0 dz0, (2.85)

taking no assumptions on P px0, ωq. In contrast, only the boundary condition
on P px0, ωq is required to reformulate (2.54) to

PDG,Apx, ωq “

ij

A

`P px0, ωq

„

2
BG0,3Dpx,x0, ωq

Bn



dy0 dz0, (2.86)

taking no assumptions on BP px0q

Bn
. These integrals are referred to as the Rayleigh-

Sommerfeld diffraction integrals [Bor06, Ch. 8.11.2]. They hold only if (i) the
boundary surface/opaque screen is of infinite dimension, modeling a rigid infi-
nite baffle B for (2.85) and a sound-soft infinite baffle B for (2.86), respectively.
For practical reasons of finite sized baffles acting in otherwise free field con-
ditions the following requirements must hold to approximately match the real
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occurring diffraction: (i) the aperture dimension A is much larger than the
considered radiated wave length λ, and (ii) the wave length is much smaller
than the evaluation distance r “ |x ´ x0|.

The integrals are frequently used in SFS for modeling planar, linear and rect-
angular and circular secondary source distributions of finite extent, although
analytic driving functions are derived for infinite linear and planar secondary
source distributions. Thus, for low audio frequencies and comparable small
apertures acting in free-field conditions, SFS will not be correct, since the
diffraction effects are not compensated for.

The Rayleigh-Sommerfeld integrals are typically given in more detail for
screen diffraction of a spherical monopole source. Reconsidering the approaches
from HF-BEM Ch. 2.2.2 by using (2.4), (2.22) and their respective farfield/high-
frequency approximations of the normal derivative (2.19), (2.25), on the one
hand yields the Neumann Rayleigh-Sommerfeld diffraction integral [NV06,
(6.43)], [Goo05a, (3.44)]

PNG,A,Monopolepx, ωq “

ij

A

r
j

λ
cosϕs PPSpx0, ωqs

e´j ω
c
r

r
dy0 dz0 (2.87)

“

ij

A

r2 j
ω

c
cosϕs PPSpx0, ωqsG0,3Dpx,x0, ωq dy0 dz0

according to the assumed validity conditions above. The term within the
brackets of (2.88) is recognized as the far-field/high frequency approximated
driving function for 3D Neumann-WFS of a virtual spherical monopole [Zot13]
as discussed above in Ch. 2.2.2, cf. (2.43). Inserting (2.19) into (2.86) on
the other hand yields the Dirichlet Rayleigh-Sommerfeld diffraction integral
[NV06, (6.42)], [Goo05a, (3.43)]

PDG,A,Monopolepx, ωq “

ij

A

r
j

λ
PPSpx0, ωqs cosϕr

e´j ω
c
r

r
dy0 dz0 (2.88)

“

ij

A

r2 j
ω

c
PPSpx0, ωqs cosϕr G0,3Dpx,x0, ωq dy0 dz0.

This is identical with the initial 3D Dirichlet-WFS formulation [Ber92a, (2b)],
[Ber92b, (2b)], that actually requires secondary dipole sources.
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2.2.5 Fresnel-Kirchhoff Diffraction Integral

For a planar screen the Rayleigh-Sommerfeld diffraction is less demanding
w.r.t. the boundary conditions than the Fresnel-Kirchhoff diffraction, that
considers an arbitrarily shaped aperture A of finite extent. Equations (2.83),
(2.84), (2.51) and x P V yield the integral

PFKpx, ωq “

ij

A

„

´
BP px0, ωq

Bn
G0,3Dpx,x0, ωq `

BG0,3Dpx,x0, ωq

Bn
P px0, ωq



dApx0q.

(2.89)

In this case the evaluated sound field PFKpx, ωq is only correct if all Kirchhoff
boundary conditions (2.84) are fulfilled. They are approximately fulfilled if
the aperture dimension is much larger than the considered wave length λ, and
if the wave length is much smaller than the evaluation distance r “ |x ´ x0|

as well as the point source distance s “ |x0 ´ xPS|. It is well known that the
general Fresnel-Kirchhoff diffraction equation (2.89) is the arithmetic average
of both Rayleigh-Sommerfeld diffraction equations (2.85), (2.86), cf. [Wol64],
[Bor06, (8.11.23)], [NV06, (6.22)] for point source diffraction

PFKpx, ωq “
PNG,Apx, ωq ` PDG,Apx, ωq

2
. (2.90)

Again inserting the point source field (2.22) and the Green’s function (2.4) and
their respective farfield/high-frequency approximations of the normal deriva-
tive (2.25) and (2.19) into (2.89) yields the Fresnel-Kirchhoff diffraction inte-
gral of a point source [Bak50, (Ch.2, 1.34)], [Bor06, (8.3.17)], [Goo05a, (3-27)],
[NV06, (6.41)]

PFK,Monopolepx, ωq “

ij

A

„

j

λ

cosϕs ` cosϕr

2
PPSpx0, ωq



e´j ω
c
r

r
dApx0q,

PFK,Monopolepx, ωq “

ij

A

”

j
ω

c
pcosϕs ` cosϕrqPPSpx0, ωq

ı

G0,3Dpx,x0, ωq dApx0q,

(2.91)

which is identical to HF-BEM as already discussed in Ch. 2.2.2. It is worth
noting, that the Fresnel-Kirchhoff-Diffraction and the Rayleigh-Sommerfeld
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diffraction equations predict about the same diffracted sound field

PFK,Monopolepx, ωq « PNG,A,Monopolepx, ωq « PDG,A,Monopolepx, ωq (2.92)

for the case of cosϕs « 1 (small angles of source incidence, i.e. a point source
far away from BV ) and cosϕr « 1 (small evaluation angle), cf. [Wol64], [Bor06,
Ch. 8.11.2]. This explains the similarity of differently derived WFS approaches
(Neumann [Sta97, Ch. 3.1] vs. Dirichlet [Sta97, Ch. 3.2]), when considering
the farfield/high-frequency approximation both for the virtual source position
as well as for the evaluation position.

2.2.6 Fresnel and Fraunhofer Approximation

The Fresnel and Fraunhofer approximations are useful simplifications of the
diffraction integrals to obtain an analytic description of the diffraction effects
of baffled sources in different evaluation regions, referred to as the Fresnel and
the Fraunhofer region in front of apertures.

Due to its importance for SFS and radiation synthesis of linear arrays, the
Neumann Rayleigh-Sommerfeld integral is discussed for the different approx-
imations, cf. [Dub99, Pri04, Mas07], [Mö09, Ch. 3.5], [NV06, Ch. 6.7ff],
[Goo05a, Ch. 4.2ff]. Let’s define a vector set

x1
“ py, zq

T,x “ px,x1
q
T,x1

0 “ py0, z0q
T,x0 “ px0,x

1
0q

T, r “ px ´ x0,x
1
´ x1

0q
T

(2.93)

for which x0 “ 0 is chosen according to the preceding sections. With

r “|x ´ x0| “
a

x2 ` py ´ y0q2 ` pz ´ z0q2, (2.94)

R “|x ´ 0| “
a

x2 ` y2 ` z2, (2.95)

the Neumann Rayleigh-Sommerfeld diffraction integral (2.85) is written as

PNG,Apx, ωq “

ij

A

´
BP px0, ωq

Bn

e´j ω
c
r

2 π r
dy0 dz0. (2.96)
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In literature typically the Taylor series of (2.94) is given as

r “ |x ´ x0| « R ´
xx1,x1

0y

R
`

|x1
0|2

2R
` ¨ ¨ ¨ , (2.97)

which however ignores the fact that for x ´ x0 actually a multi-dimensional
variable Taylor series must be given. Applying (2.97) in the exponential func-
tion of (2.96) and replacing r “ |x´x0| with R in the denominator ibid. yields
a Fresnel approximation known in literature [NV06, (6.52)], [Mas07, (5)]

PFresnel,NG,Apx, ωq “
e´j ω

c
R

2 π R

ij

A

´
BP px0, ωq

Bn
e´j ω

c
r

|x1
0|2

2R
´

xx1,x1
0y

R
s dy0 dz0, (2.98)

which is valid if

ω

c

p|x1
0|2 ´ 2 xx1,x1

0yq2

8R3
! 1. (2.99)

This Fresnel approximation (2.98) represents the case of a diffracted spherically
spreading wave, cf. [Mas07, (5)].

Another possible Fresnel approximation is derived when a further Taylor
series

R “
a

x2 ` y2 ` z2 “ x

c

1 `
y2 ` z2

x2
« x p1 `

y2 ` z2

2x2
q (2.100)

is applied, assuming that x2 " y2 ` z2, i.e. assuming small evaluation angles.
The integral then takes the form [NV06, (6.56)], cf. [Goo05a, (4-14)], [Pri04,
(4)]

PFresnel,NG,Apx, ωq “
e´j ω

c
x

4π x

ij

A

´2
BP px0, ωq

Bn
e´j ω

c

|x1´x1
0|2

2 x dy0 dz0, (2.101)

which is valid if

ω

c

|x1 ´ x1
0|4

8x3
! 1 Ø

π

4λ

“

py ´ y0q
2

` pz ´ z0q
2
‰2

! x3. (2.102)

This Fresnel approximation (2.101) represents the case of a diffracted plane
wave, cf. [Mas07, (4)]. This case becomes useful when evaluating the on-
axis diffraction of uniformly driven pistons or line arrays, as discussed for the
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circular and line piston in Ch. 3 and App. D.
If only the first order terms are considered in the Taylor series (2.97)

r “ |x ´ x0| « R ´
xx1,x1

0y

R
` ¨ ¨ ¨ , (2.103)

(2.96) takes the form of the Fraunhofer approximation

PFraunhofer,NG,Apx, ωq “
e´j ω

c
R

4π R

ij

A

´2
BP px0, ωq

Bn
e`j ω

c

xx1,x1
0y

R dy0 dz0, (2.104)

which is valid if

ω

c

|x1
0|2

2R
! 1. (2.105)

For a linear array on y-axis with length L and an allowed maximum phase
error of π

4

ω

c

|x1
0max|2

2R
ă

π

4
Ñ

2 π

λ

pL{2q2

2R
ă

π

4
Ñ

R

L
"

L

λ
(2.106)

yields one well known farfield condition [Mö09, Ch. 3.6], besides R " λ and
R " L that originate from the Rayleigh-Sommerfeld diffraction’s conditions.

A very important and fundamental property of the Fraunhofer region is
revealed when casting

y

R
“ sinϕ sinϑ Ñ

ω

c
sinϕ sinϑ “ ky (2.107)

z

R
“ cosϑ Ñ

ω

c
cosϑ “ kz (2.108)

to the real valued wave numbers ky and kz (i.e. propagating waves) using

x “ px, y, zq
T

“ R ¨ pcosϕ sinϑ, sinϕ sinϑ, cosϑq
T (2.109)
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and ´π
2

ď ϕ ď `π
2
, 0 ď ϑ ď π.

With (2.31) the Fraunhofer approximation (2.104) then can be rewritten as

PFraunhofer,NG,Apx, ωq “ j ϱ0 ω
e´j ω

c
R

2 π R

ij

A

Vnpx0, ωq e`j ky y0`j kz z0 dy0 dz0,

(2.110)

using the normal velocity of the source located in A. If the source is rigidly
baffled, the normal velocity on B` is zero and the integration range can be
formulated more generally to [Hec77]

PFraunhofer,NG,Apx, ωq “ j ϱ0 ω
e´j ω

c
R

2 π R

`8
ij

´8

Vnpx0, ωq e`j ky y0`j kz z0 dy0 dz0.

(2.111)

The integral resembles a spatial Fourier transform. Thus, the spatio-temporal
spectrum Vnpky, kz, ωq of the normal source velocity evaluated for k2

y ` k2
z ă

pω
c
q2, i.e. only for propagating wave radiation yields the frequency dependent

farfield radiation pattern Vnpϕ, ϑ, ωq of the source w.r.t. the radiating angles
ϕ, ϑ. This well understood fact becomes very important for describing sound
fields radiated by LSAs later on in this thesis, cf. pg. 95.

Henceforth, the temporal spectrum Dpx0, ωq of the secondary source ex-
citation signal, typically termed driving function in SFS is considered to be
proportional to the normal velocity as

Dpx0, ωq 9 j ϱ0 ω Vnpx0, ωq. (2.112)

2.2.7 Single Layer Potential

To approach SFS with the SLP, different approaches exist to derive the un-
known driving function analytically for simple model based wave types.

The so called explicit solution can be found by means of mode matching
(i.e. the deconvolution performed as a division in an appropriate orthogo-
nal/orthonormal function space) [Faz10a, Ahr12a, Sch14c], for which SDM
and Nearfield Compensated Higher Order Ambisonics (NFC-HOA) are well
known concepts for planar, linear and spherical, circular SSDs, respectively.
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The implicit solution can be derived by diffraction theory, which initially was
performed for planar and linear arrays deploying the Rayleigh integrals.

The initial derivation of WFS as the implicit solution is based on the
Rayleigh integral under Dirichlet boundary condition imposed on the Green’s
function (2.54) for the synthesis of a virtual spherical monopole source by a
planar and linear SSD consisting of spherical dipoles [Ber88, Ber92b, Ber92a].
[Ber93] –as a summary of [Ber92b, Ber92a] – additionally gives a detailed treat-
ment on the stationary phase approximation (SPA) for the reduction of the
3D Rayleigh integral towards 2.5D for usage of a linear array that consists of
dipoles. These approaches are based on the Dirichlet Rayleigh integral (2.54),
thus the approach should be termed Dirichlet-WFS here.

In [Vog93, dV94a] the synthesis operator, i.e. the driving function is adapted
to work with a linear array that consists of monopoles. Later on [dV96] derives
driving functions that compensate for the farfield directivity of the used loud-
speakers. The derivation of WFS using the SPA from the 3D (2.52) towards
the 2.5D Neumann Rayleigh operator for a virtual point source was further
formalized in [Sta96, Sta97, Ver97] and became embedded into an acoustic
signal processing framework. These approaches – sometimes referred to as tra-
ditional WFS theory and here termed Neumann-WFS – consider linear SSDs
built from ideal point sources and ensure amplitude correct synthesis along a
reference line parallel to the SSD.

In case of a (i) planar or (ii) linear SSD the SLP is direct proportional to
the Neumann (i) 3D or (ii) 2.5D Rayleigh integral. For the 3D case SDM and
Neumann-WFS are identical [Sch14c]. For the 2.5D case SDM constitutes the
exact SFS solution, whereas WFS is a high-frequency/farfield approximated
SDM solution [Spo10].

For closed SSDs, in practice very often circular or rectangular shapes, the
Neumann Rayleigh-Sommerfeld diffraction is deployed with a secondary source
selection criterion by activating only the visible elements, cf. HF-BEM in
Ch. 2.2.2. This is realized with an additional spatial window applied to the
driving function as

wpx0q ¨ Dpx0, ωq Ñ Dpx0, ωq. (2.113)
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For a plane wave this window may be defined as [Spo08b, (13)]

wpx0q “

$

&

%

1 if cosϕp “ xnPW,npx0qy ą 0 p2.28q

0 else
, (2.114)

and for point sources as [Spo07a, (8&12)]

wpx0q “

$

&

%

1 if cosϕs “
xx0´xPS,npx0qy

|x0´xPS|
ą 0 p2.23q

0 else
. (2.115)

The following subsections give a review on SDM and Neumann-WFS for the
SFS of a spherical and plane wave. The SDM solutions are only valid for planar
and linear SSDs, whereas all WFS solutions given in general vector notation
can be used for convex shaped SSDs. When referring to as correct SFS in the
following, it is assumed that (i) the aperture is much larger than the considered
wave length in order that the diffraction model holds and (ii) the assumptions
that lead to the different farfield/high-frequency approximations hold as well
as (iii) no spatial aliasing occurs.

Since planar and spherical SSDs are expensively to be realized, many SFS
approaches use loudspeakers along a line contour (mostly linear, rectangular
and circular) that are setup in the horizontal plane at height of the listener’s
ears. The following sections consistently consider the following geometry se-
tups:

• planar SSD yz-plane x0 “ p0, y0, z0q
T, 3D SFS half space x “ px ą

0, y, zqT, n “ p1, 0, 0qT, Neumann Rayleigh

• linear SSD y-axis x0 “ p0, y0, 0qT, 2.5D SFS half plane x “ px ą 0, y, 0qT,
n “ p1, 0, 0qT, Neumann Rayleigh

• spherical SSD centered around origin with x0 “ px0, y0, z0qT, radius r0 “

|x0| “ const, 3D SFS space x “ px, y, zqT for |x| ă r0, npx0q “ ´x0{r0,
Neumann Rayleigh diffraction using additional wpx0q in Dpx0, ωq

• circular SSD centered around origin within xy-plane with x0 “ px0, y0, 0qT,
radius r0 “ |x0| “ const, 2.5D SFS plane x “ px, y, 0qT for |x| ă r0,
npx0q “ ´x0{r0, Neumann Rayleigh diffraction using using additional
wpx0q in Dpx0, ωq
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For 2.5D SFS the reference line is located parallel to the y-axis at xRef ą 0.
For the reference point xRef within the listener region usually the origin of the
circular SSD is chosen. No focused point sources are considered in this thesis,
therefore requiring xPS R V . For the plane wave propagating direction using
planar and linear SSDs, cosϕp ą 0 is required for radiation into the considered
listener region.

2.3 SFS of a Spherical Wave

The SFS of a point source (2.22) with position xPS R V , i.e. not within
the considered synthesis space shall be shortly revisited, giving comments on
different approaches and revealing slight misconceptions in literature.

3D Neumann-WFS

3D Neumann-WFS for a planar SSD is straightforward using (2.52)

Dpx0, ωq “ ´2
BP px0, ωq

Bn
. (2.116)

With the normal derivative (2.24) and (2.23) the driving function reads [Spo08b,
(19)]

Dpx0, ωq “
2

s
p1 ` j

ω

c
sq cosϕs PPSpx0, ωq (2.117)

and under the assumption ω
c
s " 1 this approximates to

Dpx0, ωq “ 2 j
ω

c
cosϕs PPSpx0, ωq, (2.118)

which was already given for the Neumann Sommerfeld-Rayleigh diffraction
(2.88) and in context of HF-BEM (2.43).

3D SDM

For the SDM solution of a point source some remarks were given in [Sch14c],
that are shortly revisited here. Consider the point source at xPS “ pxPS ă

0, yPS, zPSqT, the SSD in the yz-plane x0 “ p0, y0, z0qT, the synthesis half space
x “ px ą 0, y, zqT with n “ p1, 0, 0qT. For the explicit solution of (2.21)
towards the driving function the expansions of the Green’s function and the
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point source have to be known. With the Weyl representation (2.59)

e´j ω
c

|x´x0|

4 π |x ´ x0|
“

1

4π2

`8
ij

´8

e´j kxpx´x0q

2 j kx
e`j pky y0`kz z0q e´jpky y`kz zq dky dkz

using the definitions for kx (2.58) for propagating and evanescent wave prop-
agation, x ą x0 and x ‰ x0, the decomposition of (2.78) w.r.t. ky and kz is
given as (cf. (2.81), [Sch14c, (49)])

P̌ pky, kz, ωq e´j kx x
loooooooooomoooooooooon

P px,ky ,kz ,ωq

“ Dpx, ky, kz, ωq ¨ r
e´j kxpx´x0q

2 j kx
s (2.119)

using the eigen-’modes’ e´j kxpx´x0q

2 j kx
of the acoustic transfer function (ATF).

From (2.59) also the expansion of the point source xPS ă x0 and x0 ă x ă 8

can be extracted to

P px, ky, kz, ωq “ P pωq
1

2 j kx
e`j xk,xPSy e´j kx x. (2.120)

Solving (2.119) for Dpx, ky, kz, ωq yields (cf. sign corrected [Sch14c, (A10,A11)])

Dpx, ky, kz, ωq “ P pωq

1
2 j kx

e`j xk,xPSy e´j kx x

e´j kxpx´x0q

2 j kx

. (2.121)

By circumpassing the singularity kx “ 0 in the integration path or requiring
kx ‰ 0 the terms 1

2 j kx
and e´j kxx cancel out, which is valid for all x0 ă x ă 8.

The driving function then can be obtained by inverse spatial Fourier transform

Dpx0, ωq “ P pωq
1

4 π2

`8
ij

´8

e´j xk,x0´xPSy dky dkz. (2.122)

A solution for this integral could not be found in literature and derived by the
author so far.

2.5D SDM (Spors)

An SDM deconvolution solution of the 2.5D SFS problem was given in [Spo10]
for the point source. For the linear SSD on the y-axis with x0 “ p0, y0, 0qT,
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the virtual point source (2.22) located at xPS “ pxPS ă 0, yPS, 0qT and the
synthesis region x “ px ą 0, y, 0qT with n “ p1, 0, 0qT, the driving function’s
spatio-temporal spectrum reads [Spo10, (21)]

Dpky, ωq “ P pωq e`j ky yPS ˆ

$

’

&

’

%

H
p2q

0 p
?

pω
c

q2´k2y ¨pxRef´xPSqq

H
p2q

0 p
?

pω
c

q2´k2y ¨xRefq
for k2

y ă pω
c
q2

K0p
?

pω
c

q2´k2y ¨pxRef´xPSqq

K0p
?

pω
c

q2´k2y ¨xRefq
for k2

y ą pω
c
q2

(2.123)

for correct SFS along a reference line parallel to the y-axis at xRef ą 0. With
the assumptions [Spo10, (23a, 23b)]

c

|

´ω

c

¯2

´ k2
y| ¨ xRef " 1

c

|

´ω

c

¯2

´ k2
y| ¨ pxRef ´ xPSq " 1 (2.124)

the spectrum can be simplified with the large argument approximations of the
Hankel and modified Bessel functions to [Spo10, (22)]

Dpky, ωq “ P pωq e`j ky yPS

c

xRef

xRef ´ xPS
¨

$

&

%

e`j
?

pω
c

q2´k2y ¨xPS for k2
y ă pω

c
q2

e`
?

k2y´pω
c

q2¨xPS for k2
y ą pω

c
q2.

(2.125)

The point source is allowed to be very close to the SSD as long as the above
assumptions are valid. The inverse spatial Fourier transform leads to

DpxRef, y0, ωq “ P pωq j
ω

c

1

2

c

xRef

xRef ´ xPS

xPS

s
H

p2q

1

´ω

c
s
¯

. (2.126)

The transform is not straightforward. The solution in [Spo10] is derived in the
way that the correction factor together with the Neumann normal derivative
of an ideal line source is considered

DpxRef, y0, ωq “ P pωq

c

xRef

xRef ´ xPS
¨ ´2

B

Bx

„

´
j

4
H

p2q

0 p
ω

c
|x ´ xPS|q

 ˇ

ˇ

ˇ

ˇ

x“x0

,

(2.127)
for which a forward spatial Fourier transform w.r.t. y Ñ ky is performed for
the bracket term using [Gra07, (6.677.3)], [Gra07, (6.677.4)] and calculating
the normal derivative B

Bx
p¨q|x“x0 in the spatio-temporal spectrum domain. It
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SSD

xPS

0

x0

x0 ´ xPS

n

nSSD

∆rPS

rRef

Ref Line

ϕx,y “ ϕs

ϕx,y “ ϕs

ϕˆ

ϕˆ

nSFS

x ´ x0

x

Figure 2.3: Geometry to estimate the shortest distance ∆rPS from a point
source at xPS to a linear SSD. The vectors x0 ´xPS, x´x0, n and nSSD must
be coplanar for 2.5D SFS.

is interesting that the Neumann boundary condition of the Green’s function
was utilized to derive the Fourier transform pair (2.125) ❞ t(2.126), thus to
solve the deconvolution problem as SDM. This provides a further link between
Neumann-WFS and SDM for linear/planar arrays. For ω

c
s " 1, (2.126) can

be further approximated to [Spo10, (25)]

DpxRef, y0, ωq “ P pωq

c

j ω
c

2 π

c

xRef

xRef ´ xPS

´xPS

s

e´j ω
c
s

?
s

, (2.128)

which then not anymore allows point sources very close to the SSD, except
when ω

c
" 1 holds. As pointed out in [Spo10], (2.128) is precisely identical to

the 2.5D Neumann-WFS driving function derived by the two stationary phase
approximations (2.141), [Vog93, (3.5.15)], [dV94a, (3)], [dV96, Sec. 4], [Sta97,
(3.16&3.17)], [Ver97, (2.27)].

2.5D Neumann-WFS with a linear SSD is therefore a farfield/high frequency
approximation of the exact 2.5D SDM solution (2.123). This statement holds
in general for arbitrary primary sources, cf. [Fir16].

Eq. (2.128) should be given for arbitrarily located linear SSDs in general
vector notation for convenience. At first, realize that

´xPS

s
“ cosϕs “

xx0 ´ xPS,npx0qy

|x0 ´ xPS|
. (2.129)
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Furthermore, with one of the two possible unit normals nSFS of the SFS half
plane under consideration, the distance of the SSD to the point source reads

∆rPS “ |px0 ´ xPSq ˆ

nSSD
hkkkkkikkkkkj

nSFS ˆ n

|nSFS ˆ n|
| “ xx0 ´ xPS,ny, (2.130)

due to ∆rPS “ xs,ny “ |s| |n| cosϕx,y and ∆rPS “ |sˆnSSD| “ |s| |nSSD| sinϕˆ,
cf. Fig. 2.3. This then yields the driving function in general vector notation,
i.e. [Sta97, (3.16&3.17)]

Dpx0, rRef, ωq “ P pωq

c

j ω
c

2π

c

rRef

rRef ` ∆rPS

xx0 ´ xPS,npx0qy

|x0 ´ xPS|

e´j ω
c

|x0´xPS|

a

|x0 ´ xPS|
,

(2.131)

under the assumption that (i) the vectors x0 ´ xPS, x ´ x0, n and nSSD are
coplanar, i.e. located in the same plane that is considered for SFS and that
(ii) the point source position fulfills cosϕs ą 0. rRef denotes the distance of
the reference line parallel to the SSD. Inverse temporal Fourier transform
yields the driving filter

dpx0, rRef, tq “

c

rRef

rRef ` ∆rPS

xx0 ´ xPS,npx0qy

|x0 ´ xPS|

1
a

|x0 ´ xPS|

1
?
2 π

¨

ˆ

F´1

ˆ
c

j
ω

c

˙

˚ pptq ˚ δpt ´
|x0 ´ xPS|

c
q

˙

. (2.132)

In Fig. 2.7c and Fig. 2.7d the synthesis of a virtual point source with the
driving function (2.131) and a linear SSD within the xy-plane is visualized.

2.5D Neumann-WFS from 3D to 2.5D (Delft, Start)

2.5D Neumann-WFS was initially derived by a stationary phase approximation
of the 3D Neumann Rayleigh integral [Sta96]. With the SSD in the yz-plane us-
ing x1

0 “ p0, y0, z0q
T, the point source (2.22) located at xPS “ pxPS ă 0, yPS, 0qT

and the SFS region x “ px ą 0, y, 0qT with n “ p1, 0, 0qT the 3D Neumann
Rayleigh integral (2.52) for the farfield/high frequency approximated normal
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derivative (2.25) reads with cosϕ1
s “

xx1
0´xPS,npx1

0qy

|x1
0´xPS|

P px, ωq “

`8
ż

´8

»

–

`8
ż

´8

P pωq
e´j ω

c
|x1

0´xPS|

2π |x1
0 ´ xPS|

j
ω

c
cosϕ1

s G0,3Dpx,x1
0, ωq dz0

fi

fl dy0.

(2.133)

First stationary phase approximation

The inner integral can be treated with a first stationary phase approximation
w.r.t. z0 [Arf05, (7.113)] under the assumption |´ ω

c
p|x1

0´xPS|`|x´x1
0|q| " 1.

With x0 “ p0, y0, 0qT and the usual conventions used throughout this chapter

cosϕs “
xx0 ´ xPS,npx0qy

|x0 ´ xPS|
s “ |x0 ´ xPS| r “ |x ´ x0| (2.134)

this results in [Sta97, (3.10&3.11)], [Ver97, (2.21)], [Spo10, (10)]

P px, ωq “

`8
ż

´8

P pωq

c

j ω
c

2 π

c

r

s ` r
cosϕs

e´j ω
c
s

?
s

G0,3Dpx,x0, ωq dy0, (2.135)

reducing the planar to a linear SSD located on the y-axis. The driving function
for the SLP thus reads

Dpy0, ωq “ P pωq

c

j ω
c

2π

c

r

s ` r
cosϕs

e´j ω
c
s

?
s

. (2.136)

Its gain factor g “
a

r
s`r

depends on the receiver position, which is usually not
desired. However, for a circular SSD centered at xRef this driving function may
be deployed using r0 “ |xRef ´x0| and the secondary source selection criterion
Dpx0, ωq “ 0 if cosϕs ă 0. This results in the correct 2.5D SFS, where the
amplitude is correctly synthesized at the reference point xRef as long as the
made approximations are valid:

Dpx0,xRef , ωq “ P pωq

c

j ω
c

2π

d

|xRef ´ x0|

|x0 ´ xPS| ` |xRef ´ x0|

xx0 ´ xPS,npx0qy

|x0 ´ xPS|

e´j ω
c

|x0´xPS|

a

|x0 ´ xPS|
.

(2.137)
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Eq. (2.137) requires coplanarity of the involved vectors x0 ´ xPS, x ´ x0,
xRef ´ x0, npx0q. Inverse temporal Fourier transform yields the driving filter

dpx0,xRef , tq “

d

|xRef ´ x0|

|x0 ´ xPS| ` |xRef ´ x0|

xx0 ´ xPS,npx0qy

|x0 ´ xPS|

1
a

|x0 ´ xPS|

1
?
2 π

¨

ˆ

F´1

ˆ
c

j
ω

c

˙

˚ pptq ˚ δpt ´
|x0 ´ xPS|

c
q

˙

. (2.138)

In Fig. 2.7a and Fig. 2.7b at the end of this chapter the synthesis of a virtual
point source with the driving function (2.137) and a circular SSD within the
xy-plane is visualized.

Second stationary phase approximation

In order that the driving function holds for more than one receiver point for a
linear SSD – or rather for another parametric curve where amplitude correct
SFS occurs [Fir16] – a second stationary phase approximation is performed
w.r.t. y0 to obtain a new gain factor g that replaces the one used in (2.136).
Under the assumption that | ´ ω

c
p|x0 ´ xPS| ` |x ´ x0|q| " 1 and by usage of

the intercept theorem the condition [Sta97, (3.14 , corrected)]

r

s
“

x

´xPS
(2.139)

is obtained, when finding that the stationary point is located at the position
where the vector from the point source to the evaluation point intersects the
SSD, cf. [Sta96, Fig. 5]. The gain factor then becomes

g “

c

r

s ` r
“

d

r
s

1 ` r
s

“

c

x

x ´ xPS
. (2.140)

The driving function for the SLP thus reads [Sta97, (3.16&3.17)], [Ver97,
(2.27)], [Spo10, (12)] – identical to the twice applied high frequency/farfield
approximated SDM solution (2.128) w.r.t. (2.129) –

DpxRef, y0, ωq “ P pωq

c

j ω
c

2 π

c

xRef

xRef ´ xPS
cosϕs

e´j ω
c
s

?
s

(2.141)

and synthesizes the sound field correctly along a line parallel to the SSD, for
which typically a certain reference line at x “ xRef is chosen. For x0 ă x ă
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xRef the amplitude is then typically too high and for x ą xRef too low, but the
desired wave front is synthesized as desired.

2.5D Neumann-WFS from 2D to 2.5D (Spors)

A solution for 2.5D Neumann-WFS starting from the 2D Neumann Rayleigh
integral

P px, ωq “

`8
ż

´8

´2
BPPSpx0, ωq

Bn
loooooooomoooooooon

D2D,WFSpx0,ωq

G0,2Dpx,x0, ωq dy0 (2.142)

was proposed in [Rab06, Spo08b]. Consider a linear SSD along the y-axis
denoted with x0 “ p0, y0, 0qT, the point source (2.22) located at xPS “ pxPS ă

0, yPS, 0qT and the synthesis region x “ px ą 0, y, 0qT with n “ p1, 0, 0qT. The
large argument approximation ω

c
r " 1 of the Hankel function [Olv10, 10.2.6]

– that inherently is a stationary phase approximation [Arf05, Ex. 7.3.1, p.493]
– can be used to derive [Rab06, (13.31)], [Spo08b, (24)]

G0,2Dpx,x0, ωq “ ´
j

4
H

p2q

0

´ω

c
r
¯

«

d

2π r

j ω
c

e´j ω
c
r

4π r
loomoon

G0,3Dpx,x0,ωq

, (2.143)

from which (2.142) can be reformulated towards a SLP representation

P px, ωq “

`8
ż

´8

D2D,WFSpx0, ωq

d

2 π r

j ω
c

looooooooooooomooooooooooooon

D2.5D,WFSpx,x0,ωq

G0,3Dpx,x0, ωq dy0. (2.144)

Inserting (2.117) – note here the dimensionality mismatch using a normal
derivative of a 3D pressure field within a 2D problem – to D2.5D,WFSpx,x0, ωq

yields [Spo08b, (29)]

Dpx0,xRef, ωq “ P pωq

c

|xRef ´ x0|

2 π
cosϕs

˜

1
a

j ω
c
s

`

c

j
ω

c

¸

e´j ω
c
s

s
,

(2.145)
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for SFS w.r.t. a reference point xRef “ px ą 0, y, 0qT. For a farfield/high
frequency approximation ω

c
s " 1 in (2.117) the driving function approximates

to [Spo08b, (37)]

Dpx0,xRef, ωq “ P pωq

c

j ω
c

2π

a

|xRef ´ x0| cosϕs
e´j ω

c
s

s
. (2.146)

The proposed approach leads to wrong amplitudes at the reference point. This
is due to the fact that deploying the stationary phase approximation to the
Hankel function only ignores the influence of the 3D spherical wave primary
field along the secondary source line monopole in z-direction. By reducing the
line monopole to the spherical monopole independently from a 3D primary
field, only the normal derivative of the sound field directly on the linear SSD
(at z “ 0) is used to derive the driving function, which turns out to be inaccu-
rate. This effect is known as virtual source dimensional mismatch [Fir16]. In
[Vö12] an intuitive technique was proposed to compensate this amplitude error
for a single receiver point. However, the exact location of amplitude correct
synthesis is only investigated in detail in [Fir16].

By rewriting the result of the driving that originates from the correct first
stationary phase approximation (2.137) to (cf. [Spo08b, (35)])

Dpx0,xRef , ωq “ P pωq

c

j ω
c

2π

d

s ¨ |xRef ´ x0|

s ` |xRef ´ x0|
cosϕs

e´j ω
c
s

s
(2.147)

it becomes obvious that (2.146) is only correct if s " |xRef ´ x0| holds. This
implies that the point source must be farther away from the SSD than the ref-
erence point from the SSD. For meaningful reference point distances this con-
dition implies that the synthesized wavefront curvature is then almost planar.
Since a planar wavefront curvature within the plane under discussion consti-
tutes a 2D sound field the initial incomplete phase approximation (2.143) for
3D sound fields becomes correct in terms of 2D sound fields. Hence, although
the approach here leads to an incorrect driving function for point sources, it is
a useful derivation for 2.5D Neumann-WFS of plane waves as revisited later.
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2.4 SFS of a Plane Wave

The SFS of a plane wave (2.26) with propagating direction nPW shall also be
shortly revisited, giving comments on different approaches and revealing slight
misconceptions in literature.

3D Neumann-WFS

3D Neumann-WFS for a planar SSD is again straightforward using (2.116).
With the normal derivative (2.27) the driving function reads [Spo08b, (17)]

Dpx0, ωq “ 2 j
ω

c
cosϕp PPWpx0, ωq, (2.148)

which was already given in context of HF-BEM (2.47). Note that only plane
wave propagating directions are allowed that fulfill cosϕp ą 0. For the cus-
tomized geometry under discussion – a planar SSD within the yz-plane x0 “

p0, y0, z0qT as well SFS in the target half-space x “ px ą 0, y, zqT with npx0q “

p1, 0, 0qT – the driving function can be rewritten

Dpx0, ωq “ P pωq ¨ 2 j kx,PW ¨ e´j ky,PW¨y0 e´j kz,PW¨z0 (2.149)

in terms of the temporal angular frequency ω and temporal frequency inde-
pendent radiation direction nPW that is linked as

nPW “

¨

˚

˚

˝

cosϕPW sinϑPW

sinϕPW sinϑPW

cosϑPW

˛

‹

‹

‚

, kPW “

¨

˚

˚

˝

kx,PW

ky,PW

kz,PW

˛

‹

‹

‚

“
ω

c
¨ nPW. (2.150)

3D SDM (Ahrens)

Considering the same customized geometry as for 3D Neumann-WFS, the SLP
(2.78) can be rewritten as a convolution integral (here w.r.t. y and z)

P px, ωq “

`8
ij

´8

Dpx0, ωqG0,3Dpx,x0, ωq dy0 dz0 “ Dpx, ωq ˚y ˚z G0,3Dpx,0, ωq.

(2.151)
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The explicit solution, i.e. deconvolution for Dpx0, ωq for a plane wave was
derived in e.g. [Faz10a, (4.83)], [Ahr08c], [Ahr10d, (5)], [Ahr12a, (3.65)],
[Ahr12b, (10)], revisited in [Sch14c, Sec. 6.1]. These solutions are equal to
the planar NAH-like approach discussed above on p.34. Note that a strict
proof of the convergence of the involved integrals is not provided by any of
these derivations and also not here. With (2.82) (x0 “ 0) follows

Dpx0, ωq “
1

4 π2

`8
ij

´8

P̌ pky, kz, ωq
1

2 j kx

e´j pky ¨y0`kz ¨z0q dky dkz. (2.152)

Recall the allowed wave numbers w.r.t. the x-dimension (2.58)

kx “

$

&

%

`

b

pω
c
q2 ´ pk2

y ` k2
zq for pω

c
q2 ą pk2

y ` k2
zq

´j
b

pk2
y ` k2

zq ´ pω
c
q2 for pk2

y ` k2
zq ą pω

c
q2

. (2.153)

The angular spectrum of the plane wave is given as

P̌ pky, kz, ωq “ P pωq ¨ 4 π2 δpky ´ ky,PWq δpkz ´ kz,PWq. (2.154)

Inserting (2.154) to (2.152) and performing the inverse spatial Fourier trans-
form with the sifting property of the Dirac function yields [Ahr10d, (7)]

Dpx0, ωq “ P pωq ¨ 2 j kx,PW ¨ e´j ky,PW¨y0 e´j kz,PW¨z0 . (2.155)

The same solution like 3D Neumann-WFS (2.149) is obtained. This was ex-
pected since 3D Neumann-WFS as the implicit solution and 3D SDM as the
explicit solution are equivalent approaches for the 3D SFS problem using pla-
nar SSDs [Sch14c].

2.5D SDM (Ahrens)

The SDM solution is again the explicit solution for the 2.5D SFS problem
using a linear SSD on the y-axis here for discussion. The synthesized sound
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field P px, ωq is described similar to (2.78) by

P px, ωq “

`8
ż

´8

Dpx0, ωqG0,3Dpx,x0, ωq dy0 (2.156)

using x “ px ą 0, y, 0qT and x0 “ p0, y0, 0qT . The infinite linear SSD is
incapable of radiating three dimensional plane waves due to the dimension
reduction. The possible wave radiation directions also underlie a reduced set of
wave numbers, i.e. kx, ky and kz cannot be controlled independently. The wave
number ky describes the wave propagation along the SSD orientation. The
radial wave number kr describes the radiation direction of conical wavefronts.
For a plane wave radiation direction ϑPW, ϕPW

p
ω

c
q
2

´ k2
y,PW “ p

ω

c
q
2
`

cos2 ϕPW sin2 ϑPW ` cos2 ϑPW
˘

looooooooooooooooooooooomooooooooooooooooooooooon

k2r,PW“k2x,PW`k2z,PW

(2.157)

holds. For a desired temporal angular frequency ω and chosen ky,PW along the
SSD [Ahr12a, (3.76)]

p
ω

c
q
2

´ k2
y,PW “ const “ k2

r,PW (2.158)

follows, and either ϑPW or ϕPW can be controlled. Following the SDM approach
of [Ahr12a, Ch. 3.7], [Ahr10d, Sec. IIB], the convolution along the y-axis in
(2.156) can be transferred to a spatio-temporal spectrum multiplication w.r.t.
ky

P px, ky, z, ωq “ Dpx, ky, z, ωq ¨ G0px, ky, z, ωq. (2.159)

This holds again under the assumption that the SSD characteristic is uniform,
i.e. the Green’s function is shift-invariant. Explicitly solving for Dpx, ky, z, ωq

yields

Dpx, ky, z, ωq “
P px, ky, z, ωq

G0px, ky, z, ωq
(2.160)



58 CHAPTER 2. FUNDAMENTALS OF SOUND FIELD SYNTHESIS

and the inverse spatial Fourier transform (C.3) leads to the unknown driving
function as an explicit solution

D2.5D,SDMpx0, ωq “
1

2 π

`8
ż

´8

P px, ky, z, ωq

G0px, ky, z, ωq
e´j ky ¨y0 dky, (2.161)

provided that the integral converges and G0px, ky, z, ωq ‰ 0.
The spatio-temporal spectrum of G0,3Dpx,0, ωq located in the origin w.r.t.

ky is given as [Ahr12a, (C.10)], [Ahr10d, (52)]

G0px, ky, z, ωq “

$

’

’

&

’

’

%

´
j
4
H

p2q

0

ˆ

b

`

ω
c

˘2
´ k2

y ¨
?
x2 ` z2

˙

for k2
y ă pω

c
q2

1
2π

K0

ˆ

b

k2
y ´

`

ω
c

˘2
¨
?
x2 ` z2

˙

for k2
y ą pω

c
q2,

(2.162)

where H
p2q

0 p¨q denotes the cylindrical Hankel function of 0th order of 2nd kind
and K0p¨q the modified Bessel function of 0th order of 2nd kind [Olv10, §10.1].
The 1st case in (2.162) describes propagating waves, the 2nd case corresponds
to evanescent waves. The spatio-temporal spectrum of the desired plane wave
is given as

P px, ky, z, ωq “ P pωq ¨ e´j kx,PW¨x e´j kz,PW¨z 2π δpky ´ ky,PWq. (2.163)

and from (2.160) follows [Ahr12b, (3.74)], [Ahr10d, (13)]

Dpx, ky, z, ωq “
P pωq ¨ e´j kx,PW¨x e´j kz,PW¨z ¨ 2π δpky ´ ky,PWq

´
j
4
H

p2q

0

ˆ

b

`

ω
c

˘2
´ k2

y,PW ¨
?
x2 ` z2

˙ (2.164)

for propagating wave radiation. Note the application of the Delta function
sifting property again. The numerator exhibits a three-dimensional problem,
while the denominator’s problem is a two-dimensional one describable in cylin-
drical coordinates. This geometrical mismatch is conveniently merged when
the sound field within only the half xy-plane and only wave propagation angles
for this plane are considered, i.e. z “ 0, kz “ 0 and x ą 0. Then a pure axial
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and radial wave number set

k2
y,PW “ p

ω

c
sinϕPWq

2 k2
r,PW “ p

ω

c
cosϕPWq

2 (2.165)

follows for ϑPW “ π
2
. The driving functions’s spatio-temporal spectrum is

reformulated to [Ahr12a, (3.78)],[Ahr10d, (16)]

Dpx, ky, ωq “
P pωq ¨ e´j kr,PW¨x

´
j
4
H

p2q

0 pkr,PW ¨ xq
2π δpky ´ ky,PWq (2.166)

and still depends on the distance x from the SSD. The sound field is therefore
only correctly synthesized at a chosen parallel reference line x “ xRef ą 0. The
inverse spatial Fourier transform (C.3) of (2.166) yields [Ahr10d, (17)]

DpxRef, y0, ωq “
P pωq ¨ e´j ω

c
cosϕPW¨xRef

´
j
4
H

p2q

0

`

ω
c
cosϕPW ¨ xRef

˘

e´j ω
c

sinϕPW¨y0 . (2.167)

It can be shown that the driving function does not reproduce a desired plane
wave using a linear SSD. The sound field rather exhibits an amplitude decay
proportional to 1?

x
in the farfield which is typical for a cylindrical wave ampli-

tude decay [Ahr12a, (3.38)], [Ahr10d, (20)].
For kr,PW ¨xRef " 1 the large argument approximation of the Hankel function

[Olv10, 10.2.6] can be used to derive

DpxRef, ky, ωq “ P pωq ¨

c

8π j
ω

c
cosϕPW ¨ xRef ¨ 2 π δpky ´ ky,PWq, (2.168)

for which the inverse spatial Fourier transform yields [Ahr10d, (29)]

DpxRef, y0, ωq “ P pωq ¨

c

8π j
ω

c
cosϕPW ¨ xRef ¨ e´j ω

c
sinϕPW¨y0 . (2.169)

In general vector notation with a given reference line distance rRef to the
linear SSD, the driving function can be given as

Dpx0, rRef, ωq “ P pωq

c

j
ω

c

?
8 π rRef

a

xnPW,npx0qy e´j ω
c

xnPW,x0y ,

(2.170)
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where (i) the vectors nPW, x ´ x0 and npx0q must be coplanar and (ii) the
plane wave propagating direction is restricted to cosϕp ą 0. Inverse temporal
Fourier transform yields the driving filter

dpx0, rRef, tq “
?
8π rRef

a

xnPW,npx0qy¨
ˆ

F´1

ˆ
c

j
ω

c

˙

˚ pptq ˚ δpt ´
xnPW,x0y

c
q

˙

. (2.171)

In Fig. 2.7g and Fig. 2.7h the synthesis of a virtual plane wave with the driving
function (2.170) and a linear SSD within the xy-plane is visualized.

2.5D Neumann-WFS from 3D to 2.5D (Rabenstein, Spors)

The 2.5D Neumann-WFS of a plane wave (2.26)

P px, ωq “ P pωq e´j ω
c

xnPW,xy (2.172)

can be conveniently discussed for the specialized geometry that was already
used. Consider the SFS region x “ px ą 0, y, 0qT, npx0q “ p1, 0, 0qT, the
planar SSD x0

1 “ p0, y0, z0q
T and the linear SSD x0 “ p0, y0, 0qT. Then again

3D SFS with the Neumann Rayleigh integral (2.52) using a planar SSD in
the yz-plane can be reduced to 2.5D SFS with a linear SSD on y-axis by the
stationary phase approximations [Rab06], [Spo06a, App. C.2]. These are the
same stationary phase approximations that were used for 2.5D SFS of a point
source.

Consider the restriction of plane wave propagating directions for the xy-
plane under discussion

nPW “

¨

˚

˚

˝

cosϕPW

sinϕPW

0

˛

‹

‹

‚

, kPW “

¨

˚

˚

˝

kx,PW

ky,PW

0

˛

‹

‹

‚

“
ω

c
¨ nPW (2.173)

and cosϕp ą 0 (i.e. the plane wave emanates into the target SFS plane under
discussion).
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The Neumann Rayleigh integral is given as [Spo06a, (5.4&5.5)]

P px, ωq “

`8
ż

´8

»

–

`8
ż

´8

P pωq ¨ 2 j
ω

c
cosϕPW e´j ω

c
sinϕPW¨y0 G0,3Dpx,x0

1, ωq dz0

fi

fl dy0

(2.174)

after customizing the normal derivative of the plane wave (2.27) for the chosen
geometry.

First stationary phase approximation

Under the assumption | ´ ω
c

|x´x1
0| ´ ω

c
sinϕPW ¨ y0| " 1 the stationary phase

approximation of the inner integral yields with x0 “ p0, y0, 0qT

P px, ωq “

`8
ż

´8

P pωq

c

8π |x ´ x0| j
ω

c
cosϕPW e´j ω

c
sinϕPW¨y0 G0,3Dpx,x0, ωq dy0

(2.175)

and hence the plane wave driving function for a linear SSD on y-axis

Dpy0,xRef , ωq “ P pωq ¨

c

8π |xRef ´ x0| j
ω

c
cosϕPW e´j ω

c
sinϕPW¨y0 . (2.176)

This driving function yields amplitude correct SFS for a reference point

xRef – or again rather along a specific parametric curve including xRef [Fir16]
– located within the synthesis plane. The driving function again should be
more conveniently given in general vector notation [Spo08b, (27)]

Dpx0,xRef , ωq “ P pωq

c

j
ω

c

a

8 π |xRef ´ x0| xnPW,npx0qy e´j ω
c

xnPW,x0y .

(2.177)

This again requires coplanarity of x ´ x0, npx0q, nPW and xRef ´ x0. Inverse
temporal Fourier transform yields the driving filter

dpx0,xRef , tq “
a

8π |xRef ´ x0| xnPW,npx0qy¨
ˆ

F´1

ˆ
c

j
ω

c

˙

˚ pptq ˚ δpt ´
xnPW,x0y

c
q

˙

. (2.178)
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In Fig. 2.7e and Fig. 2.7f at the end of the chapter the synthesis of a virtual
plane wave with the driving function (2.177) and a circular SSD within the
xy-plane is visualized.

Second stationary phase approximation

Applying a second stationary phase approximation on (2.175) w.r.t. y0 yields

py ´ y0q
2

“ px ´ 0q
2 tan2 ϕPW. (2.179)

This can be inserted to |xRef ´ x0| from (2.176)

|xRef ´ x0| “

b

px ´ 0q2 ` px ´ 0q2 tan2 ϕPW “ x
a

1 ` tan2 ϕPW. (2.180)

It can be recognized that the secondary stationary point y0,s on the SSD is thus
given where x´x0 coincides with the plane wave propagation vector nPW, cf.
[Fir16]. The driving function now only depends on x, which again constitutes
a reference line correction at a chosen xRef ą x0 “ 0. Plugging this result to
(2.176) yields

DpxRef, y0, ωq “ P pωq ¨

c

8π xRef

a

1 ` tan2 ϕPW cos2 ϕPW j
ω

c
e´j ω

c
sinϕPW¨y0 .

(2.181)

For the allowed plane wave directions ´π
2

ă ϕPW ă `π
2

a

1 ` tan2 ϕPW cos2 ϕPW “ cosϕPW (2.182)

follows and thus the final driving function

DpxRef, y0, ωq “ P pωq ¨

c

8 π j
ω

c
cosϕPW ¨ xRef ¨ e´j ω

c
sinϕPW¨y0 . (2.183)

This precisely is the same driving function that was obtained by 2.5D SDM
under a farfield/high frequency approximation (2.169).

Note that the same approach using the stationary phase approximations
either for a point source or a plane wave lead to the same type of driving
functions: The first approximation results in a driving function that is valid
for a reference point (2.137), (2.177). The second approximation results in



2.4. SFS OF A PLANE WAVE 63

a driving function that is valid for a reference line parallel to the linear SSD
(2.131), (2.170). In [Fir16] these two referencing schemes are special cases of
a unified framework to derive WFS.

2.5D Neumann-WFS from 2D to 2.5D (Spors)

In case of a plane wave – restricted to propagation directions within the SFS
plane – the derivation of 2.5D WFS from 3D Ñ 2.5D and from 2DÑ2.5D
yields precisely the same results, which is shortly revisited here. Consider the
same geometry as above and the 2D SLP (2.142)

P px, ωq “

`8
ż

´8

´2
BPPWpx0, ωq

Bn
looooooooomooooooooon

D2D,WFSpx0,ωq

G0,2Dpx,x0, ωq dy0. (2.184)

The large argument approximation of the Green’s function (2.143) leads to the
2.5D SLP

P px, ωq “

`8
ż

´8

D2D,WFSpx0, ωq

d

2π |x ´ x0|

j ω
c

loooooooooooooooooomoooooooooooooooooon

D2.5D,WFSpx,x0,ωq

G0,3Dpx,x0, ωq dy0. (2.185)

With the 2D WFS driving function cf. (2.174) the 2.5D WFS driving function
for a reference point xRef is obtained

Dpy0,xRef , ωq “ P pωq ¨

c

8π |xRef ´ x0| j
ω

c
cosϕPW ¨ e´j ω

c
sinϕPW¨y0 . (2.186)

Eq. (2.186) is equal to (2.176). Note that this approach is not valid for a point
source as discussed above. However, for the restricted 2D plane wave field this
yields accurate results.

Note the misconception in [Ahr10d, Sec. IV.B], [Ahr12a, Ch. 3.9.3] when
comparing the 2.5D SDM solution (2.169) with the 2.5D WFS solution (2.176),
or in general vector notation (2.170) vs. (2.177). It is argued that the 2.5D
WFS driving function (2.176)“(2.186) can be reformulated to a reference line
correction using xRef “ pxRef, y0, 0qT – which is an inaccurate stationary point
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– [Ahr12a, below (3.92)] leading to

D2.5D,WFSpxRef, y0, ωq “ P pωq ¨

c

8 π xRef j
ω

c
cosϕPW ¨ e´j ω

c
sinϕPW¨y0 . (2.187)

Comparing (2.187) with the 2.5D SDM driving function (2.169) reveals a sup-
posed mismatch [Ahr10d, (30)]

D2.5D,WFSpxRef, y0, ωq “ D2.5D,SDMpxRef, y0, ωq ¨
?
cosϕPW. (2.188)

This is due to the wrong assumption that the 2.5D WFS driving function
obtained by the first stationary phase approximation – inherent to a refer-

ence point correction – is also valid for a reference line by choosing xRef “

pxRef, y0, 0qT. The revisited correction term originating from the second sta-
tionary phase approximation is given in (2.180). By contrast, the SDM driving
function is inherently derived for a reference line. Therefore, the individual
driving functions are correct (WFS 1ˆ stationary phase approximation with
reference point vs. SDM with reference line) and the comparison of (2.169)
with an incorrectly adapted WFS driving function (2.187) is not advisable.

2.5 Prefilter FIR-Design for 2.5D SFS
As revealed above, the farfield/high-frequency approximation prefilter

APre,2.5Dpωq “
a

jω “
?
ω e`j π

4 (2.189)

is required for driving functions of virtual spherical monopoles as well as for
virtual plane waves in approximated 2.5D SDM and for 2.5D Neumann-WFS
in general.

For line source array applications in sound reinforcement a similar filter is
typically referred to as coupling filter or array morphing filter [LA13]. This
filter then exhibits additional low- and high-shelf characteristics to compensate
for finite length arrays and for spatial aliasing energy. This is also deployed in
SFS applications [Spo10, Sch13].

Typically, the filter (2.189) is realized as an FIR filter with linear phase,
thereby ignoring the frequency-independent, constant phase shift of π

4
. This

results in a corrupted sound field, when not only monochromatic waves are
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considered, since the phase relation between temporal frequencies is not cor-
rectly synthesized, cf. [Sch13, Fig. 9-11]. It is therefore desirable to derive
an FIR prefilter with correct magnitude and phase. The filter design could
be started by defining an appropriate discrete-time Fourier transform (DTFT)
spectrum and analytically solving towards the infinite impulse response. This
can then be truncated by standard windowed FIR design. The following an-
alytical approach is similar to Hilbert transformer FIR design [Opp10, Sec.
12.4] and could not be traced in literature for the special problem here. It is
however very likely that this FIR design is well known in e.g. control engineer-
ing, when dealing with fractional order differentiators.

The DTFT spectrum’s baseband of the prefilter reads

APre,2.5DpΩq “
?
Ωe`j π

4 0 ď Ω ă π (2.190)

deploying the normalized digital radian frequency Ω “ ω
fs

and the sampling
frequency fs in Hz and ignoring a required normalization 1?

fs
between the

domains w.r.t. Ω and ω. The derivation of time-discrete impulse responses is
done via the inverse temporal DTFT [Opp10, Ch. 2.7]

xrns “
1

2π

`π
ż

´π

XpΩq e`j Ωn dΩ, (2.191)

for the chosen temporal convention of the Fourier transform (C.1). The phase
properties with unit magnitude of (2.190) can be derived with

aPhirns “
1

2 π

¨

˝

0
ż

´π

e´j π
4 e`j Ωn dΩ `

`π
ż

0

e`j π
4 e`j Ωn dΩ

˛

‚ (2.192)

to the equivalent sequences

aPhirns “
sin pπ nq ` cos pπ nq ´ 1

?
2 π n

“

?
2 cos pπ{4 ´ nπq ´ 1

?
2 π n

(2.193)

“

$

’

’

&

’

’

%

0 , if n is even and n ‰ 0
´

?
2

π n
, if n is odd

1{
?
2 , n “ 0

.
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The magnitude properties using zero-phase of (2.190) will be derived with

aMagrns “
1

2π

¨

˝

0
ż

´π

?
´Ωe`j Ωn dΩ `

`π
ż

0

?
`Ωe`j Ωn dΩ

˛

‚ (2.194)

to the axial-symmetric sequence

aMagrns “

#

´
Sp

?
2nq

?
2π n3{2 , n ‰ 0
2
3

?
π , n “ 0

(2.195)

using [Olv10, (7.4.5/6)] and the Fresnel integral Sp¨q [Olv10, (7.28)], in Matlab
given as fresnelS(z)

Spzq “

z
ż

0

sin

ˆ

1

2
π t2

˙

dt. (2.196)

The calculus succeeded with eqs. (3.381), (8.350), (8.356-1) in [Gra07] and eqs.
(7.5.7), (7.5.8), (7.11.1) in [Olv10]. In Fig. 2.4 parts of the two derived infinite
impulse responses (2.193) and (2.195) together with their corresponding DTFT
spectra are depicted.

Considering the magnitude and phase of (2.190) together, the sequence thus
consequently must be obtained by

arns “
1

2π

¨

˝

0
ż

´π

e´j π
4

?
´Ωe`j Ωn dΩ

˛

‚`
1

2 π

¨

˝

`π
ż

0

e`j π
4

?
`Ωe`j Ωn dΩ

˛

‚,

(2.197)
which after substantial treatment is solved to arns P R

arns “ (2.198)
$

&

%

”?
8n cospπ nq ` erf

´

e j 3
4
π

?
π n

¯

´ erf
´

e j 1
4
π

?
π n

¯ı

`

4
?
π n3{2

˘´1 for n ‰ 0
b

2
9
π for n “ 0

by using the interim results from the calculus above and denoting the Er-
ror function erfp¨q [Olv10, (7.2.1)], in Matlab given as erf(z). The weight for

fresnelS(z)
erf(z)
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Figure 2.4: Ideal WFS prefilter impulse response according to (2.193) and
(2.195).

n “ 0 was obtained by an inverse DTFT only for n “ 0, rather than solving the
term that is valid for n ‰ 0 in (2.198) for indeterminate expressions (which is
assumed to be impossible). In Fig. 2.5 a part of the derived impulse response
(2.198) and its DTFT-spectrum are depicted. The infinite sequence (2.198)
can be directly used for a windowed, causal FIR design which then includes
an additional constant group delay. In Fig. 2.6 an example design is given for
fs “ 48 kHz and FIR order 29, thus having N “ 29 ` 1 “ 513 FIR coefficients.
Exemplarily, a Kaiser-Bessel window [Har78], in Matlab w=kaiser(N,beta)

with β “ 4 was used. The constant group delay offset of N´1
2

“ 256 sam-
ples was subtracted from the phase response in order to solely indicate the
π
4
-characteristic of the designed FIR. Due to the windowing and the FIR res-

olution of ∆f “
fs
N

“ 93.5Hz, the magnitude and phase will only follow the
ideal spectrum for frequencies f ą 100Hz with negligible ripples.

w = kaiser(N,beta)
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Figure 2.5: Ideal WFS prefilter impulse response according to (2.198).
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2.6 Summary

This chapter revisited the concepts of SFS using the SLP either as an im-
plicit solution (WFS) or as an explicit solution (SDM). For a planar SSD
realizing 3D SFS, WFS and SDM are identical approaches, which was proved
with the Fourier-NAH-like approach. For a linear SSD realizing 2.5D SFS
w.r.t. a reference line, SDM provides the exact solution and 2.5D Neumann-
WFS with a twofold stationary phase approximation constitutes the farfield
/ high-frequency approximated solution, which is precisely identical with the
farfield/high-frequency approximated SDM solution. This was consistently
shown for a spherical and plane wave primary source. 2.5D Neumann-WFS
using only the first stationary phase approximation yields driving functions
for a reference point, which can be used for circular SSDs together with the
secondary source selection. Reducing the Neumann Rayleigh integral from
3D towards 2.5D is valid for arbitrary primary sources, whereas ’extending’
it from 2D to 2.5D works only for plane waves with propagating directions
restricted to the SFS plane. In Table 2.1 the connections of SDM and WFS
are arranged in terms of equivalent driving functions. It states either the WFS
derivation from the 3D Neumann Rayleigh integral towards its 2.5D represen-
tation (WFS 3D Ñ 2.5D) or the derivation from 2D towards the 2.5D case

Point source with:
circular (cf. Fig. 2.7a), linear SSD, reference point, secondary source selection
WFS 3D Ñ 2.5D 1ˆ Far/HF: (2.137)
Point source with:
linear SSD (cf. Fig. 2.7c), reference line
SDM 1ˆ Far/HF: (2.126)
SDM 2ˆ Far/HF: (2.131), (2.128) ” WFS 3D Ñ 2.5D 2ˆ Far/HF (Delft): (2.141)
Plane wave with:
circular (cf. Fig. 2.7e), linear SSD, reference point, secondary source selection
WFS 3D Ñ 2.5D 1ˆ Far/HF: (2.176), (2.177) ” WFS 2D Ñ 2.5D 1ˆ Far/HF (2.186)
Plane wave with:
linear SSD (cf. Fig. 2.7g), reference line
SDM Exact: (2.167)
SDM 1ˆ Far/HF: (2.169), (2.170) ” WFS 3D Ñ 2.5D 2ˆ Far/HF: (2.183)

Table 2.1: Discussed WFS and SDM driving functions and their connections
for a virtual (non-focused) spherical and plane wave.
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(WFS 2D Ñ 2.5D), as well as the explicit SDM solutions. Additionally the
required farfield/high frequency approximations (ˆ Far/HF) are referenced.
In Fig. 2.7 some example sound fields are depicted using the discussed 2.5D
WFS driving functions.

For very large distances from a point source to the origin rPS “ |0 ´ xPS|

a point source at position xPS “ ´rPS nPW would render a sound field that is
equal to a plane wave with propagating direction nPW. If the primary source
level P pωq of the plane/spherical wave is equally adapted for the reference
line/point, the driving functions and resulting sound fields behave equivalent.

Furthermore, in this chapter the Fresnel (2.101), Fraunhofer (2.111) ap-
proximations and HF-BEM (2.33) was revisited that are deployed in the next
chapters to predict and explain the radiation characteristics of straight and
curved line source arrays.

In [Fir16] a unified WFS theory will be presented. This even more formal-
ized treatise includes a consistent framework for analytical, new referencing
schemes. The above discussed referencing schemes w.r.t. a point and a paral-
lel reference line can then be interpreted as special schemes. From the findings
it will become clear that referencing to a point is in fact a referencing along a
parametric curve at which amplitude correct SFS occurs, of course within the
limitations of the assumed approximations. Furthermore, the inconsistencies
between the different WFS derivations (3DÑ2.5D vs. 2DÑ2.5D ) are solved
with proper treatment of the virtual source dimension mismatch within the
unified framework.
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(a) Point source (2.137). (b) Point source.

(c) Point source (2.131). (d) Point source.

(e) Plane Wave (2.177). (f) Plane Wave.

(g) Plane Wave (2.170). (h) Plane Wave.

Figure 2.7: Sound fields of 2.5D WFS for a spherical or a plane wave using
a circular or linear SSD with indicated WFS driving functions, c “ 343m/s,
f “ 686Hz Ñ λ “ 0.5m for 1 Pa amplitude at reference line or point.



Chapter 3

Discussion of WST

In this chapter1 the Wavefront Sculpture Technology (WST) and its crite-
ria [Hei92b, Urb03] for straight line source arrays are discussed. In essence,
WST can be considered as a special case of sound field synthesis using a (i)
rectangular windowed LSA, (ii) wave propagation perpendicular to the LSA
(i.e. a broadband array) and (iii) different strategies to avoid or reduce spa-
tial aliasing. An acoustic signal processing model that was developed for SFS
[Sta97, Ver97] is utilized in this thesis in contrast to the initial formulations.
Recall the synthesis integral (2.156)

P px, ωq “

`8
ż

´8

D2.5Dpx0, ωqG0,3Dpx,x0, ωq dy0, (3.1)

with the evaluation plane x “ px ą 0, y, 0qT and the LSA located on the y-axis,
i.e. x0 “ p0, y0, 0qT. This convolution integral can be conveniently discussed for
discretized LSAs of finite length within the spatio-temporal spectrum domain
in the same manner as the derivation of the explicit SFS solution, i.e. SDM.
The acoustic signal processing framework is depicted in Fig. 3.1. It additionally
includes a spatial sampling and truncation process compared to (3.1).

The discussion subsequently follows the different stages of the model in
Fig. 3.1. At this point it is worth sending the implications of the physical
LSA setup ahead, when exciting it with the driving functions and their spatio-
temporal spectra listed in Table 3.1. The spatio-temporal spectra of the sound

1[Sch14b],[Sch14a],[Sch15d],[Sch15c] are partly reissued herein.
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Dpy0, ωq ˚

HPrepy0, ωq

¨

wpy0, ωq

∆y

HPostpy0, ωq

˚

Gpx,0, ωq

˚ P px, y, ωq

truncation sampling model wave propagator

Dpky, ωq ˚

1
2π wpky, ωq

HPrepky, ωq

¨ ˚

1
2πXp

ky∆y
2π q

HPostpky, ωq

¨

G0px, ky, ωq

¨ P px, ky, ωq

truncation & sampling speaker & radiation

Dw,Spky, ωqDwpky, ωq Dw,S,Hpky, ωq

Figure 3.1: Signal processing model for SFS using a linear, spatially discretized
and truncated SSD. Representation in temporal (top) and spatio-temporal
spectrum domain (bottom), cf. [Sta97, Fig. 5.7], [Sta97, Fig. 5.13]. Linear
convolution w.r.t. y, ky is denoted by ˚ , multiplication w.r.t. y, ky by ¨ .

fields synthesized from the different LSA configurations are then given as
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¨ G0px, ky, z, ωq (3.2)

using the spectrum G0px, ky, z, ωq of the 3D freefield Green’s function (2.162).
In case of spatial truncation, the spatio-temporal spectra Dwpky, ωq, Dw,Spky, ωq,
Dw,S,Hpky, ωq include the specific farfield radiation patterns of the LSA when
evaluating only the visible region of the array (cf. p.78 for its definition).

Dpky, ωq (3.25) infinite, continuous LSA, driving functions for WFS & SDM
DSpky, ωq (3.30) infinite, discretized LSA built from spherical monopoles
Dwpky, ωq (3.38) finite length, continuous LSA
Dw,Spky, ωq (3.68) finite length, discretized LSA with spherical monopoles
Dw,S,Hpky, ωq finite length, discretized LSA with identical non-isotropic sources

Table 3.1: Implications for the LSA setup according to Fig. 3.1 when being
driven with the specified spatio-temporal spectra. References to the WST
driving function equations are given.
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3.1 Baseband Sampling

For the analytic description of arrays built from discrete loudspeakers, the
continuous driving function is spatially sampled, here under the assumption of
an equidistant sampling process. The well known critical baseband sampling
of time domain signals [Uns00] is shortly revisited first to indicate the connec-
tions as well as different implications between temporal and spatial sampling.

A continuous time signal xptq is filtered with an anti-aliasing lowpass filter
hLP,Preptq – creating a baseband signal – and then multiplied with an equidis-
tantly ’spaced’ Dirac comb

`8
ÿ

µ“´8

δpt ´ µTsq

loooooooomoooooooon

“: 1
Ts

Xp t
Ts

q

❞ t 2 π

Ts

`8
ÿ

µ“´8

δ

ˆ

ω ´ µ
2 π

Ts

˙

loooooooooooooomoooooooooooooon

“: Xp
ω Ts
2π

q

(3.3)

using the sample rate fs, for which

fs “
1

Ts

ωs “ 2 π fs “
2 π

Ts

(3.4)

holds. This yields a discrete-time signal xPre,Sptq. For reconstruction, the
spectral repetitions in XPre,Spωq due to (3.3) will be filtered out by the re-
construction/interpolation filter hLP,Postptq yielding the continuous time signal
xRecptq. The sampling model is depicted in Fig. 3.2. In the temporal spectrum
domain the signal processing is written as

XPre,Spωq “
1

2 π
rXpωq ¨ HLP,Prepωqs ˚ω Xp

ω Ts

2π
q, (3.5)

XRecpωq “XPre,Spωq ¨ HLP,Postpωq. (3.6)

xptq ˚

hLP,Preptq
Ts

xPre,Sptq

hLP,Postptq

˚ xRecptq

Figure 3.2: Time domain baseband sampling model.
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Perfect baseband sampling and reconstruction is achieved using the cardinal
sine function as the anti-aliasing and the reconstruction filter

hptq “ si
ˆ

π t

Ts

˙ ❞ t Hpωq “ Ts rect
ˆ

Ts ω

2π

˙

“ Ts rect
ˆ

ω

ωs

˙

(3.7)

[Uns00, Fig. 2], [Opp10, Ch. 4.3], [Gir01, (11.35)] with

sipxq “

$

&

%

sinx
x

forx ‰ 0

1 forx “ 0
rectpa xq “

$

&

%

1 for |x| ď 1
2 a

0 else
. (3.8)

In this case of so called critical sampling [Gir01], the baseband |ω| ď ωs

2
of the

signal xptq is perfectly reconstructed to xRecptq, thus

XRecp|ω| ď
ωs

2
q “ Xp|ω| ď

ωs

2
q, (3.9)

which is well known as the Whittaker-Shannon-Kotelnikov sampling theorem
[Kot33] (English reprint e.g. [Kot06]). The required cutoff frequencies for per-
fect critical sampling and reconstruction, i.e. the angular temporal frequency
ωN “ ωs

2
and temporal frequency fN “

fs
2

are referred to as the Nyquist fre-
quencies [Gir01, Opp10]. In case of non-ideal lowpass filters, different errors
may occur, that are known as prealiasing and postaliasing:

• Ideal sampling, no pre- and postaliasing, perfect reconstruction

HLP,Prepωq “

$

&

%

Ts for |ω| ď ωs

2

0 else
HLP,Postpωq “

$

&

%

Ts for |ω| ď ωs

2

0 else

(3.10)

• Ideal sampling, no prealiasing, but postaliasing, i.e. the baseband is not
corrupted, but spectral repetitions are not perfectly suppressed, typically
referred to as reconstruction error

HLP,Prepωq “

$

&

%

Ts for |ω| ď ωs

2

0 else
HLP,Postpωq “

$

&

%

Ts for |ω| ď ωs

2

‰ 0 for |ω| ą ωs

2

(3.11)
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• Ideal sampling, prealiasing, but no postaliasing, i.e. spectral repetitions
are perfectly suppressed but baseband is unrecoverably corrupted, due
to overlapping spectral repetitions

HLP,Prepωq “

$

&

%

Ts for |ω| ď ωs

2

‰ 0 for |ω| ą ωs

2

HLP,Postpωq “

$

&

%

Ts for |ω| ď ωs

2

0 else

(3.12)

• Ideal sampling, pre- and postaliasing, i.e. the baseband is corrupted and
spectral repetitions are not perfectly suppressed

HLP,Prepωq “

$

&

%

Ts for |ω| ď ωs

2

‰ 0 for |ω| ą ωs

2

HLP,Postpωq “

$

&

%

Ts for |ω| ď ωs

2

‰ 0 for |ω| ą ωs

2

(3.13)

The ideal lowpass characteristic of the anti-aliasing and the reconstruction
filter have to be approximated with a suitable infinite or finite impulse response
by accepting a tolerated error. For time domain signal sampling, the anti-
aliasing and the reconstruction filters can be designed with large degree of
freedom in analog-to-digital and digital-to-analog converters. This in contrast
to the sampling process for the spatial domain, to be discussed next.

Recall, that the synthesis integral (3.1) is given as, cf. (2.159)

P px, ky, z, ωq “ Dpky, ωq ¨ G0px, ky, z, ωq (3.14)
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Figure 3.3: 20 log10p|G0px, ky, z, ωq|q in dB (2.162) for x “ 1m and z “ 0m.
Levels ą ´12 dB clipped to white, levels ă ´60 dB clipped to black, k “ ω

c
.
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in the spatio-temporal spectrum domain. The spatio-temporal spectrum of
G0px “ 1, ky, z “ 0, ωq (2.162) is exemplarily depicted in Fig. 3.3. The spec-
trum G0px, ky, z, ωq is not strictly spatially bandlimited. However, according
to (2.162), the propagating part of G0px, ky, z, ωq is bounded and thus ban-
dlimited to the wedge where |ky| ă |ω

c
|. This is referred to as the visible range

[IEE93], visible region [Van02, Ch. 2.3] or physical region [Hei92b] of the array.
Evanescent wave radiation occurs for |ky| ą |ω

c
|, this part of the spectrum is

not bandlimited. However, it is decaying rapidly for increasing x, z and ω.
The spectrum of G0px, ky, z, ωq exhibits a pole for |ky| “ |ω

c
|. In the remainder

only the xy-plane is considered for sound reinforcement, thus setting z “ 0

and thereby ignoring the horizontal radiation characteristics of an LSA.
A potential driving function may trigger parts of the visible region for an

intended propagating wave radiation. Note that the driving function may also
exhibit evanescent parts, that are also not strictly bandlimited. This is for
example the case for driving functions that are used for the SFS of virtual
point sources [Spo09, Spo10].

Spatial discretization of the driving function with the sampling distance
∆y leads to the spatial sampling rate

ky,s “
2π

∆y
“ ∆ky (3.15)

and the spatial Nyquist wave number

ky,N “
π

∆y
. (3.16)

Similar to time domain signal processing, the prefilter HPrepy0, ωq and the
postfilter HPostpy0, ωq in Fig. 3.1 are also understood as the anti-aliasing and
the reconstruction filters respectively. For ideal critical sampling both exhibit
ideal spatial lowpass characteristic

hpy0q “ si
ˆ

π y0
∆y

˙ ❞ t Hpkyq “ ∆y rect
ˆ

∆y ky
2 π

˙

“ ∆y rect
ˆ

ky
ky,s

˙

.

(3.17)

Prior to sampling the driving function, HPrepky, ωq must ideally suppress all
contributions for |ky| ą π

∆y
(i.e. ’above’ the Nyquist wave number ky,N)
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ensuring a correctly sampled baseband. Subsequently, the ideal postfilter
HPostpky, ωq removes all spectral repetitions for baseband reconstruction.

It is important realizing, that the postfilter acts in the acoustic domain,
i.e. is determined by the radiation characteristics of the loudspeaker. Once
the driving function is physically sampled – modeling discrete loudspeaker po-
sitions – manipulation of the driving function is not longer possible in the
electronic domain, cf. [Sta97, Ch. 5.4]. The design of appropriate postfilter
characteristics is thus more demanding than for time domain signal processing,
since it must be realized in the acoustic domain. The infinite impulse response
(3.17) cannot be realized in practice, since it corresponds to a source of infinite
extent. Hence, the approach of the anti-aliasing loudspeaker [Ahr10c] is of the-
oretical interest. Other suitable, however, non-ideal postfilter characteristics
have to be found, that are obliged to have FIR characteristics, i.e. require
finite spatial dimension of loudspeakers not larger than ∆y for feasibility, cf.
[Ver97, Ch. 3.3]

The signal processing in the spatio-temporal spectrum domain is similar to
that for time signals in the temporal spectrum domain (3.5)

DSpky, ωq “
1

2 π

„

Dpky, ωq ˚ky Xp
ky ∆y

2π
q



only sampling (3.18)

DRecpky, ωq “

„

1

2π
rDpky, ωq ¨ HPrepky, ωqs ˚ky Xp

ky ∆y

2π
q



¨ HPostpky, ωq,

(3.19)

and will be revisited in Ch. 3.2.2ff. in detail. As for time domain signal
processing, artifacts due to a non-ideal prefilter have been termed aliasing
error or prealiasing, those due to the postfiltering stage reconstruction error
or postaliasing [Mit88]. In SFS literature the different spatial aliasing types
are typically not strictly separated in terminology and spatial aliasing is used
to subsume all artifacts. However, according to [Spo09] spatial aliasing has
(i) propagating contributions, that arise by the propagating contribution of
G0px, ky, ωq in conjunction with the propagating and evanescent contributions
of DSpky, ωq and (ii) evanescent contributions, that arise by the evanescent con-
tribution of G0px, ky, ωq in conjunction with the propagating and evanescent
contributions of DSpky, ωq. These contributions can be additionally classified
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into pre- and postaliasing contributions and are summarized in the tables 3.2
to 3.5. In the context of WFS and SDM theoretical and practical spatial pre-
and postfiltering schemes were discussed in [Sta95, Ahr10c, Fir12], [Ver97, Ch.
3].

Aliasing type Region of G Region of D, µ ‰ 0
Prop. Pre △ |ky| ă π

∆y
|ky| ă |ω

c
| |ky ´ µ 2π

∆y
| ă |ω

c
|

Prop. Post N |ky| ą π
∆y

|ky| ă |ω
c
| |ky ´ µ 2π

∆y
| ă |ω

c
|

Table 3.2: Propagating pre- and postaliasing due to propagating D and prop-
agating G, cf. Fig. 3.5.

Aliasing type Region of G Region of D, µ ‰ 0
Ev. Pre ▽ |ky| ă π

∆y
|ky| ą |ω

c
| |ky ´ µ 2π

∆y
| ă |ω

c
|

Ev. Post H |ky| ą π
∆y

|ky| ą |ω
c
| |ky ´ µ 2π

∆y
| ă |ω

c
|

Table 3.3: Evanescent postaliasing due to propagating D and evanescent G,
cf. Fig. 3.5. Evanescent prealiasing is not occurring due to bounded D.

Aliasing type Region of G Region of D, µ ‰ 0
Prop. Pre △ |ky| ă π

∆y
|ky| ă |ω

c
| |ky ´ µ 2π

∆y
| ą |ω

c
|

Prop. Post N |ky| ą π
∆y

|ky| ă |ω
c
| |ky ´ µ 2π

∆y
| ą |ω

c
|

Table 3.4: Propagating pre- and postaliasing due to evanescent D and propa-
gating G, cf. Fig. 3.6.

Aliasing type Region of G Region of D, µ ‰ 0
Ev. Pre ▽ |ky| ă π

∆y
|ky| ą |ω

c
| |ky ´ µ 2π

∆y
| ą |ω

c
|

Ev. Post H |ky| ą π
∆y

|ky| ą |ω
c
| |ky ´ µ 2π

∆y
| ą |ω

c
|

Table 3.5: Evanescent pre- and postaliasing due to evanescent D and evanes-
cent G, cf. Fig. 3.6.

Following the signal processing model in Fig. 3.1, the anti-aliasing filtering,
sampling and reconstruction for an infinite linear array can be qualitatively
interpreted with spatio-temporal spectra that exhibit a wedge shape, consid-
ering the propagating parts, and indicating the remaining evanescent area as
shown in Fig. 3.4. The schematic driving function triggers the whole visible
region |ky| ă |ω

c
| as well as the evanescent region |ky| ą |ω

c
|. It can be seen in
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Fig. 3.1, that the spectra HPostpky, ωq and G0px, ky, ωq act as interpolators for
the sampled driving function, whereby the Green’s function is simultaneously
responsible for wave radiation. Hence, the left plots in Fig. 3.4 schematically
represent the anti-aliasing filtering and sampling stage of the driving function
and the right plots its reconstruction and the wave propagation.

In Fig. 3.4a no pre- and postfilters are applied. The spectral repetitions over-
lap into the baseband of Dpky, ωq, thus corrupting it, which leads to prealiasing.
Due to the spatially fullband interpolation with G0pky, ωq also postaliasing oc-
curs. This is typical for WFS applications where a spatially not bandlimited
driving function controls point source-like loudspeakers.

In Fig. 3.4b the driving function is perfectly bandlimited to the Nyquist
wave number, i.e. no prealiasing. No further postfilter is applied. Thus, the
spectral repetitions are not perfectly suppressed by G0pky, ωq, i.e. postaliasing.
This technique is known as modal bandlimited SFS, e.g. used for NFC-HOA
[Spo08a, Ahr08a] and for WFS [Sta95].

In Fig. 3.4c no prefilter is applied, leading to prealiasing. The ideal lowpass
postfilter suppresses all spectral repetitions, i.e. no postaliasing. In essence
this approach is used for LSA applications, however deploying non-ideal low-
pass filters. The non-ideal spatial lowpass characteristic of highly directed
loudspeakers (waveguides) is employed to avoid or attenuate postaliasing.

In Fig. 3.4d the ideal, critical sampling model is depicted. The spatial
lowpass filters HPrepky, ωq and HPostpky, ωq have ideal characteristics with the
Nyquist wave number as cutoff ’frequency’. No pre- and postaliasing occurs.

To give a further qualitative discussion of the different pre-/postaliasing
artifacts according to Table 3.2 and Table 3.3, the sampling of a purely propa-
gating driving function’s spectrum is depicted in Fig. 3.5. Similarly, according
to Table 3.3 and Table 3.4 a purely evanescent driving function’s spectrum
is considered in Fig. 3.6. These graphics indicate the possible aliasing con-
tributions: propagating prealiasing △, propagating postaliasing N, evanescent
prealiasing ▽ and evanescent postaliasing H. Note that the case evanescent
prealiasing in Table 3.3 can never occur, due to contra-directional constraints,
that cannot met with a propagating driving function’s spectrum. The spectral
repetitions in the schematic sketches intentionally do not overlap for convenient
clarification of the specified aliasing regions.
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Figure 3.4: Sampling strategies for SFS applications with qualitative represen-
tations of the spatio-temporal spectra.
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Figure 3.5: Spatial sampling of a purely propagating driving function.
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Figure 3.6: Spatial sampling of a purely evanescent driving function.
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3.2 WST Driving Functions

In essence, the first three WST criteria [Urb03] deal with the avoidance and/or
attenuation of propagating postaliasing using different strategies. The WST
criteria were initially derived for uniformly driven, i.e. uniformly weighted
LSAs, more precisely for constant volume acceleration [Hei92b, p.2]. This re-
sults in broadband wave propagation perpendicular to the LSA in the xy-plane
under discussion. The driving functions under discussion are introduced next.

The findings are well known from array processing and antenna theory
[Sch43, Van02, Ell03, Bal05] and became introduced into acoustics with [Ste27,
Ste29, Wol30, Ste58]. However, the existing literature on LSA radiation rarely
provides a consistent link to the concepts of multidimensional signal processing
and its equivalent implications [Sch15c] to sound field and radiation synthesis
fundamentals. Since the discussion on LSA radiation goes beyond the char-
acteristics of farfield radiation patterns and since the original WST literature
rarely uses signal processing concepts, it is meaningful to elaborate this in-
depth in this section.

3.2.1 Infinite, Continuous SSD Dpky, ωq

At first, an infinite, continuous SSD is considered, for which the signal flow of
Fig. 3.7 holds. The spatio-temporal spectrum of the SDM plane wave driving
function (2.166) is used and modified towards the special problem of interest:
ky,PW “ 0 is chosen, i.e. ϕPW “ 0 from which kr,PW “ ω

c
follows. The adapted

driving function’s spatio-temporal spectrum reads

Dpxref, ky, ωq “
P pωq ¨ e´j ω

c
¨xref

´
j
4
H

p2q

0

`

ω
c

¨ xref
˘

2 π δpkyq (3.20)

Dpx0, ωq ˚

Gpx,0, ωq

P px, ωq

Figure 3.7: Signal flow of the single layer potential for a linear, infinite, con-
tinuous SSD located on the y-axis.
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For ω
c

¨ xref " 1 the large argument approximation of the Hankel function
[Olv10, 10.2.6] leads to the proportionality

|
1

´
j
4
H

p2q

0

`

ω
c

¨ xref
˘

|9|

c

ω

c
¨ xref|. (3.21)

Hence, the driving function (3.20) inherently includes a 3 dB/oct. temporal
frequency highpass filter for the case of interest. For further discussion the
compensation filter (3.21) and the phase shift e´j ω

c
¨xref in (3.20) is omitted for

concise argumentation. The spectrum is thus restricted to

Dpky, ωq “ P pωq ¨ 2 π δpkyq, (3.22)

which is depicted in Fig. 3.8a and yields the driving function

Dpy0, ωq “ P pωq (3.23)

by inverse spatial Fourier transform. Inserting (3.22) into (3.14) and a subse-
quent spatial Fourier transform yields

P px, y, ωq “ ´
j

4
H

p2q

0

´ω

c
x
¯

¨ P pωq, (3.24)

which is identified as the sound field of an infinite, continuous line source
driven with constant volume acceleration, that produces a wavefront with a 3
dB/oct. temporal lowpass behavior and a 3 dB level loss per distance doubling
in the farfield, cf. [Lip86, pg. 12]. In essence the here omitted 3 dB/oct.
highpass (3.21) compensates the temporal frequency lowpass characteristic of
the line source. In practical LSA applications this filter is applied with slight
modifications and is referred to as the coupling filter, cf. Ch. 4, [Sch13]. Note
that (2.162) represents a diverging cylindrical wave in the farfield of the source
for the radial distance r “

?
x2 ` z2, when driven with the 0th mode ky “ 0, cf.

[Sku71, p.656]. For ky ‰ 0 (2.162) represents diverging conical wavefronts, cf.
Ch. 2.4. Although the plane under discussion is the xy-plane only (i.e. z “ 0),
the term cylindrical wave is maintained below for the wavefronts emanated
by G0px, ky, ωq, for simplified denotation of waves with a 3 dB level decay per
distance doubling.
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(a) Dpky, ωq (3.25).
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(b) DSpky, ωq (3.30) for ∆y “ 2π
10 m.

Figure 3.8: Spatio-temporal spectra of WST driving functions.
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(a) |G0px, ky, ωq| in dB (2.162) for x “

1m. Ideal driving function Dpky, ωq

(3.25) for a full-band cylindrical wave
into x-direction schematically indicated
with a white line, the white dot indicates
the contribution of f “ 3430 Hz.
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(b) Sound field ℜ tP px, yqu of a cylindrical
wave into x-direction with f “ 3430Hz, λ “

0.1m synthesized by a continuous SSD of infi-
nite length according to (3.24).

Figure 3.9: Sound field synthesis for an infinite, continuous linear array.

For a full audio-bandwidth wavefront into x-direction, Dpky, ωq takes the
shape of a vertical line as schematically depicted in Fig. 3.9a. Each ’point’ of
Dpky, ωq coincident with the bounded propagating part |ky| ă |ω

c
| of G0pky, ωq

corresponds to a propagating monochromatic cylindrical wave, as exemplarily
shown for a single frequency in Fig. 3.9b. The synthesized wave exhibits a 3 dB
level decay per distance doubling as expected. In Fig. 3.9a the ´3 dB/oct.
temporal lowpass characteristic of G0px, ky, ωq along ky “ 0 can be observed.

In the remainder in all driving functions and their spectra P pωq “ 1, thus
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(3.22) is used as

Dpky, ωq “ 2π δpkyq (3.25)

for further discussion, depicted in Fig. 3.8a. Note that (3.25) does not require
a prefilter in the sampling model, since it is already perfectly bandlimited
w.r.t. the spatial Nyquist wave number. Actually all WST driving functions
under discussion omit the prefiltering stage in the original WST literature
[Hei92b, Urb03], and hence also will be omitted here for better comparison
of the derived results. A discussion on the physical implications of spatial
prefiltering is found in [Sta97, Ch. 5.4].

3.2.2 Spatial Discretization DSpky, ωq

Obviously, a continuous SSD cannot be realized in practice and is usually
implemented as a linear array of discrete loudspeakers. This constitutes the
spatial discretization process of the driving function as depicted in Fig. 3.10. It
models an infinite, discretized LSA built from spherical monopoles by ignoring
pre- and postfiltering. Assuming identical ideal point sources, equidistantly
arranged with ∆y, as depicted in Fig. 3.11, ideal spatial sampling is modeled
by multiplication with an accordingly spaced Dirac comb. The discretized
driving function DSpy0, ωq then reads

DSpy0, ωq “ Dpy0, ωq ¨

`8
ÿ

µ“´8

δpy0 ´ µ∆yq

loooooooooomoooooooooon

“: 1
∆y

Xp
y0
∆y

q

, (3.26)

where the shorthand notation is obtained by dilating a Dirac comb Xpy0q :“
ř`8

µ“´8
δpy0 ´ µq [Gir01, (11.1)] with unit spacing. The spatial Fourier trans-

Dpx0, ωq
∆y

Gpx,0, ωq

˚ P px, ωq

Figure 3.10: Signal flow of the single layer potential for a linear, infinite,
discretized SSD located on the y-axis.
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x
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x´x0
P px, ωq

n

ϕ
∆y

y

x

z

Figure 3.11: Side view of the discretized SSD setup. The infinite SSD is
located on the y-axis. SFS is considered within the xy-plane (x ą 0). The
SSD becomes continuous for a secondary source spacing ∆y Ñ 0.

form pair for the Dirac comb (3.26) is known as, cf. (3.3)

`8
ÿ

µ“´8

δpy0 ´ µ∆yq

loooooooooomoooooooooon

“: 1
∆y

Xp
y0
∆y

q

❞ t 2π

∆y

`8
ÿ

µ“´8

δ

ˆ

ky ´ µ
2π

∆y

˙

looooooooooooooomooooooooooooooon

“: Xp
ky ∆y

2π
q

. (3.27)

The multiplication/convolution duality of the Fourier transform [Gir01, (11.33)]

Dpy0, ωq ¨
1

∆y
Xp

y0
∆y

q ❞ t 1

2 π

„

Dpky, ωq ˚ky Xp
ky ∆y

2π
q



(3.28)

leads to the spatio-temporal spectrum of the ideally sampled driving function

DSpky, ωq “
1

∆y

`8
ÿ

µ“´8

Dpky ´ µ
2 π

∆y
, ωq. (3.29)

For the problem at hand, the sampled version of (3.25)

DSpky, ωq “
2π

∆y

`8
ÿ

µ“´8

δpky ´ µ
2 π

∆y
q (3.30)

is to be discussed, exemplarily visualized in Fig. 3.8b for ∆y “ 2π
10

m.
In Fig. 3.12 DSpky, ωq (3.30) is schematically given for the spatial sam-

pling frequency ky,s “ ∆ky “ 25 rad/m, which yields the discretization step
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Figure 3.12: |G0px, ky, ωq| in dB (2.162) for x “ 1m. Sampled driving function
DSpky, ωq (3.30) for a full-band cylindrical wave into x-direction schematically
indicated with a white line. The white dot indicates the contribution for
f “ 3430 Hz. Spectral repetitions indicated with red lines. The red markers
N indicate propagating spatial postaliasing for f “ 3430Hz, whereas these
marked with H indicate evanescent spatial postaliasing.

∆y “ 2π
25

m « 0.25m. Compared to Fig. 3.9a the additional repetitions in
the spatio-temporal spectrum stemming from the Dirac comb are clearly in-
dicated. Their coincidences with values of the Green’s function G0px, ky, ωq

within the visible region |µ∆ky| ă |ω
c
|, µ ‰ 0 indicate additional propagating

contributions in the synthesized sound field, which are identified as propagat-
ing spatial postaliasing, cf. Table 3.2. The coincidences with the evanescent
region of the Green’s function |µ∆ky| ą |ω

c
| result in evanescent postaliasing,

cf. Table 3.3. Due to the bandlimited spatio-temporal spectrum of Dpky, ωq,
the sampled spectrum DSpky, ωq does not contain contributions that can trig-
ger prealiasing.

The resulting sound field can be analytically given (cf. [Ahr10d, Sec. IV.B]),
when the spectrum

P px, ky, ωq “ DSpky, ωq ¨ G0px, ky, ωq (3.31)

for the considered xy-half plane undergoes an inverse spatial Fourier transform
(C.3) with subsequent simplification. This yields [Ahr10d, (37)]

P px, y, ωq “
1

∆y

`8
ÿ

µ“´8

G0px, ky “ µ
2π

∆y
, ωq e´jµ 2π

∆y
y. (3.32)

The exponential term in (3.32) describes the sound field component along the
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(b) ℜ tP px, yqu (3.32) for µ “ ´2,´1, 1, 2.
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(c) ℜ tP px, yqu (3.32) for µ “ ´1.
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(d) ℜ tP px, yqu (3.32) for |µ| ě `3.
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(e) ℜ tP px, yqu (3.32) for µ “ `2.
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Figure 3.13: Infinite, discretized SSD with ∆y “ 2π
25

m. Synthesized sound
fields for f “ 3430Hz, i.e. λ “ 0.1m. Fig. 3.13a shows the intended wave-
front, Fig. 3.13b all propagating spatial postaliasing contributions, Fig. 3.13d
evanescent spatial postaliasing contributions, Fig. 3.13f the resulting sound
field due to superposition (3.32).

y-dimension. Note the discrete set of possible wave numbers due to the discrete
driving function’s spatio-temporal spectrum. The Green’s function’s spatio-
temporal spectrum describes the component into radial direction. Both compo-



92 CHAPTER 3. DISCUSSION OF WST

nents together describe a cylindrical wave with radiation angle ϕµ for propagat-
ing waves that are given with |µ∆ky| ă |ω

c
|. Then sinϕµ “ pµ∆kyq{ω

c
holds.

For µ “ 0 the intended cylindrical wave perpendicular to the SSD (i.e. into x-
direction, ϕµ“0 “ 0) is generated, cf. Fig. 3.13a. The radiating angles ϕµ‰0 of
the additional propagating spatial postaliasing wavefronts are strongly depen-
dent on the temporal angular frequency ω. For the given example in Fig. 3.12
the additional cylindrical waves are derived to ϕµ“˘1,2 “ ˘23.4˝,˘52.7˝. Sin-
gle propagating contributions for µ “ ´1 and µ “ `2 are depicted in Fig. 3.13c
and Fig. 3.13e, respectively. The sound field given by the superposition of
propagating contributions |µ| ď 2, µ ‰ 0 is shown in Fig. 3.13b, these for the
evanescent contributions |µ| ě 3 in Fig. 3.13d. The originally intended wave-
front µ “ 0 is thus corrupted by interferences with the additional wavefronts
due to superposition (3.32). The resulting sound field is shown in Fig. 3.13f.
Note that Fig. 3.9b and Fig. 3.13f exhibit a level difference by 1

∆y
, which is

due to the ideal sampling model. The appropriate ideal postfilter – here not
applied – compensates this level difference according to the chosen sampling
model normalization.

The exemplarily chosen SSD discretization does not allow the synthesis of
a homogeneous wavefront for this frequency. It is important realizing that the
sound field remains corrupted over the full space when performing SFS with
an infinite SSD. This is in contrast to finite length, straight SSDs, where a
spatial aliasing free region exists in far distances to the SSD.

In [Hei92b, II.3.a.] a similar discussion was given using the 2D freefield
Green’s function (2.8). Therein, a sound field that is corrupted by spatial alias-
ing, was named chaotic, which is a deterministic phenomenon due to (3.32).
Referring to as chaotic regions in sound fields due to spatial aliasing interfer-
ence should be actually avoided but will retained throughout the thesis as a
simplified designation.

A criterion for avoidance of propagating postaliasing can be geometrically
derived and is well known as [Kum92, (13)], [Ahr10d, (38)]

f ă
c

∆y p1 ` | sinϕPW|q
, (3.33)
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indicating the plane wave radiation angle ϕPW. For the WST driving function
with ϕPW “ 0, (3.33) reduces to (cf. [Hei92b, sec. II.3.a])

f ă
c

∆y
Ø ∆y ă λ, (3.34)

denoting the wave length λ in m. Thus, for an infinite, discretized SSD built
from monopoles (i.e. no postfilter is applied) postaliasing can only be avoided
by limiting the temporal frequency bandwidth of the driving function (3.30)
with an appropriate choice of P pωq.

3.2.3 Spatial Truncation Dwpky, ωq

Practical arrays are also obviously restricted to a finite length. This is modeled
by truncating the driving function with a spatial window wpy0, ωq P R`, that
might be frequency dependent. For WST a frequency independent, rectangu-
lar truncation window is considered. In Fig. 3.14 the signal processing model
for a finite length, albeit continuous SSD is depicted. Hence, the complete
sampling stage is omitted. This case serves as the reference LSA for derivation
of the WST criteria.

With spatial truncation applied, the Rayleigh integral transforms to the
Rayleigh-Sommerfeld diffraction integral as discussed above [Bor06, Ch. 8.11.2],
[NV06, Ch. 6.4]. The analysis will thus only be correct if either the SSD is
effectively enclosed by a rigid wall or, for SSD setups free in space: (i) the
length of the SSD is much larger larger than the considered wave length λ

and (ii) the wave length is much smaller than the evaluation distance |x|. The
driving function is truncated to

Dwpy0, ωq “ wpy0q ¨ Dpy0, ωq (3.35)

by deploying the rectangular window (to be comparable with [Hei92b])

wpy0q “

$

&

%

1 for |y0| ď L
2

0 else
❞ t wpkyq “

$

&

%

L
sinpky L

2 q
ky

L
2

for ky ‰ 0

L for ky “ 0.

(3.36)

The convolution of the spatial spectrum wpkyq (3.36) and the initial driving
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Dpy0, ωq ¨

wpy0q Gpx,0, ωq

˚ P px, ωq

Figure 3.14: Signal flow of the single layer potential for a linear, finite length,
continuous SSD located on the y-axis.
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Figure 3.15: Relation between spatio-temporal spectra of WST driving func-
tions with same BWNN and corresponding farfield radiation patterns for a
chosen temporal frequency.
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function’s spectrum (3.25)

Dwpky, ωq “
1

2π
wpkyq ˚ky Dpky, ωq (3.37)

leads to the WST driving function of the finite length, continuous linear array

Dwpky, ωq “

$

&

%

L
sinpky L

2 q
ky

L
2

for ky ‰ 0

L for ky “ 0.
(3.38)

This is the well known sinc-function (3.8) exemplarily shown in Fig. 3.15a.
Similar to (3.14), the spatio-temporal spectrum of the synthesized sound field
reads

P px, ky, ωq “ Dwpky, ωqG0px, ky, ωq. (3.39)

The initially intended driving function of Dirac shape (3.25) is smeared by the
convolution (3.37) and the driving function’s spatio-temporal spectrum (3.38)
is continuous w.r.t. ky, cf. [Ahr10d, Sec. VII]. A single monochromatic wave
as initially intended using a Dirac in the spatial spectrum is thus corrupted by
interference with additional waves (that constitute side lobes in the farfield)
with different radiation angles, which now also includes evanescent wave contri-
butions. Hence, the treatment and the interpretation of the synthesized sound
fields of the LSA becomes more demanding, particularly because the radia-
tion characteristics are highly dependent on the array length and the temporal
frequency.

Farfield Radiation Pattern

The spatially truncated single layer potential [Ahr10d, (9)]

P px, ωq “

`8
ż

´8

wpy0qDpy0, ωq
e´j ω

c
|x´x0|

4 π |x ´ x0|
dy0 (3.40)

formulates the problem of (3.39) in the temporal spectrum domain. Closed
form solutions for finite length arrays are only available for special cases, cf.
App. D.

Evaluating (3.40) for |x| “ const with |x| " L and |x| " λ, |x|

L
" L

λ
the
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farfield radiation pattern (FRP) can be analytically derived [Mö09, Ch. 3.5],
and the direct link to the spatio-temporal spectrum

PFarpx, ωq 9Dwpky, ωq “

`L{2
ż

´L{2

Dpy0, ωq e`j ky y0 dy0 (3.41)

is well known, i.e. the Fraunhofer approximation that was discussed on p.
42ff. This integral is precisely solved to (3.38) and Dwpky, ωq therefore includes
the temporal frequency dependent FRP when taking only the visible region
|ky| ă |ω

c
| into account, cf. [Sku71, Ch. 26.2], [Kin00, Ch. 7.11], [Mö09,

Ch. 3.6], [Hec77]. Thus, by restricting the spatio-temporal driving function’s
spectrum to the visible region ´|ω

c
| ă ky ă `|ω

c
|, the nonlinear mapping

between ky and the propagating radiation angle ϕ

ky “
ω

c
sinϕ (3.42)

allows for the interpretation of an—what is here termed—angular spectrum
synthesis, i.e. the weighted superposition of cylindrical waves with radiation
angles ´π

2
ă ϕ ă `π

2
based on the inverse spatial Fourier transform of a

spatio-temporal spectrum. The resulting polar pattern for a given temporal
frequency ω is exemplarily shown in Fig. 3.15b. Note that the common term
farfield directivity for referring to as the farfield radiation pattern in loud-
speaker engineering should be avoided, since the term directivity is standard-
ized in [IEE93] with a different meaning. For the farfield radiation pattern,
usually either a normalized version in u-space with u “ sinϕ and ω

c
“ 2π

λ

Dwpuq “ L
sin

`

π L
λ
u
˘

π L
λ
u

for ´ 1 ď u ď `1, (3.43)

with Dwpu “ 0q “ L, or as a polar pattern in ϕ-space

Dwpϕq “ L
sin

`

π L
λ
sinϕ

˘

π L
λ
ϕ

for ´
π

2
ď ϕ ď `

π

2
(3.44)

with Dwpϕ “ 0q “ L is conveniently discussed for the radiation characteristics.
|Dwpuq| exhibits an envelope λ

π Lu
and N0 “ 2¨tL

λ
u zeros within the visible region
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(L ‰ 0, λ ‰ 0), that are located at

u0 “
λ

L
µ for ´ t

L

λ
u ď µ ď `t

L

λ
u, µ ‰ 0, µ P Z. (3.45)

Besides the global maximum at u “ 0, defined by a removable singularity
i.e. the main lobe in the farfield, (3.43) additionally exhibits alternating local
minima and maxima at um for that

dDwpuq

du
“ 0 Ñ cospπ

L

λ
umq “

sin
`

π L
λ
um

˘

π L
λ
um

Ñ 0 “
tan

`

π L
λ
um

˘

π L
λ
um

´ 1 (3.46)

must hold. For this transcendental equation the solutions [Wei]

um « ˘

pµ ` 1
2
q π ´ 1

pµ` 1
2

qπ

π L
λ

for µ ě 1, µ P Z (3.47)

are known as a good approximation, where odd µ indicate local minima and
even µ local maxima. The number Nm of all minima and maxima located
within the visible region can be roughly approximated with

Nm “ 2 t
L

λ
´

1

2
u. (3.48)

These local minima and maxima are referred to as side lobes in the farfield.
The local minima at |um| for µ “ 1 have a side lobe level of about ´13.26 dB
relative to the main lobe level of 20 log10pLq independently from chosen L{λ.

The so called null-to-null beamwidth BWNN is the bandwidth between the
first occurring zeros adjacent to the main lobe and is given as

BWNN “
4π

L
in ky-space (3.49)

BWNN “
2λ

L
in u-space. (3.50)

The FRP is thus highly dependent on the ratio L
λ
, as this determines the num-

ber of local minima and maxima, number of zeros within the visible region and
the beamwidth of the main lobe. For L

λ
! 1 the FRP is almost omnidirectional.

For a given L this is valid for wave lengths λ ă L, i.e. rather low temporal
frequencies for typically chosen array lengths. For L

λ
" 1 the FRP becomes



98 CHAPTER 3. DISCUSSION OF WST

increasingly directed for increased ratios, i.e. valid for rather high temporal
frequencies for typical LSA lengths. This is a special problem in acoustics en-
gineering: dealing with radiating wave lengths that simultaneously are much
larger and much smaller than the array length. This highly temporal frequency
dependent behavior is not desirable in practical applications and one of the
solutions that was adopted is the geometric curving of LSAs to provide a more
consistent sound field over a wide frequency band, specified in the 4th WST
criterion [Urb03, p.929]. Note that the listener may not be necessarily located
in the farfield of the array, where the concept of farfield radiation patterns is
valid.

On-Axis Radiation, Fresnel/Fraunhofer Transition

Another closed form solution of (3.40) can be derived along the main lobe
axis of the finite length LSA, i.e. for positions x “ px, 0, 0qT. This resembles
the Fresnel approximation that was discussed in Ch. 2.2.6 and App. D.2, cf.
[Sku71, Ch. 26.23], [Lip86], [Hei92b, I.3.b]. The latter two papers deduced,
that a continuous, finite length array with constant volume acceleration ex-
hibits a Fresnel region (3 dB level decay per distance doubling with ripples, 3
dB/oct. lowpass for temporal frequencies with ripples) and a Fraunhofer re-
gion (6 dB level decay per distance doubling, temporal frequency independent
amplitude). This is schematically depicted in Fig. 3.16. Only in the Fraun-
hofer region the concept of the FRP is valid and the radiation characteristics
can be given with polar patterns. Note that [IEE93] distinguishes between the
Fraunhofer region and the farfield region, which is here equivalently used for
the problem under discussion.

The transition or border distance xB between both regions, the Fresnel and

´3 dB

´6 dBxB

log2 x
SPL

Fresnel Fraunhofer
0 dB ´3 dB

fB
log2 f

SPL
Fraunhofer

Fresnel

Figure 3.16: Simplified radiation characteristics on x-axis for a rectangular
windowed, continuous LSA under constant volume acceleration, cf. Fig. D.8.



3.2. WST DRIVING FUNCTIONS 99

Fraunhofer region on the main axis is highly dependent on the frequency f

and array length L. By the geometric diffraction approach, the authors of
[Hei92b], [Urb03, p. 913] derived (D.79)

xB “
1

2
L2 f

c

d

1 ´
1

p
f
c
Lq2

, (3.51)

for which xB R R indicates pure Fraunhofer radiation. Cylindrical wave radia-
tion for all frequencies can therefore not be expected, contrasting to the case
for the infinite line source [Lip86, p.12], cf. Fig. 3.16a.

In the following, the signal processing framework within the angular spec-
trum domain is utilized to derive two other, yet consistent viewpoints of Fres-
nel/Fraunhofer transition. The discussion is restricted to the propagating wave
contributions, thus ignoring evanescent waves in the immediate vicinity of the
array. The approach is valid for evaluation distances on the main axis, for
which these contributions in (2.162) become negligible. The inverse spatial
Fourier transform F´1

|ky |ďω
c
t¨u of only the propagating contributions within the

spatio-temporal spectrum P px, ky, ωq is given by

Pproppx, y, ωq “ F´1
|ky |ďω

c
tP px, ky, ωqu :“

1

2π

`ω
c

ż

´ω
c

P px, ky, ωq e´j ky y dky (3.52)

and specified for the problem at hand – plugging (3.38), (2.162) to (3.39) –

P px, y, ωq “
´j

8π

`ω
c

ż

´ω
c

L
sin

`

ky
L
2

˘

ky
L
2

¨ H
p2q

0

ˆ
c

p
ω

c
q2 ´ k2

y ¨ x

˙

¨ e´j ky y dky. (3.53)

Numerical evaluation (3.53) with less computational load can utilize the large
argument approximation of the Hankel function for

b

pω
c
q2 ´ k2

y ¨ x " 1 as

P px, y, ωq “
´j

8 π

`ω
c

ż

´ω
c

rL
sin

`

ky
L
2

˘

ky
L
2

g

f

f

e

2

π
b

pω
c
q2 ´ k2

y ¨ x
e´j p

?
pω
c

q2´k2y ¨x´π
4 q e´j ky y

s dky.

(3.54)
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Angular Spectrum Synthesis of the Sound Field in the xy-Plane

An analytical solution of integrals similar to (3.53) was given in [Pee10] for
the on-axis pressure of a circular and rectangular piston. The solution of a
rectangular source turns out to be a infinite double sum – i.e. a discrete modal
superposition – including numerical very demanding functions such as factori-
als, the Struve and Bessel function, the Euler beta-function and the Gamma
function, cf. [Pee10, (38)]. A more general analytic solution for the whole
xy-plane using the spatio-temporal spectrum domain could not be found in
literature and derived so far. [Mas07] presented Fresnel integral solutions that
stem from a generalized Fresnel approximation of the Rayleigh-Sommerfeld
diffraction integral for rectangular sources.

Straightforward numerical evaluation of (3.54) allows for synthesizing the
sound field by weighted superposition of cylindrical waves with propagating
angles ´π

2
ă ϕ ă `π

2
, which can be interpreted as angular spectrum synthe-

sis, also referred to as method of decomposition into wave lengths [Mö09, Ch.
13.5.4]. Note that these waves stem from an infinite, continuous line source.
The integration over ky, i.e. over the different radiation angles, yields the
radiation characteristic of a line source with finite dimension by interference
phenomena. This viewpoint is in contrast to the numerical evaluation of (3.40),
which can be interpreted as source synthesis by weighted spherical monopoles,
also referred to as method of source decomposition [Mö09, Ch. 13.5.4]. Note
that (3.40) inherently includes evanescent waves, which is discarded in (3.53).
The discretization of ky in (3.53) for numerical evaluation leads to spatial rep-
etitions of the sound field along the y-axis, which must become negligible in
the evaluated area under interest.

The proposed framework provides an interesting opportunity, by definition
of an ideal spatial lowpass filter (cf. [Ahr12a, (4.55)], [Ahr10c, (9)])

HLPpky, ωq “

$

&

%

1 |ky| ă |2π
L

|

0 elsewhere ,
(3.55)

that might be included to the signal flow. This was discussed in [Ahr12a,
Ch. 4.6.6], [Ahr10c], although with the different motivation to suppress dis-
cretization effects (spatial aliasing) instead of truncation artifacts as in the
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case presented here. The cutoff wave numbers ky “ ˘2π
L

are the locations of
the first zeros of the array’s spatio-temporal spectrum (3.38), if they exist in
the visible region |ky “ ˘2π

L
| ă |ω

c
| for the chosen temporal frequency ω. The

spatial lowpass is thus used to independently synthesize the sound field that
corresponds to the null-to-null beam width BWNN , shortly termed main lobe
sound field,

Pmainpx, y, ωq “ F´1
|ky |ďω

c
tHLPpky, ωq ¨ Dwpky, ωq ¨ G0px, ky, ωqu (3.56)

and that of the remaining propagating side lobes, the side lobe sound field,

Psidepx, y, ωq “ F´1
|ky |ďω

c

␣`

1´HLPpky, ωq
˘

¨ Dwpky, ωq ¨ G0px, ky, ωq
(

. (3.57)

This is equivalent to splitting the integral (3.53) into three integration ranges

P px, y, ωq “

` 2π
L

ż

´ 2π
L

...

loomoon

Pmainpx,y,ωq

`

´ 2π
L

ż

´ω
c

... `

`ω
c

ż

` 2π
L

...

looooooomooooooon

Psidepx,y,ωq

. (3.58)

In Fig. 3.17 the introduced approach is exemplarily evaluated for the case
L “ 8 ¨ λ “ 5.5m. The Fresnel/Fraunhofer transition distance (3.51) for this
example is given to xB “ 21.8m. Fig. 3.17a shows the sound field’s pressure
level of the uniformly driven LSA in the xy-plane according to (3.53),(3.58).
Fig. 3.17b shows the main lobe sound field’s pressure level from (3.56), whereas
Fig. 3.17c depicts the side lobe sound field’s pressure level (3.57). The super-
position of Pmainpx, y, ωq Fig. 3.17b and Psidepx, y, ωq Fig. 3.17c results in the
complete sound field P px, y, ωq Fig. 3.17a by interference. Levels in the plots
are equivalently normalized to 20 log10p|P px “ xB, y “ 0q|q “ 0 dBrel, i.e. to
the magnitude at the Fresnel/Fraunhofer transition distance of the ’complete’
sound field. The colormap is clipped for values ą 12 dBrel and ă ´36 dBrel.
Note that in Fig. 3.17b the resulting sinc characteristic (cf. (3.17)) of the ideal
spatial lowpass filter (3.55) is observable in the sound field. This ideal spatial
lowpass filter is of infinite spatial dimension and thus not realizable in practice.
For the intended theoretical discussion this approach is however meaningful.
In Fig. 3.18 the levels along the main lobe axis were evaluated for all three
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(a) |P px, y, ωq| “

|Pmainpx, y, ωq ` Psidepx, y, ωq| in dBrel
(3.53), (3.58)
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(b) |Pmainpx, y, ωq| in dBrel (3.56) of main
lobe components.
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(c) |Psidepx, y, ωq| in dBrel (3.57) of side lobe
components.

Figure 3.17: Level of sound field |P px, y, ωq| in dBrel computed by numerical
evaluation of (3.58). Continuous, finite length LSA driven with Dwpky, ωq

(3.38) for L “ 5.5m and L{λ “ 8, λ “ 0.6875m Ñ f « 500Hz.
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Figure 3.18: On-axis level for Fig. 3.17.

cases of Fig. 3.17. The main lobe sound field exhibits a ripple free level de-
cay with a transition approximately at xB (3.51) from almost ideal cylindrical
(Fresnel region, ´3 dB per distance doubling) to spherical (Fraunhofer region,
´6 dB per distance doubling) level decay on axis. The on-axis side lobe sound
field exhibits lower overall level, notches and a level attenuation, that is larger
than 6 dB per distance doubling for x ą xB. The interference interaction
of the main and side lobe sound fields for x ă xB results in the rippled on-
axis level that is typical for the Fresnel region of finite length linear arrays
[Lip86, Hei92b, Ure04]. The total sound field in the xy-plane is corrupted by
the side lobes as long as its relative overall level compared to the main lobe
overall level is large enough to produce perturbing interferences. The side lobe
overall level attenuation for x ą xB is larger than 20 dB relative to the main
lobe overall level, and thus has weak impact on the total sound field, which is
expected in the Fraunhofer region.

By observing the dependence of the temporal frequency and LSA length
regarding the integration limits in (3.56) for the main lobe sound field

|ky “ sinϕ
ω

c
| “

2 π

L
, (3.59)

it becomes obvious that for higher frequencies and/or larger LSAs, the side
lobe field is composed of smaller radiation angles ϕ. These waves closer to
the main lobe angle ϕ “ 0˝ interfere with the main lobe within a much larger
spatial region. This indicates the large Fresnel/Fraunhofer transition borders
in (3.51) for high frequencies and large array lengths. In other words: the
more the driving function spectrum resembles a Dirac-like function within the
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visible region – that is for large L and/or large frequencies – the larger is the
spatial extent of the Fresnel region in which the sound field is similar to that
of an infinite line monopole. The LSA radiates directly into the Fraunhofer
region if the visible region exhibits less than the main lobe of (3.38) indicated
also by a complex result of (3.51), i.e. xB P C.

Angular Spectrum Synthesis of the On-Axis Sound Field

Another consistent viewpoint on the radiation phenomena can be given when
evaluating (3.54) along the main lobe axis, i.e. y “ 0. The integral can then
be cast to

P px, y “ 0, ωq “

G0,2D,Farpx,ωq
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

´
j

4

d

2

π ω
c
x
e´j ω

c
x e`j π

4 ˆ (3.60)

`π{2
ż

0

e´j ω
c
x pcosϕ´sinϕ L

2 x
´1q ´ e´j ω

c
x pcosϕ`sinϕ L

2 x
´1q

j π sinϕ

?
cosϕ dϕ

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

ModpL,x,ωq

using the variable substitution ky Ñ ϕ. The first term in front of the inte-
gral resembles the large argument approximation of the 2D freefield Green’s
function (2.8), i.e. the ideal, infinite line monopole located on the y-axis, cf.
(2.143). The integral represents a complex valued ’modulation’ function that
is dependent on L, x and ω. The ideal level decay and frequency response of
the infinite line monopole thus is varied by multiplication with the modulation
function which results in the on-axis radiation characteristic. A closed form
solution of the integral could not be found so far. The most look alike known
integral is [Gra07, (8.256/5)]. A promising way is to deploy the approach given
in [Pee10, Sec. IV] for line pistons. Since the integral exhibits highly oscillating
functions the stationary phase approximation may lead to a solution, which is
expected to be already solved in optics when approaching the Fresnel diffrac-
tion within the angular spectrum domain. From [Vee05] it can be concluded
that integrals of this kind are still an active research field in optics. This issue
was not further pursued in this work. Note that the integration range includes
a pole for ϕ “ 0, similar to |ky| “ ω

c
.

When casting (3.60) towards the Fresnel approximation approach (D.59) it
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can be expected that with v0 “ ω
c

pL{2q2

2x
the integral

P px, y “ 0, ωq “
1

4 π

d

2
ω
c
x
e´j ω

c
x

?
2πˆ (3.61)

´j
?
2
e`j π

4

`π{2
ż

0

e´j ω
c
x pcosϕ´sinϕ L

2 x
´1q ´ e´j ω

c
x pcosϕ`sinϕ L

2 x
´1q

j π sinϕ

?
cosϕ dϕ

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

«C2pv0q´jS2pv0q

should resemble the Fresnel integrals. The question is under which circum-
stances

ModCSpL, ω, xq “
C2pv0q ´ jS2pv0q

´j
?
2
e`j π

4

« ModpL, ω, xq (3.62)

holds. Since the solution (D.59) stems from the Fresnel diffraction integral (cf.
Ch. 2.2.6) the condition (2.102) must be valid. Using x1 “ p0, 0qT, the most
far monopole x1

0 “ pL{2, 0qT within the LSA and a chosen maximum angle π
32

for the second order exponential term, the condition

ω

c

}x1 ´ x1
0}4

8x3
CS

“
π

32
(3.63)

leads to the on main axis border distance xCS

ω

c

pL
2

q4

8x3
CS

“
π

32
Ñ xCS “

˜

ω

c

pL
2

q4

8 π
32

¸
1
3

“

ˆ

L4

2λ

˙
1
3

. (3.64)

For x ą xCS (D.59) is valid within an average error

20 log

»

—

–

ˇ

ˇ

ˇ

ˇ

C2pv0q´jS2pv0q
´j
?
2
e`j π

4

ModpL, ω, xq

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

(3.65)

of ˘0.2 dB and a maximum error of ˘0.5 dB for large typical LSA lengths L

and/or very large frequencies within the audio bandwidth. Note that for typi-
cal LSA applications also a maximum tolerated angle of π

8
yields a sufficiently

precise prediction of the on-axis level decay with the Fresnel integral within
error bound ˘0.5 dB. Hence, for x ą xCS (3.62), (D.59) holds, whereas for
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x ă xCS only (3.60) represents the correct radiation characteristic.
In Fig. 3.19 a numerical evaluation of both approaches is depicted using

the same LSA as for Fig. 3.17 and Fig. 3.18. For small x the deviation of
the Fresnel integral solution (subscript ’CS’) and the angular spectrum syn-
thesis approach becomes obvious. The vertical lines represent the π

8
and π

32

boundaries. The modulation function oscillates around 0 dB with ripples that
increase with larger x and exhibit a maximum of about 2.5 dB. Beyond the
Fresnel/Fraunhofer transition distance (3.51) the modulation function takes
the form of a straight line with 3 dB per distance doubling. Thus, in the Fres-
nel region the ideal level decay of the infinite line monopole is modulated with
a rippled function and in the Fraunhofer region both level decays of 3 dB re-
sult in the expected spherical wave radiation. This proves consistency with
the observations above. Note the different interpretation of the approaches.
While for (i) the main lobe sound field with ideal 3 dB and 6 dB level decays
in Fresnel and Fraunhofer is corrupted with the side lobe sound field by super-
position, i.e. interference, (ii) is based on modulation of the ideal 3 dB level
decay of the infinite line monopole with the Fresnel integrals.
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Figure 3.19: On-axis Fresnel/Fraunhofer transition: (3.60) vs. (D.59) (sub-
script ’CS’). L “ 5.5m and L{λ “ 8, λ “ 0.6875m Ñ f « 500Hz, cf.
Fig. 3.18.
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3.2.4 Spatial Truncation and Discretization Dw,Spky, ωq

The driving function for a finite length, uniformly driven and discretized array
built with spherical monopoles is with (3.23), (3.26) and (3.35) modeled as

Dw,Spy0, ωq “ rwpy0q ¨ Dpy0, ωqs ¨

`8
ÿ

µ“´8

δpy0 ´ µ∆yq

loooooooooomoooooooooon

“: 1
∆y

Xp
y0
∆y

q

. (3.66)

This includes spatial truncation by a rectangular window wpy0q and spa-
tial sampling with step size ∆y. The signal processing model is depicted in
Fig. 3.20. In the following discussion, an axisymmetric LSA geometry Fig. 3.11
with regard to y0 “ 0 and an odd number N of spherical monopoles is consid-
ered. Hence, for the uniformly driven array follows

Dw,Spy0, ωq “

`N´1
2

ÿ

µ“´N´1
2

δpy0 ´ µ∆yq. (3.67)

The corresponding spatio-temporal spectrum is given as

Dw,Spky, ωq “

`N´1
2

ÿ

µ“´N´1
2

e`j pky ∆yqµ. (3.68)

This geometric series has a closed form solution (cf. [Lyo11, App. B]), leading
to the so called aliased sinc-function or periodic sinc-function [Van02, Ch.
2.4], [Bal05, Ch. 6.3]

Dw,Spky, ωq “
sinpky ∆y N

2
q

sinpky ∆y 1
2
q
. (3.69)

Dpy0, ωq ¨

wpy0q

∆y

Gpx,0, ωq

˚ P px, ωq

Figure 3.20: Signal flow of the single layer potential for a linear, finite length,
discretized SSD located on the y-axis.
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Dw,Spky, ωq in (3.69) is periodic with 2π
∆y

. The main maximum is at ky “ 0

with amplitude N , this is the main lobe or major lobe. For ky “ 2π
∆y

µ other
local main maxima with the same amplitude N occur for µ ‰ 0, which are
referred to as grating lobes. Note that for even N , the spectrum Dw,Spky, ωq is
periodic with 4π

∆y
and the grating lobes exhibit alternating polarities ¯N , i.e

local main maxima and minima at ky “ 2π
∆y

µ. Thus, in general for N P N

Dw,Spky, ωq “

$

’

&

’

%

sinpky ∆y N
2 q

sinpky ∆y 1
2q

for ky ‰ 2π
∆y

µ

N ¨ p´1qµ pN´1q for ky “ 2π
∆y

µ
(3.70)

holds. For convenience only arrays with an odd number of N are discussed in
the remainder. Between two local main maxima – i.e. between the main lobe
and the first grating lobe or between two adjacent grating lobes – pN ´2q local
minima and maxima arise – the side lobes or minor lobes– that are separated
by pN ´ 1q zeros [Ste58, p.14], cf. Fig. 3.21a.

The zeros occur when the numerator of Dw,Spky, ωq (3.81) is zero and the
denominator is non-zero and are located at

ky,0 “
2π

∆y N
µ @µzµ “ ν N, µ P Z, ν P Z. (3.71)

In Fig. 3.21a the depicted zeros at ky,0 “ ˘p6, 12, 18, 24, 36q rad/m are integer
due to the chosen N “ 5 and ∆y “ 2π

30
m. The null-to-null beamwidth BWNN

again is the bandwidth between the first occurring zeros beside the main lobe,
i.e. µ “ ´1 and µ “ `1 and is given as [Van02, p.48]

BWNN “
4π

∆y N
“

4π

L
(3.72)

using the length L “ ∆y N that would be equivalent to a continuous array.
BWNN decreases for increasing length, cf. Fig. 3.21a.

Similar to (3.46) the locations ky,m of the sidelobe minima and maxima can
be derived with [Ste27, (7)], [Ste58, p.15]

dDw,Spky, ωq

dky
“ 0 Ñ tan

ˆ

ky,m∆y
N

2

˙

“ N tan

ˆ

ky,m ∆y
1

2

˙

. (3.73)
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Figure 3.21: Examples of the driving functions (3.69) vs. (3.38).
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This transcendental equation has to be solved numerically by iteration [Ste58,
p.15]. The locations are roughly given, when the numerator of (3.69) is a
maximum or minimum, i.e.

| sin

ˆ

ky,m∆y
N

2

˙

| “ 1. (3.74)

This yields a practical approximation of the side lobe locations at

ky,m “ ˘pµ `
1

2
q

2π

N ∆y
for N pν ´ 1q ` 1 ď µ ď N ν ´ 2, ν ě 1, ν P N,

(3.75)

i.e. centered between two zeros. For ν “ const the pN ´ 2q side lobe locations
between two adjacent main maxima are derived. In Table 3.6 the characteris-
tics of the side lobes maxima and minima w.r.t. their amplitude polarity are
given for chosen ν and µ. In the example in Fig. 3.21a the visible side lobe max-

ν odd ν even
µ even maximum minimum
µ odd minimum maximum

Table 3.6: Side lobe characteristics (3.75) for odd N .

ima and minima are approximately located at ky,m “ ˘p9, 15, 21, 39q rad/m
for the chosen N “ 5 and ∆y “ 2π

30
m using (3.75). They are indicated with

red dots in Fig. 3.21a. Numerically solving (3.73) yields more precise results
ky,m “ ˘p8.7064593488275, 15, 21.2935406511725, 38.7064593488275q rad/m
for this example. Note that side lobes exist, that are exactly located centered
between two grating lobes. For these side lobes the approximation (3.75) re-
turns the exact value. This occurs when equating both tan-functions in (3.73)
at their discontinuities. A strict proof of this behavior is not given here. In
the example in Fig. 3.21a this holds for ky,m “ ˘15 rad/m.

The first side lobes (µ “ 1) are approximately located at ky,m “ ˘3
2

2π
N ∆y

.
The level of this side lobe can be approximated by inserting ky,m into (3.69),
obtaining

Dw,Spky “ ˘
3

2

2 π

N ∆y
, ωq “

¯1

sinp˘ 3π
2N

q
. (3.76)
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For large N the small argument approximation sinpxq « x yields

Dw,Spky “ ˘
3

2

2π

N ∆y
, ωq “ ´

2N

3 π
. (3.77)

Relative to the main lobe amplitude Dw,Spky “ 0, ωq “ N the level of the first
side lobe is thus

20 log10

ˆ

2

3 π

˙

dB « ´13.46 dB. (3.78)

Note that the resulting level depends on N and ∆y and only for very large N

and very small ∆y the relative side lobe level of ´13.26 dB equivalent to the
uniformly driven, continuous array of finite length (3.38) is obtained.

In Fig. 3.21b it is exemplarily shown that arrays with the same equivalent
length L “ ∆y N of a continuous array but different chosen odd N ą 1 and
∆y roughly exhibit about the same functional characteristics as Dwpky, ωq

(3.38) for the range |ky| ă 1
4

2π
∆y

and thus also have approximately the same
null-to-null beamwidth. For L “ ∆y N the driving functions Dwpky, ωq and
Dw,Spky, ωq also exhibit the same zero locations except where grating lobes
occur. For smaller chosen ∆y the distance ∆ky “ 2π

∆y
between the main maxima

increases.
To explain the different occurring types of spatial aliasing that are generated

by Dw,Spky, ωq, it may be useful to consider the region |ky| ă π
∆y

of Dw,Spky, ωq

as the baseband to be reconstructed. Note that this baseband is not equivalent
to the baseband that stems from ideal sampling

Dw,S,idealpky, ωq “
1

2π
rDwpky, ωq ¨ HPrepky, ωqs ˚ky Xp

ky ∆y

2π
q (3.79)

using Dwpky, ωq (3.38), HPrepky, ωq (3.17) and Xp
ky ∆y

2π
q (3.27). Since no pre-

filter is considered in the WST theory, this approach is not followed and for
ease of discussion the former is explained. The region |ky| ą π

∆y
of Dw,Spky, ωq

exhibits spectral repetitions of the ’baseband’ for each µ 2π
∆y

. These repeti-
tions have to be perfectly suppressed in the ideal sampling model in order to
avoid postaliasing. The baseband of the driving function spectrum exhibits
an evanescent part for |ky| ą |ω

c
| ^ |ky| ă π

∆y
and a propagating part for

|ky| ă |ω
c
| ^ |ky| ă π

∆y
, exemplarily shown in Fig. 3.22a as E⃝ and P⃝ respec-
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Figure 3.22: Spatial postaliasing types for Dw,Spky, ωq.

tively. The example uses ∆y “ 2π
40

m and thus the spatial Nyquist wave number
is ky,N “ π

∆y
“ 20 rad/m. The spectral repetitions of µ “ ˘1 are indicated

with R⃝. In Fig. 3.22b the spatial postaliasing types that can occur for this
example are depicted: (i) propagating postaliasing by contributions from the
propagating driving function and Green’s function 1⃝ÑTable 3.2, (ii) evanes-
cent postaliasing by contributions from the propagating driving function and
the evanescent Green’s function 2⃝ÑTable 3.3 and (iii) evanescent postalias-
ing by contributions from the evanescent driving function and Green’s function
3⃝ÑTable 3.5. Evanescent postaliasing 2⃝, 3⃝ exhibits negligible contributions
to the intended sound field for meaningful listener distances, cf. Fig. 3.24d.
The most critical contribution is the propagating postaliasing 1⃝ that occurs
within the visible region |ky| ă |ω

c
| of the array. Especially the grating lobes

of same amplitude as the main lobe severely corrupt the intended sound field
and thus should be strictly avoided. Usually the discussion on spatial aliasing
and its avoidance is restricted to these propagating grating lobes.

Farfield Radiation Pattern

Due to the importance of avoiding grating lobes within the visible region, it is
common practice in array processing to state the farfield radiation pattern for
a given temporal frequency ω or wave length λ, i.e. ω

c
“ 2π

λ
and a given ∆y in
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different normalized spaces w.r.t. the ratio ∆y
λ

. The u-space definition is with
ky “ ω

c
sinϕ “ 2π

λ
sinϕ “ ω

c
u “ 2π

λ
u given as [Van02, (2.96)]

Dw,Spuq “
sinpu N

2
2π
λ
∆yq

sinpu 1
2

2π
λ
∆yq

for ´ 1 ď u ď `1. (3.80)

The Ψ-space definition is highly connected to the z-transform of the array
weights evaluated on the unit circle, (3.68), [Sch43]. For the visible region it
is given as [Van02, (2.97)]

Dw,SpΨq “
sinpΨN

2
q

sinpΨ
2

q
for ´

2π∆y

λ
ď Ψ ď `

2 π∆y

λ
. (3.81)

Thus, for the visible region (3.68) takes the form

Dw,SpΨq “

`N´1
2

ÿ

µ“´N´1
2

e`j Ψµ, (3.82)

from which the link to the z-transform and the discrete-space Fourier transform
becomes obvious, when Ψ is not bounded to the visible region. The ϕ-space
is used as a nonlinear mapping between ky Ø ϕ, to interpret farfield radiation
patterns as polar diagrams. It is given as [Van02, (2.95)]

Dw,Spϕq “
sinpsinϕ N

2
2π
λ
∆yq

sinpsinϕ 1
2

2π
λ
∆yq

for ´
π

2
ď ϕ ď `

π

2
. (3.83)

Dw,Spuq, Dw,SpΨq and Dw,Spϕq therefore are the farfield radiation patterns of
the array – also referred to as array factor [Van02, p.45], [IEE93] or form factor
[Hei92b, II.2.a] – derived from the general function Dw,Spky, ωq for a given ω.
These trigger the propagating part of the Green’s function’s spatio-temporal
spectrum.

The number of occurring grating lobes within the visible region is given as

Ng “ 2 t
∆y

λ
u, (3.84)

for which ∆y ă λ follows for its avoidance. If the complete grating lobe beams
(i.e. the null-to-null beamwidth of the first grating lobes µ “ ˘1) are not
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(d) Dw,Spϕq (3.83) for ∆y{λ “ 2.

Figure 3.23: Unit gain normalized driving function (3.69) in different spaces for
N “ 11, ω

c
“ 20 rad/m, ∆y “ 2π{10m, thus ∆y{λ “ 2, cf. [Van02, Fig. 2.18].

allowed to enter the visible region, the condition reads [Ste27, (12)]

∆y ď λ
N ´ 1

N
, (3.85)

which similar to (3.34) (i.e. the anti-aliasing condition for the infinite, dis-
cretized array) defines a criterion for avoidance of propagating spatial postal-
iasing by limiting the temporal frequency bandwidth of the driving function
(3.69). In Fig. 3.23 Dw,Spky, ωq is exemplarily depicted in the different spaces.
Four grating lobes occur within the visible region at u “ ˘0.5,˘1 that are
mapped to radiation angles ϕ “ ˘30˝,˘90˝ for the chosen parameters.

Another example is given in Fig. 3.15c and Fig. 3.15d that shows the map-
ping of the visible region of Dw,Spky, ωq to a polar diagram for a given temporal
frequency. The array has a length of L “ N ∆y that is equivalent to the con-
tinuous, finite length array of example Fig. 3.15a. Thus, the continuous and
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discretized array exhibit the same zero-to-zero beamwidth. Also the same tem-
poral frequency as for the continuous case is used to depict the polar pattern
in Fig. 3.15d. Two grating lobes occur within the visible region at ϕ “ ˘38.7˝.

On-Axis Radiation, Fresnel/Fraunhofer Transition

(i) The same evaluation approach as for Fig. 3.17 (Angular Spectrum Synthesis
of the Sound Field in the xy-Plane for the continuous LSA) using (3.58) is
performed for this discretized array built from spherical monopoles. With
(3.71) and (3.72) the main lobe sound field is defined for |ky| ă 2π

∆y N
“ 2π

L

with the equivalent length L “ ∆y N . The main lobe sound field’s pressure
level within the xy-plane is depicted in Fig. 3.24b. The side lobe sound field’s
pressure level is shown in Fig. 3.24c. Both sound fields interfere resulting in
the complete sound field, for which the pressure level is depicted in Fig. 3.24a.
The same observation as for the infinite, discretized array holds: non-negligible
interferences yield the chaotic region (still a deterministic phenomenon), in
which side and – here also – grating lobes corrupt the intended main lobe.
The propagating postaliasing grating lobes produce beams of the same level
as the main lobe.

In [Hei92b, p. 14, r2Border] the transition distance on the main lobe axis
between the chaotic region and the so called collective Fraunhofer region was
derived from the geometric diffraction approach to

xB “
1

2
N2∆y2

f

c
´

1

4 f
c

. (3.86)

For x ą xB the interference with the side lobe sound field becomes negligible
and the array radiates into the collective Fraunhofer region. For the chosen
example (3.86) yields xB “ 21.8m. All levels are normalized to the level of
the complete sound field at this distance as before. Similar to Fig. 3.18 the
on-axis level decay of the main lobe, side lobe and complete sound fields are
visualized in Fig. 3.26f. The main lobe sound field exhibits a cylindrical wave
level decay for x ă xB and a spherical wave level decay x ą xB on-axis, as
expected for the Fresnel/Fraunhofer transition. In the Fresnel region the side
lobe sound field has high level and the overall level of the complete sound
field is highly dependent on the evaluation position due to destructive and
constructive interference. It is observed that the ’rippled ´3 dB per distance
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(a) |P px, y, ωq| “

|Pmainpx, y, ωq ` Psidepx, y, ωq| in dBrel.

x /m

y 
/ m

 

 

dB
rel

x
B

0 10 20 30 40 50
−25

−15

−5
0
5

15

25

−36
−30
−24
−18
−12
−6
0
6
12

(b) |Pmainpx, y, ωq| in dBrel of main lobe
components.
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(c) |Psidepx, y, ωq| in dBrel of side lobe com-
ponents including two grating lobe beams.
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Figure 3.24: Level of sound fields with a discretized, finite length array for
L “ 5.5m and L{λ “ 8, λ “ 0.6875m Ñ f « 500Hz using Dw,Spky, ωq (3.69)
with N “ 5, ∆y “ 1.1m, cf. Fig. 3.15c and Fig. 3.15d that depict Dw,Spky, ωq

for the same parameterization.

doubling level decay’ in the Fresnel region of the continuous array not longer
holds when postaliasing occurs.

The inverse spatial Fourier transform

Pevpx, y, ωq “
1

2π

´|ω
c

|
ż

´8

Dw,Spky, ωqG0px, ky, ωq e´j ky y

`
1

2π

`8
ż

`|ω
c

|

Dw,Spky, ωqG0px, ky, ωq e´j ky y (3.87)
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constitutes the sound field that includes only the evanescent wave contribu-
tions. For that the evanescent part of the Green’s function spatio-temporal
spectrum (2.162) for z “ 0 and x ą 0

G0px, ky, ωq “
1

2π
K0

˜

c

k2
y ´

´ω

c

¯2

¨ x

¸

for k2
y ą

´ω

c

¯2

(3.88)

is to be used.
For the discussed array the evanescent sound field is depicted in Fig. 3.24d.

The level is also normalized w.r.t. 20 log10p|P px “ xB, y “ 0q∆y|q “ 0 dBrel.
In the vicinity of the array, especially very near to the monopoles, very high
levels exist. Besides the Fresnel and Fraunhofer region, the evanescent region
is a third characteristic region. As expected, the evanescent components decay
very rapidly. For x ą 1m the level is smaller ´20 dBrel and the evanescent
contributions become insignificant compared to the propagating parts of the
sound field. Thus, grating and side lobes of Dw,Spky, ωq that appear in the non-
visible region of the array have minor influence on the radiation characteristics
for reasonable listener positions in LS-SR and remain not further discussed in
this work.

For Fig. 3.25 the array with L “ ∆y N “ 5.5m “ const and L
λ

“ 8 is
varied w.r.t. N and ∆y. The sound field’s pressure level is depicted with level
normalization at xB. Due to ∆y N “ const the Fresnel/Fraunhofer region
transition distance (3.86) and the zero-to-zero beamwidth are equal for all ar-
ray configurations. Note that Fig. 3.25f and Fig. 3.24a show equivalent setups.
In Fig. 3.26 the on-axis level decay is plotted for the side lobe sound field,
the main lobe sound field and the complete sound field corresponding to the
configurations used in Fig. 3.25. Starting from subfigure a), the discretization
step ∆y is successively increased in the following subfigures. Due to (3.85)
the Fig. 3.25a to Fig. 3.25d show sound fields without spatial postaliasing,
whereas Fig. 3.25e and Fig. 3.24a indicate propagating postaliasing with two
grating lobes. Due to different spatial frequencies ky “ ˘ 2π

∆y
“ ω

c
sinϕ they

exhibit different radiation angles. The array configurations in Fig. 3.25a and
Fig. 3.25b behave almost like the continuous array in Fig. 3.17a. The on-axis
level decays in Fig. 3.26a and Fig. 3.26b support this observation, showing
only very small deviations w.r.t. the side lobe level compared to the contin-
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(a) N “ 15, ∆y “ 0.36̄m.
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(b) N “ 13, ∆y « 0.42m.

x /m

y 
/ m

 

 

dB
rel

x
B

0 10 20 30 40 50
−25

−15

−5
0
5

15

25

−36
−30
−24
−18
−12
−6
0
6
12

(c) N “ 11, ∆y “ 0.5m.
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(d) N “ 9, ∆y “ 0.61̄m.
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(e) N “ 7, ∆y « 0.78m.
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(f) N “ 5, ∆y “ 1.1m.

Figure 3.25: |P px, y, ωq∆y| in dBrel for LSA driven with Dw,Spky, ωq (3.69)
using L “ ∆y N “ 5.5m “ const for different discretization steps and L{λ “

8 Ñ λ “ 0.6875m Ñ f « 500Hz.
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(a) N “ 15, ∆y “ 0.36̄m.
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(b) N “ 13, ∆y « 0.42m.
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(c) N “ 11, ∆y “ 0.5m.
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(d) N “ 9, ∆y “ 0.61̄m.
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(e) N “ 7, ∆y « 0.78m.
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(f) N “ 5, ∆y “ 1.1m.

Figure 3.26: On-axis level for |Pmainpx, y “ 0, ωq∆y|, |Psidepx, y “ 0, ωq∆y|

and |P px, y “ 0, ωq∆y| in dBrel for LSA driven with Dw,Spky, ωq (3.69) using
L “ ∆y N “ 5.5m “ const for different discretization steps and L{λ “ 8 Ñ

λ “ 0.6875m Ñ f « 500Hz.
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(b) L{λ “ 32, λ “ 0.171875m, f « 2 kHz
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(c) L{λ “ 16, λ “ 0.34375m, f « 1 kHz, ˆ :
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(d) L{λ “ 32, λ “ 0.171875m, f « 2 kHz, ˆ :
N “ 65, ˝ : N “ 31, ˛ : N “ 21, � : N “ 11

Figure 3.27: On-axis level |P px, y “ 0, ωq∆y| in dBrel for LSA driven with
Dw,Spky, ωq (3.69) using L “ ∆y N “ 5.5m “ const for different discretiza-
tion steps and temporal frequencies Fig. 3.27a, Fig. 3.27c: 1 kHz, Fig. 3.27b,
Fig. 3.27d: 2 kHz.

uous array in Fig. 3.18. By further increasing ∆y, side lobes with increased
level near the first grating lobe enter the visible region. The sound field’s
pressure level within the xy-plane starts to deviate from that of a continuous
array, cf. Fig. 3.25c and Fig. 3.25d. This is due to the altered side lobe sound
fields in Fig. 3.26c and Fig. 3.26d. Their levels increase in the Fresnel region
and thus the interference with the main lobe sound field has stronger impact,
resulting in larger ripples in the Fresnel region. By further increasing ∆y in
Fig. 3.25e and Fig. 3.25f, two grating lobes enter the visible region and produce
side lobe sound fields that severely corrupt the main lobe sound field in the
Fresnel region. The side lobe level is partially larger than the main lobe level.
The typical ripple characteristic and 3 dB level decay per distance doubling
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in the Fresnel region of a continuous array is not longer observable in favor of
an irregular level distribution. Although still deterministic, this characteristic
is highly dependent on the chosen parameters f , N and ∆y and hardly pre-
dictable without numerical evaluation. A Fresnel region that is corrupted by
spatial aliasing should never be used as a listener region, when aiming at ho-
mogeneous sound reinforcement, which in essence is depicted in [Hei92b, Fig.
16, uncorrect array]. This region is not amenable for any equalization, since
the behavior is highly dependent on the evaluation point and the frequency.

This phenomenon gets even worse if more grating lobes enter the visible re-
gion. For Fig. 3.27a and Fig. 3.27b the array with L “ ∆y N “ 5.5m “ const
is varied in frequency L

λ
“ 16 Ñ« 1 kHz and L

λ
“ 32 Ñ« 2 kHz, respectively

and the discretization step size as well. The on-axis level decays are depicted
for the complete sound fields. In Fig. 3.27c and Fig. 3.27d the array factors
Dw,Spϕq (3.83) are depicted. The more grating lobes are within the visible
region the more the Fresnel region is corrupted and thus becomes not very
meaningfully usable for sound reinforcement. In essence, optimized LS-SR
ideally requires an uncorrupted main lobe sound field free of side and grating
lobe interference. In Ch. 4 it is discussed that this main lobe sound field can
be interpreted as optimized wavefront shaping.

(ii) Similar to the derivation of (3.60) – i.e. the angular spectrum synthesis
of the on-axis sound field – the inverse spatial Fourier transform of (3.14) using
(3.69)

P px, y, ωq “
´j

8π

`ω
c

ż

´ω
c

sinpky ∆y N
2

q

sinpky ∆y 1
2
q

¨ H
p2q

0

ˆ
c

p
ω

c
q2 ´ k2

y ¨ x

˙

¨ e´j ky y dky Ñ

P px, y “ 0, ωq “

G0,2D,Farpx,ωq
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

´j

4

d

2

π ω
c
x
e´j ω

c
x e`j π

4 ˆ (3.89)

`π{2
ż

0

ω

c

e´j ω
c
xpcosϕ´sinϕ∆y N

2 x
´1q ´ e´j ω

c
xpcosϕ`sinϕ∆y N

2 x
´1q

2 π j sinpω
c
sinϕ∆y 1

2
q

?
cosϕ dϕ

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

Modp∆y,N,x,ωq
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is derived for evaluation along the main lobe axis utilizing the large argument
approximation of the Hankel function. This again is to interpreted as the far-
and free-field 2D Green’s function that is modulated over distance x with the
integral expression. With the equivalent length L “ N ∆y and λ " ∆y – thus
modeling a quasi-continuous, spatial aliasing free array – from (3.89) follows

P px, y “ 0, ωq “
´j

4

d

2

π ω
c
x
e´j ω

c
x e`j π

4 ˆ (3.90)

`π{2
ż

0

e´j ω
c
xpcosϕ´sinϕ L

2 x
´1q ´ e´j ω

c
xpcosϕ`sinϕ L

2 x
´1q

j π sinϕ∆y

?
cosϕ dϕ

with a further applied small argument approximation sinpxq « x in the inte-
grand’s denominator. The result is then equivalent with the continuous array
(3.60) besides the weighting factor 1

∆y
that is due to the chosen sampling

scheme normalization (3.26). In Fig. 3.28 the on-axis level decay is depicted
together with its generating components from (3.89). Note that P px, y “ 0, ωq

and Modp∆y,N, ω, xq are weighted with ∆y to obtain same levels indepen-
dently from the employed monopole spacing. For x ą xB the same observa-
tions as for the continuous LSA hold. The modulation function takes the form
of a straight line with 3 dB level decay per distance doubling. For x ă xB

the ripples of the modulation function highly vary in level over distance when
grating lobes enter the visible region, cf. Fig. 3.28f and Fig. 3.28e. Due to the
sophisticated characteristic of the modulation function (3.89) it is not expected
to find an analytic closed form solution. Thus, interference phenomena have
to be evaluated numerically. For that the approach (i) can be used for any de-
sired driving function and LSA configurations including loudspeaker radiation
characteristics, while (ii) is restricted to the presented case of a rectangular
windowed, uniformly driven LSA using spherical monopoles.

3.2.5 Delay & Sum Beamforming Dw,S,Steeredpky, ωq

Up to now, only the main lobe radiation perpendicular to the array was con-
sidered with the derived WST driving functions, realizing a broadband array.
For extended discussions on the possible limitations of WST it is meaningful
to revisit the simplest beamforming approach, the delay-and-sum beamformer
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(a) N “ 15, ∆y “ 0.36̄m.
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(b) N “ 13, ∆y « 0.42m.
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(c) N “ 11, ∆y “ 0.5m.

1 2 5 10 20 50 100
−48
−42
−36
−30
−24
−18
−12
−6

0
6

x / m

20
 lg

(|
P

(x
)|

) 
/ d

B

(d) N “ 9, ∆y “ 0.61̄m.
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(e) N “ 7, ∆y « 0.78m.
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(f) N “ 5, ∆y “ 1.1m.

Figure 3.28: |P px, y “ 0, ωq∆y| ˛, |G0,2D,Farpx, ωq| ˝, |Modp∆y,N, x, ωq∆y|

� (3.89) in dBrel for LSA driven with Dw,Spky, ωq (3.69) using L “ ∆y N “

5.5m “ const and different discretization steps. L
λ

“ 8.



124 CHAPTER 3. DISCUSSION OF WST

(DSB) [Van02, Ch. 2.5]. With the modulation theorem of the spatial Fourier
transform

Dpy0, ωq ❞ t Dpky, ωq, (3.91)

e´j ky,Steer y0 ❞ t 2 π δpky ´ ky,Steerq, (3.92)

Dpy0, ωq e´j ky,Steer y0 ❞ t Dpky ´ ky,Steer, ωq (3.93)

the driving function’s spectrum for the infinite, continuous array (3.25) can be
written as (cf. (2.166) for ky,Steer “ ky,PW)

DSteeredpky, ωq “ 2π δpky ´ ky,Steerq, (3.94)

the driving function’s spectrum for the infinite, discretized array built from
monopoles (3.30) as

DS,Steeredpky, ωq “
2 π

∆y

`8
ÿ

µ“´8

δpky ´ ky,Steer ´ µ
2π

∆y
q, (3.95)

the driving function’s spectrum for the continuous, rectangular windowed, fi-
nite length LSA (3.38) as

Dw,Steeredpky, ωq “ L
sin

`

rky ´ ky,Steers
L
2

˘

rky ´ ky,Steers
L
2

, (3.96)

and the driving function’s spectrum for the discretized, rectangular windowed,
finite length LSA built from monopoles (3.69) as

Dw,S,Steeredpky, ωq “
sinprky ´ ky,Steers∆y N

2
q

sinprky ´ ky,Steers∆y 1
2
q
. (3.97)

Considering propagating wave radiation only by using (2.165)

kx,Steer “
ω

c
cosϕSteer ky,Steer “

ω

c
sinϕSteer, (3.98)
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the radiation direction of the main lobe within the xy-plane can be given as
the unit vector

kSteer “ pcosϕSteer, sinϕSteerq
T. (3.99)

For 0 ă ky,Steer ă `ω
c
, i.e. 0˝ ă ϕSteer ă `90˝ the main lobe beam is

steered up into the first quadrant (x ą 0, y ą 0). For ´ω
c

ă ky,Steer ă 0,
i.e. ´90˝ ă ϕSteer ă 0˝ the main lobe beam is steered down into the fourth
quadrant (x ą 0, y ă 0). For |ky,Steer| ą ω

c
the main lobe leaves the visible

region, resulting in an evanescent main lobe wave radiation and thus only side
and grating lobes produce propagating wave radiation.

The derivation of the DSB with the modulation theorem of the spatial
Fourier transform does not reveal the practical implications on how to im-
plement the DSB. Furthermore, the given solutions assume that positive and
negative delays may be applied to the sources, which is not feasible. The impli-
cations become more obvious when applying the shift theorem of the temporal
Fourier transform. Consider the practical case of a uniformly driven, finite
length LSA with N spherical monopoles located on the positive y-axis, start-
ing from the origin for convenience. With a cumulative delay time µ τ , τ P R`

0

applied to the sources and the shift theorem xpt ´ µ τq ❞ t e´jω µ τ Xpωq

(C.12), the driving function’s spatio-temporal spectrum for upward beam steer-
ing reads, cf. (3.68)

Dw,S,UpSteerpky, ωq “

N´1
ÿ

µ“0

“

e´jω τ µ
‰

e`j ky ∆y µ
“

N´1
ÿ

µ“0

e`j pky ∆y´ω τqµ, (3.100)

and for downward beam steering follows

Dw,S,DownSteerpky, ωq “

N´1
ÿ

µ“0

“

e´jω τ pN´1´µq
‰

e`j ky ∆y µ (3.101)

“ e´jω τ pN´1q

N´1
ÿ

µ“0

e`j pky ∆y`ω τqµ.
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Similar to (3.69), both geometric series can be given in closed form

Dw,S,Steeredpky, ωq “ e`j pky ∆y´ω τq N´1
2 ¨

sinprky ∆y ¯ ω τ s N
2

q

sinprky ∆y ¯ ω τ s 1
2
q
, (3.102)

where the first case (´) describes upward and the second case (`) downward
beam steering. With the definition of the propagation velocity cSteer P R`

cSteer “
∆y

τ
(3.103)

along the array and the temporal frequency dependent source’s wave number

ky,Steer “ ˘
ω

cSteer
(3.104)

the relation

ω τ “ ˘ ky,Steer ∆y (3.105)

links the temporal delay to the spatio spectrum domain, where again the first
case (here with ` sign) describes upward and the second case (here with ´

sign) downward beam steering. Introducing this into (3.102) yields

Dw,S,Steeredpky, ωq “ e`j rky¯ky,Steers∆y N´1
2 ¨

sinprky ´ ky,Steers∆y N
2

q

sinprky ´ ky,Steers∆y 1
2
q
. (3.106)

For consistency the array is relocated symmetrical to the origin. This is con-
veniently done with the shift theorem of the spatial Fourier transform (C.10)
and finally yields the driving functions’ spatio-temporal spectrum of the DSB

Dw,S,Steeredpky, ωq “ e¯j ky,Steer ∆y N´1
2 ¨

sinprky ´ ky,Steers∆y N
2

q

sinprky ´ ky,Steers∆y 1
2
q
. (3.107)

Note that the frequency dependent phase shift of the DSB is frequently ignored
in the literature. In [Mö09, Ch. 3.5.3] the correct spatio-temporal spectrum
of the DSB is given, though only for upward beam steering for convenience of
the mathematical treatment.

For the supersonic case, i.e. cSteer ą c the radiation angle ϕSteer of the
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Figure 3.29: Supersonic DSB: unit gain normalized driving function (3.107) in
different spaces for N “ 15, ω

c
“ 10 rad/m, ∆y “ 2π{20m, thus ∆y

λ
“ 1

2
and

ϕSteer “ ´60˝, ky,Steer “ ´8.66 rad/m, τ “ 0.7932ms, cSteer “ 396.06m/s.

propagating main lobe and the propagation velocity is linked to

cSteer “
∆y

τ
“

c

| sinϕSteer|
. (3.108)

The main lobe can be steered within the visible region. For the case ϕSteer “

˘90˝ the endfired array with cSteer “ c is obtained, whereas ϕSteer “ 0˝, i.e.
cSteer “ 8 Ñ ky,Steer “ 0 yields the broadband array. For the subsonic case
cSteer ă c only side and grating lobes are located in the visible region and
produce propagating wave radiation. The main lobe becomes evanescent. In
Fig. 3.29 an example for a supersonic DSB is depicted for an LSA that fulfills
the anti-aliasing condition. The main lobe is steered to ϕSteer “ ´60˝. In
Fig. 3.30 the subsonic DSB is visualized. The main lobe is shifted to ky,Steer “

´15 rad/m outside the visible region. In this example a grating lobe within
the visible region located at ky “ 0 produces propagating spatial aliasing that
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Figure 3.30: Subsonic DSB: unit gain normalized driving function (3.107) in
different spaces for N “ 11, ω

c
“ 10 rad/m, ∆y “ 2 π{15m, thus ∆y

λ
“ 2

3
and

ky,Steer “ ´15 rad/m, τ “ 1.8318ms, cSteer “ 228.6̄m/s.

radiates perpendicular to the LSA with the same amplitude as the intended
main lobe. Note that both LSAs exhibit about the same length, therefore their
main and grating lobe beamwidth are roughly of the same size in ky, u and
Ψ-space, since these spaces are shift invariant w.r.t. the spectrum. However,
in ϕ-space, due to the nonlinear mapping, for larger |ϕ| the main and grating
lobe bandwidth increases and lobes become unsymmetrical.

Anti-Aliasing Condition

In order to avoid propagating spatial aliasing from grating lobes the anti-
aliasing condition [Ste29, p.175]

∆y ă
λmin

2

N ´ 1

N
(3.109)
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must hold. It ensures that no grating lobe beams enter the visible region for all
possible steering angles |ϕSteer| ă 90˝ of the discussed rectangular windowed
LSA built from spherical monopoles. For a very large source number N (3.109)
merges into – what is also stated as the WST#2 criterion –

∆y ă
λmin

2
, (3.110)

which is equivalent allowing only radiating wave numbers up to the spatial
Nyquist wave number, cf. (3.16). Thus, instead of using the spatial lowpass
characteristic of a postfilter to avoid spatial aliasing, the criterion relies on the
limitation of the excitation signal’s temporal frequency bandwidth to fmax “

c
λmin

. Eq. (3.110) is commonly referred to as the spatial sampling condition.
The condition (3.109) may be relaxed if only a limited steering angle |ϕSteer| ă

|ϕSteer,max| is allowed. For an infinite linear array the condition [Spo06c, (10)],
[Ahr10d, (38)]

∆y ă
λmin

1 ` | sinϕSteer,max|
(3.111)

for SFS of a plane wave was already discussed in (3.33), which is also well
known in antenna design [Kum92, (13)], [Van02, (2.129)]. For a finite length,
rectangular windowed array with N spherical monopoles the condition becomes

∆y ă
λmin

1 ` | sinϕSteer,max|

N ´ 1

N
, (3.112)

which is consistent with the result given in [Ste27, (12)] for ϕSteer,max “ 0.
Very small discretization steps and thus very small individual drivers are

required to fulfill the condition (3.112) for the highest audio frequencies. This
is visualized in Fig. 3.31 for chosen discretization steps. The LSA length is
always L « 5m. In the given example using 1”-drivers would allow grating
lobe free sound fields up to 10 kHz, when restricting |ϕSteer,max| ă 20˝, while
the 0.45”-drivers would allow endfire beams up to 15 kHz. Such techniques
(e.g. using 1.5”-drivers) have been engineered nowadays, while this was not
considered feasible when initially approaching LSA designs in the early 1990s.

Therefore, WST proposed another approach to avoid or reduce propagating
spatial aliasing by using a specific postfilter for uniformly driven LSAs and ini-
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Figure 3.31: Aliasing frequency over steering angle (3.112).

tially waiving electronic beam steering approaches such as DSB for the highest
audio frequencies. This technique is discussed in the next section.

3.3 Ideal WST-Postfilter
For the WST driving function (3.30) a very specific postfilter, i.e. a loudspeaker
radiation characteristic acts as an ideal reconstruction filter. Consider the
corresponding signal flow of an infinite, discretized SSD depicted in Fig. 3.32,
for which similar to (3.32) the synthesized sound field is given as

P px, y, ωq “
1

∆y

`8
ÿ

µ“´8

HPostpky “ µ
2 π

∆y
, ωqG0px, ky “ µ

2 π

∆y
, ωq e´jµ 2π

∆y
y

(3.113)

with an included reconstruction filter.
The ideal WST postfilter is applied for the highest audio frequencies in

order to avoid the actually required very small distances between the speakers

Dpy0, ωq
∆y

HPostpy0, ωq

˚

Gpx,0, ωq

˚ P px, ωq

Figure 3.32: Signal flow of the single layer potential for a linear, infinite,
discretized SSD located on the y-axis using a reconstruction filter.
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y
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∆y

l

Dpy0, ωq DSpy0, ωq DS,Rectpy0, ωq

Figure 3.33: Spatial sampling and reconstruction: continuous WST driving
function Dpy0, ωq, sampled driving function DSpy0, ωq and reconstructed driv-
ing function DS,Rectpy0, ωq with the rect-function used as the postfilter.

for spatial-aliasing free SFS. This filter then allows rather large discretization
steps ∆y. From [Hei92b, I.3.], [Urb03, Fig. 6] it may be deduced that the
employed waveguides, i.e. specially designed horns for the high frequency
section can be modeled as ideal line pistons of length l (called slot in [Hei92b,
II.2.c]). The resulting reconstructed driving function using waveguides is piece-
wise constant with amplitudes DS,Hpy0, ωq “ DS,Rectpy0, ωq P t0, 1u. This is
illustrated in Fig. 3.33. A similar visualization was used in [Urb03, Fig. 6] to
motivate waveguide modeling. The ideal line piston can be given as a rect-
function postfilter and its corresponding sinc-function in the spatial Fourier
domain [Gir01, (9.19)], [Gir01, (9.24)], similar to (3.36)

HRectpy0, ωq “ rect
´y0
l

¯

“

$

&

%

1 for |y0| ď l
2

0 else
❞ t

HRectpky, ωq “ l sip
ky l

2
q

$

’

&

’

%

l
sin

´

ky l

2

¯

ky l

2

for ky ‰ 0

l for ky “ 0.

(3.114)

This constitutes a transposed correspondence of the ideal lowpass filter in
temporal and spatial sampling, cf. (3.7), (3.17). The sampled driving function
(3.26) is interpolated with the postfilter by convolution

DS,Rectpy0, ωq “

«

Dpy0, ωq ¨

`8
ÿ

µ“´8

δpy0 ´ µ∆yq

ff

˚y rect
´y0
l

¯

, (3.115)
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which corresponds to [Gir01, (11.49)]

DS,Rectpky, ωq “
1

2π

2π

∆y

`8
ÿ

µ“´8

Dpky ´ µ
2π

∆y
, ωq ¨ l

sin
´

ky l

2

¯

ky l

2

(3.116)

in the spatio-temporal spectrum domain. Inserting the WST driving function
(3.23) – Fig. 3.33, gray – into (3.115), and (3.30) into (3.116) respectively,
yields

DS,Rectpy0, ωq “

«

1 ¨

`8
ÿ

µ“´8

δpy0 ´ µ∆yq

ff

˚y rect
´y0
l

¯

, (3.117)

DS,Rectpky, ωq “
1

∆y

`8
ÿ

µ“´8

2 π δpky ´ µ
2 π

∆y
q ¨ l

sin
´

ky l

2

¯

ky l

2

. (3.118)

The Dirac comb in DSpy0, ωq – Fig. 3.33, light blue – is ’smeared’ by the con-
volution with the rect-function yielding DS,Rectpy0, ωq – Fig. 3.33, dark blue.

From Fig. 3.33 can be graphically deduced that the driving function Dpy0, ωq “

1 “ DS,Rectpy0, ωq is perfectly reconstructed when l “ ∆y. This models a
quasi-continuous LSA and is conveniently proven within the spatio-temporal
spectrum domain. For l “ ∆y (3.118) reads

DS,Rectpky, ωq “

`8
ÿ

µ“´8

2 π δpky ´ µ
2 π

∆y
q ¨

sin
´

ky ∆y

2

¯

ky ∆y

2

. (3.119)

The Dirac impulses w.r.t. µ in the Dirac comb with spacing ∆ky “ 2π
∆y

“ 2π
l

are weighted by the sinc-function. The individual contributions read

DS,Rectpky, ωqµ “2 π δpky ´ µ
2 π

∆y
q

sin

ˆ

µ 2π
∆y

∆y

2

˙

µ 2π
∆y

∆y

2

“2 π δpky ´ µ
2 π

∆y
q
sin pµπq

µπ
. (3.120)
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For µ “ 0 follows

DS,Rectpky, ωqµ“0 “ 2 π δpkyq “ Dpky, ωq (3.121)

and for µ ‰ 0 due to the zeros of the sinc-function

DS,Rectpky, ωqµ‰0 “ 0. (3.122)

This proves perfect reconstruction towards (3.25)

DS,Rectpky, ωq “

$

&

%

Dpky, ωq “ 2π δpkyq if µ “ 0

0 otherwise
. (3.123)

Note that this perfect reconstruction holds only for the WST driving function
(3.25), i.e. wave radiation perpendicular to the LSA and ∆y “ l. This re-
construction is then independent from the temporal frequency and from the
chosen length l, as long ∆y “ l holds.

The same discussion can be given for Dw,Spky, ωq (3.69), i.e. the finite
length LSA using HRectpky, ωq (3.114) for the case ∆y “ l by observing that
L “ N l “ N ∆y. The reconstruction reads

Dw,Spky, ωq ¨ HRectpky, ωq “
sinpky ∆y N

2
q

sinpky ∆y 1
2
q

¨ l
sin

´

ky l

2

¯

ky l

2

“
sinpky l

N
2

q

sinpky l
1
2
q

¨ l
sin

´

ky l

2

¯

ky l

2

¨
N

N
“ L

sin
`

ky
L
2

˘

ky
L
2

“ Dwpky, ωq. (3.124)

As expected this yields the driving function’s spatio-temporal spectrum of the
continuous, finite length LSA (3.38)

Dwpky, ωq “ Dw,Spky, ωq ¨ HRectpky, ωq
ˇ

ˇ

l“∆y
. (3.125)

Designing waveguides that match the ideal line piston or using other high
directed sources and LSA setups that approach l

∆y
“ 1 as close as possible can

be seen as a prevailing engineering effort w.r.t. LSA design in the 1990s and
2000s, leading to various patents, e.g. [Hei92a, Leh00, Tho07, Eng09].

With the given treatment on the fundamentals of array processing derived
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in the spatio-temporal spectrum domain, the WST criteria [Urb03] for straight
LSAs can be conveniently revisited and reinterpreted in the following section.

3.4 WST Criteria

The initial derivations of the WST criteria consider a uniformly driven and
rectangular windowed LSA of length L, a spatial discretization with equidis-
tant source spacing ∆y and an interpolation with spatial lowpass postfilters
modeled from an odd number N of pistons. The signal flow of the WST is
depicted in Fig. 3.34 and a geometrical sketch of the considered LSA setup is
visualized in Fig. 3.35.

It appears meaningful to apply a unity gain normalization in the spatio-
temporal spectra w.r.t. ky “ 0 in all required driving function and postfilter
Fourier transform pairs. In doing so, relative grating and side lobe ampli-
tudes can be conveniently discussed in terms of their absolute values. The
corresponding spatial Fourier transform pairs for WST indicated by the ❞ t
symbol then read, cf. (3.22), (3.38), (3.69)

Dpy0q “ 1 ❞ t Dpky, ωq “ 2π δpkyq, (3.126)

Dpy0, ωq ¨

wpy0q

∆y

HPostpy0, ωq

˚

Gpx,0, ωq

˚ P px, y, ωq

truncation sampling model wave propagator

Dpky, ωq ˚

1
2π wpkyq

˚

1
2πXp

ky∆y
2π q HPostpky, ωq

¨

G0px, ky, ωq

¨ P px, ky, ωq

truncation & sampling speaker & radiation

Dw,Spky, ωqDwpky, ωq Dw,S,Hpky, ωq

Figure 3.34: WST signal processing model in temporal (top) and spatio-
temporal spectrum domain (bottom). Linear convolution w.r.t. y, ky is de-
noted by ˚ , multiplication w.r.t. y, ky by ¨ . This is equivalent to Fig. 3.1
except for the omitted prefilter.
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Dwpy0q “

$

&

%

1
L

for |y0| ď L
2

0 else
❞ t Dwpky, ωq “

$

&

%

sinpky
L
2

q

ky
L
2

for ky ‰ 0

1 for ky “ 0,

(3.127)

Dw,Spy0q “

`N´1
2

ÿ

µ“´N´1
2

1

N
δpy0 ´ µ∆yq ❞ t

Dw,Spky, ωq “

$

’

&

’

%

sinpky ∆y N
2 q

N sinpky ∆y 1
2q

for ky ‰ 2π
∆y

µ

1 for ky “ 2π
∆y

µ.
(3.128)

As reconstruction filter HPostpky, ωq, the line piston on y-axis with length l

HRectpy0q “

$

&

%

1
l

for |y0| ď l
2

0 else
❞ t

HPostpky, ωq “ HRectpky, ωq “

$

&

%

sinpky
l
2

q

ky
l
2

for ky ‰ 0

1 for ky “ 0,
(3.129)

x

x0 x´x0 P px, ωq

ϕ

βpx0,xq

l, 2 r0

∆y

y

x

z

Figure 3.35: Side view of the discussed setup with LSA length L. The LSA
is either built from line pistons of length l on the y-axis or circular pistons
of diameter 2 r0 located within the yz-plane and centered on y-axis. The
distance between the centers of two adjacent pistons is indicated as the spatial
discretization step ∆y. Wave propagation within the xy-plane for x “ px ą

0, y, z “ 0qT is considered. The wave propagation angle ´π
2

ď ϕ ď `π
2

holds.
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and the circular piston within the yz-plane with radius r0

HCircpy0, z0q “

$

&

%

1
π r20

for y20 ` z20 ď r20

0 else
❞ t

HPostpky, ωq “ HCircpky, ωq “

$

&

%

2 J1pky r0q

ky r0
for ky ‰ 0

1 for ky “ 0
(3.130)

were considered for the derivation of the first WST criterion, denoting the
cylindrical Bessel function of 1st kind of 1st order [Olv10, §10.2] with J1p¨q.
The derivations of these postfilter characteristics are revisited in App. D.
Note that [Hei92b] introduced the rectangular piston at first, by applying the
second product theorem [Ste27], [Van02, Ch. 2.8] and reducing the rectangular
to a line piston by assuming the piston’s width to be much smaller than the
radiated wave length λ, cf. [Hei92b, p.8]. In case of using ideal spherical
monopoles the postfilter reads

HSphpy0q “ δpy0q ❞ t HSphpkyq “ 1. (3.131)

Another advantage of the introduced Fourier pair normalization now becomes
obvious. If the piston dimension is decreased to zero in the limit, i.e. l Ñ 0,
r0 Ñ 0 the signal processing allows for the interpretation of using monopoles.

Under the assumption that the LSA is built from identical individual sources,
the reconstructed driving function’s spatio-temporal spectrum

Dw,S,Hpy0, ωq “Dw,Spy0q ˚ HPostpy0, ωq ❞ t
Dw,S,Hpky, ωq “Dw,Spky, ωq ¨ HPostpky, ωq (3.132)

follows as a consequence of the product or pattern multiplication theorem [Ste29,
p.174], [Van02, Ch. 2.8]. This was already deployed in Ch. 3.3 to derive the
special WST case of perfect reconstruction. In the visible region this product
is composed of the array factor Dw,Spϕ, ωq and the farfield radiation pattern
of the utilized sources HPostpϕ, ωq (referred to as form factor [Hei92b, II.2.a]).
This yields the final array factor Dw,S,Hpϕ, ωq, i.e. the farfield radiation pat-
tern of the LSA that holds in the Fraunhofer region. A very related problem
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discussion in antenna design using subarrays is given in [Bro12]. When using
ideal spherical monopoles, the final array factor is identical to the array factor.

The propagating contributions of the sound field can be again computed by
the angular spectrum synthesis, cf. (3.2)

P px, y, ωq “
1

2 π

`ω
c

ż

´ω
c

Dw,S,Hpky, ωqG0px, ky, ωq e´j ky y dky. (3.133)

This correctly synthesizes the sound field of the LSA’s Fresnel (nearfield) and
Fraunhofer (farfield) region, when being in the farfield of the individual pistons.
The synthesis is equivalent to

P px, ωq “

N
ÿ

n“1

Dpx0rns, ωqHPostpβpx0rns,xq, ωq
1

4 π

e´j ω
c

|x´x0rns|

|x ´ x0rns|
. (3.134)

This equation, already introduced as (1.3) forms the basis for numerical LSA
prediction software that use measured farfield radiation patterns of loudspeak-
ers. Note that (3.134) allows for the usage of individual postfilters, whereas
the proposed sampling/reconstruction model leading to Dw,S,Hpky, ωq by the
product theorem in (3.133) relies on the fact that the postfilter characteristic
is identical for all sources.

It is worth reiterating that the term G0px, ky, ωq e´j ky y in (3.133) describes
sound fields generated by an infinite, pulsating line monopole with different ra-
dial wave propagation directions due to (2.157), cf. [Sku71, Ch. 21.12]. These
will be triggered and weighted by the spatio-temporal spectrum Dw,S,Hpky, ωq

and the superposition of all waves (i.e. the integral operation) yields the sound
field of the finite length LSA by interference. Grating lobes within the array
factor that become insufficiently suppressed in the final array factor are the
most critical contributions to spatial aliasing since they trigger propagating
waves. Their interference with the intended main lobe beam yields a corrupted
Fresnel region. Furthermore, these grating lobes may undesirably radiate into
space where a low sound pressure level is required by application. In gen-
eral it is observed, that a ’smoother’ function Dw,S,Hpky, ωq (smooth spatial
truncation window, no or well suppressed grating lobes) will produce a more
homogeneous sound field in both, the Fresnel and Fraunhofer region of the
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LSA.
The first three WST criteria are aimed at different approaches for straight

and uniformly driven LSAs (i) to completely avoid grating lobes within the
visible region (WST #2) and (ii) to attenuate them, if entering into the visible
region cannot be avoided (WST #1, WST #3).

3.4.1 WST#1 Criterion

The WST#1 criterion, also referred to as the active radiating factor (ARF)
theorem

WST #1 for line piston: ARF “
l

∆y
ě 0.82 (3.135)

relates the discretization step size ∆y between adjacent, identical line pistons
of length l and a tolerated grating lobe level. The criterion ensures, that the
maximum grating lobe level in the farfield does not exceed -13.5 dB relative to
the intended main lobe level and holds for a large number N of line pistons.
The physical length of a line piston LSA is

L “ pN ´ 1q∆y ` l. (3.136)

By utilizing the spatial lowpass characteristics of highly directed sources, i.e.
waveguides for the high audio frequency band, spatial aliasing is aimed to be
reduced or even avoided by means of this criterion. It follows from an enhanced
discussion of the perfect reconstruction given in Ch. 3.3 by henceforth allowing
gaps between the waveguides. The maximum tolerated grating lobe level of
-13.5 dB relative to the intended main lobe can be understood as the essence
of the 1st WST criterion (3.135). In [Hei92b, Urb01, Urb03] it is concluded
that this is only realizable with line pistons, i.e. waveguides. A discussion for
both, the line and the circular piston is given in the present work.

The ARF Theorem for a Line Piston LSA

The initial derivation of the ARF-theorem [Hei92b, (8)], [Urb03, Sec. 3.2]
was performed by defining a continuous, uniformly driven, finite length line
source and a polarity-inverted so called disruption grid (cf. [Urb03, Fig. 6]).
This inherently models a line piston LSA. Another, yet consistent derivation
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(a) Line piston LSA, ARF “ q, the ratio q “ 0.812797
with a resulting 1st grating lobe attenuation of 13.26
dB is indicated with lines.
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(b) Circular piston LSA, ARF “ π
4 q2, the ratio q “

0.9635792 with a resulting 1st grating lobe attenuation
of 13.26 dB is indicated with lines.

Figure 3.36: Grating lobe level vs. q for (a) a line piston LSA and (b) a circular
piston LSA. Relative grating lobe levels for ky “ µ 2π

∆y
, 1 ď µ ď 5 are given.

Only for a large number N of pistons this level corresponds to the actual local
maxima/minima of (3.137) and (3.143).
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directly using the product theorem (3.132) with (3.128) and (3.129)

Dw,S,Hpky, ωq “
1

N

sinpky ∆y N
2

q

sinpky ∆y 1
2
q

¨
sin

`

ky
l
2

˘

ky
l
2

(3.137)

is given here. This is similar to discussing Fraunhofer diffraction of gratings,
i.e. multiple slits, cf. [Ots90], [Bor06, Ch. 8.6]. Finding the local minima and
maxima using

dDw,S,Hpky, ωq

dky
“ 0, (3.138)

– especially these of grating lobes in order to control their largest occurring
level by the ratio l

∆y
– does not lead to a general closed form solution, rather

again to a transcendental equation. However, for large N the grating lobe
maxima are approximately located at ky “ µ 2π

∆y
, µ P Z,‰ 0 in (3.137). The

grating lobes decrease in level – except for the case l “ 0 – for increasing |ky|

due to the spatial lowpass characteristic of (3.129). Hence, the first grating
lobes at µ “ ˘1 determine the maximum occurring, tolerated level of grating
lobes. With the initial definition of the active radiating factor [Urb03, p.917]

ARF “ q “
l

∆y
0 ď q ď 1, (3.139)

(3.137) is evaluated at ky “ ∆ky “ 2π
∆y

to

Apqq “ Dw,S,Hpky “ ∆ky, ωq “
sin pπ qq

π q
, (3.140)

for which Apqq P R` is valid within the given range of q. For q “ 0 a linear
array built from point sources is modeled. In this case all grating lobes will
not be suppressed – Dw,S,Hpky “ µ∆ky, ωq “ 1 – due to the missing spatial
lowpass characteristic of the spherical monopole. In the limit of q “ 1 all
grating lobes are perfectly attenuated due to Dw,S,Hpky “ µ ky,S, ωq “ 0 for
µ ‰ 0. This yields the already discussed perfect reconstruction (3.125)

Dwpky, ωq “ Dw,Spky, ωq ¨ HRectpky, ωq
ˇ

ˇ

l“∆y
(3.141)
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towards the driving function’s spectrum of the continuous, finite length LSA
(3.127).

The maximum tolerated grating lobe level thus can be controlled within the
range 0 dB to ´8 dB by setting 0 ď q ď 1. This is depicted in Fig. 3.36a.

In [Hei92b, Urb03] the maximum tolerated level of grating lobes is set to
´13.26 dB, i.e. the largest occurring side lobe level of a uniformly driven,
continuous linear array. To be precise, -12dB in [Hei92b] and -13.5 dB in
[Urb03] were actually used. Numerically solving (3.140) for Apqq “ 10´ 13.26

20 ,
the ARF is given as

ARF “ q « 0.812797. (3.142)

This is in accordance with (3.135) [Urb03, p.917], where the approximation
ARF ě 0.82 for large N is given. Note that (3.140) is independent of N in
first instance. As discussed above, the largest local maxima of (3.137) except
for ky “ 0 are located at ky “ ˘∆ky for large N .

The ARF seems to be a temporal frequency independent measure since the
derivation was performed in the ky-domain. The occurrence of (attenuated)
grating lobes however depends on the visible region ´ω

c
ă ky ă `ω

c
. This

indicates that if (3.110) can be fulfilled, the ARF criterion is of secondary im-
portance and conversely, if (3.110) cannot be met, the grating lobe suppression
is largely dependent on the characteristics of the spatial reconstruction filter.
An LSA with smaller ∆y and smaller ARF may produce less spatial aliasing
for an intended frequency range, than an LSA with larger ∆y and larger ARF.
This becomes especially important when aiming for electronic beam steering.
A discussion on this issue is presented in Ch. 3.4.2.

The ARF Theorem for a Circular Piston LSA

A similar treatment for the ARF theorem is given for the circular piston LSA.
Applying the circular piston’s postfilter characteristic (3.130) and the driving
function (3.128) to the product theorem (3.132) yields

Dw,S,Hpky, ωq “
1

N

sinpky ∆y N
2

q

sinpky ∆y 1
2
q

¨
2 J1pky r0q

ky r0
. (3.143)
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With the piston’s diameter d0 “ 2 r0 a ratio of lengths

q “
d0
∆y

0 ď q ď 1 (3.144)

is defined. The ARF can be deduced to

ARF “
π r20
∆y2

“
π
`

q
2
∆y

˘2

∆y2
“

π

4
q2, (3.145)

by modeling a quadratic enclosure of side length ∆y, cf. [Urb03, p.918]. The
physical length of a circular piston LSA is

L “ pN ´ 1q∆y ` d0. (3.146)

The ARF here is effectively a ratio of surface areas (ARF ‰ q), whereas for the
line piston a ratio of line lengths is defined (ARF “ q). Therefore, care must
be taken when comparing the definitions of the ARF and q and its implications
for different pistons.

Evaluating (3.143) at ky “ ∆ky “ 2π
∆y

yields the relative level of the first
grating lobe

Apqq “ Dw,S,Hpky “ ∆ky, ωq “
2 J1pπ qq

π q
. (3.147)

The levels of the first five grating lobes over q are depicted in Fig. 3.36b. The
maximum possible ARF “ π

4
holds for q “ 1 using directly adjacent pistons

∆y “ d0, cf. [Urb03, p.918]. This yields the maximum possible attenuation of
grating lobes. The level of the first grating lobe is then evaluated to

20 log10

ˆ

Apq “ 1q “
2 J1pπq

π

˙

« ´14.84 dB. (3.148)

This is in contrast to the line piston, for which perfect suppression (´8 dB)
of the first grating lobe (and all others) results if q “ 1, cf. Fig. 3.36a vs.
Fig. 3.36b. This is due to the fact that the first zero of the Bessel function
cannot be coincidentally located at ky “ ∆ky without overlapping pistons,
which is not feasible, cf. Fig. 3.37b.

Following the initial intention of the 1st WST criterion, numerically solving
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(3.147) for Apqq “ 10´ 13.26
20 yields

q “ 0.9635792 ARF “
π

4
q2 “ 0.72923. (3.149)

Hence, the circular piston postfilter is able to attenuate the first grating lobe
by 13.26 dB and could be stated WST #1 compliant if

WST #1 for circular piston: ARF “
π

4

ˆ

2 r0
∆y

˙2

ě 0.72923. (3.150)

This deduction is in contrast to that given in [Hei92b, Urb03]. In fact, the
postfilter of the ideal circular piston has a better spatial lowpass characteristic
than the line piston since the jinc-function 2 J1pxq

x
exhibits a larger envelope

decay for increasing arguments than the sinc-function sinpxq

x
. This can also be

graphically deduced in Fig. 3.36. Only for q « 1 the grating lobe suppres-
sion for a line piston LSA is superior to a circular one. However, only very
small gaps between adjacent circular pistons are allowed to fulfill its WST#1
(3.150), which might be a demanding requirement.

In Fig. 3.37 an example with 3" line and circular pistons is given. It visu-
alizes the farfield radiation patterns of the pistons over ky and the temporal
frequency f . The grating lobe maxima positions w.r.t. ky of the aliased sinc-
function Dw,Spky, ωq are indicated with red lines according to different spatial
discretizations. The upper graphics indicate directly adjacent pistons with no
gaps between them, yielding perfect reconstruction for the line piston. The
grating lobe maxima here coincide with the zeros of Dw,Spky, ωq. The circular
piston exhibits better spatial lowpass characteristics, although grating lobes
cannot be perfectly suppressed. Note that the zeros of HRectpky, ωq (3.129)
are equidistantly spaced w.r.t. ky-space, which is not the case for the circular
piston HCircpky, ωq (3.130). The lower graphics represent the case of WST#1-
compliance using the minimum required ARFs (3.142), (3.149) for both pis-
tons. Holding the piston dimensions constant changes the discretization step
∆y. For the circular piston only small changes compared to the upper case
are observed due to almost the same spatial sampling. For the line piston
the spatial sampling step size is more increased and the grating lobe maxima
not longer coincide with the zeros of the driving function Dw,Spky, ωq. The
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(b) q “ 1 Ñ ARF “ π
4 , ∆y “ 2 r0 “ 3",

∆ky “ 2π
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(c) q “ ARF “ 0.812797, ∆y “ 3.691",
∆ky “ 2π
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(d) q “ 0.9635792 Ñ ARF “ 0.72923,
∆y “ 3.1134", ∆ky “ 2π

∆y “ 79.45 rad/m.

Figure 3.37: Comparison of l “ 3" line piston (left) and 2 r0 “ 3" circular
piston (right) postfilter characteristics. Top: q “ 1 (no gaps between adjacent
pistons), bottom: WST#1 compliant according to (3.142), (3.149)

first grating lobes at ky “ ˘67.02 rad/m, ky “ ˘79.45 rad/m respectively are
attenuated by 13.26 dB as intended for WST#1 compliance. The outermost
grating lobes experience a stronger attenuation using the circular piston post-
filter characteristic as already observed in Fig. 3.36.

Another valuable information can be derived from the wedges in Fig. 3.37.
For temporal frequencies where the visible region does not include a zero in
the postfilter characteristic, the piston does not exhibit a Fresnel region and
radiates almost omnidirectional and directly into the Fraunhofer region, i.e.
the farfield. For the line piston this holds approximately for f ă 4.5 kHz,
whereas for the circular piston f ă 5.5 kHz can be stated for the given piston
dimension.
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While this discussion provides the whole picture of the ARF theorem from
a theoretical viewpoint, LSAs may preferably be designed with waveguides for
high audio frequencies due to the following reasons: (i) the circular piston
model assumes a constant velocity over the diaphragm’s surface which is in
practice much more demanding than designing an appropriate waveguide with
an intended wavefront curvature and (ii) LSAs aim at a frequency independent
horizontal coverage. This is much easier to control with the design of an appro-
priate waveguide than using circular pistons, i.e. electrodynamic loudspeakers.
Nevertheless, using very small circular electrodynamic drivers (e.g. 1") for the
high frequency section of an LSA by simultaneously controlling the horizontal
coverage with a horn-like mouth was already successfully engineered.

On-Axis Radiation, Fresnel/Fraunhofer Transition

Using (3.133), a L « 5m-LSA modeled with line pistons is numerically evalu-
ated according to the strategy in (3.58) for the main lobe, side lobe and com-
plete sound field. This is similar to Fig. 3.24. The LSA parameters in Fig. 3.46
are used. The evaluation is only valid in the farfield of the line pistons. The
sound field’s pressure levels are visualized in Fig. 3.38. The farfield directivity
exhibits two grating lobes at ky “ ˘15.987 rad/m, ϕ « ˘33˝, that are atten-
uated by 6 dB due to the line piston postfilter, cf. Fig. 3.46c. The resulting
spatial aliasing is observable in Fig. 3.38a, showing the level of the complete
sound field PAllpx, y, ωq. The level of the main lobe sound field PMainpx, y, ωq is
depicted in Fig. 3.38b. This sound field is corrupted by interference with the
side lobe sound field PSidepx, y, ωq that is shown in Fig. 3.38c, resulting in the
chaotic region in Fig. 3.38, Fig. 3.46f close to the array. The Fresnel/Fraun-
hofer transition distance (3.86) between the chaotic region and the collective
Fraunhofer region is calculated to xB “ 60.83m. For x ą xB the side lobe level
becomes negligible, which is confirmed by the on-axis level decay depicted in
Fig. 3.46b. All levels are again normalized to the level of the complete sound
field at xB on the main axis, i.e. 20 log10p|PAllpxB, 0q|q “ 0 dBrel.

LSA Radiation Characteristics for varied ARF

Further properties and special cases for uniformly driven, discretized, finite
length LSAs should be discussed in the following examples Fig. 3.40 to Fig. 3.46.
The frequencies and LSA configurations for the synthesized sound fields were



146 CHAPTER 3. DISCUSSION OF WST

x /m

y 
/ m

 

 

dB
rel

x
B

0 20 40 60 80 100
−50

−30

−10
0

10

30

50

−36
−30
−24
−18
−12
−6
0
6
12

(a) |PAllpx, y, ωq| “
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(b) |Pmainpx, y, ωq| in dBrel of main lobe
components.
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(c) |Psidepx, y, ωq| in dBrel of side lobe com-
ponents including two grating lobe beams.

Figure 3.38: LSA with line piston using (3.132), (3.128), (3.129), (3.133),
(3.58) and f “ 1.6 kHz, λ “ 0.214m, L “ 4.953m, L{λ “ 23.1044, N “ 13,
∆y “ 0.3930179m, ∆ky “ 15.9870214 rad/m, q “ 0.6024800, l “ 0.2367854m.

chosen to highlight a particular phenomenon under discussion. All exam-
ples are visualized with the same subfigure structure. Subplot (a) depicts
the final array factor as |Dw,S,Hpky, ωq| in dB normalized to the main lobe.
Levels ă ´36 dB are clipped to white, levels ą 0 dB to black (which how-
ever not occurs). Subplot (c) represents one slice of |Dw,S,Hpky, ωq| for the
specific frequency under discussion. Subplot (d) visualizes the final array
factor as a polar diagram. Subplot (b) depicts the main lobe, side lobe
and complete sound field’s on-axis level decays. The subplots (e) and (f)
depict the sound field’s level over the xy-plane with equal normalization to
20 log10p|PAllpx “ 10m, 0q|q “ 0 dBrel, which also holds for (b). Subplot (e)
represents the numerical evaluation of (2.85) using ´2 BP px0,ωq

Bn
“ const, i.e.

the WST driving function with appropriately discretized pistons located on
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the y-axis (line pistons) or within the yz-plane (circular pistons). For subplot
(f) the angular spectrum synthesis (3.133) is utilized. Both approaches yield
identical results, except for evanescent wave propagation as discussed above.
Grey contour lines for the levels ˘3 dB, ˘9 dB, ˘15 dB are additionally given
in (f). Note that similar examples were given in [Sch14a, Fig. 13-15], however
with a differently chosen definition ARF “ N ¨l

L
[Sch14a, (42)] and thereby with

slightly different LSA configurations. As for the whole thesis, c “ 343m/s is
assumed.

Example I: Circular vs. Line Piston LSA, ARF “ π{4

In Fig. 3.40 an LSA with ARF “ π
4
, L « 5m modeled with circular pistons and

in Fig. 3.41 an LSA with same ARF “ π
4
, L « 5m modeled with line pistons

are compared according to the original WST derivation and discussion. The
circular piston LSA – although violating both, the WST#1 and #2 criterion –
has better spatial lowpass characteristics, the two observable grating lobes in
Fig. 3.40c for 1.6 kHz are attenuated by « 15 dB in the far field. For 20 ă |ky| ă

30 rad/m side lobe suppression of more than 36 dB is observed. This results
in small sound pressure level in the proximity above and below the LSA. The
line piston LSA on the other hand violates the WST#1 criterion (3.135): four
prominent grating lobes in Fig. 3.41c can be observed, a postfilter attenuation
of minimum 13.26 dB is not achieved for the first pair. The outermost grating
lobes produce a high sound pressure level in the proximity above and below
the LSA. A more corrupted Fresnel region than that produced by the circular
piston LSA is observable. For the discussed case the circular piston LSA
exhibits less spatial aliasing, as already shown in Fig. 3.36. The result with
the chosen parameters is of theoretical interest, since a circular piston with
d0 “ 15” is (i) typically not used for the chosen frequency and is (ii) not able
to radiate uniformly at this frequency in practice and thus the farfield piston
model is not valid. However, when scaling the wave length and the piston
dimensions to more appropriate values the same conclusions can be drawn.

Example II: LSAs with Different Line Piston Length, ARF “ 0.812797

The ARF criterion (3.135) alone only states a minimum ratio for piston size and
source spacing, which can be obviously met by different setups. In Fig. 3.42
and Fig. 3.43 two LSAs with an ARF according to (3.142) and L « 5m
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modeled with N “ 11 and N “ 21 line pistons are visualized. The LSAN“11

exhibits four grating lobes within the visible region for f “ 1.6 kHz due to the
larger discretization step ∆y, concurrently with high suppression in the range
of ky « 20 rad/m. The LSAN“21 exhibits only two grating lobes within the
visible region that have about the same farfield radiation angles as the two
outermost grating lobes of LSAN“11. This is due to ∆yN“11 « 2∆yN“21. In
both cases all side and grating lobes are attenuated by at least 13.26 dB in the
farfield, due to intentionally fulfilling the ARF criterion. Again, the Fresnel
region of the LSA with smaller ∆y (N “ 21) is more homogeneous. Note that
the maximum line piston size was only defined in [Urb03, Sec. 6.2] by linking it
with a maximum allowed splaying angle of adjacent pistons for curved arrays.

Example III: LSA with Spatial Aliasing at ϕ “ ˘90˝

For Fig. 3.44 the same LSA setup as for Fig. 3.42 is deployed, although at a
different frequency. Evaluating at f “ 1.4635 kHz illustrates the phenomenon
of propagating waves along the array axis, depicted in Fig. 3.44e. Here the
spectral repetitions with µ “ ˘2 occur at wave numbers ky “ ˘26.808 rad/m,
close to the pole of G0px, ky, ωq at ω

c
“ 26.808 rad/m. This results in wave

propagation along the array (ϕ « ˘90˝). The level of the sound field close to
the array is not predicted by the final array factor Dw,S,Hpϕ, ωq. In Fig. 3.39 the
sound pressure level along the x- and the y-axis is evaluated. It indicates that
the wave propagation along the array (grating lobe on positive y-axis) decays
with 6 dB per distance doubling and therefore faster than the main lobe (on

3 5 10 20 50 100

−24

−18

−12

−6

0

6

x / m, y / m

A
 / 

dB
(r

el
 0

°)

Figure 3.39: Example III: ⃝: main lobe level decay on x-axis (ϕ “ 0˝), �:
grating lobe level decay on y-axis (ϕ “ `90˝)
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x-axis) that exhibits a typical spatial-aliasing corrupted Fresnel/Fraunhofer
level decay. However, very close to the array (x, y ă 7m) both sound pressure
levels exhibit the same order of magnitude. In the collective Fraunhofer region
(c.f. x “ y “ 100m in Fig. 3.39) |Dw,S,Hpky, ωq| predicts the grating lobe
suppression of about 15 dB as expected in Fig. 3.44c. Wave propagation along
the array with high SPL, that results from spatial aliasing, occurs for all LSA
designs that violate the WST#2 criterion and ARF ă 1. The phenomenon
is observable at particular frequencies, where the grating lobes trigger the
Green’s function’s spatio-temporal spectrum very close to its pole. It holds for
|ν 2π

∆y
| “ |ω

c
|, i.e. ∆y “ ν λ, ν P Z, in the example here ν “ ˘2. This behavior

cannot be avoided when spatial aliasing is tolerated.

Example IV: Spatial-Aliasing-Free LSA with ARF=1

In Fig. 3.45 for completeness a continuous LSA is simulated corresponding
to Sec. 3.2.3. Due to (3.125) this also models a discretized LSA using line
pistons with ARF “ 1. No grating lobes occur and only the sinc-function
of the spatial truncation window (3.38) is observable. The well known sound
field of a continuous, uniformly driven line source, cf. [Ure04, Fig. 13] and the
typical main lobe level decay, cf. [Lip86] is visualized.

Example V: High-Spatial-Aliasing LSA with ARF=0.6

In Fig. 3.46 an LSA with rather large gaps between line pistons is simulated.
The ARF is chosen for a grating lobe suppression of only 6 dB. This results
in a severely corrupted Fresnel region. Hence, rather small ARFs should be
clearly avoided for homogeneous sound reinforcement.
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Figure 3.40: Example I: f “ 1.600 kHz, λ “ 0.214m, L “ 4.9530000m,
N “ 13, ∆y “ 0.3810000m, ∆ky “ 16.4913000 rad/m, q “ 1.0000000,
r0 “ 0.1905000m .
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Figure 3.41: Example I: f “ 1.600 kHz, λ “ 0.214m, L “ 4.9530000m,
N “ 11, ∆y “ 0.4592320m, ∆ky “ 13.6819413 rad/m, q “ 0.7853982,
l “ 0.3606800m .
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Figure 3.42: Example II: f “ 1.600 kHz, λ “ 0.214m, L “ 5.0685173m,
N “ 11, ∆y “ 0.4687517m, ∆ky “ 13.4040792 rad/m, q “ 0.8127970, l “

0.3810000m .



3.4. WST CRITERIA 153

k
y
 / (rad/m)

f /
 k

H
z

 

 

dB
rel

−40−30 −20 −10 0 10 20 30 40
0

0.4

0.8

1.2

1.6

2

−36
−30
−24
−18
−12
−6

0

(a) |Dw,Spky, ωq ¨ HRectpky, ωq|.

10
0

10
1

10
2

−36

−24

−12

0

12

24

36

x / m

A
 / 

dB
 (

re
l x

=
10

m
)

 

 
Main
Side
All

(b) PMain, PSide, PAll along x-axis.

−40−30−20−10 0 10 20 30 40
−36

−30

−24

−18

−12

−6

0

k
y
 / (rad/m)

A
 / 

dB
(r

el
 0

°)

−13.26dB

(c) visible region of |Dw,S,Hpky, ωq| for f “

1.6 kHz, underlay: |Dw,Spky, ωq|

6dB/div

0°

15°

30°

45°
60°

75°90°105°
120°

135°

150°

165°

±180°

−165°

−150°

−135°
−120°

−105°−90° −75°
−60°

−45°

−30°

−15°

(d) farfield radiation pattern, i.e. final ar-
ray factor |Dw,S,Hpϕ, ωq| for f “ 1.6 kHz.

x / m

y 
/ m

 

 

dB
rel

0 2 4 6 8 10 12 14 16 18
−5
−4
−3
−2
−1

0
1
2
3
4
5

−18
−12
−6

0
6

12
18

(e) SPL in xy-plane.

x / m

y 
/ m

 

 

dB
rel

0 2 4 6 8 10 12 14 16 18
−5
−4
−3
−2
−1

0
1
2
3
4
5

−18
−12
−6

0
6

12
18

(f) SPL in xy-plane.

Figure 3.43: Example II: f “ 1.600 kHz, λ “ 0.214m, L “ 5.0685173m,
N “ 21, ∆y “ 0.2435289m, ∆ky “ 25.8005749 rad/m, q “ 0.8127970, l “

0.1979395m .
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Figure 3.44: Example III: f “ 1.463 kHz, λ “ 0.234m, L “ 5.0685173m,
N “ 11, ∆y “ 0.4687517m, ∆ky “ 13.4040792 rad/m, q “ 0.8127970, l “

0.3810000m .
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Figure 3.45: Example IV: f “ 1.600 kHz, λ “ 0.214m, L “ 4.9530000m,
N “ 13, ∆y “ 0.3810000m, ∆ky “ 16.4913000 rad/m, q “ 1.0000000, l “

0.3810000m .
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Figure 3.46: Example V: f “ 1.600 kHz, λ “ 0.214m, L “ 4.9530000m,
N “ 13, ∆y “ 0.3930179m, ∆ky “ 15.9870214 rad/m, q “ 0.6024800, l “

0.2367854m .
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3.4.2 WST#2 Criterion

The WST#2 criterion considers a finite length, spatially discretized LSA built
from ideal spherical monopoles. According to the sampling theorem for base-
band signals, perfect reconstruction2 requires an ideal spatial lowpass with
Nyquist bandwidth (cf. p.78, (3.17))

HLP,Postpkyq “

$

&

%

1 for |ky| ă
∆ky
2

“ π
∆y

0 else.
(3.151)

For WST it was considered to reconstruct the baseband |ky| ă π
∆y

of Dw,Spky, ωq

(3.128), cf. [Urb03, p.917]. As discussed earlier, (3.151) would require indi-
vidual sources of infinite spatial extent, with a sinc-shaped velocity along the
piston’s axis. This is obviously not feasible. Thus, the temporal bandwidth of
the driving function must be limited

|ky| “
ω

c
ă

∆ky
2

, (3.152)

which after rearranging with c “ λ f yields

WST #2: fmax ă
c

2∆y
Ø ∆y ă

λmin

2
. (3.153)

This is the general spatial anti-aliasing condition – already discussed in Ch. 3.2.5
– of arrays built of ideal point sources. It ensures a grating lobe free visible
region for arbitrarily chosen driving function’s spatio-temporal spectra, thus
completely avoiding propagating spatial aliasing.

For the WST driving function the condition can be easily fulfilled for low
and mid audio frequencies using the typical bandwidths and dimensions of
electrodynamic loudspeakers. This can be seen in Fig. 3.47 for ϕmax “ 0˝,
when referring to 12" and 15" drivers for the low frequencies (typically driven
up to 200 - 400 Hz) and 5" and 6.5" drivers for the mid frequencies (typically
driven between 200-400 Hz and 1.5-2kHz). For the high audio frequencies (typ-
ically >1.5-2 kHz) the required source spacing is more demanding and by the
time WST was initially invented this was not yet considered feasible. Thus,

2cf. Fig. 3.22 and its corresponding discussion for the definition of perfect reconstruction
when no prefilter is applied in the sampling scheme.
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the WST#1 and WST#3 – holding for uniformly driven arrays without using
beam steering – were introduced to reduce propagating spatial aliasing, when
WST#2 cannot be met for the high audio frequencies.

Implications for Electronic Beam Steering

Some recent LSA designs exhibit a very small source spacing ∆y – of about 1"
– for the high frequency audio band to shift spatial aliasing to very high audio
frequencies and to relax the ARF requirements. Some of these LSA designs can
even be fixed straightly and are exclusively aimed at electronic beam steering
[But14], instead of controlling the LSA radiation characteristics with geometric
curving. Combined approaches of electronic and geometrically curved beam-
forming are also realized [Dur07, Tho08, Tho09, Tho11, Tho13, Fei13]. Thus,
it is worth to revisit the spatial anti-aliasing condition for typical spatial dis-
cretization of LSAs.

The implications for electronic beam steering using the delay-and-sum beam-
former Ch. 3.2.5 for a straight LSA are discussed next. For typical source
spacings in LSA designs the maximum allowed frequency fmax for grating lobe
free beam steering over the steering angle ϕSteer is depicted in Fig. 3.47, as-
suming q “ 1. The LSA length is always L « 5m. Note that the required
gain to compensate the loss of the driver’s farfield polar pattern (assuming
ideal circular or line piston characteristics) is not more than « 4 dB within the
tolerated values given in Fig. 3.47.
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Figure 3.47: Aliasing frequency fmax “ c
λmin

over steering angle (3.112).
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Figure 3.48: DSB with Dw,S,Steeredpky, ωq (3.107) for ϕSteer “ ´16˝. Line piston
LSAs with q “ ARF “ 1, L “ 4.953m (3.136). Left: l “ 3", right: l “ 15".
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For the lowest audio frequencies the range is approximately given as e.g.
400Hz ă fmax ă 800Hz for 90˝ ě ϕSteer ě 0˝ (N “ 13, ∆y “ 15”) and
500Hz ă fmax ă 1000Hz for 90˝ ě ϕSteer ě 0˝ (N “ 17, ∆y “ 12”). The low
frequency band is thus uncritical for grating lobe free beam steering. The lim-
iting factor here is rather the chosen LSA length that determines the possible
beam width resolution, i.e. the null-to-null beamwidth, cf. (3.72).

For the mid-band of audio frequencies an appropriate trade-off between the
crossover lowpass cutoff frequency and the allowed maximum steering angle has
to be defined. The high-band of audio frequencies is the most critical w.r.t.
spatial aliasing and requires very small distances between drivers to avoid it.
In the given example the 1”-piston would allow grating lobe free sound fields
up to 10 kHz, when restricting |ϕSteer,max| ă 20˝, while the 0.45”-design would
allow endfire beams up to 15 kHz.

Large waveguides of about the same dimension as the low frequency drivers
implicate fmax ! fHF. Thus, for these LSAs it is not meaningful to apply
electronic beam steering for high frequencies unless generating much spatial
aliasing [Mey02, Sch14a]. Therefore, such LSAs have to be curved geometri-
cally, beam steering should be avoided for these frequencies and beamform-
ing should only be realized by applying real valued gains to the sources. In
Fig. 3.48 an example of DSB using a l “ 3" (left column) and l “ 15" (right
column) is given for line piston LSAs of the same physical length L “ 4.953m
and an ARF “ 1. The farfield radiation patterns, i.e. the final array factor
|Dw,S,Hpky, ωq| for electronically steering to ϕSteer “ ´16˝ is depicted over ky

and f in Fig. 3.48a and Fig. 3.48b. For the considered frequency of 2 kHz the
final array factor is given in detail in Fig. 3.48c and Fig. 3.48d. The sound
pressure level over the xy-plane for this frequency is depicted in Fig. 3.48e and
Fig. 3.48f.

For the chosen steering angle, the 3" line piston LSA is grating lobe free up
to 3.5 kHz, cf. Fig. 3.47. Two grating lobes are observed within the plotted
range. The intended main lobe is maintained within the plotted frequency
range, due to the less directed farfield radiation pattern of the 3" postfilter.
The final array factor for 2 kHz resembles the spatio-temporal spectrum of
(3.96) producing the intended main (ky,Steer « ´10 rad/m) and side lobe pat-
tern in the xy-plane.
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The 15" line piston LSA cannot be used for beam steering in the high
frequency range f ą p1.5...2q kHz without grating lobes entering the visible
region. The intended main lobe level becomes attenuated due to the sinc-
function postfilter, which is highly temporal frequency dependent. Between
(3...3.5) kHz and at about 6.5 kHz the main lobe even vanishes due the co-
incidence with the sinc-function’s zeros of the postfilter. A prominent grat-
ing lobe enters the visible region at about 750Hz and can be traced towards
ky « ´25 rad/m at 8 kHz. Between 2.8 kHz and 3.8 kHz this grating lobe
exhibits the level of 0 dB and radiates approximately perpendicular to the
LSA axis. For 2 kHz three grating lobes are located within the visible region
at about ky “ ´27, 7, 23 rad/m exhibiting different levels that are even larger
than the main lobe level at ky,Steer « ´10 rad/m. The resulting sound field is
thus severely corrupted in the Fresnel region and by high level beams towards
undesired propagation directions, cf. [Mey02, Fig. 4].

A spatial-aliasing-free control of the visible region up to 16 kHz would re-
quire a sampling distance ∆y “

c{16 kHz
2

“ 1.07 cm according to the sampling
theorem (3.153). Such an LSA could be termed ’purely WST#2-compliant’.
In array processing such an array is termed standard linear array [Van02, p.51].

3.4.3 WST#3 Criterion

The WST#3 criterion was derived for an LSA with directly adjacent, identical
horns with no gaps between them. It relates an occurring wavefront curvature
(WFC) emanated by these horns, i.e. the arc in Fig. 3.49 and a tolerated
grating lobe level. For the so called sagitta S

WST #3: S ă
λmin

4
, (3.154)

must hold in order that the LSA exhibits a grating lobe attenuation larger
than 10 dB relative to the intended main lobe, cf. [Urb03, Fig. 9,10], [Ure01b,
Fig. 19]. This criterion also aims at reducing spatial aliasing by utilizing
the spatial lowpass characteristic of the sources that construct the LSA. By
discussing the WST#1 (3.135) and WST#3 (3.154) criteria separately in
[Urb03, Ure04], one may erroneously assume that they are not interrelated.
However, both criteria interact and determine the quality of grating lobe avoid-
ance and suppression, which should be discussed next.
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Line Piston with Wavefront Curvature

Since a line piston with WFC exhibits a specific postfilter characteristic
HPostpky, ωq, the discussion remains consistent within the signal processing
model in Fig. 3.34 by interpreting the resulting spatio-temporal spectrum
Dw,S,Hpky, ωq and the final array factor Dw,S,Hpϕ, ωq respectively. The dis-
cussion – based on the product theorem – is given in [Ure01b, Ure04], however
the FRP of a physically arc-shaped, uniformly driven source is utilized, i.e. the
Huygens’ principle is applied. Here it is proposed to use Rayleigh-Sommerfeld
diffraction [Bor06, Ch. 8.11.2] of a baffled, infinitesimally narrow slit of fi-
nite length that is ’illuminated’ by a point source. In [Hec77] analytic spatial
Fourier transforms of line piston velocity distributions are given, where the
case 3 in Table I – although not parameterizable – is most likely comparable
to the phenomenon observed here.

The WFC can be controlled by the point source position behind the slit
on negative x-axis with the distance xPS in Fig. 3.49. The vector xPS “

p´xPS, 0, 0qT holds. With the line piston length l and a desired WFC in terms
of a wave length fraction S “ αλ – the so called sagitta [Urb03, p.918] –, the
geometric length and angle relations

xPS “
l2

8S
´

S

2
“

l2

8αλ
´

αλ

2
, (3.155)

r “
l2

8S
`

S

2
“

l2

8αλ
`

αλ

2
, (3.156)

tan θ “

l
2

l2

8S
´ S

2

“

l
2

l2

8αλ
´ αλ

2

(3.157)

y

x
x

x ´ x0
P px, ωq

xPS S

r l
2

l
2

θxPS

ϕ

Figure 3.49: Geometry for WFC model, cf. [Urb03, Fig. 8], [Ure04, Fig. 38].
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are derived according to Fig. 3.49. A distance xPS ą 0 is required, which is
valid if l2

4
ą pαλq2.

SFS of a virtual point source using a linear, finite length, continuous sec-
ondary source distribution that models the slit is deployed. The diffracted
sound field is synthesized with the Neumann Rayleigh-Sommerfeld integral

P px, ωq “

`l{2
ż

´l{2

DWFCpy0, ωqGNpx,x0, ωq dy0, (3.158)

describing the slit x0 “ p0, y0, 0qT on the y-axis, the evaluation points x “ px ą

0, y, 0qT and the 3D Neumann Green’s function GNpx,x0, ωq “ 2Gpx,x0, ωq.
With (3.155) the SDM driving function of a virtual point source reads (2.126),
[Spo10, (24)]

DWFCpy0, ωq “
1

4

c

xref

xref ` xPS
j
ω

c
p´xPSq

1

|x0 ´ xPS|
H

p2q

1

´ω

c
|x0 ´ xPS|

¯

,

(3.159)

denoting the Hankel function of second kind of order one as H
p2q

1 p¨q [Olv10,
§10.2]. In contrast to WFS driving functions, (3.159) is also valid for point
sources close to the slit, when the reference line at xref – at which the sound
field is to be synthesized correctly in amplitude and phase – is far away from
the piston. This is in accordance for the quested farfield radiation pattern.

In Fig. 3.50 an example of the diffracted sound field for a WFC of α “ 1
2

is
given. The drawn circles exhibit a radius increment of λ

2
. One circle intersects

the line piston in the origin and the subsequent circle intersects the line piston
at its edges, which defines the sagitta S “ αλ.

Since the driving function DWFCpy0, ωq is proportional to the normal source
velocity’s temporal spectrum, its spatio-temporal spectrum

HWFCpky, ωq “

`l{2
ż

´l{2

DWFCpy0, ωq e`j ky y0 dy0, (3.160)

– normalized to unity gain at ky “ 0 for consistency – includes the farfield ra-
diation pattern of the line piston with WFC [Mö09, Ch. 3.6], [Hec77]. The in-
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Figure 3.50: Diffracted sound field ℜ tP px, ωqu of a virtual point source syn-
thesized by a baffled line piston with l “ 0.343m for f “ 5 kHz using a WFC
α “ 1{2, i.e. xPS “ 0.4116m, θ “ 22.62˝, xref “ 100m, c “ 343m/s. Normal-
ized to ℜ

␣

P px “ pλ
2
, 0, 0qT, ωq

(

“ ´1{2.

tegral is presumably not treatable for an analytic closed form solution. Hence,
numerical evaluation with a zero-padded, spatial FFT of a properly discretized
version (3.159) is deployed. In the following subsections the influence of the
WFC w.r.t. grating lobe suppression is discussed for exemplarily chosen LSA
setups and frequencies.

Single Waveguide Per LSA Cabinet

Different LSA setups of the same physical length L “ pN ´ 1q∆y ` l « 4.5m
are modeled with N identical line pistons of length l “ 0.343m that exhibit
different WFCs and ARFs. The specific array factors, postfilter FRPs and the
resulting LSA FRPs (final array factors) over radiation angle ϕ are depicted
for f “ 5 kHz in Fig. 3.51.

The line piston with a WFC of α “ 1
2

(cf. Fig. 3.50) is used to model
an ARF “ 1, N “ 13 LSA in Fig. 3.51a. The first two grating lobes, with
radiation angles « ˘10˝, are attenuated by « 2 dB (cf. [Ure01b, Fig. 20]),
the second two by about 9 dB. For Fig. 3.51b the WFC is decreased choosing
α “ 1

4
. The maximum grating lobe level is about ´10 dB relative to the main

lobe level (cf. [Ure01b, Fig. 19], [Urb03, p.919]). According to the 3rd WST
criterion (3.154), α “ 1

4
holds as the maximum tolerated WFC, which however

violates the 1st WST criterion (3.135), even for ARF “ 1.
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An ARF “ 1, N “ 13 LSA with WFC of α “ 1
8

is depicted in Fig. 3.51c
(cf. [Ure01b, Fig. 18]). The maximum grating lobe level does not exceed
approx. ´16 dB. An ARF “ 0.82, N “ 11 LSA yields a maximum grating
lobe level of about ´11.5 dB (not depicted) and thereby this WFC violates
the 1st WST criterion also for ARF “ 0.82. In compliance with a tolerated
maximum grating lobe level of ´13.26 dB a WFC of α “ 1

6
is required, which

however holds only for ARF « 1 (not depicted). If ARF “ 0.82 is allowed,
thus fulfilling the 1st WST criterion, the WFC of α ą 1

50
ensures the maximum

allowed grating lobe level of ´13.26 dB, as shown in Fig. 3.51d. For α ą 1
50

,
i.e. xPS " λ0 the WFC postfilter exhibits almost the same characteristic as
the ideal line piston without WFC (3.129).
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(d) α “ 1{50, ARF “ q “ 0.812797, N “ 11,
∆y “ 0.422m

Figure 3.51: Uniformly driven LSA with line pistons that exhibit a specified
WFC. The array factor Dw,Spϕq (3.82), the postfilter HPostpϕq “ HWFCpϕq

(3.160) and the resulting final array factor Dw,S,Hpϕq “ Dw,Spϕq ¨ HPostpϕq for
f “ 5 kHz, l “ 0.343m, c “ 343m/s are visualized.
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Multiple Waveguides Per LSA Cabinet

The discussion above holds for a single waveguide per single LSA cabinet.
In practical designs an LSA cabinet is often built from multiple and smaller
waveguides each coupled to an individual compression driver [But02]. From
Fig. 3.52 the geometrical relations w.r.t. the individual ARFs and physical
lengths are derived to

ql “
l

∆yl
LB “ pNl ´ 1q∆yl ` l, (3.161)

qB “
LB

∆yB
LLSA “ pNB ´ 1q∆yB ` LB. (3.162)

Ideally the waveguides should be driven individually, since this enhances the
capability for electronic beam steering, cf. Ch. 3.4.2.

For a uniformly driven, straight LSA with identical waveguides the product
theorem for nested arrays – also referred to as subarrays [Bro12] – yields the
spatio-temporal spectrum

Dw,S,Hpky, ωq “
1

Nl

sinpky ∆yl
Nl

2
q

sinpky ∆yl
1
2
q

looooooooomooooooooon

Dw,S,lpky ,ωq

¨HPostpky, ωq ¨
1

NB

sinpky ∆yB
NB
2

q

sinpky ∆yB
1
2
q

loooooooooomoooooooooon

Dw,S,Bpky ,ωq

, (3.163)

for which the first product models the farfield radiation pattern of a single
LSA cabinet built from Nl pistons, each featuring the spatial postfilter char-
acteristics HWFCpky, ωq (3.160). The subsequent product models the complete
farfield radiation pattern (final array factor) of the LSA built from NB cabi-
nets.

Due to the interaction of three spatial spectra, the discussion becomes more
demanding and for line pistons with WFC no closed form solution exists

y

x
l LB∆yl

LLSA

∆yB

Figure 3.52: Schematical sketch of an LSA built from NB “ 3 cabinets of
physical length LB spaced by ∆yB. Each cabinet has Nl “ 3 line pistons of
length l spaced by ∆yl. The total physical length of the LSA is LLSA. NB and
Nl are assumed to be odd-numbered.
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4 , Nl “ 3, l “ 5.3”, qB “ 0.82
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(b) α “ 1
8 , Nl “ 3, l “ 5.3”, qB “ 0.82
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(c) α “ 1
8 , Nl “ 9, l “ p 5.3
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Figure 3.53: Array factors Dw,S,Bpφq, Dw,S,lpφq and the final array factor
Dw,S,Hpφq (3.163) using HWFCpφq for f “ 16 kHz, c “ 343m/s are visual-
ized. Fig. a) and b): 3x 5.3" waveguides per LSA cabinet, α is varied. Fig. c)
and d): 9x 1.76̄" waveguides per LSA cabinet, qB is varied. ql=1, NC “ 11 for
all cases.

so far. In Fig. 3.53 examples of the (final) array factors for the frequency
f “ 16 kHz for a ’multiple waveguides per cabinet’-LSA design are presented.
For Fig. 3.53a and Fig. 3.53b three rather large waveguides per LSA cabinet
are used and the WFC is varied. The chosen parameters closely match typical
LSA designs, i.e. ql “ 1 and ARF “ qB “ 0.82, cf. [But02]. For Fig. 3.53c and
Fig. 3.53d the waveguides are three times smaller, thus more of them fit into
an LSA cabinet. For this case qB is varied, while ql “ 1 and a WFC of α “ 1

8

holds.
For the chosen source spacing and frequency no LSA is grating lobe free,

due to non-compliance with WST#2. The rather large WFC in Fig. 3.53a re-
sults in grating lobes larger than ´12 dB at small radiation angles, which can
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be reduced when decreasing the WFC in Fig. 3.53b. By comparing Fig. 3.53b
(large waveguides) and Fig. 3.53c (small waveguides) with otherwise the same
parameters, it is observed that the grating lobes at small angles ϕ are more
attenuated for the latter LSA, due to the larger decay of Dw,S,lpky, ωq. This
advantage, however comes along with a comparably larger grating lobe level
at |φ| « 30˝ since the smaller waveguide exhibits a less directed FRP. It is
worth reminding that grating lobes at small angles corrupt the intended au-
dience sound field in a much larger spatial region than these emanated with
large radiation angles. This consequently has large influence on the homo-
geneity of the Fresnel region. Due to the almost perfect coincidence of the
aliased-sinc function grating lobe maxima of Dw,S,lpky, ωq (1st maximum) and
Dw,S,Bpky, ωq (11th maximum) only the postfilter determines the attenuation
level, which yields over 30 dB in Fig. 3.53b and about 16 dB in Fig. 3.53c.
The coincidence of common maxima from Dw,S,lpky, ωq and Dw,S,Bpky, ωq can
be controlled by

qB “
ql ¨ LB

σ ¨ l
σ ě Nl, σ P N. (3.164)

Herein σ “ Nl generally models qB “ 1 if ql “ 1. This then constitutes an
ARF=1 LSA, for which the grating lobe suppression depends only on the spa-
tial postfilter characteristic. The chosen example in Fig. 3.53c closely matches
σ “ Nl ` 2 “ 9 ` 2 Ñ qB “ 0.81. By increasing the ARF in Fig. 3.53d com-
pared to Fig. 3.53c the grating lobes are generally more attenuated. Grating
lobes at |ϕ| « 30˝ differ significantly due to different interaction of the involved
functions.

In contrast to the ’Single Waveguide Per LSA Cabinet’-approach, here larger
WFC (in the example α ď 1

8
) can be tolerated to fulfill the WST#1 criterion

when using multiple smaller waveguides per LSA cabinet. This is due to the
additional spatial lowpass filter characteristic of Dw,S,lpky, ωq, that compen-
sates the insufficient lowpass characteristic of a waveguide with large WFC.

Despite the comparably large grating lobe level at about 30˝, the LSAs in
Fig. 3.53c, Fig. 3.53d might be preferable, due to the smaller discretization
step (leaving more frequency bandwidth uncorrupted from aliasing, improved
capability for electronic beam steering) and due to the larger decay of grating



3.5. SUMMARY 169

lobe levels for small radiation angles, yielding a larger spatial region with-
out spatial aliasing and a more homogeneous Fresnel region. Naturally, these
phenomena are highly dependent on temporal frequency .

3.5 Summary

Wavefront Sculpture Technology (WST) introduced line source arrays (LSAs)
for large scale sound reinforcement (LS-SR). It aims at sound fields for full au-
dio bandwidth with less spatial-aliasing than using conventional loudspeaker
cluster arrays. WST is based on array processing fundamentals.

In contrast to the initial WST derivation, the radiation characteristics of
straight arrays are consistently explained within the spatio-temporal Fourier
spectrum domain in this thesis. Thus, in contrast to the Rayleigh integral
formulation sound fields are generated with the angular spectrum synthesis.
This allows for a more convenient interpretation of the occurring interference
and diffraction phenomena in the near and farfield of line source arrays. The
LS-SR problem is treated as a sound field synthesis (SFS) problem rather than
a radiation synthesis problem: optimum LS-SR ideally aims at the synthesis
of a desired homogeneous wavefront for audience coverage that constitutes the
main lobe of the array in the farfield. This is only possible when additional
wavefronts originating from spatial truncation and spatial sampling are suf-
ficiently suppressed. These additional wavefronts corrupt the intended wave-
front by interference, yielding a severely corrupted Fresnel region (nearfield)
and cause side and grating lobes in the Fraunhofer region (farfield). Obviously,
this should be avoided as best as possible.

In essence, the first three WST criteria deal with the avoidance or atten-
uation of grating lobes in the farfield radiation pattern (FRP) of straight,
uniformly driven LSAs, which consequently avoids or reduces spatial aliasing
in the LSA’s Fresnel and Fraunhofer region. For their full avoidance the spa-
tial sampling theorem (i.e. WST#2) has to be fulfilled. This requires a very
small spacing ∆y between drivers for the highest audio frequencies and was
not considered feasible when initially introducing WST in the early 1990s.

When WST#2 cannot be met, the WST#1 criterion deploys the spatial low-
pass filter characteristics of line and circular pistons to reduce spatial aliasing.
The gap size between adjacent pistons determines the grating lobe attenuation
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which for the ARF theorems were given for tolerated spatial aliasing. The us-
age of ideal line pistons for a special WST case (uniformly driven array and
no gaps between the pistons) is superior compared to a circular piston driven
LSA: in this ideal case all spatial aliasing is suppressed. This is not achievable
with circular pistons. However, for ∆y ą l or ∆y ą 2 r0 of line and circular
pistons with same dimension (length l and radius r0) reveals an improved spa-
tial lowpass characteristic of the ideal circular piston.

The WST#3 criterion discusses the influence of a tolerated deviation from
the ideal line piston characteristic in terms of a wavefront curvature and toler-
ated spatial aliasing energy. The WST#1 and WST#3 interact for which an
in-depth discussion is firstly given.

The requirements for avoiding propagating spatial aliasing is conveniently
discussed within the spatio-temporal spectrum domain. It is obviously prefer-
able using rather small source spacings (i.e. rather large distance ∆ky of the
spectral repetitions in the driving function’s spatio-temporal spectrum) and
thereby small pistons, ideally fulfilling the spatial sampling theorem for all
audio frequencies. In the ideal case no grating lobes would enter the visible
region of the array. This allows for synthesizing the desired wavefront using
electronic beamforming and beam steering methods with a high degree of free-
dom. This is especially interesting for an homogeneous Fresnel region that
becomes less corrupted with less occurring spatial aliasing. A severely cor-
rupted Fresnel region should be avoided as audience region, since this region
cannot be optimized. The frequency response there is heavily dependent on
the actual listening position and is far away from being linear.

For very small source spacing, and thus very small piston dimensions, the
postfilter characteristics of the circular and line piston consequently are less
directive. This implies that ideally no additional postfilter would be required
and only the Green’s functions (i.e. the ideal spherical monopole) acts as the
reconstruction postfilter of the sampled driving function. The ARF theorem
consequently becomes less important.

The first generation of LSAs – following the initial WST with rather large
waveguides – cannot be meaningfully utilized with electronic beam steering
due to the occurring spatial aliasing. The desired wavefront for optimum
audience must therefore realized by means of geometrical array curving and
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additional electronic beamforming that only uses frequency dependent, real
valued gain weights but no delays. In practice arc-shaped, J-shaped and spi-
rally shaped arrays are appropriate for typical venues. Ideally, the wavefront
shaping then yields a frequency independent FRP, Fresnel/Fraunhofer transi-
tion and smooth sound pressure level decay over the audience. Both cannot be
achieved with the uniformly driven, straight LSA as was revisited throughout
this chapter. However, for array curving it is also preferable to not allow gaps
between the drivers to avoid spatial aliasing. The implications of uniformly
driven, curved arrays for an intended audience coverage are defined with the
WST#4 and WST#5 criterion.

The WST#5 states a maximum tilt angle between adjacent LSA cabinets,
such that their individual farfield sound fields don’t produce discontinuities
in the audience coverage [Urb03, p.929]. The initial WST#4 criterion defines
the LSA’s curvature for roughly a -3 dB SPL loss per distance doubling along
the audience with a constant product α d of the tilt angle α between adjacent
LSA cabinets and their throw distance towards d the audience [Urb03, p.929].
This is known as progressive curvature leading to a spirally curved LSA. Other
curvature schemes that are typically used for typical audience coverages are:
arc LSA with α “ const yielding -6 dB SPL loss per distance doubling along
the audience, J-shaped LSA with α d2 “ const yielding no SPL loss along the
audience. It is common practice to combine all of them designing an intended
composite SPL target curve along the audience [LA16, Ch. 2].

Optimum, audience adapted wavefront shaping is discussed in the next
chapter, showing that WST can be interpreted as a special case of WFS.
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Chapter 4

Wavefront Shaping

After recollecting the fundamentals of SFS in Ch. 2 and the detailed treatment
on the WST criteria for straight LSAs using the angular spectrum synthesis
in Ch. 3, the thesis proceeds1 with the discussion on suitable LSA control
techniques for LS-SR. In Ch. 3 it was shown that the uniformly driven, finite
length, straight LSA exhibits a highly frequency dependent near-/farfield tran-
sition and an increasing directivity for increasing frequencies. Homogeneous
LS-SR is thus not feasible using this LSA type.

The goal for optimized LS-SR using LSAs is the synthesis of an appropriate,
homogeneous wavefront – here called wavefront shaping – which realizes any
desired (within the limits of physics), ideally frequency independent SPL loss
over the audience area. To this end, three different major trends for designing,
setting up and controlling LSAs can be observed these days:

1. LSAs with rather large waveguides (ca. 1-3 per LSA cabinet) with geo-
metric curving and electronically controlled wavefront shaping by either
(i) manually adjusted broadband and frequency dependent gain shad-
ing (cf. designs such as Electro Voice X-Line Advance, JBL VTX, L-
ACOUSTICS K1, Meyer Sound LEO-M ) or (ii) numerically optimized
frequency dependent gain shading (i.e. frequency dependent spatially
windowing, cf. designs such as d&b audiotechnik J&Y series).

2. LSAs with large to medium sized waveguides (ca. 2-6 per LSA cabinet)
with geometric curving and electronically controlled wavefront shaping

1[Sch13, Sch14d, Str15b, Str15a, Str16] are partly reissued or reconsidered herein.
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by numerically optimized beam steering and -forming (cf. designs such as
d&b audiotechnik J&Y series, Martin Audio MLA & OmniLine, AFMG’s
FIRmaker).

3. straight LSAs with very small waveguides (ě 8 per LSA cabinet) with
electronically controlled wavefront shaping solely by optimized beam
steering and -forming (cf. designs such as EAW Anya & Anna).

Most of the deployed LSA control algorithms are not fully documented in
research preserving intellectual property. This chapter discusses the usage of
WFS for optimized wavefront shaping as a forward problem solution. This
reveals that WST can be understood as a special application of WFS, which
in its initial formulation is achieved by LSA curving.

The chapter is organized as follows: in Ch. 4.1 the implications of curving
an LSA w.r.t. grating lobes and the farfield radiation pattern are discussed by
means of the so called arc array. In Ch. 4.2 a specially developed simulation
toolbox is introduced that simulates the radiation characteristic of model-
based LSAs. A suitable WFS based LSA control technique is proposed. In
Ch. 4.3 visualization methods and quality measures are proposed that allow
an in-depth interpretation of the performance. In Ch. 4.4 several LSA design
studies are simulated and discussed. The chapter concludes in Ch. 4.5.

4.1 Arc Array vs. Straight Array

First of all, this section shall discuss the effect of curving an LSA towards
an arc w.r.t. the near-/farfield transition, the farfield radiation pattern and
side/grating lobes characteristics compared to a straight LSA. This enhances
the discussions given in [Urb03, Ure04, Kee10]. Note that dissipation is not
considered for the sound field prediction.

The HF-BEM kernel (2.33) is used for predicting the sound field of a con-
tinuous source in the first instance. A line integral along the line C

P px, ωq “

ż

C

Dpx0, ωq
1 ` cospβpx,x0qq

2
HPostpβpx,x0q, ωq

e´j ω
c

|x´x0|

4 π |x ´ x0|
dC

(4.1)
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x ´ x0

npx0q

ϕpxq

Spx, ωq

αArc α

Figure 4.1: Geometry for an arc array with arc length L, cf. [Ure04, Fig. 14],
[Ure04, Fig. 16].

with HPostpβpx,x0q, ωq “ 1 of the spherical monopole is to be deployed. For

cospβpx,x0qq “
xx ´ x0,npx0qy

|x ´ x0|
(4.2)

is used, which is identical to cosϕr, cf. Ch. 2, (2.20).
The curve parametrization of a straight array of length L – as already used

above – is for ´L
2

ď y0 ď `L
2

given as

CStraight : x0 “ p0, y0, 0q
T nx0 “ p1, 0, 0q

T. (4.3)

The arc source depicted in Fig. 4.1 with an arc length L and a definable central
angle αArc ‰ 0 is given with the curve parametrization

CArc : x0pαq “

¨

˚

˚

˝

∆rPS cospαq ´ ∆rPS

∆rPS sinpαq

0

˛

‹

‹

‚

nx0pαq “

¨

˚

˚

˝

cospαq

sinpαq

0

˛

‹

‹

‚

(4.4)

for ´
αArc
2

ď α ď `
αArc
2

. According to Fig. 4.1 the radius of the circle that set
the arc up is given as

∆rPS “
L

αArc
, (4.5)

hence yielding the circle’s origin at p´∆rPS, 0, 0qT for the chosen geometry.
Doing so, the middle of the arc intersects the coordinate system’s origin.
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A discrete source distribution is modeled with the Riemann sum along the
curve, here choosing an odd number N of individual sources. For the arc array
the discrete angles are given as

αµ “ ´
αArc

2
` µ

αArc

N ´ 1
for 0 ď µ ď N ´ 1, ∆C “

αArc

N ´ 1
∆rPS (4.6)

for the curve parametrization. The straight source is defined with

y0 “ ´L{2 ` µ
L

N ´ 1
for 0 ď µ ď N ´ 1, ∆C “ ∆y “

L

N ´ 1
. (4.7)

The discrete model can use different postfilters HPostpβpx,x0q, ωq of the dis-
crete sources that build the array. In the following simulations the line piston
postfilter (4.27) with line piston length l is deployed for all frequencies with a
definable factor q “ l

∆C
, cf. (3.139).

The SFS driving function of a plane wave (2.170) for ϕPW “ 0

Dpx0, ωq “ wpx0q

c

j
ω

c

?
8 π xRef (4.8)

with an additional spatial window wpx0q realizes a broadside array. From
[Spo10, Sch13, LA13] it can be deduced that finite length arrays require ad-
ditional prefiltering in order that a flat frequency response is obtained at the
reference evaluation point, here on-axis at xRef. In LSA applications this is
achieved by so called U-shaping, array morphing or array contour filtering that
is realized with different FIR/IIR filter design strategies. Here, applying the
additional preshelving filter HLS,HalfIntpωq (4.13) to the driving function yields

Dpx0, ωq “ wpx0q

c

j
ω

c

?
8π xRef ¨ HLS,HalfIntpωq. (4.9)

A suitable design of HLS,HalfIntpωq is discussed next, providing a proposed half
integrator and half differentiator design method.
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Half Differentiator and Half Integrator from 2nd Order Lowshelving

Filters

The Laplace transfer function of a 2nd order low-shelf is given as

HLSpsq “

s2

ω2
c

` s
ωc

n1

Q
` n2

s2

ω2
c

` s
ωc

d1
Q

` d2
, (4.10)

denoting the zero/pole quality Q. With the gain G in dB a symmetrical low-
shelf with g “ 10

|G|

20 and a so called one-half pad loss characteristic [Kim38],
where the magnitude is G

2
at the cutoff frequency ωc, is realized with the

coefficients

G ą 0 : n1 “ g` 1
4 n2 “ g` 1

2 d1 “ g´ 1
4 d2 “ g´ 1

2

G ď 0 : n1 “ g´ 1
4 n2 “ g´ 1

2 d1 “ g` 1
4 d2 “ g` 1

2 . (4.11)

For the pole/zero quality Q “ 1?
2

and G “ ˘10 log10p2q « ˘3.01 dB Ñ g “ 2
1
2 ,

HLSpsq simplifies to

HLS,+3dBpsq “

s2

ω2
c

` s
ωc

2
`5
8 ` 2

`1
4

s2

ω2
c

` s
ωc

2
`3
8 ` 2

´1
4

HLS,-3dBpsq “

s2

ω2
c

` s
ωc

2
`3
8 ` 2

´1
4

s2

ω2
c

` s
ωc

2
`5
8 ` 2

`1
4

, (4.12)

due to the symmetrical characteristic HLS,+3dBpsq “ HLS,-3dBpsq´1. A cas-
cade connection with subsequent reduction of the biquad’s individual cutoff
frequency each time by one octave

HLS,HalfIntpsq “

`8
ź

µ“0

Hµ,LS,+3dBpsq “

`8
ź

µ“0

s2

p2´µ ωcq
2 ` s

p2´µ ωcq
2

`5
8 ` 2

`1
4

s2

p2´µ ωcq
2 ` s

p2´µ ωcq
2

`3
8 ` 2

´1
4

(4.13)

HLS,HalfDiffpsq “

`8
ź

µ“0

Hµ,LS,-3dBpsq “

`8
ź

µ“0

s2

p2´µ ωcq
2 ` s

p2´µ ωcq
2

`3
8 ` 2

´1
4

s2

p2´µ ωcq
2 ` s

p2´µ ωcq
2

`5
8 ` 2

`1
4

(4.14)

yields either the half integrator HLS,HalfIntpsq9 1?
s

or the half differentiator
HLS,HalfDiffpsq9

?
s for ω ! ωc and linear characteristic HLS,HalfIntpsq Ñ 1 and

HLS,HalfDiffpsq Ñ 1 when ω " ωc.
With HLS,HalfDiffpsq adapted prefilters for WFS can be designed similar to

[Sch13] by defining the aliasing frequency ωc “ ωAliasing and the lower cut-
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off frequency ωLow “ ωc 2
´µ. Note that the approach here does not allow an

independent choice of ωAliasing and ωLow (here they are linked by a definable
octave distance) and the interpolation bandwidth (here this is predefined by
Q “ 1?

2
). However, the numerical optimization scheme used in [Sch13] pre-

cisely yields the same result of the analytical exact minimum phase shelving
filter HLS,HalfDiffpsq when these parameters match.

Half Differentiator and Half Integrator from 2nd Order Highshelving

Filters

The Laplace transfer function of a 2nd order half-pad loss, symmetrical high-
shelf is given as

HHSpsq “

s2

ω2
c
n2 ` s

ωc

n1

Q
` 1

s2

ω2
c
d2 ` s

ωc

d1
Q

` 1
, (4.15)

using the same parameters and coefficients from (4.11). Again, for the pole/zero
quality Q “ 1?

2
and G “ ˘10 log10p2q « ˘3.01 dB Ñ g “ 2

1
2 , HHSpsq simplifies

to

HHS,+3dBpsq “

s2

ω2
c
2

`1
4 ` s

ωc
2

`5
8 ` 1

s2

ω2
c
2

´1
4 ` s

ωc
2

`3
8 ` 1

HHS,-3dBpsq “

s2

ω2
c
2

´1
4 ` s

ωc
2

`3
8 ` 1

s2

ω2
c
2

`1
4 ` s

ωc
2

`5
8 ` 1

.

(4.16)

The same cascade connection as above

HHS,HalfDiffpsq “

`8
ź

µ“0

Hµ,HS,+3dBpsq “

`8
ź

µ“0

s2

p2´µ ωcq
2 2

`1
4 ` s

p2´µ ωcq
2

`5
8 ` 1

s2

p2´µ ωcq
2 2

´1
4 ` s

p2´µ ωcq
2

`3
8 ` 1

(4.17)

HHS,HalfIntpsq “

`8
ź

µ“0

Hµ,HS,-3dBpsq “

`8
ź

µ“0

s2

p2´µ ωcq
2 2

´1
4 ` s

p2´µ ωcq
2

`3
8 ` 1

s2

p2´µ ωcq
2 2

`1
4 ` s

p2´µ ωcq
2

`5
8 ` 1

(4.18)

yields either the half integrator HHS,HalfIntpsq9 1?
s

or the half differentiator
HHS,HalfDiffpsq9

?
s for ω ! ωc. This time the gain is |HHS,FracIntps Ñ 0q| “ 1

and |HHS,FracDiffps Ñ 0q| “ 1. For ω " ωc constant magnitude is observed,
which theoretically for µ Ñ 8 tends to zero (integrator) or infinity (differen-
tiator). In practice, only a limited range µ (finite number of biquads) would
be realized depending on the frequency range for which half integration/dif-
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Figure 4.2: Fractional order differentiators/integrators (4.13), (4.14), (4.18)
and (4.17) using ωc “ 2 π 2000 rad/s evaluated for 0 ď µ ď 5.

ferentiation is desired as exemplarily shown in Fig. 4.2. The upper shelving
frequency is set to 2 kHz and 6 second order filter structures (0 ď µ ď 5) are
realized leading to the cutoff frequency of 62.5 Hz for the last biquad. Within
the range 100Hz ă f ă 1 kHz the ˘3 dB/oct. slope is well matched, the phase
approximately reaches almost ˘π

4
as desired. Note that the ˘3 dB slopes of all

derived filters exhibit a negligible peak to peak deviation of ă 0.05 dB (ripples)
compared to the ideal slope.

4.1.1 Array Morphing

In the white paper [LA13] it is discussed that the three types of variation i)
increasing/decreasing the size of an LSA, ii) increasing/decreasing the cur-
vature of an LSA and iii) increasing/decreasing the listening distance to an
LSA induce similar effects on the ATF, cf. [LA13, Fig. 2&3] and thus can
be equally addressed by the same prefiltering. This is referred to as array
morphing therein. Since the schematically given figures [LA13, Fig. 2&3] are
oversimplifications it is worth providing a detailed simulation for these three
types of variation.

Consider a line array with length L “ 4m (L “ 8m) built from N “ 801
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(a) 4m straight array, rect window. (b) 4m straight array, Kaiser-Bessel window.

(c) 8m straight array, Kaiser-Bessel window. (d) 4m curved array, Kaiser-Bessel window.

Figure 4.3: On-axis frequency responses for variations of array size, windowing,
curving and distance doubling. Array driven with (4.9) and synthesized with
(4.1), xRef “ 16m, fc “ 515Hz “ const.

(N “ 1601) spherical monopoles (i.e. modeling a quasi continuous array with
∆C “ 5mm for frequencies f ă 20 kHz). The driving function (4.9) is used,
setting xRef “ 16m. Either a rectangular or a Kaiser-Bessel window with β “ 3

is used. The cutoff frequency for HLS,HalfIntpωq (4.13) is set to fc “ 515Hz and
the cascade connection of biquads is performed until the last biquad’s cutoff
frequency is smaller than 1Hz. The array is either straight or an arc with arc
angle αArc “ 45˝, cf. Fig. 4.1. The on-axis frequency responses for distance
doublings x{m “ p1, 2, 4, 8, 16, 32, 64, 128, 256, 512q are evaluated. The results
of evaluating the synthesis integral (4.1) are depicted in Fig. 4.3. The thick
black line indicates the frequency response for xRef “ 16m, the curves above
indicate a subsequent distance halving x{m “ p8, 4, 2, 1q, the curves below
subsequent distance doublings, i.e. x{m “ p32, 64, 128, 256, 512q. The dotted
blue curve shows the applied prefilter

a

j ω
c

?
8 π xRef ¨ HLS,HalfIntpωq (cf. (4.8))

normalized by ´51.7 dB corresponding to the level at 20 kHz for c “ 343m/s.
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Let’s assume that the resulting 0 dBrel at 20 kHz is the highest possible nor-
malized driving level for the drivers.

The chosen prefiltering realizes a fairly flat frequency response at xRef “

16m for the straight array setup of L “ 4m and Kaiser-Bessel windowing with
β “ 3 depicted in Fig. 4.3b. Applying the same prefilter for the other array
setups leads to deviations in the xRef “ 16m frequency responses. The rectan-
gularly windowed array in Fig. 4.3a shows the previously discussed diffraction
ripples in the frequency responses. In Fig. 4.3a, Fig. 4.3b and Fig. 4.3c the
highly frequency dependent Fresnel/Fraunhofer transition becomes obvious.
When moving towards the array from the reference distance, lower frequencies
increase in level by 6 dB per distance doubling (for these frequencies the lis-
tener is located in the Fraunhofer region), whereas higher frequencies increase
in level by 3 dB per distance doubling (indicating the Fresnel region). Only
very near to the array the Fresnel region becomes significant at the very lowest
frequencies. Vice versa, when moving away from the array, the level decay for
lower frequencies exhibits Fraunhofer region characteristic and for the higher
frequencies Fresnel region characteristic holds. Only for the very highest fre-
quencies at a large distance a Fraunhofer characteristic can be observed for the
4 m array. Due to the smooth transition between the Fresnel and Fraunhofer
region the frequency responses over distance vary with shelving filter charac-
teristic. This is also described with [LA13, Fig. 2b]. It can be seen that the 8
m array exhibits a more extended Fresnel region for a larger frequency range
than the 4 m array. This yields the low-shelf behavior with 6 dB gain at low
frequencies at xRef “ 16m for the 8 m array in Fig. 4.3c compared to the
flat frequency response of the 4 m array in Fig. 4.3b. This is also described
with [LA13, Fig. 3a]. With the arc array a smooth and frequency independent
Fresnel/Fraunhofer transition is achieved, depicted in Fig. 4.3d. Compared
to the straight arrays an almost perfect Fraunhofer characteristic with 6 dB
level decay per distance doubling is observed. Distance doublings and halvings
lead to virtually the same shelving shaped frequency responses, however with
loosing level at the high frequencies (here about 6 dB, cf. [Urb03, Fig. 18]).
This frequency responses can be flattened by setting fc “ 130Hz in (4.13)
and thus reducing also the level at low frequencies. This is described with
[LA13, Fig. 3c], however the figure ignores the fact that by curving the -3 dB
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per distance doubling merges to a -6 dB per distance doubling for the high
frequencies and thus obtaining homogeneous 6 dB loss per distance doubling
for all frequencies. In fact, curving an array reduces the extent of the Fresnel
region in general, since the array gets less directed by increased curving. In the
limit, an arc array with αARC “ 180˝ synthesizes a virtual point source located
in the arc’s origin. This is consistent with the Huygens principle. Therefore,
the deduction made in [Urb03, p.923]:
"It will be shown in the following that this [Fresnel/Fraunhofer] border distance
depends on the radius of curvature and is always further away for a convex line
source than for a flat line source of equivalent length. ... Thus the far field of a
curved array begins farther away than the corresponding one for a flat array."
by applying Fresnel analysis to arc arrays cannot be confirmed. In fact, any
smooth wavefront shaping that significantly differs from the uniformly driven
LSA reduces the extent of the nearfield.

The constant beamwidth transducer (CBT) [Rog78, Van83, Kee00, Kee10,
Kee15] constitutes an arc array with special windowing. [Rog78] derived the
connection of the source velocity

vpαq9

$

&

%

Pnpcos αq forα ď
αArc
2

0 else
(4.19)

of an arc array with its farfield radiation pattern

ppϕ “ αq9

$

&

%

Pnpcos αq forα ď
αArc
2

0 else
, (4.20)

which is valid for a certain cutoff frequency and for which the order n of the
involved Legendre polynomial Pnp¨q is to be chosen for a specific αArc. By
curving and windowing, a very homogeneous FRP with opening angle αArc

can be achieved that is equivalent with the applied spatial window. However,
it is worth realizing that the largest impact on producing more frequency in-
dependent FRPs than that of a straight LSA is the curving of a straight array.
Additional windowing then even improves the smoothness of the FRP since
side lobes become suppressed.

To conclude this section, the simulations confirm that increasing the array



4.1. ARC ARRAY VS. STRAIGHT ARRAY 183

size, moving towards the array and array curving lead to similar positive gain
low-shelf characteristic referenced to the flat frequency response initial setup.
Vice versa, decreasing the array size, moving away from the array and apply-
ing less curving lead to a similar, but negative gain low-shelf characteristic
referenced to the initial flat frequency response.

4.1.2 Beamwidth and Grating Lobes for Arc Arrays

In literature, FRPs of curved LSAs, such as of the arc array, the J-shaped array
and the spirally shaped array are discussed for continuous radiators [Ure01a,
Ure02, Ure04, Kee10] only. It is however important to discuss the impact of
grating lobes as well. Since FRPs of discretized, curved arrays cannot be easily
given in closed form solutions – such as it was the case for the linear array in
Ch. 3 – simulations are given next for the arc array. The knowledge of grating
lobes characteristics for linear LSAs is however very helpful interpreting the
obtained results. In [Str15b] FRPs of differently discretized, spirally curved
LSAs were given.

Simulation parameters

The same simulation strategy as for Sec. 4.1.1 is utilized, here varying sev-
eral parameters. In Fig. 4.4 and Fig. 4.5 a quasi continuous array with length
L “ 4m (801 spherical monopoles) with a rectangular and a Kaiser-Bessel
(β “ 3) window respectively is simulated. Different arc angles

0˝ for subfigures a), b)
10˝ for subfigures c), d)
30˝ for subfigures e), f)
50˝ for subfigures g), h)

are realized for the following figures. The left column of such a figure shows
the on-axis frequency responses for distance doublings similar as above for the
different curvings. The thick black line again indicates the frequency response
for xRef “ 16m that is always made flat by using an appropriate cutoff fre-
quency fc for HLS,HalfIntpωq (4.13). The resulting prefilter is indicated with
the blue line with a squared marker. The right column visualizes the corre-
sponding FRPs evaluated at a radius r “ |x| “ 217 m (cf. Fig. 4.1), for which
the prefilter is adapted to exhibit a flat on-axis frequency response at this dis-
tance. No further normalization of the FRP level is applied and by doing so
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the level loss due to curving can be evaluated. The FRP’s specific prefilter is
indicated with the dotted, blue line with a circled marker in the left column.
Using this huge, rather theoretical value for the FRP’s radius–assuming no
air absorption–the on-axis level for lowest frequencies for the straight arrays
is about -60 dB, which was an intentionally chosen level for convenient visual-
ization.

In Fig. 4.6 to Fig. 4.11 discretized LSAs using N “ 11 line pistons with
∆C “ 0.4m for the whole frequency range are simulated either with a rect-
angular or a Kaiser-Bessel (β “ 3) window respectively and varying the ARF
factor q “ l

∆C
(3.139), i.e. the ratio of the line piston length l and the dis-

cretization step ∆C. Hence, the following simulation results are presented
q “ 1, rectangular window (β “ 0) in Fig. 4.6
q “ 1, Kaiser-Bessel window (β “ 3) in Fig. 4.7
q “ 0.82, rectangular window in Fig. 4.8
q “ 0.82, Kaiser-Bessel window (β “ 3) in Fig. 4.9
q “ 0.67, rectangular window in Fig. 4.10
q “ 0.67, Kaiser-Bessel window (β “ 3) in Fig. 4.11

for the arc angles αARC “ 0˝, 10˝, 30˝, 50˝. The on-axis frequency response for
xRef “ 16m and the FRP are again made flat with prefilters that were obtained
for a continuous array in the first instance. Hence, the on-axis responses and
the FRPs for the discretized LSAs show the impact of spatial aliasing and the
interaction of the directed line pistons.

Continuous LSA

The quasi-continuous arrays in Fig. 4.4 and Fig. 4.5 show decreased diffraction
ripples when applying the Kaiser-Bessel window compared to the rectangular
window. This also leads to reduced side lobe levels in the FRPs as expected.
An increased curving leads to a more homogeneous on-axis level decay for
distance doubling in both cases as discussed above in Sec. 4.1.1. The FRPs
indicate a growing broadening of the main lobe and all side lobes with in-
creased curving, for which the Kaiser-Bessel window (similar to the CBT)
provides more homogenous main beam widths. This is due to the reduced side
lobes that smear into the main lobe. The directivity is only developed for wave
lengths that are larger than the array length. For larger wave lengths (lower
frequencies) the array acts like a spherical monopole. For the rectangular win-
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dowed, curved array the applied curvature leads to ’-6 dB main lobe beam
widths’ that are directly connected to the arc angle αArc. For the straight
array the main lobe width of the Kaiser-Bessel windowed array is broadened
compared to the rectangular window as expected. However, when curving the
array the main lobe width of the Kaiser-Bessel windowed array is smaller than
for the rectangular windowed array. This behavior is heavily dependent on the
chosen β and in general from the chosen window type.

It is worth realizing that even a small curving angle significantly improves
the radiation characteristic of the LSA making it more suitable for homoge-
neous LS-SR instead of using a straight array.

LSA with ARF=1

In Fig. 4.6 and Fig. 4.7 a discretized line piston LSA with q “ 1 is simulated.
It can be observed that by modeling an LSA without gaps between adjacent
cabinets – which was favored to avoid grating lobes when concluding Ch. 3
– the FRP exhibits a ’tooth spaces’-like structure at the highest frequencies
when too much curving is applied. The case αArc “ 50˝ is equivalent to a 5˝

splaying angle between adjacent cabinets. This indicates that the line pistons
not longer interact in the farfield – more precisely the interference of the line
pistons becomes negligible – and rather ’illuminate’ a specific coverage angle
isolated from each other. Too much curving should be avoided which was also
concluded in [Urb03, Sec. 6.2] by stating the fifth WST criterion. However,
note that the optimum coverage of the audience is of importance and for this
spatial region the line pistons may produce not negligible interference.

A further important characteristic for discrete arrays is observed in the on-
axis responses. The frequency responses exhibit the general trend of a more
homogeneous level decay per distance doubling for increased curving. However,
the responses have a larger deviation from the intended flat response. This is
due to the fact that the ATF is built from discrete sources here introducing
smoothed out comb filter characteristics.

When moving very near towards the array the ATF follows the applied
prefilter at high frequencies. This indicates that only one specific LSA cabinet
(here the one in the middle of the LSA) is accountable for the resulting sound
pressure, since all other cabinets radiate into another spatial region due to
their directivity. This can be observed in practice as well, when being located
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very near to the bottom-most LSA cabinet on its main axis. Therefore, LSA
cabinets for long and near throw should be processed with different prefilters
or with suitable adapted wavefront shaping.

LSA with ARF=0.82

In Fig. 4.8 and Fig. 4.9 a discretized line piston LSA with q “ 0.82 is simulated.
This corresponds to a relative grating lobe level of -13.5 dB for a linear LSA
as discussed in Ch. 3, cf. (3.135). The first grating lobe enters the FRP
at ˘90˝ for f “ 857.5Hz, cf. Fig. 4.8b. The FRPs reveal an effect that –
although also observable for side lobes – heavily affects the quality of the main
lobe. By increasing the curvature all lobes are broadened by approximately
maintaining their relative levels as for the non-curved array. Therefore, the
knowledge of grating lobe locations and relative levels is helpful for studying
curved arrays. When the array is being curved too much, broadened grating
lobes smear into the broadened main lobe, which is naturally heavily frequency
dependent, cf. Fig. 4.9f, Fig. 4.9h. This is of course undesirable since the main
lobe not longer provides a homogeneous beam. It can be concluded that also
for curved arrays the gap size between adjacent LSA cabinets should be as
small as possible, making so called front hinge splaying of the LSA cabinets
the preferred choice compared to rear hinge splaying [Mar03]. Furthermore, it
may be deduced that the sinc-function postfilter characteristic of a line piston
is not the optimum choice for curved arrays. Reduced side lobes along with a
broader main lobe beam as a postfilter characteristic would allow a larger array
curvature and could eliminate the discussed tooth spacing. This is currently
subject to research and development and is not further elaborated here.

The on-axis frequency responses for the straight arrays reveal the already
discussed effect of vanishing spatial aliasing when being very far away from
the array on main axis, cf. Fig. 4.8a, Fig. 4.9a that are similar to Fig. 4.6a,
Fig. 4.7a for listening distances larger than 16 m. Array curving still leads
to a more homogeneous level decay per distance doubling. Furthermore, the
corruption from spatial aliasing becomes more independent w.r.t. distance
doubling.
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LSA with ARF=0.67

In Fig. 4.10 and Fig. 4.11 a discretized line piston LSA with q “ 0.67 is
simulated. This corresponds to a relative grating lobe level of about -8 dB for
a straight LSA. Since ∆C “ 0.4m is held constant for all line piston LSAs the
grating lobes occur at the same locations within the FRP but here with more
level. Thus, the main lobe beam is even more corrupted when grating lobes
smear into it. Furthermore, the on-axis frequency responses exhibit larger level
variations in these regions where aliasing corrupts the intended flat frequency
responses, cf. Fig. 4.11g (q “ 0.67) vs. Fig. 4.9g (q “ 0.82). This should be
avoided by approaching q Ñ 1 as close as possible.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Continuous arc array, rectangular window. Left: on-axis pressure
for distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: Continuous arc array, Kaiser-Bessel window. Left: on-axis pressure
for distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Discrete arc array, rectangular window. Left: on-axis pressure for
distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Discrete arc array, Kaiser-Bessel window. Left: on-axis pressure
for distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: Discrete arc array, rectangular window. Left: on-axis pressure for
distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Discrete arc array, Kaiser-Bessel window. Left: on-axis pressure
for distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10: Discrete arc array, rectangular window. Left: on-axis pressure for
distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: Discrete arc array, Kaiser-Bessel window. Left: on-axis pressure
for distance doublings starting from x “ 1m. Right: FRP for r “ 217 m.
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4.2 Line Source Array Control and Prediction
Practical LSA setup and control is supervised with sound field prediction soft-
ware. This is often tied to a specific LSA manufacturer or exhibits manufac-
turer limited/-specific control possibilities. To further investigate appropriate
LSA control techniques within a consistent framework an open-source toolbox
for the 2D prediction of sound fields was developed for research purposes. This
is termed Line Source Array Prediction Toolbox (LSAPT)2

4.2.1 LSA Prediction Kernel

For ease of discussion sound fields in a plane (here again in the xy-plane)
are predicted by a complex-directivity point source model using the Kirchhoff
diffraction, i.e. the HF-BEM kernel (2.33). As already stated above, this model
holds (i) in the farfield of an individual source within an LSA, i.e. a single LSA
cabinet, (ii) for ω

c
r " 1 and (iii) wave lengths that are small compared to the

LSA length, (iv) when ignoring diffraction effects between adjacent drivers, (v)
not for rearward prediction. However, by deploying baffled piston models for
the individual sources in favor of convenient parametrization of LSA setups,
this model could be used for LSA control algorithm’s prototyping.

The considered geometry is depicted in Fig. 4.12. All used variables are
collected in the tables 4.1 and 4.2. For ease of discussion the individual trans-
ducers that build an LSA are located in z “ 0 w.r.t. the piston centers. Typical

2https://bitbucket.org/fs446/lsapt, Matlab

x

y

¨ z

x ´ x0,i

x

x0,i

Spx, ωq

ϕpxq

γn

xFRP,Origin
ϕFRP

n“1

pxt,1, yt,1, 0qT

pxb,1, yb,1, 0qT
pxc,1, yc,1, 0qT∆y0,LSA

n“2

n“3

ni

βipxq

Figure 4.12: Geometry and variables for the LSA setup, cf. [Str15a, Fig. 1].

https://bitbucket.org/fs446/lsapt
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cabinet designs with z-symmetrical low and mid frequency band transducer se-
tups are not considered. Due to consistent usage of vector algebra the LSAPT
could be easily enhanced towards this feature.

Top and bottom front grille position vectors – modeling so called front hinge
splaying of the LSA cabinets [Mar03] – are given as [Str15b, (3,4)], [Str15a,
(1,2)]

xt,n “

¨

˚

˚

˝

xt,n

yt,n

0

˛

‹

‹

‚

“

¨

˚

˚

˝

xH

yH

0

˛

‹

‹

‚

´

µ“n´1
ÿ

µ“1

∆y0,LSA

¨

˚

˚

˝

sin γµ

cos γµ

0

˛

‹

‹

‚

, (4.21)

xb,n “

¨

˚

˚

˝

xb,n

yb,n

0

˛

‹

‹

‚

“

¨

˚

˚

˝

xH

yH

0

˛

‹

‹

‚

´

µ“n
ÿ

µ“1

∆y0,LSA

¨

˚

˚

˝

sin γµ

cos γµ

0

˛

‹

‹

‚

. (4.22)

For all possible i “ pn ´ 1q ¨ L ` l using n “ 1, 2, ..., N and l “ 1, 2, ..., L the
piston center position of the i-th source is given as [Str15b, (7)], [Str15a, (3)]

x0,i “

¨

˚

˚

˝

x0,i

y0,i

0

˛

‹

‹

‚

“

¨

˚

˚

˝

xt,n

yt,n

0

˛

‹

‹

‚

`
l ´ 0.5

L

¨

˚

˚

˝

xb,n ´ xt,n

yb,n ´ yt,n

0

˛

‹

‹

‚

(4.23)

and the unit vector of the i-th piston surface as

ni “

¨

˚

˚

˝

` cosp´γnq ´ sinp´γnq 0

` sinp´γnq ` cosp´γnq 0

0 0 1

˛

‹

‹

‚

¨

¨

˚

˚

˝

1

0

0

˛

‹

‹

‚

. (4.24)

For L “ 1 follows xc,n “ x0,i and nn “ ni, i.e. the center front grille position
of the n-th LSA cabinet and its corresponding unit normal, i.e. its on-axis
’shooting direction’ vector. With x ´ x0,i and ni the angle

βipxq “ acos
ˆ

xx ´ x0,i,niy

|x ´ x0,i|

˙

(4.25)
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can be calculated based on the scalar product.
The farfield radiation pattern of the circular piston with radius r0 (D.37)

HPost,Circpβipxq, ωq “
2 J1pω

c
r0 sin pβipxqqq

ω
c
r0 sin pβipxqq

(4.26)

and the farfield radiation pattern of the line piston with length l0 (D.75)

HPost,Linepβipxq, ωq “
sinpω

c
l0
2
sin pβipxqqq

ω
c

l0
2
sin pβipxqq

(4.27)

are used to model LSA designs with circular pistons in the low frequency (LF)
and mid frequency (MF) band and with line pistons in the high frequency
band (HF).

The temporal Fourier spectrum of the i-th driving function is given as

Dipωq “ wi 4 π p0 xref 10
p

Sensi
20 q gi,comp

a

Pi,max
?
Pref

HpωqHipωqDi,LSApωq. (4.28)

The driver sensitivity Sensi is modeled as a constant per frequency band LF,
MF, HF equally for all pistons. Also the applicable power Pi,max is modeled as a
frequency independent measure per frequency band LF, MF, HF for all pistons
for convenience. The factor gi,comp (also constant within one frequency band) is
used to compensate the different sensitivities of the LF, MF and HF band and
adapts the final driving gain in order to achieve the maximum applicable power
for a specific LSA control technique. Hpωq – individually applicable to a certain
frequency band – realizes the low/highpass, cross-over filters as well as the
shelving prefilter. The application of an individual filter Hipωq for an individual
source is not considered here. Typically, air absorption compensation filters
can be applied with this filter. The LSAPT ignores air absorption so far, which
can however easily deployed considering the ISO 9613-1/2 and a suitable filter
design such as [Pet13]. Di,LSApωq is the source dependent driving function
corresponding to a specific LSA control technique. Additionally, a frequency
independent spatial window function wi can be applied.

With all introduced variables the sound field is predicted by the adapted
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HF-BEM kernel (2.33)

Spx, ωq “

LN
ÿ

i“1

Dipωq
1 ` cos pβipxqq

2
HPostpβipxq, ωq

e´j ω
c

|x´x0,i|

4 π |x ´ x0,i|
, (4.29)

where it is worth realizing that the control variable i might differ for the
different frequency bands LF, MF and HF due to a potentially different count
of the considered pistons.

j imaginary unit j2 “ ´1
c speed of sound in m/s
f frequency in Hz
t time in s
ω temporal angular frequency in rad/s, ω “ 2π f
∆y0,LSA front grille’s height in m of a single LSA cabinet, constant for

all cabinets
xH “ pxH, yH, 0qT initial front grille top position of LSA cabinet n “ 1
N number of LSA cabinets
n index for n-th LSA cabinet, 1 ď n ď N , top n “ 1, bottom

n “ N
L number of individual pistons per LSA cabinet, constant for

all cabinets
i index for i-th piston within LSA, 1 ď i ď N L, top i “ 1,

bottom i “ N L
xt,n “ pxt,n, yt,n, 0qT resulting front grille top position of n-th LSA cabinet
xc,n “ pxc,n, yc,n, 0qT resulting front grille mid position of n-th LSA cabinet
xb,n “ pxb,n, yb,n, 0qT resulting front grille bottom position of n-th LSA cabinet
γn tilting angle of n-th LSA cabinet w.r.t. the normal vector

p1, 0, 0qT, - for upward tilting, + for downward tilting
x0,i “ px0,i, y0,i, 0qT position of the i-th piston center, i.e. i-th source origin
ni “ pex,i, ey,i, 0qT normal unit vector to the i-th piston surface
βipxq angle between normal unit vector ni of the i-th piston surface

and the vector x ´ x0,i from i-th piston center to evaluation
position

x “ px, y, 0qT sound field evaluation position

Table 4.1: Geometric and acoustic parameters for the LSA setup in Fig. 4.12.
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Dipωq temporal Fourier spectrum of the i-th piston’s driving func-
tion

HPostpβipxq, ωq spatial lowpass characteristic of the i-th piston, i.e. its farfield
radiation pattern over radiation angle and temporal angular
frequency

r0 radius in m of the circular piston
l0 height in m of the line piston
p0 reference sound pressure, 20µPa
Pref 1 W
xref 1 m
Sensipωq temporal Fourier spectrum of the i-th piston’s sensitivity in

dBSPL@1W, 1m
Pi,maxpωq maximum applicable electric power in W for the i-th source
Hipωq temporal transfer function of an equalization filter for i-th

source, not used in the present simulations
Hpωq temporal transfer function of an equalization filter equally

applied to all sources of the LSA in a specific frequency
band, i.e. here lowpass HLPpωq, highpass HHPpωq, cross-
over filters HLP,XOpωq and HHP,XOpωq, SFS shelving prefilter
HLS,FracIntpωq

Di,LSApωq driving function for a specific LSA control method
Spx, ωq temporal Fourier spectrum of the sound field at evaluation

position x

Table 4.2: Electro-acoustic parameters for the LSA setup in Fig. 4.12.
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c “ 343m/s
∆y0,LSA “ 0.45m
xH “ p0, 13.5, 0qT ¨ m
N “ 18
LLF “ 1, circular piston
LMF “ 2, circular piston
r0,LF “ 15{2” Ñ qLF “

2 r0,LF
∆y0,LSA{LLF

“ 0.8467

r0,MF “ 6.5{2” Ñ qMF “
2 r0,MF

∆y0,LSA{LMF
“ 0.7338

p0 “ 2 ¨ 10´5 Pa
SensLFpωq “ 104 dBSPL@1W, 1m “ const (equivalent to a 2x98 dB design)
SensMFpωq “ 104 dBSPL@1W, 1m “ const (equivalent to a 2x98 dB design)
SensHFpωq “ 113 dBSPL@1W, 1m “ const
PLF,maxpωq “ 1200W “ const (equivalent to a 2x600 W 15" design)
PMF,maxpωq “ 300W “ const (equivalent to a 2x150 W 6.5" design)
PHF,maxpωq “ 75W “ const
cross-over frequency between LF and MF fXO,LM “ 350Hz
cross-over frequency between MF and HF fXO,MH “ 1.3 kHz
Linkwitz-Riley cross-over HLP,XOpωq/HHP,XOpωq with 120dB/oct. slope [Lin76]
highpass: HHPpωq Butterworth order 6, fHP “ 68Hz
lowpass: HLPpωq Butterworth order 6, fLP “ 13 kHz
equalizing filter for individual sources, constant for all sources Hipωq “ 1

Table 4.3: Parameters that are held constant for the given simulations of
different LSA design studies.
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4.2.2 Venue Model

For the simulations a typical open-air amphitheater is considered (resembling
the Waldbühne in Berlin that takes up to 23000 attendees3). This venue is
modeled by a vertical sectional drawing. It exhibits 4 audience zones, the
floor and three stands that can be defined by the lines xAud “ p10, 0, 0qT Floor

Ñ

p30, 1.5, 0qT 1st St
Ñ p60, 10, 0qT 2nd St

Ñ p85, 20, 0qT 3rd St
Ñ p110, 30, 0qT, setting the

stage edge at x “ 0, cf. Fig. 4.14. Thus, xm“1 “ p10, 0, 0qT and xm“M “

p110, 30, 0qT is defined. The venue features some demanding characteristics.
With an assumed maximum possible rigging height of the top most LSA cab-
inet of 13.5 m the tilting angle must be about γ1 “ ´9˝ (`9˝ into positive
y-axis direction) for WST-like audience coverage yielding a demanding me-
chanical burden of the rigging hardware. Furthermore, audience distances
from 10 m to about 115 m have to be covered.

4.2.3 LSA Model

The LSA is modeled with a typical LF=15"/MF=6.5" three-way cabinet de-
sign, cf. Table 4.3. The chosen sensitivities and maximum applicable power
ratings are similar to real LSA designs using typical ratings of electro-dynamic
loudspeakers and waveguides. The LF and MF band parameters are held con-
stant throughout the simulations. An array with N “ 18 LSA cabinets is
chosen yielding an LSA length of 8.1 m. Note that the resulting mechanical
load of about 1.5 ´ 2 t may not be feasible in the real venue. However, the
length was chosen in order that the diffraction model still holds for lower audio
frequencies and to better demonstrate the performance of wavefront shaping
at the low frequencies. For the HF band either 3 or 15 waveguides per LSA
cabinet are deployed resulting in different frequency bandwidths not corrupted
by spatial aliasing for electronic beam steering. It is assumed that each in-
dividual piston is driven with an individual amplifier and can be individually
controlled with an FIR filter. The cross-over, low/highpass filters and the
shelving prefilter are realized as linear-phase FIRs in the given simulations,
precisely as zero-phase filters, which in practical realizations then can be made
linear-phase with an appropriately chosen group delay.

3Special thanks to Thorsten Schulze for sharing details on practical LS-SR applications
in this venue.
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4.2.4 LSA Control

For (4.28) the required filters are collected for different LSA control techniques.
With HLS,HalfIntpωq from (4.13) the zero-phase filters

Hpωq “

$

’

’

’

&

’

’

’

%

|HHPpωqHLS,HalfIntpωqHLPpωqHLP,XOpωq| for LF band

|HHPpωqHLS,HalfIntpωqHLPpωqHLP,XOpωqHHP,XOpωq| for MF band

|HHPpωqHLS,HalfIntpωqHLPpωqHHP,XOpωq| for HF band

(4.30)

are applied to realize the lowpass/highpass, the cross-over and the preshelving
characteristics for the different frequency bands.

LSA Control with WST

For the uniformly driven LSA, the driver independent prefilter

DLSApx0,i, ωq “

c

j ω
c

2π
(4.31)

is used. For practical realization the FIR design proposed in Ch. 2.5 might be
used. The filter

Hcouplingpωq “

c

j ω
c

2 π
HLS,HalfIntpωq (4.32)

then realizes the complete prefilter for this LSA control technique, that is
typically referred to as the coupling filter in LSA applications. With the above
discussed array morphing this coupling filter can be adapted to the length and
curvature of the LSA.

LSA Control with WFS

At the beginning of this chapter it was proposed to use WFS as a straightfor-
ward control method for wavefront shaping. Among other things, this can be
realized with a non-focused point source with additional directivity, that was
already introduced in literature, e.g. [Jac05, Cor07, Fra12, Rom15]. The WFS
driving function (2.137) of a non-focused, directed point source for a reference
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point reads [Cor07, (10)], [Rom15, (4)]

DLSApx0,i,xRef , ωq “

c

j ω
c

2π

d

|xRef ´ x0,i|

|x0,i ´ xPS| ` |xRef ´ x0,i|
ˆ

xx0,i ´ xPS,npx0,iqy

|x0,i ´ xPS|

e´j ω
c

|x0,i´xPS|

a

|x0,i ´ xPS|
¨ gpx0,iq, (4.33)

with the gain factor gpx0,iq realizing the farfield directivity of the virtual
point source. While recent literature discussed simple model-based directivi-
ties (such as from spherical harmonics modes [Jac05, Cor07] or baffled piston
FRPs [Rom08, Rom15]) homogeneous LS-SR requires a specially adapted FRP
for the virtual point source to obtain the desired wavefront shaping, which was
not yet considered in the literature and is introduced here.

Herein, it is proposed to calculate a reference FRP pattern w.r.t. a chosen
reference point xRef . The distance ratio between |xRef ´ xPS| and any other
audience location |x´xPS| can be expressed in terms of a dB gain/attenuation
term

HPS,FRPpϕxq “ DDdB ¨ log10

ˆ

|xRef ´ xPS|

|x ´ xPS|

˙

, (4.34)

where the factor DDdB controls the effective SPL loss over the audience if xRef

is an audience position. For DDdB “ ´20 no SPL loss over the whole audience
is obtained, DDdB “ ´10 realizes a -3 dB SPL loss w.r.t. the considered
distance ratio, whereas DDdB “ 0 defines an omnidirectional pattern within
the given spatial region. Any other suitable ’distance ratio to dB mapping’
can be easily adapted (cf. the array processing tool of d&b audiotechnik’s
ArrayCalc prediction software). The corresponding radiation angle ϕx is given
as

ϕx “ acos
ˆ

x
x ´ xPS

|x ´ xPS|
, p1, 0, 0q

T
y

˙

¨

$

&

%

p´1q if xp0, 0, 1qT, x´xPS

|x´xPS|
ˆ p1, 0, 0qTy ą 0

p`1q else
,

(4.35)

w.r.t. the reference direction into x-axis. For typical LSA/venue setups ϕx

exhibits a certain range, very roughly within |ϕx| ă 30˝.
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Figure 4.13: Example of a farfield radiation pattern for a virtual, directed
non-focused point source, cf. [Gun03c, Fig. 15].

The FRP HPS,FRPpϕxq and the angles ϕx are then expanded to a ´90˝ ă

ϕx ă `90˝ representation. For that the FRP is simply continued with a linear
level loss (dB over degree) from the maximum ϕx towards ϕx “ `90˝ and from
the minimum ϕx towards ϕx “ ´90˝ respectively. The maximum attenuation
of the FRP is defined at HPS,FRP,minpϕx “ ˘90˝q “ HPS,FRP,maxpϕxq ` Amin,dB;
in the simulations Amin,dB “ ´100 was chosen. In Fig. 4.13 an example is given
originating from the later discussed LSA design study #7. For convenient vi-
sualization only the parameter Amin,dB “ ´50 is changed here. No SPL loss
over the audience is setup with DDdB “ ´20 leading to a required high level
for very far audience positions (HPS,FRPpϕx “ `10˝q “ 5 dB) and required low
level near the array (HPS,FRPpϕx “ ´30˝q “ ´10 dB) for the chosen xPS and
xRef , cf. the blue line. The FRP is then completed with the lines towards
HPS,FRPpϕx “ ˘90˝q « ´45 dB, cf. the black lines. Note that a dense sam-
pling of the audience region is required to obtain a valid series for HPS,FRPpϕxq

and ϕx.
The gain factor gpx0,iq within the WFS driving function requires the knowl-

edge of the FRP’s gain w.r.t. the secondary source position’s angle

ϕx0,i
“acos

ˆ

x
x0,i ´ xPS

|x0,i ´ xPS|
, p1, 0, 0q

T
y

˙

¨

$

&

%

p´1q if xp0, 0, 1qT,
x0,i´xPS

|x0,i´xPS|
ˆ p1, 0, 0qTy ą 0

p`1q else
. (4.36)
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Since, ϕx0,i
and ϕx typically not coincide, a interpolation is performed. Using

HPS,FRPpϕxq in dB and ϕx/ϕx0,i
in degrees a cubic spline interpolation yields

HPS,FRPpϕx0,i
q. The corresponding linear gain factor

gpx0,iq “ 10

ˆ

HPS,FRPpϕx0,i
q

20

˙

(4.37)

is then applied in DWFSpx0,i,xRef , ωq (4.33) to realize the directed point source.
An appropriate virtual point source location has to be defined for this ap-

proach. For SFS of a virtual point source using finite length linear arrays,
the limited listener region can be roughly estimated by means of a geometric
approximation [Spo09, Sec. 4.2], [Rom15, Sec. 2.1], which holds for smaller
wave lengths than the array dimension. In simulations it turned out that the
theoretical point source position xPS defined by the intersection of the two
lines (cf. Fig. 4.12)

xm“1 ´ x0,i“LN xm“M ´ x0,i“1, (4.38)

(i.e. from a vector that starts from the nearest audience point to the bottom-
most LSA source and from a vector that starts from the farthest audience
point to the topmost LSA source) is not the optimum choice for the applica-
tion under discussion. So far, no analytical solution for the optimum location
could be derived. However, the simulations revealed that an appropriate point
source position is located within the area that is spanned by the LSA and the
theoretical point source position behind the LSA. The point source on the one
hand should not be too far away from the LSA to avoid a plane wave like
wavefront curvature and on the other hand not too close to the LSA to avoid a
point source like wavefront curvature. In both cases a proper wavefront shap-
ing with the desired FRP of the virtual source is not possible. The position of
xPS was eventually determined by trial and error for the intended performance
of the LSA design study #5 and then held constant throughout other design
studies.
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4.3 Visualization and Quality Measures
In [Str15a] we proposed visualization methods and quality measures for con-
venient and in-depth interpretation of the sound fields synthesized by LSAs.
Some of them are deployed as well in this thesis. Note that no avoid zone is
defined here for the open-air situation under discussion. The simulations are
evaluated by the following visualizations:

• PIP, position index plot, SPL over frequency f and audience positions
m

• FAP, frequency responses (magnitude) of all audience positions, SPL
over frequency f

• IAP, impulse responses of all audience positions, normalized peak level
over time t

• FRP, farfield radiation pattern, SPL over frequency f and radiation
angle ϕFRP

• SPLxy, SPL over xy-plane for individual frequencies f

• DFIP, driving function index plot, magnitude/group delay of the driving
functions Dipωq over frequency f and driver index i

The FAP and IAP constitute the ATF and AIR for the audience positions.
Since WFS applies constant group delays, i.e. pure delays to the individual
drivers, the DFIP is given as a single delay plot over driver index i. Note
that in this plot the travel time of the virtual point source towards the LSA is
compensated (minimum delay is thus 0 s, just like one would implement the
FIRs in practical realizations), whereas in the IAP it is preserved for convenient
interpretation. The frequency resolution is set to 1 Hz. The audience positions
are equally discretized such that two adjacent positions exhibit a distance of 1
m, in total 107 audience positions are evaluated. The FRP is evaluated with
1˝ resolution using the origin point in the middle of and behind the array

xFRP,Origin “ x0,i“1 ´
x0,i“1 ´ x0,i“LN

2
(4.39)
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for x0 of the HF band and again a huge radius of 214 m. Its visualization
is then performed with no normalization, but rather adapting the SPL to a
distance of 16 m by the 1

r
-law, which of course only holds if the farfield con-

dition holds. The IAP is given only for 11 positions throughout the venue
for convenient visualization, depicted blue in Fig. 4.14 and normalized to the
highest occurring peak of all 11 impulse responses. They are chosen such that
by starting at x “ p10, 0, 0qT each subsequent AIR exhibits exactly a 30 ms
offset, when the LSA is controlled with the virtual point source. Additionally
the last AIR is evaluated at the last audience position x “ p110, 30, 0qT. Note
that for uniformly driven arrays the AIRs arrive earlier since no delay is used
and the AIR offsets may differ (but only very slightly) due to the different time
alignment of this LSA control technique.

Furthermore, some distribution measures should help for a convenient inter-
pretation of the simulations. The first two of them are defined as, cf. [Str15a,
(20&21)]

LB1pωq “ Qq
i

r20 log10p|Dipωq|qs (4.40)

LB2i “ Qq
ω

r20 log10p|Dipωq|qs (4.41)

using the operator Qqr¨s to calculate the q “{0.05, 0.25, 0.50, 0.75, 0.95, 1}

quantiles either over an individual driver i in case of LB1pωq or over the
frequency ω (considering the pass band of the specific driver) in case of LB2i.
These measures provide a convenient overview of the load balancing of the
drivers either w.r.t. to frequency or w.r.t. an individual driver. A further
quality measure for the obtained SPL distribution per audience position m is
calculated as

Lp,aud,m “ Qq
ω

„

20 log10

ˆ

Spxm, ωq

p0

˙

. (4.42)

For the given simulations the frequency range 200Hz ă f ă 5 kHz is used
considering this as the most important frequency bandwidth for LS-SR, pre-
cluding the highest audio frequencies where potential spatial aliasing would
have severe impact on this measure. This then provides a very convenient
overview for the SPL loss over the audience as well as the frequency response
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variation over the audience in terms of the considered quantiles.

4.4 Simulations
Since the degree of freedom for changing variables in the LSAPT is numerous,
eight LSA design studies are chosen that should highlight the most important
aspects for discussing and linking WST and WFS control techniques.

The presented graphics are rendered with LSAPT Tag ’v0.06’ and ’v0.07’4.
Besides variables that are held constant in general being listed in Table 4.3,
the following parameters do not change for certain design cases:

• LHF “ 3 for LSA designs 1-4, LHF “ 15 for LSA designs 5-8

• qHF “ 0.847 for LSA designs 1 & 4-8, qHF “ 1 for LSA designs 2 & 3

• tilt angle & splaying angles are held constant for LSA designs 3-7 realizing
a progressively curved LSA [Ure04], tilt angle & splaying angles are equal
for LSA designs 1 & 8 realizing a straight LSA

• xPS “ const for LSA designs 5-8

• Amin,dB “ const for LSA designs 5-8

All design cases are visualized with the same figure style. The first figure shows
the LSA and venue setup and – additionally for WFS controlled LSAs – the
FRP of the virtual point source as well as the applied delays. Below this figure
the varied parameters used for the specific design study are given. The second
figure is related to the driving functions giving the DFIPs and distribution
measures LB1pωq and LB2i, additionally indicating the maximum applicable
as well as the actually required maximum power load of the drivers. The
third figure shows the FRP, the PIP, the FAP and the IAP as well as the SPL
distribution measure Lp,aud,m. The fourth and last figure per LSA design study
shows the SPL within the xy-plane for individual frequencies.

While the first four LSA designs are controlled merely by gain shading
(windowing) and curving, the LSA designs 5-8 are controlled with the proposed
WFS approach.

4https://bitbucket.org/fs446/lsapt/commits/tag/v0.06

https://bitbucket.org/fs446/lsapt/commits/tag/v0.06
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LSA Design 1

The LSA is fixed straightly using an ARFHF “ qHF “ 0.847 with 3 line pistons
per LSA cabinet and a rectangular window. The radiation characteristic can
thus be directly interpreted with the results of Ch. 3. The HF band exhibits
the maximum power load. LB1pωq exhibits no distribution at all, indicating
that all drivers are equally driven. From LB1pωq the prefilter and crossover
characteristics as well the sensitivity difference of the different frequency bands
can be easily determined. All quantiles of LB2i are lines due to the equally
driven pistons indicating a distribution due to the applied low/highpass, pre-
and crossover filters only. The FRP indicates the highly directed main lobe
beam for f ą 500Hz, as well as the expected side lobes (due to the rectangular
window) and grating lobes in the HF band (due to the ARF as discussed in
Ch. 3). The main lobe covers only the audience positions 40-60 for f ą 500Hz
with very high SPL about 120 dB, whereas the positions 1-40 and 60-107 are
mostly covered from down-/upward beaming grating lobes. This can be seen
in the PIP and is affirmed by the IAP and Lp,aud,m. The IAPs at the first
four evaluation positions are severely corrupted from spatial aliasing, whereas
the IAPs at positions 5 and 6 within the main lobe beam exhibit the best
impulsiveness and thus the most flat frequency responses with highest SPL.
The Lp,aud,m exhibits a large variation of the quantiles for the audience positions
that are covered by the main lobe beam due to due to the highly frequency
dependent near-/farfield transition of this straight LSA. Even more variation
is observed for audience position very near and very far to the array where
mostly spatial aliasing contributes to the achieved FAP. In the SPL plot the
frequency dependent near-/farfield transition as well as the side and grating
lobes can be studied for individual frequencies. Obviously, this LSA design
and control method does not lead to a desired, homogeneous LS-SR of the
audience.

LSA Design 2

The arc array with 2.5˝ splaying angles between the LSA cabinets exhibits
an ARFHF “ qHF “ 1 with 3 line pistons per LSA cabinet and a Kaiser-
Bessel windowing with β “ 3. Thus, an arc angle αArc “ 17 ¨ 2.5˝ “ 42.5˝

is realized. The arc curving together with windowing resembles a CBT array.
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The HF band exhibits the maximum power load. LB1pωq indicates that gain
shading occurs since the quantiles are just offset to each other showing again
the prefilter and crossover characteristics as well the sensitivity difference of
the different frequency bands. In comparison to design study 1, the lower cutoff
frequency fc of the preshelving filter is clearly visible. From LB2i the applied
window can be extracted. The FRP shows the broadened main lobe beam
that approximately matches the arc angle for f ą 300Hz. Side lobe levels
are reduced by windowing. Due to rather small splaying angles and no gaps
between waveguides no significant grating lobes occur. The PIP and Lp,aud,m

indicate a very homogeneous audience coverage with little frequency response
variation and a rather large SPL loss rate throughout the audience. This is
confirmed with the IAP showing very similar impulse response characteristics
except that one very near to the array. The homogeneous PIP and IAP is a
result of the windowed arc array. Similar results were reported recently for
the exact CBT array in [Kee15]. The SPL plot within the xy-plane shows
almost frequency independent main lobe beams. For the frequencies in the HF
band some rippling in the beams is observed due to the waveguides’ directivity.
Thus, even for a waveguide spacing without gaps realized here, the splaying
of ideal line pistons introduces artifacts that might be overcome by another
postfilter characteristic.

The homogeneous audience coverage comes with the price of a high SPL
loss for very far audience positions which might be undesired. Thus, other
curving and control methods could be more suitable.

LSA Design 3

The curving of the LSA is adapted to the venue with progressively increased
splaying angles between the LSA cabinets realizing a so called progressive
source with terminal angle of 38˝ [Ure04]. As for study 2 an ARFHF “ qHF “ 1

with 3 line pistons per LSA cabinet holds here using a Kaiser-Bessel windowing
with β “ 2. The DFIPs and LB1pωq and LB2i look similar to case 2, however
more electric power is used due to less windowing. The FRP indicates the
adapted wavefront shaping producing high SPLs for far throw and comparable
low SPL for near throw to compensate the propagating distances. By doing
so, the first 20 audience positions are covered with SPL loss smaller than 3
dB with ripples not more than 3 dB in the frequency response variation. The



212 CHAPTER 4. WAVEFRONT SHAPING

positions 20-60 are covered with almost no SPL loss and very small frequency
response variation. From position 60 to the last audience position a SPL loss
of 9 dB occurs with rather high frequency response variations. This is the
price of windowing the LSA and thereby reducing side lobes to provide a more
homogeneous coverage in the middle audience positions. The PIP reveals the
typical problem of homogeneous coverage of the lowest audio frequencies: for
very near audience positions the SPL is too high whereas for very far audience
positions the SPL is too low compared to higher frequencies. The SPL over
xy-plane shows similar beams for frequencies f ą 500Hz that are adapted such
that an isobar curve approximately coincides with the audience from positions
1 to 80.

LSA Design 4

The design 4 is identical to the third design except changing the ARFHF “

qHF “ 0.847, i.e. allowing gaps between the line pistons. This introduces
grating lobes into the FRP that smear into the main lobe for frequencies f ą

3 kHz. The frequency responses are then corrupted by spatial aliasing, clearly
seen in the FAP, IAP and the PIP. This also yields a larger distribution of
the frequency responses in Lp,aud,m for very near audience positions. It is
worth reminding that Lp,aud,m is evaluated only within the frequency range
200Hz ă f ă 5 kHz and thus not considers spatial aliasing above 5 kHz. The
grating lobe beams are visible in the SPLxy plots that affect the smoothness of
the isobars w.r.t. the desired main beam. The audience coverage is thus less
homogeneous as for the LSA design study 3.

LSA Design 5

The curving of the LSA is identical to the designs 3 and 4. Now the LSA
is controlled with WFS and thus uses more HF drivers per LSA cabinet to
shift spatial aliasing to high frequencies. The size of one HF waveguide is 1",
similar to some commercially available LSA designs. For all WFS controlled
LSAs the maximum power load is now observed in the MF band. The virtual
point source directivity (4.34) is defined with DDdB “ ´10 yielding a -3 dB
SPL loss per doubling the distance |xm´xPS|. The theoretical SPL range from
the first to the last audience position amounts to 7.8 dB that can be observed
in the virtual point source’s FRP Fig. 4.30b. The applied delay ranges from 0
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ms to about 1.25 ms. The shape of the virtual point source’s FRP is mapped
to the DFIPs. The FRP shows a grating lobe beginning at 10 kHz that smears
into the main lobe. A second grating lobe starts to evolve in the end of the
MF band due to the chosen 6.5" drivers and the cross-over frequency of 1.3
kHz, which however not smears into the main lobe. The PIP and Lp,aud,m show
the intended -3 dB SPL loss per |xm ´xPS| doubling and a very homogeneous
audience coverage. Only the frequency responses and impulse responses of
very near audience positions are corrupted with spatial aliasing, seen in the
FAP and IAP. The main lobe beams shown in the SPLxy plot are similar for
frequencies f ą 500 kHz and comparable to the design case 3, here with more
homogeneity. However, for very low frequencies, cf. 125 Hz the beam control
is not able to reduce the coverage only to the audience, but rather high SPL
is radiated into air.

LSA Design 6

For this LSA design study the same progressive curving as for studies 3-5
is used. The waveguide size is again 1". With DDdB “ 0 a virtual point
source FRP of constant directivity over a certain spatial region is realized,
cf. Fig. 4.34b. This yields CBT-like radiation characteristic, with an approxi-
mately constant main lobe beamwidth of about 45˝ for frequencies f ą 500Hz.
In the HF band, one grating lobe smears into the main lobe at the highest au-
dio frequencies. The PIP and FAP indicate homogeneous audience coverage.
From Lp,aud,m the SPL loss of about 15 dB over the audience with very few
frequency response variation can be extracted. Except for the very near audi-
ence positions the IAP shows very similar impulse responses over the audience
only varying in their peaks due to the SPL loss. For the very near audience
positions spatial aliasing corrupts the impulse responses. Again, as for design
study 2 the high SPL loss over audience might not be a suitable choice in this
large venue.

LSA Design 7

The same LSA setup as for study 5 is used, here with DDdB “ ´20 intending
no SPL loss for the audience coverage. This implies 5 dB more level and 10 dB
less level for the very far and very near audience positions, respectively w.r.t.
to the reference position xRef in the virtual point source’s FRP Fig. 4.38b,
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cf. also Fig. 4.13. This is also observable in the resulting FRP that indicates
the adapted beam for the intended wavefront shaping. The PIP and FAP are
homogeneous and show the intended audience coverage without any SPL loss.
Only for the very low frequencies larger variations occur. Here, the array is
too short to realize this demanding wavefront shaping. The very near audience
positions suffer from spatial aliasing, here more than for the LSA design studies
5 and 6, cf. the IAP. This is due to the fact that the required high levels for the
far throw are mapped (and not strictly postfiltered) as spectral repetitions into
the array’s visible near throw region with comparable larger level than for the
other two designs. The SPLxy plots show almost frequency independent beams
again for f ą 500Hz, where the 106 dBSPL contour line exactly coincides for
most audience positions yielding the constant SPL coverage. For the very far
audience positions a 3 dB SPL loss is obtained using this setup. Note that this
approach produces a slight overshoot over the venue, which could be optimized
with an improved virtual source’s FRP design and interpolation method.

LSA Design 8

To demonstrate that the wavefront shaping with WFS is – within the limits
of the LSA’s radiation capabilities (grating lobe occurrence, spatial coverage
of the waveguides) – rather a result of synthesizing the virtual source, than of
curving the array the last LSA design study uses exactly the same parameters
as study 7 only changing the LSA’s geometric shape to a straight one. This
yields a different DLSApx0,i,xRef , ωq. As a result, the intended main beam in
the FRP is equal to the curved array design, however an MF band grating lobe
evolves and the HF grating lobe is shifted towards lower frequencies producing
slightly more spatial aliasing, cf. the right, bottom border of the PIP and
the AIRs of the first audience positions. Besides that the PIP, FAP, IAP and
Lp,aud,m are similar to the curved array design 7. At 8 kHz and 10 kHz the
occurring grating lobes are clearly visible in the SPLxy plot. The down-steered
grating lobes corrupt the frequency responses of the very near audience posi-
tions. Note that the up-steered grating lobe would be reflected by the ceiling
when considering indoor venues.

For this straight array the interpretation of the spatio-temporal Fourier
spectra of the driving functions Dw,Spky, ωq and Dw,S,Hpky, ωq can be performed
as discussed in Ch. 3, providing the link to the WST criteria for straight ar-
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rays. In Fig. 4.46 – visualizing Dw,Spky, ωq for the different frequency bands –
the base band and the spectral repetitions for the discretized array are shown.
It can be seen that spectral repetitions enter the visible region in the MF and
HF band. In the HF band the already discussed ’far throw to near throw’
aliasing mapping as well as the ’near throw to far throw’ aliasing mapping
can be observed starting at about 8 kHz. Furthermore, the smearing of the
spectral repetitions into the baseband starting at about 13 kHz is revealed.
The postfilter characteristic of the circular piston for the MF band and of the
line piston for the HF band reduce the level of the spectral repetitions, cf.
Fig. 4.47 visualizing the FRP Dw,S,Hpky, ωq.

Note that changing the ARFHF “ qHF “ 1 slightly improves this, but cannot
completely suppress all repetitions, since the sinc postfilter of the line piston
only perfectly reconstructs the broadband plane wave using a rectangular win-
dowed array, cf. Ch. 3.3. To suppress all propagating spatial aliasing in the
case of arbitrary wavefront shaping with full audio bandwidth the spatial sam-
pling condition should hold.

The comparison of design study 7 and 8 confirms the observations of [Sch92,
Sta96]: using directed sources and array curving towards the audience that is
to be covered, slightly increases the spatial aliasing cutoff frequency compared
to a straight array.
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(a) LSA and venue setup.

Figure 4.14: LSA_K1_Design1: Setup.

LSA_K1_Design1: Uniformly driven, LHF “ 3, qHF “ 0.847, l0,HF “ 5.000”, tilt
angle & splay angles: `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝,
`0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝,
`0.00˝, `0.00˝, βKB “ 0.0, fc “ 250Hz, xFRP,Origin “ p0.000, 9.450, 0qT,

LSA_K1_Design1
LSA_K1_Design1
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.
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(e) LB2i.

Figure 4.15: LSA_K1_Design1: Driving functions.
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(a) FRP. (b) PIP.
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(e) Lp,aud,m.

Figure 4.16: LSA_K1_Design1: Frequency response.

LSA_K1_Design1


4.4. SIMULATIONS 219

Figure 4.17: LSA_K1_Design1: SPL distribution in xy-plane with the same
colormap as Fig. 4.16b and 6 dB isobars w.r.t. 116 dBSPL.

LSA_K1_Design1
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(a) LSA and venue setup.

Figure 4.18: LSA_K1_Design2: Setup.

LSA_K1_Design2: Uniformly driven, LHF “ 3, qHF “ 1.000, l0,HF “ 5.906”, tilt
angle & splay angles: `9.75˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝,
´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝, ´2.50˝,
´2.50˝, ´2.50˝, βKB “ 3.0, fc “ 50Hz, xFRP,Origin “ p´0.760, 9.627, 0qT,

LSA_K1_Design2
LSA_K1_Design2
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.
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(e) LB2i.

Figure 4.19: LSA_K1_Design2: Driving functions.
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(a) FRP. (b) PIP.
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Figure 4.20: LSA_K1_Design2: Frequency response.
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Figure 4.21: LSA_K1_Design2: SPL distribution in xy-plane with the same
colormap as Fig. 4.20b and 6 dB isobars w.r.t. 106 dBSPL.
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(a) LSA and venue setup.

Figure 4.22: LSA_K1_Design3: Setup.

LSA_K1_Design3: Uniformly driven, LHF “ 3, qHF “ 1.000, l0,HF “ 5.906”, tilt
angle & splay angles: `9.00˝, ´0.50˝, ´0.50˝, ´0.50˝, ´1.00˝, ´1.00˝, ´1.00˝,
´1.50˝, ´1.00˝, ´2.00˝, ´2.00˝, ´2.50˝, ´3.00˝, ´3.50˝, ´4.00˝, ´4.00˝,
´5.00˝, ´5.00˝, βKB “ 2.0, fc “ 80Hz, xFRP,Origin “ p´0.192, 9.533, 0qT,

LSA_K1_Design3
LSA_K1_Design3
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.
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(e) LB2i.

Figure 4.23: LSA_K1_Design3: Driving functions.
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(a) FRP. (b) PIP.
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Figure 4.24: LSA_K1_Design3: Frequency response.
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Figure 4.25: LSA_K1_Design3: SPL distribution in xy-plane with the same
colormap as Fig. 4.24b and 6 dB isobars w.r.t. 108 dBSPL.
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(a) LSA and venue setup.

Figure 4.26: LSA_K1_Design4: Setup.

LSA_K1_Design4: Uniformly driven, LHF “ 3, qHF “ 0.847, l0,HF “ 5.000”, tilt
angle & splay angles: `9.00˝, ´0.50˝, ´0.50˝, ´0.50˝, ´1.00˝, ´1.00˝, ´1.00˝,
´1.50˝, ´1.00˝, ´2.00˝, ´2.00˝, ´2.50˝, ´3.00˝, ´3.50˝, ´4.00˝, ´4.00˝,
´5.00˝, ´5.00˝, βKB “ 2.0, fc “ 80Hz, xFRP,Origin “ p´0.192, 9.533, 0qT,
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.
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Figure 4.27: LSA_K1_Design4: Driving functions.
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(a) FRP. (b) PIP.
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Figure 4.28: LSA_K1_Design4: Frequency response.
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Figure 4.29: LSA_K1_Design4: SPL distribution in xy-plane with the same
colormap as Fig. 4.28b and 6 dB isobars w.r.t. 108 dBSPL.
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(a) LSA and venue setup.
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(b) Polar plot of virtual source’s FRP.
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(c) DFIP: Driving function delays.

Figure 4.30: LSA_K1_Design5: Setup and virtual source.

LSA_K1_Design5: WFS of a virtual source, xPS “ p´7.500, 9.925, 0qT, xRef “

p60.0, 10.0, 0qT, Amin,dB “ ´100, DDdB “ ´10, LHF “ 15, qHF “ 0.847,
l0,HF “ 1.000”, tilt angle & splay angles: `9.00˝, ´0.50˝, ´0.50˝, ´0.50˝,
´1.00˝, ´1.00˝, ´1.00˝, ´1.50˝, ´1.00˝, ´2.00˝, ´2.00˝, ´2.50˝, ´3.00˝,
´3.50˝, ´4.00˝, ´4.00˝, ´5.00˝, ´5.00˝, βKB “ 1.0, fc “ 100Hz, xFRP,Origin “

p´0.212, 9.537, 0qT,
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.
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Figure 4.31: LSA_K1_Design5: Driving functions.
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(a) FRP. (b) PIP.
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Figure 4.32: LSA_K1_Design5: Frequency response.
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Figure 4.33: LSA_K1_Design5: SPL distribution in xy-plane with the same
colormap as Fig. 4.32b and 6 dB isobars w.r.t. 108 dBSPL.
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(a) LSA and venue setup.
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(b) Polar plot of virtual source’s FRP.
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(c) DFIP: Driving function delays.

Figure 4.34: LSA_K1_Design6: Setup and virtual source.

LSA_K1_Design6: WFS of a virtual source, xPS “ p´7.500, 9.925, 0qT, xRef “

p60.0, 10.0, 0qT, Amin,dB “ ´100, DDdB “ 0, LHF “ 15, qHF “ 0.847, l0,HF “

1.000”, tilt angle & splay angles: `9.00˝, ´0.50˝, ´0.50˝, ´0.50˝, ´1.00˝,
´1.00˝, ´1.00˝, ´1.50˝, ´1.00˝, ´2.00˝, ´2.00˝, ´2.50˝, ´3.00˝, ´3.50˝,
´4.00˝, ´4.00˝, ´5.00˝, ´5.00˝, βKB “ 2.0, fc “ 100Hz, xFRP,Origin “ p´0.212, 9.537, 0qT,
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.
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Figure 4.35: LSA_K1_Design6: Driving functions.
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(a) FRP. (b) PIP.
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Figure 4.36: LSA_K1_Design6: Frequency response.
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Figure 4.37: LSA_K1_Design6: SPL distribution in xy-plane with the same
colormap as Fig. 4.36b and 6 dB isobars w.r.t. 110 dBSPL.
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(a) LSA and venue setup.
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(b) Polar plot of virtual source’s FRP.
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(c) DFIP: Driving function delays.

Figure 4.38: LSA_K1_Design7: Setup and virtual source.

LSA_K1_Design7: WFS of a virtual source, xPS “ p´7.500, 9.925, 0qT, xRef “

p60.0, 10.0, 0qT, Amin,dB “ ´100, DDdB “ ´20, LHF “ 15, qHF “ 0.847,
l0,HF “ 1.000”, tilt angle & splay angles: `9.00˝, ´0.50˝, ´0.50˝, ´0.50˝,
´1.00˝, ´1.00˝, ´1.00˝, ´1.50˝, ´1.00˝, ´2.00˝, ´2.00˝, ´2.50˝, ´3.00˝,
´3.50˝, ´4.00˝, ´4.00˝, ´5.00˝, ´5.00˝, βKB “ 1.0, fc “ 100Hz, xFRP,Origin “

p´0.212, 9.537, 0qT,
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.

50 200 500 1k 2k 5k 10k
−20

−10

0

10

20

30

f / Hz

dB
re

l,1
W

LB1

(d) LB1pωq.

1

3

5

7

9

11

13

15

17

−10 0 10 20
dB

rel,1W

D
riv

er
 #

LB2 LF
1

5

9

13

17

21

25

29

33

−10 0 10 20
dB

rel,1W

LB2 MF
1

31

61

91

121

151

181

211

241

−10 0 10 20
dB

rel,1W

LB2 HF

 

 

100%
5%/95%
25%/75%
50%

(e) LB2i.

Figure 4.39: LSA_K1_Design7: Driving functions.
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(a) FRP. (b) PIP.
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Figure 4.40: LSA_K1_Design7: Frequency response.
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Figure 4.41: LSA_K1_Design7: SPL distribution in xy-plane with the same
colormap as Fig. 4.40b and 6 dB isobars w.r.t. 106 dBSPL.
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(a) LSA and venue setup.
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(b) Polar plot of virtual source’s FRP.
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(c) DFIP: Driving function delays.

Figure 4.42: LSA_K1_Design8: Setup and virtual source.

LSA_K1_Design8: WFS of a virtual source, xPS “ p´7.500, 9.925, 0qT, xRef “

p60.0, 10.0, 0qT, Amin,dB “ ´100, DDdB “ ´20, LHF “ 15, qHF “ 0.847,
l0,HF “ 1.000”, tilt angle & splay angles: `0.00˝, `0.00˝, `0.00˝, `0.00˝,
`0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝,
`0.00˝, `0.00˝, `0.00˝, `0.00˝, `0.00˝, βKB “ 1.0, fc “ 150Hz, xFRP,Origin “

p0.000, 9.450, 0qT,
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(a) Driving functions: LF band. (b) Driving functions: MF band.

(c) Driving functions: HF band.
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Figure 4.43: LSA_K1_Design8: Driving functions.
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(a) FRP. (b) PIP.
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Figure 4.44: LSA_K1_Design8: Frequency response.
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Figure 4.45: LSA_K1_Design8: SPL distribution in xy-plane with the same
colormap as Fig. 4.44b and 6 dB isobars w.r.t. 106 dBSPL.
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Figure 4.46: LSA_K1_Design8: Dw,Spky, ωq, cf. Table 3.1.
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Figure 4.47: LSA_K1_Design8: Dw,S,Hpky, ωq, cf. Table 3.1.
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4.5 Summary
This chapter discussed different control methods for optimized LS-SR using
LSAs. It was shown that the LS-SR problem could also be interpreted as
an SFS problem, rather than a radiation synthesis problem. While radiation
synthesis is concerned with optimized FRPs, SFS of a virtual source allows for
adapting the radiation characteristic of an LSA for a given venue geometry.
This was shown by means of a straightforward WFS driving method using a
virtual point source with a farfield directivity pattern. It can be concluded
that approaching the LS-SR with WST can be interpreted as a special case of
SFS using curving and gain shading of the array in its initial formulation.

Regardless of the specific LSA curving and electronic control the main goal
of optimized LS-SR is an appropriate wavefront shaping in order that the
main lobe beam covering the audience becomes frequency independent with a
desired homogeneous SPL loss over the audience. For that it is very important
realizing that a ’smoother’ driving function (e.g. Dw,S,Hpky, ωq in case of a
straight array) inherently results in a ’smoother’, more homogenous pressure
field. This implies that if the desired wavefront starts to radiate from the
array without any artifacts (introduced by spatial aliasing and windowing)
the sound field remains uncorrupted within space. To achieve these objectives
with electronic control by delays – such as with the proposed WFS approach
– a small spatial discretization of the LSA’s HF band is required.

With WFS of a virtual point source’s FRP any physical meaningful sound
field distribution over the audience can be achieved, once a suitable point
source position is determined for a given LSA/venue setup. It is shown, that
the virtual point source’s sound field can be synthesized independently from
the actual array curving within the limits of aliasing free beam steering. This
was also reported in [Tho11]. If spatial aliasing cannot be avoided, optimal
array curving helps to increase the spatial aliasing cutoff frequency or more
precisely to enhance the postfiltering of grating lobes and thus to improve the
homogeneity of the sound field. Hence, an optimal LSA design would utilize
highest feasible spatial sampling of the HF and MF band drivers and would
additionally allow curving.



Chapter 5

Conclusion

Large-scale sound reinforcement (LS-SR) for large audiences in large venues
is nowadays mostly realized with line source arrays (LSAs). LSAs were in-
troduced with the Wavefront Sculpture Technology (WST) in the early 1990s
aiming at sound fields with less spatial aliasing in the full audio bandwidth
than using conventional clustered loudspeaker arrays.

In this thesis the LS-SR problem is treated as a sound field synthesis (SFS)
problem aiming at creating a homogeneous wavefront as best as possible that is
adapted for the required audience coverage. For that it is meaningful to intro-
duce a virtual point source with a complex farfield radiation pattern which is
to be synthesized with an LSA. This can be realized with Wave Field Synthesis
(WFS) also introduced in the early 1990s, which is the implicit solution of the
SFS problem. WFS is strongly linked to diffraction theories and the high fre-
quency boundary element method and constitutes the farfield/high frequency
approximation of the explicit SFS solution.

How well the homogeneous wavefront can be synthesized with an LSA is
one of the key questions of the WST and herein. In this thesis WST is re-
considered with a consistent treatment of the SFS problem within an acoustic
signal processing model, that includes spatial truncation and sampling and
pre- as well as postfiltering of the LSA’s driving function. For straight arrays
this model can be conveniently interpreted within the spatio-temporal Fourier
spectrum domain. This reveals that the introduced WST criteria for straight
arrays essentially originate from array processing fundamentals. With the in-
volved spatio-temporal Fourier spectra of the 3D freefield Green’s function and
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the LSA’s driving function, angular spectrum synthesis of sound fields rather
than Rayleigh integral synthesis is feasible. This allows for a more convenient
interpretation and classification of occurring diffraction and interference phe-
nomena. Furthermore, WST can be interpreted as a special case of SFS.

The homogeneous wavefront for optimum LS-SR constitutes the main lobe
of the LSA in the farfield. This wavefront can be corrupted by interference
with additional wavefronts that originate from spatial truncation and spatial
sampling. These then constitute the side and grating lobes in the farfield.
Obviously these wavefronts/lobes should be avoided as much as possible. If
full electronic control without spatial aliasing within the array’s visible region
is aimed at, the spatial sampling theorem must be fulfilled. This then allows
beamforming and steering towards the desired wavefront shaping with a high
degree of freedom within the physical limits of the array size. If the spatial sam-
pling theorem cannot be met, the postfilter characteristics of highly directed
loudspeakers suppress spatial aliasing. This is frequently realized with wave-
guides for the high audio frequencies in LSA designs. The desired wavefront
shaping must then be realized with geometric array curving and beamforming
with indeed frequency dependent, but real gain values.

Further specific conclusions are given in the summary sections of the indi-
vidual chapters, treating WFS, WST and wavefront shaping in detail.

5.1 Novelty Aspects
The discussed array processing on line source arrays is in principle well under-
stood, essentially dealing with interferences of waves. Naturally, in this thesis
no new physics is created, but rather illuminating details are examined that
were not given in the context of line source array research so far. For that it
appeared meaningful to embed these details in the fundamentals on line array
theory and sound field synthesis by providing a comprehensive manuscript. It
is worth summarizing the discussed aspects that can be considered novel in
this thesis. In particular the following results could not be traced in other
literature or remained uncompleted:

– The directional derivative of the Green’s function in the Helmholtz inte-
gral equation is performed w.r.t. x0 (2.17), not w.r.t. x, which is often
misinterpreted in literature and then corrected with an inverted normal
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vector. The correct treatment yields a consistent derivation of diffraction
theory and sound field synthesis.

– The identity of 3D SDM (explicit SFS solution by deconvolution, inverse
diffraction) and 3D WFS (implicit solution, forward diffraction) is more
precisely derived with the Fourier-Like NAH approach, p.34f. .

– The stationary phase approximations to obtain the 2.5D Neumann Rayleigh
integral from its 3D version are consistently connected for the WFS driv-
ing functions of a virtual point source (p.51, p.52) and a virtual plane
wave (p.61, p.62).

– WFS as the implicit SFS solution constitutes the high/farfield approxi-
mation of SDM as the explicit SFS solution. This is consistently shown
for the virtual point source and the virtual plane wave, Table 2.1.

– The derivation of WFS from the 2D Neumann Rayleigh integral towards
the 2.5D version is only correct for a virtual plane wave (2.186). For all
other 3D source types this yields considerable deviations from the correct
solution, as shown for the virtual point source (2.146).

– The analytic impulse response of the WFS prefilter interpreted as a half-
derivative filter is derived that is suitable for an FIR design Ch. 2.5.
Furthermore, analytic IIR approximations of the half-derivative and half-
integral filters are given, p.177ff. .

– A complete itemization of propagating and evanescent pre- and postal-
iasing using linear, discretized arrays is given, Table 3.5.

– The so called Wavefront Sculpture Technology for straight arrays is con-
sistently treated within the spatio-temporal spectrum domain. It turns
out that this approach reconsiders the fundamentals of array processing,
Table 3.1.

– The treatment within the spatio-temporal spectrum domain allows for so
called angular spectrum synthesis of sound fields using a straight array.
The given examples for on-axis sound field synthesis and the separate
main lobe and side lobes synthesis allows for convenient interpretation
of the interference and diffraction phenomena, p.99ff., p.115ff. .
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– The on-axis sound field synthesis with the angular spectrum is com-
pared to the Fresnel diffraction approach for uniformly driven, straight
arrays allowing for different interpretations of the interference phenom-
ena, p.105f. .

– The line piston acts as an ideal reconstruction filter for a uniformly
driven array that exhibits no gaps between the piston, modeling a quasi-
continuous array, Ch. 3.3.

– The connection of the gaps between adjacent line or circular pistons
and the resulting grating lobe level (known as the ARF theorem) is
consistently derived within the angular spectrum domain, Ch. 3.4.1.

– The characteristics of a line piston that exhibits a certain wavefront cur-
vature is discussed as a sound field synthesis problem treated in the an-
gular spectrum domain. Furthermore, the interaction of multiple wave-
guides per loudspeaker cabinet is discussed by application of the product
theorem for nested arrays, Ch. 3.4.3.

– The characteristics and impact of grating and side lobes in the farfield
radiation pattern and in the on-axis sound field is compared for the
straight array and arc shaped array, Ch. 4.1.2

– Additional included electro-acoustic parameters allows for the prediction
of sound fields synthesized from loudspeaker arrays w.r.t. the actually
achieved sound pressure levels, Ch. 4.2.

– A WFS driving function for a virtual point source with a directivity
adapted to the audience is derived, p.203ff. With that optimized LS-SR
is achieved with a wavefront that ideally exhibits no grating and side
lobes. This allows for interpreting the LS-SR problem as a sound field
synthesis problem, where a virtual source adapted for optimum audience
coverage is to be synthesized with a line source array.

– The Matlab-based Line Source Array Prediction Toolbox for the predic-
tion of 2D sound fields generated by line source arrays is provided as
open-source software for research on optimal LSA control methods.
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5.2 Outlook

WST for straight arrays and WFS are well understood nowadays. However,
for curved, discretized arrays the evolvement of grating lobes could be more
conveniently interpreted, when the proposed acoustic signal processing model
can be derived within a coordinate system, for which an eigenmode expan-
sion of the wave equation is possible and where the curved array matches an
inherent axis, such as the prolate spheroidal or elliptic cylindrical coordinate
system. This would allow for interpreting the spatio-temporal spectra of the
(reconstructed) driving function and consequently also an explicit SFS solution
for optimized LS-SR could be derived. Furthermore, the role of the postfil-
ter could be better specified and its optimum characteristics for curved arrays
could be derived. This is not yet undertaken in SFS and LSA research and
should be checked for feasibility.

Since most LSA manufacturers use proprietary control methods a technical
and perceptual comparison of suitable methods within a consistent framework
should be provided. For that the presented open-source toolbox could be ex-
tended with numerical optimization schemes for different beamforming and
-steering, as well as gain shading control methods. Currently, this is being
pursued by Florian Straube at TU Berlin under the author’s supervision.

The WST driving function for a virtual point source with directivity that
realizes the audience adapted wavefront shaping could be further improved.
An appropriate position for optimized LS-SR was found by trial and error
within the thesis. It is desirable to calculate an optimum position by consider-
ing the occurring diffraction and wavefront shaping limitations. Furthermore,
the spatial window characteristics of the virtual point source directivity and
its interpolation could be further optimized for improved non-audience non-
coverage and reduced side lobes.

Commercially available sound field prediction software still requires too
much time to render results, that provide the full picture of the LS-SR perfor-
mance. For optimum LS-SR, the user/software interaction should be ideally
real-time capable. This allows for faster reiterating adjustments and thus for
a more convenient interpretation of occurring phenomena when changing pa-
rameters. Potentially faster rendering kernels and rendering hardware could
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be initially evaluated in research. This becomes even more significant when
not only freefield conditions but also room acoustics is to be simulated.



Appendix A

Abbreviations and Acronyms

AES Audio Engineering Society
AIR acoustic impulse response
ARF active radiating factor
ASCII American Standard Code for Information Interchange
ATF acoustic transfer function
BW beamwidth
CBT constant beamwidth transducer
CDPS complex-directivity point source (model)
DDC digital directivity control
DDS digital directivity synthesis
DFIP driving function index plot
DFT discrete Fourier transform
DSB delay-and-sum beamformer / delay-and-sum beamforming
DSP digital signal processor / digital signal processing
DGRC digital and geometric radiation controlled (array)
DTFT discrete-time Fourier transform
FAP frequency responses of all audience positions
FFT fast Fourier transform
FIR finite impulse response
Fourier-NAH Fourier transform-based near-field acoustical holography
FRP farfield radiation pattern
GLL generic loudspeaker library
HF high frequency (band for audio signals)
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HF-BEM high frequency boundary element method
HIE Helmholtz-Integral equation
IAP impulse responses of all audience positions
IIR infinite impulse response
IR impulse response
KHI Kirchhoff-Helmholtz Integral
LA line array
LF low frequency (band for audio signals)
LSA line source array
LSAPT Line Source Array Prediction Toolbox
LS-SR large-scale sound reinforcement
MF mid frequency (band for audio signals)
NAH nearfield acoustic holography
NFC-HOA Nearfield Compensated Higher Order Ambisonics
PA public address
PIP position index plot
PPST Phased Point Source Technology
PS point source
PW plane wave
SDM Spectral Division Method
SFS sound field synthesis
SLP single layer potential
SPL sound pressure level
SSD secondary source distribution
ULA uniformly driven line array
WFC wavefront curvature
WFR wave field reconstruction
WFS Wave Field Synthesis
WST Wavefront Sculpture Technology



Appendix B

Coordinate Systems

This section defines general conventions that are used throughout this thesis. A
constant speed of sound c “ 343m/s, free-field conditions and a dissipationless
medium are assumed. The imaginary number is denoted by j (j2 “ ´1). The
complex conjugate notation pe´jω tq˚ “ e`jω t is used. The temporal angular
frequency ω “ 2 π f in rad/s is linked to the temporal frequency f in Hz. A
position vector in space is given by

x “

¨

˚

˚

˝

x

y

z

˛

‹

‹

‚

“ |x| ¨

¨

˚

˚

˝

cosϕ sinϑ

sinϕ sinϑ

cosϑ

˛

‹

‹

‚

(B.1)

using the vector norm |x| “ r “
a

x2 ` y2 ` z2, the azimuth ϕ P r0, 2 πq and
colatitude ϑ P r0, πs. The wave number vector is given by

k “

¨

˚

˚

˝

kx

ky

kz

˛

‹

‹

‚

“
ω

c
¨

¨

˚

˚

˝

cosϕ sinϑ

sinϕ sinϑ

cosϑ

˛

‹

‹

‚

, (B.2)

with ω
c

“
a

xk,ky, denoting the scalar product with x¨, ¨y. The dispersion
relation of linear acoustics

´ω

c

¯2

“ k2
x ` k2

y ` k2
z (B.3)

holds.
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Appendix C

Fourier Transform Conventions

Multidimensional acoustic signal processing w.r.t. space x and time t can be
performed with different conventions, cf. [Tou15]. The used conventions are
shortly summarized here. Functions in space and/or time are denoted with
small letters. If a Fourier transform is performed the corresponding spectrum
is denoted with an uppercase letter specifying the transformation domain in
the argument. The Fourier transform convention with respect to time

ppx, tq “ F´1
t tP px, ωqu “

1

2π

`8
ż

´8

P px, ωq e`jω t dω, (C.1)

P px, ωq “ Ft tppx, tqu “

`8
ż

´8

ppx, tq e´jω t dt (C.2)

is used for the relationship of the sound pressure ppx, tq and its temporal spec-
trum P px, ωq using the temporal angular frequency ω. The Fourier transform
convention with respect to space, here exemplarily given for the spatial coor-
dinate y ❞ t ky

ppy, tq “ F´1
y tP pky, tqu “

1

2π

`8
ż

´8

P pky, tq e
´j ky y dky, (C.3)

P pky, tq “ Fy tppy, tqu “

`8
ż

´8

ppy, tq e`j ky y dy (C.4)
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is used for the relationship of the sound pressure ppy, tq and its spatial spectrum
P pky, tq using the spatial angular frequency (wave number) ky.

A double Fourier transform pair

ppy, tq “
1

4π2

`8
ij

´8

P pky, ωq e´j ky y e`jω t dω dky, (C.5)

P pky, ωq “

`8
ij

´8

ppy, tq e`j ky y e´jω t dt dy (C.6)

yields the relationship between the sound pressure ppy, tq and its spatio-temporal
spectrum P pky, ωq. The thesis frequently uses

P px, ky, kz, ωq “ Fy tFz tFt tppx, tquuu (C.7)

for the description of the spatio-temporal spectrum w.r.t. ω, ky and kz in 3D
problems and

P px, ky, z, ωq “ Fy tFt tppx, tquu (C.8)

for the description of the spatio-temporal spectrum w.r.t ω and ky in 2D and
2.5D problems.

The used conventions imply that the wave number vector k “ pkx, ky, kzqT

denotes the propagation direction of a plane wave. The dispersion relation
pω
c
q2 “ k2

x ` k2
y ` k2

z and the scalar product notation xk,xy “ kx x` ky y ` kz z

are used for the description of plane waves in cartesian coordinates. Therefore,

ppx, tq “ ℜ
␣

e´j xkPW,xy e`jωPW t
(

(C.9)

describes a monochromatic, unit amplitude plane wave that propagates into
direction of kPW and oscillates with ωPW.

The used convention implicates the properties w.r.t. the shift and modula-
tion theorem for the Fourier transform pairs

xptq ❞ t Xpωq and dpyq ❞ t Dpkyq :
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Temporal Delay / Spatial Shift

δpy ´ y0q ❞ t e`j ky y0 (C.10)

dpy ´ y0q ❞ t e`j ky y0 ¨ Dpkyq (C.11)

δpt ´ τq ❞ t e´jω τ (C.12)

xpt ´ τq ❞ t e´jω τ
¨ Xpωq (C.13)

Modulation

e´j k0 y ❞ t 2 π δpky ´ k0q (C.14)

e´j k0 y Dpyq ❞ t Dpky ´ k0q (C.15)

e jω0 t ❞ t 2 π δpω ´ ω0q (C.16)

e jω0 t ¨ xptq ❞ t Xpω ´ ω0q (C.17)
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Appendix D

Piston Diffraction Theory

In [Hei92b] a detailed treatment on diffraction characteristics for the simple
piston types, the circular and the line piston is provided. This was given as a
prerequisite to explain spatial aliasing artifacts of straight, linear arrays built
from these pistons. It appears meaningful to revisit the most important results
of the diffraction theory, since these models are used in this thesis as well.

D.1 Circular Piston
The baffled circular piston with radius r0 or diameter d0 “ 2 r0, respectively
under constant volume acceleration or constant velocity over the piston’s dia-
phragm is considered as a very simple model of loudspeakers. The subsections
deal with the description of the on-axis pressure characteristics, the farfield
radiation pattern and its Fresnel/Fraunhofer (near-/farfield) transition.

D.1.1 On-Axis Pressure

Consider the baffled circular piston symmetrical to the origin within the yz-
plane – as also used in Ch. 3 – denoting positions within the plane as x0 “

p0, y0, z0qT with a velocity spectrum

Vnpr, ωq “

$

&

%

1
j ϱ0 ω π r20

for r “
a

y20 ` z20 ď r0

0 for r “
a

y20 ` z20 ą r0.
(D.1)

This models a piston under constant volume acceleration (cf. [Hei92b, (2)])
using an energy spread of the spatial dirac impulse over the piston’s surface
[Ste29, Hec77]. The on-axis sound pressure (on x-axis, x ą 0) can be de-
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rived analytically from the Neumann Rayleigh integral (2.69) or the Neumann
Rayleigh-Sommerfeld diffraction integral (2.85) to (cf. [Mö09, (3.65)])

P px, ωq “
1

π r20

1

j ω
c

e´j ω
c
x
´

1 ´ e´j ω
c

p
?

r20`x2´xq
¯

, (D.2)

or rewritten as (cf. [Kin00, (7.4.5)], [Ler09, (6.104)], [Bla00, (13.C-4)])

P px, ωq “
1

π r20

2
ω
c

sin

ˆ

ω

2 c
p

b

r20 ` x2 ´ xq

˙

¨ e´j ω
2 c

p
?

r20`x2`xq, (D.3)

respectively, cf. [Hei92b, Sec. I.2.b].

Fresnel region

Since (D.2) and (D.3) are exact solutions, a Fresnel approximation as sim-
plification of the Neumann Rayleigh integral is not required and the on-axis
characteristics of the Fresnel region can be discussed directly.

In the Fresnel region of the piston – if existing – the sound pressure level
may fluctuate between ´8 dB (nodes) and `6 dB (antinodes), when the 1

π r20

1
ω
c

dependency of (D.2) and (D.3) is omitted in the discussion.
Nodes occur at xZ, if the bracket term of (D.2) or the sin-function of (D.3),

respectively becomes zero. That is for (cf. [Mö09, p.107], [Hei92b, (3)])

m 2 π “
ω

c
p

b

r20 ` x2
Z ´ xZq m P N,‰ 0, (D.4)

leading to (cf. [Mö09, (3.66)])

xZ

λ
“

r20
λ2 ´ m2

2m
for all m that lead to

xZ

λ
ě 0 (D.5)

or rewritten as (cf. [Ler09, (6.106)])

xZ “
1

4 π

`

ω
c
r0
˘2

´ p2πmq
2

ω
c
m

for all m that lead to xZ ě 0. (D.6)



D.1. CIRCULAR PISTON 267

The farthest node away from the piston– if existing – results for m “ 1 (cf.
[Kin00, (7.4.11)], [Mö09, (3.67)], [Hei92b, (4)])

xZ,max

λ
“

r20
λ2 ´ 1

2
xZ,max “

1

4 π

`

ω
c
r0
˘2

´ 4π2

ω
c

. (D.7)

No nodes occur for λ ą r0, indicating the absence of a typical Fresnel region.
The farthest antinode at xP away from the piston– if existing – is obtained

when

π

2
“

ω

2 c
p

b

r20 ` x2
P,max ´ xP,maxq (D.8)

yielding (cf. [Kin00, (7.4.10)])

xP,max

λ
“

r20
λ2

´
1

4
xP,max “

1

2π

pω
c
r0q

2 ´ π2

ω
c

, (D.9)

which is valid for cases r0
λ

ą 1
2

only. This is equivalent to one possible Fres-
nel/Fraunhofer transition border definition

xB,Fresnel “
r20
λ

´
λ

4
, no Fresnel region for d0 ă λ (D.10)

“
1

4

f d20
c

˜

1 ´
1

`

f d0
c

˘2

¸

, no Fresnel region for
f

c
ă

1

d0
(D.11)

derived from the Fresnel zones approach in [Hei92b, I.2.c].
For r0

λ
ă 1

2
and x ! r0 the sound pressure can be approximated from (D.3)

to

P px, ωq “
1

π2 r20
λ sin

´π

λ
r0

¯

e´j ω
2 c

p
?

r20`x2`xq, (D.12)

indicating a constant pressure level for x ! r0 dependent on the weighting
factor that includes λ and r0. Note that this weighting factor does not follow
a simple rule due to the sin-function.

Another common Fresnel/Fraunhofer transition distance definition and thereby
farfield condition can be derived from the second equation in (D.9). For rea-
sonable large temporal frequencies the term π2{p2π ω

c
q is negligible compared
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to the remainder and the farfield condition reads (cf. [Mö09, (3.68)])

xB,Far ą
1

2 π

pω
c
r0q

2

ω
c

Ñ xB,Far ą
r20
λ

(D.13)

if r0
λ

ą 1
2

is fulfilled. Note that this is similar to the Fraunhofer validity
condition (2.106), which can be linked to the Fresnel number [Bor06, Ch. 8.2
(18)]

NF “
r20
λxB

“ 1 (D.14)

The Fresnel number indicates Fraunhofer diffraction for NF ! 1 and Fresnel
diffraction for NF " 1. In Fig. D.1 the level decay and frequency response of
a circular piston with d0 “ 0.5m exemplarily indicates the discussed charac-
teristics of the Fresnel region.

Fraunhofer region

For
$

&

%

x ą xB,Fresnel, x ą xB,Far if r0
λ

ą 1
2

x ą r0 if r0
λ

ď 1
2

(D.15)

the sound pressure exhibits the typical asymptotic characteristics of a 6 dB
level decay per distance doubling. This indicates the Fraunhofer region where
no pressure nodes and antinodes are observed anymore.

Applying the first condition for Fraunhofer region validity x " r0 (cf.
(2.104)) on (D.2) using the Taylor series expansion

a

x2 ` r20 « x `
r20
2x

leads
to

P px, ωq “
1

π r20

1

j ω
c

e´j ω
c
x

ˆ

1 ´ e´j
π r20
λ

1
x

˙

. (D.16)

Setting the term π r20
λ

1
x

“ 1 in the exp-function of (D.16) reveals the so called
Rayleigh distance or Rayleigh length of a circular piston (cf. [Kin00, p.180],
[Bla00, p.448])

xB,Rayleigh “
π r20
λ

Ñ NF “
1

π
(D.17)
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Figure D.1: Baffled circular piston with constant volume acceleration on main
axis (D.2). Diameter d0 “ 0.5m, c “ 343m/s.
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as a further possible definition of the Fresnel/Fraunhofer transition border.
Using this or r20 ! λx from (D.13) and the Taylor series expansion e´jα «

1 ´ jα yields

P px, ωq “
e´j ω

c
x

2 π x
, (D.18)

which is identified as the on-axis sound pressure characteristic of the Neumann
Green’s function, i.e. a baffled spherical monopole with temporal frequency
independent 6 dB level decay per distance doubling. In Fig. D.1 the level
decay and frequency response of a circular piston with d0 “ 0.5m exemplarily
indicates the discussed characteristics of the Fraunhofer region.

A further possible Fresnel/Fraunhofer transition border can be defined by
usage of the so called geometric diffraction approach. Since for that the farfield
radiation pattern (Fraunhofer approximation) is required, this will be later
discussed in Ch. D.1.3.

D.1.2 Fraunhofer Approximation

The diffraction characteristics and farfield radiation pattern of an ideally baf-
fled circular piston with constant velocity over the diaphragm’s surface with
radius r0 is derived by (2.110), which is well documented, e.g. [Ste27], [Ste58,
p.7ff.], [Sku71, Ch. 26.9], [Zio95, Ch. 6.5], [Wil99, Ch. 2.11.5], [Bla00, Ch. 13],
[Kin00, Ch. 7.4], [Goo05a, Ch. 2.1.5f], [Bor06, Ch. 8.5.2]. It is shortly revis-
ited here following [Hec77, Wil99] using the Fourier-Bessel transform [Bad09]
approach.

The position vector x0 “ px0, y0, z0q
T “ r pcosα sin β, sinα sin β, cos βqT

within the SSD generally holds using 0 ď α ă 2π, 0 ď β ď π. For the mo-
ment consider the SSD – and thus the circular piston symmetrical to the origin
– within the xy-plane for convenient notation of functions with radial depen-
dence. Then with β “ π

2
the positions within the SSD in polar coordinates are

denoted as

x0 “ r cosα, y0 “ r sinα, z0 “ 0, r “

b

x2
0 ` y20, tanα “

y0
x0

. (D.19)
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The dispersion relation of linear acoustics

´ω

c

¯2

“ pk2
x ` k2

yq ` k2
z “ k2

r ` k2
z (D.20)

holds, and a radiation into the half-space w.r.t. the positive z-axis is considered
by the possible wave numbers

kz “

$

&

%

`
a

pω
c
q2 ´ k2

r for pω
c
q2 ą k2

r

´j
a

k2
r ´ pω

c
q2 for k2

r ą pω
c
q2.

(D.21)

The spatio-temporal spectrum of the source’s normal velocity temporal
spectrum is obtained by, cf. p. 43

Hpkx, ky, ωq “

`8
ij

´8

Vnpx0, y0, ωq e`j kx x0 e`j ky y0 dx0 dy0 (D.22)

in cartesian coordinates. The spatial Fourier transform is performed over
kx, ky P R. Thus, a kr P R` using 0 ď ϕ ă 2π

kr “

b

k2
x ` k2

y, kx “ kr cosϕ, ky “ kr sinϕ, tanϕ “
ky
kx

(D.23)

can be defined in general, cf. Fig. D.2. Note that some textbooks here already
impose a restriction on kr for propagating wave radiation only, which at this
stage of the discussion is not necessarily required to obtain the spatial Fourier
transform (D.22) or equivalently perform the Fourier-Bessel transform in the
first instance. Moreover, the spatio-temporal Fourier spectrum over kx, ky

includes the evanescent part of the diffracted wave field as well [Har79]. The
interpretation for propagating waves only yields the farfield radiation pattern
then, that most textbooks are interested in.

Inserting (D.19) and (D.23) into (D.22) and changing the integration to
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polar coordinates yields

Hpkr, ϕ, ωq “

`8
ż

0

`2π
ż

0

Vnpr, α, ωq e`j kr r cospα´ϕq r dα dr. (D.24)

With an assumed constant normal velocity over the piston’s surface and an
ideal sound-hard boundary baffle

Vnpr, α, ωq “

$

&

%

1
π r20

for r ď r0

0 for r ą r0,
(D.25)

(D.24) can be simplified for this radially symmetric function by deploying the
integral definition [Gra07, (3.915)] of the Bessel function J0p¨q of first kind of
zeroth order [Olv10, §10.2(ii)], yielding

Hpkr, ωq “ 2 π

`8
ż

0

Vnpr, ωq J0pkr rq r dr

loooooooooooooomoooooooooooooon

H0tfprqu

, (D.26)

for which the result is equivalent to a 2 π-weighted zeroth order Hankel trans-
form, also termed Fourier-Bessel transform F pkrq ❞ t H0tfprqu [Wil99, Ch.
1.4], [Bad09]. For Vnpr, ωq “ 1 ❞ t Hpkx, ky, ωq “ p2 πq2 δpkxq δpkyq is ob-
tained as expected, cf. [Bad09, p.1770]. The finite integral of (D.26) for the
piston’s surface is with (D.25) solved to [Hec77, Table II(1)]

Hpkr, ωq “
2

r20

`r0
ż

0

J0pkr rq r dr “ 2
J1pkr r0q

kr r0
(D.27)

(D.28)

using derivative theorems on Bessel functions [Olv10, Ch. 10.6(ii)] and the
Bessel function J1p¨q of first kind of first order [Olv10, §10.2(ii)].

The wave number vector k “ pkx, ky, kzqT “ ω
c

pcosϕ sinϑ, sinϕ sinϑ, cosϑqT

for propagating waves with the general angle definition 0 ď ϕ ă 2 π, 0 ď ϑ ď π
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Figure D.2: Dispersion relation for propagating waves using Ewald sphere,
kr “

a

k2
x ` k2

y, kx “ kr cosϕ, ky “ kr sinϕ, kz “ ω
c
cosϑ, kr “ ω

c
sinϑ,

ω
c

“
a

k2
r ` k2

z . Example for: ϕ “ 30˝, ϑ “ 60˝, ω
c

“ 1 rad/m.

leads to

kr “
ω

c

b

cos2 ϕ sin2 ϑ ` sin2 ϕ sin2 ϑ “
ω

c
sinϑ, (D.29)

canceling out the ϕ-dependency. Since only wave radiation into the positive
z-axis is considered by (D.21), the radiation angle 0 ď ϑ ď π{2 w.r.t. to the
piston’s normal axis z is allowed that exclusively defines the radiation direction
within the z ą 0 half space of interest, cf. Fig. D.2. The farfield radiation
pattern – rotationally symmetric w.r.t. the z-axis, cf. [Wil99, Fig. 2.19] – is
thus given as

Hpϑ, ωq “ 2
J1pω

c
sinϑ r0q

ω
c
sinϑ r0

0 ď ϑ ď π{2. (D.30)

It is common practice to evaluate the FRP in terms of normalized variables
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Figure D.3: Jinc function for circular piston, sinc function for line piston.

u or v, leading to the functions, cf. Fig. D.3

Hpuq “ 2
J1pπ uq

π u
Hpvq “ 2

J1pvq

v
, (D.31)

that are known as sombrero function, besinc function or jinc function [Goo05a,
p.15]. The u-space version is termed universal function in [Hei92b, p.4] where
the factor 2 was omitted. Note that similar to the sinc function there is no
unique terminology if the argument normalized to π u or just to v is deployed.
The variable substitution is given as

ω

c
r0 sinϑ “ πp

2 r0
λ

sinϑq “π u (D.32)

ω

c
r0 sinϑ “

2 π

λ
r0 sinϑ “v. (D.33)
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(a) ω
c r0 “ 0.5. (b) ω

c r0 “ 1.

(c) ω
c r0 “ 2.215, ´6dB at ϑ « 90˝. (d) ω

c r0 “ 3.832, ´6 dB at ϑ « 35.4˝.

(e) ω
c r0 “ 7.016, first side lobe ϑ « 47˝. (f) ω

c r0 “ 11.7, first zero at ϑ « 19.1˝.

Figure D.4: Farfield radiation pattern of circular pistons with ω
c

“ 1 rad/m
(for convenient Ewald sphere visualization, cf. Fig. D.2) and different radii,
c “ 343m/s, cf. [Kin00, Fig. 7.4.5], [Bor06, Tbl. 8.2].
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Since 0 ď ϑ ď π{2 Ñ 0 ď sinϑ ď 1 the ranges

0 ď u ď
2 r0
λ

“
d0
λ

(D.34)

0 ď v ď
2 π

λ
r0 “ π

d0
λ

“
ω

c
r0 (D.35)

determine radiation wave propagation over angle ϑ. For ω
c
r0 ! 1 or d0

λ
! 1

3

resp. the FRP is half-space omnidirectional, whereas for ω
c
r0 " 1 or d0

λ
" 1

3

resp. (e.g. increasing the temporal frequency while holding r0 constant) an
increasing amount of side lobes and zeros of the jinc function are mapped
to the radiation angles, yielding a more directed FRP, cf. Fig. D.3. For
exemplarily chosen ω

c
r0-values this is depicted in Fig. D.4. To use the Ewald

sphere construction as in Fig. D.2, ω
c

“ 1 rad/m was chosen by varying the
piston radius. The beams are plotted linearly as |Hpϑ, ωq| (D.30), from which
the values on kz-axis also indicate the attenuation of |Hpϑ, ωq|. This however
holds only values ω

c
r0 ą 3.8317, i.e. when at least one zero entered the visible

region. The beam color indicates the level 20 log10p|Hpϑ, ωq|q in dB over the
radiating angle. The Fig. D.4a and Fig. D.4b show undirected, almost half-
space omnidirectional FRPs due to rather small ω

c
r0. For Fig. D.4c ω

c
r0 was

chosen in order to obtain -6 dB level at ϑ “ 90˝, while Fig. D.4d shows an
FRP where the first zero of the jinc function just entered the visible region
at ϑ « 90˝. Here the ´6 dB level is obtained at ϑ “ 35.4˝, indicated by the
Ewald sphere construction of vector k for an arbitrary chosen ϕ. By further
increasing the piston radius in Fig. D.4e two zeros of the jing function map into
the FRP and one first side lobe with level ´17.57 dB appears at about ϑ “ 47˝.
In Fig. D.4f the ω

c
r0 was chosen to have three side lobes (ϑ « 26, 46, 90˝) and

three zeros (ϑ « 19, 37, 60˝) within the visible region creating the FRP.
When considering a circular piston within the yz-plane and only the xy-

plane with x ą 0 as sound reinforcement region – as later on used here and in
Ch. 3 – one may rewrite (D.27) and (D.30) to

Hpky, ωq “ 2
J1pky r0q

ky r0
(D.36)
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and (cf. (2.165))

Hpϕ, ωq “ 2
J1p

ω
c
sinϕ r0q

ω
c
sinϕ r0

´ π{2 ď ϕ ď π{2, (D.37)

respectively, using the fact that with [Olv10, (10.11.1)]

J1p´argq

´arg
“

´J1pargq

´arg
“

J1pargq

arg
. (D.38)

D.1.3 Fresnel-/Fraunhofer Transition Distance

With d0 “ 2 r0 the FRP of the circular piston is written as

Hpϕ, ωq “ 2
J1p2π

λ
sinϕ d0

2
q

2π
λ

sinϕ d0
2

“ 2
J1pπ d0

λ
sinϕq

π d0
λ
sinϕ

. (D.39)

If for a chosen wave length λ and radius r0 at least the first zero1 of the Bessel
function J1pπ α0q “ 0 is located within the visible region – that is for

α0 « 3.8317059702075 ¨ π´1
“ 1.2196698912665, (D.40)

[Hei92b] uses α0 “ 1.24 – one may find the radiation angle ϕN of that FRP’s
zero (notch) by

π
d0
λ

sinϕN “ π α0 Ñ sinϕN “ α0
λ

d0
. (D.41)

According to Fig. D.5 the Fresnel-/Fraunhofer distance xB may be defined

1http://keisan.casio.com/exec/system/1180573472

x

y

r0

r0

xB

ϕN

Figure D.5: Fresnel-/Fraunhofer distance xB of a circular piston within yz-
plane with radius r0 using the half angle opening ϕN, cf. [Hei92b, Fig. 6].

http://keisan.casio.com/exec/system/1180573472
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Figure D.6: Radiation of a baffled circular piston within yz-plane with (2.85),
ω
c
r0 “ 7, d0 “ 10”, c “ 343m/s, ϕN “ 33.2˝, xB “ 0.194m, 0 dB at x “

p2, 0, 0qT.

with the geometric diffraction approach as (cf. Fig. D.6)

tanϕN “

d0
2

xB
. (D.42)

Using tanϕ “
sinϕ
cosϕ

and cosϕ “
a

1 ´ sin2 ϕ yields

xB “
d0
2

a

1 ´ sin2 ϕN

sinϕN
(D.43)

and furthermore introducing sinϕN from (D.41) with c “ λ f

xB “
d0
2

c

1 ´

´

α0
λ
d0

¯2

α0
λ
d0

“
1

2

d20
α0

f

c

d

1 ´
α2
0

`

d0
f
c

˘2 (D.44)

If α0
λ
d0

ą 1, xB P C respectively, no Fresnel region exists and the circular
piston only radiates a Fraunhofer field for the chosen λ and d0. In other
words, no zeros exist within the visible region of the FRP. Note that in [Hei92b,
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I.2.e] the transition border in meters was given with frequency F in kHz and
c “ 333.3̄m/s to

xB “
3

2

d20
α0

F

d

1 ´
α2
0

9 pd0 F q
2 « 1.23 d20 F

d

1 ´
1

6.05 pd0 F q
2 . (D.45)

With [Hei92b, Fig. 13] a schematic sketch of the circular piston’s Fres-
nel/Fraunhofer characteristics was given over frequency and on-axis distance.
For typically deployed loudspeaker sizes this is shown in Fig. D.10 by evaluat-
ing (D.2) and indicating xB (D.44). From that it can be concluded that typical
listener distances in front of an LSA rarely are in the Fresnel region of a single
loudspeaker, but rather in its Fraunhofer region. Hence, the Fresnel region of
a circular piston can be, but must not necessarily be considered for prediction
of audience sound fields produced by line arrays.

D.2 Line Piston

The so called baffled line piston with length l under constant volume acceler-
ation or constant velocity over the piston’s diaphragm is considered as a very
simple model of waveguides that are deployed in LSA designs for high audio
frequencies ą p1...2q kHz. The subsections again deal with the description of
the on-axis pressure, the farfield radiation pattern and its Fresnel/Fraunhofer
(near-/farfield) transition.

D.2.1 On-Axis Pressure

Consider a finite length, continuous and baffled line source with the length l on
the y-axis symmetrical to the origin, denoting positions within the source with
y0. The Neumann Rayleigh integral for the on-axis sound pressure is given as

P px, ωq “ 2 j ϱ0 ω

`8
ij

´8

Vnpx0, ωq
e´j ω

c
|x´x0|

4 π |x ´ x0|
dy0 dz0 (D.46)
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in general with x “ px, 0, 0qT and x0 “ p0, y0, z0q
T. The velocity spectrum

Vnpx0q “

$

&

%

1
j ϱ0 ω l

for |y0| ď l
2

0 elsewhere in yz-plane
(D.47)

describes the ideal, finite length line piston on y-axis under consideration
within an otherwise rigid yz-plane. This models the line piston under con-
stant volume acceleration (cf. [Hei92b, (2)]) using an energy spread of the
spatial dirac impulse over the piston’s surface [Ste29, Hec77]. With resulting
|x ´ x0| “ r “

a

x2 ` y20 and axial symmetry, the integral (D.46) can be
rewritten

P px, ωq “
4

l

` l
2

ż

0

e´j ω
c
r

4π r
dy0. (D.48)

This simple looking integral is not generally solvable for a closed form solution
and further approximations must be deployed. The calculus in [Hei92b, p.9] is
revisited in detail for consistent treatment. From the problem’s geometry one
obtains

r « x `
y20
2x

(D.49)

with a Taylor series expansion including the linear and quadratic term, cf.
[Pri04, (3)]. Inserting (D.49) into the argument of the exp-function and only
r « x into the denominator of (D.48) yields

P px, ωq “
4

l

1

4π

e´j ω
c
x

x

` l
2

ż

0

e´j ω
c

y20
2 x dy0, (D.50)

which is precisely identified as the Fresnel approximation for a diffracted plane
wave (2.101) for the special case of on-axis evaluation, cf. [Pri04, (4)]. The
Fresnel approximation is valid under the condition (2.102). Using x1 “ p0, 0qT

and the farthest spherical monopole x1
0 “ p l

2
, 0qT within the line piston as

well as an arbitrarily chosen allowed maximum angle of π
32

for the third order
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exponential term, the condition (2.102)

ω

c

|x1 ´ x1
0|4

8x3
CS

“
π

32
“

ω

c

`

l
2

˘4

8x3
CS

(D.51)

leads to model validity distances on axis x ą xCS with

xCS “

ˆ

l4

2λ

˙
1
3

. (D.52)

Eq. (D.50) can be reshaped into a Fresnel integral by the variable substitution
(the variable v is chosen similar to [Hei92b, p. 9], not to be confused with the
piston velocity)

v “
ω

c

y20
2x

Ñ
dv

dy0
“ 2

ω

c

y0
2x

Ñ dy0 “
dv

2 ω
c

y0
2x

(D.53)

and the new integration limits

v0 “ vpy0 “
l

2
q “

ω

c

`

l
2

˘2

2x
, vpy0 “ 0q “ 0. (D.54)

With (D.52) the corresponding

v0pxCSq “
ω

c

`

l
2

˘2

2xCS
“

π

32
1
3

ˆ

l

λ

˙
2
3

(D.55)

indicates a valid Fresnel approximation for v0 ă v0pxCSq only. Applying the
substitution yields

P px, ωq “
2

l

1

4 π

e´j ω
c
x

x

v0
ż

0

e´j v dv
ω
c

y0
2x

, (D.56)

that now can be casted to a Fresnel integral representation, cf. [Sku71, Ch.
26.23] for a possible solution. The appropriate Fresnel integrals [Gra07, p.
xxxvi], [Abr72, p.321] – using the subscript convention from [Gra07] – are
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Figure D.7: left: Fresnel integrals (D.57), right: Cornu’s spiral in complex
plane

given as

C2pv0q “
1

?
2 π

ż v0

0

cos v
?
v
dv “ C1p

c

2 v0
π

q

S2pv0q “
1

?
2 π

ż v0

0

sin v
?
v
dv “ S1p

c

2 v0
π

q (D.57)

for which C1p¨q and S1p¨q are implemented in Matlab and Mathematica as
FresnelC(.) and FresnelS(.), respectively. The Fresnel integrals are de-
picted in Fig. D.7. The visualization in the complex plane shows the so called
Cornu spiral, cf. [Sku71, Fig. 5.5], [Bor06, Ch. 8.7.2]. Introducing

?
v into

(D.56) yields

P px, ωq “
2

l

1

4π

d

2
ω
c
x
e´j ω

c
x

ż v0

0

e´j v

?
v

dv (D.58)

and by applying the short notations C2pv0q and S2pv0q follows

P px, ωq “
2

l

1

4π

d

2
ω
c
x
e´j ω

c
x

?
2π rC2pv0q ´ jS2pv0qs , (D.59)

FresnelC(.)
FresnelS(.)


D.2. LINE PISTON 283

which is the result in [Hei92b, p. 9] except for the negative signs due to the dif-
ferent spatio-temporal Fourier conventions e´j ω

c
x e`jω t (here) vs. e`j ω

c
x e`jω t

([Hei92b, p.2]) and another chosen normalization scheme. Therefore, an an-
alytic expression for the sound pressure on axis for a baffled line piston and
wave propagation perpendicular to the piston is available under the given as-
sumptions. Note again that only certain parameter sets v0pl, x, ωq yield a valid
prediction due to (D.52) and (D.55), i.e. x ą xCS Ø v0 ă v0pxCSq.

Fresnel region

The asymptotic representations for v0 Ñ 8 [Gra07, (8.255)]

C2pv0q «
1

2
`

1
?
2 π v0

sinpv0q S2pv0q «
1

2
´

1
?
2 π v0

cospv0q (D.60)

hold and correspond to the highly oscillating region of the Cornu spiral, cf.
Fig. D.7. Eq. (D.55) allows very large, valid v0 only for large piston lengths
and/or very small wave lengths. The Fresnel integrals approach the same limit
[Olv10, (7.29)]

lim
v0Ñ8

C2pv0q “
1

2
lim
v0Ñ8

S2pv0q “
1

2
. (D.61)

The Fresnel integrals C2pv0q, S2pv0q oscillate around the limit 1{2 and the term
|C2pv0q ´ jS2pv0q| oscillates around the limit 1{

?
2 for v0 Ñ 8. The envelope

is therefore given by

C2,envpv0q “
1

2
`

1
?
2 π v0

S2,envpv0q “
1

2
´

1
?
2π v0

. (D.62)

For a rough estimation of the frequency and distance dependence in the Fresnel
region, the oscillatory behaviour is shortly ignored for convenience. Thus, using
(D.61) for (D.59) leads to

P px, ωq «
1

l
¨

˜

´
j

2

d

2

π ω
c
x
e´j pω

c
x´π

4
q

¸

. (D.63)

The result resembles the large argument approximation of the 2D Neumann
Green’s function weighted by 1

l
, i.e. the ideal, baffled, infinite line monopole

located on y-axis, cf. (2.143) including only on-axis distance x. The magnitude
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of the sound pressure

|P px, ωq| 9
1

a

ω
c
x

(D.64)

has -3 dB/oct. lowpass characteristics with ripples due to (D.62) and a 3
dB level decay per distance doubling with ripples also due to (D.62). This
corresponds to the Fresnel region of the finite line source. Note that – in
contrast to the Fresnel region of the circular piston – the sound pressure will
never reach zero due to the Cornu’s spiral characteristic.

Fraunhofer region

Under the assumption v0 ! 1, which holds for very low frequencies, very small
line pistons or very far distances, (D.58) can with e´j v « 1 be simplified to

P px, ωq “
2

l

1

4π

d

2
ω
c
x
e´j ω

c
x

ż v0

0

1
?
v
dv. (D.65)

Evaluation of the integral yields

P px, ωq “
e´j ω

c
x

2 π x
, (D.66)

which – similar to the circular piston – is identified as the on-axis sound pres-
sure characteristic of the 3D Neumann Green’s function, i.e. a baffled spherical
monopole. The sound pressure is frequency independent and exhibits a 6 dB
level decay per distance doubling, cf. p.270. This characterizes the Fraunhofer
region of the finite line source. Note that this only considers the very first part
(starting from the origin) of the Cornu spiral, which excludes all oscillations.

As for the circular piston a Fresnel/Fraunhofer transition distance may be
defined as the last local sound pressure maximum – if existing – away from
the line piston before the asymptotic 6 dB level decay per distance doubling
holds. Therefore, from (D.59)

|P px, ωqloc,max| 9 max
"
ˇ

ˇ

ˇ

ˇ

C2pv0q ´ jS2pv0q
?
x

ˇ

ˇ

ˇ

ˇ

*

(D.67)

has to be found. No general closed solution can be given, since the numerator
with the Fresnel integrals depends on x (due to v0pxq) as well as the denomi-
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nator on
?
x. A rough approximation can be derived if only the numerator is

considered. The maximum modulus of |C2pv0q ´ jS2pv0q| is numerically found
for

v0 « 2.29744, (D.68)

cf. Fig. D.7, which for a chosen line piston length and temporal frequency
should indicate the Fresnel/Fraunhofer transition distance xB,CS. Note that
this distance is in general further away from the piston than the actual location
of the last local pressure maximum. For increasing distances x ą xB,CS, and
thus decreasing v0 (following the not oscillating part of the Cornu’s spiral
towards the origin) the Fresnel integrals |C2pv0q ´ jS2pv0q| exhibits a 3 dB
level decay per distance doubling. Together with the 3 dB level decay steming
from

b

1
x

in (D.59) this indicates an overall 6 dB level decay per distance
doubling, i.e. Fraunhofer behavior. The Fresnel/Fraunhofer transition border
can be defined with (D.54) for

2.29744 « v0 “
ω

c

`

l
2

˘2

2xB,CS
(D.69)

yielding

xB,CS «
1

3

l2

λ
valid only if xB,CS ě xCS. (D.70)

It turns out that if xB,CS ą xCS does not hold – i.e. the Fresnel approximation
is not valid – a reasonable good approximation for the transition border is
xB,CS “ xCS from (D.52), thus

xB,CS « max

#

1

3

l2

λ
,

ˆ

l4

2λ

˙
1
3

+

. (D.71)

Note that in [Hei92b, p.10] the same calculus using v0 “ 1.5 is performed,
referring to the global maximum of C2pv0q, which is actually exactly the case
for v0 “ π

2
. For their common normalization c “ 333.3̄m/s and the frequency
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F in kHz they give

xB,CS,Heil1992 «
π

2
l2 F, (D.72)

compared to a normalization of (D.70)

xB,CS « l2 F. (D.73)

Thus, the solution from [Hei92b] indicates the Fresnel/Fraunhofer transition
at a larger distance. However, both approaches correctly consider the l2-
dependency, which is frequently ignored in other literature.

There is a smooth transition between Fresnel and Fraunhofer region. Let’s
assume that the listener is located exactly at xB. By changing only one of the
parameters of v0 leaving the others constant the variation (increase/decrease)
of the parameter reveals into which region the radiation characteristic merges.
This is summarized as follows:

• l “ const, f “ const: Fresnel for x Œ, v0 Õ; Fraunhofer for x Õ, v0 Œ

• l “ const, x “ const: Fraunhofer for f Œ, v0 Œ; Fresnel for f Õ, v0 Õ

• f “ const, x “ const: Fraunhofer for l Œ, v0 Œ; Fresnel for l Õ, v0 Õ

This characteristics can be tracked in Fig. D.8. The plots also indicate the
general -3 dB/oct. lowpass characteristics and -3 dB level decay per distance
doubling in the Fresnel region, both exhibiting ripples due to the diffraction.
The Fraunhofer region is characterized by a flat amplitude spectrum and -6
dB level decay per distance doubling.

Note that the length of the array enters the Fresnel/Fraunhofer transition
border with quadratic dependence. This strong dependence on L, f , x is
of course not meaningful for homogeneous sound reinforcement. The uni-
formly driven, straight LSA is however the basic concept for the derivation of
Wavefront Sculpture Technology (WST, [Hei92b, Urb03]) and was therefore
discussed in detail.
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(a) Frequency response of a baffled line piston with constant volume acceleration on
main axis indicating the Fresnel-/Fraunhofer transition distance xB (D.79). Numerical
evaluation of (D.48), air absorption not considered. Length l “ 4m, c “ 343m/s. 0dB
normalization to x “ 4m and f “ 10Hz.
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(b) Sound pressure level decay over on-axis distance for Fig. D.8a. Some chosen temporal
frequencies correspond to the xB|fB of Fig. D.8a using the same dB-normalization.

Figure D.8: Line piston on-axis characteristics, cf. [Lip86], [Ure02], [Ure04]
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D.2.2 Fraunhofer Approximation

The Fraunhofer approximation of a line piston with normalized, constant nor-
mal velocity is straightforward and reads [Hec77]

Hpky, ωq “

` l
2

ż

´ l
2

1

l
e`j ky y0 dy0 “

sin
´

ky l

2

¯

ky l

2

, (D.74)

Hpϕ, ωq “
sin

`

ω
c
sinϕ l

2

˘

ω
c
sinϕ l

2

, (D.75)

for which an equivalent v and u-space definitions of the resulting sinc-function
is deployed, cf. Fig. D.3. It becomes obvious that the jinc and sinc exhibit
about the same characteristics for small v/u. For large v/u the jinc function
however exhibits a larger envelope decay than the sinc function.

D.2.3 Fresnel-/Fraunhofer Transition Distance

The FRP of the line piston is written as

Hpϕ, ωq “
sinp2π

λ
sinϕ l

2
q

2π
λ

sinϕ l
2

“
sinpπ l

λ
sinϕq

π l
λ
sinϕ

. (D.76)

If for a chosen λ and l at least the first zero of the sine function sinpπ α0q “ 0

– that is for α0 “ 1 – is located within the visible region, one may find the
radiation angle ϕN of that FRP’s zero (notch) by

π
l

λ
sinϕN “ π Ñ sinϕN “

λ

l
(D.77)

According to Fig. D.9 the Fresnel-/Fraunhofer distance xB again (cf. p.278)
may be defined by the geometric diffraction approach as

xB “
l

2

a

1 ´ sin2 ϕN

sinϕN
(D.78)
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x
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l
2

l
2
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ϕN

Figure D.9: Fresnel-/Fraunhofer distance xB of a line piston with length l using
the half angle opening ϕN, cf. [Hei92b, Fig. 12].

and furthermore introducing sinϕN from (D.77) with c “ λ f

xB “
1

2
l2
f

c

d

1 ´
1

`

l f
c

˘2 (D.79)

If λ
l

ą 1, xB P C respectively, no Fresnel region exists and the line piston
immediately radiates a Fraunhofer field for the chosen λ and l. In other words,
no zeros exist within the visible region of the FRP. Note that in [Hei92b, I.3.e],
[Urb03, p.913] the transition border in meters was given with frequency F in
kHz and c “ 333.3̄m/s to

xB “
3

2
l2 F

d

1 ´
1

9 pl F q
2 . (D.80)

Note that a further possible Fresnel/Fraunhofer transition was given as rB “

L2 f
c

[Lip86, (25)], that is precisely the condition for the Fraunhofer approx-
imation validity (2.106). In [Lip86] this was found by the intersection of the
flat, low frequency Fraunhofer spectrum with the asymptotic Fresnel spectrum
for high frequencies.

[Hei92b, Fig. 13] contains also a schematic sketch of the line piston’s Fres-
nel/Fraunhofer characteristics over frequency and on-axis distance. For typi-
cally deployed waveguide sizes this is shown in Fig. D.11 by numerical evalu-
ation of the integral (D.48) and indicating xB (D.79). From that it again can
be concluded that typical listener distances in front of an LSA rarely are in
the Fresnel region of a single waveguide, but rather in its Fraunhofer region.
However, when considering linear arrays built from line pistons listeners may
be situated in the Fresnel region of the whole array.
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(a) d0 “ 2 r0 “ 1.5”. (b) d0 “ 3”.

(c) d0 “ 5”. (d) d0 “ 6.5”.

(e) d0 “ 12”. (f) d0 “ 15”.

Figure D.10: Circular piston on axis, cf. [Hei92b, Fig. 13]. Evaluation of (D.2)
normalized to 0 dB at x “ 2 r0 and f “ 20Hz. Fresnel/Fraunhofer transition
distance xB (D.44) indicated as line.



D.2. LINE PISTON 291

(a) l “ 1.5”. (b) l “ 3”.

(c) l “ 5”. (d) l “ 6.5”.

(e) l “ 12”. (f) l “ 15”.

Figure D.11: Line piston on axis, cf. [Hei92b, Fig. 13]. Numerical evaluation
of the integral (D.48) normalized to 0 dB at x “ l and f “ 20Hz. Fres-
nel/Fraunhofer transition distance xB (D.79) indicated as line.
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Zusammenfassung
Diese Dissertation beschäftigt sich mit der Beschallung großer Zuhörerflächen
mit sogenannten Line Source Arrays. Eine optimale Beschallung erfordert li-
neare Frequenzgänge an allen Zuhörerpunkten und einen gewünschten Schall-
druckpegelverlauf. Anstatt als Richtcharakteristiksynthese wird das Problem
hier als Schallfeldsynthese beschrieben. Die Synthese einer virtuellen Quelle
mit einem Line Source Array erlaubt das Beschallungsproblem als Formung
einer geeigneten und für den Zuhörerbereich angepassten Wellenfront zu in-
terpretieren. Dies wird entweder durch geometrische Krümmung des Arrays,
durch geeignete elektronische Ansteuerung der Lautsprecher oder idealerwie-
se durch beides gleichzeitig erreicht. Offensichtlich hängt das Ergebnis davon
ab, wie akkurat ein Array die gewünschte Wellenfront abstrahlen kann. In
der Praxis wird dies beeinflusst von den verwendeten Lautsprechern und ih-
rer Anordnung, ihrer elektronischen Ansteuerung und potentiell auftretendem
räumlichen Aliasing. Der Einfluss dieser Parameter wird mit Hilfe von Array-
Signalverarbeitung diskutiert, wofür die sogenannte Wavefront Sculpture Tech-
nology aufgegriffen und Wellenfeldsynthese als mögliche Ansteuerungsmethode
vorgeschlagen wird.

Abstract
This thesis deals with optimized large-scale sound reinforcement for large au-
diences in large venues using line source arrays. Homogeneous audience cover-
age requires flat frequency responses for all listeners and an appropriate sound
pressure level distribution. This is treated as a sound field synthesis prob-
lem rather than a directivity synthesis problem. For that the synthesis of a
virtual source via the line source array allows for interpreting the problem as
audience adapted wavefront shaping. This is either achieved by geometrical
array curving, by electronic control of the loudspeakers or by ideally combining
both approaches. Obviously the obtained results depend on how accurately
an array can emanate the desired wavefront. For practical array designs and
setups this is affected by the deployed loudspeakers and their arrangement, its
electronic control and potential spatial aliasing occurrence. The influence of
these parameters is discussed with the aid of array signal processing revisiting
the so called wavefront sculpture technology and proposing so called wave field
synthesis as a suitable control method.
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Theses
1. Optimized large-scale sound reinforcement can be interpreted as a sound

field synthesis problem rather than a directivity synthesis problem.

2. Wave Field Synthesis of a directed virtual source allows for an audience
adapted wavefront shaping. This is another interpretation of synthesiz-
ing frequency independent, homogeneous beam patterns adapted to the
audience.

3. The quality of wavefront shaping using a line source array depends on
the array’s geometry, its spatial discretization, its electronic control and
the deployed loudspeaker characteristics.

4. Wavefront shaping by concurrently avoiding/suppressing side and grat-
ing lobes is realizable either with full electronic control when the spa-
tial sampling condition holds, or if not with frequency dependent gain
shading and additional geometric array curving using highly directed
loudspeakers.

5. Wavefront Sculpture Technology essentially constitutes fundamental ar-
ray processing and can be consistently discussed with an acoustic signal
processing model for sound field synthesis.

6. Rayleigh integral sound field synthesis is identically equal to the angular
spectrum synthesis. The latter allows for a more convenient interpre-
tation of occurring interference and diffraction phenomena of line array
radiation.

7. The side and grating lobe characteristic in the farfield radiation pattern
of a straight array built from non-isotropic pistons is directly linked to
the shape of these pistons, to the gaps between them and the control
method. This can be conveniently discussed with the angular spectrum
synthesis.

8. The discrete-time impulse response of the half-derivative filter can be
analytically given. The half-derivative and half-integral discrete-time
filters can be approximated with a cascade connection of analytically
given discrete-time 2nd order low-/high-shelf IIR filters.
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